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Chapter 1

Introduction

1.1 Objectives and structure of thesis

Both phenotypes major depressive disorder (MDD) and response to antidepressant treatment
have been extensively investigated because of their social relevance. Chronic depressive
disorder very often leads to disease related disability [120]. A mere 40-60% of depressed
patients enter full remission [18]. The remaining patients do not get essentially better,
but they still have side e�ects by drug exposure. Identi�cation of genes responsible for
susceptibility to MD and being a non-responder is an essential step to individually adjusted
treatment.

The main goal of this thesis is the identi�cation of the susceptibility genes for MD and
response to antidepressant treatment in order to gain a better understanding of its genetic
causes. Currently, little is known about the nature of genetic variation underlying these
complex traits. The main challenge in its investigation is the interplay of several genetical
and environmental causes that obviously have small individual contributions in itself [136].

Many factors a�ect the outcome of an genetic association study. For this reason I address
the particularities and problems relevant for the power and e�ciency of association testing
between the polymorphisms in candidate genes and clinical phenotypes in the �rst chapter
of my thesis. There I describe the investigated phenotypes as well as known associations
with candidate genes.

The data quality control and correction for false positive associations is a major and
important part of each association study. False positive associations could be caused by
technical problems as well as statistical �uctuations or systematical biases due to study
design. Preliminary tests regarding population strati�cation and comparison of haplotype
estimation algorithms are reported in appendix. Results of these tests are important for
correctly performing of following analysis.

Because of the large number of tests in current studies it is necessary to address the
multiple testing problem (MTP). Especially in the era of �whole genome association stud-

1



ies� the MTP has become a very important subject. For this reason chapter two includes
methodical investigation on this research �eld that corresponds to the published manuscript
[151]. In this part of thesis I compare the rapid method proposed by Nyholt [126] with the
computationally intensive permutation based method.

In chapter three and four I test the association of candidate genes with MDD and response
to antidepressant treatment. Chapter three details variability in the gene coding for a
purinergic ligand-gated ion channel (P2RX7 ) and its association with MDD that corresponds
to a recently published manuscript [109]. The P2RX7 gene was chosen as a highly interesting
candidate gene on the basis of published linkage and association within loci in 12q24.31 in
a patient sample with bipolar depression [119, 161]. These loci contain the P2RX7 gene as
well as P2RX4 and CAMKK2. The goal of this chapter is to determine if P2RX7 or one
of the neighboring genes are the susceptibility genes for MDD, and in the case it is true,
to identify the causative genetic variant as well as a high risk genotype and to estimate its
e�ect size.

Chapter four emphasizes the role of the FKBP5 gene in response to antidepressant treat-
ment. Polymorphisms in this gene were previously reported by our group to be associated
with early response to antidepressant treatment [19]. The exact location of the causal poly-
morphism could not be identi�ed because of extended linkage disequilibrium (LD) between
markers [19]. In the present study I search for potential causal variants using �ne mapping
in an enlarged sample. In addition I resequence all potentially functional areas within that
gene. I test for statistical interactions of genetic variants within FKBP5 as well as between
FKBP5 and corticosteroid receptor genes. Moreover, I examine in this chapter whether
interaction of polymorphisms in investigated genes interfere with previous disease history in
predicting response.
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1.2 Association studies of complex disorders

Disorders or traits with a lack of Mendelian inheritance patterns are referred as polygenic,
multifactorial or complex. The contribution of variation of single genes on the phenotype is
assumed to be only modest. The approach most often used these days for such studies is
the case-control design in which a di�erence in allele frequencies between unrelated a�ected
individuals and unrelated una�ected controls is tested for signi�cance [79].

These association studies most commonly use single nucleotide polymorphisms (SNPs)
for the dissection of the genetic determinants of complex diseases. They may be classi�ed
into two di�erent groups: genome-wide association studies and candidate gene association
studies. In our study we focus on the candidate gene approach. It includes two steps: the
�rst one is the choice and/or discovery of the di�erent polymorphic sites within the candidate
gene region and the second one is the association testing per se. The data used to test for
association are often presented in the form of contingency tables. In the contingency tables
for our purposes rows describe an a�ection status and the columns refer to either speci�c
alleles, genotypes, or haplotypes. A commonly used test statistic for association testing with
such data is the χ2 test for homogeneity of proportions. In case the expected number in
any �eld of the contingency table is less than �ve, it is commonly advised to use the exact
Fisher's test [61]. Sometimes it is necessary to consider gender or any other group-speci�c
e�ects, which may be used as covariates in logistic regression [84]. Regression techniques
may be also used in the case of quantitative dependent variables (quantitative phenotypes).
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1.3 Factors a�ecting the power to detect genetic associ-
ation

In this chapter several parameters are described that are crucial for association studies such
as the extent and amount of linkage disequilibrium between marker and disease allele, the
marker allele frequency and the disease allele frequency, and the e�ect size of the true disease
causing allele.

1.3.1 Linkage disequilibrium

Most association studies of genetic variants are indirect. This means that observed ge-
netic variants (markers) that are in proximity to a disease-causing variant on a particular
chromosome will be more often co-inherited with the disease-causing variant than expected
under independent assortment. This lack of independence among di�erent polymorphisms is
termed linkage disequilibrium (LD), and arises because the variants share a joint population
history [108]. The amount of LD between any two markers is in�uenced by the classi-
cal forces of recombination, natural selection, mutation, genetic drift, ancestral population
demographics and mating patterns [41, 141, 187, 208].

Patterns of LD are well known for being noisy and unpredictable [187]. In many studies
it was shown that although the LD is signi�cantly related to genetic distance, small physical
distance does not guarantee a high level of LD [3, 63, 159, 165]. For example, pairs of sites
that are tens of kilobases apart might be in complete LD, whereas nearby pairs of sites from
the same region might only be in weak LD [130, 165, 187]. The probability of any particular
pair of SNPs being in LD is not predictable, and, as a result, LD should be determined
empirically for any speci�c genomic region in any population [165, 188].

Various statistical measures can be used to summarize LD between two markers, but
in practice only two, termed D′ and r2, are widely used [49, 71]. Both measures are built
on the basic of a pairwise-disequilibrium coe�cient, D, which is the di�erence between
the probability of observing two marker alleles on the same haplotype and observing them
independently in the population: D = f(A1B1)− f(A1)f(B1), where A and B refer to two
genetic markers with alleles `1' and `2', `f ' is their frequency [108]. Then D′ = D/Dmax/min,
where

Dmin/max =

 max(−f(A1)f(B1),−f(A2)f(B2)) D < 0

min(f(A1)f(B2), f(A2)f(B1)) D > 0
(1.1)

The second LD measure is
r2 =

D2

f(A1)f(B1)f(A2)f(B2)
(1.2)

D′ has a very simple interpretation: a value of 0 implies independence, whereas a value
of 1 means that all copies of the rare allele occur exclusively with one of two possible alleles
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at the other markers. The latter case is de�ned as complete LD [190]. The r2 measure has a
strong theoretical grounding in population genetics and more desirable statistical properties.
An r2 value of 0 also implies independence, but r2 = 1 has a more strict interpretation than
that of D′ = 1: r2 = 1 only when the marker loci have identical allele frequencies and
every occurrence of an allele at each of the markers perfectly predicts the allele at the other
locus: the markers are in perfect LD. These two measures behave very di�erently. High
values of D′ do not necessarily imply high r2 and are not inconsistent with low values of
r2. In particular, there seems to be much more random variation in values of D′ at a given
recombination distance [130, 137, 187].

D′ may vary between 0.0 and 0.4 for markers that are e�ectively independent, while r2

tends towards 0.0 for independent SNPs [137].
The strength of LD between marker and disease locus in a given population directly

in�uences the power of an association study using a given sample size. For example, if the
required sample size for a given test size and power in the case of perfect LD (if r2 between
marker and susceptibility locus is equal to 1) were 1000 cases and controls. In the imperfect,
although more realistic situation of, say, r2 = 0.2, the sample size needed would be 1000/0.2
= 5000 cases and controls for identical power and test size. In other words the sample size
must be increased by a factor of 1/r2 [137, 208].

There are di�erent opinions about what amounts of LD are required for association
studies. The answer to this will vary in a any speci�c case as a function of disease and
marker allele frequencies, sample size and e�ect size on the true disease causing allele, as
well as power and speci�ed test size.

1.3.2 Disease and marker allele frequencies

It is not yet clearly known whether causative mutations for complex traits are more likely
to be common or rare [33, 137, 189]. If we argue that the fact that environmental factors
have an important role in complex traits means that individual genetic variants have low
attributable risks, than it is possible that these diseases are common because of highly preva-
lent environmental in�uences, but not because of common disease alleles in the population.
On the other hand common complex disease may be caused by common variants. In reality,
probably both mechanisms may exist in various combinations.

The second important point is that di�erences between the disease allele frequency and
the frequency of either the single SNP or haplotype that is in LD with the disease allele
dramatically changes the power to detect association. Power of an association study is
greatest when the marker and disease allele frequencies match [2, 97].

Because the sample size in an association study is restricted, we only consider disease
alleles that are of detectable frequency in the population, which is mostly greater than 5%.

5



1.3.3 Genotype relative risk (e�ect size)

Genotype relative risk is easy to describe in the following expression: r1 = f1/f0 and r2 =

f2/f0 [154]. f0, f1, f2, are the probabilities of being a�ected in individuals who have 0, 1
and 2 copies of the disease gene, respectively.

From a clinical perspective, the larger the genotype relative risk, the more easily one can
distinguish an individual's disease genotype based on their disease phenotype.

The standard measure for e�ect in a case-control study is the odds ratio (OR), de�ned
as the odds of exposure among cases divided by the odds of exposure among controls.

The e�ect size depends on four parameters: the OR of the true disease causing allele,
the amount of LD between marker and disease allele, the marker allele frequency and the
disease allele frequency [147].

If the e�ect size of the true disease causing allele is small, for example is equal to 1.3,
even in the case that disease and marker allele frequencies are about 0.5 and both are in
LD(D′ ≥ 0.7) at least 2100 cases and controls are required for a reasonable chance (power ≈
80%, α = 0.001) to �nd this association [208]. By contrast, if the OR is equal to 3, D′ ≥ 0.7

and marker and disease allele frequency are about 0.05 we will need merely 360 cases and
the same number of controls to be able to detect this e�ect [208].

1.3.4 Misclassi�cation errors

Inclusion of incorrect data in genetic analysis can lead to the generation of false conclusions
[1, 175] and a reduction of power [65, 64] to �ne map trait loci. Additionally, genotyping
errors can bias LD measurements [5].

The most frequently occurring genotyping errors are misclassi�cation errors, for example
if heterozygotes are interpreted as homozygotes and inverse. The misclassi�cation may occur
systematically or randomly. Systematic misclassi�cations are possible for example if signals
of heterozygotes are not as intensive as of homozygotes, then heterozygotes will be under-
represented. DNA contamination in samples lead typically to an excess of heterozygous
genotypes in the sample. Quality of DNA, instability of genotyping reagents, pseudo-SNPs
(i.e., ectopic sequence variants and paralogous sequence variants) and operator error con-
tribute to the overall genotyping error rate [107].

For population- and family-based data, individuals can be genotyped repeatedly to de-
termine the rate of genotyping errors. However, if a genotyping error occurred repeatedly,
it will not be detected, and genotyping error rates will be underestimated. If it is suspected
that DNA contamination has taken place, the samples should be genotyped at several mi-
crosatellite markers. In the case of DNA contamination, more than two alleles would be
represented, but only two expected for diploid genomes.

Individuals from population-based studies, or controls from case-control studies, can
be analyzed to determine whether their genotype data are in Hardy-Weinberg equilibrium
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(HWE) to give clues as to whether or not genotyping errors at particular marker loci may
have occurred [83]. It should be noted that deviations from HWE are not necessarily due
to genotyping error and may be due to chance or other genetic factors such as a protective
allele, population admixture/strati�cation, inbreeding, or deletions. Although testing for
deviations from HWE is commonly used to detect potential genotyping errors, the power of
this technique is low even for high error rates (i.e. α = 15%) [107].

1.3.5 Deviation from Hardy-Weinberg equilibrium (DHW)

As mentioned above, testing for HWE is commonly used for quality control of large-scale
genotyping and is one of a few ways to identify systematic genotyping errors in unrelated
individuals. Thus it is possible that investigators mistrust data with DHW and may some-
times ignore polymorphisms with DHW in their studies. This way of interpreting DHW is
not necessarily consistent.

J.K. Wittke-Thompson et al. [197] suggested to assess markers with DHW in a more
logical and systematic way by distinguishing those that could be attributed to an underly-
ing genetic model at the susceptibility locus from those due to genotyping errors, chance,
and/or violations of the assumptions of HWE, thereby improving the quality of scienti�c
inferences. Associations between variation in candidate genes and complex disorders are
often correlated with existence of DHW, because the associations are genotypic rather than
allelic, and genotypic di�erences may result in DHW. Depending on the underlying genetic
model DHW may occur in cases and/or controls with a lack or an excess of heterozygous
genotypes. The observed deviations from the expected distribution in heterozygotes should
be in opposite directions in cases and controls. DHW in cases and/or controls may be
present in recessive, dominant and additive models. DHW in patients in contrast is never
expected for a multiplicative model, and is less likely if the susceptibility-allele frequencies
are extreme small or large [197]. Consistency of observed DHW with genetic models does not
mean that errors, missing data patterns, or violations of HWE assumptions did not generate
or contribute to the observed DHW. Admixture, assortative mating or natural selection of
particular genotypes may cause DHW.

1.3.6 Population strati�cation

Case-control studies from di�erent laboratories often yield contradictory results [78]. This
lack of reproducibility is attributed to marked variation of disease prevalence and marker
allele frequencies within subpopulations, so called population strati�cation (PS). PS can
lead to false evidence for an association. If both the disease and a marker genotype have
higher frequency in any of the subpopulations within the investigated population, there will
be an apparent association between the marker genotype and the disease at the population
level, even though there is no true association at the subpopulation level. In the case that
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only two subpopulations are mixed the type I error rate will increase with a lower disease
prevalence ratio and a higher marker frequency di�erence [73]. On certain conditions, by
increasing the number of subpopulations, type I error rate can decrease, but in general PS
biases association results.

PS may a�ect LD between a pair of SNPs. When subpopulations have signi�cantly
di�erent allele frequencies LD between a pair of SNPs in the combined population can be
stronger than in either subpopulation [24]. In some cases PS may lead to de�ciency of
heterozygotes, which in turn leads to DHW in the sample.

Recent methods, known as Genomic Control, have been proposed to adjust for population
strati�cation. These methods use a panel of unlinked markers to determine if PS exists and
if so, provide a means to adjust for it.

Genomic Control is conceptually simple: the method examines the distribution of asso-
ciation statistics (χ2) between unlinked genetic variants typed in cases and controls. The
statistic at a candidate allele being tested for association can then be compared with the
genome-wide distribution of statistics for markers that are probably unrelated to disease
to assess whether the candidate allele stands out. In the absence of strati�cation, the test
statistic for association between an unlinked genetic variant and disease should follow a χ2

distribution with 1 degree of freedom [50, 141]. In the presence of strati�cation, the distri-
bution of association statistics should be in�ated by a value termed λ, which becomes larger
with an increased sample size [62].
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1.4 Block concept

Regions with very high LD would be expected to be a consequence of a low population re-
combination rate. Actually, there is evidence of a striking negative correlation between the
average recombination rate and average block length [39, 30, 56, 67, 95, 137, 188]. However,
the rate of recombination is not a uniform function of the physical distance between two
markers, leading to the concept of recombination hot spots and cold spots [132]. Several
studies showed that patterns of LD are organized in block-like structures de�ned haplotype
blocks [41, 89, 140]. Wang et al. [188] have demonstrated that randomly distributed recom-
bination (i.e., no hot spots) with varying recombination rates across the chromosome can
explain empirical data. At the same time many other authors concluded that block bound-
aries are largely shared across populations, which, however, supports the recombination hot
spot hypothesis [30, 39, 56, 63, 95].

Against all expectation certain surveys found a small number of extremely long haplotype
blocks. Among the published studies, the longest reported block is a region of low haplotype
diversity on chromosome 22 that in individuals of European descent stretches across 804 kb
[43]. LD block length described in the literature is mostly less than 5-20 kb in Europeans and
Americans of North-European descent. By contrast, LD in Africans and African-Americans
is markedly less [33, 56, 63, 95, 140, 188]. The latter two are `older' populations, in which
more recombination events have occurred that lead to shorter LD blocks than in `younger'
populations.

Ideal approach for haplotype block identi�cation is one based on the distribution of ob-
served recombination crossovers between loci. Unfortunately, on the genotypic data it is
di�cult to determine precisely where the recombinations have occurred. For this reason dif-
ferent computational methods are used for haplotype block estimation. Several are based on
the concept of `chromosome coverage', with a haplotype block containing a minimum num-
ber of SNPs that account for a majority of common haplotypes [130, 204] or a reduced level
of haplotype diversity [6, 41]. Others are based on di�erent subjectively determined thresh-
olds [133], on the con�dence-limit [63], or on the distribution of observed recombination
crossovers between loci [39, 56, 188].

Ke et al. [95] and Schwartz et al. [157] compared three block de�nitions from publications
[63, 130, 133, 188]. The authors demonstrated that there is a great instability in haplotype
block boundaries and numbers of blocks when examining sub-samples of SNPs with di�erent
marker densities. Phillips et al [133] identi�ed diverse block partitioning in the dynamic
programming algorithm using di�erent parameters.

I do not give here detailed descriptions of di�erent methods. Considering published expe-
rience, I can conclude that the block concept has several di�culties including: the arbitrary
nature of block de�nitions; the instability of blocks under di�erent scenarios (especially dif-
ferent marker densities); the relatively limited extent of block coverage in the genome; the
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high level of haplotype diversity and divergence in haplotype composition between di�erent
populations [33].

Thus, it seems likely that methods for LD testing that do not arbitrarily impose block
boundaries among correlated SNPs might perform better than block-based methods [157].
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1.5 Tagging-SNPs

In general, selection of non-redundant markers from a larger set has been called `tagging'.
A SNP or a set of SNPs that have been selected on the basis of LD patterns to represent
other SNPs are referred as tagging-SNPs (tSNPs) [30].

Given an initial set of densely-spaced and potentially redundant markers, tagging aims
at reducing the scale and cost of genotyping in subsequent studies, while retaining most or
all of the information provided in the dense map [92, 130, 189].

Several algorithms and computer programs have been developed to de�ne sets of tSNPs.
It was demonstrated that tSNPs performed substantially better than randomly spaced SNPs
[24, 30].

All existing algorithms can be divided into two general categories: haplotype block meth-
ods and block free methods. In the �rst category, genomic regions are partitioned into hap-
lotype blocks within which sets of tSNPs are selected by measures of haplotype diversity
[9, 92]. The second category of block-free methods was proposed with an added feature
that the SNPs with high LD levels do not necessarily have to be adjacent to each other
[24, 25, 115, 145, 168]. Taking into account the above mentioned di�culties in block con-
cept the advantage of the second category is obvious.

Haplotype-based tagging methods have several disadvantages. A potential problem is
that the frequencies of the haplotypes are not known and should be estimated based on
genotype data from unrelated individuals. The estimation error increases with decreasing LD
within a genomic region [200] or with the reduction of sample size [167, 168]. In large samples
the certainty of haplotype frequencies is near 100% [189], but not the individual's haplotypes.
The idea of tagging implies that tSNPs should be chosen based on a small samples otherwise
there is no reduction in genotyping costs. Several researchers have also showed that di�erent
methods for haplotype estimation yield di�erent frequencies of estimated haplotypes and this
inconsistency increases when data are not completely available [57, 167, 205].

Moreover, almost all the current approaches assume random union of gametes (or haplo-
types), and any departure from HWE may lead to biased estimates of haplotype frequencies
and indices biased on these frequencies [57, 189]. HWE may not be met in some samples.

It has been suggested that tSNPs selected based on haplotype diversity do not perform
better than randomly selected markers in retaining power [206]. This is possible in case
where the causal SNP is rare (MAF < 10%) and the chosen tSNPs are common [189]. If
a causal SNP occurs at a frequency that is di�erent from the average of the observed set
of markers in a region, the chance of this causal SNP being detected by any of the tSNP
sets in the region would be low, especially if the SNP was rare [94]. Weale [189] et al. have
demonstrated that a small tSNP set could be very e�ective in predicting the allelic state of
causative mutation of unknown allele-frequency, given that such mutations are likely to be
part of the same haplotype structure. Discrepant SNPs that distinguish recent haplotypes
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will not generally be well tagged [189].
To avoid these disadvantages one can use r2-based tagging suggested by Carlson at al [24].

Measures based on r2 have the advantage that they approximately represent the e�ective
units of sample size in a case-control association study [30, 137].

The idea of �nding useful tSNPs does not in itself depend on the existence or quality
of LD blocks [189]. Carlson's approach relaxes all block requirements and uses only the
correlations between all markers, whatever their respective locations [24]. Imputation of the
haplotype phase for each pair of SNPs in the region is required to compute r2.

This r2 method relies on a clustering technique in which a SNP is designated as tSNP
for a cluster if a pairwise r2 values between this SNP and all the other SNPs in the same
cluster exceeds a speci�ed r2 threshold, for example 0.75. Di�erent alternative clustering
procedures are possible. The simple way to minimize the number of tSNPs is to look for the
largest cluster in each iteration. In that case tSNPs will be the SNPs that had the highest
r2 with all SNPs in the corresponding cluster, de�ned `bin'. If two SNPs could be tSNPs it
is reasonable to select the one genotyped successfully in most individuals.

Carlson showed that LD-selected tSNPs are more powerful than an equivalent number of
either haplotype-selected tSNPs or randomly selected SNPs. Moreover this method is robust
to recombination history within the gene [24]. In fact, in the context of genetic mapping,
it is more relevant to consider the r2 measure of LD between the tags and the SNPs they
are meant to represent [137], which will generally include the functional SNPs that are to
be identi�ed [30].

