Reproduktion in Beständen der Traubeneiche (Quercus petraea (Matt.) Liebl.)

Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München

Reproduktion in Beständen der Traubeneiche (Quercus petraea (Matt.) Liebl.)

Eva Trainer

Vollständiger Abdruck der von der Fakultät für Forstwissenschaft und Ressourcenmanagement zur Erlangung des akademischen Grades eines Doktors rer. silv. genehmigten Dissertation.

Gutachter: Prof. Dr. Gerhard Müller-Starck
 Gutachter: Prof. Dr. Reinhard Mosandl

Tag der mündlichen Prüfung: 10. Juli 2001

Danksagung

Die vorliegende Arbeit konnte nur mit der engagierten Unterstützung einer Vielzahl von Beteiligten entstehen.

An erster Stelle möchte ich an Dipl. Forstwirt Herbert Böhrer erinnern, der im September 1996 die Bearbeitung des Themas mit großem Einsatz begonnen hat. Bei einem tragischen Unfall im Februar 1997 ist Herbert Böhrer tödlich verunglückt. Ich hoffe die Arbeit in seinem Sinn zu Ende geführt zu haben.

Mein besonderer Dank gilt Herrn Prof. Dr. Gerhard Müller-Starck für die Themenstellung, die kompetente Leitung und die engagierte Betreuung der vorliegenden Arbeit. Er hat mir die Möglichkeit gegeben, in einem internationalen Team mit hervorragendem Arbeitsklima tätig zu sein.

Bei meinen Kollegen Uta Strehle, Eliane Röschter und Gerd Maack bedanke ich mich ganz herzlich für die intensive Einarbeitung in die Labortechniken der Isoenzymanalyse. Bei Eliane Röschter möchte ich mich auch für die Pflege meiner Eichensämlinge und ihre nie versiegende Hilfsbereitschaft bei der Überwindung nicht ausbleibender Computerprobleme bedanken. Auch Sabina la Scala, Christiane Bittkau, Ricardo Riegel, Marina Bozhko und Roland Schubert danke ich für ihre Hilfsbereitschaft, Diskussionen und Anregungen. In meinen Dank einschließen möchte ich auch Gisela Krügel, Beatrix Kain und Maria Thole, die mir sehr geholfen haben, wenn verwaltungstechnische Fragen zu bewältigen waren, sowie Manuela Blümenröther, Michael Wiegand und Hennar Rothe, die mir bei Beerntung und Außenaufnahmen zur Seite standen, und natürlich Klaus Wagner für seine große Hilfe beim Laborendspurt. Ingrid und Kuno Brehm danke ich besonders für die kritische Durchsicht des Manuskripts.

Außerdem möchte ich mich bei allen Mitarbeitern der beteiligten Forstämter und behörden bedanken. Sie haben sich meinen Anliegen gegenüber stets aufgeschlossen gezeigt und mit großem Interesse und persönlichem Einsatz zur Materialgewinnung beigetragen.

Mein Dank gilt auch der Deutschen Forschungsgemeinschaft (DFG), die diese Arbeit im Rahmen der Projekte Mu 774/2-1 und Mu 774/2-2 gefördert hat.

Inhaltsverzeichnis

1.	Einl	eitung		1
	1.1	1.1.1	aumart Traubeneiche (<i>Quercus petraea</i> (Matt.) Liebl.) Natürliche Verbreitung Waldbauliche und ertragskundliche Eigenschaften	3
			sowie Gefährdungen der Traubeneiche	4
			Waldgeschichtliche Rahmenbedingungen	5
			Wirtschaftliche Bedeutung Die Reproduktion der Traubeneiche	6 7
		1.1.5	Die Reproduktion der Traubenerene	,
			zliche Grundlagen	11
			tische Variation europäischer Eichenarten	14 15
	1.4	Proble	emstellung	13
2.	Ziele	e der A	rbeit	17
	2.1	Quan	tifizierung genetischer Variation	17
	2.2	_	eich genetischer Strukturen von Samenerntebeständen,	1.5
	2.3	_	ut und Jungwuchs und Charakterisierung der Reproduktion rtung und Prognose genetischer Belastungen	17
	2.3		Folgegeneration	17
3.	Mate	erial ur	nd Methoden	19
	3.1	Mater	rial	19
		3.1.1	Auswahl der Versuchsflächen	19
			Repräsentanz der Erhebung	23
		3.1.3	Blühbeobachtungen	25
	3.2	Metho	oden	26
		3.2.1	Isoenzymanalyse	26
			Erfassung genetischer Merkmale	27
			Quantifizierung der genetischen Variation	27
		3.2.4	Quantifizierung der Auswirkungen des Reproduktions- systems auf die genotypische Struktur	30
			systems and are generypische strantar	
4.	Erge	bnisse		33
	4.1	Genet	tische Variation innerhalb der Populationen	33
			Genetische Vielfalt	34
			Heterozygotie	35
			Genetische Diversität	35
		4.1.4	Populationsdifferenzierung	36

	4.2	Genetische Variation zwischen den Beständen	36
		4.2.1 Homogenitätstest	36
		4.2.2 Genetischer Abstand	37
		4.2.3 Genetische Differenzierung	42
	4.3	Vergleich der Altbestände mit ihren Nachkommenschaften	45
		4.3.1 Genetische Vielfalt	45
		4.3.2 Heterozygotie	47
		4.3.3 Genetische Diversität	47
		4.3.4 Genetischer Abstand	48
		4.3.5 Genetische Differenzierung	51
		4.3.6 Referenzstrukturen	56
		4.3.7 Assortative Paarungspräferenz	61
	4.4	Blüte und Fruktifikation	62
	4.5	Pilotstudie zur Vergleichbarkeit von Mikrosatelliten	
		und Isoenzymanalysen	65
		4.5.1 Genetische Variation	66
		4.5.2 Fixierungskoeffizienten	67
		4.5.3 Referenzstrukturen	68
5	. Disl	kussion	70
	5.1	Fragestellung	70
	5.2	Untersuchungsmethode und genetische Markersystem	70
	5.3	Genetische Variation innerhalb der Populationen	71
	5.4	Genetische Variation zwischen den Beständen	73
	5.5	Vergleich der Altbestände mit ihren Nachkommenschaften	74
	5.6	Markervergleich Mikrosatelliten - Isoenzymanalyse	83
	5.7	Schlussfolgerungen für die forstliche Praxis und Gesetzgebung	84
6	. Zus	ammenfassung	89
7	. Lite	raturverzeichnis	91
8	. Anh	ang	
_			

1. Einleitung

In Mitteleuropa sind etwa 40,6 % (Nordeuropa 43,2 %, Westeuropa 23,8 % und Osteuropa 42,6%) der Landfläche von Wäldern bedeckt (BML 1999, 2001, STATISTI-SCHES BUNDESAMT DEUTSCHLAND 2001). Wälder stellen somit eine der bedeutendsten natürlichen Vegetationsformen dar. Sie erfüllen unverzichtbare Nutz-, Schutz- und Erholungsfunktionen. Ihre nachhaltige Bewirtschaftung im Rahmen einer naturnahen Forstwirtschaft gehört heute zu den natürlichsten Landnutzungsformen.

1

Die Eiche ist im mitteleuropäischen Raum eine Waldbaumart mit hoher ökologischer und forstlicher Bedeutung. Die Traubeneiche nimmt in der Forstwirtschaft wegen ihres hohen wirtschaftlichen Wertes eine besondere Stellung ein. Als bestandsbildende Baumart oder auch als Beimischung ist sie Grundlage und Bestandteil vieler komplexer Waldökosysteme. Die an Eichenwälder gebundenen vielfältigen Lebensgemeinschaften von Fauna und Flora sind unersetzliche Bestandteile der belebten Umwelt (ZAHNER und LOY 2000).

Der Wald als Ökosystem zeigt einige Besonderheiten. Aufgrund ihrer Ortsgebundenheit und Langlebigkeit sind Waldbäume einer äußerst komplexen Umwelt ausgesetzt. Dies gilt insbesondere für die Eiche mit ihrer außergewöhnlich langen Lebensdauer von bis zu 800 Jahren. Auf diese Weise unterliegt sie einer sehr großen zeitlichen und räumlichen Umweltheterogenität. Dies ist auch bei einer forstlichen Bewirtschaftung der Fall. Die Umtriebszeiten liegen bei der Eiche in der Regel deutlich über 200 Jahren. Im Vergleich zu anderen Baumarten ist dies auch aus forstlicher Sicht ungewöhnlich lang.

Eine hohe genetische Variation ist die Voraussetzung dafür, dass Baumpopulationen flexibel auf Änderung der Umweltverhältnisse reagieren können (GREGORIUS *et al.* 1985, GREGORIUS 1995, ZIEHE *et al.* 1996). Durch sie wird die Anpassungsfähigkeit determiniert. Als ökologisch-genetischer Stabilitätsparameter charakterisiert sie das Potential einer Population, sich durch Änderung ihrer genetischen Strukturen an variable Umweltbedingungen immer wieder anzupassen und dadurch auf Dauer zu überleben (GREGORIUS 1991b). Demgegenüber beschreibt die Angepasstheit einer Population den Zustand, der es dieser Population ermöglicht, unter den jeweils gegebenen Umweltbedingungen zu überleben und zu reproduzieren (GREGORIUS *et al.* 1985, GREGORIUS 1989b).

Waldbäume weisen gegenüber anderen Nutzpflanzen eine größere genetische Variabilität auf, bezogen auf Heterozygotie und mittlere Anzahl Allele (Gene) je Genort (MÜLLER-STARCK 1997d, STREHLE 2000). In dieser Hinsicht unterscheiden sich Bäume in erheblichem Maß von anderen Nutzpflanzen.

Die Umweltheterogenität ist im Rahmen der forstlichen Bewirtschaftung nur in begrenztem Rahmen beeinflussbar. Manche Maßnahmen, wie z.B. Düngung und Bodenmelioration sind wirtschaftlich und ökologisch differenziert zu werten. Andere Umweltvariablen wie beispielsweise ungünstige klimatische Standortbedingungen können überhaupt nicht beeinflusst werden. Auf der anderen Seite verändert der Mensch aber auch das Klima und ist verantwortlich für Immissionen wie beispielsweise den erhöhten Stickstoffeintrag.

Aus der Ungleichheit der Generationszyklen der Eichen- und ihrer Parasitenpopulationen ergibt sich ein besonderes Risiko. Mit der Lebensdauer von Waldbäumen steigt die Zahl der Populationszyklen der meist kurzlebigen Parasiten. Entsprechend steigt die Wahrscheinlichkeit, dass die Schadorganismen neue angepasste genetische Varianten an den Wirt entwickeln und so dessen Abwehrmechanismen überwinden. Diese Belastungen durch biotische und abiotische Schadfaktoren sind nur schwer prognostizierbar und entziehen sich weitgehend der Beeinflussbarkeit durch den Menschen.

In den letzten Jahrzehnten haben die Belastungen der Wälder immissionsbedingt zugenommen, so dass die Anforderungen an das Potential zur Anpassungsfähigkeit an Stressfaktoren entscheidend an Bedeutung gewonnen hat.

Zusätzlich zum natürlichen Umweltstress, bedingt durch Standort, Frost oder Parasitenbefall, kommen menschliche Eingriffe in die Waldökosysteme. Waldnutzung und -bewirtschaftung beeinflussen die Entstehung und Entwicklung des Waldes (MOSANDL 1991a, 1991b, KOHLSTOCK 1993, KÜSTER 2000). Bereits geringe Eingriffe in natürliche Systeme wie z.B. die Beschaffung von forstlichem Vermehrungsgut (Erntemodus), die Art der Verjüngung (Naturverjüngung, Saat oder Pflanzung), das Verjüngungsverfahren, Zäunung, sowie Pflege und Durchforstung können weitgehend unbekannte ökologisch-genetische Konsequenzen zur Folge haben. Diese Beeinträchtigungen können dazu führen, dass sich die Viabilität der jeweiligen Populationen verringert und Individuen schon vorzeitig absterben.

In Anbetracht der sowohl ökologischen als auch ökonomischen Bedeutung unserer Wälder und der komplexen Einflüsse, denen sie unterliegen, steht die Bewahrung der Anpassungsfähigkeit an variable Umweltbedingungen und damit die Stabilität für Baumpopulationen im Vordergrund (MÜLLER-STARCK *et al.* 1995). Eine große genetische Variation innerhalb von Eichenpopulationen ist damit die wichtigste Voraussetzung für deren Fähigkeit, sich an komplexe und sehr variable Umweltverhältnisse anzupassen und dadurch über lange Zeiträume zu überleben.

Nach den geltenden gesetzlichen Bestimmungen über forstliches Vermehrungsgut werden Bestände zur Saatgutgewinnung vor allem nach phänotypischen Merkmalen

zugelassen. Eine praxisnahe, forstgenetische Grundlagenforschung kann dazu beitragen, dass in Zukunft verstärkt auch genetische Kriterien zur Beurteilung der Qualität von forstlichem Vermehrungsgut angewendet und auch bei der Gesetzgebung Berücksichtigung finden.

Die vorliegende Arbeit konzentriert sich auf die Untersuchung der Waldverjüngung bei der Traubeneiche (*Quercus petraea* (Matt.) Liebl.). Dieses Stadium des Übergangs vom Altbestand zur Verjüngung determiniert das Anpassungspotential der nachfolgenden Generation und hat elementare Bedeutung für deren langfristiges Überleben. Die genetische Variation (genetische Variabilität), aber auch die genetischen Belastungen für die nachfolgenden Generationen werden in diesem Stadium festgelegt.

Mit Hilfe genetischer Marker können Genotypen von Altbäumen, Samen und Jungpflanzen ermittelt werden. Die Ergebnisse dieser Inventuren ermöglichen die Bestimmung der genetischen Variation innerhalb und zwischen Altbeständen sowie ihre Dynamik beim Übergang zur nächsten Generation. Destabilisierende Einflüsse auf Waldökosysteme (Genverluste, Inzuchtdepression) können so besser erkannt und in Zukunft vermieden werden.

1.1 Die Baumart Traubeneiche (*Quercus petraea* (Matt.) Liebl.)

1.1.1 Natürliche Verbreitung

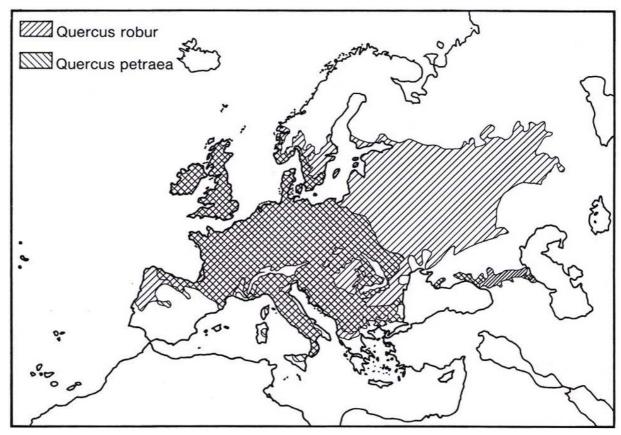


Abbildung 1: Natürliche Areale von Quercus robur und Quercus petraea (aus SCHÜTT et al. 1992).

Die Traubeneiche, auch Wintereiche (engl. sessile oak) genannt, ist zusammen mit der Stieleiche (Quercus robur L., engl.: pedunculate oak) nach der Rotbuche (Fagus sylvatica L.) die häufigste und forstlich wichtigste Laubbaumart Mitteleuropas. Ihre Heimat umfasst West-, Mittel- und Südeuropa und den Kaukasus. Insgesamt gesehen hat die Traubeneiche ein deutlich kleineres Verbreitungsareal als die Stieleiche. So fehlt sie beispielsweise in Osteuropa und reicht nicht ganz so weit nach Norden und nach Süden. Ihr Arealzentrum liegt im mitteleuropäischen (subatlantisch-submediterranen) Raum (AAS 2000, SCHÜTT et al. 1992).

Die Eichen sind mit ca. 9 % Anteil an der Waldfläche nach Fichte (33 %), Kiefer (28 %) und Buche (14 %) die vierthäufigste Baumart in Deutschland. Als Haupt- oder Mischbaumart bestocken sie eine Fläche von 876.476 Hektar (BML 1999).

Die Traubeneiche kommt in Deutschland von der Ebene bis in mittlere Gebirgslagen vor (Harz bis 650 m, Bayerischer Wald bis 715 m, Bayerische Alpen bis 900 m). Sie bevorzugt ozeanisch getöntes Klima, meidet kontinentale Lagen und ist weniger winterfrosthart als die Stieleiche. Einige ihrer Hauptvorkommen sind der Spessart, der Steigerwald und der Pfälzer Wald (AAS 2000, SCHÜTT *et al.* 1992).

1.1.2 Waldbauliche und ertragskundliche Eigenschaften sowie Gefährdungen der Traubeneiche

Die Traubeneiche ist eine Halblichtbaumart mit raschem Jugendwachstum. Der Zuwachs sinkt nach der frühen Kulmination stetig, aber langsam, bleibt jedoch bis ins hohe Alter erhalten. In ihrer Jugend hat sie die Fähigkeit zur Bildung einer großen Krone. Im Alter hingegen ist nur eine mäßige Kronenregeneration möglich. Die Traubeneiche reagiert auf eine plötzliche Freistellung mit der Bildung von Wasserreisern. Außerdem kann sie im Sommer Johannistriebe ausbilden. Diese Fähigkeit ermöglicht es der Eiche, auch nach Kalamitäten wie beispielsweise Kahlfraß durch Insekten, die Vegetationsperiode wenigstens noch teilweise zu nutzen (BURSCHEL und HUSS 1997, SCHÜTT *et al.* 1992).

Die Wuchsleistung der Traubeneiche ist relativ gering. So werden in der I. Ertragsklasse im Alter 150 bei Mittelhöhe = 31 m, Stammzahl 123 Bäume/ ha : 436 Vorratsfestmeter, 6,7 Vorratsfestmeter durchschnittlicher Gesamtzuwachs erreicht (Ertragstafel JÜTTNER 1955, mäßige Durchforstung).

Voraussetzung für den forstwirtschaftlichen Ertrag ist die Produktion von Wertholz. Die Erziehung von Furnierholzqualitäten benötigt lange Umtriebszeiten von über zweihundert Jahren. Entscheidend für die Wertholzerzeugung ist eine gleichmäßige und stammzahlreiche Verjüngung. Wichtig ist die rechtzeitige und regelmäßige intensive Pflege, sowie die Begründung, Erhaltung und Steuerung eines Nebenbestandes aus Schattholzarten.

Eichen haben ein ausgesprochen starkes Stockausschlagvermögen. Dies wurde für spezielle Bewirtschaftungsformen, zum Beispiel bei der Nieder- und Mittelwaldwirtschaft vom Menschen ausgenutzt. Diese Bewirtschaftungsformen spielen in Deutschland heute allerdings nur noch eine geringe Rolle (BURSCHEL und HUSS 1997).

Die Traubeneiche fruktifiziert in geschlossenen Beständen nicht vor Alter 40, im Freistand ab 20, in der Regel aber später als die Stieleiche (BURGER 1921, KRAHL-URBAN 1959, ROHMEDER 1972, SHAW 1974, AAS 2000). Dabei treten starke jährliche Schwankungen in der Blüten- und Samenbildung (Mast) auf. Generell blühen Individuen und Bestände häufiger und meistens auch intensiver als sie fruktifizieren. Im Handel mit Saatgut und in der Versorgung mit Jungpflanzen kann es deshalb zu temporären Engpässen kommen (FRANKE 1991).

Oft findet man eine Synchronisation von Mastjahren zwischen den Individuen einer Population und zwischen Populationen ganzer Regionen. Die Ursache dafür ist im Detail bisher nicht geklärt. Es wird angenommen, dass Klima, Witterung und auch die Verfügbarkeit von Reservestoffen des Mutterbaums eine zentrale Rolle spielen.

Bei den Früchten der Eiche (Eicheln) handelt es sich botanisch gesehen um Nussfrüchte (ROHMEDER 1972). Um die Überlebenschancen zu erhöhen, ist die Produktion eines hohen Samenangebots (Samenprädation) Voraussetzung. Die Verbreitung der Eicheln findet durch Kleinsäuger und vor allem durch Vögel statt. Auf diese Weise ist eine Ausbreitung bis zu mehreren Kilometern möglich (AAS 2000). Ansonsten verbleiben die Eicheln aufgrund der Schwere der Früchte in unmittelbarer Nähe des Mutterbaumes.

Die Eiche wird im allgemeinen als gering sturmwurfgefährdet eingestuft. Trotzdem unterliegt sie zahlreichen anderen Gefährdungen. Dazu gehören beispielsweise Spätfröste. Weitere Gefährdungen werden durch Tiere hervorgerufen. Rot- und Rehwild verursachen teilweise erhebliche Schäden durch Verbiss an Jungpflanzen, Rotwild zusätzlich dazu Schälschäden an jüngeren Bäumen (Stangenholz). Mäuse stehen als Kulturschädlinge an vorderster Stelle. Außerdem bieten Eichen einen idealen Lebensraum für zahlreiche Insektenarten. Schwammspinner (*Lymantria dispar*), Eichenwickler (*Tortrix viridana*) und Frostspanner (*Hibernia defoliaria*) gehören dabei zu den wichtigsten forstlichen Schädlingen. Abschließend ist - neben zahlreichen anderen Pilzarten, die an der Eiche vorkommen - noch der Eichenmehltau (*Microsphaera alphitoides* Grif. et Maubl.) zu erwähnen, der vor allem in Kulturen, aber auch an Johannistrieben schädigend auftritt (BURSCHEL und HUSS 1997, SCHÜTT *et al.* 1992, AAS 2000).

1.1.3 Waldgeschichtliche Rahmenbedingungen

Viele Eichenwälder sind anthropogenen Ursprungs. Wegen ihrer vielfältigen Nutzungsmöglichkeiten wurde die Eiche bereits in vorgeschichtlicher Zeit vom Menschen gefördert. Auch die Vorliebe des Adels auf die Jagd zu gehen, sicherte den Erhalt von Eichenwäldern. Ihre stärkereichen Früchte hatten für die Schweinemast große

Bedeutung. Aus dieser Zeit stammen die heute noch gebräuchlichen Bezeichnungen wie Spreng-, Halb- oder Vollmast.

Aus Eicheln wurde früher durch Rösten ein Kaffeesurrogat, der Eichelkaffee, hergestellt. In der Volksmedizin hat man verschiedenen Mitteln Heilkräfte zugesprochen, die aus Blättern, Früchten und der Rinde der Eiche gewonnen wurden. Vor allem die adstringierende (zusammenziehende) Wirkung der Gerbstoffe stand dabei im Vordergrund. Außerdem wirken sie virustatisch. Hauptanwendungsgebiet waren Voll- und Sitzbäder bei chronischen Hautkrankheiten (ZWIERLEIN 1897).

Die oben genannten Bewirtschaftungsformen wie Nieder- und Mittelwald waren aus den damals wichtigsten Verwendungen der Eiche entstanden. Sie lieferte Gerbrinde für das Leder (Lohgerberei), das notwendige Brennholz und auch Holz zum Bauen. Erst im Verlauf der letzten 200 Jahre wurde die Eiche wegen ihrer Langsamwüchsigkeit zugunsten schnellerwüchsiger Nadel- und Laubbaumarten stark zurückgedrängt.

Die Eiche hat im germanischen Raum eine große kultische und symbolische Bedeutung (Gerichts- und Friedenseiche) und wurde oftmals als heilig verehrt. Heute findet man Eichenlaub auf der Rückseite unseres Münzgeldes. Auch auf den neuen Euro-Münzen aus Deutschland wird Eichenlaub abgebildet sein.

1.1.4 Wirtschaftliche Bedeutung

Die Eiche gehört heute zu den wertvollsten einheimischen Hölzern. Eichenholz wird als Rund- und Schnittholz und als Furnier vermarktet. Furnierqualitäten bringen dabei höchste Erlöse. So bewegen sich allein die Rundholzpreise zwischen 100 und 10.000 DM/Festmeter mit Spitzenwerten über 13.000 DM/Festmeter (FLEDER 1982). In Bayern wurden im Durchschnitt der letzten acht Jahre Erlöse von deutlich über 200 DM/Festmeter erzielt. Damit ist der Durchschnittserlös mehr als doppelt so hoch wie der von Buche und allen anderen Nadelhölzern zusammen (BAYSTMELF 1999).

Abbildung 2: Holzpreisstatistik der Jahre 1949 -1999 für die Bayerischen Staatsforstverwaltung für das Leitsortiment B, Stärkeklasse 3a [DM/Festmeter]

Abbildung 3: Holzpreisstatistik der Jahre 1949 -1999 für die Bayerischen Staatsforstverwaltung für Furnierqualitäten der Stärkeklasse 6 [DM/Festmeter]

Die Eiche hat als Möbelholz schon vielerlei Modewellen überdauert. Auch bei der Verwendung als Parkett gehört sie zu den beliebtesten Holzarten. In jüngerer Zeit wächst auch die Nachfrage nach Fassholz wieder an. Dagegen wurde Eichenholz aus seiner, bis vor wenigen Jahrzehnten sehr wichtigen Verwendung im Eisenbahnbereich, nämlich der Verarbeitung zu Schwellen (Weichenschwellen), in zunehmendem Maß durch Betonschwellen zurückgedrängt (BAYSTMELF 1999, BML 1999).

Die Substitution fossiler Brennstoffe durch den vermehrten Einsatz von Holz aus nachhaltiger Bewirtschaftung als Energieträger führt zu einer Verminderung fossiler Kohlendioxid-Emissionen. In Zeiten steigender Rohölpreise und zunehmendem Bewußtsein der Bevölkerung für den Einsatz nachwachsender und regenerierbarer Rohstoffe mit einer neutralen CO₂-Bilanz, erlebt die Eiche, neben anderen Baumarten, eine Renaissance in der Verwendung als Brennholz. Bei einem durchschnittlichen Stammholzanteil der Eiche zwischen 40 und 50 % erscheint dies eine durchaus erfreuliche Entwicklung.

1.1.5 Die Reproduktion der Traubeneiche

Bisher gibt es nur wenige genetische Untersuchungen zur Charakterisierung der Reproduktion der einheimischen Eichenarten, wobei diese aus Frankreich stammen (BACILIERI et al. 1996). In einem Mischbestand von Stiel- und Traubeneiche (217 bzw. 190 Bäume) wurden unter den sehr verallgemeinernden Annahmen des "Mixed-Mating-Model" (RITLAND 1983) Fremdbefruchtungsraten zwischen 91,8 % und 100 % geschätzt (Isoenzym-Genmarker). Weitere Untersuchungen zum Thema Reproduktion stammen aus Göttingen (HERZOG 1998, GEHLE 1999). HERZOG verglich im Rahmen einer größeren Untersuchung unter anderem fünf Stieleichenpopulationen mit deren jeweiligen Nachkommenschaften eines Vollmastjahres (2-jährige Jungpflanzen) vor allem hinsichtlich ihrer Allelausstattung. GEHLE inventarisierte 15 Altbestände und deren Nachkommen.

Zusätzliche Untersuchungen über die Hybridisierung zwischen beiden Arten zeigen, dass der männliche Beitrag der Traubeneiche zu Nachkommenschaften der Stieleiche bis zu 48 % betragen kann. Die Problematik der Hybridisierung von Stiel- und Traubeneiche ist seit langem Thema wissenschaftlicher Untersuchungen (DENGLER 1941). Bis heute ist sie immer wieder Gegenstand aktueller Diskussionen (KLEIN-

SCHMIT 1995, KLEINSCHMIT J.R.G. *et al.* 1995, AAS *et al.* 1993, 1997, 1998, HERTEL 1998, KLEINSCHMIT und KLEINSCHMIT 2000, LIESEBACH und STEPHAN 2000).

Bei der Buche konnte anhand genetischer Vergleiche zwischen Altbeständen und ihren Nachkommenschaften mit Hilfe von Isoenzym-Genmarkern nachgewiesen werden, dass Selbstbefruchtung und Genfluss besonders von Populationsstruktur und -größe, sowie von der räumlichen Isolation der Altbestände abhängen (STARKE 1996). Bei der Tanne erwiesen sich die aus zwei verschiedenen Reproduktionsperioden stammenden Nachkommenschaften eines Erntebestandes als genetisch so heterogen, dass statistisch hochsignifikante Unterschiede nachweisbar waren (HUSSENDÖRFER und KONNERT 1998).

Untersuchungen an Kiefer haben gezeigt, dass der reproduktive Erfolg einzelner Individuen bezüglich ihrer männlichen und weiblichen Gameten, sowohl zwischen zwei Samenplantagen gleicher Klonausstattung, als auch zwischen zwei verschiedenen Reproduktionsperioden dieser beiden Plantagen signifikante Unterschiede aufweist. Der Unterschied zwischen den beiden Samenjahren war dabei noch größer, als der zwischen den Samenplantagen innerhalb der selben Reproduktionsperiode (MÜLLER-STARCK 1985).

Blüten, Früchte und Samen

Traubeneichen sind, wie alle *Fagaceaen*, einhäusig (monözisch) mit getrennt geschlechtlichen Blüten. Die männlichen Blüten sind als dünne, schlaff hängende, vielblütige Kätzchen zu erkennen, die büschelartig in den Blütenknospen der letztjährigen Triebe oder einzeln blattachselständig im basalen Bereich der diesjährigen Triebe stehen. Die weiblichen Blüten sitzen blattachselständig an der Spitze der Frühjahrstriebe.

Die Blütezeit beginnt, verglichen mit anderen einheimischen Laubbaumarten, relativ spät zwischen Mitte April und Mitte Mai. Sie fällt mit dem Laubaustrieb zusammen, wobei die Hauptblüte kurz vor der vollständigen Blattausbildung stattfindet. Die Blütenentfaltung liegt zwischen wenigen Tagen bis etwa zwei Wochen und wird von der Witterung wesentlich beeinflusst. Die weiblichen Blüten entwickeln sich vor den männlichen Blüten (Dichogamie, Protogynie), was als mögliche Ursache für eine gewisse Selbststerilität gesehen wird. Alle Eichenarten sind anemogam (ROHMEDER 1972). Man nimmt daher an, dass die Bestäubung überwiegend zwischen benachbarten Individuen stattfindet. Es sind jedoch auch Gegenbeispiele bekannt (DOW und ASHLEY 1997).

Das Reifen und der Abfall der Früchte findet im Herbst nach der Blüte von September bis Oktober statt (ROHMEDER 1972). Das Saatgut ist nur schlecht lagerfähig (ROHMEDER 1972, GUTHKE 1992). Der Wassergehalt der Samen ist mit einem Frischgewicht von ca. 50 % verhältnismäßig hoch. Bei der Traubeneiche findet man keine Keimhemmung, so dass die Eicheln zum Teil schon am Mutterbaum keimen können.

Die Kotyledonen verbleiben bei der Keimung in der Erde (hypogäische Keimung). Das Wachstum des Keimlings ist proportional zur Samengröße (AAS 2000).

Reproduktionssystem

Das Reproduktionssystem ist Bestandteil des genetischen Systems. Der Begriff des genetischen Systems wurde von DARLINGTON (1939) geprägt. Das genetische System einer Art umfasst die artspezifischen Mechanismen der Speicherung, Neugewinnung, Erprobung, Neukombination, Modifikation und Weitergabe genetischer Information in Reaktion auf die gegebenen Umweltbedingungen (STERN und TIGERSTEDT 1974). Neue genetische Informationen können durch Mutation und Immigration entstehen.

Das Reproduktionssystem beinhaltet alle Vorgänge von der Gametenproduktion, das heißt der Erzeugung und Bereitstellung von männlichen und weiblichen Gameten bis zur Zygotenbildung. Da sich das Zygotenstadium einer genetischen Betrachtung entzieht, ist es sinnvoll, das Reproduktionssystem auf das Stadium voll ausgebildeter Nachkommen (Samen) auszuweiten. Die Samenverbreitung (Migration) gehört dabei nicht mehr zum Reproduktionssystem (ZIEHE 1982).

Die Umweltverhältnisse beeinflussen Blühtermin und -intensität, den Modus der Gametenfusion, die Viabilität der Zygoten und determinieren so die genetische Zusammensetzung der Nachkommenschaft und damit die Überlebens- und Anpassungsfähigkeit der Folgegeneration.

Bei der Reproduktion stehen sich widerstrebende Forderungen, nämlich die Bewahrung erprobter und die Erprobung neuer genetischer Information gegenüber. Hauptaufgabe genetischer Systeme ist daher die Sicherstellung eines optimalen Verhältnisses zwischen den beiden einander widerstrebenden Forderungen unter den Bedingungen einer vorgegebenen Umwelt.

Genetische Systeme bestimmen mit ihren adaptiven Mechanismen die Fähigkeit von Populationen, sich den gegebenen Umweltbedingungen anzupassen und dadurch zu überleben. Das darin enthaltene System der sexuellen Reproduktion untergliedert sich in drei Bereiche:

- Fertilität der Individuen der Parentalpopulation,
- Paarungssystem und
- Viabilität der Nachkommenschaft nach Abschluss der Zygotenbildung.

Fertilität der Individuen der Parentalpopulation

Die Fertilität eines Individuums besteht in seiner Fähigkeit, sich an der Erzeugung der Folgegeneration zu beteiligen. Dies geschieht durch die Erzeugung und Bereitstellung von männlichen und weiblichen Gameten. Mögliche Einflussfaktoren sind verschiedene Blühintensitäten, Synchronie oder Asymmetrie der Blüte und Pollentransport. In der Natur kommt es in der Regel zu Abweichungen von zufallsmäßigen Reproduktions-

prozessen. Dazu gehören unterschiedliche Fertilitäten der Individuen der Parentalpopulation und nicht zufallsmäßige Prozesse im Verlauf der Gametenbildung.

Paarungssystem

Das Paarungssystem ist ein zentraler Bestandteil des Reproduktionssystems. Es charakterisiert den Modus der Fusion weiblicher und männlicher Gameten zur diploiden Zygote und aller damit zusammenhängender Prozesse. Es beschreibt, welche Paarungskombinationen in welchen Häufigkeiten tatsächlich realisiert werden.

Es gibt verschiedene Möglichkeiten, das Paarungssystem zu analysieren. Eine Betrachtung der Verteilung der Paarungen zwischen Individuen konzentriert sich auf die Quantifizierung von Selbst- und Fremdbefruchtung, sowie allgemein der Befruchtungswahrscheinlichkeiten in Abhängigkeit von der Entfernung der Paarungspartner (HATTEMER *et al.*1993, MÜLLER-STARCK 1976, 1977).

Eine Analyse der Häufigkeitsverteilungen der Genotypen einzelner Loci (oder Kombinationen) im Vergleich zu Referenzstrukturen (siehe Kapitel 3.2 Methoden) betrachtet Präferenzen und die damit verbundenen unmittelbaren Auswirkungen des Paarungssystems auf die genotypische Struktur. Selbst- und Fremdbefruchtung können ebenfalls anhand einzelner Genorte gut untersucht werden.

Unter natürlichen Bedingungen finden auch beim Paarungssystem in der Regel Abweichungen von zufallsmäßigen Reproduktionsprozessen statt. Dazu gehören die Einwirkung von Externpollen und Abweichungen von der Zufallspaarung. Zu den nichtzufallsmäßigen Paarungen gehören folgende Prozesse:

- a) Assortative Paarung
- b) Bevorzugte Verwandtenpaarung/ Inzuchtsysteme

a) Assortative Paarung

Zwei oder mehr Typen mit gleicher Paarungsreferenz weisen verschiedene Paarungspräferenzen auf. Grund hierfür können bestimmte Merkmalsausprägungen sein, die entweder phäno- oder genotypisch sein können. Paarungspartner werden so aufgrund ihrer Ähnlichkeit bevorzugt (= positiv assortative Paarung) oder benachteiligt (MÜLLER-STARCK 1977, Kapitel 3.2 Methoden). Der Ausschluss bestimmter Paarungen aufgrund von Inkompatibilitäten verursacht negativ assortative Paarung.

b) Bevorzugte Verwandtenpaarung/ Inzuchtsysteme

Die Verwandtenpaarung (Inzuchtsysteme) beschreibt eine Paarungskonstellation auf der Basis genealogischer Beziehungen. Sie kann Folge einer Konstellation sein, bei der nur eine begrenzte Anzahl von Individuen in direktem Paarungskontakt steht. Möglichkeiten der Verwandtenpaarung sind Selbstbefruchtung und Voll- bzw. Halbgeschwisterpaarung.

In Pflanzenpopulationen (natürlichen Populationen) paaren benachbarte Individuen bevorzugt, wenn die Verbreitung des Pollens beschränkt ist. Bei gleichzeitiger Beschränkung von Pollen und Samenverbreitung kommt es zur Bildung von Gruppen verwandter Bäume bei der Naturverjüngung. In der Folge kommt es wiederum zu Verwandtenpaarung. So kann es zur Entstehung deutlicher Inzuchteffekte kommen. Diese führen zu diversen nachteiligen Wirkungen wie beispielsweise gesteigerter Mortalität und Abnahme der Wuchsleistung. Die intensivste Form der Verwandtenpaarung ist die Selbstbefruchtung.

Inkompatibilitätssysteme

Inkompatibilitätssysteme sind eng mit dem Paarungssystem verknüpft. Sie können präoder postzygotal sein. Bei präzygotalen Systemen kann das Zustandekommen der Gametenfusion durch die Pollenkeimung auf der Narbe (sporophytisch) oder des Pollenschlauchwachstums im Griffel (gametophytisch) von beispielsweise Eigen- oder Verwandtenpollen verhindert oder gehemmt werden. Postzygotale Inkompatibilitäten hingegen können zum sofortigen Ausfall von Zygoten oder zum Absterben einzelner Individuen während der Entwicklung führen. Es gibt sowohl genotypische (zum Beispiel Blühtermin) als auch phänotypische (z.B. Blütenbau) Formen der Inkompatibilität (MÜLLER-STARCK 1977, STEINER 1992). Sie können genetisch relevante Folgen für die Struktur der Nachkommenschaft haben.

Viabilität der Nachkommenschaft

Viabilität ist die Voraussetzung für das Erreichen der reproduktiven Altersstadien. Die Viabilität der Nachkommen dagegen bezieht sich auf die Zygotenbildung und -entwicklung bis zum Stadium voll ausgebildeter Samen. Postzygotale Inkompatibilität kann den sofortigen Ausfall von Zygoten bewirken oder deren Absterben während der Entwicklung. Letzteres geschieht in der Regel als Folge konkurrenzbedingter Selektion gegen die weniger vitalen Embryonen. So kommt es in der Natur häufig zu Abweichungen von zufallsmäßigen Reproduktionsprozessen in Form von unterschiedlichen Viabilitäten der Zygoten bis zum Samenstadium.

1.2 Gesetzliche Grundlagen

Der Vertrieb von forstlichem Vermehrungsgut der meisten einheimischen Baumarten (18 Baumarten und die Gattung *Populus*) ist in Deutschland durch Gesetze und Verordnungen streng reglementiert. Diese gelten auch für die Traubeneiche (*Quercus petraea* (Matt.) Liebl.).

Erste Ansätze, Regelungen für das forstliche Saat- und Pflanzgut zu schaffen, wurden bereits um 1920 unternommen. Vorreiter war damals die aus dem landwirtschaftlichen Bereich stammende Sortenkennzeichnung. Standen zunächst die Interessen der Züchter im Vordergrund, entwickelte sich dann allmählich die Idee des Verbraucherschutzes.

Heute bildet das Gesetz über forstliches Saat- und Pflanzgut (FSaatG) vom 26. Juli 1979 (BGBl. 1979) die wichtigste Grundlage für den Vertrieb von forstlichem Vermehrungsgut. Es handelt sich dabei um ein Verbraucherschutzgesetz mit der Zielsetzung, "die Forstwirtschaft zu fördern, insbesondere den Wald in seiner Ertragsfähigkeit und in seinen Wirkungen auf die Umwelt zu erhalten und zu verbessern." Der Begriff Vertrieb wird als jegliches gewerbsmäßiges Inverkehrbringen von Vermehrungsgut definiert. Die Verwendung im Wald ist dagegen nicht geregelt. Sie bleibt dem Waldbesitzer überlassen. Unter Vermehrungsgut im Sinne dieses Gesetzes fallen Saatgut, Pflanzenteile und Pflanzgut. Vermehrungsgut muss entweder ausgewählt oder geprüft sein. Beide Kategorien müssen in ein sogenanntes Erntezulassungsregister eingetragen werden.

Bei der Mehrzahl der zugelassenen Bestände (über 99 %) handelt es sich um die Kategorie "Ausgewähltes Vermehrungsgut" (BML 1997). In dieser Kategorie werden Altbestände, die wegen ihrer Güte für die Nachzucht geeignet erscheinen und deren Nachkommen keine für die Forstwirtschaft nachteiligen Eigenschaften erwarten lassen, ausgewählt und in einem gesonderten Verfahren zugelassen. Das Ausgangsmaterial sollte bevorzugt autochthon sein. Es wird hinsichtlich der Lage, Homogenität und Massenleistung des Bestandes, der Güte des Holzes, der (Schaft)-Form, des Gesundheitszustandes und der Widerstandsfähigkeit, der Stammzahl und des Alters beurteilt.

"Geprüftes Vermehrungsgut" dagegen muss zusätzlich einen verbesserten Anbauwert besitzen, der durch eine gesonderte Vergleichsprüfung ermittelt wird. Der verbesserte Anbauwert bildet die Gesamtheit der nach Anlage II des obigen Gesetzes zu prüfenden genetisch bedingten Eigenschaften. Diese erstrecken sich bei der konkreten Prüfung auf "Verhaltens- und Produktionsmerkmale" wie "die Wüchsigkeit, die Anpassungsfähigkeit und die Resistenz gegenüber solchen Schadorganismen und abiotischen Faktoren, die wirtschaftlich erheblich sind."

Insgesamt sind in Deutschland etwa 2 % der Waldfläche zugelassene Bestände oder Samenplantagen. Eine genaue Quantifizierung, inwieweit die vorhandene genetische Variation und damit die genetischen Ressourcen auf dieser Fläche repräsentiert sind, wurde bisher nicht vorgenommen.

Unberücksichtigt bleiben außerdem die Nutzung genetischer Variation durch Naturverjüngung nicht zugelassener Bestände und der Anbau von Herkunftsmaterial aus Importländern.

Tabelle 1: Flächen (reduzierte Fläche) der insgesamt 19 dem FSaatG unterliegenden Baumarten der beiden Kategorien ausgewähltes und geprüftes Vermehrungsgut (BML 1997)

	Fläche [ha]	Anzahl
Ausgewähltes Vermehrungsgut		
Bestände	208 041	43 836
Samenplantagen	338	117
Geprüftes Vermehrungsgut		
Bestände	830	130
Samenplantagen	69	25
Klone		40
Klonmischungen		11
Summe	209 278	44159

Tabelle 2: Übersicht über zugelassene Trauben- und Stieleichenbestände: Flächen (reduzierte Fläche) der beiden Kategorien ausgewähltes und geprüftes Vermehrungsgut (BML 1997)

	Trauben	eiche	Stieleid	he
Vermehrungsgut	Anzahl	Fläche	Anzahl	Fläche
Ausgewähltes Vermehrungsgut	8471	32317	2243	9151
Geprüftes Vermehrungsgut	48	232	8	43
Summe	8519	32548	2251	9193

Für die Gewinnung von Vermehrungsgut gelten wiederum besondere Vorschriften. Das Vermehrungsgut darf vom Ort der Ernte nur entfernt werden, wenn ein entsprechender Begleitschein ordnungsgemäß ausgefüllt und beigefügt wird. Dieser enthält eine klare Kennzeichnung des Vermehrungsgutes nach Kategorie, Baumart, Herkunftsgebiet (siehe unten) und Autochthonie.

Eine weitere wichtige Bestimmung ist die Forstsaat-Herkunftsgebietsverordnung. Sie legt die genaue Abgrenzung der in §§ 2, 5 und 10 des FsaatG angesprochenen Herkunftsgebiete fest. Abbildung 4 zeigt die aktuellen Herkunftsgebiete der Traubeneiche.

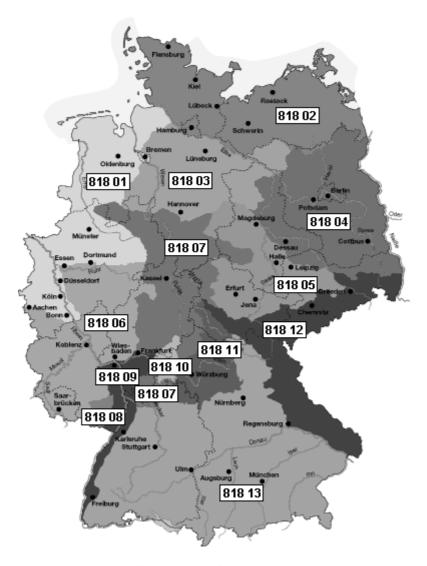


Abbildung 4: Forstliche Herkunftsgebiete der Traubeneiche (*Quercus petraea* (Matt.) Liebl.) in Deutschland (entnomen aus aid: "Forstliches Saat- und Pflanzgut" (1164/1996))

Die neuesten Bestimmungen sind in der Richtlinie 1999/105/EG des Rates vom 22. Dezember 1999 über den Verkehr mit forstlichem Vermehrungsgut (ABL. 2000) festgehalten. Im wesentlichen entspricht das geltende FSaatG den Anforderungen dieser Richtlinie.

In der Richtlinie wird auch Bezug auf gentechnisch verändertes forstliches Vermehrungsgut genommen.

Außerdem ist der Begriff **autochthon** näher definiert. Autochthon ist ein Bestand demnach, wenn er aus ununterbrochener natürlicher Verjüngung stammt. Der Bestand kann aber auch aus künstlichem oder generativem Vermehrungsgut begründet worden sein, das in demselben Erntebestand oder in derselben Samenquelle oder in dicht benachbarten autochthonen Erntebeständen oder Samenquellen geerntet wurde.

Zusätzlich wird hier auch der Begriff **indigen** eingeführt und folgendermaßen definiert: Ein indigener Erntebestand oder eine Samenquelle ist autochthon oder künstlich aus Saatgut begründet worden, dessen Ursprung in demselben Herkunftsgebiet liegt. Dieser Begriff ist demnach etwas weiter gefasst und deckt sich nicht ganz mit dem oben genanntem autochthonen Bestand.

1.3 Genetische Variation europäischer Eichenarten

Während der letzten zehn Jahre wurde auch mit der genetischen Charakterisierung der einheimischen Eichenarten begonnen. Zunächst wurde dazu ausschließlich die Methodik der Isoenzymanalyse verwendet. Viele dieser Untersuchungen beziehen sich auf den französischen Raum, aber auch für das restliche Europa gibt es mittlerweile einige Referenzdaten. In der folgenden Tabelle findet sich eine Übersicht über die Untersuchungen der europäischen Eichenarten der letzten zehn Jahre.

Tabelle 3: Übersicht über Untersuchungen an europäischen Eichenarten (A_L = Anzahl Allele je Genort, H_a = Beobachtete Heterozygotie, H_e = Bedingte Heterozygotie, ν = Genpool-Diversität, A_e = effektive Anzahl Allele)

Baumart	Popula-	Individuen	Genorte	$A_{\scriptscriptstyle L}$	H _a (%)	H _e (%)	v bzw.
Geographischer Bereich (Referenz)	tionen						A_{e}
Quercus petraea (Matt.) Liebl.							
Deutschland, BY (JÜNGER 1997)	7	802	17	4,0	21,9		
Deutschland (HERZOG 1996)	12	1200 (je 100)	14				1,34
Deutschland (KLEINSCHMIT et al. 1995)	1	111	10	3,1	20,6	55,5*	
Deutschland (Müller-Starck und Ziehe 1991,	5	774	13	3,1	21,9	56,7*	1,39
Müller-Starck et al. 1993)		(∅ je 155)					
Deutschland, BRB (HERTEL und ZASPEL 1996)	4	225	11	3,4	24,5	28,6	1,40
Europa (Herzog 1998)	12	1200 (je 100)	17	3,4	21,0	70,2*	1,37
Europa (Herzog und Müller-Starck 1993)	9	900 (je 100)	7		22,9	27,7	1,34
Europa (Le Corre et al. 1997a)	21		8	3,3		38,1	
Europa (ZANETTO et al. 1993)	18	je 120	6	4,5	31,9	33,9	
Europa (ZANETTO et al. 1994)	7	840 (je 120)	13	2,7	22,2	24,5	1,47
Europa (Zanetto und Kremer 1995)	81	9720 (je 120)	13	4,8	22,8	26,5	
Frankreich (KREMER et al. 1991)	5	40-120 (229)	4-15	3,2		26,6	1,48
	32	je 120 (3840)	15	2,4		27,7	1,38

Fortsetzung Tabelle 3: Übersicht über Untersuchungen an europäischen Eichenarten

-							
Baumart	Popula-	Individuen	Genorte	A_L	Ha (%)	He (%)	
Geographischer Bereich (Referenz)	tionen						A _e
Quercus petraea (Matt.) Liebl.							
Frankreich (STREIFF <i>et al.</i> 1998)	1	166 von 355		4,3	26,8	38,5	
Österreich (SAMUEL et al. 1995)	8	Ø je 34		1,4	5,0	9,4	
Schweiz (Müller B. 1999)	3	153 (je 51)	14	3,0	24,2	26,7	
Quercus robur L.							
Deutschland (DEGEN et al. 1999)	1	228		3,3			1,66
	1	85	7	2,9	31,1		1,65
Deutschland (HERZOG 1996)	9	900 (je 100)	14		21,3		1,33
Deutschland (KLEINSCHMIT et al. 1995)	1	111		2,9	26,7	59,9*	1,34
Deutschland (Müller-Starck 1997)	30	3000		4,1	25,0		
Deutschland (Müller-Stark und Ziehe 1991, Müller-Starck et al. 1993)	5	830 (Ø166)	13	3,2	21,3	56,6*	1,37
Deutschland BRB (HERTEL und ZASPEL 1996)	5	375	11	3,7	24,5	27,5	1,38
Deutschland BY (STREHLE 2000)	27	2693	17	4,2	27,8	68,3*	1,53
Deutschland NRW (GEHLE 1999)	15	650	8	3,2	24,5		1,48
·	15	1679	8	3,2	25,1		1,58
Deutschland NRW (HERZOG und KRABEL 1996)	2	191	7	3,2	25,3	68,1*	1,38
Europa (Herzog 1998)	10	1100	17	3,4	20,8	67,0*	1,38
	6	623 (75-131)	17	3,3	23,8	70,8*	1,41
	5	500 (je 100)	17	3,1	24,2	70,0*	1,41
Europa (ZANETTO et al. 1994)	7	840 (je 120)	13	2,7	18,4	25,2	1,49
Frankreich (STREIFF et al. 1998)	1	183 von 355	4	4,3	23,0	29,5	
Frankreich, England (KREMER et al. 1991)	5	je 40-120	4-15	3,2		26,4	1,48
Österreich (SAMUEL et al. 1995)	6	Ø je 35	14	1,4	4,66	9,6	
Schweiz (Müller B. 1999)	3	153 (je 51)	14	3,0	24,4	30,2	
Quercus pubescens							
Österreich (SAMUEL et al. 1995)	3	Ø je 33	14	1,5	5,83	11,43	
Schweiz (MÜLLER B. 1999)	27	1334 (je 51)	14	3,0	23	25,2	
Quercus ilex							
Europa (LUMARET und MICHAUD 1991)	44	16-59 ∅ 36	5	2,6	20,6		
(LUMARET <i>et al.</i> 1991)	37	35	3	2,8			
(MICHAUD <i>et al.</i> 1995)	57	1938 (je 34)	6	2,3		22,2	1,3
Quercus suber		,					
(ELENA-ROSSELLO und CABRERA 1996)	7	175 (je 25)	13	2,5		28,8	
Europa (Toumi und Lumaret 1998)	40	1200 (je 30)		2,0		28,8	
,	15-40	,		1,6		18,0	
Quercus cerris						,	
Österreich (SAMUEL et al. 1995)	2	Ø 39	14	1,5	7,3	9,3	
* H_c = bedingte Heterozygotie				•			

1.4 Problemstellung

Die Eiche ist eine Baumart mit extrem langen Generationszyklen. Das forstliche Vermehrungsgut muss daher sehr hohen Anforderungen hinsichtlich seiner Anpassungsund Überlebensfähigkeit gerecht werden. Die Altbäume haben während ihrer langen Lebensdauer Eigenschaften herausgebildet, die sich auch über lange Zeiträume hinweg bewährt haben. Es stellt sich aber die Frage, ob diese auch tatsächlich an die Nachkommenschaften weitergegeben werden. Ziel der vorliegenden Arbeit ist es daher, einen genetischen Vergleich zwischen den bewährten Altbeständen und ihren Nachkommenschaften durchzuführen.

Die vorliegende Arbeit basiert auf den folgenden Annahmen:

- Verluste an genetischer Variation bewirken Instabilität, weil sie die Fähigkeit von Waldbeständen einschränken, sich an variierende Umweltsituationen anzupassen und zu überleben.
- Die genetische Variation in der Folgegeneration wird durch die genetische Zusammensetzung der Altbestände, das Reproduktionssystem und durch die gegebenen Umweltbedingungen (einschließlich Verjüngungsverfahren) determiniert.
- Die Erfassung genetischer Variation in Altbeständen und im Vermehrungsgut ermöglicht es, genetische Veränderungen, Genverluste und Inzuchtbelastungen zu quantifizieren. Diese Informationen sind unentbehrliche Kriterien für Maßnahmen zur Erhaltung der Stabilität von Waldbeständen.

Durch Nutzung moderner genetischer Inventurverfahren soll ein Beitrag zu einer genetisch nachhaltigen Waldbewirtschaftung geleistet werden, in deren Mittelpunkt die Erhaltung der ökologischen Stabilität von Eichenbeständen und der durch sie getragenen Waldökosysteme steht. Genetisch nachhaltig ist eine Waldbewirtschaftung nur dann, wenn die Bewirtschaftung, Nutzung und Wiederbegründung von Waldbeständen unter Wahrung ihres Anpassungspotentials vorgenommen wird, wenn genetische Ressourcen geschützt werden und im Falle genetischer Destabilisierung Maßnahmen zur Erhöhung der genetischen Diversität ergriffen werden (MÜLLER-STARCK 1993a, 1993b).

Genetische Inventuren sollen als Mittel der Früherkennung nachteiliger Wirkungen im Vermehrungsgut eingesetzt werden. Genetisch verarmte und inzuchtbelastete Nachkommenschaften weisen eine verringerte Anpassungsfähigkeit und damit auch eine mangelnde Toleranz gegenüber wechselnden Umwelteinflüssen auf. Dieser destabilisierende Trend ist mit einer genetisch nachhaltigen Waldbewirtschaftung unvereinbar und angesichts der zu erwartenden globalen Umweltveränderungen sehr risikoreich.

2. Ziele der Arbeit

2.1 Quantifizierung genetischer Variation

Ziel der genetischen Inventuren in Altbeständen und deren Vermehrungsgut ist die Erfassung der Multilocus-Genotypen einzelner Bäume, Samen oder Jungpflanzen. Die dazu verwendeten Variationsparameter sind Heterozygotie, genetische Vielfalt, genetische Diversität, Variabilität sowie Differenzierung innerhalb und zwischen Stichproben (siehe Kapitel 3.2 Methoden).

2.2 Vergleich genetischer Strukturen von Samenerntebeständen, Saatgut und Jungwuchs und Charakterisierung der Reproduktion

Es wird untersucht, ob die Altbäume als genetisch repräsentativ angesehen werden können und damit ein ausreichend großes genetisches Potential für die Erzeugung von Samen zur Verfügung steht. Außerdem soll überprüft werden, inwieweit diese genetische Information der Parentalgeneration an die Nachkommenschaften (Saatgutstichproben) auch tatsächlich weitergegeben werden.

Die genetischen Erhebungen in den Bestandesnachkommenschaften sollen nach Möglichkeit erstmals als Kriterien für eine genetische Zertifizierung von forstlichem Vermehrungsgut verwendet werden.

Zur Charakterisierung der Reproduktion der Traubeneiche (*Quercus petraea* (Matt.) Liebl.) sollen die genetischen Strukturen ausgewählter Traubeneichenbestände in Form zugelassener Samenerntebestände und ihrer aus freier Abblüte stammenden Nachkommenschaften ("Ausgewähltes Vermehrungsgut" siehe Kapitel 1.2 Gesetzliche Grundlagen) verglichen werden. Diese Vorgehensweise ermöglicht die Beschreibung maßgeblicher Prozesse der Reproduktion wie beispielsweise Fertilitätsselektion, Paarungsverhältnisse, sowie assortative Paarung und Inzucht. Diese speziellen Reproduktionsbedingungen werden durch Quantifizierung der Fertilitätsselektion, durch Berechnung von Inzuchtkoeffizienten und den Nachweis sonstiger nicht zufallsmäßiger Paarungsprozesse beschrieben (siehe Kapitel 3.2 Methoden).

2.3 Bewertung und Prognose genetischer Belastungen in der Folgegeneration

Von besonderer Bedeutung ist die Erfassung des Einflusses von Umwelt und forstlicher Bewirtschaftung auf die genetischen Strukturen von Traubeneichenpopulationen. Die Überprüfung der Auswirkungen waldbaulicher Verjüngungsverfahren auf die genetische Variation und die Ausprägung von Inzucht im Vermehrungsgut sollen eingeschätzt werden. Dafür sind u.a. folgende Kriterien maßgeblich: Die effektive Anzahl der an der Reproduktion beteiligten Bäume im Altbestand (Frage nach der Intensität der Eingriffe zu Beginn der Verjüngungsphase), die Art des Verjüngungsverfahrens (großflächig oder femelartig), die Anzahl der Reproduktionsperioden, die

an der Naturverjüngung beteiligt sind, sowie der Modus der Komplettierung lückiger Naturverjüngungen (autochthone Wildlinge oder nicht-autochthones Material).

Weiterhin soll geprüft werden, ob die bisher praktizierten Beerntungsverfahren (Anzahl Erntebäume, Verteilungs- und Erntemodus) gewährleisten können, dass die genetische Variation der Altbestände auch nur annähernd im Vermehrungsgut repräsentiert ist.

Ein weiterer wichtiger Punkt ist die Überprüfung der Zusammenhänge zwischen Blühintensität und der darauffolgenden Fruktifikation. Sehr wahrscheinlich hängen im Falle einer schwachen Fruktifikation die genetischen Konsequenzen sehr von der Intensität der vorangegangenen Blüte ab (JÜNGER 1997).

Anhand der Inventurergebnisse kann begonnen werden, Prognosen über die zu erwartende Anpassungsfähigkeit des Vermehrungsgutes aus Samenerntebeständen der Traubeneiche zu stellen. Basis ist der genetische Vergleich zwischen Proben, wobei hohe genetische Variabilität (Potential zur Erzeugung genetischer Variation) und geringe Inzuchtbelastung die wichtigsten Kriterien sind. Der genetische Vergleich der untersuchten Altbestände lässt ebenfalls Prognosen über deren Eignung als Samenerntebestand zu.

3. Material und Methoden

3.1 Material

Insgesamt wurden 5704 Individuen in 44 Populationen untersucht. Diese gliedern sich wie folgt auf: 15 Altbestände, 21 Bestandesabsaaten (Samen), 2 Samen-Stichproben aus einer Sammelstelle beziehungsweise einer Klenge und 6 Jungwüchse. Bei den Jungwüchsen handelt es sich um vier Populationen aus Baumschulen, eine Probe aus einem forstamtseigenen Pflanzgarten und eine Naturverjüngung.

3.1.1 Auswahl der Versuchsflächen

Für die Auswahl der Versuchsflächen galten folgende Kriterien:

- Baumart Traubeneiche Quercus petraea (Matt.) Liebl.;
- zugelassene Saatguterntebestände nach dem Gesetz über forstliches Saat- und Pflanzgut (FSaatG);
- Mindestgröße der Bestände 10 ha;
- soweit möglich autochthone Bestände.

Das Versuchsmaterial wurde überwiegend in der Südhälfte Deutschlands beschafft. Einen Schwerpunkt bildete dabei der Norden Bayerns, der zugleich auch einen Schwerpunkt in der Verbreitung der Traubeneiche darstellt. Darüber hinaus wurden auch Bestände in Baden-Württemberg, Brandenburg und Rheinland-Pfalz beprobt. Die genaue Lage und die Bestandsdaten der Probeflächen sind Abbildung 5 und Tabelle 4 zu entnehmen.

Tabelle 4: Übersicht über die 15 Versuchsflächen (Altbestände)

Nr.	Forstamt	Herkunfts-	Land	Register-	Eigentümer	Bestands-	Jahr der	autoch	Eichen-
		gebiet		Nummer		bezeichnung	Begründung	thon	Anteil (%)
1	Arnstein	818 11	Bayern	091 81811 384 1	Staatswald	XXIII 0 Schraudenbacher Forst	1840	ja	90 (100)
2	Bad Neustadt/ Saale	818 07	Bayern	091 81807 090 1	Staatswald	XI 0 Brendholz	1886	ja	55
3	Bamberg	818 11	Bayern	091 81811 122 1		IV 10 a Veitenstein	1856	ja	55
4	Burgsinn	818 10	Bayern	091 81810 016 1	Körper- schaftswald	04-0000 Langer Grund	1765	ja	95
				091 81810 017 1			1765	ja	87
				091 81810 018 1			1780	ja	72
5	Dinkelsbühl	818 13	Bayern	091 81813 001 1	Staatswald		1880	ja	80
6	Hammelburg	818 07	Bayern	091 81807 115 1	Staatswald	XIX 0 Forst	1774	ja	88 (70)
7	Hochspeyer	818 08	Rhein- land- Pfalz	072- 81808 120 1	Staatswald	alt: VI 13a1 neu: XIX 13a1 Jägerhüblerschlag	1737	ja	94
8	Langenau	818 13	Baden- Württem- berg	08 4 818 13 515 1	Staatswald	XVII 1 Schönholz	1840	unbe- kannt	70
9	Müllheim I	818 13	Baden- Württem- berg	08 3 818 13 029 1	wald	I 11 Röte	1800-1830	ja	65
10	Müllheim II Eichwald	818 13	Baden- Württem- berg	08 3 818 13 030 1	wald	l 14 Sonnenbückle	1745-1840	ja	60
11	Müllheim II Steinacker	818 13	Baden- Württem- berg	08 3 818 13 020 1	Kommunal- wald	I 5 Steinbückle	1800-1840	ja	60
12	Müllrose Müllrose⁺	818 04	Branden- burg	12 1 818 04 035 1 12 1 818 04 041 1	Staatswald	4 3 93 a1 5 1 78 a2 5 1 78 b1	1865 1866 1870	Unbe- kannt	100
13	Peitz	818 04	Branden- burg	12 1 818 04 097 1	Staatswald	156a³	1879	Unbe- kannt	100
14	Schweinfurt	818 11	Bayern	091 81811 107 1	Körper- schaftswald		1830	ja	95
15	Uffenheim	818 11	Bayern	091 81811 329 1	Staatswald	IV 13 0 Eichelberg	1820	ja	100 (50)

Anhand der o.g. Kriterien wurden 15 Versuchsflächen ausgewählt. Von diesen Flächen wurde Versuchsmaterial aus zwei Kategorien von Populationen gewonnen:

• Altbestände

Von den Altbeständen wurde in den Wintermonaten Knospenmaterial mittels Astschere oder Schrotschuss geerntet.

• Nachkommenschaften

Es handelt sich dabei zum einen um Saatgut, das direkt in den jeweiligen Altbeständen gesammelt wurde. Teilweise sind hier auch verschiedene Samenjahrgänge vorhanden.

Ferner wurden Samen-Stichproben aus Sammelstellen oder Klengen gezogen. Die Jungpflanzen stammen entweder aus Naturverjüngung, Baumschule oder Pflanzgarten.

Abbildung 5: Übersichtskarte Deutschland, Lage der Versuchsflächen

Bei drei Beständen gibt es erwähnenswerte Besonderheiten:

Für den Bestand **Langenau** konnte kein Material direkt von einer Baumschule bezogen werden. Es wurde daher auf Material zurückgegriffen, das von der Baumschule in dem zugelassenen Bestand im Herbst 1992 gesammelt und dann angezogen worden war. Ein Teil der Pflanzen wurde im Jahr 1995 an das Forstamt geliefert und im Forstamtsbereich ausgebracht. Aus einer solchen gepflanzten Kultur ohne spätere Nachbesserungen wurde eine Stichprobe gewonnen.

Zu Vergleichszwecken wurde zusätzlich eine direkt benachbarte Kulturfläche beprobt. Es handelt sich dabei um eine Heisterpflanzung aus dem Jahr 1996. Die Pflanzen stammen aus dem ehemaligen forstamtseigenen Pflanzgarten. Das Saatgut, das im Pflanzgarten ausgebracht wurde, wurde ebenfalls im Bestand Schönholz gesammelt. Die Heister waren zum Zeitpunkt der Pflanzung ca. 4-5 Jahre alt.

Beim Bestand **Müllheim II** ergab sich folgendes Problem bezüglich des Baumschulmaterials: Es handelt sich bei beiden Jahrgängen (1994, 1996) um eine Mischprobe aus zwei Distrikten (Eichwald und Steinacker), die ca. 2 Kilometer voneinander entfernt liegen. Von beiden Distrikten wurde jeweils auf einer 10 Hektar große Teilfläche sowohl eine Altbestands- als auch eine Saatgutstichprobe gewonnen. Zum Vergleich des Baumschulmaterials mit den Altbeständen, beziehungsweise dem Saatgut, müssen daher die Mittelwerte dieser beiden Distrikte herangezogen werden.

Im Bestand **Müllrose** ist ein direkter Vergleich des Baumschulmaterials mit dem Altbestand und dem Saatgut nicht möglich. Wie sich erst nachträglich herausgestellt hat, stammt das Material nicht aus diesem Bestand, sondern aus dem eines Nachbarreviers (Müllrose⁺).

Eine Übersicht der Altbestände und der verschiedenen Nachkommenschaften gibt Tabelle 5.

Tabelle 5: Übersicht über die Versuchsbestände und deren Nachkommenschaften

	Altbestand		ihbeo- chitung	Samen im Jahr 19		Ort	Jungwuchs	
1	Arnstein	Dat	inturing		'97 '97	J	Bestand Sammelstelle	
2	Bad Neustadt/ Saale	'98	'99		'97	'98	Bestand	
3	Bamberg					'98	Bestand	
4	Burgsinn					'98	Bestand	
5	Dinkelsbühl	`98	`99		`97	`98	Bestand	Naturverjüngung
6	Hammelburg				`97		Bestand	
7	Hochspeyer	`98	`99		`97 `97	`98	Bestand Klenge	
8	Langenau	`98	`99		`97	`98	Bestand	bereits ausgepflanztes Baumschul- material der Mast `92 (Kultur) Heisterpflanzung des ehem. Pflanz- gartens des Forstamts (2-3 Jahr- gänge)
9	Müllheim I			`96			Bestand	
10	Müllheim II Eichwald					`98	Bestand	Baumschulmaterial der Masten 1994 und 1996 (jeweils Mischprobe) aus
11	Müllheim II Steinacker					`98	Bestand	beiden Beständen)
12	Müllrose			`96	`97		Bestand	Baumschulmaterial aus benachbartem Revier (Mast `94) = Müllrose ⁺
13	Peitz			`96			Bestand	
14	Schweinfurt			`96			Bestand	
15	Uffenheim			`96	`97		Bestand	

3.1.2 Repräsentanz der Erhebung

Vor Beginn der Untersuchungen müssen Stichprobenumfang und -design festgelegt werden. Dabei ist die Repräsentativität der ausschlaggebende Faktor. Mit zunehmender Größe einer Stichprobe wird die genetische Struktur einer Population immer genauer widergespiegelt und die Wahrscheinlichkeit, dass alle in der Population vorkommenden Varianten enthalten sind nimmt zu. Die größtmögliche Repräsentativität stellt die Vollaufnahme dar.

Stichprobenumfang

Es ist sinnvoll den Stichprobenumfang so zu wählen, dass mit einer zuvor festgelegten Wahrscheinlichkeit eine Variante mit einer bestimmten Häufigkeit noch erfasst wird. Wählt man die üblichen Signifikanzniveaus von 0,01 bzw. 0,05, so liegt die optimale Stichprobengröße, wie aus den Tabellen 6-8 ersichtlich wird, zwischen 100 und 150 Individuen (HATTEMER *et al.* 1993, Kap. 8.8 und 12.2).

Tabelle 6: Verlustrisiko V eines seltenen unter zwei bzw. unter fünf Allelen eines Genlocus mit HW-Struktur in Abhängigkeit von der Seltenheit des Allels sowie der Stichprobengröße (nach Gregorius 1983; in Hattemer et al. 1993, Kap. 12.2).

`	,		· ·				
(a) Zwei Allele							
Stichprobengröße	Häufigkei	t α des selte	nen Allels				
N	0,05	0,01	0,005				
10	0,36	0,82	0,91				
25	0,08	0,61	0,78				
40	0,02	0,45	0,67				
75	< 0,01	0,22	0,47				
100	< 0,01	0,13	0,37				
200	< 0,01	0,02	0,13				
500	< 0,01	< 0,01	0,01				
	(b) Fünf Al	lele					
Stichprobengröße	Häufigke	it α der selte	nen Allele				
N	0,05	0,01	0,005				
10	0,85	> 0,99	> 0,99				
25	0,28	0,98	> 0,99				
40	0,07	0,91	0,99				
75	< 0,01	0,64	0,92				
100	< 0,01	0,44	0,84				
200	< 0,01	0,07	0,44				
500	< 0,01	< 0,01	0,26				

Tabelle 7: Mindestgröße *N* der Stichprobe, welche das Risiko für Verlust eines seltenen Allels mit Häufig- keit α an einem Genort mit HW-Struktur unter bestimmten Grenzen *V* hält (nach GREGORIUS 1983; in HATTEMER *et al.* 1993, Kap. 12.2).

	Häufigkei	t α des selte	nen Allels					
Verlustrisiko V	0,05	0,01	0,005					
(a) Zwei Allele								
0,05	30	150	299					
0,01	45	230	460					
0,001	68	344	690					
(b) Fünf Allele								
0,05	43	218	436					
0,01	59	298	598					
0,001	81	413	828					

Tabelle 8: Stichprobenumfang N, welcher mit der Wahrscheinlichkeit 1 - Φ erwarten lässt, dass alle Varianten von der Häufigkeit $\geq \alpha$ mindestens einmal in der Stichprobe auftreten (Φ = Risiko des Übersehens). Die Werte von α in dieser Tabelle wurden mit Hilfe eines Programms von H.-R. Gregorius berechnet (nach HATTEMER *et al.* 1993, Kap. 8.8).

	Q.				
N	$1 - \Phi = 0.99$	$1 - \Phi = 0.95$			
50	0,10	0,10			
100	0,07	0,06			
125	0,06	0,05			
150	0,05	0,04			
175	0,045	0,035			
200	0,039	0,031			
225	0,034	0,028			
250	0,031	0,026			
300	0,027	0,022			

Für Altbäume und Jungwuchs wurde ein Stichprobenumfang von 100 Individuen pro Bestand festgelegt. Dieser erfüllt zum einen die Forderung nach Repräsentativität, und zum andern entspricht dieser Wert vielen bereits vorangegangenen Inventuren auch anderer Baumarten. So besteht zusätzlich der Vorteil einer Vergleichbarkeit der Ergebnisse mit anderen Untersuchungen.

Bei den Samen wurde der Stichprobenumfang auf 150 erhöht, damit Allele, die möglicherweise durch Fremdpolleneinfluss hinzukommen, aufscheinend werden. Bei der Interpretation der Ergebnisse, wie beispielsweise der Anzahl Allele pro Genort, in noch stärkerem Maß bei der Struktur der Genotypen, müssen diese unterschiedlichen Stichprobenumfänge unbedingt Berücksichtigung finden.

Stichprobendesign

Für die Probengewinnung der Altbäume und der Naturverjüngung wurde eine systematische Punkt-Stichprobe in Form eines Gitternetzrasters von 30 x 30 m Abstand gewählt. Dabei wurden diejenigen 100 Individuen, die dem Schnittpunkten des Rasters am nächsten stehen, beprobt. Dieses Verfahren hat sich bei Bestandsinventuren in Altbeständen bereits bewährt (HUSSENDÖRFER *et al.* 1999).

Für die Proben aus der Baumschule und aus der Klenge beziehungsweise Sammelstelle wurden Losverfahren angewendet. Von der Baumschule wurde dazu eine zufällige Stichprobe von 100 Jungpflanzen aus dem Kollektiv der angezogenen Pflanzen geschickt. In der Klenge bzw. Sammelstelle wurden Stichproben von etwa 500 Eicheln (Samen) gewonnen. Dazu wurden wiederholt zwei bis drei Eicheln, verteilt über die Summe des gesammelten Materials eines Bestandes, gezogen. Die äußerliche Qualität der Eicheln blieb dabei unberücksichtigt, und es wurde auch keine Probe wieder zurückgelegt. Im Anschluss an die Lagerung wurde dann erneut das Losverfahren für die 150 zu untersuchenden Eicheln herangezogen.

Für die Bestandesabsaaten (Samen) hingegen bot sich eine Art kombiniertes Verfahren als das Sinnvollste an. An jedem Gitternetzpunkt wurden im Bestand etwa fünf Eicheln gesammelt. Im Anschluss an die Lagerung wurde dann wie bei dem Material aus Sam-

melstelle und Klenge ein Losverfahren für die 150 zu untersuchenden Eicheln angewendet.

3.1.3 Blühbeobachtungen

Blühbeobachtungen sind ein sehr wichtiges Kriterium zur Beurteilung der Nachkommenschaften von Eichenbeständen. In ausgewählten Beständen in Bayern (Dinkelsbühl und Bad Neustadt/Saale), Baden-Württemberg (Langenau) und Rheinland-Pfalz (Hochspeyer) wurden daher nach einem vereinheitlichten Aufnahmeverfahren Blühbeobachtungen in zwei aufeinanderfolgenden Jahren durchgeführt. Hierzu wurde ein Probekreisverfahren angewandt, bei dem jeweils 60 Bäume hinsichtlich ihrer Blühintensität eingewertet wurden (siehe Kapitel 4. Ergebnisse, Tabelle 20). Die 60 Bäume ergaben sich aus 12 Aufstellungen entlang eines Gitternetzes mit jeweils 5 Bäumen je Probekreis.

Aus den darauffolgenden Mastjahren sollten dann die entsprechenden Samenstichproben gewonnen werden. Leider fiel nach der zweiten Aufnahme der Blühintensität die Mast im Herbst 1999 in allen vier Beständen völlig aus. Ähnliches galt in diesem Jahr im übrigen für das ganze Bundesgebiet.

Um dennoch Zusammenhänge zwischen Blüte und Mast herstellen zu können, musste auf die Angaben der Revierleiter, soweit vorhanden, bezüglich der Blühintensität der Vorjahre zurückgegriffen werden. Zusätzlich mussten entsprechende Samenstichproben aus diesen Jahren vorhanden sein. Es wurde versucht, die Blüheinschätzung der Revierleiter mit den vorhandenen eigenen Blühbeobachtungen abzugleichen. Außerdem wurden die jährlich in der Allgemeinen Forst-Zeitschrift (AFZ) veröffentlichten Informationen über das Blühen der Waldbäume als unterstützende Aussage hinzugezogen. Bis 1998 stammten diese von der Amtlichen Prüfstelle für Forstliches Saatgut in Freising, ab 1999 von der Landesforstanstalt Eberswalde. Dieses Vorgehen stellte die einzige Möglichkeit dar, den Aspekt der Blüte trotz ausgefallener Mast mit in die Untersuchung einzubeziehen.

Tabelle 9: Übersicht über die verfügbaren Blüheinschätzungen der vier ausgewählten Bestände

Bestand	Eigene	Amtliche Prüfstelle Freising (-1998);	Blüheinschätzung durch die
	Ansprache	Landesforstanstalt Eberswalde (seit 1999)	zuständigen Revierleiter
Bad Neustadt/	1998, 1999	1997, 1998, 1999	1997, 1998, 1999
Saale			
Dinkelsbühl	1998, 1999	1997, 1998, 1999	1998, 1999
Langenau	1998, 1999	1997, 1998, 1999	1997, 1998
Hochspeyer	1998, 1999	1997, 1998, 1999	1998

3.2 Methoden

3.2.1 Isoenzymanalyse

Zur Identifikation genetischer Merkmale wurden Isoenzym-Genmarker verwendet. Für die genetischen Inventuren wurde die horizontale Stärkegel-Elektrophorese als biochemisches Analyseverfahren angewendet. Die Entwicklung und Nutzung von biochemisch-genetischen Methoden zum Nachweis genetischer Merkmale hat ihren Ursprung in den 70er Jahren und hat seitdem stetig zugenommen. Die Stärkegel-Elektrophorese ist ein Standardverfahren auf dem Gebiet der experimentellen forstgenetischen Forschung. In den vergangenen Jahren wurden aber auch in erheblichem Umfang molekulargenetische Verfahren entwickelt (Übersicht siehe z.B. KARP *et al.* 1998). Ein entscheidender Vorteil der Isoenzymgenmarker ist jedoch, dass für keinen anderen Genmarker eine vergleichbar große Menge an Referenzdaten existiert.

Das Verfahren selbst kann wie folgt zusammengefasst werden: Auf ein Stärkegel wird ein pflanzliches Extrakt aufgetragen. In einem elektrischen Feld wandern die Enzyme aus diesem Extrakt je nach Nettoladung und Molekülgröße unterschiedlich schnell. Die Isoenzyme werden auf diese Art aufgetrennt. Mittels einer enzymspezifischen Färbereaktion wird durch Zugabe von entsprechendem Substrat und Farbstoff (siehe Anhang) ihre Position im Gel sichtbar gemacht. Die Farbbanden spiegeln die einzelnen Isoenzyme wider. Es entstehen charakteristische Farbmuster, die Zymogramme genannt werden. Diese Zymogramme stellen zunächst nur ein phänotypisches Merkmal dar. Die Enzym-Phänotypen ermöglichen die Identifikation der ihre Synthese kodierende Genloci und damit die Analyse der Allelbesetzung an den einzelnen Isoenzym-Genloci (BERGMANN 1991, MÜLLER-STARCK 1998, Kap. 5).

Für die isoenzymatischen Untersuchungen wurde bei den Altbäumen und beim Jungwuchs tiefgefrorenes Knospenmaterial, bei den Samen die Spitzen der frisch austreibenden Keimwurzeln verwendet. Zur Herstellung des Rohextraktes wird das Knospenmaterial des grünen Knospeninneren in geringen Mengen mittels Skalpell herauspräpariert und in einem Extraktionspuffer homogenisiert. Der Extrakt wird von Filterpapierschnipseln genormter Größe aufgesogen. Dabei werden zusätzlich pro Gel je drei Referenzproben mit bekanntem Bandenmuster hinzugefügt. Anschließend werden die Filterpapiere in verschiedene Stärkegele appliziert. Zur Herstellung der Gele wird ein Mikrowellen-Ofen verwendet. Mit Laufzeiten zwischen 3,5 und 6 Stunden unter laufender Kühlung zum Schutz der Enzyme vor Überhitzung erfolgt dann der Trennvorgang in horizontalen Elektrophorese-Kammern (Rezepte für Gel- und Elektrodenpuffer siehe MÜLLER-STARCK et al. 1996 und Anhang I-III).

Zum Anfärben werden die Gele horizontal in zwei bis drei Schichten geschnitten und zusammen mit der enzymspezifischen Färbelösung unter Lichtabschluss in einen Wärmeschrank bei ca. 40°C gestellt. Nach erfolgter Anfärbung werden die Gele visuell auf einem Leuchttisch ausgewertet und zu Dokumentations- und Kontrollzwecken mit Hilfe eines Durchlicht-Scanners elektronisch festgehalten. Die drei Referenzproben dienen dabei der Abgleichung der Gele untereinander.

Die Auswertung der Zymogramme erfolgt anhand von Taxierungskarten (siehe Anhang). Diese basieren auf den von MÜLLER-STARCK et al. (1996) und ZANETTO et al. (1996) in Kreuzungsversuchen nachgewiesenen Allelen.

3.2.2 Erfassung genetischer Merkmale

Voraussetzung für die Verwendung von Isoenzymen als genetische Marker ist die Durchführung einer Vererbungsanalyse. Dabei sollte auch eine Überprüfung der Umweltunabhängigkeit, die Unabhängigkeit von Gewebe und ontogenetischem Stadium und die Identifizierung von Genloci und von Interaktionen zwischen den Genloci berücksichtigt werden. Die genetische Kontrolle und der Vererbungsmodus der Isoenzyme wurde anhand der Untersuchung von Kreuzungsnachkommenschaften sowohl an Stiel- als auch an Traubeneiche bereits abgeklärt (ZANETTO et al. 1996, MÜLLER-STARCK et al. 1996).

Auf der Basis von 14 Enzymsystemen und 18 polymorphen, enzymkodierenden Genorten des Primär- und Sekundärstoffwechsels wurde nun die genetische Struktur der Bestände und ihrer Nachkommenschaften ermittelt (Tabelle 10).

Der Genort GDH zeigt bei Samenmaterial keine Aktivität und ist nur bei Altbäumen und Jungwuchs auswertbar. Für den Vergleich der Altbestände mit dem Samenmaterial stehen daher nur 13 Enzymsysteme mit 17 Genorten zur Verfügung.

von Quercus petraea (Matt.) Liebl.							
Enzymsystem	Kürzel	Gruppe	E.C. Nr.	Struktur	Genloci		
Aspartataminotransferase	AAT*	I	2.6.1.1.	dimer	Aat-A		
Aconitase	ACO	I	4.2.1.3.	dimer	Aco-A		
		_					

Tabelle 10: Enzymsysteme, Enzymstruktur und enzymkodierende Genloci in Wurzeln und Knospen

Enzymsystem	Kürzel	Gruppe	E.C. Nr.	Struktur	Genloci
Aspartataminotransferase	AAT*	I	2.6.1.1.	dimer	Aat-A
Aconitase	ACO	I	4.2.1.3.	dimer	Aco-A
Alkoholdehydrogenase	ADH		1.1.1.1.	dimer	Adh-A
Alaninaminopeptidase	AP	I	3.4.11.1.	monomer	Aap
Esterase	EST	II	3.1.1.1.	monomer	Est-A
Glutamatdehydrogenase	GDH	ı	1.4.1.2.	tetramer	Gdh-A
Isocitratdehydrogenase	IDH		1.1.1.42.	dimer	Idh-A, Idh-B
Leucinaminopeptidase	LAP	II	3.4.11.1.	monomer	Lap
Malatdehydrogenase	MDH	ı	1.1.1.37.	monomer	Mdh-A, Mdh-B
Menadionreductase	MNR	II	1.6.99.2.	tetramer	Mnr-A
6-Phosphogluconatdehydrogenase	6PGDH	ı	1.1.1.44.	dimer	6Pgdh-A, 6Pgdh-B
Phosphoglucoseisomerase	PGI	I	5.3.1.9	dimer	Pgi-A, Pgi-B
Phosphpglucomutase	PGM	I	2.7.5.1.	monomer	Pgm-A
Shikimatdehydrogenase	SKDH	II	1.1.1.25	monomer	Skdh-A
* Glutamatdehydrogenase	GOT		•		

3.2.3 Quantifizierung der genetischen Variation

Grundlage genetischer Variation ist der polymorphe Zustand der Genloci. Die Quantifizierung dieser Variation erfolgt mittels Berechnung verschiedener genetischer Variationsmaße auf der Ebene der Populationen und zwischen Populationen (zu Konzeption und Diskussion der Variationsmaße siehe auch MÜLLER-STARCK und GREGORIUS 1986, HATTEMER 1991a, 1991b, 1994, HATTEMER et al. 1993, MÜLLER-STARCK 1995a). Die meisten dieser Variationsmaße können sowohl für Allele als auch Genotypen bzw. Multilocus-Genotypen berechnet werden. Dabei ist zu berücksichtigen, dass die ermittelten Allelhäufigkeiten aufgrund der geringeren Anzahl verfügbarer Typen von der Stichprobengröße weit weniger beeinflusst werden als die Genotyphäufigkeiten (MÜLLER-STARCK 1993a).

Für die statistische Auswertung wurden folgende Programme verwendet: GDA (LEWIS, P. O. und ZAYKIN, D. 1999)
GSED (GILLET 1998)
GENEPOP (RAYMOND, M., ROUSSET, F. 1995)
NTSYS (ROHLF 1997)
POPGENE (YEH *et al.* 1997)

Genetische Variation innerhalb von Populationen

Genetische Vielfalt M

Die genetische Vielfalt ist ein Parameter der genetischen Variation und beschreibt die Anzahl der genetischen Typen (Allele, Gene oder Genotypen), die an einem oder mehreren Genloci innerhalb einer Population gefunden wurden. Je größer die allelische oder genotypische Vielfalt einer Population ist, desto größer ist in der Regel auch ihre Anpassungsfähigkeit an sich verändernde Umweltbedingungen (vgl. GREGORIUS 1989a). Unter besonderen Umweltbedingungen kann die Vielfalt aber auch negativ sein und eine "genetische Last" darstellen (GREGORIUS 1991b). Wie schon unter 3.1.2 erwähnt, muss hier auch der Stichprobenumfang besondere Berücksichtigung bezüglich der Repräsentanz seltener Allele finden.

Gametische Vielfalt
$$M_{gam} = \prod_{i=1}^{l} n_i$$
 n_i : Anzahl der Allele am Locus i l : Anzahl Genloci

Genotypische Vielfalt
$$M_{geno} = \prod_{i=1}^{l} [n_i(n_i + 1)/2]$$
 n_i : Relative Häufigkeit eines Genotyps mit den Allelen i

Heterozygotie *H*

Hierbei müssen zum einen Heterozygotenanteil und zum anderen Heterozygotiegrad unterschieden werden. Während der Heterozygotenanteil die Summe der Häufigkeiten der heterozygoten Individuen für jeden einzelnen Genort innerhalb einer Population angibt, ist der Heterozygotiegrad eine Eigenschaft des Multilocus-Genotyps von Individuen. Er misst den Anteil untersuchter Genorte, die sich in heterozygotem Zustand befinden.

Der Heterozygotenanteil kann sowohl als beobachtete Heterozygotie H_a (actual), oder als bedingte Heterozygotie H_c (conditional) oder aber als erwartete Heterozygotie H_e (expected) berechnet werden.

