
Institut für Informatik der Technischen Universität München

Search Result Management System
(SerumS) - An Approach for Efficient

and Consistent Web Services Brokering

Quang Cua Cao

Vollständiger Abdruck der von der Fakultät der Technischen Universität München zur Erlangung
des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Johann Schlichter
Prüfer der Dissertation: 1. Univ.-Prof. Dr. Eike Jessen, em.

2. Univ.-Prof. Dr. Martin Bichler

Die Dissertation wurde am 14.12.2006 bei der Technischen Universität München eingereicht und
durch die Fakultät für Informatik am 02.02.2007 angenommen.

Abstract

The key concept of Web services is to make both inter- and intra-application integration pos-
sible in a way that the integration does not depend on the platform or implementation of the
service customer or provider. Since the information about Web services and their providers is
usually managed in a central UDDI1 registry and the present UDDI standard does not offer
a mechanism for the automatic actualization of the Web service information, it is often inac-
curate or outdated[1]. This work presents a concept for solving these problems. Moreover, it
allows to optimize the Web service application process by adopting a Pull/Push technique and
Publish/Subscribe Model based search and management system for Web services. Furthermore,
the system searches proactively for new Web services and selects the appropriate service for the
service customer. This improves significantly the reaction time and the performance of the Web
service application process.

The following main contributions build up the core of the work:

• The current UDDI standard is extended by a Publish/Subscribe mechanism

• Service customers can use the Publish/Subscribe mechanism to register themselves for
certain Web services

• Reduction of response time for service customers by automatic searching for new Web
services by the service broker (in our case SerumS)

• Improved correctness and completeness of the search result

• Notification about new Web services and changes to the service customers through the
service provider

• Avoidance of inconsistent data by automatic update of the Web service information

The aim of this work is to use the “Publish-Subscribe Notification for Web services”[2] specifi-
cation for realizing the Publish/Subscribe mechanism, so that the result can be considered as
a replacement for a UDDI registry. The proof of concept (PoC), which results from this work,
has in addtion to the traditional functionalities of a UDDI registry also the features mentioned
above.

1Universal Description Discovery and Integration

ii

Zusammenfassung

Das Schlüsselkonzept von Web Services liegt darin, sowohl Unternehmens-übergreifende als auch
-interne Anwendungsintegration auf die Art und Weise zu ermöglichen, dass die Integration
weder von der Plattform noch von der Implementierung des Service Customer oder Provider
abhängt. Da die Informationen zu den Web Services und deren Provider in einer zentralen
UDDI Registry verwaltet werden und der aktuelle UDDI Standard keinen Mechanismus zur
automatischen Aktualisierung der Web Service Informationen besitzt, sind diese sehr oft un-
genau und “out-of-date”[1]. In dieser Arbeit wird ein Konzept zur Lösung dieser Probleme
vorgestellt, welches darüber hinaus den Web Service Anwendungsprozess durch den Einsatz eines
auf Pull/Push-Technik und Publish/Subsribe-Modell basierten Such- und Managementsystems
optimiert. Außerdem sucht das System proaktiv nach neuen Web Services und wählt für den
Service Customer den passenden Service. Dies verbessert significant die Reaktionszeit und die
Performanz des Web Service Anwendungsprozesses.

Die folgenden Hauptbeiträge bilden den Kern der Arbeit:

• Der aktuelle UDDI Standard wird um den Publish/Subscribe Mechanismus erweitert

• Service Customer können den Publish/Subscribe Mechanismus benutzen, um sich für bes-
timmte Services zu registrieren.

• Reduktion der Antwortzeit für Service Customer durch automatisches Suchen nach neuen
Web Services durch den Service Broker (in unserem Fall SerumS)

• Verbesserte Korrektheit und Vollständigkeit des Suchergebnisses.

• Die Service Customer werden von den Service Provider über neue Web Services und ihre
Änderungen benachrichtigt.

• Vermeidung von inkonsistenten Daten durch automatisches Update der Web Service In-
formationen.

Das Ziel dieser Arbeit ist das Benutzen der “Publish-Subscribe Notification for Web services”[2]
Spezifikation für die Realisierung des Publish/Subscribe Mechanismus, so dass das Ergebnis als
Ersatz für die UDDI Registry betrachtet werden kann. Das “Proof of Concept (PoC)” besitzt
zusätzlich zu den traditionellen Fuktionalitäten einer UDDI Registry auch die gerade erwähnten
Neuerungen.

iv

Acknowledgement

First of all, I would like to thank Univ-Prof. Dr. Eike Jessen and Univ.-Prof. Dr. Martin Bichler
for supervising this thesis and giving me the full freedom to work on it. I especially appreciate
their many suggestions and help during my research. I like to thank the colleagues at “The chair
of Internet-based Information Systems (IBIS)”, particularly Adrian Paschke, for many precious
and fruitful discussions.

I would also like to thank Dr. Manfred Jobmann for his discussions, and in particular for helpful
questions and suggestions which have improved the quality of this work.

Finally, I like to thank again my first supervisor Univ-Prof. Dr. Eike Jessen, Mcs. Mohammad
Khaleghi of the “Chair for Theoretical Computer Science and Foundations of Artificial Intel-
ligence”, Bilen Emek Abali and the colleagues of the chair “Network Architectures” for the
proof-reading of this thesis.

vi

Contents

1 Introduction 1

1.1 Distributed system architecture and application resource management 1

1.2 Push-Pull technique vs. Pull technique . 3

1.2.1 Pull technique . 3

1.2.2 Pull-Push technique . 5

1.3 Motivation . 8

1.4 Methodology and structure of the thesis . 10

2 Introduction to Web services 13

2.1 Definition . 13

2.2 How are Web services implemented? . 14

2.3 Résumé . 21

3 State of the Art - General issues 23

3.1 Different implementations of UDDI Business Registry node (UBR node) 24

3.1.1 Non-uniform usability . 24

3.1.2 Distribution of Web service definitions over many UBRs 26

3.2 Inability to control the Web service data in the UDDI re-gistry 26

3.3 Non-authorised use of Web service data (against the intention of service providers) 27

3.4 Limited ontology (vocabulary) for representing service information in the UDDI
registry . 27

3.5 Timeliness and consistency issues . 28

3.6 Performance related issues . 28

viii CONTENTS

3.7 Résumé . 29

4 Current Evolutions 31

4.1 Ontology Web Language for Web services (OWL-S) 31

4.1.1 Concept . 31

4.1.2 Conclusion . 32

4.2 Web services Inspection Language(WSIL) . 33

4.2.1 Concept . 33

4.2.2 Conclusion . 36

4.3 Two-Level UDDIs . 37

4.3.1 Concept . 37

4.3.2 Conclusion . 37

4.4 Combination of Peer-to-Peer (P2P) and SOA . 38

4.4.1 Basic . 38

4.4.2 Concept . 39

4.4.3 Implementation . 41

4.4.4 Problems . 44

4.5 Résumé . 46

4.6 Requirements for a new solution . 47

5 Our Solution - The Search Result Management System (SerumS) 49

5.1 Introduction . 49

5.2 Architecture . 49

5.2.1 System interfaces . 49

5.2.2 SerumS workflow . 51

5.2.2.1 SerumS-SC and SerumS-SP workflow 52

5.2.2.2 Autonomous task workflow . 54

5.3 Comparison of SerumS with a traditional UDDI registry 55

5.4 Technologies and tools . 57

5.4.1 The Search-Engine “Google” . 57

CONTENTS ix

5.4.2 Web Service Framework “AXIS” . 58

5.4.3 The “Publish Subscribe Notification for Web services” specification 59

5.4.3.1 Subscribe Message . 59

5.4.3.2 Notification Message . 64

5.5 Software implementation - Proof of Concept (PoC) 66

5.5.1 Software modularization and coding . 66

5.5.2 Code examples . 68

5.5.3 Technical characterization of SerumS . 72

5.6 Résumé . 73

6 Validation of SerumS 75

6.1 General Process . 75

6.2 Elementary Operations Measurement (EOM) . 76

6.2.0.1 Purpose of the validation . 76

6.2.0.2 Validation environment . 76

6.2.1 Validation procedure and result . 81

6.2.1.1 Validation procedure . 81

6.2.1.2 Response time for the “register()” operation 82

6.2.1.3 Conclusion . 82

6.2.1.4 Response time for the “publish()” operation 82

6.2.1.5 Conclusion: . 83

6.2.1.6 Response time for the “inquiry()” operation 83

6.2.1.7 Search correctness . 84

6.2.1.8 Search completeness . 86

6.2.2 Conclusion . 86

6.3 Quantitative Modelling (QAM) . 87

6.3.1 Validation procedure and parameters . 87

6.3.2 UDDI registry performance model . 88

6.3.3 SerumS performance model . 92

6.3.3.1 Load for handling inner task . 92

x CONTENTS

6.3.3.2 Load for handling autonomous task 92

6.4 Load Capacity Measurement (LCM) - Test of SerumS’s functionality under load 93

6.4.1 General procedure . 93

6.4.2 Hardware and software configuration . 93

6.4.3 Tool description and measurement configuration 93

6.4.4 Validation result . 98

6.4.5 Evaluation of the test result . 98

6.4.6 Résumé . 102

7 Conclusion and Future Works 103

7.1 Conclusion . 103

7.2 Future Works . 104

7.2.1 Improvement of the “proactive functionality” 104

7.2.2 OWL-S Extension . 106

7.2.3 QoS extension . 106

7.2.4 SLAs extension . 108

A Java-based construct for searching Web services 111

B Structure of a WSDL document 113

C WSDL document example 115

D GLUE Java-Class based WS objects of the “PeerChainApplication” 117

E Service customer profile XML schema 119

F Service provider profile XML schema 121

List of Figures

1.1 Model of a traditional distributed application . 2

1.2 Relation between service resources and the activity level of the entities 2

1.3 Search cycle of the distributed application process 4

1.4 Process and involved objects of a distributed application 4

1.5 “www.google.com” as service broker for travel planning 5

1.6 Process model of news and email application systems 6

1.7 Basic process model of Push-Pull technique based applications 7

1.8 Push-Pull technique vs. Pull technique . 8

1.9 Example of an application based on the Service Oriented Architecture (SOA) . . 9

1.10 Structure of the dissertation . 11

2.1 Process of the Amazon E-Commerce Service . 15

2.2 Relation between the UDDI data types . 18

3.1 WSDL-UDDI Mapping Schema . 23

3.2 The browser-based user interface of the SAP Test Public Business Registry[13] . 24

3.3 The browser-based user interface of the XMethods Query Service 25

3.4 URL problem in UDDI registries . 26

3.5 URL problems in UDDI the production registries 27

4.1 Structure of the OWL-S-based Web services description[20] 33

4.2 Use of a WSIL document . 35

4.3 Two-Level UDDI registries . 38

4.4 Conventional SOA-based Web services environment 40

xii LIST OF FIGURES

4.5 SOA-P2P based Web services environment . 41

5.1 Architecture of SerumS . 50

5.2 Workflow of SerumS . 53

5.3 Publish/Subscribe process model . 59

5.4 SerumS package structure . 69

5.5 The GUI interface for publishing or changing a WSDL document to SerumS . . . 70

6.1 EOM Environment . 77

6.2 UDDI’s and SerumS’s response time for the “inquiry” operation 85

6.3 Call relations and call rates of a Web service application based on traditional
UDDI registry . 88

6.4 Service changed and invalid probability . 89

6.5 Asymptotic response time (yCP) for the client’s calls 91

6.6 Hard- and software configuration for the LCM with 20 client (stimulator) PCs
and the SerumS Broker . 94

6.7 The main screen (Repository) of Neoload . 95

6.8 Detailed Information about the service endpoint 95

6.9 Creation and description of virtual users . 96

6.10 Population configuration for the Virtual Users . 97

6.11 Configuration of the test scenario . 97

6.12 SerumS’s performance with 60 VUs (inquiry requests) 99

6.13 SerumS’s performance with 140 VUs (inquiry requests) 100

6.14 SerumS’s performance with 200 VUs (inquiry requests) 101

Listings

2.1 The UDDI “save business” operation message format 16

2.2 The UDDI “save tModel” operation message format 16

2.3 The UDDI “save service” operation message format 17

4.1 Conditional information within a ServiceModel in OWL-S 32

4.2 Example of a WSIL document[25] . 34

4.3 WSIL document within an HTML web page . 34

4.4 Combination of WSIL with WSDL and UDDI specifications [25] 36

4.5 Example “PeerChainApplication” based on JXTA-framework 42

5.1 Google - Web services based searching for new WSDL documents 58

5.2 Structure of the Subscribe Message . 59

5.3 Example Subscribe Message . 60

5.4 Structure of the SubscribeResponse Message . 62

5.5 Example SubscribeResponse Message . 63

5.6 Structure of the Notify Message . 64

5.7 Example Notify Message . 64

5.8 Example service customer profile . 68

5.9 Create an XMLBeans instance from an XML file 71

5.10 Access the content of the customer profile as Java object properties 71

6.1 Example customer profile 1 . 78

6.2 Example customer profile 2 . 78

6.3 Example provider profile 1 . 80

6.4 Example provider profile 2 . 80

xiv LISTINGS

7.1 Provider profile with “Not-changed” guarantee information 105

7.2 Provider profile with QoS information . 107

7.3 Example of RBSLA-based SLA within the provider profile 108

List of Tables

1.1 Service resource and activity level matrix . 3

5.1 Comparison of SerumS with a traditional UDDI registry 57

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Distributed system architecture and application resource
management

In distributed systems application components are developed by their service provider and finally
deposed at an appropriate location, where they can be accessed by a service client1. It is nec-
essary for the service provider to inform service clients, where and how (e.g. by which technical
media) they can find the application interfaces. Generally speaking, it concerns a problem of the
resource localization or formally a problem of asymmetrical distribution of application resources,
from which undesired efficiency problems for the service user result in using desired services.
This straightly represents a main problem in Web services, because an efficient localization and
administration of the Web service information is necessary in order to find the application inter-
faces and establish efficient use of them. Figure 1.1 shows the model of traditional distributed
application systems and the problem associated with them.

The objects involved in a distributed application can be divided in two groups:

1. Service information-owning entities:
They are passive because they do not perform actions, rather they only react to inquiries
performed by other entities like requesting for certain resources from a service client

2. Service information-using entities:
They are active because they have to perform appropriate actions to get necessary service
resources.

Figure 1.2 shows the relation between the service resources and the activities of the application
entities involved in the application process. The relation between the elements of Figure 1.2 can
be explained better with the matrix depicted in Table 1.1

1In this work we use the term “service client” for a software component, “service user” for a human actor and
“service customer” in an e-commerce context. Analogously, we say “server” for a technical component, otherwise
the term “service provider” is used for an human actor or an institution

2 1. Introduction

service

provider

service

broker

service

user
i
n
d
e
x
i
n
g

indexing

r
e
g
i
s
t
e
r

register

Optional

passive entities active entities

search

sea
rch

service

user

service

broker

Figure 1.1: Model of a traditional distributed application

service provider

service user

a
c
ti

v
it

y
 l
e
v
e
l

service resource need

Service broker

s
e

rv
ic

e
 r

e
s

o
u

rc
e

 g
a

pservice user

service provider

service user

service user

Service broker

Service broker

Figure 1.2: Relation between service resources and the activity level of the entities

1.2 Push-Pull technique vs. Pull technique 3

Service entities Activity level Need for service resources Service resource gap

Providers very low none none

Brokers low low low

Users high high high

Table 1.1: Service resource and activity level matrix

The matrix shows that the need for service resources is very high for the service users. The reason
is the unavailability of prior knowledge about the existence of the service providers and their
services. The high demand for the service resources requires some actions from a service user
to find them and hence leads to a high activity level. Activity level is the work which a service
user spends for service search. Generally speaking, we are dealing with the service resource gap
issue, which represents the set of the missing service information needed by a service user for
using a certain service. This service resource gap results from the natural distribution of the
service resources and the need of service resources at the side of the service user. Actually,
service resource gap is the basic problem from which other issues regarding the performance and
efficiency of the execution of the service process result. In the next section we examine more
concretely how it comes to the service resource gap issue. Also, we point out that service resource
gap is a general problem of the current distributed application architecture and it needs to be
solved.

1.2 Push-Pull technique vs. Pull technique

1.2.1 Pull technique

Most applications (whether they are standalone or distributed) are based on an “one way”
architecture, where the client has to perform all the necessary work steps in order to achieve a
certain result. In local or standalone applications it is not necessary for the client to retrieve the
appropriate information to use the application functionality. More complicated are distributed
application systems consisting of a number of different clients and server software components,
which are at different places and are connected through a communication medium, so that
remote operation is possible. The communication medium can be a network section within a
Local Area Network (LAN) or a Wide Area Network (WAN). Figure 1.3 shows the basic cycle of
a distributed application and the elementary communication processes via an activity diagram.
In this scenario we assume that the client does not have any information about the location of
the server and its services in advance.

Figure 1.4 shows more details about the service process and points out the relationship between
the involved objects via a sequence diagram. The diagram illustrates the basic process model of
the most distributed application systems today. The whole process consists of four elementary
steps:

1. Searching for necessary service information:
A client sends a search request to a service broker for information, which is necessary to

4 1. Introduction

Search for service

information

communicate with the

service application

if necessary information found

Figure 1.3: Search cycle of the distributed application process

(2) return the search result

serverservice broker
client

1 : \CalledOperation\

2 : \CalledOperation\

(1) search for service information

(3) use (or call) the service interface

(4) return service result

Figure 1.4: Process and involved objects of a distributed application

find and to use the service

2. Obtaining the service information from a service broker:
As result of the search process, the client can obtain some service information, from which
it chooses the appropriate one to use.

3. Calling the service interface:
The client calls the service (interface) at the address of the server.

4. Obtaining the service result from the server:
The server can return some results to the client if they exist and/or if the client explicitly
requested to return a result.

A typical case of such processes takes place when someone is using a search engine to find
certain service or general information. An example with “www.google.com” as service broker is
demonstrated in Figure 1.5.

As one can take from the three diagrams (Figure 1.3, 1.4 and 1.5), the client has to be active
from the beginning of each application process. It first has to find out whether there is any
service at all to satisfy its need. Then it has to explore from where and how it can access the
service. Thus, by this architecture the client has to do the major part of the whole application
process; the key word in this context is “search for service information”. Instead of “search for

1.2 Push-Pull technique vs. Pull technique 5

travel agency EuroFlywww.google.comtravel planer

1 : \CalledOperation\

2 : \CalledOperation\

3 : \CalledOperation\

search for travel agency

return a set of travel agencies

visit the website of the chosen travel agency EuroFly

show the travel planer travel and billing information

fill in the travel forms and send them to the travel agency

confirm the travel (fly) order

Figure 1.5: “www.google.com” as service broker for travel planning

service information” we also can say: “pull the service information”. It means that the active
part of the distributed application system has to pull the necessary information to itself, e.g.
request it in order to call or use the application functionality of the remote part(s). Thus, “Pull
technique” based applications suffer from the following disadvantages:

• The effort and load within the application process is not shared symmetrically among the
involved entities.

• The client part has the highest activity level

• The application information needed by the client has to be searched “ad hoc” when the
application has to be performed and thereby extends the service execution time.

• the service information is not up-to-date, if it is cached by the client and changed meanwhile
on the server.

Hence, it is necessary to consider alternative ways which can avoid these disadvantages. This
leads to the “Pull-Push” technique, which will be discussed in detail in the next section.

1.2.2 Pull-Push technique

Besides the predominant number of distributed applications based on the Pull technique, there
are also many existing applications based on the Pull-Push technique. The most well-known
application system based on this technique is a “news group”, to which a user can register
himself to get automatically news articles from one or many news servers. Another example
is an email application system. An email application system works like a news group with the

6 1. Introduction

news client news server

1 : \CalledOperation\

2 : \CalledOperation\

3 : \CalledOperation\

4 : \CalledOperation\

subscribe for a (or many) topic(s)

send the content according to the topic to the client

when news with this topic arrive

unsubscribe for a (or many) topic(s)

delete the topic-client association(s)

Figure 1.6: Process model of news and email application systems

difference that the receiver of an email is not the whole group but is always explicitly determined
by the sender. However, both news group and email system work as in Figure 1.6.

The basic process model of applications based on the Pull-Push technique is shown in Figure
1.7. The main difference between a Pull and a Push-Pull based application is the possibility for
a client to register itself at the service broker for certain services. Due to this, a service broker
or in some circumstances the server itself can inform the interested clients (subscribers) about
new relevant events.

Thus, the Pull-Push technique offers the following advantages:

• The search for services by the client can be omitted

• The client is informed in time about new (interested) services

• the client gets only the service information according to its registered (subscribed) topic(s)
and hence the data redundancy can be limited.

But the most important advantage of the Push-Pull technique is the possibility of an application
broker or server to inform (or notify) a client about changes on existing services so that the client
can access the service interfaces without any failure or raising any exception. This is one of the
main aspects which belongs to the core of this thesis and will be discussed concretely and with

1.2 Push-Pull technique vs. Pull technique 7

register application

notify the client about new service(s)

register application

notify the client about new service(s)

service provider 2service provider 1service brokerclient service provider n

1 : \CalledOperation\

2 : \CalledOperation\

3 : \CalledOperation\

4 : \CalledOperation\

5 : \CalledOperation\

6 : \CalledOperation\

7 : \CalledOperation\

8 : \CalledOperation\

9 : \CalledOperation\

10 : \CalledOperation\

11 : \CalledOperation\
12 : \CalledOperation\

subscribe to a (or many) services

use the service (interface)

register application

unsubscribe from a (or many) service(s)

delete the client-service association(s) from the list

use the service (interface)

notify the client about new service(s)

use the service (interface)

return some results

return some results

return some results

Figure 1.7: Basic process model of Push-Pull technique based applications

8 1. Introduction

more details in the following chapters. Figure 1.8 summarizes the core differences between the
Pull and Push-Pull technique.

SBS
SI

Time t1

Time t2

Time t3

register

search

register

Pull-Technique-based application architecture Pull/Push-Technique-based application architecture

SI

SB

SB

SC

SC

SC

SP

SP

SP
S

Legend:
S: Service
SI: Service information
SP: Service provider
SB: Service broker
SC: Service client

Xinform

SBS
SI

Time t1

Time t2

Time t3

register

search

register

SI

SB

SB

SC

SC

SC

SP

SP

SP
S

inform

Figure 1.8: Push-Pull technique vs. Pull technique

1.3 Motivation

“Companies are looking for enhanced capabilities that will help them not only more
easily create and use web services, but also help them manage and secure web services
within a SOA...”[4]

In the previous section we have discussed general problems within a distributed application
environment, which arise as a result of the asymmetric distribution of the application resources.
The client suffers as an “active entity” in order to achieve the information before it can use the
service. The process model of the distributed application architecture and its problem can be
translated to the Service Oriented Architecture (SOA), on which Web services are based. We
assume that the reader is already familiar with the SOA concept, but for the sake of completeness
we will give a short overview of it. Although there is not any generally acceptable definition of
SOA today[5], in the article [6] one finds a detailed discussion about SOA along with the following
definition:

[SOA is] “an application architecture within which all functions are defined as
independent services with well-defined invokable interfaces which can be called in
defined sequences to form business processes”

From the above definition, the following key aspects are typical for the SOA concept:

• All application functions are defined as services with well defined interfaces to communicate
with other components.

1.3 Motivation 9

• All services are independent. They are designed as “black boxes”; one service neither knows
nor cares how the other one performs its function. Only the result returned by the service
is relevant.

• Well-defined invokable interfaces which can be called within sequences of a defined business
process. This enables execution of complex business processes among different many service
providers.

The following section points out the relation between both the distributed application archi-
tecture and the SOA. It shows how the mentioned Push-Pull technique can be used to solve
the problems in the current Web services infrastructure. Figure 1.9 shows the Web service en-
vironment with an UDDI service broker as an example application system based on the SOA
[7]:

Figure 1.9: Example of an application based on the Service Oriented Architecture (SOA)

Unlike traditional distributed applications, which often use a company’s own proprietary pro-
tocol to enable the communication between the application components, Web services use stan-
dardized communication protocols with appropriate message description languages. But this
only contributes to the independence aspect so that both service providers and service clients
do not care about the usability of the service interfaces. The targets which have to be achieved
by both the distributed application architecture and especially the SOA are:

• Ability to control the service data and their usage in the broker

• Ability of service providers to control their service data

• Ability to hold Web service information always up-to-date

• Avoidance of performance-related problems

10 1. Introduction

These four requirements represent the core thematic of this thesis. The main strategy to fulfill the
requirements is to apply the “Publish-Subscribe Notification for Web services” specification[2],
which is based on the Push-Pull technique, to construct a system which can replace a tradi-
tional UDDI registry. Before doing this, we need some basic understanding of SOA and Web
services. Hence the purpose of the next chapter is to introduce into these topics and provide
some necessary vocabulary for further chapters.

