

Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Energie- und Umwelttechnik der Lebensmittelindustrie

Einfluss der hydrostatischen Hochdruckbehandlung auf die Filtrierbarkeit von Bier und das Verhalten von ß-Glucan-Gel

Steffen Fischer

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:	UnivProf. DrIng. E. Geiger
Prüfer der Dissertation:	1. UnivProf. DrIng. R. Meyer-Pittroff 2. UnivProf. DrIng. habil. W. Back
	 UnivProf. DrIng. K. Wackerbauer, em. Technische Universität Berlin

Die Dissertation wurde am 02.03.2005 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 30.05.2005 angenommen.

GEWIDMET MEINEM SOHN LUKAS

Die vorliegende Arbeit entstand am Lehrstuhl für Energie- und Umwelttechnik der Lebensmittelindustrie der Technischen Universität München. Die Untersuchungen erfolgten im Rahmen zweier Projekte die durch die Wissenschaftsförderung des Deutschen Brauerbunds e.V. gefördert bzw. unterstützt wurden.

Mein besonderer Dank gilt Herrn Univ.-Prof. Dr.-Ing. Roland Meyer-Pittroff der es mir ermöglicht hat ein Thema zu bearbeiten, dass die Fachgebiete Brauwesen und Hochdrucktechnologie verbindet. Und des weiteren als einer der Initiatoren der Hochdruck-Forschung in Weihenstephan gemeinsam mit Herrn PD Dr.-Ing. Winfried Ruß, dem ebenfalls mein Dank gilt, dafür verantwortlich war, dass am Lehrstuhl für Energie- und Umwelttechnik der Lebensmittelindustrie eine homogene und interdisziplinäre Gruppe entstand, die die vielfältigen Anwendungsmöglichkeiten der Hochdrucktechnologie bearbeiten konnte.

Besonders erwähnen möchte ich auch Herrn Prof. Dr.-Ing. Helmut Schöberl, der als mein Vorgänger am Lehrstuhl für Energie- und Umwelttechnik der Lebensmittelindustrie tätig war, und dem ich es zu verdanken habe überhaupt den Schritt zur Promotion vollzogen zu haben.

Herrn Univ.-Prof. Dr.-Ing. Werner Back und Herrn Univ.-Prof. em. Dr.-Ing. Karl Wackerbauer danke ich sehr herzlich für die Übernahme der Koreferate, sowie Herrn Univ.-Prof. Dr.-Ing. Eberhard Geiger für den Vorsitz der Prüfungskommission.

Gedankt sei auch Herrn Dr.-Ing. Stefan Kreisz, Herrn PD Dr.-Ing. Joachim Götz und Herrn PD Dr. rer. nat. Michael Gänzle für die Unterstützung bei verschiedenen Versuchsdurchführungen, deren Aufbau und auch Auswertung.

Besonderer Dank gilt auch allen Kollegen die ich kommen und gehen sah, die eine gute und freundschaftliche Zusammenarbeit ermöglichten, die Grundstein für so manche Idee war, die in Projekten und Promotionen umgesetzt wurde.

Nicht zuletzt danke ich allen Diplomanden, Semestranden, Hilfskräften und Austauschstudenten, die mich bei dieser Arbeit tatkräftig unterstützten.

Inhaltsverzeichnis

Vorwo	ort	I
Inhalt	sverzeichnis	II
Symb	ole und Abkürzungen	VII
Abbilo	dungsverzeichnis	IX
Tabel	lenverzeichnis	XII
Forme	elverzeichnis	XIII
1	Entwicklung der Hochdruckanwendungen in der Lebensmittelindustrie	1
1.1	Die Hochdruckbehandlung von Bier	2
1.1.1	Charakterisierung des Einflusses von Hochdruck auf die Filtrierbarkeit von Bier	3
2	Ermittlung des Verhaltens der mittels Hochdruck beeinflussbaren filtrationsrelevanten Inhaltsstoffe von Bier	5
3	Erzeugung von Hochdruck und dessen Wirkungen	6
3.1	Prinzipien der Druckerzeugung	6
3.2	Thermodynamische Grundlagen der Hochdrucktechnologie	9
3.2.1	Freie Enthalpie	9
3.2.2	Gibbs-Helmholtz-Gleichung	12
3.2.3	Chemisches Gleichgewicht	14
3.2.4	Reaktionsgeschwindigkeit	15
3.2.5	Zusammenhang zwischen Reaktionsgeschwindigkeit und der Zusammensetzung im Gleichgewichtszustand	17
3.2.6	Umsetzung der thermodynamischen und kinetischen Grundlagen auf die Effekte des Drucks	18
3.3	Einfluss und Bedeutung der hydrostatischen Hochdruckbehandlung auf die thermodynamischen Größen des Wassers	21
3.4	Auswirkungen des Hochdrucks auf Lebensmittelinhaltsstoffe	26
3.4.1	Hochdruckinduzierte Veränderungen von Proteinen	26
3.4.1.′	Strukturänderungen in Proteinen durch Druckanwendung	26
3.4.1.2	2 Bedeutung der hochdruckinduzierten Proteindenaturierung für Enzyme	28
3.4.2	Auswirkungen von Hochdruck auf Kohlenhydrate	29
3.4.3	Veränderungen von Lipiden durch Hochdruck	31

١/	or-		hh	linna	
v	eı₂	zeid	SUL	usse	;

3.4.4	Stabilität von Vitaminen, Farb- und Aromastoffen gegenüber Hochdruck	31
3.4.5	Abtötung oder Schädigung von Mikroorganismen mittels Hochdruck	32
4 / E	Auswirkungen der verschiedenen Teilschritte der Bierbereitung auf die Filtrierbarkeit von Bier	33
4.1	Einflussfaktoren auf die Filtrierbarkeit während der Bierbereitung	33
4.1.1	Bildung von β-Glucan und β-Glucan-Gel und deren Bedeutung für die Filtrierbarkeit	35
4.1.2	Sonstige höhere Dextrine in Bier	37
4.1.3	Eiweiß-Gerbstoff-Verbindungen in Bier	38
4.2	Einflussfaktoren auf die Bildung von β -Glucan-Gel während der Bierbereitung	38
4.2.1	Bedeutung der Würze- und Bierzusammensetzung	39
4.2.2	Auswirkungen von Scherkraftbelastungen	40
4.2.3	Einfluss der Temperatur	40
5 F	Polymerchemische Grundlagen der Gelbildung	41
5 F 5.1	Polymerchemische Grundlagen der Gelbildung Rheologische Eigenschaften von Makromolekülen	. 41 41
5 F 5.1 5.2	Polymerchemische Grundlagen der Gelbildung Rheologische Eigenschaften von Makromolekülen Gele	41 41 43
5 F 5.1 5.2 5.2.1	Polymerchemische Grundlagen der Gelbildung Rheologische Eigenschaften von Makromolekülen Gele Definition der Gele	41 41 43 43
5 F 5.1 5.2 5.2.1 5.2.2	Polymerchemische Grundlagen der Gelbildung Rheologische Eigenschaften von Makromolekülen Gele Definition der Gele Strukturen von Gelen	41 41 43 43 43
5 F 5.1 5.2 5.2.1 5.2.2 5.2.2 5.2.3	Polymerchemische Grundlagen der Gelbildung Rheologische Eigenschaften von Makromolekülen Gele Definition der Gele Strukturen von Gelen Physikalische Eigenschaften von Gelen	41 43 43 43 44 46
5 F 5.2 5.2.1 5.2.2 5.2.2 5.2.3 5.2.3	Polymerchemische Grundlagen der Gelbildung Rheologische Eigenschaften von Makromolekülen Gele Definition der Gele Strukturen von Gelen Physikalische Eigenschaften von Gelen Mechanisches Verhalten gelartiger Systeme	41 43 43 43 44 46 46
5 F 5.2 5.2.1 5.2.2 5.2.3 5.2.3 5.2.3.1 5.2.3.2	Polymerchemische Grundlagen der Gelbildung. Rheologische Eigenschaften von Makromolekülen. Gele. Definition der Gele. Strukturen von Gelen. Physikalische Eigenschaften von Gelen. Mechanisches Verhalten gelartiger Systeme. Quellung durch Materialaufnahme.	41 43 43 43 44 46 46 46
5 F 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4	Polymerchemische Grundlagen der Gelbildung. Rheologische Eigenschaften von Makromolekülen. Gele. Definition der Gele. Strukturen von Gelen. Physikalische Eigenschaften von Gelen. Mechanisches Verhalten gelartiger Systeme. Quellung durch Materialaufnahme. Gelbildung.	41 43 43 44 46 46 46 47 48
5 F 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.2.4.1	Polymerchemische Grundlagen der Gelbildung. Rheologische Eigenschaften von Makromolekülen. Gele. Definition der Gele. Strukturen von Gelen. Physikalische Eigenschaften von Gelen. Mechanisches Verhalten gelartiger Systeme. Quellung durch Materialaufnahme. Gelbildung.	41 43 43 44 46 46 46 48 48
5 F 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.2.4.1 5.2.4.2	Polymerchemische Grundlagen der Gelbildung Rheologische Eigenschaften von Makromolekülen Gele Definition der Gele Strukturen von Gelen Physikalische Eigenschaften von Gelen Mechanisches Verhalten gelartiger Systeme Quellung durch Materialaufnahme Gelbildung Assoziation von Einzelmolekülen Modelle zur Gelbildung	41 43 43 44 46 46 46 48 48 49
5 F 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.2.4.1 5.2.4.2 5.2.4.2	Polymerchemische Grundlagen der Gelbildung. Rheologische Eigenschaften von Makromolekülen. Gele. Definition der Gele. Strukturen von Gelen. Physikalische Eigenschaften von Gelen. Mechanisches Verhalten gelartiger Systeme. Quellung durch Materialaufnahme. Gelbildung. Assoziation von Einzelmolekülen. Modelle zur Gelbildung. 1	41 43 43 44 46 46 46 46 48 48 49 49 49
5 F 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.2.4.1 5.2.4.2 5.2.4.2	Polymerchemische Grundlagen der Gelbildung. Rheologische Eigenschaften von Makromolekülen. Gele. Definition der Gele. Strukturen von Gelen. Physikalische Eigenschaften von Gelen. Mechanisches Verhalten gelartiger Systeme. Quellung durch Materialaufnahme. Gelbildung. Assoziation von Einzelmolekülen. Modelle zur Gelbildung. 1 Irreversibel verknüpfte Gele. 2 Reversibel verknüpfte Gele.	41 43 43 44 46 46 46 46 48 48 49 49 49 49 49
5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.2.4.1 5.2.4.2 5.2.4.2 5.2.4.2 5.2.4.2	Polymerchemische Grundlagen der Gelbildung. Rheologische Eigenschaften von Makromolekülen. Gele. Definition der Gele. Strukturen von Gelen. Physikalische Eigenschaften von Gelen. Mechanisches Verhalten gelartiger Systeme. Quellung durch Materialaufnahme. Gelbildung. Assoziation von Einzelmolekülen. Modelle zur Gelbildung. 1 Irreversibel verknüpfte Gele. 2 Reversibel verknüpfte Gele. Bildung von Hauptvalenzgelen.	41 43 43 44 46 46 46 46 48 48 49 49 49 49 49 49 49 49
5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.2.4.2 5.2.4.2 5.2.4.2 5.2.4.2 5.2.4.2	Polymerchemische Grundlagen der Gelbildung	41 43 43 44 46 46 46 46 48 48 49 49 49 49 49 49 51 52
5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.2.4.2 5.2.4.2 5.2.4.2 5.2.4.2 5.2.4.2 5.2.4.2	Polymerchemische Grundlagen der Gelbildung Rheologische Eigenschaften von Makromolekülen	41 43 43 43 44 46 46 46 46 48 49 49 49 49 49 51 52 53

6	Analytische Verfahren und Methoden	57
6.1	Bestimmung der Filtrierbarkeit von Bier	57
6.1.1	Filtrationstest nach Sartorius	57
6.1.2	Filtrationstest nach Raible	58
6.2	Bestimmung des Stickstoff- und Polyphenolgehalts	62
6.3	Abschätzung der Partikelgrößenverteilung durch Zentrifugation	63
6.4	Bestimmung der Gehalte von β -Glucan und β -Glucan-Gel	64
6.5	Bestimmung der Viskosität	64
6.6	Theoretische Grundlagen der Kernresonanzspektroskopie	65
6.6.1	Kernspin von Atomkernen	65
6.6.2	Relaxationsvorgänge bei Magnetisierungsvektoren	67
6.6.3	Impulsfolgen zur Minimierung von Störeinflüssen	68
6.6.4	Interpretation der Ergebnisse von Impulsfolgen	72
6.6.5	Protonenbeweglichkeit zur Bestimmung des Bindungszustands	73
6.7	Statistische Grundlagen	74
7	Anlagen und Analysengeräte	76
7.1	Beschreibung der eingesetzten Hochdruckanlagen	76
7.1.1	Hochdruckanlage mit externer Druckerzeugung	76
7.1.2	Aufbau der Hochdruck-Sichtzelle	77
7.2	Beschreibung der eingesetzten Analysengeräte	78
7.2.1	Aufbau der Laborfiltration	79
7.2.1.1	Laborfiltrationsstand nach Sartorius	79
7.2.1.2	2 Kieselgur-Laborfilter zur Bestimmung der Filtrierbarkeit nach Raible	80
7.2.2	β-Glucan-Analyzer	80
7.2.3	Fluoreszenzphotometer	81
7.2.4	Rotationsviskosimeter	81
7.2.5	NMR-Spektrometer	81
8	Probenmaterial und Probengebinde	82
8.1	Probenmaterial für die Hochdruckbehandlung	82
8.1.1	Helles kellertrübes Bier	82
8.1.2	Bier mit einer erhöhten Konzentration an β -Glucan-Gel	82
8.1.3	Modell-Gel aus nativem β -Glucan	82
8.1.3.1	Lösung des β -Glucan aus dem Rohstoff	83

8.1.3.	2 Ausbildung des β -Glucan-Gels	84
8.2	Verpackungsmaterial zur Hochdruckbehandlung	86
9	Ergebnisse der Untersuchungen an Bier	87
9.1	Ergebnisse der Filtrationsversuche	87
9.1.1	Schichtenfiltration nach Sartorius	87
9.1.2	Kieselgurfiltration nach Raible	88
9.2	Ergebnisse der Bestimmung des Gehalts an Gesamtstickstoff und der Stickstoff-Fraktionen	90
9.3	Ergebnisse der Bestimmung des Gehalts an Polyphenolen und Anthocyanogenen	91
9.4	Ergebnisse der Abschätzung der Partikelgrößen	92
9.5	Ergebnisse der Bestimmung des Gehalts an β -Glucan-Gel in Bier	93
10	Ergebnisse der Untersuchungen am Modell-Gel	94
10.1	Ergebnisse der Bestimmung des Gehalts an β -Glucan-Gel im Modell-Gel.	94
10.2	Ergebnisse der Viskositätsbestimmungen bei den verschiedenen Modell-Gelen	96
10.3	Ergebnisse der fluoreszenzphotometrischen Untersuchungen während der Hochdruckbehandlung	97
10.4	Ergebnisse der Bestimmung der vorliegenden Wasserzustände mittels NMR-Messungen	104
11	Diskussion der Untersuchungen an Bier und Modell-Gel	108
11.1	Diskussion der an Bier ermittelten Ergebnisse	108
11.2	Diskussion der am Modell-Gel ermittelten Ergebnisse	115
12	Zusammenfassende Darstellung des Einflusses von Hochdruck auf die Filtrierbarkeit von Bier und das Verhalten von β-Glucan-Gel	127
13	Summary	130
14	Literatur	A
15	Anhang	I
15.1	Schwellenwert nach Grubbs	I

15.2	Rohdaten des Einflusses auf die Filtrationsdauer von hellem kellertrüben Bier (Weihenstephaner Original) bei der Schichtenfiltration nach Sartorius bei Variation des Druckes während der Hochdruckbehandlung(Haltezeit 300 s)	J
15.3	Rohdaten des Einflusses auf die Filtrationsdauer von hellem kellertrüben "Problembier" bei der Schichtenfiltration nach Sartorius bei Variation des Druckes während der Hochdruckbehandlung (Haltezeit 300 s)	K
15.4	Rohdaten des spezifisches Filtratvolumens F _{spez.} von hellem kellertrüben "Problembier" bei der Kieselgurfiltration nach Raible in Abhängigkeit vom Druck und der Druckhaltezeit während der Hochdruckbehandlung.	L
15.5	Rohdaten des Gesamtstickstoffgehalts bzw. Gehalts an nieder-, mittel- und hochmolekularem Stickstoff im hellen unfiltrierten "Problembier" in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s	M
15.6	Rohdaten des Gehalts an Polyphenolen bzw. Anthocyanogenen im hellen unfiltrierten "Problembier" in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s	N
15.7	Rohdaten der Absorption bei 600 nm im Überstand nach erfolgter Zentrifugation des hellen kellertrüben "Problembieres" bei verschiedenen Drehzahlen und Zeiten in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s	0
15.8	Rohdaten zur Bestimmung des Gehalts an β-Glucan-Gel im hellen kellertrüben "Problembier" in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung	R
15.9	Rohdaten zur Bestimmung des Gehalts an β-Glucan-Gel im Modell-Gel in Abhängigkeit vom Druck und der Haltezeit bzw. der Temperatur während der Hochdruck- bzw. Temperaturbehandlung	S
15.10	Rohdaten zur Bestimmung der Viskosität in Abhängigkeit vom Druck und der Haltezeit bzw. der Temperatur während der Hochdruck- bzw. Temperaturbehandlung	V
15.11	Rohdaten zur Bestimmung der Eigenfluoreszenz von β-Glucan bei Atmosphärendruck	Y
15.12	Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei einem Maximaldruck von 100 MPa	CC
15.13	Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei einem Maximaldruck von 200 MPa	FF
15.14	Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei einem Maximaldruck von 300 MPa	II
15.15	Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei einem Maximaldruck von 400 MPa	MM
15.16	Rohdaten zur Bestimmung der Eigenfluoreszenz von β-Glucan nach thermischer Behandlung bei Atmosphärendruck	QQ

15.17 Rohdaten zur Bestimmung der Relaxationszeiten c, e, g und Phasenanteile p_C, p_e, p_g gemessen bei 10 °C in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Behandlungsdauer von 600 s.....TT

Symbole und Abkürzungen

X	arithmetisches Mittel
ź	Prüfgröße des Ausreißertests nach Grubbs
\overline{R}	allgemeine Gaskonstante
μ	chemisches Potential oder magnetisches Moment
ρ	Dichte
η	dynamische Viskosität
γ	gyromagnetisches Verhältnis
ξ	Reaktionsfortschritt
τ	Schubspannung
α	thermischer Ausdehnungskoeffizient
λ	Wärmeleitfähigkeit
ω	Larmorfrequenz
∆G	freie Reaktionsenthalpie
ΔG^{0}	Standardreaktionsenthalpie
ΔH	Enthalpieänderung
ΔH_{Sys}	Enthalpieänderung im System
ΔΙ	Längenänderung
ΔQ_{Sys}	Wärmeabgabe eines Systems
ΔQ_{Um}	Wärmeaufnahme der Umgebung
ΔS_g	Änderung der Gesamtentropie
ΔS_{Sys}	Änderung der Systementropie
ΔS_{Um}	Änderung der Umgebungsentropie
ΔV	Volumenänderung
ΔV^{\neq}	Aktivierungsvolumen
ΔV^0	Reaktionsvolumen
Α	Affinität oder Fläche oder präexponentieller Faktor
а	Filterkuchenfaktor (Gleichung 5.2)

b	Primärschichtfaktor (Gleichung 5.2)
b, d, f, h	Amplituden bei NMR-Messungen
B_0	magnetische Induktion
С	Konzentration oder Relaxationszeit
C*	Überlappungskonzentration
e, g, i	Relaxationszeiten
C _G	Gelbildungskonzentration
Cp	spezifische Wärmekapaziät
D	Geschwindigkeitsgradient
E	Elastizitätsmodul
E _A	Aktivierungsenergie
E _{min}	Mindestenergie
f	Bruchteil der aktiven Moleküle nach Boltzman
F	Kraft
FIA	Flow-Injection-Analyses
FID	Free Inducation Decay
F _{spez}	spezifische Filtratvolumen
G	freie Enthalpie
G ⁰	freie Standardenthalpie
Н	Enthalpie
h	Planksches Wirkungsquantum (Gleichung 5.10)
i	Spinquantenzahl
k	Boltzmann-Konstante
k	Reaktionsgeschwindigkeit
K _c	Gleichgewichtskonstante über Konzentrationen
K _ρ	Gleichgewichtskonstante über Partialdrücke
1	Drehimpuls (Gleichung 5.8)
LM	Lösemittel
М	Magnetisierungsvektor
MEBAK	Mitteleuropäische Brautechnische Analysenkomission
Ν	Protonendichte
n	Stoffmenge
NMR	Nuclear Magnetic Resonance Spectroscopy
OBC	Oat-Bran-Concentrate
p	Druck
p _c , p _e , p _g	Phasenanteile

Partialdrücke der Reaktionspartner
Reaktionsquotient
einem System zugeführte Wärme
der Umgebung zugeführte Wärme
Standardabweichung
Entropie
Varianz
Spannung
absolute Temperatur
innere Energie oder Spannung (Gleichungen 5.14, 5.15 und 5.16)
Geschwindigkeit
Filtratvolumen pro m ² Filterfläche, gilt nur für Gleichung 5.2
Versuchs- und Lehranstalt für Brauerei in Berlin
Variationskoeffizient

Abbildungsverzeichnis

Abbildung 2.1:	Fließschema zur Ermittlung der Ursachen für die Filtrationsverbesserung mittels Hochdruck	5
Abbildung 3.1:	Prinzip der internen Druckerzeugung	6
Abbildung 3.2:	Prinzip der externen Druckerzeugung	7
Abbildung 3.3:	Abbhängigkeit von Affinität A bzw. freier Reaktionsenthalpie $\varDelta G$ vom Reaktionsfortschritt ξ [25]	10
Abbildung 3.4:	Volumenreaktionsprofil für die Reaktion nach Gleichung 3.20 [34]	20
Abbildung 3.5:	Abhängigkeit der Geschwindigkeitskonstante k vom Druck p für unterschiedliche Werte des Aktivierungsvolumens ΔV^{\neq} [23]	20
Abbildung 3.6:	Phasendiagramm von Wasser mit den Phasengrenzen zwischen flüssigem Wasser und den Eismodifikationen I – V [39]	21
Abbildung 3.7:	Spezifisches Volumen von Wasser in Abhängigkeit von Druck und Temperatur [40]	22
Abbildung 3.8:	Thermischer Ausdehnungskoeffizient α von Wasser in Abhängigkeit von Druck und Temperatur [41]	23
Abbildung 3.9:	Spezifische Wärmekapazität c_{ρ} von Wasser in Abhängigkeit von Druck und Temperatur [39]	23

Abbildung 3.10:	Temperaturerhöhung von Wasser während einer adiabaten Kompression [7]	25
Abbildung 3.11:	Einfluss des Innendurchmessers auf die Temperaturführung in einem Hochdruckautoklaven [41; 7]	26
Abbildung 3.12:	Phasenübergang von der nativen zur denaturierten Form an den Beispielen von Chymotrypsin A, Polyphenoloxidase von Avocado und menschlicher Butyrylcholinesterase in Abhängigkeit von Druck und Temperatur [53; 54; 55.]	28
Abbildung 3.13:	Schematischer Aufbau des β -Glucans [62]	30
Abbildung 4.1:	Einflussfaktoren auf die Filtrierbarkeit [86]	34
Abbildung 4.2:	Filtrationshemmende Stoffe in Bier [89]	35
Abbildung 4.3:	Korrelation zwischen der Menge an β - Glucan und der Filtrierbarkeit V _{max} [90], modifizierte Darstellung	36
Abbildung 4.4:	Korrelation zwischen β - Glucan – Gel und Filtrierbarkeit V _{max} [90], modifizierte Darstellung	37
Abbildung 5.1:	Viskositätskurven einer newtonschen, einer strukturviskosen und einer dilatanten Flüssigkeit [101]	42
Abbildung 5.2:	Schema der Struktur eines Gels aus a) kugelförmigen, b) blättchenförmigen und c) stäbchenförmigen Bauelementen [104]	44
Abbildung 5.3:	Schematische Darstellung eines Nebenvalenzgels (a), und eines Hauptvalenzgels (b) [104]	45
Abbildung 5.4:	Schematische Darstellung der Entquellung und Quellung eines Gels, das über eine semipermeable Membran mit dem Lösemittel in Verbindung steht [110]	48
Abbildung 5.5:	Modell der Netzwerkpunkte aus Fransen-Mizellen [62]	50
Abbildung 5.6:	Aufbauschema eines SiO ₂ -Gelgerüsts [104]	51
Abbildung 5.7:	Fließkurven von ß-Glucan-Gel in Abhängigkeit von der Temperatur [104]	54
Abbildung 5.8:	Schematische Darstellung der Fransenmizellen mit steigender Aggregation ($a \rightarrow b$) [104]	55
Abbildung 5.9:	Modifizierte Fransenmizelle, bei der neben einer Zunahme der Dicke auch ein Längenwachstum stattfindet [104]	56
Abbildung 6.1:	Graphische Auswertung eines Filtrationsversuchs nach Raible [114]	59
Abbildung 6.2:	Präzession eines Kernspins im statischen Magnetfeld B_0 [122]]66
Abbildung 6.3:	Freier Induktionsabfall (FID) nach einem 90°-Impuls [122]	69
Abbildung 6.4:	Durch Inhomogenitäten des Magnetfeldes hervorgerufener Verlauf des FID [122]	71
Abbildung 6.5:	Die Wirkung einer 180°-τ-90°-Impulsfolge auf die z-Komponente der resultierenden Magnetisierung M [122].	71

Abbildung 7	7.1:	Schematische Darstellung der Hochdruckanlage der Dunze, AAD Hochdrucktechnik GmbH	77
Abbildung 7	7.2 :	Verschlussteil einer Hochdruck-Sichtzelle mit Lichtleiteranschluss [123]	78
Abbildung 7	7.3:	Aufbau des Sartorius-Laborfilters [117]	79
Abbildung 7	7.4:	Schematische Darstellung des Kieselgurstützschichtenfilters zur Laborfiltration [115]	30
Abbildung 1	10.1:	Eigenfluoreszenz von Calcofluor in Abhängigkeit vom Druck während der Hochdruckbehandlung	98
Abbildung 1	10.2:	Eigenfluoreszenz von β -Glucan bei Atmosphärendruck	99
Abbildung 1	10.3:	Eigenfluoreszenz von β -Glucan bei einem Druck von 100 MPa10	00
Abbildung 1	10.4:	Eigenfluoreszenz von β -Glucan bei einem Druck von 200 MPa1	01
Abbildung 1	10.5:	Eigenfluoreszenz von β -Glucan bei einem Druck von 300 MPa1	02
Abbildung 1	10.6:	Eigenfluoreszenz von β -Glucan bei einem Druck von 400 MPa10)3
Abbildung 1	10.7:	Eigenfluoreszenz von β-Glucan bei Atmosphärendruck nach einer thermischen Behandlung bei 80 °C für 10 min10)3
Abbildung 1	10.8:	Relaxationszeiten c und Phasenanteil p _C , gemessen bei 10 °C in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 600 s10	06
Abbildung 1	10.9:	Relaxationszeiten e und Phasenanteil p _e , gemessen bei 10 °C in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 600 s10)7
Abbildung 1	10.10:	Relaxationszeiten g und Phasenanteil p _g , gemessen bei 10 °C in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 600 s10)8
Abbildung 1	11.1:	Filtrationsdauer eines hellen, kellertrüben Bieres ohne Filtrationsprobleme bzw. Wasser in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 300 s)9
Abbildung 1	11.2:	Filtrationsdauer eines hellen, kellertrüben Bieres mit Filtrationsproblemen bzw. Wasser in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 300 s)9
Abbildung 1	11.3:	Spezifisches Filtratvolumen in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung1	11
Abbildung 1	1.4:	Gesamtstickstoff bzw. Stickstoff-Fraktionen in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s11	12

Abbildung 11.5:	Gehalt an Polyphenolen und Anthocyanogenen in Abhängigkeit vom Druck (MPa) während der Hochdruckbehandlung bei einer Haltezeit von 500 s	.112
Abbildung 11.6:	Gehalt an β-Glucan-Gel in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung	114
Abbildung 11.7:	Gehalt an β-Glucan-Gel in einem Modell-Gel in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung	116
Abbildung 11.8:	Viskosität in Abhängigkeit vom Druck bzw. der Temperatur und der Haltezeit während der Hochdruck- bzw. Temperaturbehandlung	.117
Abbildung 11.9:	Phasenanteile p _c , p _e und p _g in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s	.119
Abbildung 11.10:	Eigenfluoreszenz von ß-Glucan während der Hochdruckbehandlung bei verschiedenen Drücken bzw. thermischer Behandlung bei 80 °C	121

Tabellenverzeichnis

Tabelle 3.1:	Reaktionsvolumina ΔV für verschiedene Reaktionen [31; 32; 33; 35]	21
Tabelle 8.1:	ß-Glucan-Gehalt der Proben aus den Vorversuchen 1 – 3	.84
Tabelle 8.2:	ß-Glucan-Gehalt und ß-Glucan-Gel-Gehalt der Proben aus den Vorversuchen 1 – 4	.84
Tabelle 8.3:	ß-Glucan-Gehalt und ß-Glucan-Gel-Gehalt der Proben der Vorversuche 5 und 6	.86
Tabelle 9.1:	Einfluss auf die Filtrationsdauer von hellem kellertrübem Bier (Weihenstephaner Original) bei der Schichtenfiltration nach Sartorius durch die Variation des Druckes während der Hochdruckbehandlung (Druckhaltezeit 300 s)	87
Tabelle 9.2:	Einfluss auf die Filtrationsdauer von hellem kellertrübem "Problembier" bei der Schichtenfiltration nach Sartorius durch die Variation des Druckes während der Hochdruckbehandlung (Druckhaltezeit 300 s)	.88
Tabelle 9.3:	Spezifisches Filtratvolumen F _{spez.} von hellem kellertrübem "Problembier" bei der Kieselgurfiltration nach Raible in Abhängigkeit vom Druck und der Druckhaltezeit während der Hochdruckbehandlung	.89

Tabelle 9.4:	Gesamtstickstoffgehalt bzw. Gehalt an nieder-, mittel- und hochmolekularem Stickstoff im hellen unfiltrierten "Problembier" in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s	.90
Tabelle 9.5:	Gehalt an Polyphenolen bzw. Anthocyanogenen im hellen unfiltrierten "Problembier" in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s	.91
Tabelle 9.6:	Absorption bei 600 nm im Überstand nach erfolgter Zentrifugation des hellen, kellertrüben "Problembieres" bei verschiedenen Drehzahlen und Zeiten in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s	.92
Tabelle 9.7:	Gehalt an β-Glucan-Gel im hellen kellertrüben "Problembier" in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung	.94
Tabelle 10.1:	Gehalt an β-Glucan-Gel im Modell-Gel in Abhängigkeit vom Druck und der Haltezeit bzw. der Temperatur während der Hochdruck- bzw. Temperaturbehandlung	.95
Tabelle 10.2:	Viskosität in Abhängigkeit von Druck und Haltezeit bzw. Temperatur während der Hochdruck- bzw. Temperaturbehandlung	.97

Formelverzeichnis

(3.1)	Kraft <i>F</i> auf Kolbenfläche des Druckübersetzers	8
(3.2)	Druck p_2 im Hochdruckbereich	8
(3.3)	Freie Reaktionsenthalpie ΔG	10
(3.4)	Freie Enthalpie G	11
(3.5)	Infinetesimale Änderung der freien Reaktionsenthalpie ΔG	11
(3.6)	Änderung der Gesamtentropie ${\it \Delta} S_g$	11
(3.7)	Änderung der Umgebungsentropie <i>∆S_{Um}</i> über den 2. Hauptsatz der Thermodynamik	11
(3.8)	Änderung der Gesamtentropie ⊿S _g über den 2. Hauptsatz der Thermodynamik	11
(3.9)	Differential über die freie Reaktionsenthalpie dG	12
(3.10)	Differential über die Enthalpie <i>dH</i>	12
(3.11)	Differential über die innere Energie <i>dU</i>	12
(3.12)	Differential über die Enthalpie dH, aus Gleichung 3.10 und 3.11	13
(3.13)	Gibbsche Fundamentalgleichung	13

(3.14)	Gibbsche Fundamentalgleichung bei konstanter Temperatur	13
(3.15)	Änderung der freien Enthalpie <i>G</i> bei Druckerhöhung (bezogen auf <i>G⁰</i>)	13
(3.16)	Freie Enthalpie G bei verschiedenen Drücken	13
(3.17)	Freie Reaktionsenthalpie ⊿G im aktuellen Zustand einer Reaktion	14
(3.18)	Gleichgewichtskonstante K_{ρ} für ΔG = 0	14
(3.19)	Massenwirkungsgesetz K_c	14
(3.20)	Reaktionsquotient Q _c	15
(3.21)	Reaktionsgeschwindigkeit <i>k</i>	15
(3.22)	Temperaturabhängigkeit der Reaktionsgeschwindigkeit über Arrhenius-Verhalten	16
(3.23)	Anteil der reaktiven Moleküle nach Boltzmann	16
(3.24)	Verknüpfung von Boltzmann und Arrhenius-Verhalten	16
(3.25)	Dynamisches Gleichgewicht aus Gleichung 3.21	17
(3.26)	Massenwirkungsgesetz über Reaktionsgeschwindigkeiten	17
(3.27)	Volumenänderung ΔV	18
(3.28)	Volumenänderung ${\it \Delta V}$ als Summe zweier Volumengrößen	18
(3.29)	Reaktionsvolumen ΔV^0	19
(3.30)	Aktivierungsvolumen ΔV^{\neq} als Summe zweier Volumengrößen	19
(3.31)	Aktivierungsvolumen ΔV^{\neq}	19
(3.32)	Maxwell-Gleichung	24
(3.33)	Erweiterte Maxwell-Gleichung	24
(3.34)	Thermischer Ausdehnungskoeffizient $lpha$	24
(3.35)	Isobare spezifische Wärmekapazität $c_{ ho}$	24
(3.36)	Maximale Temperaturänderung ∂T bei adiabater Kompression	25
(5.1)	Viskositätsgesetz für stark verdünnte Polymerlösungen	41
(5.2)	Hooksches Gesetz über Elastizitätsmodul E	46
(5.3)	Hooksches Gesetz über Kraft F	46
(6.1)	Filtrationsdauer <i>t</i> nach Dreier	58
(6.2)	Geradengleichung zur Filtrationsdauer nach Dreier	58
(6.3)	Vereinfachte Formel der Filtrationsdauer <i>t</i> nach Dreier	58
(6.4)	Spezifisches Filtratvolumen <i>F_{Spez.}</i> nach Dreier	60
(6.5)	Spezifisches Filtratvolumen <i>F_{Spez.}</i> nach Dreier in hl/m ² ·h	60
(6.6)	Spezifisches Filtratvolumen <i>F_{Spez.}</i> nach Raible	61
(6.7)	Spezifisches Filtratvolumen <i>F_{Spez.}</i> für den vorliegenden Versuchsaufbau	61

(6.8)	Magnetisches Moment μ	65
(6.9)	Lamorfrequenz @	66
(6.10)	Magnetisierungsvektor <i>M</i> über Curie-Gleichung	66
(6.11)	Magnetisierungsvektor <i>M_z (t)</i> über Blochsche Gleichung	68
(6.12)	Magnetisierungsvektor $M_{x,y}(t)$ über Blochsche Gleichung	68
(6.13)	Verhältnis der Relaxationszeiten T_1 und T_2	68
(6.14)	Freier Induktiosabfall <i>U</i> _(t)	69
(6.15)	Freier Induktionsabfall <i>U</i> (t) bei unterschiedlichen Bindungszuständen	70
(6.16)	Freier Induktiosabfall $U_{(t)}$ bei Protonen im Festkörper und n verschiedenen flüssigkeitsähnlichen Bindungszuständen	70
(6.17)	Relaxationszeit T_1 aus verschiedenen Anfangsamplitudenwerten.	72
(6.18)	Arithmetisches Mittel	74
(6.19)	Varianz	74
(6.20)	Standardabweichung	75
(6.21)	Variationskoeffizient	75
(6.22)	Relativer Variationskoeffizient	75
(6.23)	Ausreißerfreiheit nach Grubbs	75
(10.1)	Ansatz für die Auswertung der gemessenen Relaxationszeiten	105
(10.2)	Phasenanteil p_c in Prozent der Gesamtphasen	106
(10.3)	Phasenanteil p _e in Prozent der Gesamtphasen	106
(10.4)	Phasenanteil p _q in Prozent der Gesamtphasen	106

1 Entwicklung der Hochdruckanwendungen in der Lebensmittelindustrie

Die Hochdruckbehandlung von Lebensmitteln erfolgt überwiegend mit dem Ziel der Haltbarmachung. Sie hat sich als schonende Methode der Konservierung erwiesen, die wesentlich geringere Einflüsse auf Geschmack, Farbe und ernährungsphysiologische Eigenschaften eines Produkts bewirkt als die etablierten Konservierungsmethoden. Allerdings ist bereits aus der Geschichte der Hochdrucktechnologie zu entnehmen, dass nicht nur die Haltbarkeit eines Produkts durch Hochdruck beeinflusst werden kann.

Bereits 1889 veröffentlichte Hite die ersten wissenschaftlichen Untersuchungen zur Hochdruckbehandlung von Lebensmitteln. Er berichtete über die hochdruckinduzierte Verlängerung der Haltbarkeit von Milch [1]. 1914 führte Bridgeman Untersuchungen zur Denaturierung von Proteinen und zur Inaktivierung von Mikroorganismen unter hohen Drücken durch [2]. Die von ihm beschriebenen Denaturierungserscheinungen von Proteinen und die Vernetzungen verschiedener Polysaccharide unter hohen Drücken führen zur Gelbildung, die einen interessanten lebensmitteltechnologischen Anwendungsaspekt ergibt. 1965 bestätigten Timson und Shorts die von Hite ermittelten Ergebnisse zur Beeinflussung der Mikroorganismenflora in Rohmilch Hochdruck [3]. 1974 untersuchte Wilson die Möglichkeiten durch der Haltbarmachung von Lebensmitteln mit niedrigem pH-Wert durch Hochdruck [3]. Elgasim und Kennick analysierten 1980 die Texturveränderungen von Rindfleisch unter Hochdruck [3]. Die Resultate, die von Schöberl 1999 vertieft wurden, zeigten auch in diesem Bereich die Änderung von Struktur und Textur unter Hochdruck [4]. Der endgültige Einzug der Hochdrucktechnik in die moderne Lebensmittelindustrie wurde 1989 durch die Einrichtung eines japanischen Forschungskonsortiums, bestehend aus 21 Firmen, eingeleitet. Durch dieses Engagement konnte die japanische Firma Meidi-Ya im April 1990 das erste hochdruckbehandelte Lebensmittel auf den Markt bringen. Hierbei handelte es sich um eine Marmelade [5]. Ein Jahr später wurden weitere Produkte wie Fruchtjoghurts, Fruchtsaucen, Salatdressings und Citrussäfte eingeführt [6]. In Europa gibt es seit 1996 eine Anlage zur Hochdruckbehandlung von Fruchtsäften in Frankreich, 1998 wurde in Spanien eine Anlage zur Haltbarmachung von Schinken installiert [7]. Ebenfalls seit 1998 werden in den USA Avocadocreme und Tomatensaucen hochdruckbehandelt, später kamen noch Austern und Orangensaft hinzu. In Portugal ist mittlerweile

1

hochdruckbehandelter Apfelsaft und Apfel-Ananassaft erhältlich, und in Großbritannien gibt es sogenannte Smoothies, bei welchen es sich um Milch-Fruchtpüree-Getränke handelt.

Durch die Hochdrucktechnologie kann eine ausreichend lange Haltbarkeit von Lebensmitteln und Getränken bei weitgehender Erhaltung der originären Qualität erreicht werden. Dies beruht auf dem erheblichen Einfluss des Drucks auf die Abtötung von vegetativen Mikroorganismen [8; 9; 10; 11; 12] und dem geringen Einfluss auf Vitamine, Aromastoffe, Farbstoffe und Aminosäuren [13; 14; 15; 16]. Sporen können, vergleichbar mit konventionellen thermischen Behandlungen, durch eine einfache Hochdruckbehandlung nicht abgetötet werden [11]. Aus diesem Grund scheint die Hochdruckbehandlung besonders für Lebensmittel mit niedrigem pH-Wert eine geeignete Methode zur Haltbarmachung zu sein, da im sauren Milieu keine Sporen auskeimen können. Dies bestätigt sich auch bei Betrachtung der bereits erwähnten kommerziell umgesetzten Produkte.

1.1 Die Hochdruckbehandlung von Bier

Da Lebensmittel mit niedrigem pH-Wert sich für die Hochdruckbehandlung als besonders geeignet herausstellten, wurden auch Untersuchungen an Bier vorgenommen. Jolibert et al. ermittelten 1995, dass es möglich ist, Bier mittels Hochdruck haltbar zu machen ohne die Geschmacks- und Schaumstabilität nachteilig zu beeinflussen [17]. Diese Resultate wurden am Lehrstuhl für Energieund Umwelttechnik der Lebensmittelindustrie durch Forschungen seit 1996 bestätigt. Hierbei wurde festgestellt, dass mittels Hochdruckbehandlung auch andere technologisch bedeutsame Parameter bei Bier beeinflusst werden können. Es wurden Veränderungen bei den enzymatischen Abbauvorgängen während des Maischens, bei der Isomerisierung von α -Säuren aus Hopfen sowie bei der Filtrierbarkeit und der Geschmacksstabilität von Bier festgestellt [18]. Somit kann die Hochdruckbehandlung auch unter anderen Gesichtspunkten als der Haltbarmachung zum Einsatz kommen.

1.1.1 Charakterisierung des Einflusses von Hochdruck auf die Filtrierbarkeit von Bier

Die genannten Vorarbeiten ergaben die bereits erwähnten unterschiedlichen Auswirkungen des Hochdrucks auf Bier bzw. dessen Inhaltsstoffe. Es wurde hierbei eine signifikante Verbesserung der Filtrierbarkeit von Bier festgestellt. Die Filtration ist für die Glanzfeinheit und die mikrobiologische Stabilität des Bieres von großer Bedeutung. Besondere Probleme bereitet bei der Filtration neben Proteinen und Mikroorganismen das β-Glucan-Gel, es blockiert die Filterschichten und verhindert somit längere Filterstandzeiten. β-Glucan ist ein natürliches Polysaccharid, das im Endosperm der Gerste lokalisiert ist und dort als Gerüstsubstanz dient. Es wird während des Maischprozesses aus dem Malz gelöst, wobei sein Gehalt von der Temperaturführung und der damit verbundenen Aktivität spezifischer Enzyme abhängt. Die Erhöhung des β -(1-3),(1-4)-D-Glucan-Gehalts wurde vor allem durch die Entwicklung neuer Technologien bewirkt, die zu kürzeren Vermälzungs- und Maischzeiten führten. Die Gelbildung ist nur bei einer erhöhten Ausgangskonzentration von β -Glucan zu beobachten; bei niedrigen Konzentrationen ist sie nicht möglich. Ursachen für die Gelbildung sind der Abbau von Maltose und die damit verbundene Erhöhung der Alkoholkonzentration, die tiefen Temperaturen der Lagerung, Scherkraftbelastungen und die Wirkdauer dieser während Einflussfaktoren. Ohne Reinheitsgebot kann β-Glucan-Gel durch Zusatz von Enzymen aufgelöst werden.

Aus der Literatur ist bekannt, dass Kohlenhydrate und Proteine durch Hochdruck beeinflusst werden können [2]. Es ist ebenfalls bekannt, dass Bierverderber durch hohe Drücke inaktiviert werden können und somit nach erfolgter Hochdruckbehandlung keinen Einfluss mehr auf die Filtrierbarkeit des Bieres haben [19]. Da aber der Einfluss des Hochdrucks auf die Filtrierbarkeit gezeigt wurde, müssen die Erkenntnisse, die in der Hochdrucktechnologie bereits bestehen, mit der brautechnologischen Problemstellung verknüpft werden.

Zielsetzung dieser Arbeit ist es, die Filtrierbarkeit von Bier durch die Anwendung von hohen Drücken (0,1 – 700 MPa) zu verbessern. Es werden ein Druckbereich und ein Druckhaltedauerbereich ermittelt, in dem sich Biere verschiedener Zusammensetzung in Bezug auf ihre Filtrierbarkeit positiv beeinflussen lassen.

Hierfür werden Laborfiltrationssysteme eingesetzt, die auf unterschiedlichen Trennprinzipien beruhen. Ist dieses Phänomen beschrieben und eingegrenzt, werden die Ursachen dafür ermittelt. Hierfür werden filtrationsrelevante Parameter im Bier bestimmt. Nach Feststellung der durch Hochdruck beeinflussten Größen bzw. Inhaltsstoffe wird das Verhalten dieser Substanzen ermittelt. Für diese Untersuchungen wird ein Modell-Gel hergestellt, das verschiedene Konzentrationen ermöglicht und somit eine größere Variabilität der Einflussgrößen und Analysen erlaubt.

Die vorliegende Arbeit untergliedert sich in folgende Bereiche:

- Beschreibung und Eingrenzung des Phänomens unter Variation von Druck und Druckhaltezeit
- Ermittlung der Ursachen für die Verbesserung der Filtrierbarkeit von Bier
- Entwicklung eines Modells zur Hochdruckbehandlung von β-Glucan-Gelen
- Untersuchungen an diesem Modell zur Ergründung des Einflusses von Hochdruck auf β-Glucan-Gele.

2 Ermittlung des Verhaltens der mittels Hochdruck beeinflussbaren filtrationsrelevanten Inhaltsstoffe von Bier

Die Durchführung der Untersuchungen baut auf einem anfänglichen Screening des gesamten Brauprozesses auf. Hierbei konnten Phänomene beschrieben werden, die die Hochdruckbehandlung während der Bierbereitung auslöst. Inhalt dieses Screenings waren die Hochdruckbehandlungen der Maische, der Würze, des Kellerbieres (Unfiltrat) und des fertigen Bieres. Aus diesen Resultaten entwickelt sich die weitere Vorgehensweise, die in Abbildung 2.1 dargestellt ist.

Abbildung 2.1: Fließschema zur Ermittlung der Ursachen für die Filtrationsverbesserung mittels Hochdruck

3 Erzeugung von Hochdruck und dessen Wirkungen

3.1 Prinzipien der Druckerzeugung

In der Hochdrucktechnik werden zwei Prinzipien der Druckerzeugung unterschieden, die mechanische und die thermische Druckerzeugung. Die mechanische Druckerzeugung untergliedert sich wiederum in die interne und externe Druckerzeugung.

