GSF-Forschungszentrum für Umwelt und Gesundheit

Institut für Epidemiologie

Neuherberg

SNP Assoziationsstudien multifaktorieller Erkrankungen

auf Chromosom 6p

Nicole Herbon

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. sc. agr., Dr. agr. habil. Leo Dempfle

Prüfer der Dissertation:

- 1. Univ.-Prof. Dr. sc. techn. ETH, Dr. agr. habil. Hans-Rudolf Fries
- 2. Priv.-Doz. Dr. med., Dr. med. habil. Matthias Wjst

Die Dissertation wurde am 06.12.2006 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 23.01.2007 angenommen.

Teile der vorliegenden Arbeit wurden veröffentlich in:

Werner, M., M. Sych, N. Herbon, T. Illig, I. R. König, and M. Wjst. 2002. Large-scale determination of SNP allele frequencies in DNA pools using MALDI-TOF mass spectrometry. *Hum.Mutat.* 20, 1:57-64.

Herbon, N., M. Werner, C. Braig, H. Gohlke, G. Dütsch, T. Illig, J. Altmüller, J. Hampe, A. Lantermann, S. Schreiber, E. Bonifacio, A. Ziegler, S. Schwab, D. Wildenauer, Boom D. van den, A. Braun, M. Knapp, P. Reitmeir, and M. Wjst. 2003. High-resolution SNP scan of chromosome 6p21 in pooled samples from patients with complex diseases. *Genomics* 81, 5:510-518.

Danksagung

Ich danke Herrn Prof. Dr. Dr. Wichmann, der die Anfertigung der Dissertation an der GSF ermöglichte und Herrn Prof. Dr. Fries für die externe Betreuung an der TU München.

Mein Dank gilt Herrn Dr. PD Wjst für seine Betreuung und tatkräftige Unterstützung insbesondere bei Programmierarbeiten sowie Herrn Dr. Reitmeier für die Hilfe bei der Auswertung und Herrn Fischer für den persönlichen SAS-Kurs.

Ich danke Herrn Dr. Illig für die Betreuung der Arbeit und Diskussionsbereitschaft sowie Frau Dr. Werner und Frau Braig und den Kooperationspartnern Prof. Dr. Schreiber, Dr. Hampe, Dr. Lantermann, Dr. Wildenauer, Dr. Schwab, Prof. Dr. Ziegler, Dr. Bonifacio, Dr. Holle, Dr. Bradley, Dr. Dr. Braun und Dr. van den Boom für die hervorragende Zusammenarbeit.

Mein Dank gilt Herrn Dr. Lutz, Frau Dr. Andre, Frau Luze und Frau Bahnweg für das angenehme Arbeitsklima und Herrn Dr. Lengler für seine Unterstützung. Ich möchte mich bei allen Korrekturlesern für die Durchsicht des Manuskriptes bedanken, sowie bei Frau Dütsch und Herrn Gohlke für das angenehme Klima der Anfangszeit.

Mein besonderer Dank gilt meinen Eltern, die mir aus der Ferne stets zur Seite gestanden haben.

Inhaltsverzeichnis

ZUSAMMENFASSUNG1		
SUMMA	RY	2
1 EIN	LEITUNG	3
1.1 Ge	enetik multifaktorieller Erkrankungen	
1.1.1	Kopplungsanalysen und Kandidatengenverfahren	
1.1.2	DNA-Pooling	5
1.2 Er	pidemiologie multifaktorieller Erkrankungen	8
1.2.1	Diabetes	
1.2.2	Morbus Crohn	
1.2.3	Schizophrenie	
1.2.4	Hyper-IgE	
1.2.5	Atopische Dermatitis	
1.2.6	Asthma	17
13 Di	e chromosomale Region 6n	20
1.3.1	Der MHC-Komplex	
14 4.	af a change to llung	25
1.4 Al	ingabenstenung	
2 PRO	BANDEN, MATERIAL UND METHODEN	
41 D		24
2.1 Pr	ODanden	
2.1.1	Probanden der Astnma-Familienstudie	
2.1.2	Probanden des Fall-Kontroll-Ansatzes mit gepoolter DNA	
2.1.2	.1 Kontrollen	
2.1.2	A Asthma	
2.1.2	.3 Immunglobulin E	
2.1.2	.4 Diabetes	
2.1.2	.5 Morbus Crohn	
2.1.2	.6 Schizophrenie	
2.1.2	.7 Atopische Dermatitis	
2.2 M	aterial	
2.2.1	Geräte	
2.2.2	Plastikware	
2.2.3	Software	
2.2.4	Reagenzien und Kits	
2.3 M	ethoden	
2.3.1	DNA-Isolierung aus Vollblut	
2.3.2	Konzentrationsbestimmung von DNA-Verdünnungen	
2.3.3	Erstellung von DNA-Pools	
2.3.4	Polymerase-Ketten-Reaktion (PCR)	

2.3.4.	.1 PCR mit biotinyliertem Universalprimer	
2.3.4.	2 PCR für die Genotypisierung mit der hME-Methode	
2.3.5	Gelelektrophorese	
2.3.6	Sequenzierung	
2.3.6.	.1 Vorbereitung der Proben für die Sequenzanalyse	
2.3.6.	2 Ethanolfällung	
2.3.7	Genotypisierung	
2.3.7.	1 Restriktionsverdau	
2.3.7.	2 Taqman	
2.3.7.	3 MALDI-TOF MS	
2.3.8	Statistische Analysen	
2.3.8.	1 Hardy-Weinberg-Gleichgewicht	
2.3.8.	2 Mendelcheck	
2.3.8.	3 Fall-Kontroll-Vergleich	
2.3.8.	4 TDT	
2.3.8	5 Haplotypenrekonstruktionen	
2.3.8	6 Vergleich von Allelfrequenzen gepoolter Probanden	
238	7 Computerbasierte Selektion der SNPs	48
2 FDC	EDNIGGE	51
J ENG		
3.1 SN	P Auswahl und Validierung	
32 Üh	arpriifung dar Maßmathada	53
2 2 1	artifizialla Doola	
5.2.1 2.2.2	al UIIZIEIIE FOOIS	
3.2.2		
5.2.5		
3.3 An	alvse der Meßmethode unter HTS-Bedingungen	
3 3 1	Abweichungen der Messungen	56
332	Poolinterne Vergleiche	58
333	Korrektur mittels hME	60
5.5.5		
3.4 Po	olspezifische Assoziationsergebnisse	
3.4.1	Typ 1 Diabetes als Positivkontrolle	64
3.4.1.	1 spät einsetzender Tvp 1 Diabetes	
3.4.1	2 früh einsetzender Tvp 1 Diabetes	
3.4.1	3 Einzelgenotypisierung	
3.4.2	Morbus Crohn	
3.4.3	Schizophrenie	
3.4.3	1 Schizophrenie Familienstudie	
3.4.3	2 Schizophrenie Triostudie	
3.4.4	Asthma	
3 4 5	Atonische Dermatitis	
2.1.0		
3.4.6	Hyper-IgE	
3.4.6	Hyper-IgE	
3.4.6 3.5 At	opie und die HLA-Klasse IV	
3.4.6 3.5 Ato 3.5.1	opie und die HLA-Klasse IV Polymorphismen in MICB, AIF1 und LST1	
3.4.6 3.5 Att 3.5.1 3.5.2	Hyper-IgE opie und die HLA-Klasse IV Polymorphismen in MICB, AIF1 und LST1 Transmissionsanalysen	
3.4.6 3.5 Att 3.5.1 3.5.2 3.5.3	Hyper-IgE opie und die HLA-Klasse IV Polymorphismen in MICB, AIF1 und LST1 Transmissionsanalysen Kopplungsungleichgewicht und Haplotypen	

4	DISKUSSION	
4.1	SNP-Validierung und Methodik101	
4.2	Assoziationsanalysen105	
4.3	Typ 1 Diabetes als Positivkontrolle108	
4.4	Morbus Crohn	
4.5	Schizophrenie112	
4.6	Atopie114	
4.7	Schlussfolgerung119	
LITERATURVERZEICHNIS		
ANHANG 145		
ABKÜRZUNGSVERZEICHNIS170		
AB	BILDUNGSVERZEICHNIS 172	
TAI	BELLENVERZEICHNIS 174	

Zusammenfassung

Kopplungsregionen multifaktorieller Erkrankungen umfassen meist mehrere Megabasen und können ein oder mehrere Suszeptibilitätsgene beinhalten. Assoziationsanalysen zur Identifizierung der relevanten Gene sind kosten- und zeitintensiv.

In der vorliegenden Arbeit wurden SNP-Assoziationsanalysen auf Chromosom 6p21 für Asthma, erhöhtes Immunglobulin E, atopische Dermatitis, Morbus Crohn, Schizophrenie und Typ 1 Diabetes durchgeführt. Hierfür wurde eine neu entwickelte Methode der Allelfrequenzbestimmung an gepoolter DNA mittels MALDI-TOF MS etabliert. Allelfrequenzen von 546 SNPs wurden durch Mehrfachmessungen an 8 Erkrankungspools und einem populationsbasierten Kontrollpool bestimmt. Die Allelfrequenzdifferenzen verschiedener Pools zeigen die genetische Verwandtschaft assoziierter Phänotypen und bestätigen die Validität des Kontrollpools. Typ 1 Diabetes Proben dienten als Positivkontrolle des Pooling-Ansatzes, da die Assoziation von T1D zu HLA-DR und HLA-DQ bereits bekannt war. Darüber hinaus konnten die Ergebnisse durch Einzelgenotypisierung bestätigt werden. Ferner konnten neue Gene identifiziert werden, wie die HLA Klasse IV Region für extrinsisches Asthma und atopische Dermatitis, die distale HLA Klasse I Region für Schizophrenie sowie die proximale HLA Klasse I Region und HLA Klasse II Region für Morbus Crohn. Aufgrund des durchschnittlichen Detektionslimits von 5% Allelfrequenz und einer mittleren Abweichung der Allelfrequenzdifferenz von 2% eignet sich die Methode damit unter Voraussetzung eines Kopplungsungleichgewichts von häufigen SNPs zum indirekten bzw. direkten Nachweis assoziierter SNPs. Die Allelfrequenzdifferenzbestimmung verschiedener Pools ist zudem eine kostengünstige Screening-Methode.

Da Hardy-Weinberg-Gleichgewichtsabweichungen im Pool nicht ersichtlich sind bzw. genotypische Effekte nicht zuordenbar sind, sollten signifikante Ergebnisse durch Einzelgenotypisierung verifiziert werden. Die familiäre Transmission der im Pooling-Ansatz identifizierten und mittels Einzelgenotypisierung validierten Asthmamarker zeigen nur geringe Signifikanz. Es konnte jedoch als Verifizierung der Ergebnisse die Assoziation von *MICB, LST1* und *AIF1* zu allergischem Asthma nachgewiesen werden. Alle drei Gene könnten durch immunmodulatorische Funktionen oder Einfluss auf die Proliferation der Blutgefäße und Polymerisierung von F-Aktin bei der Ausprägung der Phänotypen involviert sein. Weitere Analysen dieser ca. 150 kb umfassenden Region, für welche zurzeit über 900 weitere SNP-Datenbankeinträge existieren, sollten die funktionelle Beteiligung der dort lokalisierenden Gene an der komplexen Pathophysiologie zeigen.

Summary

Linkage regions of complex diseases usually span several megabases and may harbour one or more susceptibility genes. Subsequent association analyses to identify the relevant genes are cost- and time-consuming.

The present work shows SNP association analyses of chromosome 6p21 from probands with asthma, elevated immunoglobulin E, atopic dermatitis, Crohn's disease, schizophrenia, and type 1 diabetes. For this purpose a recently developed method for allele frequency measurements in DNA-pools using MALDI-TOF MS has been established. Multiple measurements of 546 SNPs in 8 disease pools and one population-based control pool has been performed to determine the allele frequencies. The differences of allele frequencies between pools point to the genetic relationship of associated phenotypes and confirm the validity of the control pool. The major susceptibility locus of Type 1 diabetes has already been identified and those samples serve as positive control of the pooling approach. As association is already known of T1D and HLA-DR / HLA-DQ, type 1 diabetes samples serves as positive control of the pooling approach. Moreover, individual genotyping replicates these findings. Furthermore, new genes could be identified, such as the HLA class IV region and extrinsic asthma and atopic dermatitis, the distal HLA class I region and schizophrenia, and the proximal HLA class I region and HLA class II region and Crohn's disease. Considering the detection limits of about 5% minor allele frequency and an average deviation of 2% allele frequency difference, the pooling approach is suitable under the assumption of linkage disequilibrium of common SNPs for direct or indirect identification of associated SNPs. In addition, measurements of allele frequency differences in pools subserve as a cost-saving screening alternative.

Nevertheless, in pools deviations from Hardy-Weinberg-equilibrium can not be detected as well as genotypic effects. Therefore, significant results need to be verified by individual genotyping. Transmission analyses of asthmamarkers, which have been validated by individual genotyping, show only marginal significance. Nevertheless, for verification of the results gained for atopic asthma, association of *MICB*, *LST1* and *AIF1* could be shown. These three genes may predispose to the phenotype by working as immunomodulators, their influence on blood vessel proliferation or polymerisation of F-actin. Further analysis of the region, spanning about 150 kb and containing more than 900 additional SNP-database submissions, should show the functional impact of the localised genes on the complex pathophysiology.

1 Einleitung

1.1 Genetik multifaktorieller Erkrankungen

Genetisch determinierte Erkrankungen können in Phänotypen mit monogenem, polygenem und multifaktoriellem Charakter eingeteilt werden. Monogenen Erkrankungen liegen seltene Mutationen im Genom zugrunde, deren Vererbung nach Mendelschen Gesetzen erfolgt. Polygene Phänotypen werden durch die Kombination einer Vielzahl von Genvarianten determiniert. Die zugrundeliegenden Varianten sind in der Bevölkerung zu häufiger als 1% vertreten (Polymorphismen), wobei populationsspezifische Varianten und Allelfrequenzen auftreten.

Im Falle multifaktorieller Phänotypen modulieren zusätzliche Umwelteinflüsse, die auf den Organismus einwirken, das Auftreten oder die Ausprägung des Krankheitsbildes. Der Anteil der genetischen Komponenten verschiedener multifaktorieller Erkrankungen wird mittels Zwillingsstudien, Segregationsanalysen und Erkrankungsrisikoberechnungen geschätzt. Für die Identifizierung der genetischen Grundlagen multifaktorieller Erkrankungen werden zwei Ansätze verfolgt: die Kandidatengenanalysen und die Kopplungsanalysen.

1.1.1 Kopplungsanalysen und Kandidatengenverfahren

Im Kandidatengenverfahren werden Gene, bei denen aufgrund der Ätiologie der Erkrankung ein funktioneller Zusammenhang bestehen könnte, mittels Assoziationsstudien auf einen Einfluss ihrer genetischen Varianten bei der Ausprägung des Phänotypen untersucht. Eine systematische Herangehensweise zur genetischen Positionsbestimmung der Krankheitsloci wird durch die genomweiten Kopplungsanalysen verfolgt. Hierbei wird eine möglichst große Anzahl an Familien mit mindestens zwei erkrankten Kindern anhand von multiallelischen Markern, die einen genetischen Abstand von ca. 10cM aufweisen, genotypisiert. Die Segregation der Marker an beide erkrankten Kinder wird modellfrei ausgewertet, da zur Bestimmung der klassischen LOD-Werte das Vererbungsmuster, die Penetranz und die Anzahl der beteiligten Gene bekannt sein müssen. Diese Zweigeschwister-Analysen sind zwar weniger aussagekräftig als die Kopplungsanalysen monogener Erkrankungen, bei denen die Markersegregation und der Erkrankungsstatus der Verwandten mit einfließen, vermeiden jedoch auch falsche Kopplungsergebnisse (Byerley, 1989). Zurzeit existieren bereits über 100 genomweite Kopplungsanalysen multifaktorieller Erkrankungen, die jedoch meist das geforderte Signifikanzniveau (Lander und Kruglyak, 1995) nicht erreichen. Auch der Vergleich von genomweiten Kopplungsanalysen bestimmter Erkrankungen zeigt nur bei wenigen chromosomalen Regionen übereinstimmende, wenn auch marginale Kopplung (Altmüller et al., 2001), was möglicherweise durch die Stratifikation bestimmter Erkrankungssubtypen, genetische Heterogenität oder die niedrige statistische Power bedingt ist.

Zur weiteren Analyse interessanter Regionen erfolgt nun eine Feinkartierung, bei der die Segregation zusätzlicher Marker analysiert werden, welche die Lokalisation der erkrankungsverursachenden Varianten weiter einengt. Hilfreich bei der Identifizierung der Erkrankungssuszeptibilitätsgene ist die Sequenzierung des humanen Genoms innerhalb des Humangenomprojektes, welches das Ablösen der aufwendigen positionellen Klonierung, die bei monogenen Erkrankungen bereits 1986 zur Aufklärung von Erkrankungsgenen führte, durch das positionsabhängige Kandidatengenverfahren möglich macht (Collins, 1995). Bei diesem "Try-and-Error"-Verfahren werden die aufgrund bereits bekannter biochemischer Analysen als Kandidaten eingestuften Gene der Region nacheinander auf Assoziation getestet. Diese Methode eignet sich insbesondere für genarme Regionen, oder Regionen mit einer begrenzten Anzahl gut charakterisierter Kandidatengene.

Im Allgemeinen haben Kopplungsregionen jedoch eine Ausdehnung von mehreren Megabasen und umfassen somit eine Vielzahl wenig charakterisierter Gene. Des Weiteren können in Kopplungsregionen mehrere Erkrankungssuszeptibilitätsgene lokalisieren (Ott et al., 1990; DeSanctis et al., 1995; Podolin et al., 1998; Hill et al., 2000; Hampe et al., 2002). Assoziationsanalysen solcher Regionen sind teuer, zeitintensiv und benötigen größere Mengen an Probanden-DNA. Dennoch führte dieser Ansatz bereits zur Identifizierung eines Asthmagens (Van Eerdewegh et al., 2002). Für die häufig auftretenden Probleme bei der Replikation von Assoziationsergebnissen multifaktorieller Erkrankungen wurde in der Vergangenheit insbesondere eine unentdeckte Populationsschichtung verantwortlich gemacht (Cardon und Palmer, 2003). Neben den stratifikationsfreien Transmissionsanalysen an Kernfamilien (Trios), die aus einem Elternpaar und ihrem erkrankten Kind bestehen, kann bei Fall-Kontroll-Ansätzen die Anpassung der Assoziationsstatistik an den genomischen Hintergrund des Fall-Kontroll-Vergleiches erfolgen (Devlin und Röder, 1999). Hierfür wird der Median der χ^2 -Tests auf Assoziation von ca. 30 zufällig selektierten Markern des Fall-Kontroll-Ansatzes zur Korrektur der Kandidatenmarkeranalysen verwendet.

1.1.2 DNA-Pooling

Als Alternative zur Genotypisierung der einzelnen Probanden innerhalb einer Assoziationsstudie wurden bereits in den 80er Jahren Versuche zu Analysen multiallelischer Marker an gepoolter DNA durchgeführt (Arnheim et al., 1985).

Abbildung 1.1 DNA-Pooling als Assoziationsscreening-Verfahren

Bei Assoziationsanalysen an gepoolter DNA im Fall-Kontroll-Studiendesign werden Allelfrequenzbestimmungen an zwei Pools durchgeführt. Signifikante Unterschiede der Allelfrequenzen werden durch Einzelgenotypisierung der Studienteilnehmer verifiziert. Genomweite Assoziationsanalysen multiallelischer Marker konnten durch Einzelgenotypisierungen der signifikanten Marker bestätigt werden (Sheffield et al., 1994; Carmi et al., 1995; Scott et al., 1996; Nystuen et al., 1996; Fisher et al., 1999).

Dafür werden zwei DNA-Pools erstellt, die sich aus erkrankten bzw. gesunden Probanden zusammensetzen (vergleiche Abbildung 1.1). Je mehr Probanden für einen Pool zur Verfügung stehen, desto geringere DNA-Mengen pro Probanden werden benötigt. Beide DNA- Pools werden unabhängig auf multiallelische Marker genotypisiert und auf das Auftreten und die Frequenz der verschiedenen Allele eines Markers verglichen. Aufgrund von Stotterbanden (Perlin et al., 1995; Daniels et al., 1998; Kirov et al., 2000), die bei Analysen von multiallelischen Markern auftreten, sind die Analysen der gemessenen Ergebnisse jedoch mit Fehlern behaftet, womit eine Überprüfung der signifikanten Ergebnisse zum Ausschluss falsch positiver Assoziationen mittels Einzelgenotypisierung durchgeführt werden muss (Shaw et al., 1998; Risch und Teng, 1998). Die tatsächlichen Selektionskriterien der Marker für die Einzelgenotypisierung werden jedoch häufig nicht angegeben (Barcellos et al., 1997; Shaw et al., 1998) oder es wurde eine liberalere Auswahl, die auch nicht signifikante Marker beinhaltete, getroffen (Daniels et al., 1998; Kirov et al., 2000).

Zu Projektbeginn wurden verschiedene Methoden veröffentlicht, die Allelfrequenzbestimmung biallelischen Marker (SNPs) untersuchten. **SNPs** von (Einzelbasenaustausche) stellen die häufigste Variation im Genom dar und lokalisieren u.a. direkt innerhalb der Genstruktur (Altshuler et al., 2000). Die Analyse von SNPs ist robust und kann automatisiert werden, sie bietet somit eine ideale Grundlage für extensive Assoziationsstudien.

Zu den Analysemethoden gehören u.a. DHPLC (Hoogendoorn et al., 2000; Giordano et al., 2001), kinetische PCR (Germer et al., 2000), BAMPER (Zhou et al., 2001), SSCP (Sasaki et al., 2001), Restriktionsverdau, Pyrosequening und Tagman (Breen et al., 2000; Shifman et al., 2002). Die Allelfrequenzmessungen der biallelischen Marker wurden an ausgewählten Markern durchgeführt, um das Detektionslimit und die Abweichungen zur realen Allelfrequenz, die innerhalb der Studienpopulation durch Einzelgenotypisierung der Probanden erfolgt, zu ermitteln. Die reale Allelfrequenz ist insbesondere dann von Interesse, wenn Allelfrequenzen des Probandenpools mit Frequenzen aus Einzelgenotypisierung z.B. CEPH-Individuen verglichen werden. SNP-Datenbanken beinhalten häufig von fälschlicherweise eingetragene SNPs, wobei die Varianten nur bei bestimmten Populationen auftreten oder extrem selten sind, was die Aussagekraft des Markers bei Assoziationsstudien minimiert. Das Detektionslimit der verschiedenen Analysemethoden liegt bei ca. 5-10% Minorallelfrequenz. Somit ist die Validierung der Marker innerhalb einer Population an gepoolter DNA von großem Interesse, da weiterführende Analysen sich auf sicher vorhandene Varianten der Population begrenzen lassen.

Eine weitere Methode der Allelfrequenzbestimmung an gepoolter DNA ist die MALDI-TOFbasierte Massenspektrometrie (Ross et al., 2000; Buetow et al., 2001), welche hochdurchsatzgeeignet ist und keine kostenintensiven Primermodifikationen benötigt. Ross und Mitarbeiter bestimmten die Grenzen der quantitativen Allelbestimmungen der MALDI-TOF Analysen, die mit einem Detektionslimit (LOD) von 2% und einem Quantifikationslimit (LOQ) von Minorallelfrequenzen bis zu 5-10% vergleichbar zu den weiteren Methoden liegen (Ross et al., 2000).

Bei einer umfassenden SNP-Validierung (Buetow et al., 2001) datenbankbasierter Marker an gepoolter DNA wurden von 10243 ausgewählten SNPs 3646 Marker als tatsächlich polymorph detektiert, weitere 690 Marker wiesen Minorallelfrequenzen unter 10% auf. Die Validierung durch die Firma Sequenom wurde an 41 Markern mit einer Allelfrequenz über 10% durchgeführt. Hierbei wurden mindestens 10 der verwendeten 96 Proben einzelgenotypisiert und der Marker als polymorph bestätigt. 81 Marker mit Minorallelfrequenzen unter 10% wurden ebenfalls an 23 bzw. 46 der Probanden-DNAs überprüft, wobei ein Marker hier nicht bestätigt werden konnte. Über 95% bereits bekannter polymorpher Marker wurden innerhalb des Pooling-Ansatzes detektiert.

Die Allelfrequenzbestimmung biallelischer Marker birgt ebenso wie die multiallelische Frequenzbestimmungen experimentelle Fehler, die durch Mehrfachmessungen (Daniels et al., 1998; Kirov et al., 2000) oder das Pooling von PCR-Produkten einzelner Probanden (Ross et al., 2000) minimiert werden können. Des Weiteren können PCR-Amplifikationsunterschiede (Barnard et al., 1998), der bevorzugte Einbau bestimmter Didesoxynukleotide (Haff und Smirnov 1997) oder methodische Fehler der Messung wie Salzadduktion (Schlag et al., 1992) oder erhöhte Ionisation kleiner Oligonukleotide bzw. Detektionspräferenzen (Bray et al., 2001) auftreten. Teilweise kann dies aber durch die Messung von heterozygoten Probanden-DNAs korrigiert werden (Hoogendoorn et al., 2000). Die Allelfrequenzen heterozygoter Probanden betragen 50%, Abweichungen von der erwarteten 1:1 Verteilung bei der Detektion der Allele dienen der Anpassung an die wahren Allelfrequenzen eines Pools, wenn die Messungen durch oben aufgeführte Fehler beeinflusst werden.

1.2 Epidemiologie multifaktorieller Erkrankungen

1.2.1 Diabetes

Die Bezeichnung Diabetes mellitus umfasst die Erkrankungen MODY, Typ 1 Diabetes (T1D) und Typ 2 Diabetes (T2D) (Alberti, 1980). MODY sind die monogene Form des Diabetes. Typ 2 Diabetes wird auch als Nicht-Insulin-abhängiger Diabetes (NIDDM) bezeichnet, bei dem eine verminderte Insulinempfindlichkeit des Gewebes auftritt. Bei Typ 1 Diabetikern (IDDM) ist die Insulinproduktion stark vermindert. 0,4 % der kaukasischen Bevölkerung leidet an Typ 1 Diabetes (Spielman et al., 1980), wobei die Inzidenz in einigen Ländern wie z.B. in Finnland und Schweden ansteigt (Diabetes Epidemiology Research International Group, 1990).

Typ 1 Diabetes ist die zweithäufigste chronische Erkrankung im Kindesalter, sie wird durch eine Autoimmunzerstörung der β -Zellen der Langerhansschen Inseln verursacht (Eisenbarth, 1986; Atkinson und MacLaren, 1993). Die Krankheit basiert jedoch nicht bei allen an Diabetes erkrankten Kindern auf autoimmunen Ursachen. Ca. 10% der afroamerikanischen Diabetiker sind eher adipös, sie haben ihre β -Zell-Funktion behalten und haben wenige Autoimmunmanifestationen (Winter et al., 1987).

Klassischerweise wird Typ 1 Diabetes diagnostiziert, wenn die Erkrankung bei Individuen vor dem 20. Lebensjahr auftritt, wobei nur ca. 9% aller Diabetiker über 20 Jahren dem Typ 1 zugeordnet werden können (Niskanen et al., 1995). Zur weiteren Diagnose wird ein Glukose-Toleranz-Test zur Überprüfung der β -Zell-Aktitivät und der Nachweis von Autoantikörpern verwendet (Keller et al., 1993). Ca. 84% aller Typ 1 Diabetes Patienten besitzen Autoantikörper gegen Inselzellen (Hagopian et al., 1995), insbesondere gegen die Insulin- β -Kette, IA-2 und GAD65 (Palmer et al., 1983; Baekkeskov et al., 1990). In der Normalbevölkerung treten Autoantikörper nur bei weniger als 5% auf (Hagopian et al., 1995). Zu den Umweltfaktoren zählen u.a. Kuh- statt Muttermilchernährung (Verge et al., 1994), während Kuhmilchantikörper betreffende Ergebnisse widersprüchlich sind (Norris et al., 1996). Auch kann eine virusinduzierte Zerstörung der β -Zellen (Yoon et al., 1989; Helmke et al., 1980) die Erkrankung bedingen, wobei Virusinfektionen auch bei Tieren Diabetes auslösen können (Yoon, 1995).

Typ 1 Diabetes tritt familiär gehäuft auf (Risch, 1987), das Lebenszeitrisiko für Typ 1 Diabetes Angehöriger ersten Grades beträgt ca. 3 % für Eltern, 7% für Geschwister und 5% für Kinder von Typ 1 Diabetikern (Todd und Farrall, 1996). Analysen von eineiigen und

zweieiigen Zwillingen zeigen bei den Monozygoten eine Konkordanz von 30-50%, bei den Dizygoten von 4,8 bis 27% (Davis, 1996). In verschiedenen Populationen variieren die Inzidenzen (Patrick et al., 1997).

Typ 1 Diabetes gehört zu den besser untersuchten multifaktoriellen Erkrankungen. Schon in den 70er Jahren wurde eine Assoziation von *HLA-B* auf Chromosom 6p21 zu Typ 1 Diabetes gefunden (Singal und Blajchman, 1973; Nerup et al., 1974). Kopplungsanalysen zeichnen diese Region (IDDM1) neben 17 weiteren (siehe www.ncbi.nlm.nih.gov/OMIM: IDDM) als Hauptsuszeptibilitätsregion aus (Davies et al., 1994, Field et al., 1994, Hashimoto et al., 1994, Mein et al., 1998). Durch eine Stratifizierung auf das Manifestationsalter der Erkrankung erhöht sich der LOD-Score-Wert bei der Gruppe mit früher Manifestation bis auf 60 (Cox et al., 2001).

Assoziationsstudien zeigen eine starke Assoziation von HLA-DR3 und HLA-DR4 Allelen des *HLA-DRB1* Gens. Ca. 96% aller europäischen Typ 1 Diabetiker sind homozygot bezüglich DR3/DR3 bzw. DR4/DR4 oder heterozyogt DR3/DR4, während die Normalbevölkerung nur zu 46% homo- oder heterozygot ist (Bach et al., 1985; Field und McArthur, 1987; Baisch et al., 1990).

Die primäre Assoziation von HLA-B und HLA-DR3/HLA-DR4 wird durch ein Zusammenspiel verschiedener Haplotypen der HLA-DR und HLA-DQ Gene verursacht, die alle in starkem Kopplungsungleichgewicht stehen, wobei DR4-DQ8 (DR4-DQA1*03-DQB1*0302) und DR3-DQ2 (DR3-DQA1*05-DQB1*02) als für Typ 1 Diabetes prädispositionierende Haplotypen identifiziert werden konnten (Thorsby 1997, Undlien und Thorsby, 2001) und weitere Haplotypen vor der Erkrankung schützen (Redondo et al., 2000). Die stark erhöhte Prädisposition durch Heterozygotie von DR3DQ2/DR4DQ8 wird durch vor Diabetes schützende Subtypen von DR4 (Sheehy et al., 1989) DRB1*0403 erklärt. Diese epidemiologischen Erkenntnisse wurden durch HLA-transgene Diabetesmausmodelle bestätigt (Wen et al., 2000, Wen et al., 2001, Rajagopalan et al., 2003). An Position 57 der HLA-DQβ-Kette verursacht das Fehlen der Aspartatsäure beim Menschen (Todd et al., 1987) und im Diabetesmausmodell (Singer et al., 1998) ein erhöhtes T1D-Risiko. HLA-DQ*0201 und HLA-DQ*0302 sind Hochrisikohaplotypen, denen die Aspartatsäure fehlt, während HLA-DQ*06 und HLA-DQ*0102 protektiv sind. Die protektiven Allele sind dominant (Baisch et al. 1990). Die Typ 1 Diabetes assoziierten Allele sind instabil, sie haben ein verändertes Bindemuster (Carrasco-Marin et al., 1996) und sind möglicherweise nicht in der Lage, Selbstantigene zu binden und den sich entwickelnden T-Zellen adäquat zu präsentieren, was die negative Selektion autoreaktiver T-Zellen im Thymus verhindert (siehe Abbildung 1.1). Im Thymus werden Lymphozyten mit Selbstantigenen konfrontiert und bei hoher Affinität negativ selektiert. Herrscht bei einigen Lymphozyten nur geringe Affinität zu den präsentierten eigenen Antigenen, werden diese nicht ausgesondert. Virusinfekte oder bakterielle Infektionen könnten durch molekulares Mimikri eine fehlgeleitete Immunantwort auslösen (siehe Abbildung 1.1). Hierbei werden T-Zellen zur Proliferation und Differenzierung angeregt. Binden diese durch unvollständige Selektion jedoch auch in geringem Maße körpereigene Antigene, wird das Immunsystem mittels molekularem Mimikri der Fremdantigene mit körpereigenen Antigenen fehlgeleitet. T-Lymphozyten lösen via B-Zellaktivierung die Produktion von Antikörpern gegen körpereigene Antigene aus.

Abbildung 1.2 Molekulares Mimikri der Autoimmunerkrankungen

Eine diskutierte Ursache der Auslösung von Autoimmunerkrankungen ist das molekulare Mimikri der auslösenden Ursachen wie Viruserkrankungen oder bakterielle Infekte (nach Taneja und Davis, 2001).

1.2.2 Morbus Crohn

Morbus Crohn (CD = "Crohn's Disease") und Colitis ulcerosa sind die beiden wichtigsten Verlaufformen von chronisch entzündlichen Darmerkrankungen. Die Prävalenz in Industrieländern liegt bei 0,01-0,1% (Probert et al., 1996; Shivananda et al., 1996). Beim Morbus Crohn können im Gegensatz zu Colitis ulcerosa alle Intestinalabschnitte betroffen sein. Die Betroffenen leiden an starken Leibesschmerzen mit schleimigen oder blutigen Durchfällen, Gewichtsverlust, Müdigkeit und vermehrter Fistelbildung (Podolsky, 1991). Zudem können extraintestinale Manifestationen insbesondere der Gelenke und Augen auftreten (Nordgren et al., 1992). Angehörige ersten Grades von Morbus Crohn Patienten zeigen eine Erkrankungswahrscheinlichkeit, die um den Faktor 20 bis 50 zur Normalbevölkerung erhöht ist (Peeters, 1996; Satsangi et al., 1996). Zwillingsstudien zeigen eine Konkordanz von Eineiigen von 20-44% und Zweieiigen von 3,8-6,5% (Tysk et al., 1988; Thompson et al., 1996).

Die Gewebeschädigungen des Darmes werden durch Immunzellen verursacht. Lymphozyten und Makrophagen am Entzündungsherd produzieren erhöhte Konzentrationen von Prostaglandinen, Leukotrienen, PAF ("platelet-activating factor) und verschiedener Cytokine (Van Dullemen et al., 1997). Obwohl Morbus Crohn und Colitis ulcerosa häufig familiär assoziiert sind (Mayberry 1989), zeigt sich bei CD ein typisches Th1-Cytokinmuster, während bei Colitis ulcerosa ein typisches Th2-Cytokinmuster zu sehen ist (Fuss et al., 1996). Makrophagen von CD-Patienten sezernieren erhöhte Mengen an IL12 (Monteleone et al., 1997), die Anzahl der Th1-Zellen ist erhöht (Parronchi et al., 1997; Parrello et al., 2000), ebenso immunologische Marker wie TNF α , IL6 und IL1 β (Reinecker et al., 1993; Breese et al., 1994). Zu den Umweltfaktoren, die eine chronische Darmentzündung auslösen können, zählt insbesondere die Zusammensetzung der Darmflora (Sartor, 1997; Elson, 2000; Shanahan, 2002) (siehe Abbildung 1.1).

Kandidatengenanalysen auf Chromsom 16q konnten *CARD15* (Ogura et al., 2001a; Hugot et al., 2001) als prädispositionierendes Gen identifizieren, das jedoch nur mit Morbus Crohn und nicht Colitis ulcerosa assoziiert ist. Zwei Aminosäureaustausche R702W, G908R und eine Frameshiftmutation (1007fsinsC), die drei verschiedene Haplotypen des Gens beschreiben, konnten in verschiedenen Studien bestätigt werden (Hampe et al., 2002; Lesage et al., 2002; Vermeire et al., 2002; Abreu et al., 2002). Die CARD15 Expression wird durch Lipopolysaccharide initiiert (Inohara et al., 2001), woraufhin CARD15 die NF κ B-Kaskade aktiviert, welche in einer erhöhten Konzentration verschiedenster proinflammatorischer Proteine resultiert (Ogura et al., 2001b). Morbus Crohn assoziierte Mutationen zeigen eine

verminderte NF κ B Aktivierung, die nicht mit der erhöhten NF κ B Konzentration von CD-Patienten im Einklang steht (Ogura et al., 2001b). Weitere mit Kopplungsanalysen identifizierte CD-Suszeptibilitätsregionen lokalisieren insbesondere auf Chromosom 3p, 6p, 12q und 16q (Zheng et al., 2003).

1.2.3 Schizophrenie

Die Definition der Schizophrenie umfasst eine Gruppe verschiedener Erkrankungsausprägungen von psychischen Störungen. Im Erkrankungsverlauf können paranoide, katatone oder desorganisierte Symptome auftreten (Deister und Marneros, 1993; Marneros und Andreasen, 1992). Nach den DSM ("Diagnostisches und statistisches Manual psychischer Störungen") -Kriterien der "American Psychiatry Association" wird Schizophrenie diagnostiziert, wenn ein bizarrer Wahn oder eine Halluzination von Stimmen auftritt, die kontinuierlich das Verhalten und die Gedanken des Erkrankten kommentieren, oder, wenn mindestens zwei paranoide Symptome wie z.B. Wahn, Halluzination, Symptome wie desorganisierte Sprache, massiv desorganisiertes Verhalten, Affektverflachung, Sprachverarmung und Apathie oder katatone Symptome innerhalb eines halben Jahres jeweils für mindestens einen Monat andauern. Anhand der DSM-Kriterien wird somit die Schizophrenie von kurzen psychotischen Störungen, von schizophrenieformen Störungen, die zwischen einem und sechs Monaten andauern, von wahnhaften Störungen sowie schizoaffektiven Störungen des bipolaren oder depressiven Typs abgegrenzt. Da alle schizophrenen Symptome unspezifisch sind, müssen Alkoholismus (Soyka, 1995), Epilepsie (Mendez et al., 1993), AIDS-Enzephalopathie (Perry, 1990) sowie Intoxikation bzw. Entzug von Drogen / Substanzen durch Zusatzuntersuchungen ausgeschlossen werden.

Ca. 1% der Bevölkerung ist von Schizophrenie betroffen (McGue und Gottesman, 1983; Maier et al., 1999). Das Lebenszeitrisiko für Angehörige ersten Grades von Schizophreniepatienten beträgt bis zu 16% (Maier et al., 1999). Zwillingsstudien zeigen für Eineiige 44,3% Konkordanz, für Zweieiige 12,1% (McGue und Gottesman, 1991). Des Weiteren zeigen Kinder von schizophrenen Patienten, die bei ihren biologischen Eltern aufwuchsen im Vergleich von Kindern, die zur Adoption freigegeben wurden, vergleichbare Schizophrenieprävalenzen, womit familiäre Umweltfaktoren vernachlässigbar sind (Kety et 1994). al., Spektrumerkrankungen wie schizoaffektive Störung, schizotype Persönlichkeitsstörung und andere Psychosen treten bei Angehörigen Schizophrener signifikant häufiger auf (Kendler et al., 1993; Maier et al., 1999) und könnten den gleichen genetischen Ursachen zugrundeliegen.

Bei der chronischen Schizophrenie liegt eine Störung des neuronalen Netzwerkes vor. Das gesamte Gehirn ist betroffen, insbesondere Frontallappen, Temporallappen und Parietallappen sind vergrößert, die Neuronenanzahl und Dichte sind vermindert (Falkai und Vogeley, 2002). Es konnten jedoch keine degenerativen Prozesse beobachtet werden, somit scheinen die

pathologischen Änderungen einer gestörten Hirnentwicklung und Hirnreifung zu sein (Beckmann, 1999). Da die Inzidenz bei Frühjahrsgeburten erhöht und mit einer Virusinfektion der Mütter im 5. Schwangerschaftsmonat assoziiert ist (Mednick et al., 1988; Kendell und Adams, 1989), könnte zudem eine virusinduzierte gestörte Zellmigration und verminderte Apoptose das erhöhte Hirnvolumen vermitteln (Falkai und Vogeley, 2002).

Carlsson stellte bereits 1967 die Dopamin-Hypothese auf, die eine Überaktivität dopaminerger Neurone postuliert. Die Dichte der Dopamin-Rezeptoren DRD2 und DRD3 im Striatum unbehandelter Patienten ist gering erhöht, jedoch äußerst variabel (Laruelle, 1998) und normalisiert sich nach der Behandlung mit Neuroleptika (Joyce und Meador-Woodruff, 1997; Kapur et al., 1996). Es wurde im Liquor eine verminderte Transmitterkonzentration des glutamatergen Systems nachgewiesen (Lieberman und Koreen, 1993). Die glutamatergen und dopaminergen Systeme regulieren sich gegenseitig (Carlsson und Carlsson, 1990). Die Effekte von 5-HT (Serotonin) auf dopaminerge und glutamaterge Reizleitung werden durch 5-HT1A, 5-HT2A und 5-HT3A vermittelt. Eine verminderte 5-HT2A sowie 5-HT1A Dichte in kortikalen Regionen (Abi-Dargham et al., 1997) und mRNA Expression könnte die Modulierung der gestörten glutamatergen Aktivität bedingen. Häufig lassen sich eine verminderte cAMP-Konzentration im Blut von Schizophreniepatienten (Hudson et al., 1993) sowie eine veränderte G-Proteinkonzentration (Jope et al., 1998) nachweisen.

Untherapierte Schizophreniepatienten weisen zudem eine erhöhte Monozytenanzahl und γ - δ -CD8⁺ Zellen auf, die Konzentration von sIL6R, IFN γ , sIL2R, TNF und IL2 sind verändert (Wilke et al., 1996; Müller et al., 1999). Während einer Neuroleptikatherapie steigen Th1-, Th2-, B-Zellen sowie die Konzentration von Immunglobulin G im Blut an, die veränderten Cytokin-Konzentrationen normalisieren sich (Müller et al., 1999). Viele Cytokine werden ebenfalls im Gehirn exprimiert (Wong und Licinio, 1994) und könnten im Zusammenhang mit der häufig beobachteten Assoziation von Schizophrenie mit Autoimmunerkrankungen stehen (Denburg et al., 1997; Wright et al., 1996). Metaanalysen von Kopplungsstudien (Badner et al., 2002; Levinson et al., 2002) bestätigen die Kopplung auf den Chromosomen 8p und 22q sowie 2, 3p, 6p, 11q, 13q und 20p.

1.2.4 Erhöhter IgE-Spiegel

Heuschnupfen, allergisches Asthma und atopische Dermatitis werden unter dem Begriff Atopie zusammengefasst und zeichnen sich neben spezifischen Manifestationen (siehe 1.1.5 und 1.1.6) durch erhöhte spezifische und/oder unspezifische Immunglobulin E Spiegel aus. Asthma, atopische Dermatitis und erhöhte spezifische IgE-Level bzw. erhöhte Gesamt-IgE-Level sind häufig miteinander assoziiert (Jarvis und Burney, 1998; Burrows et al., 1989). Erhöhte IgE-Level sind bis zu 47% erblich bedingt, sie sind jedoch auch umwelt-, alters – und geschlechtsabhängig (Palmer et al., 2000).

Eine spezifische IgE-Antwort auf Allergenexposition wird durch Th2-Zellen vermittelt (Abbas et al., 1996). Antigenpräsentierende Zellen (APC) prozessieren endocytierte Allergene und präsentieren diese über MHC Klasse II Moleküle. Dadurch werden T-Helferzellen zur Differenzierung angeregt und vermitteln einen Immunglobulin-Klassen-Switch der B-Zellen zu IgE. Bindet ein weiteres Allergen die an Mastzellen gebundenen Immunglobuline, wird über die Exocytose von Leukotrienen und Histaminen die typische allergische Antwort ausgelöst (Corry und Kheradmand, 1999; vergleiche Abbildung 1.3).

Abbildung 1.3 Immunglobulin E Induktion Atopischer Erkrankungen Nach Corry und Kheradmand, Nature, 1999. Erklärungen vergleiche Text 1.1.4.

Neben allergenspezifischem IgE kann unspezifisches IgE T-Zell-unabhängig über Basophile und Mastzellen und in geringem Maße über native T-Zellen reguliert werden, die über IL-4, IL-13 und CD40/CD40L-Interaktionen den Immunglobulin-switch induzieren (Gauchat et al., 1993; Yanagihara et al., 1995; Strom et al., 1999).

1.2.5 Atopische Dermatitis

Die atopische Dermatitis (AD) ist eine chronische Entzündung der Haut, bei der begrenzte Hautläsionen bis hin zur Flechtenbildung, extrem trockene Haut und Hautablösungen der wunden Areale auftreten (Rudikoff und Lebwohl, 1998). Neben dem extrinsischen, IgE-assoziierten Phänotyp kann die atopische Dermatitis auch als intrinsischer Typ auftreten (Akdis et al., 1999). In Industrieländern leiden bis zu 15% der Bevölkerung an atopischer Dermatitis (ISAAC, 1998). Die Prävalenz stieg in den letzten Jahrzehnten stark an (Hopkin, 1997). Zwillingsstudien zeigen 72% Konkordanz von eineiligen Geschwistern, bei zweieiligen liegt die Konkordanz bei 23% (SchultzLarsen, 1993). Die Erkrankung kann durch bestimmte Nahrungsmittel, Aeroallergene, Stress und Infektionen ausgelöst werden (Werfel und Kapp, 1998).

Der Hauptanteil der hautinfiltrierenden Zellen sind T-Zellen (Bos und Kapsenberg, 1993) des Typs CD45RO+ (Picker et al., 1990), welche CLA exprimieren und den Oberflächenrezeptor E-Selectin des Hautendothels binden (Picker et al., 1991). CLA⁺ Zellen sind IL-13 und IL-5 Produzenten und können dadurch die IgE-Produktion von B-Zellen und die verminderte Eosinophilenapoptose induzieren (Akdis et al., 1997; Akdis et al., 1999). Chemokine wie CCL27, IL-16, Eotaxin und Chemokinrezeptoren wie CCR3 sind in der entzündeten Haut stark exprimiert und an der Infiltrierung von CLA⁺ T-Zellen und CD4⁺-T-Zellen beteiligt (Yawalkar et al., 1999; Laberge et al., 1998). In einem dreidimensionalen Hautmodell konnte gezeigt werden, dass aktivierte CLA⁺ Zellen, CD4⁺ Zellen und CD8⁺ Zellen über IFNγ Sezernierung die Apoptose der Keratozyten induzieren (Trautmann et al., 2000). Zudem konnten in Seren von AD-Patienten erhöhte Mengen an IgE-Autoantikörpern gegen Hautkeratozyten detektiert werden (Valenta et al., 2000).

Zurzeit existieren drei genomweite Kopplungsanalysen, welche die Chromosomen 3q (Lee et al., 2000), 1q, 17q, 20p (Cookson et al., 2001) und 3p, 6q und 18p (Bradley et al., 2002) als primäre Kopplungsregionen für atopische Dermatitis identifiziert haben. Unter Berücksichtigung erhöhter spezifischer IgE-Konzentrationen der Probanden wurden 18q sowie 1p, 6p und 4q (Bradley et al., 2002) identifiziert.

1.2.6 Asthma

Asthma ist eine chronisch obstruktive Erkrankung der Atemwege, bei der die Patienten an Giemen, Atemnot, Engegefühlen der Brust und Husten leiden, die durch eine Atemwegsobstruktion hervorgerufen werden (Hilman, 1997). Die chronischen Entzündungen der Bronchien gehen mit einer Ansammlung hämatopoetischer Zellen im respiratorischen Trakt, erhöhter Schleimproduktion und Spasmus der glatten Bronchialmuskulatur einher. Kinder in Industrieländern weisen eine Prävalenz von bis zu 10% auf (Jarvis und Burney, 1998). Bei Zwillingsstudien wurden erhöhte Konkordanzen der eineiigen gegenüber zweieiigen Zwillingen beschrieben (Hopp et al., 1984; Sarafino und Goldfedder 1995; Hanson et al., 1991), wobei der genetische Einfluss zwischen 36% und 75% angegeben wird (Nieminen et al., 1991; Duffy et al., 1990). Genomweite Kopplungsanalysen zeigen auf fast allen Chromosomen eine mögliche Kopplung zu Asthma oder asthmaassoziiertem IgE, die häufigsten Übereinstimmungen der Ergebnisse unterstreichen insbesondere 5, 6p, 11p, 12q und 13q als mögliche Suszeptibilitätsregionen (Hoffjan et al., 2002)

Es wird zwischen intrinsischem und extrinsisch-allergiebedingtem Asthma unterschieden. Trotz der primären Atopie tritt bei Kindern, die meist dem extrinsischen Asthmatyp angehören, nahezu immer eine Mischform auf (Holt et al., 1999), wobei neben Allergenen, hauptsächlich virale Infekte (Johnston 1997; Message und Johnston, 2002), physikalische und chemische Reize (Rahman und MacNee 2000) und Diäten mit geringen Mengen an Antioxidantien (Soutar et al., 1997) die Erkrankung auslösen. Zu den lungeninfiltrierenden Zellen zählen insbesondere Th2-Zellen, Basophile, Eosinophile, Monozyten, Mastzellen und Neutrophile (Barnes et al., 1998; Howarth et al., 1991).

Bei der Erkrankung tritt ein "Airway-Remodelling" auf, welches sich durch eine Fibroblastenproliferation (Cokugras et al., 2001), Hyperplasie der Epithelzellen und der glatten Muskulatur, Kollagenverlagerung, Verdickung der Lamina reticularis sowie Proliferation der Blutgefäße und Nerven auszeichnet (Carroll et al., 1993; Bousquet et al., 2000). Neben den aufgrund der typischen Th2-Anwort exprimierten Proteinen wie IL4 und IL13 konnten in der Bronchiallavage von Asthmapatienten ebenfalls erhöhte Konzentrationen von TGF β (Redington et al., 1997) und TNF (Broide et al., 1992; Virchow et al., 1995) nachgewiesen werden. Zu den ebenfalls mit erhöhter Konzentration beobachteten Cytokinen gehören IL1, IL6 und IL8 (Virchow et al., 1995; Lummus et al., 1998). Abgase führen über das IL8-Signal zu einer Rekrutierung von Neutrophilen und Killerzellen (Bayram et al., 1998).

Kürzlich wurde aufgrund von Assoziationsstudien innerhalb einer bislang unbekannten Kopplungsregion auf 20p13 *ADAM33* als Asthmagen identifiziert, welches hauptsächlich in der glatten Muskulatur und in Fibroblasten exprimiert wird (Van Eerdewegh et al., 2002). ADAM33 gehört zu einer Disintegrin- und Metalloprotease-Subfamilie, die bei der Adhäsion und proteolytischen Spaltung involviert ist (Primakoff et al., 2000) und auch mit cardialer Hypertrophie assoziiert (Asakura et al., 2002). Die funktionellen Analysen von ADAM33 sowie der Einfluss der meist intronisch lokalisierten assoziierten Marker bei der Entwicklung einer bronchialen Hyperreaktivität sind Gegenstand der Forschung.

Zu den häufig diskutierten Suszeptibilitätsregionen für Asthma gehört der TNF-Gencluster, welcher für TNF, sowie für die strukturell und funktionell Homologen LTA (TNFB) und LTB (TNFC) codiert. Da bereits 1991 bzw. 1994 zwei Gruppen einen Polymorphismus der Promoterregion des TNF-Gens sowie einen intronischen LTA-Polymorphismus mit erhöhten TNF-Konzentrationen korrelierten (Messer et al., 1991; Wilson et al., 1994), wurden beide Polymorphismen bei multiplen Erkrankungen auf Assoziation getestet. Die Assoziationsstudien jedoch zeigten für Asthma differierende Ergebnisse und beschreiben positive, keine oder auch negative Assoziation (Moffatt und Cookson, 1997; Albuquerque et al., 1998; Tan et al., 1999; Immervoll et al., 2001; Winterton et al., 2001; Hakonarson et al., 2001; Shin et al., 2004). Zu den aufgrund ihrer Lokalisation innerhalb von 75 kb des TNF-Clusters mögliche prädispositionierende Genen zählen MICB, LST1 und AIF1.

AIF1 wird von der vaskulären glatten Muskulatur, dendritischen Zellen, aktivierten Makrophagen und Neuronen exprimiert (Autieri et al., 1996; Utans et al., 1996). Die Expression kann durch TGF β , IL1 β , PDGF und IFN γ induziert werden (Autieri et al., 1996). AIF1 zeigt eine antiproliferierende Wirkung auf Blutgefäße (Autieri und Agrawal, 1998). Des Weiteren gehört AIF1 wie die leichte Myosinkette zur Superfamilie der EF-Hand, die sich u.a. durch ein kalziumbindendes Motiv auszeichnen (Renner et al., 1993; Fromherz et al., 1995). Kürzlich wurde eine weitere Funktion von AIF1 beschrieben, wonach es F-Aktin bindet und polymerisiert (Autieri et al., 2003).

LST1 ist in der Regulation der Immunantwort involviert und wird durch IFN γ induziert (DeBaey et al., 1997). Es existieren 14 bekannte Splice-Varianten, die sich u.a. in der Anwesenheit einer Transmembrandomäne, 5 alternativen 5'UTRs und 3 alternativen 3'UTRs unterscheiden und im Extremfall nur in 9 Aminosäure übereinstimmen (Holzinger et al., 1995; Rollinger-Holzinger et al., 2000). Unterschiedliche Splice-Varianten konnten in verschiedenen Geweben, u.a. Lunge, Thymus, Placenta, Hirn, sowie in B-Zellen, T-Zellen und mononukleären Zellen beschrieben werden, die Zellen zeigen jedoch unter Inkubation mit

IL4, IFNγ, TNF und IL2 keine Veränderung der Zusammensetzung der Splice-Varianten (DeBaey et al., 1997; Rollinger-Holzinger et al., 2000). Als mögliche Funktion der löslichen Splice-Varianten wird eine Immunsuppression angenommen, da unter Inkubation die Proliferation von stimulierten Lymphozyten auf bis zu 15% vermindert ist (Rollinger-Holzinger et al., 2000).

MICB gehört zu der MIC-Genfamilie, die *MICA*, *MICB*, *MICC*, *MICD* und *MICE* umfasst. *MICC*, *MICD* und *MICE* sind aufgrund von Deletionen Pseudogene. MICA und MICB werden exprimiert, ihre Aminosäuresequenz stimmt zu 83% überein (Bahram und Spies, 1996a). Im Gegensatz zu weiteren MHC Klasse I Genen wird die Expression nicht über Interferone induziert (Bahram et al., 1994). MICA und MICB sind normalerweise nur im Gastrointestinaltrakt exprimiert (Groh et al., 1996). Ihre Promotoren beinhalten ein Hitzeschockelement, wodurch die Expression unter Zellstreß, viraler Infektion und proliferierenden Zellen induziert wird (Bahram und Spies, 1996b; Groh et al., 1996). Neben der Expression von MICB in proliferierenden Fibroblasten (Groh et al., 1998) exprimieren auch CMV-infiziertes Lungengewebe und tuberkuloseinfizierte dendritischen Zellen MICB (Groh et al., 1998; Das et al., 2001).

1.3 Die chromosomale Region 6p

	distale Region	Die chromosomale Region 6p (22 Mb bis 40 Mb	
		der NCBI Version 33) umfasst die Bandenmuster	
		6p22.2 bis 6p21.31 und Teile von 6p22.3 und	
	C	6p21.2. In der Region sind etwa 450 bereits	
	Histone	bekannte Gene	
		(www.ncbi.nlm.nih.gov/mapview/) sowie der	
		MHC-Komplex lokalisiert (Abbildung 1.3). Der	
		MHC-Komplex umspannt dabei ca. 4 Mb und ist	
		die erste vollständig durchsequenzierte	
		Megabasenregion des menschlichen Genoms	
	ZNFs und LOCs	(The MHC Sequencing Consortium, 1999). Bis	
		zu 40% der Gene haben eine	
	ORs und LOCs	immunmodulatorische Funktion (The MHC	
=	HLA I	Sequencing Consortium, 1999). Das	
-		Kopplungsungleichgewicht innerhalb der MHC	
-		Region zwischen verschiedenen Allelen	
=		multiallischer Marker kann bis zu 1 Mb betragen	
	HLA IV und III	(Begovich et al., 1992; Klitz et al., 1995; Cullen	
Ξ	HLA II	et al., 1997; Bugawan et al., 2000; Sanchez-	
		Mazas et al., 2000), wobei das allgemeine	
		Kopplungsungleichgewicht bis zu 170 kb beträgt	
		(Martin et al., 1995; Reich et al., 2001).	
	proximale Region		
		Abbildung 1.4 Die chromosomale Region 6p	
		In der Abbildung ist die chromosomale Region 6p von 22 Mb bis 40 Mb dargestellt (NCBI Version 33). Einzelne Regionen sind anhand ihrer Lage auf dem Chromosom, oder des hauptsächlichen Charakters der dort lokalisierten Gene bezeichnet. Der MHC-Komplex umfasst die distale Region HLA I, die proximale Region HLA II und die HLA III Region, deren distaler Bereich als HLA IV bezeichnet wird. ZNF: Zink Finger Proteine; OR: Olfaktorische Rezeptoren; LOC: unbekannte Gene.	

1Mb

Über 100 Erkrankungen zeigen Kopplung mit der chromosomalen Region 6p, meist durch eine primäre Assoziation zu den hochpolymorphen HLA-I und HLA-II-Genen. Bei den bereits vorgestellten Erkrankungen (siehe 1.1) konnte ebenfalls Kopplung der chromosomalen Region 6p gezeigt werden.

Morbus Crohn zeigt im Gegensatz zu Colitis ulcerosa weit geringere LOD-scores auf Chromosom 6p sowohl in der distalen Region als auch der HLA-Region (Hampe et al., 1999; Rioux et al., 2000; Yang et al., 1999). Eine Stratifizierung auf CARD15 Mutationsträger bestätigt den bimodalen Charakter (Shaw et al., 2003).

Ebenso bimodal verteilt sind die Ergebnisse von Kopplungsanalysen von Schizophreniestudien. Chromosom 6p trägt zwei Suszeptibilitätsregionen auf 6p22-24 und 6p21 in der MHC-Region (Straub et al., 1995, Schwab et al., 1995, Schwab et al., 2000).

Bei der Analyse von Atopien konnte Kopplung insbesondere zu spezifischem IgE und Gesamt-IgE, atopischer Dermatitis in Kombination zu spezifischem IgE sowie bimodal verteilt in der distalen und proximalen Region zu Asthma gezeigt werden (Daniels et al., 1996; CSGA, 1997; Hizawa et al., 1998; Wjst et al., 1999; Ober et al., 1999; Koppelman et al., 2002; Haagerup et al., 2002; Bradley et al., 2002).

1.3.1 Der MHC-Komplex

Der genetische Lokus, der die Abstoßungsreaktion von fremdem Gewebe z.B. bei Transplantationen vermittelt, wird als MHC (Major Histokompatibilitätskomplex) oder beim Menschen als HLA (Humanes Leukozyten Antigen) bezeichnet. Er wird in drei Hauptklassen eingeteilt (Immunology, 1998; siehe Abbildung 1.3, Abbildung 1.4). Zu der klassischen HLA Klasse I gehören HLA-A, HLA-B, HLA-C, die nicht-kovalent zu β2-Mikroglobulin assoziiert sind. MHC Klasse I Moleküle werden auf fast allen Zellen exprimiert und präsentieren körpereigene Antigene. Bei Virusbefall einer Zelle werden Viruspeptide präsentiert. T-Zellrezeptoren von cytotoxischen T-Zellen binden den MHC Klasse I-Peptid-Komplex und induzieren die Lyse der befallenen Zelle. MHC Klasse II (HLA-DR, HLA-DQ, HLA-DP) bilden Dimere und bestehen aus einer Alpha- und einer Beta-Kette. Sie werden auf antigenpräsentierenden Zellen wie dendritischen Zellen sowie Lymphozyten exprimiert und induzieren über die Präsentation prozessierter Peptidfragmente die Aktivierung von T-Helferzellen.

Die klassischen HLA-Moleküle sind hochpolymorph mit bis zu 400 bekannten Allelen des HLA-DRB1 Gens (www.ebi.ac.uk/imgt/hla).

		Der hohe Polymorphismusgrad in der
_		Bindedomäne der zu präsentierenden Peptide ist in einem
_	HLA-G	hohen Selektionsdruck zugunsten eines breiten
Ξ	HLA-H	Spektrums an Bindeaffinitäten begründet (Raddrizzani et
	HLA-A	al., 1997, Texier et al., 2001). Abhängig vom Haplotyp
		existieren neben HLA-DRB1 durch Duplikationen
		entstandene weitere funktionelle Gene und Pseudogene
		(<i>HLA-DRB2-9</i>), die für die β -Kette des HLA-DR-
		Moleküls codieren (Andersson, 1998).
		Aufgrund der möglichen funktionellen Relevanz oder der
		Eigenschaft als multiallische Marker zu dienen, wurden
		bei Assoziationsanalysen verschiedener Erkrankungen
		häufig HLA-Gene eingesetzt. Die primäre Assoziation
		der Hämochromatose zu HLA-A beruht auf der Kopplung
		von HLA-A zu den kausalen Mutationen des 3,8 Mb
-		distal lokalisierenden HFE-Gens (Cardoso et al., 2002).
	nla-d	Auch bei der Adrenohyperplasie war die Assoziation von
_	TNF	HLA-Genen durch die Kopplung zu kausalen CYP21A2
		-Mutationen verursacht (Amor et al., 1988; Bell et al.,
		2000).

- HLA-DRA
- HLA-DRB1-9 HLA-DRB1 HLA-DQA1 HLA-DQB1 HLA-DOB HLA-DMB HLA-DMA HLA-DOA HLA-DPA1 HLA-DPB1

Abbildung 1.5 HLA Gene

In der Abbildung ist die Abfolge der Lokalisation zueinander von pter der klassischen HLA Klasse I Gene HLA-A, HLA-B und HLA-C und der klassischen HLA Klasse II Gene HLA-DRA, HLADRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 und HLADPB1, die häufig bei Assoziationsanalysen als multiallelische Marker genutzt werden. Je nach Haplotyp lokalisieren weitere HLA-DRB Gene in der HLA-DRB1-9 Region. Neben den klassischen HLA-Genen und HLAprozessierenden Gene lokalisieren mehr als 100 weitere Gene in der dargestellten Region. TNF, aufgrund dessen die distale HLA Klasse III Region (hellgrau) auch als HLA Klasse IV beschrieben wird, ist ebenfalls dargestellt. Assoziationsanalysen von HLA-Genen an Morbus Crohn Patienten zeigen eine Assoziation zu HLA-DR HLA-DQ, die aber nicht unbestritten ist. Bei der Analyse der DR und DQ-Gene wurde keine Assoziation (Satsangi et al., 1996; Bouma et al., 1997), positive Assoziation von DRB1*07 und negative von DRB1*03 (Reinshagen et al., 1996), positive des Haplotypen DRB*0301/DRB1*1302 (Cariappa et al., 1998), positive von DR7, DRB3*0301 und DQ4 sowie negative von DR2 und DR3 (Stokkers et al., 1999) postuliert. Die Analyse von *HLA-DPA1* zeigte positive Assoziation zu DPA1*02021, konnte jedoch in einer weiteren Studie nicht bestätigt werden (Lantermann et al., 2002). Hesresbach et al. analysierten sowohl die HLA Klasse I Gene als auch die Klasse II und die TAP-Region und konnten zu DRB1*1302 und DRB1*04 positive Assoziation zeigen (Hesresbach et al., 1996).

Aufgrund der Assoziation von der Schizophrenie mit Autoimmunerkrankungen, die häufig mit HLA-Genen assoziiert waren, wurden vorerst HLA Klasse I Gene und später im Zuge der bestimmter Haplotypen Identifizierung der HLA Klasse Π Gene mit Autoimmunerkrankungen eher HLA Klasse II Gene untersucht. Unterschiedliche Diagnosekriterien und Verteilungen verschiedener Schizophrenieformen innerhalb der Studien erschweren den Vergleich (Wright et al., 2001). Bei der Analyse von HLA Klasse I Genen zeigten Studien an mehr als 100 Schizophreniepatienten oder Familienstudien keine Assoziation (Gibson et al., 1999; Schwab et al., 2002). Bei Analysen von kaukasischen Schizophreniepatienten zeigen Studien Assoziation zu HLA-A9 (Eberhardt et al., 1975; Wright et al., 1995), zu HLA-A28 (Ivanyi et al., 1976; Ivanyi et al., 1978) und negative Assoziation zu HLA-B35 und HLA-Cw5 (Blackwood et al., 1996) bzw. negative zu HLA-A10 (Smeraldi et al., 1976). Bei Analyse der HLA-II Gene zeigten Studien mit mehr als 100 kaukasischen Schizophreniepatienten und Kontrollen (Blackwood et al., 1996; Gibson et al., 1999; Hawi et al., 1999) sowie eine Triofamilienstudie (Schwab et al., 2002) keine Assoziation. Drei Studien konnten negative Assoziation zu DR1 (Blackwood et al., 1996), DRB1*04 (Wright et al., 1996) und DRB1*11 (Schwab et al., 2002) nachweisen. Eine weitere Studie zeigte negative Assoziation zu DPB1*0101 (Zamani et al., 1994).

Auch bei den atopischen Erkrankungen wurden viele Studien zu HLA Klasse II Genen veröffentlicht. Im Einklang mit der Präsentation spezifischer Allergene über MHC Klasse II Moleküle (siehe 1.1.4) konnten erhöhte Konzentration von spezifischem IgE gegen verschiedene Allergene hauptsächlich mit verschiedenen HLA-DRB1 und gekoppelten HLA-DQB1 und HLA-DPB1 Allelen assoziiert werden, wobei Gesamt-IgE meist keine Assoziation zeigte (Marsh et al., 1982; Marsh et al., 1987; Freidhoff et al., 1988; Ansari et al., 1989; Fischer et al., 1992; Cardaba et al., 1993; Young et al., 1994; D'Amato et al., 1996; Stephan

23

et al., 1999; Lara-Marquez et al., 1999; Cardaba et al., 2001). Erhöhte Gesamt-IgE Werte wurden mittels quantitativer Analysen mit HLA-DRB1 Allelen assoziiert (Moffatt et al., 2001), sowie mit DQB1*0301 und DQB1*02 (Cardaba et al., 2001; Woszczek et al., 2002). Holloway et al. konnten keine Assoziation nachweisen (Holloway et al., 1996). Für intrinsisches Asthma ist eine Assoziationen ebenfalls unwahrscheinlich (Soriano et al., 1997; Rihs et al., 1997; Dekker et al., 1997). Unter Berücksichtigung eines weiteren Markers im Promoter des *TNF* Gens der HLA Klasse IV Region wiesen extendierte Haplotypen der HLA-DR-TNF Region Assoziation zu atopischem Asthma, Asthma und bronchialer Hyperreaktivität auf (Moffatt et al., 1999; DiSomma et al., 2003).

1.4 Aufgabenstellung

Die chromosomale Region 6p zeigt für Typ 1 Diabetes, Schizophrenie, IgE assoziierter atopischer Dermatitis, IgE assoziiertem Asthma und Morbus Crohn jeweils Kopplung mit polymorphen Markern. Neben den hochpolymorphen klassischen MHC-Genen lokalisieren über 450 weitere Gene in der Region.

Das primäre Ziel der Arbeit ist es, Kandidatengene oder Regionen in der Kopplungsregion zu identifizieren und die methodischen Grundlagen für ein solches Screening zu liefern.

Hierzu sollte ein SNP-Markerset aus Datenbanken selektiert werden, welches die gesamte Region umfasst. Zur Kosten-, DNA-Verbrauch- und Aufwandsminimierung sollten Allelfrequenzmessungen biallelischer Marker mittels MALDI-TOF an gepoolter Probanden-DNA etabliert werden und überprüft werden, ob sich diese Methode zur Identifizierung von Kandidatengenen eignet. Da bei Typ 1 Diabetes die Hauptgene der Region bereits identifiziert sind, sollte zur Überprüfung ein Vergleich von gepoolter Typ 1 Diabetiker DNA zu dem Kontroll-DNA-Pool von gesunden Probanden verwendet werden.

Im Falle der Identifizierung von Asthmakandidatenregionen mit Hilfe des Poolingansatzes sollten diese mit Einzelgenotypisierung der Marker in der Asthmafamilienstudie überprüft werden.

2 Probanden, Material und Methoden

2.1 Probanden

2.1.1 Probanden der Asthma-Familienstudie

Die Asthma-Familienstudie (Wjst et al., 1999) wurde im "affected-sibpair"-Design durchgeführt, d.h. es wurden Familien rekrutiert, bei denen mindestens zwei leibliche Kinder an Asthma erkrankt waren. Sie wurde von der Ethik-Kommission der Landeskammer Nordrhein-Westfalen genehmigt und es liegen die Einverständniserklärungen aller Probanden vor.

Ausgeschlossen wurden Familien, bei denen mindestens eines der Kinder Früh- oder Mangelgeborene waren, in den ersten 6 Lebensmonaten künstlich beatmet wurden oder an weiteren Lungenerkrankungen wie cystischer Fibrose erkrankt waren. Als Diagnosekriterium für Asthma wurden akut rezidivierende Zeichen der Atemwegsobstruktion zugrunde gelegt, wenn diese häufiger als 10 mal und über mindestens 3 Jahre ab dem 3. Lebensjahr auftraten.

Alle Studienteilnehmer wurden auf den Serum-Gesamt-IgE-Gehalt, spezifisches IgE auf verschiedene Allergene (RAST) und Allergien (Skin-Prick-Test) untersucht. Des Weiteren wurden Lungenfunktionstests durchgeführt, sowie die häusliche Situation wie Allergenexposition durch Fragebögen ermittelt. Die Anzahl der genotypisierten Familien beinhaltete 169 Asthma Trios und 150 IgE Trios. Für die Transmissionsanalysen wurde jeweils das Kind mit dem höchsten Gesamt-IgE Wert von mindestens 100 kU/l selektiert. In die Analysen der Asthmatrios floss, wenn möglich, jeweils ein unselektiertes asthmatisches Kind ein.

2.1.2 Probanden des Fall-Kontroll-Ansatzes mit gepoolter DNA

2.1.2.1 Kontrollen

Als Kontrollen wurden 288 DNA-Proben des KORA Survey 2000 verwendet. KORA S 2000 ist eine populationsbasierte Umfrage von derzeit 4261 Probanden der Augsburger Region und wurde von der Ethik-Komission der Bayerischen Landesärztekammer genehmigt. Da die Kontrolle für alle weiteren Pools diente, wurden gesunde Probanden selektiert, von denen 58

Individuen zwischen 25 und 35 Jahre alt (davon 29 männlich) waren, 58 zwischen 35 und 45 Jahre (29 männlich), 57 zwischen 45 und 55 Jahre (29 männlich), 58 zwischen 55 und 65 Jahre (29 männlich) und 57 zwischen 65 und 75 Jahre (29 männlich).