1.4 Methodology and structure of the thesis

After introducing the general problem of the current distributed application architecture and
presenting a possibility to handle the problem by applying the Push-Pull technique instead of
the Pull technique, which is dominant in the distributed and service oriented applications today,
we will give a comprehensive overview about Web services in chapter 2. In the chapter 3 the main
issues in Web services mentioned in 1.3 are concretized. The discussion of these issues shows
which problems generally exist but are not considered seriously by the public and outlines the
importance of this thesis. The chapter 4 presents the current evolutions around the topic of
this thesis and shows to what extent they are contributing to solve the problems mentioned in
the previous chapter. The chapter 5 clarifies the idea of the thesis and describes the method
of the solution by applying the “Publish-Subscribe Notification for Web services” specification
as a Push-Pull mechanism. This chapter is closed with a Proof of Concept (PoC) containing
details of the implementation. The chapter 6 describes the validation of the PoC regarding the
performance of the elementary operations and is accompanied by the “Quantitative Modelling”
and a simulation to estimate the response time and load capacity of SerumS. The last chapter
7 summarizes the core contributions of this thesis and gives a look-out to future works. Figure
1.10 depicts the structure of the thesis.

1.4 Methodology and structure of the thesis 11

II. Introduction to Web services

2.1 2.2 2.3

III. State of the Art
(Problems and requirements)

3.1 3.2 3.3 3.4 3.5 3.6 3.7

IV. Current Evolutions

4.1 4.2 4.3 4.4 4.5 4.6

V. Our solution

5.1 5.2 5.3 5.4

5.5

VI. Validation of SerumS

6.1 6.2 6.3 6.4 6.5

VII. Conclusion and
Future work

7.1 7.2

5.6

PoC

Figure 1.10: Structure of the dissertation

12 1. Introduction

Chapter 2

Introduction to Web services

This chapter introduces the terminology of Web services which is needed as a basis for the
further chapters. First, we consider some well-known definitions of Web services and explain
our own notion of a Web service. An example Web service used by the company “Amazon”1 is
supposed to illustrate the definitions and terminologies and to show how Web services generally
work.

2.1 Definition

The World Wide Web Consortium (W3C)2 gives the following definition of Web services:

“A Web service is a software application identified by a URI, whose interfaces and
bindings are capable of being defined, described, and discovered as XML artifacts.
A Web service supports direct interactions with other software agents using XML
based messages exchanged via Internet-based protocols”[8]

This definition determines a Web service more technically through standardized message lan-
guages and communication protocols. According to the definition above, a Web service (or its
service interface) must be described in a well known language which allows automatic interpre-
tation and discovery by a software agent, based on a standardized communication protocol (and
not on a company’s proprietary one).

Unlike the definition of the W3C consortium IBM gives a more technical definition of Web
services:

“A Web service is an interface that describes a collection of operations that
are network- accessible through standardized XML messaging. A Web service is
described using a standard, formal XML notion, called its service description. It
covers all the details necessary to interact with the service, including message formats
(that detail the operations), transport protocols and location. The interface hides

1http://www.amazon.com
2http://www.w3.org

14 2. Introduction to Web services

the implementation details of the service, allowing it to be used independently of the
hardware or software platform on which it is implemented and also independently
of the programming language in which it is written. This allows and encourages
Web Services-based applications to be loosely coupled, component-oriented, cross-
technology implementations. Web Services fulfill a specific task or a set of tasks. They
can be used alone or with other Web Services to carry out a complex aggregation or
a business transaction.”[9]

The first sentence of the IBM’s definition is not in accordance with the official W3C’s one and
is strictly speaking too narrow and not correct. However, the second part describes objectively
the technical details of Web services which are relevant in the context of developing Web service
applications. The most important outline in this definition is the hiding of the implementation
details of a service and the intention to make service developers free from binding to a program-
ming language or platform. Hence the service applications can be created more independently by
the developers, and everyone can choose the programming language or tool he is familiar with.
Additionally, one does not need to care about the format of the messages which are exchanged
between the service application components. The other important property of Web services in
this definition is the possibility to combine multiple Web services by different service providers,
located at more than one server, to a single one. As a consequence, a whole business transaction,
which comprises a set of Web services, can be performed. With BPEL4WS (Business Process
Execution language for Web Services)[10] it is possible to determine explicitly the execution of
a combined business transaction.

Now we construct our own definition by combining the important properties from the two
previous definitions:

A Web service is a software component, which is identified and accessed by a
unique URI. The URI in general refers to the address of the service provider which
describes the service by using a standardized XML based specification language, e.g.
Web services Description Language (WSDL)[11] and can be identified and used by a
service customer’s software agent. One important property which characterizes Web
services and makes them different from other existing services is the integration of
intra- and extra-company applications from any platform.

2.2 How are Web services implemented?

In this chapter we discuss the technical aspects of Web services and explain how they are
implemented. Altogether, this chapter is supposed to answer the following questions:

a) Which communication protocol is used between the Web service entities (service broker,
service client, server)?

b) What is the syntax of messages, which are exchanged as communication protocol elements
between the Web service entities?

c) How do service client and server communicate with the service broker (aka. UDDI reg-
istry)?

2.2 How are Web services implemented? 15

d) How are service interfaces described (in terms of description language and description
structure)?

To answer these questions, we take as a Web service example scenario the real service
provider “www.amazon.de” (briefly called “Amazon”). Indeed, apart from the services which
are available via the Internet using the traditional Internet protocol “http” (known as
http://www.amazon.com), Amazon also offers the same services as Web services known as “Ama-
zon E-Commerce Service”[12] described by an appropriate WSDL document. In this example
we assume that the service provider Amazon has published its “Amazon E-Commerce Service”
by the SAP UDDI node[13] and a service customer “BookCustomer” uses this service to order
some book objects. The whole work process from the deployment of the “Amazon E-Commerce
Service” until calling the service interfaces by the “BookCustomer” is illustrated in Figure 2.1.

AmazonSAP UDDI node
BookCustomer

1 : \CalledOperation\

2 : \CalledOperation\

3 : \CalledOperation\

4 : \CalledOperation\

(1) publish the “Amazon E-Commerce Service”

(2) search for a “books selling service”

return a set of “books selling services”

(3) download the XML-based WSDL-document

(4) call (bind) the service operations

receive result from the server

Figure 2.1: Process of the Amazon E-Commerce Service

(1)Publish the “Amazon E-Commerce Service”:

To make the Web service “Amazon E-Commerce Service” available for the customers, the service
provider Amazon publishes it to the SAP UDDI node using the “publish”-interface which is a
part of the UDDI-API. The whole “publish” interface consists of 4 atomic operations described
as followed:

i. An Amazon operator sends the SOAP-based “save business” messages (see Listing 2.1)
to the UDDI registry to register a “BusinessEntity”. We additionally assume that the
Amazon operator has already received the necessary authorization information which is

16 2. Introduction to Web services

required for all operations to the UDDI registry and it is declared in the “<authInfo>” tag.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/
3 soap/envelope/”>

4 <soapenv:Body>

5 <save business generic=”2.0” xmlns=”urn:uddi−org:api v2”>

6 <authInfo>A7309120−4FAF−11DA−A536−CC20AD5F81BA</authInfo>

7 <businessEntity businessKey=””>

8 <name>www.amazon.com</name>
9 <description>

10 Amazon E−Commerce Service,
11 book selling service
12 </description>

13 <contacts>
14 <contact useType=”Customer Support”>

15 <personName>Amazone</personName>
16 <phone>0123456789</phone>
17 <email>webservices@amazon.com</email>
18 </contact>
19 </contacts>
20 </businessEntity>

21 </save business>
22 </soapenv:Body>

23 </soapenv:Envelope>

Listing 2.1: The UDDI “save business” operation message format

With the “save-business” operation message the service provider Amazon publishes the
contact and descriptive information about its business. As a result the Amazon operator
will obtain a “BusinessKey” which is used for the further steps.

ii. The next message (see Listing 2.2), which belongs to the “publish” operation and is sent
to the UDDI registry, contains a “save tModel” element. Within a “save tModel” mes-
sage a service provider can specify technical information about the type of the service
“<categoryBag>” which is identified with an unique key number.

iii. Another important element is the “<overviewURL>” which contains the physical
address of the technical description of the service (in this case a WSDL document).

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/
3 soap/envelope/”>

4 <soapenv:Body>

5 <save tModel generic=”2.0” xmlns=”urn:uddi−org:api v2”>

6 <authInfo>A7309120−4FAF−11DA−A536−CC20AD5F81BA</authInfo>

7
8 <tModel tModelKey=””>

9 <name>Amazon E−Commerce Service</name>
10 <description xml:lang=”en”>

11 interface for Web service searching and
12 ordering Amazon’s book items
13 </description
14
15 <overviewDoc>
16 <description xml:lang=”en”>

2.2 How are Web services implemented? 17

17 The service’s WSDL document
18 </description>

19 <overviewURL>

20 http://webservices.amazon.com/AWSECommerceService/
21 AWSECommerceService.wsdl
22 </overviewURL>

23 </overviewDoc>
24
25 <categoryBag>

26 <keyedReference tModelKey=”UUID:C1ACF26D−9672−
27 4404−9D70−39B756E62AB4”
28 keyName=”uddi−org:types” keyValue=”wsdlSpec”/>

29 <keyedReference tModelKey=”UUID:DB77450D−9FA8−
30 45D4−A7BC−04411D14E384”
31 keyName=”Internet related services”
32 keyValue=”007406”/>

33 </categoryBag>

34 </tModel>
35
36 </save tModel>
37 </soapenv:Body>

38 </soapenv:Envelope>

Listing 2.2: The UDDI “save tModel” operation message format

The “keyName” (line 28) and “keyValue” (line 32) within the “<categoryBag>” elements
define the type of the service offered by the service provider. This information is necessary
for service clients to find the service.

iv. The last step is to perform the “save service” operation (see Listing 2.3). The service
provider uses the information obtained in the last steps to describe one or many services.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/
3 soap/envelope/”>

4 <soapenv:Body>

5 <save service generic=”2.0” xmlns=”urn:uddie−org:api v2”>

6 <authInfo>

7 A7309120−4FAF−11DA−A536−CC20AD5F81BA
8 </authInfo>
9

10 <businessService
11 businessKey=”A8A11FD0−4FA9−11DA−A7C8−8ED3B4EC3B3D ”
12 serviceKey=””>

13 <name>Amazon E−Commerce Service</name>
14 <description>

15 some detailed descriptions for the service
16 </description>

17 <bindingTemplates>
18 <bindingTemplate bindingKey=””>

19 <accessPoint URLType=”http”>

20 http://soap.amazon.com/onca/
21 soap?Service=AWSECommerceService
22 </accessPoint>
23 <tModelInstanceDetails>
24 <tModelInstanceInfo tModelKey=”uuid:DB77450D−9FA8−
25 45D4−A7BC−04411D14E384”>

26 <instanceDetails>

18 2. Introduction to Web services

27 <overviewDoc>
28 <overviewURL>

29 http://webservices.amazon.com
30 /AWSECommerceService/AWSECommerceService.wsdl
31 </overviewURL>

32 </overviewDoc>
33 </instanceDetails>
34 </tModelInstanceInfo>

35 </tModelInstanceDetails>
36 </bindingTemplate>
37 </bindingTemplates>
38 </businessService>
39
40 </save service>
41 </soapenv:Body>

42 </soapenv:Envelope>

Listing 2.3: The UDDI “save service” operation message format

The relation between the “<BusinessEntity>”, “<BusinessService>” and
“<Service tModel>” elements, which are also called “UDDI data types”, is illustrated in
Figure 2.2:

Figure 2.2: Relation between the UDDI data types

- A “<BusinessEntity>” element represents a business object and may own one or

2.2 How are Web services implemented? 19

many “<BusinessService>” elements, which represent the concrete service offered by
the service provider.

- A “<BusinessService>” element may own “<BindingTemplates>” elements with a
“<tModel>” element which specifies the technical details about how a service client
can use the service.

(2) Search for a “book selling service”:

This step has to be performed by the service client and consists of the following steps:

i. Getting all relevant Web service information about “book selling service” (see appendix
A).

The basic idea of the code example is to look for a “books selling service” through
the “<categoryBag>” element which specifies the service type. If any services are
found, the name and the description (line 39 in appendix A), especially the con-
tent of the “<overviewURL>” (line 48 in appendix A), will be printed out for
the user to download the WSDL document in order to use the Web service inter-
faces. Due to the code line 39 in appendix A we obtain the textual information:

<name>Amazon E−Commerce Service</name>
<description>some detailed descriptions for the service</description>

and at line 48 the content of the “<overviewURL> ele-
ment and the address, where the WSDL document is located:

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

ii. Obtaining relevant information to use the Web service (interfaces), in our case how to
search and order books.

(3) Download the XML based WSDL document:

This task has to be performed by the service client to obtain the information about the Web
service

(4)Call the service operations:

It contains the following tasks:

i. The service client has to determine the “<service>” element within the WSDL document.
The Amazon WSDL document “AWSECommerceService.wsdl” contains one such element:

<service name=”AWSECommerceService”>

<port name=”AWSECommerceServicePort”
binding=”tns:AWSECommerceServiceBinding”>

<soap:address

20 2. Introduction to Web services

location=”http://soap.amazon.com/onca/
soap?Service=AWSECommerceService”/>

</port>
</service>

ii. looking for the “<binding>” element to determine the
transport protocol supported by the service provider:

<binding name=”AWSECommerceServiceBinding”
type=”tns:AWSECommerceServicePortType”>

<soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>

.

.

.
</binding>

Given the “<service>” and “<binding>” elements, a ser-
vice client knows that the service is accessible at the address
“http://soap.amazon.com/onca/soap?Service=AWSECommerceService” and the
transport protocol is “soap/http” (aka. “soap over http”) which is specified at
“http://schemas.xmlsoap.org/soap/http”.

Relying on the example of “Amazon” the questions a), b) and c) at the beginning of this chapter
(see chapter 2.2) have been answered so far. In the next part we discuss question d) (‘‘how is the
service interface described?”) by looking deeper into a WSDL document. Appendix B shows the
structure of a WSDL document and appendix C gives a concrete example. A WSDL-document
contains the following information:

• declarations of name spaces used within the WSDL document, e.g. see line 4 in the ap-
pendix C

• declarations of the data types used in the document

Beside the simple data types which are already defined in [14] like String and Integer, a
service provider can define other complex data types to be used in the WSDL document,
e.g. see line 10 in the appendix C. A complex data type can also point to a data element
which is defined in an external document.

• declaration of “<message>” elements

A “<message>” element corresponds to a “parameter” within a function or method in a
programming language and is used in one or many “<portType>” element(s), see line 30
in appendix C.

• declaration of “<portType>” elements as signature of the “<messages>” elements

A “<portType>” element corresponds to the signature of a function or method in a
programming language and can have “<input>” or “<output>” elements if required.

• declarations of “<binding>” and “<service>” elements

2.3 Résumé 21

All elements described here can be used in “<binding>” elements which in turn are used
in the “<service>” elements. The advantage of a “<binding>” element is the possibi-
lity for a service client to “bind” dynamically an interface at runtime. For example
at line 30 of appendix C, the service provider gives the service customer the possibil-
ity to bind the service interface with the transport protocol “soap/http” which is de-
fined at “http://schemas.xmlsoap.org/soap/http”. If the service provider asks to change
this protocol to a secure one he can replace “http://schemas.xmlsoap.org/soap/http” by
“http://schemas.xmlsoap.org/soap/https”. The capability of “dynamic binding” is one of
the advantages of the WSDL concept compared to other architectures which cannot handle
dynamic interface binding without cumbersome changing of the structure of the interface
description, e.g. new compiling of skeleton components for a CORBA3 application.

2.3 Résumé

In this chapter we have discussed the technical aspects of Web services. With the Web service
example “Amazon” one can see how complex a whole SOA based application process is. Opposed
to other traditional distributed application environments, there is a lot of overhead caused by
using XML despite of its own advantages. It is necessary that both client and server should
handle the requests and responses as quickly as possible, especially, if many requests are sent
at same time to the server. Therefore, it is necessary to make the execution of the Web service
application process more efficient by avoiding unnecessary communication processes. In the next
chapter we make the context, in which the general consequences of such communication issues
become visible, more concrete by presenting the main problems which are solved within this
thesis.

3Common Object Request Broker Architecture

22 2. Introduction to Web services

Chapter 3

State of the Art - General issues

Service providers develop their Web services and publish the associated information in a central
repository, the so-called UDDI registry, so that it can be found and used by service clients. The
information about a Web service is normally present in form of a XML based WSDL document.
The information originating from a WSDL document is laid down in the UDDI registry according
to the mapping pattern[15] shown in Figure 3.1.

Figure 3.1: WSDL-UDDI Mapping Schema

24 3. State of the Art - General issues

This approach seems to be systematic and meaningful at first glance, however, there are many
aspects which have a negative effect on the execution process of the Web services application
and are discussed in the following section.

3.1 Different implementations of UDDI Business Registry node

(UBR node)

3.1.1 Non-uniform usability

Today, there are many different UBR nodes provided for real business as well as for test purposes.
Some of well known companies which are hosting UBR nodes are Microsoft1, IBM2, SAP3.
Although the UBR implementations are conform with the UDDI specification[16], there is no
uniform usability regarding the GUI-based frontend client software. Generally speaking, every
UBR node has its own user interface which has to be first studied carefully by the user before he
can use the functionality to publish Web services and/or search for them. As examples, Figures
3.2 and 3.3 show the user interface of two different UBR nodes.

Figure 3.2: The browser-based user interface of the SAP Test Public Business Registry[13]

These two Figures clearly show how different the GUIs and the terminologies used by each UBR
node operator are. While in the first case a complex user interface with a separated representation
of the “inquiry()” and “publish()” functionality is provided, the user interface of XMethods4 is

1http://uddi.microsoft.com
2http://uddi.ibm.com
3http://uddi.sap.com
4http://www.xmethods.net

3.1 Different implementations of UDDI Business Registry node (UBR node) 25

Figure 3.3: The browser-based user interface of the XMethods Query Service

26 3. State of the Art - General issues

presented as a “mixed form” of the whole UDDI-API. Someone who is familiar with the second
user interface still needs to learn how to use the SAP UDDI query service and vice versa.

3.1.2 Distribution of Web service definitions over many UBRs

Today, a service provider has a wide range of different UBR nodes to chose for publishing his
Web services. This leads to the fact that the Web services are spread over many UBR nodes,
hence a service user will not get an optimal search result as he wishes and he is often forced to
visit more than one UBR node to obtain an “accurate” and “complete” (see chapter 6.2) search
result.

3.2 Inability to control the Web service data in the UDDI re-

gistry

“The UDDI - The Weather report”[17] shows, that “48% of the production UDDI registry
(tModels tested only) contains links which are unusable. These pointers include missing, broken
or inaccurate information”. Generally, the problem of an UDDI registry is that it represents
a kind of “newsgroup”, in which everyone can place information about his business. Although
every service provider is identifiable by an unique key within the “<BusinessEntity>” element,
thoughtless operations like repeated changing or replacing of the service information can lead
to an inconsistent state of the whole Web service content within the UDDI registry. Other ex-
amples of such operations are duplicates of “serviceKey” elements, incorrect references or even
“data anomalies”, which are characterized by no longer unique “serviceKey” or “<tModelKey>”
within a “<BusinessEntity>” element. Furthermore, there are many entries in an UDDI reg-
istry which do not contain Web service data, but HTML based references pointing to normal
webpages. The Section “Category Research Summary” in the “UDDI - The Weather report”
[17] with the appropriate graphical statistic data in Figures 3.4 and 3.5 confirms this statement.

Figure 3.4: URL problem in UDDI registries

3.3 Non-authorised use of Web service data (against the intention of service
providers) 27

Figure 3.5: URL problems in UDDI the production registries

3.3 Non-authorised use of Web service data (against the inten-

tion of service providers)

Not only UDDI operators want to have control over the Web service data in their UBR node,
but also service providers often want to protect information about their Web services and the
company itself against unauthorised users. Indeed, there is a possibility of abusing the Web
service information by a third party, e.g. a service provider can use the logo, contact information
and description of a well-known and reliable company to advertise its own business. If a user is
searching for that business, he gets both companies as results, but the second one has provided
a different address within the “<overviewURL>” element which refers to a bad service. In
worst case the customer uses this service and is betrayed because of bad service quality or high
service price or confidentiality rupture. Hence a mechanism, which allows the service providers
to specify options how their Web service data should be treated, would provide more flexibility
and security when exposing the data to a third party. Thus, authentification and authorization
are important and there are many approaches available, e.g. authorization through Certificates
or Access Control List (ACL). This thesis also presents a mechanism to restrict the use of the
services by offering service providers the possibility to specify appropriate parameters in their
profile.

3.4 Limited ontology (vocabulary) for representing service in-

formation in the UDDI registry

The information about the service providers and their Web services are managed by the UDDI
registry using the “UDDI data types” (see chapter 4). It is a combination of technical data
from the Web service description and basic information about the service provider and its
business. However, the ontology defined in the UDDI standard to represent the service content

28 3. State of the Art - General issues

is limited. The article “A Model for Web Services Discovery With QoS”[18] states that “The
other shortcoming of the current UDDI model is that it limits the service discovery to functional
requirements only”. Therefore, service users either do not get enough information about the
provider’s business or do not get a satisfactory search result. For example, it would not be
possible for a service user to search for certain Web services which are newer than a given
date. On the other hand, there are limitations for service providers specifying more meaningful
information for their services like specifying parameters to restrict the usage of their services.
This thesis provides an approach to solve this issue by adopting service customer and provider
profiles which contain an additional and meaningful vocabulary to give customers and providers
more options to deal with the Web service information (see the example profiles in the chapter
6.2.0.2.2).

3.5 Timeliness and consistency issues

The general desire of a service provider who offers a Web service is to keep the data refering
to the offered service always up-to-date. In order to ensure this, after each change of a service
the associated information should be updated as fast and effectively as possible. Thus, such
services which are changed frequently, require higher flexibility and efficient handling during the
execution of the change operation so that the service client can always use the correct version of
the service application without any technical problem. The article “Versioning of Web services,
Solving the problem of maintenance”[19] shows that this problem cannot be solved effectively
by the UDDI registry .

3.6 Performance related issues

The concentration of the Web service information in a UDDI registry forces service users to
contact it in order to get the necessary information for using the service. The procedure “search
for Web service information and then use the Web service” must be repeated each time if the
service user wants to keep the service information always up-to-date and did not cache it from
an earlier operation; this causes the following disadvantages:

• Possibly long response time on the broker side:
This problem can arise, if many requests are made by the service customers to the registry
at the same time. Thus, a long waiting time is possible, which can have a negative effect
on the execution process of the service application. Current measurement shows, that an
UDDI registry needs more than one second for a search request (see chapter 6.2.1.6).

• Unfavorable net traffic at operation time on the service customer’s side:
Sometimes service customers also get problems with their own local network. Especially,
if a service customer needs a service at a time when his network is loaded by accesses of
his users. As a consequence the service customer will not be provided immediately with
the necessary service information. With our solution, the broker sends proactively the Web
service information to the service customer so that the customer does not need to search
for it (see chapter 5).

3.7 Résumé 29

• Big effort for filtering the search result because of non-relevant data:
Another problem with searching the Web service information is data irrelevance. This
results due to the state of data in the UDDI registry and/or due to the search query sent
by the service clients, if it is faulty or imprecise. The consequence is the large portion of
data which are of no interest and must be segregated “manually” by the service customer.
The effort for the segregation process is often much more than for the execution of the
service application itself, and it delays the service execution.

• No possibility for service customers to register themselves for desired services:
In addition, service customers do not have the possibility of registering themselves to be
informed about changes of the Web services, e.g. technical changes or business condition
changes like contract regulations. In general, this leads to the Publish/Subscribe model,
which is not yet supported by the current UDDI standard. We will introduce an innovative
concept which improves the correctness and the completeness of the search result (see
chapter 5.3).

3.7 Résumé

The issues with a UDDI registry based on the current UDDI standard described in this chapter
urgently need a comprehensive solution which has to consider the functional as well as the
performance related problems. Before we present our solution, it is meaningfull to examine
existing works on this topic. The next chapter gives an overview about the current evolutions
regarding this topic and shows that they are hardly applicable for the solution of our problem.

30 3. State of the Art - General issues

Chapter 4

Current Evolutions

Currently the Web services community does not pay much attention to the solution of the de-
scribed problems. Instead, the focus is on ontological metadata specifications and in particular on
the semantical aspects in order to specify Web services in a machine-readable and interpretable
way. Thus, the automatic interpretability of the non-functional aspects associated with a Web
service like “Quality of Service (QoS)” or “Service Level Agreement (SLA)”, which describes
the mutual acknowledgment between both business partners to get or pay penalties in case of
unfulfilled agreements, is actually considered to be more important than the management and
retrieval of the Web service information. The following section describes the current evolutions
by presenting the state of research in this problem domain; however, they do not contribute
directly to solve the issues mentioned in the previous chapter.

