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Abstract

In this work, the impact of O(α) contributions on the cross sections for the top-

quark pair production within the SM and for the top-squark pair production within

the MSSM is investigated. For these processes, the EW–QCD interference leads to

additional contributions at O(αα2
s ) level which are not present at Born-level. In addi-

tion, parton densities at NLO QED give rise to non-zero photon density in the proton.

It is shown that the size of photon-induced production rates is comparable to other

EW NLO contributions. The cross sections differential in
√

ŝ and pT are studied and

discussed in kinematic ranges accessible at the LHC and at the Tevatron. The NLO

EW contributions become significant at high pT and high
√

ŝ and should be included

in the numerical analysis.
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Chapter 1

Introduction

Over the twentieth century, unceasing theoretical and experimental efforts in particle

physics were concentrated on building a model that would describe the basic elements

of nature in a consistent way. It was found that the protons and neutrons in the nuclei

are not fundamental objects, but they are composed of quarks, which together with the

leptons are considered to be the elementary particles. The fundamental forces of strong,

weak and electromagnetic interactions are widely believed to be described by quantum

field theories based on local gauge symmetries. The elementary particles can then

interact through exchange of gauge field quanta (gluons, weak bosons and photons).

All of this knowledge is embedded into the currently established model of elementary

particle physics, the Standard Model (SM) [1–4]. Only the fourth fundamental force,

gravity, is not yet included in the quantum theory picture.

After many years of testing, which proved that the Standard Model is an impres-

sively consistent theory for the energy ranges accessible at colliders up to now [5], it

has become clear that it is not the ultimate theory. Indeed, many deficiencies such

as the hierarchy problem, the dark matter origin problem, or the coupling unification

at some higher scale require new physics which might already be present at the TeV

scale. With the startup of the Large Hadron Collider (LHC) at CERN, a revolution in

high energy particle physics might be at hand.

Supersymmetric models are very popular candidates for the SM extension. They

introduce a new symmetry between fermions and bosons which enables the solving of

many of the SM problems. From the phenomenological point of view, supersymmetric

theories are rich in new particles which can be searched for at colliders. Unlike the

SM, supersymmetric models introduce more than one Higgs boson, and typically one

of them is required to be light and thus within accessible energy range. For these

reasons, searches for the Higgs boson(s) and supersymmetric particles are considered

to be among the main tasks of the LHC program.
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Due to the high precision expected at the LHC, comparison of experimental results

with theoretical predictions allows to further test the consistency of the SM. Precise

understanding of the SM predictions is crucial in the searches for new physics, where

the SM processes are important contributions to the background. In this context, the

role of quantum corrections as a tool to achieve high theoretical accuracy is essential.

At hadron colliders, the largest higher-order contributions arise from the quarks and

gluons and are referred to as QCD corrections. The current status in this field is

typically beyond the next-to-leading-order (NLO). For a complete one-loop treatment,

also contributions from the electroweak (EW) sector require closer inspection. From

intuitive expectations, these are comparable in size with the next-to-next-to-leading-

order (NNLO) in QCD, however, in some cases this might not be true.

In this work, we study the effects of higher-order contributions from the EW sector

on specific production processes at the LHC within the SM and within its minimal

supersymmetric extension, the Minimal Supersymmetric Standard Model (MSSM) [6,

7]. We investigate the numerical impact of the EW corrections on the total hadronic

cross sections as well as on the differential hadronic cross sections where these effects

can typically become sizeable.

In the first part of our studies, we concentrate on the production of top quark pairs.

Top quark physics is expected to be the one field of LHC interest where both accurate

SM tests and searches for new physics will be carried out. The current uncertainties

for the top quark observables, as obtained at the Tevatron collider at Fermilab, are

expected to be further reduced at the LHC. In this context precise predictions for the

top quark pair production cross section become a necessity.

In the second part of our work, we study the SUSY-EW corrections to the pro-

duction of top-squark pairs within the MSSM. Top-squarks are the supersymmetric

partners of the top quarks and in many supersymmetric models, they are one of the

candidates for the lightest squark. At the LHC, the production of squarks and gluinos

is expected to yield the largest contributions to the total production rate of super-

symmetric particles. In this context, the top-squark pair production cross section,

which essentially dependes only on the top-squark mass and very little on other su-

persymmetric parameters, can be used to directly extract the top-squark mass in case

of a discovery. In this sense it can provide a direct measurement of a supersymmetric

parameter and thus can be used to constrain models of supersymmetry breaking. In

our analysis, we assume the CP-conserving MSSM with real parameters and R-parity

conservation.
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The outline of this thesis is as follows: In chapter 2, a short introduction to the

SM is given. The deficiencies of the SM are emphasized to motivate the efforts for its

extension.

In chapter 3 we first discuss basic principles of supersymmetric theories, then

present basic ingredients which are necessary to build a supersymmetric model. Fur-

ther, we focus on the simplest supersymmetric extension of the SM, the MSSM, and

explain in detail the particle content of the model.

In chapter 4 we present the methods of regularization and renormalization which

are necessary tools for higher order calculations. We introduce basic concepts for the

regularization procedures, which allow divergences that appear in the loop integrals

to be handled and also the renormalization schemes that are needed to restore the

physical meaning of the calculated quantities.

Chapter 5 is dedicated to the calculations of cross sections at the hadronic level.

In the first part we briefly introduce the parton model, which provides the necessary

link between perturbation theory, which describes the interactions of partons, and

the observable interactions of hadrons. In this context, the notion of factorization is

essential. In the last part of this chapter, we comment on the effects of including the

NLO QED contributions into the parton distribution functions.

In chapter 6 we present our studies of top-quark pair production at NLO in QED

and investigate the impact of QED corrections on the total hadronic cross sections as

well as on the differential hadronic cross sections at the Tevatron and at the LHC.

The QED corrections form a subclass of the full EW corrections within the SM and

require treatment of infrared (IR) singularities which are related to the null photon

mass. Also, it is necessary to consider effects of the QED–QCD interference which is

a natural consequence of hadronic interactions.

In chapter 7 we discuss the SUSY-EW corrections to the top-squark pair produc-

tion cross section and present calculations for the total and differential hadronic cross

sections. Again, we investigate also the energy ranges of the Tevatron, but we focus on

the LHC owing to its discovery potential. As the QED-like contributions are included

in the SUSY-EW corrections, it is necessary to compensate for IR singularities related

to the photon and take into account the QED–QCD interference.
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Chapter 2

Standard Model

2.1 Basics of the Standard Model

The Standard Model (SM) [1–4] is the commonly established theory of elementary

particle physics. It is one of the best tested theories in physics and its predictions

impressively agree with experimental data [5].

Within the SM three universal interactions are described at quantum level by the

non-Abelian gauge group of a direct product of SU(3)C × SU(2)L × U(1)Y . The color

gauge group SU(3)C forms the base of strong interactions while electromagnetic and

weak interactions are unified under the electroweak gauge symmetry SU(2)L ×U(1)Y .

Within each group the group generators correspond to spin-1 gauge bosons, which

mediate the interactions among constituents of the matter. Counting the number of

generators, there are eight gauge bosons for SU(3)C , called gluons, three gauge bosons

for SU(2)L and one for U(1)Y , called W and B bosons, respectively. The gauge bosons

transform under the adjoint representation of the respective group.

The fundamental constituents of matter are spin-1
2

particles, the fermions. There

are two types of fermions: quarks, which have non-zero color charge and leptons, which

are color-neutral. For this reason only the quarks interact via strong interactions.

Furthermore, the quarks as well as the leptons appear in three generations. Within

each generation the left-handed components of fermions transform as doublets while

the right-handed components transform as singlets under SU(2)L. This has no impact

on the transformations under SU(3)C . Therefore the strong interactions are blind to

the left–right asymmetry and to the flavor. The structure of the fermionic sector is

summarized in Table 2.1. The right-handed neutrinos are not included in the SM and

the neutrino masses are set to zero. Although there is evidence for the non-zero neutrino

masses from the flavor-changing experiments [5], these effects are completely negligible

at large colliders [8]. Therefore for collider physics without the loss of generality,

5



6 2.1 Basics of the Standard Model

Table 2.1: Classification of the SM fermions. Left-handed doublets and right-handed
singlets within each generation are shown together with electroweak quantum numbers.
I3 is the third component of the weak isospin I, Y is the weak hypercharge and Q is
the electric charge.

Fermions I3 Y Q

quarks

(

u
d

)

L

(

c
s

)

L

(

t
b

)

L

1
2

−1
2

1
3
1
3

2
3

−1
3

uR cR tR 0 4
3

2
3

dR sR bR 0 −2
3

−1
3

leptons

(

νe

e

)

L

(

νµ

µ

)

L

(

ντ

τ

)

L

1
2

−1
2

−1

−1

0

−1

eR µR τR 0 −2 −1

neutrinos can be considered to be strictly massless within the SM.

If the SM was a theory with an exact gauge symmetry all gauge bosons would

be massless. This is true for the gluons but as shown by experiments it does not

apply to all gauge bosons in the electroweak sector [5]. For this reason electroweak

symmetry has to be broken in the SM. However, in order to preserve gauge invariance

of the SM Lagrangian it is not possible to introduce explicit mass terms. Thus another

mechanism has been invented, the Higgs mechanism, which breaks the electroweak

symmetry spontaneously [9].

The idea of Higgs mechanism is to introduce into the Lagrangian a new complex

scalar field Φ, which behaves like a doublet under the SU(2)L and has a non-zero

vacuum expectation value (VEV) v. The Higgs potential can be written as

V (Φ) = −m2
H

2

(

Φ†Φ
)

+
m2

H

2v2

(

Φ†Φ
)2

, (2.1)

where mH denotes the Higgs mass. In this way the invariance of the Lagrangian under

SU(2)L × U(1)Y is preserved, but as a consequence of the non-zero VEV, the ground

state of the Lagrangian is no longer invariant under the electroweak symmetry. Still it

remains invariant under the symmetry of electromagnetic interactions U(1)Q with the

electric charge Q defined as Q = I3 + Y
2
. Here Y is the weak hypercharge and I3 is the

third component of the weak isospin.

After electroweak symmetry breaking all particles of the SM acquire their masses

via interactions with the Higgs field. In the electroweak sector the gauge boson triplet

W i
µ, i = 1 . . . 3 of SU(2)L and the gauge boson Bµ of U(1)Y are rotated into mass
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eigenstates of the theory as

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

, Zµ = cW W 3
µ − sW Bµ, Aµ = cW W 3

µ + sW Bµ . (2.2)

Here sW and cW denote sine and cosine of the electroweak mixing angle. The two W

bosons, which have non-zero electric charge, and the neutral Z boson receive masses

proportional to the VEV v of the Higgs field:

mW =
e

2sW

v, mZ =
e

2sW cW

v, (2.3)

where e is the elementary unit charge. The neutral boson A is identified as photon and

remains massless owing to the unbroken electromagnetic U(1)Q symmetry.

In analogy to the symmetry breaking in the gauge sector, Yukawa interaction terms

are introduced to couple the fermions to the Higgs field. This allows for the fermion

masses. For massless neutrinos there is no difference between the flavor eigenstates

and the mass eigenstates in the leptonic sector. In the quark sector, however, the

flavor eigenstates are rotated into the mass eigenstates as described by the Cabbibo-

Kobayashi-Maskawa (CKM) matrix [10]. Due to the unitarity of the CKM matrix the

mixing is absent in the interactions mediated by neutral currents. The CKM matrix

can be set to the identity matrix if effects related to the quark mixing can be neglected.

In the Higgs sector of the SM the electroweak symmetry breaking results in one

massive scalar boson, the Higgs boson, and three massless scalars, the Goldstone bosons

[11]. The massless scalars are unphysical and can be eliminated by an appropriate

choice of the gauge, the unitary gauge. The degrees of freedom of the unphysical

Goldstone bosons are retransformed into longitudinal modes, which are necessary for

the massive vector bosons. The Higgs boson itself is the only particle within the SM,

which has not yet been experimentally observed. Its mass is not predicted within

the SM, but there are constraints from the requirement of consistent perturbation

theory [12]. Direct experimental searches yield a lower limit on mH ≥ 114.4 GeV [13].

The best fit determined from all precision electroweak data (all high Q2 data) gives

mH = 85+39
−28 GeV [14].1

To complete the SM Lagrangian gauge-fixing and ghost terms have to be introduced.

The fixing of gauge is necessary for the quantization. Due to the gauge invariance any

choice of gauge is allowed. Working in the unitary gauge has the advantage that

no unphysical intermediate particles occur. However, for a systematic treatment of

quantization it is better to use a renormalizable gauge. The renormalizability of the

SM [16] allows to make predictions for measurable quantities by considering only a

1An independent global fit to all data in [15] yields mH = 84+32

−25 GeV.
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finite number of higher order contributions within the perturbative expansion. Usually

gauge-fixing of the ’t Hooft type is used:

LRξ
= − 1

2ξG

(∂µG
aµ)2 − 1

2ξA

(∂µA
µ)2 − 1

2ξZ

(

∂µZ
µ + MZξZG0

)2

− 1

2ξW

∣

∣∂µW
+µ + iMW ξW G+

∣

∣

2
, (2.4)

with gluon fields Gaµ, photon field Aµ, vector boson fields Zµ and W±µ and Goldstone

bosons G0 and G±. The parameters ξA,Z,W are arbitrary. Finally, the unphysical

degrees of freedom of the gauge bosons which were introduced by the gauge-fixing are

compensated with the Faddeev–Popov ghost terms [17]. For practical applications the

’t Hooft-Feynman gauge is used with parameters ξA = ξZ = ξW = 1. In this gauge

propagators of the gauge bosons have a simple form. Also, masses of the unphysical

Goldstone and ghost fields are equal to masses of the corresponding physical fields.

After adding the gauge-fixing and ghost terms, the SM Lagrangian becomes suitable

for higher order calculations.

2.2 Open questions and the role of quantum

corrections

As already mentioned in the previous section, predictions of the SM are in an impressive

agreement with experimental results. This is due to the high precision achieved in the

experiments as well as in the theoretical calculations. In the context of perturbation

theory it is possible to reach higher precision by including higher order contributions.

Over the past years many radiative corrections have been worked out and helped to

improve and stabilize the SM predictions.

Despite this remarkable success the conceptual situation within the SM is still

unsatisfactory. There are open questions left, which point out that the SM cannot be

the ultimate theory.

The first obstruction is due to the nonexistence of a quantum theory of gravity.

At very large energy scales, of the order of the Planck scale MPlanck ∼ 1019 GeV,

gravitational effects become comparable with other interactions and can no longer be

ignored. However, it is not possible to include gravity into the SM because there is no

consistent quantum theory of gravity available. For this reason the SM can only be a

low-energy approximation of some not yet known fundamental theory.

Following this argument reveals another problem. If the SM originates from sym-

metry breaking of an underlying theory, all coupling constants have to unify at some
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large scale. This scale is usually refered to as the Grand Unification Theory (GUT)

scale and is typically of the order of MGUT ∼ 1015 GeV. Within a GUT model all

three SM gauge groups merge into a single GUT gauge group. Possible candidates

are SU(5) [18] or SO(10) [19]. However, GUT theories based on the SU(5) group are

already excluded by experiments. Their predictions for the proton lifetime are much

smaller than the experimental limit [20]. Nevertheless, within the SM the unification

of couplings is not realized [18]. Even with an assumption that potential new particles

at the GUT scale might modify the running of couplings, the unification cannot be

reached.

To find a proper way of how to include the SM into a GUT theory without further

extensions seems to be a tedious task. A straightforward solution is to simply abandon

this approach and focus on the hypothesis that the SM is valid up to the Planck scale.

Here another problem emerges, the infamous hierarchy problem [21,22]. The origin

of this problem is in the quadratic divergences which occur in the quantum corrections

to the self-energy of the Higgs field (Fig. 2.1). To regulate these divergences one

can introduce an ultraviolet momentum cut-off ΛUV (see section 4.1), which can be

interpreted as the energy scale of new physics. If we consider the SM to be valid

up to the Planck scale, then the cut-off ΛUV is of the order of MPlanck. Higher order

corrections to the Higgs self-energy, which is connected to the Higgs-mass squared, are

proportional to Λ2
UV and thus to M2

Planck. However, the physical Higgs-mass squared is

only of the order of m2
H ∼ (100 GeV)2, which leads to a difference of about 30 orders of

magnitude. An extreme “fine tunning” is necessary to obtain a physical mass of correct

order of magnitude after including the higher order corrections. Obviously, it seems

unnatural for the physical Higgs mass to be as small as it is favored by the precision

experiments [14] (see section 2.1), unless there is new physics at much lower scale than

the Planck scale.

h0

h0

e

e ∝
∫

k0<ΛUV

d4k
1

/p + /k − me

1

/k − me

≈
∫ ΛUV

0

k dk ∝ Λ2
UV

Figure 2.1: Electron-loop contribution to the self-energy of Higgs boson corresponds
to an ultraviolet-divergent loop integral which is regularized by a cut-off ΛUV . In this
way the radiative corrections become proportional to Λ2

UV .
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Besides the problem that the Higgs mass is so small with respect to the Planck

scale, fermion masses also differ by several orders of magnitude from each other. The

pattern that occurs in their rearrangement is also not understood by the theory. More-

over, values of the masses are not predicted and contribute to a large number of free

parameters within the SM, which have to be determined in experiments. This also

makes the SM unfavorable against some underlying theory with smaller number of free

parameters.

To complete the list of open questions in the SM it is necessary to mention the

problem of the unknown origin of dark matter. According to the precision measure-

ments of the cosmic microwave background [23] our universe consists of about 23% of

non-baryonic weakly interacting matter, the dark matter. However, there is no ap-

propriate SM candidate for the dark matter. The only suitable weakly interacting SM

particles — the neutrinos, are not sufficient to account for the total amount of the dark

matter as required by the measurements.

Various extensions of SM have been proposed in attempt to solve these problems.

Most promising candidates are based on the concept of supersymmetry which will be

discussed in the next chapter. Still, the problems do not diminish the importance of

the SM. Precise understanding of the SM plays a crucial role in the searches for new

physics. In this sense precise predictions based on the higher order calculations are a

powerful tool to check the consistency of the SM. Observing deviations from the SM

predictions contributes to indirect evidence for physics beyond the SM and eventually

might give constraints on the proposed candidates.



Chapter 3

Supersymmetry

3.1 Motivation for supersymmetry

Although there are numerous deficiencies within the Standard Model as mentioned in

the previous chapter, the idea of supersymmetry was originally motivated by different

arguments. It was shown by Coleman and Mandula [24] that combining space-time

and internal symmetries is possible only in a trivial way. The existence of a non-trivial

extension of the Poincaré space-time symmetry was initially surprising. As proven

by Haag, ÃLopuszánski and Sohnius [25] such an extension is possible if one gives up

the commutator structure of the internal symmetry and postulates anticommutator

relations instead. This approach leads to non-trivial commutator relations between

the generators of internal symmetry and the Poincaré generators. In this way super-

symmetry is established being the only possible non-trivial extension of the Poincaré

symmetry [25], in terms of the supersymmetric Poincaré algebra:

{

Q A
α , Q̄β̇B

}

= 2 δA
B (σµ)αβ̇ Pµ ,

{

Q A
α , Q B

β

}

=
{

Q̄α̇A, Q̄β̇B

}

= 0 ,
[

Pµ, Q
A

α

]

=
[

Pµ, Q̄α̇A

]

= 0 ,
[

Mµν , Q
A

α

]

=
1

2
(σµν)

β
α Q A

β ,

[

Mµν , Q̄
α̇
A

]

=
1

2
(σ̄µν)

α̇
β̇ Q̄β̇

A . (3.1)

The supersymmetry generators Q and Q̄ of Eq. (3.1) are two-component Weyl spinor

operators with spinor indices α, α̇, β, β̇, running from 1 to 2. The undotted indices

transform under the (0, 1
2
)-representation of the Poincaré group whereas the dotted

ones under the conjugated (1
2
, 0)-representation. The indices A, B are related to the

internal space and run from 1 to its dimension N . Pµ and Mµν are the generators of the

Poincaré group with Lorentz indices µ, ν running from 0 to 3. The elements of the Pauli

11
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matrices σµ, σµν and σ̄µν appear as structure constants of the supersymmetric algebra.

Theories with extended supersymmetry, i.e. with N > 1, do not have phenomenological

prospects [26]. This is due to the fact that within four-dimensional field theories the

extended supersymmetry does not allow for chiral fermions and parity violation as it is

observed in the SM. Therefore only phenomenologically viable supersymmetric theories

with N = 1 will be considered in the following.

The first anticommutator relation of Eq. (3.1) indicates the entanglement of super-

symmetry and space-time symmetry. This provides a framework for the unification of

particle physics and gravity. Since the general theory of relativity is invariant under

the local Poincaré symmetry, imposing a local supersymmetry naturally incorporates

the algebra of general relativity and thus gravity into the theory [6, 26].

Beside the original motivation for supersymmetry it was found later on that super-

symmetric theories provide a natural solution to the hierarchy problem [27–29], allow

for the unification of gauge couplings [20, 27] and furthermore, supply a candidate for

the dark matter [30]. These are the biggest achievements of the supersymmetry from

the phenomenological point of view.

3.2 Properties of supersymmetric theories

Under the action of the supersymmetric operator Q a bosonic state is transformed into

a fermionic state and vice-versa:

Q|boson〉 = |fermion〉 , Q|fermion〉 = |boson〉. (3.2)

In this way supersymmetry links fermionic and bosonic degrees of freedom. Fermions

and bosons which transform into each other are called superpartners and they occur

in supermultiplets. Each supermultiplet contains the same number of fermionic and

bosonic degrees of freedom. As follows from Eq. (3.1),

[

P 2, Qα

]

=
[

P 2, Q̄α̇

]

= 0 , (3.3)

all states within a multiplet have the same mass. Furthermore, the supersymmetry

generators also commute with the generators of gauge transformations. Therefore

particles within the same multiplet must also be in the same representation of the

gauge group and have the same quantum numbers of electric charge, weak isospin and

color degrees of freedom.

There are two types of supermultiplets which are of special importance for the

construction of supersymmetric Langrangians. One of them is called scalar or chiral
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Figure 3.1: Quantum corrections to the self-energy of the Higgs boson from the electron
and its superpartners, the selectrons, (s = 1, 2). Quadratic divergences are no longer
present and the total contribution depends only on the logarithm of the cut-off Λ.

supermultiplet, the other is refered to as gauge or vector supermultiplet. The particle

content of the chiral supermultiplet consists of a Weyl fermion with two helicity states.

These correspond to two degrees of freedom and of two real scalars, each with one

degree of freedom. The two real scalars can be combined into one complex scalar field.

The vector multiplet is composed of a massless spin-1 vector boson with two degrees

of freedom. As a superpartner a massless spin-1
2

Weyl fermion is introduced.

It is possible to construct a single object composed of fermionic and bosonic fields

of the corresponding supermultiplet, a superfield. Superfields are of particular con-

venience for the construction of supersymmetric Lagrangians. Basic notations and

conventions of the superfield formalism and of the construction of supersymmetric La-

grangians in general are listed in appendix B. Detailed introductions can be found

e.g. in [7, 31].

As a consequence of the fact that supersymmetry links fermionic and bosonic de-

grees of freedom, it can provide a solution to the hierarchy problem [7,27–29] as already

mentioned in the previous section. Since fermion and boson loops appear with opposite

signs, quadratic divergences in radiative corrections to the self-energy of the Higgs field

are fully compensated by contributions of the superpartners. As an example, the ra-

diative correction to the Higgs self-energy corresponding to the electron, compensated

by the superpartner contribution, is shown in Fig. 3.1. Unbroken supersymmetry guar-

antees this cancellation to all orders of perturbation theory.

3.2.1 Supersymmetry breaking

If supersymmetry were an exact symmetry of nature then particles and their super-

partners would have the same mass. Since no superpartners have been observed yet,

supersymmetry must be broken at energies accessible to present experiments. In anal-

ogy to the spontaneous electroweak symmetry breaking in the SM, spontaneous break-

ing of the supersymmetry can be introduced. This means that the Lagrangian remains

invariant under the supersymmetry transformations, but it receives a vacuum state
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Flavor-blind

interactions

HIDDEN SECTOR
Origin of Supersymmetry

breaking

VISIBLE SECTOR

MSSM

Figure 3.2: Schematic structure of supersymmetry breaking. The breaking takes place
in a hidden sector from which it is transferred to a visible sector that can be accessed by
experiments, e.g. the Minimal Supersymmetric Standard Model (MSSM) (see Sec. 3.3).
The transition is mediated by some weak flavor-blind interaction specific for a given
supersymmetry breaking scenario.

which is not invariant [32,33].

Many models of spontaneous supersymmetry breaking have been proposed. Typi-

cally the breaking takes place at very high energies in a so-called “hidden” sector and

thereafter it is transmitted to a visible sector which can be accessed by experiments.

The transition is mediated by some kind of very weak interaction as shown in Fig. 3.2.

Two popular candidates are gravity-mediated [34–36] and gauge-mediated [37, 38] su-

persymmetry breaking models.

At low energies the spontaneous breaking of supersymmetry is however, phenomeno-

logically excluded [39]. Therefore it is replaced by the “soft” supersymmetry breaking

which is a simple approach of how to include explicit symmetry breaking terms into

the Lagrangian. These terms are strongly constrained by the request of preserving

the solution to the hierarchy problem. Hence, they might not hinder a cancellation of

quadratic divergences in the radiative corrections to the Higgs self-energy. All possible

soft-breaking terms are elucidated in [40]. In the end, the Lagrangian consists of a su-

persymmetric part and of a soft part which is not invariant under the supersymmetry

transformations,

L = LSUSY + Lsoft . (3.4)

3.2.2 R-parity

Within the Standard Model (SM) baryon and lepton number are implicitely conserved.

This is based on the fact that no violating effects have ever been observed (the experi-

mental limit on the proton life-time which supports the conservation has already been

mentioned in section 2.2). Many other processes also give significant constraints on

the violation of baryon and lepton number. These are reviewed e.g. in [41].

Nevertheless, there is no symmetry in the SM which would forbid the violation

of baryon and/or lepton number. Postulating such conservation as a fundamental
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principle of nature is generally not viable. This is caused by non-perturbative effects

in the electroweak sector which do violate baryon and lepton number, although these

effects are negligible for energy ranges of current high energy experiments.

The situation is different in supersymmetric theories. Here it is possible to impose

a symmetry which naturally conserves these quantum numbers and at the same time

does not contradict the non-perturbative baryon and lepton number violating effects.

This type of symmetry is given by R-parity [42]. A new quantum number R is intro-

duced from which R-parity is derived as PR = (−1)R. R-parity is not affected by the

supersymmetry breaking and is multiplicatively conserved. All SM particles including

all of Higgs scalars have R = 0, while R = 1 for all supersymmetric partners. The

link to baryon and lepton number conservation becomes obvious when the R-parity is

rewritten as a function of the baryon number B, lepton number L, and spin s,

PR = (−1)2s+3(B−L) . (3.5)

Due to the R-parity conservation each interaction vertex connects even numbers of

supersymmetric particles. This means that they can be produced only in pairs and

furthermore, the lightest supersymmetric particle (LSP) is stable, which makes it a

popular candidate for dark matter.

3.2.3 Low-energy supersymmetry

Low-energy supersymmetry has been motivated by a natural explanation of the gauge

hierarchy problem which demands new physics at the TeV scale [28, 29]. This is of

particular interest for collider experiments. In addition, low-energy supersymmetric

models with R-parity conservation provide a suitable candidate for the dark matter [30]

and furthermore allow for the unification of gauge couplings at some large scale. The

latter is illustrated for the Minimal Supersymmetric Standard Model (MSSM) [6,7] in

Fig. 3.3. More details on MSSM will be presented in the next sections.