2.1.2.2 Asthma

Der Asthma-Pool beinhaltet 122 nicht verwandte Asthmapatienten (davon 61 männlich) der Asthma-Familienstudie (siehe 2.1.1). Das durchschnittliche Alter der Patienten betrug 12 Jahre. Der Gesamt-IgE-Spiegel der analysierten Probanden betrug im Mittel 494 kU/l, wobei 83 Probanden einen Gesamt-IgE-Spiegel von über 100 kU/l aufwiesen.

2.1.2.3 Immunglobulin E

Im IgE-Pool wurden DNA-Proben von 39 nicht verwandten Individuen der Asthma-Familienstudie (siehe 2.1.1) mit einem jeweiligen Gesamt-IgE-Spiegel von über 100 kU/l analysiert. Der Gesamt-IgE-Spiegel der analysierten Probanden betrug im Mittel 1066 kU/l. Bei allen Probanden wurde Asthma diagnostiziert.

2.1.2.4 Diabetes

Die Patienten-DNA für beide T1D-Pools stammt aus der deutschen BABYDIAB Studie (Ziegler et al. 1999), einer prospektiven Studie an Nachkommen von Typ 1 Diabetikern. Die Studie wurde vom Ethik-Komitee der Bayerischen Landesärztekammer genehmigt. Die verwendeten DNA-Proben stammen von nicht-verwandten Typ 1 Diabetiker, die alle insulinabhängig sind und zu Ketosen neigen. Es wurden zwei Pools (T1D1 und T1D2) generiert mit je 192 Probanden (davon in T1D1 54 männlich und in T1D2 55 männlich). Der T1D1-Pool beinhaltet Patienten mit Ausbruch der Krankheit nach dem 15. Lebensjahr, T1D2 vor dem 15. Lebensjahr.

2.1.2.5 Morbus Crohn

Die 76 Patienten des CD-Pools stammen aus einer deutschen Studie entzündlicher Darmerkrankungen (Hampe et al., 1999). Die Studie wurde vom Ethik-Komitee des Universitätskrankenhauses Kiel genehmigt und es liegen von allen Patienten schriftliche Einverständniserklärungen vor. Zum Zeitpunkt der Poolgenerierung waren bereits drei Mutationen im *CARD15*-Gen bekannt, die unabhängig voneinander mit Morbus Crohn assoziiert waren. Aufgrund dessen wurden bei dem Pool DNA-Proben von Morbus Crohn Patienten ausgewählt, die mindestens eine der drei codierenden Mutationen im *CARD15*-Gen (SNP8, 12 oder 13) tragen.

2.1.2.6 Schizophrenie

Für die Analysen wurden zwei Schizophrenie-Pools ShF und ShT angefertigt.

ShF-Individuen stammen aus einer deutschen Schizophrenie-Familienstudie im "affectedsibpair"-Design (Schwab et al., 2000) mit psychiatrischer Familiengeschichte. Die Rekrutierung wurde durch lokale Ethik-Kommissionen genehmigt. Diagnosekriterien für Schizophrenie und schizoaffektiven Erkrankungen basieren auf den DSMIIIR Kriterien.

Die 58 DNA-Proben des ShF-Pools stammen von nicht verwandten Schizophrenie-Patienten oder Patienten mit schizoaffektiver Erkrankung, wobei Individuen der Studie nicht-deutscher Abstammung ausgeschlossen wurden.

ShT-Individuen stammen aus einer deutschen Schizophrenie-Trios-Studie (Schwab et al., 2002). Der ShT-Pool setzt sich aus 125 DNA-Proben von erkrankten, nicht-verwandten Individuen mit schizoaffektiver Familiengeschichte zusammen.

2.1.2.7 Atopische Dermatitis

Der AD-Pool setzt sich aus DNA-Proben von 384 nicht-verwandten atopische Dermatitis Patienten zusammen (Bradley et al., 2000). Die Studie wurde von der Ethik-Kommission des Karolinskainstituts genehmigt, und es liegen von allen Patienten schriftliche Einverständniserklärungen vor. Die Probanden sind schwedischen Ursprungs.

2.2 Material

2.2.1 Geräte

Sequenziergerät (ABI-PRISM 3100)	Applied Biosystems, Weiterstadt
Kühlzentrifuge (Sigma 4K15C)	Sigma Laborzentrifugen, Osterode
Kühlzentrifuge (Rotanta 46 RS)	Hettich, Darmstadt
Massenspektrometer (Biflex II-TOF)	Bruker Franzen Analytik GmbH, Bremen
Thermocycler (PCR PTC 225 Tetrad)	MJ Research, Boston, USA
Pipettierroboter (Multimek 96-Channel Pipettor)	Beckman Coulter, Fullerton, USA
Pipettierroboter (TEMO)	Tecan AG, Crailsheim
Pipettierroboter (Genesis RSP 150 Work Station)	Tecan AG, Crailsheim
Photometer (Genios Fluorescence Plate Reader)	Tecan AG, Crailsheim
Geldokumentationssystem (UVT40M Transilluminator)	Herolab, Wiesloch
Gelelektrophoresekammer (Sunrise)	GibcoBRL, Karlsruhe
Photometer (UltroSpec 3100 pro)	Amersham Biosciences Europe GmbH, Freiburg
Schüttler (ROTO-Shake Genie)	Scientific Industries, Inc Bohemia, USA
Spotter (SpectroJet)	Sequenom GmbH, Hamburg
Spotter (SpectroPoint nanoliter pipetting System)	Sequenom GmbH, Hamburg
Reinwasseranlage (Ultra Clear UV)	SG Wasseraufbereitung, Basbüttel
Taqmananlage (ABI PRISM 7700 Sequence Detector)	Applied Biosystems, Weiterstadt

2.2.2 Plastikware

Becton Dickinson Labware (New York, USA)
Quiagen, Hilden
Quiagen, Hilden
Quiagen, Hilden
Greine Bio-One, Frickenhausen
ABGene, Surrey, UK
ABGene, Surrey, UK
ABGene, Surrey, UK
Eppendorf, Hamburg
Becton Dickinson, New York, USA
Roth, Karlsruhe

2.2.3 Software

Pipettierroboter	Xfluor4	Tecan, Crailsheim
	Gemini 3.2	Tecan, Crailsheim
MALDI-TOF MS	SpectroTyper RT	Sequenom GmbH, Hamburg
	Genotype Analyser 2.0.0.5	Sequenom GmbH, Hamburg
	SpectroReader	Sequenom GmbH, Hamburg
Sequenzierung	DNA Sequencing Analysis	Applied Biosystems,
	Software 3.6.1	Weiterstadt
	3100 Data Collection	Applied Biosystems,
	Software	Weiterstadt
Primerdesign	SpectroDesigner	Sequenom GmbH, Hamburg
	VectroNTI Suite 6	www.informaxinc.com
-----------------------	----------------------------	-------------------------------
Sequenzanalysen	PhredPhrapPolyphred	Washington University, USA
statistische Analysen	SAS 8.0 Genetics	www.sas.com
	Phase V1.0 Phamilyanalysis	archimedes.well.ox.ac.uk/pise

2.2.4 Reagenzien und Kits

PCR	10xPuffer	ABgene, Hamburg
	HotStar Taq DNA	ABgene, Hamburg
	Polymerase	
	dNTP	MBI Fermentas, St.Leon Rot
DNA-Isolation	Puregene Genomic DNA Isolation Kit	Gentra, Mineapolis, USA
Sequenzierung	POP6 Sequenziergel	Applied Biosystems, Weiterstadt
	LiChrosolv Wasser	Merck, Darmstadt
	BigDye Terminator V1.0	Applied Biosystems, Weiterstadt
DNA-Konzentrationsmessung	PicoGreen dsDNA Quantitation Kit	Molecular Probes, Leiden, NL
Gelelektrophorese	Ethidiumbromid	Biomol, Hamburg
	Agarose ultra pure	GibcoBRL, Eggenstein
	6x Loading Dye Solution	MBI Fermentas, St.Leon Rod
	pUC MIX, VIII	MBI Fermentas, St.Leon Rod
	10xTBE (Trisboratpuffer)	Merck, Darmstadt
Primerextension	MassEXTEND Core Kit	Sequenom GmbH, Hamburg
	Thermosequenase	Amersham Pharmacia Biotech, Freiburg
	Shrimp Alkaline Phosphatase	Amersham Pharmacia Biotech, Freiburg
	MassEXTEND Nucleotide Tri-Mix Pack	Sequenom GmbH, Hamburg
	hME MassEXTEND Nucleotide Tri-Mix Pack	Sequenom GmbH, Hamburg

	3Punkt Kalibrant	Sequenom GmbH, Hamburg
	hME Puffer	Sequenom GmbH, Hamburg
	SpectroCLEAN	Sequenom GmbH, Hamburg
Restriktionsverdau	Hinf1 Restriktionsenzym	MBI Fermentas GmbH, St. Leon-Rot
TaqMan	AmpliTaq Gold DNA	Applied Biosystems,
	Polymerase	Weiterstadt

2.3 Methoden

2.3.1 DNA-Isolierung aus Vollblut

Der Puregene DNA Isolation Kit von Gentra, Minneapolis gehört zu den Standardmethoden der DNA-Isolierung aus Vollblut und erfolgt nach dem Protokoll. Aus 9 ml Vollblut können ca. 300-600 μ g DNA gewonnen werden. Die DNA wird in 800 μ l 1mM TE-Lösung aufgenommen und bei –20°C gelagert. Bei der weiteren Verwendung der DNA z.B. für Amplifikationen (siehe PCR) wird bei DNA-Verdünnungsschritten 0,1%ige TE-Lösung verwendet, um das DNA/Salzkonzentrationsverhältnis nicht ungünstig zu gestalten.

2.3.2 Konzentrationsbestimmung von DNA-Verdünnungen

Bei der Konzentrationsbestimmung von DNA-Verdünnungen wird häufig die Extinktion über Absorptionsmessungen bei 260nm mit einem Spektralphotometer gemessen. $OD_{260} = 1$ entspricht einer DNA-Konzentration von 50 ng/µl für doppelsträngige DNA und 33 ng/µl für einzelsträngige DNA. Diese Messmethode berücksichtigt jedoch die Verunreinigung der DNA-Verdünnung mit Proteinen, RNA und Oligonukleotiden nicht.

Aufgrund dessen wurde der PicoGreen dsDNA Quantitation Kit verwendet (Singer et al., 1997). Er enthält einen Fluoreszenzfarbstoff, der sich an doppelsträngige DNA anlagert.

Bei der Konzentrationsmessung im Fluorometer wird eine Eichgerade von definierten Lambda-DNA-Konzentrationen bestimmt und daran die Konzentration der DNA-Verdünnung berechnet. Da der Fluoreszenzfarbstoff lichtempfindlich ist, sollte darauf geachtet werden, dass die Proben der Eichgeraden auf die gleichen 96-Mikrotiterplatte wie die zu messenden DNA-Verdünnungen pipettiert werden.

2.3.3 Erstellung von DNA-Pools

Zur Erstellung der DNA-Pools wurden die DNA-Konzentrationen der verschiedenen Probanden mit der PicoGreen Methode (siehe 2.3.2) bestimmt. Danach erfolgte die Normalisierung der DNA-Konzentrationen auf 1,7 ng/µl mit einer 0,1%igen TE-Lösung. Abhängig von der Anzahl der zu poolenden Probanden sowie der Menge an benötigter DNA für die weiteren Analysen wurden gleiche Volumen der Probanden DNA-Lösungen vereint. Es wurden je 10µl des hergestellten DNA-Pools in 94 Well einer 96-Mikrotiterplatte überführt und über Nacht trocknen gelassen. Die getrockneten Platten wurden bei 4°C gelagert.

2.3.4 Polymerase-Ketten-Reaktion (PCR)

Die Polymerase-Ketten-Reaktion ist eine der wichtigsten Standardmethoden der Molekularbiologie (Saiki et al., 1988). Hiermit kann ein begrenzter Abschnitt der DNA millionenfach amplifiziert werden. Im Überschuss zugegebene sequenzspezifische Oligonukleotide (Primer) dienen als Startmoleküle für die Amplifikation, die mit Hilfe einer hitzestabilen Polymerase von *Thermus Aquaticus* erreicht wird. Die Amplifikation läuft unter zyklischen Temperaturbedingungen ab, wobei die DNA im ersten Schritt denaturiert wird (Denaturierung), im zweiten Schritt das Hybridisieren der Primer erfolgt (Annealing) und im dritten Schritt die DNA-Synthese abläuft (Elongation). Die Anzahl der Zyklen beträgt zwischen 21 und 42 Wiederholungen. Die zeitliche Länge der einzelnen Zyklen ist abhängig von der Länge des zu amplifizierenden DNA-Abschnitts, bei einer ungefähren Syntheseleistung der Polymerase von 1 kb/min.

2.3.4.1 PCR mit biotinyliertem Universalprimer

Für die Allelfrequenzmessung von SNPs an DNA-Pools mit dem PROBE-Verfahren (siehe 2.3.7.3.1) wird eine 5'biotinylierte Einzelstrang-DNA benötigt. Da die Biotinylierung eines Primers pro zu analysierendem SNP sehr kostenintensiv ist, wurde bei der PCR ein 5'biotinylierter Universalprimer (US8) zugesetzt. Ein Primer (Tag-Primer) des sequenzspezifischen Primerpaares trägt am 5' Ende ein zusätzliches, universales Sequenzmotiv (Tag), dessen Basenabfolge dem US8-Primer entspricht. Nach erfolgter Amplifikation einiger Kopien konkurrieren der US8-Primer mit dem Tag-Primer um die DNA-Bindestelle. Durch den Zusatz der fünffachen Menge von US8-Primer gegenüber Tag-Primer wird die Amplifikation biotinylierter PCR-Produkte begünstigt. Bei der Reaktion wurden 17 ng getrockneter DNA eingesetzt. Der Reaktionsansatz umfasste 50 µl. Sequenzspezifische Primer wurden vorgelegt und anschließend je 40 µl Mastermix verteilt.

H ₂ O	26,7 µl
Puffer (10x)	5 µl
dNTP Mix (je 2mM)	5 µl
MgCl ₂ (25mM)	3 µl
US8 Primer (100pmol/µl)	0,1 µl
Taq-Primer (0,4pmol/µl)	5 µl
Primer 2 (5pmol/µl)	5 µl
HotStarTaq (5U/µl)	0,2 µl

Tabelle 2.1 50 µl PCR-Ansatz mit Universalprimer

Die PCR erfolgte auf einem PCR PTC 225 Tetrad Cycler (MJ Research, Boston, USA), mit folgenden Reaktionsbedingungen:

95°C	10'	Denaturierung	
95°C	45"	Denaturierung	
56°C	45"	Annealing	45 Zyklen
72°C	45"	Elongation	
72°C	5'	Elongation	

Tabelle 2.2 Reaktionsbedingungen der PCR mit Universalprimer

2.3.4.2 PCR für die Genotypisierung mit der hME-Methode

Bei der Amplifikation der genomischen DNA zu weiteren Analysen mit der hME-Methode (siehe 2.3.7.3.2) werden Primer verwendet, die neben der sequenzspezifischen Basenabfolge am 5' Ende ein zusätzliches, universales Sequenzmotiv (Tag) aufweisen. In Multiplex-Reaktionen dient dieser Tag der gleichmäßigen Amplifikation der verschiedenen PCR-Produkte. Durch die erhöhte Masse der PCR-Primer wird eine Störung der späteren Massendetektionsanalysen von Oligonukleotiden verhindert.

Das Reaktionsvolumen der PCR betrugt 5 μ l und die Amplifikation erfolgte auf 384er Mikrotiterplatten. In jedes Well wurden 3 ng DNA vorgelegt und über Nacht getrocknet. Der angesetzten Mastermix wurde mit der Pipettierstation Genesis RSP 150 Workstation (Tecan, Crailsheim) verteilt. Es wurde die 1,25fache Menge an Mastermix hergestellt.

H ₂ O	2083,2 µl
dNTP-Mix (je 2mM)	288 µl
Puffer (10x)	288 µl
Primer 1 (10pmol/µl)	48 µl
Primer 2 (10pmol/µl)	48 µl
MgCl ₂ (25mM)	115,2 µl
HotStarTaq	9,6 µl

Tabelle 2.3 Mastermix Reaktionsansatz einer PCR im 384er Format

Die Amplifikation erfolgte auf einem PCR PTC 225 Tetrad Cycler (MJ Research, Boston, USA), mit folgenden Reaktionsbedingungen:

95°C	15'	Denaturierung
95°C	20"	Denaturierung
56°C	30"	Annealing 45 Zyklen
72°C	1'	Elongation
72°C	3'	Elongation

Tabelle 2.4 Reaktionsbedingungen der PCR im 384er Format

2.3.5 Gelelektrophorese

DNA ist ein Poly-Anion und wandert beim Anlegen eines elektrischen Feldes in Richtung der Anode. Die elektrophoretische Auftrennung von DNA in Agarosegelen ermöglicht, anhand eines Längenstandards Aussagen über die Größe und Konzentration der DNA zu treffen. Durch Erhitzen (Mikrowelle) wird Agarose in einem Laufpuffer (1x TBE) unter der Zugabe von Ethidiumbromid gelöst. Beim Erkalten bildet sie Polymere, die als Molekularsieb für die entlang des elektrischen Feldes wandernden Nukleinsäuren dienen. Mittels Ethidiumbromid, das in die DNA interkaliert und bei 266 nm fluoresziert, können die DNA-Banden unter UV-Licht im Gel sichtbar gemacht werden. Die Geschwindigkeit, mit der die Nukleinsäuren sich in zur Anode hinbewegen, ist bei kurzen Fragmenten abhängig von der angelegten Spannung, der Agarose-Konzentration des Gels und der Größe der DNA-Fragmente. Es wurden 3-4%ige Agarosegele verwendet. Die Auftrennung erfolgte bei 80-120 V und benötigte zwischen 60 und 180 Minuten.

2.3.6 Sequenzierung

Für die Sequenzierung wurde eine modifizierte Form der Didesoxy-Methode nach Sanger verwendet (Sanger et al., 1977), bei der fluoreszenzmarkierte Didesoxynukleotide sowie nichtmarkierte Desoxynukleotide verwendet werden. Didesoxynukleotide sind Analoga der normalen dNTPs, denen jedoch am 3'-Kohlenstoffatom eine Hydroxyl-Gruppe fehlt, wodurch die Phosphodiesterbindung zum darauffolgenden Nukleotid nicht gebildet werden kann. Somit findet durch Zugabe der Didesoxynukleotide nach jeder Base ein Kettenabbruch statt, so dass die zu sequenzierende DNA in einer Mischpopulation mit unterschiedlichen Fragmentlängen vorliegt. Durch elektrophoretische Auftrennung dieser Population wandern die einzelnen Fragmente zeitlich voneinander getrennt durch einen Laserstrahl, der die fluoreszierende Gruppe am Didesoxynukleotid anregt. Die Auswertung der Fluoreszenzsignale der DNA kann nun in Form von Intensitätsprofilen erfolgen. Da die Fluoreszenzmaxima der einzelnen Farbstoffe bei unterschiedlichen Wellenlängen liegen, entsprechen die zeitlich aufeinanderfolgenden Fluoreszenzsignale der Basenabfolge der DNA.

2.3.6.1 Vorbereitung der Proben für die Sequenzanalyse

Das zu analysierende PCR-Produkt wurde mittels Aufreinigung durch QIA quickTM PCR purification kit von Puregene von Oligonukleotiden und Taq-Polymerase getrennt und in 50µl Reinstwasser resuspendiert. Im Anschluss wurde ein Cycle Sequencing unter folgenden Reaktionsbedingungen durchgeführt:

Premix (ABI)	2 µl
aufgereinigtes PCR-Produkt	1-2 µl
Sequenzierprimer (10pmol/µl)	1 µl
LiChrosolv H ₂ O	ad 10 µl

Tabelle 2.5 BigDye Reaktionsansatz der Sequenzierung

Die lineare BigDye-Reaktion erfolgte auf einem PCR PTC 225 Tetrad Cycler (MJ Research, Boston, USA), mit folgenden Reaktionsbedingungen:

Tabelle 2.6 Temperaturbedingungen des CycleSequencing

2.3.6.2 Ethanolfällung

Zur Aufreinigung eines amplifizierten DNA-Fragmentes bedient man sich der Eigenschaft, dass Nukleinsäuren unter Zugabe von Ethanol und einem gut löslichen Salz ausfallen (Sambrook et al., 1989). Die Ethanolpräzipitation der Cycle Sequencing Produkte erfolgte in 96er Mikrotiterplatten bei Raumtemperatur.

CycleSequencing Produkt	10 µl
H ₂ O	8 µl
Ethanol (95%ig)	32 µl

Tabelle 2.7 Ethanol-Präzipitation in 96er Mikrotiterplatten

Die Lösung wurde auf einem Vortexter gemischt, 15 min inkubiert und anschließend 30 min bei 3600 rpm zentrifugiert. Nach Verwerfen des Überstandes wurde das DNA-Pellet 1 min bei 400rpm auf dem Kopf zentrifugiert. Anschließend wurde mit 75 µl 70% igem Ethanol gewaschen, 10 min bei 3600 rpm zentrifugiert, der Überstand verworfen und das DNA-Pellet 1min bei 400rpm auf dem Kopf zentrifugiert. Der Ethanolwaschschritt wurde wiederholt und das DNA-Pellet in einer SpeedVac 20 min getrocknet. Die salz-, oligonukleotid- und enzymfreie DNA wurde in 150 µl Reinstwasser resuspendiert. Die folgende Sequenzierung der Proben erfolgte auf einem ABI Prism 3100.

2.3.7 Genotypisierung

Die Genotypisierung eines biallelischen Markers kann mit einer Vielzahl von Methoden erfolgen, die sich insbesondere im möglichen Durchsatz, den Kosten und dem Arbeitsaufwand unterscheiden.

2.3.7.1 Restriktionsverdau

Restriktionsenzyme sind Endonukleasen, die bestimmte Sequenzen der DNA erkennen, dort binden definierten Doppelstrangschnitt induzieren, indem und einen sie die Phosphodiesterbindungen beider DNA-Stränge hydrolytisch spalten. Ist die Erkennungssequenz des Restriktionsenzyms durch Mutation verändert, wird die DNA an geschnitten. Zur Genotypisierung dieser Stelle nicht mehr eines RFLPs (Restriktionsfragmentlängen-Polymorphismus) schneidet man die DNA-Probe mit der passenden Restriktionsendonuklease und trennt die entstandenen Fragmente elektrophoretisch auf. Somit kann die Länge der entstandenen Fragmente mit den beiden möglich vorhandenen Allelen in Verbindung gebracht werden. Heterozygote können aufgrund des gleichzeitigen Auftretens beider Fragmentlängen genotypisiert werden.

Beim Restriktionsverdau wird das zu analysierende, amplifizierte und aufgereinigte DNA-Fragment mit dem passenden Restriktionsenzym unter definierten Pufferbedingungen für mindestens 1 h bei optimaler Temperatur inkubiert. Der Restriktionspuffer enthält ein bivalentes Kation (z.B. Mg²⁺), das für die Aktivität des Enzyms notwendig ist, einen Trispuffer, der den pH-Wert auf das Optimum einstellt sowie DTT (Dithiothreitol) zur Stabilisierung des Enzyms.

 $20 \ \mu l$ PCR-Produkt $6,9 \ \mu l$ ddH_2O $3 \ \mu l$ R+ Puffer $0,1 \ \mu l = 1 \ U$ Restriktionsenzym Hinf1

Tabelle 2.8 Ansatz des Restriktionsverdaus für ein Gesamtvolumen von 30 µl.

Der Restriktionsanasatz wurde 6 Stunden bei 37°C inkubiert.

2.3.7.2 Taqman

Die allelische Diskriminierung zur Genotypisierung basiert auf dem 5' Nuklease Assay (Livak et al., 1999). Die Methode ist einfach und wenig fehleranfällig.

Abbildung 2.1 Schematischer Ablauf der allelischen Diskriminierung

entnommen aus User Bulletin Applied Biosystems, 2000 Q: Quencherfarbstoff TAMRA, V:Fluoreszenzfarbstoff VIC, F: Fluoreszenzfarbstoff FAM

Für die Reaktion werden zwei spezifische Primer sowie zwei allel-spezifische Sonden eingesetzt. Jede Sonde ist am 5' Ende mit einem speziellen Fluoreszenzfarbstoff markiert und trägt am 3' Ende einen Quencherfarbstoff. Der Quencherfarbstoff unterdrückt durch die Nähe die Fluoreszenz des spezifischen Farbstoffs. Bindet die allelspezifische Sonde, so werden aufgrund der 5' Nukleaseaktivität der Polymerase der Fluoreszenzfarbstoff räumlich vom Quencher getrennt. Dies führt zu einer Fluoreszenzintensitätserhöhung des spezifischen Farbstoffes, die mit Hilfe eines Fluorometers bestimmt wird. Diese Methode eignet sich für die Genotypisierung validierter SNPs an einer großen Fallzahl. Die Etablierung eines neuen Assays ist aufgrund der Verwendung SNP-spezifischer, fluoreszenzmarkierter Sonden kostenintensiv.

Die Genotypisierung von rs1536054 und TSC0113430 wurde mit dem TaqMan-Assay durchgeführt. Das Reaktionsvolumen betrug 20 μ l. Die Reaktion wurde in 96er Mikrotiterplatten auf einem Thermocycler durchgeführt. Die verwendeten Primer und Sonden wurden von Applied Biosystems entworfen. Als DNA-Template wurden pro Well 5 ng DNA vorgelegt und über Nacht getrocknet.

rs1536054:

PCR Primer 1	TTCTTATTTTTGCTGGCTACTCTGAA
PCR Primer 2	GTGGGAAAATTAAGTGTGCTGTTG
Sonde FAM	TAATGAGTTACGAATGCTAC
Sonde VIC	AATGAGTTAGGAATGCTAC

TSC0113430:

PCR Primer 1	TTCAGAAATGTTGTGAGCTGTTTG
PCR Primer 2	CACCATTTCCACCAACCAGAT
Sonde FAM	CCTCATTACTACATTTTATT
Sonde VIC	TCCTCATTACTACCTTTTATTA

Tabelle 2.9 Primer und Sonden der allelischen Diskriminierung

H ₂ O	774 µl
Universal Mastermix	1100 µl
Primer 1 (20pmol/µl)	5,5 µl
Primer 2 (20pmol(µl)	33 µl
Sonde 1 FAM-markiert (10pmol/µl)	44 µl
Sonde 2 VIC-markiert (10pmol/µl)	44 µl

Tabelle 2.10 Reaktionsansatz einer 96 Mikrotiterplatte der allelischen Diskriminierung

50°C	2'	Lösen getrockneter DNA		
95°C	10'	Denaturierung		
95°C	15"	Denaturierung	J	
60°C	1'	Annealing und Elongation	ſ	45 Zyklen

Tabelle 2.11 Temperaturbedingungen des TaqMan-Assays

2.3.7.3 MALDI-TOF MS

("Matrix assisted laser desorption/ionisation time-of-flight") wurde MALDI-TOF ursprünglich verwendet, um Peptidanalysen durchzuführen. Die Methode eignet sich jedoch auch für die SNP-Analyse. Sie basiert auf der Messung der Geschwindigkeit, mit der eine beschleunigte, geladene Masse sich in einem Vakuum, also näherungsweise wiederstandsfreien Raum, bewegt. Diese Geschwindigkeit ist abhängig von der Ladung und indirekt proportional zur Masse. Bei der SNP-Analyse wird ein negativ geladenes Oligonukleotid mit einer protonisierenden Matrix kristallisiert. Durch Verdampfen der Matrix mit Hilfe eines Lasers wird das Oligonukleotid in den Vakuumraum bewegt und innerhalb eines elektrischen Feldes beschleunigt, wo es durch eine Aussparung in ein feldfreies Flugrohr gelangt. Dort bewegt es sich mit einer masse- und ladungsabhängigen Geschwindigkeit auf einen Detektorschirm zu. Die Geschwindigkeit wird über die Zeit berechnet, die das Oligonukleotid vom Eintritt in das Flugrohr bis zum Auftreffen auf den Detektor unter Berücksichtigung der Länge des Rohres (= zurückgelegte Strecke) benötigt. Somit können Massenunterschiede zwischen einzelnen Basen über die Flugzeit gemessen werden und anhand der bekannten Massendifferenzen Rückschlüsse aufdie eingebaute Base gezogen werden. Die Kalibrierung des Massenspektrometers erfolgt durch Messung massendefinierter Kalibranten.

2.3.7.3.1 PROBE

Die PROBE Reaktion (=MALDI-TOF Bead-Methode) wird verwendet, um Allelfrequenzen von SNPs innerhalb eines DNA-Pools zu analysieren. Die Kalkulation der Flächeninhalte unter den Peaks und die damit verbundenen Allelfrequenzschätzungen erfolgte mit Hilfe der SpectroTYPER RT 2.0 Software von Sequenom. Die Flächen werden mittels eines Gauss-Filters angepasst und integriert. Beide Flächen addieren sich zu 100% Allelfrequenzen, das Verhältnis beider Flächen ist proportional zu den Frequenzen beider Allele. Bei der Korrektur der Allelfrequenzen eines Pools bedient man sich der gemessenen Flächenverhältnisse heterozygoter Probanden (Hoogendorn et al., 2000), wobei der Korrekturfaktor k = A/B und die korrigierten Frequenzen sich durch p = a / ka+b) (A,a sind Flächen des Allels 1, B,b sind die Flächen des Allels2) ergeben.

Abbildung 2.2 MALDI-TOF Spektrum

In der Abbildung ist ein MALDI-TOF Spektrum der Allefrequenzmessung von rs912557 des KORA-Pools dargestellt. X-Achse: Masse der detektierten Moleküle in Dalton; Y-Achse: Absorption der Moleküle auf dem Detektorschirm. Das Allel A mit der Oligonukleotidmasse 6015Da hat bei der Messung eine Allelfrequenz von 44%.

Der linearen Verlängerungsreaktion des eine Base vor dem zu analysierenden SNP liegenden Oligonukleotides geht eine spezifische PCR mit biotinyliertem Primer (siehe 2.3.4.1.) voraus. Das PCR-Produkt wird denaturiert und mit Hilfe von Streptavidin-beladenen, magnetischen Kügelchen aufgereinigt. Diese Einzelstränge dienen nun als Matrize für die lineare Extensionsreaktion. Hierbei wird ein spezifischer Primer, der der 5' Basenabfolge vor dem SNP entspricht, unter der Zugabe von dNTPs und ddNTPs um bis zu zwei definierte Basen verlängert. Nach einem weiteren Denaturierungsschritt kann der Überstand in eine neue Platte überführt und mit der SpectroJet-Robotik (Sequenom, GmbH) auf 3-Hydroxypicolinsäurebeladene Chips gespottet werden. Alle Aufreinigungsschritte sowie die Extensionsreaktion erfolgten unter Verwendung des MassEXTEND Core Kits (Sequenom GmbH, Hamburg) nach dem Standardprotokoll (Manual Processing Procedure for the MassARRAY II System, Sequenom GmbH, Hamburg). Es wurde die Pipettierstation Multimek96 Automated 96 Channelpipettor (MJ Research, Boston, USA) sowie der Thermocycler PCR PTC Tetrad (MJ Research, Boston, USA) verwendet.

Für die Allelfrequenzmessung an gepoolter DNA wurde pro Pool und SNP jede PCR dreifach durchgeführt. Die Extensionsprodukte der linearen Amplifikation jedes PCR-Produktes wurden jeweils vierfach gespottet, so dass insgesamt 12 Messungen vorlagen.

2.3.7.3.2 hME Methode

Die hME (homogeneous Mass Extend) Methode ist eine Weiterentwicklung der Firma Sequenom, bei der die Probenaufreinigung über einen Ionenaustauscher vorgenommen wird. PCR-Produkten (2.3.4.2) wird zunächst SAP (Shrimp Alkaline Phosphatase) zugesetzt. Dieses Enzym baut freie Nukleotide ab, die bei der späteren Massendetektion definierter Extensionsprodukte zu fehlerhaften Die Messungen führen würden. lineare Extensionsreaktion entspricht der bereits beschriebenen PROBE-Reaktion (2.3.7.3.1.). Zur Probenaufreinigung werden die Proben mit SpectroClean (Sequenom GmbH, Hamburg), einem Ionenaustauscherharz, inkubiert. Die Extensionsreaktion erfolgte unter Verwendung des hME MassEXTEND Nucleotide Tri-Mix Packs (Sequenom GmbH, Hamburg). Alle Reaktionsansätze und Reaktionsbedingungen erfolgten nach dem Standardprotokoll (MassARRAY Liquid Handler User's Guide, Sequenom GmbH, Hamburg). Es wurde die Pipettierstation Multimek96 Automated 96 Channelpipettor (MJ Research, Boston, USA) sowie der Thermocycler PCR PTC Tetrad (MJ Research, Boston, USA) verwendet. Zum Aufbringen der Proben auf 3-Hydroxy-Picolinsäure beschichtete Chips wurde die SpectroPoint-Robotik (Sequenom GmbH, Hamburg) verwendet.

2.3.8 Statistische Analysen

2.3.8.1 Hardy-Weinberg-Gleichgewicht

In einer idealen Population stellt sich ein Gleichgewicht zwischen der Anzahl homozygoter und heterozygoter Individuen ein. Die Berechnung der Abweichung genotypisierter Probanden vom Hardy-Weinberg-Gleichgewicht (HWE) dient der Überprüfung der Stabilität des Assays. Hierbei wird über die Anzahl der homozygoten und heterozygoten Individuen die Allelfrequenz berechnet. Anhand der Allelfrequenz können die in einer idealen Population auftretenden Anzahlen der homozygoten und heterozygoten Individuen bestimmt werden. Unterscheidt sich die tatsächliche Anzahl der an genotypisierten Individuen von der virtuell

Marker nicht Hardy-Weinberg-Gleichgewicht. bestimmten, ist der im Heterozygotenüberschuss ist ein Hinweis auf unspezifische Amplifikation der Markersequenz, Homozygotenüberschuss auf Amplifikationsdefizite eines der beiden homologen Chromosomen. Es wurde der exakte Test verwendet (Guo und Thompson, 1992). Dieser χ^2 -Test zeigt bereits auch mögliche Assoziation an, wenn sich die Kontrollgruppe im HWE befindet, die Fallgruppe vom HWE abweicht.

2.3.8.2 Mendelsche Vererbung

Die Überprüfung der Seggregation von Markern innerhalb einer Familienstudie wird als Mendelcheck bezeichnet. Zugrunde liegen die Mendelschen Vererbungsgänge. Abweichungen können durch Genotypisierungsfehler oder Neumutationen bedingt sein. Bei mit Frequenz besteht biallelischen Markern geringer die Möglichkeit, dass Genotypisierungsfehler nicht auffällig werden.

2.3.8.3 Fall-Kontroll-Vergleich

Assoziationsanalysen im Fall-Kontroll-Design wurden mit drei verschiedenen Chiquadrat-Tests berechnet. Der Allel-Test betrachtet die Unterschiede der Allelfrequenzen von Fällen und Kontrollen (Sasieni 1997). Mit Hilfe des Armitage Trend Tests werden additive Effekte des zu analysierenden Allels untersucht (Armitage 1955). Im Genotypen-Test werden Heterozygote mit Homozygoten kombiniert und mit homozygoten Allelträgern verglichen (Nielsen und Weir 1999). Die Assoziation im Fall-Kontroll-Design wurde webbasiert analysiert (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl).

2.3.8.4 TDT

Der TDT (="Transmission Disequilibrium Test") wird für Analysen von Kopplung und Assoziation innerhalb von Familiendaten verwendet (Spielman et al., 1993). Bei Kopplungsanalysen fließen alle erkrankten Kinder in die Teststatistik ein, Assoziationsanalysen werden an Trios als Kernfamilie durchgeführt. Es wird überprüft, ob ein Allel häufiger als erwartet von heterozygoten Eltern an die oder das erkrankte Kind/er weitergegeben wird. Nicht-übertragene Allele werden als interne Kontrolle benutzt. Der RC- TDT (recombined TDT) ist eine Weiterentwicklung des TDT (Knapp et al., 1999), mit der fehlende Genotypendaten der Eltern anhand der Genotypen ihrer Kinder rekonstruiert werden. Bei den Transmissionsanalysen multiallelischer Marker wurde das Äquivalent einer Chiquadratstatistik mit einem Freiheitsgrad verwendet und der p-Wert nach Bonferoni korrigiert. Die Kopplungs- und Assoziationsanalysen der Asthma-Familienstudie wurden mit SAS Version 8.2 Genetics durchgeführt.

2.3.8.5 Haplotypenrekonstruktionen

Haplotypen nichtverwandter Individuen wurden in der Familie unter der Verwendung genotypisierter Kinder rekonstruiert. Hierbei wurde ein Bayesisches Modell benutzt (Stephens et al., 2001). Kopplungsungleichgewichtsberechnungen wurden webbasiert mit Haploxt (http:://archimedes.well.ox.ac.uk/pise/) oder mit SAS 8.2 durchgeführt, wobei hier der EM-Algorithmus verwendet wurde. Hierbei wird eine Schätzung der Allelfrequenzen vollständig genotypisierter Probanden vorgenommen, und in einer Neuschätzung die nicht vollständig genotypisierten Allelfrequenzen der übrigen Probanden getestet. Nach einer erneuten Schätzung aller Probanden wird die Neuschätzung und Überprüfung der Frequenzen so lange durchgeführt, bis die Allele hinreichend stabil geschätzt sind.

2.3.8.6 Vergleich von Allelfrequenzen gepoolter Probanden

Für jeden SNP wurden die Differenzen der Allelfrequenzen des spezifischen Erkrankungspools zum Kontrollpool und zu allen anderen Pools, bei der die Erkrankung nicht assoziiert ist, getestet. Indem man ein lineares gemischtes Regressionsverfahren mit Effektschätzern für PCR und Spotting Fehler anlegt, erhält man die für Fehler bereinigte Allelfrequenz. Neben den mittleren Allelfrequenzschätzern bekommt man auch die korrespondierende Varianz. Die Allelfrequenz der kombinierten Analysen wird über die gewichtete Summe der verschiedenen Pools erhalten. Als Wichtung wurde die inverse Varianz genutzt. Dann wurde eine modifizierte Chiquadratstatistik zum Test auf Unabhängigkeit angewandt, indem die Varianzen der beiden Allelfrequenzschätzer der zu vergleichenden Pools in den Nenner mit eingebunden wurden:

$$TG = \frac{(\hat{p}_{D} - \hat{p}_{C})^{2}}{\hat{p} \cdot (1 - \hat{p}) \cdot \left(\frac{1}{2n_{D}} + \frac{1}{2n_{C}}\right) + \hat{\sigma}_{D}^{2} + \hat{\sigma}_{C}^{2}}$$

mit

$$\hat{p} = (n_D \hat{p}_D + n_C \hat{p}_C) / (n_D + n_C)$$

und

- \hat{p}_{C} geschätzte Allelfrequenz des Kontrollpools
- n_C Populationsgröße des Kontrollpools
- $\hat{\sigma}_{c}^{2}$ korrespondierende Meßfehlervarianz der geschätzten Kontrollpoolallelfrequenz
- \hat{p}_D geschätzte Allelfrequenz des Erkrankungspools
- n_D Populationsgröße des Erkrankungspools
- $\hat{\sigma}_{D}^{2}$ korrespondierende Meßfehlervarianz der geschätzten Erkrankungspoolallelfrequenz

Die Teststatistik wurde anhand des Medians aller Assoziationsvergleiche multipliziert und durch 0,456 dividiert (Devlin und Roeder, 1999; Devlin et al., 2001), die Lamda-Werte der Korrektur entsprechen dem Verhältnis des Medians der Teststatistik zu dem erwarteten Median von 0,456; die resultierende Teststatistik ist annährend chiquadratverteilt mit einem Freiheitsgrad. Um auf multiples Testen zu kontrollieren, wurde die Benjamini Methode der "False Discovery Rate" (Benjamini und Hochberg, 1995) verwendet, da eine strikte Bonferonikorrektur zu konservativ ausfällt. Die statistischen Analysen der Allelfrequenzvergleiche erfolgten in Zusammenarbeit mit Dr. Peter Reitmeir.

2.3.8.7 Computerbasierte Selektion der SNPs

Die computerbasierte SNP-Selektion auf Chromosom 6p erfolgte auf der Grundlage des "Golden Path Assembly" vom Dezember 2000: ctg15907 (<u>http://genome.ucsc.edu</u>). Hierzu wurden alle SNPs des TSC-Consortiums (http://snp.cshl.org) auf ctg15807 zwischen 25 Mb und 45 Mb in eine Access-Datenbank transferiert und dort anhand der Positionen ca. alle 12kb ein SNP ausgewählt. Von den 1297 selektierten SNPs wurden vorerst 418 für die Validierung im Labor ausgewählt. Bei der weiteren Selektion der zu validierenden SNPs wurden aufgrund der neuen Verfügbarkeit weitere SNPs der NCBI-Datenbank (www.ncbi.nlm.nih.gov/SNP) in die interne Datenbank übernommen. Die Vorauswahl der zu

analysierenden SNPs erfolgte wieder computerbasiert, wobei bei der endgültigen Selektion der erweiterten Studie alternative SNPs der direkten Nachbarschaft bevorzugt wurden, wenn sie durch mehrere Autoren beschrieben wurden und / oder aufgrund der Lokalisation einen möglichen funktionellen Einfluss haben. Im Rahmen einer Zwischenauswertung wurden die validierten SNPs durch eine interne Blastsuche (ftp://ftp.ncbi.nih.gov/blast/) von 50 bp upstream/stromaufwärts des analysierten SNPs auf die NCBI Version 26 der chromosomalen Region von 20 Mb bis 50 Mb anhand der annotierten Ensembl Version 3.2.1 (www.ensembl.org/Homo_sapiens) annotiert. Die endgültige Lokalisation wurde webbasiert mit Hilfe der NCBI-SNP-Datenbank anhand der NCBI Version 33 genomweit durchgeführt. Bei SNPs, die keinen späteren Lokalisationseintrag der NCBI-SNP-Datenbank aufwiesen, wurden Blat-Analysen (http://genome.ucsc.edu/blat/) der verwendeten PCR-Primer und Extensionsprimer auf die NCBI Version 33 durchgeführt. Die computerbasierte SNP-Selektion sowie die internen Blast-Analysen der NCBI Version 26 erfolgten in Zusammenarbeit mit Dr. Matthias Wjst.

3 Ergebnisse

42,5x10⁶ 40.0x10⁶ 37,5x10⁶ 35,0x10⁶ 32,5x10⁶ 30,0x10⁶ 27.5x10⁶ 25.0x10⁶ В А

3.1 SNP Auswahl und Validierung

Die für das Screening auf Chromosom 6p21 eingesetzten SNPs wurden Datenbanken ausgewählt aus (snp.cshl.org; www.ncbi.nlm.nih.gov/SNP). Da innerhalb der Region hohes Kopplungsungleichgewicht (LD) mit bis zu 170 kb herrscht, wurde alle 12 kb ein SNP computerbasiert selektiert. Es konnten somit 1435 SNPs ausgewählt werden, was einem durchschnittlichen Abstand von 17 kb entspricht (Abbildung 3.1). Die endgültige Auswahl erfolgte durch die Analyse der SNPs anhand gepoolter DNA von zufällig ausgewählten KORA-Probanden. Für 31 SNPs konnten aufgrund fehlender Sequenzen keine Primer generiert werden, 383 waren in unserer Population monomorph. Des Weiteren wurden 451 SNPs von den folgenden Analysen ausgeschlossen, da sie die internen Qualitätskriterien einer validen Spektrenauswertung verfehlten:

Bei 170 SNPs war die Intensität der Messung des Majorallels vermindert. Somit konnte keine Aussage über das Auftreten alternativer Allele getroffen werden.

Bei 19 SNPs war das Verhältnis zwischen dem Minorallel-Signal und dem Grundrauschen geringer als 4:1, wodurch die Allelfrequenzbestimmung unsicher wurde, 52 zeigten kein Extensionsprodukt.

117 SNPs hatten ungenügend amplifizierte PCR-Produkte, so dass nur der biotinylierte, nicht-elongierte PCR-Primer-Peak gemessen wurde. Eine mögliche Erklärung ist der hohe Polymorphismusgrad

Abbildung 3.1 Selektierte SNPs auf Chromosom 6p

Die Spalte A zeigt die Lokalisation (NCBI Version 26) der SNPs, welche monomorph waren oder nicht validiert werden konnten. Die Spalte B zeigt die Lokalisation der validierten SNPs. der HLA-Region, der die Amplifikationseffizienz verminderte. Ebenso konnten zwar PCR-Produkte von 72 SNPs amplifiziert werden, wobei jedoch der jeweilige Extensions-Primer nicht an den biotinylierten Einzelstrang der PCR binden konnte und somit bei der Analyse kein Signal auftrat. Bei 21 Assays wurden alternative Massen detektiert, was auf Sequenzfehler rückschliessen lässt, oder aber durch einen möglichen triallelischen Charakter der SNPs zustande kommt. Laut der Genannotation der 26sten Version von Ensembl liegen von den verifizierten SNPs 8.8% in codierenden Regionen, 30.3% in Introns, 3% innerhalb von 2 kb 5' oder 3' eines Gens und die restlichen SNPs in intergenischen Regionen.

Die Allelfrequenzen von 546 validierten SNPs wurden in den acht verschiedenen Krankheitspools sowie dem Kontrollpool bestimmt. Es wurden 45893 Allelfrequenzbestimmungen durchgeführt. Im Durchschnitt konnten 84 Messungen pro SNP erhoben werden, der Median liegt bei 90.

Aufgrund der Vorauswahl der analysierten SNPs durch die MALDI-TOF basierte Allelfrequenzbestimmung an gepoolter DNA sind die Allelfrequenzverteilungen zu Gunsten häufiger SNPs verschoben. Über 75% der Messungen geben Minorallelfrequenzen über 20% an, nur 2% zeigen Minorallelfrequenzen unter 5% (Abbildung 3.2).

Abbildung 3.2 Allelfrequenzenverteilungen

Aufgrund der Vorauswahl der SNPs durch die Validierung mittels MALDI-TOF basierter Messungen an gepoolter DNA zeigen nur ca. 7% aller Messungen Minorallelfrequenzen unter 10%.

3.2 Überprüfung der Meßmethode

Die Überprüfung der Allelfrequenzbestimmungen an gepoolter DNA wurde von Frau Dr. Monika Werner durchgeführt. Hierfür wurden je Pool und Marker jeweils drei unabhängige PCRs dreifach gespottet. Im Falle der Abweichung einer Messung zum Mittelwert von mehr als 0,04 wurde die Messung von den weiteren Analysen ausgeschlossen. Da zum Zeitpunkt der Auswertung das von der Firma Sequenom entwickelte Software-Programm für Allelfrequenzmessungen an gepoolter DNA noch nicht zur Verfügung stand, wurden die Berechnungen der Flächeninhalte der einzelnen Alleldetektionen in Anlehnung an das Sequenom-Software Programm durch ein von Herrn Dr. Michael Sych programmiertes EXCEL-Makro durchgeführt.

3.2.1 Artifizielle Pools

Die Dektektion verschiedener Allelfrequenzen durch MALDI-TOF MS wurde an artifiziellen Pools überprüft. Hierfür wurde DNA von 8 homozygoten Probanden in verschiedenen Mischungsverhältnissen gepoolt, um DNA-Pools mit erwarteten Allelfrequenzen der Marker von 10% bis 90% zu erhalten. Die Frequenzmessungen wurden an zwei der durch die Pilotstudie ausgewählten Markern (TSC0355191 und TSC0980679) durchgeführt. Die Ergebnisse sind in der Abbildung 3.3 dargestellt. Die Standardabweichungen der einzelnen Messpunkte liegen im Mittel bei 0,038 (geringste Abweichung 0,016, höchste Abweichung 0,059) für TSC0355191, bzw. bei 0,036 (0,007 bis 0,090)für TSC0980679.

Es zeigt sich ein linearer Zusammenhang der Messungen zu den jeweilig vorgegebenen erwarteten Allelfrequenzen und weist eine lineare Trendlinie mit dem Bestimmtheitsmaß r^2 von 0,987 bzw. 0,992 auf. Die Steigungen der Trendlinien unterscheiden sich mit 1,047 bzw. 1,031 nicht signifikant von der erwarteten Steigung 1 (p=0,177 und 0,800).

Abbildung 3.3 Artifizielle Pools

Die Abbildung (siehe nächste Seite) zeigt die Korrelation von Allelfrequenzbestimmungen zweier Marker an artifiziellen DNA-Pools homozygoter Probanden mit den durch die Vorgabe definierten, erwarteten Allelfrequenzen von 10% bis 90%. Die Linie zeigt die Korrelation bei vollständiger Konkordanz der erwarteten und gemessenen Allelfrequenzen an. Die Fehlerbalken geben die Standardabweichungen der jeweils 9 Messungen je Datenpunkt an.

(Beschriftung siehe vorige Seite)

3.2.2 Korrekturfaktor

Für die Bestimmung Allelfrequenzen in realen **DNA-Pools** wurden von Einzelgenotypisierungen der gepoolten Probanden sowie Allelfrequenzbestimmungen in DNA-Pools an fünf der durch die Pilotstudie ausgewählten Markern durchgeführt (siehe Abbildung 3.4). Die Abweichungen der gemessenen Allelfrequenzen von den durch die Einzelgenotypisierung erwarteten Allelfrequenzen bewegen sich bei den verschiedenen Markern zwischen 0,026 und 0,118 (Mittelwert: 0,063). Die Messungen wurden anhand von heterozygoten Probanden korrigiert. Bei heterozygoten Probanden wird eine die Allelfrequenz von 0,5 erwartet, dementsprechend ein Verhältnis beider Alleldetektionsflächen von 1 erwarten (vergleiche 1.1.2). Durch Korrektur mit Hilfe des wahren Verhältnisses je Marker treten nun Differenzen von 0,020 bis 0,047 und somit im Mittel von 0,031 auf.

Abbildung 3.4 gepoolte Analysen und Korrektur mittels Heterozygoten

Die Abbildung zeigt den Vergleich zwischen der erwarteten Allelfrequenz eines Pools (mit 150 Probanden) durch Einzelgenotypisierung (EZ) der Probanden, der mit Hilfe von MALDI-TOF gemessenen Allelfrequenz sowie die anhand des Verhältnisses der Alleldetektionsflächen heterozygoter Probanden korrigierten Allelfrequenzbestimmung. Die Fehlerbalken entsprechen den Standardabweichungen der einzelnen Messungen.

3.2.3 Poolgrößen

Für die Überprüfung der Auswirkungen der Anzahl der Probanden eines DNA-Pools wurden 280 Probanden für TSC0980579 einzelgenotypisiert und zwei DNA-Pools mit 94 zufällig ausgewählten Probanden bzw. den übrigen 186 Probanden sowie ein DNA-Pool mit allen Probanden hergestellt. Die Allelfrequenzen der Pools wurden zusätzlich durch die SpektroTyper RT Software genotypisiert (siehe Abbildung 3.5).

Die Differenz der durch Einzelgenotypisierung bestimmten Allelfrequenzen des 94er Pools und des 186er Pools liegt bei ca. 8%, wobei durch die Poolfrequenzmessungen 7,75% bzw. 6,25% Differenzen detektiert wurden. Abweichende Messungen von der erwarteten Verschiebung durch die Heterozygotenallelflächenverhältnissen bei der Sequenommessung des 280er Pools können jedoch auch bei einer erwarteten Differenz von 3% zwischen dem 186er Pool und 280er Pool zu Differenzen von 5,47% führen. Hierbei ist kein direkter Zusammenhang zwischen den Standardabweichungen der einzelnen Mittelwerte und der Valididät der Messung zu beobachten, womit ein Einfluß der Poolgröße auszuschließen ist.

Abbildung 3.5 Einfluß der Poolgrößen auf die Messungen

Vergleich der erwarteten Allelfrequenzen durch Einzelgenotypsierung (Allelfrequenz durch EZ) der Probanden zu den im Haus gemessenen (gemessene Allelfrequenz) und durch die Firma Sequenom bestimmten (gemessene Allelfrequenz Sequenom) Allelfrequenzen von Pools aus DNA von 94, 186 und 280 Probanden. Die Fehlerbalken geben die Standardabweichungen der einzelnen Messwerte an.

3.3 Analyse der Meßmethode unter Hochdurchsatzbedingungen

Das Kapitel gibt einen Überblick über markerspezifische Abweichungen der Messungen innerhalb von Pools und die Auswirkung der einzelnen Messfehler unter HTS (Hochdurchsatz)-Bedingungen auf die Gesamtmessung unter Hochdurchsatzbedingungen.

3.3.1 Abweichungen der Messungen

Experimentelle Fehler bei der Allelfrequenzmessung gepoolter DNA können durch Mehrfachmessungen minimiert werden. Die Abweichungen aller Messungen eines Pools setzen sich aus Fehlern bei der exponentiellen als auch linearen Amplifikationsreaktion (PCR), der Detektionsgenauigkeit der "Time-of-flight"-Messung (TOF) sowie der Kristallisation der Proben auf verschiedenen Spots (Spotten) zusammen. Da bei der Allefrequenzbestimmung je Pool und Marker je drei unabhängige PCRs jeweils vierfach gespottet wurden und sich jede Messung pro Spot aus insgesamt 60 Messungen (drei verschiedene Lokalisationen, jeweils 20fach gemessen) zusammensetzen, wurde mittels Varianzanalysen überprüft, inwieweit sich die einzelnen Messfehler auf die gesamte Abweichung auswirken (siehe Abbildung 3.6). Die durchschnittlichen Standardabweichungen

der einzelnen Messungen liegen bei TOF leicht erhöht (mit 0,0351) zu Spots (0,0175) und PCR (0,0270) und addieren sich ingesamt zu einer durchschnittlichen Standardabweichung von 0,0293 aller Messungen mit mind. 2 Meßwerten je Gruppierung.

Abbildung 3.6 Abweichungen der Messungen

In der Abbildung wird der prozentuale Anteil der Standardabweichungen der einzelnen experimentellen Fehler bei der Allelfrequenzbestimmung an gepoolter DNA aufgezeigt. Die Fehler der TOF-Messung setzen sich aus den Abweichungen bei der Detektion mittels MALDI-TOF zusammen, Spotten zeigt die Differenzen, die bei der Kristallisation der selben PCR auf verschiedenen Spots auftreten und PCR zeigt die Abweichungen, die sich aus den Mittelwerten der einzelnen Spots einer PCR zu den Mittelwerten der Spots der weiteren PCRs zusammensetzen. Die einzelnen Messfehler addieren sich zu einer Gesamt-Standardabweichung aller Messungen mit mindestens zwei Messungen je Vergleich von durchschnittlich 0,0293.

Die Auswirkung zeigt sich folgenden poolinterner der Fehler im Vergleich Allelfrequenzdifferenzen nach zufälliger Gruppierung der Messwerte sowie der Doppelgenotypisierung an neun Markern je Pool.

3.3.2 Poolinterne Vergleiche

Zur Darstellung der Verlässlichkeit der Messergebnisse wurden alle Messwerte pro SNP und Erkrankung gruppiert und die Abweichung der korrespondierenden Mittelwerte verglichen. Es wurden 4450 Vergleiche mit mindestens zwei Messwerten pro Gruppierung durchgeführt (Abbildung 3.7). Der Mittelwert beträgt 1,58% Allelfrequenzdifferenzen innerhalb der Pools. Etwa 75% aller Vergleiche zeigen poolinterne Allelfrequenzdifferenzen bis 2%. Bei ca. 7% aller Vergleiche wurden Differenzen über 4% beobachtet. 147 Vergleiche (3,3%) zeigen signifikante Differenzen der Mittelwerte zufällig gruppierter Messdaten.

Abbildung 3.7 Interner Vergleich der Rohmessdaten

Die Abbildung zeigt die poolinternen Abweichungen der Rohmessdaten nach zufälliger Gruppierung der erhaltenen Messdaten je SNP und Pool. Der Mittelwert der Differenzen beträgt 0,0158. Im unteren Abschnitt sind die signifikanten p-Werte des Vergleichs der Mittelwerte angegeben (Maximaler p-Wert 0,002). Ca. 75% aller Vergleiche zeigen poolinterne Allelfrequenzdifferenzen von unter 2%.

Durch das zweistufige Auswahlverfahren der für die Validierung vorgesehenen SNPs wurden 10 SNPs unwissentlich doppelt ausgewählt und wurden erst bei der gemeinsamen Auswertung anhand der übereinstimmenden Sequenzinformation auffällig. Bei 9 der 10 SNPs konnte ein Vergleich der Allelfrequenzbestimmungen innerhalb der verschiedenen Pools durchgeführt werden, ein SNP-Paar lieferte bei keinem Pool eine ausreichende Anzahl an Messwerten und wurde den weiteren Analysen ausgeschlossen. von Die Allelfrequenzunterschiede innerhalb der jeweiligen Pools betragen im Mittel 2,09% wobei sich die Differenzen in Abhängigkeit vom analysierten Marker durch Unterschiede innerhalb einzelner Pools (Bsp. rs129129, rs1355480) oder mehrerer Pools (Bsp. rs1225710, rs751726) ausprägen. Von 75 Vergleichen zeigten 19 (25%) signifikante Differenzen der jeweiligen Mittelwerte, wobei der maximale p-Wert 0,0003 bei rs756137 bei einer beobachteten Differenz 4,8% den korrespondierenden Standardabweichungen von und der Allelfrequenzmessungen von 2,26 bzw. 2,92% auftrat.

Abbildung 3.8 Doppelgenotypisierung

Die Abbildung zeigt die Doppelgenotypisierungsergebnisse an 9 Markern. Die Allelfrequenzdifferenzen der jeweiligen poolinternen Messungen sind auf der y-Achse aufgetragen. Signifikante Differenzen der korrespondierenden Mittelwerte der jeweiligen Messungen sind schwarz ausgefüllt dargestellt. – bezeichnet die mittleren Differenzen der jeweiligen Marker. Der maximale p-Wert der 75 Vergleiche beträgt 0,0003.

3.3.3 Korrektur mittels hME

Da die Überprüfung signifikanter Differenzen zwischen zwei Pools durch Einzelgenotypisierung der Probanden mit der hME-Methode (einer Weiterentwicklung der Firma Sequenom) erfolgt, wurde analysiert, ob die Detektionsunterschiede beider Allele bei heterozygoten Probanden ebenfalls zur Korrektur der gemessenen Allelfrequenzen der Pools mit der Bead-Methode dienen können (vergleiche 3.2.2). Die Analysen von drei Pools mit 39, 122 und 288 Probanden (IgE, AS und KORA) wurden an 7 Markern durchgeführt (siehe Abbildung 3.9).

Die Abweichungen der gemessenen Allelfrequenzen von den durch die Einzelgenotypisierung erwarteten Allelfrequenzen bewegen sich bei den verschiedenen Markern zwischen 0.006 und 0,258 (Mittelwert 0,099). Durch Korrektur mittels hME-Alleldektektion heterozygoter Probanden treten nun Differenzen von 0,005 bis 0,171 und somit im Mittel von 0,052 auf. Hierbei wird in Abhängigkeit der Marker bei allen Pools eine Überkorrektur (rs1028411, TSC0030365), eine ungenügende Korrektur (TSC0111007, TSC0504774) und eine adäquate (rs760804, TSC0095804, TSC0899479) beobachtet. Korrektur Die korrigierten Poolallelfrequenzen zeigen somit eine deutlich schlechtere Anpassung an die durch Einzelgenotypisierung erhaltenen Allelfrequenzen als unter Verwendung derselben Methoden bei der Poolfrequenzmessung und der Einzelgenotypisierung.

Abbildung 3.9 hME-Korrektur gepoolter Analysen

Die Abbildung zeigt den Vergleich von Allelfrequenzbestimmungen der Pools durch Einzelgenotypisierung der Probanden, der mit Hilfe von MALDI-TOF gemessenen Allelfrequenz sowie die anhand des Verhältnisses der Alleldetektionsflächen bei hME-Genotypisierung heterozygoter Probanden korrigierten Allelfrequenzbestimmung. Die Fehlerbalken entsprechen den Standardabweichungen der einzelnen Messungen, bei der Einzelgenotypisierung den Fehler der Allelfrequenzbestimmung.

Im Hinblick auf den Vergleich von Allelfrequenzen verschiedener Pools zeigt sich bei zwei Markern (TSC0095804, TSC0899479) eine leicht verbesserte Anpassung zu der durch Einzelgenotypisierung bestimmen Allelfrequenz der Pools der korrigierten Allelfrequenzmessungen versus den gemessenen Allelfrequenzen. Bei zwei Markern (rs760804, TSC0111007) zeigen gemessene Pool-Allelfrequenzdifferenzen eine bessere Anpassung an die Einzelgenotypisierung.

Abbildung 3.10 Auswirkung der Genotypsierungsmethoden auf Allelfrequenzdifferenzen

Die Differenzen der Pools AS (N=122) und IgE (N=39) zu KORA (N=288) sind im Rahmen der Messgenauigkeit vergleichbar mit Einzelgenotypsierung, gemessenen Allelfrequenzen im Pool und korrigierten Allelfrequenzen durch hME-genotypsierte Heterozygote.

3.4 Poolspezifische Assoziationsergebnisse

Der anfangs anhand des "Golden Path Assembly" (Dez. 2000) selektierte Bereich von 20 bis 48 Mb des Chromosom 6 änderte sich im Studienverlauf auf die 33.Version auf 22 bis 40 Mb (Abbildung siehe Anhang). 49 der validierten SNPs wurden auf den langen Arm des Chromosoms 6 verschoben. Auch die Orientierung der SNPs untereinander wurde berichtigt. Die chromosomale Abdeckung der Region durch SNPs variiert nun ebenfalls. Die analysierten SNPs clustern in der genreichen HLA Region (von ca. 29,8 bis 33 Mb). Die Mittelwerte aller gemessenen Allelfrequenzen eines Pools sind im Anhang anhand ihrer Lokalisation dargestellt.

KORA Proben zeigen geringere Differenzen der Allelfrequenzen gegenüber der Kombination der Erkrankungspools mit 0,037 (Median der Differenzen), als jeder Erkrankungspool gegenüber der Kombination der weiteren Erkrankungspools mit 0,04 bis 0,051. Die geringsten Abweichungen des AD-Pools zeigten sich gegenüber dem KORA-Pool (0,031), ebenso des AS-Pools gegenüber KORA (0,031). Der IgE-Pool zeigt eine Differenz zum KORA-Pool von 0,051, wobei die geringste Differenz zum AD-Pool (0,044) besteht (AS-Pool 0,045). Der CD-Pool hat die geringste Differenz gegenüber KORA (0,034). Für den ShF-Pool zeigt sich die geringste Differenz zum KORA-Pool (0,0412), im Gegensatz dazu zeigt der ShT-Pool die geringste Differenz zum T1D1-Pool mit 0,037 (Differenz zu KORA 0,040), des Weiteren unterscheiden sich der ShF-Pool und der ShT-Pool stark voneinander (0,044). Beide T1D-Pools zeigen zueinander die geringsten Differenzen mit 0,0355, wobei die Differenzen des T1D1-Pools zu KORA bei 0,0382 und die des T1D2-Pools zum KORA-Pool bei 0,0389 liegen.

In der Abbildung 3.11 werden die Lambda-Werte der Vergleiche (Berechnung siehe 2.3.8.6.) dargestellt. Hierbei wird die genetische Verwandtschaft der einzelnen Pools in Abhängigkeit von der Anzahl der gepoolten Probanden-DNAs aufgezeigt. Da auch die möglichen assoziierten Marker in die Analyse einfließen, können erhöhte Lambda-Werte auf regionale Differenzen oder einen durch Populationsstratifikation bedingten geringen Verwandtschaftsgrad der verglichenen Studien hinweisen.

Abbildung 3.11 Lambda-Werte gepoolter Allelfrequenzen

Die obere Figur zeigt die gewonnenen Lambda-Werte aller Erkrankungspools zur Kontrolle KORA. In der unteren Figur sind die Lambda-Werte assoziierter Erkrankungspools untereinander dargestellt.

Zur Analyse der Allelfrequenzdifferenzen der verschiedenen Erkrankungspools gegenüber der Kontrolle KORA wurden nur Messwerte, die sich aus mindestens 4 Messungen von mindestens 2 unabhängigen PCR-Amplifikationen zusammensetzen, berücksichtigt. Somit flossen 470 Allelfrequenzbestimmungen des Asthma Pools (mit 58 Markern, die zur Kontrolle KORA eine Differenz von über 7% aufweisen), 502 Allelfrequenzbestimmungen des IgE Pools (154 Marker mit einer Differenz von über 7%), 503 des atopische Dermatitis Pools (74), 472 des spät einsetzenden Typ 1 Diabetes Pools (90), 463 des früh einsetzenden Typ 1 Diabetes Pools (89), 494 des Schizophrenie Pools aus Familien (116), 414 des Schizophrenie-Trio Pools (92), 469 des Morbus Crohn Pools (77) und 442 des KORA Pools ein. Pro SNP und Erkrankung setzt sich die bestimmte Allelfrequenz aus durchschnittlich 10 Messungen zusammen, wobei die Allelfrequenzschätzungen sich anhand eines linearen Regressionsmodells mit PCR und Messfehler durch Spotten als "Random Effects" ergeben.

Zur Kontrolle interner Abweichungen (siehe 3.2, 3.3.2) der bestimmten Allelfrequenzen sowie poolspezifischer Abweichungen zur Kontrolle durch den Charakter und die Anzahl der gepoolten Probanden wurde der Chi-Quadrattest auf Unabhängigkeit modifiziert (siehe 2.3.8.6). Zur Kontrolle mangelhafter Messungen von KORA als Kontrollpool wurden die

Allelfrequenzbestimmungen nicht-assoziierter Erkrankungspools eines jeweiligen Pools kombiniert und als zusätzliche Kontrolle verwendet. Hierbei flossen für AD alle Pools außer AS und IgE, für AS alle außer AD und IgE, für IgE alle außer AD und AS, für ShF alle außer ShT, für ShT alle außer ShF, für T1D1 alle außer T1D2, für T1D2 alle außer T1D1 und für CD alle Pools ein.

Fehler 1. Art wurden entweder durch Benjaminis Korrektur für multiples Testen kontrolliert, oder durch das Auftreten weiterer signifikanter Marker einer Region, wobei hier durch die Definition einer Region ebenfalls mangelhafte Messungen des Erkrankungspools kontrolliert werden können. Jede Region zeichnet sich durch mindestens einen Marker aus, der auf dem Signifikanzniveau 0,05 gegenüber der Kontrolle und den kombinierten Allelfrequenzen signifikante Differenzen aufweist sowie mindestens einen weiteren Marker, der entweder zu KORA oder, falls für KORA keine valide Messung erhoben wurde, zu den kombinierten Allelfrequenzen Signifikanz zeigt. Alle weiteren signifikanten SNPs der Erkrankungspools sind im Anhang aufgelistet. Die Annotation beruht auf der aktuellen Version von genome.ucsc.edu, in der RefSeq-Gene, ESTs, mRNA und computer-basierte Genvorhersagen auf die genomische Sequenz geblastet werden.

3.4.1 Typ 1 Diabetes als Positivkontrolle

3.4.1.1 spät einsetzender Typ 1 Diabetes

Bei der Analyse des T1D1-Pools traten insgesamt 41 signifikante Allelfrequenzdifferenzen zur Kontrolle KORA oder den kombinierten Frequenzen auf, von denen 25 Marker drei definierte Regionen (TdA, TdB und TdC) beschreiben (vergleiche Abbildung 3.12). Nach Korrektur für multiples Testen verbleiben 9 signifikante Differenzen zu KORA, welche ebenfalls alle in den definierten Regionen lokalisieren und von denen vier Marker durch die kombinierten Frequenzen gestützt werden. Die Region TdA erstreckt sich über die distale Region der HLA Klasse I und beinhaltet *RFP*. In der Region TdB von *C60RF18* bis *BAT3* lokalisieren 16 weitere Gene, *TCF19, POU5F1, HLA-C, HLA-B, MICA, HCP5, MICB, BAT1, ATP6V1G2, NFKBIL1, LTA, TNF, LTB, LST1, NCR3, AIF1* und *BAT2*. Die dritte Region TdC umfasst die HLA Klasse II Gene *HLA-DRA, HLA-DRB1-9, HLA-DQA1, HLA-DQB1, HLA-DQA2* und *HLA-DQB2* sowie *C60RF10, BTNL2, HLA-D0B, TAP2, PSMB8, TAP1, PSMB9, HLA-DMB, HLA-DMA, BRD2* und *HLA-DOA*.

— Signifikanzniveau p=0,05

- ♦ p(KORA)
- p (kombinierte Frequenzen)
- ♦ p (KORA) signifikant
- p (kombinierte Frequenzen) signifikant
- definierte Regionen

Abbildung 3.12 Poolingergebnisse des spät einsetzenden Typ 1 Diabetes

Die Abbildung (siehe vorige Seite) gibt einen Überblick über die signifikanten Marker zu KORA und den kombinierten Frequenzen sowie die definierten Regionen TdA (ca. 29 Mb), TdB (ca. 31,2-31,7 Mb) und TdC (ca. 32,3-33,0 Mb) der chromosomalen Region 6p von 22 bis 40 Mb (NCBI Version 33), wobei signifikante p-Werte nach Korrektur für multiples Testen größer markiert sind. $E+N=x10^{+N}$

Der Hauptmarker der TdA-Region (TSC0099063) weist nach Korrektur für multiples Testen eine signifikante Differenz von ca. 17% zur Kontrolle KORA auf, die kombinierten Frequenzen zeigen eine verminderte Differenz von ca. 12%. Vergleichbare Differenzen von 17% bzw. 14% werden beim Hauptmarker der TdB-Region (rs928815) beobachtet.

TdC, die Hauptsuszeptibilitätsregion, wird von mehreren signifikanten Markern gestützt und beinhaltet TSC0879839 (vergleiche Abbildung 3.13), welcher ca. 40 kb proximal von *HLA-DQB1* lokalisiert und die größten Allelfrequenzdifferenzen von ca. 30% zu beiden Kontrollen aufweist. Die weiteren nach Korrektur für multiples Testen signifikanten Marker lokalisieren auf HLA-DRB1-9 Haplotypen, Ausnahme sind TSC0276264 und rs11244, welche nicht nur durch eigene Blast-Analyse auf das Chromosom 6 gemappt werden konnte und proximal sowie distal zu TSC0879839 lokalisieren.