4.1 Ontology Web Language for Web services (OWL-S)

4.1.1 Concept

OWL-S[20] (formerly DAML-S) is a set of markup language constructs which can be used by a
service provider to describe the properties and capabilities of its Web services in an unambiguous
and computer-interpretable form. With OWL-S it is possible that the Web service tasks including
discovery, execution, interoperation, composition and execution monitoring can be performed in
an automated way[21]. The main goal of using OWL-S is to give Web services better semantics
so that beside “which” and “where” also the question “how the Web service application works”,
e.g. what the execution steps of the application do and under which conditions the execution is
allowed, is answered. Since a Web service can be described due to information by the OWL-S
ontology more clearly and the data about a service provider are specified more precisely (e.g.
by “Service Profiles”) the risk of a mistake or “data inconsistency” (see chapter 3.5) is smaller.
With OWL-S used for specifying the application process flow and also the conditional constructs,
certain agreements about technical and content related aspects between service customers and
the service providers can be negotiated before using the service. With such constructs within a
“ServiceModel” shown in Listing 4.1 the service customer is better informed about what he has
to expect during the execution of the service application process.

32 4. Current Evolutions

1 <process:AtomicProcess rdf:ID=’’Purchase’’>
2
3 ...
4
5 <process:hasInput>
6 <process:Input rdf:ID=”IDNummer”/>

7 </process:hasInput>
8
9 <process:hasResult>

10 <process:Result>
11 <process:hasResultVar>
12 <process:ResultVar rdf:ID=”TimeLimit”>

13 <process:parameterType rdf:resource=”&time;
14 #TemporalEntity”/>

15 </process:ResultVar>
16 </process:hasResultVar>
17 <process:inCondition expressionLanguage=”&expr;#KIF”
18 rdf:dataType=”&xsd;#string>

19 (and (cuurent−value (time−limit ?IDNumer)
20 ?TimeLimit)
21 (>= ?TimeLimit ?purchaseAbo))
22 </process:inCondition>

23 </process:Result>
24 </process:hasResult>
25
26 ...
27
28 </process:AtomicProcess>

Listing 4.1: Conditional information within a ServiceModel in OWL-S

In the data structure shown in Listing 4.1 the service client must specify an ID number (line 6)
as an “<Input>” parameter, which is verified by the server for accessing the service. An expiry
time (line 12) for using the service is assigned to the ID number of the service customer. The
“<process:inCondition>” tag contains instructions to verify the validity of the ID number of the
service customer and of the service time limit (line 19). With such semantic constructs in OWL-
S, the question “how the service is used” is also answered. The more important aspect of OWL-S
in the context of this thesis is the partition of a whole OWL-S document in three different parts,
namely “ServiceProfile”, “ServiceModel” and “ServiceGrounding”. Hence, it promotes a better
management of the Web service information. Figure 4.1 shows the structure of the OWL-S-based
Web service specification.

The partition of an OWL-S based Web service document alleviates the service provider by
structuring the service information, e.g. updating of the service provider’s information only
needs to modify the part “Service Profile” residing in the “profile.owl” document.

4.1.2 Conclusion

With the partition of an OWL-S document into different logical parts a certain level of “effi-
cient management” of the Web service information is achieved. However, this approach does
not respect other issues like if some information on the service provider is changed or if the
service provider wants to restrict the use of his Web services to certain users or user groups.

4.2 Web services Inspection Language(WSIL) 33

Figure 4.1: Structure of the OWL-S-based Web services description[20]

In the next section we consider another already existing way for efficient management of Web
service information by linking the Web service information directly from Web-based resources
like HTML documents.

4.2 Web services Inspection Language(WSIL)

4.2.1 Concept

“WSIL[22] is an XML document format to facilitate the discovery and aggregation of Web
service descriptions in a simple and extensible fashion. While similar in scope to the Universal
Description Discovery and Integration (UDDI) specification, WSIL is a complementary, rather
than a competitive, model to service discovery”[23]. In contrast to a service entity (presented
by the “BusinessEntity” element) within an UDDI registry, a WSIL document does not contain
any functional information about a Web service, it rather presents descriptive information which
has to be read and interpreted by human to learn more about the service.

Generally the use of WSIL is based on the existing relationship between business partners[24],
which know each other and their addresses, so that a direct use of a Web service without an UDDI
registry as service broker is possible. The service customer knows the Web service address of the
service provider described in a WSIL document through an Internet-URL like “http://[domain
of service provider]/[optional server context path]/inspection.wsil”. A WSIL document itself is
XML based and consists of the elements specified in Listing 4.2.

34 4. Current Evolutions

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <inspection xmlns=”http://schemas.xmlsoap.org/ws
3 /2001/10/inspection/”>

4
5 <abstract>
6 Acme Industries Public Web Services
7 </abstract>
8
9 <service>

10 <name>Store Finder Service</name>
11 <abstract>
12 A service to perform a geographical search of Acme
13 store locations.
14 </abstract>
15 <description referencedNamespace=
16 ”http://schemas.xmlsoap.org/wsdl/”
17 location=”http://example.org/services/storefinder.wsdl”>

18 </description>

19 </service>
20
21 <link referencedNamespace=”http://schemas.xmlsoap.org/
22 ws/2001/10/inspection/”
23 location=”http://example.org/services/ecommerce.wsil”>

24 <abstract>
25 Acme Industries Public e−Commerce Services
26 </abstract>
27 </link>

28 </inspection>

Listing 4.2: Example of a WSIL document[25]

- The “<abstract>” element (line 5) contains a short description of the Web service.

- The “<service>” element (line 9) contains beside other sub-elements the link to the “.wsdl”
document specified by a full URL.

- There are one or many optional “<link>” element(s) (line 21) with a location-attribute refer-
ring to other WSIL documents

Listing 4.3 shows how a WSIL document can be used within the header of an HTML web page
and Figure 4.2 illustrates how WSIL works in the practice .

1 <!doctype html public ”−//W3C//DTD HTML 4.01 Transitional//EN”>

2 <html>
3 <head>

4 <meta ...>
5 <meta name=”serviceInspection” content=”http://www.example.com/
6 inspection.wsil>
7 </head>

8
9 <body>

10 ...
11 </body>

12 </html>

Listing 4.3: WSIL document within an HTML web page

4.2 Web services Inspection Language(WSIL) 35

Service provider

Service provider

HTML document
with WSIL declaration
in Header

HTML document

HTML document

<?xml version="1.0"
encoding="UTF-8"?>
<Inspection>
...

<service>
...
</service>

<link >
...

</link>

</inspection>

W
S

IL
d

e
c
la

ra
ti

o
n

Figure 4.2: Use of a WSIL document

The WSIL content within the header of an HTML document either links directly to a WSDL
document residing at the service provider or to other HTML documents containing further WSIL
information.

In the example above we assume that the WSIL document is named as “inspection.wsil” and is
placed directly under the URL “www.example.com” (line 8,9). A WSIL document can also be
placed in any document type with a proper structure and meta data, which only needs to be
found and interpreted by a software agent.

The use of WSIL releases the Web service programming model from the inherent dependence on
the concept of the UDDI. With WSIL, a decentralized management of Web services information
on the side of the service provider becomes possible. This enables also a direct communication
between service customers and service providers. The substantial flexibility of WSIL is that it
can be associated with HTTP based documents, which can be easily found and interpreted by
a webcrawler, e.g. web search engine. This can be realized by the service provider by placing
the appropriate <meta> tag within a HTTP document[25]. WSIL is also extensible to other
specifications or standards like WSDL and UDDI. It means that within a WSIL document
one cannot only refer to URL based resources but also directly to service points (aka. service
interfaces) or to information within an UDDI registry. Listing 4.4 demonstrates the use of WSIL
in combination with the WSDL and UDDI specifications.

36 4. Current Evolutions

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <inspection xmlns=”http://schemas.xmlsoap.org/ws/2001/10/inspection/”
3 xmlns:wsilwsdl=”http://schemas.xmlsoap.org/ws/2001/10/inspection/wsdl/”
4 xmlns:wsiluddi=”http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/”>

5
6 <abstract>Acme Industries Public Web Services</abstract>
7
8 <service>
9 <name>Store Finder Service</name>

10 <abstract>A service to perform a geographical search of Acme
11 store locations.</abstract>
12 <description referencedNamespace=”http://schemas.xmlsoap.org/wsdl/”
13 location=”http://example.org/services/storefinder.wsdl”>

14 <wsilwsdl:reference>
15 <wsilwsdl:referencedService
16 xmlns:ns1=”http://example.org/services/storefinder.wsdl”>

17 ns1:StoreFinder<wsilwsdl:referencedService>
18 </wsilwsdl:reference>
19 </description>

20 </service>
21
22 <link referencedNamespace=”urn:uddi−org:api”>

23 <abstract>Acme Industries Public e−Commerce Services</abstract>
24 <wsiluddi:businessDescription
25 location=”http://example.org/uddi/inquiryapi”>

26 <wsiluddi:businessKey>3C9CADD0−5C39−11D5−9FCF−BB3200333F79
27 </wsiluddi:businessKey>

28 <wsiluddi:discoveryURL useType=”businessEntity”>

29 http://example.org/uddi?3C9CADD0−5C39−11D5−9FCF−BB3200333F79
30 </wsiluddi:discoveryURL>

31 </wsiluddi:businessDescription>

32 </link>

33
34 </inspection>

Listing 4.4: Combination of WSIL with WSDL and UDDI specifications [25]

In the example we are using the extension element “<wsilwsdl:reference>” (line 14) to
point directly to the “StoreFinder” interface of the service provider “example.org”. The
“<wsiluddi:businessDescription>” element (line 24) is used to refer directly to the business
information in an UDDI registry.

4.2.2 Conclusion

One can consider WSIL as a kind of “Resource Simple Syndication (RSS)” for representing and
delivering Web services in a compact way. For a service customer a WSIL document serves as a
reference pointing to Web services without being dependent on the existence of an UDDI registry.
This approach has the advantage that a service provider itself can manage the information about
his Web services and keeps them always up-to-date. Hence this solution addresses the timeliness
aspect of the Web services information (see chapter 3.5) and enables an optimal management
of the Web service information at the service provider. However, WSIL presupposes that the
business partners mutually know each other and that one has to first find the right document
containing the WSIL link in order to reach the final WSIL document. Furthermore the service

4.3 Two-Level UDDIs 37

provider has to update the links in one or many affected HTML web pages if the addres of
any WSIL or the WSDL document is changed. Hence for an automation of the Web services
application process in the actual sense, WSIL does not present an adequate solution under a
long-term perspective.

4.3 Two-Level UDDIs

4.3.1 Concept

The idea behind this approach is to divide the UDDI registries in to two types[26]:

i. Sandboxes:

They are used for development purposes and a wide range of users have the right to work
with them. Service developers can register their services and execute operations in the
sandboxes whenever they wish without caring about affecting the registry. After a service
is properly tested and is considered as ready for the production, the developer can notify
the UDDI system administrator to migrate it to the so-called “Production registries”.

ii. Production registries:

They are specially assigned to system administrators with limited right and are used for
the Web services which are on the production-ready phase. System administrators first
check for the stage of the maturity and the quality of the Web services from the sandboxes
to see whether they fulfil the policies or production specification of their organization, and
then move them in the (final) production registries1. The relation between “sandboxes”
and “production registries” is illustrated in Figure 4.3.

With the separation of the sandboxes from the production registries an UDDI registry operator
has more control over how the registry is used. Both developers and system administrators
benefit from flexibility and autonomy, because they can work independently from each other
with their appropriate access rights given by the system administrator. On one side, developers
have the freedom to test their products as they want and can be sure that the other services are
not affected. On the other side, with the right limitation system administrators do not have to
care about the non-authorised operations executed by other (not allowed) users, hence they can
always hold the production registries in a “clean” status.

4.3.2 Conclusion

The use of “two level UDDI registries” contributes to the solution of “uncontrollability of the
Web services” issues; however this approach still has the following disadvantages:

- The separation of the two types of UDDI registries requires a well designed plan from
the UDDI site operator considering which Web service version should be offered in “sand-
boxes”, and which in “production registries”

1It is clear that the system administrator can only check the correctness of the Web services up to a reasonable
level but not the whole functionality of every service because the set of the results is too big

38 4. Current Evolutions

Figure 4.3: Two-Level UDDI registries

- More UDDI registry instances also result in higher cost. Beside the financial aspect there is
also more complexity and effort necessary to put the whole infrastructure into operation.

- The maintenance of separated system is more complex and more fault-prone.

Despite the mentioned contribution of this approach to our initial problems, it hides some
enterprise-critical disadvantages which have to be handled in an appropriate way. Hence this
solution is not suitable for our problem and we have to look for a better one.

4.4 Combination of Peer-to-Peer (P2P) and SOA

4.4.1 Basic

“A pure peer-to-peer network does not have the notion of clients or servers, but
only equal peer nodes that simultaneously function as both “clients” and “servers”
to the other nodes on the network. This model of network arrangement differs from
the client-server model where communication is usually to and from a server.[...]”[28]

In addition, every peer manages itself in a way that special server instances as “mediators”,
which have to forward the inquiries and answers, can be avoided. The “symmetry” plays a

4.4 Combination of Peer-to-Peer (P2P) and SOA 39

substantial part regarding both the distribution of roles and the resource administration of the
individual peers, which differentiates P2P from other architectures.

From this view we use the following implied properties of P2P to combine it with the SOA to
address the consistency and timeliness issues mentioned in the chapter 3.

a) every peer in the network environment can act as a communication peer, thus a sender
and receiver and forwarder of any data

b) every peer can itself hold and manage the service information needed by the application

The next question is how do we apply P2P on SOA to construct a solution for our problems.
To reduce the complexity, we divide the answer for this question into two parts: In the first
part “concept” we construct the approach and the process by presenting the technologies and
the way how P2P and SOA are combined with each other to build a Web services environment
to address our problems. The second part “implementation” demonstrates this idea with a
practical example by using the JXTA[27] as a P2P framework and shows finally to what extent
this “combination” approach actually is applicable for the solution of our problems.

4.4.2 Concept

Figure 4.4 shows the network infrastructure in a traditional SOA-based Web services environ-
ment, where an instant direct communication between service providers and service clients is not
possible, because the address of the providers is not a priori known to the clients. The other issue
is that all the information needed by the service clients to use the services is concentrated on
the service broker(s) (in our case UUDI registries). Hence we have an “asymmetrical” communi-
cation model resulting from the roles assigned to the involved service entities in a Client-Server
relation:

a) Service providers (SP) are Clients (C) to the Service brokers (SB)

b) Service customers (SC) are clients to the SBs

c) SC are Clients to the SPs if SC access their services

Ideal is a Web services environment where every SC can always get the Web service information
directly and on time from the SPs and also manage it for its own use without help of a SB.
Under this assumption we would have a “symmetrical” communication between all involved
service entities. P2P can realize this concept, where SB(s) can still work as super node(s) for
searching Web service information. Hence, the SOA-based Web services environment in Figure
4.4 can be reconstructed to a SOA-P2P-based Web services environment like in Figure 4.5. where
each SC knows each SP and SB so that a direct, immediate and bidirectional exchange of any
messages, e.g. notifications of new Web services or changes of existing Web services to SC, can
be performed without any “third party” or additional time overhead. Altogether a P2P-SOA
based Web service architecture would bring the following capabilities:

a) Every host acts as a Client as well as a Server

40 4. Current Evolutions

b) Direct communication between SCs and SPs is possible (the intermediate role of the broker
between SC and SP is no longer necessary)

c) Every host manages the Web service information itself

d) Web service information is available at different hosts

SC

SC

SC

SP

SP

SP

UDDI

Legends:

SC: Service clients
SP: Service provider
SB: Service broker (UDDI)

UDDI UDDI

Figure 4.4: Conventional SOA-based Web services environment

The mentioned capabilities cause the following advantages in contrast to a traditional SOA-based
Web services architecture with central broker:

- The “single point of failure” problem through a SB can be avoided, because SCs can get
the service information directly from the SPs

- Since published service information is available on different peers, every SC can get it
directly from the nearest SC or SP (e.g. via multicasting) which has this Web service
information

- SPs can use the “peer-to-peer” property to send every kind of messages to the Clients

To realize this concept with these advantages the paper “Scalable and Ontology-Based
P2P Infrastructure for Sematic Web Services”[29] already presents an approach which
uses a Hypercube overlay topology based P2P infrastructure to organize and search
Web services in an efficient manner. This paper describes how peers are organized
into an Overlay Hypercube Graph so that the longest search path can be limited to

1
N−1 ·

∑logb N
i=1

(b−1)logb N−i+1

(logbN−i)! ·
∏logb N−1

j=0 (i + j) ≈ 0.5 · logb N < N , where N is the total number

of the (host) nodes and is also the longest path in a traditional P2P network which has to be
traversed within a search process in worst case.

4.4 Combination of Peer-to-Peer (P2P) and SOA 41

SC

SC

SC

SP

SP

SP

UDDI

Legends:

SC: Service clients
SP: Service providers
SB: Service broker (UDDI)

UDDI UDDI

Figure 4.5: SOA-P2P based Web services environment

In general one can conceptually construct a network infrastructure combining the advantages of
P2P and SOA together and optimize it in an appropriate way to limit the traffic load generated
by the application operations, e.g. sending or forwarding a request for a resource. However,
there are also other criteria affecting the whole performance of the application process, e.g.
organizing the peers within the Hypercube topology based P2P network causes an additional
complexity of O(logbN) for reconstructuring the Hypecube topology if a peer comes to or leaves
from the network.

There are also other issues which are not visible at the conceptual constructing phase
but rise during the realization (implementation) and operation time of the network. The next
part describes such aspects which are not concerned or not visible during the conception of the
P2P-based Web service network but cause import issues regarding the network management
and application performance at the network operation time. We do this by giving an example
(section 4.4.3) and pointing out the problems related to it (section 4.4.4).

4.4.3 Implementation

The previous section describes the concept of how to combine P2P with SOA to construct a
Web services environment with a “symmetrical” communication model, where every entity
has the capability to act as a client as well as a server. In this section we take a closer look
into the technical aspects of this combination by considering an existing example based on

42 4. Current Evolutions

JXTA, a Java-xbased P2P framework and GLUE[30], a Web service framework. In the short
article “Peer to Peer in Theorie und Praxis, Ad-hoc-Web-Services durch P2P-Technologien”[31]
we find a JXTA-GLUE based realization of a P2P-SOA-based Web service application.
Listing 4.5 shows the source code of the “PeerChainApplication”. The process of the appli-
cation contains the main steps residing in the “public static void main()” method (line 37).

1 public class PeerChainApplication {
2 private Set foundPeers =
3 Collections.synchronizedSet(new HashSet());
4 ...
5 public void discoveredPeer(String wsdlURL) {
6 if (foundPeers.add(wsdlURL))
7 System.out.println(”discovered new peer=” + wsdlURL);
8 }
9

10 private void startPeerChaining() throws RegistryException
11 {
12 PeerChainService peerChain =
13 PeerChainService)Registry.bind(myWSDLUrl,
14 PeerChainService.class);
15 peerChain.chainPeers(new ArrayList());
16 // start chain with empty list
17 }
18
19 private DiscoveryService startJxta()
20 throws PeerGroupException {
21 returnPeerGroupFactory.newNetPeerGroup()
22 .getDiscoveryService();
23 }
24
25 private PeerAdvertisement
26 createAdvertisement(String wsdlURL) {
27 PeerAdvertisement adv =
28 (PeerAdvertisement)AdvertisementFactory
29 .newAdvertisement(
30 PeerAdvertisement.getAdvertisementType());
31 adv.setName(”Java Spektrum P2P Example”);
32 adv.setDescription(wsdlURL);
33 // description is web service URL
34 return adv;
35 }
36
37 public static void main(String args[]) throws Exception {
38 int port = 8004; // default port
39 ...
40 HTTP.startup(”http://localhost:” + port + ”/P2P”);
41 // start GLUE HTTP server
42 PeerChainApplication app = new PeerChainApplication();
43 // publish peer chain web service on GLUE HTTP server
44 app.myWSDLUrl =
45 PeerChainServiceImpl.publish(app, port) + ”.wsdl”;
46 // publish JXTA advertisement that contains
47 // peer chain web service url
48 DiscoveryService discoSvc = app.startJxta();
49 discoSvc.addDiscoveryListener(new Listener(app));
50 PeerAdvertisement adv =
51 app.createAdvertisement(app.getWSDLUrl());
52 new Publisher(adv, discoSvc).start();
53 while (true) { // start peer chaining periodically

4.4 Combination of Peer-to-Peer (P2P) and SOA 43

54 Thread.sleep(app.randomInt(MAX SLEEP) ∗ 1000);
55 if (!app.foundPeers.isEmpty()) app.startPeerChaining();
56 }
57 }
58 }

Listing 4.5: Example “PeerChainApplication” based on JXTA-framework

The “PeerChainApplication” consists of the following statements:

- Publishing a Java-Object as a Web service with GLUE (line 45), while a URL to the
WSDL document is generated

- Notifying the other peers about the new Web service (line 48): starting of JXTA and gen-
erating a “PeerAdvertisement”, which contains the URL to the WSDL document known
from the previous step. Starting a separate thread which continually publishes the gener-
ated “PeerAdvertisement” in a certain time interval.

- Registration of a “Listener” for arriving discovery events (line 49); extracts the “PeerAd-
vertisement” from it and checks whether the “PeerAdvertisement” contains an URL to a
WSDL document, and if any exists, a call to the Web service interface can be performed.

The “PeerChainApplication” is a simple example of the original idea of how a peer can act as
service entity in a client as well as in a server role. In this example a peer can publish Web service
advertisements and also listen to arriving advertisements and perform a call to the Web service
referenced by a WSDL-URL. An “Advertisement” publish operation in this example sends the
same information about the Web service to all peers, for what a multicasting approach can be
used. In this manner we have a kind of “self-management” of the Web service information by
the peers, hence it is not necessary to have a service broker like an UDDI registry, and if a peer
crashes, the published Web service information could still be found on other Peers. The concrete
implementation of the corresponding Java class based Web service objects can be found in the
denoted literature or in the appendix D.

The “PeerChainApplication” is an example to show how P2P can be combined with Web ser-
vices to publish and search service information without a service broker. Other P2P-SOA based
applications which do not concentrate on retrieving service information, but rather concern the
possibilities for efficient Web service composition, are “Binding- and Port-Agnostic Service Com-
position using a P2P SOA”[32] and “SwinDeW-B: A P2P Based Composite Service Execution
System with BPEL”[33]. The first work presents an approach for executing composed Web ser-
vices with dynamic hosts which do not need to have a public, static IP, which is usually required
within a Web service environment. The second example addresses the weakness of the current
workflow engines, which are based on centralised Business Process Execution Language for Web
Services (BPEL)[10], regarding performance, scalability and shows how P2P based decentralised
Web services engines can be created to solve these problems.

The three presented P2P-SOA based applications have demonstrated the possibility of combining
of Web services with P2P. Applying the combination can not only be used for retrieving Web
service information but also for executing of Web service processes. However, each approach
brings besides advantages also disadvantages, e.g. the application mentioned in [32] can cause
“single points of failure” by using the “Service Proxies” and both applications [32] and [33]

44 4. Current Evolutions

have to deal with communication overheads resulting from processing costly XML messages and
multicast operations.

4.4.4 Problems

In general, all the communication processes performed between the peers within a JXTA network
environment are based on the protocols described in the JXTA Protocols Specification [34].
Among protocols [35] the “Endpoint Routing Protocol (ERP)” is used by the peers to find a
certain host node in the JXTA network environment. A peer technically uses the IP-Multicasting
as discovery mechanism to detect the others in the same sub-network[31]. The short article “Web
Services and Peer-to-Peer Computing”[36] points out the following issues rising from this context:

i. Network-related issues

(a) Bandwidth and scalability issue

The use of P2P and Web services based applications may slow down the network
connections and hamper the core business activities, especially if these applications
are designed for content retrieval operation, in our case for a specific Web service,
because in a worst case all the peers in the network have to be visited until the entry
is found. Thus a lot of network bandwidth is used which can affect other applications.
The IP-Multicasting as discovery mechanism is only applicable for a small and man-
ageable sub-network. In case the company’s network grows and its application system
becomes more distributed, searching for a certain information may take a long time
and the network itself may mostly be busy with search processes.

One can construct a hybrid P2P network in a Wide Area network (WAN) with a
supernode as central point where service customers and service providers can register
themselves with a profile so that a service customer can be notified about new services
and can contact directly the service provider. However, this approach could encounter
the following issues:

- Service customer could not be found
This case can happen if a match between the customer’s and provider profiles
occurs and the supernode sends the appropriate service information to the service
client. Assume that this service client has left the P2P network meanwhile and
it has an other IP address after rejoining the network.

- Service provider could not be found
Analogue to the previous issue a service client could not find the service provider
from an earlier session if it has another IP address meanwhile.

To overcome these issues service clients and service providers can notify the super-
node about their status, especially if they leave and join the network. This approach
can avoid the issues mentioned above, but would cause considerable additional load
for the network because a WAN is an open system and the number of the hosts is big
and unpredictable. The consequence is that the supernode is loaded with handling
status messages from the hosts and may not have capacity for notifying service cus-
tomers about new Web services. On the other hand, the network will be overloaded
with traffic caused by sending status messages between service providers, supernode,
service clients and backwards. Altogether, the following issues can arise during the
network operation for a classical LAN:

4.4 Combination of Peer-to-Peer (P2P) and SOA 45

- Long searching time for service information
In worst case, a peer has to visit all other peers to find a service and needs
o(loga N), where a is the lowest number of the neighbours of any peer in the
network.