Recently, several genotype-based methods for tagging were suggested. Hu et al. pro-
posed a new robust method based on power calculations from genotype data [85]. But this
method requires the disease model to be speci�ed in association study, because it greatly
in�uences the power of the tSNPs for detecting unknown SNPs. Unfortunately, the under-
lying disease model is usually unknown. Another procedure proposed by Rinaldo [145] is
a slightly modi�ed Carlson's method with using Pearson's correlations between unphased
genotypes instead of LD measures.
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1.6 Haplotypes

A haplotype is de�ned as a sequence of polymorphic genetic attributes (in our study SNPs)
characteristical for the single strand of the DNA-segment. Grouping SNPs in haplotypes
leads to changing of dimension in association analysis. Haplotypes provide more information
than the corresponding genotypes, since haplotypes include the information about genotypes
as well as the phase information. Haplotypes may be directly responsible for the observed
variation of the trait of interest, variants of promoter activity or protein structure and func-
tion. Several studies indicate that using extended marker haplotypes can provide additional
power in detecting associations [106, 174, 207].

The diversity of haplotypes depends on the number of considered SNPs. A block of
N independent biallelic SNPs could in theory generate 2N di�erent haplotypes. In reality,
in the absence of recurrent mutation and/or recombination the number of observed haplo-
types is often not greater than (N + 1) [3]. Conventionally, haplotype phases have been
resolved by tracing chromosomal transmission through extended families. Such extensive
pedigree data are often not available in association studies where unrelated individuals or
small nuclear families are used. Haplotype phases can also be determined by using molecu-
lar approaches, such as cloning, allele-speci�c polymerase chain reaction and single molecule
dilution [31, 116, 148, 149]. These molecular methods are labour-intensive and expensive to
use in haplotype determination and, therefore, are not suitable for high-throughput appli-
cations. A cheap and relatively straightforward alternative for haplotype estimation is the
application of computational algorithms to predict haplotypes by using genotype data.

Di�erent methods for haplotype reconstruction in a population are available that do not
require assumption about LD between markers. I describe here only several of them.
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1.7 Haplotype estimation methods

1.7.1 Clark's algorithm

The �rst algorithm for haplotype reconstruction (from genotype data) was described by
Clark [29]. The algorithm starts by listing the haplotypes which exist with certainty in the
sample; that is the haplotypes within individuals with no more than one heterozygous locus.
The algorithm then iterates through a procedure which assigns ambiguous haplotypes to
those in the known list. Solutions are dependent on the order in which the individuals with
unresolved haplotype phase are entered. The algorithm does not assume HWE, unlike the
other procedures for haplotype reconstruction, which are described below.

1.7.2 The expectation-maximization (EM) algorithm

This is an iterative maximum likelihood method to compute successive sets of haplotype fre-
quencies p1, p2, . . . , ph, starting with initial arbitrary values p

(0)
1 , p

(0)
2 , . . . , p

(0)
h . These initial

values are used as if they were the unknown true frequencies in order to estimate genotype
frequencies P (hkhj)

(0) (the expectation step). These expected genotype frequencies are used
in turn to estimate haplotype frequencies at the next iteration p

(0)
1 , p

(0)
2 , . . . , p

(0)
h . (the maxi-

mization step), and so on, until convergence is reached (i.e., when the changes in haplotype
frequency in consecutive iterations are less than some small value). This algorithm is based
on the assumption of random union of gametes (or haplotypes), and any departure from
Hardy-Weinberg (HW) equilibrium may lead to biased estimates of haplotype frequencies
and indices based on these frequencies [57]. A potential problem of this method is that the
variance of the estimates of haplotype frequencies is not known.

Depending on the initial conditions, the EM algorithm may not �nd the true maximum
likelihood because it can lead to a local rather than global optimum, or the iterative process
may stop before reaching the optimum [57].

In addition, the average performance of the EM algorithm is consistently worse for small
samples, even when only two polymorphic loci are considered [189].

Nevertheless, the method often provides reasonably accurate estimates of haplotype fre-
quencies. Good initial values are based on the product of the observed allele frequencies
[57].

Fallin and Schork [58] have demonstrated via extensive simulation studies high accuracy
in haplotype frequency estimation for biallelic diploid samples by using the EM algorithm.
They have found that the estimation error is decreased by a number of factors: an increased
sample size, a decreased ambiguity (proportion of the unphased heterozygous individuals),
increased maximum haplotype frequencies, an increased LD between single nucleotide poly-
morphisms (SNPs) as wel as an increased number of rare SNPs.
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1.7.3 EM algorithm based approaches for long haplotypes

Another approach is suggested by Clayton [138]. This method use the Markov chain Monte
Carlo (MCMC) approach. It adds SNPs one at a time and estimates haplotype frequencies,
discarding haplotypes with low frequency as it progresses. Clayton refers to the problem of
`culling haplotype assignments at early stages', which Qiu et al. described [138]. Clayton
suggests including loci in di�erent orders and observing whether the solution obtained varies.
The algorithm works well, but it is possibly even more important to be careful when this
algorithm is used. Clayton's program is called SNPHAP1 and runs on Unix.

1.7.4 A coalescent-based Bayesian algorithm

Stephens et al. [167] proposed a MCMC approach for reconstructing haplotypes from geno-
type data. This involves a step where one samples from the conditional distribution pr(Hi|G, H−i),
where Hi represents the haplotypes for the ith individual and H−i the haplotypes for all the
other individuals in the sample, and G represents the genotypes of all the individuals. Under
most mutation models this conditional distribution is unknown. Stephens et al. [167] sug-
gested to use an approximation to a general mutation model. In practice this approximation
ensures that the haplotypes which are generated are similar to haplotypes that have been
generated. This approach is implemented in the program PHASE2. According to Stephens
and Donnelly [166] a new model that allows for recombination and decay of LD with distance
has been implemented. The program also allows the user to estimate recombination rates,
to identify recombination hotspots from population genotype data, and to perform a test
for haplotype frequency di�erences between cases and controls.

1available at http://www-gene.cimr.cam.ac.uk/clayton/software/
2available at http://www.stat.washington.edu/stephens/software.html
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1.8 Gene-gene interaction

Complex traits arise as a result of the interplay between many genetic variants and en-
vironmental exposures. The ubiquity of biomolecular interactions in gene regulation and
biochemical and metabolic systems suggest that the relationship between DNA sequence
variations and clinical endpoints is likely to involve gene-gene interactions. Thus, complex
interactions are more important than the independent main e�ects of any single susceptibil-
ity gene [118].

The study of interlocus interactions in complex disease has been confused by di�erences
in de�nition and terminology between biologists, epidemiologists and statisticians, and be-
tween quantitative and human molecular geneticists. The term `epistatic' was originally
introduced by Bateson [15] to describe a masking e�ect whereby a variant or allele at one
locus (denoted at that time as an `allelomorphic pair' ) prevents the variant at another locus
from manifesting its e�ect. This was seen as an extension of the concept of dominance for al-
leles within the same allelomorphic pair i.e. at a single locus. The locus being masked is said
to be `hypostatic' to the other locus. This de�nition is actually closest to the mechanistic
model of interaction of proteins.

The latter de�nition is applicable for quantitative traits, but it was not trivial to map
the discrete segregation of alleles onto the continuous range of measured traits. R. A. Fisher
[59] �rst had to deal with this essential problem. He used the term `epistatic' in a di�erent
sense from its original usage. In Fisher's de�nition, epistasis refers to a deviation from
additivity in the e�ect of alleles at di�erent loci with respect to their contribution to a
quantitative phenotype. Epistasis in the Fisher's sense is closer to the usual concept of
statistical interaction: departure from a speci�c linear model describing the relationship
between predictive factors (here assumed to be alleles at di�erent genetic loci) [35, 118, 186]
and is slightly more inclusive than what Bateson originally meant [134].

Biologically epistasis plays a key role in reproductive isolation � genes that function well
in conspeci�c genetic backgrounds function poorly when combined in interspeci�c hybrids.
Epistasis in�uences the evolution of genetic systems such as sex, diploidy, dominance, or the
contamination of genomes with deleterious mutations [152, 186]. Simpler genomes such as
those of RNA viruses display antagonistic epistasis (mutations have smaller e�ects together
than expected); bacterial microorganisms do not apparently deviate from independent ef-
fects, whereas in multicellular eukaryotes, a transition toward synergistic epistasis occurs
(mutations have larger e�ects together than expected) [152].

In human genetics, three main models of gene interaction for penetrance (the probability
of developing disease given a certain genotype) are commonly considered [146]. The �rst is a
heterogeneity model [123, 146], in which an individual becomes a�ected through possessing
a predisposing genotype at either of two loci. The second is an additive model, which has
been shown to approximate the heterogeneity model when modeling familial relative risks
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[36, 146]; and the third is a multiplicative model [80]. The additive and heterogeneity models
are usually assumed to represent non-epistatic models and to correspond to a situation in
which the biological pathways involved in disease are at some level separate or independent.
The multiplicative model is usually considered to be an epistatic model in which the loci and
pathways involved are not independent. However, a multiplicative model can be considered
to be an additive model when transformed to the logarithmic scale. In a statistical sense,
therefore, the multiplicative model signi�es independent additive e�ects on a logarithmic
scale. A fourth model is one of additivity on a liability or probit scale, where loci contribute
to an underlying, unobserved, continuous trait in an additive fashion and development of
disease occurs if this trait exceeds a certain threshold [37, 60, 112, 131].

Mathematically, the quantitative genetic concept of epistasis may be represented for two
loci by the linear model. In this model, alleles at loci, A and B (the independent variables),
a�ect the phenotype (the dependent variable, P ) in a manner described by the equation:

P = b1A + b2B + b12AB + e (1.3)
where b1 and b2 are the average e�ects of alleles at the A and B loci, respectively, on

the phenotype P , whereas b12 describes the e�ect of interactions between alleles at the two
loci (e re�ects stochastic variations arising from the environment or from loci not being
considered). The absence of epistasis means that the interaction coe�cient b12 is zero; that
is, the loci act additively (independently) [186].

Given case-control data we may compare this model with the null model, without an
interaction term, using standard statistical software packages for logistic regression [37, 35].

Unfortunately, there is not a precise correspondence between biological models of epista-
sis and those that are more statistically motivated. We should like to perform a statistical
test and interpret the outcome biologically, but this is in general not permissible. Statisti-
cal interaction does not necessarily imply interaction on the biological or mechanistic level
[35]. Thus statistical modeling can only play a limited role in helping to understand bio-
logical interaction. Although, statistical modeling of interactions involving genes may be
helpful in identifying genes in�uencing disease susceptibility which otherwise would remain
unidenti�ed. Moreover, if there is a multiplicative model, although there is considered to
be no statistical interaction there may be still biological interaction. Adequate �tting to a
statistical main e�ects model without interaction does not necessarily imply biological inde-
pendence. Biological interaction can yield both a multiplicative and an additive statistical
model. In particular cases, the statistical interaction can not be shown, because the power
of interaction testing is limited. Breslow and Day pointed out that the sample size required
to detect interaction is always at least 4 times what is needed to detect a main e�ect of
the same size [21]. Only if the prior biological model can be postulated in some detail is it
likely that statistical modeling of this kind will allow insight into the underlying biological
mechanisms [35].
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1.9 Multiple testing problem (MTP) in association stud-
ies

Case-control studies are used to test for association between a trait, e.g. disease, and candi-
date genes or regions. For this aim a number of SNPs in the genes or regions are genotyped.
Association tests may be performed for each SNP individually or for sets of SNPs grouped
into haplotypes or multiple genotypes. The number of tests performed has to be taken into
account when judging their statistical signi�cance. Otherwise, the probability of obtaining
at least one false positive association will potentially be much greater than its nominal value
(usually 0.05).

By setting the error rate on the individual test and not on the entire set of tests the
likelihood of detecting true e�ects can be very low, because the false positive rate will greatly
increase. For typical genotype-phenotype association studies many thousands of statistical
tests will be examined. In this case we expect hundreds of falsely called associated genes
among the set of genes exceeding the threshold. To control this multiplicity the family-wise
error (FWE) methods for correction for multiple testing are adopted. The goal of multiple
testing procedures (MTPs) is to control the `maximum overall Type I error rate', which is
the maximum probability that one or more null hypotheses is rejected incorrectly.

1.9.1 De�nition of family-wise error rate (FWER) and false discov-

ery rate (FDR)

Family-wise (FW) methods control the probability of committing one or more type I errors.
`Family' in this context is to be understood as a set of experiments, i.e. set of tests for
dependent variables and the number of SNPs within one gene or a group of genes.

Suppose we have m (null) hypotheses H0, of which m0 are true. R is the number
of hypotheses rejected. table 1.1 summarises the situation in traditional form. R is an
observable random variable; U, V, C and T are unobservable random variables.

Declared non-signi�cant Declared signi�cant Total
True null hypotheses U V m0

Non-true null hypotheses T S m−m0

m−R R m

Table 1.1: Hypotheses de�nition

If each individual null hypothesis is tested separately at level α then R = R(α) is in-
creasing in α. In terms of these random variables, the per-comparison error rate (PCER) is
E(V/m) and the family wise error rate (FWER) is the probability P (V ≥ 1) [16].
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Another approach to controlling error in the multiple-testing situation which a�ords a
greater power to detect true e�ects than the conventional FW methods is the false discovery
rate (FDR) presented by Y. Benjamini and Y. Hochberg [16]. Applied to association studies
the FDR estimates the proportion of genes that are falsely called associated among all genes
called associated. It can be expressed as the random variable Q = V/(V +S) � the proportion
of the rejected null hypotheses which are erroneously rejected. Naturally we de�ne Q = 0

when V +S = 0. Q is an unobserved random variable. Therefore the FDR is the expectation
of Q.

FDR = E(Q) = E{V/(V + S)} = E(V/R) (1.4)
where V/R = 0 when R = 0.
If all null hypotheses are true, the FDR is equivalent to FWER, otherwise FDR is smaller

than or equal to the FWER.

1.9.1.1 Procedure
The Bonferroni inequality is often used when conducting multiple tests of signi�cance to
set an upper bound α on the FWER [117]. If p1, . . . , pm is a set of p-values for testing for
corresponding H1, . . . , Hm hypotheses, the classical Bonferroni multiple testing procedure is
usually performed by rejecting H0 = {H1∩H2∩ . . .∩Hm} (i.e. H0 is the null hypothesis that
include all individual hypotheses H1, H2, . . . , Hm are true) if the minimum p-value (denoted
min p in the sequel) is less than α m. Furthermore the speci�c hypothesis Hi is rejected for
each pi≤α/m (i = 1, . . . ,m).

The Bonferroni inequality:

P (∪m
i=1(pi ≤ α/m)|H0 ≤ α(0 ≤ α ≤ 1) (1.5)

ensures that the probability of rejecting at least one null hypothesis when all are true is
not greater than α.

Although several multivariate methods have been developed for multiple statistical infer-
ence the Bonferroni procedure is still valuable, being simple to use, requiring no distributional
assumptions and enabling individual alternative hypotheses to be identi�ed. Nevertheless,
the procedure is conservative and lacks power if several highly correlated tests are under-
taken.

An alternative formula is �idák's correction, padj = 1 − (1 − min p)m [162]. If H0 is
rejected when padj≤α, the FWER equals α when the tests are independent.

Simes [164] modi�ed the Bonferroni procedure and proposed testing a composite hypoth-
esis using the entire set of ordered p-values rather than just their minimum. Assuming the
p-values are ordered as p1 ≤ p2 ≤ . . . ≤ pm for testing hypotheses H1, . . . , Hm, respectively.
Then H0 is rejected if pi ≤ αi/m for any i = m− 1, . . . , 1. This test procedure has Type I
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error probability equal to α for independent tests. The power of this modi�ed procedure is
greater than the Bonferroni procedure at the same nominal signi�cance level α.

Hommel [82] employed the closure principle to extend Simes`s procedure for making
statements on individual hypotheses so that it does control the FWER in the strong sense.

Hochberg [79] has suggested a di�erent way to utilize Simes's procedure by o�ering the
following modi�ed procedure:

let m be the largest i for which

Pi ≤
α

m− i + 1
(1.6)

then reject all Hi with i = 1, 2, . . . ,m

Another method suggested by Benjamini-Hochberg [16] controls the FDR instead, and
thereby also the FWER in weak sense.

Testing of the composite hypothesis H0 = {H1∩H2 ∩ . . .∩Hm} is called weak control
of the FWER. It can be expressed as PH0(rejecting any Hi) ≤α where `rejecting any Hi' is
equivalent to `rejecting H0'. The strong control of the FWER is the procedure only for a
subset H ′ of H = {H1, H2, . . . , Hm} than PH0( rejecting Hi) ≤α.

The power of FWER controlling procedures is highly dependent on the family size (i.e.,
number of comparisons) decreasing rapidly with larger families. Therefore, control of the
FDR results in more power than the FWER controlling procedure in experiments with
many test groups, yet provides more control over Type I errors than per-test controlling
procedures. However, the larger the number of the non-true null hypothesis is, the larger is
the di�erence between the FDR and the FWER. As a result, the potential for increase in
power is larger when more of the hypotheses are non-true [16].

1.9.2 Permutation based MTPs

The above described MTPs are conservative for genetic association studies (H0 is less likely
to be rejected) because they do not account for correlations among the genotypes of SNPs in
LD. Westfall and Young [191] suggested to compare the observed min p for a given composite
null hypothesis to the actual α-quantile of the MinP null distribution. That is, calculate the
adjusted p-values padj = P (MinP ≤ min p), where MinP denotes the random variable for
the minimum p-value for the given composite hypothesis H0 = H1 ∩H2 ∩ . . . ∩Hm. Then,
padj is simply compared to the error rate level α to decide whether to reject the composite
hypothesis. Usually, the distribution of MinP is unknown, but can be easily approximated
via bootstrap resampling of the data vectors, as shown in Westfall and Young [191] or by
using permutation of the tested group labels.

The resampling or permutation procedure should be repeated B times. The number of
permutations B required depends on the true minimum p-value. For example, to correct a
nominal true minimum p-value of 0.0001 for multiple testing the resampling procedure should
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be repeated at least 100 000 times to get an adequate estimate of the distribution of MinP
and so achieve a reasonable accuracy. The padj obtained using the Westfall-Young method
are usually smaller than those obtained using above mentioned methods like Bonferroni,
since the former takes into account correlations. In other words the Westfall-Young method
is less conservative.

1.9.3 Combined methods

Another way to calculate a p-value for a composite hypothesis are product methods. Fisher's
product p-value method (FPM) [61], the truncated product method (TPM) proposed by
Zaykin [203], and the rank-TPM of Dudbridge and Koeleman [53] are very similar. In these
methods, a p-value for each individual SNP is calculated, and then a combined test statistic
is obtained by multiplying together either all the p-values (in the FPM) or just those below
some signi�cance threshold (in the TPM), or the R smallest p-values (in the rank-TPM),
where R is the preselected integer.

Historically, Fisher's method is the original one. Fisher [61] noted that for any continuous
test statistic under H0 p-values are distributed uniformly on the interval {0, 1}. Moreover,
−2 ln(pi) has a χ2

2m distribution with 2 degrees of freedom. Then the statistic

t = −2
m∑

i=1

ln pi = −2 ln

(
m∏

i=1

pi

)
(1.7)

has a χ2
2m distribution with 2m degrees of freedom when all m hypotheses are true and

the m tests are independent. Therefore, the p-value for the hypothesis that all Hi are true
is the probability of a χ2

2m variable being greater or equal to the observed value t.
Experience shows that the ordinary FPM loses power in cases where there are a few large

p-values. This can happen when tests are one-sided, with non-centrality in the wrong direc-
tion, or when there is a predominance of near-null e�ects. By TPM, these large components
are removed, thereby providing more power, much like a trimmed mean gains e�ciency in
the presence of outliers. Therefore under certain conditions it is better to use TPM [53, 203].

If the individual tests are independent, exact analytic expressions exist for the signi�cance
of the combined test statistic. Zaykin et al. [203] and Dudbridge and Koeleman [53] proposed
a number of approximate methods and permutation as an exact method. These tests involve
permuting the treatment group or quantitative-trait vector and re-evaluating the MinP
statistic for every permutation, then taking the combined p-value to be the proportion of
permutations yielding a statistic smaller than observed in the original sample. Such an
approach can be applied with the FPM, TPM and rank-TPM. The procedure is described
in details below.
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1.9.3.1 Procedure:
Suppose m null hypotheses, H1, . . . , Hm are being tested by use of score tests. Let T1, . . . , Tm

denote the respective score test statistics, and let t1, . . . , tm denote the corresponding ob-
served values. Let p1,real ≤ . . . ≤ pm,real denote the ordered p-values from m statistical tests
on observed data, and p1,perm ≤ . . . ≤ pm,perm the ordered p-values from m statistical tests
on permuted data. When we repeat the permutation N times with di�erent random seeds,
we may obtain the proportion of cases when the product of p-values from N permutations
(
∏

pm,perm) is less or equal to the product of the p-values from the observed data (
∏

pm,real)
as

padj =
#(
∏

pj,perm ≤
∏

pj,real) + 1

N + 1
j = 1, . . . ,m (1.8)

Here are three examples that could be of interest:

1. If we perform the procedure over all m tests, the corrected for multiple testing p-value
will be obtained as shown in equation 1.8 over all m tests. We de�ne this procedure
permutation-based-FPM (PFPM)

2. The product is calculated only over pj,perm and pj,real below some signi�cance threshold
(permutation-based-TPM or PTPM).

3. The product is calculated only over R smallest pj,perm and pj,real (permutation-based-
rank-TPM or P -rank-TPM).
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1.10 Major depression

Major depressive disorder (MDD) and bipolar disorder (BP) are common psychiatric dis-
eases with lifetime prevalence rates of 16�17% for MDD (21% in woman and 13% in man)
[20, 52, 102, 122] and 1�3.3% for BP [66, 88]. Both MDD and BP patients su�er from
recurrent depressive episodes. They are characterised by symptoms such as: sad mood; loss
of interest in activities that were once interesting or enjoyable, including sex; loss of appetite
(anorexia) with weight loss or overeating with weight gain; loss of emotional expression (�at
a�ect); a persistently sad, anxious or empty mood; feelings of hopelessness, pessimism, guilt,
worthlessness, or helplessness; social withdrawal; unusual fatigue, low energy level, a feeling
of being slowed down; sleep disturbance with insomnia, early-morning awakening, or over-
sleeping; trouble concentrating, remembering, or making decisions; unusual restlessness or
irritability; persistent physical problems such as headaches, digestive disorders, or chronic
pain that does not respond to treatment; thoughts of death or suicide attempts. Alcohol or
drug abuse may be signs of depression. Bipolar patients in addition encounter episodes of
mania (BP I) or hypomania (BP II), characterized by excessive elation, increased energy,
decreased need for sleep, increased sexual desire and grandiose notions [153].

