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Abstract

This thesis is devoted to the theoretical characterization and generation
of strongly correlated many-body states from the perspective of quantum
information theory. We first study the entanglement properties of general
many-body states and define a new measure for multipartite entanglement,
the ”Localizable Entanglement (LE)”. It quantifies the maximal entangle-
ment that can be localized, on average, between two parties by performing
local measurements on the other parties. This measure provides knowledge of
the ”entanglement length”, which is of particular importance in the context
of quantum repeaters for long-distance quantum communication. We prove
upper and lower bounds on LE in terms of two-body correlation functions and
develop a method for the numerical computation of LE in one-dimensional
spin systems. We analyze the localizable entanglement in various spin sys-
tems and observe characteristic features for a quantum phase transition such
as a diverging entanglement length.

In the second part of the thesis we focus on a specific many-body sys-
tem: ultra-cold atoms in an optical lattice. This system is a promising
candidate for the first physical realization of a ”quantum simulator”, but the
temperature in current experiments is still too high. We propose, analyze
and compare several schemes to cool the atoms close to the ground state of
the strong interaction regime. In particular, we devise an algorithmic cool-
ing protocol that combines occupation number filtering with spin-dependent
lattice shifts. In addition, we propose two different physical realizations of
filtering and also design protocols that generate an ensemble of quantum reg-
isters for quantum computation.

In the third part we propose how to create entanglement in small atomic
clouds by deforming and rotating the harmonic trapping potential. The
resulting states are entangled in their motional degrees of freedom and can
be identified with strongly correlated fractional quantum Hall states. For the
case of two, three and four atoms we show how to adiabatically transform
the unentangled ground state into the desired entangled state. We further
discuss characteristic features of these states and propose how to create and
detect them experimentally using an optical lattice setup.
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Chapter 1

Introduction

Entanglement is one of the deepest departures of quantum mechanics from
classical physics. It plays a key role for quantum information tasks, such
as teleportation [1], quantum communication [2] and quantum computation
[3]. In recent years major achievements in the experimental generation of
entanglement have been made. For instance, in quantum optical systems en-
tanglement of up to eight ions [4, 5] or five photons [6] has been demonstrated.
Of special importance are also strongly correlated many-body states. First of
all they provide a natural resource for entanglement. Secondly, highly entan-
gled many-body states can be used to perform measurement based quantum
computation [7, 8]. Thirdly, the study of many-body entanglement can pro-
vide significant physical insight in strong correlation effects such as quantum
phase transitions. Hence, it is of central interest to get a better understand-
ing of multipartite entanglement. In this thesis we define a novel measure
of multipartite entanglement, the ”Localizable entanglement (LE)”. It al-
lows one to deduce a characteristic distance, the ”entanglement length”, up
to which bipartite entanglement can be extracted from the system by local
operations. Knowledge of this length scale is of particular importance in the
context of quantum repeaters for long-distance quantum communication.

We further consider a very important many-body system in the field of
quantum information theory: ultra cold atoms in optical lattices. This sys-
tem is a promising candidate for the first physical realization of a ”quantum
simulator” that simulates the quantum dynamics of other many-body sys-
tems [9]. With just 40 atoms in an optical lattice one could perform quantum
simulations that are impossible with ordinary computers. In contrast, the
efficient solution of other practical problems on a quantum computer (such
as the factorization problem) would require on the order of 10,000 atoms to
beat a classical computer. The major obstacle that hinders the implementa-
tion of a quantum simulator in current experiments is temperature. In this

9



10 Introduction

thesis we propose, analyze and compare several cooling schemes for atoms in
optical lattices. Our theory predicts that we can cool the system close to the
ground state of the strong interaction regime.

We also propose how to generate a novel class of entangled states in atomic
systems, in which the atoms are entangled in their motional degrees of free-
dom. These states are equivalent to strongly correlated fractional quantum
Hall (FQH) states. FQH states may exhibit anyons, which are neither bosons
nor fermions but show fractional quantum statistics. Non-abelian anyons are
especially interesting from the perspective of topological quantum computa-
tion [10].

In the following we describe the different parts of this thesis in more
detail. The first part is devoted to the entanglement properties of general
many-body systems. The usual approach is to characterize multipartite en-
tanglement in terms of bipartite entanglement. One possibility is to study
the entanglement between two separate particles after tracing out the rest
of the system. This can formally be done by computing the entanglement of
formation [11, 12] of the reduced density matrix, which quantifies the entan-
glement cost to produce this bipartite state. For spin systems it has been
shown that this quantity can exhibit characteristic features at a quantum
phase transition and also that the entanglement decays very rapidly with
the distance of the two spins [13, 14]. Another possibility is to study the
von-Neumann entropy of a subsystem, which for pure states quantifies the
entanglement with the rest of the system. The entropy in one-dimensional
spin systems has been studied extensively in recent years. It is now believed
that the entropy diverges logarithmically with the block size if the system is
critical, and that the entanglement growth is connected to the universality
class of the underlying theory [15, 16].
However, both approaches are not very well suited for defining an ”entangle-
ment length”, up to which bipartite entanglement can be extracted from the
system. This length scale could serve as a figure of merit for a ”quantum re-
peater” [17], which is a way of distributing entanglement over long distances
by applying local operations at the nodes of a quantum network.

Motivated by the quantum repeater concept we propose a novel measure
for multi-particle entanglement, which we have termed ”Localizable Entan-
glement” (LE). It is defined as the maximum entanglement that can be lo-
calized, on average, between two particles by performing local measurements
on all other particles. This definition naturally leads to notions like ”en-
tanglement length” and ”entanglement fluctuations”. We further prove for
pure qubit and qutrit states that the LE is lower bounded by the maximum
(connected) two-point correlation function. With a study of ground state
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entanglement in various spin-1/2 models we demonstrate that this bound is
typically tight. We also develop a numerical method that allows us to com-
pute the LE in ground states, thermal states and time-evolved states in one-
dimensional spin systems with large number of spins. Applying this method
to ground states we find that the entanglement fluctuations (as defined by
LE) as well as LE itself exhibit characteristic features at a quantum phase
transition. For instance, one observes a discontinuity in the first derivative
of LE at a Kosterlitz-Thouless transition [18]. For the ground state of the
spin-1 Heisenberg antiferromagnet one obtains a very counter-intuitive re-
sult: the entanglement length is infinite but the two-body correlation length
is finite.

After the study of entanglement in rather general many-body systems, we
focus in the remainder of this thesis on a specific system: ultra cold atoms in
an optical lattice. With the realization of Bose-Einstein condensation (BEC)
in 1995 atomic research in atomic physics has reached a new dimension.
Many of the early experiments on BECs can be well explained with mean
field theory, in which all atoms behave exactly the same. The new challenge
is the strong-interaction regime. The interactions between atoms can be
enhanced by tuning the magnetic field through a Feshbach resonance, at
which the scattering length diverges. In a series of remarkable experiments
with fermionic atoms this method has been used to observe the crossover from
a BEC of molecules to the BCS regime, in which Cooper pairs are formed
[19, 20, 21, 22, 23]. An alternative way to reach the strong-interaction regime
is to load and trap cold atoms in an optical lattice potential1. By increasing
the intensity of the lattice laser beams one can decrease the kinetic energy of
the atoms until the interactions dominate the dynamics. The systems then
undergoes a quantum phase transition from a superfluid to a Mott insulator.
This phenomenon was first observed by Greiner et al. [24] in 2002. In
the past years several groups managed to load bosonic or fermionic atoms
in optical lattices and reach the strong interaction regime [24, 25, 26, 27,
28, 29, 30, 31, 32]. This system constitutes one of the very few quantum
systems that can be controlled and manipulated on the single quantum level,
while at the same time avoiding unwanted interaction with the environment
causing decoherence. In addition, it provides an unprecedented degree of
flexibility. The interaction can be tuned from repulsive to attractive, one
can generate lattices with different geometries, use several internal states of

1The optical lattice is formed by three orthogonal pairs of counterpropagating laser
fields that are not resonant with an atomic transition. Due to the ac-Stark shift the atoms
are trapped in the minima of the three-dimensional lattice potential.
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the atoms, and mix fermions with bosons. Therefore it has been proposed
to use atoms in optical lattices in order to simulate the quantum dynamics
of various kinds of Hubbard Hamiltonians [33, 34, 35, 36, 37, 38, 39, 40,
41, 42]. This may help to understand strong correlation effects that have
been observed or predicted in solid-state systems. For instance, the study
of fermions with repulsive interactions in two dimensions might shed some
light on the origin of high temperature superconductivity. Also the physical
implementation of a ”Feynman quantum simulator” has been put forward [9].
This has to be distinguished from the ”analogue” quantum simulator that
is provided naturally by the Hubbard Hamiltonian. It is rather a precursor
of a universal quantum computer that can simulate the dynamics of general
quantum systems.

In the case of atoms the temperature to observe strongly correlated be-
havior is nine orders of magnitude lower than for electrons. The reason is
the rather weak atomic interaction as compared to the Coulomb interaction.
Although the temperature in present experiments is already close to absolute
zero, the system is still far away from being in the ground state [25, 26, 43]. In
the second part of this thesis we propose several schemes to cool the system
to its many-body ground state, once the lattice potential has been raised.
One class of protocols operates solely in the no-tunnelling regime and hence
does not rely on equilibration. Since the required operations resemble the
ones for ensemble quantum computation in optical lattices [44], we refer to
it as ”algorithmic cooling”. We further show that algorithmic protocols can
be used to generate an ensemble of defect-free quantum registers for quan-
tum computation. The second class of cooling schemes permits quantum
tunnelling and is based on the repeated application of occupation number
filtering. The idea of filtering has been first proposed by Rabl et al. [45].
It aims at reducing lattice site occupation numbers to some desired values.
The original proposal is based on a laser driven adiabatic transfer of atoms
between two internal states. Here, we propose two alternative physical re-
alizations of filtering. The first one relies on optimal coherent laser control
and is optimized in speed. The second proposal can be implemented rather
easily and operates continuously. We further provide a complete theoretical
and numerical description of all our cooling schemes.

The third part of this thesis is devoted to the generation of a special
class of entanglement in atomic systems, in which the atoms are entangled
in real space. Typically atoms are entangled in internal space. For instance,
one can use atomic interactions to entangle the internal states of atoms lo-
cated at different lattice sites in a dynamical way [46, 47]. When applied to
all atoms this procedure will generate the highly entangled cluster state [7],
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which forms the basis of the one-way quantum computer proposed in [8].
The motional entangled states considered here are a sequence of FQH states,
analogous to the ones that appear in the context of the fractional quantum
Hall effect in electronic systems [48]. The possibility of creating FQH atomic
states as the Laughlin state [49] by rapidly rotating the trap confining the
atoms has been discussed in several theoretical works [50, 51, 52, 53, 54,
55, 56, 57, 58]. However, experiments dealing with typically large number
of particles have not yet succeeded in reaching these states. Here, we fully
address the case of a small number of particles and design a realistic way
of entangling them into FQH states. The central idea is to use a deep op-
tical lattice as an amplifier of the experimental signal by providing multiple
copies of a small atomic sample. We further discuss how to detect these
entangled states by measuring different properties as their density profile,
angular momentum or correlation functions. The possibility of creating and
manipulating FQH states in a controlled way has attracted considerable in-
terest in recent years. Apart from its importance for topological quantum
computation it also promises to create individual anyons and to probe their
fractional quantum statistics directly by exchanging two (quasi)particles [57].

This thesis is organized as follows. Chapter 2 is devoted to Localizable
Entanglement in many-body systems. We begin with reviewing algebraically
computable entanglement measures for bipartite systems. Then we give a
formal definition of LE and derive quantities like entanglement length and
entanglement fluctuations. We further connect the concept of LE with the
idea of quantum repeaters. It follows a derivation of a lower bound on LE in
terms of connected correlation functions. Details of the proof are presented
in Appendix A. Next, we present a numerical method to compute the LE
in large spin chains. This method is applied to ground states of various
standard spin-1/2 chains. Afterwards we study gapped spin-1 models and
compute the LE both for ground and thermal states. Furthermore, a possible
connection between long range entanglement and hidden order is discussed.
In this context we refer also to Appendix B, where it is shown how to compute
the string order parameter and the LE analytically for matrix-product states
(MPS) with qubit bonds.

In chapter 3 we propose and analyze several cooling schemes for atoms
which are trapped in an optical lattice. We start with a discussion of the
Bose-Hubbard model and properties of the initial state, such as temperature
and entropy. To this end we have developed a fermionization procedure,
which is discussed in detail in Appendix C. It follows a summary of the basic
tools and figures of merit which underlie our cooling schemes. Afterwards
a detailed analytical analysis of the cooling efficiency of occupation number



14 Introduction

filtering is presented. We further determine the optimal regimes for tunable
experimental parameters and propose two physical realizations of filtering.
We then propose, analyze and compare two ground state cooling schemes:
sequential filtering and algorithmic cooling. We compare our analytical find-
ings with exact numerical calculations. The underlying numerical method
is presented in Appendix D. It follows a discussion of alternative cooling
schemes. Finally, we propose two algorithmic protocols that are not very
well suited for cooling but are optimized for creating defect-free quantum
registers for ensemble quantum computation.

In chapter 4 we propose how to create and detect motional entangled
states of a small number of atoms being trapped in a rotating harmonic po-
tential. We first identify the entangled states with strongly correlated FQH
states and study characteristic properties such as their density profile. Based
on numerical calculations of the energy spectrum we design adiabatic paths
in parameter space in order to reach these states. After analyzing the ex-
perimental feasibility of our proposal we discuss several detection schemes,
which explicitly take the lattice setup into account. In Appendix E we ad-
dress the problem of two interacting atoms in a three-dimensional harmonic
trap analytically and explore the range of validity of the pseudo-potential
approximation. To this end the zero range pseudo-potential is replaced by a
finite range well potential.

The results presented in chapters 2 to 4 are published in [59, 60, 61, 62,
63, 64, 65] and [66], respectively.



Chapter 2

Localizable Entanglement

2.1 Introduction

The creation and distribution of entangled states plays a central role in quan-
tum information theory, because it is the key ingredient for performing cer-
tain quantum information tasks, like teleportation [1] or quantum compu-
tation. In this respect, multiparticle quantum states can be considered as
entanglement resources, naturally appearing in many physical systems. On
the other hand, it is believed that the study of multipartite entanglement
might prove fruitful in other fields of physics, like condensed matter, e.g. for
understanding the complex physics of strongly correlated states [67, 68]. In
particular it has been shown [13, 14, 15, 69, 70, 71] that the ground state
entanglement of various spin systems may exhibit characteristic features at
a quantum phase transition. Hence, it is desirable to find ways of character-
izing and quantifying entanglement in multipartite systems.

In this chapter we define a measure for multipartite entanglement, which
we have termed Localizable Entanglement (LE). It quantifies the bipartite
entanglement contained in a multipartite state. To be more specific, LE is
defined as the maximum entanglement that can be localized, on average,
between two parties of a multipartite system, by performing local measure-
ments on the other parties. Hence, LE is defined in an operational way and
has a clear physical meaning. For instance, it can be used as a figure of
merit to characterize the performance of quantum repeaters [17, 72]. It also
allows one to define the notion of entanglement length, which characterizes
the typical distance up to which bipartite entanglement can be localized in
the system.

Note that, in the context of LE, particles are not traced out but mea-
sured. This is in contrast to earlier approaches, where the concurrence of

15
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the reduced density operator of two separated spins in a spin chain has been
calculated (see e.g. [13, 14]). Although the concurrence exhibited character-
istic features at a quantum phase transition, it does not detect long range
quantum correlations.

The fundamental difference between tracing and measuring can be illus-
trated with two simple examples: For both the GHZ state [73] and the cluster
state [7] it can readily be checked that the reduced density operator of any
two qubits contains no entanglement at all. On the other hand one can find a
local measurement basis, such that the LE is maximal. We further note that
in the case of the GHZ-state the entanglement properties could also have
been revealed by studying the connected version of the two-point correlation
function. Indeed, the GHZ-state is one of many examples [59], for which
correlations can be identified with quantum correlations, i.e. entanglement.
However, this intimate connection does not hold true for all pure quantum
states (as shown in [74]). For instance, in the case of the cluster state the
LE is maximal, whereas the connected correlations are all zero. The results
of this chapter can be summarized as follows:

(i) We give a formal definition of LE, introduce several variants and estab-
lish basic relations between them. Based on this definition we give a meaning
to the notions entanglement length and entanglement fluctuations.

(ii) We prove for general pure qubit and qutrit states that LE can be lower
bounded by connected two-particle correlation functions. This implies that
quantum phase transitions, characterized by a diverging correlation length,
are equivalently detected by a diverging entanglement length.

(iii) We present a numerical method that computes the LE in ground
states, time-evolved states and thermal states of one-dimensional spin sys-
tems. It works efficiently for chains with up to 100 sites and is based on
matrix-product states [75, 76] and the Monte Carlo method [77].

(iv) We study the LE in ground states of various spin-1/2 models. We
find that the lower bound is typically tight. Moreover, the LE as well as the
entanglement fluctuations exhibit characteristic features at a quantum phase
transition. For instance, we observe a discontinuity in the first derivative of
LE at a Kosterlitz-Thouless transition [18].

(v) We study the LE in gapped spin-1 systems. For the ground state of
the Heisenberg antiferromagnet we observe that the lower bound is not tight.
To be more precise, the entanglement length is infinite but the correlation
length is finite. In this context we also comment on a possible connection
between hidden order and long range entanglement. In particular, we present
examples showing that, in general, such a connection does not exist. As a
second example we study the LE of thermal states in the AKLT model [78].
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We find that the entanglement length increases exponentially with the in-
verse temperature.

We note that the concept of LE has already been adopted by several
groups in order to study the entanglement properties of multipartite spin
systems [59, 61, 74, 79, 80, 81, 82, 83].

2.2 Entanglement of bipartite systems

In this section we briefly review the entanglement of bipartite systems of finite
dimension. Physical states of such systems are described by density matrices
ρ (ρ = ρ†, ρ > 0, trρ = 1) acting in the Hilbert space of the composite system
H = HA ⊗ HB. A state ρ is defined as separable if and only if it can be
decomposed as a convex combination of product states:

ρ =
∑

i

pi ρA
i ⊗ ρB

i , (2.1)

with
∑

i pi = 1 and pi > 0. Inversely, a state ρ is called entangled if and
only if such a decomposition does not exist. Often it is also desirable to
quantify the degree of entanglement. For pure states (trρ2 = 1) a widely
accepted entanglement measure exists, which can, in principle, be calculated
for any Hilbert space dimension. In the case of mixed states (trρ2 < 1),
however, closed expressions for the entanglement of a state ρ can typically be
found only for low dimensional systems. In the following we give a summery
of algebraically computable entanglement measures, which are used in this
article.

2.2.1 Pure states

Any pure state of a bipartite system can be written in the Schmidt decom-
position:

|ψ〉 =
n∑

i=1

λi |φA
i 〉 ⊗ |φB

i 〉, (λi > 0) (2.2)

where {|φA
i 〉} and {|φB

i 〉} are sets of orthonormal states for subsystems A and
B. The Schmidt coefficients λi represent the features of the state |ψ〉, which
are invariant under local unitary operations on the subsystems. By definition,
the entanglement of a state cannot be increased by local operations and
classical communication (LOCC). This characteristic distinguishes quantum
correlations from classical correlations. As a consequence, any entanglement
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measure must be invariant under local unitary operations and thus should
depend solely on the Schmidt coefficients λi. In this context it is useful to
consider the reduced density operators ρA = trB|ψ〉〈ψ | and ρB = trA|ψ〉〈ψ |
of subsystem A and subsystem B, respectively. The degree of mixing of ρA

and ρB is directly related to the entanglement of |ψ〉. Hence, the entropy of
entanglement [84] has been adopted as the standard measure of entanglement
for pure states. It is defined as:

EE(ψ) := S(ρA) = S(ρB) = −
n∑

i=1

λ2
i log2 λ2

i . (2.3)

Here, S(ρ) = −tr(ρ log2 ρ) denotes the von-Neumann entropy. This entan-
glement measure has been inspired by the observation that entanglement
decreases our knowledge of local properties of the state. Another justifica-
tion for this measure arises from the fact that a maximally entangled state
and LOCC can be used to produce an arbitrary state |φ〉. In this sense, the
entropy of entanglement of |φ〉 measures the ”entanglement cost” of creating
this state. To be more precise, one needs about n × EE(|φ〉) copies of the
singlet state, |ψ−〉 = (| 01〉−| 10〉)/√2, for producing n copies of an arbitrary
two qubit state |φ〉.

The definition of entropy of entanglement holds for any dimension. In the
special case of a 2× 2 system an alternative entanglement measure is widely
used, namely the concurrence [85]. For a pure state |ψ〉 it is defined as

C(ψ) = |〈ψ∗ |σy ⊗ σy|ψ〉|, (2.4)

where the complex conjugation is performed in the standard basis {| 00〉, | 01〉,
| 10〉, | 11〉} and σy is a Pauli matrix.

For qubits it can be shown that the entropy of entanglement is a convex,
monotonously increasing function, EE = f(C), of the concurrence, with

f(C) := H

(
1 +

√
1− C2

2

)
, (2.5)

H(x) := −x log2 x− (1− x) log2(1− x), (2.6)

and H(x) being the Shannon entropy. In this article we will typically use
the concurrence to measure the entanglement of a pure two qubit state |ψ〉,
because it can most easily be related to the maximum connected correlation
function of this state [Appendix A].
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2.2.2 Mixed States

Any mixed state can be expressed as a convex sum over pure states:

ρ =
∑

i

pi |ψi〉〈ψi |, (2.7)

with pi > 0 and
∑

i pi = 1. Unfortunately, this pure state decomposition is
not unique. This means that the entanglement of ρ is not simply given by
the weighted sum over the pure state entanglement. Instead, one has to take
the infimum with respect to all pure state decompositions. Using this convex
roof construction the entanglement of formation [11, 12] of a mixed state ρ
is defined as:

F (ρ) = inf
{pi,ψi}

∑
i

pi EE(ψi). (2.8)

In higher dimensions the underlying optimization problem is unsolved for
general states. Only for 2 × 2 systems an algebraic solution exists. In the
convex roof (2.8) one replaces EE by the concurrence C (see Eq. (2.4)). This
leads to the closed expression [85]:

C(ρ) = max{0, r1 − r2 − r3 − r4}, (2.9)

where the r′is are the square roots of the eigenvalues of the matrix ρρ̃ in
descending order. Here the spin flipped matrix ρ̃ is defined as:

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy), (2.10)

with the complex conjugation again taken in the standard basis. Making use
of Eq. (2.5), it has been shown that the entanglement of formation in 2× 2
systems can be expressed by the concurrence: F (ρ) = f(C(ρ)) [85].

For higher dimensional systems one can use the negativity [86] as entan-
glement measure. Its definition relies on the NPPT criterion for entanglement
[87, 88]: if the partial transpose ρTA has at least one negative eigenvalue, then
the state ρ is entangled. If we express ρ in an orthonormal product basis,

ρ =
∑
i,j

∑

k,l

〈i, k |ρ| j, l〉 | i〉A〈j | ⊗ | k〉B〈l |, (2.11)

then, the partial transpose with respect to system A is given by:

ρTA =
∑
i,j

∑

k,l

〈i, k |ρ| j, l〉 | j〉A〈i | ⊗ | k〉B〈l |. (2.12)

We define the negativity N of a state ρ as

N (ρ) = ||ρTA||1 − 1, (2.13)
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where ||.||1 is the 1-norm, given by the sum of the moduli of the eigenvalues.
Since transposition is trace preserving, N (ρ) is given by two times the sum
of the moduli of the negative eigenvalues of ρTA . With this definition, the
negativity of the singlet state is one. The negativity has the big advantage
that it can be calculated algebraically in any dimension. However, for systems
larger than 2×3 it vanishes for some entangled states [89, 90] and thus it is not
an entanglement measure in the strict sense. But since it is non-increasing
under LOCC , it is an entanglement monotone [86].

2.3 Localizable Entanglement of multipartite

systems: Definition and basic properties

We consider a multipartite system composed of N particles. With each
particle we associate a finite dimensional Hilbert space. For simplicity we
refer in the following to the particles as spins.

2.3.1 Definition

The Localizable Entanglement (LE) of a multi-spin state ρ is defined as the
maximal amount of entanglement that can be created (i.e. localized), on
average, between two spins at positions i and j by performing local measure-
ments on the other spins. More specifically, every measurement M specifies
a state ensemble EM := {ps, ρ

ij
s }. Here ps denotes the probability to obtain

the (normalized) two-spin state ρij
s for the outcome s of the measurements

on the N − 2 remaining spins. The average entanglement for a specific M is
then given by:

L
M,E

i,j (ρ) :=
∑

s

ps E(ρij
s ), (2.14)

where E(ρij
s ) is the entanglement of ρij

s . The Localizable Entanglement is
defined as the largest possible average entanglement:

LC,E
i,j (ρ) := sup

M∈C

∑
s

ps E(ρij
s ), (2.15)

with C denoting the class of allowed measurements. We call the measure-
ment M which maximizes the average entanglement the optimal basis. It is
important to note that the only restriction on M is that the measurements
are performed locally i.e. on individual spins. Apart from that, the measure-
ment basis is arbitrary and can also vary from site to site. We distinguish
three classes C of measurements: projective von-Neumann measurements
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(PM), those corresponding to positive operator-valued measures (POVM),
and general local measurements that allow also for classical communication
of measurement results (LOCC). In terms of LE the following relationship
between these classes holds 1:

LPM,E
i,j (ρ) ≤ LPOVM,E

i,j (ρ) ≤ LLOCC,E
i,j (ρ). (2.16)

In this thesis we will be mainly concerned with projective measurements. To
simplify the notation we omit in this case the superscript PM.

The definition (2.15) still leaves open the choice of the entanglement mea-
sure E for the states {ρij

s }. In the previous section we have listed algebraically
computable entanglement measures for small dimensional systems. In the
case of a pure multipartite state ρ, the states {ρij

s } after the measurements
are also pure. Hence, in any dimension we can use the entropy of entangle-
ment EE (2.3) as entanglement measure. For pure qubit states we typically
choose the concurrence C (2.4). Due to the convexity of the function f (2.5)
one can find the following relation for the LE as measured by these two
quantities:

f
(
LC

ij

) ≤ LEE
ij ≤ LC

ij. (2.17)

Therefore the qualitative behavior of these two variants of LE will be very
similar.
In the case of mixed qubit states we make use of the closed expression for
the concurrence (2.9). For higher dimensional mixed states we refer to the
negativity N (2.13).

2.3.2 Entanglement length and fluctuations

In the field of strongly correlated systems and more specifically in the study of
quantum phase transitions, the correlation length, ξC , is of great importance.
The concept of LE readily lends itself to define the related entanglement
length, ξE, which characterizes the typical distance up to which bipartite
entanglement can be localized in the system:

ξ−1
E := lim

n→∞

(
− ln LE

i,i+n

n

)
. (2.18)

1For pure four qubit states it has been shown in [91], that in the case of projective
measurements the LE cannot be increased by classical communication. In addition, nu-
merical studies for the same system indicated that POVM measurements lead only to a
very small increase of LE, compared to projective measurements.
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The entanglement length is finite if and only if LE
i,i+n → exp(−n/ξE) for

n → ∞, and the entanglement length ξE is defined as the constant in the
exponent in the limit of an infinite system (see also Aharonov [92]).

Let us now have a closer look at the statistical nature of LE, as it is
defined as an average over all possible measurement outcomes (see (2.15)).
For practical purposes one can only control the measurement basis but not
a specific outcome. Therefore it would be useful to have an estimate of how
much the entanglement of a particular measurement outcome deviates from
the mean value as given by the LE. This information is contained in the
variance of the entanglement remaining after measurements. We can thus
define the notion of entanglement fluctuations :

(δLM,E
i,j )2 :=

(∑
s

ps E(ρij
s )

2

)
− LM,E

i,j

2
. (2.19)

The entanglement fluctuations can be defined for any measurementM. Typ-
ically we choose for M the optimal basis, which maximizes the average en-
tanglement. In this case we drop the index M in (2.19).

The study of both the entanglement length and the entanglement fluctu-
ations could provide further inside in the complex physics of quantum phase
transitions by revealing characteristic features at the quantum critical point.
Examples for this are presented in Sect. 2.6.

2.3.3 Connection to quantum repeaters

So far we have given a purely mathematical definition of LE (2.15). However,
it is evident that the LE is defined in an operational way that can directly
be implemented on certain physical systems. In addition the concept of LE
may also play an essential role in some interesting applications of quantum
information theory. To be more precise, LE can serve as a figure of merit for
the “performance” of certain kinds of quantum repeaters (QR).

Many tasks in quantum information processing require long-distance quan-
tum communication. This means quantum states have to be transmitted
with high communication fidelity via a quantum channel between two dis-
tant parties, Alice and Bob. Since quantum transport is also possible via
teleportation [1] this problem is equivalent to establishing nearly perfect en-
tanglement between two distant nodes. All realistic schemes for quantum
communication are presently based on the use of photonic channels. How-
ever, the degree of entanglement generated between distant sites typically
decreases exponentially with the length of the connecting physical channel,
due to light absorption and other channel noise. To overcome this obstacle
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the concept of quantum repeaters has been introduced [17, 72]. The central
idea is to divide the channel into segments and to include additional nodes.
Entanglement between adjacent nodes can be extended to larger distances
using entanglement swapping followed by purification. After several rounds
one obtains a pair of almost maximally entangled nodes, shared by Alice and
Bob, that can be used for perfect quantum transport via teleportation. A
possible physical realization of the QR using trapped atoms is sketched in
Fig. 2.1 [93, 94, 95].