- High network load
Besides the traffic caused by search and management operations, the network is
heavily loaded with transports of different types of messages. With Web services,
service provider peers have to publish their services to service customer peers and
if any service is changed, notify messages have to be released in order to keep the
service information at the service customers up-to-date. The transport of these
messages will generate unavoidable traffic for the network and as this network
size increases and becomes more distributed, it may be affected by poor and slow
customers connections[36].

-

(b) (Network Address Translation) NAT and Firewall issue

“The JXTA Technical Overview”[27] mentions the general issue of executing P2P
operations to peers behind a NAT gateway or a firewall. In most cases, in order
to enable the communication between peers through a firewall a prior consultation
with system administrators is necessary to let the communication traffic through (e.g.
opening a special incoming port at the firewall or gateway or using a special “tunnel”
mechanism). This point indeed presents a complement to the basic idea of SOAP as a
lightweight message exchange protocol designed to be independent from any type of
network infrastructures. Normally a SOAP based Web service application would use
a HTTP-enable port to communicate with others, but in the case of a P2P network
this will not be possible without an appropriate modification or reconfiguration of
the network.

ii. Security issues:

“The most important feature of the P2P based application - decentralized, distributed - is
also its weakest link”[36], and dynamic membership is also one of the features being weakly
linked. This article points out that a P2P system could be only strongly safe if it is closed.
However, if one has chosen a P2P based environment, he also wants that the peers should
have the freedom regarding their dynamic existence. That means each peer can come and
go as it wants and the network environment and (in our case) the distributed Web service
application should not be affected negatively in any case. But this is also the general weak
point of a P2P system, because every host node can be replaced with any other, which
can treat the network environment (e.g. through IP-spoofing to imitate a host identity)
and the application system in a malicious way.

iii. Complex architecture and difficult maintenance

In General the architecture of a P2P based application is more complex than a standard
distributed one because of the following reasons:

(a) Lack or complex realization of a security mechanism to hold the system to be safe,
which is already mentioned before.

(b) The host nodes (peers) involved in the distributed application system must be orga-
nized and managed in an appropriate way to make them work as a closed system.
That means the application should not be affected due to the geographical distance
or underlying platforms of the host nodes.

46 4. Current Evolutions

(c) A P2P based Web services environment requires complex and costly maintenance
work to ensure a stable application operation. Firstly, the application system must
identify the entering peers and check whether they are legitimate the system, and
after any peer has left the network, the network environment still works (e.g. it does
not crash because of “single point of failure”) and the functionality of the distributed
application is not affected. Secondly, the resources have to be replicated in a consistent
way that they are up-to-date and always available. Last but not least, in an open P2P
based application system failures are more difficult to locate and fix.

4.5 Résumé

Despite the reasonable concept and its advantages there are too many issues emerging during
the concrete implementation and application operation of a P2P based Web service application
system. In an open environment - say for business-to-business integration (B2Bi) - this combi-
nation approach is not reasonable due to the mentioned problems before; especially, it is not
applicable for an open enterprise-critical system, where a high level of security and availability of
the service end points are essential and necessary. However, a combination of both architectures
is recommended, if the following conditions are fulfilled:

- Restricted set of peers:
The set of the hosts is restricted and predictable, so that the load in worst case is bearable
for the network .

- Well organised network and good multicasting:
The network must be well organised in a manner that a multicast operation can reach
quickly relevant services.

- Web services with low change rate:
We assume that service provider peers have to propagate new services and changes of exist-
ing services to the service customer peers. Section 4.4.4 already shows that the transport
of the messages caused by such activities can slow down the network in a considerable
measure.

- Consistency of the Web service information:
It is typical for a P2P network that the same resource is available at more than one host
node. This is a good property regarding replicating the Web service information in our
context. However, service information at any host node could be out-of-date if the affected
service is changed. In this case, if any peer searches for the service, it could get the false
information and never reach the final service interface or enter in a “exception” state.
Hence, every peer must hold the service information for only certain reasonable time limit.
After that, the peer either marks the affected information with additional “out-of-date”
flags or searches for new information from the original service provider peer.

- The network security is warranted
As mentioned before, a P2P network is easily exposed to malicious attacks because of
its dynamic property. Especially the papers “Die vermeintliche Robustheit von Peer-to-
Peer Netzen”[37] and “Defending the Sybil Attack in P2P Networks”[38] show how a P2P
network can be attacked and abused. Thus, solid network management with appropriate

4.6 Requirements for a new solution 47

tools and strategies against unwished attacks is very important in order to keep the network
secure and stable.

4.6 Requirements for a new solution

The present evolutions contribute in each case only indirectly and partially to the solution of the
problems mentioned in the chapter 3. They offer advantages, which result from the application
of a suitable ontology or a meaningful allocation of the Web service information. The approach
presented in this work attacks directly the problem using the following approaches:

i. A service customer does not search himself for service information, but gets it automatically
from the service broker (pro-activity type I) on the basis of a subscription

ii. The service broker not only waits for the service information, but also looks itself “proac-
tively” for new services (pro-activity type II)

iii. A service provider sends changes of his profile and service data to the service broker

iv. The service broker informs service customers about changes of the service information on
the service providers (Notification) (pro-activity type III)

v. Improved completeness and correctness of the search result

The next section presents the concept of a Search Result Management System for Web services
and shows how it can fulfill these requirements.

48 4. Current Evolutions

Chapter 5

Our Solution - The Search Result
Management System (SerumS)

5.1 Introduction

Today, a service provider can place information about its Web service in form of a WSDL do-
cument, which can be found by the search engine “Google”1 like a normal HTML web page;
SerumS integrates this search function of “Google” as a part of its whole functionality. In addi-
tion, we assume that a service provider assigns an UNSPSC[39]-based <categoryBag> identifier
to its Web service, so that SerumS can determine exactly the service type of a service provider.
Based on these assumptions we construct the architecture of SerumS as a Web service broker,
which can be used as a replacement for an UDDI registry.

5.2 Architecture

This part presents the inner architecture of SerumS with the interfaces of the system for commu-
nicating with service customers and service providers and for handling the Web service content
found on the Internet. The description of the architecture is closed with the workflow for pro-
cessing the “subscribe” and “publish” requests and the pro-active search.

5.2.1 System interfaces

Figure 5.1 presents the architecture of SerumS and shows the relation between its components.

SerumS essentially consists of the following components:

i. Interfaces for search and management of Web services and profiles of the service customers
and providers

The search functionality of SerumS compares the profile of a service customer with the

1http://www.google.com

5
0

5
.
O

u
r

S
o
lu

tio
n

-
T

h
e

S
e
a
rch

R
e
su

lt
M

a
n
a
g
e
m

e
n
t

S
y
ste

m
(S

e
ru

m
S
)

SC_Manager SC_Subscribe
Manager

WebServices
Search

SearchResult
Manager

WSManager

SP_Manager

SC_SP_Matching
Handler

WSDL

SC-Accout
SC-Preference

SP-Accout
SP-Preference

s
u

b
s
c
ri
b

e
()

n
e

w
 s

e
rv

ic
e

s
,

d
a

ta
 c

h
a

n
g

e
d

CS

XML-Profile
WSDL

re
g

is
te

()
r

Internet

SerumS

CS-Repository

WS-Repository

SP-Repository

Legendd:

SC: Service customer
SP: Service provider
WS: Web service

autonomous
tasks

SerumS-SC tasks

SerumS-SP tasks

SP

n
e

w
 S

P
s
,

n
e

w
 s

e
rv

ic
e

s
,

d
a

ta
 c

h
a

n
g

e
d

s
u

b
s
c
ri
b

e
()

CS

XML-Profile

SC

CS

XML-Profile

SC
XML-Profile
WSDL

SP

RequestDispatcher

SC_InformationManager

SC_Update
Manager

SC_Profile
DocumentHandler

SC_Subscribe
DocumentHandler

SP_Publish
Manager

SP_Update
Manager

SP_WSDL
DocumentHandler

SP_Profile
DocumentHandler

SP_InformationManager

MessageManager

SC_Profile
DocumentHandler

re
g

is
te

()
r

p
u

b
lis

h
()

p
u

b
lis

h
()

n
e

w
 S

P
s
,

n
e

w
 s

e
rv

ic
e

s
,

d
a

ta
 c

h
a

n
g

e
d

n
e

w
 s

e
rv

ic
e

s
,

d
a

ta
 c

h
a

n
g

e
d

F
igu

re
5.1:

A
rch

itectu
re

of
S
eru

m
S

5.2 Architecture 51

Web services and the profiles of the service providers so that (in the case of matching) the
service customer is notified. The whole functionality consists of the following tasks:

(a) Search in the Internet for new Web services using the Google Web service based
search API

(b) Analyze found Web services and prepare them for using and matching with the service
customer profiles

(c) Check for the correctness of technical data in WSDL documents (e.g. existence of
import-data elements and URL-references)

(d) Check provider profiles and their services to match with the customer profiles

(e) Inform service customers about new Web services and changes of subscribed services

ii. Interfaces to the service customers (SerumS-SC)

They provide the functionality for the interaction between service customers and SerumS,
e.g. register routines initiated by service customers, notification about new Web services
or changes of existing services and service providers to service customers. In general these
interfaces offer the service customers the following possibilities:

(a) Service customers can request for topical Web services

(b) Service customers can register themselves for certain Web service(s)

(c) Service customers can send SerumS an additional profile specifying more parameters
to search for and/or match with Web services and provider profiles

(d) Service customers can specify how to be notified of new Web services or changes of
existing services (e.g. per Email or by a Web service based “notify” interface)

iii. Interfaces to the service providers (SerumS-SP)

With them service providers can register themselves and publish their services to
SerumS. The notification about changes of the Web service data is performed by the
SP UpdateManager. These interfaces give the service providers the following functionality:

(a) Service providers can publish their services to SerumS

(b) Service providers can specify more information/technical data to the Web service via
a provider profile (e.g. expiration date time of service, users/user group constrain)

(c) Update of Web service information

(d) Update of provider profile

5.2.2 SerumS workflow

In this sub-chapter the whole task workflow of SerumS is described. We distinguish between
SerumS-SC, SerumS-SP and autonomous task workflows. Due to the similarity of the first two,
their workflow is described together. The autonomous task is responsible for interacting with
the Internet and is described separately.

52 5. Our Solution - The Search Result Management System (SerumS)

5.2.2.1 SerumS-SC and SerumS-SP workflow

Figure 5.2 shows how a request from a service customer or service provider is processed through
the whole system via a collaboration diagram. The important steps are executed by the following
components:

- SerumS-SC

– RequestDispatcher:

If the system receives a request, the RequestDispatcher checks for the type of the
request whether it is a request from a service customer or service provider. If the
request is of type SC Request it will be forwarded to the SC Manager.

– SC Manager:

It checks whether the request is a “New subscribe” or an “Update” operation. In
case of “New subscribe” operation the SC SubscribeManager is called, otherwise the
content of the request is forwarded to the SC UpdateManager.

– SC SubscribeManager and SC UpdateManager:

They check for the correctness of the document included in the request and call the
responsible component (SC ProfileDocumetHandler or SC SubscribeDocumentHandler)
for processing the data in the document and finally pass them to the
SC InformationHandler, which makes them persistent with the help of XMLBeans.

– SC SP MatchingHandler

The last task of SerumS is to call the SC SP MatchingManager for performing the com-
parison of existing Web services and profiles of service providers with the subscribe
and profile documents of this (new) service customer. If the SC SP MatchingHandler

finds any matching, it uses the MessageManager to send notification to the matched
service customers.

- SerumS-SP

– SP Manager:

If the received request comes from a service provider, the SP Manager is called by
the RequestDispatcher. The SP Manager checks analogue to the SC Manager the type
of the operation (“New publish” or “Service update”). The content of the request is
forwarded to the SP PublishManager or SP UpdateManager.

– SP PublishManager and SP UpdateManager:

After checking whether the request document is correct and well-formed
SP WSDLDocumentHandler or SP ProfileDocumentHandler is called for handling its
content. The SP WSDLDocumentHandler checks the WSDL document for its validity
and correctness (e.g. for URL references, imported schemas etc.) and forwards it to
the SP InformationManager, which uses XMLBeans to deserialise the XML content of
the WSDL document.

– SC SP MatchingHandler

The last step of this process is to call the SC SP MatchingHandler like in the workflow
“SerumS-SC” to perform the matching routine.

5
.2

A
rch

ite
c
tu

re
5
3

RequestDispatcher

[if is from a
service customer]

r

r
arrives

forward()r
SC_Manager

[if is a
new Subscribe]

r

forward()rforward()r

[if is a
Update]

r

forward()r

SC_SubscribeManager

[if is a
customer’s profile]

d

forward()d

[if is a
customer’s profile]

d

forward()d

[if is a
subscribe document]

d

forward()d

[if is a
subscribe document]

d

forward()d

forward()checked_d

call()

save()checked_d
initiateMatching()

[if matche(s)
occur(s)]

send(message(s))

SC_UpdateManager

SC_ProfileDocumentHandler SC_SubscribeDocumentHandler SC_InformationHandler

XML_Beans SC_SP_MatchingHandler MessageManager

[if is from a
service provider]

r

forward()r
SP_Manager

[if is a
new Publish]

r

forward()rforward()r

[if is a
Update]

r

forward()r

SP_PublishManager

[if is a
provider’s profile]

d

forward()d

[if is a
provider’s profile]

d

forward()d

[if is a
WSDL document]

d

forward()d

[if is a
WSDL document]

d

forward()d

forward()checked_d

SC_UpdateManager

SP_ProfileDocumentHandler SP_WSDLDocumentHandler SP_InformationHandler

save()checked_d

initiateMatching()

Legends:

request
document
checked document

r
d
checked_d

forward()checked_d

forward()checked_d

F
igu

re
5.2:

W
ork

fl
ow

of
S
eru

m
S

54 5. Our Solution - The Search Result Management System (SerumS)

5.2.2.2 Autonomous task workflow

Autonomous tasks are automatically executed by SerumS due to a task plan scheduled by the
system administrator. The whole autonomous task workflow consists of searching in the Internet
for new Web services and checking routine at known service providers for new services or changes
of existing services. Since both the search processes in Internet and checking Web services by
the service providers are similar, we only describe the workflow for the automated search in the
Internet for new Web services using the Google Web service based search API.
The tasks workflow are executed by the following components:

- WebServicesSearch:

Due to the system schedule, which will be discussed at the end of this sub-chapter, the Web-

ServicesSearch component generates a search process using the Google Web service based
search API. The search API takes a search string (see chapter 5.4.1) as search parameters.
The result returned by the Google API is forwarded to the SearchResultManager.

- SearchResultManager:

It analyses the content of the previous search process and filters out the correct WSDL
documents which have to be checked whether they are well-formed and valid. Other works
regarding the structure of the WSDL documents also have to be performed by the SearchRe-

sultManager before sending them to the WSManager.

- WSManager:
It is called by the SearchResultManager, which returns the well-formed WSDL documents.
An important job of the WSManager is to check the validity of the WSDL documents and
their content. After this step the WSManager calls the SP InformationManager to save the
found Web services. The last job of the WSManager is to call the SC SP MatchingHandler

to perform matching between the new Web services and the service customer profiles and
subscribe documents.

As mentioned earlier, the autonomous tasks workflow requires a well designed schedule of the
system administrator for the automated search of new Web services in such a way, that the
performance of the main jobs (handling the customer’s and provider’s requestes) is not affected.
Generally, a schedule for the autonomous tasks workflow depends on the following aspects:

i. When should the autonomous tasks be performed:
The autonomous tasks should be performed when the load on SerumS is small. This means
that SerumS either itself has few tasks in the system (maintain, reorganizing of the Web
service contents or checking for the correctness of their content) or there are few requests
from the service customers and service providers to be handled by SerumS.

ii. How often should the autonomous tasks be performed:
Actually, we are dealing with Web services which form only a part of the whole services
offered by service providers on the world. Web services are generally not easy to develop
and maintain so we can assume that the number of new born Web services is low. However,
new Web services and changes of them have to be detected and service customers which
have subscribed to SerumS have to be informed on time. SerumS only needs to perform the
autonomous task one time per day, because a service user who has subscribed to SerumS
for new Web services but does not get them immediately, can get them at the beginning

5.3 Comparison of SerumS with a traditional UDDI registry 55

of his work on the next day. In the analytical model in the chapter 6.3.3.2 a calculation is
made under this assumption and the result shows that performing the autonomous tasks
two times per day does not effect the load of SerumS in any way.

5.3 Comparison of SerumS with a traditional UDDI registry

The previous section has already described SerumS in details. Table 5.1 compares the over-
all functionality of SerumS with a traditional UDDI registry and shows the advantages and
disadvantages of both systems.

Problem How UDDI registry works How SerumS works

Proactive searching for new
Web services

A UDDI registry is generally
“passive”. It means that the
registry only waits for ser-
vice providers publishing their
Web services and does not
perform any operation in or-
der to get Web services for it-
self.

SerumS searches periodically
for new Web services in Inter-
net which are not published
by their providers or not pub-
lished on time to the sys-
tem. Indeed, there are a lot
of service providers who do
not know the address of a
UDDI registry or do not pub-
lish their services to any reg-
istry because they do not have
time or technical know how to
do that.

Notification of new Web ser-
vices and changes of relevant
Web services information

The service customers are not
notified about changes at ex-
isting Web services

SerumS notifies service cus-
tomers about every change of
relevant Web services

“Ad-hoc search requests” de-
lay the client, generate unnec-
essary traffic and affect the
customer’s network

In general, a service customer
has to perform the search op-
eration before it can use a
service. “Ad-hoc search re-
quests” delay the service and
cause appropriate traffic load
which can have negative affect
on the customer’s network, es-
pecially, if there is not any
service available and the cus-
tomer has to perform period-
ically the same search opera-
tion until it has found a ser-
vice

A service customer can send
SerumS a profile with search
parameters. Based on this
profile document SerumS
will notify the customer
automatically about new or
changed Web services which
have been published by the
service providers

56 5. Our Solution - The Search Result Management System (SerumS)

“Stateless requests” cause per-
formance issue for the UDDI
registry (“bottleneck”)

Generally, all requests to the
UDDI registry are stateless,
hence the registry has to han-
dle them immediately and the
result has to be sent back to
the client before the session
gets time out. The registry
does not keep the state of the
client and it cannot store their
requests to handle it at a later
time point. Hence there is no
cure for a number of requests
sent at the same time to the
registry.

Since SerumS has both the
subscribe and profile docu-
ment of a service customer,
it has enough information to
contact the customer when-
ever it can and especially,
if the network traffic condi-
tion is favourable. With both
documents stored on its site
SerumS works “statefully”;
this essentially differs from a
traditional UDDI registry.

Correctness of the Web ser-
vice information

There is too much irrelevant
or invalid data in the UDDI
registry which cannot be used
as correct Web service infor-
mation (e.g. dead links or false
links for advertisement pur-
poses)

All data sent by the ser-
vice providers and customers
is XML based and has a
valid schema. Based on each
schema SerumS checks the re-
ceived data for their correct-
ness before accepting them.
A WSDL document is also
checked for its validity so that
many “irrelevant” or “invalid”
data can be avoided at the be-
ginning.

Protecting the use of the Web
service information

Every registered user can have
access to every Web service
information of every service
provider and can misuse them
for his own purpose (e.g. us-
ing of name or logo of a well-
known company for advertis-
ing for the own service prod-
ucts)

SerumS offers service
providers the possibility
to specify the users or user
groups which are allowed
to see the Web service in-
formation. By searching for
services or matching between
the service and the customer
profile SerumS regards the
“right-limitation” parameter
specified in the provider
profile and handles it in an
appropriate way, so that only
such service users can get the
service information which are
allowed by the provider.

5.4 Technologies and tools 57

Big effort for filtering the
search result

UDDI registry searches for
the Web services matching the
criteria specified by the ser-
vice user. The user has often
to deal with a redundant set
of Web services to find the ap-
propriate ones.

SerumS combines the param-
eters from the subscribe and
customer profile documents
to determine the Web ser-
vices which fulfil the user’s
search criteria. Based on this
documents, SerumS has more
parameters to constrain the
search result, which is gener-
ally more precise. Thus, the
customer will not spend much
time for filtering out the de-
sired Web service(s).

Table 5.1: Comparison of SerumS with a traditional UDDI
registry

5.4 Technologies and tools

In this section we give an overwiev about the required software and auxiliary tools to realize
SerumS. However, the most important tool in our context is the “Publish Subscribe Notification
for Web services” specification[2] which forms the core component of SerumS. Hence we will
discuss it with more details.

5.4.1 The Search-Engine “Google”

With the seach engine Google2 one not only can find HTML based webpages, but also Web
Service WSDL documents. To make Google find WSDL documents exclusively, it is necessary
to specify the search string in a way that only WSDL documents are contained in the search
result. A good strategy to do that is to specify as many keywords of a WSDL document as
possible in the Google search form. Such search strings like “<wsdl:message <wsdl:portType
<wsdl:operation <wsdl:input <wsdl:output” will return a good search result, where nearly all
of the found documents are of type “*.wsdl” containing necessary information to access the
Web services. Because of the capability of Google to discover Web services, we do not need
to construct a new search functionality for SerumS. Since the Google search functionality is
also accessible via a Web service based interface, it can be completely integrated into SerumS.
However, the search result returned by Google has to be aggregated and prepared by SerumS
for further processes.

Listing 5.1 shows the statements for searching new Web services by using the Google Web service
based search interface implemented in the Java-class “WSDLFinder.java”.

2www.google.com

58 5. Our Solution - The Search Result Management System (SerumS)

1 private GoogleSearchResultElement[] findWSDLDocs() {
2 Vector tmpOverallResult = new Vector();
3
4 for (int i = 0; i < iteration; i++) {
5 GoogleSearch s = new GoogleSearch();
6 s.setKey(ServerConstants.GOOGLE API CLIENT KEY);
7 s.setStartResult(10 ∗ i + 1);
8 s.setMaxResults(maxResult);
9

10 try {
11 if (directive.equalsIgnoreCase(”search”)) {
12 s.setQueryString(directiveArg);
13 GoogleSearchResult result = s.doSearch();
14
15 GoogleSearchResultElement[] re = result.getResultElements();
16 for (int j = 0; j < re.length; j++) {
17 res += (”<a href=\”” + re[j].getURL()
18 + ”\”>” + re[j].getTitle() + ”
”);
19 if (re[j].getURL().endsWith(”.wsdl”)) {
20 tmpOverallResult.addElement(re[j]);
21 }
22 }
23 }
24 }catch (GoogleSearchFault f) {
25 MessagesFactory.printErrors(this, ”findWSDLDocs()”, f);
26 return null;
27 }
28 ...
29 return overallResult;
30 }

Listing 5.1: Google - Web services based searching for new WSDL documents

The search process consists of the following steps:

- create a new instance of the GoogleSearch object (line 5)

- perform the search process (line 13)

- put found WSDL documents in a temporary vector (line 17)

- return the entire result (all found WSDL documents) back to the original application (line 29)

5.4.2 Web Service Framework “AXIS”

The “Publish Subscribe Notification for Web services” specification needs a suitable Web service
environment for executing the Subscribe/Notification functionality mentioned before. Subscribe
and Notification messages are transported in context of a Web service process within SOAP-
Envelopes between a service customer or a service provider and SerumS. For this purpose, the
Web Service Framework “AXIS”3 is used, which offers the necessary interfaces.

3http://ws.apache.org

5.4 Technologies and tools 59

5.4.3 The “Publish Subscribe Notification for Web services” specification

Since the main task of SerumS is realizing the Publish/Subscribe mechanism, it has to propa-
gate reliably all changes of the Web service data to service customers. The Publish/Subscribe
functionality is realized by SerumS with the “Publish Subscribe Notification for Web services”
specification, which is particularly designed for Web services. Currently, there is not any official
Publish/Subscribe Standard adopted by any consortium like W3C or OASIS. The “Publish Sub-
scribe Notification for Web services” is a specification recommended by a number of well-known
companies like Fujitsu Laboratories of Europe, Globus, Hewlett-Packard, IBM and SAP AG.
So we assume that it will be accepted as a standard in the future. Figure 5.3 shows the general
process model of the Publish/Subscribe process.

Broker

(NotificationProducer)Subscriber

(NotificationConsumer)

subscribe(A,events)
sends notification

to Subscriber “A”

when “certain events”

happen
send(msg)

A

Publisher

Publisher

X

Y

publ
ish(

msg1
)

publish(msg2)

Figure 5.3: Publish/Subscribe process model

Transferred to SerumS, a “Subscriber” represents a service customer who registers itself to
SerumS for certain Web services. In the case of matching between a service customer profile and
a service provider and/or its Web service, the service customer is notified. In the following the
structure of the Publish/Subscribe messages is described:

5.4.3.1 Subscribe Message

Generally, one differentiates between a “Subscribe Message” (in the following named as “SM”)
and a “Notification Message” (in the following named as “NM”). A subscriber sends a SM
with a structure showed Listing 5.2 to a broker (or depending on context directly to a publisher).