Depression is predicted to be the second leading cause of disease related disability, fol-
lowing ischemic heart disease in the year 2010 [120]. It is estimated that 85 to 90% of
individuals who die from suicide have a diagnosable psychiatric disorder, with the largest
number su�ering from severe depression. In the context of the high morbidity and mortal-
ity associated with depression, it is unfortunate that the psychological and neurobiological
determinants of depression have not been precisely de�ned3.

The causes of depression are thought to be due to both endogenous (genetic) or environ-
mental factors. The genetic background of depression has been shown in familial studies.
Depending on the assumed population risks estimates of heritability were between 34% and
75% for MDD [100, 112, 170] and 83�93% for BP [99, 104]. The remaining part of the
variance in liability was assigned to individual-speci�c environment. Kendler and Prescott
[100] as well as McGu�n et al. [112] showed that MDD is equally heritable in men and
women, and most genetic risk factors in�uence liability to MDD similarly in both sexes.
Later, heritability of MDD was shown to be signi�cantly greater in women than in men [96].
Probably, genes may exist that act di�erently on the risk for MDD in men vs. women.

The main known environmental risk factors for MDD are life stress events. There is
compelling evidence that early life stress, such as childhood neglect, physical or sexual
abuse, or early parental loss, constitutes a major risk factor for the subsequent onset of
depression [72, 169]. However, despite a strong correlation between stressful life events and
depression, part of this apparent association is non-causal, because genetic risk factors for
some stressful life events are correlated with a genetic predisposition to major depression
[98]. Stressful life events are not experienced at random; some individuals have a persistent

3http://webapp.cdc.gov/sasweb/ncipc/leadcaus10.html
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tendency to place themselves in situations that have a high probability of producing stressful
life events. Furthermore, genetic risk factors for stressful life events are positively correlated
with genetic risk factors for major depression [101]. The type of stressful life event also
a�ects vulnerability to a subsequent depressive episode [97]. Men and women are, in general,
equally sensitive to the depressiogenic e�ects of stressful life events, but their responses vary
depending on the nature of the event itself. Men are more likely to have depressive episodes
after divorce, separations, or work di�culties, whereas women are more sensitive to events
in their social network, such as di�culty getting along with an individual, serious illness, or
death [101].

The neuroimaging and neuropathological abnormalities in major depression suggest that
major depression is associated with activation of regions that putatively mediate emotional
and stress responses (for example, amygdala), whereas areas that appear to inhibit emotional
expression (such as posterior orbital cortex) contain histological abnormalities that may
interfere with the modulation of emotional or stress responses [52].

The hypothalamic pituitary adrenal (HPA) axis is the main hormonal system involved
in MDD, but the mechanisms underlying its abnormalities in these patients are still unclear.
HPA axis activity is governed by the secretion of adrenocorticotrophic hormone-releasing
factor (CRF) and vasopressin (AVP) from the hypothalamus, which in turn activate the
secretion of adrenocorticotrophic hormone (ACTH) from the pituitary, which �nally stim-
ulates the secretion of the glucocorticoids (GCs) (cortisol in humans and corticosterone in
rodents) from the adrenal cortex. GCs interact with their receptors in multiple target tissues
including the HPA axis, where they are responsible for feedback inhibition of the secretion
of ACTH from the pituitary and CRF from the hypothalamus [129]. Hyperactivity of the
HPA axis in major depression is one of the most consistent �ndings in psychiatry [121]. A
signi�cant percentage of depressed patients have been shown to hypersecrete cortisol, the
endogenous adrenal glucocorticoid in humans, as manifested by increased 24-hour urinary
free cortisol and elevated plasma and cerebrospinal �uid concentrations of cortisol [129].

The increased activity of the HPA axis is thought to be related, at least in part, to
an altered feedback inhibition by endogenous GCs. Through binding to their receptors in
HPA axis tissues, endogenous GCs serve as potent negative regulators of HPA axis activity
including the synthesis and release of CRF in the paraventricular nucleus [44].

GCs mediate their actions through two distinct intracellular corticosteroid receptor sub-
types referred to as the type I or mineralocorticoid receptor (MR), and the type II or gluco-
corticoid receptor (GR) [44]. The MR has a high a�nity for endogenous corticosteroids and
is believed to play a role in the regulation of circadian �uctuations in these hormones (espe-
cially the regulation of ACTH secretion during the diurnal trough in cortisol secretion). In
contrast to the MR, the GR has a high a�nity for dexamethasone (Dex) and a lower a�nity
for endogenous corticosteroids. The GR is therefore believed to be more important in the
regulation of the response to stress when endogenous levels of GCs are high [44]. Because
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patients with major depression exhibit impaired HPA negative feedback in the context of
elevated circulating levels of cortisol, a number of studies have considered the possibility
that the number or the function of GR, or both, are reduced in depressed patients. The few
studies that speci�cally looked at MR mediated negative feedback in depression found that
this pathway is intact (or possibly oversensitive) in depressed patients [93, 201]. EA Young
et al. suggested that imbalance in the GR/MR ratio may play an etiologic role in serotonin
receptor changes observed in patients with MDD [201]. Thus GR and MR are among the
most important brain receptors involved in the pathogenesis of psychiatric disorders.

1.10.1 Polymorphisms in genes controlling activity of the hypotha-

lamic pituitary adrenal (HPA) axis and major depression

In recent years, evidence has emerged that genetic variants contribute to the multifactorial
genesis of depressive disorders and in�uence therapeutic outcome. As mentioned above, the
HPA-axis is involved in major depression. This makes the GR a prime candidate gene for
associations with susceptibility for depressive disorders as well as an altered clinical response
to antidepressant drugs.

In our recent study we have shown the association of polymorphisms in GR with MDD.
Signi�cant di�erences in genotype frequency could be detected between healthy control
subjects and depressive patients for BclI, weak association for ER22/EK23 and trend for
N363S [182] (table 1.2). This �nding strengthens the hypothesis of a causal involvement of
the HPA-axis in the pathogenesis of depression.

A series of in vivo and in vitro studies have implicated FKBP5 (FK506 binding protein
5) as an important regulator of GR sensitivity. The hsp90 co-chaperone FKBP5 is part
of the mature GR heterocomplex [135, 26]. Upon hormone binding, FKBP5 is replaced
by FKBP4, which then recruits dynein into the complex, allowing its nuclear translocation
and transcriptional activity [42]. The function of the GR depends on a large molecular
complex that is necessary for proper ligand binding, receptor activation and transcriptional
regulation of its target genes [26, 135]. In a recent study we investigated whether polymor-
phisms in genes involved in HPA-axis regulation, and especially GR sensitivity, contribute
to the susceptibility for developing depression and the onset of clinical response to antide-
pressant treatment [19]. To answer this question, we genotyped SNPs in the GR gene itself
(NR3C1 ), in the target genes corticotropin releasing hormone precursor (CRH) and argi-
nine vasopressin-neurophysin II (AVP) and in �ve co-chaperones of the GR (BAG1, STUB1,
TEBP, FKBP4 and FKBP5 ), as there is strong evidence that these genes tightly regulate
GR activity [135, 156]. After correction for multiple testing over all investigated genes no
association with a�ection status could be shown.

Angiotensin-converting enzyme (ACE ) is assumed to in�uence the activity of the HPA
system, which shows hyperactivity in the majority of patients with depressive disorder.
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Polymorphism Controls Depressive Patients RUDg Patients
n (%) n (%) n (%)

ER22/23EK
Non-Carriers 476 (95.8%) 462 (94.3%) 169 (92.3%)
Carriers 21 (4.2%) 28a (5.7%) 14a (7.7%)c

N363S
Non-Carriers 336 (91.3%) 395 (90.8%) 142 (86.4%)
Carriers 32d (8.7%) 40 (9.2%) 23 (13.6%)e

BclI
Non-Carriers 163 (43.6%) 162 (37.0%) 67 (39.4%)
Heterozygous Carriers 174 (46.5%) 208 (47.5%) 75 (44.1%)
Homozygous Carriers 37 (9.9%) 68 (15.5%)b 28 (16.5%)f

a One patient homozygous for the carrier allele
b (Versus control) genotypic p = 0.026, allelic p = 0.01, OR = 1.3 (95% CI = 1.06�1.60)
c Allelic p = 0.043, OR = 1.98 (95% CI =1.01�3.08)
d One control homozygous for carrier allele
e Allelic p = 0.11, OR = 1.55 (95% CI = 0.89-2.67)
f Genotypic p = 0.08, homozygous carriers versus rest: p = 0.03, OR = 1.8 (95% CI = 1.04�3.2)

g Patients with Reccurent Unipolar Depression

Table 1.2: Frequencies of three polymorphisms of the GR gene in healthy control subjects
and depressive patients[182]
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ACE interferes with the secretion of pituitary hormones such as ACTH and potentiates the
stimulatory e�ects of corticotropin-releasing hormone (CRH) [90]. The ACE gene, known to
be associated with cardiovascular disorders, which in turn are accompanied with an increased
susceptibility for depression, is therefore a promising candidate gene for a�ective disorders.

In a recent study [10] we investigated the genetic association between 35 SNPs and an
insertion/deletion (I/D)-polymorphism in the ACE gene and the susceptibility for unipolar
major depression together with the genetic association with ACE serum activity and func-
tional parameters of the HPA system. Two independent case/control samples with a total
of 843 unrelated unipolar depressed patients and 1479 healthy controls were investigated.
A case/control sample was screened to detect genetic associations with unipolar major de-
pression. In addition, a replication sample was used to con�rm the detected associations
and to further investigate functional consequences of the genetic variants associated with
MDD (table 1.3). In the screening sample, two SNPs within the ACE gene were signi�cantly
associated with the investigated phenotype.

The association with MDD of one SNP (rs4291) located in the promoter region of the
ACE gene was con�rmed in our replication sample. The T-allele of this SNP was associated
with depression and patients carrying the T-allele showed higher ACE serum activity and
HPA-axis hyperactivity. This variant of the ACE gene is suggested to be a susceptibility
factor for unipolar major depression.

Patients homozygous for the T-allele showed a clear HPA system hyperactivity, whereas
the cortisol response of A-allele carriers after CRH stimulation was blunted. Thus, the SNP
rs4291 was shown to in�uence ACE activity and HPA-axis hyperactivity and might therefore
represent a common pathophysiologic link for unipolar depression and cardiovascular disease
[11].
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1.11 Pharmacogenetics and antidepressant drugs

Adequate therapy response to antidepressant drugs, i.e. full remission, to a single antide-
pressant drug is observed in only 40-70% of patients, even when it is given in su�ciently
high dose for up to 6 weeks [18]. Moreover, about half the active drug `responders' are
thought to be really placebo responders, who would have recovered without an active drug
treatment. In pharmacogenetic studies, these individuals represent a large group of false
positive observations. Nevertheless, antidepressants are still the most e�ective treatment for
depressive disorders.

Family studies support a genetic basis of response to antidepressant drugs [18, 110].
These studies suggest that genetic factors may play a role in antidepressant drug response;
however, it is possible that shared environmental factors may bias relative pairs toward
similar response patterns.

Pharmacogenetic studies of antidepressants can be classi�ed as addressing either phar-
macokinetic or pharmacodynamic e�ects. Genetic variants a�ecting the metabolism of an-
tidepressants may change pharmacokinetic factors, such as plasma drug concentration and
half-life. Polymorphisms that a�ect the expression or function of receptors and signal trans-
duction molecules in the brain may alter pharmacodynamics. Both pharmacokinetic and
pharmacodynamic changes can a�ect the e�cacy and side e�ects of antidepressants.

1.11.1 Polymorphisms in genes controlling the pharmacokinetics of

antidepressant drugs

The majority of pharmacokinetic pharmacogenetic studies have focused on polymorphisms in
liver cytochrome P450 isoenzymes that metabolize many antidepressant medications. The
most intensively investigated gene is CYP2D6, which encodes debrisoquine hydroxylase.
Many antidepressants, including tricyclics (TCAs), selective serotonin reuptake inhibitors
(SSRIs), venlafaxine, and others, are metabolized primarily by debrisoquine hydroxylase
[17]. The CYP2D6 gene is highly polymorphic, with over 70 known variants4. Homozy-
gosity for null alleles gives rise to the poor metabolizer phenotype for debrisoquine hydrox-
ylase characterized by no enzyme activity. Null allele heterozygosity or homozygosity for
intermediate metabolic alleles implies an intermediate debrisoquine hydroxylase metabolic
phenotype characterized by impaired but not absent enzyme activity [111, 139]. CYP2D6
gene duplications result in ultra-rapid metabolic activity of debrisoquine hydroxylase [91].

Another important protein for the transport of antidepressants is the p-glycoprotein lo-
cated in the blood brain barrier. It is a member of the highly conserved superfamily of adeno-
sine tri-phosphate (ATP)-binding cassette (ABC) transporter proteins. This P-glycoprotein
is encoded by the ABCB1 gene (earlier termed MDR1 ) and protects cells throughout the
healthy organism against many drugs by acting as an e�ux pump for xenobiotics [38, 155].

4http://www.imm.ki.se/CYPalleles
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Results from our group suggest that common polymorphisms within ABCB1 may alter
the intracerebral concentration of antidepressants that are substrates of this transporter.
We could show an association of an intronic ABCB1 SNP with remission to antidepressant
therapy but not to plasma drug levels (n = 286). This association was only seen in patients
treated with antidepressants that proved to be substrates of P-glycoprotein in the mouse
knock-out model (n = 105) [181]. It is therefore possible that certain ABCB1 polymorphisms
alter the e�ciency with which p-glycoprotein transports substrate antidepressants at the
blood-brain barrier and thus alter intracerebral concentrations of speci�c antidepressants.
Prior knowledge of the patients relevant ABCB1 genotypes could therefore prevent the
administration of a drug that might never reach therapeutic intracerebral levels despite a
plasma concentration believed to be su�cient.
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Chapter 2

Evaluation of Nyholt's procedure for

multiple testing correction

Nyholt [126] proposed a new method for adjustment of the min p obtained from a set of
individual SNP tests in an association study, based on a procedure described by Cheverud
[27] for multiple-testing adjustment in linkage studies. The advantage of Nyholt's method
is its low computational requirement and hence rapidity. The procedure is as follows. The
eigenvalues, λ1, . . . , λM , of a matrix of observed pairwise LD between the M SNPs are
obtained by principal components analysis or, more generally, spectral decomposition. The
variance of these observed eigenvalues, Var(λ), is then used in the formula

Meff = 1 + (M − 1)

(
1− Var(λ)

M

)
(2.1)

to calculate an `e�ective' number of independent tests, Meff . This is then used in �idák's
formula in place of M , the actual number of tests. Meng et al. [115] used a similar approach
for the selection of haplotype tagging SNPs.

Nyholt showed that his method, when applied to two datasets, yielded min p approxi-
mately equal to those estimated by permutation. However, these datasets were small, one
containing 10 SNPs, and the other 23 SNPs, and the latter dataset was of limited use, as
the intermarker LD was so low that the estimated Meff (22.53) was almost equal to M , the
number of SNPs.

Dudbridge and Koeleman [53] investigated whether the assumption underlying Nyholt's
method, that there really is an `e�ective' number of independent tests, is true. When b

independent tests are carried out, the min p has a β(1, b) distribution. Using data on chro-
mosomes 18 and 21 from the International Hap Map Consortium, Dudbridge and Koeleman
�tted a β(a, b) distribution to min p simulated from their null distribution by permutation
and tested the null hypothesis that a = 1. By rejecting this hypothesis, they showed that
the assumption of an e�ective number of independent tests is false.

The result of Dudbridge and Koeleman shows that Nyholt's procedure cannot be exact,
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but does not indicate how well it performs as an approximate method in practice. Here, we
describe a more extensive evaluation than that originally reported by Nyholt, using data on
candidate genes from various studies in the Max-Planck Institute of Psychiatry (MPIP) on
the genetics and pharmacogenetics of psychiatric disorders. We also present a theoretical
investigation of the performance of Nyholt's procedure when certain patterns of LD are
assumed.
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2.1 Methods

We considered 31 candidate genes genotyped in 1360 individuals, of whom approximately
half were cases and half controls. Choosing only SNPs with minor allele frequency above
10% and in Hardy-Weinberg equilibrium, there were a total of 291 SNPs, i.e. an average
of 9.4 SNPs per gene. None of the markers were signi�cantly associated with case-control
status, and hence we assumed that the LD patterns in the genes were the same in cases and
controls. The program SNPSpD, described by Nyholt, was used to calculate Meff for each
gene.

De�ne, for each gene, M as the number of SNPs (and hence tests), the reduction factor as
R = M/Meff , and r2 as the mean absolute pairwise Pearson correlation coe�cient between
the SNPs in the gene [49] (estimated using the function LD of the R Genetics package).
Thus R is a measure of how much more powerful Nyholt's method is compared to the usual
�idák correction, and r2 is a measure of LD within the gene. We examined the relation
between r2 and R in the 31 genes.

The type-I error rates of �idák's and Nyholt's procedures were investigated using simu-
lation. Each of 20 000 simulations was performed under the complete null hypothesis that
none of the SNPs is associated with case-control. Half of the 1360 individuals were ran-
domly assigned to be cases and half to be controls. The association between case-control
status and genotype was tested for each SNP using a χ2 test of the 2× 3 contingency table
and, within each gene, the min p obtained. These min p were then adjusted using �idák's
correction based on both M (�idák's original method) and Meff (Nyholt's method) for that
gene. For each gene, the proportion of the 20 000 simulations in which the adjusted min p

was less than 0.05 represents the 5% type-I error rate, α, for the null hypothesis that none
of the SNPs in that gene is associated with case-control status.

Next, we explored the e�ect of haplotype block structure on Nyholt's procedure, using
the method of Gabriel et al. [63], implemented in the program HAPLOVIEW1 [14], to detect
blocks within each gene.

Finally, as Dudbridge and Koeleman [53] note, if the assumption that the min p corre-
sponds to that of Meff independent tests were true, it should be distributed β(1, Meff) when
all null hypotheses are true. We �tted a β(a, b) distribution to the 20 000 simulated min p

for each of the 31 genes in turn, to determine how close the maximum likelihood estimates,
â, of a were to 1. We also �tted the β distribution with a �xed at 1, and compared, for
each gene, the maximum likelihood estimate, b̂, of b with its corresponding Meff value. A
likelihood ratio test of the null hypothesis that a = 1 was also performed for each gene.

1http://www.broad.mit.edu/mpg/haploview/index.php
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2.2 Results

The average intermarker spacing within a gene was 8.6 Kb, with standard deviation (SD) 7.6
and range 0.37�33 Kb. The mean of r2 in the 31 genes was 0.44 (SD 0.20, range 0.11�0.84).
There appeared to be an approximate quadratic relation between R and r2 (�gure 2.1).

Figure 2.1: Relation between mean LD, r2, within a gene and reduction factor, R, for
that gene.Shown are 30 single-block genes (circles) and one multi-block gene (closed circle)
containing 5 blocks (closed triangles).

Thus, the stronger is the LD within a gene the greater tends to be the increase in power
of Nyholt's method compared to the simple �idák correction.

Fugure 2.2 shows the type-I error rates for the 31 genes calculated using �idák's procedure
(open circles and cross) and Nyholt's procedure (closed circles and plus) plotted against
r2. As expected, for �idák's method there is a negative correlation: the more (positively)
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dependent the tests, the more conservative is �idák's procedure.

Figure 2.2: Relation between mean LD, r2, within a gene and type-I error rate, α, for �idák's
and Nyholt's methods

Open circles represent 30 single-block genes and �idák's correction; closed circles repre-
sent the corresponding Nyholt corrections. Cross, star and plus represent the multi-block
gene, corrected using �idák's, Nyholt method 2 and Nyholt method 1 respectively. Triangles
represent the �ve blocks of the multi-block gene: open for �idák; closed for Nyholt.

Using Nyholt's method all but �ve of the 31 genes had α between 4% and 6%. For
the 23 genes with r2 < 0.6, α was very close to 5% or slightly less, whereas for genes with
r2 > 0.6, Nyholt's method was somewhat anti-conservative and became increasingly so as
r2 increased. The highest value of α was 7.1% for a gene with r2 = 0.8.

The standard error of the 5% type-I error rate estimated from 20 000 simulations is
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0.15% when the true rate is 5%. For 19 of the 31 genes, the 95% con�dence interval for the
true type-I error rate excluded 5%.

Similar results were obtained when the 1% type-I error rate was examined.
Next, we used the program HAPLOVIEW, to detect blocks in each gene. Only one

gene, containing 46 typed SNPs, had more than one block: there were �ve blocks and four
SNPs that did not �t into blocks. This multi-block gene was the gene with the lowest α

(3.7%) and among those with the smallest r2. Nyholt's procedure was then applied to the
�ve blocks of this gene separately. r2 within blocks was greater than r2 in the gene as a
whole, as LD between SNPs in di�erent blocks is weaker than between SNPs in the same
block, and it was found that the �ve α values for these blocks (closed triangles in �gure 2.2)
were all greater than that for the gene as a whole (cross in �gure 2.2). For four of the �ve
blocks the method was anti-conservative, and for one block α was as high as 7.9%. The �ve
blocks contained a total of 42 SNPs. The sum of the �ve Meff values estimated in each block
separately was 21.6. Adding the four SNPs not in blocks gave a total Meff of 25.6. This
compared with Meff = 40.5 estimated for the 46 SNPs together. Thus the reduction factor,
R, is greater when the blocks are considered separately. Based on Meff = 40.5 (method 1)
and 25.6 (method 2), respectively, α was calculated as 0.037 and 0.060.