Die thermische Druckerzeugung bewirkt den Druckaufbau durch die Erwärmung eines isochoren Systems. Durch die Temperaturerhöhung bei gleichbleibendem Volumen, gleichbleibender Masse und gleichbleibendem Medium ergibt sich ein entsprechender Druckanstieg. Da die Hochdruckbehandlung in der Lebensmittelindustrie die negativen Einflüsse der thermischen Behandlung ausschließen soll, kommt dieses Verfahren für Applikationen im Zusammenhang mit Lebensmitteln nicht zur Anwendung.

Die mechanische Druckerzeugung ist in Bezug auf den Probenraum intern und extern möglich. Beide Verfahren bedienen sich des gleichen Prinzips der Druckerzeugung (Formeln 3.1; 3.2).

Der Druckaufbau mittels Druckübersetzung wird realisiert. ie nach Druckaufbaugeschwindigkeit und Temperierung des Druckbehälters kann eine nahezu isotherme Behandlung gewährleistet werden bzw. kann ein Temperaturanstieg eingehalten werden, der für thermisch induzierte, lebensmittelchemisch relevante Reaktionen kaum Auswirkungen hat.

Die interne Druckerzeugung ist in Abbildung 3.1 dargestellt. Der Druckübersetzer ist hierbei direkt in den Probenraum integriert. Vorteil dieser Anordnung ist der geringere Platzbedarf, das Fehlen von Verbindungsstellen im Hochdruckbereich, die Dichtigkeitsprobleme bewirken können, und das geringere zu verdichtende Volumen, da nur die Flüssigkeit im Probenraum komprimiert werden muss [20, 21].

Die externe Druckerzeugung ist in Abbildung 3.2 dargestellt. Die Druckerzeugung erfolgt in einem externen Druckübersetzer, und der erzeugte Hochdruck wird über Hochdruckleitungen in den Autoklavenraum geleitet. Der Vorteil dieser Anordnung ist die Trennung des Probenraums und der beweglichen Teile des Druckübersetzers. Positiv zu bewerten ist auch die Möglichkeit der räumlichen Trennung von Niederdruckbereich mit den notwendigen Hydraulikaggregaten, und Hochdruckbereich, der lebensmittel-hygienischen Anforderungen entsprechen sollte [20; 21].

Abbildung 3.2: Prinzip der externen Druckerzeugung

Der erreichbare Druck ist von dem vom Hydraulikaggregat bereitgestellten Druck auf der Niederdruckseite, dem Übersetzungsverhältnis des Druckübersetzers und dem hochdruckseitigen Volumen abhängig. Die Berechnung erfolgt nach den Formeln 3.1 und 3.2.

$$F = p \cdot A \tag{3.1}$$

F = const.

$$\Rightarrow p_2 = p_1 \cdot \frac{A_1}{A_2} \tag{3.2}$$

F = Kraft $p_1 = Niederdruck$ $p_2 = Hochdruck$ A = Kolbenfläche

Der vom Hydraulikaggregat erzeugte Druck p_1 wirkt auf die Fläche A_1 , daraus ergibt sich die über den Stempel konstant bleibende Kraft *F*, die über die kleinere Fläche A_2 den Druck p_2 in der druckübertragenden Flüssigkeit bewirkt.

Als druckübertragende Flüssigkeit wird für lebensmitteltechnologische Anwendungen vorzugsweise Wasser verwendet. Dies ist allerdings nur für einen Druck bis ca. 600 MPa möglich (siehe Kapitel 3.3.1). Für höhere Drücke müssen lebensmittelgeeignete, gefrierpunktserniedrigende Mischungen zur Anwendung kommen, damit es nicht zum Phasenübergang flüssig-fest kommt. Ein häufig eingesetzter Zusatz ist Polyethylenglykol.

Das hochdruckseitige Volumen des Probenraums und der Zuleitungen ist ebenfalls für die Auslegung einer Hochdruckanlage von Bedeutung, da die Kompressibilität der Druckflüssigkeit berücksichtigt werden muss (siehe Kapitel 3.3.1). Der Teil des Druckübersetzers, der in den Probenraum einfährt, also den gewünschten Druck an die Druckflüssigkeit abgibt, muss eine Wegstrecke zurücklegen können, die proportional zum Verhältnis des Anfangsvolumens des Probenraums zum komprimierten Volumen des Probenraums ist. Kann der Druckübersetzer den notwendigen Weg nicht zurücklegen, kann trotz genügendem Niederdruck und passendem Übersetzungsverhältnis der angestrebte Enddruck nicht erreicht werden. Besonders zu beachten ist dies bei Anwendungen im Grenzbereich der Anlagenauslegung. Hierbei gilt es sicherzustellen, dass sich der Druckübersetzer vor Beginn der Hochdruckbehandlung in seiner Endstellung befindet. Deshalb sollte eine genügend große Wegstrecke für den Druckübersetzer als Sicherheit eingeplant sein, da während längerer Druckbehandlungen durch eventuelle Temperaturänderungen oder geringfügige Druckverluste eine Nachregelung erforderlich sein kann.

3.2 Thermodynamische Grundlagen der Hochdrucktechnologie

Die Auslösung einer chemischen Reaktionen ist von der Höhe der notwendigen Aktivierungsenergie abhängig, diese bestimmt auch die Reaktionsgeschwindigkeit. Liegt eine Reaktion im thermodynamischen Gleichgewicht vor, bedeutet dies kinetisch, dass die Hin- und Rückreaktion gleich schnell ablaufen. Um dieses Gleichgewicht zu verschieben, ist eine Änderung der intensiven Zustandsgrößen Temperatur oder Druck notwendig. Es muss Energie in Form von Wärme (Temperatur) oder Arbeit (Druck) zugeführt werden. Ist dies der Fall, reagiert die Verschiebung des Gleichgewichts nach dem Prinzip von Le Chatelier. Es besagt, dass dynamische Gleichgewichte die Tendenz zeigen, einer Änderung der Umgebungsbedingungen entgegenzuwirken. Dieses Prinzip ist nur auf dynamische Gleichgewichte anwendbar, da diese durch die ablaufende Hin- und Rückreaktion auf die Änderung der äußeren Bedingungen reagieren können. Folglich fördert eine Temperaturerhöhung endotherme Reaktionen und die Einstellung deren Gleichgewichts. Eine Druckerhöhung fördert Reaktionen und die Einstellung deren Gleichgewichts, bei denen sich das Volumen der Reaktanten verringert [22].

3.2.1 Freie Enthalpie

Als "treibende Kraft" für den Ablauf von chemischen Reaktionen ist die Veränderung der freien Enthalpie *G* von den Edukten zu den Produkten zu bezeichnen. Sie ist abhängig von den Konzentrationen der Edukte und der Produkte, der Art der Reaktion, der Temperatur und dem Druck [23].

$$\Delta \boldsymbol{G} = \boldsymbol{G}_{\mathsf{Pr}\,\mathsf{odukte}} - \boldsymbol{G}_{\mathsf{Edukte}} \tag{3.3}$$

Diese Veränderung, die auch als freie Reaktionsenthalpie ΔG bezeichnet wird, sagt aus, ob eine Reaktion exergonisch abläuft, sich im Gleichgewicht befindet oder endergonisch abläuft [24].

 $\Delta G < 0 \Rightarrow$ exergonische Reaktion $\Delta G = 0 \Rightarrow$ Gleichgewicht $\Delta G > 0 \Rightarrow$ endergonische Reaktion

Häufig wird auch die Affinität *A* als treibende Kraft eingeführt: Sie entspricht bei entgegengesetztem Vorzeichen dem gleichen Betrag wie die freie Reaktionsenthalpie ΔG . Grund hierfür ist, dass die treibende Kraft mit steigender Affinität zunimmt, bei zunehmender freien Reaktionsenthalpie würde sie kleiner werden [24]. Der Zusammenhang ist in Abbildung 3.3 dargestellt.

Abbildung 3.3: Abbhängigkeit von Affinität A bzw. freier Reaktionsenthalpie ΔG vom Reaktionsfortschritt ξ [25]

Die freie Enthalpie *G* ist definiert als Differenz aus Enthalpie *H* und dem Produkt von Temperatur *T* und Entropie *S*; sie beschreibt, welche Energie auf dem Weg zum Gleichgewicht freigesetzt wird [24].

$$G = H - T \cdot S \tag{3.4}$$

Da allerdings nur Änderungen messbar sind, ist es sinnvoll, die infinitesimalen Änderungen, die während einer Reaktion ablaufen, zu betrachten.

$$\Delta G = \Delta H - T \cdot \Delta S \tag{3.5}$$

Die Änderung der Gesamtentropie ΔS_g setzt sich aus der Änderung der Systementropie ΔS_{Sys} und der Umgebungsentropie ΔS_{Um} zusammen:

$$\Delta S_g = \Delta S_{Sys} + \Delta S_{Um} \tag{3.6}$$

Da die Entropieänderung der Umgebung schwer zu beurteilen ist, kann diese bei isothermen ($Q_{Um} = -Q_{Sys}$) und isobaren ($Q_{Sys} = \Delta H_{Sys}$) Bedingungen über den zweiten Hauptsatz der Thermodynamik als Enthalpieänderung im System ausgedrückt werden [22; 24].

$$\Delta S_{Um} = \frac{\Delta Q_{Um}}{T} = -\frac{\Delta Q_{Sys}}{T} = -\frac{\Delta H_{Sys}}{T}$$
(3.7)

Daraus ergibt sich für die Gesamtentropie folgender Zusammenhang, der für reale (irreversible) Prozesse immer > 0 sein muss:

$$\Delta S_g = \Delta S_{Sys} - \frac{\Delta H_{Sys}}{T} \ge 0$$
(3.8)

Läuft eine Reaktion bei konstantem Druck und konstanter Temperatur ab, so ergibt sich, dass eine Zunahme der Gesamtentropie ΔS_g zu einer Abnahme der freien Enthalpie *G* führt. Hierbei nähert sich die freie Reaktionsenthalpie ΔG gegen 0, wo dann die minimale freie Enthalpie *G* erreicht ist und die Reaktion sich im Gleichgewicht befindet. Läuft eine Reaktion überhaupt nicht, liegt dass Minimum der freien Enthalpie G bei den Edukten [22].

3.2.2 Gibbs-Helmholtz-Gleichung

Wie bereits erwähnt, sind für die Einstellung eines dynamischen Gleichgewichts verschiedene Parameter von Bedeutung. Die Lage ist vom Druck und der Temperatur abhängig, und um ein beständiges Gleichgewicht zu ermöglichen, muss die freie Reaktionsenthalpie ΔG dem Wert 0 entsprechen. Um eine Abhängigkeit zwischen Druck, Temperatur und freier Enthalpie *G* herzustellen, betrachtet man eine infinitesimale Änderung der freien Enthalpie *G*. Für die folgenden Gleichungen ist zu beachten, dass die freie Reaktionsenthalpie ΔG der infinitesimalen Änderung *d G* gleichzusetzen ist.

$$dG = dH - TdS - SdT \tag{3.9}$$

Die Enthalpie *H* ist als Summe aus innerer Energie *U* und dem Produkt aus Druck *p* und Volumen *V* definiert. Betrachtet man auch hier die infinitesimalen Änderungen während einer Reaktion, so ergibt sich folgendes Differential [26]:

$$dH = dU + pdV + Vdp \tag{3.10}$$

Um eine endgültige Aussage bezüglich der freien Reaktionsenthalpie ΔG treffen zu können, muss noch die innere Energie *U* eingeführt werden. Sie definiert sich nach folgender Gleichung:

$$dU = dQ - pdV + \Sigma \mu_i \cdot n_i \tag{3.11}$$

In Gleichung 3.11 ist das chemische Potential μ enthalten. Es sagt aus, mit welcher Intensität die innere Energie *U* auf die Änderung der Stoffmenge Δn_i einer Komponente reagiert, wenn die Entropie *S*, das Volumen V und die Stoffmengen n_i^* der anderen Komponenten konstant bleiben. Aufgrund dieser Rahmenbedingungen, die bei spontan ablaufenden Reaktionen in einem geschlossenen System nicht aufrecht erhalten werden können, soll das chemische Potential μ im folgenden nicht weiter berücksichtigt werden [27; 28]. Setzt man nun Gleichung 3.11 unter Berücksichtigung des 2. Hauptsatzes der Thermodynamik in Gleichung 3.10 ein, ergibt sich für die Änderung der Enthalpie folgendes Differential:

$$dH = TdS - pdV + pdV + Vdp$$

$$dH = TdS + Vdp$$
 (3.12)

Setzt man diese Gleichung in die Definitionsgleichung für die freie Reaktionenthalpie (3.9) ein, so ergibt sich die Gibbsche Fundamentalgleichung.

$$dG = TdS + Vdp - TdS - SdT$$

$$dG = Vdp - SdT$$
 (3.13)

Berücksichtigt man nur die Druckänderung bei konstanter Temperatur, ergibt sich folgender Zusammenhang:

$$dG = V \cdot dp \tag{3.14}$$

Bezieht man diese Gleichung auf 1 mol ideales Gas und wendet die Zustandsgleichung für ideale Gase an, ergibt sich für das Integral zwischen G^0 (bei Standarddruck $p^0 = 1013,25$ mbar) und *G* (bei beliebigem Druck *p*) eines Reaktanten die folgende Gleichung [24]:

$$G - G^{o} = \Delta G = \overline{R} \cdot T \cdot \int_{G^{o}}^{G} \frac{dp}{p} = \overline{R} \cdot T \cdot \ln \frac{p}{p^{o}}$$
$$= \overline{R} \cdot T \cdot \ln p \qquad (3.15)$$

 \overline{R} = allgemeine Gaskonstante

Somit ist die freie Enthalpie G für sämtliche Druckniveaus berechenbar (3.16).

$$G = G^{o} + \overline{R} \cdot T \cdot \ln p \tag{3.16}$$

3.2.3 Chemisches Gleichgewicht

Die vorhergehenden Betrachtung befassen sich mit nur einer Substanz, bei einer chemischen Reaktion müssen aber mehrere Reaktanten berücksichtigt werden. Fasst man alle Reaktionspartner einer Reaktion vom Typ **aA + bB** \Leftrightarrow **cC + dD** zusammen, kann die freie Reaktionsenthalpie ΔG für den aktuellen Zustand der Reaktion berechnet werden.

$$\Delta G = \Delta G^{o} + \overline{R} \cdot T \cdot ln \frac{p_{(C)}^{c} \cdot p_{(D)}^{a}}{p_{(A)}^{a} \cdot p_{(B)}^{b}}$$
(3.17)
$$\Delta G^{o} = \text{Standardreaktionsenthalpie}$$
$$p_{(l)}^{i} = \text{Partialdrücke der Reaktionspartner}$$

Der Quotient aus den Partialdrücken der Produkte und der Edukte wird als Q_p bezeichnet. Mit dem Reaktionsfortschritt ξ vergrößert sich ΔG , da der Quotient im Logarithmus aufgrund der Verschiebung der Reaktion zu den Produkten größer wird. Im Gleichgewichtszustand ist $\Delta G = 0$, der Quotient aus den Partialdrücken wird dann als Gleichgewichtskonstante K_p bezeichnet [24; 29].

$$\Delta G^{o} = -\overline{R} \cdot T \cdot \ln K_{p} \tag{3.18}$$

Aus dieser Herleitung wird deutlich, dass die Gleichgewichtskonstante für jede Temperatur einen anderen Wert annimmt. Wenn man die Partialdrücke durch die molaren Konzentrationen der gasförmigen Stoffe ersetzt, kann durch diese Herleitung das Massenwirkungsgesetz (3.19) bestätigt werden. K_c kann anstelle von K_p in Gleichung 3.18 eingesetzt werden [22; 29].

$$K_{c} = \frac{c_{(C)}^{c} \cdot c_{(D)}^{d}}{c_{(A)}^{a} \cdot c_{(B)}^{b}}$$
(3.19)
$$c_{(I)}^{i} = \text{Konzentrationen der Reaktionspartner}$$

Die Dimension der Gleichgewichtskonstante K_c ist von der Stöchiometrie der ablaufenden Reaktion abhängig. Für gelöste Substanzen lässt sich die gleiche

Herleitung heranziehen, allerdings wird die Aktivität *a* eingesetzt, sie beschreibt die nach außen wirksame Konzentration. Bei stark verdünnten Lösungen kann weiterhin mit der Konzentration *c* gearbeitet werden. Ist $K_c > 1$, so liegt das Gleichgewicht auf Seite der Produkte, wird $K_c < 1$, liegt es auf Seiten der Edukte. Dies bedeutet nicht zwangsläufig, dass eine Reaktion nicht laufen kann, da z. B. bei Fällungsreaktionen kontinuierlich Produkt aus der Reaktion genommen wird, was eine Einstellung des Gleichgewichts verhindert. Nicht zu verwechseln mit der Gleichgewichtskonstanten K_c ist der Reaktionsquotient Q_c , er wird analog zu K_c berechnet, allerdings werden die aktuellen Konzentrationen eingesetzt und nicht die Gleichgewichtskonzentrationen. Zu Beginn einer Reaktion nimmt Q_c immer den Wert Null ein [22; 24].

$$\mathbf{Q}_{c} = \frac{\mathbf{c}_{(C)}^{c} \cdot \mathbf{c}_{(D)}^{d}}{\mathbf{c}_{(A)}^{a} \cdot \mathbf{c}_{(B)}^{b}}$$
(3.20)

Alle Reaktionen zeigen die Tendenz, sich in Richtung K_c zu entwickeln, daraus ergibt sich, dass für $Q_c < K_c$ Produkte gebildet werden, für $Q_c > K_c$ werden Edukte gebildet [22].

3.2.4 Reaktionsgeschwindigkeit

Für die Einstellung von dynamischen Gleichgewichten ist die Reaktionsgeschwindigkeit k_c von großer Bedeutung, da die Geschwindigkeit der Hinreaktion gleich der der Rückreaktion sein muss. Die Reaktionsgeschwindigkeit k_c ist definiert als Änderung der Konzentration in Abhängigkeit von der Zeit *t*.

$$\frac{dc}{dt} = -k_c \cdot c^n \tag{3.21}$$

Sie ist abhängig von der Konzentration, der Temperatur, der Oberfläche der reagierenden Substanzen und von eventuell vorhandenen Katalysatoren. Im Geschwindigkeitsgesetz wird der Zusammenhang zwischen Reaktionsgeschwindigkeit k_c und der augenblicklichen Konzentration c einer Substanz beschrieben [22]. Die Temperaturabhängigkeit der Reaktionsgeschwindigkeit k wird

über das Arrhenius-Verhalten dargestellt, es beschreibt die Zunahme von *k* mit steigender Temperatur.

$$k = A \cdot e^{-\frac{E_a}{\overline{R} \cdot T}}$$
(3.22)
$$E_a = \text{Aktivierungsenergie}$$

Hieraus wird ersichtlich, dass die Temperaturabhängigkeit der Reaktionsgeschwindigkeit stärker ausgeprägt ist, wenn eine hohe Aktivierungsenergie notwendig ist.

Um das Arrhenius-Verhalten näher erläutern zu können, bietet sich die Stoßtheorie an. Sie besagt, dass die Moleküle mit einem bestimmten Mindestmaß an kinetischer Energie E_{min} aufeinanderprallen müssen, um Bindungen aufzubrechen und eine Reaktion zu ermöglichen. Es führen nicht alle Stöße zu einer Umsetzung. Nach Boltzmann berechnet sich der Bruchteil *f* der Moleküle, die bei konstanter Temperatur T diese Mindestenergie besitzen, folgendermaßen [22]:

$$\ln f = -\frac{E_{min}}{\overline{R} \cdot T}$$
(3.23)

Die Geschwindigkeitskonstante wird um den Faktor f verkleinert. Berücksichtigt man dies in Gleichung 3.22, ergibt sich ein Zusammenhang, der dem Arrhenius-Verhalten sehr nahe kommt.

$$ln k = ln(konstant) - \frac{E_a}{\overline{R} \cdot T}$$
(3.24)

In(konstant) entspricht dem präexponentiellen Faktor *A* und die Mindestenergie E_{min} der Aktivierungsenergie E_a .

Weitet man die Stoßtheorie auf Lösungen aus, so findet die Theorie des aktivierten Komplexes Anwendung. Hierbei nähern sich zwei Moleküle an, sie deformieren sich und bilden einen aktivierten Komplex. Dieser hat eine höhere potentielle Energie E_{pot} , am Maximum ist die sogenannte Aktivierungsbarriere erreicht. Der Fortschritt hin zu

den Reaktionsprodukten bewirkt einen Abfall der potentiellen Energie. Die Aktivierungsbarriere entspricht der notwendigen Aktivierungsenergie E_a [22].

3.2.5 Zusammenhang zwischen Reaktionsgeschwindigkeit und der Zusammensetzung im Gleichgewichtszustand

Das dynamische Gleichgewicht zeichnet sich durch die gleiche Reaktionsgeschwindigkeit der Hin- sowie der Rückreaktion aus. Dadurch ergibt sich aus Gleichung 3.21:

$$\boldsymbol{k} \cdot \boldsymbol{c}_{(A)}^{a} \cdot \boldsymbol{c}_{(B)}^{b} = \boldsymbol{k}' \cdot \boldsymbol{c}_{(C)}^{c} \cdot \boldsymbol{c}_{(D)}^{d}$$
(3.25)

Setzt man Gleichung 3.25 in Gleichung 3.19 ein, lässt sich folgender Zusammenhang darstellen:

$$K_{c} = \frac{c_{(C)}^{c} \cdot c_{(D)}^{d}}{c_{(A)}^{a} \cdot c_{(B)}^{b}} = \frac{k}{k'}$$
(3.26)

Ist *k* also deutlich größer als k', ergibt sich ein großes K_c , und das Gleichgewicht liegt weit auf Seiten der Produkte.

Aus den Gleichungen 3.25 und 3.26 wird ersichtlich, in welcher Weise Druck und Konzentration Einfluss auf die Reaktionsgeschwindigkeit haben. Z. B. wird durch eine Erhöhung der Konzentration der Edukte die Hinreaktion beschleunigt, das Gleichgewicht liegt weiter bei den Produkten. Druck bewirkt eine Verkleinerung des Volumens, dadurch steigt die Konzentration ebenfalls an, und die Reaktionsgeschwindigkeit wird beeinflusst. Bei Reaktionen zweiter Ordnung ist dies stärker ausgeprägt [22].

3.2.5 Umsetzung der thermodynamischen und kinetischen Grundlagen auf die Effekte des Drucks

Die Auswirkungen des Drucks auf das Volumen eines Systems wurden bereits bei der Herleitung der Gibbs-Helmholtz-Gleichung dargelegt. Gleichung 3.14 zeigt den Einfluss bei konstanter Temperatur und Stoffmenge. Geht man von größeren Druckerhöhungen aus, wird durch den Druck das dynamische Gleichgewicht bzw. die Reaktionsgeschwindigkeit von chemischen Reaktionen in Lösungen beeinflusst [23]. Bei Temperaturerhöhungen wird von einem Energieeintrag, der sogenannten Aktivierungsenergie, gesprochen. Erhöht man den Druck, so ist dies ein Arbeitseintrag, das sogenannte Aktivierungsvolumen. Eine Druckerhöhung um 500 MPa entspricht ca. dem Energieeintrag einer Temperaturerhöhung um 15 K. Da die lebensmittelchemisch relevanten Reaktionen unter Hochdruck ebenfalls nach dem Prinzip von Le Chatelier ablaufen, werden, analog zu Gleichung 3.3, Reaktionen unterstützt, die mit einer Volumenabnahme verbunden sind [30].

$$\Delta V = V_{A-B} - V_A - V_B \le 0 \tag{3.27}$$

Für Reaktionen unter Hochdruck ist die Veränderung der Partialvolumina der beteiligten Stoffe von Bedeutung. Die Volumenänderung ΔV bildet die Summe zweier Volumengrößen. Bestimmt wird ΔV durch einen inneren Strukturanteil ΔV_{intr} und einen Solvatationsanteil $\Delta V_{SO/V}$. Der innere Strukturanteil beschreibt Bewegungen der Atome innerhalb des Moleküls, d.h. die Veränderung der Bindungslängen und -winkel. Durch den Solvatationsanteil werden Volumenänderungen durch Änderung der Polarität, der Elektrostriktion und der Dipolinteraktion erfasst [31].

$$\Delta V = \Delta V_{intr} + \Delta V_{solv} \tag{3.28}$$

Bei geringem Solvatationseinfluss wird ΔV durch ΔV_{intr} bestimmt. Damit wird bei einer Verknüpfung (Verkürzung der Bindungslänge) von kovalenten Bindungen bei Atomen der innere Strukturanteil geringer und die Volumenänderung negativ. Eine Bindungsspaltung ist dagegen durch einen steigenden inneren Strukturbeitrag charakterisiert. Anders verhält sich die Volumenänderung bei nicht kovalenter Bindungsspaltung. Die Dissoziation von Molekülen in Ionen ist mit einer Abnahme des Volumens verbunden, während Ionen unter einer Volumenzunahme assoziieren [32]. Die Bildung von Wasserstoffbrückenbindungen in biologischen Makromolekülen ist mit einer sehr geringen Volumenänderung verbunden. Abhängig vom Modellsystem kann sie negativ oder positiv sein [33]. Die Volumenänderung, die während einer chemischen Reaktion bis zur Einstellung des dynamischen Gleichgewichts eintritt, wird als Reaktionsvolumen ΔV^0 bezeichnet. Ähnlich zur freien Reaktionsenthalpie ΔG kann das Reaktionsvolumen ΔV^0 auch über die Gleichgewichtskonstante K_c dargestellt werden (Gleichung 3.29).

$$-\overline{R}\cdot T\cdot \left(\frac{\partial lnK_{c}}{\partial p}\right) = \overline{V}_{A-B} - \overline{V}_{A} - \overline{V}_{B} = \Delta V^{o}$$
(3.29)

Unter Berücksichtigung von Le Chatelier und Gleichung 3.29 gilt folglich für Reaktionsgleichgewichte unter Druck:

 $\Delta V^{0} < 0$ in Richtung der Produkte verschoben, $\Delta V^{0} = 0$ nicht beeinflusst, $\Delta V^{0} > 0$ in Richtung der Edukte verschoben.

Das Aktivierungsvolumen ΔV^{\neq} , welches der Aktivierungsenergie entspricht, kann über die selben Volumengrößen wie die Volumenänderung berechnet werden.

$$\Delta V^{\neq} = \Delta V_{intr}^{\neq} + \Delta V_{solv}^{\neq}$$
(3.30)

In Abbildung 3.4 ist das zugehörige Volumenreaktionsprofil dargestellt. Es zeigt auch das Übergangsstadium, welches für das Überschreiten des Aktivierungsvolumens ΔV^{\neq} von Bedeutung ist, und in Analogie zur Einstellung des dynamischen Gleichgewichts und der zugehörigen Gleichgewichtskonstante durch die Geschwindigkeitskonstante *k* ausgedrückt werden kann (Gleichung 3.31).

$$-\overline{R}\cdot T\cdot \left(\frac{\partial lnk}{\partial p}\right) = V_{A---B} - V_{A} - V_{B} = \Delta V^{\neq}$$
(3.31)

Abbildung 3.4: Volumenreaktionsprofil für die Reaktion A + B \leftrightarrow A---B \rightarrow A-B [34]

Abbildung 3.5 zeigt die Abhängigkeit der Geschwindigkeitskonstante *k* vom Druck *p* für unterschiedliche Werte des Aktivierungsvolumens ΔV^{\neq} .

Abbildung 3.5: Abhängigkeit der Geschwindigkeitskonstante k vom Druck p für unterschiedliche Werte des Aktivierungsvolumens ΔV^{\neq} [23]

In Tabelle 3.1 sind einige Beispiele für Reaktionsvolumen und Aktivierungsvolumen aufgeführt.

Tabelle 3.1:	Reaktionsvolumina ΔV^{O} und Aktivierungsvolumina ΔV^{\neq} für verschiedene
	Reaktionen [31; 32; 33; 35]

Reaktionsvolumen ∆V ^o	Aktivierungsvolumen ∆V [≠] [cm³/mol]
Kovalente Bindungen ≈ 0	Homolytische Bindungsspaltung ~ +10
H-Brückenbindungen < 0	Homolytische Assoziation ~ -10
Ionenbindungen > 0	Bindungsdeformation ~ 0
Hydrophobe Wechselwirkungen > 0	Ionisierung ~ -20
Micellbildung > 0	Neutralisation ~ +20

3.3 Einfluss und Bedeutung der hydrostatischen Hochdruckbehandlung auf die thermodynamischen Größen von Wasser

In den meisten Lebensmitteln ist Wasser der vorherrschende Inhaltsstoff. Durch physikalische Wechselwirkungen mit Proteinen, Polysacchariden, Lipiden und Salzen leistet Wasser einen wesentlichen Beitrag zur Textur [36]. Außerdem fördert Wasser chemische Umsetzungen und ist als Reaktionspartner an Hydrolysereaktionen beteiligt. Druck verändert die chemisch-physikalischen Eigenschaften des Wassers. Abbildung 3.6 zeigt das Phasendiagramm von reinem Wasser und seine verschiedenen Eismodifikationen.

Abbildung 3.6: Phasendiagramm von Wasser mit den Phasengrenzen zwischen flüssigem Wasser und den Eismodifikationen (I – VII) und der Gasphase [39]

Neben der bei Atmosphärendruck vorkommenden Eismodifikation I existieren im betrachteten Druck- und Temperaturbereich vier weitere feste Phasen. Diese Eismodifikationen unterscheiden sich hauptsächlich in ihren Kristallgrößen und dem entsprechenden Kristallwachstum [37]. Der Tripelpunkt Eis I - Eis III und flüssiges Wasser liegt bei –22 °C und 207,5 MPa. Erst bei 720 MPa schmilzt Eis wieder bei 0 °C [38, 39]. Diese Eigenschaft kann zum Beispiel beim Hochdruckgefrieren genutzt werden.

Wasser zeigt unter Druck aber nicht nur eine Verschiebung der Phasengrenzen. Bei Anwendung dieser hohen Drücke kann die vereinfachende Annahme, dass Wasser inkompressibel sei, nicht mehr aufrecht erhalten werden. Dies ist vor allem vor dem Hintergrund bedeutend, dass Wasser als Lösungsmittel in Lebensmitteln sehr starken Einfluss auf Reaktionen in Wasser und mit Wasser hat. In Abbildung 3.7 ist das berechnete Verhalten des spezifischen Volumens von Wasser in Abhängigkeit vom Druck dargestellt [40].

Abbildung 3.7: Spezifisches Volumen von Wasser in Abhängigkeit von Druck und Temperatur [40]

Bei einem Druck von 500 MPa und einer Temperatur von 20 °C beträgt das spezifische Volumen nur noch 86,8 Vol.-% bezogen auf den Atmosphärendruck und dieselbe Temperatur.

Zur Berechnung der adiabaten Temperaturerhöhung sind zwei Parameter von Bedeutung, der thermische Ausdehnungskoeffizient α und die isobare spezifische

Wärmekapazität c_p . Der thermische Ausdehnungskoeffizient α gibt die isobare spezifische Volumenänderung bei einer Temperaturänderung um 1 K an. Der Zusammenhang zwischen thermischem Ausdehnungskoeffizienten α von Wasser und der Temperatur in Abhängigkeit des Druckes wird in Abbildung 3.8 gezeigt.

Abbildung 3.8: Thermischer Ausdehnungskoeffizient α von Wasser in Abhängigkeit von Druck und Temperatur [41]

Abbildung 3.9: Spezifische Wärmekapazität c_p von Wasser in Abhängigkeit von Druck und Temperatur [39]

Die isobare spezifische Wärmekapazität gibt an, welche Wärmemenge bei konstantem Druck notwendig ist, um 1 kg eines Stoffes um 1 K zu erwärmen. In Abbildung 3.9 ist die starke Temperatur- und Druckabhängigkeit der spezifischen isobaren Wärmekapazität c_p zu sehen.

Nach dem 1. Hauptsatz der Thermodynamik führt Volumenänderungsarbeit zur Änderung der inneren Energie und damit zu einer Änderung der Temperatur eines Systems. Analog dazu führt Volumenänderungsarbeit auch zu einer Druckerhöhung. Im Falle der Hochdruckbehandlung führt folglich die Druckerhöhung zu einer Änderung des Volumens, also wird Volumenänderungsarbeit verrichtet, diese bedingt dann die Temperaturänderung. Unter Berücksichtigung des 1. und 2. Hauptsatzes der Thermodynamik und der modifizierten Maxwell-Gleichung kann diese Temperaturänderung als Funktion der thermodynamischen Zustandsgrößen des kompressiblen Produkts beschrieben werden. Die relevante Maxwell-Gleichung ist im folgenden dargestellt [42].

$$\left(\frac{\partial T}{\partial \rho}\right)_{S} = \left(\frac{\partial v}{\partial S}\right)_{\rho}$$
(3.32)

Durch entsprechende Erweiterung kann die rechte Seite von Gleichung 3.32 folgendermaßen ausgedrückt werden.

$$\left(\frac{\partial \mathbf{v}}{\partial \mathbf{S}}\right)_{p} = \left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}}\right)_{p} \cdot \left(\frac{\partial \mathbf{T}}{\partial \mathbf{S}}\right)_{p}$$
(3.33)

Setzt man in Gleichung 3.33 den thermischen Ausdehnungskoeffizienten α nach Gleichung 3.34 und die isobare spezifische Wärmekapazität c_p nach Gleichung 3.35 ein,

$$\alpha = \frac{1}{v} \cdot \left(\frac{\partial V}{\partial T}\right)_{p}$$
(3.34)

$$\boldsymbol{c}_{p} = \left(\frac{\partial H}{\partial T}\right)_{p} \tag{3.35}$$

ergibt sich unter Berücksichtigung der in Kapitel 3.2.1 eingeführten Bedingung, dass $Q_{Sys} = \Delta H_{Sys}$ entspricht, Gleichung 3.36 [43, 44].

$$\left(\frac{\partial T}{\partial \rho}\right)_{ad} = \frac{\alpha \cdot T}{\rho \cdot c_{\rho}}$$
(3.36)

ρ : Dichte von Wasser

Aus den vorhergehenden Abbildungen geht hervor, dass mit steigenden Temperaturen der Einfluss des Drucks deutlich geringer wird. Aus diesem Grund weichen die kompressionsbedingten Temperaturgradienten bei unterschiedlichen Ausgangstemperaturen, wie in Abbildung 3.10 zu sehen ist, voneinander ab [7, 38].

Abbildung 3.10: Temperaturerhöhung von Wasser während einer adiabaten Kompression [7]

Bis zu einem Druck von 400 MPa steigen die Temperaturgradienten [*dT/dp*] mit steigenden Ausgangstemperaturen. Ab 500 MPa sind die Temperaturgradienten bei niedrigen Temperaturen am größten.

In der Praxis, in einem realen, nicht adiabatischen System, vollziehen sich geringere Temperaturerhöhungen, da ein Wärmeaustausch zwischen Produkt, Druckübersetzer und Behälterwand während der Druckbehandlung stattfindet. Analog erfolgt bei der Entspannung eine geringere Temperaturabsenkung. Die Kenntnis der thermodynamischen Vorgänge während der Hochdruckbehandlung ist notwendig, um eine reproduzierbare Prozessführung zu ermöglichen. Außerdem sind sie für die Realisierung einer Hochdruckbehandlung in einem definierten Temperaturbereich von großer Bedeutung. Vor allem, wenn man wie in Abbildung 3.11 das Up-scaling auf größere Hochdruckautoklaven und die damit verbundene Temperaturverteilung im Inneren betrachtet [7]. Es wird deutlich, dass mit zunehmendem Innendurchmesser der Temperaturausgleich zwischen der Mitte des Autoklaven und den Randbereichen immer länger dauert, da erstens ein größeres Volumen abzukühlen ist und zweitens die Strecke, hier der Radius, größer wird. Dies stellt für die konstante, gleichartige Behandlung eines Produkts ein großes Problem dar, da sich im Autoklaven ein Temperaturgradient ausbildet.

Abbildung 3.11: Einfluss des Innendurchmessers auf die Temperaturführung in einem Hochdruckautoklaven [45; 7]

3.4 Auswirkungen des Hochdrucks auf Lebensmittelinhaltstoffe

3.4.1 Hochdruckinduzierte Veränderungen von Proteinen

3.4.1.1 Strukturänderungen in Proteinen durch Druckanwendung

Proteine bestimmen Struktur, Funktion und Stoffwechsel von Mikroorganismen, Zellen und Geweben. Sie sind aus Aminosäuren zusammengesetzt und besitzen relative Molekülmassen von 10000 bis mehreren Millionen Dalton. Der Zusammenschluss von Aminosäuren zu Proteinmolekülen geschieht über die Bildung von Säureamidbindungen zwischen den Carboxy- und Amino-Gruppen der verschiedenen Aminosäuren. Diese Zusammenschlüsse bilden die **Primärstruktur** der Proteine [46]. Der Arbeitseintrag des Hochdrucks ist zu gering, um die kovalenten Bindungen der Primärstruktur von Proteinen aufzubrechen [47].

Als **Sekundärstruktur** bezeichnet man bestimmte regelmäßige Faltungsmuster der Primärstruktur. Dazu zählen hauptsächlich die schraubenförmige rechtsgewundene α -Helix und die β -Faltblattstruktur. Verantwortlich für die Ausbildung dieser Strukturen sind Wasserstoffbrückenbindungen des Typs N-H^{...}O=C zwischen den Atomen der Molekülkette [28]. Eine Veränderung von Sekundärstrukturen führt zu einer irreversiblen Denaturierung. Allerdings ist eine Beeinflussung der Sekundärstruktur nur bei wenigen Proteinen und erst bei sehr hohen Drücken erkennbar [48; 49; 50]. Die Denaturierung von Proteinen ist ein komplexes Phänomen, das durch die Proteinstruktur, das Druckniveau und andere äußere Parameter wie Temperatur, pH-Wert und Anteil der gelösten Stoffe beeinflusst wird [50; 51].

Unter der **Tertiärstruktur** versteht man die räumliche Anordnung der Molekülkette sowie der Aminosäurenseitenreste, die durch Disulfid-Brücken, Wasserstoffbrückenbindungen, sowie ionische und hydrophobe Wechselwirkungen stabilisiert werden [28]. Umfaltungen von Tertiärstrukturen werden erst bei Drücken von über 200 MPa beobachtet, sie können sowohl reversibel als auch irreversibel sein [31, 50]. Durch die Veränderung intramolekularer Kräfte erfolgt die Freilegung bzw. Öffnung von Wasserstoffbrückenbindungen geladener oder polarer Seitenketten. Es kommt zu lonendissoziationen mit Anlagerung von Wassermolekülen oder anderen polaren Lösungsbestandteilen [31].

Die **Quartärstruktur** besteht aus mehreren globulär zusammengefalteten Molekülketten, die sich durch intermolekulare Wechselwirkungen zusammenschließen [28]. Die Quartärstruktur wird bereits ab einem Druck von 150 MPa beeinflusst, die Druckempfindlichkeit der Wasserstoffbrückenbindungen fördert hierbei Dissoziationserscheinungen bei oligomeren Moleküleinheiten [23]. Es sind aber auch Quartiärstrukturen bekannt, die druckunempfindlich sind, oder deren zu Untergruppen dissoziierte Zwischenprodukte miteinander reagieren, und unter Druckeinwirkung ausfallen [50]. Native Proteine, und somit auch Enzyme, können je nach Druckresistenz durch hohe Drücke in ihren Strukturen verändert werden. Dies kann zu Denaturierungserscheinungen führen. Durch den komplexen Aufbau der Proteine laufen bei einer Hochdruckbehandlung mehrere Reaktionen gleichzeitig ab [52].

3.4.1.2 Bedeutung der hochdruckinduzierten Proteindenaturierung für Enzyme

Enzyme sind Proteine mit biokatalytischen Eigenschaften. Die katalytische Wirksamkeit beruht auf dem durch besondere Faltung ausgebildeten aktiven Zentrum [46]. Bei der Katalyse tritt ein kleiner Bezirk des Enzyms, das aktive Zentrum, mit dem Substrat in direkten Kontakt [36]. Hydrostatischer Druck kann Enzyme wie auch andere Proteinen denaturieren.

Abbildung 3.12: Phasenübergang von der nativen zur denaturierten Form an den Beispielen von Chymotrypsin A (----), Polyphenoloxidase von Avocado (^{......}) und menschlicher Butyrylcholinesterase (-----) in Abhängigkeit von Druck und Temperatur [53; 54; 55]

Abbildung 3.12 zeigt den Übergang von der nativen zur denaturierten Form an den Beispielen Chymotrypsin A, Polyphenoloxidase aus Avocado und menschlicher Butyrylcholinesterase in Abhängigkeit vom angelegten Druck und der Behandlungstemperatur [53; 54; 55]. Darüber hinaus verändert hydrostatischer Druck die Struktur und die Funktion von Enzymen durch Beeinflussung von intra- und intermolekularen Wechselwirkungen [56]. Die Aktivität eines Enzyms kann folglich verstärkt aber auch geschwächt werden, was bis zu einer Deaktivierung führen kann. Ebenso kann sich aufgrund der genannten Ursachen die Spezifität eines Enzyms ändern [57].

3.4.2 Auswirkungen von Hochdruck auf Kohlenhydrate

Die Kohlenhydrate werden in drei Gruppen unterteilt, Monosaccharide, Oligosaccharide und Polysaccharide. Wichtigste Vertreter der Monosaccharide sind Glucose, Fruktose und Galactose. Oligosaccharide sind Kohlenhydrate, die aus Monosacchariden unter Wasserabspaltung aufgebaut werden. Die am häufigsten vorkommenden Vertreter sind Saccharose, Maltose und Lactose. Polysaccharide sind höhermolekulare Verbindungen, die ebenfalls aus Monosacchariden zusammengesetzt sind. Die wichtigsten Vertreter sind Stärke, Cellulose, Carrageen und Pektin [36].

Während Mono- und Oligosaccharide keine Veränderungen durch die Hochdruckbehandlung zeigen, neigen einige Polysaccharide zur Quellung und Gelbildung [58].

Stärke besteht aus Amylose und Amylopektin. Amylose setzt sich aus 250-300 Glucoseresten, die $1\rightarrow4 \alpha$ -glycosidisch verknüpft sind, zusammen. Amylopektin ist wie die Amylose $1\rightarrow4 \alpha$ -glycosidisch aufgebaut, wobei von der Hauptkette $1\rightarrow6 \alpha$ -glycosidisch verbundene Seitenketten abzweigen [36]. Während die meisten Stärken durch die Hochdruckbehandlung nur wenig quellen und der granuläre Charakter erhalten bleibt, zeigen einige Stärken, wie z.B. Wachsmaisstärke, ein ähnliches Verkleisterungsverhalten wie bei einer thermischen Behandlung, d.h. eine ausgeprägte Quellung mit einer weitgehenden Desintegration des Stärkekorns. Der Druckbereich, in dem die Verkleisterung einer Stärke erfolgt, ist - ähnlich wie der Temperaturbereich bei der Verkleister Weizenstärke bei 20 °C und 400 MPa, während Kartoffelstärke bei gleicher Temperatur erst bei 800 – 900 MPa verkleistert. Aufgrund der begrenzten Quellung beginnt die Hochdruckverkleisterung erst bei einer Konzentration von über 15 Mass.-% mit einer entsprechenden Viskositätsentwicklung. Es bilden sich Pasten von cremiger Konsistenz bzw. feste Gele [58]. Nach der Hochdruckbehandlung steigt durch den Aufschluss die enzymatische Angreifbarkeit der Stärke durch die α -Amylase [59].

Pektin ist in Pflanzen weit verbreitet. Es besteht vorwiegend aus $1\rightarrow 4$ verknüpfter α -D-Galacturonsäure [36]. Während hochmolekulare Pektinlösungen Saccharosekonzentrationen zwischen 55 und 62 Mass.-% benötigen, bilden niedermolekulare Pektine unter Hochdruck schon bei Sacharosekonzentrationen von 25 Mass.-% feste Gele aus [60].

β-Glucan ist ein natürliches Polysaccharid, dass in einer Vielzahl von Getreide- und Gemüsesorten als Gerüstsubstanz zu finden ist. Für den im Kapitel 4 dargestellten Brauprozess ist das im Endosperm der Gerste angesiedelte β-Glucan von Bedeutung. Die freigesetzten β-Glucane aus Gerstenmalz sind lineare, aperiodische Polymere aus β-D–Glucose-Einheiten mit β-1→4 und β-1→3-Bindungen in einem Verhältnis von 70 zu 30 [61]. Abbildung 3.13 zeigt schematisch den Aufbau eines β-Glucan-Moleküls.

Abbildung 3.13: Schematischer Aufbau des β -Glucans [62]

Die Sequenz der Bindung ist nicht regelmäßig. Die räumliche Struktur des β -Glucan-Moleküls variiert, es können längere Ketten durch β -1 \rightarrow 4-Bindungen oder Verzweigungen durch mehrere β -1 \rightarrow 3-Bindungen nacheinander vorkommen [63]. Über den Einfluss der Hochdruckbehandlung auf β -Glucane von anderen Autoren noch keine Untersuchungen bekannt.

3.4.3 Veränderungen von Lipiden durch Hochdruck

Lipide werden in einfache Lipide (freie Fettsäuren, Carotinoide, Monoterpene, Acyllipide (Mono-, Di-, Triacylglyceride, Tocopherole) und Phospholipide) unterschieden [36]. Da die Phospholipide zur Membranbildung beitragen, sind sie vor allem bei der hochdruckinduzierten Inaktivierung von Mikroorganismen von Bedeutung. Die Auswirkungen des Drucks sind bei Lipiden meist reversibel, nur bei Drücken über 800 MPa und sehr langen Haltezeiten treten irreversible Phänomene in Form von Kristallisationen auf [64]. Der Schmelzpunkt von Triacylglyceriden steigt um mehr als 10 K bei 100 MPa Druckerhöhung [65]. Lipide, die unter Atmosphärendruck und 20 °C flüssig sind, kristallisieren bei Druckerhöhung aus. Nach dem Prinzip von Le Chatelier fördert hoher Druck die Bildung von dichteren und stabileren Kristallen, demnach wird bevorzugt die β -Kristallmodifikation gegenüber den β '- und α -Kristallmodifikationen gebildet. Die kompressionsbedingte Erwärmung ist bei Triacylglyceriden mit 6 bis 11 K/100 MPa bedeutend höher als bei Wasser [66].