Beobachtete Heterozygotie H_a (HATTEMER *et al.* 1993)

Es handelt sich um den Anteil der heterozygoten Individuen der Population. Als arithmetisches Mittel über alle Genloci hinweg entspricht dieser Wert dem arithmetischen Mittel der Heterozygotiegrade *H*.

$$\boldsymbol{H}_{a} = \boldsymbol{P}_{ij}^{k} \quad (i \neq j) \qquad \boldsymbol{H}_{i} = \frac{1}{m} \sum_{k=1}^{m} \boldsymbol{f}_{ij}^{(k)} \quad \text{mit } f_{ij} = \begin{cases} 0 \text{ wenn } i = j \\ 1 \text{ wenn } i \neq j \end{cases}$$

Bedingte Heterozygotie H_c (GREGORIUS *et al.* 1986)

Es handelt sich dabei um eine Normierung des Heterozygotenanteils, indem der beobachtete Heterozygotenanteil mit dem maximalen Heterozygotenanteil in Beziehung gesetzt wird. Auf diese Art findet auch eine Berücksichtigung der Allelfrequenzen statt.

$$H_c = \frac{H_a}{H_{\text{max}}}$$
 $H_{\text{max}} = 1$, wenn $p_i < 0.5 \ \forall i \text{ bzw. } 2 \cdot (1-p_i)$, wenn $p_i > 0.5$ p_i : Häufigkeit des genetischen Typs i

Erwartete Heterozygotie H_e (NEI 1973)

In der Literatur findet man häufig auch den Wert des erwarteten Heterozygotenanteils. Die Berechnung erfolgt aufgrund der beobachteten allelischen Strukturen unter Annahme von Hardy-Weinberg-Häufigkeiten. Nur für diesen Fall handelt es sich um ein Heterozygotiemaß. In allen anderen Fällen ist sie ein Maß für die genetische Diversität. Ein weiterer Nachteil dieses Parameters ist, dass schon vorher stattgefundene Selektionsprozesse nicht zum Ausdruck gebracht werden können.

$$H_e = 1 - \sum_i p_i^2$$
 p_i : Häufigkeit des *i*-ten Allels

Genetische Diversität v (GREGORIUS 1978, 1987)

Die genetische Diversität ist ein mit der Häufigkeit der genetischen Typen (Allele oder Genotypen) gewogenes Variationsmaß. Mit seiner Hilfe können auch Major- und Minorpolymorphismen (Nähe zur Fixierung) charakterisiert werden.

$$v = \sum_{i=1}^{n} (p_i^2)^{-1}$$
 p_i : Häufigkeit des Allels (oder Genotyps) i

Hypothetische gametische Multilocus-Diversität v_{gam} (GREGORIUS et al. 1985)

Auch sie ist ein Diversitätsparameter. Sie errechnet sich als das Produkt der Einzellocus-Diversitäten und gibt die maximal bildbare Anzahl verschiedener Gametentypen an. Auf diese Weise wird die Fähigkeit beziehungsweise das Potential zur Erzeugung genetischer Variation aufgezeigt.

$$v_{gam} = \prod_{k=1}^{n} v_k$$
 v_k: Diversität am Genlocus k

Populationsdifferenzierung δ_T

Sie quantifiziert den Anteil an Individuen gemeinsamer bzw. unterschiedlicher genetischer Information innerhalb einer Population unter Berücksichtigung der Stichprobengröße. Dieses Maß ist zwischen 0 und 1 normiert, wobei 0 völlige Gleichheit, 1 vollständige Verschiedenartigkeit aller Individuen bedeutet.

$$\delta_{T} = \frac{N}{N-1} \cdot \left(1 - \sum_{i} p_{i}^{2}\right) = \frac{N}{N-1} \cdot \left(1 - \frac{1}{\nu}\right) \qquad p_{i}: \text{ Häufigkeit des Allels (oder Genotyps) } i$$

$$N: \text{ Stichprobengröße}$$

Genetische Variation zwischen Populationen

Genetischer Abstand d_o (GREGORIUS 1974)

Der Genetische Abstand quantifiziert paarweise die genetische Verschiedenartigkeit zweier Populationen. Sein Wert liegt zwischen 0 und 1, wobei 0 völlige genetische Übereinstimmung bedeutet und der Wert 1 anzeigt, dass keine gemeinsamen Allele oder Genotypen vorliegen.

$$d_0 = \frac{1}{2} \sum_{i=1}^{n} |p_i - q_i|$$
 p_i und q_i : relative Häufigkeiten eines genetischen Typs k (Allel oder Genotyp) in zwei verschiedenen Populationen

Genetische Differenzierung D_i (GREGORIUS und ROBERDS 1986)

Sollen mehr als zwei Populationen miteinander verglichen werden, so benutzt man dazu die genetische Differenzierung D_i. Dieser Wert gibt den Abstand einer Population zur Gesamtheit aller anderen Populationen an. Auf diese Weise können Unterschiede in der genetischen Struktur jedes Kollektivs zum gemeinsamen Genpool offengelegt werden. Populationen mit besonders niedrigen D_j -Werten sind dabei besonders repräsentativ (Generalisten), solche mit hohen Werten eher Spezialisten.

$$D_{j} = \frac{1}{2} \sum_{k=1}^{n} \left| p_{i}^{(j)} - \overline{p}_{i}^{(j)} \right|$$

$$p_{i}: \text{ relative Häufigkeit des } i\text{-ten genetischen Typs}$$

$$\overline{p}_{i}: \text{ relative Häufigkeit dieses Typs in den}$$

$$Komplementpopulationen$$

Mittlere Differenzierung δ

Als Vergleichsgröße zur genetischen Differenzierung wird die mit den Stichprobenumfängen gewogene mittlere Differenzierung δ berechnet.

$$\delta = \sum_{j} c_{j} \cdot D_{j}$$

3.2.4 Quantifizierung der Auswirkungen des Reproduktionssystems auf die genotypische Struktur

Um die Auswirkungen des Reproduktionssystems auf die genotypischen Strukturen zu analysieren, werden die genetischen Strukturen von Eltern und ihren Nachkommen verglichen. Hierzu sollte man ein möglichst frühes Stadium der Folgegeneration wählen, am besten das Zygotenstadium. In der Praxis kann aber nur der Samen als frühestmögliches Stadium herangezogen werden. Es findet dann ein Vergleich dieser empirisch ermittelten Strukturen mit Referenzstrukturen (Modellannahmen) statt, um genetisch bedingte Unterschiede in der potentiellen Reproduktionsbeteiligung und den durch Auslese verursachten zu differenzieren. Modellannahmen idealisieren beziehungsweise randomisieren die Reproduktionsbedingungen. Ein Beispiel für ein solches Modell ist die Panmixie (siehe unten).

Fixierungsindex F (WRIGHT 1965)

Die Inzucht wird mittels des F-Wertes (Fixierungsindex, auch Inzuchtkoeffizient oder Fixierungskoeffizient genannt) quantifiziert. Der Wert liegt zwischen -1 und 1, wobei positive Werte einen Überschuss, negative Werte ein Defizit gegenüber dem bei Vorliegen einer Hardy-Weinberg-Struktur (siehe unten) zu erwartenden Anteil an Heterozygoten (H_e) anzeigen.

$$F = \frac{H_e - H_a}{H_e}$$

Inzucht hängt vom Grad der Verwandtschaft der Eltern ab. Der Inzuchtkoeffizient (F_z) eines Individuums Z gibt dabei die Wahrscheinlichkeit an, mit welcher die beiden Allele eines bestimmten Genlocus abstammungsidentisch sind. Je höher der Inzuchtkoeffizient ist, desto höher ist die Wahrscheinlichkeit abstammungsidentischer Allele und daher homozygoter Genotypen.

Die beiden Möglichkeiten der Verwandtenpaarung sind zum einen die fortgesetzte Selbstbefruchtung und zum anderen die fortgesetzte Vollgeschwisterpaarung, wobei im ersten Fall *F* noch schneller ansteigt.

Assortative Paarungspräferenz U^*

Sie gibt Auskunft darüber, ob bevorzugte Paarungen aufgrund bestimmter Merkmalsausprägungen stattfinden. Für $U^* < 1$ geht man von einer negativ assortativen Paarung, für $U^* > 1$ von einer positiv assortativen Paarung aus. Liegt der Wert genau bei eins, handelt es sich um eine zufallsmäßige Kombination (MÜLLER-STARCK und GREGORIUS 1988, STARKE 1996).

$$U_{ii}^* = \frac{P_{ii}}{p_i^2}$$

$$U_{ij}^* = \frac{P_{ij}}{2 \cdot p_i \cdot p_j}$$

$$P_{ii}, P_{ij}: Genotyphäufigkeit$$

$$p_i, p_j: Allelhäufigkeit$$
für $i \neq j$

Referenzstrukturen

Panmixie

Bei der sogenannten Panmixie handelt es sich um ein idealisiertes Paarungssystem. Dabei werden idealisierte Reproduktionsverhältnisse unterstellt. Hierzu gehören Zufallspaarung, getrennte Generationen, effektiv unendlich große Populationsgrößen, sexuelle Symmetrie und der Ausschluss von Mutation, Genfluss, Fertilitäts- und Viabilitätsselektion.

Im Gegensatz zu den Gymnospermen ist bei den Angiospermen keine Unterscheidung zwischen männlichen und weiblichen Gameten möglich. Es handelt sich daher um ungeordnete Genotypen. Für die Eiche, die zu den Angiospermen zählt, bleiben die allelische und genotypische Struktur unter dem Einfluss von Panmixie konstant. Im Hardy-Weinberg-Gleichgewicht sind die panmiktische Struktur und die Hardy-Weinberg-Struktur identisch. Für Angiospermen und Gymnospermen gleichermaßen

gilt, dass der Fixierungskoeffizient F = 0 ist und alle Paarungspräferenzen den Wert eins haben.

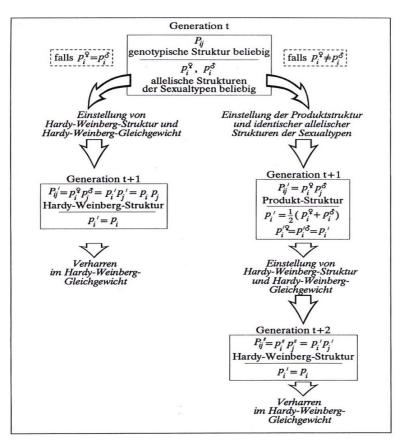


Abbildung 6: Konsequenzen fortgesetzer Panmixie für die genetische Struktur an einem autosomalen Genlocus in einer Mendel-Population (aus HATTEMER *et al.* 1993)

Hardy-Weinberg-Struktur

Es werden die unter Hardy-Weinberg erwarteten genotypischen Strukturen berechnet.

$$N_{ii}^{HW} = \left(\frac{n_i}{2n}\right)^2 \cdot n$$

$$N_{ij}^{HW} = 2 \cdot \frac{n_i}{2n} \cdot \frac{n_j}{2n} \cdot n$$
 n_i : Anzahl Allele i
 n_j : Anzahl Allele j
 n : Anzahl aller Allele

Inzucht-Struktur

Hierzu werden die unter Inzucht erwarteten genotypischen Strukturen berechnet.

$$N_{ii}^{INZ} = (p_i^2 + p_i \cdot \overline{p}_i \cdot F) \cdot n$$
 p_i : Häufigkeit Allel i p_j : Häufigkeit Allel j p_i : Fixierungsindex p_i : Anzahl aller Allele

4. Ergebnisse

4.1 Genetische Variation innerhalb der Populationen

In Tabelle 11 findet sich eine Zusammenstellung der wichtigsten genetischen Variationsparameter für alle 44 Bestände. Die Werte wurden für den Genpool von 17 Loci ermittelt. Zur besseren Übersicht erscheinen die Altbestände in Fettdruck und die Minimum- und Maximumwerte sind jeweils hell- und dunkelgrau hinterlegt

Tabelle 11: Übersicht über die genetische Variation innerhalb der Populationen für alle Bestände über 17 Genorte (n = Stichprobenumfang, A_L = Anzahl Allele je Genort, G_L = Anzahl Genotypen je Genort, H_a = Beobachtete Heterozygotie, H_e = Bedingte Heterozygotie, v = Genpool-Diversität, v_{gam} = Hypothetische gametische Multilocus-Diversität und δ_T = Populationsdifferenzierung)

Por	oulation	n	$A_{\scriptscriptstyle L}$	$G_{\scriptscriptstyle L}$	H _o	H _c	V	V gam	$\delta_{\scriptscriptstyle T}$
1	Arnstein	102	4,29	7,47	0,266	0,576	1,595	7.097.384	0,375
2	Arnstein Sammelstelle 1997	150	4,71	8,71	0,272	0,623	1,564	5.898.321	0,362
3	Arnstein Bestandesabsaat 1997	150	4,94	8,65	0,299	0,638	1,629	9.697.979	0,388
4	Bad Neustadt	102	4,00	6,53	0,233	0,611	1,487	2.292.374	0,329
5	Bad Neustadt Bestandesabsaat 1997	98	4,24	7,65	0,242	0,631	1,464	1.483.328	0,329
6		96 151	4,88	9,35	0,242	0,583			0,319
7	Bad Neustadt Bestandesabsaat 1998	102	,		_ ′		1,638	12.658.756	
8	Bamberg	150	4,12	6,88	0,260	0,635	1,547	3.990.787	0,355
9	Bamberg Bestandesabsaat 1998		4,71	8,59	0,236	0,618	1,466	1.829.233	0,319
	Burgsinn	102	4,06	6,65	0,244	0,592	1,516	2.823.559	0,342
10	Burgsinn Bestandesabsaat 1998	150	4,24	8,12	0,270	0,583	1,527	3.708.153	0,346
11	Dinkelsbühl	102	4,47	7,59	0,272	0,573	1,593	6.124.811	0,374
12	Dinkelsbühl Bestandesabsaat 1997	150	4,76	8,29	0,252	0,637	1,513	2.158.499	0,340
13	Dinkelsbühl Bestandesabsaat 1998	150	4,59	9,06	0,275	0,611	1,579	7.200.998	0,368
14	Dinkelsbühl Naturverjüngung	102	4,24	7,35	0,265	0,572*	1,535	4.004.710	0,350
15	Hammelburg	102	4,18	6,94	0,245	0,557*	1,495	2.511.406	0,333
16	Hammelburg Bestandesabsaat 1997	150	4,53	8,59	0,280	0,635	1,528	3.403.615	0,347
17	Hochspeyer	102	4,35	7,24	0,253	0,594	1,543	4.315.636	0,353
18	Hochspeyer Klenge 1997	150	4,06	7,06	0,278	0,638	1,463	2.077.677	0,318
19	Hochspeyer Bestandesabsaat 1997	150	4,35	7,65	0,268	0,637	1,502	2.442.666	0,335
20	Hochspeyer Bestandesabsaat 1998	150	4,59	8,41	0,261	0,632	1,506	3.745.795	0,337
21	Langenau	102	4,47	7,47	0,300	0,598	1,618	10.932.266	0,384
22	Langenau Bestandesabsaat 1997	150	4,65	8,18	0,247	0,617	1,482	1.712.975	0,326
23	Langenau Bestandesabsaat 1998	150	4,88	8,47	0,272	0,616	1,532	4.489.789	0,348
24	Langenau Kultur Baumschule	103	3,94	6,29	0,280	0,595	1,495	2.822.013	0,333
25	Langenau Pflanzgarten Heister	103	4,35	7,24	0,267	0,614	1,495	2.616.148	0,333
26	Müllheim	102	4,47	7,29	0,232	0,568	1,485	2.085.620	0,328
27	Müllheim Bestandesabsaat 1996	150	4,71	7,94	0,216	0,621	1,388	496.071	0,280
28	Müllheim Eichwald	102	4,35	6,82	0,244	0,601	1,498	2.458.320	0,334
29	Müllheim Steinacker	102	4,24	7,12	0,255	0,604	1,499	2.323.404	0,334
30	Müllheim Baumschule 94	89	4,18	6,35	0,255	0,647	1,473	1.864.242	0,323
31	Müllheim Baumschule 96	98	4,18	6,76	0,247	0,591	1,491	2.373.648	0,331
32	Müllheim Eich. Bestandesabsaat 1998	150	4,59	7,88	0,238	0,627	1,463	1.291.574	0,318
33	Müllheim St. Bestandesabsaat 1998	150	4,35	7,18	0,224	0,620	1,415	845.647	0,294
34	Müllrose	102	4,18	7,41	0,250	0,577	1,536	4.215.667	0,254
35	Müllrose* Baumschule	80	4,24	6,94	0,274	0,533	1,611	9.287.621	0,382
36	Müllrose Bestandesabsaat 1996	300	4,71	8,47	0,274	0,698	1,386	729.281	0,382
37	Müllrose Bestandesabsaat 1997	200	4,71						
38	Peitz		, -	8,76	0,261	0,623	1,531	2.744.778	0,348
		101	4,12	6,76	0,226	0,578	1,500	2.252.813	0,335
39	Peitz Bestandesabsaat 1996	150	4,41	7,65	0,208	0,629	1,369	459.919	0,271
40	Schweinfurt	103	4,18	6,88	0,240	0,567	1,501	2.972.667	0,336
41	Schweinfurt Bestandesabsaat 1996	150	4,12	6,35	0,229	0,752	1,379	589.812	0,276
42	Uffenheim	102	4,41	7,18	0,279	0,553	1,591	6.033.194	0,373
43	Uffenheim Bestandesabsaat 1996	150	4,12	6,88	0,225	0,714	1,376	544.917	0,274
44	Uffenheim Bestandesabsaat 1997	150	4,29	7,29	0,247	0,680	1,403	889.936	0,288
	hmetisches Mittel:								
Alti	pestände	102	4,26	7,08	0,253	0,586	1,534	4.161.994	0,349
	nen	156	4,54	8,05	0,253	0,637	1,483	3.091.292	0,325
alle	Jungbestände	144	4,46	7,80	0,255	0,628	1,490	3.243.728	0,328
alle	Bestände	130	4,39	7,55	0,255	0,614	1,505	3.556.773	0,335
(A 1:	thestände erscheinen in Fettdruck Mini	mum		Jovim	ım Warte	cind hal	1 und di	inkalaran unta	erlegt *

(Altbestände erscheinen in Fettdruck, Minimum- und Maximum-Werte sind hell- und dunkelgrau unterlegt, Wert nur für 16 Genorte)

Eine detaillierte Aufstellung der einzelnen Parameter aller 44 Bestände für jeden einzelnen Genort befindet sich im Anhang in den Tabellen 3-14.

4.1.1 Genetische Vielfalt

Allelhäufigkeiten

Einen Überblick über den Polymorphismus einzelner Genorte für alle 44 Populationen gibt Tabelle 12. Die aufgeführten Werte stellen dabei arithmetische Mittelwerte über alle 44 Bestände dar. Die jeweils durchschnittlich häufigsten Allele erscheinen in Fettdruck, Allele mit einer durchschnittlichen Häufigkeit von über 5 % sind grau unterlegt. Der Schwankungsbereich der Allelhäufigkeiten für die einzelnen Genorte innerhalb der 44 Bestände ist Tabelle 1 im Anhang zu entnehmen. In der Regel ist jedoch das durchschnittlich häufigste Allel auch für den Einzelbestand das häufigste. Vereinzelte Ausnahmen hiervon finden sich an den Genorten AP-A (LAP) und AP-B (AAP). Häufiger tritt dieses Phänomen am Locus EST-A auf. An beinahe allen Genorten kommt es vor, dass Allele zwar im Durchschnitt Häufigkeiten von über 5 % aufweisen, bei einzelnen Beständen jedoch in geringerer Frequenz auftreten. Umgekehrt haben einzelne Allele in manchen Beständen Häufigkeiten über 5 %, die bei der Bildung des arithmetischen Mittelwertes über 44 Bestände deutlich geringere Frequenzen zeigen.

Tabelle 12: Durchschnittliche Allelhäufigkeiten [%] für alle 44 untersuchten Populationen für die gemeinsamen 17 Genorte. Die jeweils durchschnittlich häufigsten Allele erscheinen in Fettdruck, Allele mit einer durchschnittlichen Häufigkeit von über 5 % sind grau unterlegt.

Allel Genort	1	2	3	4	5	6	7	8	9
AAT-B	5,24	0,33	0,20	93,62	0,15	0,46			
ACO-A	0,14	0,83	15,06	80,84	1,56	1,58			
ADH-A	3,30	1,30	57,81	10,73	5,78	17,96	2,94	0,18	
AP-A (LAP)	0,31	25,63	16,22	49,40	7,27	0,67	0,50	0,02	
AP-B (AAP)	1,07	51,40	9,77	30,38	7,38	0,01			
EST-A	0,96	19,10	28,30	42,21	5,72	3,75			
IDH-A	1,40	10,34	82,33	2,05	3,64	0,25			
IDH-B	8,16	0,01	4,75	0,13	86,92	0,03			
MDH-B	0,11	4,31	90,09	4,78	0,71				
MDH-C	6,04	92,20	1,68	0,08					
MNR-A		0,67	3,35	78,07	4,86	1,81	0,72	0,07	10,45
6PGDH-A	6,54	86,04	5,70	1,73					
6PGDH-B	0,14	2,97	96,27	0,55	0,02	0,05			
PGI-A	0,43	3,58	93,48	2,51					
PGI-B	0,16	7,95	3,51	0,66	0,13	80,38	0,15	6,98	0,08
PGM-A	0,10	9,40	2,55	81,90	5,61	0,45	0,01		-
SKDH-A	0,34	24,03	69,45	3,63	2,48	0,09	•		
	Genort AAT-B ACO-A ADH-A AP-A (LAP) AP-B (AAP) EST-A IDH-A IDH-B MDH-B MDH-C MNR-A 6PGDH-A 6PGDH-B PGI-A PGI-B PGM-A	Genort AAT-B 5,24 ACO-A 0,14 ADH-A 3,30 AP-A (LAP) 0,31 AP-B (AAP) 1,07 EST-A 0,96 IDH-A 1,40 IDH-B 8,16 MDH-B 0,11 MDH-C 6,04 MNR-A 6PGDH-A 6,54 6PGDH-B 0,14 PGI-A 0,43 PGI-B 0,16 PGM-A 0,10	Genort AAT-B 5,24 0,33 ACO-A 0,14 0,83 ADH-A 3,30 1,30 AP-A (LAP) 0,31 25,63 AP-B (AAP) 1,07 51,40 EST-A 0,96 19,10 IDH-A 1,40 10,34 IDH-B 8,16 0,01 MDH-B 0,11 4,31 MDH-C 6,04 92,20 MNR-A 0,67 6PGDH-A 6,54 86,04 6PGDH-B 0,14 2,97 PGI-A 0,43 3,58 PGI-B 0,16 7,95 PGM-A 0,10 9,40	Genort AAT-B 5,24 0,33 0,20 ACO-A 0,14 0,83 15,06 ADH-A 3,30 1,30 57,81 AP-A (LAP) 0,31 25,63 16,22 AP-B (AAP) 1,07 51,40 9,77 EST-A 0,96 19,10 28,30 IDH-A 1,40 10,34 82,33 IDH-B 8,16 0,01 4,75 MDH-B 0,11 4,31 90,09 MDH-C 6,04 92,20 1,68 MNR-A 0,67 3,35 6PGDH-A 6,54 86,04 5,70 6PGDH-B 0,14 2,97 96,27 PGI-A 0,43 3,58 93,48 PGI-B 0,16 7,95 3,51 PGM-A 0,10 9,40 2,55	Genort AAT-B 5,24 0,33 0,20 93,62 ACO-A 0,14 0,83 15,06 80,84 ADH-A 3,30 1,30 57,81 10,73 AP-A (LAP) 0,31 25,63 16,22 49,40 AP-B (AAP) 1,07 51,40 9,77 30,38 EST-A 0,96 19,10 28,30 42,21 IDH-A 1,40 10,34 82,33 2,05 IDH-B 8,16 0,01 4,75 0,13 MDH-B 0,11 4,31 90,09 4,78 MDH-C 6,04 92,20 1,68 0,08 MNR-A 0,67 3,35 78,07 6PGDH-A 6,54 86,04 5,70 1,73 6PGDH-B 0,14 2,97 96,27 0,55 PGI-A 0,43 3,58 93,48 2,51 PGI-B 0,16 7,95 3,51 0,66 PGM-A	Genort AAT-B 5,24 0,33 0,20 93,62 0,15 ACO-A 0,14 0,83 15,06 80,84 1,56 ADH-A 3,30 1,30 57,81 10,73 5,78 AP-A (LAP) 0,31 25,63 16,22 49,40 7,27 AP-B (AAP) 1,07 51,40 9,77 30,38 7,38 EST-A 0,96 19,10 28,30 42,21 5,72 IDH-A 1,40 10,34 82,33 2,05 3,64 IDH-B 8,16 0,01 4,75 0,13 86,92 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-C 6,04 92,20 1,68 0,08 MNR-A 0,67 3,35 78,07 4,86 6PGDH-A 6,54 86,04 5,70 1,73 6PGDH-B 0,14 2,97 96,27 0,55 0,02 PGI-A	Genort AAT-B 5,24 0,33 0,20 93,62 0,15 0,46 ACO-A 0,14 0,83 15,06 80,84 1,56 1,58 ADH-A 3,30 1,30 57,81 10,73 5,78 17,96 AP-A (LAP) 0,31 25,63 16,22 49,40 7,27 0,67 AP-B (AAP) 1,07 51,40 9,77 30,38 7,38 0,01 EST-A 0,96 19,10 28,30 42,21 5,72 3,75 IDH-A 1,40 10,34 82,33 2,05 3,64 0,25 IDH-B 8,16 0,01 4,75 0,13 86,92 0,03 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-C 6,04 92,20 1,68 0,08 MNR-A 0,67 3,35 78,07 4,86 1,81 6PGDH-B 0,14 2,97 96,27 0,55 <t< td=""><td>Genort AAT-B 5,24 0,33 0,20 93,62 0,15 0,46 ACO-A 0,14 0,83 15,06 80,84 1,56 1,58 ADH-A 3,30 1,30 57,81 10,73 5,78 17,96 2,94 AP-A (LAP) 0,31 25,63 16,22 49,40 7,27 0,67 0,50 AP-B (AAP) 1,07 51,40 9,77 30,38 7,38 0,01 EST-A 0,96 19,10 28,30 42,21 5,72 3,75 IDH-A 1,40 10,34 82,33 2,05 3,64 0,25 IDH-B 8,16 0,01 4,75 0,13 86,92 0,03 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-B 0,11 4,31 90,09 4,78 0,71 MNR-A 0,67 3,35 78,07 4,86 1,81 0,72 6PGDH-B <td< td=""><td>Genort AAT-B 5,24 0,33 0,20 93,62 0,15 0,46 ACO-A 0,14 0,83 15,06 80,84 1,56 1,58 ADH-A 3,30 1,30 57,81 10,73 5,78 17,96 2,94 0,18 AP-A (LAP) 0,31 25,63 16,22 49,40 7,27 0,67 0,50 0,02 AP-B (AAP) 1,07 51,40 9,77 30,38 7,38 0,01 EST-A 0,96 19,10 28,30 42,21 5,72 3,75 IDH-A 1,40 10,34 82,33 2,05 3,64 0,25 IDH-B 8,16 0,01 4,75 0,13 86,92 0,03 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-B 0,14 2,97 96,27 0,55 0,02 0,05 MPGDH-A 6,54 86,04 5,70 1,73 0,05 0,02</td></td<></td></t<>	Genort AAT-B 5,24 0,33 0,20 93,62 0,15 0,46 ACO-A 0,14 0,83 15,06 80,84 1,56 1,58 ADH-A 3,30 1,30 57,81 10,73 5,78 17,96 2,94 AP-A (LAP) 0,31 25,63 16,22 49,40 7,27 0,67 0,50 AP-B (AAP) 1,07 51,40 9,77 30,38 7,38 0,01 EST-A 0,96 19,10 28,30 42,21 5,72 3,75 IDH-A 1,40 10,34 82,33 2,05 3,64 0,25 IDH-B 8,16 0,01 4,75 0,13 86,92 0,03 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-B 0,11 4,31 90,09 4,78 0,71 MNR-A 0,67 3,35 78,07 4,86 1,81 0,72 6PGDH-B <td< td=""><td>Genort AAT-B 5,24 0,33 0,20 93,62 0,15 0,46 ACO-A 0,14 0,83 15,06 80,84 1,56 1,58 ADH-A 3,30 1,30 57,81 10,73 5,78 17,96 2,94 0,18 AP-A (LAP) 0,31 25,63 16,22 49,40 7,27 0,67 0,50 0,02 AP-B (AAP) 1,07 51,40 9,77 30,38 7,38 0,01 EST-A 0,96 19,10 28,30 42,21 5,72 3,75 IDH-A 1,40 10,34 82,33 2,05 3,64 0,25 IDH-B 8,16 0,01 4,75 0,13 86,92 0,03 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-B 0,14 2,97 96,27 0,55 0,02 0,05 MPGDH-A 6,54 86,04 5,70 1,73 0,05 0,02</td></td<>	Genort AAT-B 5,24 0,33 0,20 93,62 0,15 0,46 ACO-A 0,14 0,83 15,06 80,84 1,56 1,58 ADH-A 3,30 1,30 57,81 10,73 5,78 17,96 2,94 0,18 AP-A (LAP) 0,31 25,63 16,22 49,40 7,27 0,67 0,50 0,02 AP-B (AAP) 1,07 51,40 9,77 30,38 7,38 0,01 EST-A 0,96 19,10 28,30 42,21 5,72 3,75 IDH-A 1,40 10,34 82,33 2,05 3,64 0,25 IDH-B 8,16 0,01 4,75 0,13 86,92 0,03 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-B 0,11 4,31 90,09 4,78 0,71 MDH-B 0,14 2,97 96,27 0,55 0,02 0,05 MPGDH-A 6,54 86,04 5,70 1,73 0,05 0,02

An den Genorten AAT-B, IDH-A, IDH-B, MDH-B, MDH-C, 6PGDH-A, 6PGDH-B, PGI-A und PGM-A ist ein Trend zum Minorpolymorphismus klar erkennbar. Demgegenüber zeigen die Genorte ADH-A, AP-A (LAP), AP-B (AAP), EST-A und GDA-A eine regelmäßigere Verteilung auf mehrere Allele und so einen Trend zum Majorpolymorphismus. Dieses Ergebnis zeigt eine große Übereinstimmung mit Untersu-

chungen an Stieleiche (*Quercus robur* L.) (MÜLLER-STARCK 1997 und STREHLE 2000).

Anzahl Allele je Genort A_L

Für alle 44 Bestände zusammen finden sich im Mittel 4,39 Allele je Genort. Der Minimumwert ist mit 3,94 im Bestand Langenau Baumschule zu finden, der Maximalwert mit 4,94 in Müllrose Bestandesabsaat 1997. Ihr Potential zur Bildung verschiedener Gameten (M_{gam}) liegt zwischen 5,4 e⁹ für den Altbestand Bad Neustadt/Saale und 3,9 e¹¹ für die Bestandesabsaat 1997 Müllrose (vergleiche Anhang, Tabelle 3).

Anzahl Genotypen je Genort G_L

Im Mittel über alle Bestände liegt G_L bei 7,55. Der maximale Wert beträgt 9,35 für die Bestandesabsaat Dinkelsbühl 1998, der minimale 6,29 für das Baumschulmaterial Langenau. Ihr Potential zur Bildung unterschiedlicher Genotypen (M_{geno}) liegt zwischen 2,8 e¹⁶ für den Bestand Bad Neustadt/Saale und 3,6 e²⁰ für den Bestand Arnstein Bestandesabsaat 1997 (vergleiche Anhang, Tabelle 4).

4.1.2 Heterozygotie

Die beobachtete Heterozygotie H_a erreicht im Durchschnitt über alle Bestände einen Wert von 25,5 %. Die Spanne reicht dabei von 20,8 % (Peitz Bestandesabsaat 1996) bis 30,0 % (Langenau Altbestand). Diese Werte stehen in guter Übereinstimmung mit den Ergebnissen anderer Untersuchungen an Eiche (siehe Kapitel 1.3 Referenzdaten). Eine nähere Betrachtung dieses Parameters erfolgt auch beim Vergleich der Altbestände und ihrer Nachkommenschaften (siehe Kapitel 4.3).

Eine Betrachtung der bedingten Heterozygotie H_c als der maximal möglichen Heterozygotie, zeigt einen durchschnittlichen Wert von 61,4 % über alle Bestände. Die Werte reichen dabei von maximal 75,2 % (Schweinfurt Bestandesabsaat 1996) bis minimal 53,3 % (Müllrose Baumschulmaterial). Das bedeutet, dass die Bestände etwa gut die Hälfte bis drei Viertel - im Durchschnitt etwa zwei Drittel - der möglichen Heterozygoten auch tatsächlich ausbilden.

4.1.3 Genetische Diversität

Die Genpool-Diversität *v* ist mit Durchschnittswerten um 1,51 über alle Genorte relativ hoch. Der niedrigste Wert findet sich für die Bestandesabsaat Peitz 1996 mit 1,37, der höchste für die Bestandesabsaat Bad Neustadt/Saale 1998 mit 1,64.

Die allelische Diversität $v_{(a)}$ ist mit Durchschnittswerten um 1,73 gemittelt über alle 17 Genorte ebenfalls relativ hoch. Der niedrigste Wert findet sich mit 1,51 für die Bestandesabsaat Müllheim 1996, der höchste mit 1,87 für die Bestandesabsaat Bad Neustadt/Saale 1998. Die genotypische Diversität $v_{(g)}$ weist demgegenüber mit Werten von 2,07 (Müllheim Bestandesabsaat 1996) bis 2,99 (Bad Neustadt/Saale Bestandes-

absaat 1998) eine etwas größere Streuung auf. Der arithmetische Mittelwert über die 17 Genloci liegt hier bei 2,54.

Die hypothetische gametische Multilocus-Diversität v_{gam} lässt die Unterschiede innerhalb der Bestände deutlicher hervortreten, die sich bei der allelischen und der genotypischen Diversität zeigen. Der kleinste Wert findet sich mit 459.919 bildbaren Gameten auch hier für die Bestandesabsaat Peitz 1996 und der höchste mit 12.658.756 bildbaren Gameten für die Bestandesabsaat Bad Neustadt/Saale 1998.

4.1.4 Populationsdifferenzierung

Die Populationsdifferenzierung δ_T zeigt einen mittleren Wert von 0,335 bei einer Spanne von 0,271 (Peitz Bestandesabsaat 1997) bis 0,391 (Bad Neustadt/Saale Bestandesabsaat 1998).

4.2 Genetische Variation zwischen den Beständen

4.2.1 Homogenitätstest

Tests zeigen starke Abweichungen bezüglich der Homogenität der Bestände. Bei der Berechnung der genetischen Abstände d_o (siehe Kapitel 4.2.2, Abbildung 7) ergibt sich einen Aufteilung in zwei Einzelbestände und zwei Gruppen inklusive ihrer weiteren Untergliederung (drei Cluster). Innerhalb dieser Cluster bestehen über beinahe alle 17 Genorte hinweg signifikante Unterschiede zwischen den Beständen (Tabelle 13).

Tabelle 13: Homogenitätstest für die drei Cluster, die sich bei der Berechnung der genetischen Genpool-Abstände ergeben

	"	ere Gruppe"				"	untere	Grupp	e"			
		19	Bestände			18	Bestände			5	Bestände	
AAT-B	G	=	156.296	***	G	=	125.116	**	G	=	45.999	***
	X**2	=	189.921	***	X**2	=	144.702	***	X**2		48.593	***
ACO-A	G	=	217.808	***	G	=	564.657	***	G	=	58.540	***
	X**2	=	221.596	***	X**2	=	532.436	***	X**2	=	56.226	***
ADH-A	G	=	kein Test 1)		G		kein Test 1)		G	=	140.814	***
	X**2	=	kein Test 1)		X**2		kein Test 1)		X**2	=	132.133	***
AP-A (LAP)	G	=	kein Test 1)		G		kein Test 1)		G	=	56.253	***
	X**2	=	kein Test 1)		X**2		kein Test 1)		X**2	=	51.956	***
AP-B (AAP)	G	=	236.768	***	G	=	273.388	***	G	=	47.859	***
	X**2	=	238.013	***	X**2	=	315.307	***	X**2	=	46.970	***
EST-A	G	=	637.443	***	G	=	528.166	***	G	=	261.916	***
	X**2	=	630.853	***	X**2	=	545.994	***	X**2	=	257.860	***
IDH-A	G	=	300.495	***	G	=	264.116	***	G	=	41.816	***
	X**2	=	299.900	***	X**2	=	264.038	***	X**2	=	42.240	***
IDH-B	G	=	88.574	n.s.	G	=	188.761	***	G	=	56.763	***
	X**2	=	117.182	***	X**2	=	237.860	***	X**2	=	55.038	***
MDH-B	G	=	276.846	***	G	=	306.044	***	G	=	46.880	***
	X**2	=	306.226	***	X**2	=	285.198	***	X**2	=	50.923	***
MDH-C	G	=	205.784	***	G	=	264.815	***	G	=	28.200	**
	X**2	=	218.979	***	X**2	=	268.451	***	X**2	=	27.637	**
MNR-A	G	=	kein Test 1)		G		kein Test 1)		G	=	115.902	***
	X**2	=	kein Test 1)		X**2		kein Test 1)		X**2	=	110.031	***
6PGDH-A	G	=	254.947	***	G	=	266.439	***	G	=	28.258	**
	X**2	=	234.997	***	X**2	=	234.372	***	X**2	=	27.624	**

Tabelle 13 (Fortsetzung)

	"ɔb∈re Gruppe" 19 Bestände			18 Bestände	"untere	Gruppe	e" 5 Bestände	
6PGDH-B	G = 129.781	***	G	= 221.808	***	G	= 34.823	***
	X**2 = 163.529	***	X**2	= 242.250	***	X**2	= 41.586	***
PGI-A	G = 161.653	***	G	= 336.487	***	G	= 41.993	***
	$X^{**}2 = 173.732$	***	X**2	= 428.818	***	X**2	= 53.454	***
PGI-B	G = kein Test 1)		G	kein Test 1)		G	= 59.841	***
	$X^{**}2 = kein Test^{1}$		X**2	kein Test 1)		X**2	= 56.389	***
PGM-A	G = kein Test 1)		G	kein Test 1)		G	= 51.923	***
	$X^{**}2 = kein Test^{1}$		X**2	kein Test 1)		X**2	= 51.929	***
SKDH-A	G = 162.731	***	G	= 321.212	***	G	= 42.320	***
	X**2 = 167.243	***	X**2	= 331.749	***	X**2	= 51.738	***

¹⁾ durch die hohe Anzahl an Populationen war zum Teil aufgrund unzureichender Klassenbesetzung (statistische Probleme) kein Test möglich

4.2.2 Genetischer Abstand

Die genetischen Abstände d_o für den Genpool der 17 Genorte erreichen Werte von 0,050 bis 0,222. Zur grafischen Veranschaulichung der Unterschiede bzw. Ähnlichkeiten zwischen mehr als zwei Populationen verwendet man sogenannte Dendrogramme.

Eine Betrachtung der genetischen Abstände zwischen allen 44 Populationen anhand ihrer Allelhäufigkeiten zeigt eine Aufgliederung in zwei Gruppen sowie zwei Einzelbestände.

Die "obere Gruppe" setzt sich beinahe ausschließlich aus den Altbeständen zusammen. Hinzu kommen zwei Baumschulpopulationen (Müllheim 1994 und 1996), die Naturverjüngung Dinkelsbühl und der Heisterbestand Langenau. Die "untere Gruppe" dagegen besteht aus allen Bestandesabsaaten und den Sammelstellen- bzw. Klengenbeständen (Arnstein und Hochspeyer).

Bei genauerer Betrachtung lässt sich bei der "untere Gruppe" eine weitere Aufgliederung erkennen. Es handelt sich dabei um die fünf Bestandesabsaaten aus dem Jahr 1996. Außerdem scheinen sich die einzelnen Jahrgänge der Bestandesabsaaten zumindest ansatzweise in Gruppen aufzuteilen.

Eine sehr deutliche Separierung dagegen zeigt der Bestand Langenau Baumschule, eine etwas weniger deutliche der Bestand Müllrose⁺ Baumschule.

Berücksichtigt man die beobachtete Spanne der d_o -Werte von 0,050 bis 0,222 bei einem möglichen Maximalwert von eins, so sind die Unterschiede besonders innerhalb aber auch zwischen der "oberen" und der "unteren" Gruppe eher im mittleren bis unteren Bereich anzusiedeln. Wie der durchgeführte Homogenitätstest gezeigt hat (siehe 4.2.1), sind sie aber durchaus signifikant.

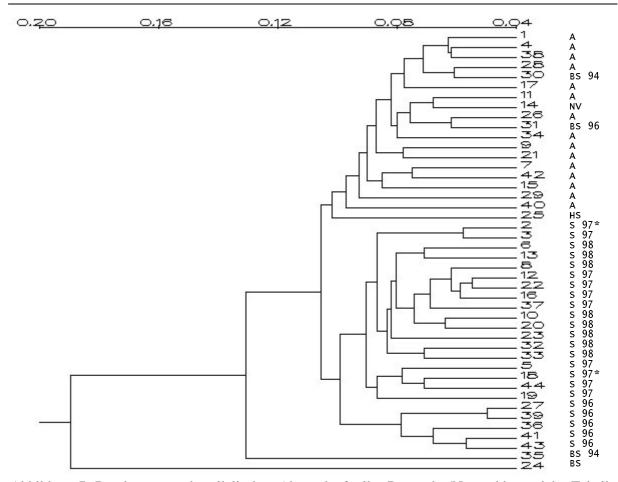
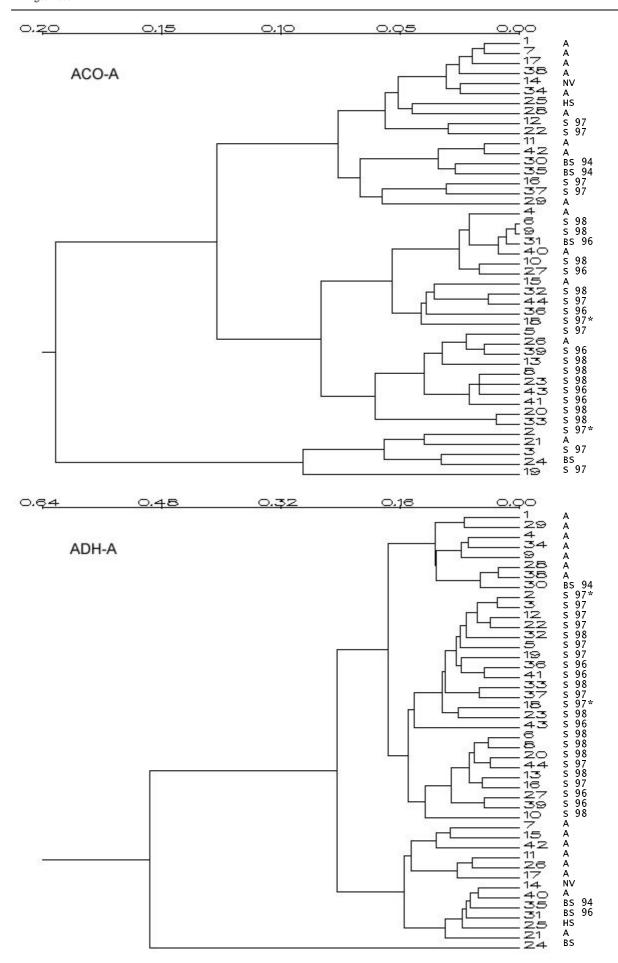
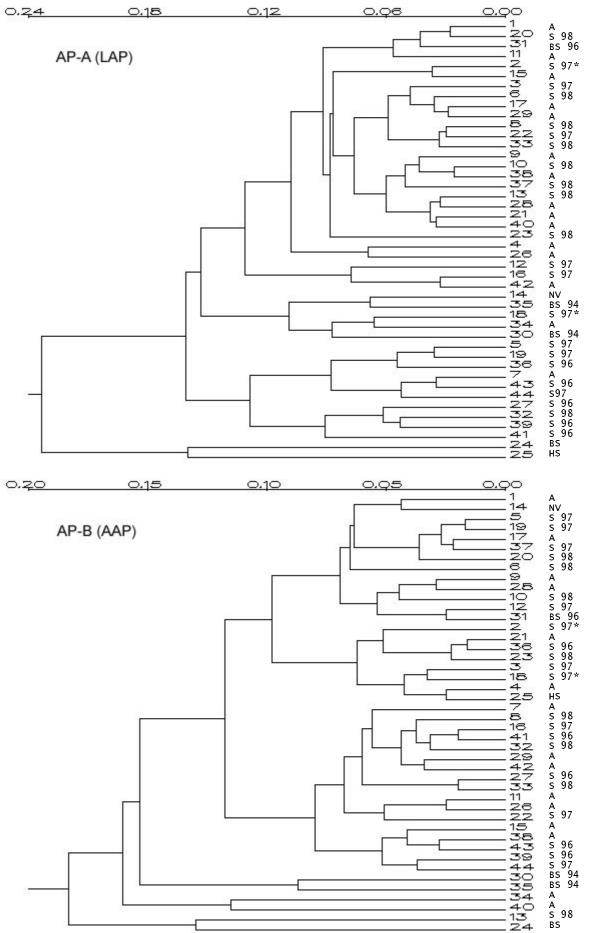
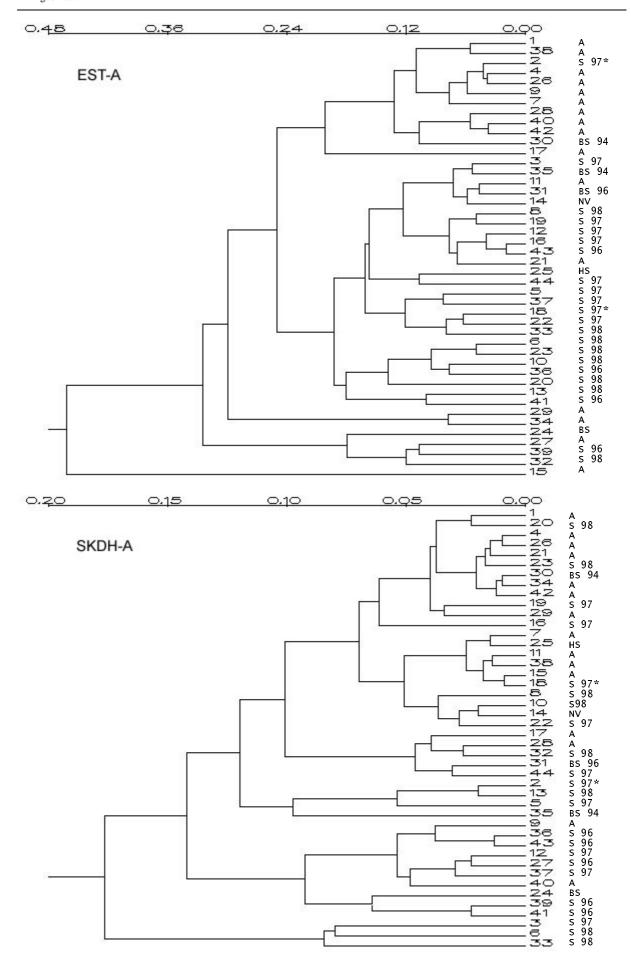
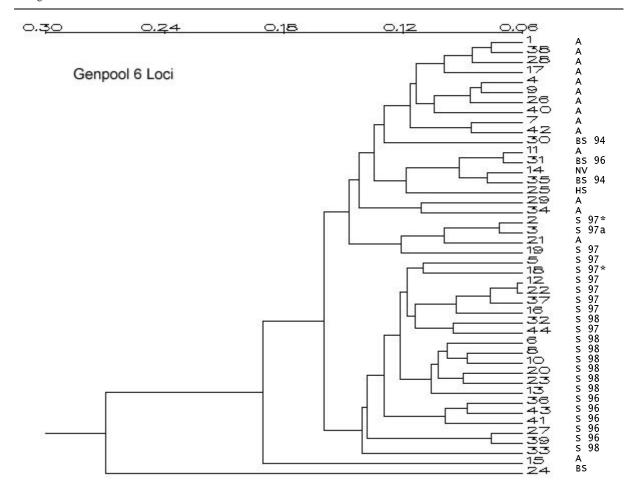



Abbildung 7: Dendrogramm der allelischen Abstände d_o aller Bestände (Nomenklatur siehe Tabelle 11) für den Genpool (17 Loci)


Bei der Verwendung aller Genorte (Multilocus-Betrachtung) besteht allerdings das Risiko einer Überlagerung bzw. Beeinflussung der differenzierungseffektiven Enzymsysteme durch die weniger differenzierten. Es kann daher sinnvoll sein, auch eine Einzellocus-Betrachtung dieser erstgenannten Enzymsysteme in die Analyse mit einzubeziehen. Dies sind im Folgenden die sechs Genorte ACO-A, ADH-A, AP-A (LAP), AP-B (AAP), EST-A und SKDH-A (siehe Abbildungen 8-13).


An diesen einzelnen Loci ist nicht die deutliche Aufgliederung in Gruppen zu finden, wie dies für den Genpool der 17 Loci der Fall ist. Am ehesten lässt der Genort ADH-A eine Zusammengruppierung der ontogenetischen Stadien und innerhalb dieser auch der einzelnen Samenjahrgänge erkennen. Die Betrachtung der verbleibenden fünf Genorte lässt keine geordneten Strukturen oder Tendenzen erkennen. Für den Genpool der sechs Loci ist wieder eine ähnliche Konstellation wie für den Genpool aller 17 Genorte zu finden.


Ein Vergleich der absoluten d_o -Werte an den sechs Loci zeigt jedoch große Unterschiede. So werden am Genort EST-A Spitzenwerte von 0,690 erreicht. Auch am Locus ADH-A erreichen die Werte mit 0,608 ein sehr hohes Niveau. An den übrigen fünf Loci liegen die Werte mit 0,288 bis 0,383 deutlich niedriger.

Abbildungen 8-14: Dendrogramme der allelischen Abstände d_o aller Bestände (Nomenklatur siehe Tabelle 11) für die Genorte ACO-A, ADH-A, AP-A (LAP), AP-B (AAP), EST-A und SKDH-A und für deren Genpool (6 Loci)

4.2.3 Genetische Differenzierung

Betrachtet man die Ergebnisse der Gesamtdifferenzierung aller 44 Bestände über 17 Genorte ($D_j = 0,050$ bis 0,179, $\delta = 0,074$), so fällt auch hier der Bestand Langenau Baumschule (24) mit der größten Differenzierung (größter Radius) vom Kollektiv der anderen Populationen auf (Abbildung 15). Damit unterscheidet er sich am stärksten von dem zusammengefassten Restkollektiv (= "Spezialist"). Den kleinsten Radius und damit die geringste Differenzierung (= "Generalist") zeigt die Bestandesabsaat 1997 Langenau (22). Insgesamt gesehen weisen die Bestände jedoch keine allzu großen Unterschiede auf.

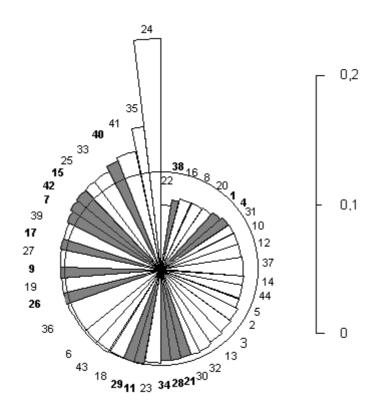


Abbildung 15: Genetische Differenzierung $D_{j(a)}$ aller 44 Bestände (Nomenklatur siehe Tabelle 11) für den Genpool (17 Loci), Altbestände in Fettdruck, grau segmentiert.

Ähnlich wie bei den genetischen Abständen besteht auch für die genetische Differenzierung bei einer Multilocus-Interpretation das Risiko von Überlagerungen. Um Unterschiede genauer erkennen zu können, sollten daher auch hier die besonders differenzierungsrelevanten Genorte einzeln und in ihrer Gesamtkombination betrachtet werden (siehe Abbildung 16).

Drei der sechs Genorte (ADH-A, AP-B (AAP), SKDH-A) zeigen wiederum für den Bestand Langenau Kultur (Baumschule) die größte Abweichung vom Gesamtkollektiv. An den übrigen drei Genorten weichen jeweils verschiedene Bestände am stärksten vom Gesamtkollektiv ab ("Spezialisten"). Dies ist der Bestand Hochspeyer Bestandesabsaat 1997 für den Genort ACO-A, der Bestand Langenau Pflanzgarten (Heister) für den Genort AP-A (LAP) und der Altbestand Hammelburg für den Genort EST-A.

Den jeweils kleinsten Radius ("Generalisten") haben Langenau Bestandesabsaat 1997 an den Genorten ACO-A und SKDH-A, Hammelburg Bestandesabsaat 1997 an den Genorten ADH-A und EST-A, Bad Neustadt/Saale Bestandesabsaat 1997 am Genort AP-A (LAP) und Bad Neustadt/Saale Bestandesabsaat 1998 am Genort AP-B (AAP).

Für den Genpool der sechs Loci besetzen dieselben zwei Bestände die beiden Extrempositionen, wie dies schon für den Genpool aller 17 Genorte der Fall war. Es handelt sich dabei um die Bestände Langenau Baumschule und Langenau Bestandesabsaat 1997.

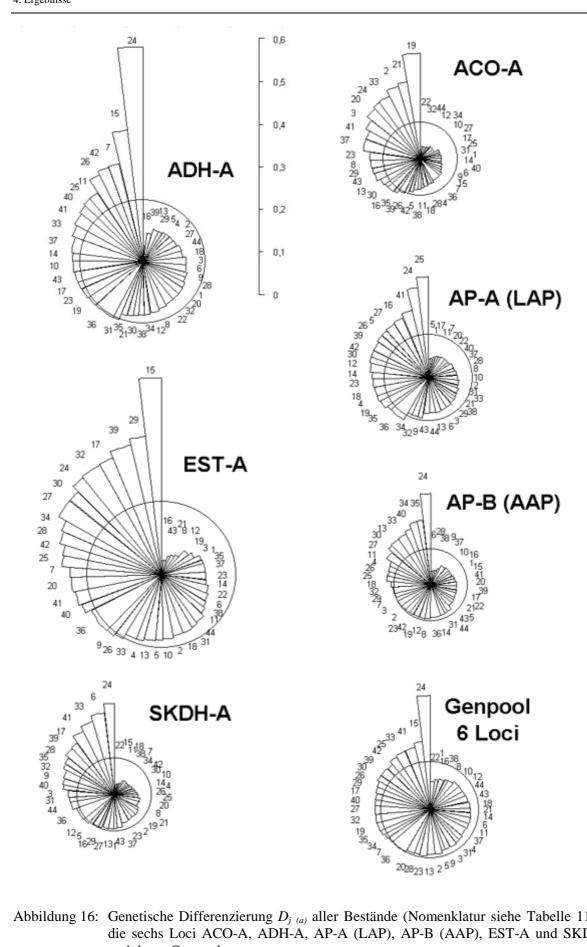


Abbildung 16: Genetische Differenzierung $D_{j(a)}$ aller Bestände (Nomenklatur siehe Tabelle 11) für die sechs Loci ACO-A, ADH-A, AP-A (LAP), AP-B (AAP), EST-A und SKDH-A und deren Genpool.

Der Grad der Differenzierung schwankt zwischen den verschiedenen Loci. Dies wird auch anhand der Größenunterschiede in der grafischen Darstellung deutlich. Der Genort ADH-A (0,503) weist insgesamt gesehen die stärksten Differenzierungen auf, gefolgt von EST-A (0,455).

4.3 Vergleich der Altbestände mit ihren Nachkommenschaften

Im Regelfall findet jeweils ein direkter Vergleich der Altbestände mit ihren Nachkommenschaften statt. Eine Ausnahme bildet - wie schon in Kapitel 3. Material erwähnt - der Bestand Müllheim II. Hier werden die Mittelwerte der Bestände Müllheim Eichwald und Müllheim Steinacker (= Müllheim II) und entsprechend auch die Mittelwerte ihrer beiden Nachkommenschaften zum Vergleich mit den Baumschulmaterialien verwendet.

4.3.1 Genetische Vielfalt

Allelhäufigkeiten

Einen Überblick über den Polymorphismus an den einzelnen Genloci, aufgegliedert nach Altbeständen und Nachkommenschaften, gibt Tabelle 14. Die aufgeführten Werte stellen dabei arithmetische Mittelwerte über die 15 Altbestände bzw. die 29 Nachkommenschaften dar. Die jeweils durchschnittlich häufigsten Allele erscheinen in Fettdruck. Allele mit einer durchschnittlichen Häufigkeit von über 5 % sind grau unterlegt. Der Schwankungsbereich der Allelhäufigkeiten für die einzelnen Genorte aller 44 Bestände ist in Tabelle 1 im Anhang zu finden. In der Regel ist jedoch das durchschnittlich häufigste Allel auch für die jeweiligen Einzelbestände das häufigste. Ausnahmen hiervon finden sich an den Genorten AP-A (LAP) und AP-B (AAP) für die beiden Bestände Langenau Baumschule und Langenau Heister. Deutlich häufiger (12 Bestände) tritt dieses Phänomen am Locus EST-A auf.

An beinahe allen Genorten kommt es vor, dass Allele zwar im Durchschnitt Häufigkeiten von über 5 % aufweisen, bei einzelnen Beständen jedoch in geringerer Frequenz auftreten. Umgekehrt haben einzelne Allele in manchen Beständen Häufigkeiten über 5 %, die bei der Bildung des arithmetischen Mittelwertes über 15 bzw. 29 Bestände geringere Frequenzen zeigen. Eine detaillierte Auflistung der Allelfrequenzen aller Bestände für die einzelnen Genorte ist in Tabelle 1 im Anhang zu finden. Diese zeigt dann auch, dass häufiger in den Nachkommenschaften Allele erscheinen, die in den Altbeständen nicht nachgewiesen werden konnten. Umgekehrt kommt es aber beinahe genauso oft vor, dass Allele der Altbestände in einer oder mehreren Nachkommenschaften nicht mehr präsent sind. Es handelt sich in beiden Fällen um Allele mit äußerst geringer Frequenz.

Tabelle 14: Durchschnittliche Allelhäufigkeiten [%] der 15 Altbestände für 18 Genorte und der 29 Jungbestände für die gemeinsamen 17 Genorte. Die jeweils durchschnittlich häufigsten Allele erscheinen in Fettdruck, Allele mit einer durchschnittlichen Häufigkeit von über 5 % sind grau unterlegt.

	Allel Genort	1	2	3	4	5	6	7	8	9
15	AATD	0.00	0.00	0.20	00.04	0.47	0.07			
	AAT-B	6,00	0,23	0,39	92,84	0,17	0,37			
Altbe-	ACO-A	0,20	1,05	16,71	79,32	0,50	2,26	0.70	0.00	
stände	ADH-A	5,62	0,46	53,76	9,11	2,45	25,48	2,79	0,33	
	AP-A (LAP)	0,17	23,33	20,05	48,14	6,93	0,56	0,86		
	AP-B (AAP)	1,22	52,32	10,38	28,83	7,25	0,00			
	EST-A	1,55	29,73	32,15	34,11	2,37	0,10			
	GDA-A	1,25	36,37	29,89	31,71	0,79				
	IDH-A	1,87	11,73	80,36	2,21	3,56	0,30			
	IDH-B	8,39	0,03	4,94		86,61	0,03			
	MDH-B		5,49	87,03	7,09	0,39				
	MDH-C	9,21	88,17	2,56	0,07					
	MNR-A		0,66	3,37	73,44	5,52	1,65	0,60		14,80
	6PGDH-A	5,61	86,07	6,75	1,59					
	6PGDH-B	0,13	2,27	97,27	0,27		0,07			
	PGI-A	0,10	2,10	95,14	2,69					_
	PGI-B	0,39	7,75	3,09	0,40	0,07	81,15	0,13	6,93	0,13
	PGM-A	0,23	9,93	2,11	83,57	4,11	0,07			
	SKDH-A	0,65	26,87	69,05	2,24	1,23				
29 Jung-	AAT-B	4,84	0,37	0,10	94,02	0,14	0,51			
bestände	ACO-A	0,11	0,72	14,20	81,62	2,11	1,23			
	ADH-A	2,10	1,73	59,91	11,56	7,50	14,07	3,01	0,10	
	AP-A (LAP)	0,39	26,82	14,24	50,05	7,44	0,72	0,31	0,02	
	AP-B (AAP)	0,99	50,92	9,46	31,18	7,44	0,02			
	EST-A	0,66	13,59	26,30	46,40	7,45	5,63			
	IDH-A	1,15	9,62	83,35	1,97	3,69	0,22			
	IDH-B	8,04	0,00	4,65	0,20	87,08	0,02			
	MDH-B	0,17	3,70	91,68	3,58	0,88				
	MDH-C	4,39	94,28	1,23	0,09					
	MNR-A		0,67	3,34	80,47	4,52	1,89	0,78	0,10	8,20
	6PGDH-A	7,02	86,03	5,16	1,80	-				
	6PGDH-B	0,14	3,34	95,76	0,69	0,03	0,04			
	PGI-A	0,61	4,35	92,63	2,42	•				
	PGI-B	0,04	8,06	3,73	0,79	0,16	79,98	0,16	7,01	0,06
	PGM-A	0,04	9,13	2,79	81,03	6,38	0,64	0,01	•	
	SKDH-A	0,17	22,57	69,66	4,35	3,13	0,13	•		

Anzahl Allele je Genort A_L

Für die Altbestände liegt A_L bei durchschnittlich 4,26 mit einer Spanne von 4,00 (Bad Neustadt/Saale) bis 4,47 (Dinkelsbühl und Müllheim). Sowohl für die Samenstichproben als auch die gesamten Nachkommenschaften liegt der Durchschnittswert mit 4,54 bzw. 4,46 etwas darüber. Auch ist die Spreitung mit einem Minimumwert von 3,94 im Bestand Langenau Baumschule und einem Maximalwert von 4,94 für Müllrose Bestandesabsaat 1997 etwas größer als bei den Altbeständen.

Beim Vergleich der einzelnen Altbestände mit ihren Nachkommen ergibt sich in etwa einem Drittel der Fälle (32 %) eine Abnahme der allelischen Vielfalt. Es handelt sich dabei um die Bestände Dinkelsbühl (Naturverjüngung), Hochspeyer (Klenge 1997), Langenau (Kultur/Baumschule), Langenau (Pflanzgarten/ Heister), Müllheim (Baumschulmaterial 1994 und 1996), Schweinfurt (Bestandesabsaat 1996) und Uffenheim

(Bestandesabsaat 1996). Bei den restlichen zwei Dritteln erfolgt dagegen ein Anstieg der Anzahl Allele je Genort. In nur einem Fall gibt es keinen Unterschied zwischen Altbestand und Nachkommenschaft (Hochspeyer Bestandesabsaat 1997).

Anzahl Genotypen je Genort G_L

Auch die genotypische Vielfalt ist mit einem Wert von 7,08 für die Altbestände bzw. 8,05 für das Samenmaterial und 7,80 für die gesamten Nachkommenschaften sehr hoch. Insgesamt liegen die Werte der Nachkommen sehr häufig (71 % der Fälle) etwas über denen der Altbestände. Bei knapp einem Drittel (29 %) liegen die Werte der Nachkommenschaften unter denen der dazugehörigen Altbestände, wobei es sich um die gleichen Bestände handelt wie bei der allelischen Vielfalt.

4.3.2 Heterozygotie

Die Durchschnittswerte für Altbestände und Nachkommenschaften sind für diesen Parameter nahezu identisch. Vergleicht man die Werte der einzelnen Altbestände für die beobachtete Heterozygotie H_o mit ihren jeweiligen Nachkommenschaften, so sind diese für die Nachkommenschaften in den Beständen Bamberg, Langenau, Müllheim, Peitz, Schweinfurt und Uffenheim etwas niedriger. Im Gegensatz dazu findet in den Beständen Arnstein, Burgsinn, Hammelburg und Hochspeyer für alle untersuchten Nachkommen ein Anstieg der beobachteten Heterozygotie statt. Die restlichen Bestände lassen sich nicht eindeutig zuordnen. Prozentual über alle Bestände gesehen ist eine - wenn auch eher eine schwache - Tendenz zur Abnahme der beobachteten Heterozygotie beim Übergang von der Parentalpopulation auf die Nachkommen (61%) zu verzeichnen.

Eine Betrachtung der bedingten Heterozygotie H_c zeigt, dass nur in etwa einem Fünftel der Fälle eine Abnahme dieses Wertes beim Übergang zu den Folgegenerationen stattfindet. In der überwiegenden Zahl der Fälle steigt der Wert. So liegt dann auch der Mittelwert der Altbestände mit 58,6 % gut 4 % unter dem der Nachkommenschaften.

4.3.3 Genetische Diversität

Der Mittelwert der Genpool-Diversität *v* liegt mit 1,53 für die Altbestände nur geringfügig über dem der Samen (1,48) bzw. dem der gesamten Nachkommenschaften (1,49).

Ähnliches gilt für die allelische Diversität $v_{(a)}$ mit 1,73 für die Altbestände, 1,67 für die Samen und 1,74 für die gesamten Nachkommenschaften.

Auch für die genotypische Diversität $v_{(g)}$ zeigen die Mittelwerte für Altbestände und Nachkommen keine nennenswerten Unterschiede (siehe Anhang, Tabelle 9).

Der Mittelwert der hypothetischen gametischen Multilocus-Diversität v_{gam} für die Altbestände ist mit 4.161.994 deutlich höher als der für die Samen (3.091.292) oder auch für alle Nachkommenschaften (3.243.728).

Genetische Variation zwischen den Beständen

4.3.4 Genetischer Abstand

Bei den **Altbeständen** reicht die Spanne der genetischen Abstände (d_o -Werte) von 0,064 - 0,119.

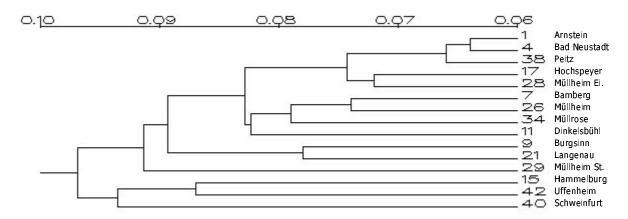


Abb. 17: Dendrogramm der allelischen Abstände d_o der 15 Altbestände für den Genpool (18 loci)

Die Nachkommenschaften weisen dagegen mit Werten von 0,061 bis 0,222 eine größere Spanne bezüglich der genetischen Abstände (d_o -Werte) auf. Bei genauerer Betrachtung ergibt sich diese größere Spanne aber hauptsächlich durch den Bestand Langenau Baumschule und teilweise noch durch den Bestand Müllrose⁺ Baumschule. Diese beiden Bestände weisen einen jeweils größeren Abstand zu den restlichen Nachkommenschaften auf. Nimmt man den Bestand Langenau Baumschule aus der Gesamtbetrachtung heraus, so reduziert sich der Maximalwert deutlich auf einen Wert von 0,166.

Eine Betrachtung des Dendrogramms der Nachkommenschaften ergibt eine Clusterung in fünf Gruppen. Dies sind zum einen die Bestandesabsaaten des Jahres 1998, die Bestandesabsaaten des Jahres 1996, sämtliche Baumschul-, Heister- und Naturverjüngungsbestände - mit Ausnahme des Bestandes Langenau - und die Bestandesabsaaten des Jahres 1997. Letztere teilen sich allerdings wiederum in zwei Gruppen auf.

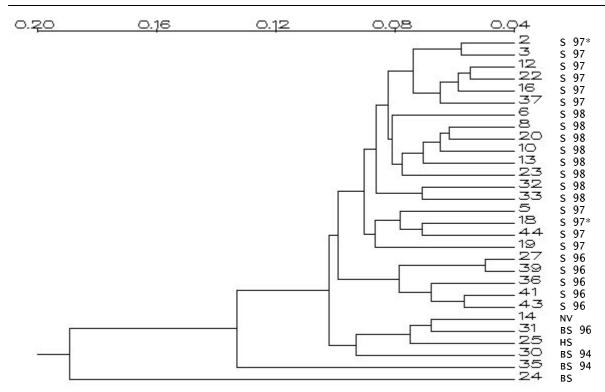


Abb. 18: Dendrogramm der allelischen Abstände d_o der 29 Nachkommenschaften (Nomenklatur siehe Tabelle 11) für den Genpool (17 Loci)

Beim direkten Vergleich der Altbestände mit ihren jeweiligen Nachkommenschaften liegen die absoluten Werte des genetischen Abstands für den Genpool zwischen 0,058 und 0,196 bei einer möglichen Spanne zwischen Null und Eins.

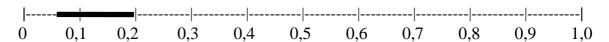
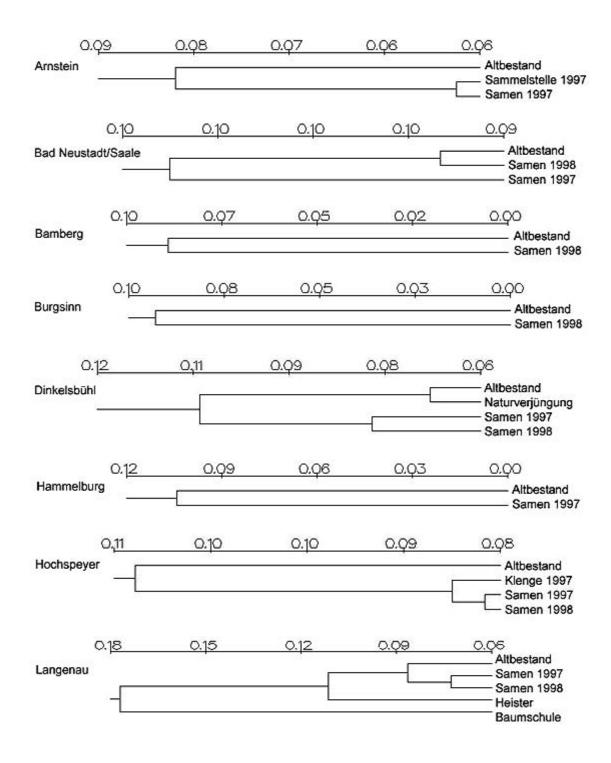


Abbildung 13: Spanne der genetischen Abstände (d_o -Werte) für die 14 Altbestände und ihre Nachkommenschaften.


Die grafische Darstellung der genetischen Abstände für die einzelnen Altbestände und ihre entsprechenden Nachkommenschaften erfolgt auch hier in Form von Dendrogrammen (Abbildung 19).

Die insgesamt größten genetischen Abstände findet man für den Bestand Langenau Kultur (Baumschule), gefolgt von der Heisterpflanzung des selben Bestandes.

Bei den Beständen Dinkelsbühl, Hochspeyer, Langenau und Uffenheim haben die Samenstichproben untereinander geringere genetische Abstände als zum Altbestand. Die beiden Proben aus der Sammelstelle bzw. Klenge (Arnstein und Hochspeyer) haben eine jeweils größere Ähnlichkeit mit dem Samenmaterial als mit den Altbeständen. Die Naturverjüngung aus Dinkelsbühl hingegen weicht von den Samenstichproben deutlich stärker ab als vom Altbestand. Im Bestand Langenau haben die Proben aus der Baumschule und dem forstamtseigenen Pflanzgarten (Heister) deutlich größere Abstände sowohl zum Altbestand als auch zu den Samenstichproben.

In den Beständen Bad Neustadt/Saale und Müllrose unterscheiden sich die beiden Bestandesabsaaten in ihrer Nähe zum Altbestand im Gegensatz zu den oben genannten Beständen jedoch deutlich voneinander. In Bad Neustadt/Saale hat die Bestandesabsaat des Jahres 1997 einen vergleichsweise großen Abstand zum Altbestand, die des Jahres 1998 einen eher geringen. Auch in Müllrose hat die Bestandesabsaat 1997 einen deutlich größeren Abstand zum Altbestand als die des Vergleichsjahres 1996.

Für den Bestand Müllheim II ist der genetische Abstand der Bestandesabsaat etwas größer als der beider Baumschuljahrgänge.

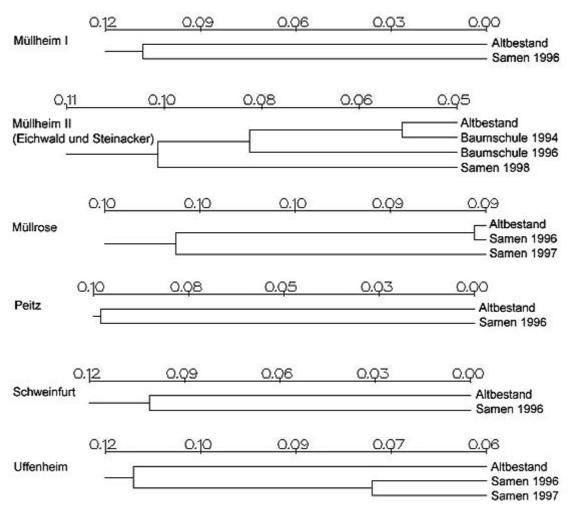


Abbildung 19: Genetische Abstände d_o der Altbestände und ihrer jeweiligen Nachkommenschaften für den Genpool (17 Loci)

4.3.5 Genetische Differenzierung

Eine separate Betrachtung der 15 **Altbestände** für 18 Genorte zeigt ein ähnliches Bild, wie es sich schon für alle Bestände gemeinsam ergeben hat (siehe Kapitel 4.2.2. Genetische Differenzierung). Auch hier weichen die Bestände Peitz $D_j = 0,049$ und Schweinfurt $D_j = 0,083$ im Verhältnis am weitesten von der mittleren Differenzierung $\delta = 0,066$ ab. Das bedeutet, dass Peitz den Gesamtpool an genetischer Variation am besten, Schweinfurt hingegen am wenigsten repräsentiert. Insgesamt gesehen sind die D_j -Werte jedoch sehr niedrig und zeigen nur unwesentliche Abweichungen von der mittleren Differenzierung δ .

Abbildung 20: Genetische Differenzierung $D_{i(a)}$ der Altbestände für den Genpool (18 Loci)

Die Betrachtung der **Nachkommenschaften** bezüglich ihrer genetischen Differenzierung zeigt ein Bild, dass im Wesentlichen dem der genetischen Abstände entspricht. Auch hier fällt der Bestand Langenau durch seinen deutlich größeren Abstand ($D_j = 0.179$) zur mittleren Differenzierung $\delta = 0.072$ auf, die damit etwas über dem Wert der Altbestände liegt.

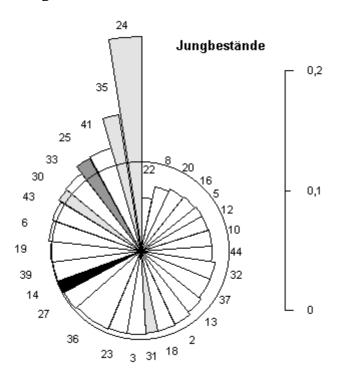
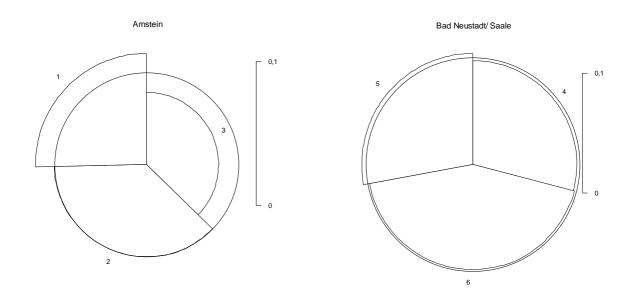
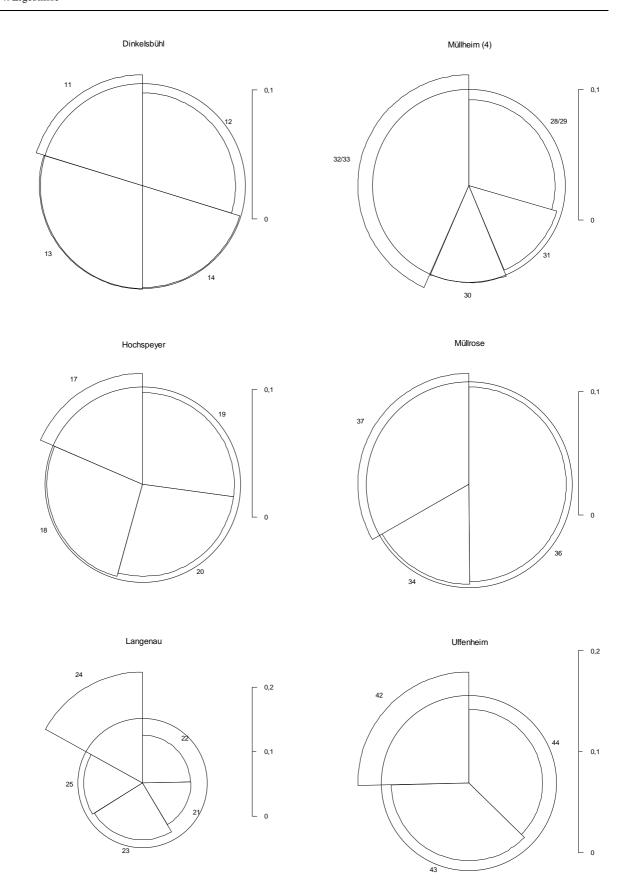
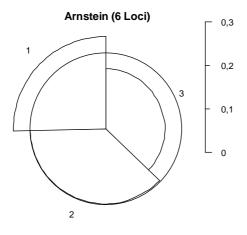
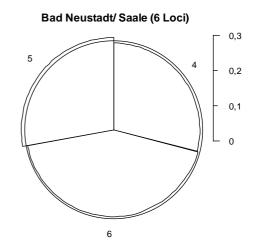
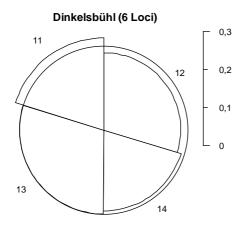



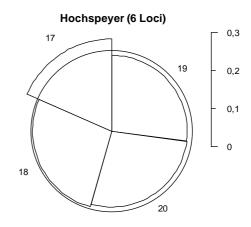
Abbildung 21: Genetische Differenzierung $D_{j(a)}$ der Jungbestände (Nomenklatur siehe Tabelle 11) für den Genpool (17 Loci); Bestandesabsaaten sind weiß, Baumschulbestände hellgrau, Heisterpflanzung dunkelgrau und Naturverjüngung schwarz gefärbt

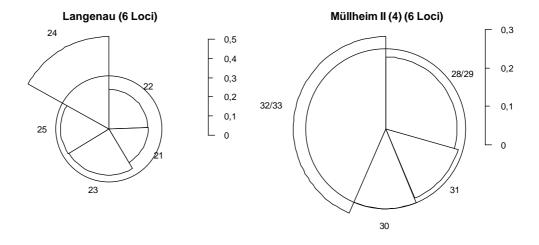
Ein Vergleich der genetischen Differenzierung der Altbestände mit ihren jeweiligen Nachkommenschaften erfolgt für acht Altbestände. Bei sechs Beständen konnte jeweils nur eine Nachkommenschaft untersucht werden. Dort entspricht die Differenzierung dem genetischen Abstand.

Bei fast allen Beständen sind bei einer Multilocus-Betrachtung (17 Genorte) nur verhältnismäßig geringe genetische Unterschiede zwischen den jeweiligen Gruppen einer Populationen anzutreffen. Lediglich beim Bestand Langenau zeigt die aus der Baumschule stammende Nachkommenschaft einen auffallend großen Abstand zum Gesamtkollektiv.

Eine einzellocusweise Betrachtung zeigt teilweise stärkere Differenzierungen (siehe Anhang, Tabelle 10). Besonders auffallend ist auch hier wieder der Bestand Langenau Kultur (Baumschulmaterial) mit den zwei Maximalwerten für $D_{j(a)}$ von 0,523 am Genort ADH-A und 0,403 am Genort PGM-A. Den kleinsten Wert (0,002) findet man am Genort AAT-B (Bad Neustadt/Saale Altbestand). Ansonsten bewegen sich die Werte in einem Bereich von etwa 0,02 bis 0,15 (0,2).


Abbildung 17: Genetische Differenzierung $D_{j(a)}$ der Altbestände und ihrer Nachkommenschaften (Nomenklatur siehe Tabelle 11) für den Genpool (17 Loci)


Zieht man bei der Betrachtung der genetischen Differenzierung den Genpool der sechs aussagekräftigsten Genorte heran, so ergibt sich ein fast identisches Bild wie das des Genpools aller 17 Loci. Allerdings liegen die absoluten Werte deutlich höher als bei der 17-Locus-Betrachtung.

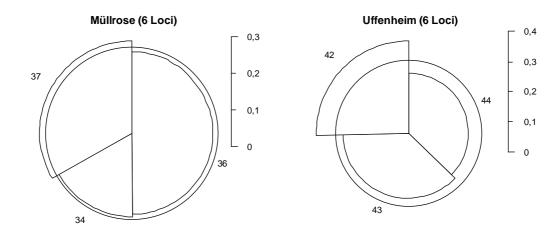


Abbildung 23: Genetische Differenzierung $D_{j(a)}$ der Altbestände und der dazugehörigen Nachkommenschaften (Nomenklatur siehe Tabelle 11) für den Genpool der 6 Loci ACO-A, ADH-A, AP-A (LAP), AP-B (AAP), EST-A und SKDH-A.

4.3.6 Referenzstrukturen

Hardy-Weinberg-Struktur

Anhand des G-Tests und des X²-Tests wurde für jeden einzelnen Bestand an allen 17 Genorten die Übereinstimmung der beobachteten genotypischen Strukturen mit der entsprechenden Hardy-Weinberg-Struktur getestet. Dieser Vergleich zeigt eine auffällige Häufung von signifikanten Unterschieden (siehe Anhang, Tabellen 18 und 19) zwischen den beiden Strukturen.

Betrachtet man die erwarteten Strukturen der Altbestände unter Hardy-Weinberg-Erwartung und die beobachteten Strukturen der Nachkommenschaften, so finden sich auch hier keine direkten Übereinstimmungen. Exemplarisch für vier besonders differenzierungsrelevante Genorte wurde diesbezüglich ein Signifikanztest (X^2 -Test) durchgeführt.

Tabelle 15: Hardy-Weinberg-Erwartung der Altbestände zur beobachteten Struktur der Nachkommenschaften (*X*²-Test)

	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
Arnstein Sammelstelle 1997	***	***	***	*
Arnstein Bestandesabsaat 1997	***	***	***	*
Bad Neustadt Bestandesabsaat 1997	***	***	ns	***
Bad Neustadt Bestandesabsaat 1998	***	***	ns	***
Bamberg Bestandesabsaat 1998	***	**	**	***
Burgsinn Bestandesabsaat 1998	***	***	*	ns
Dinkelsbühl Bestandesabsaat 1997	***	***	ns	***
Dinkelsbühl Bestandesabsaat 1998	***	***	***	***
Dinkelsbühl Naturverjüngung	***	***	***	*
Hammelburg Bestandesabsaat 1997	***	***	*	***
Hochspeyer Klenge 1997	***	***	ns	***
Hochspeyer Bestandesabsaat 1997	***	***	ns	***
Hochspeyer Bestandesabsaat 1998	***	***	**	***
Langenau Bestandesabsaat 1997	***	***	***	***
Langenau Bestandesabsaat 1998	***	**	**	ns
Langenau Kultur Baumschule	***	***	***	***
Langenau Pflanzgarten Heister	***	***	**	***
Müllheim Bestandesabsaat 1996	***	***	**	***
Müllheim Baumschule 94	ns	***	***	*
Müllheim Baumschule 96	***	***	***	***
Müllheim Eichwald Bestandesabsaat 1998	***	***	***	***
Müllheim Steinacker Bestandesabsaat 1998	***	**	**	***
Müllrose Bestandesabsaat 1996	***	***	*	***
Müllrose Bestandesabsaat 1997	***	***	***	***
Peitz Bestandesabsaat 1996	***	***	ns	***
Schweinfurt Bestandesabsaat 1996	***	***	**	***
Uffenheim Bestandesabsaat 1996	***	***	**	***
Uffenheim Bestandesabsaat 1997	***	***	***	***

Außerdem lassen sich auch keine eindeutigen Trends bezüglich einer Zu- oder Abnahme homozygoter Genotypen beim Übergang in die Nachfolgegenerationen an den einzelnen Genloci feststellen (siehe Anhang, Tabelle 20).

Fixierungsindex

Zur Prüfung der Ursachen für die gefundenen Abweichungen von der Hardy-Weinberg-Struktur werden die Fixierungskoeffizienten *F* berechnet. Anhand der ermittelten *F*-Werte kann festgestellt werden, ob Homo- oder Heterozygotenüberschüsse vorliegen.

Die Berechnung dieses Koeffizienten bringt folgendes Ergebnis: Die Werte der mittleren Fixierungsindices F über 17 Genorte sind für alle 44 Populationen positiv. Der Mittelwert über alle Bestände liegt bei 0,226. Die Spanne reicht dabei von 0,143 (Schweinfurt Bestandesabsaat 1996) bis 0,326 (Müllrose* Baumschule). Der Mittelwert der Altbestände liegt mit 0,291 klar über dem der Nachkommenschaften (Samen 0,247, alle Jungbestände 0,252). Die Spanne der F-Werte ist mit 0,240 bis 0,320 bei den Altbeständen geringer als bei den Nachkommenschaften (0,143 - 0,326).

Abbildung 24: Fixierungskoeffizienten *F* der 44 Bestände (Nomenklatur siehe Tabelle 11) im Mittel über 17 Genorte

Ein Vergleich der Altbestände mit ihren jeweiligen Nachkommenschaften zeigt in den meisten Fällen (71 %) eine Abnahme des *F*-Wertes. Bei weniger als einem Drittel steigt der Fixierungskoeffizient der Nachkommenschaft gegenüber den Altbeständen an (29 %). Die Werte nehmen in den Beständen Arnstein, Bad Neustadt/Saale, Hochspeyer, Müllheim, Müllrose, Peitz, Schweinfurt und Uffenheim ab, in Bamberg und Burgsinn zu. In Dinkelsbühl, Langenau und Müllheim II gibt es sowohl Zu- als auch Abnahmen.

Eine detailliertere Betrachtung der einzelnen Genorte und Bestände ergibt, dass die *F*-Werte überwiegend positiv sind. An vier Genorten (AP-A (LAP), GDA-A, MNR-A und SKDH-A) sind ausschließlich positive Werte zu finden. An den Genorten AAT-B, ACO-A und IDH-B finden sich für jeweils mehrere Bestände auch negative Werte. An den restlichen Genorten finden sich nur für einen oder wenige Bestände negative Werte (vergleiche Anhang, Tabelle 15).

Inzuchtstruktur

Für die Untersuchung der Inzuchtstruktur und den dazu parallel erfolgenden Vergleich mit der Hardy-Weinberg-Struktur werden solche Genorte herangezogen, die mehrere Allele in möglichst gleichmäßiger Verteilung aufweisen. Bei den dieser Arbeit zugrunde liegenden Populationen zeigen die Genorte ADH-A, AP-A (LAP), AP-B (AAP) und EST-A einen solchen Trend zum Majorpolymorphismus (siehe Anhang, Tabelle 1). Um statistisch besser abgesicherte Ergebnisse zu erzielen, wurden zusätzlich seltene Allele mit einer Häufigkeit unter 5 % gepoolt. Einschränkend muss darauf hingewiesen werden, dass bei den statistischen Tests je nach Art der Gruppierung die Testergebnisse voneinander abweichen können, also auch Hypothesen in Grenzfällen angenommen oder verworfen werden. Dies kann auch dann noch passieren, wenn die seltenen Allele mit einer beobachteten Häufigkeit unter 5 % gepoolt werden.

Sowohl G-Tests als auch X^2 -Tests zeigen, dass in der Mehrzahl der Fälle die beobachteten Genotyphäufigkeiten an diesen vier Genorten signifikant von der Erwartung unter Hardy-Weinberg abweichen (siehe Tabelle 16 und Anhang, Tabelle 19).

Tabelle 16: Anteil der Bestände [%] mit Übereinstimmung (n.s.) bzw. Abweichung (*, **, ***) von der Erwartung unter Hardy-Weinberg entsprechend ihrem Signifikanzniveau gegliedert nach Genorten

		_								
		G]K				
	ADH-A	AP-A	AP-B	EST-A	Ø	ADH-A	AP-A	AP-B	EST-A	Ø
		(LAP)	(AAP)				(LAP)	(AAP)		
n.s.	11,4	2,3	27,3	11,4	13,1	9,1	2,3	22,7	11,4	11,4
*	13,6	0,0	2,3	9,1	6,3	15,9	2,3	6,8	11,4	9,1
**	25,0	11,4	18,2	29,5	21,0	20,5	9,1	6,8	25,0	15,3
***	50,0	86,4	52,3	50,0	59,7	54,5	86,4	63,6	52,3	64,2
Σ sign.	88,6	97,7	72,7	88,6	86,9	90,9	97,7	77,3	88,6	88,6

Für 55 % (G-Test) bzw. 59 % (X^2 -Test) der Bestände ist eine signifikante Abweichung der Hardy-Weinberg-Struktur an allen vier untersuchten Genorten, für 39 % (G-Test) bzw. 36 % (X^2 -Test) an drei Loci und für 7 % (G-Test) bzw. 5 % (X^2 -Test) an nur zwei Genorten zu finden. Eine einzellocusweise Aufstellung der beobachteten genotypischen Strukturen und der unter Hardy-Weinberg-Erwartung findet sich im Anhang, Tabelle 20.

Betrachtet man den prozentualen Anteil an homozygoten Genotypen für einen oder auch mehrere Genorte, so weicht die Hardy-Weinberg-Erwartung in allen Beständen deutlich von der beobachteten Struktur ab (siehe Abbildung 25).

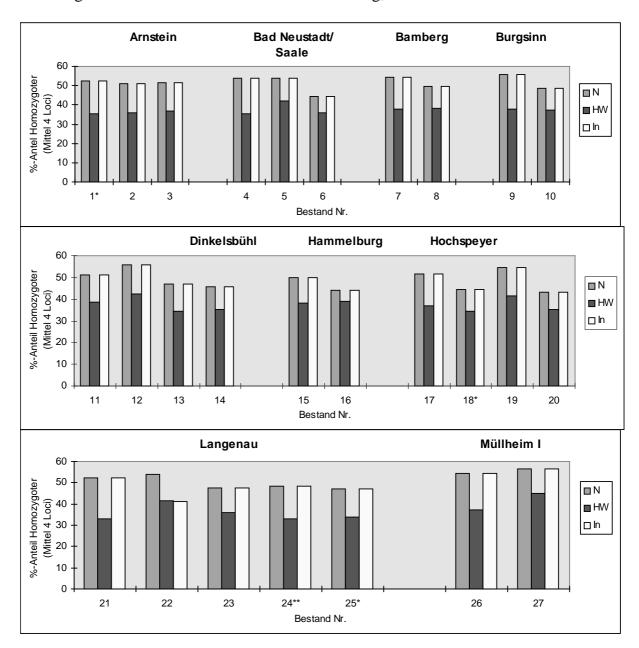

G-Test und X^2 -Test zeigen im Mittel über die vier Genorte jedoch in etwa der Hälfte der Fälle eine starke Übereinstimmung mit der **Inzuchtstruktur**. Besonders deutlich wird diese Übereinstimmung am Genort AP-B (AAP). Hier weicht die beobachtete Struktur nur in etwa einem Zehntel der Fälle signifikant von der Inzucht-Erwartung ab.