1 <wsnt:Subscribe>
2
3 <wsnt:ConsumerReference>
4 wsa:endpointReference
5 </wsnt: ConsumerReference>
6
7 <wsnt:TopicExpression dialect = ”xsd:anyURI”>

8 {any}
9 </wsnt:TopicExpression>

10
11 <wsnt:UseNotify>

12 xsd:boolean
13 </wsnt:UseNotify>?

60 5. Our Solution - The Search Result Management System (SerumS)

14
15 <wsnt:Precondition>

16 wsrp:QueryExpression
17 </Precondition>?
18
19 <wsnt:Selector>
20 wsrp:QueryExpression
21 </wsnt:Selector>?
22
23 <wsnt:SubscriptionPolicy>

24 {any}
25 </wsnt:SubscriptionPolicy>?
26
27 <wsnt:InitialTerminationTime>
28 xsd:dateTime
29 </wsnt:InitialTerminationTime>?
30
31 </wsnt: Subscribe>

Listing 5.2: Structure of the Subscribe Message

The important elements of a SM are:

- The end point address of the service customer (line 3)

- The Web service type(s) which the service customer is interested in (line 7)

- The method in which the service customer has to be notified (line 13):

If the value is “true” then the NotificationProducer (SerumS) must notify the service
customer with a NM.

- Matching rule(s) for a NM to be delivered (line 15)

- Application specific rules for a NM to be delivered (line 23)

The Publish/Subscribe specification is designed as a general purpose tool used for a large context.
In the next parts we regard the explanation of the specification message elements to our context
for subscribing one or more Web service types according to the “United Nations Standard
Products and Services Code (UNSPSC)”[39], and we only concentrate on the message elements
which are important for our work. A detailed explanation of all message elements can be found
in each appropriate section of the specification[2].

The example in Listing 5.3 describes how a service customer can send
a SM to SerumS in order to subscribe for a set of Web services.

1 <s12:Envelope
2 xmlns:s12=”http://www.w3.org/2003/05/soap−envelope”
3 xmlns:wsa=”http://schemas.xmlsoap.org/ws/2003/03/addressing”
4 xmlns:wsnt=”http://www.ibm.com/xmlns/stdwip
5 /web−services/WS−BaseNotification”
6 xmlns:npex=http://www.producer.org/RefProp
7 xmlns:provider=”http://www.serums.com /provider”>

8
9 <s12:Header>

5.4 Technologies and tools 61

10 <wsa:Action>

11 http://www.ibm.com/xmlns/stdwip/web−services/
12 WSBaseNotification/Subscribe
13 </wsa:Action>

14 <wsa:To s12:mustUnderstand=”1”>

15 http://www.producer.org/ProducerEndpoint
16 </wsa:To>

17 </s12:Header>
18 <s12:Body>

19 <wsnt:Subscribe>
20
21 <wsnt:ConsumerReference
22 xmlns:ncex=”http://www.consumer.org/RefProp”>

23 <wsa:Address>
24 http://www.serums.com/notificationReceicer
25 </wsa:Address>
26 <wsa:ReferenceProperties>
27 <ncex:NCResourceId>

28 </ncex:NCResourceId>

29 </wsa:ReferenceProperties>
30 </wsnt:ConsumerReference>
31
32 <wsnt:TopicExpression dialect=”http://www.ibm.com/xmlns/
33 stdwip/web−services/WSTopics/TopicExpression/simple”>

34 provider:unspsc=0000000011,000000018
35 </wsnt:TopicExpression>

36
37 <wsnt:UseNotify>true</wsnt:UseNotify>

38
39 <wsnt:Precondition
40 dialect=”http://www.w3.org/TR/1999/REC−xpath−19991116”>

41 boolean(provider:continent = ”Europe” or
42 provider:continent=”America” or
43 provider:continent=”Europe” and
44 provider:bindingType=”soap”)
45 </Precondition>

46
47 <wsnt:Selector
48 dialect=”http://www.w3.org/TR/1999/REC−xpath−19991116”>

49 boolean(ncex:Producer=”15”)
50 </wsnt:Selector>
51
52 <wsnt:SubscriptionPolicy>

53 The Web services matched to this Subscribe Message
54 may not older then 2 months since its publishing
55 </wsnt:SubscriptionPolicy>

56
57 <wsnt:InitialTerminationTime>
58 2006−12−25T00:00:00.00000Z
59 </wsnt:InitialTerminationTime>
60
61 </wsnt: Subscribe>
62 </s12:Body>

63 </s12:Envelope>

Listing 5.3: Example Subscribe Message

In this example we assume that an XML based schema of a provider profile is placed at the
address “http://www.serums.com/provider” and the elements “unspsc”, “continent” and “bind-

62 5. Our Solution - The Search Result Management System (SerumS)

ingType” are contained in this schema and can be used within a SM. Furthermore, we assume
that SerumS is accessible through the URL specified at line 7.

The important content of a SM are:

- The service customer specifies an address needed by the NotificationProducer to send back
future messages (line 23) (e.g. SubscribeResponse Message or NM).

- The service customer specifies the Web service type(s) (line 32) which it is interested in. The
example uses the UNSPSC-based service types “0000000011” and “0000000018” standing for
“Maintenance or repair” and “Oursource” Web services.

- The “<UseNotify>” element (line 37) has the value “true” and indicates that the Notifica-
tionProducer must use a NM to deliver the message to the service customer using the address
given in the “<Address> element of the service customer profile.

- The values provider:continent=”America” or provider:continent=”Europe” and
provider:bindingType=”soap” in the “<Precondition> element (line 39) indicate that the
NotificationProducer only delivers a message to the service customer if the matched service
provider is from the continent America or Europe and it must support “soap” as “bindingType”
(message transfer protocol).

- The content within the “<SubscriptionPolice>” element (line 52) in this example is designed
for human interpretation and it indicates that the service customer is only interested for such
Web services which are not older than two months since their publishing.

As response to a SM the Subscriber obtains a SubscribeResponse Message as described in Listing
5.4.

1 ...
2 <wsnt:SubscribeResponse>
3 <wsnt:SubscriptionReference>
4
5 <wsa:Address>
6 Address of Subscription Manager
7 </wsa:Address>
8
9 <wsa:ReferenceProperties>

10 Subscription Identifier
11 </wsa:ReferenceProperties>
12 ...
13 </wsnt:SubscriptionReference>
14 ...
15 </wsnt:SubscribeResponse>
16 ...

Listing 5.4: Structure of the SubscribeResponse Message

- The “<Address>” element (line 5) contains the address of the Subscribe Manager (in our case
a part of SerumS), which can differ from the original address of the Server. The Subscriber has
to use this address to perform future operations regarding the Subscribe process, e.g. to cancel
a subscription or to perform the “GetCurrentMessage” operation (see section 4.3 of [2]).

5.4 Technologies and tools 63

- The Subscriber gets a unique Subscription Identifier key created by
the Subscription Manager (line 9). The Subscriber uses this Subscription
key to be identified for the future operations to the Subscribe Manager.

1 <s12:Envelope
2 xmlns:s12=”http://www.w3.org/2003/05/soap−envelope”
3 xmlns:wsa=”http://schemas.xmlsoap.org/ws/2003/03/addressing”
4 xmlns:wsnt=
5 ”http://www.ibm.com/xmlns/stdwip/web−services/WS−BaseNotification”
6 xmlns:ncex=http://www.consumer.org/RefProp
7 xmlns:provider=”http://www.tum−serums.org/provider”>

8
9 <s12:Header>

10 <wsa:Action>

11 http://www.ibm.com/xmlns/stdwip/web−services/WSBaseNotification/
12 SubscribeResponse
13 </wsa:Action>

14 <wsa:To s12:mustUnderstand=”1”>

15 http://www.consumer.org/ConsumerEndpoint
16 </wsa:To>

17 </s12:Header>
18
19 <s12:Body>

20 <wsnt:SubscribeResponse>
21 <wsnt:SubscriptionReference
22 xmlns:npex=”http://www.producer.org/RefProp”>

23 <wsa:Address>
24 http://www.tum−serums.org/subscribe
25 </wsa:Address>
26 <wsa:ReferenceProperties>
27 <npex:NSResourceId>

28 uuid:8fefcd11−7d3d−66b344a2−ca44−9876bacd44e9
29 </npex:NSResourceId>

30 </wsa:ReferenceProperties>
31 </wsnt:SubscriptionReference>
32 </wsnt:SubscribeResponse>
33 </s12:Body>

34
35 </s12:Envelope>

Listing 5.5: Example SubscribeResponse Message

Listing 5.5 shows an example of a SubscribeResponse Message.

- We assume that the Subscribe Manager of SerumS is accessible via the URL “http://www.tum-
serums.org/subscribe” (line 24)

- SerumS creates a Universally Unique Identifier (UUID)[43] key for every Subscribe operation
and sends it back to the Subscriber (line 28). For future operations the Subscriber has to specify
this UUDI-key in every message to identify itself to SerumS.

64 5. Our Solution - The Search Result Management System (SerumS)

5.4.3.2 Notification Message

Analogue to a Subscribe Message, a Notify Message (briefly called “NM”) may be sent
by a NotificationProducer to a NotificationConsumer if the rules specified in the Sub-
scribe Message are matched. The structure of the NM is illustrated in Listing 5.6.

1 ...
2
3 <wsnt:Notify>

4 <wsnt:NotificationMessage>
5 <wsnt:Topic dialect=”xsd:anyURI”>

6 {any}
7 </wsnt:Topic>
8
9 <wsnt:ProducerReference>?

10 wsa:EndpointReference
11 </wsnt:ProducerReference>
12
13 <wsnt:Message>
14 xsd:any
15 </wsnt:Message>
16 <wsnt:NotificationMessage>+
17 </wsnt:Notify>

18
19 ..

Listing 5.6: Structure of the Notify Message

The main elements of a NM are:

- The topic matched to the SM (line 5) (in our case the Web service type, which the service
customer is interested in)

- The address of the message producer (line 9, to denounce where the message is from)

- The content of the message (line 13), which can be unstructured or XML based.

Regarding SerumS, in the case of matching of the service customer´s subscribed inter-
est with a Web service, a NM is sent back. An example NM is shown in Listing 5.7.

1 <s12:Envelope
2 xmlns:s12=”http://www.w3.org/2003/05/soap−envelope”
3 xmlns:wsa=”http://schemas.xmlsoap.org/ws/2003/03/addressing”
4 xmlns:wsnt=
5 ”http://www.ibm.com/xmlns/stdwip/web−services/WS−BaseNotification”
6 xmlns:ncex=”http://www.consumer.org/RefProp”
7 xmlns:npex=http://www.producer.org/RefProp
8 xmlns:provider=”http://www.tum−serums.org/provider”>

9
10 <s12:Header>
11 <wsa:Action>

12 http://www.ibm.com/xmlns/stdwip/web−services/
13 WS−BaseNotification/Notify
14 </wsa:Action>

15 <wsa:To s12:mustUnderstand=”1”>

5.4 Technologies and tools 65

16 http://www.consumer.org/ConsumerEndpoint
17 </wsa:To>

18
19 <ncex:NCResourceId>

20 uuid: 8fefcd11−7d3d−66b344a2−ca44−9876bacd44e9
21 </ncex:NCResourceId>

22 </s12:Header>
23
24 <s12:Body>

25 <wsnt:Notify>

26 <wsnt:NotificationMessage>
27
28 <wsnt:Topic
29 dialect=”http://www.ibm.com/xmlns/stdwip/
30 web−services/WSTopics/TopicExpression/simple”>

31 provider:nspsc:0000000011
32 </wsnt:Topic>
33
34 <wsnt:ProducerReference
35 xmlns:npex=” http://www.tum−serums.org/notify”>

36 <wsa:Address>
37 http://www.tum−serums.org/notify
38 </wsa:Address>
39 <wsa:ReferenceProperties>
40 <npex:NPResourceId>

41 uuid:84decd55−7d3f−65ad−ac44−675d9fce5d22
42 </npex:NPResourceId>

43 </wsa:ReferenceProperties>
44 </wsnt:ProducerReference>
45
46 <wsnt:Message>
47 <npex:NotifyContent>
48 <wsdl:definition>

49 ‘‘content of the WSDL definition’’
50 </wsdl:definition>

51 </npex:NotifyContent>
52 </wsnt:Message>
53
54 <wsnt:NotificationMessage>
55 </wsnt:Notify>

56 </s12:Body>

57 </s12:Envelope>

Listing 5.7: Example Notify Message

The example NM has the following content:

- Th Web service type(s) (line 28) matched to the service customer’s SM. In our case the Web
service type is shown as an UNSPSC code.

- The Web service address of the notify-interface of SerumS (line 37), from where the message
is delivered.

- A WSDL document of the matched service provider is sent as message content to the service
customer (line 46).

66 5. Our Solution - The Search Result Management System (SerumS)

5.5 Software implementation - Proof of Concept (PoC)

This section describes the technical software aspects of SerumS and gives details about its
implementation.

The PoC is developed with Eclipse 3.04, an open source graphical-oriented software development
environment. As programming language Java 5.15 has been chosen for the implementation,
because SerumS has to be extensible for future functionality and many frameworks for developing
Web service applications are written in Java.

5.5.1 Software modularization and coding

According to the conceptional architecture of SerumS (see 5.2) the whole source code is struc-
tured in the following Java-based packages:

- org.oasis-open.docs.wsrf.rw-2.Base-Notification.*

This source code of this package is generated from the Subscribe/Notification Specifica-
tion WSDL document “WS-BaseN.wsdl”6 originated by OASIS using the WSDL2Java
tool from the AXIS framework. The “WS-BaseN.wsdl” document contains the interface
definitions for realizing the Subscribe/Notification operations. The generated classes are
used by SerumS components by extending (in Java “extends”) and/or implementing (in
Java “implements”) them. Basically, the following classes are generated from the WSDL
document:

– Subscribe-components:

∗ SubscribeManager.java

∗ Subscribe.java

∗ SubscribeResponse.java

∗ ResumeSubscribe.java

∗ PauseSubscribeResponse

∗ ResumeSubscribeResponse.java

∗ GetCurrentMessage.java

∗ GetcurrentMessageResponse.java

– Notification-components:

∗ NoticationProducerRP.java

∗ Notify.java

- serums.server.*

The serums.server.* package contains all necessary components to realize the “Search and
management of Web services and profiles of the service customers” functionality (see 5.2).
The package in turn contains the following sub-packages:

4http://www.eclipse.org
5http://www.sun.com
6http://docs.oasis-open.org/wsrf/rw-2.wsdl

5.5 Software implementation - Proof of Concept (PoC) 67

– serums.server.management.*

The package provides components for managing found Web services and notifying
the service customers about new Web services or changes of existing services.

– serums.server.search.*

The package provides components for searching Web services in the Internet and
preparing them for using within the system.

– serums.server.util

The package provides additional components for handling WSDL documents.

- serums.provider

This package contains the components to realize the “Interfaces to the providers” and
contains the following sub-packages:

– serums.provider.operations.*

The package provides components to handle provider’s operations like registering,
publishing Web services and notifying Web service changes.

– serums.provider.util.*

the package provides some auxiliary components for performing the provider’s oper-
ations

- serums.customer.*

Analogue to the serums.provider.* package, the serums.customer.* package provides com-
ponents to realize the “Interfaces to the service customers” (SerumS-SC tasks). The whole
package has the same structure as the serums.provider.* package.

In addition to the mentioned packages, the following are used for completing the function-
ality of SerumS:

- serums.client.*

The package contains GUI based applications for testing the SerumS server functionality
and consists of following sub-packages:

– serums.client.gui.customer.*

The package contains GUI based components for testing the customer’s interfaces,
e.g. handling customer’s subscribe or registering operation.

– serums.client.gui.provider.*

The package contains GUI based applications for testing the provider’s interfaces,
e.g. handling publish, subscribe or service change notify operation.

– serums.client.gui.util.*

The package consists of auxiliary components for the other serums.gui.customer.*
and serums.gui.provider.* components.

- serums.common.*

The package contains all necessary components used overall within the project, e.g. the
class XMLDataFactory.java to build XML based messages to send to or to be received by
SerumS.

68 5. Our Solution - The Search Result Management System (SerumS)

- serums.handler.*

The package consist of components for handling (operation) requests as SOAP messages
sent from a client or provider to SerumS. Two main classes are CustomerOperationsHandler

and ProviderOperationsHandler, which receive, analyze a customer or provider SOAP-based
operation request and forward it to the appropriate component of SerumS.

- serums.xmltemplates.*

As mentioned earlier, XMLBeans is used instead of a DBMS for handling the XML based
customer or provider profiles. For this purpose, a schema has been defined, from which
XMLBeans generates the appropriate Java-class to handle an instance of the schema. The
next part “Code example” demonstrates how XMLBeans actually works.

Figure 5.4 depicts the described packages structure and Figure 5.5 shows the GUI
interface of the executable application ProviderMainApplication.class from the package
“serums.client.gui.provider.*”. This application can be used by a service provider to publish
a WSDL document to SerumS.

5.5.2 Code examples

In this sub-section some code examples are illustrated to show how service customer and service
provider profiles are realized and handled with XMLBeans. In order to get into work with
XMLBeans, the following preparing works are necessary:

a) Defining a valid XML schema (in our case a valid XML schema for a customer and provider
profile)

Appendixes E and F show the compact form of the XML schemas of the customer and
provider profile.

Listing 5.8 shows an example of a customer pro-
file according to the customer profile XML schema.

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <wstop:Customer xmlns:wstop=”customer.profiles.templates”>

3
4 <wstop:Contact>
5 <wstop:Description>Customer Profile XML</wstop:Description>

6 <wstop:Phone>017829834579</wstop:Phone>
7 <wstop:Email>cao@in.tum.de</wstop:Email>
8 <wstop:AddressLine>Strassename 3</wstop:AddressLine>
9 <wstop:AddressLine>87659 Garching </wstop:AddressLine>

10 <wstop:AddressLine>Germany</wstop:AddressLine>
11 </wstop:Contact>
12
13 <wstop:Ex−Providers>
14 <wstop:MustHaveContact>true</wstop:MustHaveContact>
15 <wstop:Ex−Providers>
16 <wstop:Continent>Asia</wstop:Continent>
17 <wstop:Continent>Australia</wstop:Continent>
18 <wstop:Country>Argentinia</wstop:Country>

19 <wstop:Country>USA</wstop:Country>

5.5 Software implementation - Proof of Concept (PoC) 69

Figure 5.4: SerumS package structure

70 5. Our Solution - The Search Result Management System (SerumS)

Figure 5.5: The GUI interface for publishing or changing a WSDL document to SerumS

5.5 Software implementation - Proof of Concept (PoC) 71

20 </wstop:Ex−Providers>
21 <wstop:MustHaveContact>true</wstop:MustHaveContact>
22 </wstop:Ex−Providers>
23
24 <wstop:Service>
25 <wstop:Binding−type>ALL</wstop:Binding−type>
26 <wstop:CategoryBag>t1</wstop:CategoryBag>

27 </wstop:Service>
28
29 </wstop:Customer>

Listing 5.8: Example service customer profile

b) Compiling the XML schema into the appropriate Java-class

From the schema XMLBeans generates the appropriate Java-based package hierar-
chy based on the “targetNamespace”, in our case for the provider profile: “tem-
plates.profiles.provider.*”. This package contains all necessary Java-classes generated by
XMLBeans for handling a provider profile document.

c) Handling an XML instance (in our case a well-formed and valid customer or provider
profile with real data)

Listing 5.9 shows how a customer profile (as XML document) is converted
into an XMLBeans based instance so that it can be used as a Java ob-
ject with the contents of the customer profile as Java object properties.

1
2 ...
3 public static XmlObject getXMLData(String schemaName, File file) {
4 String schema = new String(schemaName);
5 XmlOptions opts = getDefaultXMLOptions();
6
7 CustomerDocument customerDoc = CustomerDocument.Factory.
8 parse(new File(XMLDataFactory.TEST SCHEMA DIRECTORY
9 + ”/” + ”customer−profile.xml”), opts);

10
11 return customerDoc;
12 }
13 ...

Listing 5.9: Create an XMLBeans instance from an XML file

The CustomerDocument object is created (line 7) using XMLBeans, which con-
verts an XML based customer profile (located at the file path “XMLDataFac-
tory.TEST SCHEMA DIRECTORY + “/” + “customer-profile.xml”) in a Java object.

After the XML based customer profile is converted into a Java object, its proper-
ties can be accessed with the Java programmer language statements as in Listing 5.10.

1 ...
2 CustomerDocument.Customer customer = customerDoc.getCustomer();
3 ContactDocument.Contact contact = customer.getContact();
4 String customerID = contact.getCustomerUUID();
5 String customerDes = contact.getDescription();

72 5. Our Solution - The Search Result Management System (SerumS)

6 String customerStreet = contact.getStreet();
7 ...

Listing 5.10: Access the content of the customer profile as Java object properties

In the above example, the contact information of the service customer can be found out
with the “get()” methods of the appropriate Java class generated by XMLBeans.

5.5.3 Technical characterization of SerumS

In this sub-chapter the technical specification of Serums and the appropriate equiqments
for its operation are described.

- Lines of Code (LOC):
The whole project contains about 75.000 LOC

- Hardware equipment:
CPU: AMD Athlon(TM) XP 2600+ 1.91 GH

RAM: 1GB

SerumS requires 55MB RAM for its operation at the beginning and about 140MB
during the validation

- Software equipment:
Operating System: SUSE LINUX (v.90) (General Public License (GPL))

Application Server: Tomcat (v.4.1) (GPL)

Web service execution environment: AXIS (v.1.2) (GPL)

Publish/Subscribe Tools: Publish-Subscribe Notification for Web services of OASIS

Tool for automatic search: Google Web service search API (BSD 2.0 license7)

- Validation:
SerumS is tested about 24 hours on the mentioned hardware equipment and with
randomized requests sent from a test client. SerumS is located on a machine with
the IP address 131.159.41.23 within “Das Münchner Hochschulnetz”8. All important
functionality (“subscribe”, “publish”, “automatic search for Web services in the
Internet”, “checking for new Web services and for changes of existing Web services
at service providers”) has an execution guaranty with at most 10% of the whole
testing time. There was no noticeable failure or problem during the validation.

- Documentation:
Documenation is in preparation.

7http://de.wikipedia.org/wiki/BSD-Lizenz
8http:www.lrz-muenchen.dewirintrode#mwn

5.6 Résumé 73

5.6 Résumé

This chapter described the architecture of SerumS and presented the tools and technologies,
which are necessary for realizing the PoC (SerumS) with the features mentioned in the section
4.6. Via the examples with customer, provider profiles and Subscribe/Notify messages, the con-
cept of “XMLBeans” and the “Publish Subscribe Notification for Web services” specification
have been illustrated. The next chapter deals with the evaluation of the implementation by
measuring and comparing the performance and effiency of SerumS against a traditional UDDI
registry, and demonstrates the robustness of the implementation under load.

74 5. Our Solution - The Search Result Management System (SerumS)

Chapter 6

Validation of SerumS

6.1 General Process

The purpose of the validation is to demonstrate the performance of SerumS compared to a
UDDI registry based on the traditional UDDI specification. The first part of the validating
process is the “Elementary Operations Measurement (EOM)” which evaluates the elementary
operations “inquiry()” and “publish()” of the UDDI specification performed by both service
entities (service customers and service providers) to a test UDDI registry and SerumS. The time
behavior of the “register()” operation, which does not belong to the UDDI specification but
which is often needed by the service entities in order to use the registry’s functionality, will also
be measured. Furthermore, the correctness and the completeness of the search result of SerumS
by the “inquiry” operation is also measured and compared to the UDDI registry. The second
part of the validation process “Quantitative Modelling (QAM)” models the stationary flow of the
task cycle of the service entities. QAM shows the effective load capacity of SerumS compared to a
UDDI registry depending on the number of the service entities, the number of Web services and
the frequency in which providers publish new services or change existing services and customers
search for services. In the last part of the validation process SerumS’s functionality is tested
under different load configurations. This so-called “Load Capacity Measurement (LCM)” uses
the web application test software “NeoLoad”1 as a load generator to send multiple inquiry
requests as a stress test to SerumS. Within the validation, the response time of SerumS for a
request while handling a number of virtual users serves as a measure. The response time is the
turn-around time from sending the inquiry request until receiving the result returned by the
UDDI registry or SerumS. The client and the server machines for the validation process lie in
the different network segments, but within the Munich Academic Network. Because the “ping”
response time from a test client to the test server is less then 1 ms, the transport time between
a client and the server is ignored in the analysis of the result.

The validation steps (EOM, QAM and LCM) have been performed sequentially, and the mea-
surements have been first executed on the test UDDI registry and then on SerumS. However,
both EOM and LCM use an environment of their own with an appropriate software and hardware
configuration.