3.4.4 Stabilität von Vitaminen, Farb- und Aromastoffen gegenüber Hochdruck

Vitamine werden durch den Einfluss von hohen Drücken nur in sehr geringem Ausmaß oder überhaupt nicht beeinflusst. Dies beruht auf ihrer kleinen Molekülgröße und dem Fehlen von druckempfindlichen Gruppen. Selbst Vitamine, die thermolabile Eigenschaften aufweisen, bleiben unter Hochdruck weitestgehend erhalten. Untersuchungen zeigen, dass z. B. in hochdruckbehandeltem Hühnereiweiß keine Verluste an Vitamin A, B₁, B₂, E und Folsäure auftreten [67]. In Orangensaft wurde nach erfolgter Hochdruckbehandlung ein unveränderter Vitamin C-Gehalt festgestellt [68; 69; 70]. In eigenen Untersuchungen an Apfelsaft wurde eine Reduzierung des Vitamin C-Gehalts um 10 Mass.-Vol.-% festgestellt, bei thermischer Behandlung betrug der Verlust 50 Mass.-Vol.-%. Deutliche Einbußen des Vitamingehalts durch die Hochdruckbehandlung konnten nur bei sehr hohen Drücken (> 700 MPa), langen Haltezeiten (> 30 min) und hohen Temperaturen (> 70 °C) festgestellt werden. Die angelegten Temperaturen führen allerdings auch bei atmosphärischen Bedingungen zu thermischen Schädigungen der Vitamine [71].

Die Beeinflussung der **Farbe** und des **Aromas** ist unter Hochdruck wesentlich geringer als bei thermischer Behandlung. Durch die Hochdruckbehandlung wird z. B. die Bildung der typischen grauen Kochfarbe bei Erdbeerpüree oder -konfitüre unterbunden [72]. Auch bei Orangensaft entsprachen Farbe und Aroma nach der Hochdruckbehandlung denen des frisch gepressten Produkts [70; 71]. Die Ausbildung von Fehlaromen durch die Maillardreaktion läuft selbst bei hohen Temperaturen unter Druck nur verlangsamt ab [73]. Bei niedrigen Temperaturen wird die Ausbildung des Methionals, einer Ausgangssubstanz der Maillard-Reaktion, sogar unterdrückt [74].

3.4.5 Abtötung oder Schädigung von Mikroorganismen mittels Hochdruck

Die Anwendung von hohen Drücken (100 – 1000 MPa) kann zur Abtötung von Mikroorganismen. Sporen und Viren genutzt werden. Entsprechend der unterschiedlichen Thermotoleranz von Mikroorganismen ist auch eine unterschiedliche Resistenz gegenüber Druck festzustellen. Gram-negative Keime und Hefen können bereits bei 300 - 400 MPa abgetötet werden, gram-positive Keime und Laktobazillen müssen hingegen mit ca. 500 MPa beaufschlagt werden [75; 76; 77; 78; 79]. Staphylococcus aureus kann erst ab einem Druck >600 MPa inaktiviert werden [77]. Eine Inaktivierung von Sporen kann bei moderaten Temperaturen allerdings auch bei Drücken von 1000 MPa nicht erreicht werden [80]. Eine Sterilisierung von Sporensuspensionen kann analog dem thermischen Prozess der Tyndallisierung erreicht werden, indem einer druckinduzierten Keimung der Sporen bei relativ niedrigen Drücken eine zweite Druckbehandlung bei wesentlich höheren Drücken angeschlossen wird [8]. Für diese Inaktivierungsprozesse mittels Hochdruck sind Proteine und biologische Membranen ein wichtiger Wirkungsort. Die Hochdruckbehandlung führt zur Hemmung membrangebundener Transportvorgänge, was an der Beeinflussung der Enzyme liegen kann [81; 82]. Des weiteren werden Membranpotential und pH-Gradient über die Membran gestört [83; 84]. Allerdings ist die Inaktivierung von vegetativen Zellen nicht nur von der Höhe des angewandten Drucks abhängig, sondern auch andere Rahmenbedingungen wie Temperatur, pH-Wert, Wassergehalt und die Einbettung in eine eventuelle Schutzmatrix sind von großer Bedeutung [77; 85].

4 Auswirkungen der verschiedenen Teilschritte der Bierbereitung auf die Filtrierbarkeit von Bier

Die Bierbereitung unterteilt sich in zwei große Teilbereiche, das Mälzen und das Brauen. Beim Mälzen wird die Rohfrucht, hauptsächlich Gerste und Weizen, zu Malz verarbeitet. Dieser Prozess wird in die Teilschritte Weichen, Keimen und Darren unterteilt. Beim Brauen wird das Malz zum Endprodukt Bier weiterverarbeitet, wobei der eigentliche Brauprozess mit der Erstellung der Würze abgeschlossen ist. Die nachfolgenden Schritte der Gärung, Lagerung, Filtration, evtl. Pasteurisation und der Abfüllung werden unter dem Oberbegriff der Bierbereitung zusammengefasst. Die Prozessschritte der Bierbereitung, die für die Filtrierbarkeit von Bier eine Bedeutung haben, werden im folgenden in Zusammenhang mit den entstehenden filtrationshemmenden Stoffen genauer erörtert. Prinzipiell gilt, dass sämtliche, bei der Bierbereitung durchgeführten Verfahrensschritte, von der Rohstoffauswahl bis hin zum Lagerkeller, in unterschiedlicher Gewichtung Auswirkungen auf die Filtrierbarkeit haben.

4.1 Einflussfaktoren auf die Filtrierbarkeit während der Bierbereitung

Neben Mikroorganismen wie Hefen und Bakterien sind die unterschiedlichsten Stoffgruppen als trübungsbildende bzw. filtrationshemmende Substanzen für die Filtrierbarkeit von Bedeutung. Da diese Substanzen, insbesondere hochmolekulare Polyphenole, Hopfenharze und Melanoidine meist nicht isoliert, sondern als Gemisch auftreten, ist deren exakte Analytik nur schwierig möglich. Abbildung 4.1 zeigt einen allgemeinen Überblick der einzelnen Einflussfaktoren auf die Filtrierbarkeit [86]. Auswirkungen der verschiedenen Teilschritte der Bierbereitung auf die Filtrierbarkeit

Abbildung 4.1: Einflussfaktoren auf die Filtrierbarkeit [86]

Ein wichtiges Kriterium im Hinblick auf die Filtrierbarkeit ist die Struktur der filtrationshemmenden Stoffe. Sie lassen sich in drei verschiedene Stoffgruppen unterteilen [61]:

- Grobe Dispersionen mit einer Teilchengröße von über 0,1 μm, die makroskopisch als Trübung erkennbar sind. Es handelt sich in erster Linie um koaguliertes Eiweiß, Hefen und Bakterien.
- II. Kolloide mit einer Teilchengröße zwischen 0,001 und 0,1 µm. Sie sind zum Teil direkt im Probeglas durch gebrochenes Licht (Tyndall - Kegel) sichtbar und bestehen aus Eiweißgerbstoffverbindungen, Gummistoffen und Hopfenharzen.
- III. Molekulardisperse Stoffe mit einer Teilchengröße unter 0,001 µm. Sie sind unter dem Lichtmikroskop nicht sichtbar und als Molekülverbände bzw. Moleküle echt gelöst.

Abbildung 4.2 zeigt differenziert die unterschiedlichen in Frage kommenden filtrationshemmenden Stoffe [86].

Zu den physikalischen Einflussfaktoren gehören die Größe der Partikel, die Deformierbarkeit, die Kompressibilität sowie der elektrische Ladungszustand. Der Ladungszustand ist insbesondere bei Proteinen von Interesse, da die Löslichkeit proteinhaltiger Verbindungen am isoelektrischen Punkt ein Minimum erfährt [87]. Von den Kolloiden zeigen vor allem die gelbildenden Stoffe, insbesondere das β -Glucan, einen negativen Effekt auf die Filtrierbarkeit. Die Viskosität der Würzen bzw. der Biere, hauptsächlich verursacht durch β -Glucan–Sol, zeigt dagegen keine Auswirkung auf die Bierfiltrierbarkeit. Sie hat höchstens eine Indikatorfunktion bezüglich Stoffabbaugrad und mechanischer Effekte oder Gelbildung [88].

Abbildung 4.2: Filtrationshemmende Stoffe [89]

4.1.1 Bildung von β -Glucan bzw. β -Glucan-Gel und deren Bedeutung für die Filtrierbarkeit

Hohe β -Glucan-Gehalte in Würzen und Bieren mit einem Molekulargewicht von 100000 bis über 700000 Dalton resultieren überwiegend aus für den Brauprozess ungeeigneten Gerstenchargen bzw. aus unzulänglicher Mälzung (z.B. ungleichmäßige Auflösung des Mehlkörpers; Spitzmalz), oder Verwendung von Rohgerste. Das β -Glucan ist in den Hemicellulosen und Gummistoffen des Malzes

lokalisiert und zusammen mit Proteinen am Aufbau der Zellwände beteiligt. Es ist mit hochmolekularem Zellwandeiweiß über eine Esterbindung (Hydroxylgruppe der β-Glucane mit der Carboxylgruppe der Proteine) verknüpft. Diese Esterbindung wird sowohl beim Mälzungs- als auch beim Maischprozess durch das Enzym β-Glucan-Solubilase bei einer Temperatur von 55 bis 70 °C gespalten. Die freigesetzten β-Glucane sind Polymere aus β-D–Glucose-Einheiten mit β -1 \rightarrow 4 und β -1 \rightarrow 3-Bindungen [61; 62]. Ein erhöhter β -Glucan-Gehalt ist allerdings nicht immer gleichbedeutend mit einer Verschlechterung der Filtrierbarkeit [87]. Abbildung 4.3 zeigt den Zusammenhang zwischen der Menge an β -Glucan in Bieren und deren Filtrierbarkeit. Es wurde ein Korrelationskoeffizient von 0,222 zwischen der Filtrierbarkeit V_{max} und dem β - Glucangehalt in Lagerbieren festgestellt [90].

Die Gelbildung zeigt einen deutlicheren Einfluss. Die Beziehung zwischen der β -Glucan–Gel–Menge und der Filtrierbarkeit ergab den höchsten Korrelationskoeffizient [90]. Abbildung 4.4 zeigt die Korrelation zwischen β -Glucan–Gel und Filtrierbarkeit. Für die Gelbildung muss eine gewisse Grenzmenge an β -Glucan im Unfiltrat vorhanden sein. Die Bildung der Gele im Brauprozess wird solange unterbunden, solange sich im Gärsubstrat noch Maltose befindet. Dieses reduzierend wirkende Kohlenhydrat ist in der Lage, selbst Wasserstoffbrückenbindungen mit dem β -Glucan einzugehen, dadurch sind die Verbindungsstellen für andere β -Glucane belegt, und es kann kein Gel entstehen [91].

Abbildung 4.4: Korrelation zwischen β -Glucan–Gel und Filtrierbarkeit V_{max} [90], modifizierte Darstellung

In verschiedenen Arbeiten über die Strukturaufklärung von β -Glucan-Molekülen wurde festgestellt, dass bei zunehmender Alkoholkonzentration und einer dadurch bedingten Abnahme an vergärbarer Maltose als Solvationsmittel Präzipate entstehen, die eine schleimige, gelartige Beschaffenheit haben [92; 93]. Weitere Grundlagen zur Gelbildung, die chemischen Mechanismen und verschiedene Modelle von β -Glucan-Gelen werden in Kapitel 5 vorgestellt.

4.1.2 Sonstige höhere Dextrine in Bier

Höhere Dextrine besitzen zwar eine geringere Molekularmasse als β -Glucane, kommen aber in Würze und Bier in größeren Mengen vor. Jodnormale Würzen können lineare α -Glucane mit einer Molekülgröße von bis zu 18 Glucoseeinheiten und verzweigte α -Glucane mit einer Molekülgröße von bis zu 70 Glucoseeinheiten beinhalten [86]. Der Grund hierfür liegt in der überwiegend verzweigten Struktur der Dextrine. Die achroische Grenze (Kettenlänge, bei der Dextrine mit Jod rotblaue Farbkomplexe bilden) dieser höhermolekularen α -Glucane liegt um ein Vielfaches höher als bei Amylose und den linearen Stärkeabbauprodukten. Dabei kann der höhermolekulare Anteil bis zu einem Drittel des Dextringehaltes der Würzen ausmachen [94]. Mit steigender relativer Molekülmasse der α -Glucane nimmt ihre Löslichkeit bei ansteigendem Ethanolgehalt und sinkenden Temperaturen ab. Sie fallen deshalb während der Gärung unter Bildung feindisperser Trübungskomplexe aus. Dabei sind sie in der Lage, mit anderen Polymeren teilweise sehr stabile Trübungskomplexe einzugehen, die die natürliche Klärung behindern [95].

4.1.3 Eiweiß-Gerbstoffverbindungen in Bier

Für die Filtrierbarkeit von Bier ist nicht nur der ursprüngliche Rohproteingehalt der Gerste und des Malzes ausschlaggebend, sondern auch der Anteil, der nach der Gärung und der Reifung noch als Trübung bzw. als potentieller Trübungsbildner im Bier vorhanden ist [96]. Ca. 30 Mass.-% des gesamtlöslichen Stickstoffs sind als Eiweiß-Gerbstoffkomplexe gebunden. Untersuchungen mit unterschiedlichen Schüttungen und verschiedenen Malzqualitäten ergaben keinen Zusammenhang zwischen höhermolekularen Eiweißabbauprodukten und Gerbstoffverbindungen in der Anstellwürze und der späteren Filtrierbarkeit [86]. Dies lässt sich mit der Gleichgewichtes Einstellung eines zwischen den beiden potentiellen Reaktionspartnern erklären. Ein ausgewogener Gehalt an reaktionsfähigen Anthocyanogenen in der Anstellwürze fördert offensichtlich die schnelle Ausbildung von instabilen Eiweiß-Gerbstoffverbindungen während der Gärung und Reifung und damit eine schnellere Klärung.

Polyphenole sind ebenfalls wichtige Bestandteile von Trübungen, da sie an der Komplexbildung mit Proteinen und Kohlehydraten beteiligt sind. Bei der Analyse von Biersedimenten wurde festgestellt, dass es sich um Polyphenol–Eiweiß-α-Glucan-Komplexe handelt, deren verschiedene Ketten über Wasserstoffbrückenbindungen assoziiert sind [92].

4.2 Einflussfaktoren auf die Bildung von β-Glucan-Gel während der Bierbereitung

Die Bildung von β -Glucan-Gel in Bieren ist sehr stark von den technologischen und technischen Rahmenbedingungen abhängig. So kann bereits der Witterungseinfluss beim Aufwuchs der Gerste eine Rolle spielen [97].

Aber auch die Art der Verrohrung einer Brauerei kann durch Scherkräfte in Rohrströmungen einen Einfluss ausüben. Sind technologische und technische Parameter allerdings gut aufeinander abgestimmt, so sollte es zu keiner Gelbildung kommen [95].

Im folgenden werden nur die brauereispezifischen Einflussgrößen auf die Gelbildung behandelt. Die genaueren Mechanismen werden nach Einführung der polymerchemischen Grundlagen (Kapitel 5) erläutert.

4.2.1 Bedeutung der Würze- und Bierzusammensetzung

Die Würzezusammensetzung wird durch die Qualität der Rohstoffe und die technologischen Vorgehensweisen im Sudhaus festgelegt. Der Extraktgehalt und somit auch der Gehalt an β -Glucan werden durch die Malzlösung bestimmt. β-Glucan-Gele werden hauptsächlich in Starkbieren beobachtet, die bedingt durch ihren hohen Stammwürzegehalt auch einen sehr hohen β-Glucan-Gehalt haben. Diese bieten während der Gärung durch den Abbau von Maltose und den entstehenden hohen Ethanolgehalt (> 6 Vol.-%) optimale Vorraussetzungen für die Gelbildung [92; 98]. Das Vorhandensein von β -Glucan in ausreichender Menge (> 1100 mg/l) ist die wichtigste Voraussetzung für die Bildung von β -Glucan-Gel [99]. Der Faktor Zeit hat ebenfalls eine erhebliche Auswirkung auf den β-Glucan-Gel-Gehalt. Ist die Konzentration an β -Glucan gering, so kann eine Gelbildung nur nach erfolgter Scherkraftbelastung und langer kalter Lagerung erfolgen. Daraus lässt sich folgern, dass eine Mindestlagerdauer für die Gelbildung notwendig ist, die in direktem Zusammenhang mit dem β -Glucan-Gehalt steht [93; 98; 99]. Der Faktor Zeit spielt vor allem bei der Assoziation der Einzelmoleküle eine wichtige Rolle (Kapitel 5.2.4.1). Die Bedeutung der Maltose wird dadurch ersichtlich, dass in der Würze keine Gelbildung erfolgt. Diese ist erst nach einem weitgehenden Abbau während der Gärung zu beobachten. Die Wirkung der Maltose ist auf ihre ähnlichen Strukturen im Vergleich zu β-Glucan zurückzuführen. Sie blockiert die Wasserstoffbrückenplätze und verhindert damit, dass sich das β -Glucan miteinander vernetzt [92].

4.2.2 Auswirkungen von Scherkraftbelastungen

Scherkraftbelastungen können zu verschiedenen Zeitpunkten der Bierbereitung die Gelbildung beeinflussen. Zum einen ergibt sich ein Effekt auf die Lösung von β -Glucan aus dem Malz aufgrund unterschiedlicher Scherkraftbelastungen durch verschiedene Maischtechniken [100]. Zum anderen durch Scherkraftbelastungen nach der Hauptgärung, wo bei einer Temperatur von 0 - 2 °C die stärkste Gelbildung zu beobachten ist [101]. Dieses Verhalten lässt sich auf die verstärkte Ausrichtung der langkettigen Polysaccharide zurückführen, was eine Erhöhung der intermolekularen Bindungsmöglichkeiten zur Folge hat und somit zu einer geringeren Löslichkeit und zur Gelbildung führt [93].

4.2.3 Einfluss der Temperatur

Wie bereits im vorigen Kapitel erwähnt, ist die Wirkung der Scherkräfte auf die Gelbildung bei ca. 0 °C am größten. Ansonsten hat die Temperatur vor allem Auswirkungen auf die Auflösung von β -Glucan-Gelen. Die thermische Spaltung der Wasserstoffbrücken erfolgt in geringem Maße bereits bei 30 °C [101]. Allerdings ist eine vollständige Auflösung des β -Glucan-Gels erst bei einer mindestens 5-minütigen Behandlung bei 80 °C zu erreichen [99]. Diese Erkenntnisse werden, wie in Kapitel 6.4 noch aufgeführt wird, auch als Grundlagen in der β -Glucan- bzw. β -Glucan-Gel-Analytik herangezogen.

5 Polymerchemische Grundlagen der Gelbildung

Die Polymerchemie beschäftigt sich mit der Entstehung und den Eigenschaften von Makromolekülen. Dabei unterscheiden sich die Eigenschaften der Polymere von denen der Monomere, aus denen sie aufgebaut sind. Makromoleküle verursachen eine hohe Viskosität, sie diffundieren langsam und sedimentieren häufig aus. In Lösung neigen große Moleküle zur Bildung von Assoziaten, bei Polysacchariden z. B. durch Wasserstoffbrückenbildung. Lagern sich makro-molekulare Assoziate zusammen, kommt es aufgrund ihrer räumlichen Ausdehnung zur Bildung von Gelen [102].

5.1 Rheologische Eigenschaften von Makromolekülen

Die dynamische Viskosität η ist ein Maß für die Übertragung von Kräften auf ein System. Sie ist von der Dichte φ eines Systems, also von der Konzentration, der Temperatur und dem Druck, abhängig und von der Geschwindigkeit v einer Strömung. Bei steigender dynamischer Viskosität η erhöht sich genauso wie bei steigender Geschwindigkeit v die Schubspannung τ was eine Bremswirkung bewirkt. Polymerlösungen zeigen bei starker Verdünnung Newtonsches Fließverhalten, welches nach folgendem Viskositätsgesetz beschrieben werden kann [103]:

$$\tau = F_{A} = \eta \cdot D = \eta \cdot \frac{dv}{dy}$$
(5.1)

- τ : Schubspannung
- F: Widerstandskraft gegen Verschiebung
- A: Fläche
- D: Geschwindigkeitsgradient senkrecht zur Fläche
- η : dynamische Viskosität
- v: Geschwindigkeit tangential zur Fläche
- y: Abstand senkrecht zur Fläche

Bei Newtonschen Flüssigkeiten ist die Viskosität eine Konstante und nicht von der Schubspannung abhängig [104].

Nicht-Newtonsches Fließverhalten findet man häufig in konzentrierten Lösungen. Diese Polymerlösungen zeigen entweder elastisches oder plastisches Verhalten oder deren Kombination. In diesen Fällen ist das Fließverhalten vom Geschwindigkeitsgradienten D abhängig. Man unterscheidet Strukturviskosität und Dilatanz. Systeme, welche durch zunehmende Geschwindigkeitsgradienten ihre Viskosität erniedrigen und deshalb eine Fließgrenze aufweisen können, werden als strukturviskos oder pseudoplastisch bezeichnet. Im Gegensatz zu strukturviskosen Substanzen steigt bei dilatantischen Systemen die Viskosität mit zunehmenden Geschwindigkeitsgradienten an. Nicht-Newtonsches Verhalten ist durch Strukturveränderungen zu erklären [103, 104]. Die Auswirkungen des Geschwindigkeitsgradienten D auf die dynamische Viskosität von Newtonschen und Nicht-Newtonschen Flüssigkeiten ist in Abbildung 5.1 dargestellt.

Geschwindigkeitsgefälle D [1/s]

Abbildung 5.1: Viskositätskurven einer newtonschen, einer strukturviskosen und einer dilatanten Flüssigkeit [101]

Strukturviskose Flüssigkeiten, die nach Ende der Scherung ihre Ursprungsviskosität nur zeitverzögert zurückgewinnen, bezeichnet man als thixotrope Systeme, wenn die rückwärts verlaufende Kurve unterhalb liegt. Von Rheopexie spricht man, wenn sie oberhalb liegt [104].

5.2 Gele

5.2.1 Definition von Gelen

Der Zustand Gel beschreibt eine Form zwischen den Aggregatszuständen fest und flüssig. Diese Mischung zweier Aggregatszustände lässt sich folgendermaßen definieren: Ein Gel ist ein kolloides System, welches folgende Bedingungen erfüllen muss:

- Das System muss aus mindestens zwei Komponenten bestehen.
- Die dispergierte Substanz und das Dispersionsmittel bilden beide einander durchdringende zusammenhängende (kohärente) Systeme.
- Das gesamte System hat nicht den Charakter einer Flüssigkeit [105].

Diese dispersen Systeme brauchen nicht unbedingt aus zwei stofflich verschiedenen Komponenten aufgebaut sein. Sie können aus einer Komponente bestehen, bei der die dispergierte Substanz und das Dispersionsmittel in verschiedenen Aggregatszuständen vorkommt [28].

Aerogele oder Xerogele besitzen als Dispersionsmittel ein Gas. Ist das Dispersionsmittel eine Flüssigkeit, bezeichnet man die Gele als Lyogele. Ist die Flüssigkeit Wasser, handelt es sich um ein Hydrogel (z. B. ß-Glucan-Gel). Bei der Alterung tritt bei Lyogelen die Flüssigkeit allmählich aus (Synärese). Entstehende Verhakungspunkte zwischen den Feststoffteilchen verhindern den Übergang zum Solzustand [106].

Gele lassen sich nach Flory wie folgt klassifizieren [107]:

- orientierte lamellare Strukturen
- kovalente Polymernetzwerke
- Netzwerke aus physikalischen Assoziaten, die hauptsächlich unorientiert sind, aber Zonen lokaler Orientierung aufweisen
- teilweise unorientierte Strukturen (z. B. ß-Gucan-Gel).

5.2.2 Strukturen von Gelen

Beim Aufbau eines zusammenhängenden Gerüstes mit dem Charakter eines räumlichen Netzwerkes wird zwischen starren und beweglichen Bauelementen unterschieden. Bei den starren Bauelementen handelt es sich meist um Atomansammlungen kolloider Natur, die auch als selbständige Partikel auftreten und sich aufgrund ihrer besonderen Eigenschaften zu Gelen zusammenschließen. Beispiele für starre Bauelemente sind dünne Blättchen oder Scheiben, die sich in Form eines Kartenhauses aufbauen (Abb. 5.2b), oder ähnliche Gebilde aus starren Stäbchen (Abb. 5.2c). Neben diesen anisomeren Teilchen lassen sich aber auch Kugeln zu kohärenten Gerüsten anordnen (Abb. 5.2a). Der Volumenanteil der Kugeln am System muss einen Mindestwert besitzen, um noch kohärent sein zu können [104].

Abbildung 5.2: Schema der Struktur eines Gels aus a) kugelförmigen, b) blättchenförmigen und c) stäbchenförmigen Bauelementen [104]

Bei den beweglichen Bauelementen handelt es sich meist um Fäden oder Bänder. Sie werden entweder aus linearen Makromolekülen oder aus makromolekularen Sonderstrukturen gebildet [104]. Neben der geometrischen Form bestimmen energetische Wechselwirkungen, ob sich die Bauelemente des Gels punktförmig oder über größere Bereiche miteinander verbinden. Je nach Bindungsart werden Haupt- und Nebenvalenzgele unterschieden. Bei den Nebenvalenzgelen bestehen zwischen den Feststoffteilchen Van-der-Waals-Kräfte, Wasserstoffbrückenbindungen und Dispersionskräfte. Diese wirken analog der physikalischen Adsorption, der Assoziation oder auch der Adhäsion bzw. Kristallbildung. Da keine "starken" kovalenten Bindungen vorliegen, sind diese Gele themoreversibel und gehen beim Erhitzen in den Sol-Zustand über [108]. Bei diesen "schwächeren" Kräften ist immer eine große Anzahl von Atomgruppen beteiligt. Es bilden sich größere Haftbereiche, in denen sich kristallartige Aggregate formieren können (Abb. 5.3a). Typische Beispiele für Nebenvalenzgele sind Cellulosegele und ß-Glucan-Gele. Hauptvalenzgele bilden Kettenverzweigungen mit kovalenten Bindungen. Diese entstehen durch die Wechselwirkung zweier polarer ionisierbarer Gruppen bei der Bildung eines unlöslichen Salzes (z. B. aus COO^{-} - und NH_{3}^{+} - Gruppen). Die räumlichen Netzwerke entstehen dann durch Polymerisation mit dreidimensionalen Verzweigungen (Abb. 5.3b) [104]. Die Entstehung von Haupt- und Nebenvalenzgelen wird in Kapitel 5.2.4.3 und 5.2.4.4 behandelt.

Abbildung 5.3: Schematische Darstellung eines Nebenvalenzgels (a), und eines Hauptvalenzgels (b) [104]

5.2.3 Physikalische Eigenschaften von Gelen

5.2.3.1 Mechanisches Verhalten gelartiger Systeme

Gele gehen elastisch nach der Deformierung in den Ausgangszustand zurück. Die Elastizität lässt sich im Idealfall mit dem Hookschen Gesetz beschreiben:

$$\sigma = E \cdot \frac{\Delta l}{l} \tag{5.2}$$

$$\sigma = F_{A}$$
(5.3)

$$\sigma$$
 = Spannung
 E = Elastizitätsmodul
 F = Normalkraft
 Δl = relative Längenänderung (Dehnung)
 A = Fläche
 l = Länge

Ein großes Elastizitätsmodul bedeutet bei einer gegebenen Spannung eine geringe Dehnung und damit eine geringe Elastizität. Die Elastizität bzw. das Elastizitätsmodul hängen sowohl von der Art der gelbildenden Substanz als auch von ihrer Konzentration ab. Die Elastizität hängt außerdem von der Zahl der vorhandenen Haftstellen ab, je größer ihre Zahl, um so größer die Elastizität. Durch die Zugabe von verschiedenen Substanzen kann man die Haftstellen eines Gels beeinflussen, da deren Zahl und Bindungsfestigkeit, gerade bei den Nebenvalenzgelen, stark von den im Dispersionsmittel vorhandenen lonen und Molekülen abhängig ist. Gele, die aus Proteinen gebildet wurden, z. B. Gelatine, zeigen am isoelektrischen Punkt ein Minimum des Elastizitätsmoduls. Hier scheint die Haftstellenzahl offensichtlich am größten zu sein [104].

Neben der Elastizität, einer typischen Eigenschaft von Feststoffen, findet man bei Gelen aber auch Eigenschaften von Flüssigkeiten. Durch deformierende Spannungen werden Haftstellen zerstört, wodurch Fließvorgänge zu beobachten sind. Gele zeigen typische rheologische Eigenschaften kolloider Systeme [109]. Die Elastizitäts- und Fließerscheinungen geben Aufschluss über die Struktur der betroffenen Systeme. Umgekehrt lässt sich aus dem Auftreten bestimmter Strukturen das Fließverhalten voraussagen [104].

5.2.3.2 Quellung durch Materialaufnahme

Unter der Quellung eines Gels versteht man die flüssige, dampfförmige oder feste Materialaufnahme in ein Netzwerk unter Volumenvergrößerung. Wird das Quellungsmittel einem nichtstarren, elastischen Gel entzogen, schrumpft das Gel in dem Ausmaß, wie die Flüssigkeit verschwindet. Man erhält schließlich eine feste Masse, die als Xerogel bezeichnet wird. Bringt man das Xerogel wieder in Berührung mit dem Quellungsmittel, wird dieses allmählich unter Volumenvergrößerung des Gels wieder aufgenommen (Quellung) [110].

Nebenvalenzgele, wie z. B. ß-Glucan-Gel, gehen bei Temperaturen von über 32 °C nach ausreichender Quellung in Lösung. Bei niedrigeren Temperaturen stoppt die Quellung an einem bestimmten Punkt, was darauf zurückzuführen ist, dass die Valenzen bis 32 °C erhalten bleiben und erst ab 56 °C vollständig zerstört werden. Bei der Quelluna eines Nebenvalenzgeles lassen sich also zwei temperaturabhängige Fälle unterscheiden: Die unbegrenzte Quellung, die zur Lösung führt, und die begrenzte Quellung, die durch bestehende Bindungskräfte eingeschränkt wird [104].

Hauptvalenzgele, wie z. B. vernetztes Polystyrol, quellen nach der "Trocknung" zwar auch, lösen sich aber bei moderaten Temperaturen nicht auf. Die kovalenten Bindungen werden durch die Temperaturerhöhung nicht zerstört und ermöglichen daher keine Auflösung des Gels. Deshalb sind solche Gele in Bezug auf Quellung und Entquellung fast immer reversibel, solange die Bindungskräfte den standhalten Temperaturen können. Im Gegensatz dazu werden bei Nebenvalenzgelen, auch bei begrenzter Quellung, immer Haftstellen gelöst und andere neu gebildet [104].

Die Quellung führt zu einem isotherm-isobaren Quellungsgleichgewicht. Übt man auf dieses Gleichgewicht einen Druck aus, so entquillt das Gel unter dem Austritt von Lösungsmittel aus dem Netzwerk. Es stellt sich das Quellungsdruckgleichgewicht ein, welches mit dem osmotischen Gleichgewicht für Lösungen vergleichbar ist. Der Unterschied hierzu besteht darin, dass die semipermeable Membran durch das Gel selbst gebildet wird.

Abbildung 5.4: Schematische Darstellung der Entquellung und Quellung eines Gels, das über eine semipermeable Membran mit dem Lösemittel (LM) in Verbindung steht. *P* ist der Druck mit den Indizes: LM = Lösemittel, 0 = Referenz (i. a. Atmosphären-druck) [110]

Wirkt der äußere Druck nicht mehr, so quillt das Gel wieder bis zum ursprünglichen Volumen an. Als Quellungsdruck bezeichnet man die Druckdifferenz zwischen Gel und Lösungsmittel. Abbildung 5.4 zeigt die schematische Darstellung der Entquellung und Quellung eines Gels [110].

5.2.4 Gelbildung

5.2.4.1 Assoziation von Einzelmolekülen

Kolloiddisperse Systeme kommen in zwei Zustandsformen vor. Sie bilden kolloide Lösungen, sogenannte Sole, oder Gele. Je nachdem ob ein Gel wieder in den Sol-Zustand rückführbar ist, unterscheidet man reversible und irreversible Kolloide. Der Übergang vom Sol- zum Gelzustand wird als Assoziation bezeichnet. Darunter versteht man einen Prozess, bei dem sich Einzelmoleküle zu übermolekularen Teilchen zusammenlagern, die selbst wieder als individuelle Einzelteilchen fungieren. Die Zahl der Einzelmoleküle, aus denen ein Assoziat aufgebaut ist, wird als Assoziationsgrad bezeichnet. Dieser Prozess ist abhängig von der Temperatur, der Konzentration und den Eigenschaften des Lösungsmittels [111]. Erhöht man die Konzentration einer verdünnten Lösung, wird der zur Verfügung stehende Lösungsraum für die Einzelmoleküle verringert. Ab einer bestimmten Konzentration, der sog. Überlappungskonzentration (c* = 418 mg/l für ß-Glucan in Wasser), treten die einzelnen Moleküle in Wechselwirkung (z. B. Wasserstoffbrückenbindungen, hydrophobe Wechselwirkungen) zueinander. Als Folge kommt es zu

Verschlingungen, die zur Vernetzung der Moleküle in der Lösung führen. Die entstehenden Assoziate vergrößern sich oder bilden ihrerseits Vernetzungen. Bei diesen Vernetzungen ist häufig eine Trübung des Systems zu beobachten. Am Gelpunkt (Konzentration c_G) werden die Assoziate über eine bestimmte räumliche Ausdehnung in ein Netzwerk miteinbezogen, das die gesamte Lösung durchzieht, es kommt zur Gelbildung (ß-Glucan: c_G = 10000 mg/l) [111].

5.2.4.2 Modelle zur Gelbildung

Nach den Vernetzungstheorien von Flory müssen für die Gelbildung im Mittel zwei Vernetzungskomponenten pro eingesetztes Molekül (Monomer und Polymer) verbunden sein. Es gibt einen kritischen Umsatzpunkt c_G , unterhalb dessen nur lineare und verzweigte Molekülassoziate endlicher Masse (Sol) vorliegen. Wird c_G überschritten, so erhält man ein Makromolekül "unendlicher" Masse, d.h. man erhält ein unendlich ausgedehntes, das gesamte System durchziehendes Netzwerk mit einer Vielzahl von endlichen, verzweigten Clustern. Abhängig von der Bindungsstruktur zwischen den Molekülen des Netzwerkes unterscheidet man irreversible, chemisch verknüpfte Gele und reversible Gele [107].

5.2.4.2.1 Irreversibel verknüpfte Gele

Irreversible Gele zeichnen sich durch eine permanente, homogene Bindung aus. Die Verteilung der Bindungen ist für eine bestimmte Temperatur charakteristisch. Die während der Reaktion gebildete Topologie bleibt gegenüber nachfolgenden Temperaturvariationen resistent. Oberhalb eines kritischen Punktes findet eine thermische Zerstörung des Gels statt [112].

5.2.4.2.2 Reversibel verknüpfte Gele

Die Bindungen reversibler Gele lassen sich, im Gegensatz zu den irreversiblen Gelen, thermisch wieder lösen und können sich wieder neu bilden. Die polymeren Ketten sind hier nur durch "schwache" Bindungen (Wasserstoffbrücken, elektrostatische oder hydrophobe Wechselwirkungen oder Dipolkräfte) miteinander verknüpft.

Für die Bildung thermoreversibler Gele gibt es zwei theoretische Ansätze [62]. Das Fransen-Mizellen-Modell ist ein Spezialfall der polymeren Kristallisation an den Netzpunkten. Bedingung für die Assoziation ist eine copolymere Struktur (Copolymerisation oder Heterogenität durch den verschiedenen räumlichen Aufbau) der Polymere. Länge und räumliche Verteilung der gleichartigen Blöcke bestimmen das Dicken- und Längenwachstum bei der Kristallbildung. Die copolymere Struktur kann durch mehrere kristalline Bereiche verlaufen und bildet so ein Netzwerk aus. Außerdem wird die Gelbildung durch den Betrag und das Vorzeichen der freien Verdünnungsenthalpie relativ zur freien Schmelzenthalpie der Kristalle bestimmt. Abbildung 5.5 zeigt das Modell der Netzwerkpunkte aus Fransen-Mizellen [62].

Abbildung 5.5: Modell der Netzwerkpunkte aus Fransen-Mizellen [62]

Das zweite Modell zur Beschreibung der thermoreversiblen Gelierung ist eine statistisch-mechanische Rechnung der Perkolation auf einem sog. Bethe-Gitter von

Coniglio (1982) [62]. Für die Beschreibung des β -Glucan-Gels hat sich das Modell der modifizierten Fransenmizelle als geeignet erwiesen, weshalb nur dies näher erläutert wird [105].

5.2.4.3 Bildung von Hauptvalenzgelen

Gelbildende Substanzen können in einem System sehr unterschiedliche Haftstellen besitzen. Außer reinen Haupt- und Nebenvalenzgelen können sämtliche bekannte Bindungstypen nebeneinander auftreten. Daher sind die Eigenschaften der entstehenden Gele nicht immer aus ihrer Zusammensetzung ableitbar. Selbst Gele gleichen Bindungstyps erlangen durch unterschiedliche Ausdehnung Eigenschaften, die man sonst nur von verschiedenen Bindungsarten erwarten würde. Da Kombinationen beider Bindungstypen zu komplex sind, wird hier nur die Art der Entstehung reiner Hauptvalenzgele beschrieben [104]. Eine Art der Entstehung von Hauptvalenzgelen ist die doppelte Umsetzung und Salzbildung aus fadenförmigen Makromolekülen mit ionisierbaren Gruppen. Zwei- oder mehrwertige Kationen (Ca, Mg, Al, usw.) bilden Haftpunkte zwischen den einzelnen Fäden aus, indem sie negativ ionisierte Gruppen miteinander verknüpfen. Ein typisches Beispiel ist das in Abbildung 5.6 dargestellte SiO₂-Gelgerüst.

Abbildung 5.6: Aufbauschema eines SiO₂-Gelgerüsts [104]

Diese Silica- oder Kieselgele werden durch Umsetzung von Na-Silicatlösung mit Säure gewonnen. Das Silicium hat eine Koordinationszahl von 4, also 4 Bindungsstellen, kann eine Verzweigung auftreten, bei der die "Poren" oder "Maschen" des Gelnetzes sehr eng werden [104].

Eine andere Form der Entstehung makromolekularer Netze, auch in Gegenwart des Dispersionsmittels, ist die chemische Umsetzung. Ein Beispiel ist die Polykondensation von Monomeren mit mehr als zwei reaktionsfähigen Stellen, wie sie bei Calciumchlorid mit Alginsäure stattfindet [104].

5.2.4.4 Bildung von Nebenvalenzgelen

Nebenvalenzgele entstehen, analog einem Kristallisationsvorgang, fast immer durch Übersättigung. Sie werden durch direkte Ausbildung des Gelgerüsts aus Lösungen kleinerer Moleküle oder Ionen erhalten. Ein typisches Beispiel ist das BaSO₄-Gel, das durch die doppelte Umsetzung von BaSCN mit MnSO₄ in konzentrierter Lösung entsteht. Bei der Bildung von Gelen aus Alkaliseifen in Wasser und der höherwertigen Metallseifen in organischen Lösungsmitteln sind ebenfalls Kristallisationstendenzen zu beobachten [104].

Gele aus kolloiden Lösungen entstehen durch Koagulation der Sole von Dispersionskolloiden unter besonderen Verhältnissen. Der Alterung überlassene konzentrierte Sole bilden leicht Gele (z. B. Metallhydroxid-Gele). Man geht davon aus, dass sich die Teilchen durch allmähliches Wachstum solange vergrößern, bis sie sich gegenseitig berühren. Gele aus Dispersionskolloiden sind mechanisch sehr instabil. Sie lassen sich häufig durch einfaches Rühren oder Schütteln in das entsprechende Sol umwandeln. Die wässerigen Gelbildner enthalten fast immer ionisierbare Gruppen. Ihre Gele entstehen durch die Abkühlung einer in Wärme hergestellter Lösung. Beispiele hierfür sind Gelatine, Agar und Alginsäure. Die Tendenz zur Bildung nichtwässeriger Gele erfolgt analog durch Abkühlung einer konzentrierten Lösung. Fadenförmige Makromoleküle durchdringen sich gegenseitig. Dabei bestimmt die Länge die Wirkung ihrer assoziativen Kräfte, die zu kristallähnlichen Haftbereichen führen. Typisch ist hier die Ausbildung von Wasserstoffbrücken [104].

5.2.5 Gelbildung aus ß-Glucan

ß-Glucan liegt in wässerigen Lösungen nicht molekulardispers vor. Die Assoziation bis hin zur Gelbildung ist auf eine Organisation der Moleküle in mikrokristallinen Strukturen, und auf die Ausbildung von intermolekularen Wasserstoffbrückenbindungen der freien Hydoxylgruppen der Glucopyranoseringe zurückzuführen. Dabei sind an der Ausbildung des Gels keine weiteren stofflichen Komponenten beteiligt als ß-Glucan selbst. Der Assoziationsgrad ist jedoch sehr stark von der Zusammensetzung des Lösungsmittels und der Temperatur abhängig [105].

Aus Versuchen, bei denen die Grenzviskositätszahl zur Beurteilung der Aggregation herangezogen wurde, ist ein Modell entwickelt worden, das die konformativen Unterschiede von ß-Glucan aus Gerste und Bier zeigt. Demnach besitzt ß-Glucan aus Gerste noch kristalline Strukturen sehr dichter Packung. Die Strukturen sind durch Wasserstoffbrücken miteinander verbunden und sind nahezu linear gestreckt. Während des Brauens werden die Wasserstoffbrücken thermisch (ab 36°C) und mechanisch aufgelöst. Das eindringende Wasser zerstört die kristallinen Bereiche und bildet Hydrathüllen um die Assoziate. In die lockerer werdende Struktur des ß-Glucans dringt Maltose ein (oder ein anderes in der Maische befindliches Saccharid) und beansprucht im Vergleich zum Wasser ein größeres Volumen. Dadurch kommt es zu einer immer stärkeren Dehnung der Assoziationsstruktur des ß-Glucans. Während der Gärung wird die Maltose in Ethanol überführt. In der ß-Glucanstruktur bleiben große Lücken zurück, die mit Wasser aufgefüllt werden. Die Wassermoleküle haften an den ß-Glucan-Assoziaten durch Wasserstoffbrückenbindungen. Es entsteht ein stark aufgeguollener Zustand mit großem Volumen. Die Strukturen behindern sich gegenseitig, und es treten Verhängungen (durch Wasserstoffbrückenbildung) zwischen den Assoziaten auf. Hinzu kommt der Einfluss des Ethanols, der die Assoziation des ß-Glucans verstärkt. Bei der Lagerung des Bieres ergeben sich lokale Aufkonzentrationen der ß-Glucan-Assoziatverbände durch Sedimentation, und es kann ß-Glucan-Gel gebildet werden. Eine lokale Aufkonzentrierung im Filterkuchen oder an der Membran findet aber auch bei der Filtration statt, so dass das Gel auch erst dort entstehen kann [100]. Aus Bier isoliertes ß-Glucan-Gel ist strukturviskos (pseudoplastisch). Das Gel besitzt aufgrund seiner inneren Struktur eine gewisse Anfangsviskosität, die mit zunehmenden Geschwindigkeitsgefälle kleiner wird. Das Sinken der Viskosität, also der geringer werdende Anstieg der Schubspannung, läuft mit der Zerstörung der Struktur einher. Außerdem zeigt das Gel thixotrope Eigenschaften, da es nach der Scherung seine Ursprungsviskosität nur zeitverzögert zurückgewinnt. Dieses rheologische Verhalten ist von der inneren Gerüststruktur abhängig. Das Vorhandensein solcher Strukturen lässt sich anhand der Fließkurven von ß-Glucan-Gel in Abhängigkeit von der Temperatur zeigen (Abb. 5.7) [105].

Abbildung 5.7: Fließkurven von ß-Glucan-Gel in Abhängigkeit von der Temperatur [105]

Aus den auf- und absteigenden Kurven erkennt man, dass das strukturviskose und thixotrope Verhalten bei höheren Temperaturen abnimmt. Der Anstieg der Kurven wird, mit steigenden Temperaturen, immer flacher, und die Kurvenäste fallen zusammen. Im unteren Temperaturbereich ist eine deutliche Zunahme der Schubspannung in den Aufwärtskurven zu beobachten. Dort muss eine Verstärkung des Gelgerüsts stattgefunden haben. Bei sehr starker Scherung bricht diese Struktur zusammen. Bis 35°C nimmt die Fläche zwischen den Kurvenästen zu. Danach setzt ein Strukturzusammenbruch ein, der sich bis 55°C vollzogen haben muss, da ein Zusammenfallen der Auf- und Abwärtskurven bei dieser Temperatur messbar ist.

Anfangs- und Endtemperatur des Strukturzusammenbruchs lassen sich anhand der bei einem bestimmten Geschwindigkeitsgefälle erreichten Viskositäten bestimmen. Die thermische Strukturzerstörung setzt demnach bei 32°C ein und ist bei 55°C abgeschlossen. ß-Glucan-Gel hat eine temperaturabhängige Fließgrenze. Man erkennt, dass bei D = 0 bereits eine Mindestschubspannung wirken muss, um die Haftkräfte des Gels zu überwinden. Diese Haftkräfte sind für die elastischen Eigenschaften des Gels verantwortlich. Die Fließgrenzen für die Aufwärtskurven sind höher als die der Abwärtskurven. Die Strukturrückbildung ist zeitlich verzögert und findet nur bis 50°C statt. Eine Zerstörung der Gelstruktur ist also sowohl thermisch als auch mechanisch möglich. Der Strukturzusammenbruch durch mechanische Belastungen ist temperaturabhängig: Je höher die Temperatur ist, um so geringer muss der zum Strukturzusammenbruch erforderliche Geschwindigkeitsgradient sein [105].

5.2.6 Modell der modifizierten Fransenmizelle für ß-Glucan-Gel

Aus Lichtstreuungsexperimenten, die der Ermittlung der Stukturveränderungen des ß-Glucans während der Aggregation dienen sollten, wurde das Modell der modifizierten Fransenmizelle für ß-Glucan-Gel entwickelt. Aufgrund der Versuchsergebnisse konnte eine zufällige Aggregation ausgeschlossen werden. Die Fransenmizelle entsteht durch eine seitliche Aggregation der Ketten. Die Mizelle behält in ihren äußeren Bereichen ihre Flexibilität. Im Inneren versteifen sich die Ketten, wodurch sich ein "Stamm" ausbildet. Selbst bei einer Verdoppelung der Masse der Fransenmizelle kommt es bei zunehmender Assoziation nur zu einer geringen Gesamtausdehnung. Abbildung 5.8 zeigt die schematische Darstellung von Fransenmizellen in zwei verschiedenen Aggregationsstufen. Bei der Anwendung des Fransenmizellenmodells auf die Struktur des ß-Glucans wurde anhand weiterer Lichtstreuungsversuche festgestellt, dass sowohl ein Mizellenwachstum in der Dicke als auch in der Länge stattfinden muss [104].

Abbildung 5.8: Schematische Darstellung der Fransenmizellen mit steigender Aggregation $(a \rightarrow b)$ [104]
ß-Glucan bildet demnach eine Art modifizierte Fransenmizelle. Die aggregierten Bereiche innerhalb der Mizelle sind zum Teil gestaffelt angeordnet. Sie sind stark versteift und zeigen eine geringe Kettenflexibilität [104].