Tabelle 17: Anteil der Bestände [%] mit Übereinstimmung (n.s.) bzw. Abweichung (*, **, ***) von der Erwartung unter Inzucht entsprechend ihrem Signifikanzniveau, gegliedert nach Genorten

			G					X ²		
	ADH-A	AP-A	AP-B	EST-A		ADH-A	AP-A	AP-B	EST-A	
		(LAP)	(AAP)				(LAP)	(AAP)		
n.s.	29,5	11,4	88,6	56,8	46,6	40,9	13,6	90,9	54,5	50,0
*	20,5	4,5	11,4	18,2	13,6	20,5	15,9	9,1	20,5	16,5
**	25,0	27,3	-	11,4	15,9	13,6	22,7	-	9,1	11,4
***	15,9	56,8	-	9,1	20,5	15,9	47,7	-	11,4	18,8
Σ sign.	61,4	88,6	11,4	38,6	50,0	50,0	86,4	9,1	40,9	46,6
neg. F-Wert	9,1	-	-	4,5	3,4	9,1	-	-	4,5	3,4

Der prozentuale Anteil Homozygoter für die vier näher analysierten Genorte zeigt - verglichen mit den tatsächlich beobachteten Strukturen - eine starke Übereinstimmung mit der Erwartung unter Inzucht (siehe Abbildung 25).

Es gibt jedoch nur zwei Bestände (Schweinfurt Bestandesabsaat 1996, nur G-Test und Uffenheim Bestandesabsaat 1997, G-Test und X^2 -Test), in denen an allen vier Genorten keine signifikante Abweichung von der Inzucht-Struktur zu finden ist. In den restlichen Beständen liegt für mindestens einen (G-Test: 27 %, X^2 -Test: 39%) oder mehrere Genorte eine signifikante Abweichung vor. Eine einzellocusweise Aufstellung der beobachteten genotypischen Strukturen und der unter Inzucht-Erwartung für die vier ausgewählten Genorte befindet sich im Anhang, Tabelle 20.

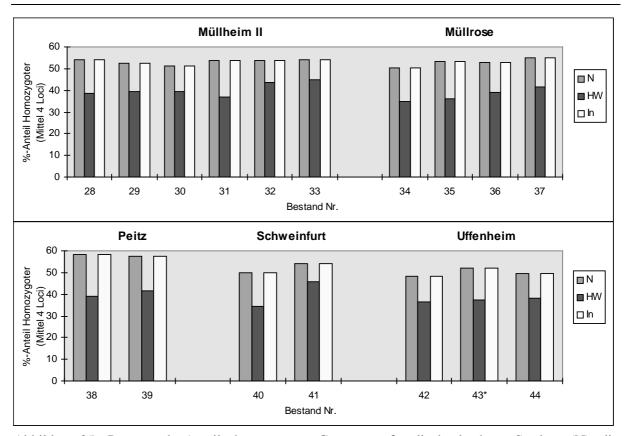


Abbildung 25: Prozentuale Anteile homozygoter Genotypen für die beobachtete Struktur (N), die daraus abgeleitete Hardy-Weinberg-Erwartung (HW) und die Erwartung unter Inzucht (In) gemittelt über die vier Genorte ADH-A, AP-A (LAP), AP-B (AAP) und EST-A. (* Mittel für 3 Loci, ** Mittel für 2 Loci) .

4.3.8 Assortative Paarungspräferenz

Auch für die Berechnung der assortativen Paarungspräferenz wurden exemplarisch die oben genannten vier Genorte verwendet, da Präferenzen nur berechnet werden können, wenn mehrere häufige Allele vorhanden sind. Auf ein Poolen der selteneren Allele wurde hierbei verzichtet. Die Ergebnisse zeigen insgesamt eine auffällige Häufung von Werten größer als eins. Diese konzentrieren sich vor allem auf die homozygoten Genotypen, bei denen nahezu ausschließlich (94 %) Werte über eins zu finden sind. Aber auch bei den heterozygoten Genotypen liegen die Werte häufig über eins (46 %). Allerdings sind hier Werte unter eins in über der Hälfte der Fälle (54 %) anzutreffen. Demnach zeichnet sich ein Trend zur positiv assortativen Paarungspräferenz vor allem zugunsten Homozygoter ab.

Der direkte Vergleich der Altbestände mit ihren jeweiligen Nachkommenschaften bezieht sich im Folgenden nur auf die gemeinsamen Genotypen, da nur für diese eine Zu- oder Abnahme des U^* -Wertes quantifiziert werden kann. Die homozygoten Genotypen zeigen bezüglich der U^* -Werte tendenziell eine Abnahme der absoluten Werte zwischen den beiden Generationen von alt zu jung. Umgekehrt ist für die heterozygoten Genotypen eine genau gegenläufige Tendenz festzustellen (siehe Tabelle 18). Eine genotypweise Aufstellung der U^* -Werte für die einzelnen Bestände

an den vier Genorten ADH-A, AP-A (LAP), AP-B (AAP) und EST-A findet sich im Anhang, Tabelle 20.

Tabelle 18: Veränderung des U^* -Werts beim Übergang von der Elterngeneration auf die Nachkommenschaften

	Homo	zygote	Hetero	zygote
	Zunahme	Abnahme	Zunahme	Abnahme
Arnstein Sammelstelle 1997	X			X
Arnstein Bestandesabsaat 1997	X			X
Bad Neustadt Bestandesabsaat 1997	X		X	
Bad Neustadt Bestandesabsaat 1998		X	X	
Bamberg Bestandesabsaat 1998		X		X
Burgsinn Bestandesabsaat 1998		X	X	
Dinkelsbühl Bestandesabsaat 1997	X			X
Dinkelsbühl Bestandesabsaat 1998		X		X
Dinkelsbühl Naturverjüngung		X	X	
Hammelburg Bestandesabsaat 1997		X		X
Hochspeyer Klenge 1997		X	X	
Hochspeyer Bestandesabsaat 1997	X			X
Hochspeyer Bestandesabsaat 1998		X	X	
Langenau Bestandesabsaat 1997		X	X	
Langenau Bestandesabsaat 1998		Х	X	
Langenau Kultur Baumschule		X	X	
Langenau Pflanzgarten Heister		X	X	_
Müllheim Bestandesabsaat 1996	0	0	0	0
Müllheim Baumschule 1994		Х	X	
Müllheim Baumschule 1996	Х		.,	X
Müllheim Eichwald Bestandesabsaat 1998		X	X	
Müllheim Steinacker Bestandesabsaat 1998		X	X	
Müllrose Bestandesabsaat 1996		X	X	
Müllrose Bestandesabsaat 1997		X	X	
Peitz Bestandesabsaat 1996		X	X	
Schweinfurt Bestandesabsaat 1996		X	X	
Uffenheim Bestandesabsaat 1996	0	0		X
Uffenheim Bestandesabsaat 1997	0	0	0	0

4.4 Blüte und Fruktifikation

Es stehen drei verschiedene Formen der Blühansprache für vier verschiedene Bestände zur Verfügung. Dies sind die eigene Ansprache, die durch die zuständigen Revierleiter und die jährlich von der Amtlichen Prüfstelle für forstliches Saatgut in Freising (bis 1998) bzw. der Landesforstanstalt Eberswalde (seit 1999) veröffentlichten Werte (siehe Kapitel 3.1 Material).

Tabelle 19: Eigene Ansprache der Blühintensität in den vier ausgewählten Beständen für die Jahre 1998 und 1999 in absoluten Anzahlen an Probebäumen

Blühin-	Bad Neustadt/Saale		Dinke	Isbühl	Hochs	speyer	Langenau		
tensität	1998	1999	1998	1999	1998	1999	1998	1999	
0	22	30	12	14	37	18	6	10	
1	13	20	13	13	17	25	10	9	
2	11	8	15	19	4	16	22	11	
3	10	2	11	9	2	1	11	15	
4	4	0	9	5	0	0	11	15	
Mittelwert	1,35	0,70	1,87	1,63	0,52	1,00	2,18	2,27	

^{0 =} keine Blüte

^{1 =} sehr schwache Blüte (nur einzelne /sehr wenige Blüten erkennbar)

^{2 =} Blüte (auf den ersten Blick Blüten erkennbar, überwiegend an den oberen Kronenrändern)

^{3 =} starke Blüte (zahlreiche Blüten erkennbar, über die Krone verteilt)

^{4 =} sehr starke Blüte (sehr viele Blüten, auch im Kroneninneren)

Die Tabelle veranschaulicht, dass das Blühverhalten innerhalb der verschiedenen Bestände und Jahre zum Teil sehr inhomogen ist. So schwankt beispielsweise die Anzahl der Bäume, an denen überhaupt keine Blüte zu erkennen war, zwischen 10 % (Langenau 1998) und 50 % (Bad Neustadt/Saale 1999). Für die sehr stark blühenden Bäume wurde in drei von acht Fällen überhaupt kein Baum in diese Kategorie eingestuft, andererseits wurden in einem Fall sogar 25% der Bäume in diese Intensitätsstufe einklassifiziert (Langenau 1999). Bei der Bildung der Mittelwerte sind ebenfalls stärkere Schwankungen zwischen den Beständen und Jahren erkennbar (siehe unten).

Tabelle 20: Blühansprache in drei aufeinanderfolgenden Jahren für vier ausgewählte Bestände

Jahr	Bestand	1 *	2 ** 3 ***	Einschätzung durch die Revierleiter	Vorgefundene Mast
1997	Bad Neustadt/ Saale		1,75	schwächer als 1998	sehr geringe Mast
	Dinkelsbühl		2,0		gute Mast
	Hochspeyer		2,5	späte Blüte, aber keine genauere Ansprache durch den Revierleiter erfolgt	recht gute Mast, stellenweise nur mittlere Mast
	Langenau		2,0	deutlich schwächer als 1998	sehr gute Mast
1998	Bad Neustadt/ Saale	1,35	2,9	nicht alle Bäume blühen, aber diese dann sehr stark	schwache bis mittlere Mast
	Dinkelsbühl	1,87	3,25	ca. 70% des Bestandes blühen sehr stark, der Rest überhaupt nicht	sehr gute Mast
	Hochspeyer	0,52	3,0	nur minimale Blüte zu erkennen, aber schwierig anzusprechen wegen des Buchen-Nebenbestands	geringe Mast
	Langenau	2,18	3,25	starke (aber nicht sehr starke) Blüte, fast jeder Baum; deutlich stärker als im Vorjahr	sehr gute Vollmast
1999	Bad Neustadt/ Saale	0,70	2,34	spärliche Blüte	keine Mast
	Dinkelsbühl	1,63	2,0	Blüte deutlich geringer als im Vorjahr	keine Mast
	Hochspeyer	1,00	2,0	Blüte erkennbar, aber keine nähere Einschätzung	keine Mast
	Langenau	2,27	2,0	Revierleiterwechsel; keine Einschätzung der Blüte vorhanden	keine Mast

^{*} Eigene Ansprache (keine Schätzung der %-Anteile)

Für das Jahr 1999 ist leider keine Auswertung der Beziehungen zwischen Blüte und Fruktifikation möglich, da die Mast im Herbst dieses Jahres bundesweit ausgefallen ist (siehe Kapitel 3.1 Material). Die ermittelten Daten können aber dazu verwendet werden, die drei verschieden Blüheinschätzungen miteinander abzustimmen.

^{0 =} keine Blüte

^{1 =} sehr schwache Blüte (nur sehr wenige, einzelne Blüten erkennbar)

^{2 =} Blüte (Blüten auf den ersten Blick erkennbar, überwiegend an den oberen Kronenaußenrändern)

^{3 =} starke Blüte (zahlreiche Blüten erkennbar)

^{4 =} sehr starke Blüte (sehr viele Blüten, deutlich auch im Kroneninneren)

^{**} Amtliche Prüfstelle für forstliches Saatgut in Freising (bis 1998);

^{***} Landesforstanstalt Eberswalde (seit 1999)

⁽die Werte werden jeweils für das gesamte Herkunftsgebiet angegeben)

BZ 1 = kein/geringes Blühen entspricht 0 - (10) %

BZ 2 = schwaches/mäßiges Blühen entspricht (0) 10 - 30 %

BZ 3 = mittleres gutes Blühen entspricht (30) 40 - 60 %

BZ 4 = reichliches/volles Blühen entspricht (60) 70 – 100 %

Blühansprache

Ein Vergleich der drei unterschiedlichen verfügbaren Versionen von Blüheinschätzungen zeigt tendenziell eine gute Übereinstimmung der eigenen Ansprache mit denen der Amtlichen Prüfstelle für forstliches Saatgut in Freising (bis 1998) bzw. der Landesforstanstalt Eberswalde (seit 1999) für die drei Bestände Bad Neustadt/Saale, Dinkelsbühl und Langenau, auch wenn die absoluten Werte nicht dieselben sind. Auch die mündlichen Mitteilungen durch die Revierleiter, die zwar nur einen relativen Vergleich zwischen den Jahren erlauben und außerdem nicht für alle Bestände und für jedes Jahr vorhanden sind, passen in das Gesamtbild. Demnach war die Blüte im Bestand Bad Neustadt/Saale sowohl im Jahr 1997 als auch im Jahr 1998 schwächer als in den beiden anderen Beständen Dinkelsbühl und Langenau. Außerdem war die Blüte im Jahr 1997 insgesamt für alle drei Bestände schwächer als im darauffolgenden Jahr. Lediglich im dritten Jahr weicht die eigene Ansprache im Bestand Bad Neustadt/Saale stark von der durch die Amtliche Prüfstelle für forstliches Saatgut in Freising (bis 1998) bzw. der Landesforstanstalt Eberswalde (seit 1999) ab (siehe Tabelle 20).

Der Bestand Hochspeyer weicht in allen drei Jahren vom Gesamtbild der anderen drei Bestände ab. Zwar korrelieren die eigene und die durch den Revierleiter getroffene Ansprache (1998). Mit den Werten der amtlichen Prüfstelle für forstliches Saatgut in Freising (bis 1998) beziehungsweise der Landesforstanstalt Eberswalde (seit 1999) findet sich jedoch in keinem Fall eine Übereinstimmung. Dazu muss man aber berücksichtigen, dass die letztgenannten Einstufungen lediglich einen Durchschnittswert für das gesamte Wuchsgebiet darstellen und damit nicht unbedingt repräsentativ für den Einzelbestand sein müssen.

Blüte und Fruktifikation

Bezüglich der Blüte und der darauffolgenden Masten ergeben sich folgende Beziehungen: Für das Jahr 1997 stehen nur die wuchsgebietsweisen Ansprachen der amtlichen Prüfstelle für forstliches Saatgut in Freising (bis 1998) bzw. der Landesforstanstalt Eberswalde (seit 1999) zur Verfügung. Für die drei Bestände Bad Neustadt/Saale, Dinkelsbühl und Langenau liefern diese nahezu identische Werte. Die Masten dagegen schwanken in den drei genannten Beständen von sehr gering über gut bis sehr gut. Für das Gebiet, in dem der Bestand Hochspeyer liegt, wurde mit 2,5 der höchste Wert angegeben. Die dazugehörige Mast dagegen war nur gut, teilweise sogar nur mittel.

Im Jahr 1998 besteht eine klare Beziehung zwischen der selbst durchgeführten Blühansprache, einschließlich der durch die Revierleiter, mit der darauffolgenden Fruktifikation. Je schwächer die Blüte im Frühjahr war, desto geringer fiel im Herbst auch die Mast im entsprechenden Bestand (Hochspeyer) aus. Umgekehrt lieferte die stärkste Blüte auch die stärkste Fruktifikation (Langenau).

Blüte, Fruktifikation und genetische Parameter

Setzt man Blüte, Mast und genetische Parameter miteinander in Beziehung, so kommt man zu folgenden Ergebnissen: In den Beständen Bad Neustadt/Saale Dinkelsbühl und Langenau war in den beiden Vergleichsjahren die Fruktifikation des zweiten Jahres stärker als die des ersten. Gleichzeitig ist für die meisten der angeführten genetischen Parameter ein unterschiedlich großer Anstieg der Werte zu verzeichnen. Ausnahme hiervon bildet in allen drei Beständen die bedingte Heterozygotie H_c . Im Bestand Dinkelsbühl gilt dies zusätzlich für die Anzahl Allele pro Genort A_L und im Bestand Langenau für den Fixierungskoeffizienten F. Hier nehmen die Werte ab, zum Teil jedoch nur in einem sehr geringen Maß.

Im Bestand Hochspeyer war die Mast im zweiten Jahr geringer als im ersten. Trotzdem ist auch hier für fast alle genetischen Parameter - wiederum mit Ausnahme der bedingten Heterozygotie H_c - ein Anstieg der Werte zu verzeichnen.

Tabelle 21: Übersicht über die genetische Variation innerhalb der Populationen über 17 Genorte und die Intensität der Blüte und der Fruktifikation (n = Stichprobenumfang, A_L = Anzahl Allele je Genort, G_L = Anzahl Genotypen je Genort, H_o = Beobachtete Heterozygotie, H_e = Bedingte Heterozygotie, V = Genpool-Diversität, V_{gam} = Hypothetische gametische Multilocus-Diversität, V_T = Genetische Differenzierung und V_T = Fixierungskoeffizient)

Population	A_L	G_L	Но	H _c	V	V _{gam}	δ_{T}	F	Blühin- tensität	Mast
Bad Neustadt /Saale Bestandesabsaat 1997	4,24	7,65	0,242	0,631	1,464	1.483.328	0,319	0,254	(gering -) schwach	(sehr) gering
Bad Neustadt/Saale Bestandesabsaat 1998	4,88	9,35	0,294	0,583	1,638	12.658.756	0,391	0,282	gut	schwach
Dinkelsbühl Bestandesabsaat 1997	4,76	8,29	0,252	0,637	1,513	2.158.499	0,340	0,250	schwach	gut
Dinkelsbühl Bestandesabsaat 1998	4,59	9,06	0,275	0,611	1,579	7.200.998	0,368	0,272	gut (- reichlich)	sehr gut
Hochspeyer Bestandes- absaat 1997	4,35	7,65	0,268	0,637	1,502	2.442.666	0,335	0,227	schwach - mittel	gut (- mittel)
Hochspeyer Bestandes- absaat 1998	4,59	8,41	0,261	0,632	1,506	3.745.795	0,337	0,256	gering	gering
Langenau Bestandes- absaat 1997	4,65	8,18	0,247	0,617	1,482	1.712.975	0,326	0,270	schwach	sehr gut
Langenau Bestandes- absaat 1998	4,88	8,47	0,272	0,616	1,532	4.489.789	0,348	0,266	(gut -) reichlich	reichlich

4.5 Pilotstudie zur Vergleichbarkeit von Mikrosatelliten mit Isoenzymanalysen

Es bestand im Rahmen dieser Arbeit die Möglichkeit, eine Pilotstudie zum Vergleich von Isoenzym-Genmarkern mit einem weiteren kodominanten, im Kern lokalisierten "Mendel-Marker", den Mikrosatelliten (LA SCALA 2000) durchzuführen. Dazu konnten die Bestandskollektive Müllheim und Müllrose und der Bestand Müllrose⁺ Baumschule (siehe Kapitel 3.1 Material) herangezogen werden. Für das Baumschulmaterial beider Bestände standen für die Isoenzymanalyse im Gegensatz zu den Mikrosatelliten leider nicht mehr alle 100 Individuen zur Verfügung (siehe Tabelle 22), da das Probenmaterial zum Teil bereits für die Mikrosatelliten vollständig verbraucht worden war.

4.5.1 Genetische Variation

Die zwei Bestände Müllheim und Müllrose inklusive ihrer dazugehörigen Nachkommenschaften sowie der Bestand Müllrose⁺ wurden sowohl isoenzymatisch als auch mit Mikrosatelliten (LA SCALA 2000) untersucht. Bei den Mikrosatelliten wurden von Sabina La Scala fünf Genorte (siehe Tabelle 22) und für die Isoenzyme 17 Genorte (siehe Kapitel 3.2 Methoden) in den Vergleich miteinbezogen. Die Ergebnisse wurden dann anhand verschiedener genetischer Parameter miteinander verglichen.

Tabelle 22: Genetische Parameter der Bestandskollektive Müllheim und Müllrose für den Genpool jeweils für Isoenzyme (17 Loci) und Mikrosatelliten (5 Loci); $n = \text{Stichprobengr\"oße}, A_L = \text{Anzahl Allele je Genort}, v_{(a)}$ allelische Diversität, H_o = beobachtete Heterozygotie und H_e = erwartete Heterozygotie

		Isoenzyme (17 Loci)				Mikrosatelliten (5 Loci)					
		n	AL	$v_{(a)}$	Н₀	H e	n	A_L	$v_{(a)}$	Н₀	H e
1	Müllheim Steinacker Altbestand	102	4,24	1,499	0,256	0,335	100	15,4	6,82	0,64	0,85
2	Müllheim Steinacker Bestandesabsaat	150	4,35	1,415	0,224	0,294	150	15,0	6,22	0,61	0,84
3	Müllheim Eichwald Altbestand	102	4,35	1,498	0,244	0,334	100	14,8	6,76	0,66	0,85
4	Müllheim Eichwald Bestandesabsaat	150	4,59	1,463	0,238	0,318	150	14,4	6,39	0,61	0,84
5	Müllheim Baum- schule '94	89	4,18	1,473	0,255	0,323	100	14,6	7,96	0,54	0,86
6	Müllheim Baum- schule '96	98	4,18	1,491	0,247	0,331	100	17,8	7,87	0,66	0,86
7	Müllrose Alt- bestand	102	4,18	1,536	0,250	0,351	100	16,6	8,80	0,76	0,88
8	Müllrose Bestandes- absaat '97	150	4,9	1,525	0,264	0,346	150	17,4	7,83	0,72	0,87
9	Müllrose⁺ Baum- schule '94	80	4,24	1,611	0,274	0,382	100	16,6	9,21	0,56	0,88
	Mittelwert		4,35	1,501	0,250	0,335		15,8	7,54	0,64	0,86

Ein Vergleich der Daten von Isoenzymanalyse und Mikrosatelliten ergibt, dass die absoluten Werte der genetischen Vielfalt (A_L), der allelischen Diversität ($v_{(a)}$), sowie der beobachteten (H_o) und der erwarteten Heterozygotie (H_e) bei den Mikrosatelliten in allen Fällen deutlich höher sind als bei den Isoenzymen. Im Durchschnitt sind die Werte für die genetische Vielfalt A_L bei den Mikrosatelliten (15,8) ungefähr dreieinhalbmal so hoch wie bei den Isoenzymen (4,35). Die Werte der Mikrosatelliten sind für die allelische Diversität $v_{(a)}$ ungefähr fünfmal (7,54 vs. 1.50) und für die beobachtete H_o (0,64 vs. 0,25) bzw. die erwartete Heterozygotie H_e (0,86 vs. 0,34) je etwa zweieinhalbmal so hoch wie die der Isoenzyme. Relativ gesehen bewegen sich die jeweiligen Werte jedoch in einer ähnlichen Größenordnung (siehe Tabelle 22).

Bildet man die Mittelwerte der einzelnen Parameter für die neun gemeinsam untersuchten Bestände, so finden sich prozentuale Abweichungen der Einzelwerte zu diesem Mittelwert von minus 12 % bis plus 18 % für die Isoenzyme und von minus 18 % bis plus 19 % für die Mikrosatelliten.

4.5.2 Fixierungskoeffizienten

Für die Ermittlung der Fixierungskoeffizienten *F* wurden bei den Isoenzymen fünf Genorte mit Trend zum Majorpolymorphismus als Vergleichswert herangezogen (siehe Anhang, Tabelle 1). Bei den Mikrosatelliten wurden alle fünf untersuchten Genorte miteinbezogen, da diese alle einen Trend zum Majorpolymorphismus aufweisen (LA SCALA 2000).

Tabelle 23: Fixierungskoeffizienten F der Bestandskollektive Müllheim (MH), Müllrose (MR) und Müllrose⁺ (MR⁺) für Isoenzyme und Mikrosatelliten an jeweils fünf Genorten

	MH							MR ⁺	
	Eichwald	Eichwald	Steinacker	Steinacker	Baum-	Baum-	Altbe-	Bestandes-	Baum-
	Altbestand	Bestandes- absaat	Altbestand	Bestandes- absaat	schule 1994	schule 1996	stand	absaat	schule 1994
ADH-A	0,232	0,179	0,310	0,049	0,105	0,256	0,161	0,050	0,225
AP-A(LAP)	0,288	0,246	0,204	0,099	0,222	0,210	0,147	0,273	0,381
AP-B(AAP)	0,327	0,238	0,278	0,260	0,227	0,300	0,255	0,186	0,179
EST-A	0,182	0,083	0,102	0,178	0,242	0,324	0,410	0,199	0,327
SKDH-A	0,327	0,314	0,439	0,407	0,419	0,454	0,307	0,173	0,270
Mittel Isoenzyme	0,271	0,212	0,267	0,199	0,243	0,309	0,256	0,176	0,276
ssrQpZAG58	0,273	0,362	0,144	0,293	0,318	0,293	0,124	0,222	0,347
ssrQpZAG1/2	0,194	0,157	0,174	0,203	0,533	0,097	0,185	0,214	0,689
ssrQpZAG110	0,159	0,301	0,406	0,368	0,397	0,266	-0,037	0,032	0,36
ssrQpZAG36	0,281	0,333	0,156	0,306	0,473	0,212	0,184	0,122	0,183
ssrQpZAG9	0,241	0,188	0,332	0,204	0,266	0,287	0,226	0,271	0,222
Mittel Mikro- satelliten	0,230	0,268	0,242	0,275	0,397	0,231	0,136	0,172	0,360

Für beide Marker wurden - mit nur einer Ausnahme bei den Mikrosatelliten (ssrQp ZAG110, Müllrose Altbestand) - ausschließlich positive *F*-Werte gefunden. Die Werte für die Isoenzyme variieren dabei zwischen 0,050 (ADH-A, Müllrose Bestandesabsaat) und 0,454 (SKDH-A, Müllheim Baumschulmaterial 1996), die der Mikrosatelliten zwischen -0,037 (ssrQpZAG110, Müllrose Altbestand) und 0,533 (ssrQpZAG1/2, Müllheim Baumschulmaterial 1994). Die Mittelwerte über jeweils alle fünf Loci liegen für beide Marker in einer ähnlichen Größenordnung (siehe Tabelle 23 und Abbildung 26). Die prozentualen Abweichungen der Genpoolwerte gegenüber diesem Mittelwert liegen bei den Mikrosatelliten zwischen minus 47 % und plus 55 %, während sie bei den Isoenzymen lediglich in einem Bereich von minus 28 % und plus 26 % schwanken.

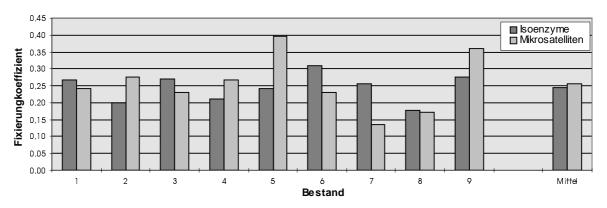


Abbildung 26: Mittlere Fixierungskoeffizienten *F* für fünf Isoenzym-Genorte und fünf Mikrosatelliten (Nomenklatur der Bestände siehe Tabelle 22)

4.5.3 Referenzstrukturen

Die sowohl bei Isoenzymen als auch bei Mikrosatelliten vorgefundenen hohen Fixierungskoeffizienten unterstützen die Hypothese einer Inzuchtbelastung der Bestände. Im Folgenden wird daher ein detaillierter Vergleich der beobachteten Homozygotenanteile mit den zwei Referenzstrukturen Hardy-Weinberg-Erwartung und Inzucht-Erwartung (siehe Kapitel 3.2 Methoden) für beide Marker an den jeweils fünf Genorten vorgenommen.

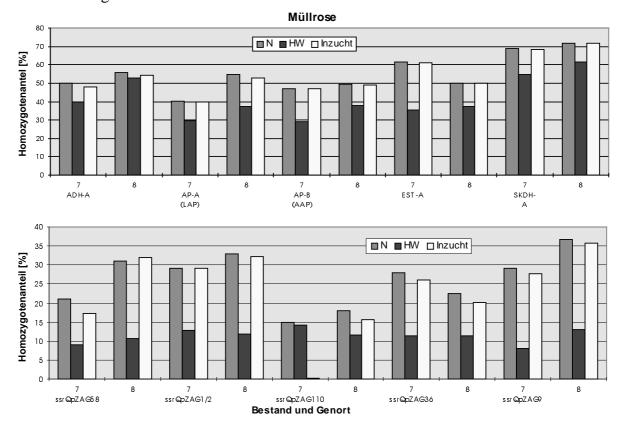


Abbildung 27: Vergleich der beobachteten Homozygotenanteile (N) für das Bestandskollektiv Müllrose an fünf Isoenzym-Genorten (oben) und fünf Mikrosatelliten (unten) mit der Erwartung unter Hardy-Weinberg (HW) und unter Inzucht (Nomenklatur der Bestände siehe Tabelle 22)

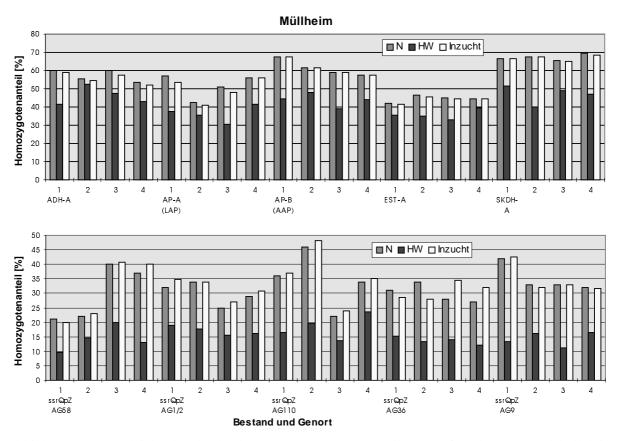


Abbildung 28: Vergleich der beobachteten Homozygotenanteile (N) für das Bestandskollektiv Müllheim an fünf Isoenzym-Genorten (oben) und fünf Mikrosatelliten (unten) mit der Erwartung unter Hardy-Weinberg (HW) und unter Inzucht (Nomenklatur der Bestände siehe Tabelle 22)

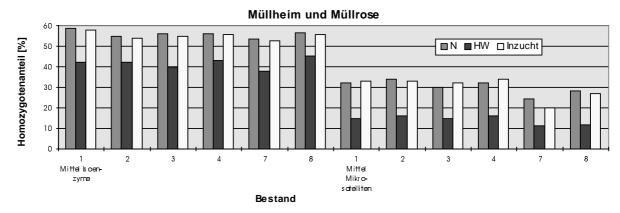


Abbildung 29: Vergleich der beobachteten Homozygotenanteile (N) für das Bestandskollektiv Müllheim im Mittel der fünf Isoenzym-Genorten (oben) und der fünf Mikrosatelliten (unten) mit der Erwartung unter Hardy-Weinberg (HW) und unter Inzucht (Nomenklatur der Bestände siehe Tabelle 22)

Beide Marker zeigen bei diesem Vergleich trotz unterschiedlicher absoluter Werte bei einer relativen Betrachtung ähnliche Trends. Dies sind zum einen eine deutliche Abweichung von der Hardy-Weinberg-Erwartung und zum anderen eine recht große Übereinstimmung mit der Erwartung unter Inzuchtbedingungen. Im Unterschied zu den Mikrosatelliten, bei denen die beobachteten Werte mal über und mal unter denen der Erwartungswerte unter Inzucht liegen, sind die beobachteten Werte bei den Isoenzymen immer größer oder gleich denen unter Inzuchterwartung.

5. Diskussion

5.1 Fragestellung

Die vorliegende Arbeit stellt den Versuch dar, am Beispiel der Traubeneiche (Quercus petraea (Matt.) Liebl.) mittels der Unterschiede in den genetischen Strukturen von Parentalpopulationen und ihrer Nachkommenschaften auf die Besonderheiten des Reproduktionssystems zurückzuschließen, soweit die Natur im vorgegebenen Zeitrahmen eine Realisierung der Versuchsgestaltung (Variation von Blühintensität und Fruktifikationsstärke) auch tatsächlich erlaubte. Eine umfassende Literaturübersicht der bisherigen Arbeiten zur genetischen Variation von Stiel- und Traubeneiche unter Verwendung von Isoenzym-Markern gibt zum Beispiel HERZOG (1998). Sie macht deutlich, dass trotz einiger Untersuchungen mit zum Teil recht großen Anzahlen an Beständen und Stichprobenumfängen bis heute auf diesem Gebiet nur ein unvollständiges Bild über die genetischen Strukturen dieser beiden Eichenarten existiert. Insbesondere wurde bisher nur in untergeordnetem Maß auf oben genannte Zusammenhänge eingegangen. Vor allem der Einfluss unterschiedlicher Samenjahrgänge und Zusammenhänge mit dem Grad der Fruktifikation unter Berücksichtigung der Blühintensität wurden bislang selten untersucht.

In den vergangenen Jahren wurden zur Untersuchung der Eichenarten in verstärktem Maß auch DNA-Marker eingesetzt, die sich auf das Organellengenom beziehen (KREMER *et al.* 1991, PETIT *et al.* 1993, 1997, LE CORRE *et al.* 1997a, 1997b, DU-COUSSO *et al.* 1997, KÖNIG *et al.* 1997). Dabei hat sich gezeigt, dass dieser Markertyp zur Klärung der Zusammenhänge zwischen genetischer und geographischer Variation besonders gut und im Vergleich zu Isoenzymanalysen besser geeignet ist.

5.2 Untersuchungsmethode und genetische Markersysteme

Die genetischen Untersuchungen an deutschen Traubeneichenbeständen erfolgten mit Hilfe von biochemisch-genetischen Markern. Es handelt sich dabei um eine erprobte und bewährte Methode, die eine Untersuchung sehr großer Stichprobenumfänge bei vergleichsweise geringem finanziellen und zeitlichen Aufwand ermöglicht. Ein weiterer, wesentlicher Vorteil dieser Methode liegt in der Verfügbarkeit von Referenzdaten, nicht nur für die Eiche, sondern auch für zahlreiche andere (einheimische) Baumarten.

Die Anzahl der im Rahmen dieser Arbeit untersuchten Genloci ist sehr hoch. Alle verwendeten Genorte wurden bereits als genetische Marker identifiziert (MÜLLER-STARCK et al. 1996, ZANETTO et al. 1996). Die Besonderheiten der meisten in dieser Arbeit verwendeten Isoenzymgenloci wurden bereits an anderer Stelle ausführlich diskutiert (ZANETTO et al. 1994, BACILIERI et al. 1995, SAMUEL et al. 1995, HERTEL und ZASPEL 1996, MÜLLER-STARCK et al. 1996, HERZOG 1998, GEHLE 1999) und sind eine wichtige Grundlage bei der Interpretation der Daten. Im Folgenden sollen diese Ergebnisse anhand der ermittelten genetischen Parameter detailliert diskutiert werden.

5.3 Genetische Variation innerhalb der Populationen

Die genetische Variation innerhalb der 44 untersuchten Populationen wurde mittels verschiedener genetischer Parameter wie der genetischen Vielfalt, der Heterozygotie, der genetischen Differenzierung und der Populationsdifferenzierung quantifiziert. Grundlage hierfür bilden die allelischen, beziehungsweise genotypischen Strukturen der Individuen der verschiedenen Populationen an den 17 gemeinsamen Genorten.

Im Vergleich zu anderen Laubbaumarten, wie zum Beispiel der Buche (MÜLLER-STARCK 1991b), aber vor allem auch zu Koniferen weist die Traubeneiche überdurchschnittliche hohe Werte hinsichtlich der genetischen Vielfalt auf. Vergleicht man die Ergebnisse dieser Arbeit mit anderen Eichen-Untersuchungen - allerdings ungeachtet der unterschiedlichen ontogenetischen Stadien - liegen die Ergebnisse für die Werte der ermittelten genetischen Parameter im oberen Bereich. Berücksichtigt man die häufig deutlich geringeren Stichprobenumfänge (Vergleich Kapitel 1.3 Referenzdaten), bietet sich folgende Erklärungsmöglichkeit an: In der vorliegenden Arbeit wurde eine große Anzahl an Individuen je Population untersucht. Hieraus resultiert die Erfassung sehr seltener Allele, die zu einer Erhöhung der durchschnittlichen Anzahl von Allelen je Genort führt. Die besonders hohen Werte dieser Untersuchung lassen sich jedoch auch durch die vergleichsweise hohe Zahl verschiedener und gleichzeitig polymorpher Genorte erklären. Am ehesten korrespondieren die Ergebnisse der vorliegenden Arbeit daher mit Untersuchungen ähnlich großer Stichprobenumfänge und Anzahlen an Genorten (ZANETTO et al. 1993, ZANETTO und KREMER 1995, STREIFF 1998), am stärksten jedoch mit Untersuchungen an beiden Eichenarten, die unter den gleichen Laborbedingungen und unter Verwendung der gleichen Genorte durchgeführt wurden (JÜNGER 1997, MÜLLER-STARCK 1997, STREHLE 2000).

Die Verteilung der Allelhäufigkeiten in den untersuchten Traubeneichenbeständen weist an einer Vielzahl der Genorte auf Minorpolymorphismen hin. Dieser Trend spiegelt sich auch in anderen Untersuchungen wider (HERZOG 1998, GEHLE 1999, STREHLE 2000). Damit steigt die Wahrscheinlichkeit eines Verlustes seltener Allele an. Gerade diese Allele erhöhen die Anpassungsfähigkeit einer Population. Sie treten normalerweise zwar unter den gegebenen Umweltbedingungen nicht besonders in Erscheinung. Ändern sich aber die Umweltbedingungen, können es gerade diese seltenen Allele sein, die ihren Trägern eine gegenüber anderen Individuen erhöhte Fitness verleihen. Durch Ausfälle (Absterben) nehmen die Individuen mit den vorher seltenen Allelen durch diesen Konkurrenzvorteil in ihrer relativen Häufigkeit zu. So können sich Populationen schon innerhalb einer oder zwei Generationen an sich ändernde Umweltbedingungen anpassen (KRUSCHE 1990a, b). Bei der Eiche sind dies allerdings immer noch mindestens (20-) 40 Jahre je Generation. Den Nachweis für eine solche Form der Anpassung lieferte MÜLLER-STARCK (1993b) anhand von Aussaatversuchen von Buchen unter Freilandbedingungen. Unter Berücksichtigung dieser Aspekte erscheint die hohe Zahl an Genorten, die einen solchen Minorpolymorphismus aufweisen - zum Teil mit Trend zur Fixierung - bedenklich. Bei der erwarteten raschen Klimaveränderung mit einem erheblichen Anstieg der Temperaturen innerhalb weniger

Jahrzehnte erscheint es allerdings fraglich, ob solche Anpassungsmechanismen in Zukunft überhaupt noch ausreichen werden.

Die **genetische Diversität** ist ein wichtiges Variationsmaß, weil es die Häufigkeiten genetischer Typen quantifiziert. Viele verschiedene Allele beziehungsweise Genotypen in annähernd gleichen relativen Häufigkeiten charakterisieren eine große Diversität. Die größtmögliche Diversität wird im Falle der Gleichverteilung von Allelen beziehungsweise Genotypen erreicht. Hinter einem hohen Wert stehen dementsprechend viele genetisch verschiedene Individuen.

Die Genpool-Diversität stellt das harmonische Mittel der Einzellocus-Diversitäten (17 Genorte) als die Anzahl effektiver Allele dar. Durch die Gewichtung mit der Häufigkeit ist die Diversität nur dann identisch mit der Anzahl Allele pro Locus, wenn die Allele gleich verteilt sind. Betrachtet man die Genpool-Diversitäten der vorliegenden Arbeit, so liegt die Amplitude der ermittelten Werte mit 1,37 und 1,64 im Bereich des Spektrums früherer Untersuchungen (KREMER et al. 1991, MÜLLER-STARCK und ZIEHE 1991, HERZOG und MÜLLER-STARCK 1993, MÜLLER-STARCK et al. 1993, ZANETTO et al. 1994, HERTEL und ZASPEL 1996, HERZOG 1996, HERZOG und KRABEL 1996, HERZOG 1998, KLEINSCHMIT et al. 1995, MÜLLER-STARCK 1997, GEHLE 1999, DEGEN et al. 1999, STREHLE 2000). Dies erscheint insoweit interessant, als es sich um Studien handelt, die zum Teil auf einer sehr unterschiedlichen Anzahl und Auswahl an Genorten beruhen, unterschiedliche Stichprobengrößen aufweisen, keine einheitlichen Stichprobenverfahren verwenden und außerdem verschiedene Altersstufen erfasst haben.

Die hypothetische gametische Multilocus-Diversität errechnet sich aus den Einzellocus-Diversitäten und quantifiziert die Anzahl maximal bildbarer verschiedenartiger Gametentypen. Das Potential, genetisch unterschiedliche Gameten in der nächsten Generation bilden zu können, bestimmt die Anpassungsfähigkeit der nachfolgenden Generationen. Unterschiede zwischen den Beständen treten wegen der zugrunde liegenden Produktstruktur wesentlich deutlicher hervor, als dies für die Genpool-Diversität der Fall ist (GREGORIUS *et al.* 1985). Die untersuchten Populationen weisen erhebliche Unterschiede hinsichtlich der v_{gam} -Werte auf. Der größte Wert liegt bei 12.659 (Bad Neustadt/Saale Bestandesabsaat 1998) und ist damit rund 27 mal so hoch wie der niedrigste mit 460 (Bestandesabsaat Peitz 1996). Minimum- und Maximumwerte stehen in der vorliegenden Untersuchung in Analogie zur Anzahl Allele je Genort. Für die dazwischenliegenden Werte lassen sich keine eindeutigen Trends erkennen. Für die hypothetische gametische Multilocus-Diversität gibt es nur wenig Vergleichsdaten. Untersuchungen von MÜLLER-STARCK (1997) und STREHLE (2000) weisen Maximumwerte auf, die beinahe doppelt so hoch liegen.

Die Berechnung der Populationsdifferenzierung als Maß für die genetische Variation innerhalb einer Population liefert Genpoolwerte (0,271 - 0,391, im Mittel 0,335), die etwas über den Werten der meisten bisherigen Untersuchungen liegen (HERZOG 1993, HERZOG und MÜLLER-STARCK 1993, HERTEL und ZASPEL 1996, HERZOG und KRABEL 1996, HERZOG 1998), aber unter denen von und DEGEN (1999).

Zusammenfassend lässt sich feststellen, dass die meisten der für die Traubeneiche ermittelten Parameter zur genetischen Variation innerhalb von Populationen im Vergleich zu anderen holzigen Pflanzen, insbesondere Laubbäumen relativ hoch sind (HAMRICK und GODT 1990, HAMRICK *et al.* 1992). Besonders auffällig sind die hohen A_t -Werte (MÜLLER-STARCK 1991, TUROK 1995).

5.4 Genetische Variation zwischen den Populationen

Die genetische Variation zwischen den Populationen wurde anhand der paarweisen genetischen Abstände und der genetischen Differenzierung quantifiziert. Mögliche Zusammenhänge zwischen genetischer und geographischer Variation wurden anhand des Mantel-Tests (Isolation by distance) locusweise überprüft, konnten aber nicht nachgewiesen werden. Auch eine detaillierte Analyse von Allel- und Genotyphäufigkeiten und genetischer Differenzierung im Zusammenhang mit der geographischen Anordnung der Bestände und den Wuchsgebieten zeigt keine eindeutigen Trends.

Die paarweisen **genetischen Abstände** d_o liegen mit einer Amplitude von 0,050 bis 0,222 für den Genpool der 17 Loci innerhalb des Wertebereichs, der auch in anderen Untersuchungen ermittelt wurde (JÜNGER 1997, MÜLLER-STARCK 1997, HERZOG 1998, GEHLE 1999, STREHLE 2000). Allerdings liegen die Werte für die Bestände Langenau Baumschule und Müllrose⁺ Baumschule deutlich über dem Durchschnitt. Der verhältnismäßig große genetische Abstand des Baumschulmaterials Langenau soll im Folgenden beim direkten Vergleich der Altbestände mit ihren jeweiligen Nachkommenschaften besprochen werden. Für den Bestand Müllrose⁺ Baumschule können folgende Tatsachen als Erklärungsansatz für den verhältnismäßig großen Abstand zu den anderen Populationen dienen: Während der Anzucht der Jungpflanzen in der Baumschule haben wahrscheinlich bereits Selektionsprozesse stattgefunden. Dies ist aber bei den anderen Baumschulmaterialien ebenso der Fall. Abgesehen davon handelt es sich um einen relativ separat zu betrachtenden Bestand, für den kein direktes Vergleichsmaterial wie Altbestand, weitere Nachkommenschaften oder Ähnliches vorliegt. Zu berücksichtigen ist außerdem die vergleichsweise geringe Stichprobengröße von nur 89 Individuen.

Die separate Betrachtung einzelner Loci spiegelt nicht die Multilocus-Konstellation wieder. Lediglich der Bestand Langenau Baumschule weist über die sechs näher untersuchten Genorte hinweg sehr große Abstände auf. Diese stark unterschiedliche Clusterung an den einzelnen Loci ist dadurch erklärbar, dass die verschieden Genorte spezifischen Selektionsbedingungen unterliegen. Eine 6-Locus-Betrachtung zeigt dann auch wieder ein Verteilungsmuster, das dem der Multilocus-Betrachtung ähnelt. Erstaunlich ist, dass statt des Baumschulmaterials Müllrose⁺ hier der Altbestand Hammelburg nach Langenau Baumschule den größten Abstand aufweist. Einzig mögliche Erklärung hierfür ist der außergewöhnlich hohe d_o -Wert für diesen Bestand am Genort EST-A.

Verglichen mit der großen genetischen Variation innerhalb der Stichproben ist die **genetische Differenzierung** ($D_j = 0,050$ bis 0,179, $\delta = 0,074$) zwischen den 44 Populationen relativ gering. Dies muss als ein Charakteristikum von kontinuierlich verbreiteten Baumarten in Kombination mit effektivem Genfluss angesehen werden (MÜLLER-STARCK 1997). Ähnliche Trends zeigen die Ergebnisse der umfangreicheren genetischen Erhebungen in europäischen Buchenbeständen. Die Betrachtung einzelner Genorte demonstriert Unterschiede, die mit spezifischen Selektionsbedingungen an diesen Genorten zusammenhängen. Diese treten zwischen den verschiedenen hier untersuchten Beständen auch stärker hervor. Ähnlich wie bei den genetischen Abständen weist der Bestand Langenau Baumschule an vier der sechs detailliert betrachteten Genorten und deren Genpool den höchsten D_j -Wert auf. Auch der Altbestand Hammelburg fällt bei der Einzellocus-Betrachtung durch seinen hohen Wert am Genort EST-A auf. Allerdings liegt er bei der Genpoolbetrachtung der sechs Loci zwar auch an zweiter Stelle, aber weicht von den restlichen Beständen nicht sehr stark ab.

5.5 Vergleich der Altbestände mit ihren Nachkommenschaften

In einer Vielzahl der Vergleichsfälle wurde ein Anstieg der genetischen Vielfalt beim Übergang der Parentalpopulation auf die Nachkommenschaften nachgewiesen. Aufgrund der repräsentativen Form der Stichprobennahme und der Höhe des Stichprobenumfangs ist aber davon auszugehen, dass auch seltene Allele des Altbestands mit einer sehr hohen Wahrscheinlichkeit erfasst wurden. Berücksichtigung muss dennoch der unterschiedlich große Stichprobenumfang von Altbeständen (durchschnittlich 100 Individuen) und Nachkommen (durchschnittlich 150 Individuen) finden. Dies allein kann aber nicht der ausschlaggebende Faktor sein. In Bad Neustadt/Saale Bestandesabsaat 1997 beispielsweise steigt trotz ungefähr gleichen Stichprobenumfangs die durchschnittliche Anzahl Allele je Genort gegenüber dem Altbestand an. Als eine mögliche Ursache ist daher ein gewisses Maß an Fremdpolleneinflug in Betracht zu ziehen. Ein direkter Nachweis ist aber bei der vorliegenden Versuchsgestaltung, bei der keine individuelle Zuordnung der Nachkommen zu ihren Eltern erfolgt, nicht endgültig möglich.

Die genotypische Vielfalt zeigt ähnliche Tendenzen wie die allelische Vielfalt. Die seltenen Allele findet man in der genotypischen Struktur mit bereits im Altbestand vorhandenen Allelvarianten meistens in heterozygotem Zustand. Auch dies kann als ein Indiz für das Einwirken von Externpollen und somit auch für einen potentiellen Genfluss angesehen werden.

Die **Heterozygotie** hat als Variationsparameter, als Kenngröße des Paarungssystems oder für die Anpassung einer Population an die gegebenen Umweltbedingungen große Bedeutung. Darüber geben bereits ZIEHE und HATTEMER (1998) einen ausführlichen Überblick. Da Zusammenhänge zwischen Heterozygotie und Viabilität bestehen können, wurde in Baumpopulationen teilweise eine Anreicherung heterozygoter Individuen im Laufe der Bestandsentwicklung nachgewiesen (MITTON und GRANT 1984,

MITTON und JEFFERS 1989). Ein hohes Maß an Heterozygotie ermöglicht demnach eine größere Anpassungsfähigkeit unter komplexen Stressbedingungen (MÜLLER-STARCK 1993).

Die Heterozygotenanteile der einzelnen Genorte beziehungsweise Populationen sind erwartungsgemäß abhängig von dem zugrundeliegenden Polymorphismustyp. Genorte, die eine Tendenz zum Majorpolymorphismus zeigen, weisen in der Regel auch höhere mittlere aktuelle Heterozygotiegrade als die mit ausgeprägten Minorpolymorphismen auf. Die Werte für die beobachtete Heterozygotie liegen bei der vorliegenden Untersuchung innerhalb des durch frühere Arbeiten gegebenen Rahmens (siehe Kapitel 1.3 Referenzmaterial, Tabelle 3 und Anhang, Tabelle 6).

Während der Reproduktion findet prozentual über alle Nachkommenschaften gesehen eine geringe Abnahme der beobachteten Heterozygotie statt. Allerdings sind die Unterschiede im vorliegenden Fall äußerst gering und die Durchschnittswerte sogar nahezu identisch. Im Gegensatz dazu konnte HERZOG (1998) beim Vergleich verschiedener ontogenetische Stadien einen leichten durchschnittlichen Anstieg feststellen. Aber auch in dieser Untersuchung wurden sowohl Anstiege als auch Abnahmen (Verhältnis 3:2) beobachtet. Eine einheitliche Interpretation dieser Ergebnisse erscheint schwierig. So lassen sich gleich große beziehungsweise geringgradig höhere mittlere Heterozygotiegrade in den Altbeständen durch Selektionsprozesse während der Bestandsentwicklung erklären. Andererseits erwartet man aufgrund von Viabilitätsselektion zwischen den reproduktiven Phasen eines Bestandes eher einen Anstieg des mittleren Heterozygotiegrades der Nachkommenschaften gegenüber ihren Eltern.

Betrachtet man nun die bedingte Heterozygotie als ein auf den maximal möglichen Heterozygotenanteil normiertes Maß, sind zunächst dessen Vor- und Nachteile näher zu beleuchten. Sein wesentlicher Vorteil liegt in der Unabhängigkeit vom Einflusses allelischer Strukturen. Seine Schwächen liegen dagegen im Bereich der ausgeprägten Minorpolymorphismen. Hier besteht die Gefahr, dass bei sehr kleinen maximalen Heterozygotenanteilen der bedingte Heterozygotiegrad extreme Schwankungen zeigen kann. Im Rahmen der vorliegenden Untersuchung konnten leichte Anstiege der Werte in den juvenilen Populationen gegenüber den Altbeständen festgestellt werden. Die für viele Genorte über 50 % liegenden und des öfteren 100 % erreichenden H_c-Werte zeigen jedoch, dass in einer Vielzahl der Fälle ein verhältnismäßig großer Teil der maximal möglichen Heterozygotie erreicht wird (vergleiche Anhang, Tabelle 7). In der Multilocus-Betrachtung wird dies durch Überlagerungseffekte jedoch nicht in gleicher Form deutlich. Die meisten Untersuchungen an Eiche führen den H_c -Wert nur äußerst selten an. Verglichen mit diesem wenigen Referenzmaterial liegen die Ergebnisse für die bedingte Heterozygotie jedoch auf einem vergleichbaren Niveau (siehe Kapitel 1.3 Referenzmaterial, Tabelle 3).

Bezüglich der **genetischen Diversität** lassen sich keine nennenswerten Unterschiede zwischen verschiedenen ontogenetischen Stadien feststellen. Tendenziell liegen aber die Werte der Altbestände geringfügig über denen der Nachkommenschaften. Diese Ergebnisse korrespondieren mit denen von HERZOG (1998). Interessant ist jedoch, dass

bei den Samen zunächst ein leichter Rückgang der Diversität erkennbar wird. Mit zunehmendem Alter (Jungpflanzen aus Baumschule) ist aber beispielsweise für den Bestand Müllheim II wieder eine gewisse Steigerung zu verzeichnen. Interessant wäre im Rahmen weiterer Studien festzustellen, ob es sich hierbei tatsächlich um einen Trend handelt.

Die genetischen Abstände zeigen bei einer jeweils separaten Betrachtung von Eltern und dazugehörigen Nachkommenschaften Schwankungsbereiche, die in einem Bereich liegen, der bereits durch andere Untersuchungen bestätigt wurde (JÜNGER 1997, MÜLLER-STARCK 1997, HERZOG 1998, GEHLE 1999, STREHLE 2000). Bei den Altbeständen lassen sich keine Zusammenhänge zwischen genetischem Abstand und anderen Kenngrößen wie beispielsweise dem geographischen Abstand feststellen (Mantel-Test, isolation by distance). Dies kann zum einen die Folge einer lokalen Anpassung sein oder zum anderen durch anthropogene Einflüsse verursacht worden sein. Innerhalb eines Herkunftsgebiets sind ähnliche ökologische Verhältnisse zu erwarten. Möglicherweise sind diese aber nicht so einheitlich, dass die von ihnen ausgehenden selektiven Kräfte einen nachweisbaren gerichteten Einfluss auf die genetische Struktur haben. Wahrscheinlich haben dagegen lokal wirksame Selektionsfaktoren einen weit größeren Einfluss. Außerdem besteht die Möglichkeit einer Überlagerung durch weitere differenzierungsfördernde Faktoren und anthropogene Einflüsse. Schon früh in der Geschichte der Forstwirtschaft wurden vor allem Eichenbestände durch Saat oder (Heister-)Pflanzung künstlich begründet und auch Saatgut in größerem Ausmaß verfrachtet. Daher ist auch nicht für alle Bestände gewährleistet, dass Herkunftsgebiet und Ursprung miteinander übereinstimmen. Dieser historische Hintergrund bietet einen möglichen Erklärungsansatz dafür, dass genetische und geographische Abstände häufig nicht miteinander korrespondieren. Die gute Qualität der zugelassenen Saatguterntebestände spricht sicher für eine gute Angepasstheit der Bestände. Diese Tatsache stellt sicher ein Argument für eine Beibehaltung von Herkunftsgebieten dar, wie sie im Gesetz über forstliches Saat- und Pflanzgut festgelegt sind. Allerdings ist damit nicht zwingend gleichzeitig eine gute Anpassungsfähigkeit der Bestände gegeben.

Auffällig erscheint die sehr deutliche Separierung der Altbestände von den Nachkommenschaften und auch der Nachkommenschaften untereinander. Schon bei der Gesamtbetrachtung aller 44 Bestände zeichnete sich eine solche Aufgliederung ab. Zu einem ähnlichen Ergebnis kam auch GEHLE (1999). Das Dendrogramm für Altbestände und Nachkommenschaften zeigt dort ebenfalls einen Ansatz zur Clusterung in diese beiden ontogenetischen Stadien. Allerdings sind in dieser Untersuchung die relativen Ähnlichkeiten der genetischen Abstände unter den Altbeständen und die unter den Nachkommenschaften unter Umständen auch auf unterschiedliche Stichprobenumfänge zurückzuführen (Altbestände 50, Nachkommenschaften 100 Individuen). Dies gilt in gewissem Maß auch für die vorliegende Untersuchung, bei der die Stichproben ebenfalls unterschiedlich groß sind (Altbestände 100, Nachkommenschaften 150 Individuen). Die Aufgliederung innerhalb der Nachkommenschaften im Rahmen der vorliegenden Untersuchung erscheint hingegen noch interessanter. Es zeichnet sich hier ein eindeutiger Trend zur Unterscheidbarkeit verschiedener Samen-

jahrgänge in diesem frühen Untersuchungsstadium ab. Als mögliche Ursache kommen hierfür eventuell ähnliche großklimatische jährliche Schwankungen in Betracht (Spätfröste, Sommertrockenheit, o.ä.).

Auch die genetischen Abstände d_o der Altbestände zu ihren jeweiligen Nachkommenschaften entsprechen denen anderer Untersuchungen (JÜNGER 1997, HERZOG 1998, GEHLE 1999). Häufig weisen die Bestandesabsaaten aus verschiedenen Mastjahren etwas geringere genetische Abstände zueinander auf als zum entsprechenden Altbestand. Ausnahmen hiervon bilden die Bestände Bad Neustadt/Saale und Müllrose, bei denen jeweils eine Nachkommenschaft einen relativ größeren Abstand aufweist. Betrachtet man allerdings die absoluten Werte der genetischen Abstände (siehe Anhang Tabelle 17) wird deutlich, dass die Bestände insgesamt einen nur verhältnismäßig geringen Schwankungsbereich bezüglich der Abstandswerte aufweisen. Möglicherweise bestehen auch zusätzlich Zusammenhänge zu Blüh- und/oder Fruktifikationsstärke. So stammt zum Beispiel das Samenmaterial des Jahres 1997 in Bad Neustadt/Saale aus einer schwachen Blüte mit sehr geringer Mast. Unter Einhaltung des vorgegebenen Sammelmodus konnten nur etwas über einhundert Eicheln gesammelt werden, von denen wiederum 98 Individuen überlebten und untersucht werden konnten. In Müllrose war 1996 ein besseres Samenjahr als 1997. Dementsprechend war der genetische Abstand der Bestandesabsaat 1996 geringer als der des Jahres 1997.

Die beiden Proben aus Sammelstelle und Klenge (Arnstein und Hochspeyer) unterscheiden sich ebenfalls nur geringfügig von der selbst gesammelten, repräsentativen Stichprobe. Offensichtlich führt das in diesen beiden Fällen angewendete Beerntungsverfahren (manuelles Sammeln durch die Bevölkerung) zu einer guten Repräsentierung des vorhandenen genetischen Potentials. Eine interessante Fragestellung für weitere Untersuchungen bleibt, inwieweit andere (gewerbliche) Formen der Saatgutgewinnung (Netze, Laubsauger o.ä.) zu einem ebenso repräsentativen Ergebnis führen.

Interessant ist die geringe genetische Distanz der Naturverjüngung zum Altbestand in Dinkelsbühl. Anscheinend resultiert aus der Zusammenführung mehrerer Samenjahrgänge und praktisch identischen Umweltbedingungen - mit den entsprechenden Selektionsprozessen - eine den Eltern ähnliche Entwicklung. Zur Verifizierung diese Aussage wäre es wünschenswert im Rahmen weiterer Untersuchungen einige zusätzliche Naturverjüngungen hinsichtlich dieser Fragestellung zu beurteilen. Das Problem dabei ist, dass man in nur sehr wenigen Eichenbeständen Naturverjüngung vorfindet, die über das Keimlingsalter hinausgekommen ist.

Es stellt sich deshalb die Frage, ob durch Mischung verschiedener Samenjahrgänge eines Bestandes die Ähnlichkeit beziehungsweise Repräsentativität gegenüber dem Altbestand erhöht werden kann. Bei sechs Beständen wurden jeweils zwei aufeinanderfolgende Bestandesabsaaten untersucht. Die Berechnung der genetischen Parameter bei einer gemeinschaftlichen Betrachtung zweier Reproduktionsperioden zeigt, dass sich im Wesentlichen in etwa eine Mittelung der Werte ergibt (Abbildungen 30 und 31, Tabelle 24).

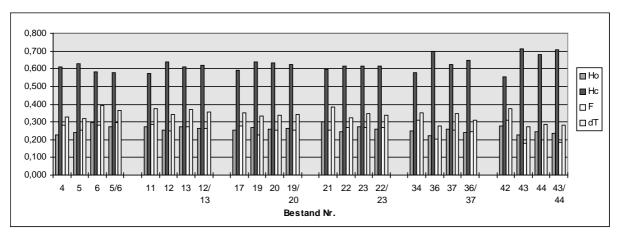


Abbildung 30: Vergleich verschiedener genetischer Parameter von Altbeständen und Bestandesabsaaten jahrgangsweise und gemischt

Lediglich bei der genetischen Vielfalt ist ein Anstieg zu erkennen, wobei man hierbei berücksichtigen muss, dass durch die Zusammenlegung zweier Einzelproben die Stichprobengröße auf das Doppelte ansteigt.

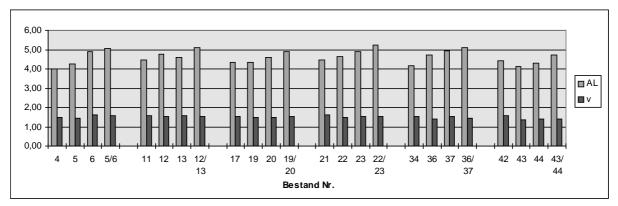


Abbildung 31: Vergleich der genetischen Vielfalt und Diversität von Altbeständen und Bestandesabsaaten jahrgangsweise und gemischt

Wenn man bei der Verjüngung das Material verschiedener Jahre miteinander mischen würde, hätte dies demnach folgende Konsequenzen: Genetisch "ärmer" ausgestattete Jahrgänge, die zum Beispiel aus Jahren schlechter Blüte und/oder Fruktifikation stammen, könnten durch genetisch besser ausgestattete Jahrgänge aufgewertet werden, ohne dabei die "guten" zu sehr zu verschlechtern. Auf diese Art ließen sich auch schwächere Masten unter genetischen Gesichtspunkten durchaus sinnvoll ausnutzen.

Auffällig ist die Veränderung des Fixierungskoeffizienten bei der Mischung von zwei Jahrgängen. Für die meisten Beständen ergibt sich ein Wert, der zum Teil deutlich über dem des Mittelwertes beider Einzelbestände liegt. Als Erklärungsmöglichkeit für dieses Phänomen erscheint der Wahlund-Effekt (siehe S.83) sehr wahrscheinlich. Lediglich in Uffenheim findet man einen Fixierungskoeffizienten, der zwischen den Werten der Einzelbestände liegt.

Tabelle 24: Vergleich der genetischen Parameter von Altbeständen und Bestandesabsaaten Jahrgangsweise und gemischt

Population	n	A_L	Ηο	H _c	V	V _{gam}	δ_{T}	F
Bad Neustadt/Saale Altbestand	102	4,00	0,227	0,611	1,487	2.292.374	0,329	0,283
Bad Neustadt Bestandesabsaat 1997	98	4,24	0,242	0,631	1,464	1.483.328	0,319	0,254
Bad Neustadt Bestandesabsaat 1998	151	4,88	0,294	0,583	1,638	12.658.756	0,391	0,282
Bad Neustadt Samen 1997 und 1998	249	5,1	0,274	0,576	1,576	5.831.99	0,366	0,298
Dinkelsbühl Altbestand	102	4,47	0,272	0,573	1,593	6.124.811	0,374	0,289
Dinkelsbühl Bestandesabsaat 1997	150	4,76	0,252	0,637	1,513	2.158.499	0,340	0,250
Dinkelsbühl Bestandesabsaat 1998	150	4,59	0,275	0,611	1,579	7.200.998	0,368	0,272
Dinkelsbühl Samen 1997 und 1998	300	5,1	0,263	0,619	1,551	4.100.565	0,356	0,265
Hochspeyer Altbestand	102	4,35	0,253	0,594	1,543	4.315.636	0,353	0,277
Hochspeyer Bestandesabsaat 1997	150	4,35	0,268	0,637	1,502	2.442.666	0,335	0,227
Hochspeyer Bestandesabsaat 1998	150	4,59	0,261	0,632	1,506	3.745.795	0,337	0,256
Hochspeyer Samen 1997 und 1998	300	4,9	0,265	0,625	1,517	3.396.639	0,341	0,255
Langenau Altbestand	102	4,47	0,300	0,598	1,618	10.932.266	0,384	0,254
Langenau Bestandesabsaat 1997	150	4,65	0,247	0,617	1,482	1.712.975	0,326	0,270
Langenau Bestandesabsaat 1998	150	4,88	0,272	0,616	1,532	4.489.789	0,348	0,266
Langenau Samen 1997 und 1998	300	5,2	0,259	0,613	1,511	2.868.966	0,339	0,27
Müllrose Altbestand	102	4,18	0,250	0,577	1,536	4.215.667	0,351	0,308
Müllrose Bestandesabsaat 1996	300	4,71	0,224	0,698	1,386	729.281	0,279	0,203
Müllrose Bestandesabsaat 1997	200	4,94	0,261	0,623	1,531	2.744.778	0,348	0,254
Müllrose Samen 1996 und 1997	500	5,1	0,239	0,649	1,448	1.311.637	0,310	0,245
Uffenheim Altbestand	102	4,41	0,279	0,553	1,591	6.033.194	0,373	0,310
Uffenheim Bestandesabsaat 1996	150	4,12	0,225	0,714	1,376	544.917	0,274	0,179
Uffenheim Bestandesabsaat 1997	150	4,29	0,247	0,680	1,403	889.936	0,288	0,200
Uffenheim Samen 1996 und 1997	300	4,7	0,236	0,707	1,395	720.213	0,284	0,183

Betrachtet man die genetischen Abstände d_o der gemischten Nachkommenschaften zu den dazugehörigen Altbeständen, so findet verglichen mit den jeweils einzelnen Nachkommenschaften in fünf von sechs Fällen (Ausnahme: Dinkelsbühl) eine, zum Teil recht deutliche, Reduktion statt (Tabelle 25). Aufgrund der vorliegenden Ergebnisse ist davon auszugehen, dass die Nachkommenschaften bei einer Mischung des Saatguts aus mehreren Reproduktionsperioden eine größere genetische Nähe zum Altbestand erzielen als die entsprechenden Einzelabsaaten.

Tabelle 25: Genetische Abstände zwischen Altbestand und Bestandesabsaaten einzeln und für die Mischung von zwei aufeinanderfolgenden Jahrgängen

	Bad Neustadt/ Saale	Dinkelsbühl	Hochspeyer	Langenau	Müllrose	Uffenheim
do	Altbestand	Altbestand	Altbestand	Altbestand	Altbestand	Altbestand
Bestandesabsaat I	0,101	0,098	0,106	0,090	0,093	0,115
Bestandesabsaat II	0,095	0,115	0,102	0,083	0,102	0,116
Mischung I / II	0.087	0.101	0.089	0.079	0.081	0.110

Für eine Erklärung der sehr unterschiedlichen Tendenzen bezüglich der Baumschulmaterialien kann nicht ohne weiteres auf Zusammenhänge mit Blüh- und/oder Fruktifikationsstärke zurückgegriffen werden, da hierüber keine detaillierten Informationen vorliegen. Es ist allerdings davon auszugehen, dass Sammelaktionen nur in Jahren durchgeführt werden, in denen es sich auch wirtschaftlich lohnt. Diese Tatsache wäre dann auch ein möglicher Erklärungsansatz für die größere Nähe der beiden Baumschulpopulationen zum Altbestand in Müllheim II. Dazu passt auch der Umstand, dass die Mast im Jahr 1998 zwar relativ gut, aber anscheinend nicht ausreichend für eine Beerntung war und gleichzeitig einen größeren genetischen Abstand zum Altbestand aufweist als beide Baumschulpopulationen.

Umso überraschender erscheint unter den oben genannten Annahmen der außergewöhnlich große Abstand des Baumschulmaterials aus Langenau zum Altbestand. Es handelt sich bei diesem Material nach Auskunft des Forstamtes um eine Lohnanzucht, das heißt, dem Forstamt wurde von der Baumschule ein Teil des Saatguts in Form von Pflanzenmaterial vergütet. Man sollte also davon ausgehen können, dass das Material auch tatsächlich aus diesem Bestand stammt. Es lassen sich dazu folgende Hypothesen aufstellen: Zum einen kann das Material in der Baumschule mit dem eines oder mehrerer anderer Bestände verwechselt worden sein. Zum anderen handelt es sich um das vergleichsweise älteste Material innerhalb der Untersuchungen (Mastjahr 1992). Demzufolge war es auch über den vergleichsweise längsten Zeitraum verschiedenen Selektionsprozessen ausgesetzt. Diese erfolgten zuerst in der Baumschule und/oder anschließend auf der Kulturfläche, bei der es sich um eine stark vergraste, südexponierte Hangkahlfläche mit entsprechend starken Ausfällen (Trockenheit und Mäuse) handelt. Damit unterscheiden sich die Umweltbedingungen bereits erheblich von denen des Altbestandes. Als dritte Möglichkeit kommt auch noch die Art der Beerntung in Betracht.

Zusammenfassend spiegelt die genetische Differenzierung D_j die Beobachtungen der paarweisen genetischen Abstände wider. Auch hier zeigt sich, dass die Bestandsgruppen, bestehend aus Altbeständen und ihren jeweiligen Nachkommenschaften, nicht sehr stark voneinander differenzieren. Auffällige Abweichungen sind auch hier lediglich beim Bestand Langenau Baumschule zu finden. Ein Abnahme der Differenzierung mit zunehmendem Alter, wie sie HERZOG (1998) feststellt, kann lediglich bei einer Betrachtung aller Altbestände und aller Nachkommenschaften gemeinsam bestätigt werden. Die Betrachtung der einzelnen Gruppen aber zeigt, dass die Altbestände auch häufig höhere Dj-Werte aufweisen als die dazugehörigen Nachkommenschaften.

Referenzstrukturen zur Charakterisierung der Reproduktion

Ein Vergleich der beobachteten genetischen Strukturen mit den Hardy-Weinberg-Strukturen soll einen Hinweis darauf geben, inwieweit bei den untersuchten Populationen Einflussfaktoren wirksam waren, die sich bezüglich der genotypischen Struktur vor allem auf Homo-, beziehungsweise Heterozygotenanteile auswirken. Solche Strukturveränderungen können zum einen durch Selektion, aber vor allem durch Auswirkungen des Paarungssystems wie Verwandtenpaarung (Inzucht) oder Paarungspräferenzen hervorgerufen werden.

Verwandtenpaarung bewirkt an allen Genloci einen Homozygotenüberschuss und umgekehrt ein Defizit an Heterozygoten. Sie lässt die Allelhäufigkeiten in aufeinanderfolgenden Generationen unverändert, das heißt die allelische Struktur wird nicht primär durch Inzucht determiniert, sondern vielmehr von der Selektion. Die durch den Fixierungskoeffizienten F gemessenen Homozygotenüberschüsse müssen an allen untersuchten Genloci übereinstimmen, weil Verwandtenpaarung das gesamte Kerngenom betrifft. Außerdem müssen die Homozygotenüberschüsse an einem Genort gleichmäßig auf die homozygoten Genotypen verteilt sein, weil keine selektive Bevorzugung

oder Benachteiligung von Allelen oder Genotypen auftritt. Eine weitere Voraussetzung ist, dass die Stichprobe ausreichend groß ist.

Im Rahmen der vorliegenden Untersuchung konnten über alle Bestände und in der Regel auch über mehrere Genorte hinweg signifikante Abweichungen von der Hardy-Weinberg-Struktur beobachtet werden. Daher wurde mittels des **Fixierungskoeffizienten** F eine generelle Überprüfung auf Homozygotenüberschuss vorgenommen. Mit Hilfe von F lassen sich Homozygotenüberschüsse beziehungsweise Defizite gegenüber dem Modell der zufallsmäßigen Reproduktionsbedingungen (Hardy-Weinberg-Proportionen) quantifizieren. Die Ergebnisse zeigen in allen Fällen positive mittlere Fixierungsindizes und bestätigen damit das Vorliegen von **Homozygotenüberschüssen**. Die teilweise sehr hohen positiven F-Werte, sowie eine gewisse Tendenz zur Homogenität über alle Genloci hinweg sprechen für die Anwesenheit von Verwandtenpaarung einschließlich Selbstbefruchtung. An einzelnen Genorten ermittelte Heterozygotenüberschüsse (negative Fixierungskoeffizienten) könnten als das Ergebnis eines anfangs inzuchtbedingten positiven F-Wertes und einer anschließenden Viabilitätsselektion gegen Homozygote zu interpretieren sein.

Ein direkter Vergleich der *F*-Werte für die Altbestände mit denen ihrer Nachkommenschaften zeigt tendenziell eine Abnahme des Inzuchtkoeffizienten beim Übergang zur Nachfolgegeneration. Diese Beobachtung steht im Gegensatz zur Ansicht, dass in Samen als Folge von Verwandtenpaarung inklusive Selbstbefruchtung der Homozygotenüberschuss gegenüber den Altbäumen ansteigt. Die Ergebnisse lassen sich durch Befunde einer Selbstinkompatibilität bei der Eiche sowie die Förderung von Samen, in denen Fremdpollen bei der Befruchtung beteiligt waren, erklären (YACINE und LUMARET 1989, DUCOUSSO *et al.* 1993, KLEINSCHMIT 1994).

Ein möglicher Erklärungsansatz für dieses Phänomen könnte in der Geschichte der Bestandsbegründung zu finden sein. Wenn auch aufgrund einer langen forstlichen Tradition oft brauchbare Aufzeichnungen existieren, stellt sich die Rekonstruktion der Historie einzelner Bestände in der Praxis, auch bedingt durch die extrem lange Lebensdauer der Eiche, nicht selten als recht schwierig heraus. So können beispielsweise organisatorische und verwaltungstechnische Umstrukturierungen oder Besitz- und Grenzänderungen während dieses langen Zeitraums dazu führen, dass die Entstehungsgeschichte einzelner Bestände heute nicht mehr eindeutig rekonstruiert werden kann. Darüber hinaus könnte bei der Begründung der Bestände Saatgut von nur wenigen Mutterbäumen ausgebracht worden sein, so dass sich zwangsläufig Gruppen nahe verwandter Individuen gebildet haben. Ein effektiver Genfluss durch Pollen kann in der Folgegeneration wiederum zu einer Abschwächung der Verwandtenpaarung (Inzucht) führen.

Homozygotenüberschüsse, wie sie durch die positiven F-Werte bestätigt werden, sind ein sehr deutlicher Hinweis auf Inzuchteffekte, könnten aber auch durch Selektion verursacht sein. Darum wurde eine detaillierte Überprüfung auf Vorliegen einer Inzuchtstruktur vorgenommen. Hierzu können jedoch nicht alle in der vorliegenden Untersuchung analysierten Genorte, sondern nur solche mit einer geeigneten Häufig-

keitsverteilung herangezogen werden. Genloci mit Minorpolymorphismus (ein dominierendes Allel) sind aufgrund der geringen Häufigkeiten der weiteren Allele für einen Nachweis ungeeignet.

Inzuchtstruktur und beobachtete Struktur stimmen in 50 % der Fälle signifikant überein. Auch GEHLE (1999) konnte an einigen Genorten für einzelne Bestände eine Übereinstimmung von beobachteter Struktur und Inzuchtstruktur feststellen. Die mittleren beobachteten Homozygotenanteile sind über die untersuchten vier Genloci hinweg sogar nahezu identisch mit den errechneten mittleren Homozygotenanteilen der Inzuchtstruktur über diese vier Genorte. Auch dies untermauert die These einer allgemeinen Inzuchtbelastung der untersuchten Traubeneichenbestände.

Die Inzuchtkoeffizienten zeigen jedoch keine völlige Homogenität über alle Genorte. Die ausgewiesenen Heterozygotendefizite an manchen Genloci können daher auch selektive Effekte andeuten, die auf nicht-zufallsmäßigen Reproduktionsprozessen wie der assortativen Paarungspräferenz beruhen. Die Berechnung der assortativen Paarungspräferenz an den vier untersuchten Genorten zeigt dann auch eine signifikante Häufung von Werten größer als Eins. Die Genorte wurden ausgewählt, weil sich Präferenzen erst für den Fall mehrerer häufiger Allele erkennen lassen. Werte größer als Eins wurden darüber hinaus überwiegend für Homozygote ermittelt. Die Ergebnisse der vorliegenden Untersuchung zeigen, dass auch die positiv assortative Paarungspräferenz zugunsten Homozygoter ein wichtiger Bestandteil des Reproduktionssystems innerhalb der Bestände ist.

Ergänzend bleibt zu bemerken, dass sich Homozygotenüberschüsse an einzelnen Genloci auch durch das Nichterkennen von Nullallelen und die damit verbundene Fehlinterpretation von heterozygoten Trägern des Nullallels zugunsten der Homozygoten ergeben können (Brown 1979). Den Zusammenhang zwischen Stichprobenumfang, relativer Häufigkeit der Homozygoten bezüglich des Nullallels und Einfluss auf den F-Wert quantifiziert Hattemer et al. (1996). Ein unentdecktes rezessives Allel mit der Häufigkeit p führt zu einem Fixierungskoeffizient von 2p/(1+p) bei panmiktischer Reproduktion. Dies bedeutet zum Beispiel für ein Nullallel mit der Häufigkeit p = 0,1, dass sich der F-Wert auf 0,18 erhöht. Allein mit Hilfe eines Nullallels sind die hohen beobachteten F-Werte allerdings auch nicht zu erklären. Denkbar ist zusätzlich zu Inzucht und assortativer Paarungspräferenz auch ein gewisser Einfluss von Fertilitätsoder zygotaler Viabilitätsselektion mit Homozygotenvorteil oder der Wahlund-Effekt (DUCOUSSO et al. 1993, GREGORIUS et al. 1993). Auch genetische Drift ist nicht völlig Der Wahlund-Effekt bezeichnet den Homozygotenüberschuss auszuschließen. gegenüber HW-Proportionen bei Mischung von Populationen mit HW-Strukturen. Dieser Gesetzmäßigkeit liegt zugrunde, dass eine Mischung von HW-Strukturen nicht zwingend wieder zu einer solchen führen muss. Einzelne Deme können damit Panmixie und daraus folgende HW-Strukturen aufweisen. Bei reproduktiver Isolation, unterschiedlichen Allelhäufigkeiten und mangelnder Auseinanderhaltung während der Stichprobennahme stellt sich als beobachtetes Ergebnis dann keine HW-Struktur ein, sondern es wird, in Abhängigkeit von der Variation der Allelhäufigkeiten, bei dieser Mischung vielmehr ein Überschuss an Homozygoten erzeugt (HATTEMER et al. 1993,

Kap.15). Auch Besonderheiten der Umwelt im jeweiligen Reproduktionsjahr könnten einen Beitrag zur Zunahme der Heterozygotie in den Samen geleistet haben. Es können auch Überlagerungseffekte durch das Auftreten einer oder mehrerer der o.g. Phänomene auftreten. Dies erschwert eine eindeutige Charakterisierung und Zuordnung. Insgesamt gesehen kann jedoch festgestellt werden, dass Inzucht ein vordringliches Merkmal des realisierten Reproduktionssystems der untersuchten Populationen der Eiche ist. Eine Inzuchtdepression in der Form wie sie ERIKSSON (1973) bei der Fichte nachgewiesen hat, ist bei der Eiche aber anscheinend nicht gegeben. Inwieweit dies im Zusammenhang mit der langen Entwicklungsgeschichte speziell der Eiche steht, lässt Raum für zahlreiche Spekulationen.

5.6 Markervergleich Mikrosatelliten - Isoenzyme

Mikrosatelliten und Isoenzyme weisen wesentliche Gemeinsamkeiten auf. Deshalb erscheint ein Vergleich dieser beiden Marker besonders sinnvoll. Sie sind kodominant, das heißt ihre Allele vererben sich gemäss den Mendel-Gesetzen, so dass jedes Individuum entweder als homozygot oder aber heterozygot erkennbar ist. Ein wesentlicher Unterschied liegt jedoch darin, dass bei Isoenzymen häufig Minorpolymorphismen vorliegen, wohingegen bei Mikrosatelliten alle untersuchten Loci zu einem Majorpolymorphismus tendieren. Die parallele Verwendung beider Marker-Typen hat gezeigt, dass sich Unterschiede bezüglich ihrer absoluten Werte ergeben, wobei die Mikrosatelliten aufgrund ihrer weit größeren Anzahl genetischer Typen immer deutlich höhere Werte aufweisen.

Tabelle 26: Durchschnittswerte für neun gemeinsam untersuchte Bestände

	A_L	v	Н₀	He	F
Isoenzyme (17 Loci)	4,4	1,50	0,25	0,33	0,28
Mikrosatelliten (5 Loci)	15,8	7,54	0,64	0,86	0,26

So sind die Werte für die beobachtete und die erwartete Heterozygotie um etwa das Zweieinhalbfache (0,25 vs. 0,64 und 0,34 vs. 0,86) und für die Anzahl Allele je Genort etwa dreieinhalbmal so hoch (4,4 vs. 15,8). Den größten Unterschied findet man für die Genpooldiversität. Hier erreichen die Mikrosatelliten den fünffachen Wert (1,50 vs. 7,54). Trotz dieser Unterschiede besteht eine bemerkenswerte Übereinstimmung hinsichtlich der F-Werte. Ergebnisse mit ähnlichen Größenunterschieden bezüglich der ermittelten Werte bei einer parallelen Betrachtung von Isoenzymen und Mikrosatelliten erzielten auch STREIFF *et al.* (1998) und DEGEN *et al.* (1999).

Bei einer genaueren Betrachtung der Werte können durchaus ähnliche Trends erkannt und analysiert werden. Dies wird insbesondere am Nachweis der Abweichung von der Hardy-Weinberg-Struktur und der beobachteten Inzuchtbelastung deutlich.

Anhand der Ergebnisse dieser Pilotstudie lässt sich daher feststellen, dass beide Marker jeweils einige gemeinsame, aber auch unterschiedliche Vor- und Nachteile besitzen und daher keiner den anderen vollständig ersetzten kann. Vielmehr stellt eine parallele Verwendung beider Marker eine wertvolle gegenseitige Ergänzung dar. In der

vorliegenden Untersuchung konnte die Verwendung eines zweiten Markers vor allem zu einer Verifizierung der hohen F-Werte herangezogen werden.

5.7 Schlussfolgerungen für forstliche Praxis und Gesetzgebung

Die Eiche hat in den bewährten Altbeständen eine außergewöhnlich große genetische Vielfalt gezeigt. Die lange Lebensdauer der Eiche bewirkt, dass sie einer großen Heterogenität der Umweltbedingungen ausgesetzt ist. Eine Gefährdung durch Eingriffe in das natürliche Anpassungspotential ist besonders groß. Die natürlicherseits ausgesprochen große genetische Vielfalt sollte aber möglichst uneingeschränkt erhalten werden. Ein genetisch nachhaltiges Management ist daher gerade bei der Eiche besonders wichtig und sollte bei der forstlichen Bewirtschaftung Berücksichtigung finden.

Das waldbauliche Ziel bei der Begründung von Werteichenbeständen sind nach wie vor qualitativ hochwertige und vitale Bestände. Das Ziel der Wertholzproduktion kann nur mit möglichst langen, astfreien Schäften und gleichmäßigem, feinem Jahrringbau erreicht werden. Es wurde in der Vergangenheit durch Verjüngungsverfahren mit hohen Ausgangsstammzahlen und einer daran anschließenden, entsprechenden Pflege erreicht (KRAHL-URBAN 1959, FLEDER 1981, BURSCHEL und HUSS 1997).

Die **Verjüngung** von Eichenbeständen erfolgte beispielsweise im Spessart in der Regel durch Saat, selten durch Pflanzung. Mischbaumarten sind Rotbuchen, Hainbuchen und Linden. Ihnen kommt meist eine dienende Rolle zu (Astreinigung). Es wurden ca. 12-15 Zentner Eicheln pro Hektar gesät. Seit einiger Zeit wird in der Forstwirtschaft Kritik hinsichtlich der Wirtschaftlichkeit solch material- und kostenintensiver Verjüngungsverfahren geübt.

Aus genetischer Sicht weist die Saat gegenüber der Pflanzung einen entscheidenden Vorteil auf. Selektionsprozesse während der Phase der Keimung und bei den Jungpflanzen finden *in situ* und damit zum frühestmöglichen Zeitpunkt statt. Es herrschen bereits diejenigen Umweltbedingungen, denen die Pflanzen während ihrer gesamten Lebensdauer ausgesetzt sind.

Bei der Pflanzung, die heute die weitaus bedeutendere Verjüngungsform darstellt, werden bezüglich waldbaulicher Ziele und ökonomisch vertretbarem Aufwand Diskussionen über die optimale Pflanzendichte geführt. Der Trend geht dabei zu einer Kulturbegründung mit deutlich geringeren Pflanzenzahlen, als sie in der Vergangenheit üblich waren. Der Pflanzverband orientiert sich nur selten am vorhandenen, beziehungsweise vermuteten, genetischen Anpassungspotential. Das Pflanzenmaterial unterlag - anders als bei Saat oder Naturverjüngung - bereits dem ersten Selektions- und damit Anpassungsprozess (an die Bedingungen in der Baumschule) und wurde darüber hinaus noch visuell (anthropogen) nach der Größe sortiert. Bis die Pflanze auf der Kulturfläche ausgebracht wird, hat sie damit bereits mehrere Selektionsprozesse hinter sich, die sich aber in der Regel erheblich von den darauffolgenden Freilandbedin-

gungen unterscheiden. Dies impliziert auch die sogenannte "Ausfälle" in der Kultur durch erneute Anpassungsprozesse. Hinzu kommen noch mögliche Pflanzschäden. Es besteht somit die erhöhte Gefahr einer Einschränkung der genetischen Variabilität und der damit verbundenen Anpassungsfähigkeit. Bei ein- bis dreihundert Pflanzen pro 100 Quadratmeter findet zwar noch bis zum Alter 150 eine Reduktion auf ein Individuum pro 100 Quadratmeter statt, dennoch wird der Spielraum zum Beispiel im Vergleich zu Naturverjüngungen mit 50 000 Individuen und mehr sehr eingeschränkt. Hohe Pflanzenzahlen allein bieten aber auch keine Garantie für eine genetisch sichere Bestandsbegründung. Seltene Allele als latentes Anpassungspotential sind erst dann mit ausreichender Sicherheit vertreten, wenn zuvor eine entsprechende Bestandsauswahl durchgeführt wurde und sowohl Beerntung als auch Anzucht an adaptiven Erfordernissen orientiert sind. Bei der Kunstverjüngung, besonders im Weitverband, aber auch bei der Trupp- oder Nesterpflanzung, ist unter den heutigen Bedingungen und dem aktuellen Stand der Gesetzgebung somit die Gefahr von Allelverlusten und dadurch eine Reduktion des Anpassungspotentials gegeben.

Grundsätzlich, wenn auch in der Praxis eine untergeordnete Rolle spielend, besteht bei der Eiche die Möglichkeit einer natürlichen Verjüngung, zum Beispiel auf kleineren Bestandslücken im Femelschlag oder in nicht zu dichten Schirmstellungen. Naturverjüngung ist aus genetischer Sicht ein sehr günstig zu bewertendes Verfahren, vor allem, wenn ausreichend lange Verjüngungszeiträume angesetzt werden. Auch bei Naturverjüngung erscheint es sinnvoll, mehrere Samenjahre durch Anwendung entsprechender Verfahren und Flächengrößen (Hiebsfortschritte) auszunutzen, um die Beteiligung einer möglichst großen Zahl an Bestandesmitgliedern des Altbestandes heraufzusetzen. Ein Hindernis ist dabei die relativ seltene Fruktifikation. Durch den hohen Lichtbedarf der Eichensämlinge ergeben sich weitere Schwierigkeiten. Zum einen wird durch eine vermehrte Auflichtung der Bestände die Anzahl der potentiellen Mutterbäume für den Nachfolgebestand herabgesetzt und außerdem die Gefahr einer verjüngungshemmenden Vergrasung der Bestände vergrößert. Bei einer unzureichenden Lichtzufuhr dagegen unterliegt die Eiche vermehrt der Konkurrenz durch schattenertragende Baumarten. Bei der Eiche sind die Verjüngungszeiträume daher gewöhnlich eher kurz. Üblich ist eine verhältnismäßig rasche Räumung der Bestände nach etwa 5 Jahren, die aus dem relativ hohen Lichtbedürfnisses der Eiche resultiert. Die Ergänzung lückiger Naturverjüngung durch Pflanzung stellt eine gute Möglichkeit dar, die oftmals größeren zeitlichen Abstände zwischen den Mastjahren zu entschärfen. Das Ausgangsmaterial bringt im Falle eines vitalen Altbestandes die günstigsten Vorraussetzungen für eine gute Anpassung an die lokal herrschenden ökologischen Bedingungen mit, jedoch nicht unbedingt auch automatisch eine gute Anpassungsfähigkeit.

Für die Buche wurde festgestellt, dass an einigen Genloci, in Abhängigkeit von Schadstoffeinträgen (Bodenversauerung), der Selektion unterschiedliches Gewicht zukommt (MÜLLER-STARCK 1995b). So kommen Selektionseffekte bei der (Halb-) Schattbaumart Buche erst unter Vollbelichtung zum Ausdruck (COMPS *et al.* 1990, 1991). Bei der Eiche als einer wenig schattentoleranten Baumart steht zu erwarten, dass die stärksten Selektionseffekte im (Halb-)Schatten auftreten, wie sie insbesondere

unter (lichten) Schirmstellungen auftreten. Auch extreme Selektionsbedingungen durch überhöhte Wildbestände dürfen in diesem Zusammenhang nicht vergessen werden. Sie beeinflussen nicht nur genetische Vielfalt und Diversität, sondern können den Verjüngungserfolg an sich gefährden.