Figure 2.1: Illustration of the quantum repeater scheme for trapped atoms
connected by optical fibres. Qubits are represented by the internal states of
the atoms. Applying laser beams the internal states of atoms in adjacent
cavities become entangled via the transmission of photonic states. Collective
measurements on the nodes (indicated by arrows) followed by purification
lead to the generation of a nearly perfectly entangled pair of qubits between
the outermost cavities A and B.

Let us now discuss how a QR setup can be characterized by the LE. First
of all, let us identify the particles sitting at different nodes by spins. It is
important to note that, by combining several spins to a larger Hilbert space
of dimension d, the operations required for purification and entanglement
swapping on this set of spins can be interpreted as local operations on a single
spin of dimension d. Thus the QR can be treated as a system of interacting
spins being in a state ρ. In order to assess and quantify the usefulness of
such a setup as a QR one has to compute the following figure of merit: What
is the maximum amount of entanglement that can be generated between the
two end spins by performing local operations on the intermediate spins? But
this number is nothing else than the LE. The question, which variant of
LE (2.16) should be used, depends on the class of available local operations
(PM, POVM or LOCC). Typically classical communication is allowed so that
LLOCC

ij has to be taken as figure of merit. However, not every measurement
might be physically realizable. Therefore the LE will in general give an upper
bound for the performance of a given QR setup.
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2.4 Bounds on LE

Due to its variational definition, the LE is very difficult to calculate in gen-
eral. Moreover, typically one does not have an explicit parameterization of
the state under interest, but just information about the classical one- and
two-particle correlation functions (which allows one to parameterize com-
pletely the two-spin reduced density operator ρij). It would therefore be
interesting to derive tight upper and lower bounds to the LE solely based on
this information.

2.4.1 Upper bound

The upper bound can readily be obtained using the concept of entanglement
of assistance (EoA) [96], which can be defined for bipartite mixed states ρAB

of any (finite) dimension. We identify ρAB with the reduced density operator
ρij for spins i and j. The EoA is then defined as:

AE
ij(ρij) := sup

E

∑
s

ps E(ψij
s ). (2.20)

Here the supremum is taken over all pure state decompositions E = {ps, |ψij
s 〉},

with ρij =
∑

s ps|ψij
s 〉〈ψij

s |, and E is a suitable entanglement measure for
pure states. If ρij is the reduced density matrix of a pure N -partite spin
state ψN , then EoA can be interpreted as follows. It is the maximum aver-
age entanglement that can be created between spins i and j by performing
joint measurements on the remaining N − 2 spins. Hence, EoA is trivially
an upper bound of LE, because local measurements are a subclass of joint
measurements. If ρij represents a pair of qubits, one can derive an explicit
formula for EoA [91]. Given ρij and a square root X, ρij = XX†, then the
EoA as measured by the concurrence reads:

AC
i,j(ρij) := tr|XT (σi

y ⊗ σj
y)X| , (2.21)

with |B| =
√

B†B. Hence AC
i,j(ρij) =

∑4
k=1 σk, where σk are the singular

values of the matrix XT (σi
y ⊗ σj

y)X. Note that for pure four qubit states a
variant of EoA with local measurements was considered in [91].

2.4.2 Lower bound

First, from the definition of LE (2.15) it follows that any specific measure-
ment, e.g. in the computational basis, trivially provides a lower bound on the
LE. More interestingly, we will now prove for general pure spin-1/2 and spin-1
states that the LE is lower bounded by connected correlation functions.
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Spin-1/2 systems

The basic idea is to establish a connection between the LE and connected
correlation functions of the form:

Qij
AB = tr[ρ( Si

A ⊗ Sj
B)]− tr[ρ( Si

A ⊗ 1l)]tr[ρ(1l⊗ Sj
B)]. (2.22)

For qubits the operators SA, SB can be parameterized by directions ~a,~b,
representing unit vectors in a 3D real space: SA = ~a · ~σ, SB = ~b · ~σ with
~σ = (σx, σy, σz) being the vector of the Pauli matrices.
Let us start out with stating the central theorem of this section:
(1.i) Given a (pure or mixed) state of N qubits with connected correlation

function Qij
AB between the spins i and j and directions ~a,~b, then there always

exists a basis in which one can locally measure the other spins such that this
correlation does not decrease, on average.
The proof, which is rather technical but constructive, is presented in Ap-
pendix A. There we also show that this result can be generalized to a setup,
where the spins i and j can be of any dimension, but the remaining spins
(on which the measurements are performed) are still qubits. In a spin-1/2
system such a situation can arise, for example, when considering correlations
between two blocks of spins.

Next, we relate correlations with entanglement. We note that after the
measurement process and for an initially pure state we end up with a pure
state of two qubits. For such a state we have proven the following result
[Appendix A]:
(1.ii) The entanglement of a pure two qubit state |ψij〉 as measured by the
concurrence is equal to the maximal connected correlation function:

C(ψij) = max
~a,~b

| Qij
AB(ψij)|. (2.23)

Combining (1.i) and (1.ii) we know that for a given pure multi qubit state

|ψ〉 and directions ~a,~b there always exists a measurement M such that:

Qij
AB(ψ) ≤

∑
s

psQ
ij
AB(ψs) ≤

∑
s

psC(ψs). (2.24)

The term on the very right is equal to the average entanglement as mea-
sured by the concurrence LM,C

ij , which trivially is a lower bound to the LE

as defined by LC
ij. Since the directions ~a,~b can be chosen arbitrarily, relation

(2.24) holds in particular for directions maximizing Qij
AB(ψ). Hence we can

establish the desired lower bound on LE:
(1.iii) Given a pure state |ψ〉 of N qubits, then the LE as measured by the
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concurrence is larger or equal than the maximal connected correlation func-
tion:

LC
i,j(ψ) ≥ max

~a,~b
|Qij

AB(ψ)|. (2.25)

Making use of the basic properties of LE, presented in the previous section,
we can immediately derive analogous bounds for some other variants of LE;
for example,

LEE
i,j (ψ) ≥ f(max

~a,~b
|Qij

AB(ψ)|), (2.26)

LPOVM,EE
i,j (ψ) ≥ f(max

~a,~b
|Qij

AB(ψ)|), (2.27)

with f being the convex function defined in (2.5). We will see below that
relation (2.27) can be generalized to spin-1 systems.

Higher dimensional spin systems

We now try to extend the previous findings beyond spin-1/2 systems. First,
we look for a generalized version of statement (1.i). Unfortunately the tech-
niques used in the proof for qubits seem to fail already for qutrits. Neverthe-
less, a generalization is still possible by changing a little bit the perspective.
For this we embed a spin-S in a higher dimensional Hilbert space, being
composed of n ≥ log2(2S +1) virtual qubits. Let us denote the (2S +1)×2n

matrix governing this transformation by P .
In the case 2S + 1 = 2n the embedding is trivial and the situation becomes
equivalent to the qubit case. Thus the result (1.i) can immediately be gen-
eralized, because local measurements on the virtual qubit systems can be
chosen such that (1.i) holds.
In the case 2S + 1 < 2n a similar argument applies if we allow for POVM
measurements on the spin-S system. To be more precise, let us consider a
mixed state ρ of three spin-S particles. The spin on which the measurement
is performed (let us denote it with the index 3) is embedded in a 2n dimen-
sional system. The embedded state is then given by the transformation: ρ′ =
(1l12⊗P †

3 )ρ(1l12⊗P3). In the Hilbert space of the n virtual qubits one always
finds local projective measurements {Mα1...αn} = {|α1〉〈α1| ⊗ . . .⊗ |αn〉〈αn|}
such that (the generalized version of) (1.i) holds for the state ρ′. In terms
of the original state ρ this measurement in the 2n dimensional space corre-
sponds to a POVM measurement {PMα1...αnP †} on a spin-S system, because:∑

α1...αn
PMα1...αnP † = P1l2n×2nP † = 1l(2S+1)×(2S+1).

Thus one can generalize the result (1.i) to arbitrary spin dimensions in
the following way:
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(2.i) Given an arbitrary multi-spin state with connected correlation function
Qij

AB between spins i and j for arbitrary operators SA, SB, then there always
exists a local POVM measurement on the other spins such that this correlation
does not decrease, on average.
We note that the lower bound in (2.i) can already be reached by applying local
measurements on the virtual qubit system. Performing joint measurements
(e.g. Bell measurements on pairs of qubits as shown in [74]) can lead to a
considerable enhancement of the average correlations. If in addition 2n −
(2S + 1) joint measurements can be chosen such that they are orthogonal to
the projector P , the resulting measurement on the spin-S system corresponds
to a projective von-Neumann measurement.

The most difficult part is to establish a connection between correlations
and entanglement for pure two spin states in analogy of (1.ii). In the case
of qubits we made explicitly use of the fact that the group SU(2) is the cov-
ering group of SO(3). Moreover the concurrence served as an entanglement
measure, which was easy to handle. For higher spin dimensions we refer to
the entropy of entanglement EE (2.3) as a suitable entanglement measure for
pure bipartite states. In the special case of qutrits we were able to show the
following relation [Appendix A]:
(2.ii) The entanglement of a pure two qutrit state |ψij〉 as measured by the
entropy of entanglement can be lower bounded by:

EE(ψij) ≥ f(max
A,B

| Qij
AB(ψij)|), (2.28)

where f is the convex function (2.5) and SA, SB in Qij
AB (2.22) are operators,

whose eigenvalues lie in the interval [−1; 1]. Combining again (2.i) and (2.ii)
we can formulate a bound on LE for spin-1 systems:
(2.iii) Given a pure state |ψ〉 of N qutrits, then the LE as measured by the
entropy of entanglement and which allows for POVM’s, is lower bounded by
the maximum connected correlation function in the following way:

LPOVM,EE
ij (ψ) ≥ f(max

A,B
|Qij

AB(ψ)|). (2.29)

In summary, we have shown for pure qubit and qutrit states that con-
nected correlation functions provide a lower bound on LE. This bound allows
for two intriguing limiting case: (i) Entanglement and correlations may ex-
hibit similar behavior. (ii) Spins may be maximally entangled although they
are uncorrelated in the classical sense. In the forthcoming sections we will
present examples for both scenarios.
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2.5 Numerical computation of LE

In this section we develop a numerical method that allows us to compute
the LE in ground states, thermal states and time-evolved states in one-
dimensional spin systems with large number of spins. We first consider pure
states and show how for a given measurement basis the average entanglement
can be computed efficiently. To this end we represent the many body state
in terms of a matrix-product state and make use of the Monte Carlo method
[77]. Then we discuss several ways of determining the optimal measurement
basis. Finally, we develop an algorithm based on matrix-product states that
computes the ground state of a spin chain with periodic boundary condition.
In the second part we generalize our numerical method to mixed states.

2.5.1 Pure states

We consider pure quantum states of a chain of N interacting spins of dimen-
sion d = 2S + 1. These states can be ground or excited states of a given
Hamiltonian, or states resulting from time evolution of pure states. The
number of parameters for the characterization of a N -body quantum state
increases exponentially with N . Hence, the exact numerical treatment of the
problem is typically limited to very small system sizes. For larger systems
one has to refer to approximative methods.

Here, we represent pure states in terms of the the so-called matrix product
states (MPS) [75, 76]:

|ψMP〉 =
d∑

s1,...,sN=1

Tr(As1
1 . . . AsN

N )|s1, . . . , sN〉. (2.30)

The state is described by N matrices Asi
i of maximal dimension D. We note

that the MPS (2.30) is written in the computational basis and accounts for
periodic boundary conditions (PBC). It has been shown [76, 97] that MPS
appear naturally in the context of the density-matrix renormalization group
(DMRG) method [98]. Below we will also discuss alternative methods to
obtain ground states or time-evolved states using the MPS representation.
Note that starting from these states, it is possible to calculate expectation
values of products of local observables {Oi} very efficiently [76, 97, 75]:

〈Ψ|O1 . . . ON |Ψ〉 = Tr
(
E

[1]
O1

. . . E
[N ]
ON

)
, (2.31)

where

E
[k]
O =

d∑

s,s′=1

〈s|Ok|s′〉As
k ⊗

(
As′

k

)∗
. (2.32)
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Given an MPS of the form (2.30), let us now present a scheme to com-
pute the LE from that. For translation invariant systems it is sufficient to
consider the LE between the spins 1 and j = 1 + n. We perform projec-
tive measurements in the local basis of (2.30). The (pure) state of the two
spins of interest after the measurements is conditioned on the measurement
outcomes, denoted by the (N-2)-tuple {s} := {s2 . . . sj−1sj+1 . . . sN}, and
proportional to

|φ{s}〉 = 〈{s}|ψMP〉 =
d∑

s1,sj=1

Tr(As1
1 . . . AsN

N )|s1〉|sj〉. (2.33)

Without loss of generality we can assume that the computational basis is the
optimal one for LE 2. The LE is then given by:

LE
ij(ψMP) =

∑

{s}
p{s}E(φ̃{s}) , (2.34)

where p{s} = 〈φ{s}|φ{s}〉/〈ψMP|ψMP〉 is the probability for obtaining the nor-

malized state |φ̃{s}〉 = |φ{s}〉/〈φ{s}|φ{s}〉1/2. The MPS representation allows
us to compute the probabilities p{s} and the states |φ{s}〉 efficiently, because
it simply amounts to the multiplication of N matrices. However, we still face
the problem that the sum (2.34) involves an exponential number of terms
(dN−2). In order to obtain a good approximation of this sum we propose a
scheme based on the Monte Carlo (MC) method, which will be now explained
in more detail.

Monte Carlo method

The Monte Carlo method provides an efficient way of selecting M states |φµ〉
sequentially from the (given) probability distribution {p{s}} of the measure-
ment results. The LE can thus be approximated by:

LE
(MC),ij(ψMP) ≈ 1

M

M∑
µ=1

E(φ̃µ) ± 1√
M

δLE
ij(ψMP). (2.35)

Note that the accuracy of the MC method depends on the entanglement
fluctuations δLE

ij, which can be computed within the MC scheme as well.

2Otherwise we can make a change of basis in (2.30), defined by unitary operators
{Ui}. For each site i this amounts to transforming the corresponding MPS matrix: As

i →
Ãs

i =
∑

s′ U
ss′
i As′

i . Hence, the following discussion can immediately be generalized to an
arbitrary basis by replacing the matrices {Asi

i } by the transformed ones {Ãsi
i }.
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For selecting the states |φµ〉 we follow the Metropolis algorithm [77] and use
single-spin-flip dynamics. We start with an initial state |φµ〉 corresponding
to a specific measurement outcome {s}. From this we create a trial state |φν〉
by randomly picking a site i and changing the state of this spin with equal
probability according to si → mod(si ± 1, d) for si = 0, 1, . . . d − 1. For a
spin-1/2 this simply amounts to a spin flip. The trial state is accepted with
probability:

P (µ → ν) =

{ pν

pµ
if pν < pµ ,

1 else .
(2.36)

If the trial state is accepted it serves as a starting point for creating a new
trial state. After N − 2 steps, defining one MC sweep, the entanglement of
the current state is calculated 3. After M sweeps the algorithm stops and
the average (2.35) is performed.

Computational Effort

Let us now discuss the computational effort with respect to computation
time. Given a MPS of form (2.30) we estimate the number of operations
that have to be performed for the calculation of LE. At each step of the
MC algorithm a trial state has to be computed. According to Eq. (2.33) this
involves the multiplication of N matrices Asi

i . Given that these matrices have
a maximal dimension D, one has to perform O(ND3) operations. This can
be improved to O(log2 (N)D3) by taking into account that only a single spin
has to be flipped for the calculation of the trial state. Note that this result
refers to PBC. In the case of OBC the trace in Eq. (2.33) is replaced by a
scalar product, meaning that the first and the last matrix represent vectors
(see also [61]). This reduces the computational effort for the calculation
of the trial state to O(ND2) operations. For M MC sweeps we obtain in
total O(MN log2(N)D3) operations for PBC and O(MN2D2) operations for
OBC. Exploiting single-spin flip dynamics in the case of OBC yields the
computational effort of PBC. Hence, this is only favorably, if N > log2 ND.

Finding the optimal measurement basis

The definition of LE (2.15) requires an optimization over all possible mea-
surement strategies. A good guess for the optimal basis can typically by
found using exact diagonalization for small system sizes, followed by numer-
ical maximization of the average entanglement. Alternatively, the optimal

3Note that with this definition the number of sweeps M is independent of the system
size N .
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basis can also be extracted directly from the MPS matrices Ai in (2.33).
Using a generalization of the concurrence for pure bipartite D × D states,
it has been shown in [74] (for an open chain with D-dimensional spins at
the ends), that the optimal basis is the same basis, that maximizes the ex-
pression

∑
si
| det(Asi

i )|2/D [see Appendix B for details]. This result can be
interpreted in the following way. We can consider the matrices Ai as (unnor-
malized) pure D×D× d states, for which we want to calculate the LE with
respect to the D × D system. Since we measure only on a single site this
problem is equivalent to calculating the EoA of the reduced (D2×D2) density
matrix, which can easily be done numerically. In the special case of qubit
bonds (D = 2) it can even be solved analytically (see [74] and Appendix B).
Remember that this argumentation has been derived based on the general-
ized concurrence, which, unfortunately, is not always a good entanglement
measure for D > 2. The question arises whether it also holds for other entan-
glement measures, such as the entropy of entanglement. To this end we have
computed numerically the LE of the tripartite states defined by the matrices
Ai for different entanglement measures and for different spin models. We
find that the optimal basis for this problem indeed coincides with the one for
our original problem, which we deduce from exact diagonalization of a small
chain. As a further numerical result we find that the optimal basis appears
to be independent of the system size. Hence, we find it most convenient to
determine the optimal basis for small systems using exact diagonalization
and then extrapolate the result to larger systems. Also, this approach turns
out to be more reliable with respect to the occurrence of local maxima in the
optimization problem.

Analytically, the determination of the optimal measurement strategy re-
mains a hard problem. So far it has been proven that an extremal basis
can be inferred from certain symmetries of the Hamiltonian, like parity sym-
metry [99]. It remains to be proven that this basis yields indeed the global
maximum for LE. However, our numerical findings give strong indications
that this connection holds.

Numerical Calculation of ground states based on the MPS formal-
ism

It has been mentioned already that the DMRG method of White [98] for
the calculation of many-body ground states yields a state in MPS form.
This method is very well suited both for finite and infinite systems with
OBC. Recently, it has been shown that it can be much more rewarding
to work directly with the MPS representation. E.g. in [100] it has been
demonstrated that this variational approach yields much better results for
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the computation of ground states in systems with PBC. Furthermore, it can
applied to the simulation of time evolution of quantum states [101, 102]
and the computation of excited states [103]. Using the picture of projected-
entangled-pair states this approach can even be generalized to two and higher
dimensions [44].

In the following we will propose an alternative numerical method for
computing ground states in 1D systems with PBC. It is based on the following
idea: We use the DMRG algorithm for an infinite chain to extract a site-
independent set of matrices As, defining a translationally invariant MPS
(2.30) for infinite N . We then us the same set As to construct a MPS
with PBC for arbitrary N . It is obvious that this method is very efficient,
particularly for large N , because we have to run the DMRG only once to
obtain the MPS representation for any system size. One might expect that
this increase in efficiency happens at the cost of precision. However, an
optimum in accuracy on the part of the MPS is not crucial for the numerical
calculation of the LE, since the limiting factor for the accuracy is typically
the MC method.

We start out with briefly reviewing the variant of DMRG, represented by
B •B [97], for an infinite 1D chain. At some particular step the chain is split
into two blocks and one spin in between. The left block (L) contains spins
1, . . . , M −1, and the right one (R) spins M +1, . . . , N . Then a set of D×D
matrices ÃsM is determined such that the state

|Ψ〉 =
d∑

s=1

D∑

α,β=1

ÃsM
α,β|α〉L ⊗ |s〉M ⊗ |β〉R, (2.37)

minimizes the energy. The states |α〉L,R are orthonormal, and have been
obtained in previous steps. They can be constructed using the recurrence
relations

|α〉L =
D∑

α′=1

d∑
s=1

U
[M−1],s
α,α′ |s〉M−1 ⊗ |α′〉L′ , (2.38)

where the block L′ contains the spins 1, . . . , M − 2.
Numerically we find that the matrices U [k],s can be chosen in such a

way that they converge to (site independent) matrices U s at the fix point
of the DMRG algorithm. Applying an appropriate transformation R, these
matrices U s can be used to construct a translationally invariant MPS (2.30)
with As = RU sR−1 = RÃsRT 4.

4We note that for antiferromagnetic systems only every second matrix U [k],s converges,
resulting in an alternating MPS structure As1Bs2As3 . . . BsN . One can show that the
translationally invariant state which minimizes the energy is then given by the linear
superposition As1Bs2As3 . . . BsN + Bs1As2Bs3 . . . AsN .
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As a first test of our method we have calculated the energy per site of an
infinite chain, using the translationally invariant MPS. We have confirmed
that the result is as accurate as the one obtained directly from DMRG. We
then applied it to construct ground states for finite chains with PBC and to
compute ground state expectation values according to (2.31). Our numerical
analysis of various 1D systems shows that both the energy and the two-
body correlation functions can be computed rather accurately. The achieved
accuracy is several orders of magnitude higher than finite size effects, but
also several orders of magnitude lower compared to the variational method
[100]. These findings hold for system sizes as low as N ≈ 10. This is rather
surprising, because the MPS is constructed from an infinite chain. We further
checked that also the long range behavior of correlations and entanglement
is reproduced correctly by our translationally invariant MPS.

To sum up, our numerical results indicate that translationally invariant
states can be sufficiently well approximated by a single set of MPS matrices
As for almost arbitrary system size N . This observation, together with the
findings in [74], might shed some light on our previous numerical finding
that the optimal measurement basis for LE is typically both site-and size-
independent.

2.5.2 Mixed states

Let us now consider the case of multipartite mixed states. Note that the
definition of LE (2.15) already includes the possibility of having a mixed state
ρ. This implies that the states ρ{s} = 〈{s}|ρ|{s}〉 after the measurements are
also mixed. Hence, we typically refer in the following to the LE as measured
by the negativity: LN

ij . Only in the special case of ρ{s} being a two qubit
state, we resort to the concurrence and thus LC

ij.

Numerical method

Our method for the numerical computation of LE in pure states can be
generalized to mixed states in the following way. The key point is to find
a representation of a mixed state in terms of low dimensional matrices Ak,
analogous to the MPS (2.30). This problem has been considered recently
in [102, 104]. There the concept of MPS is generalized to matrix product
density operators (MPDO), which are defined as

ρ =
d∑

s1,s′1,...,sN ,s′N=1

Tr(M
s1,s′1
1 . . .M

sN ,s′N
N )

×|s1, . . . , sN〉〈s′1, . . . , s′N |, (2.39)
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where M
sk,s′k
k are D2

k ×D2
k+1 matrices. They can be decomposed as

M s,s′
k =

dk∑
a=1

As,a
k ⊗ (As′,a

k )∗. (2.40)

The state ρ can be purified into a MPS by including ancilla states {|ak〉} of
dimension dk:

|Ψ〉 =
∑

s1,...,sN

∑
a1,...,aN

Tr

(
N∏

k=1

Ask,ak

k

)
|s1a1, . . . , sNaN〉. (2.41)

This means that thermal states of the form ρ ∝ e−βH = e−β/2H1le−β/2H can
be calculated by imaginary time evolution of the purification of the identity.
At each time step the dimension of the matrices Ak increases [105]. In [101,
102, 104] it is shown how to truncate the matrices to a maximal dimension
D in an optimal way. Note that this approach can also be used to simulate
real time evolution given by a generic Master equation.

Once a mixed state of the form (2.39) has been found one can calculate
the LE along the same lines as for pure states.

Computational effort

The numerical computation of LE for mixed states is much more time con-
suming than for pure stats. The reason is that the matrices Mk in (2.39) have
dimension D2×D2, compared to the D×D matrices Ak for pure states. Note
that the calculation of the trial state can be optimized by changing the order
in the contraction of tensor indices. One can show that in the case of PBC
the computation time is of the order O(MN log2(N)dD5) and for OBC it
scales as O(MN2dD3). Here, d denotes the dimension of the physical spin.
Typically, one has log2(N)D2 À N and thus the choice of OBC is prefer-
able. Note also that the algorithm for the calculation of thermal states using
MPDO’s is much faster with OBC than with PBC.

2.6 LE in spin-1/2 chains

In this section we apply the concept of LE to quantify the localizable ground
state entanglement of various spin-1/2 models. After some general consider-
ations we compute the LE as measured by the concurrence LC

i,j numerically
for two specific examples.
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2.6.1 General considerations

We consider spin-1/2 Hamiltonians of the form

H = −
∑
i,j

∑
α=x,y,z

γij
α σi

ασj
α −

∑
i

γiσz, (2.42)

with parity symmetry, [H, Πz] = 0 and Πz := ⊗N
i=1σ

i
z. Extensive numerical

calculations on systems of up to 20 qubits showed that our lower bound (2.25)
is always close to the LE as measured by concurrence LC

i,j, and typically is
exactly equal to it: this is surprising and highlights the tightness of the given
lower bound. Note also that whenever parity symmetry is present, the upper
and lower bound can be specified as follows:

max
(|Qij

xx|, |Qij
yy|, |Qij

zz|
) ≤ LC

i,j ≤

√
sij
+ +

√
sij
−

2
, (2.43)

sij
± =

(
1± 〈σi

zσ
j
z〉

)2 − (〈σi
z〉 ± 〈σj

z〉
)2

.

The fact, that the lower bound is usually tight, can also be derived from
the numerical observation that for Hamiltonians of the form (2.42) measure-
ments in the (standard) σz-basis (M = Z) yield in most cases the optimal
result. Expanding the ground state in that basis, |ψ〉0 =

∑
ci1...iN |i1 . . . iN〉,

it is straightforward to show that under certain assumptions for the coupling
coefficients γx and γy the ground state energy is minimized if all expansion
coefficients ci1...iN have the same sign. This guarantees, together with the
parity symmetry, that the average entanglement LZ,C

i,j for measurements in
the standard basis is equal to either the x − x or y − y correlation. To be
more precise we distinguish the following cases:

(γij
x − γij

y )(γij
x + γij

y ) ≥ 0 : LZ,C
i,j = |〈σi

xσ
j
x〉|, (2.44a)

(γij
x − γij

y )(γij
x + γij

y ) ≤ 0 : LZ,C
i,j = |〈σi

yσ
j
y〉|, (2.44b)

where the conditions refer to all sites i and j of the chain. Most of the promi-
nent spin Hamiltonians studied in literature, like the Heisenberg, XY or XXZ
model etc., trivially fulfill one of the conditions (2.44), because their coupling
coefficients are site-independent. Hence, measurements in the standard basis
would yield localizable quantum correlations that are completely determined
by classical correlations.

2.6.2 Ising model

As an illustration, let us now discuss the LE of the Ising model in a transverse
magnetic field (γij

α = λδα,xδj,i+1; γ
i = 1 in (2.42)), which has been solved ex-

actly [106] and exhibits a quantum phase transition at λ = 1. In this case,
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the maximal connected correlation function is always given by Qi,j
xx, which

thus yields the best lower bound on LE. Numerical optimization for a finite
chain indicates that the standard basis is indeed the optimal one and thus
the lower bound is equal to LC

i,j. We checked analytically, using perturbation
theory, that for an infinite chain this numerical result is indeed true. How-
ever, for a spin distance n = |i− j| one has to go to n-th order perturbation
theory, limiting this analytical treatment to rather small n.
Consequently, we can use exact results for the connected correlation func-
tion Qi,j

xx [106] to completely characterize the behavior of the LE in the Ising
chain. According to (2.43) we can also compute the upper bound AC

i,i+n

(2.21) exactly.
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Figure 2.2: Localizable Entanglement LC
ij and Correlation function Qij

xx

(both solid) and upper bound (2.21) (dashed) as a function of the coupling
parameter λ for the infinite Ising chain with spin distance n = 1 (left) and
n = 10 (right).

