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Abstract

Analytical software quality assurance (SQA) constitutes a significant part of the to-
tal development costs of a software system. Most estimates say that about 50% of the
costs can be attributed to defect-detection and removal. Hence, this is a promising area
for cost-optimisation. Various defect-detection techniques can be used to improve the
quality of software. Those techniques differ in many respects and it is consolidated
knowledge that the best result in terms of defect-detection can be obtained by combin-
ing several diverse techniques.

The main question in that context is then how to use those different techniques in
a cost-optimal way. In detail, this boils down to the questions (1) which techniques
to use, (2) in which order, (3) with how much effort, and (4) with which distribution
over the components. The major problem stated by several authors is that the costs and
benefits of SQA and the interrelationships of the influencing factors are still not totally
understood.

The main contribution of this dissertation is an analytical and stochastic model of the
economics of analytical SQA, based on expected values. The model is more general
than existing analytical models, as it is able to handle different types of techniques, i.e.,
static and dynamic ones. Nevertheless, the proposed model is more concrete than com-
parable economic models of QA because it includes the technical factors that influence
defect detection. The model can be used (1) to analyse different techniques theoreti-
cally and (2) to optimise the SQA in a company using historical project data. Relevant
data for the model is collected from the literature to give average values for different
techniques and defects. This allows an easier application of the model in practice.
Based on the empirical data the model is subject to sensitivity analysis resulting in a
quantitative order of importance of the input factors. This allows to determine which
factors are most beneficial to be analysed in more detail.

Finally, an approach to identify defect-prone components of a system based on mea-
sures of detailed design models allows to concentrate the SQA on these components.
It thereby improves the efficiency of defect-detection.

The approach for cost-optimisation of SQA is calibrated using several case stud-
ies. A complete validation was not feasible because the model needs calibration over
several projects in a company to yield reasonable predictions. The largest case study
is an evaluation of model-based testing in an industrial project in which the network
controller of an automotive network was tested. Further studies were done in vari-
ous domains and evaluating different techniques in different phases. All these case
studies provided valuable feedback on the model and also contributed to the body of
knowledge on the efficiency of the techniques.
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1 Introduction

The bitterness of poor quality remains long after low pricing is forgotten!
Leon M. Cautillo

1.1 Background and Motivation

The quality of software is an important factor in the success of any software system
today. Business value for the vendor as well as for the customer strongly depends on
quality. Quality decides whether the system is used at all and whether it provides the
expected benefits for the customer. For the vendor, quality of software stands for the
needed effort for fault removal and adding new functionality.

For example in [44] it is stated that the success of the software industry in Ger-
many mainly depends on how well it can manage the quality of its software products.
However, quality is a difficult concept in itself. How do you decide if something is of
quality? How do you measure and compare? Often quality has a flavour of subjectivity
as works of art do. Still, software quality can be boiled down to costs and benefits in
the economical sense because usually software is written for some business reasons.

Software quality assurance (SQA) comprises methods and techniques to assure that
a software has a certain (desired) quality. There are two fundamental approaches:
(1) constructive and (2) analytical techniques. Constructive techniques improve the
process of software development to prevent defects and other problems from being
introduced. In contrast to that, analytical techniques appraise the software with the
aim to detect defects and other problems. These two types have completely different
characteristics. Defect-detection deals with existing defects whereas defects should
not come into existence using defect prevention. Hence, the analysis of these types of
techniques should be done separately.

The costs for analytical SQA are significant. Many estimates say that analytical
SQA constitutes about 50% of the total development costs. This figure is attributed
to Myers [144]. Jones [94] still assigns 30–40% of the development costs to quality
assurance and defect removal. In a study from 2002, the National Institute of Standards
and Technology of the United States [179] even 80% of the development costs are
assigned to the detection and removal of defects. There is a huge opportunity for cost
savings in this area and that is why we focus on analytical techniques, also called
defect-detection techniques, in the following.

A further point of view is the distribution of defects over the components of a soft-
ware. It is often observed that this distribution follows a Pareto principle with 20% of
the components being responsible for 80% of the defects [20, 55]. This suggests that
SQA should not be uniformly distributed over the components but be concentrated on
the components that contain the most defects.

1



1 Introduction

1.2 Problem

To save costs for SQA, we need to optimise its usage in the development process with
the aim to reduce costs and increase benefits. There are many ways to address this
problem. In particular two approaches are possible: (1) improve existing techniques
or (2) use the existing techniques in a cost-optimal way. We concentrate on the second
approach because this offers project leaders and quality managers the possibility to
plan the quality assurance with respect to economic considerations. This approach
boils down to four main questions:

1. Which techniques should be used?

2. In what sequence?

3. With how much effort?

4. With which distribution over the components?

The answers to these questions involve an analysis and comparison of the different
available techniques. It needs to be determined whether they are applicable to a specific
kind of software and how their defect detection capabilities compare. Ntafos discusses
in [149] that “cost is clearly a central factor in any realistic comparison but it is hard
to measure, data are not easy to obtain, and little has been done to deal with it.” Costs
are the only possibility to compare all the influencing factors in SQA because they
are the unit all those factors can be reduced to. Because of that Rai et al. identify
in [173] mathematical models of the economics of software quality assurance as an
important research area. “A better understanding of the costs and benefits of SQA and
improvements to existing quantitative models should be useful to decision-makers.”

The distribution of effort over the components is also very hard to answer, as we
cannot know beforehand which components contain the most defects. However, there
are various approaches that try to predict the fault-proneness of components or classes
based on several metrics. Hence, an approach that helps to distribute the optimal effort
calculated using the cost model over the components would be helpful.

1.3 Contribution

The dissertation mainly focuses on one of the quality attributes: reliability. There are
several reasons for that. The main reason is that it simplifies the model building to
concentrate on one aspect rather than trying to solve “everything”, i.e., all aspects of
quality, in one model. Reliability is one of the major factors that affects users and
customers and is therefore of major importance. Nevertheless, this does not mean
that other quality aspects are totally ignored as a complete separation is not possible.
For example, the effort for corrective maintenance also depends on the number of
defects. Moreover, maintenance in general is more important in the long run as it
constitutes most of the total product costs [30]. So, it is important to be able to extend
the approach to explicitly incorporate other quality factors. However, note that the
proposed approach currently does not deal with adaptive and perfective maintenance,
i.e., enhancements of the system apart from defect removal.

2



1.4 Related Work

The main contribution of this thesis is an analytical model of the economics of ana-
lytical SQA. It consists of (1) a theoretical model that contains many detailed factors
and can be used for theoretical analyses, and (2) a simplified practical model that is
aimed at usage in software development projects. This practical model has been de-
rived from the theoretical one, has a reduced set of input factors and offers means for
optimisation. The main change is that we consider defect types instead of single faults
because measurement for the latter is only possible in controlled experiments which
are not feasible in real project environments. Furthermore, the methodological usage
of this model is explained and it is exemplarily embedded in the V-Modell XT.

Furthermore, we propose an approach to identify defect-prone components early
in the development process based on detailed UML models. This approach adapts
existing and proven metrics to a specific set of model types and thereby forms a metrics
suite that can yield an order of fault-proneness of components. A combination with
operational profiles can even identify the failure-prone components, i.e., the ones that
are most likely to fail in the field.

Finally, the thesis contains several case studies that (partly) validate the proposed
approaches. A full validation of the model in practice is out of scope of this disserta-
tion because the model needs calibration over several projects. However, the studies
contribute to the body of knowledge on the effectiveness, efficiency, and costs of de-
fect-detection techniques.

1.4 Related Work

The available related work can generally be classified into three categories: (1) theo-
retical models of the effectiveness and efficiency of either test techniques or inspec-
tions [63, 112, 136, 219], (2) economics-oriented, abstract models for quality assur-
ance in general [21, 66, 193], and (3) approaches to identify defect-prone compo-
nents [36, 119]. Models of the first type are able to incorporate interesting technical
details but are typically restricted to a specific type of techniques and often economical
considerations are not taken into account. The second type of models typically stems
from more management-oriented researchers that consider economic constraints and
are able to analyse different types of defect-detection but often deal with the technical
details in a very abstract way. The third category of related work contains approaches
that use code metrics to identify fault-prone components. One problem with code
metrics is that they are only available late in the development process, i.e., when the
code has already been created. Model metrics can be measured earlier but have not
been used so far for the identification of fault-prone components. Furthermore, the
combination with operational profiles is unique in our approach.

1.5 Contents

The remainder of this thesis is organised as follows: In Chap. 2 we review the basics
that are important for the following chapters. In particular, we describe software qual-
ity and different views and standards for it. We give definitions for the often confused
terms for defects and give a classification and high-level description of the available

3
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techniques for SQA. Finally, quality models are introduced and two examples are de-
scribed in more detail.

Chap. 3 explains the state of the art in the areas that constitute our main contri-
butions. We describe the available work on analytical models for defect-detection
techniques, defect introduction and removal models, and models for software quality
economics. The available literature surveys and the state of the art in the identification
of fault-prone components are also explained.

The main contribution is presented in Chap. 4. First, we describe the basic factors
that are important for the economics of quality assurance and combine them in an
analytical model. Based on the empirical knowledge on those factors we perform
a sensitivity analysis to investigate the importance of the factors. Then we derive a
simpler, more practical model, that is again analysed and it is shown how this model
can be used to optimise the usage of SQA in a company.

The approach to identify defect-prone components using detailed design models is
proposed in Chap. 5. We describe the chosen and adjusted metrics for UML models
and show how the metrics suite can be used to predict fault-prone and – in combination
with operational profiles – failure-prone components, i.e., components which are likely
to fail during operation.

Chap. 6 contains the accompanying case studies that were used to (partly) validate
the proposed approaches and in particular analyse specific factors used to calibrate the
analytical model. We describe case studies of an automatic collision notification sys-
tem in automobiles, of a network controller for an automotive infotainment network,
of backend systems for mobile services, and of telecommunication systems.

We close with final conclusions and an outlook on further research in Chap. 7.

Previously Published Material

The material covered in this thesis is based, in part, on our contributions in [100, 168,
201–212, 212–214].

4



2 Software Quality Assurance

This chapter introduces the basic terms and approaches that we consider as the basis
for the remainder of this dissertation. We start in Sec. 2.1 by giving and discussing
a definition of software quality. Sec. 2.2 has definitions for the different terms and
notions related to defects. In Sec. 2.3 we describe and classify common techniques for
software quality assurance. A classification with two important examples of quality
models is given in Sec. 2.4. All this is considered as general knowledge in the field
of software quality assurance although there are still disputable parts. In the follow-
ing Chap. 3 we will discuss the state of the art that is of specific relevance for the
contributions of this dissertation.

2.1 Software Quality

Because of the multitude of views on software quality, we first discuss these views and
definitions. The quality attribute reliability is also defined and discussed in more detail
because the contributions of this dissertation focus on dealing in particular with this
attribute.

2.1.1 Views and Standards

Quality is a difficult concept in itself. The roots of describing and defining quality can
be found in philosophy, especially in the view of Plato on beauty [160]. The question
is how to define and judge if something is “better” than something else. This is often
expressed in saying: “I know quality when I see it”. An interesting discussion on those
philosophical aspects can be found in in a book by Pirsig [159].

However, for a practical use of the notion of quality in engineering, this is not suf-
ficient. We need measurable and comparable quantities. Garvin gives in [67] a com-
parison of different approaches to define quality. He calls the philosophical approach
described above transcendent. Apart from that he identifies four further approaches:

• Product-based approach

• User-based approach

• Manufacturing approach

• Value-based approach

All these approaches have their own definitions of quality. In the product-based ap-
proach, quality describes differences in the quantity of some desired attributes. Hence,
in contrast to the transcendent approach, this is precisely measurable. This assumes
that we exactly know and are able to describe what is desired. For example, the quality
of tires can be measured with the time they can be used. However, this approach is

5



2 Software Quality Assurance

difficult for software because metrics for software are still not able to give satisfying
quantifications. It is not clear how desired attributes of software, such as maintainabil-
ity, could be measured. Note that the easy to measure and often used quantities number
of found defects or defects per kLOC are not a desired attribute. Such metrics are closer
to the manufacturing view that is discussed later where conformance to specification
is an issue. In the product-based approach only “ideal” attributes are considered.

Closer to the transcendent view is the user-based approach. It assumes that the
product that satisfies the needs of the user best has the highest quality. This is related
to the product-based approach as the desired attributes must be defined by users. The
difference is that the emphasis is not on metrics but on the subjective impression of
the users. However, Garvin argues that user satisfaction and quality are not necessarily
the same. The reason is that users can be satisfied with a product they do not consider
of high quality. For example, a product can be not as well produced as high quality
products but is cheap enough to leave the customer satisfied.

The manufacturing approach takes a more internal view and defines quality as con-
formance with specified requirements. This definition, however, includes all the prob-
lems we have with developing exhaustive and useful specifications. It assumes that
it is always possible to define the requirements of a product completely and hence a
deviation of the specification can be easily recognised. The metric defects per kLOC
from above is then useful as we measure the deviation from the specification by the
defect density of the code.

The last approach is the value-based approach. It assigns costs to conformance and
nonconformance and hence can calculate the value of a product. It assumes that we
are able to assign a value to all involved factors. This actually blends two concepts as
Garvin points out: “Quality, which is a measure of excellence, is being equated with
value, which is a measure of worth.” Nevertheless, we can relate these two concepts.
We discuss this issue of quality costs in Sec. 2.4.3.

In the software community, the manufacturing approach as well as the user-based
approach are accepted and acceptable. The reason is that in most cases a defect is easy
to define as a deviation from the specification but this is not always clear. Hence, also
deviation from customer or user expectations must be taken into account. The IEEE
defines in [88] quality as follows:

Definition 1 (Quality) (1) The degree to which a system, component, or process meets
specified requirements. (2) The degree to which a system, component, or process meets
customer or user needs or expectations.

This also reflects the difficulty of specifying complete requirements especially for
software which often has quickly changing requirements. Especially when consid-
ering the comparison of different quality assurance approaches defining quality only
by conformance to requirements is problematic. For example, requirements reviews
detect defects in requirements but cannot be handled with this limited definition of
quality. Hence, a hybrid definition of software quality works best for our overall goal
of analysing and optimising SQA.

The software quality can be expressed by quality attributes which are – following
[88] – “a feature or characteristic that affects an item’s quality”. Quality factor can
be used synonymously. There is no generally accepted set and description of quality
attributes but a well-known set is defined in the standard ISO 9126:

6



2.1 Software Quality

• Functionality

• Reliability

• Usability

• Efficiency

• Maintainability

• Portability

The ordering of quality attributes in a tree structure is proposed in [22] which allows
a iterative refinement with the aim to get measurable quantities at the lowest level.
For example, maintainability can be split into understandability and testability. This
approach is criticised and improved for maintainability in a multi-dimensional model
in [30]. Another important classification is defined by Laprie [116] that concentrates
more on the related view of dependability which is essential the same as quality in our
discussions above. However, the basic entities in all these classifications are similar to
a large extent and the differences lie mainly in the attribution to different categories.

2.1.2 Reliability

The quality attribute reliability is arguably, besides usability, the most important at-
tribute for the user of a software. Moreover, most quality assurance techniques mainly
aim at improving the reliability. Hence, this work has its main focus on this attribute.
As a foundation for the later chapters, we give a definition of software reliability and
discuss the specific issues of the reliability of software. A common definition also
adopted by the IEEE [88] is the following:

Definition 2 (Reliability) Reliability is the probability of failure-free functioning of a
system or component under stated conditions and environment for a specified period
of time.

This definition implies that reliability is based on a notion of time and that we look at
reliability always at specific conditions and in a specific and unchanged environment.
This is important because the reliability of a software can be extremely different in dif-
ferent environments. The same observation holds for hardware reliability. In extremely
wet environments hardware will wear off earlier than in normal room conditions.

However, there are important differences between software reliability and hardware
reliability. The reason is that software is intangible. Hence, software does not wear
out but the main sources for failures are “design” faults. Those design faults can suc-
cessively be removed and therefore, the reliability of software grows generally over
time whereas hardware reliability decreases because of the wear-out. Design faults
obviously exist in hardware as well but are typically not considered as a main source
of failure.

For software, also no faults are introduced by the manufacturing process as there is
no classic manufacturing. In general, it is seen as the process of transforming raw ma-
terials into a final product. This process is for software nonexistent apart from copying
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the compiled code. Manufacturing faults are hence not an important issue for software
because they stem from physical properties of the raw materials that introduce random
differences in the product. Note that the compilation of source code in particular is not
part of the manufacturing process. It only creates the first instance of the product but
does not manufacture all the products.

The definition of reliability already implies the randomness of the failure process.
Hence, mainly stochastic models are used to estimate and predict the reliability of
software. We will describe those models in more detail in Sec. 2.4.2.

2.2 Defects

This section first gives definitions of defect and related terms and then introduces the
classification of defects in defect types.

2.2.1 Definitions

There are various definitions of the terms related to faults and failures. Although there
are public standards that define these terms, e.g., [88], there are still no commonly
accepted definitions. Hence, we present our understanding of the most important terms
in the following.

Definition 3 (Failure) A failure is an incorrect output of a software visible to the user.

An example would be a computed output of 12 when the correct output is 10. The
notion of a failure is the most intuitive term and it is easy to define to a certain extent.
During the run of a software something goes wrong and the user of the software notices
that. Hence, output is anything that can be visible to the user, e.g., command-line, GUI,
or actuators in an embedded system. Incorrect output can range from a wrong colour
on the user interface over a wrong calculation to a total system crash. No output where
output is expected is also considered to be incorrect.

The problem with defining a failure comes in when looking in more detail on the
term incorrect. It is difficult to define this formally. Most of the time it is sufficient
to define that a result is incorrect if it does not conform to the requirements as in the
manufacturing approach to quality from Sec. 2.1. However, sometimes the user did
not specify suitably or this part of the software is underspecified. For our purposes, we
again take the hybrid approach of requirements conformance and user expectation. For
most cases it is sufficient to understand failures as deviations from the requirements
specification. However, for some cases – requirements defects – it is necessary to
include the user expectation.

Definition 4 (Fault) A fault is the cause of a potential failure inside the code or other
artefacts.

Having the definition of a failure, the definition of a fault seems to be simple. How-
ever, the concept of a fault is actually very difficult. It is often not possible to give
a concrete location of the source of a failure. When the fault is an omission it is
something non-existing and it is not always clear where the fix should be introduced.
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Another problem constitute interface faults, i.e., the interfaces of two components do
not interact correctly. It is possible to change either of the components to prevent the
failure in the future. Frankl et al. discuss this in [58]. They state that the term fault
“is not precise, and is difficult to make precise”. They define a fault using the notion
of failure region. It consists of failure points – input values that cause a failure – that
all cause no failure after a particular defect removal. This allows a formal and correct
definition of a fault but does not allow a relation to programmer mistakes and any clas-
sification is very difficult. Therefore, we will use our own more ambiguous definition
given above. Note that we consider wrong or missing parts in requirements or design
specifications also as faults, i.e., this term is not restricted to code.

Definition 5 (Defect) Defects are the superset of faults and failures.

The notion of a defect is often very helpful if it is not important whether we are
currently considering a fault or failure. This is because there is always some kind of
relationship between the two and at a certain abstraction layer it is useful to have a
common term for both.

Definition 6 (Mistake) A mistake is a human action that produces a fault.

The prime example is an incorrect action on the part of a developer including also
omissions. This is also sometimes called error. While discussing the notion of fault,
we already saw that it might be interesting to have the relation to the actions of the
developers – the mistakes they make. This is important for classification purposes
as well as for helping to prevent those kinds of faults in the future. Hence, we have
extended the 2-layer model of faults and failures to a 3-layer model where mistakes
cause faults and faults cause failures.

Definition 7 (Error) An error is that part of the system state that may cause a subse-
quent failure.

This definition of error is taken from [5]. It extends the 3-layer model with mistakes,
faults, and failures to a 4-layered approach with errors between the faults and failures.
Fig. 2.1 gives an overview of the terms and the different layers. Intuitively, when
running the program, a fault in the code is executed. Then the software does something
not expected by the programmer and reaches some erroneous state. However, it has
not yet produced a failure. At this stage so-called fault-tolerance mechanisms can take
counter-measures to avoid the failure. Also the error might not lead to a failure because
it has no consequence on the user-visible behaviour, or it is masked by another error. In
other cases, however, the erroneous state becomes visible to the user and hence results
in a failure. More formal definitions of these terms can be found in [28]. However,
these informal, intuitive definitions are sufficient for the following.

2.2.2 Defect Types

There is already a variety of research on the differences of defects and their nature.
We can roughly divide them in three categories: (1) defect taxonomies, (2) root cause
analysis, and (3) defect classification. Defect taxonomies are categorisations of faults,
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Figure 2.1: Overview of the terms related to defects

mostly in code, that are based on the details of the implementation solution, e.g., wrong
type declaration, wrong variable scope, or wrong interrupt handling. A well-known
example is the taxonomy of Beizer [9] although it goes beyond a simple taxonomy. An
even more detailed approach is root cause analysis where not only the faults themselves
are analysed but also their cause, i.e., the mistakes made by the development team.
The goal is to identify these root causes and eliminate them to prevent faults in the
future. Experience with this approach at IBM is documented in [128]. In general, root
cause analysis is perceived as rather elaborate and the cost/benefit relation is not clear.
Therefore, defect classifications aim at reducing the costs but sustain the benefits at
the same time. The categorisation uses more coarse-grained defect types that typically
have multiple dimensions.

An IEEE standard [87] defines several dimensions of defects that should be col-
lected. This starts from the process activity and phase the defect was detected, over
the suspected cause, to the so-called type that is similar to a taxonomy. Interestingly,
also the source in terms of the document or artefact is proposed as a dimension of the
classification. However, applications of this standard classification are not frequently
reported.

The mainly used defect classification approaches have been proposed by companies:
IBM and HP. The IBM approach is called Orthogonal Defect Classification (ODC)
[40]. A defect is classified across the dimensions

• defect type,

• source,

• impact,

• trigger,

• phase found, and

• severity.

The defect type is here one of eight possibilities that allow an easy and quick classifica-
tion of defects and are sufficient for analysing trends in the defect detection. Triggers
are the defect-detection techniques that detect the defects and hence it is possible to
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establish a relationship between defect types and triggers. Kan [101] criticises that
the association between defect type and project phases is still an open question and
that the distribution of defect types depends also on the processes and maturity of the
company.

Similar to ODC is the HP approach called Defect Origins, Types, and Modes [70].
The name already gives the three dimensions a defect is classified in. The origin is the
source of the defect – as in the IEEE standard –, the types are also a coarse-grained
categorisation of what is wrong, and the mode can be one of missing, unclear, or
wrong. Again the type of artefact – the origin – is documented as opposed to the
activity. In contrast to ODC we can analyse the relationships between defects and
document types but the defect-detection techniques – the triggers in ODC – are not
directly documented.

However, it has been found in different case studies [49,64,212] that general defect
type classifications are difficult to use in practice and need to be refined or adapted to
the specific domain and project environment. In [62, 64] an approach is proposed for
defining such an adaption of the defect type classification.

2.3 Techniques

To be able to investigate how we can cost-optimise the usage of analytical quality
assurance, we have to know what (analytical) quality assurance is and what methods
and techniques are available. We introduce the terms in general and describe the main
techniques test, inspection, and automated static analysis in more detail.

2.3.1 General

Quality assurance (QA) is defined by the IEEE in [88] as “(1) A planned and sys-
tematic pattern of all actions necessary to provide adequate confidence that an item
or product conforms to established technical requirements. (2) A set of activities de-
signed to evaluate the process by which products are developed or manufactured.”
Hence, quality assurance can be focused on the product or the process. This disserta-
tion concentrates on QA in the first sense. It can be further classified in constructive
and analytical quality assurance.

Constructive Quality Assurance. Constructive QA is the improvement of soft-
ware quality by improving the process of software development. Hence, we do not
want to detect and remove defects but prevent the introduction of defects in the first
place. The emphasis is often on the activities that take place before the actual code de-
velopment such as domain analysis, architecture design, or detailed design. However,
also specific coding techniques or standards belong to constructive quality assurance.
Hence, in some sense all software engineering activities apart from defect detection
and removal can be seen as constructive QA. There are models available that allow to
measure the quality of the process of a company to some extent. Hence, they are QA
in the second sense of the above definition. The main examples of those models are
the CMMI [42] and SPICE [90]. Unfortunately, a high ranking in one of the models
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does not necessarily imply good quality or low defect rates. The models can only give
guidelines for process improvement.

Analytical Quality Assurance. In contrast to constructive QA that aims to pre-
vent defects, analytical QA detects existing defects. For this, techniques such as re-
views and tests are in use. Although constructive QA can prevent many defects, hu-
mans always will make mistakes and hence we have to detect and remove the corre-
sponding faults using defect-detection techniques. There are two main categories of
analytical QA: (1) static and (2) dynamic analysis. Static analysis contains all tech-
niques that do not need to run the software but operate on the code and/or other docu-
ments and detect defects in them. On the contrary, dynamic analysis runs the compiled
software with the aim to observe failures. In that case the failures need to be traced
back to its corresponding faults what needs more effort than with static techniques that
detect the fault directly. However, it is not always clear if the fault would have resulted
in a failure and there is a strong mixture with maintenance-related improvements. An-
alytical QA is also called verification and validation which is defined by the IEEE [88]
as follows:

Definition 8 (Verification and Validation (V&V)) Verification and validation is the
process of determining whether the requirements for a system or component are com-
plete and correct, the products of each development phase fulfil the requirements or
conditions imposed by the previous phase, and the final system or component complies
with specified requirements.

Hence, the three important areas in analytical QA are (1) the analysis of the require-
ments, (2) the analysis of products between phases, and (3) the analysis of the final
system. We need the requirements to be able to judge if the final system conforms to
them (see also the definition of failure in Sec. 2.2). Nevertheless, it is also important
to analyse and assure the quality during the whole process.

2.3.2 Test

There are various possibilities to classify different test techniques. We base our clas-
sification on standard books about testing [9, 144] and the classification in [98]. One
can identify at least two dimensions to structure the techniques: (1) The granularity of
the test object and (2) the test case derivation technique. Fig. 2.2 shows these two di-
mensions and contains some concrete examples and how they can be placed according
to these dimensions.

The types of test case derivation can be divided on the top level into (1) functional
and (2) structural test techniques. The first only uses the specification to design tests,
whereas the latter relies on the source code and the specification. In functional testing
generally techniques such as equivalence partitioning and boundary value analysis are
used. Structural testing is often divided into control-flow and data-flow techniques. For
the control-flow coverage metrics such as statement coverage or condition coverage are
in use. The data-flow metrics measure the number and types of uses of variables.

On the granularity dimension we often see the phases unit, module or component
test, integration test, and system test. In unit tests only basic components of the sys-
tem are tested using stubs to simulate the environment. During integration tests the

12



2.3 Techniques

systemintegrationunit/module

structural

functional

Granularity

control−flow

data−flow

mutation

equivalence partitioning

boundary value analysis

stress

model−based

Type

Figure 2.2: The two basic dimensions of test techniques

components are combined and their interaction is analysed. Finally, in system testing
the whole system is tested, often with some similarity to the later operational profile.
This also corresponds to the development phases. Hence, the granularity dimension
can also be seen as phase dimension.

Finally, there are some special types of testing either with a special purpose or with
the aim to simplify or automate certain parts of the test process. Model-based testing,
for example, uses explicit behaviour models as basis for test case derivation, possibly
with an automatic generation. Stress tests check the behaviour of the system under
heavy load conditions. Random tests are generated without the specific guidance of
a test case specification but use a stochastic approach to cover the input range. The
opposite to random tests can be called directed tests as the test cases are directed at
revealing failures. Various other types of testing can be found in the literature [9, 15,
144].

Model-Based Testing

A special approach to testing that appeals research as well as practice is model-based
testing. We give a short introduction to this technique because we will later in this
dissertation analyse it in more detail in a case study (Sec. 6.2). Some people argue
that all kinds of testing are model-based [15]. Even if we do not have explicit test
models, the tester has a “mental” model of the system and its environment. However,
model-based testing more often denotes tests based on an explicit behaviour model of
the software. Still, there is a large range of model-based testing and test tools [31].

From these explicit – and preferably executable – behaviour models tests are de-
rived. This can be achieved with various techniques. In particular, there are automatic
and manual approaches. If model-based testing is to be successful, the model must
be easier to comprehend and validate than the code implementation itself. To achieve
this, besides graphical notations, the model must be more abstract than the system.
In general, for abstraction we can use two different ways [165]: (1) by means of en-
capsulation: macro-expansion mechanisms introduce (automatically) additional infor-
mation, or (2) by deliberately omitting details and losing information such as timing
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behaviour. If the model was not more abstract than the system, especially in the second
sense, then there would be no difference in the effort of validating the model and the
effort of validating the system itself.

For the automatic derivation process, test case specifications are used to guide the
generator. They can either be structural or functional. Structural test case specifica-
tions use coverage metrics on the model similar to what traditional structural tests use
on code [68]. Hence, a coverage of states or transitions is required. Structural test case
specifications identify “interesting” cases in the large state space of the system [166].

In general, it can be noted that there are not many evaluations of the effectiveness
and efficiency of model-based testing. In particular, the costs and benefits have only
been evaluated to a small extent [167].

2.3.3 Inspection

We use the term inspection in a broad sense including all reading techniques for arte-
facts in a development process with the aim to find defects and with a defined process.
The pioneer in the field of software inspections was Michael Fagan. An overview of
his work can be found in [52]. He proposed the first approach of a “formal” inspection
process in [51]. Since then many variations on the process and the reading techniques
have been proposed. We follow mainly [115] in the following and use his taxonomy
of software inspections. There are four dimensions in this taxonomy.

• Technical dimension: methodological variations

• Economic dimension: economic effects on the project and vice versa

• Organisational dimension: effect on the organisation and vice versa

• Tool dimension: support with tools

The dimension we mainly look at in the following is the technical dimension. An
overview is depicted in Fig. 2.3. The process of an inspection typically consists of
the phases planning, overview, detection, collection, correction, and follow up. In
the planning phase, a particular inspection is organised when artefacts pass the entry
criteria to the inspection. We need to select the participants, assign them to roles and
schedule the meetings. The overview phase – sometimes called kickoff meeting – is not
compulsory and the literature differs in this respect. This phase is intended to explain
the artefact and its relationships to the inspectors. This can be helpful for very complex
artefacts or for early documents such as requirements descriptions.

The next phase defect detection is the main part of the inspection. This is often
divided into preparation and a meeting. How the details of this phase look like differs
in the literature. Some authors suggest that already the preparation part should be used
for defect detection while others propose to only try to understand the artefact and do
the actual defect detection in the meeting part.

We use the term inspection here in a broad sense for all kinds of document read-
ing with the aim of defect-detection. We can then identify differences mainly in the
technical dimension, e.g., in the process of the inspections, for example whether ex-
plicit preparation is required. Other differences lie in the used reading techniques, e.g.
checklists, in the required roles, or in the products that are inspected.
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Figure 2.3: The technical dimension of software inspections (source: [115])

A prominent example is the formal or Fagan inspection that has a well-defined pro-
cess with a separate preparation and meeting and defined roles. Another often used
technique is the walkthrough. In this technique the moderator guides through the code
but no preparation is required.

2.3.4 Static Analysis Tools

Static analysis tools are a class of programs that aim to find defects in code by static
analysis similarly to a compiler, e.g. [6, 57, 77]. The results of using such a tool are,
however, not always real defects but can be seen as a warning that a piece of code is
critical in some way. Hence, the analysis with respect to true and false positives is
essential in the usage of static analysis tools. There are various techniques to identify
such critical code pieces. The most common one is to define typical bug patterns that
are derived from experience and published common pitfalls in a certain programming
language. Furthermore, coding guidelines and standards can be checked to allow for a
better readability. Also, more sophisticated analysis techniques based on the dataflow
and controlflow are used. Finally, additional annotations in the code are introduced by
some tools [57] to allow an extended static checking and a combination with model
checking.

2.4 Quality Models

In this section we give an overview of models used to describe and evaluate quality for
software. First, we classify the different types of available models and then describe
two specific types of quality models – software reliability models and software quality
economics – in more detail.
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2.4.1 Classification

In Sec. 2.1 we discussed the meanings of quality and gave a definition for software
quality. During software development it is important to analyse the quality to improve
the product and the process and to support the project management, e.g. the release
management. Hence, we need quantitative measures of software quality and models
to interpret the results.

Definition 9 (Quality Model) A quality model or quality-evaluation model is an ab-
straction of the relationships of attributes of the artefacts, process, and people and one
or more quality attributes of the product.

Purpose. Following [200], those models have either the goal to (1) assess the cur-
rent quality, (2) accurately predict the future quality, or (3) identify problem areas in
the artefacts or process. We use a similar approach to categorise the models. We start
with the two types of quality assurance: constructive and analytical. Hence, we also
have constructive and analytical quality models. Constructive quality models are used
to explain the relationship between constructive actions during development and one
or more quality attributes. For example, adding watchdogs to the architecture increases
the availability of the system. Analytical quality models can be further broken down
to assessing and predictive quality models. The assessing models corresponds to the
goals 1 and 3 from above. They have the aim to estimate the current value of one
or more quality attributes and thereby might identify problem areas. The predictive
quality models make predictions of the future development of quality attributes based
on current and historical information. Hence, we can classify quality models in three
types:

• Constructive quality models

• Assessing quality models

• Predictive quality models

Quality View. A main issue are the different views on software quality discussed
in Sec. 2.1. Different quality models support different views better or worse. For
example, usability models are inherently user-based quality models. The main aim
is to build a system which can be easily used. Economic models of software quality
such as the one proposed in Chap. 4 support obviously more of a value-based view on
quality. Examples can be found for all of the discussed views.