Experimental searches for supersymmetry [44] have been performed at LEP and

Tevatron experiments. Both have determined lower bounds on the masses of super-

symmetric particles. These limits strongly depend on the underlying mechanism of

supersymmetry breaking. For a recent review of the minimal supergravity (mSUGRA)

parameter space see [45]. Indirect constraints on the SUSY parameters arise from the

electroweak precision data. In general, the supersymmetric effects enter through higher

order corrections.

So far, there is no experimental evidence for supersymmetry. This is, however,

expected to change at the Large Hadron Collider (LHC). The LHC as a hadron collider
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Figure 3.3: Evolution of the inverse of the three coupling constants in the Standard
Model (left) and in the supersymmetric extension of the SM (MSSM) (right) [43]. Only
in the latter case unification is obtained. The SUSY particles are assumed to contribute
only above the effective SUSY scale MSUSY of about 1 TeV, which causes a change in
the slope in the evolution of couplings. The thickness of the lines represents the error
in the coupling constants.

with a center-of-mass energy of 14 TeV will serve as a discovery tool in most of the

supersymmetric scenarios [44]. The only restriction is due to the mere existence of

low-energy supersymmetry at the TeV scale.

The discovery potential of the LHC is of no doubt. Nevertheless, the concept of

hadron colliders does not allow for high precision measurements. In this context more

is expected from the International Linear Collider (ILC) project [46]. Such a linear

e+e− collider provides much cleaner enviroment with lower background than a hadron

machine.

As an exciting option, a collaboration of LHC and ILC has been proposed. The

interplay between the ILC and the LHC during concurrent running of the two machines

has the potential to maximise the physics gain from both facilities [47,48].

It is also interesting to mention that there are models which consider the natural

explanation of the gauge hierarchy problem to be “unnatural” [49]. In this sense,

the effective supersymmetric theory at the TeV scale does not seem to be justified.

Still, there are so called split-SUSY models [50] which propose that some fraction of

the supersymmetric spectrum remains light enough (near the TeV scale) to provide

successful gauge coupling unification and a viable candidate for the dark matter.
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Taking into account all discovery options for low-energy supersymmetry leads to

conclusion that any experimental evidence for supersymmetry would have a profound

effect on the development of a more fundamental theory of particle physics than is

currently available.

3.3 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is the simplest supersymmetric

extension of the Standard Model (SM) [6,7]. In analogy with the SM, the Lagrangian

of MSSM is invariant under the local gauge symmetry of SU(3)C ×SU(2)L×U(1)Y . In

addition, an N=1-supersymmetry with at most soft-breaking terms is imposed. The

SM fields are incorporated into the MSSM via chiral and vector superfields. For each

matter field there is a corresponding chiral superfield; vector superfields are assigned to

gauge bosons. An octet of vector superfields is introduced for the SU(3)C gauge group,

a triplet of vector superfields for the SU(2)L and a single vector field for the U(1)Y

gauge group. As a result all SM particles gain superpartners: sfermions are scalar

partners of the fermions and gauginos are fermionic partners of the gauge bosons.

Furthermore, R-parity PR conservation is included into the MSSM Lagrangian. For

all SM particles PR = +1, for all superpartners PR = −1. As a consequence, the

lightest supersymmetric particle of the MSSM is stable and the leptonic and baryonic

quantum number conservation is preserved.

In the Higgs sector, the single SM Higgs field must be replaced by two Higgs-

doublets. Each belongs to a chiral superfield. There are several reasons why a single

Higgs-doublet is not sufficient. In the first place, a hermitian conjugate corresponding

to an antichiral superfield would be necessary to generate mass terms of both up- and

down-like quarks and charged leptons. This would destroy invariance of the MSSM

Lagrangian under the supersymmetry transformations. Therefore, the Lagrangian can

only consist of chiral superfields. Moreover, two Higgs-doublets with opposite values

of hypercharge are required to keep the MSSM free of anomalies. If the sum of hyper-

charges of all fermions within the theory equals zero, all anomaly-contributions vanish.

In this way anomalies related to the fermionic partners within the two Higgs-doublets

are exactly canceled if these have opposite values of hypercharge.

The particle content of the MSSM is summarized in Tab. 3.1. For simplicity only

the first generation of fermions is explicitely listed.

The Lagrangian of the MSSM consists of kinetic terms, mass terms and interaction

terms for all fermions, Higgs- and gauge-bosons of the MSSM. It can be decomposed
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Table 3.1: Classification of superfields and particles within the MSSM. The superfields
are denoted with a hat, the superpartners carry a tilde. The generation index I runs
from 1 to 3, the SU(3)C index a runs from 1 to 8, the SU(2)L index i from 1 to 3.
Bold numbers in the group representation indicate the dimension of representation,
1 stands for the trivial representation, while adj refers to the adjoint representation
of the corresponding group to which the gauge bosons belong. In case of the U(1)Y

group, values of the hypercharge are explicitely given.

fields group representation

superfield fermion field boson field SU(3)C SU(2)L U(1)Y

matter sector

quarks Q̂I

(

uL,I

dL,I

) (

ũL,I

d̃L,I

)

3 2 1
3

squarks ÛI uc
R,I ũ+

R,I 3∗ 1 −4
3

D̂I dc
R,I d̃+

R,I 3∗ 1 2
3

leptons L̂I

(

νL,I

eL,I

) (

ν̃L,I

ẽL,I

)

1 2 −1

sleptons ÊI ec
R,I ẽ+

R,I 1 1 2

gauge sector

SU(3)C Ĝa λ̃a
G Ga

µ 8adj 1 0

SU(2)L Ŵ i λ̃i
W W i

µ 1 3adj 0

U(1)Y B̂ λ̃B Bµ 1 1 0

Higgs sector

Ĥ1

(

H̃1
1

H̃2
1

) (

H1
1

H2
1

)

1 2 −1

Ĥ2

(

H̃1
2

H̃2
2

) (

H1
2

H2
2

)

1 2 1

into

(i) a chiral part, the superpotential which describes interactions of the Higgs fields,

Lchiral =
(

ǫij
[

λdĤ
i
1Q̂

jD̂ − λuĤ
i
2Q̂

jÛ + λeĤ
i
1L̂

jÊ − µĤ i
1Ĥ

j
2

]∣

∣

∣

θθ
+ h.c.

)

,

(3.6)

with Yukawa couplings λd, λu, λe and Higgs mass parameter µ, (for explanation

of notations and conventions see appendix B)
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(ii) a vector part which contains the kinetic terms of fermions as well as the interac-

tion terms of scalar-, spinor- and vector-fields:

Lvector,1 =
[ ˆ̄Q e2g′V ′+2gV +2gsVsQ̂ + ˆ̄U e2g′V ′−2gsV T

s Û + ˆ̄D e2g′V ′−2gsV T
s D̂

+ ˆ̄Le2g′V ′+2gV L̂ + ˆ̄E e2g′V ′

Ê

+ ˆ̄H1 e2g′V ′+2gV Ĥ1 + ˆ̄H2 e2g′V ′+2gV Ĥ2

]∣

∣

θθθ̄θ̄
. (3.7)

Here the following notation has been used:

Vs = T a
s V a

s , V = T aV a , V ′ =
Y

2
v′ , (3.8)

where T a
s are the generators of SU(3)C , T a are the generators of SU(2)L and Y

is the generator of U(1)Y .

Furthermore, the vector part also consists of the kinetic terms of gauge bosons,

Lvector,2 =

([

1

16g2
W aαW a

α +
1

16g′2W ′αW ′
α +

1

16g2
s

W aα
s W a

sα

]∣

∣

∣

∣

θθ

+ h.c.

)

(3.9)

with W a
sα , W a

α and W ′
α being the field-strength tensors related to the vector-fields

as shown in the following,

W a
sα = −1

4
D̄D̄

(

e−2gsVsDα e2gsVs
)

, (3.10)

W a
α = −1

4
D̄D̄

(

e−2gV Dα e2gV
)

, (3.11)

W ′
α = −1

4
D̄D̄

(

e−2g′V ′

Dα e2g′V ′
)

= −g′

4
D̄D̄DαV ′ . (3.12)

The supersymmetric part of the MSSM Lagrangian can be summarized as follows,

LSUSY = Lchiral + Lvector,1 + Lvector,2 . (3.13)

Supersymmetry breaking in the MSSM is realized explicitely via the soft breaking

mechanism. This prevents quadratic divergences to affect the higher order corrections.

Restrictions on the soft breaking Lagrangian are given in [40]. If only the first gen-

eration of fermions is taken into account, the soft part of MSSM Lagrangian can be

written as

Lsoft = −M2
Lq̃

(

ũ+
L ũL + d̃+

L d̃L

)

− M2
ũR

ũ+
L ũL − M2

d̃R
d̃+

L d̃R

−M2
L

l̃

(

ν̃+
L ν̃L + ẽ+

L ẽL

)

− M2
ẽR

ẽ+
L ẽR

−m2
1H

+
1 H1 − m2

2H
+
2 H2 +

(

m2
3ǫ

ijH i
1H

j
2 + h.c.

)

− ǫij
(

−λuAuH
i
2Q̃

jŨ + λdAdH
i
1Q̃

jD̃ + λeAeH
i
1L̃

jẼ + h.c.
)

+
1

2
(M1λBλB + M2λ

a
W λa

W + M3λ
a
sλ

a
s + h.c.) . (3.14)
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Here λu, λd, λe, Au, Ad, and Ae denote Yukawa and trilinear couplings which are in

general complex 3×3 matrices in family space. The scalar mass parameters M2
Lq̃

, M2
L

l̃
,

M2
ũR

, M2
d̃R

and M2
ẽR

are hermitian 3×3 matrices. They allow for mixing among the

generations. The Higgs mass parameters m1 and m2 are real numbers whereas the

gaugino mass parameters M1, M2 and M3, as well as the bilinear Higgs coupling m3,

are complex numbers.

In complete analogy with the SM it is necessary to include gauge-fixing and ghost

terms for consistent quantization of the MSSM Lagrangian (see section 2.1). The

gauge-fixing and ghost terms are selected in a way identical to the SM. Thus the full

expression of MSSM Lagrangian reads

LMSSM = LSUSY + Lsoft + Lgauge−fixing + Lghost . (3.15)

While the kinetic and the gauge part of the MSSM Lagrangian only depend on SM pa-

rameters, in the superpotential and mainly the soft breaking part, new supersymmetric

parameters are introduced. An unconstrained model contains in total 105 new param-

eters [51]. This very large number of new parameters seems to introduce a tremendous

arbitrariness into the theory.

In order to constrain these parameters, experimental limits coming from lepton

number conservation, flavor-changing neutral currents and CP violation observations

[52] are imposed. When assuming a given model for the origin of supersymmetry

breaking, the number of free parameters can be reduced significantly. For example

within the mSUGRA scenario of the MSSM, all parameters can be derived from only 5

fundamental parameters which exist at the SUSY-breaking scale, using renormalization

group equations [26,31].

3.4 Particle content of the MSSM

3.4.1 Quarks and Leptons

In order to reproduce the experimental results, quarks and leptons have the same prop-

erties within the MSSM as in the SM. Left- and right-handed fermions are described

by Weyl spinors which can be combined into Dirac spinors

uI =

(

uL,I

ūc
R,I

)

, dI =

(

dL,I

d̄c
R,I

)

, eI =

(

eL,I

ēc
R,I

)

, νI =

(

νL,I

0

)

, (3.16)

where the index I runs over generations from 1 to 3. The down-type quarks dI are

not exact mass eigenstates. These are obtained by rotating the flavor eigenstates dI as
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described by the CKM-matrix in the same way as in SM,

d′
I = V IJ

CKMdJ . (3.17)

Regarding the quark and lepton sector, the origin of masses is the main difference

between the SM and MSSM. Within the MSSM, quarks and leptons receive their

masses via Yukawa terms in the superpotential (Eq. 3.6) as

mu = λuv2 , md = λdv1 , me = λev1 , (3.18)

which can be rewritten as expressions for the Yukawa couplings

λu =
mue√
2mW sβ

, λd =
mde√
2mW cβ

, λe =
mee√
2mW cβ

. (3.19)

Here e is the elementary charge, mW is the mass of the W boson and sβ and cβ stand

for sin β and cos β, with β being the mixing angle defined as ratio of the two vacuum

expectation values v2, v1 (see section 3.4.3).

3.4.2 Squarks and Sleptons

In principle, all particles with the same quantum numbers can mix with each other.

As the SU(2)L ×U(1)Y symmetry is broken, only the color quantum numbers, electric

charge and in addition, R-parity have to match. However, completely arbitrary soft

breaking terms would lead to a mixing of fermions of different generations. Such mixing

creates additional contributions to flavor changing neutral currents (FCNC) within the

model. Besides the contribution related to the CKM-matrix which is already present

in the SM, experimental limits [5] also constrain additional FCNC-effects to be very

small [52]. In addition, most popular SUSY-breaking scenarios implement flavor-blind

interactions to mediate the breaking mechanism from hidden to visible sector (see

section 3.2.1).

For these reasons the soft breaking mass and 3×3 trilinear coupling matrices are

chosen to be purely diagonal. This allows for a decomposition of squark and electron-

like slepton mass matrices into a 2×2 form. The mixing is constrained to appear only

within the left- and right-handed fields of each generation. As a consequence, the mass

matrices can be written as

Mf̃ =





MLL
f̃

+ m2
f mf

(

MLR
f̃

)∗

mf

(

MLR
f̃

)

MRR
f̃

+ m2
f



 (3.20)
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with

MLL
f̃

= m2
Z

(

If
3 − Qfs

2
W

)

c2β +

{

M2
Q̃

for left-handed squarks

M2
L̃

for left-handed sleptons
(3.21)

MRR
f̃

= m2
Z

(

Qfs
2
W

)

c2β +







M2
Ũ

for right-handed up-like squarks

M2
D̃

for right-handed down-like squarks

M2
R̃

for right-handed electron-like sleptons

(3.22)

MLR
f̃

= Af − µ∗
{

cot β for up-like squarks
tan β for down-like squarks and electron-like sleptons

(3.23)

Here Qf is the fraction of electric charge of the sfermion, If
3 is the third component

of weak isospin, and mZ the mass of the Z boson. Similarly to the previous section

short-hand notations for sin and cos are used, with the mixing angle β defined as ratio

of the two VEVs. sW = 1− m2
W

m2
Z

denotes sin of the Weinberg angle, µ is the Higgs mass

parameter and Af is the trilinear coupling.

Subsequently, the mass matrices can be diagonalized by unitary matrices Uf̃ ,

Df̃ = Uf̃Mf̃U
†
f̃

=

(

m2
f̃1

0

0 m2
f̃2

)

, (3.24)

to give mass eigenstates f̃1 and f̃2 which transform as

(

f̃1

f̃2

)

= Uf̃

(

f̃L

f̃R

)

. (3.25)

In the sneutrino sector only the left-handed fields exist. For this reason interaction and

mass eigenstates are identical.

From Eqs. (3.20–3.23) it is possible to deduce that the first- and second-family

squarks and sleptons appear in almost unmixed pairs owing to their negligible Yukawa

couplings. The mixing becomes significant only in the case of third generation.

3.4.3 Higgs and Gauge bosons

As previously mentioned, the Higgs sector of MSSM must consist of two scalar isospin

doublets with opposite values of hypercharge

H1 =

(

v1 + 1√
2
(φ0

1 − iχ0
1)

−φ−
1

)

, H2 =

( −φ+
2

v2 + 1√
2
(φ0

2 − iχ0
2)

)

, (3.26)
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where φ0
1, φ0

2, χ0
1, χ0

2 are real scalar fields and φ−
1 , −φ+

2 are complex scalar fields. Also,

the expansion around the two corresponding vacuum expectation values v1 and v2 has

been performed here.

Inserting (3.26) into the Higgs part of the MSSM Lagrangian leads to three uncou-

pled real 2×2 mass matrices for the Higgs fields. Mass eigenstates are obtained by a

diagonalization procedure, which is in case of real 2×2 matrices simply a rotation,
(

G±

H±

)

=

(

cβ sβ

−sβ cβ

)(

φ±
1

φ±
2

)

,

(

G0

A0

)

=

(

cβ sβ

−sβ cβ

)(

χ0
1

χ0
2

)

,

(

H0

h0

)

=

(

cα sα

−sα cα

)(

φ0
1

φ0
2

)

, (3.27)

where sβ, cβ, sα, cα are the short-hand notations used before for sin and cos. The

mixing angle β is defined as ratio of the two VEVs

tan β =
v2

v1

with 0 < β <
π

2
. (3.28)

Within the MSSM tan β acts as a free parameter. The mixing angle α is fixed by the

relation

tan 2α = tan 2β
m2

A + m2
Z

m2
A − m2

Z

with − π

2
< α < 0 . (3.29)

Nevertheless, the choice of α within the allowed interval is not unique. By convention

α is set such that mh0 < mH0 .

The Higgs sector consists of three Goldstone bosons G±, G0 which emerge from the

electroweak symmetry breaking. The five remaining Higgs bosons are physical. There

are two neutral CP-even bosons h0 and H0, one neutral CP-odd A0 and two charged

bosons H±. By convention, the mass of the CP-odd Higgs boson mA is chosen to be

the second free parameter within the MSSM Higgs sector.

At the tree-level the Higgs boson masses can be parametrized in terms of mA and

tan β as follows,

mh0,H0 =
1

2

(

m2
A + m2

Z ∓
√

(m2
A + m2

Z)2 − 4m2
Am2

Zc2
2β

)

,

mH± = m2
A + m2

W , (3.30)

with mZ , mW being the masses of the Z and W bosons which appear along with the

photon as mass eigenstates of the SU(2)L × U(1)Y after the electroweak symmetry

breaking. In complete analogy with the SM (see section 2.1), Wand Z acquire masses
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related to the vacuum expectation value v which is now given as v =
√

v2
1 + v2

2. Re-

garding the SU(3)C gauge group, there are eight massless gauge bosons, the gluons,

with the same properties as in the SM.

The tree-level Higgs masses receive large contributions from radiative corrections.

These have to be taken into account in order to obtain realistic predictions. At the one-

loop level, the full set of radiative corrections have been computed [53–56]. Dominant

two-loop contributions of the order of O(αtαs) [57–61], O(α2
t ) [57, 62, 63], O(αbαs)

[64, 65] and O(αtαb + α2
b) [66] have been calculated using the Feynman diagrammatic

approach [67]. Values of the Higgs masses as given in [68] are used for numerical

evaluations in the thesis.

3.4.4 Higgsinos and Gauginos

Similar to the sfermion sector, superpartners of gauge and Higgs bosons which possess

identical quantum numbers mix with each other. In the non-colored charged sector

there are two candidate pairs which can be composed of alike charged winos W̃± and

Higgsinos H̃±,

W̃± =

(

−iλ̃±
W

i¯̃λ
∓
W

)

, H̃+ =

(

H̃1
2

¯̃H
2

1

)

, H̃− =

(

H̃2
1

¯̃H
1

2

)

, (3.31)

with analogous relation as for the W bosons,

λ̃±
W =

1√
2

(

λ̃1
W ∓ iλ̃2

W

)

. (3.32)

These four two-component Weyl spinors can be combined into two four-component

Dirac fermions χ̃+
1 , χ̃+

2 , called charginos. The mass matrix can be diagonalized by two

unitary matrices U , V :

U∗
(

M2

√
2mW sβ√

2mW cβ µ

)

V † =

(

mχ̃+
1

0

0 mχ̃+
2

)

, (3.33)

such that mχ̃+
1,2

are both positive and mχ̃+
1
≤ mχ̃+

2
. Subsequently, mass eigenstates of

the charginos are given by

χ̃+
i =









V

(

−iλ̃+
W

H̃1
2

)

U

(

−iλ̃−
W

H̃2
1

)









, i = 1 , 2 . (3.34)
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Also the uncolored neutral gauginos and higgsinos mix with each other. There are

two neutral higgsinos H̃0
1 , H̃0

2 , zino Z̃ and photino Ã available.

H̃0
1 =

(

H̃1
1

¯̃H
1

1

)

, H̃0
2 =

(

H̃2
2

¯̃H
2

2

)

, Z̃ =

(

−iλ̃Z

i¯̃λZ

)

, Ã =

(

−iλ̃A

i¯̃λA

)

.

(3.35)

In complete analogy with the SM case of Z and γ, the latter two are obtained by

rotating λ̃3
W and λ̃B by the EW mixing angle,

λ̃Z = cW λ̃3
W − sW λ̃B , λ̃A = sW λ̃3

W + cW λ̃B . (3.36)

In the end, there are four Weyl spinors at hand which can be transformed into four

Majorana fermions, called neutralinos. Their mass matrix can be diagonalized by a

unitary matrix N which obeys the order of increasing neutralino masses mχ̃0
1
≤ mχ̃0

2
≤

mχ̃0
3
≤ mχ̃0

4
,

N∗









M1

0
0

M2

−mZsW cβ

mZcW cβ

mZsW sβ

−mZcW sβ

−mZsW cβ

mZsW sβ

mZcW cβ

−mZcW sβ

0
−µ

−µ
0









N †

=









mχ̃0
1

0 0 0

0 mχ̃0
2

0 0

0 0 mχ̃0
3

0

0 0 0 mχ̃0
4









. (3.37)

The neutralino mass eigenstates are given by:









χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4









= N









−iλ̃B

−iλ̃3
W

H̃1
1

H̃2
2









. (3.38)

In the colored sector there are eight gauginos of SU(3)C called the gluinos. They

are Majorana fermions with mass mg̃ = |M3| and can be written as

g̃a =

(

−iλ̃a
G

i¯̃λ
a

G

)

, a = 1, . . . , 8 . (3.39)
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Chapter 4

Regularization and Renormalization

In general, the Lagrangian of a model contains free parameters which are not fixed by

the theory but have to be determined in experiments. For this purpose, a renormal-

ization scheme is selected in which the parameters are defined via their relations to

measurable quantities. At tree-level, the Lagrangian parameters can be directly iden-

tified with physical observables like masses and coupling constants. However, these

relations are modified by higher order contributions within perturbation theory.

Including radiative corrections does not only change the tree-level relations be-

tween free parameters and physical observables, it also leads to divergences in the loop

integrals. For a consistent mathematical treatment it is necessary to regularize the

divergences using a regularization procedure. This introduces a cut-off dependence

into the relations between Lagrangian parameters and physical observables. Hence,

the “bare” Lagrangian parameters cannot have any physical meaning. In order to re-

store the physical meaning they have to be replaced by the renormalized parameters.

More details about regularization and renormalization procedures are described in the

following sections.

4.1 Regularization

The integration over loop momenta leads to ultra-violet (UV) divergences. In order to

obtain a UV finite result within a renormalization scheme, first of all, the divergences

have to be controled by means of a regularization. A regularization parameter Λ is

introduced into the theory that makes the loop integrals finite but Λ dependent. In

this way the problem how to deal with divergent integrals is transformed into a task

how to compensate for the dependence on the regularization parameter. In the end,

the theoretical predictions have to be independent of such a parameter. Otherwise

they would have no physical meaning.

27
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Different regularization procedures are available. Few examples are described in

the following:

(i) Pauli-Villars Regularization

The Pauli-Villars regularization [69] is based on a simple intuitive concept. To

prevent the integral from reaching the UV divergent limit, the upper bound of

the momentum integration is constrained by a cut-off parameter. Although this

method is very illustrative, it violates gauge invariance and this constrains its

applicability within the higher order calculations.

(ii) Dimensional Regularization

The dimensional regularization scheme [70] is a typical regularization procedure

used within the SM. It is based on the fact that in four dimensional space-time

the loop integrals are UV divergent. However, if the dimension of integration is

shifted by an infinitesimal value ǫ to a new dimension D = 4 − ǫ , the integrals

become finite. In addition, a mass parameter µ is introduced to keep coupling

constants dimensionless.

This scheme preserves gauge invariance but not the chiral symmetries such as

supersymmetry. This is caused by the fact that additional degrees of freedom

are introduced during the transition to D dimensions. As a consequence, the

numbers of fermionic and bosonic degrees of freedom do not agree with each

other anymore which results into a violation of supersymmetry.

(iii) Dimensional Reduction

The dimensional reduction scheme [71, 72] is a modification of the dimensional

regularization suggested to avoid the supersymmetry violation. Unlike dimen-

sional regularization, only the integrated momenta are expressed in D-dimensions

whereas the fields are kept in four dimensions. A mathematically consistent for-

mulation for this procedure has recently been established [73].

4.2 Renormalization

Unphysical parameters introduced into the theory via regularization have to be elim-

inated. This is taken care of by the renormalization. In general, the renormalization

procedure consists of a set of rules which serve to restore, in a consistent way, the

relations between parameters of the theory and physical observables.

Within the frequently used multiplicative renormalization, bare parameters of the

Lagrangian g0 are replaced by renormalized parameters g and renormalization constants
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Zg according to the relation

g0 = Zgg =
(

1 + δZ(1)
g + δZ(2)

g + . . .
)

g . (4.1)

Here the renormalization constants Zg have been expanded in perturbation series whose

order is denoted by a superscript. The renormalized parameters g have finite values.

The divergences which have been parametrized by means of regularization are absorbed

into the renormalization constants Zg.

In order to obtain finite S-matrix elements it is sufficient to perform renormaliza-

tion for the Lagrangian parameters and for the wave functions of external particles.

Nevertheless, to achieve a completely finite theoretical description, also all Green func-

tions have to be finite. For this reason field renormalization has to be performed.

Bare fields of the Lagrangian Φ0 have to be replaced by renormalized fields Φ using

renormalization constants ZΦ,

Φ0 =
√

ZΦΦ =

(

1 +
1

2
δZ

(1)
Φ − 1

8

(

δZ
(1)
Φ

)2

+
1

2
δZ

(2)
Φ . . .

)

Φ . (4.2)

Again the renormalization constants ZΦ are written as perturbation expansions

ZΦ = 1 + δZ
(1)
Φ + δZ

(2)
Φ + . . . (4.3)

After insertion of the renormalized parameters and fields into the bare Lagrangian,

this can be split into a renormalized part and a counter term part:

L (g0, Φ0) = L
(

Zgg,
√

ZΦΦ
)

= L (g, Φ) + LCT (g, Φ, δZg, δZΦ) . (4.4)

The renormalized Lagrangian is finite, free of unphysical regularization parameters and

thus suitable for theoretical predictions. The counter term part can be expressed as

perturbation series:

LCT (g, Φ, Zg, ZΦ) = L(1)
CT

(

g, Φ, δZ(1)
g , δZ

(1)
Φ

)

+

L(2)
CT

(

g, Φ, δZ(1)
g , δZ

(1)
Φ , δZ(2)

g , δZ
(2)
Φ

)

+ . . . (4.5)

4.2.1 Renormalization schemes

The definition of all parameters of the theory and their connection to physical observ-

ables are fixed within a renormalization scheme. In an exact calculation to all orders in

perturbation theory, the final result does not depend on the renormalization scheme.

For practical purposes however, only contributions up to a given order are evaluated.
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As a consequence, the result becomes dependent on the renormalization scheme, which

reflects the theoretical uncertainty introduced by missing higher-order terms.

Consistent use of a renormalization scheme is one of the key issues within pertur-

bative calculations. It requires an appropriate choice of input parameters since these

are scheme dependent. Also the renormalization constants differ from one scheme to

another. Altough divergent parts are the same within all schemes, finite contributions

are scheme dependent.

(i) MS renormalization scheme

The minimal subtraction scheme, or short MS-scheme, [16] is the simplest renor-

malization scheme. It is based on the dimensional regularization procedure.

Only the divergent terms in the higher order contributions are absorbed into

the counter term part of Lagrangian, but no finite contributions. The mass pa-

rameter µ introduced by the regularization to keep couplings dimensionless is

now transformed to a renormalization scale parameter µR. To specify a concrete

renormalization scheme from large spectrum of MS-schemes, the scale µR must

be fixed.

The MS-scheme [74–76] is a modified minimal subtraction. It is a commonly used

version of MS-scheme. It is based on a simple observation that the divergent

terms parametrized as 1/ǫ are always associated with certain constant terms.