In Fig. 2.2 we plot the lower bound Qi,i+n
xx and the upper bound AC

i,i+n

as a function of the coupling strength λ for two different distances n. Both
bounds are monotonously increasing functions of λ. The difference between
them increases with increasing spin distance n. In the region λ < 1 one finds
that the upper bound saturates at a finite value for n → ∞. The reason
is that joint measurements can be understood as entanglement swapping
that transfers nearest neighbor entanglement to arbitrary distances. For
λ > 1 the lower bound approaches Qi,i+n

xx → (1 − λ−2)1/4 for large n, which
implies a diverging entanglement length ξE. In the limit λ →∞ the ground
state becomes a GHZ-state and the localizable entanglement is maximal. We
further note that the first derivative with respect to λ of both bounds (and
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Figure 2.3: Localizable Entanglement LC
i,i+4 (diamonds), lower bound

Qi,i+4
xx (solid) and upper bound AC

i,i+4(dashed) as a function of the cou-
pling parameter λ for the ground state of the Ising chain with broken parity
symmetry. Left: Parity symmetry is broken by a perturbing magnetic field
in the x-direction of strength hx = 10−3. Right: We mimic the behavior in
the thermodynamic limit with a finite chain by taking a symmetric super-
position of ground and first excited state for λ ≥ 1. Numerics are based on
exact diagonalization of a chain with N = 16 spins and periodic boundary
conditions. Measurements are performed in the σz-basis.

hence of LE) diverges at the quantum critical point λ = 1 for an infinite chain.
Following the analysis in [13], we can confirm that not only the concurrence
exhibits finite size scaling behavior in the vicinity of the transition point, but
also the localizable entanglement and the entanglement of assistance AC

i,i+n.
We have also considered a more realistic setup, in which the parity sym-

metry of the Ising Hamiltonian is broken. This can be done, for instance, by
including a perturbing magnetic field in the x direction. Alternatively, we
can define a new ground state for the region λ > 1, by taking a symmetric su-
perposition of the ground and first excited state. This is well justified for long
chains N À 1, because the energy gap vanishes like 1/N2 for λ > 1 [107].
Numerically, we are however restricted to rather small systems (N = 16).
Nevertheless we use this approach because it provides insight in the behav-
ior in the thermodynamic limit. The results for the LE and its bounds are
depicted in Fig. 2.3. We see that the entanglement is now maximal in the
vicinity of the quantum critical point λ = 1. Numerics confirm that the loca-
tion of the maximum approaches the critical point when the chain length is
increased 5. In the thermodynamic limit and with the perturbing field going

5Note that the maximum of the concurrence of the reduced density operator as studied
in [13, 14] is never exactly at the critical point, not even in the thermodynamic limit.
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to zero we again expect non-analytical behavior at the critical point.
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Figure 2.4: Numerical calculation of LC
i,i+n(diamonds) for the ground state

of the Ising chain in a transverse field ( γij
α = λδα,xδj,i+1; γi = 1 in (2.42)) as

a function of the spin distance n. For comparison we plot the exact result
[106] for the correlation function Qi,i+n

xx . Left: λ = 0.8, exponential decrease;
Right: critical point λ = 1, power law decrease (∼ n−1/4); Numerical pa-
rameters (see Sect. IV): N = 80, D = 16, MC sweeps M = 20, 000.

Characteristic features of a quantum phase transition can also be found
when studying the behavior of LE as a function of the spin distance for fixed
λ. This is also a good opportunity to test the numerical method outlined
in Sect. IV. In Fig. 2.4 we plot LC

i,i+n and Qi,i+n
xx as a function of the spin

distance n for a chain with N = 80 sites. For λ < 1, the LE decreases
exponentially with n, and the entanglement length is finite. At the quantum
critical point λ = 1, the behavior of the LE changes drastically, because it
suddenly decreases as a power law, LC

i,i+n ∼ n−1/4, thus leading to a diverging
entanglement length ξE. In Fig. 2.4 we observe that the MC method becomes
less accurate at the critical point. As we will see later, one reason is that the
statistical error due to entanglement fluctuations becomes rather large at the
critical point (see Fig. 2.5). Another (systematic) error might be induced by
the single-spin-flip dynamics used to create the trial state. Better results for
the critical region could possibly be achieved by applying the Wolff algorithm
[108]. Here, a cluster of spins depending on their spin orientation is flipped,
which accounts for the formation of domains.

Let us now study whether characteristic features of a quantum phases
transition can also be found in the entanglement fluctuations δLC

i,i+n (2.19).
In Fig. 2.5 we plot δLC

i,j for different distances n and chain lengths N as
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Figure 2.5: Exact calculation of entanglement fluctuations δLC
i,i+n (2.19) as

a function of the coupling parameter λ for a finite Ising chain in a transverse
magnetic field with PBC. Left: distance n = 1, N = 6 (dashed), N = 12
(dotted), N = 16 (solid); Right: distance n = 4, N = 9 (dashed), N = 12
(dotted), N = 16 (solid).

a function of the coupling λ. The maximum of the fluctuations is always
located in the vicinity of the critical point λ = 1 and gets shifted to larger
λ values with increasing N . Thus the increasing entanglement fluctuations
reflect very well the increasing complexity of the wavefunction close to the
critical region. The location of the maximum λm in the thermodynamic limit
(N →∞) apparently depends on the distance n of the two spins. For nearest
neighbors (n = 1) we observe that the maximum of δLC

i,i+1 is somewhat
shifted to the right of the critical point (λm ≈ 1.025). For all distances n > 1,
however, our numerical calculations show that the maximum is positioned at
λ < 1 but becomes asymptotically close to the critical point with increasing
n (for n = 4 see Fig. 2.5). Furthermore, in Fig. 2.5 we see that the absolute
value of the maximum increases with n and becomes comparable with LC

ij

itself 6. The strong fluctuations inherent to the Ising model lead to large
statistical errors in the numerical calculation of LE using Monte Carlo (see
(2.35)). The errors become even more pronounced for the calculation of the
fluctuations. This is the main reason, why we have restricted ourselves here to
exact calculations for a small system with PBC. However, we confirmed that
the data for N = 16 represents the behavior in the large N limit reasonably
well and no qualitative changes occur.

6We note that for λ < 1 the ratio δLC
i,j/LC

i,j can be much larger than one.
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2.6.3 XXZ model

Let us now turn to the discussion of another exactly solvable 1D spin system,
the so called XXZ model [109]. This model not only appears in condensed
matter physics in the context of ferro- or antiferromagnetic materials. Re-
cently it has been shown that it can also effectively describe the physics
of ultra cold atoms in a deep optical lattice [36]. The Hamiltonian can be
written as

HXXZ = −
∑

i

[σi
x σi+1

x + σi
y σi+1

y + ∆ σi
z σi+1

z +
h

J
σi

z ], (2.45)

where we have introduced two dimensionless parameters, which can be varied
independently: the anisotropy ∆ and the magnetic field h/J in units of the
exchange coupling. The phase diagram of the XXZ model as a function of
these two parameters [109] is depicted in Fig. 2.6.
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Figure 2.6: Schematic drawing of the phase diagram of the XXZ model
(Eq. (2.45)) as a function of the anisotropy ∆ and the magnetic field h/J
[109]. In regions A and C the ground state has an energy gap, whereas in
region B the system becomes gapless (critical). Point E is the ferromagnetic
XXX point and point D corresponds to the antiferromagnetic XXX point.

The XXZ model can be solved exactly using the Bethe ansatz [110]. Un-
fortunately analytical expressions for the correlation functions, which would
yield lower bounds for LE, have only been worked out in special cases. E.g.
for the antiferromagnetic XXX model in a magnetic field (line of constant
∆ = −1 in Fig. 2.6) analytical solutions for the correlations are summarized
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in [79]. Numerics on a finite chain of up to 14 spins show that again mea-
surements in the σz-basis appear to be optimal. Using the result (2.44a) this
implies that LC

i,i+n = 〈σi
xσ

i+n
x 〉. Hence the bounds given in [79] are tight. In

particular this means that the entanglement length is zero for h/J > 4, and
infinite for h/J ≤ 4.

Let us now explore other regions of the phasediagram in more detail. In
particular, we are interested in finding characteristic features in the LE at
the quantum phase transitions indicated by the lines a and b in Fig. 2.6. For
this purpose we calculate in the following the LE (for fixed n) numerically,
using exact diagonalization, as a function of the two parameters ∆ and h/J .

LE as a function of the magnetic field h/J

In Fig. 2.7 we plot the nearest-neighbor entanglement LC
i,i+1 and the lower

bounds Qi,i+1
xx and Qi,i+1

zz as a function of the field h/J for fixed ∆ = 0.5. We
find that LC

i,i+n = 〈σi
xσ

i+n
x 〉. This result follows from Eq. (2.44a) and our

numerical observation, that the σz-basis appears to be optimal in the entire
half space ∆ ≥ −1. At the critical point the LE becomes zero, because the
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Figure 2.7: Calculation of the localizable entanglement LC
i,i+n (diamonds),

the upper bound given by the EoA (2.21) (dashed) and the lower bounds
Qii+n

xx (solid) and Qii+n
zz (dotted) as a function of the field h/J for the ground

state of the XXZ model (2.45). The numerical calculation is performed using
exact diagonalization of a chain with N = 16 sites and PBC. The distance
of the two spins is n = 4 sites; Up: ∆ = 0.5; Down: ∆ = −2;

ground state is given by a product state. Note that this phase transition
(indicated by line a in Fig. 2.6) is sharp even for finite systems, since it is
due to level crossing [109].
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We now investigate the region ∆ < −1, which contains a second quan-
tum phase transition (indicated by line b in Fig. 2.6). The dependence of
the LE and its bounds on the magnetic field for fixed ∆ = −2 is depicted
in Fig. 2.7. We again observe a sharp phase transition at h/J ≈ 6, when
the system enters the unentangled phase A (Fig. 2.6). At h/J ≈ 1.6 the LE
experiences a sudden drop-off. However, it remains to be checked, whether
this step is due to finite size effects or a characteristic feature of a quan-
tum phase transition. Note that for h/J . 1.6 we obtain that LC

i,j = Qij
zz.

This feature can be understood by considering the limiting case of zero field
and ∆ → −∞. There, the Hamiltonian HXXZ commutes with the parity
operator in x-direction, Πx =

⊗N
i=1 σi

x, and the (doubly degenerate) ground
state for even N is given by |ψ〉 = 1/

√
2 (|0101...01〉 ± |1010...10〉). After

suitable projective measurements in the x-direction these states reduce to
maximally entangled Bell states |Ψ±〉 = 1/

√
2 (|01〉 ± |10〉). Hence in this

limit LC
i,j = Qij

zz → 1 and the σx-basis turns out to be the optimal one. This
line of reasoning strictly holds only in the limit ∆ → −∞, but can qualita-
tively be extended to the whole region C (Fig. 2.6).
For h/J & 1.6 we find the interesting feature that the LE is not exactly
equal to the maximum correlation function [Fig. 2.7]. Note also that in this
region the maximum correlation function changes from Qij

zz to Qij
xx. When

approaching the critical point h/J ≈ 6 the standard basis becomes close to
optimal again and LC

i,j ≈ Qij
xx.

In the following we have a closer look on the phase transition between the
regions B and C in Fig. 2.6.

LE as a function of the anisotropy ∆

We consider the case of zero magnetic field and study the LE as a function of
∆ in the vicinity of the antiferromagnetic XXX point. At the critical point
∆ = −1 the ground state undergoes a Kosterlitz-Thouless [18] quantum
phase transition. In Fig. 2.8 we have calculated numerically the localizable
entanglement LC

i,i+1 for nearest neighbors and the corresponding lower bounds
Qi,i+1

xx and Qi,i+1
zz .

One sees that LC
i,i+1 is equal to the maximum correlation function. How-

ever, at the critical point the maximum correlation function changes, due to
the crossing of Qi,i+1

xx and Qi,i+1
zz , thus leading to a cusp in the LE. Hence

the quantum phase transition is characterized by a discontinuity in the first
derivative of LC

i,i+1. This result is remarkable, because for this Kosterlitz-
Thouless transtion the ground state energy (i.e nearest neighbor correlation
functions) and all of its derivatives are continuous [111]. Also the concur-
rence of the reduced density matrix ρi,i+1 and its derivatives are continuous
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Figure 2.8: Calculation of LC
i,i+1 (diamonds) and the lower bounds Qi,i+1

xx

(solid) and Qi,i+1
zz (dotted) as a function of the anisotropy ∆ for the XXZ

model (2.45) with zero field h/J . At the critical point ∆ = −1 the LE
exhibits a cusp, in contrast to the monotonic behavior of the correlation
functions. The calculation is performed using exact diagonalization and
numerical optimization for a chain of length N = 10 with periodic boundary
conditions.

[112, 113], which is not very surprising, because the concurrence is a function
of one-particle and two-particle correlation functions. We further note that,
according to our numerical analysis the reason for the cusp in LC

i,i+1 is that
the optimal measurement basis changes at the critical point abruptly from
the σz- to the σx-basis.

So far this is a purely numerical finding for a finite dimensional system.
However, given that the average entanglement can be maximized by apply-
ing the same unitary transformation on all spins, one can rigorously show
that indeed a cusp in the LE must occur exactly at the critical point and
independently of the size N . The argument goes as follows: At the antifer-
romagnetic XXX point the Hamiltonian (2.45) possesses SU(2) symmetry.
This means that any measurement basis yields the same LE. In particular,
we know from (2.44a) that for measurements in the standard basis the LE
is equal to the correlation function Qi,i+1

xx . At the critical point we thus
have: LC

i,i+1 = Qi,i+1
zz = Qi,i+1

xx . Since connected correlation functions yield a
lower bound to LC

i,i+1 (see Sect. III) the localizable entanglement LC
i,i+1 must

exhibit a cusp at the critical point, where Qi,i+1
zz and Qi,i+1

xx cross.

In summary our discussion of the LE in ground states of various spin-1/2
models has shown in which parameter regimes these systems can be used
for e.g. localizing long-range entanglement as indicated by the entanglement
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length. We have further seen that the study of LE provides a valuable tool
for detecting and characterizing quantum phase transitions. To be more
specific we find the following features in the LE at the quantum critical
point: (i) divergence of the first (or second) derivative of LE with respect to
the critical coupling parameter; (ii) divergence of the entanglement length;
(iii) maximum of the entanglement fluctuations. In addition our numerical
results indicate that the localizable ground state entanglement of spin-1/2
Hamiltonians with two-spin nearest neighbor interactions is typically very
well described by the maximum correlation function. We will now see that
this observation is not necessarily true for spin-1 systems.

2.7 LE in gapped spin-1 chains

We study the ground state entanglement of the (generalized) spin-1 antifer-
romagnetic Heisenberg chain:

HAF =
N−1∑
i=1

[
~Si · ~Si+1 − β(~Si · ~Si+1)

2
]
, (2.46)

which includes a biquadratic term. In a recent work [38] it has been demon-
strated that quantum Hamiltonians of this kind can be implemented with
ultra cold atoms trapped in an optical lattice potential.

2.7.1 General considerations

In the Haldane phase (−1 < β < 1) and in the dimerized phase (β > 1) the
energy spectrum of (2.46) is gapped. Thus both phases are characterized by
a finite correlation length. The structure of the dimerized states indicates
that the entanglement length in this phase is finite as well. In contrast,
at the AKLT [78] point (β = −1/3), which is in the Haldane phase, the
entanglement length diverges [74]. This is one of the intriguing examples,
which show that quantum correlations and classical correlations can exhibit
completely different scaling behavior. In this context the question arises,
whether the complete Haldane phase is characterized by a diverging entan-
glement length and thus could be clearly distinguished from the dimerized
phase? To this end we will study the LE of a further prominent example in
the Haldane phase, which exhibits the most natural spin interaction, namely
the Heisenberg antiferromagnet (AF) (β = 0).

The spin-1 Heisenberg AF is interesting also from a different point of
view. It has been shown by Haldane [114] that in the case of half-integer
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spins the spectrum of this model is gapless in the thermodynamic limit,
and thus the correlation length of the ground state is infinite. For integer
spins, however, an energy gap emerges, resulting in a finite correlation length.
It is interesting to study whether a similar connection holds true for the
LE and the corresponding entanglement length. In this context the lower
bound (2.25) provides already some insight. The predicted infinite correlation
length in spin-1/2 systems (with integer log2(2S + 1)) automatically implies
a diverging entanglement length. However, in the case of integer spins the
correlation length is finite. Hence, the lower bound (2.26) for spin-1 systems
leaves the possibility of an infinite entanglement length, which motivates the
calculation of LE in this model.

2.7.2 Heisenberg Antiferromagnet

In the case of the spin-1 Heisenberg AF we cannot resort to an analytical
solution as for the AKLT, and thus have to rely on numerical methods.
We start our analysis by performing exact diagonalizations for an open chain
of up to 10 sites. At the endpoints we couple to S = 1/2 spins thus making
sure that the system is in the singlet ground state. We are interested in the
LE between the endpoints of the chain. Since the end spins are represented
by qubits we can still refer to the LE as measured by the concurrence: LC

1,N .
Our numerical analysis shows that the optimal measurement basis is given
by the same local unitary transformation:

U =
1√
2




1 0 1

0
√

2 0
−1 0 1


 , (2.47)

as for the AKLT. This strategy produces a maximally entangled state be-
tween the end spins (LC

1,N = 1). This numerical finding has later been con-
firmed analytically by Venuti and Roncaglia [99] using symmetry considera-
tions. This surprising result can be understood from the analytical study of
the AKLT model in [74]. In a singlet valence bond picture measurements in
the basis (2.47) can be interpreted as Bell measurements in the symmetric
subspace of two (virtual) qubits, which leads to entanglement swapping.

Let us now investigate, whether this effect is just a numerical artifact
due to the coupling to qubits at the endpoints 7. For this purpose we apply
our numerical method outlined earlier. The LE in its variant LEE

ij (see (2.3))

7The coupling to qubits at the chain ends can indeed have significant impact on the
structure of the ground state wavefunction. For instance, it has been predicted that for
such a system the dimerized phase would exhibit a diverging entanglement length [99]
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is computed for a chain with PBC and a large number of sites (N = 80).
We have chosen PBC in order to lift the degeneracy of the ground state

5 10 15
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0.4

0.6

0.8

1

n

Figure 2.9: Calculation of LEE
i,i+n (diamonds) for the ground state of the

antiferromagnetic spin-1 Heisenberg chain with N = 80 sites as a function of
the spin distance n. For comparison we plot the correlation function Qi,i+n

xx

computed directly from the MPS (squares) and using Monte Carlo (circles).
Numerical parameters: Dimension of MPS matrices D = 16, MC sweeps
M = 20, 000.

in the thermodynamic limit. In Fig. 2.9 we see that the LE saturates at
a finite value LEE

i,i+n → 0.960 ± 0.003 for large n, whereas the correlations
decrease exponentially. This demonstrates that the ground state of the anti-
ferromagnetic spin-1 Heisenberg chain could be used to distribute EPR-like
entanglement over arbitrary distances by performing local operations on the
intermediate spins. As mentioned earlier this result might be particularly
interesting in the context of quantum repeaters.
Let us now come back to Haldane’s result for the Heisenberg AF stated in
the beginning of this section. Our numerical study of the spin-1 case might
give a first indication that, unlike the correlation length, the entanglement
length is infinite for both half-integer and integer spins.

2.7.3 Connection of LE to hidden order and many-
body correlation functions

At this point it is appropriate to comment on a possible connection between
LE and many-body correlation functions, which might detect the presence
of (hidden) long range order in the system. Our numerical results show that
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the ground state of the spin-1 Heisenberg AF exhibits long range order in
terms of the localizable entanglement, which is not reflected by two-body
correlation functions. However, one can define a multi-particle correlation
function, the so called string order correlation function [115], which detects
this hidden order in the ground state. The string order correlation function
has been argued to be of topological nature and is defined as

Qi,i+n
so = 〈Si

z

[⊗i+n−1
k=i+1Rk

]⊗ Si+n
z 〉, (2.48)

with Rk = exp
(
iπSk

z

)
. A non-vanishing string order parameter, ξso :=

limn→∞ Qi,i+n
so , indicates the presence of long range (hidden) order. As an

obvious generalization of the string order correlation function to arbitrary
models, let us define a connected version in a variational way. Consider the
set of all observables {Ô} with bounded spectrum −11 ≤ Ô ≤ 11. We de-
fine the connected string order correlation function Qi,i+n

cso (and the related
parameter ξcso) for a given translational invariant state as

Qi,i+n
cso = max

−11≤Ô1,Ô2≤11
〈Ôi

1

[
⊗i+n−1

k=i+1Ô
k
2

]
Ôi+n

1 〉c. (2.49)

Here 〈A1A2 . . . An〉c denotes the connected n-point correlation function, which
can be defined in a recursive way:

〈A1〉 = 〈A1〉c, (2.50)

〈A1A2〉 = 〈A1〉c〈A2〉c + 〈A1A2〉c, (2.51)

〈A1A2A3〉 = 〈A1〉c〈A2〉c〈A3〉c + 〈A1〉c〈A2A3〉c (2.52)

+ 〈A2〉c〈A1A3〉c + 〈A3〉c〈A1A2〉c
+ 〈A1A2A3〉c,
...

Note that the connected part assures that Qi,i+n
cso measures a nonlocal cor-

relation, and that the string order parameter of the AKLT-ground state is
indeed recovered by this definition.

It has been verified numerically that ξso is finite for the ground state of
the spin-1 Heisenberg AF. This fact can rigorously be proven for the related
AKLT-ground state [78]. For this state it was further shown that the LE
saturates as well with the spin distance n [74]. Hence one might expect a
connection between the existence of long range order in the entanglement
and long range order indicated by the string order parameter. However, one
can find examples for which this connection does not hold.
For instance, in [74] it has been shown that already an infinitesimal deforma-
tion of the AKLT model leads to an exponentially decreasing LE, whereas
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ξcso stays finite. On the other hand, ground states exist that exhibit a diverg-
ing entanglement length but vanishing ξcso. A simple example can be found
in the class of MPS (2.30) defined on qubits (d = 2) and with qubit bonds
(D = 2). Note that all these MPS are guaranteed to be ground states of
some local Hamiltonians. Furthermore, for MPS with qubit bonds the string
order parameter and the LE can easily be computed analytically (see [74]
and Appendix B). In particular, let us study the translationally invariant
MPS defined by the matrices

A1 = σz + σy A2 = σz − i11. (2.53)

The entanglement length can easily be proven to be infinite. A necessary
condition for ξcso to be nonzero is that there exists a unitary operator Ô2 for
which the largest eigenvalue of EÔ2

has the same magnitude as the maximal
eigenvalue of E11 (Appendix B). For the example given, this is impossible,
hence providing an example of a ground state with a diverging entanglement
length but no long range hidden order.

This discussion shows that in general long range order in LE is not directly
related to string-order. However, it is important to note that for real pure
(qubit) states (e.g. ground states of real Hamiltonians) the LE as measured
by the concurrence, LC

i,j, can always be written as a complicated multi-partite
correlation function (see also [99]). Out of an exponential number of possi-
bilities LE determines the maximum correlation function, which, in addition,
has a clear meaning in terms of an entanglement measure. In this sense the
definition of LE determines the correlation function, which detects the sort
of long range order, that is suitable for localization of entanglement.

2.7.4 AKLT model: Study of thermal state entangle-
ment

Next we are interested in the entanglement properties of the Heisenberg AF
at finite temperature. For numerical reasons we have to choose the AKLT
model instead, because it can be approximated more efficiently in terms of
MPS. We expect that our findings are also representative for the Heisenberg
AF. In order to decrease computation time even further we are using OBC
(see 2.5.2).

Let us first discuss the optimal measurement strategy for LE. We point
out, that with OBC the ground state of the AKLT is four-fold degenerate 8.
Thus for T → 0 the density matrix is an equal mixture of these four states,

8We note that the degeneracy in the case of OBC could be lifted by placing S = 1/2
spins at the ends. For technical reasons we do not consider this situation.
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Figure 2.10: Calculation of the LE as given by LN
i,i+n for thermal states

of the AKLT model as a function of the spin distance n and for various
temperatures T . We have chosen a chain with OBC and N = 50 sites. We
note that almost identical data can be obtained for N = 20, indicating that
our results are already close to the thermodynamic limit. The thermal states
are computed numerically based on the MPS method [102] with maximum
bond size D = 10. For the computation of LE we perform M = 5, 000 Monte
Carlo sweeps.

which strongly reduces the LE compared to e.g. the singlet ground state
studied in [74]. On the other hand it is known that the degeneracy results
only from the end spins of the chain. Thus, one can strongly reduce this
boundary effect by choosing the two spins, i and i + n, to be far away from
the boundaries. For this situation we found that the optimal measurement
scheme for LE is given by measurements in the U -basis (2.47) on the spins
between sites i and i + n, and in the standard basis everywhere else. This
result is not very surprising in terms of the valence bond picture in [74].
Entanglement swapping is only needed between the two spins of interest,
whereas the effect of the degeneracy can be minimized by measuring the
outer spins in the standard basis. Using this strategy we plot in Fig. 2.10
the LE, as given by LN

i,i+n, depending on the spin distance n for various
temperatures T . The temperatures are chosen to be of the order of the
energy gap [116].

The data indicates an exponential increase of the entanglement length
ξE ∼ eα/T with α ≈ 0.8, thus leading smoothly to an infinite entanglement
length at zero temperature. This behavior is not unexpected for a 1D system
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from the perspective of the Mermin-Wagner theorem [117]. However, it is
not clear whether this theorem is really applicable to phase transitions in
terms of LE. It is more inspiring to treat this problem on the basis of pro-
jected entangled-pair states [44]. In this picture a finite temperature phase
transition for LE could possibly occur for two or more dimensions. We note
that recently such a transition has been shown to exist for 3D cluster states
[83]. Finally we would like to point out that, although the entanglement
length of the AKLT model is finite for T > 0, it can still be considerably
large for sufficiently low temperatures T . 0.2. Thus for practical purposes
this system might still be useful, e.g. for quantum repeater setups.



Chapter 3

Cooling of atoms in optical
lattices

Ultra cold atoms stored in optical lattices can be controlled and manipu-
lated with a very high degree of precision and flexibility. This places them
among the most promising candidates for implementing quantum compu-
tations [46, 118, 119, 47, 44] and quantum simulations of certain classes of
quantum many–body systems [33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Quantum
simulation would allow us to understand physical properties of certain ma-
terials at low temperatures that so far have eluded a theoretical description
or numerical simulation. However, both quantum simulation and quantum
computation with this system face a crucial problem: the temperature in
current experiments is too high. In this chapter we propose and analyze
several methods to decrease the temperature of atoms in optical lattices and
thus to reach the interesting regimes in quantum simulations, as well as to
prepare defect–free registers for quantum computation.

So far, several experimental groups have been able to load bosonic or
fermionic atoms in optical lattices and reach the strong interaction regime
[24, 25, 26, 27, 28, 29, 30, 31, 32]. The analysis of experiments in the Tonks
gas regime indicates a temperature of the order of the width of the lowest
Bloch band [25], and for a Mott Insulator (MI) a temperature of the order
of the on-site interaction energy has been reported [43, 26]. For fermions
one observes temperatures of the order of the Fermi energy [120, 121, 122].
Those temperatures severely restrict the physical phenomena that can be
observed and the quantum information tasks that can be carried out with
these lattices.

One may think of several ways of cooling atoms in optical lattices. Since
the process of loading atoms into the lattice may lead to additional heat-
ing [123] we focus here on methods that operate once the lattice potential

51
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has been raised. For example, one may sympathetically cool the atoms in
the lattice using a second Bose–Einstein condensate [35, 124]. A completely
different approach is the filtering scheme of Rabl et al. [45]. It operates in
the no-tunnelling regime, transferring atoms between optical lattices so as to
create a configuration with one atom per site. Such a loading scheme can,
however, originate holes due to imperfections in the original cloud. In this
thesis we propose several cooling schemes, which overcome the limitations of
filtering. The main results of this chapter can be summarized as follows:

(i) We discuss realistic values for temperature and entropy in current
experimental setups.

(ii) We develop a fermionization procedure for the Bose-Hubbard model,
which maps one species of interacting bosons into two species of non-interacting
fermions. This approach is valid for a deep optical lattice and thermal states
at low temperatures. It allows us to compute important observables, such as
entropy or density, analytically.

(iii) We define appropriate figures of merit based on the entropy of thermal
states in order to quantify the cooling performance of our schemes.

(iv) We analyze the cooling efficiency of the original filtering scheme [45]
in the presence of a harmonic trap. We show that the residual defects (holes)
are preferably located at the borders of the cloud and result in a considerable
amount of entropy [64].

(v) In order to overcome the limitations of filtering we propose, analyze
and compare novel cooling schemes which aim at cooling atoms to the ground
state of a deep optical lattice. The first set of schemes uses discrete opera-
tions to make atoms in different sites interact, thus concentrating the entropy
on some atoms which are then expelled from the lattice. Due to the simi-
larity with quantum information processing, we term this kind of methods
algorithmic cooling 1. The second set of cooling methods combines filtering
with either particle hopping or evaporative cooling techniques. We provide
a complete analytical and numerical description of our protocols. Attainable
temperatures are predicted to be low enough for practical purposes. We note
that our cooling protocols do not require single–site addressing and consider
the residual harmonic confinement present in current experiments. Although
we will be mostly analyzing their effects on bosonic atoms, they can also be
trivially generalized to fermions.

1Note that our concept of algorithmic cooling of atoms has to be clearly distinguished
from algorithmic cooling of spins which is a novel technique that allows to create highly
polarized ensembles of spins in the context of NMR experiments, see e.g. P. O. Boykin, T.
Mor, V. Roychowdhury, F. Vatan, and R. Vrijen, Proc. Natl. Acad. Sci. USA 99, 3388
(2002).
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(vi) We design algorithmic protocols that very efficiently remove all resid-
ual defects after filtering, thus producing an ensemble of perfect registers for
quantum computing [44]. We also propose how to create pointer atoms at
the endpoints of these registers and show how these pointers can be used to
tailor the register to a specific length.

