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Comparison of

Boltzmann Kinetics with Quantum Dynamics

for Relativistic Quantum Fields

Abstract

Boltzmann equations are often used to study the thermal evolution of parti-
cle reaction networks. Prominent examples are the computation of the baryon
asymmetry of the universe and the evolution of the quark-gluon plasma after a
relativistic heavy ion collision. However, Boltzmann equations are only a clas-
sical approximation of the quantum thermalization process which is described
by the so-called Kadanoff-Baym equations. This raises the question how reliable
Boltzmann equations are as approximations to the full Kadanoff-Baym equa-
tions. Therefore, we present in this thesis a detailed comparison of Boltzmann
and Kadanoff-Baym equations in the framework of relativistic quantum field the-
ories in 3+1 space-time dimensions. In a first step, for simplicity we consider a
real scalar Φ4 quantum field theory and in a second step we generalize our re-
sults to a chirally invariant Yukawa-type quantum field theory including fermions.
The obtained numerical solutions reveal significant discrepancies in the results
predicted by both types of equations. Apart from quantitative discrepancies,
on a qualitative level the universality respected by Kadanoff-Baym equations is
severely restricted in the case of Boltzmann equations. Furthermore, Kadanoff-
Baym equations strongly separate the time scales between kinetic and chemical
equilibration. This separation of time scales is absent for Boltzmann equations.
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Chapter 1

Introduction and Overview

“The story so far:

In the beginning the Universe was created. This has made a lot of people
very angry and been widely regarded as a bad move.”

Douglas Adams
The Restaurant at the End of the Universe

Nonequilibrium dynamics is part of numerous interesting phenomena in the field
of (astro-)particle physics. For example, one of the most attractive frameworks
to explain the matter-antimatter asymmetry of the universe is the so-called lep-
togenesis mechanism [1–3]. According to this scenario, lepton number violating
interactions in the early universe produce a lepton asymmetry which is subse-
quently converted to the observed baryon asymmetry by so-called sphaleron pro-
cesses. For the dynamical generation of the lepton asymmetry it is necessary, that
the universe was in a state out of thermal equilibrium [4]. The standard means
to deal with this nonequilibrium situation are Boltzmann equations. However,
it is well known that (classical) Boltzmann equations suffer from several short-
comings as compared to their quantum mechanical generalizations, the so-called
Kadanoff-Baym equations. This motivates a comparison of Boltzmann and Kada-
noff-Baym equations in order to assess the reliability of quantitative predictions
of leptogenesis scenarios.

Apart from leptogenesis, additional motivation to study the connection be-
tween Boltzmann and Kadanoff-Baym equations is furnished by relativistic heavy
ion collision experiments which aim at probing the quark-gluon plasma. In these
experiments the quark-gluon plasma is produced in a state far from equilibrium.
Recently, however, experiments claimed that the approach to thermal equilibrium
should happen very fast, and that the evolution of the quark-gluon plasma could
even be described by hydrodynamic equations [5–8], which arise as approxima-
tions to Boltzmann equations [9,10]. In this context it is important to note that
different quantities effectively thermalize on different time scales [11]. Thus, one
might face the situation that, although the full approach to thermal equilibrium
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takes a very long time, certain quantities, which are sufficient to describe the
quark-gluon plasma with hydrodynamic equations, approach their equilibrium
values on considerably shorter time scales.

What are the shortcomings of Boltzmann equations? First we would like
to note that Boltzmann equations should work well for a gas of particles which
behave sufficiently classical. For example, the explosions in the pistons of a car
engine or atmospheric turbulences can well be described by Boltzmann equations.
However, once quantum mechanics comes into play, which is certainly the case for
elementary particles starring in phenomena like leptogenesis or the quark-gluon
plasma, things change drastically. The quantum dynamics of such systems is
described by the so-called Kadanoff-Baym equations. In order to pinpoint the
insufficiencies of Boltzmann equations, we note that they arise as approximations
to the Kadanoff-Baym equations1. As a matter of fact, one has to employ a
whole cascade of approximations, among them a first-order gradient expansion, a
Wigner transformation and a quasi-particle (or on-shell) approximation [14–18].

It is known, that the gradient expansion cannot be justified for early times.
Consequently, one might expect that Boltzmann equations fail to describe the
early-time evolution and that errors accumulated for early times cannot be reme-
died at late times.

Of course, a Wigner transformation itself is not at all an approximation, but
in order to make it available, one has to send the initial time to the remote
past. Boltzmann equations imply the assumption of molecular chaos (“Stoßzahl-
ansatz”) [19–21], which introduces irreversibility: Two particles are considered
uncorrelated before their collision, i.e. their history is discarded completely. In
contrast to this Kadanoff-Baym equations take these memory effects into account
and keep the information on the details of the initial conditions. Numerical
solutions of Kadanoff-Baym equations revealed that this memory is lost gradually.
Consequently, for late times it is indeed justifiable to send the initial time to the
remote past. For early times, however, this is certainly not the case. The damping
of correlations increases with coupling constants and the average effective particle
number density of the system. Therefore, the assumption of molecular chaos
seems to contradict the weak-coupling and dilute-gas approximations, which are
also implied by standard Boltzmann equations.

As a consequence of the quasi-particle approximation, the conservation of
momentum and energy prevents Boltzmann equations from describing thermal-
ization in 1 + 1 space-time dimensions. In contrast to this, it has been shown in
the framework of a scalar Φ4 quantum field theory that this is feasible with Kada-
noff-Baym equations [22]. The reason for this qualitative discrepancy is that Ka-
danoff-Baym equations take off-shell effects into account [23], which are neglected
in Boltzmann equations. Of course, in 3+1 dimensions both types of equations

1The connection between Boltzmann equations and classical field theory has been treated
in Refs. [12, 13].
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are capable of describing thermalization. It is important to note, however, that
Kadanoff-Baym equations respect full universality: For systems with identical
(conserved) average energy density the late-time behavior coincides irrespective
of the details of the initial conditions. In contrast to this, the quasi-particle ap-
proximation introduces fake constants of motion for the corresponding Boltzmann
equations, which severely restricts the evolution of the particle number densities.
As a result, Boltzmann equations only respect a restricted universality: Only sys-
tems for which the average energy density as well as all fake constants of motion
agree from the very beginning share the same late-time results. In the case of
leptogenesis the on-shell character of the Boltzmann equation leads to a further
inconsistency: All leptogenesis scenarios share the fact that some heavy particles
decay out of thermal equilibrium into the particles which we observe in the uni-
verse today. The spectral function of a particle that can decay into other particles
is given by a Breit-Wigner curve with a non-vanishing width. The quasi-particle
approximation reduces the decay width of these particles to zero, i.e. a Boltzmann
equation can only describe systems consisting of stable quasi-particles. After all,
how does the on-shell character of the Boltzmann equation affect the description
of quantum fields out of thermal equilibrium in 3 + 1 dimensions?

When applying Boltzmann equations to the description of leptogenesis, the
standard technique to construct the collision integrals — before employing further
approximations — is to take the usual bosonic and fermionic statistical gain and
loss terms multiplied with the S-matrix element for the respective reaction [24,25].
Generally these S-matrix elements are computed using perturbation theory, which
is justifiable only for a consideration in vacuum, and one may wonder of which
significance they are for a quantum mechanical many-particle system.

All these shortcomings of Boltzmann equations lead to the conclusion that one
should perform a detailed comparison of Boltzmann and Kadanoff-Baym equa-
tions [26–32], such that one can explicitly see how large the quantum mechanical
corrections are.

Due to the complexity of the problem, in a first step we restrict ourselves
to a real scalar Φ4 quantum field theory in 3 + 1 space-time dimensions [31, 32].
Of course, in this framework one can neither describe the phenomenon of lepto-
genesis nor thermalization of the quark-gluon plasma after a relativistic heavy
ion collision. Nevertheless, it certainly permits to present a detailed compari-
son of Boltzmann and Kadanoff-Baym equations, which may reveal interesting
phenomena to be investigated in more realistic theories. We found considerable
discrepancies in the results predicted by the Boltzmann and Kadanoff-Baym equa-
tions: On a quantitative level, we found that the Boltzmann equation predicts
significantly larger thermalization times than the corresponding Kadanoff-Baym
equations. On a qualitative level we could verify that Kadanoff-Baym equations
respect full universality [33, 34] and strongly separate the time scales between
kinetic and chemical equilibration [11]. In the case of a real scalar Φ4 quantum
field theory the Boltzmann equation artificially conserves the total particle num-
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ber, which severely constrains the evolution of the particle number density. As
a result, the Boltzmann equation respects only a restricted universality, fails to
describe the process of chemical equilibration, and does not separate any time
scales.

In a second step, we generalized our results to the case of a chirally invari-
ant Yukawa model including fermions. We found the same results: Kadanoff-
Baym equations respect universality including the process of quantum chemical
equilibration and separate the time scales between kinetic and chemical equili-
bration [11, 35]. Again, the corresponding Boltzmann equations comprise fake
constants of motion and therefore maintain only a restricted universality, fail to
describe quantum chemical equilibration and do not separate any time scales.

Before we get to the gory details of the above considerations, in the next
chapter we introduce important concepts for an efficient treatment of quantum
fields in and out of thermal equilibrium. In this sense the following chapter serves
as a second — more technical — introduction to this thesis.

The third and fourth chapters are devoted to the afore mentioned comparisons
of Boltzmann and Kadanoff-Baym equations. In general, when studying systems
out of thermal equilibrium by means of Kadanoff-Baym equations, it is crucial to
start from a Φ-derivable approximation, since these approximations guarantee the
conservation of energy and global charges [36–38]. The 2PI effective action [39–41]
furnishes such a Φ-derivable approximation and has proven to be an efficient and
reliable tool for the description of quantum fields out of thermal equilibrium in
numerous previous treatments [22,33,35,42,43]. Consequently, in chapters 3 and 4
the 2PI effective action will be our starting point. The Kadanoff-Baym equations
can be derived by requiring that the 2PI effective action be stationary with respect
to variations of the complete connected two-point functions [22, 35, 40, 41]. In
order to derive the corresponding Boltzmann equations, subsequently one has to
employ a first-order gradient expansion, a Wigner transformation, the Kadanoff-
Baym ansatz and the quasi-particle approximation [14–18]. While Boltzmann
equations describe the time evolution of particle number distributions, Kada-
noff-Baym equations describe the evolution of the complete quantum mechanical
two-point functions of the system. However, one can define effective particle
number distributions which are given by the complete propagators and their time
derivatives evaluated at equal times [22, 35]. Finally, we solve the Boltzmann
and the Kadanoff-Baym equations numerically for spatially homogeneous and
isotropic systems in 3+1 space-time dimensions and compare their predictions
on the evolution of these systems for various initial conditions.

We conclude this thesis in the fifth chapter. The appendix exhibits the details
of the rather sophisticated computational algorithms underlying our numerical
solutions of the Boltzmann and Kadanoff-Baym equations.

Throughout this work we use the Minkowski metric where the time-time com-
ponent is negative and units where Planck’s constant, the speed of light and
Boltzmann’s constant are taken to be unity [44].



Chapter 2

Basic Concepts

In this chapter we introduce important concepts for an efficient treatment of
quantum fields in and out of thermal equilibrium. In the first section, we review
the derivation of some results in thermal field theory which will be particularly
important in subsequent chapters, when we derive Boltzmann equations from
Kadanoff-Baym equations. As already mentioned in the introduction this deriva-
tion requires a whole cascade of approximations, some of which are motivated by
equilibrium considerations. In the second section we will introduce the so-called
closed Schwinger-Keldysh real-time contour, which is the basic tool for a descrip-
tion of quantum fields out of thermal equilibrium. Eventually, the third section
is devoted to the 2PI effective action. In subsequent chapters the 2PI effective
action will be the starting point of our considerations, namely when we derive
Kadanoff-Baym equations by requiring that the 2PI effective action be stationary
with respect to variations of the full connected two-point functions.

2.1 Quantum Fields in Thermal Equilibrium

In this section we consider a closed system in thermal equilibrium [18,45–48] with
time-independent Hamiltonian

H =

∫
d3x

[
Ψ̄γj∂jΨ +

1

2
δµν (∂µΦ) (∂νΦ) +

m2

2
Φ2 + V

(
Φ,Ψ, Ψ̄

)]
(2.1.1)

and temperature T = 1
β
. Ψ (x) is a fermionic Dirac field, Φ (x) is a real scalar

quantum field and V contains terms describing the interactions of these quan-
tum fields, which we need not specify explicitly for the purposes of this section.
For simplicity we restrict our considerations to systems for which the average
net charge density vanishes, such that we can work with the canonical density
operator

D =
1

Z
exp (−βH) , (2.1.2)
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where the partition function Z is given by

Z = tr
(

exp (−βH)
)
. (2.1.3)

The similarity between the time evolution operator exp (−i (t− t0)H) and the
operator exp (−βH) suggests the definition of a new operator which includes the
former two operators as special cases. We set

U (τ) = exp (−τH)

and allow τ to take complex values. It is obvious that U (τ) can be interpreted
as evolution operator for complex-valued times. In order to evaluate the trace
in Eq. (2.1.3) we can use the complete set of right- and left-eigenstates of the
Heisenberg operators Φ (x, t) and Ψ (x, t) for t = 0:

Φ (x, t) |ϕ (t) , ψ (t)〉 = ϕ (x) |ϕ (t) , ψ (t)〉 , (2.1.4)

Ψ (x, t) |ϕ (t) , ψ (t)〉 = ψ (x) |ϕ (t) , ψ (t)〉 , (2.1.5)

and

〈ϕ (t) , ψ (t)|Φ (x, t) = 〈ϕ (t) , ψ (t)|ϕ (x) , (2.1.6)

〈ϕ (t) , ψ (t)|Ψ (x, t) = 〈ϕ (t) , ψ (t)|ψ (x) . (2.1.7)

The partition function is then given by

Z =

∫ ∏
x

[
dϕ (x) dψ (x)

] 〈ϕ (0) , ψ (0) |U (β)|ϕ (0) , ψ (0)〉 .

As indicated above, by interpreting U (τ) as an evolution operator for complex-
valued times, we obtain the following path integral representation for the matrix
element:

〈ϕ (0) , ψ (0) |U (β)|ϕ (0) , ψ (0)〉
=

∫

ϕ(x,0)=ϕ(x,β)=ϕ(x)

ψ(x,0)=ψ(x,β)=ψ(x)

Dϕ (x) Dψ (x) Dψ̄ (x) exp
(−IE

[
ϕ, ψ, ψ̄

])
,

where we use the notation

Dϕ (x) Dψ (x) Dψ̄ (x) =
∏
x,t

[
dϕ (x, t) dψ (x, t) dψ̄ (x, t)

]
.
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IE denotes the Euclidean action which we obtain from the classical action by
substituting τ = ix0.

iI
[
ϕ, ψ, ψ̄

]
= i

∫
d3x

−iβ∫

0

dx0

[
−ψ̄ 6∂ψ − 1

2
(∂µϕ) (∂µϕ)− 1

2
m2ϕ2 + . . .

]

= −
∫
d3x

β∫

0

dτ

[
ψ̄ 6∂Eψ +

1

2
δµν (∂µϕ) (∂νϕ) +

1

2
m2ϕ2 + . . .

]

= −IE
[
ϕ, ψ, ψ̄

]

After all, we arrive at the following path integral representation for the partition
function:

Z =

∫

ϕ(x,0)=ϕ(x,β)

ψ(x,0)=ψ(x,β)

Dϕ (x) Dψ (x) Dψ̄ (x) exp
(−IE

[
ϕ, ψ, ψ̄

])
.

Adding external source terms to the Euclidean action, we turn the partition
function into a generating functional:

Z
[
J, θ, θ̄

]
=

∫

ϕ(x,0)=ϕ(x,β)

ψ(x,0)=ψ(x,β)

Dϕ (x) Dψ (x) Dψ̄ (x) exp
(
− IE

[
ϕ, ψ, ψ̄

]

+

∫
d3x

β∫

0

dτ
[
Jϕ+ ψ̄θ + θ̄ψ

] )
.

As usual, the first derivative of the generating functional with respect to a source
gives the expectation value of the corresponding quantum field. Using the stan-
dard procedure [44] one can identify higher functional derivatives with expecta-
tion values of “time ordered” products of quantum fields. For example, we obtain
for the scalar two-point Green’s function:

G (x, y) =
1

Z

(
δ2Z

[
J, θ, θ̄

]

δJ (x) δJ (y)

)

J=θ=θ̄=0

=
1

Z

∫

ϕ(z,0)=ϕ(z,β)

ψ(z,0)=ψ(z,β)

Dϕ (z) Dψ (z) Dψ̄ (z) ϕ (x)ϕ (y) exp
(−IE

[
ϕ, ψ, ψ̄

])

= 〈TI {Φ (x) Φ (y)}〉
=

1

Z
tr

(
exp (−βH)TI {Φ (x) Φ (y)}

)
.
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τ0

τ0 β− i

Im(t)

Re(t)

Figure 2.1: The imaginary time path I was introduced by Matsubara
[49]. A similar time path, which partly follows the real axis, has later
been proposed by Niemi and Semenoff [50,51]

The subscript I indicates that the “time ordering” corresponds to the imaginary
time path shown in Fig. 2.1. Similarly, the fermionic propagator is given by

Sαβ (x, y) =
1

Z

(
δ

δθβ (y)

δ

δθ̄α (x)
Z

[
J, θ, θ̄

])

J=θ=θ̄=0

=
1

Z

∫

ϕ(z,0)=ϕ(z,β)

ψ(z,0)=ψ(z,β)

Dϕ (z) Dψ (z) Dψ̄ (z) ψα (x) ψ̄β (y) exp
(−IE

[
ϕ, ψ, ψ̄

])

=
〈
TI

{
Ψα (x) Ψ̄β (y)

}〉

=
1

Z
tr

(
exp (−βH)TI

{
Ψα (x) Ψ̄β (y)

})
.

Because of the cyclic invariance of the trace we find for 0 ≤ τ ≤ β

〈
TI {Φ (x, τ) Φ (y, 0)}

〉

=
1

Z
tr

(
exp (−βH) exp (τH) Φ (x, 0) exp (−τH) Φ (y, 0)

)

=
1

Z
tr

(
exp (−βH) Φ (y, 0) Φ (x, τ − β)

)

= 〈TI {Φ (x, τ − β) Φ (y, 0)}〉 . (2.1.8)

Hence, the thermal scalar propagator satisfies the periodicity condition

G (x, τ,y, 0) = G (x, τ − β,y, 0) . (2.1.9)
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When repeating the steps (2.1.8) for fermionic fields, we have to recall that the
time ordering of fermionic fields implies an additional minus sign. Therefore, in
contrast to the scalar propagator, the thermal fermion propagator satisfies an
anti-periodicity condition:

S (x, τ,y, 0) = −S (x, τ − β,y, 0) . (2.1.10)

Due to the (anti-)periodicity conditions (2.1.9) and (2.1.10) the thermal prop-
agators can be expanded into Fourier series over so-called Matsubara frequen-
cies [46, 49]. However, we will not pursue this road here. Instead, we note that
traces of operators need not necessarily be evaluated using the left- and right-
eigenstates of the Heisenberg quantum fields Φ (x, t) and Ψ (x, t). Alternatively,
one can also use a complete set of eigenstates of the Hamiltonian:

H |n〉 = En |n〉 .
With their aid we obtain

G> (x, y) = G< (y, x) = 〈Φ (x) Φ (y)〉
=

∑

l,m,n

〈l |D|n〉 〈n |Φ (x)|m〉 〈m |Φ (y)| l〉

=
1

Z

∑
m,n

〈n |Φ (x, 0)|m〉 〈m |Φ (y, 0)|n〉 (2.1.11)

× exp
(−i (x0 − y0

)
Em

)
exp

(− (
β − i (x0 − y0

))
En

)

and similar expressions for

Sαβ> (x, y) =
〈
Ψα (x) Ψ̄β (y)

〉

and
Sαβ< (x, y) =

〈
Ψ̄β (y) Ψα (x)

〉
.

Eq. (2.1.11) shows that the time dependence of the thermal propagators only
takes the relative time x0−y0 into account. There is no dependence on the center
time, and we can conclude that the thermal propagators are invariant under time
translations. Additionally, the thermal propagators are expected to be invariant
under space translations, such that we finally arrive at space-time translation
invariant thermal propagators. Space-time translation invariance is characteristic
for thermal quantum field theory and implies that the thermal propagators only
depend on the relative coordinates x− y. Out of thermal equilibrium one would
at least observe an additional dependence on the center time x0+y0

2
. Furthermore,

provided the matrix elements behave well enough, the convergence of the sum in
Eq. (2.1.11) is controlled by the exponential functions, and we find that G> (x, y)
is an analytic function of its time arguments in the domain

{
x0 − y0 ∈ C

∣∣∣− β < Im
(
x0 − y0

)
< 0

}
. (2.1.12)
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Analogously, by interchanging x and y in Eq. (2.1.11) G< (x, y) is found to be an
analytic function of its time arguments in the domain

{
x0 − y0 ∈ C

∣∣∣0 < Im
(
x0 − y0

)
< β

}
. (2.1.13)

Using the correlation functions G> and G< we can resolve the imaginary-time
ordering in the scalar propagator. As mentioned above, exploiting the invariance
of the thermal propagator under space-time translations, we can parametrize the
propagator in terms of relative coordinates x − y = s and x0 − y0 = s0 − iτ ,
where s0 is the real part of the relative time. Thus, according to Eqs. (2.1.12)
and (2.1.13) for 0 < τ < β we find

G
(
s, s0 − iτ) = G>

(
s, s0 − iτ) (2.1.14)

and
G

(
s, s0 − i (τ − β)

)
= G<

(
s, s0 − i (τ − β)

)
. (2.1.15)

Taking the periodicity relation (2.1.9) into account, we obtain the Kubo-Martin-
Schwinger condition [52,53] for the scalar propagator

G>

(
s, s0 − iτ) = G<

(
s, s0 − i (τ − β)

)
. (2.1.16)

Fourier transforming the Kubo-Martin-Schwinger condition (2.1.16) with respect
to s yields for τ = 0:

G> (k) =

∫
d4s exp (−iks)G> (s) = exp

(
βk0

)
G< (k) .