Abbildung 3.13 signifikante Differenzen des spät einsetzenden Typ 1 Diabetes

(siehe nächste Seite) Der obere Graph zeigt die korrespondierenden p-Werte in logarithmischer Einheit zu den im unteren Figur dargestellten Allelfrequenzmessungen der signifikanten Marker. Die Fehlerbalken entsprechen der Standardabweichung der Messungen. In der zugehörigen Datentabelle sind die Marker, ihre Lokalisation auf Chromosom 6 (NCBI Version 33) sowie ihr Zugehörigkeit zu einer definierten Region. Des Weiteren ist – wenn vorhanden – der assoziierte Genlokus angegeben. Marker, welche nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden konnten, sind unter NCBI 33 hellgrau beschriftet. Marker, welche zu beiden Kontrollen signifikante Differenzen aufzeigen und nicht durch eigene Blast-Analysen der Lokalisation zugeordnet werden konnten, sind unter SNP fett markiert. E-n entspricht x10⁻ⁿ

Legende (oben) — Signifikanzniveau 0,05 • p (kombinierte Frequenzen) * p (KORA)

Legende (unten)
3.4.1.2 früh einsetzender Typ 1 Diabetes

Die Analyse des T1D2-Pools resultierte in insgesamt 52 signifikanten Markern. Es werden zwei Regionen (TdB und TdC) beschrieben, die durch 29 Marker gestützt werden. Fünf der 19 nach Korrektur für multiples Testen signifikanten Marker lokalisieren außerhalb der definierten Regionen (vergleiche Abbildung 3.14). rs406939 liegt ca. 171 kb vom distalen Ende der TdC Region entfernt (vergleiche Abbildung 3.15). Die TdB-Region liegt eingeengt vor und beinhaltet die Gene *POU5F1, HLA-C, HLA-B, MICA* und *HCP5,* der Hauptmarker TSC0115304 lokalisiert in der intronischen Sequenz von *HLA-C*.

Die Hauptsuszeptibilitätsregion TdC wird durch 22 Marker beschrieben, TSC0879839 weist die größten Differenzen zur Kontrolle KORA und den kombinierten Frequenzen von ca. 30% bzw. 27% auf und wird durch weitere signifikante Marker auch außerhalb der HLA-DRB1-9-Haplotypen-Region gestützt. Beide Regionen werden ebenfalls durch den T1D1-Pool beschrieben (vergleiche 3.4.1.1).

- Signifikanzniveau p=0,05
- ◆ p(KORA)
- p (kombinierte Frequenzen)
- ♦ p (KORA) signifikant
- p (kombinierte Frequenzen) signifikant
- definierte Regionen

Abbildung 3.14 Poolingergebnisse des früh einsetzenden Typ 1 Diabetes

Die Abbildung (siehe nächste Seite) gibt einen Überblick über die signifikanten Marker zu KORA und den kombinierten Frequenzen sowie die definierten Regionen TdB (ca. 31,1-31,5 Mb) und TdC (ca. 32,1-33,0 Mb) der chromosomalen Region 6p von 22 bis 40 Mb (NCBI Version 33), wobei signifikante p-Werte nach Korrektur für multiples Testen größer markiert sind. E+N=x10^{+N}

Abbildung 3.15 signifikante Differenzen des früh einsetzenden Typ 1 Diabetes

(siehe übernächste Seite) Der obere Graph zeigt die korrespondierenden p-Werte in logarithmischer Einheit zu den in der unteren Figur dargestellten Allelfrequenzmessungen der signifikanten Marker. Die Fehlerbalken entsprechen der Standardabweichung der Messungen. In der zugehörigen Datentabelle sind die Marker, ihre Lokalisation auf Chromosom 6 (NCBI Version 33) sowie ihr Zugehörigkeit zu einer definierten Region. Des Weiteren ist – wenn vorhanden – der assoziierte Genlokus angegeben. Marker, welche nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden konnten, sind unter NCBI 33 hellgrau beschriftet. Marker, welche zu beiden Kontrollen signifikante Differenzen aufzeigen und nicht durch eigene Blast-Analysen der Lokalisation zugeordnet werden konnten, sind unter SNP fett markiert. E-n entspricht x10⁻ⁿ

p-Werte

Ergebnisse

Legende (oben)

Signifikanzniveau 0,05 • p (kombinierte Frequenzen) + p (KORA)

Legende (unten)

3.4.1.3 Einzelgenotypisierung

Im Rahmen der Überprüfung der mit Hilfe des Poolingansatzes beschriebenen Assoziationen wurden einige Marker an Typ 1 Diabetikern und KORA-Probanden einzeln genotypisiert. Hierfür wurden die regionspezifischen Hauptmarker des weniger früh ausgeprägten Typ 1 Diabetes-Pools TSC0099063 (TdA), rs928815 (TdB), TSC0879839 (TdC) und weitere Marker der Hauptregion TdC, die außerhalb (rs1064662, rs11244) oder innerhalb (rs1281896, rs1729, TSC0116798) der HLA-DRB1-9 Region lokalisieren, ausgewählt. Die spezifischen Hybridisierungssequenzen der Primer der Einzelgenotypisierung waren identisch mit den Primern, die bei der Poolgenotypisierung verwendet wurden. Die Ergebnisse der Einzelgenotypisierung sind in der Tabelle 3.1 dargestellt.

Die SNPs der HLA-DRB1-9 Region zeigen Genotypisierungsausfälle, denen PCR-Ausfälle zugrunde liegen, was aufgrund des Haplotypencharakters der HLA-DRB1-9 Region zu erwarten war. Die Verteilungen der Genotypen weichen in allen drei Studien durch Heterozygotenverlust stark vom Hardy-Weinberg-Gleichgewicht ab. Dementsprechend werden die Probanden bei der Genotypisierung als homozygot gewertet, obwohl hier möglicherweise nur ein Allel amplifiziert wurde. Allgemein weisen sie jedoch vergleichbare Allelfrequenzen der T1D-Pools untereinander und starke Differenzen zur Kontrolle auf. Bedingt durch die Instabilität der Marker (HWE-Abweichung der Kontrollen) sollten die resultierenden Odds Ratios (maximale Odds Ratio 7,0) nur mit Vorsicht gewertet werden. SNPs außerhalb der HLA-DRB1-9 Region zeigen bei KORA keine Abweichungen vom Hardy-Weinberg-Gleichgewicht mit Ausnahme von rs11244, welcher bei KORA einen Verlust der Heterozygoten, in der T1D1 Studie einen Heterozygotenüberschuss aufweist und sich in der T1D2 Studie ausmittelt. Alle weiteren Abweichungen der T1D-Studien vom Hardy-Weinberg-Gleichgewicht der SNPs außerhalb der HLA-DRB1-9 Region beruhen auf einem Zugewinn an Heterozygoten und stehen im Einklang mit der Assoziation von Heterozygotie der HLA-Region mit Typ 1 Diabetes.

Der HLA-DQB1-assoziierte Marker TSC0879839 zeigt im Pool und bei der Einzelgenotypisierung Allelfrequenzunterschiede der Typ 1 Diabetes Patienten zu den KORA Probanden von 30%. Die maximale Odds Ratio von 20,1 tritt beim Vergleich der homozygoten Träger auf. Ebenso konnte rs1064663, welcher einen Aminosäureaustausch in HLA-DRB1 verursacht, als Typ 1 Diabetes Marker geringerer Assoziation identifiziert werden. TSC0099063 und rs928815 zeigen nur einen möglichen Trend einer Assoziation, die starke Assoziation des T1D1 Pools konnte nicht bestätigt werden.

		Risikoallel- Frequenz		Geno- typi-	Risikoallel- Frequenz	Hardy- Weinberg Gleichgewicht	Odds_ratio CI95% p-Wert	Odds_ratio CI95% p-Wert	Odds_ratio CI95% p-Wert	Odds_ratio CI95% p-Wert	Odds_ratio p-Wert Armitage's
SNP	Studie	Pool	p (Pool)	[%]	EZ	p-Wert	[1]<->[2]	[11]<->[12]	[11]<->[22]	[11]<->[12+22]	Trend Test
TSC0879839	9 T1D>15Lj	0,45	3,59E-09	0,96	0,36	0,0756	6,761	8,939	20,113	9,798	5,607
	T1D<151	0.42	2 24E 10	0.06	0.27	4 225 07	[4,625-9,884] 1,06E-26	[5,610-14,242] 6,39E-23	[5,759-70,246] 3,76E-10	[6,248-15,366] 2,11E-26	3,67E-25
	TTD~13Lj	0,42	2,24E-10	0,90	0,37	4,22E-07			[3,231-46,910] 5,18E-06		
	KORA	0,12		0,96	0,08	0,2273					
rs1064663	T1D>15Lj	0,80	na	0,95	0,88	0,6456	2,308 [1,592-3,344]	3,469 [0,766-15,715]	7,484 [1,699-32,966]	5,953 [1,359-26,087]	2,455 9 36E-06
	T1D<15Lj	0,79	na	0,92	0,87	0,5046	2,111 [1,463-3,046]	3,643 [0,805-16,475]	7,057 [1,601-31,099]	5,755 [1,313-25,224]	2,297
							0,00005	0,07502	0,00299	0,0091	0,00006
TSC0000063	KORA	na	0.22E.04	0,95	0,76	0,7157			2 205		
13C0099003	5 TTD>13LJ	0,70	9,22E-04	0,98	0,74	0,0131			2,393 [0,927-6,186] 0,06438		
	T1D<15Lj	0,61	0,150	0,96	0,73	0,4911	1,131 [0,846-1,512]	0,972 [0,451-2,097]	1,173 [0,547-2,514]	1,074 [0,512-2,252]	1,121
	KORA	0.53		1.00	0.70	0 1046	0,40362	0,94275	0,08107	0,83083	0,38043
rs928815	T1D>15Lj	0,74	4,71E-04	0,97	0,67	0,1827	1,298	1,55	1,901	1,697	1,349
	T1D~151	0.65	0 272	0.06	0.69	0.0019	[0,964-1,746] 0,08497	[0,784-3,063] 0,20554	[0,948-3,814] 0,06803	[0,883-3,265] 0,10981	0,0741
	TTD~13Lj	0,03	0,272	0,90	0,08	0,0010			[1,288-6,315] 0,00802		
	KORA	0,57		0,68	0,61	0,4575					
rs11244	T1D>15Lj	0,43	6,84E-04	0,97	0,43	0,0196			3,393 [1,764-6,526] 0,00016		
	T1D<15Lj	0,46	7,83E-05	0,98	0,46	0,2021			4,837 [2,582-9,060] 2 58E-07		
	KORA	0,26		0,81	0,23	0,0006			2,001 07		
rs1281896	T1D>15Lj	0,97	1,15E-07	0,69	0,95	1,74E-21			4,284 [1,528-12,013] 0,00307		
	T1D<15Lj	0,95	1,46E-05	0,73	0,94	2,61E-18			3,712 [1,412-9,756]		
	KORA	0.76		0.42	0.84	6 18F-22			0,00497		
rs1729	T1D>15Lj	0,96	1,99E-06	0,82	0,86	1E-16			7,023		
	5	,	, · · · ·	,	,				[3,690-13,365] 9.89E-11		
	T1D<15Lj	0,96	1,23E-05	0,88	0,89	4,72E-18			5,037 [2,759-9,195] 2,65E-08		
	KORA	0,76		0,62	0,61	8,72E-39			1,001 00		
TSC0116798	3 T1D>15Lj	0,66	1,65E-05	0,58	0,78	2,79E-22			3,96 [2,252-6,961] 9,08E-07		
	T1D<15Lj	na	na	0,57	0,84	4,55E-21			6,094 [3,268-11,364] 1,95E-09		
	KORA	0,41		0,56	0,48	8,81E-24			-,>		

Tabelle 3.1 Einzelgenotypisierung der Typ 1 Diabetes und KORA Proben

In der Tabelle sind je SNP die gemessenen Allelfrequenzen des Risikoallels des T1D1 Pools (T1D>15Lj.), des T1D2 Pools (T1D<15Lj) sowie des KORA-Pools, der korrespondierende p-Wert des Allelfrequenzvergleichs der Erkrankungspools zur Kontrolle KORA, der Prozentsatz der einzelgenotypisierten Probanden des jeweiligen Pools, die Allelfrequenz des Risikoallels anhand der Einzelgenotypisierung und der p-Wert der Überprüfung auf Abweichung vom Hardy-Weinberg-Gleichgewicht. Die Spalten 8 bis 12 zeigen die Odds Ratios, ihre Konfidenzintervalle (95%) und p-Werte der einzelnen Vergleiche zwischen Erkrankten und Kontrollen. na: keine Messung vorhanden; [1]: Risikoallel; [2]: alternatives Allel; [11]: homozygot Risikoallel; [12]: heterozygot Risikoallel; [22]: homozygot alternatives Allel; signifikante p-Werte sind fett markiert. E-n entspricht x10⁻ⁿ.

3.4.2 Morbus Crohn

Bei der Analyse des CD Pools konnten 42 mögliche Suszeptibilitätsmarker identifiziert werden, von denen 16 vier Regionen beschreiben. CdA umfasst PWWP1 und zwei vorhergesagte Gene. Die Region wird durch einen signifikanten Marker mit 13% bzw. 11% Allelfrequenzdifferenz zu den Kontrollen sowie zwei weiteren, zur Kontrolle KORA signifikanten, Markern beschrieben. Der Hauptmarker rs793845 der zweiten Region CdB, welcher ca. 10% Differenz zu beiden Kontrollen zeigt, wird lediglich durch eine stark abweichende Messung eines weiteren Markers gestützt; die Region beschreibt DCDC2. 5 der 8 Marker, die die CdC Region beschreiben, lokalisieren auf alternativen HLA-DRB1-9 Haplotypen. Die drei weiteren Marker zeigen entweder zu KORA oder den kombinierten Frequenzen signifikante Differenzen mit 12% versus 3% (TSC0276264), 5% versus 12% (rs8084) und 11% versus 2% (TSC0879839). Die vierte Region CdD, in welcher GRM4 und zwei vorhergesagte Gene lokalisieren, beinhaltet drei signifikante Marker. Rs1759627, der Hauptmarker der Region, weist zu beiden Kontrollen etwa 12% Allelfrequenzdifferenzen auf. Der einzige für multiples Testen signifikante Marker zur Kontrolle KORA konnte nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden. Rs1002969 lokalisiert auf Chromosom 6q; eine valide Messung der KORA Kontrolle liegt nicht vor. Der weitere außerhalb der beschriebenen Regionen lokalisierende und nach Korrektur für multiples Testen signifikante Marker der kombinierten Frequenzen kann durch die KORA Kontrolle nicht bestätigt werden.

Abbildung 3.16 Poolingergebnisse des CD-Pools

----- Signifikanzniveau p=0,05

- ♦ p(KORA)
- p (kombinierte Frequenzen)
- ♦ p (KORA) signifikant
- p (kombinierte Frequenzen) signifikant
- definierte Regionen

Die Abbildung (siehe nächste Seite) gibt einen Überblick über die signifikanten Marker zu KORA und den kombinierten Frequenzen sowie die definierten Regionen CdA (ca. 22,5-22,7 Mb), CdB (ca. 24,3 Mb) CdC (ca. 32,3-2,73 Mb) und CdD (ca. 34,0-34,2 Mb) der chromosomalen Region 6p von 22 bis 40 Mb (NCBI Version 33), wobei signifikante p-Werte nach Korrektur für multiples Testen größer markiert sind. E+N=x10^{+N}

Abbildung 3.17 signifikante Differenzen des CD-Pools

(siehe übernächste Seite) Der obere Graph zeigt die korrespondierenden p-Werte in logarithmischer Einheit zu den in der unteren Figur dargestellten Allelfrequenzmessungen der signifikanten Marker. Die Fehlerbalken entsprechen der Standardabweichung der Messungen. In der zugehörigen Datentabelle sind die Marker, ihre Lokalisation auf Chromosom 6 (NCBI Version 33) sowie ihr Zugehörigkeit zu einer definierten Region. Des Weiteren ist – wenn vorhanden – der assoziierte Genlokus angegeben. Marker, welche nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden konnten, sind unter NCBI 33 hellgrau beschriftet. Marker, welche zu beiden Kontrollen signifikante Differenzen aufzeigen und nicht durch eigene Blast-Analysen der Lokalisation zugeordnet werden konnten, sind unter SNP fett markiert. E-n entspricht x10⁻ⁿ

Legende (oben)— Signifikanzniveau 0,05p (kombinierte Frequenzen)p (KORA)Legende (unten)& Allelfrequenz Erkrankungspool– Allelfrequenz KORA – kombinierte Allelfrequenzen

3.4.3 Schizophrenie

3.4.3.1 Schizophrenie Familienstudie

Bei der Analyse des ShF Pools konnten 40 Suszeptibilitätsmarker identifiziert werden, von denen 15 fünf Regionen beschreiben. Die Region ShA beinhaltet *C6ORF32* und ein vorhergesagtes Gen, der Hauptmarker TSC0113430 weist für multiples Testen signifikante Differenzen zu den Kontrollen von 27% bzw. 25% auf.

Der Hauptmarker TSC0244678 der ShB Region unterscheidet sich signifikant mit Allelfrequenzdifferenzen von 33% bzw. 29% gegenüber den Kontrollen und wird durch zwei weitere Marker gestützt. Die Region beschreibt *LOC340186*, ein noch nicht charakterisiertes Gen. Die dritte Region ShC erstreckt sich in der distalen HLA-KlasseI-Region von *HLA-F* bis *HLA-A* und beinhaltet zudem *HCG4*, *HLA-G* und AK956727. Die größten Differenzen zu den Kontrollen mit 19% bzw. 17% zeigen sich bei rs1655922, der Marker wird durch die weiteren durchgehend signifikanten Marker rs1632447 und rs1736912 gestützt, welche leicht verminderte Differenzen aufweisen. In der vierten Region ShD lokalisieren *LOC389380*, *HLA-DMB* und *HLA-DMA*. Die fünfte Region ShE beinhaltet *MOCS1* und drei vorhergesagte Gene.

— Signifikanzniveau p=0,05

- ◆ p(KORA)
- p (kombinierte Frequenzen)
- ♦ p (KORA) signifikant
- p (kombinierte Frequenzen) signifikant
- definierte Regionen

Abbildung 3.18 Poolingergebnisse des ShF-Pools

Die Abbildung (siehe nächste Seite) gibt einen Überblick über die signifikanten Marker zu KORA und den kombinierten Frequenzen sowie die definierten Regionen ShA (ca. 25 Mb), ShB (ca. 25,3-25,5 Mb) ShC (ca. 29,7-30,0 Mb), ShD (ca. 32,8-32,9 Mb) und ShE (ca. 39,9 Mb) der chromosomalen Region 6p von 22 bis 40 Mb (NCBI Version 33), wobei signifikante p-Werte nach Korrektur für multiples Testen größer markiert sind. E+N=x10^{+N}

Abbildung 3.19 signifikante Differenzen des ShF-Pools

(siehe übernächste Seite) Der obere Graph zeigt die korrespondierenden p-Werte in logarithmischer Einheit zu den in der unteren Figur dargestellten Allelfrequenzmessungen der signifikanten Marker. Die Fehlerbalken entsprechen der Standardabweichung der Messungen. In der zugehörigten Datentabelle sind die Marker, ihre Lokalisation auf Chromosom 6 (NCBI Version 33) sowie ihr Zugehörigkeit zu einer definierten Region. Des Weiteren ist – wenn vorhanden – der assoziierte Genlokus angegeben. Marker, welche nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden konnten, sind unter NCBI 33 hellgrau beschriftet. Marker, welche zu beiden Kontrollen signifikante Differenzen aufzeigen und nicht durch eigene Blast-Analysen der Lokalisation zugeordnet werden konnten, sind unter SNP fett markiert. E-n entspricht x10⁻ⁿ

Legende (unten)

Allelfrequenz Erkrankungspool – Allelfrequenz KORA – kombinierte Allelfrequenzen

3.4.3.2 Schizophrenie Triostudie

Bei der Analyse des ShT Pools konnten 47 Suszeptibilitätsmarker identifiziert werden, von denen 23 jeweils 4 Regionen beschreiben. Die für multiples Testen signifikante Allelfrequenzdifferenz zur Kontrolle KORA lokalisiert ausserhalb der definierten Regionen auf Chromosom 6q. ShC und ShD, die durch die Analyse des ShF Pools identifiziert wurden, werden bestätigt, wobei der bei ShD übereinstimmende signifikante Marker rs241412 keine übereinstimmenden Allelfrequenzen der beiden Sh-Pools zeigt. Des Weiteren wird eine Region ShF der distalen HLA Klasse I Region mit zwei vorhergesagten Genen, AK055503 und *RFP* beschrieben bei der zwei durchgehend signifikante Marker auftreten. Eine weitere mögliche Suszeptibilitätsregion des ShT-Pools lokalisiert in der proximalen HLA Klasse I Region und beschreibt *HLA-C, HLA-B* und *MICA.* Die Definition der Region wird durch die kombinierten Allelfrequenzen verursacht, zur Kontrolle KORA zeigt einzig ein Marker (rs1634765) signifikante Differenzen.

— Signifikanzniveau p=0,05

- ♦ p(KORA)
- p (kombinierte Frequenzen)
- ♦ p (KORA) signifikant
- p (kombinierte Frequenzen) signifikant
- definierte Regionen

Abbildung 3.20 Poolingergebnisse des ShT-Pools

Die Abbildung (siehe nächste Seite) gibt einen Überblick über die signifikanten Marker zu KORA und den kombinierten Frequenzen sowie die definierten Regionen ShF (ca. 28,8-29,0 Mb), ShC (ca. 29,8 Mb), ShG (ca. 31,2-31,5 Mb) und ShD (ca.32,5-33,0 Mb) der chromosomalen Region 6p von 22 bis 40 Mb (NCBI Version 33), wobei signifikante p-Werte nach Korrektur für multiples Testen größer markiert sind. $E+N=x10^{+N}$

Abbildung 3.21 signifikante Differenzen des ShT-Pools

(siehe übernächste Seite) Der obere Graph zeigt die korrespondierenden p-Werte in logarithmischer Einheit zu den in der unteren Figur dargestellten Allelfrequenzmessungen der signifikanten Marker. Die Fehlerbalken entsprechen der Standardabweichung der Messungen. In der zugehörigen Datentabelle sind die Marker, ihre Lokalisation auf Chromosom 6 (NCBI Version 33) sowie ihr Zugehörigkeit zu einer definierten Region. Des Weiteren ist – wenn vorhanden – der assoziierte Genlokus angegeben. Marker, welche nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden konnten, sind unter NCBI 33 hellgrau beschriftet. Marker, welche zu beiden Kontrollen signifikante Differenzen aufzeigen und nicht durch eigene Blast-Analysen der Lokalisation zugeordnet werden konnten, sind unter SNP fett markiert. E-n entspricht x10⁻ⁿ

p-Werte

Ergebnisse

Legende (unten)

♦ Allelfrequenz Erkrankungspool – Allelfrequenz KORA – kombinierte Allelfrequenzen

3.4.4 Asthma

Bei der Analyse des AS Pools konnten 48 Suszeptibilitätsmarker identifiziert werden, welche über die gesamte analysierte Region verteilt liegen. Sechs Marker clustern in einer Region. Die Region umfasst drei olfaktorische Rezeptor Gene, OR5V1, OR12D3, OR12D2 und AJ459861, ebenfalls mit olfaktorischem Rezeptorcharakter, sowie AK027882, ein Steroiddehydrogenasehomolog, welches jedoch multiple Treffer im Blast-Sequenzvergleich liefert. Die Allelfrequenz des Hauptmarkers rs1028411 unterscheidet sich zu 14% von der Kontrolle KORA, zu 11% von den kombinierten Frequenzen, wobei auch die weiteren Marker mehr als 9% Allelfrequenzdifferenzen zu KORA aufweisen. Der auf multiples Testen korrigierte signifikante zur Kontrolle KORA (rs1536054) Marker zeigt 30% Allelfrequenzdifferenzen, die kombinierten Frequenzen weisen nur noch 21% Differenz auf. rs1281896 lokalisiert innerhalb der HLA-DRB1-9-Haplotypen-Region und wird durch den Vergleich zu den kombinierten Frequenzen auffällig, die Differenz zu KORA beträgt 1%.

Abbildung 3.22 Poolingergebnisse des Asthma-Pools

- Signifikanzniveau p=0,05
- ◆ p(KORA)
- p (kombinierte Frequenzen)
- ♦ p (KORA) signifikant
- p (kombinierte Frequenzen) signifikant
- definierte Regionen

Die Abbildung (siehe nächste Seite) gibt einen Überblick über die signifikanten Marker zu KORA und den kombinierten Frequenzen sowie die definierte Region AsA (ca. 29,2-29,4 Mb) der chromosomalen Region 6p von 22 bis 40 Mb (NCBI Version 33), wobei signifikante p-Werte nach Korrektur für multiples Testen größer markiert sind. $E+N=x10^{+N}$

Abbildung 3.23 signifikante Differenzen des Asthma-Pools

(siehe übernächste Seite) Der obere Graph zeigt die korrespondierenden p-Werte in logarithmischer Einheit zu den in der unteren Figur dargestellten Allelfrequenzmessungen der signifikanten Marker. Die Fehlerbalken entsprechen der Standardabweichung der Messungen. In der zugehörigen Datentabelle sind die Marker, ihre Lokalisation auf Chromosom 6 (NCBI Version 33) sowie ihr Zugehörigkeit zu einer definierten Region. Des Weiteren ist – wenn vorhanden – der assoziierte Genlokus angegeben. Marker, welche nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden konnten, sind unter NCBI 33 hellgrau beschriftet. Marker, welche zu beiden Kontrollen signifikante Differenzen aufzeigen und nicht durch eigene Blast-Analysen der Lokalisation zugeordnet werden konnten, sind unter SNP fett markiert. E-n entspricht x10⁻ⁿ

p-Werte

Zur weiteren Überprüfung der mit Hilfe des Poolingansatzes beschriebenen Assoziationen wurden ausgewählte Marker an Probanden der Asthma-Familienstudie und KORA-Probanden individuell genotypisiert. Die spezifischen Hybridisierungssequenzen der Primer der Einzelgenotypisierung waren ebenfalls identisch mit den Primern, die bei der Poolgenotypisierung verwendet wurden, mit der Ausnahme rs760804, bei dem durch die Neubestimmung der Primer mittels der Sequenom-Software ein PCR-Primer um 3bp verschoben wurde.

Dazu wurde der SNP selektiert, welcher nach Korrektur für multiples Testen Assoziation zu Asthma zeigte (rs1536054) sowie ein weiterer Einzelmarker (TSC0113430), der eine reduzierte Differenz zu KORA zeigt (p=0,0004) und bei ca. 25 Mb lokalisiert (vergleiche Abbildung 3.22). Des Weiteren wurden der Hauptmarker der definierten AsA-Region rs1028411, drei weitere auf dem Signifikanzniveau 0,05 signifikante Marker der AsA-Region sowie drei nicht-signifikante Marker der Region ebenfalls individuell genotypisiert. Alle SNPs wurden im Fall-Kontroll-Ansatz sowie familienbasiert auf Asthma und IgE analysiert.

Bei Analysen in der Familienstudie zeigten rs1536054 und TSC0113430 multiple Mendelfehler, KORA wies Hardy-Weinberg-Abweichungen auf. Alle Probanden der Familienstudie und KORA wurden daraufhin mit Hilfe der Taqman-Methode nochmals genotypisiert und auf Mendelfehler und HWE überprüft. Beim Vergleich der Genotypisierungen zeigte sich, dass bei der Genotypisierung mit MALDI-TOF Heterozygote häufig als homozygot eines bestimmten Allels klassifiziert wurden. In der Tabelle 3.2 sind die Ergebnisse der Genotypisierung mit Taqman dargestellt. rs1536054 zeigt im Fall-Kontroll-Ansatz marginale Assoziation (Odds Ratio 2,36 im Vergleich der Homozygoten des AS-Pools mit KORA), die weder durch weitere Fall-Kontroll-Analysen noch durch den stratifikationsfreien TDT gestützt werden. TSC0113430 ist nicht signifikant.

Die 7 SNPs der AsA-Region zeigten weder häufige Mendelfehler in der Asthma-Familienstudie noch HWE Abweichungen der einzelnen Pools. Die im Fall-Kontroll-Ansatz durchgehend signifikanten SNPs rs1028411 und TSC0504774, welche 900bp voneinander lokalisiert sind, werden durch den 57 kb entfernten Marker TSC0095804 gestützt, der zwar eine geringere Assoziation im Fall-Kontroll-Ansatz zeigt, jedoch beim stratifikationsfreien TDT ebenfalls Assoziation zu Asthma aufweist. rs760804 wurde im Fall-Kontroll-Ansatz ebenfalls mit Asthma assoziiert, wobei der Vergleich der Allelfrequenzen der Eltern der Familienstudie zur Kontrolle KORA das Ergebnis nicht bestätigt. Aufgrund der geringen Anzahl der Probanden des IgE-Pools (N=39) sind die Fall-Kontroll-Analysen der Probanden mit hohem IgE unter Vorbehalt zu betrachten.

SNP	Studie	Risikoallel- frequenz Pool	n (Pool)	Genotypi-	Risikoallel- frequenz EZ	HWE	Odds ratio Cl95% p-Wert	Odds ratio Cl95% p-Wert	Odds ratio Cl95% p-Wert	Odds ratio Cl95% p-Wert [11]<->[12+22]	Odds ratio p-Wert Armitage's Trend Test	TDT p-Wert	RCTDT
rs1536054	Asthma	0,89	7,57E-07	0,77	0,36	0,115	1,3	0,8	2,4	1,0	1,4	0,829	0,818
		0.50		0.04	0.00	4,000	[0,9-1,8] 0,2004	[0,5-1,4] 0,4905	[1,1-5,2] 0,0309	[0,6-1,7] 0,8837	0,1985	0.000	4,000
	IGE	0,58	0,968	0,64	0,36	1,000	[0,7-2,3] 0,4620	[0,5-2,8] 0,7390	1,9 [0,5-7,5] 0,3791	[0,5-2,9] 0,5961	0,4396	0,633	1,000
	KORA	0,59		0,71	0,31 (0,40)	0,183							
TSC0113430	Asthma	0,29	4,42E-04	0,72	0,01	1,000			0,3 [0,0-5,9] 0,2380			0,705	0,761
	IgE	0,37	0,315	0,62	0,02	1,000			1,2 [0,1-22,3] 0.5411			0,652	0,560
	KORA	0,44		0,93	0.05 (0.02)	0,002			0,0111				
TS0111007	Asthma	0,30	0,027	0,84	0,47	0,844	1,2 [0,9-1,7]	1,2 [0,8-2,1]	1,4 [0,7-2,7]	1,3 [0,8-2,1]	1,2	0,861	0,761
	IgE	0,32	0,317	0,97	0,43	0,740	1,1 [0,7-1,7]	1,0 [0,5-2,1]	1,1 [0,4-2,9]	1,0 [0,5-2,1]	1,1	0,652	0,560
	KODA	0.20		0.07	0 40 (0 40)	0 5 2 0	0,8251	0,9290	0,7908	0,9688	0,8290		
rs760804	Asthma	0,39	0,135	0,89	0,42 (0,42)	0,338	1,7 [1,1-2,7]	1,7 [1,0-2,9]	2,5 [0,8-7,8]	1,8 [1,1-3,0]	1,6	0,310	0,930
	lgE	0,34	0,162	0,85	0,24	0,345	0,0126 2,1 [1,1-4,0] 0,0166	0,0613 1,9 [0,8-4,4] 0 1196	0,0960 3,9 [0,9-16,6] 0.0540	0,0252 2,2 [1,0-4,7] 0.0448	0,0190 2,0	0,981	0,919
	KORA	0,24		0,69	0,13 (0,20)	0,113	0,0100	0,1100	0,0010	0,0110			
TSC0030365	Asthma	0,36	0,794	0,93	0,46	0,706	1,3 [1,0-1,8] 0,0747	1,3 [0,8-2,2] 0,2531	1,7 [0,9-3,2] 0.0888	1,4 [0,9-2,3] 0 1285	1,3	0,510	0,675
	IgE	0,39	0,655	0,90	0,39	0,720	1,0 [0,6-1,6] 0,9310	0,9 [0,4-2,0] 0,7590	1,0 [0,4-2,8] 0 9952	0,9 [0,5-1,9] 0.8377	1,0 0.9327	0,235	0,438
	KORA	0,35		0,97	0,39 (0,42)	0,452	0,0010	0,1000	0,0002	0,0011	0,002.		
TSC0899479	Asthma	0,57	0,761	0,95	0,38	0,438	1,3 [1,0-1,8]	1,4 [0,9-2,2]	1,6 [0,8-3,1]	1,4 [0,9-2,2]	1,3	0,680	0,795
	IgE	0,52	0,954	0,97	0,42	1,000	1,6 [1,0-2,5]	1,7 [0,8-3,7]	2,1 [0,8-5,7]	1,8 [0,9-3,7]	1,5	0,502	0,646
	KORA	0.51		0.90	0.32 (0.34)	0 1 1 5	0,0762	0,1551	0,1331	0,0956	0,0904		
TSC0095804	Asthma	0,34	0,032	0,81	0,24	0,098	1,3 [0,9-1,9]	1,0 [0,6-1,6]	2,5 [1,0-6,2]	1,1 [0,7-1,8]	1,4	0,041	0,136
	lgE	0,34	0,222	0,90	0,26	0,018	0,2243	0,9320	3,7 [1,2-11,7] 0,0174	0,0932	0,2344	0,211	0,017
	KORA	0,26		0,98	0,20 (0,19)	1,000							
rs1028411	Asthma	0,57	0,002	0,72	0,68	0,470	1,8 [1,3-2,6] 0.0007	1,6 [0,7-3,3] 0,2395	3,0 [1,4-6,3] 0,0026	2,1 [1,1-4,2] 0.0304	1,8 0.0010	0,112	0,545
	lgE	0,56	0,104	0,62	0,60	1,000	1,4 [0,7-2,5] 0,3251	1,3 [0,4-4,4] 0,6230	1,8 [0,5-6,1] 0,3480	1,5 [0,5-4,6] 0,4624	1,3 0,3363	0,742	0,547
T00050 (==)	KORA	0,43	0.000	0,97	0,53 (0,55)	0,473	4.5	4.5		0.0		0 / 22	
ISC0504774	Asthma	0,79	0,036	0,91	0,65	0,834	1,6 [1,2-2,2] 0,0030	1,6 [0,8-3,1] 0,1646	2,6 [1,3-5,1] 0,0055	2,0 [1,1-3,7] 0,0321	1,6 0,0036	0,168	0,468
	IgE	0,68	0,930	0,87	0,60	0,285	1,3 [0,8-2,2] 0,3009	0,8 [0,3-2,2] 0,7375	1,5 [0,6-3,9] 0,4076	1,1 [0,5-2,6] 0,8399	1,3 0,3118	0,020	0,141
	KORA	0,67		0,99	0,54 (0,59)	0,729				-			

Tabelle 3.2 Einzelgenotypisierung der Asthma-Familienstudie

In der Tabelle sind je SNP die gemessenen Allelfrequenzen des Risikoallels des AS Pools (Asthma), des IgE Pools (IgE) sowie des KORA-Pools (zum Vergleich sind die Allelfrequenzen gesunder Eltern der Familienstudie in der Klammer angegeben), der korrespondierende p-Wert des Allelfrequenzvergleichs der Erkrankungspools zur Kontrolle KORA, der Prozentsatz der einzelgenotypisierten Probanden des jeweiligen Pools, die Allelfrequenz des Risikoallels anhand der Einzelgenotypisierung und der p-Wert der Überprüfung auf Abweichung vom Hardy-Weinberg-Gleichgewicht (HWE) aufgeführt. Die Spalten 8 bis 12 zeigen die Odds Ratios, ihre Konfidenzintervalle (95%) und p-Werte der einzelnen Vergleiche zwischen Erkrankten und Kontrollen. Die Spalten 13 und 14 zeigen die Ergebnisse des TDT und RC-TDT der Familienstudie; [1]: Risikoallel; [2]: alternatives Allel; [11]: homozygot Risikoallel; [12]: heterozygot Risikoallel; [22]: homozygot alternatives Allel; signifikante p-Werte sind fett markiert. TSC011007 bis TSC0504774 sind anhand ihrer chromosomalen Lokalisation angeordnet. Alle Marker lokalisieren intergenisch. E-*n* entspricht x10⁻ⁿ.

3.4.5 Atopische Dermatitis

Bei der Analyse des AD Pools konnten 58 Suszeptibilitätsmarker identifiziert werden, von denen 33 jeweils 8 Regionen beschreiben. AdA umfaßt zwei Genvorhersagen. AdB erstreckt sich von FCJ12671 bis DCDC2 mit vier Genvorhersagen sowie VMP. Die distale bzw. proximale Grenze der definierten Regionen AdA und AdB lokalisieren ca. 200 kb voneinander. Beide Regionen werden jeweils durch 2 Hauptmarker mit ca. 10% Differenz zur Kontrolle KORA und ca. 8% zu den kombinierten Frequenzen beschrieben. In der dritten Region AdC mit dem Hauptmarker TSC0411893, welcher zu KORA und den kombinierten Frequenzen Allelfrequenzdifferenzen von 12% bzw. 13% zeigt, lokalisiert CMAH. AdD beschreibt ein Butyrophilin - Gencluster, des Weiteren zwei Histone, TSC0322593 weist Differenzen von 8% bzw. 10% zu den Kontrollen auf. Alle weiteren Marker zeigen geringere Differenzen zu KORA und weniger als 3% Differenz zu den kombinierten Frequenzen. AdE beschreibt die Gene MICA, HCP5, MICB, BAT1, ATP6V1G2, NFKBIL1, LTA, TNF und LTB der HLA Klasse IV. Der Hauptmarker wurde nur durch eigene Blast-Analyse der Lokalisation zugeordnet, die Region wird jedoch durch weitere Marker beschrieben, insbesondere durch rs1266079 mit Allelfrequenzdifferenzen zu den Kontrollen von 19% bzw. 11% und rs1800610 mit 14% bzw. 16%. AdF umfasst die Gene C4B bis HLA-DQB1 sowie, NOTCH4, C6ORF10, HLA-DRA, HLA-DRB1-9 und HLA-DQA. rs412492, welcher als einziger Marker außerhalb der HLA-DRB1-9-Haplotypen-Region zur Kontrolle KORA signifikante Differenzen von 10% aufweist, lokalisiert proximal von NOTCH4 in der HLA Klasse III Region. AdG beschreibt die Gene CEGF3 und BX648112, rs1535814 zeigt ca. 13% Allelfrequenzdifferenzen zu den Kontrollen. Der Hauptmarker von AdH lokalisiert intronisch von KCNK5 und weist übereinstimmendene Differenzen zu den Kontrollen von ca. 10% auf.

- ----- Signifikanzniveau p=0,05
- ♦ p(KORA)
- p (kombinierte Frequenzen)
- ♦ p (KORA) signifikant
- p (kombinierte Frequenzen) signifikant
- definierte Regionen

Abbildung 3.24 Poolingergebnisse des AD-Pools

Die Abbildung (siehe nächste Seite) gibt einen Überblick über die signifikanten Marker zu KORA und den kombinierten Frequenzen sowie die definierten Regionen AdA (ca. 23,7 Mb), AdB (ca.23,9-24,2 Mb), AdC (ca. 25,0-25,1 Mb), AdD(ca. 26,2-26,5 Mb), AdE (ca.31,4-31,8 Mb), AdF (ca.32,0-32,7 Mb) und AdG (ca. 39,1-39,2 Mb) der chromosomalen Region 6p von 22 bis 40 Mb (NCBI Version 33), wobei signifikante p-Werte nach Korrektur für multiples Testen größer markiert sind. E+N=x10^{+N}

p-Werte

Abbildung 3.25 signifikante Differenzen des Atopische Dermatitis Pools

Der obere Graph zeigt die korrespondierenden p-Werte in logarithmischer Einheit zu den in der unteren Figur dargestellten Allelfrequenzmessungen der signifikanten Marker. Die Fehlerbalken entsprechen der Standardabweichung der Messungen. In der zugehörigen Datentabelle sind die Marker, ihre Lokalisation auf Chromosom 6 (NCBI Version 33) sowie ihr Zugehörigkeit zu einer definierten Region. Des Weiteren ist – wenn vorhanden – der assoziierte Genlokus angegeben. Marker, welche nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden konnten, sind unter NCBI 33 hellgrau beschriftet. Marker, welche zu beiden Kontrollen signifikante Differenzen aufzeigen und nicht durch eigene Blast-Analysen der Lokalisation zugeordnet werden konnten, sind unter SNP fett markiert. E-n entspricht x10⁻ⁿ

3.4.6 Erhöhter IgE-Spiegel

Die Analyse des IgE Pools resultierte in 40 möglichen Suszeptibilitätsmarkern, wobei 21 fünf Regionen beschreiben. IgEA umfasst drei nicht-charakterisierten Genen und wird durch drei Marker gestützt, welche jeweils über 16% Allelfrequenzdifferenzen zu KORA und über 14% zu den kombinierten Frequenzen aufweisen. IgEB beschreibt ein SLC-Gencluster. Die Definition der Region beruht auf signifikanten Differenzen zu den kombinierten Frequenzen, der Hauptmarker hingegen zeigt zu KORA und den kombinierten Frequenzen Differenzen von jeweils 17%. Die dritte Region IgEC erstreckt sich von der proximalen HLA Klasse I über die HLA Klasse IV und umfasst POU5F1, HLA-C, HLA-B, MICA, MICB, ATP6V1G2, *IKBL*, *BAT1*, *LTA*, *TNF* und *LTB*. Der Hauptmarker TSC0115790 weist Differenzen von ca. 25% zu den Kontrollen auf. Übereinstimmende Differenzen zeigen sich ebenso bei rs1266079 (ca. 18%) und rs1800610 (ca. 13%). Beide Marker wurden bereits durch den Atopische Dermatitis Pool innerhalb der AdE-Region beschrieben (vergleiche 3.4.5). Der Hauptmarker TSC0116798 der IgED Region lokalisiert innerhalb der HLA-DRB1-9-Haplotypen Region, ebenso die weiteren zu KORA signifikanten Marker. Ausnahme ist hierbei TSC0879838, welcher eine Allelfrequenzdifferenz zu KORA von 2% aufweist. IgEE beinhaltet LOC389380, HLA-DMB, HLA-DMA, BRD2 und HLA-DOA. Die Region wird durch zwei Marker beschrieben, wobei rs241412 Differenzen von 22% zu KORA aufweist.

Abbildung 3.26 Poolingergebnisse des IgE-Pools

- Signifikanzniveau p=0,05
- ◆ p (KORA)
- p (kombinierte Frequenzen)
- ♦ p (KORA) signifikant
- p (kombinierte Frequenzen) signifikant
- definierte Regionen

Die Abbildung (siehe nächste Seite) gibt einen Überblick über die signifikanten Marker zu KORA und den kombinierten Frequenzen sowie die definierten Regionen IgEA (ca. 22,6-22,7 Mb), IgEB (ca. 25,8-25,9 Mb) IgEC (ca. 31,2-31,6 Mb) IgED (ca. 32,5-32,7 Mb) und IgEE (ca. 32,9 Mb)der chromosomalen Region 6p von 22 bis 40 Mb (NCBI Version 33), wobei signifikante p-Werte nach Korrektur für multiples Testen größer markiert sind. $E+N=x10^{+N}$

Abbildung 3.27 signifikante Differenzen des IgE-Pools

(siehe übernächste Seite) Der obere Graph zeigt die korrespondierenden p-Werte in logarithmischer Einheit zu den in der unteren Figur dargestellten Allelfrequenzmessungen der signifikanten Marker. Die Fehlerbalken entsprechen der Standardabweichung der Messungen. In der zugehörigen Datentabelle sind die Marker, ihre Lokalisation auf Chromosom 6 (NCBI Version 33) sowie ihr Zugehörigkeit zu einer definierten Region. Des Weiteren ist – wenn vorhanden – der assoziierte Genlokus angegeben. Marker, welche nur durch eigene Blast-Analysen der chromosomalen Region zugeordnet werden konnten, sind unter NCBI 33 hellgrau beschriftet. Marker, welche zu beiden Kontrollen signifikante Differenzen aufzeigen und nicht durch eigene Blast-Analysen der Lokalisation zugeordnet werden konnten, sind unter SNP fett markiert. E-n entspricht x10⁻ⁿ

Ergebnisse

3.5 Atopie und die HLA-Klasse IV

In der distalen HLA Klasse III Region (auch als HLA Klasse IV bezeichnet) wurden im Pooling-Ansatz fünf SNPs analysiert. TSC0444872 lokalisiert ca. 5 kb distal von *MICB*, rs1266079 im Intron von *BAT1*, rs928815 zwischen *IKBL* und *LTA*, rs1800610 innerhalb von 2 kb von *TNF* sowie TSC0109307 im Intron von *BAT3*. Während die definierten Regionen AdE und IgEC Kopplung bis hin zu *POU5F1* zeigen (vergleiche Abbildungen 3.24, 3.25, 3.26 und 3.27), treten die übereinstimmmend starken Differenzen zur Kontrolle KORA insbesondere bei rs1266079 und rs1800610 auf. Der Asthma-Pool hingegen zeigt keine Assoziation, die größte Differenz zu KORA beträgt 4,7%.

Abbildung 3.28 HLA Klasse IV Region

Die Abbildung fasst die Ergebnisse übereinstimmender Hauptmarker der definierten Regionen IgEC und AdE des Pooling-Ansatzes zusammen. Die obere Figur zeigt die korrespondieren p-Werte der in der mittleren Figur dargestellten Allelfrequenzdifferenzen zur Kontrolle KORA. Die Marker sind anhand ihrer Lokalisation auf Chromosom 6p angeordnet und werden in der untersten Figur im Genkontext (als Sterne markiert) dargestellt. Die dargestellte Region von MICB bis BAT3 umfasst ca. 154 kb.

3.5.1 Polymorphismen in MICB, AIF1 und LST1

Alternativ wurde ein weiterer Ansatz zur Aufklärung möglicher Atopie Suszeptibilitätsregionen verfolgt. Vorarbeiten von Immervoll et al., 2002, konnten keine Assoziation eines intronischen Polymorphismus im LTA-Gen zu Asthma und asthmaassoziierten Phänotypen in unserer Studie nachweisen. Zur besseren Charakterisierung der HLA Klasse IV Region wurden 16 DNA-Proben zur Detektion von Polymorphismen der Gene MICB, AIF1 und LST1 sequenziert, welche die distale und proximale Grenze der HLA Klasse IV Region markieren. Durch die Sequenzierung der codierenden Sequenzen sowie mindestens 200 bp des Core-Promoters konnten 17 SNPs identifiziert werden, von denen 15 in der aktuellen dbSNP-Datenbank (Build117) enthalten sind (Tabelle 3.3; Abbildung 3.29). Die identifizierten SNPs und drei weitere in der Literatur beschriebene SNPs des TNF-Promoters wurden in der Asthmafamilienstudie genotypisiert und auf Mendelcheckfehler sowie anhand der Eltern der Familienstudie auf Hardy-Weinberg-Gleichgewicht überprüft. TNF-Promotorpolymorphismen waren nicht auffällig, da jedoch die Allelfrequenzen der Eltern beider analysierter 384er Wellplatten stark abweichende Frequenzen aufwiesen, wurden nur Probanden der A-Platte analysiert, da sie mit Datenbankangaben übereinstimmen. Bei einer ebenfalls identifizierten Insertion von zwei Basenpaaren des MICB Promoters (MICB-138-137insCT) traten bei der Genotypisierung in der Familienstudie sehr häufig Mendelcheck-Fehler auf, was möglicherweise durch einen multiallischen Charakter begründet ist. AIF1 G49A wies ebenfalls sehr häufige Mendelcheck-Fehler auf und wurde ebenfalls von weiteren Analysen ausgeschlossen.

SNP_ID		rs_ID
MICB C-243A	C/A	rs3828912
MICB C-150T	C/T	rs3828914
MICB G-72C	G/C	rs2516498
MICB C-56G	C/G	rs3828916
MICB D52N	G/A	rs3131639
MICB K57E	A/G	rs1065075
MICB I98M	C/G	rs3134900
MICB D113N	G/A	rs1051788
MICB T189I	C/T	
LST1 G154A	G/A	rs2256965
LST1 C416A	C/A	rs2256974
LST1 T1605A	T/A	rs1052248
LST1 A1680T	A/T	rs3087617
AIF1 G49A	G/A	rs2844475
AIF1 G60A	G/A	rs4711274
AIF1 T722G	T/G	rs2259571
AIF1 C735G	C/G	

Tabelle 3.3 Sequenzierungsergebnisse

Durch die Sequenzierung konnten 17 SNPs identifiziert werden. In der Tabelle sind die SNPs mit ihren korrespondierenden rs-Nummern dargestellt.

Abbildung 3.29 SNPs in MICB, AIF1 und LST1

Es sind die identifizierten SNPs der Gene *AIF1*, *LST1* und *MICB* in ihrem genomischen Kontext dargestellt. Alle SNPs in *AIF1* und *LST1* sind intronisch. Die neu identifizierten SNPs des *MICB* Gens liegen im Promotorbereich.

3.5.2 Transmissionsanalysen

Allefrequenzbestimmungen wurden an den Eltern der Familienstudie durchgeführt und werden jeweils für das Majorallel aufgelistet. Beim RC-TDT für Kopplungsanalysen flossen alle Familienmitglieder in die Analyse ein, für den TDT Trios. Für Asthma floss ein Kind pro Familie ein, dass möglichst geringe Gesamt-IgE Werte oder Eosinophile aufweist (Mittelwert Gesamt-IgE 563kU/l), für IgE wurde das Kind mit dem höchsten Gesamt-IgE Messwert selektiert (Mittelwert Gesamt-IgE 838kU/l). Da MICBK57E und MICBD113N in absolutem Kopplungsungleichgewicht stehen, wurden die beiden Marker kombiniert analysiert, indem Genotypisierungsausfälle einzelner Probanden korrigiert wurden. Nach Adjustierung für multiples Testen waren MICBK57E/MICBD113N und MICBI98M mit Asthma assoziiert, LST1G154A und AIF1T722G mit Asthma und erhöhtem IgE.

		Asthr	na	IgE (100	kU/l)	Genotypi-
SNP	Majorallelfrequenz	p (RCTDT)	p (TDT)	p (RCTDT)	p (TDT)	sierung [%]
MICB C-243A	C /A (0,70)	0,9839	0,3805	0,5848	0,8551	0,97
MICB C-150T	C /T (0,72)	0,2799	0,0747	0,1870	0,3650	0,87
MICB G-72C	G /C (0,89)	0,3234	0,3692	0,6682	0,8474	0,77
MICB C-56G	C /G (0,76)	0,5155	0,4726	0,9365	0,9126	0,91
MICB D52N	G /A (0,78)	0,6633	0,0660	0,6822	0,8907	0,81
MICB K57E	A /G (0,71)	0,1832	0,0032	0,9618	0,3404	0,95
MICB I98M	C /G (0,91)	0,1143	0,0006	0,0227	0,1797	0,96
MICB D113N	G /A (0,70)	0,1832	0,0032	0,9618	0,3404	0,95
MICB T189I	C /T (0,96)	0,6219	0,6374	1,0000	1,0000	0,95
LTA NcoI§	C /T (0,64)	0,7431	0,5831	0,9558	0,5688	*0,58
TNF G-376A	G /A (0,99)	0,0588	0,1573	0,2568	0,5637	0,87
TNF G-308A	G /A (0,86)	0,9689	0,2230	0,5211	0,5775	0,95
TNF G-238A	G /A (0,96)	0,1699	0,1797	0,4111	0,1573	0,87
LST1 G154A	G /A (0,60)	0,0240	0,0801	0,0014	0,0687	*0,51
LST1 C416A	C /A (0,84)	0,1255	0,5351	0,4898	0,2492	0,86
LST1 T1605A	T /A (0,73)	0,7270	0,7237	0,6533	0,7797	0,96
LST1 A1680T	A /T (0,93)	0,9104	0,1944	0,7098	0,6121	0,97
AIF1 G60A	G /A (0,89)	0,6787	0,0961	0,4314	0,4561	0,92
AIF1 T722G	T /G (0,59)	0,0072	0,7518	0,0221	0,0046	0,97
AIF1 C735G	C /G (0,97)	1,0000	0,1797	0,6310	1,0000	0,97

Tabelle 3.4 Transmissionsergebnisse der Asthma-Familienstudie

Die Tabelle sind die analysierten SNPs anhand ihrer Lage von pter angeordnet. Das Majorallel ist fett markiert und die Majorallelfrequenz wurde an den Eltern der Familienstudie berechnet. Die Spalten 3 bis 6 zeigen die korrespondierenden p-Werte der Phänotypen Asthma und erhöhtem IgE des RCTDT und TDT. p-Werte kleiner 0,05 sind fett markiert. In der letzten Spalte ist die Anzahl der genotypisierten Probanden der Asthmafamilienstudie in Prozent angegeben. §: mit freundlicher Genehmigung von T.Illig in die Analysen mit aufgenommen; *: Genotypisierung mittels Restriktionsverdau in der primären Asthmafamilienstudie.

3.5.3 Kopplungsungleichgewicht und Haplotypen

Zur weiteren Analyse der Region wurden anhand der häufigen SNPs (siehe Tabelle 3.4), mit Minorallelfrequenzen von über 8%, Haplotypen rekonstruiert (Visualisierung siehe Anhang). Es konnten 5 extendierte häufige Haplotypen mit einer Frequenz über 5% detektiert werden. MICB C-243A und MICB C-150T stehen in starkem LD (Δ^2 =0,896), ebenso die circa 7,6 kb voneinander entfernten SNPs MICB C-56G und MICB D52N (Δ^2 =0,983) sowie LTA NcoI und TNF G-308A (Δ^2 =0,892). MICBK57E und MICBD113N stehen in perfektem LD (Δ^2 =1), und MICBI98M tritt ausschließlich auf dem durch die beiden SNPs beschriebenen Haplotypen auf. Des Weiteren markiert MICBI98M einen mit einer Frequenz von 9% auftretenden Haplotypen auf dem alle bei der TDT-Analyse übertransmittierten Allele der signifikanten SNPs liegen sowie der LTA NcoI*T/TNF-308*A Haplotyp. Die häufigen, extendierten Haplotypen erklären ca. 45,6% aller Haplotypen.

SNP		MICBC-243A	MICBC-150T	MICB G-72C	MICB C-56G	MICB D52N	MICB K57E	MICB 198M	MICB D113N	LTA Ncol	TNF G-308A	LST G154A	LST C416A	LST T1605A	AIF1 G60A	AIF1 T722G	
Majorallele	•	C	C	G	C	G	A	C	G	C	G	G	C	Т	G	Т	Frequenz
ι Έλλι					G	А						А					0,147
enz	%						G		А					А		G	0,102
ed a	ŭ,						G	G	А	Т	А						0,090
Hal fre	Λ			С								А					0,066
		Α	Т							Т			A			G	0,051
							G		А			А				G	0,040
							G		А					А	А		0,015
							G		А					А			0,014
1%							G		А	Т			Α				0,013
۰ ۸		Α	Т							Т	А						0,043
Z U		А	Т							Т			Α		А		0,033
Ine	-	А	Т											А			0,027
rec		А	Т							Т			Α				0,014
) Def				С										А		G	0,020
5 Al		Α	Т											А		G	0,040
d					G	А						А			А		0,035
Ξ		Α	Т									А					0,010
				С								А				G	0,037
					G	А						А				G	0,016
		А	Т									А				G	0,030

Abbildung 3.30 HLA Klasse IV Haplotypen

Haplotypenrekonstruktion anhand der häufigen SNPs mit einer Majorallelfrequenz >0,08.Im TDT signifikant übertransmittierte Allele sind grau hinterlegt. --: Majorallel. Es existieren fünf extendierte Haplotypen mit einer Allelfrequenz über 5% (Frequenzbestimmung anhand der Eltern der Familienstudie).

3.5.4 Haplotypentransmission

Da MICBI98M einen extendierten Haplotypen beschreibt, wurde überprüft, ob die weiteren signifikanten SNPs eine unabhängige Assoziation aufweisen. In der Tabelle sind die Ergebnisse der Zwei-Punkt-Analysen der selektierten SNPs dargestellt. MICBK57E ist stellvertretend für MICBK57E/MICBD113N aufgeführt. Die kombinierten Transmissionsanalysen von MICBI98M mit MICBK57E und LST1G154A zeigen keinen unabhängigen Effekt. AIF1T722G hingegen zeigt nun bei der Analyse von Asthma durch den übertransmittierten Haplotypen MICBI98M*G ebenfalls Signifikanz. Die Assoziation zu erhöhtem IgE wird durch die Unterteilung des assoziierten AIF1 722*T Allels durch MICBI98M*G vermindert.

P MICBK57E MICBI89M LIST1G154A AIF1G722T MICBK57E-MICB108M	MICBI98M-LST1G154A	MICBI98M-AIF1G722A	Haplotypenfrequenz [%]	LN / L 77 / 46	9 9 Transmittiert [%]	(LQL) d 0,0032	di Asthma
A / G				57 / 62	0,48	n.s.	IgE
C / G				34 / 13	0,72	0,0006	Asthma
C / G				29/17	0,63	n.s.	IgE
G / A				43/26	0,62	0,0801	Asthma
G/A T/C				35/18	0,66	0,0687	IgE Acthmo
				0 <i>3</i> / 70 0 <i>1</i> / 53	0,52	0.0046	Asunna IoF
A -	· C	,	73.0	36/72	0.33	0,0040	्रत्
G -	- C		17,3	44 / 45	0,49	0,0047	thm
G -	G		9,7	30 / 9	0,77		\mathbf{As}
A -	· C	,	73,0	61 / 57	0,52		(-)
G -	- C		17,3	41 / 52	0,44	0,0380	IgH
<u> </u>	G		9,7	32 / 20	0,62		
	C A		39,3	20/30	0,40		uma
	CG	4	49,5	30/24	0,56	n.s.	Asth
	$\frac{G-G}{C-A}$		11,2 30.3	$\frac{1470}{25742}$	0,70		4
	C A C G		49 5	35/41	0,37	0.0086	Ш
	G G		11.2	16/4	0,80	0,0000	П
		C G	38,8	71 / 77	0,48		ла
		С Т	51,4	69 / 80	0,46	0,0035	sthn
	_	G T	9,7	33 / 13	0,72		A:
		C G	38,8	52 / 80	0,39		[1]
		C T :	51,4	79 / 59	0,57	0,0300	Igf
	-	G T	9,7	25 / 16	0,61		

Tabelle 3.5 Vergleich der Transmissionsergebnisse und Zwei-Punkt-Haplotypen

In der Tabelle (siehe vorige Seite) sind die signifikanten SNPs der Einzelpunktanalysen sowie die kombinierten Transmissionsanalysen anhand von Asthma und erhöhtem IgE dargestellt. Das in der Einzelpunktanalyse übertransmittierte Allel ist fett markiert. Haplotypentransmission wurden anhand der Freiheitsgrade (df=2) korrigiert. T / NT: Transmittiert / Nicht-transmittiert; p (TDT): korrespondierender p-Wert der Transmissionsanalysen

Um zu überprüfen, ob die gesteigerte AIF1T722G Transmission einen weiteren Effekt auf die häufigen extendierten Haplotypen aufweist, wurden Haplotypentransmissionen der Marker des *AIF1* Gens sowie der erweiterten Region durchgeführt. Es flossen die Haplotypen in die Analyse ein, die eine Konfidenz von über 95% des *AIF1* Gens und 90% der extendierten Region hatten, um den Rekonstruktionsfehler gering zu halten. Die rekonstruierten Haplotypen wurden in der Familienstudie mithilfe des Mendelchecks überprüft. Ein Mendelcheckfehler trat bei der Rekonstruktion des *AIF1* Gens auf, bei der extendierten Region traten fünf Mendelcheckfehler auf, die Familien wurden ausgeschlossen. Aufgrund der großen Anzahl an auftretenden Haplotypen wurden die häufigen Haplotypen durch die Analyse von *MICB* und *AIF1* verifiziert. Nach Rekonstruktion dieser durch (siehe Abbildung 3.30)

MICBG-72C/MICBC-56G/MICBD52N/MICBK57E/MICBI98M/MICBD113N/AIF1G60A/AIF1T722G

traten drei Mendelcheckfehler bereits identifizierter Familien auf. Es wurden 11 Haplotypen konstruiert, die alle bis auf drei seltene, die nur bei den Eltern der Familienstudie auftraten und ausgespart wurden, Haplotypen erklären (siehe Tabelle 3.6). Obwohl die Transmissionsanalysen der häufigen Haplotypen kaum Signifikanz zeigten, konnten anhand der definierten Haplotypen die Trends, die aufgrund der geringen Stichprobengröße und des hohen Freiheitsgrads nicht signifikant sind, bestätigt werden. Es konnten zwei häufige extendierte Haplotypen identifiziert werden, die beide an Asthmatiker mit besonders erhöhten IgE-Werten übertransmittiert werden. Der häufigere Haplotyp D tritt nach Rekonstruktion mit einer Frequenz von 9 bis 11% und wird an beide Asthmatikergruppen häufiger vererbt als erwartet.

.

																				_		A	sthma				IgE	
	Haplotyp	MICBC-243A	MICBC-150T	MICB G-72C	MICB C-56G	MICB D52N	MICB K57E	MICB 198M	MICB D113N	LTA Ncol	TNF G-308A	LST G154A		L31 C410A	LST 11605A	AIF1 G60A	AIF1 T722G	AIF1 C735G		Frequenz (%)	T//NT (TDT)		N	Transmittiert (%)	T//NT (TDT)		Z	Transmittiert (%)
-															0	t i	T G	C C	(0,48	96 73	72 92	168 165	0,57 0.44	94 58	55 91	149 149	0,63
AIF															A	Ń	T	č	Ċ	0.11	20	33	53	0.38	20	26	46	0.43
															C	3	G	Ğ	(0.03	14	6	20	0,70	9	9	18	0,50
	Α	С	С	G	G	А	А	С	G	С	G	А	С	Т	6	Ĵ	Т		(0,15	12	19	31	0,39	6	15	21	0,29
ge /pei	В	С	С	G	С	G	G	С	А	С	G	G	С	Α	0	j	G		(0,10	11	12	23	0,48	10	12	22	0,45
iufi loty	С	С	С	G	С	G	G	G	Α	Т	А	G	С	Т	6	ť	Т		(0,09	26	8	34	0,76	17	11	28	0,61
Hå	D	С	С	С	С	G	А	С	G	С	G	А	С	Т	6	ť	Т		(0,07	6	9	15	0,40	12	3	15	0,80
	E	С	С	G	С	G	G	С	А	С	G	А	С	Т	0	j	G		(0,05	7	5	12	0,58	5	6	11	0,45
Ħ	Α			G	G	А	А	С	G						C	ì	Т		(0,19	24	20	44	0,55	27	20	47	0,57
nie 1	B/E			G	С	G	G	С	Α						C	ì	G		(0,22	23	15	38	0,61	15	24	39	0,38
lefi AIF	С			G	С	G	G	G	Α						6	Ĵ	T		(0,11	22	5	27	0,81	22	7	29	0,76
en c	D			C	C	G	A	C	G						(Ĵ	T		(0,06	3	12	15	0,20	13	4	17	0,76
typ 3 ur				G	С	G	A	С	G						0	j	G		(0,15	17	16	33	0,52	16	18	34	0,47
ICE plo				G	C	G	A	C	G						e C	j.	T		(0,10	8	15	23	0,35	8	1/	25	0,32
Haj M				C	C	G	A	C	G							1	С Т			0,04	о 0	0 5	11	0,45	2	8 7	10	0,20
ige Irch				G	G	A	A	C	G						P C	1	G			0,05	0 2	0	13	0,02	4	/	7	0,30
äuf du				G	C	G	Δ	c	G						Δ	,	Т		Č	0,03	2	7	9	0.22	6	2	8	0.75
Н				G	č	G	G	č	A						A	Ň	T		(0,01	2	4	6	0,33	1	5	6	0,17

		Asthr	na	IgE			Asthr	na	IgE	
	df	p (RCTDT)	p(TDT)	p (RCTDT)	p(TDT)	df	p (RCTDT)	p(TDT)	p (RCTDT)	p(TDT)
AIF1	3	0,01	0,097	0,012	0,008	1	0,02	0,409	0,016	0,012
Häufige Haplotypen	16	0,187	0,57	0,221	0,045	1	0,07	0,062	0,223	0,228
definierte Haplotypen	10	0,00012	0,0032	0,00067	0,0002	1	0,00092	0,0004	0,0043	0,003

Tabelle 3.6 Haplotypentransmissionen

In der unteren Tabelle sind die Ergebnisse der Transmissionsanalysen an *AIF1*, häufigen Haplotypen und durch *MICB* und *AIF1* definierten Haplotypen aufgelistet. Die zugrundeliegenden Haplotypen und Transmissionen sind in der oberen Tabelle abgebildet. Korrespondierende p-Werte sind anhand der Freiheitsgrade (df) korrigiert. In der zweiten Spalte ist der maximale p-Wert eines Haplotypen gegenüber allen anderen angegeben (df=1) (mult=max Funktion im "proc family statement"). Die Haplotypenfrequenzen sind anhand aller Probanden der Asthmafamilienstudie angegeben. T: transmittiert; NT: nicht-transmittiert.

4 Diskussion

4.1 SNP-Validierung und Methodik

Die zur Feinkartierung der chromosomalen Region 6p21 ausgewählten SNPs wurden auf Grundlage des "Golden Path Assembly" Dezember 2000 ausgewählt. Von den ursprünglich 1435 SNPs, die aus Datenbanken ausgewählt wurden, erfüllten 546 die zur Allelfrequenzbestimmung nötigen Qualitätskriterien. Der hohe Anteil an Repeat-Elementen, stark polymorphen Regionen sowie multiplen Genduplikationsereignissen (Kasahara et al., 1996) verminderte den Anteil an validen Markern. Bei 451 SNPs zeigten sich sowohl bei der exponentiellen als auch der linearen Polymerase-Kettenreaktion multiple Amplifikationen sowie Intensitätsverluste der Messungen. Bei einem Projekt auf Chromosom 19 wurden ebenfalls SNPs anhand der Version 27 des Golden Path selektiert und an 40 Probanden einzelgenotypisiert (Phillips et al., 2003). Die Ausfallrate betrug 46% und beinhaltete auch seltene SNPs, weitere 13% der analysierten SNPs waren bei allen Probanden monomorph. Während der Durchführung der Studie verbesserten sich sowohl die Sequenzinformationen des menschlichen Genoms sowie die Qualität der SNP-Datenbanken. Von besonderer Bedeutung ist auch die Annotation der Sequenzen der SNP-Datenbanken durch die Identifizierung weiterer Polymorphismen und repetitiver Sequenzen, wodurch die hohen Kosten durch die Primersynthese nicht mehr anfallen.

383 SNPs waren bei der Allelfrequenzbestimmung an einem unselektierten Kaukasierpool nicht polymorph. Abhängig von der Assayqualität können DNA Polymorphismen mit einer Minorallelfrequenz von bis zu 2% an gepoolter DNA detektiert werden (Ross et al., 2000). Unter Voraussetzung von Amplifikationsunterschieden beider Allele oder Detektion des Minorallels anhand der schwereren Oligonukleotidmasse (Bray et al., 2001), wurden wahrscheinlich auch seltene Polymorphismen in unserer Studie als monomorph angesehen. Assoziationsanalysen multifaktorieller Erkrankungen basieren jedoch auf der "Common Disease/Common Variant"-Hypothese (Lander, 1996; Cargill et al., 1999; Chakravarti 1999). Im Gegensatz zu seltenen monogenen Erkrankungen, die durch relativ neue Mutationen auftreten, wird aufgrund der Kopplungsanalysen und Modellierungen des Vererbungsmusters bei multifaktoriellen Erkrankungen von in der Bevölkerung häufig auftretenden kausalen Genvarianten oder Haplotypen ausgegangen (Corder et al., 1993; Altshuler et al., 2000; Straub et al., 2002). Die Selektion von häufigen SNPs hat den weiteren Vorteil, dass sie Assoziation einer Region anzeigen und somit zur Identifizierung von Markern, die in der Bevölkerung selten auftreten (Risch, 2000; Hugot et al., 2001), beitragen.

Durch die Validierung der Marker an gepoolter DNA wurden die in die weiteren Analysen einfließenden Marker zugunsten erhöhter Heterozygotie verschoben. 93% der Marker zeigen Minorallelfrequenzen über 10%, 75% zeichnen sich durch Minorallelfrequenzen über 20% aus. Das Markerset unterscheidet sich somit von den rein genbasierten Validierungsarbeiten an gepoolter DNA kaukasischer Probanden (Buetow et al., 2001; Nelson et al., 2004), bei denen 16% bzw. 44% aller polymorphen Marker Minorallelfrequenzen unter 10% zeigen. Der zu beobachtende Trend spiegelt die Qualität der SNP-Datenbanken wider. Weitere genbasierte SNP-Validierungen durch Einzelgenotypisierung kaukasischer Studien zeigen ebenfalls je nach Anteil aminosäureaustauschverursachender Marker 29%, 42% bzw. 59% (Reich et al., 2003; Gabriel et al., 2002; Carlson et al., 2003) aller polymorphen Marker mit Minorallelfrequenzen unter 10%.

Die zurzeit aktuelle Version 33 des "NCBI-Genom-Assemblys" zeigt große Differenzen zum "Golden Path Assembly" Dezember 2000 und NCBI-Genomassembly Version 26 zu Beginn der Studie. Die vorselektierte Region umfasste 28 Mb mit einem durchschnittlichen Abstand der SNPs von 17 kb. Nach Validierung der SNPs betrug der durchschnittliche Abstand 52,5 kb, wobei die genreiche HLA-Region mit 165 der analysierten SNPs im Durchschnitt alle 24,2 kb abgedeckt wird. Durch die Entfernung doppelter Sequenzeinträge bis zur Version 33 umfasst die Region nun 18 Mb. Der mittlere Abstand der SNPs der chromosomalen Region 6p beträgt nun 37,2 kb, wobei 49 der validierten Marker auf Chromosom 6q liegen. Die unterrepräsentierten Regionen wie 35,6 bis 36,2 Mb und 39,4 bis 39,8 Mb, die 14 Gene beinhalten, wurden nur durch Frequenzmessungen von 4 SNPs analysiert. Eine valide Aussage assoziierter Gene der Regionen ist somit nur eingeschränkt möglich. Laut der Genannotation der NCBI Version 26 lokalisieren 41% der in die weiteren Analysen eingeflossenen Marker in Introns, Exons oder innerhalb von 2 kb eines Gens, die Übrigen sind intergenisch lokalisiert. Diese SNPs haben den Vorteil, über physikalische Nachbarschaft zu polymorphen oder homologen Genen (Walsh et al., 2003) Assoziation einer Region anzuzeigen und zum Zeitpunkt der SNP-Selektion noch unbekannte Gene auf Assoziation zu testen.

Da eine Selektion auf haplotypmarkierende Marker noch nicht möglich war, sind alle Marker als Einzelpunktanalysen zu werten. Des Weiteren können anhand der gepoolten Analysen

keine detaillierte Aussagen über Kopplungsungleichgewichte der verschiedenen Marker getroffen werden. Dennoch geben übereinstimmende Allelfrequenzdifferenzen zwischen Pools benachbarter Marker einen Einblick in mögliche genetische Kopplungsungleichgewichtsregionen. Die Haplotypenstruktur variiert innerhalb des Genoms und innerhalb verschiedener Populationen (Patil et al., 2001; Dawson et al., 2002) und kann über Rekombinations-"hotspots" (Jeffreys et al., 2001) hinaus bestehen oder sich durch ein haplotypenspezifisches Kopplungsungleichgewicht zwischen Markern auszeichnen (Ahmad et al., 2003). Einige Gruppen haben statistische Überlegungen zur Verwendung von gepoolter DNA zur Identifizierung des Kopplungsungleichgewichts verschiedener SNPs angestellt, die anhand einer großen Anzahl an Pools erfolgen kann, die sich aus optimalerweise zwei bis zu höchstens 10 Probanden zusammensetzen (Pfeiffer et al., 2002; Wang et al., 2003). Unter Voraussetzung, dass die Haplotypstruktur anhand einzelgenotypisierter Probanden bereits bestimmt ist und die Anzahl der Haplotypen geringer ist als die Anzahl der genotypisierten SNPs, wird diese innerhalb der Poolallelfrequenzbestimmung ersichtlich (Barratt et al., 2002). Die erforderliche Poolfrequenzkorrektur anhand von Heterozygoten kann unter Verwendung der gleichen Assaybedingungen der Einzelgenotypisierung und Poolmessung erfolgen. Eine weitere Möglichkeit besteht in der markerspezifischen Amplifikation innerhalb eines Pools zur Messung der Allelfrequenzen benachbarter Marker (Inbar et al., 2002). Neben diesen spezifischen Anwendungen wird nach Fertigstellung des HapMap-Projektes (The International HapMap Consortium, 2003) eine populationsspezifische Auswahl von Haplotyp-markierenden SNPs möglich, was zu einer weiteren Reduktion der zu analysierenden Marker beiträgt.

