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Abstract

In this thesis the Transmission Line Matrix — Multipole Expansion method
(TLMME) is presented. The TLMME method allows an efficient and po-
tentially exact modeling of radiating electromagnetic structures. In the
TLMME the time-domain Transmission Line Matrix (TLM) method is
combined with the multipole expansion (ME) method of the radiated field.

The total radiated field is decomposed into orthonormal radiation modes
which are connected to the TLM simulation domain on a common spheri-
cal boundary. In a global network model the simulation domain is modeled
by the TLM mesh of transmission lines, every impedance of theradiation
mode is modeled by a ladder network one port and the connection of these
partial networks is accomplished by a connection subnetwork consisting
of ideal transformers. This allows to include potentially exact radiating
boundary condition into the TLM model by lumped element equivalent
circuits representing the impedances of radiation modes.
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1 Introduction and Overview

We live in time where the demand for electronic devices, electronic instru-
ments, electronic systems and electronic information processing devices is
booming. Not only became these devices indispensable toolsin everyday
life but our society became dependent on them. To name just a few exam-
ples: it is “impossible” to imagine air traffic control without radio commu-
nication, medical surgery without an electrocardiograph (ECG), informa-
tion processing without an electronic computer or information spreading
without the Internet.

The underlying fabric of all these devices and systems are electric charges
and with them associated electromagnetic fields. It is thus no wonder that
there is a high demand for tools which let us better understand, optimize,
design and synthesize electronic devices and systems. Numerical methods
for electromagnetics are such tools. With them we obtain an approximative
solution of the electromagnetic equations.

The physical model of electromagnetic phenomena has been completed
by James Clerk Maxwell in the year 1865 in his paper “A Dynamical The-
ory of the Electromagnetic Field”. The four electromagnetic equations are
called in honour of Maxwell’s work Maxwell’s equations. In his work
Maxwell has introduced the displacement currentJD,

JD =
∂D
∂t

as a temporal rate of change of the electric flux densityD. The displace-
ment current has established a coupling between the electric and the mag-
netic field.

However, even if the theory of electromagnetism is 142 yearsold now1,

1In 2007.
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1 Introduction and Overview

the solutions of the equations of electromagnetic field can be found ana-
lytically for a very limited set of problems. Actually, mostof technically
interesting problems do not have an analytic solution, or wedo not know
how to find it. In these cases we seek for an approximate solution using
numerical methods.

Numerical methods and approximate solutions of electromagnetic equa-
tions have been gaining substantially on importance since about 40 years.
The developments of powerful electronic computers in the last years have
made it possible to solve numerically large problems at low cost. Today,
full-wave2 solutions of many technically interesting problems can be ob-
tained using a personal computer (PC).

Special care must be taken if open radiating electromagnetic structures
are to be characterized with a volumetric discretization method (more on
the classification of numerical methods can be found in Section 1.2). This
is so, because the computational resources are limited and we can create a
numerical model for only a relatively small vicinity of the physical struc-
ture. The radiating properties are to be modeled by appropriate boundary
conditions.

Numerical modeling of radiating boundary condition for theTransmission
Line Matrix method is the focus of this thesis.

1.1 The Big Picture

In this thesis the Transmission Line Matrix (TLM) method is the numeri-
cal method of choice for one part of the spatial domain. Another part of
the spatial domain is represented by multipole expansion (ME) technique.
The two methods are combined using network oriented approach which is
discussed in [1]. The matching of the electromagnetic field represented by
TLM and ME can be seen as a mode matching technique.

The TLM method, as considered here, is a numerical time-domain tech-
nique which has been used since its introduction by Johns andBeurle [2]
in 1971 to solve various problems in electromagnetic engineering [3]. In

2Full-wave solution is a solution for both, the electric and magnetic field, in space and time.
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1.1 The Big Picture

TLM the field is discretized in space and time and modeled by wave pulses
propagating and being scattered in a mesh of transmission lines. When
radiating electromagnetic structures are modeled the appropriate radiating
boundary conditions at the boundary of the computational domain need to
be included in the computation. In the literature methods torealize absorb-
ing boundary conditions (ABCs) are discussed [4], [5], [6],[7], [8], [9].
These methods give approximate solutions of the problem by attenuating
the radiating electromagnetic field, possibly without spurious reflections
from the boundaries of the simulation domain.

On the other hand, the hybrid Transmision Line Matrix – Multipole Ex-
pansion (TLMME) method, which is described in this text, yields a po-
tentially exact solution for general radiating electromagnetic structures in
homogeneous media. In contrast to the ABC approach, the TLMME mod-
els the complete radiated field.

In this hybrid method the problem space is divided in two subspaces
R1 andR2 connected at a common boundaryS – see also Figure 1.1.
SubspaceR1 represents the TLM region where the discretized structure
and the sources are modeled and subspaceR2 represents the homogeneous
background space where the radiating electromagnetic fieldis represented
in terms of ME.

The connection between subspacesR1 andR2 is established from its
network representation. The connection network, which connects subspace
R1 andR2 and contains only ideal transformers [10], [1], is connected to
lumped element equivalent circuits representing impedances of radiation
modes.

The basis one-forms [11] of the ME are orthogonal and form a com-
plete set. A compact lumped element LC ladder network representing the
coupling between the electric and magnetic field intensities may be estab-
lished [10].

In the TLM method the spherical boundary is approximated by cubi-
cal TLM cells. The connection of the outer faces of the TLM cells on
the spherical boundary to the spherical modes is modeled by aconnection
subnetwork.

3
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Figure 1.1: Left: schematic representation of the divisionof the unbounded
space in subspacesR1 andR2 with the boundaryS . Right:
schematic representation of the global network model of the
TLMME simulation.

1.2 Numerical Solutions of Maxwell’s
Equations

In this Section a brief classification of main numerical methods used for
solving the electromagnetic equations is given and the reason for the trun-
cation of the simulation domain is shown.

For the numerical solution of Maxwell’s equations various techniques
have been proposed and new are still coming. We can distinguish be-
tween time-domain and frequency-domain techniques. Another possibil-
ity is to distinguish between volumetric discretization methods and surface
discretization methods (see Figure 1.2). Volumetric discretization meth-
ods lead to finite-difference formulations, whereas surface discretization
methods to integral equation formulations.

As we can see, there is a vast number of numerical methods one can
use to solve the electromagnetic problem. However, not every method is
suitable for a particular problem. A hybrid approach is an attractive way
how to combine the power of different methods.
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1 Introduction and Overview

Truncated simulation domains

Since the computational resources of today’s computers arevery limited, it
is impossible to discretize large volumes of space. The limits up to which
we are able to solve a problem are set by

• memory requirements,

• time needed to process the information.

To get a better feeling for what are the memory requirements to solve
an electromagnetic problem, let us take a look at the following example.
There is given a structure assumed to be perfect electric conductor (PEC)
in air and we wish to compute the scattered electromagnetic field. A three-
dimensional computational domain of 2000× 2000× 2000 TLM cells re-
quires 3072000000000 bits3 to hold the information about the electro-
magnetic field. This amount of information means

2000×2000×2000×12×32
1024×1024×1024×8

= 357.63GB of memory.

Increasing the spatial resolution just twice in every direction results in eight
times larger memory requirements. For the particular example, 2861GB of
memory would be needed.

Consider that the human genome needs 70000000 bits to hold its infor-
mation. The previous example needs more than 40000 times more. Fur-
thermore, the time needed to process this amount of information is inverse
proportional to the speed of information processing.

This example shows the reasons why we are not able to discretize very
large structures. Consequently, the computational regionmust be truncated
to finite, relatively small region around the physical structure. At the outer
boundaries of this computational region special boundary conditions need
to be applied.

3For the modeling of free-space we need 12 variables per TLM cell. We assume a TLM
variable to be represented by a 32 bit floating point number.
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1.3 Organization of the Thesis

For radiating structures the special boundary condition iscalledradiat-
ing boundary condition; for periodic structuresperiodic boundary condi-
tion is used; for resonating structures assumed to be inside a perfect elec-
tric conducting boxPEC boundaryconditions are applied; the dual perfect
conducting magnetic wallsPMC boundary conditionsare used usually to
impose symmetry conditions.

Of the mentioned boundary conditions the radiating boundary condi-
tions are the most difficult ones to be realized numerically.

1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2 the Transmission Line
Matrix (TLM) method is described in detail. The principles of the method
are shown from the point of view of statistical mechanics andthe relation
of the TLM scattering matrix to Maxwell’s equations is expressed in terms
of discrete differential forms. A way of modeling discrete sources suitable
for the modeling of excitation of antenna structures is presented.

Chapter 3 is devoted to the multipole expansion (ME) method.The radi-
ation modes and their canonical circuit realizations are described in detail.

Chapter 4 discusses the connection between the TLM domain and the
outer domain represented in terms of ME. The fundamental Tellegen’s the-
orem is described and the scattering matrix of the connection subnetwork
is derived.

The hybridization of the TLM method and the ME method is presented
in Chapter 5. First, the spherical TLM domain needed for the TLMME
method is described in detail. Next, the pre-processing related tasks are
discussed. The generation of the connection matrix and the realization of
the canonical equivalent circuits of the radiation modes using wave digital
filters (WDFs) are shown. The Chapter is concluded with the description
of the TLMME algorithm.

Chapter 6 presents examples of electromagnetic solutions to antenna
structures using the TLMME method and shows the validity, accuracy and
new features of the method.

7



1 Introduction and Overview

Finally, the conclusions of the thesis are presented in Chapter 7. Useful
formulas, relations and operations are listed in Appendix A.

8



2 Transmission Line Matrix
(TLM) Method

2.1 Principles of TLM

The Transmission Line Matrix (TLM) method is a discrete model, in space
and time, of the electromagnetic phenomena.

The TLM method has been introduced by Johns in 1974 as a two di-
mensional method [12] and extended in 1987 for three dimensions with
the development of symmetrical condensed node [13]. Since then there
have been many attempts to derive the method directly from Maxwell’s
equations, and so to prove the validity of the method [14], [15], [16], [17],
[18], [19].

The way from the continuous model to the discrete one is the standard
way used to derive finite difference time domain (FDTD) method, finite
integral technique (FIT) and other methods. Also, discretedifferential cal-
culus follows this way.

On the other hand, as Toffoli suggests (see [20] and [21]), the other way
around, i.e., from a discrete model to the continuous one, ismuch more ap-
propriate, if we want to develop intrinsically discrete models of nature. The
argument, why we should do this, is supported by the rapid development
of digital technologies and consequent information processing facilities.
These make it possible to have new ways of describing the nature.

It is difficult, however, to cope with the idea of giving up the powerful
techniques and models developed during the last 300 years represented by
means of differential equations. The models have, however, their limitsand
most of technically interesting phenomena can not be solvedby analytical
techniques directly. But we do not want to give them up. We want to de-

9



2 Transmission Line Matrix (TLM) Method

velop alternative intrinsically discrete models of natural phenomena which
will behave, under specific circumstances, like the analytical models.

The idea of a transition from a discrete description to a continuous one
is well-known in statistical mechanics. In Section 2.2 we will see how the
one-dimensional, two-dimensional and three-dimensionaldiffusion equa-
tions and the one-dimensional wave equation are obtained ascontinuum
limits of intrinsically discrete models.

The TLM method can be seen in a broader view as a cellular automa-
ton (CA). The notion of cellular automata has been first explored by John
von Neumann. Cellular automata consist of independent computing units,
which exchange their values with neighboring units and, accordingly, change
their state. A cellular automaton has intrinsically parallel nature1.

Usually, CA are considered to contain only discrete variables as their
states. The Coupled Map Lattices (CML) [22] are computational models
where the internal state of each cell is represented in termsof continuous
variables, but space and time remain discrete. The computational mecha-
nism of CML are identical with those of CA. Thus, the difference between
CA and CML is in the representation of the state of a cell by a discrete or
continuous variable, respectively2.

The state of a TLM cell can be described by a vector of wave quantities.
The transformation from one state to another – the computation of one cell
– is represented by a scattering process. So, if the information about the
state before scattering is stored in a vectora and the result of the scattering
– computation – in a vectorb, we may express the computation process of
a TLM cell as

b = Sa, (2.1)

whereS is the scattering matrix. The scattering matrix defines the compu-
tation performed by a cell.

In a consequent step the information between neighboring cells is ex-
changed and the process starts from the beginning (more detailed descrip-

1With the introduction of multicore processors parallelismis gaining on importance more
than ever.

2CML models have been used recently to implement physically-based visual simulations
for real-time visual simulations [23].
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2.2 Statistical Mechanics, Diffusion Equation, and TLM

tion of TLM iteration is given later in Section 5.3). This algorithm is equal
to the algorithm of a cellular automaton using continuous state variables.
In Section 2.3 it is shown how the TLM scattering matrices of two- and
three-dimensional free-space TLM nodes can be obtained using discrete
differential forms.

