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Abstract

In this thesis the Transmission Line Matrix — Multipole Exyzéon method
(TLMME) is presented. The TLMME method allows afiieient and po-
tentially exact modeling of radiating electromagnetiastures. In the
TLMME the time-domain Transmission Line Matrix (TLM) metthas
combined with the multipole expansion (ME) method of thaated! field.

The total radiated field is decomposed into orthonormahtiat modes
which are connected to the TLM simulation domain on a comnpbres-
cal boundary. In a global network model the simulation don&imodeled
by the TLM mesh of transmission lines, every impedance ofélaéation
mode is modeled by a ladder network one port and the conmeztithese
partial networks is accomplished by a connection subnétwonsisting
of ideal transformers. This allows to include potentialkaet radiating
boundary condition into the TLM model by lumped element ealgint
circuits representing the impedances of radiation modes.
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1 Introduction and Overview

We live in time where the demand for electronic devices,tedeic instru-
ments, electronic systems and electronic informationgssinig devices is
booming. Not only became these devices indispensable itvelgeryday
life but our society became dependent on them. To name st @Xam-
ples: itis “impossible” to imagine air tfAc control without radio commu-
nication, medical surgery without an electrocardiograp8@G), informa-
tion processing without an electronic computer or infoipraspreading
without the Internet.

The underlying fabric of all these devices and systems axdrét charges
and with them associated electromagnetic fields. It is tliuwsonder that
there is a high demand for tools which let us better undedstaptimize,
design and synthesize electronic devices and systems. haainaethods
for electromagnetics are such tools. With them we obtairpgnaximative
solution of the electromagnetic equations.

The physical model of electromagnetic phenomena has beepleted
by James Clerk Maxwell in the year 1865 in his paper “A Dynahidhe-
ory of the Electromagnetic Field”. The four electromagoetjuations are
called in honour of Maxwell's work Maxwell’s equations. Inshwork
Maxwell has introduced the displacement curtgpt

0D

jDZE

as a temporal rate of change of the electric flux der®ityThe displace-
ment current has established a coupling between the electd the mag-
netic field.

However, even if the theory of electromagnetism is 142 yelrsiow!,

1In 2007.



1 Introduction and Overview

the solutions of the equations of electromagnetic field cafolind ana-
Iytically for a very limited set of problems. Actually, most technically
interesting problems do not have an analytic solution, odw&ot know
how to find it. In these cases we seek for an approximate solutsing
numerical methods.

Numerical methods and approximate solutions of electrareigequa-
tions have been gaining substantially on importance siboeitad0 years.
The developments of powerful electronic computers in tkeyaars have
made it possible to solve numerically large problems at logt.c Today,
full-wave? solutions of many technically interesting problems can be o
tained using a personal computer (PC).

Special care must be taken if open radiating electromagsgtictures
are to be characterized with a volumetric discretizatiorthoe (more on
the classification of numerical methods can be found in 8edti2). This
is so, because the computational resources are limited arwdwcreate a
numerical model for only a relatively small vicinity of théaysical struc-
ture. The radiating properties are to be modeled by ap@tgpboundary
conditions.

Numerical modeling of radiating boundary condition for fRransmission
Line Matrix method is the focus of this thesis.

1.1 The Big Picture

In this thesis the Transmission Line Matrix (TLM) methodhg thumeri-
cal method of choice for one part of the spatial domain. Aapthart of
the spatial domain is represented by multipole expansids)(@dchnique.
The two methods are combined using network oriented approaach is
discussed in [1]. The matching of the electromagnetic fiefitesented by
TLM and ME can be seen as a mode matching technique.

The TLM method, as considered here, is a numerical time-@otaah-
nigue which has been used since its introduction by John8ende [2]
in 1971 to solve various problems in electromagnetic eraging [3]. In

2Full-wave solution is a solution for both, the electric andgnetic field, in space and time.



1.1 The Big Picture

TLM the field is discretized in space and time and modeled byevpailses
propagating and being scattered in a mesh of transmissies.liWhen
radiating electromagnetic structures are modeled theoppiate radiating
boundary conditions at the boundary of the computationalaln need to
be included in the computation. In the literature methods#dize absorb-
ing boundary conditions (ABCs) are discussed [4], [5], [6]. [8]. [9].
These methods give approximate solutions of the problentteypw@ating
the radiating electromagnetic field, possibly without spus reflections
from the boundaries of the simulation domain.

On the other hand, the hybrid Transmision Line Matrix — Maote Ex-
pansion (TLMME) method, which is described in this text,lg&a po-
tentially exact solution for general radiating electromeiic structures in
homogeneous media. In contrast to the ABC approach, the TENMMd-
els the complete radiated field.

In this hybrid method the problem space is divided in two paleges
%1 and %, connected at a common bounda#y — see also Figure 1.1.
SubspaceZ; represents the TLM region where the discretized structure
and the sources are modeled and subsp&o@presents the homogeneous
background space where the radiating electromagnetici§e&presented
in terms of ME.

The connection between subspacésand %- is established from its
network representation. The connection network, whiclneots subspace
Z#1 andZ» and contains only ideal transformers [10], [1], is connédte
lumped element equivalent circuits representing impeeaioé radiation
modes.

The basis one-forms [11] of the ME are orthogonal and form m-co
plete set. A compact lumped element LC ladder network remteyy the
coupling between the electric and magnetic field intersitiay be estab-
lished [10].

In the TLM method the spherical boundary is approximated i
cal TLM cells. The connection of the outer faces of the TLMIs@n
the spherical boundary to the spherical modes is modeledchym@ection
subnetwork.



1 Introduction and Overview

h%i///
T
S f’\k

Figure 1.1: Left: schematic representation of the divigibive unbounded
space in subspaceg; and %> with the boundary?. Right:
schematic representation of the global network model of the
TLMME simulation.

1.2 Numerical Solutions of Maxwell's
Equations

In this Section a brief classification of main numerical noets used for
solving the electromagnetic equations is given and theorefs the trun-
cation of the simulation domain is shown.

For the numerical solution of Maxwell's equations varioashniques
have been proposed and new are still coming. We can disfhdug-
tween time-domain and frequency-domain techniques. Aarqtbssibil-
ity is to distinguish between volumetric discretizationtirels and surface
discretization methods (see Figure 1.2). Volumetric diSzation meth-
ods lead to finite-dference formulations, whereas surface discretization
methods to integral equation formulations.

As we can see, there is a vast number of numerical methodsame ¢
use to solve the electromagnetic problem. However, notyavethod is
suitable for a particular problem. A hybrid approach is araative way
how to combine the power of fierent methods.
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1 Introduction and Overview

Truncated simulation domains

Since the computational resources of today’s computensaaydimited, it
is impossible to discretize large volumes of space. Thedimp to which
we are able to solve a problem are set by

e memory requirements,
e time needed to process the information.

To get a better feeling for what are the memory requiremensoive
an electromagnetic problem, let us take a look at the folignexample.
There is given a structure assumed to be perfect electridumar (PEC)
in air and we wish to compute the scattered electromagnelit A three-
dimensional computational domain of 200@000x 2000 TLM cells re-
quires 3072000000000 bitso hold the information about the electro-
magnetic field. This amount of information means

2000x 2000x 2000x 12x 32
1024x 1024x 1024x 8

=357.63GB of memory

Increasing the spatial resolution just twice in every dimtresults in eight
times larger memory requirements. For the particular exey2®861GB of
memory would be needed.

Consider that the human genome needs 70000000 bits to bafdat-
mation. The previous example needs more than 40000 times. nkair-
thermore, the time needed to process this amount of infeomegt inverse
proportional to the speed of information processing.

This example shows the reasons why we are not able to dzenadry
large structures. Consequently, the computational regiest be truncated
to finite, relatively small region around the physical stune. At the outer
boundaries of this computational region special boundanglitions need
to be applied.

3For the modeling of free-space we need 12 variables per TLM ¥ée assume a TLM
variable to be represented by a 32 bit floating point number.



1.3 Organization of the Thesis

For radiating structures the special boundary conditiaralkedradiat-
ing boundary conditionfor periodic structureperiodic boundary condi-
tion is used; for resonating structures assumed to be insidefecpetec-
tric conducting boPEC boundaronditions are applied; the dual perfect
conducting magnetic wallBMC boundary conditionare used usually to
impose symmetry conditions.

Of the mentioned boundary conditions the radiating boundandi-
tions are the most licult ones to be realized numerically.

1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2 the TrarsarisLine
Matrix (TLM) method is described in detail. The principldtioe method
are shown from the point of view of statistical mechanics tadrelation
of the TLM scattering matrix to Maxwell's equations is exgsed in terms
of discrete diferential forms. A way of modeling discrete sources suitable
for the modeling of excitation of antenna structures is @nésd.

Chapter 3 is devoted to the multipole expansion (ME) methde. radi-
ation modes and their canonical circuit realizations asedeed in detail.

Chapter 4 discusses the connection between the TLM domadlirthen
outer domain represented in terms of ME. The fundamentiddeh’s the-
orem is described and the scattering matrix of the connestikbnetwork
is derived.

The hybridization of the TLM method and the ME method is pnésd
in Chapter 5. First, the spherical TLM domain needed for th&WE
method is described in detail. Next, the pre-processiratedltasks are
discussed. The generation of the connection matrix andeidlezation of
the canonical equivalent circuits of the radiation modésgieave digital
filters (WDFs) are shown. The Chapter is concluded with treedetion
of the TLMME algorithm.

Chapter 6 presents examples of electromagnetic solutmstenna
structures using the TLMME method and shows the validitguaacy and
new features of the method.
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Finally, the conclusions of the thesis are presented in @&nap Useful
formulas, relations and operations are listed in Appendix A



2 Transmission Line Matrix
(TLM) Method

2.1 Principles of TLM

The Transmission Line Matrix (TLM) method is a discrete mipgtespace
and time, of the electromagnetic phenomena.

The TLM method has been introduced by Johns in 1974 as a two di-
mensional method [12] and extended in 1987 for three dino@ssivith
the development of symmetrical condensed node [13]. Sinee there
have been many attempts to derive the method directly fromwad's
equations, and so to prove the validity of the method [14],[[16], [17],
[18], [19].

The way from the continuous model to the discrete one is tnedstrd
way used to derive finite fierence time domain (FDTD) method, finite
integral technique (FIT) and other methods. Also, discdéterential cal-
culus follows this way.

On the other hand, as ffoli suggests (see [20] and [21]), the other way
around, i.e., from a discrete model to the continuous omayish more ap-
propriate, if we want to develop intrinsically discrete natsdof nature. The
argument, why we should do this, is supported by the rapieldement
of digital technologies and consequent information prsicesfacilities.
These make it possible to have new ways of describing theeaatu

It is difficult, however, to cope with the idea of giving up the powerful
techniques and models developed during the last 300 yganessented by
means of dierential equations. The models have, however, their liamits
most of technically interesting phenomena can not be sdiyeghalytical
techniques directly. But we do not want to give them up. Wetwarle-



2 Transmission Line Matrix (TLM) Method

velop alternative intrinsically discrete models of natyf@enomena which
will behave, under specific circumstances, like the anedytnodels.

The idea of a transition from a discrete description to aicous one
is well-known in statistical mechanics. In Section 2.2 wé sge how the
one-dimensional, two-dimensional and three-dimensidifadsion equa-
tions and the one-dimensional wave equation are obtainedragmuum
limits of intrinsically discrete models.

The TLM method can be seen in a broader view as a cellular astom
ton (CA). The notion of cellular automata has been first exquidoy John
von Neumann. Cellular automata consist of independent atingpunits,
which exchange their values with neighboring units andoetiagly, change
their state. A cellular automaton has intrinsically pagiatiaturé.

Usually, CA are considered to contain only discrete vaesalas their
states. The Coupled Map Lattices (CML) [22] are computatiomodels
where the internal state of each cell is represented in tefrasntinuous
variables, but space and time remain discrete. The conipogimecha-
nism of CML are identical with those of CA. Thus, théfdrence between
CA and CML is in the representation of the state of a cell bysamdite or
continuous variable, respectivély

The state of a TLM cell can be described by a vector of wave tijfies
The transformation from one state to another — the compuntafione cell
— is represented by a scattering process. So, if the infeemabout the
state before scattering is stored in a veetand the result of the scattering
— computation — in a vectdr, we may express the computation process of
aTLM cell as

b=Sa 2.1)

whereSis the scattering matrix. The scattering matrix defines tivagu-
tation performed by a cell.