Abbildung 5.9: Modifizierte Fransenmizelle, bei der neben einer Zunahme der Dicke auch ein Längenwachstum stattfindet [104]

Die modifizierte Fransenmizelle steht also in Übereinstimmung mit dem Fransenmizellenmodell, mit der Ausnahme, dass die aggregierten Bereiche im Bezug auf die Moleküllänge nicht exakt zusammenpassen. Abbildung 5.9 zeigt die schematische Darstellung der modifizierten Fransenmizelle [104].

6 Analytische Verfahren und Methoden

6.1 Bestimmung der Filtrierbarkeit von Bier

Aufgrund der Schwierigkeit, die Filtrationseigenschaften von Bieren in der Brauerei anhand von Analysendaten vorhersagen zu können, ist man bestrebt, praxisnahe Laborverfahren zu entwickeln, die eine möglichst exakte Aussage über die zu erwartenden Filtrationseigenschaften ermöglichen. Weitere Bedingungen, die an diese Laborverfahren gestellt werden, sind kleine Probenvolumina und eine kurze Analysenzeit. Die Laborversuche sollen Vorhersagen über die Verwendungsmöglichkeiten verschiedener Filtrationsapparaturen und deren Anordnung (Massefilter, Separatoren, Membran- und Schichtenfilter) ermöglichen und Verbrauch, Art und Qualität der benötigten Kieselgur ermitteln. Dies ist insbesondere unter dem Gesichtspunkt der Kostenminimierung für Aufwand und Entsorgung der Kieselguren von besonderem Interesse. Im Folgenden werden zwei unterschiedliche Verfahren erläutert, die zum einen die Schichtenfiltration mit Kieselgur und zum anderen die Membranfiltration simulieren.

6.1.1 Filtrationstest nach Sartorius

Der Filtrationstest nach Sartorius ist eine Membranfiltermethode. Die Filtration erfolgte über einem Membranfilter der Sartorius GmbH, Göttingen. Als Membran wird eine Celluloseschicht mit einer Porenweite von 0,45 µm verwendet. Die Versuche finden in einem auf 0 °C temperierten Raum statt. Das Probenmaterial wird ebenfalls auf diese Temperatur eingestellt. Die Filtration erfolgt bei einem konstanten Überdruck von 0,2 MPa [96]. Das Prinzip des Filtrationstests nach Sartorius beruht auf der Messung der Zeit, die die Filtration eines vorher festgelegten Volumens an Unfiltrat benötigt.

6.1.2 Fitrationstest nach Raible

Der im Jahre 1969 von K. Raible et al. auf der Oktobertagung der VLB Berlin vorgestellte und 1990 modifizierte Filtrationstest simuliert die Anschwemmfiltration mit Kieselgur im Labormaßstab. Die erforderliche Volumenbestimmung erfolgt entweder volumetrisch oder gravimetrisch. Dabei ist die elektronisch-gravimetrische Bestimmung aufgrund der exakteren Messergebnisse vorzuziehen.

Die Anschwemmfiltration bei konstantem Druck und abnehmendem Filtratvolumen gehorcht nach Dreier folgender Gesetzmäßigkeit [113]:

$$t = \mathbf{a} \cdot \mathbf{V}^2 + \mathbf{b} \cdot \mathbf{V} \tag{6.1}$$

t = Filtrationsdauer [s]
a = Filterkuchenfaktor [s/ml²]
V = Filtratvolumen pro m² Filterfläche [ml]
b = Primärschichtfaktor [s/ml]

Teilt man die Formel nach Dreier (6.1) durch das Filtratvolumen pro Filterfläche *V*, so erhält man eine allgemeine Geradengleichung :

$$\frac{t}{V} = a \cdot V + b \tag{6.2}$$

Aufgrund der Verwendung eines speziellen Stützfilters aus "Mikrodur Filtergewebe" ist eine hohe Durchlässigkeit der zu filtrierenden Flüssigkeit durch den Filter gewährleistet. Der Primärschichtfaktor *b* geht dabei gegen Null, wobei das Produkt aus Primärschichtfaktor und Filtratvolumen pro Filterfläche ebenfalls dem Wert Null zustrebt und somit vernachlässigt werden kann. Daraus ergibt sich die vereinfachte Formel:

$$t = \mathbf{a} \cdot \mathbf{V}^2 \tag{6.3}$$

Dass die Filtrationsformel nach Dreier auf diese Art vereinfacht werden darf, zeigt die experimentell ermittelte graphische Darstellung des Quotienten aus Filtrationsdauer

und Filtrationsvolumen pro Filterfläche t / V in Abbildung 6.1. Er entspricht genau der experimentell ermittelten Filtrationsgeraden nach Formel 6.2 mit der Steigung a und dem y-Achsenabstand b. Dieser ist im vorliegenden Fall gleich Null (siehe Formel 6.3).

Abbildung 6.1: Graphische Auswertung eines Filtrationsversuchs nach Raible [114]

Da aufgrund der vereinfachten Formel der Primärschichtfaktor vernachlässigt werden kann, benötigt man zur Bestimmung der Filtrierbarkeit bzw. des Filterkuchenfaktors a lediglich die benötigte Filtrationsdauer und das filtrierte Gesamtvolumen des Bieres.

Der Filterwiderstand wird bei der Anschwemmfiltration durch zwei Hauptkomponenten beeinflusst. Zum einen sind die Bierinhaltsstoffe (Masse, Teilchengröße, Teilchenoberfläche, Teilchenbeschaffenheit) für den Verlauf der Filtration maßgeblich, zum anderen üben Filterhilfsmittel wie Kieselgur einen entscheidenden Einfluss auf die Filtrationszeit aus. Den Einfluss der Filterhilfsmittel kann man durch Standardisierung konstant halten. Die den Filterkuchenfaktor a bestimmende Größe hängt somit ausschließlich von den Eigenschaften der Bierinhaltsstoffe ab [114].

Der Filterkuchenfaktor a stellt nur eine theoretische Größe dar. Um Ergebnisse besser miteinander vergleichen zu können und um Versuche im Labormaßstab auf die Praxis übertragen zu können, bedient man sich des spezifischen Filtratvolumens F_{spez} . Hierbei handelt es sich um eine Größe, die angibt, wie viele Hektoliter Bier pro

Quadratmeter Filterfläche und Stunde Filtrationsdauer einen Filter passieren würden, vorausgesetzt, man benutzt die äquivalente Menge an Kieselgur und einen konstanten Filtrationsüberdruck von 0,1 MPa.

Das spezifische Filtratvolumen $F_{spez.}$ berechnet sich nach der Dreierschen Formel folgendermaßen [114]:

$$F_{Spez.} = \sqrt{\frac{3600}{a}} \frac{ml}{cm^2} \cdot h \tag{6.4}$$

Zur Berechnung ist Formel 6.3 nach a aufgelöst worden, somit enthält Formel 6.4 das filtrierte Volumen *V* und die Zeit *t. t* wird hierbei um 3600 s/h erweitert, um eine Angabe in h zu ermöglichen. Um einen praxisnahen Wert zu erhalten, muss Formel [6.4] in Hektoliter pro Quadratmeter und Stunde angeben werden:

$$F_{spez} = \sqrt{\frac{3600}{a}} \cdot 0.1 \frac{hl}{m^2} \cdot h$$
(6.5)

Prinzipiell kann man mit Hilfe des Raible–Tests auf einfache und schnelle Art die Filtrierbarkeit von Bier und Würze überprüfen. Ebenso ist es möglich, im Labormaßstab den Kieselgurtyp zu ermitteln, der für das entsprechende Produkt am günstigsten ist [115]. Es ist jedoch dabei zu beachten, dass die Höhe des Filterkuchenfaktors a in erster Linie vom verwendeten Kieselgurtyp abhängt. Um Ergebnisse miteinander vergleichen zu können, muss demnach immer die gleiche Kieselgur verwendet werden. Möglichkeiten der Fehlinterpretation können auch in der nicht repräsentativen Probenahme bzw. in einem zu kleinem Stichprobenumfang liegen.

Beim angewandten Versuchsaufbau, dessen Fließschema in Kapitel 7.2.1.2 beschrieben ist, werden zur Voranschwemmung 1700 ml kaltes Wasser mit 0,98 g Grobgur (entspricht ca. 0,71 kg/m²) vermischt und in den Vorlaufbehälter eingefüllt. Dann werden 500 ml Bier von 0 °C mit 0,4 g Feingur vermengt und in den Filtrationsbehälter gegeben (entspricht ca. 80 g/hl Unfiltrat). Beide Behälter werden verschlossen, mit einem Magnetrührer permanent durchmischt und mit einem CO₂-

Druck von 0,1 MPa Überdruck beaufschlagt. Der Filtrationsprozess beginnt mit der Voranschwemmung, wobei der gesamte Inhalt des Vorlaufbehälters auf das Stahlgewebe angeschwemmt wird. Danach beginnt die Bierfiltration. Der Hauptlauf wird über den Filter geleitet und das geklärte Filtrat in einem Messkolben aufgefangen. Während dieser Versuchsreihen wird abweichend vom Raible-Test nicht eine Zeit *t*, sondern eine Zeitspanne Δt gemessen, die benötigt wird, um ein bestimmtes Volumen zu filtrieren. Die Zeitmessung beginnt, nachdem 50 ml Filtrat im Messzylinder aufgefangen worden sind, wobei t_1 den Zeitwert nach weiteren 50 ml, t_2 nach 130 ml darstellt. Die für die Berechnung des spezifischen Filtratvolumens benötigte Differenz Δt ist aus diesen zwei Werten zu berechnen. Die Verwendung der Zeitspanne Δt ist deshalb notwendig, da sich zu Beginn der Filtration kein linearer Filtrationsverlauf einstellte und somit, durch den verzögerten Messbeginn, die Schwankungen der ersten Sekunden vermieden werden konnten. Die von Raible entwickelte Formel 6.5 ändert sich, nach Einsetzen von Formel 6.3, wie folgt:

$$F_{spez} = 0.1 \cdot 60 \cdot V \cdot \sqrt{\frac{1}{\Delta t}}$$
(6.6)

Da *V* über einen bestimmten Zeitraum gemessen wird und somit eine Abhängigkeit von der Filterfläche besteht, ist es sinnvoll den Volumenstrom anzugeben. Das filtrierte Biervolumen beträgt 80 ml, die Filterfläche ist im angewandten Fall 13,86 cm². Somit ergibt sich zur endgültigen Berechnung des spezifischen Filtratvolumens folgende Formel:

$$F_{spez} = 0.1 \cdot 60 \cdot \frac{80}{13.86} \cdot \sqrt{\frac{1}{\Delta t}} = 34.632 \cdot \sqrt{\frac{1}{\Delta t}}$$
 (6.7)

Die Bewertungskriterien zur Beurteilung der Filtrierbarkeit für Bier stellen sich nach Schmitt folgendermaßen dar [116]:

$$F_{spez}$$
< 3,5schlecht filtrierbar3,5 - 4,3befriedigend filtrierbar> 4,5gut filtrierbar.

6.2 Bestimmung des Stickstoff- und Polyphenolgehalts

Die Bestimmung des **Stickstoffgehalts** erfolgt nach der Kjeldahl-Methode. Diese ist auch Grundlage für die Ermittlung der verschiedenen Stickstoff-Fraktionen und unterteilt sich in folgende drei Schritte [117]:

1) Aufschluß der Probe (Oxidation der Substanz zu H₂O, CO₂, NH₃)

Aufschluss \rightarrow 2 NH₃ + H₂SO₄ \rightarrow (NH₄)₂SO₄

2) Destillation (Überdestillieren des NH₃ in eine Borsäurelösung)

 $(\mathsf{NH}_4)_2\mathsf{SO}_4 + 2 \mathsf{ NaOH} \rightarrow \mathsf{Na}_2\mathsf{SO}_4 + 2 \mathsf{ NH}_3 + 2 \mathsf{ H}_2\mathsf{O}$

 $3 \text{ NH}_3 + \text{H}_3\text{BO}_3 \rightarrow (\text{NH}_4)_3\text{BO}_3$

3) Titration (Ermittlung der nach der Destillation in der Vorlage vorhandenen Masse an NH₃)

2 (NH₄)₃BO₃ + 3 H₂SO₄ \rightarrow 3 (NH₄)₂SO₄ + 2 H₃BO₃

Für die Ermittlung des löslichen Gesamtstickstoffs wird die gesamte zu untersuchende Probe der Kjeldahl-Analyse zugeführt. Dabei ist keine Vorbehandlung notwendig [117].

Die Ermittlung der Masse an **hochmolekularem Stickstoff** wird durch eine Kjeldahl-Analyse mit vorangehender Magnesiumsulfatfällung bewerkstelligt. Magnesiumsulfat bewirkt die Ausfällung von Stickstoff-Verbindungen mit einer Molekularmasse von > 2600 Dalton, die nach erfolgter Abtrennung im Faltenfilter der Kjeldahl-Analyse zugeführt werden [117].

Die Ermittlung der mittelmolekularen Stickstoff-Fraktion erfolgt nach einer Phosphormolybdänsäurefällung. vorausgegangenen Die mittelund hochmolekularen Stickstoff-Fraktionen werden ausgefällt und wiederum mittels eines Faltenfilters abgetrennt. Das gesuchte Ergebnis errechnet sich aus der Differenz zum hochmolekularen Stickstoff. Bei dieser Analyse lässt sich auch der niedermolekulare Stickstoffanteil aus der Differenz zum löslichen Gesamtstickstoff ermitteln [117].

Phenolische Verbindungen gelangen aus Malz und Hopfen ins Bier. Je nach ihrer Menge haben sie Auswirkungen auf Farbe, Geschmack, Schaum und kolloidale Stabilität des Bieres. Sie können allerdings auch eine eiweißfällende Wirkung haben, welche negative Auswirkungen auf die Filtrierbarkeit nach sich zieht. Die Bestimmung der **Gesamtpolyphenole** erfolgt über die Bildung von bräunlichen Eisenkomplexen, die spektralphotometrisch gemessen werden. **Anthocyanogene**, eine reaktive Untergruppe der Polyphenole, werden mittels heißer Salzsäure in rotgefärbte Anthocyanidine überführt, die ebenfalls spektralphotometrisch nachgewiesen werden [117].

6.3 Abschätzung der Partikelgrößenverteilung durch Zentrifugation

Proteine und Kohlenhydrate sind Makromoleküle. Möchte man diese bezüglich ihrer Molekularmasse untersuchen, so gibt es verschiedene Untersuchungsmethoden, wie z.B. Sedimentation, Filtration oder Zentrifugation. Über das Molekularmasse und die durchschnittliche Dichte lässt sich somit ein Rückschluss auf die Partikelgröße ziehen. Die in diesem Fall angewandte Zentrifugation ist ein Trennverfahren zur Bestimmung von Dichte und Masse von Teilchen. Die Teilchen werden durch die Zentrifugation beschleunigt, wodurch eine Zentrifugalkraft auf sie wirkt. Diese Zentrifugalkraft versucht während der Rotationsbewegung die Teilchen von ihrer ursprünglichen Stelle nach außen fortzuziehen. Da die Zentrifugalkraft von der Masse des Teilchens und der Zentrifugalbeschleunigung abhängt, können bei verschiedenen Drehzahlen und Zentrifugationszeiten verschiedene Größen- bzw. Massenfraktionen abgeschieden werden [118]. In dieser Anwendung wurden die Proben bei verschiedenen Drehzahlen und Zeiten zentrifugiert. Der Überstand wurde nach der Zentrifugation abdekandiert und die Absorption bei 600 nm gemessen. Aus der Änderung der Absorption konnte folglich ein Rückschluss auf die Veränderungen der Partikelgrößen gezogen werden [117].

6.4 Bestimmung der Gehalte von β-Glucan und β-Glucan-Gel

Die Analyse von β -Glucan erfolgte bei den vorhandenen Proben mittels "Flow-Injection–Analyses" (FIA) [119]. Das Prinzip basiert auf der Verstärkung der Eigenfluoreszenz der β -Glucane mit Hilfe eines "Fluoreszenzbrighteners". Während β -Glucan eine Eigenfluoreszenz aufweist, besitzt sein Gel diese nicht. Löst sich das Gel auf, so kann sich Calcofluor am β -Glucan anlagern und verstärkt die Fluoreszenz, welche im Detektor messbar ist. Bei diesem System wird mit in Glycinpuffer gelöstem Calcofluor als Eluent gearbeitet. Mit Hilfe einer Pumpe wird ein konstanter Eluentenstrom von 2 ml/min gefahren, und 10 µl der Probe über ein Schleifendosierventil eingespritzt. Nach Durchlaufen einer Mischstrecke wird dann im Detektor die Erhöhung der Fluoreszenz gemessen [119].

Bei der erweiterten Methode von Wagner und Krüger zur Ermittlung des Gehaltes an β -Glucan-Gel wird die Probe in zwei verschließbare Reagenzgläser aufgeteilt. Ein Reagenzglas wird für 15 Minuten auf 80 °C temperiert, um das β -Glucan–Gel thermisch in den Solzustand zu überführen. Nach dem Abkühlen werden beide Röhrchen für 20 Minuten bei 3500 U / min zentrifugiert [120]. In beiden Überständen wird dann der Gehalt an β -Glucan mittels FIA gemessen. Die Menge an β -Glucan-Gel errechnet sich dann aus der Differenz der erhitzten zur nicht erhitzten Probe. Die Angabe erfolgt in Milligramm pro Liter. Der Nachteil dieser Methode liegt in der hohen Nachweisgrenze von 10 mg/l.

Dieses Messprinzip wurde auch zur Bestimmung der Fluoreszenz des β -Glucans unter Hochdruck verwendet. Es erfolgte allerdings kein kontinuierlicher Durchfluss, sondern eine chargenweise Betrachtung.

6.5 Bestimmung der Viskosität

Die Bestimmung der dynamischen Viskosität erfolgte mit einem Rotationsviskosimeter. Mit diesem Gerät ist es möglich, Newtonsche und Nicht-Newtonsche Substanzen zu untersuchen. Die zu messende Substanz befand sich bei der hier angewandten Methode in einem Keilspalt zwischen einer Platte und einem Kegel (Kegelwinkel 0,5° bis 2,0°). Die Platte steht fest, während der Kegel angetrieben wird. Das Schergefälle ist sehr genau einstellbar. Es bewirkt einen Fließwiderstand, der über einen Drehmomentaufnehmer gemessen wird und in die dynamische Viskosität umgerechnet werden kann. Voraussetzung ist eine stationäre und laminare Strömung im Spalt. Rotationsviskosimeter können auch für mittel- bis hochviskose (> 3 mPa·s) und strukturviskose Stoffe eingesetzt werden [121].

6.6 Theoretische Grundlagen der Kernresonanzspektroskopie

6.6.1 Kernspin von Atomkernen

Beschrieben wird im folgenden nur die verwendete, niedrig auflösende NMR-Spektroskopie für Protonen (¹H-Kerne), welche im Rahmen der vorliegenden Arbeit verwendet wurde.

Die Kerne von Wasserstoffatomen, welche aus Protonen bestehen, besitzen die Spinquantenzahl i = 1/2. Atomkerne mit einer Spinquantenzahl ungleich 0 besitzen einen Drehimpuls *I*, Kernspin genannt. Da die elektrischen Ladungen räumlich nicht gleich verteilt sind, haben auch die Protonen ein magnetisches Moment μ , welches in Gleichung 6.8 definiert ist [122].

$$\mu = \gamma \cdot I \tag{6.8}$$

Hierbei ist γ , das gyromagnetische Verhältnis, die für jede Kernart spezifische Konstante (γ für ¹H: 26,75 ·10⁷ rad/(T·s)). Enthält eine Probe viele Protonen, so ist die Richtung der Vektoren μ und *I* zufällig verteilt. Setzt man eine solche Probe einem homogenen Magnetfeld aus, dessen magnetische Induktion B_0 (0,0, B_0) in die z-Richtung eines Koordinatensystems (x, y, z) zeigt, so nehmen die Kernspins aller Protonen genau definierte Orientierungen ein, die aus dem magnetischen Moment μ und dem Magnetfeld B_0 resultieren. Sie weichen jeweils um einen Winkel α von der z-Achse ab. Stellt man sich einen Kernspin bildlich als Kreisel vor, so ergibt sich, dass er durch die nicht parallele Lage zur Richtung von B_0 eine Kreisbewegung

(Larmor-Präzession) mit der Drehfrequenz ω_0 um die z-Achse ausführen wird. Der Kernspin präzediert.

Abbildung 6.2: Präzession eines Kernspins im statischen Magnetfeld B₀ [122]

Die Larmorfrequenz ω_0 hängt nach Gleichung 6.9 direkt von der Stärke der magnetischen Induktion ab.

$$\omega_0 = \gamma \bullet B_0 \tag{6.9}$$

Die Kernspins sind fast gleichmäßig auf die zwei möglichen Orientierungen verteilt. Diese Orientierungen entsprechen unterschiedlichen Energieniveaus. Veranschaulichen lässt sich dies durch die Vorstellung, dass die Spins sich an irgendeinem Ort auf einem Kegel befinden, welcher parallel oder antiparallel zu B_0 liegt. Trotz eines letztlich sehr geringen Unterschiedes innerhalb der Verteilung auf die Energieniveaus entsteht ein resultierender Magnetisierungsvektor *M*, der in Richtung von B_0 zeigt. Dieser Magnetisierungsvektor lässt sich mit der Curie-Gleichung (6.10) berechnen:

$$M = \frac{N * \gamma^2 * \hbar^2 * i * (i+1) * B_0}{3 * k * T}$$
(6.10)

N = Anzahl der Protonen pro cm³ (Protonendichte)

- $\hbar = h / 2\pi$
- h = Plancksches Wirkungsquantum
- *i* = Spinquantenzahl
- *k* = Boltzmann-Konstante
- *T* = absolute Temperatur.

Der resultierende Magnetisierungsvektor *M* ist direkt proportional zur Protonendichte und der Feldstärke von B_0 und umgekehrt proportional zur absoluten Temperatur. Setzt man die im Magnetfeld B_0 ausgerichteten Kernspins einem mit ω_0 in der x-y-Ebene drehendem Magnetfeld B_1 für die Zeitdauer t_p aus, so ändern sie ihre Lage relativ zur Achse. Damit ändert auch der resultierende Magnetisierungsvektor seine Lage. Beispielsweise dreht er sich in einer entsprechenden Zeit t_p in die x-y-Ebene (90°-Impuls). Zur Veranschaulichung dieser Vorgänge ist es sinnvoll, ein rotierendes Koordinatensystem (x', y', z) einzuführen, welches mit ω_0 um die z-Achse rotiert. In diesem Koordinatensystem lenkt das in x-Richtung zeigende Feld B₁ den Vektor M in Richtung der y'-Achse aus. Solche sich mit ω_0 drehenden Magnetfelder lassen sich in Versuchsanordnungen nur durch hochfrequente elektrische Wechselfelder (HF-Felder) erzeugen. t_p bezeichnet die Zeitdauer, in welcher diese Wechselfelder gesendet werden. Unter Zuhilfenahme dieser Zeitdauer lässt sich der Winkel ß festlegen, um welchen M relativ zur z-Achse ausgelenkt wird. Oftmals wird M in Richtung der y'-Achse ($\beta = 90^{\circ} \Rightarrow 90^{\circ}$ -Impuls) oder in Richtung der negativen z-Achse ($\beta = 180^{\circ} \Rightarrow 180^{\circ}$ -Impuls) ausgelenkt [122].

6.6.2 Relaxationsvorgänge bei Magnetisierungsvektoren

Schaltet man ein HF-Feld ab, so wirkt nur noch B_0 auf die Kernspins. Diese kehren wieder in die thermische Gleichgewichtslage zurück. Der Magnetisierungsvektor M richtet sich wiederum parallel zu B_0 aus. Betrachtet man nun ein ruhendes Koordinatensystem, so relaxiert der Magnetisierungsvektor M auf einer spiralförmigen Bahn in die Gleichgewichtslage. Über eine senkrecht zur z-Richtung angebrachte Spule kann die rotierende Magnetisierung M als elektrisches Signal detektiert werden. Allerdings lässt sich hierdurch nur der Anteil von M in der x,y-Ebene ermitteln. Für den Anteil von M in der z-Richtung ist dies jedoch nicht möglich. Die induzierte Spannung ist nach einem 90°-Impuls maximal und wird dann im thermischen Gleichgewicht zu Null. Dieser zeitliche Verlauf der beiden Anteile ($M_{x',y'}$ und M_z) von M wird bei der NMR-Spektroskopie über die Blochschen Gleichungen (6.11 und 6.12) ausgedrückt. Die integrierten Formeln für ß = 90 ° lauten:

$$M_{z}(t) = M_{\infty} * (1 - \exp\left\{-\frac{t}{T_{1}}\right\})$$
(6.11)

$$M_{x',y'(t)} = M_0 * \exp\left\{-\frac{t}{T_2}\right\}$$
(6.12)

 M_{∞} = Gleichgewichtswert für M_z im Feld B_0 M_0 = Wert von $M_{x',y'}$ (bei t = 0).

Aus den Gleichungen 6.11 und 6.12 ergeben sich die zwei charakteristischen Zeiten T_1 und T_2 für den zeitlichen Verlauf der Relaxation. T_1 ist das Maß für die Relaxation der z-Komponente von *M*. Für T_1 wird der Begriff Longitudinale- oder Spin-Gitter-Relaxationszeit benutzt. Die transversale oder Spin-Spin-Relaxationszeit T_2 ist ein Maß für den zeitlichen Verlauf der x',y'- Komponenten der Magnetisierung. Die Werte für T_1 und T_2 sind in Systemen mit großer Beweglichkeit der Protonen gleich, da die Magnetisierung *M* im gleichen Maße in den x,y-Richtungen wie auch in z-Richtung zunimmt. In realen Systemen sind Störeinflüsse zu bemerken, welche T_2 kleiner erscheinen lassen. Diese resultieren aus Inhomogenitäten der Magnetfelder B_0 . Weiterhin haben auch schwache örtliche Magnetfelder eine Auswirkung auf die x,y-Komponenten von *M* und somit auch auf T_2 . Diese lokal ausgebildeten Magnetfelder führen hauptsächlich bei hochviskosen Flüssigkeiten und bei Festkörpern zu einem Auseinanderlaufen der Werte von T_1 und T_2 [122]. Aufgrund dieser Einflüsse auf die Relaxation der resultierenden Magnetisierung gilt immer die Bedingung 6.13.

$$T_1 \ge T_2 \tag{6.13}$$

6.6.3 Impulsfolgen zur Minimierung von Störeinflüssen

Um über die NMR-Spektroskopie Aussagen treffen zu können, sollten Störeinflüsse minimiert werden. Dieses wird bei NMR-Versuchen über folgende Impulsfolgen realisiert.

90°- Impuls mit FID:

Wird das B_1 -Feld zu dem Zeitpunkt abgeschaltet, an dem die Magnetisierung um 90° gedreht ist, so bezeichnet man dies als einen 90°-Impuls. Dementsprechend stellt ein 180°-Impuls einen Impuls dar, an dem sich die Magnetisierung gerade um 180° gedreht hat.

Zum Nachweis umgibt man die zu untersuchende Probe mit einer Detektionsspule. Das zeitlich veränderte Magnetfeld erzeugt eine kleine Induktionsspannung. Das hierbei erzeugte Spannungssignal ist proportional zum Betrag der makroskopischen Magnetisierung $M_{x,y}$ bzw. M_z der zu untersuchenden Probe. Wenn sich in der Probe nur Protonen einer gleichartigen Molekülanordnung und eines Bindungszustandes (beispielsweise reines Wasser) befinden, so verläuft der FID (free-induction-decay) im Idealfall nach einer Exponentialbeziehung, die in Abbildung 6.3 dargestellt ist. Der Spannungsabfall kann durch die in Gleichung 6.14 dargestellten Funktion dargestellt werden [122].

Abbildung 6.3: Freier Induktionsabfall (FID) nach einem 90°-Impuls [122]

$$U_{(t)} = U_0 * exp(-\frac{t}{T_2})$$
 (6.14)

U(t) = in der Spule induzierte Spannung U_0 = Spannung direkt nach Abschalten des HF-Impulses zur Zeit t = 0. Da die Messspule gleichzeitig als Sendespule fungiert, kann diese Spannung aufgrund einer resultierenden Totzeit nicht gemessen werden. U_0 kann aber durch Extrapolieren des gemessenen Signals bei t = 0 errechnet werden [122].

Ermittelt man den FID einer inhomogenen Probe mit Protonen in verschiedenen Bindungszuständen, so zeigen die Protonen ein unterschiedliches Relaxationsverhalten. Beschreiben lässt sich dieses als Addition verschiedener Exponentialfunktionen (Gleichung 6.15) unter der Voraussetzung, dass die mittlere Verweilzeit der Protonen in den einzelnen Bindungszuständen bedeutend größer ist als das jeweilige T_2 :

$$U_{(t)} = \sum_{i=1}^{n} U_{0,i} * \exp(-\frac{t}{T_{2,i}}).$$
(6.15)

Befinden sich die Protonen in einem Festkörper, wie z.B. Eis, so lässt sich der FID mit einer Gauß-Funktion beschreiben. Handelt es sich bei der Probe um Protonen im Festkörper sowie in n verschiedenen flüssigkeitsähnlichen Bindungszuständen, so folgt der FID der Beziehung 6.16.

$$U_{(t)} = U_{0,1} * \exp\left[-\left(\frac{t}{2T_{2,1}}\right)^2\right] + \sum_{i=2}^n U_{0,i} * \exp\left(-\frac{t}{T_{2,i}}\right)$$
(6.16)

Die Formeln 6.14, 6.15 und 6.16 gelten nur, sofern alle Protonen in der gleichen Frequenz präzedieren und während der Untersuchungszeit keine Selbstdiffusion und keinerlei Austausch stattgefunden hat. Die Tatsache, dass ein vollständig homogenes statisches Magnetfeld B_0 nicht gewährleistet werden kann, führt dazu, dass Protonen an verschiedenen Orten einer unterschiedlichen Magnetfeldstärke ausgesetzt sind. Somit haben sie eine unterschiedliche Resonanzfrequenz. Die Kernspins präzedieren nach Abschalten des HF-Feldes mit Frequenzen unter- und oberhalb ω_0 in der x,y-Ebene und liefern nur noch einen kleinen Beitrag zur Magnetisierung. Dieses Verhalten der Kernspins wird Außerphaselaufen genannt und ist in Abbildung 6.4 dargestellt [122].

Abbildung 6.4: Durch Inhomogenitäten des Magnetfeldes hervorgerufener Verlauf des FID [122]

<u>180°-τ-90°-Impulsfolge</u>

Die z-Komponente der Magnetisierung wird nicht von Inhomogenitäten oder Diffusion beeinflusst. Das bedeutet, dass auch keine speziellen Impulstechniken zum Ausschluß der Störungen nötig sind. Abbildung 6.5 zeigt die Wirkung einer $180^{\circ}-\tau-90^{\circ}$ -Impulsfolge auf M_z .

Abbildung 6.5: Die Wirkung einer 180°-τ-90°-Impulsfolge auf die z-Komponente der resultierenden Magnetisierung M [122]

M wird dabei durch den 180°-Impuls in die negative z-Richtung gedreht (a). Danach folgt eine Relaxation von *M* in Richtung B_0 . M_z wird bis zum Durchgang von *M* durch die x',y'-Ebene kleiner, danach wird er wieder größer. Sendet man nach einer Zeit τ einen 90°- Impuls, so dreht sich M_z zur y'-Achse und kann als FID detektiert werden. $M_{z(\tau)}$ ist dabei proportional zur anfänglichen Amplitudenhöhe dieses FID. Wiederholt man dieses Experiment mit verschiedenen Zeiten τ , so kann man aus der Amplitude, welche über τ aufgetragen wird, nach Gleichung 6.14 die longitudinale Relaxationszeit ermitteln [122].

<u>90°-τ-90°-Impulsfolge</u>

Ist T_2 viel kleiner als T_1 , so kann diese Impulsfolge benutzt werden. Der erste 90°-Impuls dreht hierbei *M* auf die y'-Achse. Ein zweiter Impuls nach der Zeit τ dreht M_z zur y'-Achse. Dieser Impuls kann dann detektiert werden.

$$M_{(\tau)} = M_0 * [1 - \exp(-\tau/T_1)]$$
(6.17)

Über Gleichung 6.17 kann T_1 aus den mittels verschiedener τ ermittelten anfänglichen Amplitudenwerten errechnet werden [122].

6.6.4 Interpretation der Ergebnisse von Impulsfolgen

Wie aus Gleichung 6.10 ersichtlich ist, besteht eine Proportionalität zwischen der Magnetisierung und der Anzahl der Protonen. Durch diese Proportionalität entspricht das NMR-Signal unmittelbar nach dem 90°-Impuls der Gesamtprotonenmenge in der Probe. Das Signal bei t = 0 ist aufgrund von Totzeiten nicht meßbar, aber kann mittels einer Gauß-Funktion nach t = 0 extrapoliert werden. Oftmals ist dies aber gar nicht erforderlich, da die Kenntnis der Signalamplitude unmittelbar nach der Totzeit ausreicht, da das Signal zu gleichen Zeiten nach dem Impuls erfasst wird und somit das Ermitteln einer Kalibrierkurve ermöglicht. Über Kalibrierproben mit bekanntem Protonengehalt kann somit die Protonenmenge der unbekannten Probe ermittelt werden. Oft interessiert allerdings nur der Anteil an Protonen, welcher in einer bestimmten Anordnung vorliegt, z.B. als Eis oder flüssiges Wasser, um daraus auf die Menge der Moleküle in dieser bestimmten Anordnung schließen zu können. Eine mögliche Fragestellung ist beispielsweise der Anteil von Wasser in einer Festkörpermatrix. Für diese Fragestellung wird die Tatsache genutzt, dass die Kernspins der Protonen in verschiedenen Anordnungen unterschiedlich schnell relaxieren. Wenn nur die Protonen in Wasser betrachtet werden sollen, beginnt man eine Abtastung erst zu dem Zeitpunkt, an dem das Signal der Protonen in der Festkörperanordnung bereits vollständig relaxiert ist. Ein Festkörpersignal ist nach einer Zeitspanne von 70 µs vollständig verschwunden, so dass eine Signalamplitude nach dieser Zeitspanne nur noch von Protonen in flüssigem Wasser herrühren kann [122].

6.6.5 Protonenbeweglichkeit zur Bestimmung des Bindungszustandes

hingegen die Beweglichkeit oder der Bindungszustand der Protonen Soll beschrieben werden, so verwendet man die Relaxationszeiten T_1 und T_2 . Wie bereits erwähnt, hängen die Relaxationszeiten mit der Korrelationszeit τ_c zusammen. τ_{c} ist hierbei die mittlere Zeitspanne, in der Protonen eine feste räumliche Struktur einnehmen und sich in Folge dessen relativ zueinander nicht bewegen. Der Kehrwert von τ_c ist die mittlere Platzwechselfrequenz. Da τ_c meßtechnisch aber nur schwer zu erfassen ist und die transversale Relaxationszeit direkt mit τ_c zusammenhängt, kann oft aus der Kenntnis von T_2 auf die Beweglichkeit der Protonen geschlossen werden. Beispielsweise besitzt reines Wasser ein T_2 von etwa 4 s und an Stärke adsorbiertes Wasser ein T2 von 0,2 bis 100 ms. Protonen in einem Festkörpermix besitzen ein T_2 von wenigen μ s. Liegen Protonen mit unterschiedlicher Beweglichkeit vor, so setzt sich das Signal aus einer Überlagerung von Gauß- und Exponentialfunktionen zusammen, welche sich einzelnen Beweglichkeiten zuordnen Trennung der einzelnen Funktionen für lassen. Zur unterschiedliche Protonenbeweglichkeiten ist es nötig, dass sich die T_2 -Werte der Fraktionen mindestens um den Faktor 4 bis 5 unterscheiden. Liegen sie näher beieinander, so stellt die gemessene T_2 einen Mittelwert dar. Bei Kenntnis der Beweglichkeit können auch Aussagen über den Bindungszustand der Protonen und damit der Wassermoleküle gemacht werden, da bei stärkerer Bindung und somit höherer Bindungsenergie auch eine Vergrößerung der mittleren Aufenthaltzeit an einem Ort verknüpft ist. Die Zuordnung der gemessenen T_2 -Werte zu bestimmten Wasserzuständen (z.B. kappillarkondensiertes Wasser oder monomolekularsorbiertes Wasser) wird nicht einheitlich durchgeführt. Welchem Zustand des Wassers ein gemessenes T_2 zuzuordnen ist, richtet sich nach dem zugrundegelegtem Modell. Mit Sicherheit läßt sich sagen, dass in einer Probe in welcher das Signal mehrere T_2 -Werte besitzt, die unterschieden werden können, das Wasser in verschiedenen Zuständen vorliegt. Voraussetzung hierfür ist, dass nur Wasser als protonenhaltige Flüssigkeit in der Probe vorliegt. Für Wasser, welches sich in biopolymeren Systemen befindet, zeigt sich in der Literatur übereinstimmend, dass T_2 -Werte, die größer als 10 ms sind, mehr oder weniger freiem Wasser zuzuordnen sind. T_2 -Werte kleiner als 1 - 2 ms entsprechen stark gebundenem Hydratwasser. T_2 -Werte kleiner als 50 µs weisen auf Protonen des Biopolymers hin. Die Werte für die Spin-Gitter-Relaxationszeit T_1 sind bei sehr beweglichem Wasser die gleichen wie die T_2 -Werte. Erreichen die T_1 -Werte Größenordnungen von 10^{-1} s, so laufen die Werte für T_1 und T_2 auseinander. Dies erschwert es, aus den gemessenen T_1 -Werten verschiede Wasserzustände festzustellen [122].

6.7 Statistische Grundlagen

Um eine Vielzahl von Messdaten auswerten zu können und um eine präzise Interpretation der unterschiedlichen Messergebnisse zu gewährleisten, ist die statistische Bearbeitung der Ergebnisse unumgänglich. Im Folgenden werden die benutzten statistischen Parameter und Verfahren kurz erläutert.

Arithmetisches Mittel

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
(6.18)
n = Anzahl der Proben
x_i = Einzelwerte der Proben.

<u>Varianz</u>

Die Varianz ist ein Maß für die Streuung um den Mittelwert und lässt einen Vergleich der Fehler zweier Verfahren zu.

$$\mathbf{s}^2 = \frac{1}{\mathbf{n}-1} \cdot \sum_{i=1}^{\mathbf{n}} (\mathbf{x}_i - \overline{\mathbf{x}})^2$$

 s^2 und \overline{x} beziehen sich auf die Stichprobe und (6.19) sind Schätzwerte.

Standardabweichung

$$s = \sqrt{s^2} \tag{6.20}$$

Variationskoeffizient

Der Variationskoeffizient erlaubt eine Aussage über die relative Streuung der Messwerte um den Mittelwert. Er ist ein relatives, dimensionsloses Streuungsmaß mit dem Mittelwert als Einheit.

$$vk_{\%} = \frac{s}{\overline{x}} \cdot 100 \tag{6.21}$$

Häufig wird aufgrund des Maximums \sqrt{n} der relative Variationskoeffizient V_r angegeben.

$$V_{r\,(\%)} = \frac{s/\bar{x}}{\sqrt{n}} \cdot 100 \tag{6.22}$$

Test auf Ausreißerfreiheit nach Grubbs

Die Messwerte einer Stichprobe sind nur dann repräsentativ, wenn sie aus einer Grundgesamtheit entstammen. Extremwerte (Ausreißer) entstammen nicht der gleichen Grundgesamtheit wie die übrigen Messwerte der Stichprobe und sind daher aus der Messreihe zu eliminieren.

1. Hypothesen: H_0 : Kleinst- bzw. Größtwert ist kein Ausreißer,

*H*_A: Kleinst- bzw. Größtwert ist ein Ausreißer.

2. Prüfgröße \hat{z} :

$$\hat{z} = \left| \frac{x_1 - \overline{x}}{s} \right| \tag{6.23}$$

- 3. Signifikanzzahl α = 0,05 d.h., 95 %-ige Wahrscheinlichkeit
- 4. Schwellenwert $A_{95 \%; n=12} = 2,623$

Bei der Berechnung des Mittelwertes und der Varianz bzw. Standardabweichung darf der als Ausreißer getestete Einzelwert nicht mit erfasst werden. Aus einer Tabelle (siehe Anhang) kann ein Schwellenwert für die entsprechende Signifikanzzahl und den Probenumfang entnommen werden. Wird die Prüfgröße \hat{z} größer als der Schwellenwert, handelt es sich um einen Ausreißer.

7 Anlagen und Analysengeräte

7.1 Beschreibung der eingesetzten Hochdruckanlagen

Für die Durchführung der Untersuchungen wurden aufgrund der unterschiedlichen Anforderungen verschiedene Hochdruckanlagen benutzt. Im Folgenden werden die Anlagen zur reinen Hochdruckbehandlung und zur photometrischen Messung unter Hochdruck beschrieben.

7.1.1 Hochdruckanlage mit externer Druckerzeugung

Zur Versuchsdurchführung diente eine Hochdruckanlage der Dunze, AAD– Hochdrucktechnik GmbH, Bad Homburg.

Die Gesamtanlage gliedert sich in zwei Baugruppen, dem eigentlichen Druckerzeuger, und dem zum Behandeln der Probe dienenden Druckbehälter, dem Autoklaven.

Das Nutzvolumen des Hochdruckautoklaven beträgt 1,3 I bei einem Innendurchmesser von 65 mm. Der maximal erreichbare Druck liegt bei 800 MPa. Das zur Kompression verwendete druckübertragende Medium ist ein Gemisch aus Glykol und Wasser. Es wird mit Hilfe einer pneumatischen Vorfüllpumpe auf einen Vordruck von ca. 30 bis 40 MPa gebracht. Die Vorfüllpumpe, die mit Druckluft von 1 MPa betrieben wird, dient gleichfalls zum Entlüften des Autoklaven.

Autoklav Druckübersetzer Hydraulikaggregat

Abbildung 7.1: Schematische Darstellung der Hochdruckanlage der Dunze, AAD-Hochdrucktechnik GmbH

Im eigentlichen Hochdruckprozess wird dann ein Hydrauliköl, das sich in einem zweiten Leitungssystem befindet, mit einer Hydraulikpumpe auf den gewünschten Niederdruck komprimiert. Mit Hilfe eines Druckübersetzers, der mit einem Übersetzungsverhältnis von 1:50 arbeitet, wird der Hochdruck durch das druckübertragende Medium auf das Produkt übertragen. Die Regelung des Druckniveaus, der Druckauf- bzw. -abbauzeit und der Haltezeit erfolgt rechnergesteuert. Abbildung 7.1 zeigt den schematischen Aufbau der verwendeten Hochdruckanlage.

7.1.2 Aufbau der Hochdruck-Sichtzelle

Die Hochdruck-Sichtzelle wird nach dem selben Prinzip wie die konventionelle Hochdruckanlage mit den entsprechenden Drücken beaufschlagt. Die Druckerzeugung erfolgt ebenfalls über einen externen Druckübersetzer. Der einzige Unterschied beruht auf dem Verschlussdeckel und einer druckübertragenden Barriereschicht im Autoklaven. Wie in Abbildung 7.2 zu sehen ist, wird das Probenmaterial durch zwei entgegengesetzt angeordnete Gummipfropfen vom druckübertragenden Medium getrennt. Der abschließende Deckel ist in der Mitte mit einem Saphirglas versehen, das in dieser Ausführung mit Drücken bis 400 MPa belastbar ist. In die Durchführung zum Saphirglas wird der Lichtleiter eingesetzt, der die Verbindung zum Fluoreszenzphotometer LS 50 B darstellt, welches in Kapitel 7.2.3 vorgestellt wird.

Abbildung 7.2 : Verschlussteil einer Hochdruck-Sichtzelle mit Lichtleiteranschluss [123]

7.2 Beschreibung der eingesetzten Analysengeräte

Im folgenden werden die verschiedenen Apparaturen bzw. Messaufbauten zur Durchführung der einzelnen Analysen vorgestellt. Die für die Routineanalysen wie Kjeldahl oder Bestimmung der Polyphenole verwendeten Gerätschaften werden nicht genauer dargelegt, da sie als Grundausstattung eines Labors vorausgesetzt werden.

7.2.1 Aufbau der Laborfiltration

Die Versuche zur Laborfiltration wurden nach zwei unterschiedlichen Prinzipien durchgeführt, mit einer Cellulose-Filterschicht und mit Kieselgur. Die unterschiedlichen Messaufbauten werden im folgenden dargestellt.

7.2.1.1 Laborfiltrationsstand nach Sartorius

Es wurde ein Filter der Sartorius AG, Göttingen, verwendet, der in Abbildung 7.3 dargestellt ist.

Abbildung 7.3: Aufbau des Sartorius-Laborfilters [117]

Als Filterunterlage dient ein Stahlgewebe vom Typ Microdur der Schöller AG, Hösch & Co, Düren mit einer Maschenweite von 15 μ m. Darauf wurde eine Cellulose-Filterschicht mit 0,45 μ m Porenweite platziert. Die Versuchsdurchführung erfolgte in einem auf 0 °C temperierten Raum, in dem die Proben bereits vor den Messungen gelagert wurden.

7.2.1.2 Kieselgur-Laborfilter zur Bestimmung der Filtrierbarkeit nach Raible

Die Filtration erfolgte mit einem Kieselgurstützschichtenfilter. Es handelt sich hierbei um ein gekühltes Filtergerät aus Edelstahl mit einer Stützschicht aus Microdur-Stahlgewebe mit einer Porenweite von 15 μ m.

Der Filterapparat ist mit einem Vor- und einem Hauptlaufgefäß verbunden, die an ein Kühlsystem angeschlossen sind. Über einen Dreiwegehahn ist es möglich, stufenlos und stoßfrei von Voranschwemmung auf Bierfiltration umzustellen. In Abbildung 7.4 ist der verwendete Laborfilter schematisch dargestellt [115].

Abbildung 7.4: Schematische Darstellung des Kieselgurstützschichtenfilters zur Laborfiltration [115]

7.2.2 β-Glucan-Analyzer

Die Bestimmung des β -Glucan-Gehalts erfolgte mit einem β -GLUCAN-5700-Analyzer, der nach dem Prinzip der "Flow–Injection–Analyses" (FIA) arbeitet [119]. Mit Hilfe einer Pumpe wird ein konstanter Eluentenstrom von 2 ml/min gefahren, und 10 µl der Probe werden über ein Schleifendosierventil eingespritzt. Nach Durchlaufen einer Mischstrecke wird im Detektor des Fluorimeters die Erhöhung der Fluoreszenz gemessen. Die Anregung erfolgt bei einer Wellenlänge von 360 nm, die Emission wird bei 410 nm und in einem Winkel von 90 ° gemessen [124].

7.2.3 Fluoreszenzphotometer

Für die Online-Bestimmungen des β -Glucan-Gehalts wurde ein Fluoreszenzphotometer Perkin Elmer LS 50 B verwendet. Dieses Gerät ist über einen optischen Leiter mit der in Kapitel 7.1.2 vorgestellten Hochdrucksichtzelle verbunden.