Using the spectral function

G% (k) = G> (k)−G< (k)

and the statistical propagator

GF (k) =
1

2
(G> (k) +G< (k))

for the scalars we eventually find the so-called fluctuation-dissipation theorem

GF (k) =

(
1

2
+ nBE

(
k0

))
G% (k) , (2.1.17)

where

nBE (ω) =
1

exp (βω)− 1

is the Bose-Einstein distribution function. Along the same lines we also obtain
the Kubo-Martin-Schwinger condition for the fermions

S>
(
s, s0 − iτ) = S<

(
s, s0 − i (τ − β)

)
. (2.1.18)
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The fermionic spectral function and statistical propagator are defined by

S% (k) = S> (k) + S< (k)

and

SF (k) =
1

2
(S> (k)− S< (k)) .

Thus, for the fermions the fluctuation-dissipation theorem reads

SF (k) =

(
1

2
− nFD

(
k0

))
S% (k) , (2.1.19)

where

nFD (ω) =
1

exp (βω) + 1

is the Fermi-Dirac distribution function. Summarizing, the main results of this
section are the space-time translation invariance of thermal propagators and the
fluctuation-dissipation theorems (2.1.17) and (2.1.19).

2.2 Quantum Fields out of Thermal Equilibrium

In this section we consider a closed system out of thermal equilibrium which at
some initial time t = tinit ≡ 0 can be described by a density operator D. As in the
previous section, the Hamiltonian of the system is given by Eq. (2.1.1). In order
to be able to describe general nonequilibrium initial conditions as well as initial
thermal equilibrium, we allow the density operator to include mixed states, such
that

tr
(D2

)
< 1 .

Thus, although we use the same symbol, in this section the density operator D
may deviate significantly from the canonical density operator (2.1.2). We would
like to stress, that D now may describe a system, which is initially arbitrarily far
from equilibrium, and that there will be no assumptions which are only justifiable
if our system were sufficiently close to thermal equilibrium. We are interested
in the computation of expectation values of arbitrary products of Heisenberg
quantum fields, which are given by

〈Φ (x1) . . .Φ (xn)〉 = tr
(
DΦ (x1) . . .Φ (xn)

)
. (2.2.1)

In order to evaluate the trace (2.2.1), we have to take the evolution of each
Heisenberg field with respect to the initial time. For example, the two-point
correlation function is given by

〈Φ (x) Φ (y)〉 = tr
(
D exp

(
ix0H

)
Φ (x, 0) exp

(
i
(
y0 − x0

)
H

)

× Φ (y, 0) exp
(−iy0H

) )

= tr
(
DU (

0, x0
)
ΦI (x)U

(
x0, y0

)
ΦI (y)U

(
y0, 0

) )
. (2.2.2)
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In the second line we have used the interaction picture evolution operator

U
(
x0, y0

)
= exp

(
ix0H0

)
exp

(−i (x0 − y0
)
H

)
exp

(−iy0H0

)
(2.2.3)

and the interaction picture quantum field

ΦI (x) = exp
(
ix0H0

)
Φ (x, 0) exp

(−ix0H0

)
,

where we have separated the full Hamiltonian H into its free part H0 and the
interaction V :

H = H0 + V .

Differentiating Eq. (2.2.3) with respect to x0 gives the differential equation

i
d

dx0
U

(
x0, y0

)
= V I

(
x0

)
U

(
x0, y0

)
, (2.2.4)

where

V I
(
x0

)
= exp

(
ix0H0

)
V exp

(−ix0H0

)
.

The interaction picture evolution operator (2.2.3) is determined as the unique
solution of the differential equation (2.2.4) by the initial condition

U
(
y0, y0

)
= 1 . (2.2.5)

The crucial point of this observation is the fact that the differential equation
(2.2.4) together with the initial condition (2.2.5) is equivalent to the integral
equation

U
(
x0, y0

)
= 1− i

x0∫

y0

dt V I (t)U
(
t, y0

)
.

By iteration of this integral equation, we obtain an expansion for U (x0, y0) in
powers of V I :

U
(
x0, y0

)
= 1− i

x0∫

y0

dt
[
V I (t)

]

+ (−i)2

x0∫

y0

dt1

t1∫

y0

dt2
[
V I (t1)V

I (t2)
]
+ . . . .
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For x0 > y0 this expansion can be written in the form

U
(
x0, y0

)
= 1− i

x0∫

y0

dt
[
V I (t)

]

+
(−i)2

2

x0∫

y0

dt1

x0∫

y0

dt2
[
T

{
V I (t1)V

I (t2)
}]

+ . . .

= T exp


−i

x0∫

y0

dt V I (t)


 ,

where T denotes the usual time ordering operator along the real axis. On the
other hand, we obtain for x0 < y0

U
(
x0, y0

)
= 1 + i

y0∫

x0

dt
[
V I (t)

]

+
i2

2

y0∫

x0

dt1

y0∫

x0

dt2

[
T̃

{
V I (t1)V

I (t2)
}]

+ . . .

= T̃ exp


i

y0∫

x0

dt V I (t)


 .

Here T̃ denotes the anti-temporal ordering along the real axis, i.e. the interaction
with the latest time argument is placed rightmost. Now we return to the trace
(2.2.2) and find that all operators are sorted according to the order in which their
time arguments appear on the time contour shown in Fig. 2.2 [15,54–62] with

tmax = max
(
x0, y0

)
.

As a consequence we have to define the n-point Green’s functions on this time
contour. For example the scalar Schwinger-Keldysh propagator is given by

G (x, y) = 〈TC {Φ (x) Φ (y)}〉 . (2.2.6)

With the aid of the density operator D, we can define a generating functional for
these Schwinger-Keldysh Green’s functions:

ZD
[
J, θ, θ̄

]
= tr


D TC

{
exp

(
i

∫

C

d4x
[
Jϕ+ ψ̄θ + θ̄ψ

] )}

 (2.2.7)
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tt max

t    = 0init

Figure 2.2: Closed real-time path C. This time path was invented
by Schwinger [54] (see also [56–61]) and applied to nonequilibrium
problems by Keldysh [55]. In order to avoid the doubling of the
degrees of freedom, we use the form presented in Ref. [15].

Exactly as in the previous section, we evaluate the trace using the complete set
of left- and right-eigenstates (2.1.4) – (2.1.7) of the Heisenberg quantum fields
Φ (x) and Ψ (x) for x0 = 0:

ZD
[
J, θ, θ̄

]
=

∫ ∏
x

dϕ(1) (x) dψ(1) (x)

∫ ∏
y

dϕ(2) (y) dψ(2) (y)

×
[

〈
ϕ(1) (0) , ψ(1) (0) |D|ϕ(2) (0) , ψ(2) (0)

〉

× 〈
ϕ(2) (0) , ψ(2) (0)

∣∣TC
{

exp
(
i

∫

C

d4x
[
Jϕ+ ψ̄θ + θ̄ψ

] )} ∣∣ϕ(1) (0) , ψ(1) (0)
〉
]
.

The second matrix element is given by the following path integral:

∫

ϕ(x,
−→
0 )=ϕ(1)(x)

ϕ(x,
←−
0 )=ϕ(2)(x)

ψ(x,
−→
0 )=ψ(1)(x)

ψ(x,
←−
0 )=ψ(2)(x)

Dϕ (x) Dψ (x) Dψ̄ (x) exp


i

∫

C

d4x
[
L + Jϕ+ ψ̄θ + θ̄ψ

]

 .

The matrix element of the density operator can be written in the form [41]

〈
ϕ(1) (0) , ψ(1) (0) |D|ϕ(2) (0) , ψ(2) (0)

〉
=

∫ ∏
x

dψ̄ (x) exp
(
iF

[
ϕ, ψ, ψ̄

])
,
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where F can be expanded in the functional sense according to

F
[
ϕ, ψ, ψ̄

]
= α0 +

∫

C

d4x
[
α1 (x)ϕ (x) + β̄1 (x)ψ (x) + ψ̄ (x) β1 (x)

]

+
1

2

∫

C

d4x

∫

C

d4y
[
ϕ (x)α2 (x, y)ϕ (y) + ψ̄ (x) β2 (x, y)ψ (y)

]

+
1

3!

∫

C

d4x

∫

C

d4y

∫

C

d4z . . . (2.2.8)

The values of ϕ (x) and ψ (x) at the beginning and the end of the time contour are
given by ϕ(1) (x) and ϕ(2) (x), and ψ(1) (x) and ψ(2) (x), respectively. Of course,
the sequence of the coefficients αj and βj contains as much information as the
original density matrix. Therefore, in general we can rewrite the trace (2.2.7)
as a functional of infinitely many sources. For simplicity, however, throughout
this work we will restrict our considerations to Gaussian initial conditions. This
means for the sources αj and βj that

αj (x1, . . . , xj) = βj (x1, . . . , xj) = 0 (∀j ≥ 3) .

The only purpose of the source αj and βj is to prepare the system under consider-
ation in a state out of thermal equilibrium. Consequently, they are non-vanishing
only at the initial time tinit = 0. Anyway, we can only compute ratios of path in-
tegrals. In such a ratio the constant factor caused by α(0) cancels, and therefore,
we can cancel α(0) from the functional (2.2.8). Furthermore, we can absorb the
sources α1, β1 and β̄1 into the sources J , θ and θ̄. Thus, the generating functional
for Schwinger-Keldysh Green’s functions is given by the path integral

ZD
[
J, θ, θ̄

]
=

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp


i

∫

C

d4x
[
L + Jϕ+ ψ̄θ + θ̄ψ

]

+
i

2

∫

C

d4x

∫

C

d4y
[
ϕ (x)α2 (x, y)ϕ (y) + ψ̄ (x) β2 (x, y)ψ (y)

]

 . (2.2.9)

The complete Schwinger-Keldysh propagator (2.2.6) is then given by

G (x, y) =

(
(−i)2

ZD
[
J, θ, θ̄

] δ2ZD
[
J, θ, θ̄

]

δJ (x) δJ (y)

)

J=α1, θ=0, θ̄=α2

.

Similarly, one also obtains the complete Schwinger-Keldysh propagator for fer-
mionic quantum fields:

Sαβ (x, y) =

(
(−i)2

ZD
[
J, θ, θ̄

] δ

δθβ (y)

δ

δθ̄α (x)
ZD

[
J, θ, θ̄

]
)

J=α1, θ=0, θ̄=α2

.
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For given initial conditions the evolution of the complete Schwinger-Keldysh prop-
agators is determined by the so-called Kadanoff-Baym equations. These are self-
consistent integro-differential equations which can be obtained by requiring that
the 2PI effective action, defined on the closed real-time path Fig. 2.2, be station-
ary with respect to variations of the complete connected propagators. The 2PI
effective action will be introduced in the next section.

2.3 Quantum Effective Action

In this section we will review the derivation of a convenient parametrization of the
2PI effective action. For notational convenience we will not specify any time con-
tour. As they stand, the formulas are immediately applicable for considerations
in vacuum. On the other hand, according to the first section of this chapter,
in thermal equilibrium one would have to perform time integrations along the
imaginary time path. In this case the 2PI effective action corresponds to the
thermodynamic potential. In contrast to this, in subsequent chapters, when de-
scribing the evolution of quantum fields out of thermal equilibrium, we will start
from the 2PI effective action defined on the closed Schwinger-Keldysh real-time
contour. We show the derivation in the framework of the Yukawa-type quantum
field theory considered in chapter 4, and note that one can trivially obtain the
2PI effective action for the purely scalar case by omitting the fermionic parts. For
notational convenience, however, we suppress SU (2)L and SU (2)R flavor indices
and use a compressed vector-matrix notation for integrals:

Jφ =

∫
d4x J (x)φ (x) ,

φG−1φ =

∫
d4x φ (x)G−1 (x, y)φ (x) ,

tr [KG] =

∫
d4x

∫
d4y K (x, y)G (y, x) .

1PI Effective Action

We start from the generating functional for Green’s functions

Z
[
J, θ, θ̄

]
=

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
I

[
ϕ, ψ, ψ̄

]
+ ϕJ + ψ̄θ + θ̄ψ

)]
.

The generating functional for connected Green’s functions is then given by

W
[
J, θ, θ̄

]
= −i log

(
Z

[
J, θ, θ̄

])
.
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The functional derivative of W with respect to a source gives the expectation
value of the corresponding quantum field in the presence of the source1:

δW

δJ (x)
= φ (x) ,

δW

δθα (x)
= −Ψ̄α (x) ,

δW

δθ̄α (x)
= Ψα (x) . (2.3.1)

Of course, a non-vanishing expectation value of a Dirac field would break Lorentz
invariance. Thus physical situations imply the vanishing of these expectation val-
ues. Nevertheless, they are needed for the purpose of parametrization. The effec-
tive action is the Legendre transform of the generating functional for connected
Green’s functions:

Γ
[
φ,Ψ, Ψ̄

]
= W

[
J, θ, θ̄

]− Jφ− Ψ̄θ − θ̄Ψ .

From this we can deduce that a functional derivative of the effective action with
respect to the expectation value of a quantum field reproduces the corresponding
source:

δΓ

δφ (x)
= −J (x) ,

δΓ

δΨα (x)
= θ̄α (x) ,

δΓ

δΨ̄α (x)
= −θα (x) . (2.3.2)

In order to find a convenient parametrization for the effective action we translate
the quantum fields by their expectation values

ϕ (x) → φ (x) + ϕ (x) ,

ψ (x) → Ψ (x) + ψ (x) ,

ψ̄ (x) → Ψ̄ (x) + ψ̄ (x) ,

and exploit the translational invariance of path integrals, such that we can write
the generating functional for connected Green’s functions in the form

W
[
J, θ, θ̄

]
= I

[
φ,Ψ, Ψ̄

]
+ φJ + Ψ̄θ + θ̄Ψ +W1

[
J, θ, θ̄

]
,

where

W1

[
J, θ, θ̄

]
= −i log

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
I

[
φ+ ϕ,Ψ + ψ, Ψ̄ + ψ̄

]

− I [
φ,Ψ, Ψ̄

]
+ ϕJ + ψ̄θ + θ̄ψ

)]
. (2.3.3)

Consequently, the effective action is given by

Γ
[
φ,Ψ, Ψ̄

]
= I

[
φ,Ψ, Ψ̄

]
+ Γ1

[
φ,Ψ, Ψ̄

]
, (2.3.4)

1The author apologizes for the ambiguity in the symbol Ψ, but he also promises to avoid
any confusion on whether Ψ is a quantum field or its expectation value.
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where
Γ1

[
φ,Ψ, Ψ̄

]
= W1

[
J, θ, θ̄

]

in principle could be obtained from the one-to-one correspondence (2.3.1) and
(2.3.2) between the external sources and the expectation values of the quan-
tum fields. Replacing the external sources in Eq. (2.3.3) by the functional
derivatives (2.3.2) and using Eq. (2.3.4) yields the following functional integro-
differential equation for Γ1 [39]:

Γ1

[
φ,Ψ, Ψ̄

]
= −i log

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
ψ̄S−1

0 ψ

− 1

2
ϕG −1

0 ϕ+ Iint
[
φ,Ψ, Ψ̄, ϕ, ψ, ψ̄

]− ϕδΓ1

δφ
− ψ̄ δΓ1

δΨ̄
+
δΓ1

δψ
ψ

)]
,

where S−1
0 and G−1

0 are the inverse free propagators for the fermions and the
scalars, respectively,

G −1
0 (x, y) = G−1

0 (x, y)− 6λφ (x)φ (y) δ (x− y)

is the inverse classical propagator, and

Iint
[
φ,Ψ, Ψ̄, ϕ, ψ, ψ̄

]
= −λ

∫
d4x

[
4φϕ3 + ϕ4

]

−H
∫
d4x

[
Ψ̄ϕψ + ψ̄ϕΨ + ψ̄ (φ+ ϕ)ψ

]
.

The 1PI parametrization (2.3.4) of the effective action will be needed in the
derivation of the 2PI parametrization, which we will review in the following sub-
section.

2PI Effective Action

In order to derive the 2PI parametrization of the effective action [40,41,63,64], we
extend the generating functional for connected Green’s functions by two bi-local
source terms:

W
[
J, θ, θ̄,K, L

]
= −i log

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
I

[
ϕ, ψ, ψ̄

]

+ ϕJ + ψ̄θ + θ̄ψ + ϕKϕ+ ψ̄Lψ
)]

. (2.3.5)

The relations (2.3.1) are not changed by the additional non-local sources, but are
supplemented by the following two relations:

δW

δK (y, x)
= 〈T {Φ (x) Φ (y)}〉 = G (x, y) + φ (x)φ (y)
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and

δW

δLβα (y, x)
=

〈
T

{
Ψ̄β (y) Ψα (x)

}〉
= −Sαβ (x, y) + Ψα (x) Ψ̄β (y) .

Thus, a functional derivative of W with respect to a non-local external source
gives the corresponding full two-point function including disconnected parts. In
contrast to this, differentiating W twice with respect to corresponding local ex-
ternal sources gives the connected propagators G and S. The 2PI effective action
is then given as Legendre transform of W :

Γ
[
φ,Ψ, Ψ̄, G, S

]
= W

[
J, θ, θ̄,K, L

]− Jφ− Ψ̄θ − θ̄Ψ
−tr [KG]− φKφ+ tr [LS]− Ψ̄LΨ .

From this, we obtain for the functional derivatives of the 2PI effective action with
respect to the above expectation values:

δΓ

δφ (x)
= −J (x)− 2

∫
d4y K (x, y)φ (y) , (2.3.6)

δΓ

δΨα (x)
= θ̄α (x) +

∫
d4y Ψ̄β (y)Lβα (y, x) , (2.3.7)

δΓ

δΨ̄α (x)
= −θα (x)−

∫
d4y Lαβ (x, y) Ψβ (y) , (2.3.8)

δΓ

δG (x, y)
= −K (y, x) (2.3.9)

δΓ

δSαβ (x, y)
= Lβα (y, x) . (2.3.10)

It is important to note that Γ
[
φ,Ψ, Ψ̄, G, S

]
is the generating functional of 2PI

Green’s functions. Consequently, iΓ [G,S] = iΓ
[
φ = 0,Ψ = 0, Ψ̄ = 0, G, S

]
is

the sum of all 2PI vacuum diagrams2. Γ [G,S] satisfies the following functional
integro-differential equation:

Γ [G,S] = W
[
J0, θ0, θ̄0, K, L

]− tr [KG] + tr [LS]

= tr

[
δΓ

δG
G

]
+ tr

[
δΓ

δS
S

]
− i log

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
I

[
ϕ, ψ, ψ̄

]

+ ϕJ0 + ψ̄θ0 + θ̄0ψ − ϕ δΓ
δG

ϕ+ ψ̄
δΓ

δS
ψ

)]
(2.3.11)

+ i log

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
ψ̄S−1

0 ψ − 1

2
ϕG−1

0 ϕ
)]

2A Feynman diagram is called nPI (n-particle-irreducible), if it cannot be disconnected by
cutting through any n internal lines. Vacuum here means without external legs, not perturba-
tion theory.
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The external sources J0, θ0 and θ̄0 correspond to vanishing expectation values of
the quantum fields. After we have absorbed the bi-local source terms into the
free part of the classical action,

IK,L
[
ϕ, ψ, ψ̄

]
= ψ̄

(
S−1

0 + L
)
ψ − 1

2
ϕ

(
G−1

0 − 2K
)
ϕ+ Iint

[
ϕ, ψ, ψ̄

]
,

we can express the 2PI effective action in terms of the 1PI effective action:

ΓK,L
[
φ,Ψ, Ψ̄, G, S

]
= IK,L

[
φ,Ψ, Ψ̄

]
+ ΓK,L1

[
φ,Ψ, Ψ̄

]

−tr [KG]− φKφ+ tr [LS]− Ψ̄LΨ ,

where

ΓK,L1

[
φ,Ψ, Ψ̄

]
= −i log

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
ψ̄

(
S−1

0 + L
)
ψ

− 1

2
ϕ

(
G −1

0 − 2K
)
ϕ+ Iint

[
φ,Ψ, Ψ̄, ϕ, ψ, ψ̄

]

− ϕδΓ1

δφ
− ψ̄ δΓ1

δΨ̄
+
δΓ1

δΨ
ψ

)]
.

Thus we get

Γ
[
φ,Ψ, Ψ̄, G, S

]
= I

[
φ,Ψ, Ψ̄

]− tr [KG] + tr [LS] + ΓK,L1

[
φ,Ψ, Ψ̄

]
. (2.3.12)

Now, we tentatively write the 2PI effective action in the form

Γ
[
φ,Ψ, Ψ̄, G, S

]
= I

[
φ,Ψ, Ψ̄

]− 1

2
tr

[
G −1

0 G
]
+
i

2
tr log

[
G−1

]

−tr
[
S−1

0 S
]− itr log

[
S−1

]
+ Γ2

[
φ,Ψ, Ψ̄, G, S

]
+ const , (2.3.13)

thereby defining the functional Γ2. Inserting the parametrization (2.3.13) into
Eqs. (2.3.9) and (2.3.10) we find that

G −1
0 (x, y)− 2K (x, y) = −iG−1 (x, y) + 2

δΓ2

δG (y, x)

and (
S−1

0

)αβ
(x, y) + Lαβ (x, y) = −i (S−1

)αβ
(x, y)− δΓ2

δSβα (y, x)
.

Thus, in Eq. (2.3.12) we can eliminate the bi-local sources K and L in favor of the
propagators G and S and the functional Γ2. Additionally, we use the identities

∫
Dϕ (x) exp

[
−1

2
ϕG−1ϕ

]
=

(
det

[
G−1

2π

])− 1
2
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and ∫
Dψ (x) Dψ̄ (x) exp

[
ψ̄S−1ψ

]
= det

[
S−1

]
.

The 2PI effective action then takes the form

Γ
[
φ,Ψ, Ψ̄, G, S

]
= I

[
φ,Ψ, Ψ̄

]− i log
(
det

[
G−1

])− 1
2 − 1

2
tr

[
G −1

0 G
]

− i log det
[
S−1

]
+ tr

[
S−1

0 S
]
+ tr

[
δΓ2

δG
G

]
+ tr

[
δΓ2

δS
S

]
(2.3.14)

− i log

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
ψ̄

(−iS−1
)
ψ − 1

2
ϕ

(−iG−1
)
ϕ

+ Iint
[
φ,Ψ, Ψ̄, ϕ, ψ, ψ̄

]
+ ϕJ0 + ψ̄θ0 + θ̄0ψ − ψ̄ δΓ2

δS
ψ − ϕδΓ2

δG
ϕ
)]

+ i log

∫
Dϕ (x) Dψ (x) Dψ̄ (x) exp

[
i
(
ψ̄

(−iS−1
)
ψ − 1

2
ϕ

(−iG−1
)
ϕ
)]

.