In a consequent step the information between neighboriltg iseex-
changed and the process starts from the beginning (moriedied@scrip-

1with the introduction of multicore processors paralleli@gaining on importance more
than ever.

2CML models have been used recently to implement physitssed visual simulations
for real-time visual simulations [23].

10



2.2 Statistical Mechanics, Bision Equation, and TLM

tion of TLM iteration is given later in Section 5.3). This algthm is equal
to the algorithm of a cellular automaton using continuoasesvariables.
In Section 2.3 it is shown how the TLM scattering matricesved-tand
three-dimensional free-space TLM nodes can be obtained) ulscrete
differential forms.

2.2 Statistical Mechanics, Diffusion Equation,
and TLM

2.2.1 One-dimensional diffusion equation

In this Section it is shown how the behaviour of a discretdesysin its
continuum limit is investigated. In the text | follow the @eption and |
use the same notation as in [24] (pp.15-20).

The one-dimensional flusion equation is obtained as a continuum limit
of one-dimensional uncorrelated random walk. A random vgdiprocess
in which a particle moves a distanceAx| in time At. The direction of the
movement, i.e., in the positive or negatixalirection, is random. Both
cases occur with the same probability.

We can describe the random walk by a probability distribufinction
x(X) defined for the particular case of one-dimension as

x(x) = %6(X—AX)+ %6(x+ AX), (2.2)

whered(X) is the Dirac delta function. The first three momentg ©{) are
[roax=1 (2.33)

fo(x) dx =0, (2.3b)

f X2 x(X) dx = (AX)2. (2.3¢)

We see from (2.3) that the mean valugX) is zero and that the standard
deviation isAX.

11



2 Transmission Line Matrix (TLM) Method

The one-dimensional flusion equation is given by the equation

dp(xt)  _9%p(x.1)
=D 2.4
ot ox2 24

whereD is the difusion codicient. The difusion equation describes the
evolution of the density functiop(x,t).

The density functiom(x,t) can be interpreted fierently for a one par-
ticle system and a many particle system. For a one particdesythe
density function describes the evolution of the probapii&nsity for lo-
cating the particle at positior at timet. For many particle system the
density function describes the density offdnding particles (mass).

If we know the probability density(x,t) at a particular time, its evolu-
tion at timet + At can be written with (2.2) as

plxt+A) = f X(x=X)p(x.t) d¥’ = f Y@p(x-zt)dz. (25)

with z= x— x’. Taking the Taylor expansion p{x— zt) aroundx we can
write (2.5) as

() | 2 Fp(x1)
ox 2 ox?

Using only the first three terms of the Taylor expansion i) ®ve obtain
with (2.3) the approximative expression

(AX)? 8%p(x.1)
2 ox2

Reorganizing (2.7) and dividing both sideshiywe obtain the approxima-
tive equation

.ldz  (2.6)

ot = [ x@ [p(x,t)—z

o(X,t+At) = p(x,1) +

2.7)

1 (AX)2 3%p(x,1)
A—t(p(x,t + A = p(x.1)) > AL 5,2

In the continuum limit this equation becomes thé&wsion equation (2.4)

with the diffusion codficientD given by
_ (Ax)?
T O2AtC

(2.8)

(2.9)

12



2.2 Statistical Mechanics, Bision Equation, and TLM

The random walk can be implemented numerically by an algargim-
ilar to the TLM algorithm (the CA algorithm). From (2.2) we ¢ that
if a particle arrives at timéat a nodexq, there is equal probability that at
timet+ At this particle will be either at the node,-1 or at the nodey, 1.
The scattering matrix

11 1
S:E[l 1] (2.10)

models then the one-dimensionaffdsion equation.

2.2.2 Two- and three-dimensional diffusion equation

In a similar way to the previous Section we may derive the tivoensional
diffusion equation given by

2 2
Op(xy.t) _ o (Pp(ey.)  Pp(xy.t)) (2.11)
ot ox2 ay?

The probability distribution for the two-dimensional ramd walk takes
the form

x(xy) = ié(x— AX,Y) + %6(x+ AXY) + id(x,y— Ay) + %6(x,y+ Ay).
(2.12)
Using the two-dimensional Taylor expansion (see AppendiEguation
(A.18)) it is possible to show that the two-dimensional rmmdvalk in its
continuum limit corresponds to the two-dimensiondlgion equation.

Similarly to the one-dimensional case, the scatteringimatr

(2.13)

Nl
[ENFENSFEN N
PR R e
e
e

13



2 Transmission Line Matrix (TLM) Method

models the two-dimensionalfflision equation and the scattering matrix

(2.14)

ol =
PR RPRRRR
PR RRRPR
PR RPRRRR
PR RRRR
PR RPRRRPR

models the three-dimensionatidision equation.

2.2.3 One-dimensional wave equation

The scattering matrix of the one-dimensional TLM method&efspace is
given by

S= (2.15)

1 O

o

We will see now that with this scattering matrix the one-disienal wave
equation is modeled. It is easy to check that the scatteraigxris energy
conservative|@et@)| = 1) and invariant to time-reverseé(S=1).

The one-dimensional wave equation is given by

Pp(xt) _ 20%p()

a2 e (2.16)

where the constantis the speed of propagation.

Using the scattering matrix (2.15) the probability distitibn function
x(X) can be written as

x(X) = 6(X£AX). (2.17)

14



2.2 Statistical Mechanics, Bision Equation, and TLM

The first moments of the probability distribution are

f x(¥) dx=1, (2.18a)
f Xx(X) dx = FAX, (2.18b)
f X2 x(X) dx = (Ax)?, (2.18c)
f X2 x(x) dx = F(Ax)3, (2.18d)
f X* x(X) dx = (AX)%, (2.18e)

(2.18f)

In analogy to (2.6) and by using (2.17) we get

p(X,t+At) = f)((Z)p(X— zt)dz= fp(X— 1) 6(z+ AX) dz= p(x+ AX,1)
(2.19)

which is the one-dimensional advection equation for thesiigrfiunction
o(x1). In (2.19) we have used the sampling property of the Dirdtade
function. From these two solutions we obtain directly the-gimensional
wave equation.

If we interpret the probability distributiop(x,t) as wave quantities, we
see from (2.19) that the wave quantities satisfy exactly

a(x,t+ At) = a(x— Ax,t), (2.20a)
b(x,t+ At) = b(x+ Ax,t). (2.20b)

Using Taylor expansion we may approximate (2.20) by

oa(x,t)

a(x— Ax,t) = a(x,t) - AX——— + O(AX?), (2.21a)

ab(x,t)
1404

b(x+ Ax,t) = b(x, t) + Ax——— + O(AX?), (2.21b)

15



2 Transmission Line Matrix (TLM) Method

which may be rewritten as (using approximations for smagotkarying
guantities in space and time)

a(xt+Af)—a(xt) da(xt) _Ax oa(x,t)

At T8t T At ox (2.222)
b(x,t+At) —b(x,t) db(xt) Axdb(x1)
At Tooat At ax (2.22b)

These are the one-dimensional advection equations forakie guantities
a(x,t) andb(x,t).

Using the transformations (A.5b) from wave quantities ttwoek quan-
tities (see Appendix A) witly = 1 we have the following relations

V(x,1) = a(x,t) + b(x,1), (2.23a)
(%, t) = a(x,t) — b(x,1). (2.23b)

Using (2.22) and (2.23) and defining= % we obtain the following
equations fol(x,t) andl(x,t)

OV(x1)  da(x.1) N ab(xt) _} (6a(x, t) _ 6b(x,t)) _ _} ol (x1)

X  Ox ax ¢\ ot ot c ot
(2.24a)

ol(xt) oda(xt) db(xt) 1 6a(x,t)+ab(x,t) _Lov(xt)

ax  Ix ax ¢\ ot o | ¢ ot
(2.24b)

which are the well-known Telegrapher’s equations for \gdtand current
on a transmission line.

2.3 TLM Scattering Matrix in View of Discrete
Differential Forms

The scattering matrix of the 2D TLM shunt node is equivalerthie scat-
tering matrix of the parallel adaptor used in wave digitabfs (WDFs)

16



2.3 TLM Scattering Matrix in View of Discrete Berential Forms

[25]. In this section this equivalence is examined and it lagl shown that
also the 2D TLM scattering matrix with stubs can be obtaimechfthe par-
allel adaptor of WDFs. The result can be generalized to nhtalid (by

valid allowable is meant) TLM scattering matrices satisfythe following

properties:

1. Frequency independent,
2. Invariant to time-reversaf( S= 1),
3. Energy conservativeédet(S)| = 1),

4. Eigenvalues equall (i.e., it is a connection matrix).

A standard 2D TLM shunt node is shown in Figure 2.1. The charac
istic impedance of the link lines & = +L/C. The interconnection at the
center of the node will be calleztll center The cell center is delay-free,
frequency independent and energy conservative. The sogttatrix of
a shunt cell center equals to the scattering matrix of a lghedaptor of
WDF.

A 2D TLM cell center with a shunt stub line connection is showwn
Figure 2.2. The reference impedances of the TLM link lineszar= Y—lo

and the reference impedance of the stub lin&ds Yis The scattering
matrix of parallel adaptor for the given cell center can batem as ([25],
pp. 276-277)

(y-1) vy Y Y ¥s
Y y-1) v Y ¥s
S=| v y (-1 v ys | (2.25a)
Y Y Y y=-1) s
Y Y Y y  (ys—1)
where
dy+ys=2 = ys=2-4y (2.25b)
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2 Transmission Line Matrix (TLM) Method

TLM cell center

Figure 2.1: 2D TLM shunt node and its TLM cell center.

Figure 2.2: The 2D TLM cell center with a shunt stub line castioa with
reference impedancg,.

18



2.3 TLM Scattering Matrix in View of Discrete Berential Forms

and
2
y= 4+—ﬁ (2.25c¢)
Yo
Y,
Vs = ZY_; (2.25d)
S — Ye * .
4+ Y—;

Inserting (2.25c¢) and (2.25d) into (2.25a) we obtain theresgion for the
scattering matrix

-1 2 ) 2 2 2%
L 2 (2-9 2 2 2@'
S= 5 2 2 (- 2 2¢ | (2.25€)
</ Y.
2 2 2 2=V Y2Y—O
2 2 2 2 @E-Y)
where v
V=4+_2 (2.25f)
Yo

The expression (2.25e) is the well-known scattering matirthe 2D TLM
shunt node with a shunt stub line (cf., e.g., [26], p. 97).

2.3.1 Two-dimensional TLM cell

For the relation between electrical network quantities eledtromagnetic
field quantities discrete exterior calculus is applied.cbate exterior cal-
culus also introduces the discrete exterior derivative discrete counter-
part of the exterior derivative operator.

The network quantities are obtained from the electromaggatntities
taking the integrals of them. This is equivalent to what adalled finite
integrals. However, in contrast to finite integrals, the enhydng structure
of the manifolds is maintained.

Let us take a look at 2D example. We assume invariance of dutret
magnetic field with respect todirection, i.e.,ﬁ% = 0. Consequently, only
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2 Transmission Line Matrix (TLM) Method

2D problem description is appropriate. Furthermore, the, Tides are
considered for now.

Using diferential forms notations, the electromagnetic phenoména o
TM; modes in free-spaced, uo) is described with the following reduced
Maxwell’s equations

OHy  9Hy OE,

(W_a—y) dxA dy—EOW dxA dy, (226a)
O, _oHy
W dzA dx = #07 dza dX, (226b)
OE, _ OHy
6_ydy/\ dz=—uop 5 dyAdz (2.26¢)

The unitone-forms ®, dy, dz, their wedge product and the Hodge operator
can be visualized as shown in Figure 2.3.

fdz
|
| dx
N
Y | < dXA dly
/// 7 /ﬁy

- 7/
z ol - yd
y dx
X

Figure 2.3: Unit one-formsxj dy, dzand the two-form dA dy = xdzin
an Euclidean three-dimensional space.

The discrete counterparts of the unit one-forms are theretismne-
formsAx, Ay andAz. Similarly to the diferential forms, we may define for
the discrete forms the wedge product, the Hodge operatothendiscrete
exterior derivative operation [27].