7.2.4 Rotationsviskosimeter

Die Bestimmung der Viskosität wurde mit dem CSL 500 Rheometer, CARRI-MED GmbH, durchgeführt. Mit diesem Rheometer kann die Viskosität von Flüssigkeiten und Pasten ermittelt werden [125]. Die Durchführung erfolgte in Form eines Fließexperiments, bei dem die Schergeschwindigkeit innerhalb von 60 s von 0 auf 80 s⁻¹ erhöht wurde. Anschließend wurde die Schergeschwindigkeit von 80 s⁻¹ für 300 s gehalten und während 60 s wieder abgebaut. Die Messungen wurden mit einem Kegel-Platte Meßsystem durchgeführt, wobei ein 6 cm Acrylkegel verwendet wurde und zur Platte ein Spalt von 55 µm eingestellt wurde.

7.2.5 NMR-Spektrometer

Es wurde ein niedrigauflösendes NMR-Spektrometer vom Typ minispec pc 120, Bruker AG, Rheinstetten, verwendet. Der temperierbare Permanentmagnet hat eine Feldstärke von 0,47 T. Für die ¹H-Untersuchungen folgt daraus eine notwendige Frequenz des HF-Senders (Resonanzfrequenz) von 20 MHz. Der Magnet besitzt einen Luftspalt von 25 mm [126]. Als Temperatur wird 10 °C gewählt, da ß-Glucan ein thermoreversibles Gel darstellt und somit keine thermische Beeinflussung zu erwarten war. Für die Messungen der Relaxationszeiten wird ein Probenkopf benutzt, der es erlaubt, Proberöhrchen mit einem Außendurchmesser von 18 mm einzusetzen. Der Probekopf ist über einen externen Kryostaten (Haake F3-Q) temperierbar und erlaubt Probetemperaturen von -20 °C bis 70 °C. Als Wärmeträger hierfür dient Wasser.

8 Probenmaterial und Probengebinde

8.1 Probenmaterial für die Hochdruckbehandlung

8.1.1 Helles kellertrübes Bier

Für die ersten Untersuchungen zum Einfluss des Hochdrucks auf die Filtrierbarkeit von Bier wurde ein helles kellertrübes Bier (Weihenstephaner Original) verwendet. Der Gehalt an β -Glucan-Gel war unter der Nachweisgrenze, weshalb dieses Bier in Kapitel 9.5 nicht aufgeführt wird, da keine Veränderungen zu erwarten waren.

8.1.2 Bier mit einer erhöhten Konzentration an β -Glucan-Gel

Für die weiteren Untersuchungen an Bier wurde eine Charge aus einer Brauerei herangezogen, die große Filtrationsprobleme hervorgerufen hatte. Der gemessene β -Glucan-Gel-Gehalt betrug 21 mg/l. Mit diesen Proben wurden Filtrationsversuche und brauereitechnologischen Untersuchungen durchgeführt.

8.1.3 Modell-Gel aus nativem ß-Glucan

Im Folgenden wird die Durchführung der Vorversuche beschrieben. Diese Versuche dienten zur Gewinnung einer Ausgangslösung mit einem möglichst hohen ß-Glucan-Gel-Gehalt, da in den anschließenden Analysen festgestellt werden sollte, ob der ß-Glucan-Gel-Gehalt nach der Hochdruckbehandlung nur um einen gewissen Betrag abnimmt oder ob das Gel komplett zerstört werden kann.

8.1.3.1 Lösung des nativen ß-Glucans aus dem Rohstoff

In einem ersten Vorversuch wurden 21 destilliertes Wasser mit 60 g eines auf 70 Mass.-% aufgereinigten ß-Glucan-Pulvers (Protana AG, Odense, Dänemark) unter Zugabe von 5 Vol.-% Ethanol (bezogen auf das Gesamtvolumen) in einem Becherglas mit einem beheizbaren Magnetrührer (Heidolph Instruments GmbH) bei 300 U/min vermischt. Um eine bessere Lösung zu erzielen, wird die Probe auf 45 °C temperiert. Da sich Scherung positiv auf die Gelbildung auswirkt, wurde die Lösung von oben durch einen Standrührer (Heidolph Instruments GmbH) ebenfalls mit 300 U/min in die entgegengesetzte Richtung gerührt, um eine Scherbelastung auf die Flüssigkeit auszuüben. Die Lösung wurde nach der Temperierung für 20 Stunden gerührt, im Eiswasserbad abgekühlt und anschließend in 100 ml PET- Probeflaschen umgefüllt. Diese wurden dann für 4 Wochen bei 2 °C in einem Kühlraum gelagert und anschließend analysiert.

Im zweiten Vorversuch wurden 4 g/l eines Hafergranulates (OBC Oat Bran Concentrate, Avena Group, Helsinki, Finnland) in 1 I destillierten Wasser mit 1,5 I 0,1 molarer NaOH unter denselben Bedingungen wie bei Vorversuch 1 gelöst. Der ß-Glucan-Gehalt des OBC wurde mit mindestens 15 Mass.-% TrS angegeben. NaOH wurde zugesetzt um das Lösungsverhalten des ß-Glucans zu fördern, da im ersten Vorversuch keine Lösung nachweisbar war. Diese Lösung wurde nach Abkühlung mit 0,1 molarer HCl auf pH 6,5 eingestellt, um eine Analyse zu ermöglichen. Um eine bessere Scherung zu erreichen, wurde die Lösung nach Abkühlung mit Hilfe einer Miniatur-Kreiselpumpe (Aquarius 600, Oase – Wübker GmbH & Co.KG, 48469 Hörstel - Riesenbeck) bei 0 °C 24 Stunden lang im Eiswasserbad umgepumpt. Anschließend wurde die Proben 2 Wochen bei 2 °C gelagert und nach der Lagerzeit analysiert.

In einem dritten Versuchsschritt wurden nunmehr 16 g/l anstelle von 4 g/l OBC in ansonsten identischer Art wie bei Vorversuch 2 angesetzt. Die Ergebnisse dieser Vorversuche zur Lösung des nativen ß-Glucans sind in Tabelle 8.1 dargestellt.

Es ist deutlich zu erkennen, dass durch Zugabe von 0,1N NaOH (Vorversuch 2+3) die Löslichkeit erhöht wird. Bei steigender Konzentration des OBC (Vorversuch 3)

steigt auch der Gehalt an ß-Glucan an. Allerdings wurde das ß-Glucan von Vorversuch 1 aus Pilzen isoliert, weshalb die Möglichkeit gegeben ist, dass die Analytik dieses strukturell abweichende ß-Glucan nicht erfasst.

Vorversuch Nr.	ß-Glucangehalt [mg/l]
1	0
2	800
3	2993

Tabelle 8.1:	ß-Glucan-Gehalt der Proben aus den Vorversuchen 1 – 3

8.1.3.2 Ausbildung des ß-Glucan-Gels

Bereits bei der Durchführung der Lösungsversuche wurde berücksichtigt, dass das eigentliche Ziel die Herstellung von ß-Glucan-Gel ist. Deshalb wurden auch verschiedene Scherbeanspruchungen erzeugt und Lagertemperaturen von ca. 0 °C eingehalten. Wie aus Tabelle 8.2 zu entnehmen ist, waren diese Bemühungen jedoch nicht erfolgreich.

Vorversuch Nr.	ß-Glucan-Gehalt [mg/l]	ß-Glucan-Gel-Gehalt [mg/l]
1	0	0
2	800	0
3	2993	0
4a(7)	282	7,4
4b(7)	279	2
4c(7)	116	74
4a(14)	37	201
4b(14)	41	203
4c(14)	38	209

Tabelle 8.2: ß-Glucan-Gehalt und ß-Glucan-Gel-Gehalt der Proben aus den Vorversuchen 1 – 4

Deshalb konnte Vorversuch 3 aufgrund seines sehr hohen ß-Glucan-Gehalts lediglich als Ausgangsmaterial zur Ausbildung eines Gels herangezogen werden. Eine Menge von 150 ml der Lösung aus Vorversuch 3 wurde mit unterschiedlichen Ethanolkonzentrationen (jeweils berechnet für 1,5 I Gesamtmenge) versetzt, mit destilliertem Wasser auf 1,5 I aufgefüllt und auf drei 500 ml PET-Flaschen aufgeteilt. Die ersten beiden Proben (Probe 4a und 4b) enthielten eine Konzentration von 5 Vol.-% Ethanol. Der dritte Ansatz (Probe 4c) wurde mit 7,5 Vol.-% Ethanol versetzt. Die so erhaltenen Lösungen wurden für 24 h mittels der Kreiselpumpe im Eiswasserbad umgepumpt und anschließend für jeweils 7 und 14 Tage in Zyklen von 24 Stunden bei -12 °C eingefroren und wieder aufgetaut. Die Proben 4a(7) – 4c(14) wurden auf ß-Glucan- sowie ß-Glucan-Gel-Gehalt nach der FIA- Methode analysiert. Tabelle 8.2 zeigt die Ergebnisse der Vorversuche 1 bis 4 mit den zuvor beschriebenen Durchführungen. Vorversuch 1 ergab keine verwertbaren Ergebnisse. Im Vorversuch 2 war es möglich, eine große Menge an ß-Glucan herzustellen. ß-Glucan-Gel konnte aber auch hier nicht nachgewiesen werden. Wie unter Vorversuch 3 beschrieben, wurde ein erneuter Ansatz durchgeführt, welcher eine Erhöhung des ß-Glucan-Gehaltes ergab. Dennoch war kein Gel nachweisbar. Erst die Zugabe von Alkohol in Verbindung mit den Gefrier- und Auftauzyklen bei Vorversuch 4 ermöglichte den fehlerfreien Nachweis des für die folgenden Versuche notwendigen ß-Glucan-Gels, dessen Konzentration im Vorversuch 4c(7) 74 mg/l betrug. In den weiteren Versuchen mit häufigeren Gefrier- und Auftauzyklen zeigte sich, dass nach 14-tägiger Behandlung keine weiteren Änderungen mehr festzustellen waren. Aus diesem Grund wurde Probe 4a(14) bzw. 4b(14) für das weitere Vorgehen herangezogen, da ein Ethanolgehalt von 5 Vol.-% für das Vergleichsprodukt Bier am realistischsten ist.

Aufgrund der Ergebnisse der Vorversuche 4a(14) bzw. 4b(14) wurden Ausgangslösungen hergestellt, welche einen ß-Glucan-Gel-Gehalt von 400 mg/l (5), 800 mg/l (6) und 8000 mg/l besaßen. Zu diesem Zweck wurde wiederum die Stammlösung aus Vorversuch 3 benutzt. Lösung 3 wurde mit einem Anteil an Ethanol versetzt, der in der Endlösung 5 Vol.-% entsprach. Um einen höheren Gehalt an ß-Glucan und daraus resultierend an ß-Glucan-Gel zu erhalten, wurde die Verdünnung mit destilliertem Wasser entsprechend verringert. Die so erhaltenen Lösungen wurden wiederum in PET-Flaschen gefüllt und für 14 Tage einem Gefrierund Auftauzyklus, wie unter Vorversuch 4 beschrieben, ausgesetzt. Anschließend wurden die Proben nach der FIA- Methode auf den ß-Glucan- sowie den ß-Glucan-Gel-Gehalt untersucht.

Vorversuch Nr.	ß-Glucangehalt [mg/l]	ß-Glucan-Gel-Gehalt		
		[mg/l]		
5.1	95	409		
5.2	121	385		
5.3	153	343		
6.1	138	788		
6.2	132	834		
6.3	112	774		

Tahelle 8.3 [.]	R-Glucan-Gehalt und R-Glucan-Gel-Gehalt der Proben der Vorversuche 5 und 6
	is-Olucali-Ochalt unu is-Olucali-Ocholialt del i Tobell del Volvelsuche 5 unu o

Tabelle 8.3 zeigt die Ergebnisse der Vorversuche 5 und 6. Für die 8000 mg/l Proben wurden keine Untersuchungen durchgeführt, da wegen der notwendigen Verdünnung ein sehr großer Fehler in den Ergebnissen aufgetreten wäre. Der Gehalt an ß-Glucan-Gel ist folglich als Abschätzung bzw. Extrapolation der vorhandenen Resultate zu betrachten. Allerdings konnte in verschiedenen Untersuchungen gezeigt werden, dass der Gehalt an ß-Glucan-Gel deutlich höher sein muss als bei den analysierten Proben.

8.2 Verpackungsmaterial zur Hochdruckbehandlung

An die Probengebinde wurden während dieser Untersuchungen wesentlich geringere Anforderungen gestellt, als es ansonsten bei der Hochdruckbehandlung der Fall ist. Dies liegt daran, dass keine Lagerversuche durchgeführt werden mussten. Für die Hochdruckbehandlung des Bieres wurden folglich 500 ml PET-Flaschen verwendet, die mit einem Schraubverschluss mit hartem Dichtungsmaterial verschlossen wurden. Dies hat den Vorteil, dass sich das Dichtungsmaterial nicht vom Deckel ablöst.

Für die Hochdruckbehandlung des Modell-Gels wurden PE-Flaschen herangezogen, da keine besonderen Barriere-Eigenschaften notwendig waren, und die Proben schnell zur Auswertung kamen.

9 Ergebnisse der Untersuchungen an Bier

Für die Untersuchungen an Bier wurden jeweils Dreifachbestimmungen durchgeführt, von denen die Mittelwerte gebildet wurden. Die vollständigen Analysenprotokolle werden im Anhang aufgeführt. Der exakte Verweis auf den Anhang ist den einzelnen Ergebnistabellen zu entnehmen.

9.1 Ergebnisse der Filtrationsversuche

9.1.1 Schichtenfiltration nach Sartorius

Für die Untersuchungen Filtrierbarkeit von Bier nach erfolgter zur Hochdruckbehandlung helles kellertrübes wurde ein Bier (unfiltriertes Weihenstephaner Original) verwendet. Die Ergebnisse sind in Tabelle 9.1 dargestellt.

Tabelle 9.1:Einfluss auf die Filtrationsdauer von hellem kellertrübem Bier (Weihenstephaner
Original) bei der Schichtenfiltration nach Sartorius durch die Variation des Druckes
während der Hochdruckbehandlung (Druckhaltezeit 300 s)

	Wasser	Bier				
Druck	0,1 MPa	0,1 MPa	300 MPa	500 MPa	700 MPa	
Filtrationsdauer für 30 ml [s]	12,4	24,9	12,9	18,0	27,3	
Filtrationsdauer für 40 ml [s]	16,3	36,5	15,7	30,5	47,7	

Analysenblatt Anhang 15.2

Wie aus Tabelle 9.1 zu entnehmen ist, wird die Filtrationsdauer im Vergleich zur unbehandelten Probe durch die Hochdruckbehandlung bei 300 und 500 MPa deutlich verkürzt. Die Filtrationsdauer der 300 MPa-Probe ist mit der von Wasser zu vergleichen. Bei 700 MPa wurde die Filtrationsdauer verlängert Bei diesen Proben war auch optisch eine deutlich stärker ausgeprägte Trübung zu erkennen. Diese Zunahme der Trübung bei einem Druck von 700 MPa ist bereits aus anderen Arbeiten bekannt [18]. Da das verwendete Bier auch im unbehandelten Zustand keine Filtrationsprobleme aufwies, wurde eine zweite Versuchsreihe mit dem in

Kapitel 8.1.1 vorgestellten "Problembier" durchgeführt. Die Auswirkung des Hochdruckes auf die Filtrierbarkeit dieser Probe ist in Tabelle 9.2 dargestellt.

	Wasser	Bier				
Druck	0,1 MPa	0,1 MPa	300 MPa	500 MPa	700 MPa	
Filtrationsdauer für 30 ml [s]	12,4	37,5	14,6	18,4	35,5	
Filtrationsdauer für 40 ml [s]	16,3	44,3	21,5	31,2	52,1	

Tabelle 9.2:Einfluss auf die Filtrationsdauer von hellem kellertrübem "Problembier" bei der
Schichtenfiltration nach Sartorius durch die Variation des Druckes während der
Hochdruckbehandlung (Druckhaltezeit 300 s)

Analysenblatt Anhang 15.3

Die in Tabelle 9.2 dargestellten Ergebnisse weisen ähnliche Werte wie die Versuchsreihe in Tabelle 9.1 auf. Im Vergleich zur längeren Filtrationsdauer für das unbehandelte Bier werden die Werte bei 300 und 500 MPa deutlich verkürzt. Die 500 MPa Probe erreicht sogar die selbe Filtrationsdauer wie in Tabelle 9.1. Es wird unabhängig von der Ausgangsqualität des Bieres die selbe Filtrationsdauer erreicht. Die 700 MPa-Probe zeigt auch hier wieder eine deutliche Verschlechterung der Filtrationsdauer Auch eine Trübungszunahme war optisch wahrnehmbar.

9.1.2 Kieselgurfiltration nach Raible

Die Messung der Filtrationszeiten während der Kieselgurfiltration wurden nur beim erwähnten "Problembier" durchgeführt, da dieses Bier den Anforderungen der Problemstellung entsprach. Die Schichtenfiltration nach Sartorius, die an "Weihenstephaner Original" durchgeführt wurde, ist als Vergleichsprobe zu betrachten Da die Verbesserung bei "Problembier" deutlicher ist und die Behandlung dieses Bieres sinnvoller ist, wird im folgenden nur noch damit gearbeitet. Bei der Kieselgurfiltration wurden mehrere Druckstufen im Bereich bis 500 MPa gewählt, und zusätzlich wurde der Zeitparameter berücksichtigt. Die Ergebnisse sind in Tabelle 9.3 aufgeführt. Es ist eindeutig zu erkennen, dass bereits bei den niedrigen Druckstufen von 100 und 200 MPa eine deutliche Verbesserung der Filtrierbarkeit, also ein Ansteigen der spezifischen Filtratvolumina mit zunehmender Zeitdauer der Behandlung, vorliegt. Dies ist bei allen Druckstufen zu erkennen. Allerdings findet dieses Verhalten bei höheren Drücken auf einem höheren Niveau statt. Legt man die von Schmitt ermittelten Bewertungskriterien für die spezifischen Filtratvolumina zugrunde (Kapitel 6.1.2), so ändert sich die Filtrierbarkeit des Bieres von "schlecht filtrierbar" (<3,5) der Nullproben bis "gut filtrierbar" (>4,5) der mit 500 MPa behandelten Proben [109].

Tabelle 9.3:Spezifisches Filtratvolumen F_{spez.} von hellem kellertrüben "Problembier" bei der
Kieselgurfiltration nach Raible in Abhängigkeit vom Druck und der Druckhaltezeit
während der Hochdruckbehandlung

		Spezifisches Filtratvolumen bei verschiedenen Haltezeiten						
Druck	Referenz- Probe	1 s 150 s 300 s 500 s						
0,1 MPa	2,7							
100 MPa		2,9	3,3	3,2	3,7			
200 MPa		2,5	3,3	3,5	4,1			
300 MPa		3,2	3,5	4,2	4,3			
400 MPa		3,2	4,0	4,5	5,1			
500 MPa		3,8	4,6	5,2	5,3			

Analysenprotokoll Anhang 15.4

Des weiteren ist aus Tabelle 9.3 zu entnehmen, dass bei 500 MPa die Unterschiede im spezifischen Filtratvolumen ab 300 s wesentlich weniger von der Behandlungsdauer abhängen. Insgesamt ist aber zu erkennen, dass das spezifische Filtratvolumen und somit die Filtrierbarkeit mit steigendem Druck und steigender Behandlungsdauer eine eindeutige Verbesserung erfahren.

9.2 Ergebnisse der Bestimmung des Gehalts an Gesamtstickstoff und der Stickstoff-Fraktionen

Nach unterschiedlicher Hochdruckbehandlung der einzelnen Unfiltrat-Proben erfolgte die Bestimmung des Gesamtstickstoffs und der Stickstoff-Fraktionen. Es wurde eine Behandlungsdauer von 500 s festgelegt, da die Rahmenbedingungen des optimalen Einflusses auf die Filtrierbarkeit eingehalten werden sollten. Die Untersuchungen wurden mit dem bereits erwähnten "Problembier" durchgeführt. In Tabelle 9.4 sind die Ergebnisse bezüglich der Veränderungen des Gesamtstickstoffgehalts, des Gehalts an nieder-, mittel- und hochmolekularem Stickstoff nach erfolgter Behandlung mit verschiedenen Drücken dargestellt.

Tabelle 9.4:Gesamtstickstoffgehalt bzw. Gehalt an nieder-, mittel- und hochmolekularem Stickstoff
im hellen unfiltrierten "Problembier" in Abhängigkeit vom Druck während der
Hochdruckbehandlung bei einer Haltezeit von 500 s

	Druck					
	0,1 MPa	100 MPa	200 MPa	300 MPa	400 MPa	500 MPa
Gesamtstickstoff [mg/l]	903	911	904	899	905	912
Niedermolekularer Stickstoff [mg/l]	537	460	478	479	536	529
Mittelmolekularer Stickstoff [mg/l]	266	348	321	312	263	279
Hochmolekularer Stickstoff [mg/l]	100	103	105	108	106	105

Analysenprotokoll Anhang 15.5

Die geringen Unterschiede im Gesamtstickstoffgehalt sind im Rahmen der Messgenauigkeit tolerierbar und führen zu dem Ergebnis, dass er als konstant zu betrachten ist. Die Fehlergrenzen sind im Anhang aufgeführt. Die Werte sind in ihrer Gesamtheit geringfügig zu hoch für ein helles Bier mit einem Stammwürzegehalt von 12 Mass.-%. Nach MEBAK sollte der Gesamtstickstoffgehalt zwischen 700 und 800 mg/l liegen. Die Stickstoff-Fraktionen verhalten sich ähnlich. Allerdings sind beim niedermolekularen Stickstoff größere Unterschiede von bis zu 80 mg/l festzustellen. Diese Unterschiede lassen sich aber nur durch eventuelle Inhomogenitäten bei den

Ausgangsproben oder Verschleppungen bei der fehleranfälligen Analysenmethode erklären. Da der Gehalt des mittelmolekularen Stickstoffs aus einer Differenzrechnung bestimmt wird, die den niedermolekularen Stickstoff beinhaltet, sind die Unterschiede nachvollziehbar. Der hochmolekulare Stickstoff zeigt über den gesamten Druckbereich einen konstanten Gehalt. Während die Werte für den niedermolekularen und hochmolekularen Stickstoff in den Bereichen liegen, die auch nach MEBAK erwartet werden, weist der mittelmolekulare Stickstoff einen etwas erhöhten Gehalt auf. Dies ist aber durch den hohen Gesamtstickstoffgehalt erklärbar. Insgesamt bewegen sich sämtliche Werte in einem Bereich, der für die Filtrierbarkeit keine negativen Auswirkungen haben sollte. Die Veränderungen sind in so geringen Bereichen angesiedelt, dass sie die Verbesserung der Filtrierbarkeit nicht erklären können.

9.3 Ergebnisse der Bestimmung des Gehalts an Polyphenolen und Anthocyanogenen

Die Ermittlung des Gehalts an Polyphenolen und Anthocyanogenen erfolgte im bereits erwähnten "Problembier", da nur dieses unter Berücksichtigung der bereits ermittelten Resultate eine zusammenhängende Diskussion ermöglicht. Die Druckbehandlung wurde jeweils über eine Dauer von 500 s durchgeführt, da den eventuell zu erwartenden Reaktionen, wie z. B. der Bildung von Eiweiß-Gerbstoffkomplexen, die maximale, in den vorhergehenden Versuchen angewandte Zeit gegeben werden sollte, um ablaufen zu können.

Tabelle 9.5:	Gehalt an Polyphenolen bzw. Anthocyanogenen im hellen unfiltrierten "Problembier"
	in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von
	500 s

	Druck						
	0,1 MPa	100 MPa	200 MPa	300 MPa	400 MPa	500 MPa	
Polyphenole [mg/l]	222,9	218,5	218,8	216,0	222,3	228,1	
Anthocyanogene [mg/l]	56,3	54,7	52,7	53,7	54,0	53,3	
In Tabelle 9.5 sind die Veränderungen des Gehalts an Polyphenolen und Anthocyanogenen nach vorangegangener Hochdruckbehandlung bei unterschiedlichen Drücken aufgelistet. Die Ergebnisse zeigen, dass der Einfluss der Hochdruckbehandlung auf den Gehalt an Polyphenolen und Anthocyanogenen im Bier vernachlässigbar ist, beide weisen einen nahezu konstanten Gehalt auf.

9.4 Ergebnisse der Abschätzung der Partikelgrößen

Der Einfluss des Hochdrucks auf die Partikelgrößenverteilung wurde durch verschiedene Zentrifugationsversuche mit anschließender Messung der Absorption im Überstand näherungsweise bestimmt.

Tabelle 9.6:Absorption bei 600 nm im Überstand nach erfolgter Zentrifugation des hellen
kellertrüben "Problembieres" bei verschiedenen Drehzahlen und Zeiten in
Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit
von 500 s

	Absorption bei 600 nm bei verschiedenen Drücken				
	0,1 MPa 300 MPa 500 MPa 600 MPa				
unzentrifugiert	0,234	0,209	0,221	0,236	
2 min / 500 U/min	0,178	0,166	0,175	0,215	
5 min / 500 U/min	0,082	0,090	0,095	0,118	
10 min / 500 U/min	0,056	0,056	0,055	0,071	
2 min / 1000 U/min	0,041	0,042	0,044	0,058	
5 min / 1000 U/min	0,040	0,040	0,040	0,059	
10 min / 1000 U/min	0,038	0,038	0,040	0,056	
2 min / 2000 U/min	0,040	0,040	0,042	0,059	
5 min / 2000 U/min	0,035	0,038	0,039	0,056	
10 min / 2000 U/min	0,041	0,040	0,044	0,060	
15 min / 2000 U/min	0,038	0,037	0,037	0,054	
10 min / 3400 U/min	0,035	0,035	0,037	0,053	

Analysenprotokoll Anhang 15.7

Mit dieser Vorgehensweise sollte zunächst ermittelt werden, ob Änderungen zu erwarten und welche Tendenzen zu erkennen sind. In Tabelle 9.6 sind die Mittelwerte der Messungen wiedergegeben. Die vollständigen Analysenprotokolle sind im Anhang zu finden. Es ist eine deutliche Abnahme der Absorption zwischen den nicht zentrifugierten und den zentrifugierten Proben zu erkennen. Bei konstanter Zeit und Zentrifugeneinstellung hat der angewandte Druck allerdings erst ab 600 MPa einen Einfluss auf die Absorption und damit auf eine Partikelagglomeration. Bis zu einem Druck von 500 MPa sind bei allen Einstellungen keine Veränderungen im Vergleich zu den nicht hochdruckbehandelten Proben zu bemerken. Die 600 MPa-Proben wiesen auch optisch eine stärkere Trübung auf als die bei geringerem Druck behandelten bzw. unbehandelten Proben. Aus diesen Resultaten ist zu schließen, dass die Veränderungen im Bereich der Partikelgrößen entweder nur in sehr geringem Maße erfolgen oder kein Einfluss durch die Hochdruckbehandlung erfolgt.

9.5 Ergebnisse der Bestimmung des Gehalts an β-Glucan-Gel

Die Bestimmung des Gehalts an β -Glucan-Gel wurde ebenfalls am bereits erwähnten "Problembier" durchgeführt. Die hierzu ermittelten Ergebnisse im unfiltrierten Bier nach unterschiedlichen Hochdruckbehandlungen sind in Tabelle 9.7 aufgelistet. Es ist zu erkennen, dass die Abnahme des β -Glucan-Gel-Gehalts erst bei Drücken über 300 MPa signifikant ist und die Dauer der Hochdruckbehandlung einen großen Einfluss hat. Dieser wird allerdings mit wachsendem Druck geringer. Bei einer Druckhaltezeit von nur einer Sekunde nimmt der Gehalt an β -Glucan-Gel bis 300 MPa zu und bleibt ab 400 MPa annähernd konstant. Bei den Druckstufen zwischen 100 und 300 MPa haben Druckhaltezeiten von mehr als 150 s keinen entscheidenden Einfluss auf den Gehalt an β -Glucan-Gel. Bei 400 MPa ist die Abnahme des β -Glucan-Gel-Gehalts mit fortschreitender Zeit deutlicher. Bei 500 MPa ist der Zeiteinfluss nach Überschreiten einer Druckhaltezeit von 150 S hingegen relativ gering. Generell gilt, dass der Gehalt an β -Glucan-Gel tendenziell mit steigendem Druck und längerer Druckhaltezeit abnimmt.

	β-Glucan-Gel-Gehalt [mg/l] bei verschiedenen Haltezeiten				
Druck	Referenz- Probe	1 s	150 s	300 s	500 s
0,1 MPa	21				
100 MPa		28,3	18,7	18,6	19,7
200 MPa		31	15,6	16,8	17,6
300 MPa		30,6	15,7	15,8	17
400 MPa		18,2	14,7	15,8	11,3
500 MPa		19,4	9,3	7,4	6,4

Analysenprotokoll Anhang 15.8

10 Ergebnisse der Untersuchungen am Modell-Gel

Für die Untersuchungen am Modell- β -Glucan-Gel (Modell-Gel) wurden, wie in Kapitel 8.1.2 beschrieben, Gel-Lösungen in verschiedenen Konzentrationen hergestellt. Dies war zum einen notwendig, um den Einfluss der verschiedenen Konzentrationen an β -Glucan-Gel auf untersuchungsrelevante Parameter zu ermitteln. Zum anderen, da für die folgenden Untersuchungen verschiedene Konzentrationen notwendig waren, die den Messbereichen der Analysen und der Analysengeräte entsprachen. Deshalb wurden für die einzelnen Untersuchungen die Konzentrationsbereiche nach Kapitel 8.1.2 eingestellt, die mit der bestehenden Analysentechnik die deutlichsten Ergebnisse hervorbrachten und somit auch eine Auswertung ermöglichten.

10.1 Ergebnisse der Bestimmung des Gehalts an β-Glucan-Gel im Modell-Gel

Die Bestimmung des Gehalts an β -Glucan-Gel in der Modell-Gel-Lösung wurde an drei verschiedenen β -Glucan-Gel-Konzentrationen durchgeführt. In der folgenden

Tabelle 10.1 werden die Konzentrationen an β -Glucan-Gel in Abhängigkeit vom angewandten Druck während der Vorbehandlung dargestellt. Die Proben mit einem Ausgangsgehalt von ca. 400 mg/l β -Glucan-Gel werden im folgenden "Probe 400" genannt. Analoges gilt für die Proben mit einer Ausgangskonzentration von ca. 800 bzw. 8000 mg/l β -Glucan-Gel. Bei "Probe 8000" wird nur der Ausgangswert aufgezeigt, da aufgrund der notwendigen starken Verdünnung mit einem zu großen Fehler zu rechnen ist.

		β-Glucan-Gel-Gehalt [mg/l] bei verschiedenen Haltezeiten		
Druck	Probe	Referenz- Proben	300 s	600 s
0,1 MPa	400	379,0		
	800	798,7		
	8000	7987,4		
100 MPa	400		160,3	153,3
	800		379,0	373,3
300 MPa	400		151,3	137,3
	800		347,3	349,0
500 MPa	400		46,3	52,7
	800		50,6	45,0
600 MPa	400		0,7	3,7
	800		3,3	1,7
Temperatur				
80 °C	400			5,0
	800			4,0

Tabelle 10.1:Gehalt an β-Glucan-Gel im Modell-Gel in Abhängigkeit vom Druck und der Haltezeit
bzw. der Temperatur während der Hochdruck- bzw. Temperaturbehandlung

Analysenprotokoll Anhang 15.9

Die Auswirkungen des Hochdrucks auf die erstellten Modell-Gel-Lösungen bestätigen die Tendenzen, die bereits im Bier zu erkennen waren. Unabhängig von der Höhe der Konzentration ist eine starke Abnahme des Gehalts an β -Glucan-Gel zu verzeichnen. Diese Abnahme erfolgt in zwei Schritten. Bereits bei 100 MPa ist eine Reduzierung des β -Glucan-Gel-Gehalts um ca. 50 Mass.-% festzustellen. Bis

300 MPa tritt dann keine nennenswerte Änderung mehr auf. Der zweite Schritt erfolgt 500 MPa. Gehalt bei Hier wird der an β-Glucan-Gel von beiden Ausgangskonzentrationen auf ca. 50 mg/l reduziert. Bei 600 MPa befindet sich die Konzentration bereits unter der Nachweisgrenze. Trotzdem wird in Tabelle 10.1 der Wert aus dem Analysenprotokoll des Messgerätes angegeben. Das gleiche gilt auch für die thermisch behandelte Probe, die, wie zu erwarten war, ebenfalls einen β-Glucan-Gel–Gehalt von unter 10 mg/l aufweist. Auffällig ist, dass die Behandlungsdauer nahezu keine Bedeutung hat. Bei keiner der Druckstufen ist eine nennenswerte Änderung zwischen den Behandlungsdauern von 300 und 600 s zu erkennen. Bei kürzeren Behandlungszeiten im Bier war dies noch der Fall (siehe Tabelle 9.3).

10.2 Ergebnisse der Viskositätsbestimmungen bei den verschiedenen Modell-Gelen

Die Viskositätsmessungen wurden mit einem Rotationsviskosimeter durchgeführt. Die Messungen wurden an Probe 400, 800 und 8000 durchgeführt, da über die Viskosität ein Rückschluss auf den Zustand des Gels gezogen werden kann. In Tabelle 10.2 sind die Ergebnisse der Viskositätsbestimmungen dargestellt. Bei sämtlichen Proben ist ein deutlicher Abfall der Viskosität nach erfolgter Hochdruckbehandlung zu erkennen. Unabhängig von der Ausgangskonzentration wird bei 600 MPa eine Viskosität von ca. 0,00145 Pa s erreicht. Die Verminderung der Viskosität wird mit steigendem Druck deutlicher, allerdings kann sie schon bei einer Druckbehandlung mit 100 MPa erkannt werden. Dieser erste Effekt ist bei höheren Ausgangskonzentrationen wesentlich deutlicher ausgeprägt. Bei 300 MPa ist bei allen drei Ausgangskonzentrationen nahezu die gleiche Viskosität erreicht. Eine Behandlungsdauer von mehr als 300 s hat keinen Einfluss mehr auf die Viskosität. Die mit 600 MPa behandelten Proben erreichen die niedrigste Viskosität. Dies ist unabhängig von den Behandlungszeiten und der Ausgangskonzentration. Die thermisch behandelten Proben weisen eine höhere Viskosität auf, was durch den thermischen Übergang in den Solzustand zu erklären ist, der einen großen Einfluss auf die Viskosität hat...

Tabelle 10.2:Viskosität in Abhängigkeit von Druck und Haltezeit bzw. Temperatur während der
Hochdruck- bzw. Temperaturbehandlung

		Viskosität [mPa·s·10 ⁻³] bei verschiedenen Haltezeiten		
Druck	Probe	Referenz- Proben	300 s	600 s
	400	2,02		
0,1 MPa	800	2,86		
	8000	3,40		
100 MPa	400		1,86	1,88
	800		2,01	1,973
	8000		2,45	1,979
300 MPa	400		1,71	1,75
	800		1,74	1,73
	8000		1,83	1,76
500 MPa	400		1,52	1,52
	800		1,79	1,74
	8000		1,70	1,74
600 MPa	400		1,44	1,34
	800		1,46	1,45
	8000		1,47	1,47
Temperatur				
80 °C	400			1,82
	800			2,11
	8000			2,67

Analysenprotokoll Anhang 15.10

10.3 Ergebnisse der fluoreszenzphotometrischen Untersuchungen während der Hochdruckbehandlung

Die fluoreszenzphotometrischen Untersuchungen wurden mit "Probe 400" durchgeführt, da diese Konzentration mit dem als Fluoreszenzverstärker eingesetzten Calcofluor die aussagekräftigsten Veränderungen erkennen lies und auch ohne Druckbehandlung die deutlichsten Ergebnisse hervorbrachte. Dies liegt nahe, da die Routine-Analytik, für die das Calcofluor üblicherweise gebraucht wird, in einem niedrigeren Konzentrationsbereich eingesetzt wird. Höhere Konzentrationen scheinen störende Quereinflüsse zu bewirken, die nur Ergebnisse mit sehr großen Fehlergrenzen zulassen. Die Ergebnisse werden im folgenden in Diagrammform dargestellt, da über den gesamten Messbereich alle 5 s Werte aufgenommen Die Analysenprotokolle sind im Anhang aufgeführt. wurden. Bei allen Versuchsdurchführungen wurden die Proben für 30 s in der Probenkammer belassen, bevor der Druckaufbau gestartet wurde. Dieser Zeitraum ist auf den Er Diagrammen mit enthalten. dient als Referenzmessung, um die Reproduzierbarkeit besser gewährleisten zu können. Die Online-Messungen haben rein qualitative Wertigkeit. Es können tendenzielle Veränderungen während der Hochdruckbehandlung sowie die Zeitpunkte, an welchen diese stattfinden, festgestellt werden.

Zuerst musste der Einfluss der Hochdruckbehandlung auf das Calcofluor bestimmt werden. Aus diesem Grund wurden Online-Messungen bei verschiedenen Drücken durchgeführt. In Abbildung 10.1 ist der Einfluss der Druckbehandlung auf das Calcofluor (CF) dargestellt.

Abbildung 10.1: Eigenfluoreszenz von Calcofluor in Abhängigkeit vom Druck während der Hochdruckbehandlung

Die verschiedenen Druckstufen haben einen unterschiedlichen Einfluss auf die Eigenfluoreszenz von Calcofluor. Bei 0,1 MPa wurden, wie erwartet, keine

Änderungen in der Eigenfluoreszenz festgestellt. Bei wachsenden Drücken verhält sich dies anders. 100 und 200 MPa bewirken noch keinen deutlichen Effekt, allerdings ist bereits zu erkennen, dass ein leichter Abfall der Eigenfluoreszenz stattfindet. Bei 300 MPa ist dieser Abfall schon sehr deutlich ausgeprägt, was sich bei 400 MPa noch verstärkt. Durch den Druckabbau Ende am der Hochdruckbehandlung werden, bis zu den mit 200 MPa behandelten Proben, wieder die Ausgangskonzentrationen erreicht. Bei den höheren Drücken steigt die Eigenfluoreszenz während der Druckentlastung auch wieder an, erreicht aber in der betrachteten Zeit nicht ihren Ausgangswert. Die unterschiedlichen Endpunkte der Graphen ergeben sich aus den unterschiedlichen Zeiten für den Druckauf- bzw. -abbau, da die Geschwindigkeit konstant gehalten wurde, aber verschieden hohe Drücke erreicht werden mussten. Der Einfluss des Druckaufbaus auf die Eigenfluoreszenz des Calcofluors ist besser aus den Diagrammen für die einzelnen Druckstufen zu entnehmen, da sie auch die Druckrampe aufzeigen.

Die Online-Messungen wurden bei Atmosphärendruck an einer unbehandelten und einer thermisch behandelten Probe durchgeführt. Des weiteren wurden Messungen bei 100, 200, 300 und 400 MPa getätigt. Höhere Drücke waren mit der bestehenden Hochdruck-Sichtzelle nicht möglich. In Abbildung 10.2 ist die Eigenfluoreszenz des β -Glucans bei Atmosphärendruck dargestellt.

Abbildung 10.2: Eigenfluoreszenz von β -Glucan bei Atmosphärendruck

Wie zu erwarten war, ändert sich die Eigenfluoreszenz bei konstanten Bedingungen von 0,1 MPa nicht. Das selbe gilt für das Calcofluor (CF) und den um die Druckabhängigkeit des Calcofluor, siehe Abbildung 10.1, korrigierten Graphen (β -Glucan-CF). Dieser Graph soll vor allem dazu dienen, dass die gemessenen Eigenfluoreszenzen bei höheren Drücken besser vergleichbar sind.

In Abbildung 10.3 ist die Eigenfluoreszenz des β -Glucans bei einem Druck von 100 MPa aufgetragen. Der Gel-Graph zeigt während des Druckaufbaus eine Erhöhung der Eigenfluoreszenz, welche während der gesamten Druckhaltezeit von 600 s konstant bleibt, auch bei der Entlastung erfolgt keine Veränderung mehr.

Abbildung 10.3: Eigenfluoreszenz von β-Glucan bei einem Druck von 100 MPa

Der Calcofluor-Graph zeigt, wie bereits in Abbildung 10.1 dargestellt, nur eine geringfügige Abnahme der Eigenfluoreszenz. Aus diesem Grund hat der bereinigte Graph einen ähnlichen Verlauf wie der Gel-Graph, lediglich der Anstieg während des Druckaufbaus ist geringfügig größer.

In Abbildung 10.4 ist die Eigenfluoreszenz des β -Glucans bei einem Druck von 200 MPa aufgeführt. Auch bei mit diesem Druck beaufschlagten Proben ist ein Ansteigen des Gel-Graphen während des Druckaufbaus zu beobachten. Allerdings

senkt sich die Eigenfluoreszenz nach Erreichen des Druckniveaus wieder ab, wobei die Werte mit denen aus Abbildung 10.3 vergleichbar sind. Auch beim Druckabbau erfolgt nur eine geringfügige Absenkung der Eigenfluoreszenz. Da das Calcofluor ebenfalls nur sehr geringfügig beeinflusst wird, ist der bereinigte Graph auch hier dem Gel-Graphen sehr ähnlich. Ebenso wie bei den Messungen bei 100 MPa ist lediglich der Anstieg der Eigenfluoreszenz etwas stärker ausgeprägt.

Abbildung 10.4: Eigenfluoreszenz von β-Glucan bei einem Druck von 200 MPa

In Abbildung 10.5 ist die Entwicklung der Eigenfluoreszenz des β -Glucans während einer Hochdruckbehandlung bei 300 MPa aufgezeigt. Bei diesem Druck werden die Veränderungen der Eigenfluoreszenz des β -Glucans bereits deutlicher. Während der Druckaufbauphase steigt die Eigenfluoreszenz an bis 200 MPa erreicht sind, und fällt dann wieder leicht ab. Dies ist ein Verhalten, das bereits in Abbildung 10.4 zu erkennen war. Nach dem Erreichen des Druckplateaus von 300 MPa steigt der Gel-Graph erneut langsam an, um nach ca. 300 s sein Maximum zu erreichen, welches über die restliche Druckhaltezeit konstant bleibt. Bei der Druckentlastung erfolgt eine starke Abnahme der Eigenfluoreszenz, die allerdings nichts mit einer Neubildung des Gels zu tun hat (vgl. Kapitel 11.2). Der Effekt der Zunahme der Eigenfluoreszenz des β -Glucans wird noch durch die gleichzeitige Abnahme der Eigenfluoreszenz des Calcofluors verstärkt. Bereinigt man den Graphen, so erhält man zwei Bereiche, in denen die Eigenfluoreszenz deutlich ansteigt.

Abbildung 10.5: Eigenfluoreszenz von β -Glucan bei einem Druck von 300 MPa

Der erste befindet sich am Beginn der Behandlung während des Druckaufbaus bis ca. 140 MPa. Dann erfolgt bis zum Erreichen des Druckniveaus von 300 MPa keine weitere Zunahme der Eigenfluoreszenz. Die zweite Zunahme erreicht nach ca. 170 s der Druckhaltezeit ihr Maximum. Dies bleibt über die gesamte weitere Druckhaltezeit konstant. Bei der Druckentlastung erfolgt vergleichbar mit dem Gel-Graphen eine Abnahme, die aber aufgrund der Zunahme der Eigenfluoreszenz des Calcofluors nicht so extrem ausfällt.

In Abbildung 10.6 ist der Einfluss einer Druckbehandlung bei 400 MPa aufgezeigt. Der Verlauf ist mit den Graphen in Abbildung 10.5 nahezu identisch, allerdings noch etwas ausgeprägter. Das Gel verhält sich auch bei einer Hochdruckbehandlung mit 400 MPa gleich. Zuerst erfolgt ein Anstieg der Eigenfluoreszenz bis zu einem Druck von 150 – 200 MPa, dann ein leichter Abfall, bis das Druckniveau von 400 MPa erreicht ist, und danach ein stetiger Anstieg, bis ungefähr 450 s vergangen sind. Über die restliche Druckhaltezeit bleibt dieses Maximum erhalten, bei der Druckentlastung erfolgt erneut eine Abnahme. Durch die starke Abnahme der Eigenfluoreszenz des Calcofluor wird auch hier der Anstieg des bereinigten Graphen noch deutlicher. Es ist eine eindeutige Zunahme der Eigenfluoreszenz des β -Glucans während der ersten 300 s der Druckhaltezeit zu erkennen.

Abbildung 10.6: Eigenfluoreszenz von β -Glucan bei einem Druck von 400 MPa

Auch bei den Abbildungen 10.3 bis 10.5 war nach 300 s keine Änderung mehr zu beobachten, vielmehr waren die Veränderungen meist schon früher abgeschlossen.

Abbildung 10.7: Eigenfluoreszenz von β -Glucan bei Atmosphärendruck nach einer thermischen Behandlung bei 80 °C für 10 min

Als letzte Online-Messung wurde eine Vergleichsprobe bei 80 °C für 10 Minuten thermisch behandelt und bei Atmosphärendruck untersucht. Das Ergebnis ist Abbildung 10.7 zu entnehmen. Wie zu erwarten sind auch hier, vergleichbar mit der unbehandelten Probe, keine Veränderungen aufgetreten, das thermisch aufgelöste Gel zeigte über die gesamte Messdauer konstantes Verhalten. Ebenso verhält es sich für das Calcofluor und den bereinigten Graphen. Es treten keine Veränderungen auf, und das Niveau befindet sich ungefähr bei dem der mit 400 MPa durchgeführten Messungen.

10.4 Ergebnisse der Bestimmung der vorliegenden Wasserzustände mittels NMR-Messungen

Um weitere Erkenntnisse über die Vorgänge im ß-Glucan-Gel nach erfolgter Hochdruckbehandlung zu erhalten, wurden NMR-Messungen durchgeführt. Die NMR-Messungen erfolgten im temperierten Probekopf des NMR-Spektrometers. Der Probenkopf des NMR-Spektrometers wurde auf 10 °C temperiert, da ß-Glucan-Gel thermoreversibel ist und bei dieser Temperatur zu erwarten war, dass nur der Einfluss Hochdrucks Ergebnisse des von Bedeutung ist. Die der computergesteuerten Analyse finden sich im Anhang. Alle Messungen wurden mit Probe 8000 durchgeführt, da nur in diesem Konzentrationsbereich sinnvolle Untersuchungen durchzuführen waren.

Die verwendeten Proben der Ausgangslösung wurden vor der Messung mit jeweils 100, 300, 500 und 600 MPa für 300 s hochdruckbehandelt. Zur Veranschaulichung der Vorgänge wurde auch bei der NMR- Messung die graphische Darstellung gewählt, da die Vielzahl der Messdaten sonst keine überschaubare Aussage ermöglichen würden. Für die Auswertung der gemessenen Relaxationszeiten wurde folgender Ansatz gewählt:

$$U = a + b^* \exp\left[\left(-\frac{t}{2c}\right)^2\right] + d^* \exp\left[\left(-\frac{t}{e}\right)\right] + f^* \exp\left[\left(-\frac{t}{g}\right)\right] + h^* \exp\left[\left(-\frac{t}{i}\right)\right], \quad (10.1)$$

U= in der Spule induzierte Spannung,a= Nullpunktsverschiebung,c, e, g, i= Relaxationszeiten,b, d, f, h= Amplituden.