Eight chromosomes contained 23 of the 31 genes. The procedure used above for blocks
within genes was now used for genes within chromosomes. That is, the type-I error rate for
each chromosome (for the null hypothesis that none of the genotyped SNPs in the chromo-
some is associated with case-control status) was estimated based both on the Meff estimated
for all the genes on the chromosome together (method 1) and on the sum of Meff estimated
for each gene on the chromosome separately (method 2). Table 2.1 shows r2, R and α for
methods 1 and 2 and the eight chromosomes. The value of r2 calculated using all SNPs in
a chromosome was naturally much smaller than the weighted average of the r2s calculated
within genes on that chromosome. Likewise, the eight R and α values calculated using
method 1 were smaller than for those obtained from method 2. Using method 1 the mean
values of R and α were respectively 1.08 and 0.042, not very much di�erent from a simple
�idák correction based on M tests, where M is the number of genotyped SNPs in the chro-
mosome. Method 2 was better: mean values of R and α were 1.27 (range 1.08�1.60) and
0.048 (range 0.041�0.055).

A β(a, b) distribution was �tted to the simulated min p for each of the 31 genes. The
maximum likelihood estimates, â, of a. ranged from 0.91 to 1.01. The mean was 0.97 and
the interquartile range 0.95 � 0.99. The same was done for the eight chromosomes. The
mean of the eight â values was 0.95; the interquartile range was 0.94 � 0.97) and the range
0.92 � 0.99. For 20 of the 31 genes and seven of the eight chromosomes the null hypothesis
that a = 1 was rejected at the 5% level.

Thus, the assumption that the min p have a β(1, b) null distribution for some b is not
supported by the data, but the maximum likelihood estimates of a are not very di�erent
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Chr No. No. �idák Method 1 Method 2
no.a genesb SNPsc α α R r2 α R r2

1 2 11 0.045 0.049 1.11 0.19 0.055 1.24 0.41
4 2 16 0.044 0.045 1.03 0.10 0.048 1.08 0.19
5 5 48 0.039 0.041 1.05 0.10 0.047 1.22 0.35
7 2 20 0.042 0.045 1.07 0.15 0.048 1.14 0.28
9 3 57 0.035 0.037 1.09 0.16 0.041 1.21 0.30
10 2 17 0.038 0.042 1.10 0.17 0.046 1.21 0.34
11 4 19 0.034 0.038 1.11 0.15 0.054 1.60 0.63
17 3 34 0.033 0.038 1.13 0.19 0.047 1.43 0.50

a `Chr no.' is chromosome number;

b `No. genes' is number of genes on that chromosome;

c `No. SNPs' is the total number of SNPs genotyped in the chromosome's genes.

Table 2.1: Type-I error rates (α), reduction factor (R), and mean absolute LD (r2) for
eight chromosomes estimated using �idák method, Nyholt's method applied to genes on same
chromosome together (Method 1), and Nyholt's method applied to genes on same chromosome
separately (Method 2)

from 1. Table 2.2 shows the maximum likelihood estimates, b̂, of b for the 31 genes and
eight chromosomes when a was �xed at 1. The b̂ values for the 31 genes were on average
8% lower than the corresponding Meff values, ranging from 40% lower (in the case of the
multiblock gene) to 21% higher. For the eight chromosomes, b̂ was on average 24% less than
Meff , ranging from 40% lower to 6% higher. Thus, Meff estimated by Nyholt's procedure
does not in general correspond to the best estimate of an e�ective number of independent
tests.

2.3 Theoretical investigation

The results above show that Nyholt's method can perform poorly when applied to regions of
DNA containing haplotype blocks, e.g. multiblock genes or multiple genes on the same chro-
mosome. In this case, method 1 tends to overestimate Meff and the power of the procedure
is little di�erent from that of a simple �idák correction. An algebraic treatment of a very
simple model example serves to illustrate why this happens. Suppose there are 2N SNPs
with the �rst N in perfect LD (r2 = 1) and the last N in perfect LD. Thus the e�ective
number of independent tests is at most 2. Let C denote the correlation matrix for these
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SNPs, and let δ be the Pearson correlation coe�cient between a SNP in the �rst block and
a SNP in the second block. The entries of the 2N × 2N correlation matrix C are

Ci,j =

 1 if i, j ≤ N or i, j ≥ N + 1;
δ otherwise.

The two largest eigenvalues of C are N(1± δ). The eigenvalue N(1 + δ) corresponds to an
eigenvector whose entries are all 1, and the eigenvalue N(1−δ) corresponds to an eigenvector
whose �rst N entries are 1 and whose last N entries are −1. Since the rank of C is 2, the
remaining 2N − 2 eigenvalues are 0.

The sum of the eigenvalues of C equals 2N , so the mean of the observed eigenvalues is
1. The variance of the observed eigenvalues is

Var(λobs) =
1

2N − 1
[(N(1 + δ)− 1)2 + (N(1− δ)− 1)2 + (2N − 2)(0− 1)2]

=
2N

2N − 1
[N(1 + δ2)− 1],

and the estimate, Meff , of the e�ective number of independent tests is, from equation (2.1),

Meff = 2N −
(

2N − 1

2N

)
Var(λobs)

= 2N − (N(1 + δ2)− 1)

= (1− δ2)N + 1.

However, the true e�ective number of tests is at most 2, independent of N .
The preceding calculation can be generalized to K blocks of SNPs when any two markers

from di�erent blocks are in linkage equilibrium. Suppose, the jth block contains 2Nj SNPs
with the �rst Nj in perfect LD (r2 = 1) and the last Nj in perfect LD, and that the correlation
between one of the �rst Nj SNPs and one of the last Nj SNPs is δj. Let N =

∑
Nj. In

this case
Meff = 2N + 1−

K∑
j=1

N2
j

N
(1 + δ2

j ). (2.2)

We can now model a gene with 5 blocks and 8 SNPs per block by setting K = 5, Nj = 4, and
δ2
j = 0.75 (say) for j = 1, 2, . . . , 5. Now Meff = 34, but the e�ective number of independent
tests is less than 10. Thus, the estimated e�ective number of independent tests, Meff , is at
least a factor of 3.4 too large.
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Gene M Me� b̂ Gene M Me� b̂

1 13 11.5 9.6 21 5 2.6 2.9
2 6 5.1 4.8 22 14 12.4 10.2
3 5 4.5 4.5 23 7 4.5 4.1
4 3 1.6 1.9 24 4 2.3 2.3
5 4 2.6 2.6 25 8 7.3 6.7
6 6 4.2 3.3 26 6 5.3 5.1
7 4 2.6 2.8 27 17 13.2 9.2
8 3 2.8 2.8 28 46 40.5 24.4
9 9 6.5 5.1 29 9 6.7 5.4
10 7 6.1 5.9 30 12 4.5 5.0
11 10 8.3 7.1 31 18 12.8 9.8
12 5 2.9 3.1 Chr
13 15 11.3 8.5 1 11 10.0 8.8
14 5 4.6 4.4 4 16 15.5 14.6
15 5 3.6 3.7 5 48 45.8 34.0
16 8 5.1 4.3 7 20 18.7 15.7
17 11 9.1 7.2 9 57 52.1 31.3
18 5 3.9 3.7 10 17 15.5 12.2
19 10 9.8 9.7 11 19 17.2 11.6
20 11 10.1 9.3 17 34 30.1 19.6

Table 2.2: For each gene and chromosome, numbers of SNPs (TP ), e�ective number of
independent tests estimated by Nyholt's method (Meff), and maximum likelihood estimates
of b when β(1, b) distribution �tted to distribution of min p (b̂).
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2.4 Discussion

In this chapter we have reported an empirical and a theoretical investigation of the per-
formance of Nyholt's method. Nyholt's method is less conservative than �idák's correction
(although when applied to a longer length of DNA containing several sets of SNP markers in
di�erent haplotype blocks, it may be only slightly less conservative than �idák), but it may
also be anti-conservative when there is strong LD between SNPs. In view of this observation,
we recommend that any signi�cant result obtained using Nyholt's procedure which is not
already signi�cant using �idák's original correction should be con�rmed by a permutation
test.

Nyholt's derivation of the formula for Meff (equation 2.1) is based on an interpolation
of two extreme patterns of LD. When all SNPs are in linkage equilibrium, the eigenvalues,
λ1, . . . , λM , of the correlation matrix C are all equal to 1, so that Var(λ) = 0 and Meff = M .
When all SNPs are in perfect LD, the eigenvalues are M , 0, . . . , 0, so that Var(λ) = M and
Meff = 1. Our theoretical investigation, however, shows that the correction is wrong when
perfectly correlated and independent markers are mixed. in this situation, Meff appears to
be overestimated so that the method is conservative.

In addition, as Dudbridge and Koeleman [53] have shown for chromosomes 18 and 21
and we have shown for a sample of 31 candidate genes, the distribution of the min p from
the permutation test is, in general, not equal to that of L independent tests for any integer
L. A further sign that the theory underpinning Nyholt's correction is unreliable is that it
yields di�erent answers depending on whether it is applied to a set of markers S or to each
disjoint subset of markers (e.g. in a haplotype block or gene) whose union is S.

Nyholt [126] mentions that his approach may be conservative in the presence of very
strong LD. Our empirical results, on the other hand, show that it tends to become anti-
conservative. The website of the SNPSpD2 program contains a note describing a way of
overcoming this. The suggestion is to exclude all SNPs but one from any set of SNPs that
are in perfect LD. This is, however, somewhat contrary to the theoretical justi�cation for
the method, given that it is based on the formula for Meff being correct when all SNPs are
in perfect LD. Moreover, it does not work when SNPs are in high but not perfect LD. For
example, when there are K pairs of SNPs with the two SNPs in any pair having correla-
tion δ = 0.8 and any two SNPs belonging to di�erent pairs being in linkage equilibrium,
equation 2.2 shows that Meff = 2K − 0.8, which is unreasonably high when K is not small.

In the 31 genes we found only three genes containing SNPs in perfect LD. In each case,
there was one pair of SNPs in perfect LD. When one SNP from each pair was removed, the
type-I error rate improved slightly for two genes (from 3.7% and 4.5% to 3.8% and 4.8%
respectively), but worsened for the other (from 7.1% to 7.3%).

Nyholt's method is similar to that of Cheverud [27]. The latter was developed for linkage
studies, but could equally be used for associations studies. Using Ceverud's method in our

2http://gump.qimr.edu.au/general/daleN/SNPSpD/
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data we obtained very similar results to those reported here. For most genes, the 5% type-I
error rate was the same to an accuracy of one decimal place, and it never di�ered by more
than 0.3% (this was vor one gene where the type-I error rate was 7.1% using Nyholt's
method and 6.8% using Cheverud's method).

In this study the largest number of genotyped SNPs in a gene or chromosome was
57, which is considerably smaller than the number of genotyped individuals (1360). In
a genomewide study far more SNPs would be typed than individuals. In this case, Nyholt's
method applied naively (we have termed this Method 1) would work poorly, since the num-
ber of non-zero eigenvalues of the matrix of pairwise LD can not be greater than the number
of individuals. As most eigenvalues will then be zero, the Var(λ) term in equation 2.1 will
be close to zero and Meff will be close to M , so that the e�ective number of tests will be
estimated as almost equal to the actual number of tests, i.e. no reduction. Nyholt± method
clould still be applied to each haplotype block separately (we have termed this Method 2),
but this would have several associated problems. First, this approach implicitly assumes
that the haplotype blocks are independent, which is not necessarily the case in practice.
Second, the boundaries of the haplotype blocks are not unambigious and di�erent methods
of estimating could yield di�erent boundaries. Third, it is not clear what to do with SNPs
that do not lie in any haplotype block.

Finally, although the principle of an e�ective number of independent tests was proposed
for the �idák correction, there is no formal connection between the two. There seems no im-
mediate reason to believe it should work better for a �idák correction than for other methods
that account for multiple testing. We investigated whether it could be used with Fisher's
product p-value method. For M independent tests, T = −2 log

(
M∏
i=1

pi

)
has asymptotically

a χ2
2M distribution when all M null hypotheses are true [61]. Analogous logic to that which

led to equation 2.1 suggests that T ×Meff/M may have an approximate χ2
2Meff

null distri-
bution. However we found that, for the 31 genes, this assumption yielded 5% type-I error
rates of between 5.4 and 12.1%, with a mean of 7.9%. Thus, the concept of an e�ective
number of independent tests seems to be not at all applicable to Fisher's product method.

In conclusion, although Nyholt's method may be found useful as an exploratory tool, it is
not a replacement for using a permutation test. It is worth noting that although permutation
can be computationally intensive, methods are available for reducing the computational e�ort
[53, 158].
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Chapter 3

P2RX7, a gene coding for a purinergic

ligand-gated ion channel, is associated

with major depressive disorder

Genome-wide linkage analyses with BP patients yielded several regions of interest [70]. Two
genome-wide scans on pedigrees from the Saguenay-Lac-St.-Jean (SLSJ) region of Quebec
demonstrated the presence of a susceptibility locus on 12q24.31 administering both para-
metric and non-parametric analyses and using a broad a�ection status model (ASMII) that
includes BPI, BPII and recurrent MDD. Four consecutive markers gave maximum sib-pair
LOD scores close to or above 5 with empirical p-values of 0.0001 [119, 161].

Linkage analysis using tightly spaced microsatellite markers gave a LOD score 3.7 (p-
value 0.0001) at marker NBG6 under ASMII and a case/control association analysis with the
same marker showed positive allelic association with BP (p-value = 0.008) [160]. Since this
marker is located within intron 9 of the P2RX7 gene, coding for a member of the purinergic
ligand-gated ion channels of the P2X family, 24 SNPs in P2RX7 and the neighbouring
genes, e.g. P2RX4 and CAMKK2 were genotyped in a bipolar case/control sample and 12
SNPs in the pedigrees used for the linkage studies. The strongest association (p=0.000708)
was observed in bipolar families at the non-synonymous SNP P2RX7 -E13A (rs2230912,
Gln460Arg) lying in exon 13 of P2RX7 [13].

The linkage results in the SLSJ population were strongest under a broad a�ection model
including MDD patients. The signi�cance of this chromosomal region in the susceptibility
for MDD has been strengthened by further studies that reported linkage of this region in
pedigrees consisting of BP and MDD patients [4, 40, 113].

Given the fact that there is a constant diagnostic conversion from MDD to BP of 1.25%
per year throughout the lifespan [7], we were interested if these heritable disorders share at
least some genetic commonalities. Therefore, in our study we concentrated on P2RX7 as a
candidate gene for MDD.

ATP-gated P2X-receptors are cation selective ion channels with high calcium perme-
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ability that open upon binding of extracellular ATP [103, 125]. In the brain, P2RX7 has
been shown to be expressed in glial cells [171], immuno-histochemical studies have suggested
P2RX7 to be also expressed in central and peripheral neurons and may regulate immune
function and neurotransmitter release [48, 194]. However, expression studies of P2RX7 in
neurons have been inconsistent due to a limited quality of available antibodies [163, 194].
Polymorphisms in the gene are discussed to be relevant in the survival of chronic lympho-
cytic leukaemia [177] and P2RX7 is considered to be a candidate gene for systemic lupus
erythematosus and type I diabetes [54, 55].

To investigate the implication of P2RX7 in MDD, we performed a case/control study in
a sample of German Caucasian patients with recurrent MDD and diagnosed healthy controls
from the same population. We report genotypic association in the P2RX7 gene providing
evidence that P2RX7 might indeed be a susceptibility gene for major depressive disorder.

3.1 Materials and methods

3.1.1 Sample description

1000 patients (326 males, 674 females) with recurrent unipolar depression were recruited
from in- and out-patients at the Max MPIP in Munich and psychiatric hospitals in Augsburg
and Ingolstadt, located close to Munich. Each hospital contributed a third of the patients.
Patients were diagnosed by WHO-certi�ed raters according to DSM-IV using the Schedule
for Clinical Assessment in Neuropsychiatry (SCAN). Only Caucasian patients over 18 years
old with at least two moderate to severe depressive episodes were included. Exclusion criteria
were the presence of manic or hypomanic episodes, mood incongruent psychotic symptoms,
the presence of a lifetime diagnosis of intravenous drug abuse and depressive symptoms only
secondary to alcohol or substance abuse or dependence, or to a medical illness or medication.
Ethnicity was recorded using a self-report sheet for perceived nationality, �rst language and
ethnicity of the subject himself, parents and all four grandparents. All included patients
were Caucasian and 91.2% were of German origin. Mean age was 49.35 14.09 years (males:
48.49±13.57, females: 49.86±14.38 years).

1029 controls (336 males, 693 females) matched for ethnicity (using the same question-
naire as for patients), sex and age (to 5-year intervals) were recruited at the MPIP. Controls
were selected randomly from a Munich-based community sample and screened for the pres-
ence of anxiety and a�ective disorders using the Composite International Diagnostic Screener
[195]. Only individuals negative for the above-named disorders were included in the sample.
All included controls were Caucasian and 93.04% were of German origin. These subjects
thus represent a group of healthy individuals with regard to depression and anxiety.

The study was approved by the ethics committee of the LMU in Munich, Germany, and
written informed consent was obtained from all subjects.
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3.1.2 DNA preparation

On enrollment in the study, 40 ml of EDTA blood were drawn from each patient and each
healthy control. DNA was extracted from fresh blood using the Puregene® whole blood
DNA-extraction kit (Gentra Systems Inc; MN).

3.1.3 SNP selection and genotyping

We genotyped 29 SNPs in P2RX7 and in the neighbouring genes P2RX4, OASL and
CAMKK2. Polymorphisms were detected by direct sequencing in a Canadian bipolar popu-
lation where P2RX7 was �rst implicated [13]. Some of the identi�ed SNPs are available in
the UCSC genome browser1.

Genotyping was performed on a MALDI-TOF mass-spectrometer (MassArray® system)
employing the Spectrodesigner software (Sequenom®; CA) for primer selection and multi-
plexing, and the homogeneous mass-extension (hMe) process for producing primer extension
products [173]. All primer sequences are available upon request.

Genotyping for some SNPs, e.g. rs2230912, was veri�ed by pyrosequencing (Biotage,
Uppsala, Sweden).

3.1.4 Statistical analysis

3.1.4.1 Testing for deviation from Hardy-Weinberg equilibrium (HWE)
Deviations from HWE for each SNP were assessed in both samples, patients and controls,
applying the exact test by Wigginton et al. [192]. For an adjustment for multiple testing,
the false discovery rate correction was applied (table 3.2) [16]. All functions used are avail-
able in R.2 For investigating whether deviations from Hardy-Weinberg equilibrium could
be explained by an underlying genetic model we used the goodness-of-�t test by Wittke-
Thompson3 [197].

3.1.4.2 Case-Control analysis
Case/control analysis was performed using exact Fisher test. We used 2 × 2 and 2 × 3

contingency tables to perform genotype-wise analysis. To test for signi�cance under di�erent
genetic models (e.g., dominant and heterozygote disadvantage model) and to calculate odds
ratios with standard deviations we used 2× 2 contingency tables.

Comparison of di�erent genetic models was performed based on the method by Chiano
and Clayton [28].

1http://www.genome.ucsc.edu/cgi-bin/hgGateway
2http://www.r-project.org
3http:/hg-wen.uchicago.edu/dhw2.html
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3.1.4.3 Correction for multiple testing
In the con�rmatory part of the study we analyzed three SNPs (rs1718119, rs11065501,
rs2230912) of the P2RX7and P2RX4 genes that have previously been reported to be asso-
ciated with bipolar disorder [13]. In the exploratory part of the study, we considered the
remaining 15 SNPs not supposed to be associated with BP, but turned out to be polymorphic
with a MAF of larger than 1%. Correction for multiple testing was preformed separately
for the con�rmatory and exploratory part of the study using the min p method of Westfall
and Young [191] allowing for the linkage disequilibrium between genetic markers. After per-
forming 30 000 permutations we determined the required threshold for controlling the type
I error rate at 2.5% to be equal to 0.0085 for the con�rmatory analysis, and to be 0.0019
for the exploratory part of the study. The type I error rate was set to 2.5% to allow for the
two rounds of testing, con�rmatory and exploratory, within this study. We compared the
nominal p-values given throughout the text with this threshold instead of comparing it with
0.05.

3.1.4.4 Testing for LD
For the LD structure examination we used D′ and r2 measure [76]. Visualization of LD
measures was performed using HAPLOVIEW4. Blocks were de�ned using the con�dence
interval method described by Gabriel [63].

3.1.4.5 Haplotype analysis
We estimated haplotypes using the SNPHAP5 program for analysis of the highest associ-
ated SNP and for the three neighbouring SNPs that were in one LD-block. We tested all
haplotypes with frequencies > 5% and a certainty of individual assignment of > 95%. For
association tests of each haplotype variant we used exact Fisher tests on 2× 2 contingency
tables.

3.1.4.6 Explorative genotype-phenotype correlations
To determine a possible association of age at onset and the number of previous depressive
episodes we performed logistic regression analysis with genotypes treated as the independent
variable and phenotypes as dependent variable. Age at onset was de�ned as the age at which
diagnostic criteria for MDD were met for the �rst time.

4http://www.broad.mit.edu/mpg/haploview/index.php
5http://www-gene.cimr.cam.ac.uk/clayton/software/snphap.txt
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3.2 Results

3.2.1 Allele frequencies and quality control

23 of 29 genotyped SNPs were polymorphic. 18 of these SNPs had a minor allele frequency
greater than 1% and were included into the analysis. Reference numbers for SNPs are given
when available; the remaining SNPs were named according to their position on the genomic
reference sequence (table 3.1). Information about genes, location of polymorphisms within
genes, function and MAF are presented in table 3.1. Genotyping was successful in 98% of
cases and controls.

We separately calculated the p-value for deviation from HWE in diagnosed controls and
patients. One SNP in the patient group (rs3815990) and 3 SNPs in controls (29364 G→A,
rs6489795, and rs2230912) showed nominally signi�cant deviations from HWE (table 3.2).
After correcting for multiple testing none of these deviations remained signi�cant.

3.2.2 Case control association

The con�rmatory analysis of the three SNPs that previously turned out to be associated
with BP, showed a signi�cant association with the exonic SNP, rs2230912 (Gln460Arg), of
the P2RX7 gene with a nominal p-value equal to 0.0019 (�gure 3.1) remaining signi�cant
after correcting for multiple comparison. Homozygote A allele carriers were more frequent
among controls while heterozygous carriers were overrepresented among MDD (�gure 3.1).
We tested di�erent genetic models underlying this association. In case of a dominant model
the odds ratio was equal to 1.3 with a nominal p=0.0081 (�gure 3.2).