1http://www.neotys.com/load-testing-tool/neoload.html

76 6. Validation of SerumS

6.2 Elementary Operations Measurement (EOM)

6.2.0.1 Purpose of the validation

The following aspects of SerumS are concerned within the EOM:

- Time for the “register()” operation:
The time needed by a service customer or service provider for registering at SerumS

- Time for the “publish()” operation:
The time needed by a service provider for publishing a Web service to the UDDI registry
or SerumS

- Time for the “inquiry()” operation:
The time needed by a service customer for searching a certain Web service on the UDDI
registry or SerumS

- “Correctness” of the search result:
How correct is the search result returned by SerumS compared to a UDDI registry with
different search criteria so that a service customer does not get a non-existing or irrelevant
service

- “Completeness” of the search result:
How complete is the search result returned by SerumS compared to a UDDI registry so
that a service customer does not miss any existing service matching to its search criteria

6.2.0.2 Validation environment

6.2.0.2.1 Hardware and Software configuration: The communication between the ser-
vice client, service provider and service broker is in the context of a distributed application,
hence in order to obtain a realistic test result the clients and the server are placed on different
networks and connected by the Internet. The server and the network are physically configured
as followed:

- Server

CPU: AMD Athlon(TM) XP 2600+ 1.91 GHz, RAM: 1GB

- Network

Network: Das Münchner Hochschulnetz2, Network capacity: 2,5Gb/s3

Figure 6.1 depicts the hardware and software configuration for the EOM:

- Software at the customer and provider side:

2http://www.lrz-muenchen.de/wir/intro/de/#mwn
3http://www.lrz-muenchen.de/wir/intro/de/#uni

6.2 Elementary Operations Measurement (EOM) 77

Client-PC

(remote) Server

Java-based
Test customer-
and provider
client

Java-based
SerumS-
Client

MS-Windows SUSE-LINUX
Application Server

Tomcat

jUDDI-Registry

SerumS

In
te

rn
e

t

(Remote) Server

register(), publish(), inquiry()

register(), publish(), inquiry()

Figure 6.1: EOM Environment

For measuring the efficiency of the UDDI registry a test application is programmed, which
sends the “publish(), inquiry()” requests to the registry. The test application for testing
SerumS is a part of the implementation of the PoC (see chapter 5.5). Beside executing
the standard elementary operations, the application can also be used to register a service
customer or service provider to SerumS in the initial process.

- Software on the broker side:

On the broker side SUSE-Linux (v. 9.0) serves as operating system with the following
applications:

– Tomcat4 as Application Server

– jUDDI5 as UDDI registry, a free open source implementation of the UDDI specifica-
tion

– MySQL version 5 serves as DBMS for managing the UDDI content

- SerumS

XMLBeans6 serves instead of a DBMS for managing the XML based service customer
and service provider profiles and also the WSDL documents. XMLBeans is a Java-based
technology for handling XML based documents by binding it into Java based objects (see
chapter 5.5.1). Hence one can easily convert the XML based documents into Java based
objects or vice versa (Object Serialization/Deserialization) and treat them as objects on

4http://tomcat.apache.org
5http://ws.apache.org/juddi
6http://xmlbeans.apache.org

78 6. Validation of SerumS

a file system. Using XMLBeans, a DBMS and some cumbersome SQL inquiries can be
avoided.

6.2.0.2.2 Validation data: In order to get a representative validation result we need service
customers and providers and have to modify their profiles in different ways.

i. Service customer profiles

A service customer can send an profile to SerumS, in general, after it has
registered itself with a Subscribe Profile. A service customer profile is op-
tional but not mandatory, because it only provides additional information
about the customer, which can be used as parameters for a more accurate
search. Listing 6.1 and 6.2 show examples of two different customer profiles.

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <cus:Customer
3 xmlns:cus=”http://www.tum−serums.org/customer”>

4
5 <cus:Contact>
6 <cus:CustomerUUID>

7 2ceacef8−df16−40b2−86c3−90111dfd2e86
8 </cus:CustomerUUID>

9 <cus:Description>Customer Profile XML</cus:Description>

10 <cus:Phone>017829834579</cus:Phone>
11 <cus:Email>cao@in.tum.de</cus:Email>
12 <cus:Street>Strassename 3</cus:Street>
13 <cus:PostalCode>8...</cus:Postal
14 <cus:City>Garching</cus:City>

15 <cus:Country>Germany</cus:Country>

16 </cus:Contact>
17
18 <cus:Policy>

19 <cus:MustHaveContact>true</cus:MustHaveContact>
20 <cus:ValidedByServer>false</cus:ValidedByServer>
21 <cus:Ex−Providers>
22 <cus:Ex−Continents>Asia, Australia</cus:Ex−Continents>
23 <cus:Ex−Countries>USA, Argentinien</cus:Ex−Countries>
24 </cus:Ex−Providers>
25 </cus:Policy>

26
27 <cus:Service>
28 <cus:Binding−Types>ALL</cus:Binding−Types>
29 <cus:CategoryBags>10001000</cus:CategoryBags>
30 </cus:Service>
31
32 </cus:Customer>

Listing 6.1: Example customer profile 1

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <cus:Customer
3 xmlns:cus=”http://www.tum−serums.org/customer”>

4
5 <cus:Contact>
6 <cus:CustomerUUID>

6.2 Elementary Operations Measurement (EOM) 79

7 2ceacef8−df16−40b2−86c3−90111dfd2e86
8 </cus:CustomerUUID>

9 <cus:contactPerson>Mayer Patric<cus:contactPerson>

10 <cus:Description>Customer Profile XML</cus:Description>

11 <cus:Phone>+4908912345678</cus:Phone>
12 <cus:Email>mayer.Partic@yahoo.de</cus:Email>
13 <cus:Street>Example street 3</cus: PostalCode>
14 <cus:PostalCode>8...</cus:Postal
15 <cus:City>Munich</cus:City>

16 <cus:Country>Germany</cus:Country>

17 <cus:homepage>http://www.mayer−patric.de<cus:homepage>
18 <cus:publicFingerPrint>
19 78ff9889ad0092q80
20 </cus:publicFingerPrint>
21 <cus:CustomerGroup>ff450ead12345678</cus:CustomerGroup>

22 </cus:Contact>
23
24 <cus:Policy>

25 <cus:MustHaveContact>true</cus:MustHaveContact>
26 <cus:ValidedByServer>false</cus:ValidedByServer>
27 <cus:Communication>secure</cus:Communication>

28 </cus:Policy>

29
30 <cus:Service>
31 <cus:ServiceExpiryTime>2006−12−30</cus:ServiceExpiryTime>
32 <cus:Binding−Types>rpc</cus:Binding−Types>
33 <cus:CategoryBags>100000010</cus:CategoryBags>
34 </cus:Service>
35
36 </cus:Customer>

Listing 6.2: Example customer profile 2

In contrast to the first customer profile the second one contains more information about
the customer:

- The customer specifies the address (line 17) of his home page and a public fingerprint
which could be used for an encrypted communication process. In addition to the service, a
“CustomerGroup” identifier can be specified to indicate that the service customer belongs
to this CustomerGroup which is needed to search for Web services with certain user access
limitation, e.g. if a service provider allows only a certain user or user group to see or use
its service.

- If the “<Communication>” element (line 27) is specified with the value “secure” then
SerumS must use a secure protocol to communicate with the service client, e.g. https.

- The customer is only interested in services which are valid at least until the specified
date (line 31).

For the validating process the following spectrum is available:

- Up to 300 service customers with different profiles

- Different locations

- Different interests (Web service types)

- Different base and technical requirements to the service providers, e.g input, output or
conditional parameters.

80 6. Validation of SerumS

ii. Service provider profile

Compared to a customer profile a provider profile is mandatory for SerumS in order
to identify the service provider itself. Before a service provider can publish its service,
it has to send a profile to SerumS. Unlike the content within a “<BusinessEntity>”
element which represents a Web service entry of a service provider in a UDDI registry,
a provider profile contains much more elements than the default information about
the Web service and the service provider itself. As example from the provider pro-
file, one can determine whether any input data during the execution of Web service
application process is needed by the service provider, e.g. credit card number or a
minimum amount of an order etc. Other important data are technical or conditional
information which can be used for specifying the service more exactly. Such informa-
tion can also be used by SerumS to search for Web services to support the matching
process with customer profiles. Listings 6.3 and 6.4 show two examples of provider profiles.

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <prov:Provider xmlns:prov=”http://www.tum−serums.org/provider”>

3
4 <prov:Contact>
5 <prov:Description>Siemens AG</prov:Description>

6 <prov:Phone>+498...</prov:Phone>
7 <prov:Email>support@siemens.de</prov:Email>
8 <prov:Street>Hoffmannstr. 51</prov:Street>
9 <cus:PostalCode>81359</cus:Postal

10 <prov:City>Munich</prov:City>

11 <prov:Country>Germany</prov:Country>

12 </prov:Contact>
13
14 <prov:Business>
15 <prov:Name>Siemens AG</prov:Name>
16 <prov:Description>

17 Provider Business Description XML
18 </prov:Description>

19 <prov:UNSPSCCategoryBag>10000011</prov:UNSPSCCategoryBag>

20 </prov:Business>
21
22 <prov:Service>
23 <prov:ServiceExpiryTime>2006−01−01</ServiceExpiryTime>
24 </prov:Service>
25
26 </prov:Provider>

Listing 6.3: Example provider profile 1

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <prov:Provider xmlns:prov=”provider.profiles.templates”>

3
4 <prov:Contact>
5 <prov:Description>Samsung − South Korea</prov:Description>

6 <prov:Phone>012345678</prov:Phone>
7 <prov:Email>support@samsung.com</prov:Email>
8 <prov:Street>examples treet</prov:Street>
9 <prov:City>example city</prov:City>

10 <prov:Country>South Korea</prov:Country>

11 <prov:Continent>Asia</prov:Continent>
12 </prov:Contact>

6.2 Elementary Operations Measurement (EOM) 81

13
14 <prov:Business>
15 <prov:Name>Samsung, Ltd.</prov:Name>
16 <prov:Description>

17 Provider Business Description XML
18 </prov:Description>

19 <prov:UNSPSCCategoryBag>10000000</prov:UNSPSCCategoryBag>

20 </prov:Business>
21
22 <prov:Service>
23 <prov:ServiceExpiryTime>2006−09−01</ServiceExpiryTime>
24 <prov:ServiceLimited> (1)
25 <prov:ServiceLimitedID>

26 ff450ead12345678
27 </prov:ServiceLimitedID>

28 </prov:ServiceLimited>

29 <prov:InputData>
30 <prov:InputDataName>customerID</prov:InputDataName> (2)
31 <prov:InputDataType>stringType</prov:InputDataType>
32 </prov:InputData>
33 </prov:Service>
34
35 </prov:Provider>

Listing 6.4: Example provider profile 2

- The service provider specifies a “<ServiceLimitedID>” value (line 24) to inform SerumS
about users who are allowed to explore the Web service content. In this case, the identifier
matches the values specified in the profile from Listing 6.4 and allows this user to explore
the service content.

- The service provider requires a “customerID” from the service customer as
“<InputParameter>” (line 29) in order to identify the service customer and to start the
Web service process.

Analogue to the customer profiles, the following configuration data for the service providers
are available for the validation:

- up to 300 service providers with

- Different contact information

- Different locations

- Different service types

- Different service technical information

6.2.1 Validation procedure and result

6.2.1.1 Validation procedure

As mentioned earlier, the elementary operations “register(), publish(), inquiry()” are executed
sequentially on the UDDI registry and then on SerumS. The test client applications for the UDDI
registry and SerumS are equipped with a “timer” which measures elapsed time from sending the
request till the return of the result (aka. response time).

82 6. Validation of SerumS

6.2.1.2 Response time for the “register()” operation

To offer their functionality, both the UDDI registry and SerumS claim an authentication and
authorization from service customers and service providers. The registration to a UDDI registry
depends on each UBR node, whereby the registration to SerumS is based on a customer or
provider profile. Because of the dependency of the registration process on each UBR node it
is not possible to make a general conclusion about the performance of a UDDI registry. With
SerumS the following results are obtained from the test:

- Customer’s registration:

144 - 250 milliseconds depending on the options specified in the customer profile

- Provider’s registration:

170 - 280 milliseconds depending on the options specified in the provider profile

6.2.1.3 Conclusion

The registration time for a provider is longer than that for a customer because a provider profile
generally contains more information (options). In both cases the registration process costs less
than half a second and is comparable to the time needed by Google for a simple search request7.

6.2.1.4 Response time for the “publish()” operation

Using the “publish()” (aka. advertisement) interface specified in the UDDI specification, a service
provider can place the information about its business and services in a UDDI registry. In our case,
a service provider sends a profile and a WSDL document containing the technical specification
of the Web service to SerumS, hence the response time needed for the “publish()” operation
depends on two main parameters: the provider profile and the WSDL document. The time for
handling the provider profile is already measured in the previous step (see “Time for a provider’s
registration”), so that we only need to measure the time for handling a WSDL document. During
the validating process two WSDL documents with different technical specifications have been
used:

- The technical specification of the Web service based search interface of Google.com
“GoogleSearch.wsdl”8

Time for publishing the GoogleSearch.wsdl document:

700-820 ms depending on the network condition

- The WSDL-based technical description of the Publish/Subscribe Specification

Time for publishing the WS-BaseN9.wsdl document:

850 - 870 ms depending on the network condition

7“simple search request” means a request atmost with 3 search key words
8http://www.google.com/apis
9“N” stands for “Notification”

6.2 Elementary Operations Measurement (EOM) 83

The time for publishing the WS-BaseN.wsdl is longer than that for GoogleSearch.wsdl due to
its size and complexity.

6.2.1.5 Conclusion:

We cannot directly compare the performance of the “publish()” operation between a UDDI
registry and SerumS because a UDDI registry only receives a reference to the WSDL document
and not the document itself. In case of SerumS, the content of a WSDL document is sent
directly from the service provider and stored via XMLBeans as a local file on SerumS. Sending
the content of a WSDL document over the Internet takes more time and is a disadvantage of
SerumS, however, the following validation shows that the other operations benefit from this
approach, e.g. with WSDL documents stored locally, SerumS can match more quickly between
service customer profile, service provider profile and a WSDL document and notify changes of
the Web service to the service customers.

6.2.1.6 Response time for the “inquiry()” operation

To get a reasonable result, the measurement of the “inquiry()” operation has been executed five
times with different numbers of up to 300 of the Web service entries and up to 10 search criteria
on both test UDDI registry and SerumS. The fluctuations in the following result are caused on
one hand by the number of the Web service entries, which have to be managed by the broker,
and on the other hand by the number of the search criteria specified in the “inquiry” string.
Generally, the execution time in both systems SerumS and the test UDDI registry has increased
with a noticeable value if the “inquiry” string contained more then 5 search criteria.

- up to 10 Web service entries on the broker site (UDDI registry or SerumS)

UDDI:

500 - 800 milliseconds

SerumS:

350-700 milliseconds

- with 10-50 Web service entries

UDDI:

700 - 1000 milliseconds

SerumS:

430-800 milliseconds

- with 50-100 Web service entries

UDDI:

800 - 1200 milliseconds

SerumS:

720 - 900 milliseconds

84 6. Validation of SerumS

- with 100-300 Web service entities

UDDI:

1200 - 2400 milliseconds

SerumS:

900 - 2000 milliseconds

Figure 6.2 shows the average response times of both UDDI and SerumS and the possible time
fluctuations depending on the number of the search criteria and of the Web service entities. The
rectangles demonstrate the variance of the four sets of measurements. The red and green lines
are simple interpolations which estimate the mean behaviour. The variance is greatly caused by
the number of criteria.

6.2.1.7 Search correctness

Search correctness is the part of the whole search result (expressed in percentage), which fully
matches the search criteria specified by the user. For example, if the user wants to search for
“web site hosting service within Munich, Germany” and the search result contains four entries
“car assurance within Munich”, “web hosting service Berlin, Germany”, “weather report service
for Munich, Germany” and “web hosting service Munich, Germany”, then the search correctness
is 1/4 = 0.25 = 25%.

i. Correctness by search requests with “simple string pattern” (with at most 3 key words,
e.g. search for a provider’s name or provider’s name with location)

Result:

UDDI: correctness 100%

SerumS: correctness 100%

(The result is obvious since both the jUDDI registry implementation and SerumS use the
same String-Matching Rules of the Java-String API)

ii. Correctness by search request with more complex combination of:

(a) until 4 criteria

Result:

UDDI: correctness 70%

SerumS: correctness 70%

(b) from 5 until 10 criteria (with extended search criteria like “expiry time”, “input data
condition” etc.)

Result:

UDDI: correctness 70%

SerumS: correctness 95-100%

6
.2

E
le

m
e
n
ta

ry
O

p
e
ra

tio
n
s

M
e
a
su

re
m

e
n
t

(E
O

M
)

8
5

1000ms

100ms

500ms

1500ms

2000ms

10

Response time

Number of
Web service
entries50 100 150 200 250 300

Average response time of SerumS for the “inquiry” operation

possible time fluctations depending on the number of the search criteria and the number of the Web service entities

1000ms

100ms

500ms

1500ms

2000ms

10

Response time

Number of
Web service
entries50 100 150 200 250 300

Average response time of the UDDI for the “inquiry” operation

possible time fluctations depending on the number of the search criteria and the number of the Web service entities

F
igu

re
6.2:

U
D

D
I’s

an
d

S
eru

m
S
’s

resp
on

se
tim

e
for

th
e

“in
q
u
iry

”
op

eration

86 6. Validation of SerumS

6.2.1.8 Search completeness

“Search completeness” in our context means “with which probability the search algorithm detects
a matching Web service”. Since there does not exist any statistic data regarding to the search
completeness of the existing UDDI registries, the following assumptions are made:

i. Search completeness with a UDDI registry

A UDDI registry can search only within itself for the Web services published by the
service providers. New and/or not registered Web services in the UDDI registry cannot
be recognized. Indeed, many service providers do not know the existence or the address
of the UDDI registries and therefore do not publish their Web services to them. On the
other hand, the registered Web services are distributed on many different UDDI registries,
e.g. “Microsoft uddi Business Registry Node”10,”IBM-UDDI”11, “SAP UDDI v3 (beta)
Test Business Registry12”. Because of such distribution of existing UDDI registries, it is
cumbersome for a service customer to search on all of them completely for a desired Web
service. Therefore the search result completeness is reduced by an imaginable quotient
compared to SerumS.

ii. Search completeness with SerumS

SerumS searches proactively for Web services which are not yet known to service customers,
because they are not published or published lately by the service providers. With the search
functionality of Google the following advantages of SerumS compared to a UDDI registry
arise:

(a) The Web services are found by Google

(b) By the nature of SerumS we assume that all Web services on all different Microsoft,
IBM, SAP and other UDDI registries are known to SerumS and an immense com-
pleteness gain compared to a UDDI registry can be achieved.

6.2.2 Conclusion

In all configurations the search performance of SerumS is at least as good as that of the UDDI
registry. We assume that a higher number of existing Web services, which have to be searched,
delivers a better correctness with SerumS. The reason for the higher correctness is the fact that
a provider profile contains more data (particularly referring to the Web service technical and
conditional information) associated with Web services. The consequence is that the customer
may specify the service with more details, which is used for the automatic search; in the UDDI
approach this has to be done by additional inquiries to the provider which may even result in
the insight that the service is not usable for the need of the customer. Hence, SerumS gives
earlier and more accurate results.

The shorter response time of the elementary operations compared to the test UDDI registry is
due to the fact that SerumS, on the one hand, uses XMLBeans for managing the XML documents
locally, so that cumbersome SQL statements can be avoided; on the other hand, the set of the

10http://uddi.microsoft.com
11https://uddi.ibm.com/beta/registry.html
12http://udditest.sap.com/webdynpro/dispatcher/sap.com/tc uddi webui wdp/UDDIWebUI

6.3 Quantitative Modelling (QAM) 87

test Web services is limited to 300 entries within the validation process. The performance gain
compared to an UDDI registry will degrade at most to a certain value if SerumS has to deal with
a higher number of service entries, and especially, if the structure of the service customer and
service provider profiles get more complex. A DBMS will benefit from the capability of better
indexing and more efficient reorganization of big amount of data. Therefore, in the long term,
if the set of service customers and service providers increases, SerumS would better use a real
DBMS instead of XMLBeans .

6.3 Quantitative Modelling (QAM)

6.3.1 Validation procedure and parameters

From the previous part EOM we have obtained the necessary basic results, which can be applied
to the QAM. The goal of the QAM is to estimate the performance of SerumS and UDDI as a
function of load. Compared to the EOM, where the service time of an operation (namely the
time between the begin and the end of the operation logged with a timer) is measured, for the
QAM a stationary multi-parameter asymptotic model is used to estimate the performance of
SerumS and the resulting efficiency advantage compared to a traditional UDDI registry. The
following parameters serve as input for the QAM:

i) Parameters regarding the service providers:

- Mean number of the services per service provider

- Rate of change of the Web services by the service providers

- Rate of change of the provider profiles

ii) Parameters regarding the service customers:

- Mean number of services used per service client

- Rate of change of customer profiles

- Rate of search for Web services (how often does a customer search for Web service(s))

- Rate of use of a Web service

The whole validating procedure is described in three parts. In the first part, the performance
model of the traditional UDDI approach is presented, where the UDDI registry as service broker
does not notify a service customer about changes in an existing service and a service provider
also does not propagate any information about start or change of its service. A service client
always has to “visit” the UDDI registry for a new Web service if it recognizes that the old one is
not valid or not available anymore or it has not used it before. In the second part we calculate
the performance of SerumS with respect to the extended functionality “proactive searching for
new Web services” and “notifying of changes at existing Web services to service customers”.
For both parts we compute the response time and estimate the response time under load for
executing the service application between a traditional UDDI registry and SerumS using the
results obtained from the previous EOM.

88 6. Validation of SerumS

6.3.2 UDDI registry performance model

Figure 6.3 depicts the call relations between a Web service application and a traditional UDDI
registry.

P

C

B
service request

m customers

n providers

CPl

1CPl

+

new search
request for
URL: 1CBl

repeated request for
URL: CBl

1 broker

URL/service
update: jP ×l

Legends:

C: service customer
P: service provider
B: service broker

Figure 6.3: Call relations and call rates of a Web service application based on traditional UDDI
registry

Within the service application process, the following service entities with their activities and
associated times take part:

i) Client

- sends requests to the set of the service providers with a rate λCP1 and service time
bP at the beginning of the service use. Before this, a request to the broker with a rate
λCB1 and service time bBS (S: Searching) is necessary.

- sends requests to the set of the service providers at repeated use with the rate λCP

and service time bP

- sends requests to the service broker if service is stated as invalid or changed; rate
λCB, service time bBS and 2bP for double requests to service provider.

- uses a mean number of k services

ii) Service broker

- no request since it is passive

iii) Service provider

6.3 Quantitative Modelling (QAM) 89

- every service becomes invalid or non-specified with the rate λP and causes bBC , the
service time for updating an UDDI entry

- offers a mean number of j services

Explanation of the relation between the variables:[40]

We use an asymptotic approach (number of customers m = 0 and m → ∞) with j , k and b as
average values (maybe with large fluctuations). The b′s are service times, excluding the waiting
time.

The probability P [C/I since the last request] is the probability that the service has been changed
(C) or become invalid (I) since the last request. A single service will be used with rate λCP

k
and

will be changed or become invalid with the rate λP .

Figure 6.4 describes the situation, demonstrated on a discrete time-scale.

time

λ
P

λ
CP

k

t0 t1 t2 t3
t4 t5

t6 t7 t8
t9

t10 tn

Legends:

service change event

“service not valid” error occurs

service still valid

provider’s service change rate

service usage rate by the service client

P
λ

λ
CP

k

Figure 6.4: Service changed and invalid probability

In Figure 6.4, 2 events are to be recognized, when a “service not valid” error occurs and causes
the service client to visit the service broker to get new and valid information about the service.
In the first case, the service provider has changed the service at time point t1 and the service
client accesses it at time point t4. In the second case, the service client accesses the affected
service at time point t9, immediately after the provider has changed its service at time point t8.

P [C/I since the last request] = 1− P [no λP - events in the last Interval of the CP (Customer-

Provider) process, rate λCP

k
] = 1 −

∫
∞

0 (e−λP t ·
k

λCP
· e−

λCP

k
t)dt = 1 −

λCP

k

(λP +
λCP

k
)

= λP

λCP

k
+λP

=

kλP

λCP +k·λP

90 6. Validation of SerumS

We obtain the following stationary utilization of the service broker:

ρB = m(λCB1 + λCB) · bBS + n · j · λP · bBC ≤ 1

For m we get the following equation (utilization does not exceed 1):

m(λCB1 + λCB) · bBS ≤ 1 − n · j · λP · bBC

Because of λCB =λCP P [C/I since the last request] = λCP ·k·λP

λCP +k·λP
⇒

m ≤
1−n·j·λP ·bBC

(λCB1+λCB)·bBS
= 1−n·j·λP ·bBC

(λCB1+
λCP ·k·λP

λCP +kλ·λP
)bBS

λCB ⇒

For “=” instead of ≤ we get m∗ instead of m, the saturation value for the mean number of clients.