2.2 Statistical Mechanics, Diffusion Equation,
and TLM

2.2.1 One-dimensional diffusion equation

In this Section it is shown how the behaviour of a discrete system in its
continuum limit is investigated. In the text I follow the description and I
use the same notation as in [24] (pp.15–20).

The one-dimensional diffusion equation is obtained as a continuum limit
of one-dimensional uncorrelated random walk. A random walkis a process
in which a particle moves a distance|±∆x| in time∆t. The direction of the
movement, i.e., in the positive or negativex-direction, is random. Both
cases occur with the same probability.

We can describe the random walk by a probability distribution function
χ(x) defined for the particular case of one-dimension as

χ(x) =
1
2
δ(x−∆x)+

1
2
δ(x+∆x), (2.2)

whereδ(x) is the Dirac delta function. The first three moments ofχ(x) are
∫

χ(x) dx= 1, (2.3a)
∫

xχ(x) dx= 0, (2.3b)
∫

x2χ(x) dx= (∆x)2. (2.3c)

We see from (2.3) that the mean value ofχ(x) is zero and that the standard
deviation is∆x.

11



2 Transmission Line Matrix (TLM) Method

The one-dimensional diffusion equation is given by the equation

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)

∂x2
, (2.4)

whereD is the diffusion coefficient. The diffusion equation describes the
evolution of the density functionρ(x, t).

The density functionρ(x, t) can be interpreted differently for a one par-
ticle system and a many particle system. For a one particle system the
density function describes the evolution of the probability density for lo-
cating the particle at positionx at time t. For many particle system the
density function describes the density of diffunding particles (mass).

If we know the probability densityρ(x, t) at a particular timet, its evolu-
tion at timet+∆t can be written with (2.2) as

ρ(x, t+∆t) =
∫

χ(x− x′)ρ(x′, t) dx′ =
∫

χ(z)ρ(x−z, t) dz, (2.5)

with z= x− x′. Taking the Taylor expansion ofρ(x−z, t) aroundx we can
write (2.5) as

ρ(x, t+∆t) =
∫

χ(z)

[

ρ(x, t)−z
∂ρ(x, t)
∂x

+
z2

2
∂2ρ(x, t)

∂x2
+ . . .

]

dz. (2.6)

Using only the first three terms of the Taylor expansion in (2.6) we obtain
with (2.3) the approximative expression

ρ(x, t+∆t) ≈ ρ(x, t)+
(∆x)2

2
∂2ρ(x, t)

∂x2
. (2.7)

Reorganizing (2.7) and dividing both sides by∆t we obtain the approxima-
tive equation

1
∆t

(

ρ(x, t+∆t)−ρ(x, t)
)

≈ (∆x)2

2∆t
∂2ρ(x, t)

∂x2
. (2.8)

In the continuum limit this equation becomes the diffusion equation (2.4)
with the diffusion coefficientD given by

D =
(∆x)2

2∆t
. (2.9)

12



2.2 Statistical Mechanics, Diffusion Equation, and TLM

The random walk can be implemented numerically by an algorithm sim-
ilar to the TLM algorithm (the CA algorithm). From (2.2) we know that
if a particle arrives at timet at a nodexm, there is equal probability that at
time t+∆t this particle will be either at the nodexm−1 or at the nodexm+1.
The scattering matrix

S=
1
2

[

1 1
1 1

]

(2.10)

models then the one-dimensional diffusion equation.

2.2.2 Two- and three-dimensional diffusion equation

In a similar way to the previous Section we may derive the two-dimensional
diffusion equation given by

∂ρ(x,y, t)
∂t

= D

(

∂2ρ(x,y, t)

∂x2
+
∂2ρ(x,y, t)

∂y2

)

. (2.11)

The probability distribution for the two-dimensional random walk takes
the form

χ(x,y) =
1
4
δ(x−∆x,y)+

1
4
δ(x+∆x,y)+

1
4
δ(x,y−∆y)+

1
4
δ(x,y+∆y).

(2.12)
Using the two-dimensional Taylor expansion (see Appendix A, Equation
(A.18)) it is possible to show that the two-dimensional random walk in its
continuum limit corresponds to the two-dimensional diffusion equation.

Similarly to the one-dimensional case, the scattering matrix

S=
1
4





























1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1





























(2.13)
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2 Transmission Line Matrix (TLM) Method

models the two-dimensional diffusion equation and the scattering matrix

S=
1
6



















































1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1



















































(2.14)

models the three-dimensional diffusion equation.

2.2.3 One-dimensional wave equation

The scattering matrix of the one-dimensional TLM method in free-space is
given by

S=
[

0 1
1 0

]

. (2.15)

We will see now that with this scattering matrix the one-dimensional wave
equation is modeled. It is easy to check that the scattering matrix is energy
conservative (|det(S)| = 1) and invariant to time-reversal (S·S= I ).

The one-dimensional wave equation is given by

∂2ρ(x, t)

∂t2
= c2∂

2ρ(x, t)

∂x2
, (2.16)

where the constantc is the speed of propagation.

Using the scattering matrix (2.15) the probability distribution function
χ(x) can be written as

χ(x) = δ(x±∆x). (2.17)
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The first moments of the probability distribution are
∫

χ(x) dx= 1, (2.18a)
∫

xχ(x) dx= ∓∆x, (2.18b)
∫

x2χ(x) dx= (∆x)2, (2.18c)
∫

x3χ(x) dx= ∓(∆x)3, (2.18d)
∫

x4χ(x) dx= (∆x)4, (2.18e)

... (2.18f)

In analogy to (2.6) and by using (2.17) we get

ρ(x, t+∆t) =
∫

χ(z)ρ(x−z, t) dz=
∫

ρ(x−z, t)δ(z±∆x) dz= ρ(x±∆x, t)

(2.19)
which is the one-dimensional advection equation for the density function
ρ(x, t). In (2.19) we have used the sampling property of the Dirac delta
function. From these two solutions we obtain directly the one-dimensional
wave equation.

If we interpret the probability distributionρ(x, t) as wave quantities, we
see from (2.19) that the wave quantities satisfy exactly

a(x, t+∆t) = a(x−∆x, t), (2.20a)

b(x, t+∆t) = b(x+∆x, t). (2.20b)

Using Taylor expansion we may approximate (2.20) by

a(x−∆x, t) = a(x, t)−∆x
∂a(x, t)
∂x

+O(∆x2), (2.21a)

b(x+∆x, t) = b(x, t)+∆x
∂b(x, t)
∂x

+O(∆x2), (2.21b)
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2 Transmission Line Matrix (TLM) Method

which may be rewritten as (using approximations for smoothly varying
quantities in space and time)

a(x, t+∆t)−a(x, t)
∆t

≈ ∂a(x, t)
∂t

≈ −∆x
∆t

∂a(x, t)
∂x

, (2.22a)

b(x, t+∆t)−b(x, t)
∆t

≈ ∂b(x, t)
∂t

≈ ∆x
∆t

∂b(x, t)
∂x

. (2.22b)

These are the one-dimensional advection equations for the wave quantities
a(x, t) andb(x, t).

Using the transformations (A.5b) from wave quantities to network quan-
tities (see Appendix A) withη = 1 we have the following relations

V(x, t) = a(x, t)+b(x, t), (2.23a)

I (x, t) = a(x, t)−b(x, t). (2.23b)

Using (2.22) and (2.23) and definingc = ∆x
∆t we obtain the following

equations forV(x, t) andI (x, t)

∂V(x, t)
∂x

=
∂a(x, t)
∂x

+
∂b(x, t)
∂x

= −1
c

(

∂a(x, t)
∂t

− ∂b(x, t)
∂t

)

= −1
c
∂I (x, t)
∂t

,

(2.24a)

∂I (x, t)
∂x

=
∂a(x, t)
∂x

− ∂b(x, t)
∂x

= −1
c

(

∂a(x, t)
∂t

+
∂b(x, t)
∂t

)

= −1
c
∂V(x, t)
∂t

,

(2.24b)

which are the well-known Telegrapher’s equations for voltage and current
on a transmission line.

2.3 TLM Scattering Matrix in View of Discrete
Differential Forms

The scattering matrix of the 2D TLM shunt node is equivalent to the scat-
tering matrix of the parallel adaptor used in wave digital filters (WDFs)
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[25]. In this section this equivalence is examined and it will be shown that
also the 2D TLM scattering matrix with stubs can be obtained from the par-
allel adaptor of WDFs. The result can be generalized to obtain valid (by
valid allowable is meant) TLM scattering matrices satisfying the following
properties:

1. Frequency independent,

2. Invariant to time-reversal (S·S= I ),

3. Energy conservative (|det(S)| = 1),

4. Eigenvalues equal±1 (i.e., it is a connection matrix).

A standard 2D TLM shunt node is shown in Figure 2.1. The character-
istic impedance of the link lines isZ0 =

√
L/C. The interconnection at the

center of the node will be calledcell center. The cell center is delay-free,
frequency independent and energy conservative. The scattering matrix of
a shunt cell center equals to the scattering matrix of a parallel adaptor of
WDF.

A 2D TLM cell center with a shunt stub line connection is shownin
Figure 2.2. The reference impedances of the TLM link lines are Z0 =

1
Y0

and the reference impedance of the stub line isZs =
1
Ys

. The scattering
matrix of parallel adaptor for the given cell center can be written as ([25],
pp. 276–277)

S=







































(γ−1) γ γ γ γs

γ (γ−1) γ γ γs

γ γ (γ−1) γ γs

γ γ γ (γ−1) γs

γ γ γ γ (γs−1)







































, (2.25a)

where

4γ+γs= 2 ⇒ γs= 2−4γ (2.25b)
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Z0 Z0

Z0

Z0

TLM cell center

Figure 2.1: 2D TLM shunt node and its TLM cell center.

Z0 Z0

Z0

Z0

Zs

Figure 2.2: The 2D TLM cell center with a shunt stub line connection with
reference impedanceZs.
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and

γ =
2

4+ Ys
Y0

, (2.25c)

γs=
2Ys

Y0

4+ Ys
Y0

. (2.25d)

Inserting (2.25c) and (2.25d) into (2.25a) we obtain the expression for the
scattering matrix

S=
1

Ŷ



















































(2− Ŷ) 2 2 2 2Ys
Y0

2 (2− Ŷ) 2 2 2Ys
Y0

2 2 (2− Ŷ) 2 2Ys
Y0

2 2 2 (2− Ŷ) 2Ys
Y0

2 2 2 2 (2Ys
Y0
− Ŷ)



















































, (2.25e)

where

Ŷ= 4+
Ys

Y0
. (2.25f)

The expression (2.25e) is the well-known scattering matrixof the 2D TLM
shunt node with a shunt stub line (cf., e.g., [26], p. 97).

2.3.1 Two-dimensional TLM cell

For the relation between electrical network quantities andelectromagnetic
field quantities discrete exterior calculus is applied. Discrete exterior cal-
culus also introduces the discrete exterior derivative, the discrete counter-
part of the exterior derivative operator.

The network quantities are obtained from the electromagnetic quantities
taking the integrals of them. This is equivalent to what is also called finite
integrals. However, in contrast to finite integrals, the underlying structure
of the manifolds is maintained.

Let us take a look at 2D example. We assume invariance of the electro-
magnetic field with respect toz direction, i.e., ∂

∂z = 0. Consequently, only
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2 Transmission Line Matrix (TLM) Method

2D problem description is appropriate. Furthermore, the TMz modes are
considered for now.

Using differential forms notations, the electromagnetic phenomena of
TMz modes in free-space (ε0,µ0) is described with the following reduced
Maxwell’s equations

(

∂Hy

∂x
− ∂Hx

∂y

)

dx∧ dy= ε0
∂Ez

∂t
dx∧ dy, (2.26a)

∂Ez

∂x
dz∧ dx= µ0

∂Hy

∂t
dz∧ dx, (2.26b)

∂Ez

∂y
dy∧ dz= −µ0

∂Hx

∂t
dy∧ dz. (2.26c)

The unit one-forms dx, dy, dz, their wedge product and the Hodge operator
can be visualized as shown in Figure 2.3.

dx

dy

dz

dx∧ dy

dx

dy

x

y
z

Figure 2.3: Unit one-forms dx, dy, dz and the two-form dx∧ dy= ⋆dz in
an Euclidean three-dimensional space.

The discrete counterparts of the unit one-forms are the discrete one-
forms∆x, ∆y and∆z. Similarly to the differential forms, we may define for
the discrete forms the wedge product, the Hodge operator andthe discrete
exterior derivative operation [27].

We introduce a mapping from electromagnetic field quantities to net-
work quantities. The mapping is shown in Figure 2.5. We assign to each
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∆x

∆y

∆z

∆x∧∆y

∆x

∆y

x

y
z

Figure 2.4: Discrete one-forms∆x,∆y,∆zand the two-form∆x∧∆y=⋆∆z
in an Euclidean three-dimensional space.

V = −
∫

∆x
E

∆x

I =
∫

∆x
H

∆x

x

Figure 2.5: Mapping from electromagnetic field quantities to network
quantities.
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oriented line of the TLM cell two network quantities:voltageandcurrent.
The resulting 2D TLM cell with assigned network quantities is show in
Figure 2.6.