Specificness. Tian [200] adds to this the further dimension of abstraction or speci-
ficness. This is important as for different purposes different levels of detail are nec-
essary. We first distinguish between two types of models with a large difference in
terms of abstraction. Generalised quality models describe product quality in terms of
industrial average or general trends. These do not require product- or process-specific
data to be applicable but obviously can give only coarse-grained results. Well-known
models of this type can be found in the work of Jones [94]. The second type are
product-specific quality models that use actual data from a specific product, project, or
company. An overview is depicted in Fig. 2.4.
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Figure 2.4: Classification of quality models (adapted from [200])

Generalised Models. Generalised Models are quality models that are not specific
to a certain product or project. The most general quality models are overall models that
give a single estimate of the overall quality in industry. An example is to reduce quality
to the number of defects per line of code in the defect-density model and give an overall
average value of this metric. An overall model can be structured into a segmented
model that has different estimates for different industrial segments. For example, we
can give typical failure rates for software products in different domains. Finally, we
can introduce the additional dimension time into the analysis, i.e., the progression
over time of those quality metrics is considered. This allows to analyse trends in the
development of quality and larger environmental influences. Those models are called
dynamic models.

Product-Specific Models. Firstly, we have history-based models that use his-
torical data, typically from older releases or similar projects, to predict quality for
the current project. It is also possible to customise generalised models for a specific
project. An example is the distribution of found defects over the development phases.
Observation-based models combine current observations of the software and the pro-
cess activities to estimate the quality of the software. An example are software relia-
bility growth models that relate usage time and time between failures to evaluate the
quality aspect reliability. Thirdly, measurement-based models do not rely on observa-
tions, i.e., the execution of the software but measure some static aspects. Such models
define relationships between early measurements and product quality to be able to use
this information in quality assurance and improvement. Code complexity metrics can
be used to identify fault-prone modules, for example. This information allows to con-
centrate the quality assurance on these modules.

Further Specificness. Finally, quality models can have further dimensions of
specificness. As discussed above, they can be general or product-specific. How-
ever, there are also other types of specificness that are important. Models are of-
ten technique-specific, i.e., analyse the effects of a specific development or defect-
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detection technique. For example, there are several models that are dedicated to
analysing inspections. Quality models can also be phase-specific, e.g., most relia-
bility models concentrate only on system test and field use. Finally, many models
are attribute-specific by concentrating on one quality attribute in particular. There are
several examples for that such as maintainability or reliability models.

Measurement. Each of the quality models has different data requirements that
have to be fulfilled to be able to use the model. The resulting effort to collect the
data can differ significantly. A simple defect-density model only requires to measure
the number of defects and the size of the software. On the other extreme, detailed
software quality economics (cf. Sec. 2.4.3) often need data about the cost of field fail-
ures and the cost of fault removal. We can group the types of measurements into three
groups [200]:

• Product measurement means to evaluate different attributes and characteristics
of the software and related artefacts.

• Activity measurement is concerned with the effort, time, and resources needed
for the activities in the development.

• Environmental measurement mainly measures characteristics of the process and
the related people. It is often neglected but can give precious insights.

The two models we propose in this dissertation can be categorised then as product-
specific models, the analytical model of quality economics is a history-based, predic-
tive model whereas the metrics suite for defect-proneness is a measurement-based,
predictive model.

2.4.2 Software Reliability Models

We focus on the quality attribute reliability in this dissertation. Reliability theory
and models for estimating and predicting reliability have been developed for several
decades. We explain some basics and summarise the merits and limitations in the fol-
lowing. The general idea behind most reliability models is that we want to predict the
future failure behaviour – and thereby the reliability – of a software based on actual
failure data. In the definition from Sec. 2.1.2 reliability is already defined as proba-
bility. That means that we use data from failures as sample data in a stochastic model
to estimate the model parameters. There are other kinds of reliability models that use
different mechanisms but they are not as broadly used.

The failure data that comprises the sample data can be one of two types: (1) time
between failure (TBF) data or (2) grouped data. The first type contains each failure
and the time that has passed since the last failure. The second type has the length of a
test or operation interval and the number of failures that occurred in that interval. The
latter type is not as accurate as the first but the data is easier to collect in real world
projects.

Having used the sample data to estimate the model parameters we can use the model
with these parameters to predict future behaviour. That means the model can calculate
useful quantities of the software at a point in time in the future. Apart from reliability
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the mostly used quantities are the expected number of failures up to a certain time t
(often denoted by µ(t)) and its derivative, the failure intensity (denoted by λ(t)). The
latter can intuitively be seen as the average number of failures that occur in a time
interval at that time t. Based on these quantities we can also predict, for example, for
how long we have to continue testing to reach a certain failure intensity objective.

An excellent introduction to the topic is a book by Musa [140]. A wide variety of
partly practical relevance is described in a handbook [123]. Finally, the most detailed
description of these models and the theory behind them can be found in [141]

Execution Time and Calendar Time

Experience indicates that the best measure of time is the actual CPU execution time
[141]. The reliability of software as well as hardware that is not executed does not
change. Only when it is run there is a possibility of failure and only then there can
be a change in reliability. As discussed in Sec. 2.1.2, the main cause of failure for
hardware is considered the wear-out. Therefore, it is possible to relate the execution
time to calendar time in some cases. For software this seems to be more difficult and
hence execution time should be used.

However, CPU time may not be available, and it is possible to reformulate the mea-
surements and reliability models in terms of other exposure metrics: clock time, in-
service time (usually a sum of clock times due to many software applications running
simultaneously on various single- or multiple-CPU systems), logical time (such as
number of executed test cases, database queries, or telephone calls), or structural cov-
erage (such as achieved statement or branch coverage). 100 months of in-service time
may be associated with 50 months (clock time) of two systems or 1 month (clock time)
of 100 systems. All of these approximations are also referred to as usage time.

In any case, some combination of statistical sampling with estimates of units sold
is much better than using calendar time because of the so-called loading, or ramping,
effect [96]. If this effect is not accounted for, most models assume a constant usage
over time which is not reasonable under many practical circumstances. The difficulty
is to handle differing amounts of installations and testing effort during the life cycle of
the software.

Parameter Estimation

Parameter estimation is the most important part of applying a software reliability
model to a real development project. The model itself is hopefully a faithful abstraction
of the failure process but only the proper estimation of the model parameters can fit the
model to the current problem. There are several ways to accomplish that but a consen-
sus seems to be reached that a Maximum Likelihood approach on the observed failure
data fits best to most models. Another possibility is to use other software metrics or
failure data from old projects as basis for the estimation but this is only advisable when
no failure data is available, i.e., before system testing.

Merits and Limitations

The usage of stochastic reliability models for software is a proven practice and has
been under research for decades now. Those models have a sound mathematical basis
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and are able to yield useful metrics that help in determining the current reliability level
and in deciding the release problem.

However, the models are often difficult to use because (1) some understanding of the
underlying statistics and (2) laborious, detailed metrics documentation and collection
is necessary. Moreover, the available tool support is still not satisfying. The main
deficiency is, however, that the models are only applicable during system test and
field usage and even during system test they depend on usage-based testing, i.e., they
assume that the tests follow the operational profile that mirrors the future usage in the
field. The approach to use other metrics or failure data from old project is very fragile.
Especially to use other software metrics have not lead to a satisfying predictive validity.
This narrows the merit of those models.

2.4.3 Software Quality Costs

A unifying view on the different aspects of software quality is difficult. However,
we can often express the various factors in monetary units, i.e. the costs and bene-
fits (cf. Sec. 2.1). This section describes the area of quality economics, sometimes
called quality costs. Quality cost models describe the different types of costs and their
relationships.

Types of Costs. The costs of quality are an area that is under research in various
domains. We understand them as the costs that are associated with preventing, finding,
and correcting defective work. These costs are divided into conformance and noncon-
formance costs, also called control costs and failure of control costs. We can further
break down the costs into the distinction between prevention, appraisal, and failure
costs which gives the model the name PAF model [97]. The basic model was derived
from the manufacturing industry but has been used repeatedly for software quality as
well [106, 108, 193]. A graphical overview is given in Fig. 2.5.

cost of quality

appraisal costs internal failureprevention costs external failure

nonconformanceconformance

Figure 2.5: Cost types

Conformance Costs. The conformance costs comprise all costs that need to be
spent to build the software in a way that it conforms to its quality requirements. This
can be further broken down to prevention and appraisal costs. Prevention costs are for
example developer training, tool costs, or quality audits, i.e. costs for means to prevent
the injection of faults. The appraisal costs are caused by using various types of tests
and reviews.
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Nonconformance Costs. The nonconformance costs come into play when the
software does not conform to the quality requirements. These costs are divided into
internal failure costs and external failure costs. The former contains costs caused by
failures that occurred during development, the latter describes costs that result from
failures at the client.

Summary. The PAF model for the costs of quality is a widely accepted basis for
software quality economics. It supports primarily the manufacturing-approach to qual-
ity, i.e., focuses on conformance and non-conformance to the specification or require-
ments. The problem with this model is that it stays rather abstract and it needs to be
refined to be used in practice.
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3 State of the Art

We describe the state of the art in the areas that we address in the following chapters.
For each of the areas the most important results are summarised and its strength and
weaknesses are identified. We first analyse the work on models for defect introduc-
tion and removal. Then the research on software quality economics is summarised.
Following that, we describe more technical, analytical models of the effectiveness and
efficiency of defect-detection techniques. Finally, we present the work on empirical
surveys of quality assurance techniques and proposals related to the fault-proneness of
components.

3.1 Defect Introduction and Removal

Boehm [19] already introduced a simple defect introduction/removal model in which
in different phases different defect classes are introduced such as requirements, design,
code, and documentation. Different QA techniques are used to eliminate those defects
with different effectiveness based on costs. He also cites and summarises some studies
but these details do not directly influence the cost estimation in the COCOMO model.

Jones [94] looks at defect creation and defect discovery with the emphasis on differ-
ent activities in the development process. For example, during requirements analysis,
design or coding defects are introduced and discovered during coding and testing.
Hence, there is no concept of propagation in the sense that a defect in the requirements
causes a defect in the code but this defect is assumed to be the same.

The most detailed and comprehensive model of defect introduction and removal
was developed by Chulani and Boehm [41, 47]. It is part of COQUALMO which is
an extension of COCOMO. It is similar to the model of Jones and fails to distinguish
defect classes.

Kan [101] uses a model of defect injection and removal that is similar to the model of
Jones. The focus is on a process step which is an activity in the development process.
There are existing defects before the step, defects are injected during development
and by incorrect repairs after defect detection. The undetected and newly introduced
defects constitute the defects after the step. By using this generic notion of process
step the differences between development and defect detection are not clear in this
model. Furthermore, it does also not consider defects in different types of artefacts
and the propagation of those.

Summary. The basic view of the available work is that there are activities in the de-
velopment process that introduce defects in different phases and correspondingly activ-
ities that remove those defects. The defects after the application of a defect-detection
technique are the defects that existed before without the ones removed. In summary,
current defect introduction and removal models do not consider defects in different
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artefacts and the relationships between them. Only the defect classes of Boehm [19]
are an exception. However, this is important because different defect-detection tech-
niques appraise different types of artefacts.

3.2 Software Quality Economics

Models for quality economics stem mainly from the manufacturing field but have been
adapted to software as well. A comparison of quality cost models is done in [86].
Generally, those models are rather abstract and aim at structuring the different types of
costs that are related to quality. Most of them are too abstract to make them operational
directly.

Mandeville describes in [126] software quality costs, basically an adaption of the
PAF model (cf. Sec. 2.4.3), a general methodology for cost collection, and how specific
data from these costs can be used in communication with management.

In [106] the model of software quality costs is set into relation to the Capability
Maturity Model (CMM) [155]. The emphasis is hence on the prevention costs and
how the improvement in terms of CMM levels helps in preventing failures.

Humphrey presents in [83] his understanding of software quality economics. The
defined cost metrics do not represent monetary values but only fractions of the total
development time. Furthermore, the effort for testing is classified as failure cost instead
of appraisal cost.

Raffo et al. [172] define a model considering the defect potential. In essence this
is very similar to the PAF model of quality costs (cf. Sec. 2.4.3). The only difference
can be seen in the differentiation between the cost of isolating a defect and the cost of
fixing a defect. Furthermore, they give a simple equation that combines theses high-
level factors but omit guidelines how to use it in practice.

Ntafos describes some considerations on the cost of software failure in [148]. The
difficulties of collecting appropriate data are shown but the model itself is described
only on a very abstract level. Guidelines for applying a quality cost model in a business
environment in general are given in [103] but mainly from the accounting point of
view.

Galin extends in [65, 66] the software quality costs model – the PAF model – with
managerial aspects but the extensions are not relevant in the context of analytical SQA.

A view on the economics of software quality assurance with the focus on different
types of errors is described in [3]. It distinguishes between design errors, logic errors,
and syntax errors and shows that the design errors are responsible for most costs. How-
ever, no analytical model is given that would allow to use that information in planning
quality assurance.

In [109, 193] a metric called return on software quality (ROSQ) is defined. It is
intended to financially justify investments in quality improvement. It aims mainly on
measuring the effects of process improvements, i. e. constructive quality assurance.
The specifics of analytical quality assurance are not accounted for. Furthermore, the
calculations are mainly based on the average defect content in the software and further
characteristics of the defects are not considered.

Boehm et al. present in [21] the iDAVE model that is based on COCOMO II and
COQUALMO. This model allows a thorough analysis of the ROI of dependability.
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The main critic is again the granularity. For example, only an average cost saving per
defect is considered.

Building on iDAVE, Huang and Boehm propose a value-based approach for deter-
mining how much quality assurance is enough in [80]. This model does not resolve the
granularity problem as the defect levels used (and borrowed from COQUALMO) are
only rough estimates and hence more thorough analyses are not possible. However, it
contains an interesting component that deals with time to market costs that is currently
missing from most models.

A similar model to COQUALMO in terms of the description of the defect intro-
duction and removal process is described by Jalote and Vishal [91]. They consider
different fault injection rates in different phases and optimise the effort distribution of
quality assurance based on the effort needed for fault removal and the effectiveness
of the used techniques. However, all faults are treated equally in terms of effort and
effectiveness although there can be huge differences. Moreover, effort is not the only
relevant cost factor.

Holzmann [76] looks in particular at the economics of formal verification. He tries
to show that those verification techniques make economic sense because they are able
to find the defects with low failure probability but catastrophic consequences. Intu-
itively, this seems to be correct although there are not enough studies about the nature
of defects detected by formal verification to support this claim.

Jones [94] classifies the costs of software defect removal activities in (1) preparation
costs, (2) execution costs, and (3) repair costs. However, it is not clear whether prepa-
ration costs are fixed and execution costs are variable with respect to the spent effort.
He also identifies field failure costs such as field service, maintenance, warranty re-
pairs, and in some cases liability damages and litigation expenses. These failure costs
are not further elaborated.

Summary. The models in this category suffer mainly from the problem that they are
too abstract. They model the costs of quality based on the well-known PAF model and
extend it or build on it. However, most work is still not directly applicable and ignore
technical influences. COQUALMO, iDAVE, and ROSQ are notably different in this
respect. They allow to calculate concrete values for the cost of quality or the return on
investment. However, they still do not make use of the detailed, technical factors that
were identified in analytical models of quality assurance techniques (cf. Sec. 3.3). The
input factors are mainly coarse-grained and hence the results are also coarse-grained.
Moreover, most of the models of quality costs concentrate on process improvement
and therefore constructive QA.

3.3 Analytical Models of Quality Assurance

Analytical models of analytical quality assurance contain a wide variety of models. We
include all models that in some sense evaluate analytical quality assurance or specific
techniques in this category. The range goes from simple defect counts up to cost-based
equations. Often the terms effectiveness and efficiency are used in this context. Effec-
tiveness describes defect detection using defect counts whereas efficiency also takes
the effort for the defect detection into account. A summary of some basic efficiency
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models and metrics can be found in [101, 201] which we will not explain in the fol-
lowing but concentrate on specific proposals that include costs in some way.

3.3.1 Inspection

Gilb and Graham [69] describe a simple efficiency model for inspections by dividing
the number of detected defects divided by the cost consumed by the inspection. Hence,
efficiency is measured in defects per unit of effort. This is a classical efficiency metric.
The main advantage of this is that the data is typically directly available because it is
part of standard inspection result forms. However, neither the influence of the nature
of found defects nor of other techniques is included. For example, the effect on the
reliability of the software is unclear [201, 202].

Kusumoto et al. describe in [111, 112] a metric for cost effectiveness mainly aimed
at software reviews. They introduce the concept of virtual software test costs that
denote the testing cost that would have been needed if no reviews were done. This
implies that we always want a certain level of quality and it is not clear whether the
field costs are included. However, this virtual test costs allow a better comparison of
different applications of reviews.

An extension of the Kusumoto model is developed by Sabaliauskaite et al. in [182,
183]. They detail the metrics so that false positives and their effects on the costs can be
considered. This extension is also validated and the effect of false positives is unique
to this approach. Nevertheless, the Sabaliauskaite model inherited the problems of the
Kusumoto model discussed above.

Freimut, Briand, and Vollei [63] also use the Kusumoto model as a basis. They
identified the problem that this model assumes that one defect in a phase assumes that
it results in exactly one in the next whereas defects can propagate in several defects in
later phases, e.g., a design defect results in several defects in the code. Furthermore,
they present an approach how to use expert opinion for the factors of the model where
no measured data is available.

The economics of the inspection process are also investigated by Biffl et al. [10,12].
This model operates on defect classes that are not precisely defined but are related
to the severity and impact on later phases. The basic equation for the benefits of an
inspection includes the number of defects, the average benefit per defect – the savings
in later phases –, and the effectiveness per defect class. Effort is not directly part of
the model but indirectly by the number of inspectors and the inspection duration. By
this, this approach is very specific for inspections but allows to determine the optimal
team size for an inspection.

3.3.2 Test

There are also several analytical models of software testing with different emphases.
They are often used to compare the defect detection capabilities of different techniques
and they do not always include cost considerations. Weyuker and Jeng [219] proposed
an analytical model of partition testing to evaluate different strategies. It is based on the
input domain and the distinction between correct and failure-causing inputs. Different
strategies have different probabilities to select these differing inputs. They deliberately
ignored operational profiles and assumed all input values of a program to be equally
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likely to be selected in a test case. Although the model is quite simple it set the frame-
work for further models. Chen and Yu [38] extend this model by analysing best and
worst cases. Boland, Singh, and Cukic [23] built a similar model for comparing par-
tition and random testing with different mathematical techniques – majorization and
Schur functions – that allow them to refine the previous models. Morasca and Serra-
Capizzano [136] consider hierarchies of the failure rates of different sub-domains of
the input to compare different testing techniques.

The emphasis of the model proposed by Frankl and Weyuker [59,60] is more on test
case selection criteria. Such criteria can be a data-flow criteria or structural coverage
measure. They show that it is possible to define reasonable relations between different
criteria based on their fault-detecting capability. Frankl et al. [58] moved the emphasis
from detecting a failure to delivered reliability. In particular, they compared debug
testing to operational testing, i.e., testing with the aim to quickly reveal failures to test-
ing that simulates operational behaviour. They answer this using an expected value
model that models the effect of testing as transforming failure-causing inputs into cor-
rect inputs. Reliability is then the probability of selecting a remaining failure-causing
input during operation.

Pham describes in [156] various flavours of a software cost model for the purpose
of deciding when to stop testing. It is a representative of models that are based on
reliability growth models. Other examples include [73, 79, 124, 151]. The main prob-
lem with such models is that they are only able to analyse system testing and no other
defect-detection techniques. In addition, the differences of different test techniques
cannot be considered.

3.3.3 General

Cengarle [37] discusses some basic properties of test and inspection and their combi-
nation. It is stated that the combination of different techniques yields the best results
but it is not based on a mathematical model. Littlewood et al. [120] propose an analyti-
cal, stochastic model of the diversity of defect-detection techniques and they can prove
this statement based on this model. The basis are difficulty functions that intuitively
describe the difficulty of a specific defect-detection technique to detect a specific de-
fect. The model gives important insights but is hard to use in practice hence the authors
suggest to group the defects in defect classes for simplification. Furthermore, a notion
of time or effort for the technique application is missing in the model and it is assumed
that a technique can be applied once or twice and so on.

Collofello and Woodfield [43] propose a general model for the cost effectiveness
of an error-detection process as the costs saved by the process divided by the cost
consumed by the process. The error-detection process denotes the process of defect-
detection and fault removal and the operation of the software is the final process. It
uses simple average values for the effectiveness of techniques and the cost, i.e. effort,
for each error detection process that is used. The only differentiation between defects
is done be classifying them into design and code defects. Costs apart from the labour
costs for using the techniques and defect removal such as tool costs or additional sup-
port costs are not considered.
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Summary. Most of the available analytical models are technique-specific, i.e., con-
centrate on inspections or testing. This allows deeps insights in those techniques but
does not help in deciding how to optimally use different techniques. Some models
already use different types of defects and defects in different types of artefacts to allow
a more detailed analysis. In general, the most of the available models fail in incorpo-
rating costs apart from personnel effort and do not consider that different techniques
detect different defects. The only approach that explicitly models the latter concept is
from Littlewood et al. However, they do not elaborate their model to make it applicable
in practice.

3.4 Literature Reviews

Juristo et al. summarise in [98] the main experiments regarding testing techniques of
the last 25 years. Their main focus is to classify the techniques and experiments and
compare the techniques but not to collect and compare actual figures.

Laitenberger published an extensive survey on inspection technologies in [115]. He
presents a taxonomy of inspections and inspection techniques and structures the avail-
able work according to it. He also included data on effectiveness and effort but without
relating it to a model or conducting further analyses.

Briand et al. [29] use several sources from the literature for inspection efficiency
were used to build efficiency benchmarks. The intent is to analyse and document
the current practice of inspections so that companies are able to compare their own
practices with the average. For this they analysed several studies for effectiveness and
effort, mainly of inspections but also testing and related it based on the inspection
models described in Sec. 3.3.1.

Summary. There have been few approaches to summarise the knowledge on soft-
ware quality assurance techniques. The available ones mainly concentrate on specific
techniques and only Briand et al. related the empirical results to an analytical model
which is aiming mainly on inspections.

3.5 Defect-Proneness

Cartwright and Sheppard [36] analysed a large industrial system that was developed
with the Shlaer-Mellor method. The found correlation of some simple metrics of the
Shlaer-Mellor method and the defect densities of the corresponding classes. For ex-
ample, the use of inheritance had a strong influence. This shows that it is possible
to predict the defect-proneness using models. However, this work does not consider
the more widespread description techniques of UML and prediction is only done for
faults. Hence, no analysis of the probability of failure of classes is possible.

There have been few other approaches that consider reliability metrics on the model
level: In [215] an approach is proposed that includes a reliability model that is based
only on the static software architecture. A complexity metric that is in principle appli-
cable to models as well as to code is discussed in [35], but it also only involves static
structure as well. In [18] the cyclomatic complexity is suggested for most aspects of a
design metric but not further elaborated.
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In et al. describe in [89] an automatic metrics counter for UML. They classify their
metrics into various categories including fault proneness. The metrics in this category
are WMC, NOC, and DIT. The latter two are the same as in our approach. The calcu-
lation of WMC is given as the sum of the complexities of the methods but no further
explanation is given how this complexity should be calculated from the model. State
machines are not analysed.

A white paper by Douglass [48] contains numerous proposals of model metrics for
all types of UML models. Therefore this work has several metrics that are not relevant
for the fault-proneness. Moreover, detailed explanations of the metrics is not avail-
able for all of them. The above mentioned DIT metric is similar to the Class Inheri-
tance Depth (CID), and NOC is comparable to Number of Children (NC). The Class
Coupling (CC) describes the relations between classes but it does not consider the in-
terfaces but the associations. Finally, there is a complexity metric for state machines
called Douglass Cyclomatic Complexity (DCC) that is based on the metric from Mc-
Cabe. It handles nesting and and-states in a way that describes the understandability of
the diagram. differently. Also triggers and guards are ignored. Douglass considers the
aspect of the complexity in terms of comprehensibility whereas we want to capture the
inherent complexity of the behaviour of the component. He gives rough guidelines for
values that indicate “good” models but does not relate the metrics to fault-proneness.

Other approaches have been used for dependability analysis based on UML models,
although these do not consider complexity metrics: In [25] an approach to automatic
dependability analysis using UML is explained where automatic transformations are
defined for the generation of models to capture systems dependability attributes such
as reliability. The transformation concentrates on structural UML views and aims to
capture only the information relevant for dependability. Critical parts can be selected
to avoid explosion of the state space. A method is presented in [24] in which design
tools based on UML are augmented with validation and analysis techniques that pro-
vide useful information in the early phases of system design. Automatic transforma-
tions are defined for the generation of models to capture system behavioural properties,
dependability and performance. There is a method for quantitative dependability anal-
ysis of systems modelled using UML statechart diagrams in [84]. The UML models
are transformed to stochastic reward nets, which allow performance-related measures
using available tools, while dependability analysis requires explicit modelling of erro-
neous states and faulty behaviour.

Nagappan et al. report on a study of mining metrics to predict component failures in
[145]. They concentrate on metrics other than model metrics. Nevertheless, the results
are interesting as they show that there are always metrics that are good predictors of
failures but the set of metrics is not uniform across projects. Hence, the metrics in a
metrics suite for prediction is probably domain- or even project-specific.

Finally, there are approaches that aid in selecting the most suitable unit test tech-
niques based on software metrics, mainly code metrics. Liggesmeyer proposes in
[118, 119] such metrics and an approach for selection. However, this is only possi-
ble late in the process when code already is available. For an earlier planning of the
QA process design and model metrics are more suitable.
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Summary. Most of the available metrics suite concentrate on code metrics which
are available only late in the development process when the code has already been de-
veloped. The approaches that exist for models either have slightly different aims, e.g.,
analysing dependability attributes or readability, or concentrate on the static structure.
However, the complexity of the dynamic behaviour is also an important factor. Further-
more, all approaches analyse the fault-proneness. Yet, in many cases failure-proneness
is more interesting because there might faults that never appear in the field. In sum-
mary, there are no metrics suite for UML models available that aim to identify fault-
and failure-prone components and take the dynamic behaviour into account.
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Quality is never an accident; it is always the result of high intention, sin-
cere effort, intelligent direction and skillful execution; it represents the
wise choice of many alternatives. William A. Foster

This chapter presents the main contribution of this dissertation: an analytical model
of the quality economics of defect-detection techniques. For this, we revisit the general
model of software quality costs and identify the main influencing factors of the eco-
nomics. They are combined in (1) a theoretical and (2) a practical, analytical model.
For these models, we analyse and consolidate the available empirical knowledge. Us-
ing this data, we perform sensitivity analysis to identify the most important factors and
finally, give a detailed methodical approach to using the model in practice.

4.1 Basic Factors

We first need to identify and discuss the basic factors that influence the quality eco-
nomics of defect-detection techniques. We revisit the PAF model of quality costs (cf.
Sec. 2.4.3) and refine it. Then we derive the factors that will be used in the analytical
model.

4.1.1 Software Quality Costs Revisited

In Sec. 2.4.3, we described the basics of quality costs and software quality costs in
particular. In this section we revisit the PAF (Prevention, Appraisal, Failure) model of
quality costs and adapt it to our specific needs as a first step to an analytical model of
the economics of defect-detection techniques.

We discussed in Chap. 1 that we concentrate on analytical SQA because constructive
QA has significantly different characteristics and influencing factors. Hence, a model
that is able to handle all types of quality assurance would be extremely complex and
difficult to use. Therefore, we can eliminate the prevention costs from the software
quality costs as we do not look at preventing potential defects but at detecting existing
ones. Nevertheless, one could argue that when considering requirements or design
reviews there is prevention of defects in code. However, we consider all kinds of
defects in all kinds of documents. Those defects sometimes propagate to the next
phases and documents but sometimes they do not. The review process is then more an
appraisal of the documents with the aim to detect and remove defects than an activity
to prevent defects.

Having reduced the PAF model essentially to an AF (Appraisal, Failure) model, the
remaining parts are now refined to be able to identify the relevant cost factors from a
reliability point of view. Note that there are more types that could be included. For
example, costs for adaptive or perfective maintenance are affected by techniques such
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as inspections that can improve readability and changeability. However, they are out
of scope of this dissertation because we concentrate on defect-detection and removal.
The complete refined model is shown in Fig. 4.1. The appraisal costs are detailed to
the setup and execution costs. The former constituting all initial costs for buying test
tools, configuring the test environment, and so on. The latter means all the costs that
are connected to actual test executions or review meetings, mainly personnel costs.

cost of quality

external failure

nonconformanceconformance

internal failure

fault removal effect

appraisal costs

executionsetup

Figure 4.1: The refined cost types

On the nonconformance side, we have fault removal costs that can be attributed
to the internal failure costs as well as the external failure costs. This is because if
we found a fault and want to remove it, it would always result in costs no matter
whether caused in an internal or external failure. Actually, there does not have to be
a failure at all. Considering code inspections, faults are found and removed that have
never caused a failure during testing. For example, the removal costs can be quite
different regarding different techniques. When a test identifies a failure, there needs
to be considerable effort spent to find the corresponding fault. During an inspection,
faults are found directly. Fault removal costs also contain the costs for necessary re-
testing and re-inspections.

External failures also cause effect costs. Those are all further costs associated with
the failure apart from the removal costs. For example, compensation costs could be
part of the effect costs, if the failure caused some kind of damage at the customer site.
We might also include other costs such as loss of sales because of bad reputation in the
effect costs.

4.1.2 Influencing Factors

In the following, we describe all major influencing factors that we identified based
on the state of the art (cf. Chap. 3) and the refined software quality cost model from
Sec. 4.1.1. We structure the factors starting with the simple, directly from the quality
cost model derivable, factors to the more complicated, technical factors of the defect-
detection techniques.
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Cost Factors

First, we discuss the four cost factors that we get from the refinement of the PAF
model. We also add a fifth, secondary factor labour costs that influences all of the four
others.

Setup Costs. The costs to set up the application of a specific technique are one
main part of the costs of analytical QA. The importance of this factor is directly derived
from the quality cost model and it can be significant considering the effort needed to
build a suitable test environment. The personnel effort is also dependent on the labour
costs.

Execution Costs. In addition to the fixed setup costs, we have variable execution
costs. This factor is also directly derived from the quality cost model. The execution
costs are, as discussed above, mainly personnel costs and hence dependent on another
factor, the labour costs.

Fault Removal Costs. When a defect is detected, the second step is to remove
that defect. This has also different costs mainly consisting of personnel costs. Hence,
we have an influence from the labour costs. Many other factors have an effect on
this: inspections detect faults whereas tests only detect failures and leave the fault
isolation as additional step. Hence, this has an influence on how laborious the removal
is. Furthermore, it is dependent on the type of document and phase in which the defect
is detected. A found defect during requirements analysis involves only to change the
requirements document. Detecting the same defect during system test might require
to change several documents, including the code and the design, and to re-inspect and
re-test the software. When the defect is revealed in the field, we may have more costs
for support staff. It is common software engineering knowledge that defect removal is
the more expensive the later the defect is revealed. For example, in [20] it is stated that
finding and fixing a software problem after delivery is often 100 times more expensive
than finding and fixing it during the requirements and design phase.

Effect Costs. This is the most difficult to determine factor in the quality economics
of defect-detection techniques. It contains all further costs that a defect in the field has
apart from the removal costs. This may include compensation costs in case the user
of the software had any damage because of the software defect. Other factors such
as lost sales because of bad reputation belong to this factor as well but are not further
considered in this dissertation. For example, in [190] issues of reputation of companies
are discussed that help to measure those costs.

Labour Costs. The labour costs are a secondary factor because they do not influ-
ence the quality costs directly but have an effect on several of the other cost factors.
Therefore, it is worthwhile to include it in the list and analyse it later on. Most of the
costs incurring in analytical QA can be attributed to personnel effort. Hence, we can
often measure the time effort spent for different activities and multiply them with the
labour costs. Those need not only to contain the salary of the staff but all additional
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costs caused such as sick days or training. This is often called a loaded labour rate.
We assume this to be available as this is a standard economics approach.

Technical Factors

The following four factors are more technical in nature as they characterise the defects
and techniques used for defect-detection.

Difficulty of Defect Detection. A more technical but nevertheless very important
factor is the difficulty that a specific technique has in detecting specific defects. We
have already noted that it is consolidated knowledge that a combination of different
techniques can yield the best results [37, 120]. The reason for this lies in the fact
that different, i.e., diverse, techniques detect different defects. Intuitively, this means
that each technique has types or classes of defects that it is better suited to detect than
others. Hence, we can say that for a specific technique it can be more or less difficult to
detect a certain defect. Littlewood et al. have proposed a model containing this notion
of difficulty in [120] that we will use in the following.