Effective service time for requests from the client to the provider:

bCP = bP + λCP1

λCP1+λCP
bBS + λCB

λCP1+λCP
bBS

The last summand disregards the request to the provider before C/I!

With λCB = λCP ·k·λP

λCP +k·λP

bCP = bP + λCP1

λCP1+λCP
bBS + λCP ·k·λP

(λCP1+λCP)(λCP +k·λP)bBS

We disregard that bBS increases with n, j

Example calculation (with estimated service times and rates) :

n = 100

j = 20

bBC = 0, 02s (broker time for handling changes of provider profile or Web services)

bP = 0, 1s (provider time for handling a client request)

k = 100 (number of services used by a client)

λp = 10−7

s
(provider’s service change rate)

bBS = 1s

λCP = λCP1 = λCB1 = 0, 5/s (for the first time use of a service the service client always
has to visit the broker for the service information. λCP1 is the consequence of the mixed use
of services with a very short lifetime at the client and long-used services. We assume a mean
number k = 100 of services used by a provider, of which

- 50 services have a short mean usage time of 100s; i.e. it follows by Little’s formula that
λCP1short = 0, 5/s

- 50 services have a long mean usage time of 107s (115 days); it follows λCP1long = 50 · 10−7/s

It is evident that the short used services determine λCP1 ≈ λCP1short = 0, 5/s.)

6.3 Quantitative Modelling (QAM) 91

P [C/I since the last request] = k·λP

λCP +k·λP
= 100·10−7

0,5+100·10−7 = 10−5

0,5+10−6 ≈ 2 · 10−5

bCP = bP + λCP1

λCP1+λCP
bBS + λCP ·k·λP

(λCP1+λCP)(λCP +k·λP)bBS = 0, 1+ 0,5
0,5+0,5 · 1+ 0,5·100·10−7

(0,5+0,5)(0,5+100·10−7) · 1

bCP = 0, 1 + 0, 5 + 10−5 ≈ 0, 6s

where waiting time for the broker is 0, 5s!

With λCB = λCP ·k·λP

λCP +k·λP
= 0,5·100·10−7

0,5+100·10−7 ≈
0,5·10−5

0,5 = 10−5/s ⇒

m∗ = 1−n·j·λP ·bBC

(λCB1
+λCB)·bBS

= 1−100·20·10−7
·0,02

0,5+10−5 ≈ 1
0,5 = 2

For m ≥ 2 the broker is the bottleneck (broker is completely overloaded!).

Check whether providers are bottleneck (load is shared on n providers):

ρP = m
n

(λCP + λCP1) · bP = 1
100 = 0, 001 ≤ 1

it follows m∗ = 1000, the providers are no bottleneck for less than 1000 clients. Providers are
completely underloaded. With 2 clients the saturation of the broker begins, but ρprovider = 2·10−3

for m = 2.

Figure 6.5 depicts the mean average response time for client requests to a provider including
necessary requests to the broker.

m

Provider service time
UDDI

Broker service time

m*= 1000

0,6s

yCP

0,5s

m*= 2

mean
response

time

UDDI

SerumS

number
of clients

U
D

D
I
b

o
tt

le
n

e
c

k

SerumS bottleneck

m*= 5000

S
er

u
m

S

P
ro

vi
d
er

b
o
tt
le

n
ec

k
+

Figure 6.5: Asymptotic response time (yCP) for the client’s calls

92 6. Validation of SerumS

6.3.3 SerumS performance model

6.3.3.1 Load for handling inner task

With SerumS, the following changes have to be considered for the calculation of the application
process performance:

- For the “first-time” requests to the provider the broker (SerumS) is not needed, because
the client knows the provider thanks to its profile (optimistic). Hence, this service time
part λCP1

λCP1+λCP
bBS is omitted for the client.

- At the C/I case, the client has also been already notified by SerumS and contacts directly
the service endpoint which has been changed meanwhile by the service provider or goes
to a new service provider who offers the same service, as it has been notified by SerumS.
Again, the service time part λCP

λCP1+λCP
bBS is omitted.

- In case of notification of changes of existing services (at the change rate λP) by a service
provider, an appropriate entry has to be inserted in the service list managed by SerumS.
In addition, SerumS has to check the matched profiles of the service customers in order to
send them the new Web service addresses. The load for this process is λP · bBcheck · j · n
(bBcheck is time for checking for one profile and maybe sending a message to the client),
the part λP · bBC · j · n (provider profile changed) remains.

Figure 6.5 shows that the service time for the client decreases to bP and the bBS parts disappear.

The load of the broker shrinks by m(λCB1 + λCB) · bBS but increases by λP · j · n · bBcheck · m

Assume that bBcheck = 1s,

thus

ρ = n · j · λP · bBC + m · λP · j · n · bBcheck ≤ 1

or

m∗ = 1−n·j·λP ·bBC

λP ·j·n·bBcheck
≈

1
10−7

·20·100·1

m∗ = 1
2·10−4 , thus m∗ for broker: 5000. SerumS avoids the broker’s bottleneck and makes the

providers the bottleneck at a much higher performance level.

Serums dramatically improves the performance (about 5000/2 ≈ 2500 times) situation by liber-
ating the system from the broker bottleneck.

6.3.3.2 Load for handling autonomous task

Assume that SerumS needs 5sec to search for new services in Internet, 1sec to check new services
and 1sec to check changes at every existing service at a service provider. Assuming 20 services
per provider (as in the previous calculations), it would cost 5sec + 100 · 20 · (1sec + 1sec) =
4005sec ≈ 67min for SerumS to do the autonomous task.

6.4 Load Capacity Measurement (LCM) - Test of SerumS’s functionality under
load 93

With 60min · 24(hours) = 1440min per day, SerumS needs 67
1440min ≈ 0, 05 ≈ 5% of its time

for the autonomous task, which is acceptable. So this additional load is no argument against
Serum.

6.4 Load Capacity Measurement (LCM) - Test of SerumS’s

functionality under load

6.4.1 General procedure

As mentioned at the beginning of this chapter, the purpose of LCM is to perform a stress test
on SerumS only. On the one hand, the functionality of SerumS is tested and on the other hand,
the load capacity (the execution time of SerumS under different load levels) is measured. The
LCM is based on the EOM. The two elementary operations “register()” and “inquiry()” are
used for the measurement. Each operation is executed in form of multiple parallel requests to
SerumS. The load generator NeoLoad simulates a number of clients on the stimulator PCs with
appropriate options configurable during the measurement, e.g. with request rate, number of
users (how should the number of users be increased or decreased within a test time interval)
and test duration. The whole measurement is performed with three different load levels “up
to 60 parallel requests”, “up to 140 parallel requests” and “up to 200 parallel requests”. To
ensure a reasonably stable result, 10 tests are executed per level and the average response time
is calculated.

6.4.2 Hardware and software configuration

Unlike the EOM, the LCM uses a number of real client PCs. Since the available load generator
application NeoLoad is available only as a trial version and limited to 10 parallel users, it is
installed on 20 stimulator PCs, so that maximum 200 users can be simulated in parallel for the
validation. Figure 6.6 depicts the LCM environment with the appropriate hardware and software
configuration.

6.4.3 Tool description and measurement configuration

Figure 6.7 and 6.8 show the main screen of Neoload with the information about the destination
server and the service endpoint where the requests have to be sent to.

The configuration for the destination server belongs to the “Repository” part of Neoload. For
testing SerumS, the service endpoint http://131.159.41.23:8080/ws/customerSubscribe is used
for a client to subscribe itself. “131.159.41.23:8080” is the network address of the SerumS with
the port and “/ws/customerSubscribe” is the service endpoint.

The main screen also has two other tabs “Virtual User (VU)13” and “Population”, which are
depicted in Figures 6.9 and 6.10.

In the field “Virtual Users” one can create a number of instances of the VU. For testing SerumS,

13in SerumS’s case they are service customers

94 6. Validation of SerumS

Client-PC

NeoLoad
with 20

simulated
users

parallel

MS-Windows SUSE-LINUX
Application Server

Tomcat

jUDDI-Registry

SerumS

In
te

rn
e
t

(Remote) broker

register(), publish(), inquiry()

register(), publish(), inquiry()

Client-PC 1
MS-Windows

SUSE-LINUX
Application Server

Tomcat

jUDDI-Registry

SerumSIn
te

rn
e
t

(Remote) brokerMS-Windows

MS-Windows

MS-Windows

Client-PC 2

Client-PC 3

Client-PC 20

.

.

.

NeoLoad

NeoLoad

NeoLoad

NeoLoad

Figure 6.6: Hard- and software configuration for the LCM with 20 client (stimulator) PCs and
the SerumS Broker

6.4 Load Capacity Measurement (LCM) - Test of SerumS’s functionality under
load 95

Figure 6.7: The main screen (Repository) of Neoload

Figure 6.8: Detailed Information about the service endpoint

96 6. Validation of SerumS

Figure 6.9: Creation and description of virtual users

10 VUs per PC are created which already reach the maximum number of VUs allowed by the
trial version of NeoLoad.

In the population register one can configure the set of the virtual users which belong to a test
case. In our case we have a 3-Users-Population, 6-User-Population and 10-User-Population with
the following set up:

- Up to 60 parallel users:

Every PC simulates 3 parallel VUs, altogether: 3 x 20 (PCs) = 60 VUs

- Up to 140 parallel users:

Every PC simulates 8 parallel VUs, altogether: 7 x 20 = 140 VUs

- Up to 200 VUs:

Every PC simulates 10 parallel VUs, altogether: 10 x 20 = 200 VUs

Figure 6.11 shows the configuration capabilities within the “Runtime” tab. The meaning of each
part of the “Runtime” tab is described below:

1) One can determine from where the requests have to be sent. In our case the requests are sent
directly from the host where Neoload is installed. It is also possible for Neoload to cooperate
with other hosts and send the test requests from them.

6.4 Load Capacity Measurement (LCM) - Test of SerumS’s functionality under
load 97

Figure 6.10: Population configuration for the Virtual Users

Figure 6.11: Configuration of the test scenario

98 6. Validation of SerumS

2) Within the “Load Policy” tab the type of the “users volume variation” can be chosen. The
“users volume variation” option indicates how the virtual users are run during the test. One can
choose between “Constant variation”, if the number of the VUs is constant over time, “Ramp
Up variation”, if the number of the VUs increases linearly with time, or “Peak variation”, if the
number of the VUs increases to a peak value and decreases to a certain deep point. Because of
the limitation of the number of virtual users which can be created in the trial version of the test
software we choose the “users volume constant variation” whereby the “constant load for all the
test span” is 1 VU.

3) The “Duration Policy” determines the duration of the simulation. One can stop the simulation
manually or choose how long the simulation should run.

6.4.4 Validation result

As mentioned earlier, each test level is executed 10 times sequentially. Since both the test clients
and SerumS are in the Munich Academic Network with negligible network delay (ping response
time < 1ms) and SerumS is installed on a dedicated server PC which only has to listen to
and handle the requests from the test clients, the fluctuations lie in the range of -2 up to +2
milliseconds. The following results are average response times recorded during the test.

In the first level, each of the 20 PCs simulates 3 parallel VUs. Neoload has started one after
another but the average response time gets constant for every PC after a certain time. Figure
6.12 shows the result summary with 3 parallel VUs on every PC (altogether 60 VUs on 20 PCs).

The meaning of the information within the color ellipses is explained in the following:

1) The information about the test case (in our case a population with 3 parallel VUs on every
PC)

2) The average response time is 352ms

3) The graph depicts the response time during the test (the gray curve marked within the ellipse)

One can conclude from the response time curve in the three graphs that SerumS works very
constantly over time. Compared to the result from the EOM (see chapter 6.2.1.6) with 350ms for
one single request, it follows that SerumS also can handle a multiple number of parallel inquiry
requests without additional delay.

The second test level consists of 140 parallel VUs where every PC simulates 7 VUs. Figure 6.13
shows the result of the test. With 433ms for 140 parallel VUs the effective response time has not
increased more than by 1 ms for every additional request compared to the result of the previous
test level.

6.4.5 Evaluation of the test result

In this section the result of the LCM is summarized and evaluated in relation to the outcome
of the different test levels.

We obtained the following result from the first level test (with 60 VUs) of the LCM (see Figure
6.13):

6.4 Load Capacity Measurement (LCM) - Test of SerumS’s functionality under
load 99

Figure 6.12: SerumS’s performance with 60 VUs (inquiry requests)

100 6. Validation of SerumS

Figure 6.13: SerumS’s performance with 140 VUs (inquiry requests)

6.4 Load Capacity Measurement (LCM) - Test of SerumS’s functionality under
load 101

Figure 6.14: SerumS’s performance with 200 VUs (inquiry requests)

102 6. Validation of SerumS

Total users launched: 108

Test duration: 3 minutes

Test request rate: 1/sec

The important result is that SerumS only shows small average additional waiting time for
handling a multiple number of the VUs (e.g. comparing the “Average response time/Total users
launched” ratio between the first and second test level) as the following calculation shows:

The total number of users launched in the first test level: 108

The total number of users launched in the second test level: 582

Ratio: 582
108 ≥ 5 (at least 5 times more lauchend users than in the first test level)

Average response time in the first test level: 352ms

Average response time in the second test level: 433

Response time difference: 433 − 352 = 81ms,

Time increase in percentage: 81
352 ≈ 23%

These results say that SerumS only generates 23% more time to handle 5 times the number
of parallel inquiry requests. In the range up to 200 requests/min it shows only small average
waiting times (23%).

6.4.6 Résumé

SerumS did not show any significant weakness (crashes, slowdown or incorrectness) during all
test levels of the LCM. Despite the limited possibility to validate SerumS because of the limited
licence of the test tool NeoLoad, we can still get a reasonable result regarding its performance.
The performance of SerumS is acceptable in a range up to 200 inquiries/min and the stability
and robustness of the implementation is demonstrated by these test results.

Chapter 7

Conclusion and Future Works

This chapter surveys the results and concludes what is to be done in the future.

7.1 Conclusion

The original motivation for this thesis is the bad quality of the Web service information partially
caused by lack of a “Subscribe/Notify” mechanism in the current UDDI standard, from which
some serious issues arise, regarding consistency of the Web service information and performance
of the execution of the Web service application process. The first chapter describes how in general
the current Pull technique based distributed application systems works and which improvements
can be achieved with the Pull-Push technique approach. After making the issues more specific,
which come along with a traditional UDDI registry, some works are presented as current evolu-
tions of this topic. However, these current works only contribute indirectly to the solution of the
presented issues but they do not offer any acceptable approach within our context. The chapter
5 presents SerumS as a system for efficient Search and Management of the Web service con-
tents by using the “Publish Subscribe Notification for Web services” specification to realize the
“Subscribe/Notify” functionality which is missing in the current UDDI standard. With SerumS
it is shown how the requirements for dealing with the problems mentioned in chapter 3 can be
fulfilled. The “Proof of Concept” in the chapter 5 and the validation in the chapter 6 under-
line the feasibility and the advantages of SerumS compared to a traditional UDDI registry and
also show how efficiently SerumS in a dynamic environment works, where the set of the service
customers/providers as well as the Web services and their contents are permanently changed.

In summary the following contributions are achieved by our work:

i. The current UDDI standard is extended by a Publish/Subscribe mechanism

ii. Service customers can use the Publish/Subscribe mechanism to register themselves for
desired Web services

iii. Service customers and service providers work proactively by delivering profiles. The service
broker investigates the current offer of services and informs the customers about relevant
services.

104 7. Conclusion and Future Works

iv. Reduction of response time for service customers by automatic advance search for new
Web services by the service broker (now SerumS)

v. Improved and extended specification (by metadata, e.g. “service expiry time”, “service
excution condition” etc.) improves correctness and completeness of the search result. This
releases service customers from cumbersome filtering process for relevant service informa-
tion

vi. In-time reporting (notification) of service providers about service changes and new services
to service customers reduces the number of the inquiry requests and leads to reduction of
load on the broker (see chapter 6.3.3.1).

7.2 Future Works

In this sub-chapter further possibilities to extend and optimize the functionality of SerumS are
determined so that it can be used in a larger context and for more purposes.

7.2.1 Improvement of the “proactive functionality”

One important functionality of SerumS is the autonomous task consisting of proactive search
in Internet for new Web services and checking at the service providers for changes of existing
services. Section 6.3.3.2 already shows that the time for this autonomous task needed by SerumS
is negligible for 100 providers with each 20 services. However, if the number of the service
providers increases, SerumS would spend more time for the automatic search and checking
process as the following calculation shows.

The following assumptions are made for the calculation:

- 500 service providers

- Every service provider offers 20 services

- 5 seconds are needed for searching new Web services in Internet

- 1 second is needed for checking new services at a service provider

- 1 second is needed for checking changes of every existing service

Based on the calculation from chapter 6.3.3.2, SerumS would need the following time for the
automatic operations:

500 · 20 · (1sec + 1sec) + 5sec = 20005sec ≈ 333min.

With 60min · 24(hours) = 1440min per day, SerumS needs 333
1440min ≈ 0, 23 ≈ 23% of its time

for the autonomous task. Furthermore, if the number of the services offered by each service
provider increases, the time for the autonomous task would also increase additionally.

The result above shows that SerumS still needs some improvements to be able to handle effi-
ciently a big number of service providers and services. These improvements may be achieved

7.2 Future Works 105

via technical or conceptional approaches. As technical approach one can implement an intelli-
gent search algorithm to search more efficiently the Web services in Internet. Listing 7.1 shows
an example how the conceptional approach is realised by specifying additional information in a
service provider profile.

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <prov:Provider xmlns:prov=”provider.profiles.templates”>

3
4 <prov:Contact>
5 <prov:Description>Samsung − South Korea</prov:Description>

6 <prov:Phone>012345678</prov:Phone>
7 <prov:Email>support@samsung.com</prov:Email>
8 <prov:Street>examples treet</prov:Street>
9 <prov:City>example city</prov:City>

10 <prov:Country>South Korea</prov:Country>

11 <prov:Continent>Asia</prov:Continent>
12 </prov:Contact>
13
14 <prov:Business>
15 <prov:Name>Samsung, Ltd.</prov:Name>
16 <prov:Description>

17 Provider Business Description XML
18 </prov:Description>

19 <prov:UNSPSCCategoryBag>10000000</prov:UNSPSCCategoryBag>

20 </prov:Business>
21
22 <prov:Service>
23 <prov:ServiceExpiryTime>2006−09−01</ServiceExpiryTime>
24 <prov:ServiceLimited>

25 <prov:ServiceLimitedID>

26 ff450ead12345678
27 </prov:ServiceLimitedID>

28 </prov:ServiceLimited>

29
30 <prov:ServiceValidTimeBeforeChange>
31 2006−11−31
32 </prov:ServiceValidTimeBeforeChange>
33
34 <prov:InputData>
35 <prov:InputDataName>customerID</prov:InputDataName>
36 <prov:InputDataType>stringType</prov:InputDataType>
37 </prov:InputData>
38 </prov:Service>
39
40 </prov:Provider>

Listing 7.1: Provider profile with “Not-changed” guarantee information

Within the element “<ServiceValidTimeBeforeChange>” in line 31 a service provider can specify
how long a service is valid without any change until the given date. This gives SerumS a guarantee
for the correctness and validity of the service, so that it does not need to check the service for
changes during this time. Assume, that 150 of 500 service providers mentioned in the previous
calculation specify this “Not-changed” guaranty information in all services for 2 months since
they have been published, the time for the autonomous task would decrease as the following
calculation shows:

350 · 20 · (1sec + 1sec) + 150 · 20 · 1sec + 5sec = 17005sec ≈ 283min

106 7. Conclusion and Future Works

With 60min · 24(hours) = 1440min per day, SerumS spends 283
1440min ≈ 0, 2 ≈ 20% of its time

for the autonomous task. Compared to the previous calculation (23% instead of 20% of the
time), this approach would save SerumS about 3% of the time needed for the autonomous task.
Dispite this approach, the load for the autonoumous task would be not bearable for a higher
number of service providers which have to be handled by SerumS. An additional improvement
is to parallelize some tasks which can be executed independently from each other. For example,
searching for new Web services in Internet can be executed parallel to checking for new Web
services and for changes of existing Web services at the service providers. One possible strategy
is to apply a second machine or CPU, which enables the parallelizing process.

This example demonstrates how a little change of the service provider profile can affect the
performance of SerumS in a positive way. Hence, future works should prefer conceptional im-
provements by adapting the XML data within the service provider profile for each use case. The
technical approach need to modify technical details of the system and lead to recompiling of the
source code, which is generally not recommended.

7.2.2 OWL-S Extension

One not cumbersome but meaningful enrichment which SerumS lacks is the capability to handle
OWL-S as Web service description language. OWL-S is still in an (early) evolution stage but be-
comes more and more relevant because it offers the service provider a set of semantical constructs
to describe its services in a better way. In the current architecture, a service provider sends a
WSDL document with the whole description of the Web service within one “publish()” request
to SerumS. However, an OWL-S-based Web service description consists of a set of documents
(see 4.1) which altogether form a complete description. A set of separate “publish()” requests
with appropriate SOAP messages (see 2.2) would cause traffic overhead and will result in bad
performance for the execution of the Web service process, what contradicts the original idea of
SerumS regarding efficient management and execution of the web service process. A possible
solution is the integration of all parts of an OWL-S description in one SOAP message which has
to be structured in a meaningful form so that SerumS can recognize and handle it in an efficient
way. However, OWL-S offers a customer more information about a Web service (see 4.1.1)

7.2.3 QoS extension

The Quality of Service (QoS) aspect of Web services is very relevant for their evaluation.
Currently SerumS combines the WSDL document and the provider profile to determine all
properties of the Web services, however, there is no possibility for the provider to specify
the QoS parameters to their services. Thus, if a customer wants to search for services with
certain QoS conditions, he will not get satisfactory information from SerumS. Hence an
extension of SerumS with the concept to give service providers a possibility to specify the
quality of their services will make SerumS work even more precisely and offer the customers
more satisfaction by giving them more information about the services and service providers
and making the search process more efficient. In order to build this feature into SerumS
there are independent “third parties” and an appropriate well-known QoS standard necessary.
A service provider has to order an independent “third party” to monitor and evaluate the
QoS of its Web services with certain criteria from the QoS standard before he publishes
them to SerumS with additional entries in the provider profile as illustrated in Listing 7.2.

7.2 Future Works 107

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <prov:Provider xmlns:prov=”provider.profiles.templates”
3 xmlns:qos=”http://www.qos.org/ws/schemas”>

4
5 ...
6
7 <prov:Service>
8 <prov:ServiceExpiryTime>2006−09−01</ServiceExpiryTime>
9 <prov:ServiceLimited>

10 <prov:ServiceLimitedID>

11 ff450ead12345678
12 </prov:ServiceLimitedID>

13 </prov:ServiceLimited>

14 <prov:InputData>
15 <prov:InputDataName>customerID</prov:InputDataName>
16 <prov:InputDataType>stringType</prov:InputDataType>
17 </prov:InputData>
18
19 </prov:QoS>

20 <qos:QoSOrganization>

21 <qos:QoSOrganizationName>
22 QoS Third Party Ltd
23 </qos:QoSOrganizationName>
24 <qos:QoSOrganizationDescription>

25 Some description of the organization
26 </qos:QoSOrganizationDescription>

27 <qos:QoSOrganizationContactDetails>
28 <qos:QoSOrganizationStreet>
29 ‘‘the postal street name’’
30 </qos:QoSOrganizationStreet>
31 </qos:QoSOrganizationContactDetails>
32 </qos:QoSOrganization>

33 <qos:QoSValues>
34 <qos:QoSNetworkBandwidth>

35 1GB/s
36 </qos:QoSNetworkBandwidth>

37 <qos:services>
38 <qos:service name=”getStockInformation”
39 ID=”ff001465CD”>

40 <qos:serviceResponseTime>
41 160ms
42 <qos:serviceResponseTime>
43 </qos:services>
44 </qos:QoSValues>
45 </prov:Qos>
46
47 ...
48
49 </prov:Service>
50 </prov:Provider>

Listing 7.2: Provider profile with QoS information

The example illustrates how QoS information can be integrated in the provider profile.

- We assume that a definition of the QoS standard exists under the URL
“http://www.qos.org/ws/schemas” (line 3) and we use its name space within the provider

108 7. Conclusion and Future Works

profile.

- The “<QoSOrganization>” element (line 20) contains general information about the indepen-
dent third party which evaluates the quality of the Web services.

- The independent third party gives information about the bandwidth of the network (line 34)

- The response time of the named service (interface) (line 40)

7.2.4 SLAs extension

Related to QoS are SLAs, which represent an important instrument for trading business contracts
between business partners.

“SLAs are contracts between service providers and customers that define the
services provided, the metrics associated with these services, acceptable and unac-
ceptable service levels, liabilities on the part of the service provider and the customer,
and actions to be taken in specific circumstances...”[41]

Actually SLAs use QoS parameters by including appropriate rules into them to create business
contracts which are negotiated between service provider and customer. Within the concept of
SerumS, SLAs can be placed in a provider profile to inform a service customer about certain busi-
ness agreements which have to be considered by using the affected services. The paper “A Logic
Based SLA Management Framework” [42] describes how SLAs can be presented in the XML
based rule based SLA language (RBSLA). Listing 7.3 shows an example of how RBSLA-based
SLAs can be integrated into a provider profile to give more information about the Web services.