I1
y

I4
x

I3
y

I2
x

V2
z

I1
z

V4
z

I2
z

I4
z

V3
z

I3
z

V1
z

x

y
z

Figure 2.6: 2D TLM cell with assigned network quantities forTM modes.

The expressions for discrete exterior derivatives of TM field with the
introduced network quantities can be written as

dH|xy = I1
y + I4

x − I3
y − I2

x, (2.27a)

dH|zx= I1
z − I2

z = 0, since
∂Iz

∂z
= 0, (2.27b)

dH|yz= I4
z − I3

z = 0, since
∂Iz

∂z
= 0, (2.27c)

dE|xy = 0, (2.27d)

dE|zx= V2
z −V4

z , (2.27e)

dE|yz= V3
z −V1

z . (2.27f)
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2.3 TLM Scattering Matrix in View of Discrete Differential Forms

The invariance of macroscopic quantities (field intensities, voltages and
currents) to the scattering process – with the assumption ofthe scatter-
ing process taking place inside the TLM cell center – and the frequency-
independence of the scattering matrix imply that∂

∂t = 0 in the Maxwell’s
equations (2.26). With this assumption the equations whichmust be satis-
fied during the scattering process are

(

∂Hy

∂x
− ∂Hx

∂y

)

dx∧ dy= dH|xy = 0, (2.28a)

∂Ez

∂x
dz∧ dx= dE|zx= 0, (2.28b)

∂Ez

∂y
dy∧ dz= dE|yz= 0. (2.28c)

These are the equations of static electric and magnetic fields.
Inserting the expressions for discrete exterior derivatives in terms of net-

work quantities (2.27) into (2.28) we get

I1
y + I4

x − I3
y − I2

x = 0, (2.29a)

V2
z −V4

z = 0 ⇒ V2
z = V4

z , (2.29b)

V3
z −V1

z = 0 ⇒ V3
z = V1

z , (2.29c)

Equation (2.29a) can be identified as Kirchhoff’s current law (KCL) (see
also Figure 2.7). The resulting 2D TLM cell center with assigned network
quantities is show in Figure 2.8.

Since the equations (2.28) describe static fields, any integral on a closed
path must equal to zero. Taking the integral on a closed path as shown in
Figure 2.9 results in the following additional condition

V1
z −V4

z +V3
z −V2

z = 0 ⇒ V1
z +V3

z = V4
z +V2

z . (2.30)

From (2.29) we know thatV1
z = V3

z andV4
z = V2

z so we obtain the condition

V1
z = V2

z = V3
z = V4

z . (2.31)
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I1
y

I2
x

I3
y

I4
x

V1
z

V2
z

V3
z

V4
z

G

x

y

Figure 2.7: KCL and KVL for the 2D TLM cell center.

I1
y

I4
x

I3
y

I2
x

V2
z

0

V4
z

0

0

V3
z

0

V1
z

x

y
z

Figure 2.8: 2D TLM cell center with assigned network quantities for TM
modes.

24



2.3 TLM Scattering Matrix in View of Discrete Differential Forms

P0

V2
z

0

V4
z

0

0

V3
z

0

V1
z

x

y
z

Figure 2.9: Integration path.

The network quantities may be transformed to wave quantities using the
following transformation rules

V1
z = a1+b1, (2.32a)

V2
z = a2+b2, (2.32b)

V3
z = a3+b3, (2.32c)

V4
z = a4+b4, (2.32d)

I1
y = a1−b1, (2.32e)

I2
x = −a2+b2, (2.32f)

I3
y = −a3+b3, (2.32g)

I4
x = a4−b4. (2.32h)

Inserting (2.32) into (2.29) and (2.31) we obtain the following set of
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linearly independent equations

a1+a4+a3+a2 = b1+b4+b3+b2, (2.33a)

a3+b3 = a1+b1, (2.33b)

a2+b2 = a4+b4, (2.33c)

a1+b1 = a2+b2. (2.33d)

Instead of (2.33d) we can also take the equation

a3+b3 = a4+b4 (2.33e)

without a change in the result. Defining the vectors of incoming and out-
going waves

a=
(

a1,a2,a3,a4
)T
, (2.34a)

b =
(

b1,b2,b3,b4
)T
, (2.34b)

we can write (2.33) as
Aa = Bb, (2.35)

with

A =





























1 1 1 1
−1 0 1 0
0 1 0 −1
1 −1 0 0





























, (2.36a)

B =





























1 1 1 1
1 0 −1 0
0 −1 0 1
−1 1 0 0





























. (2.36b)

Using the definition of scattering matrix, i.e.,b = Sa, and with (2.35),
we see that the scattering matrix can be computed from matricesA andB
as follows

S= B−1A. (2.37)
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With the inverse ofB given by

B−1 =
1
4





























1 1 −1 −2
1 1 −1 2
1 −3 −1 −2
1 1 3 2





























(2.38)

we obtain the scattering matrix

S=
1
4





























1 1 −1 −2
1 1 −1 2
1 −3 −1 −2
1 1 3 2





























·





























1 1 1 1
−1 0 1 0
0 1 0 −1
1 −1 0 0





























=
1
2





























−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1





























,

(2.39)

which is the well-known scattering matrix of the 2D shunt TLMnode (cf.,
e.g., [26], p. 95).

Dual to the TM modes are TE modes. The derivation of the scattering
matrix for 2D TE modes follows the same steps as for the TM modes and
will be presented briefly. The 2D TLM cell center for TE modes is shown
in Figure 2.10.

The independent set of linear equations obtained from the equations
dE = 0 and dH = 0 using the discrete exterior calculus on regular rect-
angular mesh is given by

V1
x +V4

y −V3
x −V2

y = 0, (2.40a)

I3
y − I1

y = 0, (2.40b)

I2
x − I4

x = 0, (2.40c)

I1
y − I4

x+ I3
y − I2

x = 0. (2.40d)

Equation (2.40a) is derived from dE = 0 and equations (2.40b) and (2.40c)
are derived from dH = 0. The derivation of (2.40d) follows the same
procedure of deriving (2.30).
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I2
x

0

I4
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0

I1
y

x
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Figure 2.10: 2D TLM cell center with assigned network quantities for TE
modes.
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The transformation from network quantities to wave quantities is defined
by

V1
x = a1+b1, (2.41a)

V2
y = a2+b2, (2.41b)

V3
x = a3+b3, (2.41c)

V4
y = a4+b4, (2.41d)

I1
y = −a1+b1, (2.41e)

I2
x = a2−b2, (2.41f)

I3
y = a3−b3, (2.41g)

I4
x = −a4+b4. (2.41h)

With the definitions (2.34) and (2.41), equations (2.40) arewritten in the
form of (2.35), where

A =





























1 −1 −1 1
1 0 1 0
0 1 0 1
−1 −1 1 1





























, (2.42a)

B =





























−1 1 1 −1
1 0 1 0
0 1 0 1
−1 −1 1 1





























(2.42b)

and the inverse matrix of the matrixB is

B−1 =
1
4





























−1 2 0 −1
1 0 2 −1
1 2 0 1
−1 0 2 1





























. (2.42c)
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The scattering matrix obtained fromS= B−1A reads

S=
1
2





























1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1





























, (2.43)

which is the scattering matrix of the 2D series TLM node (cf.,e.g., [26],
p. 78).

2.3.2 Three-dimensional TLM cell

The scattering matrix of the 3D symmetrical condensed TLM node is ob-
tained using the same techniques as in the previous section.However, in
the 3D case no decomposition into TE and TM field is possible. Conse-
quently, the field intensities are considered with all components, i.e.,

E = Ex dx+Eydy+Ezdz, (2.44a)

H = Hx dx+Hydy+Hzdz. (2.44b)

The network quantities are obtained from the electromagnetic field quan-
tities in the same way as described in the two-dimensional case. The 3D
TLM cell is shown in Figure 2.11.

The following are the 12 linearly independent equations which must be
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V7,I5

V2,I4

V8,I6

V1,I3

V3,I1

V10,I12

V4,I2

V9,I11

V11,I9

V6,I8

V12,I10

V5,I7

x

y
z

Figure 2.11: 3D TLM cell with assigned network quantities.
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satisfied by the network quantities inside the symmetrical condensed node.

V7+V2−V8−V1 = 0, (2.45a)

I5+ I4− I6− I3 = 0, (2.45b)

V11+V6−V12−V5 = 0, (2.45c)

I9+ I8− I10− I7 = 0, (2.45d)

V3+V10−V4−V9 = 0, (2.45e)

I1+ I12− I2− I11= 0, (2.45f)

V5+V6−V4−V3 = 0, (2.45g)

V7+V8−V10−V9 = 0, (2.45h)

V1+V2−V12−V11= 0, (2.45i)

I7+ I8− I1− I2 = 0, (2.45j)

I5+ I6− I12− I11= 0, (2.45k)

I3+ I4− I10− I9 = 0. (2.45l)

The transformations from wave quantities to network quantities are de-
fined by the following equations.

Vi = ai +bi , (2.46a)
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2.3 TLM Scattering Matrix in View of Discrete Differential Forms

wherei = 1. . .12 and

I1 = a1−b1, (2.46b)

I2 = −a2+b2, (2.46c)

I3 = −a3+b3, (2.46d)

I4 = a4−b4, (2.46e)

I5 = a5−b5, (2.46f)

I6 = −a6+b6, (2.46g)

I7 = −a7+b7, (2.46h)

I8 = a8−b8, (2.46i)

I9 = a9−b9, (2.46j)

I10= −a10+b10, (2.46k)

I11= −a11+b11, (2.46l)

I12= a12−b12. (2.46m)

The matricesA andB for the three-dimensional case read

A =


























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



















































































−1 1 0 0 0 0 1 −1 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 1 −1
0 0 0 0 0 0 1 1 1 1 0 0
0 0 1 −1 0 0 0 0 −1 1 0 0
1 1 0 0 0 0 0 0 0 0 1 1
0 0 −1 −1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 −1 −1 0 0 0
1 1 0 0 0 0 0 0 0 0 −1 −1
−1 1 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 −1
0 0 −1 1 0 0 0 0 −1 1 0 0










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






















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
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




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













































,

(2.47a)
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B=


















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
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



































1 −1 0 0 0 0 −1 1 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 −1 1
0 0 0 0 0 0 1 1 1 1 0 0
0 0 −1 1 0 0 0 0 1 −1 0 0
1 1 0 0 0 0 0 0 0 0 1 1
0 0 1 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 −1 −1 1 1 0 0 0
−1 −1 0 0 0 0 0 0 0 0 1 1
−1 1 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 −1
0 0 −1 1 0 0 0 0 −1 1 0 0
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



(2.47b)

The scattering matrix of the 3D TLM node for free-space is computed
from S= B−1A and reads

S=
1
2
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
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0 0 0 0 0 0 1 −1 0 0 1 1
0 0 0 0 0 0 −1 1 0 0 1 1
0 0 0 0 1 1 0 0 1 −1 0 0
0 0 0 0 1 1 0 0 −1 1 0 0
0 0 1 1 0 0 0 0 0 0 1 −1
0 0 1 1 0 0 0 0 0 0 −1 1
1 −1 0 0 0 0 0 0 1 1 0 0
−1 1 0 0 0 0 0 0 1 1 0 0
0 0 1 −1 0 0 1 1 0 0 0 0
0 0 −1 1 0 0 1 1 0 0 0 0
1 1 0 0 1 −1 0 0 0 0 0 0
1 1 0 0 −1 1 0 0 0 0 0 0
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

(2.48)

2.4 Discrete Source Modeling

For the modeling of antenna problems discrete sources are ofimportance.
Since the TLMME method is applied to radiating problems, a suitable

34



2.4 Discrete Source Modeling

modeling of discrete sources is needed. In this section the source port
based on wave digital filters andboundary oriented field mapping[16] is
described and it will be shown how it can be applied to model a discrete
source distributed over more TLM cells.

As was shown in Section 2.3, the 2D TLM method and in particular
the scattering matrix are related to the parallel and seriesadaptors of wave
digital filters. Here we use this relation to describe a discrete port for the
TLM method.

The connection network based on parallel and series adaptors of WDFs
can be used for the modeling of discrete sources. The connection network
is anN+ 1 port network withN TLM portsconnected to the TLM mesh
and onesource port. The source port is the input port to the TLM model.

The TLM ports of the connection network are connected to the TLM
link lines at the interfaces between adjacent TLM cells. Consequently,
the mapping type between network and field quantities is the boundary
oriented field mapping. Schematic pictures of canonic parallel and series
connection networks exciting one field polarization are shown in Figure
2.12 and Figure 2.13.

TLM TLMZl1 Zl2

Zp Link line

Parallel adaptor

Source port

Figure 2.12: Canonic parallel connection subnetwork; the reference
impedances of the TLM link lines areZl1 andZl2 and the ref-
erence impedance of the source port isZp.
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TLM TLMZl1 Zl2

Zp
Link line

Series adaptor

Source port

Figure 2.13: Canonic series connection subnetwork; the reference
impedances of the TLM link lines areZl1 andZl2 and the ref-
erence impedance of the source port isZp.