We introduce a mapping from electromagnetic field quastite net-
work quantities. The mapping is shown in Figure 2.5. We asBigeach
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2.3 TLM Scattering Matrix in View of Discrete Berential Forms

Az

AX

Ay, AX /\VAy
_|D Ay
z] y =
X

Figure 2.4: Discrete one-formsx, Ay, Azand the two-formAxA Ay = xAz
in an Euclidean three-dimensional space.

V=—[. & I = [ H
I == { I == {
AX AX
—»

X

Figure 2.5: Mapping from electromagnetic field quantities network
guantities.
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2 Transmission Line Matrix (TLM) Method

oriented line of the TLM cell two network quantitiegoltageandcurrent
The resulting 2D TLM cell with assigned network quantitiesshow in
Figure 2.6.

N Y
[

vak

|
|
| |
1 Y U
+7 | V;‘A/
= AN 14
X |

- 1 X
-~ \Vz
~~ | 1 111
= 1 o
|y ————— =
| e V
I 4 4 /
|// ;Z/
ﬁ— p — — — — e — —
7 / |2
7 / z
7 /
Z s /
7 7
y
X

Figure 2.6: 2D TLM cell with assigned network quantities Téd modes.

The expressions for discrete exterior derivatives of TMdfieith the
introduced network quantities can be written as

AHley = Iy + 13- 15— 1%, (2.27a)
|

dHlpx=1;-17 =0, since% =0, (2.27b)
.ol

dHl,=17-13=0.  since_* =0, (2.27¢)

dElyy =0, (2.27d)

dEl,x= V2 - Vs, (2.27€)

d&ly, = V3 - V;. (2.271)
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2.3 TLM Scattering Matrix in View of Discrete Berential Forms

The invariance of macroscopic quantities (field intensjtimltages and
currents) to the scattering process — with the assumptiagheofcatter-
ing process taking place inside the TLM cell center — and thguency-
independence of the scattering matrix imply tlgﬁt: 0 in the Maxwell's
equations (2.26). With this assumption the equations wimaht be satis-
fied during the scattering process are

OHy  9Hy

(W—a—y)dw\ dy= dHly, =0, (2.28a)
@ dzA dx= d&|,=0, (2.28b)
E
& dyA dz= dé&ly,=0. (2.28c)

These are the equations of static electric and magneticfield
Inserting the expressions for discrete exterior deriegtin terms of net-
work quantities (2.27) into (2.28) we get

Iy +1%—15-1%=0, (2.29a)
VZ-Vi=0 = VZ=VZ (2.29b)
Vi-vi=0 = Vvi=V} (2.29¢)

Equation (2.29a) can be identified as Kircliteocurrent law (KCL) (see
also Figure 2.7). The resulting 2D TLM cell center with assid network
quantities is show in Figure 2.8.

Since the equations (2.28) describe static fields, anyrateg a closed
path must equal to zero. Taking the integral on a closed Eaghawn in
Figure 2.9 results in the following additional condition

Vi-vievi-vi=0 = Vi4vi=vi+ve (2.30)
From (2.29) we know that> = V3 andV; = V2 so we obtain the condition

vi=vZ=Vv3=Vv4 (2.31)
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2 Transmission Line Matrix (TLM) Method

Vit
12 4
X X
< <
VZ v;
y 56
1 1 p
- Vi ?|y

Figure 2.8: 2D TLM cell center with assigned network quéesifor TM
modes.
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2.3 TLM Scattering Matrix in View of Discrete Berential Forms

\
M\

<
TN

e
s ya
4 s vd
7 V4
y
0
X

Figure 2.9: Integration path.

The network quantities may be transformed to wave quastitséng the
following transformation rules

Vi=a;+by, (2.32a)
V2 =ay+by, (2.32b)
V3 = ag+bg, (2.32¢)
V4 = ay+by, (2.32d)
Iy =a;—by, (2.32e)
12=—ay+by, (2.32f)
IS = —ag+bs, (2.329)
14 =a,—by. (2.32h)

Inserting (2.32) into (2.29) and (2.31) we obtain the follogvset of
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2 Transmission Line Matrix (TLM) Method

linearly independent equations

ai+ag+as+ax=br+bg+bz+by, (2.33a)
ag+bz=a;+by, (2.33b)
ap + bz =4+ b4, (2.330)
a + bl =ay+ bz. (2.33d)

Instead of (2.33d) we can also take the equation
azs+bz=a4+by (2.336)

without a change in the result. Defining the vectors of inaapand out-
going waves

a=(ai,a,a3,a4) (2.34a)
b = (b1, bz, ba,ba)", (2.34b)
we can write (2.33) as
Aa = Bb, (2.35)
with
1 1 1 1)
-1 0 1 0
A=lo 1 o -1l (2.36a)
1 -1 0 O
11 1 1
1 0 -1 0
B=ly 1 o 1 (2.36b)
-1 1 0 0

Using the definition of scattering matrix, i.d,= Sa and with (2.35),
we see that the scattering matrix can be computed from reati@ndB
as follows

S=B7!A. (2.37)
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2.3 TLM Scattering Matrix in View of Discrete Berential Forms

With the inverse oB given by

1 1 -1 -2
111 1 -1 2
-1 _ =
B~ = 411 -3 -1 -2 (2.38)
1 1 3 2
we obtain the scattering matrix
1 1 -1 - 1 1 1 1
S—} 1 1 -1 2 . -1 0 1 O
4|1 -3 -1 - O 1 0 -1
1 1 3 2 1 -1 0
, (2.39)
-1 1 1 1
_} 1 -1 1 1
211 1 -1 1}
1 1 1 -1

which is the well-known scattering matrix of the 2D shunt Tlddde (cf.,
e.g., [26], p. 95).

Dual to the TM modes are TE modes. The derivation of the siadte
matrix for 2D TE modes follows the same steps as for the TM racahel
will be presented briefly. The 2D TLM cell center for TE modgshown
in Figure 2.10.

The independent set of linear equations obtained from thmtems
d& =0 and dH = 0 using the discrete exterior calculus on regular rect-
angular mesh is given by

Vi+Vy - Vi -V =0, (2.40a)
13-1y=0, (2.40b)
12-1%4=0, (2.40c)

Iy -1 +13-1Z=0. (2.40d)

Equation (2.40a) is derived from&d= 0 and equations (2.40b) and (2.40c)
are derived from @& = 0. The derivation of (2.40d) follows the same

procedure of deriving (2.30).
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2 Transmission Line Matrix (TLM) Method

l 2
4
| Vil o
2 //1 44
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Figure 2.10: 2D TLM cell center with assigned network quizgifor TE
modes.
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2.3 TLM Scattering Matrix in View of Discrete Berential Forms

The transformation from network quantities to wave quatits defined

by

V§=a1+b1,
V§=a2+b2,
Vf=a3+b3,
V;=a4+b4,
1—_
|y— a + by,
Z=a,-by,
y_a3 bs,
14 = b
X_—a4+ 4.

(2.41a)
(2.41b)
(2.41c)
(2.41d)
(2.41e)
(2.411)
(2.419)
(2.41h)

With the definitions (2.34) and (2.41), equations (2.40)enitten in the

form of (2.35), where

T -1 -1

1 0 1
A=lo 1 o0
-1 -1 1

-1 1 1

1 0 1
B=lo 1 o0

-1 -1 1

and the inverse matrix of the matifikis
-1 2 0
111 0 2
-1 _ -

B~ = 4({1 2 0
-1 0 2

1
0
1’ (2.42a)
1
—17
0
1 (2.42b)
1]
-1
-1
1l (2.42c)
1
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2 Transmission Line Matrix (TLM) Method

The scattering matrix obtained frof= B~1A reads

=
|
=

e
H

(2.43)

(0]
Il
NI =

1
1 -
-1
1

(NN
(NI

-1

which is the scattering matrix of the 2D series TLM node (efg., [26],
p. 78).

2.3.2 Three-dimensional TLM cell

The scattering matrix of the 3D symmetrical condensed TLMeais ob-
tained using the same techniques as in the previous sedtionwever, in
the 3D case no decomposition into TE and TM field is possiblensg-
guently, the field intensities are considered with all comgs, i.e.,

& = Exdx+ Eydy+ E,dz, (2.443a)
H = Hydx+Hydy+ H,dz (2.44b)

The network quantities are obtained from the electromagfield quan-
tities in the same way as described in the two-dimensiorsg.cdhe 3D
TLM cell is shown in Figure 2.11.

The following are the 12 linearly independent equationsclvimust be
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12 110 |
Ve~

| V10|12
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< ] |V.'| |
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Figure 2.11: 3D TLM cell with assigned network quantities.
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2 Transmission Line Matrix (TLM) Method

satisfied by the network quantities inside the symmetricabiensed node.

Vi+Vv2Zove_vi=o, (2.45a)
IS+14-15-13=0, (2.45b)
vitpve_vi2_vS -, (2.45¢)
1941811017 =, (2.45d)
\VARRVESERVASR VLY (2.45¢)
L4122 =, (2.45f)
\VAFRVLERVASRVAS ) (2.459)
Vi+VvB_v10_\9 -, (2.45h)
VvigveoviZovil=q, (2.45i)
I"+18-11-12=0, (2.45))
15416112111 =, (2.45k)
Be14-110- 9= (2.451)

The transformations from wave quantities to network questare de-
fined by the following equations.

V' =g +hi, (2.46a)
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2.3 TLM Scattering Matrix in View of Discrete Berential Forms

wherei =1...12 and

I'=a;—by, (2.46b)
12=—ay+by, (2.46¢)
13 =—ag+bs, (2.46d)
14 = a4 —ba, (2.46e)
1° = a5 — bs, (2.46f)
6= _ag+bg, (2.469)
I”=—a7+by, (2.46h)
|8 = ag— bg, (2.46i)
= ag— b, (2.46))
|lo = —ayo+ big, (2.46Kk)
1= —ay;+ by, (2.461)
112 = a15— bao. (2.46m)

The matriceA andB for the three-dimensional case read

-1 1 0 0 0 0O 1 -1 0 0 0 O
001 1 1 1 0 0 0 0 0 (
0o 00 0-11 0 0 00 1 -1
0o 00 0 0 0 1 1 1 1 0 (
0 01 -1 0 0 0O O0-1120 0
A1 1L 0 0 0 0 0 0 00 1 1
0 0-1-11 1 0 0 0 0 0 O
0o 00 0 0 1 1-1-1020 0
110 0 0 0 0O 0 0 0-1 -1
11 0 0 0 0-11 0 0 0 O
0o 00 0 1 -1 0 0 0O 1 -1
0 0-1 1 0 0 0 0-11 0 O

(2.47a)
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2 Transmission Line Matrix (TLM) Method

-1

0 0 O

-1

-1

0O 0 0 O

-1

0O 0 1 1

0
0
-1

1 1
o ol @47b)

0
0

0
0 0 O
-1
0

1 -1
0 0 O

0
1

1

-1

0
-1 0 0 O

0

-1

0 0 O
0 O

-1

0

1

-1

0

0

The scattering matrix of the 3D TLM node for free-space is patad

B-1A and reads

fromS

(2.48)

2.4 Discrete Source Modeling

For the modeling of antenna problems discrete sources anepafrtance.
Since the TLMME method is applied to radiating problems, #asle

34



2.4 Discrete Source Modeling

modeling of discrete sources is needed. In this section dibece port
based on wave digital filters armbundary oriented field mappir{@6] is
described and it will be shown how it can be applied to modekardte
source distributed over more TLM cells.

As was shown in Section 2.3, the 2D TLM method and in particula
the scattering matrix are related to the parallel and sedagptors of wave
digital filters. Here we use this relation to describe a disziport for the
TLM method.

The connection network based on parallel and series adapt®WDFs
can be used for the modeling of discrete sources. The cannewtwork
is anN + 1 port network withN TLM portsconnected to the TLM mesh
and onesource port The source port is the input port to the TLM model.

The TLM ports of the connection network are connected to th1 T
link lines at the interfaces between adjacent TLM cells. gamuently,
the mapping type between network and field quantities is thendary
oriented field mapping. Schematic pictures of canonic perahd series
connection networks exciting one field polarization arevalman Figure
2.12 and Figure 2.13.