Schon der Modus der **Saatgutgewinnung**, also die Art und Weise der Beerntung, hat zweifellos Auswirkungen auf die genetische Anpassungsfähigkeit des gesammelten Ausgangsmaterials. Bisher wurde angenommen, dass eine solche primär in Vollmasten sinnvoll sei. Doch auch dann muss eine Beerntung am besten aller, zumindest aber möglichst vieler Bäume gegeben sein. Keinesfalls dürfen nur einige wenige Bäume beerntet werden, da dies einen Verlust an Vielfalt und einen weiteren Anstieg der Inzucht zur Folge hätte. Da aber nicht auszuschließen ist, dass Unterschiede im Blühverhalten auch dazu führen können, dass einige Bäume gerade in einem Vollmastjahr nicht fruktifizieren (HERZOG 1998), scheint eine Beschränkung auf die Beerntung in Vollmastjahren vor dem Hintergrund der Bewahrung genetischer Ressourcen nicht unbedingt sinnvoll zu sein. Dies spricht für eine zusätzliche Beerntung auch bei Halboder Sprengmasten.

Auch die Art und Weise der **Pflanzenanzucht** in der Baumschule unter optimierten Anzuchtbedingungen (Düngung, Pflanzenschutzmittel) verhindert die natürliche Viabilitätsselektion und die damit verbundene Änderung der genetischen Strukturen, wie sie unter natürlichen Bedingungen im Freiland stattfinden würde. Durch das Ausscheiden nicht oder schlecht angepasster Genotypen findet in der Natur eine deutliche Reduktion der Individuen während der Keimung und der anschließenden Sämlingsphase statt. Aus ökonomischen Gründen werden diese Prozesse bei der kommerziellen Anzucht nach Möglichkeit weitestgehend unterbunden. Unter optimierten experimentellen Bedingungen im Gewächshaus wurden schon Keimquoten von über 90 % erreicht, die damit deutlich über denen unter natürlichen Bedingungen liegen (60 - 70 %). Dies kann allerdings auch als Vorteil angesehen werden, da auf diese Weise - zumindest bis zum Keimlingsstadium - auch seltene Allele erhalten bleiben.

Das Mischen von Einzelbeständen innerhalb eines Herkunftsgebiets erscheint aufgrund der vorliegenden Ergebnisse im Hinblick auf eine Risikostreuung unbedenklich. Aus genetischer Sicht ist darin sogar ein Vorteil zu sehen. Dies gilt vor allem, solange man das genetische Spektrum des Ausgangsmaterials nicht kennt und auch keine genetische Zertifizierung des Saatguts vorgenommen wird, die mit den der Genetik heute zur Verfügung stehenden Werkzeugen möglich wäre. Wie die Ergebnisse der vorliegenden Arbeit zeigen, kann auch das Mischen von verschiedenen Samenjahrgängen bei der künstlichen Bestandsbegründung einen genetischen Vorteil bedeuten. In der Praxis können dazu zum Beispiel von der Baumschule Pflanzen von zwei aufeinanderfolgenden Mastjahren bestellt, durchmischt und ausgebracht werden. Allerdings bleibt hierbei zu berücksichtigen, dass die jeweils älteren Pflanzen bereits einen Wuchsvorsprung aufweisen und so wiederum einen Selektionsvorteil gegenüber dem jüngeren Material besitzen.

Auch ohne Einfluss des Menschen verändern sich die genetischen Strukturen von Beständen im Laufe ihres Bestandslebens, da weniger vitale Individuen frühzeitiger als andere absterben. Über Durchforstungsmaßnahmen wie der Negativauslese während der Jungwuchspflege wird in den natürlichen Selektionsprozess eingegriffen. Allerdings besteht bei der Eiche mit dem Ziel Wertholzproduktion kaum eine Diskrepanz zwischen waldbaulichen und genetischen Anforderungen. Durch den Erhalt stammzahlreicher Jungbestände werden sowohl die Sicherung der Holzqualität als auch der Erhalt eines relativ hohen genetischen Anpassungspotentials gewährleistet. Vergleichbares gilt für die ersten Durchforstungseingriffe. Erst mit dem Erreichen der Altbestandsphase ändert sich die Situation, denn dann findet der Umschwung von der Negativauslese zur Auslesedurchforstung statt. Die Auswirkungen der Auslesedurchforstung auf die genetische Struktur sind dabei abhängig von der Anzahl der Auslesebäume und von den Auslesekriterien wie zum Beispiel der Schaftform (SPIECKER 1995, KONNERT und SPIECKER 1996).

Der Gesetzgeber hat mit dem Gesetz über forstliches Saat- und Pflanzgut (FSaatG) die Gewinnung und den Vertrieb für die Traubeneiche geregelt. Unter der Annahme, dass die qualitativ positiven Eigenschaften des Altbestandes unverändert an die Folgegenerationen weitergegeben werden, erfolgt die Anerkennung von Eichenbeständen aufgrund der Bestimmungen des **FSaatG** überwiegend aufgrund phänotypischer Merkmale. Dass die auf phänotypischer Basis qualitativ vergleichbar guten Bestände durchaus nicht immer auch gleichzeitig genetische Hochwertigkeit bedeuten, haben die Ergebnisse der vorliegenden Arbeit gezeigt. Die Beerntung von Beständen, welche nur nach phänologischen Kriterien ausgewählt wurden, sind daher kritisch zu betrachten. Mittelfristig ist unter Berücksichtigung entsprechend flächendeckender Inventurergebnisse an eine Überarbeitung der Zulassungsbestimmung der Saatguterntebestände unter Einbezug genetischer Kriterien zu denken. Es wäre sinnvoll, die bisher zugelassenen Bestände dann ebenfalls einer kritischen Überprüfung zu unterziehen. Außerdem erscheint zusätzlich eine Berücksichtigung der Blühintensität empfehlenswert.

Kernpunkt aller oben genannter Überlegungen ist die Art der natürlichen Reproduktion. Die genetische Zusammensetzung des Saatgutes wird bestimmt durch die im Altbestand verwirklichten genetischen Strukturen, das Reproduktionssystem, die Populationsdichte während der Reproduktion, die Anzahl fruktifizierender Individuen, die Pollenproduktion und –verbreitung, sowie den Beerntungsmodus (ZIEHE und GREGORIUS 1988, HERZOG 1998). Bei guter Blühaktivität scheinen biotische und abiotische Einflüsse mit nachfolgend geringer Fruktifikation (Halb-, Sprengmast) jedoch nur relativ geringe Konsequenzen für die genetischen Strukturen der Samen zu haben (JÜNGER 1997). Demnach scheint das Reproduktionssystem auch unter ungünstigen Bedingungen in der Lage zu sein, einen Großteil der mehr oder weniger bewährten genetischen Variation des Altbestands an die Folgegeneration weiterzugeben. Man muss sich jedoch immer vergegenwärtigen, dass verschiedene Reproduktionsperioden hinsichtlich der genetischen Nähe zum Altbestand berücksichtigenswerte Unterschiede aufweisen. Teilweise finden sich in den Samen Allele, die in den Altbeständen nicht nachweislich verwirklicht sind. Dies zeigt die Bedeutung der Existenz

von Eichenbeständen in der Nachbarschaft (Genfluss durch Polleneintrag). Aus Sicht des genetischen Anpassungspotentials besteht nach diesen Ergebnissen nicht zwingend die Notwendigkeit bei einer geringeren Mast auf die Ernte zu verzichten. Vielmehr sollte verstärktes Gewicht auf eine Berücksichtigung der Zusammenhänge zwischen Blüte und Fruktifikation gelegt werden.

Fazit

Die Bereitstellung genetisch hochwertigen Vermehrungsgutes zählt zu den wichtigsten Maßnahmen der Erhaltung der Anpassungsfähigkeit und damit der Erhaltung der Stabilität künftiger Baumgenerationen. Von den verschiedenen Konzepten der Generhaltung bei Waldbäumen sollte die dynamische Konservierung in situ soweit möglich Vorrang haben (ZIEHE et al. 1989, BROWN 1992, HATTEMER 1997, HERZOG und MÜLLER-STARCK 1993). Demnach sollten allgemeine Konzepte zur nachhaltigen Nutzung natürlicher Ressourcen und zum Erkennen der Grenzen der Belastbarkeit von Waldökosystemen entwickelt werden. Dieser Aspekt hat wegen der langen Lebensdauer der einheimischen Eichenarten und den damit verbundenen komplexen Umweltverhältnissen besonders hohe Priorität. Genetische Hochwertigkeit ist gleichbedeutend mit großer genetischer Variabilität und minimaler genetischer Bürde. Die Forstgenetik ist in der Lage einen wesentlichen Beitrag zur Zertifizierung zu leisten. Durch die Erfassung der genetischen Variation/Variabilität kann das Anpassungspotential von Waldbaumpopulationen ermittelt werden. Eine Quantifizierung von Inzuchtkoeffizienten ist ebenso möglich, wie eine Identitätsprüfung von beispielsweise Saatgut. Neben genetischen Anforderungen müssen auch andere Auswahlkriterien, wie klimatisch und standörtlich geeignete Herkünfte, erfüllt sein. Langfristig muss daher versucht werden, destabilisierende Einflüsse zu vermeiden. Das bedeutet hier vor allem den Ausschluss von genetisch minderwertigem Vermehrungsgut und eine dementsprechende Anpassung der Liste der bisher zugelassenen Samenerntebestände. Grundlage muss eine vorangegangene Inventarisierung sein. Außerdem sollte bei der Entwicklung und Anwendung von Sanierungskonzepten, deren Ziel die Erhaltung beziehungsweise gezielte Erhöhung genetischer Variabilität in Waldbeständen ist, mitgewirkt werden. Dabei können sich waldbauliche und genetische Ziele durchaus sinnvoll ergänzen. Wurde der Begriff der forstlichen Nachhaltigkeit bisher vor allem im Zusammenhang mit Holzvorrat und -zuwachs in forstlich bewirtschafteten Beständen gesehen, so lässt er sich heute um die genetische Nachhaltigkeit erweitern.

6. Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden insgesamt 44 Populationen (5704 Individuen) von Traubeneiche (*Quercus petraea* (Matt.) Liebl.) hinsichtlich ihrer genetischen Strukturen an 17 unterschiedlichen Isoenzym-Genorten mit Hilfe der Stärkegel-Elektrophorese untersucht. Bei 15 Populationen handelt es sich um Altbestände zugelassener Saatguterntebestände, die aus sechs verschiedenen Herkunftsgebieten in Deutschland stammen. Die restlichen 29 Populationen sind Nachkommenschaften dieser Altbestände. Bei ihnen handelt es sich überwiegend um Samenmaterial teilweise verschiedener Fruktifikationsperioden, aber auch um Jungpflanzen, die in Baumschulen angezogen wurden.

Die Ergebnisse tragen zu einer Erweiterung des Wissens über die genetische Variation innerhalb und der Differenzierung zwischen Waldbaumpopulationen am Beispiel der Traubeneiche bei. Sie zeigen, dass die genetische Variation innerhalb von Populationen - auch im Vergleich zu anderen (Laub-)Baumarten - mit durchschnittlich 4,4 Allelen je Genort sehr hoch ist, zwischen den Populationen - im Falle der Verwendung von Isoenzym-Genmarkern - mit einer mittleren Differenzierung δ von nur 0,075 aber nur vergleichsweise gering ist.

Schwerpunkt der Arbeit ist der Vergleich von Altbeständen mit ihren Nachkommenschaften. Es hat sich gezeigt, dass genetische Informationen und Strukturen, soweit sie durch Isoenzymanalysen ermittelbar sind, im Wesentlichen von den Parental- an die Filialpopulationen weitergegeben werden. Es treten jedoch Unterschiede zwischen den verschiedenen Reproduktionsperioden und Kategorien von Stichproben (Saatgut/Jungpflanzen) auf. Anhand der genetischen Abstände d_o der Bestände scheint eine Unterscheidung von Altbeständen und Nachkommenschaften möglich zu sein. Zusätzlich zeichnet sich auch eine Differenzierung der verschiedenen Reproduktionsperioden zumindest für das Samenstadium - ab. Blühintensität und Fruktifikationsstärke spielen hierbei höchstwahrscheinlich eine wichtige Rolle.

Die Ergebnisse ermöglichen auch Rückschlüsse auf das Reproduktionssystem. Es lassen sich signifikante Abweichungen von der Hardy-Weinberg-Struktur feststellen und entsprechende Homozygotenüberschüsse nachweisen. Die Werte der Fixierungskoeffizienten sind auffällig hoch (0,143 bis 0,326, im Mittel 0,260). Eine Überprüfung der Inzuchtstrukturen zeigt, dass Inzucht ein wesentliches Merkmal der in den vorliegenden Beständen realisierten Reproduktionssysteme darstellt. Tendenziell ist eher eine Abnahme als eine Zunahme der Inzuchtkoeffizienten beim Übergang auf die Folgegeneration zu verzeichnen. Im Rahmen einer Pilotstudie wird dieser Teil der Ergebnisse für neun der 44 untersuchten Bestände durch einen weiteren Genmarker (Mikrosatelliten) bestätigt. Außerdem konnte über alle Bestände hinweg eine positiv assortative Paarungspräferenz zugunsten Homozygoter nachgewiesen werden. Dies deutet auf selektive Effekte hin. Weitere Erklärungsansätze für den vorgefundenen Homozygotenüberschuss werden angesprochen, spielen aber wahrscheinlich nur eine untergeordnete Rolle. Die vorgefundenen hohen Inzuchtwerte scheinen ein besonderes

Merkmal von Eichenpopulationen darzustellen, ohne dass die üblichen negativen Auswirkungen einer Inzuchtdepression offenkundig werden.

Auch die Mischung verschiedener Samenjahrgänge und einzelner Bestandesabsaaten innerhalb der ausgewiesenen Herkunftsgebiete werden diskutiert. Eine Beibehaltung großräumiger Herkunftsgebiete wird aufgrund der Ergebnisse, die auf der Basis von Isoenzymanalysen ermittelt wurden, befürwortet.

Abschließend werden die Ergebnisse im Hinblick auf ihre Anwendbarkeit für die forstliche Praxis näher beleuchtet. Dabei wird klar, dass sich viele Anforderungen für eine Erhaltung der genetischen Ressourcen *in situ* im Rahmen der in Deutschland üblichen forstlichen Eichenwertholzbewirtschaftung verwirklichen lassen. Die Vereinbarung waldbaulicher Ziele mit den Ansprüchen der Genetik (Erhaltung von Angepasstheit und Anpassungsfähigkeit) erscheint damit in der Praxis realisierbar. Gemeinsames Ziel ist eine sowohl forstlich als auch genetisch nachhaltige Waldbewirtschaftung.

7. Literaturverzeichnis

- AAS, G. (1988): Untersuchungen zur Trennung und Kreuzbarkeit von Stiel- und Traubeneiche (*Quercus robur* L. und *Quercus petraea* (Matt.) Liebl.). Diss. Univ. München, 159 S.
- AAS, G. (1990): Kreuzbarkeit und Unterscheidung von Stiel und Traubeneiche, AFZ 9-10, 219-121.
- AAS, G. (1991): Kreuzungsversuche mit Stiel- und Traubeneichen (*Quercus robur* L. und *Quercus petraea* (Matt.) Liebl.), Allg. Forst- u. J.-Ztg., 162 (8), 141-144.
- AAS, G. (1993): Taxonomical impact of morphological variation in *Quercus robur* and *Q. petraea*: a contribution to the hybrid controversy. Annales des Sciences Forestiers 50, 107s-113.
- AAS, G. (1998): Morphologische und ökologische Variation mitteleuropäischer *Quercus*-Arten: ein Beitrag zum Verständnis der Biodiversität. München, IHW-Verlag.
- AAS, G. (2000): Quercus petraea (Mattuschka) Lieblein, 1784, syn.: Quercus sessilis Ehrh., 1789, Quercus sessiliflora Salisb., 1796, in: SCHÜTT, P., WEISGERBER, SCHUCK, H.J., LANG, K.J., ROLOFF, A. (Hrsg.) Enzyklopädie der Holzgewächse, Ecomed Verlagsgesellschaft, Landsberg, 20. Ergänzungslieferung 6/00, 16 S.
- AAS, G., MÜLLER, B., HOLDENRIEDER, O., SIEBER, M. (1997): Sind Stiel- und Traubeneiche zwei getrennte Arten?. AFZ/ Der Wald, 18/1997, 960-962.
- AAS, G., MÜLLER, B., HOLDENRIEDER, O., SIEBER, M. (1998): Welchen Beitrag liefert die Taxonomie der Eichen für die ökologische Praxis?. AFZ/Der Wald, 5, 248.
- ABL. (2000): Richtlinie 1999/105/EG des Rates vom 22. Dezember 1999 über den Verkehr mit forstlichem Vermehrungsgut. in: Amtsblatt der Europäischen Gemeinschaft, L 11 vom 15.1.2000, 17-39.
- BACILIERI, R., DUCOUSSO, A., KREMER, A. (1995): Genetic, morphological, ecological and phenological differentation between *Quercus petraea* (Matt.) Liebl. and *Quercus robur* L. in a mixed stand of northwest of France. Silvae Genetica 44, 1-10.
- BACILIERI, R., DUCOUSSO, A., PETIT, R. J., KREMER, A. (1996): Mating System and Asymmetric Hybridization in a Mixed Stand of European Oaks, Evolution 50 (2), 900-908.
- BACILIERI, R., LABBE, T., KREMER, A. (1994): Intraspecific genetic structure in a mixed population of *Quercus petraea* (Matt.) Liebl. and *Q. robur* L. Heredity (United Kingdom). 73 (2), 130-141.
- BACILIERI, R., ROUSSEL, G., DUCOUSSO, A. (1993): Hybridisation and mating system in a mixed stand of sessile and pedunculate oak. Annales des Sciences Forestiers 50, Suppl. 1, 122-127.
- BAYSTMELF, Hrsg. (1999): Jahresbericht der Bayerischen Staatforstverwaltung 1999, 88.
- BEHM, A. (2000): Referenzproben bei forstlichem Vermehrungsgut. FORSTINFO 16/2000, 2.
- BERGMANN, F. (1991): Isozyme gene markers, 67-77, in: MÜLLER-STARCK, G., ZIEHE, M. (Hrsg.). Genetic Variation in European Populations of Forest Tree Sauerländer's Verlag, Frankfurt a. M.
- BERGMANN, F. (1996): Die genetische Struktur der Naturverjüngung bei der Weißtanne in Abhängigkeit vom Altbestand. AFZ/Der Wald 19, 1046-1047.
- BEUSCHEL, G. (1975): Untersuchungen über die Vererbung und umweltbedingte Veränderung quantitativer und qualitativer Eigenschaften bei freiabgeblühten Traubeneichen. Diss., Univ. München.
- BGBl. (1979): Zweites Gesetz zur Änderung des Gesetzes über forstliches Saat- und Pflanzgut. in: Bundesgesetzblatt Teil I, 47, 1221-1241.
- BML, Hrsg. (1997): Hinweise zum Einsatz biochemisch-genetischer Methoden bei der Durchführung der Rechts- und Verwaltungsvorschriften über forstliches Saat- und Pflanzgut. in: Verwaltungsvorschriften zum Gesetz über forstliches Saat- und Pflanzgut (FSaatG) Prüfung mit biochemischgenetischen Methoden, Bonn, V 03047, 21.7.1997.
- BML, Hrsg. (1997): Zusammenstellung über zugelassenes Ausgangsmaterial für forstliches Vermehrungsgut in der Bundesrepublik Deutschland (Stand 01.Oktober 1997).
- BML, Hrsg. (1999): Forst- und Holzwirtschaft, Jagd. in: Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland 1999, Landwirtschaftsverlag, Münster, 411-429.
- BML, Hrsg. (2001): http://www.bml.de/wald_forst/6_Tropenwaldbericht/anlag3-3.htm.
- BODENES, C., LABBE, T., PRADERE, S., KREMER, A. (1997): General vs. Local differentation between two closely related white oak species. Molecular Ecology, 6, 240-1 240-12.
- BROWN, A.H.D. (1992): Human impact on plant gene pools and sampling for their conservation. Olkos 63, 109-118.

- BROWN, A.H.D., MARSCHALL, D.R., ALBRECHT, L. (1975): Profiles of elektrophoretic alleles in natural populations. Gent. Re Camb. 25, 137-143.
- BURGER, H. (1921): Über morphologische und biologische Eigenschaften der Stiel- und Traubeneiche und ihre Erziehung im Forstgarten. Mitt. Der Schweiz. Centralanst. Forstl. Versuchsw. XI., 306-377.
- BURSCHEL, P., HUSS, J. (1997): Grundriß des Waldbaus, 386 391, Paray Buchverlag Hamburg, Berlin.
- COMPS, B., THIÉBAUT, B., MERZEAU, D. (1991): Genetic variation in european beech stands (*Fagus sylvativa* L.), 110-124, in: MÜLLER-STARCK, G., ZIEHE, M. (Hrsg.). Genetic Variation in European Populations of Forest Tree Sauerländer's Verlag, Frankfurt a. M.
- COMPS, B., THIÉBAUT, B., PAULE, L., MERZEAU, D., LETOEZEY, J. (1990): Allozymic Variability in beechwoods (*Fagus sylvativa* L.) over Central Europe: Spatial differentiation among and within population Heredity 65, 407-417.
- CORRE, V. -LE, DUMOLIN-LAPÈGUE, S., KREMER, A. (1997a): Genetic variation at allozyme and RAPD loci in sessile oak *Quercus petraea* (Matt) Liebl.: the role of history and geography, Molecular Ecology 6, 519-529.
- CORRE, V.-LE, MACHON, N., PETIT, R.J., KREMER, A. (1997b): Colonization with long-distance seed dispersal and genetic structure of maternally inherited genes in forest trees: a simulation study. Genet. Re, Camb., 68, 1-9 69 (2), 117-125.
- CORRE, V.-LE, ROUSSEL, G., ZANETTO, A., KREMER, A. (1998): Geographical structure of gene diversity in *Quercus petraea* (Matt.) Liebl. III Patterns of variation identified by geostatistical analyse Heredity 80 (4), 464-473.
- DARLINGTON, J. (1939): Evolution of Genetic System Cambridge Univ. Press.
- DEGEN, B., SCHOLZ, F. (1998): Spatial genetic differentation among populations of European beech (*Fagus sylvativa* L.) in Western Germany as identified by geostatistical analysis. Forest Genetics 5 (3), 191-199.
- DEGEN, B., STREIFF, R., ZIEGENHAGEN, B. (1999): Comparative study of genetic variation and differentation of two pedunculate oak (*Quercus robur*) stands using microsatellite and allozyme loci. Heredity 83, 597-603.
- DENGLER, A. (1941): Bericht über Kreuzungsversuche zwischen Trauben und Stieleiche (*Quercus sessiliflora* Smith und *Quercus pedunculata* Ehrh. bezw. *Robur* L.) und zwischen europäischer und japanischer Lärche (*Larix europaea* D. C. bezw. *Decidua* Miller und *Larix leptolepis* Murray bezw. *Kämpferi* Sargant. Mitteilungen der Hermann-Göring-Akadeemie der Deutschen Forstwissenschaft 1, 91-109.
- Dow, B.D., ASHLEY, M.V. (1996): Microsatellite analysis of seed dispersal and sapling parentage in bur oak, *Quercus macrocarpa*. Mol. Ecol. 5, 615-627.
- Dow, B.D., ASHLEY, M.V. (1997): Factors influencing male mating success in bur oak, *Quercus macrocarpa*. New Forests 6, 1-21
- Dow, B.D., ASHLEY, M.V. (1997): Population structure and mating system of bur oak, *Quercus macrocarpa*, characterized by DNA microsatellite analysis. in: Diversity and Adaptation in Oak Species, Proceedings, Pennsylvania, 1-8.
- Dow, B.D., ASHLEY, M.V. (1998): High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J. Hered. 89, 62-70.
- DUCOUSSO, A., BACILIERI, R., DEMESURE, B., DUMOLIN-LAPLEGUE, S., KREMER, A., PETIT, R., ZANETTO, A. (1997): Geographic structurazion of genetical diversity For European decidous-leaved oak Bulletin Technique de l'Office National des Forests, 33, 7-19.
- DUCOUSSO, A., GUYON, J.P., KREMER, A. (1996): Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (*Quercus petraea* (Matt) Liebl). Annales des Sciences Forestieres (France). 53 (2-3), 775-782.
- DUCOUSSO, A., MICHAUD, H., LUMARET, R. (1993): Reproduction and gene flow in the genus *Quercus* L. Annales des Sciences Forestiers 50, Suppl. 1, 91s-106s.
- DUMOLIN, S., DEMESURE B., PETIT R.J. (1995): Inheritance of chloroplast and mitocondrial geneomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91, 1253-1256.

- DUMOLIN-LAPÈGUE, S., DEMESURE, B., FINESCHI, S., CORRE, V.L.-Le., PETIT, R.J. (1997): Phylogeographic Structure of White Oaks Throughout the European Continent. Genetics, 146, 1475-1487.
- DUPOUEY, J.L, BADEAU, (1993): Morphological Variability of Oaks in Northeastern France: Preliminary Result Annales des Sciences Forestiers 50, 35-41.
- ELENA-ROSSELLO, J.A., CABRERA, E. (1996): Variation bei Isoenzymen von Korkeichen (*Quercus* suber L.) aus natürlichen Populationen. Silvae Genetica . 45 (4), 229-235.
- ERIKSSON, G., SCHELANDER, B., AKEBRAND, V. (1973): Inbreeding depression in an old experimental plantation of *Picea abies*. Hereditas 73, 185-193.
- FERET, P.P., BERGMANN, F. (1976): Gel Electrophoresis of Proteins and Enzyme in: Modern Methods in Forest Genetic Miksche, J.P. (Hrsg.), 49-77, Berlin, Heidelberg, New York (Springer).
- FERRIS, C., OLIVER, R.P., DAVY, A.J., HEWITT, G.M. (1993): Native Oak Chloroplast reveal an Ancient Divide across Europe. Mol. Ecol. 2, 337-344.
- FINKELDEY, R. (1993): Die Bedeutung allelischer Profile für die Konservierung genetischer Ressourcen bei Waldbäumen, 176, Göttinger Forstgenetische Berichte 14, Abt. für Forstgenetik und Forstpflanzenzüchtung der Universität Göttingen.
- FLEDER, W. (1981): Furniereichenwirtschaft heute: Qualitätsansprüche Produktionszeitraum und waldbauliche Folgerungen. Holz-Zentralblatt 107, 1509-1511.
- Franke, A. (1991): Pflanzgutversorgung 1991/92. AFZ 46, 862-864.
- GARDINER, A. (1970): Pedunculate and Sessile Oak (*Quercus robur* L. and *Quercus petraea* (Matt.) Liebl.). A Review of the Hybrid Controversy. Forestry 43, 151-160.
- GEHLE, T. (1999): Reproduktionssystem und genetische Differenzierung von Stieleichenpopulationen (*Quercus robur*) in Nordrhein-Westfalen. Diss., Universität Göttingen.
- GESCHWIND, R. (1876): Über die Hybridisierung der Eichen. Zentralblatt für das gesamte Forstwesen, 462-465.
- GILLET, E., HATTEMER, H.H. (1989): Genetic analysis of Isoenzyme phenotypes using single tree progenies. Heredity (United Kingdom). 63 (1), 135-141.
- GILLET, E.M. (1998): Genetic Structure for Electrophoresis Data (GSED) User's Manual. Institut für Forstgenetik der Univ. Göttingen, 1994, 1997, 1998, 48 S.
- GREGORIUS, H.-R. (1974): Genetischer Abstand zwischen Populationen. I. Zur Konzeption der genetischen Abstandsmessung. Silvae Genetica 23, 22-27.
- GREGORIUS, H.-R. (1978): The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math. Bioscience 41 (3/4), 253-271.
- GREGORIUS, H.-R. (1980): The Probability of Losing an Allel when Diploid Genotypes are Sampled. Evolut. Theory 6: 143-162/ Biometrics 36, 643 652.
- GREGORIUS, H.-R. (1984): A unique genetic distance. Biometrical Journal 26, 13-18.
- GREGORIUS, H.-R. (1985): Measurement of genetic differentiation in plant population in: GREGORIUS, H.-R. (Hrsg.): Population Genetics in Forestry. Berlin, Heidelberg, New York, Tokyo: Springer: 276-285.
- GREGORIUS, H.-R. (1987): The Relationship between Concepts of Genetic Diversity and Differentiation, Theor. Appl. Genet. 74, 397-401.
- GREGORIUS, H.-R. (1988): The meaning of genetic variation within and between subpopulations. Theoretical and Applied Genetics 76, 947-951.
- GREGORIUS, H.-R. (1989a): Characterization and analysis of mating system Witzenhausen Ekopan Verlag. 158 S.
- GREGORIUS, H.-R. (1991b): Gene Conservation and the Preservation of Adaptability. in: SEITZ, A., LOESCHCKE, (1991): Species Conservation: A Population-Biological Approach. Basel: Birkhäuser Verlag, 31-47.
- GREGORIUS, H.-R. (1993): Systemeigenschaften der Anpassung. Göttingen . Göttingen Univ. 25S.
- GREGORIUS, H.-R. (1995): Measurement of genetic diversity with special reference to the adaptive potential of population BOYLE, T.J.B., BOONTAWEE, B. (Hrsg.). Center for International Forestry Research, Bogor (Indonesia). Measuring and monitoring biodiversity in tropical and temperate forest Bogor (Indonesia). CIFOR. 1995.
- GREGORIUS, H.-R. (1997): Genetische Grundlagen der Ökosystemstabilität. Forstwissenschaftliches Centralblatt 116(1), 29-38.

- GREGORIUS, H.-R., DEGEN, B. (1994): Estimating the extent of natural selection in seedlings from different *Fagus sylvativa* (L.) populations: application of new measure The Journal of heredity (USA). 85 (3), 183-190.
- GREGORIUS, H.-R., H.H. HATTEMER, F. BERGMANN und G. MÜLLER STARCK (1985): Umweltbelastung und Anpassungsfähigkeit von Baumpopulationen. Silvae Genetica 34, 230-241.
- GREGORIUS, H.-R., J. KRAUHAUSEN, MÜLLER STARCK, G. (1986): Spatial and temporal genetic differentiation among the seed in a stand of *Fagus sylvativa* L. Heredity 57 (2), 255-262.
- GREGORIUS, H.-R., ROBERDS, J.H. (1986): Measurement of Genetical Differentiation among Subpopulation Theor. Appl. Genetics 71, 826-834.
- GUTHKE, J. (1992): Langzeitlagerung von Eichensaatgut. Probleme und Möglichkeiten. Diss. Univ. Hannover.
- HAMRICK, J. L., GODT, M. J. (1990): Allozyme diversity in plant species pp. 43-63 in: BROWN, H.D., CLEGG, M.T., KAHLER, A.L., WEIR, B. (Hrsg.), Plant Genetics, Breeding, and Genetic Ressources, Sinauer As Inc. Publ., Sunderland, Mass.
- HAMRICK, J.L., M.J.W. GODT, SHERMAN-BROYLES, L. (1992): Factors influencing levels of genetic diversity in woody plant specie in: ADAMS, W.T., H. STRAUSS, D.L. COPES, GRIFFIN, A.R. (Hrsg.): Population Genetics of Forest Tree Dordrecht, Boston, London: Kluwer Academic, 95-124.
- HAMRICK, J.L., SCHNABEL, A. (1985): Understanding the genetic structure of plant populations: Some old problems and new approach. in: GREGORIUS, H.-R. (Hrsg.): Population Genetics in Forestry. Berlin, Heidelberg, New York, Tokyo: Springer, 50-70.
- HATTEMER, H. H., MÜLLER- STARCK, G. (1988): Genetik, Züchtung und künstliche Bestandesbegründung. Anmerkungen zu: Albrecht, J.: Forstpflanzenzüchtung und genetische Aspekte der künstlichen Bestandsbegründung, Forstarchiv 59(5), 196-200.
- HATTEMER, H. H., MÜLLER -STARCK, G. (1988): Genetische Aspekte der künstlichen Bestandesbegründung. Forstarchiv 59(1), 12-17.
- HATTEMER, H.H. (1991a): Genetic Analysis and Population Genetics, 5-22 in: FINESCHI, S., MAL-VOVLTI, M.E., CANNATA, F, HATTEMER, H.H. (Hrsg.): Biochemical Markers in the Population Genetics of Forest Tree The Hague, SPB Scientific Publishing.
- HATTEMER, H.H. (1991b): Measuring Genetic Variation, 2-19, in: MÜLLER-STARCK, G., ZIEHE, M. (Hrsg.). Genetic Variation in European Populations of Forest Trees. Sauerländer's Verlag, Frankfurt a. M.
- HATTEMER, H.H. (1994): Die genetische Variation und ihre Bedeutung für Wald und Waldbäume. Schweiz. Zeitschrift f. Forstwesen 145 (12), 953-977.
- HATTEMER, H.H. (1995): Concepts and requirements in the conservation of forest genetic resource Forest Genetics (Slovakia). International Journal of Forest Genetic (1995). 2 (3), 125-134.
- HATTEMER, H.H., BERGMANN, F., ZIEHE, M. (1993): Einführung in die Genetik für Studierende der Forstwissenschaften (2. Auflage). Frankfurt am Main: Sauerländer. 492 S.
- HATTEMER, H.H., GALLO, L.A. (1994): Impacts of Breeding on Genetic Variation. 81-100 in: KIM, Z.- und HATTEMER, H. H. (Hrsg.) Conservation and Manipulation of Genetic Resources in Forestry. Kwang Moon Kag. Seoul.
- HATTEMER, H.H., GREGORIUS, H.-R. (1993): Genetische Anforderungen an Maßnahmen zur Arterhaltung. Forstarchiv, 64, 44-49.
- HATTEMER, H.H., GREGORIUS, H.-R., ZIEHE, M., MÜLLER-STARCK, G. (1982): Klonanzahl forstlicher Samenplantagen und genetische Vielfalt. Allg. Forst u. J.-Ztg. 153, 183-191.
- HATTEMER, H.H., MÜLLER-STARCK, G. (1990): Evolution von Baumpopulationen als Folge des Waldsterbens? in: Schriften aus der forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Versuchsanstalt, Frankfurt am Main . Sauerländer, 98, 34-45.
- HATTEMER, H.H., STARKE, R., TUROK, J., VORNAM, B., ZIEHE, M., MAURER, W., TABEL, U. (1996): Grundlagen der Erhaltung genetischer Ressourcen bei der Buche. Allg. Forst- und J-Ztg.
- HATTEMER, H.H., ZIEHE, M. (1996): An Attempt to infer on the Origin of a Beech (*Fagus sylvativa* L.) stand in Rheinland-Pfalz . Silvae Genetica 45, 5-6.
- HATTEMER, H.H..(1982): Genetic Distance between Populations. Part 3: Wahlund's Priniciple as related to Genetic Distance and an Application. Ther. Appl. Genet. 62, 219-223.

- HEMPEL und WILHELM (1889-1898): Die Bäume und Sträucher des Waldes. Hölzel Verlag, Wien, Tafel XXII.
- HERTEL, H. (1998): Stieleiche von Traubeneiche mit Hilfe von Isoenzymanalysen unterscheiden. AFZ/Der Wald, 5, 246-247.
- HERTEL, H., ZASPEL, I (1996): Investigations on vitality and genetic structure in oak stand Annales des sciences forestières 53, 761-773.
- HERZOG, (1993): Studies on genetic diversity in European oak population 222 231 in: Proceed. 22nd. South. For. Tree Improv. Conf., Atlanta, USA, 222-231.
- HERZOG, (1994): Genetic structures of European oak populations: consequences for conservaion of genetic ressource Environmental Constraints and Oaks: Ecological and Physiological Aspects, 29. August 1. September 1994, Velaine en Haye/Nancy, 151.
- HERZOG, (1996): Genetic Inventory of European Oak Populations: Consequences for breeding and Gene Conservation. Ann. Sci. For 53, 783-793.
- HERZOG, (1998): Genetische Strukturen mitteleuropäischer Stieleichen- (*Quercus robur*) uns Traubeneichenpopulationen (*Quercus petraea*) sowie deren Bedeutung im Rahmen waldbaulicher Entscheidungen. Unveröffentlichte Habilitationsschrift. Göttingen, 164
- HERZOG, S., KRABEL, D. (1994): Genetic studies of the leaf retention phenonemon in pedunculate oak (*Quercus robur*). Environmental Constraints and Oaks: Ecological and Physiological Aspects, 29. August 1. September 1994, Velaine en Haye/Nancy, 155.
- HERZOG, S., KRABEL, D. (1996): Genetic Studies on Leaf Retention in *Quercus robur*. Silvae Genetica 45, 272-276.
- HERZOG, S., MÜLLER-STARCK, G. (1993): Untersuchungen zur genetischen Differenzierung bei Stieleiche (*Quercus robur* L.) und Traubeneiche (*Quercus petraea* Liebl.): Konsequenzen für die Erhaltung genetischer Resourcen. Forstachiv, 64 (2), 88-92.
- HUSSENDÖRFER, E. (1996): Untersuchungen über die genetische Variation der Weißtanne (Abies alba Mill.) unter dem Aspekt der *in situ-*Erhaltung genetischer Ressourcen in der Schweiz. Zürich (Switzerland). 1996. 132 S.
- HUSSENDÖRFER, E. (2000): Einfluss waldbaulicher Verfahren auf die genetische Ausstattung eines Bestandes. Homepage der FVA 3.
- HUSSENDÖRFER, E., KÖHL, M., MÜLLER-STARK, G. (1999): Ein Beitrag zur Frage der repräsentativen Stichprobennahme bei genetischen Inventuren in Waldbaumpopulationen. Schweiz. Z. Forstwe, 150, 203-208.
- HUSSENDÖRFER, E., KONNERT, M. (1998): Untersuchungen zur genetischen Repräsentativität von Prüfgliedern in Provenienzversuchen am Beispiel der Weißtanne, Allg. Forst- u. J. Ztg. 169 (4), 61-70.
- HUSSENDÖRFER, E., MÜLLER-STARCK, G. (1994): Genetische Inventuren in Beständen der Weißtanne (*Abies alba* Mill.) Aspekte der nacheiszeitlichen Wanderungsgeschichte, Schweiz. Z. Forstwes. 145, 1021-1029.
- HUSSENDÖRFER, E., MÜLLER-STARCK, G. (1997): Genetische Aspekte der dauerwaldartigen Waldwirtschaft. Der Dauerwald, 16, 54-68.
- HUSSENDÖRFER, E., SCHÜTZ, J.-P., SCHOLZ, F. (1996): Genetische Untersuchungen zu phänotypischen Merkmalen an Buche (*Fagus sylvativa* L.). Journal forestier suisse. 147 (10), 785-802.
- JÜNGER, F. (1997): Genetische Variation in Beständen und Nachkommenschaften der Traubeneiche (*Quercus petraea* (Matt.) Liebl.). Diplomarbeit am Lehrbereich für Forstgenetik, Forstwissenschaftliche Fakultät, LMU München.
- JÜTTNER, O. (1955): Ertragstafeln für Eiche. Ertragstafeln wichtiger Baumarten bei verschiedener Durchforstung, neubearbeitet von R. Schober. Frankfurt a. M.: J.D. Sauerländers, 2. Aufl. 1975, 154 S.
- KARP, A., ISAAC, P.G., INGRAM, D.S (1998): Molecular Tools for Sceening Biodiversity. Verlag Chapman & Hall, London, 490
- KIM, Z., LEE, W., HYUN, J.O. (1993): Allozyme variation in six native oak species in Korea. Annales des Sciences Forestiers 50, 253s-260s.
- KIMURA, M., CROW, F.J. (1964): The number of alleles that can be maintained in a finite population. Genetics 49, 725-738.

- KLEINSCHMIT, J. (1993): Beitrag des Naturschutzes und der Forstwirtschaft zur Erhaltung forstlicher Genressourcen. Forstarchiv 64, 43.
- KLEINSCHMIT, J. (1994): Strategy for conservation of gene resources and examples for oaks, Norway spruce and Douglas fir. in: KIM, Z.-S, HATTEMER H.H. (Hrsg.) Conservation and manipulation of genetic resources in forestry, Kwang Moon Kag, Seoul. 255-284.
- KLEINSCHMIT, J. (1995): In-situ-Erhaltung forstlicher Genresourcen. Schriften zu Genetischen Ressourcen, Band 1, 8 S.
- KLEINSCHMIT, J., BACILIERI, R., KREMER, A., ROLOFF, A. (1995): Comparison of Morphological and Genetic Traits of Pedunculate Oak (*Q. robur* L.) and Sessile Oak (*Q. petraea* (Matt.) Liebl.), Silvae Genetica 44, 256 269.
- KLEINSCHMIT, J., KLEINSCHMIT, J.G.R. (2000): *Quercus robur Quercus petraea*: a critical review of the species concept in: Annales Experimentis Silvarum Culturae Provehendis, Gla Sum. Pokuse 37, Zagreb, 441-452.
- KLEINSCHMIT, J.R.G. (1995): Vergleich morphologischer und genetischer Unterscheidungsmerkmale bei Stieleiche (*Quercus robur* L.) und Traubeneiche (*Quercus petraea* (Matt.) Liebl.). aus Genetik und Waldbau unter besonderer Berücksichtigung der heimischen Eichen,in Mitteilungen aus der Forstlichen Versuchsanstalt Rheinland-Pfalz 34, 327-349.
- KLEINSCHMIT, J.R.G., KREMER, A., ROLOFF, A (1995): Sind Stieleiche und Traubeneiche zwei getrennte Arten?. AFZ/Der Wald, 26, 1453-1456.
- KOHLSTOCK, N. (1993): Auswirkungen waldbaulicher Behandlungen auf die genetische Struktur der Bestände. Forstarchiv, 64, 70-72.
- KÖNIG, A., GROPPE, K., ZIEGENHAGEN, B. (1997): First results of chloroplast-DNA investigations in german populations of *Quercus petraea* and *Quercus robur*. in: Proceedings Diversity and adaptation in oak species, Pennsylvenia, 102-108.
- KONNERT, M., SPIECKER, H. (1996) Beeinflussen Nutzungen einzelner Bäume die genetische Struktur von Beständen?. AFZ/Der Wald, 23, 1284-1291.
- KONNERT, M., ZIEHE, M., TRÖBER, U., MAURER, W., JANßEN, A., SANDER, T., HUSSENDÖRFER, E., HERTEL, H. (2000): Genetische Variation der Buche (Fagus sylvatca L.) in Deutschland: Gemeinsame Auswertung genetischer Inventuren über verschiedene Bundesländer, Forst und Holz, 13, 403-408.
- KRAHL-URBAN, J. (1959): Die Eichen. Forstliche Monographie der Traubeneiche und der Stieleiche. Parey Verlag, Hamburg, 288 S.
- KREMER, A., PETIT, R., ZANETTO, A., FOUGÈRE, V., DUCOUSSO, A., WAGNER, D., CHAUVIN, C. (1991): Nuclear and organelle gene diversity in *Quercus robur* and *Q. petraea*, 141-166, in: MÜLLER-STARCK, G., ZIEHE, M. (Hrsg.). Genetic Variation in European Populations of Forest Trees. Sauerländer's Verlag, Frankfurt a. M.
- KREMER, A., PETIT, R.J. (1993): Gene diversity in natural populations of oak species, Ann Sci For, 50(1), 186s-202s.
- KREMER, A., ZANETTO, A. (1995) Geographical structure of gene diversity in *Quercus petraea* (Matt.) Liebl. I: Monolocus patterns of variation. Heridity, 75, 506-517.
- KREMER, A., ZANETTO, A. (1997) Geographical structure of gene diversity in *Quercus petraea* (Matt.) Liebl. II: Multilocus patterns of variation. Heridity, 78, 476-489.
- KREMER, A., ZANETTO, A., DUCOUSSO, A. (1997): Multilocus and Multitrait Measures of Differentation for Gene Markers and Phenotypic Trait Genetics, 145 (4), 1229-1241.
- KRUSCHE, D. (1990a): Einige quantitative Überlegungen zur Erhaltung forstlicher Genressourcen. HATTEMER, H.H. (Hrsg.). Göttingen Univ. (Germany). Forstliche Fakultät. Niedersächsische Forstliche Versuchsanstalt, Göttingen. Erhaltung forstlicher Genressourcen. Frankfurt am Main, Sauerländer
- KRUSCHE, D., Geburek, T. (1990b): Überlegungen zur Erhaltung forstlicher Genressourcen unter besondere Berücksichtigung der Stichprobengröße. Mitteilung der Bundesforschungsanstalt für Forst- und Holzwirtschaft, Hamburg, 164, 67-78.
- KÜSTER, B. (2000): Die Auswirkungen unterschiedlicher waldbaulicher Behandlungen auf das Wachstum und die Qualitätsentwicklung junger Traubeneichen (*Quercus petraea* (Matt.) Liebl.). Diss., TU München.

- LARSEN, A.B. (1996): Genetic Structure of Populations of Beech (*Fagus sylvativa* L.) in Denmark. Scand. J. For. Re 11, 220-232.
- LEWIS, P. O., ZAYKIN, D. (1999): Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d12).
- LIESEBACH, M., STEPHAN, R. (2000): Developement of provenances of *Quercus petraea* and *Quercus robur* from acorns to six-year old plants in relation to species specific traits in: Annales Experimentis Silvarum Culturae Provehendis, Gla Sum. Pokuse 37, Zagreb, 413-423.
- LÖCHELT, (1994): Bestimmung der genetischen Konstitution heimischer Eichen mittels Isoenzymanalysen. Forst und Holz, 49. Jhrg., 98-100.
- LUMARET, R., MICHAUD, H. (1991): Genetic variation in holm oak populations, 167-172, in: MÜLLER -STARCK G., ZIEHE, M. (Hrsg.). Genetic Variation in European Populations of Forest Tree Sauerländer's Verlag, Frankfurt a. M.
- LUMARET, R., YACINE, A., BERROD, A., ROMANE, F., LI, T.X. (1991): Mating system and genetic diversity in holm oak (*Quercus ilex l.* Fagaceae) pp. 148-153 *in:* FINESCHI, M. E. MALVOLTI, F. CANNATA, HATTEMER H. H. (Hrsg.). Biochemical markers in the population genetics of forest tree SPB Academic Publishing by, The Hague, The Netherland
- LÜPKE v., B. (1993): In situ-Erhaltung: Möglickeiten der Integration in den praktischen Forstbetrieb. Forstarchiv 64, 73-78.
- LÜPKE V., B. (1995): Überschirmungstoleranz von Stiel- und Traubeneichen als Voraussetzung für Verjüngungsverfahren unter Schirm. in: Genetik und Waldbau unter besonderer Berücksichtigung der heimischen Eichen. in: Mitteilungen aus der Forstlichen Versuchsanstalt Rheinland-Pfalz Nr. 34/95, 141-160.
- MANOS, P., FAIRBROTHERS, D.E. (1987) Allozyme Variation in Populations of Six Northeastern American Red Oaks (Fagaceae: *Quercus* subg. *Erythobalanus*). Systematic Botany, 12 (3), 365-373.
- MANTEL, K. (1990): Wald und Forst in der Geschichte. Verlag M. & H. Schaper, Alfeld, Hannover.
- MÁTYÁS, G., SPERISEN, C. (2001): Chloroplast DNA polymorphisms provide evidence for postglacial re-colonisation of oaks (*Quercus* ssp.) across the Swiss Alps. Theor. Appl. Genet. 102 (12), 12-20.
- MERZEAU, D., COMPS B., THIEBAUT, B., LETOUZEY, J. (1994): Estimation of *Fagus sylvativa* L. mating system parameters in natural population. Annales des Sciences Forestiers 51, 163-173.
- MICHAUD, H., TOUMI, L., LUMARET, R., LI, T.X., DI GIUSTO, F. (1995): Effects of Geographical Discontinuity on Genetic Variation in *Quercus ilex* L. (holm oak). Evidence from Enzyme Polymorphism. Heredity 74 (6), 590-606.
- MITTON, J.B., GRANT, M.C. (1984): Associations Among Protein Heterozygosity, Growth Rate, and Developmental Homeostasis. Ann. Rev. Ecol. Syst. 15, S. 479-499.
- MITTON, J.B., JEFFERS, R.M. (1989): The Genetic Consequences of Mass Selection for Growth Rate in Two Norway Spruce (*Picea abies*) Populations. Can. J. Bot. 69, S. 2704-2708.
- MOREAU, F., KLEINSCHMIT, J., KREMER, A. (1994) Molecular differentiation between *Quercus petraea* and *Quercus robur* assessed by random amplified DNA fragment Forest Genetics (Slovakia). (1994). 1 (1), 51-64.
- MOSANDL, R. (1991a): Das Konzept zur Erhaltung forstlicher Genressourcen aus Waldbaulicher Sicht. in: FRANKE, A. (Hrsg.) Waldbau Forstpflanzenzüchtung Forstgenetik Forderungen und Angebote Bericht über die 20. Internationale Tagung der Arbeitsgemeinschaft für Forstgenetik und Forstpflanzenzüchtung vom 25. bis 27. Juni 1990. FVA Baden-Württemberg, 53-63.
- MOSANDL, R. (1991b): Die Steuerung von Waldökosystemen mit waldbaulichen Mitteln dargestellt am Beispiel des Bergmischwalde in: BMELF (Hrsg.) Mitteilungen der Staatsforstverwaltung Bayerns, Heft 46, 246 S.
- MOSANDL, R. (1997): Waldbau zwischen Ökonomie und Ökologie. Rundgespräche der Kommission für Ökologie, 12, 107-117.
- MUHS, H.-J. (1995): Möglichkeiten und Defizite des Gesetzes über forstliches Saat- und Pflanzgut hinsichtlich seiner Auswirkungen auf die Erhaltung genetische ressourcen im forstlichen Bereich. Schriften zu Genetischen Resourcen, Band 1, 8 S.
- MUHS, H.-J., VON WÜHLISCH G. (1992): Research on the Improvement of Beech in the Last Decade. Proc. of the International Congress on Beech, Pamplona, Vol I, 63-89.

- MÜLLER, B. (1999): Variation und Hybridisierung von *Quercus pubescens*, Diss., ETH Zürich, Nr. 13025. (Auszüge).
- MÜLLER, G. (1976): A simple method of estmating rates of self-fertilization by analysing isozymes in seed tree Silva Genetica, 25, 15-17.
- MÜLLER, G. (1977): Untersuchungen über die natürliche Selbstbefruchtung in Beständen der Fichte (*Picea abies* (L.) Karst) und Kiefer (*Pinus sylvestris* L.). Sivae Genetica 26, 5-6, 207-217.
- MÜLLER-STARCK, G. (1977): Untersuchungen über die natürliche Selbstbefruchtung in Beständen der Fichte (*Picea abies* (L.) Karst.) und Kiefer (*Pinus sylvestris* L.). Silvae Genetica 26, 207-217.
- MÜLLER-STARCK, G. (1979): Estimates of self- and cross-fertilization in a *Scots pine* seed orchard [*Pinus sylvestris*]. RUDIN, D. (Hrsg.). Proceedings of the conference on biochemical genetics of forest tree Umeaa (Sweden). 1979., 170-179.
- MÜLLER-STARCK, G. (1982b): Sexually asymmetric fertility selection and partial self-fertilization. 2. Clonal gametic contributions to offspring of a *Scots pine* seed orchard. Silvae Fennica 16 (2), 99-106.
- MÜLLER-STARCK, G. (1985): Reproductive success of genotypes of *Pinus sylvestris* L. in different environment pp. 118-133 in: H.-R. Gregorius (Hrsg.). Population Genetics in Forestry. Lecture Notes in Biomathematics 60, Springer-Verlag Berlin, Heidelberg, New York, Tokyo.
- MÜLLER-STARCK, G. (1991b): Survey of genetic variation as inferred from enzyme gene marker pp. 20-37 in: G. MÜLLER STARCK, M. ZIEHE (Hrsg.). Genetic Variation in European Populations of Forest Tree Sauerländer's Verlag, Frankfurt a. M.
- MÜLLER-STARCK, G. (1993a): Anpassungsfähigkeit der Waldbestände bewahren. Wald und Holz, 14, 30-32.
- MÜLLER-STARCK, G. (1993b): Auswirkungen von Umweltbelastungen auf genetische Strukturen von Waldbeständen am Beispiel der Buche (*Fagus sylvativa* L.). Schriften Forstl. Fak. Univ. Göttingen u. Nd Versuchsanstalt, Band 112, Sauerländer's Verlag, Frankfurt a.M., 163
- MÜLLER-STARCK, G. (1995a): Genetic Variation in High Elevated Populations of Norway Spruce (*Picea abies* (L.) Karst.) in Switzerland, Silvae Genetica 44, 5-6, 356-362.
- MÜLLER-STARCK, G. (1995b): Genetic variation under extreme environmental condition in: BARADAT, Ph., ADAMS, W.T., MÜLLER-STARCK, G. (Hrsg.) Population genetics and genetic conservation of forest tree SPB Academic Publishing, Amsterdam, 201-210.
- MÜLLER-STARCK, G. (1995c): Protection of genetic variability in forest tree Forest Genetics 2 (3), 121-124.
- MÜLLER-STARCK, G. (1997a): Genetische Kriterien für die Erhaltung forstlicher Genresourcen. NNA-Berichte, 2, 21-25.
- MÜLLER-STARCK, G. (1997b): Isoenzymatische Untersuchungen an ausgewählten Herkünften von Stieleiche (*Quercus robur* L.) zwecks genetischer Inventarisierung eines Herkunftsversuchs und Erfassung der genetischen Differenzierung der Herkünfte, Schlußbericht. Projekt B-0228/Ma, FVA Rheinland-Pfalz. 19
- MÜLLER-STARCK, G. (1997c): Protection of genetic variability in forest tree populations-an overview. Bocconea 7, 323-327.
- MÜLLER-STARCK, G. (1997d): Survey of genetic variation in Euopean tree population Bocconea 7, 43-49.
- MÜLLER-STARCK, G. (1998): Isozymes IN: KARP, A., ISAAC, P.G., INGRAM, D.S (1998): Molecular Tools for Sceening Biodiversity. Verlag Chapman & Hall, London, 73-82
- MÜLLER-STARCK, G., BARADAT, Ph., BERGMANN, F. (1992): Genetic variation within European tree species. in: ADAMS, W.T., STRAUSS, H., COPES, D.L., GRIFFIN, A.R. (Hrsg.): Population Genetics of Forest Tree Dordrecht, Boston, London: Kluwer Academic: 23-47.
- MÜLLER-STARCK, G., GREGORIUS H.-R. (1988): Analysis of mating systems in forest tree pp. 573-595 (chap. 52) in: B. Weir, E. J. Eisen, M. M. Goodman and G. Namkoong (Hrsg.). Proceedings of the Second International Conference on Quantitative Genetics, Raleigh 1988. Sinauer, Sunderland, Mas
- MÜLLER-STARCK, G., HERZOG, S., HATTEMER., H. H. (1993): Intra- and interpopulational genetic variation in juvenile populations of *Quercus robur* L. and *Quercus petraea* Liebl. Annales des Sciences Forestiers 50, Suppl. 1, 233s-244

- MÜLLER-STARCK, G., HUSSENDÖRFER, E., SPERISEN, CH. (1995): Genetische Diversität bei Waldbäumen-eine Voraussetzung für das Überleben unserer Wälder. Forum für Wissen, 23-32.
- MÜLLER-STARCK, G., SCHUBERT, R. (2000): Genetic markers as a tool for bioindication in forest ecosystems. in: YOUNG, A., BOSHIER, D., BOYLE, T. (Hrsg.) Forest Conservation Genetic CSIRO, Australia.
- MÜLLER-STARCK, G., STARKE, R. (1993): Inheritance of Isoenzymes in European Beech (*Fagus sylvativa* L.). Journal of Heredity, 84 (4), 291-296.
- MÜLLER-STARCK, G., ZANETTO, A., KREMER, A., HERZOG, (1996): Inheritance of Isoenzymes in Sessile Oak (*Quercus petraea* (Matt.) Liebl. and Offspring from Interspecific crosses, Forest Genetics 3 (1), 1-12.
- MÜLLER-STARCK, G., ZANETTO, A., KREMER, A., HERZOG, (1996): Inheritance of Isoenzymes in Sessile Oak (*Quercus petaea* (Matt.) Liebl. and Offspring from Interspecific crosses, Forest Genetics 3 (1), 1-12.
- MÜLLER-STARCK, G., ZIEHE M. (1991): Genetic Variation in European Populations of forest trees. 1-271.
- MÜLLER-STARCK, G., ZIEHE, M. (1984): Reproductive systems in conifer seed orchard. Theor. Appl.Genet., 69. 173-177.
- MÜLLER-STARCK, G., ZIEHE, M. (1991): Genetic variation in populations of *Fagus sylvativa* L., *Quercus robur* L. and *Q. petraea* Liebl. in Germany. in: MÜLLER-STARCK, G., ZIEHE, M. (Hrsg.): Genetic Variation in European Populations of Forest Tree Frankfurt am Main: Sauerländer: 125-140.
- MÜLLER-STARCK, R. (1996): Genetische Aspekte der Reproduktion der Buche (*Fagus sylvativa* L.) unter Berücksichtigung waldbaulicher Gegebenheiten. Dissertation aus Berichte des Forschungszentrum Waldökosysteme. Reihe A. Band 135.
- NEI, M. (1972): Genetic Distance between Populations. Amer. Nat. 106, 283-292.
- NEI, M. (1973): Analysis of Gene Diversity in Subdivided Population Prov. Nat. Acad. Sci., USA 70, 321-323. Proceedings of the National Academy of Science USA 70 (12): 3321-3323. Proc. Natl. Acad. Sci USA 12, 3321-3323.
- PETIT, R.J., DEMESURE, B, PINEAU, E, KREMER A. (1995): Genetische Differenzierung in lokalem und kontinentalem Ausmaß bei europäischen Eichenarten: die Bedeutung geschichtlicher Faktoren. Mitteilungen der Forstlichen Versuchsanstalt Rheinland-Pfalz Nr. 34/95, 22-37.
- PETIT, R.J., KREMER, A., WAGNER, D.B. (1993) Geographic structure of chloroplast DNA polymorphisms in European oak Theoretical And Applied Genetics . (1993). 87 (1-2), 122-128.
- PETIT, R.J., WAGNER, D.B, KREMER, A. (1993): Ribosomal DNA and Chloroplast DNA polymorphism in European oak Theor. Appl. Genet. 87, 122-128.
- RAYMOND, M., ROUSSET, F. (1995): GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity, 86:248-249
- RITLAND, K. (1983): Estimation of mating system. 289-302 in: D. TANKSLEY and T. J. ORTON, Hrsg. Isozymes in plant genetics and breeding. Part A. Elsevier, Amsterdam, Netherland
- ROHLF, F.J. (1997): NTSYSpc.Numerical Taxonomiy and Multivariate Analysis System. Version 2.00, User Guide.
- ROHMEDER, E. (1972): Das Saatgut in der Forstwirtschaft. Parey Verlag, Hamburg und Berlin, 273
- ROTHE, G.M. (1994): Elektrophoresis of Enzymes Laboratory Method Springer Lab Manual. Springer Verlag Berlin, ISBN 3-540-58114-6, 307 S.
- RUSHTON, B. (1977): Artificial hybridization between *Quercus robur* L. and *Quercus petraea* (Matt.) Liebl. Watsonia 11, 229-236.
- RUSHTON, B. (1978): *Quercus robur* L. and *Quercus petraea* (Matt.) Liebl.: A Multivariate Approach to the Hybrid Problem. 1. Data Acquisition, Analysis and Interpretation. Watsonia 12. 81-101.
- RUSHTON, B. (1979): *Quercus robur* L. and *Quercus petraea* (Matt.) Liebl.: A Multivariate Approach to the Hybrid Problem. 2. The Geographical Distribution of Population Types. Watsonia 13, 209-224.
- RUSHTON, B. (1993): Natural Hybridization within the Genus *Quercus* L., Annales des Sciences Forestiers 50, S 73-90.

- SAMUEL, R., PINSKER W., EHRENDORFER, F. (1995): Electrophoretic Analysis of Genetic Variation within and between Populations of *Quercus cerris*, *Q. pubescens*, *Q. petraea*, and *Q. robur* (Fagaceae) from Eastern Austria. Bot. Acta 108, 290-299.
- SCHRÖDER, (1989): Artunterscheidung bei Eiche aufgrund von Isoenzym-Markern. Allg. Forst- u. Jagdzeitung 160 (5), 104-106.
- SCHÜTT, P., SCHUCK, H.J., STIMM, B. (1992): Lexikon der Forstbotanik Morphologie, Pathologie, Ökologie und Systematik wichtiger Baum- und Straucharten. ecomed-Verlag, Landsberg/Lech. 430 435
- SCHWARZMANN, J.F., GERHOLD, H.D. (1991) Genetic structure and mating system of northern red oak (*Quercus* rubra L.) in Pennsylvania. Forest Science 37 (5), 1376-1389.
- SHAW, M.W. (1974): The reproductive characteristics of oak. in: MORRIS, M.G., PERRING, F.H. (Hrsg.): The British oak. Its history and natural history. Classey, Faringdon, 162-181.
- STARKE, R. (1993): Genmarker als Entscheidungshilfen für die Genkonservierung: II. Isoenzyme als Genmarker für die Ausweisung forstlicher Genressourcen, Allg. Forst.- u. J.-Ztg. 9/10, 181-186.
- STARKE, R. (1996): Die Reproduktion der Buche (*Fagus sylvativa* L.) unter verschiedenen waldbaulichen Gegebenheiten. 135-157 in: MÜLLER STARCK, G. (Hrsg.) (1996): Biodiversität und nachhaltige Forstwirtschaft, ecomed Verlagsgesellschaft, Landsberg.
- STARKE, R., HATTEMER, H.H., ZIEHE, M., VORNAM, B., TUROK, J., HERZOG, S., MAURER, W., TABEL, U. (1992): Genetische Variation an Enzym-Genloci der Buche. Allg. Forst- u. J.-Ztg. 166, 161-167.
- STARKE, R., ZIEHE, M., MÜLLER-STARCK, G. (1996): Viability selection in juvenile populations of european beech (*Fagus sylvativa* L.) Forest Genetics 3 (4), 217-225.
- STEINER, W. (1992): Inkompatibilitätssystemebei Pflanzen und ihre populationdgenetische BEdeutung. Göttinger Forstgenet. Berichte, Nr. 12
- STEINHOFF, (1993): Results of Species Hybridization with *Quercus robur* L. and *Quercus petraea* (Matt.) Liebl., Annales des Sciences Forestiers 50 (1), 137s-143
- STEINHOFF, (1997): Results of *Quercus* hybridization work from 1989-1996 at Escherode (*Quercus petraea* (Matt.) Liebl. and *Quercus Robur* L.) in: Diversity and Adaption in Oak Species, Proceedings, Pennsyvania, 156-164.
- STEINHOFF, (1998) Kontrollierte Kreuzungen zwischen Stiel- und Traubeneiche: Ergebnisse und Folgerungen. Allg. Forst- u. J.-Ztg., 169 (9), 163-168.
- STERN, K., TIGERSTEDT, P.M.A. (1974): Ökologishce Genetik. Fischer Verlag, Stuttgart, 211
- STREHLE, U. (2000): Genetische Variation der Stieleiche (*Quercus robur* L.) in Bayern. Eine Studie auf der Basis von Isoenzym-Genmarkern. Dissertation, Herbert Utz Verlag, München118
- STREIFF R., LABBE T., BACILIERI R., STEINKELLNER H., GLOSSL J. and KREMER A. (1998) Whitin-population genetic structure in *Quercus robur* L. and *Quercus petraea* (Matt.) Liebl. assessed with isozymes and microsatellite Mol. Ecol., 7, 317-328.
- STREIFF, R., DUCOUSSO, A., LEXER, C., STEINKELLNER, H., GLOESSL, J., KREMER, A. (1999): Pollen dispersal inferred from paternity analysis in a mixed oak stand of *Quercus robur* L. and *Q. petraea* (Matt.) Liebl. Mol. Ecol., 8, 831-841.
- TABEL, U. (1995): Erhaltungsmaßnahmen für Stiel- und Traubeneichen (*Quercus robur* L. und *Quercus petraea* (Matt.) Liebl.) in der Bundesrepublic Deutschland eine Übersicht. aus Genetik und Waldbau unter besonderer Berücksichtigung der heimischen Eichen in: Mitteilungen aus der Forstlichen Versuchsanstalt Rheinland-Pfalz Nr. 34/1995, S 207-218.
- TOUMI, L., LUMARET, R. (1998): Allozyme Variation in Cork Oak (*Quercus suber* L.): The Role of Phylogeography and Genetic Introgression by other Mediterranean Oak Species and Human Activitie Theor. Appl. Genet. 97, 647-656.
- TUROK, J. (1995): Genetische Untersuchungen bei der Buche: Genetische Anpassungsprozesse und die Erhaltung von Genresourcenin Buchenwäldern (*Fagus sylvativa* L.). Schriftenreihe der Landesanstalt für Ökologie Bodenordnung und Forsten/ Landesamt für Agrarordnung Nordrhein-Westfalen, Band 8, 136 S.
- TUROK, J., STARKE, R., ZIEHE, M., HATTEMER, H.H. (1998): Genetische Differenzirung rheinlandpfälzischer Buchenbestände an Enzym-Genloci. Allg. Forst- u. J.-Ztg., 6/7, 126-135.
- WACHTER, H. (1953): Über den Einfluß der Witterung auf die Samenbildung bei der Elche. Der Wald 3, 86-88.

- WEIR, B. (1990) Genetic Data Analysis, Sinauer Associated, Sunderland, MA.
- WERNER, O., ROTHE G.M., MAURER W.D., TABEL, U. (1997): Genetic differentation of pedunculate oak (*Quercus robur* L.) stands in Rheinland-Palatina based upon RAPD marker in: Diversity and Adaptation in Oak Species, Proceedings, Pennsylvania, 22-36.
- WOOLF, B. (1957): The Log-Likelihood-Ratio test (the G-Test). Methods and Tables for Test of Heterogeneity in Contingency Table Ann. Human Genetics 21, 397-409.
- WRIGHT, J.W. (1965): The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating. Evolution 19, 395-420.
- WRIGHT, J.W. (1976): Interduktion to Forest Genetics, Academic Press, Inc. (London).
- YACINE, A., LUMARET, R. (1989): Genetic Diversity in Holm-Oak (*Quercus* ilexc L.): Insight from Several Enzyme Markers. Sivae Genetica 38 (3-4), 140-148.
- YEH, F. C., YANG, R-C., BOYLE, T.B.J., YE, Z-H., MAO, J. X. (1997). POPGENE, the user-friendly shareware for population genetic analysi Molecular Biology and Biotechnology Centre, University of Alberta, Canada.
- YOUNG, A., BOSHIER, D., BOYLE, T. (2000): Forest Conservation Genetic CSIRO, Australia.
- ZAHNER, V., LOY, H. (2000): Baumbrütende Mauersegler *Apus apus* und Eichenwirtschaft im Spessart. Orn. Anz. 39, 187-196.
- ZANETTO, A., KREMER, A. (1995): Geographic Structure of Gene Diversity in *Quercus petraea* (Matt. (Liebl.) I. Monolocus Patterns of Variation. Heredity. 75 (5), 506-517.
- ZANETTO, A., KREMER, A., LABBÉ, T. (1993): Differences of genetic variation based on isozymes of primary and secondary metabolism in *Quercus petraea*. Ann Sci For 50, Suppl 1, 245s-252
- ZANETTO, A., KREMER, A., MÜLLER- STARCK, G., HATTEMER, H.H. (1996). Inheritance of Isoenzymes in Pedunculate Oak (*Quercus robur* L.) J. Hered., 87, 364-370.
- ZANETTO, A., KREMER, A., MÜLLER-STARCK, G., HATTEMER, H.H. (1996): Inheritance of isozymes in pedunculate oak (*Quercus robur* L.). Journal Of Heredity 87, 364-370.
- ZANETTO, A., ROUSSEL, G., KREMER, A. (1994): Geographic Variation of Inter-specific Differentiation between Quercus robur L. and Quercus petaea (Matt.) Liebl., Forest Genetics 1 (2) 111-123.
- ZIEHE, M. (1982): Sexually asymmetric fertility selection and partial self-fertilization, 1: Population genetic impacts on the zygotic genotypic structure. Silva-Fennica. 16 (2), 94-98.
- ZIEHE, M., GREGORIUS, H.-R., HERZOG, (1995): Populationsgröße, genetische Variation und Anpassung Betrachtung zu Risiken für die forstliche Praxis bei der Bestandesbegründung. aus Genetik und Waldbau unter besonderer Berücksichtigung der heimischen Eichen. in: Mitteilungen aus der Forstlichen Versuchsanstalt Rheinland-Pfalz Nr. 34/95 von MAURER, W. und TABEL, U. 180-201.
- ZIEHE, M., HATTEMER, H.H. (1998): The significance of hetrozygosity in tree breeding and gene consevation. Forest Tree Improvement 26, 3-25.
- ZIEHE, M., MÜLLER-STARCK, G. (1991): Changes of genetic variation due to associated selection, 259-271, in: MÜLLER-STARCK, G., ZIEHE, M. (Hrsg.). Genetic Variation in European Populations of Forest Tree Sauerländer's Verlag, Frankfurt a. M.
- ZIEHE, M., ROBERDS, J.H. (1989): Inbreeding depression due to overdominance in partially self Fertilizing plant population Genetics (USA). (Apr 1989). 121 (4), 861-868.
- ZIEHE, M., STARKE, R., HATTEMER, H.H., TUROK, J. (1996): Genotypische Strukturen in Buchen-Altbeständen und ihren Samen, Allg. Forst- u. J.-Ztg., 169.Jg., 5, 91-99.
- ZWIERLEIN, K.A. (1897): Der deutsche Eichbaum und seine Heilkraft. Unveränderter Nachdruck der Ausgabe von 1823. Verlag Krüger und Co., Leipzig.

8. Anhang - Inhalt

Rezepturen

Zymogramme

Tabellen

- Tabelle 1: Allelfrequenzen aller 44 Bestände für 18 Genorte
- Tabelle 2: Übersicht über die genetischen Parameter für alle 44 Bestände für die 17 gemeinsamen Genorte
- Tabelle 3: Anzahl Allele nach Genorten (A_L) und ihr Potential zur Bildung unterschiedlicher Gameten (M_{vam})
- Tabelle 4: Anzahl potentiell aus den gefundenen Allelen bildbare Genotypen (N_{geno}) und die daraus hypothetisch bildbaren Genotyp-Kombinationen (M_{geno})
- Tabelle 5: Anzahl Genotypen nach Genorten (G_L)
- Tabelle 6: Beobachtete Heterozygotie (H_o)
- Tabelle 7: Bedingte Heterozygotie(H_c)
- Tabelle 8: Genetische Diversität (allelisch) $v_{(a)}$
- Tabelle 9: Genetische Diversität (genotypisch) $v_{(g)}$
- Tabelle 10: Genetische Differenzierung (allelisch) $D_{j(a)}$
- Tabelle 11: Genetische Differenzierung (genotypisch) $D_{i(g)}$
- Tabelle 12: Genetische Differenzierung (allelisch) $D_{j(a)}$ gruppenweise für Bestände mit mehr als zwei Teilkollektiven für 17 Genorte und den Genpool
- Tabelle 13: Populationsdifferenzierung (allelisch) $\delta_{T(a)}$
- Tabelle 14: Populationsdifferenzierung (genotypisch) $\delta_{T(g)}$
- Tabelle 15: Fixierungsindex *F*
- Tabelle 16: Genetische Abstände d_o aller 44 Bestände für den Genpool (17 Loci)
- Tabelle 17: Genetische Abstände d_o der Bestandskollektive für den Genpool
- Tabelle 18: Signifikanztest (X²-Test) zur Hardy-Weinberg-Struktur
- Tabelle 19: Signifikanztests X^2 und G zur Hardy-Weinberg-Struktur und Inzuchtstruktur für vier Genorte
- Tabelle 20: Übersicht der Genotypfrequenzen für vier Genorte: beobachtete Struktur, Hardy-Weinberg-Struktur und Inzucht-Struktur
- Tabelle 21: Assortative Paarungspräferenzen \boldsymbol{U}^* für vier Genorte

Elektroden- und Gelpuffer

Poulik-Puffer			
Elektrodenpuffer Borsäure NaOH	pH 8,0 0,3 mol/l 0,06 mol/l	18,5 g/l 2 g/l	92,5 g/ 5l 10 g/ 5l
<u>Gelpuffer</u>	pH 8,7	0 = "	00 = /=
Tris	0,07 mol/l	8,5 g/l	30,5 g/ 5l
HCI 1M	0,02 mol/l	20 ml/l	100 ml/l
Elektrodenpuffer		30 ml/l	150 ml /5l

Tris-Citro pH 7,5			
Elektrodenpuffer Tris	0,14 mol/l	17 g/l	85 g/ 5l
Citronensäure (10-fach konz., pH 7,7:	0,043 mol/l	8,3 g/l 7,4 g/l	41,6 g/ 5l 37 g/l)
Gelpuffer	EP + H ₂ O =	= 1 + 2,5	

Tris-Citro pH 7,8			
Elektrodenpuffer Tris Citronensäure	pH 8,1 0,14 mol/l 0,043 mol/l	17 g/l 6 g/l	85 g/ 5l 30 g/ 5l
Gelpuffer	EP + H ₂ O =	= 1 + 2,5	

Gelrezepturen

	Puffer [ml]	11%	11,5%	12%	Zucker	Harnstoff
1 Gel, 2 Schichten	185	20,4	21,3	22,2	3,7	1,5
1 Gel, 3 Schichten	240	26,4	27,6	28,8	4,8	2,1
2 Gele, 2	360	39,6	41,1	43,2	7,2	3,0
Schichten						
2 Gele, 3	450	49,5	51,8	54,0	9,0	4,2
Schichten						

Puffer	Stärke %	Zusatz
T.C. 7,5	12	Harnstoff
T.C. 7,8	12	Harnstoff
Poulik	11,5	Zucker
Ashton	11	Zucker

Positionen und Laufzeiten für Eiche

GP/EP	oben	mitte	unten	Laufzeit [h]	mΑ
Ashton (GP 1:1 verd.)	PGI	AAP	LAP	4,5	55
Poulik	MNR		EST a	4	60
Poulik	AAT		ACO	5,5	80
T.C. 7,5	PGM	SKDH	GDH/ADH	5	180
T.C. 7,8	6PGDH	IDH	MDH	6	160

Färbelösungen

AAP (Alanin-Aminopeptidase)	
Tris-Malat-Puffer pH 5,4	60 ml
L-Alanin-b-Naphtylamid	48 mg
Fast Black K	24 mg

AAT (Aspartat-Amino-	
Transferase)	
Leitungswasser	60 ml
L-Asparaginsäure-Na-salz	324 mg
Monohydrat	
2-Oxo-glutarsäure	42 mg
Fast Blue BB Salt	132 mg
Pyridoxal-5-phospat eine Spatelspitze	
voll kurz vor dem Anfärben zug	eben

ACO (Aconitase)	
Tris-HCL-Vorpuffer pH 8,0 cis-Aconitic-acid MTT NADP-Lösung MgCl2-Lösung PMS-Lösung	50 ml 90 mg 12 mg 3,2 ml 1,6 ml 1,6 ml
Isocitric Dehydrogenase kurz vor dem Anfärben zugeben	100-200µl

ADH (Alkohol-Dehydrogenase)	
Tris-HCL-Vorpuffer pH 8,0 MTT NADP-Lösung MgCl2-Lösung PMS-Lösung	50 ml 12 mg 6,4 ml 1,6 ml 1,6 ml
Ethanol abs. Kurz vor dem Anfärben zugeben	60 µl

EST (Esterase)	-
NaH2PO4-Puffer Na2HPO4-Puffer dest. H2O Fast Blue RR Salt 1-Naphtylacetat-Lösg. (= a-Naphtylacetat)	30 ml 12 ml 18 ml 48 mg 3,6 ml
Fakultativ zusätzlich: 2-Naphtylacetat-Lösg. (= b-Naphtylacetat) Acetatlösungen kurz vor dem zugeben	3,6 ml n Anfärben

GDH (Glutamat-Dehydrogenase)	
Tris-HCL-Vorpuffer pH 8,0 L-Glutaminsäure-Mono-Na-salz MTT NAD-Lösung MgCl2-Lösung PMS-Lösung	50 ml 552 mg 12 mg 6,4 ml 1,6 ml
Ethanol abs. kurz vor dem Anfärben zugeben (für gleichzeitige ADH-Anfärbung)	60 µl

IDH (Isocitrat-Dehydrogenase)	
Tris-HCL-Vorpuffer pH 8,0	50 ml
DL-Isocitric acid	60 mg
MTT	12 mg
NADP-Lösung	6,4 ml
MgCl2-Lösung	1,6 ml
PMS-Lösung	1,6 ml

LAP (Leucin-Aminopeptidase)	
Tris-Malat-Puffer pH 5,4 L-Leucin-b-Naphtylamid	60 ml 48 mg
Fast Black K	24 mg

MDH (Malat-Dehydrogenase)	
Tris-HCL-Vorpuffer pH 8,0	50 ml
L-Malic-acid Na-salt	72 mg
MTT	12 mg
NAD-Lösung	6,4 ml
MgCl2-Lösung	1,6 ml
PMS-Lösung	1,6 ml

MNR (Menadion-Reduktase)	
Tris-HCL-Vorpuffer pH 8,0 Menadione Sodium Bisulfit MTT	60 ml 60 mg 12 mg
NADH kurz vor dem Anfärben zugeben	24 mg

6PGDH (6-Phosphogluconat-Dehydrogenase)	
T: 1101 V (1100	50
Tris-HCL-Vorpuffer pH 8,0	50 ml
6-Phosphogluconic acid	36 mg
MTT	12 mg
NADP-Lösung	6,4 ml
MgCl2-Lösung	1,6 ml
PMS-Lösung	1,6 ml

Färbelösungen (Fortsetzung)

PGI (Phosphoglucose-Isomerase)	
Tris-HCL-Vorpuffer pH 8,0 D-Fructose-6-phosphate MTT NADP-Lösung MgCl2-Lösung PMS-Lösung	50 ml 18 mg 12 mg 6,4 ml 1,6 ml 1,6 ml
G6P-Dehydrogenase kurz vor dem Anfärben zugeben	120 µl

PGM (Phosphoglucomutase)	
Tris-HCL-Vorpuffer pH 8,0 a-D-Glucose-1-phosphat (G 7000) a-D-Glucose-1-phosphat (G 1259) MTT NADP-Lösung MgCl2-Lösung PMS-Lösung	50 ml 48 mg 24 mg 12 mg 3,2 ml 1,6 ml
G6P-Dehydrogenase	60 µl
kurz vor dem Anfärben zugeben	

SKDH (Shikimat-Dehyrogenase)	
Tris-HCL-Vorpuffer pH 8,0	50 ml
Shikimic acid	56 mg
MTT	12 mg
NADP-Lösung	6,4 ml
MgCl2-Lösung	1,6 ml
PMS-Lösung	1,6 ml

Zymogramme

H 6 Phosphogluconat Dahxdrogenæe	4 + + + + + + + + + + + + + + + + + + +	Phosphoglucos e is omeras e	Phos phogluco-Mutase negrons +	Shikimat Dehydrogenase moreoner
вевон	< □ ∪	<u>0</u> < m	V 4	XX × m
EST a Esterase	A COORDING 1	IDH Isocitrat-Dehydrogenase almo	MDH Malat-Dehydrogenase A	MNR Menadion-Reduktase oceanor
ш		=	Σ	Σ
Aspertat Amino Transferas e and	+	Aconitas e reconer +	Alkahot-Dahurogensae Gazanat diner polymer pol	Aminopeptidase recover
AAT		ACO *	ADH GDH ^ ^ ^	d

Tabelle 1: Allelfrequenzen aller 44 Bestände für 18 Genorte

1855 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	, 6	AAT-B	2	9	_	0	₹ 6	ACO-A	2	9	~	8	က	ADH-A	4 د	9	_	80	-	0	m	AP-A (LAP) 4 5	9	۲	∞
1. 1. 1. 1. 1. 1. 1. 1.] 1																				
1	0,92	0,92	9	•	•		. 0,01		0	_		0,044	0,010	0,549	960'0	0,015	0,186	860'0		0,010	_		_	_		
 4. 0.000 0.001 0.003 0.024 0.024 0.024 0.005 0	96'0	96'0	3							_		0,017	0,023	0,640	0,103	060'0	0,107	0,020		,	0,237 (0	_	_		
1. 1. 1. 1. 1. 1. 1. 1.	0,007 - 0,93	0,93	3		0,000				_		_	0,037	0,027	0,647	0,103	0,087	060'0	0,010		0,003	0,213 (_			
	- 0,95	96,0	9	•	•	•	00'0		_			0,029		0,603	0,113	0,020	0,216	0,005	0,015		0,225 (_		•	
1, 1, 1, 1, 1, 1, 1, 1,	96'0	0,96	75		•	•	. 0,01			_	Ū	0,005	0,015	0,663	0,097	0,061	0,138	0,010	0,010		0,393	O	_	_		
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6'0	6,0	20				00'0					0,026	0,043	0,570	0,139	660'0	660'0	0,020	0,003		0,189 (_	_	Ŭ		
 1. 0.003 1. 0.004 1. 0.005 1. 0.005	50 -	0,	12	•	0,010		. 0,01				_	0,064		0,475	0,083	0,020	0,358				0,279 (_	_	- 6	•	
1,	,0	ó	920	•	0,00		00'0				Ŭ	0,023	0,030	0,547	0,150	0,113	0,100	0,037			_	_	_	_		
1, 0,000 1, 0,000 1, 0,000 0,	°0 .	ő	326	•	•	•	0,00		0	•		0,039		0,593	0,054	0,029	0,240	0,044			_	_	_	- 2	0,010	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	. 0	ó	930	•	'	0,0	50	0,140	0			0,003	0,033	0,590	0,213	0,080	0,037	0,043		,	_	_		- 2	0,007	
 1007 1008 1008 1008 1009 <l< td=""><td>· .</td><td>Ó</td><td>936</td><td>٠</td><td>0,00</td><td></td><td>. 0,01</td><td></td><td>Ŭ</td><td>'</td><td>0,010</td><td>0,113</td><td></td><td>0,510</td><td>0,078</td><td>0,034</td><td>0,265</td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td>_</td><td></td><td></td></l<>	· .	Ó	936	٠	0,00		. 0,01		Ŭ	'	0,010	0,113		0,510	0,078	0,034	0,265				_	_		_		
1. 1. 1. 1. 1. 1. 1. 1.	0 .	0	,943	٠	0,00		. 0,01			_	_	0,043	0,007	0,677	0,087	0,083	0,083	0,020			_	_		_	'	
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0	,957		'		. 0,01					0,030	0,010	0,547	0,140	0,087	0,137	0,050			_	Ů				
0.05 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.010 0.018 0.019 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.024	0,005 0,020		0,892	0,015			. 0,01		_		_	0,029	0,025	0,485	0,162	0,039	0,255	0,005			_	_		_		
 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0,946						_	_	_	0,108		0,387	0,078	0,029	0,387	0,010			_		_	_		
1. 1. 1. 1. 1. 1. 1. 1.			0,960	•	0,010					_		0,027	0,020	0,580	0,110	0,087	0,143	0,033				_	_			
0.01 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1	0,005		0,941	٠	9000				_			0,088	•	0,539	0,044	0,054	0,255	0,020								
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 200,0		0,910						_			0,040	0,033	0,613	0,097	0,063	0,083	0,070		,						
0.016 0.02 0.020 <th< td=""><td>0,003</td><td></td><td>0,910</td><td></td><td></td><td></td><td>00'0</td><td></td><td></td><td></td><td></td><td>0,010</td><td>0,023</td><td>0,713</td><td>0,123</td><td>0,027</td><td>0,097</td><td>0,007</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></th<>	0,003		0,910				00'0					0,010	0,023	0,713	0,123	0,027	0,097	0,007					_			
0.01 0.01 0.10 0.11 0.11 0.12 0.11 0.02 <t< td=""><td></td><td></td><td>0,943</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td>0,033</td><td>0,007</td><td>0,570</td><td>0,140</td><td>0,103</td><td>0,083</td><td>0,063</td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td></t<>			0,943						_		_	0,033	0,007	0,570	0,140	0,103	0,083	0,063			_		_			
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- 0,015	2	0,931				. 0,01		_		_	0,034	0,039	0,480	0,147	0,049	0,186	0,064		,	_		_			
 6. 0.22 7. 0.02 8. 0.02 9. 0.03 9. 0.04 9. 0.04	- 200,0		0,960	•	•	•	00'0					0,007	0,013	0,683	0,100	0,080	0,083	0,033						_		
 6 0,029 7 0,029 8 0,029 9 0,039 9 0,039 9 0,039 9 0,039 9 0,039 9 0,049 9 0,049	0,003		0,973	٠	•	•	00'0					0,013	0,020	0,650	0,087	0,087	0,050	060'0	0,003			_				0,007
0.932 0.036 0.046 0.046 0.049 <th< td=""><td>0,019</td><td></td><td>0,932</td><td>•</td><td>0,025</td><td></td><td>. 0,01</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>0,209</td><td>0,073</td><td>0,107</td><td>0,612</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>•</td><td></td></th<>	0,019		0,932	•	0,025		. 0,01		_					0,209	0,073	0,107	0,612							3	•	
6.946 0.056 0.057 0.043 0.059 <th< td=""><td>0,010 -</td><td></td><td>0,932</td><td>•</td><td>0,00€</td><td></td><td>. 0,01</td><td></td><td></td><td>'</td><td>0,058</td><td>0,058</td><td>0,019</td><td>0,447</td><td>0,180</td><td>0,049</td><td>0,238</td><td></td><td>0,005</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td></th<>	0,010 -		0,932	•	0,00€		. 0,01			'	0,058	0,058	0,019	0,447	0,180	0,049	0,238		0,005			_				
 6.013 6.023 6.024 6.024 6.025 <li< th=""><th>- 0,005</th><th>2</th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th>_</th><th>_</th><th>0,098</th><th>0,005</th><th>0,505</th><th>690'0</th><th></th><th>0,309</th><th></th><th>0,005</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th></li<>	- 0,005	2							-	_	_	0,098	0,005	0,505	690'0		0,309		0,005			_				
1	- 200,0		0,950		0,013				_		_	0,017	0,030	0,543	0,177	0,060	0,150									
• 0,000 • 0,020 0,140 0,220 0,140 0,020 0,140 0,020 0,140 0,020 0,140 0,020 0,010 0,020 0,010 0,020 0,010 0,020 0,010 0,020 0,010 0,020 0,010 0,020 0,010 0,020 0,011 0,020 0,010 0,020 0,011<			0,961	٠	•	•	. 0,03			_	_	0,039		0,662	0,064	0,020	0,176	0,039		9000				_		
1	0,010 -		0,941	•	0,010		. 0,02		_	•	_	0,025	0,005	909'0	0,113		0,167	0,083			_	_		3	0,015	
 1. 0.005 2. 0.005 3. 0.005 4. 0.005 5. 0.005 6. 0.005 6. 0.005 6. 0.005 7. 0.005 7. 0.005 8. 0.005 9. 0.005	- 900'0		0,949	•	0,006		. 0,01		_	-	_	0,017	900'0	0,680	0,056	0,011	0,169	0,062		0,011	_	_	_	_		
1			0,954	•	0,00		00'0		_			0,056	•	0,485	0,117	0,051	0,270	0,020		0,010	_	_			'	
1			0,960		•	•	00'0			_	Ŭ	0,010	0,013	0,630	0,130	0,100	0,073	0,043		0,003	_	_			•	
1			0,967		0,007		00'0			_		0,020	0,003	0,717	0,060	0,077	0,063	0,053	200'0	0,003	_	_				
1			0,951	٠	0,010						_	0,078		0,578	0,088	0,015	0,235	0,005		9000	_	_				
1	0,006 0,006	9		٠	0,013			0,237		_	_	0,038	0,019	0,475	0,150	0,075	0,225	0,019		,	_			_		
- 0,003 0,004 0,0	0,003		0,952	•	0,007				_	_	_	0,003	0,027	069'0	060'0	0,093	0,097				_		_	_		
- - 0,005 0,010 0,110 </td <td>0,015 0,003</td> <td>က</td> <td>0,962</td> <td>٠</td> <td>0,005</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>0,008</td> <td>0,017</td> <td>0,725</td> <td>0,087</td> <td>0,043</td> <td>0,068</td> <td>0,052</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td>	0,015 0,003	က	0,962	٠	0,005	_					_	0,008	0,017	0,725	0,087	0,043	0,068	0,052			_	_		_		
0,007 0,007 0,008 0,009 0,009 0,009 0,009 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000			0,941	٠	•				•		_	0,040		999'0	0,064	0,005	0,198	0,025			_	_	_			
1			0,970	_	0,007				_		_	0,020	0,017	0,567	0,163	0,067	0,163	0,003		,	_	_				
- 0,010	0,010 0,034	4	0,830	_	•				_	_		0,034	0,010	0,471	0,146	0,029	0,286	0,010	0,015		_		_		٠	
0,0005 0,221 0,770 0,005 - 0,010 - 0,436 0,127 0,049 0,386 0,005 0,015 - 0,127 0,206 0,554 0,103 - 0,000	0,003		0,890	•	0,010		00,00			_	_	٠	0,010	0,730	0,063	0,097	0,097	0,003			0,290	Ů	_	- 2	•	
0,003 - 0,010 0,060 0,913 0,010 0,007 - 0,723 0,023 0,077 0,170 0,007 - 0,003 0,300 0,990 0,537 0,067 0,003 - 0,007 0,120 0,827 0,017 0,020 0,013 0,013 0,013 0,003 0,100 0,073 - 0,007 0,273 0,080 0,523 0,103 0,013	0,010 0,005	2		•	•		0,00		_	_		0,010		0,436	0,127	0,049	0,358	0,005	0,015	,	_	Ū	_		0,010	
7 - 0,003 - 0,017 0,120 0,827 0,017 0,020 0,013 0,577 0,133 0,083 0,100 0,073 - 0,007 0,273 0,080 0,523 0,103 0			006'0	•	0,005		. 0,01		0	_	_	٠		0,723	0,023	0,077	0,170	0,007		0,003	_					
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			0.927		0.003		0.01		0	_		0.020	0.013	0.577	0.133	0.083	0.100	0.073		0.007	0.273 (_	_		