Under the assumption of a `heterozygote disadvantage' model, i.e., contrasting both ho-
mozygous genotypes with the heterozygotes AG genotype, we observed an odds ratio of 1.402
with a nominal p-value of 0.00099. The power to detect an e�ect of this type in our study
in the con�rmatory analysis was 58%, thus our �nding is in keeping with the expectations.
The `heterozygote disadvantage' model appeared slightly better, but the di�erence was not
signi�cant (p = 0.1407). The exploratory analysis of the other 15 polymorphic SNPs did
not show further signi�cant case-control associations.

The distribution of observed genotypes of the associated SNP rs2230912 (Gln460Arg)
showed a (nominally) signi�cant deviation from HWE. This could be a consequence of geno-
typing error, but we could exclude this possibility by verifying the data using di�erent
genotyping methods, namely direct sequencing and pyrosequencing. All cases (n = 1000)
and controls (n = 1029) were genotyped both by MALDI-TOF (at the Genetic Research
Center in Munich, overall call rate 95.4%) and pyrosequencing (at the MPIP, overall call
rate 99.5%) for rs2230912. Of these genotypes there were 12 discrepancies out of 974 valid
genotypes for both assays in the controls (1.17%), and 8 discrepancies out of 952 valid geno-
types for both assays in the cases (0.80%). In addition 500 randomly selected cases and 500
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Gene SNP Position
on hg17

Location Function MAF

OASL rs12819210 119921120 exon 6 Ser503Ser 0.195
OASL -14989 G→A 119924518 exon 5 Val348Met 0.004
OASL rs3213545 119934057 exon 2 Leu136Leu 0.293
OASL 259 A→G 119939766 5'UTR unknown 0.246
OASL 2529 C→T 119942036 5'UTR unknown n.p.
P2XR7 -2575 T→C 120030921 5'UTR unknown 0.095
P2XR7 -1300 G→A 120032196 5'UTR unknown 0.007
P2XR7 21749 C→T 120055245 intron 1 unknown 0.002
P2XR7 rs17525809 120055409 exon 2 Val76Ala 0.086
P2XR7 23160 C→T 120056656 exon 3 Arg117Trp 0.002
P2XR7 29364 G→A 120062860 intron 4 unknown 0.029
P2XR7 29463 G→A 120062959 exon 5 Gly150Arg n.p.
P2XR7 32406 G→A 120065902 exon 6 Glu186Lys n.p.
P2XR7 32422 G→A 120065918 exon 6 Leu191Pro n.p.
P2XR7 rs7958316 120068093 exon 8 Arg276His 0.026
P2XR7 rs1718119 120077823 exon 11 Ala348Thr 0.407
P2XR7 rs6489795 120077851 exon 11 Thr357Ser 0.070
P2XR7 rs2230912 120084916 exon 13 Gln460Arg 0.147
P2XR7 rs3751143 120085024 exon 13 Glu496Ala 0.205
P2XR7 rs2230913 120085100 exon 13 His521Gln n.p.
P2XR7 52857C→T 120086353 3'UTR unknown n.p.
P2XR4 -643 C→T 120110044 5'UTR unknown 0.126
P2XR4 rs1653622 120110155 5'UTR unknown 0.333
P2XR4 rs2303998 120117783 exon 2 Ala87Ala 0.006
P2XR4 rs7298368 120122404 intron 2 unknown 0.165
P2XR4 rs25644 120129366 exon 7 Ser242Gly 0.107
P2XR4 rs11065501 120134690 3'UTR unknown 0.333
CAMKK2 rs3815990 120153808 exon 9 Ile365Ile 0.061
CAMKK2 rs3817190 120174797 exon 1 Thr85Ser 0.410
n.p. � not polymorph

Table 3.1: Information on genotyped SNPs.
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SNP HWE
cases

FDR
corrected

HWE
controls

FDR
corrected

Cases
(n)

Controls
(n)

rs12819210 1.0000 1.0000 1.0000 1.0000 985 1020

rs3213545 0.3182 0.7160 0.8201 1.0000 988 1012

259 A→G 0.8527 0.9593 0.0822 0.3699 987 864

-2575 T→C 0.3529 0.6352 0.5824 1.0000 992 1018

rs17525809 0.1105 0.9945 0.3097 1.0000 984 1002

29364 G→A 0.5639 0.7808 0.0477 0.2862 990 1023

rs7958316 0.1177 0.7062 1.0000 1.0000 984 1018

rs1718119 0.6484 0.8337 0.6032 1.0000 988 1016

rs6489795 0.3016 0.7755 0.0258 0.2322 985 1024

rs2230912 0.1753 0.7889 0.0059 0.1062 999 1029

rs3751143 0.9183 0.9723 0.5670 1.0000 1000 1029

-643 C→T 0.7769 0.9323 0.7770 1.0000 985 1018

rs1653622 0.3885 0.6357 1.0000 1.0000 989 1018

rs7298368 0.2354 0.7062 0.7329 1.0000 990 1016

rs25644 0.3238 0.6476 0.8691 1.0000 990 1017

rs11065501 0.2126 0.7654 0.6218 1.0000 991 1021

rs3815990 0.0171 0.3078 1.0000 1.0000 983 1018

rs3817190 0.4106 0.6159 0.8427 1.0000 937 977

Table 3.2: HWE-tests (p-values) and genotyped sample size in informative SNPs
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Figure 3.1: Association of investigated SNPs with MDD. Chromosomal positions are given
on the x-axis and �log 10 (P-values) are on the y-axis. The dotted and dashed lines represent
the permutation-based 5% type I error rate for the three SNPs implicated in BP in the SLSJ
sample [13] and the 17 remaining SNPs, respectively.

randomly selected controls were genotyped by direct sequencing (overall call rate 99.6%) in
the laboratory of Nicholas Barden at Laval University, Quebec, Canada. In these data there
were 4 discrepancies with the pyrosequencing data and 7 discrepancies with the MALDI-
TOF data (discrepancy rates of 0.40% and 0.73%, respectively). These discrepancies did
not seem directed in any of the cases, and the in�uence on the various genotyping methods
on the results of the analysis was minimal. To give an example, the result of the genotypic
test in those samples where both the MALDI-TOF and the pyrosequencing genotypic data
agreed, was 0.0014 for the genotypic model, 0.0026 for the dominant model, and 0.00039 for
the heterozygote disadvantage model. For the analysis presented here we used the pyrose-
quencing data with missing values supplemented by MALDI-TOF data. This gave p-values
of 0.0019, 0.0081, and 0.00099, for the respective genetic models. p-values when using the
MALDI-TOF data only were 0.0013 for the genotypic test, 0.0033 for the dominant model
and 0.00041 for the heterozygote disadvantage model. p-values based on the pyrosequencing
data alone were 0.0028, 0.0094 and 0.0012, respectively. Thus the results of the analysis do
not or only in a very minor fashion depend on the genotyping method used.

Another explanation for this deviation could be the fact of investigating a control sample
selected for being negative for mental disorders. Provided that heterozygotes represent the
high-risk genotype for depression, a lack of heterozygotes in the control group is expected.
In that case the control group would not be in HWE, in contrast to the combined case and
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Figure 3.2: Distribution of genotypes of SNP rs2230912 in cases and controls. The odds
ratio for a dominant model (genotypes AG and GG versus AA) was equal to 1.30 (CI =
1.07�1.59; p = 0.008068) and for a heterozygote disadvantage model (AG versus AA and
GG) 1.40 (CI=1.14�1.72; p = 0.0009938).

control samples. In fact, if we merge diagnosed controls and depressive patients they are
in HWE (nominal p = 0.358). To prove the statistical signi�cance of the latter hypothesis
we used the goodness-of-�t procedure of Wittke-Thompson et al. [197] testing the general,
additive, dominant and recessive models. The data were found to be in agreement with the
general model (p = 0.18). The estimated minor allele frequency for the susceptibility locus
was equal to 0.16 and therefore nearly equal to the observed population frequency of 0.15
for rs2230912 (table 3.1). The relative risk for heterozygotes estimated from this model is
1.19, also in agreement with the results presented in �gure 2.

3.2.3 Testing for LD

To get more insight into the pattern of LD between alleles at polymorphic loci, pairwise
disequilibrium measures (D′ and r2) in controls were calculated using all SNPs with a minor
allele frequency over 1%. We detected 3 independent blocks of LD within the investigated
region de�ned by the Gabriel method (�gure 3.3). The �rst block spans 2 SNPs in the
OASL gene, the second contains four SNPs in exon 11 and 13 of P2RX7 and the third block
spans �ve SNPs in P2RX4 and CAMKK2 genes. In the �rst and third block no SNP was
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Figure 3.3: Linkage disequilibrium and block structure (D′) of the P2RX7 region. SNPs
lying within blocks are depicted in bold type

associated with MDD. D′ within the second block was equal to 1, albeit r2 was rather low
(0.2, 0.01, 0.05 for pairs of the highest associated SNP rs2230912 with rs1718119, rs6489795,
and rs3751143, respectively).

The presence of a single associated SNP within the second block is due to the low r2

despite high D′ and somewhat similar minor allele frequencies (0.1472 for rs2230912 and
0.2055 for rs3751143) and is coherent with the general recognition of r2 as important for
determining the power of association analyses.

3.2.4 Association of haplotypes

Using the SNPHAP program, we reconstructed haplotype alleles for each subject on the basis
of the four SNPs in the LD block 2 (rs1718119, rs6489795, rs2230912, rs3751143), because
one of these SNPs showed the highest association with MDD. We observed 5 frequent (>
5% population frequency) and 2 less frequent haplotype alleles (data not shown). The 5
frequent haplotypes accounted for 99.1% of the chromosomes in our sample. No di�erences
in frequencies were observed between cases and controls. Only one haplotype allele `ACGA'
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showed a trend for association with a p-value = 0.0753, but that is a re�ection of association
of the `G' allele in SNP rs2230912 with MDD.

3.2.5 Explorative genotype phenotype correlation

Di�erences in genotype distribution between cases and controls were independent from gen-
der and age. Genotype variation had no in�uence on age at onset or the number of previous
depressive episodes (data not shown).

3.3 Discussion

Here we report evidence that SNP rs2230912 in the P2RX7 gene is associated with MDD.
This functional polymorphism rs2230912 is located in exon 13 of the P2RX7 gene resulting
in a change of the amino acid glutamine to arginine at position 460 (Gln→Arg). Gln460Arg
is positioned in the long intracellular C-terminal domain. This domain is unique among
P2X receptors and is thought to be responsible for functions that are di�erent from those
observed in other ion channels, including alterations in cell morphology [32], intracellular
signaling, and cytolysis/apoptosis [51].

In this region, several loss-of-function polymorphisms have been reported [69, 68, 193].
The Gln460Arg polymorphism has been described to lead to a functional decrease, albeit
minor, when measuring Ca2+ in�ux in peripheral blood lymphocytes of patients a�ected with
chronic lymphocytic leukaemia and in transfected recombinant human embryonic kidney cells
[22]. Due to its position in the intracellular domain [45] and the fact that Gln460 residue is
conserved in mammals, this residue is likely to be involved in P2RX7 dimerisation as well
as in other protein-protein interactions having e�ects upon P2RX7 -mediated signalling.

Although so far little is known about the functional implications of the Gln460Arg vari-
ant, P2RX7 receptors might well play a pivotal role in antidepressant action and the causal-
ity of mood disorders through their role in neuroprotection [172] and in neuroin�ammatory
responses [196] as well as through their in�uence on neurotransmission in the hippocampus
[8].

In our study, we noted a nominally signi�cant DHW for the associated SNP rs2230912.
Since laboratory error is one of the most common reasons for DHW we veri�ed our genotyp-
ing by pyrosequencing as well as by direct sequencing and found no discrepancies between
results from di�erent genotyping methods. This deviation is also unlikely to be due to hid-
den population structure since our study was restricted to Caucasians with 92% of people
originating from Germany. Formal assessment of population structure using STRUCTURE6

gave no evidence of population admixture (data not shown).
In our sample a heterozygote disadvantage model was the most suitable mode of inher-

6http://pritch.bsd.uchicago.edu/software.html
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itance, possibly being a re�ection of P2RX7 receptors having an oligomeric structure in
the plasma membrane based on complexes of identical subunits [124, 178]. The same vari-
ant we found associated, rs2230912, was also the most highly associated SNP in Canadian
bipolar families with an over-transmission of the (minor) G-allele in the a�ected o�spring
(p=0.000708) [13]. In our sample we observed the same direction of association with the
G-allele being more frequent in patients. SNP rs3817190 (exon 1 in CAMKK2 ) as well as
rs1718119 (exon 11 in P2RX7 ) and rs11065501 (3'UTR in P2RX4 ) were associated in Cana-
dian bipolar families and in the case/control study, respectively, but showed no association
in our MDD sample. These �ndings could re�ect the clinical observation of MDD and BP
being two di�erent disorders that share some causal factors, with the variances in common
conveying susceptibility to both disorders. Polymorphisms in other genes are likely to rep-
resent the discriminating factors, determining the ultimate clinical phenotype, unipolar or
bipolar. This discrepancy might also be due to di�ering patterns of LD in the more isolated
SLSJ as compared to the non-isolated Munich population. LD seems to have a longer reach
in the SLSJ population [13] compared to the Munich population, which is in keeping with
general knowledge about isolated vs. non-isolated populations [185].

In addition, epidemiological data indicate that there is a constant diagnostic conversion
from MDD to BP of 1.25% per year throughout the lifespan [7]. Accordingly, in a sample of
MDD patients a substantial number of hidden bipolar cases are to be expected. However,
when calculating odds ratios strati�ed by age, we observed no linear in�uence of age or age at
onset on the association, which would be expected under the hypothesis that the association
in the sample of MDD patients would be due to the hidden bipolar cases (data not shown).
Therefore, the data suggest that the Gln460Arg variant might be a susceptibility factor for
both disorders.

Our data, in combination with the association data in BP patients, suggest the impli-
cation of P2RX7 in a�ective disorders and are consistent with the possibility that various
mood disorders share some genetic commonalities. Being localized in the plasma membrane,
P2RX7 is a potential drug target and thus represents an example for a possible pharmaco-
logical drug discovery strategy emerging from an unbiased genetic approach.
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Chapter 4

Variation in genes controlling HPA axis

response to antidepressant treatment

and depression severity

Several studies suggest that a normalization of the HPA axis hyperactivity and GR resis-
tance that is observed in depression may be required for clinical response to antidepressant
treatment [81]. Patients su�ering from depression show elevated levels of plasma and urinary
cortisol, an increased number of cortisol secretory episodes, and increased concentrations of
CRH in the cerebrospinal �uid. These basal alterations are accompanied by an abnormal
responsiveness of the HPA axis to stimulating (e.g., intravenous application of exogenous
CRH) and suppressing (e.g., oral application of the synthetic corticosteroid Dex agents).
These �ndings have led to the hypothesis of corticosteroid receptor resistance [81]. It could
be explained by a changed expression pattern of GR and MR during acute depression,
although the molecular mechanisms underlying these e�ects are not completely clear yet
[44, 129]. An alternative explanation invokes changes in regulatory proteins of GR and MR.
Endogenous GCs have di�erential occupancy pro�les. GRs are thought to mediate negative
feedback signals of elevated GC levels under stress conditions, whereas MRs control the
inhibitory tone of the hippocampus on HPA activity [42, 129, 144]. Indeed, three genes
within the stress hormone system, GR, MR and FKBP5, have so far been associated with
antidepressant response.

Recently, our group investigated the in�uence of polymorphism in genes regulating the
HPA axis on response to antidepressant drugs in the Munich Antidepressant Response Sig-
nature (MARS) sample. In this sample, we detected an association of a functional poly-
morphism of the GR gene leading to two amino acid substitutions in codons 22 and 23
(ER22/23EK) that results in partial GR resistance in non-depressed subjects, and with
faster response to antidepressant treatment (n=367) [182]. The transcriptional activity of
the EK22/23 GR-variant was decreased. While mRNA stability is not a�ected, this poly-
morphism seems to in�uence the ratio of expression of two isoforms, GR-A and GR-B [150].
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The common variant V180 on polymorphism I180V in the MR protein permits enhanced
responses in cortisol secretion and heart rate due to a psychosocial stressor. In vitro testing
of the V180 allele revealed a mild loss of function using cortisol as a ligand, in comparison
to the I180 allele. Therefore the V180 variant may represent a genetic vulnerability factor
for stress related disorders such as depression [47].

Changes in GR and MR represent one potential cause of glucocorticoid resistance, but
there are also complex interactions with cellular components involved in hormone signaling,
such as chaperones and other transcription factors. For this reason we also linked poly-
morphisms within the locus of FKBP5, encoding the GR-regulating co-chaperone of hsp90,
FKBP5, to response to antidepressant treatment [19]. We found a highly signi�cant associa-
tion (p = 0.00003) between polymorphisms in FKBP5 and response to antidepressant drugs
(n=280). Patients homozygous for the rare allele of the associated SNPs responded over ten
days earlier to antidepressant treatment than patients with the other genotypes (table 4.1).
This was observed in groups of patients treated with TCA, SSRI or mirtazapine, suggesting
that this e�ect is independent of the class of antidepressant.

SNP Nonresponder Responder p-value
Max-Planck Institute of Psychiatry
rs3800373 AA, 51; CA, 35; CC, 0 AA, 77; CA, 48; CC, 21 0.00003
rs1360780 CC, 49; CT, 36; TT, 1 CC, 75; CT, 50; TT, 22 0.00048
rs4713916 GG, 49; AG, 36; AA, 1 GG, 71; AG, 53; AA, 22 0.00031
Ludwig Maximilian University, Augsburg and Ingolstadt hospitals
rs3800373 AA, 26; CA, 15; CC, 1 AA, 16; CA, 23; CC, 4 0.053
rs1360780 CC, 25; CT, 16; TT, 1 CC, 14; CT, 24; TT, 5 0.020
rs4713916 GG, 26; AG, 15; AA, 1 GG, 21; AG, 18; AA, 4 0.270
Table 4.1: Association of FKBP5 SNP genotypes with response to antidepressants after 2
weeks of treatment [19]

This result could be replicated in a second sample of patients recruited at three di�er-
ent hospitals in Bavaria (n=80). The same genotypes were also associated with increased
intracellular FKBP5 protein expression which triggers adaptive changes in GR and thereby
HPA axis regulation [19].

Patients carrying the associated genotypes displayed less HPA axis hyperactivity during
the depressive episode, as measured by the combined Dex-suppression/CRH-stimulation test
(Dex-CRH test). It is therefore possible that even though homozygotes for these SNPs are
as severely depressed as the other patients at the time point of hospitalization, their HPA
axis regulation is less impaired due to compensatory mechanisms elicited by increased intra-
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cellular FKBP5 levels, allowing a faster restoration of normal HPA axis function. Because
of the lack of a placebo-treated group it was, however, not possible to rule out that these
patients have an inherently shorter duration of their depressive episodes, independent of
antidepressant treatment. The polymorphisms associated with faster response were located
from the promoter region to the 3' end of the gene and all in very strong LD forming one
risk haplotype. It was therefore di�cult to pinpoint one of the polymorphisms as the causal
variant. Nonetheless, rs1360780 located in intron 2 seems a promising candidate as it is only
400 bp downstream of a glucocorticoid responsive element (GRE) that has been shown to be
functionally relevant [180]. We have observed a much stronger correlation between FKBP5
mRNA expression in peripheral lymphocytes and serum cortisol levels in individuals carrying
the genotypes associated with fast response to antidepressant than the two other genotypes,
indicating an altered GR/FKBP5 feedback mechanism associated with these genotypes [19].

Hence, increasing the level of FKBP5 represents a direct autoregulatory loop to control
GCs action. In depressed patients this negative feedback seems to be insu�cient. The
fact that long-term treatment with antidepressants leads to both normalization of HPA axis
activity and an increase of GR and MR mRNA transcription [12, 23, 75, 87, 114, 127, 143,
142] suggests that antidepressant-regulated GR, MR and FKBP5 gene expression renders
the HPA system more susceptible to feedback inhibition by cortisol.

For the further elucidation of the role of the genes FKBP5, GR and MR in the suscep-
tibility to depression and in response to antidepressants we enlarged the density of markers
in the previously investigated FKBP5 gene [19]. Additional polymorphisms were genotyped
in an enlarged sample and we investigated statistical interactions between the three above-
mentioned genes. In addition, we tested the predicted interaction between FKBP5 and MR
experimentally in a cellular reporter assay.
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4.1 Materials and Methods

4.1.1 Patients

493 patients were admitted to the hospital of the Max Planck Institute of Psychiatry (MPI),
Munich, Germany, for treatment of a depressive disorder, 422 (85.6%) presented with a
unipolar depressive episode (32.3% �rst and 53.4% recurrent episode), 61 (12.4%) patients
with BP disorder (6.1% BP I and 6.3% BP II), and 10 with other diagnoses of current
depression (0.5% dysthymia, 0.7% schizoa�ective disorder, 0.7% adjustment disorder). To
raise the power of the association tests we enlarged the sample size by 53 compared to the
previous study [19].

Patients were included in the study within 1-3 days of admission, and the diagnosis was
ascertained by trained psychiatrists according to the Diagnostic and Statistical Manual of
Mental Disorders (DSM) IV criteria. Patients with depressive disorders due to a medical
or neurological condition were excluded. All included patients were Caucasian and 85.1%
were of German origin. Groups of other nationalities were smaller than 3%. The study
was approved by the local ethics committee and written informed consent obtained from all
subjects.

All patients were treated according to the doctor's judgment with antidepressant drugs.
For all patients plasma concentration of antidepressant medication was monitored to assure
clinically e�cient drug levels.