Parallel adaptor

|
A
TLM / \ TLM
2 / | 42
\ / f

P Link line

Source port ~
Figure 2.12: Canonic parallel connection subnetwork; tlederence

impedances of the TLM link lines ai&, andZ; and the ref-
erence impedance of the source pod4s
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Series adaptor

|
¥

—

/ N\
/ \
Z|1( 1Z2

/ 1
N / /
- /
’Zp /
//

TLM TLM

Link line

Source port

Figure 2.13: Canonic series connection subnetwork; theereate
impedances of the TLM link lines ai&; andZ; and the ref-
erence impedance of the source pod s

We can see that the discrete voltage port for one polarizatia be seen
as parallel adaptor placed at the interface of two TLM lime8.
The parallel connection network has the following propeexti

1. A common voltage (i.e., electric field intensity) is impsed at the
interface between adjacent TLM cells.

2. Different line impedances of the TLM link lines and the source por
are taken into account.

3. The scattering matrix of the connection network is

e real,

o frequency independent,
e energy conservative,

o time-reversible and

¢ the eigenvalues equall. If all the TLM port impedances and
the source port impedance are equal then the scatteringkmatr
is also unitary and symmetric.
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2.4 Discrete Source Modeling

A series connection network is dual to the parallel conoaatietwork.
The properties of the series connection network are the sanimse of the
parallel one except that a common current (i.e., magnetcifitensity) is
impressed at the interface between adjacent TLM cells.

A series port is dual to the parallel port and is shown in Fegud 3. The
properties of the series discrete port are

1. Acommon current (i.e., magnetic field intensity) is imgsed at the
interface.

2. Different line impedances of the link lines and the discrete gr@rt
taken into account by the adaptor.

3. The series adaptor is characterized by:a3Bscattering matrix with
the same properties as for the parallel adaptor

To the discrete port threefiierent source types can be connected. These
are

1. ideal voltage source,
2. ideal current source,
3. power source with defined internal impedance.

The diferent source types are shown in Figure 2.14.

S ——
VoC) lo VoC) lo Gs
@ (b) o

Figure 2.14: Lumped sources which may be connected to tleeatiésport
adaptor.
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2 Transmission Line Matrix (TLM) Method

The WDF realizations of these sources can be connectedldite¢he
source port of the connection network. The WDF realizatioihthe dif-
ferent source types with wave digital filters are shown iruFég2.15. We
use here the same convention for symbols of WDF adaptors ane flow
diagrams as in [25].

2V 2Rl ] Vo; Rl
0 N slo T—g 0; Rslo b

() (b) (©)

Figure 2.15: WDF representations of the sources.

The power source can also be seen (using Thévenin theosam)ideal
voltage source connected at infinity to one end of a transomissme with
impedanc&s. The other end of the transmission line is connected to the
discrete port.

The discrete port just described implements followingdess into the
TLM algorithm:

¢ Well-defined excitation of field amplitudes and energy.
¢ Impulsive characterization of electromagnetic structwéh linear
properties. This is possible since only one port is avadldhdm

“outside” and the TLM model is linear.

e Direct calculation of scattering parameters from the incgrand
reflected wave amplitudes.

An example on impulsive excitation of bowtie antenna is giire Sec-
tion 6.3.
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2.4 Discrete Source Modeling

2.4.1 Example — canonic parallel connection network

The scattering matrix referred to the port impedadige %7 Q with Zj1 =
Z12 =377Q reads

0 3 3

Sp=[1 -1 i . (2.49)
P 12 2
1 3 -3

The scattering matrix referred to the port impedafige: 50 Q with 7, =
Zjp =377Q reads

Sp=1158071 -0.79036 020964|. (2.50)

058071 020964 020964
158071 020964 -0.7903

Itis easy to check th&8pSp = | and|det(Sp)| = 1. The matrices are thus
valid scattering matrix of the TLM method.
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3 Multipole Expansion

In the multipole expansion the total radiated electromégriield is ex-
pressed as linear combinations of known basis one-formiedeadiation
modes In homogeneous medium the radiation modes form a complete
orthonormal set of basis one-forms. These are considerbdv® an in-
finitesimally small source in the center of the coordinatetay used for
the expansion which makes them behave singularly therecedtie name
multipole expansion.

For the expansion we use the spherical coordinate systép) — (ra-
dius, elevation, azimuth) — see also Figure 3.1. We decoepios to-
tal field into transverse and longitudinal paNs= N, + N, dr with NV, =
Nyrdg+N rsmﬁdgo, whereN stands for the one- form f|eld mtensny pha-
sors§ orﬂ Phasor quantities are distinguished by underlined font.

Itis shown in [28], that it is sfficient to expand only the transverse parts
of the total field. These are the independent field quanfities which the
radial (longitudinal) components can be computed.

Based on these considerations we write the tangential fieddisities as

E(r. 0.0t = > Vp(r.0) ep(9), (3.18)
p

Fe(r, 9,0, = > 1o 0hp(9) = > (1) (Loep(d.¢)),  (3.1b)
p p

whereVp(r,t) and I(r,t) are generalized voltageand generalized cur-
rents respectively, an@p(%,¢) and hy(3,¢) are the transverse basis one-
forms of the electric field intensity and the magnetic fiel@nsity, respec-
tively, corresponding to the mode The mode index summarizes four
indices f,m,i, s), the meaning of which will be given later in Section 3.1.
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3 Multipole Expansion

Figure 3.1: Electromagnetic structure embedded into aialirspherical
manifold.¥ of radiusr =rg.

In (3.1) we use the twist operatay, , defined in [11] for a general one-
form A as
L, A=*(nAA), (3.2a)

wherex is the Hodge operator anddenotes the wedge product.

A local picture of the twist operator acting on a general &orea A is
shown in Figure 3.2. The two-formA A is shown as an oriented surface.
We can see also the tangential part of the one-f@tmwith respect to the
normal directiom defined as

(A =na(nAA), (3.2b)

where the angle operatardenotes the contraction (for more details see
[29]).

The normal one-formn is normal to the direction of a spherical man-
ifold .7(r) with a given radiug and forms a rectangular frame with the
two normal one-forms andv, which are tangential to the surface of the
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4
L, A=, (A= *(nAA)

(A = na(n A A)

Figure 3.2: A local picture of the twisted one-formA.

manifold. This is shown in Figure 3.3. The unit normal onesio: may
(3.33)

be written as
n=nydx+nydy+n,dz=dr,

o) a2

2, 2 2 (oF or or

nX+ny+nZ_(aX By =
i) ) ) -
R+ 12 Y212 @y 12

=1

We can see from (3.1) that the transverse basis one-fornteahtg-
netic field intensity can be obtained from the transversestmaee-forms of
the electric field intensity. The generalized voltages amndents for each
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3 Multipole Expansion

/%
i
dzé
Y ()
R

Figure 3.3: Spherical manifol’(r) with the tangent frame, v andv.

modep may be obtained from the total field intensities by integmatver
the spherical manifold”(r) with radiusr by

Vp(r,t)zfL(r)(—J_,,S(r,ﬁ,<p,t))/\ep(0,<p), (3.4a)
Ip(r,t)=fL(r)—H(r,0,<p,t)/\ep(ﬂ,go). (3.4b)

The generalized voltages are related to the generalizedraarbygen-
eralized impedancesn time-domain the relation is given by

Vp(r,t) = Zp(r, 1) = 1 p(r, 1), (3.5)

wherex denotes the convolution in time. The generalized impedapet)
describes completely the coupling between the electricaaghetic field
intensities. The generalized impedance tependent due to the varying
cross section of the half-space givenrby ro for a given radius =rg
Assuming harmonic excitation, the frequency domain regregions
of the field quantities and the generalized network quastitin be used.
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3.1 Radiation Modes

Using the phasor representations for the field quantitiegé¢hation (3.5)
reads
Vo (rw) = Z,(rw)l (1), (3.6)

3.1 Radiation Modes

The transverse magnetic (TM) and transverse electric (@dation modes
are derived from the magnetic one-form poten#and the electric one-
form potentialf, respectively, which are oriented in the direction

A=Adr=rydr, F=F dr=rydr (3.7)

In (3.7),y is a scalar function of spherical coordinates satisfyiregsttalar
Helmholtz equation

(xdx d+K)y(r,9,0) =0 (3.8)

in spherical coordinate system, where w/eit is the wavenumbewy
the angular frequency anrdandu the permittivity and permeability of the
background space, respectively.

The field intensities of the TM radiation modes are obtainednhfthe
magnetic vector potentiail by

H = »dA, E= i * dx dA. (3.93)

jwe

The field intensities of the TE radiation modes are obtaineahfthe elec-
tric vector potentiaf by

E=—xdF, H=——xdwdf. (3.9b)
il o -

The general solution of (3.8), obtained by separation ofwées tech-
nique, is given by

y(r,8,¢) = bn(kr)Ly'(cosd)h(myp), (3.10)
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3 Multipole Expansion

whereby(kr) are the spherical Bessel functiong)(cos?) the associated
Legendre functions anla{my) the harmonic functions. Due to the proper-
ties of the function®i(my) andLT(cos?), and if we restrict our consider-
ations to physically allowed solutions, we have to chansedm integer,
withn=0,1,2,...and 0<m<n.

We assume that all sources are confined within the spheiitalla
tion region. Therefore, outside the sphere only outwargagating waves
occur and the Sommerfeld radiation condition is fulfillechu§, we take
ba(kr) = h@(kr) in (3.10), withh®(kr) being the spherical Hankel func-
tions of the second kind. _

We definereal spherical harmonics Y, (9,¢) with n=0,1,2,..., 0 <
m< nandi = eoro (even or odd) as

Yom(9:¢) cosmyp
= PM(cosy s 3.11
where
2n+1(n—my!
Yom= (n-m (312)

M ar (n+m)!

with gn =1 or 2 form=0 or m> 1, respectively, andPi'(cosy) being
associated Legendre polynomials [30]. Spherical harnsssatisfy the or-
thonormality relations on a spherical surface, thus

2 T 5
f f Yr|1m(79’ QD)YrIYm/(ﬂ, QO) Sinﬂdﬂd(p =
0 0

1 ifn=n,m=m=0,i=i"=¢, (3.13)
=<1 fn=n,m=nm'>0,i=1,
0 otherwise.

To obtain the TM and TEadiation modesve take
A =F, = rYho(9.9)hP(kr) (3.14)

in (3.7). The transverse basis one-foreé?, ¢) are obtained from (3.9a)
and (3.9b) by taking the radiusand frequency, independent directions
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3.2 Cauer Realization of Radiation Modes

only. Since the magnetic one-form potenti@lequals to the electric one-
form potentialf, there is a simple relation between the TM and TE radia-
tion modes. The transverse basis one-forms in terms of i@h@armon-

ics are given by

9 a\ Y (9,0)
€ (9 ={dd— + do— _nm\~>¥J 3.15
(7 ) ( a9 " %sﬁ) n(n+1) (3.152)
ehmi(®-0) = Lo i (3.15b)

where the superscriptaind” stand for TM(E) and TE(H) radiation modes,
respectively.

We conclude that the transverse basis one-forms of the Thétiad
modes are given by

(Eimds(3.9)) _ R cosmy
{(eﬁmo)ﬁ(ﬁ, 90)} = Con{=Sin?)Py (COSﬁ){ sinmp} (3.162)
{(92m9¢(19, 90)} — o PP(Cos) { —smmp} (3.16b)

with ¢hm = vnm/ ¥YN(n+ 1) being normalization cdicients which depend
onnandm. The prime denotes derivation of a function with respect to its
argument.

The transverse basis one-forms of the TE radiation modestdagned
from (3.16) using (3.15b).

3.2 Cauer Realization of Radiation Modes

Let us assume the complete electromagnetic structure godsideration
embedded in a virtual sphet# as shown in Figure 3.1.

The wave impedances of the TM radiation modes on the surfaiteo
sphere¥ are given by

e . H®"(kro)

Z- =] (3.17)
" HP (ko)
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3 Multipole Expansion

and of the TE radiation modes by

h . H®(kro)

Zim=~In—g, . (318)
" HY (ko)

wheren = \//% is the wave impedance of the plane wave &rﬁ,@(kr) =
krhﬁz)(kr). Please note that the characteristic wave impedancesdepéy
on the indexn for the given radiusg of the virtual sphere.