(v) Since filtering is an important ingredient of all our protocols, we pro-
pose two new physical realizations of filtering. The first one is much faster
than previous proposals [45, 125]. The second one can be implemented rather
easily and operates in a continuous way.

In Appendix D we present a detailed description of the numerical method
that we use in order to simulate classically correlated many-body states.

3.1 Physical system

3.1.1 Bose-Hubbard model

We consider a gas of ultra-cold bosonic atoms which have been loaded into
a three dimensional (3D) optical lattice. This lattice is created by six laser
beams of wave vector k = 2π/λ propagating along three orthogonal direc-
tions. If the laser light is off-resonant with any atomic transition, the AC
Stark effect induces a periodic potential on the atoms of the form:

V (x, y, z) = V0x sin2(2kx) + V0y sin2(2ky) + V0z sin2(2kz), (3.1)

with a strength or “lattice depth” V0 proportional to the dynamic atomic
polarizability and the laser intensity. The Gaussian intensity profile of the
laser beams creates an additional harmonic confinement, which is typically
much stronger than any magnetic confinement [24].

In the following we will mostly be concerned with one-dimensional (1D)
lattices. In other words we will assume that the lattice potential is so strong
along two directions, V0y, V0z À V0x that tunnelling is only allowed along the
third one. We will also assume that the confinement along all directions is still
much stronger than the atomic interaction strength. Under these conditions,
the atoms can be described using a 1D single-band Bose-Hubbard model
(BHM) [126], which for a lattice of length L reads

HBH =

L/2−1∑

k=−L/2

[
−J(a†kak+1 + h.c.) +

U

2
nk(nk − 1) + bk2nk

]
. (3.2)

The parameter J denotes the hopping matrix element between two adjacent
sites, U is the on-site interaction energy between two atoms and the energy b
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accounts for the strength of the harmonic confinement. Second quantization
operators a†k and ak create and annihilate, respectively, a particle on site

k, and nk = a†kak is the occupation number operator. Since the tunnelling
rate decreases exponentially with the trapping strength, V0, while the on-site
interaction U remains almost constant [126], we have adopted this last value
as the unit of energy for our work. By increasing the intensity of the lattice
laser beams one can decrease the hopping rate J until the interaction energy
U dominates the dynamics. At U/zJ ≈ 5.8, with z being the number of
nearest neighbors, the system undergoes a quantum phase transition from
a superfluid (SF) to a Mott insulator (MI) [126]. This phenomenon was
first observed by Greiner et al. [24] in 2002. In the SF regime particles are
delocalized over all lattice sites. In 1D without harmonic trap the SF ground
state reads:

|ψ0〉SF ∝



L/2−1∑

k=−L/2

a†k



⊗N

|0〉, (3.3)

where N is the particle number. In the MI regime particles are localized at
individual lattice sites:

|ψ0〉MI ∝
L/2−1⊗

k=−L/2

(
a†k

)ν

|0〉. (3.4)

The parameter ν = N/L is called the filling factor of the lattice. For very
shallow harmonic traps, negligible tunnelling J/U ¿ 1 and N < L the
ground state is a MI with ν = 1, which is centered around the bottom of the
trap. In the Fock basis this MI state can be written as:

|ψ0〉MI = |0L/2 . . . 0−N/2−11−N/2 . . . 1N/2−10N/2 . . . 0L/2−1〉. (3.5)

This state will be the target ground state for all our cooling schemes.

3.1.2 Initial states

Throughout this chapter we will work with 1D thermal states in the grand
canonical ensemble, which are characterized by two parameters: the tem-
perature kT = 1/β and the chemical potential µ. We are particularly in-
terested in the no-tunnelling limit 2, J → 0. In this limit the Hamilto-
nian (3.2) becomes diagonal in the Fock basis of independent lattice sites:

2The condition for the no-tunnelling regime in the presence of a harmonic trap is given
by |J/(bN)|2 ¿ 1, i.e. the hopping matrix element is much smaller than the average energy
spacing between single particle states located at the borders of the trap. If desired one
can also demand |J/b|2 ¿ 1, which ensures that single particle eigenfunctions even at the
bottom of the trap are localized on individual lattice wells [127].
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Figure 3.1: Illustration of important energy scales for bosonic atoms in
an optical lattice in the no-tunnelling regime: on-site interaction energy U ,
chemical potential µ, and harmonic confinement Vho = bk2. The character-
istic size of the atomic cloud is given by kµ =

√
µ/b.

{|n−L/2 . . . n0 . . . nL/2−1〉} and the density matrix becomes a tensor product
of thermal states for each lattice site,

ρ =
1

Θ
e−β(HBH−µN) =

L/2−1⊗

k=−L/2

ρk. (3.6)

This simplifies calculations considerably and for instance the von-Neumann
entropy can be written as the sum over single–site entropies

S(ρ) = tr(ρ log2 ρ) =
∑

k

S(ρk). (3.7)

Let us now study thermal states of the form (3.6) in more detail. All rel-
evant energy scales, which determine the structure of this state, are depicted
in Fig. 3.1. Since we are interested in cooling it is of central importance to
know the typical temperature (or entropy) and chemical potential (or par-
ticle number) in current experiments. The analysis of recent experiments
in the Tonks gas regime [25] implies an entropy per particle s := S/N ≈ 1
[128]. For the MI regime a temperature on the order of the on-site interaction
energy U has been reported [43, 26]. We will now show that both findings
are consistent with each other. First we note that the particle number in
a 1D tube of a 3D lattice as in [24] typically ranges between N = 10 and
N = 130, with an average value of about N = 65. For a typical trap strength,
b = U/370, we have constructed a thermal state in the no-tunnelling regime
which yields the expectation values N = 65 and s = 1. The resulting density
distribution is depicted in Fig. 3.2a. The inverse temperature is given by



56 Cooling of atoms in optical lattices

−40 −20 0 20 40
0

0.5

1

1.5

2

〈 n
 〉

k

a

−40 −20 0 20 40
0

0.5

1

1.5

2

〈 n
 〉

k

II

II

b

Figure 3.2: (a) Density distribution of two thermal states with equal Rényi
entropy S2/N = 0.82 (S/N = 1 in MI phase) and equal particle number
N = 65. At hopping rate J/U = 0 (solid) the temperature is given by
kT/U = 0.32 and at J/U = 0.16 (V0 = 5Er) (dashed) one obtains kT/U =
0.46. The harmonic confinement is fixed at U/b = 370 (V0 = 22Er in
transverse direction). (b) The separation into two fermionic phases becomes
clearly visible in the density profile of a thermal state at low temperatures.
Numerical parameters: J = 0, kT/U = 0.072, µ/U = 1, U/b = 800, (N =
65, s = 0.5).

βU = 3.1, which is in good agreement with the findings in [43, 26]. Hence, it
is reasonable to take a thermal state with s = 1 as starting point for testing
our cooling schemes later in this chapter.

We have seen that the typical inverse temperature in current experiments
is βU & 1. Since our cooling protocols lead to even lower temperatures, we
will from now on focus on the low temperature regime, βU À 1. Moreover,
we will only consider states with at most two particles per site, which puts
the constraint µ . 2U − 1/β on the chemical potential. Such a situation
can either be achieved by choosing the harmonic trap shallow enough or by
applying an appropriate filtering operation [45].

Effective description in terms of fermions

Under the assumptions eβU À 1 and µ−U/2 & b+1/(2β) we will now show
that the density distribution of the initial state (3.6) can be separated into
regions that are completely characterized by fermionic distribution functions
of the form:

fk(b, β, µ) =
1

1 + eβ(bk2−µ)
. (3.8)

To be more precise, we want to show the following two features:
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(i) for sites at the borders of the density distribution, bk2 À µ − U/2 +
1/(2β), the mean occupation number is given by 〈nk〉 ≈ nI(k) with nI(k) :=
fk(b, β, µ).
(ii) In the center of the trap, bk2 ¿ µ− U/2− 1/(2β), one has: 〈nk〉 ≈ 1 +
nII(k) with nII(k) := fk(b, β, µII) and effective chemical potential µII := µ−U .

The argument goes as follows. Starting from the thermal state (3.6), with
parameters β, µ and b, the grand canonical partition function for site k is
given by:

Θk = 1 + a xk + b x2
k, (3.9)

with xk = e−βbk2
, a = eβµ and b = eβ(2µ−U). In this notation the probabilities

pn
k of finding n particles at site k can be written as: p0

k = 1/Θk, p1
k = a x/Θk

and p2
k = b x2/Θk. For analyzing these functions we split the lattice into a

central region and two border regions. For lattice sites at the borders one
finds bx2 ¿ 1, ax, meaning that the probability for doubly occupied sites
becomes negligible: p2

k ¿ p0
k, p

1
k. The average occupation is thus given by

〈nk〉 ≈ p1
k, with

p1
k ≈

ax

1 + ax
=

1

1 + eβ(bk2−µ)
. (3.10)

In the crossover region, bk2 ≈ µ−U/2, one obtains a MI phase (p0
k, p

2
k ¿ p1

k ≈
1). In the center of the trap one finds a negligible probability for empty sites:
p0

k ¿ p1
k, p

2
k, since ax, bx2 À 1. The average population at site k becomes

〈nk〉 = p1
k + 2 p2

k ≈ 1 + p2
k, where

p2
k ≈

bx2

ax + bx2
=

1

1 + eβ(bk2−(µ−U))
. (3.11)

This is identical to the fermionic distribution (3.8) with effective chemical
potential µ− U . Hence the density distribution in this lattice region can be
interpreted as a thermal distribution of hard-core bosons sitting on top of a
MI phase with unit filling. Note that this central MI phase is well reproduced
by the function nI(k) , which originally has been derived for the border region.
As a consequence, the density distribution for the whole lattice can be put in
the simple form: 〈nk〉 ≈ nI(k) + nII(k), which corresponds to two fermionic
phases I and II, sitting on top of each other [Fig. 3.2b].

The initial density profile can be further characterized by two distinctive
points. At sites ±kµ := ±

√
µ/b, which correspond to the Fermi levels of

phase I, one obtains 〈n±kµ〉 = 1/2. Hence, kµ determines the radius of the
atomic cloud. Note also that in the case µ ≈ U singly occupied sites around
the Fermi levels become degenerate with doubly occupied sites at the center
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Figure 3.3: Effective description of thermal states in the no-tunnelling
limit in terms of independent fermions occupying two energy bands. The
dispersion relations are εI = bk2 and εII = bk2 + U , where k denotes the
lattice site and U is the interaction energy. Increasing the harmonic trap
strength from b to b′ increases the chemical potential to µ′ so that the pop-
ulation of the upper band becomes energetically favorable. In the bosonic
picture this process corresponds to the formation of doubly occupied sites.

of the trap. At the central site (k = 0) one finds an average occupation:

〈n0〉 = 1 +
1

1 + eβ(U−µ)
. (3.12)

For instance, the value 〈n0〉 = 3/2 fixes the chemical potential to be µ = U .

So far we have analyzed the density profile of thermal states and found
that it can be well characterized in terms of two species of independent
fermions. In Appendix C we derive this fermionic description more rigorously
starting directly from the Bose-Hubbard Hamiltonian (3.2). We find that the
dynamics at finite J is governed by the effective Hamiltonian:

H̃ = −J
∑

k

(
c†kck+1 +

√
2c†kdk+1 + 2d†kdk+1 + H. c.

)

+
∑

k

[
bk2c†kck + (bk2 + U)d†kdk

]
. (3.13)

Here, the fermionic operators ck refer to energy band I with dispersion re-
lation εI = bk2 and operators dk to band II with εII = bk2 + U [Fig. 3.3].
This effective description in terms of independent fermions is self-consistent
as long as the probability of finding a particle–hole pair is negligible, i.e.
〈ckc

†
kd
†
kdk〉 ≈ 0. We have shown above that for thermal states at low-

temperatures and for negligible tunnelling this is indeed fulfilled. The validity
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of the fermionization for a non-zero tunnelling rate is studied in Fig. 3.4.
Tolerating an error of roughly 1% we find that the model is self-consistent
up to J/U . 0.2.
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Figure 3.4: Range of validity of the two–species independent fermion model
(3.13). For thermal states at βU = 10 we plot the error ε =

∑
k〈ckc

†
kd
†
kdk〉/N

as a function of the hopping rate J for fixed harmonic trap U/b = 625 and
µ/U = 1.

Numerical computation of thermal states

We have just seen that the effective description in terms of independent
fermions fails at large hopping rates. In this regime we resort to a multi-
particle description and compute 1D thermal states numerically based on
the MPS method proposed in [102]. As an application we can, for instance,
estimate how the temperature of a 1D tube changes when passing from the MI
to the SF regime. Assuming that the process is thermodynamically adiabatic
one obtains the new temperature with the following procedure. We tune
the parameters of a thermal state in the SF regime until the expectation
values for the entropy and particle number match the corresponding values
of the initial thermal state in the MI regime. Let us now consider a realistic
example. Starting from a thermal state in the no-tunnelling regime with
s = 1 and N = 65 we have to tune the temperature to kT = 0.46U = 2.9J
at J/U = 0.16 (V0 = 5Er) in order to leave s and N unchanged [Fig. 3.2a].
Hence, in the SF regime one faces a substantial temperature of the order of
the width of the lowest Bloch band. Note, however, that this is only a lower
bound to the true temperature, because our approach does not include any
sort of heating processes induced by the adiabatic evolution.
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3.1.3 Entropy as figure of merit

We will show below that algorithmic protocols are suited both for ground
state cooling and the initialization of quantum registers. The goal in both
cases is to create a pure state under the constraint of keeping a large number
of particles. Given the fact that our protocols converge to the desired family
of states, we can measure the performance of the protocol by computing the
mixedness of the state. This mixedness can in turn be quantified using the
von–Neumann entropy S (3.7). In some cases, such as for finite hopping J
we will not be able to compute the von-Neumann entropy efficiently. We will
then refer to the Rényi entropy

S2 = − log2(trρ
2), (3.14)

which is a lower bound S2 ≤ S and can be evaluated using MPS [Appendix
D].

In order to assess the efficiency of a protocol in achieving our objectives
we define two figures of merit: (i) The ratio of the entropies per particle after
and before invoking the protocol, sf/si, quantifies the amount of cooling. (ii)
The ratio of the final and initial number of particles, Nf/Ni, quantifies the
particle loss induced by the protocol.

Note that these figures of merit can sometimes be misleading and should
therefore be applied with care. In the case of ground state cooling the en-
tropy is only a good figure of merit if the state of the system after the cooling
protocol, ρf , is close to thermal equilibrium. If this is not fulfilled, we com-
pute an effective thermal state, ρf → ρeff, with the same number of particles,
N , and energy, E. This is performed numerically by tuning the chemical
potential and temperature of a thermal state ρeff until the expectation values
for particle number and energy coincide with the ones of the original state
ρf . This procedure can be implemented rather easily in the no-tunnelling
regime, in which the density matrix factorizes (3.6). Our figures of merit can
then be computed from ρeff. Given that our system can somehow thermalize,
these approach will indeed reflect the properties of our final state. Finally, it
is important to point out, that other variables, like energy or temperature,
are not very well suited as figures of merit, because they depend crucially on
external system parameters like the trap strength.

Let us also note that in the case of quantum registers it can be erroneous
to assume that a finite value of the final entropy implies the existence of
defects. For example, we will propose a protocol below that generates a
state which is an incoherent superposition of defect-free quantum registers
with varying length and position. This state has some residual entropy but
it is nevertheless perfect for quantum information processing.
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3.1.4 Basic operations

All our cooling protocols rely on a set of translationally invariant quantum
operations that can be realized in current experiments with optical lattices.
They require at most three internal states of the atoms, which will be denoted
by |a〉, |b〉 and |c〉. The operations are:

(i) Particle transfer: Depending on the occupation numbers, an integer
number of particles is transferred coherently between internal states |a〉 and
|b〉. This process can be described by the unitary operation

Um+x,n−x
m,n : |m,n〉 ↔ |m + x, n− x〉, (3.15)

where x is an integer and |m, n〉 are Fock states with m and n atoms in
internal states |a〉 and |b〉, respectively. Note that for this unitary operator
it holds Um+x,n−x

m,n = Um,n
m+x,n−x. Certain operations, like U0,2

2,0 or U0,1
1,0 , have

already been demonstrated experimentally in an entanglement interferome-
ter [129]. We will also consider generalizations of (3.15) that involve three
internal levels. For instance, the operation U0,0,2

1,1,0 transfers two particles to
the formerly empty level |c〉, given that levels |a〉 and |b〉 are both singly
occupied.

(ii) Lattice shifts: We denote by Sx the operations which shift the |b〉
lattice x steps to the right. For example, S−1 transforms the state⊗k|mk, nk〉k
into⊗k|mk, nk+1〉k. This operation can be realized in state-dependent lattices
by adjusting the intensity and polarization of the laser beams [46, 118, 119,
47, 130].

(iii) Merging and splitting of lattice sites: Making use of superlattices
[131] one can either merge adjacent lattice wells or split a single site into a
pair of two sites.

(iv) Emptying sites: All atoms in internal state |b〉 are removed from the
system. We denote this operation by Eb. It transforms the state ⊗k|mk, nk〉k
into ⊗k|mk, 0〉k. Experimentally, this can be achieved either by switching off
the lattice potential acting on |b〉 or by coupling this state resonantly to an
untrapped state.

(v) Filtering: This means particle transfer operations of the form UM,m−M
m,0 ,

followed by Eb, for all m > M . After tracing out the subsystem |b〉, the filter
operation is described by a completely positive map acting solely on atoms
in state |a〉:

FM [ρ] :
∑
n,m

ρn,m|n〉〈m| →
∑

n,m≤M

ρn,m|n〉〈m|+
∑
n>M

ρn,n|M〉〈M |. (3.16)

The first proposal for a coherent implementation of the operation F1 [Fig. 3.5]
appeared in Ref. [45]. More recently, a scheme based on resonant control of
interaction driven spin oscillations has been put forward [125].
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Figure 3.5: Illustration of the filtering operation F1 which aims at produc-
ing a uniform filling of one atom per site. Defects arising from holes cannot
be corrected.

3.2 Filtering

We now study the filtering operation F1 in Eq. (3.16) in more detail. This
operation is especially relevant for cooling because it produces a state close to
the ground state of the MI regime. Thus, it can serve as a benchmark which
has to be beaten by alternative cooling schemes. In this section we provide
a theoretical analysis of filtering and discuss the conditions to reach optimal
cooling efficiency. We then propose two physical realizations of filtering.

3.2.1 Theory

In Fig. 3.6 we have depicted the particle and entropy distributions before and
after the filtering operation F1. One observes that a nearly perfect MI phase
with filling factor ν = 1 is created in the center of the trap. Defects in this
phase are due to the presence of holes and concentrate at the borders of the
trap. This behavior is reminiscent of fermions, for which excitations can only
be created within an energy range of order kT around the Fermi level. This
numerical observation can easily be understood within our previous analysis
of the initial state [Sect. 3.1.2]. Filtering removes phase II, which is due to
doubly occupied sites, and leaves the fermionic phase I unaffected [Fig. 3.6a].

The fermionic picture allows us to to find a simple estimate for the amount
of entropy that remains after filtering. From the density of states in band I,
g(E) = 1/

√
bE, one immediately obtains that the number of states (lattice

sites), which lie within an energy range of 2kT around the chemical potential
µ, is given by:

∆ =
2

β
√

bµ
. (3.17)

This parameter is characteristic for the tail width of the density distribution
[Fig. 3.6] and will in the following be central for the analysis of our protocols.
Since the final entropy must be localized at these sites we expect that Sf ≈ ∆.
Let us now study the cooling efficiency of F1 more rigorously. Relying again
on the fermionic description this means we have to compute the entropy S
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Figure 3.6: Spatial dependence of the mean occupation number 〈n〉 and
entropy S before (left) and after (right) the application of the filter operation
F1. The final particle distribution can be well described by Eq. (3.8) (dashed
line). Numerical parameters for initial state: Ni = 65, si=1, U/b = 700,
βU = 4.5 and µ/U = 1. Figures of merit: sf/si = 0.56 and Nf/Ni = 0.80.

and the particle number N corresponding to the bands I and II [Fig. 3.3].
The entropy of a fermionic distribution of the form (3.8) is given by:

SF (b, β, z) =
1√
βb

[σ(z) +

√
π

2 ln 2
(2 ln z Li1/2(−z)

− Li3/2(−z))
]
, (3.18)

with fugacity z = eβµ and Lin(x) denoting the polylogorithm functions. The
function σ(z) is defined as the integral

σ(z) :=
∫ ∞

−∞
dx log2

(
1 + z e−x2

)
. (3.19)

For phase I one can find a simpler expression for the entropy (3.18) by
expansion around the Fermi level k = kµ + dk. Note that the range of
validity, |dk| ¿ 1/

√
βb, of this approximation covers all lattice sites that

give a significant contribution to the total entropy. This yields the following
relations for the entropy and particle number in band I:

SI ≈ σI
2

β
√

bµ
, NI ≈ N, (3.20)
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with σI := π2/(6 ln 2) and

N = 2

√
µ

b
. (3.21)

Here we have defined the new parameter N , because it will become important
in assessing the performance of the protocols presented in the remainder of
this chapter. In contrast to the lower band, phase II typically does not
exhibit an extended Fermi sea. Hence a Sommerfeld-type expansion around
the Fermi level is not justified and one obtains only the general formulas:

SII = SF (b, β, zII), NII = −
√

π

βb
Li1/2(zII), (3.22)

with zII = eβµII . In the special case µ = U one can simplify the above ex-
pressions to:

SII ≈ σII
1√
βb

, NII ≈ ηII
1√
βb

, (3.23)

with numerical coefficients σII ≈ 2.935 and ηII = (1−√2)
√

πζ(1/2) ≈ 1.063.
Based on these findings we can now give a quantitative interpretation of

Fig. 3.6. The initial entropy is composed of two components: Si = SI + SII.
Filtering removes the contribution SII, which arises from the coexistence of
singly and doubly occupied sites. The final entropy is thus given by Sf = SI.
This residual entropy is localized around the Fermi levels −kµ and kµ within
a region of width ∆ = N/(βµ) and amounts to Sf = σI ∆. For the initial and
final particle numbers one has the corresponding relations: Ni = NI + NII

and Nf = NI. Hence, the final entropy per particle can be written as:

sf =
Sf

Nf

≈ σI
1

βµ
. (3.24)

For the special choice µ = U (or equivalently 〈n0〉 = 1.5) one finds the fol-
lowing expressions for our figures of merit:

sf

si

≈ σI√
βU

ηII + 2
√

βU

σII

√
βU + 2 σI

, (3.25)

Nf

Ni

≈ 1

1 + ηII

2
√

βU

. (3.26)

This result shows that filtering becomes more efficient with decreasing tem-
perature, since sf/si ∝ 1/

√
βU → 0 and Nf/Ni → 1 for βU →∞.

It is important to note that the state after filtering is not an equilibrium
state, because it would be energetically favorable to doubly occupy sites in
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the center of the trap rather than singly occupy sites in the distant border
regions. However, thermal equilibrium can easily be restored by adapting the
trap strength. While tunnelling is still suppressed, one has to decrease the
strength of the harmonic confinement to a new value b′, with b′ ≤ b U/(2µ).
The system is then in the equilibrium configuration fk(b

′, β′, µ′) (3.8) with
rescaled parameters T ′ = T b′/b and µ′ = µ b′/b ≤ U/2. This observation
shows that it is misleading to infer the cooling efficiency solely from the ratio
T ′/T , because it depends crucially on the choice of b′.

3.2.2 Optimal initial conditions

Let us now study how the cooling efficiency of filtering depends on the initial
state variables b, β and µ. Since the initial temperature is dictated by the
experimental setup, we consider only the trap strength b and the chemical
potential µ (which can be varied via the particle number N) as free parame-
ters. Since our figures of merit are computed per particle we expect a weak
dependence on N and therefore focus on the b dependence. This can be stud-
ied in terms of the mean central occupation number 〈n0〉. For instance, in
the special case 〈n0〉 = 1.5, we have obtained the analytical expression (3.25)
for the ratio sf/si, which exhibits a strong temperature dependence. In con-
trast, for 〈n0〉 = 2 one finds that the cooling efficiency becomes independent
of the temperature: sf/si ≈ 1/

√
3 for βU À 1. This can be understood from

the presence of a ν = 2 MI phase in the center of the trap, which does not
contain entropy. In the opposite regime 〈n0〉 = 1 the protocol has no cooling
effect at all.

For general 〈n0〉, we have computed the figures of merit numerically exact
[Fig. 3.7]. One observes that for initial entropies si . 1 a central filling
〈n0〉 ≈ 1.5 is always close to optimal. A special situation arises when we
approach zero temperature. As shown in Fig. 3.7d, the quantity sf/si changes
first periodically when decreasing the trap strength b/U . In this regime an
additional MI phase with ν = 2 is present in the center of the trap and the
splitting of the entropy between the lower and upper fermionic band is very
sensitive to variations of the harmonic confinement. In particular, one can
find trap strengths (e.g. U/b ≈ 2000 in Fig. 3.7d) at which the final entropy
approaches zero and only a comparatively small number of particles is lost
(Nf/Ni = 0.9). For shallower traps the ν = 2 MI phase starts to collapse.
In this regime it becomes very difficult to find proper thermal states which
match the initial conditions in terms of entropy and particle number. Finally,
the central occupation approaches one and the cooling protocol leaves the
initial state unchanged.

It is also interesting to study the efficiency of filtering when acting on the
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Figure 3.7: Cooling efficiency of the filtering operation F1 for fixed ini-
tial entropy si and particle number Ni as a function of the harmonic trap
strength. We parameterize the trap strength by either the mean central
occupation number 〈n0〉 or the inverse trap strength U/b. We plot the
figures of merit sf/si (solid), Nf/Ni (dashed) and the weighted quantity
(sfNi)/(siNf ) (dotted). The initial parameters are Ni = 100 and (a)
si = 1.5, (b) si = 1, (c) si = 0.5 and (d) si = 0.05.

full 3D lattice. In this case only a small subset of 1D tubes will satisfy the
optimal initial conditions. Using the parameters of Sect. 3.1 (si = 1 and
N = 2 105) we obtain that sf/si = 0.78 and Nf/Ni = 0.62 for a typical trap
strength b = U/370 as in the setup [24]. The relatively large particle loss
results from the high densities in the center of the trap. This is also the main
reason why the protocol performs worse compared to a 1D tube with si = 1
as shown in Fig. 3.7b.

3.2.3 Experimental realization of ultra-fast filtering

We now propose an ultra-fast, coherent implementation of filtering, which
is based on optimal laser control. We restrict our discussion to the filtering
operation F1 which is the most relevant for our upcoming cooling protocols.
We consider atoms in a particular internal level, |a〉, which are coupled to a
second internal level, |b〉, via a Raman transition with Rabi frequency Ω(t).
In contrast to the adiabatic scheme [45] we consider constant detuning, but
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vary Ω(t) in time. The Hamiltonian for a single lattice site reads

Ĥ =
Ua

2
n̂a(n̂a − 1) + Uabn̂an̂b +

Ub

2
n̂b(n̂b − 1)

−(Ω(t)â†b̂ + Ω∗(t)b̂†â), (3.27)

where Ua, Ub and Uab denote the on-site interaction energies, according to
the different internal states. Note that Ω(t) can be complex, thus allowing
for time-dependent phases. Our goal is to populate state |a〉 with exactly
one particle per site which can be expressed by the unitary operation U0 :
|N, 0〉 → |1, N − 1〉, ∀ N ∈ {1, 2, . . . , Nmax}. In order to do this, we control
the time-dependence of Ω(t) coherently and in an optimal way. To be more
precise, we optimize a sequence of M rectangular shaped pulses of equal
length:

Ω(t) =
M∑

l=1

Ωl × [θ(t− tl)− θ(t− tl+1)]. (3.28)

After time T the system has evolved according to the unitary operator U(T ).
We want to minimize the deviation of U(T ) from the desired operation U0,
which we quantify by the infidelity ε(T ) =

∑Nmax

N=1 εN , where εN = 1−|〈1, N−
1|U(T )|N, 0〉|. Since we allow for complex Rabi frequencies, ε(T ) is a function
of 2M parameters {Ωl, Ω

∗
l } with l = 1, . . . ,M . For given M and time T we

optimize the cost function ε(T ) numerically using the Quasi-Newton method
with a mixed quadratic and cubic line search procedure. This is repeated for
different times T , while keeping the number of pulses M constant. We then
increase M and repeat the whole procedure in order to check convergence of
our results.

In Fig. 3.8 we plot the minimal error ε(T ) for different interaction strengths.
Already for our simple control scheme we obtain very small errors, e.g.
ε ∼ 10−4 for operation time T ≈ 7/Ua and interaction strengths Uab = Ub =
0.2Ua. In comparison, the adiabatic scheme [45] would require T ≈ 150/Ua

for the same set of parameters. Apart from the gain in operation speed, our
method has the second advantage that it reaches high operation fidelities
over a much broader range of interaction energies as compared to [45].