We can see that the discrete voltage port for one polarization can be seen
as parallel adaptor placed at the interface of two TLM link lines.

The parallel connection network has the following properties:

1. A common voltage (i.e., electric field intensity) is impressed at the
interface between adjacent TLM cells.

2. Different line impedances of the TLM link lines and the source port
are taken into account.

3. The scattering matrix of the connection network is

• real,

• frequency independent,

• energy conservative,

• time-reversible and

• the eigenvalues equal±1. If all the TLM port impedances and
the source port impedance are equal then the scattering matrix
is also unitary and symmetric.
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2.4 Discrete Source Modeling

A series connection network is dual to the parallel connection network.
The properties of the series connection network are the sameas those of the
parallel one except that a common current (i.e., magnetic field intensity) is
impressed at the interface between adjacent TLM cells.

A series port is dual to the parallel port and is shown in Figure 2.13. The
properties of the series discrete port are

1. A common current (i.e., magnetic field intensity) is impressed at the
interface.

2. Different line impedances of the link lines and the discrete portare
taken into account by the adaptor.

3. The series adaptor is characterized by a (3×3) scattering matrix with
the same properties as for the parallel adaptor

To the discrete port three different source types can be connected. These
are

1. ideal voltage source,

2. ideal current source,

3. power source with defined internal impedance.

The different source types are shown in Figure 2.14.

(a) (b) (c)

Zs

GsV0 I0 V0 I0

Figure 2.14: Lumped sources which may be connected to the discrete port
adaptor.
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2 Transmission Line Matrix (TLM) Method

The WDF realizations of these sources can be connected directly to the
source port of the connection network. The WDF realizationsof the dif-
ferent source types with wave digital filters are shown in Figure 2.15. We
use here the same convention for symbols of WDF adaptors and wave flow
diagrams as in [25].

replacements

2V0

−1

a

b
2RsI0

a

b
V0; RsI0

a

b

(a) (b) (c)

Figure 2.15: WDF representations of the sources.

The power source can also be seen (using Thévenin theorem) as an ideal
voltage source connected at infinity to one end of a transmission line with
impedanceZS. The other end of the transmission line is connected to the
discrete port.

The discrete port just described implements following features into the
TLM algorithm:

• Well-defined excitation of field amplitudes and energy.

• Impulsive characterization of electromagnetic structures with linear
properties. This is possible since only one port is available from
“outside” and the TLM model is linear.

• Direct calculation of scattering parameters from the incoming and
reflected wave amplitudes.

An example on impulsive excitation of bowtie antenna is given in Sec-
tion 6.3.
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2.4 Discrete Source Modeling

2.4.1 Example – canonic parallel connection network

The scattering matrix referred to the port impedanceZp =
377
2 Ω with Zl1 =

Zl2 = 377Ω reads

Sp =





















0 1
2

1
2

1 −1
2

1
2

1 1
2 −1

2





















. (2.49)

The scattering matrix referred to the port impedanceZp = 50Ω with Zl1 =

Zl2 = 377Ω reads

Sp =





















0.58071 0.20964 0.20964
1.58071 −0.79036 0.20964
1.58071 0.20964 −0.79036





















. (2.50)

It is easy to check thatSpSp = I and|det(Sp)| = 1. The matrices are thus
valid scattering matrix of the TLM method.
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3 Multipole Expansion

In the multipole expansion the total radiated electromagnetic field is ex-
pressed as linear combinations of known basis one-forms, called radiation
modes. In homogeneous medium the radiation modes form a complete
orthonormal set of basis one-forms. These are considered tohave an in-
finitesimally small source in the center of the coordinate system used for
the expansion which makes them behave singularly there. Hence the name
multipole expansion.

For the expansion we use the spherical coordinate system (r,ϑ,ϕ) – (ra-
dius, elevation, azimuth) – see also Figure 3.1. We decompose the to-
tal field into transverse and longitudinal partsN = N t +Nr dr with N t =

Nϑr dϑ+Nϕr sinϑdϕ, whereN stands for the one-form field intensity pha-
sorsE orH . Phasor quantities are distinguished by underlined font.

It is shown in [28], that it is sufficient to expand only the transverse parts
of the total field. These are the independent field quantitiesfrom which the
radial (longitudinal) components can be computed.

Based on these considerations we write the tangential field intensities as

Et(r,ϑ,ϕ, t) =
∑

p

Vp(r, t)ep(ϑ,ϕ), (3.1a)

Ht(r,ϑ,ϕ, t) =
∑

p

Ip(r, t)hp(ϑ,ϕ) =
∑

p

Ip(r, t)
(⊥n ep(ϑ,ϕ)

)

, (3.1b)

whereVp(r, t) and Ip(r, t) are generalized voltagesand generalized cur-
rents, respectively, andep(ϑ,ϕ) andhp(ϑ,ϕ) are the transverse basis one-
forms of the electric field intensity and the magnetic field intensity, respec-
tively, corresponding to the modep. The mode indexp summarizes four
indices (n,m, i, s), the meaning of which will be given later in Section 3.1.
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3 Multipole Expansion

x

y

z

ϕ

θ r=ro

S

Figure 3.1: Electromagnetic structure embedded into a virtual spherical
manifoldS of radiusr = r0.

In (3.1) we use the twist operator⊥n , defined in [11] for a general one-
formA as

⊥nA = ⋆(n∧A), (3.2a)

where⋆ is the Hodge operator and∧ denotes the wedge product.
A local picture of the twist operator acting on a general one-formA is

shown in Figure 3.2. The two-formn∧A is shown as an oriented surface.
We can see also the tangential part of the one-formA with respect to the
normal directionn defined as

(A)t = ny(n∧A), (3.2b)

where the angle operatory denotes the contraction (for more details see
[29]).

The normal one-formn is normal to the direction of a spherical man-
ifold S (r) with a given radiusr and forms a rectangular frame with the
two normal one-formsu andv, which are tangential to the surface of the
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n

A

n∧A

(A)t = ny(n∧A)

⊥nA =⊥n (A)t = ⋆(n∧A)

Figure 3.2: A local picture of the twisted one-form⊥nA.

manifold. This is shown in Figure 3.3. The unit normal one-form n may
be written as

n = nxdx+nydy+nzdz= dr, (3.3a)

with

n2
x+n2

y+n2
z =

(

∂r
∂x

)2

+

(

∂r
∂y

)2

+

(

∂r
∂z

)2

=

=















± x
√

x2+y2+z2















2

+















± y
√

x2+y2+z2















2

+















± z
√

x2+y2+z2















2

=

= 1.

(3.3b)

We can see from (3.1) that the transverse basis one-forms of the mag-
netic field intensity can be obtained from the transverse basis one-forms of
the electric field intensity. The generalized voltages and currents for each
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dx

dy
dz

S (r)

n

u

v

Figure 3.3: Spherical manifoldS (r) with the tangent framen, u andv.

modep may be obtained from the total field intensities by integration over
the spherical manifoldS (r) with radiusr by

Vp(r, t) =
"

S (r)
(−⊥nE(r,ϑ,ϕ, t))∧ ep(ϑ,ϕ), (3.4a)

Ip(r, t) =
"

S (r)
−H(r,ϑ,ϕ, t)∧ ep(ϑ,ϕ). (3.4b)

The generalized voltages are related to the generalized currents bygen-
eralized impedances. In time-domain the relation is given by

Vp(r, t) = Zp(r, t) ∗ Ip(r, t), (3.5)

where∗ denotes the convolution in time. The generalized impedanceZp(r, t)
describes completely the coupling between the electric andmagnetic field
intensities. The generalized impedance isr dependent due to the varying
cross section of the half-space given byr ≥ r0 for a given radiusr = r0

Assuming harmonic excitation, the frequency domain representations
of the field quantities and the generalized network quantities can be used.
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3.1 Radiation Modes

Using the phasor representations for the field quantities the relation (3.5)
reads

Vp(r,ω) = Zp(r,ω)I p(r,ω). (3.6)

3.1 Radiation Modes

The transverse magnetic (TM) and transverse electric (TE) radiation modes
are derived from the magnetic one-form potentialA and the electric one-
form potentialF , respectively, which are oriented in the dr direction

A = Ar dr = rψdr, F = Fr dr = rψdr. (3.7)

In (3.7),ψ is a scalar function of spherical coordinates satisfying the scalar
Helmholtz equation

(⋆d⋆d+k2)ψ(r,ϑ,ϕ) = 0 (3.8)

in spherical coordinate system, wherek = ω
√
εµ is the wavenumber,ω

the angular frequency andε andµ the permittivity and permeability of the
background space, respectively.

The field intensities of the TM radiation modes are obtained from the
magnetic vector potentialA by

H = ⋆dA, E = 1
jωε

⋆d⋆dA. (3.9a)

The field intensities of the TE radiation modes are obtained from the elec-
tric vector potentialF by

E = −⋆dF , H = 1
jωµ

⋆d⋆dF . (3.9b)

The general solution of (3.8), obtained by separation of variables tech-
nique, is given by

ψ(r,ϑ,ϕ) = bn(kr)Lm
n (cosϑ)h(mϕ), (3.10)

45



3 Multipole Expansion

wherebn(kr) are the spherical Bessel functions,Lm
n (cosϑ) the associated

Legendre functions andh(mϕ) the harmonic functions. Due to the proper-
ties of the functionsh(mϕ) andLm

n (cosϑ), and if we restrict our consider-
ations to physically allowed solutions, we have to choosen andm integer,
with n= 0,1,2, . . . and 0≤m≤ n.

We assume that all sources are confined within the spherical simula-
tion region. Therefore, outside the sphere only outward propagating waves
occur and the Sommerfeld radiation condition is fulfilled. Thus, we take
bn(kr) = h(2)

n (kr) in (3.10), withh(2)
n (kr) being the spherical Hankel func-

tions of the second kind.
We definereal spherical harmonics Yinm(ϑ,ϕ) with n = 0,1,2, . . ., 0 ≤

m≤ n andi = eor o (even or odd) as










Ye
nm(ϑ,ϕ)

Yo
nm(ϑ,ϕ)











= γnmPm
n (cosϑ)











cosmϕ

sinmϕ











, (3.11)

where

γnm=

√

ǫm
2n+1

4π
(n−m)!
(n+m)!

(3.12)

with ǫm = 1 or 2 for m= 0 or m≥ 1, respectively, andPm
n (cosϑ) being

associated Legendre polynomials [30]. Spherical harmonics satisfy the or-
thonormality relations on a spherical surface, thus

∫ 2π

0

∫ π

0
Yi

nm(ϑ,ϕ)Yi′
n′m′ (ϑ,ϕ)sinϑdϑdϕ =

=



























1 if n= n′, m=m′ = 0, i = i′ = e,

1 if n= n′, m=m′ > 0, i = i′,

0 otherwise.

(3.13)

To obtain the TM and TEradiation modeswe take

Ar = Fr = rYi
nm(ϑ,ϕ)h(2)

n (kr) (3.14)

in (3.7). The transverse basis one-formsep(ϑ,ϕ) are obtained from (3.9a)
and (3.9b) by taking the radiusr and frequencyω independent directions
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3.2 Cauer Realization of Radiation Modes

only. Since the magnetic one-form potentialA equals to the electric one-
form potentialF , there is a simple relation between the TM and TE radia-
tion modes. The transverse basis one-forms in terms of spherical harmon-
ics are given by

e
e
nmi(ϑ,ϕ) =

(

dϑ
∂

∂ϑ
+dϕ

∂

∂ϕ

)

Yi
nm(ϑ,ϕ)
√

n(n+1)
, (3.15a)

e
h
nmi(ϑ,ϕ) =⊥n e

e
nmi, (3.15b)

where the superscriptse andh stand for TM(E) and TE(H) radiation modes,
respectively.

We conclude that the transverse basis one-forms of the TM radiation
modes are given by











(

ee
nme

)

ϑ(ϑ,ϕ)
(

ee
nmo

)

ϑ(ϑ,ϕ)











= cnm(−sinϑ)Pm
n
′(cosϑ)











cosmϕ

sinmϕ











(3.16a)















(

ee
nme

)

ϕ(ϑ,ϕ)
(

ee
nmo

)

ϕ(ϑ,ϕ)










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with cnm= γnm/
√

n(n+1) being normalization coefficients which depend
onn andm. The prime′ denotes derivation of a function with respect to its
argument.

The transverse basis one-forms of the TE radiation modes areobtained
from (3.16) using (3.15b).

3.2 Cauer Realization of Radiation Modes

Let us assume the complete electromagnetic structure underconsideration
embedded in a virtual sphereS as shown in Figure 3.1.