Failure Probability. Finally, it is not only important to detect defects but to detect
the ones that would be most likely to cause a failure in the field. In [20] it is shown
that about 20% of the faults cause about 80% of the downtime of software systems.
We express this with the failure probability of a fault.

Document Types. A seldom considered factor is the document type the defect is
contained in. We analyse all types of analytical SQA and therefore also requirements
and design reviews that detect defects that could be called requirements defects and
design defects. Those kind of defects cannot be detected with most of the available
test techniques or code inspections.

Defect Propagation. Various models consider a concept of defect propagation
over documents, phases, and technique usages. The model of pipes and drains is very
popular in this context (cf. Sec. 3.1). Defects can be carried on from on document to
the next and from one technique to the next. The most obvious case is when a specific
technique fails to detect an existing defect in a document. More complicated is the
constellation when one defect in a document causes other defects in other documents.
For example, a design defect might cause several defects in code documents.

Marketing Factors

Finally, there are also two important factors that are not directly related to the mere act
of developing the software. Most software is developed for some business reasons and
hence needs to be sold on a market. The following two factors stem from this market.
We will not elaborate on these factors in our economics model because we focus on
the technical factors and leave their incorporation as future work.
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Time to Market. So far we implicitly assumed that the time when we finish the
quality assurance does not matter and has no effects on the costs as long as we can
fix enough defects in-house for a positive balance of costs and revenues. However,
in the markets, especially the software market, the time to market can have significant
effects. For some products an early market introduction with more residual defects can
be beneficial as the customers might prefer the first product on the market although the
quality is not optimal. However, this aspect is not further considered in this dissertation
as this is an aspect that depends more on economic and marketing decisions. Huang
and Boehm [80] have used such a factor in their model.

Marketing-Driven Quality Requirements. Similar to the time to market, this
influence is out of scope of this dissertation. Nevertheless, we want to discuss the fac-
tor. We assumed so far that the quality requirements are solely based on the cost/benefit
relation expressed by the factors above. However, for reasons lying in the marketing of
the product, it might be beneficial to have differing (higher or lower) requirements on
specific quality attributes. For example, in some domains there are standards or even
legal regulations that require specific safety or availability levels. Even so an eco-
nomic analysis might suggest that testing is enough, those standards might introduce
additional constraints.

4.2 An Analytical Model

We propose a general, analytical model of defect-detection techniques in the following.
It is general with respect to the various types of techniques it is able to analyse. We
principally analyse different types of testing which essentially detect failures and static
analysis techniques that reveal faults in the code or other documents. It can be seen
as a refinement and extension of the model by Collofello and Woodfield [43] that uses
fewer input factors. We first describe the model and its assumptions in general, and
then give equations for each component of the model for a single technique and for the
combination of several techniques.

4.2.1 Basics

In this section, we concentrate on an ideal model of quality economics as we do not
consider the practical use of the model but want to mirror the actual relationships as
faithfully as possible. The model is stochastic meaning that it is based on expected
values as basis for decision making. This approach is already common in other en-
gineering fields [17] to compare different alternatives. Furthermore, a model that in-
corporates all important input factors for these differing techniques needs to use the
universal unit of money, i.e., units such as euro or dollar. This is the only possibility to
combine different cost parts such as personnel effort and tool costs. Hence, our model
is cost-based.

Components

We divide the model into three main components which all are dependent on the spent
effort t as a global parameter:
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• Direct costs d(t)

• Future costs f(t)

• Revenues / saved costs r(t)

The direct costs are characterised by containing only costs that can be directly mea-
sured during the application of the technique. The future costs and revenues are both
concerned with the (potential) costs in the field but can be distinguished because the
future costs contain the costs that are really incurred whereas the revenues are com-
prised of saved costs. As discussed above, we will consider the expected values of
those components – denoted by E in the following equations.

Assumptions

The main assumptions in the model are:

• Found faults are perfectly removed.

• The amount or duration of a technique can be freely varied.

The first assumption is often used in software reliability modelling to simplify the
stochastic models. It states that each fault detected is instantly removed without intro-
ducing new faults. Although this is often not true in real defect removal, it is largely
independent of the used defect-detection technique and the newly introduced faults
can be handled like initial faults which introduces only a small blurring as long as the
probability of introducing new faults is not too high.

The second assumption is needed because we have a notion of time effort in the
model to express for how long and with how many people a technique is used. This
notion of time can be freely varied although for real defect-detection techniques this
might not always make sense, especially when considering inspections or static analy-
sis tools where a certain basic effort or none at all has to be spent. Still, even for those
techniques, the effort can be varied by changing the speed of reading, for example.

Difficulty

We adapt the general notion of the difficulty of an application of technique A to find
a specific fault i from [120] denoted by θA(i) as a basic quantity for our model. In
essence, it is the probability that A does not detect i. In the original definition this
is independent of time or effort but describes a “single application”. We extend this
using the length of the technique application tA. With length we do not mean calendar
time but effort measured in staff-days, for example, that was spent for this technique
application. Hence, we can define the refined difficulty function as follows:

Definition 10 (Difficulty Function) The difficulty function θA(i, tA) yields the prob-
ability that the technique A is not able to detect the fault i when applied with effort
tA.

In the following equations we are often interested in the case when a fault is detected
at least once by a technique which can be expressed as 1− θA(i, tA). We also assume
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that in the difficulty functions the concept of defect classes is handled. A defect class
is a group of defects based on the document type it is contained in. Hence, we have
for each defect also its document class c, e.g., requirements defects or code defects.
This has an effect considering that some techniques cannot be applied to all types of
documents, e.g., functional testing cannot reveal a defect in a design document directly.
It may however detect its successor in code.

Defect Propagation

A further aspect to consider is that the defects occurring during development are not
independent of each other. There are various dependencies between defects. However,
most importantly there is dependency in terms of propagation. Defects from earlier
phases in the development process propagate to later phases and over process steps.
We do not consider the phases to be the important factor here but the document types.
In every development process there are different types of documents, or artifacts, that
are created. Usually, those are requirements documents, design documents, code, and
test specifications. Then one defect in one of these documents can lead to none, one,
or more defects in later derived documents. A schematic overview is given in Fig. 4.2.

I I I1 2 3 I4

Requirements
documents documents

Design Code specifications
Test

Figure 4.2: How defects propagate over documents

We see that a requirements defect can lead to several defects in design documents
as well as test specifications. The design defects can again propagate to the code and
to (glass-box) test specifications. For each document type c we have the set of defects
Ic and hence the total set of defects I is I =

⋃
Ic. Furthermore, for each defect, we

also look at its predecessor defects Ri. For the model this has the effect that a defect
can only be found by a technique if neither the defect itself nor one of its predecessors
was detected by an earlier used technique.

4.2.2 Model Components

We give an equation for each of the three components with respect to single defect-
detection technique first and later for a combination of techniques. Keep in mind
that the main basis of the model are expected values, i.e., we combine cost data with
probabilities. For the sake of simplification we do not consider the defect propagation
in these first equations but will introduce them later when describing the combination
of more than one technique.
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Direct Costs

The direct costs are those costs that can be directly measured from the application
of a defect-detection technique. They are dependent on the length t of the applica-
tion. Fig. 4.3 shows schematically the details of the direct costs for an application of
technique A.

Software
with
faults

Software
with
faults

Technique
application Setup costs Execution costs Removal costs

Difficulty θA(i, tA)

Effort tA

Fault i detected

Figure 4.3: The components of the direct costs

It contains the two main cost blocks – setup costs and execution costs. The latter
is dependent on the spent effort for A denoted by tA. From the execution costs we
can derive the difficulty of detecting the faults in the software which represents the
probability that the fault is not detected. However, if a fault is detected it incurs costs
for its removal. From this we can derive the following definition for the expected value
of the direct costs E[dA(tA)]:

E[dA(tA)] = uA + eA(tA) +
∑

i

(1− θA(i, tA))vA(i), (4.1)

where uA are the setup costs, eA(tA) the execution costs, and vA(i) the fault removal
costs specific to that technique. Hence, we have for a technique its fixed setup costs,
execution costs depending on the length of using the technique and removal costs for
each fault in the software if the technique is able to find it.

Future Costs

In case some defects are not found, these will result in costs in the future denoted
by E[fA(tA)]. We divide these costs into the two parts fault removal costs in the
field vF (i) and failure effect costs cF (i). The latter contain all support and compen-
sation costs as well as annoyed customers as far as it is possible to determine them
(cf. Sec. 4.1.2).

E[fA(tA)] =
∑

i

πiθA(i, tA)(vF (i) + cF (i)), (4.2)

where πi = P (fault i is activated by randomly selected input and is detected and
fixed) [120]. Hence, it describes the probability that the defect leads to a failure in the
field.
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Revenues

It is necessary to consider not only the costs of the defect-detection techniques but also
their revenues. They are essentially saved future costs. With each fault that we find in-
house we avoid higher costs in the future. Therefore, we have the same cost categories
but look at the faults that we find instead of the ones we are not able to detect. We
denote the revenues with E[rA(tA)].

E[rA(tA)] =
∑

i

πi(1− θA(i, tA))(vF (i) + cF (i)) (4.3)

Because the revenues are saved future costs this equation looks similar to Eq. 4.2. The
difference is only that we consider the faults that have been found and hence use the
probability of the negated difficulty, i.e., 1− θA(i, tA).

Combination

In practice, more than one technique is used to find defects. The intuition behind that
is that they find (partly) different defects. Hence, we conjecture that different tech-
niques are diverse in their defect-detection capabilities. This is theoretically shown in
a model of diversity of techniques from Littlewood et al. [120]. Also empirical studies
have shown that the effectiveness of several techniques differs significantly considering
different defect types [8]. However, this has not been incorporated explicitly in most
existing efficiency and economics models of SQA. As discussed above, we adapted
the difficulty functions from Littlewood et al. [120] and thereby are able to express
this diversity. The reason is that those functions are defined per fault and technique.
This allows to express these differences.

To model the combination, we define that X is the ordered set of the applied defect-
detection techniques. Hence, the sum over all technique applications X gives us the
total direct costs. For each technique application we use Eq. 4.1 with the extension that
not only the probability that the technique finds the fault is taken into account. Also
the probability that the techniques applied before have not detected it is necessary.
Moreover, the defect propagation needs to be considered. Not only the defect itself but
also its predecessors Ri have not been detected.

For the sake of readability we introduce the abbreviation Θ(x, i) for the probability
that a fault and its predecessors have not been found by previous – before x – applica-
tions of defect-detection techniques.

Θ(x, i) =
∏
y<x

[
θy(i, ty)

∏
j∈Ri

θy(j, ty)
]
, (4.4)

hence, for each technique y that is applied before x we multiply the difficulty for the
fault i and all its predecessors as described in the set Ri. The expected value of the
combined direct costs dX of a sequence of defect-detection technique applications X
is then defined as follows:

E[dX(tX)] =
∑
x∈X

[
ux + ex(tx) +

∑
i

(
(1− θx(i, tx))Θ(x, i)

)
vx(i)

]
, (4.5)
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where tX is the ordered set of efforts for the techniques in X . Note that by using
Θ(x, i) the difference to Eq. 4.1 is rather small. We extended it by the sum over all
technique applications and the probability that each fault and its predecessors have not
been found by previous techniques expressed by Θ(x, i).

The equation for the expected value of the revenues rX of several technique appli-
cations X uses again a sum over all technique applications. In this case we look at the
faults that occur, that are detected by a technique and neither itself nor its predecessors
have been detected by the earlier applied techniques.

E[rX(tX)] =
∑
x∈X

∑
i

[(
πi(1− θx(i, tx))Θ(x, i)

)(
vF (i) + cF (i)

)]
(4.6)

The total future costs are simply the costs of each fault with the probability that it
occurs and all techniques failed in detecting it and its predecessors. In this case, the
abbreviation Θ(x, i) for accounting of the effects of previous technique applications
cannot be directly used because the outermost sum is over all the faults and hence the
probability that a previous technique detected the fault is not relevant. The abbreviation
Θ′(x, i) that describes only the product of the difficulties of detecting the predecessors
of i is hinted in the following equation for the expected value of the future cost fX of
several technique applications X .

E[fX(tX)] =
∑

i

[
πi

∏
x∈X

θx(i, tx)
∏
y<x

∏
j∈Ri

θy(j, ty)︸ ︷︷ ︸
Θ′(x,i)

(vF (i) + cF (i))
]

(4.7)

Model Output

Based on the three components of the model, we are able to calculate several different
economical metrics of the quality assurance process. We give the metrics total cost,
profit, and return on investment in the following.

Total Cost. The total cost describes the sum of all economic costs necessary for
producing products. It is one possible metric that can be optimised. In our model, the
total costs can be calculated straightforwardly by adding the direct costs and the future
costs:

total cost = dX + fX (4.8)

Profit. We describe the gain provided by the quality assurance with the term profit.
Hence, it is the revenues less the total cost. In the terms of our model, this can be
defined using the three components as follows:

profit = rX − dX − fX (4.9)
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ROI. Another metric used in economic analyses is the return on investment (ROI) of
the defect-detection techniques. The ROI – also called rate of return – is commonly
defined as the gain divided by the used capital. Boehm et al. [21] use the equation
(Benefits − Costs)/Costs. To calculate the total ROI with our model we have to use
Eqns. 4.5, 4.7, and 4.6.

ROI =
rX − dX − fX

dX + fX
(4.10)

All these metrics can be used for two purposes: (1) an up-front evaluation of the
quality assurance plan as the expected total cost, profit, or ROI of performing it and
(2) a single post-evaluation of the quality assurance of a project. In the second case
we can substitute the initial estimates with actually measured values. However, not all
of the factors can be directly measured, e.g., effect costs of defects removed in-house.
Hence, also the post evaluation metric must be seen as an estimated metric.

4.2.3 Forms of the Difficulty Functions

The notion of difficulty of the defect detection is a very central one in the described
model. As mentioned, this notion is based on an idea from [120]. However, the original
difficulty functions had no concept of time or spent effort but only of a single or more
applications. To be able to analyse and optimise the spent effort on each technique,
we need to introduce that additional dimension in the difficulty functions, i.e., the
functional form depending on the spent effort. This is similar to the informal curves
shown by Boehm [19] describing the effectiveness of different defect-detection tech-
niques depending on the spent costs. Actually, the equations given for the model above
already contain that extended difficulty functions but they are not further elaborated.
This gap is closed in the following.

Firstly, we do not have sufficient data to give an empirically founded basis for the
forms of the difficulty functions. Nevertheless, we can formulate hypotheses to iden-
tify the most probable distributions for different defects. Despite this limitation, using
these hypotheses we can analyse the influence of different functional forms on the
model output. Secondly, keep in mind that a difficulty function is defined for a specific
defect-detection technique detecting a specific defect. That means that each defect can
have distinct distribution for each possible technique.

Exponential Function

One possible intuition for the relationship between difficulty and effort is that with
more effort spent the difficulty decreases, i.e., the probability of detecting that defect
increases. However, with increasing effort the rate of difficulty reduction slows down.
The defect detection does get more and more complicated when the “obvious” cases
all have been tried. This intuition can be matched by modelling the difficulty as an
exponential function.

For this we use a function similar to the density function of an exponential distribu-
tion:

θ(i, t) =
{

λie
−λit if t > 0

1 otherwise
, (4.11)
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with λi being a parameter that is determined from empirical data from the technique
and the defect. It is the inverse of the mean value of the empirically measured difficulty.
Hence, it needs to be in the the range 0 ≤ λi ≤ 1.

Constant Function

The constant function constitutes a special case of the forms of the difficulty functions.
In this case the spent effort does not matter because the difficulty of detecting the defect
is always the same. The intuitive explanation for this functional form is best explained
using the example of a static analysis tool. These tools often use bug patterns specific
for a language and thereby identify code sections that are critical. When searching for
a specific bug pattern it is of no importance how much effort is spent but if the tool
is not able to detect a specific pattern – or only in seldom cases – the probability of
detection does not change. We can also use this distribution to model that a specific
technique A cannot detect a specific defect i by specifying that θA(i, t) = 1 for all
t. This is useful in particular in the case that A cannot detect defects of a specific
class, i.e., in a specific document type. For example, a design inspection cannot detect
defects in code.

Linear Function

The linear difficulty function models the intuition that there is a steady decrease in
difficulty when applying more effort. A review is an example that might exhibit such
a behaviour. The more intensively the reviewer reads the document the higher the pos-
sibility that he detects that specific defect. The function can be formulated as follows:

θA(τi, t) = mt + 1, (4.12)

where m is the (negative) slope of the straight line.

Sigmoid Function

For our purposes it is sufficient to see the sigmoid function as a variation of the ex-
ponential function. Its graph has an S-like shape and hence one local minimum and
one local maximum. In this special case we actually use a complementary sigmoid
function to get a turned S. We depict an example in Fig. 4.4.

In contrast to the exponential function, the sigmoid function models the intuition that
in the beginning it is hard to detect a specific defect and the difficulty does decrease
only slowly. However, when a certain amount of effort is spent, the rate increases
and the chance of detecting the defect increases significantly until we reach a point of
saturation – similar to the exponential function – where additional effort does not have
a large impact. This distribution is also backed by the so-called S-curve of software
testing [101]. That S-curve aims in a slightly different direction but also shows that
early in testing only a limited number of failures are revealed, then the detection rate
increases until a plateau of saturation is reached.
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Figure 4.4: A sigmoid difficulty function

4.2.4 Example

We illustrate the model with a simple example. We oversimplify it here so that it is
not too lengthy and too difficult to understand. However, for such a small system
the use of the model can obviously be disputed. For the sake of the example we
consider a software that only contains two faults 1 and 2 that are not related. We use
only two different defect-detection techniques: an inspection A and a test suite B.
Although this is not possible in practice, we assume that we are able to determine all
of the input factors for the model w.r.t. this example system and quality assurance. The
values can be found in Tab. 4.1. Furthermore, we have the setup costs uA = 100 and
uB = 500. The loaded labour rate is assumed to be 100 and the execution costs for
both techniques are simply the effort multiplied by the labour rate. We use different
forms for the difficulty functions, i.e., an exponential function for θA(1), a constant
function for θB(1), and linear functions for θA(2) and θB(2).

Table 4.1: The values of the input factors
Fault vF fF π θA θB vA vB

1 5,000 1,000 0.8 0.2e−0.2tA 1 500 1000
2 2,000 20,000 0.2 −0.02tA + 1 −0.03tB + 1 400 900

We can directly compare the two defect-detection techniques A and B by looking
at their factors w.r.t the two faults. Most notably, B needs significantly more costs to
remove the faults than A. In this particular case, this probably stems from the fact that
inspections allow easier debugging because they identify the fault directly whereas
tests only detect failures. Furthermore, we see that B is not able to detect fault 1
because of its constant difficulty function. This implies that fault 1 is a defect that in
principle cannot be detected by testing.

Based on these input factors, we can now choose an effort distribution over these two
defect-detection techniques to plan the quality assurance. The model is then able to
yield expected values for the different metrics given above. One possibility is to apply
technique A with effort tA = 10 person-hours and technique B with effort tB = 20
person-hours in that order. We first use Eq. 4.4 to calculate the probabilities that faults
1 and 2 were found by the first used technique A. This information is later used for
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technique B:
Θ(B, 1) = 0.2e−0.2·10 = 0.03

Θ(B, 2) = −0.02 · 10 + 1 = 0.8

The calculations are rather simple here because we only apply two techniques and have
no further relationships between faults.

Using these results, we can calculate the three components of the model. We want
to show this for the direct costs dX(tX) in more detail. The other two components are
calculated accordingly. Using Eq. 4.5 we get the following:

E(dX(tX)) = [100 + 10 · 100 +(1− 0.2e−0.2·10) · 500
+(1− (−0.02 · 10 + 1)) · 400] +

[500 + 20 · 100 +((1− 1) · 0.03 · 1, 000
+(1− (−0.03 · 20 + 1)) · 0.8 · 900 = 4, 887

Hence, following the above quality assurance plan results in expected direct costs of
4,219. The other two components can be calculated similarly with the following re-
sults: E(fX(tX)) = 15, 544 and E(rX(tX)) = 6, 592. Having calculated the com-
ponents it is straightforward to calculate different model outputs. The total cost is
20,431, i.e., the direct costs and the future costs added. Hence, this quality assurance
plan costs over 20,000. This is the first factor that could be optimised to reduce the
costs and thereby the invested capital.

However, we want to find out whether this QA plan is able to make a positive profit
for the company. We use the equation for the profit and find it to be −13, 839. We
see that using this setting, we will have a loss of nearly 14,000. This is definitely
not a desired result of quality assurance. Finally, to set the loss into relation to the
invested capital, we also calculate the return on investment (ROI). For this we can
simply divide the negative profit by the total cost which yields−0.68. This is definitely
not acceptable. We need to change our QA plan either by changing the effort for the
techniques or by using other or additional techniques. We will calculate examples for
different effort distributions in a more detailed example in Sec. 4.5. This example here
was only intended to give an idea what the model is capable of.

4.2.5 Empirical Knowledge

We review and summarise the empirical knowledge available for the quality economics
of defect-detection techniques introducing the approach in general and then describing
the relevant studies and results for each of the model factors for different types of
techniques and defects. More details can be found in [205, 206].

Approach

This literature review aims at reviewing and summarising the existing empirical work
that can be used to approximate the input parameters of the economics model proposed
in Sec. 4.2. Literature review, also called meta-analysis, is a common technique in so-
cial sciences or medicine. Details on such a review can be found, for example, in [45].
For the meta-analysis we take all officially published sources into account, i.e., books,
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journal articles, and papers in workshop and conference proceedings. In total we re-
view 68 papers mainly following references from existing surveys and complementing
those with newer publications. However, note that we only include studies with data
relevant for the economics model. In particular, studies only with a comparison of
techniques without detailed data for each were not taken into account.

We structure the available work in three parts for dynamic testing, review and in-
spection, and static analysis tools. We give a short characterisation for each category
and describe briefly the available results for each relevant model input factor. We pre-
fer to use and cite detailed results of single applications of techniques but also take
mean values into account if necessary. We also summarise the combination of the re-
sults in terms of the lowest, highest, mean, and median value for each input factor and
interesting other metrics in case there is enough data. These quantities can then be
used in the model for various tasks, e.g., sensitivity analysis.

We deliberately refrain from assigning weights to the various values we combine
although some of them are from single experiments while others represent average
values. The reason is that we often lack knowledge on the sample size used and either
we would estimate it or ignore the whole study result. An estimate of the sample size
would introduce additional blurring into the data and omitting data considering the
limited amount of data available is not advisable. Hence, we assume each data set of
having equal weight.

Difficulty

The difficulty function θ is hard to determine because it is complex to analyse the diffi-
culty of finding each potential fault with different defect-detection techniques. Hence,
we need to use the available empirical studies to get reasonable estimates. Firstly, we
can use the numerous results for the effectiveness of different test techniques. The
effectiveness is the ratio of found defects to total defects and hence in some sense the
counterpart to the difficulty function. In the paper of Littlewood et al. [120], where the
idea of the difficulty function originated, effectiveness is actually defined this way. As
a simple approximation we define the following for the difficulty:

θ̄A = 1− effectivenessA (4.13)

Using this equation we can determine the parameters of the different forms of the
difficulty functions. For example, when using the linear function, we can use the
average difficulty θ̄ and an average effort t̄ to determine the slope m of the function.
Then t can be varied to calculate the actual difficulty. The problem is that this is
really a coarse-grained approximation that does not directly reflect the diversity of
defect detection on different faults. Hence, we also need to analyse studies that use
different defect types later in Sec. 4.3.3. Also the functional form cannot be determined
in this way. The reason lies in the fact that most current studies do not analyse the
effectiveness w.r.t. different amounts of effort.

Dynamic Testing

The first category of defect-detection techniques we look at is also the most important
one in terms of practical usage. Dynamic testing is a technique that executes software
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with the aim to find failures.

Setup Costs. The setup costs are mainly the staff-hours needed for understanding
the specification in general and setting up the test environment. For this we can use
data from [94]. There the typical setup effort is given in relation to the size of the
software measured in function points (fp). Unit tests need 0.50 h/fp, function tests
0.75 h/fp, system test 1.00 h/fp, and field tests 0.50 h/fp. We have no data for average
costs of tools and hardware but this can usually be found in accounting departments
when using the economics model in practice.

Execution Costs. In the case of execution costs it is even easier than for setup
costs as, apart from the labour costs, all other costs can be neglected. One could include
costs such as energy consumption but they are extremely small compared to the costs
for the testers. Hence, we can reduce this to the average labour costs. However, we
also have average values per function point from [94]. There the average effort for unit
tests is 0.25 h/fp, for function tests, system tests, and field tests 0.50 h/fp.

Effectiveness. There are nearly no studies that present direct results for the diffi-
culty function of defect-detection techniques. Hence, we analyse the effectiveness and
efficiency results first. Those are dependent on the test case derivation technique used.
In the following, we summarise a series of studies that have been published regarding
the effectiveness of testing in general and specific testing techniques.

• The experiment by Myers [143] resulted in an average percentage of defects
found for functional testing of 36.0 and for structural of 38.0.

• Jones states in [94] that most forms of testing have an effectivity of less than
30%.

• He also states in [94] that a series of well-planned tests by a professionally
staffed testing group can exceed 35% per stage and 80% in overall cumulative
testing effectiveness.

• An experiment [132] showed that smoke tests for GUIs are able to detect more
than 60% of the faults for most applications.

• In an experimental comparison of testing and inspection [113,114] the structural
testing by teams had an effectiveness with a mean value of 0.17 and a std. dev.
of 0.16.

• Hetzel reports in [75] on the average percentage of defects found for functional
testing as 47.7 and for structural as 46.7.

• The study published in [8] compared testing over several successive usages to
analyse the change in experience. In three phases of functional testing the mean
effectiveness was with std. dev. in braces 0.64 (0.21), 0.47 (0.23), and 0.50
(0.15).
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• Howden reports in [78] on an older experiment regarding different testing tech-
niques. Path testing detected 18 of 28 faults and branch testing 6 of 28 faults.
The combined use of different structural testing techniques revealed 25 of 28
faults.

• Weyuker reports in [218] on empirical results about flow-based testing. In par-
ticular they compared different metrics to measure the flow (executed paths and
uses of variables. 71% of the known faults were exposed by at least all-du-paths,
and 67% were exposed by all-c-uses, all-p-uses, all-uses, and all-du-paths.

• Paradkar describes an experiment for evaluating model-based testing using mu-
tants in [154]. In two case studies the generated test suites were able to kill
between 82% and 96% of the mutants.

• In [14] testing detects 7.2% of the defects.

• In [168] and Sec. 6.2 an evaluation of model-based testing is described. The
effectiveness of eight test suites that can all be approximated as functional tests
is given as 0.75, 0.88, 0.83, 0.33, 0.33, 0.46, 0.50, and 0.33.

A summary of the found effectiveness of functional and structural test techniques
can be found in Tab. 4.2. We can observe that the mean and median values are all close
which suggests that there are no strong outliers. However, the range in general is rather
large, especially when considering all test techniques. When comparing functional and
structural testing, there is no significant difference visible.

Table 4.2: Summary of the effectiveness of test techniques (in percentages)

Type Lowest Mean Median Highest
Functional 33 53.26 48.85 88
Structural 17 54.78 56.85 89
All 7.2 49.85 47 89

Difficulty. The approximation of the difficulty functions is given in Tab. 4.3. We
used the results of the effectiveness summary above. Hence, the observations are ac-
cordingly.

Table 4.3: Approximation of the difficulty functions for testing

Type Lowest Mean Median Highest
Functional 12 46.74 51.15 67
Structural 11 45.22 43.15 83
All 11 50.15 53 92.8
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Removal Costs. The removal costs are dependent on the second dimension of
testing (cf. Sec. 2.3.2): the phase in which it is used. It is in general a very common
observation in defect removal that it is significantly more expensive to fix defects in
later phases than in earlier ones. Specific for testing is – in comparison with static
techniques – that defect removal not only involves the act of changing the code but
before that of localising the fault in the code. This is simply a result of the fact that
testing always observes failures for which the causing fault is not necessarily obvious.
We cite the results of several studies regarding those costs in the following.

• Shooman and Bolsky [191] analysed data from Bell Labs. They found the mean
effort to identify the corresponding fault to a failure to be 3.05 hours. The min-
imum was 0.1 hours and the maximum 17 hours. The effort to correct those
faults was then on average 1.98 hours with minimum 0.1 hours and maximum
35 hours. However, 53% of the corrections took between 0.1 and 0.25 hours.

• Jones [94] gives as industry averages during unit testing the effort to remove a
defect to be 2.50 h/defect, during function testing to be 5.00 h/defect, and during
system and field testing to be 10.00 h/defect.

• Collofello and Woodfield [43] report from a survey that asked for the effort
needed to detect and correct a defect. The average result was 11.6 hours for
testing.

• Franz and Shih [61] describe that the average effort per defect for unit testing at
HP is 6 hours. During system testing the time to find and fix a defect is between
4 and 20 hours.

• Kelly et al. [104] state that it takes up to 17 hours to fix defects during testing.

• A study [179] found for the financial domain that a defect fix during coding and
unit testing takes 4.9 hours, during integration 9.5 hours, and during beta-testing
12.1 hours.

• The same study [179] reports these measures for the transportation domain. The
necessary hours to fix a defect during coding and unit testing are 2.4, during
integration 4.1, and during beta-testing 6.2.

• Following [220] the effort to correct a requirements defect in a specific company
in staff-days was (after 1991) 0.25 during unit test, 0.51 during integration test,
0.47 during functional test, 0.58 during system test.

• Rooijmans et al. [176] published data on the effort for the rework effort after
testing in three projects. These were 4.0, 1.6, and 3.1 hours per defect, respec-
tively.

• Möller [135] reports of removal costs during unit testing of 2, 000 DM and dur-
ing system testing of 6, 000 DM.

Some statistics of the data above on the removal costs are summarised in Tab. 4.4.
We assume a staff-day to consist of 6 staff-hours and combined the functional and
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system test phases into the one phase “system test”. The removal costs (or efforts) of
the three phases can be given with reasonable results. A combination of all values for
a general average does not make sense as we get a huge range and a large difference
between mean and median. This suggests a real difference in the removal costs over
the different phases which is expected from standard software engineering literature,
e.g. [19].

Table 4.4: Summary of the removal costs of test techniques (in staff-hours per defect)

Type Lowest Mean Median Highest
Unit 1.5 3.46 2.5 6
Integration 3.06 5.42 4.55 9.5
System 2.82 8.37 6.2 20
All 0.2 8 4.95 52

Review and Inspection

The second category of defect-detection techniques under consideration are reviews
and inspections, i.e., reading documents with the aim to improve them.

Setup Costs. The first question is whether reviews and inspections do have setup
costs. We considered setup costs to be fixed and independent of the time that the de-
fect-detection technique is applied. In inspections we typically have a preparation and
a meeting phase but both can be varied in length to detect more defects. Hence, they
cannot be part of the setup costs. However, we have also an effort for the planning
and the kick-off that is rather fixed. We consider those as the setup costs of inspec-
tions. One could also include costs for printing the documents but these costs can be
neglected. Grady and van Slack describe in [71] the experience of Hewlett-Packard
with inspections. They give an average time effort for the different inspection phases:
for planning 2 staff-hours and for the kick-off 0.5 staff-hours.

Execution Costs. The execution costs are for inspections and reviews only the
labour costs as long as there is no supporting software used. Hence, the execution
costs are directly dependent on the factor t in our model. Nevertheless, there are
average values for the execution costs of inspections.

• Grady and van Slack describe in [71] the experience of Hewlett-Packard with
inspections. For the execution costs the typical time effort for the different in-
spection phases is as follows. The preparation phase has 2 staff-hours and the
meeting 1.5 staff-hours. For cause and prevention analysis and follow-up usu-
ally take 0.5 staff-hours for each part.

• Jones has published average efforts in relation to the size in function points in
[94]. Following this, a requirements review needs 0.25 h/fp, a design inspection
0.15 h/fp, and a code inspection 0.25 h/fp in the preparation phase. For the
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meeting the values are for requirements reviews 1.00 h/fp, for design inspections
0.50 h/fp, and for code inspections 0.75 h/fp.

• In [198] usage-based reading (UBR) is compared to checklist-based reading
(CBR). The mean preparation time was for UBR 53 minutes and for CBR 59
minutes.

• Porter et al. [162] conducted a long term experiment regarding the efficiency
of inspections. They found that the median effort is about 22 person-hours per
KNCSL.

• Jones gives in [94] typical rates for source code inspections as 150 LOC/h during
preparation and 75 LOC/h during the meeting.

• Rösler describes in [178] his experiences with inspections. The effort for an
inspection is on average one hour for 100 to 150 NLOC (non-commentary lines
of code).

• In [1] the inspection of detailed design documents has a rate of 3.6 hours of
individual preparation per thousand lines and 3.6 hours of meeting time per
thousand lines. The results for code were 7.9 hours of preparation per thou-
sand lines, 4.4 hours of meetings per thousand lines. Further results for detailed
design documents were 5.76 h/KLOC for individual preparation, 4.54 h/KLOC
for meetings. For code the results were 4.91 h/KLOC for preparation and 3.32
h/KLOC for meetings.