The whole set can be denoted as ∆n, where n is the loop order. At the one-loop

level, the explicit expression reads

∆ =
1

ǫ
− γE + ln 4π (4.6)

where γE is the Euler-Mascheroni constant. The MS scale is subsequently rede-

fined as

µ2MS

R := µ2
Reln 4π−γE (4.7)

(ii) DR renormalization scheme

The DR-scheme is based on dimensional reduction. Apart from that it is identical

with the MS-scheme. As in the previous case, just the ∆n terms are absorbed

into the counter terms, but no finite contributions. The renormalization scale

µDR
R is redefined analogously to eq. (4.7).

At the one-loop level, the counter terms within both schemes are identical. Mod-

ifications are introduced at higher orders and are due to different finite contribu-

tions induced by the two regularizations.
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(iii) On-shell renormalization scheme

Within the on-shell renormalization (OS) scheme [77,78], the on-shell renormal-

ization conditions are imposed. This means that particles are restricted to be

on their mass-shell. The on-shell principle implies that the mass of a particle to

be on-shell is given as real part of the pole of the propagator and in this way

it can be directly interpreted as physical mass. To obey the on-shell conditions,

not only divergent parts but also finite contributions are contained in the counter

terms. Hence, all corrections to the real part of the pole of the propagator are

absorbed into the mass counter terms.

If all variables are determined to be on-shell, the final result becomes totally

independent on the renormalization scale µ. For the on-shell renormalization of

coupling constants it is required that all loop-induced corrections to the particle

coupling are absorbed into the counter terms for the coupling constant. The fields

are determined to be on-shell by a consistent normalization, i.e. the residua of

the propagators have to be equal to unity.

Complete expressions for the OS renormalization scheme within the SM at the

one-loop level are given in [78]. The extension into the MSSM has been worked

out by [79].
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Chapter 5

Hadronic cross sections

Within the SM and MSSM, strong interactions of quarks and gluons are described by

Quantum Chromodynamics (QCD) [3,4]. Unlike other fundamental interactions, they

are based on the SU(3)C gauge group and consequently have the special properties of

asymptotic freedom and confinement. Asymptotic freedom is a characteristic feature of

short-distance interactions which keeps them very weak. This enables the quarks and

gluons to behave almost like free particles. At large distances the situation is completely

opposite. The interaction strenth rises with distance and binds the particles tightly

together. The energy of interaction increases until it becomes sufficient for the creation

of a new quark–antiquark pair. As a consequence, it is impossible to observe a single

quark or gluon. This phenomenon is referred to as confinement.

Quarks and gluons can only be observed indirectly as constituents of color-neutral

objects, called hadrons. It is evident that realistic theoretical predictions have to take

this fact into account. However, due to the confinement, the perturbative approach can

not be justified at the hadronic level. Therefore, it is necessary to establish a connection

between the short-distance interactions of quarks and gluons which can be described

by means of perturbation theory and the experimentally observable interactions of

hadrons (e.g. [80]). The necessary link is provided by the parton model [81] and the

factorization theorem [82] which will be discussed in the following.

5.1 Parton model

Unlike QCD, the parton model is based on many assumptions which have purely phe-

nomenological origin. It was motivated by experimental results from deep inelastic

electron–proton scattering (DIS) [83]. The most striking feature of the data is known

as Bjorken scaling [84] and corresponds to approximate independence of the measured

structure functions of the proton on the momentum transfer.
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k
k′

l′

xP

xP + q
V ∗

q = k − k′

P

l

Figure 5.1: The schematic structure of deep inelastic lepton–hadron scattering at lead-
ing order. A single parton with fraction x of the hadron momentum P interacts with
the lepton via a hard process which can be computed in perturbation theory. The
non-perturbative effects within the hadron do not interfere because of Lorentz time
dilation.

The scaling can be explained if presuming that the hadron is composed of point-

like partons which interact with the electron. The process of electron–proton scattering

can then be approximated as an incoherent sum of elastic lepton–parton scatterings,

which can be described by perturbation theory. With help of QCD the partons can be

identified as quarks and gluons.

As shown in Fig. 5.1, any lepton–hadron DIS process can be regarded as a hard

scattering of the lepton on a parton within the hadron, whereas the non-perturbative

interactions of other partons in the hadron do not interfere. This assumption relies

on the effect of Lorentz time dilation. The time scales related to the movement of

the hadron and to the non-perturbative process of hadronization are much larger than

the time scale of the hard scattering. As a consequence, the hadron can be treated

as a static object during the hard scattering. Also the partons are effectively “frozen”

during the short time it takes the lepton to pass by. Multiple lepton–parton scattering

is strongly suppressed if assuming large momentum transfer. A single parton which

then participates in the hard scattering carries a momentum xP µ given as a fraction

x ∈ [0, 1] of the hadron momentum P µ.

The same assumptions apply to interactions of hadrons. Two colliding hadrons

interact at the partonic level via a hard interaction of two partons which both carry

certain fractions of hadron momenta. The corresponding hadronic cross section can be
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written as a convolution

σA(PA, PB) =
∑

i,j

∫ 1

0

∫ 1

0

dxadxb σ̂
(0)
i,j (xaPA, xbPB) Φi|A(xa) Φj|B(xb) , (5.1)

where σ̂
(0)
i,j denotes the partonic cross section in leading order of perturbation theory,

and Φi|A(xa), Φj|B(xb) are parton distribution functions (PDFs) or parton densities,

which represent the probability to find a parton i(j) with momentum fraction xa(xb) in

a hadron A(B). The total hadronic cross section is integrated over all possible fractions

of momenta and summed over all partons within the respective hadron. The parton

densities only depend on the momentum fraction x but not on the momentum transfer.

This corresponds to a manifestation of Bjorken scaling.

It is within the parton densities where the non-perturbative effects are included.

Obviously, it is not possible to calculate them using the perturbative approach. Instead

they have to be determined from experiments. It is important to realize that the parton

densities depend on the hadron structure alone and are completely independent of the

nature of the hard process. This makes them universal and therefore, they can be used

for calculation of any hadronic cross section.

The concept of splitting the hadronic cross section into a perturbative partonic

cross section and non-perturbative parton densities is a fundamental statement of the

parton model, referred to as factorization [82].

So far, only the leading order effects were considered. Taking into account higher

orders of perturbation series violates the Bjorken scaling. As a result, the parton

densities become dependent on the momentum transfer in the interaction and the

simple expression for the hadronic cross section given in Eq. (5.1) is no longer valid.

Hence, it is evident that a generalization of the parton model and of the factorization

theorem is necessary.

5.2 Factorization

As already mentioned in the previous section, factorization is the statement that the

cross section for any hadronic process may be written as the convolution of two terms:

a calculable hard scattering cross section and a non-perturbative parton density. To

generalize this statement it is better to refer to a splitting into short-distance and

long-distance interactions or from the point of view of energy into hard and soft effects.

Obviously, such separation requires to introduce an energy scale, the factorization scale

µf , additional to the renormalization scale µ, which is necessary in any perturbative
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P

xP

ξP

(x − ξ)P

σ̂

short-distance

long-distance

Figure 5.2: The schematic structure of a hadronic process as given by factorization.
The process can be split into a short-distance part which corresponds to a hard process
at the partonic level and a long-distance part which includes non-perturbative effects
together with soft and collinear gluon radiation. The momentum fraction ξ of the
parton which enters the hard process is reduced by gluon radiation. σ̂ denotes the
partonic cross section from which the mass singularities have been factorized.

computation. It is often convenient to choose the two scales µ and µf to be equal but

this is not necessary in general.

As a consequence, the hadronic cross section is given by

σA(PA, PB) =
∑

i,j

∫ 1

0

∫ 1

0

dxadxb σ̂i,j(xaPA, xbPB, µf ) Φi|A(xa, µf ) Φj|B(xb, µF ) ,

(5.2)

where σ̂ denotes the short-distance partonic cross section and ΦA, ΦB are the parton

densities which include long-distance interactions. The splitting between these two is

realized at a factorization scale µf .

For illustration, the factorization of a hadronic process into long- and short-distance

parts is shown in Fig. 5.2. As an example of long-distance effects the process of initial

state radiation is sketched. Typically, this process involves the radiation of gluons

which give rise to the characteristic gluonic radiative corrections. Due to the zero-

mass of the gluon and to the fact that the masses of the light quarks are negligible

with respect to the exchanged energies, the radiative corrections contain infrared and

mass singularities. The origin of infrared singularities is related to the soft gluon

radiation whereas the mass singularities, also called collinear singularities, emerge if a

massless quark radiates a collinear gluon.

Although both soft and collinear gluon contributions can be calculated within per-
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turbation theory, they are experimentally unresolvable. Therefore, they cannot be

distinguished from other long-distance effects and are implicitly present in all measure-

ments from which the parton densities are extracted. For a consistent computation of

the hadronic cross section it is necessary that the short-distance partonic cross section

is infrared-safe and also the mass singular terms have to be subtracted and absorbed

into the parton densities.

5.2.1 Factorization schemes

Beyond lowest order in perturbation theory there is considerable ambiguity in separat-

ing the hard scattering cross section from the corresponding parton distributions. It

is obvious that the choice of the factorization scale is not unique. Also, finite terms

related to the higher order contributions can be arbitrarily distributed between the

partonic cross section and the parton densities. A set of rules that makes these choices

is called a factorization scheme.

It is absolutely crucial to use schemes consistently and to know in which scheme

any given calculation or comparison to data is carried out. The two most commonly

used factorization schemes are:

(i) DIS factorization scheme

The DIS scheme [85] is appealing for its close correspondance to experiment. In

this scheme, order-by-order in perturbation theory, all higher order corrections

to the structure function F2 are absorbed into the distributions of quarks and

antiquarks. The gluon distribution is not fixed. The factorization and renormal-

ization scales are set to µ = µf = Q, where Q2 = −q2 and q is the lepton–hadron

space-like momentum transfer, as defined in Fig. 5.1.

(ii) MS factorization scheme

The modified minimal subtraction scheme [74], in contrast to the DIS scheme,

is theoretically more elegant and simple for calculations. It is defined in the

framework of dimensional regularization. In this scheme the parton distributions

are given directly in terms of hadronic matrix elements [86].

The connection between the two schemes in terms of definitions of the proton structure

function F2 can be found e.g. in [85].

It is important to stress that predictions for physical quantities are scheme inde-

pendent. The only effect of a change in the renormalization and factorization scheme

is to distribute the radiative corrections differently between the parton cross section,

the structure functions and the strong coupling αs.
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Figure 5.3: The splitting functions.

5.2.2 Splitting functions

Usually, the parton densities are extracted from measurements of the structure func-

tions of hadrons in lepton–hadron deep inelastic scattering. As a consequence, they

are determined at energy scales specific for the particular DIS interaction. However,

for a consistent computation of hadronic cross sections, it is necessary to have access

to parton densities at any scale fixed by the factorization. Thanks to the combination

of the parton model and perturbative QCD, it is possible to evolve the parton densities

using the evolution equations developed by Dokshitzer, Gribov, Lipatov, Altarelli and

Parisi, collectively referred to as DGLAP evolution equations (see [87] and references

therein). The DGLAP equations are coupled equations which desribe the change of

the quark, antiquark, and gluon densities with the energy scale ln Q2 as

∂

∂ ln Q2

(

qi(x,Q2)
g(x,Q2)

)

=
αs(Q

2)

2π

∑

j

∫ 1

x

dξ

ξ
(5.3)

(

Pqiqj
(x

ξ
, αs(Q

2)) Pqig(
x
ξ
, αs(Q

2))

Pgqj
(x

ξ
, αs(Q

2)) Pgg(
x
ξ
, αs(Q

2))

)(

qj(ξ,Q
2)

g(ξ,Q2)

)

where qi, qj are taken to include both the quark and antiquark distributions, g denotes

the gluon distribution, and i, j are the flavor indices. The splitting functions Pgg, Pqg,

Pgq and Pqiqj
, also called evolution kernels, are the essence of DGLAP equations and

describe the probabilities that a quark or gluon splits into a pair of partons. They are

summarized graphically in Fig. 5.3.

The splitting functions Pqg and Pgq are flavor independent and identical for quarks
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Figure 5.4: The QED one-loop corrections in deep inelatic lepton–hadron scattering.

and antiquarks. The Pqiqj
satisfy Pqiqj

= Pq̄iq̄j
and Pqiq̄j

= Pq̄iqj
and vanish at leading

order unless qi = qj. The splitting functions can be expanded in αs(Q
2). The leading

order terms are given in appendix C.1.

5.3 Parton distributions with QED contributions

Parton distributions are an essential ingredient of hadron collider phenomenology. In

order to allow for precision calculations, they have to be determined with an accuracy

corresponding to the partonic level results. In the context of perturbative QCD, the

current frontier is next-to-next-to-leading order (NNLO). Just from naive assumptions,

also radiative corrections of the order O(α) are expected to be numerically important

at this level.

At the order O(α), the QED contributions are of particular importance. Due to

collinear photon emission off the incoming quarks, large logarithmic terms appear.

These are proportional to α log(Q2/m2). In principle, it would be possible to take

these logarithms explicitely into account, but this would require a consistent choice of

input quark masses. Furthermore, at very high Q2 scales probed at hardon colliders,

a resummation of these logarithms would be necessary.

Both difficulties can be avoided if applying an analogue of the QCD factorization

theorem valid for the QED. As a result the collinear photon-induced logarithms can

be absorbed into the parton distribution functions, exactly as it is done for for the

collinear gluon-induced contributions in perturbative QCD (see e.g. [88]). By correctly

taking into account the QED effects through modified DGLAP evolution equations (see

appendix C.2), it is possible to obtain a consistent procedure for the overall electroweak
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corrections to hard scattering processes involving initial state hadrons (see e.g. [89]).

In order to derive the parton distribution functions at next-to-leading order (NLO)

in QED, virtual and real photonic contributions to lepton–nucleon DIS scattering, as

shown in Fig. 5.4, have to be computed. First quantitave estimates of the QED effects

on the evolution of parton distributions was made in [90], more recent investigation

in [91]. However, both studies were based on a global QCD-only analysis of data and

did not attempt to incorporate the QED effects to the best fit of data.

Fully consistent treatment was done by the MRST group in [92] and finally, parton

distributions at NLO QED level are available. Although the QED corrections have

only a very small effect on the evolutions of quarks and gluons, they have interesting

side effects. They lead to isospin violation, since photons, unlike gluons, are not flavor

blind. Furthermore, a distribution of photons inside the proton emerges.



Chapter 6

Top pair production at NLO QED

The top quark was discovered in 1995 by the CDF [93] and DØ [94] experiments

at the Tevatron collider at Fermilab. Since then the experimental efforts have been

concentrated on detailed studies of its properties as these provide significant consistency

tests of the SM. The top quark mass is an important parameter within the SM and

helps to give constraints on the mass of the Higgs boson [14, 15]. Currently, the value

of the top quark mass as given by the world average [95] is

mt = 171.4 ± 2.1 GeV , (6.1)

which is fully consistent with the SM prediction obtained from the global fit to all

available electroweak data [14]

mt = 171.7+2.0
−2.0 GeV . (6.2)

In contrast to other fermions of the SM, the top quark is extremely heavy and therefore

also extremely short-lived. As a consequence, it decays essentialy as a quasi-free quark

[96]. Obviously, the top quark is one of the most interesting objects currently accessible

in experiments.

6.1 Top pair production

The measurement of the top pair production cross section, σtt, at hadron colliders is an

important test of the SM. The observation of deviations from the SM prediction, which

includes the higher order corrections, could indicate new non-standard production and

decay mechanism. Also, precise knowledge of the SM processes as a main source of the

background is crucial in direct searches for potential physics beyond the SM.

The measurement of σtt in pp collisions at
√

s = 1.96 TeV, performed at the Teva-

tron using ∼ 1 fb−1 of data collected during RUN II, gives a preliminary combined

41
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Figure 6.1: The comparison of the total hadronic cross section for various production
channels at the Tevatron and LHC [98]. Red lines indicate predictions for the top pair
production.

result1 [97]

(CDF) : σtt (mt = 175 GeV) = 7.3 ± 0.5 (stat) ± 0.6 (syst) ± 0.4 (lumi) pb . (6.3)

An enhancement of about a factor of 100 is expected at the LHC (Fig. 6.1). Therefore,

the LHC is anticipated to be a real “top factory” producing about 8 million tt pairs

per year of running (at low luminosity). Apparently, this provides favorable conditions

for numerous top quark studies.

Since the tt production cross section in pure QCD contains besides αs the top

quark mass as the only free parameter, it is suitable for the measurement of mt. For a
1Cross section obtained combining results from all reconstruction channels at CDF. For DØ the

combined result including RUN II data is not yet available.
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consistent comparison with the value of mt obtained from the reconstruction of tt decay

products it is necessary to achieve a high precision in the cross section measurement.

Thus radiative corrections have to be taken into account.

In lowest order, the tt production cross section in hadronic collisions is of O(α2
s )

and was calculated in [99]. The corresponding lowest order electroweak contributions

of O(α2) to the Drell-Yan annihilation process via γ- and Z-exchange can be neglected.

They contribute less than 1% at the partonic level owing to large mt [100] and for this

reason they are completely insignificant.

Dominant higher order contributions come from the QCD interactions. Cross sec-

tions and distributions including QCD effects to the order of O(α3
s ) were computed

in [88], and an inspection of the QCD effects close to the production threshold was

performed in [101]. Including the resummation of large logarithmic QCD contributions

in the threshold region improves perturbative calculation and was done in [102, 103].

The prediction for σtt currently used at the Tevatron,

σtt (mt = 175 GeV) = 6.8+0.7
−0.9 pb , (6.4)

is based on the studies in [104] which include the next-to-leading-order (NLO) contri-

butions and the resummation of soft logarithms to all orders of perturbation theory.

In [105], also the next-to-next-to-leading-order (NNLO) soft-gluon corrections were

taken into account. The measured value of σtt of Eq. (6.3) is in a good agreement

with the SM prediction of Eq. (6.4), and the experimental precision is approaching

the theoretical accuracy of ∼ ±12% [97]. In the case of the LHC, the estimation of

the next-to-leading-order and next-to-leading-log (NLO+NLL) QCD effects, as done

in [103], gives

σtt (mt = 175 GeV, µ = mt) = 833 pb . (6.5)

Also, the subclass of electroweak (EW) one-loop corrections of O(αα2
s ), correspond-

ing to the non-photonic contributions, was investigated [106]. These are of special in-

terest due to the large Yukawa coupling of the top quark to the Higgs boson. However,

they have little impact on the σtt within the SM, which is only ∼ 1% of the Born-level

cross section at the Tevatron, and the EW contributions do not exceed ∼ 3% at the

LHC [106, 107]. In these calculations contributions including the interference of QCD

and EW interactions were neglected. A study of the non-photonic EW corrections with

the gluon–Z interference effects was done in [108] and recently in [109–111].

Still, a subset of the full EW corrections, corresponding to the QED corrections,

was not included in the previous calculations. To complete the SM prediction at the

one-loop level, also the QED corrections have to be investigated.
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To present a complete overview of the status of radiative corrections to the top quark

pair production at hadron colliders, it is necessary to mention the studies of the higher

order effects within certain extensions of the SM. These studies comprise calculations of

the O(α) one-loop corrections within the General 2-Higgs-Doublet Model (G2HDM) for

both, the Tevatron [112] and the LHC [113]. Also, the SUSY QCD O(α2) contributions

were investigated for the Tevatron [114,115] and the LHC [116]. As SUSY provides an

interesting extension of the EW sector, the SUSY EW corrections have been examined.

Partial calculations relevant for the Tevatron were done in [115, 117]. The complete

description of the top pair production cross section to O(αα2
s ), within the G2HDM and

MSSM, with numerical results for the Tevatron and the LHC, was presented in [118].

In the following, we investigate the QED corrections to top pair production within

the SM, but the computation is also valid for extensions (MSSM, G2HDM, . . . ). The

effects from the interference of QCD and QED interactions are included. At this

order the distribution of photons inside the proton becomes non-zero, adding further

contribution to our calculation. In the end, we present numerical results for both, the

Tevatron and the LHC.

6.1.1 tt cross section at the partonic level

At LHC energies, the tt production proceeds mainly through the fusion of two gluons

ga(p4) + gb(p3) → tj(p2) + t
l
(p1),

whereas at the Tevatron, the dominant production mechanism is the annihilation of a

quark–antiquark pair

qi
α(p4) + qk

β(p3) → tj(p2) + t
l
(p1),

with α, β and i, j, k, l, a, b being flavor and color indices, respectively. The momenta

of the interacting particles are denoted in brackets. Feynman diagrams for both pro-

duction subprocesses are shown in Fig. 6.2. As already mentioned, the lowest order

O(α2) contributions are negligible [100].

Expressions for the O(α2
s ) Born-matrix elements, as given in [106], read

Mqq
B = δαβ ūj

t(p2)(−igsT
c
jlγµ) vl

t̄(p1)

(−igµν

ŝ

)

v̄k
β(p3)(−igsT

c
ikγν) ui

α(p4) ,

Mgg
B = g2

s ǫµ
4(p4) ǫν

3(p3) ūj
t(p2) T ab

µν vl
t̄(p1) , (6.6)

where ǫ3 and ǫ4 are the polarization vectors of the gluons. In the gluon fusion channel,
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Figure 6.2: Feynman diagrams for the gg fusion and qq annihilation at leading order
in QCD.

the following tensor notation has been used

T ab
µν =

T c
jlfabc

ŝ
[(p/4 − p/3)gµν + (2p3 + p4)µγν − (2p4 + p3)νγµ] : s-channel

+
(−i)T a

jmT b
ml

t̂ − m2
t

γµ(p/3 − p/1 + mt)γν : t-channel

+
(−i)T b

jmT a
ml

û − m2
t

γν(p/4 − p/1 + mt)γµ : u-channel . (6.7)

In the expressions above, α, β and i, j, k, l, m, a, b, c are flavor and color indices,

respectively, T a
ij denote the color generators and ŝ = (p1+p2)

2 = (p3+p4)
2, t̂ = (p3−p1)

2

and û = (p4 − p1)
2 are the Mandelstam variables.

6.2 Structure of the NLO QED contributions

The QED sector can be treated independently from the weak part of the SM as a result

of its direct relation to the unbroken electromagnetic gauge invariance. The pure QED

corrections therefore form a substantial subclass of the complete electroweak O(α)

corrections. They consist of virtual and real contributions, according to the topology

of photonic insertions. Both classes have to be combined in order to obtain a consistent,

infrared (IR) finite result.

6.2.1 Virtual corrections

The virtual QED corrections consist of loop contributions with virtual photons. They

can be described by the matrix elements δMi, i = gg, qq̄ for both production subpro-

cesses separately. Contracting these quantities with the Born-matrix elements Mi
B,

listed in the previous section, leads to differential cross sections at the partonic level
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Figure 6.3: Feynman diagrams for the virtual QED O(αα2
s ) contributions to the gluon

fusion (u-channel diagrams are not explicitly shown). Diagrams with crossed lines and
vertices denote the counter terms.

of the order of O(αα2
s )

dσ̂i(t̂, ŝ)

dt̂
=

1

16π2ŝ
2Re

∑

(δMi ×Mi∗
B) , (6.8)

where ŝ and t̂ are the Mandelstam variables, as defined above.

The virtual QED corrections of O(αα2
s ) can be rearranged into self-energy, ver-

tex and box corrections, according to the topology of Feynman diagrams which are

shown in Figs. 6.3 and 6.4 for both production subprocesses. The contributing Feyn-

man diagrams and the corresponding amplitudes were generated using FeynArts [119].

Subsequently, the algebraic reduction of one-loop tensor integrals into scalar integrals

q
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Figure 6.4: Feynman diagrams for the virtual QED O(αα2
s ) contributions to the qq

annihilation. Diagrams with crossed vertices denote the counter terms.
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was supported by FormCalc [120], and the scalar integrals were then evaluated with

help of LoopTools [121]. The treatment of loop integrals is based on the basic reduc-

tion techniques worked out in [122, 123] which were further extended for 4-point loop

integrals in the box contributions in [124, 125]. Some details about the classification

and computation of loop integrals can be found in appendix D .

Due to the gauge invariance of QED, the whole set of one-loop contributions is

gauge invariant. To compensate the ultraviolet (UV) singularities in the loop inte-

grals, counter terms for the gqq-vertex, gtt-vertex and the top quark self-energy have

to be included. There is no counter term for the gluon self-energy at O(α) level since

photons do not couple directly to gluons. The Ward Identity preserves the cancel-

lation of UV singularities in the sum of vertex functions and corresponding counter

terms with renormalization constants of the quark fields. Thus no coupling constant

renormalization is needed.

The renormalization procedure, as described in section 4.2, consists in the first

step of the replacement of bare parameters in the Lagrangian by the renormalized

quantities. In the case of top quarks,

ΨL,R →
(

1 +
1

2
δZL,R

)

ΨL,R ,

mt → mt − δmt , (6.9)

where ΨL,R are the left- and right-handed components of the quark fields. This yields

the counter terms for the gtt-vertex, δΛµ, and for the top quark self-energy, δΣ (denoted

by crossed lines and vertices in Figs. 6.3 and 6.4), at NLO QED as follows:

t

tg

tt

iδΛµ = −igsT
cγµ δZV , (6.10)

iδΣ = i (p/ δZV − mt δZV + δmt) , (6.11)

with

δZV =
1

2
(δZL + δZR) . (6.12)

The renormalization constant of the top quark field, δZV , as well as the renormaliza-

tion constant of the top quark mass, δmt, have to be fixed within a renormalization

scheme. We choose the on-shell renormalization scheme and impose the appropriate

renormalization conditions on the renormalized top quark self-energy Σ̂ that is defined
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as a sum of the unrenormalized self-energy Σ and the corresponding counter term δΣ,

as given in Eq.(6.11),

Σ̂ = Σ + δΣ . (6.13)

The on-shell renormalization conditions that fix the finite parts of the counter terms

are given in the following:

(i) Within the on-shell renormalization scheme the pole of the top quark propagator2

defines the on-shell top quark mass:

Σ̂ (p/ = mt) = 0 , (6.14)

such that the mass renormalization constant is fixed by

δmt

mt

= −(ΣV + ΣS)
∣

∣

p2=m2
t

. (6.15)

(ii) The residue of the top quark propagator is equal to one, which is equivalent to

lim
p/→mt

1

p/ − mt

Σ̂(p/ ) = 0 , (6.16)

fixing the wave function renormalization constants by

δZV = −ΣV (p2 = m2
t ) − 2m2

t

∂

∂p2
(ΣV + ΣS)

∣

∣

p2=m2
t

. (6.17)

At NLO QED, the top quark self-energy consists of a single virtual photon insertion

and can be defined as

t

t

t

γ

: i Σ (6.18)

with

Σ(p/ ) =
α

4π

[

p/ ΣV (p2) + mtΣS(p2)
]

, (6.19)

where the vector and scalar components, ΣV,S, can be expressed in terms of 2-point

loop integrals (see appendix D) as

ΣV (p2) = −Q2
t

(

2B1(p
2,mt, λ) + 1

)

,

ΣS(p2) = −Q2
t

(

4B0(p
2,mt, λ) − 2

)

. (6.20)

2The renormalization conditions fix the real parts of the propagators, in this case ReΣ̂ = Σ̂.
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The renormalization constants of initial state quarks are determined in analogy with

the case of heavy final state quarks, by substituting mt → mq. To obtain the counter

terms for the initial state gqq vertices (Fig. 6.4), only the renormalization of the quark

fields is necessary. Although we neglect the light quark masses whenever possible, it

cannot be done here, since they are needed for the derivatives of Eq. (6.17). The role

of the parameter λ is discussed below.

As a consequence of the null photon mass, the virtual QED corrections are infrared

(IR) divergent. The photonic IR singularities can be regularized by introducing a ficti-

tious photon mass λ, which has to be inserted into the expressions of Eq. (6.20) in order

to obtain a finite derivative of the self-energy. The regularization by a photon mass

is allowed because the gauge invariance of QED, U(1)Q, is not violated by an explicit

mass term for the gauge boson. Obviously, the predictions for physical quantities, such

as cross sections, must be free of the parameter λ. To satisfy this condition, also the

real photonic corrections have to be taken into account. These will be discussed in the

next section.