The wave impedances of the TM radiation modes on the surface of the
sphereS are given by

Ze
nm= jη

H(2)
n
′(kr0)

H(2)
n (kr0)

(3.17)
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3 Multipole Expansion

and of the TE radiation modes by

Zh
nm= − jη

H(2)
n (kr0)

H(2)
n
′(kr0)

, (3.18)

whereη =
√

µ/ε is the wave impedance of the plane wave andH(2)
n (kr) =

krh(2)
n (kr). Please note that the characteristic wave impedances depend only

on the indexn for the given radiusr0 of the virtual sphere.
Using the recurrence formula for the spherical Hankel functions [30], the

Cauer representations of the TM and TE radiation modes may beobtained
[10], [31]. The impedance of the TM modes is then written as

Ze
nm= η
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and of the TE modes as

Zh
nm= η
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The equivalent Cauer circuits realizing the impedances of the radiation
modes given by (3.19) are shown in Figure 3.4 and Figure 3.5.
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Figure 3.4: Cauer realization of the impedance of TMn radiation mode.

µ

r
2n−5

µr
n

r

ε r
2n−1

2n−3

ε

ηZh
n

Figure 3.5: Cauer realization of the impedance of TEn radiation mode.

In Figure 3.6 – Figure 3.9 the plots of real and imaginary parts of the
impedances of radiation modes realized by the Cauer circuits and com-
puted analytical by using (3.17) and (3.18) are compared. The plots are
shown for both, the TM and TE radiation modes in free-space (η = 377Ω),
and mode numbersn= 1,2,3,4,5,25,30.
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4 Connection Subnetwork

4.1 Tellegen’s Theorem and Connection
Subnetwork

Tellegen’s theorem is a fundamental theorem in network theory which
has been given by Tellegen [32] and generalized by Penfield, Spence and
Duinker [33]. Notably, the form of the theorem is simple and general. The
beauty and power of the theorem is in it’s simplicity and generality.

The importance of the theorem follows from the fact that it’sproof de-
pends solely upon Kirchhoff’s laws. Consequently, the theorem is valid
for all types of networks which satisfy Kirchhoff’s laws regardless if these
are linear or non-linear, time invariant or time-varying, reciprocal or non-
reciprocal, passive or active. The condition which must be satisfied for the
theorem to be valid is that the circuits under considerationhave common
topology.

Since the Tellegen’s theorem plays an important role also inthe network-
oriented modeling, the network form of the theorem will be now given.
Then, the field form of the Tellegen’s theorem and its discretized form as
given in [1] will be described.

4.1.1 Network form of Tellegen’s theorem

The Tellegen’s theorem states that for two networks sharingthe same topol-
ogy and havingB branches the following equation holds

B
∑

b=1

i′b v′′b = 0, (4.1)
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4 Connection Subnetwork

wherei′b are branch currents of one network andv′′b are branch voltages of
the other network.

The power and usefulness of the theorem can be seen from the two fol-
lowing conclusions, which follow directly from the theorem.

1. If the two networks considered in the formulation of the Tellegen’s
theorem are the same then (4.1) can be physically interpreted as the
conservation of energy principle within the network and hasthe form

B
∑

b=1

i′bv′b = 0. (4.2)

2. With the previous interpretation of the Tellegen’s theorem as energy
conservation we can conclude from (4.1) that there does not exist
any network which would not conserve energy. In other words,all
networks obeying Kirchhoff’s laws must conserve energy.

In the generalized form [33] the Tellegen’s theorem has the form

B
∑

b=1

Λ′(i′b) Λ′′(v′′b ) = 0, (4.3)

whereΛ′ andΛ′′ are Kirchhoff current and voltage operators, respectively.
Kirchhoff operators, as introduced in [33], are such operators which trans-
form given electrical quantities obeying Kirchhoff’s laws into new electri-
cal quantities obeying also Kirchhoff’s laws.

Examples of allowed Kirchhoff operators are

• differentiation with respect to time,

• multiplication by a constant,

• any scalar linear transformation.

The proof of the Tellegen’s theorem and it’s generalized form may be
found in [33]. A physical approach to the proof has been givenby Temes
in [34].
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4.1 Tellegen’s Theorem and Connection Subnetwork

If the sets{i′b} and{v′′b } are interpreted as vectorsi′ = {i′b} andv′′ = {v′′b }
then (4.1) can be written as follows

i′Tv′′ = v′′T i′ = 0. (4.4)

This equation can be interpreted as orthogonality relations, i.e., the vectors
i′ andv′′ are mutually orthogonal.

4.1.2 Field form of Tellegen’s theorem

The field form of Tellegen’s theorem states that [1], [11]
∮

∂V
E′(x, t′)∧H ′′(x, t′′) = 0, (4.5)

where′ and′′ denote independent field forms defined on a common mani-
fold ∂V. The theorem states that no energy can be stored inside the mani-
fold ∂V of zero measure.

4.1.3 Connection subnetwork

Scattering matrix of ideal transformer network

The equations of a transformer network as shown in Figure 4.1, with equal
reference resistances at the ports, can be summarized in theequation

[

I −N
NT I

]

b̃ =
[

−I N
NT I

]

ã (4.6)

with

N =
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




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
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

n11 n12 . . . n1N

n21 n22 . . . n2N

. . . . . . . . . . . . . . . . . . . . . .

nM1 nM2 . . . nMN
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
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







(4.7)

summarizing the transformer ratios and

ã=
[

aN+1 aN+2 . . . aN+M a1 a2 . . . aN

]

T , (4.8a)

b̃ =
[

bN+1 bN+2 . . . bN+M b1 b2 . . . bN

]

T (4.8b)
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4 Connection Subnetwork

1:n11 1:n21 1:nM1

1:n12 1:n22 1:nM2

1:n1N 1:n2N 1:nMN

(a1,b1)

(a2,b2)

(aN,bN)

(aN+1,bN+1) (aN+M,bN+M)

Figure 4.1: Connection subnetwork consisting of ideal transformers.
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4.1 Tellegen’s Theorem and Connection Subnetwork

being the reorganized vectors of incoming and reflected waves.
The reorganized scattering matrixS̃ is computed as

S̃=
[

I −N
NT I

]−1 [

−I N
NT I

]

=

[

S̃4 S̃3

S̃2 S̃1

]

, (4.9)

where the inverse matrix can be obtained using the techniqueof Schur
complement(see Section A.3.2).

The scattering matrixS is related to the reorganized scattering matrixS̃
as follows

S=
[

S̃1 S̃2

S̃3 S̃4

]

. (4.10)

The resulting scattering matrix of the connection subnetwork is given as

S=
[

I −2NTS−1
A N NTS−1

A +NT −NTS−1
A NNT

2S−1
A N −S−1

A +S−1
A NNT

]

, (4.11)

with
SA = I +NNT , (4.12)

whereSA is the Schur complement.

Examples

In the following let us examine some special cases of the scattering matrix
(4.11).

Orthonormal square N

In this case
NNT = NTN = I (4.13)

and

SA = 2I ; S−1
A =

1
2

I . (4.14)

The (4.11) is simplified to

S=
[

0 NT

N 0

]

(4.15)
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4 Connection Subnetwork

NT is a right inverse of N

In this case
NNT = I (4.16)

but
NTN , I (4.17)

The

SA = 2I ; S−1
A =

1
2

I . (4.18)

The (4.11) is simplified to

S=
[

I −NTN NT

N 0

]

(4.19)

Ideal transformer: N-ports primary, one-port secondary

The transformer ratios are denoted byni with i = 1, . . . ,N. The matrixN is
reduced to a vector

N =
[

n1 n2 . . . nN

]

(4.20)

The (N+1)× (N+1) S-matrix is given by

S= D
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(4.21a)

with

D = − 2

1+n2
1+ . . .+n2

N

. (4.21b)

Note that ifn2
1+ . . .+n2

N = 1 thenD = −1 and the scattering matrix has a
zero at the last element.

60



4.2 Scattering Matrix of the Connection Subnetwork

For the special case ofN = 1, the scattering matrix computed from (4.21)
is reduced to

S=
1

1+n2
1

[

1−n2
1 2n1

2n1 n2
1−1

]

, (4.22)

which may be found in the literature (e.g., see [35] p.41).

4.2 Scattering Matrix of the Connection
Subnetwork

4.2.1 Direct derivation

Boundary conditions

In the following, the TLM simulation domain (R1) will be referred to as
subdomain 1 and the outside space (R2) as subdomain 2. The two sub-
domains are identified by a spherical surface (S ) between the two (see
also Figure 1.1). Also, it will be convenient to use the vector notation for
electromagnetic fields in this Section.

First, the tangential electric field on the interfacing surface (i.e. on the
sphere) is expanded into two sets of vector basis functionse(1)

n ande(2)
m with

indicesn= 1,2, . . . ,N andm= 1,2, . . . ,M. The electric fields can be written
as

E(1)
t =

N
∑

n

V(1)
n e(1)

n , (4.23a)

E(2)
t =

M
∑

m

V(2)
m e(2)

m , (4.23b)

with superscripts(1) and(2) denoting the subdomain 1 and 2, respectively.
We call the modal amplitudesV(1)

n andV(2)
m equivalent voltages.

Considering equality of the tangential fields represented by (4.23) we
can write

E(1)
t = E(2)

t . (4.24)
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4 Connection Subnetwork

Multiplying both sides of the equation withe(2) and integrating overS we
get

∫

S

N
∑

n

V(1)
n e(1)

n ·e(2)
m dS =

∫

S

M
∑

m′
V(2)

m′ e
(2)
m′ ·e

(2)
m dS , (4.25a)

whereS denotes the domain of integration, here the spherical surface be-
tween subdomain 1 and 2. Assuming orthonormality of the basis func-
tions (4.25a) results in

V(2)
m =

N
∑

n

V(1)
n

∫

S

e(1)
n ·e(2)

m dS . (4.25b)

The tangential magnetic fields in the subdomain 2 are relatedto the tan-
gential electric fields in the same subdomain via

H(2)
t =

M
∑

m

I (2)
m r0×e(2)

m , (4.26a)

with

I (2)
m =

V(2)
m

Z(2)
m

= Y(2)
m V(2)

m , (4.26b)

whereZ(2)
m andY(2)

m areequivalent impedancesandequivalent admittances
of them-th radiation mode. The quantitiesI (2)

m andI (1)
n are calledequivalent

currents.
Similar considerations may be done for the tangential magnetic fields

resulting in an equation analogous to (4.25b). The equationrelates the
equivalent currents in domain 1 to those in domain 2 and reads

I (1)
n =

(

−1
)

M
∑

m

I (2)
m

∫

S

e(2)
m ·e(1)

n dS . (4.27)
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4.2 Scattering Matrix of the Connection Subnetwork

Next, we define the coefficientnmn by

nmn=

∫

S

e(2)
m ·e(1)

n dS (4.28)

and the matrixN as

N =
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n11 n12 . . . n1N

n21 n22 . . . n2N
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nM1 nM2 . . . nMN
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





















. (4.29)

Mapping between network quantities and wave quantities

The equivalent voltages and equivalent currents in subdomain 1 are trans-
formed to the wave quantities by

V(1)
n = a(1)

n +b(1)
n , (4.30a)

ηI (1)
n = a(1)

n −b(1)
n , (4.30b)

wherea(1)
n andb(1)

n are the amplitudes of the incoming and outgoing waves
with respect to the surface of the sphere and whereη =

√

µ/ε.

On the boundary of subdomain 2 we introduce local incoming wavesa(2)
m

and local reflected wavesb(2)
m in a similar manner. The equivalent voltages

and currents are related to the wave quantities by

V(2)
m = a(2)

m +b(2)
m , (4.31a)

ηI (2)
m = a(2)

m −b(2)
m . (4.31b)

The Scattering Matrix

Inserting (4.30) and (4.31) into (4.25b) and (4.27) and with(4.28) we ob-
tain the equations of the connection subnetwork between thetwo subdo-
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mains

a(2)
m =








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

N
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n

(

a(1)
n +b(1)

n

)

nmn
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







−b(2)
m , (4.32a)

a(1)
n = b(1)

n −
















M
∑

m

(

a(2)
m −b(2)

m

)

nmn




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









. (4.32b)

Equations (4.32) can be rewritten as

b(2)
m −

N
∑

n

b(1)
n nmn= −a(2)

m +

N
∑

n

a(1)
n nmn, (4.33a)

b(1)
n +

M
∑

m

b(2)
m nmn= a(1)

n +

M
∑

m

a(2)
m nmn. (4.33b)

Using matrix notation, the left hand side of equations (4.33) can be written
as
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, (4.34a)

which can be written in short form using block matrixB as

[

−N I
I NT

]

b = Bb, (4.34b)

whereb is the vector of outgoing waves.
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In a similar way we can write the right hand side of equations (4.33) as
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, (4.35a)

which can be written in short form using block matrixA as
[

N −I
I NT

]

a= Aa, (4.35b)

wherea is the vector of incoming waves.
Equation (4.34b) must be equal to (4.35b) by (4.33). Taking the inverse

matrixB−1 we obtain
b = B−1Aa = Sa, (4.36)

whereS is the scattering matrix of the connection between subdomain 1
and 2.