From these general tendencies, we can derive some LOC-based statistics for the
execution costs of reviews. We assume for the sake of simplicity that all used varieties
of the LOC metric are approximately equal. The results are summarised in Tab. 4.5.
The mean and median values all are close. Only in code inspection meetings, there
is a difference which can be explained by the small sample size. Note also that there
is a significant difference between code and design inspections as the latter needs on
average only half the execution costs. This might be explained by the fact that design
documents are generally more abstract than code and hence easier to comprehend.

Table 4.5: Summary of the execution costs of inspection techniques (in staff-hours per
KLOC)

Design Lowest Mean Median Highest
Preparation 3.6 4.68 4.68 5.76
Meeting 3.6 4.07 4.07 4.54
All 7.2 8.75 8.75 10.3
Code Lowest Mean Median Highest
Preparation 4.91 6.49 6.67 7.9
Meeting 3.32 7.02 4.4 13.33
All 6.67 13.2 11.15 22
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Moreover, note that many authors give guidelines for the optimal inspection rate,
i.e., how fast the inspectors read the documents. This seems to have an significant
impact on the efficiency of the inspection.

• Rösler [178] argues for an optimal inspection rate of about 0.9 pages per hour.

• Gilb and Graham state in [69] than an optimal average rate is one page per hour.

• Krasner [108] gives the optimal bandwidth of the inspection rate as 1±0.8 pages
per hour where one page contains 300 words.

Hence, we can summarise this easily with saying that the optimal inspection rate lies
about one page per hour. However, the effect of deviation from this optimum is not
well understood. This, however, would increase the precision of economics models
such as the one proposed above.

Effectiveness. Similar to the test techniques we start with analysing the effective-
ness of inspections and reviews that is later used in the approximation of the difficulty.

• Jones [94] states that formal design and code inspections tend to be the most
effective, and they alone can exceed 60%.

• Basili and Selby [8] compared three applications of code reading. The mean ef-
fectiveness was with std. dev. in braces 0.59 (0.28), 0.38 (0.28), and 0.57 (0.21).

• Defects in the space shuttle software are detected with inspections among other
techniques [14]. Prebuild inspections are able to find 85.4% and other inspec-
tions further 7.3% of the total defects.

• Biffl et al. [13] describe experiments where the defect detection rate of inspec-
tions (share of defects found) has a mean of 45.2% with a standard dev. of 16.6%.
In a second inspection cycle this is reduced to 36.5% with std.dev. 15.1%.

• Individual inspection effectiveness has a mean value of 0.52 with a std. dev. of
0.11. [113, 114]

• Biffl et al. analysed in [11] inspections and reinspections. They found that in the
first inspection cycle 46% of all defects were found, whereas in the reinspection
only 21% were detected.

• In [71] it is reported that typically 60 to 70 percent of the defects were found by
inspections.

• In [8] three iterations of code reading were analysed. The mean effectiveness
was with std. dev. in braces 0.47 (0.24), 0.39 (0.24), and 0.36 (0.20).

• Thelin et al. [199] report on several experiments on usage-based reading. The
effectiveness was 0.29, 0.31, 0.34, and 0.32

• Thelin et al. [198] compare different reading techniques, in particular usage-
based reading (UBR) and checklist-based reading (CBR). The effectiveness was
0.31 for UBR and 0.25 for CBR.
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• Biffl and Halling [12] also looked at the cost benefits of CBR and scenario-based
reading (SBR). The mean effectiveness (number of detected faults/number of all
faults) in an experiment was the following with the roles user (SBR-U), designer
(SBR-D), and tester (SBR-T). The results in percentages for different amounts
of reading time can be found in [12].

We also summarise these results using the lowest, highest, mean, and median value
in Tab. 4.6. We observe a quite stable mean value that is close to the median with
about 30%. However, the range of values is huge. This suggests that an inspection is
dependent on other factors to be effective.

Table 4.6: Summary of the effectiveness of inspection techniques (in percentage)

Lowest Mean Median Highest
8.5 34.14 30 92.7

Difficulty. Using the simple approximation, we can derive statistics for the difficulty
of inspections in reviews in Tab. 4.7. We also show our only results for the difficulty
in dependence of the spent effort derived from [12] in Fig. 4.5. It shows the difficulty
of several inspection techniques. We observe an exponential or linear form. The data
are not enough to decide this completely.

Table 4.7: Derived difficulty of inspections using the approximation

Lowest Mean Median Highest
7.3 65.86 70 91.5

Removal Costs. The removal costs of inspections only contain the fixing of the
found faults because no additional localisation is required. As different document
types can be inspected, we have to differentiate between them as well.

• During requirements reviews a removal effort of 1.00 hours per defect is needed.
Design and code inspections have 1.50 h/defect. [94]

• In the book [171] the average effort to find and fix a major problem is given with
0.8 to 0.9 hours.

• In the report [130] the effort for rework for a defect is given as 2.5 staff-hours
for in-house defects.

• Collofello and Woodfield [43] report from a survey that asked for the effort
needed to detect and correct a defect. 7.5 hours were needed for a design defect
and 6.3 hours for a code defect detected by inspections.
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Figure 4.5: The difficulty of different inspection techniques in relation to the effort
(reading time)

• Bourgeois published in [27] data on inspections. The average effort for inspec-
tions was 1.3 staff-hours per defect found and 2.7 staff-hours per defect found
and fixed. In another project the average effort was 1.1 staff-hours per defect
found and 1.4 to 1.8 staff-hours per defect found and fixed.

• The average effort per defect for code inspections was 1 hour (find and fix) at
HP. [61]

• Kelly et al. [104] report that approximately 1.75 hours are needed to find and
fix defects during design inspections, and approximately 1.46 hours during code
inspections.

• The report in [179] states for the financial domain 1.2 hours to fix a defect during
requirements analysis and 4.9 during coding. In the transportation domain the
hours to fix a defect in the requirements phase are 2.0 and during coding 2.4.

• The effort to correct a requirements defect in staff-days was (after 1991) at
Hughes Aircraft 0.05 during requirements analysis, 0.15 during preliminary de-
sign, 0.07 during detailed design and 0.17 during coding. [220]

• Möller [135] reports of removal costs during analysis, design, and coding of 500
DM. This value is not directly comparable to the other data based on person-
effort. However, it can still give an intuition of the costs.

The summary of the removal costs can be found in Tab. 4.8. For the design reviews
a strong difference between the mean and median can be observed. However, in this
case this is not because of outliers in the data but because of the small sample size of
only four data points. The large range when combining all the data for all types of in-
spections shows that there are probably significant differences between the inspection
types.
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Table 4.8: Summary of the removal costs of inspections (in staff-hours per defect)

Phase Lowest Mean Median Highest
Requirements 0.05 1.06 1.1 2
Design 0.07 2.31 0.83 6.3
Coding 0.17 2.71 1.95 6.3
All 0.05 1.91 1.2 7.5

Automated Static Analysis

The third and final category is tool-based analysis of software code to automatise the
detection of certain types of defects.

Setup Costs. There are no studies with data about the setup and execution costs
of using static analysis tools. In general, the setup costs are typically quite small
consisting only of (possible) tool costs – although there are several freely available
tools – and effort for the installation of the tools to have it ready for analysis.

Execution Costs. The execution costs are small in the first step because we only
need to select the source files to be checked and run the automatic analysis. For tools
that rely on additional annotations the execution costs are considerably higher. The
second step, to distinguish between true and false positives, is more labour intensive
than the first step. This requires possibly to read the code and analyse the interrelation-
ships in the code which essentially constitutes a review of the code. Hence, the ratio of
false positives is an important measure for the efficiency and execution costs of a tool.

• In [212] and Sec. 6.3 we found that the average ratio of false positives over three
tools for Java was 66% ranging from 31% up to 96%.

• In [221] an evaluation of static analysis tools for C code regarding buffer over-
flows is described. The defects were injected and the fraction of buffer overflows
found by each technique was measured. It is also noted that the rates of false
positives or false alarms are unacceptably high.

• In [93] a static analysis tools for C code is discussed. The authors state that
sophisticated analysis of, for example, pointers leads to far less false positives
than simple syntactical checks.

Difficulty. The effectiveness of static analysis tools has only been investigated in a
small number of studies and the results are mainly qualitative.

• In [181] among others PMD and FindBugs are compared based on their warn-
ings which were not all checked for false positives. The findings are that al-
though there is some overlap, the warnings generated by the tools are mostly
distinct.
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• Engler and Musuvathi discuss in [50] the comparison of their bug finding tool
with model checking techniques. They argue that static analysis is able to check
larger amounts of code and find more defects but model checking can check the
implications of the code not just properties that are on the surface.

• We also analysed the effectiveness of three Java bug finding tools in [212] and
Sec. 6.3. After eliminating the false positives, the tools were able to find 81% of
the known defects over several projects. However, the defects had mainly a low
severity where severity described the impact on the execution of the software.
For the severest defects the effectiveness reduced to 22%, for the second severest
defects even to 20%. For lower severities the effectiveness lies between 70% -
88%.

Field

In this section we look at the quantities that are independent from a specific defect-
detection technique and can be associated to defects in the field. We are interested in
removal costs in the field, failure severities as indicators of possible effect costs, and
failure probabilities of faults.

Removal Costs. In this section we analyse only the removal costs of defects in the
field as during development we consider the removal costs to be dependent on the used
defect-detection technique.

• The ratio of the cost of finding and fixing a defect during design, test, and field
use is: 1 to 13 to 92 [102] or 1 to 20 to 82 [175]

• The report [130] states that removal costs are 250 staff-hours per field-defect.

• The survey [43] resulted in the effort to detect and correct a defect in the field of
13.5 hours for a defect discovered.

• Following [179] the average effort to fix a defect in the financial domain after
product release is 15.3 hours. In the transportation domain it is a bit lower with
13.1 hours per defect.

• Willis et al. [220] report that the rework per requirements defect in staff-days
during maintenance was 0.65.

• In [180] an average effort to repair a defect after release to the customer is given
as 4.5 staff-days.

• Bush gives $10,000 as average costs to fix a defect in the field in [33].

• Möller [135] gives 25, 000 DM as typical removal costs which constitutes a
nearly exponential growth over the phases. This is also consistent with the value
from Bush.

For the removal costs we have enough data to give reasonably some statistics. How-
ever, in the original results the mean and median are extremely different with 57.42
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and 27.6, respectively. The mean is more than twice the median. This indicates that
there are outliers in the data set that distort the mean value. Hence, we look at a box
plot of the data that visualises the distribution with the aim to detect outliers. The box
shows the lower and upper quartiles of the data with the median as a vertical line in the
middle. The outer lines show the smallest and largest observation, respectively, with
the outliers excluded. Those are denoted by “◦” and “*” where the former denotes
normal outliers and the latter extreme outliers.

 0  50  100  150  200  250

**

Figure 4.6: Box plot of the removal costs of field defects in staff-hours per defect

The box plot in Fig. 4.6 shows two extreme outliers, i.e., values that are more than
three times of the interquartile range from the upper quartile away. We can eliminate
those to get more reasonable results. With the reduced data set we get a mean value of
27.24 staff-hours per defect and a median of 27 staff-hours per defect. Hence, we have
a more balanced data set with a mean value that can be further used. The results are
summarised in Tab. 4.9. Fig. 4.7 shows the box plot of the data set without the outliers.

Table 4.9: Summary of the removal costs of field defects (in staff-hours per defect)

Lowest Mean Median Highest
3.9 27.24 27 66.6

 10  20  30  40  50  60

Figure 4.7: Box plot of the reduced data set of the removal costs of field defects in
staff-hours per defect
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Effect Costs. The effect costs are probably the most difficult ones to obtain. One
reason is that these are highly domain-specific. Another is that companies often do
not publish such data as it could influence their reputation negatively. There is also
one more inherent problem. It is often just not possible to assign such costs to a single
software fault. The highly complex configurations and the combination with hardware
and possibly mechanics make such an assignment extremely difficult.

Yet, we cite two studies that published distribution of severity levels of defects. We
consider the severity as the best available substitute of effect costs because more severe
defects are probably more costly in that sense. However, this leaves us still with the
need of a mapping of severity levels with typical effect costs for which there is no
publicly available data.

Jones [94] states that the typical severity levels (1: System or program inoperable,
2: Major functions disabled or incorrect, 3: Minor functions disabled or incorrect, 4:
Superficial error) have the following distribution:

1. 10%

2. 40%

3. 30%

4. 20%

Failure Probability. The failure probability of a fault is also one of the most diffi-
cult parts to determine in the economics model. Although there is the whole research
field of software reliability engineering, there are only few studies that show represen-
tative distribution of such probabilities. The often cited paper by Adams [2] is one of
the few exceptions. He mainly shows that the failure probabilities of the faults have an
underlying geometric progression. This observation was also made in NASA studies
reported in [146, 147]. This relationship can also be supported by data from Siemens
when used in a reliability model [210] (cf. Sec. 6.4).

Labour Costs

The labour costs are difficult to capture correctly because they are constantly changing
and are dependent on the inflation rate and many other factors. Hence, a general state-
ment is not possible. Nevertheless, typical compensations for developers and testers
can often be found in IT and software journals. A good source is also a book by
Jones [95] that not only contains average salaries but also variations and overhead
costs.

Discussion

Some of the summaries allow a comparison over different techniques. Most interest-
ingly, the difficulty of finding defects is different between tests and inspections with in-
spections having more difficulties. Tests tend on average to a difficulty of 0.45 whereas
inspections have about 0.65. The static analysis tools are hard to compare because of
the limited data. They seem to be better in total but much worse considering severe
defects.
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The removal costs form a perfect series over the various techniques. As expected,
the requirements reviews only need about 1 staff-hour of removal effort which rises
over the other reviews to the unit tests with about 3.5 staff-hours. Over the testing
phases we have again an increase to the system test with about 8 staff-hours. The field
defects are then more than three times as expensive with 27 staff-hours. Hence, we
can support the typical assumption that it gets more and more expensive to remove a
defect over the development life-cycle.

We are aware that this survey can be criticised in many ways. One problem is clearly
the combination of data from various sources without taking into account all the ad-
ditional information. However, the aim of this survey is not to analyse specific tech-
niques in detail and statistically test hypotheses but to determine some average values,
some rules of thumb as approximations for the usage in an economics model. Fur-
thermore, for many studies we do not have enough information for more sophisticated
analyses.

Jones gives in [94] a rule of thumb: companies that have testing departments staffed
by trained specialists will average about 10 to 15 percent higher in cumulative testing
efficiency than companies which attempt testing by using their ordinary programming
staff. Normal unit testing by programmers is seldom more than 25 percent efficient
and most other forms of testing are usually less than 30 percent efficient when carried
out by untrained generalists. A series of well-planned tests by a professionally staffed
testing group can exceed 35 percent per stage, and 80 percent in overall cumulative
testing efficiency. Hence, the staff experience can be seen as one of the influential
factors on the variations in our results.

Nevertheless, we are able to provide data for most of the relevant factors for the
model by synthesising the available empirical work. The main deficiencies are data
for static analysis tools in principle and on effect costs of failures in the field. Further-
more, there is no data about the form of the difficulty functions, i.e., the difficulty or
effectiveness in relation to the spent effort. Finally, in future empirical studies it would
be helpful if the authors clearly add weights describing the size of the sample analysed
to the results to simplify meta-analysis.

4.2.6 Sensitivity Analysis

Every newly proposed mathematical model should be subject to various analyses.
Apart from the appropriateness of the model to the modelled reality and the valid-
ity of estimates and predictions, the dependence of the output on the input parameters
is of interest. The quantification of this dependence is called sensitivity analysis. Local
sensitivity analysis usually computes the derivative of the model response with respect
to the model input parameters. More generally applicable is global sensitivity anal-
ysis that apportions the variation in the output variables to the variation of the input
parameters. We base the following description of global sensitivity analysis mainly
on [186].

Settings and Methods

Sensitivity analysis is the study of how the uncertainty in the output of a model can be
apportioned to different sources of uncertainty in the model input. There are various
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questions that can be answered by sensitivity analysis. As pointed out in [184] it is
important to specify its purpose beforehand. In our context two settings are of most
interest: (1) factors priorisation and (2) factors fixing.

Factors Priorisation (FP). The most important factor is the one that would lead to
the greatest reduction in the variance of the output if fixed to its true value. Likewise
the second most important factor can be defined and so on. The ideal use for the
setting FP is for the prioritisation of research and this is one of the most common
uses of sensitivity analysis in general. Under the hypothesis that all uncertain factors
are susceptible to determination, at the same cost per factor, setting FP allows the
identification of the factor that is most deserving of better experimental measurement
in order to reduce the target output uncertainty the most. In our context that means that
we can determine the factors that are most rewarding to measure most precisely.

Factors Fixing (FF). This setting is similar to factors priorisation but still has a
slightly different flavour. Now, we do not aim to prioritise research in the factors but
we want to simplify the model. For this we try to find the factors that can be fixed
without reducing the output variance significantly. For our purposes this means that
we can fix the input factor at any value in its uncertainty range without changing the
outcome significantly.

FAST. There are various available methods for sensitivity analysis. The Fourier
amplitude sensitivity test (FAST) is a commonly used approach that is based on Fourier
developments of the output functions. It also allows a decomposition of the model
output variance. In contrast to correlation or regression coefficients, it is not dependent
on the goodness of fit of the regression model. The results give a quantification of the
influences of the parameters, not only a qualitative ranking as for example the Morris
method [137]. Furthermore, the FAST method was found computationally cheaper
than comparable methods in [185].

With the latest developments of the FAST method, it is not only able to compute the
first-order effects of each input parameter but also the higher-order and total effects.
The first order effect is the influence of a single input parameter on the output variance,
whereas the total effects also capture the interaction between input parameters. This is
also important for the different settings as the first-order effects are used for the factors
priorisation setting, the total-order effects for the factors fixing setting.

SimLab. We use the sensitivity analysis tool SimLab [192] for the analysis. Inside
the tool we need to define all needed input parameters and their distributions of their
uncertainty ranges. For this, different stochastic distributions are available. The tool
then generates the samples needed for the analysis. This sample data is read from a
file into the model – in our case a Java program – that is expected to write its output
into a file with a specified format. This file is read again by SimLab and the first-order
and total-order indexes are computed from the output.

59



4 Quality Economics

Input Factors and Data

We describe the analysed scenario, factors and data needed for the sensitivity analysis
in the following. The distributions are derived from the survey in Sec. 4.2.5. We
base the analysis on an example software with 1,000 LOC and with 10–15 faults. The
reason for the small number of faults is the increase in complexity of the analysis for
higher numbers of faults. This small example can be a threat to the validity of the
analysis but as most of the distribution of the input factors as analysed in Sec. 4.2.5 are
dependent on the size of the software we are confident that this issue is not significant
for the results.

Techniques. We have to base the sensitivity analysis on common or average dis-
tributions of the input factors. This also implies that we use a representative set of
defect-detection techniques in the analysis. We choose seven commonly used defect-
detection techniques and encode them with numbers: requirements inspection (0), de-
sign inspection (1), static analysis (2), code inspection (3), (structural) unit test (4),
integration test (5), and (functional) system test (6). As indicated we assume that unit
testing is a structural (glass-box) technique, system testing is functional (black-box),
and integration testing is both. The usage of those seven techniques, however, does not
imply that all of them are used in each sample as we allow the effort t to be null.

Additional Factors. To express the defect propagation concept of the model we
added the additional factor ρ as the number of predecessors. The factor c represents
the the defect class meaning the type of artefact the defect is contained in. This is
important for the decision whether a certain technique is capable to find that specific
defect at all. The factor φ encodes the form of difficulty function that is used for a
specific fault and a specific technique. We include all the forms presented above in
Sec. 4.2.3. The sequence s of techniques determines the order of execution of the
techniques. We allow several different sequences including nonsense orders in which
system testing is done first and requirements inspections as the last technique. Finally,
the average labour costs per hour l is added because it is not explicitly included in
the model equations from Sec. 4.2.2. Note, that we excluded the effect costs from
the sensitivity analysis because we have not sufficient data to give any probability
distribution.

Sigmoid Difficulty Function. For the purpose of sensitivity analysis we use a
simple approximation of the sigmoid function because we believe that a very sophis-
ticated function is in no relation to the limited amount of knowledge available on the
real functional form. This approximation is a step function with two areas and corre-
sponding two parameters γ and δ.

θ(i, t) =


0.9 if t ≤ γ
0.1 if γ < t ≤ δ
0 otherwise

. (4.14)

An example is shown in Fig. 4.8. The approximation we use is very rough simply
because the data we have is not precise enough to justify a sophisticated function.
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Hence, we assume we have some effort γ. When less than γ is spent it is very difficult
to detect the defect and we assume a difficulty of 0.9. After γ the difficulty falls to
0.1 because the detection is now very probable. This approximation at least mirrors
the intuition of the sigmoid function. Finally, we need also an effort δ that models
the point where the difficulty reaches null. In the sigmoid function this point is in the
infinity but for practical reasons, we make this an explicit point. This is because we
want to use the collected empirical data and hence we need to be able to estimate the
parameters from this data.
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Figure 4.8: A difficulty step function

We cut off the function at double of the average effort with the intuition that most
samples will lie inside this range. Hence, assuming that δ = 2t̄,

γ = 1.6θ̄t̄− 0.4t̄. (4.15)

Data. We reuse the empirical knowledge that we compiled in Sec. 4.2.5. We model
the input factors using triangular distributions with the minimum, maximum, and mean
values synthesised from the analysed studies.

Results and Observations

This section summarises the results of applying the FAST method for sensitivity anal-
ysis on the data from the example above and discusses observations. The analysed
output factor is the return-on-investment (ROI).

Abstract Grouping. We first take an abstract view on the input factors and group
them without analysing the input factors for different techniques separately. The Sim-
Lab tool allows this grouping directly by combining the influence of the selected fac-
tors. Hence, we only have 11 input factors that are ordered with respect to their first
and total order indexes in Tab. 4.10. The first order indexes are shown on the left, the
total order indexes on the right.

The first order indexes are used for the factors priorisation setting. We see that the
types of documents or artefacts the defects are contained in, denoted by a, are most
rewarding to be investigated in more detail. One reason might be that we use a uniform
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Table 4.10: The first and total order indexes of the abstract grouping

First order Total order
Document type a 0.4698 Document type a 0.8962
Exec. effort t 0.1204 Remv. costs field vf 0.4473
Avg. difficulty θ̄ 0.0699 Avg. difficulty θ̄ 0.4255
Remv. costs field vf 0.0541 Setup costs u 0.3916
Form of diff. function φ 0.0365 Exec. effort t 0.3859
Setup costs u 0.0297 Form of diff. function φ 0.2888
Remv. costs in-house v 0.0264 Num. of predecessors ρ 0.2711
Num. of predecessors ρ 0.0256 Remv. costs in-house v 0.2546
Failure prob. field π 0.0158 Failure prob. field π 0.2068
Tech. sequence s 0.0083 Tech. sequence s 0.1825
Labour costs l 0.0010 Labour costs l 0.1489

distribution because we do not have more information on the distribution of defects
over document types. However, this seems to be an important information. The factor
that ranks second highest is the spent effort t. In this analysis it is equal to e(t) because
we did not consider other cost factors during the execution. This approves the intuition
that the effort has strong effects on the output and hence needs to be optimised. Also
the average difficulty of finding a defect with a technique θ̄ and the costs of removing
a defect in the field vf are worth to be investigated further. Interestingly, the labour
costs l, the sequence of technique application s, and the failure probability in the field
π do not contribute strongly to the variance in the output. Hence, these factors should
not be the focus in further research.

For the factors fixing setting, the ordering of the input factors is quite similar. Again
the failure probability in the field π, the sequence of technique application s and the
labour costs l can be fixed with changing the output variance the least. Note that this
does not imply that the sequence and the labour costs are not important for the total
outcome. Only for the variance and hence the validity of predictions they are not
significant. For the labour costs, this can be explained by the fact that they appear in
the costs as well as the revenues. Hence, they may change the ROI but not its variance.
The factors that definitely cannot be fixed are again the document types, the removal
costs in the field, and the average difficulty values. The setup costs rank higher with
these indexes and hence should not be fixed.

Detailed Grouping. After the abstract grouping, we form smaller groups and dif-
ferentiate between the factors with regard to different defect-detection techniques. The
first and total order indexes are shown in Tab. 4.11 again with the first order indexes
on the left and the total order indexes on the right.

The main observations from the abstract grouping for the factor priorisation setting
are still valid. The type of artefact the defect is contained in (c) still ranks highest
and has the most value in reducing the variance. However, in this detailed view, the
failure probability in the field π ranks higher. This implies that this factor should not
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Table 4.11: The first and total order indexes of the detailed grouping

First order Total order
Document type a 0.2740 Document type a 0.7750
Exec. effort 1 t1 0.0601 Form of diff. function 4 φ4 0.3634
Failure prob. field π 0.0528 Exec. effort 1 t1 0.3332
Form of diff. function 4 φ4 0.0492 Failure prob. field π 0.3200
Form of diff. function 1 φ1 0.0391 Remv. costs field vf 0.2821
Remv. costs 3 v3 0.0313 Remv. costs 4 v3 0.2802
Form of diff. function 0 φ0 0.0279 Form of diff. function 1 φ1 0.2728
Num. of predecessors ρ 0.0278 Num. of predecessors ρ 0.2706
Form of diff. function 2 φ2 0.0269 Remv. costs 1 v1 0.2574
Remv. costs field vf 0.0252 Tech. sequence s 0.2524
Form of diff. function 6 φ6 0.0222 Avg. difficulty 5 θ̄5 0.2493
Remv. costs 0 v0 0.0219 Avg. difficulty 0 θ̄0 0.2312
Form of diff. function 3 φ3 0.0216 Avg. difficulty 3 θ̄3 0.2300
Avg. difficulty 6 θ̄6 0.0214 Form of diff. function 6 φ6 0.2287
Remv. costs 5 v5 0.0212 Form of diff. function 2 φ2 0.2240
Avg. effort 0 θ̄0 0.0209 Avg. effort 1 θ̄1 0.2077
Tech. sequence s 0.0208 Remv. costs 5 v5 0.2039
Avg. difficulty 1 θ̄1 0.0203 Form of diff. function 0 φ0 0.1966
Remv. costs 1 v1 0.0203 Setup costs 3 u3 0.1913
Avg. difficulty 4 θ̄4 0.0197 Remv. costs 0 v0 0.1907
Form of diff. function 5 φ5 0.0194 Avg. difficulty 6 θ̄6 0.1894
Avg. difficulty 5 θ̄5 0.0186 Form of diff. function φ5 0.1892
Exec. effort 2 t2 0.0185 Form of diff. function 3 φ3 0.1854
Avg. difficulty 3 θ̄3 0.0181 Remv. costs 4 v4 0.1807
Remv. costs 6 v6 0.0142 Exec. effort t5 0.1719
Remv. costs 2 v2 0.0139 Remv. costs 6 v6 0.1709
Remv. costs 4 v4 0.0120 Avg. difficulty 4 θ̄4 0.1707
Avg. difficulty 2 θ̄2 0.0109 Remv. costs 2 v2 0.1633
Exec. effort 6 t6 0.0089 Exec. effort 6 t6 0.1619
Exec. effort 4 t4 0.0058 Setup costs 5 u5 0.1451
Exec. effort 3 t3 0.0051 Exec. effort 4 t4 0.1409
Exec. effort 5 t5 0.0034 Setup costs 4 u4 0.1404
Setup costs 5 u5 0.0018 Exec. effort 2 t2 0.1378
Setup costs 0 u0 0.0013 Exec. effort 0 t0 0.1268
Setup costs 4 u4 0.0010 Labour costs l 0.1222
Exec. effort 0 t0 0.0009 Avg. difficulty 2 θ̄2 0.1125
Setup costs 3 u3 0.0007 Setup costs 6 u6 0.1122
Setup costs 6 u6 0.0007 Setup costs 0 u0 0.1085
Setup costs 1 u1 0.0005 Exec. effort 3 t3 0.1053
Setup costs 2 u2 0.0005 Setup costs 1 u1 0.1034
Labour costs l 0.0002 Setup costs 2 u2 0.0996
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be neglected. We also see that for some techniques the form of the difficulty function
φ has a strong influence and that the setup costs u of most techniques rank low.

Similar observations can be made for the factors fixing setting and the total order
indexes. The main observations are similar as in the abstract grouping. Again, the
failure probability in the field π ranks higher. Hence, this factor cannot be fixed without
changing the output variance significantly. A further observation is that some of the
setup costs u can be set to fixed value what reduces the measurement effort.

Consequences

From the observations above we can conclude that the labour costs, the sequence of
technique application and the removal costs of most techniques are not an important
part of the model and the variation in effort does not have strong effects on the output,
i.e., the ROI in our case. On the other hand, the type of artefact or document the defect
is contained in, the difficulty of defect detection, and the removal costs in the field have
the strongest influences. Interestingly, Sabaliauskaite supports in [182] the observation
that it is important to consider the differences in artefacts for evaluating inspections.

This has several implications: (1) We need more empirical research on the distribu-
tion of defects over different document types and the removal costs of defects in the
field to improve the model and confirm the importance of the factor, (2) we still need
more empirical studies on the effectiveness of different techniques as this factor can
largely reduce the output variance, (3) the labour costs do not have to be determined in
detail and it does not seem to be relevant to reduce those costs, (4) further studies on
the sequence and the removal costs are not necessary.

4.2.7 Discussion

The model so far is not suited for a practical application in a company as the quantities
used are not easy to measure. Probably, we are unable to get values for the difficulty θ
of each fault and defect-detection technique. Also the somehow fixed and distinct order
of techniques is not completely realistic as some techniques may be used in parallel or
only some parts of the software are analysed. However, in a more theoretical setting we
can already use the model for important tasks including sensitivity analysis to identify
important input factors.

Another application can be to analyse which techniques influence which parts of
the model. For instance, the automatic derivation of test cases from explicit behaviour
models (model-based testing) is a relatively new technique for defect detection. This
technique can be analysed and compared with traditional, hand-crafted test techniques
based on our model. Two of the factors are obviously affected by model-based testing:
(1) the setup costs are considerably higher than in hand-crafted tests because not only
the normal test environment has to be set up but also a formal (and preferably exe-
cutable) model of the behaviour has to be developed. On the contrary, the execution
cost per test case is then substantially smaller because the generation can be automated
to some extent and the model can be used as an oracle to identify failures. Further in-
fluences on factors like the difficulty functions are not that obvious but need to be
analysed. This example shows that the model can help to structure the comparison and
analysis of defect-detection techniques.
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Finally, we have to add that it might be interesting to relax the assumption of perfect
debugging, i.e., that every found defect is removed without introducing new defects.
In practice it is common that defect removal introduces new defects. Also sometimes
there might be a decision that a defect is not removed as it would be too costly or
the defect is particular minor and does not affect many customers. However, this
would introduce further complexity to the model and in software reliability modelling
(cf. 2.4.2) the experience has been that many models have a good predictive validity
despite this assumption. Hence, we leave the influence of this factor for future work.

4.3 Practical Model

As we discussed above, the theoretical model can be used for analyses but is too de-
tailed for a practical application. The main goal of this dissertation is, however, to
optimise the usage of defect-detection techniques which requires applicability in prac-
tice. Hence, we need to simplify the model to reduce the needed quantities.

4.3.1 Basics

For the simplification of the model, we use the following additional assumptions:

• Faults can be categorised in useful defect types.

• Defect types have specific distributions regarding their detection difficulty, re-
moval costs, and failure probability.

• The linear functional form of the difficulty approximates all other functional
forms sufficiently.

We define τi to be the defect type of fault i. It is determined using the defect type
distribution of older projects. In this way we do not have to look at individual faults
but analyse and measure defect types for which the determination of the quantities is
significantly easier. In the practical model we assume that the defects can be grouped
in “useful” defect types. For reformulating the equation it is sufficient to consider the
affiliation of a defect to a type but for using the model in practice we need to fur-
ther elaborate on the nature of defect types and how to measure them. In Sec. 2.2.2
we described the current state in research and practice of defect types. For our eco-
nomics model we consider the defect classification approaches from IBM [101] and
HP [70] as most suitable because they are proven to be usable in real projects and have
a categorisation that is coarse-grained enough to make sensible statements about each
category.

We also remove the concept of defect propagation as it was shown not to have a high
priority in the analyses above but it introduces significant complexity to the model.
Hence, the practical model can be simplified notably. For the practical use of the
model, we also need an estimate of the total number of defects in the artefacts. We can
either use generalised quality models such as [94] or product-specific models such as
COQUALMO [182]. To simplify further estimates other approaches can be used. For
example, the defect removal effort for different defect types can be predicted using an
association mining approach of Song et al. [194].
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4.3.2 Components

Similar to Sec. 4.2.2 where we defined the basic equations of the ideal model, we
formulate the equations for the practical model using the assumptions from above.

Single Economics

We start with the direct costs of a defect-detection technique. It is the counterpart of
Eq. 4.1.

E[dA(tA)] = uA + eA(tA) +
∑

i

(1− θA(τi, tA))vA(τi), (4.16)

where uA is the average setup cost for technique A, eA(tA) is the average execution
cost for A with length t, and vA(τi) is the average removal cost in defect type τi. The
main difference is that we consider defect types in the difficulty functions. The same
applies to the revenues.