Allelfrequenzmessungen gepoolter DNA beruhen an im Gegensatz zu Allelfrequenzbestimmung aus Einzelgenotypisierung der Studienteilnehmer auf dem Verhältnis der Detektionsintensitäten beider Allele. Abweichungen durch die Messmethode zeigen sich durch das Allelfrequenzverhältnis heterozygoter Probanden. Die Korrektur der Messungen an DNA-Pools anhand dieses Verhältnisses erlaubt eine Anpassung an die durch Einzelgenotypisierung erwarteten Allelfrequenzen. Korrigierte Messungen zeigen eine Abweichung von durchschnittlich 3% von der durch Einzelgenotypisierung erhaltenen Allelfrequenzberechnung, mit einer Maximalabweichung, die unter 5% liegt. Unter Verwendung verschiedener Assaybedingungen wie Bead-Methode und hME-Methode hingegen treten abhängig vom analysierten SNP Differenzen der korrigierten Allelfrequenzen zu den durch Einzelgenotypisierung erhaltenen von durchschnittlich 5% auf, wobei bei einigen Markern eine Überkorrektur zu beobachten ist und Abweichungen bis zu 17%
auftreten. Da bei beiden Methoden die gleichen Extensionsprimer verwendet wurden und die Hybridisierungssequenzen der PCR-Primer übereinstimmten, ist davon auszugehen, dass die Abweichungen durch Amplifikationspräferenzen oder Unterschiede im physikalischchemischen Bereich der beiden Methoden verursacht sind. Die Korrektur mittels hME-Genotypisierung ist somit nicht möglich. Die präferierte Detektion des masseleichteren Allels (Bray et al., 2001) zeigt sich auch anhand des Medians der Allelfrequenzen aller Marker, welcher anstatt von erwarteten 50% bei 56% liegt. Ein vergleichbarer Median der Allelfrequenzen mit 58% wurde durch Nelson bei der Analyse von über 100000 SNPs beobachtet (Nelson et al., 2004). Assoziationsanalysen an gepoolter DNA werden hingegen nur zu geringem Maße von der Detektionspräferenz beeinflusst. Mohlke und Mitarbeiter testeten die Auswirkung der Korrektur auf die statistische Aussage der Assoziationsanalysen. Hierbei wiesen 22 Marker übereinstimmende Signifikanzen auf dem 0,05 Niveau auf, wobei bei der statischen Analyse 25 signifikante Marker der korrigierten Werte und 26 signifikante Marker nicht-korrigierter Allelfrequenzen beobachtet wurden (Mohlke et al., 2002).

Bei der Analyse verschiedener Poolgrößen und bei der Detektion unterschiedlicher Allelfrequenzen an artifiziellen Pools konnte kein methodischer Fehler der quantitativen Allelfrequenzbestimmung festgestellt werden. Der auftretende Fehler ist annäherungsweise linear und bestätigt die geringe Auswirkung auf die statischen Aussagen von Mohlke und Mitarbeitern.

Es wurden eine Reihe Methoden der Allelfrequenzbestimmung an gepoolter DNA entwickelt (vergleiche 1.2). Alle Analysemethoden basieren auf einer PCR, deren exponentieller Charakter als Grundlage der differierenden Allelfrequenzen von Mehrfachmessungen erachtet wird. Die genaue Adjustierung der Matrizen-DNA bei der Poolgenerierung ist dabei von entscheidender Bedeutung. Die Bestimmung der DNA-Konzentrationen mit der UV-Messung ist unsicher, deshalb wurde in der vorliegenden Arbeit ein DNA-spezifischer Farbstoff verwendet. Die Konzentrationsmessungen wurden an stark verdünnter DNA durchgeführt, um etwaige Pipettierfehler der viskösen Lösung zu vermindern. Tatsächlich zeigten die verschiedenen Messmethoden mit der Ausnahme von RFLP-Analysen vergleichbare Differenzen zur wahren Allelfrequenz, die jeweils abhängig vom analysierten SNP zwischen 0 und 5% beträgt. Die Mehrzahl der Methoden beruht auf einer Primerextension und zeigt vergleichbare Detektionseffizienzen, wobei durch Detektion anhand von DHPLC-Analysen eine geringere Auflösung der Minorallelfrequenzen erreicht wird. Der direkte Vergleich quantitativer Alleldetektionsmethoden anhand von gleichen Markern bestätigt die Vergleichbarkeit der verschiedenen Methoden, wobei die qualitativen Unterschiede der

Methoden markerspezifisch sind (LeHellard et al., 2002; Shifman et al., 2002). Da bei genomweiten Assoziationsstudien die Automatisierung und Reproduzierbarkeit unter High-Throughput-Bedingungen grundlegend ist, wäre es von großem Interesse, die verschiedenen High-Throughput-Methoden an einem großen Markerset zu testen, um die Daten zwischen den einzelnen Techniken vergleichen zu können. Mehrfachmessungen müssen bei allen Methoden durchgeführt werden, um den durch die PCR und die Messmethode auftretenden Fehler zu verringern. In der vorliegenden Arbeit wurden je Pool drei unabhängige PCRs durchgeführt und jeweils vierfach gespottet. Die durchschnittliche Standardabweichung von ca. 0,029 der Messungen mit mindestens 2 Meßwerten setzt sich aus den Fehlern der Moleküldetektion mittels MALDI-TOF mit einer Standardabweichung von 0,035, der Kristallisation der Proben (0,018) und der PCR (0,027) zusammen. Sowohl die Doppelbestimmung an neun Markern als auch die zufällige Gruppierung der Messwerte aller verwendeten Marker innerhalb der jeweiligen Pools zeigen den resultierenden Messfehler, der im Mittel in ca. 2,1% bzw. 1,6% Allelfrequenzdifferenzen resultiert und die Grundlage für Fehler erster Art darstellt. Da die Abweichungen markerspezifisch sind, kann keine allgemeingültige Aussage über das minimale Detektionslimit von Allelfrequenzdifferenzen zwischen zwei Pools getroffen werden, im Falle der hier analysierten Marker liegt das Limit bei ca. 3,2 bis 4,2%. Beim Vergleich von Allelfrequenzen verschiedener Pools durch MALDI-TOF Messungen postulierten Mohlke und Mitarbeiter eine statistische Power von 85%, Allelfrequenzdifferenzen von 7% zu detektieren (Mohlke et al., 2002).

4.2 Assoziationsanalysen

Im Studienzeitrahmen wurden drei weitere Assoziationsansätze der Firma Sequenom sowie des NIH mit gepoolter DNA publiziert (Bansal et al., 2002, Silander et al., 2004, Kammerer et al., 2004). Bansal und Mitarbeiter validierten 15 von 22 Markern eines bereits assoziierten Kandidatengens für HDL-C Level an gepoolter DNA. Die Assoziationsanalysen des quantitativen Phänotypen wurden an zwei Pools durchgeführt, die sich aus 10% der Probanden der Studie mit den höchsten HDL-C Level bzw. den niedrigsten HDL-C Level zusammensetzen. Der χ^2 -Test auf Assoziation wies 14 der 15 Marker als signifikant aus, der auftretenden Messfehler wurde jedoch nicht kontrolliert. Durch die Einzelgenotypisierung aller 15 SNPs wurden 9 der assoziierten Marker bestätigt, obwohl sich die Allelfrequenzdifferenzen sich im Durchschnitt halbierten. Bei der Analyse quantitativer Phänotypen wird die Einteilung in Extreme vorgeschlagen, wobei die DNA von je 27% der Probanden der stärksten und schwächsten Ausprägung gepoolt und die Allelfrequenzen verglichen werden (Bader und Sham, 2002). In der vorliegenden Arbeit wurde dieser Ansatz für die Analyse des erhöhtem IgE Phänotypen genutzt.

Zur Kontrolle von Fehlern 1. Art der Assoziationsanalysen werden in der Praxis weitere Studien zur Verifizierung der Assoziation herangezogen. Silander und Mitarbeiter verwendeten diesen Ansatz durch die Generierung von zwei Fall-Pools und zwei Kontroll-Pools. Trotz Einbeziehung der Varianzen der Messungen in die Assoziationsanalysen zeigten ca. 4,8% der 266 bzw. 291 analysierten Marker Signifikanz auf dem 0,05 Niveau (Mohlke et al., 2002; Silander et al., 2004). Für die folgende Überprüfung anhand der individuellen Genotypisierung wurden 63 Marker selektiert, die entweder signifikante Differenzen oder Differenzen über 5% zwischen den Fall-Kontroll-Pools aufwiesen. Der 21. analysierte SNP konnte bestätigt werden und durch ein anschließendes Finemapping anhand von zusätzlichen Markern wurde HNF4A, welches bereits mit MODY assoziiert wurde, als Suszeptibilitätsgen für Typ 2 Diabetes detektiert. Die Autoren geben jedoch weder die Allelfrequenzdifferenzen der gepoolten Analysen und ihrer Übereinstimmung mit der Einzelgenotypisierung an noch die Priorität, in welcher Reihenfolge die Marker analysiert wurden. Obwohl die Fälle aus einer familienbasierten Studie stammten, wurden die Ergebnisse nicht durch eine TDT-Analyse überprüft. Vergleichbar zur vorliegenden Arbeit ist jedoch der Ansatz der Poolingergebnisse anhand eines weiteren Erkrankungspools zu überprüfen. Inwieweit jedoch die zufällige Anhäufung von Subphänotypen der jeweiligen Pools durch den Vergleich zu einem weiteren Pool in Fehlern 2. Art resultieren, kann nur durch Einzelgenotypisierung aller signifikanten Marker bestimmt werden.

Zurzeit existiert noch kein Übereinkunft, welche Marker eines Poolingansatzes durch Einzelgenotypisierung überprüft werden sollten. Im von Kammerer und Mitarbeitern verfolgten Ansatz wurde eine genomweite Assoziationsanalyse an 25.500 SNPs eines validierten Markersets, welches 125000 genbasierte SNPs beinhaltet (Nelson et al., 2004), an zwei Pools mit Brustkrebspatienten und Kontrollen durchgeführt (Kammerer et al., 2004). Je Pool wurde nur eine PCR durchgeführt und jeweils 4fach gespottet. Die signifikantesten 5% der Differenzen wurden mittels drei weiterer PCRs überprüft. Die nun auftretenden 74 signifikantesten Marker (5%) wurden einzelgenotypisiert, 52 konnten verifiziert werden. Es wurde stets nicht auf multiples Testen korrigiert.Die 52 Marker wurden an zwei weiteren kaukasischen Studien überprüft, worauf der am besten übereinstimmende Marker als Grundlage für das Finemapping fungierte und der daraus resultierenden Detektion des Brustkrebs-prädispositionierenden *ICAM*-Clusters. Inwieweit die Datenlage durch eine

erweiterte Einzelgenotypisierung zur Identifizierung weitere Suszeptibilitätsmarker verwendet wird, oder ob der Ansatz in einem zu großen Fehler 2. Art resultiert, bleibt zu evaluieren. Der Hochdurchsatzcharakter der Methodik wird durch 12 weitere unveröffentlichte genomweite Assoziationsanalysen verschiedener Phänotypen unterstrichen, die im gleichen Ansatz durchgeführt wurden (Tang et al., 2004).

In der vorliegenden Arbeit fungierte KORA als Kontrolle für alle Erkrankungspools. Die Probanden der verschiedenen Pools stammen aus einer "outbred"-Population, bei der eine genetische Stratifizierung vermutlich nur in geringen Maßen auftritt. Zur Kontrolle der genetischen Stratifizierung werden zwei Modelle der Assoziationsanalysen vorgeschlagen (Spielman et al., 1993; Pritchard und Rosenberg, 1999; Devlin und Roeder, 1999): Erstens die Verwendung von Trios, bei denen durch die Transmissionsanalysen an das erkrankte Kind unabhängig von Populationsdifferenzen die Assoziation beobachtet werden kann. Da jedoch nur heterozygote Eltern einer Studie in die Analysen einfließen, reduziert dieser Ansatz die statistische Power.

Durch die aufwendige und kostenintensive Rekrutierung weisen Familienstudien im Allgemeinen eine dezimierte Anzahl an betroffenen Probanden auf, was sich bei Assoziationsanalysen an gepoolter DNA negativ auf die Power auswirkt, da nur die DNA nicht-verwandter Probanden gepoolt werden sollten. Eine genetisch angepasste Kontrolle durch die Generierung eines DNA-Pools der Eltern der Familienstudie anstatt eine durch genetische Schichtung abweichende Populationskontrolle hingegen kann durch die Anhäufung des Phänotypen innerhalb der Eltern zu einer verminderten Allelfrequenzdifferenz führen und somit zu einer verminderten Power. Im Falle der Asthmafamilienstudie sind 23% der Eltern Asthmatiker und ca. 44% weisen erhöhte IgE-Serumwerte auf, wobei bei 10% der Eltern IgE-Werte über 500 kU/l gemessen wurden.

Alternativ wird die Adjustierung der zu analysierenden Marker an den genomischen Hintergrund vorgeschlagen, dessen Differenzen durch die Genotypisierung von ca. 30 Markern in die Teststatistiken der späteren Assoziationsanalysen zwischen beiden Populationen einfließen. Da dieser Ansatz auch bei Assoziationsanalysen an gepoolter DNA möglich ist, konnten innerhalb der statistischen Auswertung die poolspezifischen Differenzen durch eine stratifizierte Kontrolle und limitierte Anzahl der Probanden sowie die Validität der Messungen miteinbezogen werden.

Bei einer weiteren von Pritchard entwickelten Möglichkeit der Adjustierung der Teststatistiken an den genomischen Hintergrund (Pritchard et al., 2000a; Pritchard et al., 2000b; Pritchard und Donnelly, 2001), "structure assessment", werden anhand der genotypisierten Marker homogene Subgruppen der stratifizierten Proben geschätzt, die dann untereinander verglichen werden. Die einzelnen Ergebnisse der späteren Assoziationsanalysen werden statistisch kombiniert, um eine Aussage über die Gesamtstudie zu erhalten. Diese Methode ist jedoch bei Allelfrequenzbestimmungen von zwei Pools nicht möglich und zeigt den Hauptnachteil des Poolingansatzes gegenüber der Einzelgenotypisierung auf. Abhängig von der Verfügbarkeit der Proben sowie der Natur des zu analysierenden Phänotypen (quantitativ oder qualitativ) und dem Einfluss von Umweltfaktoren auf die Ausprägung des Phänotypen wurden unterschiedliche Pooling-Strategien entwickelt, wobei für jeden zu analysierenden Phänotypen ein Pool generiert werden muss. Durch die Einteilung der Probanden in genetisch-homogene Subgruppen pro Pool sowie die Einteilung in exponierte – nicht-exponierte Probanden oder quantitative Phänotypen in Extreme wird eine vergleichbare statistische Power wie bei der Einzelgenotypisierung der gesamten Studie erzielt (Barratt et al., 2002).

Die Wahl des Pooling-Designs hängt somit von den vorhandenen Proben ab. Der Idealfall der Assoziationsstudien an gepoolter DNA umfasst eine hinreichend große Fall-Kontroll-Studie, bei der die Anzahl der in den Pool einfließenden Probanden nur durch die Masse des diploiden Genoms eines Probanden von 13,4 pg limitiert wird und somit pro Pool abhängig von der eingesetzten DNA-Menge maximal 1300 bis zu 1800 Probanden analysiert werden können. Um die auftretende Messungenauigkeit und Abweichungen bei der Poolgenerierung zu kontrollieren, sollte hierbei jedoch präferiert ein Ansatz gewählt werden, der mindestens einen oder zwei Vergleichspools pro Gruppierung beinhaltet. Das untere Limit der zu poolenden Probanden-DNA lehnt sich an die Fallgrößenbestimmung des mindenstens zu detektierenden Effektes der Assoziationsstudie an.

4.3 Typ 1 Diabetes als Positivkontrolle

Typ 1 Diabetes Proben dienten der Überprüfung des Pooling-Ansatzes zur Identifizierung assoziierter Regionen innerhalb der starken Kopplungsregion. Da anhand von Kopplungsanalysen davon auszugehen war, dass die Region insbesondere bei früh einsetzendem Diabetes starke Kopplung aufweist, wurden für die Allelfrequenzmessungen zwei DNA-Pools erstellt, die entweder DNA von Probanden enthielt, die vor dem 15. Lebensjahr oder nach dem 15. Lebensjahr erkrankten. Beide T1D Pools zeigten zueinander die geringsten Allelfrequenzdifferenzen, wobei im Vergleich zur Kontrolle der T1D2 Pool

stärker abwich. Nach Korrektur für multiples Testen traten vermehrt signifikante SNPs in dem stärker gekoppelten T1D2 Pool auf, die fast ausschließlich in der HLA Klasse II Region lokalisieren. KORA Allelfrequenzen und die kombinierten Allelfrequenzen stimmten überein. Gleiches gilt für den T1D1 Pool, der zwar eine verminderte Anzahl an signifikanten SNPs aufweist, bei denen jedoch die Allelfrequenzen zum T1D2 Pool vergleichbar sind. Die größte Allelfrequenzdifferenz beider T1D Pools zur Kontrolle betrug ca. 30%, der korrespondierende Marker lokalisiert ca. 40 kb proximal von HLA-DQB1. Die Einzelgenotypisierung des Markers bei den Probanden der Pools T1D und KORA sowie einem in einem Aminosäureaustausch von HLA-DRB1 (rs1064663) resultierenden Marker zeigte Allelfrequenzunterschiede der T1D-Pools zur Kontrolle von 29% bzw. 12%. In der SNP-Datenbank des NCBI wird rs1064663 als bi- oder triallelisch beschrieben, wohingegen hier nur die biallelische Form detektieren werden konnte. Die triallelische Form lokalisiert auf einem weiteren HLA-DRB Gen, die Allelfrequenzen der biallelische Form der Datenbank stimmen mit den Einzelgenotypisierungsergebnissen von KORA überein. Es wurden weitere drei SNPs analysiert, die bei der derzeitigen Genomanordnung keine Lokalisationsangaben haben und nur durch eigene Blastanalysen der HLA Klasse II Region zugeordnet werden konnten. Alle drei SNPs zeigten große Genotypisierungsausfällen mit durch einen Verlust von Heterozygotie bedingter starken Abweichungen vom Hardy-Weinberg-Gleichgewicht. Die Ausfälle der PCR sind vermutlich durch die An- bzw. Abwesenheit bestimmter Haplotypen bedingt, die sich in der Anzahl der Gene und dementsprechend der Länge der genomischen Sequenz unterscheiden. Zurzeit werden innerhalb des MHC Haplotypen Projekts (http://www.sanger.ac.uk/HGP/Chr6/MHC/) Sequenzierungsanalysen zur Detektion weiteren Marker bei Zellen mit verschiedenen HLA-Typen durchgeführt, die einen Einblick sowohl in die Sequenzzusammensetzung als auch das Auftreten und die Aussagekraft verschiedener Marker vermitteln sollen.

Bei den analysierten SNPs ausserhalb der HLA-DRB1-9 Region traten mit der Ausnahme von rs11244 keine Hardy-Weinberg-Abweichungen bei KORA auf, während bei Typ 1 Diabetes Analysen eine erhöhte Heterozygotie beobachtet wurde, die jedoch jeweils nur bei einem Subtypen der Diabetiker auftrat. Eine mögliche Erklärung ist die erhöhte Gefahr Typ 1 Diabetes zu entwickeln, wenn eine Heterozygotie der DR3DQ2/DR4DQ8 Haplotypen besteht und dass die Einteilung in früh einsetzendes und spät einsetzendes Diabetes in einer unterschiedlichen Zusammensetzung der Haplotypen resultiert.

Die Eingrenzung der Typ 1 Diabetes Suszeptibilitätsregionen resultierte in zwei übereinstimmenden Regionen TdB und TdC, eine mögliche weitere Suszeptibilitätsregion TdA wurden nur durch den spät einsetzenden Diabetes Pool beschrieben. TdC beinhaltet u.a. die Hauptsuszeptibilitätsgene für Typ 1 Diabetes HLA-DRB1, HLA-DOA1 und HLA-DOB1, und zeigt die stärksten Differenzen zu den Kontrollen. Mit Hilfe des Poolingansatzes konnten somit die bereits bekannten Assoziationen von DR3DQ2/DR4DQ8 bei beiden Typ 1 Diabetes Pools bestätigt werden. Aus der Literatur ist bekannt, dass starke Kopplung der HLA-B Allele zu verschiedenen Allelen der HLA Klasse II Gene besteht. HLA-B lokalisiert in der TdB Region. Die starken Abweichung der SNP Allelfrequenzen zwischen T1D und der Kontrolle der Region TdB könnte somit durch die Kopplung zu TdC bedingt sein. Alternativ besteht die Möglichkeit, dass die beobachtete Expansion der TdC Region sowie die Detektion von TdA und TdB durch weitere assoziierte Gene verursacht ist. Da die starken Kopplungsergebnisse nicht alleinig durch die bereits identifizierten Risikohaplotypen erklärt werden, sind einige Gruppe damit beschäftigt, anhand von multiallelischen Markern weitere von HLA-DR3/DR4 möglicherweise nicht unabhängige aber modifizierende Effekte zu identifizieren. Mögliche modifizierende Effekte wurden für HLA-DMB, HLA-DOB und den TNFc Marker postuliert (Zavattari et al., 2001), sowie ein HLA-DR unabhängiger Effekt der HLA-B/MICA-Region (Nejentsev et al., 2000; Cheong et al., 2001). Im Rahmen des Poolingansatzes können schützende Varianten bestimmter Marker wie D6S2223 (Johansson et al., 2003) bisher nicht identifiziert werden. Der Vergleich des späteinsetzenden Typ 1 Diabetes zum früheinsetzenden Typ 1 Diabetes könnte jedoch Hinweise auf mögliche modifizierende Regionen liefern, wie zum Beispiel die beim spät einsetzenden Diabetes Pool expandierte HLA Klasse IV innerhalb der TdB Region sowie die TdA Region.

4.4 Morbus Crohn

Bei der Analyse von CARD15 positiven Morbus Crohn Patienten konnten fünf signifikante Allelfrequenzdifferenzen beobachtet werden, von denen vier nur in der kombinierten Analyse Signifikanz erreichten. rs1266079 sowie rs1729 sind vermutlich als falsch positiv zu werten, da die Differenzen durch die Assoziation des IgE Pools und atopische Dermatitis Pools bzw. der Typ 1 Diabetes Pools begründet sind. Über eine mögliche Assoziation zu rs15332 (*HLA-DRB4*) bzw. rs1002969 (*LOC135523*) kann keine Aussage getroffen werden, da die Analyse

des KORA-Pools keinen verlässlichen Vergleich lieferte. Gegenüber der Kontrolle KORA war nur ein Marker assoziiert, welcher nach eigenen Blast-Analysen distal von HLA-B lokalisiert, jedoch derzeit in SNP-Datenbanken keiner Region zugeordnet ist und somit möglicherweise wie Marker in der HLA-DRB1-9-Region innerhalb einer alternativen Genomsequenz liegt. Die Eingrenzung der genomischen Regionen bestätigte die in der Literatur beschriebene Assoziation zur HLA-DR/HLA-DQ (vergleiche 1.3.1), insbesondere durch TSC0879839. Während beide Typ 1 Diabetes Pools sowohl bei der Poolmessung als auch der Einzelgenotypisierung Allelfrequenzdifferenzen zu KORA von 30% zeigten, liegen die Poolallelfrequenzen von Morbus Crohn zwischen Typ 1 Diabetes und KORA und unterscheiden sich von der Kontrolle zu ca. 9%. Vergleichbare Effekte zeigen sich in der Region um HLA-C, HLA-B und MICA. Da Typ 1 Diabetes und Morbus Crohn vergleichbare pathologische Mechanismen einer Th1-abhängigen Autoimmunantwort zugrunde liegen, die in verschiedenen Organen manifestiert, könnten allgemeine genetische Effekte für beide Erkrankungen determinieren. Die Ergebnisse werden ebenfalls durch im Laufe der Studie veröffentlichte Assoziation zu HLA-C (Ahmad et al., 2002) und HLA-B (Orchard et al., 2002) gestützt. Des Weiteren zeigt eine Analyse mit Morbus Crohn assoziierter Colitis ulcerosa Assoziation zu MICA und HLA-B (Seki et al., 2001). Bei der vorliegenden Arbeit konnte das ebenfalls bei Morbus Crohn häufig diskutierte TNF-Cluster nicht bestätigt werden. Dies stimmt mit der bisher einzigen nach CARD15 stratifizierten Analyse des TNF-Gens überein. Hierbei wurde im Gegensatz zu CARD15 positiven Probanden nur zu CARD15 negativen Probanden Assoziation zu TNF postuliert und ein möglicher rezessiver Effekt diskutiert (VanHeel et al., 2002). Anhand von Transmissionsanalysen konnten Lantermann et al. (Lantermann et al., 2002) in einer Familienstudie marginale Assoziation zu HLA-DPA1 zeigen, dies jedoch innerhalb eines Fallkontrollansatzes nicht bestätigen, wodurch das Transmissionsergebnis als Hinweis auf eine nur schwache Kopplung der Suszeptibilitätsregion diskutiert wurde. Die eigenen Analysen zeigen keine Assoziation zu HLA-DP, jedoch zur benachbarten HLA-DR/HLA-DQ Region und unterstützen die Hypothese.

Die Eingrenzung der Suszeptibilitätsregionen resultierte in drei weiteren Regionen (CdA, CdB und CdD), wobei CdA die größte Evidenz auf Kopplung zeigt, da CdB und CdD sich nur aus jeweils zwei Markern in über 60 kb Entfernung ergeben und möglicherweise zufällig aufgetreten. Weitere fünf Marker lokalisieren im Bereich der vermindert abgedeckten, distalen Region und müssen als Einzelpunktanalysen gewertet werden. Die Verifizierung der Allelfrequenzdifferenzen mittels Einzelgenotypisierung könnte Hinweise auf weitere determinierende Gene liefern, wobei insbesondere CdA und CdB von Interesse sind, welche in der proximalen CD-Kopplungsregion lokalisieren und Gene mit unbekannter Funktion beschreiben.

4.5 Schizophrenie

Die Assoziationsanalysen des schizophrenen Phänotypen wurden an zwei unabhängigen deutschen Studie durchgeführt, wobei sich ein DNA-Pool aus 58 Probanden einer Familienstudie und ein DNA-Pool aus 125 Probanden einer Triofamilienstudie zusammensetzte. Bei der Untersuchungen der Vergleichbarkeit beider Studien zeigten sich sowohl beim ShF als auch beim ShT Pool allgemeine starke Abweichungen zur Kontrolle, die sich in einem erhöhten Median der Differenzen niederschlug. Während die Abweichung des ShF Pools, welcher zu KORA die geringsten Differenzen aufwies, durch eine mögliche genetische Stratifizierung der 58 Probanden bedingt sein könnte, zeigt sich bei dem ShT Pool ebenfalls eine starke Differenz zu KORA, wobei die geringste Differenz zum Pool des spät einsetzenden Diabetes bestand. Die starken Differenz des ShT Pools zu KORA und ShF wie auch eine zufällige verminderte Differenz zu T1D1 können auf einer allgemein unsicheren Allelfrequenzbestimmung des ShT Pools durch eine DNA-qualitätsbedingte Amplifikationsdefizienz beruhen, die sich in einer Verringerung der Anzahl der validen Allelfrequenzbestimmungen auf 414 niederschlägt.

Da sowohl positive als auch negative Assoziation von Schizophrenie zu Autoimmunerkrankungen veröffentlicht wurden (vergleiche 1.1.3), könnten neben einer Regulation der Immunantwort als Sekundäreffekt des veränderten Cytokinmuster des gestörten Netzwerkes möglicherweise auch gemeinsame, immunologisch-genetische Grundlagen eine Assoziation bedingen. Die differierenden Allelfrequenzmessungen beider Schizophreniestudien, könnten ebenfalls auf einer unterschiedlichen Rekrutierung beruhen. Während bei der Familienstudie beide Kinder an Schizophrenie leiden, wurden die Trios der Triostudie u.a. durch familiär auftretende Spektrumerkrankungen wie bipolare und unipolare Erkrankungen von Angehörigen ersten oder zweiten Grades rekrutiert. Da diese Spektrumerkrankungen mit Schizophrenie assoziiert sind und ähnliche Phänotypen darstellen, liegen gegebenenfalls vergleichbare genetische Ursachen zugrund.

Die Analysen des ShF Pools resultierten nach Korrektur für multiples Testen in 4 signifikanten Unterschieden zur Kontrolle KORA, wobei TSC0113430 aufgrund der

bekannten Assayprobleme, die im Rahmen der Einzelgenotypisierung auffällig wurden, falsch positiv ist. Vier der weiteren fünf durch die kombinierte Analyse signifikanten SNPs zeigen nur geringe Abweichungen von ShF zu KORA, wohingegen die Messwerte der kombinierten Analysen und KORA bei rs241412 übereinstimmen und durch die größere Stichprobe Signifikanz erreicht.

Der einzige signifikante Unterschied zwischen ShT und KORA (rs206984) weist zudem eine starke Streuung zwischen den einzelnen Poolmesswerten auf und wird als nicht-valider Assay gewertet. Bei drei weiteren Markern lassen sich die KORA-Messwerte mit der kombinierten Analyse vergleichen, wobei der ShT Pool Differenzen von 10% bis 16% zeigt. Im Einklang mit der geringen Abweichung des ShT Pools zum T1D1 Pool resultierte die Eingrenzung möglicher assoziierter Regionen in einer Überschneidung mit bereits identifizierten T1D-Regionen: der Region ShF, welche ebenfalls TSC0099063 (Allelfrequenz T1D1: 30%, ShT, 30%, KORA 47% und ShF 47%) der TdA-Region beinhaltet und durch zwei weitere Marker gestützt wird und ShG, welche der Core-TdB-Region entspricht. ShD stimmt mit der als T1D diskutierten modifizierenden Region um HLA-DMB überein. Die Differenzen von ShT und KORA innerhalb der HLA-DR-Region hingegen konnten innerhalb der Verifizierung mittels kombinierter Analysen durch den Einfluss der T1D-Pools nicht bestätigt werden. Im Gegensatz dazu resultierte die Analyse des ShF-Pools in 27 Suszeptibilitätsmarkern, welche innerhalb der gesamten analysierten Region lokalisieren. Die Eingrenzung ergab 4 mögliche Suszeptibilitätsregionen ShB-ShE, da ShA nur durch den nicht-validen Assay TSC0113430 gestützt wird. Zwei der identifizierten Regionen (ShC und ShD) überschneiden sich mit den Ergebnissen des ShT-Pools, wobei über ShE aufgrund fehlender Daten des ShT-Pools keine weitere Aussage getroffen werden kann. ShE beinhaltet neben Genen unbekannter Funktion das MOCS1-Gen. Mutationen des MOCS1-Gens wurden mit der Molybdenkofaktordefizienz (OMIM: 252150) assoziiert, welche sich in einer letalen neuronalen Entwicklung ausprägt (Reiss und Johnson, 2003) und einen zu Zeit unbekannten Einfluss auf das pathologische neuronale Netzwerk schizophrener Patienten haben könnte. Die Region ShC mit fünf assoziierten Markern und somit der größten Evidenz hingegen lokalisiert distal von HLA-A und wird durch einen Marker (rs1632447) bei beiden Schizophreniepools gestützt, wohingegen rs1611480 durch die starke Abweichung des AD-Pools innerhalb der kombinierten Analyse bedingt ist. Während Assoziationsanalysen von HLA-A-Serotypen und Schizophrenie alle der fünf durchgeführten Analysen (vergleiche 1.3) einer größeren Stichprobe Assoziation zeigten, wurde der direkte Einfluss von HLA-A auf Schizophrenie anhand von Haplotypenanalysen durch zwei weitere Studien unwahrscheinlich. Die

beschriebenen Assoziationen zu HLA-A geben jedoch einen Hinweis auf ein schwach gekoppeltes Suszeptibilitätsgen der Region. Die identifizierte ShC-Region beinhaltet HCG4P11 und AK956727, zwei exprimierte Pseudogene, welche nach Computervorhersagen über ihre antisense-mRNA zu *HLA-A* die HLA-A Expression beeinflussen könnten. Des Weiteren lokalisieren *HLA-G* und *HLA-F* in ShC. Beide Gene sind im Gegensatz zu den klassischen HLA-Genen oligomorph und werden sowohl im Fetus, placentalen Throphoblasten als auch von Lymphozyten Erwachsener exprimiert (Kirszenbaum et al., 1994). Sie könnten aufgrund ihrer funktionellen Relevanz bei der Mutter-Kind-Toleranz (Aldrich et al., 2001; Hviid et al., 2003) sowie der erhöhten Expression nach Virusinfektionen (Onno et al., 1994) im direkten Zusammenhang mit der erhöhten Anzahl von Schizophreniegeburten bei Virusinfektion der Mütter während der Schwangerschaft stehen, oder innerhalb der veränderten Cytokinkonzentrationen von Schizophrenen involviert sein.

Die Verifizierung der stark differierenden Ergebnisse der Sh-DNA-Pools durch Einzelgenotypisierung der aufgetretenen Allelfrequenzdifferenzen zur Kontrolle sollte insbesondere im Hinblick auf mögliche Amplifikationsprobleme des ShT Pools sowie einer genetischen Stratifizierung durch eine inadäquate Kontrolle überprüft werden und hierbei der Einfluss der Spektrumerkrankungen oder familiär auftretender Autoimmunerkrankungen in Betracht gezogen werden. Hinweise auf einen Einfluss dieser Parameter ergeben sich aus der Identifizierung von Dysbindin (Straub et al., 2002; Schwab et al., 2003) als Schizophrenie Suszeptibilitätsgen, welches ca. 10 Mb distal der hier analysierten Region lokalisiert und für den mittels Metaanalysen replizierten distalen Hauptkopplungspeak ursächlich ist, während innerhalb der analysierten Region keine replizierte Kopplung auftrat.

4.6 Atopie

Für die Analyse der atopischen Erkrankungen wie Asthma und atopische Dermatitis sowie assoziierten erhöhten IgE Messwerten wurden drei Pools generiert. Der Asthmaphänotyp wurde anhand eines Pools von 122 Asthmatikern analysiert. 70% der Asthmatiker hatten IgE-Messwerte über 100kU/l. In der Analyse des quantitativen Phänotypen wurden 39 DNAs von Asthmatiker mit durchschnittlich 1000kU/l Serum-IgE gepoolt. Des Weiteren stand eine Studie mit atopischen Dermatitis Patienten zur Verfügung. In einer verminderten Stichprobenzahl (Bradley et al., 2002) trat nur nach Stratifikation auf IgE-Werte Kopplung zur chromosomalen Region 6p21 auf. Neben den möglichen Problemen der

Allelfrequenzvergleichs zu einer deutschen Kontrolle zeigte der atopische Dermatitis Pool (der sich ausschließlich aus Probanden schwedischen Ursprungs zusammensetzt) wider Erwarten die geringste Abweichung zur Kontrolle KORA, die vergleichbar mit der des Asthmapools war (0,031; 0,031). Der IgE Pool hingegen weist höhere Abweichungen zur Kontrolle auf als jeder weitere Pool. Insgesamt zeigt sich jedoch eine verminderte Abweichung sowohl zum AD als auch zum AS Pool und bestätigt die genetische Verwandtschaft zwischen den drei Gruppen.

Der zwischen dem atopische Dermatitis Pool und der Kontrolle KORA nach multiplem Testen signifikante Allelfrequenzunterschied von 19% von TSC0210562 zeigte auch für den CD-Pool Signifikanz und wird, wie bereits beschrieben, als falsch positives Ergebnis gewertet. Über rs1611480 kann keine weitere Aussage getroffen werden, da die KORA Messung keine validen Daten lieferte. TSC0411893 zeigt vergleichbare Allelfrequenzen zwischen KORA und den kombinierten Pools und lokalisiert mit einem weiteren Marker in der AdC-Region, in der CMAH transkribiert wird. CMAH wird exprimiert, durch eine Alu-Insertion wurde das Genprodukt beim Menschen jedoch inaktiviert (Hayakawa et al., 2001). Bei der Eingrenzung möglicher Genregionen wurden anhand von 43 Markern insgesamt 8 Regionen beschrieben, die sich jeweils aus 2 bis 3 Markern zusammensetzen. Die 43 Marker traten gleichverteilt innerhalb der gesamten Region auf. Bei der weiteren Eingrenzung wurden zwei Regionen bestätigt (AdE und AdF), die sich mit den im IgE-Pool erhaltenen Ergebnissen überschneiden. Assoziationsanalysen an atopischer Dermatitis wurden in der chromosomalen Region noch nicht durchgeführt, dementsprechend sind alle identifizierten Marker von besonderem Interesse und sollten in einer weiteren Studie überprüft werden. An einigen Markern insbesondere der distalen Region ist eine IgE-unabhängige Assoziation mit atopischer Dermatitis zu detektieren. Die signifikanten Ergebnisse des IgE Pools kommen durch möglicherweise nicht-valide Assays (TSC0116798; rs206984) zustande oder durch primäre Assoziation eines in der kombinierten Analysen inkludierten Pools (rs15332; rs1281896). rs241412 hingegen zeigt starke Differenzen zum KORA Pool und der kombinierten Analyse. Die Eingrenzung anhand von 27 Suszeptibilitätsmarkern resultierte in 5 möglichen Regionen, wobei IgEA und IgEC durch Marker, die weniger als 60 kb voneinander lokalisieren, beschrieben werden. IgEA beinhaltet 3 unbekannte Gene, während IgEC die HLA Klasse IV Region sowie die gekoppelten Gene HLA-B und HLA-C beschreibt. Die IgED-Region mit HLA-DR und HLA-DQ wird sowohl bei erhöhtem IgE als auch AD durch invalide Assays beschrieben und kann somit nur als Trend gewertet werden.

Die Analysen des Asthmapools resultierten in zwei nach Korrektur für multiples Testen signifikanten SNPs, von denen rs1281869 in der HLA-DRB1 Region durch die kombinierten Frequenzen bedingt war, wohingegen der Asthmapool und der Kontrollpool Differenzen unterhalb von 1% aufwiesen. Die Überprüfung des somit einzigen signifikanten SNPs, der bei der Poolmessung eine Allelfrequenzdifferenz von 30% und zu den kombinierten Frequenzen von 21% aufwies, konnte das Ergebnis nicht bestätigen. Bei der Eingrenzung der assoziierten Regionen zeigt sich ein vergleichbares Bild zur atopischen Dermatitis, da bei beiden die Suszeptibilitätsmarker über die gesamte genomische Region verteilt liegen. Im Falle des Asthmapools resultierte die Eingrenzung in AsA, welche durch Einzelgenotypisierungen im Fall-Kontroll-Ansatz bestätigt werden konnte. AsA umfasst ein Cluster von olfaktorischen Rezeptor Genen, die aufgrund ihrer bekannten Funktion keine Asthmakandidatengene darstellen. Dies ergibt sich auch aus den Ergebnisse der Transmissionsanalysen (vergleiche Tab. 3.2). TSC0095804 zeigt sowohl für Asthma als auch erhöhtes IgE eine signifikante Übertransmission des Risikoallels. Während keine häufigen Segregationsfehler zu beobachten waren, zeichnen sich beide Erkrankungspools durch einen Heterozygotenverlust aus, der im Falle des IgE-Pools Signifikanz erreicht. Dieser auch bei den Assoziationsanalysen der T1D-Pools zu beobachtende Effekt tritt bei den assoziierten Markern rs1028411 und TSC0504774 nicht auf. Bei TSC0504774 ist ein möglicher Trend der Anreicherung des Risikoallels bereits in den Eltern der Familienstudie zu beobachten. Alternativ könnten die Ergebnisse für ein gekoppeltes Asthmagen stehen, da extendierte Haplotypen zu HLA-A bereits detektiert wurden (Ehlers et al., 2000). Bevor ein intensives Finemapping der Region in Betracht zu ziehen ist, sollten die Ergebnisse anhand einer erweiteren Studie überprüft werden, um eine zufällige Assoziation auszuschließen bzw. komplexe LD-Effekte zu detektieren.

Im Gegensatz zu den Atopie-Pools AD und IgE zeigt der Asthmapool innerhalb der HLA Klasse IV Region keine signifikante Differenz. Bei der Analyse häufiger Marker von MICB, LST1 und AIF1 der HLA Klasse IV Region innerhalb der Familienstudie wurden in allen drei Genen Marker signifikant häufiger transmittiert. Die Haplotypenrekonstruktionen resultierten in vielen verschiedenen Haplotypen, von denen ca. 46% als extendierte Haplotypen identifiziert werden konnten. Neben der Verifizierung bereits bekannter Haplotypenassoziationen zu LTA-TNF-HLA-DR3 und atopischem Asthma (Moffatt et al., 1999; DiSomma et al., 2003) durch einen haplotyptaggenden Marker des MICB-Gens (MICBI98M), der das etablierte *0106-Allel des MICB-Gens beschreibt (Ando et al., 1997) und den ancestralen Haplotypen (AH) 8.1 von Europäern taggt (Price et al., 1999), wurde ein weiterer Effekt gefunden, der sich an AIF1T722G zeigt. Die Haplotypentransmissionen geben hierbei einen Hinweis auf die häufig diskutierten Differenzen der Assoziationen der Polymorphismen LTANcoI und TNFG-308A, da der weitere Effekt in unserer Studie durch einen oder mehrere Haplotypen verursacht ist, die die gegensätzlichen Allele der beiden Polymorphismen tragen. Die Transmissionsanalysen der Haplotypen beider Trios zeigen eine übereinstimmende Übertransmission des ancestralen Haplotypen AH8.1, die im Falle der IgE-Trios durch die zusätzliche Übertransmission eines weiteren häufigen Haplotypen beeinflusst wird. Die Ergebnisse der Haplotypentransmission stimmen mit den bereits durch die kombinierte Analyse der signifikanten SNPs zu erwartenden Aussagen überein.

Es wurden fünf mögliche Rezeptoren von MICA, dem Homolog von MICB, beschrieben, von denen NKG2D und der T-Zell-Rezeptor TCR bereits identifiziert wurden (Bauer et al., 1999; Wu et al., 2002). NKG2D wird unter Normalbedingungen von natürlichen Killerzellen exprimiert, kann jedoch unter pathologischen Bedingungen einer Rheumatoiden Arthritis ebenso von CD4⁺ T-Zellen exprimiert (Groh et al., 2003). Strukturanalysen der NKG2D-MICB Liganden MICA und zeigen keine Bindeaffinitätsunterschiede der aminosäureaustauschtragenden Proteinvarianten (Holmes et al., 2002), konnten jedoch auch bereits identifizierte veränderte Bindeaffinitäten von MICA zu NKG2D nicht vorhersagen (Steinle et al. 2001). Ob ein direkter Einfluss der MICB Varianten auf das Erkrankungsbild Asthma besteht und MICB unter pathologischen Bedingungen in der Lunge exprimiert wird, sollte Gegenstand der weiteren Forschung sein. Ebenfalls von Interesse ist der Einfluss des assoziierten, intronischen LST1G154A-Polymorphismus auf eine veränderte Expression oder das Splice-Verhalten insbesondere der löslichen Splice-Varianten von LST1, welche die Proliferation aktivierter Lymphozyten reprimieren und als negativer Regulator der Inflammation der Lunge agieren könnten.

Der Einfluss von AIF1 auf den Asthmaphänotypen könnte über mögliche Funktionen von AIF1 bei der Ausprägung des Phänotypen reguliert werden, die sich eine verminderte Proliferation der Blutgefäße und über die Polymerisierung von F-Aktin eine durch TNF, GM-CSF und G-CSF induzierte Depolymerisation beeinflussen könnten (Kutsuna et al., 2004). Eine weitere Funktion ergibt sich aus der regulatorischen Wirkung von AIF1 auf G-CSF (Chen et al., 2004 Abstrakt), welches bei nativen T-Zellen die spontane Expression von II4 reguliert (Franzke et al., 2003) und somit zu einem Ungleichgewicht der Th1/Th2-Antwort führt.

Ob eine funktionelle Relevanz der Varianten bei der Ausprägung der Phänotypen besteht, oder ob sie als genassoziierte Marker ohne kausalen Effekt betrachtet werden müssen, kann mit Hilfe dieses Ansatzes nicht geklärt werden. Innerhalb der identifizierten Region sind zurzeit weitere 938 SNPs bekannt (www.ncbi.nlm.nih.gov/SNP; Marker RH92260 bis RH1803), die weitere immunantwortregulierende Kandidatengene wie *BAT1* oder *IκBL* (Allcock et al., 1999; Allcock et al., 2001; Okamoto et al., 2003) und das *TNF*-Cluster umfasst. Die Analyse weiterer SNPs wird sich auf als funktionell relevante SNPs (Wong et al., 2003) beschränken, da letztlich nur die Analysen der Funktion die Pathogenese komplexer Erkrankungen aufklären wird.

4.7 Schlussfolgerung

Allelfrequenzbestimmungen an gepoolter DNA schaffen durch geringere Geräteauslastung, reduzierte Kosten und DNA-Verbrauch die Grundlage für genomweite Assoziationsstudien. Die MALDI-TOF-basierte Allelfrequenzbestimmung bietet eine hohe Automatisierung und auf Fluoreszenzmarkierungen, dabei bleibt verzichtet kostenintensive die Detektionsgenauigkeit vergleichbar zu weiteren quantitativen Genotypisierungsmethoden. Bei "Screening"-Methoden treten Fehler 1. und 2. Art auf, was die Validierung signifikanter Assoziationsergebnisse anhand von Einzelgenotypisierungen erfordert. Zur Kontrolle von Fehlern 1. Art erwiesen sich Messungen mehrerer Pools als hilfreich, um anhand der Streuungen auf invalide Assays rückzuschließen. Werden für das Screening-Verfahren nur zwei Pools generiert, sollte die Qualität der Assays durch Einzelgenotypisierung von ca. 30 Probanden überprüft werden.

Die Korrektur auf multiples Testen ist aus statistischer Sicht sinnvoll. Die Bonferoni Korrektur oder die hier angewandte Benjamini Korrektur erwiesen sich jedoch als zu konservativ. Somit bietet sich zur Kontrolle von Fehlern 1. Art eine Generierung weiterer Erkrankungspools an. Das zentrale Problem des Poolingansatzes zeigt sich in der Selektion der in die Einzelgenotypisierung einfließenden Marker. Die in der vorliegenden Arbeit gewonnenen Daten führen zu folgender Priorisierung der anschließenden Einzelgenotypisierung: 1. Priorität haben Marker, die nach Korrektur für multiples Testen signifikante Differenzen zu beiden Kontrollen aufweisen und eine übereinstimmende Frequenz zu einem assoziierten Erkrankungspool zeigen. Bei nicht übereinstimmender Frequenz wie z.B. bei rs1536054 (Asthma) und TSC0099063 (Diabetes) ist eine Assayinvalidität oder Messfehler eines Pools wahrscheinlich, die Marker sollten jedoch mit geringerer Priorität ebenfalls typisiert werden, um mögliche Fehler 2. Art des erkrankungsassoziierten Pools aufzudecken. Vorrang sollten Hauptmarker von definierten Regionen haben, wenn die Frequenzen zu dem assozierten Erkrankungspool übereinstimmen, beispielsweise die AsA-Marker des AS-Pools und IgE-Pools oder AdE / IgEC Marker des IgE-Pools und AD-Pools. Ob bei nicht-übereinstimmenden Frequenzen die Marker weiterer definierter Regionen typisiert werden und ob die Markerselektion auch gering signifikante Einzelmarker beinhaltet, hängt von den Assoziationsergebnissen der bereits analysierten Marker ab.

Literaturverzeichnis

Abbas AK, Murphy KM, Sher A. 1996. Functional diversity of helper T lymphocytes. Nature 383:787-793.

Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J. 1997. The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 9:1-17.

Abreu MT, Taylor KD, Lin YC, Hang T, Gaiennie J, Landers CJ, Vasiliauskas EA, Kam LY, Rojany M, Papadakis KA, Rotter JI, Targan SR, Yang H. 2002. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease. Gastroenterology 123:679-688.

Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR, Crawshaw J, Large O, de Silva A, Cook JT, Barnardo M, Cullen S, Welsh KI, Jewell DP. 2002. The molecular classification of the clinical manifestations of Crohn's disease. Gastroenterology 122:854-866.

Ahmad T, Neville M, Marshall SE, Armuzzi A, Mulcahy-Hawes K, Crawshaw J, Sato H, Ling KL, Barnardo M, Goldthorpe S, Walton R, Bunce M, Jewell DP, Welsh KI. 2003. Haplotype-specific linkage disequilibrium patterns define the genetic topography of the human MHC. Hum Mol Genet 12:647-656.

Akdis CA, Akdis M, Simon HU, Blaser K. 1999. Regulation of allergic inflammation by skinhoming T cells in allergic eczema. Int Arch Allergy Immunol 118:140-144.

Akdis CA, Akdis M, Simon D, Dibbert B, Weber M, Gratzl S, Kreyden O, Disch R, Wüthrich B, Blaser K, Simon HU. 1999. T cells and T cell-derived cytokines as pathogenic factors in the nonallergic form of atopic dermatitis. J Invest Dermatol 113:628-634.

Akdis M, Akdis CA, Weigl L, Disch R, Blaser K. 1997. Skin-homing, CLA+ memory T cells are activated in atopic dermatitis and regulate IgE by an IL-13-dominated cytokine pattern: IgG4 counter-regulation by CLA- memory T cells. J Immunol 159:4611-4619.

Alberti KG. 1980. The World Health Organisation and diabetes. Diabetologia 19:169-173.

Albuquerque RV, Hayden CM, Palmer LJ, Laing IA, Rye PJ, Gibson NA, Burton PR, Goldblatt J, LeSouef PN. 1998. Association of polymorphisms within the tumour necrosis factor (TNF) genes and childhood asthma. Clin Exp Allergy 28:578-584.

Aldrich CL, Stephenson MD, Karrison T, Odem RR, Branch DW, Scott JR, Schreiber JR, Ober C. 2001. HLA-G genotypes and pregnancy outcome in couples with unexplained recurrent miscarriage. Mol Hum Reprod 7:1167-1172.

Allcock RJ, Christiansen FT, Price P. 1999. The central MHC gene IKBL carries a structural polymorphism that is associated with HLA-A3,B7,DR15. Immunogenetics 49:660-665.

Allcock RJ, Williams JH, Price P. 2001. The central MHC gene, BAT1, may encode a protein that down-regulates cytokine production. Genes Cells 6:487-494.

Altmüller J, Palmer LJ, Fischer G, Scherb H, Wjst M. 2001. Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 69:936-950.

Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES. 2000. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513-516.

Amor M, Parker KL, Globerman H, New MI, White PC. 1988. Mutation in the CYP21B gene (Ile-172----Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A 85:1600-1604.

Andersson G. 1998. Evolution of the human HLA-DR region. Front Biosci 3:D739-D745.

Ansari AA, Freidhoff LR, Meyers DA, Bias WB, Marsh DG. 1989. Human immune responsiveness to Lolium perenne pollen allergen Lol p III (rye III) is associated with HLA-DR3 and DR5. Hum Immunol 25:59-71.

Arnheim N, Strange C, Erlich H. 1985. Use of pooled DNA samples to detect linkage disequilibrium of polymorphic restriction fragments and human disease: studies of the HLA class II loci. Proc Natl Acad Sci U S A 82:6970-6974.

Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, Asanuma H, Sanada S, Matsumura Y, Takeda H, Beppu S, Tada M, Hori M, Higashiyama S. 2002. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35-40.

Atkinson MA, Maclaren NK. 1994. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 331(21):1428-36

Autieri MV. 1996. cDNA cloning of human allograft inflammatory factor-1: tissue distribution, cytokine induction, and mRNA expression in injured rat carotid arteries. Biochem Biophys Res Commun 228:29-37.

Autieri MV, Agrawal N. 1998. IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem 273:14731-14737.

Autieri MV, Kelemen SE, Wendt KW. 2003. AIF-1 is an actin-polymerizing and Rac1activating protein that promotes vascular smooth muscle cell migration. Circ Res 92:1107-1114.

Bach FH, Rich SS, Barbosa J, Segall M. 1985. Insulin-dependent diabetes--associated HLA-D region encoded determinants. Hum Immunol 12:59-64.

Bader JS, Sham P. 2002. Family-based association tests for quantitative traits using pooled DNA. Eur J Hum Genet 10:870-878.

Badner JA, Gershon ES. 2002. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 7:405-411.

Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, Folli F, Richter-Olesen H, De Camilli P, Camilli PD. 1990. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347:151-156.

Bahram S, Bresnahan M, Geraghty DE, Spies T. 1994. A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 91:6259-6263.

Bahram S, Spies T. 1996a. Nucleotide sequence of a human MHC class I MICB cDNA. Immunogenetics 43:230-233.

Bahram S, Spies T. 1996b. The MIC gene family. Res Immunol 147:328-333.

Baisch JM, Weeks T, Giles R, Hoover M, Stastny P, Capra JD. 1990. Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med 322:1836-1841.

Barcellos LF, Klitz W, Field LL, Tobias R, Bowcock AM, Wilson R, Nelson MP, Nagatomi J, Thomson G. 1997. Association mapping of disease loci, by use of a pooled DNA genomic screen. Am J Hum Genet 61:734-747.

Barnard R, Futo V, Pecheniuk N, Slattery M, Walsh T. 1998. PCR bias toward the wild-type k-ras and p53 sequences: implications for PCR detection of mutations and cancer diagnosis. Biotechniques 25:684-691.

Barnes PJ, Chung KF, Page CP. 1998. Inflammatory mediators of asthma: an update. Pharmacol Rev 50:515-596.

Barratt BJ, Payne F, Rance HE, Nutland S, Todd JA, Clayton DG. 2002. Identification of the sources of error in allele frequency estimations from pooled DNA indicates an optimal experimental design. Ann Hum Genet 66:393-405.

Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. 1999. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727-729.

Bayram H, Devalia JL, Khair OA, Abdelaziz MM, Sapsford RJ, Sagai M, Davies RJ. 1998. Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro. J Allergy Clin Immunol 102:771-782.

Beckmann H. 1999. Developmental malformations in cerebral structures of schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 249 Suppl 4:44-47.

Begovich AB, McClure GR, Suraj VC, Helmuth RC, Fildes N, Bugawan TL, Erlich HA, Klitz W. 1992. Polymorphism, recombination, and linkage disequilibrium within the HLA class II region. J Immunol 148:249-258.

Bell H, Berg JP, Undlien DE, Distante S, Raknerud N, Heier HE, Try K, Thomassen Y, Haug E, Raha-Chowdhury R, Thorsby E. 2000. The clinical expression of hemochromatosis in Oslo, Norway. Excessive oral iron intake may lead to secondary hemochromatosis even in HFE C282Y mutation negative subjects. Scand J Gastroenterol 35:1301-1307.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc B 57:289-300.

Blackwood DH, Muir WJ, Stephenson A, Wentzel J, Ad'hiah A, Walker MJ, Papiha SS, St Clair DM, Roberts DF. 1996. Reduced expression of HLA-B35 in schizophrenia. Psychiatr Genet 6:51-59.

Bos JD, Kapsenberg ML. 1993. The skin immune system: progress in cutaneous biology. Immunol Today 14:75-78.

Bouma G, Oudkerk PM, Crusius JB, Schreuder GM, Hellemans HP, Meijer BU, Kostense PJ, Giphart MJ, Meuwissen SG, Pena AS. 1997. Evidence for genetic heterogeneity in inflammatory bowel disease (IBD); HLA genes in the predisposition to suffer from ulcerative colitis (UC) and Crohn's disease (CD). Clin Exp Immunol 109:175-179.

Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. 2000. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 161:1720-1745.

Bradley M, Soderhall C, Luthman H, Wahlgren CF, Kockum I, Nordenskjold M. 2002. Susceptibility loci for atopic dermatitis on chromosomes 3, 13, 15, 17 and 18 in a Swedish population. Hum Mol Genet 11:1539-1548.

Bray MS, Boerwinkle E, Doris PA. 2001. High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: practice, problems and promise. Hum Mutat 17:296-304.

Breen G, Harold D, Ralston S, Shaw D, St Clair D. 2000. Determining SNP allele frequencies in DNA pools. Biotechniques 28:464-6, 468, 470.

Breese EJ, Michie CA, Nicholls SW, Murch SH, Williams CB, Domizio P, Walker-Smith JA, MacDonald TT. 1994. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology 106:1455-1466.

Broide DH, Lotz M, Cuomo AJ, Coburn DA, Federman EC, Wasserman SI. 1992. Cytokines in symptomatic asthma airways. J Allergy Clin Immunol 89:958-967.

Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J, Little DP, Strausberg R, Koester H, Cantor CR, Braun A. 2001. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci U S A 98:581-584.

Bugawan TL, Klitz W, Blair A, Erlich HA. 2000. High-resolution HLA class I typing in the CEPH families: analysis of linkage disequilibrium among HLA loci. Tissue Antigens 56:392-404.

Burrows B, Martinez FD, Halonen M, Barbee RA, Cline MG. 1989. Association of asthma with serum IgE levels and skin-test reactivity to allergens. N Engl J Med 320:271-277.

Byerley WF. 1989. Schizophrenia. Genetic linkage revisited. Nature 340:340-341.

Cardaba B, Vilches C, Martin E, de Andres B, del P, V, Hernandez D, Gallardo S, Fernandez JC, Villalba M, Rodriguez R, . 1993. DR7 and DQ2 are positively associated with immunoglobulin-E response to the main antigen of olive pollen (Ole e I) in allergic patients. Hum Immunol 38:293-299.

Cardaba B, Moffatt MF, Fernandez E, Jurado A, Rojo M, Garcia M, Ansotegui IJ, Cortegano I, Arrieta I, Etxenagusia MA, del P, V, Urraca J, Aceituno E, Gallardo S, Palomino P, Cookson W, Lahoz C. 2001. Allergy to dermatophagoides in a group of Spanish gypsies: genetic restrictions. Int Arch Allergy Immunol 125:297-306.

Cardon LR, Palmer LJ. 2003. Population stratification and spurious allelic association. Lancet 361:598-604.

Cardoso CS, Alves H, Mascarenhas M, Goncalves R, Oliveira P, Rodrigues P, Cruz E, de Sousa M, Porto G. 2002. Co-selection of the H63D mutation and the HLA-A29 allele: a new paradigm of linkage disequilibrium? Immunogenetics 53:1002-1008.

Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES. 1999. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231-238.

Cariappa A, Sands B, Forcione D, Finkelstein D, Podolsky DK, Pillai S. 1998. Analysis of MHC class II DP, DQ and DR alleles in Crohn's disease. Gut 43:210-215.

Carlsson M, Carlsson A. 1990. Interactions between glutamatergic and monoaminergic systems within the basal ganglia--implications for schizophrenia and Parkinson's disease. Trends Neurosci 13:272-276.

Carmi R, Rokhlina T, Kwitek-Black AE, Elbedour K, Nishimura D, Stone EM, Sheffield VC. 1995. Use of a DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15. Hum Mol Genet 4:9-13.

Carrasco-Marin E, Shimizu J, Kanagawa O, Unanue ER. 1996. The class II MHC I-Ag7 molecules from non-obese diabetic mice are poor peptide binders. J Immunol 156:450-458.

Carroll N, Elliot J, Morton A, James A. 1993. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 147:405-410.

Chakravarti A. 1999. Population genetics--making sense out of sequence. Nat Genet 21:56-60.

Chen X, Kelemen SE, Autieri MV. 2004. AIF-1 Expression Modulates Proliferation of Human Vascular Smooth Muscle Cells by Autocrine Expression of G-CSF. Arterioscler Thromb Vasc Biol.

Cheong KY, Allcock RJ, Eerligh P, Witt CS, Christiansen FT, McCann V, Price P. 2001. Localization of central MHC genes influencing type I diabetes. Hum Immunol 62:1363-1370.

Cokugras H, Akcakaya N, Seckin, Camcioglu Y, Sarimurat N, Aksoy F. 2001. Ultrastructural examination of bronchial biopsy specimens from children with moderate asthma. Thorax 56:25-29.

Collins FS. 1995. Positional cloning moves from perditional to traditional. Nat Genet 9:347-350. Erratum in: Nat Genet 1995 Sep;11(1):104.

Cookson WO, Ubhi B, Lawrence R, Abecasis GR, Walley AJ, Cox HE, Coleman R, Leaves NI, Trembath RC, Moffatt MF, Harper JI. 2001. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet 27:372-373.

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921-923.

Corry DB, Kheradmand F. 1999. Induction and regulation of the IgE response. Nature 402:B18-B23.

Cox NJ, Wapelhorst B, Morrison VA, Johnson L, Pinchuk L, Spielman RS, Todd JA, Concannon P. 2001. Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 69:820-830.

CSGA The Collaborative Study on the Genetics of Asthma. 1997. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. Nat Genet 15:389-392.

Cullen M, Noble J, Erlich H, Thorpe K, Beck S, Klitz W, Trowsdale J, Carrington M. 1997. Characterization of recombination in the HLA class II region. Am J Hum Genet 60:397-407.

D'Amato M, Scotto dA, Maggi E, Menna T, Sacerdoti G, Maurizio SM, Iozzino S, De Santo C, Oreste U, Tosi R, D'Amato G, Baltadijeva D, Bjorksten B, Freidhoff LR, Lahoz C, Marsh DG, Rashef A, Ruffilli A. 1996. Association of responsiveness to the major pollen allergen of Parietaria officinalis with HLA-DRB1* alleles: a multicenter study. Hum Immunol 46:100-106.

Daniels J, Holmans P, Williams N, Turic D, McGuffin P, Plomin R, Owen MJ. 1998. A simple method for analyzing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. Am J Hum Genet 62:1189-1197.

Daniels SE, Bhattacharrya S, James A, Leaves NI, Young A, Hill MR, Faux JA, Ryan GF, le Souef PN, Lathrop GM, Musk AW, Cookson WO. 1996. A genome-wide search for quantitative trait loci underlying asthma. Nature 383:247-250.

Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF. 2001. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15:83-93.

Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, Reed PW, Gough SC, Jenkins SC, Palmer SM, . 1994. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371:130-136.

Davis JA. 1996. Insulin dependent diabetes mellitus in twins. Differences between monozygotic and dizygotic twins may need to be taken into account. BMJ 312:313-314.

Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM, Pabial J, Dibling T, Tinsley E, Kirby S, Carter D, Papaspyridonos M, Livingstone S, Ganske R, Lohmussaar E, Zernant J, Tonisson N, Remm M, Magi R, Puurand T, Vilo J, Kurg A, Rice K, Deloukas P, Mott R, Metspalu A, Bentley DR, Cardon LR, Dunham I. 2002. A first-generation linkage disequilibrium map of human chromosome 22. Nature 418:544-548.

Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM, Pabial J, Dibling T, Tinsley E, Kirby S, Carter D, Papaspyridonos M, Livingstone S, Ganske R, Lohmussaar E, Zernant J, Tonisson N, Remm M, Magi R, Puurand T, Vilo J, Kurg A, Rice K, Deloukas P, Mott R, Metspalu A, Bentley DR, Cardon LR, Dunham I. 2002. A first-generation linkage disequilibrium map of human chromosome 22. Nature 418:544-548.

de Baey A, Fellerhoff B, Maier S, Martinozzi S, Weidle U, Weiss EH. 1997. Complex expression pattern of the TNF region gene LST1 through differential regulation, initiation, and alternative splicing. Genomics 45:591-600.

De Sanctis GT, Merchant M, Beier DR, Dredge RD, Grobholz JK, Martin TR, Lander ES, Drazen JM. 1995. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet 11:150-154.

Deister A, Marneros A. 1993. Subtypes in schizophrenic disorders: frequencies in long-term course and premorbid features. Soc Psychiatry Psychiatr Epidemiol 28:164-171.

Dekker JW, Nizankowska E, Schmitz-Schumann M, Pile K, Bochenek G, Dyczek A, Cookson WO, Szczeklik A. 1997. Aspirin-induced asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin Exp Allergy 27:574-577.

Denburg SD, Carbotte RM, Denburg JA. 1997. Cognition and mood in systemic lupus erythematosus. Evaluation and pathogenesis. Ann N Y Acad Sci 823:44-59.

Devlin B, Roeder K. 1999. Genomic control for association studies. Biometrics 55:997-1004.

Devlin B, Roeder K, Bacanu SA. 2001. Unbiased methods for population-based association studies. Genet Epidemiol 21:273-84.

Di Somma C, Charron D, Deichmann K, Buono C, Ruffilli A. 2003. Atopic asthma and TNF-308 alleles: linkage disequilibrium and association analyses. Hum Immunol 64:359-365.

Diabetes Epidemiology Research International Group. 1990. Secular trends in incidence of childhood IDDM in 10 countries. Diabetes 39:858-864.

Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. 1990. Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis 142:1351-1358.

Eberhard G, Franzen G, Low B. 1975. Schizophrenia susceptibility and HL-A antigen. Neuropsychobiology 1:211-217.

Ehlers A, Beck S, Forbes SA, Trowsdale J, Volz A, Younger R, Ziegler A. 2000. MHC-linked olfactory receptor loci exhibit polymorphism and contribute to extended HLA/OR-haplotypes. Genome Res 10:1968-1978.

Eisenbarth GS. 1986. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360-1368.

Elson CO. 2000. Commensal bacteria as targets in Crohn's disease. Gastroenterology 119:254-257.

Falkai, Vogeley. 2002. In: Schmauss M, editor. Schizophrenie : Pathogenese, Diagnostik und Therapie. Bremen: UNI-MED Verlag.

Field LL, McArthur RG. 1987. The genetics of susceptibility to insulin-dependent diabetes mellitus--possible new markers. Clin Invest Med 10:437-443.

Field LL, Tobias R, Magnus T. 1994. A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin-dependent diabetes mellitus. Nat Genet 8:189-194.

Fischer GF, Pickl WF, Fae I, Ebner C, Ferreira F, Breiteneder H, Vikoukal E, Scheiner O, Kraft D. 1992. Association between IgE response against Bet v I, the major allergen of birch pollen, and HLA-DRB alleles. Hum Immunol 33:259-265.

Fisher PJ, Turic D, Williams NM, McGuffin P, Asherson P, Ball D, Craig I, Eley T, Hill L, Chorney K, Chorney MJ, Benbow CP, Lubinski D, Plomin R, Owen MJ. 1999. DNA pooling identifies QTLs on chromosome 4 for general cognitive ability in children. Hum Mol Genet 8:915-922.

Franzke A, Piao W, Lauber J, Gatzlaff P, Konecke C, Hansen W, Schmitt-Thomsen A, Hertenstein B, Buer J, Ganser A. 2003. G-CSF as immune regulator in T cells expressing the G-CSF receptor: implications for transplantation and autoimmune diseases. Blood 102:734-739.

Freidhoff LR, Ehrlich-Kautzky E, Meyers DA, Ansari AA, Bias WB, Marsh DG. 1988. Association of HLA-DR3 with human immune response to Lol p I and Lol p II allergens in allergic subjects. Tissue Antigens 31:211-219.

Fromherz S, Szent-Gyorgyi AG. 1995. Role of essential light chain EF hand domains in calcium binding and regulation of scallop myosin. Proc Natl Acad Sci U S A 92:7652-7656.

Fuss IJ, Neurath M, Boirivant M, Klein JS, de la MC, Strong SA, Fiocchi C, Strober W. 1996. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 157:1261-1270.

Gauchat JF, Henchoz S, Mazzei G, Aubry JP, Brunner T, Blasey H, Life P, Talabot D, Flores-Romo L, Thompson J, . 1993. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365:340-343.

Germer S, Holland MJ, Higuchi R. 2000. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res 10:258-266.

Gibson S, Hawi Z, Straub RE, Walsh D, Kendler KS, Gill M. 1999. HLA and schizophrenia: refutation of reported associations with A9 (A23/A24), DR4, and DQ β 1*0602. Am J Med Genet 88:416-421.

Giordano M, Mellai M, Hoogendoorn B, Momigliano-Richiardi P. 2001. Determination of SNP allele frequencies in pooled DNAs by primer extension genotyping and denaturing high-performance liquid chromatography. J Biochem Biophys Methods 47:101-110.

Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. 1996. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A 93:12445-12450.

Groh V, Steinle A, Bauer S, Spies T. 1998. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737-1740.

Groh V, Bruhl A, El Gabalawy H, Nelson JL, Spies T. 2003. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci U S A 100:9452-9457.

Haagerup A, Bjerke T, Schiotz PO, Binderup HG, Dahl R, Kruse TA. 2002. Asthma and atopy - a total genome scan for susceptibility genes. Allergy 57:680-686.

Haff LA, Smirnov IP. 1997. Multiplex genotyping of PCR products with MassTag-labeled primers. Nucleic Acids Res 25:3749-3750.

Hagopian WA, Sanjeevi CB, Kockum I, Landin-Olsson M, Karlsen AE, Sundkvist G, Dahlquist G, Palmer J, Lernmark A. 1995. Glutamate decarboxylase-, insulin-, and islet cellantibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 95:1505-1511.

Hakonarson H, Bjornsdottir US, Ostermann E, Arnason T, Adalsteinsdottir AE, Halapi E, Shkolny D, Kristjansson K, Gudnadottir SA, Frigge ML, Gislason D, Gislason T, Kong A, Gulcher J, Stefansson K. 2001. Allelic frequencies and patterns of single-nucleotide polymorphisms in candidate genes for asthma and atopy in Iceland. Am J Respir Crit Care Med 164:2036-2044.

Hampe J, Shaw SH, Saiz R, Leysens N, Lantermann A, Mascheretti S, Lynch NJ, Macpherson AJ, Bridger S, van Deventer S, Stokkers P, Morin P, Mirza MM, Forbes A, Lennard-Jones JE, Mathew CG, Curran ME, Schreiber S. 1999. Linkage of inflammatory bowel disease to human chromosome 6p. Am J Hum Genet 65:1647-1655.

Hampe J, Frenzel H, Mirza MM, Croucher PJ, Cuthbert A, Mascheretti S, Huse K, Platzer M, Bridger S, Meyer B, Nurnberg P, Stokkers P, Krawczak M, Mathew CG, Curran M, Schreiber S. 2002. Evidence for a NOD2-independent susceptibility locus for inflammatory bowel disease on chromosome 16p. Proc Natl Acad Sci U S A 99:321-326.

Hampe J, Grebe J, Nikolaus S, Solberg C, Croucher PJ, Mascheretti S, Jahnsen J, Moum B, Klump B, Krawczak M, Mirza MM, Foelsch UR, Vatn M, Schreiber S. 2002. Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: a cohort study. Lancet 359:1661-1665.