Equating the right hand sides of Eqs. (2.3.14) and (2.3.13) we find that Γ2 must
satisfy the functional integro-differential equation (2.3.11) for a theory with clas-
sical action

I
[
ϕ, ψ, ψ̄

]
= ψ̄

(−iS−1
)
ψ − 1

2
ϕ

(−iG−1
)
ϕ+ Iint

[
φ,Ψ, Ψ̄, ϕ, ψ, ψ̄

]
.

Consequently, iΓ2 is the sum of all 2PI vacuum diagrams with vertices as given
by Iint and internal lines representing the complete connected propagators G and
S.

Equations of Motion

Physical situations imply the vanishing of the external sources and Eqs. (2.3.9)
and (2.3.10) turn into the equations of motion

δΓ

δG (y, x)
= 0 and

δΓ

δSβα (y, x)
= 0 . (2.3.15)

From the identity

δ

δG (y, x)

∫
d4w G−1 (u,w)G (w, v) = 0

we can infer that

δG−1 (u, v)

δG (y, x)
= −G−1 (u, y)G−1 (x, v) .

Accordingly, we find

δ

δG (y, x)
tr log

[
G−1

]
= −G−1 (x, y) .
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Therefore, the equations of motion (2.3.15) are equivalent to the Schwinger-Dyson
equations

G−1 (x, y) = iG−1
0 (x, y)− Π (x, y) (2.3.16)

and
S−1 (x, y) = −iS−1

0 (x, y)− Σ (x, y) , (2.3.17)

where the self energies Π and Σ are self-consistently given by

Π (x, y) = 2i
δΓ2

δG (y, x)
(2.3.18)

and

Σαβ (x, y) = −i δΓ2

δSβα (y, x)
. (2.3.19)

Of course, for an interacting theory one cannot compute the effective action,
i.e. the functional Γ2, completely. Instead, one has to resort to truncations of
the functional Γ2. A given truncation of Γ2 determines so-called skeleton dia-
grams for the self-energies (2.3.18) and (2.3.19). Due to their self consistency,
the Schwinger-Dyson equations (2.3.16) and (2.3.17) re-sum an infinite series of
perturbative Feynman diagrams corresponding to the topology imposed by the
self-energy skeletons [65–67]. For simplicity, we illustrate how this works in detail
in the framework of the real scalar Φ4 theory discussed in chapter 3. Suppose, we
truncate the functional Γ2 according to Fig. 3.1. The corresponding self-energy
skeletons are then shown in Fig. 3.2. The perturbative diagrams which are re-
summed by the Schwinger-Dyson equation can be constructed with the following
recursion: We start the recursion with the free propagator

G(0) (x, y) = −iG0 (x, y) .

At each step of the recursion the self energy is given by the skeleton diagrams
where internal lines represent the propagator at the current step of the recursion.
According to Eq. (3.1.3) we have

Π(n) (x, y) = −iλ
2
δC (x− y)G(n) (x, x)− λ2

6
G(n) (x, y)G(n) (x, y)G(n) (y, x) .

(2.3.20)
The propagator at the next step of the recursion is then given by the geometric
series which is encoded in the Schwinger-Dyson equation:

G(n+1) (x, y) = −iG0 (x, y)

+ (−i)2

∫
d4u1 d

4u2 G0 (x, u1) Π(n) (u1, u2)G0 (u2, y)

+ (−i)3

∫
d4u1 d

4u2 d
4u3 d

4u4 G0 (x, u1)

× Π(n) (u1, u2)G0 (u2, u3) Π(n) (u3, u4)G0 (u4, y)

+ . . . . (2.3.21)
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Figure 2.3: This perturbative smiley contributes to the self energy
(2.3.20) at the second step of the iteration. The eye balls stem from
the tadpole in Π(0) and the complete eyes are two-storied tadpole
towers, emerging in Π(1). After all, the complete diagram can be
constructed from the setting-sun self-energy skeleton and appropriate
parts of the complete propagator at the second step of the iteration.

From this we see, that Π(0) consists exactly of the two skeleton diagrams where
internal lines correspond to the free propagator. In contrast to this, due to the
geometric series (2.3.21) Π(1) already includes infinitely many perturbative dia-
grams up to arbitrary order in the coupling. More generally, with each step of the
iteration infinitely many new perturbative diagrams come into play. Note, how-
ever, that all these diagrams comply with the topology imposed by the skeletons.
For example, iterating only the tadpole skeleton, one may build tadpole towers
and even complete cities of tadpole towers. But topological reasons prohibit to
connect the top floors of two adjacent towers.

Addressing the question of renormalization in this highly non-perturbative
business is a non-trivial task. In particular, the standard proof that a cer-
tain quantum field theory be renormalizable up to infinite order of perturbation
theory cannot be applied. After all this proof requires that all diagrams con-
tributing to the self-energy at any given order of perturbation theory are taken
into account. Due to the topological restrictions described above, this require-
ment is not fulfilled by the self-consistent Schwinger-Dyson equations (2.3.16) and
(2.3.17): Only a subset of all diagrams available at a given order is taken into
account. Therefore, new methods are needed to prove the renormalizability of the
Schwinger-Dyson equations (2.3.16) and (2.3.17). Indeed, in vacuum and thermal
equilibrium these methods have been established recently [67–74]. However, out
of thermal equilibrium the renormalization of self-consistent Schwinger-Dyson
equations is still an open question. Therefore, in subsequent chapters we will be
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content to use an approximate perturbative renormalization procedure, which is
sufficient to guarantee reliable numerical solutions of Kadanoff-Baym equations.



Chapter 3

Thermalization of Scalars

In this chapter we compare the Boltzmann and Kadanoff-Baym equations in
the framework of a real scalar Φ4 quantum field theory in 3 + 1 space-time di-
mensions. In the first section we derive the Kadanoff-Baym equations from the
2PI effective action. The second and third section are devoted to the quantum
kinetic and Boltzmann equations, respectively. In the last section we present
numerical solutions of the Boltzmann and Kadanoff-Baym equations. We ver-
ify that the Kadanoff-Baym equations respect full universality, include chemical
equilibration and strongly separate the time scales between kinetic and chemical
equilibration. In contrast to this, the corresponding Boltzmann equation respects
only a restricted universality, is incapable of describing the process of chemical
equilibration and does not separate any time-scales.

3.1 Quantum Dynamics

2PI Effective Action

In this chapter we consider a real scalar quantum field, whose dynamics is deter-
mined by the Lagrangian density

L = −1

2

(
∂µΦ

)(
∂µΦ

)
− 1

2
m2
BΦ2 − λ

4!
Φ4 .

As we will compute the evolution of the two-point Green’s function for a nonequi-
librium many body system, we have to work with the closed real-time contour
C as shown in Fig. 2.2. We consider a system without symmetry breaking,
i.e. 〈Φ (x)〉 = 0. In this case the full connected Schwinger-Keldysh propagator is
given by

G (x, y) = 〈TC {Φ (x) Φ (y)}〉 .
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Figure 3.1: Two- and three-loop contribution to Γ2 [G]. The lines
represent the complete connected Schwinger-Keldysh propagator.

According to Eq. (2.3.13), for Gaussian initial conditions the 2PI effective action
for this theory then reads

Γ [G] =
i

2
trC logC

[
G−1

]− 1

2
trC

[
G−1

0 G
]
+ Γ2 [G] + const .

G−1
0 is the inverse free propagator

G−1
0 (x, y) =

(
∂xµ∂yµ +m2

B

)
δC (x− y) (3.1.1)

and iΓ2 [G] is the sum of all two-particle-irreducible vacuum diagrams with clas-
sical four-point vertices and internal lines representing the complete connected
propagator G (x, y). In this work we apply the loop expansion of the 2PI effec-
tive action up to three-loop order. The diagrams contributing to Γ2 [G] in this
approximation are shown in Fig. 3.1. We find [23]:

Γ2 [G] = −λ
8

∫

C

d4x [G (x, x)G (x, x)]

+
iλ2

48

∫

C

d4x

∫

C

d4y [G (x, y)G (x, y)G (y, x)G (y, x)] .

Kadanoff-Baym equations

As described in the previous chapter [39, 40], the equation of motion for the
complete propagator

δΓ [G]

δG (y, x)
= 0

is equivalent to the self-consistent Schwinger-Dyson equation

G−1 (x, y) = iG−1
0 (x, y)− Π (x, y) , (3.1.2)

where the proper self energy is given by
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Figure 3.2: One- and two-loop contribution to the proper self-energy
Π. Again, internal lines represent the complete connected Schwin-
ger-Keldysh propagator. The tadpole represents the local part which
causes a mass shift only. The setting-sun diagram represents the non-
local part and leads to thermalization.

Π (x, y) = 2i
δΓ2 [G]

δG (y, x)

= −iλ
2
δC (x− y)G (x, x)− λ2

6
G (x, y)G (x, y)G (y, x) . (3.1.3)

After we have inserted the inverse free propagator (3.1.1), we convolve the Schwin-
ger-Dyson equation (3.1.2) with G from the right:

i
(−∂xµ∂xµ +m2

B

)
G (x, y) = δC (x− y) +

∫

C

d4z [Π (x, z)G (z, y)] (3.1.4)

Next, we define the spectral function1

G% (x, y) = i
〈
[Φ (x) ,Φ (y)]−

〉

and the statistical propagator2

GF (x, y) =
1

2

〈
[Φ (x) ,Φ (y)]+

〉
,

such that we can write the complete propagator as

G (x, y) = GF (x, y)− i

2
signC

(
x0 − y0

)
G% (x, y) . (3.1.5)

1From the definition of the spectral function we see that it is antisymmetric in the sense
that G% (x, y) = −G% (y, x). Furthermore, the canonical equal-time commutation relations give
(G% (x, y))x0=y0 = 0 and

(
∂y0G% (x, y)

)
x0=y0 = −δ3 (x− y).

2In contrast to the spectral function, the statistical propagator is symmetric in the sense
that GF (x, y) = GF (y, x).
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Note that for real scalar quantum fields both the statistical propagator and the
spectral function are real-valued quantities [22]. The spectral function describes
the particle spectrum of our theory. From its Wigner transform we can obtain the
thermal mass and the decay width of the particles in our system. On the other
hand we will define an effective particle number density given by the statistical
propagator and its time derivatives evaluated at equal times. From Eq. (3.1.3)
(and Fig. 3.2) we see that the self energy contains a local and a non-local part:

Π (x, y) = −iδC (x− y) Π(local) (x) + Π(non−local) (x, y) .

The local part of the self energy only causes a mass shift, which can be absorbed
in an effective mass:

M2 (x) = m2
B + Π(local) (x) = m2

B +
λ

2
GF (x, x) . (3.1.6)

After inserting Eq. (3.1.5) into Eq. (3.1.3), we can decompose the non-local part
of the self energy in exactly the same way as the propagator:

Π(non−local) (x, y) = ΠF (x, y)− i

2
signC

(
x0 − y0

)
Π% (x, y) .

We find

ΠF (x, y) = −λ
2

6

(
GF (x, y)GF (x, y)GF (x, y)

− 3

4
G% (x, y)G% (x, y)GF (x, y)

)
(3.1.7)

and

Π% (x, y) = −λ
2

6

(
3GF (x, y)GF (x, y)G% (x, y)

− 1

4
G% (x, y)G% (x, y)G% (x, y)

)
. (3.1.8)

When we insert all these definitions into Eq. (3.1.4), we observe that it splits into
two complementary real-valued evolution equations for the statistical propagator
and the spectral function, respectively [22]. These are the so-called Kadanoff-
Baym equations:

(−∂xµ∂xµ +M2 (x)
)
GF (x, y) (3.1.9)

=

y0∫

0

d4z ΠF (x, z)G% (z, y)−
x0∫

0

d4z Π% (x, z)GF (z, y)

and

(−∂xµ∂xµ +M2 (x)
)
G% (x, y) = −

x0∫

y0

d4z Π% (x, z)G% (z, y) . (3.1.10)
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For a spatially homogeneous system, one can Fourier transform these equations
with respect to the spatial relative coordinate. Furthermore, in an isotropic
system the propagator will depend only on the absolute value of the momentum.
More information on symmetries and how they can be exploited to simplify Ka-
danoff-Baym equations can be found in Section 4.2. In order to make contact
with Boltzmann equations one has to introduce some kind of particle number
density. It is important to note that there is no unique definition for such a
particle number density. For our purposes the most suitable definition relies on a
free field ansatz. An indispensable feature, that a particle number density in our
context must possess, is that it allows for thermalization, meaning that for late
times it approaches the form of a Bose-Einstein distribution function. Indeed the
effective particle number density which we use possesses this feature. Additional
intriguing properties of the free-field ansatz are that it does not involve a quasi-
particle approximation and that it incorporates conserved charges if present in
the considered theory. As explained in more detail in Refs. [22, 35], the effective
kinetic energy and particle number densities ω (t,p) and n (t,p) are given by

ω2 (t,p) =

(
∂x0∂y0GF (x0, y0,p)

GF (x0, y0,p)

)

x0=y0=t

(3.1.11)

and

n (t,p) = ω (t,p)GF (t, t,p)− 1

2
. (3.1.12)

We would like to emphasize that the Kadanoff-Baym equations are self-consistent
evolution equations for the complete propagator of our system. It is important to
note that, due to the memory integrals on the right hand side of Eqs. (3.1.9) and
(3.1.10), a numerical solution of the Kadanoff-Baym equations requires tracing
the evolution of the propagator throughout the complete x0-y0-plane (of course,
constrained to the part with x0 ≥ 0 and y0 ≥ 0). One can then follow the
evolution of the effective particle number density (3.1.12) along the bisecting line
of this plane. The details of our computational algorithm to solve the Kadanoff-
Baym equations numerically can be found in the appendix.

Energy Conservation

As we will see in subsequent sections, Boltzmann equations include an explicit
energy conserving δ function. A similar manifest ingredient enforcing the con-
servation of energy is missing in the Kadanoff-Baym equations. Nevertheless,
the Kadanoff-Baym equations (3.1.9) and (3.1.10), together with the self ener-
gies (3.1.7) and (3.1.8), conserve the average energy density. Originally, it was
found that the conservation of energy is guaranteed once a so-called Φ-derivable
approximation is used [36, 37]. This means that the Kadanoff-Baym equations
are more or less written down from scratch and that the self energy is obtained
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by functional derivation of the so-called Φ functional. Identifying the functional
Φ with Γ2 we immediately see that the 2PI effective action furnishes such a Φ-
derivable approximation. Actually, the proof that the Kadanoff-Baym equations
conserve energy can be drastically simplified, once we take into account that the
Kadanoff-Baym equations themselves can be derived from the equation of motion
(2.3.15). In the same way, as one can derive an energy-momentum tensor from
the classical action, one can also derive an energy-momentum tensor from the
2PI effective action. We consider an infinitesimal space-time translation

G (x, y) → G (x+ ε (x) , y + ε (y))

= G (x, y) + εµ (x) ∂xµG (x, y) + εµ (y) ∂yµG (x, y)︸ ︷︷ ︸
∆G(x,y)

.

In general, the variation of the 2PI effective action under this translation will
have to be of the form

∆Γ [G] = −
∫

C

d4x Θµν (x) ∂xµεν (x) . (3.1.13)

On the other hand the variation of the 2PI effective action is also given by

∆Γ [G] =

∫

C

d4x d4y
δΓ [G]

δG (x, y)
∆G (x, y) . (3.1.14)

As the physical propagator satisfies the equation of motion (2.3.15), ∆Γ [G] van-
ishes. Integrating Eq. (3.1.13) by parts, we find that Θµν satisfies a conservation
law:

∂xµΘµν (x) = 0 .

Analogous to the classical case we can identify Θµν (x) with the energy-momen-
tum tensor. Converting Eq. (3.1.14) into Eq. (3.1.13) yields [75]

Θµν (x) =

[(
∂xµ∂yν −

1

2
ηµν∂xκ∂yκ −

m2
B

2
ηµν

)
GF (x, y)

]

y=x

− ηµν λ
8
G2
F (x, x)

+
1

4
ηµν

x0∫

0

d4z
[
ΠF (x, z)G% (z, x)− Π% (x, z)GF (z, x)

]
.

The average energy density is then given by the time-time component of the
energy-momentum tensor. For a spatially homogeneous and isotropic system we
obtain
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Figure 3.3: Time evolution of the average energy density for vari-
ous initial conditions, cf. Fig. 3.8. Our numerical solutions of the
Kadanoff-Baym equations conserve the average energy density up to
numerical errors < 0.2%.

Etot (t) =

∫
d3p

(2π)3

[(
1

2

(
∂x0∂y0 + p2 +m2

B

)
GF

(
x0, y0, p

))

x0=y0=t

+
λ

8
GF (t, t, p)

∫
d3q

(2π)3 [GF (t, t, q)]

− 1

4

t∫

0

dz0
[
ΠF

(
t, z0, p

)
G%

(
z0, t, p

)− Π%

(
t, z0, p

)
GF

(
z0, t, p

)]
]
.

Fig. 3.3 shows that our numerical solutions, which we discuss in Section 3.4,
indeed conserve the average energy density up to numerical errors < 0.2%.

3.2 Quantum Kinetics

Employing a first order gradient expansion and a Wigner transformation, one
can derive quantum kinetic equations from the Kadanoff-Baym equations. As
we will see, these quantum kinetic equations should be a good approximation to
the full quantum dynamics already after moderate times. Compared to the full
Kadanoff-Baym equations, these quantum kinetic equations have the advantage
of being local in time, which extraordinarily reduces the computational resources
needed for their numerical solution. In this section we review the derivation of
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these quantum kinetic equations. We start from the Kadanoff-Baym equation for
the statistical propagator (3.1.9). Using the retarded and advanced propagators

GR (x, y) = θ
(
x0 − y0

)
G% (x, y) (3.2.1)

and
GA (x, y) = −θ (

y0 − x0
)
G% (x, y) (3.2.2)

and corresponding definitions for the self energies we can send the upper limits
of the memory integrals to +∞:

(−∂xµ∂xµ +M2 (x)
)
GF (x, y)

= −
∫
d4z θ

(
z0

) [
ΠF (x, z)GA (z, y) + ΠR (x, z)GF (z, y)

]
. (3.2.3)

Obviously the retarded and advanced propagators satisfy

GR (y, x) = GA (x, y) .

The same relation also holds for the self energies. Furthermore, we have already
seen that the statistical propagator and the statistical component of the self en-
ergy are invariant under a transposition of their arguments. Thus, interchanging
x and y on both sides of Eq. (3.2.3) yields

(−∂yµ∂yµ +M2 (y)
)
GF (x, y)

= −
∫
d4z θ

(
z0

) [
GR (x, z) ΠF (z, y) +GF (x, z) ΠA (z, y)

]
. (3.2.4)

Next, we switch to center and relative coordinates, i.e. we re-parametrize the
propagator according to

G (u, v) = G̃

(
u+ v

2
, u− v

)
.

The coordinates x and y in Eqs. (3.2.3) and (3.2.4) are particularly important:

X =
x+ y

2
and s = x− y . (3.2.5)

Subtracting Eq. (3.2.4) from Eq. (3.2.3) gives the difference equation

(−∂xµ∂xµ + ∂yµ∂yµ +M2 (x)−M2 (y)
)
GF (x, y)

= −
∫
d4z θ

(
z0

) [
ΠF (x, z)GA (z, y) + ΠR (x, z)GF (z, y)

−GR (x, z) ΠF (z, y)−GF (x, z) ΠA (z, y)
]
. (3.2.6)
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Figure 3.4: The modulus of the unequal-time propagator as function
of time for fixed momentum mode p = 0. Correlations between earlier
and later times are exponentially damped.

On the left hand side of this difference equation we observe that

−∂xµ∂xµ + ∂yµ∂yµ = −2∂sµ∂Xµ .

is automatically of first order in ∂X . Furthermore we Taylor expand the effec-
tive masses on the left hand side, and the propagators and self energies on the
right hand side of the difference equation to first order in ∂X around the center
coordinate X:

M2 (x)−M2 (y) = sµ∂XµM2 (X) .

According to Fig. 3.4 correlations between earlier and later times are suppressed
exponentially. This suppression leads to a gradual loss of the dependence on the
details of the initial conditions. Exploiting this memory loss, for late enough times
we can drop the θ function from the memory integral in the difference equation
(3.2.6), which corresponds to sending the initial time to −∞. This allows us to
Fourier transform the difference equation with respect to the relative coordinate
s. The Wigner transformed statistical propagator is given by

G̃F (X, k) =

∫
d4s exp (−iks) G̃F (X, s) .

As the spectral function is anti-symmetric with respect to the interchange of its
time arguments, we introduce a factor of −i into its Wigner transform, such that

G̃% (X, k) = −i
∫
d4s exp (−iks) G̃% (X, s)
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is again a real-valued quantity. Due to the first order gradient expansion and the
Wigner transformation the memory integrals become

∫
d4z f (x, z) g (z, y)→ f̃ (X, k) g̃ (X, k) +

i

2

{
f̃ (X, k) ; g̃ (X, k)

}
PB

,

where the Poisson brackets are defined by

{
f̃ ; g̃

}
PB

=
[
∂Xµ f̃

][
∂kµ g̃

]
−

[
∂kµ f̃

][
∂Xµ g̃

]
.

In order to calculate the Wigner transform of the retarded and advanced propaga-
tors, we have to recall that the Fourier transform of a θ function in one dimension
is given by ∫

ds0 exp
(
iωs0

)
θ
(±s0

)
= lim

ε→0

±i
ω ± iε .