It is important to remark that the operation time increases with decreas-
ing interaction anisotropy δ = |Ua + Ub − 2Uab|/Ua. For δ = 0 our method
fails completely. In the special case Ua = Ub = Uab this follows from the
fact that in the Hamiltonian (3.27) the interaction part commutes with the
coupling part. These problems can be solved, either by displacing the lattices
that trap atoms |a〉 and |b〉 and thereby reducing the effective interaction,
Uab, or by performing more elaborate controls than the one from Eq. (3.28).
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Figure 3.8: Operation error ε vs. operation time TUa for different in-
teraction energies: Ub = 0.2Ua, Uab = 0.2Ua, δ = 0.8 (solid); Ub = Ua,
Uab = 0.6Ua, δ = 0.8 (dashed); Ub = Ua, Uab = 0.2Ua, δ = 1.6 (dotted);
Ub = Ua = Uab, δ = 0 (dashed-dotted). We optimize a sequence of M = 10
pulses (3.28) and have chosen an occupation number cutoff Nmax = 4.

3.2.4 Experimental realization of continuous filtering

So far all physical realizations of filtering rely on the coherent transfer of
particles between two internal states followed by particle removal. We will
now show that both processes can be combined into a single step. This
produces an incoherent evolution that gives rise to the completely positive
map F1 (3.16).

The experimental procedure for achieving the map FM is very simple. We
will use two atomic states: one atomic state shall be confined by an optical
lattice, deep in a MI phase, while the other one will be in a continuum of
untrapped states which are free to escape the lattice. We will couple the
trapped and untrapped states with two Raman lasers which have a relative
detuning of the order of the interaction energy, δ ∼ MU [Fig. 3.9]. As long as
the coupling is active, the lasers will depopulate lattice sites which have too
many atoms, n > M , while leaving other sites untouched 3. If the untrapped
states are such that they have few atoms and they are quickly expelled from
the trap (for instance by a magnetic field gradient), these states will behave

3Additionally, particles from the tails may also be coupled to the continuum and ex-
pelled. In order to avoid that this process leads to an unwanted increase of entropy in the
tails, one can lower the harmonic confinement once the MI phase has been reached.
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Figure 3.9: Possible physical realization of incoherent and continuous fil-
tering F1. The detuning of the laser frequency is chosen to be δ = U . This
means that atoms with energy E ≥ U are resonantly coupled to a continuum
of untrapped states and thereby removed from the system.

for practical purposes like a thermal bath in a vacuum state. If the coherence
time of this bath, physically determined by the time free atoms spend close
to the trapped ones, is very short compared to the Rabi frequency Ω of the
Raman transition, we will be allowed to write a master equation for the
trapped atoms. The solution of this equation converges at large times to the
desired filtered state, e.g. M = 1 for F1.

Conceptually, this mechanism is equivalent to the frequency knife from
evaporative cooling, where atoms containing too much kinetic energy are ex-
pelled from the trap in order to lower the temperature. In our case, however,
it is the interaction energy we get rid off and, as a side effect, we make the
filling of the lattice more uniform.

Compared to the optimal control scheme in [64], the operation of this
much simpler method is not very fast. From the solution of the master
equation it follows that states with occupation n > 1 decay after a time
which is of the order of the inverse Rabi frequency, t1 ∼ 1/(nΩ). The main
source of errors arises from the non-resonant coupling of the n = 1 state with
the reservoir. The probability of a defect (empty site) will approximately be
given by: p0 ≈ Ω2/U2. Hence, for p0 = 10−4 we get an operation time
t1 ∼ 100/U which is comparable to the time scale of the adiabatic scheme
[45]. However, our incoherent scheme has two big advantages. First, it can
be applied continuously. Second, it does not put any constraints on the
interaction energies of the two species. This holds under the assumption
that untrapped atoms are expelled so quickly from the trap, that they do
not interact significantly with the trapped atoms.
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3.3 Ground state cooling protocols

We have seen that the residual entropy after filtering is concentrated at the
borders of the atomic cloud. Particles located at these sites are also the
only source of energy excitations because all doubly occupied sites have been
removed. In the following we will propose several protocols which selectively
remove particles at the borders, thereby bringing the system closer to its
ground state.

3.3.1 Sequential filtering

Filtering is limited by the fact that it cannot correct defects that arise from
holes in a perfect MI phase. In order to overcome this problem, we will now
propose two protocols, which rely on the repeated application of filtering.
The central idea is to transfer ”hot” particles from the borders to the center
of the trap, where they can be removed by subsequent filtering.

Discrete Protocol

The main feature of this protocol is that filtering is always performed in the
no–tunnelling regime. Reformation of doubly occupied sites is achieved by
adiabatically varying the lattice and trapping potential. To be more specific,
one has to iterate the following sequence of operations: (i) we allow for some
tunnelling while the trap is adjusted adiabatically in order to reach a central
occupation of 〈n0〉 ≈ 1.5; (ii) we suppress tunnelling and perform the filtering
operation F1; (iii) the trap is slightly opened so that the final distribution
resembles a thermal distribution of hard-core bosons.

We are interested in the convergence of the entropy and temperature as a
function of the number of iterations. However, the adiabatic process is very
difficult to treat both analytically and numerically. Therefore we distinguish
in the following between three different scenarios that are based on specific
assumptions.

(i) Thermal equilibrium: We assume that the entropy is conserved
and that the system stays in thermal equilibrium throughout the adiabatic
process. Since this condition will in general not be fulfilled for closed, iso-
lated quantum systems, the following analysis can only provide a rather
rough description of the real situation. To be more precise, we start from
a thermal state with initial parameters β, b and µ. After filtering and adi-
abatic evolution one has a thermal state in the no-tunnelling regime with
new parameters β′, b′ and µ′. As we have shown in the previous sections,
thermal states in the no-tunnelling regime can effectively be described in
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terms of two fermionic components. This allows us to determine the new
parameters β′ and b′ by identifying: SI(β, b) = SI(β

′, b′) + SII(β
′, b′) and

NI(β, b) = NI(β
′, b′) + NII(β

′, b′). The desired central filling 〈n0〉 = 1.5 fixes
the chemical potentials to be µ = µ′ = U . Using expressions (3.20) and
(3.23) one finds:

β′U =
(
A +

√
A2 + 4βU

)2

/4, (3.29)

b′

U
=

b

U

(
1 +

ηII

2
√

β′U

)
, (3.30)

with A = (σIIβU/σI − ηII)/2. After a second filtering operation the entropy
per particle is thus given by:

s2 = σI
1

β′U
. (3.31)

Since our analysis only holds in the limit βU À 1, one can simplify the above
expressions to: β′U ≈ (σIIβU/(2σI))

2 and b′ ≈ b. This allows us to establish
a simple recursion relation for the entropy per particle sn after the n-th filter
operation:

sn ≈ 4σI

σ2
II

s2
n−1. (3.32)

Since the limit βU À 1 implies s < 1, one finds that the entropy per particle
converges extremely fast to zero.

(ii) Quantum evolution: Let us now study a more realistic situation.
To this end we resort to the effective description in terms of independent
fermions [Sect. 3.1.2 and Appendix C]. Since the effective Hamiltonian H̃
(3.13) is quadratic, we can study the complete protocol on a single-particle
basis. We further assume that the single-particle energy spectrum does not
exhibit level crossings in the course of the adiabatic evolution. Then, the state
at any time t can be computed by populating the single-particle energies of
the effective Hamiltonian H̃(t) (3.13) according to the initial probabilities
(after filtering) in energetically increasing order. This method is illustrated
in more detail in Fig. 3.3. After the initial filtering step only states in the
lowest energy band are occupied and the occupation probability is given by
the fermionic distribution fk(b, β, µ) (3.8). Increasing the trap strength to
an appropriate value b′ > b in the course of the adiabatic process makes it
energetically favorable to occupy also the second band. We find the state af-
ter returning to the no-tunnelling regime, ρ′, by populating the energy levels,
corresponding to the new trap strength b′, in energetically increasing order
according to the initial probabilities fk(b, β, µ). At this point we distinguish



72 Cooling of atoms in optical lattices

between two further scenarios: (ii.a) The state ρ′ is mapped to a thermal
state in the usual way by accounting for energy and particle number conser-
vation. This way we can quantify the amount of ”heating” resulting from
the fact that the system is not in thermal equilibrium at the end of the adi-
abatic process due to the different structure of the energy spectrum. (ii.b)
We continue the protocol directly with the time evolved state ρ′.
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Figure 3.10: Entropy per particle S/N (left) and normalized number of
particles N/N0 (right) as a function of the number of filtering iterations for
initially N0 = 100 particles. As discussed in the text, we distinguish between
the scenarios (i) (black line), (ii.a) (red line) and (ii.b) (blue and cyan).

Our results for all three cases are summarized in Fig. 3.10. We have
computed numerically exact the entropy per particle as a function of the
number of filtering cycles. Starting with an initial entropy s0 = 1, scenarios
(i) and (ii.a) predict that an entropy value close to zero can be obtained
after only four iterations of the protocol 4. According to our underlying
assumptions the system is in thermal equilibrium after each iteration of the
protocol. In scenario (ii.b) the final entropy saturates at a finite value and
the system is not in perfect thermal equilibrium. However, the final state
still resembles a thermal state of hard-core bosons in a harmonic trap.

These results imply that sequential filtering can clearly profit from equi-
libration. The reason is that equilibration reduces the defect probability in
the center of the lower band and transfers entropy to the upper band, where
it can be removed subsequently. This process in combination with the in-
creasingly high cooling efficiency of filtering at low temperatures can easily
compensate the heating induced by the adiabatic quantum evolution. From

4Remember that for thermal states at very low temperatures the entropy is concen-
trated in only a few particles. Hence, finite size effects become important and the minimal
attainable entropy per particle depends very sensitively on the strength of the harmonic
confinement.
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our data we can deduce that this heating corresponds to an entropy increase
of around 20 % 5. Without equilibration sequential filtering becomes very
inefficient after the fourth iteration, which is also reflected in the excessive
particle loss [Fig. 3.10]. The minimal attainable entropy is determined by
the initial defect (hole) probability in the center of the trap. Starting from
a much colder state, which exhibits almost unit filling in the center of the
lower band, therefore yields a final state very close to the ground state [Fig.
3.10].

Remember that scenario (ii.b) is based on the assumption that no level
crossings occur during the evolution. From our numerical analysis of the
energy spectrum of (3.13) we know, however, that level crossings can indeed
appear (see also [127, 132]). The reason is the vanishing small spatial over-
lap between single particle states at the border of the lower band and the
center of the upper band. This has the following consequences for our previ-
ous analysis: For rather small particle numbers (N . 15) level crossings are
rare and inter-band coupling occurs already for hopping rates, which are well
within the range of validity of our single-particle description. We therefore
expect that our predictions, as depicted in Fig. 3.10, are reasonable. For
larger systems one has to tune the tunnelling rate deep into the superfluid
regime J & 0.5 in order to couple the two bands and to form doubly occu-
pied sites. However, this regime is no longer accessible within our fermionic
model (3.13). It remains to be investigated to what extent this will alter our
predictions for the cooling efficiency of sequential filtering.

Continuous protocol

As an alternative to the previous scheme, one can devise a continuous variant,
which operates at a fixed but non-zero hopping rate. Such a protocol would
clearly profit from the fact that adiabatic changes of the lattice potential,
which might lead to additional heating, are not required.

Let us first study how the cooling efficiency of filtering changes as a
function of the hopping rate J . The results are shown in Fig. 3.11. For high
temperatures the ratio sf/si is rather independent of J and we achieve some
cooling. For very small temperatures, kT . 0.01U , it changes dramatically
with J . This is a clear signature of the quantum phase transition, which is
expected to occur at Jc ≈ 0.085U in the thermodynamic limit. While for
J < Jc the state is well described in terms of independent wells and filtering
works very efficiently, for J > Jc particles are delocalized over the lattice,
and filtering causes heating rather than cooling.

5We have also performed multi-particle calculations in the canonical ensemble, which
predict an even lower value of about 5%.
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Figure 3.11: Cooling efficiency s2,f/s2,i, in terms of the Rényi entropy,
of filtering F1 as a function of the hopping rate J/U . For the numerical
computation in terms of MPS we use a lattice of length L = 27, which
typically contains N ≈ 20 particles. The trap strength is chosen to be
b/U = 1/65 and µ = U , yielding 〈n〉0 ≈ 1.5.

A second important ingredient of sequential filtering is the generation
of doubly occupied sites. In order to accomplish this in a continuous way
one has to fix the hopping rate at a value, at which there exists a coupling
between doubly occupied sites at the center and singly occupied sites at the
borders. Our analysis of the effective Hamiltonian (3.13) shows, however,
that this occurs typically only deep in the SF regime for J/U & 0.5.

Together with the findings in Fig. 3.11 one has to conclude that this
continuous variant of sequential filtering can only be used as an initial step,
when temperatures are still comparatively high.

3.3.2 Algorithmic Cooling

We now propose a second cooling scheme, which we call algorithmic cooling,
because it is inspired by quantum computation. As before the goal is to
remove high energy excitations at the borders of the atomic cloud, which
have been left after filtering. In contrast to sequential filtering we now restrict
ourselves to a sequence of quantum operations that operate solely in the no-
tunnelling regime.
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The protocol

The central idea is to make use of spin-dependent lattices. A part of the
atomic cloud can then act as a ”pointer” in order to address lattice sites which
contain ”hot” particles. In this sense the scheme is similar to evaporative
cooling, with the difference that an atomic cloud takes the role of the rf-
knife. Another remarkable feature of the protocol is that the pointer is very
inaccurate in the beginning (due to some inherent translational uncertainty
in the system), but becomes sharper and sharper in the course of the protocol.
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Figure 3.12: Illustration of the algorithmic cooling protocol. The state is
initialized with the filter operation F2. (a) Particles from doubly occupied
sites are transferred to state |b〉 (red) using operation U1,1

2,0 . (b) The lattice |b〉
has been shifted 2kε sites to the right, so that the two distributions barely
overlap. (c) Density distribution after ks lattice shifts. After each shift
doubly occupied sites have been emptied. Afterwards lattice |b〉 is shifted
4kε−ks sites to the left and an analogous filter sequence is applied. (d) The
final distribution of atoms in state |a〉 is sharper compared to the initial
distribution (dotted). Numerical parameters: Ni = 65, si = 1, U/b = 300,
kε=21, ks = 20, Nf = 30.2, sf = 0.31 (after equilibration).

The individual steps are the following: (i) We begin with a cloud in
thermal equilibrium in the no-tunnelling regime, having two or less atoms per
site, all in internal state |a〉. This can be ensured with a filtering operation
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F2. (ii) We next split the particle distribution into two, with an operation
U1,1

2,0 [Fig. 3.12a]. (iii) The |a〉 and |b〉 atoms are shifted away from each other
until both ensembles barely overlap [Fig. 3.12b]. We then empty all doubly
occupied sites and shift the clouds one lattice site towards each other. This
sequence is iterated for a small number of steps of order ∆ (3.17), thereby
sharpening the density profiles of both clouds [Fig. 3.12c]. (iv) The atoms of
type |b〉 are moved again to the other side of the lattice and a process similar
to (iii) is repeated [Fig. 3.12d]. (v) Remaining atoms in state |b〉 can now be
removed.

Experimentally, doubly occupied sites can be emptied by introducing a
third internal level |c〉 and applying the unitary operation U0,0,2

1,1,0 in general-
ization of (3.15). Afterwards all atoms in |c〉 are removed.

Scaling behavior and numerical results

The density distribution after the protocol will never be perfectly sharp
[Fig. 3.12d] because this protocol is intrinsically limited by thermal and
quantum fluctuations in the initial state. Qualitatively, in order to remove
a particle of type |a〉 from the tail, one has to put a particle of type |b〉
from the other cloud on the same lattice site. Errors arise when a particle
of type |a〉 hits a hole instead of a particle of type |b〉. The error probability
is thus proportional to the fluctuations of the density on each lattice site.
If we want to clean about ∆ sites or remove ∆ particles, the errors will be
O(
√

∆). In the limit βU À 1, we obtain the following scaling behavior for
the final entropy per particle:

sf ∝
√

∆

N
=

1√
N
√

βµ
∝ 1√

Ni

, (3.33)

where N (3.21) is the number of particles in |a〉 after step (ii) and Ni is
the initial particle number. This simple estimate shows that the algorithmic
protocol becomes more efficient with increasing initial particle number. This
is in contrast to filtering, for which sf is independent of Ni.

We have verified numerically the scaling (3.33) [Fig. 3.13b]. The numeri-
cal simulation is by no means trivial because the protocol establishes classical
correlations both among lattice sites and also among internal states. To re-
produce these correlations we have resorted to a representation of classical
density matrices in terms of MPS [Appendix D]. These numerical simula-
tions also show that the final density distribution is very close to a thermal
distribution [Fig. 3.13a]. This does not necessarily mean that the underlying
state is close to an equilibrium state. If one applies one or few iterations of
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Figure 3.13: (a) Density distribution after filtering (dotted) and after al-
gorithmic cooling (solid) which can be well approximated by a thermal dis-
tribution (circles). For comparison we consider a variant of the algorithmic
protocol, which exhibits no classical correlations at all times (dashed). Pa-
rameters for the initial state: Ni = 100, s2,i = 0.42 (si = 0.50), U/b = 1500;
Parameters for the algorithmic protocol: k0 = 62, ks = 18, Nf = 71.4,
s2,f = 0.0659; Final entropy after equilibration: s2,f = 0.0740 (sf = 0.0988);
Parameters for alternative protocol (dashed line): ks = 28, Nf = 63.3,
sf = 0.0389. (b) Final entropy per particle sf as a function of the initial
particle number Ni for fixed si = 0.5 (circles). For large Ni one obtains a
1/
√

Ni dependence (solid). For comparison we plot sf after filtering (dia-
monds) which is expected to be independent of Ni (dotted). Small variations
in sf can be attributed to the specific choice of the harmonic confinement.

the protocol, the final state will still contain some holes at the borders and
be close to thermal equilibrium, as the computation of the Rényi entropy
entropy s2,f (3.14) before and after equilibration shows [Fig. 3.13a]. For a
large number of iterations, however, the final state will be far from thermal
equilibrium. As will be discussed later in more detail, the density matrix is
then given by an incoherent superposition of perfect uniform MI states which
differ in their length and position [see Fig. 3.17]. Hence, this protocol can
also be used to generate an ensemble of quantum registers, similar to the
ones produced by the protocols in Sect. 3.4. These registers form the basis
for quantum computation with atoms in optical lattices.

3.3.3 Theoretical description

For the sake of simplicity we consider a slightly modified version of the proto-
col. The particle distributions |a〉 and |b〉 are now two identical but indepen-
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dent distributions of hard-core bosons of the form (3.8) 6. The lattice |b〉 is
shifted 2kε sites to the right. For given ε the value kε =

√
µ/b

√
1− ln ε/βµ

is chosen such that for atoms |a〉 it holds 〈na
kε
〉 = ε. This initial situation is

depicted schematically in Fig. 3.14.

Figure 3.14: Schematic description of the initial state for lattice sites
k ≥ 0: Two identical density distributions for hard-core bosons, belonging
to different species A (black) and B (blue), are shifted 2kε lattice sites apart.
The region of non-integer filling has width δε. In the course of the protocol
the lattice of species B is shifted ks = 3δε sites to the left.

The cutoff ε defines also the width of the region with non-integer filling:

δε =
√

µ/b
(√

1− ln ε/βµ−
√

1 + ln ε/βµ
)

. (3.34)

We analyze first a protocol that involves ks = 3δε lattice shifts and after
each shift doubly occupied sites are emptied. Our goal is to compute the
final shape of the density profile of atoms in state |a〉 (red line in Fig. 3.14).
It is sufficient to consider only the reduced density matrices ρ̂a and ρ̂b, which
cover the range k ∈ [kε − 2δε; kε] and k ∈ [kε; kε + 2δε], respectively. These
density matrices can be written in terms of convex sums over particle number
subspaces:

ρ̂a =
2δε∑

Na=0

pa(Na)ρ̂a(Na), (3.35)

ρ̂b =
2δε∑

Nb=0

pb(Nb)ρ̂b(Nb). (3.36)

The further discussion is based on the following central observation. If
a state ρ̂a(Na) interacts with a state ρ̂a(Nb) then our protocol produces a

6In practice, this can be achieved by applying F1 to two non-interacting bosonic clouds
in different internal states.
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perfect MI state ρ̂′a(N
′
a) (as in Eq. 3.5) composed of N ′

a = (Na − Nb)/2
particles. The factor 1/2 arises from the fact that ks lattice shifts remove
at most ks/2 particles from distribution |a〉. Note that this relation also
allows for negative particle numbers, because N ′

a merely counts the number
of particles on the right hand side of the reference point k0 = kε−3/2δε. The
final density matrix after tracing out particles in |b〉 can then be written as
a convex sum over nearly perfect (up to the cutoff error ε) MI states

ρ̂′a =

δε/2∑

N ′
a=−δε/2

p′a(N
′
a)ρ̂

′
a(N

′
a), (3.37)

with probabilities

p′a(N
′
a) ' 2

2δε∑

Nb=δε

pa(2N
′
a + Nb)pb(Nb). (3.38)

The factor two is due to the fact that states with Na−Nb = 2M and Na−Nb =
2M +1 are collapsed on the same MI state with N ′

a = M . Since Lyapounov’s
condition [133] holds in our system, we can make use of the generalized central
limit theorem and approximate pa(N) = pb(N) by a Gaussian distribution
with variance σ2 = δN2 = ∆/4 = 1/(2β

√
bµ). Evaluation of Eq. (3.38)

then yields a Gaussian distribution with variance σ′2 = σ2/2. Since MI
states do not contain holes, one can infer the final density distribution 〈na

k〉′
directly from p′a(N) by simple integration. This distribution can then be
approximated by the (linearized) thermal distribution:

〈nk〉′ ' 1

1 + e4(k−k0)/∆′ . (3.39)

The new effective tail width ∆′ =
√

∆π/2 of the distribution is roughly the
square root of the original width ∆ (3.17). This effect leads to cooling, which
we will now quantify in terms of the entropy.

When applying similar reasoning also to the left side of distribution |a〉
one ends up with a mixture of MI states, which differ by their length and
lateral position. This results in an extremely small entropy of the order SMI ∼
log2 ∆. However, this final state is typically far from thermal equilibrium.
In order to account for a possible increase of entropy by equilibration, we
have to compute the entropy of a thermal state, which has the same energy
and particle number expectation values as the final state. In our case this is
equivalent to computing the entropy directly from the density distribution
(3.39):

S ′ ≈ σI ∆′ =
σI

√
π√

2

1

(β2bµ)1/4
=

√
π

2

√
βµ√
N

S, (3.40)
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where N = NI and S = SI (3.20) correspond to the expectation values for
the initial state of atoms |a〉 (3.35). The final particle number is given by:
N ′ ' 2k0 ≈ N(1 + ln ε/βµ).

A significant improvement can be made by shifting the clouds only ks =
2δε sites. This prevents inefficient particle loss, which has been included in
our previous analysis in order make the treatment exact. With this variant
the final particle number increases to N ′′ = 2 (kε − δε), while in good ap-
proximation the final entropy is still given by S ′. Hence, the final entropy
per particle can be lowered to:

s′ =
S ′

N ′′ ≈
√

π

2

√
βµ

1 + ln ε
2βµ

1√
N

s. (3.41)

Since s corresponds to the entropy after a possible filtering operation F1, we
can directly deduce to what extent algorithmic cooling outperforms filtering.
For fixed N the ratio s′/s becomes smaller at higher temperatures. Even
more important, for fixed βU , the entropy per particle s′ decreases with
1/
√

N as the initial number of particles in the system increases. Here we
recover the same scaling behavior as in our simple estimate (3.33).

Variants and extensions of the protocol

It is clear that we could cool the atoms to the ground state with 100%
efficiency if the density distributions of |a〉 and |b〉 atoms were perfectly
correlated. It seems also that we can improve the performance in realistic
situations by removing the classical correlations which are established in the
course of the protocol. To be more precise, we consider the following variant
of the protocol. After each filtering operation we first break the correlations
between the two atomic species (i.e. we consider only the reduced density
operators) and then perform the next lattice shift. This way we ensure that
no classical correlations can build up. The resulting density profile is much
sharper than for the original protocol [Fig. 3.13a]. Numerically we find that
the tail width of the distribution can be reduced to approximately two lattice
sites independent of the original size of the cloud. From a practical point
of view this protocol is, however, very demanding. The minimal number of
independent copies of the system required in an actual experiment would be
given by the number of filtering operations. A more realistic variant would
be to break the correlations only between the atomic species at the end of
the original protocol while leaving the inter–site correlations untouched. Ac-
cording to our theoretical analysis (Eq. (3.38)) each iteration of the complete
protocol would reduce the total entropy by a factor of

√
2 [64]. This way one



3.3 Ground state cooling protocols 81

would require only a rather small number of independent copies to get closer
to the ground state.

To sum up, algorithmic cooling can be improved considerably by us-
ing multiple independent clouds to clean each other. Experimentally, these
clouds may come from loading the lattice with atoms in different internal
states, from splitting the cloud into multiple condensates, or simply by using
the clouds from different 1D tubes to clean each other. . . Many other possi-
bilities can be conceived. Alternatively, the performance can be enhanced by
extracting specific particle number subspaces from the final density matrix
at the end of the protocol (see Sect. 3.4 for details).

Moreover, we have devised variations of the original protocol, which might
be better applicable to experimental setups. Firstly, there is no need to
discard the remaining atomic cloud in state |b〉. For appropriate initial trap
parameters, it is preferably to move this cloud back to the center and to
pump all atoms back into internal state |a〉. The resulting state will exhibit
a MI shell structure with two plateaus at densities n = 1 and n = 2. This
is a simple way to engineer ground states of tighter traps. Secondly, it is in
principle possible to sharpen the two tails of the central cloud simultaneously.
To this end we initially apply the filtering operation F3 instead of F2. One
atom from all triply occupied sites is stored in an additional internal level.
This cloud can then be used to clean one side of the distribution, while atoms
in state |b〉 (which stem from doubly occupied sites) clean the other side.

Finally, let us remark that the algorithmic cooling scheme has been de-
signed for 1D systems. In order to adapt it to 3D setups with spherical
symmetry, we propose to apply the protocol at least along three orthogonal
directions.

3.3.4 Discussion of results

Let us now discuss and compare the cooling performance of the protocols
proposed so far. To this end we provide exact numerical results and compare
them with our analytical findings. For the calculations we fix two parameters,
b/U and µ/U , and determine the entropy per particle as a function of the
inverse temperature βU .

Our results are shown in Fig. 3.15 and can be summarized as follows.
Firstly, we find that our theoretical predictions for all three protocols – fil-
tering, sequential filtering and algorithmic cooling – are very accurate in the
low temperature limit βU À 1, and even hold in good approximation for
the (relatively) high temperature regime βU & 1. Secondly, our algorithmic
protocol outperforms filtering considerably, especially in the high tempera-
ture range. Finally, based on the assumptions that underlie our calculations,
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Figure 3.15: Analytical (solid) and numerical (dots) results for the en-
tropy per particle s = S/N versus the inverse temperature βU for fixed trap
strength b/U = 1/2500 and fixed µ = U . We plot the initial value (black
line) and the values after filtering with F1 (Eq. (3.24), brown line). This is
compared to more elaborate cooling protocols: entropy after two iterations
of sequential filtering including equilibration (Eq. (3.31), red line), minimal
entropy after sequential filtering without equilibration (cyan), and entropy
after algorithmic cooling (Eq. (3.41), blue line). For the algorithmic proto-
col we have chosen ε = 0.03 and ks = 2 δε. Note that this protocol creates
classically correlated states. The numerics are therefore based on a rep-
resentation of classical density matrices in terms of matrix-product states
[Appendix C].

subsequent filtering is typically superior to algorithmic cooling with respect
to the minimal achievable entropy.

We now discuss advantages, experimental requirements and time scales
of our cooling protocols.

Sequential filtering

(i) Advantages : If one combines filtering with equilibration then the entropy
per particle converges very fast to zero with the number of filter steps. The
minimal value is only limited by finite size effects. Without equilibration, the
minimal entropy is limited by the finite probability of finding a hole in the
central MI phase of the initial distribution. Furthermore, sequential filtering
naturally allows for cooling in a 3D setup, because it preserves the spherical
symmetry. Note that filtering, and hence sequential filtering, can also be
applied to fermionic atoms in an optical lattice [45].
(ii) Requirements and limitations : The repeated creation of doubly occupied
sites in the center of the trap requires precise control of the harmonic con-
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finement over a wide range of values. In addition, non-adiabatic changes of
lattice and external potentials might induce heating, which could reduce the
cooling efficiency considerably.
(iii) Time scales : The limiting factor here is not filtering but the adiabatic-
ity criterion for changes of the hopping rate and the harmonic confinement.
We have shown that after filtering the density distribution can be identified
with a thermal distribution of hard-core bosons. Hence it is possible to find
estimates for adiabatic evolution times based on fermionic single-particle
states, as calculated in [127]. In the MI regime particle transfer from the
borders to the center of the trap is very unlikely, because the eigenfunctions
of the upper and lower Fermi band do not overlap. Therefore, we propose
as a first step to decrease the lattice potential at fixed harmonic confine-
ment until eigenfunctions start overlapping. This process can be treated
very well with our fermionic model (3.13), because only the lower band is
populated [Fig. 3.3]. The average energy spacing around the Fermi level is
δE = bN ≈ 2 U/N in the no-tunnelling regime, and stays roughly constant
when passing over to the tunnelling regime [127]. As a consequence, the
lattice potential should be varied on a time scale T À h/δE ≈ 10 ms for
N = 50 and h/U = 396 µs [129]. For the second process, which involves the
change of the harmonic potential at fixed hopping rate, it is more difficult to
make analytic predictions for adiabatic time scales, since our single-particle
description (3.13) is no longer justified in general. One can, however, ob-
tain a lower bound by considering the energy spectrum after returning to
the no-tunnelling regime [Fig. 3.3]. The average energy spacing around the
Fermi level is now dominated by the energy spacing at the bottom of the
upper band: δE ′ =

√
b′/β/2 ≈ U/(N

√
βU). This implies adiabatic evolu-

tion times which are a factor
√

βU/2 larger than for the first process. We
have also verified the whole process numerically, using the matrix-product
state representation of mixed states [102]. For initially N = 11 particles we
find adiabatic evolution times of the order T ∼ 30 ~/U for the first process,
which is consistent with our analytical estimate. The second process is more
time consuming with T & 120 ~/U .