Hanson B, McGue M, Roitman-Johnson B, Segal NL, Bouchard TJ, Jr., Blumenthal MN. 1991. Atopic disease and immunoglobulin E in twins reared apart and together. Am J Hum Genet 48:873-879.

Hashimoto L, Habita C, Beressi JP, Delepine M, Besse C, Cambon-Thomsen A, Deschamps I, Rotter JI, Djoulah S, James MR, . 1994. Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 371:161-164.

Hawi Z, Mynett-Johnson L, Gill M, Murphy V, Straubl RE, Kendler KS, Walsh D, Machen F, Connell H, McKeon P, Shields D. 1999. Pseudoautosomal gene: possible association with bipolar males but not with schizophrenia. Psychiatr Genet 9:129-134.

Hayakawa T, Satta Y, Gagneux P, Varki A, Takahata N. 2001. Alu-mediated inactivation of the human CMP- N-acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci U S A 98:11399-11404.

Helmke K, Otten A, Willems W. 1980. Islet cell antibodies in children with mumps infection. Lancet 2:211-212.

Herbon N, Werner M, Braig C, Gohlke H, Dütsch G, Illig T, Altmüller J, Hampe J, Lantermann A, Schreiber S, Bonifacio E, Ziegler A, Schwab S, Wildenauer D, van den BD, Braun A, Knapp M, Reitmeir P, Wjst M. 2003. High-resolution snp scan of chromosome 6p21 in pooled samples from patients with complex diseases. Genomics 81:510-518.

Hesresbach D, Alizadeh M, Bretagne JF, Gautier A, Quillivic F, Lemarchand B, Gosselin M, Genetet B, Semana G. 1996. Investigation of the association of major histocompatibility

complex genes, including HLA class I, class II and TAP genes, with clinical forms of Crohn's disease. Eur J Immunogenet 23:141-151.

Hill NJ, Lyons PA, Armitage N, Todd JA, Wicker LS, Peterson LB. 2000. NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 49:1744-1747.

Hilman B. 1997. NHLBI guidelines for diagnosis and management of asthma. Bethesda: National Heart,Lung,and Blood Institute.

Hizawa N, Freidhoff LR, Chiu YF, Ehrlich E, Luehr CA, Anderson JL, Duffy DL, Dunston GM, Weber JL, Huang SK, Barnes KC, Marsh DG, Beaty TH. 1998. Genetic regulation of Dermatophagoides pteronyssinus-specific IgE responsiveness: a genome-wide multipoint linkage analysis in families recruited through 2 asthmatic sibs. Collaborative Study on the Genetics of Asthma (CSGA). J Allergy Clin Immunol 102:436-442.

Hoffjan S, Ober C. 2002. Present status on the genetic studies of asthma. Curr Opin Immunol 14:709-717.

Holloway JW, Doull I, Begishvili B, Beasley R, Holgate ST, Howell WM. 1996. Lack of evidence of a significant association between HLA-DR, DQ and DP genotypes and atopy in families with HDM allergy. Clin Exp Allergy 26:1142-1149.

Holmes MA, Li P, Petersdorf EW, Strong RK. 2002. Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D. J Immunol 169:1395-1400.

Holt PG, Macaubas C, Stumbles PA, Sly PD. 1999. The role of allergy in the development of asthma. Nature 402:B12-B17.

Holzinger I, de Baey A, Messer G, Kick G, Zwierzina H, Weiss EH. 1995. Cloning and genomic characterization of LST1: a new gene in the human TNF region. Immunogenetics 42:315-322.

Hoogendoorn B, Norton N, Kirov G, Williams N, Hamshere ML, Spurlock G, Austin J, Stephens MK, Buckland PR, Owen MJ, O'Donovan MC. 2000. Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools. Hum Genet 107:488-493.

Hopkin JM. 1997. Mechanisms of enhanced prevalence of asthma and atopy in developed countries. Curr Opin Immunol 9:788-792.

Hopp RJ, Bewtra AK, Watt GD, Nair NM, Townley RG. 1984. Genetic analysis of allergic disease in twins. J Allergy Clin Immunol 73:265-270.

Howarth PH, Djukanovic R, Wilson JW, Holgate ST, Springall DR, Polak JM. 1991. Mucosal nerves in endobronchial biopsies in asthma and non-asthma. Int Arch Allergy Appl Immunol 94:330-333.

Hudson CJ, Young LT, Li PP, Warsh JJ. 1993. CNS signal transduction in the pathophysiology and pharmacotherapy of affective disorders and schizophrenia. Synapse 13:278-293.

Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599-603.

Hviid TV, Hylenius S, Hoegh AM, Kruse C, Christiansen OB. 2002. HLA-G polymorphisms in couples with recurrent spontaneous abortions. Tissue Antigens 60:122-132.

Immervoll T, Loesgen S, Dütsch G, Gohlke H, Herbon N, Klugbauer S, Dempfle A, Bickeböller H, Becker-Follmann J, Ruschendorf F, Saar K, Reis A, Wichmann HE, Wjst M. 2001. Fine mapping and single nucleotide polymorphism association results of candidate genes for asthma and related phenotypes. Hum Mutat 18:327-336.

Inbar E, Yakir B, Darvasi A. 2002. An efficient haplotyping method with DNA pools. Nucleic Acids Res 30:e76.

Inbar E, Yakir B, Darvasi A. 2002. An efficient haplotyping method with DNA pools. Nucleic Acids Res 30:e76.

Inohara N, Ogura Y, Chen FF, Muto A, Nunez G. 2001. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 276:2551-2554.

ISAAC The International Study of Asthma and Allergies in Childhood Steering Committee. 1998. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema. Lancet 351:1225-1232.

Ivanyi D, Zemek P, Ivanyi P. 1976. HLA antigens in schizophrenia. Tissue Antigens 8:217-220.

Ivanyi D, Zemek P, Ivanyi P. 1978. HLA antigens as possible markers of heterogeneity in schizophrenia. J Immunogenet 5:165-172.

Jarvis D, Burney P. 1998. ABC of allergies. The epidemiology of allergic disease. BMJ 316:607-610.

Jeffreys AJ, Kauppi L, Neumann R. 2001. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29:217-222.

Johansson S, Lie BA, Todd JA, Pociot F, Nerup J, Cambon-Thomsen A, Kockum I, Akselsen HE, Thorsby E, Undlien DE. 2003. Evidence of at least two type 1 diabetes susceptibility genes in the HLA complex distinct from HLA-DQB1, -DQA1 and -DRB1. Genes Immun 4:46-53.

Johnston SL. 1997. Influence of viral and bacterial respiratory infections on exacerbations and symptom severity in childhood asthma. Pediatr Pulmonol Suppl 16:88-89.

Jope RS, Song L, Grimes CA, Pacheco MA, Dilley GE, Li X, Meltzer HY, Overholser JC, Stockmeier CA. 1998. Selective increases in phosphoinositide signaling activity and G protein levels in postmortem brain from subjects with schizophrenia or alcohol dependence. J Neurochem 70:763-771.

Joyce JN, Meador-Woodruff JH. 1997. Linking the family of D2 receptors to neuronal circuits in human brain: insights into schizophrenia. Neuropsychopharmacology 16:375-384.

Kapur S, Remington G, Jones C, Wilson A, DaSilva J, Houle S, Zipursky R. 1996. High levels of dopamine D2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am J Psychiatry 153:948-950.

Kasahara M, Kandil E, Salter-Cid L, Flajnik MF. 1996. Origin and evolution of the class I gene family: why are some of the mammalian class I genes encoded outside the major histocompatibility complex? Res Immunol 147:278-284.

Keller RJ, Eisenbarth GS, Jackson RA. 1993. Insulin prophylaxis in individuals at high risk of type I diabetes. Lancet 341:927-928.

Kendell RE, Adams W. 1991. Unexplained fluctuations in the risk for schizophrenia by month and year of birth. Br J Psychiatry 158:758-763.

Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D. 1993. The Roscommon Family Study. III. Schizophrenia-related personality disorders in relatives. Arch Gen Psychiatry 50:781-788.

Kety SS, Wender PH, Jacobsen B, Ingraham LJ, Jansson L, Faber B, Kinney DK. 1994. Mental illness in the biological and adoptive relatives of schizophrenic adoptees. Replication of the Copenhagen Study in the rest of Denmark. Arch Gen Psychiatry 51:442-455.

Kirov G, Williams N, Sham P, Craddock N, Owen MJ. 2000. Pooled genotyping of microsatellite markers in parent-offspring trios. Genome Res 10:105-115.

Kirszenbaum M, Moreau P, Gluckman E, Dausset J, Carosella E. 1994. An alternatively spliced form of HLA-G mRNA in human trophoblasts and evidence for the presence of HLA-G transcript in adult lymphocytes. Proc Natl Acad Sci U S A 91:4209-4213.

Klitz W, Stephens JC, Grote M, Carrington M. 1995. Discordant patterns of linkage disequilibrium of the peptide-transporter loci within the HLA class II region. Am J Hum Genet 57:1436-1444.

Knapp M. 1999. Using exact P values to compare the power between the reconstructioncombined transmission/disequilibrium test and the sib transmission/disequilibrium test. Am J Hum Genet 65:1208-1210.

Koppelman GH, Stine OC, Xu J, Howard TD, Zheng SL, Kauffman HF, Bleecker ER, Meyers DA, Postma DS. 2002. Genome-wide search for atopy susceptibility genes in Dutch families with asthma. J Allergy Clin Immunol 109:498-506.

Kutsuna H, Suzuki K, Kamata N, Kato T, Hato F, Mizuno K, Kobayashi H, Ishii M, Kitagawa S. 2004. Actin reorganization and morphological changes in human neutrophils stimulated by TNF, GM-CSF, and G-CSF: the role of MAP kinases. Am J Physiol Cell Physiol 286:C55-C64.

Laberge S, Ghaffar O, Boguniewicz M, Center DM, Leung DY, Hamid Q. 1998. Association of increased CD4+ T-cell infiltration with increased IL-16 gene expression in atopic dermatitis. J Allergy Clin Immunol 102:645-650.

Lander E, Kruglyak L. 1995. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241-247.

Lander ES. 1996. The new genomics: global views of biology. Science 274:536-539.

Lantermann A, Hampe J, Kim WH, Winter TA, Kidd M, Nagy M, Folsch UR, Schreiber S. 2002. Investigation of HLA-DPA1 genotypes as predictors of inflammatory bowel disease in the German, South African, and South Korean populations. Int J Colorectal Dis 17:238-244.

Lantermann A, Hampe J, Kim WH, Winter TA, Kidd M, Nagy M, Fölsch UR, Schreiber S. 2002. Investigation of HLA-DPA1 genotypes as predictors of inflammatory bowel disease in the German, South African, and South Korean populations. Int J Colorectal Dis 17:238-244.

Lara-Marquez ML, Yunis JJ, Layrisse Z, Ortega F, Carvallo-Gil E, Montagnani S, Makhatadze NJ, Pocino M, Granja C, Yunis E. 1999. Immunogenetics of atopic asthma: association of DRB1*1101 DQA1*0501 DQB1*0301 haplotype with Dermatophagoides spp.-sensitive asthma in a sample of the Venezuelan population. Clin Exp Allergy 29:60-71.

Laruelle M. 1998. Imaging dopamine transmission in schizophrenia. A review and metaanalysis. Q J Nucl Med 42:211-221.

Lee YA, Wahn U, Kehrt R, Tarani L, Businco L, Gustafsson D, Andersson F, Oranje AP, Wolkertstorfer A, Berg A, Hoffmann U, Kuster W, Wienker T, Ruschendorf F, Reis A. 2000. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet 26:470-473.

LeHellard S, Ballereau SJ, Visscher PM, Torrance HS, Pinson J, Morris SW, Thomson ML, Semple CA, Muir WJ, Blackwood DH, Porteous DJ, Evans KL. 2002. SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semiautomated method for data storage and analysis. Nucleic Acids Res 30:e74.

Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S, Tysk C, O'Morain C, Gassull M, Binder V, Finkel Y, Modigliani R, Gower-Rousseau C, Macry J, Merlin F, Chamaillard M, Jannot AS, Thomas G, Hugot JP. 2002. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 70:845-857.

Levinson DF, Holmans PA, Laurent C, Riley B, Pulver AE, Gejman PV, Schwab SG, Williams NM, Owen MJ, Wildenauer DB, Sanders AR, Nestadt G, Mowry BJ, Wormley B, Bauche S, Soubigou S, Ribble R, Nertney DA, Liang KY, Martinolich L, Maier W, Norton N, Williams H, Albus M, Carpenter EB, DeMarchi N, Ewen-White KR, Walsh D, Jay M, Deleuze JF, O'Neill FA, Papadimitriou G, Weilbaecher A, Lerer B, O'Donovan MC, Dikeos D, Silverman JM, Kendler KS, Mallet J, Crowe RR, Walters M. 2002. No major schizophrenia locus detected on chromosome 1q in a large multicenter sample. Science 296:739-741.

Lieberman JA, Koreen AR. 1993. Neurochemistry and neuroendocrinology of schizophrenia: a selective review. Schizophr Bull 19:371-429.

Livak KJ. 1999. Allelic discrimination using fluorogenic probes and the 5' nuclease assay. Genet Anal 14:143-149.

Lummus ZL, Alam R, Bernstein JA, Bernstein DI. 1998. Diisocyanate antigen-enhanced production of monocyte chemoattractant protein-1, IL-8, and tumor necrosis factor-alpha by peripheral mononuclear cells of workers with occupational asthma. J Allergy Clin Immunol 102:265-274.

Maier W, Rietschel M, Lichtermann D, Wildenauer DB. 1999. Family and genetic studies on the relationship of schizophrenia to affective disorders. Eur Arch Psychiatry Clin Neurosci 249 Suppl 4:57-61.

Marneros A, Andreasen NC. 1992. Positive and negative symptoms of schizophrenia. Nervenarzt 63:262-270.

Marsh DG, Hsu SH, Roebber M, Ehrlich-Kautzky E, Freidhoff LR, Meyers DA, Pollard MK, Bias WB. 1982. HLA-Dw2: a genetic marker for human immune response to short ragweed pollen allergen Ra5. I. Response resulting primarily from natural antigenic exposure. J Exp Med 155:1439-1451.

Marsh DG, Freidhoff LR, Ehrlich-Kautzky E, Bias WB, Roebber M. 1987. Immune responsiveness to Ambrosia artemisiifolia (short ragweed) pollen allergen Amb a VI (Ra6) is associated with HLA-DR5 in allergic humans. Immunogenetics 26:230-236.

Martin M, Mann D, Carrington M. 1995. Recombination rates across the HLA complex: use of microsatellites as a rapid screen for recombinant chromosomes. Hum Mol Genet 4:423-428.

Mayberry JF. 1989. Recent epidemiology of ulcerative colitis and Crohn's disease. Int J Colorectal Dis 4:59-66.

McGue M, Gottesman II, Rao DC. 1983. The transmission of schizophrenia under a multifactorial threshold model. Am J Hum Genet 35:1161-1178.

McGue M, Gottesman II. 1991. The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatry Clin Neurosci 240:174-181.

Mednick SA, Machon RA, Huttunen MO, Bonett D. 1988. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45:189-192.

Mein CA, Esposito L, Dunn MG, Johnson GC, Timms AE, Goy JV, Smith AN, Sebag-Montefiore L, Merriman ME, Wilson AJ, Pritchard LE, Cucca F, Barnett AH, Bain SC, Todd JA. 1998. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet 19:297-300.

Mendez MF, Grau R, Doss RC, Taylor JL. 1993. Schizophrenia in epilepsy: seizure and psychosis variables. Neurology 43:1073-1077.

Message SD, Johnston SL. 2002. Viruses in asthma. Br Med Bull 61:29-43.

Messer G, Spengler U, Jung MC, Honold G, Blomer K, Pape GR, Riethmüller G, Weiss EH. 1991. Polymorphic structure of the tumor necrosis factor (TNF) locus: an NcoI polymorphism in the first intron of the human TNF- β gene correlates with a variant amino acid in position 26 and a reduced level of TNF- β production. J Exp Med 173:209-219.

Moffatt MF, Cookson WO. 1997. Tumour necrosis factor haplotypes and asthma. Hum Mol Genet 6:551-554.

Moffatt MF, James A, Ryan G, Musk AW, Cookson WO. 1999. Extended tumour necrosis factor/HLA-DR haplotypes and asthma in an Australian population sample. Thorax 54:757-761.

Moffatt MF, Schou C, Faux JA, Abecasis GR, James A, Musk AW, Cookson WO. 2001. Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur J Hum Genet 9:341-346.

Mohlke KL, Erdos MR, Scott LJ, Fingerlin TE, Jackson AU, Silander K, Hollstein P, Boehnke M, Collins FS. 2002. High-throughput screening for evidence of association by using mass spectrometry genotyping on DNA pools. Proc Natl Acad Sci U S A 99:16928-16933.

Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F. 1997. Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology 112:1169-1178.

Müller N, Riedel M, Ackenheil M, Schwarz MJ. 1999. The role of immune function in schizophrenia: an overview. Eur Arch Psychiatry Clin Neurosci 249 Suppl 4:62-68.

Nejentsev S, Gombos Z, Laine AP, Veijola R, Knip M, Simell O, Vaarala O, Akerblom HK, Ilonen J. 2000. Non-class II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B. Diabetes 49:2217-2221.

Nerup J, Platz P, Andersen OO, Christy M, Lyngsoe J, Poulsen JE, Ryder LP, Nielsen LS, Thomsen M, Svejgaard A. 1974. HL-A antigens and diabetes mellitus. Lancet 2:864-866.

Nielsen DM, Weir BS. 1999. A classical setting for associations between markers and loci affecting quantitative traits. Genet Res 74:271-277.

Nieminen MM, Kaprio J, Koskenvuo M. 1991. A population-based study of bronchial asthma in adult twin pairs. Chest 100:70-75.

Niskanen L, Sarlund H, Laakso M. 1995. Metabolic defects in persistent impaired glucose tolerance are related to the family history of non-insulin-dependent diabetes mellitus. Metabolism 44:1099-1104.

Nordgren S, Fasth S, Hulten L. 1992. Anal fistulas in Crohn's disease: incidence and outcome of surgical treatment. Int J Colorectal Dis 7:214-218.

Norris JM, Beaty B, Klingensmith G, Yu L, Hoffman M, Chase HP, Erlich HA, Hamman RF, Eisenbarth GS, Rewers M. 1996. Lack of association between early exposure to cow's milk protein and β -cell autoimmunity. Diabetes Autoimmunity Study in the Young (DAISY). JAMA 276:609-614.

Nystuen A, Benke PJ, Merren J, Stone EM, Sheffield VC. 1996. A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum Mol Genet 5:525-531.

Ober C, Tsalenko A, Willadsen S, Newman D, Daniel R, Wu X, Andal J, Hoki D, Schneider D, True K, Schou C, Parry R, Cox N. 1999. Genome-wide screen for atopy susceptibility alleles in the Hutterites. Clin Exp Allergy 29 Suppl 4:11-15.

Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. 2001. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276:4812-4818.

Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603-606.

Okamoto K, Makino S, Yoshikawa Y, Takaki A, Nagatsuka Y, Ota M, Tamiya G, Kimura A, Bahram S, Inoko H. 2003. Identification of I kappa BL as the second major histocompatibility complex-linked susceptibility locus for rheumatoid arthritis. Am J Hum Genet 72:303-312.

Onno M, Guillaudeux T, Amiot L, Renard I, Drenou B, Hirel B, Girr M, Semana G, Le Bouteiller P, Fauchet R. 1994. The HLA-G gene is expressed at a low mRNA level in different human cells and tissues. Hum Immunol 41:79-86.

Orchard TR, Chua CN, Ahmad T, Cheng H, Welsh KI, Jewell DP. 2002. Uveitis and erythema nodosum in inflammatory bowel disease: clinical features and the role of HLA genes. Gastroenterology 123:714-718.

Ott J, Bhattacharya S, Chen JD, Denton MJ, Donald J, Dubay C, Farrar GJ, Fishman GA, Frey D, Gal A, . 1990. Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests. Proc Natl Acad Sci U S A 87:701-704.

Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, Paquette TL. 1983. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 222:1337-1339.

Palmer LJ, Burton PR, Faux JA, James AL, Musk AW, Cookson WO. 2000. Independent inheritance of serum immunoglobulin E concentrations and airway responsiveness. Am J Respir Crit Care Med 161:1836-1843.

Parrello T, Monteleone G, Cucchiara S, Monteleone I, Sebkova L, Doldo P, Luzza F, Pallone F. 2000. Up-regulation of the IL-12 receptor beta 2 chain in Crohn's disease. J Immunol 165:7234-7239.

Parronchi P, Romagnani P, Annunziato F, Sampognaro S, Becchio A, Giannarini L, Maggi E, Pupilli C, Tonelli F, Romagnani S. 1997. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am J Pathol 150:823-832.

Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR. 2001. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294:1719-1723.

Patrick SL, Kadohiro JK, Waxman SH, Curb JD, Orchard TJ, Dorman JS, Kuller LH, LaPorte RE. 1997. IDDM incidence in a multiracial population. The Hawaii IDDM Registry, 1980-1990. Diabetes Care 20:983-987.

Peeters M, Nevens H, Baert F, Hiele M, de Meyer AM, Vlietinck R, Rutgeerts P. 1996. Familial aggregation in Crohn's disease: increased age-adjusted risk and concordance in clinical characteristics. Gastroenterology 111:597-603.

Perlin MW, Lancia G, Ng SK. 1995. Toward fully automated genotyping: genotyping microsatellite markers by deconvolution. Am J Hum Genet 57:1199-1210.

Perry SW. 1990. Organic mental disorders caused by HIV: update on early diagnosis and treatment. Am J Psychiatry 147:696-710.

Pfeiffer RM, Rutter JL, Gail MH, Struewing J, Gastwirth JL. 2002. Efficiency of DNA pooling to estimate joint allele frequencies and measure linkage disequilibrium. Genet Epidemiol 22:94-102.

Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ, Donaldson MA, Studebaker JF, Ankener WM, Alfisi SV, Kuo FS, Camisa AL, Pazorov V, Scott KE, Carey BJ, Faith J, Katari G, Bhatti HA, Cyr JM, Derohannessian V, Elosua C, Forman AM, Grecco NM, Hock CR, Kuebler JM, Lathrop JA, Mockler MA, Nachtman EP, Restine SL, Varde SA, Hozza MJ, Gelfand CA, Broxholme J, Abecasis GR, Boyce-Jacino MT, Cardon LR. 2003. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 33:382-387.

Picker LJ, Terstappen LW, Rott LS, Streeter PR, Stein H, Butcher EC. 1990. Differential expression of homing-associated adhesion molecules by T cell subsets in man. J Immunol 145:3247-3255.

Picker LJ, Kishimoto TK, Smith CW, Warnock RA, Butcher EC. 1991. ELAM-1 is an adhesion molecule for skin-homing T cells. Nature 349:796-799.

Podolin PL, Denny P, Armitage N, Lord CJ, Hill NJ, Levy ER, Peterson LB, Todd JA, Wicker LS, Lyons PA. 1998. Localization of two insulin-dependent diabetes (Idd) genes to the Idd10 region on mouse chromosome 3. Mamm Genome 9:283-286.

Podolsky DK. 1991. Inflammatory bowel disease (1). N Engl J Med 325:928-937.

Primakoff P, Myles DG. 2000. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 16:83-87.

Pritchard JK, Rosenberg NA. 1999. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220-228.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.

Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. 2000. Association mapping in structured populations. Am J Hum Genet 67:170-181.

Pritchard JK, Donnelly P. 2001. Case-control studies of association in structured or admixed populations. Theor Popul Biol 60:227-237.

Probert CS, Jayanthi V, Rampton DS, Mayberry JF. 1996. Epidemiology of inflammatory bowel disease in different ethnic and religious groups: limitations and aetiological clues. Int J Colorectal Dis 11:25-28.

Raddrizzani L, Sturniolo T, Guenot J, Bono E, Gallazzi F, Nagy ZA, Sinigaglia F, Hammer J. 1997. Different modes of peptide interaction enable HLA-DQ and HLA-DR molecules to bind diverse peptide repertoires. J Immunol 159:703-711.

Rahman I, MacNee W. 2000. Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16:534-554.

Rajagopalan G, Kudva YC, Chen L, Wen L, David CS. 2003. Autoimmune diabetes in HLA-DR3/DQ8 transgenic mice expressing the co-stimulatory molecule B7-1 in the beta cells of islets of Langerhans. Int Immunol 15:1035-1044.

Redington AE, Madden J, Frew AJ, Djukanovic R, Roche WR, Holgate ST, Howarth PH. 1997. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 156:642-647.

Redondo MJ, Kawasaki E, Mulgrew CL, Noble JA, Erlich HA, Freed BM, Lie BA, Thorsby E, Eisenbarth GS, Undlien DE, Ronningen KS. 2000. DR- and DQ-associated protection from type 1A diabetes: comparison of DRB1*1401 and DQA1*0102-DQB1*0602*. J Clin Endocrinol Metab 85:3793-3797.

Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES. 2001. Linkage disequilibrium in the human genome. Nature 411:199-204.

Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, Raedler A. 1993. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin Exp Immunol 94:174-181.

Reinshagen M, Loeliger C, Kuehnl P, Weiss U, Manfras BJ, Adler G, Boehm BO. 1996. HLA class II gene frequencies in Crohn's disease: a population based analysis in Germany. Gut 38:538-542.

Reiss J, Johnson JL. 2003. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH. Hum Mutat 21:569-576.

Renner M, Danielson MA, Falke JJ. 1993. Kinetic control of Ca(II) signaling: tuning the ion dissociation rates of EF-hand Ca(II) binding sites. Proc Natl Acad Sci U S A 90:6493-6497.

Rihs HP, Barbalho-Krolls T, Huber H, Baur X. 1997. No evidence for the influence of HLA class II in alleles in isocyanate-induced asthma. Am J Ind Med 32:522-527.

Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, McLeod RS, Griffiths AM, Green T, Brettin TS, Stone V, Bull SB, Bitton A, Williams CN, Greenberg GR, Cohen Z, Lander ES, Hudson TJ, Siminovitch KA. 2000. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 66:1863-1870.

Risch N. 1987. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 40:1-14.

Risch N, Teng J. 1998. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 8:1273-1288.

Risch NJ. 2000. Searching for genetic determinants in the new millennium. Nature 405:847-856.

Rollinger-Holzinger I, Eibl B, Pauly M, Griesser U, Hentges F, Auer B, Pall G, Schratzberger P, Niederwieser D, Weiss EH, Zwierzina H. 2000. LST1: a gene with extensive alternative splicing and immunomodulatory function. J Immunol 164:3169-3176.

Ross P, Hall L, Haff LA. 2000. Quantitative approach to single-nucleotide polymorphism analysis using MALDI-TOF mass spectrometry. Biotechniques 29:620-629.

Ross PL, Lee K, Belgrader P. 1997. Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry. Anal Chem 69:4197-4202.

Rudikoff D, Lebwohl M. 1998. Atopic dermatitis. Lancet 351:1715-1721.

Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-491.

Sanchez-Mazas A, Djoulah S, Busson M, Le Monnier dG, I, Poirier JC, Dehay C, Charron D, Excoffier L, Schneider S, Langaney A, Dausset J, Hors J. 2000. A linkage disequilibrium map of the MHC region based on the analysis of 14 loci haplotypes in 50 French families. Eur J Hum Genet 8:33-41.

Sanger F, Nicklen S, Coulson AR. 1992. DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology 24:104-108.

Sarafino EP, Goldfedder J. 1995. Genetic factors in the presence, severity, and triggers of asthma. Arch Dis Child 73:112-116.

Sartor RB. 1997. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol 148:567-576.

Sasaki T, Tahira T, Suzuki A, Higasa K, Kukita Y, Baba S, Hayashi K. 2001. Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. Am J Hum Genet 68:214-218.

Sasieni PD. 1997. From genotypes to genes: doubling the sample size. Biometrics 53:1253-1261.

Satsangi J, Welsh KI, Bunce M, Julier C, Farrant JM, Bell JI, Jewell DP. 1996. Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet 347:1212-1217.

Satsangi J, Grootscholten C, Holt H, Jewell DP. 1996. Clinical patterns of familial inflammatory bowel disease. Gut 38:738-741.

Schlag EW, Grotemeyer J, Levine RD. 1992. Do large molecules ionize? Chem Phys Letters 190:521-527.

SchultzLarsen F. 1993. Atopic dermatitis: a genetic-epidemiologic study in a populationbased twin sample. J Am Acad Dermatol 28:719-723. Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D, Ebstein RP, Ackenheil M, Lerer B, Risch N, 1995. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat Genet 11:325-327.

Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M, Segman RH, Hanses C, Freymann J, Yakir A, Trixler M, Falkai P, Rietschel M, Maier W, Wildenauer DB. 2000. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiatry 5:638-649.

Schwab SG, Hallmayer J, Freimann J, Lerer B, Albus M, Borrmann-Hassenbach M, Segman RH, Trixler M, Rietschel M, Maier W, Wildenauer DB. 2002. Investigation of linkage and association/linkage disequilibrium of HLA A-, DQA1-, DQB1-, and DRB1-alleles in 69 sib-pair- and 89 trio-families with schizophrenia. Am J Med Genet 114:315-320.

Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, Lerer B, Rietschel M, Trixler M, Maier W, Wildenauer DB. 2003. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 72:185-190.

Scott DA, Carmi R, Elbedour K, Yosefsberg S, Stone EM, Sheffield VC. 1996. An autosomal recessive nonsyndromic-hearing-loss locus identified by DNA pooling using two inbred Bedouin kindreds. Am J Hum Genet 59:385-391.

Seki SS, Sugimura K, Ota M, Matsuzawa J, Katsuyama Y, Ishizuka K, Mochizuki T, Suzuki K, Yoneyama O, Mizuki N, Honma T, Inoko H, Asakura H. 2001. Stratification analysis of MICA triplet repeat polymorphisms and HLA antigens associated with ulcerative colitis in Japanese. Tissue Antigens 58:71-76.

Sham P, Bader JS, Craig I, O'Donovan M, Owen M. 2002. DNA Pooling: a tool for large-scale association studies. Nat Rev Genet 3:862-871.

Shanahan F. 2002. The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 16:915-931.

Shaw SH, Carrasquillo MM, Kashuk C, Puffenberger EG, Chakravarti A. 1998. Allele frequency distributions in pooled DNA samples: applications to mapping complex disease genes. Genome Res 8:111-123.

Shaw SH, Hampe J, White R, Mathew CG, Curran ME, Schreiber S. 2003. Stratification by CARD15 variant genotype in a genome-wide search for inflammatory bowel disease susceptibility loci. Hum Genet 113:514-521.

Sheehy MJ, Scharf SJ, Rowe JR, Neme de Gimenez MH, Meske LM, Erlich HA, Nepom BS. 1989. A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles. J Clin Invest 83:830-835.

Sheffield VC, Carmi R, Kwitek-Black A, Rokhlina T, Nishimura D, Duyk GM, Elbedour K, Sunden SL, Stone EM. 1994. Identification of a Bardet-Biedl syndrome locus on chromosome 3 and evaluation of an efficient approach to homozygosity mapping. Hum Mol Genet 3:1331-1335.

Shifman S, Pisante-Shalom A, Yakir B, Darvasi A. 2002. Quantitative technologies for allele frequency estimation of SNPs in DNA pools. Mol Cell Probes 16:429-434.
Shin HD, Park BL, Kim LH, Jung JH, Wang HJ, Kim YJ, Park HS, Hong SJ, Choi BW, Kim DJ, Park CS. 2004. Association of tumor necrosis factor polymorphisms with asthma and serum total IgE. Hum Mol Genet 13:397-403.

Shivananda S, Lennard-Jones J, Logan R, Fear N, Price A, Carpenter L, van Blankenstein M. 1996. Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut 39:690-697.

Singal DP, Blajchman MA. 1973. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 22:429-432.

Singer SM, Tisch R, Yang XD, Sytwu HK, Liblau R, McDevitt HO. 1998. Prevention of diabetes in NOD mice by a mutated I-Ab transgene. Diabetes 47:1570-1577.

Singer VL, Jones LJ, Yue ST, Haugland RP. 1997. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal Biochem 249:228-238.

Smeraldi E, Bellodi L, Scorza-Smeraldi R, Fabio G, Sacchetti E. 1976. HLA-SD antigens and schizophrenia: statistical and genetical considerations. Tissue Antigens 8:191-196.

Soriano JB, Ercilla G, Sunyer J, Real FX, Lazaro C, Rodrigo MJ, Estivill X, Roca J, Rodriguez-Roisin R, Morell F, Anto JM. 1997. HLA class II genes in soybean epidemic asthma patients. Am J Respir Crit Care Med 156:1394-1398.

Soutar A, Seaton A, Brown K. 1997. Bronchial reactivity and dietary antioxidants. Thorax 52:166-170.

Soyka M. 1995. Pharmacotherapy and psychotherapy for the treatment of alcoholism in Germany. Drug Alcohol Depend 39 Suppl 1:S9-13.

Spielman RS, Baker L, Zmijewski CM. 1980. Gene dosage and suceptibility to insulindependent diabetes. Ann Hum Genet 44:135-150.

Spielman RS, McGinnis RE, Ewens WJ. 1993. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506-516.

Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, Spies T. 2001. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53:279-287.

Stephan V, Kühr J, Seibt A, Saueressig H, Zingsem S, Dinh TD, Moseler M, Wahn V, Deichmann KA. 1999. Genetic linkage of HLA-class II locus to mite-specific IgE immune responsiveness. Clin Exp Allergy 29:1049-1054.

Stephens M, Smith NJ, Donnelly P. 2001. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978-989.

Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. 1999. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut 45:395-401.

Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, Shinkwin R, Webb BT, Zhang J, Walsh D, . 1995. A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet 11:287-293.

Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, Cesare AJ, Gibberman A, Wang X, O'Neill FA, Walsh D, Kendler KS. 2002. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71:337-348.

Strom L, Laurencikiene J, Miskiniene A, Severinson E. 1999. Characterization of CD40dependent immunoglobulin class switching. Scand J Immunol 49:523-532.

Taneja V, Davis CS. 2001. Lessons from animal models for human autoimmune diseases. Nat Immunol 2(9):781-4.

Texier C, Pouvelle-Moratille S, Busson M, Charron D, Menez A, Maillere B. 2001. Complementarity and redundancy of the binding specificity of HLA-DRB1, -DRB3, -DRB4 and -DRB5 molecules. Eur J Immunol 31:1837-1846.

The International HapMap Consortium. 2003. The International HapMap Project. Nature 426:789-796.

The MHC sequencing consortium. 1999. Complete sequence and gene map of a human major histocompatibility complex. Nature 401:921-923.

Thompson NP, Driscoll R, Pounder RE, Wakefield AJ. 1996. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ 312:95-96.

Thorsby E. 1997. Invited anniversary review: HLA associated diseases. Hum Immunol 53:1-11.

Todd JA, Bell JI, McDevitt HO. 1987. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329:599-604.

Todd JA, Farrall M. 1996. Panning for gold: genome-wide scanning for linkage in type 1 diabetes. Hum Mol Genet 5 Spec No:1443-1448.

Trautmann A, Akdis M, Kleemann D, Altznauer F, Simon HU, Graeve T, Noll M, Brocker EB, Blaser K, Akdis CA. 2000. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 106:25-35.

Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. 1988. Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29:990-996.

Undlien DE, Thorsby E. 2001. HLA associations in type 1 diabetes: merging genetics and immunology. Trends Immunol 22:467-469.

Utans U, Quist WC, McManus BM, Wilson JE, Arceci RJ, Wallace AF, Russell ME. 1996. Allograft inflammatory factory-1. A cytokine-responsive macrophage molecule expressed in transplanted human hearts. Transplantation 61:1387-1392.

Valenta R, Seiberler S, Natter S, Mahler V, Mossabeb R, Ring J, Stingl G. 2000. Autoallergy: a pathogenetic factor in atopic dermatitis? J Allergy Clin Immunol 105:432-437.

van Dullemen H, Meenan J, Stronkhorst A, Tytgat GN, van Deventer SJ. 1997. Mediators of mucosal inflammation: implications for therapy. Scand J Gastroenterol Suppl 223:92-98.

Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, Torrey D, Pandit S, McKenny J, Braunschweiger K, Walsh A, Liu Z, Hayward B, Folz C, Manning SP, Bawa A, Saracino L, Thackston M, Benchekroun Y, Capparell N, Wang M, Adair R, Feng Y, Dubois J, FitzGerald MG, Huang H, Gibson R, Allen KM, Pedan A, Danzig MR, Umland SP, Egan RW, Cuss FM, Rorke S, Clough JB, Holloway JW, Holgate ST, Keith TP. 2002. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418:426-430.

van Heel DA, Udalova IA, De Silva AP, McGovern DP, Kinouchi Y, Hull J, Lench NJ, Cardon LR, Carey AH, Jewell DP, Kwiatkowski D. 2002. Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF-kappaB transcription factors. Hum Mol Genet 11:1281-1289.

Verge CF, Howard NJ, Irwig L, Simpson JM, Mackerras D, Silink M. 1994. Environmental factors in childhood IDDM. A population-based, case-control study. Diabetes Care 17:1381-1389.

Vermeire S, Wild G, Kocher K, Cousineau J, Dufresne L, Bitton A, Langelier D, Pare P, Lapointe G, Cohen A, Daly MJ, Rioux JD. 2002. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet 71:74-83.

Virchow JC, Jr., Walker C, Hafner D, Kortsik C, Werner P, Matthys H, Kroegel C. 1995. T cells and cytokines in bronchoalveolar lavage fluid after segmental allergen provocation in atopic asthma. Am J Respir Crit Care Med 151:960-968.

Walsh EC, Mather KA, Schaffner SF, Farwell L, Daly MJ, Patterson N, Cullen M, Carrington M, Bugawan TL, Erlich H, Campbell J, Barrett J, Miller K, Thomson G, Lander ES, Rioux JD. 2003. An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 73:580-590.

Wang S, Kidd KK, Zhao H. 2003. On the use of DNA pooling to estimate haplotype frequencies. Genet Epidemiol 24:74-82.

Wen L, Wong FS, Tang J, Chen NY, Altieri M, David C, Flavell R, Sherwin R. 2000. In vivo evidence for the contribution of human histocompatibility leukocyte antigen (HLA)-DQ molecules to the development of diabetes. J Exp Med 191:97-104.

Wen L, Chen NY, Tang J, Sherwin R, Wong FS. 2001. The regulatory role of DR4 in a spontaneous diabetes DQ8 transgenic model. J Clin Invest 107:871-880.

Werfel T, Kapp A. 1998. Environmental and other major provocation factors in atopic dermatitis. Allergy 53:731-739.

Werner M, Sych M, Herbon N, Illig T, König IR, Wjst M. 2002. Large-scale determination of SNP allele frequencies in DNA pools using MALDI-TOF mass spectrometry. Hum Mutat 20:57-64.

Wilke I, Arolt V, Rothermundt M, Weitzsch C, Hornberg M, Kirchner H. 1996. Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 246:279-284.

Wilson AG, Gordon C, di Giovine FS, de Vries N, van de Putte LB, Emery P, Duff GW. 1994. A genetic association between systemic lupus erythematosus and tumor necrosis factor alpha. Eur J Immunol 24:191-195.

Winter WE, Maclaren NK, Riley WJ, Clarke DW, Kappy MS, Spillar RP. 1987. Maturityonset diabetes of youth in black Americans. N Engl J Med 316:285-291.

Winterton DL, Kaufman J, Keener CV, Quigley S, Farin FM, Williams PV, Koenig JQ. 2001. Genetic polymorphisms as biomarkers of sensitivity to inhaled sulfur dioxide in subjects with asthma. Ann Allergy Asthma Immunol 86:232-238.

Wjst M, Fischer G, Immervoll T, Jung M, Saar K, Rueschendorf F, Reis A, Ulbrecht M, Gomolka M, Weiss EH, Jaeger L, Nickel R, Richter K, Kjellman NI, Griese M, von Berg A, Gappa M, Riedel F, Boehle M, van Koningsbruggen S, Schoberth P, Szczepanski R, Dorsch W, Silbermann M, Wichmann HE, 1999. A genome-wide search for linkage to asthma. German Asthma Genetics Group. Genomics 58:1-8.

Wong AM, Allcock RJ, Cheong KY, Christiansen FT, Price P. 2003. Alleles of the proximal promoter of BAT1, a putative anti-inflammatory gene adjacent to the TNF cluster, reduce transcription on a disease-associated MHC haplotype. Genes Cells 8:403-412.

Wong ML, Licinio J. 1994. Localization of stem cell factor mRNA in adult rat hippocampus. Neuroimmunomodulation 1:181-187.

Woszczek G, Kowalski ML, Borowiec M. 2002. Association of asthma and total IgE levels with human leucocyte antigen-DR in patients with grass allergy. Eur Respir J 20:79-85.

Wright P, Donaldson PT, Curtis VA, Underhill JA, Doherty DG, Murray RM. 1995. Immunogenetic markers in schizophrenia: HLA A9 revisited. Schizophrenia Research 15:50.

Wright P, Sham PC, Gilvarry CM, Jones PB, Cannon M, Sharma T, Murray RM. 1996. Autoimmune diseases in the pedigrees of schizophrenic and control subjects. Schizophr Res 20:261-267.

Wright P, Nimgaonkar VL, Donaldson PT, Murray RM. 2001. Schizophrenia and HLA: a review. Schizophr Res 47:1-12.

Wu J, Groh V, Spies T. 2002. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J Immunol 169:1236-1240.

Yanagihara Y, Ikizawa K, Kajiwara K, Koshio T, Basaki Y, Akiyama K. 1995. Functional significance of IL-4 receptor on B cells in IL-4-induced human IgE production. J Allergy Clin Immunol 96:1145-1151.

Yang H, Plevy SE, Taylor K, Tyan D, Fischel-Ghodsian N, McElree C, Targan SR, Rotter JI. 1999. Linkage of Crohn's disease to the major histocompatibility complex region is detected by multiple non-parametric analyses. Gut 44:519-526.

Yawalkar N, Uguccioni M, Scharer J, Braunwalder J, Karlen S, Dewald B, Braathen LR, Baggiolini M. 1999. Enhanced expression of eotaxin and CCR3 in atopic dermatitis. J Invest Dermatol 113:43-48.

Yoon JW, Ihm SH, Kim KW. 1989. Viruses as a triggering factor of type 1 diabetes and genetic markers related to the susceptibility to the virus-associated diabetes. Diabetes Res Clin Pract 7 Suppl 1:S47-S58.

Yoon JW. 1995. A new look at viruses in type 1 diabetes. Diabetes Metab Rev 11:83-107.

Young RP, Dekker JW, Wordsworth BP, Schou C, Pile KD, Matthiesen F, Rosenberg WM, Bell JI, Hopkin JM, Cookson WO. 1994. HLA-DR and HLA-DP genotypes and immunoglobulin E responses to common major allergens. Clin Exp Allergy 24:431-439.

Zamani MG, De Hert M, Spaepen M, Hermans M, Marynen P, Cassiman JJ, Peuskens J. 1994. Study of the possible association of HLA class II, CD4, and CD3 polymorphisms with schizophrenia. Am J Med Genet 54:372-377.

Zavattari P, Lampis R, Motzo C, Loddo M, Mulargia A, Whalen M, Maioli M, Angius E, Todd JA, Cucca F. 2001. Conditional linkage disequilibrium analysis of a complex disease superlocus, IDDM1 in the HLA region, reveals the presence of independent modifying gene effects influencing the type 1 diabetes risk encoded by the major HLA-DQB1, -DRB1 disease loci. Hum Mol Genet 10:881-889.

Zheng CQ, Hu GZ, Zeng ZS, Lin LJ, Gu GG. 2003. Progress in searching for susceptibility gene for inflammatory bowel disease by positional cloning. World J Gastroenterol 9:1646-1656.

Zhou G, Kamahori M, Okano K, Chuan G, Harada K, Kambara H. 2001. Quantitative detection of single nucleotide polymorphisms for a pooled sample by a bioluminometric assay coupled with modified primer extension reactions (BAMPER). Nucleic Acids Res 29:E93.

Ziegler AG, Hummel M, Schenker M, Bonifacio E. 1999. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48:460-468.

Anhang

Verwendete Primer für die Sequenzierung von *MICB*, *AIF1* und *LST1*.

AIF1 Promoter - Exon2	TCTGTCTCCCCACCTCTACCAG	GTGTGGCAGGAGGGCAATAAAG
AIF1 Exon 3	GTGTGGCAGGAGGGCAATAAAG	AGGAAGAGAGGCTGGATGAGATC
AIF1 Exon 4	ATGAGGAATGGAGCATGTAGGAGAG	AGTTGGTTGGCAACCCCTTC
AIF1 Exon 5	GTCCCTCTAAGGATGGAAGAAGG	AAGTGGGAGAGAGAGAGAGAGGG
AIF1 Exon 6	AAATCCTTGCCACCTTTCCC	CCCTGTGCCTCTTCCCATC
LST1 Exon 1	GGATTAGCAGTGAGGAATGGAAAG	CCAGCCTCCTGGTTGGTTG
LST1 Exon 2	CTGGGATGGAGAAGCTCTGAG	GTGTTCTGGGAAAGCAGTGG
LST1 Exon 3	AGGGAAGGATCTGACGGCATC	TTACTGGCTGGACCACAGGG
LST1 Exon 4	TGTGTTGGCTGCATCGAA	CTTTTTCTCTTGGTTTCTGTCTCA
LST1 Exon 5	ACGGCATCGCCTCCCATC	AGCTTGGGTCCCTGAACACTG
LST1 Promoter A	AGCCTGCTGCATAGAGCTGC	TACCCAGAGCTTGTGGCCTG
LST1 Promoter B	CTTCTCTTCAGCCAGACAGCAC	GTGGGGCATGGAGGAGTATC
MICB Exon 1	CACTCCAGACAGCACACCTGAG	GGGGTCTTCTCACCGGTTTC
MICB Exon 2	CTTTTGCCCATGTGCATTTCC	TGCTCTCTGTCTCCAACTTTCCTG
MICB Exon 3	GTGGAAAGGTGATGGGTTCG	AATTGCGGGAACAGTAGAGCC
MICB Exon 4	CTGTTCCCTGCATCTCCCTTAG	CTTGTTATACACTGGGCAGAGAGC
MICB Exon 5	GCTCTCTGCCCAGTGTATAACAAG	AGCAATGAGGAGACCCTACTGC
MICB Exon 6	GCACCCAGTGGAGCATTTAC	TCCAGGCAGGGAGTTGAATC
MICB Promoter	GGTCGTGCTCATAAGTTTGGAGC	ACCGCCAGGAACCCCACTCA

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
rs10023	ACT	CAAACTCCCAATGGCCAAAG	GGCGCACGCCTCCACGACCTTACTGTGTTTCAGCCC	TGTGAGGAAGGGCAACAC	ТС
rs1002925	ACG	ACAGCATGAAGGCAACTGAG	GGCGCACGCCTCCACGTTCTCCATCCTTGAATCTGC	AGGAGGTTCATGGAGTAG	GΑ
rs1002969	ACT	TCAAGACTAGCTTGGGCAAC	GGCGCACGCCTCCACGAGACAATCTGAATGAGCCCC	GCTTGGGCAACACAGTGA	AG
rs1003249	CGT	CAAATTCACTGACTTTGGTC	GGCGCACGCCTCCACGGCCCTATGTCTCTGTAATATG	ACTGACTTTGGTCACATTC	ΤА
rs1003878	ACT	GATATATACAGGCAGCTTACC	GGCGCACGCCTCCACGTCTCAAAGCCTCACTTCTAG	CAGCTTACCAATAGGTCCT	ТС
rs1005247	ACT	GCAGAGGAAAGTGTCTGAAC	GGCGCACGCCTCCACGGGAGATGTGGTTAGGAGATG	GTCTGAACACAGCTCAGA	AG
rs1009181	ACT	CGGAAACCAAAGAGCTGTAC	GGCGCACGCCTCCACGCTGCAGAGGAAATAACTTGG	GAGCTAACGATCTAATACGT	AG
rs1010423	ACT	TGCCAGTTTTCCTGTTCGTC	GGCGCACGCCTCCACGATGGTCTGCATCAGGACTTC	TTTGCCGAGGCCAACTAG	СG
rs1013907	ACG	GGATCCCTCTTCCTGAATTC	GGCGCACGCCTCCACGCCTTCTCAGCACTAAAGACC	GGTACCCTAGATGAGTTTAA	СТ
rs1022486	CGT	GCCAAATTTCTGACGATCCC	GGCGCACGCCTCCACGAGTCTTTAGCATAGTCCCGG	CACCTGTCAATAGGAGCG	ΤА
rs1028411	CGT	AGGACAGATAAAGGAAAACG	GGCGCACGCCTCCACGTATAACCACTCGTATCTCTC	GTCATCATCTTTCATGACC	СА
rs1033524	ACT	CCAGGTCATTCAACTGACAC	GGCGCACGCCTCCACGTAGCAAGGAATATGGAGGCC	TGGACTCGTGGCTACTAT	AG
rs1035798	ACT	TTCCCAGGAATCTCTGAAGG	GGCGCACGCCTCCACGAAAAAGCCTTCAACCCCAGC	GAAGGTTCTCAAACTCTGT	ТС
rs1040419	CGT	GGAGGAGTCGTTTTGAAAGC	GGCGCACGCCTCCACGATCCTTCCCTAAATGGGCTC	GTGTACAGCAAAGTCACTG	GΤ
rs1040436	ACT	TTTCCATGTCTCCTCTCTCC	GGCGCACGCCTCCACGAATGGGACGTGCAATTGCAG	TCCCTGGGAAGGTTGAGA	ТС
rs1042044	ACT	TCACGTAGAGCCTGAAGATC	GGCGCACGCCTCCACGTGTACCTGTACACACTGCTG	TGAAGATCCATTGCTCAGA	АC
rs1043483	ACG	CCCGAAGGTACAAGTTGCAG	GGCGCACGCCTCCACGTCCCTGCCTCCCCTTCTGAT	GTTGCAGAAGCAGCTTGA	СТ
rs1049092	ACT	ACGGTGATGGGGGCTCTGGAG	GGCGCACGCCTCCACGGATGCTGGAAATGACTCCCC	CACGTGGCAGGTGTAGAC	ТС
rs1051785	ACT	TGTCCTGGGATGGATCTGTG	GGCGCACGCCTCCACGTTCTGCCTGTCATAGCGCAG	GTGCAGTCAGGGTTTCTT	ΑG
rs1051911	ACT	GGACACAGAGGAGGTTTTCC	GGCGCACGCCTCCACGACCCCTTCAGCCTCCTGTTC	CGCAGCTACGTTTTTTACC	AG
rs1052416	ACG	TTACACTGGGTTTGTTGCAG	GGCGCACGCCTCCACGGCTTACTTTAATTCTACAGC	GTTTGTTGCAGTAAGCCAC	СТ
rs1052693	ACG	GACTTTGGCTCCGATTAAGC	GGCGCACGCCTCCACGTGCTCTCCATCACCACTCTG	AAGCGACGGCCCGAGACT	СТ
rs1057932	ACT	CAGAGCTGCCTCTCATGATC	GGCGCACGCCTCCACGTGTGGAAGCACCTGTGGTTG	GATCACAGATGCTGCTACT	AC
rs1059547	ACT	AGCCTCAGACACACCATGCT	GGCGCACGCCTCCACGTTCTCCCTGAGTGAGACTTG	ACACACCATGCTGGAGAA	GС
rs1061801	ACG	AGAACCTACCCCCTCTCAAG	GGCGCACGCCTCCACGTTGGGAATTTCCACGGGAAG	GCTCTTTATTTCTACCCTGT	СТ
rs1061808	CGT	CTCTGGCTGGAAGCTGATAC	GGCGCACGCCTCCACGGGTGAAGGTGCTGAGGAAAG	AAGCACTCCCAGGCTCATC	СА
rs1061925	CGT	TCTCTAGGAAGCTTTTCCTG	GGCGCACGCCTCCACGGTCATGCAGGATGCTATAAG	GTCCTAAGTCTGGGTAAG	СА
rs1063478	ACT	TAATCTCTTCCCACCCATGC	GGCGCACGCCTCCACGAGCTGAGACAAAAGTAGGCC	GAACTGGCAGCATCATTCC	ТС
rs1064663	ACT	CACGTACTCCTCCTGGTTAT	GGCGCACGCCTCCACGTTTCTTCAATGGGACGGAGC	CCTCCTGGTTATGGAAGT	ТС
rs10672	ACT	CGAGTCAGACAGATGGCAAA	GGCGCACGCCTCCACGCAGATGCCAGCTCTCCTCAG	GATGGCAAATTGAGGGATC	ТС
rs10692	ACG	CACCTTGGTCCTATTGAGGC	GGCGCACGCCTCCACGACTTCCCCACAACCAGCACAG	GTGCCTGCTTGATCCTGA	GA
rs1075665	ACT	CCCTTGACTTGGATTTACCC	GGCGCACGCCTCCACGACCCAGAAGCATCTTCTTCC	ATTTACCCTCATTGATGTCT	ТС
rs11244	ACG	ATTGTCCAGAAACTCCCCTG	GGCGCACGCCTCCACGACTTATAGGAGTAGGGCTGG	GAGACCTTACTCCTTCCAG	СТ
rs11280	ACG	CTGCCTATTATCAAGCCACC	GGCGCACGCCTCCACGATTATGACTGTGGAGGAGGG	ATCAAGCCACCTAACTCCT	GA
rs1141034	ACT	TTATGATCCTCCATGCTGCC	GGCGCACGCCTCCACGAAGACACACACACGCCCTAAC	CACATTICICCAGACATTIG	AG
rs1150724	ACT	TTACGGTATTCCTGCCCAAC	GGCGCACGCCTCCACGTGTGTGTGTGGGGGTATGTTG	ATTAATATTCCCTAAAGCACA	AG
rs1150735	ACG	CTTCCTTAGCTTGTGGCTTC	GGCGCACGCCTCCACGCATAGAGAGATAGCAGCATG	AAGCCAGCAATGTCAGGC	СТ
rs1150759	ACT	TCCCAAAGTGCTGGGATTAC	GGCGCACGCCTCCACGGGTGAATCTGATCCAGACTC	TTACAGGCGTGAGCCACC	A G
rs1156533	ACT	GGTAGAGGTGAGAAACACAC	GGCGCACGCCTCCACGATAAGCACATAGCAGTCCCC	GAGATTAGTGCAGTGATCAA	ТС
rs115810	ACT	TGCCTTCAAGCAGATGCAAC	GGCGCACGCCTCCACGACCCTACCTAGAGAAGTCAG	TTCAAGGTTTTTCCCACCC	GC
rs1172073	ACT	TAGCCTGGATGGTCTTGATC	GGCGCACGCCTCCACGGGTAGCTCATGCCTGTAATC	CTCCTGATCCACCTGCCTC	AG
rs1172168	ACT	GGTGAGGGACAAAACACTAC	GGCGCACGCCTCCACGTCTGAGATTTTGGTGCACCC	GTACAGTGCACACTGCTC	ТС
rs11722	ACT	TGTCCACCATGACCCTCTTC	GGCGCACGCCTCCACGAGAGATGGAGACACCTCAGC	CCCAATCATCTTTCCTGTT	GC
rs1179383	CGT	TTGTGAAGTGAGGGAAGAGG	GGCGCACGCCTCCACGCCAGAATAAGTCGCTCTCTC	GCAGAGTGAAAGAGGAGA	ТА
rs11908	ACT	TCATTAAGCACCCCATGGAC	GGCGCACGCCTCCACGTTGTTTTGCACCTAGGCTCC	GGGCAGATGGGATGCTCA	ТС
rs1191	ACG	TATTTCTATGCCCCTCCCAC	GGCGCACGCCTCCACGTGCTTTTGCAGAATGGCCTG	CACCTAGAGCTCACCCAAG	GA
rs12000	ACT	TCCCAAGATTCCGCAACTAC	GGCGCACGCCTCCACGCGTTCTTCTGCATAGCAGTG	TCGTATAGTGGATATCGCT	AG
rs1224488	ACT	CACCCAGCCTGTTTTTTATC	GGCGCACGCCTCCACGAAGGATTGCCTTCAGGAAGG	ATATATACAATGAAAGTCTCC	GC
rs1225710	ACT	TTAGACCAAACCTGTGGTGG	GGCGCACGCCTCCACGCTGAGTGAAGAGTAGTCTGG	CTAAAAAGGGTACAATGGTT	AG
rs1233378	ACG	GGTACCTCTTTTGTGAAGCG	GGCGCACGCCTCCACGCAGTCTTGACTCCTTCCTTG	TGAGGAGACTCCGGCGCT	СТ
rs1233427	ACG	TTTTGAGCCTCCAGGGTATC	GGCGCACGCCTCCACGACAAGAGGCATCTGACTTGG	TGTGACTGGCCAGGGACC	G A
rs1233587	CGT	GAGGATGCTTTTCCTCCTTC	GGCGCACGCCTCCACGAGAAAGAAGATGGAGAGAG	CTCTTCCCTTTCCCCACC	ΑT
rs1233627	ACT	AGGAGACGATTGAAAAACCC	GGCGCACGCCTCCACGAAGAGATAGATGGGTCTTCC	AAGCAAAAGCCCCAGGAG	тс
rs1234157	ACG	TGGCACCCAATGAGGATTTC	GGCGCACGCCTCCACGCAACGAGCAGAGTGTGGAAG	ATTTCTCTCTCGCTGTGTT	СТ
rs1264320	ACT	TCAGCACCACAGGAGGGTC	GGCGCACGCCTCCACGTGGGTGAGCAATCTTGGGTG	GGAGGGTCCCACCCTAGCC	AG

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
rs1264332	ACT	AAAGAGATTCAGGCTTGGGC	GGCGCACGCCTCCACGTTCCAGTCAGCCTTTCTGAC	GGAATGGCAGGAAGCACC	CG
rs1264360	ACT	GTCTTACTCTGTTGCCCAAG	GGCGCACGCCTCCACGGAGAATGGTGTGAATCCAGG	TGTTGCCCAAGTTGGAGT	ТС
rs1264375	ACG	GTTGGTTACGTAGAGTCCTC	GGCGCACGCCTCCACGGCCAAAGACGGGACAATTTG	CGTAGAGTCCTCCACAAG	GΑ
rs1264420	ACT	AAGGGACAATCCAAGGATGG	GGCGCACGCCTCCACGAAGTGAGGATGAAGGTAGGG	AAGCCCATGAGAGAGCAG	ТС
rs1264440	ACG	AATTCTCCCTTTGGGACAGG	GGCGCACGCCTCCACGGGGATTATGCTGGAGGTAGC	TCTCCCTGCAGGGAAGCC	СТ
rs1264540	ACT	TTCACATGTTCCCAGCAGTC	GGCGCACGCCTCCACGCAGAGAGGGGCTTTGAGTTTC	GCTTCACCCCAGAAGCAGT	СG
rs1264582	ACT	TTGATTCCCCCTGCTGCTTC	GGCGCACGCCTCCACGTCGTGTCAGTGGAAGCTGGG	TCCTTCTTCCGCAGGCACC	ТС
rs1265109	CGT	AGTCCATCCCATGACTCTTG	GGCGCACGCCTCCACGGTGTCTTTTGCTCATGGCAC	GCTCTGACACCCCTGCAAC	СА
rs1265163	ACT	TAACCTGACAGGTGTTCTCC	GGCGCACGCCTCCACGAGAAACTGGCACATCCAAGG	TCTCTTTCTGTCCTTTCAC	СG
rs1266079	ACG	AGTACAACGGTGGGATCTTG	GGCGCACGCCTCCACGAATAAAGGAGCCAGGTGTGG	TCCTGAGTAGCTGGAATTA	СТ
rs1277155	ACG	TGGTGAAACCCCGTCTCTAC	GGCGCACGCCTCCACGCGGATTCAGGCCATTCTCCT	ATTAGCTGGGCGTGGTGG	GΑ
rs1281896	CGT	CGAGGAAAACAAAGACCCAG	GGCGCACGCCTCCACGACCAGAAGTGTCACCTTACC	CTTTTTTCCCCAAGTTAGTG	СА
rs129129	ACT	AGTTTCATGAGACCTGATGG	GGCGCACGCCTCCACGGTCAGGTCTTACATGGATGG	GAGACCTGATGGTTTTATAG	ТС
rs12943	ACT	AGAACTGTGTCCCCAAAGGG	GGCGCACGCCTCCACGACATGCAGTCACTCCCAAGC	CTCTCCAGGGACTCCTTCC	ТС
rs1323060	ACT	AGGAGACAATGAGAGAGGAC	GGCGCACGCCTCCACGCCAGTTTCACAGGTCAGATG	CATGGTCAGATGGTGACT	ТС
rs1325020	ACT	AATTTCTCTTGGCCTGGGAG	GGCGCACGCCTCCACGCTGGATCCATCATCTGTTGC	CCTGGGAGTGCTATTGCT	ТС
rs1325024	ACT	TATGCAAGCTCTGCAGAAGG	GGCGCACGCCTCCACGCACTGATTGTTGCTTGAGGG	CTCTGCAGAAGGTGTTGA	ТС
rs1332010	ACT	ATCTGGGTGCTAAGCTGAAG	GGCGCACGCCTCCACGAGCTGGCATGATTGTTGGAG	CTGGATCCTGTAGGCAGT	ТС
rs1345229	ACG	AATGTGGGCGTGGTTTCTTC	GGCGCACGCCTCCACGGGGTAGGGAAATTTGCACTG	TCTGAATGTCCCACCCACT	СТ
rs1355460	ACG	TACTGGCTGGAAAGATGGAG	GGCGCACGCCTCCACGCCATTGACTTAGCCTTTCCG	AGCCACATGGACAAACTC	GΑ
rs1358939	ACT	TGCCAGGCATGTGAATAAGG	GGCGCACGCCTCCACGTTTTCTCCATGTCTGTGGCC	TATCCCTAGCTTGTGAGTT	ΤG
rs1359374	CGT	AAAGAGTGGAGCTGTGATGG	GGCGCACGCCTCCACGGTCATACATGTGTTCCAGGG	ATGGTTGGTTGAGGGTGA	GΤ
rs1362073	ACT	CCCATGGGTTTTTTGGCTTC	GGCGCACGCCTCCACGTTGAAGGCAGTCCTTCATGG	GCTTCATAGCTGGGAAGAA	AG
rs1362089	CGT	CGATGGCCCTATTCAAACAC	GGCGCACGCCTCCACGGGTCACTTTTCTCTTTCTGC	GTGGTTCTGAAATGTTGTCT	СА
rs13735	ACT	GTACAAAGAAAATGGAGGTG	GGCGCACGCCTCCACGGGTTTGTCATAACCAAATGG	GAATTTTCTATCTTTTAAGAAC	ТС
rs1383267	ACT	GAAGGAAGTGAACTCGGTTC	GGCGCACGCCTCCACGCATGTTACCTTGGCGAAAGG	TAACCAAGTAGGACAGCC	ТС
rs1390909	ACT	AAATAAATACATGGAGGGGC	GGCGCACGCCTCCACGGTGGTCTCCAAACGTTTATG	ATGGAGGGGCATGCTCAG	ТС
rs1399224	ACT	TGCTATCTGCTTTGGTGTGG	GGCGCACGCCTCCACGTATTGGACCACCATTGCCTC	TTGGTGTGGTTGCTCTAC	ΤG
rs1408270	ACT	GCTTGTACCAACACCCTATC	GGCGCACGCCTCCACGTAGGTGTCTGTCATGGTGAG	AGTGAACCAGGATGTCAC	ТC
rs1408736	CGT	GGGTCTATGGTAAAAACTTC	GGCGCACGCCTCCACGGAAGTCAAGAATTGGTCAAG	CATTAGATTAATATTTAAGACC	GΤ
rs1410686	ACT	ATAGTGGGAAAGCTTCCTTG	GGCGCACGCCTCCACGGTCACATTTTAGATGACCAGG	CACCAAGAGGGAGTGAAAT	CG
rs1416099	CGT	GTTCTCAAACTGGGTTTCCC	GGCGCACGCCTCCACGTGGAGAGGGAAAGAAGTAGG	GGAGGCCTTCTCCCGCCCC	GΤ
rs1416221	ACT	TAGGTGCTCAAAGAGTGGTC	GGCGCACGCCTCCACGCAGTGGCTGCTATCATAGAC	GGTCATTCTCATGGTGGT	AG
rs14232	ACT	CCTGATTTTTCCTGCATGGG	GGCGCACGCCTCCACGTCACAGTGATCTCGATCCTG	TTCCTGCATGGGAAGAGC	СG
rs1444138	ACT	ATTATGGAGCAGTTTTCAGC	GGCGCACGCCTCCACGGGTATCCTTTACTCAGAAAC	GTTTTCAGCTATTTAAAAGGAT	тс
rs14597	ACT	CAAATGAGACTCTTGCAAGAC	GGCGCACGCCTCCACGCTCAGATGGTTCAAATGTCC	CTCTTGCAAGACAATCTAAAT	AC
rs1476418	ACT	AAGTCTTCAAATCCCAGGGC	GGCGCACGCCTCCACGACATGATCCCCCTTCCTCAAG	TTAATAGCTACAGGTGGCT	ΤG
rs1476572	CGT	CTACACGAGACCTAGATGAC	GGCGCACGCCTCCACGAGGTGAGTGCATTTCAGCTG	GACTACTTTGATATCTACTG	C A
rs1508440	ACG	AAGAGCAGACTTCCTCAAGC	GGCGCACGCCTCCACGTGCATCTAGTGGGAAGCTAC	TTCTCTGTTGTGGTGGGC	СТ
rs15332	ACT	TTTGATGGCAGTGCCTCATC	GGCGCACGCCTCCACGTGTGGCACAAGGGGAGTACA	CTAAACTGTCCTGCCTCCC	AG
rs1535814	ACG	TTGCAGGTGAGGAAACTGAG	GGCGCACGCCTCCACGGTCCTATGATCCAGACTGTC	CTGAGGCCACGGGTCTGA	СТ
rs1535815	ACT	TCCTGCAGATCCAATGACAC	GGCGCACGCCTCCACGTGTGGTTCCCTTATTGGTGC	GGGTGCTGTACAGAATGT	СG
rs1536054	ACT	GCTGGCTACTCTGAAATTTAC	GGCGCACGCCTCCACGGTGGGAAAATTAAGTGTGCTG	CTGAAATTTACAGTAGCATTC	GС
rs1537231	CGT	CAGAAACATTGAGGTGAGCC	GGCGCACGCCTCCACGTATCCCATAACCCTCTCCAC	TGAGCCTCTTCCAGATTAT	GΤ
rs1540273	ACG	GGACCTAGACAACAACACAG	GGCGCACGCCTCCACGATCAGATCGAGCTGTGAGAG	GACAACAACACAGATGTATG	GΑ
rs1541316	ACT	TGCAAGTCAACTGACGTCAG	GGCGCACGCCTCCACGCTAGCTGGAGTGCAGATATG	CGTCAGGAGTTGAAAGGC	ΤG
rs1555244	ACT	GAACACATAACATGCAAAGG	GGCGCACGCCTCCACGCTTCGCACTGAAGAAATATTC	GGAGGACTAATCAGTCTTC	ТC
rs1555429	ACT	AGGATATGGTCTTTGGCAGG	GGCGCACGCCTCCACGAACCATCATGGGCAGCTCTG	CTTTGGCAGGCACTGAGC	ТС
rs15574	ACT	TGGAAAGAGGTGAGTATGGG	GGCGCACGCCTCCACGACCTGATGACCTCACTGTAC	GTACATATGGGAGCCTGG	ТС
rs1564501	ACT	CCCTCTAACTTCTTGAGTTG	GGCGCACGCCTCCACGAGAGCCCTAGGATAGACTAG	GAGTTGAATACTTAGCTCATT	ТС
rs156734	ACT	CCCTTGAAACCTAGAGCTTC	GGCGCACGCCTCCACGCCCTGTATCTATCCACTGAG	CTGTATAATTTCACTTTCTTG	ΤG
rs1568705	ACT	GTCCAGGAAGTGAGCTATTG	GGCGCACGCCTCCACGAGATACACCAGAGGGAAAGG	GTGAGCTATTGTTCACACA	тC
rs1569853	ACT	GAAACCCTTCAAGAGGGAAG	GGCGCACGCCTCCACGGCTGAGATCAGAACCTAAGC	TGTTAAAAACAGGGCCTCT	AG
rs1571397	ACT	TGCATGTGCTTGACATGCTC	GGCGCACGCCTCCACGCCTTCTGCTTTTCTGCTCTC	CATGCTCATTTGGAAGTGG	ΤG
rs1610602	ACT	AAGGATCCTGCTTACCAGTG	GGCGCACGCCTCCACGGTGTATGGTGTTCCTAGAGC	TACCAGTGAGTATATAATTTT	ΤG