Using the recurrence formula for the spherical Hankel fiomst[30], the
Cauer representations of the TM and TE radiation modes mayptaéned
[10], [31]. The impedance of the TM modes is then written as

n 1
Wt
jkr T 2n-3
Tt
Ze =17 , (3.19a)
1
* 1
3
kr + 1 1
W +
and of the TE modes as
1
1
n
jkr
2n-1 L
jkr M+
Zh =y Jer (3.19b)
1
1
3
[
Tkr +

The equivalent Cauer circuits realizing the impedances®fadiation
modes given by (3.19) are shown in Figure 3.4 and Figure 3.5.
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3.2 Cauer Realization of Radiation Modes

er er
2n-1 2n-5
|_ _____
zh r _ur n
- #T 2n-3
C L 3 - - - - -

Figure 3.5: Cauer realization of the impedance of, T&iation mode.

In Figure 3.6 — Figure 3.9 the plots of real and imaginary gaftthe
impedances of radiation modes realized by the Cauer creutt com-
puted analytical by using (3.17) and (3.18) are comparece fibts are
shown for both, the TM and TE radiation modes in free-spaee377Q),
and mode numbers=1,2,3,4,5,25,30.
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3 Multipole Expansion

kr [-]

- Cauer circuits
* TM, - Analytical expressions

n

™

U —

[0l {",Z}ey

Figure 3.6: TM radiation modes — real part of the impedance.
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3.2 Cauer Realization of Radiation Modes
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Figure 3.7: TM radiation modes — imaginary part of the impexa
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3 Multipole Expansion
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Figure 3.8: TE radiation modes — real part of the impedance.
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3.2 Cauer Realization of Radiation Modes
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4 Connection Subnetwork

4.1 Tellegen’s Theorem and Connection
Subnetwork

Tellegen’s theorem is a fundamental theorem in network rihedich
has been given by Tellegen [32] and generalized by Penfipleihn& and
Duinker [33]. Notably, the form of the theorem is simple amthgral. The
beauty and power of the theorem is in it's simplicity and gality.

The importance of the theorem follows from the fact thatpt'eof de-
pends solely upon Kirchhtis laws. Consequently, the theorem is valid
for all types of networks which satisfy Kirchkits laws regardless if these
are linear or non-linear, time invariant or time-varyinggiprocal or non-
reciprocal, passive or active. The condition which mustdiesged for the
theorem to be valid is that the circuits under consideratiave common
topology.

Since the Tellegen’s theorem plays an important role alfoametwork-
oriented modeling, the network form of the theorem will bevngiven.
Then, the field form of the Tellegen’s theorem and its diszeetform as
given in [1] will be described.

4.1.1 Network form of Tellegen’s theorem

The Tellegen’s theorem states that for two networks shahniegame topol-
ogy and havind branches the following equation holds

B
Zig\/' =0, (4.1)
b=1
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4 Connection Subnetwork

whereij are branch currents of one network arfdare branch voltages of
the other network.

The power and usefulness of the theorem can be seen from dhfeltw
lowing conclusions, which follow directly from the theorem

1. If the two networks considered in the formulation of théidgen’s
theorem are the same then (4.1) can be physically intepestéhe
conservation of energy principle within the network andthasform

Zig\/b =0. (4.2)

2. With the previous interpretation of the Tellegen’s treoras energy
conservation we can conclude from (4.1) that there doesxist e
any network which would not conserve energy. In other woatls,
networks obeying Kirchhié’s laws must conserve energy.

In the generalized form [33] the Tellegen’s theorem has tinen f
B
Z N(i) A" () =0, (4.3)
b=1

whereA” andA” are Kirchhdt current and voltage operators, respectively.
Kirchhoff operators, as introduced in [33], are such operators whactst
form given electrical quantities obeying Kirchifig laws into new electri-
cal quantities obeying also Kirchfits laws.

Examples of allowed Kirchhdoperators are

¢ differentiation with respect to time,
e multiplication by a constant,
e any scalar linear transformation.

The proof of the Tellegen’s theorem and it's generalizednfonay be
found in [33]. A physical approach to the proof has been glweiemes
in [34].
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4.1 Tellegen’s Theorem and Connection Subnetwork
If the sets{i} and{v;'} are interpreted as vectars= {i;} andv” = {v}
then (4.1) can be written as follows
i"Tv” =v'Ti’ = 0. (4.4)
This equation can be interpreted as orthogonality relatioe., the vectors
i” andv” are mutually orthogonal.
4.1.2 Field form of Tellegen’s theorem

The field form of Tellegen’s theorem states that [1], [11]

95 E (X V)ANH" (x,1") =0, (4.5)
oV

where’ and” denote independent field forms defined on a common mani-
fold V. The theorem states that no energy can be stored inside thie ma
fold 9V of zero measure.

4.1.3 Connection subnetwork
Scattering matrix of ideal transformer network

The equations of a transformer network as shown in Figuremth equal
reference resistances at the ports, can be summarizedéitagion

I =N[~ [-I NJ.
NT ]b_ NTOr |8 (4.6)
with
N1 N2 niN
N = Np1  Np2 ... N2N (4.7)
M1 Nwm2 NMN
summarizing the transformer ratios and
é:[aN+1 aN+2 ... ANeM Q1 a2 ... aN]T, (4.83)
b=[bni1 busz ... bnem b1 b2 . by]T (4.8b)
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4 Connection Subnetwork

o 11011 ;:nZl 1:nm1
(a1,by)
O L o ———F— iiiin
1:n12 1:np 1:npm2
° . o1 | ...
(az,b)
o 7 3 | P —
o 1 Z‘ﬂlN | 1Z‘I’12N | ________ 1:nun
(an,bn)
O L et ...l
J} o J’ [

(an+1, bn+1)

(o]

(an+m, bnsm)

Figure 4.1: Connection subnetwork consisting of idealdfarmers.

58



4.1 Tellegen’s Theorem and Connection Subnetwork

being the reorganized vectors of incoming and reflected svave
The reorganized scattering matfis computed as

[ NIT[-L N]_[S S
TINT NT 1|7T|S S
where the inverse matrix can be obtained using the techrouichur

complemen(see Section A.3.2). .
The scattering matri$ is related to the reorganized scattering ma$ix

as follows - -
S= Fl §2] (4.10)

-1
(4.9)

S
The resulting scattering matrix of the connection subndtisgiven as

_ Te1 Te1l T_NTe1 T
st 2le;\N N5;+|;| lerNN]’ (4.11)
2S;IN -S1+S;INN
with
Sa=1+NNT, (4.12)

whereS, is the Schur complement.

Examples

In the following let us examine some special cases of théestag matrix
(4.11).

Orthonormal square N

In this case
NNT=N'N=1I (4.13)
and 1
Sa=2l; s;\1=§|. (4.14)
The (4.11) is simplified to
0 NT
S= [N 0 ] (4.15)

59



4 Connection Subnetwork

NT is aright inverse of N

In this case
NNT =1
but
NTN # 1
The
. 1 1
Sa=2;  S=3l.

The (4.11) is simplified to

I-NTN NT
s=| N o)

Ideal transformer: N-ports primary, one-port seco

The transformer ratios are denotedripyith i = 1,
reduced to a vector

Nz[nl n .. nN]

The N+ 1)x (N+1) S-matrix is given by

F4nd mm mng ... mny
e 3402 mng ... nony
S=D| : : : : :

1, 2
nnNy nNnz  NnnN3 ... D +nN

—N1 —N2 -n3 ... AN

with
2

- 2 2"
1+nl+...+nN

Note that ifn?+...+nZ = 1 thenD = -1 and the
zero at the last element.
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(4.16)

(4.17)

(4.18)

(4.19)

ndary

...,N. The matrixN is

(4.20)
-ny
-ny
(4.21a)
-NN
T+l
(4.21b)

scattering matrix has a



4.2 Scattering Matrix of the Connection Subnetwork

For the special case df = 1, the scattering matrix computed from (4.21)
is reduced to
1

B 1-n2  2m
= 2
1+n1

2 s
2m ni-1

(4.22)

which may be found in the literature (e.g., see [35] p.41).

4.2 Scattering Matrix of the Connection
Subnetwork

4.2.1 Direct derivation
Boundary conditions

In the following, the TLM simulation domain#1) will be referred to as
subdomain 1 and the outside spaég) as subdomain 2. The two sub-
domains are identified by a spherical surfacé)(between the two (see
also Figure 1.1). Also, it will be convenient to use the vectotation for
electromagnetic fields in this Section.

First, the tangential electric field on the interfacing sge (i.e. on the
sphere) is expanded into two sets of vector basis funceﬁ)handefﬁ) with
indicesn=1,2,...,Nandm=1,2,...,M. The electric fields can be written
as

N

EM = Z velD), (4.23a)
n
M

E@ = Z v@ed), (4.23b)
m

with superscript§! and®@ denoting the subdomain 1 and 2, respectively.
We call the modal amplitudexs(ﬁl) andVr(ﬁ) equivalent voltages
Considering equality of the tangential fields represented4t23) we
can write )
EY =EP. (4.24)
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4 Connection Subnetwork

Multiplying both sides of the equation wig?) and integrating oves” we
get

f ZV(l) M. e g = f ZV@)e(Z) D, (4.25a)

where. denotes the domain of integration, here the spherical caitfa-
tween subdomain 1 and 2. Assuming orthonormality of thesbfsic-
tions (4.25a) results in

v = Zv“) f D). g7, (4.25D)

The tangential magnetic fields in the subdomain 2 are retatdte tan-
gential electric fields in the same subdomain via

H® = ZI(Z)rox ) (4.26a)
with
V@
18 = 20 = YV, (4.26D)
7@

whereZ(Z) andY(Z) areequivalent mpedancmdequwalent admittances
of them-th radiation mode. The quantltlerg andl )are callecequivalent
currents

Similar considerations may be done for the tangential mégfields
resulting in an equation analogous to (4.25b). The equattates the
equivalent currents in domain 1 to those in domain 2 and reads

1 |<2) f 2. g7 (4.27)
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4.2 Scattering Matrix of the Connection Subnetwork

Next, we define the cdgcientny, by

Nimn = f e?.elg.7 (4.28)
54
and the matriN as
N1 N2 NN
N=|M M2z Py (4.29)
anan ........ nMN

Mapping between network quantities and wave quantities

The equivalent voltages and equivalent currents in subdofnare trans-
formed to the wave quantities by

v = g 4 p®), (4.30a)
7§ =all -, (4.30b)

whereaﬁl) andbﬁl) are the amplitudes of the incoming and outgoing waves
with respect to the surface of the sphere and where\/u/e.

On the boundary of subdomain 2 we introduce local incomingaaafﬁ)
and local reflected Wavetéﬁ) in a similar manner. The equivalent voltages
and currents are related to the wave quantities by

V2 = @1 b, (4.31a)
7@ =@ b2, (4.31b)

The Scattering Matrix

Inserting (4.30) and (4.31) into (4.25b) and (4.27) and \tt28) we ob-
tain the equations of the connection subnetwork betweetwbesubdo-

63



4 Connection Subnetwork

mains
N
o = [Z(aﬁlhbﬁ]l))nmn}—bg), (4.322)
n
M
a =P - [Z(a}ﬁ) - b%))nmn} : (4.32b)
m

Equations (4.32) can be rewritten as

N N

b - Z bPnmn = —al2) + Z anmn, (4.332)
n n
M M

bs]l) + Z bg)nmn = agl) + Z a1£r21)nmn- (4.33b)
™ m

Using matrix notation, the left hand side of equations (#cz® be written
as

,b(l)_
-Ni1 —Ngo -y 1 0 0 b%l)
—Np1  —N22 -y 0 1 0 2
_an—nMZ—nMNO ..... 01 b(l) (4 34a)
1 0 0 nu nu o ||
0 1 0 N2 N2z Nm2 b322)
0 0 1 n n n :
N 2N MN e
LM\

which can be written in short form using block matBxas
-N |
I NT

whereb is the vector of outgoing waves.

b=Bb, (4.34b)
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4.2 Scattering Matrix of the Connection Subnetwork

In a similar way we can write the right hand side of equatign33) as

- (1)_
(N1 N2 ... iy -1 0o ... 0] 21)
N21 N2 noN o -1 0 ‘
anannMNo ..... 0_1 ag) e
1 0 0 N1 N1 ... Nwa agz) ’ '
0 1 0 N2 N ... Nm2 aZ)
0 0 1 mn N NMN :
B
which can be written in short form using block matfxas
['I\' |\_|IT a=Aa, (4.35b)

wherea is the vector of incoming waves.
Equation (4.34b) must be equal to (4.35b) by (4.33). TaKiegitverse
matrix B~ we obtain
b=B!Aa=Sa (4.36)
whereS is the scattering matrix of the connection between subdorbai
and 2.
Reorganizing the vectors of incoming and outgoing wavesralieg to

a=[a? &2 .. a2 a0 &P .. QT (4.37a)
b=[b? b? ... b2 b P .. BT, (4.37b)

equations (4.34b) and (4.35b) take the same form as theiequdt6).
This shows that the transformation ratios of the connedidmetwork in
(4.7) are to be taken according to (4.28).