Allelfrequenzen aller 44 Bestände für 18 Genorte (Fortsetzung)

	5 6	0.868 0.005		0,857 -	0,872 -	0,894 -	0,931 -	0,765 -	0,863	0,873 -	0,883 -	- 216,0	- 2881	0,922 -	- 2887	0,833 -	- 216'0	0,910 -	0,804 -	0,830 -	0,621 -	- 698'0	0,873 -	0,863	- 618,0	0,826 -	0,918	0,827	0,873 -	0,856 -	0,850 -	0,845 -		0,870 0,007	- 888'0	- 606,0
В	4	o ,	o o	0,0003 0,	o o	- 0	• ·	· 0	· 0	· 0	- 0,	· 0	· 0	•	, o	۰ 0	٠ 0	- 0	о́ о́ -	o o	0,019 0,	- 0	• •		· 0	ó ·		· 0	- 0	٠ 0	- 0	۰ 0		0,017 0,		0,013 0,
IDH-B	3	0.049	0,027	0,027	0,051	0,026	0,025	0,127	0,013	0,049	0,040	0,027	0,029	0,010	0,015	0,010	0,013	0,013	0,093	0,100		0,049	0,049		690'0	0,045	0,036	0,047	0,044	0,106	0,050	0,015				0,033
	2																		0,005																	
	-	0.078	0,107	0,113	0,077	0,079	0,044	0,108	0,123	0,078	0,077	0,057	0,083	0,069	0,098	0,157	0,070	0,077	0,098	0,070	0,005	0,083	0,078	0,093	0,113	0,129	0,046	0,127	0,083	0,038	0,100	0,140	0,094	0,070	0,068	0,050
	9			200'0		0,013	0,005		,	0,010		0,003	0,015		0,020		0,003		. 8	0,003	0,010		0,005	0,005			- 0.007									
	2	0.029	0,017	0,030	0,041	0,030	0,049	0,015	0,013	0,044	090'0	0,043	0,049	0,034	0,098	0,057	0,113	0,073	0,044	0,043	0,078	0,039	0,049	0,034	0,044	0,011	0,051	0,010	0,020	0,050	0,022	0,005	0,015	0,007	0,015	0,013
IDH-A	4	0.020	0,023	0,010	0,020	0,036	0,015	0,020	0,017	0,054	0,007	0,037	0,010	0,020	0,020	0,047	0,030	0,027	0,015	-0.023	0,034	0,049	0,049		0,010	0,011	0,031	0,010	0,064	0,013	0,013	0,017		0,007		0,013
₫	3	0.775	0,827	0,820	0,781	0,791	0,887	0,716	0,823	0,647	0,867	0,843	0,745	0,809	0,740	0,767	0,777	0,810	0,745	0,877	0,597	0,762	0,794	0,848	0,853	0,888	0,801	0,920	0,814	0,863	0,880	0,837	0,861	0,913	0,913	0,913
	2	0.142	0,123	0,100	0,158	0,119	0,044	0,186	0,133	0,201	0,063	0,067	0,162	0,118	0,118	0,127	0,077	0,083	0,172	0,073	0,194	0,136	0,098	0,078	0,083	060'0	0,117	0,053	0,103	690'0	0,080	0,127	0,114	0,063	0,073	0,053
	-	0.034	0,010	0,033		0,010	- 000	0,064	0,013	0,044	0,003	0,007	0,020	0,020	0,005	0,003	•	0,007	0,025	0,003	0,087	0,015	0,005	0,034	0,010		- 0.020	0,007		0,006	0,005	0,013	0,010	0,010		0,007
	2			0.010	<u> </u>		0,034			0,010					0,025							0,010	0,010	0,010	0,010								0,010			
	4	0.358	3	0.275			0,309	0,240		0,412			0,299	0,245	0,284				0,324		0,602	0,320	0,348	0,363	0,377	0,354	0,291		0,407	0,319			998'0		0,184	
GDH-A	3	0.206		0.245			0,279	0,319		0,235			0,225	0,348	0,304				0,299		0,160	0,330	0,314	0,333	0,275	0,281	0,316		0,333	0,300			0,297		0,403	
	2	0.426		0.466			0,358	0,382		0,338			0,431	0,402	0,373				0,377		0,214	0,311	0,328	0,245	0,324	0,360	0,378		0,260	0,369			0,327		0,413	
	-	0.010		0.005			0,020	0,059		0,005				0,005	0,015						0,024	0,029		0,049		900'0	0,015			0,013						
	9		0,020	0,023	0,036	090'0	- 0.067	;	0,083		0,037	0,147	0,010	- 00	: .	090'0	090'0	0,053	0,005	0,040			0,010				- 0.170	060'0		900'0	0,058	0,033		0,117		0,183
	2	0.015	0,023	0,047	0,061	0,162	0,029	0,010	0,147	0,005	0,083	0,093	0,015	0,020	0,005	0,100	0,077	0,203	0,069	0,067		0,049	0,010	0,020	0,093	0,034	0,031	0,050	0,059	0,075	0,135	0,038	0,005	060'0		0,120
4		0	0,0	ő	0,0	ó																		4	_							_		_		
	4	0.441		0,450 0,0			0,304	0,358	0,350	0,431	0,463	0,447	0,412	0,127	0,387	0,517	0,453	0,277	0,426	0.423	0,709	0,539	0,348	0,284	0,250	0,242	0,418	0,537	0,250	0,419	0,357	0,520	0,470	0,630	0,350	0,383
EST-A	3 4		0,357		0,577	0,411				0,431	0,463	0,447	0,412	0,221 0,127			0,203 0,453	0,320 0,277		0,207 0,533			0,348 0,348				0,413 0,418					0,280 0,520				0,163 0,383
EST	2 3 4	0.441	0,317 0,357	0,450	0,250 0,577	0,265 0,411	0,304	0,304	0,290	0,392 0,431	0,260 0,463	0,197 0,447	0,368 0,412	0,608 0,221 0,127	0,142	0,167			0,289		0,189	0,388		0,279	0,525	0,360		0,143	0,510	0,363	0,360		0,272	0,117	0,282	
EST		0.309 0.441	0,277 0,317 0,357	0,337 0,450	0,077 0,250 0,577	0,099 0,265 0,411	0,333 0,304	0,324 0,304	0,290	0,157 0,392 0,431	0,147 0,260 0,463	0,110 0,197 0,447	0,186 0,368 0,412	0,608	0,142	0,157 0,167	0,193	0,130	0,201 0,289	0,147 0,207	0,189	0,024 0,388	0,348	0,412 0,279	0,083 0,525	0,360	0,413	0,143	0,510	0,137 0,363	0,078 0,360		0,272	0,047 0,117	0,359 0,282	0,163
EST		0.225 0.309 0.441	0,277 0,317 0,357	0,143 0,337 0,450 0,270 0,338 0,377	0,077 0,250 0,577	0,099 0,265 0,411	0,044 0,289 0,333 0,304	0,005 0,324 0,304	0,110 0,290	0,157 0,392 0,431	0,147 0,260 0,463	0,110 0,197 0,447	0,010 0,186 0,368 0,412	0,608	0,005 0,461 0,142	- 0,157 0,167	0,013 0,193	0,130	0,010 0,201 0,289	0,007 0,103 0,260	0,005 0,097 0,189	0,024 0,388	0,265 0,348	0,412 0,279	0,083 0,525	0,360 0,360	0,413	0,143	0,162 0,510	0,137 0,363	0,078 0,360	0,123	0,272	0,047 0,117	0,359 0,282	0,147 0,163
EST	1 2	0.010 0.225 0.309 0.441	0,007 0,277 0,317 0,357	- 0,143 0,337 0,450 - 0,270 0,338 0,377	775,0 0,250 0,250 0,577	0,003 0,099 0,265 0,411	i - 0,044 0,289 0,333 0,304	- 0,005 0,324 0,304	- 0,020 0,110 0,290	- 0,015 0,157 0,392 0,431	0,010 0,147 0,260 0,463	0,007 0,110 0,197 0,447	3 - 0,010 0,186 0,368 0,412	0,025 0,608	- 0,005 0,461 0,142	- 0,157 0,167	. 0,013 0,193	- 0,017 0,130	- 0,010 0,201 0,289	0,003 0,007 0,103 0,260	- 0,005 0,097 0,189	- 0,024 0,388	0,020 0,265 0,348	- 0,005 0,412 0,279	- 0,049 0,083 0,525	0,006 0,360 0,360	0.077 0.143	- 0,180 0,143	- 0,020 0,162 0,510	- 0,137 0,363	- 0,012 0,078 0,360	0,008 0,123	0,252 0,272	0,047 0,117	- 0,010 0,359 0,282	0,003 0,147 0,163
	6 1 2	0.074 - 0.010 0.225 0.309 0.441	0,070 - 0,007 0,277 0,317 0,357	0,080 - 0,143 0,337 0,450 0,098 - 0,770 0,338 0,377	0,128 - 0,077 0,250 0,577	0,063 - 0,003 0,099 0,265 0,411	0,078 - 0,044 0,289 0,333 0,304 0,053 0,003 0,004 0,007 0,167 0,237 0,430	0,093 - 0,005 0,324 0,304	0,093 - 0,020 0,110 0,290	0,039 - 0,015 0,157 0,392 0,431	0,070 - 0,010 0,147 0,260 0,463	0,057 - 0,007 0,110 0,197 0,447	0,088 - 0,010 0,186 0,368 0,412	0,064 - 0,025 0,608	0,118 - 0,005 0,461 0,142	0,107 - 0,157 0,167	0,127 - 0,013 0,193	0,133 - 0,017 0,130	0,108 - 0,010 0,201 0,289	0,033 - 0,007 0,147 0,207	0,010 - 0,005 0,097 0,189	0,078 - 0,024 0,388	0,034 - 0,020 0,265 0,348	0,074 - 0,005 0,412 0,279	0,044 - 0,049 0,083 0,525	0,028 - 0,006 0,360 0,360	0,061 - 0,138 0,413	0,037 - 0,180 0,143	0,132 - 0,020 0,162 0,510	0,081 - 0,137 0,363	0,110 - 0,012 0,078 0,360	0,110 - 0,008 0,123	0,064 0,252 0,272	0,093 - 0,047 0,117	0,029 - 0,010 0,359 0,282	0,047 - 0,003 0,147 0,163
-в (ААР)	6 1 2	0.353 0.074 - 0.010 0.225 0.309 0.441	0,283 0,070 - 0,007 0,277 0,317 0,357	0,330 0,080 0,143 0,337 0,450 0,358 0,098 0,770 0,338 0,377	0,311 0,128 - 0,077 0,250 0,577	0,311 0,063 - 0,003 0,099 0,265 0,411	0,235 0,078 - 0,044 0,289 0,333 0,304 0,287 0,053 0,003 0,000 0,167 0,237 0,430	0,309 0,093 - 0,005 0,324 0,304	0,287 0,093 - 0,020 0,110 0,290	0,324 0,039 - 0,015 0,157 0,392 0,431	0,353 0,070 - 0,010 0,147 0,260 0,463	0,367 0,057 - 0,007 0,110 0,197 0,447	0,358 0,088 - 0,010 0,186 0,368 0,412	0,270 0,064 - 0,025 0,608	0,319 0,118 - 0,005 0,461 0,142	0,313 0,107 0,157 0,167	0,327 0,127 - 0,013 0,193	0,283 0,133 - 0,017 0,130	0,294 0,108 - 0,010 0,201 0,289	0,320 0,033 - 0,007 0,147 0,207 0.283 0.107 0.003 0.007 0.103 0.260	0,388 0,010 - 0,005 0,097 0,189	0,359 0,078 - 0,024 0,388	0,309 0,034 - 0,020 0,265 0,348	0,328 0,074 - 0,005 0,412 0,279	0,250 0,044 - 0,049 0,083 0,525	0,416 0,028 - 0,006 0,360 0,360	0,337 0,061 0,138 0,413 0.273 0.037 - 0.077 0.143	0,247 0,037 - 0,180 0,143	0,225 0,132 - 0,020 0,162 0,510	0,444 0,081 - 0,137 0,363	0,293 0,110 - 0,012 0,078 0,360	0,315 0,110 - 0,008 0,123	0,277 0,064 0,252 0,272	0,243 0,093 0,047 0,117	0,214 0,029 - 0,010 0,359 0,282	0,287 0,047 - 0,003 0,147 0,163
	4 5 6 1 2	0.098 0.353 0.074 - 0.010 0.225 0.309 0.441	0,177 0,283 0,070 - 0,007 0,317 0,357	0,147 0,330 0,080 0,143 0,337 0,450 0.118 0.358 0.098 0,70 0.338 0.377	0,061 0,311 0,128 0,077 0,250 0,577	0,119 0,311 0,063 - 0,003 0,099 0,265 0,411	0,093 0,235 0,078 - 0,044 0,289 0,333 0,304 0,060 0,287 0,053 0,003 0,000 0,167 0,237 0,430	0,059 0,309 0,093 - 0,005 0,324 0,304	0,073 0,287 0,093 - 0,020 0,110 0,290	0,039 0,324 0,039 - 0,015 0,157 0,392 0,431	0,037 0,353 0,070 - 0,010 0,147 0,260 0,463	0,110 0,367 0,057 - 0,007 0,110 0,197 0,447	0,054 0,358 0,088 - 0,010 0,186 0,368 0,412	0,142 0,270 0,064 - 0,025 0,608	0,083 0,319 0,118 - 0,005 0,461 0,142	0,143 0,313 0,107 0,157 0,167	0,053 0,327 0,127 - 0,013 0,193	0,077 0,283 0,133 - 0,017 0,130	0,127 0,294 0,108 - 0,010 0,201 0,289	0,090 0,320 0,033 - 0,007 0,147 0,207 0.143 0.283 0.107 0.003 0.007 0.103 0.260	0,218 0,388 0,010 - 0,005 0,097 0,189	0,136 0,359 0,078 0,024 0,388	0,054 0,309 0,034 - 0,020 0,265 0,348	0,069 0,328 0,074 - 0,005 0,412 0,279	0,103 0,250 0,044 - 0,049 0,083 0,525	0,034 0,416 0,028 - 0,006 0,360 0,360	0,041 0,337 0,061 0,138 0,413 0,000 0,0	0,077 0,247 0,037 - 0,180 0,143	0,157 0,225 0,132 - 0,020 0,162 0,510	0,019 0,444 0,081 - 0,137 0,363	0,130 0,293 0,110 - 0,012 0,078 0,360	0,073 0,315 0,110 - 0,008 0,123	0,104 0,277 0,064 0,252 0,272	0,120 0,243 0,093 0,047 0,117	0,184 0,214 0,029 - 0,010 0,359 0,282	0,090 0,287 0,047 - 0,003 0,147 0,163
	3 4 5 6 1 2	0.353 0.074 - 0.010 0.225 0.309 0.441	0,177 0,283 0,070 - 0,007 0,317 0,357	0,330 0,080 0,143 0,337 0,450 0,358 0,098 0,770 0,338 0,377	0,061 0,311 0,128 0,077 0,250 0,577	0,119 0,311 0,063 - 0,003 0,099 0,265 0,411	0,235 0,078 - 0,044 0,289 0,333 0,304 0,287 0,053 0,003 0,000 0,167 0,237 0,430	0,525 0,059 0,309 0,093 - 0,005 0,324 0,304	0,547 0,073 0,287 0,093 - 0,020 0,110 0,290	0,593 0,039 0,324 0,039 - 0,015 0,157 0,392 0,431	0,537 0,037 0,353 0,070 - 0,010 0,147 0,260 0,463	0,407 0,110 0,367 0,057 - 0,007 0,110 0,197 0,447	5 0,485 0,054 0,358 0,088 - 0,010 0,186 0,368 0,412	0,270 0,064 - 0,025 0,608	0,475 0,083 0,319 0,118 - 0,005 0,461 0,142	0,430 0,143 0,313 0,107 0,157 0,167	0,487 0,053 0,327 0,127 - 0,013 0,193	0,497 0,077 0,283 0,133 - 0,017 0,130	0,466 0,127 0,294 0,108 - 0,010 0,201 0,289	0,320 0,033 - 0,007 0,147 0,207 0.283 0.107 0.003 0.007 0.103 0.260	0,379 0,218 0,388 0,010 - 0,005 0,097 0,189	0,136 0,359 0,078 0,024 0,388	0,309 0,034 - 0,020 0,265 0,348	0,520 0,069 0,328 0,074 - 0,005 0,412 0,279	0,583 0,103 0,250 0,044 - 0,049 0,083 0,525	0,522 0,034 0,416 0,028 - 0,006 0,360 0,360	0,337 0,061 0,138 0,413 0.273 0.037 - 0.077 0.143	0,640 0,077 0,247 0,037 0,180 0,143	0,441 0,157 0,225 0,132 - 0,020 0,162 0,510	0,450 0,019 0,444 0,081 0,137 0,363	0,450 0,130 0,293 0,110 - 0,012 0,078 0,360	0,493 0,073 0,315 0,110 - 0,008 0,123	0,535 0,104 0,277 0,064 0,252 0,272	0,530 0,120 0,243 0,093 0,047 0,117	0,524 0,184 0,214 0,029 - 0,010 0,359 0,282	0,287 0,047 - 0,003 0,147 0,163

Allelfrequenzen aller 44 Bestände für 18 Genorte (Fortsetzung)

	9										0,010	0,007												0,003	0,003		,					,						,	,				,			·
	2													0,003												900'0																				
4	4		0,010	0,020	0,027			0,007		0,007	0,005		0,010	0,023				0,033			0,027		0,005	0,007		,	,					,	0,010		0,003		0,025	0,002	0,003				,	0,010	,	200'0
6РGDН-В	3		0,971	096'0	0,967	0,985	0,964	0,904	0,985	0,963	0,951	0,967	0,936	0,950	0,937	1,000	1,000	0,957	0,995	266'0	0,973	0,983	0,956	0,963	0,920	0,951	0,995	0,956	0,963	0,980	966'0	0,972	0,913	0,950	0,970	0,975	0,775	0,987	0,948	0,985	096'0	0,995	0,993	0,926	766,0	066'0
	2		0,020	0,020	0,007	0,015	0,036	0,089	0,015	0,027	0,034	0,023	0,054	0,023	0,063			0,010	0,005	0,003		0,017	0,039	0,023	0,077	0,034	0,005	0,039	0,017	0,010	0,005	0,028	0,077	0,050	0,027	0,020	0,200	0,012	0,050	0,015	0,037	0,005	0,007	0,064	0,003	0,003
	1									0,003		0,003												0,003		0,010	,	0,005	0,020	0,010		,				0,005		,			0,003				,	
			44	20	47	20	26	03	92	17	10	10	20	20	13	15	15	27	15	23	20	20	15	20	20	15	59	25	20	05				20	10			23	23	20	20	10	30	05	53	30
	4		_	17 0,007		78 0,020		89 0,003	59 0,005	73 0,017		73 0,010				47 0,015									50 0,007		15 0,029	_			5			20 0,007		93							00'0			33 0,030
6PGDH-A	3		980'0 9	0 0,117	_	0,078		90,089	12 0,059	20 0,073	3 0,088	3 0,073	5 0,132	060'0 0	3 0,063	0 0,147	9 0,132		3 0,078	_	_	_		_		_	_	_	_	1 0,034	.5 0,010		_	_		_	_		_	_	0 0,020	6 0,015		٠.	_	7 0,033
19	2				_	8 0,804	_	9 0,768	4 0,882	0 0,820	9 0,863	3 0,813	4 0,775	0 0,820	0 0,803	9 0,770	4 0,799	_	4 0,853	_	068'0 0	_	_	_			_	_	_	9 0,931	_			_	_	_	_	0 0,947	_	_	0 0,910	996'0 0	3 0,927	9 0,882	_	0 0,917
	-		0,103	0,067	080'0	0,098	0,082	0,139	0,054	060'0	0,039	0,103	0,074	0,070	0,120	690'0	0,054	0,077	0,054	•	0,050	0,093	0,113	060'0	0,197	•	0,015	0,02	0,053	0,029	0,015	0,07	0,061	0,140	0,080	0,074	0,031	0,020	0,103	0,040	0,050	0,010	0,043	0,059	0,020	0,020
	6		0,123	0,040	0,047	0,152	0,051	0,079	0,186	0,070	0,132	0,073	0,176	0,030	0,067	0,113	0,123	٠	0,147	0,027	0,017	0,067	0,049	-	0,070	0,087	0,150	0,186	_	0,162	0,137	0,157		_	0,070	0,157		0,110	0,052	0,129	0,080	0,189	0,167	0,172	0,190	0,027
	8		٠	•	•	٠	•	٠	•	0,010	•	•	•	٠	•	٠	•	•	•	•	•	•	•	0,003	•	•	•	•	0,003	•	•	•	•	0,003	•	•		0,007	٠	•	•	•	0,003	•	•	•
	7		٠	0,013	0,007	٠	٠	0,023	0,005	0,007	0,005	0,003	0,015	0,017	٠	٠	٠	0,030	٠	0,007	0,010	0,010	0,005	٠	0,003	0,015		0,015	0,023	0,015	0,005	1	0,005	0,003	0,003	٠	0,006	0,005	0,010	٠	0,013	٠	0,003	0,025	0,003	0,007
4	9		0,025	0,023	0,013	0,005	0,015	0,007	0,005	•	0,010	0,010	0,005		0,003	0,098	0,010	0,020	0,029	0,003	0,020	0,010	0,025	0,010	0,020	0,019	0,063	0,020	0,040	0,010	0,015	0,022	0,020	0,003		0,025	0,031	0,037	0,008	0,015	0,030	0,024	0,013	0,025		0,010
MNR-A	2		0,044	0,027	0,053	0,039	990'0	0,079	0,059	0,050	0,078	0,030	0,049	0,057	0,050	0,044	0,113	090'0	0,074	0,017	0,007	0,057	0,083	0,080	0,107		0,049	0,029	0,043	0,049	0,029	0,017	0,051	0,040	0,053	0,039	0,062	0,018	0,075	0,099	0,040	0,015	0,020	0,029	0,023	0,037
	4		0,716	0,793	0,793	0,794	0,821	0,715	0,721	0,833	0,765	0,827	0,691	0,860	0,793	0,735	0,740	0,763	0,662	0,853	0,917	0,820	0,760	0,823	0,763	0,879	0,718	0,735	0,830	0,755	0,799	0,787	0,724	0,853	0,870	0,721	0,638	0,817	0,830	0,723	0,830	0,743	0,793	0,691	0,747	0,910
	3		0,078	0,103	0,070	0,010	0,036	0,089	0,010	0,030	0,010	0,047	0,059	0,037	0,073		0,010	0,117	0,059	0,093	0,030	0,030	0,078	0,073	0,030		,	0,015		0,010	0,005	,	0,015	0,023	0,003	0,054	0,031	0,005	0,025	0,025		0,029	,	0,054		0,010
	2		0,015		0,017		0,010	0,007	0,015			0,010	0,005		0,013	0,010	0,005	0,010	0,029			0,007		,	0,007		0,019		0,013		0,010	0,017	0,005	0,003		0,005	,	0,002	,	0,010	0,007		,	0,005	0,037	
	4							0,007						,010			0,010												,										,003						0,007	
0	3		0,054	,	0,017			0,013 0				0,007	_				•	0,010	0,015	0,007	0,047	0,037	0,059	0,010	,003		0,010	,025	0,003	0,074	0,059	0,017	0,010	0,003	,003		0,013	0,015	0,020 0	0,015	0,013	0,019			0,013 0	
MDH-C	2			2,987	_	0,917		0,901 0				0,993 0		0,880		986'0	0,951						_				0,985 0				٠.										_	0,874 0	0,987		_	0,993
	1		_		0,060 0,				_	_					0,107 0,						0,043 0,								0,047 0,				0,056 0,				0,262 0,		_	_	_			_	0,050 0,	
			_								o,																			_					ó	o o	0,	oʻ		0	ó	0	ó	ó	ó	ó
	5			00'0	0,027	'	•				'	'	0,010			•																_			_	'			0,025		'	'	'		•	
В	4		0,137	0,027	0,117	0,123	•	0,089	0,083	0,087	0,020	0,020	0,103	0,097	0,030	•			0,132		090'0				0,047		0,019		0,007							0,029	•	0,012	0,062	0,054	•	0,092	•	0,064		0,033
MDH-B	3		0,775	0,897	0,810	0,828	0,980	0,858	0,804	0,857	0,946	0,893	0,814	0,823	0,907	0,941											0,961		0,960					0,863		0,936	0,988	0,965	0,855	0,936	0,980	0,898	0,923	0,863	0,937	0,953
	2		0,088	0,070	0,043	0,049	0,020	0,043	0,113	0,050	0,034	0,087	0,074	0,027	0,037	0,059	0,064	0,030	0,034	0,007	0,040	0,043	0,029	0,023	0,023	0,034	0,010	0,039	0,027	0,103	0,069	0,039	0,005	0,050	0,047	0,034	0,013	0,023	0,058	0,010	0,020	0,010	0,070	0,074	0,063	0,013
	-			٠	0,003	•	•	٠	٠	0,007	•	٠	•	٠	٠	٠	٠	٠	•	•	•	٠	•	٠	0,003	0,019	0,010	•	•	•	•	٠	٠	٠	٠		٠	•	٠	٠	٠	٠	0,007	•	•	•
Pocus	Allel	Population	-	2	8	4	2	9	7	8	6	10	£	12	13	4	15	16	17	18	19	20	77	22	23	24	22	26	27	28	53	30	31	32	33	34	32	36	37	38	39	40	41	45	43	4

Allelfrequenzen aller 44 Bestände für 18 Genorte (Fortsetzung)

	9			0,003	0,007		0,010	0,007		0,003				0,003						,					,	,												,	0,005		,					,
	2		0,039	0,067	0,053	0,015	0,051	0,116	0,015	0,040		0,017	0,010	0,037	0,063	0,020	0,005	0,020	0,005	0,010		0,033	0,005	0,027	0,007	0,010	0,010	0,020	0,023	0,010		0,011	0,020	0,020	0,057	0,015	0,150	0,002	0,028	0,005	0,003	0,015	0,003	0,025	,	0,010
4	4		0,025	2,057	260'0	0,015	2,082	660'0	0,015	0,057	0,005	7,037	0,029	0,043				0,077				0,023	0,015	0,047	0,017	3,005	2000	0,015	0,043	0,025	0,025	0,034	0,015	0,040	0,083	0,025	0,013	0,023	0,030	0,025	0,023	0,053	0,020	0,020	2,037	0,047
SKDH-A	3),637) 265'(_),694 (_	_	_	_	_		_	_			0,627 (0,677 (0,718 (_	_	_	0,628 (_	_	_	_),755 (),728 (),833 (), 777, (),847 (,681),770 (),620 (
	2		_	_		_		_	0,255 0	Ŭ	_	0,210	_	_	_	_	_	_	_	_	_				0,300	_	0,267 C	_	_		_	_	0,327 0	_	_	_	_	_	_	_	_	Ŭ	0,120 C	٥	U	0,323 0
	_		0,005	_	_	_	0,005 0	_	•	0 -	0,015 0			0,007				0 -		0 -	0		0,010 0			0,015 0		0,005 0		_	0,034 0			0 -	0	•	0 -	0 -	0 -			0,019 0	_		0	0
	 		•		0		0				0		0	0									•			0		•		•	•		0									•	0			
	7			•	•	•	•				•		•	•					•				•						10 0,003		•	•	•		•	•		. 35			. 78					·
	9		4	0		4		_	_	7 0,003		7 0,003		3	3 0,003	4	- 6	- 2	4	- 2	- 2	3	4	3		5 0,015			3 0,010	4	4			0 0,007	- 0			2 0,035		- 0	0,03		0,033		3 0,037	ا د
4	2		_		•	_	Ū		_		_	Ŭ	Ū	0 0,103	3 0,113	_	8 0,039	3 0,097									1 0,044	_	_	3 0,044	_	_				_	_	_	5 0,080	2 0,040	- 2	3 0,024	3	0	_	0
PGM-A	4		998'0		_	_		Ī	9 0,838		_	Ŭ	_	7 0,840	_	1 0,843	0,858	_	0,897	_	3 0,803	7 0,840			_	_	_	_	_	_	_	_		_		_	_	_	_	0,812	_	5 0,743	0,793	0,775	_	0,820
	3		_	_	_	_	_	0,017	0,039	_	Ī		_	0,007	Ĭ		0,025		0,005	_	_	Ū		0,007			0,029						_		_	_	0,212		_	0,020		0,005	-	0,074		0,017
	2		_	0,100	0,060	0,093	0,128	0,023	0,088	0,073	0,098	0,050	_	0,050	0,067	0,078	0,078	0,063	0,064	060'0	0,037	0,050	0,103	0,100	0,077	0,461	0,117					_	0,051	0,053	0,063	_	_	_	_	_	0,097	0,223	0,173	0,064	0,080	0,110
	~		0,005	•	•	•	٠	٠	•	٠	٠	•	0,020	٠	٠	٠	•	٠	•	•	٠	٠	•	٠	•	•	٠	•	٠	•	0,005	•	•	٠	٠	٠	0,006	0,002	0,003	•	•	•	٠	0,005	٠	•
	6				0,003	0,005				,	0,010									,					,								0,010					,			0,003			0,005	,	
	8		0,054	0,077	0,060	0,064	0,092	0,063	0,044	0,047	0,123	0,120	0,078	0,053	0,097	0,064	690'0	0,063	0,088	0,080	0,087	0,093	0,113	0,073	0,107		0,049	0,078	0,073	0,074	0,044	0,079	0,097	0,087	0,050	0,039	0,112	0,063	0,045	0,045	0,040	0,087	0,093	0,039	0,013	0,057
	7						0,015	200'0		,		,		200,0			0,010			,		0,010			0,003													0,002	0,003		,	0,010				,
	9		0,828	0,780	0,807	0,833	0,745	0,821	0,755	0,767	0,760	0,713	0,873	0,757	0,743	0,824	0,755	0,760	0,799	0,797	0,787	0,743	0,745	0,783	0,777	806'0	0,825	998'0	0,833	998'0	0,784	0,820	0,770	0,810	0,807	0,892	0,831	0,872	0,815	0,842	0,840	0,752	0,770	0,819	0,843	0,847
PGI-B	2			0,010	0,003	0,010	,	0,003		,		,		0,010	,			200,0		,	,	,		,	200,0	,	,		,			,		0,003	0,003		,	,	,		,		,		,	
_	4			0,010	,	0,015	0,015	,023 (900,	0,013		,	0,010	0,037	0,027			0,010 (200'(200'(,		0,010		0,003			0,011) 280'(0,007	,005		0,000	900'0	0,005	0,003	,015		900'0	,	,
	က			_		_	_	_	_	_	_				_			0,053 (0,027				0,047					_		_			0,030				_	_		_	0,053		0,060	0,017
	2		_		_	_	•		0,123 0		_														0,050										0,103 C			_	_	_	Ţ	_		_		_
	_			0	0	•	0	0	•	0	0,029 0			0	0	0	•	0	0,020 0						0,010 0	0	0 -	•	0	•		0	0	0	0	•	0 -	0	0	•	0	0,005 0	0		0	0
	 		စ္တ	13	83	_		23	4	50			52	50	73	15	*	13								61	4	6	13	55	20	17	50	17	20	*	61	75	20	22	33	•	77	4	33	72
	4		_	_	_	90,010	. 68	38 0,063	7 0,044			30 0,057		97 0,020	17 0,073	31 0,015		30 0,013			0,010	3 0,020		37 0,010				7 0,049		7 0,025								30 0,002	3 0,050	0,005	57 0,003	Σ.	30 0,007	_		70 0,027
PGI-A	3		_	_				9,768	9 0,917					3 0,897				3 0,960							3 0,940										7 0,843					_		_	_	_		0,970
	2			_		_			0,039			0,083		0 0,063	7 0,073			3 0,023				3 0,043					0,102				0,025	0,011			0,107	0,029	0,031	Ū		0,035	_	5 0,015	0,013	0,015	0,017	ا د
	-	Ę	'	0,017	0,077	•	0,010	0,00	•	0,007	0,010		•	0,020	0,00	•	•	00'0	•	•	•	0,00	•	00'0	٠	•	•	•	0,007	•	•	•	•	0,007	•	•	•	•	00'0	•	'	0,005	•	•	'	0,003
Locus	Allel	Population	-	7	3	4	2	9	7	8	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44

Tabelle 2: Übersicht über die genetischen Parameter für alle 44 Bestände für die 17 gemeinsamen Genorte

и	A_L	G _L	\mathcal{H}_{o}	\mathcal{H}_c	>	V gam	$\delta_{T~(a)}$	$\delta_{ au}$ (g)	$D_{j(a)}$	$D_{j(g)}$	щ
102	4,29	7,47	0,266	0,576	1,595	7.097.38	0,375	0,585	090'0	0,116	0,296
150	4,71	8,71	0,272	0,623	1,564	5.898.32	0,362	0,596	0,067	0,112	0,254
150	4,94	8,65	0,299	0,638	1,629	9.697.97	0,300	0,684	0,068	0,121	0,224
102	4,00	6,53	0,227	0,611	1,487	2.292.37	0,329	0,707	0,062	0,114	
86	4,24	7,65	0,242	0,631	1,464	1.483.32	0,319	0,737	990'0	0,115	0,254
151	4,88	9,35	0,294	0,583	1,638	12.658.7	0,391	0,865	0,076	0,139	
102	4,12	88'9	0,260	0,635	1,547	3.990.78	0,355	0,928	0,080	0,129	
150	4,71	8,59	0,236	0,618	1,466	1.829.23	0,319	0,897	0,057	0,102	
102	4,06	6,65	0,244	0,592	1,516	2.823.55	0,342	1,042	0,078	0,126	0,288
150	4,24	8,12	0,270	0,583	1,527	3.708.15	0,346	1,054	0,063	0,108	0,292
102	4,47	7,59	0,272	0,573	1,593	6.124.81	0,374	1,185	0,075	0,127	0,289
150	4,76	8,29	0,252	0,637	1,513	2.158.49	0,340	1,165	0,063	0,113	0,250
150	4,59	90'6	0,275	0,611	1,579	7.200.99	0,368	1,255	690'0	0,116	0,272
102	4,24	7,35	0,265	0,572	1,535	4.004.71	0,350	1,342	0,065	0,111	0,291
102	4,18	6,94	0,245	0,557	1,495	2.511.40	0,333	1,375	0,084	0,132	0,320
150	4,53	8,59	0,280	0,635	1,528	3.403.61	0,347	1,405	0,056	0,107	0,238
102	4,35	7,24	0,253	0,594	1,543	4.315.63	0,353	1,505	0,079	0,134	0,277
150	4,06	7,06	0,278	0,638	1,463	2.077.67	0,318	1,507	0,075	0,123	0,239
150	4,35	7,65	0,268	0,637	1,502	2.442.66	0,335	1,568	0,077	0,134	0,227
150	4,59	8,41	0,261	0,632	1,506	3.745.79	0,337	1,621	0,058	0,110	0,256
102	4,47	7,47	0,300	0,598	1,618	10.932.2	0,384	1,794	0,071	0,138	0,254
150	4,65	8,18	0,247	0,617	1,482	1.712.97	0,326	1,745	0,050	0,102	0,270
150	4,88	8,47	0.272	0,616	1,532	4.489.78	0,348	1,826	0,073	0,119	0,266
103	3,94	6,29	0,280	0,595	1,495	2.822.01	0,333	1,900	0,179	0,260	0,255
103	4,35	7,24	0,267	0,614	1,495	2.616.14	0,333	1,970	0,085	0,137	0,252
102	4.47	7.29	0.232	0.568	1,485	2.085.62	0.328	2,021	0.077	0.125	0.320
150	4,71	7,94	0,216	0,621	1,388	496.071	0,280	1,985	0,078	0,127	0,281
102	4.35	6.82	0.244	0.601	1.498	2.458.32	0.334	2.134	0.071	0.126	0.283
102	4.24	7.12	0,255	0.604	1,499	2.323.40	0.334	2,199	0.075	0.123	0,275
89	4,18	6,35	0,255	0,647	1,473	1.864.24	0,323	2,258	0,071	0,113	0,228
86	4,18	9,76	0,247	0,591	1,491	2.373.64	0,331	2,329	0,063	0,113	0,286
150	4,59	7,88	0,238	0,627	1,463	1.291.57	0,318	2,318	0,070	0,103	0,263
150	4,35	7,18	0,224	0,620	1,415	845.647	0,294	2,343	0,085	0,134	0,278
102	4,18	7,41	0,250	0,577	1,536	4.215.66	0,351	2,513	0,071	0,114	0,308
80	4,24	6,94	0,274	0,533	1,611	9.287.62	0,382	2,617	0,111	0,172	0,326
300	4,71	8,47	0,224	0,698	1,386	729.281	0,279	2,515	0,076	0,115	0,203
200	4,94	8,76	0,261	0,623	1,531	2.744.77	0,348	2,641	0,064	0,108	0,254
101	4,12	9,76	0,226	0,578	1,500	2.252.81	0,335	2,736	0,055	0,099	0,312
150	4,41	7,65	0,208	0,629	1,369	459.919	0,271	2,681	0,079	0,125	0,279
103	4,18	88'9	0,240	0,567	1,501	2.972.66	0,336	2,839	060'0	0,145	0,317
150	4,12	6,35	0,229	0,752	1,379	589.812	0,276	2,803	0,093	0,146	0,143
102	4,41	7,18	0,279	0,553	1,591	6.033.19	0,373	3,012	0,083	0,130	0,310
150	4,12	6,88	0,225	0,714	1,376	544.917	0,274	2,918	0,076	0,134	0,179
150	4,29	7,29	0,247	0,680	1,403	889.936	0,288	2,997	0,065	0,109	0,200
130	4.39	7.55	0.255	0.614	1.505	3,556.77	0.335	0.500	0.075	0.125	0.266
102	4,26	2,08	0,253	0,586	1,534	4.161.99	0,349	1,772			0,291
	 200 200			4,29 4,74 4,24 4,74 4,24 4,94 4,94 8,74 4,90 4,24 4,12 8,65 4,12 8,65 4,24 7,59 4,74 7,59 4,24 8,79 4,24 8,79 4,35 7,59 4,43 7,12 4,43 7,12 4,44 7,44 4,43 7,12 4,43 7,12 4,43 7,12 4,44 7,14 4,45 7,12 4,47 7,24 4,48 8,47 4,49 8,47 4,41 7,12 4,44 7,12 4,44 7,14 4,44 7,14 4,44 7,12 4,44 7,14 4,45 7,12 4,47 7,14 4,48 8,47 4,49 8,47 4,49 8,47 4,49	4,29 7,47 0,266 4,29 7,47 0,272 0,49 4,24 7,65 0,227 0,227 0,227 4,00 6,53 0,227 0,224 0,227 4,12 6,88 0,224 0,236 0,244 4,14 7,59 0,244 0,244 0,244 4,47 7,59 0,244 0,244 0,244 4,59 9,06 0,244 0,244 0,245 4,47 7,49 0,244 0,244 0,244 4,59 9,06 0,245 0,244 0,244 4,59 7,24 0,244 0,244 0,244 4,59 8,47 0,244 0,244 0,244 4,59 8,47 0,244 0,244 0,244 4,53 7,24 0,244 0,244 0,244 4,53 7,24 0,244 0,244 0,244 4,53 7,47 0,244 0,244 0,244	4,29 7,47 0,266 4,29 7,47 0,272 4,94 8,65 0,299 4,00 6,53 0,227 4,00 6,53 0,227 4,00 6,53 0,227 4,12 8,65 0,294 4,12 6,88 0,260 4,71 7,59 0,244 4,74 7,59 0,244 4,74 7,59 0,244 4,74 7,59 0,272 4,74 7,49 0,245 4,74 7,44 8,79 0,272 4,74 7,44 8,79 0,273 4,75 7,44 8,74 0,274 4,74 7,44 0,274 0,274 4,35 7,47 0,244 0,274 4,35 7,47 0,274 0,274 4,36 7,47 0,274 0,274 4,36 7,44 0,274 0,274 4,37 7,47	A _L G _L H ₀ H ₀ V 4,29 7,47 0,266 0,576 1,595 4,00 6,53 0,227 0,611 1,487 4,00 6,53 0,227 0,611 1,487 4,00 6,53 0,227 0,611 1,487 4,00 6,53 0,227 0,611 1,487 4,12 6,88 0,224 0,633 1,638 4,12 6,88 0,224 0,633 1,638 4,17 8,59 0,224 0,633 1,466 4,06 6,65 0,244 0,592 1,514 4,06 6,65 0,224 0,633 1,513 4,74 7,59 0,275 0,611 1,487 4,76 8,29 0,283 0,633 1,513 4,59 9,06 0,275 0,611 1,495 4,53 9,06 0,275 0,614 1,495 4,67 7,4 0,224<	A _L G _L H ₀ H ₀ V v _{gam} 4,29 7,47 0,266 0,576 1,565 7.097.38 4,29 7,47 0,272 0,638 1,564 7.097.37 4,90 6,53 0,227 0,611 1,487 2.292.37 4,00 6,53 0,227 0,611 1,487 2.292.37 4,00 6,53 0,227 0,611 1,487 2.292.37 4,00 6,53 0,220 0,633 1,564 1.283.22 4,00 6,53 0,240 0,631 1,484 1.283.22 4,00 6,55 0,240 0,633 1,644 1.828.32 4,18 8,12 0,240 0,633 1,644 1.828.32 4,16 8,12 0,247 0,617 1,543 1.248 1.248 1.543 1.548 1.548 4,18 8,14 0,247 0,517 1,529 2.442.66 1.482 2.448.37 1.448 2.448.37<	A _L G _L H ₀ H ₀ V V _{gam} 4,29 7,47 0,266 0,576 1,595 7,097.38 4,24 8,71 0,226 0,638 1,596 7,097.31 4,90 6,53 0,227 0,611 1,487 2,292.37 4,00 6,53 0,227 0,611 1,487 2,292.37 4,00 6,53 0,227 0,611 1,487 2,292.37 4,12 6,88 0,260 0,638 1,628 1,668.02 4,12 6,88 0,240 0,631 1,484 1,283.23 1,283.23 4,10 6,65 0,240 0,635 1,544 1,384 1,284 1,284 1,484<	A ₁ G ₂ H ₀ V V _{gam} β̄ _T (a) 4,29 7,47 0,266 0,576 1,595 7,097 β̄ _T (a) 4,29 7,47 0,266 0,576 1,595 7,097 β̄ _T 4,94 8,65 0,292 0,633 1,629 5,898.32 0,375 4,94 8,66 0,294 0,631 1,648 1,828 0,375 4,20 6,63 0,224 0,631 1,448 1,282,33 0,319 4,20 6,65 0,244 0,635 1,634 1,486 1,828,23 0,319 4,06 6,66 0,244 0,635 1,646 1,829,23 0,319 4,07 8,12 0,272 0,673 1,646 1,828,23 0,316 4,47 7,53 0,222 0,673 1,546 1,828,23 0,316 4,56 8,69 0,272 0,673 1,535 1,406 1,828 1,346 4,57 <	A ₁ G ₁ H ₀ V V _{gam} δ _T (a) δ _T (a) A ₁ G ₁ H ₀ H ₀ V V _{gam} δ _T (a) δ _T (a) 4,29 7,47 0.256 0.675 1,584 7,032 0.362 0.638 1,564 9.898.32 0.375 0.586 4,94 8.65 0.229 0.633 1,564 1,883 0.329 0.789 4,124 7,66 0.224 0.631 1,487 2.202.37 0.309 0.684 4,124 7,66 0.229 0.633 1,578 3.900.78 0.739 0.737 4,124 7,66 0.229 0.638 1,547 3.900.78 0.737 1,487 2.202.37 0.339 0.737 4,17 8,29 0.229 0.638 1,542 1,487 3.32 0.737 4,17 8,12 0.224 0.638 1,542 3.0078 0.737 1,148 1,243 3.32 1,148 1,448

Tabelle 3: Anzahl Allele nach Genorten (A_L) und ihr Potential zur Bildung unterschiedlicher Gameten (M_{gam})

<i>M_{gam}</i> 18 loci 8,71E+10	2,71E+10	6,80E+10	2,99E+10	3,06E+11	0.04	3,92E+10	1,79E+11			1,63E+11		3,19E+10	1,55E+11	2,26E+11	1,63E+11	1,02E+11	3,42E+10 7.05F+10	0,1	A 52E . 40	8,16E+10		4.30E+10		3,92E+10	1,83E+11		
M _{gam} 17 loci 2,18E+1 1,25E+1	5,42E+0 9,95E+0	1,36E+1	7,46E+0 1.63E+1	6,12E+1 2.03E+1	6,10E+1	9,80E+0	7,52E+1 3,58E+1	7,26E+0	6,83E+1	5,44E+1	1,31E+1 1,69E+1	7,96E+0	3,10E+1	5,64E+1 1.63E+1	3,27E+1	2,04E+1	1,33E+1	5,23E+1	3,14E+1	2,04E+1	1,21E+1	3,92E+1 1.07E+1	4,08E+1	1,31E+1	4,57E+1	1,33E+1 2,35E+1	
<i>A_L</i> 18 4,28	4,06	4,17	4,06	4,50	5	4,17	4,39			4,39		3,94	4,39	4, 44	4,39	4,28	4, 4	<u>:</u> f		, 4		4.11		4,11	4,39		4,24 4,26
A _L 17 4,29 4,71	, 4 , 4, 4	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4,0 6	4,47	4,59	4, 4 , 4	4,35 2,35	4,06	4,59	4,47	4,65 4,88	3,94	4,35	4,47 4,71	4,35	4,24	4, 4 Σ 4	4,59	4,35	4, 4	4,71	4,94 7.12	4,41	4,18	4,4 1,4	4,12 4,29	4,39 4,26
SKDH • v •	4 0 ư	4 π	o 4 4	ທ 0	4 -	+ 4 -	4 4	4 m	9 4	დ .	4 4	. 2	4 1	ი 4	. ro	4 -	4 rc	0 4	4 4	t 4	4 1	ა 4	4	יט ע	4	ω 4	4,39 4,40
PGM 4- 3	4 4 տ	א טו ע	ο 4 το	ro 4	€ 52	† 4 •	4 4	4 4	4	4	4 4	ۍ .	4 .	4 ro	4	rc -	4 4	t το	4 <	t 10	22 1	ა 4	က	 0	0.	4 4	4,32 4,40
Д Б 4 о о	, , 9 ,	. 10 10	o o 4	2 h	€ 52	t ()	ი	დ 4	- 9	ı O	2 2	. ო	2	4 ro	4	4 r	o ro	ာဖ	ဖျ	5 4	9 (ာ လ	9	~ <	t 9	4 4	5,20 5,13
Q 4 0 4 4	r ო ო ძ	r m ⊲	t N 0	w 4	4 0	າ ຕາ ຈ	4 ო	ကက	4	۸ .	4 ო	က	က	w 4	ო	m c	n c	9 4	თ ი	ე ო	ი .	4 W	က	ო ო	າ ຕ	ო ო	3,20 2,80
6PGDH -C 3	9 01 01 0) (1 4	t 4 4	w 4	0 4	- (ი ო	0 0	1 7	ကျ	ഗന	4	7	ო ო	က	%	νe	0 0	က ဂ	ာ က	ကျ	ლ ი	က	n c	س ۱	ი ო	2,70 2,53
6PGDH -B 4 4	+ 4 4 4	† † †	t 4 4	4 4	4 4	+ 4 -	4 4	ю 4	4	4	4 4	. ო	4 .	4 4	4	en c	Vα	9 4	4 ¢	ာ က	4 .	4 4	4	4 "	4	4 4	3,80 3,87
MN N 6 6 4 A 8 6 4 A	- 10 91	~ ~ «	9 0	~ 2	9 4	ာ ဖ ်	o o	ဖ ဖ	^	9	9 \	. 4	2	9 ~	ဖ	^	۸ ۵	- ∞	വ	9	ω (ာ ဟ	9	ro «	^	ပ သ	6,11 6,13
WDH 9 0 0 0 0	0 0 0 4	ო ო	9 64 0	w 4	· с	رم ۱	უ ო	0 6	ာက	က	നന	0 0	က	ო ო	က	ი ი	n m	ာက	თ ເ	1 က	ი .	4 ო	က	ო ი	ს დ	4 0	2,84 2,80
MDH 6 6 6 7	, w 0/4	r ω ⊲	t ო ო	4 4	4 0	۱ m -	4 4	0 4	4	ო -	4 4	. ო	4 (ω 4	4	ო -	4 ო	ာက	თ ი	, 0	ი.	4 ო	7	ო ო	ი ო	0 N	3,30 3,20
<u>Π</u> 4 ε ε 4	+ ო ო ო	ი ო ო	ი ო ო	ო ო	ကျ	ი ო (უ ო	ကက	ာက	4 (നന	4	က	ω 4	ო	ი ი	n m	ာက	თ ი	ാ ന	က	თ ო	2	ო <	t m	4 K	3,20 3,13
<u>у</u> 4 с с	ν υ 4 α	ο ο τ	ი ი ი	0 10	9 9	ວ ເດ ເ	ი ಅ	വവ	o co	ر د	ഗ ധ	9	2	റ	2	ro -	4 4	t (9	ري ح	τ ν	2	ა 4	2	ω r	01	4 r	5,05 4,93
GDH 4	S	Ŋ	4	Ŋ	-	† 4	ß			က		4	. 2	4	2	C -	4 4	t	·	3 4		4		က	4		4,20 4,20
EST • • • • • • • • • • • • • • • • • • •	4 ග	റം ഗ	റ വ	ი დ	9 4	. (2)	က ဝ	ഹ ധ) (၁	ဖ	ဟ ဟ	4	4 (ഗ ഗ	2	ro r	ი 4	υ 1	ഹ പ	о го	9	დ 4	2	4 @	4	ဖ ဖ	5,30 4,87
AP-B (AAP) 4	4 տ տ	4 @	o rv 4	က က	ro u	o 4 ≀	ი ი	n D	o co	5	ى بى	2	2	4 ro	2	5	4 ռ	υG	4 n) (0	2	ი ი	2	יט ע	ο ιο	വ വ	4,84 4,67
AP-A (LAP) 6 6	4 rv a	4 κ	ט יט נס	ο τυ	_	o - •	4 (ഗ ധ	^	ro o	ယ ထ	4	7	ഗ ഗ	· _	ıcı	۷ -) ဖ	۷ /	o ر	9 (ပ	2	4 <	t ro	ဖ ဖ	5,68 5,47
4 	~ ~ ~ ~	م ي د	9 ~	2 /	~	- 9 1	~ 9	~		7	~ ∞	4	∞ ι	,	. 0	9 1	۷ -	^	ω u	o	91	~ 9	7	ထ (d	^	2 /	6,70 6,33
90 4 40 9	ო თ თ თ	ט ט ע	ა ო 4	4 ro	۷ ح	t 10 (o 4	4 4	4	4 1	დ 4	. 4	4 .	4 4	5	ro r	ი 4	ρ 1	4 a	o 4	9 (တ ပ	2	ω r	4	വ വ	4,64 4,53
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 00	ი ო ო	o n o	ო ო	7 4	၁ က (ი 4	4 rc	ာက	ς, (നന	4	4 1	დ 4	8	4 -	4 ო	2 0	ო ი	o رو	4 1	ი ი	4	4 <	4	4 ო	3,43 3,20
Ž − 00	4 rv a	- α	ා ව ර	1 2	13	± 2 ;	12	<u>6</u> 6	20	23	23 5	24	25	26	5 8	53	3 6	32	33	35	36	38 38	39	4	1 45	4 4 4	⊘ alle ⊘ Alt

Tabelle 4: Anzahl potentiell aus den gefundenen Allelen bilbare Genotypen (N_{geno}) und die daraus hypothetisch bildbaren Genotyp-Kombinationen (M_{geno})

M _{geno} 18 loci 5,39E+18	4,26E+17	1,51E+18	8,80E+17	4,85E+19	7 7 7	2,30E+18 1,44E+18	C C C	3,03E+19		C 7	1,62E+19		4,07E+17	6,73E+18	0,14E+19	1,62E+19	4,70E+18	1,42E+18	3,45E+18		2,62E+18	3,13E+18		2,42E+18	!	5,82E+17	1,76E+19			
Mgeno 17 loci 5,39E+17 3,97E+19	2,84E+16 1,58E+17 6,77E+19	1,01E+17 2,79E+19	8,80 E+16 2,94E+17	3,23E+18	7,06E+18	2,30E+17 1,44E+17	1,02E+19	2,02E+18 5,22E+16	1,49E+18	7,69E+18	2, /UE+18 1.86E+19	4,34E+19	4,07E+16	4,49E+17	2.53E+19	1,08E+18	3,13E+17	1,42E+17	3,45E+17	6,68E+17	4,36E+17	3,13E+17	2,70E+19 2,97E+20	2,42E+17	1,62E+18	9,69E+16	1,76E+18	1,58E+17	8,91E+17	
⊘ 18 loci 13,8	12,4	12,0	12,8	14,7	7	13,4 - 4,5	1	7,		,	2,4		10,7	13 13 14	7,0	14,3	13,2	12,8	13,2		13,6	12,9		13,6		12,2	14,3			13,5 13,7
Ø 17 loci 14,1 17,8	7 4 8	11,8	12,0 0,0	14,7	16,9	13,6 4,0	16,2	12.4	14,9	16,9	7 7 7 7	18,9	10,8	13,2	16.5	14,2	13,1	12,9	13,4 4,6	13,0	14,0	13,1	18,8	13,8	14,5	12,5	14.5	12,4	14,6	4,8 8,8
SKDH -A 15	31 31 15	6 5	. 6 5	12	5 6 5	⊇ 2	9	2 6	9	ę ;	5 6	10	15	10 10	. 0	15	10	9 ;	ა ද	2 6	10	9 5	5 5	10	9 :	ਹ ਨ	6	9	10	5 7
PGM 4- 15	6 6 6	र्फ रू	6 5	t 0	ن د د د	≘ 2	ę \$	2 6	10	ę 9	2 6	10	15	9	5 6	9	15	9	10 14	5 6	9	र्घ द	5 5	9	9 !	ر د	5	10	10	2
₽ 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 38 5	5 6 6	3. 9	12 %	5 4 5	⊙ €	33	<u>ა</u> დ	10	33	<u>င်</u> က	38	9	হ হ	5 5	9	10	15	15	9 6	15	19	9 6	15	31	8 Ç	8 -	10	10	21 19
P 4 ≈ 0 5	6 0 6	. o C	ო დ	o 5	9 0	o o	ę ,	o	9	ę ,	ა 6	9	9	ပ ဖ	, e	9	9	9 (დ ද	2 დ	9	ဖ ဖ	6	9	9	છ હ	.	9	9	2
6РGDH -С 6	ი ო ო დ	∞ €	. 6 6	o 5	? თ ₹	- -	့	უ ო	က	ကဖ	o 5	9	10	ကဖ	o	9	က	က	9 0	ာ ဖ	9	ဖ ဖ	ာ ဖ	က	9	ო ო	.	က	9	၁
6PGDH -B 10 10	5 6 6	6 6	. 6 6	6 5	2 6 6	≘ 2	6	⊇	10	9 9	2	10	9	6 6	2	9	9	က	დ ද	2 6	9	o 5	2 6	9	9	6 %	<u>5</u>	10	10	ග ග
MNR + 2 18 88	3.4 2. 88	38 5	% %	38	33.	ઝ	ک 3	ક હ	31	88	ક હ	38	10	5 5	- 88	31	38	15	88 %	3 2	31	31	3 8	31	31	12	38	15	31	30 31
မှ မှ မှ မှ မှ မှ မှ မ	ა ო ო ნ	ဖ ဖ	ന ന	9 C) o c	ი დ	ဖ (െ ന	9	ဖ (့ ပ	9	က	ဖ ဖ	o	9	9	9 (ဟ ဖ	ာ ဖ	က	ဖ ဖ	o 은	9	9	. 0	9	10	က	9 2
MDH 6 0 5	ა ო ლ	. o 5	ဖ ဖ	6 5	9 9	უ ಅ	9	⊇ ო	10	ę ,	2 م	10	9	9	o	9	9	9	ဖ ဖ	၁ ဖ	9	നധ	- C	9	က	9 (.	က	9	^ ^
를 약 6 호 5	ပေ ပေ	ဖ ဖ	ဖ ဖ	9 (0	တဖ	o o	ဖ (့ ဖ	9	ဖ (2	9	9	ဖ ဖ	. e	9	9	9 (ဟ ဖ) ဖ	9	ဖ ဖ) ဖ	9	15	o ⊊	2 ဖ	10	9	^
⊒ 4 .5 5.5	3 9 2 6	र्फ र	र्फ र	% 5	3 3 5	2 2	15	د 5	15	5 5	ن ح	31	33	12	5 5	15	15	10	10	5 5	10	1 5	5 5	10	15	o f	5 5	10	15	18 7
GDH ∙ ∙	15	15	10	15	,	≘ 2	4	<u>.</u>		•	٥		9	ن 5	2	15	15	10	10		9	10		10	•	ဖ	10			= =
EST -A 31 31	3 12 5 E	3 12	31 31	12	. w 2	2 5	33	<u>ა</u> დ	31	3	9 6	31	10	; 9	<u>,</u> 6	15	15	15	2 بر	5 15	15	12	3 5	10	15	3 9	.	31	31	21 16
AP-B (AAP) 10 15	6 6 6	3 10	. t 0	र र	1 1 1 1	<u>.</u> €	ර ද	<u>ა</u> ლ	15	ر 3	<u>ი</u> ლ	31	15	ر 5	5 5	15	15	Ç ;	ე	5 6	15	ر د بر	<u>5</u> £	15	15	ઇ ત	5	15	15	12 13
AP-A (LAP) 31 31	10 12 33	6 5	က က	3	38.5	- 88	9 5	5 -	31	38	3 1	36	10	38	ა რ	38	15	38	5 3	38	31	15	<u>8</u>	31	15	9	<u>5</u>	31	31	25 23
4 4 88 88 88 88 88 88 88 88 88 88 88 88	8 9 9 9	12 88	۶ ۳ %	15	888	જુ સ્	38	5 88	38	38	9 88	36	10	36	9 88	31	3	38	33	98	31	38	88	31	38	36	38	15	38	35 32
4CO 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	<u>က</u> က တ	र्फ रू	9 (2	6 6	2 2 2	5 €	33	2	9	9	5 5	10	10	e ?	2	15	15	15	5 7	5 6	31	3 9	9 6	31	15	စ င်	2 2	15	15	15 4
AAT 60 00 00 00 00 00 00 00 00 00 00 00 00	ო ოდ	ဖ ဖ	ო ო	9 0	, n 2	ှ	ဖ (2	15	ۍ ب	<u>ი</u> ი	9	10	9	<u>c</u> 0	က	9	9	9 °	ာဖ	9	5 5	5 5	ო	9 :	9	2	10	9	8 ~
∑ - 00	4 က ထ	~ ∞	၈ ၃	= 5	<u>5</u> 7	± 1	19	2 8	19	5 2	5 27	23	24	52 5	5 2	28	53	30	33	33 8	34	32	37	38	93	6 4 5	42	43	44	⊘ alle ⊘Alt

Tabelle 5: Anzahl Genotypen nach Genorten G_L

18 loci 7,4 6,6	7,0	7,6	6,9	7,4	6,4 7,4 7,3	7,0 7,2 6,4 6,8	7,5 6,9	6,8 7,2	7,1
17 loci 7,1 7,7 7,5 6,4 6,8	6,6 8,6 6,6	• ,	6,6 7,7 7,1 6,9 6,0	, 7, 7, 8, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,	6,2 6,9	. 	4 ,6 ,7,7	6.0 7.0 8.0 8.0 9.0 9.0	7,0 6,8
SKDH-A 10 12 12 6	o 7 c o	o , − 0 6 8) / の ぷ / のの	ဖ ထယ	∠ 5 6 ∠	- യദ ഹയത	თ თ თდ ⊏	. 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,9 7,2
PGM-A 6 9 7 7 10	~ 9 s 0	n ထ ယ တ ယ	ာ ဖ လ က တလ	9 ~ 9	o ∨ 9 9	ာ ယော ဂလေတ	s -		8,9 6,6
PG-B 0 0 0 11 0 0 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	∞ ⊖ 0	o ≻ 4 0 8	8 2 8 8 7 2 9 0	∞ o Q	4 ⊱ ã ∞	9 ~ ~ ~ 6	2 8 2 7 8	8 0 7 7 7 7 9 8 9	8,4 7,7
A	ທ ທ ດາ ຜ	v 0	4 ω 4 4 ω ω	ო	က ပာ	ა 4 ი 4 ი ი	ი ი ი 4 0	4 4 % % 4 4 4	4,7 4,0
6PGDH-C 3 3 3 4	מ ט ט ע	თ თ ით ←	- - 4 0 0 0 0	4 ∕ ∞	4 01 4 4	t w u u u 4 u .	4 4 心 4 띲	u 4 u u u u u	3,3 7,1
6PGDH-B 9 8 8 8 8 7	1 8 1 0	> ∞) ,,,, 400	0 6 N	4 0 / 0	ა ი 4 თ ი თ I	~ ⊚ ൛ 4 页	6 6 6 7 6 7 6 7 6 7 9 7	6,7 6,8
∢	7 0 0 7	- 2 o 7 c	3 0 7 7 2 0 5	= = 5	2	6 0 0 0 0 0 1 1	, 5 2 2 5 5	. 1 2 2 0 3 0 0 0	10,6 10,5
MDH-C 3 3 3 5 5 6	ന വ സ	1 4 	ა 4 ი ი იიი	r 0 4 4	იო ი 4	ւ տ ա տ 4 4 ։	თ თ თ თ თ	ი ი 4 ი ი ი ი	4, 4 , 1
MDH-B 4 4 6 7 7 7 9 3 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ஸ ஶ 4 <	ო დ ი დ ქ	ი დ ც დ დ ი	ო დ თ	4 4 4 rc	0 4 0 4 4	4 4 ഗര	4 0 4 4 0 04	4,6 4,6
ე + ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა	4 ∞ ℃ ∠	1 4 το 4 ω	4 ω 4 4 4 4	0 0 0		ი 4 ო ო ო 4 -	4 ო ი ი ი	4 ∼ № 4 № 4 €	4, 4
⊒	a 6 e c	° 4	ο ο 2 α 0 τ	∞	4 0 0 ∨	- 0 8 0 - T	e , ∠ € 6	.c . ⊙ 4 ∞ / - ∿ ⊙	8,5 7,
GDH-A 7 8	ത	യ ത	o	9	9 7	9 6 × 8	6 ≻	9 9 7	11,1 7,8
EST-A 9 13 13 8 12 15	2 0 0 0	∞ € € €	. 7 4 ∞ 4 9 9	5 to to	0 ∠ 1 7	ლ 2 თ დ ღ :	5 = 0 8 6	6 6 7 7 7 8 9 9 1 9 1 9 1 1 9 1 1 1 1 1 1 1 1 1 1	12,0 9,4
AP-B (AAP) 10 13 11 10 10	1 2 1 9	o 0 0 0 7	. ∞	1	o	- 	5 4 o t t	5 6 6 7 6 7 6 7 7 6	10,9 10,4
AP-A (LAP) 12 13 12 10 10	ο Έ ∞ ξ	5 	2 7	= = 8	ο 4 6 0	7 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5, 6 ∞ 4 ±	: £	11,5 10,9
ADH-A 14 15 15 14 13	<u> </u>	ω ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε	4 რ 6 ზ ზ შ დ	6 6 6 6	ο 0 τ ε	2 2 0 £ £ £	5 = 7 4 5	. -	4,4 1,4,1
A	~ 0 4 ∉	ი დ დ ი	0 c 2 c c o 4	2 ∼ 2	0 ∨ 0 √	0 /0 /40	4 ∞ ռ ∞ [ν ο 4 ιο ιο ν α	6,3 6,1
φ	ო ოოი	1 w 4 0 V	. w 4 r 4 0 4	4 m m	4 4 4 4	t ν 4 4 ω ν	თ ო ი 4 ი	6 6 6 6 6 6 7 9	3,7 3,5
<u> </u>	~ ∞ o 5	5 2 6 7 8 4	2 1 2 4 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 28 8	24 25 26	38 30 33 33 33 33 33 33 33 33 33 33 33 33	35 36 37 37	8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	⊘ alle ⊘Alt

Tabelle 6: Beobachtete Heterozygo	tie H_{α}
-----------------------------------	------------------

Ho 18 loci 0,275	0,238	0,265	0,258	0,282	1	0,275 0,254		0,264			0,308		0,282	0,278	0,240	0,253	0,266	0,266	0,257		0,257	0,283		,	0,234	0,249		0,287		0,262
Ho 17 loci 0,266 0,272 0,299	0,227 0,242 0,294	0,259 0,236	0,244 0,270	0,272 0,252	0,274	0,265	0,280	0,253	0,268	0,261	0,300	0,272	0,280	0,267	0,232	0,244	0,255	0,255	0,247	0,238	0,250	0,274	0,224	0,261	0,220	0,240	0,229	0,278	0,225	0,255 0,253
SKDH- A 0,284 0,267 0,493	0,206 0,347 0.523	0,294 0,273	0,245 0,287	0,314 0.273	0,360	0,314 0,304	0,333	0,314	0,407	0,287	0,451	0,253	0,097	0,291	0,353	0,343	0,333	0,258	0,296	0,307	0,314	0,425	0,263	0,280	0,233	0,204	0,133	0,353	0,293	0,307 0,305
PGM- A 0,206 0,333 0.400	0,235 0,286 0,205	0,275 0,193	0,235 0,273	0,363 0,293	0,300	0,235 0,235	0,320	0,186 0,273	0,347	0,273	0,265 0,293	0,233	0,495	0,252	0,206	0,216	0,235	0,315	0,204	0,233	0,255	0,400	0,167	0,290	0,213	0,320	0,353	0,333	0,193 0,293	0,271 0,256
PGI- B 0,304 0,387 0.353	0,294 0,398 0,258	0,392 0,347	0,343 0,467	0,225 0.313	0,367	0,265	0,380	0,363	0,360	0,413	0,431	0,393	0,165	0,291	0,235	0,225	0,343	0,315	0,429	0,267	0,186	0,287	0,247	0,310	0,287	0,340	0,380	0,343	0,253	0,321 0,308
PGI- A 0,020 0,080 0,133	0,029 0,041 0.146	0,108 0,053	0,020 0,073	0,049 0.100	0,127	0,039 0,010	0,033	0,020	0,053	0,073	0,059	0,033	0,049	0,097	0,049	0,020	0,020	0,034	0,071	0,053	0,029	0,062	0,033	0,085	0,039	0,010	0,040	0,039	0,027	0,054 0,036
6PGDH -B 0,059 0,060	0,029 0,031 0,113	0,029 0,060	0,078 0,033	0,078 0,093	0,100	0,000 0,000	0,073	0,010	0,053	0,033	0,059	0,107	0,097	0,010	0,039	0,020	0,010	0,056	0,071	0,100	0,029	0,075	0,013	0,100	0.053	0,010	0,013	0,059	0,007	0,048 0,036
6PGDH -A 0,137 0,160 0.213	0,186 0,122 0,212	0,088 0,113	0,088 0,107	0,176 0.140	0,153	0,176	0,173	0,098	0,133	0,100	0,167	0,207	0,058	0,068	0,088	860'0	0,029	0,079	0,051	0,153	0,137	0,025	0,087	0,180	0,13 0,140	0,039	0,107	0,088	0,147	0,121 0,112
MNR- A 0,275 0,193 0,173	0,225 0,224 0,338	0,353 0,220	0,206 0,267	0,382 0.153	0,260	0,255	0,247	0,275	090,0	0,153	0,196	0,340	0,165	0,282	0,294	0,294	0,245	0,281	0,378	0,233	0,294	0,450	0,203	0,165	0,208	0,301	0,287	0,225	0,320 0,133	0,246 0,271
MDH- C 0,069 0,013	0,029 0,010 0,053	0,029 0,013	0,039 0,000	0,020 0,107	0,053	0,010	0,033	0,029	0,060	0,040	0,098	0,013	0,000	0,010	0,029	0,020	0,000	0,045	0,010	0,013	0,049	0,000	0,047	0,060	0.040	0,019	0,027	0,000	0,000,0	0,031 0,035
MDH-B B 0,078 0,087	0,088 0,020 0,026	0,137 0,020	0,010 0,027	0,020 0.060	0,013	0,020	0,027	0,078	0,027	0,033	0,000	0,033	0,029	0,000	0,010	0,069	0,059	0,022	0,020	0,033	0,029	0,000	0,023	0,050	0.000	0,029	090'0	0,078	0,033	0,035 0,048
DH-B B 0,206 0,240	0,176 0,204 0,172	0,118 0,133	0,422 0,247	0,235 0.200	0,153	0,137	0,173	0,216	0,153	0,167	0,343	0,360	0,456	0,233	0,235	0,255	0,314	0,315	0,163	0,153	0,255	0,187	0,267	0,280	0,228	0,194	0,167	0,235	0,153	0,226 0,238
DH- A 0,314 0,260 0,307	0,167 0,235 0,325	0,206 0,207	0,324 0,253	0,304 0,233	0,240	0,235	0,240	0,304	0,353	0,260	0,412	0,260	0,408	0,398	0,304	0,196	0,225	0,157	0,265	0,253	0,225	0,225	0,150	0,275	0,418	0,155	0,107	0,373	0,053	0,247 0,263
GDH -A 0,43	0,42	0,36	0,49	0,44	,	0,43 0,40		0,44		,	0,43		0,31	0,45	0,37	0,40	0,45	0,44	0,43		0,38	0,42		0	0,30	0,39		0,44		0,41 0,41
EST- A 0,373 0,620 0,527	0,363 0,459 0,629	0,392 0,593	0,441 0,587	0,451 0.480	0,640	0,037	0,653	0,480	0,533	0,713	0,412 0,487	0,553	0,524	0,621	0,412	0,549	0,578	0,517	0,429	0,553	0,382	0,450	0,487	0,455	0,370	0,398	0,507	0,539	0,460	0,502 0,431
AP-B (AAP) 0,657 0,460 0,513	0,539 0,469 0,583	0,441 0,413	0,441 0,513	0,392 0.513	0,553	0,520	0,540	0,559	0,527	0,533	0,480	0,527	0,447	0,544	0,343	0,412	0,422	0,427	0,408	0,427	0,529	0,488	0,567	0,515	0.580	0,485	0,533	0,510	0,520 0,493	0,494 0,478
AP-A (LAP) 0,598 0,487 0,487	0,520 0,459 0,550	0,549 0,527	0,451 0,533	0,549 0.360	0,460	0,538 0,588	0,487	0,461	0,400	0,567	0,549	0,593	0,583	0,447	0,647	0,490	0,520	0,562	0,520	0,440	0,598	0,400	0,407	0,435	0.347	0,602	0,427	0,539	0,487	0,504 0,544
A A 0,480 0,467 0.480	0,510 0,576	0,451 0,553	0,441 0,507	0,559 0.487	0,593	0,500	0,620	0,441	0,407	0,600	0,480	0,513	0,670	0,602	0,422	0,402	0,402	0,449	0,500	0,467	0,500	0,538	0,463	0,440	0,590	0,534	0,427	0,480	0,453 0,573	0,494 0,466
ACO- A 0,333 0,440 0,440	0,255 0,235 0,199	0,373 0,140	0,255 0,273	0,382 0,380	0,207	0,314 418	0,353	0,373	0,520	0,100	0,598	0,147	0,408	0,262	0,186	0,422	0,490	0,404	0,286	0,273	0,343	0,475	0,290	0,455	0,536	0,204	0,127	0,343	0,153	0,311 0,348
AAT- B 0,127 0,073	0,088 0,071 0,093	0,176 0,153	0,108 0,140	0,127 0.100	0,087	0,167	0,067	0,098	0,160	0,093	0,108	0,053	0,117	0,136	0,098	0,078	0,118	0,101	0,092	0,080	0,098	0,175	0,097	0,065	0.099	0,243	0,200	0,196	0,200	0,116 0,125
- 0 0	4 v o	7 8	ი (2	= 5	6 4	∓ €	16	71	19	50	2 %	3 5	24	25	56	78	59	30	31	33 23	8	32	36	37	9 68	4	4	45	44 44	⊘ alle ⊘ Alt

Tabelle 7: Bedingte Heterozygotie H_c

Hc 18	0,568	0,600	0,620	0,586	0,566		0,563	0,340	0,585			0,589		7040	0,584	0,557		0,590	0,595	0,636			0,566	0,527		0,567		0,557	0 547	0,047		0,578	
Hc 17	0,576 0,623	0,631 0,631	0,635	0,592	0,573	0,637	0,572	0,635	0,594	0,638	0,632	0,598	0,617	0,616	0,535	0,568	0,621	0,601	0,604	0,647	0,627	0,620	0,577	0,533	0,030	0,578	0,629	0,567	0,752	0,333	0,680	0,614	
SKDH	-A 0,392 0,412	0,328 0,328 0,567 0,545	0,517 0,482	0,610	0,552	0,535	0,571	0,317	0,405	0,540	0,422	0,708	0,443	0,392	0,435	0,545	0,700	0,427	0,486	0,404	0,374	0,350	0,500	0,618	0,571	0,473	0,700	0,457	0,435	0,038	0,526	0,510	
PGM	0,778 0,581	0,706 0,560	0,848 0,744	0,923	0,822	0,763	0,750	0,920 0,906	0,905	0,641	0,854	0,871	0,698	0,833	0,495	0,840	0,767	0,786	0,667	0,355	0,795	0,882	0,839	0,640	0,920	0,737	0,800	0,623	0,855	0,739	0,815	0,779	
PGI	-B 0,886 0,879	0,882 0,780 0,780	0,800	0,714	0,885	0,644	0,750	0,000	0,902	0,852	0,805	0,846	0,800	0,881	0,833	0,889	0,800	0,852	0,795	0,933	0,702	0,793	0,864	0,852	0,90	0,813	0,896	989,0	0,826	0,940	0,978	0,826	
PG.	0,250 0,667 0,88	0,429 0,333	0,647	1,000	0,455	0,484	0,750	0,417	0,500	0,286	0,550	0,600	0,789	0,278	0,455	0,294	0,129	0,333	0,222	0,600	0,500	0,234	0,158	0,625	0,486	0,750	0,400	0,250	1,000	0,667	0,556	0,478	
еРСБН	-B 1,000 0,750	1,000 1,000 0,429	1,000 0,818	0,800	0,615	0,933	6666-	0,846	1,000	1,000	1,000	0,667	0,545	0,667	000,1	0,444	0,636	0,500	1,000	0.412	1,000	0,556	0,600	0,167	0,300	1,000	0,667	1,000	1,000	6,40	1,000	0,780	
еРСБН	0,292 0,421	0,475 0,400 0,400	0,375	0,321	0,391	0,389	0,383	0,300	0,333	0,833	0,319	0,515	0,526	0,392	0,500	0,563	0,583	0,714	0,600	0,538	0,390	0,300	0,412	0,250	0,012	0,333	0,778	0,571	0,727	0,573	0,560	0,474	
MNR	o,483 0,468 0,468	0,548 0,629	0,632	0,438	0,619	0,548	0,481	0,366 0,521	0,406	0,568	0,330	0,408	0,491	0,718	0,880	0,556	0,706	0,600	0,610	0,635	0,795	0,846	0,526	0,621	0,333	0,375	0,549	0,585	0,694	0,532	0,741	0,571	
MDH	0,304	0,33 1,000	0,086 0,086	0,133	0,111	0,444	0,077	0,200 0,556	0,200	0,000	0,231	0,278	0,400	0,200	0,000	0,091	0,200	0,273	0,000	0,200	0,250	0,143	0,152	0,000	0.261	0,154	0,429	0,077	1,000	0,000	0,000	0,253	
MDH	-B 0,174 0,419	0,257 0,500 0,500	0,350 0,350	0,091	0,053	0,170	0,167	0,1	0,200	0,000	0,185	0,000	0,077	0,227	0,273	0,077	0,167	0,163	0,214	0,125	0,122	0,154	0,231	0,000	0,333	0,077	0,000	0,143	0,391	0.263	0,429	0,173	
EH I	0,778 0,900	0,720 0,800	0,857 1,000	0,896	0,923	0,857	1,000	0,897	0,957	0,840	0,926	0,875	0,784	0,818	0,003	0,923	0,875	0,929	0,865	1.000	0,852	0,962	1,000	0,652	0,903	0,852	0,897	0,870	0,862	6 00	1,000	0,884	,,,,,,
필	-A 0,696 0,750	0,895 0,535 0,535	0,913	0,569	0,431	0,875	0,500	0,783	0,585	0,829	0,684	0,808	0,784	0,736	0,506	0,738	0,714	0,645	0,767	0,700	0,717	0,792	0,605	0,818	0,023	0,786	0,769	0,889	0,615	0,667	0,838	0,724 0,710	
GDA	 0,431	0,422	0,363	0,490	0,441		0,431	0,402	0,441			0,431		000	0,39	0,373		0,402	0,451	0,449	:		0,382	0,425		0,366		0,398	777	44,0		0,420	
EST	-A 0,373 0,620	0,363 0,363 0,542	0,392 0,392 0,593	0,441	0,451	0,480	0,657	0,400	0,480	0,593	0,713	0,412	0,521	0,553	0,900	0,412	0,612	0,549	0,608	0,517	0,664	0,576	0,390	0,450	0,487	0,376	0,541	0,398	0,507	0,339	0,560	0,529	
AP-B	(AAP) 0,657 0,460	0,539 0,469	0,542	0,464	0,482	0,553	0,520	0,567	0,559	0,640	0,533	0,480	0,493	0,527	0,447	0,432	0,670	0,429	0,506	0,447	0,529	0,537	0,529	0,488	0.515	0,447	0,617	0,510	0,615	0.569	0,556	0,530	
AP-A	(LAP) 0,598 0,487 0,487	0,520 0,459 0,459	0,583	0,455	0,549	0,446	0,539	0,589	0,465	0,533	0,567	0,549	0,476	0,593	0,563	0,647	0,664	0,490	0,535	0,362	0,541	0,623	0,598	0,400	0,413	0,495	0,456	0,602	0,561	0.525	0,510	0,529	-1116
ADH	o,533 0,648 0,648	0,543 0,758	0,451	0,542	0,570	0,753	0,500	0,738	0,479	0,776	0,698	0,480	0,800	0,733	0,802	0,426	0,409	0,594	0,513	0,702	0,631	0,788	0,593	0,538	0.800	0,597	0,485	0,534	0,790	0,819	0,677	0,627	,,,,,,
ACO	o,739	1,000 1,000 0,958	0,809	0,929	0,830	0,886	0,727	0,94 0,631	0,884	0,981	1,000	0,884	0,857	0,917	0,627	0,864	0,917	0,935	0,877	1,000	0,804	1,000	0,814	0,950	0,307	0,735	0,937	0,724	1,000	0,885	0,904	0,844	: ! ! !
AAT	-B 0,867 1,000	1,000 1,000	1,000 0,958	0,733	1,000	1,000	0,773	0,8 33	0,833	0,926	0,824	0,786	1,000	1,000	7,857	0,909	1,000	1,000	1,000 2,000	000,	1,000	1,000	1,000	7,000	0.867	0,833	0,778	0,714	606,0	000	606'0	0,927	
	- 0 °	4 ග ග	~ «	၈ င	= = 5	7 5	4 4	. 9	11	<u>&</u> 6	2 2	7	22	23	25	<u>2</u> 6	27	8 5	5 3	3 2	32	33	34	32	37	38	33	40	4 5	4 4	4	⊘ alle ⊘ Alt	:

Tabelle 8: Genetische Diversität (allelisch) $v_{(a)}$

Genpool 18 Loci 1,635	1,527	1,594	1,562	1,634		1,578	1,537	1,588	•		1 660	9		1,524	1,542	1,528	1 544	1,543	1,561	1,534		1.577	1,665			1,543	,	1,540	1.632	1		1,574	1,576
Genpool 17 Loci 1,595 1,564 1,629	1,487 1,464 1,638	1,547	1,516	1,593	1,513	1,535	1,495	1,543	1,463	1,502	1,500	1,482	1,532	1,495	1,495	1,485	,388 1	1,499	1,473	1,491	1,463	1.536	1,611	1,386	1,531	1,500	99,	1,501	1.591	1.376	1,403	1,505	1,534
⊘ v _(a) 18 1,848	1,757	1,818	1,778	1,825		1,816	1,764	1,825	,		1 927	1,0,1		1,749	1,791	1,753	1,423	1.749	1,745	1,766		1.827	1,895			1,743	1	1,783	1.824	!		1,866	1,800
	1,694 1,618 1,874	1,731	1,692	1,759	1,643	1,743	1,697	1,745	1,700	1,684	1,787	1,631	1,784	1,716	1,706	1,676	1,507	1.670	1,671	1,690	1,594	1.764	1,827	1,600	1,669	1,667	2,0,1	1,727	1.762	1.547	1,603	1,699	1,729
SKDH -A 2,021 1,983 2,339	1,811 1,938 2,775	1,731	1,489	1,752	1,657	1,754	1,778	1,931	1,762	1,906	1,932	1,816	1,824	1,256	1,702	1,855	2.0.0	1.945	1,855	1,995	2,116	2,43Z	2,057	1,541	1,653	1,698	988	1, 600	1.850	1.583	2,036	1,845	
PGM 8-A 1,313 1,704	1,414 1,724 1,377	1,403	1,296	1,595	1,391	1,389	1,344	1.235	1,573	1,513	368 368	1,551	1,337	2,292	1,485	1,288	, 555 234	1.445	1,415	1,319	1,358	368	1,913	1,202	1,446	1,476	5.5	1,061	623	1.279	1,454		1,411
• • •	, 425 ,734	•	•	•		-	•	•			•	-		•			•	•				•				•			•			1,525	
PGI -A ,081 1 130 1	,072 1 1,131 1 1,609	,185 1	,020	. 115 1.	,236	,082	,093	. 040	,099	,084	. 45. 10.	137	,129	,114	,347	,185	, 253,	.093	,058	,120	114	209	,106	,041	,196	,083	600,	,040, 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	195	0.041	,062	1,147 1	
	1,030 1 1,074 1					-	•		_	_ `		- (-	_	_	_	_ `			_	_	_ ,	_	_	_	_	_ `	_ •		_		_	1,081	
_	1,510 1,376 1,619	1,274	1,327	1,605	1,458	1,616	1,517	1,357	1,084	1,254	1,385 1 395	1,490	1,709	1,125	1,126	1,175	1 150	1.051	1,157	1,245	1,498	1,425 1.411	1,106	1,115	1,591	1,455	1,203	1,0/1	1.274	1,177	1,187	1,349	1,348
MNR -A -A 1,865 1,555	1, 526 1,463 1,877	1, 793	1,643	,945 1,942	1,342	022,	1,737	2,127	1,355	2,188	,468 685	.450 8,450	999,1	1,282	1,833	1,733	7,438 70,70	519	,552	1,785	960	000°, 22	2,147	1,469	1,433	,819 5	54.5 51.6 51.6 51.6	1, 697	953	629	,204	1,608	692'।
• • •	,1 80 ,010,	•	•	•		-	•				•	-					•	·		-		·	•			•			•	-	-	•	, 273
MDH N-B-B-1,596 1	,042 1	344	115 1	474	448	,125	196 1	502	,013	1,301	. 203,	193	,161	,114	,082	,138 , ,	.084	327	,203	,063 1	,324 1	. .	,025	,073	,353 1	138 1	140,	722,	327 1	135 1	1 660	1,235 1	•
_	283 1 299 1 240			•		•	• •	_	•		•	•	•	•	`	•	•	•	•	`		•	•	•	•	•	•		•	`	•	1,311	-
-		- -	- -	_			- -		_	_ ,			_	_	_	_			_	_	_ ,		_	_	_	_			_	_	_	,467 1,	•
GDA -A 2,838 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2,838 1,	3,300 1,	3,238 1,	., 2,946 2,	←, ←	, 3,046 1,	•	3,197 1,		←, 4	7 077 1	-		•	3,235 1,	•	•	3.098 1.			ᠸ`₹	•	3,051 1,	_	_	3,037 1,		,, <u>/ 28</u>	2.882 1.	· ~	· -	2,996 1,	_
					8 2					23											က္က						•				<u></u>		
EST -A 2,931 3,278 2,949		3,449			3,203		2,297											2.812				2,043	3,018	3,512				3,025			2,813	3,024	
AP-B (AAP) 2,735 3,076 3,000	3,000 2,764 2,764	2,370	2,612	2,176	2,386	2,670	2,688	2,870	3,174	2,759	2,837 9,0 8	2,393	3,088	2,924	3,013	2,160	2,103	2.406	2,233	2,398	2,272	3.454	2,461	3,146	2,784	2,645	7,752	2,736	2.480	2,650	2,585	2,665	2,666
AP-A (LAP) 3,020 3,096 3,145	3,134 2,443 3,067	2,645	2,763	2,857	2,379	2,909	3,068	2,434	3,134	2,514	3,228	2,846	3,500	3,167	2,673	3,023	2,120	2,2,2	3,593	2,931	2,401	3.349	2,824	2,587	2,748	3,075	7,280	2,985 2,445	2.658	2.560	2,733	2,855	2,982
	2,357 2,116 2,729					3,033																	3,263					3, 055	2.964	1,790	2,679	2,513	
	1,292 1,287 1,318		1,313									1,462				1,244		1.787			1,420							,324				1,486	
-	1,092 1 ,1074 1,105																-	•	•	•		•		_	_	,126	•	,416 1,000 1,000		· _	,158 1	1,139 1,	
-	4 70 0						-																		_	_ `	_ ,		_	· ~	44	3 alle 1	Alt