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
rs1610628	CGT	TGAAAGAGCAAGGAAGGGAG	GGCGCACGCCTCCACGTATCCACAGCCATAGGCATG	GGAGCAGTTTCTAGAACTC	GΤ
rs1610634	ACT	TTCTACCTGCTGCTCATTCG	GGCGCACGCCTCCACGAACTCCCCTGTCCTCTATAG	CCAGTCAACATGAAGTTGT	AG
rs1610697	ACT	TTGAAAGTGTGTCCCCTGAG	GGCGCACGCCTCCACGAACAGGCAGATGGCATCTTG	AGAGAGTCCTGGAGGCAG	AG
rs1611420	ACT	GTTTGATCTTGGCTGGTCTC	GGCGCACGCCTCCACGTGCACACCTGCAATCCTAAC	AGTGATCCTCCTGTGTCA	ТС
rs1611480	ACT	GTTCTTCCTCTTGCGAACAC	GGCGCACGCCTCCACGAGGGTTGCATGCCATCTTTC	AACACAGAACTGTAGAGAC	ТС
rs1611524	ACT	AGAAGGGTAAGAGTGGTTGG	GGCGCACGCCTCCACGTAAAGTCAGGGCCTTCAGTG	AATGTATCTGTCTCCAGTG	СG
rs1611529	ACG	AAAGAATTCCCTACCCCAGC	GGCGCACGCCTCCACGAGGATGAGGGAACCTAGTTG	TCCCTTACTGGTTACCCTG	СТ
rs1611545	ACT	CCCTACAATACCTGCAGTAC	GGCGCACGCCTCCACGAAAACTTCCCTCATCCCAGC	TGAAGTCCCACCTGGGGC	ТС
rs1611700	ACT	CAGTCTGGATCGTCTTTGAC	GGCGCACGCCTCCACGTCAGCCAAAGGGATGTACTG	GATCGTCTTTGACAATGGAT	ТС
rs1626636	ACG	CAGAAACAGGGAGAAGTGAC	GGCGCACGCCTCCACGCTAGAATGATGGCTTTGCCC	GCAAATCCCCCAAGAGCAG	СТ
rs1632447	CGT	AGTTTGAGGTTGCAGGGAAC	GGCGCACGCCTCCACGTTAGAGACATGGTCTCCCTC	AGGGAACCATGATCATGC	GΤ
rs1633089	ACG	AAGAGCTGACCATCCAGATG	GGCGCACGCCTCCACGTTGTTACAACCTCACGGTGC	TGACTGCACAGATCCATCC	GΑ
rs1634761	ACG	TCCCCAACACTTATCCTGAC	GGCGCACGCCTCCACGTTCCTCATACTTGGCACCAC	GGAGCACTGTTCTGTCCC	GΑ
rs1634765	ACT	CTCGGAGTCACAAAGAAAAC	GGCGCACGCCTCCACGTTATGGGTAGCACCCTTCTG	GAACAAAGGATTTCTCAGC	ТС
rs1655922	ACG	CAAATCTCCATTCCTCTGCC	GGCGCACGCCTCCACGAATTTAGGCCAGGTGTGGTG	CAGTGCTAGGATGACAGA	GΑ
rs1678656	ACG	GGTTGGAGAGCTGAGATTTC	GGCGCACGCCTCCACGACTGACACACTAGAGCCTTC	ACAGATATGTTGGGGGCCC	СТ
rs1678717	ACT	TCCTCCTCAAGCCTCATTTC	GGCGCACGCCTCCACGAGTTGTCCCAGGTCAACATG	TCATTTCAAACTCTCAAGAAA	AG
rs169740	ACG	CCTGTTTTGCCCTCTTGAAG	GGCGCACGCCTCCACGAAGTGTAGAAGAGTCCTGGG	TGAAGACCTTCCCTGGCTC	СТ
rs1699017	ACT	TTCCCAGACCAAATAGTGCC	GGCGCACGCCTCCACGATTAGCCATCTACTGGGAGG	CAAGAATGTTTCTCAGGCT	ТС
rs170643	ACG	GGCCTGACATTCCTGTCTTC	GGCGCACGCCTCCACGAAACATCGCCCATTATCCCC	GGTGAAGTGTTGAGGTGG	СТ
rs1729	ACG	ATTAATGGCAGCCCCTCATC	GGCGCACGCCTCCACGAGCAGGAGTACAGATGCATG	TGTGCTCCCCTTTACCTAA	GΑ
rs1736912	ACT	CCTGATCCCAGTAATCACAG	GGCGCACGCCTCCACGAAGGAAAGCAGATGTGGGTC	CAGTAATCACAGGTCAGG	ТС
rs1736970	ACG	TCCATAAAATGCCTGCTGGG	GGCGCACGCCTCCACGTTCATGGAGAGATGCGGTTG	ATCTCTTGGTGGAGAATTG	СТ
rs1736993	ACG	CCCCTTAGTCTCTACTACTC	GGCGCACGCCTCCACGAGGATTGCTGACCTTTGTGG	TGTCCCTAGCTCTGTCCCT	СТ
rs1737017	ACG	GCTGCCCTCTTTAACTAGTC	GGCGCACGCCTCCACGTGAGAACACTTGGACACAGG	TATTTCTCCTAATGCTATCC	СТ
rs1738456	CGT	GGGAAAAGTACCATCGAAGG	GGCGCACGCCTCCACGCTGACTCTCCTCACAGAAAG	GTAGTCATTAGTCACAGTTTT	ΤА
rs1739629	ACT	TTCCTCTCCTTCCAAACAGC	GGCGCACGCCTCCACGAAGGTGAATAAGCAGGAGGG	GTCAAGTCTCACCAGAAC	GС
rs1742281	ACT	AAGCAACCAGTCAGTTCTGC	GGCGCACGCCTCCACGAGCTGTAGTGGAACATAGCC	CAGTTCTGCCACGGCAGC	A G
rs1744415	ACG	AGACATTCTCTGGCCATGTG	GGCGCACGCCTCCACGAACCATCCTATGAGGTAGGC	CATGTGGCCTTGGGAAGA	СТ
rs1757191	ACG	TTCTGTTTGCCCAGACAACC	GGCGCACGCCTCCACGAGGCTATGGTGCATCTCATG	TCCTTCTCTCTCTCCCTC	GΑ
rs1759627	ACG	TGCAGTAGCCATCCTAACAG	GGCGCACGCCTCCACGACATGCACTGCTAAGCTGTG	CTAACAGGCTTCCTTCTAC	СТ
rs1759639	ACG	TTCCCGTCTCAGTGGGTTAC	GGCGCACGCCTCCACGGTGTCAATGACTCAGCTGAG	CCAGTCAGCCCAGTTAGCC	GΑ
rs1796520	ACT	GGACTAGTGTTTGAAGTCAG	GGCGCACGCCTCCACGGAGAGGGGAGAAAAGTGTGTC	AAATTGGTACCAACTGAGC	ТС
rs1800610	ACT	TAGGGAGGGATGGAGAGAA	GGCGCACGCCTCCACGCTTTCTGCATCCCCGTCTT	GGGATGGAGAGAAAAAAAC	ТC
rs1800837	ACT	AAAGAGGTTCCTGGGAGTT	GGCGCACGCCTCCACGCCAGGAAACTTCTAGCCTC	TTCCTGGGAGTTAGAGGG	A G
rs1800838	CGT	ACGCACCAATGGAGAGACA	GGCGCACGCCTCCACGTTAGGTTTCTTCTCCTGAA	AATGGAGAGACAGTGGGT	ΤА
rs1801270	ACT	CCGCCATTAGCGCATCACA	GGCGCACGCCTCCACGGCCCAGTGGACAGCGAGCA	TAGCGCATCACAGTCGCG	A C
rs1815097	ACT	AAACCCTTCTTGTTCAGGAC	GGCGCACGCCTCCACGAGACTTCAGGAATGTACATC	CTTGTTCAGGACTGTCATA	ТC
rs182634	ACG	AGCTATAGAGATGGATGCCG	GGCGCACGCCTCCACGAGTTCCTTCCTTGTGGGAAG	CCCAGGCAGTTATGAGTC	СТ
rs1880	CGT	AAGCACTTTCCCTCTTGGTG	GGCGCACGCCTCCACGATTTTGCAGCCTCCAACAAC	CTCTTGGTGCCTCAGTTTC	GΤ
rs194610	ACT	GGTCTCCCCATAATCTTGAC	GGCGCACGCCTCCACGGTTCTCGTAACCCACCTTTC	CACTGATAGTGGAACCTAG	A G
rs195385	ACT	TGCCTTCAGAGCCCTTTTAG	GGCGCACGCCTCCACGGGGTAAATGTACAAGGATCC	GCCCTTTTAGAAGCTGGAA	A G
rs195751	ACG	GAAAGCTACAGCTCCTACAG	GGCGCACGCCTCCACGTCCCTCTGGACTATGACATC	GTCACAGATGCCAAAACAG	GΑ
rs196451	ACG	GGTCTGAAGAAGCTGTTCAG	GGCGCACGCCTCCACGAAATAGTGGTCAGTCCTGGC	GCTGTTCAGATGCAAGGT	GΑ
rs197888	ACT	CTCCTTGAGCTGTGGTGAAC	GGCGCACGCCTCCACGCATTGCCCAGGCTTGATTAG	GGAGCTTCTTGGCTGCTT	ΤG
rs197956	ACG	AATCACTGCCTGAGTTCATC	GGCGCACGCCTCCACGAAGCTAAGTACAATGGGCTC	TTCACATAATCAGCAAGGAA	GΑ
rs198829	ACT	CCACAGGTAAAAGAAGGAAG	GGCGCACGCCTCCACGTGGAAGTAGGAAGTTTCCTC	GCTGTCTATTTCAGACCTC	ТC
rs198846	ACG	GACTACCATCTATACCAGGG	GGCGCACGCCTCCACGGGCTCAATTCATAACGTGCC	ATACCAGGGGTCCTCATT	GΑ
rs199048	ACT	AAGCAACATAGGTGATGGGC	GGCGCACGCCTCCACGCTCCCTCTCTATGTCCAATG	GATGGGCATTTTAATTATGC	ΑG
rs199090	ACT	TAGGGTAGCAGAGGTGATAC	GGCGCACGCCTCCACGTGTCCAGTCTTCACAACCAG	CCTTGATTGAACTCGTTCT	A G
rs199102	ACT	GGCAATGAAACTGATAGGTG	GGCGCACGCCTCCACGGGAAGGATGAAGATGACAGC	AGGTGTACTGTTCCTCAAT	ΤG
rs199747	ACT	AAGGTCAGGAGTTTGAGACC	GGCGCACGCCTCCACGCACCATGTCTGGCTAATTTC	GACCAGCTTGGCCAACAT	AG
rs200978	ACT	GTTCTGTAAATGTCTAGCAG	GGCGCACGCCTCCACGAGTGAAGGAGGCAGATAATG	GTCTAGCAGAGATCAGAC	СG
rs202563	ACG	GCATGTGTGTAGTAAAATGG	GGCGCACGCCTCCACGTTCAACATGAGGTTTGGAGG	AAAATGGTTACTATAGTGGAA	GΑ
rs204883	ACG	AGGGCCAGTTTGACCATTTC	GGCGCACGCCTCCACGTTGTACTTGTGGTCTGGCTC	TCCAGTTTAAGAATGGGGA	GΑ

Primer der Poolfrequenzbestimmungen

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
rs204998	ACG	AGAATGGCATGAACCCGGGAG	GGCGCACGCCTCCACGAGACAGAGTCTCACCCTGTC	CTTGCAGTGAGCCGAGAT	СТ
rs205206	ACT	TTGAGGAATCACCGAACTGC	GGCGCACGCCTCCACGGCAAGGTTGCAGAGTAAAGG	CACCGAACTGCTTTCCACA	ΑG
rs205990	ACG	TAGAAGTTCCTATTTGGCTG	GGCGCACGCCTCCACGTTGCTCCCTTGTTTCACATG	TCCTATTTGGCTGTAGAATA	GΑ
rs206775	CGT	TCCAACCAACCCCAAACTTC	GGCGCACGCCTCCACGGAGCAATGTCCTCATTTGGC	TTTTGTGTCCTTGTACAGTA	GΤ
rs206920	ACG	AGATAGAGTCTCGCTCTGTC	GGCGCACGCCTCCACGAGGAAAATCACCTGAACCCG	AGTGCAGTGGTGTGATCT	GΑ
rs206930	ACG	GATTGCTTGAGCCTAGCATC	GGCGCACGCCTCCACGGGTCTTGATCTGTAACCCAG	ATCAAGGCTGCAGTGAGC	GΑ
rs206937	ACT	GAAACTGTCAGTAGCACTTG	GGCGCACGCCTCCACGTCCAATATATCCGACAGCAG	CTACAGAAGGCAAACAACA	ΑG
rs206984	CGT	TGCCTACCTTTTTTGATGGG	GGCGCACGCCTCCACGTTGCAATCTACCCATCTGAC	CCTTGTAGATTCTGGATATT	ΑТ
rs208699	ACT	CCTCTGGTAATTCGGATACC	GGCGCACGCCTCCACGCAGGTAAATGTGTGCCATGG	GATACCTTCCACCAGTAAC	AG
rs209122	ACT	GGCTCTTCTTTCTTGCCAC	GGCGCACGCCTCCACGTGACACTCACTGACACTCTG	CTTAGTGGGATAATGTGTGA	AG
rs209139	CGT	CGACATCAGGATTATCTCGC	GGCGCACGCCTCCACGGATTTGGGCCAAAAAACGCC	CAATCACTAGTAACCTCTG	GΤ
rs209163	ACT	TAAGGATTGCCTCCACCTAG	GGCGCACGCCTCCACGTAGGTGCAACAGTTAGCACC	TCCACCTAGAGGCTCAATC	AG
rs212937	ACG	AGTACCAGTAACAACCTGGG	GGCGCACGCCTCCACGCCCAAAAGTGAAGGACTCAG	GGACCTGTGAGTGCCATC	СТ
rs213208	CGT	TACACCCATGATTTCCAGCC	GGCGCACGCCTCCACGGTTGCCTGCTAGCTTCTAAG	TCCAGCCCTAATGATCAGT	СА
rs216257	CGT	ACAGCAGCGAAGCTCAATAG	GGCGCACGCCTCCACGGCTATGTTGTTCTAGCTACAG	GTTGTGATAAAAACCCAACT	ΑT
rs228184	ACG	GGTCCCAGAGAAACTAACAC	GGCGCACGCCTCCACGCCTGTTCTCCAAAACAGGAC	ACACAGGTGCAAAGGAGA	СТ
rs228187	ACG	ATGGTTAGCTGGACCACATG	GGCGCACGCCTCCACGAGTATCTTCTCCCTTCCTCC	TCTCTGCCAAGAAGGGAT	GΑ
rs228448	ACG	AACAGGAGATGCATACCAAC	GGCGCACGCCTCCACGGTGACTTAGCAAAGAAGAGC	GAGAAATTCAGAGAGTTCTT	СТ
rs228821	ACT	ACAGAGGCTTCTGAGTGAAG	GGCGCACGCCTCCACGCTGCTTGAACGCTGGAAAAC	AGGCTTGGCTGCAGAACA	ΑG
rs236360	ACG	CTTCTCTTCACGATGACCAG	GGCGCACGCCTCCACGTTGCAGTGAGCTGAGATTGC	GAGATGGAATCTCACTCTG	GΑ
rs236383	ACG	TCGTGACCTCAAGTGATCTG	GGCGCACGCCTCCACGGAAAGAAAGGAAACATGTGGG	AAGTGATCTGCCTGCCTC	GΑ
rs236404	ACG	AAGTGCAGCCTTAGAGATGC	GGCGCACGCCTCCACGTTCCTAATGCTTGGAGCCTC	ATGCAGGAGGATGATGGG	СТ
rs236445	ACT	CAAGCAGGAAAGTGACTCAG	GGCGCACGCCTCCACGCAGCTCTGGAGTGAGATGTC	GAAAGTGGTAGAGATGGGA	CG
rs236487	ACG	TGAGGGCTGAATCTACCTAC	GGCGCACGCCTCCACGTCTAGGACGTCCTGCATCTG	ATCTACCTACTCCACAGAG	GΑ
rs241403	ACT	GCCACATGTAAGTACTGTAC	GGCGCACGCCTCCACGTTATGCACATAGCCTGAAGG	ACTGTACTTAACACAACTTC	A G
rs241412	CGT	TCCCTGAATGGAATAACGCG	GGCGCACGCCTCCACGAGTGGACTTAGGAGCCTTAG	AACGCGAAACCGCAGGTC	СА
rs241425	ACT	GATTAGCAAGATGAGCTGGG	GGCGCACGCCTCCACGTCCAAAGTATCTCTCCAGGG	GCTGGGAAAGAAGAGTGA	т С
rs2582	CGT	TGCAGATCCTCATGGGTTTG	GGCGCACGCCTCCACGATCCCACTCAAAGTCAGCAC	CTCATGGGTTTGTGACAG	СА
rs2768	ACG	ATGCTGACCTGTGTTTCCTC	GGCGCACGCCTCCACGGTTGAGACAGAGATGGAGAC	CCTCCCCAGTCATCTTTC	СТ
rs29269	ACT	CTGTCCGCTTCGTTTATCTG	GGCGCACGCCTCCACGTTATAGGCTTCAGGCCTACC	CGTTTATCTGCTTTAACCCA	A G
rs301393	CGT	TTTCATGACGGCAAAGCAAG	GGCGCACGCCTCCACGCTTGGGTTTTGTTGTTGTTCC	CATAAAATACTCAGCCAGC	GΤ
rs302988	CGT	TTTCCCTGTGTGCCTATCTG	GGCGCACGCCTCCACGGGGTCCTTATGGAGGTAATC	TGTGCCTATCTGTGTCCA	GΤ
rs303007	ACG	GTGTCAAAGAGAGTGTCACG	GGCGCACGCCTCCACGTGGGCCTGTGATTTTGCAAG	GTAGGACAGCTCCCAAACC	GΑ
rs303019	ACT	TGTAAGTCAACAGGGCAGTG	GGCGCACGCCTCCACGGGCATTCTTGGTGTACATCC	GGCAGTGTGCCAATTACA	AG
rs304256	ACT	AAAGATGGTGGCAAGTCCTC	GGCGCACGCCTCCACGCAGATCTTGCCAGTTTCCTC	TGTTCCATACACCCACCC	GC
rs3074	ACT	GACCCAAAGTGTTTGTCAGC	GGCGCACGCCTCCACGTTGTTTCGCAGCACAGACAG	TGTTTGTCAGCTGGGTGT	т С
rs3237	CGT	AACAAGTGCTCCAGGATTCC	GGCGCACGCCTCCACGTTTTCTCCACAAAGGCCCTG	CCATTTTGGAGTGTGTCC	ΤА
rs356959	ACG	TAGGATTCCCGCAGAATCAC	GGCGCACGCCTCCACGAGAGGAGGCTCACCATTATC	CAGCGTAGGAAGTGGGAA	GΑ
rs386409	ACT	ACTTGGGCTTTCTGAGTATC	GGCGCACGCCTCCACGGTACCCTATCCTTAAGGAGC	TCTTAATGATTGCACTTATTAT	ΑG
rs392610	CGT	TATGGGCATTACTGACCTCC	GGCGCACGCCTCCACGACAATAAGGGAAAGTCACCC	CTGCAGCCATCATTGAGT	GΤ
rs395948	ACT	AGACAACTGGCTGCAGAATG	GGCGCACGCCTCCACGAGTCTGGCTATAGTGTGAAG	TCTCTCTCATCCGTTTTTG	A G
rs405486	ACT	GGGTCTTGTTTGTTGTTTGG	GGCGCACGCCTCCACGATCCAAAACACTTCGGCTCC	TTGAGTATCCCTTATCTGAA	ТС
rs406936	ACT	TGTTCTGCAGCAGTTGGAAG	GGCGCACGCCTCCACGGCTTCTTTTTCTCCACCTAG	GCCACAGGAACATGGACA	ТС
rs412492	CGT	CAAATTCCTCCCACTAGGAC	GGCGCACGCCTCCACGTTACTGACCCTCTCAATCCC	GTTTCAGCCTTAACCATGG	ΑT
rs419862	ACT	ATTCCAGGATCCGAAAACGC	GGCGCACGCCTCCACGAGTTGTGAGTTTTCCTGCGG	CCCCAGGAAGGCAGCGCC	GС
rs429369	ACT	AGCTCCATCTGAAAGACAAC	GGCGCACGCCTCCACGTTCACCAATTCTATGTGCTC	CTTTTGTGCATCAAAGGAC	ТС
rs437874	ACT	ACAGGAAGTGAAGACGGATC	GGCGCACGCCTCCACGCCCGATACATAGACATAGGG	GAAGACGGATCCAGATCT	GС
rs451603	ACG	GTTGGGAAACAGGAACTGAC	GGCGCACGCCTCCACGCTACCACTATGATTGGACCC	AACTGACTCCAGCTGGCT	СТ
rs453658	ACT	AGGAGTCATGCAGCAGAAAG	GGCGCACGCCTCCACGGGGTCTTGTTGAACCAAGTG	GAAAGATTTCTGTCCATCAC	ТС
rs4598	ACT	ATCCAGAGTTGACACTTCCC	GGCGCACGCCTCCACGCAGAGTTACAGTTGTCAGTG	TCTAAGAGGTTAAAATCCAAA	ΑG
rs460568	ACG	TGTGACTCTACCTTCAGTCC	GGCGCACGCCTCCACGAGGTCACAGTTGTGTCATGG	CACCACTCACCATGAGTTT	GΑ
rs463302	ACT	TAAGGGAAAATCCTTCGGGC	GGCGCACGCCTCCACGAGGGAGACCACACCCTTCAT	AAAGGCAAAAACGCGGAC	GC
rs4645	ACG	TAAAGGCAACTACGCAGAGC	GGCGCACGCCTCCACGAGTCTTCTTGTTGTCGCGAG	GGCGGCGGTGTTAGAGTA	СТ
rs477570	ACT	TGAGATAACTGCAACCCCTG	GGCGCACGCCTCCACGTTCACAGGCTGCAAACAAGG	ACACCTTGATTTCAGCCTC	ТС
rs484302	ACG	ATCTCGGCTCACTGCAAGCTC	GGCGCACGCCTCCACGCCTGTAGTCCCAGCTACTTG	CACTGCAAGCTCCGCCTCC	СТ

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
rs486912	ACT	GGAAAAGCCCAGATTGACTG	GGCGCACGCCTCCACGAAAACAGGTCCTCTCTGTGC	GATTGACTGGAGTGAACAT	GC
rs503082	ACG	ATACCATGATTTCCCCTGAG	GGCGCACGCCTCCACGCTCCCTTTTCTTAGCCACAG	TCCCCTGAGAATGGACGA	GΑ
rs511007	ACT	TGACTCTTAAGCACTGGCTC	GGCGCACGCCTCCACGAAGGACTCTGGTGAGTACTC	GCCAGGAACGGATCACTG	ΑG
rs532570	ACT	ATCTGAGGGCTCATCTTCAC	GGCGCACGCCTCCACGAAGTCATCAGCAGCAAGACG	CCACATCGTTCTACAGATC	ΑG
rs535087	ACT	AAATCTCAAGAGAGACTGGG	GGCGCACGCCTCCACGACACTTCCTAAGCATGTGAG	GAGACTGGGTTAGCTCTT	СG
rs567920	ACG	CATTTGGGAGTGGAAAGGTC	GGCGCACGCCTCCACGTGTTAGGGACCATGTTAGGC	AAGGTCAGAAGCCTATTTC	GΑ
rs576890	ACG	ATTGCACTACTGCACTCCAG	GGCGCACGCCTCCACGCGATTCTCCTCTCCTTAAAG	TGGGTGACAGAGTGAGAC	GΑ
rs580962	ACG	AACATCTGACACTGTTGGCC	GGCGCACGCCTCCACGGGAAAACTAGGAGAGAGTGC	GACACTGTTGGCCATACCC	GΑ
rs584418	ACT	CCCCAAATAAATCTAAATATTG	GGCGCACGCCTCCACGCCAGATTTTGAAGACTTGAC	CTAAATATTGTCATTTCAACAT	A G
rs5872	CGT	AAGACGATTCGCTGATTCCC	GGCGCACGCCTCCACGATACAGGGTTCCTGAAAGGG	ACCTGTCCTGCAGTCTTTG	ΑT
rs602932	ACT	CCTGTGACCTTGGTAAAGTC	GGCGCACGCCTCCACGGTGCATGCTCAGACAAAAAG	GCAATAGTAATGCCATAGTT	A G
rs638320	CGT	GTCACTCACTGCCAAATTAG	GGCGCACGCCTCCACGCCTGCTTCTAATGTGTTAGG	GTTCACTGACATTTGGGAC	АТ
rs6442	ACT	TGCTGGGAAGGAGCCTTTTG	GGCGCACGCCTCCACGACAGCAAACACCCTCTCCTG	GGAGCCTTTTGCTTGTCC	GC
rs644774	ACG	AAGATGAGCACCAGCAGCAG	GGCGCACGCCTCCACGTGGCCCTGACCTAGGTCTGT	CACGATCACTGCAGAGGA	GΑ
rs6473	ACG	AAGGAGAAACTGAGGTACCC	GGCGCACGCCTCCACGAGATGCAGCCTTTCCAAGTG	GGTCCTGCCCCATCACTGG	GΑ
rs6475	CGT	TGGCCATTGAGGAGGAATTC	GGCGCACGCCTCCACGTGTGAGGCACCTTGATCTTG	CTCCTCACCTGCAGCATCA	ΤА
rs648125	ACT	TTGGGATTACAGACGTGAGC	GGCGCACGCCTCCACGATCTCTATGACCCACAGTGC	GAACACAGTCTTATGATGTC	A G
rs660756	ACT	AGGCAATTTCCATACAGCGC	GGCGCACGCCTCCACGCTGAGCAGCTCTTAACTGTG	ACAGCGCAAAGTGGAGTG	A C
rs661658	ACT	GCAATCTGACCTTAGACAAG	GGCGCACGCCTCCACGTATCTTTAGGTCCTGATCAG	GACTGGCAGTTCAGTCATA	т С
rs663310	ACG	GTCAGCCTCTGTATAAGGAC	GGCGCACGCCTCCACGGATAGGAGAGAGCCAAATCC	TTTCATTCCTATACTTGCTC	СТ
rs681220	ACT	ATTCAGCCTGGGCAACAAAG	GGCGCACGCCTCCACGCTGCACCCTCTCTTTTCTC	GCAACAAAGCAAGACTCC	A G
rs682946	ACT	GACACACATACTGCCTTTGC	GGCGCACGCCTCCACGCCCAGGATGTGAACTTTCAG	AAATATCCCGGGTGACCA	т С
rs699463	ACT	TGCCATGGGTATGAATCCTC	GGCGCACGCCTCCACGATGGGAGTGGGTGTTTGTAG	CTAAAGTGCTTGTTAGCCT	ΑG
rs7029	ACT	GAAGACAGAGCCTATTGACC	GGCGCACGCCTCCACGTGCTGAAGTCTGAACTTGGG	CTTCAGGATCTGCATCTG	ТС
rs707889	ACT	TAGAGAAGGAAGGAGATGGC	GGCGCACGCCTCCACGTTCTGCTGTTCCCCTTCATG	TCTCATTGTGTTTCTTCTGA	ТС
rs707939	CGT	ATCTACATCCCTCTGGTGAG	GGCGCACGCCTCCACGTTCATGTTCTTCAGGCTGCC	GGTGTAGCCTTCAGATGT	GΤ
rs708007	ACT	CTCCGTGTCAACACATATGC	GGCGCACGCCTCCACGCCTTCCATTGTGTACCAGAC	ACATATGCCCCTGGCACCT	ТС
rs708015	ACT	AAGCCTGGCTTCCTTTACTC	GGCGCACGCCTCCACGTGTGGTATGCCCATGCAATG	ATTCATCCATTTTGTTCTCC	ТС
rs708023	ACT	GACTCCTGAGAACACGGTTC	GGCGCACGCCTCCACGTCACCCCAGAAAATGGGCTG	AGAACACGGTTCTCTCCTA	ΤG
rs7192	CGT	TCCATGTGCCTTACAGAGGC	GGCGCACGCCTCCACGTGGGCATCATTATTGGGACC	CTGCATTGCTTTTGCGCA	GΤ
rs724651	ACT	ATTTGTATCTGCCTTCTCCC	GGCGCACGCCTCCACGTGTGTATTGTAGAACTAAGC	GCTCCCAACACATCCTGTA	СG
rs726599	ACT	GCTTCAGCTGTGAGAAACAG	GGCGCACGCCTCCACGTAGGGTTGCATGTGAGAGAG	TGAGAAACAGAAAACCCTG	AG
rs729424	ACT	TAGTAACCTCACTGTCAGGG	GGCGCACGCCTCCACGATAAGTGCCTGCCATGTACC	GCGATAATGCAAGTCCAGT	ТС
rs742046	ACG	TTTCTCTGGAGGTGGATGAC	GGCGCACGCCTCCACGCCCACTGTTCCTTCATAGTG	GACCTGACGGTACACAAC	СТ
rs742348	ACT	IGCCITTICCCTCTTACCC	GGCGCACGCCTCCACGTGTGGGATTTTCCAGTGCTCG	CICCCAAGCAIACAGIIGA	GC
rs742538	ACT	TGTGCTTGTTTATGGAGGGC	GGCGCACGCCTCCACGACAATCCCATCACAGAAGGC	GTTTATGGAGGGCTTTGTAA	ТС
rs742737	ACT	IIGGIIGGICIGAACCCAIG	GGCGCACGCCICCACGICIAICIGCIIICIICCCCC	CACAGCICAGAAGIGIGA	AG
rs/42/8/	ACT	AGAGACAACCAGAAAGCAGG	GGCGCACGCCTCCACGAAGAAGACACACCTCTTGCC	CAAATAGAAAGGAACTCTGTT	AG
rs/4/036	ACT	AAIGAGGAIGGIGAGIGICG	GGUGUAUGUUTUAUGTATUUTUGUTGGAUTTTGG		T C
rs/4/158	ACT		GGUGUAUGUUTUAUGATUUTGGGAAATUUAGGAAG		
IS747411	ACT	GAUGIGACAUCAUAUTIGAU			AG
15/4/094	ACT				AG
15/4/007 rc7/0522	ACT				ы тс
rc7500	CCT				
rc751726					СТ
rs751022	ACG				
rs754327	ΔΟΤ				
rs755852	CGT	TTCCCACCAGGTTATCTCAC	GGCGCACGCCTCCACGAAAAGGCCACCCATTGCCAGC		ТΔ
rs756137	ACG		GGCGCACGCCTCCACGTCCTGTTCTCCTTTTCTCCC	GGTTGGAGGAGCAGTGAC	GΔ
rs760804	ACT	ATCTGGAAACCCCTGAAGTGG	GGCGCACGCCTCCACGTTCCCTGGCTCACCAATTTC	CCTGAAGTGGTACCTGAAT	ТС
rs760880	ACT	GTTTCACTTATGGTAAGCGG	GGCGCACGCCTCCACGTGAACAGAGTACCATTGCTG	CGGTAGTCCTGAGATTTGA	A C
rs764460	ACG	CCCTTTTTGAGGAGATGTCC	GGCGCACGCCTCCACGCGTGGTCCTAAAGGAAGTAG	AGATGTCCTTCCTACCTTT	GA
rs765977	ACT	CTCATAAGGAGGAGAGCAAG	GGCGCACGCCTCCACGTCACATCCCATGGTTCATCC	GTGTCCTGCTCCTCAGAA	A G
rs766406	ACT	CCCCAAACCCAAATAAATGC	GGCGCACGCCTCCACGCTCGAAACAGAGAAATTCGAG	GCTCCATATATGAAAAACAGT	A C

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
rs767471	ACG	CCTTAAGGGCACAATGATAG	GGCGCACGCCTCCACGTTCTCCTCTTCCCCTGTTAG	AGAAAACCAATTAAGAGGCT	GΑ
rs7843	ACT	TAAGATGTTATCCGCCCTCC	GGCGCACGCCTCCACGTTGTGTGTGTCACATGCTGC	GAGGCAGAAATAAGATGTAC	ТС
rs7887	CGT	ACCCCTCGTAGTGAAGAAAC	GGCGCACGCCTCCACGTGACAGAGGCTGGAGATGAG	GAAACCCTGCCCAAGGCCA	СА
rs790591	CGT	GCTGCTCGTTAAGCTTTGAC	GGCGCACGCCTCCACGGGCCATAAAAGAGCATGAGG	AAGTGTATACCATAACCAAG	ΤА
rs793845	ACG	TGTACATCAGTTTAATGGGG	GGCGCACGCCTCCACGCATGCCTATGAGTAATTGTGG	TACCCTTTTTTGCCTCCGG	GΑ
rs8084	CGT	TAACTGTGCTCACGAACAGC	GGCGCACGCCTCCACGTTCGAAGCCACGTGACATTG	ACGTCCTCATCTGTTTCAT	СА
rs8408	ACT	CTCCACAGAAACGTATAGGC	GGCGCACGCCTCCACGATCACCTGAAACACTGGACC	TTCTAGCTACAAGACTGCA	т С
rs8512	ACG	AGGTGATGGAGATGTGTACG	GGCGCACGCCTCCACGTTCCACCAGTCCCACAAAGC	AGGGTGTGAGATGTTCCC	СТ
rs876796	ACT	AGGCTTCTGAAACAGACCTG	GGCGCACGCCTCCACGTTAGCCCTGTCTTGTGCATG	TCTGCTCGGCCGCTCACTA	A G
rs877527	ACG	TCTCACTGTTCTTCTGAGGG	GGCGCACGCCTCCACGTGATCTCTCCCCAAGGCTCTC	AGCCTCTCTGAAGGTCAC	GΑ
rs877536	ACG	TCCAAGGTCTTCCTTCTCTG	GGCGCACGCCTCCACGTTGCTGCTGTGTGCTCTTGG	GAAAGGCAAAACCCAGCC	GΑ
rs880638	ACT	TACTGAACCCAGCTTTCTCC	GGCGCACGCCTCCACGATCTTGTCTCTTCCGCTGAG	TTTGCGGTGCGTTTTGCT	A G
rs883372	ACT	GCGTAGATCTAGATCAGAGC	GGCGCACGCCTCCACGAGACTGTTGGGCCCACAAAG	TTCTGGAAAGGGACAGATT	A C
rs885905	ACT	TTTGCAGGAGAGAGGAAGGC	GGCGCACGCCTCCACGATTCACGACCCAGGTCGAAG	CCAGCAGGTGTGACCCTT	ТС
rs910320	ACG	AAACCCCAGCTGACTTTGAG	GGCGCACGCCTCCACGCTTCAGAAATGTGGCCCTTC	GCTGACTTTGAGGGCATC	GΑ
rs911186	ACT	CATGAAACCCCCTTCCAAAC	GGCGCACGCCTCCACGGTACCCGTTGTGCCTTTTTC	CAGGGCATCACCTCTTTAT	ТС
rs912557	ACT	CACCCCTTCTCCCTTCCTAC	GGCGCACGCCTCCACGGGGAAGGCAGAGGATTTGTC	CCCCAGGACCTGTCACAGC	ΑG
rs916138	ACT	GGAAGCCGTACAGGTTCATC	GGCGCACGCCTCCACGTGGTCCAGTACAGGAATGGG	TACAGGTTCATCTTGTACTT	ТС
rs926304	CGT	GGCAGGAACATTCAGAGTTG	GGCGCACGCCTCCACGTTGTTTGCTCCATCTCTGCC	CAGAGTTGTTCTTGGAGGA	AT
rs926421	ACI	AGICACACAACICCIGGIAG	GGCGCACGCCICCACGIIAIGICIGGICCIGIAGGG	AGICCCCCIACCCCAIIC	GC
rs928815	ACT	GAGGCACGGAGATTTAGAAC	GGCGCACGCCTCCACGCCAGCTAATCTCAGAGAGTC		AC
rs928976	ACT	GCCAAATCACAACTGTCCAG	GGCGCACGCCTCCACGGATACATGAGACCATCCAGG		I C
rs932316	ACT				
15932494	ACT		GGCGCACGCCTCCACGCAACTGTGCAGGGTGAATAG	GUCATTIAATATAAAAUUTGAA	
15941830 rc042800	ACT				GI
15902099 rc0401E4	ACT				ст
15908154	ACG				
15908909 rc070247	ACT				AG
rc07/257	CCT				A G C T
rc075105					СТ
rc070011	ACG				тс
rc070/	ACT				
rc080255					C A
rs986521	ACT		GCCGCACGCCTCCACGACGTCCCTCGTGTCTCCATTG	GGCAATGAGATACCACAC	тс
TSC0005270	ACG	GATCIGIAIAGGICCITIGG	GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACTGATGGGTTATCTTTTCT	СТ
TSC0008929	CGT		GGCGCACGCCTCCACGAATCGGCACTAGCTTCGAAG	TCATTTTTGGCTATGGAGTA	ΑT
TSC0010121	ACT		GCCCCCCCCCCCCCGCGCGCCCCCCCCCCCCCCCCCCCC	CCCTCTTGATTACCCCGTC	CG
TSC0014696	ACT	TATAGCTGTGGACTGGGCTG	GGCGCACGCCTCCACGAGGAAGGAAGCCTGTTGCAG	ACCTCAGCTCTCTTCCTGG	ТС
TSC0015456	ACT	GAGCTTCTGAACTAGGAGAG	GGCGCACGCCTCCACGTACCTGGAGTTATGACCAGC	AGGAGAGATTCTGCACAC	GC
TSC0016867	CGT	CTGGGATCACAGGAGAAAAG	GGCGCACGCCTCCACGTCACAGAGCAAGCACAACTC	ACAGGAGAAAAGACAGCG	GΤ
TSC0017622	ACT	CCATGCTTTTTGCAACTGCC	GGCGCACGCCTCCACGTTCCATCCCTAGTTTCTGCC	GCAACTGCCTAACATGTG	ΤG
TSC0018946	ACT	TTGGGAGACTCTGTTGAGTC	GGCGCACGCCTCCACGTGAGATTTCTGCTGGAGACC	CAAAATGGATAAAAGAATTTTC	стG
TSC0022024	ACT	GTGCAACTTGCAGAGCCATG	GGCGCACGCCTCCACGTGGTCAACCACACCGTAAAC	TGCAGAGCCATGGGTGGA	AG
TSC0023198	ACT	TCCCTAGCACAAAAGAGAGG	GGCGCACGCCTCCACGTGGGCACCAGATCTTAATGG	AAGATCCAGTCAGCAAACA	AG
TSC0023679	ACT	TTGAGCAGCTCTGCATGTTC	GGCGCACGCCTCCACGTCCTAAACCAGGAACTGCTC	TCTGCATGTTCCTCCTCCA	ТС
TSC0025343	ACT	TAGACTGGGCTATGTAGCAC	GGCGCACGCCTCCACGCTATGGCTCCAGTTTCTGAC	CACCGTCCCACCCACACC	GС
TSC0029210	ACG	TCTGACATCAAGTGTGTGGC	GGCGCACGCCTCCACGTCCCCAAGGAGTAGAGATAG	TCTCTGCCCTTGTCTTTGC	СТ
TSC0030184	ACG	TATCAGAGTGGCTGTCTACG	GGCGCACGCCTCCACGAGGAGTTGGGCATATAAGAC	TTGAGAGAAAGAATGACAATA	GΑ
TSC0030365	ACT	CACCCAGCCTATACTAATAC	GGCGCACGCCTCCACGGTGCTTTCCATATGTGATCTC	CTAATACTTTTAATTCACTGAC	т с
TSC0037803	ACT	ATAACCCCAGGATTCTGCAC	GGCGCACGCCTCCACGTTTTGTGTCGTGAGGCACTC	CAAAATCCAAAATCACGCAC	т с
TSC0044308	ACG	ACACATAGGTAGGTTTGGGC	GGCGCACGCCTCCACGGTTCTAGAAGACTTCCTTGG	GTAGGTTTGGGCAAAAATCA	GΑ
TSC0044782	ACT	GTGACACTAATAACCCAAGG	GGCGCACGCCTCCACGGTAGTGAACTTCCATGCAGG	GCTTCTTTTGAAATGAGCCT	т С
TSC0048654	ACT	GCTGCCTTGGTTCTAAATAG	GGCGCACGCCTCCACGTATGTGCCCACAATGGAGAG	GAAAGCTCAACAAGGGCT	ТC
TSC0049288	ACT	CAAGTTACAGACACAGTAAG	GGCGCACGCCTCCACGATTTCCTGAATAGTCCAGGG	AAGCAATACAAATCTCAAATAA	ΑG

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
TSC0049779	ACT	AAGCTTTTCAGTGTTTTCAG	GGCGCACGCCTCCACGCTTCTAGATTAGTGATTCCC	GTGTTTTCAGTAATTTAAGGG	тC
TSC0055705	ACT	ATTTGTATCTGCCTTCTCCC	GGCGCACGCCTCCACGTGTGTATTGTAGAACTAAGC	GCTCCCAACACATCCTGTA	G C
TSC0055941	ACT	GCTCTGGACAATTTGATGGC	GGCGCACGCCTCCACGCTGCTGCCCATTGGGTAAAT	GGAAGAGGAAGAGAGTATA	ΤG
TSC0058445	ACT	AGTGACTCTCATGCCTTAGC	GGCGCACGCCTCCACGATGGCAAACTCCTGTCTCTG	TTACAAGTGTGTGCCTCC	A G
TSC0058696	ACG	AATTGTGCCTTGGAACAGGG	GGCGCACGCCTCCACGTCACTCCACATCTAACTGGC	CTTGGAACAGGGTGAGAAA	СТ
TSC0069890	ACT	AACAGGCCACAAGTACACTG	GGCGCACGCCTCCACGAACAGCACCTGAGGATATGC	CAAATCCATGTCTGACATTC	T C
TSC0074644	ACT	TGAACCCAGTACCTCAGTTG	GGCGCACGCCTCCACGTAGGAACAGCTCCAGTCTAC	GGAAATGCAGAAATCACCC	A G
TSC0077833	ACG	TTATGTGCTTGAAGCAGGCC	GGCGCACGCCTCCACGGGCTGTGTTTGAAGAAGTAG	GCAGGCCCCTTCTCTCTAG	СТ
TSC0078360	ACG	CGAGGAAATAAATTAGTGCGG	GGCGCACGCCTCCACGGGCATCTTGGTTCTTTGTC	GTGCGGTTCTCTTTGACC	GΑ
TSC0078789	ACG	GTGTATGATATGGGGTATAGC	GGCGCACGCCTCCACGGGAGAAAGGATGGTCTATTC	GAAAGCCAGTTTCTCAGC	GΑ
TSC0081483	ACT	CACGTCTGACTATCAGAAGG	GGCGCACGCCTCCACGCTAGAATGAAGCTGCAGACC	GGAACAAACTCCAGACAC	T C
TSC0084632	ACT	ACATCTTTCCCCAATTTTCC	GGCGCACGCCTCCACGCCCACAGAAGTCACAAATGG	GACATCTAATTTTGAATTCTGT	т С
TSC0086347	ACG	GTGCTAGGATTACAGGCATG	GGCGCACGCCTCCACGCATTTAGCTCACGAGTGGTC	TACAGGCATGAGCTGCTG	СТ
TSC0091939	ACT	TCTTGGCTCTGTTCTAGGTG	GGCGCACGCCTCCACGACAAGTCCTACATCTCAGGC	AGGTGCTTTACGTTAACTC	A G
TSC0092326	ACG	TTACAGAGGCAGCTGTCACC	GGCGCACGCCTCCACGTACGGACAGGGAAAACCTGC	GCCCAGTTACTTCCCTTC	GΑ
TSC0095243	ACG	GGAGGAATAGCATTCCCAAC	GGCGCACGCCTCCACGCTCCATACCTTTTGTACAGC	GCATTCCCAACACTAAGTA	GΑ
TSC0095755	CGT	CATGTTGAGGACACAGAAAG	GGCGCACGCCTCCACGTTGCTTGAGGTCAGGAGTTG	GTGACTTCTCTATATGTTGC	СA
TSC0095804	ACT	GAGATTCTGTGTTAGGGAAG	GGCGCACGCCTCCACGTGGAAAGACAGCTGTAGAGG	GGACACTTATAATAGTTCTTT	A G
TSC0098582	ACT	TGACCACCTGACTTGTTAAC	GGCGCACGCCTCCACGCACTTGTCATCCATCTCTTTG	CTGCCTCAGAAACTGAGC	A G
TSC0099015	ACT	GCCTTCATATCCTAAACAAG	GGCGCACGCCTCCACGGCTAAAAGCTCTTAAATGTG	AAAAATGTGCTTTGTTAGGAA	A G
TSC0099063	ACG	TGCTCATCTGTTGATGGCTG	GGCGCACGCCTCCACGGCAGAGACTCAAACAGATCC	GATGGCTGGATTCTCCTT	СТ
TSC0109307	ACT	TAGTGCGTAACAGTCTAGGG	GGCGCACGCCTCCACGCCTGCTGGATAGAGAGCAAG	TGGAAGGGCAGGTCTGAA	A G
TSC0110124	ACG	TTTCTCTGGAGGTGGATGAC	GGCGCACGCCTCCACGCCCACTGTTCCTTCATAGTG	GACCTGACGGTACACAAC	СТ
TSC0110442	ACT	AGCCTTCCTTCTTCTCTAGG	GGCGCACGCCTCCACGGCATTTGGCCTCATTGACAG	TTCTTCTCTAGGTCTCTTG	т С
TSC0111007	ACT	AATTGCGTTATACCTAGAGC	GGCGCACGCCTCCACGAGGCATTGCAAGTACGTTAC	AGCAATTTAAACTGACAGTC	A G
TSC0111181	ACG	CATCTAGTGACAGCCTTTCC	GGCGCACGCCTCCACGGATAGTTGTGCTTCCACTTC	TCCAGTCCTGATTTGCTCC	GΑ
TSC0111352	ACT	GTCTGAGTTTGTGTTCCTTC	GGCGCACGCCTCCACGCCAGTCTTTGCCAAGACATG	TGTGTTCCTTCTATATTAGC	т С
TSC0111853	ACG	TCCCGAGTAGCTGGGATTAC	GGCGCACGCCTCCACGAGATGGTGAAGCCCCATCTC	TTACAGGCACCTGCCACCA	СТ
TSC0113430	CGT	TCAATACTCATCAGCTCCTC	GGCGCACGCCTCCACGCCACCAACCAGATACAATCG	ATCAGCTCCTCATTACTAC	СА
TSC0113436	ACG	TGTGCTGTACTTGACCATGC	GGCGCACGCCTCCACGCTGCCTTTTAATCCTCTTCG	GACCATGCAAAGAATTTGTAT	СТ
TSC0115304	ACT	ATTGGGACGTTTCGAGTGTG	GGCGCACGCCTCCACGTGTCTCAGGCTACAGAACAC	GCCGTTCAGAGTGTCATC	тс
TSC0115311	ACT	TGATCTGCAACCTATCCCAG	GGCGCACGCCTCCACGTATGGCTAACTTGTCCTGGC	GCCTCAGCAGATAATAGGA	тс
TSC0115315	ACT	AGTCTCATTCTCTTGCCCAG	GGCGCACGCCTCCACGAATCCTAGCTACTTGGGAGG	GTGCAGTGGCACGATCTC	тс
TSC0115319	ACG	TTGTAATCCCGTTTCCAGGC	GGCGCACGCCTCCACGACTCATCGTCATGGAGATCG	CCGTTTCCAGGCTAAATTG	СТ
TSC0115333	ACT	CTGTACTCCCAGTTACTAGG	GGCGCACGCCTCCACGGTGCAATCTCGACTCATTGC	CCAGTTACTAGGGAGGCT	ΑG
TSC0115790	ACT	CATCTCGATCTCCCTGAATC	GGCGCACGCCTCCACGAAAAAGCCCCAGTCTAGGGAG	CTGAATCCTCAACGCTAAT	ΑG
TSC0116793	ACT	TCTCGGCTTACTACAACCTC	GGCGCACGCCTCCACGAAATAAGTTGGGCGTGGTGG	CTTCAAGAGTAGCTGGGA	ΤG
TSC0116795	ACT	AGTTTCATGAGACCTGATGG	GGCGCACGCCTCCACGGTCAGGTCTTACATGGATGG	GAGACCTGATGGTTTTATAG	тс
TSC0116798	ACT	GTCCTCAAGAAATACTGTGG	GGCGCACGCCTCCACGGGTTGATCTGTAACCCTATG	TTTTGTCAGCTAAAAATGTAG	GC
TSC0117839	ACT	GCAGAATAGGAAATGGCACC	GGCGCACGCCTCCACGACTTGCCTCATCAAGAGCAG	GTTCTCTGGGAAGCATAGA	ΑG
TSC0117878	CGT	GAGAACTAGTGATGTGACCC	GGCGCACGCCTCCACGTTGCTCAGAAATGGCAGTCC	GACCCCACCTAGATGAAAA	ΤА
TSC0117972	ACT	AGCAACCACTCAGAGGAAAG	GGCGCACGCCTCCACGTGAATTGGAGGAGAAGGGTG	GGGACCCAGGCCTGAGAT	ΑG
TSC0119566	ACT	AATCTGTCACTAGCGAAGGG	GGCGCACGCCTCCACGTCCACAGTGGTGCTTGTTTC	GGGAGCTGAACACCTGCC	GC
TSC0120107	CGT	TGGAGACATTGCTTCCAGTG	GGCGCACGCCTCCACGACAAAACACAGTCACAGGCC	CTCTTTTTCCCTTTGCAGC	СА
TSC0123417	ACT	GTCTTTGTCTCTGTCTCTTG	GGCGCACGCCTCCACGCCTCCAAGTATATCTGCTTG	CCCAAGATTCCTTTCATTCA	тс
TSC0127393	ACT	TGGGAGACTTGTCCCATCTC	GGCGCACGCCTCCACGTGCAGGCTATCTCTGGGAAG	TCCCCTCTGTGGTCAGAAC	ΑG
TSC0132654	ACT	AAGCAGGCTTTTTGCCTCTC	GGCGCACGCCTCCACGGGGAGGAAGCCAAAAATAGC	ACCTCCCTACTGCTTTCT	СG
TSC0132655	CGT	AAGCAGGCTTTTTGCCTCTC	GGCGCACGCCTCCACGGGGAGGAAGCCAAAAATAGC	TTTGCAACAGGATGCCCT	ΤА
TSC0134221	CGT	GGCTTTGAGGAAAGCATTATG	GGCGCACGCCTCCACGTCTCTGCATGTTCTAAGTTG	GCATTATGTGTGAAAGACAA	ΤА
TSC0135663	ACG	GTACAATGCTTGGCCTGTAG	GGCGCACGCCTCCACGGGACAGCATCTCTCTTTCAC	TGGCCTGTAGTAAGTATTTA	СТ
TSC0136873	ACT	GTTGGCAATTCAAGACTGCC	GGCGCACGCCTCCACGCCACAGAAACACCAGATTCC	GCCTTTCTTACCCTCTTC	ΑG
TSC0137710	ACG	TAGGAGGCCCATTCCTGGAAC	GGCGCACGCCTCCACGAAACTAGCCAGCAGACTGGG	CCTGGAACCCAGGGAGCC	СТ
TSC0140758	ACT	TCATGAGTTGCCTGTAACTC	GGCGCACGCCTCCACGTTCTGTCATATGGATCTGGG	GCGTGTTATACCTGTCTCA	тс
TSC0149300	ACG	AAAACCAGAGGTTGGAGGAG	GGCGCACGCCTCCACGTCCTGTTCTCCTTTTCTGCC	GGTTGGAGGAGCAGTGAC	GΑ
TSC0152464	ACG	CTTCTCAATATCTTCCAGTGG	GGCGCACGCCTCCACGAGAAGACTTCTGCTTTCAGC	GTTGTTTTCAGTGGGAGAG	СТ

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
TSC0154127	ACT	AGCGTCTCCTTCCCGTTCTC	GGCGCACGCCTCCACGAGAGCCTACCTGGAGGGCCT	TCCAGGTATCTGCGGAGC	GC
TSC0168883	ACT	CAGTCACTGACTGCTTATGC	GGCGCACGCCTCCACGACCATCACCTGTAAGTCTGG	GCTTATGCATATCCACAGC	ТС
TSC0168890	CGT	GCAGGAAGTATGGTAGATAC	GGCGCACGCCTCCACGTGGCAGCTACTGTTCTCTTC	ACTCATTCATACCACAGGG	ΑΤ
TSC0193156	ACT	GGTGTTTCACTGTGTTAGCC	GGCGCACGCCTCCACGTAATCCCAGCACTTTGGGAG	GTCTCGATCTCCTGACCTC	ΤG
TSC0198670	ACG	GTCACGCTCTGTGTTAAAGG	GGCGCACGCCTCCACGAGGCTGAATACGGCTGAATG	CTGTGTTAAAGGCTAGGC	СТ
TSC0200858	ACG	AATCGCTTGAACCTGGGAAG	GGCGCACGCCTCCACGTGGAATCTTGCTCTGTCACC	GCAGTGGTTGCAGTGAGC	СТ
TSC0201942	CGT	GGACAAGACCTATGTCTTAC	GGCGCACGCCTCCACGTATATCCTATGTCCTACTGG	ATCTAACAATGTTCGACATAT	ΤА
TSC0206300	CGT	CAGGAACCTGAGACGAAAAC	GGCGCACGCCTCCACGTTCTTGACTGTGGGCTTTTC	TATCACAACAGTAAAGAGAAA	GΤ
TSC0208308	ACT	TTATGATCCTCCATGCTGCC	GGCGCACGCCTCCACGAAGACACACACTGCCCTAAC	CACATTTCTCCAGACATTTG	ΑG
TSC0210241	ACT	TCACCAGTGCATAAAGTCAG	GGCGCACGCCTCCACGGAGCCCTCTAAGAAATTAGG	GTGCATAAAGTCAGACTAAA	ΑG
TSC0210562	ACG	ATAGTTCCAGGAGCACTGGG	GGCGCACGCCTCCACGAGTTCACACTCGGGGACCATC	TTGGGCTCTCACCTCGGCC	СТ
TSC0215027	ACT	ATCTGCAGAAGCCAAGCAAG	GGCGCACGCCTCCACGGTGGACCATTACAGCGTTTG	GCTTCCGTATGCATCCTTT	CG
TSC0216753	ACT	TGCACCTATAATCCCAGCAC	GGCGCACGCCTCCACGAAAGCGAGAGGACAGGACTC	CCAGGAGTTCAAGATCAG	ТС
TSC0218820	ACT	TGTTTCCACACACCACTCCC	GGCGCACGCCTCCACGAGGCATTGTCCTAAGTCCTG	CACACCTTTCATTCACGC	ТС
TSC0219779	CGT	ATCCCCTTCTGAAAGCCATG	GGCGCACGCCTCCACGAGTTTGTAGTGTGTGGTAGG	ACTTTGAGAAAGTACTTCCA	ΤА
TSC0225896	ACT	AGCAGAGTCAGTTTGGAAAG	GGCGCACGCCTCCACGCTCCAGTTTTTTATCCTGCC	CAGGGTATGACTCTCCAA	ТС
TSC0229382	ACT	AACAACTGCCTCTGCTGCTG	GGCGCACGCCTCCACGACATCTGTCCTAGCCTCAGG	TGCTGCTGAGCACAGACA	CG
TSC0230288	ACT	GGGTTAGTACCTGACACAAC	GGCGCACGCCTCCACGCACTGTCTCTGCCACTTTCG	AGAAATGTCAGTGACCTTG	ΤG
TSC0242062	ACT	TGGCCTTTAGAAAATGGTCC	GGCGCACGCCTCCACGTCCCACTAGGTCTTTGAAGG	CCACAGAATTTTTATAGTTGG	ТС
TSC0242498	ACG	TACTTAGGAGGCTAAGGCAG	GGCGCACGCCTCCACGAAAGTTGGAGTGCAGTGGCG	GCGGAGCTTGCAGTGAGC	GΑ
TSC0242627	ACT	GACAGATGAAGAAGAGAAGC	GGCGCACGCCTCCACGACCCAGGGTTTTGTTTCATG	GGAAAATAATTGAAGTGTGG	A C
TSC0243771	ACT	ATCAGAAAGCTCAGAGGACC	GGCGCACGCCTCCACGTTAAGGGAGGTCTTTTGCCC	CTGCCCGTTCACCTGTCCT	A G
TSC0244678	ACT	TGCTTGAGGCTACGAGTTTG	GGCGCACGCCTCCACGTACAAGCATGTGCCACCATG	GACCAGCCTGGGAAACAT	ТС
TSC0246272	ACT	GGACAAAGGGAGAGCTAATG	GGCGCACGCCTCCACGTTTTCTCTGGCACCACAGTC	GGAGAGCTAATGAATCTCA	A G
TSC0247302	ACT	GATAAGCTACAGCAGTACAC	GGCGCACGCCTCCACGGCGTCATCTAGATTTTAGAG	CACTTTCCCACTTAGTATTTT	A C
TSC0251273	ACT	CACCATGTAAAGAAAAGCCTG	GGCGCACGCCTCCACGGGGGCTTAAGATTCTGCTTTG	GATTTTTCTTTTTGAGCAAGTT	ТС
TSC0252771	ACT	TTTAGGCCTAACTGGCAGAG	GGCGCACGCCTCCACGTTCTGGGTATGTCTGTGAGG	ACTGGCAGAGATCTGAGA	ТС
TSC0253577	ACT	CACCACACCCAGTTTACATG	GGCGCACGCCTCCACGACAGGTCGGTCACAAAAGGG	TTTGTAATGTGTACATCTTCA	ТС
TSC0254382	ACT	TGTCCTGTGGTCAAGCTTTC	GGCGCACGCCTCCACGTCCACAGCAGAGACATATGC	CAAGCTTTCTATCAAATCAG	ΤG
TSC0258854	ACT	TGCAAACCCTTCAACCCAAG	GGCGCACGCCTCCACGCAACTGTGCAGGGTGAATAG	GCCATTTAATATAAAACCTGAA	ТС
TSC0259030	CGT	TTGAGGGACACATTCAGACC	GGCGCACGCCTCCACGATTATGAAGACCATCGGGCC	AGACCATAGCAACTGGTAT	GΤ
TSC0261647	ACT	CTGCTTTGGCTCACACTCTG	GGCGCACGCCTCCACGGCATTTCCAACTGAGGTACC	CATTGTCCAACAAGTCCCA	ТС
TSC0267439	ACT	TTGGCGGTCTCCATAGTTAC	GGCGCACGCCTCCACGTTCAGGATCAGTAGGACAGC	TAGTGGAGCGCTGAGGGC	ΤG
TSC0276143	ACT	CCAGTTTTTCAGAGGATGCC	GGCGCACGCCTCCACGCTGGAACTGAAGCTGAGATC	CACCAAAGAATACCTCATAA	ТС
TSC0276264	ACG	GCCGTGTGATTTCTAAGTTC	GGCGCACGCCTCCACGGGGAGCTGATGATGCAAATG	AAGTTCTGAGGTGGGAGG	СТ
TSC0277124	ACT	AGGTCAGTGAATACGAGAGC	GGCGCACGCCTCCACGCGAGAACTCAACACATACGC	GCACTAACTCGTCGGAAAA	ТС
TSC0277482	ACT	TTTTGGCAACACCCTCACAG	GGCGCACGCCTCCACGGTCTCTGACCTAGTGTGATG	CTTTGTATCCCTCAATCCA	ТС
TSC0278584	ACT	TGGATCACTGCAAGATCATG	GGCGCACGCCTCCACGCCCTAACCTTGTTTATCCAC	TTGAAACCCTAAAATGTTCC	A C
TSC0282159	CGT	GAAATCGTGAAGACATGGCC	GGCGCACGCCTCCACGTGCAGCACTATGGCTATCTC	AGACATGGCCTACCTAAC	ΤА
TSC0293794	ACT	TGGAATGATGAACAGTGGTG	GGCGCACGCCTCCACGCAAGTGTACAATTCAGTGGC	GATTGCTCAGCATTGTGAAT	ΑG
TSC0297187	ACT	GCACATAGCAATATGGCTAC	GGCGCACGCCTCCACGGGGTAAGGATGATAATGAGG	ATGAATGGCAGCAGTATAC	ТС
TSC0309522	ACT	CTGTAAATTGGTCCTAGAGAG	GGCGCACGCCTCCACGACTGTGCATACCCATTGAAG	TATACCTGGAAATTCGATTG	AG
TSC0314833	ACT	CACATTTACCCAGAAGTCTG	GGCGCACGCCTCCACGTGGTGTCTAGCATCTGTTCC	TCCCTCTGAACAAATTTGG	ТС
TSC0317637	CGT	AGAACCAGGTCAGAAGACAC	GGCGCACGCCTCCACGAGGGCTGGTCATCATCTATC	CTTCTTTTCTTCTCAAGGC	ΤА
TSC0320716	ACT	ACAATGAGAGAGAACCAGTG	GGCGCACGCCTCCACGAATCAGGGAACCAAAGCTGG	TAAGTACATCTCTTTGGATC	ТС
TSC0322593	ACT	AGGTATAACGCCTGTCTTCG	GGCGCACGCCTCCACGACCTGGAATCTTCTGATCCG	ACGCCTGTCTTCGTTCGTC	ТС
TSC0328949	CGT	CCAGTGTGGCTGTATTTGAC	GGCGCACGCCTCCACGTAACCCTATTGGATCAGGGC	CTGTATTTGACATCAGGCC	ТА
TSC0337157	ACG	TTCAAACCAGAAGAGGACCC	GGCGCACGCCTCCACGATTGCTCACAGTTCTGGAGG	AGGACCCTCACTAGGACC	GΑ
ISC0337444	ACG	AGGCIIACTAAGCCTGTTGG	GGCGCACGCCICCACGGATGAAATGTCTACACTGCC	CATTAAACCCATCTTAAACTT	СТ
ISC0347090	ACT	AAAGAAGAGAGGGCATCTCC	GGCGCACGCCICCACGGTGCCATAACCTGAATGCAC	IIGIGGGACCCAAAACCT	AG
ISC0355187	ACI	THACTGATGCCCAAACCAGC	GGCGCACGCCICCACGAAIGAGGAATTTGGAGCCCC	ACCCTCACCCCCACCACA	I C
TSC0355191	ACT		GCCGCCCCCCCCGCGTATCTGGGGGTGAACAGGCTG	ACCCCGTTICCAIGCICA	AG
ISC0364458	ACI	CCAGAIGIIIGIAIAGAGCC	GGCGCACGCCICCACGCCIIIGGCCATCTGTTTCAC	GAGCCAGICCAAICATAC	AG
TSC0364606 TSC0369130	CGT CGT	AAGTGAAAAACCTGCCCAGG TCCACATTTCAGCCATGCTG	GGCGCACGCCTCCACGAACCTCGCCAACTTCCTATC GGCGCACGCCTCCACGAGCAACCTGAATGAGCTTGG	AGGATGAGAGGAGGCTTC AGCCATGCTGCATTCCTGC	СА GТ

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
TSC0372396	ACG	TGATCTCCGCAGGGTAGAAG	GGCGCACGCCTCCACGCAAAGACACACGTGACCCAC	TGGCCTCATGGTCAGAGA	GΑ
TSC0380284	ACT	CACGGGTAGATCCAGATTTC	GGCGCACGCCTCCACGTTCTCTGGGCCTTCATTTCC	CCAGCAAAGCAGAAAGGT	AG
TSC0382523	ACT	CTGCTACACCCATATCCATG	GGCGCACGCCTCCACGTGGTCGTGAATCCTGACAAC	ATCCATGTGCTTCTCAGG	AG
TSC0382794	ACT	GCATGTATATGGAGGTTTCC	GGCGCACGCCTCCACGCCAAGTGATCTGCCATTTTC	GGTTTCCTTTTGGACCAAG	AG
TSC0387800	CGT	CATTGCCACTGCCTCTATTC	GGCGCACGCCTCCACGGGGAAGATCGGTATGGAATC	CATCTCCAGTCTCCACAGA	СА
TSC0395835	ACT	AAGAAGAGGCTTGAGATCTC	GGCGCACGCCTCCACGCTGCACATTTTTGAGGTGTG	GAGATCTCTTTATAGTGTGAT	ΑG
TSC0397099	ACT	GTTTGCTTGGGCTGTGTATC	GGCGCACGCCTCCACGTACACGGTCTCAGGTATGTC	TGTATCAGACCATTCTCAC	GС
TSC0397527	ACT	CAGCATAACCCAGATAGCAC	GGCGCACGCCTCCACGTCCGGTTGTATGTGTCCTTC	GATAGCACTGAAAAAGTCTAA	ΤС
TSC0397534	ACT	TACCTAGGCTGATCTCGAAC	GGCGCACGCCTCCACGAGTGGTGCAAGCCTGTAATC	GAGCTCCACTGATCCTCCC	ΑG
TSC0409081	CGT	ACCTAAAGAGTGTGGTGCTG	GGCGCACGCCTCCACGTGTGAGGTTTATTTCTGGGC	GTGCTGGAATAAGAATAGG	ΤА
TSC0409115	CGT	TCCTACGGAAATGTGCAAGG	GGCGCACGCCTCCACGTAGAGTGCTCAGTGTAAGCC	CTCCAAGTCTTTTCCTGAA	ΑΤ
TSC0409642	ACG	CAAGCCTAAAACTTCCTGGG	GGCGCACGCCTCCACGCTCTGCTCTCAACTGAATTC	TAAGCCAGGTATTCTAGTAA	СТ
TSC0410685	ACT	AGTCACAGCCAAATCACTCC	GGCGCACGCCTCCACGACTGAGCCACTGAATTGCTG	GTCCTTCTCCTTCCCTCA	СG
TSC0410699	ACG	CCTGGGTTCAAGTGATTCTC	GGCGCACGCCTCCACGAAATTAGCTGGGCATGGTGG	TCTCTTTCCTCAGCCTCC	СТ
TSC0411893	ACT	ATAAGTGTCATAGAGCGACC	GGCGCACGCCTCCACGTGCACAGGTAGGAAAATCAG	ATAGAGCGACCTGCACAG	ΑG
TSC0415424	ACG	CTTCAGCACTCAGACACTAC	GGCGCACGCCTCCACGCTCTAGAGTTAAGAGGCTGG	ACTACACATTATGGAGCAC	СТ
TSC0415685	ACT	AGAGACCCTAAAGTACCCAG	GGCGCACGCCTCCACGTCTTCCTCTTCCCTTCTGGG	GGGAGGAACACCCTCTCA	GС
TSC0417504	ACG	AGGGAGGACTTACGTACATG	GGCGCACGCCTCCACGCATCTCCCTCATGAACTCTC	CAGTGCACGTTCTGCATA	GΑ
TSC0419006	ACT		GGCGCACGCCICCACGCACAAIGGIAACIACIIGIGC	AAGCICCATICATGGTAAAT	GC
TSC0428033	ACT	AGGIGACIGIAIGAGGAIGG	GGCGCACGCCTCCACGACAAAGCTTGCCTTGTGTCC	ACGCCGCCGCCGAGGTTCC	AG
TSC0428344	ACT		GGUGUAUGUUTUUAUGUATATUUUTGTAGGTTGGTG		
TSC0430303	ACT				AG
TSC0440822	ACT				
TSC0440903	CGT	AGTACCIGIGGAAIGCCAIG		CTCCCACCTTCAAGTGATT	
TSC0440920	CGT		GCCCCACCCCCCACCACCCCACCCCCACCCCCCCCCCCC		GT
TSC0440927	CGT	TCAGTGGTTGCATAGCTCAC	GCCCCACCCCCCACCCCACCCCCCCCCCCCCCCCCCCCC	TACTGGGCTCAAGTGATC	GT
TSC0441379	ACG		GCCCCACCCCCCCCCCACGTATCACGTACCTCCCCACGTACCCCCCCC	CCTTAAATCATGAATATCCC	GA
TSC0441808	ACT	TGAGGCCCCAGAGTTCATAC	GCCGCACGCCTCCACGAATCACGCTGTATTGCTGGG	CTCCCCTTTGGCACTCTCT	тс
TSC0444872	ACG	ACCACTCTCTGCACTTGATC	GGCGCACGCCTCCACGATAGAATGCTGTGACAGCGC	TCCCCGGTGTATTCCAGCC	G A
TSC0452492	ACT	AAGGCAAGGAACAGATCCTC	GGCGCACGCCTCCACGGTTCTGGAGGTCAAAGTCTG	GCAGCTCTGCCTATACCTC	ТС
TSC0456990	ACG	CAATTTCCCTGTACGTGGCC	GGCGCACGCCTCCACGTCCCTGACCTGCTACATGAG	CAGAAGGAGGCCCTGTGGC	СТ
TSC0463698	ACT	GAGGATTTAATGCCTTGTTC	GGCGCACGCCTCCACGTGGGAGTGAAACTTTGTCTC	TGCCTTGTTCTAAGGGCA	ТС
TSC0465106	ACT	AACAAGCTCAGAAGCTCCTG	GGCGCACGCCTCCACGCAGGTATGGAAGTTGCTGTG	CTGATTTTCATTTAAACCTAAC	GС
TSC0465718	ACG	CTTCCTCACCAGTAAAACGG	GGCGCACGCCTCCACGAGTACCCCACATGTGTTGAC	GTAAAACGGGGTAAGAATCA	СТ
TSC0469384	ACT	GTGCCCAGGTCTAAATTGAG	GGCGCACGCCTCCACGGGAAAGAGGCATCACAAACC	GAGAGAAGAGGCAAGATG	ΑG
TSC0487709	ACT	CTGCTCACTTCCCATTGTAC	GGCGCACGCCTCCACGTTCCCTCTGAGTGAGACTTG	TCAGTGCTCTCAGGCAGG	GС
TSC0491807	ACT	GGAAGGTTCTAAGTCCTGTG	GGCGCACGCCTCCACGAATTAACGTCACAGGGAGGG	TAAGTCCTGTGACCCTGT	GС
TSC0491811	ACG	TACTGGCTGGAAAGATGGAG	GGCGCACGCCTCCACGCCATTGACTTAGCCTTTCCG	AGCCACATGGACAAACTC	GΑ
TSC0494889	CGT	CAGATGCTGTGTGCCTTTTC	GGCGCACGCCTCCACGGGACGTTAACTTGTTAGGTC	TGTGTGCCTTTTCACTCGT	GΤ
TSC0496092	ACT	GGAAGTGCAGTAAGTCATGG	GGCGCACGCCTCCACGAGGGCATGGTGAACTTCAAG	TGGATGTTGTCTGTATGGT	ТС
TSC0500668	ACT	AACCAGGTAGTTCTGAGGTG	GGCGCACGCCTCCACGTTATGGGAGTGACTGCACAC	AAGAGCCACGGGGATGCT	AC
TSC0504131	ACT	CCCAGCAAATGGGAAACAAA	GGCGCACGCCTCCACGTCCCAGTGTAACCAACACAC	AATGGGAAACAAATTTGAGTT	ΤG
ISC0504774	ACT	IIGGCCIGCGAIIICIIIGG	GGCGCACGCCICCACGGGGACAGACIIIIICAIGGG	IGICIIIGAGACAACIAACA	AG
TSC0504/88	ACT	ACAAAGGICAGCAAICCIGC	GGCGCACGCCTCCACGCTTGAGAGTAAGATGGAGCC	GCTAATGTGAGTCAGATTGT	IG
TSC0504844	CGI		GGUGUAUGUUTUUAUGGAUTTUAAGAATGAAGUUGU		
TSC0504870	ACT				
TSC0505007	ACT				AG
TSC0505997	ACC				А G С T
TSC0597575	ACT	ATGTGGGCATTGTCTCACAC	GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		тс
TSC0614720	CGT	AAGCTAGGTAGCCCTTTCAC	GCCCCCCCCCCCCACGAAGGCTTTTGACAGGGAGAG	CTTTCACAGGGTGGTGGTGGG	C A
TSC0616424	ACT	ATGAAACTGGATTCACCCTG	GGCGCACGCCTCCACGCAGAGAGAGAAATTTAGCCTG	CTGTTTCAAATTTTCCAGGG	AG
TSC0616425	ACT	GGAAGCCTCAATCAACTGTC	GGCGCACGCCTCCACGGAAGACAATAACCCCCCACTC	CTCAATCAACTGTCTTCCTT	ΤG
TSC0619388	ACT	GTTCTTAGAAGGCTCTGTAC	GGCGCACGCCTCCACGTGCCCTTCTGCCATTCATAC	TAAAATTAGGCAGGAGGTAA	A G