Discretized electromagnetic field

When the electromagnetic field functions are discretizespace, the equal-
ity (4.24) cannot be satisfied, unless the basis functioheih subdomains
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4 Connection Subnetwork

form a complete set and the summations are taken over adl fuasitions.
However, pointwise equality for the sampled field functicas be satis-
fied.

Consider a set of point¥.~, elements of which are all discrete points
on the surface of the spherical domain, ire.e Z . Indexs denotes a
particular point on the surface. Using the sampling prgpefthe Dirac
delta function we can write

ED(re) = VAA(rs) f EQ(r)or-r9ds, (4.38)
4

where we leave out the subscripfor discretized tangential fields and
where

AA(rs) = AAs= f ds. (4.39)
Y(rs)

The domainy (rs) is the Voronoi region around poing. Furthermore,

s
L d.7 ~ ZAAS = 4r. (4.40)
With
Es=E(ry) (4.41)
we can define the vector
E ={E1.Ez.....Es}". (4.42)
The equality (4.24) can be satisfied now and reads

EQ=gO, (4.43)

4.2.2 Implementation Issues

The number of elements to be stored for any S-matrix of thenjzsible

connection network:
N(N+1)

elements- >

(4.44)
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4.2 Scattering Matrix of the Connection Subnetwork

since the matrix is symmetric.
The memory requirements to store the scattering matrixai@ifing:

N(N + 1)

64 1
memory= — xelements 7.45x 107 9x

8 1024x 1024x 1024 [GB].

(4.45)
A 10000x 10000 matrix requires cca 382 MB of memory.
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5 Transmission Line Matrix —
Multipole Expansion Method

In this Chapter we use the results obtained in previous ehsips a basis
for the hybrid Transmission Line Matrix — Multipole Expaosi(TLMME)
method. Individual parts of the hybrid TLMME method will bestribed
in detail.

We begin with the description of a spherical TLM region. Thibe pre-
processing part of the TLMME method is given. During preqassing
the spherical TLM region is generated, a scattering mafrtk® connec-
tion subnetwork is computed and Wave Digital Filter (WDF)dets of
impedances of radiation modes are created. We will see hesetfilters
are implemented and synchronized with the TLM method.

The processes of generation of the spherical TLM region hingsof
geometric objects and creation of recursive WDF models gleidances
of radiation modes have been fully automatized. This averdsrs intro-
duced by manual pre-processing and enables fast pre-ginged techni-
cally interesting models.

The Chapter is concluded with the description of the TLMMgoaithm.

5.1 Spherical TLM Region

Since the transverse basis one-forgp,¢) in (3.15) are defined on the
surface of a spherical manifold, we cannot simply procedd tiie con-
nection of the classical cubical TLM simulation domain te ttadiation
modes.

Therefore, we embed the TLM simulation domain into a sphehéch
is discretized in a rectangular mesh, and obtain a spheFiddl region
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5 Transmission Line Matrix — Multipole Expansion Method

Figure 5.1: The spherical TLM region — discretized sphéntanifold.” .

bounded by a discretized spherical manifotdas depicted in Figure 5.1.
Inside the spherical TLM region the electromagnetic fieldnisdeled

by TLM. On the boundary of the spherical domain — on the ditsoed

spherical manifold” — we define a set of surfaces on which the fields

resulting from the TLM algorithm are obtained. This set v denoted

by .#€ and its elements (surfaces) Bye €. The fields ons® are used

to compute the modal céiicients in (5.2).

5.1.1 Connection of the simulation domain to the
radiation modes

The transverse field one-forms are expressed as a lineariations of
the basis one-forms by

N 000)]| L = D, aamsii(0.9) (5.1)
nmi,s

where the indexs = e or h stands for TM(E) or TE(H) modes, respectively,
ands stands for the basis structure one-forers h as defined in (3.1). In
(5.2) N stands for the one-form fieldsor .
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5.1 Spherical TLM Region

Using the orthonormal property of the structure one-forths, time-

dependent modal cfiicientsa; (t) are given by

i) = fozn foﬂ(_ LN B0, t)‘r:ro)/\ S (09,  (52)

For simplicity of the notation, let us consider in the follog just one
mode with givem,m,i, s.
We may write the structure one-formsin (5.2) as

5= Symy d + 5,m, dep, (5.3)

with my andm,, being the metric cd&cients of the spherical manifold.

On each surface® of the discretized manifold of”(r) we have knowl-
edge ofNy(x,y,z1), Ny(X,y,zt) or N.(X,y,zt). After projecting these field
values onto the spherical manifald(r), we can write (5.2) as

21~
a(t) = f; j(; {Nx(ﬁ»%t)[t1239M9+t13§prlp]+

+ Ny (@, . ) [t2259My + toas,my | +
+ Nz (%, ,1) [tBZSﬁ‘mﬂ + t33stprnp]} di A do,

with tio = 9x/99, t13 = X/, tro = AY/DT, taz = Y/ Dy, t32 = 9z/d¥ and
t33 = 0z/0¢ . For the considered spherical manifold the metricfitoents
aremy = 1 andm, = sing.

Using the point-matching technique, the time-dependerdahoodfi-
cients can be computed numerically by

(5.4)

21 T 2~
a(t):f f[SPX+SPy+SPZ]sin0dz9dgo=f f S Psinddd dg,
0 Jo 0 JO

(5.5)
with
S Be= Nx(th 0, 1) [tr28y + t13s |, (5.6a)
SR = Ny(¢.1)[tazSy + 23S, | (5.6b)
S B = N(d,¢,1) [t3259 + t33§p]. (5.6¢)
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5 Transmission Line Matrix — Multipole Expansion Method

The integral in (5.5) is obtained numerically as

a(t) ~ Z Z S RWd, ¢d» 1) Sindd Agy Ay (5.7)
dq  ¢d
with
DiApg=m D Ay =2r (5.8)
9q ¥d

In (5.7),9q andyqy are the discrete elevation and azimuth, respectively, at
the points where the fields of the surface elengrdre defined, andy,
andA,, are the spatial discretization steps in the correspondiegtibn,
which differ with the location of the elemest.

The modal cofficients in (5.7) represent the input of the corresponding
radiation mode. Each TLM port of the surface elemgntontributes to
the total radiation. The lumped element equivalent ciroudtdel of the
connection circuit connecting the TLM network represegtine simula-
tion domain with the ladder networks representing the tamhamodes is
shown in Figure 5.2. In [1] it has been shown, that the conoectetwork
contains only ideal transformers.

5.2 Pre-processing

Pre-processing for the TLMME method consists of the follogwteps:
1. Generation of the spherical TLM region,
2. computation of the scattering matrix of the connectidms&iwork,
3. creation of the WDF models of radiation modes,
4. meshing of the physical objects in the TLM method,
5. generation of the models of excitation.

The generation of the spherical TLM region is done autorafijicising
a Cartesian mesh generator which is described in the netibBec
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aik,

1Zﬂ1|(1

b1k,

n-th radiation mode

Figure 5.2: Network model of the connection of one radiatiode to the
TLM simulation domain.
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5 Transmission Line Matrix — Multipole Expansion Method

WDF models of the impedances of radiation modes are alsorgeae
automatically by taking advantage of their recursive gtreee More details
are given in Section 5.2.2.

5.2.1 Cartesian mesh generation

The discretization procedure we are using here is an exten$the method
described in [36] for 2D manifolds. The discretization of 2ldsed mani-
folds follows these steps:

1. create a model of the 2D manifold,

2. define the mesh,

3. discretize the object usimgy shootingechnique,
4. extract the boundary from the volumetric object.

This method works for volumetric objects which exhibit as#d bound-
ary. However, using boolean operations the method may knd&d to
discretize non-closed general 2D objects.

The principles of the ray shooting technique are shown inf€ip.3. A
ray with two constant spatial coordinates is examined feritiersections
with the object under consideration. Since we know that thieat has a
closed boundary, i.e., it is a finite volume object, we idigrifie object
in the prescribed mesh. Now, the boundary of the discretibdgmetric
object may be easily extracted. As a result we get the 2Deatigeld man-
ifold. This manifold may be represented by a set of elemgrdarfaces,
e.g., by.7¢ defined in Section 5.1.

Example: Cartesian meshing of a rectangular cavity resonat or

The 3D Transmission Line Matrix (TLM) method has been orédjinde-
veloped in a structured Cartesian mesh [13], [26], [11]. Tdrenulation
of the TLM algorithm in structured Cartesian mesh is theesisine and
the implementation is straightforward. However, the latkanformity of
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5.2 Pre-processing

y-rays
P

X

Figure 5.3: The ray shooting technique.

the Cartesian mesh to the boundaries of complex curvedtstjes been
soon recognized.

Researchers have tried to improve the conformity of the nteshe
boundaries of the objects by using graded, conformal, uatstred triangu-
lar and tetrahedral meshes [37]. However, all of these ambres increase
the complexity of the TLM computation. Higher memory reguirents,
mesh queries and additional specialized techniques iserb& complex-
ity of the TLM algorithm and computational time.

Another very important aspect is the possibility of palahtion of the
TLM solver. Structured solvers are much easier to be pdidld then
unstructured solvers. In general, properly designed tstred solvers are
also always faster and more robust than properly designsttuatured
solvers.

Obviously, the main arguments why to use unstructured soligethe
conformity of the mesh to the object and easier mesh gepaerttan for
a structured solver. On the other hand, if we are able to ajpede com-
plex curved geometries within a high-resolution struaiartesian mesh,
i.e., a mesh where the spatial resolution is much highertti@urvature
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5 Transmission Line Matrix — Multipole Expansion Method

of the object, the computed solution will converge to thaisoh com-
puted with an unstructured mesh. A study on the influenceestapped
(staircase) boundaries has been done for the finiterdnce time-domain
method in [38].

Since TLM in the formulation of Symmetrical Condensed No8EN)
(and all the other condensed nodes) has both the electdccfiehponents
and the magnetic field components defined at the same dispatial co-
ordinate, itis easy to introduce boundary conditions irféte of the TLM
cell. We may use the surfaces available from the TLM meshpocagpmate
the curved two-dimensional objects. If the structured ntesha stiicient
resolution, the curvature of the objects is well approxidat

In this example we use a regular structured Cartesian mebhawiigh
spatial resolution — a High-Resolution Mesh (HRM). An HRMcizpa-
ble of approximating curved objects with high accuracygsithe spatial
discretization step is much smaller then the curvature efdabject. The
rectangular waveguide is discretized within this mesh. fouhe relative
ease of parallelization a parallel computational envirentis also used.

An off-grid perfect boundary condition for the FDTD method hasrbee
published by Rickard and Nikolova [39], implementing an &mted stair-
case approximations. We use the same rectangular resasiarthe
above mentioned paper and compare the results obtainee HRM.

The rectangular cavity resonator has dimensaoad 0 mm,b= 20 mm,
| = 30 mm, with thd-th dimension located along thleaxis. The resonator
is rotated in the? andy directions and discretized using the HRM.

The configuration of the simulation and the simulation tiraes sum-
marized in Table 5.1 and Table 5.2, respectively. The catedlresonant
frequencies and the relative error are summarized in TalBle bor the
simulations computing nodes with Pentium4 3.0 GHz proassd6B 400
DDR memory, connected with 1-Gfstswitched Ethernet network, have
been used.