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <prov:Provider xmlns:prov=”provider.profiles.templates”
3 xmlns:qos=http://www.qos.org/ws/schemas
4 xmlns:rbsla= http://ibis.in.tum.de/staff/paschke/docs/rbsla/>

5
6 <prov:Service>
7 <prov:ServiceExpiryTime>2006−09−01</ServiceExpiryTime>
8 <prov:ServiceLimited>

9 <prov:ServiceLimitedID>

10 ff450ead12345678
11 </prov:ServiceLimitedID>

12 </prov:ServiceLimited>

13 <prov:InputData>
14 <prov:InputDataName>
15 customerID
16 </prov:InputDataName>
17 <prov:InputDataType>
18 String
19 </prov:InputDataType>
20 </prov:InputData>
21
22 <prov:QoS>

23 ...
24 </prov:Qos>
25

7.2 Future Works 109

26 </prov:sla ServiceName=”getStockInformation”
27 ServiceID=”ff110024”>

28
29 <rbsla:Implies>
30 <rbsla:head>

31 <rbsla:Atom>

32 <rbsla:Rel>penalty</rbsla:Rel>
33 <rbsla:Var>Service</rbsla:Var>
34 <rbsla:Ind>100 Euro</rbsla:Ind>

35 </rbsla:Atom>

36 </rbsla:head>

37 <rbsla:body>

38 <rbsla:And>

39 <rbsla:formula>

40 <rbsla:Atom>

41 <rbsla:Rel>less</rbsla:Rel>
42 <rbsla:Cterm>

43 <rbsla:Ctor>
44 Availability
45 </rbsla:Ctor>
46 <rbsla:Var>
47 Service
48 </rbsla:Var>
49 </rbsla:Cterm>

50 <rbsla:Ind>

51 95%
52 </rbsla:Ind>

53 </rbsla:Atom>

54 </rbsla:formula>

55 </rbsla:And>

56 </rbsla:body>

57 </rbsla:Implies
58
59 </prov:sla>

60
61 </prov:Service>
62 </prov:Provider>

Listing 7.3: Example of RBSLA-based SLA within the provider profile

- The location of the RBSLA definition (line 4) whose name space is used in this provider profile.

- The name and (unique) identifier of the affected service which is bound to the SLA (line 26).

- Indication of penalty paid by the business party which can not fulfil a business liability (line
32).

- The description of the penalty condition (line 50).

The example shows the case what happens if the service “getStockInformation” is with 95%
unavailable. In this case the service provider must pay 100 Euro as penalty to the service
customer (line 34).

110 7. Conclusion and Future Works

Appendix A

Java-based construct for searching
Web services

1 .
2 .
3 .
4 // Setting how a UDDI has to handle the search result
5 FindQualifiers findQualifiers = new FindQualifiers();
6 Vector qualifier = new Vector();
7 qualifier.add(new FindQualifier(”sortByNameDesc”));
8 findQualifiers.setFindQualifierVector(qualifier);
9

10
11 //Define the service type which has to be searched
12 KeyedReference key = new KeyedReference();
13 key.setKeyName(”Internet related services”);
14 key.setKeyValue(”007406”);
15
16 Vector keyedReferenceVector = new Vector();
17 keyedReferenceVector.add(key);
18
19 CategoryBag bag = new CategoryBag();
20 bag.setKeyedReferenceVector(keyedReferenceVector);
21
22 //find all Web services with the specified ”service type”
23 ServiceList serviceList = (ServiceList) proxy.
24 find service(businessKey,
25 names, bag ,null,findQualifiers,5);
26
27 // Process the returned ServiceList object
28 Vector serviceInfoVector = serviceList.getServiceInfos().
29 getServiceInfoVector();
30 String serviceName = ””;
31 String serviceValue = ””;
32 for(int i = 0; i < serviceInfoVector.size(); i++)
33 {
34 ServiceInfo serviceInfo = (ServiceInfo)serviceInfoVector.
35 elementAt(i);
36
37 // Print name for each service
38 System.out.println(”Name of Service : ” + serviceInfo.
39 getDefaultNameString());

112 A. Java-based construct for searching Web services

40 //Print the service key
41 System.out.println(”Service key : ” + serviceInfo.
42 getServiceKey());
43
44 // Print out the OverviewURL which contains
45 the physical address of the
46 WSDL document of the service provider
47 System.out.println(”overviewURL of the BusinessService : ” +
48 getOverviewURL(serviceInfo));
49
50 }
51
52 String getOverviewURL(ServiceInfo serviceInfo){
53 Node overviewNode = (Node) serviceInfo.getChildElementsByTagName().
54 item(0);
55 return overviewNode.getChildren().toArray()[1].toString();
56 }

Appendix B

Structure of a WSDL document

1 <?xml version=”1.0”?>
2 [declarations of name spaces used in the document]
3 <definitions name=[name of the Web service definition]
4 [declarations of the data types used in the document]
5
6 <types>
7 ...
8 </types>
9

10 [declaration of the interface signatures
11 (which are used in <portType> elements]:
12
13 <message name=”...”>

14 <part name=”...” element=”...”/>

15 </message>)∗
16
17 [declarations of the call methods (”endpoint”),
18 which will be used in a ”<binding name>’’ element]:
19
20 <portType name=”a unique name”>

21 <operation name=”name of the call method”>

22 <input message=”name of the input call methode−signature”/>

23 <output message=” name of the out call methode−signature ”/>

24 </operation>

25 </portType>)+
26
27 [declarations of ”binding” elements which will be
28 used in ”service” elements]:
29
30 <binding name=”...” type=”...”>

31 <[binding−Protokoll]:binding style=”...”
32 transport=”transport−Protokoll
33 (e.g. http://schemas.xmlsoap.org/soap/http ”/>

34 <operation name=”...”>

35 <[binding−Protokoll]:operation
36 [binding−Protokoll]Action=”...”/>

37 <input>
38 ...
39 </input>
40 <output>
41 ...
42 </output>

114 B. Structure of a WSDL document

43 </operation>

44 </binding>
45
46 </definitions>

Appendix C

WSDL document example

1
2 <?xml version=”1.0”?>
3 <definitions name=”StockQuote”
4 targetNamespace=http://example.com/stockquote.wsdl
5 xmlns:tns=”http://example.com/stockquote.wsdl”
6 xmlns:xsd1=”http://example.com/stockquote.xsd”
7 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
8 xmlns=”http://schemas.xmlsoap.org/wsdl/”>

9
10 <types>
11 <schema targetNamespace=”http://example.com/stockquote.xsd”
12 xmlns=”http://www.w3.org/2001/XMLSchema ”>

13 <element name=”TradePriceRequest”>

14 <complexType>
15 <all>
16 <element name=”tickerSymbol” type=”string”/>

17 </all>
18 </complexType>
19 </element>
20 <element name=”TradePrice”>

21 <complexType>
22 <all>
23 <element name=”price” type=”float”/>

24 </all>
25 </complexType>
26 </element>
27 </schema>

28 </types>
29
30 <message name=”GetLastTradePriceInput”>

31 <part name=”body” element=”xsd1:TradePriceRequest”/>

32 </message>
33
34 <message name=”GetLastTradePriceOutput”>

35 <part name=”body” element=”xsd1:TradePrice”/>

36 </message>
37
38 <portType name=”StockQuotePortType”>

39 <operation name=”GetLastTradePrice”>

40 <input message=”tns:GetLastTradePriceInput”/>

41 <output message=”tns:GetLastTradePriceOutput”/>

42 </operation>

116 C. WSDL document example

43 </portType>
44
45 <binding name=”StockQuoteSoapBinding”
46 type=”tns:StockQuotePortType”>

47 <soap:binding style=”document”
48 transport=”http://schemas.xmlsoap.org/soap/http”/>

49 <operation name=”GetLastTradePrice”>

50 <soap:operation
51 soapAction=”http://example.com/GetLastTradePrice”/>

52 <input>
53 <soap:body use=”literal”
54 namespace=”http://example.com/stockquote.xsd
55 encodingStyle=
56 ”http://schemas.xmlsoap.org/soap/encoding/”/>

57 </input>
58 <output>
59 <soap:body use=”literal”
60 namespace=”http://example.com/stockquote.xsd”
61 encodingStyle=
62 ”http://schemas.xmlsoap.org/soap/encoding/”/>

63 </output>
64 </operation>

65 </binding>

66
67 <service name=”StockQuoteService”>

68 <port name=”StockQuotePortType”
69 binding=”tns:StockQuoteSoapBinding”>

70 <soap:address location=”http://soap.example.com”/>

71 </port>
72 </service>
73
74 </definitions>

Appendix D

GLUE Java-Class based WS objects
of the “PeerChainApplication”

1 public class PeerChainServiceImpl
2 implements PeerChainService {
3 private PeerChainApplication app; // reference to application
4 public static String publish(PeerChainApplication app,
5 int port)
6 throws RegistryException {
7 PeerChainServiceImpl svc = new PeerChainServiceImpl(app);
8 Registry.publish(app.PEER CHAIN SVC URN, svc);
9 // publish web service

10 return Registry.getPath(svc); // return web service URL
11 }
12 public void chainPeers(List peers) {
13 new Thread(new ChainPeers(peers)).start();
14 }
15 public void chainCompleted(List peers) {
16 new Thread(new ChainCompleted(peers)).start();
17 }
18 class ChainPeers implements Runnable {
19 ...
20 public void run() {
21 // find an unchained peer, else callback chainCompleted
22 peers.add(app.getWSDLUrl());
23 // add ourselves to the chain list
24 Set known = app.getKnownPeers();
25 List unchained = new ArrayList(known);
26 // create copy of known peers first
27 unchained.removeAll(peers);
28 // get set of known that are unchained
29 while (true) {
30 // attempt to reach one other peer
31 // until no other or success
32 if (unchained.isEmpty()) { // if no peers left to call
33 chainCompleted(peers);
34 // start chain completed callback
35 break; // finished
36 } else { // pick a random peer url
37 String url = (String)unchained.get(
38 app.randomInt(unchained.size()));
39 PeerChainService svc =

118 D. GLUE Java-Class based WS objects of the “PeerChainApplication”

40 (PeerChainService)Registry.bind(url,
41 PeerChainService.class); // bind to web service
42 svc.chainPeers(peers);
43 // invoke chainPeers web service on peer
44 break; // finished
45 }
46 }
47 }
48 }
49
50 class ChainCompleted implements Runnable {
51 ...
52 public void run() {
53 // inform peer up the chain that the chain is complete
54 int mypos = peers.indexOf(app.getWSDLUrl());
55 // find this peer position

56 for (int i = mypos; i >= 0; iÑ) {
57 // attempt call up the chain
58 if (i > 0) { // this is not the last peer in the chain
59 String url = (String)peers.get(i − 1);
60 // get peer up the chain
61 PeerChainService svc =
62 (PeerChainService)Registry.bind(url,
63 PeerChainService.class); // bind to web service
64 svc.chainCompleted(peers);
65 // invoke chainCompleted on peer
66 break; // finished
67 } else if (i == 0) {
68 // we are the last peer to take the list
69 System.out.println(
70 ”in : peer chain completed at position ” + mypos);
71 }
72 }
73 }
74 }
75 }

Appendix E

Service customer profile XML
schema

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema
3 xmlns:wstop=”customer.profiles.templates”
4 targetNamespace=”customer.profiles.templates”
5 elementFormDefault=”qualified” attributeFormDefault=”unqualified”>

6
7 <xs:element name=”Customer”>

8 <xs:complexType>
9 <xs:sequence>

10 <xs:element ref=”wstop:Contact” minOccurs=”0”
11 maxOccurs=”1”/>

12 <xs:element ref=”wstop:Policy” minOccurs=”0”
13 maxOccurs=”1”/>

14 <xs:element ref=”wstop:Service” minOccurs=”0”
15 maxOccurs=”1”/>

16 </xs:sequence>
17 </xs:complexType>
18 </xs:element>
19
20 <xs:element name=”Contact”>

21 <xs:complexType>
22 <xs:sequence>
23 <xs:element name=”CustomerUUID”
24 type=”xs:string”></xs:element>
25 <xs:element name=”Description” type=”xs:string”
26 minOccurs=”0” maxOccurs=”1”/>

27 <xs:element name=”Phone” type=”xs:string” minOccurs=”0”
28 maxOccurs=”1”/>

29 <xs:element name=”Email” type=”xs:string” minOccurs=”0”
30 maxOccurs=”1”/>

31 <xs:element name=”Street” type=”xs:string” minOccurs=”0”
32 maxOccurs=”1”/>

33 <xs:element name=”City” type=”xs:string” minOccurs=”0”
34 maxOccurs=”1”/>

35 <xs:element name=”Country” type=”xs:string” minOccurs=”0”
36 maxOccurs=”1”/>

37 </xs:sequence>
38 </xs:complexType>
39 </xs:element>

120 E. Service customer profile XML schema

40
41 <xs:element name=”Policy”>

42 <xs:complexType>
43 <xs:sequence>
44 <xs:element name=”MustHaveContact” type=”xs:boolean”
45 minOccurs=”0” maxOccurs=”1”/>

46 <xs:element name=”ValidedByServer” type=”xs:boolean”
47 minOccurs=”0” maxOccurs=”1”/>

48 <xs:element ref=”wstop:Ex−Providers” minOccurs=”0”
49 maxOccurs=”1”/>

50 <xs:element ref=”wstop:Service” minOccurs=”0”
51 maxOccurs=”1”/>

52 </xs:sequence>
53 </xs:complexType>
54 </xs:element>
55
56 <xs:element name=”Ex−Providers”>

57 <xs:complexType>
58 <xs:sequence>
59 <xs:element name=”Ex−Continents” type=”xs:string”
60 minOccurs=”0” maxOccurs=”1”/>

61 <xs:element name=”Ex−Countries” type=”xs:string”
62 minOccurs=”0” maxOccurs=”1”/>

63 </xs:sequence>
64 </xs:complexType>
65 </xs:element>
66
67 <xs:element name=”Service”>

68 <xs:complexType>
69 <xs:sequence>
70 <xs:element name=”Binding−Types” type=”xs:string”
71 minOccurs=”0” maxOccurs=”1”/>

72 <xs:element name=”CategoryBags” type=”xs:string”
73 minOccurs=”0” maxOccurs=”1”/>

74 </xs:sequence>
75 </xs:complexType>
76 </xs:element>
77
78 </xs:schema>

Appendix F

Service provider profile XML schema

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
3 xmlns:wstop=”provider.profiles.templates”
4 targetNamespace=”provider.profiles.templates”
5 elementFormDefault=”qualified” attributeFormDefault=”unqualified”>

6
7 <xs:element name=”Provider”>

8 <xs:complexType>
9 <xs:sequence>

10 <xs:element ref=”wstop:Contact” minOccurs=”0”
11 maxOccurs=”1”/>

12 <xs:element ref=”wstop:Business” minOccurs=”0”
13 maxOccurs=”1”/>

14 </xs:sequence>
15 </xs:complexType>
16 </xs:element>
17
18 <xs:element name=”Contact”>

19 <xs:complexType>
20 <xs:sequence>
21 <xs:element name=”Description” type=”xs:string”
22 minOccurs=”0” maxOccurs=”1”/>

23 <xs:element name=”Phone” type=”xs:string” minOccurs=”0”
24 maxOccurs=”1”/>

25 <xs:element name=”Email” type=”xs:string” minOccurs=”0”
26 maxOccurs=”1”/>

27 <xs:element name=”Street” type=”xs:string” minOccurs=”0”
28 maxOccurs=”1”/>

29 <xs:element name=”City” type=”xs:string” minOccurs=”0”
30 maxOccurs=”1”/>

31 <xs:element name=”Country” type=”xs:string” minOccurs=”0”
32 maxOccurs=”1”/>

33 </xs:sequence>
34 </xs:complexType>
35 </xs:element>
36
37 <xs:element name=”Business”>

38 <xs:complexType>
39 <xs:sequence>
40 <xs:element name=”Name” type=”xs:string” minOccurs=”0”
41 maxOccurs=”1”/>

42 <xs:element name=”Description” type=”xs:string”

122 F. Service provider profile XML schema

43 minOccurs=”0” maxOccurs=”1”/>

44 <xs:element name=”UNSPSCCategoryBag” type=”xs:string”
45 minOccurs=”1” maxOccurs=”1”/>

46 </xs:sequence>
47 </xs:complexType>
48 </xs:element>x
49
50 </xs:schema>

Bibliography

[1] M. Tian, A. Gramm, H. Ritter, J.Schiller, R. Winter: A Survey of current Approaches
towards Specification and Management of Quality of Service for Web Services, PIK (Praxis
der Informationsverwaltung und Kommunikation) 3/04, 27. Vol. 2004, page 133

[2] Steve Graham, IBM, Peter Niblett, IBM, Dave Chappell, Sonic Software, Amy Lewis,
TIBCO Software, Nataraj Nagaratnam, IBM, Jay Parikh, Akamai Technologies, Sanjay
Patil, SAP AG, Shivajee Samdarshi, TIBCO Software, Igor Sedukhin, Computer Asso-
ciates International, David Snelling, Fujitsu Laboratories of Europe, Steve Tuecke, Globus
/ Argonne National Laboratory, William Vambenepe, Hewlett-Packard, Bill Weihl, Akamai
Technologies: Publish-Subscribe Notification for Web services, Version 1.0, 03/05/2004
http://www.oasis-open.org/committees/download.php/6661/WSNpubsub-1-0.pdf

[3] Matt Reynolds: Web Services 101, What are Web Services?
http://www.webservicesarchitect.com/content/articles/reynolds01.asp

[4] Ed Ort: Sun Developer Network (SDN), Products and Technologies, Technical Topics,
October 3, 2005
http://java.sun.com/developer/technicalArticles/WebServices/soa2/WhatsNewArticle.html

[5] Wolfgang Dostal, IBM Deutschland GmbH: Service-oriented Architecture powered by Se-
mantic - Vision oder Illusion, December 12 2004
http://xml.fh-augsburg.de/xml-ak/2004-12-09/

[6] Kishore Channabasavaiah, Kerrie Holley, Edward Tuggle, Jr. : Migrating to a service-
oriented architecture, Part 1, 16 Dec 2003
http://www-128.ibm.com/developerworks/library/ws-migratesoa/

[7] Wolfgang Dostal, Mario Jeckle, Info Melzer, Barbara Zengler: Semantic Web, JavaSPEK-
TRUM 5/2004, pp. 34

[8] Daniel Austin, W. W. Grainger, Inc., Abbie Barbir, Nortel networks, Inc., Christopher
Ferris, IBM, Sharad Gard, The Intel Corporation: Web Services Architecture Requirements,
W3C Working Group Note 11 Februar 2004
http://www.w3.org/TR/2002/WD-wsa-reqs-20021011#IDAGWEBD

[9] Heather Kreger, IBM Software Group: Web Services Conceptual Architecture, (WSCA 1.0),
May 2001
http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

[10] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems: Business Process Execution Lan-
guage for Web Services version 1.1, 30 Jul 2003 updated 01 Feb 2005
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

124 BIBLIOGRAPHY

[11] Erik Christensen, Microsoft, Francisco Curbera, IBM Research, Greg Meredith, Microsoft,
Sanjiva Weerawarana, IBM Research: Web Services Description Language (WSDL) 1.1,
W3C Note 15 March 2001
http://www.w3.org/TR/wsdl

[12] www.amazon.com: Amazon E-Commerce service
http://www.amazon.com/gp/browse.html/ref=sc fe l 2/104-9177053-
1734311?%5Fencoding=UTF8&node=12738641 &no=14256891&me=A36L942TSJ2AJA

[13] SAP UDDI v3 Test Public Registry, Universal Description, Discovery and Integration
(UDDI)
http://udditest.sap.com

[14] W3C: XML Schema, 12 September 2005
http://www.w3.org/2001/XMLSchema

[15] Peter Brittenham, Francisco Cubera, Dave Ehnebuske, Steve Graham: Understanding
WSDL in a UDDI registry, Part 1, How to publish and find WSDL service descriptions, 01
Sep 2001
http://www-128.ibm.com/developerworks/webservices/library/ws-wsdl/

[16] John Colgrave (IBM), Karsten Januszewski (Microsoft), Francisco Curberea (IBM), David
Ehnebuske (IBM), Dan Rogers (Microsoft): Using WSDL in a UDDI Registry, Version 1.08
http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-
v108-20021110.htm

[17] Mike Clark: UDDI - The Weather Report, The Outlook is mixed, November 28 2001
http://www.webservicesarchitect.com/content/articles/clark04.asp

[18] Shuping Ran: A Model for Web Services Discovery With QoS, ACM SIGecom Exchanges,
Vol. 4, No. 1, 2003, page 2

[19] Romin Irani: Versioning of Web Services, Solving the Problem of Maintenance, August 8
2001
http://www.webservicesarchitect.com/content/articles/irani04.asp

[20] David Martin: OWL-S: Semantic Markup for Web Services, 24 Juli 2004
http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html

[21] OWL-S: OWL-S 1.1 Release
http://www.daml.org/services/owl-s/1.1/

[22] Specification: Web Services Inspection Language (WS-Inspection) 1.0, November 2001
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

[23] Timothy Appnel: An Introduction to WSIL, 10/16/2002
http://www.onjava.com/pub/a/onjava/2002/10/16/wsil.html

[24] Tarak Modi: WSIL: Do we need another Web Services Specification?, Explaining the dif-
ference between UDDI, January 16 2002
http://www.webservicesarchitect.com/content/articles/modi01print.asp

[25] Timothy Appnel: Antroduction to WSIL 10/16/2002
http://www.onjava.com/pub/a/onjava/2002/10/16/wsil.html

BIBLIOGRAPHY 125

[26] Microsoft Windows Server 2003, Enterprise UDDI Services: An Introduction to Evaluating,
Planning, Deploying, and Operating UDDI Services, Microsoft Corporation, Published:
February 21, 2003
http://www.microsoft.com/windowsserver2003/techinfo/overview/uddiguide.mspx

[27] Sun Microsystems Inc, The Internet Society
http://www.jxta.org/

[28] Wikipedia: Peer-to-peer, 8 September 2006
http://en.wikipedia.org/wiki/P2p

[29] Mario Schlosser, Michael Sintek, Stefan Decter, Wolfgang Nejdl, Standford University: A
Scalable and Ontology-Based P2P Infrastructure for Semantic Web Services
http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2002/P2P2002.pdf

[30] Web Service Toolkit GLUE:
http://www.webmethods.com

[31] Ludwig Mittermeier, Roy Oberhauser: Peer to Pee in Theorie und Praxis, Teil 2: Ad-hoc-
Web-Services durch P2P-Technologien, JavaSpektrum 4/2002
http://www.sigs.de/publications/js/2002/04/Mittermeier JS 04 02.pdf

[32] Dominik Dahlem, David McKitterick, Lotte Nickel, Jim Dowling, Bartosz Biskupski, René
Meier: Binding- and Port-Agnostic Service Composition using a P2P SOA, December 1,
2005
https://www.cs.tcd.ie/publications/tech-reports/reports.06/TCD-CS-2006-13.pdf

[33] Jun Shen, Yun Yang, Quang Huy Vu: SwinDeW-B: A P2P Based Compos-
ite Service Execution System with BPEL, pages 73-84, December 1, 2005
http://domino.research.ibm.com/library/cyberdig.nsf/papers/
AABDCCBCB8F787DD852570D000570430/$File/rc23822.pdf

[34] Sun Microsystems Inc, The Internet Society: JXTA v.20 Protocols Specification,
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html

[35] Sun Microsystems Inc, The Internet Society: JXTA v.20 Protocols Specification, Section
2.2
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html

[36] Gunjan Samtani and Dimple Sadhwani: Web Services and Peer-to-Peer Computing, Com-
panion Technologies
http://www.webservicesarchitect.com/content/articles/samtani05print.asp

[37] Jochen Dinger, Hannes Hartenstein: Die vermeintliche Robustheit von Peer-to-Peer Netzen
http://dsn.tm.uni-karlsruhe.de/english/print/397.php

[38] Jochen Dinger, Hannes Hartenstein: Defending the Sybil Attack in P2P Networks: Taxon-
omy, Challenges, and a Proposal for Self-Registration von Peer-to-Peer Netzen
http://dsn.tm.uni-karlsruhe.de/english/print/397.php

[39] The United Nations Standard Products and Service Code:
http://www.unspsc.org/

126 BIBLIOGRAPHY

[40] Eike Jessen, Rüdiger Valk: Rechensysteme, Grundlagen der Modellierung, Springer-Verlag
1987, pages 362-391
http://www.unspsc.org/

[41] http://www.iec.org/, Service-Level Management, Definition and Overview
http://www.iec.org/online/tutorials/service level/

[42] Adrian Paschke, Jens Dietrich, Karsten Kuhla: A Logic Based SLA Management Frame-
work, 2005
http://ibis.in.tum.de/staff/paschke/docs/ISWC05 Paschke final.pdf

[43] Universal Unique Identifier:
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