Reorganizing the vectors of incoming and outgoing waves according to

ã=
[

a(2)
1 a(2)

2 . . . a(2)
M a(1)

1 a(1)
2 . . . a(1)

N

]

T , (4.37a)

b̃ =
[

b(2)
1 b(2)

2 . . . b(2)
M b(1)

1 b(1)
2 . . . b(1)

N

]

T , (4.37b)

equations (4.34b) and (4.35b) take the same form as the equation (4.6).
This shows that the transformation ratios of the connectionsubnetwork in
(4.7) are to be taken according to (4.28).

Discretized electromagnetic field

When the electromagnetic field functions are discretized inspace, the equal-
ity (4.24) cannot be satisfied, unless the basis functions inboth subdomains
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form a complete set and the summations are taken over all basis functions.
However, pointwise equality for the sampled field functionscan be satis-
fied.

Consider a set of pointsRS , elements of which are all discrete points
on the surface of the spherical domain, i.e.,r s ∈ RS . Index s denotes a
particular point on the surface. Using the sampling property of the Dirac
delta function we can write

E(1)(r s) =
√

∆A(r s)
∫

S

E(1)
t (r )δ(r − r s)dS , (4.38)

where we leave out the subscriptt for discretized tangential fields and
where

∆A(r s) = ∆As =

∫

V (r s)
dS . (4.39)

The domainV (r s) is the Voronoi region around pointr s. Furthermore,

∫

S

dS ≈
S

∑

s

∆As= 4π. (4.40)

With
Es= E(r s) (4.41)

we can define the vector

EEE =
{

E1,E2, . . . ,ES

}

T . (4.42)

The equality (4.24) can be satisfied now and reads

EEE(1) =EEE(2). (4.43)

4.2.2 Implementation Issues

The number of elements to be stored for any S-matrix of the permissible
connection network:

elements=
N(N+1)

2
, (4.44)
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4.2 Scattering Matrix of the Connection Subnetwork

since the matrix is symmetric.
The memory requirements to store the scattering matrix are following:

memory=
64
8

1
1024×1024×1024

×elements≈ 7.45×10−9× N(N+1)
2

[GB].

(4.45)
A 10000×10000 matrix requires cca 382MB of memory.
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5 Transmission Line Matrix –
Multipole Expansion Method

In this Chapter we use the results obtained in previous chapters as a basis
for the hybrid Transmission Line Matrix – Multipole Expansion (TLMME)
method. Individual parts of the hybrid TLMME method will be described
in detail.

We begin with the description of a spherical TLM region. Then, the pre-
processing part of the TLMME method is given. During pre-processing
the spherical TLM region is generated, a scattering matrix of the connec-
tion subnetwork is computed and Wave Digital Filter (WDF) models of
impedances of radiation modes are created. We will see how these filters
are implemented and synchronized with the TLM method.

The processes of generation of the spherical TLM region, meshing of
geometric objects and creation of recursive WDF models of impedances
of radiation modes have been fully automatized. This avoidserrors intro-
duced by manual pre-processing and enables fast pre-processing of techni-
cally interesting models.

The Chapter is concluded with the description of the TLMME algorithm.

5.1 Spherical TLM Region

Since the transverse basis one-formsep(ϑ,ϕ) in (3.15) are defined on the
surface of a spherical manifold, we cannot simply proceed with the con-
nection of the classical cubical TLM simulation domain to the radiation
modes.

Therefore, we embed the TLM simulation domain into a sphere,which
is discretized in a rectangular mesh, and obtain a sphericalTLM region
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5 Transmission Line Matrix – Multipole Expansion Method

Figure 5.1: The spherical TLM region – discretized spherical manifoldS .

bounded by a discretized spherical manifoldS as depicted in Figure 5.1.
Inside the spherical TLM region the electromagnetic field ismodeled

by TLM. On the boundary of the spherical domain – on the discretized
spherical manifoldS – we define a set of surfaces on which the fields
resulting from the TLM algorithm are obtained. This set willbe denoted
by S

C and its elements (surfaces) bysc ∈S
C. The fields onsc are used

to compute the modal coefficients in (5.2).

5.1.1 Connection of the simulation domain to the
radiation modes

The transverse field one-forms are expressed as a linear combinations of
the basis one-forms by

Nt(r,ϑ,ϕ, t)
∣

∣

∣

∣

r=r0
=

∑

n,m,i,s

αs
nmi(t)s

s
nmi(ϑ,ϕ), (5.1)

where the indexs= eor h stands for TM(E) or TE(H) modes, respectively,
ands stands for the basis structure one-formse or h as defined in (3.1). In
(5.1)N stands for the one-form fieldsE orH .
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5.1 Spherical TLM Region

Using the orthonormal property of the structure one-forms,the time-
dependent modal coefficientsαs

nmi(t) are given by

αs
nmi(t) =

∫ 2π

0

∫ π

0

(

−⊥nN(r,ϑ,ϕ, t)
∣

∣

∣

∣

r=r0

)

∧ s
s
nmi(ϑ,ϕ). (5.2)

For simplicity of the notation, let us consider in the following just one
mode with givenn,m, i, s.

We may write the structure one-forms in (5.2) as

s = sϑmϑdϑ+ sϕmϕdϕ, (5.3)

with mϑ andmϕ being the metric coefficients of the spherical manifold.
On each surfacesc of the discretized manifold ofS (r) we have knowl-

edge ofNx(x,y,z, t), Ny(x,y,z, t) or Nz(x,y,z, t). After projecting these field
values onto the spherical manifoldS (r), we can write (5.2) as

α(t) =
∫ 2π

0

∫ π

0

{

Nx(ϑ,ϕ, t)
[

t12sϑmϑ + t13sϕmϕ

]

+

+Ny(ϑ,ϕ, t)
[

t22sϑmϑ + t23sϕmϕ

]

+

+Nz(ϑ,ϕ, t)
[

t32sϑmϑ + t33sϕmϕ

]

}

dϑ∧dϕ,

(5.4)

with t12 = ∂x/∂ϑ, t13 = ∂x/∂ϕ, t22 = ∂y/∂ϑ, t23 = ∂y/∂ϕ, t32 = ∂z/∂ϑ and
t33 = ∂z/∂ϕ . For the considered spherical manifold the metric coefficients
aremϑ = 1 andmϕ = sinϑ.

Using the point-matching technique, the time-dependent modal coeffi-
cients can be computed numerically by

α(t) =
∫ 2π

0

∫ π

0

[

S Px+S Py+S Pz
]

sinϑdϑdϕ =
∫ 2π

0

∫ π

0
S Psinϑdϑdϕ,

(5.5)
with

S Px = Nx(ϑ,ϕ, t)
[

t12sϑ + t13sϕ
]

, (5.6a)

S Py = Ny(ϑ,ϕ, t)
[

t22sϑ + t23sϕ
]

, (5.6b)

S Pz= Nz(ϑ,ϕ, t)
[

t32sϑ + t33sϕ
]

. (5.6c)
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The integral in (5.5) is obtained numerically as

α(t) ≈
∑

ϑd

∑

ϕd

S P(ϑd,ϕd, t)sinϑd∆ϑd ∆ϕd , (5.7)

with
∑

ϑd

∆ϑd = π,
∑

ϕd

∆ϕd = 2π. (5.8)

In (5.7),ϑd andϕd are the discrete elevation and azimuth, respectively, at
the points where the fields of the surface elementsc are defined, and∆ϑd

and∆ϕd are the spatial discretization steps in the corresponding direction,
which differ with the location of the elementsc.

The modal coefficients in (5.7) represent the input of the corresponding
radiation mode. Each TLM port of the surface elementsc contributes to
the total radiation. The lumped element equivalent circuitmodel of the
connection circuit connecting the TLM network representing the simula-
tion domain with the ladder networks representing the radiation modes is
shown in Figure 5.2. In [1] it has been shown, that the connection network
contains only ideal transformers.

5.2 Pre-processing

Pre-processing for the TLMME method consists of the following steps:

1. Generation of the spherical TLM region,

2. computation of the scattering matrix of the connection subnetwork,

3. creation of the WDF models of radiation modes,

4. meshing of the physical objects in the TLM method,

5. generation of the models of excitation.

The generation of the spherical TLM region is done automatically using
a Cartesian mesh generator which is described in the next Section.
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a11

a12

a1k1

b11

b12

b1k1

a21

a22

a2k2

b21

b22

b2k2

am1

am2

amkm

bm1

bm2

bmkm

η

1:n11

1:n12

1:n1k1

1:n21

1:n22

1:n2k2

1:nm1

1:nm2

1:nmkm

n-th radiation mode

Figure 5.2: Network model of the connection of one radiationmode to the
TLM simulation domain.
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WDF models of the impedances of radiation modes are also generated
automatically by taking advantage of their recursive structure. More details
are given in Section 5.2.2.

5.2.1 Cartesian mesh generation

The discretization procedure we are using here is an extension of the method
described in [36] for 2D manifolds. The discretization of 2Dclosed mani-
folds follows these steps:

1. create a model of the 2D manifold,

2. define the mesh,

3. discretize the object usingray shootingtechnique,

4. extract the boundary from the volumetric object.

This method works for volumetric objects which exhibit a closed bound-
ary. However, using boolean operations the method may be extended to
discretize non-closed general 2D objects.

The principles of the ray shooting technique are shown in Figure 5.3. A
ray with two constant spatial coordinates is examined for the intersections
with the object under consideration. Since we know that the object has a
closed boundary, i.e., it is a finite volume object, we identify the object
in the prescribed mesh. Now, the boundary of the discretizedvolumetric
object may be easily extracted. As a result we get the 2D discretized man-
ifold. This manifold may be represented by a set of elementary surfaces,
e.g., byS C defined in Section 5.1.

Example: Cartesian meshing of a rectangular cavity resonat or

The 3D Transmission Line Matrix (TLM) method has been originally de-
veloped in a structured Cartesian mesh [13], [26], [11]. Theformulation
of the TLM algorithm in structured Cartesian mesh is the easiest one and
the implementation is straightforward. However, the lack of conformity of
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5.2 Pre-processing

Figure 5.3: The ray shooting technique.

the Cartesian mesh to the boundaries of complex curved objects has been
soon recognized.

Researchers have tried to improve the conformity of the meshto the
boundaries of the objects by using graded, conformal, unstructured triangu-
lar and tetrahedral meshes [37]. However, all of these approaches increase
the complexity of the TLM computation. Higher memory requirements,
mesh queries and additional specialized techniques increase the complex-
ity of the TLM algorithm and computational time.

Another very important aspect is the possibility of parallelization of the
TLM solver. Structured solvers are much easier to be parallelized then
unstructured solvers. In general, properly designed structured solvers are
also always faster and more robust than properly designed unstructured
solvers.

Obviously, the main arguments why to use unstructured solvers is the
conformity of the mesh to the object and easier mesh generation than for
a structured solver. On the other hand, if we are able to approximate com-
plex curved geometries within a high-resolution structured Cartesian mesh,
i.e., a mesh where the spatial resolution is much higher thanthe curvature
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5 Transmission Line Matrix – Multipole Expansion Method

of the object, the computed solution will converge to the solution com-
puted with an unstructured mesh. A study on the influence of the stepped
(staircase) boundaries has been done for the finite-difference time-domain
method in [38].

Since TLM in the formulation of Symmetrical Condensed Node (SCN)
(and all the other condensed nodes) has both the electric field components
and the magnetic field components defined at the same discretespatial co-
ordinate, it is easy to introduce boundary conditions in theface of the TLM
cell. We may use the surfaces available from the TLM mesh to approximate
the curved two-dimensional objects. If the structured meshhas a sufficient
resolution, the curvature of the objects is well approximated.

In this example we use a regular structured Cartesian mesh with a high
spatial resolution – a High-Resolution Mesh (HRM). An HRM iscapa-
ble of approximating curved objects with high accuracy, since the spatial
discretization step is much smaller then the curvature of the object. The
rectangular waveguide is discretized within this mesh. Dueto the relative
ease of parallelization a parallel computational environment is also used.

An off-grid perfect boundary condition for the FDTD method has been
published by Rickard and Nikolova [39], implementing an enhanced stair-
case approximations. We use the same rectangular resonatoras in the
above mentioned paper and compare the results obtained in the HRM.

The rectangular cavity resonator has dimensionsa= 10 mm,b= 20 mm,
l = 30 mm, with thel-th dimension located along thez axis. The resonator
is rotated in theϑ andϕ directions and discretized using the HRM.

The configuration of the simulation and the simulation timesare sum-
marized in Table 5.1 and Table 5.2, respectively. The calculated resonant
frequencies and the relative error are summarized in Table 5.3. For the
simulations computing nodes with Pentium4 3.0 GHz processors, 1GB 400
DDR memory, connected with 1-Gbit/s switched Ethernet network, have
been used.