Algorithmic cooling

(i) Advantages : The algorithmic protocol operates solely in the no-tunnelling
regime. Adiabatic changes of the lattice and/or the harmonic potential,
which are time consuming and might induce heating, are therefore not re-
quired. Moreover it does not demand arbitrary control over the harmonic
confinement. The correct initial conditions can always be generated by the
filter operation F1. The protocol is more efficient in the high temperature
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range and for large particle numbers. Additionally to ground state cooling,
the algorithm can be used to generate an ensemble of nearly perfect quantum
registers for quantum computation. This state, which can also be considered
as an ensemble of possible ground states in the uniform system, might already
be sufficient for quantum simulation of certain spin Hamiltonians. Finally,
note that this protocol can naturally be applied also to fermionic systems.
(ii) Requirements and limitations : The heart of the protocol is the existence
and control of spin-dependent lattices. Moreover, the algorithm is explicitly
designed for cooling in one spatial dimension. Generalizations to higher di-
mensions are possible, but will typically not preserve the spherical symmetry
of the initial density distribution. Moreover, one should keep in mind that
the final states are typically far from thermal equilibrium.
(iii) Time scales : Adiabatic lattice shifts can be performed very fast on a time
scale determined by the on-site trapping frequency ν ' 30 kHz. The limiting
factor is the number of filter operations, which is of the order δε (3.34). Under
realistic conditions this can amount to 50 operations. Filter operation times
based on the adiabatic scheme [45] are of the order TF ∼ 200 ~/U . With
h/U = 396 µs [129] one finds a total operation time T ∼ 630 ms, which is
comparable with the typical particle life time in present setups using spin-
dependent lattices [47]. We have studied this problem with an alternative
implementation of filtering [Sect. 3.2.3], which allows one to reduce the oper-
ation time by a factor of ∼ 15, and hence makes algorithmic cooling feasible
in current experimental setups.

3.3.5 Alternative cooling scheme: Filtering combined
with frequency knife

We again start with the filtering operation F1. The remaining ”hot” parti-
cles located at the borders of the trap can also be removed with a method
similar to evaporative cooling or a frequency knife. The idea is to make use
of inhomogeneous on-site energies and to choose the detuning δ of a radia-
tion field in such a way that only atoms located at specific lattice sites are
resonantly coupled to another internal state. Using a magnetic field gradient
it has been demonstrated that individual lattice sites can be resolved within
an uncertainty of about five sites [134]. In our case the spatial dependence of
the on-site energies is naturally provided by the harmonic trapping potential.
However, in order to make use of this inhomogeneity one has to ensure that
the atoms are coupled to an internal state which responds differently to the
ac-Stark shift induced by the lattice laser beams. Experimentally, this can,
for instance, be achieved with a setup similar to the one for the creation of
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spin-dependent lattices [46, 47, 130]. There, one atomic species is trapped
exclusively by σ− polarized laser light, whereas the other species is trapped
predominantly by σ+ polarized light. Hence, an optically untrapped internal
state can simply be realized by using only σ+ polarized laser light for creating
the optical lattice.

Let us now estimate the requirements on the the Rabi frequency Ω of the
transition depending on the trap strength b. For simplicity, we consider two
internal states, and a configuration for which the excited state exhibits zero
on-site energy at each lattice site. We are interested in removing particles
which are typically located at a distance kµ from the center of the trap.
Hence, for resonant coupling of these atoms we must choose the detuning
to be |δ| = bk2

µ = µ. Particles at sites kµ + ∆k feel an effective detuning

δeff (∆k) ≈ bN∆k, where N = 2kµ denotes the particle number (3.21). The
probability that a particle at site kµ + ∆k is transferred to the excited state
is then given by:

Pe(∆k) =
Ω2

Ω2 + δeff (∆k)2
. (3.42)

In order to locally address the site kµ reasonably well one has to demand:
Ω . bN . For typical harmonic trapping frequencies in the MI regime, ωho =√

8b/(~mλ2) & 2π× 65 Hz [24], and N = 50 this translates into Ω . 1 kHz.
Experimentally it should therefore be feasible to resolve individual sites

with an uncertainty of a few lattice sites and thus to sharpen the density
profile within this uncertainty. Note that this scheme clearly profits from a
large number of particles per tube. Another advantage is that it preserves
the spherical symmetry of the density distribution in a 3D lattice.

Finally let us remark that this method can easily be incorporated in the
continuous filtering scheme [Fig. 3.9] proposed in Sect. 3.2, since there the
atoms are also coupled to untrapped states.

3.4 Algorithmic cooling of defects in quan-

tum registers

A perfect one-dimensional quantum register is a connected array of commen-
surately filled lattice sites. Hence, quantum registers are equivalent to MI
states of the form (3.4). For most purposes the filling factor ν = 1 is suffi-
cient. This state appears naturally as the unique MI ground state (3.5) of
the BHM in the no-tunnelling limit and in the presence of a weak harmonic
confinement. Hence, any efficient ground state cooling protocol will produce
a good quantum register. Moreover, we have seen in the previous section,
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that algorithmic protocols can be used to create an ensemble of quantum
registers rather than a unique one (see also [44, 64]). In this section we will
propose and analyze two alternative algorithms for the creation of a quantum
register ensemble. As compared to previous proposals [44, 64] these schemes
require only a small number of operations, which makes them more appeal-
ing for experimental implementation. The first protocol produces registers
with filling ν = 1, whereas the second protocol is optimized for filling ν = 2.
In addition, we propose how to transform atoms at the endpoints of each
register into ”pointer” atoms, which then enables addressing individual lat-
tice sites. This can be used, for instance, to create registers of equal length.
Even more important it offers the opportunity to perform ensemble quantum
computation in this system.

We start from a rather cold cloud, βU À 1, which has been subject to
fundamental filtering operations FM (3.16). The result is an almost perfect
MI in the center of the trap with some residual defects (or holes) which are
predominantly localized at the borders [See Fig. 3.6]. Since we operate solely
in the no-tunnelling regime these defects cannot redistribute nor evaporate.
Our goal is to remove all these defects and we will achieve it by applying
nearest-neighbor quantum gates which simulate inelastic collisions between
particles and holes. Simply put, whenever a particle sits next to a hole,
the particle will be annihilated. This process is analogous to spin flips in
ferromagnets and the formation of domains of equal magnetization. Thus,
these algorithmic schemes can also be understood as controlled equilibration
and cooling of defects.

For all protocols that will be proposed below, the resulting state is a mix-
ture of perfect (up to defects in the central MI phase) quantum registers of
the form (3.5), which differ only in their length and lateral position. The
entropy of this state will be of the order Sf ∼ log2 ∆, where the parameter
∆ (3.17) quantifies the translational uncertainty in the initial density distri-
bution. Note, however, even though the final entropy is very small, these
protocols are typically not suited for ground state cooling. The reason is
that the final state is far from thermal equilibrium. Numerically we find that
the value of the entropy after equilibration is comparable to the value before
invoking the protocol. However, if one makes use of the pointer atoms to
select only registers with a specific length then these protocols indeed lead
to cooling.

3.4.1 Protocol 1

The operation sequence is illustrated in Fig. 3.16. We first merge oddly
aligned pairs of sites using a superlattice [135, 136] and empty sites with
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Figure 3.16: Illustration of protocol 1 for the creation of quantum registers.
After merging neighboring lattice sites, one empties single occupied sites.
The algorithm stops, when all particles in the tails have been removed and
only the central MI phase remains.

only one atom. The sites are again split and the original lattice is restored.
This operation is then repeated several times, alternating between even and
oddly aligned sites, until the total entropy reaches a minimum.

We have analyzed the performance of this protocol under realistic condi-
tions using the MPS description to compute the at most classically correlated
density matrix [Appendix D]. In Fig. 3.17 we plot the typical density distribu-
tion after different steps of the protocol. A single step changes very little the
density but decreases dramatically the entropy (From S2 = 17.5 to S2 = 7.9).
Indeed, the first steps account for the elimination of most defects. After a
few iterations entropy saturates because the density matrix has collapsed to
a classical ensemble of defect-free quantum registers [Fig. 3.17]. As a con-
sequence of the protocol, the number of atoms per register must be even,
which leads to steps in the final density profile [Fig. 3.17].

Clearly the fix point of this protocol would be a state with no particles
at all. Let us now estimate how many iterations M of the protocol are
required to reach a state with reasonable particle number and tolerable defect
probability. Firstly, we have to point out that there are two sources of defects:
(i) holes in the central MI phase and (ii) particles at the borders which are
disconnected from the central MI phase and which have not yet been erased
by the protocol. The probability for defects of the first kind is negligible in the
limit of low temperatures βU À 1 [see Sect. 3.1.2]. Defects of kind (ii) can be
assessed by the following observation: In order to erase a connected array of
M particles, which is separated by at least one empty site from a central MI
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Figure 3.17: Left: Particle distribution after different steps of the protocol:
after filtering F1 (dotted), after one iteration (dashed), after eight iterations
(solid). Parameters of the initial state: N = 100, s = 0.7 (s2 = 0.56),
U/b=1000, βU = 5.8. Parameters after filtering: N = 70.5, s = 0.33
(S2 = 17.5, s2 = 0.25). Parameters after iteration 1: N = 65.5, S2 = 7.89,
s2 = 0.12; iteration 2: N = 60.8, S2 = 5.95, s2 = 0.098; iteration 7:
N = 48.8, S2 = 5.297, s2 = 0.108; iteration 8: N = 46.8, S2 = 5.296,
s2 = 0.113. Stopping the algorithm at iteration 3 gives a minimum in the
entropy per particle: s2 = 0.095. Upon reaching thermal equilibrium this
value has increased to s2 = 0.265 (s = 0.36) which is comparable to the
value after filtering. However, when selecting the subspace containing only
registers of length N = 48 then the protocol leads to cooling. The entropy
per particle in thermal equilibrium will then be given by s = 0.17. Right:
The step like structure of the density distribution allows one to deduce the
states which contribute significantly to the final density matrix. The states
can be classified according to their particle number and their lateral position.

state, one requires exactly M/2 iterations of the protocol. The probability of
finding defects after M iterations is then given by the probability of having
states with array size larger than M in the initial density matrix. This
probability can easily be computed numerically exact from the distribution
(3.8). The derivation of closed expressions is however difficult. Nevertheless,
one can get a good estimate for the optimal number of iterations based on
the following argument. The characteristic tail width of the initial particle
distribution (3.8) is ∆ (3.17). Hence, the occurrence of arrays of size M = 2∆
is already very unlikely. This implies that after roughly ∆ iterations of
protocol 1 we expect to have registers with negligible defect probability. This
can be illustrated with an example. For the initial state in Fig. 3.17 we have
∆ = 10 and the relative difference in the total entropy after the seventh and
eighth iteration has reduced to 10−4, which implies a defect probability of the
same order of magnitude. The typical size of the registers after ∆ iterations
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is roughly N − 2∆, where N (3.21) is the characteristic size of the initial MI
state. This implies N À ∆, otherwise no particles remain in the system.
Since ∆ ≈ N/βU , one has to require the low temperature regime βU À 1.

As mentioned above, the algorithmic ground state cooling protocol of
the previous section can also be used for the creation of quantum registers.
However, the ground state cooling algorithm involves O(N) operations as
compared to O(∆) operations of the current protocol. Note also that the
example presented in Fig. 3.17 indicates that this protocol does not lead
to cooling. After restoring thermal equilibrium, the entropy has reached a
value comparable to the one after filtering. We have repeated this analysis for
various initial conditions and our results confirm this observation. However,
if one selects a particle number subspace with N being larger than the mean
value than our protocol can indeed be used for cooling. According to the
data in Fig. 3.17 the entropy per particle can be reduced by roughly 50% as
compared to filtering.

3.4.2 Protocol 2

We start from a state which contains only empty or doubly occupied sites.
This can be achieved by applying filtering operation F2, followed by U0,1

1,0 and
Eb. The protocol is depicted in Fig. 3.18.
We begin with transferring one particle per site to state |b〉. Then the |b〉–
lattice is shifted one site to the left and the same operation as before is
performed. Afterwards one empties single occupied sites. This procedure
allows one to remove defects in a correlated way. Occupied sites which have
an unoccupied site to the right are emptied. Since the probability of finding
particles in the center is close to one, the central MI is preserved except for
losses at the right border. This procedure is repeated until all particle dis-
connected from the central MI phase become annihilated and only perfect MI
phases in the center remain. One step of the protocol can be summarized in
the following sequence of operations: U1,1

2,0 , S−1, U1,1
2,0 , Eb, U0,1

1,0 , Eb. Following
the discussion of protocol 1, this sequence has to be applied approximately
2∆ times, where ∆ denotes again the characteristic tail width of the initial
particle distribution. The factor two stems from the fact that at each step of
the protocol the size of ”particle islands” in the tails, as well as the central
MI phase, is reduced only by one as compared to two in protocol 1. The
final density matrix looks very similar to the one after protocol 1, with the
difference that also registers with odd number of atoms appear.
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Figure 3.18: Illustration of protocol 2 for the creation of quantum registers.
Spin-dependent lattice shifts allow one to remove defects in a correlated way.

3.4.3 Pointer atoms and register length control

Given an ensemble of quantum registers we will now show how to create
pointer atoms. To be more precise, our goal is to selectively transfer the
two end atoms of each register to a different internal level. These pointer
atoms enable single–site addressing which can be used to engineer registers
of specific length.

Creation of pointer atoms

Our scheme relies on the same set of operations that is used in current ex-
periments for entangling atoms located at different lattice sites [47]. We
consider quantum registers with one atom per site. Initially all atoms are
in internal state |a〉. A Hadamard transformation puts the atoms in the co-
herent superposition state (|a〉+ |b〉)/√2. One then shifts the |b〉–lattice one
site to the right and waits an appropriate time until the on–site interaction
between species |a〉 and |b〉 yields a collisional π–phase. This means that on
each site the state |a〉|b〉 is transformed into −|a〉|b〉. After two lattice shifts
to the left one waits again until a π–phase has built up. Then the lattice
is shifted back to its original position and a second Hadamard operation is
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performed. The resulting state is a again a product state but the end atoms
have been promoted to level |b〉. These atoms can be considered as pointer
atoms because they mark the beginning (and the end) of each register and
can thus be used to access every site within the register in a deterministic
way. In practice, only one pointer atom is needed. The second pointer atom,
e.g. the one on the left, can easily be removed by applying the following
operation sequence: S−1, U2,0

1,1 , Eb, U1,1
2,0 .

Manipulation of register length

The pointer atoms can now be used to create an ensemble of registers of
fixed length, a feature which is desired for quantum computation and which
can even lead to cooling. We first present a protocol that requires only
two internal states of the atoms. Then we show that the algorithm can be
simplified considerably when a third internal level is included. In both cases
we start from a situation where all registers have one pointer atom in state
|b〉 which is located at the right most occupied site of the register.

Protocol based on two internal states: The central idea is to remove
atoms selectively from the system by transferring them to the pointer level
|b〉. We first show how to discard all registers which are shorter than a desired
length M . We start with the sequence: U0,2

1,1 , S−M , U2,0
0,2 , Eb. This ensures

that registers of length N ≥ M are protected against further modifications,
because their pointer atoms have been removed. Next we promote atoms in
doubly occupied sites to the pointer level and shift this (two–atom) pointer
one site to the right. If the pointer hits an occupied site then one atom in |a〉
will be removed. Iteration of this process removes all atoms on the right of the
current pointer position. To be more precise, one has to iterate M − 1 times
the sequence: U0,2

2,0 , S1, U2,0
0,2 , U2,1

1,2 , Eb. In a last step the remaining doubly

occupied sites are emptied via U0,2
2,0 , Eb. After creating new pointer atoms

the minimal register length is given by M ′ = M − 2. Again we keep only the
pointer atom on the right side. Let us now show how to shorten registers of
length N > M ′ to length M ′. We first apply the sequence: S−1, U0,2

1,1 , S−M ′ ,

U1,1
0,2 , S−1. For the target register of length M ′ this merely transfers one atom

from the right end of the register to the left end. For larger registers one
obtains a two–atom pointer that can now be used to select and discard all
atoms located left of the pointer. This can be accomplished by iterating the
sequence: U2,1

1,2 , Eb, U0,2
2,0 , S−1 until all registers with appreciable weight in

the density matrix have been shortened to the desired size.
Protocol based on three internal states: This protocol is based on

the operation U0,1,1
1,1,0 , which transfers an atom from |a〉 to |c〉, given that a

pointer atom is present. This way one can use the pointer as a ”marker”,
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which allows one to produce registers of desired length M in a very simple
manner. One first marks an array of M atoms and then discards all atoms
which have remained in level |a〉. The algorithm can be summarized as
follows: apply the sequence S−(M−1), U

2,0
1,1 , Eb, U

1,1
2,0 , U0,1,1

1,1,0 ; iterate M−1 times

the sequence S1, U
0,1,1
1,1,0 ; finally apply the operation Ea.

3.5 Perspectives

We have proposed various ground state cooling schemes that allow one to
reduce the temperature in current optical lattice setups considerably. A
special virtue of our schemes is, that they rely on general concepts which can
easily be adapted to different experimental situations. For instance, little
modifications ensure that our protocols can be applied both to bosonic and
fermionic systems. A second advantage of our protocols is, that they are
designed for the no–tunnelling regime and hence do not necessarily require
equilibration processes induced by particle hopping and elastic collisions. As
a consequence, the time to approach a state close to the ground state does
not increase with decreasing initial temperature, rather the opposite is the
case.

In this sense, the collection of cooling schemes presented in this chapter
can be considered as a toolbox which is tailored for cooling atoms in optical
lattice setups. The tool (or combination of tools) which is best suited for
a given purpose, can be chosen according to the characteristic features of
a specific experimental setup. For instance, in the case of large systems at
high temperatures, one can think of combining filtering with the frequency
knife method which is then followed by the algorithmic ground state cooling
protocol. Or ground state cooling can be combined with adiabatic transfor-
mation of the Hamiltonian so as to produce ground states of models different
from the simple Bose-Hubbard considered here. And one should also keep in
mind that a 3D lattice structure offers a large variety of possibilities, which
have not been fully explored yet.

The methods introduced here greatly enhance the potential of optical
lattice setups for future applications and might pave the way to the experi-
mental realization of quantum simulation and quantum computation in this
system. We also hope that the concepts introduced in this work might trigger
further research in the direction of ground state cooling in optical lattices.



Chapter 4

Adiabatic Path to Fractional
Quantum Hall states in Cold
Atomic Systems

The creation of highly entangled multi-particle states is one of the most chal-
lenging goals of modern experimental quantum mechanics. In this respect
atomic systems offer a very promising arena in which entangled states can
be created and manipulated with a high degree of control. The experimen-
tal difficulty increases, however, with the number of particles that are to
be entangled, since the system becomes then more sensitive to decoherence.
Starting with a small number of particles as a first step, important achieve-
ments have been already obtained in the creation of atomic entangled states.
For example, in recent experiments with trapped ions, entangled states of up
to 8 ions have been demonstrated [4, 5]. Moreover, in experiments with neu-
tral bosonic atoms in optical lattices Bell-type states have been created by
accurately controlling the interactions between neighboring atoms [47]. As a
typical feature of most of the experimentally realized entangled states, atoms
get entangled through their internal degrees of freedom, keeping separable
their motional part.

In this chapter we develop a scheme to create motional entangled states
of a small number of atoms in an actual experimental setup with an opti-
cal lattice. These states are a sequence of fractional quantum Hall (FQH)
states, analogous to the ones that appear in the context of the fractional
quantum Hall effect [48, 137]. In contrast to typical atomic entangled states,
the particles are here entangled in real space, and not in internal space. This
peculiarity makes them specially interesting, for it represents a novel nature
of atomic entanglement.
The possibility of creating FQH atomic states as the Laughlin state by rapidly
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rotating the trap confining the atoms has been discussed in several theoret-
ical works [50, 51, 52, 53, 54, 55, 56, 57, 58]. However, experiments dealing
with typically large number of particles have not yet succeeded in reaching
these states. Here, we fully address the case of a small number of particles
and design a realistic way of entangling them into FQH states. The exper-
imental setup that we have in mind corresponds to a situation in which a
Bose-Einstein condensate is loaded in a deep optical lattice. When the lattice
depth is very large tunnelling between different sites is strongly suppressed
and the system can be treated as a lattice of independent wells, each of them
with a small number of particles. By independently rotating each of these
3D wells [138] the lowest Landau level (LLL) regime can be achieved for each
copy. We have studied the problem exactly within the LLL for N = 2, N = 3
and N = 4 particles per well. The main results of this chapter can be sum-
marized as follows:

(i) For the most interesting case of four atoms we have identified the
following sequence of highly entangled stable ground states: the Pfaffian
state [139], the 1/2-Laughlin quasiparticle [49] and the 1/2-Laughlin state
[49]. The 1/2-Laughlin quasiparticle state (which had never been identified
before in an atomic system) is particularly interesting. It is the counterpart
of the 1/2-Laughlin quasihole found in [57] and contains a 1/2-anyon.

(ii) Exact knowledge of the spectrum of the system has allowed us to
design adiabiatic paths to these states by simultaneously rotating and de-
forming each of the wells. All parameters and evolution times lie well within
the reach of present experimental setups.

(iii) We discuss how to detect these entangled states by measuring differ-
ent properties, such as their density profile, angular momentum or correlation
functions. In particular, we propose a novel technique based on the lattice
setup to measure the density-density correlation function of these strongly
correlated states. Even though the number of atoms per well is small, the
lattice setup allows one to have multiple copies of the system, so that the
experimental signal is highly enhanced.

(iv) In Appendix E we study the problem of two interacting particles in
a harmonic trap analytically. In particular, we derive a condition for the
validity of the pseudo-potential approximation in tight traps, i.e. when the
scattering length becomes larger than the typical trap size.

We point out that our findings also show that adiabatically achieving FQH
states for rapidly rotating traps with a large number of particles turns out to
be very challenging. The reason is that all relevant experimental parameters
scale linearly with the number of particles. Nevertheless, we hope that our
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results can shed some light on the problems that these current experiments
are dealing with, and even may pave the way to new methods of achieving
FQH multi-particle entangled states.

4.1 Identification of entangled states

We consider a system of bosonic atoms loaded in a 3D optical lattice. We
assume a commensurate filling of N atoms per lattice site 1, and a large value
of the lattice depth V0/ER À 1, where ER = ~2k2/2M is the recoil energy,
k is the wave vector of the laser lattice light, and M the atomic mass. In
this limit the lattice can by treated as a system of independent 3D harmonic
wells, each of them having N atoms and a trapping frequency ω ≈ √

V0ER.
Let us rotate each of these 3D harmonic wells around the direction x3 with

frequency Ω. We will identify a sequence of motional entangled ground states
of the N atoms that appear as the frequency Ω is increased. We will assume
the limit of rapid rotation [57]. In this case the motion in the x3 direction is
frozen, and the motion in the plane of rotation x1, x2 is restricted to the LLL
[Appendix E]. This implies that in order to project the system onto the LLL
we do not need to start with a 2D configuration (as it is the case in previous
proposals [50, 51, 52, 53, 54, 55, 56]), since the fast rotation itself restricts
the motion in the direction of the rotation to zero point oscillations. The
system is then governed by a two dimensional effective Hamiltonian, which
written in units of ~ω has the form:

H = (1− Ω/ω) L + 2π ηV, (4.1)

where L =
∑

m=0 ma†mam is the angular momentum operator in the x3 direc-
tion, and V =

∑
m1,m2,m3,m4

V m3,m4
m1,m2

a†m1
a†m2

am3am4 is the interaction operator.

Here the bosonic operator a†m(am) create (anihilate) an atom in the state |m〉
of the LLL with well defined x3 component of the angular momentum m. The
wave functions of the LLL in complex coordinates read

ϕm(z) = 〈z|m〉 =
1√

πm!`
zme−|z|

2/2 , (4.2)

where z = (x1 + ix2)/`, ` =
√
~/Mω is the harmonic oscillator length,

and m = 0, 1, . . .∞. Assuming contact interactions between the atoms the

1Typically the filling factor N is not homogeneous, because the Gaussian intensity
profile of the laser beams results in an additional weak harmonic confinement of the atoms.
However, it has been demonstrated that commensurate filling can be achieved using an
entanglement interferometer [129]
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interaction coefficients are:

V m3,m4
m1,m2

=
(m1 + m2)!

2m1+m2
√

m1!m2!m3!m4!
. (4.3)

In Hamiltonian (4.1) we have introduced the important interaction parameter
η =

√
2/πas/`, with as being the 3D scattering length. Our analytical

calculations in Appendix E for scattering potentials of finite size b show that
the pseudo-potential approximation, which underlies Eq. 4.3, is also valid
for tight traps with as & ` given that bas ¿ `2 and b ¿ ` are fulfilled.

4.1.1 N=2

The problem of two interacting particles in a rotating harmonic trap can be
solved analytically [Appendix E]. Here we summarize the main results. The
Hamiltonian (4.1) is diagonal in the states |mr,mcm〉 of well defined relative
(mr) and center of mass (mcm) angular momentum:

H =
∑

mr,mcm

Emr,mcm|mr,mcm〉〈mr,mcm|, (4.4)

with Emr,mcm = δmr,0 η + (1 − Ω/ω)(mr + mcm). We note that due to the
restriction to s-wave scattering, only particles with zero relative angular mo-
mentum feel the interaction energy. Moreover we have assumed the weak
interaction limit η ¿ 1. It follows that for Ω/ω < 1− η/2 the ground state
of the system is |0, 0〉 (with total angular momentum L = 0), which is not
entangled, whereas for Ω/ω > 1− η/2 the state |2, 0〉 (with L = 2) becomes
energetically favorable [Fig. 4.1a]. This state,

〈z1, z2|2, 0〉 ∝ (z1 − z2)
2 e−|z1|2/2e−|z2|2/2, (4.5)

is clearly entangled since it cannot be written as a product of two single par-
ticle wave functions. It is the Laughlin state |ψL〉 for two particles at filling
factor ν = 1/2 [49]. In order to quantify the entanglement of this state we
write it in the basis of states |m1m2〉 with well defined single-particle angu-
lar momentum. Then the Laughlin state takes the form of a pure two qutrit
state: |ψL〉 = 1

2
(|02〉+ |20〉) − 1√

2
|11〉. This is already the Schmidt decom-

position of the state, and the entropy of entanglement [84] can immediately
calculated to be E(|ψL〉) = 1.5. This value is close to log2 3, corresponding
to a maximally entangled pure two qutrit state.
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Figure 4.1: Energy spectrum (in units of ~ω) of the Hamiltonian 4.1 for
η = 0.1 as a function of the trap rotation frequency Ω/ω. (a) N = 2: At
Ω = 0.95ω we observe a level crossing between the Gaussian ground state
(L=0) and the Laughlin state (L=2). (b) N = 3: The ground state sequence
involves a state with odd angular momentum (L = 3). In order to reach
the L = 6 Laughlin state with the perturbation (4.9) we will later design
an adiabatic path via excited states (red line). The arrow marks the level
crossing between the L = 0 and the L = 6 state.

4.1.2 N=3

The case of three particles per lattice well cannot be solved analytically.
Therefore we resort to exact numerical diagonalization in order to obtain the
multi-particle energy spectrum of the Hamiltonian (4.1). We find that the
1/2-Laughlin state (L = 6) emerges as ground state after an intermediate
state with odd angular momentum L = 3 [Fig. 4.1b]. As we will explain
in the next section, ground states with odd angular momentum cannot be
reached using our proposal. Hence we are forced to design appropriate adia-
batic paths via excited states, in order to reach the Laughlin state.