5.2.2 Wave Digital Filter models of radiation modes

We have seen in Section 3.2 the equivalent Cauer canonjgadsenta-
tions of impedances of TE and TM radiation modes. In thisiSed¢hese
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? %) Al # Cells

0 o 1 mm 28x 18x 38=19152
45 0 1 mm 40x 18x 40= 28800
45  0° 0.5mm 76x32x 76= 184832

45 0° 0.25mm  156¢52x 156= 1.265x 10°
45 45  0.25mm  156¢148x 156= 3.4x 10°
45 45 0.125mm 30 284x 284=24.2x 10°

Table 5.1: Configuration of the rectangular cavity resonakbe distribu-
tion ratio in the distributed case is given in the brackets/( 2).

9 %) Al [mm] tstandalone t distributed

0° 0° 1mm 1.43 min -

45 0° 1 mm 2.03 min -

45 0° 0.5mm 9.72 min -

45 0° 0.25mm 25h 40.43 min; (2:3:1)
45 45  0.25mm 6.5h 1.82 h; (2:3:1)
45 45 0.125mm - 21.78 h; (7:1:1)

Table 5.2: Simulation times of the rectangular cavity regon

9 ¢ Al[mm]  foay; 6[%] fo12; 6[%] f101; 6[%]
0° 0° 1 9.0101;0.027 12.493;0.012 15.805; 0.029
45 0° 1 8.8223;2.057 12.228;2.107 15.556; 1.547

45 0 0.5 8.9624, 0.5 12.45;0.331 15.705; 0.604
45 0 0.25 9.027,0.215  12.537;0.365 15.77;0.192
450 45 0.25 8.973;0.385 12.434,0.4599 15.717,0.528
450 45 0.125 9.0002;0.082 12.479;0.099 15.7811,;0.122

Table 5.3: Calculated resonant frequencies of the rectangavity res-
onator. All frequencies are given in GHz. Next to the restnan

frequency the relative error is given.
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5 Transmission Line Matrix — Multipole Expansion Method

Figure 5.4: Rectangular cavity resonator discretized WRM; ¢ = 45°,
¢ =45, Al =0.125 mm.

impedance representations will be transformed into theinalent digital
counterparts using Wave Digital Filters (WDFs) [25].

One main advantage of using WDFs over discrete filter strastab-
tained via other transformation techniques like diredhkér transform or
impulse invariance is their usage of wave quantities as gigrals. This
is a considerable advantage for the TLM method which is aésed on
wave quantities.

With WDFs we can directly realize in digital domains the thjcoun-
terparts of analog circuit elements like capacitors, indrs; resistors and
interconnections. Also, itis notfiicult to generate ladder structures recur-
sively. Since the equivalent representations of radiati@des are ladder
structures, they can béheiently generated using these techniques.

Capacitors, inductors, resistors and interconnections as WDFs

The behaviour of capacitors, inductors, resistors anddotenections can
be dficiently and elegantly transformed to digital domain with YA see
[25], pp. 274-280).

A capacitor is implemented as a time-delay by one time stéip nefer-
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5.2 Pre-processing

ence port resistand&:. The port resistancic: is given by

1At
Rec = c2 (5.9
whereC is the capacitance of the analog capacitor to be modeledtisd
the discrete time step of the digital system. For our purpasés equal to
the time step of the TLM algorithm.
Similarly, an inductor is implemented as a time-delay by time step
with reference port resistan&g. The port resistancl, is given by

2
At
whereL is the inductance of the analog inductor to be modeled.

Notably, the WDF realizations of capacitors and inducteesd|to the
same results as those obtained from transmission line aenagions by
Christopoulos (see [26], pp. 25—-38).

The port resistance of a resistor is chosen to equal theasses of the
analog resistor. Consequently, a resistor can be easileladds an ele-
ment without any reflection.

For the modeling of interconnection networks we use theljgduand
series adaptors. The port resistances of the intercommantitwork can be
chosen independently. The scattering matrices of the adapte delay-
free and energy conservative.

R=L (5.10)

Recursive generation of ladder structures

For the recursive generation of WDF ladder structuresdhkzability con-
dition is important. Realizability is granted when no defese directed
loop exists in the signal-flow diagram of the WDF and if theatatelay in
any loop is equal to a positive integer multiple or zero nplétiof the time
stepAt (see [25], pp. 271-272).

To assure a realizable WDF ladder structure we can use eamesrin-
terconnection networks. A constrained adaptor has oné pgrtimatched.
Consequently, no reflections occur at this port and the andggeave of
the constrained port is independent of the incoming wavénahgort. To
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5 Transmission Line Matrix — Multipole Expansion Method

match the constrained port we need to chose appropriatelyefierence
impedance of that port.

An example of a WDF realization of the impedance of J Mdiation
mode is shown in Figure 5.5. Note the constrained intercctiore net-

a=0

Figure 5.5: WDF ladder structure implementing the impe@afcT M3 ra-
diation mode.

works. The constrained port is denoted by a short bar at ¢makpath of
the outgoing wave. From the figure we can see the periodictstei of
the digital filter, where the models for capacitors and indrgcare alter-
nating. This periodicity is implementedfeiently by means of a recursive
algorithm.

5.3 The TLMME Algorithm

The diterence between TLM and TLMME algorithms is in the applicatio
of boundary conditions. From the point of view of the TLM medhthe
TLMME algorithm looks like a TLM algorithm with a special bodary
conditiort.

The discrete time evolution is implemented in the TLM methgpdneans
of iterations. One iteration corresponds to the time evafuby one time
step. The iterations are repeated for as many time stepgjageé. One
TLM iteration is shown in Figure 5.6. We can see that the TLbftat

1This is a result which we expect. Eventually, the ME is sirtintpa radiation boundary
condition.
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Scatter

/

Apply boundary conditiong

N\

Connect

Figure 5.6: One TLM iteration — evolution by one time step.

tion begins with the scattering process — 8watterprocedure. The scatter
procedure is applied to each TLM cell.

Next, the boundary conditions are processed -Ajyely boundary con-
ditions procedure. At this state of the iteration the wave quastitiee
located at the interfaces of the TLM cells. Inside this pchoe the excita-
tion is processed and the boundary conditions are applied.

Eventually, the wave quantities between neighbouring eel exchanged
— theConnectprocedure — and become incoming waves for the next itera-
tion. The iteration can start from the beginning.

The TLMME algorithm is implemented inside the Apply boungeon-
ditions procedure and is schematically depicted in Figure 5

In the first step we need to store the values of outgoing wawvéisendis-
cretized spherical manifold” (see Figure 5.1) and outgoing waves from
the WDF models of radiation modes — t&et values on sphem@ndGet
outgoing WDFprocedures.

We can summarize these waves in the veaiqiyve defined as

arLm

: 5.11
aME (5.11)

aATLMME =

where the vectorar |y andaye denote the outgoing waves of the spher-
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Get values on sphere | Get outgoing WDF

NS

Multiply with connection subnetwork matri

LN

Set values on sphef

a)

Iterate over WDF model

'

Save WDF statd

o

Figure 5.7: One TLMME iteration — ME boundary condition.

ical manifold and the outgoing waves from the WDF models diation
modes, respectively. Vectas | yme represents the incoming waves on the
connection subnetwork.

Next, we compute the outgoing waves of the connection swomkt—
the Multiply with connection subnetwork matgprocedure. The vector of
outgoing waves from the connection subnetwork is denotdurbyme,

brim

: 5.12
bue (5.12)

brimmE =

The result of the Multiply with connection subnetwork maprocedure is
the vectobr mme calculated as

btLmME = STLMME aTLMME, (5.13)

whereSt | mme IS the scattering matrix of the connection subnetwork. €her
is no time delay present in this scattering process.
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5.3 The TLMME Algorithm

The incoming waves onto the spherical manifold of the TLM dgm
are now available in the vectdrr v and the incoming waves onto the
WDF models of the radiation modes in the vecdbase. The incoming
wavesbr v are set on the spherical manifold in tBet values on sphere
procedure. The incoming wavés e are used for one time step iteration
over all WDF models — thierate over WDF modelgrocedure.

Eventually, the state of the WDF models needs to be storeddier do
be used during the next TLMME iteration. This is done in 8s/e WDF
stateprocedure.
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6 Numerical Examples

6.1 Flat Dipole Antenna

The first example on which the TLMME method and it's featuréi be
demonstrated is a flat dipole antenna. This example is sieTeagh to be
solved to some extent analytically, but does include en@aghplexity to
highlight important behaviour of the TLMME method. The layof the
flat dipole antenna is shown in Figure 6.1.

PEC
Zi
I 30 D 30 |

Figure 6.1: Top view of the flat dipole antenna; all lengtresgiven in mm
units.

To evaluate the performance of the TLMME method, the inpumigd
tance of the flat dipole is chosen as the key antenna chasdic®r It
is well known and generally valid that the input admittgitopedance is
much more sensitive to the accuracy of the modelling methad bther
antenna parameters like the radiation pattern (cf., e1Q]).[

In this example the input admittance of the flat dipole is fitulated
analytically. Then, a TLM computation with absorbing boandcondi-
tions on cubical simulation region and a TLMME computatiesults will
be presented.
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6.1.1 Analytical characterization

For the analytical characterization of the flat dipole antean approxima-
tion by a thin wire dipole antenna is done (see [40], p. 454k @&quivalent
radiusae of the wire dipole is given by

ae = 0.25w, (6.1)

wherew = 2mm is the width of the flat dipole antenna (see Figure 6.1).
Using the induced emf method (see [41], pp.359-434) thearghimagi-
nary parts of the input impedance referred to at the currenimum are
given by ([40], p. 410)

Rm = % C +In(kl) — Ci(kl) + % sin(kl)(Si(2kl) - 2 Si(l))
K (6.2a)
+ % coskl) (c +In (E) +Ci(2kl) - 2 Ci(kl))},
Xm = 4@ [2 Si(kl) + coskl)(2 Si(Kl) — Si(2kl))
" (6.2b)

—sin(I) (2 Ci(kl) - Ci(2kl) - Ci (ﬁ))}

whereZy = 377,k = £, C = 0577215665 is the Euler’'s constahts the
length of the dipoleae is the equivalent radius of the dipole, 8i(s the
sine integral and CX) is the cosine integral given by

i [ sin®
SI(X)_j(; n dt, (6.3a)
Ci(x) = f %S@dt. (6.3b)
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6.1 Flat Dipole Antenna

The real and imaginary parts of the input impedance refaoed the cur-
rent at the input terminals are computed from

___Rnm
Rin = sir?(kl/2)’ (6.42)
Xm
Xm = m (64b)

6.1.2 TLM and TLMME computations

The setup for the TLM simulation with absorbing boundarydaition (ABC)
and the TLMME simulation is shown in Figure 6.2. The dipoleignted

radius r

Absorbing boundary

Figure 6.2: Flat dipole antenna simulation setup for TLMdimtion with
absorbing boundary condition and TLMME boundary condi-
tion.

along thez-axis and may be considered as rotationally symmetric. €ons
qguently, only TMy radiation modes need to be considered. These modes
have fields independent of
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The dipole antenna was discretized with a uniform spatsdrétizetion
stepAx = Ay = Az= 1 mm. For the TLM simulation with ABC the dimen-
sions of the computational box are 70 0 mmx 70 mm resulting in a
total number of 343000 TLM cells. For the TLMME simulatiorettadius
r = 35mm and the number of T\ modesN = 5. Both, the TLM with
ABC and the TLMME simulations, were performed with= 5000 time
steps.

The antenna was excited with a discrete Dirac impulse on a@eatis
source port distributed over 2 cell interfaces. The refeeenesistance of
the source port equaglﬂ. The 5x 5 scattering matrix of the connection
network reads

101 1 1 1
J2 2 1 1 1

s==|2 1 -2 1 1 (6.5)
Sl 1 1 -2 1

It can be verified by direct computation that this scatterimagrix is en-
ergy conservative, i.ejdet(S)| = 1, and thatS- S=1. The matrix is not
symmetric since the reference resistances on the pdies.di

The results of the calculated input admittance by the TLMtAed LMME
are shown in Figure 6.3 and Figure 6.4. The results are cadpeth a re-
sult obtained by method of moments (MoM). The MoM computatias
done using EMAPS5 software [42].

We can see a good agreement between tierdnt methods. The ad-
mittance computed by the TLMME method agrees slightly betith the
MoM computation than the TLM computation with ABC.