5.2.2 Wave Digital Filter models of radiation modes

We have seen in Section 3.2 the equivalent Cauer canonical representa-
tions of impedances of TE and TM radiation modes. In this Section these
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ϑ ϕ ∆l # Cells
0◦ 0◦ 1 mm 28×18×38= 19152
45◦ 0◦ 1 mm 40×18×40= 28800
45◦ 0◦ 0.5 mm 76×32×76= 184832
45◦ 0◦ 0.25 mm 156×52×156� 1.265×106

45◦ 45◦ 0.25 mm 156×148×156� 3.4×106

45◦ 45◦ 0.125 mm 300×284×284� 24.2×106

Table 5.1: Configuration of the rectangular cavity resonator. The distribu-
tion ratio in the distributed case is given in the brackets (x : y : z).

ϑ ϕ ∆l [mm] t standalone t distributed
0◦ 0◦ 1 mm 1.43 min -
45◦ 0◦ 1 mm 2.03 min -
45◦ 0◦ 0.5 mm 9.72 min -
45◦ 0◦ 0.25 mm 2.5 h 40.43 min; (2:3:1)
45◦ 45◦ 0.25 mm 6.5 h 1.82 h; (2:3:1)
45◦ 45◦ 0.125 mm - 21.78 h; (7:1:1)

Table 5.2: Simulation times of the rectangular cavity resonator.

ϑ ϕ ∆l [mm] f011; δ[%] f012; δ[%] f101; δ[%]
0◦ 0◦ 1 9.0101; 0.027 12.493; 0.012 15.805; 0.029
45◦ 0◦ 1 8.8223; 2.057 12.228; 2.107 15.556; 1.547
45◦ 0◦ 0.5 8.9624; 0.5 12.45; 0.331 15.705; 0.604
45◦ 0◦ 0.25 9.027; 0.215 12.537; 0.365 15.77; 0.192
45◦ 45◦ 0.25 8.973; 0.385 12.434; 0.4599 15.717; 0.528
45◦ 45◦ 0.125 9.0002; 0.082 12.479; 0.099 15.7811; 0.122

Table 5.3: Calculated resonant frequencies of the rectangular cavity res-
onator. All frequencies are given in GHz. Next to the resonant
frequency the relative error is given.
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Figure 5.4: Rectangular cavity resonator discretized withHRM; ϑ = 45◦,
ϕ = 45◦, ∆l = 0.125 mm.

impedance representations will be transformed into their equivalent digital
counterparts using Wave Digital Filters (WDFs) [25].

One main advantage of using WDFs over discrete filter structures ob-
tained via other transformation techniques like direct bilinear transform or
impulse invariance is their usage of wave quantities as portsignals. This
is a considerable advantage for the TLM method which is also based on
wave quantities.

With WDFs we can directly realize in digital domains the digital coun-
terparts of analog circuit elements like capacitors, inductors, resistors and
interconnections. Also, it is not difficult to generate ladder structures recur-
sively. Since the equivalent representations of radiationmodes are ladder
structures, they can be efficiently generated using these techniques.

Capacitors, inductors, resistors and interconnections as WDFs

The behaviour of capacitors, inductors, resistors and interconnections can
be efficiently and elegantly transformed to digital domain with WDFs (see
[25], pp. 274–280).

A capacitor is implemented as a time-delay by one time step with refer-
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ence port resistanceRC. The port resistanceRC is given by

RC =
1
C
∆t
2
, (5.9)

whereC is the capacitance of the analog capacitor to be modeled and∆t is
the discrete time step of the digital system. For our purposes∆t is equal to
the time step of the TLM algorithm.

Similarly, an inductor is implemented as a time-delay by onetime step
with reference port resistanceRL. The port resistanceRL is given by

RL = L
2
∆t
, (5.10)

whereL is the inductance of the analog inductor to be modeled.
Notably, the WDF realizations of capacitors and inductors lead to the

same results as those obtained from transmission line considerations by
Christopoulos (see [26], pp. 25–38).

The port resistance of a resistor is chosen to equal the resistance of the
analog resistor. Consequently, a resistor can be easily modeled as an ele-
ment without any reflection.

For the modeling of interconnection networks we use the parallel and
series adaptors. The port resistances of the interconnection network can be
chosen independently. The scattering matrices of the adaptors are delay-
free and energy conservative.

Recursive generation of ladder structures

For the recursive generation of WDF ladder structures therealizabilitycon-
dition is important. Realizability is granted when no delay-free directed
loop exists in the signal-flow diagram of the WDF and if the total delay in
any loop is equal to a positive integer multiple or zero multiple of the time
step∆t (see [25], pp. 271–272).

To assure a realizable WDF ladder structure we can use constrained in-
terconnection networks. A constrained adaptor has one input port matched.
Consequently, no reflections occur at this port and the outgoing wave of
the constrained port is independent of the incoming wave on that port. To
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5 Transmission Line Matrix – Multipole Expansion Method

match the constrained port we need to chose appropriately the reference
impedance of that port.

An example of a WDF realization of the impedance of TM3 radiation
mode is shown in Figure 5.5. Note the constrained interconnection net-
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R
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T
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R
L1
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C2

R'
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R'
3

T
-1

R
L2

η

a = 0

Figure 5.5: WDF ladder structure implementing the impedance of TM3 ra-
diation mode.

works. The constrained port is denoted by a short bar at the signal path of
the outgoing wave. From the figure we can see the periodic structure of
the digital filter, where the models for capacitors and inductors are alter-
nating. This periodicity is implemented efficiently by means of a recursive
algorithm.

5.3 The TLMME Algorithm

The difference between TLM and TLMME algorithms is in the application
of boundary conditions. From the point of view of the TLM method the
TLMME algorithm looks like a TLM algorithm with a special boundary
condition1.

The discrete time evolution is implemented in the TLM methodby means
of iterations. One iteration corresponds to the time evolution by one time
step. The iterations are repeated for as many time steps as required. One
TLM iteration is shown in Figure 5.6. We can see that the TLM itera-

1This is a result which we expect. Eventually, the ME is simulating a radiation boundary
condition.
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Scatter

Apply boundary conditions

Connect

Figure 5.6: One TLM iteration – evolution by one time step.

tion begins with the scattering process – theScatterprocedure. The scatter
procedure is applied to each TLM cell.

Next, the boundary conditions are processed – theApply boundary con-
ditions procedure. At this state of the iteration the wave quantities are
located at the interfaces of the TLM cells. Inside this procedure the excita-
tion is processed and the boundary conditions are applied.

Eventually, the wave quantities between neighbouring cells are exchanged
– theConnectprocedure – and become incoming waves for the next itera-
tion. The iteration can start from the beginning.

The TLMME algorithm is implemented inside the Apply boundary con-
ditions procedure and is schematically depicted in Figure 5.7.

In the first step we need to store the values of outgoing waves on the dis-
cretized spherical manifoldS (see Figure 5.1) and outgoing waves from
the WDF models of radiation modes – theGet values on sphereandGet
outgoing WDFprocedures.

We can summarize these waves in the vectoraT LMME defined as

aT LMME =

[

aT LM

aME

]

, (5.11)

where the vectorsaT LM andaME denote the outgoing waves of the spher-

81



5 Transmission Line Matrix – Multipole Expansion Method

Get values on sphere

Multiply with connection subnetwork matrix

Iterate over WDF models Set values on sphere

Get outgoing WDF

Save WDF state

Figure 5.7: One TLMME iteration – ME boundary condition.

ical manifold and the outgoing waves from the WDF models of radiation
modes, respectively. VectoraT LMME represents the incoming waves on the
connection subnetwork.

Next, we compute the outgoing waves of the connection subnetwork –
theMultiply with connection subnetwork matrixprocedure. The vector of
outgoing waves from the connection subnetwork is denoted bybT LMME,

bT LMME =

[

bT LM

bME

]

. (5.12)

The result of the Multiply with connection subnetwork matrix procedure is
the vectorbT LMME calculated as

bT LMME = ST LMMEaT LMME, (5.13)

whereST LMME is the scattering matrix of the connection subnetwork. There
is no time delay present in this scattering process.
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5.3 The TLMME Algorithm

The incoming waves onto the spherical manifold of the TLM domain
are now available in the vectorbT LM and the incoming waves onto the
WDF models of the radiation modes in the vectorbME. The incoming
wavesbT LM are set on the spherical manifold in theSet values on sphere
procedure. The incoming wavesbME are used for one time step iteration
over all WDF models – theIterate over WDF modelsprocedure.

Eventually, the state of the WDF models needs to be stored in order to
be used during the next TLMME iteration. This is done in theSave WDF
stateprocedure.
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6 Numerical Examples

6.1 Flat Dipole Antenna

The first example on which the TLMME method and it’s features will be
demonstrated is a flat dipole antenna. This example is simpleenough to be
solved to some extent analytically, but does include enoughcomplexity to
highlight important behaviour of the TLMME method. The layout of the
flat dipole antenna is shown in Figure 6.1.

30
2

1 30

PEC

Figure 6.1: Top view of the flat dipole antenna; all lengths are given in mm
units.

To evaluate the performance of the TLMME method, the input admit-
tance of the flat dipole is chosen as the key antenna characteristics. It
is well known and generally valid that the input admittance/impedance is
much more sensitive to the accuracy of the modelling method than other
antenna parameters like the radiation pattern (cf., e.g., [40]).

In this example the input admittance of the flat dipole is firstcalculated
analytically. Then, a TLM computation with absorbing boundary condi-
tions on cubical simulation region and a TLMME computation results will
be presented.

85



6 Numerical Examples

6.1.1 Analytical characterization

For the analytical characterization of the flat dipole antenna an approxima-
tion by a thin wire dipole antenna is done (see [40], p. 454). The equivalent
radiusae of the wire dipole is given by

ae= 0.25w, (6.1)

wherew = 2mm is the width of the flat dipole antenna (see Figure 6.1).
Using the induced emf method (see [41], pp.359–434) the realand imagi-
nary parts of the input impedance referred to at the current maximum are
given by ([40], p. 410)

Rm=
Z0

2π

[

C+ ln(kl)−Ci(kl)+
1
2

sin(kl)
(

Si(2kl)−2Si(kl)
)

+
1
2

cos(kl)

(

C+ ln

(

kl
2

)

+Ci(2kl)−2Ci(kl)

)]

,

(6.2a)

Xm=
Z0

4π

[

2Si(kl)+cos(kl)
(

2Si(kl)−Si(2kl)
)

−sin(kl)

(

2Ci(kl)−Ci(2kl)−Ci

(

2ka2
e

l

))]

,

(6.2b)

whereZ0 = 377,k = ω
c0

, C = 0.577215665 is the Euler’s constant,l is the
length of the dipole,ae is the equivalent radius of the dipole, Si(x) is the
sine integral and Ci(x) is the cosine integral given by

Si(x) =
∫ x

0

sin(t)
t

dt, (6.3a)

Ci(x) =
∫ x

∞

cos(t)
t

dt. (6.3b)
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6.1 Flat Dipole Antenna

The real and imaginary parts of the input impedance referredto at the cur-
rent at the input terminals are computed from

Rin =
Rm

sin2(kl/2)
, (6.4a)

Xin =
Xm

sin2(kl/2)
. (6.4b)

6.1.2 TLM and TLMME computations

The setup for the TLM simulation with absorbing boundary condition (ABC)
and the TLMME simulation is shown in Figure 6.2. The dipole isoriented

Absorbing boundary

Multipole expansion boundary

radius r

Figure 6.2: Flat dipole antenna simulation setup for TLM simulation with
absorbing boundary condition and TLMME boundary condi-
tion.

along thez-axis and may be considered as rotationally symmetric. Conse-
quently, only TMn0 radiation modes need to be considered. These modes
have fields independent ofϕ.
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6 Numerical Examples

The dipole antenna was discretized with a uniform spatial discretizetion
step∆x= ∆y= ∆z= 1mm. For the TLM simulation with ABC the dimen-
sions of the computational box are 70mm×70mm×70mm resulting in a
total number of 343000 TLM cells. For the TLMME simulation the radius
r = 35mm and the number of TMn0 modesN = 5. Both, the TLM with
ABC and the TLMME simulations, were performed withn = 5000 time
steps.

The antenna was excited with a discrete Dirac impulse on a discrete
source port distributed over 2 cell interfaces. The reference resistance of
the source port equals377

2 Ω. The 5×5 scattering matrix of the connection
network reads

S=
1
3
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












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


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

−1 1 1 1 1
2 −2 1 1 1
2 1 −2 1 1
2 1 1 −2 1
2 1 1 1 −2







































. (6.5)

It can be verified by direct computation that this scatteringmatrix is en-
ergy conservative, i.e.,|det(S)| = 1, and thatS·S= I . The matrix is not
symmetric since the reference resistances on the ports differ.

The results of the calculated input admittance by the TLM andthe TLMME
are shown in Figure 6.3 and Figure 6.4. The results are compared with a re-
sult obtained by method of moments (MoM). The MoM computation was
done using EMAP5 software [42].

We can see a good agreement between the different methods. The ad-
mittance computed by the TLMME method agrees slightly better with the
MoM computation than the TLM computation with ABC.