Wie bereits in Kapitel 6.6.5 erwähnt müssen sich die einzelnen gemessenen Relaxationszeiten um den Faktor 4 bis 5 unterscheiden, um eine Auswertung vornehmen zu können. Aufgrund der zu geringen Abweichung der Relaxationszeiten g und i voneinander wurden diese zu einer neuen Relaxationszeit g_{neu} zusammengefasst, wodurch in Formel 10.1 der letzte Term entfällt. Relaxationszeit wird im Folgenden als Relaxationszeit g bezeichnet. Aufgrund der **g**neu Größenordnung der Relaxationszeiten können Rückschlüsse auf die Art und Weise Wasserbindung gezogen werden. Anhand der Größenordnung der der Relaxationszeiten für c (Abbildung 10.8) kann diesen einer bestimmten Phase zugeordnet werden. Im Folgenden wird diese Phase als immobiles Wasser bezeichnet. Immobil bedeutet, dass das Wasser in irgendeiner Form gebunden vorliegt und somit die Beweglichkeit der Moleküle fast vollkommen eingeschränkt ist. Die Phasenanteile der Relaxationszeiten e (Abbildung 10.9) werden als wenig mobiles Wasser bezeichnet. Die Bindungsstärke ist geringer als die bei der immobilen Phase. Dies bedeutet, dass die Moleküle sich in ihrem Verband stärker bewegen können. Die Phasenanteile der Relaxationszeiten g (Abbildung 10.10) - hier aufgrund ihrer Größenordnung als mobiles Wasser bezeichnet - kennzeichnen einen Zustand des Wassers, in dem die einzelnen Moleküle schon sehr beweglich, eventuell sogar frei vorliegen. Es lässt sich zumindest die Aussage treffen, dass dieses Wasser nicht mehr in ein Gelgerüst eingebunden ist.

Die Anteile der einzelnen gefundenen Phasen p_c , p_e sowie p_g in Prozent der Gesamtphasen lassen sich nach folgenden Ansätzen ermitteln:

$$p_c = \frac{b}{b+d+f}$$
(10.2)

$$\mathsf{p}_{\mathsf{e}} = \frac{d}{b+d+f} \tag{10.3}$$

$$\mathsf{p}_g = \frac{f}{b+d+f}.$$
 (10.4)

In Abbildung 10.8 ist die Veränderung der Relaxationszeiten c und ihrer Phasenanteile p_c bei unterschiedlichen Drücken dargestellt. Die Dauer der Relaxationszeiten nimmt bis zu einem Druck von 100 MPa leicht zu. Zwischen 100 MPa und 500 MPa ist keine signifikante Änderung zu verzeichnen.

Abbildung 10.8: Relaxationszeiten c und Phasenanteil p_c, gemessen bei 10 °C in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 600s

Ab einem Druck höher als 500 MPa wurde eine Verlängerung der Relaxationszeiten um den Faktor 7 verzeichnet. Aus dem Verlauf der Kurve für die Phasenanteile p_c in Abbildung 10.8 ist zu ersehen, dass die immobile Phase mit Erhöhung des Drucks abnimmt. Am Anfang liegt noch per definitionem "fest gebundenes Hydratwasser" (< 50 µs) vor, welches sich unter Druckeinwirkung > 500 MPa schnell in stark gebundenes Wasser (> 50 µs) oder freies Wasser umwandelt. Abbildung 10.9 zeigt die Veränderung der Relaxationszeiten e und ihrer Phasenanteile p_e während der Hochdruckbehandlung. Es ist über die gesamte Behandlungsdauer eine Schwankung der Relaxationszeiten zu erkennen. Die Schwankungen reichen von einem Anstieg um ca. Faktor 1,5 bei 100 MPa bis zu einer annähernden Verdoppelung im Vergleich zum Ausgangswert bei 600 MPa. Auch in diesem Fall ist wiederum zu beobachten, dass der Betrag der Relaxationszeiten e nach einer Hochdruckbehandlung höher als 500 MPa ansteigt. Durch Abbildung 10.9 wird deutlich, dass Phase e in der Gesamtheit und im Vergleich zu den Phasenanteilen der Relaxationszeiten c sehr wenig abnimmt. Der Anstieg bis 100 MPa verläuft entgegengesetzt zur Abnahme der Phasenanteile p_c . Bei weiter ansteigendem Druck erfolgt dann ein Abfall, der erst wieder unter dem Ausgangswert endet.

Abbildung 10.9: Relaxationszeiten e und Phasenanteil p_e, gemessen bei 10 °C in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 600s

Abbildung 10.10 zeigt den Betrag der Relaxationszeiten g und ihrer Phasenanteile p_g . Die Relaxationszeiten g steigen von einem Ausgangswert von ca. 180 ms im unbehandelten Zustand auf einen Wert von > 250 ms bei 100 MPa an. Anschließend fallen die Relaxationszeiten g fast linear bis auf ~ 100 ms bei 500 MPa.

Abbildung 10.10: Relaxationszeiten g und Phasenanteil p_g, gemessen bei 10 °C in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 600s

Bei Drücken größer 500 MPa steigt auch hier die Relaxationszeit stark an. Es ist ebenfalls zu erkennen, dass die Phasenanteile der Relaxationszeiten g kontinuierlich ansteigen, wobei der größte Anstieg zwischen 300 und 500 MPa liegt. Der Endwert, welcher gleichzeitig das Maximum dieser Kurve darstellt, befindet sich bei 600 MPa.

11 Diskussion der Untersuchungen an Bier und Modell-Gel

11.1 Diskussion der an Bier ermittelten Ergebnisse

Die Untersuchungen an Bier ergaben eine signifikante Verbesserung der Filtrierbarkeit durch eine vorhergehende Hochdruckbehandlung. Mit 300 MPa wird sogar annähernd das Filtrationsergebnis von Wasser erreicht. In Abbildung 11.1 wird dargestellt, dass eine Verbesserung der Filtrierbarkeit bei Bier, welches in unbehandeltem Zustand keine Filtrationsprobleme aufweist, zu erreichen ist.

Abbildung 11.1: Filtrationsdauer eines hellen, kellertrüben Bieres ohne Filtrationsprobleme bzw. Wasser in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 300 s

Abbildung 11.2 zeigt, dass dies auch bei Bieren mit Filtrationsproblemen der Fall ist.

Abbildung 11.2: Filtrationsdauer eines hellen, kellertrüben Bieres mit Filtrationsproblemen bzw. Wasser in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 300 s

Es ist deutlich zu erkennen, dass das unbehandelte Bier schlechtere Filtrationszeiten aufweist als das in Abbildung 11.1 verwandte Bier, welches keine Filtrationsprobleme aufwies. Die Behandlung mit 300 MPa ergibt nahezu die selben Resultate. Dies ist ein Hinweis auf weitgehende Veränderung der filtrationsrelevanten Inhaltsstoffe bzw. der Zustände, in denen diese Substanzen im Bier vorliegen.

Die Verbesserung der Filtrierbarkeit wurde in dieser Versuchsreihe auf einem ermittelt. Es handelt Laborfilter nach Sartorius sich hierbei um eine Schichtenfiltration. Da die Verbesserung sowohl bei Bier mit Filtrationsproblemen als auch bei Bier ohne Filtrationsprobleme stattgefunden hat, ist darauf zu schließen, dass entweder eine vollständige Veränderung der filtrationshemmenden Substanzen oder deren Zustandes vorliegt oder die Zusammensetzung des Bieres durch die Hochdruckbehandlung eine positive Veränderung erfährt. Da die Schichtenfiltration sowohl eine Siebwirkung als auch, durch die Beschaffenheit der Cellulose, eine adsorptive Wirkung hat, ist der positive Effekt der Hochdruckbehandlung nicht eindeutig zu definieren. Aus diesem Grund wurden die Untersuchungen zur Ermittlung der Filtrierbarkeit zusätzlich auf einem Kieselgurlaborfilter durchgeführt, wobei die spezifische Filtrationsdauer nach Raible als Messparameter herangezogen wurde. Kieselgur hat nahezu keine adsorptive Wirkung. In Abbildung 11.3 ist der Einfluss der Behandlungsdauer sowie der Druckhöhe auf das spezifische Filtratvolumen des "Problembiers" dargestellt. Es ist eindeutig zu erkennen, dass bereits bei geringen Drücken eine Erhöhung des spezifischen Filtratvolumens in Abhängigkeit von der Behandlungsdauer eintritt. Tendenziell ist mit steigendem Druck und längerer Haltezeit eine Verbesserung der Filtrierbarkeit zu erkennen. Allerdings werden erst ab 300 s Behandlungsdauer und 300 MPa Druck Bereiche erreicht, bei denen von einer guten Filtrierbarkeit gesprochen werden kann. Da dies erst ab einem spezifischen Filtratvolumen über 4,5 der Fall ist, sind hauptsächlich die Resultate bei 300 und 500 MPa interessant. Die Filtrierbarkeit wird folglich auch bei einem Filtrationstest verbessert, der überwiegend auf der Siebwirkung des Filtermittels aufgebaut ist. Dies ist ein Hinweis darauf, dass Hochdruck weniger Einfluss auf Parameter hat, die durch Adsorption wirken, sondern auf Stoffe, die durch Siebwirkung zurückgehalten werden. Da bei beiden beschriebenen Versuchsaufbauten eine Verbesserung der Filtrierbarkeit festgestellt werden konnte und beide Verfahren zumindest teilweise auf der Siebwirkung beruhen, kann die

Aussage gestützt werden, dass hauptsächlich Parameter beeinflusst werden, die die Filtrierbarkeit durch dieses Trennungsprinzip beeinflussen.

Abbildung 11.3: Spezifisches Filtratvolumen in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung

Aus diesen Feststellungen heraus wurden weitere Untersuchungen durchgeführt, die den Einfluss des Hochdrucks auf filtrationsrelevante Inhaltsstoffe des Bieres darstellen sollen. In Abbildung 11.4 ist der Einfluss des Hochdrucks auf den Gehalt an Gesamtstickstoff bzw. an einzelnen Fraktionen, also an hoch-, mittel- und niedermolekularem Stickstoff, dargestellt. Wie zu erwarten, hat der Gesamtstickstoff keine Veränderungen erfahren, es dürften sich höchstens Unterschiede in den einzelnen Fraktionen ergeben. Wie Abbildung 11.4 zu entnehmen ist, ist dies jedoch auch nicht der Fall, da alle drei Fraktionen bei sämtlichen Druckstufen nahezu konstante Werte zeigen. Da keine Beeinflussungen der im Bier vorhandenen Stickstoff-Fraktionen vorliegen, ist auch anzunehmen, dass die Proteine keinen die Filtrierbarkeit des Bieres haben. Dies dürfte Einfluss auf an der Zusammensetzung des Bieres liegen. Durch den Alkoholgehalt, den pH-Wert, den CO₂-Gehalt und eventuell auch durch das Vorhandensein von Hopfeninhaltsstoffen sind die Proteine bereits derart beeinflusst, dass keine weiteren Reaktionen mehr möglich sind. Um etwaige Komplexbildungen zwischen Proteinen und Polyphenolen bzw. Anthocyanogenen auszuschließen, wurde noch der Gehalt an diesen Stoffen bestimmt.

Abbildung 11.4: Gesamtstickstoff bzw. Stickstoff-Fraktionen in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s

In Abbildung 11.5 ist der Einfluss des Hochdrucks auf den Gehalt an Polyphenolen und Anthocyanogenen dargestellt.

Abbildung 11.5: Gehalt an Polyphenolen und Anthocyanogenen in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s

Es ist eindeutig zu erkennen, dass die Konzentrationen an Polyphenolen und Anthocyanogenen nach den verschiedenen Hochdruckbehandlungen konstant geblieben sind. Daraus ergibt sich, dass keine neuen Protein-Gerbstoff-Komplexe unter Hochdruck gebildet wurden, die wiederum einen Einfluss auf die Filtrierbarkeit gehabt hätten. Als weitere Messgröße wurde in Tabelle 9.6 die Adsorption im Überstand des **Bieres** bei verschiedenen Zentrifugationsbedingungen und vorhergegangener Hochdruckbehandlung vorgestellt. Da es sich um eine Vielzahl verschiedener Messreihen handelt und bis 500 MPa keine Veränderungen der Partikelgrößenverteilung im Vergleich zu den bei geringen Drücken behandelten bzw. unbehandelten Proben festgestellt wurden, wird auf eine graphische Veranschaulichung verzichtet. Bei den mit 600 MPa behandelten Proben ist bereits eine optische Trübung zu erkennen, die auch zu einer erhöhten Adsorption im Überstand führt. Dies ist auch bei bereits filtriertem Bier festzustellen [18], woraus man schließen kann, dass Substanzen, die den Filter passieren können, durch Hochdruck über 600 MPa beeinflusst werden. Vermutlich sind es Kohlenhydrate, die bei höheren Drücken, je nach Milieubedingungen und ihrer eigenen Beschaffenheit, zur Gelierung neigen. Bei Stärke aus Gerste ist dies z. B. ab 600 MPa der Fall [58]. Wie im folgenden noch zu sehen ist, kann es sich hierbei nicht um
ß-Glucane handeln, sondern um andere höhere Dextrine. Entscheidend ist, dass bis 500 MPa keine Veränderung der Partikelgrößen stattfindet. Im Zusammenhang mit den Untersuchungen der Filtrierbarkeit wurden nur bis 500 MPa Verbesserungen festgestellt, also ist das Verhalten bei höheren Drücken von geringerem Interesse. Die bisherigen Untersuchungen erlauben es nicht, Rückschlüsse auf die Ursachen Verbesserung der Filtrierbarkeit des Bieres durch eine der vorherige Hochdruckbehandlung zu ziehen. Deshalb wurde der Gehalt an β -Glucan bzw. β-Glucan-Gel untersucht. Für diese Untersuchung wurde das selbe Bier verwendet wie für die Versuche zur Filtrierbarkeit. Dieses "Problembier" wurde auch für die Ermittlung der Protein-Fraktionen und der Polyphenole verwendet.

In Abbildung 11.6 ist der Einfluss des Hochdrucks und der Behandlungsdauer auf den Gehalt an β -Glucan-Gel dargestellt.

Abbildung 11.6: Gehalt an β-Glucan-Gel in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung

Es ist deutlich zu erkennen, dass der Gehalt an β -Glucan-Gel mit zunehmendem Druck und zunehmender Behandlungsdauer abnimmt. Erstaunlich ist, dass bis 300 MPa bei einer Haltezeit von nur einer Sekunde der Gehalt an β-Glucan-Gel ansteigt. Ab 400 MPa ist dies nicht mehr der Fall, der Gehalt bleibt nahezu konstant. Daraus lässt sich vermuten, dass bei der geringen Druckhaltezeit von einer Sekunde ein Effekt während des Druckaufbaus zwischen 300 und 400 MPa zu suchen ist. Dieser Effekt könnte durch die mechanische Belastung des Gels in Form einer deformierenden Spannung während des Druckauf- und -abbaus bewirkt werden, da Gelstruktur und eingebundenes Wasser unterschiedliche Kompressibilitäten zeigen. Bei längeren Haltezeiten kommt zur mechanischen Belastung noch die Wirkung der Druckhöhe hinzu. Bis 300 MPa ist keine erwähnenswerte Reduzierung bei längerer Druckhaltezeit zu bemerken. Die 400 MPa-Probe zeigt allerdings bei einer Haltezeit von 500 s bereits eine Halbierung des β -Glucan-Gel-Gehalts. Das beste Resultat wird bei 500 MPa erzielt. Hier erfolgt bereits bei einer Druckhaltezeit von 150 s eine Halbierung des β-Glucan-Gel-Gehalts, und bei 300 s und mehr ist der Gehalt nur noch ein Viertel des Ausgangswertes. Auf den Einfluss der Druckhaltezeit wird im folgenden Kapitel noch genauer eingegangen. Aufgrund der Messgenauigkeit des Analysengerätes (Nachweisgrenze 10 mg/l) hat der absolute Gehalt des β -Glucan-Gels keine eindeutige Aussagekraft.

Der Grund für die deutliche Verbesserung der Filtrierbarkeit liegt in der Reduktion des Gehalts an β -Glucan-Gel. Die besten Filtrationsergebnisse, bei 500 MPa, zeigen auch den geringsten Gehalt an β -Glucan-Gel. Die Bestimmung eines Druck- und Zeitbereiches, bei dem eine maximale Verbesserung der Filtrierbarkeit erreicht werden kann, sowie die Ermittlung der Ursache für diese ist möglich. Die besten Filtrationsergebnisse werden bei 500 MPa und 300 s erreicht, eine längere Druckhaltezeit ist nicht nötig. Zu klären bleibt, ob β -Glucan-Gel nur teilweise oder vollständig abgebaut wird. Dies lässt sich mit der geringen Konzentration in Bier jedoch nicht ermitteln.

11.2 Diskussion der am Modell-Gel ermittelten Ergebnisse

Die ersten Untersuchungen bezüglich des Modell-Gels bezogen sich auf die Lösung des β -Glucans aus einem Hafergranulat (vgl. Kapitel 8.1.2.1). Anschließend wurde diese Lösung verschiedenen Behandlungen unterzogen, die die Ausbildung eines Gels zum Ziel hatten (vgl. Kapitel 8.1.2.2). Es werden die Proben 400, 800 und 8000 verwendet. Die unterschiedlichen Konzentrationen sind für die verschiedenen Messverfahren notwendig, und zeigen auch, unabhängig von der Hochdruckbehandlung, den Einfluss des β -Glucan-Gels auf diese Verfahren.

Um den Effekt der Hochdruckbehandlung auf die Modell-Gele zu ermitteln, wurde der Gehalt an β -Glucan-Gel bestimmt. Da im Bier der Gehalt mit steigendem Druck abnimmt, war dies auch bei den reinen β-Glucan-Gel-Lösungen zu erwarten. Um festzustellen, ob das Gel vollständig oder nur teilweise aufgelöst wird, wurden zwei verschiedene Ausgangskonzentrationen (400 und 800 mg/l) untersucht. In Abbildung 11.7 wird das Verhalten des β -Glucan-Gel-Gehalts in Abhängigkeit vom Druck und der Behandlungsdauer dargestellt. Es wurde eine eindeutige Abnahme des Gehalts β-Glucan-Gel detektiert. ab 500 MPa unabhängig an wird von der Ausgangskonzentration ein konstantes Niveau erreicht.

Abbildung 11.7: Gehalt an β-Glucan-Gel in einem Modell-Gel in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung

Allerdings wird in der reinen Lösung erst bei den mit 600 MPa behandelten Proben ein Wert unter der Nachweisgrenze erreicht. Dieser ist mit den Resultaten der thermisch behandelten Probe vergleichbar. Damit wurde bewiesen, dass die Auflösung des β -Glucan-Gels nicht von den Milieubedingungen im Bier abhängig ist, sondern auch in reinen Lösungen möglich ist. Die erstellte Modell-Gel-Lösung ist folglich für die Untersuchungen zur Art der Gelauflösung geeignet und kann für die weiteren Analysen verwendet werden. Die hergestellte Lösung unterscheidet sich im Alkoholgehalt und im pH-Wert nicht von Bier. Der Alkoholgehalt war für die Ausbildung des Gels notwendig, und der pH-Wert wurde in der β -Glucan-Gel-Lösung eingestellt, da dies für die Analyse mit den vorhandenen Messgeräten notwendig ist. Mit diesem Analysensystem kann allerdings nicht beurteilt werden, wie die Auflösung des β-Glucan-Gels abläuft oder welche Zustände nach der erfolgten Hochdruckbehandlung vorliegen. Dies liegt daran, dass bei der thermischen Auflösung, auf der dieses Messprinzip beruht (siehe Kapitel), das β -Glucan-Gel in den Solzustand überführt wird. Das β-Glucan-Sol weist die selbe Eigenfluoreszenz auf wie β -Glucan. β -Glucan-Gel wird also aufgelöst und entweder in den Solzustand oder in β-Glucan überführt.

In weiteren Untersuchungen wurde die exakte Beeinflussung des β -Glucan-Gels durch die Hochdruckbehandlung ermittelt. Eine entscheidende Größe ist hierbei die Viskosität, da der Solzustand eine deutlich höhere Viskosität bewirkt als das gelöste β -Glucan. Die Viskosität und der Einfluss der Hochdruckbehandlung auf sie sind in Abbildung 11.8 dargestellt.

Abbildung 11.8: Viskosität in Abhängigkeit vom Druck bzw. der Temperatur und der Haltezeit während der Hochdruck- bzw. Temperaturbehandlung

Es ist eindeutig zu erkennen, dass der Druck einen entscheidenden Einfluss auf die Viskosität hat. Die unbehandelten Proben weisen entsprechend ihrer unterschiedlichen β-Glucan-Gel-Konzentrationen eine verschieden hohe Viskosität auf, wobei der Anstieg der Viskosität nicht linear zum Gehalt an β-Glucan-Gel verläuft. Es ist allerdings der Nachweis gegeben, dass ein zunehmender Gehalt an β-Glucan-Gel eine Erhöhung der Viskosität bedingt. Mit steigendem Druck, bei der 100 MPa-Probe auch mit längerer Behandlungsdauer, sinkt die Viskosität. Bei den niedrigeren Drücken ist noch die Auswirkung der höheren Ausgangskonzentration festzustellen. Ab 600 MPa sind unabhängig von der Ausgangskonzentration konstante Viskositäten ermittelt worden. Die thermisch behandelte Probe weist eine deutlich höhere Viskosität auf als die hochdruckbehandelten Proben, sie ist nur geringfügig niedriger als bei den unbehandelten Proben ist. Entscheidend ist, dass die thermisch behandelten Proben eine deutlich höhere Viskosität als die hochdruckbehandelten Proben aufweisen, vor allem als die mit 500 und 600 MPa behandelten. Da die thermische Behandlung das β -Glucan-Gel in den Solzustand überführt, welcher eine hohe Viskosität nach sich zieht, kann davon ausgegangen werden, dass die deutlich niedrigeren Viskositäten der mit 500 und 600 MPa behandelten Proben den Abbau zu Einzelmolekülen des β -Glucans bedeuten.

Um diese Aussage zu bekräftigen, wurden NMR-Messungen durchgeführt, mit denen der Bindungszustand des Wassers festgestellt werden kann. Da eine gemeinsame Darstellung in einem Diagramm die Veränderungen aufgrund der unterschiedlichen Größenbereiche, in denen sich die Phasenanteile bewegen, nicht verdeutlichen kann, werden in Abbildung 11.9 die Darstellungen der Phasenanteile pc, pe und pg in drei getrennten Diagrammen aufgeführt. Die unterschiedlichen Skalierungen müssen hierbei unbedingt berücksichtigt werden. Da es sich um einen tendenziellen Nachweis handelt, werden die einzelnen Diagramme als Liniendiagramme dargestellt. Entsprechend Kapitel 6.6 können den einzelnen gemessenen Relaxationszeiten c, e und g aufgrund ihrer Dauer bestimmte Phasen der Wasserbindung pc, pe und pg zugeordnet werden. Eine genaue Zuordnung des ß-Glucan-Gel- bzw. Solzustandes zu den drei Phasen mobiles Wasser, wenig mobiles Wasser und immobiles Wasser ist nicht ohne weiteres möglich. Der Gelzustand des ß-Glucans könnte sich sowohl auf das wenig mobile als auch auf das immobile Wasser auswirken. Eindeutig ist, dass sich der Gelzustand des ß-Glucans auf die mobile Wasserphase auswirkt. Somit kann ein Ansteigen oder Absinken dieser Phase als Indiz für eine Veränderung des ß-Glucan-Gel- bzw. Sol-Gehaltes gewertet werden. Ein Anstieg der mobilen Phase lässt auf eine Gelzerstörung schließen. Um einen thermischen Einfluss zu vermeiden, wurden die Messungen bei 10 °C durchgeführt. Hierbei konnten grundlegende Ergebnisse wie der Anstieg der mobilen Wasserphase und die Verringerung der immobilen Phase beobachtet werden. In Abbildung 11.9 kann aus dem Verhalten der Phasenanteile pc der immobilen Phase geschlossen werden, dass das ß-Glucan-Gel mit zunehmendem Druck in den Solzustand oder in ß-Glucan übergeht, da sich die Phasenanteile p_c während der Druckbehandlung verringern.

Abbildung 11.9: Phasenanteile p_c, p_e und p_g in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s

Damit zusammenhängend steigen die Phasenanteile p_g des mobilen Wassers an, was auf eine Zunahme des ß-Glucan-Gehalts schließen lässt. Die Phasenanteile p_e des wenig mobilen Wassers lassen aufgrund ihres Verlaufs keine eindeutige Interpretation zu. Diese Phase dürfte dem Solzustand zuzuordnen sein. Da die Untersuchungen in wässrigen Lösungen stattfanden, ist der Phasenanteil p_g an freiem Wasser immer der größte. Es ist anzunehmen, dass wegen des schnellen Abbaus der immobilen Phase und der über die Druckerhöhung langsamer ablaufenden Erhöhung der mobilen Phase ein Zwischenzustand eingenommen wird, der dem Solzustand entspricht. Bei den mit 600 MPa behandelten Proben ist der Anteil der mobile Phase p_g deutlich höher, weshalb die wenig mobile Phase p_e wieder abfällt.

Betrachtet man die Veränderungen von Viskosität, ß-Glucan-Gel-Gehalt und der Phasenanteile, so lässt sich folgern, dass das ß-Glucan-Gel zu ß-Glucan abgebaut wird.

Erstens sinkt der Gehalt an ß-Glucan-Gel ab bzw. wird über die FIA-Methode nachgewiesen, dass die Fluoreszenz ansteigt und sich somit die Konzentrationen von ß-Glucan-Sol oder ß-Glucan erhöhen.

Zweitens sinkt die Viskosität in wesentlich stärkerem Ausmaß als bei den thermisch behandelten Proben, bei denen das ß-Glucan-Gel in den Solzustand überführt wird. Da das Sol den selben Einfluss auf die Viskosität wie das Gel selbst hat, deutet die niedrigere Viskosität auf einen Abbau zum ß-Glucan hin.

Drittens verändern sich die Phasenanteile der verschiedenen Mobilitätsphasen des Wassers mit steigenden Drücken in der Art, dass die mobile Phase zunimmt, d. h., dass das freie Wasser, wie es bei ß-Glucan vorliegt, in größeren Mengen vorkommt. Das gebundene Wasser, wie es im ß-Glucan-Gel vorliegt, nimmt hingegen deutlich ab. Der Zwischenzustand, der dem Solzustand entsprechen dürfte, verhält sich nahezu konstant auf niedrigem Niveau, was diese Interpretation weiter unterstützt.

Das ß-Glucan-Gel wird also vollständig zu ß-Glucan abgebaut. Allerdings ist der Einfluss der Zeit noch nicht ausreichend betrachtet worden. Für diese Untersuchung wurde das Prinzip der FIA-Analyse auf einen Batch-Prozess adaptiert, bei dem die Eigenfluoreszenz des ß-Glucans online gemessen wird, also sich mit abnehmendem Gehalt an ß-Glucan-Gel ein höherer Wert einstellt. Diese Messungen wurden an einer Hochdruck-Sichtzelle durchgeführt, die über einen optischen Leiter mit einem Fluoreszenzphotometer verbunden war.

In Abbildung 11.10 sind die Auswirkungen der verschiedenen Drücke auf die Eigenfluoreszenz des ß-Glucans dargestellt. Es ist zu berücksichtigen, dass bei höheren Drücken längere Druckaufbauzeit benötigt da eine wird, die Druckaufbaugeschwindigkeit bei sämtlichen Versuchen 200 MPa/min betrug. Die Probe, die unter Atmosphärendruck behandelt wurde, zeigt erwartungsgemäß keine Veränderungen. Nach den ersten 30 s wird bei den hochdruckbehandelten Proben mit dem Druckaufbau begonnen. Bei allen Proben ist in der ersten Phase des Druckaufbaus (bis 200 MPa) eine Erhöhung der Eigenfluoreszenz zu erkennen, was auch sehr gut mit den Messungen des ß-Glucan-Gel-Gehalts und der Viskosität übereinstimmt. Würde man die Messung des ß-Glucan-Gel-Gehalts allein betrachten.

so wäre von einem Übergang in den Solzustand auszugehen. Durch die abfallende Viskosität wird jedoch bewiesen, dass es sich um einen Abbau zu ß-Glucan handelt.

Abbildung 11.10: Eigenfluoreszenz von ß-Glucan während der Hochdruckbehandlung bei verschiedenen Drücken bzw. thermischer Behandlung bei 80 °C

Die mit 300 und 400 MPa behandelten Proben halten die Intensität der Eigenfluoreszenz, die bei 200 MPa vorliegt, bis ihr jeweiliges Druckniveau erreicht wird. Erst dann erfolgt eine weitere Erhöhung der Eigenfluoreszenz mit zunehmender Druckhaltezeit. Die Erhöhung der Eigenfluoreszenz während des Druckplateaus ist bei 400 MPa stärker ausgeprägt als bei 300 MPa. Nach 300 s ist der Abbau bei diesen Proben abgeschlossen, die Intensität bleibt konstant. Dies korreliert ebenfalls mit den Ergebnissen der Messungen des ß-Glucan-Gel-Gehalts. Ein äußerst interessanter Aspekt ist bei diesen Messungen, dass bei niedrigeren Drücken (bis 200 MPa) bereits während des Druckaufbaus ein erster Abbau des ß-Glucan-Gels erfolgt. Allerdings geschieht dies nur bis zu einem bestimmten Niveau. Der weitere Abbau erfolgt erst bei höheren Drücken (300 und 400 MPa) und ist hierbei zeitabhängig.

Die Auflösung des ß-Glucan-Gels unterteilt sich in eine zeitunabhängige Phase bei niedrigem Druck und eine zeitabhängige, die erst ab einem Druck von 300 MPa beginnt und nach 300 s abgeschlossen ist. Betrachtet man die ermittelten Ergebnisse übergreifend, so fällt auf, dass durch den Nachweis des ß-Glucan-Gel-

Gehalts gezeigt werden kann, dass sich durch die Hochdruckbehandlung entweder ein Solzustand einstellt oder ß-Glucan gebildet wird. Dieser Abbau erfolgt in zwei Teilschritten: bis 200 MPa während des Druckaufbaus und bei Drücken größer 300 MPa während der ersten 300 s der Druckhaltezeit. Durch die Verringerung der Viskosität bei steigenden Drücken konnte belegt werden, dass die Abnahme des ß-Glucan-Gels nicht mit einer Überführung in den Solzustand verbunden ist, sondern einen Abbau zum ß-Glucan bedeutet. Dieser Abbau ist sowohl bei niedrigen Drücken zu beobachten als auch bei hohen, wo er allerdings stärker ausgeprägt ist. Der Abbau des ß-Glucan-Gels ist, unabhängig von der Ausgangskonzentration, ab einem Druck von 500 MPa als vollständig zu bezeichnen. Es tritt keine nur teilweise Verringerung ein, wie dies bei den Bier-Proben noch eventuell zu vermuten war. Durch die NMR-Messungen wurde diese Aussage bestätigt, da eine eindeutige Abnahme der immobilen Phase, also des in die Gelstruktur eingebundenen Wassers ,zu verzeichnen war. Gleichzeitig nimmt die mobile Phase, der Gehalt an freiem Wasser, wie es neben der Struktur des ß-Glucans vorliegen kann, deutlich zu.

ß-Glucan-Gel ist ein Hydrogel, da sich bei der Gelbildung Wasser einlagert. Außerdem spricht man von einem Nebenvalenzgel, da sich keine kovalenten Bindungen ausbilden, sondern Verknüpfungen über Wasserstoffbrücken, Van der Waals Kräfte und Dipolkräfte hergestellt werden, welche reversibel sind. Da Wasser unter Hochdruck einige bedeutende Veränderungen erfährt, muss es bei der Betrachtung der Ergebnisse berücksichtigt werden. Es kann also nicht über das Verhalten von Gelen unter Atmosphärendruck argumentiert werden. Die Aussage, dass durch die Druckerhöhung eine Entguellung des Gels initiiert wird, also bis zur Einstellung eines isobar-isothermen Quellungsgleichgewichts Lösungsmittel aus dem Gel austritt, kann in diesen Druckbereichen nicht uneingeschränkt gelten. In dieser Anwendung wird von einem ausgebildeten Gel ausgegangen und sein Verhalten während und nach erfolgter Hochdruckbehandlung untersucht. Das in der Literatur beschriebene begrenzte Quellungsverhalten und die dadurch bedingte Verkleisterung von Einzelmolekülen bei höheren Konzentrationen stellt damit keinen Hinderungsgrund für eine Quellung des Gels dar, da keine Überlappungskonzentrationen oder Gelpunkte erreicht werden müssen. Es muss nur die Quellung einer bestehenden Gelstruktur initiiert werden. Die Hemmnisse, die bei einer Gelausbildung aus Einzelmolekülen überwunden werden müssen, treffen hier also nur bedingt oder überhaupt nicht zu.

Durch die Hochdruckbehandlung verhält sich Wasser, wie bereits in Kapitel 3.3.1 erläutert. Wasser ist kompressibel, und bei einem Druck von 400 MPa liegt eine Volumenabnahme von 15 Vol.-% gegenüber Atmosphärendruck vor. Nach der bereits vorgestellten Theorie der Entquellung bei Druckbeaufschlagung müsste bei entsprechend hohen Drücken eine stärkere Entquellung stattfinden. Da in den vorangegangenen Untersuchungen allerdings gezeigt wurde, dass sich das Gel auflöst und zwar vollständig in seine Einzelmoleküle und dies normalerweise mit einer unbegrenzten Quellung in Verbindung steht, kann dies nicht die Ursache sein. Eindeutig ist, dass sich durch die Kompression des Wassers und die gleichzeitige Entquellungstendenz des Gels durch den Druck ein stark abweichendes Quellungsgleichgewicht einstellen muss, da zwei beeinflussende Parameter berücksichtigt werden müssen. Da sich das Gel auflöst, ist die Kompression des Wassers von größerer Bedeutung.

Der erste Mechanismus, welcher besagen würde, dass sich durch die Druckbeaufschlagung eine Entquellung ergibt, da die Kompression des Wassers zu gering ist, lässt sich anhand der ermittelten Ergebnisse verwerfen. Erstens würden die Haftstellen des Gels erhalten bleiben, und zweitens würde das ausgetretene Wasser nach Druckentlastung wieder in das Gel diffundieren, was zu einer Wiederherstellung des Ausgangszustandes führen würde.

Der zweite Mechanismus beschreibt, dass durch den Druck eine deformierende Spannung auf das System ausgeübt wird, die zu einer Zerstörung der druckempfindlichen Haftstellen führt. Da nach der Druckentlastung keine Bedingungen vorliegen, die eine neue Gelausbildung forcieren, bleibt der Abbau irreversibel. Ebenfalls für diese Theorie spricht, dass durch die Einwirkung von mechanischen Belastungen der Temperaturbereich für einen vollständigen Abbau eines Gels erniedrigt werden kann. Wenn dies schon bei moderaten mechanischen Belastungen der Fall ist, so kann dies auch beim Einwirken hoher Drücke der Fall sein.

Der dritte Mechanismus geht davon aus, dass durch die Kompression des Wassers noch weiteres Wasser in die Gelstruktur aufgenommen wird, da nur so das Quellungsgleichgewicht erreicht werden kann. Es erfolgt die für Nebenvalenzgele typische Quellung durch Materialaufnahme. Dadurch ergeben sich zwei Möglichkeiten: - entweder es erfolgt sofort eine unbegrenzte Quellung oder - es ergibt sich eine begrenzte Quellung durch die noch bestehenden Bindungskräfte. Da es sich um ein reversibel verknüpftes Gel handelt, welches hauptsächlich über elektrostatische und hydrophobe Wechselwirkungen (Van der Waals Kräfte) und Wasserstoffbrückenbindungen verknüpft ist, die durch die Wirkung des Drucks zerstört werden, dürfte eine begrenzte Quellung nur in niedrigen Druckbereichen vorliegen. In diesem System liegen, da das Gel nachweislich aufgelöst wurde, die Rahmenbedingungen vor, die notwendig sind, um auch Wasserstoffbrückenbindungen aufzulösen. Aus diesem Ansatz ergibt sich auch eine Erklärung für den Einfluss der Zeit zu Beginn des Druckanstiegs. Es könnte möglich sein, dass bis zur Lösung der Wasserstoffbrücken eine begrenzte Quellung vorliegt, die danach in eine unbegrenzte übergeht. Allerdings steht dies im Widerspruch zur Erniedrigung der Viskosität, die bereits bei niedrigen Drücken erfolgt. Der konstante Gehalt an ß-Glucan-Gel bei Behandlungszeiten von 300 s und mehr korreliert wiederum mit der getroffenen Aussage. Festzuhalten bleibt, dass aufgrund der Druckempfindlichkeit des ß-Glucan-Gels und seiner Bindungstypen eine unbegrenzte Quellung ablaufen kann.

Um die beschriebenen Mechanismen auf die erzielten Resultate anwenden zu können, muss man die zwei Phasen betrachten, in die die Zerstörung des ß-Glucan-Gels unterteilt ist. Es ergeben sich zwei theoretische Lösungsansätze.

Die erste Phase des Gelabbaus ist nicht zeitabhängig. Es könnte sich um die Einwirkung einer deformierenden Spannung durch den Druck handeln. Diese wirkt ohne zeitliche Verzögerung und löst Haftstellen auf, die gegenüber Druck oder mechanischen Belastungen sehr empfindlich sind. Betrachtet man das eingesetzte Modell-Gel, das in einer wässrigen Lösung vorliegt, so kann man näherungsweise davon ausgehen, dass sich die gesamte Probe wie Wasser verhält. Wie aus Abbildung 3.9 (spez. Volumen von Wasser in Abhängigkeit vom Druck) zu entnehmen ist, nähert sich die negative Steigung der Graphen mit wachsendem Druck Null.

Unterteilt man dieses Diagramm nun in die Bereiche 0,1 – 200 MPa (I), 200 – 400 MPa (II) und 400 – 600 MPa (III), so verhält sich die Abnahme des spezifischen Volumens Δv_i folgendermaßen:

$$\Delta v_{I} = 67,5 \text{ cm}^{3}/\text{kg},$$

 $\Delta v_{II} = 52,5 \text{ cm}^{3}/\text{kg},$
 $\Delta v_{III} = 25,0 \text{ cm}^{3}/\text{kg}.$

Es ist eine deutliche Verringerung der Volumenabnahme bei höheren Drücken zu sehen, was auch eine Abschwächung der deformierenden Spannungen bedeutet. Aus diesem Ansatz kann gefolgert werden, dass zu Beginn des Druckaufbaus eine deformierende Kraft auf das Gel ausgeübt wird, die bei der gegebenen Spannung des Gels nicht mehr elastisch aufgenommen werden kann, sondern zur teilweisen Zerstörung des Gels führt. Da die Elastizität eines Gels aber auch von der Anzahl der Haftstellen abhängt (vgl. Kapitel 5.2.3.1), darf der Einfluss der Druckhöhe auf diese und vor allem auf ihre Bindungsmechanismen nicht vernachlässigt werden.

Ab einem Druck größer 200 MPa wird die Abnahme des spezifischen Volumens geringer, die direkte Beeinflussung der vorhandenen Bindungskräfte durch den Druck gewinnt an Bedeutung. Dies bedeutet nicht, dass sie erst jetzt beginnt. Die zweite Phase des Gelabbaus könnte durch die zeitliche Abhängigkeit der Quellung erst verzögert ablaufen. Wie bereits erwähnt könnte die begrenzte Quellung bei Drücken bis 200 MPa ablaufen, da die Bindungskräfte noch intakt sind. Bei höheren Drücken werden dann Van der Waals-Bindungen und in diesem Milieu auch Wasserstoffbrückenbindungen aufgelöst. Ist dies erfolgt, so kann eine unbegrenzte Quellung stattfinden, die über einen Zeitraum von 300 s zur vollständigen Lösung führt.

Da die Untersuchungen nicht immer direkt im Anschluss an die Hochdruckbehandlung durchgeführt werden konnten, ist auch bewiesen, dass es sich um eine irreversible Auflösung des ß-Glucan-Gels handelt. Es findet keine Neuausbildung von Wasserstoffbrücken zwischen den Hydroxylgruppen der Glucopyranoseringe des ß-Glucans statt. Dies liegt daran, dass der Assoziationsgrad vom Dispersionsmittel, also vom Alkohol-Wasser-Gemisch, von der Konzentration und der Temperatur abhängig ist. Die Überlappungskonzentration, die eine spontane Assoziation bedeuten würde, wird für ein Alkohol-Wasser-Gemisch bei den herrschenden Temperaturen von 20 °C nicht erreicht. Ebenso liegt der Gelpunkt bei einer wesentlich höheren Konzentration, wodurch keine räumliche Ausdehnung der Assoziate im Netzwerk, also keine Gelbildung, erfolgen kann. Da keine spontane Gelbildung erfolgt, und auch keine mechanischen Belastungen oder Phasenwechsel vorliegen, die zu einer erzwungenen Gelbildung führen würden, bleibt das ß-Glucan als Einzelmolekül bestehen.

Die Auflösung des ß-Glucan-Gels ist folglich bei einem Druck von 600 MPa als vollständig zu betrachten, bei niedrigeren Drücken wird das Gel bei einer hohen Ausgangskonzentration nicht komplett zerstört. Es erfolgt allerdings bei allen Drücken ein teilweiser Abbau, der mit steigendem Druck deutlicher wird. Bei der vollständigen Auflösung des Gels scheint der Einfluss der deformierenden Spannungen während des Druckaufbaus geringer zu sein als die vom Druck abhängige Zerstörung der Haftstellen, da die Eigenfluoreszenz während der Druckhaltezeit deutlicher zunimmt. Bei allen Drücken ist keine erneute Gelbildung zu bemerken, der Abbau ist als irreversibel zu betrachten.

12 Zusammenfassende Darstellung des Einflusses der Hochdruckbehandlung auf die Filtrierbarkeit von Bier und das Verhalten von ß-Glucan-Gel

Die Untersuchungen des Einflusses der Hochdruckbehandlung auf die Filtrierbarkeit, die Stickstoff-Fraktionen, die Polyphenole, die Partikelgrößen und den Gehalt an ß-Glucan-Gel von Bier, sowie die Bestimmung des ß-Glucan-Gel-Gehalts, der Viskosität und die NMR-Untersuchungen im Modell-Gel zeigten, dass die Hochdruckbehandlung einen Einfluss auf die Filtrierbarkeit von Bier hat und lieferten Ergebnisse, die auf die Ursachen für diesen Effekt hindeuten.

Unabhängig, ob die untersuchten Bierproben in der Praxis Filtrationsprobleme verursachten oder nicht, ist durch die Hochdruckbehandlung eine Verbesserung der Filtrierbarkeit zu erreichen. Die Wahl des Filtermediums, Kieselgur oder Cellulosefilterschichten, ergab ebenso keinen Unterschied. Bei beiden Medien verbesserte sich die Filtrierbarkeit des Bieres. Die Auswirkung des Hochdrucks ist in weiteren Untersuchungen nur beim Gehalt an ß-Glucan-Gel ersichtlich geworden. Andere filtrationsrelevante Parameter wurden nicht oder nur in so geringem Maße beeinflusst, dass sie keine Auswirkung auf die Filtrierbarkeit haben. Der Gehalt des ß-Glucan-Gels sinkt bei einer Hochdruckbehandlung von 600 MPa für 300 s unter die Nachweisgrenze des Analysensystems, die bei 10 mg/l liegt. Gleichzeitig kam es bei dem so behandelten Bier, das einen ß-Glucan-Gel-Gehalt von 21 mg/l aufwies und eine schlechte Filtrierbarkeit zeigte, zu einer deutlichen Verbesserung der Filtrierbarkeit. Das Bier ist nach der Hochdruckbehandlung als gut filtrierbar zu bezeichnen. Bier, welches keine Filtrationsprobleme aufwies, wurde ebenfalls in seiner Filtrierbarkeit verbessert.

Der Einfluss des Hochdrucks ist allerdings nicht nur bei den geringen Konzentrationen an ß-Glucan-Gel im Bier festzustellen. Um die Auswirkungen bei hohen Konzentrationen zu ermitteln, wurde aus einem Hafergranulat, in welchem der ß-Glucananteil angereichert war, eine ß-Glucan-Gel-Lösung hergestellt. Es wurden Proben mit 400, 800 und geschätzten 8000 mg/l ß-Glucan-Gel erzeugt.
Zusammenfassende Darstellung des Einflusses der Hochdruckbehandlung auf die Filtrierbarkeit von Bier und das Verhalten von β-Glucan-Gel

Die Hochdruckbehandlung zeigte den gleichen Effekt wie beim Bier. Mit zunehmendem Druck wurde der Gehalt an ß-Glucan-Gel geringer. Unabhängig von der Ausgangskonzentration ist bei 600 MPa und 300 s Behandlungsdauer die Nachweisgrenze unterschritten. Ob es sich hierbei um einen Abbau zu ß-Glucan oder eine Überführung in den Solzustand handelt, kann nur durch die Viskosität gezeigt werden. Sowohl Gel als auch Sol tragen zu einer Erhöhung der Viskosität bei, wobei aber nur das Gel Einfluss auf die Filtrierbarkeit hat. Es wurde gezeigt, dass erstens der Gehalt an ß-Glucan-Gel einen Effekt auf die Viskosität hat, und zweitens, dass mit steigendem Druck und sinkendem Gehalt an ß-Glucan-Gel eine Verringerung der Viskosität erfolgt. Bei einer thermischen Überführung in den Solzustand ist dies nicht der Fall. Die Hochdruckbehandlung bewirkt folglich einen Abbau des ß-Glucan-Gels zu ß-Glucan. Diese Aussage wird durch die NMR-Messungen unterstützt. Auch hierbei ist deutlich zu erkennen, dass der Gehalt an gebundenem Wasser, wie es im Gel vorliegt, mit steigendem Druck abnimmt. Der Gehalt an freiem Wasser nimmt hingegen zu. Die wenig mobile Phase, die unter Berücksichtigung der Ergebnisse der Viskositätsmessung, dem Solzustand zurechenbar ist, bleibt auf geringem Niveau konstant. Die Online-Messungen der Eigenfluoreszenz des ß-Glucans zeigten, dass ab einer Behandlungsdauer von 300 s keine Veränderungen mehr stattfinden. Dies korreliert mit den Ergebnissen aus der Analyse des ß-Glucan-Gel-Gehalts. Auch hier zeigten die für 600 s behandelten Proben keine Veränderungen mehr. Allerdings stellte sich heraus, dass bis zu einem Druck von 200 MPa bereits während des Druckaufbaus der Abbau des ß-Glucan-Gels erfolgt. Bei höheren Drücken beginnt der weitere Abbau erst während der Druckhaltezeit und ist nach 300 s abgeschlossen. Der Abbau des ß-Glucan-Gels erfolgt also in zwei Phasen. Die erste Phase ist zeitunabhängig, und der Einfluss des Hochdrucks erfolgt während des Druckaufbaus. Dies ist durch die deformierenden Spannungen zu erklären, die durch den Druck direkt und ohne zeitliche Verzögerungen wirken und somit zu einer Zerstörung von Haftstellen führen. Es erfolgt die Auflösung von elektrostatischen und hydrophoben Bindungen, die schon unter geringem Druck zu diesem Verhalten tendieren können. Die zweite Phase des Abbaus erfolgt nach Erreichen des Druckniveaus bei Drücken von mindestens 300 MPa, da die noch bestehenden Bindungskräfte eine weitere Quellung verhindern. Bei Drücken von 300 MPa und mehr werden diese zerstört. Es tritt zeitlich versetzt die unbegrenzte Quellung ein, die zur vollständigen Lösung führt.