Consequently, we find

G̃R (X, k) = −
∫
dω

2π

G% (X,ω,k)

k0 − ω + iε
(3.2.7)

and

G̃A (X, k) = −
∫
dω

2π

G% (X,ω,k)

k0 − ω − iε . (3.2.8)

As G̃% (X, k) is a real-valued quantity, the Wigner transformed retarded and
advanced propagators satisfy

G̃A (X, k) = G̃∗R (X, k)

⇐⇒




G̃R (X, k) + G̃A (X, k) = 2Re
(
G̃R (X, k)

)

G̃R (X, k)− G̃A (X, k) = 2iIm
(
G̃R (X, k)

) . (3.2.9)

Recalling that the δ function can be approximated by

δε (ω) =
ε

π (ω2 + ε2)

we also find

G̃R (X, k)− G̃A (X, k) = iG̃% (X, k) . (3.2.10)

Using the quantity

Ω̃ (X, k) = kµkµ +M2 (X) + Re
(
Π̃R (X, k)

)
, (3.2.11)



3.2 Quantum Kinetics 35

1 10 100 1000
t m

R

1

2

3

G
F(t

, t
, p

=
0)

IC 1
IC 2
IC 3

Figure 3.5: The equal-time propagator as a function of time for three
different initial conditions (cf. Fig. 3.8). The system shows rapid
oscillations which die out after moderate times and are followed by a
monotonous drifting regime.

eventually, the kinetic equation for the statistical propagator can be written in
the form [76]

−
{

Ω̃ (X, k) ; G̃F (X, k)
}
PB

= Π̃% (X, k) G̃F (X, k)− Π̃F (X, k) G̃% (X, k)

+
{

Π̃F (X, k) ; Re
(
G̃R (X, k)

)}
PB

. (3.2.12)

In very much the same way we also can derive a kinetic equation for the spectral
function:

−
{

Ω̃ (X, k) ; G̃% (X, k)
}
PB

=
{

Π̃% (X, k) ; Re
(
G̃R (X, k)

)}
PB

. (3.2.13)

What is the expected range of validity of these quantum kinetic equations? Em-
ploying the first-order gradient expansion is clearly not justifiable for early times
when the equal-time propagator is rapidly oscillating, as can be seen in Fig. 3.5.
But this is obvious, since employing the first-order gradient expansion is clearly
motivated by equilibrium considerations. As we saw in Section 2.1, in equilibrium
the propagator depends on the relative coordinates only. There is no dependence
on the center coordinates, and one may hope that there are situations where
the propagator depends only moderately on the center coordinates. This is cer-
tainly the case for late times when our system is sufficiently close to equilibrium.
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However, as is shown in Fig. 3.5, already after moderate times the rapid oscilla-
tions mentioned above have died out and are followed by a monotonous drifting
regime [22]. Due to the monotonous character, in this drifting regime the second
derivative with respect to X should be negligible as compared to the first order
derivative and a consistent Taylor expansion to first order in ∂X can be justified
even though the system may still be far from equilibrium. However, it is crucial
that the Taylor expansion is performed consistently for two reasons: First, this
guarantees that the quantum kinetic equations satisfy exactly the same conser-
vation laws as the full Kadanoff-Baym equations [17]. Second, it has been shown
that neglecting the Poisson brackets on the right hand side of the quantum ki-
netic equations (3.2.12) and (3.2.13), as well as the X-dependence of Ω̃ on the left
hand side, leads to equations whose range of validity is quite restricted [77,78].

The convolution of the Wigner transformed θ function with the Wigner trans-
formed spectral function in Eq. (3.2.7) leads to a principal value integral, which
cannot be evaluated in general. Therefore, we cannot use Eq. (3.2.7) to compute
the real part of the Wigner transform of the retarded propagator. We circumvent
this difficulty by deriving an extra kinetic equation for the retarded propagator.
In order to do so, we first note that

−∂xµ∂xµGR (x, y) = δ (x− y)− θ (
x0 − y0

)
∂xµ∂xµG% (x, y)

and
−∂xµ∂xµGA (x, y) = δ (x− y) + θ

(
y0 − x0

)
∂xµ∂xµG% (x, y) .

Thus, multiplying the Kadanoff-Baym equation (3.1.10) for the spectral function
with θ (x0 − y0) and −θ (y0 − x0), respectively, yields

(−∂xµ∂xµ +M2 (x)
)
GR (x, y) = δ (x− y)−

∫
d4z ΠR (x, z)GR (z, y) (3.2.14)

and

(−∂xµ∂xµ +M2 (x)
)
GA (x, y) = δ (x− y)−

∫
d4z ΠA (x, z)GA (z, y) . (3.2.15)

Next, we add Eq. (3.2.15), with x and y interchanged, to Eq. (3.2.14). Having
switched to center and relative coordinates, we observe on the left hand side of
the sum equation, that to first order in ∂X

−∂xµ∂xµ − ∂yµ∂yµ = −2∂sµ∂sµ .

As in the derivation of the kinetic equation for the statistical propagator, we
Taylor expand the effective masses on the left hand side of the sum equation and
the propagators and self energies on the right hand side to first order in ∂X . For
the effective masses we find

M2 (x) +M2 (y) = 2M2 (X) .
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Eventually, we Fourier transform the sum equation with respect to the relative
coordinate s. In contrast to the kinetic equations for the statistical propagator
and the spectral function, the kinetic equation for the retarded propagator is not
a differential equation, but an algebraic equation:

G̃R (X, k) =
1

kµkµ +M2 (X) + Π̃R (X, k)
. (3.2.16)

Consequently, we obtain for the real part of the retarded propagator

Re
(
G̃R (X, k)

)
=

Ω̃ (X, k)

Ω̃2 (X, k) + 1
4
Π̃2
% (X, k)

. (3.2.17)

Furthermore, due to Eqs. (3.2.9) and (3.2.10) the kinetic equation for the re-
tarded propagator also gives us a solution to the kinetic equation for the spectral
function (3.2.13):

G̃% (X, k) =
−Π̃% (X, k)

Ω̃2 (X, k) + 1
4
Π̃2
% (X, k)

.

After all, it remains to work out the self energies. Wigner transforming Eqs.
(3.1.7) and (3.1.8) yields:

ΠF (X, k) = −λ
2

6

∫
d4p

(2π)4

d4q

(2π)4

[
GF (X, k − p− q)GF (X, p)GF (X, q)

− 3

4
G% (X, k − p− q)G% (X, p)GF (X, q)

]
(3.2.18)

and

Π% (X, k) = −λ
2

6

∫
d4p

(2π)4

d4q

(2π)4

[
3GF (X, k − p− q)GF (X, p)G% (X, q)

− 1

4
G% (X, k − p− q)G% (X, p)G% (X, q)

]
. (3.2.19)

On the other hand, multiplying Eq. (3.1.8) with θ (x0 − y0) yields an equation
for the retarded self-energy

ΠR (x, y) = −λ
2

6

(
3GF (x, y)GF (x, y)GR (x, y)

− 1

4
G% (x, y)G% (x, y)GR (x, y)

)
.

Accordingly, the Wigner transformed retarded self-energy is given by

ΠR (X, k) = −λ
2

6

∫
d4p

(2π)4

d4q

(2π)4

[
3GF (X, k − p− q)GF (X, p)GR (X, q)

− 1

4
G% (X, k − p− q)G% (X, p)GR (X, q)

]
. (3.2.20)
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Figure 3.6: The left plot shows the spectral function for fixed center
time tmR = 1485 and spatial momentum p = 0 as function of the
relative time s0 = x0 − y0. On the right hand side we see its Fourier
transform as function of the energy and a fit of the numerical data to
a Breit-Wigner function.

Similarly as for the propagator, the imaginary part of the retarded self-energy
is given by the spectral self-energy. On the other hand, taking the real part of
Eq. (3.2.20) and inserting Eqs. (3.2.17) and (3.2.11) yields an integral equation
for the real part of the retarded self-energy.

3.3 Boltzmann Kinetics

Boltzmann Equation

In order to derive a Boltzmann equation from the quantum kinetic equation
(3.2.12), first we have to discard the Poisson brackets on the right hand side,
thereby sacrificing the consistency of the gradient expansion. On the left hand
side we replace Ω̃ (X, k) by

Ω̃ (k) = kµkµ +m2
th ,

where mth is the time-independent thermal mass of the particles in our system.
After that, we generalize the fluctuation-dissipation theorem (2.1.17) to the so-
called Kadanoff-Baym ansatz

G̃F (X, k) = G̃% (X, k)

(
ñ (X, k) +

1

2

)
. (3.3.1)



3.3 Boltzmann Kinetics 39

In Ref. [79] a generalized Kadanoff-Baym ansatz has been proposed. For sim-
plicity, however, in this work we will be content with the standard form (3.3.1).
Furthermore, we employ the quasi-particle (or on-shell) approximation:

G̃% (X, k) = G̃% (k) =
π

E (k)

(
δ
(
k0 − E (k)

)− δ (
k0 + E (k)

) )
, (3.3.2)

where the quasi-particle energy is given by

E (k) =
√
m2
th + k2 .

After all, Eq. (3.2.12) has become

2kµ∂Xµ

(
ñ (X, k) +

1

2

)
π

E (k)

(
δ
(
k0 − E (k)

)− δ (
k0 + E (k)

))

=

(
Π̃% (X, k)

(
ñ (X, k) +

1

2

)
− Π̃F (X, k)

)

× π

E (k)

(
δ
(
k0 − E (k)

)− δ (
k0 + E (k)

))
(3.3.3)

Once more, we would like to stress that the exact time evolution of the spec-
tral function is determined by the Kadanoff-Baym equations. As one can see
in the right plot of Fig. 3.6 the Wigner transform of the spectral function can
be parametrized by a Breit-Wigner function with a non-vanishing width [23,30].
Reducing the width of this Breit-Wigner curve to zero is certainly not a control-
lable approximation and causes significant discrepancies for solutions of Kada-
noff-Baym and Boltzmann equations, already on a qualitative level. In fact the
on-shell approximation implies the assumption that our system consist of stable
quasi-particles. In contrast to this, however, in a relativistic quantum field the-
ory the interactions of particles are described by their creation and annihilation,
which amount to decay and recombination processes.

As already indicated at the end of the previous section, a completely self-con-
sistent determination of the thermal mass in the framework of the Boltzmann
equation would require solving an integral equation for the energy density. This
would drastically increase the complexity of the computational algorithm which
we use to solve the Boltzmann equation numerically. As none of our physical
results depend on the exact value of the thermal mass, for convenience, we set
mth to the equilibrium value of the thermal mass as determined by the Kada-
noff-Baym equations. Eventually, we define the quasi-particle number density
by

n (X,k) = ñ (X,k, E (k)) .

After equating the positive energy components in Eq. (3.3.3) and integrating over
k0 we arrive at the Boltzmann equation. For a spatially homogeneous system
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there is no dependence on the spatial center coordinates and the Boltzmann
equation reads3:

∂tn (t,k) =
λ2π

48

∫
d3p

(2π)3

∫
d3q

(2π)3

∫
d3r

[
1

EkEpEqEr

× δ (k + p− q − r) δ (Ek + Ep − Eq − Er) (3.3.4)

×
(

(1 + nk) (1 + np)nqnr − nknp (1 + nq) (1 + nr)
)]

.

It is pleasant to observe that the Kadanoff-Baym ansatz entails the Nordheim-
Uehling-Uhlenbeck corrections to the classical Boltzmann equation [19–21,80–84],
which are necessary to guarantee that the stationary solution of the Boltzmann
equation takes the form of a Bose-Einstein distribution function. We would like to
emphasize that the Boltzmann equation (3.3.4) comprises only the scattering of
two particles, which leaves the total particle number unchanged. As was detailed
in Ref. [85], due to the quasi-particle approximation, for the present truncation
of the 2PI effective action decay and recombination processes are kinematically
forbidden. In this context we would like to note that the inclusion of further
diagrams in the 2PI effective action could lead to terms in the Boltzmann collision
integral which describe collisions of more than two particles [86–88].

Simplifying the Boltzmann Collision Integral

As it stands, the numerical solution of Eq. (3.3.4) requires an enormous amount
of (parallel) computing power, because the evaluation of the six-dimensional col-
lision integral in Eq. (3.3.4) is extraordinarily expensive. However, as we consider
a spatially homogeneous and isotropic system, we can dramatically simplify the
collision integral, which allows us to reduce the complexity of our numerical algo-
rithm significantly. The simplification of the Boltzmann collision integral relies
on the Fourier representation of the momentum conservation delta function [89]:

δ3 (m) =

∫
d3ξ

(2π)3 exp (−imξ) .

Using spherical coordinates, we find

mξ = mξ
(

sinϑm sinϑξ cos (ϕm − ϕξ) + cosϑm cosϑξ

)
.

Now, we consider just the integration over the solid angle. As we integrate over
the complete solid angle Ωξ, it does not matter in which direction m is pointing.
The result will always be the same:∫

dΩξ exp (−imξ) =

∫
dΩξ exp (−im0ξ) ,

3Here, we use the abbreviations Ek =
√

m2
th + k2 and nk = n (t,k).
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where we can choose m0 = (0, 0,m), such that ϕm = ϑm = 0. Now, we can
evaluate the integral quite easily:

∫
dΩξ exp (−imξ) =

∫
dΩξ exp (−imξ cosϑξ) =

4π

mξ
sin (mξ) . (3.3.5)

After we have rewritten Eq. (3.3.4) using spherical coordinates and inserted the
Fourier representation for the momentum conservation delta function, we can use
Eq. (3.3.5) to perform the integrations over the solid angles. Here it is crucial
to evaluate the integrals over Ωp, Ωq and Ωr first, and to do the integral over Ωξ

last. We find:

∂tn (t, k) =
λ2

96π4

∞∫

0

dp

∞∫

0

dq

∞∫

0

dr

∞∫

0

dξ

[
pqr

δ (Ek + Ep − Eq − Er)
EkEpEq

× 1

kξ2
sin (kξ) sin (pξ) sin (qξ) sin (rξ)

×
(

(1 + nk) (1 + np)nqnr − nknp (1 + nq) (1 + nr)
)]

,

Next, it is important to observe that the function

D (k, p, q, r) =

∞∫

0

dξ
1

kξ2
sin (kξ) sin (pξ) sin (qξ) sin (rξ) .

can easily be evaluated using a computer algebra program. For k > 0 we find

D (k, p, q, r) =
π

16k

(
|k − p− q − r| − |k + p− q − r|

− |k − p+ q − r|+ |k + p+ q − r|
− |k − p− q + r|+ |k + p− q + r|
+ |k − p+ q + r| − |k + p+ q + r|

)
,

and for k = 0 we obtain

D (0, p, q, r) =
π

8

(
sign (p+ q − r)− sign (p− q − r)

+ sign (p− q + r)− sign (p+ q + r)
)
.

Eventually, we use the energy conservation δ function to evaluate the integral
over r, using the well-known formula

δ (f (r)) =
∑

{r0|f(r0)=0}

δ (r − r0)∣∣∣
(
df
dr

)
r=r0

∣∣∣
.
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r0 is determined by the condition that the argument of the energy conservation
δ function is zero:

Ek + Ep − Eq − Er0 = 0 . (3.3.6)

If this condition can be satisfied, r0 is given by

r0 = r0 (t, k, p, q) =

√
(Ek + Ep − Eq)2 −M2 (t) .

If k, p and q are such that condition (3.3.6) cannot be satisfied, the above square
root yields a purely imaginary result and r2

0 < 0. Using a θ function we can
prevent the corresponding term from contributing to the collision integral. After
these final steps the Boltzmann equation takes the form4:

∂tn (t, k) =
λ2

96π4

∞∫

0

dp

∞∫

0

dq

[
θ
(
r2
0

) pqD (k, p, q, r0)

EkEpEq
(3.3.7)

×
(

(1 + nk) (1 + np)nqnr0 − nknp (1 + nq) (1 + nr0)
)]

.

The form (3.3.7) of the Boltzmann equation underlies our numerical algorithm.
More information on the details of this algorithm can be found in the appendix.

Energy Conservation

As indicated already in the first section of this chapter, the conservation of the
average energy density

Etot (t) =

∫
d3p

(2π)3E (p)n (t, p) .

is guaranteed by the explicit energy-conserving δ function in the Boltzmann equa-
tion (3.3.4). Fig. 3.7 shows that our numerical algorithm indeed conserves the
average energy density up to numerical errors < 0.3%.

In this and the previous section we have shown that, using a gradient ex-
pansion and a quasi-particle (or on-shell) approximation, one can derive Boltz-
mann equations from Kadanoff-Baym equations. In this sense Kadanoff-Baym
equations can be considered as quantum Boltzmann equations re-summing the
gradient expansion up to infinite order and including off-shell and memory effects.

3.4 Comparison of Numerical Solutions

Initial Conditions

We consider three different initial conditions denoted with IC1, IC2 and IC3,
which correspond to the same average energy density. Above that, the initial

4Now, k = |k| and nk = n (t, |k|)
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Figure 3.7: Time evolution of the average energy density for various
initial conditions, cf. Fig. 3.8. Our numerical solutions of the Boltz-
mann equation conserve the average energy density up to numerical
errors < 0.3%.

conditions IC1 and IC2 also correspond to the same initial average particle num-
ber density. The corresponding initial particle number distributions are shown
in Fig. 3.8. These particle number distributions can immediately be fed into the
numerics for the Boltzmann equation. In order to obtain the initial conditions for
the Kadanoff-Baym equations, we follow Refs. [22, 35]: The initial values for the
spectral function are determined from the canonical commutation relations. On
the other hand, for a given initial particle number distribution, the initial values
for the statistical propagator and its derivatives are determined according to:

GF

(
x0, y0,p

)
x0=y0=0

=

[
n (t,p) + 1

2

ω (t,p)

]

t=0

, (3.4.1)

[
∂x0GF

(
x0, y0,p

)]
x0=y0=0

= 0 , (3.4.2)

[
∂x0∂y0GF

(
x0, y0,p

)]
x0=y0=0

=

[
ω (t,p)

(
n (t,p) +

1

2

)]

t=0

, (3.4.3)

where the initial effective energy density is given by

ω (t = 0,p) =
√
m2
R + p2 .

mR denotes the renormalized vacuum mass. The corresponding bare mass mB is
obtained through a perturbative renormalization at one-loop order of the self en-
ergy (tadpole) [75]. ω (t,p = 0) plays the role of a time-dependent thermal mass.
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Figure 3.8: Initial particle number distributions against absolute mo-
menta. Shown are the three different initial conditions (IC) discussed
in the text, for which we numerically solved the Boltzmann and the
Kadanoff-Baym equations, respectively. All initial conditions corre-
spond to the same (conserved) average energy density. Above that,
the initial conditions IC1 and IC2 also correspond to the same initial
average particle number density.

After equilibrium has effectively been reached, we denote the time-independent
thermal mass by mth = ωeq (p = 0), which is used to set the scale in some of
the plots shown in the following subsections. The computational algorithms em-
ployed to solve the Kadanoff-Baym and Boltzmann equations numerically are
described in detail in the appendix. For the Kadanoff-Baym equations we used a
standard lattice discretization with Nt = 500 and Ns = 32. The lattice spacings
were asmR = 0.5 and atmR = 0.06. The coupling has been set to λ = 18. For
the Boltzmann equation we used 500 momentum bins and the same momentum
cut-off and coupling as for the Kadanoff-Baym equations.

Universality

Figs. 3.9 and 3.10 show the evolution of the particle number distributions for two
momentum modes and the corresponding equilibrium particle number distribu-
tions, respectively, for all initial conditions. In the left plots we can see, that the
Kadanoff-Baym equations lead to a universal equilibrium particle number density.
The left plot in Fig. 3.9 shows that the particle number distributions may evolve



3.4 Comparison of Numerical Solutions 45

0 200 400 600 800 1000
t m

R

0

0.5

1

1.5

2

2.5

n(
t, 

p)

IC 1
IC 2
IC 3

Kadanoff-Baym

0 500 1000 1500
t m

R

0

1

2

3

4

n(
t, 

p)

IC 1
IC 2
IC 3

Boltzmann

Figure 3.9: These plots show the time evolution of the particle num-
ber distributions for two different momentum modes and all initial
conditions (cf. Fig. 3.8) as determined by the Boltzmann and the
Kadanoff-Baym equations, respectively. We see that the Kadanoff-
Baym equations respect full universality, whereas in the case of the
Boltzmann equation only a restricted universality is maintained, cf.
Fig. 3.10.

quite differently for early times5. However, respecting universality, for any given
momentum mode all distributions approach the same late-time value. This plot
is supplemented by the left plot in Fig. 3.10. There, one can see that the various
particle number densities, after equilibrium has effectively been reached, indeed
completely agree. Hence, this plot proves that we could have shown plots similar
to the left one in Fig. 3.9 for all momentum modes. In particular the predicted
temperature, given by the inverse slope of the line, is the same for all initial con-
ditions. In contrast to this, the right plots reveal that the Boltzmann equation
respects only a restricted universality. In general, e.g. for the initial conditions
IC1 and IC3, for any given momentum mode the particle number densities will
not approach the same late-time value. For both momentum modes shown in
Fig. 3.9 a considerable discrepancy is revealed. However, for the special case of
the initial conditions IC1 and IC2, which, as mentioned above, correspond to the
same initial average particle number density, the late-time results do agree6.

5As we will see, the steep over-shooting of the particle number distribution leads to a quick
kinetic equilibration, whereas the rather long tail accounts for chemical equilibration.

6In Fig. 3.10 one can see that in the case of the Boltzmann equation there is only one
momentum mode for which the late-time values of all particle number densities agree, namely
the intersection point of the lines. However, we could easily have chosen a fourth initial condition
for which the late-time result would intersect the lines in Fig. 3.10 in different points. Then
there would not be a single momentum mode for which the late-time values of all particle
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Figure 3.10: Here, we plotted the particle number distributions
obtained for times when thermal equilibrium has effectively been
reached, against the corresponding thermal energy densities. The
thermal mass is given by the zero mode of the effective kinetic equi-
librium energy density as determined by the Kadanoff-Baym equa-
tions: mth = ωeq (p = 0). The temperature is given by the inverse
slope of the line and the chemical potential is obtained from the y-
axis intercept divided by −β. Supplementing Fig. 3.9 we observe
full (restricted) universality in the case of the Kadanoff-Baym (Boltz-
mann) equations. In particular, the Kadanoff-Baym equations lead
to a universal temperature T = 1.68 mth and a universally vanishing
chemical potential. In contrast to this, the Boltzmann equation gives
T = 1.52 mth and µ = 0.18 mth for the initial conditions IC1 and IC2,
and T = 1.32mth and µ = 0.68 mth for IC3.