E[rA(tA)] =
∑

i

πτi(1− θA(τi, tA))(vF (τi) + cF (τi)), (4.17)

where cF (τi) is the average effect costs of a fault of type τi. Finally, the future costs
can be formulated accordingly.

E[fA(tA)] =
∑

i

πτiθA(τi, tA)(vF (τi) + cF (τi)). (4.18)

With the additional assumptions, we can also formulate a unique form of the diffi-
culty functions:

θA(τi, ta) = mtA + 1, (4.19)

where m is the (negative) slope of the straight line. If a technique is not able to detect
a certain type, we will set m = 0. Thus, the difficulty is always 1.

Combined Economics

Similarly, the extension to more than one technique can be done. The following equa-
tion for the expected value of the direct costs is the counterpart to Eq. 4.5:

E[dX(tX)] =
∑
x∈X

[
ux + ex(tx) +

∑
i

(1− θx(τi, tx))
∏
y<x

(
θy(τi, ty)

)
vx(τi)

]
(4.20)

Also the expected value of the combined future costs fX can be formulated in the
practical model using defect types.

E[fX(tX)] =
∑

i

πτi

∏
x∈X

(
θx(τi, tx)

)(
vF (τi) + cF (τi)

)
(4.21)

Finally, the expected value of the combined benefits bX are defined accordingly.

E[bX(tX)] =
∑
x∈X

∑
i

πτi(1− θx(τi, tx))
∏
y<x

(
θy(τi, ty)

)(
vF (τi) + cF (τi)

)
(4.22)
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4.3.3 Empirical Knowledge

For further analyses of the practical model, we also elicit the available empirical work
on defect types in the following.

Dynamic Testing

To our knowledge, there is only one study that investigated the question of effective-
ness of defect-detection techniques with respect to defect types. Basili and Selby anal-
ysed the effectiveness of functional and structural testing regarding different defect
types in [8]. Tab. 4.12 shows the derived average difficulties θ̄ using the approxima-
tion based on the effectiveness (cf. Sec. 4.2.5).

Table 4.12: Difficulties of functional and structural testing for detecting different de-
fect types in percentages

Functional Structural Overall
Testing Testing

Initial. 25.0 53.8 38.5
Control 33.3 51.2 47.2
Data 71.7 73.2 74.7
Computat. 35.8 41.2 75.4
Interface 69.3 75.4 66.9
Cosmetic 91.7 92.3 89.2

It is obvious that there are differences of the two techniques for some defect types,
in particular initialisation and control defects. This study has been replicated and the
findings were mainly confirmed [99].

Review and Inspection

Analogous to the test techniques, we only have one study about effectiveness and
defect types [8]. The derived difficulty functions are given in Tab. 4.13. Also for
inspections, large differences between the defect types are visible but the small number
of studies does not guarantee generalisability.

Table 4.13: Difficulty of inspections to find different defect types in percentages

Initial. 35.4
Control 57.2
Data 79.3
Computat. 29.1
Interface 53.3
Cosmetic 83.3
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Table 4.14: Average defect type distribution from inspections

Doc. Std. use Logic Func. Data Syntax Perf. Others
44.27 21.05 7.65 6.36 5.00 4.66 2.59 8.42

O’Neill [152] also reports on the average distribution of defects types from a large
study. The results can be found in Tab. 4.14 with the ratios given in percentages.

Automated Static Analysis

For static analysis tools there is no study comparable to the experiment of Basili and
Selby [8]. Nevertheless, we summarise the available knowledge.

• In [78] are also some static analysis techniques evaluated. Interface consistency
rules and anomaly analysis revealed 2 and 4 faults of 28, respectively.

• Bush et al. report in [34] on a static analyser for C and C++ code which is able
to find several more dynamic programming errors. However, a comparison with
tests was not done.

• Palsberg describes in [153] some bug finding tools that use type-based analy-
sis. He shows that they are able to detect race conditions or memory leaks in
programs.

Field

We only have data for the removal costs w.r.t. different defect types. In [117] it was
found that interface defects consume about 25% of the effort and 75% can be attributed
to implementation defects dominated by algorithm and functionality defects. The ef-
forts in person days are on the average 4.6 for external, 6.2 for interface, 4.7 for im-
plementation defects. Outliers are data design with 1.9 and inherited defects 32.8,
unexpected interactions 11.1 and performance defects 9.3.

Defect Types

General distributions of defect types are probably difficult to obtain. However, we can
determine the defect type distribution for certain application types. Yet, there is only
little data published. Sullivan and Chillarege described the defect type distribution of
the database systems DB2 and IMS in [195]. The distributions (in percentages) can be
found in Tab. 4.15. Interestingly, the trend in this distributions was confirmed in [49]
where several open source projects were analysed.

Lutz and Mikulski used for defects in NASA software a slightly different classifi-
cation of defects in [122] but they also have algorithms and assignments as types with
a lot of occurrences. The most often defect type, however, is procedures meaning
missing procedures or wrong call of procedures. We can see that the defect types are
strongly domain- and problem-specific and general conclusions are hard to make.

68



4.3 Practical Model

Table 4.15: Defect type distributions in database systems
System Assignment Build Data-Struct Function Interface Timing

Checking Algorithm
DB2 48.19 3.6 19.82 12.16 2.25 13.96
IMS 56.22 2 23.38 1.99 9.95 6.47

4.3.4 Sensitivity Analysis

Similar to the analyses in Sec. 4.2.6 we determined the first and total order indexes of
the practical model again with data from [205,206]. The results are shown in Tab. 4.16
with the first order indexes left and the total order indexes right. We have to remark that
we only looked at defects in the code because we have no empirical data on defect types
in other kinds of documents. Furthermore, we introduced the factor α that describes
the defect type distribution. This is necessary because that distribution is not a part of
the model but is assumed to be determined beforehand.

Table 4.16: The first and total order indexes from the practical model

First order Total order
Exec. effort t 0.1196 Exec. effort t 0.8855
Failure prob. field π 0.1138 Remv. costs field vf 0.8670
Avg. difficulty θ̄ 0.1097 Tech. sequence s 0.7881
Defect type distr. α 0.0975 Avg. difficulty θ̄ 0.7857
Remv. costs field vf 0.0694 Labour costs l 0.7772
Labour costs l 0.0634 Defect type distr. α 0.6676
Tech. sequence s 0.0592 Failure prob. field π 0.6200
Setup costs u 0.0476 Setup costs u 0.4902
Remv. costs in-house v 0.0018 Remv. costs in-house v 0.0958

We see that the effort for the techniques t ranks highest in both settings. The failure
probability π again ranks high in the factors priorisation setting. Hence, this factor
should be investigated in more detail which was not obvious from the analysis of the
ideal model. However, similarly to the ideal model, the setup and removal costs of the
techniques (u and v) do not contribute strongly to the output variance.

In the factors fixing setting, we see that the setup and removal costs can be fixed
without changing the variance significantly. This implies that we can use coarse-
grained values here. Also the failure probability π can be taken from literature values.
More emphasis, however, should be put on the effort t, the removal costs in the field
vf , and the sequence of technique application s. The last one is surprising as for the
ideal model this factor ranked rather low.

4.3.5 Cost-Optimisation

For the optimisation only two of the three cost-components of the model are important
because the future costs and the saved costs (revenues) are dependent on each other.
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There is a specific number of faults that have associated costs when they occur in the
field. These costs are divided in the two parts that are associated with the revenues and
the future costs, respectively. The total always stays the same, only the size of the parts
varies depending on the defect-detection technique. Therefore, we use only the direct
costs and the revenues for optimisation and consider the future costs to be dependent
on the revenues. Because we use the revenues in the equation to be optimised we could
also call it profit-optimisation.

Hence, the optimisation problem can be stated by: maximise rX − dX . By using
Eq. 4.20 and Eq. 4.22 we get the following term to be maximised.

∑
x

[
−ux − ex(tx) +

∑
i

(1− θx(τi, tx))

∏
y<x

(θy(τj , ty))
(
πτivF (τi) + πτicF (τi)− vx(τi)

)] (4.23)

The equation shows in a very concise way the important factors in the economics
of defect-detection techniques. For each technique there is the fixed setup cost and
the execution costs that depend on the effort. Then for each fault in the software (and
over all defect types) we use the probability that the technique is able to find the fault
and no other technique has found the fault before to calculate the expected values of
the other costs. The revenues are the removal costs and effect costs in the field with
respect to the failure probability because they only are relevant if the fault will lead to
a failure. Finally, we have to subtract the removal costs for the fault of that technique
which is typically much smaller than in the field.

For the optimisation purposes, we probably also have some restrictions, for example
a maximum effort tmax with

∑
x tx ≤ tmax, either fixed length of 100 or none tA ∈

{0, 100}, or some fixed orderings of techniques, that have to be taken into account.
The latter is typically true for different forms of testing as system tests are always later
in the development than unit tests.

Having defined the optimisation problem and the specific restrictions we can use
standard algorithms for solving it. It is a hard problem because it involves multi-
dimensional optimisation over a permutation space, i.e., not only the length of tech-
nique usage can be varied but also the sequence of the defect-detection techniques.

4.4 Application

In the sections above, we have already discussed several possible applications of the
two models. We concentrate on the application of the practical model in company to
analyse and optimise its analytical quality assurance in the following.

4.4.1 General

First we discuss general issues that are independent of the process model that is used
in the development project.
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Needed Quantities

Using the practical model, we identify only seven different types of quantities that are
needed to use the model:

• Estimated number of faults: I

• Distribution of defect types

• Difficulty functions for each technique and type θx(τi)

• Average removal costs for type τi with technique x: vx(i)

• Average removal costs for type τi in the field: vF (i)

• Average effect costs for type τi in the field: cF (i)

• Failure probability of fault of type τi: πτi

For an early application of the model, average values from the literature review
can be used as first estimates, especially for those that ranked low in the FF setting
(cf. Sec. 4.2.6).

Expert Opinion

The practical application of the model depends in large parts on uncertain data that is
elicited using expert opinion. We discussed several issues of this approach in [204].
The data is not really “measured” but estimated by people. Hence, the data is unreli-
able and subject to bias. Nevertheless, every data has imprecision as we cannot always
be sure how accurately that data is recorded. Therefore, we have to deal with this un-
reliability and uncertainty using a structured approach to expert judgement. A possible
approach is described in [133].

To this end we mainly use the approach developed by Freimut et al. [63] for their
economics model of inspections. It is important that expert opinion is inherently un-
certain. Hence, it is unrealistic to ask only for one estimate per parameter. Instead we
use – similar to the synthesised empirical work – a triangular distribution with upper
and lower bounds and a most likely value. There are also various methods to reduce
the bias that is introduced in the data but we refer to [63] for details.

Defect Prediction

Apart from the analytical model proposed in this chapter, there are various other
stochastic models that can be used to analyse the defect content of documents and code
based on various metrics as also described in Sec. 2.4. For example, the COQUALMO
model [41] contains a component that can be used for defect estimation.

During system testing software reliability models can be used to check the defect
estimates. We describe such an approach in [213]. This is useful for recalculating
the model in that late phase in which we have far more information about the system
and its failure behaviour. Hence, the estimates on the defect content and the failure
behaviour in the field can be improved.
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Furthermore, there are also statistical methods used in the context of reviews. For
example in [216], data from reviews were analysed and statistical distributions found
that can be used to control the application of reviews. Also these technique-specific
results can be used to improve the initial estimates that were input in the economics
model.

4.4.2 Embedding in the V-Modell XT

Following the general discussion on the practical application of the economics model,
we show an exemplary embedding of the usage of the model in an existing process
model. For the example we choose the new version of the German standard model
V-Modell XT [32, 174] but an embedding in other models such as RUP [110] could be
done accordingly. For the embedding we need to extend and change some of the roles,
products, and activities of the V-Modell. However, we first give a brief overview of
the general process and then describe the extensions and changes in more detail.

Overview

To allow a concise overview of the usage of the model in the V-Modell, we built
an abstract activity diagram shown in Fig. 4.9. The quality manager is responsible
for cross-project quality standards, metrics, and methods. In particular, he defines
and maintains the metrics catalogue that must contain all the necessary input factors
summarised in Sec. 4.4.1. This catalogue is documented in the quality management
manual. Based on that, the quality manager sets up and maintains an infrastructure
that is able to store the corresponding metrics.

The main user of our model is the project leader. He performs the basic estimations
for the project including the defect estimate needed for our model. Here, the metrics
infrastructure can give guidance with data from similar projects. Based on the esti-
mates, the project leader uses our model to calculate an optimised quality assurance
and documents that in the QA manual. The QA manager further elaborates this QA
manual. It is then used by the evaluator to prepare evaluation specifications. Note that
we abstract here from the actual V-Modell because it differentiates different artefacts
that can be evaluated. For some an explicit realisation of evaluation procedures is
necessary. After evaluating the artefact, the evaluator writes an evaluation report that
includes all measurements that can be later used in the model such as the number and
type of the detected defects.

The QA manager collects those evaluation reports and prepares the quality status
report which is later used by the project leader as part of the project status report.
In that all necessary data of the project progress are cumulated. Based this report,
a project progress decision is made possibly using our model to evaluate different
scenarios and optimising the remaining quality assurance. This new QA plan is then
part of the QA manual. When the project is finished, the project leader collects the
measurement data relevant for our model and forwards it to the quality manager who
stores it in the metrics infrastructure.
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Figure 4.9: An activity diagram of the model application

Extensions and Changes

In the V-Modell XT there are four roles that are affected by the usage of the economics
model:

• The quality manager is responsible for the quality assurance standards over all
projects and for an efficient and effective quality management system. In partic-
ular, he develops a systematic quality management and creates and maintains the
quality management manual. Most importantly in our context, he defines rules
and approaches how projects plan and perform quality assurance techniques.
Furthermore, he defines which QA techniques should be used in general and
helps in choosing appropriate techniques for a specific project. The main change
is that he is responsible for setting up and maintaining the metrics infrastructure.

• The project leader has the responsibility for the execution of the project. He
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plans and controls the project progress. In particular, he makes the basic es-
timates for project planning and decides on future changes based on status re-
ports. The main change for this role is that he uses the model for optimising
the resource distribution for quality assurance and also collects the necessary
measurement data for our model.

• The QA manager controls the quality in a project and thereby supervises all
quality assurance. He is responsible for the quality status reports and also plans
the QA work in collaboration with others. There is only the small change that
in his quality status report the necessary measurements for the model must be
contained.

• The evaluator – also called inspector although he not only uses inspections –
creates evaluation specifications and using those evaluates the artefacts created
in the project. Hence, he uses defect-detection techniques, e.g., reviews and
tests, on those artifacts and reports the results. Also for the evaluator it is neces-
sary that he documents the necessary measurements for the model factors.

Several activities and products need slight changes for the use of our model in the
V-Modell. Mainly this is only more detail or the explicit measurement and collections
of the data for the model input factors.

• The activity preparing, introducing, and maintaining an organisation-specific
process model contains the sub-activity preparing and maintaining metrics cat-
alogue. We assign this activity to the quality manager and explicitly require the
incorporation of the factors from Sec. 4.4.1.

• The product estimation needs to have the sub-product estimation of the defect
content that is used later in the model.

• The products evaluation report and quality status report must contain the nec-
essary measurement data for the factors of Sec. 4.4.1.

• The activity coming to a project progress decision can use our economics model
as basis for the decision. Different scenarios can be analysed and an optimal
effort (or resource) distribution can be calculated.

• When collecting measurement data the project leader uses the quality status
reports from the QA manager to extract the data that is to be stored for future
project in the metrics infrastructure.

Finally, we also extend the V-Modell by several products and activities. They are
mainly the activities of the quality manager that are not part of the V-Modell reference.

• The main new activity is optimise QA. This activity is performed by the project
leader based on his estimates and data from similar projects. He calibrates the
model and optimises it (w.r.t. cost or ROI) so that an optimal resource distribu-
tion is found. This is then documented in the QA manual.

• The quality management manual is mentioned in the V-Modell but it is not an
official part of it. We find it useful in the context of our model because we can
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organisation-widely define the metrics that need to be collected for the usage of
the model.

• The metrics infrastructure is in essence similar to the project management in-
frastructure but not project-specific. In our context it needs to store the measured
data for the relevant metrics of our model.

• The quality manager then is responsible for setting up and maintaining the met-
rics infrastructure. This means that a data repository needs to be available for
the measurement data.

• Finally, the activity archiving measurement data describes that the quality man-
ager stores the measurement data of all projects so that they are available for
new projects.

In summary, we find that our model blends well with the V-Modell XT. The neces-
sary activities to use the model fit on the existing roles and only three activities and
two products need to be changed. Furthermore, we need two new activities and three
new products to be able to embedded our model in the V-Modell. An embedding in
other process models with a similar structuring should be possible with a comparable
effort.

4.5 Example

This section shows in an example the usefulness of the model. In particular, we use the
practical model with its optimisation procedure to improve a specific quality assurance
plan of a project. The data we use does not stem from a real project although we based
them on the empirical analyses from Sec. 4.2.5 and 4.3.3.

4.5.1 Basic Setting

For the example, we assume that we are responsible for the quality assurance of a
software project with an expected size of 100 kLOC of C code. Based on historical
data and experience we expect about 100 faults in that code – hence, a defect density of
about 1 fault per kLOC. We use the average defect type distribution from the empirical
knowledge and assume that we also have average data for the different attributes of
these defect types such as their removal effort or the difficulty to detect them with
different techniques. For all data that is not available, we use industry averages as
given in Sec. 4.2.5 and 4.3.3, for example the distribution of defect types.

For the sake of simplicity, we consider only four different techniques for the quality
assurance of the project:

• Code inspection

• Unit test

• Integration test

• System test
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To simplify the example, we also do not look at different sequences of the technique
application or several applications of the same technique at different points in time.

4.5.2 Manual Planing

First we want to manually try several different effort distributions on these settings
to see how the model behaves. All the distributions are shown in Tab. 4.17. The
effort is given in person-hours there. If we consider again the empirical averages from
Sec. 4.2.5 we can come up with an effort distribution over the four different techniques
which is called distribution 1. Distribution 2 reflects the setting in which the company
decides to concentrate on testing and do no inspection. The effort is shifted to the
testing techniques. With the distribution 3 we analyse a low effort on analytical SQA,
i.e., there is not enough time allocated in the project for quality assurance. Finally,
distribution 4 shows what happens when most of the quality assurance is done at the
end during system testing. In contrast to distribution 2 nearly no unit and integration
test is done.

Table 4.17: The manual effort distribution

Dist. Inspection Unit test Integration test System test Profit ROI
1 650 300 550 550 74,467 0.12
2 0 500 750 750 54,254 0.08
3 100 100 100 100 -111,410 -0.31
4 50 50 50 2000 -33,035 -0.04

Tab. 4.17 already contains the resulting return on investment of the different quality
assurance plans. Distribution 1 exhibits a reasonable ROI of 0.12. Intuitively, if we
follow this QA plan, we will have a 12% return on the invested capital. This is rea-
sonable compared to current interest rates. Distribution 2 performs weaker with a ROI
of 8%. Hence, we can conclude that in this setting it is beneficial to perform a code
inspection.

Distribution 3 exhibits the worst ROI with −0.31, i.e., we lose nearly a third of the
invested capital if we do not assign enough effort to the quality assurance. Finally, a
large system test is also not beneficial with a negative ROI of 4%. However, consid-
ering the variance in the estimates this can still be seen as acceptable. We do not gain
anything based on the quality but we also do not lose as much capital here. The loss is
still over 30,000.

4.5.3 Optimised Planing

Having analysed several manual QA plans in the previous section, we present an cost-
optimised (or profit-optimised) solution for the setting described above. The procedure
for optimisation with the model is described in Sec. 4.3.5. There are various ways to
optimise the result of the model using different algorithms and implementations. We
choose a very simple optimisation here that does not guarantee a global optimum but
at least allows us to show that the results from the manual plans can be improved.
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Table 4.18: An optimal effort distribution

Inspection Unit test Integration test System test Profit ROI
800 250 250 200 153,674 0.28

An optimised QA plan is shown in Tab. 4.18. We see that we are close to the
distribution 1 from above which is the distribution derived from industry averages.
However, note that the effort for the inspection is increased while the testing effort
decreased. This is in accordance to the fact that defect removal is more expensive in
later phases and hence early defect detection is beneficial. A graphical overview of all
effort distributions is shown in Fig. 4.10.
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Figure 4.10: A graphical comparison of the ROIs of the effort distributions

While doing the optimisation, we noted again that the removal effort in the field,
the difficulty, and the removal effort of the techniques have a strong influence on the
ROI. Obviously, there are several thresholds where the use of a specific technique
stops being beneficial. This is in strong correlation with the clustering of defects in
defect types. We use a considerably coarse-grained structuring with only six defect
types. It still needs to be investigated if they are enough to reflect the diversity of the
different techniques in the sense of [120]. Only if this is the case, we can be sure that
the simplification of using defect types instead of single defects does not destroy the
predictions.
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4.6 Summary

We proposed in this chapter an analytical, stochastic model for the quality economics
or costs and benefits of analytical quality assurance. We defined two versions of that
model: (1) an “ideal” model that incorporates many important factors and analyses
single defects and (2) a practical model that uses defect types and aims at applications
in the planing of real software projects. We reviewed the available empirical work
on the input factors of the model and synthesised the data to make it usable in the
models. Based on this data we performed sensitivity analysis on both models (1) to
identify those factors that are most rewarding to be investigated in more detail and (2)
to simply the model by finding the factors that can be fixed without changing the output
significantly. Finally, we described issues of a practical application of the model and
described an exemplary embedding of the model usage in the quality assurance process
of the V-Modell XT.

The basic cost factors used in our model are similar to existing approaches. They
are determined by the PAF model and the refinement is largely similar to the cost
classification of Jones [94]. Many software quality cost models are also based on the
PAF model but do not refine the cost factors [66,83,106,126]. Furthermore, our model
is generally more detailed than those models because it includes also technical factors
of the quality assurance process. Only iDAVE [21] and ROSQ [193] include similar
technical influences but as very coarse-grained factors. Hence, our model allows to be
more precise to this end and to make use of the available insights of analytical models
of defect-detection techniques.

Most analytical models, however, concentrate on specific defect-detection tech-
niques, such as inspections [12, 63, 112] or tests [58, 136, 156, 219]. The difficulty
functions in our model are derived from the work of Littlewood et al. [120]. These
functions allow to express defect detection capabilities and the diversity of different
techniques. However, the incorporation of this factor into an analytical model and the
combination with cost factors is unique to our model. The model of Collofello and
Woodfield [43] is close to our model. However, we differentiate the factors in more
detail. They do not consider different defect types apart from design and code de-
fects and hence have also rather coarse-grained average values for the effectiveness
and costs. Moreover, they only consider personnel effort for the costs which constitute
a major part but other costs should not be neglected and are hence incorporated in our
model.

We believe that our model is a reasonable combination of the high-level cost models
and the detailed and technical analytical models. Thus we are able to make more
precise and technically sound analyses and predictions of the economics of defect-
detection techniques. To use expected values as the basis of our model is firstly a
common approach in engineering economics [17]. Secondly, it allows the equations
to be rather simple using sums and products. This improves the understanding of the
equations and thereby of the relationships of the factors.

In addition, we proposed a new concept of defect propagation that differs from the
existing defect introduction and removal models w.r.t. the consideration of different
artefact types. This is necessary for our model to be able to incorporate defect-detec-
tion techniques that operate on requirements and design documents such as inspec-
tions.
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We also contributed a large review of the empirical results that are available for
defect-detection techniques. Comparable is only the study by Briand et al. [29] that
is also based on a model but with partly different factors and a different aim. Our
literature review allows to use (1) the found mean values as substitute for some of
the factors and (2) the distributions as basis of a sensitivity analysis. This kind of
sensitivity analysis is also unique to this class of models. Freimut et al. [63] also
did a sensitivity analysis but only on the basis of the data of a case study. Our global
sensitivity analysis identified the factors that are most beneficial to investigate in future
studies and the results also help to increase the predictive validity of the model itself.
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In the discussion on how to cost-optimise the general usage of defect-detection tech-
niques and their corresponding effort distribution, we always assumed the software
system to be analysed as a black-box. However, during the development more infor-
mation is available on the structure and behaviour of the system. This information can
be exploited to further optimise the SQA. In this case we propose to identify the fault-
and failure-prone components of a system early in the development and concentrate
the defect-detection on these components to reach a higher efficiency. For this, we
define a metrics suite for software models based on UML 2.0. The results were also
published in [100, 211]

5.1 General

We already argued that quality assurance constitutes a significant part of the total de-
velopment costs for software. Especially formal verification is frequently perceived as
rather costly. Therefore, there is a possibility for optimising costs by concentrating on
the fault-prone components and thereby exploiting the existing resources as efficiently
as possible. This is especially important when considering that studies showed that
only a small number of components (or modules) of a system contain most of the de-
fects [20]. Detailed design models offer the possibility to analyse the system early in
the development life-cycle. One of the possibilities is to measure the complexity of
the models to predict fault-proneness assuming that a high complexity leads to a high
number of defects (as is done for example in [118]).

The complexity of software code has been studied to a large extent. With complexity
we mean in this context mainly the complexity or difficulty to implement and test
a software, to a lesser extent also the complexity to understand the model because
this is related to the quality of the implementation in code. It is often stated that
complexity is related to and a good indicator for the fault-proneness of software [105,
139, 163, 177]. There are two different approaches to the identification of fault-prone
components. In the estimative approach models are used to predict the number of
faults that are contained in each component. The classification approach categorises
components into fault-prone classes, often simply low-fault and high-fault. We use
the latter approach in the following because it is more suitable for the model metrics.
The reason lies in the conceptual distance between the models and the defects in code.
There are several steps involved in transforming the models into the final code. Hence,
we believe that a quantitative statement cannot be reasonably made but a qualitative,
coarse-grained classification is possible.

Although the traditional complexity metrics are not directly applicable to design
models because of different means of structuring and abstractions, there are already
a number of approaches that propose design metrics, e.g. [18, 35, 39, 215]. Most of
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the metrics in [39] were found to be good estimators of fault-prone classes by Basili,
Briand, and Melo [7] and are used in our approach as well. However, they concentrate
mainly on the structure of the designs. Since the system structure is not sufficient as a
source for the complexity of its components, which largely depends on their behaviour,
we will also propose a metric for behavioural models.

5.2 Metrics

This section describes the possibilities to identify fault-prone components based on
models built with UML 2.0 [150]. We introduce a design complexity metrics suite for
a subset of model elements of the UML 2.0 and explain how to identify fault-prone
components. This means we propose a kind of measurement-driven predictive model
(cf. Sec. 2.4).

The basis of our metrics suite forms the suite from [39] for object-oriented code
and the cyclomatic metric from [129]. In using a suite of metrics we follow [56, 131]
stating that a single measure is usually inappropriate to measure complexity.

In [74] the correlation of metrics of design specifications and code metrics was
analysed. One of the main results was that the code metrics such as the cyclomatic
complexity are strongly dependent on the level of refinement of the specification, i.e.
the metric has a lower value the more abstract the specification is. Models of software
can be based on various different abstractions, such as functional or temporal abstrac-
tions [165]. Depending on the abstractions chosen for the model, various aspects may
be omitted, which may have an effect on the metrics. Therefore, it is prudent to con-
sider a suite of metrics rather than a single metric when measuring design complexity
to assess fault-proneness of system components.

5.2.1 Development Process

The metric suite described below is generally applicable in all kinds of development
processes. It does not need specific phases or sequences of phases to work. However,
we need detailed design models of the software to which we apply the metrics. This is
most rewarding in the early phases as the models then can serve various purposes.

We adjust metrics to parts of UML 2.0 based on the design approach taken in AUTO-
FOCUS [82], ROOM [188], or UML-RT [189], respectively. This means that we model
the architecture of the software with structured classes (called actors in ROOM, cap-
sules in UML-RT) that are connected by ports and connectors and which have associ-
ated state machines that describe their behaviour.

The metrics defined in this section are applicable to components as well as classes.
However, we will concentrate on structured classes following the usage of classes in
ROOM. The particular usage should nevertheless be determined by the actual devel-
opment process.

5.2.2 Measures of the Static Structure

We start introducing the new measures with the ones that analyse the static structure
of models. These are important because the interrelations and dependencies among
model elements contribute significantly to their complexity.
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Structured Classes

The concept of structured classes introduces composite structures that represent a com-
position of run-time instances collaborating over communication links. This allows
UML classes to have an internal structure consisting of other classes that are bound
by connectors. Furthermore, ports are used as a defined entry point to a class. A port
can group various interfaces that are provided or required. A connection between two
classes through ports can also be denoted by a connector. The parts of a class work
together to achieve its behaviour. A state machine can also be defined to describe
behaviour that is additional to the behaviour provided by the parts.

We start with three metrics, Number of Parts, Number of Required Interfaces, and
Number of Provided Interfaces, which concern structural aspects of a system model.
The metrics consider composite structure diagrams of single classes with their parts,
interfaces, connectors, and possibly state machines. A corresponding example is given
in Fig. 5.1.

Number of Parts (NOP). The number of parts of a structured class contributes
obviously to its structural complexity. The more parts it has, the more coordination is
necessary and the more dependencies there are, all of which may contribute to a fault.
Therefore, we define NOP as the number of direct parts Cp of a class.

Number of Required Interfaces (NRI). This metric is (together with the NPI
metric below) a substitute for the old Coupling Between Objects (CBO) that was crit-
icised in [127] in that it does not represent the concept of coupling appropriately. It
reduces ambiguity by giving a clear direction of the coupling. We use the required
interfaces of a class to represent the usage of other classes. This is another increase
of complexity which may as well lead to a fault, for example if the interfaces are not
correctly defined. Therefore, we count the number of required interfaces Ir for this
metric. Coupling metric as predictors of run-time failures were investigated in [16]. It
shows that coupling metrics are suitable predictors of failures.

Number of Provided Interfaces (NPI). Very similar but not as important as NRI
is the number of provided interfaces Ip. This is similarly a structural complexity mea-
sure that expresses the usage of a class by other entities in the system.

NOP = 3
NRI = 2
NPI = 2

C1

class

P2

P3

C1

P1

Figure 5.1: An example structured class with three parts and the corresponding met-
rics.
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Example

The example in Figure 5.1 shows the composite structure diagram of a class with three
ports, two required and two provided interfaces. It has three parts which have in turn
ports, interfaces and connectors. However, these connecting elements are not counted
in the metrics for the class itself because they are counted by the metrics for the parts,
and these can later be summed up to consider the complexity of a class including its
parts.

5.2.3 Measure of Behaviour

We proceed with a complexity metric for behavioural models because the behaviour
determines the complexity of a component to a large extent.

State Machines

State machines with input and output – as defined in the UML 2.0 standard – can be
used to model the behaviour of classes of a system. They describe the actions and
state changes based on a partitioning of the state space of the class. Therefore, the
associated state machine is also an indicator of the complexity of a class and hence its
fault-proneness. State machines consist of states and transitions where states can be
hierarchical. Transitions carry event triggers, guard conditions, and actions.

We use cyclomatic complexity [129] to measure the complexity of behavioural mod-
els represented as state machines because it fits most naturally to these models as well
as to code. This makes the lifting of the concepts from code to model straightforward.

To find the cyclomatic complexity of a state machine we build a control flow graph
similar to the one for a program in [129]. This is a digraph that represents the flow of
control in a piece of software. For source code, a vertex is added for each statement in
the program and arcs if there is a change in control, e.g. an if- or while-statement. This
can be adjusted to state machines by considering the code implementation. The code
transformation that we use as a basis for the metrics can be found in [188]. However,
different implementation strategies could be used [158].

Example

An example of a state machine and its control flow graph is depicted in Fig. 5.2(a)
and Fig. 5.2(b), respectively. At first we need an entry point as the first vertex. The
second vertex starts the loop over the automata because we need to loop until the
final state is reached or infinitely if there is no final state. The next vertices represent
transitions, atomic expressions1 of guard conditions, and event triggers of transitions.
These vertices have two outgoing arcs each because of the two possibilities of the
control flow, i.e. an evaluation to true or false. Such a branching flow is always joined
in an additional vertex. The last vertex goes back to the loop vertex from the start and
the loop vertex has an additional arc to one vertex at the end that represents the end of
the loop. This vertex finally has an arc to the last vertex, the exit point.

1A guard condition can consist of several boolean expressions that are connected by conjunctions and
disjunctions. An atomic expression is an expression only using other logical operators such as equiv-
alence. For a more thorough definition see [129].
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If we have such a graph we can calculate the cyclomatic complexity using the for-
mula v(G) = e− n + 2, where v is the complexity, G the control graph, e the number
of arcs, and n the number of vertices (nodes). There is also an alternative formula,
v(G) = p + 1, which can also be used, where p is the number of binary predicate
nodes. Predicate nodes are vertices where the flow of control branches.