13 Summary

Summarizing description of the influence of high pressure treatment on the filterability of beer and the behaviour of β -glucan-gel

The investigations with beer showed a visible influence of high pressure treatment on the filterability. It was possible to improve the filterability, regardless whether the beer shows filtration problems or not. The selection of the filtration medium, kieselguhr or cellulose filter shifts, made also no difference. The filterability improved in both cases. In further investigations it was discovered, that only the content of β -glucan-gel is influenced by high pressure. Other relevant parameters showed no changes. The untreated beer sample had 21 mg/l of β -glucan-gel and a bad filterability. The content of β -glucan-gel after high pressure treatment (600 MPa for 300 s) was below the detection limit of 10 mg/l and the filterability was improved significantly. Also the filterability of beer without filtration problems could be improved.

The influence of high pressure on β -glucan-gel was not only discovered in beer with low concentrations. To figure out the effect on high concentrations, a β -glucan-gel solution was produced. Samples containing 400, 800 and approx. 8000 mg/l were made.

The high pressure treatment showed the same effect as in beer. Increasing pressure leads to lower contents of β -glucan-gel. Independent of the starting concentrations of β -glucan-gel, the detection limit was reached after a high pressure treatment with 600 MPa for 300 s. The determination of viscosity should demonstrate, whether destruction of β -glucan-gel leads to β -glucan or a sol state. Both, gel and sol, have high influence on the viscosity, but only the gel influences the filterability. The results of these investigations are: First, content of β -glucan-gel has an influence on viscosity, because a higher content leads to a higher viscosity. Second, increasing pressure leads to a lower viscosity. The thermal disintegration of gel results in the higher viscosity of the sol state expected. This was the evidence, that high pressure effects the disintegration of β -glucan-gel to β -glucan. The disintegration becomes more significant with increasing pressure. This theory is supported by the NMR

measurements. They showed, that the content of bound water, as occured in gel, is decreasing with increasing pressure. On the opposite the content of free water is increasing. The less mobile phase stayed constant on a low level. The sol state undergoes no influence due to high pressure. Online measurements of the fluorescence of β -glucan showed, that no changes occur anymore after a treatment time of 300 s. These results correlate with the determinations of the content of β -glucan-gel. The samples treated for 600 s showed no changes anymore. But it turned out, that up to 200 MPa the disintegration occurs already during the increasing time of the pressure. Further disintegration at higher pressures starts after reaching the pressure plateau. But it is finished after 300 s.

The disintegration of β -glucan-gel happens in two phases. The first phase is independent of time and the influence of high pressure takes place during pressure increasing. Because the pressure effects deforming stresses without any delay, a destruction of clinging points could happen. It occurs a dissolution of electrostatic and hydrophobic boundings, which tend to these effects even at low pressure. The second phase of disintegration occurs after reaching the pressure plateau of at least 300 MPa, because already existing bounding forces prevent a further swelling. These bounds will be destroyed because of the influence of pressure higher than 300 MPa and the delayed, unrestricted swelling can start. A complete solution occurs. The reorganisation of the gel after the destruction is prevented by the composition of the solution or the beer. This depends on the too low concentration of β -glucan, the dispersion substance, the temperature and the missing mechanical influences, which would force the integration of β -glucan-gel. The dissolution of β -glucan-gel is irreversible.

14 Literatur

- [1] HITE BH (1899). The Effect of pressure in the preservation of milk. West Virginia Agricultural Experiment Station, pp. 15-35
- [2] BRIDGEMAN PW (1914). The coagulation of albumen by pressure. *Journal of Biological Chemistry* **19**, pp. 511-512
- [3] PALZER S (1996). Ermittlung kinetischer Parameter und thermodynamischer Kenngrößen der druckinduzierten Molkeproteindenaturierung. Technische Universität München / Weihenstephan
- [4] SCHÖBERL H (1999). Physikalisch-chemische und strukturelle Auswirkungen einer hydrostatischen Hochdruckbehandlung auf Lebensmittel. Dissertation Technische Universität München / Weihenstephan
- [5] KNORR D (1993). Hydrostatic pressure treatment of food: microbiology. New Methods of Food Preservation. Unilever Research Laboratory, Bedford, pp. 161-165
- [6] CHEFTEL JC (1998). Commercial Pressurized Foods in Japan. *Food Science, Bioscience and Chemistry*. Ed: Isaacs, N. S. The Royal Society of Chemistry, Cambridge, pp. 506-507
- [7] HEINZ V (1997). Wirkung hoher hydrostatischer Drücke auf das Absterbe- und Keimungsverhalten sporenbildender Bakterien am Beispiel von Bacillus subtilis ATCC 9372. Dissertation Technische Universität Berlin
- [8] HERDEGEN V (1998). Hochdruckinaktivierung von Mikroorganismen in Lebensmitteln und Lebensmittelreststoffen. Dissertation Technische Universität München / Weihenstephan
- [9] RADEMACHER B, HINRICHS J (1998). Inactivation of Microorganisms and Enzymes in Pressure-treated Raw Milk. *High Pressure Food Science, Bioscience and Chemistry*. The Royal Society of Chemistry, pp. 151-154
- [10] PATTERSON M, MARGEY DM, MILLS G, SIMPSON R, GILMOUR A (1997): The effect of high hydrostatic pressure treatment on microorganisms in foods. *High Pressure research in the bioscience and biotechnology*. Leuven University Press, pp. 269-272
- [11] HERDEGEN V, SCHÖBERL H, RUSS W, MEYER_PITTROFF R, VOGEL RF (1997). Potential of high hydrostatic pressure treatment as a new method of sterilization for leftovers and food wastes for animal feeding. *High Pressure research in the bioscience and biotechnology*. Leuven University Press, pp. 463-466
- [12] CHEFTEL JC (1995): Review: High-pressure, microbial inactivation and food preservation. *Food science and technology international* **1**, pp. 75-90
- [13] BIELER C, HALLBAUER K, SCIGALLA W, LUDWIG H (1992). Druckinaktivierung von Mikroorganismen: Hochschulkurs Hochdruckpasteurisierung von Lebensmitteln. Institut für pharmazeutische Technologie und Biopharmazie. Heidelberg

- [14] RADEMACHER B, HINRICHS J, KESSLER HG (1998). Reaction Kinetics of Ultra-high Pressure treatment of Milk. *High Pressure Bioscience & Biotechnology*. Abstract book of the 4th joint meeting of japanese and european seminars on high pressure Bioscience and Biotechnology. Heidelberg
- [15] BRUNA D, ISTENESUVA L, VOLDRICH M, CEROYSKY M (1998). Composition Changes of Strawberry Puree during High Pressure Pasteurization. *High Pressure Bioscience & Biotechnology*. Abstract book of the 4th joint meeting of japanese and european seminars on high pressure Bioscience and Biotechnology. Heidelberg
- [16] KNORR D (1995). New methods of food preservation. Ed: Gould G. W.; Blackie Academic & Professional: London, pp. 159-175
- [17] JOLIBERT F, RUSS W, VOGEL RF (1997). High pressure pasteurisation and treatment of beer. Proceedings 1st BREWNET Forum: Energy Saving in Breweries
- [18] FISCHER S, SCHÖBERL H, RUSS W, MEYER_PITTROFF R (1998). Auswirkungen von hydrostatischem Hochdruck auf den Brauprozess und das Bier. *Monatsschrift für Brauwissenschaft (51)*, **7/8**, S. 120-123
- [19] ULMER H (2002). Molecular mechanisms of the high pressure inactivation of beer spoiling Lactobacillus plantarum. Dissertation Technische Universität München / Weihenstephan
- [20] PALOU E (1999). High-Pressure Treatment in Food Preservation. *Handbook of Preservation*. Ed: Rahman, S. M., pp. 532-575
- [21] MERTENS B, DEPLACE G (1993). Engineering aspects of High-Pressure Technology in the Food Industry. *Food Technology* **47**, pp. 164-169
- [22] ATKINS PW (2001). Physikalische Chemie. WILEY-VCH, Weilheim
- [23] TAUSCHER B (1995). Pasteurisation of food by high pressure: chemical aspects. *Lebensmittel Untersuchung und –Forschung* **200**, pp. 3-13
- [24] KAMP H (1988). Physikalische Chemie. Springer, Berlin
- [25] <u>http://www.gbv.de/HarriDeutsch/Desktop</u> Chemie
- [26] NICKEL U (1995). *Lehrbuch der Thermodynamik: Eine verständliche Einführung*. Carl Hanser, München
- [27] LUCAS K (2001). *Thermodynamik : Die Grundgesetze der Energie- und Stoffumwandlungen*. Springer, Berlin
- [28] FALBE F, REGNITZ M (1995). Römpp Chemielexikon, Thieme, Stuttgart
- [29] HOLLECK L (1950). *Physikalische Chemie und ihre rechnerische Anwendung: Thermodynamik*. Springer, Berlin
- [30] CHEFTEL JC (1995). High pressure, microbial inactivation and food preservation. *Food Science and Technology International*. pp. 75-90
- [31] TAUSCHER B (1992). Kann hydrostatischer Druck Einfluss auf organische Reaktionen in Lebensmitteln haben? Hochschulkurs Hochdruckpasteurisierung von Lebensmitteln. Institut für pharmazeutische Technologie und Biopharmazie. Heidelberg

- [32] ELDIK VAN R, KLÄRNER FG (2002). *High Pressure Chemistry*. Synthetic, Mechanistic and Supercritical Applications. WILEY-VCH, Weilheim
- [33] GROSS M, JAENIKE R (1994). Proteins under Pressure. *European Journal of Biochemistry* **221.** pp. 617-630
- [34] HOLZAPFEL WB, ISAACS NS (1997). Kinetic and thermodynamic measurement. *High Pressure Techniques in Chemistry and Physics*. Oxford University Press, Oxford. pp. 267-278
- [35] FÖRST P (2002). In-situ Untersuchungen der Viskosität fluider, komprimierter Lebensmittel-Modellsysteme. *Fortschritt-Berichte VDI*. Reihe 3, Nr. 725. VDI-Verlag, Düsseldorf
- [36] BELITZ HD (1992). Lehrbuch der Lebensmittelchemie. Springer, Berlin
- [37] KOCH W, KNORR D (1997). Nur kleine Eiskristalle. *Lebensmitteltechnik* **4**, S. 384-403
- [38] BRIDGEMAN PW (1911). Water in the liquid and five solid forms, under pressure. *Proc. Am. Acad. Arts Sci.* **47**. pp. 441-558
- [39] WAGNER W, PRUSS A. (2002). The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substances for General and Scientific Use. Journal of Physical and Chemical Reference Data 31 (2). pp. 387-535
- [40] PRUSS A, WAGNER W (1995). Eine neue Fundamentalgleichung für des fluide Zustandsgebiet von Wasser für Temperaturen von der Schmelzlinie bis zu 1273 K bei Drücken bis zu 1000 MPa. *Fortschritt-Berichte VDI*. Reihe 6, Nr. 320. VDI-Verlag, Düsseldorf
- [41] BROSTOW W, GRINDLEY T, MACIP MA (1985). Volumetric Properties of Organic Liquids as a Function of Temperature and Pressure: Experimental Data and Prediction of Compressibility. Materials Chemistry and Physics 12. pp. 37-97
- [42] PERRY RH (1984). Perry's Chemical Engineers' Handbook, 6th Edition, McGraw-Hill Book Co.
- [43] ARDIA A, KNORR D, HEINZ V (2004). Adiabatic Heat Modeling for Pressure Build-Up during High Pressure Treatment in Liquid Food Processing. Food and Bioproducts Processing 82 (C1). pp. 89-95
- [44] LUDWIG H (1992). Erzeugung und Anwendung von hydrostatischem Druck. Hochschulkurs Hochdruckpasteurisierung von Lebensmitteln. Institut für pharmazeutische Technologie und Biopharmazie. Heidelberg
- [45] HEINZ V (1999). Berichterstattung zum Forschungsvorhaben B 51: Untersuchungen zum Einsatz der Hochdruck-Technologie in der Brauindustrie. Wissenschaftsförderung der Deutschen Brauindustrie e. V.
- [46] KARLSON P, DOENECKE D, KOOLMAN J (1994). *Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler*. Thieme, Stuttgart
- [47] MORILD E (1981). The theory of pressure effects on enzymes. *Advances in Protein Chemistry* **34**, pp. 93-166
- [48] HEREMANS K (1982). High pressure effects on proteins and other biomolecules. Anniversary Review Biophysics and Bioengineering **11**, pp. 1-24

- [49] GROß M, JAENICKE R (1994). The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. *European Journal of Biochemistry* **221**, pp. 617-630
- [50] MASSON P (1992). Pressure denaturation of proteins. *High Pressure and Biotechnology* 224. Eds: Balny, C.; Hayashi, R.; Heremans, K.; Masson, P.: John Libbey Eurotext Ltd., pp. 89-99
- [51] MOZHAEV VV, HEREMANS K, FRANK J, MASSON P, BALNY C (1996). High pressure effects on protein structure and function. *Proteins: Structure, function and genetics* 24, pp. 81-91
- [52] BALNY C, MASSON P (1993). Effects of pressure on proteins. *Food Review International* **9**, pp. 611-628
- [53] WEEMAES C, LUDIKHUYZE I, VAN DEN BROECH B, HENDRICKX M (1998). High Pressure Inactivation of Polyphenoloxidase, Effects of pH and Temperature. *High Pressure Food Science, Bioscience and Chemistry*. The Royal Society of Chemistry, pp. 381-386
- [54] HAWLEY SA (1978). High pressure techniques. *Methodical Enzymology*. **49**, pp. 14-24
- [55] CLERY C, ZIADE A, RENAULT F, MASSON P (1997). Pressure, temperature and solvent effects on the stability of human butyrylcholinesterase. *High Pressure research in the bioscience and biotechnology*. Leuven University Press, pp. 75-78
- [56] DALLETT S, LEGOY MD (1997). Structural Modifikation of two Alcohol Dehydrogenases from Thermoanaerobium brockii and from Baker's yeast induced by Pressure. *High Pressure research in the bioscience and biotechnology*. Leuven University Press, pp. 83-86
- [57] KUNUGI S, TANAKA N (1997). Effects of Pressure on Protease reactions, Activation, Disactivation and Specifity. *High Pressure research in the bioscience and biotechnology*. Leuven University Press, pp. 79-82
- [58] STUTE R, KLINGLER RW, BOGUSLAWSHI S, ESHTIAGHI MN, KNORR D (1996). Effects of High Pressure Treatment on Starches. *Starch/Stärke* 48, pp. 399-408
- [59] EZAKI S, HAYASHI R (1992). High Pressure effects on starch, structural change on retrogradation. *High Pressure and Biotechnology* 224. Eds: Balny, C.; Hayashi, R.; Heremans, K.; Masson, P.: John Libbey Eurotext Ltd., pp. 163-165
- [60] GUSTIN D, BERA F, DUMONT DE CHASSART Q, MERTENS B (1997). Pectin Gelification under HHP, Gel Properties and Formation Mechanisms. *High Pressure research in the bioscience and biotechnology*. Leuven University Press, pp. 195-198
- [61] NARZISS L (1995). Abriss der Bierbrauerei. Enke, Stuttgart
- [62] BURCHARD W (1985). *Polysaccharide: Eigenschaften und Nutzung*. Springer, Berlin
- [63] NARZISS L (1992). β-Glucan und Filtrierbarkeit. Brauwelt 37, S. 1696-1706

- [64] HEREMANS K (1992). From living systems to biomolecules. *High Pressure and Biotechnology* 224. Eds: Balny, C.; Hayashi, R.; Heremans, K.; Masson, P.: John Libbey Eurotext Ltd., pp. 37-44
- [65] CHEFTEL CJ (1992). Effects of hydrostatic pressure on food constituents: an overview. *High Pressure and Biotechnology* 224. Eds: Balny, C.; Hayashi, R.; Heremans, K.; Masson, P.: John Libbey Eurotext Ltd., pp. 195-209
- [66] BUCHHEIM W, FREDE E, WOLF M, BALDENEGGER P (1998). Solidification and melting of some edible fats and model lipid systems under pressure. *High Pressure Bioscience & Biotechnology. Abstract book of the 4th joint meeting of Japanese and European seminars on high pressure Bioscience and Biotechnology.* Heidelberg
- [67] HAYASHI R, KAWAMURA Y, NAKAS T, OKINAKA O (1989). Application of high pressure to food processing: Pressurization of egg white and yolk, and properties of gels formed. *Agricultural Biological Chemistry* **53**, pp. 2935-2939
- [68] DONSI G, FERRARI G, MATTEO DE M (1996). High pressure stabilization of orange juice: Evaluation of the effect of process conditions. *Italian Journal of Food Science* 2, pp. 99-106
- [69] OGAWA H, FUKUHISA K, KUKUMOTO H (1992). Effect of hydrostatic pressure on sterilization and preservation of citrus juice. *High Pressure and Biotechnology* 224. Eds: Balny, C.; Hayashi, R.; Heremans, K.; Masson, P.: John Libbey Eurotext Ltd., pp. 269-278
- [70] BIGNON J (1996). Cold pasteurization for stabilization of fresh fruit juice. *Fruit-Processing* **6**, pp. 46-48
- [71] TAOUKIS P, PANAGIOTIDIS P, STOFOROS NG, BUTZ P, FISTER H, TAUSCHER B (1998). Kinetics of vitamin C degradation under high pressuremoderate temperature processing in model systems and fruit juices. *High Pressure Food Science, Bioscience and Chemistry*. Ed. Isaacs, N. S.; The Royal Society of Chemistry, Cambridge, pp. 310-316
- [72] BRUNA D, ISTENESOVA L, VOLDRICH M, CEFOYSKI M (1998).
 Compositional changes of strawberry puree during high pressure pasteurization. *High Pressure Food Science, Bioscience and Chemistry*. Ed. Isaacs, N. S.; The Royal Society of Chemistry, Cambridge, pp. 248-253
- [73] ISAACS NS, COULSON M (1996). The effect of pressure on processes modeling the Maillard reaction. *High Pressure Bioscience and Biotechnology*. Eds: Hayashi, R.; Balny, C.: Elsevier, Amsterdam, pp. 479-484
- [74] BUTZ P, TAUSCHER B (1998). Food chemistry under high hydrostatic pressure. *High Pressure Food Science, Bioscience and Chemistry*. Ed. Isaacs, N. S.; The Royal Society of Chemistry, Cambridge, pp. 133-144
- [75] SONOIKE K, SETOYAMA T, KUMA Y, KOBAYASHI S (1992). Effect of pressure and temperature on the death rates of Lactobacillus casei and Escherichia coli. *High Pressure and Biotechnology* 224. Eds: Balny, C.; Hayashi, R.; Heremans, K.; Masson, P.: John Libbey Eurotext Ltd., pp. 297-301
- [76] STYLES M, HOOVER DG, FARKAS D (1991). Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. *Journal Food Science* **56**, pp. 1404.1407

- [77] PATTERSON MF, QUINN M, SIMPSON R, GILMOUR A (1995). Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphatebuffered saline and foods. *Journal Food Proteins* **58**, pp. 524-529
- [78] CARLEZ A, CHEFTEL JC, ROSEC J, RICHARD N, SALDANA JL, BALNY C (1992). Effects of high pressure and bacteriostatic agents on the destruction of Citrobacter freundii in minced beef muscle. *High Pressure and Biotechnology* 224, Eds: Balny, C.; Hayashi, R.; Heremans, K.; Masson, P.: John Libbey Eurotext Ltd., pp. 365-368
- [79] PALOU E, LOPEZ-MALO A, BARBOSA-CANOYAS GV, WELTI-CHANES J, SWANSON BG (1997). Kinetic analysis of Zygosaccharomyces bailii inactivation by high hydrostatic pressure. *Lebensmittel Wissenschaft Technologie* 30, S. 703-708
- [80] WUYTACK EY, BOVEN S, MICHIELS CW (1998). Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. *Applied Environmental Microbiology* **64**, pp. 3224-3230
- [81] WOUTERS PC, GLAASKER E, SMELT JPP (1998). Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. *Applied Environmental Microbiology* **64**, pp. 509-514
- [82] ULMER H, GÄNZLE MG, VOGEL RF (1999). Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum. *Applied Environmental Microbiology* 66, pp. 3966-3973
- [83] PERRIER-CORNET JM, HAYERT M, GERVAIS P (1999). Yeast cell mortality related to a high pressure shift: occurrence of cell membrane permeabilization. *Journal Applied Microbiology* **87**, pp. 1-7
- [84] RITZ M, PILET MFP, THOLOZAN JL, FREDERIGHI M (1999). High hydrostatic pressure effects on Salmonella typhimurium: Physiological and morphological damages. *Food microbiology and food safety into the next millennium*. Eds.: Tuijtelaars, A. C. J.; Samson, R. A.; Rombouts, F. M.; Notermans, S.; Foundation Food Micro '99, Zeist
- [85] PALOU E, LOPEZ-MALO A, BARBOSA-CANOYAS GV, SWANSON BG (1999). High Pressure Treatment in Food Preservation. Handbook of Food Preservation. Ed.: Raman, M. S.; Marcel Dekker, New York
- [86] ANNEMÜLLER G (1991). Über die Filtrierbarkeit des Bieres Beurteilung und Einfluss der Inhaltsstoffe. *Monatszeitschrift für Brauwissenschaft* **2**, S. 64-71
- [87] EIFLER KJ, KRAUSS G (1975). Bierfiltration. I. Malzqualität, Brauprozess und Bierfiltration. Eine Literaturübersicht. *Monatsschrift für Brauwissenschaft* **28**, S. 221-222
- [88] DOUGLAS SG (1981). A rapid method for the determination of pentosans in wheat flour. *Food Chemistry* **7**, pp. 139-145
- [89] ANDEREGG P (1979). Filtrationshemmende Stoffe und Filtrierbarkeit. *Brauereirundschau* **90**, S. 39-43
- [90] WAGNER N (1997): Beta Glucan in Bier und die Bedeutung dieser Stoffgruppe für die Bierfiltration. Dissertation Technische Universität Berlin,

[91]	WAGNER I, ESSER K, KRÜGER E (1988). Analytik und Bedeutung hochmolekularer β-Glucane in Bier. <i>Monatsschrift für Brauwissenschaft</i> 41 , S. 384-395
[92]	LETTERS R (1977). Beta-Glucans in Brewing. <i>EBC Proceedings</i> , Amsterdam, pp. 211-224
[93]	LETTERS R, BYRNE H, DOHERTY M (1985). The complexity of beer β -glucans. <i>EBC Proceedings</i> , Helsinki, pp. 385-402
[94]	SCHUR F, PRENNINGER H (1978). Charakterisierung filtrationshemmender Stoffe. <i>Brauereirundschau</i> 89, S. 17-36
[95]	WANGE E (1986). Studium ausgewählter Würze- und Bierinhaltsstoffe unter dem Gesichtspunkt der Filtrierbarkeit. Dissertation Humboldt Universität Berlin
[96]	ESSER KD (1972). Zur Messung der Filtrierbarkeit. <i>Monatsschrift für Brauereiwissenschaft</i> 6, S. 145-151
[97]	AASTRUP S (1979). The relationship between the viscosity of an acid fluor extract of barley and its β -glucan content. <i>Carlsberg Res. Commun.</i> 44 , pp. 289-304
[98]	GJERTSEN P (1966). β -glucans in Malting and Brewing. I. Influence of β -glucan on the filtration of strong beers. A. S. B. C. Proceedings, pp. 113-120
[99]	KRÜGER E, WAGNER N, LINDEMANN B (1989). Einflussgrößen bei der Bierfiltration. <i>Brauwelt</i> 50, S. 2434-2445
[100]	LEEDHAM PA, SAVAGE DJ, CRABB D, MORGAN GT (1975). Materials and methods of wort production that influence beer filtration. <i>EBC Proceedings</i> , Nizza, pp. 201-216
[101]	WAGNER N, KRÜGER E (1990). Rheologische Eigenschaften der β -Glucane in Bier: Teil 1: Differenzierung der Viskosität, die durch β -Glucane hervorgerufen wird. <i>Monatsschrift für Brauwissenschaft</i> 43/10 , S. 328-335
[102]	GLÖCKNER G (1980). Polymercharakterisierung durch Flüssigkeits- chromatographie. <i>Physikalisch-chemische Trennmethoden. Bd. 17</i> . Ed. Krell, E.; VEB Deutscher Verlag der Wissenschaften, Berlin
[103]	LANGKAU R, SCHOBEL W (1996). Physik kompakt: Fluiddynamik und Wärmelehre. Viewegg & Sohn Verlagsgesellschaft mbH, Wiesbaden
[104]	STAUFF J (1960). Kolloidchemie. Springer, Berlin
[105]	LINEMANN A (1996). Untersuchung der Struktur-Eigenschafts-Beziehungen von β-Glucan bei der Bierherstellung. Dissertation Technische Universität Berlin
[106]	NIJENHUIS K (1989). Viscoelastic Properties of Thermoreversible Gels. <i>Physical Networks Polymers and Gels</i> . Eds.: Burchard, W.; Ross-Murphy, S. B.; Elsevier Applied Science, London
[107]	FLORY PJ (1974). Gel and Gelling processes: <i>Introduction lecture: Disc. Farad. Soc.</i> 57 , pp. 1-18
[108]	HERMANS J (1949). <i>Colloid Science. Vol. II</i> , Ed.: Kruyt, H.: Elsevier, Amsterdam

- [109] HERMANS J (1953). Flow properties of Disperse Systems. Amsterdam, pp. 61-65
- [110] CÖLFEN H (1993). Bestimmung thermodynamischer und elastischer Eigenschaften von Gelen mit Hilfe von Sedimentationsgleichgewichten in einer analytischen Zentrifuge am Beispiel des Systems Gelatine/Wasser. Dissertation Universität-GH-Duisburg
- [111] SCHURZ J (1974). *Einführung in die Strukturrheologie*. Berliner Union GmbH, Stuttgart
- [112] ABEL M (1996). Perkolationsmodelle für Sol-Gel-Übergänge an Oberflächen. Dissertation Universität Köln
- [113] DREIER W (1957). Beitrag zur Kenntnis der Filtrationsvorgänge. Dissertation ETH Zürich
- [114] RAIBLE K, HEINRICH T, NIEMSCH K (1990). Eine einfache neue Methode zur Bewertung der Filtrationseigenschaften von Bier. Monatsschrift für Brauwissenschaft 2, S. 60-65
- [115] KREISZ S, BACK W (1999). Neue Aspekte der Filtrierbarkeit von Bier. *EBC Proceedings*, Budapest, p. 781
- [116] SCHMITT T (1999). Einführung einer neuen Methode zur Vorhersage der Filtrierbarkeit aus Würze und Bier in einer Brauerei. Diplomarbeit Technische Universität München/Weihenstephan
- [117] MEBAK (1993). *Brautechnische Analysenmethoden, Band I + II.* Eigenverlag der MEBAK, Weihenstephan
- [118] http://de.wikipedia.org
- [119] JØRGENSEN KG, JENSEN SA, HARLEY P, MUNK L (1985). The Analyse of β-Glucan in wort and beer using Calcofluor. *EBC Proceedings*, Helsinki, pp. 403-410
- [120] WAGNER N, KRÜGER E (1990). Rheologische Eigenschaften der β-Glucane in Bier: Teil 2: Bestimmung der rheologischen Eigenschaften von Bier, β-Glucan und β-Glucan-Gel . *Monatsschrift für Brauwissenschaft* 43/12, S. 401-406
- [121] http://www.tri.fh-mannheim.de/rotvis.htm
- [122] LIEBENSPACHER F (1991). Untersuchungen über die Wasserdampfsorption und Wasserdampftransport in Packstoffen auf Cellulosebasis. Dissertation Technische Universität München
- [123] GÄNZLE MG, VOGEL RF (2001). On-line Fluorescence Determination of Pressure Mediated Outer Membrane Damage in Escherichia coli. System Applied Microbiology 24, pp. 477-485
- [124] β-GLUCAN 5700 Analyzer, Instruction Manual
- [125] CARRI-MED CSL 500, Instruction manual
- [126] Bruker, Typ minispec 120, Instruction manual

15 Anhang

Die statistische Absicherung erfolgte nach dem Test auf Ausreißerfreiheit nach Grubbs. Es wurde eine Signifikanzzahl α = 0,05 gewählt, d.h., dass die Werte mit einer 95 %-igen Wahrscheinlichkeit aus einer Grundgesamtheit stammen. Die zugehörigen Schwellenwerte sind unter 15.1 aufgeführt. Werte, die als Ausreißer ermittelt wurden, werden in den Tabellen durchgestrichen dargestellt, sie treten weder im Mittelwert noch in der Standardabweichung auf.

n	s = 95 %	s = 99 %	n	s = 95 %	s = 99 %
1	1,645	2,326	55	3,111	3,564
2	1,955	2,575	60	3,137	3,587
3	2,121	2,712	65	3,160	3,607
4	2,234	2,806	70	3,182	3,627
5	2,319	2,877	80	3,220	3,661
6	2,386	2,934	90	3,254	3,691
8	2,490	3,022	100	3,283	3,718
10	2,568	3,089	200	3,474	3,889
15	2,705	3,207	300	3,581	3,987
20	2,799	3,289	400	3,656	4,054
25	2,870	3,351	500	3,713	4,106
30	2,928	3,402	600	3,758	4,148
35	2,975	3,444	700	3,797	4,183
40	3,016	3,479	800	3,830	4,214
45	3,051	3,511	900	3,859	4,240
50	3,083	3,539	1000	3,884	4,264

15.1 Schwellenwerte nach Grubbs

15.2 Rohdaten des Einflusses auf die Filtrationsdauer (s) von hellem kellertrübem Bier (Weihenstephaner Original) bei der Schichtenfiltration nach Sartorius durch die Variation des Druckes während der Hochdruckbehandlung (Druckhaltezeit 300 s)

	Wasser		Bi	er	
	0,1 MPa	0,1 MPa	300 MPa	500 MPa	700 MPa
Zeit für 30 ml in s					
Probe 1	12,6	27	10,6	13,2	26,3
Probe 2	12,3	22,6	10,9	21,1	27,2
Probe 3	12,4	25,1	17,1	19,8	28,3
Mittelwert	12,433	24,9	12,867	18,033	27,267
Standardabweichung	0,153	2,207	3,669	4,236	1,0012
Zeit für 40 ml in s					
Probe 1	16,8	34,1	15,1	28,8	46,8
Probe 2	16,1	36,2	16,6	31,7	43,7
Probe 3	15,9	39,2	15,4	30,9	52,5
Mittelwert	16,267	36,5	15,7	30,467	47,667
Standardabweichung	0,473	2,563	0,794	1,498	4,464

15.3 Rohdaten des Einflusses auf die Filtrationsdauer (s) von hellem kellertrübem "Problembier" bei der Schichtenfiltration nach Sartorius durch die Variation des Druckes während der Hochdruckbehandlung (Druckhaltezeit 300 s)

	Wasser		Bi	er	
	0,1 MPa	0,1 MPa	300 MPa	500 MPa	700 MPa
Zeit für 30 ml in s					
Probe 1	12,6	34,7	15,1	18,3	32,7
Probe 2	12,3	38,6	14,3	17,1	34,9
Probe 3	12,4	39,1	14,5	19,8	38,8
Mittelwert	12,433	37,467	14,633	18,4	35,467
Standardabweichung	0,153	2,409	0,416	1,353	3,089
Zeit für 40 ml in s					
Probe 1	16,8	42,7	20,4	30,1	51,3
Probe 2	16,1	44,9	21,3	32,2	54,8
Probe 3	15,9	45,2	22,7	31,4	50,3
Mittelwert	16,267	44,267	21,467	31,233	52,133
Standardabweichung	0,473	1,365	1,159	1,060	2,363

15.4 Rohdaten des Spezifisches Filtratvolumens F_{spez.} von hellem kellertrüben "Problembier" bei der Kieselgurfiltration nach Raible in Abhängigkeit vom Druck und der Druckhaltezeit während der Hochdruckbehandlung

Druck	Druckhaltezeit	Filtrationszeit	Spez.	Mittohuort	Standard-
in MPa	in s	in s	Filtratvolumen	witterwert	abweichung
0,1		159	2,74		
		164	2,69	2,71	0,03
		166	2,70		
100	1	144	2,89		
		142	2,91	2,88	0,036
		149	2,84		
	150	92	3,61		
		127	3,07	3,31	0,275
		114	3,24		
	300	112	3,27		
		114	3,24	3,18	0,128
		130	3,04		
	500	84	3,78		
		83	3,80	3,74	0,093
		91	3,63		
200	1	186	2,54		
		207	2,41	2,50	0,067
		193	2,49		
	150	97	3,52		
		116	3,22	3,34	0,157
		111	3,29		
	300	82	3,82		
		119	3,17	3,47	0,330
		104	3,40		
	500	89	3,67		
		62	4,40	4,12	0,393
		65	4,30		
300	1	106	3,36		
		117	3,20	3,23	0,123
		123	3,12		
	150	113	3,26		
		87	3,71	3,51	0,233
		94	3,57		
	300	85	3,76	4.67	0.400
		58	4,55	4,25	0,428
		61	4,43		
	500	70	4,14		
		64	4,33	4,28	0,121
		63	4,36		

Druck	Druckhaltezeit	Filtrationszeit	Spez.	Mittolwort	Standard-
in MPa	in s	in s	Filtratvolumen	witterwert	abweichung
400	1	101	3,45		
		123	3,12	3,21	0,207
		128	3,06		
	150	81	3,85		
		71	4,11	4,04	0,171
		69	4,17		
	300	56	4,63		
		61	4,43	4,48	0,137
		63	4,36		
	500	51	4,85		
		44	5,22	5,06	0,190
		46	5,11		
500	1	81	3,85		
		86	3,73	3,75	0,090
		89	3,67		
	150	47	5,05		
		60	4,47	4,63	0,370
		63	4,36		
	300	52	4,80		
		38	5,62	5,16	0,418
		47	5,05		
	500	45	5,16		
		43	5,28	5,33	0,196
		39	5 55		

15.5 Rohdaten des Gesamtstickstoffgehalts bzw. Gehalts an nieder-, mittelund hochmolekularem Stickstoff im hellen unfiltrierten "Problembier" in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s

	Probo			Druck	in MPa		
	FIDDe	0,1	100	200	300	400	500
Gesamtstickstoff	1	903	912	904	901	873	915
	2	922	914	903	899	905	912
	3	905	907	904	897	903	910
	4	901	911	905	873	904	881
	5	903	940	905	917	907	911
	Mittelwert	903	911	904	899	905	912
	Standard- abweichung	2	3,606	0,577	2	2	2,517

	Droho	Druck in MPa						
	FIODe	0,1	100	200	300	400	500	
Niedermolekularer Stickstoff	1	541	453	512	477	534	531	
	2	532	467	478	479	531	523	
	3	537	417	482	481	542	533	
	4	538	431	477	480	536	532	
	5	507	460	474	479	4 99	524	
	Mittelwert	537	460	478	479	536	529	
	Standard- abweichung	4,509	7	4	2	5,686	5,292	
Mittelmolekularer Stickstoff	1	23 4	342	331	311	263	308	
	2	275	348	315	288	275	287	
	3	261	358	348	315	265	273	
	4	268	351	318	310	258	278	
	5	259	341	319	276	256	275	
	Mittelwert	266	348	321	312	263	279	
	Standard- abweichung	7,238	6,964	7,047	3,240	7,45	3,289	
Hochmolekularer Stickstoff	1	92	98	111	108	113	87	
	2	99	101	107	111	103	103	
	3	105	107	89	105	104	119	
	4	102	134	102	108	101	104	
	5	103	104	100	91	105	108	
	Mittelwert	100	103	105	108	106	105	
	Standar- abweichung	5,074	3,916	4,967	2,517	4,690	2,646	

15.6 Rohdaten des Gehalts an Polyphenolen bzw. Anthocyanogenen im hellen unfiltrierten "Problembier" in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s

	Probe			Druck	in MPa		
	FIODE	0,1	100	200	300	400	500
Poly- phenole	1	218,9	217,5	218,9	218,9	223,9	224,7
	2	223,9	218,2	219,8	215,7	239,8	231,2
	3	225,8	221,3	217,3	213,4	220,9	228,5
	4	223,2	218,8	244,9	231,8	201,0	228,0
	5	222,5	216,8	219,4	216,1	222,2	228,4
	Mittelwert	222,867	218,533	218,833	216,0	222,333	228,133
	Standard- abweichung	3,564	2,421	1,342	2,762	1,504	3,265

	Probo			Druck	in MPa		
	FIODE	0,1	100	200	300	400	500
Antho- cyanogene	1	56	55	52	55	54	67
	2	57	56	4 2	53	51	54
	3	56	53	55	53	56	54
	4	68	54	53	54	54	53
	5	57	55	51	53	55	52
	Mittelwert	56,5	54,667	52,667	53,667	54	53,333
	Standard- abweichung	0,577	1,527	2,081	1,154	2,645	1,154

15.7 Rohdaten der Absorption bei 600 nm im Überstand nach erfolgter Zentrifugation des hellen kellertrüben "Problembieres" bei verschiedenen Drehzahlen und Zeiten in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Haltezeit von 500 s

Dauer -	Brobo	Druck in MPa				
Umdrehungen/min	Probe	0,1	300	500	600	
	1	0,18	0,167	0,177	0,222	
	2	0,177	0,166	0,175	0,211	
2 – 500	3	0,176	0,166	0,172	0,213	
	Mittelwert	0,178	0,166	0,175	0,215	
	Standard- abweichung	0,002	0,001	0,003	0,006	
	1	0,08	0,088	0,091	0,0125	
	2	0,085	0,09	0,098	0,0119	
5 – 500	3	0,076	0,092	0,092	0,0113	
	Mittelwert	0,082	0,090	0,095	0,118	
	Standard- abweichung	0,005	0,002	0,004	0,001	
	1	0,054	0,056	0,054	0,071	
	2	0,052	0,057	0,056	0,073	
10 – 500	3	0,059	0,055	0,053	0,07	
	Mittelwert	0,056	0,056	0,055	0,071	
	Standard- abweichung	0,004	0,001	0,002	0,002	

Dauer -	Droho		Druck	in MPa	
Umdrehungen/min	Probe	0,1	300	500	600
	1	0,043	0,04	0,046	0,058
	2	0,04	0,041	0,043	0,057
2 – 1000	3	0,041	0,046	0,043	0,059
	Mittelwert	0,041	0,042	0,044	0,058
	Standard- abweichung	0,002	0,003	0,002	0,001
5 – 1000	1	0,041	0,039	0,041	0,059
	2	0,041	0,042	0,04	0,059
	3	0,038	0,04	0,039	0,058
	Mittelwert	0,040	0,040	0,040	0,059
	Standard- abweichung	0,002	0,002	0,001	0,001
	1	0,038	0,038	0,039	0,056
	2	0,038	0,038	0,04	0,056
10 – 1000	3	0,039	0,036	0,041	0,056
	Mittelwert	0,038	0,038	0,040	0,056
	Standard- abweichung	0,001	0,001	0,001	0
	1	0,041	0,04	0,042	0,058
	2	0,041	0,042	0,042	0,059
2 – 2000	3	0,039	0,039	0,042	0,059
	Mittelwert	0,040	0,040	0,042	0,059
	Standard- abweichung	0,001	0,002	0	0,001
	1	0,035	0,038	0,039	0,057
	2	0,037	0,039	0,04	0,054
5 – 2000	3	0,034	0,038	0,04	0,055
	Mittelwert	0,035	0,038	0,039	0,056
	Standard- abweichung	0,002	0,001	0,001	0,002

Dauer -	Broho	Druck in MPa			
Umdrehungen/min	Probe	0,1	300	500	600
	1	0,04	0,04	0,04	0,058
	2	0,04	0,038	0,048	0,06
10 – 2000	3	0,042	0,041	0,042	0,061
	Mittelwert	0,041	0,040	0,044	0,060
	Standard- abweichung	0,001	0,002	0,004	0,002
	1	0,038	0,035	0,034	0,048
	2	0,036	0,039	0,036	0,055
15 – 2000	3	0,04	0,038	0,039	0,059
	Mittelwert	0,038	0,037	0,037	0,054
	Standard- abweichung	0,002	0,002	0,003	0,006
	1	0,032	0,034	0,036	0,05
	2	0,035	0,035	0,038	0,052
10 – 3400	3	0,038	0,037	0,039	0,056
	Mittelwert	0,035	0,035	0,037	0,053
	Standard- abweichung	0,003	0,002	0,002	0,002
	1	0,243	0,212	0,222	0,238
	2	0,23	0,208	0,22	0,235
unzentrifugiert	3	0,23	0,208	0,22	0,236
	Mittelwert	0,234	0,209	0,221	0,236
	Standard- abweichung	0,008	0,002	0,001	0,002

15.8 Rohdaten zur Bestimmung des Gehalts an β-Glucan-Gel im hellen kellertrüben "Problembier" in Abhängigkeit vom Druck und der Haltezeit während der Hochdruckbehandlung

Druck in Brobo			Haltezeit in s			
МРа	FIDDe		1	150	300	500
0,1	1	20,5				
	2	19,2				
	3	23,4				
	Mittelwert	21				
	Standard- abweichung	2,150				
100	1		29,2	19,2	18,2	18,9
	2		27,5	18,4	18,4	19,8
	3		28,3	18,6	19,1	20,3
	Mittelwert		28,3	18,7	18,6	19,7
	Standard- abweichung		0,850	0,416	0,473	0,709
200	1		37,2	15,2	18,5	17,5
	2		31,4	14,8	17,2	18,8
	3		30,6	16,3	16,3	16,4
	Mittelwert		31	15,6	16,8	17,6
	Standard- abweichung		2,969	0,566	1,061	0,636
300	1		34,1	15,8	24,8	17,3
	2		31,9	15,2	16,3	17,9
	3		29,3	16,1	15,2	16,1
	Mittelwert		30,6	15,7	15,8	17
	Standard- abweichung		1,838	0,636	0,778	1,278

Druck in	Brobo	Haltezeit in s			
МРа	FIODE	1	150	300	500
400	1	 15,4	14,6	19,7	12,1
	2	 17,8	15,1	15,4	11,7
	3	 18,6	14,2	16,1	10,9
	Mittelwert	 18,2	14,7	15,8	11,3
	Standard- abweichung	 0,566	0,636	0,495	0,566
500	1	 22,4	9	7,4	6,3
	2	 20,3	8,3	6,8	6,9
	3	 18,4	10,2	7,9	5,9
	Mittelwert	 19,4	9,3	7,4	6,4
	Standard- abweichung	 1,344	1,343	0,778	0,707

15.9 Rohdaten zur Bestimmung des Gehalts an β-Glucan-Gel in mg/l im Modell-Gel in Abhängigkeit vom Druck und der Haltezeit bzw. der Temperatur während der Hochdruck- bzw. Temperaturbehandlung

Druck in MPa	Probe		Halte	zeit in s
			300	600
	400,1	409		
	400,2	385		
	400,3	343		
	Mittelwert	379,0		
0,1	Standard- abweichung	46,669		
	800,1	782		
	800,2	813		
	800,3	801		
	Mittelwert	798,7		
	Standard- abweichung	15,631		
	8000	7987,4		

Druck in MDa Droba		Haltezeit in s	
Druck in in a	FIODe	300	600
	400,1	 147	153
	400,2	 172	154
	400,3	 162	153
	Mittelwert	 160,3	153,3
100	Standard- abweichung	 10,607	0
	800,1	 378	370
	800,2	 394	368
	800,3	 365	382
	Mittelwert	 379,0	373,3
	Standard- abweichung	 14,526	7,572
	400,1	 168	151
	400,2	 137	121
	400,3	 149	140
	Mittelwert	 151,3	137,3
300	Standard- abweichung	 13,435	7,778
	800,1	 354	361
	800,2	 347	342
	800,3	 341	344
	Mittelwert	 347,3	349,0
	Standard- abweichung	 6,506	10,44

Druck in MPa Proba		Halteze	eit in s
	FIDDe	300	600
	400,1	 44	53
	400,2	 47	52
	400,3	 48	53
	Mittelwert	 46,3	52,7
500	Standard- abweichung	 2,828	0
	800,1	 52	50
	800,2	 56	42
	800,3	 44	43
	Mittelwert	 50,6	45,0
	Standard- abweichung	 6,11	4,359
	400,1	 0	7
	400,2	 0	1
	400,3	 2	3
	Mittelwert	 0,7	3,7
600	Standard- abweichung	 1,414	2,828
	800,1	 0	4
	800,2	 7	0
	800,3	 3	1
	Mittelwert	 3,3	1,7
	Standard- abweichung	 3,512	2,082

Temperatur in	Droho	Haltezeit in s	
°C	FIODE	300	600
	400,1	 	5
	400,2	 	3
	400,3	 	4
	Mittelwert	 	5,0
80	Standard- abweichung	 	2,121
	800,1	 	5
	800,2	 	3
	800,3	 	4
	Mittelwert	 	4,0
	Standard- abweichung	 	1

15.10 Rohdaten zur Bestimmung der Viskosität in 10⁻³ Pa⋅s in Abhängigkeit vom Druck und der Haltezeit bzw. der Temperatur während der Hochdruck- bzw. Temperaturbehandlung

	Droho		Halte	zeit in s
	Probe		300	600
0,1	400,1	1,95E-03		
	400,2	2,09E-03		
	400,3	2,01E-03		
	Mittelwert	2,02E-03		
	Standard- abweichung	5,619E-05		
	800,1	2,89E-03		
	800,2	2,76E-03		
	800,3	2,94E-03		
	Mittelwert	2,86E-03		
	Standard- abweichung	9,291E-05		
	8000,1	3,38E-03		
	8000,2	3,38E-03		
	8000,3	3,45E-03		