Furthermore, in contrast to the TLM calculation with ABC, the TLMME
computation provides us with novel information about the radiated field,
e.g., the amount of radiated energy and the distribution of this energy
among the different radiation modes. This kind of information is never
available when using TLM with ABC. Also, since the temporal depen-
dence of the modal coefficients is known in the TLMME method, we can
reconstruct the radiated field without the need to re-simulate the whole
problem.
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6.1 Flat Dipole Antenna
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Figure 6.3: Real part of the input admittance of the flat dipole antenna.
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Figure 6.4: Imaginary part of the input admittance of the flatdipole an-
tenna.
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6 Numerical Examples

In Figure 6.5 we can see the instantaneous energy of the incoming, re-
flected and transmitted (radiated) signals. A detailed viewon the energy
of reflected signal is shown in Figure 6.6. We see that the amount of en-
ergy reflected from the radiation modes back to the TLM domainis much
smaller compared to the amount of energy transmitted to the termination
impedances of the radiation modes. Consequently, most of the energy is
radiated. This explains why the results obtained by TLM withABC and
by TLMME are similar in this particular example.
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Reflected energy from radiation modes
Radiated energy in radiation modes

Figure 6.5: Energy of incoming, reflected and radiated signals.

6.2 Dipole Antenna at the Boundary of
Simulation Region

For the absorbing boundary condition to work properly, there must be a cer-
tain distance between the geometric object and the computational bound-
ary. In this example a dipole antenna of 6mm length is placed at the bound-
ary of the simulation region and its input impedance is computed.
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6.2 Dipole Antenna at the Boundary of Simulation Region
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Figure 6.6: Detailed view on the energy of the reflected signal.

For the comparison the following simulation setups are used:

1. Reference simulation with ABC,

2. TLM with ABC on cubical simulation region,

3. TLM with ABC on spherical TLM region,

4. TLMME boundary condition on spherical TLM region.

The discretized dipole antenna inside the spherical TLM region is shown
in Figure 6.7. Except in the case of the reference simulation, the dipole
antenna is touching directly the boundary of the simulationregion.

For the reference simulation a simulation domain of the sizeof 50mm×
50mm× 50mm was used. The other parameters were the same as those
described below for the other simulations.

The setup for the ABC and TLMME simulations was:

• Simulation domain of 20mm×20mm×20mm,
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6 Numerical Examples

Figure 6.7: Dipole antenna inside spherical TLM region. Theantenna is
touching the boundary of the simulation region.

• Uniform spatial discretization with∆x= ∆y= ∆z= 1mm,

• Number of TLM iterationsn= 500 time steps,

• Radius of the spherical TLM regionr = 10mm,

• Excitation by a discrete Dirac impulse on a discrete source port dis-
tributed over 2 cells with reference port resistance equal 377/2Ω
(same as in the previous example).

For the TLMME simulation only TMn0 modes were considered and the
number of modes wasN = 25.

The results of the computed input impedance for the different setups
are shown in Figure 6.8. We can see that the results of ABC simulations
when the dipole is touching the boundary are not correct in both cases, the
cubical simulation region and the spherical simulation region. The reactive
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6.3 Bowtie Antenna

part of the input impedance does not properly reflect the resonance of the
antenna. On the other hand, we can see a good agreement between the

5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10
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-400
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TLMME in spherical TLM region

ABC in spherical TLM region

ABC in cubical TLM region

ABC - reference simulation

Figure 6.8: Real and imaginary parts of the input impedance of the 6mm
dipole for different simulation setups.

TLMME simulation and the reference simulation, even if the antenna is
touching the boundary of the simulation region. The imaginary part reflects
correctly the resonances of the antenna and also the real part agrees well
with the reference simulation.

6.3 Bowtie Antenna

In this example the input impedance of broadband planar bowtie antenna
is computed. The purpose of this example is to demonstrate the perfor-
mance of the developed excitation techniques by means of interconnection
networks (see Section 2.4).

The dimensions of the antenna structure are shown in Figure 6.9. As
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6 Numerical Examples

was the case in the previous section, also here for the bowtieantenna the
input impedance is the main antenna characteristics of interest.

30

3090◦

Figure 6.9: The bowtie antenna; all dimensions are given in mm.

The bowtie antenna was discretized with a spatial discretizetion step
∆l = 0.25mm in a computational box with dimensions 50mm×50mm×
50mm. At the outer boundary of the simulation domain absorbing bound-
ary conditions were applied.

For the excitation a discrete power source with a connectionnetwork
distributed across 2×2 cell interfaces was used. The antenna was excited
with a Dirac impulse. The WDF representation of the connection network
is shown in Figure 6.10. The port impedances of the ports werechosen so
that realizability is ensured (see Section 5.2.2 and [25], pp. 271–272). The
9×9 scattering matrix of the connection network reads

S= −1
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


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, (6.6a)
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V1 =

[

1 1 1 1
]

T , (6.6b)
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(6.6c)

94



6.3 Bowtie Antenna
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Figure 6.10: WDF representation of a 2× 2 connection network; the port
impedances are also shown.

95



6 Numerical Examples

and
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It can be checked by direct computation thatS·S= I and|det(S)| = 1.
The result of the computed input impedance using the discrete source in

TLM is shown in Figure 6.11. We can see a good agreement with method
of moments (MoM) result presented in [43] and measurement result pre-
sented in [44].
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Figure 6.11: Input impedance of the bowtie antenna. MoM simulation re-
sults are taken from [43] and measurement results from [44].

In Figure 6.12 the first 150 time steps of the reflected wave at the source
port are shown. From the returns to zero of the signal can be clearly seen
that non-physical modes are present in the simulation. However, since the
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6.3 Bowtie Antenna

TLM model is linear and since there is only one source port, the results for
low frequency components are correct.
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Figure 6.12: Time domain signal for 150 time steps of the reflected wave
at the source port.
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7 Conclusions

In this thesis the Transmission Line Matrix — Multipole Expansion method
(TLMME) has been presented. The TLMME method allows an efficient
and potentially exact modeling of radiating electromagnetic structures.

In TLMME the time-domain Transmission Line Matrix (TLM) method
is combined with the multipole expansion of the radiated field. The total
radiated field is decomposed into orthonormal radiation modes which are
connected to the TLM simulation domain on a spherical boundary. In a
global network model the simulation domain is modeled by theTLM mesh
of transmission lines, every impedance of the radiation mode is modeled
by a ladder network oneport and the connection of these partial networks
is accomplished by an ideal transformer connection network. This allows
to include potentially exact radiating boundary conditioninto the TLM
model by lumped element equivalent circuits representing the impedances
of radiation modes.

In Chapter 2 the principles of the TLM method were introduced. It was
shown how the scattering matrix of the TLM method is obtainedusing dis-
crete differential forms. Furthermore, novel techniques for the excitation of
TLM cells by means of discrete sources were developed. The connection
networks employed provide as port signals incoming and outgoing waves
and are thus easily coupled to the TLM method which uses wave quantities
as well. Also, they enable the excitation of the TLM model with a discrete
Dirac impulse signal. Very good performance of the discreteexcitation
technique was verified on an example of bowtie antenna in Section 6.3.

In Chapter 3 the theory of multipole expansion and radiationmodes was
given. It was shown how the impedances of radiation modes canbe repre-
sented using equivalent Cauer circuits.

In Chapter 4 the connection subnetwork connecting the TLM region to
the impedances of the radiation modes was described. The scattering ma-
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7 Conclusions

trix of the connection subnetwork was derived and its special cases were
discussed.

The TLMME method was described in detail in Chapter 5. The spher-
ical TLM region was described and its generation by means of Cartesian
mesh generator was explained. The performance of the Cartesian mesh
generator was evaluated on an example of a rectangular cavity resonator.
We could calculate the resonance frequencies with a relative error below
0.2 % for the highest mesh resolution. Furthermore, the realizations of the
impedances of the radiation modes by means of wave digital filters (WDFs)
were described and the details of the TLMME algorithm were explained in
detail.

The results of the calculation of the input impedance of antennas using
the TLMME method were given in Chapter 6. First, a flat dipole antenna
was characterized. We have seen good agreement between the results ob-
tained by the TLMME method, the TLM method using absorbing bound-
ary condition (ABC) and the method of moments (MoM). However, in
contrast to the TLM method with ABC, the availability of additional infor-
mation about the radiated field in the TLMME method could explain why
the solution using TLM with ABC is similar to that of TLMME forthe
particular example. For the example of the flat dipole antenna most of the
field hitting the boundary of the simulation domain is radiated, as could be
observed from the energy transmitted to the termination impedances of the
radiation modes.

In the example of a dipole antenna located at the boundary of the sim-
ulation domain was shown that the TLMME method gives better result of
the input impedance of the antenna than the TLM method with ABC. In
contrast to the TLM method with ABC the input impedance computed by
the TLMME method was correct even if the dipole antenna is touching the
boundary of the simulation domain.

There still remain many tasks which could be done in the future. One
problem of the TLMME method in the current implementation isthe non-
conformity of the discretized spherical manifold to the true spherical man-
ifold. When a tetrahedral implementation of TLM is available, the per-
formance of the TLMME method could be tested with a sphericalTLM
simulation region conforming better to the true spherical manifold.
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Furthermore, planar structures with conducting ground area set of very
important problems in today’s industry. To solve the radiation problems of
these planar structures efficiently by TLMME, a half-space formulation of
the TLMME could be developed and implemented.
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A Useful Formulas and
Relations

A.1 Central Difference Scheme

Let’s have a functionf (x) of x ∈ R and f : R → R. The first central
difference, using discretization step∆x, is given by

[

df (x)
dx

]

D
=
∆ f (x)
∆x

=
f (x+ ∆x

2 )− f (x− ∆x
2 )

∆x
= f ′
∆
(x). (A.1)

The second order central difference is then obtained by

[

d2 f (x)

dx2

]

D
=

[

d
dx

([

df (x)
dx

]

D

)]

D

=

[

d
dx

(

∆ f (x)
∆x

)]

D
=

[

d
dx

f ′
∆
(x)

]

D
=

=
f ′
∆
(x+ ∆x

2 )− f ′
∆
(x− ∆x

2 )

∆x
=

=
1

∆x2

(

f (x+∆x)−2 f (x)+ f (x−∆x)
)

=

= f ′′
∆

(x)

(A.2)

A.2 Transformations Between Wave and
Network Quantities

Possible transformations from network quantities to wave quantitiesTW

and from wave quantities to network quantitiesTN.
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A Useful Formulas and Relations

Transformation 1

TW =
1
√

2

[

1 η

1 −η

]

(A.3a)

TN =
1
√

2

[

1 1
1
η
−1
η

]

(A.3b)

Transformation 2

TW =

[

1 η

1 −η

]

(A.4a)

TN =
1
2

[

1 1
1
η
−1
η

]

(A.4b)

Transformation 3

TW =
1
2

[

1 η

1 −η

]

(A.5a)

TN =

[

1 1
1
η
−1
η

]

(A.5b)

Normalized wave quantities

V′ =
V
√
η
, I ′ = I

√
η (A.6)

z=
V′

I ′
=

1
η

V
I
=

Z
η

(A.7)

Then, transformation 1 reads

TW =
1
√

2

[

1 1
1 −1

]

(A.8a)

TN =
1
√

2

[

1 1
1 −1

]

= TW (A.8b)
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A.3 Matrix Algebra Rules

A.3 Matrix Algebra Rules

A.3.1 Transposition and inversion

(AT)T = A (A.9)

(A ±B)T = AT ±BT (A.10)

(AB)T = BTAT (A.11)

(ABC)T = (BC)TAT = CTBTAT (A.12)

For any nonsingular matrixA

(AT)−1 = (A−1)T (A.13)

A.3.2 Block matrix and Schur complement

In the following consider the matrices [A]p×p, [B]p×q, [C]q×p, [D]q×q,
whereD is nonsingular. Let [M ](p+q)×(p+q) be the block matrix (partitioned
matrix)

M =
[

A B
C D

]

. (A.14)

The transpose ofM is given by

MT =

[

A B
C D

]T

=

[

AT CT

BT DT

]

. (A.15)

The Schur complementSA is defined as

SA = A −BD−1C. (A.16)

With the Schur complement the inverse matrixM−1 can be calculated as

[

A B
C D

]−1

=

[

I 0
−D−1C I

] [

S−1
A 0
0 D−1

][

I −BD−1

0 I

]

. (A.17)
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A Useful Formulas and Relations

A.4 Taylor Expansion in 2D

The Taylor expansion of a two-dimensional functionf (x+∆x,y+∆y) around
the point (x,y) is given by

f (x+∆x,y+∆y) = f (x,y)+
(

(∆x) fx+ (∆y) fy
)

+

+
1
2

(

(∆x)2 fxx+2∆x∆y fxy+ (∆y)2 fyy

)

+ . . . ,
(A.18)

with fx = ∂ f (x,y)/∂x, fxx = ∂
2 f (x,y)/∂x2, etc.
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