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
TSC0652148	CGT	AACAGGATCACTCCAGATTG	GGCGCACGCCTCCACGACTACACTCCAGCAAGACTC	AGATTGAAATTCATACTACTC	ΑT
TSC0724339	ACG	TGGGTTTGCTTTCCACACTC	GGCGCACGCCTCCACGCCAGCTTTCTTTCTGGTCAG	CACACTCTCAGCAGGACTT	GΑ
TSC0799291	ACT	TAAGGTTTCTCCGCAATGCC	GGCGCACGCCTCCACGATTCTTGGCATGAAGCCTAG	CAGGACATTCGATGCCAA	CG
TSC0799293	ACT	TGCCCCTAGTTTTCTGATGC	GGCGCACGCCTCCACGTGTGGTCCATCCTAGGATAC	TCTGATGCTGTGGACCAT	ΤС
TSC0801094	ACT	CCAGCTTCTTCCCTTGTTTG	GGCGCACGCCTCCACGTTTCACCTAGCTCTGTGTTG	TTGTTTTAGGGAATCCATTAA	ΑG
TSC0801097	ACT	ATATCACGTTCGAGCCTCTC	GGCGCACGCCTCCACGAGCATCTCTATGCGTGTGTC	TGCCACTATAGACAGGGT	GС
TSC0801514	CGT	GCCTAGTTCCGTGTTTCTTC	GGCGCACGCCTCCACGTTTCTGGTTTGAGAGGTCGG	TTCTTCGTTCCAAGTGCG	АТ
TSC0802184	ACT	ACTCTCTCTGTATCTCTCAG	GGCGCACGCCTCCACGCTATGTGTGACTGGATCTTG	TCTTTGTGAAATTATGCAAAC	GС
TSC0802371	CGT	TGGCTCTCCACTTTGAGTTC	GGCGCACGCCTCCACGGGAGTTAGCTGAAACTCAGC	GAAGTTCAGCATAACTTGG	ΤА
TSC0806675	ACT	GCTAAATTAGTCCTGACAGC	GGCGCACGCCTCCACGGCTCTCTCGAGTCTATTCAG	CTGACAGCAAAATGCTCCT	ΤG
TSC0808288	ACT	AGAGGGTTAACATGCTATTC	GGCGCACGCCTCCACGTCCAAGAGGTATCAAAGCAG	ATGCTATTCAATCCCAATCA	ΑG
TSC0808289	CGT	CTCCCAGTTTGCTTCCAATG	GGCGCACGCCTCCACGTGCATAAATCCCACACTGGC	TGATATTAAAATTGCATGGAG	ΑT
TSC0813993	ACT	TAATTTCCCTCCTTACTCCC	GGCGCACGCCTCCACGCCTGGTATACTTAACACTGTC	GCCATCTCTCTGAAATTTTAA	ΑG
TSC0813997	ACT	AGGATGAAAACCTCAAACCC	GGCGCACGCCTCCACGTGCCAAAGGTTACTTGCATG	AACCCTTCTAACTGGAGTC	ΑG
TSC0836979	ACT	TTAGACCAAACCTGTGGTGG	GGCGCACGCCTCCACGCTGAGTGAAGAGTAGTCTGG	CTAAAAAGGGTACAATGGTT	ΑG
TSC0841253	ACT	ACGATCTGAAGAGAAACTGC	GGCGCACGCCTCCACGATGTCCCTGCAAAGGACATG	AAACTGCTAAAGAAAATGCG	ТС
TSC0841256	ACT	GGAATACTGGTGTCTAGTGC	GGCGCACGCCTCCACGAATTCTTGGTTTGGGAGGCC	ATGCTGCTCAATATCTTACA	ΑG
TSC0843973	CGT	TTGATCTGCTTCAGTGGTGC	GGCGCACGCCTCCACGCAGACAATATCCCCCCAGTAG	TGTCCGGAATCTGAGGGA	АТ
TSC0847271	ACG	GCAGCTCCTTGTGTAGTTAC	GGCGCACGCCTCCACGTTTTCAAGGGCTCTGTGGAC	CAGGGCTCCTCCCTCTCCC	СТ
TSC0876497	ACT	GCTAGTTCTCAGGAAAATCTG	GGCGCACGCCTCCACGTTAGCATCTCTGCCCCCTGC	TGTTGCAATGATGGAGGAGA	ТС
TSC0879839	ACT	TAAAGGGACCACACTCTTGC	GGCGCACGCCTCCACGCAGGCAAATCCTAGTGTAGC	CCACACTCTTGCCTTCCTA	ΑG
TSC0891747	ACG	TTATCAGAATCCCTGGCCTC	GGCGCACGCCTCCACGTTGGCAGTGTCTAGAGACAG	TCCCTGGCCTCTACCCCA	СТ
TSC0898137	CGT	TTTGAGTTTGCCTCCCTGTC	GGCGCACGCCTCCACGGCTCTTGGATGTTCTGAGAG	ACTCTGGGCCTTCTACAG	СА
TSC0898207	ACT	CTTGACCATCAGGCCTTATG	GGCGCACGCCTCCACGTTAGCGTCCATGGCTTCAAG	AGCCAGTGTAAAAGCTTTC	ΑG
TSC0898567	ACG	GGTGTTGGATTTGAAGTGCC	GGCGCACGCCTCCACGTCAGGAAAGTCTTCCTCGAG	CCATAAAAACTAGGAACCTC	СТ
TSC0898748	ACT	CCTTTCCTGGTTCTCTCTTG	GGCGCACGCCTCCACGTCATTTCCTTGCTCCTTCCC	GATTCTTGTGTGATTTACAG	ΑG
TSC0899479	ACT	CAGAATATGGAGAGCCACTG	GGCGCACGCCTCCACGACCTAGCTGGTTTGGAGAAC	TGGCCACATTTTAACGATG	ΤС
TSC0899537	ACT	GCCTTTACCTGTGTTGTCTC	GGCGCACGCCTCCACGGGCACATGAAATAATGGTGC	CATCAAATCTGAGTCATTGTT	ΑG
TSC0901066	ACG	AAAATGGTGACACCCCTGTC	GGCGCACGCCTCCACGAGGTTGCAGTGATTCTCCTG	CTACAAGAATCAGCCGGG	GΑ
TSC0901671	ACG	TCAAGGATCATGCTGAAGGC	GGCGCACGCCTCCACGCCATCCCCATGTTTAGTCTC	GTTGTTTTCTGTCAAGCAGT	СТ
TSC0902542	ACG	TCCAGCAGTGGTTATTCGAC	GGCGCACGCCTCCACGGTGACCCCTGCATTATCTTC	CATACCGCAGAAAAGATGG	СТ
TSC0912690	ACT	GTGAAAGAAGTTTCACCTGC	GGCGCACGCCTCCACGCCATACAGCCTGTTTGAAAC	AGTTTCACCTGCATGCTGC	ΤС
TSC0917140	ACT	TATATAAGCCCTGGGTGTGG	GGCGCACGCCTCCACGACTTACAGACAGAAGCGTGG	GCAGAAACCTACCTGTCTT	GС
TSC0922854	ACT	TTGTGGTTACCATGATACCC	GGCGCACGCCTCCACGTCACATCATCTTTCAGCATG	CAGTATAGGCAAATCAGGG	СG
TSC0923416	ACG	GGTTCAAGCAATTCTCCTGC	GGCGCACGCCTCCACGCGAAAATTAGCTGGGCATGG	TCTCCTGCCTCAGCCTCC	СТ
TSC0927044	CGT	TTACGAAGAGGAAATTTCAG	GGCGCACGCCTCCACGCATCACTTCACATGCTTATC	AGAGGAAATTTCAGTCTGTT	GΤ
TSC0927254	ACT	AATGGAAGAAGAGAGGGAGG	GGCGCACGCCTCCACGGGGATACAGACGCAAATAGG	GGCTTGCAGGTTGCAAAA	A C
TSC0932669	ACT	CTATCAGGAATCTCTAGGCC	GGCGCACGCCTCCACGAATGGTGGATGGAGTAGGAG	TCTCTAGGCCTTCATGTG	т С
TSC0967106	ACT	GGGTCTTATTCTGGGTTCTC	GGCGCACGCCTCCACGAGGAGGTATCACTTCACCTG	GGTTCTCTATTCCATTGATTT	A C
TSC0967114	ACG	AGGGCTTGAATACTGACCTG	GGCGCACGCCTCCACGACCTGAAAACTGCAGGCATG	CTACCCTTGCCAAGCTCAC	СТ
TSC0980177	ACT	AAGAGAAGCCTTCACAGAAG	GGCGCACGCCTCCACGCACAGACACAGTAACAATCTG	GACTTGATAATGTGGGGAA	т С
TSC0980208	ACG	GGGTAAAGATTACACAACAGC	GGCGCACGCCTCCACGTTTGGCAGCCATTGTTTACG	CAGCTTTCATATTACTCTGG	СТ
TSC0980209	CGT	TTTCCTTCTTTGCTCCGCCC	GGCGCACGCCTCCACGTCGTCAGCCTCTCAGAGTCAG	CGCTAGTTCGGCTCTGTC	GΤ
TSC0980211	ACG	AATGGACACCTCGCTGGATC	GGCGCACGCCTCCACGATCCACCACTGCTGTTTGCC	AGGGATGGGAGTCAGTGG	СТ
TSC0980678	ACT	AGAATGTCACCAGCTCCTTG	GGCGCACGCCTCCACGAAAGCCCAAGTGAAGGGATG	TTCCACCCTCTTCATACAA	т С
TSC0980679	ACT	GATCACAGATAACTACTGTG	GGCGCACGCCTCCACGCAGCAAAGGCATTCTTGAAG	GATAACTACTGTGTACATTTT	CG
TSC0984194	ACT	AGGCAGGATGCAATCAATGG	GGCGCACGCCTCCACGTTTCCCTCAGCCCTTAAGAC	GATGCAATCAATGGTAATCC	т С
TSC0984221	ACG	CAGGCATACTTCTCTATGTTC	GGCGCACGCCTCCACGGTACAGGAATAACAAAACAG	CCAAATGATCTAAGAGCTAC	GΑ
TSC0988033	CGT	AGGTCAGATAAGGTGCAGAC	GGCGCACGCCTCCACGAAGGCTGTGGACATTTACCC	GACTTAGAATTAACCCCTAG	ΑT
TSC0988041	ACT	TGTGTCTGGCATATCACAGG	GGCGCACGCCTCCACGCCCTCTGAACTGTTATGTCG	GTATTCTACAAGAGTGGTTG	ΤG
TSC0991378	ACT	CTCTGTGCTTTAGAAGGAGC	GGCGCACGCCTCCACGTGCTTGGCTGTACTTGTGAG	TTAGAAGGAGCATTAAGCC	т С
TSC1000396	ACT	TGGCAGGTAATCTGTCCATG	GGCGCACGCCTCCACGAGCTGGTGGCAACTCATTAG	CTGTCCATGACACAGACTA	т С
TSC1000767	ACG	ATGGTATGGCATTATGGTTG	GGCGCACGCCTCCACGCTTTCCCTGTCACTAAAATTC	GTTGAATAGCATGCCTCTC	GΑ
TSC1001529	ACT	ACTGACCTCACGTAACTTGG	GGCGCACGCCTCCACGTCCTGATGGGTGAAGAAAGG	AGTACCTCCAAAAACGGG	A G
TSC1002862	ACT	AACCTTCACTAGCCAGATCC	GGCGCACGCCTCCACGTTAAAGGCTGGTGGTCAACC	CCAGGCAGCCTTCCGAGA	ΑG

Primer der Poolfrequenzbestimmungen

SNP	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allele
TSC1004417	CGT	GATGTGTTCACATGCACAGG	GGCGCACGCCTCCACGAATCACAGGAAGCACCAAGG	CACATGCACAGGGAGAGT	ΤA
TSC1004420	CGT	GCATTTCTACAATTCAGATAG	GGCGCACGCCTCCACGGAAAGGTGAAAATACAGTAC	AATAACCTCAAGAGCATGG	ΑΤ

Einzelgenotypisierungsprimer

SNP_ID	Stop- Mix	PCR-Primer 1	PCR-Primer 2	Extensionsprimer	Allel
					. <u> </u>
AIF1 C+735G	ACT	ACGTTGGATGGAGAGAGCAGAAGGGATAAG	ACGTTGGATGCCTAGCAGTTGGTTGGCAAC	AAGGGATAAGCGCTGACT	GС
AIF1 G+49A	ACT	ACGTTGGATGGAGCCAAACCAGGGATTTAC	ACGTTGGATGAGGTCTGTCCATCTCATTCC	GAGGGTGGGATAGGCAGC	A G
AIF1 G+60A	ACT	ACGTTGGATGTCTCCTTACCCTGACACCAG	ACGTTGGATGTTTACAGGGTAGGGAGGGTG	CTGTCCATCTCATTCCTC	GΑ
AIF1C+722A	ACT	ACGTTGGATGCCTAGCAGTTGGTTGGCAAC	ACGTTGGATGGAGAGAGCAGAAGGGATAAG	CCCTTCCTCAGTCCCC	ΤG
LST1 A+1605T	ACT	ACGTTGGATGAGCCAGTAAAAACCATGGTC	ACGTTGGATGAGGTCAAAAAGCCACATAAG	ATCTCGAGCCTCCGTTCAAA	ΤA
LST1 A+1680T	ACT	ACGTTGGATGTACTATTTGACCCCAGAGTG	ACGTTGGATGATGTGGCTTTTTGACCTTTG	GGTGAGCCATGTGTTTTTT	ΑT
LST1C+416A	ACT	ACGTTGGATGATATCTTCAGGGAAGAGGGC	ACGTTGGATGAGAAAGCTGCAACCAACCAG	CAGGGAAGAGGGCTCAAGGTTA	A C
MICB138- 137InsCT	ACT	ACGTTGGATGATCCAGTGAAAACTGAGGCC	ACGTTGGATGCAGGCCGCTAGAATTTTCTC	AAAACTGAGGCCCGGAACT	C T-
MICB_C-150T	ACT	ACGTTGGATGTTTCTCTTCTGAACGTGGCC	ACGTTGGATGATCCAGTGAAAACTGAGGCC	AACGTGGCCCCGCCCTCTCCA	СТ
MICB_C-243A	ACT	ACGTTGGATGCTGGTCCTTGATTTTGGCTG	ACGTTGGATGGGAAATTTAGAAGGCGGGAC	GCGCTCGCGCACGCTCC	СA
MICB_C-56G	ACG	ACGTTGGATGTTCTCAGCTGCTCAGCAGTG	ACGTTGGATGGGCGCAGGTGACTAAATTTC	TGGCCAACTGAATGAAACC	GС
MICB G-72C	ACG	ACGTTGGATGTTTCACTGGATAAGCGGTCG	ACGTTGGATGGTGGCCAACTGAATGAAACC	CGGGGCGCAGGTGACTAAATTT C	СG
	ACG	ACGTTGGATGAGGAGATTAGGGTCTGTGAG	ACGTIGGATGTCGATTCTTGAGTCTCCAGG		A G
MIODDITISM	//00	ACGTTGGATGAGGCAGAAACGCAGGGCAAA			
MICBD52N	ACG	G	ACGTTGGATGAAGTCCTCGGTCTCTGTGTC	CCAGGGACAGTGGGCAGAA	A G
MICBI98M	ACG	ACGTTGGATGTAGTAGAAATGCCGGGAGCC	ACGTTGGATGAATGGAGAAGTCACTGCTGG	CCTGGTGCTGCTGTCTTCATG	GΟ
MICBK57E	CGT	ACGTTGGATGAAGTCCTCGGTCTCTGTGTC	G	CTCTGTGTCCCAGGTCT	GΑ
MICBT189I	CGT	ACGTTGGATGTCCCTGCATCTCCCTTAGAG	ACGTTGGATGATGTTGCCCTCTGAGACCTC	CCCCCATGGTGAATGTCA	СТ
TSC0030365	ACT	ACGTTGGATGCACCCAGCCTATACTAATAC	ACGTTGGATGGTGCTTTCCATATGTGATCTC	CTAATACTTTTAATTCACTGAC	т С
TSC0463698	ACT	ACGTTGGATGGAGGATTTAATGCCTTGTTC	ACGTTGGATGTGGGAGTGAAACTTTGTCTC	TGCCTTGTTCTAAGGGCA	тC
TSC0095804	ACT	ACGTTGGATGGAGATTCTGTGTTAGGGAAG	ACGTTGGATGTGGAAAGACAGCTGTAGAGG	GGACACTTATAATAGTTCTTT	A G
TSC0899479	ACT	ACGTTGGATGCAGAATATGGAGAGCCACTG	ACGTTGGATGACCTAGCTGGTTTGGAGAAC	GTACATGGCCACATTTTAACGAT G	тс
TSC0504774	ACT	ACGTTGGATGTTGGCCTGCGATTTCTTTGG	ACGTTGGATGGGGACAGACTTTTTCATGGG	TTTTTGTCTTTGAGACAACTAACA	A G
TSC0111007	ACT	ACGTTGGATGAATTGCGTTATACCTAGAGC	ACGTTGGATGAGGCATTGCAAGTACGTTAC	AGAGCAATTTAAACTGACAGTC	A G
rs760804	ACT	ACGTTGGATGTGGAAACCCTGAAGTGGTAC	ACGTTGGATGTTCCCTGGCTCACCAATTTC	CCTGAAGTGGTACCTGAAT	т С
rs1028411	CGT	ACGTTGGATGAGGACAGATAAAGGAAAACG	ACGTTGGATGTATAACCACTCGTATCTCTC	GTCATCATCTTTCATGACC	СA
TSC0879839	ACT	ACGTTGGATGTAAAGGGACCACACTCTTGC	ACGTTGGATGCAGGCAAATCCTAGTGTAGC	GACCACACTCTTGCCTTCCTA	A G
rs1064663	ACT	ACGTTGGATGCACGTACTCCTCCTGGTTAT	ACGTTGGATGTTTCTTCAATGGGACGGAGC	CCTCCTGGTTATGGAAGT	тC
TSC0382794	ACT	ACGTTGGATGGCATGTATATGGAGGTTTCC	ACGTTGGATGCCAAGTGATCTGCCATTTTC	GAGGTTTCCTTTTGGACCAAG	A G
TSC0116798	ACT	ACGTTGGATGGTCCTCAAGAAATACTGTGG	ACGTTGGATGGGTTGATCTGTAACCCTATG	TTTTTTTGTCAGCTAAAAATGTAG	GΟ
rs11244	ACG	ACGTTGGATGATTGTCCAGAAACTCCCCTG	ACGTTGGATGTTATAGGAGTAGGGCTGGAC	TGAGACCTTACTCCTTCCAG	СТ
TSC0099063	ACG	ACGTTGGATGTGCTCATCTGTTGATGGCTG	ACGTTGGATGGCAGAGACTCAAACAGATCC	GATGGCTGGATTCTCCTT	СТ
TSC0276264	ACG	ACGTTGGATGGCCGTGTGATTTCTAAGTTC	ACGTTGGATGGGGAGCTGATGATGCAAATG	AGTTCTGAGGTGGGAGG	СТ
rs1729	ACG	ACGTTGGATGATTAATGGCAGCCCCTCATC	ACGTTGGATGAGCAGGAGTACAGATGCATG	GTTTTGTGCTCCCCTTTACCTAA	GΑ
rs928815	ACT	ACGTTGGATGGAGGCACGGAGATTTAGAAC	ACGTTGGATGCCAGCTAATCTCAGAGAGTC	TTTAGAACATCACGCACAG	A C
rs1281896	CGT	ACGTTGGATGCGAGGAAAACAAAGACCCAG	ACGTTGGATGACCAGAAGTGTCACCTTACC	CTTTTTTCCCCAAGTTAGTG	СA
rs1536054	ACT	ACGTTGGATGGCTGGCTACTCTGAAATTTAC	ACGTTGGATGGTGGGAAAATTAAGTGTGCTG	CTGAAATTTACAGTAGCATTC	GC
TSC0113430	CGT	ACGTTGGATGTCAATACTCATCAGCTCCTC	ACGTTGGATGCCACCAACCAGATACAATCG	ATCAGCTCCTCATTACTAC	СA

SNP Lokalisation auf Chromosom 6

Vergleich der Positionen der analysierten SNPs anhand der NCBI Version 26, die zur Selektion diente sowie der NCBI Version 32, die zur Auswertung der Daten diente.

Allel- und Genotypenfrequenzen der Einzelgenotypisierung

Erkrankung	SNP	Probanden	All	ele	Allelfrequenzen		Genotypen			Genotypenverteilunç		
			1	2	1	2	1	2	3	1	2	3
Asthma	rs1028411	88	А	С	0,6761	0,3239	A/A	A/C	C/C	0,4773	0,3977	0,125
IgE	rs1028411	24	А	С	0,6042	0,3958	A/A	A/C	C/C	0,375	0,4583	0,167
KORA (Kontrolle)	rs1028411	280	А	С	0,5304	0,4696	A/A	A/C	C/C	0,2929	0,475	0,232
KORA (Kontrolle)	rs1064663	274	С	Т	0,2409	0,7591	C/C	C/T	T/T	0,062	0,3577	0,58
Typ 1 Diabetes (<15. Lj.)	rs1064663	176	С	Т	0,1307	0,8693	C/C	C/T	T/T	0,0114	0,2386	0,75
Typ 1 Diabetes (>15. Lj.)	rs1064663	182	С	Т	0,1209	0,8791	C/C	C/T	T/T	0,011	0,2198	0,769
KORA (Kontrolle)	rs11244	232	С	Т	0,7737	0,2263	C/C	C/T	T/T	0,6379	0,2716	0,091
Typ 1 Diabetes (<15. Lj.)	rs11244	188	С	Т	0,5426	0,4574	C/C	C/T	T/T	0,2713	0,5426	0,186
Typ 1 Diabetes (>15. Lj.)	rs11244	187	С	Т	0,5749	0,4251	C/C	C/T	T/T	0,2888	0,5722	0,139
KORA (Kontrolle)	rs1281896	121	А	С	0,843	0,157	A/A	A/C	C/C	0,8264	0,0331	0,141
Typ 1 Diabetes (<15. Lj.)	rs1281896	141	А	С	0,9433	0,0567	A/A	A/C	C/C	0,9291	0,0284	0,043
Typ 1 Diabetes (>15. Lj.)	rs1281896	133	А	С	0,9549	0,0451	A/A	A/C	C/C	0,9474	0,015	0,038
Asthma	rs1536054	94	G	С	0,6383	0,3617	G/G	G/C	C/C	0,4468	0,383	0,17
IgE	rs1536054	25	G	С	0,64	0,36	G/G	G/C	C/C	0,4	0,48	0,12
KORA (Kontrolle)	rs1536054	204	G	С	0,6912	0,3088	G/G	G/C	C/C	0,4559	0,4706	0,074
KORA (Kontrolle)	rs1729	178	А	G	0,6124	0,3876	A/A	A/G	G/G	0,6067	0,0112	0,382
Typ 1 Diabetes (<15. Lj.)	rs1729	169	А	G	0,8905	0,1095	A/A	A/G	G/G	0,858	0,0651	0,077
Typ 1 Diabetes (>15. Lj.)	rs1729	157	А	G	0,8567	0,1433	A/A	A/G	G/G	0,8153	0,0828	0,102
Asthma	rs760804	109	С	Т	0,7936	0,2064	C/C	C/T	T/T	0,6514	0,2844	0,064
lgE	rs760804	33	С	Т	0,7576	0,2424	C/C	C/T	T/T	0,6061	0,303	0,091
KORA (Kontrolle)	rs760804	200	С	Т	0,87	0,13	C/C	C/T	T/T	0,77	0,2	0,03
KORA (Kontrolle)	rs928815	196	А	С	0,3878	0,6122	A/A	A/C	C/C	0,1378	0,5	0,362
Typ 1 Diabetes (<15. Lj.)	rs928815	184	А	С	0,3234	0,6766	A/A	A/C	C/C	0,0543	0,538	0,408
Typ 1 Diabetes (>15. Lj.)	rs928815	186	А	С	0,328	0,672	A/A	A/C	C/C	0,086	0,4839	0,43
Asthma	tsc0030365	113	С	Т	0,4602	0,5398	C/C	C/T	T/T	0,2212	0,4779	0,301
IgE	tsc0030365	35	С	Т	0,3857	0,6143	C/C	C/T	T/T	0,1714	0,4286	0,4
KORA (Kontrolle)	tsc0030365	280	С	Т	0,3911	0,6089	C/C	C/T	T/T	0,1643	0,4536	0,382
Asthma	tsc0095804	99	А	G	0,2424	0,7576	A/A	A/G	G/G	0,0909	0,303	0,606
IgE	tsc0095804	35	А	G	0,2571	0,7429	A/A	A/G	G/G	0,1429	0,2286	0,629
KORA (Kontrolle)	tsc0095804	283	Α	G	0,2014	0,7986	A/A	A/G	G/G	0,0389	0,3251	0,636
KORA (Kontrolle)	tsc0099063	287	С	Т	0,2997	0,7003	C/C	C/T	T/T	0,0697	0,4599	0,47
Typ 1 Diabetes (<15. Lj.)	tsc0099063	184	С	T	0,2745	0,7255	C/C	C/T	T/T	0,0652	0,4185	0,516
Typ 1 Diabetes (>15. Lj.)	tsc0099063	188	С	T	0,258	0,742	C/C	C/T	T/T	0,0319	0,4521	0,516
Asthma	tsc0111007	103	A	G	0,466	0,534	A/A	A/G	G/G	0,2233	0,4854	0,291
lgE	tsc0111007	38	A	G	0,4342	0,5658	A/A	A/G	G/G	0,2105	0,44/4	0,342
KORA (Kontrolle)	tsc011100/	278	A	G	0,4209	0,5791	A/A	A/G	G/G	0,18/1	0,4676	0,345
Asthma	tsc0113430	88	С	A	0,0114	0,9886	C/A	A/A		0,0227	0,9773	
IgE	tsc0113430	24	C	A	0,0208	0,9792	C/A	A/A		0,0417	0,9583	0.040
KORA (Kontrolle)	tsc0113430	268	C	A	0,0485	0,9515	C/C	C/A	A/A	0,0149	0,0672	0,918
KORA (Kontrolle)	tsc0116/98	162	C	G	0,4846	0,5154	C/C	C/G	G/G	0,4321	0,1049	0,463
Typ 1 Diabetes (<15. Lj.)	tsc0116798	110	C	G	0,8409	0,1591	C/C	C/G	G/G	0,8273	0,0273	0,146
Typ T Diabetes (>15. Lj.)	tsc0116798	111	C	G	0,7793	0,2207	C/C	C/G	G/G	0,7658	0,027	0,207
Asthma	tsc0504774	111	A	G	0,6532	0,3468	A/A	A/G	G/G	0,4324	0,4414	0,126
Ige	tsc0504774	34	A	G	0,6029	0,3971	A/A	A/G	G/G	0,4118	0,3824	0,206
KORA (Kontrolle)	tsc0504774	285	A	G	0,5368	0,4632	A/A	A/G	G/G	0,2947	0,4842	0,221
KORA (Kontrolle)	tsc08/9839	277	A	G	0,0758	0,9242	A/A	A/G	G/G	0,0108	0,13	0,859
Typ I Diabetes (<15. Lj.)	TSCU8/9839	185	A	G	U,36/6	0,6324	A/A	A/G	G/G	0,0486	0,63/8	0,314
i yp i Diabetes (>15. Lj.)	TSCU8/9839	185	A	G	0,3568	0,6432	A/A	A/G	G/G	0,09/3	0,5189	0,384
Asinma	ISCU8994/9	116	C	 -	0,6164	0,3836			1/1 T/T	0,3966	0,4397	0,164
IUE	LSCU899479	38 250	C		0,5/89	0,4211		U/I	1/1 T/T	0,3421	0,4/3/	0,184
KURA (Kontrolle)	tscu8994/9	259	C	I	0,6815	0,3185	C/C	C/T	1/1	0,4865	0,39	0,124

Mittelwerte der Allelfrequenzbestimmungen auf Chromosom 6

In der Abbildung sind die Rohallelfrequenzbestimmungen der analyierten Pools anhand ihrer Lokalisation auf Chromosom 6 NCBI Version 33 dargestellt. Die Rohwertallelfrequenzmessungen sind anhand der Frequenzmessung des Allels der geringeren Masse bei der Detektion mit MALDI-TOF dargestellt. Signifikante Unterschiede der Allelfrequenzen nach Korrektur des multiplen Testens zur Kontrolle oder kombinierten Allelfrequenzen nicht-assoziierter Erkrankungspools sind markiert.

Weitere Marker siehe nächste Seiten

Anhang

Chromosom 6 (Mb) NCBI Version 33 SD_der kombinierten Allelfrequenzen p-Wert kombinierte Allelfrequenzen Allelfrequenz Erkrankungspools SD Erkrankungspoolfrequenz kombinierte Allelfrequenzen SD_KORA-Poolfrequenz Allelfrequenz KORA Erkrankungspool o-Wert (KORA) Marker AD TSC1000767 22318150 0,32 0,0044 0.2 0.0128 0,25 0.0051 0,044 0.0404 AD TSC0841256 22597579 0.45 0,0092 0.36 0,0118 0,37 0,0051 0.0595 0,0467 AD rs197956 23636486 0,16 0,0048 0,26 0,0178 0,24 0,005 0,0198 0,0217 AD rs1359374 23767456 0,8 0,0044 0,72 0,0107 0,73 0,0082 0.0195 0,046 AD rs1355460 23954413 0,68 0,0104 0,58 0,0041 0,6 0,0039 0,0217 0,0352 AD TSC0494889 24118212 0,1 0,003 0,16 0,0043 0,13 0,0047 0,0217 0,1958 AD TSC0619388 24240845 0,91 0,0125 0,79 0,0096 0,82 0,0081 0,001 0,0132 AD TSC0411893 25068173 0.73 0,005 0,86 0,0202 0,86 0,0067 0,006 3.937E-05 AD TSC0055705 25096514 0,28 0,021 0,4 0,0284 0,39 0,0099 0,0646 0,048 0,0044 0,0039 AD rs303007 25147230 0,17 0,0098 0,26 0,25 0,023 0.0433 0,0057 0,2414 AD rs198846 26170002 0,89 0,0058 0,82 0,86 0,0023 0,0166 0,98 0,0033 AD TSC0116793 26188250 0,0023 0,91 0,0126 0,95 0.0051 0.0699 0,477 AD TSC0111853 26323414 0,94 0,0063 0,87 0,0078 0,92 0,0034 0,0296 0,0053 AD TSC0322593 26390904 0,55 0,0045 0,63 0,65 0,0043 0,0486 0,0106 AD rs926304 26483157 0,08 0,0071 0,15 0,0075 0,11 0,004 0,0191 0,2173 AD TSC1002862 28762686 0,03 0,0038 0,08 0,0058 0,04 0,0027 0,0164 0,5771 AD TSC0463698 29226410 0,46 0,013 0,57 0,0076 0,53 0,0063 0,0152 0,0946 0,008 AD rs1555244 29399687 0,25 0,0125 0,11 0.0007 AD rs1028411 29429836 0,62 0,0067 0,57 0,0138 0,54 0,005 0,3102 0,0448 AD rs1610634 2980361 0,79 0,0109 0,74 0,0149 0,7 0,0074 0,2562 0,0383 AD rs1611480 29945443 0,65 0,0374 0,17 0,0197 1,029E-08 30213111 0,0059 AD rs7843 0,76 0,0094 0,81 0,83 0,0054 0,1864 0,0343 0,23 0,1011 AD rs962899 30287543 0,0162 0,34 0,0165 0,31 0,0098 0,0331 AD rs1264360 30841082 0,18 0,0147 0,27 0,0028 0,19 0,0027 0,0183 0,8141 0,0075 AD TSC0229382 31089764 0,06 0,0126 0,16 0,0125 0,09 0,0037 0,3421 0,0022 AD rs1265109 31180402 0,69 0,006 0,76 0,0038 0,72 0,0468 0,4307 0,0056 AD TSC0210562 31418000 0,73 0,0044 0,54 0,0137 0,63 1,559E-05 0,0034 31563671 0,0132 0,24 0,0355 0,26 0,0131 0,0004 AD rs1266079 0,1 0.028 rs1800610 31602691 0,09 0,0131 0,0064 0,15 0,0036 0,0249 0,0729 AD 0,16 AD TSC0109307 31670617 0,0115 0,0057 0,12 0,0036 0,8114 0,0467 0,19 0,2 AD rs707939 31785525 0,69 0,0105 0,62 0,0052 0,61 0,0062 0,0815 0,0479 AD rs392610 32010922 0,0066 0,43 0,0068 0,0304 0,53 0,31 AD rs1061808 32162549 0,0098 0,38 0,0122 0,41 0,0087 0,1438 0,0179 AD rs412492 32239842 0,45 0,0087 0,55 0,006 0,58 0,0058 0,0233 0,0013 AD TSC0242062 32283689 0,69 0,0437 0,75 0,0177 0,87 0,0043 0,4311 0,0236 AD rs8084 32436818 0,54 0,0066 0,5 0,0096 0,66 0,0053 0,3861 0,0018 AD rs7192 32437429 0,63 0,0087 0,68 0,0112 0,73 0,0064 0,2754 0,0067 AD rs1729 32527892 0,14 0,0062 0,24 0,0141 0,09 0,005 0,0094 0,0467 AD rs1281896 3255857 0,08 0,0242 0,24 0.0135 0,06 0,002 0,0015 0,6893 AD TSC0382794 32587800 0.82 0,0224 0,81 0,0118 0.95 0,002 0,8532 0,0044 AD rs1049092 32630433 0.0093 0.56 0,0104 0,0005 0.72 0,27 AD rs241412 32863136 0,33 0,0087 0,0169 0,22 0,0062 0,1759 0,0031

Signifikante Allelfrequenzdifferenzen des Pooling-Ansatzes

rs2582

AD

32975998

0,0132

0,81

0.89

0,0063

0,86

0,0043

0.0291

0,355

AD	TSC0049779	33124979	0,11	0,0055	0,19	0,0109	0,17	0,0072	0,0181	0,0758
AD	rs460568	33233473	0,91	0,0023	0,85	0,0044	0,87	0,005	0,02	0,0809
٨D	rs/62202	22246164	0.14	0.0118	0.24	0,0208	0.2	0.0050	0.0206	0.0835
AD	13403302	55240104	0,14	0,0118	0,24	0,0208	0,2	0,0039	0,0300	0,0055
AD	rs/4/889	33880190	0,22	0,0065	0,33	0,0131	0,29	0,0062	0,0093	0,0649
AD	TSC0095243	34787800	0,79	0,0071	0,73	0,0199	0,7	0,0063	0,1816	0,0133
AD	rs1535814	35132280	0.8	0.0063	0.67	0.0054	0.68	0.0048	0.0007	0.0014
A D	TSC0001278	25206056	0.1	0.0449	0.26	0,0068	0.12	0.0045	0.0254	0.7426
AD	1300991378	33200930	0,1	0,0449	0,20	0,0008	0,15	0,0043	0,0334	0,7420
AD	rs1678656	38743180	0,21	0,0465	0,48	0,0398	0,35	0,01	0,0058	0,1297
AD	rs1537231	38949250	0,92	0,0046	0,82	0,0055	0,84	0,0037	0,001	0,0054
AD	rs755852	39141540	0.25	0.0079	0.21	0.0178	0.17	0.0086	0 3 3 9 1	0.029
A D	ra751022	20165526	0.52	0.0042	0.64	0.0171	0.62	0,0000	0.0217	0.0121
AD	18/31933	39103330	0,33	0,0043	0,04	0,0171	0,02	0,0031	0,0217	0,0181
AD	rs1179383	39229414	0,79	0,0036	0,71	0,0096	0,73	0,0049	0,0342	0,0601
AD	rs790591	91039382	0,51	0,0063	0,39	0,0122	0,42	0,005	0,01	0,0287
AD	rs228448	134838438	0.19	0.0094	0.31	0.0207	0.26	0.0076	0.0133	0.0778
A D	10220110	140716602	0.61	0,0050	0,91	0,0491	0.74	0.0152	0.0164	0,0770
AD	18403480	149/10003	0,01	0,0239	0,82	0,0481	0,74	0,0133	0,0104	0,0339
AS	TSC1000767	22318150	0,33	0,0125	0,23	0,0128	0,25	0,0051	0,0157	0,0329
AS	TSC0430303	22676458	0,52	0,0095	0,41	0,0075	0,45	0,0054	0,0156	0,1249
AS	rs1536054	23834140	0.11	0.0249	0.41	0.035	0.32	0.0114	7 566E-07	7 846E-05
AC	TSC0404990	24119212	0.22	0.0242	0.16	0.0042	0,52	0,0047	0.09((0.0195
AS	13C0494889	24116212	0,23	0,0243	0,10	0,0043	0,15	0,0047	0,0800	0,0185
AS	TSC0967106	24123578	0,85	0,0032	0,88	0,0076	0,91	0,0031	0,2747	0,0109
AS	rs793845	24251530	0,26	0,0108	0,16	0,0144	0,17	0,0046	0,0075	0,0106
AS	rs1742281	24495545	0.22	0.0166			0.13	0.0049		0.021
15	TSC0000127	24554014	0.2	0.0122	0.21	0.000	0.24	0.0040	0.0207	0 10/7
AS	1300898137	24354014	0,3	0,0133	0,21	0,008	0,24	0,0048	0,0306	0,186/
AS	TSC0113430	25015369	0,29	0,0133	0,44	0,0077	0,43	0,0064	0,0004	0,0035
AS	TSC0813993	25520756	0,82	0,0106	0,72	0,0196	0,74	0,0065	0,0334	0,0593
AS	TSC0116793	26188250	0.98	0.0059	0.91	0.0126	0.95	0.0033	0.0076	0 1747
AC		26100200	0,70	0.0147	0.76	0,0120	0.76	0,0053	0,0015	0,0224
AS	1814232	20440480	0,07	0,0147	0,70	0,0149	0,70	0,0031	0,0413	0,0334
AS	TSC0409642	26583480	0,66	0,0299	0,59	0,0386	0,54	0,0115	0,2771	0,0386
AS	TSC0037803	26809974	0,7	0,0076	0,64	0,0086	0,6	0,0054	0,1283	0,016
AS	TSC0440822	27376610	0.86	0.0071	0.91	0.0081	0.93	0.0042	0 1165	0.0126
AC	TSC0614720	29265422	0.2	0.0255	0.17	0,0001	0.15	0.0061	0,0028	0,0120
AS	15C0014/20	28303423	0,3	0,0255	0,17	0,005	0,15	0,0061	0,0038	0,0007
AS	rs1233627	28814285	0,38	0,0144	0,48	0,0094	0,49	0,0059	0,0356	0,0216
AS	TSC0111007	29213864	0,7	0,0061	0,61	0,0082	0,62	0,0048	0,0268	0,0586
AS	TSC0463698	29226410	0.46	0.0237	0.57	0.0076	0.53	0.0063	0.0256	0 1658
AC	TSC0105090	20272252	0.24	0,0257	0,37	0,0070	0.07	0,0003	0,0200	0,1030
AS	1500095804	29373232	0,34	0,0102	0,20	0,0113	0,27	0,0063	0,0322	0,0774
AS	rs1555244	29399687	0,22	0,0182			0,11	0,008		0,0053
AS	rs1028411	29429836	0,43	0,0114	0,57	0,0138	0,54	0,005	0,0023	0,0189
ΔS	TSC0504774	29430712	0.79	0.0287	0.67	0.0205	0.69	0.0067	0.0357	0.0854
10	1500504774	20022018	0,77	0,0207	0,07	0,0205	0,07	0,0007	0,0557	0,0034
AS	rs1611524	29933018	0,29	0,0101	0,25	0,0319	0,18	0,0083	0,3579	0,0039
AS	TSC0115311	30688990	0,31	0,009	0,41	0,016	0,39	0,0064	0,0291	0,0793
AS	rs1634765	31363536	0,79	0,0083	0,83	0,0121	0,88	0,0064	0,2543	0,0031
ΔS	rs7029	31688793	0.57	0.0132	0.66	0.0158	0.65	0.0102	0.0343	0.0722
10	707020	21705525	0,37	0.007	0,00	0,0150	0,05	0.0002	0,0545	0,0722
AS	rs/0/939	31/85525	0,/	0,007	0,62	0,0052	0,61	0,0062	0,0556	0,0446
AS	TSC0242062	32283689	0,76	0,0083	0,75	0,0177	0,87	0,0043	0,793	0,0006
AS	rs8084	32436818	0,71	0,0106	0,57	0,0096	0,66	0,0053	0,0012	0,1815
AS	rs7192	32437429	0.78	0.0095	0.68	0.0112	0.73	0 0064	0.0097	0 2179
15	rs1064662	22127440	0.00	0.0170	0,00	5,0112	0,75	0.0072	0,0077	0.0150
AS	151004003	5245/440	0,02	0,01/8			0,73	0,0073		0,0158
AS	rs1729	32527892	0,24	0,0279	0,24	0,0141	0,09	0,005	0,9021	0,001
AS	rs1281896	32558571	0,25	0,0127	0,24	0,0135	0,06	0,0025	0,7394	5,939E-11
AS	TSC0382794	32587800	0.85	0.0203	0.81	0.0118	0.95	0.0027	0.2774	0.0065
15	TSC0116709	2260,000	0.47	0.0007	0.50	0.0127	0.50	0,0027	0.044	0.0017
A.5	TSC0110/98	32020000	0,07	0,0097	0,39	0,0157	0,52	0,0098	0,000	0,0017
AS	TSC0117878	32693289	0,54	0,0139	0,5	0,0082	0,45	0,0048	0,3119	0,0369
AS	rs1063478	32919013	0,21	0,0142			0,11	0,0033		0,0018
AS	rs580962	32927165	0.49	0.0093	0.48	0.0069	0.4	0.0036	0.6514	0.0283
15	re07/257	320/1275	0.15	0.012	0.1	0.0022	0.00	0.0025	0.0044	0.0151
A3	137/433/	329413/3	0,13	0,013	0,1	0,0032	0,08	0,0023	0,0944	0,0151
AS	rs2582	32975998	0,89	0,0094	0,81	0,0063	0,86	0,0043	0,0288	0,3997
AS	TSC0355191	34045067	0,62	0,0092	0,51	0,0168	0,56	0,0061	0,0155	0,1719
AS	TSC0218820	34076050	0.57	0.0206	0.45	0.0146	0.49	0.0058	0.015	0.1026
10	TSC0001279	25206056	0.25	0.0174	0.26	0,0070	0.12	0.0045	0.0215	0.0010
AS	1300991378	33200936	0,23	0,01/4	0,20	0,0008	0,13	0,0045	0,8313	0,0019
AS	rs1010423	36643206	0,82	0,007			0,89	0,0062		0,0255
AS	rs1801270	36653386	0,16	0,0075	0,12	0,0241	0,08	0,0047	0,3318	0,0013
AS	rs236383	36788543	0.27	0.0439	0.14	0.0241	0.16	0.0064	0.037	0.0856
AS	TSC0465106	148850525	0.7	0.0114	0.50	0.0220	0.64	0.0065	0.0244	0 1554
/10 (TD	TSC0403100	140037323	0,7	0,0110	0,59	0,0239	0,04	0,0005	0,0240	0,1554
CD	1SC1001529	22536710	0,35	0,0087	0,22	0,0172	0,24	0,005	0,0054	0,0129
CD	TSC0430303	22676458	0,54	0,0055	0,41	0,0075	0,45	0,0057	0,0077	0,0921