4.1.3 N=4

As the frequency of rotation Ω increases the ground state of the system
passes through a sequence of states with increasing and well defined total
angular momentum L = 0, 4, 8, 12 [Fig. 4.3]. These states can be identified as
follows: The state with L = 0 is a non-entangled state in which all the atoms
are condensed in the single-particle Gaussian state with angular momentum
m = 0. The first nontrivial ground state is the L = 4 state. This state is not,
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Figure 4.2: Density profile ρ(x, y = 0) of the Laughlin state (red) as
compared to the Gaussian ground state (L = 0). (a) N = 2. (b) N = 3.
Note that the spatial width of the distribution increases with N .

as one might expect, a single vortex state, in which all the particles would
be condensed in the single particle state m = 1. In contrast, this state is
highly entangled and is very close (fidelity F = |〈ψ|ψPf〉|2 = 0.95) to the
well-known Pfaffian state:

ψPf ([z]) =
4∏

i<j

(zi − zj) Pf

(
1

zi − zj

)
. (4.6)

This state is specially interesting, also in the context of quantum information
theory, because its elementary excitations are known to exhibit non-abelian
statistics [10]. The next stable state in row (L = 8) can be very well charac-
terized (fidelity F = 0.98) by a Laughlin quasiparticle state:

ψQP ([z]) =
∂

∂z1

. . .
∂

∂z4

ψL . (4.7)

This state is the counterpart of the quasihole excitation, which has previ-
ously been studied in the context of 1/2-anyons in rotating Bose-Einstein
condensates [57]. Finally, the last stable state is identical to the 1

2
-Laughlin

state, which we have already encountered in the case of two particles per
well:

ψL([z]) =
4∏

i<j

(zi − zj)
2

4∏

k

e|zk|2/2 . (4.8)

This state is an exact eigenstate of (4.1) with zero interaction energy. In
Fig. 4.3 we have plotted the density distribution in the x1, x2 plane of the
different stable ground states. As the frequency of rotation Ω/ω increases
the wave function spreads, and the interaction between the atoms decreases.
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Figure 4.3: Lowest two eigenenergies (in units of ~ω) of the Hamiltonian
(4.1) for 4 particles and η = 0.1 as a function of the trap rotation frequency
Ω/ω. The circles mark the level crossings and L denotes the total angular
momentum of the ground state. The ground state sequence can be identified
as follows (with fidelity F = |〈ψ|ψ′〉|2 given in brackets): L= 0 Gaussian
ground state (exact) , L=4 Pfaffian state (0.95), L=8 quasiparticle state
(0.98), L=12 Laughlin state (exact). The change of angular momentum can
readily be obtained from the increasing width of the density distribution
depicted below.

4.2 Adiabatic paths to entangled states

The sequence of entangled states we have described above cannot be obtained
by simply adiabatically increasing the frequency of rotation Ω. The reason
for that is the rotational symmetry which leads to level crossings between
different angular momentum states [Fig. 4.3]. In order to pass adiabatically
from the zero angular momentum ground state to higher angular momentum
states the spherical symmetry of the trapping potential has to be broken. For
our optical lattice setup this can be achieved for example by deforming the
formerly isotropic trapping potential on each well and letting the deforma-
tion rotate with frequency Ω [138]. In the rotating frame the new trapping
potential has the form Vp ∝ (ω + ∆ω)2 x2

1 + ω2x2
2, and the new Hamiltonian
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is H + Hε, with

Hε =
ε

4

∑
m

βma†m+2am + (m + 1)a†mam + h.c., (4.9)

where βm =
√

(m + 2)(m + 1) and ε = ∆ω/ω is a small parameter. The
perturbation (4.9) leads to quadrupole excitations, which means a change in
angular momentum by two quanta.

4.2.1 N=2 and N=4

We first consider the cases of two and four particles per well. In order to
design appropriate adiabatic paths to the entangled states described above,
we have computed numerically the energy gap between the ground and first
excited state as a function of the parameters Ω/ω and ε for N = 2 and N = 4
[Fig. 4.4].

0

0.01

0.02

0.03

0.04

0.05

0.9 0.92 0.94 0.96 0.98 1

Ω / ω

ε

0.12

0.1 

0.08

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.85 0.9 0.95 1
Ω / ω

ε

0.18

0.16

0.14

0.12

0.1 

0.08

0.06

0.04

0.02

a 
b 

c 

Figure 4.4: Energy gap (in units of ~ω) between the ground and first ex-
cited state as a function of the rotation frequency Ω/ω and the trap deforma-
tion ε for an interaction strength η = 0.1. The black lines mark appropriate
paths in parameter space for adiabatic ground state evolution starting from
the L = 0 state. The adiabatic evolution times have been calculated for
a typical trapping frequency ω ' (2π)30 kHz. Left (N = 2): For a final
fidelity F = |〈ψ(T )|ψL〉|2 = 0.99 the Laughlin state (L=2) can be reached
within T = 6.5 ms. Right (N = 4): Adiabatic path, evolution time T and
fidelity F for the following final states (see Fig. 4.3): (a) Pfaffian state:
T = 8 ms, F = 0.99; (b) Quasiparticle state: T = 12 ms, F = 0.99; (c)
Laughlin state: T = 215 ms, F = 0.97.
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We first note that the isolines of constant energy gap show an approxi-
mately linear behavior. This feature can be easily understood from a per-
turbative treatment of the Hamiltonian (4.9). To first order, the energy of
states with angular momentum L is shifted by an amount εL/4. Therefore
the gap profile for a given ε is very similar to the one for ε = 0 but shifted
an amount ∼ ε to larger rotation frequencies. As expected, we find that for
ε 6= 0 avoided crossings emerge (see Fig. 4.5). The energy gap of the avoided
crossings does, however, not in general increase monotonically with the de-
formation ε. Due to the interplay with other excited states, “saddlepoints”
appear in the gap profile, which makes the design of appropriate adiabatic
paths a nontrivial task. For the stable entangled states of N = 2, 4 identified
above these paths are depicted in Fig. 4.4. The actual time needed for the
adiabatic path depends on the number of particles as well as on the state
we want to achieve. For a typical trapping frequency ω = (2π)30 kHz and
an interaction coupling η = 0.1, the evolution times for the N = 2 Laughlin
state as well as for the L = 4 and L = 8 states for N = 4 are of the order of
10 ms. In contrast, the evolution time for the N = 4 Laughlin state is one
order of magnitude larger.
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Figure 4.5: Left side: Energy spectrum (in units ~ω) for N=4 and η = 0.1
in the vicinity of the first level crossing from the L=0 to the L=4 state
(see Fig. 4.3 left circle). Using quadrupole excitations (|∆L| = 2) coupling
between these states is provided by the intermediate state L=2. Right side:
Emergence of an avoided level crossing for a trap deformation ε = 0.06.

We can understand this result in the following way. For the case of N = 2
direct coupling of the L = 0 state to the L = 2 Laughlin state is mediated by
(4.9). For the case of N = 4 there is no direct coupling between the ground
states, since their angular momenta differ by 4. But, as one can see from the
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spectrum in the vicinity of the crossing to the state L = 4 [Fig. 4.5], there is
a state with L = 2 near the crossing that mediates the coupling between the
L = 0 and the L = 4 state. A similar situation occurs for the crossing to the
L = 8 state. However, there is no such intermediate state in direct proximity
of the crossing to the N = 4 Laughlin state, which leads to a decrease of the
energy gap by one order of magnitude.

4.2.2 N=3

The case of N = 3 is somehow special, because here a ground state with
odd angular momentum (L = 3) arises [Fig. 4.1b]. From the nature of the
perturbation (4.9) it is clear that ground state evolution is not possible, be-
cause angular momentum can only be increased by multiples of two quanta.
However, one can design appropriate adiabatic paths via excited levels in
order to reach the 1/2-Laughlin state. We first increase the rotation fre-
quency without deforming the trap until we are in the vicinity of the level
crossing between the L = 0 and the L = 6 (Laughlin) state [Fig. 4.1b]. We
then switch on the perturbation and follow the adiabatic path in parameter
space depicted in Fig. 4.6. The required evolution time for a final fidelity
F = |〈ψ(T )|ψL〉|2 = 0.992 is T ≈ 15 ms.

4.3 Feasibility

Let us now discuss the experimental feasibility of our proposal for a small
number of particles N . The crucial assumption in our scheme is the absence
of tunnelling between wells resulting in independent 3D harmonic wells. This
requires the overlap between Wannier functions on neighboring sites to be
small, which can be achieved by increasing the laser intensity. For a single
occupied band (small rotation frequency) the assumption of independent
wells (Mott regime) is well justified for a laser intensity of V0 ≈ 20 Er [24].
With increasing rotation frequency higher angular momentum states of the
LLL manifold can be occupied. In the laboratory frame of the lattice this
corresponds to the occupation of higher bands. In order to obtain a bound
on the required laser intensity for the setup [24] we consider the limiting case
of the Laughlin state (Ω ≈ ω). As a rough estimate we require for a given
N that the radius of the highest occupied angular momentum single particle
state (≈ √

2N − 1`) is much smaller than the separation between lattice sites
(a = π/k). In terms of the laser intensity this translates to the condition:

(V0/ER)1/4 À
√

2N − 1/π . (4.10)
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Figure 4.6: Energy gap (in units of ~ω) between the fourth and sixth
energy level for N = 3 and η = 0.1 as a function of the rotation frequency
Ω/ω and the trap deformation ε. The fifth energy level involves a state
with odd angular momentum and hence is decoupled from states with even
angular momentum. The adiabatic evolution times T have been calculated
for a typical trapping frequency ω ' (2π)30 kHz. The black line marks the
path in parameter space for adiabatically driving the system from the L = 0
ground state to the L = 6 (Laughlin) state: (path a) Ω/ω = 0.945 → 0.959,
ε = 0 → 0.035, T = 0.7 ms; (path b) Ω/ω = 0.959 → 0.96, ε = 0.035 →
0.015, T = 12.7 ms; (path c) Ω/ω = 0.96 → 0.956, ε = 0.015 → 0, T = 1.5
ms; fidelity with Laughlin state |〈ψ(T )|ψL〉|2 = 0.992.

Numerical calculations of hopping and on-site interaction matrix elements
have confirmed that indeed for N = 2(4) and V0/ER & 30(50) hopping be-
comes negligible and wells can be treated independently. We further note that
these lower bounds for the laser intensity, which can very well be achieved
experimentally, also guarantee the validity of the harmonic approximation.

A second important assumption of our proposal is the projection to the
LLL manifold. This implies that the typical energies per particle have to be
much smaller than the energy gap to the next Landau level, ~ω. For the
limiting cases of the L = 0 state and the Laughlin state, this leads to the
conditions (N − 1)η/2, (N − 1)(1 − Ω/ω) ¿ 1, which are easily fulfilled for
typical interaction strengths (η ∼ 0.1) and small N .

Finally, in order to adiabatically achieve the entangled states identified
above further conditions are required. We analyze the most restrictive case,
which corresponds to the Laughlin state. First of all the frequency of rotation
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has to be very close to the centrifugal limit. Let us find a lower bound to
the critical rotation frequency at which the crossing to the Laughlin state
appears. This can be done by calculating the rotation frequency at which
the Laughlin quasiparticle state, ψQP ([z]) = ∂

∂z1
. . . ∂

∂zN
ψL, becomes equal in

energy to the Laughlin state. Since the quasiparticle state has N units of
angular momentum less than the Laughlin state and an interaction energy
. η, it follows that Ωc/ω ≥ 1 − η/N . For the cases of N = 2(4) this
condition is in agreement with the exact values found above. Secondly, the
evolution time required for the adiabatic path has to be much smaller than
the typical decoherence time. We can estimate this time in the following
way. Given the critical frequency above and that the position of the avoided
crossing is displaced to larger rotation frequencies an amount proportional
to ε it follows that the maximum ε we can have is ∼ η/N , corresponding to a
rotation frequency Ω/ω = 1. Assuming an energy gap ≈ ε it follows that the
typical evolution time scales as N/η. For the case of N = 2(4) and typical
η and ω these times are of the order of tens of miliseconds as exactly found
above, which is much smaller than the typical life time of the lattice states.
Finally, a high degree of control of the parameters Ω/ω and ε is required to
perform the appropriate adiabatic paths. The required precision scales again
as η/N , which for the case of N = 4 means a control of the parameter space
up to the second digit.

From our analysis it follows that the adiabatic creation of the Laughlin
state by means of low angular momentum excitations, as quadrupole ex-
citations, becomes very difficult in samples with large number of particles
[140, 141]. Even if the centrifugal limit is possible to achieve, as it happens
when including an additional r4 trapping potential [141], the adiabatic cre-
ation of the Laughlin state is still very demanding. One reason is that the
rotation frequency and the trap deformation have to be controlled within a
precision that also scales linearly with N . Furthermore we point out that
only the exact knowledge of the multi-particle energy spectrum allows one
to design adiabatic paths that minimize the evolution time.

4.4 Detection

In this section we consider the important issue of experimental detection by
measuring different characteristic properties of the entangled states identified
above. As an important feature of our lattice setup of independent wells, we
note that any signal will be highly enhanced by a factor equal to the number
of occupied lattice sites ( ∼ 150, 000 [24]).

i) Density profiles. A very characteristic feature of our entangled states



4.4 Detection 105

can be found in the density profiles. Due to their large angular momentum
they exhibit a strongly extended spatial density distribution compared to the
non-entangled L = 0 state. For the 1/2-Laughlin state the typical radius is
given by r̄ ≈ √

2N − 1 `. In the case of N = 2(4) this results in a radius that
is ∼ 2(3) times larger than in the case of the condensate. As proposed in
[142] the density profile of states within the LLL can be measured in a time of
flight (TOF) image of the atomic system, since the momentum distribution
coincides with the density profile for LLL states. In our case of independent
3D wells, a TOF absorption picture after expansion time t will exhibit a
broad central peak of the form:

ρ(r, t) ≈ Ns

(ωt)3
|ρ0(−iz/(ωt), x3/(ωt)|2 . (4.11)

Here, ρ0(z, x3) is the initial density distribution on a single well. In the TOF
image it is enhanced by a factor proportional to the number of lattice sites Ns

and rescaled by a factor ωt À 1. The π/2 rotation z → −iz leaves isotropic
states, like the FQH states described above, unaffected. The underlying as-
sumption of free (interactionless) expansion is justified, since the interaction
energy is small compared to the kinetic energy (in the stationary frame).

ii)Angular momentum. For any state within the LLL integration over the
density distribution gives

∫
dr r2ρ(r) = L + N . Thus in the limit of weak

interaction the total angular momentum can be extracted directly from the
TOF picture.

iii)Correlation functions. Here we propose a novel technique that makes
directly use of the rich possibilities offered by the optical lattice setup and
which allows to measure both the

g1(r, r
′) = 〈ψ†(r)ψ(r′)〉, (4.12)

and the
g2(r, r

′) = 〈ψ†(r)ψ†(r′)ψ(r)ψ(r′)〉 (4.13)

correlation functions. The g2 correlation function is for instance very char-
acteristic for a Laughlin state. Since particles can only be at least in relative
angular momentum mr = 2 it follows that g2 ∝ |r − r′|4. This behavior
reveals the 1

2
-fractional nature of this Laughlin state.

We consider two species a and b (hyperfine levels) of bosonic atoms, which
can be coupled via Raman transitions. We start with atoms in level a and
create the entangled state of interest |Ψi〉 with the method described above.
Next we apply a π/2-pulse with the laser and create an equal superposition of
a and b states. Finally, we shift the lattice potential trapping atoms of type
b (as proposed in [46] and realized in [47]) by a distance r0 small compared
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to the lattice spacing and perform another π/2-pulse. In the Heisenberg
picture this procedure corresponds to the following transformation of the
field operator for species a:

ψa(r) → ψa(r) + ψa(r + r0) . (4.14)

Thus the density distribution of atoms of type a in this new state |Ψf〉
contains information about the g1 correlation function of the original state:

〈Ψf |ψ†a(r)ψa(r)|Ψf〉 = (4.15)

〈Ψi|(ψ†a(r) + ψ†a(r + r0))(ψa(r) + ψa(r + r0))|Ψi〉 .

Using this procedure we can also measure higher order correlation functions
like g2. In this case measuring the interaction energy of the final state will
allow us to calculate the g2 of the initial state. For instance, for the Laughlin
state we find:

Eint(r0) =
πη

4

∫
dr〈Ψi|ψ†a(r)ψ†a(r + r0)ψa(r)ψa(r + r0)|Ψi〉 (4.16)

=
πη

4

∫
dr g2(r, r + r0).

The interaction energy is, unfortunately, not directly accessible experimen-
tally. However, the total energy of the final state can be obtained from
integrating over the TOF absorption picture, since energy is conserved dur-
ing the time of flight. For small coupling η, however, the measurable effect
due to interactions will be small compared to the kinetic part of the energy.
In addition, the kinetic energy itself shows a significant dependence on the
shifting r0, which has to be distinguished from the interaction. Hence, we
propose to tune the scattering length as (e.g. via a photo association in-
duced Feshbach resonance [143]) and to measure the interaction energy both
in the weak and strong scattering limit. The difference would then reveal the
characteristic behavior of the g2 correlation function.

We finally note that, as a further way of detection for the N = 4 Laughlin
state, a strong reduction of the three body losses should be observed.



Appendix A

Proof of the lower bound on LE

A.1 Theorem on connected correlation func-

tions and local measurements

Here we present the proof of the following theorem:
Given a (pure or mixed) state ρ of N qubits with connected correlation func-

tion Qij
AB (2.22) between the spins i and j and directions ~a,~b, then there

always exists a basis in which one can locally measure the other spins such
that this correlation does not decrease, on average.
Proof:
Using the notation of Sect. 2.4 we have to show that there exists a measure-
ment M such that:

|Qij
AB(ρij)| ≤

∑
s

ps|Qij
AB(ρij

s )|. (A.1)

To this end let us first consider mixed states of three qubits. A mixed 3-qubit
density operator can be parameterized by four 4× 4 blocks

ρ =

[
ρ1 σ
σ† ρ2

]
. (A.2)

Since local unitary operations can be absorbed in ρ it is sufficient to
consider the Q12

zz correlations. Thus, the original correlations are completely
determined by the diagonal elements of the reduced density operator ρ1 +ρ2.
A von Neumann measurement in the basis

|+〉 := cos(θ/2)|0〉+ sin(θ/2)eiφ|1〉, (A.3)

|−〉 := − sin(θ/2)e−iφ|0〉+ cos(θ/2)|1〉, (A.4)
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on the third qubit results in the hermitian unnormalized 2-qubit operators

X± := 〈±|ρ|±〉 =
ρ1 + ρ2

2
± cos(θ)

ρ1 − ρ2

2
(A.5)

± sin(θ)
(

cos(φ)
σ + σ†

2
+ sin(φ)

i(σ − σ†)
2

)
,

with probabilities p± = Tr(X±) conditioned on the outcome {+} or {−}.
From these equations we see that the SU(2) transformation on the third qubit
can be accounted for by a SO(3) rotation of the z-axis, defined by the unit
vector:

~x := [cos(θ); sin(θ) cos(φ); sin(θ) sin(φ)] . (A.6)

As noted above we have to consider only the diagonal parts of the mea-
surement outcomes X±, which can be represented in terms of the column
vectors:

~X± :=
1

2
R

(
1
±~x

)
, (A.7)

where R is the real 4 × 4 matrix whose columns consist of the diagonal
elements of the matrices (ρ1 + ρ2), (ρ1 − ρ2), (σ + σ†), i(σ − σ†).

Provided with these definitions the inequality (A.1) can be written in the
form:

p+|Qzz(X+/p+)|+ p−|Qzz(X−/p−)| ≥ |Qzz(X+ + X−)|.
Inserting 1 = tr( ~X±/p±) in the definition of Qzz, this inequality can be
transformed in a bilinear form in ~x:

1
p+

∣∣∣∣(1 ~xT )S
(

1
~x

)∣∣∣∣ +
1
p−

∣∣∣∣(1 − ~xT )S
(

1
−~x

)∣∣∣∣ ≥ |4α| . (A.8)

Here α is the first element of the matrix

S := RT (σy ⊗ σy)R =

[
α ~βT

~β Q

]
, (A.9)

and ~β, Q are defined as 3 × 1 and 3 × 3 blocks, respectively. Without loss
of generality we can assume that α is positive and thus remove the absolute
value sign in (A.8). Some straightforward algebra yields then the sufficient
inequality:

~xT (A + B) x ≥ 0 , (A.10)

with

A := α

(
~c−

~β

α

)(
~c−

~β

α

)T

, B := Q−
~β~βT

α
, (A.11)
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where ~c is such that p± = (1 ± ~cT~x)/2. We now have to show that the
matrix A + B has at least one positive eigenvalue. From the form of A one
immediately sees that it is positive semidefinite (α > 0). The matrix B
requires more work. First we note that the matrix σy ⊗ σy in (A.9) has two
negative and two positive eigenvalues. Assuming nonsingular R it follows
from Sylvester’s law of inertia [144] that S also has two positive and two
negative eigenvalues1, and so has the inverse S−1. Now B is the inverse of
the Schur complement of α, and hence corresponds to a principal 3× 3 block
of the matrix S−1:

S−1 =

( ∗ ∗
∗ B−1

)
, (A.12)

where the entries ∗ are of no interest here. Let us denote the eigenvalues of
S−1 in algebraic increasing order by λ1 . . . λ4 and those of B−1 by µ1 . . . µ3.
From the interlacing properties of eigenvalues of principal blocks [144], we
obtain the following relation:

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ λ3 ≤ µ3 ≤ λ4. (A.13)

Knowing that λ3 > 0 we deduce that B−1 posesses at least one positive
eigenvalue, and so does B. The existence of one positive eigenvalue in A+B
ensures that one can always find a measurement direction ~x such that the
inequality (A.10) is fulfilled. We have proven the theorem for a mixed three
qubit state. However, this result can immediately be extended to arbitrary
N . To see this let us consider e.g. the correlation |Qzz(X+/p+)| for one of
the measurement outcomes on the third qubit. The two qubit state X+ can
be expanded in a basis corresponding to a measurement of the fourth qubit
(X+ = Y+ +Y−). The theorem can now be applied with respect to the states
Y± and so forth, completing the proof.

Note that the proof is constructive and allows to determine a measure-
ment strategy that would at least achieve the bound reported.

Let us now show that the above result can also be generalized to a setup
where the spins i and j can have any dimension, but the measurements
are still performed on qubits. To be more specific we consider the operator
Si

A ⊗ Sj
B acting on a bipartite state ρij of arbitrary dimension. Since local

unitary transformations can always be absorbed in the definition of ρij we

can choose Si
A and Sj

B to be diagonal. The correlation function can then be

1In the case of a singular matrix R Sylvester’s law of inertia cannot directly be applied.
However, it is guaranteed that in the worst case the principal block has one zero eigenvalue,
which would lead to the equality with the original correlations.
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written in the bilinear form:

Qij
AB = tr[ρij (Si

A ⊗ Sj
B)]− tr[ρij (Si

A ⊗ 1l)]tr[ρij (1l⊗ Sj
B)]

=
1
2
~xT (~a ~1T −~1 ~aT )⊗ (~b ~1T −~1 ~bT )~x , (A.14)

where the column vectors ~x,~a and ~b are representing the diagonal elements
of the matrices ρij, S

i
A and Sj

B, and ~1 is a column vector with all ones. Thus

the matrix Z := (~a ~1T−~1 ~aT )⊗(~b ~1T−~1~bT ) replaces the matrix σy⊗σy in the
definition (A.9). Z is the tensor product of two antisymmetric matrices of
rank two and therefore has two positive and two negative eigenvalues. This
property is sufficient to fulfill the inequality (A.10).

A.2 Relation between correlation functions

and bipartite entanglement

In this section we are interested in establishing a relation between the maxi-
mum connected correlation function and the entanglement of a pure bipartite
state. In the following we will only consider bipartite qubit and qutrit states.

A.2.1 Two-qubit states

For an arbitrary two-qubit state ρ we want to maximize the correlation func-
tion:

Qij
AB = tr[ρ( Si

A ⊗ Sj
B)]− tr[ρ( Si

A ⊗ 11)]tr[ρ(11⊗ Sj
B)]. (A.15)

For qubits we can parametrize SA and SB by the three-dimensional unit
vectors ~a,~b:

SA = ~σ · ~a , (A.16)

SB = ~σ ·~b , (A.17)

where ~σ = (σx σy σz). The correlation can then be written in the form:

QAB =
∑

αβ

aα Qαβ bβ =: ~aT Q ~b (α, β = x, y, z) . (A.18)

The matrix elements Qαβ of the 3 × 3 matrix Q are defined by (A.15) with
SA = σα, SB = σβ. Clearly the maximum value for QAB is given by the
largest singular value of the matrix Q.

For a pure state ρ = |ψ〉〈ψ| the matrix Q can be computed using the
Schmidt decomposition |ψ〉 =

∑
i λi |iA〉 ⊗ |iB〉 with λi ≥ 0. Note that local
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unitary transformations can always be absorbed in the definition of SA and
SB. In this representation the matrix Q is diagonal and one can show that
the maximum value is given by Qxx = 2λ1λ2. It can easily be checked that
this expression is equal to the concurrence C as defined in (2.4). Thus we
have shown that the entanglement of a pure two-qubit state |ψ〉 as measured
by the concurrence C is equal to the maximum correlation function:

max
~a,~b

(QAB(|ψ〉)) = Qxx(|ψ〉) = C(|ψ〉) = 2λ1λ2 . (A.19)

A.2.2 Two-qutrit states

As in the qubit case we consider correlations of the form (A.15). In gen-
eralization to the usual spin-1 operators we want to maximize with respect
to the bounded operators −11 ≤ SA, SB ≤ 11. In the forthcoming discus-
sion we will only consider pure states. In Schmidt decomposition we have
|ψ〉 =

∑3
i=1 λi |i〉 ⊗ |i〉 with λi ≥ 0 and λ2

1 + λ2
2 + λ2

3 = 1. Let us begin with
rewritting the correlation function:

QAB = trA(SA (ρ1 − βD) (A.20)

= trB(SB (ρ2 − αD) . (A.21)

Here we have defined the 3× 3 matrices:

ρ1 := trB(11⊗ SB ρ) = D
1
2 ST

BD
1
2 , (A.22)

ρ2 := trA(SA ⊗ 11 ρ) = D
1
2 SAD

1
2 , (A.23)

D := diag(λ2
1, λ

2
2, λ

2
3) , (A.24)

and the scalars α = tr(ρ2), β = tr(ρ1). We further introduce the eigenvalue
decomposition ρ1 − βD = UEU †. Note that the diagonal matrix E has
zero trace and thus has at least one negative entry. Now one immediately
sees from (A.20) that QAB is maximized if SA has the same eigenvectors as
ρ1−βD and if its eigenvalues are given by the sign of the matrix E. Hence we
can formulate the following relations that hold for the maximum correlation
function:

(i) SA = U sign(E) U† with tr(E) = 0 (A.25)

(ii) [SA, ρ1 − βD] = 0 (A.26)

(iii) [SB, ρ2 − αD] = 0 . (A.27)

These conditions lead to the simple commutator relation [D, M ] = 0 where
M := U(|E|−α E)U †. Since M commutes with the diagonal matrix D it has
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to be diagonal. Trivially this is fulfilled for diagonal U implying also a diago-
nal operator SA. A nondiagonal U is only possible if the matrix (|E|−α E) is
degenerate. Since this matrix can be at most two-fold degenerate, we arrive
at the interesting result that the operator SA that maximizes the correlation
QAB is either diagonal SA = diag(1,−1,−1) or can be parameterized in the
form:

SA =




1 0 0
0 cos(θ) sin(θ)e−iφ

0 sin(θ)eiφ − cos(θ)


 . (A.28)

As QAB is symmetric in A and B an equivalent expression with rotation
angles θ′ and φ′ holds for the operator SB. From this we can deduce the
relations α = λ2

1 + cos(θ′)(λ2
2 − λ2

3) and β = λ2
1 + cos(θ)(λ2

2 − λ2
3).

The required degeneracy of the matrix (|E| − α E) puts a constraint
on α (or the optimal rotation angle θ′) as a function of β: α = F (β) (for
simplicity we do not specify the function F here). Due to symmetry it also
holds β = F (α). Clearly a fixpoint of the maximization procedure is given
by the symmetric solution α = β (or θ = θ′). However, there also exists an
asymmetric solution. In order to obtain nice analytical expressions for these
solutions it is more convenient to parameterize the function QAB using the
form (A.28) and then maximize with respect to the rotation angles θ and θ′:

QAB = λ2
1 + cos θ cos θ′(λ2

2 + λ2
3) + 2 sin θ sin θ′λ2λ3

− (λ2
1 + (λ2

2 − λ2
3) cos θ)(λ2

1 + (λ2
2 − λ2

3) cos θ′) . (A.29)

Here we made the choice φ = −φ′, which maximizes QAB. We further note
that in this expression the role of the Schmidt coefficient λ1 is special, which
results from the ordering λ1 ≤ λ2 ≤ λ3. For the symmetric case (θ = θ′) we
obtain the optimal rotation angle:

cos(θopt) =
λ2

1(λ
2
2 − λ2

3)

(λ2 − λ3)2 − (λ2
2 − λ2

3)
2

, (A.30)

which yields the maximum correlation function:

Qsym
AB =

4λ2
2λ

2
3

2λ2λ3 − λ2
1

. (A.31)

Notice that for λ1 = 0 this reduces to the qubit solution Qmax
AB = 2λ2λ3.