The reason for the observed restriction of universality can be extracted from
Fig. 3.11. There we show the time evolution of the total particle number per
volume

Ntot (t) =

∫
d3p

(2π)3 n (t,p) .

In general the Kadanoff-Baym equations conserve the average energy density and
global charges [36–38]. However, as there is no conserved charge in our theory, the
total particle number need not be conserved. Indeed, the Kadanoff-Baym equa-
tions include off-shell particle creation and annihilation [23]. Consequently, the
total particle number may change, and in fact approaches a universal equilibrium
value. In contrast to this, due to the quasi-particle (or on-shell) approximation
particle number changing processes are kinematically forbidden in the Boltzmann

number densities agreed.
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Figure 3.11: Time evolution of the total particle number. As expected
from Fig. 3.6, the Kadanoff-Baym equations include off-shell particle
creation and annihilation. As a result the total particle number may
change with time. In contrast to this, up to numerical errors < 0.8%,
the total particle number is strictly conserved in the case of the Boltz-
mann equation. The quantitative disagreement of the total particle
numbers in both plots can be attributed to the substantial discrep-
ancies in the discretization schemes underlying our Boltzmann and
Kadanoff-Baym numerics and are of no relevance for the purposes of
the present work.

equation. The Boltzmann equation only includes two-particle scattering, which
leaves the total particle number constant. Of course, this additional constant of
motion severely restricts the evolution of the particle number density. Therefore
the Boltzmann equation cannot lead to a universal quantum thermal equilibrium.
Only initial conditions for which the average energy density and the total particle
number agree from the very beginning, lead to the same equilibrium results.

Chemical Equilibration

The artificial conservation of the total particle number does not only lead to a
severe restriction of universality, but in addition prohibits thermodynamical equi-
libration in the strict sense. Here, it is again important to recall that we consider
in this chapter real (neutral) scalar quantum fields with a quartic self-interaction.
In such a system, which allows for creation and annihilation of particles, the total
particle number is not restricted by any conserved quantity. Consequently, the
chemical potential must vanish in thermodynamical equilibrium. The chemical
potential predicted by the Boltzmann and Kadanoff-Baym equations, respec-
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Figure 3.12: (Missing) separation of time scales. The particle number
distribution is shown against the equilibrium energy density at various
times for initial condition IC3.

tively, is given by the y-axis intercept, extracted from Fig. 3.10, divided by −β.
Using a ruler the reader might convince himself that (up to numerical errors) the
Kadanoff-Baym equations indeed lead to a universally vanishing chemical poten-
tial. In contrast to this, even without a ruler one can see that the Boltzmann
equation, in general, will lead to a non-vanishing chemical potential. For the ini-
tial conditions considered in this work, the Boltzmann equation predicted even a
positive chemical potential. However, already on very general grounds, one can
deduce that the chemical potential of bosons has to be negative [90]!

Separation of Time Scales

In the upper left plot of Fig. 3.12 one can see that the Kadanoff-Baym equa-
tions rapidly wash out our tsunami-type initial condition IC3. In both plots
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Figure 3.13: This plot shows the relaxation of the chemical poten-
tial obtained by fitting the particle number distribution to the Bose-
Einstein distribution function for various times. We see that chemical
equilibration is a long-term process.

on the left hand side the double-dashed-dotted lines correspond to the particle
number distribution at the same time tmR = 42.4. The fact that we obtain an
approximate straight line in the lower left plot already after a relatively short
period of time indicates a swift approach to kinetic equilibrium. Subsequently,
this straight line is tilted until it intersects the origin of our coordinate system
(full line), corresponding to a vanishing chemical potential. The relaxation of the
chemical potential is displayed in Fig. 3.13. Starting at the time tmR = 42.4, for
several times t we fitted the particle number distribution to the Bose-Einstein
distribution function

nBE (ω) =
1

exp
(
ω−µ
T

)− 1

and extracted the chemical potential µ from these fits. Fig. 3.13 then shows the
time evolution of the chemical potential. We observe that full thermodynami-
cal (including chemical) equilibration takes a very long time [11]. In this way,
Fig. 3.13 and the left plots in Fig. 3.12 reveal two distinct time scales: a fast ki-
netic equilibration, and a very slow chemical equilibration. These two time scales
can also be identified in the left plot of Fig. 3.9 and in Fig. 3.5. The over-shooting
of the particle number density (equal-time propagator) for early times leads to
the kinetic equilibration. In fact, the double-dashed-dotted lines correspond to
the time, when the particle number distribution (equal-time propagator) reaches
its maximum value in Fig. 3.9 (Fig. 3.5). Interestingly, although the initial con-
ditions IC1 and IC2 do not show this excessive over-shooting, the corresponding
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particle number distributions (equal-time propagators) approach each other on
the same time scale, from which on they show an almost identical evolution. The
following rather long tail, again indicates that full thermalization takes place on
much larger time scales.

The right plot in Fig. 3.9 shows that the steep initial evolution, which is char-
acteristic for the Kadanoff-Baym equations, is absent in the case of the Boltzmann
equation and that the Boltzmann equation leads only to a gently inclined evo-
lution for the particle number distribution. One might be tempted to conclude
that the evolution of the particle number distribution is strictly monotonous in
the Boltzmann case [30]. However, the small dip for the particle number distri-
bution IC2 in Fig. 3.9 shows that this is not necessarily the case. In summary,
the plots on the right hand side of Fig. 3.12 show that it takes a considerably
longer time for the Boltzmann equation to reach kinetic equilibrium. As already
mentioned above, in contrast to the Kadanoff-Baym equations, the Boltzmann
equation cannot describe the process of chemical equilibration. Consequently, the
separation of time scales furnished by the Kadanoff-Baym equations is absent in
the Boltzmann case.

Summary

In this chapter we reviewed the derivation of Kadanoff-Baym equations from the
2PI effective action in the framework of a real scalar Φ4 quantum field theory.
We also reviewed how Boltzmann equations arise as approximations to Kadanoff-
Baym equations.

We have verified that Kadanoff-Baym equations respect full universality, in-
cluding the process of chemical equilibration, and strongly separate the time
scales between kinetic and chemical equilibration.

In contrast to this, the corresponding Boltzmann equation respects only a
restricted universality, fails to describe the process of chemical equilibration and
does not separate any time scales.

In the next chapter we will generalize these results to a chirally Yukawa-type
quantum field theory including fermions.



Chapter 4

Thermalization of Fermions

In this chapter we generalize our considerations of the previous chapter to the
case of a chirally invariant Yukawa-type quantum field theory including scalars
and fermions. This chapter is structured similar to the previous one. In the first
section we derive the Kadanoff-Baym equations from the 2PI effective action.
When fermions are involved, it is crucial to exploit all available symmetries in
order to reduce the complexity of the Kadanoff-Baym equations, such that a
numerical solution becomes feasible. The simplification of the Kadanoff-Baym
equations due to symmetries is detailed in section 2. The third and fourth sections
are devoted to the quantum kinetic and Boltzmann equations, respectively. In
the last section we present numerical solutions of the Boltzmann and Kadanoff-
Baym equations. Once more, we find that Kadanoff-Baym equations respect
full universality, include chemical equilibration and strongly separate the time
scales between kinetic and chemical equilibration. Again, in contrast to this, the
corresponding Boltzmann equations respect only a restricted universality, fail to
describe the process of chemical equilibration and do not separate any time-scales.

4.1 Quantum Dynamics

2PI Effective Action

We consider a globally SU(2)L × SU(2)R × U(1)B−L symmetric quantum field
theory with one generation of Dirac leptons and a Higgs bi-doublet. The Dirac
fields are denoted with Ψα

l (x), where α is a Dirac index and l ∈ {ν, e} denotes
the flavor of the leptons. According to Ref. [91] the most general SU(2)L ×
SU(2)R×U(1)B−L symmetric Yukawa coupling of a Higgs bi-doublet Φ with left-
and right-handed fermion doublets ΨL and ΨR reads

(
fjkΨ̄

j
LΦΨk

R + gjkΨ̄
j
Lσ2Φ

∗σ2Ψ
k
R

)
+ h.c. .
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j and k are generation indices. In the case of just one generation f and g can be
chosen to be real. For simplification,we go even further, and take

f = g = η .

In this case the above Yukawa coupling takes the form

ηΨ̄L (Φ + σ2Φ
∗σ2) ΨR + h.c. . (4.1.1)

Using the Pauli matrices σ1, σ2, σ3 and the matrix σ0 = i1, we can parametrize
the Higgs bi-doublet in terms of four real scalar fields Φa:

Φ + σ2Φ
∗σ2 = iσaΦa .

Exploiting that (
iΨ̄LσaΦaΨR

)†
= −iΨ̄Rσ

†
aΦaΨL

and using the left-handed and right-handed chiral projection operators

PL =
1

2
(1+ γ5) and PR =

1

2
(1− γ5) ,

the Yukawa coupling (4.1.1) can be cast in the form

ηΨ̄L (Φ + σ2Φ
∗σ2) ΨR + h.c. = iηΨ̄Φa

(
σaPR − σ†aPL

)
Ψ

= −ηΨ̄ (Φ0 + iΦjσjγ5) Ψ . (4.1.2)

After all, in this chapter we consider a system whose dynamics is determined by
the Lagrangian density1

L = −Ψ̄ 6∂Ψ− 1

2

(
∂µΦa

)(
∂µΦa

)
− 1

2
m2ΦaΦa

− λ (ΦaΦa)
2 − iηΨ̄Φa

(
σaPR − σ†aPL

)
Ψ .

Although we refer to the scalar (fermion) fields as Higgs (lepton) fields, we would
like to note that according to Eq. (4.1.2) this theory is equivalent to the linear σ-
model [92–94], which can be used to describe low-energy quark-meson dynamics
in two-flavor QCD. This and a closely related model have been considered in a
similar context in Refs. [11,35]. As we will compute the evolution of the two-point
Green’s functions for nonequilibrium initial conditions, already the classical ac-
tion has to be defined on the closed Schwinger-Keldysh real-time contour, shown

1Unless otherwise indicated, we adopt the following convention for the various indices: Dirac
(Lorentz) indices will be denoted by letters from the beginning (middle) of the Greek alphabet.
Letters from the beginning (middle) of the Latin alphabet will denote Higgs fields (lepton
flavor).
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Figure 4.1: Two-loop contribution to Γ2 [G,S]. Full (dashed) lines
represent the complete connected lepton (Higgs) propagator S (G).

in Fig. 2.2. The inverse free propagators can then be read off the free part of the
classical action:

I0 =

∫

C

d4x d4y

[
Ψ̄l (x)S

−1
0,lm (x, y) Ψm (y)− 1

2
Φa (x)G−1

0,ab (x, y) Φb (y)

]
,

where the inverse free propagators are given by

G−1
0,ab (x, y) =

(
∂xµ∂yµ +m2

B

)
δC (x− y) δab (4.1.3)

and
S−1

0,lm (x, y) = − 6∂xδC (x− y) δlm . (4.1.4)

As in the previous chapter, we consider a system without symmetry breaking, i.e.
〈Φa (x)〉 = 0. In this case the complete connected Schwinger-Keldysh propagators
are given by

Gab (x, y) = 〈TC {Φa (x) Φb (y)}〉 (4.1.5)

and
Sαβlm (x, y) =

〈
TC

{
Ψα
l (x) Ψ̄β

m (y)
}〉

. (4.1.6)

According to Eq. (2.3.13), for Gaussian initial conditions the 2PI effective action
for this theory is then given by

Γ [G,S] =
i

2
trC logC

[
G−1

]− 1

2
trC

[
G−1

0 G
]

−itrC logC
[
S−1

]− trC
[
S−1

0 S
]
+ Γ2 [G,S] + const .

iΓ2 [G,S] is the sum of all two-particle irreducible vacuum diagrams with classical
vertices and internal lines representing the complete connected propagators S and
G. In this work we apply the loop expansion of the 2PI effective action up to
two-loop order. The diagrams contributing to Γ2 in this approximation are shown
in Fig. 4.1. Using the abbreviation

Hαβ
a,lm = iη

[
(σa)lm P

αβ
R −

(
σ†a

)
lm
Pαβ
L

]
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Figure 4.2: One-loop contribution to the Higgs self-energy.

we find

Γ2 [G,S] = −λ
∫

C

d4x
[
Gaa (x, x)Gbb (x, x) + 2Gab (x, x)Gab (x, x)

]

− i

2

∫

C

d4x d4y Gab (x, y) tr
(
HaS (x, y)HbS (y, x)

)
,

where the trace runs over Dirac and lepton flavor indices.

Kadanoff-Baym Equations

The equations of motion for the complete propagators

δΓ [G,S]

δGba (y, x)
= 0 and

δΓ [G,S]

δSβαml (y, x)
= 0

are equivalent to the corresponding self-consistent Schwinger-Dyson equations

G−1
ab (x, y) = iG−1

0,ab (x, y)− Πab (x, y) (4.1.7)

and
S−1
lm (x, y) = −iS−1

0,lm (x, y)− Σlm (x, y) , (4.1.8)

where the proper self-energies are given by

Πab (x, y) = 2i
δΓ2 [G,S]

δGba (y, x)

= −4λiδC (x− y)
(
Gdd (x, x) δab + 2Gab (x, x)

)

+ tr
(
HaS (x, y)HbS (y, x)

)
(4.1.9)

and

Σαβ
lm (x, y) = −i δΓ2 [G,S]

δSβαml (y, x)
= −Hαγ

a,lkH
δβ
b,nmS

γδ
kn (x, y)Gab (x, y) . (4.1.10)
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Figure 4.3: One-loop contribution to the lepton self-energy.

As one can see from Eq. (4.1.9) (and Fig. 4.2), the Higgs self-energy contains a
local and a non-local part:

Πab (x, y) = −iδC (x− y) Π
(local)
ab (x) + Π

(non−local)
ab (x, y) . (4.1.11)

Analogous to the previous chapter, we absorb the local part of the scalar self-
energy into an effective mass:

M2
ab (x) = m2

Bδab + Π
(local)
ab (x)

= m2
Bδab + 4λ

(
Gdd (x, x) δab + 2Gab (x, x)

)
. (4.1.12)

Next, we define the spectral function2

G%,ab (x, y) = i
〈
[Φa (x) ,Φb (y)]−

〉

and statistical propagator3

GF,ab (x, y) =
1

2

〈
[Φa (x) ,Φb (y)]+

〉

for the Higgs bosons, such that we can write the Higgs propagator as

Gab (x, y) = GF,ab (x, y)− i

2
signC

(
x0 − y0

)
G%,ab (x, y) . (4.1.13)

In very much the same way, we also define the spectral function4

Sαβ%,lm (x, y) = i

〈[
Ψα
l (x) ,Ψβ

m

∗
(y)

]
+

〉

2From the definition of the Higgs spectral-function we see that it is anti-symmetric in the
sense that G%,ba (y, x) = −G%,ab (x, y). Furthermore, the canonical equal-time commutation
relations give (G%,ab (x, y))x0=y0 = 0 and

(
∂y0G%,ab (x, y)

)
x0=y0 = −δabδ

3 (x− y).
3In contrast to the spectral function, the statistical Higgs-propagator is symmetric in the

sense that GF,ba (y, x) = GF,ab (x, y).
4The adjoint of the lepton spectral-function is given by S†%,lm (x, y) = −βS%,ml (y, x)β. Fur-

thermore, the canonical anti-commutation relations give (S%,lm (x, y))x0=y0 = iβδ (x− y) δlm.
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and the statistical propagator5

SαβF,lm (x, y) =
1

2

〈[
Ψα
l (x) ,Ψβ

m

∗
(y)

]
−

〉

for the leptons, such that we can decompose the complete lepton propagator
according to

Slm (x, y) = SF,lm (x, y)− i

2
signC

(
x0 − y0

)
S%,lm (x, y) . (4.1.14)

Whereas the spectral function and the statistical propagator for real scalars are
real-valued quantities [22], in general they may be complex-valued in the case of
fermions [35]. Using Eqs. (4.1.13) and (4.1.14), we can decompose the non-local
part of the Higgs self-energy as well as the lepton self-energy into statistical and
spectral parts:

Π
(non−local)
ab (x, y) = ΠF,ab (x, y)− i

2
signC

(
x0 − y0

)
Π%,ab (x, y) (4.1.15)

and

Σlm (x, y) = ΣF,lm (x, y)− i

2
signC

(
x0 − y0

)
Σ%,lm (x, y) . (4.1.16)

After convolving Eqs. (4.1.7) and (4.1.8) from the right with the corresponding
complete propagators and inserting the decompositions (4.1.13), (4.1.14), (4.1.15)
and (4.1.16) we arrive at the Kadanoff-Baym equations [35]:

(−∂xµ∂xµδac +M2
ac (x)

)
GF,cb (x, y)

=

y0∫

0

d4z ΠF,ac (x, z)G%,cb (z, y)−
x0∫

0

d4z Π%,ac (x, z)GF,cb (z, y) , (4.1.17)

(−∂xµ∂xµδac +M2
ac (x)

)
G%,cb (x, y) = −

x0∫

y0

d4z Π%,ac (x, z)G%,cb (z, y) , (4.1.18)

− 6∂xSF,lm (x, y) =

x0∫

0

d4z Σ%,lk (x, z)SF,km (z, y)−
y0∫

0

d4z ΣF,lk (x, z)S%,km (z, y)

(4.1.19)
and

− 6∂xS%,lm (x, y) =

x0∫

y0

d4z Σ%,lk (x, z)S%,km (z, y) . (4.1.20)

5The adjoint of the statistical lepton-propagator is given by S†F,lm (x, y) = βSF,ml (y, x)β.
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Of course, it is (at least, in 2006 it was ;-) practically impossible to solve the
Kadanoff-Baym equations (4.1.17) – (4.1.20) numerically in this general form.
Therefore, in the next section we will show how one can exploit symmetries to
reduce the complexity of the Kadanoff-Baym equations, such that their numerical
solution becomes feasible [35].

4.2 Symmetries

Let the initial density matrix D be invariant under a symmetry U. Then we have

D = U−1DU .

Accordingly, the expectation value of some operator Ω satisfies

〈Ω〉 = tr (DΩ) = tr
(DUΩU−1

)
=

〈
UΩU−1

〉
. (4.2.1)

If U is a continuous symmetry, generated by some set of generators Ga, an in-
finitesimal transformation can be written in the form

U = 1 + iεaG
a .

In this case Eq. (4.2.1) is equivalent to

0 = 〈[Ga,Ω]〉 . (4.2.2)

In the following subsections we will exploit spatial homogeneity, isotropy, parity,
chiral symmetry and CP invariance in order to find helpful relations which have
to be satisfied by the Higgs and lepton propagators. We will use these relations
in order to simplify the Kadanoff-Baym equations in such a way that they can
be solved numerically.

Spatial Homogeneity

Spatial translations are generated by the spatial components of the four-momen-
tum operator

[Pj,Φa (x)] = i∂xjΦa (x) .

According to Eq. (4.2.2) for a spatially homogeneous system we have

0 = 〈[Pj, TC {Φa (x) Φb (y)}]〉 .

Consequently, the Higgs propagator does not depend on the spatial center coor-
dinates,

Gab (x, y) = Gab

(
x0, y0,x− y

)
,
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and we can perform a Fourier transformation with respect to the spatial relative
coordinates:

Gab (x, y) =

∫
d3k exp (ik (x− y))Gab

(
x0, y0,k

)
. (4.2.3)

The same relations also holds for the fermion propagator:

Slm (x, y) =

∫
d3k exp (ik (x− y))Slm

(
x0, y0,k

)
. (4.2.4)

Isotropy and Parity

In this context, it will be convenient to employ the Lorentz decomposition of
the lepton propagator. Using the standard basis {1, γ5, γµ, γ5γµ,Jµν}6 we can
expand the lepton propagator according to

S = SS1− iSPγ5 − iSµV γµ − iSµAγ5γµ +
1

2
SµνT Jµν . (4.2.5)

The indices indicate that under a Lorentz transformation SS, SP , SV , SA and
ST would transform as scalar, pseudo-scalar, vector, axial-vector and tensor, re-
spectively. For the scalar component of the lepton propagator invariance under
a spatial rotation R and parity imply

SS
(
x0, y0,k

)
= SS

(
x0, y0, Rk

)
(4.2.6)

and
SS

(
x0, y0,k

)
= SS

(
x0, y0,−k

)
, (4.2.7)

respectively. Both requirements (4.2.6) and (4.2.7) can be satisfied if

SS
(
x0, y0,k

)
= SS

(
x0, y0, |k|) . (4.2.8)

The same also holds for the Higgs propagator and the time-like vector component
of the lepton propagator:

G
(
x0, y0,k

)
= G

(
x0, y0, |k|) , (4.2.9)

S0
V

(
x0, y0,k

)
= S0

V

(
x0, y0, |k|) . (4.2.10)

On the other hand, for the pseudo-scalar component isotropy and parity imply

SP
(
x0, y0,k

)
= SP

(
x0, y0, |k|)

and
SP

(
x0, y0,k

)
= −SP

(
x0, y0,−k

)
.

6We take γ5 = −iγ0γ1γ2γ3 and J µν = − i
4 [γµ, γν ]−.
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Consequently, for a system which is invariant under spatial rotations and parity,
the pseudo scalar component must vanish. For the spatial vector components
isotropy and parity imply

SV

(
x0, y0,k

)
= R−1SV

(
x0, y0, Rk

)
(4.2.11)

and
SV

(
x0, y0,k

)
= −SV

(
x0, y0,−k

)
. (4.2.12)

Both requirements (4.2.11) and (4.2.12) can be satisfied if

SV

(
x0, y0,k

)
=

k

|k|SV
(
x0, y0, |k|) . (4.2.13)

Similarly as for the pseudo-scalar component, the axial-vector component also
must vanish. Since the matrices J µν are anti-symmetric with respect to the
interchange of the indices µ and ν, we can also take the tensor components SµνT
to be anti-symmetric. However, a tensor which is invariant under rotations has to
be diagonal. Consequently for an isotropic system the spatial tensor components
must vanish, too.