Cyclomatic Complexity = 14

v(G) = e − n + 2
v(G) = 46 − 34 + 2

Number of Nodes: 34
Number of Edges: 46

Example

e2 [g1] / a1

e5 [g3 && g4] / a2

S

S4

sm

2

e3 [g2] e4

3S

1S

(a) A simple state machine with one hierarchical
state, event trigger, guard conditions, and actions

e2 [g1] / a1

e3 [g2]

e4

e5 [g3 && g4]
/ a2

(b) Its corresponding control flow graph. The
black vertices are predicate nodes. On the right the
transitions for the respective part of the flowgraph

are noted

Figure 5.2: An example of the cyclomatic complexity of a state machine

Hierarchical states in state machines are not incorporated in the metric. Therefore,
the state machine must be transformed into an equivalent state machine with simple
states. This appears to be preferable to handling hierarchy separately because we are
not looking at understandability and we do not have to deal with hierarchy crossing
transitions. Furthermore internal transitions are counted equally to normal transitions.
Pseudo states are not counted themselves, but their triggers and guard conditions. Us-
age of the InState construct in guards is not considered.

Cyclomatic Complexity of State machine (CCS). Having explained the con-
cepts based on the example flow graph above, the metric can be calculated directly
from the state machine with a simplified complexity calculation. We count the atomic
expressions and event triggers for each transition. Furthermore we need to add 1 for
each transition because we have the implicit condition that the corresponding source
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state is active. This results in the formula

CCS = |T |+ |E|+ |AG|+ 2. (5.1)

where T is the multi-set of transitions, E is the multi-set of event triggers, and AG

is the multi-set of atomic expressions in the guard conditions. This formula yields
exactly the same results as the longer version above but has the advantage that it is
easier to calculate.

For this metric we have to consider two abstraction layers. First, we transform the
state machine into its code representation2 and second use the control flow graph of
the code representation to measure structural complexity. The first “abstraction” is
needed to establish the relationship to the corresponding code complexity because it is
a good indicator of the fault-proneness of a program. The proposition is that the state
machine reflects the major complexity attributes of the code that implements it. The
second abstraction to the control flow graph was established in [129] and is needed
for the determination of paths through the program which reflect the complexity of the
behaviour.

5.2.4 Metrics Suite

In addition to the metrics which we defined above, we complete our metrics suite by
adding two existing metrics from [39] that can be adjusted to be applicable to UML
models. The metrics chosen are from the ones that were found to be good indicators
of fault-prone classes in [7]. We omit Response For a Class (RFC) and Coupling
Between Objects (CBO)3 because they cannot be determined on the model level. The
two adapted metrics are described in the following. The complete metrics suite can be
found in Tab. 5.1. Note that all proposed metrics have an ordinal scale [54].

Depth of Inheritance Tree (DIT). This is the maximum depth of the inheritance
graph T to a class c. This can be determined in any class diagram that includes inheri-
tance.

Number of Children (NOC). This is the number of direct descendants Cd in the
inheritance graph. This can again be counted in a class diagram.

5.2.5 Properties

Since there is a vast amount of so-called complexity metrics for software, several re-
searchers developed more precise definitions for that term. We analyse whether our
metrics are structural complexity measures by the definition in [131]. The definition
says that for a set D of documents with a pre-order ≤D and the usual ordering ≤R on
the real numbers R, a structural complexity measure is an order preserving function
m : (D,≤D) −→ (R,≤R). This means that any structural complexity metric needs

2Note that this is done only for measuring purposes; our approach also applies if the actual implemen-
tation is not automatically generated from the UML model but manually implemented.

3RFC counts all methods of a class and all methods recursively called by the methods. CBO counts all
references of a class to methods or fields of other classes.
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Table 5.1: A summary of the metrics suite with its calculation
Name Abbr. Calculation
Depth of Inheritance Tree DIT max (depth(T, c))
Number of Children NOC |Cd|
Number of Parts NOP |Cp|
Number of Required Interfaces NRI |Ir|
Number of Provided Interfaces NPI |Ip|
Cyclomatic Complexity of State machine CCS |T |+ |E|+ |AG|+ 2

to be at least pre-ordered because this is necessary for comparing different documents.
Each metric from the suite fulfils this definition with respect to a suitable pre-order on
the relevant set of documents.

The document set D under consideration is depending on the metric: either a class
diagram that shows inheritance and possibly interfaces, a composite structure diagram
showing parts and possibly interfaces, or a state machine diagram. All the metrics use
specific model elements in these diagrams as a measure. Therefore, there is a pre-order
≤D between the documents of each type based on the metrics: We define d1 ≤D d2 for
two diagrams d1, d2 in D if d1 has fewer of the model elements specific to the metric
under consideration than d2. The mapping function m maps a diagram to its metric,
which is the number of these elements. Hence m is order preserving and the metrics
in the suite qualify as structural complexity measures.

Similarly, Weyuker [217] defined several properties that should be possessed by
complexity metrics. These are partly more specific to complexity metrics based on the
syntactic representation in a programming language. Hence, a transfer to model met-
rics is not obvious. Nevertheless, an interpretation for models shows that we are able
to fulfil all nine properties. The only assumption we have to make is that concatenation
of models may involve adding additional model elements to connect them.

5.3 Fault Proneness

As mentioned before, complexity metrics are good predictors for the reliability of
components [105, 139]. Furthermore, the experiments in [7] show that most metrics
from [39] are good estimators of fault-proneness. We adopted DIT and NOC from
these metrics unchanged, therefore this relationship still holds. The cyclomatic com-
plexity is also a good indicator for reliability [105] and this concept is used for CCS to
be able to keep this relationship. The remaining three metrics were modelled similarly
to existing metrics. NOP resembles NOC, NRI and NPI are similar to CBO. NOC and
CBO are estimators for fault-proneness, therefore it is expected that the new metrics
behave accordingly.

The metrics suite is used to determine the most fault-prone classes in a system.
Different metrics are important for different components. Therefore, one cannot just
take the sum over all metrics to find the most critical component. We propose to use
the metrics so that we compute the metric values for each component and class and
consider the ones that have the highest measures for each single metric. This way we
can for example determine the components with complex behaviour or coupling.
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We suggest to use complexity levels LC = {high, low}. We assign each component
such a complexity level by looking at the extreme values in the metrics results. Each
component that exhibits a high value in at least one of the metrics is considered of
having the complexity level high, all other components have the level low. It depends
on the actual distribution of values to determine what is to be considered a high value.
These complexity levels show the high-fault and low-fault components.

5.4 Failure Proneness

The following constitutes an extension to the analysis of fault proneness towards fail-
ure proneness. The fault-proneness of a component does not directly imply low reli-
ability because a high number of faults does not mean that there is a high number of
failures [201]. However, a direct reliability measurement is in general not possible on
the model level. Nevertheless, we can get close by analysing the failure-proneness of a
component, i.e. the probability that a fault leads to a failure that occurs during software
execution.

It is not possible to express the probability of failures with exact figures based on
the design models. We propose therefore to use more coarse-grained failure levels,
e.g. LF = {high,medium, low}, where LF is the set of failure levels. This allows
an abstract assessment of the failure probability. It is still not reliability as generally
defined but the best estimate that we can get in early phases.

To determine the failure level of a component we use the complexity levels from
above. Having assigned these complexity levels to the components, we know which
components are highly fault-prone. The operational profile [140] is a description of the
usage of the system, showing which functions are mostly used. We use this information
to assign usage levels LU to the components. This can be of various granularity. An
example would be LU = {high,medium, low}. When we know the usage of each
component we can analyse the probability that the faults in the component lead to a
failure.

The combination of complexity level and usage level leads us to the failure level
LF of the component. It expresses the probability that the component fails during
software execution. We describe the mapping of the complexity level and usage level
to the failure level with the function fp:

fp = LC × LU −→ LF ,where LF = LU ∪ {low} (5.2)

What the function does is simply to map all components with a high complexity
level to its usage level and all components with a low complexity level to low. How-
ever, this is only one possibility how fp can look like.

fp(x, y) =
{

y if x = high
low otherwise

(5.3)

This means that a component with high fault-proneness has a failure probability that
depends on its usage and a component with low fault-proneness has generally a low
failure probability.

Having these failure levels for each component we can use that information to guide
the verification efforts in the project, e.g., assign the most amount of inspection and
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testing on the components with a high failure level. Parts of critical systems such as
an exception handler still need thorough testing although its failure level might be low.
However, this is not part of this work.

5.5 Summary

In terms of abstraction, this chapter is on a more detailed level than the analytical
model of Chap. 4. The aim is still to cost-optimally use analytical quality assurance
but we do not distribute the effort between different techniques but we analyse how the
effort is best distributed over the components of the system. This is done by identify-
ing the most fault- and failure-prone components based on a metrics suite and detailed
design models. In other words, the analytical model and the metrics suite are orthog-
onal: the model is used to concentrate the QS on defect-detection techniques and the
metrics are used to concentrate on specific software components.

Based on the assumption that more complex components are more defect-prone we
defined – partly based on prior empirical analyses – several metrics that combined
are able to classify components using UML 2.0 models. These will be validated by
two case studies in the following Chap. 6. The main difference to existing similar
approaches is that we analyse models and hence the proposed approach can be ap-
plied early in the development process and hence the concentration on defect-prone
components can be planed from early on. Furthermore, we also defined a metric for
behaviour models – UML state machines – which is missing in similar metrics suite
so far.

However, we have also to note that the relationship between complexity metrics
and faults and failures is controversial discussed and this relationship is not always
convincing in empirical studies. In particular, in a recent study at Microsoft [145] it
was shown that there is always a set of metrics that is a good predictor for field failures
– failure-proneness in some sense – but the members of the set differ from project to
project. Nevertheless, for similar projects these sets tend to be similar too.
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We describe four different case studies in the following chapter. They are used to anal-
yse the predictive validity of the metrics suite from Chap. 5 and to derive metrics that
can be used to calibrate the model from Chap. 4. In particular, we analyse the average
difficulty of model-based testing and bug finding tools for which no empirical data has
been available so far. Furthermore, we analyse the failure probability of faults in more
detail. In addition, the case studies contribute to the empirical body of knowledge on
defect detection.

6.1 Automatic Collision Notification

The first case study we use to validate our proposed defect-proneness analysis (cf.
Chap. 5) is an automatic collision notification system as used in cars to provide auto-
matic emergency calls. First, the system is described and designed using UML, then
we analyse the model and present the results.

6.1.1 Description

The case study stems from the automotive domain, in particular from the Verisoft
project1 that aims at formally verifying all layers in a software system. Results from
that are published in [26]. However, we take a different view here and try to analyse
the defect-proneness of the system. The problem to be solved is that many accidents
of automobiles only involve a single vehicle. Therefore it is possible that no or only
a delayed emergency call is made. The chances for successful help for the casual-
ties are significantly higher if an accurate call is made quickly. This has lead to the
development of so called Automatic Collision Notification (ACN) systems, sometimes
also called mayday systems. They automatically notify an emergency call response
centre when a crash occurs. In addition, manual notification using the location data
from a GPS device can be made. We use the public specification from the Enterprise
program [196, 197] as a basis for the design model. Details of the implementation
technology are not available. In this case study, we concentrate on the built-in device
of the car and ignore the obviously necessary infrastructure such as the call centre.

6.1.2 Device Design

Following [196] we call the built-in device MaydayDevice and divide it into five com-
ponents. The architecture is illustrated in Fig. 6.1 using a composite structure diagram
of the device.

The device is a processing unit that is built into the vehicle and has the ability to
communicate with an emergency call centre using a mobile telephone connection and

1http://www.verisoft.de/
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AutomaticNotificationButtonBox

CommunicationsModule

class MaydayDevice

ProcessorModule

LocationModule

Figure 6.1: The composite structure diagram of the mayday device

retrieving position data using a GPS device. The components that constitute the may-
day device are:

• ProcessorModule: This is the central component of the device. It controls the
other components, retrieves data from them and stores it if necessary.

• AutomaticNotification: This component is responsible for notifying a serious
crash to the processor module. It gets notified itself if an airbag is activated.

• LocationModule: The processor module requests the current position data from
the location module that gathers the data from a GPS device.

• CommunicationsModule: The communications module is called from the pro-
cessor module to send the location information to an emergency call centre. It
uses a mobile communications device and is responsible for automatic retry if a
connection fails.

• ButtonBox: This is finally the user interface that can be used to manually initiate
an emergency call. It also controls a display that provides feedback to the user.

Each of the components of the mayday device has an associated state machine to
describe its behaviour. We do not show all of the state machines but explain the two
most interesting ones in more detail. This is, firstly, the state machine of the Proces-
sorModule called Processor in Fig. 6.2. It has three control states: idle, retrieving, and
calling. The idle state is also the initial state. On request of an emergency call, either
by startCall from the ButtonBox or notify from the AutomaticNotification, it changes
to the retrieving state. This means that it waits for the GPS data. Having received
this data, the state changes to calling because the CommunicationsModule is invoked
to make the call. In case of success, it returns to the idle state and lights the green
LED on the ButtonBox. Furthermore, the state machine can handle cancel requests
and make a test call.

The second state machine is Communications in Fig. 6.3, the behaviour specification
of CommunicationsModule. One of the main complicating factors here is the handling
of four automatic retries until a failure is reported. The state machine starts in an idle
state and changes to the calling state after the invocation of makeCall. The offHook
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sm

notify() / acknowledge(), getGps()

cancelCall() / lightLED(red)

startCall() / getGps()

Processor

idle retrieving

calling

success() /
lightLED(green)

gpsData() /
location=gpsData,
makeCall(callData)

makeCall(callData)
testCall() /

failure() / lightLED(red)

cancelCall() / cancel()

Figure 6.2: The state machine diagram of the ProcessorModule

signal is sent to the mobile communications device. Inside the calling state, we start
in the state opening line. If the line is free, the dialling state is reached by dialling
the emergency number. After the connected signal is received, the state is changed to
sending data and the emergency data is sent. After all data is sent, the finished flag is
set which leads to the data sent state after the onHook signal was sent to the mobile.
After the mobile sends the done signal, the state machine reports success and returns to
the idle state. In case of problems, the state is changed to opening line and the retries
counter is incremented. After four retries the guard [retries >= 5] evaluates to true
and the call fails. It is also always possible to cancel the call which leads to a failure
signal as well.

[retries >= 5] / retries = 0, failure()

calling

lineFree / dialNumber(number)

sm

cancel() / retries = 0, failure()

done() / retries = 0, success()

connectionAborted() /

Communications

idle
dialing

do / sendData(data)

makeCall(data) / callData = data,
offHook()

data sent
[finished] / onHook()

sending data

offHook(),
retries = retries + 1

retries = retries + 1

noConnection() / offHook(),
retries = retries + 1 lineBusy() /

opening line

connected()

Figure 6.3: The state machine diagram of the CommunicationsModule

6.1.3 Results

The components of MaydayDevice are further analysed in the following. At first we
use our metrics suite from Sec. 5.2 to gather data about the model. The results can
be found in Tab. 6.1. It shows that we have no inheritance in the current abstraction
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Table 6.1: The results of the metrics suite for the components of MaydayDevice.
Class DIT NOC NOP NRI NPI CCS
MaydayDevice 0 0 5 4 2 0
ProcessorModule 0 0 0 4 4 16
AutomaticNotification 0 0 0 2 1 4
LocationModule 0 0 0 1 2 4
CommunicationsModule 0 0 0 2 2 32
ButtonBox 0 0 0 2 2 8

level of our model and also that the considered classes have no parts apart from May-
dayDevice itself. Therefore the metrics regarding these aspects are not helpful for this
analysis.

More interesting are the metrics for the provided and required interfaces and their
associated state machines. The class with the highest values for NRI and NPI is Pro-
cessorModule. This shows that it has a high coupling and is therefore fault-prone. The
same module has a high value for CCS but CommunicationsModule has a higher one
and is also fault-prone.

In [197] there are detailed descriptions of acceptance and performance tests with the
developed system. The system was tested by 14 volunteers. The usage of the system in
the tests was mainly to provoke an emergency call by pressing the button on the button
box.

The documentation in [197] shows that the main failures that occurred were failures
in connecting to the call centre (even when cellular strength was good), no voice con-
nect to the call centre, inability to clear the system after usage, and failures of the can-
cel function. These main failures can be attributed to the component ProcessorModule
that is responsible for controlling the other components and CommunicationsModule
that is responsible for the wireless communication. Therefore our analysis identified
the correct components. The types of the corresponding faults of the failures are not
available.

6.1.4 Summary

This case study is a first validation of the metrics suite for identifying defect-prone
components. The metrics suite was able to identify the correct components in the
ACN system. Although a single case study is not an empirical exhaustive validation
it still is a proof-of-concept and gives first hints on the applicability. We will use the
results from this case study in the summary of the the next case study in Sec. 6.2.5 to
analyse the metrics and the correlation to the faults in more detail.

6.2 MOST NetworkMaster

The technique of model-based testing gets increasing attention in research and prac-
tice. Therefore, we need to be able to incorporate it in quality assurance plans that
are based on our economics model from Chap. 4. However, to be able to consider
this technique in the model we need more empirical information, especially on its av-
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erage difficulty of defect detection. This case study evaluates this input parameter of
the economics model for this specific technique as well as validates the approach for
the identification of defect-prone components of Chap. 5. It has partly been published
in [168, 211].

6.2.1 Approach

This case study aims at analysing effectiveness or difficulty (cf. Chap. 4) of model-
based testing. We also use this case study as a validation for our approach to the
identification of fault-proneness (cf. Chap. 5) and analyse some other interesting rela-
tionships concerning code and model coverage. For the case study, we built a model of
a network controller for an automotive infotainment network – the MOST Network-
Master – to assess an approach of (automated) model-based testing.

In particular, we address the following questions:

1. How do model-based tests compare to “traditional” test without an explicit model
in terms of effectiveness (difficulty), coverage, and diversity?

2. How do manual tests – both with and without a model – compare to automati-
cally generated tests?

3. How do random generated tests compare to “directed” tests based on test case
specifications?

4. Can a suite of model metrics predict the most fault-prone components?

Furthermore, we analyse the relationships between coverage on the model and the
implementation. Based on that we also investigate the correlation of coverage and
defect detection. These relationships are not directly usable in the analytical model
of Chap. 4 but could be a point of further refinement. Moreover, this information is
valuable for the empirical body of knowledge of testing in general and model-based
testing in particular.

First, we built an executable behaviour model of the network controller based on
existing requirements documents. They consisted of the publicly available MOST
specification [138] and a set of message sequence charts (MSCs) that specify several
scenarios in more detail. The model building itself revealed a number of inconsisten-
cies and omissions in the requirements documents which were updated later on.

The system under test (SUT) was a third-party software simulation of the Network-
Master running on a PC that was connected to a MOST network. For the comparison
we also had an existing test suite that was developed for the NetworkMaster by other
test engineers without the use or knowledge of the model.

The test suites were applied to the implementation, failures were observed, analysed,
and classified. The classification was done to count the corresponding faults based on
failure classes (comparable to the failure regions of Sec. 2.2). The model itself was
not included in the requirements documents. This explains why there are requirements
faults at all: the updated specification MSCs did not capture all of the behaviour of the
model and hence there were still requirements defects.

95



6 Case Studies

AutoFocus

The CASE tool AUTOFOCUS [81], intended for modelling reactive systems, was used
to build the model for the case study. It allows to develop graphical specifications of
embedded systems based on a simple, formally defined semantics. With the version
2.0 of the UML specification AUTOFOCUS is now similar to the UML. It is compa-
rable to the subset of UML described in Sec. 5.2. AUTOFOCUS supports different
views on the system model: structure, behaviour, interaction, and data type views. The
core items of AUTOFOCUS specifications are components. A component is an inde-
pendent computational unit that communicates with its environment via typed ports.
Two or more components can be linked by connecting their ports with directed chan-
nels. Thereby, networks of components can be built and described by system structure
diagrams (SSDs). Fig. 6.4 shows an example SSD.

Figure 6.4: SSD of the MOST NetworkMaster

SSDs are hierarchical. Hence, each component can have a set of subcomponents.
Atomic components are components which are not further refined. For these compo-
nents a behaviour must be defined which is achieved by extended finite state machines
called state transition diagrams (STDs). Fig. 6.5 depicts an example STD. The number
at each transition denotes it priority.

An STD consists of a set of control states, transitions, and is associated with local
variables. The local variables comprise the data state of the component. Each transition
is defined by its source and destination control states, a guard with conditions on the
input and the current data state, and an assignment for local variables and output ports.
Transitions can fire if the condition on the current data state holds and the actual input
matches the input conditions. After execution of the transition, the local variables are
set accordingly, and the output ports are bound to the values computed in the output
statements. These values are then copied to the input ports that are connected by
channels. Guards and assignments are defined in a Gofer-like functional language that
allows the definition of possibly recursive data types and functions.
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Figure 6.5: The behaviour of the RegistryManager described as STD

Components are timed by a common global clock. In particular, they all perform
their computations simultaneously. Each clock cycle consists of two steps: (1) each
component reads the values on its input ports and computes new values for local vari-
ables and output ports. (2) New values are copied to the output ports where they can
be accessed immediately via the input ports of connected components. This simple
time-synchronous execution and communication semantics of AUTOFOCUS and the
use of a functional language as “action” language simplify the automatic test case
generation [166].

The method of test case generation used in this case study is described in detail
in [166, 169]. In short, the model is translated into a Constraint Logic Programming
(CLP) language and test case specification are added. They guide the generation mech-
anism by identifying the “interesting” cases out of the infinite possibilities. By the ex-
ecution of the CLP program all traces of the model are enumerated. In fact, the model
is executed symbolically: rather than enumerating single traces – input, output, local
data of all components – of the model, we work with sets of values in each step instead.
States are not visited multiple times which is why in each step, the currently visited
set of states is only taken into consideration if it is not a specialisation of a previously
visited set of states.

MOST

MOST (Media Oriented Systems Transport) is an infotainment network tailored to the
automotive domain. Its public specification [138] is maintained by the MOST co-
operation that includes major automotive companies. MOST is a ring topology that
supports synchronous and asynchronous communication at up to 24.8 Mbps. Various
devices, such as a CD changer or a navigation system, can be connected so that they
together provide infotainment services. These services are represented by so-called
function blocks that are contained in MOST devices. Examples of a function block are
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CDPlayer and the special function block NetBlock. This function block is available in
every device and can be used to get information about the other function blocks. Each
function block provides several functions that can be used by other function blocks.
For instance, a CDPlayer can be asked to start, stop, etc. All function blocks and
functions are addressed by standardised identifiers.

The network exhibits three central master function blocks, one of which is the Net-
workMaster, the subject of our study. It is responsible for ensuring consistency of
the various function blocks, for providing a lookup service, and for assigning logical
addresses.

6.2.2 Model and System

We describe the model and the implementation, i.e., the SUT in the following.

Model of the NetworkMaster

Fig. 6.4 depicts the functional decomposition of the NetworkMaster into AUTOFOCUS

components. It contains two components Divide and Merge that are only responsible
for the correct distribution of messages. The MonitoringMgr checks the status of de-
vices in the network but has no behaviour in the model, i.e. was functionally abstracted.
The RegistryMgr is the main component. All devices need to register with it on startup
and it manages this registry. Finally, the RequestMgr answers requests about the ad-
dresses of other devices.

The main complexity of the model lies in the component RegistryMgr. The STD
that describes its behaviour is shown in Fig. 6.5. We do not provide detailed guards
and actions on the transitions to keep the diagram comprehensible. We model the
RegistryMgr using three control states:

• NetOff is the state when the system is switched off.

• The SystemConfigCheck state is used when the NetworkMaster checks the
network and its slaves.

• The normal network operation is modelled by ConfigurationStatusOk.

Including the environment model, the model consists of 17 components with 100
channels and 138 ports, 12 STDs, 16 distinct control states, 16 local variables, and 104
transitions. 34 data types were defined by means of 80 constructors. The number of
defined functions used in guards and assignments is 141. The model corresponds to
about 12,300 lines of C code, without comments.

Five general abstraction principles were applied in the model. These were especially
investigated by Prenninger and Pretschner [164, 165].

1. In terms of functional abstraction, we focused on the main functionality of the
NetworkMaster, namely setting up and maintaining the registry, and providing
the lookup service. We omitted node monitoring which checks from time to time
whether or not all nodes in the ring are alive.
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2. In terms of data abstraction, we reduced data complexity in the model, e.g., by
narrowing the set of MOST signals to those which are relevant for the Network-
Master behaviour, and by building equivalence classes on error codes which the
NetworkMaster treats identically.

3. In terms of communication abstraction, we merged consecutive signals that con-
cern the same transaction in actual hardware into one signal.

4. In terms of temporal abstraction, we abstracted from physical time. For in-
stance, the timeout that indicates expiration of the time interval the Network-
Master should wait for the response of a node is abstracted by introducing two
symbolic events: one for starting the timer, and a nondeterministically occurring
one for expiration of the timer. This nondeterministic event is raised outside of
the NetworkMaster model which hence remains deterministic.

5. Finally, in terms of structural abstraction, the nodes in the environment of the
NetworkMaster are not represented as AUTOFOCUS components, but instead by
recursive data structures manipulated by one dedicated environment component.
This enables us to parameterise the model in order to deal with a variable number
of nodes in the network.

To show that the AUTOFOCUS design is simple to transfer to UML, the correspond-
ing composite structure diagram to the SSD in Fig. 6.4 of the NetworkMaster is shown
in Figure 6.6. Apart from some differences in notation, the main difference is that the
ports in UML have no directions, i.e., there is no distinction between outgoing and
ingoing ports. However, we kept the same number of ports in the UML model because
we believe that this distinction is useful for a quick comprehension. The STDs of the
AUTOFOCUS model are similarly transfered to UML state machines. Note that this
does not meant that the semantics of the model stays the same. Nevertheless, for our
metrics this is not important. Hence, such a translation is sufficient.

class

RegistryMgr
RequestMgr

Merge

MonitoringMgr

Divide

NetworkMaster

Figure 6.6: The composite structure diagram of the MOST network master.
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Implementation

The SUT is a beta software simulation of the MOST NetworkMaster that is connected
to an actual network. The network controller is intended to be built by different sup-
pliers, not the automotive OEM who, nonetheless, needs a software-in-the-loop sim-
ulation for integration tasks with other devices. The NetworkMaster simulation was
built by an external third-party. Roughly, the interface of the SUT is identical to that
of hardware NetworkMasters.

In order to make the abstract test cases – model traces – applicable to the SUT,
we wrote a compiler that translates them into 4CS2 test programs. 4CS provides a
test infrastructure for MOST networks. So-called optolyzers were used to stub actual
nodes: these are freely programmable nodes in the MOST network and a Pascal-like
language to formulate test cases. Via 4CS, we programmed them to behave like a
corresponding test case. In this way, we can stimulate the SUT. In the 4CS programs,
the SUT’s output is compared to the intended output as given by the test case. At the
end of each test case, the central registry of the SUT was downloaded and compared
to the corresponding registry of the model which is also encoded in the test cases.

We omit details of the driver components responsible for input concretisation and
output abstraction. For instance, in terms of data abstraction, one arbitrary representa-
tive of an equivalence class of error codes was chosen in order to instantiate signals.
In terms of temporal abstraction, the expiration of a timer was instantiated by a wait
statement containing the actual physical duration. Conversely, output of the model is
converted into an executable verification statement. For example, if an output signal
contains a list of items as parameter, a corresponding verification statement is created
which checks if the actual list in the implementation’s output is a permutation of the
expected list in the model’s output: the model is deliberately over-specified.

6.2.3 Tests

This section describes the general procedure of testing the NetworkMaster, different
test suites, and observations.

Overview

Once the model had been built, we derived different test suites. The whole procedure
is based on the technology and methodology of [166]. Further detail can be found
in [164]. Except for hand-crafted test cases, these consist of abstract sequences of
input and expected output. We turned them into executable test cases as described
in [166]. Tests built without a model were manually lifted to the more abstract level
of the model. Doing so allows us to apply all test cases to the implementation via
the 4CS compiler, check for conformance with the model, and measure coverage at
the level of the implementation. In addition, we applied the input part of each test
case to the model and measured coverage at the level of the model. Model coverage
is defined by means of coverage on Java (simulation) code that was generated from
the model. Implementation coverage, on the other hand, was measured on the C code
of the SUT. For the sake of comparability, we excluded those C functions that, as a

2http://www.4cs.de/
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consequence of abstraction, do not have counterparts in the model. However, some
of the abstracted behaviour is scattered over the C code, and we did not remove these
parts for measurements.

Our coverage criterion is based on the control-flow of a program. Condition/Decision
(C/D) coverage measures the number of different evaluations of each atomic condition
in a composed condition plus the outcome of the decision. 100% coverage requires
that each atomic condition be evaluated at least once to both true and false, plus the
requirement that the decision takes both possible outcomes.

In addition to coverage measurements, we documented differences between the be-
haviours of model and implementation, and grouped these failures into 26 classes.
Since the elements of a class exhibit a similar erroneous behaviour, we conjecture that
the elements of each class correspond to the same fault, i.e., the same cause of the de-
viation in behaviours. Since the SUT was built by an external third party, we could not
verify this conjecture. We use the terms “failure class” and “fault” interchangeably.
The failure class can be seen as a sample of the failure region that is used in Sec. 2.2 to
define a fault. When talking about numbers of detected faults, we always mean distinct
faults.

Different test suites were applied in order to assess (1) the use of models vs. hand-
crafted tests, (2) the automation of test case generation with models, and (3) the use of
explicit test case specifications. We also provide a comparison with randomly gener-
ated tests.

Test Suites

This section describes the seven different test suites that we compared, and explains
with what means we built them. The length of all test cases varies between 8 and
25 steps. To all test cases, a postambule of 3–12 steps is automatically added that is
needed to judge the internal state of the SUT (registry download). We do not directly
access the internal state of the NetworkMaster because we perform a black-box test of
it.

Table 6.2: Test suites
suite automation model TC specs
A manual yes yes
B auto yes yes
C auto yes no
D auto no n/a
E manual no n/a
F manual no n/a
G manual no n/a

We investigated the following test suites:

A A test suite that was manually created by interactively simulating the model:
|A| = 105 test cases.

B Test suites that were generated automatically, based on the model, by taking
into account functional test case specifications. Tests were generated at random,
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with additional constraints that reflect the test case specifications. The number
of test cases in each suite varies between 40 and 1000. We refer to these test
suites as “automatically generated”.

C Test suites that were generated at random, automatically on the grounds of the
model, without taking into account any functional test case specifications. |C| =
150.

D Test suites that were randomly generated, without referring to the model. |D| =
150.

E A manually derived test suite that represents the original requirements message
sequence charts (MSCs). This test suite contains |E| = 43 test cases.

F A manually derived test suite that, in addition to the original requirements MSCs,
contains some further MSCs. These are a result of clarifying the requirements
by means of the model. The test suite itself was derived without the model. This
test suite contains |F | = 50 test cases.

G A test suite that was manually developed with traditional techniques, i.e., with-
out a model: 61 test cases.

All these test suites are summarised in Tab. 6.2. The difference between test suites
{E,F} and G is that {E,F} directly stem from requirements documents only whereas
G is is based on test documents. The difference between A and F is similar: F
is a direct result of requirements engineering activities, and A results from testing
activities, in particular building the test model.

Functional Test Case Specifications (Suite B)

We defined functional test case specifications in order to specify sets of test cases to
be generated for suite B. Each test specification is related to one functionality of
the NetworkMaster, or to a part of the behaviour it exhibits in special situations. We
identified seven classes of functional test case specifications that we state informally.

TS1 Does the NetworkMaster start up the network to normal operation if all devices
in the environment answer correctly?

TS2 How does the NetworkMaster react to central registry queries?

TS3 How does the NetworkMaster react if nodes do not answer?

TS4 Does the NetworkMaster recognise all situations when it must reset the MOST
network?

TS5 Does the NetworkMaster register signals that occur spontaneously?

TS6 Does the NetworkMaster reconfigure the network correctly if one node jumps in
or out of the network?

TS7 Does the NetworkMaster reconfigure the network correctly if a node jumps in
or out of the network more than once?
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We implemented and refined TS1–TS7 into 33 test case specifications by stipulating
that specific signals must or must not occur in a certain ordering or frequency in traces
of the NetworkMaster model.

Automatic Generation

Automatic generation of test cases was done as follows. For suite B, we translated the
test case specifications into constraints, and added them to the CLP translation of the
model. The resulting CLP program was executed for test cases of a length of up to 25
steps. Computation was stopped after a given amount of time, or, as a consequence
of state storage and test case specification, when there were no more test cases to
enumerate. For each of the 33 specifications, this yielded suites that satisfy them.
During test case generation, choosing transitions and input signals was performed at
random. In order to mitigate the problems that are a result of the depth first search
we use, we generated tests with different seeds for the random number generator: for
each test case specification, fifteen test suites with different seeds were computed. Out
of each of the fifteen suites, a few tests were selected at random. We hence generated
test suites that were randomly chosen from all those test cases that satisfy the test case
specifications.

Suite C was generated in a similar manner, but without any functional test case
specifications. Suite D was derived by randomly generating input signals that obeyed
some sanity constraints (e.g., switch on the device at the beginning of a test case) but
did not take into account any logics whatsoever. In order to get the expected output
part of a test case, we applied the randomly generated input to the model and recorded
its output.

6.2.4 Observations and Interpretations

This section describes our findings in terms of fault detection, model coverage, and
implementation coverage.