As for the symmetric case QAB (A.29) is quadratic in cos(θ) the maximum
can also be reached at the boundaries cos(θ) = ±1. This leads to diagonal
operatators SA = SB and the maximum correlation is given by:

Qdiag
AB = 1− (λ2

3 − (λ2
2 + λ2

1))
2 . (A.32)
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The asymmetric solution can also be worked out, but is difficult to cast in a
nice analytical form. For our purpose it is enough to establish the following
relation for the optimal rotation angles:

a(cos(θ) + cos(θ′)) = −b(1 + cos(θ) cos(θ′)), (A.33)

a := λ2
2 + λ2

3 − (λ2
3 − λ2

2)
2, (A.34)

b := λ2
1(λ

2
3 − λ2

2). (A.35)

It can easily be verified that a, b > 0 and a ≥ b. Inserting (A.33) in QAB

(A.29) it follows that the asymmetric solution can be upper bounded by:

Qasym
AB ≤ λ2

1 − λ4
1 −

b2

a
+ 2λ2λ3 . (A.36)

Straightforward analysis shows that the two-qubit limit (λ1 = 0) yields an
upper bound for the maximum correlation in the two-qutrit case:

Qmax
AB := max(Qsym

AB , Qdiag
AB , Qasym

AB ) ≤ 2λ2λ3|λ1=0. (A.37)

The maximum correlation function decreases if the number of non-zero Schmidt
coefficients increases. Thus Qmax

AB cannot be used for measuring entanglement
as in the qubit case. The entropy of entanglement E(|ψ〉) [84], on the con-
trary, increases with the number of non-zero Schmidt coefficients. A fact that
follows directly from the concavity property of E(|ψ〉). Hence the λ1 = 0
case E(|ψ〉) = f(2λ2λ3|λ1=0), with f being the convex function (2.5), yields
a lower bound on the entropy of entanglement. From this it follows that the
entanglement of a pure two-qutrit state is lower bounded by the maximum
correlation function:

E(|ψ〉) ≥ f(Qmax
AB ). (A.38)





Appendix B

Analytical calculation of the
string order parameter and the
LE for MPS

We consider a matrix-product state (MPS) (2.30) with qubit bonds (D = 2).
In the case of OBC and qubits at the endpoints (i = 0, N + 1) this (unnor-
malized) MPS state can be written in the form:

|ψ〉 =
∑

α,i1...iN ,β

~aαAi1 . . . AiN~b
β |α〉|i1 . . . iN〉|β〉, (B.1)

where ~a and ~b are two dimensional row and column vectors, respectively, and
α, β ∈ {0, 1}. We are interested in the string order parameter (2.48) between
the endspins. Using expression (2.31) for calculating expection values of
MPS, we can write:

Q0,N+1
SO =

~Ea
σz

(ER)N ~Eb
σz

~E
a

11(E11)N ~E
b

11
. (B.2)

In the limit of large N and diagonalizable ER (E11) only the maximum eigen-
value λR (λ11) will survive:

ξSO := lim
N→∞

Q0,N+1
SO =

( ~Ea
σz

~rR)(~lR ~Eb
σz

)

( ~Ea
11~r11)(~l11 ~Eb

11)

(
λR

λ11

)N

, (B.3)

where ~lO and ~rO denote the left and right eigenvectors of EO.
In the case of the AKLT model and for the basis (2.47), we have: A1 = iσy,
A2 = σz and A3 = σx. Hence one finds

E11 = σx ⊗ σx − σy ⊗ σy + σz ⊗ σz, (B.4)

ER = −σx ⊗ σx + σy ⊗ σy + σz ⊗ σz, (B.5)
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for MPS

and λR = λ11 = 3. Realizing that ~aα and ~b
β

are representing unit vectors in
the standard basis, we obtain the result: ξSO = 1.

Let us now show how to calculate the LE between the endpoints of the
chain for states of the form (B.1). Since the end spins are represented by
qubits we can use the concurrence (2.4) as entanglement measure, which
simplifies the calculation considerably. For the basisM = {|i〉〈i|} the average
entanglement can be written as [74]:

LM,C
0,N+1 =

∑
i1...iN

2 | det(Ai1 . . . AiN )|
~E

a

11(E11)N ~E
b

11
. (B.6)

Since the determinant factorizes, we obtain

LM,C
0,N+1 →

2

( ~Ea
11~r11)(~l11 ~Eb

11)

(∑
i | det(Ai)|

λ11

)N

, (B.7)

in the limit of large N . The basis which maximizes LM,C is clearly the
same basis, which maximizes the expression

∑
i | det(Ai)|. This problem is

equivalent to calculating the EoA of the D2 ×D2 state A†A:

EA(A) := sup
M

∑
i

| det(Ai)| = tr|AT (σy ⊗ σy)A|. (B.8)

The elements of the (2S + 1) × D2 matrix A are given by Ai,(αβ) = Ai
α,β.

Hence we found a necessary and sufficient condition for long range order in
the entanglement (i.e. non-vanishing LC

0,N+1 for N → ∞): The expression
EA(A) has to be equal to the largest eigenvalue, λ11, of the matrix E11. For
the AKLT model, one can easily check that this condition is indeed fulfilled,
and that LC

0,N+1 = 1.
The ground state of the AKLT thus exhibits long range order both in terms
of the LE and the string order parameter.



Appendix C

Fermionization of the
Bose-Hubbard model

We start from the single-band Bose-Hubbard Hamiltonian (3.2) and restrict
the occupation numbers at each lattice site k to nk ∈ {0, 1, 2}. In this
truncated basis the Hamiltonian reads:

H =
∑

k

[bk2|1〉k〈1|+ 2(bk2 + U)|2〉k〈2|

− J (|0〉k|1〉k+1〈1|k〈0|k+1 + h.c.)

−
√

2J (|0〉k|2〉k+1〈1|k〈1|k+1 + h.c.)

−
√

2J (|2〉k|0〉k+1〈1|k〈1|k+1 + h.c.)

− 2J (|2〉k|1〉k+1〈1|k〈2|k+1 + h.c.)]. (C.1)

One can now embed the three dimensional single site Hilbert space HB = C3

into the composite Hilbert space HF = C2 ⊗ C2 of two species of hard-core
bosons by applying the following mapping:

|2〉 =
1√
2
(a†)2|vac〉 → c̃†d̃†|vac〉,

|1〉 = a†|vac〉 → c̃†|vac〉.
(C.2)

Note that singly occupied bosonic states are mapped exclusively to the c̃–
manifold, i.e. we omit the possibility of having one particle in the the d̃–
manifold and no particle in the c̃–manifold on the same site. After trans-
forming hard-core bosons to fermions, c̃, d̃ → c, d, via a Jordan-Wigner trans-
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formation one obtains the following fermionic Hamiltonian:

H =
∑

k

[bk2c†kckdkd
†
k + (bk2 + U)c†kckd

†
kdk

− J (c†kck+1dkd
†
kdk+1d

†
k+1 + h.c.)

−
√

2J (c†kdk+1dkd
†
kc
†
k+1ck+1 + h.c.)

−
√

2J (d†kck+1ckc
†
kdk+1d

†
k+1 + h.c.)

− 2J (d†kdk+1ckc
†
kck+1c

†
k+1 + h.c.)] (C.3)

This Hamiltonian can also be written in the form H = P †H̃P , where H̃ is the
quadratic Hamiltonian (3.13) and P denotes the projection on the subspace,
which is defined by c†kdk = 0 for all sites k. This implies that bosonic atoms
in an optical lattice can effectively be described in terms of the quadratic
Hamiltonian (3.13), given that the probability of finding a particle-hole pair
is negligible, i.e. 〈ckc

†
kd
†
kdk〉 ≈ 0.



Appendix D

Numerical description of
classical density matrices in
terms of MPS

Our algorithmic protocols establish classical correlations between different
lattice sites, when applied to thermal states in the no-tunnelling regime.
Hence, a description in terms of independent wells (as in (3.6)) is no longer
adequate. Therefore we refer to a representation in terms of matrix product
states (MPS).

To be more precise, for a 1D lattice of length L we want to map a classical
density matrix of the form

ρ =
∑

{i}
ρi1...iL|i1 . . . iL〉〈i1 . . . iL| (D.1)

onto a pure state in MPS form:

|ψ〉 =
∑

{i}
Ai1

1 Ai2
2 . . . AiL

L |i1 . . . iL〉. (D.2)

Here, Aik denote matrices of dimension D×D and ik ∈ {0, . . . , d− 1} is the
occupation number of site k. The matrices at the endpoints, Ai1

1 and AiL
L ,

are 1 ×D and D × 1 vectors, respectively. The mapping from ρ to |ψ〉 can
easily be accomplished by setting: ρi1...iL = Ai1

1 Ai2
2 . . . AiL

L .

Expectation values for operators of the form Ô = Ô1 ⊗ Ô2 . . . ⊗ ÔL are
calculated according to the relation

〈Ô〉 = tr Ôρ =
L∏

k=1

d∑
ik=1

〈ik|Ôk|ik〉Aik
k . (D.3)
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MPS

Local operations on ρ, like unitary operations Un′,m′
n,m (3.15) or filter op-

erations (3.16), amount to transformations of the local matrices Aik
k in the

MPS picture. For illustration, let us consider a completely positive map C
which acts on a local state ρk at site k. In Kraus representation one can
write

C(ρk) =
∑

α

EαρkE
†
α, (D.4)

with the Kraus operators Eα satisfying the completeness relation
∑

α E†
αEα =

1l. The MPS matrices transform according to

Ãik
k =

∑
α

∑
jk

|Eik,jk
α |2Ajk

k . (D.5)

Non-local operations that involve more than one lattice site are more
complicated to implement. As an example, let us consider the most compli-
cated case, which occurs in our protocols: a spin-dependent lattice shift S−1

which shifts the lattice |b〉 one site to the left. For this we have to consider
two species of atoms. In generalization of (D.2), the MPS matrices Aik,jk

k are
now labelled with two physical indices, ik and jk, referring to states |a〉 and
|b〉, respectively. It will turn out to be convenient to rewrite these matrices
in tensor form: (Aik,jk

k )α,β = Ak(α, β, ik, jk), with α, β = 1 . . . D.
To begin with let us consider only the first two lattice sites. We start

out with tracing over subsystem |b〉 at the first site, which yields the reduced
matrix:

B1(α1, β1, i1) =
∑
j1

A1(α1, β1, i1, j1). (D.6)

The reason is simply that we want to omit sites which pass the system
boundaries after the lattice shift. The induced error is negligible, given
that sites at the boundaries are not populated. We then multiply the ma-
trix of the second site and perform the lattice shift: Θ(α1, i1, β2, i2, j2) =
B1(α1, β, i1)A2(β, β2, i2, j2) → Θ(α1, i1, j2, β2, i2), where we use Einstein sum-
mation convention. After relabelling j2 → j1 we perform a singular value
decomposition:

Θ(α1, i1, j1, β2, i2) =

U((α1, i1, j1), γ) Σ(γ, γ′) W †(γ′, (β2, i2)), (D.7)

with Σ being a diagonal square matrix and γ, γ′ = 1 . . . D̃ ≤ dD. The new
MPS matrix for site 1 can then be defined as:

(
Ãi1,j1

1

)
α1,β1

:= U(α1, i1, j1, γ) Σ1/2(γ, β1). (D.8)
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Accordingly, we define

B2(α2, β2, i2) := Σ1/2(α2, γ) W †(γ, β2, i2), (D.9)

and iterate this scheme until the end of the lattice. Note, that the dimension
D of the MPS matrices can, in principle, increase exponentially with the
number of lattice shifts. If D becomes larger than a desired value Dmax one
has to resort to a truncation method similar to the one proposed for mixed
quantum states [102]. However, in practice, we find that D increases only
linearly with the number of lattice shifts, given that each shift is followed
by a filter operation. Thus, with our method we can fairly easy simulate
protocols exactly, i.e. without truncation, which involve up to 100 lattice
shifts on lattices with up to L = 500 sites.





Appendix E

Two interacting atoms in a
rotating harmonic trap

In this Appendix we study the problem of two interacting bosonic atoms
in a 3D rotating harmonic trap analytically. The interaction between the
atoms is approximated by a zero-range pseudo-potential. We compute the
interaction energy and obtain from that the critical rotation frequency, at
which the 1/2-Laughlin state becomes the ground state. Afterwards we derive
a condition for the validity of the pseudo-potential approximation in tight
harmonic traps.

E.1 Eigenenergies and critical rotation fre-

quency

We consider two interacting bosonic particles of mass m in a 3D harmonic
potential with trapping frequency ω. The trap is rotating in z-direction with
frequency Ω. In the rotating frame the Hamiltonian reads:

H3D = − ~
2

2m

(∇2
1 +∇2

2

)
+

1

2
mω2 (r2

1 + r2
2)−Ω(Lz,1 + Lz,2) + V 3D

int (|r1− r2|),
(E.1)

where Lz,i is the z-component of the angular momentum of particle i = 1, 2
and V 3D

int is the interaction term. Since the interaction depends only on the
relative distance of the particles, we now introduce relative and center of
mass coordinates:

r = r1 − r2, (E.2)

R =
1

2
(r1 + r2) . (E.3)
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For the momentum operators pi = ~/i∇i this change of coordinates amounts
to: p = (p1−p2)/2 and P = p1 +p2. For the angular momentum operators
in z-direction we deduce:

Lz,1 + Lz,2 = Lz,rel + Lz,cm = (r× p)z + (R×P)z. (E.4)

The Hamiltonian for the relative motion can therefore be written as:

H3D
rel = − ~

2

2µ
∇2 +

1

2
µω2 r2 − ΩLz + V 3D

int (r) , (E.5)

where µ = m/2 is the reduced mass and we have defined Lz := Lz,rel for
convenience. We approximate the true interaction potential by a zero range
pseudo-potential:

V 3D
int (r) = g δ(3)

reg(r) =
2π~2as

µ
δ(3)(r)

(
∂

∂r
r .

)
. (E.6)

The coupling constant g is chosen to recover the correct long range behavior
of the scattered wave for a realistic interatomic potential in the limit of low
energies. The s-wave scattering length as can experimentally be determined,
for instance, with photassociation. The regularized delta-function δ

(3)
reg(r)

removes the 1/r dependence of the scattered wave and makes it regular at
the origin.

For simplicity, let us first consider the case of no rotation and no interac-
tion. The eigenstates of the 3D harmonic trap in terms of angular momentum
eigenfunctions and spherical coordinates are given by [145]

ψ3D
n′lm ∝ rle−r2/4`2M(−n′ + 1, l + 3/2, r2/2`2)Y m

l (θ, φ), (E.7)

where ` =
√
~/(mω) is the harmonic oscillator length. The function M(a, b, x)

denotes one set of the confluent hypergeometric functions [145] and Y m
l (θ, φ)

are the spherical harmonics. As a function of the quantum numbers n′ =
1, 2, . . . and l = 0, 1, . . . the eigenenergies are:

En = (n + 3/2) ~ω = (2(n′ − 1) + l + 3/2) ~ω . (E.8)

The spectrum is depicted in Fig. E.1. Each energy level is (n + 1)(n + 2)/2
fold degenerate.

Let us now consider the effect of the rotating frame. Due to the angular
momentum term in (E.5) states with large and positive angular momentum
become lowered in energy [Fig. E.1]. At sufficiently high rotation frequencies
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the lowest lying states form an almost degenerate subsystem, separated by
~ω from the next excited levels. The states of this subsystem read:

ψ0
m(r) = ϕm(ρ, φ) ϕ0(z), (E.9)

where ϕm(ρ, φ) are the lowest Landau level (LLL) states (4.2) in the x-y
plane and ϕ0(z) is the ground state of the harmonic oscillator in z-direction.
This shows that in the limit of high rotation frequencies the motion in the
z-direction is frozen. Hence, the LLL regime appears naturally at high rota-
tion frequencies and a quasi-2D setup, as in Quantum Hall systems, is not
required.

m=0

1

1 2

h
− Ω L

m=0
1

2
h

−1

−2

0

00−1
n=2

n=1

n=0
 ω

(ω−Ω)2

Figure E.1: Spectrum of the 3D harmonic trap in terms of angular momen-
tum quantum numbers (Lz = m~). The energy is given by En/~ω = n+3/2.
In the rotating frame the energy of states with positive angular momentum
(m > 0) is lowered by the amount m~Ω. In the limit of high rotation fre-
quencies Ω an almost degenerate ground state subspace is formed, which is
equivalent to the LLL subspace in quasi 2D systems.

We now include the interactions. For s-wave scattering (as described by
the pseudo-potential (E.6)) only states with zero relative angular momentum
(l = 0) feel the scattering potential and become modified. Since these states
are unaffected by the trap rotation the situation is equivalent to the scattering
problem in a 3D harmonic trap. The solution has been worked out by Busch
et al [146] and the new eigenstates for l = 0 read

ψ0(r) ∝ e−r2/4`2Γ(−E/2 + 3/4) U(−E/2 + 3/4, 3/2, r2/2`2), (E.10)

with U(a,b,x) denoting the other set of the confluent hypergeometric func-
tions [145]. The energies in units of ~ω are defined by the equation:

√
2

Γ(−E/2 + 3/4)

Γ(−E/2 + 1/4)
=

`

as

. (E.11)

At positive scattering lengths (as > 0) the pseudo-potential (E.6) exhibits
one bound (molecular) state. Here, we are only interested in the properties of
the unbound atoms whose energies lie in the range 3/2 < E < 5/2. Hence,
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the energy of the (non-molecular) ground state is effectively increased by
the interaction and the interaction is therefore denoted as repulsive. The
interaction energy of the new ground state (3/2 < E < 5/2) can be computed
numerically from Eq. (E.11). The result is depicted in Fig. E.2. For weak

0 2 4 6 8 10
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0.4

0.6
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1

a/l

E
in

t

Figure E.2: Interaction energy Eint = E0/(~ω) − 3/2 of the (non-
molecular) ground state as a function of the s-wave scattering length as/`.
The interaction potential is approximated by the regularized δ-potential
(E.6).

interaction
√

2/π as/` ¿ 1 this energy can be approximated by

Eint =
E

~ω
− 3

2
'

√
2

π

as

`
= η. (E.12)

Here we have introduced the dimensionless parameter η that determines the
interaction energy of two particles in a 3D trap. In this limit of weak in-
teraction we could have calculated the interaction energy also directly using
perturbation theory. For as ¿ ` the scattered wave reaches its asymptotic
form before it feels the influence of the trapping potential. Hence, the scat-
tering problem is equivalent to s-wave scattering in free space. In first order
perturbation theory the change of the ground state energy is given by the
expression Eint = g

∫
dr |ψ0

0(r)|2 δ(3)(r), where ψ0
0(r) is the Gaussian ground

state of a 3D harmonic trap (see Eq. (E.9) with m = 0). Evaluation of the
integral yields the result (E.12).

As a consequence of the repulsive s-wave scattering, the m = 0 ground
state in Fig. E.1 becomes shifted upwards in energy, whereas all the other
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states of the LLL remain unchanged. Thus for a certain critical rotation
frequency Ωc the m = 2 state ψ0

2 (E.9) becomes energetically favorable (for
bosons the m = 1 state is forbidden due to symmetry). The 2D component
of this state is equivalent to the 1/2-Laughlin state of 2 particles (4.5). In
the weak interaction limit (E.12) the critical rotation frequency is given by:

Ωc

ω
= 1− η

2
. (E.13)

In current experiments [24] with 87Rb atoms we have η = 0.062 and hence we
are well in the regime of validity of Eq. (E.13). The critical rotation frequency
to obtain the 1/2-Laughlin state as the ground state is then Ωc = 0.97 ω.

E.2 Validity of the pseudo-potential approx-

imation

We now address the problem of the validity of the pseudo-potential approx-
imation (E.6). The key idea of the pseudo-potential is to replace the exact
inter-atomic scattering potential by a model potential, which meets the fol-
lowing conditions: (i) in the limit of low energies (s-wave scattering) it has the
same scattering amplitude as the true potential. (ii) it should be treatable in
the Born approximation. For scattering in 3D the simplest model potential
satisfying these requirements is the zero range pseudo-potential (E.6) initially
introduced by Enrico Fermi [147, 148]. The only free parameter is the cou-
pling constant g which is fixed by solving the scattering problem in free space
and by identifying the s-wave scattering amplitude of the pseudo-potential
with the one for the true scattering potential. So far it is not completely
clear under which conditions this approach also accounts for scattering in
systems with tight harmonic confinement. Recently there has been a contro-
versy [149, 150] whether the s-wave scattering length as or the range of the
potential (e.g. given by the characteristic length of the van der Waals tail
β6 = (2µC6/~2)1/4) sets the relevant length scale that has to be compared to
the harmonic oscillator length `.

In order to possibly resolve this controversy we address the problem of
two interacting particles in a 3D harmonic trap analytically. To this end we
replace the true inter-atomic scattering potential by a central well potential
of radius b:

Vint(r) = −V0 Θ(b− r). (E.14)

In the following we will first review the scattering problem in free space
and determine necessary validity conditions for the substitution of the well
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potential (E.14) by the pseudo-potential (E.6). In a second step, we gener-
alize our approach to systems with harmonic confinement.

We consider two un-trapped particles interacting via the potential (E.14).
Using spherical coordinates and the ansatz ψl,m(r) = ul(r)/r Y m

l (θ, φ) for the
wavefunction, we arrive at the following Schrödinger equation for the relative
motion of the two particles:

∂2
rul − l(l + 1)

r2
+

2µ

~2
[E − Vint(r)] ul = 0 (E.15)

Considering only s-wave scattering (l = 0) this simplifies to:

u
′′
I + k2

1uI = 0 for r ≤ b, (E.16)

u
′′
II + k2uII = 0 for r ≥ b, (E.17)

with k2 = 2µE/~2, κ2 = 2µV0/~2 and k2
1 = k2 + κ2. The solution of these

equations can be written in the form uI ∝ sin(k1r) and uII ∝ sin(kr + δ0(k)).
The scattering phase δ0(k) is determined by the boundary condition at r = b:

uI

u′I

∣∣∣∣
r=b

=
uII

u′II

∣∣∣∣
r=b

⇐⇒ k1 cot(k1b) = k cot(kb + δ0(k)). (E.18)

Solving for δ0(k) we find:

k cot δ0(k) =
k2 + k k1 cot(k1b) cot(kb)

k cot(kb)− k1 cot(k1b)
. (E.19)

The scattering phase can be associated with an energy-dependent scattering
length via the relation:

as(k) = tan δ0(k)/k. (E.20)

Under the assumption of a deep well (E ¿ V0) one can now express Eq.
(E.19) in terms of the so-called effective range approximation:

1

as(k)
=

1

as

− 1

2
k2reff +O (

(k/κ)4
)
. (E.21)

Here we have used the definition for the energy-independent scattering length
as = b − tan(κb)/κ. The parameter reff is called the effective range of the
scattering potential:

reff = b

(
1− b

(κb)2as

− b2

3a2
s

)
. (E.22)
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If the scattering potential supports many bound states (bκ À 1) and if as À b
then reff ≈ b, i.e. the effective range of the potential is approximately equal
to the radius of the potential well.

Let us now compare these results with the scattering properties of the
zero-range pseudo-potential (E.6). In this case the scattering phase is given
by the relation:

k cot δps
0 (k) = − 1

as

. (E.23)

Comparing this with Eqs. (E.19) and (E.21) we find that the pseudo-
potential yields the same scattering phase as the well potential given that
the following condition is fulfilled:

(kas)(kreff ) ¿ 1. (E.24)

Rather than comparing scattering phases it might be more important to
compare scattering amplitudes. In general, the s-wave scattering amplitude
f0 can be deduced from the scattering phase via the following relation:

f0(k) =
tan δ0(k)

k

1

1− i tan δ0(k)
. (E.25)

In the case of a central well potential we can insert Eqs. (E.19) and (E.21)
for δ0(k) to obtain the scattering amplitude in the effective range approxi-
mation1:

f0(k) =
−as

1 + ikas − 1
2

k2asreff

. (E.26)

For the pseudo-potential one finds the expression:

fps
0 (k) =

−as

1 + ikas

. (E.27)

Comparison of Eqs. (E.26) and (E.27) yields the condition

k reff ¿ 1 (E.28)

for the validity of the pseudo-potential. This condition is less stringent than
(E.24), which was obtained by comparing scattering phases. In particular, it
shows that the pseudo-potential can reproduce the scattering amplitude of
the true potential even in the case of a diverging scattering length as →∞.

1This result holds not only for a central well, but generally for isotropic scattering
potentials vanishing for long distances as 1/rn with n > 5 [151].
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This discussion of the scattering problem in free space will become very
useful when we now turn to our true problem: the validity of the pseudo-
potential approximation in the presence of a tight harmonic trap. This prob-
lem is conceptually different from the previous one, because we will now have
to compare eigenenergies rather than scattering amplitudes in order to vali-
date the substitution of the well potential by the pseudo-potential. As before
we will only consider states with zero relative angular momentum. Moreover
we will restrict the discussion to experimentally relevant setups, where the
range of the scattering potential is much shorter than the trap size. In the
special case of the well potential this implies b ¿ ` with ` =

√
~/(mω) being

the characteristic length of the harmonic trap2. Under this assumption the
influence of the trapping potential within the central well (r ≤ b) is negligible
and the relative motion is governed by the same Schrödinger equation as in
free space (E.16). This allows us to express the boundary condition for the
inner solution uI in terms of the scattering length as(k):

1

`

uI

u′I

∣∣∣∣
r=b

=
tan(k1b)

`k1

≈ −as(k)
`

+ b
`

1 + b as(k) k2
. (E.29)

Here we have used Eqs. (E.19), (E.20) and the approximation kb ¿ 1.

Outside the well (r > b) the radial part of the Schrödinger equation takes
the usual harmonic oscillator form:

u′′II +

(
k2 − r2

4`4

)
uII = 0. (E.30)

The solution of this equation can expressed in terms of normalizable confluent
hypergeometric functions [145]: uII(r) ∝ rU(−ν, 3/2, r2/2`2) e−r2/4`2 with
ν = E/(2~ω)−3/4. Since b ¿ ` we can simplify this solution at the boundary
r = b by Taylor expanding U(−ν, 3/2, x) around x = 0:

−xU(−ν, 3/2, x)√
π

= − 1

Γ(−ν)
+

2

Γ(−ν − 1/2)
x+

1 + 2ν

Γ(−ν)
x2 +O(x3). (E.31)

This yields the following boundary condition for the outer solution:

1

`

uII

u′II

∣∣∣∣
r=b

=
−Γ(−ν−1/2)√

2 Γ(−ν)
+ b

`

1 + Γ(−ν−1/2)√
2 Γ(−ν)

k2 b `
. (E.32)

2For 87Rb we have β6 ' 8 nm [150] and the typical on-site trap width in a deep optical
lattice is given by ` ' 64 nm [24].
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Setting Eqs. (E.32) and (E.29) equal to each other we can cast the quanti-
zation rule for the eigenenergies in a rather simple form:

Γ(−ν − 1/2)√
2 Γ(−ν)

' `

as(k)
. (E.33)

This result can now very easily be compared to the quantization rule (E.10)
obtained from the pseudo-potential calculation. Using the effective range
approximation of as(k) (E.21) one finds that the pseudo-potential yields the
correct eigenenergies if the following condition is fulfilled:

(kas)(kreff ) ¿ 1 (E.34)

Note that this coincides with the validity condition (E.24) in free space, when
demanding that the pseudo-potential produces also the correct scattering
phase. Note that so far we have only made the assumptions kb ¿ 1, b ¿ `
and k2 ¿ κ2. For ground state energies k ≈ 1/` and in the limit reff ≈ b
the condition (E.34) can be further simplified to: asb ¿ `2. This shows that
the pseudo-potential can also be applied in the limit of as being much larger
than the trap size `, given that the range of the scattering potential b is small
enough.

We believe that our result (E.34), which has been derived for a central
well potential, also holds for quite general shapes of both the trapping or scat-
tering potential, given that the following two requirements are fulfilled: (i)
the range of the scattering potential (e.g. given by β6) is much smaller than
the characteristic size of the trap. (ii) the scattering potential vanishes for
large distances as 1/rn with n > 5 so that the effective range approximation
(E.21) applies.

Then the energy quantization rule depends only linearly on the energy
dependent scattering length as(k) as demonstrated in Eq. E.33. Checking
the validity of the pseudo-potential then reduces to comparing as(k) with
as. Exploiting the effective range approximation (E.21) leads to the validity
condition (E.34), with as and reff containing the information about the exact
scattering potential and the quantized momenta k containing the information
about the trapping potential. This argumentation also implies that the range
of validity of the pseudo-potential can be greatly enhanced by replacing as →
as(k) in the definition of the coupling-constant g (E.6).

Our findings are confirmed by numerical studies of the eigenenergies of
different pairs of alkali atoms in a harmonic trap interacting through a real-
istic a3

∑+
u potential [150, 152]. In [152] it has been shown for 23Na atoms

that the eigenvalues are very well approximated by the relation (E.33), even
for energies at which as(k) is diverging. The authors of [150] studied the
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regime of large scattering lengths as. Using as(k) in the definition of the
pseudo-potential the correct eigenenergies could be reproduced up to a regime
where β6 ∼ `. They also compared their numerical calculation of the ground
state energy for the realistic potential with the result (E.11) for the energy-
independent pseudo-potential. Their findings for the validity of the pseudo-
potential approximation are consistent with condition (E.34).
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Bloch, Nature 425, 937 (2003).
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