Following the previous notes on renormalization and regularization of the IR singu-

larities related to photon is sufficient to determine the virtual QED corrections to the

gg fusion subprocess. Analytical expressions for the corresponding matrix elements,

δMgg, are similar to the formulas for the Z and W boson EW corrections, which were

calculated in [106]. The results are summarized in appendix E.

Concerning the qq annihilation production channel, the singular structure of QED

corrections is more complicated. In the vertex correction to the final state, only the

photons yield IR singular contributions. Due to negligible masses of initial state quarks,

there are, however, additional mass singularities present in the initial state vertex cor-

rection. These singularities, proportional to ln2(ŝ/m2), are known from QCD as the

Sudakov double logarithms. There are also single mass logarithms, ln(ŝ/m2), originat-

ing from the collinear photon emission, as already mentioned in section 5.3. Hence,

both the photon mass parameter and the mass of initial state quarks, are needed for

the regularization.

The O(ααs) box contributions shown in Fig. 6.4 contain besides photons also gluons

in the loop. As a result, IR singularities related to the gluons emerge in the loop

integrals. Although gluons, unlike photons, do not interact via an Abelian vertex only,

it is still possible to perform regularization by giving the gluon a mass. This is a

direct consequence of the fact that at O(ααs), the box contribution is still Abelian-

like and the non-Abelian triple-gluon vertex does not interfere. For this reason the

same assumptions are valid for the gluon as for the photon, and for simplicity, the
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Figure 6.5: Feynman diagrams for the real QED O(αα2
s ) contributions of photon

bremsstrahlung to the gg fusion (u-channel diagrams are not explicitly shown).
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Figure 6.6: Feynman diagrams for the real QED O(αα2
s ) contributions of photon

bremsstrahlung to the qq annihilation.

same regularization parameter λ can be used. The calculation of the virtual QED

corrections to the qq annihilation is analogous to the computation of e+e− annihilation

to heavy fermion pairs, which was performed in [126]. Just simple replacements of

me → mq and mf → mt, and appropriate choices of the coupling constant and of the

color factor are needed to deduce explicit analytical formulas. These are presented in

appendix E.

6.2.2 Real corrections

According to the Bloch-Nordsieck theorem [127], the IR singularities cancel in the

sum of virtual and real corrections. Although single virtual and real contributions

contain the IR singular terms of ln(λ), which are necessary to regularize singularites

originating from the vanishing photon momentum, these are fully compensated in the

sum of photonic corrections. This fact reflects the physical reality that photons with

such low momenta cannot be detected in any realistic experiment. Hence, the virtual

and real photons cannot be distinguished if they are soft, as a consequence of the finite

detector resolution. Obviously, any attempt to split the virtual and real corrections in

the soft limit leads to unphysical IR divergent results.

Therefore, we have to add all real photon contributions of the appropriate order to

the virtual part in order to obtain an IR finite result. Feynman diagrams for the photon

bremsstrahlung off external quarks, which give corrections of O(αα2
s ), are illustrated

in Figs. 6.5 and 6.6.
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Figure 6.7: Feynman diagrams for the real gluonic contributions to the qq annihilation
corresponding to gluon bremsstrahlung off the QED-mediated (first row) and off the
QCD-mediated tree-level diagram (second row). Only the interference of QED and
QCD diagrams yields contributions of the appropriate order.

So far we have included the real corrections that are necessary to eliminate the IR

singularities related to the photon. However, there are also gluonic IR singularities

in the O(ααs) box contributions in the qq annihilation (see section 6.2.1). For this

reason we also need to include the real gluonic corrections. There are two candidate

classes of possible Feynman diagrams for the gluon bremsstrahlung. These are either

the gluon radiation off the QED-mediated or off the QCD-mediated qq annihilation,

as illustrated in Fig. 6.7.

In order to compensate the IR singularities in the box corrections of Fig. 6.4, it is

necessary to include the gluon bremsstrahlung of O(αα2
s ). To construct contributions

of this order, the two bremsstrahlung processes of Fig. 6.7 are separately not suitable,

since they give contributions of O(αsα
2) and O(α3

s ), respectively. Nevertheless, the

interference of these two is of the appropriate order, O(αα2
s ). Still, not all of the QED–

QCD interference terms contribute. Due to the color structure of the corresponding

matrix elements, the initial state radiation as well as the final state radiation off the

QED–QCD tree-level diagrams is zero. Only the interference of the initial and final

state gluon radiation off the QED–QCD tree-level diagrams is non-zero. For concrete-

ness, some of the non-zero bremsstrahlung contributions of O(αα2
s ) are illustrated in

Fig. 6.8.

When counting the IR-singular terms in the sum of QED–QCD interference dia-

grams of Figs. 6.8 and 6.4, uncompensated remnants come out. This indicates that

some contributions of O(αα2
s ) are still missing. In order to identify the necessary ingre-

dient, we have to abandon the naive idea that the QED corrections to QCD tree-level
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Figure 6.9: Feynman diagrams for the O(αα2
s ) contributions to the qq annihilation

corresponding to the interference of the QCD-mediated box diagram (crossed diagram
is not explicitly shown), with the QED-mediated Born-level diagram.

processes can be separated from the rest of O(αα2
s ) contributions. The same color and

IR-singular structure is manifested in case of the pure QCD box corrections to the

QED-mediated qq annihilation (Fig. 6.9), which are the O(αα2
s ) contributions needed

to obtain IR finite results at this order.

In Fig. 6.9, only the QED-mediated Born-level diagram is shown. However, due to

the mixing between photon and Z-boson, which occurs in the qq annihilation at O(α2),

also the interference of the QCD box and Z-boson tree-level diagram has to be taken

into account. This contribution belongs to the IR-singular gluon–Z corrections, which

likewise consist of the gluon–Z box corrections to the QCD-mediated Born diagram and

of the gluon bremsstrahlung off the interference of QCD- and EW-mediated tree-level

diagrams. The corresponding Feynman diagrams can easily be obtained by replacing

the photon by the Z-boson in Figs 6.4, 6.7–6.9. The IR-singular structure of these

contributions is simplified by the fact that there are no IR-singularities related to the

Z-boson. Therefore, no contributions analogue to the photon bremstrahlung (Fig. 6.6)

are needed. The gluon–Z interference effects have been neglected in the original study

of EW corrections performed in [106]. They have been investigated recently in [108],

and were found to be less than about 1% of the O(α2
s ) Born-level tt total hadronic

cross section.

In order to give a complete description of the NLO QED effects, we also mention

the photon radiation off the off-shell top quarks in the gg fusion subprocess (Fig. 6.10).

These contributions are of the respective order, O(αα2
s ), but are of about two orders
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Figure 6.10: Feynman diagrams for the O(αα2
s ) contributions to the gg fusion cor-

responding to the photon bremsstrahlung off the off-shell top quarks in t- and u-
production channels.
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Figure 6.11: Feynman diagrams for the O(αsα
2) contributions to the gq partonic sub-

process are suppressed with respect to the O(αα2
s ) contributions.

of magnitude smaller than the IR-singular photon bremsstrahlung (Fig. 6.5). For this

reason, they are not essential for the numerical studies and are only presented for

completeness.

Up to now we were concentrating on the gg fusion and qq annihilation as tt pro-

duction partonic subprocesses. At this point we should also mention the gluon–quark

partonic subprocess (Fig. 6.11), which yields a contribution to the same final state as

the QED–QCD interference diagrams of Figs. 6.8. However, the lowest order gluon–

quark subprocess with QED–QCD interference results in contributions of O(αsα
2),

and these are suppressed by the factor of O (α/αs) with respect to the NLO QED

contributions in the other two partonic subprocesses.

6.3 Photon-induced tt production

In addition to the previously mentioned NLO QED contributions we also have to

inspect the photon-induced production channels. These comprise the gluon–photon and

the quark–photon processes, which are illustrated in Figs. 6.12 and 6.13, respectively.

Although at the partonic level these processes represent a different type of production

channels than the qq annihilation and the gg fusion channels, they contribute to the

same hadronic final state ttX.

In general, photon-induced partonic processes vanish at the hadronic level unless

the NLO QED effects are taken into account. As already mentioned in section 5.3, a
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Figure 6.12: Feynman diagrams for photon induced tt production in the photon–gluon
scattering.
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Figure 6.13: Feynman diagrams for the photon-induced tt production in the quark–
photon partonic subprocess.

direct consequence of including these effects into the evolution of parton distribution

functions (PDFs) is the non-zero photon density in the proton. This leads then to

non-zero photon-induced contributions at the hadronic level.

In our case, convoluting the photon-induced partonic cross sections with the PDFs

at NLO QED leads to non-zero contributions to the pp/pp → ttX hadronic processes.

In the quark–photon channel, the collinear singularities related to the light initial state

quarks are already present at the partonic level, whereas in the gluon–photon case, they

enter only via PDFs. For this reason, the quark–photon channel represents an NNLO

QED contribution and is suppressed with respect to the gluon–photon channel, which

contributes to NLO in QED. Therefore, we only include the gluon–photon contribution

to our numerical analysis. The corresponding Born-matrix elements can be expressed

in analogy with the gluon fusion channel as

Mgγ
B = (−igse Qt T

a
jl) ǫµ

4(p4) ǫν
3(p3) ūj

t(p2) Tµν vl
t̄(p1) , (6.21)

where ǫ3 and ǫ4 are the polarization vectors of the photon and gluon. The tensor

notation reads

Tµν =
1

t̂ − m2
t

γµ(p/3 − p/1 + mt)γν : t-channel

+
1

û − m2
t

γν(p/4 − p/1 + mt)γµ : u-channel . (6.22)

In the expressions above, we use the same conventions for color indices and momenta

of the particles as in section 6.1.1.
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As the PDFs at NLO QED became available only recently [92], the photon-induced

hadronic processes have not yet been investigated. Here we present the first study of

these effects on the top pair production.

6.4 Soft and collinear photon/gluon emission

The soft and collinear photon emission potentially implies numerical problems in the

phase space integration of the radiative process. The phase space integral diverges in

the soft region where the photon momentum k becomes very small (k → 0), giving rise

to IR singularities. If the fermion masses are set to zero, also the mass singularities

emerge as a consequence of the collinear photon emission (pk → 0, where p is the

fermion momentum).

There are several methods for the treatment of soft and collinear singularities.

In the following, we give a brief description of two approaches we used to evaluate

the bremsstrahlung contributions: the dipole subtraction and the phase space slicing

method. Throughout our calculations the phase space slicing method was adopted,

taking advantage of its universality in handling both, the inclusive and non-inclusive

quantities. The dipole subtraction method was used to verify numerical results ob-

tained with the slicing method.

As the radiative process of qq annihilation is very similar to photon emission in

e+e− annihilation, we closely followed the approach in [126]. In the case of gg fusion,

the use of the dipole subtraction method was based on the study of γγ → tt in [128].

The treatment of real corrections is not fully included in FormCalc and LoopTools,

and therefore we have developed and implemented the code necessary for the evaluation

of soft and collinear contributions.

6.4.1 Phase space slicing

In the phase space slicing approach, the phase space is divided into regions where the

integrand is finite and regions where the singularities occur. In the non-singular regions

the integration is performed numerically, whereas in the singular parts it is carried out

analytically using approximations for the soft and collinear photon or photon-like gluon

(from now on just photon, for simplicity).

To locate the soft and collinear regions, two cut-off parameters, ∆E and ∆θ, are

introduced. The soft cut-off parameter, ∆E, acts as boundary on the photon energy k0

such that for k0 < ∆E ≪
√

ŝ, with
√

ŝ being the total energy of the partonic system;

the photon is soft. The collinear part is constrained by the angular cut-off, ∆θ, imposed
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Figure 6.14: Variation of the partial contributions and of the sum of all contributions
for different values of the cut-off parameters, ∆E in the gg fusion channel, and ∆δ in
the qq annihilation; at the center-of-mass of the partonic system,

√
ŝ = 1000 GeV.

on the angle between the photon and a charged fermion, θγf , to satisfy the condition

θγf < ∆θ. Hence, we can decompose the cross section for the real corrections into the

soft, collinear, and finite parts as follows

dσ̂a
real = dσ̂a

soft(∆E) + dσ̂a
coll.(∆E, ∆θ) + dσ̂a

finite(∆E, ∆θ) , (6.23)

where a = qq̄ → tt̄γ, gg → tt̄γ . Note that the collinear contribution is zero in the gg

fusion and in the case of the qq annihilation, only the initial state radiation contributes,

since there are no mass singularities related to the final state bremsstrahlung.

The soft part is combined with the virtual corrections to cancel the IR singularities

proportional to log λ and the mass singularities of double logarithms, log2 mq. The

single logarithms log mq are not compensated in the sum of virtual and real corrections

and have to be handled by means of factorization (see section 6.5.3).

Single virtual and real contributions obtained within the phase space slicing ap-

proach depend on the cut-off parameters ∆E and ∆θ. If combining all contributions,

this dependence must cancel. In order to check the consistency of our results, we

examine the dependence of single contributions and of the final result on the cut-off

parameters. As shown in Fig. 6.14, this dependence is canceled in the sum of all

contributions.

In both singular regions the cross section for the radiative process factorize into the

lowest-order cross section and universal factors that contain the singularities. In the

case of the qq annihilation subprocess, the soft photon bremsstrahlung cross section
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can be, as shown e.g. in [78,126], expressed as

dσ̂soft = −α

π
dσ̂Born

×
{

Q2
q

[

2 ln

(

2∆E√
ŝ

)

+ 2 ln

(

2∆E√
ŝ

)

ln

(

m2
q

ŝ

)

+
1

2
ln2

(

m2
q

ŝ

)

+ ln

(

m2
q

ŝ

)

+
π2

3

]

+ Q2
t

[

2 ln

(

2∆E√
ŝ

)

+
1

β
ln

(

1 − β

1 + β

)

+
ŝ − 2m2

t

ŝβ

[

2 ln

(

2∆E√
ŝ

)

ln

(

1 − β

1 + β

)

+
1

2
ln2

(

1 − β

1 + β

)

+ 2Li2

(

2β

1 + β

)

]]

+ 2QqQt × 3

[

2 ln

(

2∆E√
ŝ

)

ln

(

m2
t − û

m2
t − t̂

)

+ Li2

(

1 − ŝ(1 + β)

2(m2
t − t̂)

)

+

{

Li2

(

1 − ŝ(1 − β)

2(m2
t − t̂)

)

− Li2

(

1 − ŝ(1 + β)

2(m2
t − û)

)

−Li2

(

1 − ŝ(1 − β)

2(m2
t − û)

)

}]}

, (6.24)

where the relative velocity β is given as β =
√

1 − 4m2
t /ŝ , Li2 denotes the dilogarithm

(see appendix D for definition), and the multiplicative factor of 3 in the interference

term comes from the sum of photon and gluon radiation contributions. The soft photon

factor for the gg fusion can easily be deduced by setting Qq = Qg = 0.

The cross section for the collinear photon radiation off the initial state qq pair, as

given e.g. in [129], corresponds to a convolution

dσ̂coll.(ŝ) =
Q2

qα

π

∫ 1−2∆E/
√

ŝ

0

dzdσ̂Born(zŝ)

×
{[

ln

(

∆θ 2ŝ

4m2
q

)

− 1

]

Pqq(z) + (1 − z)

}

, (6.25)

with

Pqq(z) =
1 + z2

1 − z
. (6.26)

The momentum of the quark that radiates a photon is reduced by the factor z so that

the partonic center-of-mass frame of the hard process receives a boost. Pqq denotes the
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splitting function of a photon from a quark or antiquark, and can be determined in

analogy to the splitting functions in QCD (see section 5.2.2 and appendix C.1). The

integration over all possible reduction fractions z is constrained by the soft cut-off ∆E,

to prevent overcounting in the soft region.

6.4.2 Dipole subtraction method

In this work we use the dipole subtraction method which was originally proposed for

QCD [130]. We closely follow the formalism worked out in [128] and refer to it for

more details.

The idea of the subtraction method is to construct an auxiliary function which

contains the same singularities as the real corrections, and subsequently to subtract

the auxiliary function from the real contributions. As a result, the integrand becomes

finite and can thus be integrated numerically over the whole phase space. The auxiliary

function has to be simple enough so that it can be integrated analytically and sub-

sequently added to the virtual contributions. The IR and mass-singular terms in the

virtual corrections are then canceled against those in the integrated auxiliary function.

The schematic structure of the subtraction approach can be sketched as

∫

dΦ1

∑

γ

|M1|2 =

∫

dΦ1

(

∑

γ

|M1|2 − |Msub|2
)

+

∫

dΦ1|Msub|2 , (6.27)

where |M1|2 and |Msub|2 denote the squared matrix elements of the radiative process

and the subtraction function, respectively.

The main benefit of the subtraction method is that the integration error is smaller

than the corresponding error obtained using the phase space slicing method. In the

slicing approach the soft and collinear approximations require the choice of rather small

values of the cut-off parameters and the integration error can become very large. The

origin of this behaviour is in the integration performed “too close” to the singularity.

Typically, the integration error obtained by the application of the dipole subtraction

method is smaller by a factor of 10 − 20 [128]. A comparison of the numerical perfor-

mance of the subtraction method versus the phase space slicing is given in Tab. 6.1.

The best integration results in terms of smallest errors are obtained with the sub-

traction method. In the phase space slicing approach, the error grows with smaller

cut-off parameter. On the other hand, larger cut-off parameters are not suitable for

the calculations since the approximation is no longer reliable.

The disadvantage of the subtraction method is in the treatment of non-inclusive

quantities. Here the subtraction function which was used for the inclusive calculations
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Table 6.1: Comparison of the numerical results for the relative QED corrections in
the gg fusion channel, as obtained with the phase space slicing method and the dipole
subtraction approach, for various partonic center-of-mass energies

√
ŝ = 2E. ∆E

denotes the soft cut-off parameter.

√
ŝ Method ∆E/E δQED [%]

360 Phase space slicing 10−2 2.5483 ± 0.0014
10−3 2.5415 ± 0.0014
10−4 2.5407 ± 0.0014

Dipole subtraction — 2.5410 ± 0.0014

500 Phase space slicing 10−2 0.35816 ± 0.00037
10−3 0.34882 ± 0.00061
10−4 0.3478 ± 0.0011

Dipole subtraction — 0.34817 ± 0.00022

1000 Phase space slicing 10−2 0.1254 ± 0.0014
10−3 0.1121 ± 0.0025
10−4 0.1107 ± 0.0037

Dipole subtraction — 0.11115 ± 0.00020

2000 Phase space slicing 10−2 0.1943 ± 0.0023
10−3 0.1763 ± 0.0043
10−4 0.1752 ± 0.0064

Dipole subtraction — 0.17472 ± 0.00035

is not suitable anymore and has to replaced by a new function. This difficulty does not

arise in the phase space slicing approach and therefore, in the non-inclusive studies we

used the phase space slicing method alone.

6.5 Hadronic cross sections for pp/pp → ttX

In order to provide results independent of the detector setup, we calculate the total

as well as differential hadronic cross sections inclusively in the photon, i.e. we add up

contributions of the non-radiative and radiative processes. As already mentioned, only

the sum of all virtual and real corrections is independent on the cut-off parameters.

Therefore, for exclusive calculations we would have to tune the results for specific

detector parameters of energy and angular resolution, which would limit the application

of our results to a specific detector only. The calculation of the total hadronic cross
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section can be performed using FormCalc where the parton densities are provided via

the Les Houches Accord (LHA) library. Before the numerical results can be evaluated,

the factorization of the remaining mass singularities has to be worked out. For this

reason, we have extended FormCalc to handle the mass factorization.

6.5.1 Integrated hadronic cross sections

The observable hadronic cross section is obtained by convoluting the short distance par-

tonic cross sections σ̂gg and σ̂qq with the universal scale dependent parton distribution

functions (PDFs). For hadrons carrying the momentum P1 and P2 with the center-of-

mass (CM) energy squared equal to S = (P1 + P2)
2, the hadronic cross section can be

expressed as [80]

σ(S) =

∫ 1

4m2
t

S

dτ

(

dLqq

dτ
σ̂qq(ŝ, αs(µ)) +

dLgg

dτ
σ̂gg(ŝ, αs(µ))

)

, (6.28)

with τ = x1x2 = ŝ/S, where x1 and x2 are the momentum fractions of partons within

the hadrons, and ŝ is the partonic center-of-mass energy,
√

ŝ =
√

τS. Masses of the

partons as well as of the hadrons are neglected with respect to the CM energies. The

parton luminosities are defined as follows,

dLij

dτ
=

1

1 + δij

∫ 1

τ

dx1

x1

[

Φi(x1, µf )Φj(
τ

x1

, µf ) + (1 ↔ 2)

]

, (6.29)

with Φi = qi, g. The factorisation scale, µf , and the renormalization scale, µ, are

chosen to be equal and set to µf = µ = 2mt.

Expressions analogous to Eqs. (6.28), (6.29), also apply to the gluon–photon hadronic

process.

6.5.2 Differential hadronic cross sections

In addition to the fully integrated hadronic cross section it is plausible to define

hadronic cross sections differential in one or more parameters. Typically, the variables

are chosen to be Lorentz invariant quantities or quanitities with simple transformation

properties. In our study we inspect the differential hadronic cross sections with re-

spect to the invariant mass of the final state tt pair and with respect to the transverse

momentum of top quark.

The invariant mass of a process is equivalent to the partonic CM energy
√

ŝ =
√

τS,

and corresponds to the sum of the momenta of the outgoing particles. The invariant
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mass distribution of the hadronic cross section has the following form:

dσpp→fin

d
√

ŝ
= 4π

√
ŝ

S

∑

{m,n}

dL
dτ

∣

∣

∣

∣

τ= ŝ
S

σ̂mn→fin , (6.30)

where fin is label of a general partonic final state, and mn denotes the initial state

partons.

The differential hadronic cross section with respect to the transverse momentum of

one of the final state particles (top quark in this case), pT =
√

p2
x + p2

y, can be defined

for a 2 → 2 process as follows,

dσ

dpT

=

∫ 1

τ̃0

dτ
dL
dτ

dσ̂

dcθ̃

∂cθ̃

∂pT

, (6.31)

with cθ̃ denoting cosine of the angle between the direction of the top quark and the

beam axis. The lower limit on the τ -integration τ̃0 corresponds to the threshold of the

partonic interaction, and therefore must be adjusted according to the respective pT as

τ̃0 =

(

√

m2
1 + p2

T +
√

m2
2 + p2

T

)2

S
, (6.32)

where f1 and f2 stand for the two final state particles with the respective masses m1

and m2, which both have the same pT as a consequence of the momentum conservation

and Lorentz invariance.

Real photonic corrections are three-particle final state processes. Therefore, we also

need expression for the differential hadronic cross section with respect to the transverse

momentum of one of the final state particles (top quark), for a 2 → 3 process:

dσ

dpT

=

∫ 1

τ̃0

dτ
dL
dτ

∫

dk0
1

∫

dk0
3

∫

dη̃
dσ̂

dk0
1dk0

3dη̃dcθ̃

∂cθ̃

∂pT

, (6.33)

where k0
1 and k0

3 denote energies of the two independent final state particles (the mo-

mentum of the third particle is not independent, but is fixed by the momentum con-

servation), cθ̃ is cosine of the angle between the direction of ~k1 and the beam axis. η̃

is the angle between the projection of ~k3 into the plan formed by ~k1 and axis, which

is perpendicular to ~k1 and to the beam direction, and this axis. The threshold of the

2 → 3 partonic interaction, determined with respect to particle f1, corresponds to

τ̃0 =

(

√

m2
1 + p2

T +
√

(m2 + m3)2 + p2
T

)2

S
. (6.34)

Here m3 corresponds to the photon mass, which is zero. For a consistent treatment in

case of the IR-singular processes it has to be replaced by the soft cut-off parameter.
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6.5.3 Mass factorization

The mass-singular logarithmic terms proportional to lnmq are not canceled in the sum

of virtual and real corrections. They originate from collinear photon emission off the

incoming light quarks. In analogy to the factorization of collinear gluon contributions,

they have to be absorbed into the parton densities (see section 5.2).

This can be formally achieved by replacing the bare quark distributions q(x) by the

appropriate scale dependent distributions q(x,Q2) according to [131] in the following

way,

qi(x,Q2) = qi(x)

+
α

π
Q2

i qi(x)

{

1 − ln δs − ln2 δs +

(

ln δs +
3

4

)

ln

(

Q2

m2
i

)

−1

4
λFCfv+s

}

+

∫ 1−δs

x

dz

z
qi

(x

z

) α

2π
Q2

i

{

1 + z2

1 − z
ln

(

Q2

m2
i

1

(1 − z)2

)

−1 + z2

1 − z
+ λFCfc

}

, (6.35)

with

fv+s = 9 +
2π2

3
+ 3 ln δs − 2 ln2 δs , (6.36)

and

fc =
1 + z2

1 − z
ln

(

1 − z

z

)

− 3

2(1 − z)
+ 2z + 3 . (6.37)

The expressions for the PDFs are given in both DIS and MS factorization schemes,

which corresponds to λFC = 1 and λFC = 0, respectively.

For a consistent treatment of the collinear singularities at O(α), it is necessary

to use an appropriate set of PDFs that was extracted from the data and evolved by

DGLAP equations with the NLO QED effects included. Otherwise, it would lead to

an overestimation of the scale dependence. Therefore, we used the PDFs from the

MRST collaboration [92] which were determined at NLO QCD and NLO QED (see

section 5.3). The authors do not explicitly state which factorization scheme is relevant

for NLO QED. We follow the reasonning given in [132] and use the DIS scheme in our

calculation and set the scale Q = µf = µ = 2mt.
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After performing the factorization of mass singularities, the results become free of

the mass logarithms, proportional to lnmq, which we checked numerically. Still, the

scale dependence cannot be checked in a consistent way owing to the NLO QCD effects

in the parton densities, as these are not included in our calculation. For this reason we

do not present a study of the scale dependence.

6.6 Numerical results

In the following we discuss numerical results for the total hadronic cross sections, as

well as for the differential hadronic cross sections with respect to the invariant mass of

the tt pair and the transverse momentum of the top quark.

In order to provide a result independent of the detector setup, we treat the photon

inclusively, i.e. we integrate over the whole photon phase space. The IR singularities

are handled by means of the phase space slicing method. In the qq annihilation channel,

effects of the initial state radiation are included with factorization of the mass singular-

ities, as discussed in the previous section. The partonic cross sections are convoluted

with the NLO QED PDF set, provided by the MRST group [92] and the factorization

and renormalization scales are set to µf = µ = 2mt.

To investigate the numerical impact of the NLO QED corrections on the total

hadronic top pair production cross section we introduce a relative correction δ, defined

as

δ =
σ1-loop(S) − σB(S)

σB(S)
, (6.38)

where S is the total energy of the hadronic system, (2 TeV at the Tevatron and 14 TeV

at the LHC). As the one-loop cross section can be written as

σ1-loop(S) = σB(S) + δσ(S) , (6.39)

the relative correction δ is given as the ratio of the sum of O(αα2
s ) contributions δσ(S),

and the Born-level cross section σB.

We also use δ to inspect the effects of NLO QED corrections on the differential

hadronic cross sections. For this purpose, we redefine the Eq. (6.38) by substituting

the total cross sections σ by the differential cross sections dσ. In this way we obtain

variations of δ as a function of the total partonic energy, equivalent to the invariant

mass of the tt pair, and of the transverse momentum of the top quark.

In order to avoid numerical instabilities related to the tt production threshold we

introduce kinematical cuts on the top quark system. These are necessary for the
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identification of tt pairs in experiment and are used in the event reconstruction. As

the top quarks have a very short lifetime, they decay practically immediately and

can only be identified and reconstructed via their decay products. Typically, the top

decay products have large transverse momenta and this fact is used as event selection

criterium, as imposing a transverse momentum cut reduces the background originating

from other QCD processes.