Chiral SU(2)L × SU(2)R Symmetry

The SU(2)L and SU(2)R symmetries are generated by unitary operators Lj and
Rj, respectively, where j ∈ {1, 2, 3}. For the scalar fields this means

[Lj,Φa (x)] =
(
ΣL
j

)
ab

Φb (x)

and
[Rj,Φa (x)] =

(
ΣR
j

)
ab

Φb (x) .

Here, the matrices ΣL
j and ΣR

j are given by7

(
ΣL
j

)
ab

= − i
2

(δa0δjb + δb0δja + εjab)

and (
ΣR
j

)
ab

=
i

2
(δa0δjb + δb0δja − εjab) .

For SU(2)L × SU(2)R symmetric initial conditions the Higgs propagator must
commute with the matrices ΣL

j and ΣR
j . Consequently, in flavor space the Higgs

propagator is proportional to the unit matrix:

Gab (x, y) = G (x, y) δab . (4.2.14)

7For a, b ∈ {1, 2, 3}, εjab is the usual totally anti-symmetric Levi-Civita symbol. However,
εjab vanishes if either a or b is zero.
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The fermion fields transform under chiral symmetry according to

[Lj,Ψ
α
l (x)] =

1

2
(σj)lm P

αβ
L Ψβ

m (x) ,

[Rj,Ψ
α
l (x)] =

1

2
(σj)lm P

αβ
R Ψβ

m (x) .

For SU(2)L × SU(2)R invariant initial conditions the lepton propagator must
commute with the Pauli matrices, and hence must be proportional to the unit
matrix in flavor space:

Slm (x, y) = S (x, y) δlm . (4.2.15)

Additionally, in Dirac space the lepton propagator must anti-commute with γ5.
Using the Lorentz decomposition (4.2.5), we find that this is the case if and only
if

SS (x, y) = SP (x, y) = SµνT (x, y) = 0 . (4.2.16)

CP Symmetry

For a CP invariant system the fermion propagator must satisfy

S (x, y) = C βST (Py,Px) βC −1 . (4.2.17)

The superscript T here denotes matrix transposition in Dirac and flavor space.
Eq. (4.2.17) splits into two equations for the statistical propagator and the spec-
tral function, namely

SF (x, y) = C βSTF (Py,Px) βC −1

and

S% (x, y) = −C βST% (Py,Px) βC −1 .

Hence, for a spatially homogeneous and isotropic system the vector components
of the statistical lepton-propagator and the lepton spectral-function satisfy

S0
V,F

(
x0, y0, k

)
= −S0

V,F

(
y0, x0, k

)
= −S0∗

V,F

(
x0, y0, k

)
,

SV,F
(
x0, y0, k

)
= SV,F

(
y0, x0, k

)
= S∗V,F

(
x0, y0, k

)
,

S0
V,%

(
x0, y0, k

)
= S0

V,%

(
y0, x0, k

)
= −S0∗

V,%

(
x0, y0, k

)
,

SV,%
(
x0, y0, k

)
= −SV,%

(
y0, x0, k

)
= S∗V,%

(
x0, y0, k

)
.

(4.2.18)

As a consequence

Re
(
S0
V,F

)
= Re

(
S0
V,%

)
= Im (SV,F ) = Im (SV,%) = 0 .
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Simplified Kadanoff-Baym Equations

Due to the previous subsections, for initial conditions which are invariant un-
der spatial translations, spatial rotations, parity, charge conjugation and chiral
transformations we can write the Higgs and lepton propagators in the form

Gab (x, y) =

∫
d3k

(2π)3 exp
(
ik (x− y)

)
G

(
x0, y0, k

)
δab (4.2.19)

and

Slm (x, y) =

∫
d3k

(2π)3 exp
(
ik (x− y)

)

×
(
S0
V

(
x0, y0, k

)
γ0 − ik

j

k
SV

(
x0, y0, k

)
γj

)
δlm . (4.2.20)

Note that, as compared to the previous subsections, we rearranged the factors of
i in order to make all statistical and spectral Lorentz components of the lepton
propagator real-valued quantities:

S0
V,F

(
x0, y0, k

)
= −S0

V,F

(
y0, x0, k

)
= S0∗

V,F

(
x0, y0, k

)
,

SV,F
(
x0, y0, k

)
= SV,F

(
y0, x0, k

)
= S∗V,F

(
x0, y0, k

)
,

S0
V,%

(
x0, y0, k

)
= S0

V,%

(
y0, x0, k

)
= S0∗

V,%

(
x0, y0, k

)
,

SV,%
(
x0, y0, k

)
= −SV,%

(
y0, x0, k

)
= S∗V,%

(
x0, y0, k

)
.

(4.2.21)

Of course, the relations (4.2.19), (4.2.20) and (4.2.21) also hold for the corre-
sponding self energies, such that the Kadanoff-Baym equations can drastically
be simplified. The simplified Kadanoff-Baym equations for the Higgs propagator
read [35]

[
∂2
x0 + k2 +M2

(
x0

)]
GF

(
x0, y0, k

)
(4.2.22)

=

y0∫

0

dz0 ΠF

(
x0, z0, k

)
G%

(
z0, y0, k

)−
x0∫

0

dz0 Π%

(
x0, z0, k

)
GF

(
z0, y0, k

)

and

[
∂2
x0 + k2 +M2

(
x0

)]
G%

(
x0, y0, k

)
= −

x0∫

y0

dz0 Π%

(
x0, z0, k

)
G%

(
z0, y0, k

)
.

(4.2.23)
The effective mass in Eqs. (4.2.22) and (4.2.23) is given by

M2
(
x0

)
= m2

B + 24λ

∫
d3p

(2π)3GF

(
x0, x0, p

)
.
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Using the notation

SV

(
x0, y0,k

)
=

k

k
SV

(
x0, y0, k

)

the statistical and spectral Higgs self-energies can be written in the form

ΠF

(
x0, y0, k

)
= −8η2

∫
d3p

(2π)3

∫
d3q δ (k − p− q)

×
[
− S0

V,F

(
x0, y0, q

)
S0
V,F

(
x0, y0, p

)
+

1

4
S0
V,%

(
x0, y0, q

)
S0
V,%

(
x0, y0, p

)

+ SV,F

(
x0, y0, q

)
SV,F

(
x0, y0,p

)− 1

4
SV,%

(
x0, y0, q

)
SV,%

(
x0, y0,p

) ]

and

Π%

(
x0, y0, k

)
= −16η2

∫
d3p

(2π)3

∫
d3q δ (k − p− q)

×
[
− S0

V,%

(
x0, y0, q

)
S0
V,F

(
x0, y0, p

)
+ SV,%

(
x0, y0, q

)
SV,F

(
x0, y0,p

) ]
.

The 128 complex-valued Kadanoff-Baym equations (4.1.19) and (4.1.20) for the
lepton propagator can be reduced to the following 4 real-valued equations [35]:

∂x0S0
V,F

(
x0, y0, k

)
+ kSV,F

(
x0, y0, k

)
(4.2.24)

=

x0∫

0

dz0
[
Σ0
V,%

(
x0, z0, k

)
S0
V,F

(
z0, y0, k

)
+ ΣV,%

(
x0, z0, k

)
SV,F

(
z0, y0, k

) ]

−
y0∫

0

dz0
[
Σ0
V,F

(
x0, z0, k

)
S0
V,%

(
z0, y0, k

)
+ ΣV,F

(
x0, z0, k

)
SV,%

(
z0, y0, k

) ]
,

∂x0SV,F
(
x0, y0, k

)− kS0
V,F

(
x0, y0, k

)
(4.2.25)

=

x0∫

0

dz0
[
Σ0
V,%

(
x0, z0, k

)
SV,F

(
z0, y0, k

)− ΣV,%

(
x0, z0, k

)
S0
V,F

(
z0, y0, k

) ]

−
y0∫

0

dz0
[
Σ0
V,F

(
x0, z0, k

)
SV,%

(
z0, y0, k

)− ΣV,F

(
x0, z0, k

)
S0
V,%

(
z0, y0, k

) ]
,

∂x0S0
V,%

(
x0, y0, k

)
+ kSV,%

(
x0, y0, k

)
(4.2.26)

=

x0∫

y0

dz0
[
Σ0
V,%

(
x0, z0, k

)
S0
V,%

(
z0, y0, k

)
+ ΣV,%

(
x0, z0, k

)
SV,%

(
z0, y0, k

) ]
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and

∂x0SV,%
(
x0, y0, k

)− kS0
V,%

(
x0, y0, k

)
(4.2.27)

=

x0∫

y0

dz0
[
Σ0
V,%

(
x0, z0, k

)
SV,%

(
z0, y0, k

)− ΣV,%

(
x0, z0, k

)
S0
V,%

(
z0, y0, k

) ]
.

The simplified lepton self-energies are given by

Σ0
V,F

(
x0, y0, k

)
= −4η2

∫
d3p

(2π)3

∫
d3q δ (k − p− q)

×
[
GF

(
x0, y0, q

)
S0
V,F

(
x0, y0, p

)− 1

4
G%

(
x0, y0, q

)
S0
V,%

(
x0, y0, p

) ]
,

Σ0
V,%

(
x0, y0, k

)
= −4η2

∫
d3p

(2π)3

∫
d3q δ (k − p− q)

×
[
G%

(
x0, y0, q

)
S0
V,F

(
x0, y0, p

)
+GF

(
x0, y0, q

)
S0
V,%

(
x0, y0, p

) ]
,

ΣV,F

(
x0, y0, k

)
= −4η2k

k

∫
d3p

(2π)3

∫
d3q δ (k − p− q)

×
[
GF

(
x0, y0, q

)
SV,F

(
x0, y0,p

)− 1

4
G%

(
x0, y0, q

)
SV,%

(
x0, y0,p

) ]
,

and

ΣV,%

(
x0, y0, k

)
= −4η2k

k

∫
d3p

(2π)3

∫
d3q δ (k − p− q)

×
[
G%

(
x0, y0, q

)
SV,F

(
x0, y0,p

)
+GF

(
x0, y0, q

)
SV,%

(
x0, y0,p

) ]
.

In order to make contact with Boltzmann equations, again we have to introduce
effective particle number densities. For the scalars we use the same definition as
in the previous chapter:

ω2 (t, k) =

(
∂x0∂y0GF (x0, y0, k)

GF (x0, y0, k)

)

x0=y0=t

, (4.2.28)

ns (t, k) = ω (t, k)GF (t, t, k)− 1

2
. (4.2.29)

We consider systems with vanishing net charge density, where the distribution
functions for fermions and anti-fermions agree:

nf̄ (t, k) = nf (t, k) . (4.2.30)

As explained in more detail in Ref. [35], for the fermions we define the effective
particle number density by

nf (t, k) =
1

2
− SV,F (t, t, k) . (4.2.31)
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Conservation of Energy and Global Charges

In order to define the energy-momentum tensor we proceed along the same lines
as in the previous chapter. We consider the variation of the 2PI effective action
under an infinitesimal space-time translation:

∆Γ [G,S] =

∫

C

d4x d4y

[
δΓ [G,S]

δG (x, y)
∆G (x, y) +

δΓ [G,S]

δSαβlm (x, y)
∆Sαβlm (x, y)

]

= −
∫

C

d4x Θµν (x) ∂xµεν (x) .

After a rather tedious calculation we find

Θµν (x) =

∫

C

d4y δC (x− y)
[(

∂xµ∂yν −
1

2
ηµν∂xκ∂yκ − 1

2
ηµνm2

B

)
Gaa (x, y)

− ηµν∂yκtr
(
γκSmm (x, y)

)
+ ∂yν tr

(
γµSmm (y, x)

)]

− ηµνλ
(
Gaa (x, x)Gbb (x, x) + 2Gab (x, x)Gab (x, x)

)

+ ηµν
x0∫

0

d4z
[
ΠF,ab (x, z)G%,ba (z, x)− Π%,ab (x, z)GF,ba (z, x)

]
.

The average energy density is then obtained from the time-time component of
the energy-momentum tensor. For a system which is invariant under space-time
translations, spatial rotations, parity, charge conjugation and chiral transforma-
tions the average energy density is given by

Etot (t) =

∫
d3p

(2π)3

[
2
( (
∂x0∂y0 + p2 +m2

B

)
GF

(
x0, y0, p

) )
x0=y0=t

− 8pSV,F (t, t, p) + 24λGF (t, t, p)

∫
d3q

(2π)3 [GF (t, t, q)]

− 4

t∫

0

dz0
[
ΠF

(
t, z0, p

)
G%

(
z0, t, p

)− Π%

(
t, z0, p

)
GF

(
z0, t, p

) ]]

Apart from the conservation of energy, the conservation of global charges also
has to be guaranteed if such charges are present in the considered theory. The
corresponding conservation law and an expression for the conserved global charge
can be derived in very much the same way.
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4.3 Quantum Kinetics

Analogous to the purely scalar theory, which we considered the previous chapter,
employing a first order gradient expansion and a Wigner transformation, one
can derive quantum kinetic equations from the full Kadanoff-Baym equations
also in the case of the Yukawa theory considered in this chapter. Of course, the
derivation of the kinetic equations for the Higgs propagator follows exactly the
lines of Section 3.2. Due to the previous section, we restrict our considerations to
systems which are spatially homogeneous and isotropic. Therefore, the Wigner
transformed propagators depend only on the center time t, the energy ω and the
absolute value of the momentum k. Consequently, in this section the Poisson
brackets reduce to

{
f̃ ; g̃

}
PB

= −
[
∂tf̃

][
∂ωg̃

]
+

[
∂ωf̃

][
∂tg̃

]

and the kinetic equations for the scalar propagator are given by

−
{

Ω̃ (t, ω, k) ; G̃F (t, ω, k)
}
PB

= Π̃% (t, ω, k) G̃F (t, ω, k)− Π̃F (t, ω, k) G̃% (t, ω, k)

+
{

Π̃F (t, ω, k) ; Re
(
G̃R (t, ω, k)

)}
PB

, (4.3.1)

−
{

Ω̃ (t, ω, k) ; G̃% (t, ω, k)
}
PB

=
{

Π̃% (t, ω, k) ; Re
(
G̃R (t, ω, k)

)}
PB

(4.3.2)

and

G̃R (t, ω, k) =
1

−ω2 + k2 +M2 (t) + Π̃R (t, ω, k)
. (4.3.3)

In order to derive the kinetic equations for the lepton propagator, we start from
the Kadanoff-Baym equation for the time-like vector component of the statistical
lepton propagator (4.2.24). Using retarded and advanced propagators and self
energies defined analogously to Eqs. (3.2.1) and (3.2.2), we can send the upper
limits of the memory integrals to +∞:

∂x0S0
V,F

(
x0, y0, k

)
+ kSV,F

(
x0, y0, k

)
(4.3.4)

=

∫
dz0 θ

(
z0

) [
Σ0
V,R

(
x0, z0, k

)
S0
V,F

(
z0, y0, k

)

+ ΣV,R

(
x0, z0, k

)
SV,F

(
z0, y0, k

)

+ Σ0
V,F

(
x0, z0, k

)
S0
V,A

(
z0, y0, k

)

+ ΣV,F

(
x0, z0, k

)
SV,A

(
z0, y0, k

) ]
.

The retarded and advanced lepton propagators satisfy

S0
V,R

(
y0, x0, k

)
= −S0

V,A

(
x0, y0, k

)
(4.3.5)
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and
SV,R

(
y0, x0, k

)
= SV,A

(
x0, y0, k

)
. (4.3.6)

The same relations also hold for the retarded and advanced self energies. Inter-
changing x0 and y0 in Eq. (4.3.4) and exploiting the (anti-)symmetry properties
(4.2.21), as well as relations (4.3.5) and (4.3.6) yields:

−∂y0S0
V,F

(
x0, y0, k

)
+ kSV,F

(
x0, y0, k

)
(4.3.7)

=

∫
dz0 θ

(
z0

) [
S0
V,F

(
x0, z0, k

)
Σ0
V,A

(
z0, y0, k

)

+ SV,F
(
x0, z0, k

)
ΣV,A

(
z0, y0, k

)

+ S0
V,R

(
x0, z0, k

)
Σ0
V,F

(
z0, y0, k

)

+ SV,R
(
x0, z0, k

)
ΣV,F

(
z0, y0, k

) ]
.

Next, we subtract Eq. (4.3.7) from Eq. (4.3.4). Having switched to center and
relative times, cf. Eq. (3.2.5), we observe on the left hand side of the difference
equation that

∂x0 + ∂y0 = ∂t

is automatically of first order in ∂t. Furthermore, we Taylor expand the propa-
gators and self energies on the right hand side of the difference equation to first
order in ∂t around the center time t. Exploiting the effective memory loss, we
send the initial time to −∞ and Fourier transform the difference equation with
respect to the relative time s0. As already pointed out at the end of the previous
section, all propagator and self-energy components appearing in the simplified
Kadanoff-Baym equations (4.2.24) – (4.2.27) are real-valued quantities. Above
that, SV,F (t, s0, k) and S0

V,% (t, s0, k) are even functions of the relative time s0.
Accordingly, their Wigner transforms

SV,F (t, ω, k) =

∫
ds0 exp

(
iωs0

)
SV,F

(
t, s0, k

)

and

S0
V,% (t, ω, k) =

∫
ds0 exp

(
iωs0

)
S0
V,%

(
t, s0, k

)

are also real-valued quantities. In contrast to this S0
V,F (t, s0, k) and SV,% (t, s0, k)

are odd functions of the relative time s0. Therefore, we introduce an extra factor
of −i in order to make their Wigner transforms real-valued quantities, again:

S0
V,F (t, ω, k) = −i

∫
ds0 exp

(
iωs0

)
S0
V,F

(
t, s0, k

)
,

SV,% (t, ω, k) = −i
∫
ds0 exp

(
iωs0

)
SV,%

(
t, s0, k

)
.
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The Wigner transformed retarded and advanced lepton propagators are given by

S0
V,R (t, ω, k) = i

∫
dE

2π

S0
V,% (t, E, k)

ω − E + iε
,

S0
V,A (t, ω, k) = i

∫
dE

2π

S0
V,% (t, E, k)

ω − E − iε ,

SV,R (t, ω, k) = −
∫
dE

2π

SV,% (t, E, k)

ω − E + iε

and

SV,A (t, ω, k) = −
∫
dE

2π

SV,% (t, E, k)

ω − E − iε .

As SV,% and S0
V,% are real-valued quantities, the Wigner transformed retarded and

advanced lepton propagators satisfy

S0
V,R (t, ω, k) = −S0∗

V,A (t, ω, k)

and
SV,R (t, ω, k) = S∗V,A (t, ω, k) .

Furthermore, analogous to the scalar case we have

S0
V,R (t, ω, k)− S0

V,A (t, ω, k) = S0
V,% (t, ω, k)

and
SV,R (t, ω, k)− SV,A (t, ω, k) = iSV,% (t, ω, k) .

After all, using the quantity

W (t, ω, k) = ω + Im
(
Σ0
V,R (t, ω, k)

)

the kinetic equation for the time-like vector component of the statistical lepton
propagator can be written in the form

{
W ; S0

V,F

}
PB

= Σ0
V,%S

0
V,F − Σ0

V,FS
0
V,% + ΣV,%SV,F − ΣV,FSV,% (4.3.8)

− {
Σ0
V,F ; Im

(
S0
V,R

)}
PB

+ {Re (ΣV,R) ; SV,F}PB + {ΣV,F ; Re (SV,R)}PB .

In very much the same way, we can derive the kinetic equations for the remaining
components of the lepton propagator:

{W ; SV,F}PB = Σ0
V,%SV,F + Σ0

V,FSV,% + ΣV,%S
0
V,F + ΣV,FS

0
V,% (4.3.9)

− {
Σ0
V,F ; Re (SV,R)

}
PB

+
{
Re (ΣV,R) ; S0

V,F

}
PB

+
{
ΣV,F ; Im

(
S0
V,R

)}
PB

,

{
W ; S0

V,%

}
PB

= −{
Σ0
V,%; Im

(
S0
V,R

)}
PB
− {Re (ΣV,R) ; SV,%}PB

− {ΣV,%; Re (SV,R)}PB , (4.3.10)
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{W ; SV,%}PB =
{
Σ0
V,%; Re (SV,R)

}
PB
− {

Re (ΣV,R) ; S0
V,%

}
PB

+
{
ΣV,%; Im

(
S0
V,R

)}
PB

. (4.3.11)

Next, we derive the kinetic equation for the time-like vector component of the
retarded lepton propagator. First, we note that

θ
(
x0 − y0

)
∂x0S0

V,%

(
x0, y0, k

)
= ∂x0S0

V,R

(
x0, y0, k

)− δ (
x0 − y0

)

and

−θ (
y0 − x0

)
∂x0S0

V,%

(
x0, y0, k

)
= ∂x0S0

V,A

(
x0, y0, k

)− δ (
y0 − x0

)
.

Multiplying the Kadanoff-Baym equation for the time-like vector component of
the lepton spectral function once with θ (x0 − y0) and once with −θ (y0 − x0)
yields equations for the time-like vector components of the retarded and advanced
lepton propagators:

∂x0S0
V,R

(
x0, y0, k

)− δ (
x0 − y0

)
+ kSV,R

(
x0, y0, k

)
(4.3.12)

=

∫
dz0

[
Σ0
V,R

(
x0, z0, k

)
S0
V,R

(
z0, y0, k

)
+ ΣV,R

(
x0, z0, k

)
SV,R

(
z0, y0, k

)]

and

∂x0S0
V,A

(
x0, y0, k

)− δ (
y0 − x0

)
+ kSV,A

(
x0, y0, k

)
(4.3.13)

=

∫
dz0

[
Σ0
V,A

(
x0, z0, k

)
S0
V,A

(
z0, y0, k

)
+ ΣV,A

(
x0, z0, k

)
SV,A

(
z0, y0, k

)]
.

Now we add Eq. (4.3.13), with x0 and y0 interchanged, to Eq. (4.3.12). Having
switched to center and relative times, we observe on the left hand side that

∂x0 − ∂y0 = 2∂s0 .