Tabelle 9: Genetische Diversität (genotypisch) $\nu_{(g)}$

						•		•	•		,	0/																				
v(g) 18 2,750	2,517	2,778	2,641	2,760		2,770	2,729	2,741			3,056			2,599	2.573	î	2,657	2,667	2,638	2,728		2,827	2,964		0 2 2 0	6,530	2,673		2,787			2,721 2,714
v(g) 17 2,593 2,759	2,355 2,331	2,580 2,553	2,412 2,776	2,605	2,942	2,595	2,56 /2	2,540	2,720	2,841	2,903	2,402	2,893	2,555	2.387	2,067	2,465	2,469	2,488	2,530	2,204	2,676	2,795	2,429	2,423	2,205 2,105	2,537	2,366	2,640	2,255	2,469	2,541 2,541
SKDH- A 2,927 2,737 4,041	2,416 3,018 5,456	2,465 2.488	1,972 2,345	2,561	3,120	2,574	2,535 3,199	2,858	2,523	2,822	2,665	2,544	2,542	1,390	2.751	2,375	3,109	2,893	2,596	2,951	3,887	2,629	3,372	2,079	2,295	7.7 1	2,031	1,607	2,724	2,175	3,320	2,702 2,589
PGM- A 1,655 2,766	1,822 2,403	1,911	1,658	2,426	1,876 2,104	1,820	1,74 1 2,040	1,509	2,044	1,864	1,817	2,149	1,728	3,706	1.619	1,684	1,690	1,866	1,977	1,666	1,573	1,794	3,156	1,435	1,924	2,035	2,361	2,093	2,411	1,549	2,025	1,981 1,888
PGI- B 2,038 2,512	1,967 2,680	2,569 2.471	2,413 3.136	1,656	2,383 2,677	1,969	2,541	2,264	2,311	2,742	2,804	2,351	2,517	1,418	1.691	1,897	1,654	2,236	2,124	2,668	2,127	1,520	1,952	1,710	2,067	1 930	2,437	2,585	2,107	1,835	1,901	2,202 2,116
PGI- A 1,104 1,229	1,105	1,332	1,040	1,175	1,581	1,149	1,104 1,115	1,061	1,130	1,230	1,172	1,261	1,163	1,173	1.251	1,263	1,083	1,105	1,095	1,208	1,511	1,250	1,167	1,077	1,314	1,131	1,040	1,084	1,247	1,070	1,099	1,221 1,148
6PGDH -B 1,126 1,146	1,061 1,109	1,061	1,199	1,223	1,212	1,000	1,175	1,020	1,013	1,069	1,149	1,115	1,313	1,219	1.127	1,130	1,061	1,020	1,119	1,289	1,099	1,083	1,731	1,041	1,221	1,001	1,020	1,027	1,224	1,013	1,041	1,137 1,096
6PGDH -A 1,906 1,638	1,720 1,523	1,366	1,458	1,944	1,674	1,982	1,713	1,527	1,161	1,518	1,661	1,787	2,149	1,197	1.280	1,302	1,277	1,083	1,258	1,321	1,302	1,443	1,136	1,220	1,706	1,398	1,104	1,301	1,396	1,375	1,303	1,517 1,497
MNR -A 2,686 1,950	1,988 1,906	2,570	2,119	2,962	1,595 2,147	2,265	2,485 2,305	3,017	1,616 1.268	1,765	2,172	1,756	2,530	1,529	2.431	1,849	2,302	2,005	2,111	2,603	1,666	2,580	3,289	1,852	1,723	4,550 1,756	2,388	2,105	2,642	2,350	1,384	2,156 2,447
MDH -C 1,362 1,041	1,021 1,021	1,467	1,404	1,221	1,447	1,148	1,099	1,199	1,013	1,248	1,626	1,099	1,084	1,020	1.438	1,129	1,334	1,222	1,232	1,156	1,055	1,463	1,682	1,130	1,354	1 146	1,321	1,055	1,197	1,230	1,013	1,222 1,331
MDH -B 1,760 1,362	1,584 1,064	1,768	1,127	1,513	1,231	1,149	1,223	1,659	1,013	1,248	1,104	1,212	1,195	1,149	1.150	1,099	1,708	1,420	1,234	1,086	1,229	1,175	1,025	1,099	1,436	. 1 104 104	1,270	1,245	1,453	1,177	1,145	1,291 1,404
IDH- B 1,550 1,680	1,510 1,611	1,299	2,496	1,671	1,544	1,585	1,348 1,436	1,538	1,820	1,421	2,146	1,897	2,310	2,779	1.671	1,226	1,724	2,003	1,955	1,401	1,975	1,693	1,619	1,790	1,763	1, 00. 1,640	1,531	1,456	1,632	1,361	1,25/	1,659 1,700
DH- A 2,307 1,910	1,450 2,093 2,237	1,580	2,670 1,857	3,010	1,096	2,361	1,8 66	2,445	2,568	1,981	2,681	1,598	1,888	4,139	2.211	1,517	1,681	1,697	1,484	2,024	1,321	1,912	1,662	1,501	1,835	1,374	1,40	1,342	2,555	1,146	1,585	1,963 2,077
GDA- A 5,419	5,271	6,142	6,543	5,385		5,748	5,499	6,171			5,654			3,354	5.742	!	5,918	6,028	5,181	6,094		5,391	5,850		77	0,04	4,988		5,292			5,593 5,666
EST- A 5,050 6,769	5,007 4, 216	6,773	5,407	4,964	6,514 8,358	4,940	3,420 6,893	4,764	6,226	9,640	6,260	5,737	8,358	2,890	6.298	3,608	5,911	5,891	6,222	4,951	5,561	5,197	5,882	7,702	5,066	3,000	5,183	9,673	5,511	6,267	5,696	5,952 5,376
AP-B (AAP) 4,616 5,975	5,618 4,976	4,017 3,890	4,551	3,532	6,139 6,594	5,060	5,374 4,274	5,223	6,677	5,177	5,952	4,240	6,310	5,581	3.443	3,726	4,405	4,219	3,662	4,008	3,263	6,927	4,432	6,521	5,332	7,35,7	5,505	4,395	4,608	5,165	5,086	4,928 4,833
AP-A (LAP) 5,630 5,875	5,031 4,161	4,853 5,040	4,435	5,110	3,805 6,111	5,540	6,434 4,349	4,781	6,447 4 531	6,545	5,685	5,230	7,520	5,997	4.559	3,664	5,729	4,964	7,066	5,571	4,971	7,011	4,938	4,668	4,795	3 474	4,882	3,465	5,046	4,915	5,406	5,240 5,341
ADH- A 4,875 4,056	3,689 3,860 5,651	5,026 6,195	4,686	5,832	3,706 5,740	5,972	5,494 5,396	4,894	5,182	5,572	6,973	3,706	4,086	3,905	4.935	4,658	3,561	4,357	3,445	6,188	3,257	4,412	6,882	3,372	3,057	4 379	6,200	2,985	5,436	2,834	5,445	4,702 4,931
ACO- 2,170 3,101	1,649 1,643	2,385	1,664	2,200	2,389 1,606	2,156	2,686	2,168	2,082	1,228	2,241	1,983	1,375	3,039	1.496	1,788	2,503	2,721	2,489	1,722	1,210	2,187	2,148	1,872	3,154	1534	1,641	1,295	2,146	1,391	1,950	2,039 2,103
AAT- A 1,315 1,160	1,153	1,422	1,293	1,290	1,239	1,447	1, 241 1,160	1,246	1,418	1,223	1,249	1,175	1,113	1,301	1.220	1,228	1,169	1,273	1,228	1,203	1,1	1,219	1,434	1,216	1,142	1, 244	1,817	1,510	1,538	1,487	1,323	1,282 1,315
- 0 m	4 vo c	~ ~ &	6 0	= 5	<u>λ</u> 6	4 4	ট 6	1	<u></u> 6	2 2	72	23	53	24 7	9	27	78	62	සි දි	33	3 8	34	32	36	37	9 00	8 4	4	45	43	4	⊘ alle ⊘ Alt

Tabelle 10: Genetische Differenzierung (allelisch) $D_{j(a)}$

Dj (a) 18 loci 0,063		0,064		0,077		0,079		0,077		(0,069	0,00	0.077	5			0,068		,	0,185	0,086	9/0/0		0,074	0,075	690'0	0,065			0,073	0,103			0,033	3000	0,030	0.083	0,003			0,075
_	0,067	0,062	0,066	0,080	0,057	0,078	0,063	0,075	0,063	0,069	0,065	0.056	6200	0.075	0,077	0,058	0,071	0,050	0,073	0,179	0,085	0,077	0,078	0,071	0,075	0,071	0,063	0,070	0,085	0,07	0,-	0,0,0	0,004	0,000		0,000	200,0	0,00	0,076)	0,075 0,074
SKDH-A 0,076	0,065 0,103	0,048	0,083	0,038	0,058	0,116	0,041	0,025	0,089	0,0/0	0,045	0,024	0.143	0.027	0,064	0,057	0,061	0,021	0,065	0,207	0,053	0,051	0,077	0,130	0,080	0,039	660'0	0,118	0,172	0,038	0,0	0,089	0,00	0,037		5, -	, o	0,0	0,038)	0,083 0,068
PGM-A 0,049	0,120 0,116	0,020	0,087	0,031	0,048	0,059	0,044	0,000	0,064	0,057	0,031	0,030	0.075	0.045	0,082	0,053	0,039	0,058	0,037	0,404	0,034	0,055	0,080	0,046	0,023	0,032	0,068	0,044	0,065	0,029	0, 1	0,123	0,054	0,040	127	0,15 1,15 1,15	200	700,0	0,009	1	0,072 0,053
PGI-B	0,044	0,051	0,079	0,082	0,066	0,092	0,105	0,082	0,070	0,067	0,023	0,00	0.038	0.036	0,039	0,069	0,082	0,034	0,065	0,114	0,033	0,074	0,035	0,069	0,074	0,034	0,045	0,057	0,030	0,090	0,07	0,072	0,029	0,032	0,0	0,00	0,0	0,039	0,070)))	0,056 0,065
PGI-A	0,019	0,033	0,025	0,022	0,029	0,063	0,080	0,013	0,043	0,089	0,028	0,033	0.048	0.033	0,027	0,007	0,030	0,015	0,009	0,014	0,085	0,025	0,049	0,038	0,023	0,039	0,011	0,016	0,097	0,040	0,0	0,040	0,026	0,020	0,0	5 ,0	0,00	20,0	0,040)	0,042 0,036
6PGDH-B	0,015 0,024	0,022	0,008	0,022	0,003	0,016	0,011	0,031	0,021	0,036	0,037	0,03	0.032	0.033	0,031	0,020	0,011	900'0	0,053	0,019	0,032	0,015	0,019	0,025	0,032	0,008	0,054	0,022	0,006	0,013	0, -34	0,024	0,023	0,02	0,0	0,030	20.00	5,0	0,033	0	0,027 0,024
⋖	0,062 0,092	0,056	0,023	0,026	0,042	0,036	0,055	0,086	0,040	0,062	0,095	0,070	0.023	0.109	0,031	0,029	0,047	0,051	0,138	0,084	0,095	0,000	0,064	0,073	0,118	0,075	0,034	0,075	0,055	0,045	0,092	0,098	0,082	0,000	0,00	0, -0	2000	0,000	0,039	-))	0,070 0,063
MNR-A (0,088	0,087	0,061	0,057	0,112	0,056	0,068	0,054	0,116	0,093	0,053	0,103	0,095	0.139	0.126	0,135	0,043	0,089	0,110	0,064	0,100	0,116	0,101	060'0	0,076	0,055	0,078	060,0	0,068	0,088	0,089	0, 0	0,000	2,0,0	0,080	2,00	0,102	2,0	0,120	0,123) - - -	0,089 0,093
()	0,060	0,029	0,068	0,103	0,047	0,094	0,067	0,024	0,050	0,057	0,017	0,032	0.00	0.067	0,031	0,021	0,108	0,039	0,039	0,063	0,058	0,093	0,022	0,058	0,043	0,008	0,007	0,046	0,050	0,108	0,7	0,037	0,045	0,000	0,00	0,000	2000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,000	5	0,048 0,058
0,139	0,028	0,084	0,079	0,109	0,055	0,045	0,045	0,091	0,098	0,024	0,056	0,037	0.110	0.093	0,033	0,014	0,000	0,022	0,028	0,064	690'0	0,035	0,059	0,116	0,049	0,011	0,068	0,049	0,016	0,035	000,0	000,0	0000	0,042	0,00	0,04	0,00	0,0	0,037	0,0	0,057
0,010	0,024	0,017	0,009	0,062	0,064	0,110	0,041	0,007	0,013	0,047	0,017	0,037	0.032	0.075	0,047	0,040	0,00	0,058	0,095	0,334	0,005	0,007	0,080	0,010	0,055	0,048	0,048	0,040	0,047	0,002	0,00	0,024	0,029	0,01	2,0	0,0 0,0 0,0 0,0	0,0	0,026	0,036))	0,046 0,032
0,065	0,028	0,078	0,066	0,075	0,060	0,140	0,035	0,186	0,063	0,040	0,097	0,020	0100	0.077	0,092	0,046	0,094	0,057	0,032	0,237	0,071	0,046	0,074	0,043	0,032	0,059	0,045	0,017	0,093	0,048	5,0	0,000	0,037	0,040	200,0	0,0	2,00	2,5	0,134	,	0,067 0,078
GDH-A 0,111		0,111		0,036		0,091		0,104			0,135	0,093	0.035)			0,022			0,288	0,095	0,051		0,127	0,069	0,038	0,103		9	0,133	0,0,0			0,033	7970	, o,	0.078	0,0,0			0,085 0,085
0,096	0,144	0,158	0,150	0,208	0,051	0,178	0,149	0,126	0,056	0,153	0,103	0,432	0 200	0.143	0,075	0,204	0,043	0,110	0,100	0,285	0,226	0,173	0,268	0,242	0,322	0,270	0,139	0,288	0,161	0,248	0,000	0, 180	0,038	0,120	20,00	0,192	200,00	0,220	0,033	5	0,163 0,205
AP-B (AAP) 0,053	0,082	0,100	0,064	0,084	0,078	0,041	0,052	0,104	0,078	0,129	0,075	0,033	0.061	0.090	0,079	0,059	0,062	0,061	0,081	0,211	0,099	0,099	0,116	0,034	0,084	0,126	0,074	0,085	0,130	0,150	0,0	0,0,0	0,00	0,059	0,000	0,130		0,000	0,063) ()	0,081 0,079
AP-A (LAP) 0,043	0,070	0,125	0,145	0,055	0,064	0,095	0,068	0,052	0,133	0,083	0,128	0,042 0 149	0.049	0.125	0,122	0,056	0,075	0,056	0,125	0,210	0,233	0,144	0,146	0,061	0,079	0,138	0,071	0,095	0,074	0,095	5, 5	0, I	0,000	0,00	020	0,030	2,0	200	0,083)	0,100 0,079
ADH-A 0,110	0,086	0,084	0,082	0,235	0,118	0,106	0,159	0,190	0,122	0,079	0,160	0,510	0.155	0.093	0,149	0,113	0,130	0,114	0,153	0,503	0,189	0,224	0,086	0,106	0,080	0,128	0,148	0,113	0,171	0,120	2, 0	0,140	0,10	0,120	700,00	0,10	2,00	0,453	0,137	1	0,140 0,160
ACO-A 0,048	0,171	0,061	0,072	0,058	0,109	0,052	0,037	0,068	0,031	0,098	0,048	0,00 0,00 7,00 7,00 7,00	0.046	0.063	0,240	0,151	0,178	0,015	0,113	0,157	0,046	0,081	0,037	0,061	0,108	0,097	0,046	0,029	0,158	0,036	20,0	0,000	0,127	0,065	0,00	0,0	0,120	9010	0,100)	0,085 0,070
AAT-B 0,023	0,030	0,018	0,027	0,033	0,026	0,023	0,019	0,008	0,008	0,019	0,047	0,0	0 005	0.035	0,032	0,008	0,032	0,026	0,036	0,042	600'0	0,016	0,025	0,023	0,015	0,015	0,017	0,023	0,032	0,0 19	0,027	7,0,0	0,039	0,01	77.0	0,10	700,0		0.043))	0,027 0,028
← (N 60	4 1	ဂ ယ	^	∞	6	10	7	12	13	4 .	. 6	17	. 2	19	20	21	22	23	24	25	56	27	28	29	30	31	32	33	3 4	n (200	37	9 0	2	5 -	- 5	4 5	\$ 4	-	delta delta Alt

Tabelle 11: Genetische Differenzierung (genotypisch) $\mathcal{D}_{j(g)}$

1 40	C11			. `	J C.	110	LIL	,01	10	י	111	.01	C 11		C1 (411	5	(5)	C11	Ot	J F	,15	C11	., .	J)	g)																				
Dj (a) 18 loci	0,117			0,116			0,128		0,126		0,129			0,113	0,132		0,132				0,133			0,263	0,137	0,123		0,129	0,122	0,113	0,115			0,117	0,173		0	0,099	!	0,147	6	0,130			0,133	
Dj (a) 17 loci	0,116	0,112	0,121	0,114	0,115	0,139	0,129	0,102	0,126	0,108	0,127	0,113	0,116	0,111	0,132	0,107	0,134	0,123	0,134	0,110	0,138	0,102	0,119	0,260	0,137	0,125	0,127	0,126	0,123	0,113	0,113	0,103	0,134	0,114	0,172	0,115	0,108	0,099	0,125	0,145	0, 140	0,130	0,109		0,125 0,125	
SKDH-A	960'0	0,095	0,219	0,122	0,154	0,264	0,063	0,106	0,149	0,079	0,042	0,169	0,135	0,063	0,050	0,100	0,190	0,057	0,150	0,076	0,200	0,075	0,081	0,320	0,079	0,103	0,106	0,196	0,122	0,080	0,139	0,125	0,221	0,073	0,224	0,108	0,095	0,078	0,168	0,173	7,747	0,030	0,176		0,131 0,117	
PGM-A	0,083	0,180	0,205	0,062	0,110	0,152	0,064	060'0	0,112	060'0	0,163	0,118	0,111	0,046	0,077	0,098	0,108	0,076	0,154	0,101	0,089	0,127	0,056	0,558	0,052	0,095	0,143	0,081	0,072	060'0	0,120	0,078	0,092	0,072	0,296	0,198	0,099	0,088	0,152	0,212	0,220	0,153	0,072		0,128 0,102	
PGI-B	0,045	0,112	0,059	980'0	0,162	0,086	0,170	0,113	0,137	0,168	0,151	0,095	960'0	0,064	0,130	0,113	0,081	0,079	0,071	0,123	0,149	0,092	0,137	0,205	0,069	0,125	0,085	0,147	0,129	0,081	0,131	0,111	0,060	0,167	0,119	0,119	0,072	0,102	0,075	0,109	0,0	0,004	0,076		0,108 0,121	
PGI-A	0,063	0,043	0,132	0,050	0,039	0,221	0,062	0,044	0,091	0,089	0,024	0,078	0,126	0,041	0,059	0,047	990'0	0,052	0,041	0,039	0,041	0,056	0,031	0,021	0,111	0,048	0,064	0,059	0,055	0,050	0,024	0,032	0,111	0,043	0,040	0,060	0,051	0,041	0,049	0,085	0,00	2000	0,062	0	0,063 0,056	
6РGDН-В	0,015	0,030	0,045	0,031	0,019	0,101	0,031	0,015	0,034	0,036	0,043	0,049	0,070	0,061	0,061	0,059	0,051	0,054	0,051	0,027	0,023	0,026	060'0	0,062	0,051	0,020	0,025	0,040	0,051	0,025	690'0	0,067	0,017	0,029	0,211	0,042	0,066	0,030	0,021	0,051	7,0,0	0,045	0,034		0,047 0,037	
6РСДН-А	0,112	0,093	0,128	060'0	0,040	0,177	0,053	0,072	0,063	0,093	0,119	0,064	0,100	0,139	0,107	960'0	0,056	0,140	960'0	0,057	0,097	960'0	0,186	0,114	0,132	0,086	0,085	060'0	0,150	0,112	0,087	0,108	0,089	0,103	0,126	0,120	0,114	0,092	0,085	0,146	0,080	5,0	0,099		0,103 0,094	
MNR-A 6	0,146	0,158	0,124	0,097	0,103	0,190	0,193	0,143	0,087	0,082	0,221	0,178	0,110	0,171	0,172	0,213	0,217	0,203	0,245	0,146	0,132	0,194	0,137	0,164	0,189	0,175	0,152	0,138	960'0	0,142	0,216	960'0	0,133	0,148	0,290	0,107	0,126	0,127	0,117	0,175	0,-40	0,139	0,186		0,155 0,152	
MDH-C	0,077	0,070	0,029	0,034	0,079	0,044	0,104	0,059	0,103	0,083	0,025	0,088	690'0	0,035	0,039	0,048	0,005	0,083	0,046	0,026	0,141	0,052	0,049	0,080	0,070	0,094	0,029	9/0'0	0,049	0,015	0,024	0,056	0,063	0,123	0,223	0,045	0,061	0,065	0,030	0,063	0,000	0,034	0,083		0,061 0,069	
MDH-B	0,170	990,0	0,109	0,122	0,085	0,061	0,162	0,062	0,057	0,046	0,101	0,127	0,039	0,067	0,049	0,037	0,144	0,111	0,041	0,021	0,067	0,033	0,040	0,069	0,086	0,059	0,070	0,134	0,070	0,026	0,078	0,057	0,020	0,040	0,103	0,072	0,061	0,026	0,097	0,058	0,000	0,072	0,083	į	0,072 0,091	
IDH-B	0,094	0,049	0,081	0,078	0,054	990'0	0,116	0,107	0,216	0,083	0,033	0,045	0,092	0,033	0,095	990'0	0,065	0,138	0,080	990'0	0,126	0,123	0,156	0,525	0,016	0,033	0,148	0,045	0,107	0,098	0,078	0,080	0,122	0,041	0,107	0,050	0,114	0,027	0,036	0,040	7,0,0	0,042	0,127		0,091 0,077	
IDH-A	0,126	0,067	0,085	0,133	0,108	0,106	0,122	0,101	0,193	0,086	0,224	660'0	690'0	0,130	0,071	0,069	0,162	0,187	0,172	0,085	0,197	0,091	0,077	0,299	0,197	0,106	0,148	0,111	0,075	0,098	0,103	0,049	0,160	0,076	0,082	0,106	0,107	0,077	0,136	0,120	, c	0,223	0,105		0,123 0,135	
GDH-A	0,139			0,141			0,107		0,125		0,165			0,156	0,141		0,088				0,045			0,309	0,133	0,097		0,181	0,109	0,116	0,139			0,172	0,183			0,101		0,192	6	0,132			0,141 0,129	
EST-A	0,258	0,232	0,193	0,313	0,280	0,284	0,293	0,137	0,270	0,239	0,260	0,179	0,252	0,335	0,511	0,220	0,412	0,219	0,167	0,337	0,147	0,183	0,171	0,448	0,375	0,242	0,336	0,370	0,372	0,339	0,214	0,323	0,270	0,306	0,178	0,262	0,161	0,237	0,371	0,290	0,280	0,205	0,202	(0,265 0,310	
AP-B (AAP)	0,193	0,124	0,112	0,163	0,115	0,114	0,157	0,122	0,112	0,115	0,163	0,137	0,191	0,119	0,133	0,106	0,157	0,173	0,122	0,120	0,114	0,156	0,122	0,279	0,149	0,179	0,155	0,108	0,122	0,188	0,158	0,115	0,176	0,180	0,206	0,112	0,073	0,14 5	0,108	0,206	0,0	0,030 0,135	0,133		0,138 0,148	
AP-A (LAP)	0,148	0,139	0,124	0,233	0,264	0,156	0,122	0,117	0,191	0,145	0,145	0,200	0,140	0,192	0,136	0,203	0,170	0,161	0,197	0,125	0,162	0,144	0,168	0,313	0,316	0,282	0,272	0,153	0,180	0,192	0,121	0,155	0,162	0,192	0,184	0,196	0,131	0,139	0,253	0,169	4,2,0	6,1 0	0,168		0,180 0,174	
ADH-A	0,236	0,139	0,170	0,210	0,172	0,198	0,297	0,193	0,198	0,271	0,285	0,195	0,167	0,237	0,430	0,183	0,250	0,184	0,217	0,227	0,249	0,189	0,259	999'0	0,303	0,298	0,208	0,197	0,190	0,195	0,238	0,198	0,255	0,233	0,242	0,235	0,237	0,232	0,203	0,273	0,240	0,00	0,167	(0,235 0,259	
ACO-A	0,000	0,244	0,215	0,084	0,122	0,110	0,113	0,195	0,094	0,082	0,140	0,091	0,175	0,084	0,097	0,114	0,126	0,103	0,375	0,264	0,359	0,046	0,196	0,229	0,113	0,148	0,088	0,153	0,220	0,161	0,094	0,064	0,277	0,078	0,231	0,090	0,194	0,126	0,139	0,103	0,7	0,150	0,040		0,150 0,136	
AAT-B	0,039	0,057	0,026	0,030	0,047	0,032	0,074	0,058	0,029	0,045	0,024	0,015	0,031	0,064	0,020	0,052	0,025	0,077	0,058	0,028	0,051	0,047	0,068	0,076	0,028	0,031	0,047	0,040	0,028	0,027	0,029	0,038	0,058	0,032	0,067	0,030	0,080	0,019	0,085	0,184	0,-0	0,1	0,035	1	0,051 0,050	
	_	7	က	4	2	9	7	8	6	10	7	12	13	4	15	16	17	18	19	20	7	22	23	24	25	56	27	28	59	30	31	32	33	34	35	36	37	80 6	95	6 2	- .	1 4 4	5 4		delta Ita Alt	

oerta **Delta Alt**

Tabelle 12: Gruppenweise $D_{j(a)}$ -Werte für Bestände mit mehr als zwei Teilkollektiven für 17 Genorte und den Genpool

Genpool 17 loci	0.077	0,064	0,00	0.062	0,087	0,093	0,088	0,089	0,086	0,072	0,080	0,079	0,079	0,067	0,013	0.072	0,076	0,075	0,074	0,088	0,172	0,091	0,097	990'0	0,074	0,070	0,085	0,076	0,064	0,078	4 0,0	0,073	0.079	0,073	0,081	0,079	060'0	0,083	0,110	0,077	0,073	0,084
SKDH -A	0.078	0,000	0,00	0.075	0,163	0,135	0,173	0,159	0,062	0,074	0,080	0,025	0,003	0,00	0,007	0.028	0,052	0,071	0,055	0,085	0,206	0,037	0,088	0,048	0,085	0,032	0,091	0,069	0,045	0,092	0,00	0.033	0,102	0,065	0,088	0,050	0,034	0,051	0,036	0,126	0,114	0,099
PGM-A	0.151	200,0	0,00	0,000	0,057	0,108	0,098	0,089	0,102	0,063	0,049	0,053	0,000	0,032	0,034	0.032	0,057	0,098	0,097	0,124	0,403	0,066	0,150	0,028	0,048	0,042	0,038	0,037	0,018	0,047	0,0	0,042	0.038	0,037	990'0	0,112	0,115	0,105	0,125	0,115	0,054	0,095
PGI-B	0.047	0,01	0,00	0,013	0,070	0,094	0,039	0,063	0,110	0,076	0,073	0,051	0,077	0,040	0,03	0.060	0,048	0,090	0,037	0,077	0,135	0,045	0,074	0,047	0,030	0,060	0,022	0,036	0,071	0,092	0000	0,000	0.040	0,058	0,044	0,051	0,074	0,057	0,030	0,044	0,046	0,041
PGI-A	0.075	0.051	20,0	0,020	0,130	0,099	0,186	0,146	0,052	0,034	0,085	0,070	0,000	0,032	0,022	0.030	0,024	0,028	0,019	0,026	0,023	060'0	0,035	0,044	0,046	0,014	0,065	0,049	0,045	0,028	0,0	0,014	0.115	0,049	0,048	690'0	0,049	0,059	0,065	0,044	0,021	0,041
6PGDH -B	0.014	α ο ο ο	0,00	0.011	0,058	0,028	0,071	0,055	0,023	0,024	0,038	0,058	0,035	2,0	0,0	0.014	0,017	900,0	0,020	0,054	0,014	0,049	0,030	0,040	0,010	090'0	600'0	0,025	0,030	0,038	0,0	0,000	0.010	0,027	600'0	0,030	0,038	0,029	0,067	0,032	0,024	0,038
6PGDH -A	0.047	0,00	0,007	0,023	0,018	0,080	0,076	0,060	0,041	0,039	090'0	0,056	0,049	0,047	0,-0	0.066	0,059	0,025	0,044	0,152	0,121	0,136	0,096	0,080	0,035	0,023	0,081	0,066	0,050	0,092	0,00	0,120	0.020	0,059	0,070	0,157	0,138	0,136	0,073	0,051	0,019	0,045
MNR-A	960 0	0.076	0,00	0.076	0,121	0,093	0,119	0,112	0,138	0,134	0,068	0,131	0,110	0,2,0	0,030	0.046	0,114	0,067	0,110	0,056	0,143	0,162	0,104	0,051	0,070	0,098	0,113	0,087	0,069	0,031	0,0,0	0,030	0,095	0,075	0,115	0,076	0,103	0,091	0,151	0,139	0,197	0,164
MDH-C	0.068	0,000	0,0,0	0,023	0,033	0,088	0,054	0,058	0,020	0,042	0,037	0,051	0000	0,020	0,070	0.032	0,045	0,152	0,022	0,022	0,049	0,043	0,052	090'0	0,029	0,023	0,063	0,052	0,057	0,044	0,023	0,023	0.048	0,042	0,112	960'0	0,047	0,082	0,053	0,030	0,071	0,051
MDH-B	0.097	0,00	0,-0	0,092	0,083	0,134	0,045	0,081	0,091	0,094	0,053	0,106	0,000	0,127	0,124	0.027	0,075	0,024	0,039	0,019	0,041	0,034	0,031	0,083	0,038	0,099	0,014	0,050	0,111	0,030	000,0	0,035	0.037	0,055	0,015	0,083	0,103	0,078	0,082	0,046	0,054	0,058
IDH-B	0.033	0,000	2,0	0,021	0,015	0,023	0,019	0,019	0,024	0,012	0,035	0,014	0,022	0,003	0,077	0.033	0,042	0,058	090'0	0,036	0,280	0,113	0,100	0,030	0,041	0,066	0,012	0,029	0,002	0,051	0,04	0,062	0.045	0,046	0,033	0,025	0,044	0,033	0,053	0,021	0,037	0,035
IDH-A	0.052	2,00	0,0	0,043	0,124	0,080	0,061	0,085	0,187	0,123	060'0	0,078	0,117	0,00	0,030	0.050	0,051	0,048	0,137	990'0	0,214	0,034	0,100	0,026	0,041	0,083	0,030	0,037	0,033	0,015	10,0	0,000	0.080	0,051	0,057	0,062	0,050	0,057	0,173	0,141	0,020	0,104
EST-A	0.060	0,000	2,0	0,101	0,258	0,179	0,170	0,198	0,148	0,071	0,188	0,148	0,137	0,00	0, 0	0.301	0,204	0,145	0,073	0,146	0,229	0,177	0,147	0,286	0,274	0,155	0,391	0,311	0,255	0,387	0,474	0.363	0.212	0,277	0,257	0,130	0,213	0,179	0,287	0,080	0,196	0,176
AP-B (AAP)	0.072	0,00	0,00	0.053	0,078	0,077	0,073	0,076	0,118	0,065	0,141	0,038	0,035	0,0	0,073	0.054	0.053	0,052	0,119	0,061	0,173	0,055	0,092	0,049	0,133	0,071	960'0	0,083	0,070	0,060	0, 133	0,050	0.088	0,076	0,102	0,038	0,084	0,064	0,051	0,028	0,047	0,041
AP-A (LAP)	0.066	0.064	0,00	0.060	0,137	0,225	0,119	0,154	0,053	0,146	0,102	0,159	0,110	0,19	0,030	0.080	0,108	0,084	0,136	0,114	0,184	0,227	0,145	0,056	0,157	0,089	0,121	0,102	0,067	0,069	0,00	0.116	0.071	0,094	0,100	0,132	0,147	0,132	0,173	0,087	0,081	0,106
ADH-A	0.188	0,100	0,0	0.108	0,121	0,083	0,150	0,123	0,196	0,184	0,104	0,181	0,102	0,220	0,004	0.133	0,141	0,108	0,222	0,255	0,523	0,166	0,253	690'0	0,097	0,218	0,150	0,129	0,088	0,095	α,00,0	0.124	0.148	0,130	0,224	0,092	0,115	0,122	0,287	0,211	0,182	0,219
ACO-A	0.130	0.075	2,0	0,034	0,007	0,048	0,037	0,032	0,088	0,039	0,124	0,061	0,079	0,00	0,037	0.217	0,170	0,183	0,043	0,173	0,154	0,077	0,123	0,122	0,122	0,047	0,144	0,121	0,069	0,133	0,122	0,01	0.185	0,097	0,029	0,130	0,150	0,119	0,131	0,110	0,033	0,087
AAT-B	0.032	1,00,0	ο, ο	0,030	0,002	0,012	0,010	0,008	0,010	0,012	0,030	0,054	0,020	0,024	0,024	0.026	0,024	0,032	0,017	0,032	0,041	0,029	0,030	0,008	0,008	0,005	0,012	600,0	0,008	0,018	0,000	0,00	0.016	0,011	0,014	0,015	0,026	0,019	0,034	0,011	0,035	0,026
Bestand Nr.		۰ ،	۷ ر	delta	4	2	9	delta	11	12	13	4 -	uella 17	- 4	5 6	20	delta	21	22	23	24	22	delta	28/29	30	31	32/33	delta	78	52.6	3.5	33	33	delta	34	36	37	delta	42	43	44	delta

Tabelle 13: Populationsdifferenzierung (allelisch) $\delta_{T(a)}$

δ _τ (a) 18 0,390	0,347	0,374	0,362	0,390	0,368	0.372			0,400		0,346	0,347		0,354 0,354	0,342	0,350		0,368	0,398		0,354		0,352	0,389		0,367
δ _τ (a) 17 0,375 0,362	0,329 0,319 0,391	0,355 0,319	0,342 0,346	0,374 0,340	0,350 0,333	0,347	0,318	0,337	0,384 0.326	0,348	0,333	0,328	0,280	0,334	0,323	0,331	0,318	0,351	0,382	0,279	0,335	0,271	0,336	0,373	0,274 0,288	0,335 0,349
SKDH- A 0,508 0,497	0,450 0,487 0.642	0,424 0,449	0,330 0,413	0,431 0,398	0,432 0,440	0,526	0,434	0,484	0,454 0,451	0,453	0,205	0,463	0,383	0,513 0,488	0,463	0,501	0,529	0,455	0,517	0,352	0,413	0,286	0,377	0,462	0,370	0,448 0,446
PGM- A 0,239 0,461	0,294 0,422 0,274	0,289 0,236	0,230 0,301	0,375 0,282	0,281 0.257	0,310	0,365	0,284	0,270 0,356	0,253	0,566	0,225	0,251	0,250	0,295	0,243	0,265	0,271	0,480	0,168	0,324	0,239	0,400	0,386	0,219 0,313	0,306 0,287
PGI- B 0,304 0,379	0,300 0,425 0.317	0,410 0,393	0,404 0,463	0,233 0,413	0,312 0,410	0,405	0,353	0,426	0,421 0.372	0,382	0,169	0,241	0,296	0,241	0,319	0,391	0,334	0,201	0,296	0,235	0,285	0,286	0,417	0,319	0,279 0,274	0,339 0,326
PGI- A 0,076 0,115	0,067 0,117 0,380	0,157 0,078	0,020 0,251	0,104 0,192	0,076	0,078	0,090	0,127	0,094 0.121	0,115	0,103	0,157	0,189	0,058	0,055	0,108	0,103	0,174	0,097	0,039	0,077	0,065	0,038	0,164	0,039	0,121 0,093
6PGDH -B 0,058 0,078	0,029 0,0 69 0,175	0,029 0,071	0,095 0,065	0,121 0,097	000,0	0,084	0,007	0,033	0,085 0.072	0,148	0,094	0,085	0,072	0,039 0,010	0,055	0,161	0,095	0,048	0,361	0,026	0,029	0,077	0,010	0,138	0,007	0,070
6PGDH -A 0,397 0,327	0,339 0,275 0.384	0,216 0,315	0,247 0,323	0,379 0,315	0,383 343	0,331	0,078	0,279	0,285 0,330	0,416	0,112	0,149	0,151	0,131 0,048	0,136	0,198	0,334	0,293	0,097	0,103	0,314	0,169	0,067	0,216	0,151 0,158	0,245 0,246
MNR -A 0,466 0,358	0,346 0,318 0,469	0,444 0,298	0,393 0,309	0,256	0,437	0,400	0,263	0,320	0,409 0.311	0,401	0,221	0,425	0,306	0,403	0,358	0,442	0,266	0,453	0,538	0,320	0,453	0,303	0,413	0,490	0,406 0,170	0,368 0,432
MDH -C 0,207 0,026	0,154 0,010	0,293 0,065	0,252 0,013	0,163 0,220	0,120 0,094	0,059	0,013	0,163	0,306 0.065	0,065	0,019	0,279	0,096	0,198	0,148	0,126	0,052	0,273	0,408	0,071	0,239	0,090	0,226	0,165	0,133 0,013	0,140 0,211
MDH -B 0,375 0,191	0,298 0,040 0,255	0,336 0,257	0,104 0,195	0,323 0,310	0,111 0,111	0,221	0,013	0,169	0,095	0,139	0,103	0,122	0,078	0,360	0,169	0,060	0,245	0,122	0,025	0,068	0,122	0,039	0,186	0,247	0,119	0,179 0,229
DH- B 0,240 0,238	0,222 0,232 0,232	0,131 0,126	0,389 0,240	0,231 0,213	0,206	0,177	0,282	0,166	0,337 0.297	0,368	0,490	0,231	0,103	0,246	0,301	0,154	0,168	0,231	0,256	0,265	0,240	0,237	0,205	0,216	0,143	0,229
DH- A 0,379 0,301	0,176 0,365 0,358	0,209 0,260	0,451 0,305	0,537 0,242	0,418 0.332	0,276	0,392	0,332	0,415 0,225	0,306	0,594	0,357	0,216	0,274	0,205	0,343	0,312	0,324	0,250	0,219	0,246	0,162	0,162	0,409	0,078 0,220	0,303 0,331
GDA- A 0,651	0,651	0,700	0,695	0,664	0,675	0.691	•		0,667		0,569	0,676	0	0,698	0,670	0,676		0,659	0,676		0,674		0,636	0,656		0,668 0,671
EST- A 0,662 0,697	0,674 0,597 0,724	0,714 0,722	0,678 0,755	0,638 0,690	0,663	0,694	0,669	0,762	0,693 0.647	0,723	0,455	0,690	0,539	0,674	0,686	0,638	0,606	0,651	0,673	0,716	0,644 44	0,567	0,673	0,673	0,690	0,663 0,660
AP-B (AAP) 0,637 0,677	0,670 0,641 0,640	0,581 0,569	0,620 0,607	0,543 0,583	0,629 0.631	0,595	0,687	0,651	0,672 0.584	0,678	0,661	0,540	0,539	0,615	0,555	0,586	0,562	0,714	0,597	0,683	0,625	0,639	0,645	0,600	0,625 0,615	0,622 0,622
AP-A (LAP) 0,672 0,679 0,684	0,684 0,594 0,676	0,625 0,623	0,641 0,655	0,653 0,582	0,660	0,594	0,683	0,692	0,687 0,651	0,717	0,688	0,673	0,530	0,692	0,726	0,662	0,586	0,705	0,650	0,615	0,678	0,563	0,668	0,627	0,611 0,636	0,647 0,666
ADH- A 0,646 0,561	0,579 0,530 0,636	0,638 0,655	0,586 0,598	0,653 0,520	0,674 0,685	0,623	0,598	0,635	0,707 0,510	0,553	0,568	0,638	0,648	0,526	0,505	0,675	0,571	0,599	0,698	0,498	0,510	0,622	0,676 0,446	0,666	0,443 0,629	0,592 0,622
ACO- A 0,371 0,490	0,227 0,224 0,224	0,380 0,158	0,239 0,264	0,365 0,364	0,351 0,351	0,440	0,306	0,097	0,463 0,317	0,151	0,475	0,197	0,272	0,380	0,415	0,249	0,297	0,352	0,383	0,269	0,393	0,196	0,246	0,361	0,163 0,302	0,311 0,337
AAT- B 0,137 0,071	0,085 0,069 0,095	0,163 0,148	0,137 0,131	0,120 0,108	0,200 0.103	0,078	0,167	0,108	0,132 0.078	0,052	0,130	0,104	0,097	0,076	0,098	0,088	0,077	0,094	0,164	0,093	0,112	0,059	0,295	0,212	0,182 0,137	0,120 0,133
- 0 m	4 ი ი	~ 8	o 6	= 22	5 4 7	16	<u>6</u> 6	50	5 2	23	24 75	5 2	27	8 8	30	31	33	34	35	36	3 8	33	40	45	4 4 8 4	⊘ alle ⊘ Alt

Tabelle 14: Populations differenzierung (genotypisch) $\delta_{T(g)}$

18	loci),521		997	,,),512		0,491		0,527		!	0,497),476	9	0,439			0.533),468	0,476	,471		,483	0,482	,477),482		702	0.495			0,480		,471		0,528			0.496	,
		_	960			365	_					65						2 0	22									_		_	2 3				141			_		_	2,918		0,500	
SKDH	∢	0,665	0,639	0,700	0.676	0,822	0,600	0,602	0,498	0,577	0,616	0,558	0,684	0,618	0,612	0,032	700,0	0,000	0.650	0,631	0,611	0,611	0,283	0,590	0,643	0,583	0,685	0,661	0,622	0,668	0,697	0,748	0,020	0,521	0,567	0,570	0,445	0,513	0,380	0,639	0,544) - -	0,614 0.614	
PGM-	∢	0,400	0,643	0,039	0.590	0,416	0,481	0,388	0,401	0,485	0,594	0,470	0,528	0,455	0,430	2,0	0,541	0,514	0.467	0,454	0,538	0,424	0,737	0,492	0,386	0,409	0,412	0,469	0,500	0,404	0,435	0,367	0,447	0,304	0,483	0,513	0,391	0,582	0,526	0,591	0,357)	0,480 0.464	
PGI-	Ф	0,514	0,606	700,0	0.633	0,494	0,617	0,599	0,591	0,686	0,400	0,584	0,631	0,497	0,613	0,0	0,364	7,0	0.640	0,650	0,578	0,607	0,298	0,508	0,413	0,476	0,399	0,558	0,535	0,632	0,507	0,533	0,340 0 494	0,417	0,519	0,462	0,485	0,595	0,617	0,531	0,458	: :	0,536	:
PGI-	⋖	0,095	0,188	0,000	0.155	0,493	0,252	0,128	0,039	0,311	0,150	0,278	0,374	0,131	0,096	0,0	0,030	0,10	0.188	0.148	0,209	0,141	0,149	0,343	0,203	0,209	0,077	960'0	0,088	0,174	0,152	0,340	0,202	0,071	0,240	0,132	0,091	0,039	0,078	0,200	0,066	-))	0,169 0.126	
еР СВН	ф	0,113	0,128	0,127	0.099	0,272	0,058	0,128	0,167	0,091	0,184	0,176	0,205	0,000	0,000	0,130	0,020	0,0	0.065	0,131	0,104	0,240	0,181	0,019	0,114	0,116	0,058	0,020	0,107	0,227	0,181	0,091	0,077	0,040	0,182	0,058	0,127	0,019	0,026	0,185	0,013)	0,112 0.084	-
еРББН	Ą-	0,480	0,392	- 64,0	0,347	0,521	0,271	0,394	0,317	0,403	0,490	0,405	0,441	0,500	0,420	0,402	0,00 0,40 0,40	0,140	0.344	0,402	0,443	0,538	0,166	0,166	0,221	0,234	0,219	0,077	0,207	0,245	0,437	0,234	0,510	0,181	0,416	0,368	0,287	0,095	0,233	0,287	0,274	-) !	0,322 0.315)
MNR	4	0,634	0,491	0,400	0.480	0,660	0,617	0,459	0,533	0,498	699'0	0,376	0,538	0,564	0,604	0,0,0	0,073	0,00	0.436	0.545	0,433	609,0	0,350	0,596	0,594	0,462	0,571	0,506	0,532	0,622	0,435	0,402	0,019	0,461	0,422	0,581	0,433	0,587	0,528	0,628	0,578	i i	0,520 0.591	
MDH	ပု	0,268	0,040	0,200	0.020	0,232	0,321	0,078	0,291	0,013	0,183	0,311	0,276	0,130	0,114	0,08	0,10	0,0	0.200	0,389	0,091	0,078	0,019	0,039	0,308	0,115	0,253	0,183	0,191	0,136	0,066	0,053	0,320	0,116	0,263	0,267	0,128	0,246	0,052	0,166	0,189)	0,169	
MDH	ф	0,436	0,267	0,570	0,000	0,275	0,439	0,275	0,114	0,221	0,342	0,359	0,189	0,131	0,184	0,240	0,40	0,013	0.200	0,095	0,176	0,164	0,131	0,076	0,132	0,091	0,419	0,299	0,192	0,080	0,275	0,188	0.025	0,091	0,305	0,132	0,039	0,215	0,198	0,315	0,151) - -	0,210) i
Ė	В	0,358	0,407	0,4-0	0,383	0,322	0,232	0,238	0,605	0,406	0,406	0,355	0,273	0,373	0,261	0,700	0,555	424,0	0.298	0,539	0,476	0,571	0,646	0,401	0,406	0,186	0,424	905'0	0,494	0,289	0,291	0,497	0.387	0,443	0,435	0,409	0,393	0,350	0,315	0,391	0,267)	0,382)
																																									0,128		0,462 0.496	,
_	Ą	4		0,00	•	J	0,845 (_	0,856	_	0,822	_	_	0,834	_	(0,040			_		_	_	0,848 (_	_	0,842 (_	_			0,023		J	0,828	_	0,807	_	0,819			0,826	
EST- (828,		0,000	,861						0,852			0,715			273	902		0,831			0,647 (608,0	0,826			0,807					0,827	0,846		0,825 (
					0,807																																	0,826 0			0,812		0,796 C	
AP-A A					0.768																												0,000								0,802 0		0,809 0	
																																									N C			
ADH	⋖	0,80	0,75	0,70	0.749	0,82	0,80	0,84	0,76	0,79	0,83	0,73	0,83	0,84	0,85	0,0	0,0	0,0	0,82	0,86	0,73	0,76	0,75	0,87	0,80	0,79	0,72	0,77	0,71	0,84	0,77	0,69	0,70	0,70	0,67	0,69	0,777	0,847	0,669	0,824	0,00	5	0,780) :()
ACO-	⋖	0,545	0,682	0,040	0,396	0,386	0,586	0,278	0,403	0,433	0,551	0,585	0,380	0,541	0,491	0,00	0,044	0,020	0.187	0,559	0,499	0,274	0,678	0,496	0,335	0,444	0,606	0,639	0,605	0,424	0,487	0,175	0,340	0,467	0,686	0,594	0,350	0,394	0,230	0,539	0,783) - - -	0,482) ()
AAT-	Ф	0,242	0,139	0,220	0,134	0,171	0,300	0,263	0,229	0,242	0,227	0,194	0,159	0,312	0,196	0,0	0,200	0,237	0.184	0.201	0,150	0,102	0,233	0,244	0,182	0,187	0,146	0,217	0,188	0,170	0,148	0,127	0,102	0,178	0,125	0,198	0,103	0,454	0,340	0,353	0,330) [0,214))()
		- (N 0	o ~	t 10	9	7	∞	6	10	£	12	5	4 ;	ر د د	<u> 1</u> 2	<u> </u>	5 6	20	<u>۲</u>	22	23	24	22	5 6	27	78	59	8	ઝ	33		3 %	38	37	38	33	9 :	4;	4 5	3 4	:	⊘ alle	;

Tabelle 15: Fixierungsindex F

			_						,																																				
F 18 loci	0,298			0,286			0,254		0,288		0,291			0,279	0,306		0,282				0,260			0,266	0,257	0,327		0,291	0,278	0,233	0,289			0,314	0,329			0,320		0,320	2,4	- 2,0			0,289
F 17 loci	0,296	0,254	0,224	0,283	0,254	0,282	0,240	0,279	0,288	0,292	0,289	0,250	0,272	0,291	0,320	0,238	0,277	0,239	0,227	0,256	0,254	0,270	0,266	0,255	0,252	0,320	0,281	0,283	0,275	0,228	0,286	0,263	0,278	0,308	0,326	0,203	0,254	0,312	0,279	0,317	24.0	0,210	0,200		0,260
SKDH-A	0,437	0,462	0,138	0,540	0,283	0,182	0,304	0,390	0,254	0,304	0,269	0,311	0,295	0,270	0,306	0,364	0,349	0,275	0,144	0,406	0,002	0,421	0,439	0,523	0,294	0,234	0,145	0,327	0,314	0,439	0,407	0,419	0,454	0,307	0,173	0,250	0,291	0,374	0,182	0,456	200,0	0,252	0,214		0,306 0,314
PGM-A	0,136	0,274	0,031	0,196	0,320	0,249	0,044	0,179	-0,029	0,089	0,028	-0,043	0,110	0,159	0,080	-0,037	0,020	0,249	-0,022	0,034	0,015	0,174	0,074	0,122	0,227	0,080	0,120	0,133	0,236	-0,072	0,156	0,115	0,039	0,053	0,162	0,008	0,060	0,140	0,104	0,195	- 5.04 - 5.04	5 , 5	0,061	6	0,100 0,097
PGI-B	-0,004	-0,023	-0,048	0,014	0,060	0,182	0,038	0,116	0,146	-0,011	0,026	0,238	0,141	0,148	0,184	0,059	-0,042	0,015	0,008	0,027	-0,030	0,066	-0,034	0,019	0,054	0,017	0,096	0,061	0,045	0,007	-0,103	0,199	0,085	0,069	0,023	-0,053	0,046	0,093	700,0-	0,182	0,022	90,0	-0,098	7	0,047 0,048
PGI-A	0,740	0,305	0,460	0,559	0,648	0,615	0,310	0,314	-0,010	0,707	0,526	0,477	0,535	0,227	0,885	0,571	0,492	0,703	0,311	0,421	0,369	0,169	0,709	0,526	0,623	989'0	0,859	0,658	0,770	0,387	0,335	0,480	0,733	0,830	0,350	0,151	0,481	0,223	0,587	0,746	0,0,0	0,700	0,429	0	0,483
6РGDН-В	-0,023	0,227	-0,029	-0,015	0,556	0,356	-0,015	0,158	0,169	0,487	0,349	0,032	0,157	0,000	0,000	0,123	-0,005	-0,003	-0,027	-0,017	0,306	0,440	0,278	-0,039	-0,005	0,537	0,346	0,493	-0,005	-0,029	0,554	-0,053	0,429	0,387	0,791	0,494	-0,003	-0,015 0,000	0,308	-0,00 2	-0,007	0,012	-0,008	2	0,181 0,182
6РGDН-А	0,652	0,509	0,450	0,448	0,552	0,446	0,590	0,639	0,642	0,669	0,532	0,554	0,544	0,537	0,569	0,474	0,628	0,141	0,342	0,640	0,412	0,392	0,502	0,475	0,392	0,406	0,379	0,249	0,389	0,419	0,741	0,539	0,673	0,529	0,740	0,157	0,516	0,620	0,1,0	0,415	0,230	0.00	0,407		0,464 0,511
MNR-A	0,408	0,458	0,519	0,346	0,291	0,277	0,202	0,260	0,474	0,134	0,212	0,398	0,274	0,414	0,307	0,381	0,482	0,364	0,620	0,519	0,518	0,441	0,149	0,249	0,380	0,305	0,212	0,267	0,282	0,210	0,142	0,119	0,065	0,348	0,158	0,363	0,454	0,538	0,382	0,267	0,102	0000	0,214		0,322 0,366
MDH-C	999'0	0,493	0,582	0,807	-0,005	0,709	0,899	0,795	0,844	1,000	0,879	0,513	0,764	0,918	0,791	0,431	0,787	1,000	0,643	0,753	0,678	0,589	0,794	1,000	0,663	0,894	0,790	0,702	1,000	0,694	0,918	0,744	0,854	0,819	1,000	0,345	0,711	0,826	0,555	0,914	5,0 4,0 4,0	907	1,000	7	0,715 0,834
MDH-B	0,790	0,545	0,858	0,702	0,490	968'0	0,589	0,922	0,905	0,863	0,939	908'0	0,924	0,823	0,880	0,879	0,765	1,000	0,885	0,802	1,000	0,918	0,759	0,716	1,000	0,919	0,828	608'0	0,761	0,867	0,658	0,864	0,835	0,758	1,000	0,657	0,809	919.0	1,000	0,842	0,0,0	0,00	0,555	7	0,794 0,817
IDH-B	0,137	-0,014	-0,056	0,200	0,114	0,111	0,095	-0,059	-0,088	-0,031	-0,023	0,058	0,016	-0,100	0,059	0,017	-0,063	0,003	0,008	-0,005	-0,023	0,100	0,020	0,065	0,012	-0,023	0,088	-0,040	-0,004	-0,051	-0,066	0,083	-0,117	-0,109	0,262	900'0-	-0,052	0,047	0,014	0,050	0,0,0	-0,097	-0,051	2	0,011 0,008
IDH-A	0,169	0,135	0,028	0,046	0,354	0,091	0,011	0,203	0,279	0,166	0,431	0,033	0,146	0,387	0,317	0,127	0,290	0,011	0,063	0,214	0,002	0,138	0,148	0,310	-0,004	0,144	0,227	0,280	0,144	0,228	0,222	0,186	0,158	0,301	0,095	0,314	0,024	0,110	0,1/5	0,039	0,044	0,004	0,058	4	0,168 0,176
GDH-A	0,334			0,349			0,480		0,291		0,332			0,358	0,388		0,358				0,35			0,451	0,340	0,446		0,421	0,334	0,326	0,348		!	0,417	0,368		į	0,454	į	0,372	7000	0,324		0	0,373
EST-A	0,435	0,108	0,203	0,459	0,227	0,128	0,448	0,176	0,346	0,220	0,290	0,302	0,110	0,005	0,444	0,055	0,222	0,141	0,245	0,061	0,403	0,246	0,232	-0,159	-0,118	0,401	0,217	0,182	0,102	0,242	0,324	0,083	0,178	0,410	0,327	0,320	0,282	0,413	0,293	0,405	0,00	0,193	0,131	0	0,231
AP-B (AAP)	-0,036	0,318	0,230	0,191	0,264	0,087	0,237	0,271	0,285	0,151	0,274	0,116	0,188	0,169	0,141	0,089	0,142	990,0	0,174	0,179	0,282	0,244	0,221	0,321	0,186	0,361	0,070	0,327	0,278	0,227	0,300	0,238	0,260	0,255	0,179	0,169	0,196	1,331	0,089	0,244	0,030	0,140	0,196	2	0,198 0,231
AP-A (LAP)	0,106	0,281	0,286	0,237	0,223	0,184	0,117	0,152	0,293	0,184	0,155	0,379	0,329	0,178	0,127	0,179	0,298	0,217	0,336	0,179	0,197	0,301	0,169	0,149	0,286	0,033	0,104	0,288	0,204	0,222	0,210	0,246	660,0	0,147	0,381	0,337	0,316	0,266	0,382	0,095	2,0	0,130	0,233	2	0,215 0,180
ADH-A	0,252	0,165	0,133	0,251	0,033	0,091	0,289	0,153	0,244	0,149	0,140	0,061	060'0	0,254	0,151	0,002	0,301	-0,007	0,126	0,052	0,317	0,003	690'0	-0,184	0,147	0,336	0,422	0,232	0,310	0,105	0,256	0,179	0,049	0,161	0,225	0,068	0,038	0,220	0,323	0,206	0,040	0,273	0,085	7	0,153 0,246
ACO-A	0,097	660'0	0,036	-0,129	-0,051	0,176	0,014	0,109	-0,070	-0,038	-0,053	-0,047	0,038	0,103	-0,073	0,194	-0,075	-0,117	-0,030	-0,038	-0,299	-0,013	0,024	0,138	0,209	0,050	-0,083	-0,116	-0,113	0,020	-0,154	0,076	-0,036	0,020	-0,247	-0,080	0,041	0,088	-0,024	0,166	700,0-	6,0 0	-0,040	C	-0,005 -0,030
AAT-B	0,065	-0,030	-0,008	-0,046	-0,037	0,021	-0,086	-0,038	0,208	-0,075	-0,063	0,068	-0,045	0,164	-0,052	0,139	0,123	-0,002	0,033	0,130	0,178	-0,036	-0,024	0,102	-0,059	0,051	-0,038	-0,041	-0,046	-0,043	-0,043	-0,042	-0,029	-0,043	-0,072	-0,042	0,110	0,114	0,205	0,174	0,00		0,022	2	0,019 0,040
	_	7	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	<u>8</u>	ე ე	20	7	22	23	24	22	56	27	28	53	30	31	32	33	34	35	36	37	8	S .	04 <i>2</i>	- c	1 ~	4 4	=	⊘ alle ⊘ Alt

Tabelle 16: Genetische Abstände d_o aller 44 Bestände für den Genpool (17 Loci)

```
10
                                                                                                                                                                                                12
   1 0.000
  2 0.090 0.000
  3 0,073 0,058 0,000
  4 0,063 0,086 0,082 0,000
  5 0.105 0.086 0.098 0.101 0.000
  6 0,090 0,101 0,079 0,095 0,106 0,000
  7 0,080 0,110 0,114 0,080 0,125 0,126 0,000
  8 0,086 0,091 0,093 0,083 0,082 0,087 0,089 0,000
  9 0.088 0.106 0.121 0.080 0.103 0.120 0.096 0.102 0.000
 10 0,096 0,082 0,088 0,091 0,083 0,081 0,107 0,066 0,093 0,000
11 0,067 0,104 0,094 0,085 0,109 0,106 0,084 0,100 0,092 0,110 0,000
12 0,087 0,092 0,075 0,086 0,084 0,088 0,100 0,062 0,104 0,079 0,098 0,000
13 0.094 0.095 0.085 0.084 0.086 0.071 0.116 0.070 0.113 0.075 0.115 0.077 0.000
14 0.067 0.091 0.094 0.076 0.091 0.107 0.088 0.091 0.087 0.094 0.068 0.100 0.103 0.000
15 0.096 0.103 0.121 0.093 0.120 0.123 0.081 0.099 0.099 0.107 0.104 0.120 0.118 0.089 0.000
16 0.081 0.068 0.067 0.086 0.090 0.082 0.099 0.063 0.111 0.076 0.098 0.062 0.078 0.094 0.104 0.000
17 0,068 0,109 0,100 0,078 0,121 0,107 0,091 0,103 0,085 0,115 0,087 0,105 0,115 0,088 0,084 0,094 0,000
 18 0,102 0,088 0,095 0,102 0,076 0,114 0,126 0,091 0,116 0,087 0,121 0,102 0,096 0,097 0,117 0,094 0,112 0,000
19 0.100 0.087 0.088 0.106 0.087 0.115 0.113 0.090 0.125 0.102 0.116 0.084 0.103 0.096 0.130 0.084 0.106 0.087 0.000
20 0,088 0,092 0,091 0,081 0,080 0,082 0,100 0,062 0,105 0,064 0,112 0,079 0,067 0,094 0,100 0,076 0,102 0,087 0,085 0,000
21 0,074 0,085 0,092 0,090 0,097 0,104 0,101 0,100 0,078 0,094 0,097 0,104 0,092 0,081 0,109 0,082 0,095 0,099 0,094 0,086 0,000
22 \quad 0,090 \quad 0,073 \quad 0,075 \quad 0,084 \quad 0,066 \quad 0,090 \quad 0,108 \quad 0,061 \quad 0,100 \quad 0,070 \quad 0,099 \quad 0,055 \quad 0,075 \quad 0,098 \quad 0,107 \quad 0,056 \quad 0,103 \quad 0,074 \quad 0,083 \quad 0,078 \quad 0,090 \quad 0,000 \quad
23 0,095 0,091 0,094 0,088 0,089 0,085 0,133 0,082 0,098 0,076 0,120 0,100 0,080 0,108 0,113 0,086 0,112 0,088 0,115 0,073 0,083 0,073
24 0,193 0,182 0,193 0,195 0,170 0,222 0,203 0,199 0,178 0,202 0,175 0,199 0,198 0,173 0,199 0,198 0,202 0,170 0,189 0,206 0,173 0,180
25 0,095 0,120 0,115 0,098 0,088 0,121 0,107 0,119 0,118 0,107 0,100 0,124 0,112 0,071 0,116 0,118 0,114 0,085 0,121 0,113 0,104 0,111
27 0.118 0.115 0.122 0.109 0.087 0.119 0.110 0.077 0.117 0.093 0.121 0.089 0.100 0.101 0.124 0.093 0.122 0.102 0.110 0.104 0.116 0.079
28 0,066 0,101 0,097 0,068 0,118 0,113 0,081 0,102 0,089 0,107 0,092 0,095 0,114 0,097 0,093 0,094 0,068 0,113 0,105 0,093 0,101 0,099
29 0,089 0,104 0,103 0,088 0,118 0,118 0,087 0,096 0,106 0,099 0,103 0,102 0,116 0,106 0,111 0,082 0,108 0,109 0,107 0,090 0,093 0,094
30 0.084 0.089 0.100 0.071 0.111 0.127 0.094 0.110 0.092 0.107 0.098 0.103 0.114 0.089 0.103 0.095 0.095 0.104 0.101 0.093 0.095 0.091
31 0.076 0.104 0.102 0.080 0.089 0.095 0.079 0.086 0.085 0.094 0.073 0.096 0.090 0.068 0.091 0.086 0.083 0.102 0.099 0.077 0.085 0.092
32 0.097 0.097 0.094 0.090 0.085 0.087 0.115 0.065 0.123 0.081 0.109 0.080 0.081 0.109 0.117 0.072 0.102 0.093 0.096 0.083 0.114 0.064
33 0.117 0.114 0.106 0.107 0.098 0.103 0.125 0.076 0.126 0.092 0.138 0.092 0.095 0.132 0.132 0.091 0.120 0.101 0.113 0.090 0.124 0.072
34 0.079 0.097 0.102 0.074 0.110 0.108 0.080 0.112 0.097 0.106 0.085 0.110 0.103 0.082 0.096 0.100 0.097 0.106 0.119 0.088 0.089 0.104
35 0,124 0,132 0,131 0,125 0,129 0,141 0,122 0,137 0,126 0,145 0,117 0,135 0,128 0,105 0,160 0,136 0,139 0,133 0,134 0,134 0,111 0,133
36 0,108 0,095 0,107 0,088 0,080 0,115 0,115 0,089 0,101 0,087 0,121 0,098 0,108 0,093 0,121 0,101 0,117 0,078 0,099 0,084 0,111 0,084
37 0.082 0.076 0.066 0.087 0.082 0.089 0.106 0.081 0.099 0.072 0.094 0.060 0.085 0.092 0.119 0.073 0.106 0.092 0.082 0.086 0.088 0.062
38 0.063 0.082 0.085 0.062 0.094 0.100 0.076 0.088 0.070 0.091 0.077 0.079 0.096 0.075 0.086 0.076 0.079 0.098 0.101 0.096 0.078 0.071
39 0,118 0,117 0,127 0,101 0,082 0,119 0,122 0,080 0,112 0,099 0,134 0,096 0,101 0,109 0,125 0,098 0,125 0,095 0,117 0,101 0,114 0,085
40 0,106 0,114 0,129 0,087 0,120 0,134 0,084 0,105 0,088 0,115 0,112 0,114 0,113 0,100 0,100 0,118 0,107 0,122 0,129 0,113 0,108 0,113
41 0,129 0,116 0,134 0,110 0,096 0,140 0,115 0,081 0,114 0,099 0,133 0,105 0,110 0,117 0,130 0,109 0,132 0,099 0,110 0,100 0,139 0,092
42 \quad 0,087 \quad 0,101 \quad 0,108 \quad 0,095 \quad 0,126 \quad 0,107 \quad 0,075 \quad 0,105 \quad 0,099 \quad 0,105 \quad 0,080 \quad 0,112 \quad 0,118 \quad 0,093 \quad 0,089 \quad 0,092 \quad 0,088 \quad 0,127 \quad 0,113 \quad 0,110 \quad 0,096 \quad 0,110 \quad
43 \quad 0,102 \quad 0,115 \quad 0,118 \quad 0,092 \quad 0,098 \quad 0,127 \quad 0,093 \quad 0,079 \quad 0,102 \quad 0,104 \quad 0,117 \quad 0,099 \quad 0,109 \quad 0,094 \quad 0,111 \quad 0,100 \quad 0,116 \quad 0,098 \quad 0,105 \quad 0,099 \quad 0,122 \quad 0,092 \quad 0,103 \quad
44 0.092 0.095 0.097 0.092 0.081 0.105 0.101 0.073 0.109 0.083 0.113 0.092 0.099 0.093 0.113 0.075 0.110 0.071 0.086 0.077 0.103 0.075
                23
                               24
                                               25
                                                               26
                                                                               27
                                                                                               28
                                                                                                               29
                                                                                                                              30
                                                                                                                                               31
                                                                                                                                                              32
                                                                                                                                                                              33
                                                                                                                                                                                              34
                                                                                                                                                                                                               35
                                                                                                                                                                                                                              36
                                                                                                                                                                                                                                              37
                                                                                                                                                                                                                                                              38
                                                                                                                                                                                                                                                                              39
                                                                                                                                                                                                                                                                                              40
                                                                                                                                                                                                                                                                                                              41
23 0.000
24 0,196 0,000
25 0.119 0.159 0.000
26 0,106 0,190 0,098 0,000
27 0,119 0,178 0,102 0,108 0,000
28 0,106 0,203 0,113 0,076 0,119 0,000
29 0,106 0,198 0,107 0,094 0,112 0,076 0,000
30 0,104 0,186 0,105 0,084 0,114 0,061 0,071 0,000
31 0,091 0,182 0,079 0,062 0,097 0,084 0,094 0,086 0,000
32 0,081 0,196 0,121 0,109 0,076 0,096 0,104 0,113 0,090 0,000
33 0.089 0.210 0.126 0.109 0.087 0.107 0.108 0.105 0.108 0.071 0.000
34 0.103 0.195 0.090 0.074 0.122 0.090 0.085 0.081 0.079 0.119 0.128 0.000
35 0,142 0,195 0,117 0,112 0,139 0,132 0,134 0,118 0,092 0,154 0,166 0,117 0,000
36 0.088 0.180 0.091 0.098 0.088 0.096 0.092 0.088 0.095 0.098 0.100 0.093 0.124 0.000
```

Tabelle 17: Genetischer Abstand d_o der Bestandskollektive für den Genpool (17 Loci)

Arnstein

	1	2	3
1	0,000		
2	0,090	0,000	
3	0,073	0,058	0,000

Bad Neustadt

	4	5	6
4	0,000		
5	0,101	0,000	
6	0,095	0,106	0,000

Bamberg

		7	8
	7	0,000	
	8	0,089	0,000

Burgsinn

	9	10
9	0,000	
10	0,093	0,000

Dinkelsbühl

	11	12	13	14
11	0,000			
12	0,098	0,000		
13	0,115	0,077	0,000	
14	0,068	0,100	0,103	0,000

Hammelburg

	15	16
15	0,000	
16	0,104	0,000

Hochspeyer

	17	18	19	20
17	0,000			
18	0,112	0,000		
19	0,106	0,087	0,000	
20	0,102	0,087	0,085	0,000

Langenau

Langenau					
	21	22	23	24	25
21	0,000				
22	0,090	0,000			
23	0,083	0,073	0,000		
24	0,173	0,180	0,196	0,000	
25	0,104	0,111	0,119	0,159	0,000

Müllheim I

	26	27
26	0,000	
27	0,108	0,000

Müllheim II

Wall of the				
	28/29	30	31	32/33
28/29	0,000			
30	0,057	0,000		
31	0,078	0,086	0,000	
32/33	0,092	0,105	0,094	0,000

Müllheim II

	28	29	30	31	32	33
28	0,000					
29	0,076	0,000				
30	0,061	0,071	0,000			
31	0,084	0,094	0,086	0,000		
32	0,096	0,104	0,113	0,090	0,000	
33	0,107	0,108	0,105	0,108	0,071	0,000

Müllrose

	34	36	37	
34	0,000			
36	0,093	0,000		
37	0.102	0.094	0.000	

Peitz

	38	39
38	0,000	
39	0,098	0,000

Schweinfurt

Scriweiniart				
	40	41		
40	0,000			
41	0.101	0,000		

Uffenheim

	42	43	44
42	0,000		
43	0,115	0,000	
44	0,116	0,078	0,000

Taballa 19. Cianifika	natest (V2 Test) a	ur Hardy Wainha	ea Ctentature
Tabelle 18: Signifika	inziesi (X2-Tesi) z	ur Haruv-weinde	rg-Struktur

						0														- 2	′				-	,																		
SKDH-A	* * *	* *	* *	* * *	*	*	* * *	* * *	n.s.	* *	n.s.	* * *	* * *	*	*	* * *	*	*	*	* * *	n.s.	* * *	* * *	* * *	n.s.	* *	n.s.	* * *	* * *	* * *	* * *	* *	* * *	* * *	*	* *	* * *	* * *	*	* *	* *	* * *	* * *	*
PGM-A	n.s.	* *	* *	n.s.	* *	* * *	n.s.	*	n.s.	*	n.s.	n.s.	* *	* *	n.s.	n.s.	n.s.	* *	n.s.	* *	n.s.	* * *	n.s.	* *	* *	n.s.	n.s.	* *	* *	n.s.	*	*	n.s.	n.s.	n.s.	n.s.	* *	n.s.						
PGI-B																																												
PGI-A	* * *	* *	* *	* *	* * *	* *	* *	* * *	n.s.	* *	* * *	* * *	* *	* *	* * *	* * *	* *	* *	* * *	* *	* *	* * *	* * *	* * *	* *	* *	* *	* * *	* *	* *	* * *	* * *	* * *	* * *	* * *	*	* * *	n.s.	* * *	* * *	n.s.	* * *	* *	* * *
6PGDH-B	n.s.	* *	n.s.	n.s.	* * *	* *	n.s.	n.s.	n.s.	**	* * *	n.s.	n.s.	Kein Test	kein Test	* *	n.s.	n.s.	n.s.	n.s.	* *	* * *	* *	n.s.	n.s.	* * *	* * *	* * *	n.s.	n.s.	* *	n.s.	* * *	* * *	* * *	* *	* *	n.s.	* * *	n.s.	n.s.	* * *	n.s.	n.s.
6PGDH-A	* * *	* * *	* * *	* * *	* * *	* *	* * *	* * *	* * *	* *	* *	* *	* * *	* *	* *	* *	* * *	* * *	* *	* * *	* *	* * *	* * *	* * *	* *	* * *	* *	* * *	* * *	* * *	* *	* *	* *	* *	* *	* *	* *	* * *	* *	**	**	* *	n.s.	* * *
MNR-A	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* * *	*	* *	* *	* *	*	* *	* *	*	* *	* * *	* *	* * *	* *	* *	* *	* * *	* *	* *	* *	* *	n.s.	* * *	* * *	* * *	* * *	* *	* * *	* * *	n.s.	* *	* *	* * *
MDH-C	* * *	* * *	* * *	* *	n.s.	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	n.s.	* * *	* * *	* * *
MDH-B	* * *	* *	* *	* *	*	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* * *	* * *	* *	* *	* * *	* * *	* *	* *	* * *	* *	* * *	* * *	* * *	* *	* *	* *	* *	* *	* *	* *	* *	* * *
IDH-B	* * *	n.s.	* *	*	n.s.	n.s.	* *	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	*	n.s.	* * *	n.s.	n.s.	* *	n.s.	n.s.	n.s.	n.s.	* *	n.s.	n.s.	*	n.s.	n.s.	n.s.	* * *	n.s.	* * *	n.s.	n.s.	n.s.						
IDH-A	* * *	n.s.	n.s.	* *	* * *	* * *	* *	* * *	* *	* * *	* * *	n.s.	* * *	* * *	* *	n.s.	* * *	n.s.	* * *	* * *	n.s.	n.s.	* * *	* * *	* * *	* * *	* * *	*	* *	* *	* * *	* *	*	* * *	*	* *	* * *	n.s.	* * *	n.s.	* * *	* *	* * *	n.s.
EST-A	* *	n.s.	* *	* *	* * *	* *	* *	* * *	* *	* * *	* *	* * *	*	* * *	* * *	* * *	*	* * *	* * *	*	* *	* *	* *	n.s.	* *	* *	* *	* *	n.s.	*	* * *	n.s.	* *	* *	* *	* *	* * *	* * *	* *	* *	* * *	* * *	* *	n.s.
AP-B	n.s.	* *	* * *	* *	* *	n.s.	* * *	* * *	* *	*	* *	n.s.	* *	n.s.	n.s.	*	* *	n.s.	*	* *	* * *	* * *	* * *	* * *	* * *	* *	n.s.	* * *	* *	*	* *	* *	* * *	* * *	n.s.	* * *	* * *	* *	n.s.	* * *	n.s.	n.s.	*	*
AP-A	* * *	* *	* *	* *	*	* *	*	* * *	* *	* *	* *	* *	* *	* *	n.s.	* *	* *	* *	* *	* *	* *	* *	* * *	* *	* *	* *	* *	* *	* *	* * *	* *	* *	* *	*	* * *	* *	* *	* *	* *	* *	* * *	*	* *	* *
ADH-	* * *	* * *	* * *	*	n.s.	* * *	* * *	* * *	* * *	*	n.s.	* * *	* *	* * *	n.s.	* * *	* *	* * *	* * *	* *	* *	n.s.	* * *	*	n.s.	* * *	* * *	*	* * *	n.s.	*	* *	* * *	*	n.s.	* * *	* * *	* * *	* * *	n.s.	n.s.	*	n.s.	* *
ACO-	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	* * *	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	*	n.s.	*	n.s.	n.s.	n.s.	n.s.	* * *	* *													
AAT-B	n.s.	n.s.	n.s.	n.s.	n.s.	*	n.s.	n.s.	*	n.s.	n.s.	n.s.	n.s.	* *	n.s.	* *	n.s.	* * *	n.s.	* * *	* *	n.s.	n.s.	* * *	n.s.	* * *	n.s.	* *	n.s.	*	*	*	*	n.s.	n.s.									
	-	7	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	70	21	22	23	24	25	5 6	27	78	53	30	31	32	33	34	32	36	37	38	33	40	4	45	43	44

Tabelle 19: Signifikanztests G und X²: Hardy-Weinberg-Struktur und Inzuchtstruktur (seltene Allele

					Hardy-	Weind	Weinb erg- Str uktur	uktur					- Struktur	_			
		ADH-A X**2	(ŋ	AP-A X**2	(LAP) G	AP-B X**2	(AAP) G	EST-A X**2	ۆ ن	ADH-A X**2	ტ ტ	AP-A X**2	(AAP) G	AP-B (X**2	(AAP)	EST-A X**2	დ ▼
Ė	Arnstein	* *	* * *	**	***	n.s.	n.s.	***	* * *	*	*	*	* *	neg. F- Wert	Vert	*	*
	Arnstein Sammelstelle 97	* *	* *	* *	* *	* *	* *	S	S	S	S	* *	* *	S	D.S.	S	S
	Arnstein Bestandesahsaat 97	* *	* *	* *	* * *	* *	* * *	*	*	*	*	* *	* *	ر د	8	\(\frac{1}{2}\)	S. C.
. 4	Bad Neustadt/ Saale	* *	* *	* *	* *	* *	*	* *	* *	* *	* *	* *	* *	. S	*	* *	*
	Bad Neustadt/ Saala Bestandesahsaat	o c	2	*	*	* *	* *	* *	* *	2	*	2	2	0	2	*	*
	Bad Noistadt/ Saala Bestandesabsaat		9 0	*	**	2	2	**	* *	9 0	2	? *	: : *			*	* *
	Dau Neustaut Saale Destalluesausaat	<u>;</u>		,	***	<u>.</u>		***	1	<u>,</u>			1	<u>;</u>			
	Bamberg	* * *	k k k	k	k k	k k k	k k	* * *	* * *	n.s.	k	*	* *	n.s.	n.s.	n.s.	n.s.
	Bamberg Bestandesabsaat 98	*	*	* *	* * *	* * *	* * *	*	*	n.s.	n.s.	* * *	* * *	n.s.	n.s.	*	*
	Burgsinn	* * *	* * *	* *	* * *	* * *	* *	* *	* * *	* * *	*	* *	* * *	*	*	* *	* *
_	Burgsinn Bestandesabsaat 98	*	*	* * *	* *	*	* *	*	*	*	*	* *	* * *	*	n.s.	n.s.	n.s.
	Dinkelsbühl	n.s.	n.s.	**	* *	* *	* * *	* *	* *	n.s.	n.s.	* *	* *	n.s.	n.s.	n.s.	n.s.
	Dinkelsbühl Bestandesabsaat 97	* *	* *	* *	* *	S	D.S.	* *	* * *	*	* *	*	*	S	D.S.	*	*
	Dinkelshiihl Bestandesahsaat 98	* *	* *	* *	* * *	* *	*	S.	S	* *	* * *	*	* *	ر د	8	S.	S.
	Dinkelshiihi Naturveriiingung	* *	* *	* *	**	*	2	*	*	*	*	*	*			*	*
	Hammelbirg	*	*	*	* * *	2		* *	* *	2	*	*	* *			2	2
	Hammolburg Bostandosahsaat 07	*	**	**	**) * : *	· *	*	*	· *	***	*	*	9 0	· • • •	· *	· • *
	Hallineibalg Destandesabsaat 97	*	*	* *	**	*	* *	*	*	2	2	*	* *	: *	*	2	2
	Tociopayai)	*	*	*	,		*	÷	. L		,	÷	!			, : :
	nocrispeyer Klerige 97)	*	*	***	.; :		÷	÷	-Leg.	, to	,	,	 	 	,	+
	Hochspeyer Bestandesabsaat 97	:	:			: :		:	:		: :	. :	: :	n.s.	n.s.	: :	: :
	Hochspeyer Bestandesabsaat 98	k k	k k	k k	k k	k k	k k	k k	k k	k	k	k k	k k	n.s.	n.s.	k k	k k
2	Langenau	* *	*	*	*	* *	* *	* *	* *	*	*	* * *	*	n.s.	n.s.	n.s.	n.s.
 52	Langenau Bestandesabsaat 97	*	*	* *	* *	* *	* * *	* *	* * *	neg. F- Wert	Wert	*	* * *	n.s.	n.s.	n.s.	n.s.
23	Langenau Bestandesabsaat 98	*	*	* *	* * *	* *	* *	*	*	n.s.	n.s.	*	* * *	n.s.	n.s.	n.s.	n.s.
24	Langenau Kultur (BS)	*	*	* *	* * *	* *	* *	*	*	neg. F- Wert	Wert	* *	* *	n.s.	n.s.	neg. F- \	Wert
_	Langenau Pflanzgarten	*	*	* *	* * *	* * *	*	* *	*	*	*	n.s.	n.s.	n.s.	n.s.	neg. F- \	Wert
	Müllheim	* *	* * *	* * *	* * *	* *	* *	* * *	* *	n.s.	n.s.	* *	* *	n.s.	n.s.	n.s.	n.s.
	Müllheim Bestandesabsaat 96	* * *	* * *	n.s.	n.s.	n.s.	n.s.	*	*	*	*	n.s.	n.s.	n.s.	n.s.	*	n.s.
	Müllheim Eichwald	* *	*	* *	* * *	* *	* * *	*	*	n.s.	n.s.	* *	* *	n.s.	n.s.	n.s.	n.s.
	Müllheim Steinacker	* * *	* * *	* *	* * *	* *	* *	n.s.	n.s.	*	*	* *	* *	n.s.	n.s.	n.s.	n.s.
	Müllheim Baumschule 94	*	n.s.	* *	* *	*	n.s.	*	*	n.s.	n.s.	* *	* *	n.s.	n.s.	n.s.	n.s.
	Müllheim Baumschule 96	*	*	*	* * *	* *	* * *	* * *	* *	n.s.	n.s.	*	*	n.s.	n.s.	n.s.	n.s.
32	Müllheim Eichwald Bestandesabsaat 98	* *	* *	* *	* *	* *	* *	n.s.	n.s.	n.s.	*	* *	* *	n.s.	n.s.	n.s.	n.s.
33	Müllheim Steinacker Bestandesabsaat	*	*	* *	* * *	* *	* * *	*	*	n.s.	n.s.	* *	* *	n.s.	n.s.	*	*
	Müllrose	* * *	*	*	*	* * *	* *	* *	* *	*	*	*	*	*	n.s.	n.s.	n.s.
_	Müllrose Baumschule	*	*	* *	* * *	n.s.	n.s.	*	*	n.s.	n.s.	*	*	n.s.	n.s.	n.s.	n.s.
	Müllrose Bestandesabsaat 96	* * *	* * *	* *	* * *	* * *	* *	* *	* *	* *	* * *	* *	* *	n.s.	n.s.	*	*
37	Müllrose Bestandesabsaat 97	*	*	* *	* *	* *	* * *	* *	* *	*	*	* *	* *	n.s.	n.s.	n.s.	n.s.
	Peitz	* *	* * *	* *	* *	* * *	* * *	* * *	* * *	*	*	*	*	n.s.	*	n.s.	n.s.
39	Peitz Bestandesabsaat 96	* * *	**	* *	* * *	n.s.	n.s.	* *	* *	* *	* * *	*	*	n.s.	n.s.	n.s.	n.s.
40	Schweinfurt	* *	* *	* *	* *	* *	* * *	* *	* *	*	*	* *	* * *	n.s.	n.s.	* *	*
4	Schweinfurt Bestandesabsaat 96	*	*	* *	*	n.s.	n.s.	* * *	* * *	n.s.	*	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
42	Uffenheim	* *	* * *	*	*	n.s.	n.s.	*	*	* * *	* *	*	*	n.s.	n.s.	*	*
43	Uffenheim Bestandesabsaat 96	n.s.	n.s.	* *	* *	*	*	* * *	* *	neg. F- Wert	Wert	n.s.	*	n.s.	n.s.	*	*
44	Ilfanhaim Rastandasahsaat 97	*	*	***	***	*	*	2	2	2	2	9	9	2	9	9	9

Tabelle 20: Übersicht der Genotypfrequenzen für vier Genorte: **Beobachtete Struktur**, Hardy-Weinberg-Struktur und *Inzucht-Struktur* (%-Anteil proportional zur Stichprobengröße)

	ADH-A	AP-A (LAP)		AP-B (AAP)	EST-A
Arnstein	Allel 3 4 3 40 30,75 36,63	5 6 Allel 2 2 15 7,69 10,38	3 4 5	Allel 2 3 4 2 24 23,06	5 Allel 2 3 4 2 12 6,38 14,79
	4 2 4 10,98 0,98 8,42 3,08	3 2 9,61 8,33	2 3 4,92	3 7 0 9,51 0,98	3 15 19 15,75 9,73 8,82 19,3
	5 17 6 18,67 3,33	2 4 19 2,83 26,35	25 24 16,47 22,59	4 37 10 10 34,24 7,06 12,71	4 12 10 34 22,5 27,79 19,85
	14,31 2,56 6 13 4 20,86 3,73	6,14 22,86 7 7 5 5 6,33 3,54 4,67	14,29 25,96 4 4 2 2,92 8 0,71	5 5 3 5 7,13 1,47 5,29 0	12,61 15,57 30,91 1 0,55
	16 2,86 xx 53 xy xx 38,1 xy xx 52,99 xy	4,86 7,14 4,05 49 xx 43 63,9 xx 33,99 49,01 xx 43	2,53 6,94 1,74 xy 59 xy 68,02 xy 59	xx 35 xy 67 xx 37,3 xy 64,7 xx 0 xy 0	xx 65 xy 37 xx 35,96 xy 66,04 xx 65 xy 37
Arnstein Sammel-	Allel 3 4 3 68 61,44	5 6 Allel 2 2 21 8,4	3 4 5	Allel 2 3 4 2 42 31,28	5 Allel 2 3 4 2 22 16,01
stelle 97	68,56 4 10 7	16,45 3 1	4	43,43 3 11 15	19,27 3 23 18
	19,84 1,60 15,75 4,47 5 24 3	9,23 6,49 8 4 14	2,54 7,57 22 48	24,2 4,68 16,3 11,8 4 33 11 19	31,03 15,04 27,97 18,25 4 31 36 20
	28,8 4,65 22,86 3,69 6 22 4	3,38 34,08 7,32 23,96 2 2 5 14	18,72 34,56 13,16 45,67 8 12 6	38,82 15,02 12,04 26,15 10,11 21,98 5 9 1 3	34,95 33,88 19,08 31,5 30,53 22,48 6
	20,48 3,31 16,26 2,63 xx 85 xy	4,8 1,71 10,89 3,81 4,65 7,65 65 xx 79	5,98 22,08 3,53 4,2 15,53 9,31 xy 71		,04 !,78 xx 60 xy 90
	xx 68,13 xy xx 85 xy	81,88 xx 49,03 65 xx 79	xy 101 xy 70,99	xx 49,04 xy 101 xx 81,99 xy 67,99	xx 50,13 xy 99,86 xx 60 xy 90
Arnstein Bestandes- absaat 97	Allel 3 4 3 69 62,73	5 6 Allel 2 2 20 6,83	3 4 5	Allel 2 3 4 2 36 29,48	5 Allel 2 3 4 2 10 6,83
	69,79 4 9 7 20,05 1,6	14,24 3 2 12,59	9 5,8	37,99 3 14 9 19,51 3,23	11,77 3 14 27 21,55 17
	15,91 4,47 5 26 4 31,04 4,96	9 4 13 3,84 30,08	12,78 33 43 27,73 33,14	15,02 7,54 4 39 10 23 43,89 14,52 16,33	17,32 23,57 4 30 33 36 28,8 45,45 30,37
	24,64 3,94 6 21 4 17,46 2,79	8 21,22 1 5 9 4,32 1,22 7,68	19,56 44,14 6 9 6 7,08 16,92 2,16	33,8 11,18 23,96 5 8 2 4	23,15 36,53 37,66 5 0,96
	13,86 2,21 xx 86 xy xx 69,39 xy	3,43 3,75 5,42 64 xx 78 80,62 xx 47,93	4,99 11,93 6,83 xy 72 xy 102,1		3,5 xx 73 xy 77 xx 54,2 xy 95,8
Neustadt/	xx 86,01 xy Allel 3 4	63,99	xy 72 3 4 5	xx 72,99 xy 77 Allel 2 3 4	xx 73 xy 77 5 Allel 2 3 4
Saale	3 48 37,08 43,52	2 15 5,19 9,41		2 23 18,55 23,32	2 15 8,25 17,63
	4 2 4 13,87 1,3 10,21 3,99	3 1 12,85 9,81	10 7,96 <i>12,83</i>	3 3 6 10,24 1,41 8,28 3,44	3 22 19 19,62 11,67 10,74 22
	5 8 1 8,44 1,58 6,22 1,16	1 4 8 0,48 19,84 2,2 15,14	33 23 24,59 18,98 18,76 24,91	4 29 5 17 31,13 8,59 13,06 25,18 6,95 17,54	4 6 9 31 21,89 26,04 14,53 11,99 14,26 25,37
	6 17 12 26,53 4,96 19,53 3,65	3 6 5 7 3,02 4,75 2,93 2,22 9,29 2,24	3 1 1 3,63 5,61 0,41 2,77 4,28 1,86	5 9 4 5 8,53 2,35 7,16 0	1 0,98 2,7
	xx 59 xy xx 43,61 xy	43 xx 49 58,4 xx 32,54	xy 53 xy 69,45	xx 47 xy 55 xx 34 xy 68	xx 65 xy 37 xx 34,45 xy 67,55
Neustadt/ Saale	xx 59 xy Allel 3 4 3 43	42,99	xy 53 3 4 5	xx 47 xy 55 Allel 2 3 4 2 30	xx 65 xy 36,99 5 Allel 2 3 4 2 10
Bestandes- absaat 97	43,11 <i>44,01</i> 4 8 3	15,12 20,31 3 4	2	24 30,44 3 2 4	2,95 6,78 3 2 10
	12,6 0,92 12,09 1,27 5 14 2	4,32 3,36 2 4 30	0,31 1,46 3 32	5,94 0,37 4,38 1,85 4 26 14	8,5 6,13 6,18 11,13 4 12 27 37
	13,27 1,94 12,72 1,86 6 22 3	1,02 38,5 1,39 29,97 1 5 7	5,5 24,5 4,28 29,93 1 1	30,19 3,73 9,49 22,25 2,75 15,02	19,6 28,25 32,57 14,26 20,55 39,09
	17,91 2,62 17,18 2,51	2,76 1,86 3,93 2,64 2,34 3,06	0,56 5 0,26 0,44 3,89 1,31	12,87 1,59 8,09 1 9,48 1,17 5,96 4	,72 1,69
	xx 49 xy xx 46,91 xy xx 49,01 xy	49 xx 53 51,1 xx 40,19 49 xx 53,01	xy 45 xy 57,81 <i>xy</i> 45	xx 52 xy 46 xx 35,58 xy 62,41 xx 52 xy 45,99	xx 57 xy 41 xx 41,65 xy 56,35 xx 57 xy 40,99
Neustadt/ Saale Bestandes-	Allel 3 4 3 54 48,98	5 6 Allel 2 2 12 5,38	3 4 5	Allel 2 3 4 2 42 37,25	5 Allel 2 3 4 2 27 15,9
absaat 98	53, <i>4</i> 2 4 19 5	10,21 3 2	12	40,46 3 16 3	19,59 3 16 10
	23,92 2,92 21,05 5,09 5 27 7	11,32 8,96 10 4 25	5,96 10,98 22 44	17,88 2,15 16,36 3,49 4 41 11 17	25,96 10,6 23,06 13,88 4 28 44 26
	33,03 8,07 29,07 7,1 6 18 6	5,57 27,93 8,38 22,1 4 1 5 6	29,4 36,26 23,26 44,15 12 13 3		40,24 32,85 25,46 35,75 29,18 29,53
	17,09 4,17 15,04 3,67 xx 70 xy	5,76 1,49 6,98 5,07 3,11 5,52 81 xx 71	7,35 18,13 2,27 5,82 14,34 5,66 xy 80	10 2,4 6,27 1 xx 63 xy 88	0,8 ,67 xx 63 xy 88
	xx 58,96 xy xx 70 xy	92,04 xx 49,87 81 xx 71	xy 101,1 xy 80	xx 54,83 xy 96,18 xx 63 xy 88	xx 51,96 xy 99,05 xx 63 xy 87,99