Also the detector setup gives constraints on the data analysis. Particles can only

be reconstructed in certain angular regions around the interaction point according to

the detector geometry. For convenience, a spatial coordinate describing the angle of a

particle relative to the beam axis, the pseudorapidity η, is used to describe the detector

geometry. It is defined as

η = − ln

[

tan

(

θ

2

)]

, (6.40)

where θ is the angle relative to the beam axis. In the limit of ultra-relativistic hadrons

and partons, η is the same as the rapidity y :

y =
1

2
ln

p0 + pL

p0 − pL

(6.41)

defined in the center-of-mass (CM) frame of a particle with momentum p, energy

p0, and longitudinal momentum pL, parallel to the beam axis. The rapidity has an

additive character under Lorentz transformations and receives a Lorentz boost from

the hadronic to the partonic CM frame:

yH → yP = yH − yboost . (6.42)

Using the ultrarelativistic approximation, we can deduce that

yboost =
1

2
log

x2

τ
, (6.43)

with x being the momentum fraction of the parton from the corresponding hadron and

τ being the ratio of total energies of the partonic and hadronic systems.

In order to match the experimental conditions we introduce constraints on the

transverse momentum pT and on the pseudorapidity η of the top quark and top anti-

quark, and study the impact on the NLO QED corrections. Since we do not include

the top quark decay in our calculations, we choose pT for the top quark to correspond

to pT of the total system of decay products. In the case of LHC we apply kinematical

cuts as follows,

pT > 100 GeV and |η| < 2.5 . (6.44)
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Table 6.2: Total hadronic cross section for tt̄ production at NLO QED at the LHC in
different production subprocesses without and with the cuts. The relative precision of
the corrections achieved in the numerical integration is 10−3.

Process σtot without cuts [pb] σtot with cuts [pb]

Born correction Born correction

uū 34.25 -1.41 18.64 -0.770

dd̄ 21.61 -0.228 11.54 -1.68

ss̄ 4.682 -0.0410 2.253 -0.0304

cc̄ 2.075 -0.0762 0.9630 -0.0446

gg 407.8 2.08 213.6 0.524

gγ 4.45 2.29

pp 470.4 4.78 247.0 1.80

For the Tevatron, the cuts are

pT > 25 GeV and |η| < 2.5 . (6.45)

Concerning the hard, non-collinear bremsstrahlung, it is possible to construct more

elaborate selection criteria, e.g. to combine the photon with one of the top quarks

and impose cuts on this system. Nevertheless, we have found that the impact on

the relative corrections is small, since only the hard part of the NLO contributions is

slightly modified. Therefore we do not consider such criteria in our analysis.

In Tabs. 6.2, and 6.3, we present the numerical results for the total hadronic cross

sections at the LHC and at the Tevatron, respectively. The values of σtot are given at

the Born-level and for the NLO QED corrections. They are obtained with the relative

accuracy of 10−3. The contributions of all production channels are shown separately,

as well as combined to the total correction.

At the LHC, the largest correction comes from the photon–gluon production channel

which contributes at NLO. It has the same sign as the contribution to the gg fusion

which is the dominant tt production channel at the LHC. However, in case of the

qq annihilation, the corrections have opposite signs which leads to a reduction of the

overall NLO QED correction. In total, the relative correction δ is about 1% and is

slightly reduced if the cuts are applied.

At the Tevatron, the largest contributions to the total hadronic cross section come

from the uū subprocess. The photon–gluon subprocess yields the second largest con-
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Table 6.3: Total hadronic cross section for tt̄ production at NLO QED at the Tevatron
in different production subprocesses without and with the cuts. The relative precision
of the corrections achieved in the numerical integration is 10−3.

Process σtot without cuts [pb] σtot with cuts [pb]

Born correction Born correction

uū 3.411 -0.117 3.189 -0.118

dd̄ 0.5855 -2.89×10−3 0.5432 -2.91×10−3

ss̄ 8.063×10−3 -1.21×10−5 7.343×10−3 -1.79×10−5

cc̄ 2.044×10−3 -5.06×10−5 1.857×10−3 -5.00×10−5

gg 0.4128 3.17×10−3 0.3803 2.69×10−3

gγ 0.0154 0.0143

pp̄ 4.420 -0.102 4.121 -0.104

tribution but with opposite sign. In total, the relative correction δ is about 2.3% and

is slightly enhanced by the cuts to 2.5%.

From now on, we focus on the differential hadronic cross sections. In Fig. 6.15 the

pT and
√

ŝ distributions of the differential hadronic cross sections are shown (left),

as well as the relative QED corrections with respect to the Born-level cross sections

(right), at the LHC. Here we compare the two production channels, which contribute

at the Born-level without applying the cuts. The gg fusion contribution dominates

over the qq channel, owing to large gluon densities at low x, which is characteristic for

the top quark production at the LHC energies.

The impact of the NLO QED corrections on the gg fusion channel is rather small

less than 1% over most of the pT range (up right) and also over most of the
√

ŝ range

(down, right). The relative correction δ reaches above 1% only close to the production

threshold, which is a direct consequence of the threshold effects. In contrast to the gg

channel, the O(αα2
s ) contributions in the qq annihilation subprocess are negative and

much larger. The relative correction δ grows with increasing pT and
√

ŝ and gets to

the 5% level for pT & 400 GeV and
√

ŝ & 1200 GeV.

In case of the Tevatron, as shown in Fig. 6.16, the qq annihilation dominates over

the gg fusion (left). The impact of O(αα2
s ) corrections on both channels is similar

to the LHC. Again, in the gg fusion, the relative correction δ is smaller than 1% for

most of the pT and
√

ŝ ranges, except for the low pT and threshold regions where it

reaches about 2% (up right). In the qq annihilation channel, the relative corrections



TOP PAIR PRODUCTION AT NLO QED 67

 [GeV]
T

p
0 500 1000 1500 2000 2500 3000

 [
p

b
]

T
/d

p
σ

d

-8
10

-710

-6
10

-510

-410

-3
10

-210

-110

1  gg
q q

 [GeV]
T

p
0 500 1000 1500 2000 2500 3000

 [
%

]
δ

-10

-8

-6

-4

-2

0

2

LHC

 [GeV]s
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 [
p

b
]

s
/dσ

d

-710

-6
10

-510

-410

-3
10

-210

-110

1

 [GeV]s
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 [
%

]
δ

-8

-6

-4

-2

0

2

4

Figure 6.15: Differential hadronic cross sections (left), and variation of the relative
correction δ (right), as functions of the transverse momentum of the top quark (up)
and of the total energy of the partonic system (down), at the LHC (S = 14 TeV), with
no cuts applied, for both production channels.

are negative and at a few per cent level already near the threshold. They grow futher

with increasing pT and
√

ŝ.

Figures 6.17 and 6.18 show the impact of applying the cuts on both production

channels at the LHC and at the Tevatron, respectively. At the LHC, the cuts slightly

reduce the differential cross sections as well as the relative corrections but these effects

are very small over most of the pT and
√

ŝ ranges. A sizeable reduction is only visible

near the threshold where the relatively large contributions related to threshold effects

are removed.

At the Tevatron, imposing the relatively weak cut on the transverse momentum

does not change the distributions of the differential hadronic cross section at one-loop

significantly (Fig. 6.18 left). In the gg fusion, the impact of the cuts on the relative

corrections (Fig. 6.18 up right) is only visible in the low pT and threshold regions,

similarly as for the LHC, but here the reduction is smaller because of smaller pT cut.



68 6.6 Numerical results

 [GeV]
T

p
0 50 100 150 200 250 300 350 400 450 500

 [
p

b
]

T
/d

p
σ

d

-8
10

-710

-6
10

-510

-410

-3
10

-210

-110
 gg

q q

 [GeV]
T

p
0 50 100 150 200 250 300 350 400 450 500

 [
%

]
δ

-6

-5

-4

-3

-2

-1

0

1

2

Tevatron

 [GeV]s

300 400 500 600 700 800 900 1000 1100

 [
p

b
]

s
/dσ

d

-8
10

-710

-6
10

-510

-410

-3
10

-210

-110

 [GeV]s

300 400 500 600 700 800 900 1000 1100

 [
%

]
δ

-5

-4

-3

-2

-1

0

1

2

3

4

Figure 6.16: Differential hadronic cross sections (left), and variation of the relative
correction δ (right), as functions of the transverse momentum of the top quark (up)
and of the total energy of the partonic system (down), at the Tevatron (S = 2 TeV),
with no cuts applied, for both production channels.

Much more interesting observation can be done in the qq annihilation case (Fig. 6.18

down right), where applying the cuts increases the size of relative corrections in the

low pT region to almost 3%. We can therefore deduce that the cuts reduce the Born-

level cross section more than the NLO QED contributions. The relative corrections

are negative and reach about 5% for pT & 350 GeV and
√

ŝ & 800 GeV. They further

grow with increasing pT and
√

ŝ.

As previously discussed, also the photon-induced hadronic processes represent con-

tributions of NLO in QED, owing to higher order effects included in the PDFs. In

Figs. 6.19 and 6.20, we therefore include the photon–gluon tt production subprocess

into our analysis and compare the numerical results with the gg and qq production

channels. This is done for the LHC as well as for the Tevatron.

We can see that at the LHC (Fig. 6.19), the photon-induced contributions are

larger than the corrections to both Born-level processes. This is due to the fact that

the partonic cross section for the O(αα2
s ) corrections is reduced by a factor of O(αs)
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Figure 6.17: Differential hadronic cross sections (left) and relative correction δ (right),
as functions of the transverse momentum of the top quark (1st and 3rd row), and of
the total partonic energy (2nd and 4th row), at the LHC (S = 14 TeV). The gg fusion
and qq annihilation channels are investigated separately. The impact of cuts on the
transverse momentum and on the pseudorapidity of the top quarks, pT > 100 GeV and
|η| < 2.5, is also shown.
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Figure 6.18: Differential hadronic cross sections (left) and relative correction δ (right),
as functions of the transverse momentum of the top quark (1st and 3rd row), and of
the total partonic energy (2nd and 4th row), at the Tevatron (S = 2 TeV). The gg
fusion and qq annihilation channels are investigated separately. The impact of cuts on
the transverse momentum and on the pseudorapidity of the top quarks, pT > 25 GeV
and |η| < 2.5, is also shown.
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Figure 6.19: NLO QED effects in the gg, qq and gγ production channels at the LHC
(S = 14 TeV). Differential hadronic cross sections for the NLO QED contributions
with respect to the transverse momentum of the top quark (up), and with respect to
the total partonic energy (down), are shown, without and with applying the cuts.

with respect to the O(ααs) tree-level process, and moreover, the combination of gluon

and photon parton densities can become quite large. As the sign of gγ hadronic cross

section is the same as the sign of the NLO QED contributions to the gg fusion channel,

this tends to enhance the size of the overall NLO QED contributions. The O(αα2
s )

corrections to the qq channel are negative and thus tend to reduce the size of overall

corrections. Applying cuts just slightly reduces contributions from the qq channel as

well as from the photon–gluon channel, whereas in the gg case, the reduction is much

bigger. It is clearly visible that after applying the cuts, the photon–gluon channel

becomes the largest NLO QED contribution.

The situation is different at the Tevatron (Fig. 6.20). Due to dominant parton

densities of valence quarks, the qq annihilation channel is much larger than the other

two. Still, the photon-induced contribution is larger in size than the NLO QED correc-

tions to the gg fusion channel. However, as a consequence of opposite signs, these two

tend to reduce the contribution from the qq channel. As already observed in Fig. 6.18,
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Figure 6.20: NLO QED effects in the gg, qq and gγ production channels at the Tevatron
(S = 2 TeV). Differential hadronic cross sections for the NLO QED contributions with
respect to the transverse momentum of the top quark (up), and with respect to the
total partonic energy (down), are shown, without and with applying the cuts.

applying the cuts slightly enhance the qq contribution, whereas it has almost no effect

on the other two channels.

The combination of partial results for all production subprocesses, including the

photon–gluon channel, is shown in Fig. 6.21 for the pp collisions at the LHC. As a

consequence of the dominant gg production channel, the overall relative NLO QED

corrections are positive and rather small in the low pT region and over a large
√

ŝ

range. For large pT, which corresponds to high x, the qq channel becomes important.

This makes the relative correction negative and further increasing in size. The photon-

induced contribution enhances the overall corrections for low pT and low
√

ŝ, but the

enhancement is only of about 0.5%. Once the corrections become negative, this slight

enhancement changes to a slight reduction. Applying the cuts excludes large portions

of the low pT and threshold regions, where the corrections were quite large. In the pT

and
√

ŝ ranges shown in Fig. 6.21, the relative corrections remain very small, about

1%. Nevertheless, the behavior of the pT distribution indicates that for extremely high
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Figure 6.21: Overall NLO QED effects in the pp collisions at the LHC (S = 14 TeV).
Differential hadronic cross sections with respect to the transverse momentum of the top
quark (up), and with respect to the total partonic energy (down), are shown, without
and with applying the cuts.

pT range the relative correction reaches several per cent. We will come back to this

point at the end of this section.

In Fig. 6.22 we show the overall NLO QED effects on the pp → ttX process at the

Tevatron. Again, the results are obtained by combining all production subprocesses.

In this case, the photon–gluon contribution slightly reduces the overall corrections as a

result of opposite sign of the dominant qq channel contributions. However, applying the

cuts enhances the size of relative correction δ in the low pT region. This enhancement

is also manifested in the
√

ŝ distribution and becomes larger with increasing
√

ŝ. The

overall NLO QED relative corrections with all O(αα2
s ) and O(ααs) contributions are

negative with size about 2% for low pT and low
√

ŝ. They further grow in size with

increasing pT and
√

ŝ and reach up to 4% for pT & 250 GeV and about 5% for
√

ŝ &

800 GeV.

As seen on previous plots, the QED corrections have a much larger impact on the

qq annihilation channel owing to subtleties of the QED–QCD interference, which is not



74 6.6 Numerical results

 [GeV]
T

p
0 100 200 300 400 500

 [
p

b
]

T
/d

p
σ

d

-510

-410

-3
10

-210

 p p

 cutsp p

 [GeV]
T

p
0 50 100 150 200 250 300 350 400 450 500

 [
%

]
δ

-6

-5

-4

-3

-2

-1

0

Tevatron

 [GeV]s

300 400 500 600 700 800 900 1000 1100

 [
p

b
]

s
/dσ

d

-510

-410

-3
10

-210

 [GeV]s

300 400 500 600 700 800 900 1000 1100

 [
%

]
δ

-6

-5

-4

-3

-2

-1

0

1

Figure 6.22: Overall NLO QED effects in the pp collisions at the Tevatron (S = 2 TeV).
Differential hadronic cross sections with respect to the transverse momentum of the top
quark (up), and with respect to the total partonic energy (down), are shown, without
and with applying the cuts.

present in the Born-level result. Also the initial state radiation contributes with terms

proportional to ln (µ2/ŝ), which result from the factorization of mass singularities.

Moreover, the NLO QED effects lead to the non-zero photon-induced tt production

contribution which is comparable in size with the rest of the NLO QED corrections.

The NLO QED contributions form together with the non-photonic EW corrections

a complete set of the full EW effects at one-loop level. The numerical studies of the

non-photonic EW corrections in [106, 108] show that the impact on the total cross

section is negligible, which is consistent with our findings. The NLO non-photonic

EW effects in pT and invariant mass distributions of the differential cross section were

examined in [109–111]. At the LHC, the non-photonic EW corrections are negative

and very small near threshold. They grow in size with increasing
√

ŝ and pT and reach

10% level for very high values of pT and
√

ŝ (pT & 800 and
√

ŝ & 3000 [111]). This

means that at low pT and low
√

ŝ, combinig QED and non-photonic EW contributions

results in a cancellation and their effect is negligible. At very high pT and high
√

ŝ,
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however, the QED and non-photonic EW effects add up and become significantly large

and have to be taken into account.

In pT and
√

ŝ ranges accessible at the Tevatron, the non-photonic EW corrections

are negative and about 4–5%. Unlike the LHC case where the QED corrections were

much smaller than the non-photonic EW contributions except for very high pT and high√
ŝ, the QED corrections are comparable in size to the non-photonic EW contributions

at the Tevatron. This means that although each set of corrections separately remains

well below 10%, combining these two might easily lead up to the 10% level.

We can therefore conclude that the QED corrections, together with the rest of EW

corrections, should be taken into account in the predictions for the precision measure-

ments at the Tevatron since they can have significantly large impact on the distributions

already for relatively low pT and low
√

ŝ. The same applies to the the high pT and

high
√

ŝ analysis at the LHC.
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Chapter 7

SUSY-EW corrections to stop pair
production

Within supersymmetric theories top-squarks are the supersymmetric partners of the

top quarks. The two states t̃L and t̃R, which appear in the chiral supermultiplets Q̂

and T̂ , mix to produce the two mass eigenstates t̃1 and t̃2 (see section 3.4.2). In many

supersymmetric models, the lighter top-squark t̃1, is expected to become the lightest

squark [133].

There are two effects which determine the values of the top-squark masses. Both are

induced by the large top–stop Yukawa coupling. On one hand, the soft SUSY breaking

parameters decrease the squark masses for the third generation while running from

the GUT scale to a low-energy scale via the renormalization group equations (RGEs)

much more than for the first and second generation. [31]. On the other hand, the large

mixing in the stop and sbottom sector leads to substantial splitting between the two

stop or sbottom mass eigenstates [134]. As a result, top and bottom squarks acquire

potentially small masses. These effects can combine in such a way that the lighter

top-squark becomes the lightest squark.

7.1 Top-squark pair production

At hadron colliders, top-squarks can be produced in pairs via strong interactions.

As a consequence, the top-squark production cross section in case of relatively small

top-squark mass mt̃
1

could be significant. For this reason, the top-squarks t̃1 are of

particular interest for collider experiments.

Current experimental limits on top-squark pair production include searches per-

formed at LEP [135] reviewed e.g in [136], and at the Tevatron, done by the CDF and

DØ collaborations in approximately 90 pb−1 of Run I data [137].
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Figure 7.1: Exclusion limits from the searches for top-squarks in the decay t̃1 → cχ̃0
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squark and of the lightest neutralino, Mt̃ and Mχ̃0

1
. On the right: cross section limit

for the t̃t̃+ pair production for assumed Mχ̃0
1

= 40 GeV compared to NLO prediction.

The CDF collaboration also performed a preliminary measurement based on 163 pb−1

of the Run II data [138]. The latest limits for the top-squark mass in relation with the

mass of the lightest neutralino are shown in Fig. 7.1 (left). The CDF collaboration also

provides a comparison of the upper limit for the pair production cross section with the

theoretical prediction (Fig. 7.1 right).

Experimental searches for the top-squarks have also been done in ep collisions at

HERA [139]. Here the top-squark could be kinematically accessible as a resonance

only, and therefore constraints can be imposed on the R-parity violating class of su-

persymmetric models where a single top-squark can be produced.

Concerning the theoretical predictions, the cross sections for the production of

squarks and gluinos in hadron collisions have been calculated at the Born-level in [140].

The currently used predictions have been improved by including NLO corrections in

supersymmetric QCD (SUSY-QCD). These were worked out in [141] with the restric-

tion of the final state squarks to the light quark sector. The analysis for the stop sector

requires proper treatment of the large mixing effects and was supplemented in [142].

The production of top-squark pairs is diagonal at lowest order. Also, at O(α3
s ) the cross

sections are still diagonal in the stop sector. The non-diagonal production is suppressed

as the cross section becomes non-zero only at O(α4
s ). The production of non-diagonal

top-squark pairs can also proceed at O(α2) via Z-exchange in e+e− annihilation [143],

or qq annihilation [144], but is suppressed at hadron colliders.

The cross sections for the diagonal top-squark pair production depend essentially
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only on the mass of the produced stop particles, mt̃
1

or mt̃
2
. The dependence on

other supersymmetric parameters, like the mixing angle, the gluino mass, the masses

of other squarks, etc., is very weak, since these parameters affect only the higher order

corrections and are not relevant at leading order. As a consequence, bounds on the

t̃1t̃
+
1 production cross section can easily be translated into lower bounds on the lightest

stop mass, without reference to other supersymmetric parameters. Furthermore, once

the top-squarks are discovered, their masses can directly be determined from the cross

section measurement.

In the following, we study the EW-like corrections to the top-squark pair production

within the MSSM. We assume MSSM with real parameters and R-parity conservation.

7.1.1 Partonic cross sections at lowest order

At hadron colliders, diagonal pairs of top-squarks can be produced at lowest order

QCD in gluon–gluon fusion and quark–antiquark annihilation:

gg → t̃1t̃
+
1 and t̃2t̃

+
2

qq → t̃1t̃
+
1 and t̃2t̃

+
2

As already mentioned, mixed pairs cannot be produced in lowest order since the gt̃t̃+

and ggt̃t̃+ vertices are diagonal in the chiral as well as in the mass basis.

The top-squark pair production within the MSSM has many similar features to top

quark pair production in the SM, which was studied in the previous chapter. Many

procedures and partial results obtained for top quarks are therefore applicable to top-

squarks. The differences originate from the fact that top-squark is a scalar, while the

top quark is a fermion. As shown in Fig. 7.2, the same topologies of O(α2
s ) tree-

level diagrams are present as for the top quark production (Fig 6.2), just with the

fermions replaced by the scalars. However, there is an extra contribution from the

ggt̃t̃+ interaction vertex, which does not exist in the SM, but can be derived from the

MSSM Lagrangian.

The corresponding cross sections for the partonic subprocesses can be expressed as

given in [142],

σ̂LO[gg → t̃k t̃
+
k ] =

α2
sπ

ŝ

{

βk

(

5

48
+

31m2
t̃
k

24ŝ

)

+

(

2m2
t̃
k

3ŝ
+

m4
t̃
k

6ŝ2

)

ln

(

1 − βk

1 + βk

)

}

,

σ̂LO[qq → t̃k t̃
+
k ] =

α2
sπ

ŝ

2

27
β3

k . (7.1)

Here ŝ is the partonic center-of-mass energy, and βk is the relative velocity, given by

βk =
√

1 − 4m2
t̃
k

/ŝ, with k = 1, 2.
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Figure 7.2: Feynman diagrams for the t̃1t̃
+
1 production at lowest order in QCD, for the

gluon–gluon fusion (up) and quark–antiquark annihilation (down) subprocesses.

7.2 General aspects of NLO SUSY-EW corrections

In the following we investigate the SUSY-EW corrections to top-squark pair production

at one-loop level, including the IR divergent photonic contributions. While within the

SM it was possible to separate the IR divergent QED corrections from the rest of EW

corrections which were IR finite, this is no longer the case in the MSSM. Except for

the gauge bosons of the SM sector, also their supersymmetric partners, gauginos, are

necessary to obtain gauge-invariant and UV finite results.

Hypothetically, the treatment of IR singularities related to massless photons could

be performed within a supersymmetric analogue of QED. To build such a theory, the

photon and its superpartner, photino, are required. However, the photino itself is not

a mass eigenstate of the theory, but it mixes with other neutral gauginos to form the

neutralinos (see section 3.4.4). As a consequence, it is not possible to take the photino

apart from the rest of gauginos. On the other hand, leaving out the photon spoils the

balance of fermionic and bosonic degrees of freedom in supersymmetry, and thus leads

to UV-divergent results. For these reasons the QED contributions and the rest of the

SUSY-EW corrections do not form two independent subsets within the MSSM.

Concerning the renormalization procedure which is necessary to obtain UV finite

production cross sections, only the top-squark mass and the wave functions of external

quark and top-squark fields have to be renormalized. In analogy to our calculation

of the NLO QED corrections to top pair production, neither the gluon fields nor the

strong coupling need to be renormalized. Again, this originates from the non-existence

of an O(α) coupling of the gluon field.

In order to determine counter terms for the NLO SUSY-EW corrections, the bare

parameters of the MSSM Lagrangian have to be replaced by the renormalized quan-

tities. Subsequently, the renormalization constants are fixed within a renormalization
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Figure 7.3: Feynman diagrams for the SUSY-EW contributions to the self-energy of
incoming quarks. Only light quarks are considered. The Higgs boson contributions
are neglected (the sfermion index is s = 1, 2, the neutralino and chargino indices are
i = 1, . . . , 4 and i = 1, 2, respectively).

scheme by imposing conditions on the renormalized self-energies of incoming and out-

going particles.

7.2.1 Quark and squark self-energies at one-loop level

In the case of incoming quarks, the renormalized self-energies of O(α) have already

been discussed in section 6.2.1, where expressions for the photonic contributions were

explicitly given. Here we consider the full SUSY-EW corrections which include the

gauge bosons γ, Z and W , as well as the neutralinos χ̃0
i with i = 1, . . . , 4 , and the

charginos χ̃+
i with i = 1, 2 (Fig. 7.3). Masses of the initial light quarks are set to

zero whenever possible, i.e. except for the mass singular photonic corrections. The

contributions of the Higgs bosons h0, H0, A0 and H, and of the Goldstone bosons G0

and G vanish, since they are proportional to the quark masses. The IR singularities

related to the photon are regularized by the mass parameter λ as in our previous

computation.

To derive the renormalized quark self-energies, we replace the bare parameters in

the Lagrangian by the renormalized quantities1 (see section 4.2 and 6.2.1)

ΨL,R →
(

1 +
1

2
δZq

L,R

)

ΨL,R ,

mq → mq − δmq , (7.2)

where ΨL,R are the left- and right-handed components of the quark fields. The renor-

malized self-energies Σ̂ can be then expressed as the sum of the unrenormalized self-

energies Σ and the correspoding counter terms as

Σ̂q
L(p2) = Σq

L(p2) + δZq
L ,

Σ̂q
R(p2) = Σq

R(p2) + δZq
R ,

Σ̂q
S(p2) = Σq

S(p2) − 1

2
(δZq

L + δZq
R) +

δmq

mq

, (7.3)

1Here we keep the quark masses and the mass renormalization constants explicitly.
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with the decomposition of the renormalized self-energy analogous to the unrenormalized

self-energy

Σq(p) = p/ ω−Σq
L(p2) + p/ ω+Σq

R(p2) + mqΣ
q
S(p2) . (7.4)

Here ω± are the projection operators defined in appendix B.2.2.

Renormalization of the squark self-energy requires counter terms with the renor-

malization constants of the squark masses and external squark fields. The squark

masses can be parametrized by the mass matrix Mq̃ , which was defined in general in

Eqs. (3.20–3.23). In the following, we focus on the top-squark sector. It is convenient

to rewrite the top-squark mass matrix in terms of the mass eigenvalues mt̃
1
, mt̃

2
and

the mixing angle θt̃ as

Mt̃ =





cos2 θt̃ m
2
t̃
1

+ sin2 θt̃ m
2
t̃
2

sin θt̃ cos θt̃

(

m2
t̃
1

− m2
t̃
2

)

sin θt̃ cos θt̃

(

m2
t̃
1

− m2
t̃
2

)

sin2 θt̃ m
2
t̃
1

+ cos2 θt̃ m
2
t̃
2



 . (7.5)

The counter term for the mass matrix can be introduced by

Mt̃ → Mt̃ + δMt̃ , (7.6)

and in general contains counter terms for all relevant parameters, δmt̃
1
, δmt̃

2
, δθt̃.