Furthermore, in contrast to the TLM calculation with ABCethLMME
computation provides us with novel information about théiated field,
e.g., the amount of radiated energy and the distributiorhs €énergy
among the dferent radiation modes. This kind of information is never
available when using TLM with ABC. Also, since the temporapén-
dence of the modal cdigcients is known in the TLMME method, we can
reconstruct the radiated field without the need to re-siteulae whole
problem.
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Figure 6.3: Real part of the input admittance of the flat cianitenna.
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Figure 6.4: Imaginary part of the input admittance of the dlatole an-
tenna.
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In Figure 6.5 we can see the instantaneous energy of the ingone-
flected and transmitted (radiated) signals. A detailed \oevihe energy
of reflected signal is shown in Figure 6.6. We see that the atnafuen-
ergy reflected from the radiation modes back to the TLM donsmuch
smaller compared to the amount of energy transmitted toethmihation
impedances of the radiation modes. Consequently, mostoétlergy is
radiated. This explains why the results obtained by TLM wABBC and
by TLMME are similar in this particular example.

0.01;

| |
— Incoming energy to radiation modes
— Reflected energy from radiation modes

0.008 ) + + Radiated energy in radiation modes
|
|
|
|

©
o
=}
>

Signal energy

0.004

0.002

. T T NS SR
50 75 100 125 150
Time step [-]

Figure 6.5: Energy of incoming, reflected and radiated $gna

6.2 Dipole Antenna at the Boundary of
Simulation Region

For the absorbing boundary condition to work properly,¢éhaust be a cer-
tain distance between the geometric object and the conmpuéhbound-
ary. In this example a dipole antenna of 6 mm length is platétesdound-
ary of the simulation region and its input impedance is cotagu
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6.2 Dipole Antenna at the Boundary of Simulation Region
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Figure 6.6: Detailed view on the energy of the reflected digna

For the comparison the following simulation setups are used

1. Reference simulation with ABC,

2. TLM with ABC on cubical simulation region,

3. TLM with ABC on spherical TLM region,

4. TLMME boundary condition on spherical TLM region.

The discretized dipole antenna inside the spherical TLMoregs shown
in Figure 6.7. Except in the case of the reference simulatiom dipole
antenna is touching directly the boundary of the simulategion.

For the reference simulation a simulation domain of the afZ#0 mmx

The setup for the ABC and TLMME simulations was:

e Simulation domain of 20mm 20 mmx 20mm,

50mmx 50mm was used. The other parameters were the same as those
described below for the other simulations.
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Figure 6.7: Dipole antenna inside spherical TLM region. @nénna is
touching the boundary of the simulation region.

Uniform spatial discretization withx = Ay = Az= 1 mm,

Number of TLM iterations1 = 500 time steps,

Radius of the spherical TLM regian= 10mm,

Excitation by a discrete Dirac impulse on a discrete souccegis-
tributed over 2 cells with reference port resistance equd)3Q
(same as in the previous example).

For the TLMME simulation only TMy modes were considered and the
number of modes wald = 25.

The results of the computed input impedance for théedint setups
are shown in Figure 6.8. We can see that the results of ABClatrons
when the dipole is touching the boundary are not correct th bases, the
cubical simulation region and the spherical simulationaegThe reactive
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part of the input impedance does not properly reflect thenasce of the
antenna. On the other hand, we can see a good agreement he¢hgee

200

g
~z
N
E
ko)
4
-200
R4 — TLMME in spherical TLM region
/ };' —— ABC in spherical TLM region | ]
LN --++ ABC in cubical TLM region
. *—x ABC - reference simulation
400 L ! I I I I I
5e+09 le+10 1.5e+10 2e+10 2.5e+10 3e+10
frequency [Hz]

Figure 6.8: Real and imaginary parts of the input impedarichedo6 mm
dipole for diferent simulation setups.

TLMME simulation and the reference simulation, even if tée@na is
touching the boundary of the simulation region. The imagipart reflects
correctly the resonances of the antenna and also the reagraes well
with the reference simulation.

6.3 Bowtie Antenna

In this example the input impedance of broadband planaribamtenna
is computed. The purpose of this example is to demonstratg@eéfor-
mance of the developed excitation techniques by meansestminection
networks (see Section 2.4).

The dimensions of the antenna structure are shown in Fig@re &s
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was the case in the previous section, also here for the bewtenna the
input impedance is the main antenna characteristics afiste

30

Figure 6.9: The bowtie antenna; all dimensions are givenrim m

The bowtie antenna was discretized with a spatial disattia step
Al = 0.25mm in a computational box with dimensions 50 m®0 mmx
50mm. At the outer boundary of the simulation domain absgybiound-
ary conditions were applied.

For the excitation a discrete power source with a connectitmwork
distributed across 2 2 cell interfaces was used. The antenna was excited
with a Dirac impulse. The WDF representation of the conoeatietwork
is shown in Figure 6.10. The port impedances of the ports sieosen so
that realizability is ensured (see Section 5.2.2 and [25] 271-272). The
9x 9 scattering matrix of the connection network reads

1[0 Vit VT
S=--(2V;7 M3 Mo |, (6.68.)

2Vi My My

where

vi=[1 1 1 1T, (6.6b)

3 5 3 3

1|-5 3 3 3
Mi=3l3 3 3 _5 (6.6¢)

3 3 -5 3
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Figure 6.10: WDF representation of a2 connection network; the port
impedances are also shown.
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and

Mp=— (6.6d)

NI~
[ENENFEN
N S
N
e

It can be checked by direct computation tBaS= | and|det©)| = 1.

The result of the computed input impedance using the diss@irce in
TLM is shown in Figure 6.11. We can see a good agreement withade
of moments (MoM) result presented in [43] and measuremesltrere-
sented in [44].
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Figure 6.11: Input impedance of the bowtie antenna. MoM &itian re-
sults are taken from [43] and measurement results from [44].

In Figure 6.12 the first 150 time steps of the reflected wavieeasburce
port are shown. From the returns to zero of the signal candselglseen
that non-physical modes are present in the simulation. Mewysince the
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TLM modelis linear and since there is only one source pogtyésults for
low frequency components are correct.
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Figure 6.12: Time domain signal for 150 time steps of the c&dle wave
at the source port.
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7 Conclusions

In this thesis the Transmission Line Matrix — Multipole Exyzéon method
(TLMME) has been presented. The TLMME method allows #icient
and potentially exact modeling of radiating electromagrstuctures.

In TLMME the time-domain Transmission Line Matrix (TLM) nieid
is combined with the multipole expansion of the radiatedifielhe total
radiated field is decomposed into orthonormal radiation esaghich are
connected to the TLM simulation domain on a spherical boondin a
global network model the simulation domain is modeled byTth®l mesh
of transmission lines, every impedance of the radiation eniednodeled
by a ladder network oneport and the connection of thesegbartworks
is accomplished by an ideal transformer connection netwdhks allows
to include potentially exact radiating boundary conditioto the TLM
model by lumped element equivalent circuits representiegrhpedances
of radiation modes.

In Chapter 2 the principles of the TLM method were introdudédas
shown how the scattering matrix of the TLM method is obtainsidg dis-
crete diferential forms. Furthermore, novel techniques for thetation of
TLM cells by means of discrete sources were developed. Theesion
networks employed provide as port signals incoming andaotgwaves
and are thus easily coupled to the TLM method which uses waastgies
as well. Also, they enable the excitation of the TLM modehnatdiscrete
Dirac impulse signal. Very good performance of the discexteitation
technique was verified on an example of bowtie antenna irde6t3.

In Chapter 3 the theory of multipole expansion and radiatimales was
given. It was shown how the impedances of radiation mode$&earpre-
sented using equivalent Cauer circuits.

In Chapter 4 the connection subnetwork connecting the TLdjibreto
the impedances of the radiation modes was described. Tttersog ma-
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trix of the connection subnetwork was derived and its specises were
discussed.

The TLMME method was described in detail in Chapter 5. Theesph
ical TLM region was described and its generation by meansaofeSian
mesh generator was explained. The performance of the Gartagesh
generator was evaluated on an example of a rectangulay cagibnator.
We could calculate the resonance frequencies with a relatikor below
0.2 % for the highest mesh resolution. Furthermore, thézag@ns of the
impedances of the radiation modes by means of wave digieidi{WDFs)
were described and the details of the TLMME algorithm werga&red in
detail.

The results of the calculation of the input impedance of mms using
the TLMME method were given in Chapter 6. First, a flat dipaléeana
was characterized. We have seen good agreement betweestitts ob-
tained by the TLMME method, the TLM method using absorbingrimb
ary condition (ABC) and the method of moments (MoM). Howevar
contrast to the TLM method with ABC, the availability of atidhal infor-
mation about the radiated field in the TLMME method could ekpivhy
the solution using TLM with ABC is similar to that of TLMME fothe
particular example. For the example of the flat dipole ardenost of the
field hitting the boundary of the simulation domain is radéitas could be
observed from the energy transmitted to the terminatioremtapces of the
radiation modes.

In the example of a dipole antenna located at the boundatyeo$im-
ulation domain was shown that the TLMME method gives betsult of
the input impedance of the antenna than the TLM method witiCAB
contrast to the TLM method with ABC the input impedance cotadly
the TLMME method was correct even if the dipole antenna ishing the
boundary of the simulation domain.

There still remain many tasks which could be done in the &ut@ne
problem of the TLMME method in the current implementatiothis non-
conformity of the discretized spherical manifold to theetgpherical man-
ifold. When a tetrahedral implementation of TLM is avaibthe per-
formance of the TLMME method could be tested with a sphefl¢daVi
simulation region conforming better to the true sphericahifold.
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Furthermore, planar structures with conducting groundazget of very
important problems in today’s industry. To solve the radiaproblems of
these planar structureffieiently by TLMME, a half-space formulation of
the TLMME could be developed and implemented.
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A Useful Formulas and
Relations

A.1 Central Difference Scheme

Let’'s have a functionf(x) of xe R and f : R — R. The first central
difference, using discretization stag, is given by

Axy _ _ Ax
[dfd(xx)]D: Ag(x) _ f(x+5 AXf(X 22 - £1(x). (A.1)

The second order centralfférence is then obtained by

?f()] [ d ([df(x) _[d (AT _[d _
(G, - [ 5, - [, -
frix+ 59— fi(x= %)
- ~ = (A.2)

1
= R(f(x+Ax)—2f(x) + f(x—AX)) =
= fA (%)

A.2 Transformations Between Wave and
Network Quantities

Possible transformations from network quantities to wawnarndjitiesTy
and from wave quantities to network quantities.
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A Useful Formulas and Relations

Transformation 1

e
1/1 1
TNZ_[l 1]
V2ly %
Transformation 2
{1 m
TW_[l —n}
111 1
TN—Q[; _;]
n n
Transformation 3
111 g
Tw ==
" 2[1 —77]
1 1
Tn=|1 _1
n n
Normalized wave quantities
\/
Vi=—, =1+
\/ﬁ \/_
V' 1V Z
lI=—=—— = —
I nl 7
Then, transformation 1 reads
11 1
|
1117 1
Tt =T
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A.3 Matrix Algebra Rules

A.3 Matrix Algebra Rules

A.3.1 Transposition and inversion

(AT =A (A.9)
(A+B)T=AT +BT (A.10)
(AB)T =BTAT (A.11)
(ABC)" = (BC)'AT =CTBTAT (A.12)
For any nonsingular matrif
(AT =(AT (A.13)

A.3.2 Block matrix and Schur complement

In the following consider the matriceA]pxp, [Blpxg: [Clgxps [Plaxqs
whereD is nonsingular. Let¥](p+gx(p+q) be the block matrix (partitioned
matrix)

M = [é g]. (A.14)
The transpose d¥l is given by
T
A B AT CT
MT = [C D] = [BT DT}' (A.15)

The Schur complemeB, is defined as
Sa=A-BD'C. (A.16)
With the Schur complement the inverse matvix! can be calculated as

_l l
[é g] =[—D|-lc ?H% Dql] (A.17)

0 I

I —BD‘l]

105



A Useful Formulas and Relations

A.4 Taylor Expansion in 2D

The Taylor expansion of a two-dimensional functidi+ Ax, y+ Ay) around
the point &,y) is given by

F(x+AXy+Ay) = f(xy) +((A%) fx+ (Ay) fy) +
1 (A.18)
+5 (A% fxx+ 2AXAY fiy + (AY)*yy) + ...

with fy = af(x,y)/9X, fxx = 32F(X,Y)/0x?, etc.
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