Fault Detection

26 faults were detected by the various tests. In addition, 3 major inconsistencies, 7
omissions, and 20 ambiguities were found in the specification documents while the
model was built. Two of the 26 faults are faults in the model, a consequence of mis-
taken requirements. The remaining faults compromise 13 implementation faults and
11 requirements faults. The latter are defined by the fact that their removal involved
changing the user requirements specifications. Note that these did not include the
model itself. Even the updated requirements MSCs – on which test suite F is based
– contained omissions and ambiguities. Changing requirements specifications was not
necessary for implementation faults. Out of the 24 faults in the implementation, 15
were considered severe by the domain experts, and 9 were considered non-severe. In
this context, severity means that the occurrence of such a fault at runtime would lead
the whole system to fail.

Because we could not automatically assign a failure to its class we had to manually
check the results of running the test cases. This restricts the number of tests. In terms
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of suites B, we picked 4 times 5 tests and once 10 tests for each of the 33 refined test
case specifications, which adds to 4 ·165+330 = 990 tests. For suites C, we picked 4
times 150 tests, and 3 times 150 tests for suites D. Fig. 6.7 shows the faults (classes of
failures) that were detected with different test suites; the first bar for suite B is the one
that consists of 330 tests. The AF bar represents the test suite that consists of A ∪ F ;
these two together seemed a natural reference candidate for assessing automated tests.

B C D E F G

15

10
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20

A AF

with model without model

# faults

model faults (2)

requirements faults (11)

programming faults (13)

Figure 6.7: Detected faults

The major observation is that model-based and hand-crafted tests both detect ap-
proximately the same number of implementation faults. Requirements faults are pre-
dominantly detected by model-based tests. This is because building the model involved
a thorough review of the requirements documents, and these are directly reflected in
the model. None of the test suites detected all 26 faults, and there is no correlation
between test suites and the severity status of the respective detected faults. Test suite
A (105 tests, 18 faults) detects slightly fewer faults than the combined AF (148 tests,
20 faults). Approximately the same amount of faults are detected by the test suites B,
23 when cumulating the suites. Note that the they then consist of 990 tests whereas AF
only has 148 test cases.

Randomly generated model-based tests (suites C, cumulated: 15 faults) detect rough-
ly as many faults as manually designed tests (E-G). The latter detect more implemen-
tation faults, and almost the same number of requirements faults. For many of the faults
detected only by the randomly generated tests it holds that they were judged unlikely
by the domain experts. Hence, the failure probability in the field (cf. Chap. 4) seems to
be low. Suites D (cumulated: 8 faults) exhibit the smallest number of detected faults.
All of them are also detected by B; two faults not detected by AF correspond to traces
that, once more, appear abstruse to a human because of the involved randomness. The
use of functional test case specifications hence ensures that respective tests perform
better than purely randomly generated tests.

We come back to three of of our initial questions now and compare different test ap-
proaches based on diversity. For this, there are three Venn diagrams shown in Fig. 6.8.
The circles represent the 24 faults in the NetworkMaster. In the following comparisons

104



6.2 MOST NetworkMaster

we always used a single representative when for a specific type of test suite more than
one has been built. Some more detailed comparisons can be found in [168]. The di-
agram in Fig. 6.8(a) compares model-based tests with tests that were derived without
an explicit model. For this comparison we consider the test suites A, B, C, and F to
be model-based. The latter is part of this set because although it is based on MSCs,
the MSCs in turn have been updated by the model. We observe that the model-based
tests are a superset of the other test. In particular, the tests that do not use an explicit
model have not been able to detect 7 of the faults. Hence, the use of models seems to
make other tests superfluous.

ABCF
DEG

(a) Model-based tests (ABCF) vs.
tests without an explicit model

(DEG),

BCD
AEFG

(b) automated (BCD) vs. manual
tests (AEFG),

AEFG

CD

(c) and random (CD) vs.
“directed” tests (AEFG)

Figure 6.8: Venn diagram showing the diversity of different approaches

The second diagram in Fig. 6.8(b) concentrates on the comparison of automatic and
manual test case derivation. The automatically derived test suites are B, C, and D.
The others are considered to be built manually. Note, that in both sets there are model-
based tests. We see that there is a stronger diversity between these sets. The automated
tests detected four faults that the manual tests did not find whereas the manual tests
could find two additional faults. This suggests that a combination of automatic and
manual test case generation is most beneficial.

Finally, the diagram in Fig. 6.8(c) compares the two random test suites C and D
with the “directed” tests A, E, F , and G. The directed tests are those tests that were
designed with a special purpose, i.e., testing special situations. The random tests only
cover stochastically the input space. We deliberately excluded test suite B here be-
cause the distinction is not obvious. Although test case specification direct the test
case generation, we still pick specific test cases randomly from the large possibilities.
Again, we observe that there is a strong diversity between both sets. There is even
one fault that was not detected by both sets of test suites. The combination of both
approaches seems again to be beneficial.

Model Coverage

For the model coverage as well as the implementation coverage it holds that they are
not necessary for the economics model discussed in Chap. 4. However, the analysis
is important to extend the empirical body of knowledge and it can be used in a more
detailed testing model that uses coverage information, e.g. [125].

The model contains 1722 C/D evaluations in transition guards and functional pro-
grams used by the component RegistryManager. The implementation contains
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916 C/D evaluations. Fig. 6.9 shows C/D coverage at the level of the Java simulation
code generated from the model.
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Figure 6.9: Model coverage

For test suites with varying numbers of test cases, we display the mean that was
computed from 25 experiments, i.e., 25 times a choice of n test cases out of original
sets that range from 6,000 to 10,000 tests. The error bars denote the 98% confidence
interval for the mean under the assumption that the data is approximately normally
distributed. For the sake of graphical representation, we do not display any numbers
for more than 550 test cases.

Coverage does not exceed 79%. The reason is the handling of pattern matching in
the generated Java code with trivially true conditional statements. Except for the test
cases that have been generated without a model, the 98% confidence intervals for the
given means are rather small. This implies a likelihood that the displayed trends are
not subject to random influences.

A yields the highest coverage which is unmatched by the second best suite B. That
A yields such a high coverage is explained by the fact that the same person built the
model and the test case specifications. This person intuitively tried to match the struc-
ture of the model. In our case study, automation could hence not match the coverage of
manually generated model-based tests. A does not include all covered C/Ds of suites
B to G: even though the absolute coverage of A is the highest, it turns out that the lat-
ter yield up to 14 additional evaluations of atomic conditions. Furthermore, generated
tests covered more possible input signals, a result of randomisation. Manually derived
test cases included some special cases that the randomly generated tests did not cover.

Suites F and G are the next best suites; this is explained by the fact that the improved
requirements documents contain some “essential” runs of the model. Suite C, i.e,
randomly generated model-based tests, match the coverage of F at about 500 test
cases. The comparison of test suites {C,D} and B shows that the use of functional
test case specifications leads to higher coverage with fewer test cases. This is explained
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with the fact that test case specifications “slice” the model. Thus, with this smaller state
space it is more likely that all elements are covered.

Implementation Coverage

Technical constraints of the test executions made it impossible to run the same set of
experiments on the implementation. Because of the limited number of evaluated test
suites we cannot display the evaluation of coverage with an increasing number of test
cases. Instead, we display the relationship between model coverage and implementa-
tion coverage (Fig. 6.10) for test suites with a fixed number of elements. These test
suites form a superset of those regarded in Fig. 6.7. That not all of them were con-
sidered in the fault analysis is a consequence of the effort that is necessary to assign
failures to failure classes.
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Figure 6.10: Coverages

That implementation coverage does not exceed 75% is a result of the abstractions
applied to the model. We excluded most C functions from the measurements that had
no counterparts. However, as mentioned above, some of the behaviour abstracted in the
model is scattered through the code, and we did not touch these parts. One can see that
test suites that were built with randomness (B, C, D) yield rather different coverages
in their own classes. This is likely due to random influences: as our measurements and
the 98% confidence intervals in Fig. 6.9 indicate at least for the model, test suites from
one category tend to yield rather constant coverages.

On average, the random suites C and D yield roughly the same implementation
coverage. As in the case of the model, coverage tends to increase for suite B. There is a
moderate positive correlation between coverages (correlation coefficient r = .63; P ≤
.001). We expected to see a stronger correlation on the grounds of the argument that
the “main” threads of functionality are identical in the model and an implementation.
This was not confirmed. The figure suggests that there is a rather strong (the small
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number of measurements forbids a statistical analysis) correlation of coverages if only
the manually derived suites {E,F, G,A} are regarded.

While the manually built model-based test suite A yields higher model coverage
than the tests in B – as explained above – it exhibits a lower implementation coverage
than B. This, again, is a result of the fact that the implementation ran into some
branches that were not modelled.

Coverage vs. Fault Detection

A combination of the data from the sections above is given in Figs. 6.11 and 6.12.
Both figures suggest a positive correlation between C/D coverage and fault detection.
Data is more scattered in the case of implementation coverage: correlation coefficient
r = .68 (P ≤ .001) for the implementation. Correlation is r = .84 (P ≤ .0001)
for the model with a logarithmically transformed ordinate. We observe in Fig. 6.11
that test suite D yields a comparatively high coverage but finds few faults. As above,
this is explained by the fact that implementation coverage includes functionality that
is not implemented in the model, most importantly, timing issues. Furthermore, one
can see that at high coverage levels, increasing coverage does not necessarily increase
the number of detected faults.
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Figure 6.11: Implementation coverage vs. faults

Defect-Proneness

The metrics suite was applied to the component diagrams and state machines of the
NetworkMaster. The resulting values for the metrics are summarised in Table 6.3.

The data from the table shows that the RegistryMgr has the highest complexity in
most of the metrics. Therefore, we classify it as being highly fault-prone. As discussed
above, 24 faults were identified by the test activities of which 13 are implementation
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Figure 6.12: Model coverage vs. faults

Table 6.3: The results of the metrics suite for the NetworkMaster.
Class DIT NOC NOP NRI NPI CCS
NetworkMaster 0 0 5 4 5 0
Divide 0 0 0 1 3 11
Merge 0 0 0 3 1 8
MonitoringMgr 0 0 0 2 1 0
RequestMgr 0 0 0 2 1 14
RegistryMgr 0 0 0 4 7 197

faults, 9 requirements defects, and 2 model faults. Of these faults, 21 can be attributed
to the RegistryMgr and 3 to the RequestMgr. This assignment was done based on the
responsibilities of the components because we had no direct access to the faults. There
were no faults revealed in the other components. Hence, the high fault-proneness of
the RegistryMgr did indeed result in a high number of faults detected during testing.

Discussion

This case study shows that building precise models in itself is able to reveal incon-
sistencies and omissions in the requirements as well as faults in the implementation.
Especially executable behaviour models can be seen as an abstract prototype of the
system. It is remarkable, however, that the number of detected implementation faults
is independent of the use of models.

In accordance with earlier studies [157, 169], the benefit of automation is not clear.
In our approach, we depend on humans that identify the “interesting” cases and for-
mulate them as test case specifications. Whether structural criteria alone would be
sufficient is disputable. Furthermore, the current generation technology needs manual
optimisations in the generated CLP code. To this end, it has not been shown that a
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complete automation (“push-button technology”) is possible at all.
Nevertheless, automation is indeed helpful when changes in the model have to be

taken into account. Provided that test case generation is a push-button technology, it
is obviously simpler to automatically generate new tests than to hand-craft them. It is
possible to conceive and hand-craft 100 tests in a few hours, but this becomes more
complicated for 1,000 tests. Recall how a significant increase in automatically gener-
ated model-based tests revealed some additional faults. Moreover, the consistency of
changes to the test suite can be assured easily as the model acts as a single source of
information. In manual test cases it is difficult to ensure that changes are made con-
sistently in all test cases. The length of the test cases – the number of steps that must
be performed – matters as well. The number of test cases must be restricted because
they not only have to be applied but also to be evaluated: if there is a deviation in be-
haviours, then the test run must be manually inspected. In addition, in the case of the
software-in-the-loop simulation of the embedded system of our study, each test takes
at least 10 seconds because of hardware limitations. This naturally restricts the number
of tests that can be run. Furthermore, we found that purely randomly generated tests
are difficult to interpret because they correspond to highly “non-standard” behaviour.

Counting failures for reactive systems is non-trivial. When the behaviours of model
and implementation differed at a certain moment in time, they tended to differ for the
rest of the test case, too. We tried to associate a maximum number of faults to a test
run, but were in doubt sometimes: in our statistics, the majority of test cases revealed
not more than one fault.

It is difficult to draw conclusions from the moderate correlation between model cov-
erage and implementation coverage. Using coverage criteria as test case specifications
for automated test case generation relies on their suspected ability to detect faults. In
addition to the ongoing controversy on this subject, our results suggest some care with
directly transferring findings on implementation coverage to model coverage. Model
coverage, as we define it, is clearly dependent on the simulation code generator that is
used.

There are certain threats to validity. When comparing test suites built by different
teams, which is the case for our test suites A and G, one must take into account the
fact that different people in different contexts with different knowledge of the system
conceived them. Hamlet [72] comments on that and the findings of Hutchins et al. [85]
indicate that test suites derived by different test engineers – or even different test suites
derived by the same engineer – vary w.r.t. effectiveness. While we consider it possible
to generalise our findings to other event-discrete embedded devices with almost no
ordered data types, we cannot say whether the same is true for discrete-continuous
embedded systems or business information systems. As mentioned above, it is, in
general, likely that the benefits of automation are greater if significantly more tests
could be run. This is not always the case for embedded systems.

We are also aware that we used one specific modelling language, and tested an
implementation at a certain stage of development. We do not know if our findings
generalise for implementations in a more mature state. Furthermore, we cannot judge
whether or not different coverage criteria, particularly those based on data flow, exhibit
the same characteristics. In terms of test case generation technology, we do not think
that our approach is fundamentally different from others.

Also for the validation of the suite of model metrics there are two specific threats
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to the validity of the results: (1) The NetworkMaster had already been tested by the
third-party supplier. We do not know the locations and number of the faults detected
there. (2) We have so far no field data about faults of the NetworkMaster that could be
used to confirm the results. Hence, the total number of faults is unknown.

6.2.5 Summary

After describing and discussing the different aspects of the MOST NetworkMaster
case study, we put it into relation to the analytical model and the metrics suite. For
the analytical model, the case study provides values to calibrate it w.r.t. model-based
testing. Furthermore, we are able validate the metrics suite to be able to identify defect-
prone components.

Difficulty

This case study provides, besides the insights discussed above, also the opportunity to
calculate first estimates for the average difficulty θ̄ for the defect detection of different
model-based tests. These results are used in the review of the empirical studies in
Sec. 4.2.5. The review is the basis of the sensitivity analysis of the model and hence
this study contributed valuable data. We add all found defects and approximate the
difficulty by the ratio of defects not detected by all defects. For the model-based
test suites this gives average difficulties of 0.25, 0.12, 0.17, and 0.67 for A, AF , B,
and C, respectively. For the functional tests derived from MSC specifications we get
difficulties of 0.54, 0.50, and 0.67. The purely random tests (D) have a difficulty of
0.67.

Defect-Proneness

Furthermore, we validated the metrics suite from Chap. 5 as suitable predictor for
defect-prone components. The suite identified the component correctly as defect-prone
that during testing contained the most defects. In combination with the results from
the automatic collision notification case study, we can further analyse the metrics.

Correlation of Metrics. A main problem of software metrics is that different met-
rics might not be independent. We analyse our proposed metrics suite concerning the
correlation of the different metrics based on the data from the case studies on the au-
tomatic collision notification system of Sec. 6.1 and the NetworkMaster. The sample
size is still small therefore the validity is limited but we can give first indications.

We are not able to analyse DIT and NOC because they were not used in the case
studies. Also it does not make sense to analyse NOP with only two non-null data
points. Therefore we concentrate on NRI, NPI, and CCS. The correlation between NRI
/ CCS and NPI / CCS is low with a a correlation coefficient r = −0.17 and r = −0, 13,
respectively. Only the correlation between NRI and NPI is more interesting. The
correlation coefficient is 0.55 but the Chi-test and F-test only yielded probabilities
of 0.35 and 0.17, respectively, for both data rows coming from the same population.
Hence, we have a good indication that the metrics of our suite are not interdependent.
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Correlation of Metrics and Faults. As we use the classification approach with
our metrics, we cannot estimate numbers of faults and therefore a correlation between
estimated and actual faults is not possible. Also a correlation analysis between the
single metrics and the number of found faults has a limited meaning because only
the combined suite can provide a complete picture of the complexity of a component.
However, the statistical correlation between the metrics and the number of faults is not
as low as expected. For NRI the coefficient is 0.35, for NPI 0.58, and for CCS 0.53 but
Chi- and F-tests show a very low significance probably because of the small sample
size.

Discussion. By looking at the case studies it seems that the CCS metric has the
most influence on the fault-proneness. However, there are components that do not
have a state machine but their behaviour is described by its parts and still might contain
several faults. It can also be rather trivial to see that a specific component is fault-prone
as in the case of the RegistryMgr of the NetworkMaster. This component has such a
large state machine in comparison to the other components that it is obvious that it
contains several faults. In larger models with a large number of components it might
not be that obvious. Finally, there is no evident influence of the application type on
the metrics visible from the case studies as both have components with a rather small
number of interfaces and parts and a few components with quite large state machines.

6.3 Mobile Services Backend Systems

Extensive research has been done on finding defects in code by automated static analy-
sis using tools called bug finding tools, e.g. [6,57,77]. Although the topic is subject of
ongoing investigations, there are only few studies about how these tools relate among
themselves and to other established defect-detection techniques such as testing or re-
views.

We address the question of how automated static analysis using bug finding tools
relates to other types of defect-detection techniques and if it is thereby possible to
reduce the effort for defect-detection using such tools. In detail, this amounts to three
questions.

1. Which types and classes of defects are found by different techniques?

2. Is there any overlap of the found defects?

3. How large is the ratio of false positives from the tools?

This case study has also been published in [212].

Analysed Tools

The three bug finding tools that we used for the comparison are described in the follow-
ing. We only take tools into account that analyse Java programs because the projects
we investigated, as described below, are all written in that language. All three tools
are published under an open source license. We used these three tools as representa-
tives for tools that mainly use bug patterns, coding standards, and dataflow analysis,
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respectively. We deliberately ignored tools that need annotations in the code because
they have quite different characteristics.

FindBugs. The tool FindBugs was developed at the University of Maryland and
can detect potentially problematic code fragments by using a list of bug patterns. It
can find faults such as dereferencing null-pointers or unused variables. To some extent,
it also uses dataflow analysis for this. It analyses the software using the bytecode in
contrast to the tools described in the following. The tool is described in detail in [77].
We used the Version 0.8.1 in our study.

PMD. This tool [161] concentrates on the source code and is therefore especially
suitable to enforce coding standards. It finds, for example, empty try/catch blocks,
overly complex expressions, and classes with high cyclomatic complexity. It can be
customised by using XPath expressions on the parser tree. The version 1.8 was used.

QJ Pro. The third tool used is described in [170] and analyses also the source code.
It supports over 200 rules including ignored return values, too long variable names, or
a disproportion between code and commentary lines. It is also possible to define addi-
tional rules. Furthermore, checks based on code metrics can be used. The possibility
to use various filters is especially helpful in this tool. We evaluated version 2.1 in this
study.

6.3.1 Projects

We want to give a quick overview of the five projects we analysed to evaluate and
compare bug finding tools with other defect-detection techniques.

General

All but one of the projects chosen are development projects from the telecommunica-
tions company O2 Germany for backend systems with various development efforts and
sizes. One project was done by students at the Technische Universität München. All
these projects have in common that they were developed using the Java programming
language and have an interface to a relational database system. The O2 projects fur-
thermore can be classified as web information systems as they all use HTML and web
browsers as their user interface.

Analysed Projects

The projects are described in more detail in [107]. For confidentiality reasons, we use
the symbolic names A through D for the industrial projects.

Project A. This is an online shop that can be used by customers to buy products
and also make mobile phone contracts. It includes complex workflows depending on
the various options in such contracts. The software has been in use for six months. It
consists of 1066 Java classes that consist of over 58 KLOC (kilo lines of code).
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Project B. The software allows the user to pay goods bought over the Internet using
a mobile phone. The payment is added to the mobile bill. For this, the client sends the
mobile number to the shop and receives a transaction number (TAN) via short message
service (SMS). This TAN is used to authenticate the user and authorises the shop to
bill the user. The software has not been put into operation at the time of the study.
Software B has 215 Java classes with over 24 KLOC in total.

Project C. This is a web-based frontend for managing a system that is used to con-
vert protocol files between different formats. The analysed tool only interacts with a
database that holds administration information for that system. The software was three
months in use at the time it was analysed. It consists of over 3 KLOC Java and JSP
code.

Project D. The client data of O2 is managed in the system we call D. It is a J2EE
application with 572 classes, over 34 KLOC and interfaces to various other systems of
O2.

EstA. The only non-industrial software that we used in this case study is EstA. It
is an editor for structuring textual requirements developed during a practical course
at the Technische Universität München. It is a Java-based software using a relational
database management system. The tool has not been extensively used so far. It has 28
Java classes with over 4 KLOC.

6.3.2 Approach

In this section, the approach of the case study is described. We start with the general
description and explain the defect classification and defect types that are used in the
analysis.

General

We use the software of the five projects introduced in Sec. 6.3.1 to analyse the interre-
lations between the defects found by bug finding tools, reviews, and tests. For this, we
applied each of these techniques to each software as far as possible. While a review
was only made on project C, black-box as well as white-box tests were done on all
projects. We ran the bug finding tools with special care to be able to compare the tools
as well. To have a better possibility for comparison with the other techniques, we also
checked each warning from the bug finding tools if it is a real defect in the code or not.
This was done by an inspection of the corresponding code parts together with expe-
rienced developers. The usage of the techniques was completely independent, that is,
the testing and the review was not guided by results from the bug finding tools.

The external validity is limited in this case study. Although we mostly considered
commercially developed software that is in actual use, we only analysed five systems.
For better results more experiments are necessary. Furthermore, the tests on the more
mature systems, i.e. the ones that are already in use, did not reveal many faults. This
can also limit the validity. Moreover, the data from only one review is not represen-
tative but can only give a first indication. Finally, we only analysed three bug finding
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tools, and these are still under development. The results might be different if other
tools would have been used.

In the following we call all the warnings that are generated by the bug finding tools
positives. True positives are warnings that are actually confirmed as defects in the
code, false positives are wrong identifications of problems.

Defect Severity

For the comparison, we use a five step categorisation of the defects using their severity.
Hence, the categorisation is based on the effects of the defects rather than their cause
or type of occurrence in the code. We use a standard categorisation for severity that
is slightly adapted to the defects found in the projects. Defects in category 1 are the
severest, the ones in category 5 have the lowest severity. The categories are:

1. Defects that lead to a crash of the application. These are the most severe defects
that stop the whole application from reacting to any user input.

2. Defects that cause a logical failure. This category consists of all defects that
cause a logical failure of the application but do not crash it, for example a wrong
result value.

3. Defects with insufficient error handling. Defects in this category are only minor
and do not crash the application or result in logical failures, but are not handled
properly.

4. Defects that violate the principles of structured programming. These are de-
fects that normally do not impact the software but could result in performance
bottlenecks etc.

5. Defects that reduce the maintainability of the code. This category contains all
defects that only affect the readability or changeability of the software.

This classification helps us (1) to compare the various defect-detection techniques
based on the severity of the defects they find and (2) analyse the types of defects that
they find.

Defect Types

Additionally to the defect classification we use defect types. That means that the same
or very similar defects are grouped together for an easier analysis. We do not use a
standard classification of defect types as described in Sec. 2.2.2 but was defined specif-
ically for the tools and programming language to allow a more fine-grained compari-
son.

The defect types that we use for the bug finding tools can be seen as a unification
of the warning types that the tools are able to generate. Examples for defect types are
“Stream is not closed” or “Input is not checked for special characters”.
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Table 6.4: Summary of the defect types found by the bug finding tools

Defect Type Category FindBugs PMD QJ Pro
Database connection is not closed 1 8/54 8/8 0/0
Return value of function ignored 2 4/4 0/0 4/693
Exception caught but not handled 3 4/45 29/217 30/212
Null-pointer exception not handled 3 8/108 0/0 0/0
Returning null instead of array 3 2/2 0/0 0/0
Stream is not closed 4 12/13 0/0 0/0
Concatenating string with + in loop 4 20/20 0/0 0/0
Used “==” instead of “equals” 4 0/1 0/0 0/29
Variable initialised but not read 5 103/103 0/0 0/0
Variable initialised but not used 5 7/7 152/152 0/0
Unnecessary if-clause 5 0/0 16/16 0/0
Multiple functions with same name 5 22/22 0/0 0/0
Unnecessary semicolon 5 0/0 10/10 0/0
Local variable not used 5 0/0 144/144 0/0
Parameter not used 5 0/0 32/32 0/0
Private method not used 5 17/17 17/17 0/0
Empty finally block 5 0/0 1/1 0/0
Unnecessary comparison with null 5 1/1 0/0 0/0
Uninitialised variable in constructor 5 1/1 0/0 0/0
For- instead of simple while loop 5 0/0 2/2 0/0

6.3.3 Analysis

This section presents the results of the case study and possible interpretations. At first,
the bug finding tools are compared among each other, then the tools are compared with
reviews, and finally with dynamic tests.

Bug Finding Tools

We want to start with comparing the three bug finding tools described in Sec. 2.3.4
among themselves. The tools were used with each system described above.

Data. Tab. 6.4 shows the defect types with their categories and the corresponding
positives found by each tool over all systems analysed. The number before the slash
denotes the number of true positives, the number after the slash the number of all
positives.

Observations and Interpretations. Most of the true positives can be assigned
to the category Maintainability of the code. It is noticeable that the different tools
predominantly find different positives. Only a single defect type was found by all
tools, four types by two tools each.
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Figure 6.13: A graphical comparison of the number of true positives found by each
tool and in total

Considering the categories, FindBugs finds in the different systems positives from
all severity levels and PMD only from the severities Failure of the application, Insuf-
ficient error handling, and Maintainability of the code. QJ Pro only reveals positives
from the severity levels Logical failure of the application, Insufficient error handling,
and Violation of structured programming. The number of faults found in each cate-
gory from each tool is graphically illustrated in Fig. 6.13. Also the number of types of
defects varies from tool to tool. FindBugs detects defects of 13 different types, PMD
of 10 types, and QJ Pro only of 4 types.

The accuracy of the tools is also diverse. We use the defect type “Exception is
caught but not handled” that can be found by all three tools as an example. While
FindBugs only finds 4 true positives, PMD reveals 29 and QJ Pro even 30. For this,
the result from QJ Pro contains the true positives from PMD which in turn contain the
ones from FindBugs. A reason for this is that QJ Pro is also able to recognise a single
semicolon as a non-existent error handling, whereas the other two interpret that as a
proper handling. This defect type is also representative in the way that FindBugs finds
the least true positives. This may be the case because it uses the compiled class-files
while PMD and QJ Pro analyse the source code.

A further difference between the tools is the ratio of true positives to all positives.
PMD and FindBugs have a higher accuracy in indicating real defects than QJ Pro.
Tab. 6.5 lists the average ratios of false positives for each tool and in total. It shows that
on average, half of the positives from FindBugs are false and still nearly a third from
PMD. QJ Pro has the worst result with only 4% of the positives being true positives.
This leads to an overall average ratio of 0.66, which means that two thirds of the
positives lead to unnecessary work. However, we have to notice that FindBugs and
PMD are significantly better than that average.
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Table 6.5: Average ratios of false positives for each tool and in total

FindBugs PMD QJ Pro Total
0.47 0.31 0.96 0.66

An illustrative example is the defect type “Return value of function is ignored”.
FindBugs only shows 4 warnings that all are true positives, whereas QJ Pro provides
689 further warnings that actually are not relevant. Because all the warnings have to
be looked at, FindBugs is in this case much more efficient than the other two tools.

The efficiency of the tools varied over the projects. For the projects B and D, the
detection of the defect type “Database connection not closed” shows only warnings
for true positives with FindBugs. For project A, it issued 46 warnings for which the
database connection is actually closed. Similarly, the detection rate of true positives
decreases for the projects D and A for the other two tools, with the exception of the
well recognised positives from the maintainability category by PMD. This suggests
that the efficiency of the defect detection depends on the design and the individual
programming style, i.e. the implicit assumptions of the tool developers about how
“good” code has to look like.

A recommendation of usage of the tools is difficult because of the issues described
above. However, it suggests that QJ Pro, although it finds sometimes more defects
than the other tools, has the highest noise ratio and therefore is the least efficient.
FindBugs and PMD should be used in combination because the former finds many
different defect types and the latter provides very accurate results in the maintainability
category. Finally, PMD as well as QJ Pro can be used to enforce internal coding
standards, which was ignored in our analysis above.

Bug Finding Tools vs. Review

An informal review was performed only on project C. The review team consisted of
three developers, including the author of the code. The reviewers did not prepare
specifically for the review but inspected the code at the review meeting.

Data. The review revealed 19 different types of defects which are summarised in
Tab. 6.6 with their severities and number of occurrences.

Observations and Interpretations. All defects found by bug finding tools were
also found by the review. However, the tools found 7 defects of type “Variable ini-
tialised but not used” in contrast to one defect revealed by the review. On the other
hand, in project A the review detected 8 defects of type “Unnecessary if-clause”,
whereas the tools only found one. The cause is that only in the one defect that was
found by both there was no further computation after the if-clause. The redundancy of
the others could only be found out by investigating the logics of the program.

Apart from the two above, 17 additional types of defects were found, some of which
could have been found by tools. For example, the concatenation of a string with “+”
inside a loop is sometimes not shown by FindBugs although it generally is able to
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Table 6.6: Summary of the defect types and defects found by the review

Defect Type Severity Occurrences
Database connection is not closed 1 1
Error message as return value 1 12
Further logical case ignored 2 1
Wrong result 2 3
Incomplete data on error 2 3
Wrong error handling 2 6
ResultSet is not closed 4 1
Statement is not closed 4 1
Difficult error handling 4 10
Database connection inside loop opened and closed 4 1
String concatenated inside loop with “+” 4 1
Unnecessary parameter on call 5 51
Unnecessary parameter on return 5 21
Complex for loop 5 2
Array initialised from 1 5 21
Unnecessary if clauses 5 8
Variable initialised but not used 5 1
Complex variable increment 5 1
Complex type conversion 5 7

detect this defect type. Also, the defect that a database connection is not closed was not
found, because this was done in different functions. Furthermore it was not discovered
by the tools that the ResultSet and the corresponding Statement was never closed.
Other defect types such as logical faults or a wrong result from a function cannot be
detected by bug finding tools. These defects, however, can be found during a review
by following test cases through the code.

In summary, the review is more successful than bug finding tools, because it is able
to detect far more defect types. However, it seems to be beneficial to first use a bug
finding tool before inspecting the code, so that the defects that are found by both are
already removed. This is because the automation makes it cheaper and more thorough
than a manual review. However, we also notice a high number of false positives from
all tools. This results in significant non-productive work for the developers that could
in some cases exceed the improvement achieved by the automation.

Bug Finding Tools vs. Testing

We used black box as well as white box tests for system testing the software but also
some unit tests were done. The black box tests were based on the textual specifications
and the experience of the tester. Standard techniques such as equivalence and boundary
testing were used. The white box tests were developed using the source code and path
testing. Overall several hundred test cases were developed and executed. A coverage
tool has also been used to check the quality of the test suites. However, there were no
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Table 6.7: Summary of the defect types and defects found by the tests

Defect Type Severity Occurrences
Data range not checked 1 9
Input not checked for special characters 1 6
Logical error on deletion 1 1
Consistency of input not checked 2 3
Leading zeros are not ignored 2 1
Incomplete deletion 2 2
Incomprehensible error message 3 7
Other logical errors 2 3

stress tests which might have changed the results significantly. Only for the projects
EStA and C, defects could be found. The other projects are probably too mature so that
no further defects can be found by normal system testing.

Data. The detected defect types together with their severities and the number of oc-
currences are summarised in Tab. 6.7. We also give some information on the coverage
data that was reached by the tests. We measured class, method, and line coverage. The
coverage was high apart from project C. In all the other projects, class coverage was
nearly 100%, method coverage was also in that area and line coverage lied between 60
and 93%. The low coverage values for project C probably stem from the fact that we
invested the least amount of effort in testing this project.

Observations and Interpretations. The defects found by testing are in the sever-
ity levels Failure of the application, Logical failure, and Insufficient error handling.
The analysis above of the defects showed that the bug finding tools predominantly find
defects in the severity level Maintainability of the code. Therefore, the dynamic test
techniques find completely different defects.

The software systems for which defects were revealed had no identical defects de-
tected with testing or bug finding tools. Furthermore, the tools revealed several defects
also in the systems for which the tests were not able to find one. These are defects that
can only be found by extensive stress tests, such as database connections that are not
closed. This can only result in performance problems or even a failure of the applica-
tion, if the system is under a high usage rate and there is a huge amount of database
connections that are not closed. The most defects, however, are really concerning
maintainability and are therefore not detectable by dynamic testing.