Bamberg	Allel 3	3 33 23,06	4	5	6	Allel 2	2 12 7,96	3	4	5	Allel 2	2 43 35,88	3	4	5	Allel 2	2 23 13,42	3	4
	5 6	30,35 2 8,08 5,77 7 8,08 5,77 22	4 0,71 2,94 2 1,42 1,01 5	0,71 2,94 8	19	3 4 5	10,37 6,99 6,17 28 30,18 26,64 5	3 1,53 2,82 16 13,24 11,68 3	30 28,59 31,57 4	1	3 4 5	41,71 4 11,27 8,6 23 28,47 21,73 8	5 0,88 2,92 4 4,47 3,41 1	8 5,65 9,99 5	1	3	23,09 18 24,67 14,55 10 22,49 13,26	19 11,33 20,63 12 20,67 12,19	20 9,42 18,27
	XX	34,71 24,77 56 37,54 56	6,08 4,34 xy xy xy	6,08 4,34 46 64,45 46	13,06 19,77	xx xx xx	3,91 3,45 46 38,56 46	1,72 1,51 xy xy xy	7,41 6,54 56 63,45 55,99	0,48 1,24	xx xx xx	9,49 7,24 57 43,04 56,99	1,49 1,14 xy xy xy	3,76 2,87 45 58,95 44,99	0,63 2,37	xx xx xx	62 34,17 <i>61,9</i> 9	xy xy xy	40 67,83 40
Bamberg Bestandes- absaat 98	4 2 5	3 51 44,83 50,4 13 24,6 20,91 31 33,35 28,35	9 3,38 6,24 8 9,15 7,78 6	9 6,2 9,84 4	6	Allel 2 3 4 5	2 16 6,2 9,84 2 9,96 8,47 20 33,75 28,7	3 5 4 7,07 33 27,11 23,05 4	50 45,93 51,48 13	5	Allel 2 3 4 5	2 61 51,63 61,42 7 10,56 7,72 39 50,45 36,87 8	3 4 0,54 2,82 2 5,16 3,77 1	20 12,33 20,58 5	3	Allel 2 3	2 24 16,67 21,88 25 23,67 19,97 27 43 36,28	8 8,4 12,64 30 30,53 25,76	36 27,73 33,48
	XX	16,4 13,94 70 55,91	4,5 3,83 xy xy xy	6,1 5,19 80 94,1 80	1,5 3,52	xx xx xx	4,88 4,15 71 57,09 71	3,92 3,33 xy xy xy	13,28 11,29 79 92,9 78,99	0,96 2,61	xx xx xx	11,73 <i>8,57</i> 88 65,17 <i>88</i>	1,2 0,88 xy xy xy	5,73 4,19 62 84,83 62	0,67 3,18	xx xx xx	68 52,8 <i>68</i>	xy xy xy	82 97,2 82,01
Burgsinn		3 45 35,88 42,03	4	5	6	Allel 2	2 16 4,96 10,09	3	4	5	Allel 2	2 34 28,06	3	4	5	Allel 2	2 22 11,67 19,36	3	4
	5 1 1	2 6,52 4,9 13 13,64 10,24 16	0,3 1,6 2 1,24 0,93 7	2 1,3 3,84 4	11	3 4 5	10,81 7,65 9 22,72 16,07 4	8 5,88 11,33 30 24,74 17,5 3	32 26 33,46	0.40	3 4 5	35,23 1 6,29 4,52 28 33,04 23,73 10	5 0,35 1,95 3,71 2,66 1	15 9,73 15,87 5	3	3	20 20,97 13,91 5 24,69 16,38	11 9,42 16,69 20 22,19 14,71	24 13,06 20,95
	xx xx 4	29,06 21,81 58 43,36	2,64 1,98 xy xy	5,52 4,15 44 58,62	5,88 10,53	XX XX	1,54 1,09 56 36,96 36,87	1,68 1,19 xy xy xy	3,53 2,5 46 65,02 23,77	0,12 1,11	xx xx	11,54 8,29 57 39,33	1,29 0,93 xy xy	6,79 4,88 45 62,66	1,19 <i>3,9</i> 5	xx xx	57 34,15 <i>57</i>	xy xy	45 67,85
	xx 5	59,23	xy	51,55		**	30,07	^y	20,77		XX	47,4	xy	31,02		XX	37	xy	13,91
Burgsinn Bestandes- absaat 98	Allel 3 5 5 2 2 2 6	3 60 52,21 58,02 23 37,76 31,71 30 28,32 23,79 4	4 13 6,83 10,86 9 10,24 8,6 6	5 4 3,84 7,07 1	6	Allel 2 3 4 5	2 17 7,26 11,96 14,52 11,87 28 32,78 26,79 4	3 7,26 11,96 33 32,78 26,79 9	41 37 43,85 6	5	Allel 2 3 4	2 52 44,83 50,45 8 12,03 10,21 44 47,01 39,9 8	3 0,81 2,35 3 6,31 5,35 5	4 15 12,33 16,97 9	5	Allel 2 3	2 25 19,44 26,93 27 31,32 24,54 31 37,8 29,61	3 20 12,61 19,31 20 30,45 23,85	13,91 4 27 18,37 25,77
Bestandes-	Allel 3 5 5 4 3 3 5 5 2 2 6 6 xx	3 60 52,21 58,02 23 37,76 31,71 30 28,32 23,79	4 13 6,83 10,86 9 10,24 8,6	4 3,84 7,07	0,2	Allel 2 3 4	2 17 7,26 11,96 14,52 11,87 28 32,78 26,79	3 7,26 11,96 33 32,78 26,79	41 37 43,85	0,6 2,23	Allel 2 3 4	2 52 44,83 50,45 8 12,03 10,21 44 47,01 39,9	3 0,81 2,35 3 6,31 5,35	4 15 12,33 16,97		Allel 2	2 25 19,44 26,93 27 31,32 24,54 31 37,8	3 20 12,61 19,31 20 30,45	4 27 18,37
Bestandes-	Allel 3 5 5 2 2 2 6 6 xx xx 6 6 xx xx 6 4 3 2 2 4 5 5 1	3 60 52,21 58,02 23 37,76 31,71 30 28,32 23,79 4 6,49 5,45 77 31 26,51 29,82 7 8,16 7,1 13	13 6,83 10,86 9 10,24 8,6 6 5 1,97 xy xy xy 4 2 0,63 1,59 1 2,35	5 4 3,84 7,07 1 1,76 1,78 73 86,92 73 5	0,2	Allel 2 3 4 5	2 17 7,26 11,96 14,52 11,87 32,78 26,79 4 4,18 3,42 70 52,12 70 2 15 7,69 10,78 1 9,33 7,91 17 27,73	3 7,26 11,26 33 32,78 26,79 9 4,18 3,42 xy xy xy 3 2 2,83 4,99 25 16,83	41 37 43,85 6 9,44 7,71 80 97,88 80 4	0,6	Allel 2 3 4 5	2 44,83 50,45 8 12,03 10,21 44 47,01 39,9 8 15,31 12,99 73 59,28 73 2 42 35,88 42,63 1,75 3,45 29 39,15	3 0,81 2,35 3 6,31 5,35 5 2,05 1,74 xy xy xy xy 3	15 12.33 16.97 9 8.03 6.81 77 90.74 77 4	3 1,31	Allel 2 3 4	2 25 19,44 26,93 27 31,32 24,54 31 37,8 29,61 72 50,42 72,01 2 7 3,18 7,37 6 14,12 10,12 16,53	20 12,61 19,31 20 30,45 23,85 xy xy xy 3 25 15,69 22,57 24 34,51	27 18,37 25,77 78 99,57 78 4
Bestandes- absaat 98	Allel 3 5 5 2 2 6 2 6 2 2 2 2 4 5 5 1 1 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 60 52,21 58,02 23 37,76 31,71 30 28,32 23,79 4 6,49 5,45 77 3 31 26,51 29,82 7 8,16 7,1	13 6,83 10,86 9 10,24 8,6 6 6 2,35 1,97 xy xy 4 2 0,63 1,59 1	5 4 3,84 7,07 1 1,76 1,48 73 86,92 73 5	0,2 1,05	Allel 2 3 4 5 xx xx Allel 2	2 17 7,26 11,96 14,52 11,87 28 32,78 26,79 4,18 3,42 70 52,12 70 2 15 7,69 10,78 1 9,33 7,91 17	3 7,26 11,26 33 32,78 26,79 9 4,18 3,42 xy xy xy 3 2 2,83 4,99 25	41 37 43,85 6 9,44 7,71 80 97,88 80 4	0,6 2,23	Allel 2 3 4 5 xx xx Allel 2	2 52 44,83 50,45 8 12,03 10,21 44 47,01 39,9 8 15,31 12,99 73 59,28 73 2 42 35,88 42,63 1 4,75 3,45 29	3 0,81 2,35 3 6,31 5,35 5 5 1,74 xy xy 3 3	15 12,33 16,97 9 8,03 6,81 77 90,74 77	3 1,31 3,23	Allel 2 3 4 xx xx xx Allel 2	2 25 19,44 26,93 31,32 24,54 31 37,8 29,61 72 50,42 72,01 2 7 3,18 7,37 6 14,12 10,12	20 12,61 19,31 20 30,45 23,85 xy xy xy 3 25 15,69 22,57 24	27 18,37 25,77 78 99,57 78 4
Bestandes- absaat 98	Allel 3 5 5 2 2 6 2 6 2 2 2 XX	3 60 52,21 23 37,76 30 28,32 31,771 30 28,32 46,49 5,45 77 63,08 77 13 31 22,79 4,71 13 52,95 4,16,29 13,31 22 23,35 45,33 45,33 45,33 45,33 45,33 45,33 45,33 45,33 45,33 45,33 45,33 45,33 46,49 47,11 48,	4 13 6,83 10,86 6 6 2,35 1,97 xy xy 4 2 0,63 1,59 1 2,35 2,05 4 4,24 3,69 xy xy	5 4 3,84 7,07 1 1,78 73 86,92 73 5 3 2,21 3,87 10,94 6,91 57 65,51	0,2 1,05 6 9 7,15	Allel 2 3 3 4 5 xx	2 17, 7,26 11,96 14,52 28,32,78 4,18,26,79 4,18,27 70 2,15 7,69 10,78 1,79,1 17,73 23,5 8,35,7 3,03 46,35,35,33	3 12 7,26 33 32,78 9 4,18 3,42 xy xy 3 3 2 2,83 4,99 25,83 14,27 4 4,21 7 1,84 xy xy	41 37 43,85 6 9,44 7,71 80 97,88 80 4 25 28,89 1 4 5,46 56 66,07	0,6 2,23 5	Allel 2 3 4 5 xx xx Allel 2 3 4 5 xx xx xx xx xx xx xx xx	2 52 44,83 50,45 8 12,03 10,21 44 47,01 8 15,31 12,99 73 59,28 73 2 42 3,45 29 43 43,63 1 4,75 29 43 43,63 44 47,01 48 49,01 49,01 40,01 4	3 0,811 2,35 3 6,31 5 5 2,05 1,74 xy xy xy 3 3 2 0,16 1,21 3,59 1,88 0,35 0,26 xy xy	15 12,33 16,97 9 8,03 6,81 77 90,74 77 4	3 1,31 3,23 5	Allel 2 3 4 XX XX XX Allel 2 3 4	2 25 19,44 26,93 27 31,32 24,54 31 37,8 29,61 72 50,42 72,01 2 7 3,18 7,37 6 14,12 10,12 16,53 11,13	20 12,61 19,31 20 30,45 23,85 xy xy xy xy 3 25 15,69 22,57 24,74 xy xy	27 18,37 25,77 78 99,57 78 4 24 18,98 26,06

Dinkelsbühl Bestandes- absaat 98	Allel 3	3 53 44,83	4	5	6	Allel 2	2 23 8,4	3	4	5	Allel 2	2 27 24,81	3	4	5	Allel 2	2 26 19,08	3	4
	4	48,65 11 22,96	3 2,94			3	17,52 1 16,57	17 8,17			3	31,31 15 13,42	5 1,81			3	23,85 16 21,04	8 5,8	
	5	20,6 25 28,97	4,8 12 7,42	7 4,68		4	10,99 19 31,71	17,19 31 31,27	38 29,93		4	11,01 36 44,73	4,45 7 12,1	30 20,17		4	18,13 39 47,79	9,09 27 26,35	34 29,93
	6	25,99 22 22,41	6,66 13 5,74	6,93 2 7,24	2 2,8	5	21,05 5 5,92	20,75 4 5,83	42,4 8 11,17	4 1,04	5	36,7 17 14,23	9,93 1 3,85	26,42 7 12,83	5 2,04		41,17	22,7	35,06
	XX XX	20,11 65 55,25 65	5,15 xy xy xy	6,5 85 94,74 85	4,62	xx xx xx	3,93 82 47,54 82,01	3,87 xy xy xy	7,41 68 102,5 68	4,9	XX XX	11,68 67 48,83 67	3,16 xy xy xy	10,53 83 101,2 83	4,82	xx xx xx	68 54,81 <i>68</i>	xy xy xy	82 95,18 82
Dinkelsbühl Naturver- jüngung	Allel 3	3 33 24,02	4	5	6	Allel 2	2 22 13,06	3	4	5	Allel 2	2 28 24,02	3	4	5	Allel 2	2 5 4,96	3	4
Jengeng	4	31,06 5 16,01	8 2,67			3	17,5 2 8,59	1 1,41			3	28,25 5 5,34	2 0,3			3	5,22 9 16,54	18 13,79	
	5	11,59 11 9,71	6,49 1 3,24	2 0,98		4	6,96 23 32,56	3,42 17 10,71	23 20,3		4	4,45 29 35,43	1,16 2 3,94	17 13,06		4	16,3 26 18,53	14,13 30 30,88	14 17,29
	6	7,02 17 25,24	2,34 11 8,41	3,47 4 5,1	10 6,63	5	26,4 4 5,73	8,68 3 1,88	25,07 5 7,14	2 0,63	5	29,55 9 10,19	3,28 1,13	16,95 8 7,51	2 1,08		18,26	30,43	17,65
	XX XX	18,26 53 34,3 53	6,09 xy xy	3,69 49 67,71 49	11,98	xx xx xx	4,64 48 35,4 48,01	1,53 xy xy	5,79 54 66,61 54	2,02	XX XX	8,5 49 38,46 <i>49</i>	0,94 xy xy	6,27 53 63,54 53	2,64	xx xx xx	37 36,04 37	xy xy xy	65 65,95 65
Hammelburg	Allel 3	3 20	<i>xy</i> 4	5	6	Allel 2	2 11	<i>xy</i> 3	4	5	Allel 2	2 32	<i>xy</i> 3	4	5	Allel 2	2 53	3	4
	4	15,3 18,68 1	3			3	5,41 7,63	5			3	28,06 31,66 14	4			3	43,36 52,71 17	12	
	5	6,2 5,33 13	0,63 1,66 4	1		4	7,37 6,47 17	2,51 4,17 17	26		4	15,21 13,06 21	2,06 3,82 7	11		4	29,34 17,48 10	4,96 12,05 4	6
	6	11,62 10 25 30,59	2,35 2,02 5 6,2	2,21 3,99 11 11,62	19 15,3	5	22,81 20,01 8 5,99	15,53 13,62 5 4,08	24,02 27,15 13 12,62	1,66	5	28,85 24,77 8 6,82	7,82 <i>6,71</i> 1,85	7,41 10,25 5 3,5	0,41		16,95 <i>10,1</i>	5,74 3,42	1,66 <i>6,24</i>
	XX XX	26,32 43 33,44	5,33 xy xy	10 59 68,58	18,68	xx xx	5,99 5,25 42 33,6	3,58 xy xy	11,07 60 68,4	3,05	xx xx	5,86 47 37,94	1,59 xy xy	3,01 55 64,05	1,27	xx xx	71 49,98	xy xy	31 52,03
	XX	43,01	xy	59		XX	42	xy	60		XX	47	xy	55		XX	71	xy	31
Hammelburg	Allel	3	4	5	6	Allel	2	3	4	5	Allel	2		4	5	Allel	2	3	4
Hammelburg Bestandes- absaat 97	Allel 3	3 51 50,46 52,27	4	5	6	Allel 2	2 9 2,28 5,18	3	4	5	Allel 2	2 47 47,6 50,87	3	4	5	Allel 2	2 8 10,67 11,04	3	4
Bestandes-	3	51 50,46 52,27 12 19,14 18,19	4 1,81 2 <i>,54</i>		6	3	9 2,28 5,18 1 7,4 6,08	8 6 10,29		5	3	47,6 50,87 15 16,9 15,4	3 5 1,5 2,7		5	3	8 10,67 11,04 15 23,2 22,9	20 12,61 13,01	
Bestandes-	3 4 5	51 50,46 52,27 12 19,14 18,19 30 29 27,57	4 1,81 2,54 3 5,5 5,23	8 4,17 <i>5,</i> 2		3	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83	8 6 10,29 36 35,2 28,91	58 51,63 <i>58,12</i>		3	47,6 50,87 15 16,9 15,4 50 46,76 42,61	3 5 1,5 2,7 4 8,3 7,56	14 11,48 <i>14,14</i>		2	8 10,67 11,04 15 23,2	20 12,61	26 29,48 29,95
Bestandes-	3 4 5 6	51 50,46 52,27 12 19,14 18,19 30 29 27,57 30 24,94 23,71	4 1,81 2,54 3 5,5 5,23 10 4,73 4,5	8 4,17 5,2 1 7,17 6,81	1 3,08 3,99	2 3 4 5	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74	8 6 10,29 36 35,2 28,91 7 5,4 4,44	58 51,63 58,12 11 15,84 13,01	2 1,22 3,41	2 3 4 5	47 47,6 50,87 15 16,9 15,4 50 46,76 42,61 10 10,14 9,24	3 5 1,5 2,7 4 8,3 7,56 1 1,8 1,64	14 11,48 14,14 1 4,98 4,54	3 0,54 1,29	3 4	8 10,67 11,04 15 23,2 22,9 49 35,47 35,02	20 12,61 13,01 32 38,57 38,08	26 29,48 29,95
Bestandes-	3 4 5	51 50,46 52,27 12 19,14 18,19 30 29 27,57 30 24,94	4 1,81 2,54 3 5,5 5,23 10 4,73	8 4,17 5,2 1 7,17	1 3,08	3	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33	8 6 10,29 36 35,2 28,91 7 5,4	58 51,63 <i>58,12</i> 11 15,84	2 1,22	3	47 47,6 50,87 15 16,9 15,4 50 46,76 42,61 10	3 5 1,5 2,7 4 8,3 7,56 1 1,8	14 11,48 <i>14,14</i> 1 4,98	3 0,54	3	8 10,67 11,04 15 23,2 22,9 49 35,47	20 12,61 13,01 32 38,57	26 29,48
Bestandes-	3 4 5 6 xx xx	51 50,46 52,27 12 19,14 18,19 30 29 27,57 30 24,94 23,71 64	4 1,81 2,54 3 5,5 5,23 10 4,73 4,5 xy	8 4,17 5,2 1 7,17 6,81 86	1 3,08	2 3 4 5 xx	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74 77 61,13	8 6 10,29 36 35,2 28,91 7 5,4 4,44 xy	58 51,63 58,12 11 15,84 13,01 73	2 1,22	2 3 4 5 xx xx	47, 47, 6 50, 87 15 16, 9 15, 4 50 46, 76 42, 61 10, 14 9, 24 69 61, 12	3 5 1,5 2,7 4 8,3 7,56 1 1,8 1,64 xy	14 11,48 14,14 1 4,98 4,54 81	3 0,54	2 3 4 xx xx	8 10,67 11,04 15 23,2 22,9 49 35,47 35,02	20 12,61 13,01 32 38,57 38,08	26 29,48 29,95
Bestandes- absaat 97	3 4 5 6 xx xx xx Allel	51 50,46 52,27 12 19,14 18,19 30 29 27,57 30 24,94 23,71 64 59,52 64	4 1,81 2,54 3 5,5 5,23 10 4,73 4,5 xy xy	8 4,17 5,2 1 7,17 6,81 86 90,48	1 3,08 3,99	2 3 4 5 xx xx xx xx Allel	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74 77 61,13 77	8 6 10,29 36 35,2 28,91 7 5,4 4,44 xy xy	58 51,63 58,12 11 15,84 13,01 73 88,88 73	2 1,22 3,41	2 3 4 5 *********************************	47, 47, 6 50,87 15, 4 50, 67 46,76 42,61 10,14 9,24 69 61,12 69	3 1,5 2,7 4 8,3 7,56 1 1,8 1,64 xy xy	14 11,48 14,14 1 4,98 4,54 81 88,88 81	3 0,54 1,29	2 3 4 **** **** **** **** ****	8 10,67 11,04 15 23,2 22,9 49 35,47 35,02 54 52,76 54 2 27	20 12,61 13,01 32 38,57 38,08	26 29,48 29,95 96 97,24 96
Bestandes- absaat 97	3 4 5 6 xx xx xx Allel 3	51 50,46 52,27 12 19,14 18,19 30 27,57 30 24,94 23,71 64 59,52 64 3 3 9 29,66 36,85 1 4,85 3,47 1 3 17,79	4 1,81 2,54 3 5,5 5,23 10 4,73 4,73 xy xy xy 4 1 0,2 1,42 3 1,46	8 4,17 5,2 1 7,17 86 90,48 86 5	1 3,08 3,99	2 3 4 5 xx xx xx Allel 2	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74 77 61,13 77 2 16 4,53 9,55 8,43 5,95 7 21,71	8 6 10,29 36 35,2 28,91 7 5,4 4,44 xy xy 3 3 4 3,92 8,68 28,28	58 51,63 58,12 11 15,84 13,01 73 88,88 73 4	2 1,22 3,41	2 3 4 5 xx xx xx Allel 2	47 47,65 50,87 15 16,9 15,4 50 46,76 42,61 10,14 9,24 69 61,12 69 2 26 23,06 26,64 2 8,08 6,94 31 30,91	3 5 1,5 2,7 4 8,3 7,56 1 1,8 1,64 xy xy xy 3 5 0,71 1,8 1,8 5 5,42	14 11,48 14,14 1 4,98 4,54 81 88,88 81 4	3 0,54 1,29	2 3 4 **********************************	8 10,67 11,04 15 23,2 22,9 49 35,47 35,02 54 52,76 54 2 27 22,59 28,34 15 13,65 10,56 27 37,18	20 12,61 13,01 32 38,57 38,08 xy xy xy 3 4 2,06 4,86 6 11,23	26 29,48 29,95 96 97,24 96 4
Bestandes- absaat 97	3 4 5 6 xx xx Allel 3	51 50,46 50,27 12 19,14 18,19 30 29 27,57 30 24,94 23,71 64 59,52 64 3 39,66 36,85 1 4,85 3,47 13,79 12,74 18 28,04	4 1,81 2,54 3 5,5 5,23 10 4,73 xy xy 4 1 0,2 1,42 3 1,04 3 2,29	8 4,17 5,2 1 7,17 6,81 86 90,48 86 5 5 2,67 6,6 7 8,41	1 3,08 3,99 6	2 3 4 5 xx xx xx Allel 2	9 2,28 5,18 1,4 6,08 13 21,71 17,83 5,33 3,33 2,74 77 61,13 77 2 16 4,53 9,55 8,43 5,94 4 3,79	8 6 6 10,29 36 35,2 28,91 7 5,4 4,44 4,44 xy xy xy 3 3 4 3,92 8,68 28 28 20,2 14,22 4,53	58 51,63 58,12 11 15,84 13,01 73 88,88 4 32 26 33,55 4	2 1,22 3,41 5	2 3 4 5 xx xx xx xx Allel 2	47 47,65 50,87 15 16,9 15,4 50 46,76 42,61 10,14 69 61,12 69 2 26 23,06 23,06 26,64 2 8,08 6,94 31 30,91 26,55 12	5 1,5 2,7 4 8,3 7,56 1,8 1,64 xy xy xy 3 5 0,71 1,81 5,42 4,65 2,08	14 11,48 14,14 1 4,98 4,54 81 88,88 81 4	3 0,54 1,29 5	2 3 4 xx xx xx Allel 2	8 10,67 11,04 15 23,2 22,9 49 35,47 35,02 54 52,76 54 2 27 22,59 28,34 15 13,65 10,56 27	20 12,61 13,01 32 38,57 38,08 xy xy xy 3 4 2,06 4,88 6	26 29,48 29,95 96 97,24 96 4
Bestandes- absaat 97	3 4 5 6 xx xx xx xx Allel 3 4 5 6 xx xx xx xx xx xx xx xx	51 50,46 52,27 12 19,14 18,19 30 29 27,57 30 24,94 23,71 64 59,52 64 3 3 9,66 36,85 1 4,85 3,47 13 17,79 12,74 18 28,04 20,08 57 39,16	4 1,81 2,54 3 5,5 5,5 5,23 10 4,73 4,5 xy xy xy 4 1 0,2 1,42 3 1,46 1,04 3 2,29 1,64 xy xy xy xy	8 4,17 5,2 1 7,17 6,81 86 90,48 86 5 5 2,67 6,6 7 8,41 6,02 45 62,84	1 3,08 3,99 6	2 3 4 5 xx xx xx Allel 2 3 4 5	9 2,28 5,18 1 7,4 6,08 13 21,71 117,83 5 3,33 2,74 77 76 11,13 2 16 4,53 9,55 8,43 5,94 7 21,71 15,29 4 3,79 2,67 5 5 5 5 8,43 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 6 6 10,29 36 5 5,4 4,44 xy xy xy 3 3 4 4 3,92 8,68 28 4 20,2 14,22 4 3,53 2,49 xy xy	58 51,63 58,12 11 15,84 13,01 73 88,88 73 4 32 26 33,55 4 9,09 6,4 47 66,75	2 1,22 3,41 5	2 3 4 5 xx xx xx Allel 2 3 4 5	47 47,65 50,87 15 16,9 15,4 50 46,76 42,61 10,14 69 61,12 69 2 26 63,06 23,06 23,06 23,06 26,64 2 8,08 6,94 31 30,91 26,55 11,89 10,21 45,66	5 1,5 2,7 4 8,3 7,56 1 1,8 1,64 xy xy 3 3 5 0,71 1,81 5,42 4,65 2,08 1,79 xy xy	14 11,48 14,14 1 4,54 81 88,88 81 4 11 10,36 13,47 7,97 6,84 57 66,35	3 0,54 1,29 5	2 3 4 xx xx xx xx Allel 2 3 4	8 10,67 11,04 15 23,2,9 49 35,47 35,02 54 52,76 54 2 27 22,59 28,34 15 13,65 27 31,656 27 38,76	20 12,61 13,01 32 38,57 38,08 xy xy xy xy 3 4 2,06 4,88 6 11,23 8,69	26 29,48 29,95 96 97,24 96 4 23 15,3 20,78
Bestandes- absaat 97 Hochspeyer	3 4 5 6 xx xx xx xx Allel 5 6 xx xx xx xx Allel	51 50,46 52,27 12 19,14 18,19 30 29 27,57 30 24,94 23,71 64 59,52 64 3 39 29,685 1 4,85 3,47 13 17,79 12,74 18 28,04 20,08 57 39,16 57	4 1,81 2,54 3 5,52 10 4,73 xy xy xy 4 1 0,2 1,42 3 1,46 1,04 3 2,29 1,64 xy xy	8 4,17 5,2 1 7,17 6,81 86 90,48 86 5 5 5 2,67 6,66 7 8,41 6,02 45	1 3,08 3,99 6	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel Axx xx xx Allel	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74 77 61,13 77 2 16 4,53 9,55 8,43 7,594 7 21,71 15,29 4 3,79 2,67 55 2,74 7 5 5 8,43 3,79 4,53 7,94 6 7,94 6 7,94 6 7,94 6 7,94 7,94 7,94 7,94 7,94 7,94 7,94 7,94	8 6 6 10,29 36 8 36,2 38,91 7 5,4 4 444 xy xy xy xy 3 3 4 4 3,92 2 14,22 4 4 3,53 2,49 xy xy	58 51,63 58,12 11 15,84 13,01 73 88,88 73 4 32 26 33,55 4 9,09 6,4 47	2 1,22 3,41 5	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel	47 47,650,87 15 16,92 15,4 50 46,76 42,61 10 10,14 69 61,12 69 2 26 23,06 26,64 2 8,08 6,94 31 30,91 126,55 12 11,89 10,21 45,65 12 13,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 45,66 46,76	5 1,5 2,7 4 8,3 7,5 6 1 1,8 4 xy xy xy xy 3 5 0,71 1,81 5,42 4,65 2,08 4,08 4,08 4,08 4,08 4,08 4,08 4,08 4	14 11,48 14,14 1 4,54 81 88,88 81 4 11 10,36 13,47 7 7,97 6,84 57	3 0,54 1,29 5	2 3 4 xx xx xx Allel 2 3 4	8 10,67 11,04 15 23,2,9 49 35,47 35,02 54 52,76 54 22,7 22,59 28,34 15 13,65 27 37,18 28,76 54 39,95 54	20 12,61 13,01 32 38,57 38,08 xy xy xy 3 3 4 4,08 6 6 6 11,23 8,69	26 29,48 29,95 96 97,24 96 4
Bestandes- absaat 97 Hochspeyer	3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx xx	51 50,46 50,27 12 19,14 18,19 30 29 27,57 30 24,94 23,71 64 3,97 29,66 36,85 1 1,77 12,74 18 28,04 20,08 57 39,16 57	4 1,81 2,54 3 5,5 5,23 10 4,73 4,5 xy xy xy 4 1 0,2 1,42 3 1,46 1,04 3 2,29 1,64 2 2,29 1,64 2 2,24 2,44 2,54 3 3 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5	8 4,17 5,2 1 7,17 6,81 86 90,48 86 5 5 5 2,67 6,6 7 8,41 6,02 45 62,84	1 3,08 3,99 6 12 6,63 12,13	2 3 4 5 xx xx xx xx Allel 2 3 4 5	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74 77 7 2 16 4,53 9,55 8,43 5,95 8,43 5,95 7 21,71 15,29 2,67 5 5 35,24 5 5 35,24 5 5	8 6 6 10,29 36 5 35,2 28,91 7 5,4 4,444 xy xy 3 3 4 3,92 8,68 20,2 14,22 4 4 3,53 2,49 xy xy xy	58 51,63 58,12 11 15,84 13,01 73 88,88 73 4 32 26 33,55 4 9,09 6,4 47 66,75 47	2 1,22 3,41 5 3 0,79 3,22	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx xx xx xx xx xx	47 47,6 50,87 15,4 50 46,76 42,61 10,1 49,24 69 2,26 23,06 26,64 2,3,06 26,64 2,08 6,94 31,09,1 26,55 1,189 10,21 45,76 45,76 45,76 45,76 45,76 46,76	5 1,5 2,7 4 8,3 7,56 1,8 1,64 xy xy xy xy 3 5 0,71 1,81 5,54 4,65 2,08 1,79 xy xy xy xy xy xy xy xy xy xy xy xy xy	14 11,48 14,14 1 1,98 4,54 81 88,88 81 4 11 10,36 13,47 7,97 6,84 57 66,35 57	3 0,54 1,29 5 3 1,53 3,08	2 3 4 xx xx xx xx Allel 2 3 4	8 10,67 11,04 15 23,2,9 49 35,47 35,02 54 52,76 54 2 27 722,59 28,34 15,65 10,56 27 37,18 28,76	20 12,61 13,01 32 38,57 38,08 xy xy xy xy 3 3 4 2,06 4,88 6 11,23 8,69	26 29,48 29,95 96 97,24 96 4 23 15,3 20,78
Bestandes- absaat 97 Hochspeyer	3 4 5 6 xx xx xx xx Allel 3 4 5 6 xx xx xx xx Allel 3 Allel 3	51 50,46 52,27 12 19,14 16,19 30 29 27,57 30 24,94 23,71 64 3,95 29,66 36,85 1 1,779 12,74 18 28,04 20,08 57 39,16 57 39,16 57	4 1,81 2,54 3 5,52 10 4,73 xy xy xy 4 1 0,2 1,42 3 1,46 1,04 3 2,29 xy xy xy xy xy 4 4 1,64 4,73 4,74 4,74 4,74 4,74 4,74 4,74 4,7	8 4,17 5,2 1 7,17 6,81 86 90,48 86 5 5 2,67 6,6 7 8,41 6,02 45 62,84 45 5	1 3,08 3,99 6 12 6,63 12,13	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel 2	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74 7 7 61,13 7,7 2 16 4,53 9,55 8,43 5,94 4,53 9,55 8,43 5,55 2,66 2,7 2,7 1,56 8,43 5,24 5,26 5,26 5,26 5,26 5,26 5,26 5,26 5,26	8 6 6 10,29 36 6 7 5,4 4,44 xy xy xy xy 3 3 4 3,92 2 14,22 4 3,53 2 xy xy xy xy 3 5 5 2,04 5,53 18	58 51,63 58,12 11 15,84 13,01 73 88,88 73 4 4 9,09 6,4 47 66,75 47	2 1,22 3,41 5 3 0,79 3,22	2 3 4 5 xx xx Allel 2 3 4 5 xx Allel 2 Allel 2 Allel 2	47 47,6 50,87 15,4 50 16,9 15,4 50 642,61 10,14 9,24 69 21 26 23,06 26,64 2 23,06 26,64 2 11,89 10,14 31 30,91 26,55 31 30,91 26,55 35,66 45 2 2 27,73 30,08 17,31 18,49 17,31 36	5 1,5 2,7 4 8,3 7,5 6 1 1,8 1,8 4,2 2,0 8 1,7 1,8 1 5 5,4 2 4,6 5 2,0 8 1,7 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8	14 11,48 14,14 1 4,54 81 88,88 81 4 11 10,36 13,47 7,7 66,35 57 66,35 57	3 0,54 1,29 5 3 1,53 3,08	2 3 4 xx xx xx Allel 2 3 4 xx Allel 2 2	8 10,67 11,04 15 23,2,9 49 35,47 35,02 54 52,76 54 22 27 22,59 28,34 15 3,65 10,56 27 37,18 28,76 54 39,95 54 25 15,04 20,67 10 15,83 13,09 35	20 12,61 32 38,57 38,08 xy xy xy xy 3 3 4 2,06 4,88 6 11,23 8,69 xy xy xy xy xy xy xy 3	26 29,48 29,95 96 97,24 96 4 23 15,3 20,78 48 62,06 48 4
Bestandes- absaat 97 Hochspeyer	3 4 5 6 xx xx xx xx Allel 3 4 5 6 xx xx xx xx Allel 3 4 4	51 50,46 50,27 12 19,14 18,19 30 29 27,57 30 24,94 23,71 64 3,95 29,66 36,85 1 8,85 3,47 13 17,79 12,74 18 88,04 20,08 57 39,16 57 39,16 57 39,16 57	4 1,81 2,54 3 5,5 5,23 10 4,73 4,5 xy xy xy 4 1 0,2 1,42 3 1,46 1,04 3 2,29 1,64 xy xy xy xy xy 4,5 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7	8 4,17 5,2 1,7,17 6,81 86 90,48 86 5 5 2,67 6,6 7 8,41 6,02 45 62,84 45 5	1 3,08 3,99 6 12 6,63 12,13	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel 2 3	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74 7 7 7 2 16 15,29 4 4,53 9,55 8,43 5,94 7 21,71 15,29 2,67 5 5 35,24 5 5 2 6 15,68 2,37 2,74 3,79 2,17 1,79 2,17 2,17 2,17 2,17 2,17 2,17 2,17 2,17	8 6 6 10,29 36 6 35,2 28,91 7 5,4 4,444 xy xy 3 3 4 4,3,92 8,68 28,68 20,2 14,22 4 4,3,53 2,49 xy xy xy 3 5 5 2,04 5,53 11,66 5 11,66 5	58 51,63 58,72 11 15,84 13,01 73 88,88 88,88 4 73 4 32 26 33,55 4 9,09 6,4 47 66,75 47 4	2 1,22 3,41 5 3 0,79 3,22	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel 2 3 4 5 3	47 47,65 50,87 15,4 50 46,76 42,61 10,1 9,24 69 20,06 23,06 26,64 23,06 26,64 21,12 26 23,06 26,64 21,189 10,14 31,189 10,14 45 35,66 45 27,73 30,08 17,31 18,49 17,31 18,49 17,31 18,49 17,31 18,49 17,31 18,49 11,21 18,49 17,31 18,49 11,21 18,49 11,21 18,49	5 1,5 2,7 4 8,3 7,56 1 1,8 1,6 4 xy xy xy xy 3 3 5 0,71 1,8 1,5 5 4,4 6 5 0,71 1,8 1,5 2,0 8 2,0 8 1,7 5 1,7 5 1,7 5 1,7 5 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7	14 11,48 14,14 1 1,98 4,54 81 88,88 81 4 11 10,36 13,47 7,97 6,84 57 66,35 57 4	3 0,54 1,29 5 3 1,53 3,08	2 3 4 xx xx xx xx Allel 2 3 4 xx Allel 2 3	8 10,67 11,04 15 23,2,9 49 35,47 35,02 54 52,76 54 22,7 22,59 10,56 27 37,18 28,76 54 39,95 54 2 25 15,04 10 15,04	20 12,61 13,01 32 38,57 38,08 xy xy xy xy 3 3 4 4,206 4,88 6 11,23 8,69 xy xy xy xy xy xy 3	26 29,48 29,95 96 97,24 96 4 15,3 20,78 48 62,06 48
Bestandes- absaat 97 Hochspeyer	3 4 5 6 xx xx xx xx Allel 3 4 5 6 xx xx xx xx Allel 3 4 5 6 5	51 50,46 52,27 12 19,14 8,19 30 29 27,57 30 24,94 43,71 64 59,52 64 3 39 29,66,85 1 4,85 3,47 13 17,79 12,74 18 28,04 57 39,16 57 39,16 57 39,16 57 39,17 10 11 11 11 11 11 11 11 11 11 11 11 11	4 1,81 2,54 3 5,5 5,5 23 10 4,73 4,5 xy xy xy 4 1 0,2 1,42 3 2,29 1,64 xy xy xy xy 4	8 4,17 5,2 1 7,17 6,81 86 90,48 86 5 5 2,67 6,6 7 8,41 6,02 45 62,84 45 5	1 3,08 3,99 6 12 6,63 12,13	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel 2 3 4 4 5	9 2,28 5,18 1 7,4 6,08 13 21,71 17,83 5 3,33 2,74 77 61,13 77 2 16 4,53 9,55 8,43 3,59,47 7 21,71 15,29 4 3,67 5 5 5 2,67 5 5 5 2,67 4 5 5 2,67 4 5 5 2,67 4 5 5 2,67 4 5 5 5 5 2,67 4 5 5 5 5 5 6 1,51 2,67 4 5 5 5 5 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 6 1,51 2 2 2 2 3 2 3 2 2 2 2 3 2 3 2 3 2 3 2	8 8 6 10,29 36 5 5 5,3 4 4 xy xy xy 3 3 4 4 3,92 8 20,22 4 3,53 2,49 xy xy xy 3 5 5 2,04 5,53 18 15,05 5,166	58 51,63 58,12 11 15,84 13,01 73 88,88 73 4 32 26 33,55 4 9,09 6,4 47 66,75 47 4	2 1,22 3,41 5 3 0,79 3,22	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel 2 3 4 4 5	47 47,65 50,87 15 16,9 15,4 50 46,76 10,14 69 61,12 69 61,12 69 2 26 28,084 28,084 31 31,055 12 11,89 10,21 45 35,66 45 45 45 45 45 45 45 45 45 45	5, 1,5,5,4,8,3,7,56,6,1,6,4,8,7,56,6,7,1,8,1,5,5,4,6,5,7,1,8,1,7,9,2,7,3,3,4,7,5,5,4,2,5,3,0,8,4,2,5,13,4,7,12,6,2	14 11,48 14,14 1 4,98 4,54 81 88,88 81 4 11 10,36 13,47 7 7,97 7,97 66,35 57 66,35 57	3 0,54 1,29 5 5 3 1,53 3,08	2 3 4 xx xx xx xx Allel 2 3 4 xx Allel 2 3	8 10,67 11,04 15 23,2,9 49 35,47 35,02 54 52,76 54 22,79 22,59 28,34 15 13,65 27 31,365 27,18 28,76 54 39,95 54 22,59 24,34 15 13,65 27 15,18 28,76	20 12,61 13,01 32 38,57 38,08 xy xy xy xy 3 4 4,06 4,88 6 11,23 8,69 xy xy xy xy xy xy xy xy 3 8,69	26 29,48 29,95 96 97,24 96 4 4 23 15,3 20,78 48 62,06 48 4

Hochspeyer Bestandes- absaat 97	Allel 3	3 81 76,33	4	5	6	Allel 2	2 35 19,08	3	4	5	Allel 2	2 41 35,53	3	4	5	Allel 2	2 20 17,68	3	4
	4	80,89 14 26,39 22,46	8 2,28 4,7			3	30,59 1 7,13 4,75	3 0,67 3,79			3	42,35 9 7,79 6,37	2 0,43 1,81			3	24,53 22 20,94 16,7	13 6,2 11,12	
	5 6	13 14,27 12,14 25	3 2,47 2,1 4	2 0,67 2,06	4.4	5	31 54,93 36,57 5	13 10,27 6,84	50 39,53 52,05 10	2	4 5	41 47,69 39,01 14	2 5,23 4,27 1	22 16,01 22,02 11	7	4	41 46,69 37,24	13 27,65 22,06	41 30,83 38,35
	XX XX	20,69 17,61 91 80,68 91	3,58 3,04 xy xy xy	1,93 1,65 59 69,33 59	1,4 3,35	xx xx xx	6,78 4,51 90 59,88 90,01	1,27 0,84 xy xy xy	9,75 6,49 60 90,13 60	0,6 3,58	xx xx xx	19,47 15,92 72 54,64 <i>7</i> 2	2,13 1,74 xy xy xy	13,07 10,69 78 95,38 78	2,67 5,82	xx xx xx	74 54,71 <i>74</i>	xy xy <i>xy</i>	76 95,28 76
Hochspeyer Bestandes-	Allel 3	3 53	4	5	6	Allel 2	2 20	3	4	5	Allel 2	2 46	3	4	5	Allel 2	2 23	3	4
absaat 98	4	48,74 52,73 13 23,94	7 2,94			3	10,94 16,04 2 14,31	8 4,68			3	37 43,57 6 11,42	3 0,88			3	24,4 25,77 50 38,72	13 15,36	
	5	21,34 34 35,34	4,9 9 8,68	9 6,41		4	11,84 25 36,18	8,45 30 23,67	35 29,93		4	9,42 41 42,22	2,74 8 6,52	12 12,04		4	37,25 25 33,48	16,6 20 26,56	19 11,48
	6	31,5 18 14,25 12,7	7,74 6 3,5 3,12	9,08 1 5,17 4,61	1,04 2,29	5	29,93 14 8,64 7,15	19,58 5 5,65 4,68	36,33 9 14,29 11,82	2 1,71 <i>4,18</i>	5	34,82 10 21,36 17,61	5,37 3 3,3 2,72	17,38 12 12,18 10,05	9 3,08 <i>6,31</i>		32,2	25,55	12,62
	XX XX	69 59,13 <i>69</i>	xy xy xy	81 90,88 81		XX XX	65 47,26 65	xy xy xy	85 102,7 85		XX XX	70 53 <i>70</i>	xy xy xy	80 97 80		XX XX	55 51,24 <i>54,99</i>	xy xy xy	95 98,76 95
Langenau	Allel 3	3 31 23,54	4	5	6	Allel 2	2 16 5,65	3	4	5	Allel 2	2 28 22,12	3	4	5	Allel 2	2 15 8,25	3	4
	4	30,97 4 14,41 10,21	7 2,21 5,94			3	9,24 1 10,12 8,14	4 4,53 7,86			3	29,24 7 12,11 8,71	5 1,66 <i>4,84</i>			3	16,24 14 16,77 10,32	16 8,53 16,61	
	5	17 18,25 12,93	4 5,59 3,96	8 3,54 <i>8,05</i>	_	4	10 21,88 <i>17,6</i>	27 19,6 15,76	25 21,2 26,15		4	23 27,94 20,1	6 7,65 <i>5,5</i>	15 8,82 14,76		4	14 24,74 15,21	13 25,16 15,47	30 18,55 28,16
	6 xx	15 18,25 12,93 53	8 5,59 3,96 xy	1 7,08 <i>5,01</i> 49	7 3,54 8,05	5 xx	5 4,71 3, <i>78</i> 46	7 4,22 3,39 xy	6 9,12 7,33 56	1 0,98 2,75	5 xx	9 10,71 <i>7,71</i> 53	3 2,93 2,11 xy	1 6,76 <i>4,87</i> 49	5 1,3 4,16	хх	61	хy	41
	XX XX	32,83 53,01	xy xy	69,17 49		XX XX	32,36 <i>46</i>	xy xy	69,65 56		xx xx	33,9 53	xy xy	68,1 49		xx xx	35,33 61,01	xy xy	66,67 41
Langenau Bestandes- absaat 97	Allel 3	3 71 70,04 69,93	4	5	6	Allel 2	2 20 6,2 13,68	3	4	5	Allel 2	2 54 45,93 <i>54,97</i>	3	4	5	Allel 2	2 16 10,14 <i>17,07</i>	3	4
	4	14 20,5 20,57	2 1,5 1,46	-	-	3	2 10,37 7,18	9 4,34 10,85			3	18 14,94 11,3	2 1,22 4,21			3	7 16,12 12,25	16 6,41 12,31	
	5	28 27,33 27,43 21	8 4 4,01 4	2 2,67 2,61	-	4 5	12 31,92 22,1 7	24 26,69 18,48 7	53 41,08 <i>52,6</i> 15	1	4 5	36 53,12 40,16 4	3 8,64 6,53 2	27 15,36 23,32 3	1	4	39 41,6 31,62	23 33,07 25,13	49 42,67 51,63
	xx	17,08 17,14 75	2,5 2,51 xy	3,33 3,34 75	1,04 1,00	хх	6,3 <i>4,36</i> 83	5,27 3,65 xy	16,22 11,23 67	1,6 5,88	хх	6,09 <i>4,6</i> 84	0,99 <i>0,7</i> 5 xy	3,52 2,66 66	0,2 1,49	ХХ	81	ху	69
Langenau	xx xx Allel	75,25 <i>75</i> 3	xy xy 4	74,74 75 5	6	xx xx Allel	53,22 83,01 2	xy xy 3	96,77 67 4	5	xx xx Allel	62,71 83,99 2	xy xy 3	87,3 66 4	5	xx xx Allel	59,22 81,01 2	xy xy 3	90,79 69 4
Bestandes- absaat 98	3	67 63,37 66,99 9	5			2	10 6,2 10,26 3	12			2	41 31,74 40,28 11	10			2	21 15,04 21,65 19	17	
	5	16,9 15,11 41	1,13 2,38 5	8		4	13,22 11,01 23	7,04 11,29 25	36		4	19,78 15,24 32	3,08 7,31 9	17		4	24,7 19,67 34	10,14 16,01 25	34
	6	41,6 37,19 11 9,75	5,55 4,96 2 1,3	6,83 9,49 2 3,2	0,38	5	26,23 21,85 15 9,15	27,95 23,28 13 9,75	27,73 33,88 9 19,35	4 3,38	5	39,1 30,13 13 15,64	12,18 9,39 3 4,87	12,04 19,03 10 9,63	4 1,93		40,22 32,03	33,02 26,3	26,88 <i>34,34</i>
	xx xx	8,72 80 71,71	1,16 xy xy	2,86 70 78,3	1,13	xx xx	7,62 62 44,35	8,12 xy xy	16,12 88 105,7	6,57	xx xx	12,05 72 48,79	3,76 xy xy	7,42 78 101,2	5,38	xx xx	72 52,06	xy xy	78 97,94
Langenau Kultur	Allel	79,99	<i>xy</i> 4	70 5	6	Allel 2	62 2 25	<i>xy</i> 3	88 4	5	Allel 2	72 2 21	<i>xy</i> 3	78 4	5	XX Allel 2	72 2 1	<i>xy</i> 3	78 4
(Baumschule)	4	4,49 - 4	1_			3	17,95 21,68 6	6			3	14,77 22,55 12	12			3	1,07	2	
	5	3,13 - 3 4,59	0,55 - 1,6	1 1,17		4	17,12 14,57 25 26,72	4,08 6,52 14 12,74	12 9,94		4	17,04 11,57 23 30,29	4,92 10,56 8 17,48	24 15,53		4	3,98 - 19 14,88	3,69 - 35 27,64	46 51,74
	6	- 36 26,3	- 9 9,17	- 17 13,46	32 38,53	5	22,75 5 6,26	10,84 9 2,99	13,22 1 4,66	0,55	5	20,56 1 1,14	11,86 1 0,66	23,39 1 1,17	0,02		-	-	-
	XX XX	34 44,74 0	xy xy xy	69 58,25 0	-	xx xx xx	5,33 43 32,52 <i>4</i> 3	2,54 xy xy xy	3,97 60 70,49 60	1,58	xx xx xx	0,77 57 35,24 <i>57</i>	0,44 xy xy xy	0,79 46 67,78 46	0,5	xx xx xx	49 56,5 <i>0</i>	xy xy xy	54 46,5 0

Langenau Pflanzgarten (Heister)	Allel 3	3 25 20,54	4	5	6	Allel 2	2 29 21,91	3	4	5	Allel 2	2 24 18,37	3	4	5	Allel 2	2 3 0,55	3	4
	4	23,9 8 16,52	8 3,32			3	29,12 1 6	3 0,41			3	23,39 5 11,83	7 1,9			3	3 5,83	11 15,53	
	5	14,35 12 12,5	5,32 9 5,03	1,9		4	4,31 30 37,35	2,13 4 5,11	22 15,92		4	9,46 29 31,25	4,32 8 10,06	15 13,29		4	6 8,08	55 43,11	25 29,91
	6	10,86 22 21,88	4,37 4 8,8	3,5 7 6,66	8 5,83	5	26,82 6 7,84	3,67 2 1,07	22,85 3 6,68	3 0,7	5	25,01 5 7,18	8,05 1 2,31	18,03 7 6,11	2 0,7		-	-	-
	XX XX	19 41 31,59 <i>41,01</i>	7,64 xy xy xy xy	5,78 62 71,39 62	8,29	xx xx xx	5,63 57 38,94 <i>57</i>	0,77 xy xy xy	4,8 46 64,05 46	2,9	xx xx xx	5,75 48 34,26 <i>4</i> 8	1,85 xy xy xy	4,89 55 68,74 55	2,26	xx xx xx	39 45,99 <i>0</i>	xy xy xy	64 57,02 0
Müllheim	Allel 3	3 36 26	4	5	6	Allel 2	2 12 4,53	3	4	5	Allel 2	2 45 37,08	3	4	5	Allel 2	2 17 9,42	3	4
	4	34,47 2 7,07	3 0,48			3	5,04 2 11,59	4 7,41			3	45,9 3 6,63	3 0,3			3	17,65 11 21,58	23 12,36	
	5	4,72 9 12,12	2,65 3 1,65	3 1,41		4	11,24 13 19,81	8,02 39 25,34	20 21,66		4	4,24 25 37,99	2,18 2 3,4	18 9,73		4	13,35 17 21,58	21,18 14 24,71	20 12,36
	6	8,09 20 31,81	1,1 3 4,32	4,93 6 7,41	17 9,73	5	19,22 4 2,53	24,58 6 3,24	22,42 2 5,53	0,35	5	24,27 5 4,22	2,17	17,59 2,16	1 0,12		13,35	15,29	21,18
	XX XX	21,25 59 37,62	2,89 xy xy	4,95 43 64,38	16,96	xx xx	2,45 36 33,95	3,14 xy xy	5,36 66 68,04	0,52	xx xx	2,7 67 47,23	0,24 xy xy	1,38 35 54,78	1,34	xx xx	60 34,14	xy xy	42 67,87
Müllheim	XX	59,01	xy 4	43	6	XX	36 2	xy 3	66	5	XX	67,01	xy 3	35	5	XX	60,01	xy 3	42
Bestandes- absaat 96	3	63 44,28 <i>61,15</i>				2	11 7,48 10,14				2	59 58,91 <i>61,33</i>				2	12 8,4 12,8		
	4	11 28,8 15,74	18 4,68 14,57			3	4 4,91 <i>4,41</i>	1 0,81 1,85			3	14 13,16 12,25	2 0,74 1,41			3	12 7,57 6,34	2 1,71 <i>4</i> , <i>0</i> 3	
	5	11 21,19 11,58	3 6,89 3,77	8 2,54 10,23		4	38 43,1 <i>38,69</i>	15 14,15 12,71	65 62,08 <i>65,6</i>		4	46 47 43,76	3 5,25 4,89	12 9,38 11,32		4	35 46,62 39, <i>0</i> 5	16 21,01 <i>17,6</i>	73 64,68 70,17
	6	15 24,45 13,37	3 7,95 <i>4,35</i>	9 5,85 3,2	9 3,38 12,05	5	3 4,02 3,61	1,32 1,18	10 11,58 <i>10,4</i>	2 0,54 1,41	5	10 10,03 9,34	1,12 1,04	2 4 3,72	2 0,43 <i>0,9</i> 5		,	ŕ	ŕ
	XX XX	98 54,88 98	xy xy xy	52 95,13 52		xx xx xx	79 70,91 <i>7</i> 9	xy xy xy	71 79,08 71		XX XX	75 69,46 <i>75,01</i>	xy xy xy	75 80,56 75		xx xx xx	87 74,79 87	xy xy xy	63 75,2 63
	Allel	2	,	_						_									
Müllheim Eichwald	3	3 50	4	5	6	Allel 2	2 17	3	4	5	Allel 2	2 37	3	4	5	Allel 2	2 22	3	4
		50 44,67 <i>50,19</i> 5	2	5	6		17 6,38 12,07	6	4	5		37 27,54 35,83 2	3	4	5		22 19,41 23,34 28	9	4
	3	50 44,67 50,19 5 8,6 6,52 16	2 0,41 1,89 1	1	6	2	17 6,38 12,07 10,25 7,2 9	6 4,12 9 22	29	5	2	37 27,54 35,83 2 7,27 4,91 25	3 0,48 2,6 4	17	5	2	22 19,41 23,34 28 24,87 20,98 17	9 7,96 11,17 11	15
	3	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14	2 0,41 1,89 1 1,27 0,97 3	1 0,98 3,16 1	9	3	17 6,38 12,07 10,25 7,2 9 23 16,15 8	6 4,12 9 22 18,49 12,98 7	29 20,75 28,27 3	1	3	37 27,54 35,83 2 7,27 4,91 25 34,81 23,48 5	3 0,48 2,6 4 4,6 3,1 2	17 11 18,33 4	3	3	22 19,41 23,34 28 24,87 20,98	9 7,96 11,17	
	3 4 5 6 xx	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62	2 0,41 1,89 1 1,27 0,97 3 2,29 1,74 xy	1 0,98 3,16 1 3,53 2,68 40		2 3 4 5	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53	6 4,12 9 22 18,49 12,98 7 4,02 2,82 xy	29 20,75 28,27 3 9,02 6,33 49		2 3 4 5 xx	37 27,54 35,83 2 7,27 4,91 25 34,81 23,48 5 8,83 5,96 60	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy	17 11 18,33 4 5,58 3,77 42		2 3 4	22 19,41 23,34 28 24,87 20,98 17 25,3 21,35	9 7,96 11,17 11 16,21 13,67	15 8,25 11,49
Eichwald	3 4 5 6 xx xx xx xx	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62	2 0,41 1,89 1 1,27 0,97 3 2,29 1,74 xy xy	1 0,98 3,16 1 3,53 2,68 40 52,75 40	9 3,18 6,76	2 3 4 5 *********************************	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53 32,23 53,01	6 4,12 9 22 18,49 12,98 7 4,02 2,82 xy xy	29 20,75 28,27 3 9,02 6,33 49 69,78	1 0,98 3,67	2 3 4 5 xx xx xx	37 27,54 35,83 2 7,27 4,91 25 34,81 23,48 5 8,83 5,96 60 39,73 60	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy	17 11 18,33 4 5,58 3,77 42 62,26	3 0,71 3,24	2 3 4 **********************************	22 19,41 23,34 28 24,87 20,98 17 25,3 21,35 46 35,62 46	9 7,96 11,17 11 16,21 13,67 xy xy	15 8,25 11,49 56 66,38 56
	3 4 5 6 xx xx	50 44,67 50,79 5,86 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 43 37,69	2 0,41 1,89 1 1,27 0,97 3 2,29 1,74 xy	1 0,98 3,16 1 3,53 2,68 40	9 3,18	2 3 4 5 xx	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53 32,23 53,01 2 10 3,54	6 4,12 9 22 18,49 12,98 7 4,02 2,82 xy	29 20,75 28,27 3 9,02 6,33 49	1 0,98	2 3 4 5 xx xx	37 27,54 35,83 2 7,27 4,91 25 34,81 23,48 5 8,83 5,96 60 39,73 60 2 41 34,71	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy	17 11 18,33 4 5,58 3,77 42	3 0,71	2 3 4 xx xx	22 19,41 23,34 24,87 20,98 17 25,3 21,35 46 35,62 46 2 6 5,19	9 7,96 11,17 11 16,21 13,67	15 8,25 11,49
Eichwald Müllheim	3 4 5 6 xx xx Allel	50 44,67 50,19 5 8,6 6,522 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 37,69 45,07 6 13,98	2 0,41 1,87 0,97 3 2,29 1,74 xy xy 4	1 0,98 3,16 1 3,53 2,68 40 52,75 40	9 3,18 6,76	2 3 4 5 xx xx xx Allel	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53 32,23 53,01 2 10 3,54 6,65 1 7,64	6 4,12 9 22 18,49 12,98 7 4,02 2,82 xy xy xy 3	29 20,75 28,27 3 9,02 6,33 49 69,78	1 0,98 3,67	2 3 4 5 *********************************	37 27,54 35,83 2 7,27 4,91 25 34,81 23,48 5 8,83 5,96 60 39,73 60 2 41 34,71 41,56 7 12,25	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy xy 3	17 11 18,33 4 5,58 3,77 42 62,26	3 0,71 3,24	2 3 4 xx xx xx xx Allel	22 19,41 23,34 24,87 20,98 17 25,3 21,35 46 35,62 46 5,19 6,72 24 24,13	9 7,96 11,17 11 16,21 13,67 xy xy xy 3 3 28,06	15 8,25 11,49 56 66,38 56
Eichwald Müllheim	3 4 5 6 xx xx xx Allel 3	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 3 37,69 45,07 6 13,98 9,73 17 13,98	2 0,41 1,89 1 1,27 0,97 3 2,299 1,74 xy xy xy 4	1 0,98 3,16 1 3,53 2,68 40 52,75 40 5	9 3,18 6,76	2 3 4 5 *********************************	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53 32,23 53,01 2 10 3,54 6,65 1 7,64 6,1 8 19,56	6 4,12 9 22 18,49 12,98 7 4,02 2,82 xy xy 3 4 4,12 7,41 24,2 12,1	29 20,75 28,27 3 9,02 6,33 49 69,78 49 4	1 0,98 3,67	2 3 4 5 xx xx xx Allel 2	37 27,583 2 7,27 4,91 25 34,81 23,48 5 8,83 5,96 60 39,73 60 2 41 34,71 41,56 7 12,25 8,86 23 29,75	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy xy 3 4 1,08 3,68 4 5,25	17 11 18,33 4 5,58 3,77 42 62,26 42 4	3 0,71 3,24	2 3 4 **********************************	22 19,41 23,34 28 24,87 20,98 17 25,3 21,35 46 35,62 46 5,19 6,72 24 24,13 22,05 10 11,5	9 7,96 11,17 11 16,21 13,67 xy xy xy 3 30 28,06 30,25 23 26,75	15 8,25 11,49 56 66,38 56 4
Eichwald Müllheim	3 4 5 6 xx xx xx Allel 3	44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 43,37,69 45,07 6 13,98 9,73 17 13,98 9,73 15 20,67	2 0,41 1,89 1 1,27 0,97 3 2,29 1,74 xy xy 4 7 1,3 4,4 2,59 1,81 3 3,83	1 0,98 3,16 1 3,53 2,68 40 52,75 40 5 3 1,3 4,4	9 3,18 6,76 6	2 3 4 5 xx xx Allel 2	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53 32,23 53,01 2 10 6,65 1 7,64 6,1 8 19,56 15,63 9 3,73	6 6 4,12 9 22 18,49 12,98 7 4,02 2,82 xy xy xy 3 3 4 4,12 7,41 24, 16,86 8 4,02	29 20,75 28,27 3 9,02 6,33 49 69,78 49 4	1 0,98 3,67 5	2 3 4 5 xx xx xx xx Allel 2	37 27,54 35,83 2 7,27 4,91 25 34,81 34,81 5,96 60 39,73 60 2 41 34,71 41,56 7 12,25 8,86 23,75 21,53 7,58	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy xy xy 3 3 4 1,08 3,68 4 5,25 3,8 2 1,34	17 11 18,33 4 5,58 3,77 42 62,26 4 4	3 0,71 3,24 5	3 4 xx xx xx Allel 2	22 19,41 23,34 24,87 20,98 17 25,3 21,35 46 35,62 46 2 6 5,19 6,72 24 24,13 22,05 10	9 7,96 11,17 11 16,21 13,67 xy xy xy 3 3 30 28,06 30,25 23,23	15 8,25 11,49 56 66,38 56 4
Eichwald Müllheim	3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 43,37,69 45,07 6 13,98 9,73 17 13,98 9,73 15 20,67 14,39 61 43,12	2 0,41 1,89 1 1,27 0,97 3 2,29 1,74 xy xy xy 4 4 7 7,13 4,4 2,59 1,81 3,83 2,67 xy xy	1 0,98 3,16 1 3,53 2,68 40 52,75 40 5 3 1,3 4,4 3,83 2,67 41 58,88	9 3,18 6,76 6	3 4 5 xx xx xx xx Allel 2 3 4 5 xx xx xx	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53,01 2 10 3,54 6,65 1 7,64 6,1 8 19,56 15,63 9 3,73 2,98 49 35,66	6 4,12 9 22 18,49 12,98 7 4,02 2,82 xy xy xy 3 3 4 4,12 7,41 24,1 16,86 8 4,02 3,21 xy xy xy	29 20,75 28,27 3 9 69,78 49 4 35 27,02 32,14 3 10,29 8,22 53 66,34	1 0,98 3,67	2 3 4 5 xx xx xx Allel 2 3 4 5	37 27,54 35,83 2 7,27 4,91 25 34,81 34,81 5,96 60 39,73 60 2 41 34,71 41,56 7 12,25 8,86 23,75 21,53 7,58 5,49 5,99 42,58	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy xy 3 3 4 1,08 3,68 4 2 1,34 0,97 xy xy xy xy xy xy xy xy xy xy xy xy xy	17 11 18,33 4 5,58 3,77 42 62,26 42 6,38 11,66 3,25 2,35 43 59,42	3 0,71 3,24 5	2 3 4 xx xx xx xx Allel 2 3 4	22 19,41 23,34 28 24,97 20,98 17 25,3 21,35 46 35,62 46 5,19 6,72 24,13 22,05 10,51 45 39,63	9 7,96 11,17 11 16,21 13,67 xy xy xy xy 3 3 30 28,06 30,25 23 24,44	15 8,25 11,49 56 66,38 56 4 9 6,38 8,02
Eichwald Müllheim	3 4 5 6 xx xx xx Allel 3 4 5 6 xx	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 49,24 62 49,24 62 3 37,69 45,06 6 13,98 9,73 17 13,98 9,73 15 20,67 14,39 61	2 0,41 1,89 1 1,27 3 2,29 xy xy xy 4 7 1,3 4,4 2,59 1,81 3 3,83 2,67 xy xy	1 0,98 3,16 1 3,53 2,68 40 52,75 40 5 3 1,3 4,4 3,83 2,67 41	9 3,18 6,76 6	2 3 4 5 xx xx xx Allel 2 3 4 5 xx	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53,351 2 10 3,54 6,65 1 7,64 6,15 8 19,56 15,63 9 3,73 2,98 49	6 4,12 9 22 18,49 7 4,02 2,82 xy xy xy 3 3 4 4,12 24 21,1 16,86 8 4,02 3,21 xy	29 20,75 28,27 3 9,02 6,33 49 69,78 49 4 35 27,02 32,14 3 10,29 8,22 53	1 0,98 3,67 5	2 3 4 5 xx xx xx Allel 2 3 4 5	37 27,58 35,83 2 7,27 4,91 25 34,81 23,48 5 8,83 5,96 60 39,73 60 2 41 34,71 41,56 7 12,25 8,86 23 29,75 21,53 7 7,58 5,96 60 25 7,58 7,58 7,58 7,58 7,58 7,58	3 0,48 4,6 4 4,6 3,1 2 1,17 xy xy xy xy 3 3 4 1,08 3,68 4 4 5,25 3,8 2 1,34 0,97 xy xy	17 11 18,33 4 5,58 3,77 42 62,26 42 4 12 6,38 11,66 3,25 2,35 43	3 0,71 3,24 5	2 3 4 **** **** **** Allel 2 3 4	22 19,41 23,34 28 24,97 20,98 17 25,3 21,35 46 35,62 46 5,19 6,72 24 24,13 22,05 10 11,5 10,51	9 7,96 11,17 11 16,21 13,67 xy xy xy 3 3 30 28,06 23 26,75 24,44	15 8,25 11,49 56 66,38 56 4
Eichwald Müllheim Steinacker	3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx Allel	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 43,37,67 6 13,98 9,73 17 13,98 9,73 15 20,67 14,39 61,01	2 0,41 1,89 1 1,27 3 2,29 xy xy xy 4 4 7 1,3 4,4 2,59 1,81 3 3,83 2,67 xy xy xy xy	1 0,98 3,16 1 1,353 2,68 40 52,75 40 5 3 1,3 4,4 3,83 2,67 41 58,88 41	9 3,18 6,76 6 8 2,83 7,14	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx xx Allel	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53 32,23 53,01 2 10 3,54 6,65 1 7,64 6,1 8 19,56 15,63 9 3,73 2,98 49 49,99 2	6 4,12 9 22,1 18,49 12,98 7 4,02 2,82 xy xy xy 3 3 4 4,12 7,41 21,1 16,86 8 4,02 3,21 xy xy xy xy xy xy xy xy xy xy xy xy xy	29 20,75 28,27 3 9,02 69,78 49 69,78 49 4 35 27,02 32,14 3 10,29 8,22 53 66,34 53	1 0,98 3,67 5 0,98 2,79	2 3 4 5 xx xx Allel 2 3 4 5 xx AX AN AN AN AN AN AN AN AN AN	37 27,583 2 7,27 4,91 25 34,81 5,96 60 39,73 60 2 41,56 7 12,25 8,86 23 29,75 21,53 7 5,99 42,58 5,99 42,58	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy 3 3 4 1,08 3,68 4 5,25 3,8 4 0,97 xy xy xy xy	17 11 18,33 4 5,58 3,77 42 62,26 42 4 12 6,38 11,66 3,25 2,35 43 59,42 43	3 0,71 3,24 5 5	2 3 4 xx xx xx xx Allel 2 3 4	22 19,41 23,34 28 24,97 20,98 17 25,3 21,35 46 35,62 46 5,19 6,72 24 24,13 32,05 10,51 45 39,63 44,99	9 7,96 11,17 11 16,21 13,67 xy xy xy 3 30 28,06 30,25 23 26,75 24,44 xy xy xy	15 8,25 11,49 56 66,38 56 4 9 6,38 8,02 57 62,38 57
Eichwald Müllheim Steinacker	3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx Allel 3	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 43,67 6 13,98 9,73 17 13,98 61 43,12 61,01 3 43,13 43,13 41,13	2 0,41 1,89 1 1,27 0,97 3 2,29 1,74 xy xy 4 7 1,3 4,4 2,59 1,81 3 3,83 2,67 xy xy xy 4	1 0,98 3,16 1 1,353 2,68 40 52,75 40 5 3 1,3 4,4 3,83 2,67 41 58,88 41	9 3,18 6,76 6 8 2,83 7,14	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx xx Allel 2 4 5 xx xx xx Allel 2	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53,51 2 10 3,54 6,65 1 6,65 1 9 3,73 2,98 3,73 2,98 49 35,66 48,99 2 1 48,81	6 4,12 9 22 18,49 12,98 7 4,02 2,82 xy xy 3 3 4 4,12 7,41 24,12 16,86 8 4,02 3,21 xy xy xy	29 20,75 28,27 3 9,02 69,78 49 69,78 49 4 35 27,02 32,14 3 10,29 8,22 53 66,34 53	1 0,98 3,67 5 0,98 2,79	2 3 4 5 xx xx Allel 2 3 4 5 xx Allel 2 Allel 2 Allel 2	37 27,583 2 7,27 4,91 25 34,81 5 8,83 5,96 60 39,73 60 2 41,56 7 12,25 2,753 7 7,58 5,49 59 42,58 59 42,58	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy xy 3 3,68 4 1,08 3,68 4 5,25 3,8 4 0,97 xy xy xy xy xy 3	17 11 18,33 4 5,58 3,77 42 62,26 42 4 12 6,38 11,66 3,25 2,35 43 59,42 43	3 0,71 3,24 5 5	2 3 4 xx xx xx Allel 2 3 4 xx xx Allel 2 2	22 19,41 23,34 28 24,97 20,98 17 25,3 21,35 46 35,62 46 5,19 6,72 24 24,24,35 10,51 11,55 10,51 45 39,63 44,99 2 20 14,162	9 7,96 11,17 11 16,21 13,67 xy xy xy 3 3 3 0 28,06 30,25 23,26,75 24,44 xy xy xy xy xy 3	15 8,25 11,49 56 66,38 56 4 9 6,38 8,02 57 62,38 57
Eichwald Müllheim Steinacker	3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx Allel 3 4 4 5 4 4 4	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 43,37,607 6 13,98 3,973 17 13,973 15 20,67 14,39 61 43,12 61,01 3 43,41,13 42,99 3 6,14	2 0,41 1,89 1 1,27 0,97 3 2,29 1,74 xy xy 4 4 7 1,3 4,4 2,59 1,81 3 3,83 2,67 xy xy xy 4	1 0,98 3,16 1 1,353 2,68 40 52,75 40 5 3 1,3 4,4 3,83 2,67 41 58,88 41	9 3,18 6,76 6 8 2,83 7,14	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel 2 3 3 4 5 3	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53,01 2 10 3,54,01 8 19,563 9 3,73 2,98 49 35,663 9 3,51 8 19,563 9 3,51 8 19,563 9 3,51 8 19,563 19,36,63 19,36	6 4,12 9 22 18,49 7 4,02 2,82 xy xy xy 3 3 4 4,12 7,41 24,21,11 6,86 8 4,02 3,21 xy xy xy 3 3	29 20,75 28,27 3 9,02 6,33 49 69,78 49 4 35 27,02 32,14 3 10,29 8,22 53 66,34 53	1 0,98 3,67 5 0,98 2,79	2 3 4 5 xx xx Allel 2 3 4 5 xx Allel 2 3 4 5 xx Allel 2 3	37 27,583 2 7,27 4,91 25 34,81 5 8,83 5,96 60 39,73 60 2 41,56 7 12,25 23 29,75 7 7,58 5,49 59 42,58 59 42,58 59 42,58 59 42,58	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy xy 3 3 4 1,08 3,68 4 5,25 3,8 2 1,34 0,97 xy xy xy 3 3	17 11 18,33 4 5,58 3,77 42 62,26 42 6,38 11,66 3,25 2,35 43 59,42 4	3 0,71 3,24 5 5	2 3 4 xx xx xx Allel 2 3 4 xx xx xx Allel 2 3	22 19,41 23,34 28 24,87 20,98 17 25,33 21,35 46 35,62 46 5,19 6,72 24 24,24,5 10,51 11,55 10,51 45 39,63 44,99 2 20 14,162 18,62 15,52 20,2	9 7,96 11,17 11 16,21 13,67 xy xy xy xy 3 30 28,06 23 26,75 24,44 xy xy xy xy 3	15 8,25 11,49 56 666,38 56 4 9 6,38 8,02 57 62,38 57
Eichwald Müllheim Steinacker	3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx Allel 3 4 5 6 5 6 5 5 6 7 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	50 44,67 50,19 5 8,6 6,52 16 13,24 10,03 14 23,82 18,06 62 49,24 62 3 43,37,69 61 13,98 17 13,98 17 13,98 61 43,12 61,01 3 43,41 13,68 6,14 11,56 10,45	2 0,41 1,89 1 1,27 0,97 3 2,29 1,74 xy xy 4 4 7 1,3 4,4 2,59 1,81 3 3,83 3,2,67 xy xy xy 4 4 2,69 2,69 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 0,98 3,16 1 53 2,68 40 52,75 40 5 5 5 5 5 6 7 41 58,88 41 5 5 0,81 1,55	9 3,18 6,76 6 8 2,83 7,74	2 3 4 5 xx xx xx xx Alliel 2 3 4 5 xx xx xx Alliel 2 3 4 4 5 4 4 4 4 4	17 6,38 12,07 10,25 7,2 9 23 16,15 8 5 3,51 53,51 53,51 2 10 3,545 6,65 1 7,664 6,1 8 19,563 9 3,73 2,98 49 35,63 10 10,1 10,1 10,1 10,1 10,1 10,1 10,1	6 4,12 9 9 22 18,49 7 4,02 2,82 xy xy xy 3 3 4 4,12 7,41 24, 21,16,86 8 4,02 3,21 xy xy xy 3 3 7 7 3,25 6,19 15 12,42 9,76 9,76	29 20,75 28,27 3 9,02 6,33 49 69,78 49 4 35 27,02 32,14 3 10,29 8,22 53 66,34 53 4	1 0,98 3,67 5 0,98 2,79	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel 2 3 4 4 5	37 27,583 2 7,27 4,91 25 34,81 5 8,83 60 39,73 60 2 41 34,71 41,56 23 29,75 21,53 7 7,549 59 42,58 59 42,59 23 24,29 30 24,29 30 24,29 32,33 24,29 32,33 24,29 32,33 24,29 32,34 29,33 29,33 21,34,29 29,33 21,34,29 21,34,	3 0,48 2,6 4 4,6 3,1 2 1,17 0,79 xy xy xy 3 3 4 1,08 3,68 4 4 5,25 3,8 2 1,34 0,97 xy xy xy xy 3	17 11 18,33 4 5,58 3,77 42 62,26 42 4 12 6,38 11,66 3,25 2,35 43 59,42 4 4	3 0,71 3,24 5 5	2 3 4 xx xx xx Allel 2 3 4 xx xx xx Allel 2 3	22 19,41 23,34 28 24,98 17 25,3 21,35 46 35,62 46 5,19 6,72 24,13 22,05 10,51 45 39,63 44,99 2 20 14,16 18,62 15,53 20,2 16 17,15	9 7,96 11,17 11 16,21 13,67 xy xy xy xy 3 3 30 28,06 30,25 23 24,44 xy xy xy xy xy 15,79 15,79 15,46	15 8,25 11,49 56 66,38 56 4 9 6,38 8,02 57 62,38 57 4

Müllheim Baumschule 96	Allel 3	3 31 23,02	4	5	6	Allel 2	2 16 8,88	3	4	5	Allel 2	2 38 29,21	3	4	5	Allel 2	2 8 2,78	3	4
	4 5 6	29,01 5 11,15 8,42 13 12,12 9,15 15	4 1,35 3,83 4 2,93 2,22 6	1 1,59 <i>4,26</i> 6	13	3 4 5	13,17 4 9,93 7,87 18 27,69 21,94 5	3 2,78 5,63 19 15,49 12,27 4	27 21,59 26,67 1	1	3 4 5	36,44 1 4,37 3,07 25 36,03 25,31 5	1 0,16 1,3 5 2,69 1,89	16 11,11 <i>17,63</i> 4	3	3	7,1 12 13,64 9,34 5 13,81 9,45	22 16,74 24,23 25 33,89 23,21	26 17,15 24,67
	XX XX XX	25,69 19,4 49 33,13 49	6,22 4,7 xy xy xy	6,76 5,11 49 64,87 49	7,17 11,9	xx xx xx	3,61 2,86 47 33,62 47,01	2,02 1,6 xy xy xy	5,63 4,46 51 64,37 51	0,37 1,54	xx xx xx	8,19 5,75 58 41,05 58	0,61 0,43 xy xy xy	5,05 3,55 40 56,94 40	0,57 2,63	xx xx xx	56 36,67 <i>56</i>	xy xy <i>xy</i>	42 61,34 42
Müllheim Eichwald Bestandes- absaat 98	Allel 3	3 65 59,54 66,26 13 24,57	9 2,54	5	6	Allel 2 3	2 20 6,83 13,28 1 7,68	3 1 2,16	4	5	Allel 2 3	2 61 53,4 <i>61,98</i> 13 16,11	3 5 1,22 4,13	4	5	Allel 2 3	2 12 11,21 <i>12,5</i> 10 11,75	3 5 3,08	4
	5	19,84 33 31,5 25,44 13 13,86 11,19	5,8 5 6,5 5,25 3 2,86 2,31	6 4,17 8,17 3,67 2,96	3 0,81 2,77	4 5	5,71 15 37,97 28,24 8 4,69 3,49	6,22 31 21,36 15,89 2 2,64 1,96	62 52,81 62,08 8 13,05 9,71	2 0,81 3,42	4 5	12,28 39 48,93 37,31 5 7,16 5,46	7,38 5,63 1,08 0,82	18 11,21 18,28 3 3,28 2,5	2 0,24 1,61	4	11,24 48 47,83 45,76	3,88 23 25,08 24	52 51,04 52,62
	xx xx xx	83 67,06 <i>8</i> 3	xy xy xy	67 82,96 67		XX XX	85 62,61 <i>85</i>	xy xy xy	65 87,39 65		XX XX	86 66,07 <i>86</i>	xy xy xy	64 83,94 64		xx xx xx	69 65,33 <i>6</i> 9	xy xy xy	81 84,66 81
Müllheim Steinacker Bestandes- absaat 99	Allel 3	3 78 77,04 80,17	4	5	6	Allel 2	2 11 5,04 7,43	3	4	5	Allel 2	2 70 61,44 <i>70,4</i> 2	3	4	5	Allel 2	2 19 15,36 21,77	3	4
absaut 55	4 5 6	14 12,9 11,58 30 34,4 30,87 15	1 0,54 1,41 2 2,88 2,58	8 3,84 5,91	2	3 4 5	9,53 8,52 19 29,7 26,54 14	4 4,51 6,79 37 28,08 25,1 7	49 43,74 <i>47,7</i> 8	1	3 4 5	7 14,72 10,9 41 47,36 35,06 4	6 0,88 3,64 3 5,67 4,2 1	14 9,13 <i>16,37</i> 2	2	3	18 13,76 11,06 40 51,52 41,4	6 3,08 6,7 13 23,08 18,54	54 43,2 50,53
	xx xx xx	13,62 12,22 89 82,02 89	1,14 1,02 xy xy xy	3,04 2,73 61 67,98 61	0,6 1,51	xx xx xx	5,68 5,08 65 54,89 65	5,37 4,8 xy xy xy	16,74 14,96 85 95,1 85	1,6 3,08	xx xx	7,04 5,21 92 71,65 92,01	0,84 0,62 xy xy xy	2,71 2,01 58 78,34 58	0,2 1,58	xx xx xx	79 61,64 <i>7</i> 9	xy xy xy	71 88,36 71
													7.9	•					-
Müllrose	Allel 3 4 5 6	3 40 34,13 38,02 3 10,41 8,78 13 11,57 9,76 22	4 0,79 2,08 1 1,76 1,49 6	5 0,98 2,39 6	7	Allel 2 3 4 5	2 13 9,42 12,42 5 9,42 8,11 19 25,83 22,24 12	2 2,36 4,18 15 12,92 11,12 7	24 17,71 21,16 3	5	Allel 2 3 4 5	2 25 19,85 26,65 6 14,12 10,3 24 20,29 14,81 10	3 9 2,51 6,16 4 7,22 5,26 4	7 5,19 10 4	5	Allel 2 3	2 12 5,88 13,31 17 24,98 15,01 8 12,25 7,36	37 26,51 36,68 13 26 15,63	4 15 6,38 14,01
Müllrose	3 4 5	40 34,13 38,02 3 10,41 8,78 13 11,57 9,76	4 0,79 2,08 1 1,76 1,49	0,98 2,39		3	13 9,42 12,42 5 9,42 8,11 19 25,83 22,24	2 2,36 4,18 15 12,92 11,12	24 17,71 21,16		3	2 25 19,85 26,65 6 14,12 10,3 24 20,29 14,81	3 9 2,51 6,16 4 7,22 5,26	7 5,19 10		Allel 2	12 5,88 13,31 17 24,98 15,01 8 12,25	37 26,51 36,68 13 26	4 15 6,38
Müllrose Müllrose Baumschule	3 4 5 6 xx xx Allel 3 4 5	34,13 38,02 3 10,41 8,78 13 11,57 9,76 22 27,76 23,42 51 41,55 51,01 3 25 18,05 22,2 5 11,4 9,03 11	4 0,79 2,08 1 1,76 1,49 6 4,24 3,57 xy xy xy 4 4 1,8 3,92 3 3,62 2,85	0,98 2,39 6 4,71 3,97 51 60,45 51 5	7 5,65 8,52	2 3 4 5 xx xx xx Allel 2 3	13 9,42 12,42 5 9,42 8,11 19 25,83 22,24 12 7,9 6,8 41 31,15 40,99 2 20 9,8 16,71 8,4 5,21 15 25,55 15,85	2 2,36 4,18 15 12,92 11,12 7 3,95 3,4 xy	24 17,71 21,16 3 10,83 61 70,85 61 4	2 1,66 3,23	2 3 4 5 *********************************	2 25 19,85 26,65 6 14,12 20,29 14,0 15,88 11,59 50 30,73 50 2 20 16,2 19,71 2 1,31 24 31,51 24 32,28	9 2,51 6,16 4 7,22 5,26 4 5,65 4,12 xy	7 5,19 10 4 8,12 5,92 71,28 52 71,28 4	9 3,18 7,19	Allel 2 3 4	12 5,88 13,31 17 24,98 15,01 8 12,25 7,36	37 26,51 36,68 13 26 15,63	4 15 6,38 14,01 38 63,23
Müllrose	3 4 5 6 xx xx Allel 3	40 34,13 38,02 3 10,41 8,78 13 11,57 9,76 22 27,76 23,42 51 41,55 51,01 3 25 18,05 22,2 5 11,4 9,03 11,4	4 0,79 2,08 1 1,76 1,49 6 4,24 3,57 xy xy 4 1,8 3,92 3 3,6	0,98 2,39 6 4,71 3,97 51 60,45 51 5	7 5,65 8, <i>5</i> 2	2 3 4 5 xx xx Allel 2	13 9,42 12,42 5 9,41 19 25,83 22,24 12 7,9 6,8 41 31,15 40,99 2 0 9,8 16,71 8,4 5,21 15 25,55	2 2,366 4,18 15 12,92 11,12 7 3,95 3,4 xy xy 3 5 1,8 5,67 14 10,95	24 17,71 21,16 3 10,83 61 70,85 61 4	2 1,66 3,23	2 3 4 5 xx xx xx xx Allel 2	2 25 19,85 26,65 6 14,12 10,29 14,81 10 15,88 11,59 30,73 50 30,73 50 2 20 16,2 19,71 2 1,35 1,11 24 31,95	9 2,51 6,16 4 7,22 5,26 4 1,12 xy xy xy xy 3	7 5,19 10 4 8,12 5,92 71,28 52 4 20 15,75	9 3,18 7,19	Allel 2 3 4 xx xx xx Allel 2	12 5,88 13,31 17 24,98 15,01 8 12,25 7,36 64 38,77 64 2 7 3,83 7,97 13 12,69 8,85 8 14,66	37 26,51 36,68 13 26 15,63 xy xy xy 3	4 15 6,38 14,01 38 63,23 38 4
Müllrose	3 4 5 6 xx xx xx xx Allel 3 4 5 6 xx xx xx xx	34,13 38,02 3 10,41 8,78 13 11,57 9,76 22 27,76 23,42 51 41,55 51,01 3 25 18,05 22,2 5 11,4 9,03 11 11,3,54 9,03 11 11,3,54 37 25,7 36,99 3 148,8 142,8 142,8 142,8 142,8 142,8	4 0,79 2,08 1 1,76 4,24 4,3,57 xy xy xy 4 1,8 3,3,6 2,85 8 5,4 4,28 xy xy xy xy	0,98 2,39 6 4,71 3,97 51 60,45 51 5 2 1,8 3,92 6 5,4 4,28 43 54,3	7 5,65 8,52 6 6 4,05	2 3 4 5 xx xx Allel 2 3 4 5 xx xx xx xx xx xx xx xx xx	13, 9,42 5, 9,42 8,11 19 25,83 22,24 40,99 8,4 15,21,45 15,25,55 15,44 47,99 264 33,33 35,09 2 264 33,33 57,09 2	2 2,36 4,18 15 12,92 11,12 7 3,95 3,4 xy xy xy xy 3 3 5 1,8 5,67 14 10,95 6,79 1,05 6,79 xy	24 17,71 21,16 3 10,83 9,33 61 70,85 61 4 21 16,65 24,19 2 3,19 1,98 32 51,59	2 1,66 3,23 5	2 3 4 5 xx xx Allel 2 3 4 5	2 25 19,85 26,65 6 14,12 10 15,88 11,59 50 30,73 50 16,2 19,71 24 31,95 26,28 6,3 5,18 41 32,59	9 2,511 6,16 4 7,22 5,26 4 4,5,65 4,12 xy xy xy xy 3 3 0,03 0,29 1 1,33 1,11 0,26 2,22 xy xy xy xy xy xy xy xy xy xy xy xy xy	7 5,19 10 4 8,12 5,52 71,28 52 4 4 20 15,75 19,25 6,21 5,11 39 47,4	9 3,18 7,19 5	Allel 2 3 4 XX XX XX Allel 2 3 4	12 5,88 13,31 17 24,98 12,25 7,36 64 38,77 64 2 7 3,83 12,69 8,85 8 14,66 10,22 44 28,37 44 28,37 44 28,37 44 29,08 42,73 38	37 26,51 36,68 13 26 15,63 xy xy xy 3 15 10,51 16,11 15 24,29 16,93 xy xy xy xy 3	4 15 6,38 14,01 38 63,23 38 4 22 14,03 19,92
Müllrose Baumschule Müllrose Bestandes-	3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx Allel 3	34,13 38,02 3 10,41 8,78 13 11,57 9,76 22 27,76 6 23,42 51 41,55 51,01 3 25 18,03 11,1 11,4 19,03 10 17,1 13,54 37 25,7 36,99	4 0,79 1,79 1,76 1,49 6 4,24 3,57 xy xy 4 1.8 3,92 3 3 3,6 8 4,28 xy xy xy 4 4 4,28 xy xy 4 4,28 4,28 4,28 4,29 4,29 4,29 4,29 4,29 4,29 4,29 4,29	0,98 2,39 6 4,71 3,97 51 60,45 51 5 2 1,8 3,92 6 6,4 4,28 43 54,3	7 5,65 8,52 6 4,05 6,95	2 3 4 5 xx xx Allel 2 3 4 5 xx Allel 2 Allel 2	13, 9,42 12,42 5 9,42 8,11 19 22,24 12 20 9,8 16,71 15 1,52 48,47,99 2 64 47,99 2 64 47,99 2 64 33,33 357,09	2 2,36 4,18 15 12,92 21,11,12 7 3,95 5 1,8 5,67 14 10,95 6,79 0,65 xy xy xy 3	24 17,71 21,16 3 10,83 61 70,85 61 4 21 16,65 24,19 2,3,19 1,98 32 51,59 32	2 1,66 3,23 5 2 0,15 1,42	2 3 4 5 xx xx Allel 2 3 4 5 xx Allel 2 Allel 2	2 25 19,85 26,65 6 14,12 100 15,88 11,59 150 30,73 50 2 20 16,2 2 19,71 24 31,95 6 6,3 5,18 41 32,59 41 2 70 60,75 72,99	3 9 2,51 6,16 4 7,22 5,26 4 5,65 4 4,12 xy xy xy xy 3 0,03 0,29 1 1,33 1,1 0,26 0,22 xy xy xy xy xy xy xy xy xy xy	7 5,19 4 8,12 5,92 52 71,28 52 4 20 15,75 19,25 6 6,21 5,11 39 47,4 39	9 3,18 7,19 5 1 0,61 1,75	Allel 2 3 4 xx xx xx Allel 2 3 4 xx Allel 2	12 5,88 13,31 17 24,98 8 12,25 7,36 64 38,77 64 2 7 3,83 7,97 13 12,69 8 14,66 10,22 44 28,37 44 28,37 44 24,08 44 24,08 44 24,08 44 24,08 44 24,08 44 24,08 44 44 46,08 47 48,08	37 26,51 36,68 13 26 15,63 25 10,51 10,51 16,11 15 24,29 16,93 24,29 3	15 6,38 14,01 38 63,23 38 4 22 14,03 19,92