In analogy with the renormalization of external quark fields, we can substitute the

external squark fields by the renormalized squark fields and corresponding Z-factors:

(

t̃L
t̃R

)

→ (1+
1

2
δZt̃)

(

t̃L
t̃R

)

with δZt̃ =

(

δZt̃
L

0

0 δZt̃
R

)

. (7.7)

In order to obtain the counter terms for the squark fields in the basis of mass eigenstates

(t̃1, t̃2), we perform the following transformation

(

t̃L
t̃R

)

→ U+
t̃

(1+
1

2
δZ̃t̃)

(

t̃1
t̃2

)

, (7.8)

with

δZ̃t̃ = Ut̃δZt̃U
+
t̃
− δZUt̃

=

(

δZt̃
11

δZt̃
12

δZt̃
21

δZt̃
22

)

. (7.9)

Using the previous relations we can express the renormalized top-squark self-energy as

Σ̂t̃(k
2) = Σt̃(k

2) +
1

2
k2(δZ̃+

t̃
+ δZ̃t̃) −

1

2
(δZ̃+

t̃
Dt̃ + Dt̃δZ̃t̃) − Ut̃ δMt̃U

+
t̃

, (7.10)

where Σ̂t̃ , Σt̃ denote the renormalized and unrenormalized self-energies, respectively,

and Dt̃ is the diagonalized mass matrix of Eq. (3.24) with f̃ = t̃.
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Figure 7.4: Feynman diagrams for the SUSY-EW contributions to the self-energy of
the light top-squark (the sfermion index is s = 1, 2, the generation index is i = 1, . . . , 3
and in case of the neutralinos and charginos the indices are i = 1, . . . , 4 and i = 1, 2,
respectively).

For convenience, we define

δm2
t̃ii

=
(

Ut̃ δMt̃U
+
t̃

)

ii
, δm2

t̃ij
=

(

Ut̃ δMt̃U
+
t̃

)

ij
. (7.11)

In the case of diagonal top-squark pair production, only the diagonal terms Σ̂t̃ii
(with

i = 1, 2) of the self-energy matrix are relevant:

Σ̂t̃ii
(k2) = Σt̃ii

(k2) + k2δZt̃ii
− m2

t̃ii
δZt̃ii

− δm2
t̃ii

. (7.12)

For the light top-squark pair production i = 1, and the contributing Feynman dia-

grams are shown in Fig. 7.4. They consist of tadpole insertions of the gauge and Higgs

bosons, and of all sfermions. Only the O(α) part of the squark quartic coupling is

taken into account. The tadpole corrections yield contributions to the mass renor-

malization constant only, while the 2-point loop contributions that contain the Higgs,

Goldstone and gauge bosons, as well as the neutralinos and charginos, contribute to

the renomalization constants of the mass and of external squark fields.

Counter terms for the self-energy, quark and squark vertex and squark quartic

interaction at NLO are given by2

g ~

~

~

~

t

t

t

t

1

1

1

1

iδΣt̃ii
= i

(

k2 δZt̃ii
− m2

t̃ii
δZt̃ii

− δm2
t̃ii

)

, (7.13)

iδΛµii
= −igsT

c (k + k′)µ δZt̃ii
, (7.14)

2Feynman diagrams are shown for i = 1, but the same applies to i = 2.
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g

~

~

g

q

q
g

t

t

1

1
iδΛSSV V

µii
=

1

2
ig2

s

(

1

3
δab + dabcT

c

)

gµν δZt̃ii
, (7.15)

iδΛq
µ = −igsT

cγµ (ω−δZq
L + ω+δZq

R) , (7.16)

where k, k′ denote the momenta of top-squarks (in the direction of arrows), a, b and c

are the gluonic color indices and T c and dabc are the color factors (we skip the fermionic

and sfermionic color indices). In Fig. 7.5 we summarize all the counter terms that are

needed for the NLO SUSY-EW corrections to both partonic subprocesses.

7.2.2 On-shell renormalization conditions

Imposing the on-shell renormalization conditions on the renormalized quark self-energies

(see section 6.2.1) fixes the renormalization constants of initial quark fields δZq
L,R :

δZq
L = −ΣL(p2 = m2

q) − m2
q

∂

∂p2
(ΣL + ΣR)

∣

∣

p2=m2
q
− 2m2

q

∂

∂p2
ΣS

∣

∣

p2=m2
q

,

δZq
R = −ΣR(p2 = m2

q) − m2
q

∂

∂p2
(ΣL + ΣR)

∣

∣

p2=m2
q
− 2m2

q

∂

∂p2
ΣS

∣

∣

p2=m2
q

. (7.17)

In the top-squark sector, we impose the following on-shell renormalization condition

on the diagonal terms of the self-energy matrix Σ̂t̃ii
(with i = 1, 2)

ReΣ̂t̃ii
(m2

t̃i
) = 0 , (7.18)

to fix the renormalization constants for the top-squark masses δm2
t̃ii

as

δm2
t̃i

=
(

Ut̃ δMt̃U
+
t̃

)

ii
= ReΣt̃ii

(m2
t̃i
) . (7.19)

As discussed in section 7.1, the lowest order production cross sections are diagonal

in the stop sector. Mixing enters explicitly only through higher order diagrams. For

this reason the mixing angle θt̃ does not need to be renormalized [145] and thus no

restrictions on the off-diagonal self-energy terms are needed.

The on-shell renormalization condition for the residue of the squark propagators

d

dk2
Re Σ̂ii(k

2)

∣

∣

∣

∣

k2=k2
i

= 0 , (7.20)
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Figure 7.5: Feynman diagrams for the counter terms to the SUSY-EW contributions to
both partonic subprocesses of the light top-squark pair prodution (u-channel diagrams
in the gg fusion channel are not explicitly shown).

fixes the renormalization constants of the squark fields

δZt̃ii
= − d

dk2
ReΣt̃ii

(k2)

∣

∣

∣

∣

k2=m2

t̃
i

. (7.21)

In analogy to the top pair production, it is not necessary to renormalize the gluon

field as there is no gluon coupling of O(α). Also, the strong coupling constant does

not need to be renormalized, since the Ward Identity preserves the cancellation of UV

singularities in the sum of three-point functions and corresponding counter terms with

renormalization of external quark and squark fields.

7.3 Classification of NLO SUSY-EW corrections

7.3.1 Virtual corrections

Due to the extended SUSY-EW sector, the number of contributing diagrams grows

very large in the MSSM in contrast to the SM. To give an idea, there are more than

450 diagrams for the gluon fusion subprocess, while in the qq annihilation, the number

of diagrams is ∼ 50 for each light flavor. These are already reduced numbers by the

approximation that the CKM matrix is an identity matrix, i.e. we neglect the mixing

between flavors of different generations. Under these circumstances, fully automated

tools for handling the Feynman diagrams and the corresponding amplitudes become a

necessity.
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Figure 7.6: Feynman diagrams for the gluon–γ/Z/W–stop–stop contributions to both
production subprocesses (the sfermion index is s = 1, 2 except for the case of photon
where s = 1, the u-channel contributions are not explicitly shown).

We use the same techniques for the generation of Feynman diagrams and of the cor-

responding amplitudes as in the previous calculation (see section 6.2.1). The packages

FeynArts and FormCalc have been extended for calculations within the MSSM. For

basic notations about the treatment of loop integrals we again refer to appendix D.

The partonic level cross sections with NLO SUSY-EW corrections can be obtained

using the prescription of Eq. (6.8).

In analogy with the SM classification of Feynman diagrams, we divide the full set of

virtual SUSY-EW corrections into several groups according to their topology. Except

for the standard topologies, such as self-energy, vertex and box diagrams, new topolo-

gies emerge from the four-particle interaction terms present in the MSSM Lagrangian.

The topologies which are analogous to the Standard Model can easily be derived from

the NLO QED corrections to the top quark pair production by simply replacing the

top quarks by the top-squarks and inserting all the Higgs, gauge and Goldstone bosons

and their supersymmetric partners into the loops (Figs. 6.3, 6.4, for the gluon fusion

and qq annihilation channel, respectively).

In the following we present new topologies which are not present in the Standard

Model. Nevertheless, these do not form any finite subclass and cannot be treated sepa-

rately from the SM-like part. We give a brief overview of different types of contributing

topologies. Figure 7.6 illustrates diagrams which originate from the gluon–γ/Z/W–
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Figure 7.8: Feynman diagrams for the squark-loop contributions to the gluon–gluon–
squark–squark tree-level diagram.

squark–squark interaction. These contribute to s-, t- and u-channnel gg fusion and

to the qq annihilation. There is no such one-loop contribution to the four-particle

ggt̃t̃+ Born-level diagram. On the contrary, the gluon–γ/Z/W–squark–squark inter-

action itself represents a Born-level diagram which contributes to the photon-induced

top-squark production (see section 7.4).

New two- and three-point topologies which correspond to the SUSY-EW corrections

to the gluon–gluon–squark–squark tree-level diagram are shown in Figs. 7.7 and 7.8.

The first set of diagrams consists of Higgs, gauge and Goldstone boson contributions

and requires appropriate counter terms to obtain UV finite results. On the other hand,

the second class of diagrams, composed of squark-loop corrections only, is UV finite

even without renormalization.

Figure 7.9 shows the squark-loop contributions to the s-channel Higgs exchange.

The sum of these contributions is UV finite and thus renormalization is not required.

Concerning the quark loop contributions, the same triangle topology is only present
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Figure 7.9: Feynman diagrams for the squark-loop contributions to the s-channel Higgs
exchange.
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Figure 7.10: Threshold effects in the gg fusion channel manifested in the contributions
of previously shown diagrams: up – Fig. 7.7 (neutral bosons – left, charged bosons –
right), down left – Fig. 7.8, down right – Fig. 7.9. Main sources are the production
thresholds of the heavy top-squark and the two bottom-squark pairs. We show the
relative correction δ at the partonic level as function of the invariant mass of the
top-squark pair.

for the top quark, since other quarks have negligible Yukawa couplings.

Figure 7.10 shows the threshold effects in the invariant mass distribution of the rel-

ative virtual correction δ, which is defined as a ratio of the NLO SUSY-EW corrections

and the Born-level cross section. For simplicity, the results are given at the partonic

level. Main sources of the threshold behavior can be deduced from the structure of

loop insertions of Fig. 7.7. In the case of the neutral Higgs, gauge and Goldstone boson

contributions, only one peak is visible (Fig. 7.10 up left), while for charged bosons two

peaks are present (Fig. 7.10 up right). This is a direct consequence of the stop–stop

coupling to neutral bosons and stop–sbottom coupling to charged bosons, respectively.
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Figure 7.11: Feynman diagrams for the box contributions to qq annihilation, the crossed
diagrams are not explicitly shown (the sfermion index is s = 1, 2 , the neutralino index
is i = 1, . . . , 4).

The peaks correpond to the production thresholds of heavy stop pair and two sbottom

pairs, respectively. No peak is present in the case of photonic correction, since photon

couples to diagonal top-squark pairs only, i.e. to light stop pairs in our case. The two

lower plots of Fig. 7.10 show that all three production thresholds are manifested if

taking into account the squark-loop corrections of Figs. 7.8 and 7.9. A precise study

indicates that there are threshold effects related to the squark pairs of the first two

generations as well. However, due to several reasons, such as very large masses, degen-

eracy and small Yukawa couplings, these effects are suppressed by more than a factor

of 100 and thus completely smeared out in the invariant mass spectrum.

Although we cannot separate the photonic corrections from the rest of SUSY-EW

contributions, the treatment of IR and mass singularities is the same as in the top

quark calculation, i.e. we introduce a fictitious photon mass λ to regularize the IR

singularities and we keep the initial state quark masses when necessary.

In the gg fusion channel, the IR singularities originate from photon radiation exclu-

sively, and mass singularities do not occur. In the qq annihilation subprocess, the IR

singular structure is extended by the contributions related to the gluons which appear

in the four-point UV finite loop integrals. There are two types of IR singular box

contributions (Fig. 7.11). The first group is formed by the gluon–photon box diagrams

with two sources of IR singularities, one related to the photons, the other to the gluons.

The second group consists of the gluon–Z box diagrams with IR singularities originat-

ing from the gluons only. There is also an IR finite group of O(ααs) box diagrams

which consists of gluino–neutralino loops.
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Figure 7.13: Non-zero contributions of O(αα2
s ) corresponding to the interference of

initial and final state gluon radiation off the O(α) and O(αs) Born-level diagrams in
the qq annihilation channel.

Due to collinear photon radiation off the light initial state quarks, mass singular

logarithms ln m2
q appear. The structure of mass singularities is related to the initial

state only and thus it is identical to the top quark case.

7.3.2 Real corrections

To compensate IR singularities in the virtual SUSY-EW corrections, real photonic

and gluonic contributions are required. In the case of gg fusion, only the photon

bremsstrahlung is needed and the respective diagrams for the s-, t- and u−channel

contributions can be deduced from Fig. 6.5 by inserting the top-squarks as final state

particles. In addition, photon radiation off the gluon–gluon–squark–squark Born-level

diagram is illustrated in Fig. 7.12.

In the qq annihilation channel, also the gluon bremsstrahlung contributions are

necessary. In analogy to the top quark calculations, the interference of photon and

gluon bremsstrahlung has to be taken into account in order to compensate the IR

singularities in the gluon–photon box diagrams. These were discussed in detail in

section 6.2.2. The corresponding Feynman diagrams can be deduced from Figs. 6.7

and 6.8 by the appropriate replacements. For the gluon–Z box contributions, only the

gluon bremsstrahlung contributes since there are no IR singularities related to Z boson.

Similarly as for the photon–gluon box corrections, the gluon bremsstrahlung of O(αα2
s )

corresponds to the interference of the initial and final state gluon bremsstrahlung off

the QCD-mediated and Z-mediated tree-level diagrams (Fig. 7.13).
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Figure 7.15: Feynman diagrams for the finite real photon corrections to both production
subprocesses (u-channel contributions are not explictly shown).

Including the QED–QCD interference of real corrections does not yet lead to an

IR finite result. Also the IR singular QCD-mediated box corrections interfering with

the O(α) photon and Z tree-level diagrams are needed. These are shown in Fig.7.14.

Besides the gluonic corrections there are also the IR finite QCD-mediated box correc-

tions, which contain gluinos in the loop. Interfered with the O(α) tree-level diagrams,

these also give contributions of the respective order of O(αα2
s ).

So far we have mentioned only the IR singular bremsstrahlung contributions. How-

ever, there are also IR finite real corrections to both gluon fusion and qq annihilation

processes. In addition to the photon radiation off the off-shell top-squark, which is

analogous to the case of top quark, there are photon radiation contributions originat-

ing from the gluon–photon–squark–squark coupling. These contributions do not have

to be regularized since they are not singular (Fig. 7.15).

The treatment of IR singular bremsstrahlung is the same as in chapter 6 and we

refer to section 6.4 for more details. For simplicity, we again apply the phase space

slicing method for the numerical analysis. Single virtual and real contributions, which

are dependent on the cut-offs ∆E and ∆θ (as introduced in section 6.4.1), have to
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Figure 7.16: Feynman diagrams for the finite real photon corrections to both production
subprocesses (the u-channel contributions are not explictly shown).

provide in total a fully independent result. We have performed analogous numerical

checks as for the top quark case.

7.4 Photon-induced top-squark production

In analogy to the top pair production we also have to consider the photon-induced

production mechanism in case of the top-squarks. At the hadronic level, these processes

vanish at leading order owing to the non-existence of a photon distribution inside

the proton and therefore represent contributions of higher order in QED. As already

discussed in section 6.3, the photon–gluon partonic process is of NLO in QED, whereas

the quark–photon process represents a contribution of even higher order. This is a

direct consequence of collinear singularities present not only in the PDF but already

in the partonic cross section. We therefore include only the photon–gluon process to

the numerical analysis.

Feynman diagrams corresponding to the photon–gluon partonic process are illus-

trated in Fig. 7.16. Apart from the standard topology analogous to the top quark case,

an additional four-particle topology contributes that arises from the gluon–photon–

squark–squark interaction.

7.5 Numerical results

The hadronic cross section is obtained by convoluting the partonic cross sections with

the parton distribution functions (PDFs), according to the prescription of Eq. (6.28).

We use the NLO QED set of PDFs provided by the MRST group [92] with the factor-

ization and renormalization scales chosen to be µf = µ = 2 mt̃1 . The factorization of

mass singularities is done in the same way as in the tt calculation (see section 6.5.3).

We also calculate the differential hadronic cross sections with respect to the invariant

mass of the t̃1t̃
+
1 pair and with respect to the transverse momentum of the top-squark.

The respective formulae are given in Eq. (6.30) and Eq. (6.31).
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The choice of supersymmetric parameters is done within the SPS 1a benchmark

point, which is detailed in appendix A.2. In this scenario, relatively heavy top-squark

mass eigenstates are obtained, with mt̃1 = 376.5 GeV. Therefore we only present

numerical analysis for the lighter top-squark pair which is of interest as the lightest

squark pair within this scenario.

Concerning the treatment of IR singularities, we follow the phase space slicing

method and split the real photonic and gluonic corrections into IR singular soft and IR

finite hard bremsstrahlung part. The cancellation of IR singularities is then obtained

by combining the soft bremsstrahlung with the virtual corrections. In the case of qq

annihilation, the hard part of the photon phase space has to be split further into a

collinear and a non-collinear part, in order to handle the mass singularities related to

the initial state quarks. The values of cut-off parameters are chosen in the same way

as for the top quark calculations, i.e. ∆E = 0.001
√

ŝ and 1 − cos ∆θ = 0.01 (see

section 6.4.1).

In order to investigate the numerical impact of the NLO SUSY-EW corrections on

the total hadronic stop pair production cross section we introduce a relative correction

δ as the ratio of the NLO corrections δσ and the Born-level cross section σB :

δ =
σ1-loop(S) − σB(S)

σB(S)
=

δσ(S)

σB(S)
, (7.22)

where S is the total energy of the hadronic system, which is 14 TeV at the LHC.

Due to the relatively large top-squark mass within the SPS1a scenario, the stop pair

production cross section is very small at the Tevatron. Therefore, we only present

a full numerical analysis for the case of LHC and postpone the discussion about the

Tevatron to the next section.

We also use the relative correction δ to define the ratio of the differential hadronic

cross sections in the same way as for the total cross sections, by substituting σ with

the differential cross section dσ. In this way we obtain variations of δ as a function of

the total partonic energy, equivalent to the invariant mass of the t̃1t̃
+
1 pair, and of the

transverse momentum of the top-squark.

In order to avoid numerical instabilities related to the t̃1t̃
+
1 threshold and to match

the experimental conditions we introduce, as in the top quark calculation, constraints

on the transverse momentum, pT, and on the pseudorapidity, η, of the top-squarks. At

large scattering angles, the decay products of the top-squarks are better distinguishable

from the background and the kinematical cuts thus serve to improve the signal over

background ratio. We apply the following kinematical cuts:

pT > 200 GeV and |η| < 2.5 . (7.23)
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Table 7.1: Total hadronic cross section for t̃1t̃
+
1 production at NLO SUSY-EW at the

LHC in different production subprocesses without and with the cuts. The relative
precision of the corrections achieved in the numerical integration is 10−3.

Process σtot without cuts [pb] σtot with cuts [pb]

Born correction Born correction

uū 0.1319 -5.12×10−3 0.1146 -4.88×10−3

dd̄ 0.07572 -3.82×10−3 0.06546 -3.48×10−3

ss̄ 8.778×10−3 -4.05×10−4 7.260×10−3 -3.56×10−4

cc̄ 3.135×10−3 -9.66×10−5 2.549×10−3 -9.15×10−5

gg 1.437 -0.0147 0.6076 9.57×10−3

gγ 0.0289 0.0132

pp 1.657 4.77×10−3 0.7974 -5.18×10−3

Table 7.1 shows numerical results for the total hadronic cross sections. The LO

results and the SUSY-EW corrections are shown separately. The values of σtot are given

for each production subprocess, and also combined to a complete result for pp → t̃1t̃
+
1 X

at the LHC. Besides the gg fusion and qq annihilation production channels, we also

investigate the gluon–photon channel which contributes at NLO. We can see that the

gluon–photon contribution is of about the same size as the correction to the gg channel,

but the opposite sign leads to a decrease in the overall correction. Applying the cuts

reduces the Born-level cross sections more than the corrections and increases therefore

the relative corrections. However, the numerical values still remain below 1% and the

NLO SUSY-EW effects have thus negligible impact on the total hadronic cross section.

The same is not true for the differential hadronic cross sections. We investigate

the distributions of the total center-of-mass energy of the partonic system, which is

equivalent to the invariant mass of the top-squark system, and of the transverse mo-

mentum of the top-squark. Figure 7.17 shows the differential hadronic cross sections

for the gg fusion and qq annihilation channels, without applying the cuts. It can be

seen that the qq annihilation subprocess is suppressed at the hadronic level in low pT

and low
√

ŝ regions, owing to dominant gluon densities at low x. However, for very

high pT and
√

ŝ, the qq channel takes over, since the valence quark densities dominate

at high x. When looking at the relative size of SUSY-EW corrections (right), we can

see that these are much larger in the qq channel owing to the subtleties of QED–QCD

interference, which is not present at the Born-level.
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Figure 7.17: Differential hadronic cross sections (left), and variation of the relative
correction δ (right), as functions of the transverse momentum of the top-squark (up)
and of the total energy of the partonic system (down), at the LHC (S = 14 TeV), with
no cuts applied, for both O(α2

s ) production channels.

In the small region close to the production threshold the O(α) corrections are

positive and can become very large, as visible in the pT distribution for the qq channel.

Apart from this region, the SUSY-EW corrections are negative and reduce the LO cross

sections the more the larger pT and
√

ŝ. We can also observe the effects originating

from the production thresholds of the third generation squark pairs, which were already

discussed at the partonic level (Fig. 7.10). These are visible mainly in the invariant mass

distribution of the relative correction in the gg channel. In this channel, the relative

correction reaches more than 5% in size only for very large pT and
√

ŝ, whereas in the

qq channel, the relative corrections grow rapidly and reach more than 5% in size for

pT & 500 GeV and
√

ŝ & 1300 GeV.

The impact of applying the cuts is shown in Fig. 7.18. The results are presented

separately for the gg and qq channels. In the gg case, the cuts have stronger impact

on the differential cross sections (left) than in the qq channel. Concerning the relative
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Figure 7.18: Differential hadronic cross sections (left) and relative correction δ (right),
as functions of the transverse momentum of the top-squark (1st and 3rd row) and of
the total partonic energy (2nd and 4th row), at the LHC (S = 14 TeV). The gg fusion
and qq annihilation channels are investigated separately. The impact of cuts on the
transverse momentum and on the pseudorapidity of the top-squarks, pT > 200 GeV
and |η| < 2.5, is also shown.
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Figure 7.19: NLO SUSY-EW effects in the gg fusion, qq annihilation and gγ production
channels at the LHC (S = 14 TeV). Differential hadronic cross sections with respect
to the the transverse momentum of the top-squark (up) and of the total energy of the
partonic system (down) are shown without (left) and with (right) applying the cuts,
pT > 200 GeV and |η| < 2.5.

corrections (right) we can observe that although the large positive contributions at the

threshold have been cut out, the cuts increase the size of the relative corrections, since

they mainly reduce the Born-level contributions.

In Fig. 7.19 we investigate the impact of the photon-induced hadronic contribution

to the t̃1t̃
+
1 production. The gγ contribution is shown in comparison with NLO SUSY-

EW corrections in the gg fusion and qq annihilation channels. We can see that the

photon-induced corrections are largest in size. This is due to the fact that the size of the

O(αα2
s ) corrections is reduced by a factor of O(αs) with respect to the O(ααs) tree-level

process and the convolution with the gluon and photon parton densities can become

quite large. As the sign of gγ contribution is positive, whereas the other corrections

are negative, this tends to reduce the size of the overall SUSY-EW contributions.

Applying the cuts slightly reduces the photon–gluon hadronic cross section, as well as

the gg fusion contribution, but the correction to the qq channel does not change much.
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Figure 7.20: NLO SUSY-EW effects in pp collisions at the LHC (S = 14 TeV). Differ-
ential hadronic cross sections (left), and variation of the relative correction δ (right), as
functions of the transverse momentum of the top-squark (up) and of the total energy
of the partonic system (down), at the LHC (S = 14 TeV), with and without the cuts,
pT > 200 GeV and |η| < 2.5. Also the contributions of the gγ production channel are
included.

In Fig. 7.20 we show the complete result for the top-squark production at NLO

SUSY-EW in pp collisions at the LHC. All production subprocesses are combined

including the photon-induced channel. The interplay between the negative corrections

to the gg and qq channels and the positive and significantly large contribution of the

gγ production channel, which is visible in Fig. 7.19, leads to a reduction of the overall

NLO SUSY-EW corrections, mostly in the low pT and low
√

ŝ regions.

Applying the cuts removes the positive corrections near the threshold, and a slight

enhancement in size in the invariant mass spectrum of the relative correction is visible.

In the low pT and low
√

ŝ regions, the overall relative NLO SUSY-EW corrections

are negative and they further grow in size with increasing pT and
√

ŝ owing to the qq

channel, which becomes important at high x. The relative corrections reach more than

5% in size for pT & 700 GeV and
√

ŝ & 1800 GeV. For pT & 1200 GeV they become
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Figure 7.21: NLO SUSY-EW effects in the gg fusion, qq annihilation and gγ production
channels at the LHC (S = 14 TeV). Differential hadronic cross sections with respect
to the the transverse momentum of the top-squark (up) and of the total energy of the
partonic system (down) are shown without (left) and with (right) applying the cuts,
pT > 400 GeV and |η| < 2.5.

larger than 10% in size and reach the current precision limits of the parton densities.

If such a high pT region will be considered in the LHC top-squark analysis, the NLO

SUSY-EW contributions cannot be ignored.

We have observed that the SUSY-EW corrections become significantly large for

high pT and high
√

ŝ. In the following we therefore provide a deeper insight into

this region by applying a much higher cut on the transverse momentum of the top-

squark. In Fig. 7.21 we show the differential hadronic cross sections for the NLO

SUSY-EW corrections in all production channels. The results (right) are obtained

with the kinematical cuts:

pT > 400 GeV and |η| < 2.5 , (7.24)

and for comparison, also the results with no cuts applied are shown (left). As we have

seen in Fig. 7.19, applying cuts reduces the contributions in the gg and gγ channels
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Figure 7.22: NLO SUSY-EW effects in the pp collisions at the LHC (S = 14 TeV).
Differential hadronic cross sections (left), and variation of the relative correction δ
(right), as functions of the transverse momentum of the top-squark (up) and of the
total energy of the partonic system (down), at the LHC (S = 14 TeV), with and
without the cuts, (pT > 400 GeV and |η| < 2.5). Also the photon–gluon hadronic
corrections are included.

more than the qq contribution. This effect becomes stronger if a higher cut on pT is

applied (Fig. 7.21). Due to opposite signs, the gg and gγ contributions practically

compensate each other.

The impact of higher cuts on the overall SUSY-EW corrections to the top-squark

pair production in pp collisions at the LHC is shown in Fig. 7.22. Applying the cuts

reduces the Born-level contributions more than the SUSY-EW corrections. As a result,

an enhancement in the size of the overall relative corrections can be observed. We can

see that as the SUSY-EW corrections become larger in size for high pT and high
√

ŝ,

they are further enhanced by imposing high pT cuts.

We can conclude that although the SUSY-EW corrections have small impact on the

total hadronic cross sections, they can become sizeable for the distributions. Within

the high pT and high
√

ŝ regions that are going to be explored at the LHC, the NLO
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Figure 7.23: Dependence of the physical top-squark masses mt̃1 and mt̃2 on the variation
of tan β (left) and Mq̃T

(right).

SUSY-EW corrections are significant in size and thus essential for the studies.

7.6 Analysis of parameter dependence

In this section we analyse the dependence of the NLO SUSY-EW corrections on the

various supersymmetric parameters. By varying the parameters typical for different

sectors of the MSSM we can estimate the impact of these corrections on the top-squark

production cross section. For simplicity, we do not vary more than one parameters at

a time and the rest is fixed within the SPS 1a parameter set.

In the case of the gaugino mass parameters M1, M2 and M3 their impact on the

SUSY-EW corrections is straightforward, since these parameters only influence the

higher order contributions.

The situation is more complicated in the sfermion sector. Here the soft-breaking

parameters as well as tan β and µ directly determine the top-squark masses and thus

enter already at Born-level. It is therefore not possible to clearly distinguish between

the impact on the NLO corrections and on the kinematics of the Born-level cross

section. Still we can get an idea about the dependence of the size of the corrections on

these parameters.