4.1.2 Psychopathological assessment and de�nition of response to

antidepressant drug treatment

Psychopathological symptoms of depressed patients were assessed by trained raters using
the 21-item Hamilton Depression Rating Scale (HAM-D) within 3 days of admission and
then weekly until discharge. Patients ful�lling the criteria for at least a moderate depressive
episode (HAM-D ≥ 14) entered the analysis. As in the previous pharmacogenetic study from
our group [19], we used three common types of response de�nitions, each de�ning di�erent
aspects of antidepressant treatment outcome: early response, response, and remission. Early
response was de�ned according to the change in HAM-D from study inclusion until after
two weeks of treatment. Patients with a reduction ≥ 25% from their score at admission
were considered as early responders, while patients whose HAM-D score decreased less than
25% were considered as early non-responders. We de�ned response as a reduction of at
least 50% of the HAM-D scores at 5 weeks compared to admission. All patients with
a reduction of HAM-D scores less than 50% at 5 weeks were considered non-responders.
Remission was de�ned as reaching a total HAM-D score of less than 10 after �ve weeks. The
weekly psychopathology ratings were available for 331 and 265 patients after 2 and 5 weeks
of treatment after being included in the study respectively. The �ve-week time point was
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chosen because this duration of treatment is considered su�cient for an antidepressant drug
to display its clinical e�cacy.

In addition to qualitative response evaluation quantitative changes in HAM-D scores dur-
ing the �rst �ve weeks were evaluated by means of orthogonal polynomial coe�cients (OPCs)
describing depression severity level (0 order), linear improvement (1st order), quadratic (2nd

order), and cubic (3rd order) alterations during the observation period. Higher order poly-
nomials were neglected as they did not provide additional information about changes of
HAM-D scores.

4.1.3 Controls

Controls (N = 602) were enlisted from a randomly selected Munich-based community sample
and screened for the presence of anxiety and a�ective disorders using the Composite Inter-
national Diagnostic-Screener [195]. Only individuals negative for the above-named disorders
were included in the sample. Recruitment of controls was also approved by the local ethics
committee and written informed consent was obtained from all subjects. The control sample
has been described previously in section 3.1.1) and in [109].

4.1.4 SNP discovery, selection and genotyping

We selected a set of SNPs for each of the investigated genes from dbSNP1. 32 SNPs were
selected for the FKBP5 gene (NM_004117). After �ne mapping the average distance be-
tween markers with a genotyping success rate of at least 9 0% was equal to 6.1 kb compared
to the previous paper [19] of 15.3 kb. For the genes NR3C1 encoding the GR protein
(NM_0001762) and NR3C2 gene encoding the MR protein (NM_000901) we selected 11
SNPs each. SNPs included in the study had a MAF > 2%. After correction for multiple
testing, there was no signi�cant evidence that any SNP was not in HWE. SNP IDs, posi-
tions on UCSC3 genome built version hg17, MAF, p-values for HWE test and the number
of successfully genotyped individuals in the sample are reported in table 4.2.

1http://www.ncbi.nlm.nih.gov
2http://genome.ucsc.edu
3http://www.genome.ucsc.edu/cgi-bin/hgGateway
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Table 4.2: SNPs genotyped in the FKBP5, NR3C1,
NR3C2 genes which survived quality control and the
number of successfully genotyped individuals in the case
and control samples. `nb' � no bin. p-values for the
HWE test are for controls. SNPs in bold face have been
described previously by Binder et al. (2004)

Gene SNP Position Cases Controls MAF HWE Role Alleles LD bin
NR3C2 rs2871 149357629 326 464 0.30 0.91 3' UTR A/G nb
NR3C2 rs1879827 149383011 327 472 0.19 1.00 Intron A/G nb
NR3C2 rs3843413 149488406 325 506 0.33 0.92 Intron C/T nb
NR3C2 rs3846306 149488869 324 509 0.26 0.04 Intron A/C nb
NR3C2 rs3752701 149537915 326 510 0.21 0.42 Intron C/T nb
NR3C2 rs1355613 149613975 329 510 0.24 0.54 Intron C/T nb
NR3C2 rs2137331 149638301 326 472 0.44 1.00 Intron A/T nb
NR3C2 rs907621 149660326 330 509 0.16 0.75 Intron A/G nb
NR3C2 rs1490453 149678951 330 509 0.17 0.88 Intron C/T nb
NR3C2 rs5522 149715080 326 468 0.09 0.17 exon A/G 1
NR3C2 rs1490464 149725352 347 504 0.11 0.16 Prom A/G 1
NR3C1 rs258813 142654883 315 483 0.31 0.34 Intron A/G 1
NR3C1 rs6188 142660537 315 487 0.31 0.60 Intron G/T 1
NR3C1 rs33388 142677488 315 477 0.47 0.85 Intron A/T 2
NR3C1 rs33383 142690179 350 164 0.45 0.53 Intron C/T 2
NR3C1 rs2918416 142721220 344 493 0.31 0.40 Intron A/G 1
NR3C1 rs2963155 142736197 355 161 0.23 1.00 Intron A/G nb
NR3C1 rs2963156 142738689 347 153 0.21 0.15 Intron C/T nb
NR3C1 rs1866388 142739978 351 504 0.31 0.40 Intron A/G 1
NR3C1 rs6190 142760530 492 490 0.02 1.00 exon A/G nb
NR3C1 rs4582314 142760888 356 510 0.48 0.79 Intron A/C 2
NR3C1 rs4634384 142760890 355 507 0.47 0.72 Intron C/T 2
FKBP5 rs1883637 35602577 359 600 0.09 0.02 C/T 2

continued on next page
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Gene SNP Position Cases Controls MAF HWE Role Alleles LD bin
FKBP5 rs4711420 35603789 331 341 0.23 0.03 G/T nb
FKBP5 rs12526404 35608926 329 344 0.08 0.02 A/T 2
FKBP5 rs6909470 35619023 333 341 0.19 0.05 A/G 5
FKBP5 rs3807050 35620904 359 597 0.24 0.73 C/T nb
FKBP5 rs1807142 35631772 332 324 0.08 0.46 C/T 2
FKBP5 rs3800374 35645384 357 599 0.17 0.15 A/G 5
FKBP5 rs10807151 35648846 337 345 0.17 0.44 C/T 3
FKBP5 rs3800373 35650454 355 163 0.26 1.00 3' UTR G/T nb
FKBP5 1095 C→T 35652768 337 346 0.03 0.22 exon C/T nb
FKBP5 rs755658 35657648 359 602 0.09 0.04 Intron A/G 2
FKBP5 rs2294807 35663088 330 344 0.08 0.07 Intron C/T 2
FKBP5 rs992105 35663161 356 593 0.15 0.05 Intron A/C nb
FKBP5 rs10498734 35667751 337 345 0.08 0.06 Intron G/T 2
FKBP5 rs7753746 35673400 336 341 0.17 0.08 Intron A/G 3
FKBP5 rs2395634 35675738 336 339 0.30 0.30 Intron A/G nb
FKBP5 rs4713899 35677259 360 599 0.16 0.01 Intron A/G 6
FKBP5 rs7748266 35700722 336 345 0.17 0.09 Intron C/T 3
FKBP5 rs1591365 35712085 360 597 0.29 0.62 Intron A/G 1
FKBP5 rs1360780 35715549 359 602 0.29 0.49 Intron C/T 1
FKBP5 rs6902124 35718286 318 345 0.30 0.37 Intron A/C 1
FKBP5 rs2143404 35718659 353 600 0.15 0.02 Intron C/T 6
FKBP5 rs12527329 35718729 315 344 0.09 0.09 Intron A/T 2
FKBP5 rs1334894 35723108 357 509 0.09 0.08 Intron C/T 2
FKBP5 rs9394309 35729759 334 332 0.29 0.18 Intron A/G 1
FKBP5 rs9380525 35741016 333 343 0.32 0.39 Intron C/G 1
FKBP5 rs9380526 35766305 334 316 0.31 0.29 Prom C/T 1
FKBP5 rs943297 35775838 337 346 0.28 0.19 GRE A/G 7
FKBP5 rs4713916 35777961 357 480 0.27 0.03 A/G 7

continued on next page
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Gene SNP Position Cases Controls MAF HWE Role Alleles LD bin
FKBP5 rs9462104 35782823 318 334 0.30 0.15 C/T 4
FKBP5 rs4713921 35789755 359 598 0.29 0.07 C/T 4
FKBP5 rs4711429 35791526 336 344 0.29 0.19 A/G 4

Genotyping was performed on a MALDI-TOF mass-spectrometer (MassArray® system).
For primer selection and multiplexing and the homogeneous mass-extension (hMe) process
for producing primer extension products the Spectrodesigner software (Sequenom; CA) was
used [173]. The polymorphism ER22/23EK (rs6190) in the GR gene was genotyped by
pyrosequencing (Biotage, Uppsala, Sweden).

4.1.5 Bioinformatics

We examined whether any of the investigated SNPs were located within predicted tran-
scription factor binding sites using the Genomatix software4. Additionally, the open access
DNA sequence of FKBP5 was examined for the hypothetical transcription factor binding
site (GRE) by using the following sequence: DGNKCW N(1-4) WGKNCH .

4.1.6 FKBP5 � mRNA sequencing

No exonic polymorphisms in FKBP5 were available on open access genome browsers. There-
fore, coding and untranslated regions of mRNA NM_004117 annotated by RefSeq (version:
May 2004) were re-sequenced. For this purpose 32 healthy controls with various genotypes
markers reported to be associated with response to antidepressants by Binder et al. [19]
were selected.

The Human May 2004 Assembly as presented in the UCSC Genome Browser showed
also a predicted mRNA from genomic sequence with an alternative �rst exon were available.
According to our results from cDNA ampli�cation analysis this isoform was not expressed
in blood cells. Additionally, we re-sequenced 5 intronic regions: region one and two were de-
scribed by T. R. Hubler at al. [86] and contained Dex and progestin responsive elements (po-
sitions: 35677508�35678308 and 35686487�35686940, respectively); region 3 was described
by M. U [180] and contained 2 GREs (position: 35715729�35716706); and region 4 and 5
included several GREs, according to our screening search (35750268�35751039, 35741369�
35741957). Sequencing reactions were performed with and according to the manual of the
BigDye Terminator v3.1 Cycle Sequencing Kit and scanned with the ABI 3730 DNA Ana-
lyzer from Applied Biosystems. 500 ng of genomic DNA per subject and sequencing reaction
were used. All sequencing primers are available upon request.

4http://www.genomatix.de/
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4.1.7 LD-testing and tSNPs

For the examination of the LD structure we used a method similar to the one developed by
Carlson et al. [24].

This method is described as being more powerful than long haplotype-based methods,
because r2 is directly related to the statistical power to detect disease association with an
unassayed site [24, 167]. It requires the estimation of haplotype phase for each pair of SNPs
in the region for the computation of the LD measure r2. We allocated SNPs to bins in such a
way that all pairwise r2 within a bin exceeded a threshold of 0.75. With this method di�erent
alternative allocations are possible. We looked for the largest cluster in each iteration. After
clustering we selected as tSNP that SNP that shared the strongest evidence for association.

4.1.8 Haplotype analysis

Individual haplotype assignments were determined using SNPHAP5. Only haplotype assign-
ments with a remaining uncertainty of less than 5% and haplotypes with a frequency over
1% were included in the analysis. After individual haplotype estimation we built haplogeno-
types for each person.

4.1.9 Statistical analysis

4.1.9.1 Phenotype correlations
There were no di�erences in ethnicity (assessed by a self-report questionnaire asking for
native country, �rst language, and ethnic group of the individual and his/her four grand-
parents) or age distribution (mean age of 48.3, SD 14.5 in patients and mean age of 49.8,
SD 14.4 in controls, p = 0.78) between cases and controls . Females were overrepresented in
both samples, with a higher proportion of female controls compared with patients (62.3%
in controls and 55.8% in patients, p = 0.027, Fisher's exact test).

Spearman's correlation coe�cient between the number of previous depressive episodes
(PDEs) and duration of disease (DD) was calculated. DD was calculated as the di�erence
between the present age of a patient and their age at onset of the �rst depressive episode. As-
sociations between phenotype variables with DD and the number of PDEs were investigated
using logistic regression.

4.1.9.2 Genotype-phenotype association tests
Logistic regression analysis was also chosen for performing association tests of genotypes or
haplotypes with phenotype variables. Because of an overrepresentation of females in our
sample as well as a correlation of response phenotypes with DD and the number of PDEs,
we used DD, number of PDEs and gender as covariates in association analysis.

5http://www-gene.cimr.cam.ac.uk/clayton/software/snphap.txt
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4.1.9.3 Interaction testing

We used stepwise logistic regression with the Akaike information criterion (AIC) to deter-
mine the best statistical model of interactions between di�erent SNPs [84]. Because of the
restricted sample size we included not more than 5 SNPs in a model and tested only main
e�ects and pairwise interaction terms and compared global AICs between di�erent statistical
models.

On the basis of the LD structure and associations within genes we decided to compare
AICs for combinations a total of 12 SNPs for FKBP5, 3 SNPs for NR3C2, 7 SNPs for
FKBP5�NR3C2, 5 SNPs for FKBP5�NR3C1 and 8 SNPs for FKBP5�NR3C2�NR3C1. The
number of tested general models is easy to calculate as a sum of binomial coe�cients for up to
2, 3, 4, 4 or 5 SNP-combinations of 12, 3, 8, 5 or 7 SNPs, respectively. Thus, we tested a total
of 79 SNP-combinations for FKBP5, 8 for NR3C1, 120 for FKBP5�NR3C2 interactions, 31
for FKBP5�NR3C1 and 163 combination for FKBP5�NR3C2�NR3C1 interactions. Gender,
DD and the number of PDEs were used as covariates. The variance explained by investigated
variables was calculated as multiple adjusted R2.

4.1.9.4 Correction for multiple testing

Because of the large number of tests in our study we performed correction for multiple testing
as described in section 1.9.2. For each phenotype separately we combined tests for all SNPs
in the same gene by taking the product of their p-values. We repeated this procedure for the
real data and for 1 000 000 permutations. Finally, we estimated permutation-based p-values
for each phenotype using PFPM (section 1.9.3.1).

It was reasonable to separate quantitative changes in HAM-D-scores (OPCs) into two
groups: the �rst one included a depression severity variable and the second one contained
linear, quadratic and cubic trends in response over �ve weeks of treatment We combined
p-values from the second group using FPM (equation 1.7), [61]. We also used FPM for
estimating over all phenotype p-values. Single polymorphism tests were corrected using the
Westfall and Young method (see section 1.9.2 and [191]) within each test-family (each phe-
notype separately). p-values for the tests for HWE were corrected using the FDR procedure
(see section 1.9.1.1 and [16]).

Correction for multiple testing in interaction analysis was performed using the Bonfer-
roni method, which is the most conservative adjustment providing the strongest protection
against false positive results. The corrected p-values were calculated as a product of nominal
p-values and the number of tested SNP-combinations. All calculations were performed in
R.6

6http://www.r-project.org/
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4.1.10 Reporter gene assays

Cultivation and transfection of human neuroblastoma SK-N-MC cells (ATCC # HTB-10)
was performed as described by Wochnik et al. [198]. 2 days before transfection, cells
were seeded in medium containing charcoal-stripped serum. Amounts of transfected plas-
mids per 10−7 cells were: 1.5 µg steroid-responsive luciferase reporter plasmid MTVLuc,
3 µg β-galactosidase expression vector pCMVβ-Gal (Stratagene) as control plasmid, 0.75
µg pRK7MR that expresses human MR from the CMV-promoter of the vector pRK7, and
3 µg of FKBP5 expression vector or empty expression vector. After electroporation cells
were seeded again in medium containing charcaol-stripped serum complemented with either
hormone or the respective solvent.

Luciferase and β-galactosidase assays were described elsewhere [74]. After correction of
the data by galactosidase activities, the stimulation in the absence of cotransfected FKBP5
was set to 100%.
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4.2 Results

There was no association of response phenotypes with age or sex. Patients with a longer
history of disease and more PDEs were more often non- responders after 5 weeks (p =
0.01 for both). The two variables DD and PDE were correlated: Spearman's correlation
coe�cient was equal to 0.55. Patients who did not respond to therapy had an average of
2.80 ± 4.06 PDE and had their �rst depressive episode on average 13.62 ± 12.67 years ago.
Responders in contrast had 1.80 ± 2.40 depressive episodes, with the �rst episode 9.80 ±
12.26 years ago. Depression severity, remission after �ve weeks and early response were not
dependent on previous disease history.

4.2.1 LD testing

After calculation of pairwise r2 between genotyped SNPs we grouped them into LD bins. In
FKBP5 we found 7 bins and 5 SNPs (rs4711420, rs3807050, rs3800373, rs992105, rs2395634)
that could not be �t in any bin and were assigned to `one-SNP-bins'. The bin structure is
presented in table 4.2. Eight out of 11 SNPs in NR3C1 were assigned to two bins. The
�rst bin included rs258813, rs6188, rs2918416 and rs1866388. Four SNPs, rs33388, rs33383,
rs4582314 and rs4634384, were grouped into a second bin, and three SNPs, rs2963155,
rs2963156 and rs6190, did not �t in any bin. Merely two SNPs (rs5522 and rs1490464) in
the NR3C2 gene had r2 > 0.75, all remaining polymorphisms were not in LD according to
our de�nition.

4.2.2 Sequencing FKBP5 mRNA

Only one novel SNP was found in the re-sequenced regions of the FKBP5 gene. This C→T
polymorphism located in exon 9 (1095 C→T) and the T-allele occured with a frequency of
2.7% and 2.5% in controls and cases, respectively. 1095 C→T showed no association with
any of the investigated phenotypes (p > 0.05).

4.2.3 Associations of polymorphisms in FKBP5 with depression

severity and response to antidepressant therapy

Association analysis of SNPs in FKBP5 with response phenotypes yielded 40% of nominal p-
values less than 0.05 and 18.3% less than 0.01. On the basis of the response data distribution
we reconstructed genetic models for di�erent bins (�gure 4.1) and recalculated test statistics.
For bins 1 and 3 - 7 the data were suggestive of a recessive model for improved response.
The MAF for SNPs in bin 2 varied between 8 and 11% in cases and controls, consequently
only few patients were homozygous for the minor allele. For this reason we combined rare
homozygotes with heterozygotes in this bin.
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Figure 4.1: Distribution of HAM-D-scores during 5 weeks of treatment by di�erent genotypes
of SNPs from investigated genes
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The most signi�cant association with early response after 2 weeks was determined with
polymorphism rs9380526 (nominal p = 4.24×10−5) (table 4.3). SNP rs4713916 had the most
signi�cant association with response after 5 weeks of treatment (nominal p = 4.31 × 10−4)
and rs2395634 with remission after 5 weeks (nominal p = 0.00133). All 3 SNPs belonged to
di�erent bins, but r2 between them was greater than 0.60 (table 4.4). The comprehensively
high LD between these three SNPs makes it possible that their associations represent an
e�ect of the same causative variant.

SNP rs4713916 has been described previously as being associated with early response
after 2 weeks of treatment [19]. In the enlarged sample this association was still strong
(p = 1.55×10−4). The same was true for two other SNPs from the previous study (rs3800373,
p = 1.08× 10−3 and rs1360780 p = 3.08× 10−4, for details see table 4.3).

Bin 1 (table 4.2, �gure 4.2 and 4.3) was associated with both depression severity and
speed of response (table 4.5) and yielded combined p-value over all 3 quantitative response
variables and depression severity equal to 4.52× 10−5 for tagging-SNP rs9380526.
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Table 4.5: Results of association tests (− log p) between
SNPs in FKBP5 and response phenotypes

SNP ∗OPC
(0)

∗ OPC
(1)

∗OPC
(2)

∗OPC
(3)

Early
resp.

Resp.
5th

week

Rem.
5th

week

FPM

rs1883637 2.35 0.60 0.04 0.13 0.67 1.84 1.96 1.14
rs4711420 1.69 0.54 1.24 0.11 0.77 0.75 0.56 1.44
rs12526404 2.67 0.48 0.03 0.02 0.70 1.46 2.00 1.19
rs6909470 1.51 0.74 0.92 0.31 1.06 1.41 1.16 1.37
rs3807050 2.00 0.08 0.09 0.24 0.55 0.86 0.92 0.71
rs1807142 2.19 0.50 0.11 0.13 0.75 1.65 2.02 1.02
rs3800374 1.49 0.76 0.97 0.32 1.32 1.41 1.22 1.42
rs10807151 1.68 0.23 0.45 0.29 2.40 1.05 1.50 0.84
rs3800373 2.58 1.07 2.00 0.17 2.97 2.79 2.27 3.11
1095 C>T 0.28 0.99 0.36 0.71 1.45 0.68 0.01 0.66
rs755658 2.07 0.73 0.13 0.11 0.93 1.94 2.07 1.08
rs2294807 2.53 0.51 0.13 0.03 1.05 1.84 2.40 1.19
rs992105 1.81 0.24 0.50 0.30 2.50 1.11 1.60 0.96
rs10498734 2.32 0.56 0.10 0.03 1.04 1.83 2.26 1.07
rs7753746 1.47 0.55 0.59 0.16 1.90 1.58 1.34 0.92
rs2395634 4.09 1.27 1.54 0.24 2.81 2.71 2.88 4.19
rs4713899 1.51 0.56 0.61 0.15 1.68 1.61 1.39 0.96
rs7748266 1.47 0.55 0.59 0.16 1.89 1.58 1.34 0.91
rs1591365 4.04 1.38 2.39 0.68 3.48 3.30 2.81 5.30
rs1360780 4.12 1.38 2.39 0.68 3.51 3.36 2.87 5.40
rs6902124 4.26 1.17 1.64 0.29 2.88 2.70 2.83 4.37
rs2143404 1.52 0.60 0.62 0.15 1.73 1.65 1.45 0.99

continued on next page
∗OPC - orthogonal polynomial coe�cient of order (i). See chapter 4.1.2

`Resp.' � response to antidepressant treatment, `Rem.' � remission
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SNP ∗OPC
(0)

∗ OPC
(1)

∗OPC
(2)

∗OPC
(3)

Early
resp.