CD ISC089859/ 22/74/15/1 0,71 0,008 0,0012 0,0012 0,0012 0,0012 0,0012 0,0012 0,0012 0,0012 0,0012 0,0012 0,0116 0,028 CD rs79848 24251330 0,26 0,0141 0,116 0,0126 0,032 0,0107 0,033 0,0137 0,033 0,0147 0,0444 0,0417 0,0444 CD TSC0111853 26532414 0,007 0,67 0,0078 0,63 0,0044 0,0457 0,1437 0,143 CD TSC0090653 28913921 0,036 0,0170 0,47 0,0040 0,0437 0,0434 0,0457 0,0438 0,04441 0,0451 0,018 0,0125 0,018 0,0131 0,0441 0,0451 0,0125 0,0137 0,0127 0,0229 0,0331 0,0141 0,0132 0,0141 0,012 0,0444 0,0444 0,0444 0,0444 0,0444 0,012 0,0444 0,012 0,0444 0,0145 0,018	CD	TG G00005(7	22742057	0.71	0.0107	0.01	0.0047	0.70	0.002	0.0002	0.0572	
CD TSC0988041 22967822 0,48 0,0956 0,35 0,0144 0,17 0,0042 0,0197 0,0133 CD TSC0616425 24388166 0,010 0,16 0,0144 0,17 0,0042 0,017 0,0032 0,018 0,0233 0,0418 0,033 0,0032 0,0118 0,007 0,0032 0,0432 0,0118 0,007 0,0032 0,0331 0,4131 CD TSC0090063 28391321 0,63 0,0017 0,007 0,004 0,0033 0,0331 0,4131 CD TSC0090063 28391321 0,63 0,017 0,47 0,0047 0,0031 0,0331 0,0331 0,0331 0,0311 0,47 0,0023 0,0131 0,013 0,014 0,015 0,014 0,016 0,17 0,0046 0,71 0,0042 0,0021 0,0229 0,233 CD TSC0115304 312806540 0,2 0,013 0,0144 0,17 0,0021 0,017 0,0403 0,0216	CD	18C0898567	22/4205/	0,/1	0,0106	0,81	0,0047	0,79	0,003	0,0092	0,05/3	
CD rsy79845 24251330 0.266 0.0110 0.0122 0.01120 0.01120 0.01120 0.01120 0.01170 0.0062 0.0177 0.0033 CD TSC0111853 26323414 0.36 0.0078 0.03 0.0028 0.033 0.0032 0.0137 0.0129 0.1141 0.0105 0.015 0.016 0.0122 0.0127 0.0127 0.0127 0.0127 0.012 0.0137 0.013 0.013 0.013 0.010 0.012 0.011 0.012 0.011 0.012 0.012 0.012 0.012 0.012 0.011 0.012 0.013 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.012 0.013 0.0103 0.0111	CD	TSC0988041	22967892	0,48	0,0096	0,35	0,0126	0,36	0,0032	0,0105	0,0289	
CD TSC0616425 24388166 0.01 0.9451 0.0078 0.931 0.01032 0.0118 0.2249 CD TSC0801514 26600749 0.55 0.0078 0.933 0.01032 0.0148 0.0037 0.0131 0.0447 0.0076 0.01 0.044 0.0071 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0076 0.011 0.047 0.0026 0.013 0.012 0.014 0.017 0.015 0.003 0.0144 0.0157 0.015 0.014 0.0126 0.008 0.014 0.0126 0.018 0.014 0.0126 0.018 0.014 0.0127 0.0014 0.0141 0.0115 0.016 0.53 0.0001 0.022 0.0118 0.0128	CD	rs793845	24251530	0,26	0,0101	0,16	0,0144	0,17	0,0042	0,0197	0,0334	
CD TSC0111851 26523412 0.36 0.0071 0.43 0.0032 0.7148 0.0283 CD TSC080514 2660730 0.55 0.0071 0.47 0.0046 0.0044 0.0045 0.0013 0.0132 0.0412 0.0143 CD TSC0805444 3103106 0.6 0.0176 0.0293 0.721 0.0041 0.0131 0.0132 0.4131 CD TSC0504844 3103106 0.6 0.0194 0.0293 0.021 0.0011 0.0151 0.0153 0.0131 0.0151 0.0157 0.0151 0.0151 0.0151 0.0151 0.0151 0.0151 0.0111 0.015 0.0111 0.015 0.0111 0.0111	CD	TSC0616425	24388166	0.61	0.0451	0.75	0.0122	0.71	0.0062	0.0417	0 2049	
CD TSC011835 2252414 0.68 0.0078 0.93 0.0046 0.0047 0.018 CD TSC0099063 28813921 0.36 0.0171 0.47 0.0081 0.63 0.0046 0.0447 0.0447 0.0447 CD TSC0990 28814462 0.81 0.0076 0.71 0.0011 0.74 0.0041 0.014 0.0447 0.0143 CD TSC0504844 310310166 0.6 0.0120 0.68 0.0223 0.0201 0.0131 0.0314 0.0341 0.0341 0.0314 0.0414 0.0015 0.0125 0.080 0.0133 0.0209 0.333 CD TSC011958 31437148 0.031 0.0239 0.016 0.016 0.016 0.017 0.062 0.0133 0.0224 0.0007 0.0071 0.0264 0.00071 0.0024 0.0141 0.017 0.016 0.014 0.013 0.0271 0.0142 0.0141 0.017 0.016 0.01073 0.0164 0.0164 <td>CD</td> <td>TEC0111952</td> <td>2(202414</td> <td>0.96</td> <td>0,004</td> <td>0.97</td> <td>0,0079</td> <td>0.02</td> <td>0,0022</td> <td>0,7169</td> <td>0,0082</td>	CD	TEC0111952	2(202414	0.96	0,004	0.97	0,0079	0.02	0,0022	0,7169	0,0082	
CD TSC0801314 26600749 0.53 0.007 0.47 0.0085 0.0437 0.01437 CD rs42359 28914462 0.581 0.0076 0.71 0.74 0.0081 0.0131 0.471 CD TSC023382 3108764 0.2 0.021 0.0223 0.021 0.0220 0.0227 0.0227 0.0227 0.0227 0.0227 0.0229 0.022 0.0227 0.0229 0.0217 0.055 0.0012 0.0011 0.0055 0.012 0.0011 0.0022 0.0217 0.0011 0.0022 0.0217 0.0011 0.0022 0.011 0.021 0.011 0.021 0.0011 0.0021 0.011 0.021 0.0011 0.021 0.0011 0.012 0.011 0.021 0.0111 0.021 0.0111 0.021 0.0121 0.055 0.0151 0.021 0.0111 0.022 0.0131 0.0151 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 <td>CD</td> <td>1500111855</td> <td>20323414</td> <td>0,80</td> <td>0,004</td> <td>0,87</td> <td>0,0078</td> <td>0,93</td> <td>0,0032</td> <td>0,/108</td> <td>0,0283</td>	CD	1500111855	20323414	0,80	0,004	0,87	0,0078	0,93	0,0032	0,/108	0,0283	
CD TSC0099063 28913921 0.366 0.017 0.47 0.0091 0.74 0.0041 0.0231 0.0321 0.4512 CD TSC0504844 3103106 0.6 0.0176 0.0091 0.72 0.0047 0.0229 0.1315 CD TSC0504844 3103106 0.6 0.0126 0.08 0.0321 0.0120 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.021 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.014 0.015 0.15 0.015 0.015 0.015 0.015 0.015 0.014 0.014 0.014 0.014 0.014 0.014 0.012 0.014 0.012 0.014 0.013 0.012 0.014 0.015 0.014 0.013	CD	TSC0801514	26600749	0,55	0,007	0,65	0,0078	0,63	0,0046	0,0457	0,1043	
CD rst23369 28914462 0.811 0.0076 0.712 0.0044 0.0250 0.721 0.0047 0.2135 0.0157 CD TSC0229882 31089764 0.2 0.012 0.018 0.023 0.023 0.0231 0.021 0.021 0.022 0.0221 0.0221 0.0221 0.0221 0.0221 0.0221 0.0221 0.0221 0.0221 0.0231 0.0131 0.055 0.0032 0.0231 0.0103 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00041 0.00321 0.0464 0.0455 0.0074 0.0240 0.00321 0.0464 0.00021 0.0156 0.0077 0.0425 0.0074 0.0212 0.0463 0.0072 0.0312 0.0414 0.0312 0.0414 0.0312 0.0414 0.0175 0.3421 0.0163 0.0171 0.44 0.0133 0.0171 0.041 0.0161 0.0175 0.0314	CD	TSC0099063	28913921	0,36	0,0171	0,47	0,0096	0,4	0,0037	0,0321	0,4512	
CD TSC0504844 31030106 0.6 0.021 0.0175 0.0047 0.218 0.0341 0.0155 CD TSC0223932 31089764 0.2 0.021 0.16 0.0125 0.08 0.033 0.3441 0.0054 CD TSC015304 31180402 0.66 0.054 0.75 0.0032 0.022 0.0207 0.0061 CD TSC01562 311418000 0.74 0.0052 0.0137 0.65 0.0037 0.0001 0.0955 CD rs1051785 31437148 0.13 0.021 0.0321 0.054 0.046 0.00022 0.0032 0.521 0.0164 0.052 0.0164 0.0321 0.052 0.0163 CD rs10217211 1.23277898 0.09 0.0121 0.232 0.0144 0.0121 0.0322 0.0132 0.551 0.0072 0.0032 0.0131 0.13 0.0145 0.0151 0.0041 0.3222 0.0144 0.1 0.0042 0.138 0.017	CD	rs429369	28914462	0,81	0,0076	0,71	0,0091	0,74	0,004	0,0269	0,1513	
CD TACC022982 3108974 0.02 0.02 0.0125 0.021 0.0012 0.0021 0.0212 0.0123 0.0213 0.0012 0.0213 0.0012 0.0213 0.0213 0.0103 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0012 0.0151 0.0017 0.0012 0.0013 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0112 0.0013 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.01173 0.0113 0.01173 <td>CD</td> <td>TSC0504844</td> <td>31030106</td> <td>0.6</td> <td>0.0196</td> <td>0.68</td> <td>0.0203</td> <td>0.72</td> <td>0.0047</td> <td>0 2135</td> <td>0.0375</td>	CD	TSC0504844	31030106	0.6	0.0196	0.68	0.0203	0.72	0.0047	0 2135	0.0375	
CD ISC0229382 31089764 0.2 0.001 0.0128 0.0018 0.0148 0.0018 0.0148 0.0018 0.0148 0.0141 0.0018 0.0148 0.0121 0.0018 0.0148 0.0121 0.0012 0.0022 0.0022 0.0021 0.0031 0.0121 0.064 0.0021 0.0131 0.051 0.0041 0.0121 0.064 0.0021 0.0131 0.51 0.0041 0.0131 0.51 0.0041 0.0131 0.51 0.0041 0.0131 0.51 0.0041 0.0131 0.51 <t< td=""><td>CD</td><td>TSC0304844</td><td>21090764</td><td>0,0</td><td>0,0170</td><td>0,00</td><td>0,0275</td><td>0,72</td><td>0,0047</td><td>0,2133</td><td>0,0373</td></t<>	CD	TSC0304844	21090764	0,0	0,0170	0,00	0,0275	0,72	0,0047	0,2133	0,0373	
CD rsl265109 31189402 0.66 0.005 0.72 0.0022 0.0229 0.2483 CD TSC0210562 31418000 0.74 0.0050 0.017 0.055 0.0037 0.0001 0.0037 0.0001 0.0037 0.0003 0.00037 0.00032 0.0032 0.0032 0.0032 0.0032 0.0154 0.0221 0.0164 0.00032 0.01621 0.00032 0.01621 0.00032 0.01621 0.00032 0.01621 0.00032 0.01621 0.0163 0.00072 0.0163 0.00072 0.0164 0.55 0.0017 0.01623 0.0172 0.0164 0.53 0.00072 0.0163 0.0072 0.0164 0.033 0.0172 0.0164 0.013 0.0172 0.0164 0.013 0.0172 0.0133 0.0172 0.0133 0.0173 0.451 0.00133 0.0177 0.0261 0.0033 0.0137 0.551 0.0081 0.01614 0.013 0.0137 0.551 0.0013 0.0173 0.1779 0.0033	CD	18C0229382	31089764	0,2	0,021	0,16	0,0125	0,08	0,0038	0,3441	0,0051	
CD TSC0115304 311296306 0,79 0,006 0,75 0,002 0,0020 0,0031 0,0030 0,0030 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0031 0,0161 0,0032 0,0171 0,0246 0,0002 0,0031 0,0161 0,0031 0,0171 0,0246 0,0001 0,0031 0,0171 0,0161 0,0031 0,0121 0,014 0,0041 0,0312 0,0521 0,0041 0,0312 0,0524 0,0041 0,0312 0,053 0,0071 0,0042 0,1179 3,821-08 0,015 0,017 0,0042 0,179 3,821-08 0,015 0,014 0,012 0,0041 0,0121 0,0027 0,0226 0,037 0,0226 0,037 0,0226 0,037 0,0226 0,037 0,0126 0,0126 0,0126 0,0127 0,0241 0,0013	CD	rs1265109	31180402	0,66	0,0054	0,76	0,0038	0,72	0,0022	0,0207	0,2487	
CD TSC0210562 31418000 0.74 0.0032 0.65 0.0037 0.0001 0.0935 CD rs1266079 31563671 0.32 0.0116 0.24 0.0355 0.15 0.0074 0.2046 0.0002 CD rs406936 31991918 0.16 0.0081 0.14 0.0085 0.066 0.0032 0.5521 0.0002 CD TSC0270244 32327885 0.06 0.0190 0.55 0.0077 0.0023 0.521 0.0131 CD rs15332 32501710 0.27 0.0176 0.093 0.0027 0.0331 0.021 0.0133 0.012 0.024 0.0135 0.07 0.0027 0.382 0.044 CD rs12381896 3125288571 0.010 0.0121 0.0035 0.0027 0.038 0.0427 0.038 0.0424 0.0103 0.012 0.0025 0.0013 0.012 0.0025 0.0013 0.012 0.0025 0.0013 0.0124 0.0012 0.0025	CD	TSC0115304	31296306	0,79	0,0065	0,7	0,006	0,75	0,0052	0,0299	0,33	
CD n1051755 31437148 0.13 0.0239 0.02 0.0027 0.0030 CD n1266079 31563671 0.32 0.0116 0.24 0.0355 0.15 0.0074 0.2046 0.00032 CD rs406936 31991915 0.16 0.0081 0.15 0.55 0.0077 0.052 0.018 CD rs60276244 32436818 0.32 0.00066 0.57 0.0097 0.633 0.0072 0.0132 0.6549 CD rs8084 32436818 0.32 0.0006 0.57 0.0099 0.073 4.317E-05 CD rs1281896 32527892 0.3 0.012 0.24 0.0141 0.1 0.0027 0.0282 0.0142 CD rs2181896 32527892 0.3 0.0124 0.0135 0.015 0.0081 0.0279 0.351 0.0084 0.00105 0.0165 0.0148 0.0260 0.51 0.0043 0.0216 0.55 0.0044 0.075 0.00	CD	TSC0210562	31418000	0,74	0,0092	0,54	0,0137	0,65	0,0037	0,0001	0,0956	
CD F1266079 5135371 0.32 0.0116 0.0455 0.13 0.0074 0.2044 0.0002 CD rs406936 31991918 0.16 0.0081 0.14 0.0085 0.05 0.0077 0.0223 0.0010 CD TSC0270244 323272889 0.60 0.0191 0.55 0.0077 0.0232 0.5521 0.0016 0.53 0.0077 0.0232 0.0312 0.64 0.0041 0.332 0.013 0.013 4.517E.05 CD rs15322 32501710 0.27 0.0176 0.095 0.062 0.013 0.077 0.0823 0.014 0.11 0.0044 0.175 3.82E40 CD rs12381896 322585571 0.40 0.0012 0.0033 0.077 0.083 0.0027 0.083 0.0027 0.0013 0.12 0.0005 0.0027 0.0168 0.55 0.0048 0.0025 0.0013 0.124 0.0025 0.0017 0.55 0.0048 0.0214 0.0027	CD	rs1051785	31437148	0.13	0.0239	,	,	0.02	0.0027	,	0.0033	
CD Is1260079 Is1260079 Is1260079 Is1260079 Is1260079 Is1260079 Is1260079 Is1260079 Is126070 Is126070 Is126070 Is126070 Is126070 Is126070 Is1270 Is12700 Is12700 Is1270 <	CD	131031703	21562671	0,15	0,0237	0.24	0.0255	0,02	0,0027	0.2046	0,0000	
CD rs406936 31991915 0.16 0.0088 0.048 0.0085 0.0073 0.0525 0.00180 CD TSC0270244 322406516 0.5 0.0077 0.0625 0.00180 0.55 0.0077 0.0625 0.00180 CD rs8084 32436516 0.5 0.0066 0.57 0.0066 0.57 0.0041 0.0212 0.0130 CD rs1332 32501710 0.27 0.014 0.014 0.10 0.0042 0.0173 3.82E CD rs1281896 3252558571 0.141 0.0013 0.071 0.51 0.0043 0.0216 0.0783 CD rs214103 32868521 0.69 0.0073 0.55 0.0044 0.0027 0.0101 CD rs203576 3300568 0.45 0.0077 0.33 0.0056 0.44 0.0025 0.013 0.124 0.0027 0.0101 0.124 0.0025 0.011 0.1404 0.0026 0.251 0.0044 0.	CD	IS12000/9	313030/1	0,32	0,0116	0,24	0,0355	0,15	0,0074	0,2046	0,0002	
CD TSC0210241 32372089 0.69 0.0191 0.59 0.0154 0.555 0.0072 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0154 CD rs8084 32436818 0.52 0.0066 0.57 0.0096 0.64 0.0042 0.135 0.017 0.0042 0.135 CD rs1729 32527892 0.013 0.012 0.24 0.0141 0.11 0.0042 0.0128 0.0128 CD rs1281896 32528571 0.14 0.0071 0.24 0.0171 0.012 0.0042 0.0128 0.0013 CD rs1281896 32586491 0.21 0.0013 0.12 0.0081 0.0121 0.0027 0.0101 0.121 0.0027 0.0101 0.121 0.0027 0.0101 0.121 0.0027 0.0104 0.0121 0.0121 CD rs241403 32468521 0.40 0.0107 0.121 0.0125 0.0048 0.0246	CD	rs406936	31991915	0,16	0,0081	0,14	0,0085	0,06	0,0032	0,5521	0,0009	
CD TSC0276264 32406516 0.5 0.0098 0.62 0.0016 0.53 0.0072 0.0312 0.634 CD rs8084 32436818 0.52 0.0066 0.57 0.0096 0.041 0.0312 0.0312 0.0327 0.0332 CD rs13332 32501710 0.27 0.0176 0.099 0.0073 -4.517E-05 CD rs12896 325258571 0.014 0.0271 0.224 0.0135 0.0702 0.0226 0.0137 0.51 0.0081 0.0621 0.0021 CD TSC0879839 32686491 0.21 0.0103 0.12 0.0007 0.016 0.55 0.0043 0.0216 0.788 CD rs1063478 32919013 0.22 0.0081 0.12 0.0027 0.0101 0.1246 0.0025 0.0013 0.1246 0.0025 0.0115 0.0148 0.57 0.0046 0.449 0.049 0.015 0.0434 0.0457 0.0140 0.0115 0.04246	CD	TSC0210241	32372089	0,69	0,0191	0,59	0,0154	0,55	0,0077	0,0625	0,0183	
CD Is8084 32436818 0.52 0.0066 0.57 0.0096 0.64 0.0041 0.3272 0.033 CD Is1332 32501710 0.27 0.0176 0.09 0.0073 4,517E-0 CD Is1281896 32558571 0.14 0.0071 0.24 0.0141 0.10042 0.0282 0.0143 CD Is1281896 32558571 0.14 0.0071 0.24 0.0141 0.0027 0.0032 CD Is1281896 32558571 0.14 0.0071 0.24 0.0141 0.0027 0.0033 CD Is1063478 325868521 0.69 0.0079 0.55 0.0048 0.0027 0.0101 CD Is201478 33206558 0.45 0.0077 0.33 0.0072 0.0033 0.0124 0.0127 0.0103 0.124 0.0072 0.013 0.124 0.0075 0.0148 0.51 0.0148 0.51 0.0148 0.51 0.0148 0.013 0.124 0.0	CD	TSC0276264	32406516	0,5	0,0098	0,62	0,016	0,53	0,0072	0,0312	0,6549	
CD FA1332 22501710 0.27 0.0176 0.009 0.0013	CD	rs8084	32436818	0.52	0.0066	0.57	0.0096	0.64	0.0041	0 3272	0.034	
CD rs1252 rs221892 rs231892 rs231896 rs231896 rs231896 rs231896 rs231896 rs23258571 rs241403 rs23258571 rs241403 rs23258571 rs241403 rs241403 rs2368421 rs241403 rs241403 rs2868521 rs241403 rs216055 rs241403 rs216055 rs211036873 rs1414640 rs3216055 rs211036873 rs1414640 rs323083 rs325655 rs3236955 rs3236955 rs3216055 rs3236955 rs3236955 rs3236955 rs3236955 rs3236955 rs3236955 <th rs323607<="" td=""><td>CD</td><td>rs15332</td><td>32501710</td><td>0.27</td><td>0.0176</td><td>•,• •</td><td>0,002.0</td><td>0.00</td><td>0.0073</td><td>*,* = / =</td><td>4.517E-05</td></th>	<td>CD</td> <td>rs15332</td> <td>32501710</td> <td>0.27</td> <td>0.0176</td> <td>•,• •</td> <td>0,002.0</td> <td>0.00</td> <td>0.0073</td> <td>*,* = / =</td> <td>4.517E-05</td>	CD	rs15332	32501710	0.27	0.0176	•,• •	0,002.0	0.00	0.0073	*,* = / =	4.517E-05
CD rsi129 32327892 0.31 0.012 0.0135 0.07 0.0027 0.0228 0.0135 0.07 0.0021 0.0033 CD rsC0879839 32268041 0.21 0.0013 0.135 0.07 0.0031 0.0216 0.0032 CD rsC0879839 32268641 0.21 0.0013 0.12 0.0043 0.0021 0.0103 CD rs208776 33050658 0.45 0.007 0.35 0.0056 0.2441 0.0055 CD rsC0355191 34045067 0.66 0.0108 0.51 0.0168 0.57 0.0054 0.0055 0.1219 CD rsC0355191 34045067 0.66 0.018 0.51 0.0168 0.57 0.0054 0.0058 0.124 0.017 0.18 0.038 0.0139 0.124 0.017 0.18 0.038 0.0139 0.024 0.0171 0.0130 0.031 CD rs579627 34198520 0.0148 0.26 0.0068<	CD	na1720	22527802	0,27	0,0170	0.24	0.0141	0,07	0,0073	0.1750	2,92E 09	
CD rs1281896 3258871 0,14 0,0071 0,24 0,0137 0,51 0,0081 0,0621 0,0013 CD rsC0116798 32620000 0.09 0,0222 0,0091 0,0137 0,51 0,0081 0,0621 0,0039 CD rsC0879839 32686491 0,22 0,0081 0,12 0,0095 0,19 0,0043 0,0216 0,079 CD rsC063478 32919013 0,022 0,0081 0,121 0,0054 0,0255 CD rsC0355191 34045067 0,66 0,0108 0,51 0,0168 0,57 0,0054 0,0246 0,017 CD rsC0355191 34045067 0,66 0,0108 0,137 0,18 0,0033 0,0027 CD rsC364872 34148630 0,31 0,0013 0,138 0,0047 0,0113 0,0131 0,0143 0,0047 0,0113 0,0133 0,0143 0,0047 0,0113 0,0133 0,0102 0,331 0,0016	CD	rs1/29	32327892	0,3	0,012	0,24	0,0141	0,1	0,0042	0,1739	3,82E-08	
CD TSC0116798 32620000 0.69 0.0226 0.59 0.0137 0.51 0.0081 0.0621 0.0003 CD TSC01479839 32686491 0.21 0.0003 0.12 0.0003 0.0216 0.0079 CD rs241403 32868521 0.69 0.0079 0.55 0.0048 0.0010 CD rs28976 33050658 0.45 0.007 0.38 0.0279 0.33 0.0056 0.2461 0.0025 CD TSC0355191 34045067 0.66 0.0108 0.51 0.0168 0.57 0.0054 0.007 CD TSC0355191 34045067 0.66 0.0108 0.51 0.0168 0.57 0.0034 0.0126 0.0075 0.317 0.0102 CD TSC0991378 35206956 0.15 0.0148 0.26 0.0068 0.14 0.0017 0.0115 0.0037 CD rs794 35397210 0.88 0.0242 0.0075 0.0037 0.0170	CD	rs1281896	32558571	0,14	0,0071	0,24	0,0135	0,07	0,0027	0,0282	0,0145	
CD TSC0879839 32686491 0.21 0.0103 0,12 0.0095 0,19 0.0048 0.0216 0.7885 CD rs241403 32868521 0,69 0.0079 0.55 0.0048 0.0027 0.0101 CD rs1663478 32919013 0.22 0.0081 0.12 0.0027 0.0101 CD rs2035191 34045067 0.66 0.0108 0.51 0.0168 0.57 0.0054 0.0005 0.1219 CD rs2015191 34045067 0.66 0.0108 0.18 0.0031 0.0124 0.0005 0.1119 0.0088 0.14 0.0047 0.0113 0.1246 0.0079 CD rs5091378 35209550 0.15 0.0148 0.26 0.0071 0.0103 0.0331 0.0010 CD rs602932 35983052 0.31 0.0098 0.23 0.0062 0.0228 0.0781 CD rs15713977 36923108 0.56 0.014 0.017	CD	TSC0116798	32620000	0,69	0,0226	0,59	0,0137	0,51	0,0081	0,0621	0,0032	
CD rs241403 32868521 0.69 0.0079 0.55 0.0048 0.0099 CD rs1063478 32919013 0.22 0.0081 0.12 0.0027 0.0101 DD rs28976 33050658 0.45 0.007 0.38 0.0279 0.33 0.0056 0.2461 0.0255 CD TSC0355191 34045067 0.66 0.0108 0.51 0.0168 0.57 0.0054 0.0038 0.0399 0.0497 CD TSC0991378 35206956 0.15 0.0148 0.26 0.0068 0.14 0.0047 0.0115 0.0188 0.0047 0.0130 0.033 0.0331 0.0010 CD rs9794 35397210 0.88 0.0045 0.77 0.0190 0.062 0.0228 0.0731 0.0117 0.0103 0.0317 0.0102 CD rs4598 36463422 0.31 0.0024 0.17 0.0049 0.1725 0.028 0.0727 0.0218 0.0617 0.0	CD	TSC0879839	32686491	0,21	0,0103	0,12	0,0095	0,19	0,0043	0,0216	0,7885	
CD rs 1063478 32919013 0,22 0,0081 0,12 0,0027 0,0101 CD rs 228976 33050658 0,45 0,007 0,38 0,0279 0,33 0,0055 0,2461 0,0055 0,2461 0,0055 0,0054 0,0055 0,1219 CD TSC0136873 34144640 0,93 0,0097 0,97 0,0069 0,98 0,0013 0,1246 0,0079 CD rsC0991378 35206956 0,15 0,0148 0,26 0,0068 0,14 0,0047 0,0113 0,0339 0,0311 0,0013 CD rs602932 35983052 0,39 0,0088 0,28 0,019 0,26 0,0075 0,0317 0,0102 CD rs4398 36463422 0,31 0,0063 0,11 0,0047 0,17 0,0042 0,172 0,0022 0,0815 0,023 CD rs195751 37254144 0,17 0,0053 0,11 0,0047 0,101 0,0024 0,0	CD	rs241403	32868521	0.69	0.0079			0.55	0.0048		0.0099	
CD Exception Exception Exception Exception Exception CD rs928976 33030658 0,45 0,007 0,38 0,0129 0,33 0,0036 0,2461 0,0255 CD TSC0136873 34144640 0,93 0,0097 0,97 0,0066 0,98 0,0013 0,1246 0,0075 CD rs1759627 34198520 0,31 0,0358 0,19 0,117 0,118 0,0047 0,0115 0,0048 0,047 CD rs70794 35397210 0,88 0,0045 0,77 0,0304 0,71 0,0047 0,0115 0,0331 0,0012 CD rs4598 36463422 0,31 0,0093 0,21 0,0089 0,23 0,0062 0,0228 0,0717 0,0049 0,1725 0,028 CD rs157513 37254144 0,17 0,0033 0,11 0,0047 0,1 0,0022 0,818 0,429 0,024 CD rs1757191 374	CD	rs1063478	32919013	0.22	0.0081			0.12	0.0027		0.0101	
CD ISV2976 3300035 0,017 0,38 0,0279 0,33 0,02401 0,02401 0,0254 CD TSC0136873 34146400 0,31 0,068 0,0168 0,57 0,0054 0,0054 0,0051 0,1219 CD TSC0136873 34148520 0,31 0,0358 0,19 0,0137 0,18 0,0038 0,0399 0,0077 CD TSC0991378 35200556 0,15 0,0148 0,22 0,0064 0,14 0,0013 0,0131 0,0017 0,0131 0,0013 0,0131 0,0017 0,0131 0,0017 0,0131 0,0017 0,0131 0,0017 0,0131 0,0017 0,0131 0,0017 0,0128 0,0228 0,0023 0,0012 0,083 0,0012 0,083 0,0213 0,0012 0,022 0,0023 0,0012 0,013 0,012 0,023 0,0012 0,0031 0,012 0,023 0,012 0,0317 0,0023 0,0114 0,077 0,0216 0,024 0	CD	rc028076	22050658	0,22	0,0001	0.28	0.0270	0.22	0,0027	0.2461	0,0101	
CD TSC0355191 34043067 0.66 0.0108 0.37 0.0054 0.0013 0.1216 0.007 CD TSC036873 34144640 0.93 0.0097 0.97 0.0068 0.148 0.0038 0.0238 0.0137 0.18 0.0038 0.0399 0.0497 CD TSC0991378 35206956 0.15 0.0148 0.26 0.0068 0.14 0.0047 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0147 0.01047 0.0131 0.0047 CD rs602932 35983052 0.39 0.0088 0.28 0.011 0.0042 0.0217 0.0042 0.0217 0.0042 0.01725 0.0228 0.071 0.0051 0.0052 0.0218 0.0727 0.0052 0.0815 0.0427 CD rs75751 37254144 0.17 0.0053 0.111 0.0047 0.1 0.0098 0.377 0.0042 0.0814 0.297 0.0127 0.033	CD	18928970	33030038	0,43	0,007	0,38	0,0279	0,33	0,0030	0,2401	0,0233	
CD TSC0136873 34144640 0.93 0.0097 0.0069 0.98 0.0013 0.1246 0.0079 CD rs1759627 34198520 0.31 0.0358 0.19 0.0137 0.18 0.0038 0.0399 0.0497 CD rsSC0991378 35206956 0.15 0.0148 0.26 0.0068 0.14 0.047 0.0113 0.0331 0.0010 CD rs639232 35983052 0.39 0.0088 0.28 0.010 0.26 0.0075 0.0317 0.0102 CD rs4598 36463422 0.31 0.0093 0.21 0.043 0.0051 0.0337 0.028 CD rs157513 37254144 0.17 0.0053 0.11 0.0047 0.102 0.46 0.041 0.271 0.0224 CD rs157511 37254144 0.17 0.0053 0.11 0.077 0.0067 2.2114.0024 CD rs1602969 103429065 0.56 0.0114 0.077	CD	TSC0355191	34045067	0,66	0,0108	0,51	0,0168	0,57	0,0054	0,005	0,1219	
CD rs1759627 34198520 0,31 0,0358 0,19 0,0137 0,18 0,0038 0,0399 0,0497 CD TSC0991378 35206956 0,15 0,0148 0,26 0,0068 0,14 0,0013 0,0012 0,0042 0,0123 0,0062 0,0228 0,0728 CD rs1571397 36923108 0,56 0,021 0,0433 0,0021 0,0032 0,0811 0,0249 CD rs1757191 37484286 0,72 0,0293 0,58 0,0563 0,57 0,0098 0,475 0,0475 0,0475 CD rs1757191 37484286 0,75 0,0007 0,82 0,0047 0,0101 <td< td=""><td>CD</td><td>TSC0136873</td><td>34144640</td><td>0,93</td><td>0,0097</td><td>0,97</td><td>0,0069</td><td>0,98</td><td>0,0013</td><td>0,1246</td><td>0,0079</td></td<>	CD	TSC0136873	34144640	0,93	0,0097	0,97	0,0069	0,98	0,0013	0,1246	0,0079	
CD TSC0991378 35206956 0,15 0,0148 0,26 0,0068 0,14 0,0047 0,0115 0,9088 CD rs6794 3539710 0,88 0,0048 0,77 0,0304 0,71 0,0103 0,0031 0,0010 CD rs602932 35983052 0,39 0,0088 0,228 0,019 0,226 0,0022 0,0228 0,0172 0,0228 0,0172 0,0288 0,0061 0,0041 0,0051 0,00334 CD rs1571397 36923108 0,56 0,002 0,043 0,0061 0,0032 0,0815 0,0424 CD rs157571 37254144 0,17 0,0053 0,11 0,0047 0,1002 0,0851 0,0249 CD rs1002969 103429065 0,56 0,0114 0,77 0,0064 0,00475 0,0414 IgE TSC0068920 22422585 0,75 0,0098 0,87 0,0102 0,86 0,0047 0,0111 0,0044 0,0014	CD	rs1759627	34198520	0,31	0,0358	0,19	0,0137	0,18	0,0038	0,0399	0,0497	
CD rs9794 35397210 0.88 0.0045 0.77 0.0304 0.71 0.0103 0.0331 0.001 CD rs602932 35983052 0.39 0.0088 0.28 0.019 0.26 0.0075 0.0317 0.0102 CD rs4598 36463422 0.31 0.0093 0.21 0.0089 0.22 0.0049 0.172 0.0028 CD rs1571397 36923108 0.56 0.002 0.43 0.0031 0.0032 0.0815 0.0427 CD rs1757191 37484286 0.72 0.0293 0.58 0.0563 0.57 0.0099 0.0815 0.0427 CD rs170591 91039382 0.33 0.0141 0.39 0.0122 0.46 0.0041 0.271 0.0248 CD rs1002969 103429065 0.56 0.0114 0.77 0.0067 0.82 0.0047 0.0101 0.0443 IgE TSC04069890 22674755 0.67 0.0071	CD	TSC0991378	35206956	0,15	0,0148	0,26	0,0068	0,14	0,0047	0,0115	0,9088	
CD rs602932 35983052 0,008 0,28 0,0050 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0105 0,0015 0,0012 0,0049 0,125 0,0028 0,0051 0,0032 0,0015 0,0033 0,0141 0,0031 0,0032 0,0815 0,0024 CD rs1571397 37254144 0,17 0,0053 0,11 0,0047 0,1 0,0032 0,0815 0,0224 CD rs1575191 37254144 0,17 0,0053 0,11 0,0047 0,1 0,0032 0,0815 0,0224 CD rs195751 37254144 0,17 0,0053 0,0114 0,39 0,0122 0,46 0,0041 0,271 0,0249 CD rs1002969 103429065 0,56 0,0114 0,37 0,0067 0,43 0,0044 0,0014 0,012 0,46 0,0044 0,0014 <td>CD</td> <td>rs9794</td> <td>35397210</td> <td>0.88</td> <td>0.0045</td> <td>0.77</td> <td>0.0304</td> <td>0.71</td> <td>0.0103</td> <td>0.0331</td> <td>0.001</td>	CD	rs9794	35397210	0.88	0.0045	0.77	0.0304	0.71	0.0103	0.0331	0.001	
CD rs60292 rs783032 0,073 0,028 0,079 0,20 0,0073 0,0071 0,0073 0,0071 0,0073 0,0071 0,0071 0,0071 0,0071 0,0071 0,0072 0,0073 0,0071 0,0072 0,0073 0,0071 0,0042 0,0711 0,0042 0,0171 0,0049 0,1725 0,028 CD rs195751 37254144 0,17 0,0053 0,11 0,0047 0,11 0,0032 0,0815 0,0224 CD rs1757191 3748428 0,72 0,0293 0,58 0,565 0,57 0,009 0,0851 0,0294 CD rs1757191 3748428 0,72 0,0293 0,88 0,0067 0,82 0,0041 0,271 0,0249 CD rs170591 91039382 0,33 0,0114 0,39 0,0102 0,86 0,0064 0,0414 0,0271 0,0271 0,0248 0,0211 0,0043 0,0111 0,22 0,0031 0,0444 0,0111	CD	rs602022	25082052	0.20	0,0088	0.28	0.010	0.26	0.0075	0.0217	0.0102	
CD rs4398 36463422 0,11 0,0093 0,21 0,0089 0,223 0,0062 0,0228 0,0728 CD rs236383 36788543 0.08 0,0063 0,14 0,0241 0,17 0,0049 0,1725 0,0288 CD rs1571397 36923108 0,56 0,02 0,43 0,0051 0,0334 CD rs1757191 37484286 0,72 0,0293 0,58 0,0563 0,57 0,009 0,0851 0,0249 CD rs1002969 103429065 0,56 0,0114 0,77 0,0067 2,021E-05 IgE TSC0008929 22422585 0,75 0,0098 0,87 0,0102 0,86 0,0047 0,0101 0,0048 IgE TSC0430303 22676458 0,59 0,014 0,41 0,0075 0,45 0,0024 0,0043 0,0248 0,0074 0,0043 0,0281 Ige TSC0430303 22676458 0,98 0,0026 0,92 0,0085	CD	18002932	33983032	0,39	0,0088	0,28	0,019	0,20	0,0073	0,0317	0,0102	
CD rs236383 36788543 0,08 0,0063 0,14 0,0241 0,17 0,0049 0,172 0,002 CD rs1571397 36923108 0,56 0,02 0,43 0,0051 0,0334 CD rs195751 37254144 0,17 0,0053 0,11 0,00427 0,1<0,0032	CD	rs4598	36463422	0,31	0,0093	0,21	0,0089	0,23	0,0062	0,0228	0,0781	
CD rs1571397 36923108 0,56 0,02 0,43 0,0031 0,0332 CD rs195751 37254144 0,17 0,0053 0,11 0,0047 0,1 0,0032 0,0815 0,0247 CD rs1757191 37484286 0,72 0,0293 0,58 0,0563 0,57 0,009 0,0851 0,0249 CD rs1002969 103429065 0,56 0,0114 0,77 0,0067 2,021E-05 IgE TSC0069890 22422585 0,75 0,0098 0,87 0,0102 0,86 0,0064 0,0248 0,0514 IgE TSC0408929 22422585 0,57 0,0007 0,43 0,0057 0,4504 0,0047 0,0110 0,0048 0,0044 0,0044 0,0248 0,0544 0,0024 0,0055 0,26 0,0033 0,0024 0,0045 1,22 0,0033 0,0044 0,0043 0,814 IgE TSC0440927 22757368 0,98 0,0016 0,82 0,0113	CD	rs236383	36788543	0,08	0,0063	0,14	0,0241	0,17	0,0049	0,1725	0,0288	
CD rs195751 37254144 0,17 0,0053 0,11 0,0047 0,1 0,0032 0,0815 0,0427 CD rs1757191 37484286 0,72 0,0293 0,58 0,0563 0,57 0,009 0,0851 0,0294 CD rs1002969 103429065 0,56 0,0114 0,77 0,0067 2,021E-05 IgE TSC0008929 22422585 0,75 0,0098 0,87 0,0102 0,86 0,0047 0,0101 0,0048 IgE TSC00430303 22676458 0,59 0,0104 0,41 0,0075 0,45 0,0054 0,0248 0,0514 IgE TSC0440927 22757368 0,08 0,006 0,29 0,0035 0,26 0,0033 0,024 0,0043 0,0848 IgE TSC0364066 23443216 0,32 0,0038 0,26 0,0031 0,0403 0,0848 IgE TSC0843973 24131834 0,93 0,006 0,82 0,0134	CD	rs1571397	36923108	0,56	0,02			0,43	0,0051		0,0334	
CD rs1757191 37484286 0,72 0,0293 0,58 0,0563 0,57 0,009 0,0851 0,0294 CD rs790591 91039382 0,33 0,0141 0,39 0,0122 0,46 0,0041 0,271 0,0244 CD rs1002969 103429065 0,56 0,0114 0,77 0,0067 2,021E-05 IgE TSC0008929 22422585 0,75 0,0098 0,87 0,0102 0,86 0,0047 0,0101 0,0043 IgE TSC0440927 22757368 0,59 0,0104 0,41 0,0075 0,45 0,0024 0,0044 IgE TSC0440927 22757368 0,08 0,006 0,29 0,0085 0,26 0,0033 0,0248 0,0041 IgE TSC0440927 22757368 0,98 0,002 0,88 0,0076 0,91 0,0031 0,0403 0,0248 IgE TSC0967106 24123578 0,98 0,0027 0,17 0,0077 <	CD	rs195751	37254144	0,17	0,0053	0,11	0,0047	0,1	0,0032	0,0815	0,0427	
CD rs790591 91039382 0,33 0,0141 0,39 0,0122 0,46 0,0041 0,271 0,0249 CD rs790591 103429065 0,56 0,0114 0,77 0,0067 2,021E-05 IgE TSC0008929 22422585 0,75 0,0098 0,87 0,0102 0,86 0,0068 0,0475 0,0443 IgE TSC0069890 22654755 0,67 0,0071 0,83 0,0067 0,82 0,0047 0,0101 0,0048 IgE TSC0440927 22757368 0,08 0,006 0,29 0,0035 0,26 0,0033 0,024 0,0042 IgE TSC0440927 22757368 0,98 0,002 0,88 0,0076 0,91 0,0031 0,0403 0,0881 IgE TSC0440973 24131834 0,93 0,006 0,82 0,0134 0,8 0,0073 0,0765 0,0221 IgE TSC0802184 24399183 0,42 0,0139 0,58 <t< td=""><td>CD</td><td>rs1757191</td><td>37484286</td><td>0.72</td><td>0.0293</td><td>0.58</td><td>0.0563</td><td>0.57</td><td>0.009</td><td>0.0851</td><td>0.0294</td></t<>	CD	rs1757191	37484286	0.72	0.0293	0.58	0.0563	0.57	0.009	0.0851	0.0294	
CD rs1700371 C103750 C,037 C,0171 C,0077 C,00471 C,0271 C,00471 C,0271 C,00471 C,0271 C,00471 C,0271 C,00471 C,0077 C,0067 C,00443 IgE TSC0008929 22422585 0,75 0,0098 0,87 0,0102 0,86 0,0068 0,0443 0,0443 IgE TSC0049890 22654755 0,67 0,0071 0,83 0,0067 0,82 0,0047 0,0101 0,0048 IgE TSC0440927 22757368 0,98 0,006 0,29 0,0085 0,26 0,0031 0,0248 0,0043 IgE TSC0364606 23443216 0,32 0,0038 0,25 0,0113 0,2 0,0031 0,0403 0,0881 IgE TSC0364606 23443216 0,32 0,0026 0,88 0,0073 0,0765 0,0251 IgE TSC0802184 24399183 0,42 0,0139 0,58 0,0166 0,58 0,0061 0,	CD	rs790591	91039382	0.33	0.0141	0.39	0.0122	0.46	0.0041	0.271	0.0249	
CD IS1002969 10342905 0,36 0,0114 0,77 0,0067 2,021E-05 IgE TSC0008929 22422585 0,67 0,0012 0,86 0,0068 0,0475 0,0443 IgE TSC0069890 22654755 0,67 0,0014 0,41 0,0075 0,45 0,0047 0,0101 0,0048 IgE TSC0430303 22676458 0,59 0,0104 0,41 0,0075 0,45 0,0024 0,0044 IgE TSC0440927 22757368 0,08 0,006 0,29 0,0085 0,26 0,0031 0,0248 0,0043 IgE TSC0967106 24123578 0,98 0,002 0,88 0,0076 0,91 0,0031 0,0403 0,0881 IgE TSC0967106 24123578 0,98 0,002 0,88 0,0076 0,91 0,0031 0,0403 0,081 IgE TSC0802184 24399183 0,42 0,0139 0,58 0,0166 0,58 0,0088	CD	n=1002060	102420065	0,55	0,0141	0,57	0,0122	0,77	0,0041	0,271	2.021E.05	
IgE TSC0008929 22422585 0,75 0,0098 0,87 0,0102 0,86 0,00475 0,0443 IgE TSC0069890 22654755 0,67 0,0071 0,83 0,0067 0,82 0,0047 0,0101 0,0044 IgE TSC0440927 22757368 0,59 0,0104 0,41 0,0075 0,45 0,0054 0,0248 0,0044 IgE TSC0440927 22757368 0,08 0,006 0,22 0,0085 0,26 0,0033 0,0224 0,0034 IgE TSC0440927 224757368 0,98 0,002 0,88 0,0076 0,91 0,0031 0,0403 0,0881 IgE TSC0843973 24131834 0,93 0,006 0,82 0,0134 0,8 0,0077 0,0263 0,0457 0,0262 IgE TSC0843973 24131834 0,93 0,006 0,82 0,0144 0,8 0,0077 0,0263 0,0263 0,0161 0,0151 0,1139 0,128	CD	181002909	103429003	0,50	0,0114			0,77	0,0007		2,021E-03	
IgE TSC0069890 22654755 0,67 0,0071 0,83 0,0067 0,82 0,0047 0,0101 0,0048 IgE TSC0430303 22676458 0,59 0,0104 0,41 0,0075 0,45 0,0054 0,0248 0,0514 IgE TSC0440927 22757368 0,08 0,006 0,29 0,0085 0,26 0,0033 0,024 0,0044 IgE TSC0364606 23443216 0,32 0,0038 0,25 0,0113 0,2 0,0037 0,2872 0,0324 IgE TSC0967106 24123578 0,98 0,002 0,88 0,0073 0,0765 0,0221 IgE TSC0802184 24399183 0,42 0,0139 0,58 0,0166 0,58 0,0088 0,0457 0,0220 IgE TSC0802184 24399183 0,42 0,019 0,227 0,17 0,0077 0,0283 0,0214 IgE TSC0244678 25475167 0,77 0,02 0,57	IgE	TSC0008929	22422585	0,75	0,0098	0,87	0,0102	0,86	0,0068	0,0475	0,0443	
IgETSC0430303226764580,590,01040,410,00750,450,00540,02480,0514IgETSC0440927227573680,080,0060,290,00850,260,00530,00240,0045IgETSC0964606234432160,320,00380,250,01130,20,00370,28720,0324IgETSC0967106241235780,980,0020,880,00760,910,00310,04030,0881IgETSC0843973241318340,930,0060,820,01340,80,00730,07650,02262IgETSC0802184243991830,420,01390,580,01660,580,00880,04570,02623IgETSC0244678254751670,770,020,570,00660,650,00610,01510,1139IgETSC104420258073700,160,00950,060,00570,0092IgETSC02597575258664430,640,00410,780,03630,790,00490,8820,0095IgETSC032593259034850,360,02330,490,01280,520,00920,13340,0423IgETSC032593263909040,50,00570,630,00530,650,00430,07040,0262IgETSC0901066266305270,840,00430,470,00960,380,00490,02250,1845IgETSC015613	IgE	TSC0069890	22654755	0,67	0,0071	0,83	0,0067	0,82	0,0047	0,0101	0,0048	
IgE TSC0440927 22757368 0.08 0.006 0.29 0.0085 0.26 0.0053 0.0024 0.0045 IgE TSC0364606 23443216 0.32 0.0038 0.25 0.0113 0.2 0.0037 0.2872 0.0324 IgE TSC0967106 24123578 0.98 0.002 0.88 0.0076 0.91 0.0031 0.0403 0.0881 IgE TSC0843973 24131834 0.93 0.006 0.82 0.0134 0.8 0.0077 0.0265 0.0251 IgE TSC0802184 24399183 0.42 0.0139 0.58 0.0166 0.58 0.0088 0.0457 0.0262 IgE TSC0244678 25475167 0.77 0.02 0.57 0.0066 0.65 0.0061 0.0151 0.1139 IgE TSC0208308 25842871 0.49 0.006 0.36 0.0168 0.33 0.0058 0.1049 0.0142 IgE TSC0297575 25866443 0.64 0.0116 0.81 0.0019 0.81 0.0022 0.1334	IgE	TSC0430303	22676458	0,59	0,0104	0,41	0,0075	0,45	0,0054	0,0248	0,0514	
Ige TSC0364606 23443216 0,32 0,0038 0,25 0,0113 0,2 0,0037 0,2872 0,0324 Ige TSC0967106 24123578 0,98 0,002 0,88 0,0076 0,91 0,0031 0,0403 0,0881 Ige TSC0843973 24131834 0,93 0,006 0,82 0,0134 0,8 0,0073 0,0765 0,0251 Ige TSC0802184 24399183 0,42 0,0139 0,58 0,0166 0,58 0,0088 0,0457 0,0262 Ige TSC0802184 24399183 0,42 0,019 0,57 0,0066 0,65 0,0088 0,0457 0,0262 Ige TSC0104420 25807370 0,16 0,0095 0,06 0,0057 0,0092 0,113 0,0151 0,1139 Ige TSC0208308 25842871 0,49 0,006 0,36 0,716 0,0052 0,006 0,363 0,799 0,0049 0,0882 0,0095 Ige	IgE	TSC0440927	22757368	0,08	0,006	0,29	0,0085	0,26	0,0053	0,0024	0,0045	
Ige TSC0967106 24123578 0,92 0,002 0,88 0,0076 0,91 0,0031 0,0043 0,0081 Ige TSC0967106 24123578 0,98 0,002 0,88 0,0076 0,91 0,0031 0,0403 0,0881 Ige TSC080184 24399183 0,42 0,0139 0,58 0,0166 0,58 0,00077 0,0223 0,017 0,0077 0,0283 0,0214 Ige TSC0802184 24399183 0,42 0,0139 0,58 0,0166 0,58 0,00088 0,0457 0,0262 Ige TSC0244678 25475167 0,77 0,02 0,57 0,006 0,0057 0,0092 Ige TSC0208308 25842871 0,49 0,006 0,36 0,0168 0,33 0,0058 0,104 0,0154 Ige TSC0597575 25866443 0,64 0,0041 0,78 0,0363 0,79 0,0049 0,0882 0,0092 Ige TSC0597582	IσE	TSC0364606	23443216	0.32	0.0038	0.25	0.0113	0.2	0.0037	0.2872	0.0324	
Inconstruction24123700,760,0020,880,00700,9710,00310,04050,0405IgETSC0843973241318340,930,0060,820,01340,80,00730,07650,0251IgETSC0802184243991830,420,01390,580,01660,580,00880,04570,0262IgErs1061925247285460,050,00950,190,02270,170,00770,02830,0214IgETSC0244678254751670,770,020,570,00660,650,00610,01510,1139IgETSC0208308258428710,490,0060,360,01680,330,00580,1040,0154IgETSC0597575258664430,640,00410,780,03630,790,00490,08820,0095IgETSC0597582259034850,360,02330,490,01280,520,00920,13340,0423IgETSC0322593263909040,50,00570,630,00530,650,00430,07440,0262IgETSC0099063289139210,290,01230,470,00960,380,00490,02250,1839IgETSC0154127313827410,790,01940,850,01190,890,00410,35150,0479IgETSC0154127313827410,790,01750,540,01370,630,00560,01060,0753 <tr< td=""><td>lgE</td><td>TSC0967106</td><td>2/10210</td><td>0.00</td><td>0.002</td><td>0.00</td><td>0.0076</td><td>0.01</td><td>0.0021</td><td>0.0402</td><td>0.0001</td></tr<>	lgE	TSC0967106	2/10210	0.00	0.002	0.00	0.0076	0.01	0.0021	0.0402	0.0001	
IgEISC0843973241318340,930,0060,820,01340,80,00730,07650,0251IgETSC0802184243991830,420,01390,580,01660,580,00880,04570,0262IgErs1061925247285460,050,00950,190,02270,170,00770,02830,0214IgETSC0244678254751670,770,020,570,00660,650,00610,01510,1139IgETSC1004420258073700,160,00950,0660,0570,0092IgETSC0597575258664430,640,00410,780,03630,790,00490,08820,0095IgETSC0597582259034850,360,02330,490,01280,520,00920,13340,0423IgErs1408270259357230,640,01160,810,00190,810,00280,01040,0031IgETSC0901066266305270,840,00430,680,02560,750,01050,04250,1845IgETSC0099063289139210,290,01230,470,00960,380,00490,02250,1839IgETSC0154127313827410,790,01940,850,01190,890,00410,35150,0479IgETSC0154127313827410,790,01940,850,01370,630,00560,01060,0753IgETSC0154127	IgL	TSC0707100	24123378	0,70	0,002	0,00	0,0070	0,71	0,0051	0,0405	0,0001	
IgE18C0802184243991830,420,01390,580,01660,580,00880,04570,0262IgErs1061925247285460,050,00950,190,02270,170,00770,02830,0214IgETSC0244678254751670,770,020,570,00660,650,00610,01510,1139IgETSC1004420258073700,160,00950,060,0660,00570,0092IgETSC0208308258428710,490,0060,360,01680,330,00580,1040,0154IgETSC0597575258664430,640,00410,780,03630,790,00490,08820,0095IgETSC0597582259034850,360,02330,490,01280,520,00920,13340,0423IgErs1408270259357230,640,01160,810,00190,810,00280,01040,0031IgETSC0901066266305270,840,00430,680,02560,750,01050,04250,1845IgETSC0099063289139210,290,01230,470,00960,380,00490,02250,1839IgETSC0154127313827410,790,01940,850,01190,890,00410,35150,0479IgETSC0154127313827410,790,01740,850,01370,630,00560,01060,0753IgET	igE	15008439/3	24131834	0,93	0,006	0,82	0,0134	0,8	0,0073	0,0765	0,0251	
IgErs1061925247285460,050,00950,190,02270,170,00770,02830,0214IgETSC0244678254751670,770,020,570,00660,650,00610,01510,1139IgETSC1004420258073700,160,00950,060,00570,0092IgETSC0208308258428710,490,0060,360,01680,330,00580,1040,0154IgETSC0597575258664430,640,00410,780,03630,790,00490,08820,0095IgETSC0597582259034850,360,02330,490,01280,520,00920,13340,0423IgErs1408270259357230,640,01160,810,00190,810,00280,01040,0031IgETSC0901066266305270,840,00430,680,02560,750,01050,04250,1845IgETSC0099063289139210,290,01230,470,00960,380,00490,02250,1839IgETSC0154127313827410,790,01940,850,01190,890,00410,35150,0479IgETSC0210562314180000,750,01750,540,01370,630,00560,01060,0753IgETSC0210562314180000,750,01750,540,01370,630,00560,01060,0753IgETSC0210562	IgE	TSC0802184	24399183	0,42	0,0139	0,58	0,0166	0,58	0,0088	0,0457	0,0262	
IgETSC0244678254751670,770,020,570,00660,650,00610,01510,1139IgETSC1004420258073700,160,00950,060,00570,0092IgETSC0208308258428710,490,0060,360,01680,330,00580,1040,0154IgETSC0597575258664430,640,00410,780,03630,790,00490,08820,0095IgETSC0597582259034850,360,02330,490,01280,520,00920,13340,0423IgErs1408270259357230,640,01160,810,00190,810,00280,01040,0031IgETSC0901066266305270,840,00430,680,02560,750,01050,04250,1845IgETSC0099063289139210,290,01230,470,00960,380,00490,02250,1839IgErs1265163311949060,040,00420,250,00810,0009IgETSC0154127313827410,790,01940,850,01190,890,00410,35150,0479IgErs12660793150652314180000,750,01750,540,01370,630,00310,0032IgErs1266079315636710,070,00330,240,03550,260,01310,03310,0032IgErs1266079316026910,030,0051	IgE	rs1061925	24728546	0,05	0,0095	0,19	0,0227	0,17	0,0077	0,0283	0,0214	
IgE TSC1004420 25807370 0,16 0,0095 0,06 0,0057 0,0092 IgE TSC0208308 25842871 0,49 0,006 0,36 0,0168 0,33 0,0058 0,104 0,0154 IgE TSC0208308 25842871 0,49 0,006 0,36 0,0168 0,33 0,0058 0,104 0,0154 IgE TSC0597575 25866443 0,64 0,0041 0,78 0,0363 0,79 0,0049 0,0882 0,0095 IgE TSC0597582 25903485 0,36 0,0233 0,49 0,0128 0,52 0,0092 0,1334 0,0423 IgE TSC0597582 25935723 0,64 0,0116 0,81 0,0019 0,81 0,0028 0,0104 0,0026 IgE TSC09201066 26630527 0,84 0,0043 0,68 0,0256 0,75 0,0105 0,425 0,1845 IgE TSC099063 28913921 0,29 0,0123 0,47	IgE	TSC0244678	25475167	0,77	0,02	0,57	0,0066	0,65	0,0061	0,0151	0,1139	
Ige TSC0208308 25842871 0,49 0,006 0,36 0,0168 0,33 0,0058 0,104 0,0154 Ige TSC0208308 25842871 0,49 0,006 0,36 0,0168 0,33 0,0058 0,104 0,0154 Ige TSC0597575 25866443 0,64 0,0041 0,78 0,0363 0,79 0,0049 0,0882 0,0095 Ige TSC0597582 25903485 0,36 0,0233 0,49 0,0128 0,52 0,0092 0,1334 0,0423 Ige rs1408270 25935723 0,64 0,0116 0,81 0,0028 0,0104 0,0031 Ige TSC0322593 26390904 0,5 0,0057 0,63 0,0033 0,65 0,0043 0,0704 0,0262 Ige TSC091066 26630527 0,84 0,0043 0,68 0,0256 0,75 0,0105 0,0425 0,1845 Ige rs1265163 31194906 0,04 0,0042	IgE	TSC1004420	25807370	0.16	0.0095			0.06	0.0057		0.0092	
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	IgE	TSC0208308	25842871	0 4 9	0.006	0.36	0.0168	0 33	0.0058	0 104	0.0154	
Ige I3C0397375 23800443 0,04 0,044 0,044 0,035 0,78 0,0449 0,0449 0,0432 0,0449 0,0443 0,0443 0,0443 0,0443 0,0443 0,0443 0,0443 0,0443 0,0443 0,0443 0,0443 0,0443 0,0443 0,0423 0,0116 0,81 0,0019 0,81 0,0028 0,0104 0,0031 Ige Isc0322593 26390904 0,5 0,0057 0,63 0,0053 0,65 0,0043 0,0704 0,0262 0,184 0,0105 0,0425 0,1845 Ige Isc009063 28913921 0,29 0,0123 0,47 0,0096 0,38 0,0049 0,0225 0,1839	IgE	TSC0507575	25866443	0.64	0.0041	0.78	0.0263	0.70	0.0040	0.0882	0,0005	
Igc ISC0597362 23903483 0,36 0,0233 0,49 0,0128 0,32 0,0092 0,1334 0,0423 IgE rs1408270 25935723 0,64 0,0116 0,81 0,0019 0,81 0,0028 0,0104 0,0031 IgE TSC0322593 26390904 0,5 0,0057 0,63 0,0053 0,65 0,0043 0,0704 0,0262 IgE TSC0901066 26630527 0,84 0,0043 0,68 0,0256 0,75 0,0105 0,0425 0,1845 IgE TSC0099063 28913921 0,29 0,0123 0,47 0,0096 0,38 0,0049 0,0225 0,1839 IgE rs1265163 31194906 0,04 0,0042 0,25 0,0081 0,0009 IgE TSC0115790 31310652 0,16 0,0262 0,4 0,0308 0,42 0,0137 0,0079 0,0008 IgE TSC0154127 31382741 0,79 0,0194 0,85	ign Iar	TSC0597575	25002495	0,04	0,0041	0,70	0,0303	0,79	0,0049	0,0002	0,0093	
IgE rs1408270 25935723 0,64 0,0116 0,81 0,0019 0,81 0,0028 0,0104 0,0031 IgE TSC0322593 26390904 0,5 0,0057 0,63 0,0053 0,65 0,0043 0,0704 0,0262 IgE TSC0901066 26630527 0,84 0,0043 0,68 0,0256 0,75 0,0105 0,0425 0,1845 IgE TSC099063 28913921 0,29 0,0123 0,47 0,0096 0,38 0,0049 0,0225 0,1839 IgE rs1265163 31194906 0,04 0,0042 0,25 0,0081 0,0009 IgE TSC015790 31310652 0,16 0,0262 0,4 0,0308 0,42 0,0137 0,0079 0,0008 IgE TSC0154127 31382741 0,79 0,0175 0,54 0,0137 0,63 0,0056 0,0106 0,0753 IgE rS1266079 31563671 0,07 0,0033 0,24 <	IgE	1500597582	23903483	0,30	0,0233	0,49	0,0128	0,52	0,0092	0,1334	0,0423	
Ige TSC0322593 26390904 0,5 0,0057 0,63 0,0053 0,65 0,0043 0,0704 0,0262 Ige TSC0901066 26630527 0,84 0,0043 0,68 0,0256 0,75 0,0105 0,0425 0,1845 Ige TSC00901066 26630527 0,84 0,0043 0,68 0,0256 0,75 0,0105 0,0425 0,1845 Ige TSC0099063 28913921 0,29 0,0123 0,47 0,0096 0,38 0,0049 0,0225 0,1839 Ige rs1265163 31194906 0,04 0,0042 0,25 0,0081 0,0009 Ige TSC0115790 31310652 0,16 0,0262 0,4 0,0308 0,42 0,0137 0,0079 0,0008 Ige TSC0154127 31382741 0,79 0,0175 0,54 0,0137 0,63 0,0056 0,0106 0,0753 Ige rs1266079 31563671 0,07 0,0033 0,24	IgE	rs1408270	25935723	0,64	0,0116	0,81	0,0019	0,81	0,0028	0,0104	0,0031	
IgE TSC0901066 26630527 0,84 0,0043 0,68 0,0256 0,75 0,0105 0,0425 0,1845 IgE TSC0099063 28913921 0,29 0,0123 0,47 0,0096 0,38 0,0049 0,0225 0,1839 IgE rs1265163 31194906 0,04 0,0042 0,25 0,0081 0,0009 IgE TSC0115790 31310652 0,16 0,0262 0,4 0,0308 0,42 0,0137 0,0079 0,0009 IgE TSC0154127 31382741 0,79 0,0194 0,85 0,0119 0,89 0,0041 0,3515 0,0479 IgE TSC0210562 31418000 0,75 0,0175 0,54 0,0137 0,63 0,0056 0,0106 0,0753 IgE rs1266079 31563671 0,07 0,0033 0,24 0,0355 0,26 0,0131 0,0331 0,0032 IgE rs1800610 31602691 0,03 0,0051 0,16	IgE	TSC0322593	26390904	0,5	0,0057	0,63	0,0053	0,65	0,0043	0,0704	0,0262	
IgETSC0099063289139210,290,01230,470,00960,380,00490,02250,1839IgErs1265163311949060,040,00420,250,00810,0009IgETSC0115790313106520,160,02620,40,03080,420,01370,00790,0008IgETSC0154127313827410,790,01940,850,01190,890,00410,35150,0479IgETSC0210562314180000,750,01750,540,01370,630,00560,01060,0753IgErs1266079315636710,070,00330,240,03550,260,01310,03310,0032IgErs1800610316026910,030,00510,160,00640,150,00360,01930,0203IgErs707939317855250,750,00550,620,00520,610,00620,08240,0452	IgE	TSC0901066	26630527	0,84	0,0043	0,68	0,0256	0,75	0,0105	0,0425	0,1845	
IgE rs1265163 31194906 0,04 0,0042 0,25 0,0081 0,0009 IgE TSC0115790 31310652 0,16 0,0262 0,4 0,0308 0,42 0,0137 0,0079 0,0009 IgE TSC0115790 31310652 0,16 0,0262 0,4 0,0308 0,42 0,0137 0,0079 0,0008 IgE TSC0154127 31382741 0,79 0,0194 0,85 0,0119 0,89 0,0041 0,3515 0,0479 IgE TSC0210562 31418000 0,75 0,0175 0,54 0,0137 0,63 0,0056 0,0106 0,0753 IgE rs1266079 31563671 0,07 0,0033 0,24 0,0355 0,26 0,0131 0,0331 0,0032 IgE rs1800610 31602691 0,03 0,0051 0,16 0,0064 0,15 0,0036 0,0193 0,0233 IgE rs707939 31785525 0,75 0,0055 0,62 <	IgE	TSC0099063	28913921	0,29	0,0123	0,47	0,0096	0,38	0,0049	0,0225	0,1839	
Ige TSC0115790 31310652 0,16 0,0262 0,4 0,0308 0,42 0,0317 0,0079 0,0009 Ige TSC0115790 31310652 0,16 0,0262 0,4 0,0308 0,42 0,0137 0,0079 0,0009 Ige TSC0154127 31382741 0,79 0,0194 0,85 0,0119 0,89 0,0041 0,3515 0,0479 Ige TSC0210562 31418000 0,75 0,0175 0,54 0,0137 0,63 0,0056 0,0106 0,0753 Ige rs1266079 31563671 0,07 0,0033 0,24 0,0355 0,26 0,0131 0,0331 0,0032 Ige rs1800610 31602691 0,03 0,0051 0,16 0,0064 0,15 0,0036 0,0193 0,0232 Ige rs707939 31785525 0,75 0,0055 0,62 0,0052 0,61 0,0062 0,0854 0,0452	IgE	rs1265163	31194906	0.04	0 0042			0.25	0.0081	,	0.0009	
Ige ISCO115170 IST052 0,10 0,202 0,4 0,036 0,42 0,0137 0,0079 0,0008 Ige ISC0154127 31382741 0,79 0,0194 0,85 0,0119 0,89 0,0041 0,3515 0,0479 Ige ISC0210562 31418000 0,75 0,0175 0,54 0,0137 0,63 0,0056 0,0106 0,0753 Ige rs1266079 31563671 0,07 0,0033 0,24 0,0355 0,26 0,0131 0,0331 0,0032 Ige rs1800610 31602691 0,03 0,0051 0,16 0,0064 0,15 0,0036 0,0193 0,0231 Ige rs1800610 31602691 0,03 0,0051 0,16 0,0064 0,15 0,0036 0,0193 0,0203 Ige rs1800610 31785525 0,75 0,0055 0,62 0,0052 0,61 0,0062 0,0854 0,0452	IgE	TSC0115700	31310652	0.16	0.0262	0.4	0.0308	0.42	0.0137	0.0079	0,0009	
Ige Iscurstiz/ S1362/41 0,79 0,0194 0,85 0,0119 0,89 0,0041 0,3515 0,0479 Ige TSC0210562 31418000 0,75 0,0175 0,54 0,0137 0,63 0,0056 0,0106 0,0753 Ige rs1266079 31563671 0,07 0,0033 0,24 0,0355 0,26 0,0131 0,0331 0,0032 Ige rs1800610 31602691 0,03 0,0051 0,16 0,0064 0,15 0,0036 0,0193 0,0203 Ige rs707939 31785525 0,75 0,0055 0,62 0,0052 0,61 0,0062 0,0824 0,0452	15L LaE	TSC0154127	21202741	0,10	0,0202	0.95	0,0300	0,42	0.0041	0.2515	0,0008	
IgE ISC0210562 31418000 0,75 0,0175 0,54 0,0137 0,63 0,0056 0,0106 0,0753 IgE rs1266079 31563671 0,07 0,0033 0,24 0,0355 0,26 0,0131 0,0331 0,0032 IgE rs1800610 31602691 0,03 0,0051 0,16 0,0064 0,15 0,0036 0,0193 0,0203 IgE rs707939 31785525 0.75 0.0055 0.62 0.0052 0.61 0.0062 0.0824 0.0452	igE L E	130013412/	51582/41	0,79	0,0194	0,85	0,0119	0,89	0,0041	0,3515	0,0479	
IgE rs1266079 31563671 0,07 0,0033 0,24 0,0355 0,26 0,0131 0,0331 0,0032 IgE rs1800610 31602691 0,03 0,0051 0,16 0,0064 0,15 0,0036 0,0193 0,0203 IgE rs707939 31785525 0.75 0.0055 0.62 0.0052 0.61 0.0062 0.0824 0.0452	IgE	1SC0210562	31418000	0,75	0,0175	0,54	0,0137	0,63	0,0056	0,0106	0,0753	
IgE rs1800610 31602691 0,03 0,0051 0,16 0,0064 0,15 0,0036 0,0193 0,0203 IgE rs707939 31785525 0.75 0.0055 0.62 0.0052 0.61 0.0062 0.0824 0.0452	ſgE	rs1266079	31563671	0,07	0,0033	0,24	0,0355	0,26	0,0131	0,0331	0,0032	
IgE rs707939 31785525 0.75 0.0055 0.62 0.0052 0.61 0.0062 0.0824 0.0452	IgE	rs1800610	31602691	0,03	0,0051	0,16	0,0064	0,15	0,0036	0,0193	0,0203	
	IgE	rs707939	31785525	0,75	0,0055	0,62	0,0052	0,61	0,0062	0,0824	0,0452	

LaE	ra406026	21001015	0.15	0.0022	0.14	0.0085	0.06	0.0022	0.8514	0.011
IgE	rs6473	31991913	0,15	0,0032	0,14	0,0085	0,06	0,0033	0,8514	0,011
IgE	180475 ra15222	32034910	0,70	0,0040	0,38	0,0213	0,0	0,0084	0,0201	0,0291
IgE	rs13332	32501710	0,20	0,01	0.24	0.0125	0,1	0,0078	0.0440	5 719E 07
Ige	TSC0282704	22587800	0,23	0,0023	0,24	0,0133	0,00	0,0023	0,9449	5,/18E-0/
Ige	TSC0382794	32387800	0,80	0,0209	0,81	0,0118	0,93	0,0027	0,4032	0,0389
IgE	TSC0110798	22686401	0,23	0,0138	0,39	0,0137	0,32	0,0098	2,738E-03	0,0002
IgE	rs241412	22862126	0,1	0,0101	0,12	0,0093	0,22	0,0033	0,0897	0,0491
Ige	18241412	22075008	0,49	0,0028	0,27	0,0109	0,22	0,0002	0,0020	7,094E-00
IgE	rs1801270	26652286	0,93	0,0038	0,81	0,0003	0,80	0,0043	0,0104	0,0310
IgE	TSC0080670	20887170	0,17	0,0100	0,12	0,0241	0,08	0,0047	0,0452	0,0105
IgE	rs790591	91039382	0,57	0,0100	0,34	0.0122	0,49	0,0002	0,0432	0,1249
IgE IgE	TSC0912690	147446851	0,37	0,0073	0,37	0,0122	0,42	0.0042	0.0351	0.0704
IgE	TSC1000396	148452001	0.31	0.0598	0.58	0.0117	0,15	0.0117	0.0111	0.0151
IgE	rs206984	167510786	0.36	0.0173	0.58	0.0177	0.68	0.0086	0.0056	4 229E-06
ShF	TSC0364606	23443216	0.29	0.0038	0.25	0.0113	0.2	0.004	0.4161	0.0474
ShF	TSC0409115	23533661	0.54	0.0121	0,20	0,0115	0.68	0.0089	0,1101	0.016
ShF	TSC0619388	24240845	0.73	0.0187	0.79	0.0096	0.87	0.0066	0.2772	0.0034
ShF	TSC0500668	25000650	0,11	0,0042	0,21	0,0048	0,16	0,0031	0,0383	0,1716
ShF	TSC0113430	25015369	0.18	0.01	0.44	0.0077	0.43	0.0065	2.978E-05	2.069E-05
ShF	TSC0058445	25363278	0.31	0,004	0.46	0,0122	0.45	0,0062	0,0213	0.0159
ShF	TSC0244678	25475167	0,9	0,0131	0,57	0,0066	0,61	0,0045	1,268E-07	5,807E-07
ShF	TSC0253577	25497057	0,91	0,0068	0,8	0,0183	0,79	0,0058	0,038	0,0115
ShF	TSC0111853	26323414	0,96	0,0076	0,87	0,0078	0,92	0,0036	0,0412	0,2007
ShF	TSC0243771	26919254	0,14	0,0075			0,07	0,0059		0,0341
ShF	rs200978	27915707	0,17	0,0131	0,28	0,0138	0,28	0,0046	0,0769	0,0382
ShF	TSC0487709	28098764	0,83	0,0036	0,74	0,0256	0,72	0,0081	0,1793	0,0498
ShF	TSC0614720	28365423	0,08	0,0129	0,17	0,005	0,18	0,0064	0,0426	0,0272
ShF	rs209139	28926033	0,76	0,0292	0,87	0,0078	0,89	0,003	0,0488	0,0158
ShF	TSC0081483	29046696	0,63	0,0065	0,53	0,0151	0,5	0,0062	0,1023	0,0276
ShF	TSC0111007	29213864	0,74	0,0137	0,61	0,0082	0,64	0,0052	0,0312	0,0621
ShF	TSC0463698	29226410	0,43	0,0146	0,57	0,0076	0,51	0,0057	0,0296	0,1765
ShF	rs1632447	29751403	0,31	0,0123	0,19	0,0059	0,17	0,0041	0,0348	0,0034
ShF	rs1736912	29860522	0,45	0,0044	0,63	0,0464	0,59	0,012	0,0323	0,017
ShF	rs1611480	29945443	0,14	0,0309			0,28	0,0158		0,0339
ShF	rs1655922	29968032	0,72	0,0116	0,53	0,0058	0,55	0,0063	0,0036	0,0054
ShF	rs419862	30005275	0,46	0,0404	0,36	0,0399	0,3	0,0116	0,2763	0,031
ShF	rs7843	30213111	0,92	0,0118	0,81	0,0059	0,8	0,0043	0,0296	0,0193
ShF	TSC0154127	31382741	0,79	0,0068	0,85	0,0119	0,88	0,0036	0,2221	0,0159
ShF	rs14597	31498937	0,32	0,0169	0.04	0.0255	0,53	0,0086	0.1002	0,001
ShF	rs1266079	31563671	0,34	0,0109	0,24	0,0355	0,15	0,0073	0,1882	8,315E-05
ShF	rs1/29	32527892	0,25	0,0139	0,24	0,0141	0,1	0,0045	0,9503	0,0003
SHF	TS1281890	32558571	0,19	0,0030	0,24	0,0135	0,07	0,0020	0,4042	3,070E-05
Shr	1500382794	32387800	0,79	0,0152	0,81	0,0118	0,94	0,0028	0,0032	1,393E-03
SHE	18241423	22862126	0,47	0,0170	0,38	0,0377	0,33	0,0117	0,243	0,0189
ShF	18241412 rs1063478	32803130	0,48	0,0172	0,27	0,0109	0,28	0,000	0,0008	0,0002
ShF	rs726500	33123125	0,24	0,0112	0.71	0.0148	0,12	0,0028	0 2073	0,0040
ShF	rs1800837	33274073	0.25	0,0033	0,71	0,0140	0,07	0,0045	0,2075	0.0257
ShF	rs206937	34333594	0.22	0,0087	0.35	0.0097	0,15	0,0040	0.0278	0,0237
ShF	TSC0991378	35206956	0.04	0,0007	0.26	0,0057	0,55	0.0052	5 442E-05	0,0045
ShF	rs9794	35397210	0.48	0.0036	0.77	0.0304	0,77	0.0087	2 678E-05	1.01E-08
ShF	TSC0980679	39887170	0.33	0.0158	0.54	0.0098	0,77	0.0052	0.0026	0.006
ShF	TSC0980678	39905149	0.9	0.0137	0,01	0,0070	0.76	0.005	0,0020	0.0059
ShF	rs206984	167510786	0.38	0.0313	0.58	0.0177	0.59	0.0091	0.0064	0.0017
ShT	TSC0044308	23569016	0,28	0,004	0,37	0,0098	0,38	0,0045	0,0791	0,0299
ShT	rs699463	24607442	0,18	0,0404	0,32	0,0066	0,32	0,0054	0,0521	0,0477
ShT	TSC0500668	25000650	0,1	0,0075	0,21	0,0048	0,16	0,0031	0,0097	0,0772
ShT	TSC0411893	25068173	0,9	0,0128	0,86	0,0202	0,8	0,0058	0,308	0,0093
ShT	TSC0077833	25308219	0,41	0,0097	0,53	0,0089	0,51	0,0046	0,0198	0,033
ShT	rs198846	26170002	0,9	0,0017	0,82	0,0057	0,87	0,0027	0,0352	0,33
ShT	TSC0409642	26583480	0,47	0,0138	0,59	0,0386	0,59	0,0118	0,1142	0,0176
ShT	TSC0901066	26630527	0,87	0,0241	0,68	0,0256	0,71	0,0087	0,0027	0,0016
ShT	TSC0049288	27361444	0,31	0,0193	0,44	0,0257	0,43	0,0122	0,0513	0,0315
ShT	rs880638	28769450	0,28	0,0079	0,39	0,0131	0,36	0,0051	0,043	0,0802

ShT	rs1233627	28814285	0.55	0.0084	0.48	0.0094	0.45	0.0062	0.194	0.0434
ShT	rs1002925	28863936	0,64	0,0146	0,53	0,0059	0,55	0,0037	0,0416	0,0432
ShT	TSC0099063	28913921	0,3	0,0197	0,47	0,0096	0,4	0,0037	0,0038	0,0488
ShT	rs209122	28938052	0,46	0,0064	0,52	0,0246	0,55	0,0065	0,2967	0,0428
ShT	TSC0397527	28985271	0,47	0,009	0,56	0,0135	0,58	0,0059	0,0922	0,0113
ShT	rs760804	29233619	0,16	0,0074	0,24	0,0105	0,28	0,007	0,0619	0,0033
ShT	TSC0030365	29238876	0,74	0,0056	0,65	0,0055	0,65	0,0059	0,0697	0,0484
ShT	rs1362073	29445747	0,51	0,0118			0,39	0,0127		0,0129
ShT	rs1632447	29751403	0,33	0,0142	0,19	0,0059	0,17	0,0041	0,0039	4,849E-05
ShT	rs1736970	29838931	0,17	0,0307	0,31	0,0266	0,24	0,0095	0,0421	0,2124
ShT	rs1264332	30906377	0,58	0,0057	0,65	0,0153	0,67	0,0038	0,219	0,0482
ShT	rs1264320	30921813	0,55	0,0184			0,43	0,007		0,0205
ShT	TSC0504844	31030106	0,63	0,0038	0,68	0,0293	0,72	0,0054	0,4622	0,035
ShT	TSC0115304	31296306	0,67	0,0121	0,7	0,006	0,76	0,0055	0,6064	0,0359
ShT	rs1634761	31333314	0,59	0,0195	0,5	0,0213	0,48	0,0065	0,131	0,0367
ShT	rs1634765	31363536	0,94	0,009	0,83	0,0121	0,84	0,0065	0,0069	0,0063
ShT	TSC0210562	31418000	0,47	0,0188	0,54	0,0137	0,67	0,0036	0,2205	3,891E-05
ShI	rs1880	31441/54	0,77	0,0106	0,84	0,0074	0,85	0,0039	0,0803	0,0259
ShT	rs14597	21515702	0,37	0,0423	0.82	0.0105	0,55	0,0080	0.0656	0,0343
ShT	rs2227	31313703	0,73	0,0135	0,82	0,0195	0,84	0,0042	0,0030	0,0055
ShT	183237 rs8084	32/36818	0,52	0,0129	0,43	0,0001	0,4	0,0033	0,0433	0,0908
ShT	rs1064663	32430818	0.53	0.0174	0,57	0,0090	0.75	0.0077	0,0403	2.071E-06
ShT	TSC0276143	32501717	0.82	0.0055	0.76	0.0109	0,73	0,0077	0 1869	0.0136
ShT	rs1729	32527892	0.1	0.0108	0.24	0.0141	0,72	0.0045	0.0024	0.921
ShT	rs1281896	32558571	0.1	0.0194	0.24	0.0135	0.07	0.0026	0.0059	0 4047
ShT	TSC0117878	32693289	0.56	0.006	0.5	0.0082	0.44	0.0054	0.2148	0.0066
ShT	rs241412	32863136	0,14	0,0051	0,27	0,0169	0,28	0,006	0,011	0,0009
ShT	rs663310	33008316	0,18	0,0196	0,36	0,0177	0,35	0,0071	0,0022	0,0007
ShT	rs169740	33515022	0,66	0,0128	0,55	0,0145	0,55	0,0043	0,0736	0,0264
ShT	TSC0397534	33522585	0,74	0,0067	0,64	0,0117	0,66	0,0051	0,0518	0,045
ShT	TSC0355191	34045067	0,43	0,0305	0,51	0,0168	0,59	0,0053	0,2764	0,0104
ShT	rs681220	36386534	0,43	0,0092	0,52	0,0774	0,58	0,0104	0,4654	0,0023
ShT	rs1801270	36653386	0,05	0,0063	0,12	0,0241	0,1	0,0058	0,0828	0,0462
ShT	rs1678656	38743180	0,29	0,0078	0,48	0,0398	0,35	0,0138	0,0081	0,1886
ShT	rs747036	91061653	0,19	0,0083	0,09	0,0045	0,09	0,0041	0,0034	0,0004
ShT	rs206984	167510786	0,91	0,02	0,58	0,0177	0,59	0,0091	4,029E-08	1,322E-09
T1D1	TSC0364606	23443216	0,16	0,0072	0,25	0,0113	0,22	0,0049	0,0426	0,1245
T1D1	rs1408736	23800667	0,7	0,0254	0,8	0,0061	0,81	0,0037	0,0854	0,0441
T1D1	rs13735	24486163	0,2	0,0099			0,3	0,0057		0,0317
T1D1	TSC0409642	26583480	0,43	0,0348	0,59	0,0386	0,58	0,0098	0,0784	0,0316
TIDI	rs911186	27213138	0,74	0,0144	0,81	0,0085	0,83	0,0028	0,1104	0,0228
TIDI	18C0099063	28913921	0,3	0,0045	0,47	0,0096	0,42	0,0043	0,0009	0,0098
TIDI	rs429369	28914462	0,82	0,0113	0,71	0,0091	0,73	0,0045	0,0175	0,0369
T1D1	13C0084032	28939406	0,85	0,0225	0,72	0,0239	0.50	0,0004	0.0545	0,1276
T1D1	rs1150735	30105089	0,40	0,0176	0,38	0.0194	0,38	0.0092	0,0343	0,0419
T1D1	rs1264360	30841082	0.02	0.0049	0,72	0.0079	0.21	0.0040	0,0297	0,085
T1D1	rs8408	30928470	0,13	0.01	0,27	0.0155	0.84	0.0054	0,004	0.0377
T1D1	rs1265109	31180402	0.68	0.0039	0.76	0.0038	0.73	0.0026	0.0454	0 209
T1D1	TSC0115304	31296306	0.83	0.0111	0.7	0.006	0.72	0.0051	0.004	0.0135
T1D1	rs1634765	31363536	0.92	0,0181	0.83	0,0121	0.86	0.0054	0.0361	0.1442
T1D1	TSC0444872	31520573	0,31	0,026	0,19	0,0073	0,18	0,0032	0.0312	0,0229
T1D1	rs928815	31590088	0,26	0,0061	0,43	0,0075	0,4	0,0047	0,0005	0,0013
T1D1	TSC0109307	31670617	0,11	0,0111	0,2	0,0057	0,18	0,0051	0,0234	0,0742
T1D1	rs406936	31991915	0,06	0,0087	0,14	0,0085	0,1	0,0045	0,0139	0,1157
T1D1	rs392610	32010922	0,4	0,0091			0,5	0,0048		0,0309
T1D1	TSC0242062	32283689	0,88	0,005	0,75	0,0177	0,77	0,0084	0,0065	0,005
T1D1	TSC0440938	32338863	0,49	0,0171	0,62	0,0379	0,62	0,0133	0,0869	0,0202
T1D1	TSC0276264	32406516	0,42	0,0112	0,62	0,016	0,58	0,0089	0,0005	0,0023
T1D1	rs8084	32436818	0,71	0,0075	0,57	0,0096	0,59	0,0043	0,0061	0,0087
T1D1	rs7192	32437429	0,8	0,0171	0,68	0,0112	0,69	0,0045	0,0181	0,0215
T1D1	rs1064663	32437440	0,8	0,0095			0,68	0,0086		0,0098
T1D1	TSC0276143	32501717	0,61	0,0248	0,76	0,0109	0,75	0,0043	0,0141	0,0121
T1D1	rs1729	32527892	0,04	0,0085	0,24	0,0141	0,17	0,0048	1,991E-06	0,0002

T1D1	rs1281896	32558571	0.03	0.0029	0.24	0.0135	0.17	0.0066	1 149E-07	1.654E-05
T1D1	TSC0382794	32587800	0,05	0.0115	0,24	0.0118	0.83	0,0000	0 0004	0.0017
T1D1	TSC0116798	32620000	0.34	0.0168	0.59	0.0137	0.58	0.0085	1.649E-05	7.783E-06
T1D1	TSC0879839	32686491	0.45	0.0229	0.12	0.0095	0.15	0.0046	3.589E-09	8.363E-09
T1D1	TSC0117878	32693289	0,38	0,016	0,5	0,0082	0,5	0,0056	0,0265	0,0224
T1D1	rs11244	32782258	0,57	0,0125	0,74	0,0061	0,71	0,0042	0,0007	0,0015
T1D1	rs580962	32927165	0,34	0,0065	0,48	0,0069	0,46	0,0035	0,0059	0,0109
T1D1	rs2582	32975998	0,9	0,0132	0,81	0,0063	0,87	0,004	0,0344	0,4156
T1D1	TSC0095243	34787800	0,65	0,013	0,73	0,0199	0,76	0,0053	0,1721	0,019
T1D1	TSC0991378	35206956	0,16	0,0155	0,26	0,0068	0,16	0,0052	0,0319	0,887
T1D1	rs1678656	38743180	0,31	0,0239	0,48	0,0398	0,36	0,0112	0,0369	0,4281
T1D1	rs1537231	38949250	0,78	0,0123	0,82	0,0055	0,88	0,003	0,3331	0,0071
T1D1	rs202563	137396622	0,56	0,0146	0,68	0,0049	0,69	0,0045	0,0167	0,0073
T1D2	rs1323060	24621972	0,55	0,0124	0,68	0,0165	0,69	0,0079	0,0312	0,0049
T1D2	TSC0500668	25000650	0,13	0,0072	0,21	0,0048	0,15	0,0027	0,0498	0,4359
TID2	TSC0411893	25068173	0,72	0,0279	0,86	0,0202	0,82	0,0049	0,045	0,1003
T1D2	TS/64460	27486913	0,22	0,0033	0,12	0,0191	0,15	0,009	0,0403	0,0474
T1D2 T1D2	rs1555244	28702080	0,02	0,0048	0,08	0,0038	0,03	0,0027	0,0104	0,1123
T1D2 T1D2	rs1632447	29751403	0.11	0.0143	0.19	0.0059	0,2	0,0034	0.0482	0.0218
T1D2	rs1611524	29933018	0.13	0.0131	0.25	0.0319	0.24	0.0085	0 0747	0.0113
T1D2	rs1611480	29945443	0.15	0.0371	0,20	5,0517	0.3	0.0155	0,0777	0.0492
T1D2	rs1264360	30841082	0,13	0,0041	0,27	0,0028	0,21	0,0054	0,0011	0,0307
T1D2	TSC0229382	31089764	0,05	0,004	0,16	0,0125	0,11	0,0054	0,0053	0,0482
T1D2	rs1265163	31194906	0,3	0,0154			0,21	0,0049		0,0459
T1D2	TSC0115304	31296306	0,83	0,0237	0,7	0,006	0,72	0,0051	0,0209	0,0445
T1D2	rs1634765	31363536	0,7	0,0439	0,83	0,0121	0,86	0,0054	0,1236	0,0413
T1D2	TSC0210562	31418000	0,76	0,0176	0,54	0,0137	0,65	0,0039	0,0004	0,0396
T1D2	rs1051785	31437148	0,07	0,0061			0,02	0,0029		0,0146
T1D2	rs14597	31498937	0,6	0,0131			0,46	0,011		0,008
T1D2	TSC0109307	31670617	0,08	0,0043	0,2	0,0057	0,18	0,0051	0,0018	0,005
T1D2	rs406936	31991915	0,03	0,005	0,14	0,0085	0,1	0,0045	0,0006	0,005
T1D2	rs1061808	32162549	0,52	0,0348	0,38	0,0122	0,37	0,0055	0,0557	0,0302
TID2	rs1150/59	32191887	0,48	0,0336	0.75	0.0177	0,65	0,0111	0.0002	0,0205
T1D2	TSC0242062	32283689	0,93	0,0055	0,75	0,0177	0,//	0,0084	0,0002	3,182E-05
T1D2 T1D2	TSC0210241	32372089	0.45	0,0239	0,39	0,0134	0,0	0,0080	0,003	0,0011
T1D2 T1D2	rs8084	32436818	0,45	0.0166	0,02	0.0096	0,58	0,0033	0,0007	0,0225
T1D2	rs7192	32437429	0.79	0.0183	0.68	0.0112	0.69	0.0045	0.0388	0.0357
T1D2	rs15332	32501710	0.07	0.008	.,	•,• • • •	0.16	0.0118	.,	0.0259
T1D2	TSC0276143	32501717	0,51	0,0352	0,76	0,0109	0,75	0,0043	0,0011	0,0006
T1D2	rs1729	32527892	0,04	0,0104	0,24	0,0141	0,17	0,0048	1,233E-05	0,0004
T1D2	rs1281896	32558571	0,05	0,0043	0,24	0,0135	0,17	0,0066	1,459E-05	0,0004
T1D2	TSC0382794	32587800	0,98	0,0019	0,81	0,0118	0,83	0,007	1,448E-05	2,027E-05
T1D2	rs1049092	32630433	0,47	0,0221			0,67	0,0068		0,001
T1D2	TSC0879839	32686491	0,42	0,0068	0,12	0,0095	0,15	0,0046	2,243E-10	6,821E-13
T1D2	TSC0117878	32693289	0,33	0,0101	0,5	0,0082	0,5	0,0056	0,0018	0,0005
T1D2	TSC0044782	32753579	0,17	0,0362	0,33	0,008	0,3	0,0057	0,0221	0,0617
T1D2	rs11244	32782258	0,54	0,0058	0,74	0,0061	0,71	0,0042	7,835E-05	4,101E-05
11D2 T1D2	TS241425	32806429	0,21	0,0204	0,38	0,0377	0,39	0,0122	0,0361	0,0013
T1D2	rs241402	3281/3/3	0.42	0.005	0,64	0,0306	0,03	0,0092	0,0856	7 8675 05
T1D2	rs1063478	32000321	0,42	0.005			0.16	0,0004		1,007E-05
T1D2	rs580962	32927165	0.33	0.0075	0.48	0.0069	0.46	0,0035	0.0071	0.0084
T1D2	TSC0428033	33162709	0.66	0.005	0.76	0.0123	0.74	0.0044	0.0497	0.0603
T1D2	TSC0355191	34045067	0.62	0.003	0.51	0,0168	0.57	0,0067	0.0433	0.2734
T1D2	TSC0218820	34076050	0,57	0,0152	0,45	0,0146	0,49	0,0063	0,049	0,1282
T1D2	TSC0456990	34088656	0,53	0,0085	0,64	0,007	0,62	0,0045	0,0272	0,0535
T1D2	TSC0991378	35206956	0,08	0,0093	0,26	0,0068	0,16	0,0052	4,782E-05	0,0232
T1D2	rs661658	35887024	0,29	0,0112	0,41	0,0119	0,37	0,0048	0,0439	0,0894
T1D2	rs1678656	38743180	0,26	0,0508	0,48	0,0398	0,36	0,0112	0,0403	0,2718
T1D2	rs1033524	38828660	0,72	0,0057	0,79	0,0142	0,8	0,0032	0,1511	0,0237
T1D2	rs755852	39141540	0,1	0,0155	0,21	0,0178	0,22	0,0059	0,0436	0,0115
T1D2	rs1002969	103429065	0,83	0,003			0,72	0,0115		0,0166
T1D2	TSC0799291	147224505	0,53	0,0075	0,75	0,0522	0,69	0,0106	0,0235	0,0012

Anhang

D' Visualisierung der HLA Klasse IV Marker

In der Abbildung sind die Kopplungsanalysen der häufigen SNPs der HLA-Klasse IV durch die Berechnung von D' dargestellt. Die farbliche Abstufung der einzelnen Vergleiche entspricht dem rechts angeführten Balken, wobei die Kopplung mit D'>0,85 weiß markiert sind. Die Marker wurden durchnummeriert und anhand ihrer Lokalisation angeordnet.

Abkürzungsverzeichnis

°C	Grad Celsius
μ	micro
AD	atopische Dermatitis / DNA Pool der atopische Dermatitisstudie
AS	DNA Pool der Asthmafamilienstudie
ATP	Adenosintriphosphat
BHR	Bronchiale Hyperreaktivität
bp	Basenpaar
CD	Morbus Crohn / DNA Pool der Morbus Crohn Familienstudie
CI	Konfidenzintervall
СТР	Cytosintriphosphat
Da	Dalton
dATP	Desoxyadenosintriphosphat
dCTP	Desoxycytosintriphosphat
ddCTP	Didesoxycytosintriphosphat
ddNTP	Didesoxyribonukleosidtriphosphat
dGTP	Desoxyguanosintriphosphat
DHPLC	denaturing high performance liquid chromatography
DMS	Diagnostisches und statistisches Manual psychischer Störungen
DNA	Desoxyribonukleinsäure
dNTP	Desoxy-ribonukleosidtriphosphat
DTT	Dithioerythriol
dTTP	Desoxythymidintriphosphat
EDTA	Ethylendiamintetraacetat
EST	expressed-sequence-tags
et al.	und andere
g	Gramm
GTP	Guanosintriphosphat
HLA	Human Leukocyte Antigen
hME	homogeneous Mass Extend
HWE	Hardy-Weinberg-Gleichgewicht
Ig	Immunglobulin
IgE	DNA Pool der Probanden der Asthmafamilienstudie mit erhöhtem IgE-Spiegel
IL	Interleukin
k	Kilo
KORA	Kooperative Gesundheitsforschung in der Region Augsburg / Kontroll DNA Pool
1	Liter
LD	Kopplungsungleichgewicht
m	Meter
М	Mol
MALDI-TO	F Matrix-assisted laser desorption ionisation time-of-flight

Mb	Megabasen
MHC	Major histocompatibility complex
min	Minuten
MS	mass spectrometry
n	nano
NTP	Nucleosidtriphosphat
OD	optische Dichte
OR	odds ratio
р	pico
PAF	"platelet-activating factor"
PCR	Polymerase chain reaction
pter	Beginn des kurzen Armes eines Chromosoms
RC-TDT	recombined-TDT
RFLP	Restriktionsfragmentlängenpolymorphismus
RNA	Ribonukleinsäure
rpm	Umdrehung pro Minute
S	Sekunde
ShF	DNA Pool der Schizophreniefamilienstudie
ShT	DNA Pool der Schizophrenietriostudie
SNP	Single nucleotide polymorphism
SSW	Schwangerschaftswoche
T1D	Typ 1 Diabetes
T1D1	DNA Pool der Probanden mit spät einsetzendem Typ 1 Diabetes
T1D2	DNA Pool der Probanden mit früh einsetzendem Typ 1 Diabetes
TBE	Tris-Borat-EDTA-Puffer
TDT	Transmission disequilibrium test
TE	Tris-EDTA
Th	T-Helfer-Zelle
Tris	Tri(hydroxymethyl)-aminomethan
U	Einheit
UV	Ultraviolett
V	Volt

Alle in der vorliegenden Arbeit angegebenen Genbezeichungen entsprechen den Bezeichungen des HUGO Gene Nomenclature Committee <u>http://www.gene.ucl.ac.uk/nomenclature/</u>). Nicht bezeichnete Gene unbekannter Funktion werden mit LOC und einer 6-stelligen Identitätsnummer bezeichnet, die durch <u>http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html</u> erhältlich ist.

Abbildungsverzeichnis

Abbildung 1.1 DNA-Pooling als Assoziationsscreening-Verfahren	5
Abbildung 1.2 Molekulares Mimikri der Autoimmunerkrankungen	10
Abbildung 1.3 Immunglobulin E Induktion Atopischer Erkrankungen	15
Abbildung 1.4 Die chromosomale Region 6p	20
Abbildung 1.5 HLA Gene	22
Abbildung 2.1 Schematischer Ablauf der allelischen Diskriminierung	41
Abbildung 2.2 MALDI-TOF Spektrum	44
Abbildung 3.1 Selektierte SNPs auf Chromosom 6p	51
Abbildung 3.2 Allelfrequenzenverteilungen	52
Abbildung 3.3 Artifizielle Pools	53
Abbildung 3.4 gepoolte Analysen und Korrektur mittels Heterozygoten	55
Abbildung 3.5 Einfluß der Poolgrößen auf die Messungen	56
Abbildung 3.6 Abweichungen der Messungen	57
Abbildung 3.7 Interner Vergleich der Rohmessdaten	58
Abbildung 3.8 Doppelgenotypisierung	59
Abbildung 3.9 hME-Korrektur gepoolter Analysen	60
Abbildung 3.10 Auswirkung der Genotypsierungsmethoden auf Allelfrequenzdifferenzen.	61
Abbildung 3.11 Lambda-Werte gepoolter Allelfrequenzen	63
Abbildung 3.12 Poolingergebnisse des spät einsetzenden Typ 1 Diabetes	66
Abbildung 3.13 signifikante Differenzen des spät einsetzenden Typ 1 Diabetes	66
Abbildung 3.14 Poolingergebnisse des früh einsetzenden Typ 1 Diabetes	68
Abbildung 3.15 signifikante Differenzen des früh einsetzenden Typ 1 Diabetes	68
Abbildung 3.16 Poolingergebnisse des CD-Pools	73
Abbildung 3.17 signifikante Differenzen des CD-Pools	73
Abbildung 3.18 Poolingergebnisse des ShF-Pools	76
Abbildung 3.19 signifikante Differenzen des ShF-Pools	76
Abbildung 3.20 Poolingergebnisse des ShT-Pools	79
Abbildung 3.21 signifikante Differenzen des ShT-Pools	79
Abbildung 3.22 Poolingergebnisse des Asthma-Pools	82
Abbildung 3.23 signifikante Differenzen des Asthma-Pools	82
Abbildung 3.24 Poolingergebnisse des AD-Pools	87

Abbildung 3.25 signifikante Differenzen des Atopische Dermatitis Pools	89
Abbildung 3.26 Poolingergebnisse des IgE-Pools	
Abbildung 3.27 signifikante Differenzen des IgE-Pools	
Abbildung 3.28 HLA Klasse IV Region	
Abbildung 3.29 SNPs in MICB, AIF1 und LST1	95
Abbildung 3.30 HLA Klasse IV Haplotypen	

Tabellenverzeichnis

Tabelle 2.1 50 µl PCR-Ansatz mit Universalprimer	36
Tabelle 2.2 Reaktionsbedingungen der PCR mit Universalprimer	36
Tabelle 2.3 Mastermix Reaktionsansatz einer PCR im 384er Format	37
Tabelle 2.4 Reaktionsbedingungen der PCR im 384er Format	37
Tabelle 2.5 BigDye Reaktionsansatz der Sequenzierung	38
Tabelle 2.6 Temperaturbedingungen des CycleSequencing	39
Tabelle 2.7 Ethanol-Präzipitation in 96er Mikrotiterplatten	39
Tabelle 2.8 Ansatz des Restriktionsverdaus für ein Gesamtvolumen von 30 µl	40
Tabelle 2.9 Primer und Sonden der allelischen Diskriminierung	42
Tabelle 2.10 Reaktionsansatz einer 96 Mikrotiterplatte der allelischen Diskriminierung.	42
Tabelle 2.11 Temperaturbedingungen des TaqMan-Assays	42
Tabelle 3.1 Einzelgenotypisierung der Typ 1 Diabetes und KORA Proben	72
Tabelle 3.2 Einzelgenotypisierung der Asthma-Familienstudie	86
Tabelle 3.3 Sequenzierungsergebnisse	94
Tabelle 3.4 Transmissionsergebnisse der Asthma-Familienstudie	96
Tabelle 3.5 Vergleich der Transmissionsergebnisse und Zwei-Punkt-Haplotypen	99
Tabelle 3.6 Haplotypentransmissionen	100