Müllrose Bestandes- absaat 97	Allel 3	3 108 105,1	4	5	6	Allel 2	2 31 10,58	3	4	5	Allel 2	2 58 48,51	3	4	5	Allel 2	2 16 8	3	4
	4 5 6	107,6 17 25,38 23,8 36 34,8 32,64 21	4 1,53 2,52 4 4,2 3,94 6	4 2,88 4,19		3 4 5	22,04 1 17,94 12,14 20 47,84 32,36 9	7,6 17,76 45 40,56 27,44 4	68 54,08 70,23 7	1	3 4 5	58,97 12 14,28 11,3 52 62,05 49,08 17	3 1,05 3,86 7 9,13 7,22 4	29 19,84 28,87 9	9	3	16,7 19 22,4 16,31 29 41,6 30,29	26 15,68 26,64 41 58,24 42,4	69 54,08 67,65
	XX XX	19,58 18,36 116 110,5 116	2,36 2,22 xy xy xy	3,24 3,04 84 89,56 84	0,91 1,69	xx xx xx	5,06 3,42 114 72,87 114	4,29 2,9 xy xy xy	11,44 7,74 86 127,1 86	0,61 3,97	xx xx xx	23,64 18,7 99 72,28 99	3,48 2,75 xy xy xy	15,12 11,96 101 127,7 101	2,88 7,3	xx xx xx	111 77,76 111	xy xy xy	89 122,2 89
Peitz	Allel 3	3 50 45,11	4	5	6	Allel 2	2 11 4,79	3	4	5	Allel 2	2 39 28,87	3	4	5	Allel 2	2 14 6,69	3	4
	4 5 6	49,95 1 8,69 6,81 10 9,36 7,33 24	5 0,42 1,73 1 0,9 0,71 1	0,49 1,89 3	6	3 4 5	9,31 2 9,58 7,07 18 20,91 15,42 2	8 4,79 9,31 18 20,91 15,42 8	29 22,81 29,43 2	3	3 4 5	37,13 6 11,23 7,54 22 29,94 20,1 2	5 1,09 4,18 5 5,82 3,91	11 7,76 14,41 7	4	3	14,92 8 14,16 8,12 16 24,46 14,03	17 7,49 16,02 13 25,87 14,84	33 22,34 33,06
	XX XX XX	26,73 20,96 61 49,98 61	2,57 2,02 xy xy xy	2,77 2,17 40 51,02 40	3,96 7,43	xx xx xx	3,92 2,89 51 33,19 51	3,92 2,89 xy xy xy	8,55 6,31 50 67,79 50	0,8 2,95	xx xx xx	9,09 6,1 59 38,44 58,99	1,77 1,19 xy xy xy	4,71 3,16 42 62,56 42	0,72 3,27	xx xx xx	64 36,52 <i>64</i>	xy xy xy	37 64,49 37
Peitz Bestandes- absaat 96	Allel 3	3 59 48,17	4	5	6	Allel 2	2 16 5,61	3	4	5	Allel 2	2 45 42,13	3	4	5	Allel 2	2 20 9,63	3	4
	4 5 6	61,81 6 27,77 17,48 15 18,13 11,42 31	20 4 11,59 5,23 3,29 3	7 1,71 7 3	6	3 4 5	14,82 3 5,22 3,16 16 35,96 21,8 7	6 1,22 6,05 7 16,74 10,15 5	75 57,66 71,57 13	2	3 4 5	45,32 13 19,08 17,45 39 38,69 35,39 17	4 2,16 3,51 9 8,76 8,01 6	11 8,88 11,24 3	3	3	17,12 5 8,87 6,53 31 47,88 35,24	4 2,04 6,12 22 22,05 16,23	68 59,54 <i>68,76</i>
	XX XX XX	27,77 17,48 92 57,88 91,99	8 5,04 xy xy xy	5,23 3,29 58 92,13 58	4 11,59	xx xx xx	5,61 3,4 99 65,89 <i>99</i>	2,61 1,58 xy xy xy	17,98 10,9 51 84,12 51	1,4 6,56	xx xx xx	16,96 15,51 63 54,88 63	3,84 3,51 xy xy xy	7,79 7,12 87 95,12 87	1,71 2,93	xx xx xx	92 71,21 92	xy xy xy	58 78,8 58
Schweinfurt	Allel	3	4	5	6	Allal		_		_						A II - I	•		
Scriweinluit	3	31 22,84	,	3	0	Allel 2	2 15 6,56	3	4	5	Allel 2	2 32 28,31	3	4	5	Allel 2	2 26 14,02	3	4
Gerweiniut		31 22,84 27,91 5 14,13 11,33 9 9,42 7,56 21	7 2,18 4,72 2 2,91 2,34 9	0,97 2,76 9	10		15 6,56 8,4 0 11,11 10,05 17 24,49 22,17 5	4 4,7 6,34 34 20,72 18,76 2	21 22,84 25,27 4	1		32 28,31 34,5 12 19,92 15,12 21 23,07 17,51 11	11 3,5 7,24 3 8,12 6,16 1	9 4,7 8,87 2	1		26	3 11 8,17 16,48 17 20,27 12,18	25 12,58 21,93
Gerweinut	3 4 5	31 22,84 27,91 5 14,13 11,33 9 9,42 7,56	7 2,18 4,72 2 2,91 2,34	0,97 2,76		3	15 6,56 8,4 0 11,11 10,05 17 24,49 22,17	4 4,7 6,34 34 20,72 18,76	21 22,84 25,27		3	32 28,31 34,5 12 19,92 15,12 21 23,07 17,51	11 3,5 7,24 3 8,12 6,16	9 4,7 <i>8,87</i>		3	26 14,02 23,59 19 21,4 12,86 5 26,56	11 8,17 16,48 17 20,27	25 12,58
Schweinfurt Bestandes- absaat 96	3 4 5 6 xx xx	31 22,84 27,91 5 14,13 11,33 9 9,42 7,56 21 27,78 22,29 48 34,44	7 2,18 4,72 2 2,91 2,34 9 8,59 6,89 xy	0,97 2,76 9 5,73 4,6 55	10 8,45	2 3 4 5 xx	15 6,56 8,4 0 11,11 10,05 17 24,49 22,17 5 3,28 2,97 41	4 4,7 6,34 34 20,72 18,76 2 2,78 2,51 xy	21 22,84 25,27 4 6,12 5,54 62	1 0,41	2 3 4 5 xx xx	32 28,31 34,5 12 19,92 15,12 21 23,07 17,51 11 8,39 6,37 53 37,13	11 3,5 7,24 3 8,12 6,16 1 2,95 2,24 xy	9 4,7 8,87 2 3,42 2,59 50	1 0,62	2 3 4	26 14,02 23,59 19 21,4 12,86 5 26,56 15,96	11 8,17 16,48 17 20,27 12,18	25 12,58 21,93
Schweinfurt Bestandes-	3 4 5 6 xx xx Allel	31 22,84 27,91 5 14,13 9 9,42 7,56 21 27,756 22,29 48 34,44 48 3 80 79,94 80,92 12 13,87 13,87 12,29 24,09 23,27 25	7 2,18 4,72 2 2,91 2,34 9 8,59 xy xy xy 4 3 0,6 0,9 1 2,09 2,02	0,97 2,76 9 5,73 4,6 55 68,56 55 5	10 8,45 12,61	2 3 4 5 xx xx xx Allel	15 6,56 8,4 0 11,11 10,05 17 24,49 22,17 5 3,28 2,97 41 34,51 12,61 18,5 0 2,9 2,35 45 53,94 43,66 4	4 4,7 6,34 34 20,72 18,76 2 2,51 xy xy xy 3 1 0,17 1,09 8 6,2 5,00	21 22,84 25,27 4 6,12 5,54 62 68,5 62 4	1 0,41 0,99 5	2 3 4 5 *********************************	32 28,31 34,5 12 19,92 21 23,07 17,51 11 8,39 6,37 53 37,13 53,01 2 49 48,17 51,54 46 48,73 44,4 11	11 3,5 7,24 3 8,12 6,16 1 2,95 2,24 xy xy xy 3 4 1,22 2,31 4 7,74 7,05 0	9 4,7 8,87 2 3,42 2,59 50 65,87 50 4	1 0,62 2,4 5	2 3 4 xx xx xx xx Allel	26 14,02 23,59 19 21,4 12,86 5 26,56 15,96	11 8,17 16,48 17 20,27 12,18 xy xy	25 12,58 21,93 41 68,23 41
Schweinfurt Bestandes-	3 4 5 6 xx xx Allel 3 4 5	31 22,84 27,91 5 14,13 9 9,42 7,56 21 27,78 22,29 48 34,44 80 9,94 12 13,87 13,4 22 24,09 23,27	7 2,18 4,72 2 2,91 2,91 2,94 9 8,59 xy xy xy xy 4 3 0,6 0,9 1 2,09	0,97 2,76 9 5,73 4,6 55 68,56 55 5	10 8,45 12,61	2 3 4 5 xx xx xx Allel 2 3	15 6,56 8,4 0 11,11 10,05 17 24,49 22,17 5 3,28 2,97 41 34,51 41 2 19 12,61 18,5 0 2,35 45 53,94 43,66	4 4,7 6,34 20,72 18,76 2,78 2,51 xy xy xy 3 1 0,17 1,09 8 6,2 5,02	21 22,84 25,27 4 6,12 5,54 62 68,5 62 4	1 0,41 0,99 5	2 3 4 5 *********************************	32 28,31 34,5 12 19,92 15,12 21 23,07 17,51 11 8,39 6,37 53 37,13 53,01 2 49 48,14 15 15,14 46 48,73 44,4	11 3,5 7,24 3 8,12 6,16 1 2,95 2,24 xy xy xy 3 3 4 1,22 2,31 4 7,74 7,705	9 4,7 8,87 2 3,42 2,59 50 65,87 50 4	1 0,62 2,4 5	3 4 xx xx xx Allel 2	26 14,02 23,59 19 21,4 12,86 5 26,56 15,96 62 34,77 62 2 41 30,83 41,66 5 22,21 15,74 39 52,13	11 8,17 16,48 17 20,27 12,18 xy xy xy 3 3	25 12,58 21,93 41 68,23 41 4
Schweinfurt Bestandes-	3 4 5 6 xx xx xx xx Allel 3 4 5 6 xx xx xx xx	31 22,84 27,91 5 14,13 9 9,42 7,56 21,78 22,29 48 34,44 48 3 80 9,94 12 13,87 13,4 22,409 23,27 25,27 26,27 26,27 26,27 27,28 21,17 20,45 83,75	7 2,18 4,72 2 2,34 9 8,59 6,89 xy xy 4 3 0,6 0,9 1 0,09 2,02 1,84 1,77 xy	0,97 2,76 9 5,73 4,6 55 68,56 55 5 3 1,81 2,31 4 3,08 64 66,25	10 8,45 12,61 6	3 4 5 xx xx xx xx Allel 2 3 4 5 xx xx xx	15 6,56 8,4 0 11,11 10,05 17 24,49 22,17 5 3,28 2,97 41 34,51 41 2 19 12,61 18,5 0 2,35 45 45 43,66 49 43,66 49 3,99 86 70,92	4 4,7 6,34 34 220,72 18,76 2,78 2,51 xy xy 3 3 1 0,17 1,09 8 6,2 5,02 0,57 0,46 xy xy	21 22,84 25,27 4 62 5,54 62 68,5 62 4 63 57,66 64,4 7 10,54 8,53 64 79,08	1 0,41 0,99 5 3 0,48	2 3 4 5 xx xx xx Allel 2 3 4 5	32 28,31 34,5 12 19,92 21 23,07 17,51 11 8,39 6,37 53,01 2 49,1 15,1,44 15 15,3,13,94 46,73 44,4 11 9,63 8,78 70 62,2	11 3,5 7,24 3 8,12 6,16 1 2,95 2,24 xy xy xy 3 3 4 1,22 2,31 4 7,74 7,705 0 1,53 1,39 xy xy xy	9 4,7 8,87 2 2,59 50 65,87 50 4 16 12,33 15,05 4,87 4,44 80 87,8	1 0,62 2,4 5	2 3 4 xx xx xx xx Allel 2 3 4	26 14,02 23,59 19 21,46 5,26,56 15,96 62 34,77 62 2 41 30,83 41,66 15 22,21 15,74 39 52,13 36,95	11 8,17 16,48 17 12,20,27 12,18 xy xy xy xy 3 3 11 4 9,97 12 18,78 13,31	25 12,58 21,93 41 68,23 41 4 32 22,04 32,37
Schweinfurt Bestandes- absaat 96	3 4 5 6 xx xx xx Allel 3 4 5 6 xx xx xx Allel	31 22,84 27,91 5 14,133 9,9,42 7,566 21 27,756 21,27,76 80,94 48 3,80 79,94 480,94 12 13,87 13,47 22 24,09 23,27 25,21,45 86 83,75 86 33 33	7 2,18 4,72 2 2,91 2,34 9 8,59 xy xy xy 4 3 0,6 0,9 1 2,09 2,02 1,84 1,77 xy xy xy	0,97 2,76 9 5,73 4,6 55 68,56 55 5 5 3 1,81 2,31 4 3,19 3,09 64 66,25 64	10 8,45 12,61 6	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx xx Allel	15 6,56 8,4 0 11,11 10,05 17 24,49 22,17 5 3,28 2,97 41 34,51 0 2,99 12,61 18,5 0 2,93 45 53,94 43,66 4 4,93 86 70,92 86	4 4,7 6,34 34 20,72 218,76 2,278 2,51 xy xy 3 3 1 0,17 1,09 8 6,2 5,00 0,57 0,46 xy xy xy xy	21 22,84 25,27 4,612 5,54 62 68,5 62 4 63 57,66 64,4 7 10,54 8,53 64 79,08	1 0,41 0,99 5 3 0,48 2,01	2 3 4 5 xx xx xx Allel 2 3 4 5 xx xx Allel	32 28,31 34,5 12 19,92 21 23,07 17,51 11 8,39 6,37 53 37,13 53,01 2 49 48,17 51,44 15 15,94 46 48,73 44,4 11 9,63 8,78 70 62,2 69,99	11 3,5 7,24 3 8,12 6,16 1 2,95 2,24 xy xy 3 3 4 1,22 2,31 4 7,74 7,70 0 1,53 1,39 xy xy xy	9 4,7 8,87 2 2,59 50 65,87 50 4 16 12,33 15,05 4 4,87 4,487 4,484 80 87,8	1 0,62 2,4 5 5	2 3 4 xx xx xx xx Allel 2 3 4	26 14,02 23,59 19 21,46 5 26,56 15,96 62 34,77 62 2 41 30,83 41,63 15 22,21 15,74 39 52,13 36,95	11 8,17 16,48 17 20,27 12,18 xy xy xy 3 3 11 4 9,97 12 18,78 13,31	25 12,58 21,93 41 68,23 41 4 32 22,04 32,37 66 93,12 66

Uffenheim Bestandes- absaat 96	Allel 3	3 78 78,48	4	5	6	Allel 2	2 24 13,5	3	4	5	Allel 2	2 49 44,28	3	4	5	Allel 2	2 16 10,67	3	4
		-				_	20,15	_			_	50,66	_			_	20,02		
	4	6				3	6	. 1			3	22	3			3	25	21	
		5,06	0,08				8,1	1,22				19,02	2,04				22,67	12,04	
	_	45	-	•			6,39	3,81				15,76	4,69	40			15,44	21,76	4-
	5	15		2		4	31	19	50		4	32	3	18		4	23	18	47
		18,08	0,58	1,04			48,3	14,49	43,2			41,29	8,87	9,63			36	38,25	30,37
		-		-	•	-	38,1	11,43	51,08	•	-	34,22	7,35	14,49	•		24,52	26,05	42,22
	6	40	1	6	2	5	5	0	11	3	5	11	4	5	3				
		36,89	1,19	4,25	4,34		6,6	1,98	11,81	0,81		14,13	3,03	6,59	1,13				
		82	-	68	-	****	5,21 78	1,56	9,31 72	2,96	****	11,71	2,51	5,46 77	3,16	****	0.4		cc
	XX		хy			XX		хy			XX	73	хy			XX	84	хy	66
	XX	83,94	xy	66,05		XX	58,73	xy	91,28		XX	57,08	xy	92,93		XX	53,08	xy	96,92
	XX	0	xy	0		XX	78	xy	72		XX	73	xy	77		XX	84	xy	66
Uffenheim	Allel	3	4	5	6	Allel	2	3	4	5	Allel	2	3	4	5	Allel	2	3	4
Bestandes-	3	55				2	24				2	53				2	6		
absaat 97	3					_	11.21				-	46.48				2	-		
absaat 97	3	49,88 <i>54,55</i>				_					-	46,48 53,54				2	4,86 8,08		
absaat 97	4	49,88	6			3	11,21	3			3		2			3	4,86	25	
absaat 97	-	49,88 <i>54,5</i> 5				_	11,21 <i>18,61</i>				_	53,54	2 1,04			_	4,86 8,08		
absaat 97	-	49,88 <i>54,5</i> 5 14	6 2,67 4,88			_	11,21 18,61 2	3 0,96 3,7			_	53,54 15				_	4,86 8,08 17	25 18,37 23,34	
absaat 97	-	49,88 54,55 14 23,07	2,67	9		_	11,21 18,61 2 6,56	0,96	48		_	53,54 15 13,92	1,04	17		_	4,86 <i>8,08</i> 17 18,9	18,37	39
absaat 97	4	49,88 54,55 14 23,07 20,13	2,67 4,88	9 5,41		3	11,21 18,61 2 6,56 4,93	0,96 3,7	48 41,08		3	53,54 15 13,92 11,26	1,04 3,23	17 9,13		3	4,86 8,08 17 18,9 16,15	18,37 23,34	39 33,14
absaat 97	4	49,88 54,55 14 23,07 20,13 28	2,67 4,88 9	-		3	11,21 18,61 2 6,56 4,93 27	0,96 3,7 13			3	53,54 15 13,92 11,26 29	1,04 3,23 4			3	4,86 8,08 17 18,9 16,15 25	18,37 23,34 38	
absaat 97	4	49,88 54,55 14 23,07 20,13 28 32,87	2,67 4,88 9 7,6	5,41	1	3	11,21 18,61 2 6,56 4,93 27 42,91	0,96 3,7 13 12,56	41,08	4	3	53,54 15 13,92 11,26 29 41,19	1,04 3,23 4 6,17	9,13	4	3	4,86 8,08 17 18,9 16,15 25 25,38	18,37 23,34 38 49,35	33,14
absaat 97	4 5	49,88 54,55 14 23,07 20,13 28 32,87 28,68	2,67 4,88 9 7,6 6,63	5,41 8,36	1 1,5	3	11,21 18,61 2 6,56 4,93 27 42,91 32,25	0,96 3,7 13 12,56 9,44	41,08 <i>50,38</i>	4 2,28	3	53,54 15 13,92 11,26 29 41,19 33,34 17 18,93	1,04 3,23 4 6,17 4,99	9,13 <i>14,44</i>	4 1,93	3	4,86 8,08 17 18,9 16,15 25 25,38	18,37 23,34 38 49,35	33,14
absaat 97	4 5	49,88 54,55 14 23,07 20,13 28 32,87 28,68 21	2,67 4,88 9 7,6 6,63 5	5,41 8,36 2	-	3	11,21 18,61 2 6,56 4,93 27 42,91 32,25 5	0,96 3,7 13 12,56 9,44 3	41,08 50,38 21	-	3	53,54 15 13,92 11,26 29 41,19 33,34 17	1,04 3,23 4 6,17 4,99 2	9,13 <i>14,44</i> 7	-	3	4,86 8,08 17 18,9 16,15 25 25,38	18,37 23,34 38 49,35	33,14
absaat 97	4 5	49,88 54,55 14 23,07 20,13 28 32,87 28,68 21 17,3	2,67 4,88 9 7,6 6,63 5	5,41 8,36 2 5,7	1,5	3	11,21 18,61 2 6,56 4,93 27 42,91 32,25 5 10,11	0,96 3,7 13 12,56 9,44 3 2,96	41,08 50,38 21 19,36	2,28	3	53,54 15 13,92 11,26 29 41,19 33,34 17 18,93	1,04 3,23 4 6,17 4,99 2 2,83	9,13 14,44 7 8,39	1,93	3	4,86 8,08 17 18,9 16,15 25 25,38	18,37 23,34 38 49,35	33,14
absaat 97	4 5 6	49,88 54,55 14 23,07 20,13 28 32,87 28,68 21 17,3 15,1	2,67 4,88 9 7,6 6,63 5 4 3,49	5,41 8,36 2 5,7 4,97	1,5	3 4 5	11,21 18,61 2 6,56 4,93 27 42,91 32,25 5 10,11 7,6	0,96 3,7 13 12,56 9,44 3 2,96 2,22	41,08 50,38 21 19,36 14,55	2,28	3 4 5	53,54 15 13,92 11,26 29 41,19 33,34 17 18,93 15,32	1,04 3,23 4 6,17 4,99 2 2,83 2,29	9,13 14,44 7 8,39 6,79	1,93	3	4,86 8,08 17 18,9 16,15 25 25,38 21,69	18,37 23,34 38 49,35 42,17	33,14 38,57

Tabelle 21: Assortative Paarungspräferenzen \boldsymbol{U}^* aller 44 Bestände an vier Genorten

Tabelle 21: A			estande an vier Genorte	
	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
ARNSTEIN Altbestand	U* 1×4 = 5,68 U* 1×6 = 2,38 U* 2×6 = 5,38 U* 3×3 = 1,30 U* 3×4 = 0,19 U* 3×5 = 1,21 U* 3×6 = 0,62 U* 3×7 = 1,37 U* 4×4 = 4,06 U* 4×5 = 3,40 U* 4×6 = 1,07 U* 6×6 = 1,99 U* 6×7 = 0,27 U* 7×7 = 2,08	U* 1×4 = 1,06 U* 1×5 = 7,25 U* 2×2 = 1,94 U* 2×3 = 0,21 U* 2×4 = 0,72 U* 2×5 = 1,29 U* 3×3 = 0,68 U* 3×4 = 1,51 U* 3×5 = 1,64 U* 4×4 = 1,06 U* 4×5 = 0,45 U* 5×6 = 14,49	U* 2x2 = 1,04 U* 2x3 = 0,74 U* 2x4 = 1,08 U* 2x5 = 0,70 U* 3x4 = 1,42 U* 3x5 = 2,00 U* 4x4 = 0,79 U* 4x5 = 0,94 U* 5x5 = 1,83	U* 1x3 = 1,62 U* 1x5 = 33,33 U* 2x2 = 1,94 U* 2x3 = 0,99 U* 2x4 = 0,59 U* 3x3 = 1,95 U* 3x4 = 0,36 U* 4x4 = 1,71 U* 5x5 = 44,44
ARNSTEIN Altbestand stelle '97	U* 1x5 = 10,78 U* 2x3 = 1,12 U* 2x4 = 1,48 U* 2x6 = 1,42 U* 3x3 = 1,11 U* 3x4 = 0,51 U* 3x5 = 0,76 U* 3x6 = 1,07 U* 3x7 = 1,56 U* 4x4 = 4,43 U* 4x5 = 0,70 U* 4x6 = 1,22 U* 5x5 = 2,47 U* 5x6 = 0,36 U* 6x6 = 1,14	U* 2x2 = 2,49 U* 2x3 = 0,11 U* 2x4 = 0,41 U* 2x5 = 1,40 U* 3x3 = 1,60 U* 3x4 = 1,18 U* 3x7 = 3,85 U* 4x4 = 1,39 U* 4x5 = 0,54 U* 4x7 = 1,04 U* 5x6 = 6,63	U* 1x2 = 1,09 U* 1x4 = 0,95 U* 1x5 = 3,85 U* 2x2 = 1,34 U* 2x3 = 0,45 U* 2x4 = 0,85 U* 2x5 = 0,73 U* 3x3 = 3,19 U* 3x4 = 0,73 U* 3x5 = 0,28 U* 4x4 = 1,59 U* 4x5 = 0,33 U* 5x5 = 6,73	U* 1×3 = 1,58 U* 1×4 = 1,40 U* 2×2 = 1,66 U* 2×3 = 0,68 U* 2×4 = 0,81 U* 2×5 = 0,55 U* 2×6 = 1,17 U* 3×3 = 1,19 U* 3×5 = 1,85 U* 4×4 = 1,04 U* 4×5 = 0,79 U* 4×6 = 1,89
ARNSTEIN Bestandes- absaat '97	U* 1×3 = 0,27 U* 1×4 = 0,92 U* 1×5 = 8,23 U* 2×3 = 1,35 U* 2×4 = 1,26 U* 3×3 = 1,10 U* 3×4 = 0,45 U* 3×5 = 0,83 U* 3×6 = 1,20 U* 3×7 = 1,55 U* 4×4 = 4,43 U* 4×5 = 0,73 U* 4×6 = 1,46 U* 5×5 = 0,92 U* 6×6 = 0,86	U* 1×4 = 2,48 U* 2×2 = 2,93 U* 2×3 = 0,15 U* 2×4 = 0,43 U* 2×5 = 1,25 U* 3×3 = 1,55 U* 3×4 = 1,19 U* 3×5 = 0,90 U* 4×4 = 1,30 U* 4×5 = 0,50 U* 5×5 = 2,58 U* 5×6 = 10,32	U* 2x2 = 1,22 U* 2x3 = 0,71 U* 2x4 = 0,89 U* 2x5 = 0,75 U* 3x3 = 2,78 U* 3x4 = 0,69 U* 3x5 = 0,55 U* 4x4 = 1,40 U* 4x5 = 0,51 U* 5x5 = 5,16	U* 2x2 = 2,59 U* 2x3 = 0,34 U* 2x4 = 1,03 U* 2x6 = 1,98 U* 3x3 = 1,58 U* 3x4 = 0,73 U* 3x5 = 0,85 U* 3x6 = 2,13 U* 4x4 = 1,19 U* 4x5 = 1,58
BAD NEUSTADT/ SAALE Altbestand	U* 1×3 = 0,83 U* 1×5 = 8,62 U* 1×6 = 1,60 U* 3×3 = 1,30 U* 3×4 = 0,15 U* 3×5 = 0,41 U* 3×6 = 0,64 U* 3×7 = 1,66 U* 3×8 = 1,60 U* 4×4 = 3,05 U* 4×5 = 2,21 U* 4×6 = 2,42 U* 5×6 = 1,16 U* 6×6 = 1,26	U* 2×2 = 2,90 U* 2×3 = 0,08 U* 2×4 = 0,40 U* 2×5 = 2,40 U* 3×3 = 1,26 U* 3×4 = 1,35 U* 3×5 = 0,81 U* 4×4 = 1,21 U* 4×5 = 0,18 U* 5×5 = 2,44	U* 2x2 = 1,24 U* 2x3 = 0,29 U* 2x4 = 0,93 U* 2x5 = 1,05 U* 3x3 = 4,24 U* 3x4 = 0,58 U* 3x5 = 1,69 U* 4x4 = 1,30 U* 4x5 = 0,70 U* 5x5 = 1,04	U* 2x2 = 1,88 U* 2x3 = 1,13 U* 2x4 = 0,29 U* 3x3 = 1,63 U* 3x4 = 0,35 U* 3x5 = 0,99 U* 4x4 = 2,14 U* 5x5 = 44,44
BAD NEUSTADT/ SAALE Bestandes- absaat '97	U* 1×5 = 16,39 U* 2×3 = 1,56 U* 3×3 = 1,00 U* 3×4 = 0,64 U* 3×5 = 0,88 U* 3×6 = 1,22 U* 3×7 = 1,51 U* 3×8 = 1,51 U* 4×4 = 3,29 U* 4×5 = 1,69 U* 4×6 = 1,16 U* 5×5 = 2,69 U* 6×6 = 0,53	U* 2×2 = 1,19 U* 2×3 = 0,93 U* 2×4 = 0,78 U* 2×5 = 1,58 U* 2×6 = 2,54 U* 3×3 = 6,38 U* 3×4 = 0,55 U* 4×4 = 1,31 U* 4×5 = 0,24 U* 5×5 = 5,95	U* 1x4 = 3,22 U* 2x2 = 1,25 U* 2x3 = 0,33 U* 2x4 = 0,86 U* 2x5 = 0,73 U* 3x3 = 11,02 U* 3x5 = 1,28 U* 4x4 = 1,48 U* 4x5 = 0,77 U* 5x5 = 2,50	U* 2x2 = 3,37 U* 2x3 = 0,52 U* 2x4 = 0,57 U* 2x5 = 3,30 U* 2x6 = 1,80 U* 3x3 = 1,63 U* 3x4 = 0,96 U* 4x4 = 1,14 U* 4x5 = 0,72 U* 4x6 = 0,48 U* 5x5 = 5,37 U* 6x6 = 15,43

	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
BAD NEUSTADT/ SAALE Bestandes- absaat '98	U* 1 x 3 = 0,24 U* 1 x 4 = 0,97 U* 1 x 5 = 6,41 U* 1 x 6 = 1,36 U* 2 x 2 = 7,03 U* 2 x 3 = 0,53 U* 2 x 4 = 0,59 U* 2 x 5 = 0,82 U* 2 x 6 = 2,35 U* 3 x 3 = 1,10 U* 3 x 4 = 0,80 U* 3 x 5 = 0,94 U* 3 x 7 = 1,75 U* 4 x 4 = 1,71 U* 4 x 6 = 1,45 U* 4 x 8 = 8,39 U* 5 x 5 = 1,33 U* 6 x 6 = 0,71	U* 2x2 = 2,21 U* 2x3 = 0,17 U* 2x4 = 0,90 U* 2x5 = 0,85 U* 2x7 = 2,65 U* 3x3 = 1,99 U* 3x4 = 0,75 U* 3x5 = 1,78 U* 3x6 = 1,35 U* 4x4 = 1,21 U* 4x5 = 0,85 U* 5x6 = 4,85 U* 6x7 = 41,42	U* 1 x 2 = 2,01 U* 2 x 2 = 1,13 U* 2 x 3 = 0,90 U* 2 x 4 = 0,88 U* 2 x 5 = 0,64 U* 3 x 3 = 1,41 U* 3 x 4 = 0,99 U* 3 x 5 = 1,33 U* 4 x 4 = 1,17 U* 4 x 5 = 1,35 U* 5 x 5 = 1,76	U* 1×3 = 4,40 U* 2×2 = 2,65 U* 2×3 = 0,76 U* 2×4 = 0,74 U* 2×5 = 1,03 U* 2×6 = 1,09 U* 3×3 = 0,94 U* 3×5 = 0,54 U* 3×6 = 0,41 U* 4×4 = 1,02 U* 4×5 = 0,55 U* 4×6 = 1,07 U* 5×5 = 3,28 U* 6×6 = 5,56
BAMBERG Albestand	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	U* 2×2 = 1,20 U* 2×3 = 0,35 U* 2×4 = 0,81 U* 2×5 = 0,84 U* 3×3 = 5,67 U* 3×4 = 0,89 U* 3×5 = 0,69 U* 4×4 = 1,41 U* 4×5 = 1,34 U* 5×5 = 1,64	U* 1x1 = 10,33 U* 1x3 = 0,68 U* 1x4 = 1,08 U* 2x2 = 2,23 U* 2x3 = 0,71 U* 2x4 = 0,39 U* 3x3 = 1,68 U* 3x4 = 0,58 U* 3x5 = 1,04 U* 4x4 = 2,12 U* 5x5 = 23,78
BAMBERG Bestandes- absaat' 98	U* 1×3	U* 2x2 = 2,60 U* 2x3 = 0,20 U* 2x4 = 0,59 U* 2x5 = 1,16 U* 2x6 = 3,20 U* 3x3 = 1,24 U* 3x4 = 1,22 U* 3x5 = 1,18 U* 4x4 = 1,09 U* 4x5 = 1,03 U* 4x6 = 0,63	U* 1 x 3 = 5,83 U* 1 x 4 = 2,26 U* 2 x 2 = 1,18 U* 2 x 3 = 0,67 U* 2 x 4 = 0,77 U* 2 x 5 = 0,76 U* 2 x 6 = 1,99 U* 3 x 3 = 7,50 U* 3 x 4 = 0,38 U* 4 x 4 = 1,61 U* 4 x 5 = 0,66 U* 5 x 5 = 7,12	U* 1x1 = 17,50 U* 1x3 = 0,74 U* 1x4 = 0,76 U* 1x5 = 2,19 U* 2x2 = 2,15 U* 2x3 = 1,17 U* 2x4 = 0,65 U* 2x5 = 0,26 U* 2x6 = 0,89 U* 3x3 = 0,94 U* 3x4 = 0,98 U* 3x5 = 1,24 U* 3x6 = 0,63 U* 4x4 = 1,30 U* 4x5 = 0,29 U* 5x5 = 5,16 U* 5x6 = 1,21 U* 6x6 = 2,90
BURGSINN Altbestand	U* 1 x 1 = 6,57 U* 1 x 3 = 0,63 U* 1 x 4 = 2,37 U* 1 x 6 = 1,07 U* 3 x 3 = 1,25 U* 3 x 4 = 0,31 U* 3 x 5 = 0,58 U* 3 x 6 = 0,55 U* 3 x 7 = 1,49 U* 4 x 5 = 3,19 U* 4 x 6 = 2,66 U* 5 x 6 = 1,44 U* 5 x 7 = 3,92 U* 6 x 6 = 1,88	U* 2 x 2 = 3,21 U* 2 x 4 = 0,39 U* 2 x 5 = 3,53 U* 3 x 3 = 1,35 U* 3 x 4 = 1,21 U* 3 x 5 = 0,83 U* 3 x 7 = 4,17 U* 4 x 4 = 1,23	U* 1×2 = 1,27 U* 1×4 = 1,08 U* 2×2 = 1,21 U* 2×3 = 0,16 U* 2×4 = 0,85 U* 2×5 = 0,80 U* 3×3 = 14,08 U* 3×5 = 0,91 U* 4×4 = 1,54 U* 4×5 = 0,68 U* 5×5 = 3,35	U* 1×3 = 3,29 U* 2×2 = 2,06 U* 2×3 = 0,89 U* 2×4 = 0,17 U* 3×3 = 1,17 U* 3×4 = 0,90 U* 3×5 = 1,64 U* 4×4 = 1,83 U* 4×5 = 1,40

	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
BURGSINN Bestandes- absaat '98	U* 1×4 = 5,48 U* 2×2 = 6,43 U* 2×3 = 0,33 U* 2×4 = 0,92 U* 2×5 = 2,46 U* 2×6 = 2,87 U* 2×7 = 2,47 U* 3×3 = 1,15 U* 3×4 = 0,61 U* 3×5 = 1,20 U* 3×6 = 0,62 U* 3×7 = 1,44 U* 4×4 = 1,92 U* 4×6 = 2,54 U* 4×7 = 0,38	U* 2×2 = 2,33 U* 2×4 = 0,86 U* 2×5 = 1,08 U* 3×3 = 1,65 U* 3×4 = 1,01 U* 3×5 = 2,11 U* 3×7 = 2,27 U* 4×4 = 1,11 U* 4×5 = 0,58 U* 4×7 = 1,01	U* 2x2 = 1,16 U* 2x3 = 0,66 U* 2x4 = 0,93 U* 2x5 = 0,52 U* 3x3 = 3,75 U* 3x4 = 0,48 U* 3x5 = 2,43 U* 4x4 = 1,21 U* 4x5 = 1,12 U* 5x5 = 2,31	U* 1x2 = 1,59 U* 1x3 = 1,12 U* 1x4 = 1,43 U* 2x2 = 3,31 U* 2x3 = 0,94 U* 2x4 = 0,43 U* 2x6 = 0,71 U* 3x3 = 1,58 U* 3x4 = 0,66 U* 3x5 = 1,09 U* 3x6 = 0,27 U* 4x4 = 1,47 U* 4x5 = 0,71 U* 4x6 = 1,38 U* 5x5 = 1,85 U* 5x6 = 0,82 U* 6x6 = 2,90
DINKELSBÜHL Altbestand	U* 1x1 = 1,57 U* 1x3 = 0,94 U* 1x4 = 0,57 U* 1x6 = 1,15 U* 3x3 = 1,17 U* 3x4 = 0,87 U* 3x5 = 0,58 U* 3x6 = 0,80 U* 4x4 = 3,29 U* 4x6 = 0,94 U* 5x5 = 8,65 U* 5x6 = 1,61 U* 6x6 = 1,25	U* 2x2 = 1,94 U* 2x3 = 0,11 U* 2x4 = 0,61 U* 2x5 = 3,16 U* 2x7 = 1,45 U* 3x3 = 0,72 U* 3x4 = 1,48 U* 3x6 = 5,99 U* 3x7 = 3,47 U* 4x4 = 1,16 U* 4x5 = 0,30	U* 1×2 = 1,69 U* 2×2 = 1,17 U* 2×3 = 0,22 U* 2×4 = 0,74 U* 2×5 = 1,28 U* 3×3 = 13,15 U* 3×4 = 1,15 U* 4×4 = 1,59 U* 5×5 = 6,57	U* 1x3 = 2,47 U* 2x2 = 2,80 U* 2x3 = 0,16 U* 2x4 = 1,16 U* 3x3 = 1,59 U* 3x4 = 0,70 U* 3x5 = 2,55 U* 4x4 = 1,27
DINKELSBÜHL Bestandes- absaat '97	U* 1x1 = 7,03 U* 1x3 = 0,22 U* 1x5 = 6,58 U* 2x3 = 0,74 U* 2x4 = 5,75 U* 3x3 = 1,02 U* 3x4 = 0,79 U* 3x5 = 1,01 U* 3x6 = 1,42 U* 3x7 = 1,22 U* 4x4 = 4,36 U* 4x6 = 0,48 U* 5x7 = 2,11	U* 2×2 = 3,84 U* 2×3 = 0,11 U* 2×4 = 0,44 U* 2×5 = 1,50 U* 2×6 = 2,10 U* 3×3 = 2,09 U* 3×4 = 0,86 U* 3×5 = 1,80 U* 4×4 = 1,25 U* 4×5 = 0,42 U* 5×5 = 4,38 U* 6×6 = 70,00	U* 1×4 = 3,31 U* 2×2 = 1,11 U* 2×3 = 0,50 U* 2×4 = 0,84 U* 2×5 = 1,24 U* 3×3 = 5,11 U* 3×4 = 1,03 U* 3×5 = 2,51 U* 4×4 = 1,28 U* 4×5 = 0,67	U* 1x1 = 70,00 U* 1x3 = 1,35 U* 2x2 = 2,45 U* 2x3 = 0,35 U* 2x4 = 1,08 U* 2x5 = 0,53 U* 3x3 = 2,07 U* 3x4 = 0,47 U* 3x6 = 1,04 U* 4x4 = 1,37 U* 4x5 = 0,69 U* 4x6 = 0,79 U* 6x6 = 9,50
DINKELSBÜHL Bestandes- absaat '98	U* 1x1 = 7,78 U* 1x3 = 0,21 U* 1x4 = 0,83 U* 1x5 = 5,17 U* 1x6 = 0,85 U* 2x3 = 1,19 U* 2x4 = 2,50 U* 3x3 = 1,18 U* 3x5 = 0,77 U* 3x6 = 0,98 U* 3x7 = 1,33 U* 4x4 = 1,02 U* 4x5 = 1,64 U* 4x5 = 1,64 U* 4x7 = 1,93 U* 5x5 = 0,29 U* 5x6 = 0,29 U* 6x6 = 0,69	U* 1×5 = 17,41 U* 2×2 = 2,72 U* 2×3 = 0,06 U* 2×4 = 0,60 U* 2×5 = 0,63 U* 2×6 = 1,48 U* 2×7 = 4,92 U* 3×3 = 2,08 U* 3×4 = 0,99 U* 3×5 = 0,86 U* 4×4 = 1,27 U* 4×5 = 0,88 U* 5×5 = 2,90 U* 6×6 = 70,00	U* 1x1 = 5,56 U* 1x2 = 1,23 U* 1x3 = 0,53 U* 1x4 = 0,30 U* 2x2 = 1,09 U* 2x3 = 1,12 U* 2x4 = 0,80 U* 2x5 = 1,14 U* 3x3 = 2,73 U* 3x4 = 0,58 U* 4x4 = 1,48 U* 4x5 = 0,79 U* 5x5 = 4,00	U* 1x4 = 2,08 U* 2x2 = 1,65 U* 2x3 = 0,76 U* 2x4 = 0,68 U* 2x5 = 0,34 U* 2x6 = 2,26 U* 3x3 = 1,37 U* 3x4 = 1,02 U* 3x5 = 1,09 U* 3x6 = 0,57 U* 4x4 = 1,14 U* 4x5 = 0,88 U* 4x6 = 0,81 U* 5x5 = 3,12 U* 5x6 = 0,48 U* 6x6 = 1,53

Assortative F	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
DINKELSBÜHL Natur- verjüngung	U* 1 x 3 = 1,74 U* 1 x 6 = 0,68 U* 2 x 3 = 0,82 U* 2 x 4 = 1,23 U* 2 x 5 = 10,26 U* 3 x 3 = 1,38 U* 3 x 4 = 0,31 U* 3 x 5 = 0,77 U* 3 x 6 = 0,68 U* 3 x 7 = 2,06 U* 4 x 4 = 2,97 U* 4 x 6 = 1,31 U* 5 x 6 = 1,46 U* 6 x 6 = 1,51	U* 1 x 1 = 44,44 U* 1 x 5 = 6,80 U* 2 x 2 = 1,69 U* 2 x 3 = 0,24 U* 2 x 4 = 0,70 U* 2 x 5 = 0,83 U* 2 x 7 = 0,93 U* 3 x 3 = 0,72 U* 3 x 4 = 1,59 U* 3 x 5 = 0,86 U* 3 x 7 = 5,65 U* 4 x 4 = 1,13 U* 4 x 5 = 1,12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 1x3 = 1,36 U* 1x4 = 1,21 U* 2x2 = 0,58 U* 2x3 = 0,50 U* 2x4 = 1,60 U* 2x6 = 5,38 U* 3x3 = 1,30 U* 3x4 = 0,97 U* 3x5 = 0,91 U* 4x4 = 0,81 U* 5x5 = 44,44
HAMMELBURG Altbestand	U* 1 x 1 = 0,86 U* 1 x 3 = 1,17 U* 1 x 4 = 1,72 U* 1 x 6 = 0,83 U* 3 x 3 = 1,31 U* 3 x 4 = 0,17 U* 3 x 5 = 0,45 U* 3 x 7 = 2,58 U* 4 x 4 = 4,77 U* 4 x 5 = 2,21 U* 4 x 6 = 0,81 U* 5 x 6 = 1,74 U* 6 x 6 = 1,24	U* 1 x 4 = 2,06 U* 2 x 2 = 2,04 U* 2 x 4 = 0,75 U* 2 x 5 = 1,33 U* 2 x 6 = 4,35 U* 3 x 3 = 1,99 U* 3 x 4 = 1,10 U* 3 x 5 = 1,10 U* 3 x 7 = 6,37 U* 4 x 4 = 1,08 U* 4 x 5 = 1,08	U* 2x2 = 1,14 U* 2x3 = 0,92 U* 2x4 = 0,73 U* 2x5 = 1,16 U* 3x3 = 1,93 U* 3x4 = 0,90 U* 4x4 = 1,48 U* 4x5 = 1,42	U* 1x1 = 16,00 U* 1x3 = 1,81 U* 1x4 = 1,57 U* 2x2 = 1,35 U* 2x3 = 0,47 U* 2x4 = 0,51 U* 2x5 = 0,41 U* 3x3 = 2,42 U* 3x5 = 2,26 U* 4x4 = 3,66 U* 4x5 = 1,97
HAMMELBURG Bestandes- absaat '97	U* 1 x 3 = 0,42 U* 1 x 5 = 8,51 U* 2 x 2 = 17,50 U* 2 x 3 = 0,56 U* 2 x 4 = 1,59 U* 2 x 5 = 2,01 U* 3 x 3 = 1,01 U* 3 x 4 = 0,63 U* 3 x 5 = 1,06 U* 3 x 6 = 1,21 U* 3 x 7 = 1,75 U* 4 x 4 = 2,23 U* 4 x 5 = 0,68 U* 4 x 6 = 2,13 U* 5 x 6 = 0,28 U* 6 x 6 = 0,34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 1x2 = 2,07 U* 2x2 = 0,99 U* 2x3 = 0,89 U* 2x4 = 1,07 U* 2x5 = 0,93 U* 3x3 = 3,30 U* 3x4 = 0,49 U* 3x5 = 0,61 U* 4x4 = 1,21 U* 4x5 = 0,22 U* 5x5 = 6,16	U* 1x1 = 70,00 U* 1x5 = 5,56 U* 2x2 = 0,93 U* 2x3 = 0,62 U* 2x4 = 1,48 U* 2x5 = 0,38 U* 3x3 = 1,58 U* 3x4 = 0,83 U* 3x5 = 0,74 U* 3x6 = 0,73 U* 4x4 = 0,88 U* 4x5 = 1,56 U* 4x6 = 1,13 U* 6x6 = 5,89
HOCHSPEYER Altbestand	U* 1x1 = 1,29 U* 1x3 = 0,82 U* 1x4 = 3,74 U* 1x6 = 1,09 U* 3x3 = 1,31 U* 3x4 = 0,21 U* 3x5 = 0,50 U* 3x6 = 0,64 U* 3x7 = 0,93 U* 4x4 = 5,17 U* 4x6 = 1,29 U* 5x5 = 9,95 U* 5x6 = 0,73 U* 6x6 = 1,81 U* 7x7 = 25,00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 1x3 = 7,04 U* 2x2 = 1,20 U* 2x3 = 1,05 U* 2x4 = 0,74 U* 2x5 = 2,17 U* 3x3 = 1,93 U* 3x4 = 0,54 U* 4x4 = 1,50
HOCHSPEYER Klenge '97	U* 1 x 3 = 0,96 U* 1 x 4 = 0,90 U* 1 x 5 = 5,36 U* 2 x 2 = 6,43 U* 2 x 3 = 0,32 U* 2 x 4 = 5,15 U* 2 x 5 = 1,68 U* 3 x 3 = 0,98 U* 3 x 5 = 0,95 U* 3 x 6 = 1,50 U* 3 x 7 = 1,63 U* 4 x 4 = 2,87 U* 4 x 6 = 0,81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 2x2 = 1,62 U* 2x3 = 0,76 U* 2x4 = 0,74 U* 2x5 = 1,27 U* 2x6 = 1,75 U* 3x3 = 1,18 U* 3x4 = 1,16 U* 3x5 = 0,21 U* 3x6 = 1,00 U* 4x4 = 1,12 U* 4x5 = 0,64 U* 5x5 = 4,00 U* 6x6 = 3,61

11550114111011	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
HOCHSPEYER Bestandes- absaat '97	U* 1×3 = 0,49 U* 1×5 = 24,07 U* 2×3 = 1,01 U* 2×4 = 2,30 U* 3×3 = 1,06 U* 3×4 = 0,53 U* 3×5 = 0,86 U* 3×6 = 1,21 U* 3×7 = 1,30 U* 4×4 = 3,50 U* 4×5 = 1,05 U* 4×6 = 1,13	U* 2 x 2 = 1,83 U* 2 x 3 = 0,15 U* 2 x 4 = 0,57 U* 2 x 5 = 0,76 U* 2 x 6 = 0,98 U* 3 x 3 = 4,46 U* 3 x 4 = 1,27 U* 4 x 5 = 1,17 U* 4 x 7 = 2,27 U* 5 x 5 = 2,80 U* 6 x 6 = 70,00	U* 1x2 = 1,03 U* 1x5 = 3,94 U* 2x2 = 1,15 U* 2x3 = 1,16 U* 2x4 = 0,86 U* 2x5 = 0,70 U* 3x3 = 4,63 U* 3x4 = 0,38 U* 3x5 = 0,52 U* 4x4 = 1,37 U* 4x5 = 0,88 U* 5x5 = 2,48	U* 1x3 = 3,79 U* 1x4 = 0,59 U* 2x2 = 1,96 U* 2x3 = 0,68 U* 2x4 = 0,92 U* 2x5 = 0,24 U* 2x6 = 0,86 U* 3x3 = 2,11 U* 3x4 = 0,47 U* 3x5 = 1,28 U* 3x6 = 1,35 U* 4x4 = 1,33 U* 4x5 = 0,96 U* 5x5 = 3,37 U* 6x6 = 3,61
HOCHSPEYER Bestandes- absaat '98	U* 1×3 = 0,19 U* 1×5 = 8,83 U* 2×3 = 0,88 U* 2×6 = 6,02 U* 3×3 = 1,09 U* 3×4 = 0,55 U* 3×5 = 0,85 U* 3×6 = 1,27 U* 3×7 = 1,57 U* 4×4 = 2,40 U* 4×5 = 1,63 U* 4×6 = 1,72 U* 4×7 = 0,74	U* 1x1 = 70,00 U* 1x4 = 0,78 U* 2x2 = 1,82 U* 2x3 = 0,14 U* 2x4 = 0,69 U* 2x5 = 2,09 U* 2x6 = 1,00 U* 3x3 = 1,69 U* 3x4 = 1,26 U* 3x5 = 0,73 U* 3x7 = 5,25 U* 4x4 = 1,17 U* 4x5 = 0,48 U* 4x6 = 1,72 U* 5x5 = 1,18	U* 1x1 = 70,00 U* 1x4 = 1,24 U* 2x2 = 1,24 U* 2x3 = 0,52 U* 2x4 = 0,97 U* 2x5 = 0,51 U* 3x3 = 3,37 U* 3x4 = 1,22 U* 3x5 = 0,98 U* 4x4 = 1,00 U* 4x5 = 0,97 U* 5x5 = 3,00	U* 1x3 = 1,84 U* 1x4 = 0,74 U* 1x5 = 1,01 U* 2x2 = 1,18 U* 2x3 = 1,12 U* 2x4 = 0,74 U* 2x5 = 1,00 U* 2x6 = 1,45 U* 3x3 = 0,85 U* 3x4 = 0,75 U* 3x5 = 1,49 U* 3x6 = 0,80 U* 4x4 = 1,66 U* 4x5 = 0,42 U* 4x6 = 2,04 U* 5x5 = 1,29
LANGENAU Altbestand	U* 1 x 3 = 1,808 U* 1 x 6 = 0,791 U* 2 x 2 = 13,149 U* 2 x 3 = 0,775 U* 2 x 4 = 0,872 U* 3 x 3 = 1,319 U* 3 x 5 = 0,425 U* 3 x 6 = 0,823 U* 3 x 7 = 1,123 U* 4 x 4 = 3,193 U* 4 x 5 = 2,013 U* 4 x 6 = 1,426 U* 5 x 5 = 12,078 U* 6 x 6 = 1,994 U* 7 x 7 = 7,080	U* 2 x 2 = 2,843 U* 2 x 3 = 0,101 U* 2 x 4 = 0,457 U* 2 x 5 = 0,892 U* 2 x 7 = 4,255 U* 3 x 3 = 0,876 U* 3 x 4 = 1,377 U* 3 x 5 = 1,758 U* 4 x 4 = 1,178 U* 4 x 5 = 0,696 U* 5 x 5 = 1,156	U* 1x2 = 2,146 U* 2x2 = 1,266 U* 2x3 = 0,583 U* 2x4 = 0,821 U* 2x5 = 0,775 U* 3x3 = 3,038 U* 3x4 = 0,790 U* 3x5 = 1,057 U* 4x4 = 1,701 U* 4x5 = 0,157 U* 5x5 = 4,201	U* 1 x 3 = 3,460 U* 2 x 2 = 2,426 U* 2 x 3 = 0,757 U* 2 x 4 = 0,631 U* 2 x 5 = 0,361 U* 3 x 3 = 1,880 U* 3 x 4 = 0,516 U* 3 x 5 = 0,727 U* 4 x 4 = 1,620 U* 4 x 5 = 0,340 U* 4 x 6 = 2,347 U* 5 x 5 = 8,192
LANGENAU Bestandes- absaat '97	U* 1×4 = 5,00 U* 1×5 = 6,25 U* 2×3 = 1,13 U* 2×4 = 2,69 U* 3×3 = 1,01 U* 3×4 = 0,68 U* 3×5 = 0,92 U* 3×6 = 1,23 U* 3×7 = 1,49 U* 4×4 = 1,30 U* 4×5 = 2,50 U* 4×6 = 1,63 U* 5×5 = 1,09	U* 2 x 2 = 3,23 U* 2 x 3 = 0,19 U* 2 x 4 = 0,38 U* 2 x 5 = 1,19 U* 2 x 6 = 1,01 U* 3 x 3 = 2,08 U* 3 x 4 = 0,90 U* 3 x 5 = 0,96 U* 3 x 6 = 3,46 U* 4 x 4 = 1,29 U* 6 x 7 = 68,63	U* 1x3 = 12,96 U* 2x2 = 1,18 U* 2x3 = 1,21 U* 2x4 = 0,68 U* 2x5 = 0,74 U* 3x3 = 1,60 U* 3x4 = 0,35 U* 3x5 = 1,18 U* 4x4 = 1,76 U* 4x5 = 0,95 U* 5x5 = 6,43	U* 1 x 4 = 1,74 U* 2 x 2 = 2,18 U* 2 x 3 = 0,33 U* 2 x 4 = 0,98 U* 2 x 5 = 0,66 U* 2 x 6 = 1,11 U* 3 x 3 = 2,50 U* 3 x 4 = 0,69 U* 3 x 5 = 0,47 U* 3 x 6 = 0,79 U* 4 x 4 = 1,15 U* 4 x 5 = 0,94 U* 5 x 5 = 4,46 U* 6 x 6 = 8,13

7 ISSOTULT VC T	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
LANGENAU Bestandes- absaat '98	U* 1×5 = 11,94 U* 2×3 = 0,77 U* 2×5 = 2,01 U* 2×6 = 6,50 U* 3×3 = 1,06 U* 3×4 = 0,53 U* 3×5 = 0,95 U* 3×7 = 1,26 U* 4×4 = 4,36 U* 4×5 = 0,46 U* 4×6 = 1,49 U* 4×7 = 1,28 U* 4×8 = 13,41 U* 5×5 = 0,92 U* 5×7 = 0,83	U* 1x1 = 41,42 U* 1x4 = 0,63 U* 1x5 = 2,45 U* 2x2 = 1,63 U* 2x3 = 0,23 U* 2x4 = 0,88 U* 2x5 = 1,63 U* 2x6 = 2,46 U* 2x7 = 1,33 U* 2x8 = 4,57 U* 3x3 = 1,70 U* 3x4 = 0,89 U* 3x5 = 1,26 U* 3x6 = 2,30 U* 3x7 = 3,54 U* 4x4 = 1,30 U* 4x5 = 0,56 U* 5x5 = 1,07	U* 1×4 = 4,12 U* 2×2 = 1,29 U* 2×3 = 0,55 U* 2×4 = 0,82 U* 2×5 = 0,88 U* 3×3 = 3,28 U* 3×4 = 0,74 U* 3×5 = 0,65 U* 4×4 = 1,41 U* 4×5 = 0,99 U* 5×6 = 10,90	U* 1×3 = 3,57 U* 2×2 = 4,43 U* 2×3 = 0,50 U* 2×4 = 0,84 U* 2×5 = 0,65 U* 3×3 = 1,67 U* 3×5 = 1,10 U* 3×6 = 0,43 U* 4×4 = 1,27 U* 4×5 = 0,68 U* 4×6 = 1,14 U* 5×6 = 0,95 U* 6×6 = 3,33
LANGENAU Baumschule	U* 3×4 = 1,28 U* 3×5 = 0,65 U* 3×6 = 1,37 U* 4×4 = 1,88 U* 4×6 = 0,97 U* 5×5 = 0,87 U* 5×6 = 1,26 U* 6×6 = 0,83	U* 2 x 2 = 1,40 U* 2 x 3 = 0,35 U* 2 x 4 = 0,94 U* 2 x 5 = 0,80 U* 3 x 3 = 1,46 U* 3 x 4 = 1,10 U* 3 x 5 = 2,99 U* 4 x 4 = 1,21 U* 4 x 5 = 0,22	U^* 1 x 3 = 4,59 U^* 2 x 2 = 1,42 U^* 2 x 3 = 0,71 U^* 2 x 4 = 0,76 U^* 2 x 5 = 1,32 U^* 3 x 3 = 2,46 U^* 3 x 4 = 0,46 U^* 4 x 4 = 1,55 U^* 4 x 5 = 1,29	U* 1x4 = 1,41 U* 2x2 = 1,06 U* 2x4 = 1,27 U* 3x3 = 0,53 U* 3x4 = 1,27 U* 4x4 = 0,89
LANGENAU Pflanzgarten	U* 1×3 = 1,12 U* 1×4 = 1,39 U* 1×6 = 1,05 U* 2×3 = 1,71 U* 2×4 = 1,46 U* 3×3 = 1,22 U* 3×4 = 0,48 U* 3×5 = 0,23 U* 3×6 = 1,01 U* 3×7 = 2,24 U* 3×8 = 2,24 U* 4×4 = 2,41 U* 4×5 = 2,78 U* 5×6 = 1,67 U* 6×6 = 1,38	U* 1 x 1 = 52,63 U* 2 x 2 = 1,33 U* 2 x 3 = 0,17 U* 2 x 4 = 0,80 U* 2 x 5 = 0,86 U* 2 x 6 = 2,17 U* 2 x 7 = 1,08 U* 3 x 3 = 7,31 U* 3 x 4 = 0,79 U* 3 x 5 = 1,62 U* 3 x 7 = 7,94 U* 4 x 4 = 1,39 U* 4 x 5 = 0,75 U* 5 x 5 = 4,16	U* 1×5 = 12,82 U* 2×2 = 1,31 U* 2×3 = 0,43 U* 2×4 = 0,93 U* 2×5 = 0,74 U* 3×3 = 3,68 U* 3×4 = 0,80 U* 3×5 = 0,47 U* 4×4 = 1,13 U* 4×5 = 1,21 U* 5×5 = 1,64	U* 2×4 = 1,89 U* 3×3 = 0,71 U* 3×4 = 1,28 U* 3×5 = 0,76 U* 4×4 = 0,84 U* 4×5 = 0,19 U* 5×5 = 12,08
MÜLLHEIM 1 Altbestand	U* 1x1 = 3,02 U* 1x3 = 0,70 U* 1x4 = 0,74 U* 1x6 = 0,97 U* 2x4 = 14,49 U* 3x3 = 1,38 U* 3x4 = 0,29 U* 3x6 = 0,63 U* 3x7 = 1,98 U* 4x4 = 6,09 U* 4x8 = 14,49 U* 6x6 = 1,75	U* 2 x 2 = 2,65 U* 2 x 3 = 0,18 U* 2 x 4 = 0,65 U* 2 x 5 = 1,18 U* 2 x 6 = 2,37 U* 2 x 7 = 1,63 U* 3 x 3 = 0,53 U* 3 x 4 = 1,53 U* 3 x 5 = 0,93 U* 3 x 6 = 1,85 U* 3 x 7 = 2,49 U* 4 x 4 = 0,92 U* 4 x 5 = 1,08	U* 2x2 = 0,61 U* 2x3 = 0,45 U* 2x4 = 0,66 U* 2x5 = 1,20 U* 3x3 = 9,95 U* 3x4 = 0,60 U* 4x4 = 1,84 U* 5x5 = 8,65	U* 1x1 = 25,00 U* 1x3 = 1,44 U* 2x2 = 2,24 U* 2x3 = 0,42 U* 2x4 = 0,74 U* 3x3 = 1,86 U* 3x4 = 0,57 U* 3x6 = 1,44 U* 4x4 = 1,62 U* 4x5 = 2,87 U* 4x6 = 1,44
MÜLLHEIM 1 Bestandes- absaat '96	U* 1×3 = 1,08 U* 1×4 = 2,16 U* 2×2 = 7,78 U* 2×5 = 5,56 U* 2×6 = 3,00 U* 3×3 = 1,42 U* 3×5 = 0,31 U* 3×6 = 0,61 U* 3×7 = 1,32 U* 4×4 = 3,83 U* 4×5 = 0,33 U* 4×5 = 0,33 U* 5×5 = 5,56 U* 5×6 = 1,50 U* 5×7 = 2,54 U* 6×6 = 2,67 U* 6×7 = 1,01	U* 1x2 = 5,23 U* 2x2 = 1,47 U* 2x3 = 0,83 U* 2x4 = 0,88 U* 2x5 = 0,58 U* 3x3 = 1,31 U* 3x4 = 1,07 U* 3x5 = 0,96 U* 4x4 = 1,05 U* 4x5 = 1,04 U* 5x5 = 2,80 U* 6x6 = 142,86	U* 1×2 = 0,80 U* 1×4 = 2,00 U* 2×2 = 1,00 U* 2×3 = 1,06 U* 2×4 = 0,98 U* 2×5 = 1,02 U* 3×3 = 2,65 U* 3×4 = 0,57 U* 4×4 = 1,28 U* 4×5 = 0,30 U* 5×5 = 5,89	U* 1x1 = 70,00 U* 1x3 = 3,27 U* 2x2 = 3,87 U* 2x3 = 2,12 U* 2x4 = 0,47 U* 3x3 = 1,14 U* 3x4 = 0,76 U* 3x5 = 0,99 U* 3x6 = 0,79 U* 4x4 = 1,13 U* 4x5 = 0,76 U* 4x6 = 1,26 U* 5x5 = 11,94 U* 6x6 = 1,18

1 ISBOTULE VO 1	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
MÜLLHEIM 2 Altbestand Eichwald	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 1x6 = 100,00 U* 2x2 = 2,67 U* 2x4 = 0,39 U* 2x5 = 2,00 U* 2x6 = 2,00 U* 3x3 = 1,46 U* 3x4 = 1,19 U* 3x7 = 4,81 U* 4x4 = 1,40 U* 4x5 = 0,47	U* 1x1 = 100,00 U* 2x2 = 1,34 U* 2x3 = 0,28 U* 2x4 = 0,72 U* 2x5 = 0,64 U* 3x3 = 6,09 U* 3x4 = 0,86 U* 3x5 = 1,96 U* 4x4 = 1,55 U* 4x5 = 0,80 U* 5x5 = 3,65	U* 1×4 = 3,52 U* 2×2 = 1,27 U* 2×3 = 1,02 U* 2×4 = 0,67 U* 3×3 = 1,13 U* 3×4 = 0,68 U* 3×5 = 3,49 U* 4×4 = 1,82
MÜLLHEIM 2 Altbestand Steinacker	U* 1x3 = 1,61 U* 2x3 = 1,64 U* 3x3 = 1,14 U* 3x4 = 0,43 U* 3x6 = 0,72 U* 3x7 = 1,07 U* 4x4 = 5,40 U* 4x6 = 0,77 U* 6x6 = 2,80 U* 7x7 = 4,21	U* 2 x 2 = 2,83 U* 2 x 3 = 0,13 U* 2 x 4 = 0,41 U* 2 x 5 = 2,53 U* 2 x 7 = 1,79 U* 3 x 3 = 0,97 U* 3 x 4 = 1,14 U* 3 x 5 = 1,77 U* 3 x 7 = 3,32 U* 4 x 4 = 1,29 U* 4 x 5 = 0,34	U* 1x2 = 1,24 U* 1x3 = 2,43 U* 2x2 = 1,18 U* 2x3 = 0,57 U* 2x4 = 0,77 U* 2x5 = 0,76 U* 3x3 = 3,68 U* 3x4 = 0,76 U* 3x5 = 1,10 U* 4x4 = 1,89 U* 5x5 = 10,33	U* 1x3 = 1,34 U* 1x4 = 0,41 U* 1x5 = 2,19 U* 2x2 = 2,90 U* 2x3 = 0,79 U* 2x4 = 1,42 U* 3x3 = 1,07 U* 3x4 = 0,86 U* 3x5 = 1,00 U* 4x4 = 1,41 U* 4x5 = 0,62 U* 5x5 = 2,31
MÜLLHEIM 2 Altbestände Eichwald und Steinacker gemeinsam	U* 1×3 = 1,33 U* 1×4 = 0,89 U* 1×5 = 7,81 U* 2×3 = 1,97 U* 3×3 = 1,13 U* 3×4 = 0,48 U* 3×5 = 0,79 U* 3×6 = 0,65 U* 3×7 = 1,20 U* 4×4 = 5,68 U* 4×6 = 0,96 U* 5×6 = 1,45 U* 6×6 = 2,81 U* 7×7 = 4,03	U* 1×6 = 250,00 U* 2×2 = 2,78 U* 2×3 = 0,06 U* 2×4 = 0,39 U* 2×5 = 2,23 U* 2×6 = 2,29 U* 2×7 = 0,76 U* 3×3 = 1,21 U* 3×5 = 1,60 U* 3×5 = 1,60 U* 3×7 = 4,15 U* 4×4 = 1,35 U* 4×5 = 0,40	U* 1x1 = 22,22 U* 1x2 = 0,91 U* 1x3 = 1,94 U* 2x2 = 1,26 U* 2x3 = 0,46 U* 2x4 = 0,74 U* 2x5 = 0,14 U* 3x3 = 4,60 U* 3x4 = 0,78 U* 3x5 = 1,48 U* 4x4 = 1,70 U* 4x5 = 0,59 U* 5x5 = 5,75	U* 1x3 = 1,57 U* 1x4 = 0,69 U* 1x5 = 3,31 U* 2x2 = 1,92 U* 2x3 = 0,76 U* 2x4 = 0,82 U* 3x3 = 1,18 U* 3x4 = 0,78 U* 3x5 = 1,53 U* 4x4 = 1,66 U* 4x5 = 0,50 U* 5x5 = 3,19
MÜLLHEIM 2 Baumschule '94	U* 1x3 = 0,95 U* 1x6 = 1,91 U* 2x3 = 1,35 U* 3x3 = 1,04 U* 3x4 = 0,45 U* 3x5 = 1,47 U* 3x6 = 0,88 U* 3x7 = 1,20 U* 4x4 = 7,02 U* 4x6 = 1,16 U* 4x7 = 1,58 U* 6x6 = 1,58 U* 6x7 = 0,52	U* 1x1 = 90,91 U* 2x2 = 1,58 U* 2x4 = 0,68 U* 2x5 = 2,23 U* 2x6 = 3,17 U* 3x3 = 2,17 U* 3x4 = 1,21 U* 3x5 = 0,93 U* 3x7 = 5,24 U* 4x4 = 1,43 U* 4x5 = 0,31	U* 2 x 2 = 1,24 U* 2 x 3 = 0,62 U* 2 x 4 = 0,75 U* 2 x 5 = 0,75 U* 3 x 3 = 9,52 U* 3 x 4 = 0,78 U* 4 x 4 = 1,30 U* 4 x 5 = 1,46	U* 1×4 = 3,79 U* 2×2 = 1,74 U* 2×3 = 0,43 U* 2×4 = 0,90 U* 3×3 = 1,47 U* 3×4 = 0,97 U* 3×5 = 2,29 U* 4×4 = 1,14 U* 4×5 = 0,67
MÜLLHEIM 2 Baumschule '96	U* 1×3 = 1,69 U* 1×4 = 0,76 U* 1×6 = 0,33 U* 3×3 = 1,34 U* 3×4 = 0,45 U* 3×5 = 0,20 U* 3×6 = 0,58 U* 3×7 = 1,60 U* 4×4 = 3,00 U* 4×5 = 2,60 U* 4×6 = 0,97 U* 5×5 = 3,84 U* 5×6 = 1,49 U* 6×6 = 0,93	U* 1x1 = 100,00 U* 2x2 = 1,80 U* 2x3 = 0,41 U* 2x4 = 0,65 U* 2x5 = 1,66 U* 2x6 = 1,66 U* 3x3 = 1,10 U* 3x4 = 1,23 U* 3x5 = 2,25 U* 3x6 = 2,98 U* 4x4 = 1,25 U* 4x5 = 0,26	U* 1x4 = 3,07 U* 2x2 = 1,30 U* 2x3 = 0,22 U* 2x4 = 0,69 U* 2x5 = 0,77 U* 3x3 = 5,95 U* 3x4 = 1,85 U* 4x4 = 1,44 U* 4x5 = 0,24 U* 5x5 = 8,33	U* 2 x 2 = 3,73 U* 2 x 3 = 0,72 U* 2 x 4 = 0,44 U* 3 x 3 = 1,31 U* 3 x 4 = 0,74 U* 3 x 5 = 1,60 U* 4 x 4 = 1,52 U* 5 x 5 = 10,41

1155011411101	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
MÜLLHEIM 2 Bestandes- absaat '98 Eichwald	U* 1×4 = 2,69 U* 1×5 = 6,50 U* 2×2 = 41,42 U* 2×3 = 0,43 U* 2×5 = 2,69 U* 3×3 = 1,09 U* 3×4 = 0,53 U* 3×5 = 1,06 U* 3×6 = 0,95 U* 3×7 = 1,48 U* 4×4 = 3,55 U* 4×5 = 0,77 U* 4×6 = 1,05 U* 4×7 = 0,63 U* 5×5 = 1,30 U* 6×6 = 3,75	U* 1×5 = 17,41 U* 2×2 = 2,93 U* 2×3 = 0,14 U* 2×4 = 0,40 U* 2×5 = 1,86 U* 3×3 = 0,49 U* 3×4 = 1,45 U* 3×5 = 0,81 U* 4×4 = 1,17 U* 4×5 = 0,59 U* 4×6 = 1,97 U* 5×5 = 1,56	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 2 x 2 = 2,19 U* 2 x 3 = 0,91 U* 2 x 4 = 1,04 U* 2 x 6 = 0,50 U* 3 x 3 = 1,61 U* 3 x 4 = 0,92 U* 3 x 5 = 0,91 U* 3 x 6 = 0,82 U* 4 x 4 = 1,02 U* 4 x 5 = 1,05 U* 4 x 6 = 0,97 U* 5 x 5 = 9,60 U* 6 x 6 = 1,63
MÜLLHEIM 2 Bestandes- absaat '98 Steinacker	U* 1×3 = 0,24 U* 1×4 = 2,92 U* 1×5 = 8,77 U* 2×5 = 15,15 U* 3×3 = 1,01 U* 3×4 = 1,08 U* 3×5 = 0,72 U* 3×6 = 1,11 U* 3×7 = 1,32 U* 3×8 = 1,30 U* 4×4 = 1,94 U* 4×5 = 0,76 U* 5×5 = 2,19 U* 5×7 = 0,86 U* 6×6 = 3,28	U* 1x5 = 12,96 U* 2x2 = 2,18 U* 2x4 = 0,64 U* 2x5 = 2,64 U* 2x7 = 6,38 U* 3x3 = 0,90 U* 3x4 = 1,32 U* 3x5 = 1,28 U* 3x6 = 2,89 U* 4x4 = 1,12 U* 4x5 = 0,48 U* 4x6 = 0,93	U* 2x2 = 1,14 U* 2x3 = 0,48 U* 2x4 = 0,86 U* 2x5 = 0,57 U* 3x3 = 6,75 U* 3x4 = 0,53 U* 3x5 = 1,23 U* 4x4 = 1,52 U* 4x5 = 0,71 U* 5x5 = 9,50	U* 2x2 = 1,85 U* 2x3 = 1,03 U* 2x4 = 0,66 U* 2x5 = 1,11 U* 2x6 = 1,23 U* 3x3 = 1,96 U* 3x4 = 0,57 U* 3x5 = 3,71 U* 3x6 = 0,51 U* 4x4 = 1,25 U* 4x5 = 0,50 U* 4x6 = 1,17 U* 6x6 = 0,86
MÜLLHEIM 2 Bestandes- absaaten '98 Eichwald und Steinacker gemeinsam	U* 1×3 = 0,15 U* 1×4 = 2,46 U* 1×5 = 7,58 U* 2×2 = 46,88 U* 2×3 = 0,28 U* 2×5 = 4,97 U* 3×3 = 1,05 U* 3×5 = 0,90 U* 3×5 = 0,90 U* 3×6 = 1,02 U* 3×7 = 1,39 U* 3×8 = 1,73 U* 4×4 = 3,66 U* 4×5 = 0,78 U* 4×6 = 0,777 U* 4×7 = 0,33 U* 5×5 = 1,68 U* 5×7 = 0,36 U* 6×6 = 3,68	U* 1×5 = 14,96 U* 2×2 = 2,63 U* 2×3 = 0,05 U* 2×4 = 0,50 U* 2×5 = 2,27 U* 2×7 = 3,79 U* 3×3 = 0,79 U* 3×5 = 1,18 U* 3×6 = 2,04 U* 4×4 = 1,15 U* 4×5 = 0,53 U* 4×6 = 1,23 U* 5×5 = 0,49	U* 1×4 = 2,88 U* 2×2 = 1,14 U* 2×3 = 0,65 U* 2×4 = 0,83 U* 2×5 = 0,66 U* 3×3 = 5,37 U* 3×4 = 0,53 U* 3×5 = 0,49 U* 4×4 = 1,58 U* 4×5 = 0,68 U* 5×5 = 9,50	U* 2x2 = 2,26 U* 2x3 = 1,01 U* 2x4 = 0,77 U* 2x5 = 1,03 U* 2x6 = 0,81 U* 3x3 = 1,81 U* 3x4 = 0,75 U* 3x5 = 2,76 U* 3x6 = 0,73 U* 4x4 = 1,13 U* 4x5 = 0,70 U* 4x6 = 1,05 U* 5x5 = 2,08 U* 6x6 = 1,60
MÜLLROSE Altbestand	U* 1x 3 = 1,31 U* 1x 4 = 0,73 U* 1x 6 = 0,79 U* 3x 3 = 1,17 U* 3x 4 = 0,29 U* 3x 6 = 0,80 U* 3x 7 = 1,73 U* 4x 4 = 5,04 U* 4x 6 = 1,43 U* 5x 6 = 4,11 U* 6x 6 = 1,25	U* 1x 4 = 2,40 U* 2x 2 = 1,37 U* 2x 3 = 0,53 U* 2x 4 = 0,73 U* 2x 5 = 1,56 U* 2x 6 = 1,64 U* 3x 3 = 0,87 U* 3x 4 = 1,16 U* 3x 5 = 1,38 U* 3x 6 = 3,29 U* 4x 4 = 1,35 U* 4x 5 = 0,26 U* 5x 5 = 2,31	U* 1x 1 = 5,17 U* 1x 2 = 1,00 U* 1x 4 = 0,51 U* 1x 5 = 1,72 U* 2x 2 = 1,26 U* 2x 3 = 0,43 U* 2x 4 = 1,18 U* 2x 5 = 0,51 U* 3x 3 = 3,57 U* 3x 4 = 1,58 U* 3x 5 = 0,94 U* 4x 4 = 1,36 U* 4x 5 = 0,49 U* 5x 5 = 3,39	U* 1x 3 = 1,42 U* 1x 4 = 1,00 U* 2x 2 = 2,97 U* 2x 3 = 0,53 U* 2x 4 = 0,85 U* 2x 5 = 0,52 U* 3x 3 = 1,40 U* 3x 4 = 0,50 U* 3x 5 = 0,81 U* 4x 4 = 2,35 U* 5x 5 = 8,33

	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
MÜLLROSE Baumschule	U* 1 x 3 = 1,72 U* 1 x 4 = 1,14 U* 2 x 3 = 1,39 U* 2 x 6 = 1,52 U* 3 x 3 = 1,38 U* 3 x 5 = 0,53 U* 3 x 6 = 0,58 U* 3 x 7 = 0,72 U* 4 x 4 = 2,22 U* 4 x 5 = 0,58 U* 4 x 6 = 1,48 U* 4 x 7 = 2,28 U* 5 x 5 = 4,44 U* 5 x 6 = 1,48 U* 6 x 6 = 1,48 U* 6 x 7 = 1,52	U* 2x 2 = 2,04 U* 2x 4 = 0,59 U* 2x 5 = 0,98 U* 3x 3 = 2,76 U* 3x 4 = 1,28 U* 4x 4 = 1,26 U* 4x 5 = 1,44 U* 6x 6 = 40,00	U* 1 x 2 = 2,41 U* 2 x 2 = 1,23 U* 2 x 3 = 1,46 U* 2 x 4 = 0,75 U* 2 x 5 = 0,85 U* 3 x 4 = 0,77 U* 4 x 4 = 1,27 U* 4 x 5 = 1,04 U* 5 x 5 = 1,98	U* 2x 2 = 3,30 U* 2x 3 = 1,13 U* 2x 4 = 0,33 U* 3x 3 = 1,42 U* 3x 4 = 0,61 U* 3x 5 = 0,70 U* 3x 6 = 2,98 U* 4x 4 = 1,57 U* 4x 5 = 0,99 U* 5x 5 = 4,44
MÜLLROSE Bestandes- absaat '96	U* 1 x 3 = 0,72 U* 1 x 5 = 5,38 U* 2 x 2 = 4,12 U* 2 x 3 = 13,72 U* 2 x 4 = 7,61 U* 3 x 3 = 1,04 U* 3 x 5 = 1,07 U* 3 x 6 = 1,17 U* 4 x 4 = 1,60 U* 4 x 5 = 0,78 U* 4 x 6 = 0,97 U* 5 x 5 = 1,97 U* 6 x 6 = 1,06	U* 1x 1 = 61,22 U* 1x 2 = 0,64 U* 1x 4 = 0,42 U* 2x 2 = 1,92 U* 2x 3 = 0,20 U* 2x 4 = 0,55 U* 2x 5 = 0,76 U* 3x 3 = 2,49 U* 3x 4 = 1,52 U* 3x 5 = 0,33 U* 4x 4 = 1,31 U* 4x 5 = 0,72 U* 5x 6 = 10,92	U* 1x 1 = 10,38 U* 1x 2 = 1,11 U* 1x 4 = 1,00 U* 2x 2 = 1,15 U* 2x 3 = 0,88 U* 2x 4 = 0,94 U* 2x 5 = 0,68 U* 3x 3 = 2,19 U* 3x 4 = 0,66 U* 3x 5 = 1,15 U* 4x 4 = 1,40 U* 4x 5 = 0,62 U* 5x 5 = 3,31	U* 1 x 1 = 20,83 U* 1 x 2 = 1,60 U* 1 x 3 = 1,50 U* 2 x 2 = 3,78 U* 2 x 3 = 0,71 U* 2 x 4 = 0,84 U* 2 x 5 = 0,81 U* 2 x 6 = 0,33 U* 3 x 3 = 1,75 U* 3 x 4 = 0,54 U* 3 x 5 = 0,62 U* 3 x 6 = 0,31 U* 4 x 4 = 1,49 U* 4 x 6 = 1,69 U* 5 x 5 = 3,13 U* 5 x 6 = 0,19 U* 6 x 6 = 3,86
MÜLLROSE Bestandes- absaat '97	U* 1x 5 = 21,80 U* 2x 3 = 0,41 U* 2x 4 = 6,76 U* 2x 5 = 3,42 U* 3x 3 = 1,03 U* 3x 4 = 0,67 U* 3x 5 = 1,04 U* 3x 6 = 1,06 U* 3x 7 = 1,39 U* 4x 4 = 2,64 U* 4x 6 = 2,54	U* 1 x 4 = 1,60 U* 2 x 2 = 2,93 U* 2 x 3 = 0,06 U* 2 x 4 = 0,42 U* 2 x 5 = 1,96 U* 3 x 3 = 1,84 U* 3 x 4 = 1,11 U* 3 x 5 = 1,03 U* 4 x 4 = 1,26 U* 4 x 5 = 0,58 U* 5 x 6 = 16,67	U* 1 x 2 = 0,51 U* 1 x 4 = 0,79 U* 1 x 5 = 4,55 U* 2 x 2 = 1,19 U* 2 x 3 = 0,83 U* 2 x 4 = 0,84 U* 2 x 5 = 0,74 U* 3 x 3 = 2,81 U* 3 x 4 = 0,76 U* 3 x 5 = 1,25 U* 4 x 4 = 1,46 U* 4 x 5 = 0,58 U* 5 x 5 = 2,89	U* 1 x 3 = 3,35 U* 2 x 2 = 2,64 U* 2 x 3 = 0,58 U* 2 x 4 = 0,90 U* 2 x 6 = 1,23 U* 3 x 3 = 1,66 U* 3 x 4 = 0,70 U* 3 x 5 = 1,88 U* 4 x 4 = 1,28 U* 4 x 5 = 0,13 U* 4 x 6 = 0,73 U* 5 x 5 = 10,39 U* 6 x 6 = 13,77
PEITZ Altbestand	U* 1 x 3 = 0,94 U* 1 x 4 = 1,95 U* 1 x 6 = 1,26 U* 3 x 3 = 1,11 U* 3 x 4 = 0,12 U* 3 x 7 = 1,50 U* 4 x 4 = 12,21 U* 4 x 6 = 0,39 U* 5 x 6 = 5,05 U* 6 x 6 = 1,50	U* 2 x 2 = 2,29 U* 2 x 3 = 0,21 U* 2 x 4 = 0,86 U* 2 x 5 = 0,72 U* 3 x 3 = 1,66 U* 3 x 5 = 1,43 U* 3 x 6 = 3,06 U* 3 x 7 = 4,59 U* 4 x 4 = 1,27 U* 4 x 6 = 0,70 U* 5 x 5 = 7,32	U* 1 x 1 = 25,00 U* 1 x 2 = 0,47 U* 1 x 4 = 0,90 U* 2 x 2 = 1,35 U* 2 x 3 = 0,53 U* 2 x 5 = 0,15 U* 2 x 5 = 0,15 U* 3 x 3 = 4,62 U* 3 x 4 = 0,87 U* 4 x 4 = 1,42 U* 4 x 5 = 1,66 U* 5 x 5 = 7,32	U* 2x2 = 2,03 U* 2x3 = 0,58 U* 2x4 = 0,67 U* 2x5 = 3,97 U* 3x3 = 2,27 U* 3x4 = 0,50 U* 4x4 = 1,48

	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
PEITZ Bestandes- absaat '96	U* 1 x 3 = 0,31 U* 1 x 5 = 7,46 U* 1 x 6 = 1,99 U* 2 x 2 = 24,22 U* 2 x 5 = 3,07 U* 2 x 6 = 1,26 U* 2 x 7 = 68,63 U* 3 x 3 = 1,22 U* 3 x 4 = 0,22 U* 3 x 5 = 1,22 U* 3 x 6 = 1,12 U* 4 x 4 = 5,01 U* 4 x 6 = 0,38 U* 5 x 5 = 1,56 U* 6 x 6 = 1,51	U* 2x2 = 2,87 U* 2x3 = 0,58 U* 2x4 = 0,45 U* 2x5 = 1,31 U* 3x3 = 4,94 U* 3x4 = 0,42 U* 3x5 = 1,97 U* 4x4 = 1,30 U* 4x5 = 0,75 U* 5x5 = 0,81 U* 5x6 = 12,54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 2×2 = 3,17 U* 2×3 = 1,18 U* 2×4 = 0,89 U* 2×5 = 0,83 U* 2×6 = 0,64 U* 3×3 = 1,97 U* 3×4 = 1,00 U* 3×5 = 0,33 U* 3×6 = 0,47 U* 4×4 = 1,14 U* 4×5 = 0,41 U* 4×6 = 0,73 U* 5×5 = 7,41 U* 6×6 = 3,87
SCHWEINFURT Altbestand	U* 1 x 3 = 1,53 U* 1 x 6 = 0,98 U* 2 x 6 = 3,32 U* 3 x 3 = 1,36 U* 3 x 4 = 0,36 U* 3 x 5 = 0,76 U* 3 x 7 = 1,06 U* 3 x 8 = 0,71 U* 4 x 4 = 3,19 U* 4 x 5 = 1,18 U* 4 x 6 = 1,04 U* 5 x 6 = 1,75 U* 6 x 8 = 2,21	U* 2 x 2 = 2,30 U* 2 x 4 = 0,70 U* 2 x 5 = 1,54 U* 3 x 3 = 0,85 U* 3 x 4 = 1,64 U* 3 x 5 = 0,70 U* 4 x 4 = 0,92 U* 4 x 5 = 0,66 U* 5 x 5 = 2,52	U* 1×2 = 1,89 U* 2×2 = 1,13 U* 2×3 = 0,61 U* 2×4 = 0,91 U* 2×5 = 0,33 U* 3×3 = 3,16 U* 3×4 = 0,37 U* 3×5 = 0,94 U* 4×4 = 1,90 U* 4×5 = 1,53 U* 5×5 = 11,89	U* 1×1 = 100,00 U* 2×2 = 1,89 U* 2×3 = 0,91 U* 2×4 = 0,19 U* 3×3 = 1,35 U* 3×4 = 0,84 U* 4×4 = 1,98
SCHWEINFURT Bestandes- absaat '96	U* 2×3 = 1,37 U* 3×3 = 1,00 U* 3×4 = 0,87 U* 3×5 = 0,85 U* 3×6 = 1,18 U* 3×7 = 1,60 U* 4×4 = 5,04 U* 4×5 = 0,57 U* 5×5 = 2,13 U* 5×6 = 1,43	U* 2x2 = 1,51 U* 2x4 = 0,83 U* 2x5 = 0,82 U* 3x3 = 6,43 U* 3x4 = 1,30 U* 4x4 = 1,09 U* 4x5 = 0,66 U* 5x5 = 6,16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 1×3 = 7,16 U* 2×2 = 2,78 U* 2×3 = 0,56 U* 2×4 = 0,83 U* 2×5 = 0,20 U* 2×6 = 0,87 U* 3×3 = 2,75 U* 3×4 = 0,64 U* 3×5 = 0,84 U* 3×6 = 0,55 U* 4×4 = 1,45 U* 4×5 = 0,91 U* 5×6 = 0,30 U* 6×6 = 2,18
UFFENHEIM Altbestand	U* 1×6 = 2,79 U* 3×3 = 1,70 U* 3×4 = 0,26 U* 3×5 = 0,23 U* 3×6 = 0,60 U* 4×4 = 2,42 U* 4×5 = 1,61 U* 4×6 = 1,40 U* 5×5 = 4,16 U* 5×6 = 1,15 U* 6×7 = 2,79 U* 6×8 = 2,70	U* 2×2 = 3,66 U* 2×4 = 0,70 U* 2×5 = 1,49 U* 3×3 = 1,39 U* 3×4 = 1,03 U* 3×5 = 0,92 U* 3×7 = 4,85 U* 4×4 = 1,08 U* 4×5 = 0,95 U* 5×5 = 0,94	U* 1×2 = 0,89 U* 1×3 = 3,94 U* 2×2 = 1,08 U* 2×3 = 0,75 U* 2×4 = 0,90 U* 2×5 = 1,34 U* 3×3 = 3,04 U* 3×4 = 0,59 U* 4×5 = 0,99	U* 1x1 = 44,44 U* 1x3 = 1,19 U* 2x2 = 1,59 U* 2x3 = 0,72 U* 2x4 = 0,56 U* 3x3 = 1,00 U* 3x4 = 1,34 U* 4x4 = 1,29

Assortative Paarungspräferenzen U^* aller 44 Bestände an vier Genorten (Fortsetzung Tabelle 21) ADH-A AP-A (LAP) AP-B (AAP) EST-A

	ADH-A	AP-A (LAP)	AP-B (AAP)	EST-A
UFFENHEIM Bestandes- absaat '96	U* 3 x 3 = 0,99 U* 3 x 4 = 1,20 U* 3 x 5 = 0,78 U* 3 x 6 = 1,09 U* 3 x 7 = 1,28 U* 4 x 6 = 0,90 U* 5 x 5 = 2,19 U* 5 x 6 = 1,53 U* 6 x 6 = 0,45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U* 1x1 = 9,60 U* 1x2 = 0,68 U* 1x4 = 0,95 U* 1x5 = 2,16 U* 2x2 = 1,11 U* 2x3 = 1,16 U* 2x4 = 0,78 U* 2x5 = 0,81 U* 3x3 = 1,46 U* 3x4 = 0,34 U* 3x5 = 1,92 U* 4x4 = 1,87 U* 4x5 = 0,66 U* 5x5 = 1,94	U* 1x1 = 41,42 U* 1x3 = 0,95 U* 1x4 = 0,60 U* 2x2 = 2,15 U* 2x3 = 1,27 U* 2x4 = 0,52 U* 2x5 = 1,12 U* 3x3 = 1,75 U* 3x4 = 0,47 U* 3x5 = 1,46 U* 4x4 = 1,55 U* 4x5 = 0,39 U* 4x6 = 1,47 U* 5x5 = 4,00 U* 6x6 = 8,13
UFFENHEIM Bestandes- absaat '97	U* 1x4 = 2,44 U* 1x5 = 6,02 U* 1x7 = 2,40 U* 2x3 = 1,33 U* 2x5 = 3,24 U* 3x3 = 1,10 U* 3x4 = 0,61 U* 3x5 = 0,63 U* 3x6 = 1,21 U* 3x7 = 1,27 U* 4x4 = 2,26 U* 4x5 = 1,81 U* 4x6 = 1,24 U* 4x7 = 0,36 U* 5x5 = 1,02 U* 5x6 = 0,78 U* 5x7 = 1,07 U* 5x7 = 1,07 U* 6x6 = 0,70 U* 7x7 = 1,31	U* 1x5 = 9,02 U* 2x2 = 2,15 U* 2x3 = 0,30 U* 2x4 = 0,63 U* 2x5 = 0,59 U* 3x3 = 3,13 U* 3x4 = 1,04 U* 3x5 = 0,79 U* 3x6 = 3,37 U* 4x4 = 1,17 U* 4x5 = 1,11 U* 4x6 = 1,47 U* 5x5 = 1,23	U* 1x2 = 1,21 U* 1x3 = 2,11 U* 1x4 = 0,71 U* 2x2 = 1,14 U* 2x3 = 1,08 U* 2x4 = 0,70 U* 2x5 = 0,84 U* 3x3 = 1,89 U* 3x4 = 0,66 U* 3x5 = 0,45 U* 4x4 = 1,85 U* 4x5 = 0,87 U* 5x5 = 3,12	U* 1×3 = 3,33 U* 2×3 = 0,58 U* 2×4 = 1,27 U* 2×5 = 2,43 U* 3×3 = 1,36 U* 3×4 = 0,77 U* 3×5 = 1,03 U* 3×6 = 1,06 U* 4×4 = 1,18 U* 4×5 = 0,68 U* 4×6 = 1,30 U* 5×5 = 1,89