Resp.
5th

week

Rem.
5th

week

FPM

rs12527329 2.95 0.70 0.17 0.00 1.28 2.15 2.23 1.62
rs1334894 2.66 0.61 0.07 0.51 0.61 2.12 2.63 1.64
rs9394309 2.59 1.43 1.47 0.56 3.97 2.64 2.42 3.29
rs9380525 3.14 1.47 1.64 0.34 3.99 2.46 2.63 3.74
rs9380526 3.22 0.88 2.27 0.96 4.37 2.30 2.09 4.35
rs943297 2.23 1.17 2.02 1.15 4.09 2.45 1.75 3.72
rs4713916 2.38 1.26 2.60 1.37 3.81 3.36 1.59 4.59
rs9462104 1.90 0.92 1.78 1.36 2.82 1.98 1.66 3.22
rs4713921 1.14 0.55 2.35 2.18 3.16 1.30 1.03 3.43
rs4711429 1.10 0.51 1.59 1.48 2.61 0.93 1.01 2.24
haplo-
genotypes

3.27 1.91 1.72 0.27 3.12 3.56 3.68 4.21

∗OPC - orthogonal polynomial coe�cient of order (i). See chapter 4.1.2

`Resp.' � response to antidepressant treatment, `Rem.' � remission

Bin 2 was only associated with response and remission after 5 weeks of treatment and
showed no association at the earlier time point. We decided to use polymorphism rs1334894
as the tSNP for this bin because of the strongest evidence for association with investigated
phenotypes. Results of the association test for this SNP are presented in table 4.3 . For
SNPs from bin 2, carriers of the rare allele had lower depression severity but there was no
association with antidepressant treatment e�ectiveness. On the other hand, bins 4 (tSNP
rs4713921) and 7 (tSNP rs4713916) were associated with the speed of antidepressant response
rather than with depression severity (�gure 4.1 and �gure 4.4).

Thus, the carriers of the rare allele responded faster than the homozygotes for the al-
ternative allele (combined p-value for association tests with OPC 1st, 2nd and 3rd order on
rs4713921 = 6.68× 10−4 , and on rs4713916 = 5.01× 10−4).

The signi�cance of association of FKBP5 gene with early response had already been
shown previously by Binder et al. [19]. In our study we additionally performed tests with
quantitative response variables, for which we corrected for multiple testing. The genewide
combined p-value (PFPM-method, see section 1.9.3.1), corrected for multiple testing after
1 000 000 permutations, for association of FKBP5 with quantitative response variables was
equal to 1.02 × 10−3; with response after 2 weeks 1.84 × 10−3; with response after 5 weeks
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Figure 4.2: Coherence between LD bins of SNPs in FKBP5 in association with early response
and response after 5 weeks.
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Figure 4.3: Coherence between LD bins of SNPs in FKBP5 in association with early response
and remission after 5 weeks.
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Figure 4.4: Association of SNP-bins within FKBP5 with OPCs (quantitative variables of
response).
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5.23× 10−4; and with remission after 5 weeks 2.43× 10−5. In addition, when we performed
Fisher's product method over all phenotypes, the genewide p-value was equal to 2.20 ×
10−5. Therefore the overall association of the gene FKBP5 with response to antidepressant
treatment was signi�cant in our study.

4.2.4 Haplotype analysis in FKBP5

On the basis of the LD structure and p-values for association with response we picked out
6 polymorphisms from the FKBP5 gene for the haplotype association analysis: rs9380526
(bin 1), rs1334894 (bin 2), rs4713921 (bin 4), rs4713916 (bin 7), rs3800373 (one-SNP-bin),
rs2395634 (one-SNP-bin). The mean pairwise r2 between these markers was equal to 0.45
with a maximum of 0.74 for the rs9380526 and rs3800373 pair and a minimum of 0.20 between
rs9380526 and rs1334894. On the basis of the HAM-D score distribution we de�ned hap-
lotypes TGCTGC, TGCCAT, TGCTGT, TACCAT as `improved response' haplotypes and
GACCAT, GATCAT, GACCGC, GACCAC as `non-responder' haplotypes. The haplotype
frequencies were 0.64, 0.03, 0.02, 0.02 and 0.12, 0.09, 0.04, 0.02, respectively. Haplotype-
based association tests with response and remission after 5 weeks of treatment gave smaller
p-values than the SNP-based tests, but not with early response (�gure 4.1). This could
be due to two or more independent causative mutations or polymorphisms in FKBP5 for
improved response to antidepressants at a later time point.

4.2.5 Best �tting interaction models for response and depression

severity including the FKBP5 gene

To verify the hypothesis of several causative SNPs in FKBP5 we performed a logistic re-
gression analysis of all possible 2-SNP interactions between 12 SNPs (rs9380526, rs4713916,
rs4713921, rs3800373, rs2395634, rs1334894, rs4711420, rs3807050, rs992105, rs10807151,
rs3800374, rs2143404) representing di�erent LD bins. Di�erent numbers of patients geno-
typed for all 12 SNPs were available for the investigated phenotypes (246, 208 and 199 for
early response, remission after �ve weeks and response after �ve weeks, respectively).

The best model for association with early response included only one polymorphism,
rs9380526 (AIC = 319.5). The estimated p-value was equal to 9.26× 10−5.

For response after 5 weeks two models showed fairly similar values of AIC. Both in-
cluded rs1334894 as well as sex and DD. The �rst model with rs1334894 resulted in AIC =
254.04. Adding rs2395634 yielded AIC = 248.00. Hence the model of interaction of 2 SNPs
(rs1334894, rs2395634) and DD �tted best (overall p = 9.00 × 10−7). The largest single
e�ect in this model was the statistical interaction between rs1334894 and DD (table 4.6).
Patients homozygous for CC on rs1334894 were more often non-responders after 5 weeks
of treatment than T allele carriers. Non-responders with the CC genotype had more PDE
and longer DD. In the responder group the relation was in the opposite direction, so that
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non-responders with genotypes CT and TT had more PDE and longer DD. No statistical
interaction between two SNPs for this phenotype have been shown (p = 0.30).

Explained variable AIC and
p for the general model

Explanation term p

Response after 2 weeks
AIC = 319 rs9380526 9.26× 10−5

p∗ = 9.26× 10−5

pcorr = 0.007

Response after 5 weeks rs1334894 0.059
AIC = 248 rs2395634 0.022

p∗ = 9.00× 10−7 DD 0.002
pcorr = 7.11× 10−5 rs1334894 : DD 1.05× 10−4

Remission after 5 weeks rs1334894 0.037

AIC = 202.1 DD 0.014

p∗ = 1.66× 10−4 rs1334894 : rs3800373 0.008

pcorr = 0.013 rs1334894 : DD 0.032

Depression severity
AIC = 448.5 rs2395634 1.51× 10−3

p∗ = 3.02× 10−4 rs1334894 : PDE 0.017

pcorr = 0.024 rs2395634 : PDE 0.015

Table 4.6: Best �tting models explaining response phenotypes. `p' are p-values for cor-
responding explanation terms from the logistic regression. p∗ � nominal p for the general
model,pcorr � corrected for multiple testing p∗. DD � duration of disease since the �rst
episode, PDE � number of previous depressive episodes.

The statistical model for remission after 5 weeks as dependent variable and rs1334894,
rs3800373 and DD as independent variables yielded a minimal AIC = 202.10 (p = 1.66 ×
10−4). This was slightly better than the model including gender e�ect in addition (AIC =
205.20) and clearly better than the model with one SNP only (rs1334894, AIC = 212.9).
The strongest e�ect in this model had an interaction term for two SNPs (table 4.6).

Two SNPs, rs2395634 and rs1334894 were included in the best model explaining the
depression severity phenotype with AIC = 448.5 and global p = 3.02×−4. The e�ect of
rs2395634, and the interaction between both SNPs and the number of PDEs were signi�cant
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(table 4.6).
These data suggest the presence of several independent polymorphisms in FKBP5 that

a�ect the ability to respond to antidepressant therapy. In our data response to antidepressant
treatment was dependent on SNPs rs3800373, rs2395634 and rs9380526 (bin 1) as well SNPs
from bins 4 and 7, that on the basis of LD structure (table 4.4) could potentially refer
to one causative polymorphism. The SNPs from bin 2 (rs1334894) showed an additional
independent e�ect on remission and response after �ve weeks and demonstrated statistical
interaction with disease history.

4.2.6 SNP - associations in NR3C1 and NR3C2

The permutation based over-all Fisher's product p-value for the NR3C1 gene was equal
to 0.027 and for the NR3C2 gene equal to 0.003. If we considered single phenotypes, the
association of NR3C1 was signi�cant only with severity of depression (genewide p = 0.0034),
and was actually accomplished only due to association with bin 2 (table 4.7). All 4 SNPs in
this bin (rs4582314, rs33388, rs33383 and rs4634384) survived the multiple testing correction
with p = 0.006, 0.007, 0.010 and 0.032, respectively. Heterozygous carriers of these SNPs had
higher average HAM-D scores at admission than homozygous carriers, but response curves
paralleled (�gure 4.1). Nevertheless, nominal p-values for association with remission after 5
weeks were below 0.05.

Table 4.7: Results of association tests (− log (p-values))
between SNPs in the NR3C2 and NR3C1 genes and in-
vestigated response phenotypes.

Gene SNP ∗OPC
(0)

∗ OPC
(1)

∗OPC
(2)

∗OPC
(3)

Early
resp.

Resp.
5th

week

Rem.
5th

week

FPM

NR3C2 rs2871 0.02 1.62 0.09 1.32 0.00 0.00 0.00 1.04
NR3C2 rs1879827 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NR3C2 rs3843413 0.92 0.49 0.18 0.37 0.00 0.00 0.00 0.48
NR3C2 rs3846306 0.31 0.12 0.15 0.18 0.37 0.16 0.56 0.10
NR3C2 rs3752701 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NR3C2 rs1355613 1.44 1.47 0.24 0.25 0.00 0.00 0.00 1.19

continued on next page
∗OPC - orthogonal polynomial coe�cient of order (i). See chapter 4.1.2

`Resp.' � response to antidepressant treatment, `Rem.' � remission
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Gene SNP ∗OPC
(0)

∗ OPC
(1)

∗OPC
(2)

∗OPC
(3)

Early
resp.

Resp.
5th

week

Rem.
5th

week

FPM

NR3C2 rs2137331 0.64 0.10 1.37 0.19 0.90 0.08 0.33 0.55
NR3C2 rs907621 0.09 0.08 0.10 1.13 0.66 0.37 0.01 0.22
NR3C2 rs1490453 1.15 0.90 0.79 1.02 1.77 1.09 0.83 1.91
NR3C2 rs5522 1.53 1.33 0.01 0.19 0.00 0.00 0.00 1.05
NR3C2 rs1490464 1.34 1.40 0.18 0.03 0.00 0.00 0.00 1.00
NR3C1 rs258813 0.77 0.43 0.77 0.91 0.09 0.85 0.03 0.99
NR3C1 rs6188 0.78 0.40 0.78 0.88 0.08 0.80 0.03 0.96
NR3C1 rs33388 2.86 0.42 0.21 1.13 0.11 0.48 1.62 2.19
NR3C1 rs33383 2.74 0.41 0.30 0.62 0.16 0.53 1.54 1.79
NR3C1 rs2918416 0.96 0.24 0.81 0.82 0.11 0.98 0.15 0.95
NR3C1 rs2963155 0.70 0.05 0.13 0.33 0.29 0.65 0.30 0.16
NR3C1 rs2963156 0.86 0.29 1.23 0.49 1.19 0.21 0.17 0.98
NR3C1 rs1866388 0.85 0.28 0.94 0.78 0.03 1.01 0.13 0.97
NR3C1 rs6190 0.52 0.43 0.07 0.48 0.96 0.80 0.38 0.26
NR3C1 rs4582314 2.95 0.46 0.27 0.45 0.18 0.62 1.37 1.83
NR3C1 rs4634384 2.26 0.28 0.07 0.47 0.13 0.40 1.18 1.11
∗OPC - orthogonal polynomial coe�cient of order (i). See chapter 4.1.2

`Resp.' � response to antidepressant treatment, `Rem.' � remission

The NR3C2 gene in contrast was associated with both response and severity of depres-
sion. The genewide p-values for association with severity of depression, combined quan-
titative response variables, and early response were slightly less than 0.05. Dichotomous
response and remission variables after 5 weeks were not signi�cantly associated with varia-
tion in the NR3C2 gene.

In NR3C2, individuals carrying the rare allele for rs5522 and rs1490464 (belonging to
the only bin, 33 (AG) + 3 (GG) against 170 (AA) ; 41(AG) + 3 (AA) against 177 (GG),
respectively), and the major allele for rs1355613 (129 (CC) + 68 (CT) against 11 (TT))
showed improved response to antidepressant treatment. Nominal p-values for association
tests of these polymorphisms with depression severity were below 0.05. The number of
PDEs, rs1355613, and interaction of rs5522 with the number of PDE and of rs1355613 with
rs1490453 in a logistic regression were found to be independent explanatory terms ( p < 0.05)
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Explained variable AIC and
p for the general model

Explanation term p

Depression severity PDE 0.018
AIC = 415 rs13355613 0.032

p∗ = 1.76× 10−4 rs5522 : PDE 0.021
pcorr = 0.001 rs1355613 : rs1490453 0.039

Table 4.8: Interaction within NR3C2. `p' are p-values for corresponding explanation terms
from the logistic regression. p∗ - nominal p-value for general model, pcorr - corrected for
multiple testing p∗. PDE � number of previous depressive episodes.

(table 4.8). The AIC for the global model was equal to 415 (overall p = 1.76× 10−4), which
was signi�cantly lower than AIC = 421.7, 421.4, and 426.3 for the general models including
one SNP at a time (rs5522, rs1355613 and rs1490453, respectively), likelihood ratio tests
yielded p-values of 0.0010, 0.012 and 0.0013 for comparison of the 3-SNP model with each
1-SNP model, respectively.

Patients in the early responder group more often had the genotype CC for rs1490453
than patients who did not respond so rapidly (p = 0.01, for details see table 4.3). Even
though several SNPs in NR3C2 yielded nominal p-values under 0.05 in association tests
(table 4.7) none survived correction for multiple testing. The best result was obtained for
rs1490453 with a corrected p over all investigated phenotypes equal to 0.052.

We performed haplotype testing for NR3C1 and NR3C2, but estimated haplotypes did
not show better association with response phenotypes than single SNPs.

4.2.7 Interactions between FKBP5, NR3C1 and NR3C2

As mentioned above all three investigated genes were associated with response to antidepres-
sant treatment and depression severity. We asked whether their e�ects are multiplicative.
First we tested interaction between two genes, FKBP5 and NR3C2. On the basis of the LD
structure and associations of SNPs in the investigated genes we included 7 SNPs in statistical
interaction testing: four SNPs from FKBP5 (rs9380526, rs3800373, rs2395634, rs1334894)
and three SNPs from NR3C2 (rs1490453, rs5522, rs1355613) despite only marginal signif-
icance of the latter three. We tested one-SNP models as well as all 2-, 3-, 4- and 5-SNPs
combinations and model with covariates only. Overall 120 general models were tested.

Only two models explaining response after 5 weeks and depression severity survived the
correction for multiple testing. The model explaining response after 5 weeks included 4
SNPs (rs5522 and 1490453 from NR3C2, rs1334894 and rs2395634 from FKBP5 ) with AIC
= 204.6 and p = 3.74×10−4 (table 4.9). Three explanation terms had p < 0.05. One of them
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demonstrated the interaction between FKBP5 and NR3C2 (rs1334894 with rs1490453).
Test for interactions on the depression severity phenotype resulted in AIC = 403.7 and

nominal p = 8.9×10−5 for the global test (table 4.9). This model includes 5 SNPs (rs1490453,
rs5522, rs1355613 from NR3C2 and rs2395634, rs1334894 from FKBP5 ). The e�ects of
two genes were multiplicative, the explanation term `rs2395634 : rs5522' gave p < 0.05

(table 4.9).

Table 4.9: Interaction between three investigated genes.
`p' are p-values for corresponding explanation terms from
logistic regression. DD � duration of disease since �rst
episode, PDE � number of previous depressive episodes.

∗FKBP5 + �NR3C2

Explained variable AIC and
p for the general model

Explanation term p

PDE 0.018
Response after 5 weeks DD 0.058

AIC = 204.6 �rs5522 0.425
p∗ = 3.74× 10−4 �rs5522 : PDE 0.145

pcorr = 0.045 ∗rs1334894 : ∗rs2395634 0.025
∗rs1334894 : �rs1490453 0.026

PDE 0.012
Depression severity �rs1355613 0.023

AIC = 403.7 ∗rs2395634 0.004
p∗ = 8.9× 10−5 �rs1355613 : PDE 0.166
pcorr = 0.011 ∗rs1334894 : PDE 0.045

�rs1355613 : �rs1490453 0.004
∗rs2395634 : �rs5522 0.032
∗FKBP5 + �NR3C1

DD 0.004
Response after 5 weeks �rs33388 0.737

AIC = 194.6 ∗rs9380526 0.011
continued on next page
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Explained variable AIC and
p for the general model

Explanation term p

p∗ = 9.31× 10−6 ∗rs1334894 0.275
pcorr = 2.88× 10−4 ∗rs9380526 : PDE 0.124

∗rs1334894 : PDE 0.002
∗rs1334894 : �rs33388 0.006

PDE 0.030
Depression severity DD 0.022

AIC = 410.8 ∗rs9380526 0.005
p∗ = 2.24× 10−4 ∗rs1334894 0.275

pcorr = 0.007 �rs33388 0.038
∗rs9380526 : PDE 0.200
∗rs1334894 : PDE 0.005
∗rs1334894 : PDE 0.143

∗rs1334894 : �rs33388 0.073
∗FKBP5 + �NR3C1 + �NR3C2

DD 0.015
Response after 5 weeks ∗rs1334894 0.039

AIC = 181.8 ∗rs2395634 0.041
p∗ = 6.99× 10−6 �rs5522 : PDE 0.039

pcorr = 0.001 ∗rs2395634 : PDE 0.070
∗rs1334894 : �rs33388 0.050

∗rs1334894 : PDE 0.001
PDE 4.49× 10−3

Depression severity DD 0.055
AIC = 375.1 �rs5522 0.048

p∗ = 1.19× 10−4 �rs1355613 6.67× 10−3

pcorr = 0.019 �rs33388 0.057
∗rs9380526 0.025

continued on next page
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Explained variable AIC and
p for the general model

Explanation term p

�rs1355613 : sex 0.941
�rs5522 : PDE 0.282

∗rs9380526 : PDE 0.036
�rs13355613 : PDE 0.001
�rs5522 : �rs33388 0.056

∗rs9380526 : �rs33388 0.171

In the next step we repeated the analysis for interactions of SNPs in FKPBP5 and
NR3C2. SNP rs33388 from bin 2 in NR3C1 was chosen as tSNP because of its lowest p-
value over all investigated phenotypes (table 4.7). Response after 5 weeks was best explained
by 3 SNPs (rs1334894, rs9380526, rs33388), DD and interactions of the number of PDE
with rs1334894 and rs9380526 with a nominal p = 9.31× 10−6 and AIC=194.6 (4.9). The
interaction between rs1334894 and rs33388 was also signi�cant. The depression severity
phenotype was best explaned by the same model with PDE in addition (p = 2.24 × 10−4,
AIC = 410.8).

At last, we tested interactions between all 3 genes with the new number of 8 SNPs
(rs9380526, rs3800373, rs2395634, rs1334894, rs1490453, rs5522, rs1355613 and rs33388),
including combinations of up to 4 SNPs, in the sum 163 general models.

The best model of statistical interaction between SNPs for response after 5 weeks yielded
a global p = 6.99 × 10−6 (AIC = 181.8). The model included four SNPs from three inves-
tigated genes (rs5522 from NR3C2, rs33388 from NR3C1, rs1334894 and rs2395834 from
FKBP5 ). Two SNPs from FKBP5 (rs2395834, rs1334894) and DD showed signi�cant main
e�ects (table 4.9). Both interaction terms of the number of PDEs with rs5522 and with
rs1334894 had signi�cant e�ect as well as of rs1334894 with rs33388. The part of explained
variance by this model was about 12.6%, that was greater than the part of the variance
explained by covariates only (5.1%).

Four SNPs from the investigated genes (rs5522, rs1355613, rs33388 and rs9380526) were
included in the best explanatory model for depression severity (global p = 1.19× 10−4, AIC
= 375.1). Main e�ects of the number of PDEs, DD, rs5522, rs9380526, 1355613 as well as
two interaction exploratory terms (rs9380526 and rs1355613 with the number of PDEs) were
signi�cant (p < 0.05, table 4.9). Explanatory terms of DD, interactions of rs33388 with both
rs9380526 and rs5522, and interactions of the number of PDEs with rs5522 yielded p-values
greater than 0.05, but were included in the best interaction model because of the minimal
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Figure 4.5: FKBP5 in�uences the transcriptional activity of the MR. Neuroblastoma cells
were transfected with plasmids coding for MR, FKBP5, the reporter gene �re�y luciferase
controlled by the MR-responsive MMTV-promoter, and the control enzyme β-galactosidase.
Hormone exposure was 3 nM corticosterone for 16 h. The hormone-stimulated reporter ac-
tivity in the absence of FKBP5 was arbitrarily set to 100.

AIC. The part of explained variance by this model was about 22.9%, that was greater than
the part of the variance explained by covariates only (2.1%).

The global p-values for the best interaction models explaining the remaining phenotypic
variables did not survive correction for multiple testing, corrected p > 0.05.

4.2.8 Experimental test of the interaction between FKBP5 andMR

Our statistical evaluations suggest a functional interaction between FKBP5 andMR. Taking
in addition the homology of MR and GR into consideration we were prompted to test for a
potential e�ect of FKBP5 on the transcriptional activity of MR. To this end, we employed a
reporter gene assay using theMR-responsive MMTV promoter that drives �re�y luciferase as
reporter. There was a clear inhibition of the transcriptional activity of MR by cotransfected
FKBP5 (�gure 4.5).

The inhibition of MR was already observed in the absence of hormone. It is not known
whether the pronounced activity of MR already in the absence of added hormone was due to
an intrinsic hormone-independent mode of action of MR, or due to unknown cryptic ligands
in the medium. Whatever the explanation for thisMR activity is, there is a strong functional
interaction between MR and FKBP5, both in the absence and presence of added hormone,
in this experimental set-up.
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4.3 Discussion

Our original report of the association of the FKBP5 gene with response to antidepressant
treatment by Binder et al [19] raised the question of the function of the associated polymor-
phisms at the molecular level. For this reason, we resequenced the FKBP5 mRNA. Only one
novel exonic SNP was detected, but there were no associations with any of the investigated
phenotypes. Resequencing intronic regions including transcription factor binding sites did
not reveal novel SNPs. Nevertheless, SNPs investigated in previous studies were assigned to
one large D′ LD-block. In our study, we tried to localize the causative changes by detailed
examination of the LD structure and by expanding the marker density. We also enlarged
the sample size by 53 patients to raise the power of the association tests.