A first-order gradient expansion and a Fourier transformation with respect to
the relative time s0 then yields an algebraic equation for the time-like vector
component of the retarded lepton propagator:

S0
V,R (t, ω, k) = i

1− (k + ΣV,R)SV,R

W − iRe
(
Σ0
V,R

) . (4.3.14)

In very much the same way we obtain the corresponding equation for the space-
like vector component of the retarded lepton propagator:

SV,R (t, ω, k) = i
(k − ΣV,R)S0

V,R

W − iRe
(
Σ0
V,R

) . (4.3.15)

The various self energies that have to be inserted in the kinetic equations for
scalar and fermionic propagator components can easily be obtained by Wigner
transforming the expressions given in the previous section with respect to their
time arguments.
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4.4 Boltzmann Kinetics

Boltzmann Equation for Scalars

As in the previous chapter, the derivation of the Boltzmann equation for the
scalars starts from the kinetic equation for the statistical Higgs propagator (4.3.1).
We discard the Poisson brackets on the right hand side and replace Ω (t, ω, k) by

Ω (ω, k) = −ω2 + k2 +m2 ,

where m is the thermal mass of the scalars. Next, we generalize the fluctuation-
dissipation theorem (2.1.17) to the Kadanoff-Baym ansatz

GF (t, ω, k) = G% (t, ω, k)

(
1

2
+ ns (t, ω, k)

)
(4.4.1)

and employ the quasi-particle (or on-shell) approximation:

G% (t, ω, k) = G% (ω, k) =
π

E (k)

(
δ (ω − E (k))− δ (ω + E (k))

)
, (4.4.2)

where the quasi-particle energy is given by

E (k) =
√
m2 + k2 .

On the mass shell we define

ns (t, k) = ñs (t, E (k) , k) .

Equating the positive energy components in the kinetic equation for the statistical
Higgs propagator and integrating over ω yields

∂tns (t, k) =
1

E (k)

(
Π% (t, E (k) , k)

(
1

2
+ ns (t, k)

)
− ΠF (t, E (k) , k)

)
.

(4.4.3)
In order to evaluate the Higgs self-energies, we also have to employ the Kada-
noff-Baym ansatz

SF (t, ω, k) = S% (t, ω, k)

(
1

2
− ñf (t, ω, k)

)
(4.4.4)

and the quasi-particle approximation

S0
V,% (t, ω, k) = π (δ (ω − k) + δ (ω + k)) , (4.4.5)

SV,% (t, ω, k) = π (δ (ω − k)− δ (ω + k)) (4.4.6)
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for the fermions. Inserting the Kadanoff-Baym ansatz (4.4.4) and the quasi-
particle approximation (4.4.5) and (4.4.6) into the Wigner transformed statistical
Higgs self-energy, we find

ΠF (t, ω, k) = −8π2

∫
d4p

(2π)4

∫
d4q δ (k − p− q) δ

(
ω − p0 − q0

)

×
(

1

4
−

(
1

2
− nf

(
t, q0, q

))(
1

2
− nf

(
t, p0, p

)))

×
[ (
δ
(
q0 − q) + δ

(
q0 + q

)) (
δ
(
p0 − p) + δ

(
p0 + p

))

− qp

qp

(
δ
(
q0 − q)− δ (

q0 + q
)) (

δ
(
p0 − p)− δ (

p0 + p
)) ]

. (4.4.7)

Note that we have to evaluate the Higgs self-energies in Eq. (4.4.3) only for
ω = E (k). Taking ω = E (k) in Eq. (4.4.7), resolving the parentheses with
the δ functions and integrating over p0 and q0 leads to terms proportional to
either δ (E (k)− p− q), δ (E (k)− p+ q), δ (E (k) + p− q) or δ (E (k) + p+ q).
We immediately see that

E (k) + p+ q > 0 ,

and thus we can discard the term including the corresponding δ function from
Eq. (4.4.7). Due to momentum conservation we have

q = k − p .

The triangle inequality then gives

0 ≤ k + p− q < E (k) + p− q

and after shifting p→ k − p

0 ≤ k + q − p < E (k) + q − p .

Consequently, only the term including δ (E (k)− p− q) in Eq. (4.4.7) gives a
non-vanishing contribution. The quasi-particle number density for the fermions
is defined by

nf (t, k) = ñf (t, k, k) .

After all, at ω = E (k) the statistical Higgs self-energy reads:

ΠF (t, E (k) , k) = −4πη2

∫
d3p

(2π)3

∫
d3q δ3 (k − p− q) δ (E (k)− p− q)

×
(

1− pq

pq

)(
1

4
−

(
1

2
− nf (t, q)

)(
1

2
− nf (t, p)

))
.
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Along the same lines we also have to treat the spectral part of the Higgs self-
energy. Eventually we find the Boltzmann equation for the scalars in the form8

∂tns (t, k) =
2πη2

E (k)

∫
d3p

(2π)3

∫
d3q δ3 (k − p− q) δ (E (k)− p− q)

×
(

1− pq

pq

)[(
nks + 1

)
npfn

q
f − nks

(
npf − 1

)(
nqf − 1

)]
. (4.4.8)

Simplifying the Collision Integral for Scalars

For k = 0 the evaluation of the Boltzmann collision integral in Eq. (4.4.8) is
literally trivial:

∂tns (t, k = 0) = −mη
2

4π
×

[(
ns (t, k = 0) + 1

)
nf (t, p)nf (t, q)

− ns (t, k = 0)
(
nf (t, p)− 1

)(
nf (t, q)− 1

)]

p=q=m
2

.

For k > 0 a little more work has to be done. We rewrite Eq. (4.4.8) using the
Fourier representation of the momentum conservation δ function

δ3 (k − p− q) =

∫
d3ξ

(2π)3 exp (−ikξ + ipξ + iqξ)

and spherical coordinates. The scalar product of two vectors is then given by

pq = pq
(

sinϑp sinϑq cos (ϕp − ϕq) + cosϑp cosϑq

)
.

We perform the integrals over the solid angles in the order Ωq, Ωp, Ωξ. Using the
notation

j (x) =
sin (x)

x
− cos (x)

we find
∫
dΩq exp (iqξ)

(
pq

pq
− 1

)
=

4π

qξ

(
i cos (ϑp) j (qξ)− sin (qξ)

)
,

∫
dΩp exp (ipξ)

(
i cos (ϑp) j (qξ)− sin (qξ)

)

= −4π

pξ

(
j (pξ) j (qξ) + sin (pξ) sin (qξ)

)
,

8We use the notation nk
s = ns (t, k) and nk

f = nf (t, k).
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∫
dΩξ exp (−ikξ) =

4π

kξ
sin (kξ) .

After defining the auxiliary function

Js (k, p, q) = pq

∞∫

0

dξ
sin (kξ)

kξ

(
j (pξ) j (qξ) + sin (pξ) sin (qξ)

)

=
π

16k

(
k2 − (p+ q)2

)(
sign (k − p− q)− sign (k + p− q)

− sign (k − p+ q) + sign (k + p+ q)
)

and integrating over q, we eventually arrive at a form of the Boltzmann equation
(4.4.8) which is suitable for an efficient numerical solution:

∂tns (t, k) =
2η2

π2E (k)

∞∫

0

dp θ (q0) Js (k, p, q0)

×
[(
nks + 1

)
npfn

q0
f − nks

(
npf − 1

)(
nq0f − 1

)]
, (4.4.9)

where
q0 = E (k)− p .

Boltzmann Equation for Fermions

In order to derive the Boltzmann equation for the fermions, we discard the Pois-
son brackets on the right hand side of the kinetic equation for the time-like vector
component of the statistical lepton-propagator (4.3.8), and on the left hand side
we replace W (t, ω, k) by ω. Next, we employ the Kadanoff-Baym ansatz (4.4.4)
and the quasi-particle approximation (4.4.5) and (4.4.6), equate the positive en-
ergy components and integrate over ω:

∂tnf (t, k) = − (
Σ0
V,% (t, k, k) + ΣV,% (t, k, k)

) (
1

2
− nf (t, k)

)

+ ΣV,F (t, k, k) + Σ0
V,F (t, k, k) . (4.4.10)

The time-like vector component of the spectral lepton self-energy reads

Σ0
V,% (t, ω, k) = −4π2η2

∫
d4p

(2π)4

∫
d4q δ3 (k − p− q) δ

(
ω − p0 − q0

)

× 1

E (q)

(
δ
(
q0 − E (q)

)− δ (
q0 + E (q)

)) (
δ
(
p0 − p) + δ

(
p0 + p

))

× (
1 + ñs

(
t, p0, p

)− ñs
(
t, q0, q

))
. (4.4.11)
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We note that in Eq. (4.4.10) we have to evaluate the self-energies only for ω = k.
Taking ω = k in Eq. (4.4.11), resolving the parentheses with the δ functions and
integrating over p0 and q0 yields terms proportional to either δ (k − p− E (q)),
δ (k − p+ E (q)), δ (k + p− E (q)) or δ (k + p+ E (q)). Obviously

k + p+ E (q) > 0

and thus we can immediately discard the term including the corresponding δ
function from Eq. (4.4.11). Furthermore, the triangle inequality leads to

0 > k − p− E (q)

and
0 < k − p+ E (q) .

Therefore, only the term including δ (k + p− E (q)) remains in the self energy
(4.4.11). Since

ñf (t,−ω, k) = 1− ñf (t, ω, k) ,

at ω = k the self energy (4.4.11) reads

Σ0
V,% (t, k, k) = −2πη2

∫
d3p

(2π)3

∫
d3qδ3 (k − p− q) δ (k + p− E (q))

× 1

E (q)
(ns (t, q) + nf (t, p)) .

Proceeding along the same lines with the remaining self energies in Eq. (4.4.10),
we find the Boltzmann equation for the fermions in the form:

∂tnf (t, k) = 2πη2

∫
d3p

(2π)3

∫
d3q δ3 (k + p− q) δ (k + p− E (q))

× 1

E(q)

(
1− kp

kp

)[(
nkf − 1

)(
npf − 1

)
nqs − nkfnpf

(
nqs + 1

)]
. (4.4.12)

As in the previous chapter, again it is pleasant to observe that the Kadanoff-Baym
ansätze (4.4.1) and (4.4.4) entail the Nordheim-Uehling-Uhlenbeck quantum cor-
rections [80–84] for the Boltzmann equations (4.4.8) and (4.4.12).

Simplifying the Collision Integral for Fermions

In order to simplify the collision integral for the fermions, we have to integrate
Eq. (4.4.12) over Ωk. On the left hand side this gives a factor of 4π. On the right
hand side we evaluate the integrals over the solid angles in the order Ωq, Ωp, Ωk,
Ωξ: ∫

dΩq exp (iqξ) =
4π

qξ
sin (qξ) ,
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∫
dΩp exp (−ipξ)

(
kp

kp
+ 1

)
=

4π

pξ

(
sin (pξ)− i cos (ϑk) j (pξ)

)
,

∫
dΩk exp (−ikξ) (sin (pξ)− i cos (ϑk) j (pξ))

=
4π

kξ

(
sin (kξ) sin (pξ)− j (kξ) j (pξ)

)
,

∫
dΩξ = 4π .

After defining the auxiliary function

Jf (k, p, q) = p

∞∫

0

dξ
sin (qξ)

kξ

(
sin (kξ) sin (pξ)− j (kξ) j (pξ)

)

=
π

16k2

(
q2 − (k + p)2

)(
sign (k − p− q)− sign (k + p− q)

− sign (k − p+ q) + sign (k + p+ q)
)

and integrating over p, we eventually arrive at a form of the Boltzmann equation
(4.4.12) which is suitable for an efficient numerical solution:

∂tnf (t, k) =
2η2

π2

∞∫

0

dq θ (p0)
q

E (q)
Jf (k, p0, q)

×
[(
nkf − 1

)(
np0f − 1

)
nqs − nkfnp0f

(
nqs + 1

)]
, (4.4.13)

where
p0 = E (q)− k .

Conservation of Energy and Global Charges

Analogous to the previous chapter the conservation of the average energy density

Etot (t) =

∫
d3p

(2π)3

[
E (p)ns (t, p) + 2p nf (t, p)

]
.

is guaranteed by the explicit energy-conserving δ functions in the Boltzmann
equations (4.4.8) and (4.4.12). As Fig. 4.4 shows, for the initial conditions dis-
cussed in the next section our numerical algorithm indeed conserves the average
energy density up to numerical errors < 0.6%. As we consider systems with van-
ishing net charge density, due to Eq. (4.2.30) also the global charge is manifestly
conserved.
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Figure 4.4: Time evolution of the average energy density for various
initial conditions, cf. Fig. 4.6. Our numerical solutions of the Boltz-
mann equations conserve the average energy density up to numerical
errors < 0.6%.

4.5 Comparison of Numerical Solutions

Kadanoff-Baym Equations

In general, solving Kadanoff-Baym equations numerically is a difficult problem.
Already the purely scalar case considered in the previous chapter demanded a
thorough development of the algorithm and sophisticated optimizations. As com-
pared to this, the numerical solution of the Kadanoff-Baym equations in the
framework of the linear σ-model is significantly more difficult. The details of the
algorithm for the scalar case and its extension to the fermionic case are discussed
in the Appendix. So far we completed the implementation of the fermionic al-
gorithm to a high degree. Unfortunately, however, there was not enough time
for testing and trouble shooting, wherefore we cannot present our own numerical
solutions in this subsection.

Nevertheless, the Kadanoff-Baym equations (4.2.22) through (4.2.27) have
been solved numerically by the group of Jürgen Berges in Refs. [11, 35]. In
Ref. [35] it was shown that the Kadanoff-Baym equations respect universality
in the framework of the linear σ-model in the same way as they did in the case
of the real scalar Φ4 quantum field theory considered in the previous chapter.
Provided we consider systems with equal average energy density, the late-time
behavior coincides independent of the details of the initial conditions. This can
be seen in Fig. 4.5 where we present numerical solutions of the Kadanoff-Baym
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Figure 4.5: The upper plots show the time evolution of the statistical
lepton and Higgs propagators for three different momentum modes
and two different initial particle number distributions, which are dis-
played in the insets. Both initial conditions possess the same average
energy density. The lower plots show the equilibrium particle number
distributions. All plots have been taken from Ref. [35].

equations obtained in Ref. [35]. The upper plots show the time evolution of the
statistical Higgs propagator and the space-like vector component of the statistical
lepton propagator for three different momentum modes and two different initial
particle number distributions. The initial particle number distributions, which
are shown in the insets, possess the same average energy density. Similar to the
purely scalar case, we observe that the initial conditions lead to a significantly
different early-time evolution for the various momentum modes. Respecting uni-
versality, however, for each momentum mode the various propagator components
approach the same late-time value. Of course, the universality observed for the
various propagator components also holds for the corresponding particle number
densities. The lower left plot shows that the effective particle number densities
take the form of Bose-Einstein and Fermi-Dirac distribution functions after equi-
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librium has effectively been reached. Due to universality one finds a universal
temperature and, as we consider systems with vanishing net charge density, a uni-
versally vanishing chemical potential for scalars and fermions. The lower right
plot documents that the Bose-Einstein and Fermi-Dirac distribution functions
extracted from the fluctuation dissipation theorems (2.1.17) and (2.1.19) agree
with the effective equilibrium particle number distributions of the lower left plot.

Additionally, in Ref. [11] it was shown that the description of nonequilibrium
dynamics using Kadanoff-Baym equations comprises the phenomenon of prether-
malization. This means that certain quantities, such as e.g. the ratio of pressure
over energy density, approach their equilibrium values on time scales, which are
dramatically shorter than the thermodynamical equilibration time. In partic-
ular, it was shown that Kadanoff-Baym equations strongly separate the time
scales between kinetic and chemical equilibration. Whereas kinetic equilibration
takes place on very short time scales, full thermodynamical, including chemical,
equilibration is a long-term process.

In summary, concerning universality, chemical equilibration and the separa-
tion of time scales the Kadanoff-Baym equations for the linear σ-model considered
in this chapter have exactly the same properties as for the real scalar Φ4 quantum
field theory considered in the previous chapter.

Boltzmann Equations

In this subsection we discuss our numerical solutions of the Boltzmann equations
(4.4.9) and (4.4.13) and compare their properties with the properties of the cor-
responding Kadanoff-Baym equations discussed in the previous subsection. We
consider three different initial conditions IC1, IC2 and IC3 which correspond
to the same average energy density. Above that for the initial conditions IC1
and IC2 the sums of the initial average particle number densities agree. The
corresponding initial particle number distributions are shown in Fig. 4.6.

Fig. 4.7 shows that the Boltzmann equations respect only a restricted univer-
sality. The left plot shows the time evolution of the particle number densities
for a fixed momentum mode. For early times the plot emphasizes the fact that
the time evolution need not be monotonous in the case of Boltzmann equations.
For late times we observe that the distributions IC1 and IC2 approach the same
equilibrium value for scalars and fermions, respectively. The late-time behavior
of the distribution IC3 deviates significantly from the former two distributions.
This can also be verified in the right plot, which exhibits the equilibrium particle
number distributions. Indeed the equilibrium distributions IC1 and IC2 agree
for scalars and fermions, respectively, whereas the equilibrium distributions IC3
deviate significantly from the former two. Above that, we see that the equilib-
rium distributions take the form of Bose-Einstein and Fermi-Dirac distribution
functions. The corresponding temperatures can be read off the right plot as the
inverse slope of the lines and the chemical potentials are given by the negative
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Figure 4.6: This plot shows the various initial particle number dis-
tributions, for which we solved the Boltzmann equations numerically.
Thick (thin) lines correspond to scalar (fermion) particle number dis-
tributions. All initial conditions possess the same (conserved) average
energy density. Above that, for the initial conditions IC1 and IC2 also
the sums of the average particle numbers Ns,tot (t) +Nf,tot (t) agree.

y-axis intercepts divided by the corresponding slope:

Ts/m Tf/m µs/m µf/m µs/µf
IC1 1.315 1.315 0.839 0.420 1.999
IC2 1.315 1.315 0.839 0.420 1.999
IC3 1.689 1.689 −0.906 −0.453 2.001

(4.5.1)

In particular, for any given initial condition the temperatures predicted for scalars
and fermions agree up to numerical errors < 0.1%. Furthermore it is important
to recall that the Boltzmann equations (4.4.9) and (4.4.13) include only decay
and recombination processes of the form

1 scalar←→ 2 fermions .

For such a system, in equilibrium the chemical potentials are expected to satisfy
the relation

µs = 2µf .

As one can see in the right-most column of the table in Eq. (4.5.1), this relation
is indeed fulfilled up to numerical errors < 0.1%. Accordingly, the Boltzmann
equations lead to a classical chemical equilibrium. In contrast to this, quantum
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Figure 4.7: These plots show that the Boltzmann equations maintain
only a restricted universality. The left plot shows the time evolution
of the particle number densities ns(t,p) (thick lines) and nf (t,p) (thin
lines) for a fixed momentum mode, and the right plot shows the cor-
responding particle number distributions after equilibrium has been
reached. We observe coincident late-time behaviors for the initial con-
ditions IC1 and IC2. The equilibrium result for the initial condition
IC3 deviates from the former two.

chemical equilibrium requires that the chemical potentials vanish for systems with
vanishing net charge density. In this sense, the non-vanishing chemical potentials
in Eq. (4.5.1) indicate that quantum chemical equilibration is out of reach of the
Boltzmann equations (4.4.9) and (4.4.13).

The reason for the observed restriction of universality and the absence of
chemical equilibration can be extracted from Fig. 4.8. Due to the Yukawa cou-
pling of the lepton doublets with the Higgs bi-doublet one of four scalars can
decay into one of two fermion pairs or one of two fermion pairs may recombine
to one of four scalars. Thus the linear σ-model comprises processes which can
change the average scalar and fermion particle number densities

Ns,tot (t) =

∫
d3p

(2π)3 ns (t,p)

and

Nf,tot (t) =

∫
d3p

(2π)3 nf (t,p) .

The time evolution of the average particle number densities is shown in the left
plot of Fig. 4.8. As expected we find that the average particle number densities
may change significantly. On the other hand, however, the sum of the average
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Figure 4.8: The left plot shows the time evolution of the average
particle number densities Ns,tot (t) (thick lines) and Nf,tot (t) (thin
lines) for all initial conditions. The right plot reveals that the sum of
the average particle number densities is strictly conserved.

particle number densities is strictly conserved as can be seen in the right plot of
Fig. 4.8. Of course, this artificial constant of motion severely restricts the evolu-
tion of the particle number distributions. Consequently the Boltzmann equations
fail to describe the process of quantum chemical equilibration and respect only a
restricted universality.

In Fig. 4.8 we see that the average particle number densities for the initial
conditions IC1 and IC2 approach each other at times tm ≈ 1000. Additionally,
in the left plot of Fig. 4.7 the particle number distributions seem to approach
each other on the same time scale. According to these observations one might
be tempted to conclude that also the Boltzmann equations separate some time
scales in the framework of the linear σ-model. This is, however, not the case for
the following two reasons: First, there are also momentum modes which approach
each other on significantly larger time scales than shown in Fig. 4.7. And second,
the plots in Fig. 4.9 reveal that it takes a considerably longer time to reach kinetic
equilibrium. Therefore, also in the framework of the linear σ-model Boltzmann
equations do not separate any time scales.

Summary

In this chapter we reviewed the derivation of Kadanoff-Baym equations from the
2PI effective action in the framework of a chirally invariant Yukawa-type quantum
field theory including fermions. We also reviewed how one can exploit symme-
tries in order to simplify the Kadanoff-Baym equations such that their numerical
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Figure 4.9: Missing separation of time scales. The scalar and fermion
particle number distributions are shown at various times for the initial
condition IC3.

solution becomes feasible as well as the approximations which are necessary to
derive Boltzmann equations from the Kadanoff-Baym equations.

As for the purely scalar theory considered in the previous chapter, the Kada-
noff-Baym equations respect full universality, including the process of quantum
chemical equilibration, and strongly separate the time scales between kinetic and
chemical equilibration [11,35].

In contrast to this, the corresponding Boltzmann equations respect only a
restricted universality, fail to describe the process of quantum chemical equili-
bration and do not separate any time scales.
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Chapter 5

Conclusions and Outlook

Starting from the 2PI effective action for a real scalar Φ4 quantum field theory
and a chirally invariant Yukawa model including fermions, respectively, we re-
viewed the derivation of the Kadanoff-Baym equations and the approximations
which are necessary to eventually arrive at Boltzmann equations. For the purely
scalar theory we solved the Boltzmann and Kadanoff-Baym equations numerically
for spatially homogeneous and isotropic systems in 3+1 space-time dimensions
without any further approximations and compared their predictions on the evo-
lution of systems out of thermal equilibrium for various initial conditions. For
the fermionic model we solved the Boltzmann equations numerically for a highly
symmetric system in 3+1 space-time dimensions and compared their solutions
with the numerical solutions of the Kadanoff-Baym equations obtained by the
group of Jürgen Berges.