V

	Mittelwert	3,40E-03		
	Standard- abweichung	4,041E-05		
	400,1		1,94E-03	1,87E-03
	400,2		1,82E-03	1,95E-03
	400,3		1,81E-03	1,83E-03
	Mittelwert		1,86E-03	1,88E-03
	Standard- abweichung		5,907E-05	4,989E-05
	800,1		2,06E-03	1,98E-03
	800,2		1,98E-03	1,99E-03
100	800,3		1,99E-03	1,95E-03
	Mittelwert		2,01E-03	1,97E-03
	Standard- abweichung		4,359E-05	2,082E-05
	8000,1		2,45E-03	2,01E-03
	8000,2		2,48E-03	1,95E-03
	8000,3		2,42E-03	1,97E-03
	Mittelwert		2,45E-03	1,98E-03
	Standard- abweichung		3E-05	3,0551E-05
300	400,1		1,68E-03	1,78E-03
	400,2		1,71E-03	1,71E-03
	400,3		1,74E-03	1,77E-03
	Mittelwert		1,71E-03	1,75E-03
	Standard- abweichung		2,449E-05	3,091E-05
	800,1		1,75E-03	1,75E-03
	800,2		1,76E-03	1,73E-03
	800,3		1,72E-03	1,70E-03
	Mittelwert		1,74E-03	1,73E-03
	Standard- abweichung		2,082E-05	2,516-05
	8000,1		1,86E-03	1,76E-03
	8000,2		1,84E-03	1,74E-03
	8000,3		1,80E-03	1,77E-03
	Mittelwert		1,83E-03	1,76E-03

	Standard- abweichung	 3,055E-05	1,528E-05
	400,1	 1,52E-03	1,51E-03
	400,2	 1,51E-03	1,54E-03
	400,3	 1,53E-03	1,50E-03
	Mittelwert	 1,52E-03	1,52E-03
	Standard- abweichung	 1,52E-03	1,52E-03
	800,1	 1,75E-03	1,75E-03
	800,2	 1,69E-03	1,83E-03
500	800,3	 1,63E-03	1,64E-03
	Mittelwert	 1,69E-03	1,74E-03
	Standard- abweichung	 6E-05	9,539E-05
	8000,1	 1,72E-03	1,75E-03
	8000,2	 1,68E-03	1,73E-03
	8000,3	 1,73E-03	1,73E-03
	Mittelwert	 1,71E-03	1,74E-03
	Standard- abweichung	 2,646E-05	1,155E-05
	400,1	 1,48E-03	1,32E-03
	400,2	 1,42E-03	1,40E-03
	400,3	 1,43E-03	1,31E-03
	Mittelwert	 1,44E-03	1,34E-03
	Standard- abweichung	 2,625E-05	4,028E-05
	800,1	 1,49E-03	1,47E-03
600	800,2	 1,47E-03	1,45E-03
	800,3	 1,43E-03	1,44E-03
	Mittelwert	 1,46E-03	1,45E-03
	Standard- abweichung	 3,055E-05	1,528E-05
	8000,1	 1,49E-03	1,49E-03
	8000,2	 1,52E-03	1,49E-03
	8000,3	 1,39E-03	1,42E-03
	Mittelwert	 1,47E-03	1,47E-03

	Standard- abweichung	 6,807E-05	4,042E-05
Temperatur in °C			
	400,1	 	1,81E-03
	400,2	 	1,84E-03
	400,3	 	1,81E-03
	Mittelwert	 	1,82E-03
	Standard- abweichung	 	1,73E-05
	800,1	 	2,17E-03
	800,2	 	2,05E-03
80	800,3	 	2,08E-03
	Mittelwert	 	2,10E-03
	Standard- abweichung	 	6,24E-05
	8000,1	 	2,78E-03
	8000,2	 	2,61E-03
	8000,3	 	2,63E-03
	Mittelwert	 	2,67E-03
	Standard- abweichung	 	9,29E-05

15.11 Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei Atmosphärendruck

Zeit in s	Gel	CF	Gel - CF
(63,3456	43,77812	18,22528
5	63,52731	43,8762	18,2673
10	63,43901	43,54	17,7901
15	63,40032	43,26	17,522
20	63,35091	43,78	16,56
25	63,28875	43,88231	16,89582
30	63,04	43,56341	16,792589
35	63,0087	43,77982	19,836179
40	62,94329	43,64532	19,00868
45	62,784	43,201	19,909
50	62,48097	43,47895	19,00202
55	62,32044	43,30987	19,01057
60	62,202	43,10045	19,10155

65	62,178	42,98751	19,19049
70	62,11901	42,90004	19,21897
75	62,0034	42,93457	19,06883
80	62,1435	42,8712	19,2723
85	61,3301	42,8903	18,4398
90	60,782	42,999	17,783
95	60,34	42,78531	17,55469
100	60,77813	42,89	17,88813
105	60,355999	43,0087	17,347299
110	63,615999	43,45921	20,156789
115	62,654	43,35608	19,29792
120	63,11	43,55654	19,55346
125	63,52731	43,67432	19,85299
130	63,43901	43,4444	19,99461
135	63,40032	43,39002	20,0103
140	63,35091	43,31	20,04091
145	63,28875	43,208	20,08075
150	63,04	43,220901	19,819099
155	63,0087	43,18725	19,82145
160	62,94329	43,10943	19,83386
165	62,784	43,00089	19,78311
170	62,48097	43,024	19,45697
175	62,32044	42,97643	19,34401
180	62,202	42,9993	19,2027
185	62,178	42,89432	19,28368
190	62,11901	42,87732	19,24169
195	62,0034	42,72398	19,27942
200	62,0034	42,70055	19,30285
205	62,11901	42,90087	19,21814
210	62,178	42,9981	19,1799
215	62,202	42,9	19,302
220	62,32044	43,08925	19,23119
225	62,48097	43,14	19,34097
230	62,784	43,44562	19,33838
235	62,94329	43,56923	19,37406
240	62,48097	43,7843	18,69667
245	62,784	43,8892	18,8948
250	62,94329	43,67891	19,26438
255	63,0087	43,45903	19,54967
260	63,04	43,44809	19,59191
265	63,04	43,2	19,84
270	63,28875	43,20087	20,08788
275	63,28875	43,14403	20,14472
280	63,35091	43,122	20,22891
285	63,40032	43,08756	20,31276
290	63,43901	43,004	20,43501
295	63,4209	42,70037	20,72053
300	63,478	42,81117	20,66683
305	63,201	42,7118	20,4892

310 63,0073		42,93	20,0773
315	62,78201	43,20974	19,57227
320	62,6578	43,3709	19,2869
325	62,90391	43,44515	19,45876
330	62,84673	43,48933	19,3574
335	62,90473	43,49907	19,40566
340	63,0087	43,55209	19,45661
345	63,04	43,523	19,517
350	63,28875	43,2009	20,08785
355	63,35091	43,26678	20,08413
360	63,40032	43,3991	20,00122
365	63,43901	43,68891	19,7501
370	63,52731	43,5402	19,98711
375	63,42	43,01	20,41
380	63,2398	42,5332	20,7066
385	63,0047	42,78307	20,22163
390	62,987	42,88	20,107
395	62,84621	42,9	19,94621
400	62,74438	42,901	19,84338
405	62,55683	42,83224	19,72459
410	61,84362	42,808	19,03562
415	61,8903	42,97736	18,91294
420	61,73491	42,99	18,74491
425	61,63408	43,174	18,46008
430	61,56304	43,00845	18,55459
435	61,38762	43,11294	18,27468
440	61,00473	43,44987	17,55486
445	60,578	43,6712	16,9068
450	60,4	43,44905	16,95095
455	60,78003	43,472	17,30803
460	60,84551	43,3901	17,45541
465	60,934	43,67832	17,25568
470	60,99005	43,78334	17,20671
475	61,43982	43,89031	17,54951
480	61,6005	43,88	17,7205
485	61,78943	43,72	18,06943
490	61,98357	43,65095	18,33262
495	61,99909	43,56565	18,43344
500	62,33745	43,602	18,73545
505	62,4778	43,48907	18,98873
510	62,3892	43,44091	18,94829
515	62,3003	43,42001	19,00029
520	62 50070	43,38/49	20,01851
525	62 00457	43,2298	20,27099
530	62 0450	43,1004	20,70417
535	00,9400 l	42,097	20.04400
540	63 6003	42,03301	20,94499
545	00,0900	42,90473	20,70000
550	53,58	42,93485	20,04515

555	63,4997	42,82	20,6797
560	63,32078	42,903	20,41778
565	63,2401	42,99058	20,24952
570	63,223	43,45233	19,77067
575	63,0594	43,24987	19,80953
580	63,4987	43,20872	20,28998
585	63,3044	43,14593	20,15847
590	63,08	43,10083	19,97917
595	62,74671	43,00023	19,74648
600	62,55998	42,89451	19,66547
605	62,49071	42,82	19,67071
610	62,33089	42,8	19,53089
615	62,1201	42,79342	19,32668
620	62,3478	42,88956	19,45824
625	62,56896	42,90043	19,66853
630	62,47863	42,98432	19,49431
635	62,67941	42,8412	19,83821
640	62,661	42,56783	20,09317
645	62,47832	42,678	19,80032
650	62,49	42,5498	19,9402
655	62,558	42,69	19,868
660	62,67038	42,76	19,91038
665	62,7904	42,88632	19,90408
670	62,93321	42,90035	20,03286
675	62,99	42,96783	20,02217
680	63,0781	43,00156	20,07654
685	62,4876	43,02578	19,46182
690	62,67932	43,28739	19,39193
695	62,5501	43,56	18,9901
700	62,50344	43,34342	19,16002
705	62,69005	43,67009	19,01996
710	62,78	43,5401	19,2399
715	62,77456	43,44897	19,32559
720	62,8903	43,4002	19,4901
725	62,90073	43,32	19,58073
730	62,87303	43,00741	19,86562
735	62,802	42,889	19,913
740	62,55505	42,73569	19,81936
745	62,62	42,8901	19,7299
750	62,8903	42,84	20,0503
755	62,9	42,79342	20,10658

15.11 Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei einem Maximaldruck von 100 MPa

Zeit in s	Druck in MPa	Beta-Glucan	CF	Beta-Glucan - CF
0	0,1	62,0034	43,747	18,2564
5	0,1	62,1435	43,747	18,3965
10	0,1	61,3301	43,4952	17,8349
15	0,1	60,782	43,4246	17,3574
20	0,1	60,34	43,3482	16,9918
25	0,1	60,77813	43,3832	17,39493
30	0,1	60,355999	43,3954	16,960599
35	0,1	63,615999	43,4646	20,151399
40	16,5	62,654	43,747	18,907
45	33	63,11	43,4952	19,6148
50	49,5	65,33423	43,4246	21,90963
55	66	68,77633	43,3482	25,42813
60	82,5	70,03475	43,3832	26,65155
65	99	70,3323	43,3954	26,9369
70	100	70,09234	43,4646	26,62774
75	100	70,12	43,4188	26,7012
80	100	70,22005	43,2638	26,95625
85	100	70,1022	42,678	27,4242
90	100	69,56	42,0844	27,4756
95	100	69,77891	42,342	27,43691
100	100	69,89112	42,458	27,43312
105	100	69,688	42,321	27,367
110	100	69,83421	42,0078	27,82641
115	100	69,991	41,986	28,005
120	100	69,77331	41,92	27,85331
125	100	69,99845	41,84421	28,15424
130	100	69,698	41,801	27,897
135	100	69,10441	41,73441	27,37
140	100	69,55673	41,55601	28,00072
145	100	69,99012	41,3498	28,64032
150	100	69,77903	41,4992	28,27983
155	100	70,3487	41,23023	29,11847
160	100	70,198	41,0087	29,1893
165	100	70,2007	40,9987	29,202
170	100	70,01023	40,8657	29,14453
175	100	70,0008	40,778123	29,222677
180	100	69,87241	40,672	29,20041
185	100	69,9909	40,71329	29,27761
190	100	69,9231	40,99821	28,92489
195	100	70,342	40,883	29,459
200	100	70,4419	40,91	29,5319
205	100	70,006	40,998735	29,007265
210	100	70,14721	41,34591	28,8013
215	100	70,298	41,447	28,851

220	100	70,2204	41,87432	28,34608
225	100	70,1903	41,5589	28,6314
230	100	70,15441	41,78113	28,37328
235	100	70,1223	41,65	28,4723
240	100	70,298	41,66321	28,63479
245	100	69,3312	41,87432	27,45688
250	100	69,6904	41,55982	28,13058
255	100	69,77	41,77981	27,99019
260	100	69,71239	41,342	28,37039
265	100	69,44591	41,28	28,16591
270	100	69,20012	41,19843	28,00169
275	100	69,3896	41,7781	27,6115
280	100	69,44226	41,65343	27,78883
285	100	69,807	41,43793	28,36907
290	100	70,00367	41,414	28,58967
295	100	70,447	41,0089	29,4381
300	100	70,77901	41,02	29,75901
305	100	70,59832	40,99813	29,60019
310	100	70,69812	40,73299	29,96513
315	100	70,678	40,8932	29,7848
320	100	70,4401	41,00348	29,43662
325	100	70,4928	41,1743	29,3185
330	100	70,60913	41,37	29,23913
335	100	70,81	41,44208	29,36792
340	100	70,934	41,33489	29,59911
345	100	70,5002	41,4591	29,0411
350	100	70,321	41,44991	28,87109
355	100	70,89237	41,56027	29,3321
360	100	70,90025	41,40092	29,49933
365	100	70,00291	41,60908	28,39383
370	100	70,33987	41,77892	28,56095
375	100	70,31	41,8	28,51
380	100	70,887	41,93347	28,95353
385	100	70,904	41,87734	29,02666
390	100	70,768	41,78321	28,98479
395	100	70,88391	41,39903	29,48488
400	100	70,675	41,30023	29,37477
405	100	70,55431	41,29	29,26431
410	100	70,321	41,00379	29,31721
415	100	70,1004	41,14	28,9604
420	100	70,00211	41,0431	28,95901
425	100	69,78913	41,179	28,61013
430	100	69,78431	40,93704	28,84727
435	100	69,5601	40,78721	28,77289
440	100	69,809	40,66981	29,13919
445	100	69,9023	40,7801	29,1222
450	100	/0,774	40,58892	30,18508
455	100	/0,82231	40,54	30,28231
460	100	70,56	40,79013	29,76987

10-	100	70 0700	40.00004	00 00000
465	100	70,8792	40,89231	29,98689
470	100	70,50933	40,9903	29,51903
475	100	70,43122	41,498	28,93322
480	100	70,321	41,33219	28,98881
485	100	70,19861	41,27815	28,92046
490	100	70,2003	41,3395	28,8608
495	100	69,9265	41,1756	28,7509
500	100	69,7701	41,1289	28,6412
505	100	69,85	41,0047	28,8453
510	100	69,55421	41,01	28,54421
515	100	69,67123	40,86453	28,8067
520	100	69,99321	40,50012	29,49309
525	100	69,876	40,6701	29,2059
530	100	69,78	40,7923	28,9877
535	100	70,003	40,80023	29,20277
540	100	70,20457	40,85346	29,35111
545	100	70,2167	40,77032	29,44638
550	100	70,143	40,81342	29,32958
555	100	70,02222	40,90234	29,11988
560	100	70,135	40,95671	29,17829
565	100	70,049	41,00379	29,04521
570	100	70,12	41,23	28,89
575	100	70,0008	41,4	28,6008
580	100	69,4902	41,40084	28,08936
585	100	69,55	41,49923	28,05077
590	100	69,7821	41,47852	28,30358
595	100	69,843	41,501	28,342
600	100	69,77233	41,54982	28,22251
605	100	69,8804	41,4007	28,4797
610	100	69,8302	41,32	28,5102
615	100	69,78	41,00782	28,77218
620	100	69,9943	41,00003	28,99427
625	100	69,9021	40,745	29,1571
630	100	69,88377	40,83479	29,04898
635	100	69,6701	40,72139	28,94871
640	100	69,9023	40,60004	29,30226
645	100	70,445	40,53	29,915
650	100	70,56731	40,427	30,14031
655	100	70,77845	40,48903	30,28942
660	100	70,99321	40,30017	30,69304
665	100	70,6904	40,501	30,1894
670	100	70,443	40,78803	29,65497
675	100	70.378	40,98079	29,39721
680	100	70,225	41,732	28,493
685	100	70.1108	41.5003	28.6105
690	100	71,1101	41,67901	29,43109
695	100	71.07	41.77077	29.29923
700	100	70.0081	41.71	28.2981
705	100	70.01	41.98035	28.02965
		,	.,	,

710	99	69,789	42,34	27,449
715	82,5	69,88047	42,44987	27,4306
720	66	69,73	42,56712	27,16288
725	49,5	69,88342	42,77823	27,10519
730	33	70,0081	42,98735	27,02075
735	16,5	70,01	42,88971	27,12029
740	0,1	71,1101	43,45891	27,65119
745	0,1	71,07	43,441	27,629
750	0,1	70,889	43,60017	27,28883
755	0,1	70,456	43,31	27,146

15.12 Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei einem Maximaldruck von 200 MPa

				-
Zeit in s	Druck in MPa	Beta-Glucan	CF	Beta-Glucan - CF
0	0,1	61,893	43,747	18,146
5	0,1	61,893	43,747	18,146
10	0,1	60,008666	43,4952	16,513466
15	0,1	57,711	43,4246	14,2864
20	0,1	55,451333	43,3482	12,103133
25	0,1	56,724333	43,3832	13,341133
30	0,1	60,355999	43,3954	16,960599
35	0,1	63,615999	43,4646	20,151399
40	16,5	62,654	43,747	18,907
45	33	59,583666	43,4952	16,088466
50	49,5	57,707666	43,4246	14,283066
55	66	63,11	43,3482	19,7618
60	82,5	70,119333	43,3832	26,736133
65	99	76,806333	43,3954	33,410933
70	115,5	77,629333	43,4646	34,164733
75	132	78,003999	43,4188	34,585199
80	148,5	78,049333	43,2638	34,785533
85	165	77,203	42,678	34,525
90	181,5	75,873333	42,0844	33,788933
95	198	74,973	41,4114	33,5616
100	200	75,123333	41,32	33,803333
105	200	74,67891	41,0078	33,67111
110	200	74,772	40,322087	34,449913
115	200	74,33011	40,788	33,54211
120	200	74,00239	39,82473	34,17766
125	200	73,98	39,7833	34,1967
130	200	73,88921	39,0024	34,88681
135	200	73,974	39,874623	34,099377
140	200	73,6721	40,4492	33,2229
145	200	73,48221	40,02	33,46221
150	200	73,09871	40,73561	32,3631
155	200	72,8743	40,88913	31,98517
160	200	72,47891	40,87921	31,5997
100			10.00	~~~~~
-----	-------	----------	----------	----------
165	5 200	72,38776	40,32	32,06776
170	200	72,201	40,77812	31,42288
175	5 200	72,08	40,887	31,193
180	200	72,24	40,56713	31,67287
185	5 200	71,998	40,123	31,875
190	200	71,882	40,389	31,493
195	5 200	71,502	39,87	31,632
200	200	71,38	39,56234	31,81766
205	5 200	71,4492	39,7643	31,6849
210	200	71,99871	39,6571	32,34161
215	5 200	72,478	39,71	32,768
220	200	72,52	39,889	32,631
225	5 200	72,34001	40,502	31,83801
230	200	72,388	40,66791	31,72009
235	5 200	72,40011	40,9987	31,40141
240	200	72,4881	40,87613	31,61197
245	5 200	72,55519	40,32	32,23519
250	200	72,66723	40,005	32,66223
255	5 200	72,44998	40,32413	32,12585
260	200	72,63	40,1287	32,5013
265	5 200	72,44981	40,678	31,77181
270	200	72,0987	40,99871	31,09999
275	5 200	72,001	40,342	31,659
280	200	71,67	40,0012	31,6688
285	5 200	71,77653	39,782	31,99453
290	200	71,63451	39,567	32,06751
295	5 200	71,72	39,004	32,716
300	200	71,77821	38,7789	32,99931
305	5 200	72,897	38,9987	33,8983
310	200	72,71982	38,42	34,29982
315	5 200	72,66521	38,6651	34,00011
320	200	72,998	38,77231	34,22569
325	5 200	72,87125	38,6602	34,21105
330	200	72,9001	38,51	34,3901
335	5 200	72,67803	38,55123	34,1268
340	200	72,587	38,6413	33,9457
345	5 200	72,30985	38,88912	33,42073
350	200	72,102	39,002	33,1
355	5 200	71,89237	39,0028	32,88957
360	200	71,90025	39,0004	32,89985
365	5 200	72,00291	39,37	32,63291
370	200	72,33987	39,489	32,85087
375	5 200	72,31	39,671	32,639
380	200	71,887	39,3401	32,5469
385	5 200	71,904	39,0024	32,9016
390) 200	71,768	38,546	33,222
395	5 200	71,88391	38,77219	33,11172
400	200	71,50002	38,925	32,57502
405	5 200	72,00004	39,35	32,65004

	1			
410	200	72,3914	39,7603	32,6311
415	200	72,3331	39,87459	32,45851
420	200	72,87451	40,008	32,86651
425	200	72,7456	40,012	32,7336
430	200	72,66661	40,78135	31,88526
435	200	72,59	40,23	32,36
440	200	72,444	40,301	32,143
445	200	72,208	40,0056	32,2024
450	200	72,09813	39,78913	32,309
455	200	72,278	39,657	32,621
460	200	72,167	39,58713	32,57987
465	200	72,304	39,6541	32,6499
470	200	72,00891	39,743	32,26591
475	200	71,9	39,88101	32,01899
480	200	71,94	39,723	32,217
485	200	72,00381	39,501	32,50281
490	200	72,49981	39,2314	33,26841
495	200	72,53	39,1108	33,4192
500	200	72,77621	39,02	33,75621
505	200	72,83338	39,675	33,15838
510	200	72,73469	39,888	32,84669
515	200	72,785	39,75631	33,02869
520	200	72,6634	39,4568	33,2066
525	200	72,4571	39,71	32,7471
530	200	72,87451	39,8835	32,99101
535	200	72,7456	40,0014	32,7442
540	200	72,66661	40,156	32,51061
545	200	72,59	40,2	32,39
550	200	72,444	40,2397	32,2043
555	200	72,208	40,026	32,182
560	200	72,09813	39,902	32,19613
565	200	72,278	39,58321	32,69479
570	200	72,167	39,4987	32,6683
575	200	72,304	39,501	32,803
580	200	72,00891	39,3302	32,67871
585	200	72,102	39,34512	32,75688
590	200	71,89237	39,5672	32,32517
595	200	71,90025	39,3402	32,56005
600	200	72,00291	39,125	32,87791
605	200	72,33987	39,003	33,33687
610	200	72,31	39,01	33,3
615	200	71,887	38,5578	33,3292
620	200	71,904	38,432	33,472
625	200	71,768	38,69821	33,06979
630	200	71,88391	38,978	32,90591
635	200	71,50002	39,024	32,47602
640	200	71,66453	39,32981	32,33472
645	200	71,881	39,2897	32,5913
650	200	71,97545	38,78901	33,18644

655	200	72,08	38,84	33,24
660	200	72,00765	38,489	33,51865
665	200	72,138	38,77201	33,36599
670	200	72,34712	38,909	33,43812
675	200	72,98053	39,00174	33,97879
680	200	72,7835	39,398	33,3855
685	200	72,3	39,28579	33,01421
690	200	72,29	39,10035	33,18965
695	200	72,00897	39,01287	32,9961
700	200	72,187	38,8872	33,2998
705	200	72,19288	38,99812	33,19476
710	198	72,102	38,8012	33,3008
715	181,5	71,56733	39,56013	32,0072
720	165	71,41	39,908	31,502
725	148,5	71,33982	39,991	31,34882
730	132	71,007	40,765	30,242
735	115,5	71,1296	40,34013	30,78947
740	99	71,1101	40,45891	30,65119
745	82,5	71,07	40,441	30,629
750	66	70,0081	40,60017	29,40793
755	49,5	70,01	41,31	28,7
760	33	70,35189	41,78023	28,57166
765	16,5	70,99871	41,987	29,01171
770	0,1	70,69013	42,893	27,79713
775	0,1	70,70012	43,43991	27,26021
780	0,1	70,123	43,201	26,922
785	0,1	69,8	43,10089	26,69911

15.14 Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei einem Maximaldruck von 300 MPa

Zeit in s	Druck in MPa	Beta-Glucan	CF	Beta-Glucan - CF
0	0,1	61,345	43,7047	17,6403
5	0,1	60,893	43,747	17,146
10	0,1	60,008	43,4952	16,5128
15	0,1	57,711	43,46	14,251
20	0,1	55,451	43,780282	11,670718
25	0,1	56,724333	43,7332	12,991133
30	0,1	61,5999	43,871207	17,728693
35	0,1	62,615999	43,9823	18,633699
40	16,5	60,654	43,098	17,556
45	33	61,5866	43,7771	17,8095
50	49,5	62,707666	43,598127	19,109539
55	66	63,144561	43,3228	19,821761
60	82,5	73,119333	43,3832	29,736133
65	99	75,8033	43,3954	32,4079
70	115,5	77,6333	43,02	34,6133

	75	132	79,009	44,0048	35,0042
	80	148,5	75,3733	43,881	31,4923
	85	165	76,456663	43,082	33,374663
	90	181,5	75,833	42,0844	33,7486
	95	198	74,973	42,456	32,517
	100	214,5	75,123333	41,32	33,803333
	105	231	73,919666	41,0078	32,911866
	110	247,5	74,253666	40,322087	33,931579
	115	264	75,67	40,788	34,882
	120	280,5	74,361366	39,82473	34,536636
	125	297	72,926783	38,6312	34,295583
	130	300	71,34278	37,9106	33,43218
	135	300	72,654	37,1748	35,4792
	140	300	73,64532	36,6186	37,02672
	145	300	72,8765	35,8642	37,0123
	150	300	74,87653	34,7698	40,10673
	155	300	73,6547	34,5689	39,0858
	160	300	75,8765	34,78502	41,09148
	165	300	76,345	34,3498	41,9952
	170	300	79,8762	33,98275	45,89345
	175	300	79,004	33,7431	45,2609
	180	300	78,4765	33,3901	45,0864
	185	300	80,3452	32,78	47,5652
	190	300	81,789	33,438791	48,350209
	195	300	79,3408	33,103	46,2378
	200	300	79,821999	32,943712	46,878287
	205	300	80,296	31,87624	48,41976
	210	300	81,257333	31,300459	49,956874
	215	300	81,628333	30,7792	50,849133
	220	300	82,348999	30,45621	51,892789
	225	300	83,004666	30,2398	52,764866
	230	300	82,345	30,48792	51,85708
	235	300	81,077	29,402	51,675
	240	300	82,4873	29,388	53,0993
	245	300	82,789	29,102368	53,686632
	250	300	83,465	29,88	53,585
	255	300	83,4444	30,476	52,9684
	260	300	82,899942	30,88235	52,017592
	265	300	81,99934	30,509812	51,489528
	270	300	80,04	30,90113	49,13887
	275	300	81,23333	30,235	50,99833
	280	300	81,489	31,24861	50,24039
	285	300	81,374999	31,339	50,035999
	290	300	82,4587	31,0008	51,4579
	295	300	82,778812	30,23	52,548812
	300	300	82,876	31,4012	51,4748
	305	300	82,98	31,22008	51,75992
	310	300	82,008764	31,98732	50,021444
ļ	315	300	83,1298	31,456	51,6738

320	300	83,124	31,42231	51,70169
325	300	83,44089	31,00214	52,43875
330	300	83,52	31,2994	52,2206
335	300	83,86	30,50021	53,35979
340	300	84,006	30,7349	53,2711
345	300	83,894	30,4478	53,4462
350	300	83,888246	30,88643	53,001816
355	300	83,77806	30,13	53,64806
360	300	83,22406	30,4423	52,78176
365	300	83,5886	30,89756	52,69104
370	300	83,99567	30,003	53,99267
375	300	84,02	29,3001	54,7199
380	300	84,12228	29,692	54,43028
385	300	83,8772	30,67915	53,19805
390	300	83,0024	30,99254	52,00986
395	300	82,993	30,7823	52,2107
400	300	82,568	30,44513	52,12287
405	300	82,1006	30,221	51,8796
410	300	82,889932	29,70372	53,186212
415	300	82,68846	29,00457	53,68389
420	300	82,4498	29,551	52,8988
425	300	83,899923	29,3401	54,559823
430	300	83,90087	29,01	54,89087
435	300	83,6443	29,887	53,7573
440	300	84,2876	29,56823	54,71937
445	300	84,0098	30,2543	53,7555
450	300	83,28824	30,77012	52,51812
455	300	83,0048	30,7734	52,2314
460	300	83,08	30,532	52,548
465	300	83,568448	31,34	52,228448
470	300	83,000468	31,77824	51,222228
475	300	82,4598	31,8891	50,5707
480	300	82,001	30,55679	51,44421
485	300	83,87624	30,8891	52,98714
490	300	83,998124	30,2345	53,763624
495	300	83,804	30,2298	53,5742
500	300	83,8808	30,01	53,8708
505	300	84,208	29,88754	54,32046
510	300	84,30064	29,667	54,63364
515	300	84,222844	29,3319	54,890944
520	300	84,00006	29,34103	54,65903
525	300	83,89996	29,11092	54,78904
530	300	83,802	29,5567	54,2453
535	300	84,228104	30,88431	53,343794
540	300	83,9986	30,971	53,0276
545	300	83,48	30,445	53,035
550	300	83,288812	30,98237	52,306442
555	300	83,00086	30,78842	52,21244
560	300	83,889222	30,2219	53,667322

565	300	84,788931	30,31943	54,469501
570	300	84,675	31,332	53,343
575	300	84,00287	31,321	52,68187
580	300	83,9763	31,789	52,1873
585	300	83,4652	31,20881	52,25639
590	300	83,9873	30,567	53,4203
595	300	83,66693	30,231	53,43593
600	300	83,44778	31,0034	52,44438
605	300	83,00287	30,6672	52,33567
610	300	83,0127	30,213	52,7997
615	300	82,9897	30,00294	52,98676
620	300	82,456713	30,129	52,327713
625	300	82,300067	29,49832	52,801747
630	300	82,87	29,7882	53,0818
635	300	83,99982	29,9902	54,00962
640	300	83,7781	29,4402	54,3379
645	300	83,0023	29,32011	53,68219
650	300	83,1	29,77832	53,32168
655	300	83,874519	29,9949	53,879619
660	300	83,598347	30,62987	52,968477
665	300	83,103	30,7771	52,3259
670	300	83,296	31,0012	52,2948
675	300	84,788927	31,45691	53,332017
680	300	84,598	31,22001	53,37799
685	300	84,378	30,203	54,175
690	300	83,986	30,498	53,488
695	300	83,679003	30,0714	53,607603
700	300	83,4278	30,6148	52,813
705	300	84,598	31,2876	53,3104
710	300	84,378	31,832	52,546
715	300	83,986	31,8906	52,0954
720	300	83,679003	31,7376	51,941403
/25	300	83,4278	31,49	51,9378
730	297	82,478	31,3974	51,0806
735	280,5	81,34098	31,5744	49,76658
740	264	81,248982	29,32011	51,928872
740	247,5	81,14582	30,008	51,13782
750	231	80,9345	30,4421	50,4924
700	214,5	01,340	30,821	50,527
700	190	01,0072 90 207	30,9924	10,0140
705	161,5	70 469221	31 02247	49,909
775	148.5	78 3674	31,02347	40,444751
780	140,0	77 0002	31 65/21	40,47 14 15 21520
700	132	77 2004	31,00431	40,04008 16 2001
700	00	76 102756	31,0003	40,2001
705	99 82 5	75 5670	30 53214	45,054750
800	62,5 66	75 3081	30,332 14 30 33	43,03500 11 0721
805	40 5	74 864431	32 176	42 688/21
000	т <i>э</i> , J		52,170	72,000701

810	33	74,2003	32,8544	41,3459
815	16,5	72,7881	33,6982	39,0899
820	0,1	72,509823	34,2946	38,215223
825	0,1	72,00276	35,8282	36,17456

15.15 Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan bei einem Maximaldruck von 400 MPa

Zeit in s	Druck in MPa	Beta-Glucan	CF	Beta-Glucan - CF
0	0,1	61,893	43,747	18,146
5	0,1	61,893	43,747	18,146
10	0,1	60,008666	43,4952	16,513466
15	0,1	57,711	43,4246	14,2864
20	0,1	55,451333	43,3482	12,103133
25	0,1	56,724333	43,3832	13,341133
30	0,1	60,355999	43,3954	16,960599
35	0,1	63,615999	43,4646	20,151399
40	16,5	62,654	43,747	18,907
45	33	59,583666	43,4952	16,088466
50	49,5	57,707666	43,4246	14,283066
55	66	63,11	43,3482	19,7618
60	82,5	70,119333	43,3832	26,736133
65	99	76,806333	43,3954	33,410933
70	115,5	77,629333	43,4646	34,164733
75	132	78,003999	43,4188	34,585199
80	148,5	78,049333	43,2638	34,785533
85	165	77,203	42,678	34,525
90	181,5	75,873333	42,0844	33,788933
95	198	74,973	41,4114	33,5616
100	214,5	75,123333	40,727	34,396333
105	231	74,919666	40,2618	34,657866
110	247,5	74,253666	40,1136	34,140066
115	264	73,67	39,6232	34,0468
120	280,5	73,361333	39,1268	34,234533
125	297	73,927333	38,6312	35,296133
130	313,5	73,513	37,9106	35,6024
135	330	72,578999	37,1748	35,404199
140	346,5	71,046666	36,6186	34,428066
145	363	70,056333	35,8642	34,192133
150	379,5	69,604999	34,7698	34,835199
155	400	69,501666	33,9896	35,512066
160	400	68,996	33,1176	35,8784
165	400	68,775666	32,241	36,534666
170	400	68,78	31,3524	37,4276
175	400	69,788999	30,6122	39,176799
180	400	70,344666	29,6738	40,670866
185	400	72,055333	28,8544	43,200933
190	400	73,469333	28,156	45,313333

195	400	75,978333	27,7136	48,264733
200	400	77,153	27,4884	49,6646
205	400	77,918333	27,375	50,543333
210	400	78,208999	27,4032	50,805799
215	400	78,424666	27,3434	51,081266
220	400	79,044333	27,2296	51,814733
225	400	79,821999	27,0898	52,732199
230	400	80,296	26,9202	53,3758
235	400	81,257333	26,715	54,542333
240	400	81,628333	26,7856	54,842733
245	400	82,348999	26,8876	55,461399
250	400	83,004666	27,0958	55,908866
255	400	83,882333	27,0816	56,800733
260	400	85,247333	27,1516	58,095733
265	400	86,395666	27,113	59,282666
270	400	86,927666	27,1266	59,801066
275	400	87,115666	26,9874	60,128266
280	400	87,197999	27,0044	60,193599
285	400	87,940666	26,803	61,137666
290	400	88,943999	26,7752	62,168799
295	400	89,477333	26,6932	62,784133
300	400	89,655999	26,4942	63,161799
305	400	89,825666	26,493	63,332666
310	400	90,342333	26,6164	63,725933
315	400	90,982666	26,632	64,350666
320	400	91,133	26,604	64,529
325	400	91,544333	26,8576	64,686733
330	400	92,312333	26,8254	65,486933
335	400	92,577999	26,824	65,753999
340	400	93,034666	26,8562	66,178466
345	400	93,052666	27,1392	65,913466
350	400	93,658333	27,1388	66,519533
355	400	94,321	27,1682	67,1528
360	400	94,955999	27,2322	67,723799
365	400	95,526	27,1292	68,3968
370	400	95,377333	26,9214	68,455933
375	400	95,362333	26,8648	68,497533
380	400	95,279666	26,8656	68,414066
385	400	95,715999	26,6806	69,035399
390	400	95,878666	26,6584	69,220266
395	400	95,810999	26,5794	69,231599
400	400	95,886	26,4596	69,4264
405	400	95,876333	26,429	69,447333
410	400	95,993666	26,5422	69,451466
415	400	95,863333	26,475	69,388333
420	400	97,006333	20,4398	70,566533
425	400	98,215999	26,4342	/1,/81/99
430	400	98,481666	26,466	72,015666
435	400	97,722333	26,381	71,341333

440	400	97,317333	26,4452	70,872133
445	400	97,727999	26,4882	71,239799
450	400	97,828	26,5548	71,2732
455	400	97,439333	26,632	70,807333
460	400	96,869333	26,604	70,265333
465	400	97,353333	26,8576	70,495733
470	400	97,567666	26,8254	70,742266
475	400	97,65	26,824	70,826
480	400	97,473666	26,8562	70,617466
485	400	96,904333	27,1392	69,765133
490	400	97,179	27,1388	70,0402
495	400	96,818	27,1682	69,6498
500	400	97,104999	27,2322	69,872799
505	400	97,001333	27,1292	69,872133
510	400	96,897333	26,9214	69,975933
515	400	97,026666	26,8648	70,161866
520	400	96,955666	26,8656	70,090066
525	400	97,197333	26,6806	70,516733
530	400	97,172666	26,6584	70,514266
535	400	97,555333	26,5794	70,975933
540	400	97,139333	26,4596	70,679733
545	400	96,763333	26,429	70,334333
550	400	96,919666	26,5422	70,377466
555	400	97,428333	26,475	70,953333
560	400	97,334999	26,4398	70,895199
565	400	97,054999	26,4342	70,620799
570	400	97,089333	26,466	70,623333
575	400	97,891333	26,381	71,510333
580	400	97,489333	26,4452	71,044133
585	400	97,105	26,4882	70,6168
590	400	96,926	26,5548	70,3712
595	400	97,377333	26,632	70,745333
600	400	97,469666	26,604	70,865666
605	400	97,301	26,8576	70,4434
610	400	97,215	26,8254	70,3896
615	400	97,209666	26,824	70,385666
620	400	97,085	26,8562	70,2288
625	400	96,473333	27,1392	69,334133
630	400	95,790666	27,1388	68,651866
635	400	95,535666	27,1682	68,367466
640	400	95,150666	27,2322	67,918466
645	400	95,673333	27,1292	68,544133
650	400	95,769666	26,9214	68,848266
655	400	96,227666	26,8648	69,362866
660	400	95,946333	26,8656	69,080733
665	400	96,085666	26,6806	69,405066
670	400	95,428333	26,6584	68,769933
675	400	95,633666	26,5794	69,054266
680	400	95,767333	26,4596	69,307733

685	400	96,343666	26,429	69,914666
690	400	96,670999	26,5422	70,128799
695	400	96,129333	26,475	69,654333
700	400	96,367333	26,4398	69,927533
705	400	95,899333	26,4342	69,465133
710	400	95,848666	26,466	69,382666
715	400	95,315	26,381	68,934
720	400	94,984333	26,4452	68,539133
725	400	95,175333	26,4882	68,687133
730	400	95,280999	26,5548	68,726199
735	400	95,692666	26,4712	69,221466
740	400	95,587333	26,5016	69,085733
745	400	95,188999	26,5382	68,650799
750	400	95,122	26,4502	68,6718
755	400	94,896333	26,3556	68,540733
760	379,5	95,009333	26,4596	68,549733
765	363	94,960666	26,2944	68,666266
770	346,5	96,079333	26,204	69,875333
775	330	96,428666	26,175	70,253666
780	313,5	96,675	26,4648	70,2102
785	297	95,809	26,9774	68,8316
790	280,5	95,738666	27,701	68,037666
795	264	96,101	28,3468	67,7542
800	247,5	95,769	29,243	66,526
805	231	95,789	30,0714	65,7176
810	214,5	94,909666	30,6148	64,294866
815	198	94,469333	31,2876	63,181733
820	181,5	93,837666	31,832	62,005666
825	165	92,887666	31,8906	60,997066
830	148,5	92,762333	31,7376	61,024733
835	132	92,023	31,49	60,533
840	115,5	91,454666	31,3974	60,057266
845	99	91,139666	31,5744	59,565266
850	82,5	91,296333	32,176	59,120333
855	66	91,148333	32,8544	58,293933
860	49,5	90,162333	33,6982	56,464133
865	33	88,826666	34,2946	54,532066
870	16,5	87,736666	34,9464	52,790266
875	0,1	86,240333	35,4694	50,770933
880	0,1	84,883666	35,8282	49,055466
885	0,1	83,621	36,2284	47,3926
890	0.1	82,626333	36,6346	45,991733

15.16 Rohdaten zur Bestimmung der Eigenfluoreszenz von β -Glucan nach thermischer Behandlung bei Atmosphärendruck

Zeit in s	Beta-Glucan CF		Beta-Glucan - CF	
0	102,77843	43,77812	59,00031	
5	102,76345	43,8762	58,88725	
10	102,33498	43,54	58,79498	
15	102,24879	43,26	58,98879	
20	102,78945	43,78	59,00945	
25	102,995	43,88231	59,11269	
30	102,99	43,56341	59,42659	
35	103,04581	43,77982	59,26599	
40	103,4783	43,64532	59,83298	
45	103,62	43,201	60,419	
50	103,8734	43,47895	60,39445	
55	103,94432	43,30987	60,63445	
60	104,532	43,10045	61,43155	
65	104,94727	42,98751	61,95976	
70	105,693	42,90004	62,79296	
75	105,3321	42,93457	62,39753	
80	104,994	42,8712	62,1228	
85	104,9	42,8903	62,0097	
90	105,3348	42,999	62,3358	
95	105,6583	42,78531	62,87299	
100	105,93	42,89	63,04	
105	105,7634	43,0087	62,7547	
110	105,904	43,45921	62,44479	
115	105,92331	43,35608	62,56723	
120	105,8732	43,55654	62,31666	
125	105,9342	43,67432	62,25988	
130	106,4578	43,4444	63,0134	
135	106,5823	43,39002	63,19228	
140	106,88923	43,31	63,57923	
145	106,902	43,208	63,694	
150	107,432	43,220901	64,211099	
155	107,68329	43,18725	64,49604	
160	107,89437	43,10943	64,78494	
165	107,82303	43,00089	64,82214	
170	107,98734	43,024	64,96334	
175	108,371	42,97643	65,39457	
180	108,003	42,9993	65,0037	
185	108,29871	42,89432	65,40439	
190	108,47	42,87732	65,59268	
195	108,43692	42,72398	65,71294	
200	108,29564	42,70055	65,59509	
205	107,9843	42,90087	65,08343	
210	107,86329	42,9981	64,86519	
215	107,904	42,9	65,004	

220	107,63217	43,08925	64,54292
225	107,46782	43,14	64,32782
230	107,38	43,44562	63,93438
235	107,44007	43,56923	63,87084
240	107,56791	43,7843	63,78361
245	107,65782	43,8892	63,76862
250	107,20097	43,67891	63,52206
255	107,341	43,45903	63,88197
260	107,50224	43,44809	64,05415
265	107,689	43,2	64,489
270	107,84303	43,20087	64,64216
275	107,904	43,14403	64,75997
280	107,99	43,122	64,868
285	108,45891	43,08756	65,37135
290	108,657	43,004	65,653
295	108,59432	42,70037	65,89395
300	108,32208	42,81117	65,51091
305	108,11201	42,7118	65,40021
310	107,943	42,93	65,013
315	107,65398	43,20974	64,44424
320	107,35644	43,3709	63,98554
325	107,83402	43,44515	64,38887
330	107,64	43,48933	64,15067
335	107,6	43,49907	64,10093
340	107,8769	43,55209	64,32481
345	108,291	43,523	64,768
350	107,98	43,2009	64,7791
355	107,92371	43,26678	64,65693
360	107,8863	43,3991	64,4872
365	107,56903	43,68891	63,88012
370	107,6782	43,5402	64,138
375	107,733	43,01	64,723
380	107,9058	42,5332	65,3726
385	108,45318	42,78307	65,67011
390	108,389	42,88	65,509
395	108,6578	42,9	65,7578
400	108,7783	42,901	65,8773
405	108,5007	42,83224	65,66846
410	108,52129	42,808	65,71329
415	108,438	42,97736	65,46064
420	108,59	42,99	65,6
425	108,3387	43,174	65,1647
430	108,202	43,00845	65,19355
435	108,1004	43,11294	64,98746
440	108,005	43,44987	64,55513
445	107,80031	43,6712	64,12911
450	107,7432	43,44905	64,29415
455	107,54	43,472	64,068
460	107,67812	43,3901	64,28802

465	107,60022	43,67832	63,9219
470	107,5832	43,78334	63,79986
475	107,66	43,89031	63,76969
480	107,73216	43,88	63,85216
485	107,55008	43,72	63,83008
490	107,5204	43,65095	63,86945
495	107,49883	43,56565	63,93318
500	107,30227	43,602	63,70027
505	107,44923	43,48907	63,96016
510	107,50035	43,44091	64,05944
515	107,53341	43,42001	64,1134
520	107,67782	43,38749	64,29033
525	107,78921	43,2298	64,55941
530	107,8435	43,1004	64,7431
535	107,98372	42,897	65,08672
540	107,99032	42,83301	65,15731
545	107,8762	42,90475	64,97145
550	107,99	42,93485	65,05515
555	108,34901	42,82	65,52901
560	108,4778	42,903	65,5748
565	108,2901	42,99058	65,29952
570	108,387	43,45233	64,93467
575	108,39412	43,24987	65,14425
580	108,548	43,20872	65,33928
585	108,32101	43,14593	65,17508
590	108,4487	43,10083	65,34787
595	108,60043	43,00023	65,6002
600	108,3409	42,89451	65,44639
605	108,407	42,82	65,587
610	108,2	42,8	65,4
615	108,4308	42,79342	65,63738
620	108,56201	42,88956	65,67245
625	108,467	42,90043	65,56657
630	108,32	42,98432	65,33568
635	108,0034	42,8412	65,1622
640	108,04	42,56783	65,47217
645	107,6783	42,678	65,0003
650	107,77008	42,5498	65,22028
655	108,04591	42,69	65,35591
660	108,0056	42,76	65,2456
665	107,60327	42,88632	64,71695
670	107,671	42,90035	64,77065
675	107,701	42,96783	64,/331/
080	107,83205	43,00156	64,83049
685	107,99564	43,025/8	64,96986
690	108,2301	43,28/39	64,94271
695	108,3992	43,56	64,8392
700	108,47651	43,34342	65,13309
705	108,33	43,67009	04,65991

710	108,2789	43,5401	64,7388
715	108,40078	43,44897	64,95181
720	108,202	43,4002	64,8018
725	108,33625	43,32	65,01625
730	108,27	43,00741	65,26259
735	108,107	42,889	65,218
740	108,043	42,73569	65,30731
745	107,78915	42,8901	64,89905
750	107,893	42,84	65,053
755	108,004	42,79342	65,21058

15.17 Rohdaten zur Bestimmung der Relaxationszeiten c, e, g und Phasenanteile p_C, p_e, p_g gemessen bei 10 °C in Abhängigkeit vom Druck während der Hochdruckbehandlung bei einer Behandlungsdauer von 600 s

Druck in MPa	0,1	100	300	500	600
c in ms	0,0031	0,005	0,0048	0,0045	0,0173
р _с	0,17127652	0,03505347	0,03919796	0,00937453	0,02113063
e in ms	0,4032	0,5522	0,4785	0,2211	0,9309
p _e	0,03268123	0,0434905	0,04113452	0,0347816	0,01979393
g in ms	179,3785	258,7784	187,3695	112,1467	318,3972
pg	0,90627662	0,92273217	0,9226064	0,95583268	0,96100247