To clarify the corelations between parameters in the sfermion sector, in Fig. 7.23

we show the dependence of the physical top-squark masses on the variation of tanβ as

well as on the variation of one of the soft-breaking parameters for the third generation

of squarks, Mq̃T
. We can see that mt̃1 has similar behavior in both cases. For small

values of the parameters, mt̃1 increases, then remains practically unchanged. The

heavy top-squark mass mt̃2 also increases with Mq̃T
, although mainly for large values

of the parameter. However, it decreases with tanβ. This is a consquence of the fact
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Figure 7.24: Dependence of the NLO SUSY-EW contributions on the variation of tanβ
(up) and the respective mt̃1 distribution (down). Integrated hadronic cross sections are
shown for the corrections in all production channels separately and also combined (left).
The overall relative correction for pp collisions at the LHC is also given (right).

that tan β contributes to the off-diagonal entries of the squark mass matrix and thus

determines the splitting between the two physical masses, whereas Mq̃T
appears as a

diagonal entry.

We start our investigation of the parameter dependence in the sfermion sector since

it is clear that here the effects will be largest. Figure 7.24 (up) shows the impact of

the variation of tanβ. As mentioned above, the rest of the MSSM parameters is fixed

at the SPS 1a point. We also study the variation of the SUSY-EW corrections as

a function of the physical top-squark mass mt̃1 (Fig. 7.24 down). Plots on the left

show the SUSY-EW corrections for all contributing channels as well as in total for pp

collisions at the LHC. We also show the variation of the overall correction δ relative

with respect to the Born-level cross section (Fig. 7.24 right).

As we can see, the corrections become largest in size for very small tan β, (about

2%). As a consequence of the opposite signs, certain cancellation between the contri-

butions in gg, qq and gγ channels occurs. The strong increase in size of the relative

correction at small tanβ is mainly related to the kinematics of the process, since the
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Figure 7.25: Dependence of the NLO SUSY-EW contributions on the variation of the
diagonal soft-breaking parameter of the third squark generation Mq̃T

(up) and the
respective mt̃1 distribution (down). Integrated hadronic cross sections are shown for
the corrections in all production channels separately and also combined (left). The
overall relative correction for pp collisions at the LHC is also given (right).

cross section increases for small masses of the produced particles. At large tan β, the

distributions of corrections are flat except for the gg channel where an increase towards

largest tan β is visible. This is also present in the variation of the relative correction

with tan β, as well as in the distribution of mt̃1 .

Figure 7.25 shows the impact of the soft-breaking mass parameter of the third

squark generation Mq̃T
on the SUSY-EW corrections. Similar to tanβ, this parameter

also influences the kinematics of the process as well as the corrections.

The gg channel contribution shows a similar behavior as previously. A sharp in-

crease in size is visible for very low mass range. The same can be observed in the gγ

channel. Due to opposite signs the overall correction is reduced (Fig. 7.25 right). The

relative correction is positive for small mass ranges and reaches a maximum of 2% for

mt̃1 of 250–300 GeV. Varying Mq̃T
towards very large values yields a negative overall

correction which reduces the Born-level cross section. For very large Mq̃T
δ saturates at

2% level. This corresponds to a maximum of mt̃1 of about 450 GeV that can be reached
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Figure 7.26: Dependence of the NLO SUSY-EW contributions on the variation of the
gaugino mass parameters M1 (top) and M2 (middle) and the gluino mass M3 (bottom).
Integrated hadronic cross sections for the corrections are shown for all production
channels separately and also combined (left). The overall relative correction for pp
collisions at the LHC is also given (right).

within this specific scenario. Further increase in Mq̃T
does not have any impact.

In the neutralino and chargino sector (Fig. 7.26), the gaugino mass parameters

M1 and M2 only enter via loop contributions. For this reason, the variation of the

correction is completely flat in gγ case and almost flat in the other two channels. The

largest impact is visible in the gg channel, again as a result of many loop contributions

within this sector. For both parameters, a local minimum is occures near their values
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Figure 7.27: Dependence of the NLO SUSY-EW contributions on the variation of tanβ
(up) and the respective mt̃1 distribution (down). Integrated hadronic cross sections for
the corrections are shown for all production channels separately and also combined
(left). The overall relative correction for pp collisions at the Tevatron is also given
(right).

at the SPS 1a point.

We also study the total hadronic cross section as a function of the gluino mass

parameter M3 (Fig. 7.26 bottom). We can see that there is no dependence since

gluinos only contribute to the O(ααs) and O(α2
s ) box diagrams (Figs. 7.11 and 7.14),

which vanish in the total cross section.

Figures 7.27 and 7.28 show numerical results obtained for the Tevatron. As the

SPS 1a benchmark point yields a relatively heavy top-squark t̃1, the cross sections are

small. We therefore concentrate on the analysis of the parameter dependence since this

allows to vary the top-squark masses towards lower values (Fig. 7.23).

Unlike the LHC, the SUSY-EW corrections are negative at the Tevatron and reduce

the Born-level cross section. The contribution of qq channel is largest here, owing to

dominant valence quark densities. It is slightly compensated by the gγ contribution,

which has opposite sign. The gg channel is suppressed. For small tan β, which cor-

responds to mt̃1 ∼ 300 GeV, δ is largest in size (∼ 1.8%). Similar behavior can be
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Figure 7.28: Dependence of the NLO SUSY-EW contributions on the variation of the
diagonal soft-breaking parameter in the mass matrix of the third squark generation Mq̃T

(up) and the respective mt̃1 distribution (down). Integrated hadronic cross sections for
the corrections are shown for all production channels separately and also combined
(left). The overall relative correction for pp collisions at the Tevatron is also given
(right).

observed for large tanβ (Fig. 7.27).

The variation of Mq̃T
allows to go to small values of top-squark mass of about

200 GeV. In this range, δ is positive and enhances the total cross section to about 2%.

The cross section decreases for larger masses and, as expected, it is small already at the

value corresponding to the SPS 1a point (mt̃1 = 376.5 GeV). Although the saturation

at very high Mq̃T
(mt̃1 ∼ 450 GeV) corresponds to δ of about 4% in size, the cross

section is strongly suppressed by the kinematics.

We can conclude that the most important parameters for the top-squark production

studies are those which determine the masses of the third generation of squarks. The

overall relative correction becomes of about 2% in size for those values of parameters

which yield light mt̃1 .



Chapter 8

Conclusions

Higher order calculations are an important tool for precise theoretical predictions.

They allow for testing the Standard Model (SM) as well as its numerous extension

candidates. In the searches for new physics the SM processes act as background and in

this context, precise understanding of the SM predictions is crucial. Currently, many

measurements performed at the Tevatron are already limited to a large extent by the

systematics uncertainties. The envisaged high precision at the LHC opens a new rich

field in collider phenomenology.

Besides the QCD corrections, which are essential at hadron colliders, also contri-

butions from the electroweak (EW) sector might play some role. In this thesis we

have studied the impact of the O(α) contributions on the cross sections for the top-

quark pair production within the SM and for the top-squark pair production within the

MSSM. Typically, cross section measurements serve to extract important parameters

of the model such as masses of the particles.

In the first part of the thesis we have investigated the top-quark pair produc-

tion. The measurement of top pair production cross section is a significant test of

the SM. The observations of deviations from the SM prediction could indicate a new

non-standard production or decay mechanism. Due to higher production rate the mea-

surements in the top quark sector are expected to be more accurate at the LHC than

at the Tevatron. Previous theoretical studies of the tt production cross section were

concentrated on the higher order contributions from the QCD sector, as well as from

the weak part of the EW sector. By calculating the photonic part of the EW sector

we have completed the SM picture at one-loop level.

QED corrections form a substantial subclass of the complete EW contributions

and can be treated separately, independent of the weak part. Due to null photon

mass, IR singularities occur in virtual corrections and have to be compensated by

including the real corrections. At O(αα2
s ) also singularities related to gluons have to be
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treated in analogy to the photon case. The QED–QCD interference yields additional

contributions which are zero at Born-level. Because of negligible masses of initial

state quarks, also collinear singularities occur. These have to be handled by means of

factorization. For a consistent treatment, parton distribution functions (PDFs) at NLO

QED are required. Including the NLO QED effects into the PDFs leads to interesting

effects, such as the non-zero photon density in the proton. For this reason, also the

photon-induced tt production contributes at this order, although it is a completely

different process at the partonic level.

We have seen that the QED corrections have negligible impact on the total tt cross

section since they are at the level of 1%. However, in the case of the differential

cross sections, which can be determined with respect to the invariant mass of the tt

pair
√

ŝ, or with respect to the transverse momentum of the top quark pT, the QED

corrections are not that small. While the NLO QED effects become important at the

LHC only for very high pT and very high
√

ŝ, at the Tevatron they are much larger.

This is a consequence of the dominant qq annihilation subprocess, in which the NLO

QED contributions are enhanced by the subleties of QED–QCD interference. At
√

ŝ

and pT ranges accessible at the Tevatron, the QED corrections reach above 4% for√
ŝ & 650 GeV and pT & 250 GeV. As they are negative, they add up with the rest of

the EW corrections which are also negative and show similar behavior. Combining our

results with the non-photonic EW corrections shows that the complete EW corrections,

including the QED part, might reach the level of 10% for high
√

ŝ and high pT, which

are still within the range of Tevatron. At the LHC, the QED corrections become

negative only for very high
√

ŝ and very high pT and grow much more slowly than

the non-photonic EW corrections. Therefore, here they do not represent a significant

contribution and only lead to slight enhancement of the non-photonic EW corrections.

In the second part of the thesis, we have focused on the predictions within the

minimal supersymmetric extension of the SM, the MSSM. We have analysed the impact

of the full set of EW-like contributions on the production cross section of top-squark

pairs. Being the superpartner of the top quark, the top-squark is a candidate for the

lightest squark in many supersymmetric models, and as such is of particular interest at

colliders. The fact that the top-squark pair production cross section depends essentially

only on the top-squark mass, and very little on other supersymmetric parameters,

allows for direct determination of mt̃1 from the cross section measurement, in the case

of a discovery.

The structure of the SUSY-EW sector is more extended than in the SM leading to a

large number (several hundred) of contributing diagrams. Unlike the SM, in the MSSM
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the photonic contributions cannot be separated from the rest of the EW contributions

owing to the mixing in the gaugino–higgsino sector. IR singularities can, however, be

handled in analogy to the SM. We have therefore combined the virtual and real photonic

and gluonic corrections in order to compensate the IR singularities. The contibutions

from the EW–QCD interference are also considered. The collinear singularities related

to the light initial state quarks are factorized and for consistency the PDFs at NLO

QED are used. Also the non-zero photon-induced production processes have been

included into our analysis. The numerical results are presented for the SPS 1a scenario.

The impact of the SUSY-EW corrections on the total hadronic cross section for the

top-squark pair production is only about 1% and thus negligible. Nevertheless, in the

differential cross sections, the SUSY-EW corrections relative to the Born-level cross

section grow with increasing pT and
√

ŝ and they are further enhanced by imposing

high cuts on pT. In the very high pT region, for pT & 1200 GeV, they become larger

than 10% and should be taken into account.

We have also studied the soft-breaking parameter dependence of the total hadronic

cross section. We have seen that the relative corrections vary mostly with parameters,

which directly determine the top-squark mass, such as tanβ and Mq̃T
. The mass

dependence enters not only via the higher order contributions but mostly through the

kinematics of the process. The largest effects are therefore related to small values of

tan β and Mq̃T
, which correspond to small values of mt̃1 . The effects of gaugino mass

parameter variation are very small, as they only contribute to SUSY-EW corrections.

We can summarize our results for the EW corrections in the following way: Al-

though the effects on the total hadronic cross sections are very small in both the SM

and the MSSM, the situation is different for the differential cross sections. The impact

of EW corrections increases with both
√

ŝ and pT. The photon-induced production

rates are comparable in size with other NLO EW contributions and have to be consid-

ered. At high pT and high
√

ŝ the NLO EW corrections cannot be ignored and should

therefore be included in the numerical analysis.
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Zusammenfassung

Rechnungen in höherer Ordnung Störungstheorie sind ein wichtiges Werkzeug für genaue

theoretische Vorhersagen. Sie ermöglichen die Validierung des Standardmodells (SM)

und dessen zahlreichen Erweiterungen. Die Messung von Wirkungsquerschnitten dient

dazu, wichtige Modell-Parameter wie beispielsweise die Massen von Elementarteilchen

zu bestimmen. Abgesehen von QCD-Korrekturen, die an Hadron-Beschleunigern eine

tragende Rolle spielen, können auch elektroschwache (EW) Beiträge von Bedeutung

sein. In dieser Doktorarbeit wurde der Einfluß der O(α) Korrekturen auf die Top-

Quark Paarproduktion untersucht. Dies geschah im SM und seiner minimal supersym-

metrischen Erweiterung, dem MSSM.

Im ersten Teil dieser Arbeit wurde die Top-Quark Produktion in next-to-leading-

order (NLO) QED betrachtet. Die Messung des Wirkungsquerschnittes der Top-Quark

Produktion ist ein aussagekräftiger Test des SM. Abweichungen von der SM-Vorhersage

könnten auf neue Physik, sprich auf eine Erweiterung des SM hindeuten. Bisher

waren die Berechnungen der theoretischen Vorhersagen auf den QCD-Sektor und nicht-

photonische EW Korrekturen beschränkt.

In dieser Arbeit wurden nun erstmals auch QED-Korrekturen betrachtet. Diese

bilden eine Untermenge der EW Korrekturen und können getrennt behandelt wer-

den. Typischerweise treten mit den QED Korrekturen IR-Singularitäten auf, die durch

Bremsstrahlungsbeiträge kompensiert werden. Weiter sind auf O(αα2
s ) QED–QCD

Beiträge zu beachten, die auf Born Niveau nicht vorhanden sind. Die NLO Beiträge

werden durch solche Korrekturen weiter verstärkt. Für ein konsistentes Vorgehen

ist aber auch die Berücksichtigung der NLO QED-Effekte in den Parton-Verteilungs-

funktionen von Nöten. Als Folge ist die Photon-Dichte in Protonen ungleich Null und

führt zu von Photonen hervorgerufener tt-Produktion.

Der zweite Teil der Arbeit beschäftigt sich mit dem Einfluß der vollen Klasse von

EW Korrekturen zum Wirkungsquerschnitt der Stop-Paarproduktion im Rahmen des

MSSM. Stop-Squarks sind die supersymmetrischen Partner-Teilchen der Top-Quarks.

Sie sind von besonderem Interesse, da sie ein guter Kandidat für ein mögliches leichtes-

tes Squark sind. Der Wirkungsquerschnitt der Paarproduktion von Top-Squarks hängt
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hauptsächlich von der Masse der Top-Squarks ab. Somit ist die direkte Bestimmung

der Top-Squark Masse über diesen Prozess möglich.

Im Gegensatz zum SM können die QED-Korrekturen im MSSM nicht getrennt von

den übrigen EW Korrekturen betrachtet werden. Die IR-Singularitäten werden aller-

dings in analoger Weise behandelt. Durch Photonen verursachte Produktionskanäle

und Beiträge durch EW–QCD Interferenz tragen in EW NLO ebenfalls bei.

Es wurde gezeigt, dass obwohl die Korrekturen zu den totalen Wirkungsquerschnit-

ten klein sind, die EW Korrekturen erheblich zu den differentiellen Wirkungsquer-

schnitten beitragen können. Die von den Photonen herrührenden Produktions-Raten

sind numerisch vergleichbar mit den übrigen NLO Beträgen und dürfen nicht ver-

nachlässigt werden. In Bereichen mit großem pT und hoher invarianter Masse, die am

LHC und dem Tevatron erreichbar sind, sind die NLO EW Korrekturen von Bedeutung

und sollten in die numerischen Analysen eingeschlossen werden.



Appendix A

Choice of parameters

A.1 Standard Model Parameters

The current values of the Standard Model parameters are given in the following [5]

• Coupling constants:

α−1 = 137.03599911 αs(MZ) = 0.1176

• Masses:

Gauge bosons:

MW = 80.403 GeV MZ = 91.1876 GeV mγ = mg = 0

Leptons:

me = 510.999 keV mµ = 105.658 MeV mτ = 1.777 GeV

mνe
= 0 mνµ

= 0 mντ
= 0

Quarks:

mu = 53.8 MeV mc = 1.5 GeV mt = 171.4 GeV

md = 53.8 MeV ms = 150 MeV mb = 4.7 GeV

The masses of the light flavor quarks, mu, md and ms, are effective parameters, chosen

to reproduce the hadronic vaccum polarization of the photon. The masses of the first

two generations of quarks are set to zero during the calculations whenever possible.

113



114 A.2 SPS 1a parameter set of the MSSM

A.2 SPS 1a parameter set of the MSSM

Although some regions in the parameter space of the MSSM can be eliminated by im-

posing experimental constraints or are disfavored by theoretical arguments, the choice

still remains very large. In order to unify the conventions used in the calculations

and thus allow for comparison of independently obtained results, efforts were made to

establish certain points in the MSSM parameter space as benchmarks scenarios. The

Snowmass points and slopes (SPS) are benchmarks scenarios which were suggested

in [146, 147]. They provide parameter sets which illustrate characteristic features

of various SUSY breaking scenarios, such as minimal gravity-mediated (mSUGRA),

gauge-mediated (GMSB) or anomaly-mediated (AMSB) SUSY breaking scenarios.

The SPS 1a point [147], defined in the framework of mSUGRA scenario, is a very

popular benchmark point, often used for numerical studies. It is similar to the SPS 1a′

point defined in [148], which is slightly changed to comply with the measured dark

matter density. The mSUGRA scenario is characterized by four parameters. These are

a common scalar mass M0, a common gaugino mass M1/2, a common trilinear coupling

A0 and the ratio of the vacuum expectation values of the two Higgs doublets tan β.

In addition, the sign of the Higgs mass parameter µ is not fixed and can be chosen

freely. All parameters are real, unification of gauge couplings is assumed at the GUT

scale, and the soft-breaking terms are universal at the high-energy scale. For SPS1a

the values of the high-energy parameters are:

M0 = 100GeV , M1/2 = 250GeV , A0 = −100GeV ,

tan β = 10 , sign(µ) = +1 . (A.1)

The mass parameters are defined at the GUT scale and then evolved via renormaliza-

tion group equations (RGEs) to the low-energy scale, at which also tan β is specified.

All mass parameters are defined in the DR-scheme at the scale Q = 454.7 GeV. The

values of the low-energy Higgs sector and gaugino sector parameters read

Mg̃ = 595.2GeV , µ = 352.4GeV , MA = 393.6GeV ,

tan β = 10 , M1 = 99.1GeV , M2 = 192.7GeV , (A.2)

where Mg̃ denotes the gluino mass, MA is the mass of CP-odd Higgs boson, and M1 and

M2 are gaugino mass parameters. The soft SUSY breaking parameters in the diagonal

entries of the squark and slepton mass matrices of the first and second generation are

chosen to be the same. The off-diagonal entries have been neglected, i.e. there is no

sfermion mixing in the first two generations. The values of the diagonal parameters
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Figure A.1: The SUSY particle spectrum for the benchmark point corresponding to
SPS 1a [146,147].

are (the index i in Mq̃iL refers to the generation):

Mq̃1L
= Mq̃2L

= 539.9GeV , Md̃R
= 519.5GeV , MũR

= 521.7GeV ,

MẽL
= 196.6GeV , MẽR

= 136.2GeV . (A.3)

The soft SUSY breaking parameters in the diagonal entries of the squark and slepton

mass matrices of the third generation have the following values,

Mq̃3L
= 495.9GeV , Mb̃R

= 516.9GeV , Mt̃R
= 424.8GeV ,

Mτ̃L
= 195.8GeV , Mτ̃R

= 133.6GeV , (A.4)

while the trilinear couplings appearing in the off-diagonal entries are

At = −510.0GeV , Ab = −772.7GeV , Aτ = −254.2GeV . (A.5)

The corresponding SUSY particle spectrum is shown in Fig. A.1.

In our numerical studies, we use the DR-scheme parameters as on-shell scheme pa-

rameters. At one-loop level, the difference between these two renormalization schemes

yields only finite contributions. These result into small shifts in the physical masses of

the particles which have negligible numerical impact on our analysis.
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Appendix B

Basic principles of supersymmetry

B.1 Conventions

As a generalization of the vector space coordinates in three-dimensional Euclidean

space, each point in four-dimensional Minkowski space is determined by a contravariant

four-vector

xµ =
(

x0, x1, x2, x3
)

= (t, ~x) . (B.1)

Using the metric tensor

gµν = gµν = diag (1,−1,−1,−1) , (B.2)

also a covariant four-vector can be defined as

xµ = gµνx
µ = (t,−~x) . (B.3)

From now on the Greek indices run from 0 to 3 while the Latin indices run from 1 to

3. We adopt the Einstein’s sum convention, i.e the same two indices, one as covariant

the other as contravariant, are being summed over. In addition, the natural units of

~ = c = 1 are used.

We define the following abbreviations for the derivatives with respect to the gener-

alized space coordinates:

∂µ :=
∂

∂xµ
=

(

∂

∂t
, ~∇

)

, ∂µ :=
∂

∂xµ

=

(

∂

∂t
,−~∇

)

. (B.4)

The momentum four-vector is given by

pµ = i∂µ = (E, ~p) . (B.5)
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B.2 Spinors

B.2.1 Weyl spinors

Weyl spinors are defined as two-component anticommuting objects which transform

under the Lorentz transformations Λ in the following way

ψα → M(Λ) β
α ψβ ,

ψ̄α̇ →
(

(M(Λ)−1)+
)α̇

β̇
ψ̄β̇ , (B.6)

with 2 × 2 complex matrices M given as

M(Λ) =
(

e−
i
2
ωµν

σµν

2

)

,

(M−1)+(Λ) =
(

e−
i
2
ωµν

σ̄µν

2

)

. (B.7)

Here ωµν is an antisymmetric tensor, and spinor indices can take values 1 and 2. The

tensors σµν and σ̄µν are defined as

(σµν) β
α =

i

2
(σµσ̄ν − σν σ̄µ) β

α , (σ̄µν)α̇
β̇ =

i

2
(σ̄µσν − σ̄νσµ)α̇

β̇ , (B.8)

where σµ and σ̄µ are Pauli matrices, generalized in four dimensions

σµ

αβ̇
=

(1, σk
)

αβ̇
, σ̄µα̇β =

(1,−σk
)α̇β

. (B.9)

The three-dimensional Pauli matrices σk are given by

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (B.10)

The Weyl spinors satisfy the following relations

ψα = ǫαβ ψβ and ψα = ǫαβ ψβ ,

ψ̄α̇ = ǫα̇β̇ ψ̄β̇ and ψ̄α̇ = ǫα̇β̇ ψ̄β̇ , (B.11)

with ǫ being the totally antisymmetric tensor which is in two-dimensions:

(

ǫαβ
)

:=

(

0 1
−1 0

)

, (ǫαβ) :=

(

0 −1
1 0

)

,

(

ǫα̇β̇
)

:=

(

0 1
−1 0

)

,
(

ǫα̇β̇

)

:=

(

0 −1
1 0

)

. (B.12)

With help of the Weyl spinor formalism the Dirac equation can be rewritten in

two-component notation as

(σ̄µp
µ)α̇β ψβ = mψ̄α̇ , (σµp

µ)αβ̇ ψ̄β̇ = mψα . (B.13)
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B.2.2 Dirac and Majorana spinors

Two-component Weyl spinors can be combined into four-component spinor objects in

the following way

Ψ =

(

ψα

χ̄α̇

)

, Ψ̄ =
(

χα ψ̄α̇
)

. (B.14)

If ψ = χ, Ψ denotes a Majorana spinor, otherwise Ψ is a Dirac spinor. The four-

component equivalents of the Pauli σ matrices are the Dirac γ matrices. They are

defined by means of the Clifford algebra as

{γµ, γν} = γµγν + γνγµ = 2gµν . (B.15)

In addition, γ5 is introduced by

γ5 = iγ0γ1γ2γ3 = − i

4!
ǫµνρσγ

µγνγργσ ,

{γµ, γ5} = 0 ,

(γ5)2 = 0 , (B.16)

with ǫµνρσ being the totally antisymmetric tensor in four dimensions given by

ǫµνρσ =







+1 for even permutation of {0, 1, 2, 3}
−1 for odd permutation of {0, 1, 2, 3}

0 otherwise
(B.17)

The choice of γ matrices which satisfy Eq. (B.15-B.16) is not unique. In the so-

called chiral representation they are expressed as

γµ =

(

0 σµ

σ̄µ 0

)

, γ5 =

(

−1 0
0 1 )

, (B.18)

with σµ, σ̄µ as given in Eq. (B.9). The 4 × 4 tensor matrices σµν can be constructed

from the γ matrices:

σµν =
i

2
[γµ, γν ] . (B.19)

With help of γ5 it is possible to define the projection operators

ω− ≡ 1 − γ5

2
=

(

1 0
0 0

)

, ω+ ≡ 1 + γ5

2
=

(

0 0
0 1

)

, (B.20)

which project a Dirac spinor into its left-handed or right-handed component as

ω−Ψ =

(

ψα

0

)

and ω+Ψ =

(

0
χ̄α̇

)

. (B.21)

Using the four-component notation the Dirac equation of Eq. (B.13) can be rewritten

as

(γµp
µ − m) Ψ ≡ (p/ − m) = 0 . (B.22)
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B.3 Superfields

B.3.1 Grassmann variables

Grassmann variables have fermionic character, i.e. they anticommute with all variables

which also have fermionic character:

{θ, ξ} = 0 . (B.23)

In particular, the square of a Grassmann number is zero.

Grassmann numbers form an Abelian group with respect to the operation of addi-

tion. As concerns the multiplication with ordinary complex numbers, same distributive

laws hold as for the scalar multiplication of a vector.

The integral over Grassmann numbers is defined as

∫

dθ(A + Bθ) = B , (B.24)

where A and B are complex numbers. Analogously, the differentiation with respect to

Grassmann numbers is given by

∂

∂θ
(A + Bθ) = B . (B.25)

Complex Grassmann numbers can be built out of real and imaginary Grassmann

parts. It is convenient to define the operation of complex conjugation in such a way

that the product is reversed, as it is the case for hermitian conjugation of matrices:

(θξ)∗ = ξ∗θ∗ = −θ∗ξ∗ . (B.26)

The complex Grassmann numbers θ and θ∗ are treated as independent variables during

integration

∫

dθdθ∗ = θ∗θ = 1 . (B.27)

Using the Grassmann variables enables to rewrite the superalgebra in the following

way

[θαQα, Q̄β̇ θ̄β̇] = 2θασµ

αβ̇
θ̄β̇P µ ,

[θαQα, θβQβ] = [Q̄α̇θ̄α̇, Q̄β̇ θ̄β̇] = 0 , (B.28)

which is very convenient for the formalism of superfields.
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B.3.2 Chiral and vector superfields

In general a finite supersymmetric transformation is given, in complete analogy to the

non-Abelian gauge transformations eiφαT α

, by the group element

G(xµ, θ
α, θ̄α̇) = ei{xµP µ+θαQα+θ̄α̇Q̄α̇} , (B.29)

where P µ, Qα and Q̄α̇ are the generators of the supersymmetry group. The variables

xµ, θα and θ̄α̇ build the superspace with supercoordinate z = (xµ, θ
α, θ̄α̇).

The formalism of superfields is a natural extension of the standard field formalism

from the four-dimensional Minkowski space to the superspace. The superfields Φ must

be therefore functions of all superspace variables xµ, θ
α, θ̄α̇. The superfields can be

expanded into component fields. Due to the anticommuting nature of Grassmann

variables, this expansion truncates after few finite terms as

Φ(x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x)

+θθm(x) + θ̄θ̄n(x) + θσµθ̄νµ(x)

+θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄d(x) . (B.30)

Here f , m, n, d are scalar fields, φ, χ, λ, ψ are spinor fields, and νµ is a vector field.