In our data, the FKBP5 gene was signi�cantly associated with all investigated response
variables. LD bins showed independent statistical e�ects at di�erent time points. The
strongest association with response to antidepressant treatment was observed with SNPs
within bin 1 (tSNP rs9380526). Bins 4 and 7 also showed high associations with early
response, but their e�ects were not independent. Results of stepwise logistic regression
suggested that markers of bin 1 actually showed the strongest main e�ect on early response
to antidepressant treatment. Thus the association described in the paper of Binder et al [19]
refers to the e�ect of one causative change in the FKBP5 gene. This �nding is in agreement
with the LD structure within the gene. Pairwise r2 between rs9380526 and SNPs described
previously (rs3800373, rs1360780, rs4713916) was greater than 0.74 and D′ was greater than
0.95.

At the same time, response and remission after �ve weeks probably are controlled by
2 independent changes in the FKBP5 gene. Co-occurrence of these changes within one
haplotype showed higher association with response and remission after �ve weeks. This
could mean that the phase in which variants within the FKBP5 gene might be important
for any regulation processes of FKBP5 expression.

One cluster of SNPs (bin 2) showed association only with response at the later time point
and no association with early response. The genotypic distributions of SNPs in this bin were
also correlated with DD, which itself is also correlated with the speed of response. Patients
with longer disease histories tended to have more depressive episodes and, consequently more
often received drug treatment. This repeated and extended action of antidepressants could
have led to re-programming of the genes involved in response via epigenetic mechanisms.
Intriguingly, rs1334894 localized in intron 1 of the FKBP5 gene is part of a CpG dinucleotide
in the C allele situation. It has been reported that the antidepressant imipramine has the
ability to in�uence epigenetic chromatin modi�cations in the hippocampus in a mouse model
of depression and antidepressant action [179]. Moreover, the actions of the GCs also entail
epigenetic changes. For example, GCs have been shown to induce stable DNA demethylation
within the rat liver-speci�c tyrosine aminotransferase gene [105, 176]. Alternatively, a simul-
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taneous association of genetic markers with DD and with response could indicate a subtype
of the MDD, characterised by a more unfavorable course of depression. This hypothesis is
corroborated by data of Cook and colleagues [34], who showed that better clinical outcomes
are achieved in those depressed subjects with less severe depression.

All associated SNPs in FKBP5 are located in introns or in UTRs. SNP rs3800373 is
located in the 3'UTR and is in LD with rs1360780, rs9380526 and rs2395634 (table 4.4).
Polymorphisms in UTRs could potentially change the 3D structure of the mRNA. Alterna-
tively, a change of G to A in rs943297 predicts the loss of a GRE and could thus lead to
GR-resistance. rs943297 is located near the promoter in intron 1 of FKBP5 and is in LD
with rs9380526 and rs4713916.

The two other investigated genes that are involved in the regulation of the HPA axis
also showed signi�cant associations with the examined phenotypes. The NR3C1 gene was
nominally associated with remission after 5 weeks. After correction for multiple testing
NR3C1 in our data was associated only with severity of depression. Heterozygous carriers
of four SNPs that are in strong LD had on average higher HAM-D scores during 5 weeks
of antidepressive treatment. There was no di�erence in response speed. SNPs within bin 2
in NR3C1 are located in intron 1 and 2 and their function is not known. We compared
the LD structure in our data with the CEU sample available in the HapMap project7 and
found the structure in our sample to be virtually identical with the one in the CEU sample.
No SNP in the bin in the CEU sample had a known function. Exonic SNPs in NR3C1
(rs6192, rs6193, rs33391 and rs1800445) in our sample were not polymorphic, so we could
not assign the association to changes in protein structure. SNP rs6190, described earlier
as ER22/23EK [183, 184, 150] to be associated with response was not associated with the
investigated response phenotypes, that have a slightly di�erent de�nition as in van Rossum
et al. [182]. Obviously, the ER22/23EK variant has a very small e�ect on response to
antidepressant treatment if at all.

The NR3C2 gene in contrast was associated with both response and severity of depres-
sion. Three SNPs (rs5522, rs1355613 and rs1490453) showed nominal signi�cant associations
with depression severity and with the linear trend in HAM-D scores during 5 weeks of treat-
ment. One SNP (rs1490453) was associated with early response. All three SNPs were not
in LD and had statistically independent e�ects on the response phenotypes. None of them
survived the correction for multiple testing. Nevertheless, the interaction between rs1490453
and rs1355613 in the logistic regression was signi�cant after correction. Both SNPs are lo-
cated in intron 2 of the NR3C2 gene and are not in LD with any known coding SNPs in
the CEU sample. SNP rs5522 is a coding polymorphism in exon 2 and results in a I180V
change in the MR protein. Carriers of the V180 allele in our sample showed faster response
to antidepressants. Interestingly, the same variant was shown recently to be associated with
psychosocial stress responsiveness. Carriers of the V180 allele were shown to have higher

7http://www.hapmap.org
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saliva and plasma cortisol levels, as well as a higher heart rate response to the Trier Social
Stress Test (TSST) than non-carriers (I180). In vitro testing of the V180 allele revealed
a mild loss of function using cortisol as a ligand. Higher doses of cortisol were needed for
cortisol dependent promoter induction by MR, but protein expression did not di�er between
the two MR variants [47]. Apparently, V180 allele carriers may have a more reactive HPA
system that probably leads to an improved response to antidepressant treatment.

In our study we showed that all three investigated genes are associated with di�erent
aspects of response to antidepressant treatment. The FKBP5 gene had the strongest asso-
ciation. All three investigated genes seem to have more than one causative polymorphism
modifying response to antidepressant treatment. FKBP5, NR3C1 and NR3C2 probably
have not only additive independent e�ects on the response phenotype, but interact epistat-
icly. Unfortunately, there is not a precise correspondence between biological and statistical
models of interaction [35]. In addition, the power of interaction testing is limited. Breslow
and Day showed that the sample size required to detect interaction is always at least 4 times
what is needed to detect a main e�ect of the same size [21]. In our study we did not have
su�cient power according to this estimation. Despite the insu�cient power in our sample
we could show signi�cant statistical interaction between SNPs in 3 genes and disease history.
Unfortunately, testing of interactions of an order higher than 2 were not possible because of
the increasing number of tests and consequently the increasing multiple testing problem.

Given all these considerations it is important to note that a biological interaction of the
FKBP5 and GR proteins has been alredy shown experimentally. This lends support to the
relevance of interactions found at the statistical level. Increased levels of FKBP5 have been
reported to be the common cause of GR resistance in New World primates. Overexpression
of FKBP5 have been shown to reduce the binding a�nity of GR, and therefore to decrease
the transcriptional activity of GR after hormone exposure [46, 199]. GC activated formations
of GR-GR and MR-MR homodimers or GR-MR heterodimers can translocate to the nucleus
and there bind to GREs and thus govern expression of steroid responsive genes [128, 144],
one of them being FKBP5 [86, 180]. Thus the biological interaction of GR and FKBP5
represent an ultra-short negative feedback loop.

Our statistical data suggested a connection between FKBP5 and MR as well. Indeed, we
were able to demonstrate for the �rst time that FKBP5 also interferes with the transcrip-
tional activity of MR. Thus, the interactions found at the statistical level apparently have
an equivalent at the biological level. This result further validates our statistical approach
and the biological implications of the statistical interactions, even though the p-values for
interaction terms were close to 0.05.

In summary, we provide evidence for statistically independent e�ects of variants in the
FKBP5, GR and MR genes which are pivotal for HPA axis function. Moreover, we showed
statistical interactions between them that might be responsible for changes in the HPA
axis relevant for the therapeutic action of antidepressant treatment. Our �nding may be
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useful for the prediction of response to antidepressant treatment in depressive patients on
the basis of the interplay of genetic and non-genetic determinants, in our case gene variants
and disease history.
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Chapter 5

Summary

In the current study I performed association testing of candidate genes with major depressive
disorder (MDD) and response to antidepressant treatment. Unlike Mendelian traits, which
are controlled by genes of large e�ects and show simple patterns of inheritance in families, the
transmission of such complex phenotypes is governed by multiple factors. Probably, complex
traits are controlled by more than one genes that are in turn interact with environmental
factors.

Dozens of SNPs were tested in the current study for associations. For this reason mini-
mizing of false positives was necessary. Sources of false positive associations can be divided
into three main categories: statistical �uctuations that arise by chance and result in low
p-values, underlying systematic biases due to study design, and technical artifacts.

The most widely discussed source of systematic bias is population strati�cation due
to ethnic admixture. This can lead to the over-representation of one or more subgroups
among the cases or control group. If a genetic marker has di�erent frequencies in di�erent
subgroups, false positive associations can ensue. To avoid this problem an additional set
of unlinked markers was genotyped and tested for admixture in the investigated data. No
signi�cant evidence for strati�cation was detected, consequently, no correction for population
strati�cation was necessary.

To avoid false positive associations occurring due to genotyping errors I performed quality
control including HWE and genotyping call rate checking. All conspicuous SNPs were re-
genotyped or validated due to direct sequencing.

Di�erent methods for accounting e�ciently for multiple testing of many SNPs in an
association study are available. One of them proposed by Nyholt [126] is very simple, but
its performance was not extensively evaluated. Based on empirical results I evaluated this
method for a simple model of haplotype block structure. Theoretical considerations show
further that the method can be very conservative in the presence of LD blocks. In summary,
although Nyholt's approach may be useful as an exploratory tool, it is not an adequate
substitute for permutation tests. The permutation procedure is known to be computational
intensive, and for this reason not applicable to large data sets, but fortunately, hardware and
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software development allow current to permute even whole genome data sets1, 2. For this
reason the permutation procedure still remains the best approach for correction for multiple
testing and I used this approach in my calculations further on.

Candidate genes from two di�erent systems were investigated. The �rst one is the P2RX7
gene located within a region on chromosome 12q24.31 that has been identi�ed as a suscepti-
bility locus for a�ective disorders by linkage and association studies. P2RX7 is a purinergic
ATP-binding calcium channel expressed in neurons as well as in microglial cells in various
brain regions. A non-synonymous coding SNP in the P2RX7 gene (rs2230912), previously
found to be associated with bipolar disorder, was signi�cantly associated (p = 0.0019) with
MDD in current study. This polymorphism results in an amino acid exchange in the C-
terminal cytosolic domain of the P2RX7 channel protein, suggesting that the observed
P2RX7 polymorphism might play a causal role in the development of depression. These
�ndings could re�ect the clinical observation of MDD and bipolar disorder being two di�er-
ent disorders that share common causal factors.

A heterozygote disadvantage model was the most suitable model of inheritance, possibly
being a re�ection of P2RX7 protein having an oligomeric structure in the plasma membrane
based on complex of identical subunits [124, 178]. This could explain the nominally signi�-
cant deviation from HWE for the associated SNP rs2230912. The plasma membrane location
renders P2RX7 a potential drug target for a possible pharmacological drug discovery.

The second group of genes investigated in current study: NR3C1 (coding GR), its close
homolog NR3C2 (coding MR), and its regulatory protein FK506 binding protein 5 (FKBP5 ),
are key regulators of the stress hormone axis and, therefore, candidate genes for depression
and response to antidepressant treatment.

The association of FKBP5 and NR3C1 with response to antidepressant treatment were
shown previously, but the information about function of associated SNP and its interactions
was insu�cient. In present study I performed a �ne mapping and re-sequencing of potential
functional areas of the FKBP5 gene. Only one new exonic SNP was found (1095 C>T) and
it showed no association with depression or response to antidepressant treatment. The com-
bination of association analysis and detailed investigation of LD structure provided evidence
for two causal polymorphisms in FKBP5 possibly controlling investigated phenotypes, how-
ever the exact location of them could not be detected. The �rst group of associated SNPs
is distributed within the FKBP5 gene from promoter to 3' end. The second identi�ed as-
sociation refer to rs1334894 localised in intron 1. In summary, it is still not clear whether
associated SNPs have any function, that leads to response modi�cation or are just markers
for hidden causal mutation.

The GR and FKBP5 are linked intracellularly via an ultra-short feedback loop, i.e.
hormone-activated GR increases the expression of FKBP5, while FKBP5 interferes with the

1http://www.wg-permer.de/
2http://pngu.mgh.harvard.edu/purcell/plink/
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transcriptional activity of GR. The close homology of GR and MR raises the possibility that
MR may also be regulated by FKBP5, but no experimental support has been published so
far. Polymorphisms in the MR and GR genes were found to be associated in current study
with the clinical course of depressive episodes or with depression severity, but not with
depression. Moreover, several variants within the GR gene had statistically independent
e�ects. In addition, I investigated interactions of variants within this genes and its bene�t
for predictability of depression as well as response to antidepressant treatment. I asked
whether FKBP5, GR and MR e�ects are multiplicative in statistical sense.

Gene-gene interactions are thought to have an important role in complex traits, but the
analysis of how this interactions contribute to complex disease is challenging [77]. Cordell
[35] identi�ed several reasons why establishing the biological importance of interactions that
have been identi�ed statistically might be very complicated. Nevertheless, I could show for
the �rst time the evidence for statistically independent e�ects of variation in the FKBP5,
GR and MR genes which are pivotal for the HPA axis function. The proteins coded by
these three genes were shown to interact biologically, but its connection to the response
to antidepressant treatment were not investigated yet. Due to the performed investigation
I could emphasise the link between biological and statistical interactions. The variance
explained by interaction of variants in these genes in investigated sample was equal to
12.6% for response to antidepressant treatment and 22.9% for depression severity during
hospitalisation period. The results of this study could be useful for the prediction of response
to antidepressant treatment in patients.

In addition, I identi�ed that patients with a longer history of disease and more previous
depressive episodes were more often non-responders. These non-genetic determinants showed
considerable interplay with genetic variants in the investigated genes.

Considering the fact that association studies of complex traits rely on the LD between the
marker and unknown causal variants the diagnostic use of an associated marker or markers
would be of concern in any group that have a di�erent ethnic composition from the one
in which the association were �rst reported. It is possible that in population that di�er
from investigated one tested markers could be not informative for response prediction. For
this reason it is necessary to reproduce described here results on other populations before
drawing general conclusions.
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Appendix A

Quantitative assessment of population

strati�cation

Freedman et al. [62] proposed a simple method for Genomic Control. The procedure includes
several steps. In the �rst step a set of SNPs should be chosen. The markers should be
independent, preferably from unlinked loci and ideally from genes that have no in�uence on
the investigated phenotype. For each successfully genotyped SNP with the expected minor
allele count (based on the combined frequency in cases and controls) of at least 5 the χ2

value for case-control allelic association is calculated [62].
In the second step likelihood analysis is needed to estimate the level of strati�cation

consistent with the data. De�ning cj as the association statistic observed at marker j, (j =

1, . . . , K) genotyped in nj cases and mj controls, and f as the density of the χ2 distribution
with 1 degree of freedom, the likelihood of a given in�ation factor λnref ,mref

for a reference
sample size of nref cases, mref controls is

λnref ,mref
=
∏ f(cj/λnj ,mj

)

λnj ,mj

(A.1)

where

λnj ,mj
= 1 + (λmref ,nref

− 1)×
(

1

nref

+
1

mref

)
÷
(

1

nj

+
1

mj

)
(A.2)

Here we use nref = 1000 and mref = 1000. The in�ation factor will di�er from marker
to marker because it scales with sample size according to the latter equality [50, 141]. We
abbreviate λ1000,1000 as λ1000. The maximum likelihood estimate for λ1000 is simply the value
for which likelihood L is maximized, with the requirement that λ1000≥1. The likelihood
surfaces may be represented by plotting the values of L for di�erent λ1000, normalizing it
by the maximum likelihood. The upper bound of the one-sided 95% con�dence interval for
λ1000 may be obtained by picking the value such that the likelihood ratio 2 ln(Lmax/L) = 2.7;
that is, the point for which the likelihood is equal to 25.9% of the maximum [62]. Note at
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this point that Freedman [62] made an error in using the common logarithm instead of the
natural logarithm in delineating the rule for deciding on the limits of the con�dence interval.

A.1 Controlling for population strati�cation in the in-
vestigated data

In our study we investigated three samples (described in section 4.1.1 and 3.1.1): two sam-
ples of patients with depressive disorder and one control sample. In the �rst case sample
(N=1000) all included patients were Caucasian and 91.2% were of German origin. Recruit-
ment of controls (N=1029) for the �rst sample was performed using the same questionnaires,
matched for age, gender and ethnicity (all Caucasian, 93.04% of German origin).

The second case sample (N=493, Munich Antidepressant Response Signature, termed
MARS) included patients only that were recruited independently from the �rst case-control
study. All patients were Caucasian and 85.1% of German origin. No matching was done
between groups of responders and non-responders to antidepressant treatment. For this
reason it was necessary to control for PS within patients in the MARS sample.

Whole genome genotyping data were available from Sentrix Human-1 Genotyping Bead-
Chips, (Illumina Inc., San Diego, USA). In total 109 000 SNPs were genotyped for other
ongoing project. We have randomly chosen 7357 SNPs within the human genome (exclud-
ing the X and Y chromosome). Only SNPs with MAF 0.02 and in HWE were chosen. We
assumed that the probability that any of them changes the response ability to antidepressant
treatment is very low.

We performed Genomic Control as described above using the Freedman et al. method
[62]. We built likelihood curves (�gure A.1) for strati�cation for 3 binomial response out-
comes: early response to antidepressant treatment, response after 5 weeks and remission
after 5 weeks (detailed description of response phenotypes is in chapter IV).

In our data we did not found any signi�cant evidence for strati�cation. The estimated
in�ation factor λ was close to 1. The increase of the type I error rate due to PS in the
investigated sample was very small and numerically irrelevant. Thus, no correction for PS
was necessary in our study.
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Figure A.1: Likelihood surfaces for strati�cation in patients (N=493) using 7357 randomly
chosen genotyped SNPs. Red: early response phenotype, blue: response after 5 weeks, green:
remission after 5 weeks of antidepressant treatment.
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Appendix B

Comparison of haplotype estimation

algorithms

We were interested in studying associations of haplotypes in candidate genes with suscepti-
bility to depression and with response to antidepressant treatment.

In our sample of unrelated individuals haplotypes must be determined using statistical
methodology. Several programs using di�erent algorithms were available. Most of them
were described to be `good' in haplotype frequencies estimation, nevertheless, none gives a
100% certain estimation [166, 200, 202].

Zhang et al. [205] recently compared EM and PHASE algorithms. On simulated data
using empirical population haplotype frequencies, the PHASE method showed no improve-
ments over the EM method, except for one data set of an African population. In analysis
of totally nine African populations in which haplotypes were inferred through molecular
methods, the EM method and the PHASE method yielded almost identical results in seven
populations, and the PHASE method did outperform the EM method in the other two
populations. Xu et al. [200] showed that there were no signi�cant di�erences in haplotype
estimation certainty between EM and PHASE algorithms. On the basis of their �ndings
we could not decide a priori which of the two algorithms is better for our data. Moreover,
the EM algorithm based approaches implemented in SNPHAP and proposed by Clayton are
claimed to be better for long haplotypes, but it truly is not clear which algorithm is better.
Consequently, we decided to compare two of the programs described above, SNPHAP and
PHASE, on our data.

B.1 Material and methods

We performed a haplotype analysis in 3 genes related to the hypothalamo-pituitary axis,
FKBP5, NR3C1 and NR3C2. The number of investigated SNPs was 32, 11 and 11 from
545, 858 and 854 DNA-samples, respectively. DNA-samples and SNPs were the same as
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Gene Number Sample Missing Time Time Inter- Mean
of SNPs size data in PHASE in SNPHAP error rate di�erence

FKBP5 32 545 0.03 36 min 3 sec 0.03 6.21
NR3C1 11 858 0.15 7 min 2 sec 0.03 1.67
NR3C2 11 854 0.04 46 min 1 min 0.21 2.79
Table B.1: Comparison of SNPHAP and PHASE algorithms for haplotype estimation in
unrelated individuals

described in chapter IV (MARS-sample).
We calculated `inter-error rate' and `mean-di�erence'. The former we de�ned as the

proportion of samples with di�erently estimated haplotypes by SNPHAP and PHASE algo-
rithms. The latter one we de�ned as the mean number of di�erently called alleles of SNPs
over the sample in diverse estimated haplotypes by SNPHAP and PHASE algorithms.

B.2 Results

The �rst remarkable di�erence between the two algorithms was the computational speed
(table B.1). The algorithm implemented in the SNPHAP program was noticeable faster
than the algorithm implemented in the PHASE program.

The certainty of estimation of haplotypes was dependent on the LD structure (detailed
LD structure for the 3 genes is described in chapter IV). In the case of high LD (in the NR3C1
and FKBP5 genes) common haplotypes with frequencies above 0.35 were estimated with
high similarity in both algorithms. The gene NR3C2 had no common haplotypes because
of low LD between investigated SNPs. The highest haplotype frequency in this gene was
equal to 0.05 and the haplotypes estimated by the two programs were mostly di�erent.

Both programs needed more processing time if LD was low. The number of considered
SNPs correlated with computational speed. The proportion of missing genotypes did not
a�ect the inter-error rate in our data.

B.3 Discussion

Results showed that the two algorithms seriously di�ered only in processing speed when the
LD between the investigated SNPs was high and a small number of common haplotypes
existed. In our data we could not show how well both algorithm perform if original haplo-
typic data are available, but according to the literature [205, 200] there were no signi�cant
di�erence in haplotype frequencies estimated by EM and PHASE algorithms.

The �nding that the accuracy of computational methods was decreased with decreasing
LD is in concordance with data described in literature [167, 205, 200].
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On the basis of our results and results from literature we chose the SNPHAP program for
haplotype estimation in our sample due to considerably higher computational speed. We also
introduced a security threshold by only including those individual haplotypic con�gurations
in the analysis for which the posterior probability was greater than 95%.
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