In summary, the dynamic tests and the bug finding tools detect different defects.
Dynamic testing is good at finding logical defects that are best visible when executing
the software, bug finding tools have their strength at finding defects related to main-
tainability. Therefore, we again recommend using both techniques in a project.
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Table 6.8: The effectiveness per defect-detection technique

Technique Number of defects Effectiveness
Bug Finding Tools 585 81%
Review 152 21%
Tests 32 4%
Total w/o dup. 769 100%

Table 6.9: The effectiveness for each category

Category Bug Finding Tools Reviews Tests Total
1 22% (8) 36% (13) 44% (16) 100% (37)
2 20% (4) 65% (13) 45% (9) 100% (26)
3 85% (40) 0% (0) 15% (7) 100% (47)
4 70% (32) 30% (14) 0% (0) 100% (46)
5 88% (501) 20% (112) 0% (0) 100% (613)

Effectiveness

The effectiveness is an important aspect of the costs and benefits of SQA. This factor
can be used to estimate the difficulty of defect detection and is important to be anal-
ysed. It is also called defect removal efficiency is by Jones in [94]. It denotes the
fraction of all defects that were detected by a specific defect-detection technique. The
main problem with this metric is that the total number of defects cannot be known. In
our case study we use the sum of all different defects detected by all techniques under
consideration as an estimate for this number. The results are shown in Tab. 6.8. The
metric suggests that the tools are the most efficient techniques whereas the tests where
the least efficient.

However, we also have to take the defect severities into account because this changes
the picture significantly. The Tab. 6.9 shows the effectiveness for each technique and
severity with the number of defects in brackets. It is obvious that tests and reviews
are far more effective in finding defects of severity 1 and 2 – the most severe defects –
than the bug finding tools.

6.3.4 Discussion

The result that bug finding tools mainly detect defects that are related to the main-
tainability of the code complies with the expectation an experienced developer would
have. Static analysis only allows to look for certain patterns in the code and simple
dataflow and controlflow properties. Therefore only reviews or tests are able to ver-
ify the logic of the software (as long as the static analysis is not linked with model
checking techniques). The tools do not “understand” the code in that sense. The prime
example for this is the varying efficiency over the projects. In many cases, the tools
were not capable to realise that certain database connections are not closed in the same
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Java method but a different one. They only search for a certain pattern. Therefore, the
limitation of static analysis tools lies in what is expressible by bug patterns, or in how
good and generic the patterns can be.

However, it still is surprising that there is not a single overlapping defect detected by
bug finding tools and dynamic tests. On the positive side, this implies that the two tech-
niques are perfectly complementary and can be used together with great benefit. The
negative side is that by using the automated static analysis techniques we considered, it
may not be possible to reduce costly testing efforts. That there is only little overlapping
follows from the observation above that the tools mainly find maintenance-related de-
fects. However, one would expect to see at least some defects that the tests found also
detected by the tools, especially concerning dataflow and controlflow. The negative
results in this study can be explained with the fact that most of the projects analysed
are quite mature, and some of them are already in operation. This resulted in only a
small number of defects that were found during testing which in turn could be a reason
for the lack of overlapping.

A rather disillusioning result is the high ratio of false positives that are issued by the
tools. The expected benefit of the automation using such tools lies in the hope that less
human intervention is necessary to detect defects. However, as on average two thirds
of the warnings are false positives, the human effort could be even higher when using
bug finding tools because each warning has to be checked to decide on the relevance of
the warning. Nevertheless, there are significant differences between the tools so that
choosing the best combination of tools could still pay off.

Bug finding tools that use additional annotations in the code for defect-detection
could be beneficial considering the overlap of defects with other techniques as well as
the false positives ratio. The annotations allow the tool to understand the code to a
certain extent and therefore permits some checks of the logic. This deeper knowledge
of the code might reduce the false positives ratio. However, to make the annotations
requires additional effort by the developers. It needs to be analysed if this effort is
lucrative.

The effort and corresponding costs of the determination of defects using the tools
(including checking the false positives) was not determined in this study. This is how-
ever necessary to find out if the use of bug finding tools is beneficial at all.

There are only few studies about how bug finding tools relate among themselves and
to other established defect-detection techniques such as testing or reviews. In [181]
among others PMD and FindBugs are compared based on their warnings which were
not all checked for false positives. The findings are that although there is some overlap
the warnings generated by the tools are mostly distinct. We can support this result with
our data.

Engler and Musuvathi discuss in [50] the comparison of their bug finding tool with
model checking techniques. They argue that static analysis is able to check larger
amounts of code and find more defects but model checking can check the implications
of the code not just properties that are on the surface.

In [93] a static analysis tools for C code is discussed. The authors state that sophis-
ticated analysis of, for example, pointers leads to far less false positives than simple
syntactical checks.

An interesting combination of static analysis tools and testing in described in [46]. It
is proposed to use static analysis to find potential problems and automatically generate
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test cases to verify if there is a real defect. However, the approach obviously does not
work with maintenance-related defects.

6.3.5 Summary

The work presented is not a comprehensive empirical study but a case study using a
series of projects mainly from an industrial environment giving first indications of how
the defects found by bug finding tools relate to other defect-detection techniques.

The main findings are that the bug finding tools revealed completely different de-
fects than the dynamic tests but a subset of the types of the review. The defect types
that are detected by the tools are analysed more thoroughly than with reviews. The
effectiveness of the tools seems to strongly depend on the personal programming style
and the design of the software as the results differed strongly from project to project.
Finally, a combination of the usage of bug finding tools together with reviews and tests
would be most advisable if the number of false positives were lower. It probably costs
more time to resolve the false positives than is saved by the automation using the tools.

Therefore, the main conclusion is that bug finding tools can save costs when used to-
gether with other defect-detection techniques, if the tool developers are able to improve
the tools in terms of the false positives ratio and tolerance of different programming
styles.

This study is only a first indication and needs further empirical validation to be
able to derive solid conclusions. For this, we plan to repeat this study on different
subjects and also taking other tools into account, e.g. commercial tools or tools that
use additional annotations in the source code. Also, the investigation of other types of
software is important, since we only considered web applications in this study.

Difficulty. We use the results of this case study also to determine the average dif-
ficulty θ̄ of bug finding tools as used in the economics models of Chap. 4. As we
discussed above, this can only be coarse-grained but this study is the only one avail-
able so far. After eliminating the false positives, the tools were able to find 81% of the
known defects over several projects. Hence, the difficulty is only 0.19. However, the
defects had mainly a low severity where severity described the impact on the execution
of the software. For the severest defects – which would have high effect costs – the
difficulty increased to 78%, for the second severest defects even to 80%. For lower
severities the difficulty lies between 12% - 30%.

6.4 Telecommunication Systems

One input parameter of our economics model is the failure probability of faults in
the field, i.e., the probability that residual faults actually lead to inaccurate behaviour.
We describe a case study in the following that tests the assumption that the failure
probabilities of the faults are related by an geometric progression.

6.4.1 Geometric Progression of Failure Probabilities

A validated assumption about the relationship between the failure probabilities of
faults would help to judge the importance and influence of this factor on the economics
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of quality assurance. This all leads back to the established work on software reliability
models. However, most of them do not deal with the notion of faults explicitly but
rather consider failures only. A useful classification by Miller [134] shows that most
existing models are exponential order statistic (EOS) models. He further divided the
models into deterministic and doubly stochastic EOS models arguing that the failure
rates either have a deterministic relationship or are again randomly distributed. For
the deterministic models, Miller presented several interesting special cases. The well-
known Jelinski-Moranda model [92], for example, has constant rates. He also stated
that geometric rates are possible as documented by Nagel [146, 147].

This geometric sequence (or progression) between failure rates of faults was also
observed in projects of the communication networks department of the Siemens AG.
In several older projects which were analysed, this relationship fitted well to the data.
Therefore, a software reliability model based on a geometric sequence of failure rates
is proposed. This tendency is also in accordance with experiences at IBM reported by
Adams in [2] although he did not observe a geometric progression directly.

6.4.2 Approach

The assumed basic relationship of a geometric progression of the failure probabilities
of faults is also used in a derived reliability growth model. Details on that are published
in [209, 210]. This model will be called the Fischer-Wagner model in the following.
Using this model we analysed how well the assumption of the geometric progression
fitted onto real project data. For this we relied on several data sets publicly available
collected during testing and on original data from the telecommunications department
of Siemens from the field trial of two products.

We follow [141] and use the number of failures approach to analyse the validity of
our model for the available failure data. We assume that there have been q failures
observed at the end of test time (or field trial time) tq. We use the failure data up
to some point in time during testingte(≤ tq) to estimate the parameters of the mean
number of failures µ(t). The substitution of the estimates of the parameters yields the
estimate of the number of failures µ̂(tq). The estimate is compared with the actual
number at q. This procedure is repeated with several tes.

For a comparison we can plot the relative error (µ̂(tq)−q)/q against the normalised
test time te/tq. The error will approach 0 as te approaches tq. If the points are positive,
the model tends to overestimate and the other way round. Numbers closer to 0 imply
a more accurate prediction and hence a better model.

We use as comparison four well-known models from the literature: Musa basic,
Musa-Okumoto, Littlewood-Verall, and NHPP. All these models are implemented in
the tool SMERFS [53] that was used to calculate the necessary predictions. We de-
scribe each model in more detail in the following.

Musa basic. The Musa basic execution time model assumes that all faults are
equally likely to occur, are independent of each other and are actually observed. The
execution times between failures are modelled as piecewise exponentially distributed.
The intensity function is proportional to the number of faults remaining in the program
and the fault correction rate is proportional to the failure occurrence rate.
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Musa-Okumoto. The Musa-Okomoto model, also called logarithmic Poisson ex-
ecution time model, was first described in [142]. It also assumes that all faults are
equally likely to occur and are independent of each other. The expected number of
faults is a logarithmic function of time in this model and the failure intensity decreases
exponentially with the expected failures experienced. Finally, the software will expe-
rience an infinite number of failures in infinite time.

Littlewood-Verall Bayesian. This model was proposed for the first time in [121].
The assumptions of the Littlewood-Verall Bayesian model are that successive times
between failures are independent random variables each having an exponential distri-
bution. the distribution for the i-th failure has a mean of 1/λ(i). The λ(i)s form a
sequence of independent variables, each having a gamma distribution with the param-
eters α and φ(i). φ(i) has either the form: β(0) + β(1) · i (linear) or β(0) + β(1) · i2
(quadratic). We used the latter.

NHPP. Various models based on a non-homogeneous Poisson process are described
in [156]. The particular model used also assumes that all faults are equally likely to
occur and are independent of each other. The cumulative number of faults detected
at any time follows a Poisson distribution with mean m(t). That mean is such that
the expected number of faults in any small time interval about t is proportional to the
number of undetected faults at time t. The mean is assumed to be a bounded non-
decreasing function with m(t) approaching in the limit, A (The expected total number
of faults to be, eventually, detected in the testing process), as the length of testing goes
to infinity. It is possible to use NHPP on time-between-failure data as well as failure
counts. We used the time-between-failure version in our evaluation.

We apply the reliability models to several different sets of data to compare the pre-
dictive validity. Three data sets are provided by The Data & Analysis Center for Soft-
ware of the US-American Department of Defense, the other three projects were done
at Siemens. The former are called DACS together with their system number, the latter
were given the name Siemens and are consecutively numbered.

6.4.3 Results

We give for each analysed project a brief description and show a plot of the relative er-
rors of the different models. Finally, the results are combined to allow generalisations
of the results.

DACS 1

The first project data under consideration had the aim of developing a real time com-
mand and control application. The size of the software measured in delivered object
code instructions is 21, 700. 136 failures were observed during the system test. The
system code of this project is 1. The data is based on execution time, therefore all
models were easily applicable.

The plot in Fig. 6.14 shows the relative error curves for all considered models. The
predictions become more and more accurate as increasingly more sample data is avail-
able which was expected. The NHPP, Musa basic, and Musa-Okumoto models all tend
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Figure 6.14: Relative error curves for the models based on the DACS 1 data set

to predict too little failures whereas the Littlewood-Verall model mostly overestimates
the number of future failures. The latter model also yields the best predictions from
early stages on. The Fischer-Wagner model has a quite similar predictive validity.
From 80% of the time on the predictions are even more accurate than all the others
although the predictions are in the beginning worse than the ones from the Littlewood-
Verall model.

DACS 6

This data set comes from the subsystem test of a commercial subsystem with 5,700
delivered object code instructions. In total 73 failures occurred. We tried to use all
models on this data as well but the models were not applicable at all stages. Especially
the NHPP model was only able to make predictions for about half of the analysed parts
of the data set. The results can be found in Fig. 6.15.
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Figure 6.15: Relative error curves for the models based on the DACS 6 data set
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It is obvious that the models behave strongly different. Note that the Littlewood-
Verall model gives the most accurate predication although it is the worst before 30% of
the execution time is over. The Fischer-Wagner model is similar to the other models.
Sometimes it is able to predict more accurately (between 45% and 55%, and after
70%), sometimes the predictions are worse (between 55% and 70%).

DACS 40

The DACS 40 test data describes the results of the system test of a military application
with 180,000 delivered object code instructions. The Musa basic model was not ap-
plicable to this data. All the other models perform well with relative errors not bigger
than 0.25. The results are again illustrated in a diagram in Fig. 6.16.
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Figure 6.16: Relative error curves for the models based on the DACS 40 data set

For this data the Musa-Okumoto model is able to make the best predictions with an
relative error of about 0.05 after 40% of the execution time. The Fischer-Wagner model
is able to outperform the others in the early stages but is worse than the Musa-Okumoto
model from 35% onwards. However, beginning at 75% the predictive validity is simi-
lar.

Siemens 1

This data comes from a large Siemens project that we call Siemens 1 in the following.
The software is used in a telecommunication equipment.

We only look at the field trial because this gives us a rather accurate approximation
of the execution time which is the actually interesting measure regarding software. It
is a good substitute because the usage is nearly constant during field trial. Based on the
detailed dates of failure occurrence, we cumulated the data and converted it to time-
between-failure (TBF) data. This was then used with the Fischer-Wagner, Musa-basic,
Musa-Okumoto, and NHPP models. The results can be seen in Fig. 6.17. In this case
we omit the Littlewood-Verall that made totally absurd predictions of over a thousand
future failures.
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Figure 6.17: Relative error curves for the models based on the Siemens 1 data set

The Musa-basic and the NHPP models yield similar results all the time. They over-
estimate in the beginning and slightly underestimate in the end. The Musa-Okumoto
model overestimates all the time, the Fischer-Wagner model underestimates. All mod-
els make again reasonably well predictions. The Fischer-Wagner model has a relative
error below 0.2 from 45% on, the Musa basic and the NHPP models even from 40%
on.

Siemens 2

Siemens 2 is a web application for which we only have a small number of field failures.
This makes predictions more complicated as the sample size is smaller. However, it is
interesting to analyse how the different models are able to cope with this. For this, we
have plotted the results in Fig. 6.18.

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 10  20  30  40  50  60  70  80  90  100

R
el

at
iv

e 
er

ro
r

Normalised execution time (percentage)

Fischer−Wagner
Musa basic

Musa−Okumoto
Littlewood−Verall

NHPP

Figure 6.18: Relative error curves for the models based on the Siemens 2 data set
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Again not all models were applicable to this data set. The NHPP model only made
predictions for a small number of data points, the Musa basic and the Musa-Okumoto
models were usable mainly in the middle of the execution time. All models made com-
parably bad predictions as we expected because of the small sample size. Surprisingly,
the Fischer-Wagner model did extremely well in the beginning but worsened in the
middle until its prediction became accurate in the end again. Despite this bad perfor-
mance in the middle of the execution time it is still the model with the best predictive
validity in this case. Only the Littlewood-Verall model comes close to these results.
This might be an indication that the Fischer-Wagner model is good suited for smaller
sample sizes.

Combined Results
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Figure 6.19: Median relative errors for the different models based on all analysed data
sets

The usage of the number of failures approach for each project resulted in differ-
ent curves for the predictive validity over time. For a better general comparison we
combined the data into one plot which can be found in Fig. 6.19. This combination is
straight-forward as we only considered relative time and relative errors. To avoid that
strongly positive and strongly negative values combined give very small errors we use
medians instead of average values. The plot shows that with regard to the analysed
projects the Littlewood-Verall model gives very accurate predictions, also the NHPP
and the proposed model are strong from early on.

6.4.4 Summary

Several data sets from DACS and Siemens are used to evaluate the predictive validity of
the model in comparison to well-established models. We find that the model based on
the geometric progression of failure probabilities of faults often has a similar predictive
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validity as the comparison models and outperforms most of them. However, there is
always one of the models that performs better than ours. Nevertheless, we are able to
validate the assumption that a geometric progression is reasonable because we have a
good performance over all analysed projects in contrast to other models.

Failure Probability in the Field. We can use this geometric progression for cal-
ibrating the analytical model from Chap. 4. The input factor failure probability in the
field per fault is hard to determine because it involves careful measurement. This basic
relationship between the different faults simplifies this determination because only the
values for some of the faults needs to be determined. The other failure probabilities
can then be calculated using the geometric progression.
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In this final chapter we summarise the contributions of this dissertation and put them
into context. We also describe our current work and directions for possible further
research.

7.1 Summary

Costs and benefits are clearly a central factor in planning software quality assurance.
In the end, all commercial software needs to generate profit for the company that de-
veloped it. As we saw, the analytical quality assurance typically accounts for about
50% of the costs during development. Hence, we need to plan carefully and based on
solid facts. However, those decisions are still mainly made using intuition [187].

To be able to transfer the intuitive process to a more formal, fact-based approach,
we need to describe the relationships of the influencing factors in an economic model.
This would help decision-maker to plan SQA and analyse the effects of their deci-
sions. We propose an analytical model of the quality economics of defect-detection
techniques. The reason for the focus on defect-detection techniques (or analytical QA)
is that constructive QA has a different characteristic because it prevents defects from
being introduced. This makes the measurement process more difficult and other mech-
anisms would have to be introduced into the model. Moreover, defect-detection tech-
niques constitute about 50% of the total development costs. Hence, an improvement
or optimisation in this area can already be seen as beneficial.

The proposed model is more detailed than available economics models for SQA but
more general than technique-specific efficiency models. The former are derived from
other industrial areas – mainly manufacturing – and concentrate on factors such as the
cost of capital and use only coarse-grained parameters of the software. The latter stem
from detailed and technical observations using specific techniques. These are mainly
reliability growth models for system testing and efficiency models for inspections. The
problem here is that they do not suffice to plan the whole quality assurance.

Our economics model actually consists of two versions: (1) an ideal or theoretical
model and (2) a simple or practical model. The ideal model incorporates many im-
portant factors that we identified of having an influence on the costs and benefits of
SQA. The aim is to analyse the differences between defect-detection techniques with
respect to these factors and to analyse which are the most important factors. The de-
rived practical model has a reduced set of input factors and is based on defect types to
be applicable in planing and optimising the quality assurance in real projects. For all
the input factors of the model, we reviewed the available empirical literature and syn-
thesised the data to have average values for the model parameters. These values can
be used (1) as first estimates in practical application and (2) for sensitivity analysis. A
global sensitivity analysis of the models shows that the most important factors w.r.t.
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the variance in the output of the model are the removal costs of defects in the field, the
distribution of document (or artefact) types, the average difficulty (or effectiveness) of
the used techniques, and the execution costs. Hence, further investigations on theses
factors are most beneficial. The sensitivity analysis also has the result that the aver-
age labour costs, the sequence of application, and the failure probability in the field
do not seem to have a large influence. Therefore, approximations of those factors are
sufficient for precise predictions.

All the discussion so far viewed the system of which the quality is assured as a
whole. However, there is a possibility to optimise the quality assurance on the ar-
chitectural level. In particular, defect-detection techniques can be concentrated on
components that are most defect-prone, i.e., are likely to contain the most defects.
There are existing approaches to that but we propose a model-based identification of
defect-prone components. This involves a metrics suite that is applied to detailed de-
sign models of the software to be built. The applicability of this suite to models allows
an early planning of quality assurance, i.e., we do not need to wait until we can collect
code metrics.

Several case studies were carried out with three different aims: (1) investigation
of different factors of the model (mainly difficulty) of different defect-detection tech-
niques, (2) validation of the metrics suite to identify defect-prone components, and
(3) analyse the factor failure probability in the field of the model. In particular, we
validated the metrics suite on a model of an automatic collision notification system
for automobiles and a model of the network controller of an infotainment network for
modern automobiles. In both studies the approach was able to predict the most fault-
prone components correctly. The network controller case study was mainly aiming at
analysing model-based testing. Hence, we evaluated its effectiveness (with and with-
out automation) and compared it to hand-crafted and random tests. The effectiveness
of simple static analysis tools for Java was analysed over several projects of a mobile
communication company. Finally, based on the data of a telecommunications company
we showed that a geometric progression is a good model for the failure probability of
faults in the field. All this information was used in the above mentioned synthesis
of the available empirical work. Especially on static analysis tools and model-based
testing there is only little empirical knowledge so far.

7.2 Outlook

We first discuss some possible practical and theoretical improvements of the analytical
model of SQA and the metrics suite for the prediction of defect-prone components.
Finally, we propose – on a high level of abstraction – an integrated approach to quality
modelling and management.

7.2.1 Practical and Theoretical Improvements

The analytical model as well as the metrics suite can be improved theoretically and
also need more practical application to analyse their usefulness.

132



7.2 Outlook

Practical Application

The main goal for future research is to apply the model in practice; in particular to
evaluate its predictive validity. However, this is a major project because the model
relies on historical data and probably needs to be calibrated over several projects before
reasonable predictions are possible. Nevertheless, this is the most important validation
of the practical model. Currently a cost analysis of static analysis tools is done in
cooperation with a company extending the case study that evaluated the effectiveness
and defect types.

As we identified the factors of the model that are most beneficial to evaluate further,
we plan to do empirical studies on these factors. In the mentioned study on static
analysis tools, we concentrate on the removal costs of defects in the field, as there is
clearly a lack of empirical data. Also the distribution of defects over different artefact
types has been largely neglected so far. So, studies on this factor would have a strong
impact.

A further validation of the metrics suite for identifying defect-prone components is
needed. Two case studies merely show the applicability of the approach and give hints
but are no total empirical validation. Therefore, we currently carry out another case
study that evaluates this predictive validity.

Theoretical Improvement

On the theoretical side, an incorporation and analysis of further influencing factors
would be interesting. Especially, the time to market and the costs of capital are two
factors that often play an significant role in economics models. By incorporation and a
repeated sensitivity analysis we could show whether these factors are really important
in our context and we need to investigate them further. Also a consideration of false
positives as in Sabaliauskaite et al. [182,183] might be beneficial for a better evaluation
of inspections and static analysis tools. Moreover, it would be interesting to move from
simple expected values to full distributions in the model. It would allow to assess also
the best and the worst cases and hence contribute to risk analysis.

To further improve the benefit of applying the defect-proneness approach we plan
to incorporate other factors such as the severity of the potential failures from the com-
ponents. Also more sophisticated statistical analyses, such as the ones used for code
metrics in [4], might be used to improve the predictions.

7.2.2 An Integrated Approach

Parallel to improving and validating the proposed approaches, it is necessary to de-
velop an integrated view on quality modelling and management. The research area
is currently dominated by isolated solutions that all have a value on their own but for
an useful application there should be a coordinated, or better an integrated, approach.
For this, we identify important characteristics of quality models, develop a general
approach to integrated quality modelling, and give a concrete example how different
models could be used together.
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Characteristics

We discussed in Sec. 2.4 different important dimensions of quality models. One di-
mension is the quality view they support such as user-based or value-based. Further-
more, we distinguished between three main types of quality models:

• Constructive: We see constructive models as explanations of relationships be-
tween constructive actions and some aspects of software quality. For example,
the use of a different programming language might influence the reliability of the
system in a certain way. These relationships are probably very coarse-grained
but help to understand and to choose from the possibilities during development.

• Predictive: The predictive models help to plan the future development of some
quality aspects and hence are used to plan the quality assurance.

• Assessing: The assessing models allow to estimate the current state of the soft-
ware to control the quality assurance.

Finally, quality models can have several dimensions of specificness. We identified
that models can be general or product-specific. Models can also concentrate on a
specific defect-detection technique (technique-specific), a specific phase in the devel-
opment process (phase-specific), or a specific quality attribute (attribute-specific).

Integrated Quality Modelling and Management

The difficulty is (1) to choose the right models and (2) to integrate them usefully.
For both purposes, we believe that an abstract quality model or a quality meta-model
could help. This meta-model describes the commonalities and abstract concepts of the
possibly used concrete quality models. Based on this abstract quality model we can
define the process of quality modelling and management as depicted in Fig. 7.1.

Constructive quality models Estimating quality modelsPredictive quality models

Abstract quality model
Meta−model

Control and steering of development
and quality assurance

Planing of quality assurancePlaning of development

Figure 7.1: The integrated process of quality modelling and management

Using the abstract quality model, we perform three activities:

1. Identification of relevant views on quality

2. Identification of important quality attributes
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3. Defining the desired quality goals

The first activity is related to the views on quality as discussed above. We have to
analyse the market of our product and identify the views on quality that are most
important there, e.g., a user-based view. We also need to use market analysis to identify
the quality attributes that have the strongest influence and to find out which attributes
are of no importance. For example, in some applications security or safety is not an
issue. Finally, based on the two previous decisions, we define for the quality attributes
the goals that we want to reach with our product. Using this information in the meta-
model, we can identify the concrete quality models that fit to our needs. A further
important decision is also to choose whether a product-specific model is needed or a
general model is sufficient. For attributes and views that are considered less important,
general models can give enough information to control the project. For important
attributes and views, there should be product-specific models in place.

Firstly, constructive quality models give guidelines for the development that help to
reach the quality goals. For example, the decision of which programming language to
use could be based on such a model. In general, these models are a tool that helps in
planing the development. Furthermore, predictive models – possibly for each relevant
quality attribute – need to be identified using the meta-model. They are used to plan
the quality assurance. Early in the development process, these might be more general
models such as the one proposed in Chap. 4 but later more specific models such as
reliability growth models are more useful. Finally, during the development and quality
assurance, we use estimating quality models that assess the current state of the product
and process. This enables us to control and steer the development project based on
real data. The integration of the different models is always based on the meta-model
that needs to define how these different predictions and estimates fit together. This is
probably one of the main challenges for research in the integrated approach we propose
here.
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[84] Gábor Huszerl, István Majzik, András Pataricza, Konstantinos Kosmidis, and
Mario Dal Cin. Quantitative Analysis of UML Statechart Models of Dependable
Systems. The Computer Journal, 45(3):260–277, 2002.

[85] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Exper-
iments of the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proc. 16th International Conference on Sofware Engineering (ICSE
’94), pages 191–200. IEEE Computer Society Press, 1994.

[86] G. H. Hwang and E. M. Aspinwall. Quality costs models and their application:
A review. Total Quality Management, 7(3):267–281, 1996.

[87] IEEE Std 1044-1993. IEEE Standard Classification for Software Anomalies,
1993.

[88] IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering Ter-
minology, 1990.

[89] Peter In, SangEun Kim, and Matthew Barry. UML-based Object-Oriented Met-
rics for Architecture Complexity Analysis. In Proc. Ground System Architec-
tures Workshop (GSAW ’03). The Aerospace Corporation, 2003.

[90] ISO/IEC TR 15504:1998. Software Process Assessment, 1998.

[91] Pankaj Jalote and Bijendra Vishal. Optimal Resource Allocation for the Quality
Control Process. In Proc. 14th International Symposium on Software Reliability
Engineering (ISSRE ’03). IEEE Computer Society, 2003.

[92] Z. Jelinski and Paul B. Moranda. Software Reliability Research. In
W. Freiberger, editor, Statistical Computer Performance Evaluation. Academic
Press, 1972.

[93] Rob Johnson and David Wagner. Finding User/Kernel Pointer Bugs With Type
Inference. In Proc. 13th USENIX Security Symposium, pages 119–134, 2004.

[94] Capers Jones. Applied Software Measurement: Assuring Productivity and Qual-
ity. McGraw-Hill, 1991.

[95] Capers Jones. Software Assessments, Benchmarks, and Best Practices.
Addison-Wesley Information Technology Series. Addison-Wesley, 2000.

[96] W. D. Jones and M. A. Vouk. Field Data Analysis. In M. R. Lyu, editor, Hand-
book of Software Reliability Engineering, chapter 11. IEEE Computer Society
Press and McGraw-Hill, 1996.

143



Bibliography

[97] Joseph M. Juran and A. Blanton Godfrey. Juran’s Quality Handbook. McGraw-
Hill Professional, 5th edition, 1998.

[98] Natalia Juristo, Ana M. Moreno, and Sira Vegas. Reviewing 25 Years of Testing
Technique Experiments. Empirical Software Engineering, 9:7–44, 2004.

[99] Natalia Juristo and Sira Vegas. Functional Testing, Structural Testing and
Code Reading: What Fault Type Do They Each Detect. In Reidar Conradi
and Alf Inge Wang, editors, Empirical Methods and Studies in Software Engi-
neering: Experiences from ESERNET, volume 2765 of LNCS, pages 208–232.
Springer, 2003.

[100] Jan Jürjens and Stefan Wagner. Component-based Development of Dependable
Systems with UML. In C. Atkinson, C. Bunse, H.-G. Gross, and C. Peper,
editors, Component-Based Software Development for Embedded Sytems. An
Overview on Current Research Trends, volume 3778 of LNCS, pages 320–344.
Springer, 2005.

[101] Stephen H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley, 2nd edition, 2002.

[102] Stephen H. Kan, S. D. Dull, D. N. Amundson, R. J. Lindner, and R. J. Hedger.
AS/400 software quality management. IBM Systems Journal, 33(1):62–88,
1994.

[103] Cem Kaner. Quality Cost Analysis: Benefits and Risks. Software QA, 3(1):23–
27, 1996.

[104] John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An Analysis of Defect
Densities found during Software Inspections. Journal of Systems and Software,
17(2):111–117, 1992.

[105] Taghi M. Khoshgoftaar and Timothy G. Woodcock. Predicting Software Devel-
opment Errors Using Software Complexity Metrics. IEEE Journal on Selected
Areas in Communications, 8(2):253–261, 1990.

[106] Stephen T. Knox. Modeling the costs of software quality. Digital Technical
Journal, 5(4):9–16, 1993.

[107] Claudia Koller. Vergleich verschiedener Methoden zur analytischen Qualitäts-
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Prüfstrategien für Software-Komponenten. PhD thesis, Ruhr-Universität
Bochum, 1993. In German.

[119] Peter Liggesmeyer. A Set of Complexity Metrics for Guiding the Software Test
Process. Software Quality Journal, 4(4):257–273, 1995.

[120] Bev Littlewood, Peter T. Popov, Lorenzo Strigini, and Nick Shryane. Modeling
the Effects of Combining Diverse Software Fault Detection Techniques. IEEE
Transactions on Software Engineering, 26(12):1157–1167, 2000.

[121] Bev Littlewood and J.L. Verall. A Bayesian Reliability Growth Model for Com-
puter Software. Applied Statistics, 22(3):332–346, 1973.

[122] Robyn R. Lutz and Inés Carmen Mikulski. Empirical Analysis of Safety-
Critical Anomalies During Operations. IEEE Transactions on Software En-
gineering, 30(3):172–180, 2004.

[123] Michael R. Lyu, editor. Handbook of Software Reliability Engineering. IEEE
Computer Society Press and McGraw-Hill, 1996.

[124] Michael R. Lyu, Sampath Rangarajan, and Aad P. A. van Moorsel. Optimal
Allocation of Test Resources for Software Reliability Growth Modeling in Soft-
ware Development. IEEE Transactions on Reliability, 51(2):183–192, 2002.

145



Bibliography

[125] Yashwant K. Malaiya. The Relationship Between Test Coverage and Reliability.
In Proc. International Symposium on Software Reliability Engineering (ISSRE
’94), pages 186–195. IEEE Computer Society, 1994.

[126] William A. Mandeville. Software Costs of Quality. IEEE Journal on Selected
Areas in Communications, 8(2):315–318, 1990.

[127] Tobias Mayer and Tracy Hall. A Critical Analysis of Current OO Design Met-
rics. Software Quality Journal, 8:97–110, 1999.

[128] R. G. Mays, C. L. Jones, G. J. Holloway, and D. P. Studinski. Experiences with
Defect Prevention. IBM Systems Journal, 29(1):4–32, 1990.

[129] Thomas J. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, 5:45–50, 1976.

[130] Thomas McGibbon. A Business Case for Software Process Improvement Re-
vised. A DACS State-of-the-Art Report, Data & Analysis Center for Software,
September 1999. http://www.dacs.dtic.mil/techs/roispi2/ (December 2005).

[131] Austin C. Melton, David A. Gustafson, James M. Bieman, and Albert L. Baker.
A Mathematical Perspective for Software Measures Research. IEE/BCS Soft-
ware Engineering Journal, 5:246–254, 1990.

[132] Atif M. Memon. Empirical Evaluation of the Fault-detection Effectiveness of
Smoke Regression Test Cases for GUI-based Software. In Proc. 20th IEEE
International Conference on Software Maintenance (ICSM ’04), pages 8–17.
IEEE Computer Society, 2004.

[133] Mary A. Meyer and Jane M. Booker. Eliciting and Analyzing Expert Judgement.
A Practical Guide, volume 5 of Knowledge-Based Systems. Academic Press,
1991.

[134] Douglas R. Miller. Exponential Order Statistic Models of Software Reliability.
IEEE Transactions on Software Engineering, 12(1):332–346, 1986.
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