In general a superfield has 16 real fermionic and 16 real bosonic degrees of freedom.

Chiral and antichiral superfields are defined by the following conditions

D̄α̇Φ(z) = 0 or DαΦ̄ = 0 , (B.31)

respectively. The covariant derivatives Dα, D̄α̇ are given by

D̄α̇ = ∂α − iα(σµθ̃)∂
µ or Dα = ∂̄α̇ + i(θσµ)α̇∂µ , (B.32)

The component field expansion of a chiral superfield gives

Φ(z) = A(x) − iθσµθ̃∂µA(x) − 1

4
θθθ̄θ̄∂µ∂µA(x)

+θα
√

2ψ(x)α − i√
2
θθθ̄σ̄µ∂µψ(x) + θθF (x) , (B.33)

where A, F are scalar fields and ψ is a left-handed spinor.

Vector superfields satisfy the relation

V +(z) = V (z) . (B.34)
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The component field expansion of a vector superfield can be written in the following

form:

V (z) = C(x) + θχ(x) + θ̃χ̃(x) + iθθM(x) − θ̄θ̄M∗(x)

+θσµθ̄vµ + iθθθ̄λ̄(x) +
1

2
θθθ̄θ̄D(x) . (B.35)

with

C∗(x) = C(x) , v+
µ = vµ , D∗(x) = D(x) . (B.36)

Here C, D are real scalar fields, M is a complex scalar field, χ and λ are spinor fields

and vµ is a real vector field. With help of the Wess-Zumino gauge [149] the unphysical

degrees of freedom of C, M and χ can be eliminated.

In general, a supersymmetric non-Abelian gauge transformation of a vector super-

field is defined as follows,

e2gV → e−i2gΛ̄e2gV ei2gΛ , (B.37)

where g is the gauge coupling, Λ is a chiral superfield and V is a vector superfield. The

generators of the gauge group, T a, enter in the following way:

Λ(z) = Λa(z) T a and V (z) = V a(z) T a . (B.38)

The gauge transformations of chiral and antichiral superfields can be introduced as

follows,

Φ → e−i2gΛΦ and Φ̄ → Φ̄ei2gΛ̄ . (B.39)

B.4 Supersymmetric Lagrangian

The action of a supersymmetric Lagrangian must remain invariant under the super-

symmetry transformations. This requirement is satisfied if the Lagrangian acts as total

derivative under the supersymmetry transformations. The θθ and θθθ̄θ̄ components of

chiral and vector superfields, the F and D terms, respectively, manifest this behavior.

Therefore the supersymmetric Lagrangian consists of two parts

L =

∫

d2θLF +

∫

d2θd2θ̄LD . (B.40)

In order to build the supersymmetric Lagrangian, appropriate candidates among the

chiral and vector superfield combinations have to be selected. Product of two or three
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chiral superfields results in a chiral superfield and contributes to LF . Higher multiples

are not suitable because of the requirement of renormalizability. The product of a

chiral and an antichiral superfield leads to a vector superfield and thus contributes to

LD. In the following, we present explicit contributions to a general supersymmetric

Lagrangian:

(i) contributions originating from the superpotential:

Φi(z)|θθ = Fi

Φi(z)Φj(z)|θθ = AiFj + AjFi − ψiψj

Φi(z)Φj(z)Φk(z)|θθ = AiAjFk + AiFjAk + FiAjAk

−Ai(ψjψk) − ψiAjψk − (ψiψj)Ak , (B.41)

where Φi is a chiral superfield.

(ii) kinetic terms of the matter fields:

Φ̄kΦk|θθθ̄θ̄ =

[

(∂µA
+
k )(∂µAk) +

i

2
(ψ̄kσ̄

µ∂µψk) +
i

2
(ψkσ

µ∂µψ̄k)

+ F+
k Fk

]

Φ̄ke
2gV Φk|θθθ̄θ̄ = (∂µA

+
k − igkA

+
k vµ)(∂µAk + igkv

µAk)

+i
[

ψ̄kσ̄
µ(∂µ + igkvµ)ψk

]

− i
√

2gk(ψ̄kλ̄Ak − A+
k λψk)

+gkA
+
k DAk + F+

k Fk

= (DµAk)
+(DµAk) + iψ̄kσ̄

µDµψk

−i
√

2gk(ψ̄kλ̄Ak − A+
k λψk) + gkA

+
k DAk

+F+
k Fk . (B.42)

Here Φk is a chiral superfield and V denotes a vector superfield in the Wess-

Zumino gauge. Furthermore, in the last step we have introduced the covariant

derivative

Dµ := ∂µ + igkvµ ≡ ∂µ + igkv
a
µT

a . (B.43)

(iii) kinetic terms of the gauge fields:

1

16g2
([W aαW a

α ]|θθ + h.c.) = −1

4
(F a

µν)
2 + iλ̄aσ̄µ(Dµλ)a +

1

2
DaDa , (B.44)



124 B.4 Supersymmetric Lagrangian

where W a
α denotes the field strength tensor of the vector field V , defined as

follows,

W a
α = −1

4
D̄D̄

(

e−2gV Dαe2gV
)

(B.45)

with

F a
µν = va

µν − ig
(

(T adj)b
)ac

vb
µv

c
ν = va

µν + ig
(

(T adj)a
)bc

vb
µv

c
ν . (B.46)

Here F a
µν is the non-Abelian field strength tensor, which contains the generators

of the gauge group (T adj)a in the adjoint representation, and vµν = ∂µvν − ∂νvµ.

The two component auxiliary fields F and D do not have any physical meaning since

they do not lead to any kinetic terms within the Lagrangian. As a consequence, their

equations of motions are very simple

∂L
∂Fi

= 0 and
∂L
∂Da

= 0 , (B.47)

and can easily be solved

F+
i = −∂W (A)

∂Ai

and Da = −A+gT aA . (B.48)

Inserting these relations into Eqs. (B.41-B.44) allows to eliminate F and D.



Appendix C

Parton densities

C.1 LO splitting functions

The leading order (LO) terms of the DGLAP splitting functions, which are shown

schematically in Fig. 5.3, are given in the following:

Pqq(z) =
4

3

[

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]

,

Pqg(z) =
1

2

[

z2 + (1 − z)2
]

,

Pgq(z) =
4

3

[

1 + (1 − z)2

z

]

,

Pgg(z) = 6

[

1 − z

z
+

z

(1 − z)+

+ z(1 − z)

]

+
33 − 2nf

6
δ(1 − z) .

(C.1)

Here nf denotes the number of active flavors and the +-prescription is defined, as

follows

1

(1 + z)+

=
1

(1 − z)
for z < 1 , and

∫ 1

0

dz
f(z)

(1 − z)+

=

∫ 1

0

dz
f(z) − f(1)

1 − z
. (C.2)
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C.2 QED-modified DGLAP evolution equations

The QED-corrected evolution equations for the parton distributions inside the proton,

including the photon-parton distribution, at leading order in both αs and α are

∂qi(x,Q2)

∂ ln Q2
=

αs

2π

∫ 1

x

dy

y

{

Pqq(y)qi(
x

y
,Q2) + Pqg(y)g(

x

y
,Q2)

}

+
α

2π

∫ 1

x

dy

y

{

P̃qq(y)e2
i qi(

x

y
,Q2) + Pqγ(y)e2

i γ(
x

y
,Q2)

}

∂g(x,Q2)

∂ ln Q2
=

αs

2π

∫ 1

x

dy

y

{

Pgq(y)
∑

j

qj(
x

y
,Q2) + Pgg(y)g(

x

y
,Q2)

}

∂γ(x,Q2)

∂ ln Q2
=

α

2π

∫ 1

x

dy

y

{

Pγq(y)
∑

j

e2
jqj(

x

y
,Q2) + Pγγ(y)γ(

x

y
,Q2)

}

, (C.3)

where

P̃qq = C−1
F Pqq , Pγq = C−1

F Pgq ,

Pqγ = T−1
R Pqg , Pγγ = −2

3

∑

i

e2
i δ(1 − y) (C.4)

and momentum is conserved:

∫ 1

0

dx x

{

∑

i

qi(x,Q2) + g(x,Q2) + γ(x,Q2)

}

= 1 . (C.5)

The choice of the factorization scales µ2
f(QCD) = µ2

f(QED) = Q2 is conventional for DIS

processes.



Appendix D

Loop integrals

In the following we introduce basic notations and conventions for the calculation of

one-loop integrals. We focus on integrals which are relevant for this thesis.

A general one-loop integral can be defined as

TN
µ1,...,µP

=
(2πµ)4−D

iπ2

∫

dDq
qµ1

. . . qµP

[q2 − m2
1][(q + k1)2 − m2

2] . . . [(q + kN−1)2 − m2
N ]

,

(D.1)

where the momenta in the denominator, ki, are related to the external momenta, pi,

as follows,

k1 = p1 , k2 = p1 + p2 , . . . kN =
N

∑

i=1

pi . (D.2)

The integral is given in D-dimensions as requested by the dimensional regularization

and dimensional reduction. In the latter case the integrals are kept D-dimensional

although the algebra is performed in four dimensions. The renormalization scale µ is

introduced in order to preserve the same dimension of the integral as in four dimensions.

q m1

pN

mN

pN−1

p1

m2

p2

q + k1

q + kN−1

Figure D.1: Scheme of a general one-loop integral.
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It is implicitly assumed that all propagators in the denominator have an infinitely small

positive imaginary part ǫ which is set to zero after performing the integration. This

corresponds to an explicit replacement of m2
i to m2

i − iǫ. Following the convention

in [122], A denotes the one-point integrals, B the two-point integrals, etc.

As shown in [123], the tensor integrals can be systematically reduced to linear

combinations of Lorentz covariant tensors constructed from the metric tensor gµν and

a linearly independent set of the momenta. The choice of this set is not unique.

We choose, for instance, the momenta of incoming and outgoing partons in the

process of top quark pair production. We follow the notation of section 6.1.1. The

decomposition of tensor loop-integrals that are relevant for our calculations reads [106],

in the case of two-point functions,

i

16π2
(B0; pµB1)(p

2,mt, λ) = µ4−D

∫

dDq

(2π)D

(1; qµ)

[q2 − m2
t ][(q + p)2 − λ2]

, (D.3)

The photon mass parameter λ is used to regularize the IR singularities. Explicit

formulae for the one- and two-point integrals are given below.

The three-point functions, defined as

i

16π2
(C0; Cµ; Cµν) = µ4−D

∫

dDq

(2π)D

(1; qµ; qµqν)

∆1∆2∆3

, (D.4)

with

∆1 = q2 − λ2 , ∆2 = (q − p2)
2 − m2

t , ∆3 = (q + p1 − p3)
2 − m2

t , (D.5)

can be decomposed in the following way:

Cµ = −p2µC
1
1 + (p1 − p3)µC

2
1 ,

Cµν = p2µp2νC
1
2 + (p1 − p3)µ(p1 − p3)νC

2
2 + gµνC

0
2

− (p2µ(p1 − p3)ν + (p1 − p3)µp2ν) C12
2 . (D.6)

The calculation of the box contributions requires decomposition of the four-point tensor

integrals up to the rank three.

i

16π2
(D0; Dµ; Dµν ; Dµνρ) = µ4−D

∫

dDq

(2π)D

(1; qµ; qµqν ; qµqνqρ)

∆1∆2∆3∆4

, (D.7)

with

∆4 = (q + p1)
2 − m2

t , (D.8)

in the case of gg fusion.
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In the qq annihilation subprocess, an additional IR singularity occurs and the prop-

agators need to be rearranged as

∆1 = q2 − m2
t , ∆2 = (q − p2)

2 − λ2 ,

∆3 = (q + p1 − p3)
2 − m2

t , ∆4 = (q + p1)
2 − m2

t . (D.9)

The decomposition of the four-point tensor integrals as done in [106] reads

Dµ = −p2µD
1
1 + (p1 − p3)µD

2
1 + p1µD

3
1 ,

Dµν = p2µp2νD
1
2 + (p1 − p3)µ(p1 − p3)νD

2
2 + p1µp1νD

3
2 + gµνD

0
2

− (p2µ(p1 − p3)ν + (p1 − p3)µp2ν) D12
2 − (p2µp1ν + p1µp2ν) D13

2

+ ((p1 − p3)µp1ν + p1µ(p1 − p3)ν) D23
2 ,

Dµνρ = p2µp2νp2ρD
1
3 + (p1 − p3)µ(p1 − p3)ν(p1 − p3)ρD

3
2p1µ + p1µp1ρD

3
3

− (gµνp2ρ + cyc.) D01
3 + (gµν(p1 − p3)ρ + cyc.) D02

3

+ (gµν(p1ρ + cyc.) D03
3 + ((p1 − p3)µp2νp1ρ + cyc.) D12

3

− (p2µ(p1 − p3)νp1ρ + cyc.) D21
3 + (p1µp2νp2ρ + cyc.) D13

3

− (p2µp1νp1ρ + cyc.) D31
3 + (p1µ(p1 − p3)ν(p1 − p3)ρ + cyc.) D23

3

+ ((p1 − p3)µp1νp1ρ + cyc.) D32
3

− (p2µ(p1 − p3)nup1ρ + perm.) D123
3 , (D.10)

where cyc. and perm. denote cyclic commutation and permutation of the indices, re-

spectively.

Furthermore, the coefficients of the tensor decomposition can be expressed as func-

tions of the scalar integrals [123]. A complete set of reduction equations for the one-loop

integrals up to the rank four can be found in e.g. [150]. The expressions for the two-,

three- and four-point scalar loop integrals were first given in [122]. Further improve-

ments have been done in [124,125].

The explicit analytical formula for the one-point scalar function A0 in D dimensions

reads

A0(m) = m2

[

2

ǫ
− γE + ln 4π − ln

m2

µ2
+ 1

+
1

4

(

(

−γE + ln 4π − ln
m2

µ2
+ 1

)2

+ 1 +
π2

6

)

ǫ

]

+ O(ǫ2) . (D.11)

Here γE is the Euler-Mascheroni constant with numerical value γE = 0.577216 . . . . The
1
ǫ
-term substitutes the UV divergence of the integral. As the transition from D = 4− ǫ
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dimensions to four dimensions corresponds to ǫ → 0, we can neglect the O(ǫ) terms

and rewrite the one-point scalar integral into the commonly used form

A0(m) = m2

(

∆ − ln
m2

µ2
+ 1

)

+ O(ǫ) , (D.12)

with

∆ =
2

ǫ
− γE + ln 4π . (D.13)

The two-point scalar function B0 can be expressed analytically as

B0(p
2,m1,m2) = ∆ + 2 − ln

m1m2

µ2
+

m2
1 − m2

2

p2
ln

m2

m1

−m1m2

p2

(

1

r
− r

)

ln r + O(ǫ) , (D.14)

where the parameter r is determined by the equation

x2 +
m2

1 + m2
2 − p2 − iǫ

m1m2

x + 1 = (x + r)

(

x +
1

r

)

. (D.15)

The two-point function B1 can be expressed in terms of scalar functions A0 and B0:

B1(p
2,m1,m2) =

1

2p2

[

(m2
2 − m2

1 − p2)B0 + A0(m1) − A0(m2)
]

. (D.16)

We also give definition of the dilogarithm by means of the integral representation

Li2(z) = −
∫ 1

0

dt
ln(1 − tz)

t
, z ∈ C\{x ∈ R : x > 1} . (D.17)



Appendix E

Analytical expressions for the NLO
QED corrections

The QED 1-loop corrections to qq annihilation subprocess are given by

δMqq = δMin
qq + δMfin

qq + δMbox
qq , (E.1)

where the initial- and final-state vertex contributions can be written as

Min
qq = δαβ ūj

t(p2)(−igsT
c
jlγµ) vl

t̄(p1)

(−igµν

ŝ

)

v̄k
β(p3)(iΛ̂

in
ν ) ui

α(p4) ,

Mfin
qq = δαβ ūj

t(p2)(iΛ̂
fin
µ ) vl

t̄(p1)

(−igµν

ŝ

)

v̄k
β(p3)(−igsT

c
ikγν) ui

α(p4) . (E.2)

Here we follow the same notation as introduced in sections 6.1.1 and 6.2.1. The photon

mass is regularized by the mass parameter λ. In order to obtain IR-finite results, also

the real corrections of photon bremsstrahlung have to be added.

The renormalized quark-gluon vertex functions can be described in terms of UV-

finite form factors in the following way:

iΛ̂µ(ŝ) = (−igsT
c)

α

4π
Q2

q

[

γµFV + (p3 − p4)µ
1

2mq

FM

]

. (E.3)

In general, axial-vector form factors could also be introduced, however, as a result of

the interference with the Born matrix element Mqq
B these do not contribute. As the

light quark masses are set to zero whenever possible, when calculating the initial-state

vertex contribution, also the magnetic term FM is negligible. The vector form factor

can be expressed in a compact form (given in e.g. [126])

FV (s,mq) = 2 ln

(

λ2

s

)[

ln

(

s

m2
q

)

− 1

]

+ ln2

(

s

m2
q

)

+ ln

(

s

m2
q

)

+
π2

3
− 4 . (E.4)
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In the case of final-state top-quark pairs, the expressions for the vector and magnetic

form factors read

FV (s,mt) =
{

2(s − 2m2
t )C0(s,mt,mt, λ) + 2 − 2 ln

(

λ2

m2
t

)

− 3 [B0(s,mt,mt) − ∆mt
]
}

, (E.5)

FM(s,mt) =
4m2

t

4m2
t − s

[B0(s,mt,mt) − ∆mt
− 2] , (E.6)

with ∆mt
= ∆ + ln (µ2/m2

t ). In the expressions above, we use the notations and

conventions for the loop-functions of App. D and we have skipped the ŝ notation.

The expressions for the gluon-photon box contributions, δMbox
qq , are not presented

here as they can be found in the exact form in [126] for the e+e− annihilation to heavy

fermion pairs and can be deduced from there by simple substitutions me ↔ mq and

mf ↔ mt and appropriate choices of the coupling constant and of the color factor.

In the gg fusion subprocess, the one-loop matrix element is composed of self-energy,

vertex and box contributions:

δMgg = δMvert
gg + δMvert

gg + δMbox
gg , (E.7)

The single QED contributions can be expressed in a compact way in terms of the

coefficients of the standard matrix elements, which are also used in FormCalc. We

closely follow the approach in [106] and refer to it for notations and conventions. In

the case of photonic contributions, the standard matrix elements do not consist of

axial-vector terms.

The s-channel vertex contribution can be expressed in the same way as the final-

state vertex correction in the qq channel. The same expressions for the form factors

are valid. In the t-channel (u-channel can be obtained by simple substitutions t ↔ u,

p3 ↔ p4, ǫ3 ↔ ǫ4 and T a ↔ T b) the coefficients of the standard matrix elements are

given by

GV,t
1 = 4Q2

t

[

(t + m2
t )C0 − 2C0

2 + B0(0,mt,mt) −
1

2
+ (t + 3m2

t )C
1
1

+2(t + m2
t )C

2
1

]

+ 2δZV (m2
t ) ,

GV,t
4 = −4Q2

t (t − m2
t )

[

C0 + C1
1 + + 2C2

1 + 2C2
2 + C12

2

]

,

GV,t
11 = 4Q2

t

[

− 2tC0 + 2C0
2 + −B0(0,mt,mt) +

1

2
− 2(t + m2

t )C
1
1 − (3t + m2

t )C
2
1

]

− 2δZV (m2
t ) ,

GV,t
14 = 4Q2

t

[

C1
1 + C2

1 + C1
2 + C2

2 + C12
2

]

,

GV,t
16 = −4GV,t

14 , (E.8)
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with C0 = C0(t,mt,mt, λ) and Cj
i = Cj

i (t,mt,mt, λ).

Concerning the self-energy contribution to the t-channel, the coefficients of the

standard matrix elements can be expressed as

Σ̂t
V (t) = 2Q2

t

[

−B1(t,mt, λ) − 1

2

]

+ δZV (m2
t ) ,

Σ̂t
S(t) = 4Q2

t

[

−B0(t,mt, λ) +
1

2

]

+
δmt

mt

− δZV (m2
t ) . (E.9)

In the case of t-channel box contribution (u-channel can be obtained by simple substi-

tutions t ↔ u, p3 ↔ p4, ǫ3 ↔ ǫ4 and T a ↔ T b), the coefficients of the standard matrix

elements are given in the following:

G¤,t
1 = 2Q2

t

[

− C0 + (2m2
t − s)D0 − 2(s − 4m2

t )D
1
1

− (s − 4m2
t )D

2
1 + 6D0

2 + t(2D2
2 + D2

3)

+ 2(t + m2
t )(D

12
2 + D21

3 ) + 6D02
3 + 2m2

t D
12
3 − (s − 2m2

t )D
123
3

]

,

G¤,t
2 = 2Q2

t

[

− C0 + D0
2 + t(2D2

2 + D2
3)

+ 2(t + m2
t )(D

12
2 + D21

3 ) + 4D02
3 + 2m2

t D
12
3 − (s − 2m2

t )D
123
3

]

,

G¤,t
4 = 4Q2

t

[

C0 + 4(m2
t − s)D1

1 + (t + m2
t )(D

2
1 + D12

3 + D123
3 ) − 4D0

2

+ (t + m2
t − s)D12

2 − (s − 2m2
t )(D

1
2 + D13

2 )

+ 2(D01
3 − D02

3 ) + m2
t D

1
3 + tD21

3 + (3m2
t − s)D13

3 ,

G¤,t
6 = 4Q2

t

[

2D2
1 + 6D12

2 + 3D2
2 + D2

3 + 2D12
3 + 4D21

3 + 2D123
3

]

,

G¤,t
11 = 2Q2

t

[

2C0 + (s − 2m2
t )D0 − 2(t + m2

t )D
1
1

+ 2(t + m2
t )(D

1
2 + D13

2 + D12
3 + D123

3 ) + 2t(2D12
2 + D21

3 )

− 4D0
2 + 12D01

3 + 2m2
t (D

1
3 − D2

1) − 2(s − 3m2
t )D

13
3

]

,

G¤,t
12 = −4Q2

t

[

4D0
2 + 2(t + m2

t )(D
1
2 + D13

2 ) + 2(3t + m2
t )D

12
2

+ t(2D2
2 + D2

3) + 8D01
3 + 4D02

3 + 2m2
t D

1
3 + 2(t + 2m2

t )D
12
3

+ 2(2t + m2
t )D

21
3 + 2(3m2

t − s)D13
3 + (4m2

t − s + 2t)D123
3

]

,

G¤,t
14 = 4Q2

t

[

2D1
1 + D2

1 − D1
2 − D2

2 − 4D12
2 − 2D13

2

]

,

G¤,t
16 = −4Q2

t

[

8D1
1 + 3D2

1 + 3D1
2 + 2D2

2 + 8D12
2 + 3D13

2 + 2D1
3

+ 6D12
3 + 6D13

2 + D2
3 + 6D21

3 + 6D123
3

]

, (E.10)

where C0 = C0(s,mt,mt,mt), D0 = D0(t,mt,mt,mt, λ), and Dj
i = Dj

i (t,mt,mt,mt, λ).

The full expressions for the gg channel can be obtained by combining the standard

matrix elements as given in [106] with the expressions for their coefficients listed above.
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[77] M. Böhm, H. Spiesberger, and W. Hollik, On the one loop renormalization of

the electroweak standard model and its application to leptonic processes, Fortsch.

Phys. 34 (1986) 687–751.

W. F. L. Hollik, Radiative corrections in the Standard Model and their role for

precision tests of the electroweak theory, Fortschr. Phys. 38 (1990) 165–260.

W. Hollik, Renormalization of the Standard Model, . *Langacker, P. (ed.): Pre-

cision tests of the standard electroweak model, Advanced series on directions in

high-energy physics,* 37-116, also in MPI-Ph-93-021.

[78] A. Denner, Techniques for calculation of electroweak radiative corrections at the

one loop level and results for W physics at LEP-200, Fortschr. Phys. 41 (1993)

307–420.

[79] T. Fritzsche, Berechnung von Observablen zur supersymmetrischen Teilchen-

erzeugung an Hochenergie-Collidern unter Einschluss hoererer Ordnungen, PhD

thesis, . Cuvillier, Göttingen, 2005, ISBN 3-86537-577-4.

[80] CTEQ Collaboration, R. Brock et al., Handbook of perturbative QCD: Version

1.0, Rev. Mod. Phys. 67 (1995) 157–248.

[81] J. D. Bjorken and E. A. Paschos, Inelastic Electron Proton and gamma Proton

Scattering, and the Structure of the Nucleon, Phys. Rev. 185 (1969) 1975–1982.

R. P. Feynman, Very high-energy collisions of hadrons, Phys. Rev. Lett. 23

(1969) 1415–1417.

R. P. Feynman, Photon-hadron interactions, . Reading 1972, 282p.



144 BIBLIOGRAPHY

[82] J. C. Collins, D. E. Soper, and G. Sterman, Factorization of Hard Processes in

QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1–91, [hep-ph/0409313].

[83] E. D. Bloom et al., High-energy inelastic e p scattering at 6-degrees and 10-

degrees, Phys. Rev. Lett. 23 (1969) 930–934.

M. Breidenbach et al., Observed behavior of highly inelastic electron - proton

scattering, Phys. Rev. Lett. 23 (1969) 935–939.

J. I. Friedman and H. W. Kendall, Deep inelastic electron scattering, Ann. Rev.

Nucl. Part. Sci. 22 (1972) 203–254.

[84] J. D. Bjorken, Asymptotic Sum Rules at Infinite Momentum, Phys. Rev. 179

(1969) 1547–1553.

[85] G. Altarelli, R. K. Ellis, and G. Martinelli, Large Perturbative Corrections to

the Drell-Yan Process in QCD, Nucl. Phys. B157 (1979) 461.

[86] G. Curci, W. Furmanski, and R. Petronzio, Evolution of Parton Densities Beyond

Leading Order: The Nonsinglet Case, Nucl. Phys. B175 (1980) 27.

J. C. Collins and D. E. Soper, Parton distribution and decay functions, Nucl.

Phys. B194 (1982) 445.

[87] G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys.

B126 (1977) 298.

[88] P. Nason, S. Dawson, and R. K. Ellis, The One Particle Inclusive Differential

Cross-Section for Heavy Quark Production in Hadronic Collisions, Nucl. Phys.

B327 (1989) 49–92.

[89] A. De Rujula, R. Petronzio, and A. Savoy-Navarro, Radiative corrections to

high-energy neutrino scattering, Nucl. Phys. B154 (1979) 394.

J. Kripfganz and H. Perlt, Electroweak radiative corrections and quark mass

singularities, Z. Phys. C41 (1988) 319–321.

J. Blumlein, Leading log radiative corrections to deep inelastic neutral and

charged current scattering at HERA, Z. Phys. C47 (1990) 89–94.

[90] H. Spiesberger, QED radiative corrections for parton distributions, Phys. Rev.

D52 (1995) 4936–4940, [hep-ph/9412286].

[91] M. Roth and S. Weinzierl, QED corrections to the evolution of parton distribu-

tions, Phys. Lett. B590 (2004) 190–198, [hep-ph/0403200].



BIBLIOGRAPHY 145

[92] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Parton distri-

butions incorporating QED contributions, Eur. Phys. J. C39 (2005) 155–161,

[hep-ph/0411040].

[93] CDF Collaboration, F. Abe et al., Observation of top quark production in pp̄

collisions, Phys. Rev. Lett. 74 (1995) 2626–2631, [hep-ex/9503002].

[94] D0 Collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev.

Lett. 74 (1995) 2632–2637, [hep-ex/9503003].

[95] Tevatron Electroweak Working Group Collaboration, E. Brubaker et al., Com-

bination of CDF and D0 results on the mass of the top quark, hep-ex/0608032.

[96] I. I. Y. Bigi, Y. L. Dokshitzer, V. A. Khoze, J. H. Kühn, and P. M. Zerwas,
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