We verified that the Kadanoff-Baym equations respect universality: For sys-
tems with equal average energy density the late time behavior coincides inde-
pendent of the details of the initial conditions. In particular, independent of the
initial conditions the particle number densities, temperatures, chemical potentials
and thermal masses predicted for times, when equilibrium has effectively been
reached, coincide. Additionally, Kadanoff-Baym equations incorporate the pro-
cess of quantum chemical equilibration: For systems with vanishing net charge
density the chemical potentials vanish once equilibrium has been reached. Last
but not least, we observed a strong separation of time scales. We found a rapid
approach to kinetic equilibrium, but only a very slow chemical equilibration.

In general Kadanoff-Baym and Boltzmann equations conserve the average en-
ergy density as well as global charges. However, the quasi-particle approximation
introduces additional fake constants of motion for standard Boltzmann equations,
which severely restricts the evolution of the particle number densities. As a result
Boltzmann equations cannot lead to a universal quantum thermal equilibrium.
Boltzmann equations maintain only a restricted universality: Only initial condi-
tions for which the average energy density, all global charges and all fake constants
of motion agree from the very beginning, lead to the same equilibrium results.
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In particular, Boltzmann equations cannot describe the phenomenon of quantum
chemical equilibration and, in general, will lead to non-vanishing chemical po-
tentials even for systems with vanishing net charge density. Due to the lack of
quantum chemical equilibration, the separation of time scales, which we observed
for the Kadanoff-Baym equations, is absent in the case of Boltzmann equations.

Some of the approximations, which are necessary to derive Boltzmann equa-
tions from Kadanoff-Baym equations, are clearly motivated by equilibrium con-
siderations. Taking the observed restriction of universality into account, we
conclude that in the context of relativistic quantum fields one can safely ap-
ply standard Boltzmann equations only to systems which are sufficiently close to
equilibrium. Accordingly, for systems far from equilibrium the results given by
standard Boltzmann equations should be treated with care.

Unfortunately, solving Kadanoff-Baym equations numerically is significantly
more difficult than solving the corresponding standard Boltzmann equations.
However, the considerable discrepancies found for numerical solutions of Kada-
noff-Baym and Boltzmann equations revealed equally significant limitations for
standard Boltzmann equations. Accordingly, the importance of numerical solu-
tions of Kadanoff-Baym equations cannot be over-estimated and it is certainly
worth to face the arising difficulties.

In the present work we considered standard Boltzmann equations at lowest
order in the particle number densities, and we employed the standard Kadanoff-
Baym ansatz for their derivation. Our comparison of these standard Boltzmann
equations with corresponding Kadanoff-Baym equations is justified by the fact
that these standard Boltzmann equations are widely used in the literature. In
the course of this work, however, we indicated how one can obtain Boltzmann
equations beyond this standard form, and further studies are needed in order to
estimate whether and in how far the situation for Boltzmann equations can be
improved by including non-minimal collision terms or by employing a generalized
Kadanoff-Baym ansatz.

In the future it will be important to perform a similar comparison of Boltz-
mann and Kadanoff-Baym equations also in the framework of gauge theories.
Above that a treatment of Kadanoff-Baym equations on an expanding space-time
also should reveal interesting results. This would finally enable one to establish a
fully-fledged quantum mechanical treatment of leptogenesis. Independent of the
comparison of Boltzmann and Kadanoff-Baym equations we are looking forward
to learn to which extend an entirely non-perturbative renormalization procedure
affects the results quantitatively. Above all, such a non-perturbative renormaliza-
tion procedure should have a stabilizing virtue for the computational algorithms.



Appendix A

Numerical Algorithms

The numerical solution of Boltzmann and Kadanoff-Baym equations is far beyond
the scope of any integrated computer software package such as Mathematica or
Maple. In particular, the memory integrals in Kadanoff-Baym equations call
for an enormous amount of computer memory and sophisticated optimizations
of the computational algorithm in order to achieve acceptable execution times.
Efficient allocation of computer memory and elaborate optimization of the em-
ployed algorithms is accomplishable only by using plain computer programming
languages like C or Fortran supplemented by appropriate libraries. We imple-
mented our numerics in C [95], supplemented by the Fastest Fourier Transform
in the West [96] and the GNU Scientific Library [97]. A Fortran code for non-
relativistic Kadanoff-Baym equations has been presented in Ref. [98].

A.1 Kadanoff-Baym Equations

Memory Layout

For the numerical solution of the Kadanoff-Baym equations we follow exactly the
lines of Refs. [22,34,35,99], i.e. for the spatial coordinates we employ a standard
discretization on a three-dimensional lattice with lattice spacing as and Ns lattice
sites in each direction. Thus, the lattice momenta are given by

p̂nj
=

2

as
sin

(
πnj
Ns

)
,

where nj, j ∈ {1, 2, 3}, enumerates the momentum modes in the j-th dimension.
As we consider a spatially homogeneous and isotropic system, for given times
(x0, y0) we only need to store the propagator for momentum modes with Ns

2
≥

n1 ≥ n2 ≥ n3 ≥ 0. This reduces the required amount of computer memory by a
factor of 48. For the practical implementation, it is convenient to map this three-
dimensional structure of the considered momentum modes onto a one-dimensional



86 A Numerical Algorithms

y0

x0

Figure A.1: Memory layout for Kadanoff-Baym equations. For each
propagator component we use a matrix of pointers which aim at one-
dimensional arrays containing the momentum dependence of the prop-
agator component for the corresponding times.

array M. This can be achieved with the following two auxiliary functions:

D (j) =

j−1∑

k=0

k∑

l=0

1 =
1

2
j (j + 1)

and

T (n) =
n−1∑
j=0

j∑

k=0

k∑

l=0

1 =
1

6
n (n+ 1) (n+ 2) .

The momentum mode (n1, n2, n3) can then be found at the index

I (n1, n2, n3) = T (n1) +D (n2) + n3

in the one-dimensional array M.
Now, suppose, for a given time x0 we would like to compute the memory in-

tegrals for all1 (x0, y0) with y0 ≤ x0. This requires that we know the propagator
for all times (t1, t2) ∈ [0, x0]

2
. Therefore, the discretization in time leads to a his-

tory matrix H = {0, at, 2at, . . .}2, where at is the time-step size. Exploiting the
symmetry of the statistical Higgs propagator with respect to the interchange of
its time arguments, we only need to store the values of the statistical Higgs prop-
agator for all (x0, y0) with x0 ≥ y0. In very much the same way we can exploit
the corresponding anti-symmetry of the Higgs spectral-function. This reduces
the memory consumption by another factor of 2. Up to subtleties to be discussed

1We will see in the next subsection why this is an issue.
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in the following subsection, the same also holds for the various lepton-propagator
components. A convenient way to implement this structure in a computer pro-
gram is to use a three-dimensional array of pointers propagator. The first index
of the propagator array enumerates the various propagator components, and the
second and third indices parametrize the history matrix H. The afore mentioned
symmetry of the statistical propagator can then be implemented in the following
way: For each (x0, y0) ∈ H with x0 ≥ y0 an array M is allocated and the point-
ers in the propagator array corresponding to (x0, y0) and (y0, x0) are aimed at
the same array M. Fig. A.1 illustrates this memory layout. The memory for the
spectral function is allocated in exactly the same way. Additionally, however,
one has to guarantee that for (y0, x0) the spectral function is accompanied by an
additional minus sign.

Time Stepping and Memory Integrals

In order to discretize the second derivative with respect to time, which appears
in the Kadanoff-Baym equations for the scalar propagator components, we use
forward and backward derivatives [99]:

∂2
x0G

(
x0, y0, k

) → ∆b
0∆

f
0G

(
x0, y0, k̂

)

=
G

(
x0 + at, y

0, k̂
)
− 2G

(
x0, y0, k̂

)
+G

(
x0 − at, y0, k̂

)

a2
t

Solving the discretized Kadanoff-Baym equations for G(x0 + at, y
0, k̂) gives then

something of the form

G
(
x0 + at, y

0, k̂
)

= 2G
(
x0, y0, k̂

)
−G

(
x0 − at, y0, k̂

)

+ a2
t

[
MEMINT

(
x0, y0, k̂

)
−

(
k̂2 +M2

(
x0

))
G

(
x0, y0, k̂

)]
. (A.1.1)

Suppose, for a given x0 we know the propagator throughout the history matrix
H (x0) = {0, . . . , x0}2, which is represented by the dark-gray square in Fig. A.2.
The time-stepping algorithm then proceeds as follows: First of all, we compute
the statistical and spectral self energies Π(x0, y0, k̂) for all y0 ≤ x0 and all momen-
tum modes k̂. Above all, here it is crucial to compute the emerging convolutions
using a Fast Fourier Transform algorithm2 [96]. Then we can compute the mem-
ory integrals and apply Eq. (A.1.1) for all (x0, y0) with y0 ≤ x0 and all momentum
modes k̂ as indicated by steps 1, 2 and 3 in Fig. A.2. In order to compute the

2Never convolve by hand! The Fastest Fourier Transform in the West offers nice algorithms
for real-valued even functions in arbitrary dimension!
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Figure A.2: In order to evolve the Kadanoff-Baym equations one step
from x0 to x0 + at we have to advance the propagators for all (x0, y0)
with y0 ≤ x0+at in the order specified in the left figure. The right fig-
ure illustrates additional subtleties involved in the memory layout for
the fermion-propagator components. Due to the leap-frog algorithm
space-like (time-like) vector components of the lepton propagator are
stored at even (odd) relative times, which are indicated by squares
(circles).

memory integrals we employ a simple trapezoidal rule:

y0∫

0

dz0 ΠF

(
x0, z0, k

)
G%

(
z0, y0, k

)

→ 1

2
ΠF

(
x0, 0, k̂

)
G%

(
0, y0, k̂

)
+

y0−at∑
z0=at

[
ΠF

(
x0, z0, k̂

)
G%

(
z0, y0, k̂

)]

+
1

2
ΠF

(
x0, y0, k̂

)
G%

(
y0, y0, k̂

)

Note that the upper boundary term of the memory integral vanishes because
of the anti-symmetry of the spectral function. As a matter of fact, the upper
boundary terms of all memory integrals vanish! After all, we now know the
propagators for all (x0 + at, y

0) with y0 ≤ x0. At this point it is important to
take the (anti-)symmetry of the various propagator components into account, due
to which we also know the propagators for (y0, x0 + at). As the upper boundary
terms of all memory integrals vanish, we do not need to compute any self energy
for (x0, x0 + at), and we immediately can compute the memory integrals and
apply Eq. (A.1.1) (step 4 in Fig. A.2), thereby completing the history matrix
H (x0 + at) which is represented by the light gray box in Fig. A.2.
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As already indicated earlier, things are a bit more subtle in the case of the
fermion propagator. The first-order derivative with respect to time, which ap-
pears in the Kadanoff-Baym equations for the fermions, can be discretized in a
symmetric way according to

∂x0S
(
x0, y0, k

) →
S

(
x0 + at, y

0, k̂
)
− S

(
x0 − at, y0, k̂

)

2at

Solving the discretized Kadanoff-Baym equations for S(x0 + at, y
0, k̂) gives then

something of the form

S0
V

(
x0 + at, y

0, k̂
)

= S0
V

(
x0 − at, y0, k̂

)

+ 2at

[
MEMINT

(
x0, y0, k̂

)
− k̂SV

(
x0, y0, k̂

)]
. (A.1.2)

and

SV

(
x0 + at, y

0, k̂
)

= SV

(
x0 − at, y0, k̂

)

+ 2at

[
MEMINT

(
x0, y0, k̂

)
+ k̂S0

V

(
x0, y0, k̂

)]
. (A.1.3)

Thus, in the discretized Kadanoff-Baym equations we need the various propa-
gator components only at every second point in the history matrix. As already
explained in Chapter 4 the effective particle number density for the fermions is
obtained from SV,F (t, t, k). Therefore, the above discretization of the Kadanoff-
Baym equations for fermions suggests to store the space-like (time-like) vector
components of the statistical fermion propagator only for even (odd) relative
times x0 − y0, which corresponds to a generalized leap-frog algorithm [35, 99].
Applying this leap-frog algorithm to the memory integrals, one observes that one
also has to put space-like (time-like) vector components of the fermion spectral-
function at even (odd) relative times.

History Cut-Off

Obviously, the memory layout described in previous subsections calls for an
enormous amount of computer memory. Therefore it is impossible to evolve
the Kadanoff-Baym equations up to reasonable times keeping the complete his-
tory matrix of all propagator components in memory. Fortunately, according to
Fig. 3.4 correlations between earlier and later times are damped exponentially,
which allows us to introduce a history cut-off. A convenient way to implement
this history cut-off is to use a history matrix of fixed size

H = {0, at, 2at, . . . , (Nt − 1) at}2
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y0

x0

4

3
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1

Figure A.3: Due to the history cut-off the history matrix possesses a
maximal size. Once the history matrix is filled completely, it starts
moving forward along the bisecting line of the x0-y0 plane. The history
matrix at time x0 = t (t + at) is represented by the dark gray (light
gray) square.

and to store the propagator components at indices (x0 mod Nt, y
0 mod Nt).

The time-stepping algorithm and the computation of the memory integrals de-
scribed in the previous subsection can easily be adjusted to account for this his-
tory cut-off. After the history matrix is filled completely, at each time x0 we ad-
vance the Kadanoff-Baym equations only for times y0 ∈ {x0−Nt+at, . . . , x

0+at}
in the order specified in Fig. A.3. As indicated by the gray squares in Fig. A.3,
the history cut-off amounts to shifting history matrix along the bisecting line of
the x0-y0-plane. In order to give an impression on the consumption of computer
memory, it might be illustrative to put together some numbers: In the purely
scalar case there are 2 propagator components, the statistical propagator and
the spectral function. Our numerical solutions were achieved with Nt = 500 and
Ns = 32. Due to isotropy, for Ns = 32 there are 969 independent momentum
modes. Thus using double precision requires

2× 500× 501

2
× 969× 8 Bytes = 1.9 GBytes .

This number is doubled in the case of the linear σ-model. There one has 6
propagator components. However, due to the leap-frog algorithm the 4 fermion-
propagator components can be stored in an alternating fashion, such that they
only require as much computer memory as the 2 scalar propagator components.
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process 2

process 1

process 0

process 3

y0
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Figure A.4: This is how a parallel distributed-memory algorithm
could look like. The history matrix is distributed among a number of
processes, which communicate their achievements.

Parallelization

The enormous amount of computer memory and computing power that are needed
to solve the Kadanoff-Baym equations numerically cry for a parallel distributed-
memory algorithm. Such an algorithm can be realized using the Parallel Vir-
tual Machine [100] or the Message Passing Interface [101, 102]. For the special
algorithm presented here, the user interface offered by MPI is probably more
convenient than the PVM3 alternative. In any case, we will start a number of
processes on various computers, which then communicate their achievements.

The sequential algorithm described in the previous subsections was designed
to run on a single computer. Therefore memory consumption was a critical issue
and we had to exploit the (anti-)symmetry of the various propagator components
in order to reduce the required amount of memory by a factor of 2. For the parallel
algorithm described in this subsection, however, it is convenient to abstain from
this reduction of memory. Instead we will allocate memory for the complete
history matrix. The increasing requirement of computer memory can easily be
compensated by an increasing number of participating computers. Suppose, we
started P processes on P identical computers. For simplicity of the algorithm and
in order to achieve an optimal work-load balance P must be a divisor of the size
of the history matrix Nt. Then we divide the history matrix in P equally sized
stripes parallel to the x0-axis and each of the P processes allocates the memory
needed for one of those stripes. Fig. A.4 adumbrates the situation for the case
P = 4. As compared to the previous subsection the time-stepping algorithm has
to be generalized in the following way: Each process computes the self energies
Π(x0, y0, k̂) for all times y0 which belong to his history-matrix stripe. The self-
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energies are then distributed to all processes in the ring-like fashion indicated
in Fig. A.4. The computation of the memory integrals and the evolution of the
Kadanoff-Baym equations according to steps 1, 2 and 3 of Fig. A.2 can then be
performed by all processes simultaneously. Next, taking their (anti-)symmetry
properties into account the obtained propagator components G(x0 +at, y

0, k̂) are
sent to the process maintaining the history-matrix stripe which contains the time
y0 = (x0+at) mod Nt. Performing step 4 of Fig. A.2 this process then completes
the time-stepping procedure.

A.2 Boltzmann Equations

As we saw in the previous section, in order to discretize Kadanoff-Baym equa-
tions we can rely on the well-defined scheme offered by standard lattice field
theory. Unfortunately, the energy conserving δ function in the Boltzmann equa-
tions (3.3.4), (4.4.8) and (4.4.12) prevent us from using these standard lattice
techniques for these Boltzmann equations. The reason is the following: Having
resolved the momentum conserving δ function, one can also resolve the energy
conserving δ function by performing the integral over one of the remaining mo-
mentum modes. This requires to look for zeros of the argument of the energy
conserving δ function with respect to this particular momentum mode. These
zeros might well fall between two lattice sites. Hence, computing the collision
integral requires the use of interpolation techniques in order to determine the
particle number distribution for these in-between lattice sites. These interpola-
tion techniques imply a continuity assumption for the particle number distribu-
tion which contradicts the strict lattice discretization as offered by lattice field
theory. Apart from this principal obstacle, there is also a practical reason which
encourages us to use different discretization schemes for both types of equations:
The collision integral in Eq. (3.3.4) is no convolution. Consequently, Fast Fourier
Transformation algorithms are not applicable, and the numerical computation of
the collision integral becomes rather expensive. In order to reduce the complexity
of our Boltzmann numerics we exploited isotropy, which allowed us to simplify
the Boltzmann equations (3.3.4), (4.4.8) and (4.4.12) analytically and lead us to
Eqs. (3.3.7), (4.4.9) and (4.4.13). In the discretized Boltzmann equations (3.3.7),
(4.4.9) and (4.4.13) the momenta are of the form

pn =

√
12

asNs

n .

We use the same value for as as for the Kadanoff-Baym equations. This ensures
that the largest available momentum is the same as for the Kadanoff-Baym equa-
tions. Of course, the number of momentum bins Ns need not be the same as for
the Kadanoff-Baym equations, which just means that we approach the physically
relevant infinite volume limit independently for both types of equations.
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In order to compute the collision integral in Eq. (3.3.7) we proceed as fol-
lows: For fixed (k, p, q) we determine r0, which of course need not be one of the
discretized momenta given above. Obviously, the function D (k, p, q, r0) can be
evaluated for any value of r0. In order to obtain the particle number density for
an arbitrary r0 we use a cubic spline interpolation [97]. Thus, for given (k, p, q)
the integrand is known to any given accuracy and for given k we can simply
sum over p and q. The computation of the collision integrals in Eqs. (4.4.9) and
(4.4.13) proceeds along the same lines, except that we have to compute only
a one-dimensional integral. In order to advance the particle number distribu-
tions in time we use a Runge-Kutta-Cash-Karp routine with adaptive step-size
control [97].



94 A Numerical Algorithms



Bibliography

[1] M. Fukugita and T. Yanagida, Baryogenesis without Grand Unification,
Phys. Lett. B174 (1986) 45.

[2] W. Buchmüller, P. Di Bari, and M. Plümacher, Leptogenesis for pedestrians,
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[11] J. Berges, S. Borsányi, and C. Wetterich, Prethermalization, Phys. Rev.
Lett. 93 (2004) 142002, hep-ph/0403234.

[12] A. H. Mueller and D. T. Son, On the equivalence between the Boltzmann
equation and classical field theory at large occupation numbers, Phys. Lett.
B582 (2004) 279, hep-ph/0212198.

[13] Sangyong Jeon, The Boltzmann equation in classical and quantum field
theory, Phys. Rev. C72 (2005) 014907, hep-ph/0412121.

[14] Gordon Baym and Leo P. Kadanoff, Quantum Statistical Mechanics (Ben-
jamin, New York, 1962)

[15] P. Danielewicz, Quantum Theory of Nonequilibrium Processes I, Annals
Phys. 152 (1984) 239.

[16] Yu. B. Ivanov, J. Knoll, and D. N. Voskresensky, Resonance Transport and
Kinetic Entropy, Nucl. Phys. A672 (2000) 313, nucl-th/9905028.

[17] J. Knoll, Yu. B. Ivanov, and D. N. Voskresensky, Exact Conservation Laws
of the Gradient Expanded Kadanoff-Baym Equations, Annals Phys. 293
(2001) 126, nucl-th/0102044.

[18] Jean-Paul Blaizot and Edmond Iancu, The quark-gluon plasma: Col-
lective dynamics and hard thermal loops, Phys. Rept. 359 (2002) 355,
hep-ph/0101103.

[19] Radu Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wi-
ley, New York, 1975)

[20] S. R. De Groot, W. A. Van Leeuwen, and Ch. G. Van Weert, Relativistic
Kinetic Theory. Principles and Applications (North-Holland, Amsterdam,
Netherlands, 1980)

[21] H. J. Kreuzer, Nonequilibrium Thermodynamics and its Statistical Founda-
tions (Clarendon, Oxford, 1981)

[22] Jürgen Berges, Controlled nonperturbative dynamics of quantum fields out
of equilibrium, Nucl. Phys. A699 (2002) 847, hep-ph/0105311.

[23] Gert Aarts and Jürgen Berges, Nonequilibrium time evolution of the spec-
tral function in quantum field theory, Phys. Rev. D64 (2001) 105010,
hep-ph/0103049.

[24] Edward W. Kolb and Stephen Wolfram, Baryon Number Generation in the
Early Universe, Nucl. Phys. B172 (1980) 224.



Bibliography 97

[25] Edward W. Kolb and Michael S. Turner, The Early Universe (Addison-
Wesley, 1990)

[26] P. Danielewicz, Quantum Theory of Nonequilibrium Processes II. Applica-
tion to Nuclear Collisions, Annals Phys. 152 (1984) 305.
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