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Abstract

Black hole formation from non-axisymmetric instabilities in
quasi-toroidal stars

The stability of general relativistic, quasi-toroidal equilibrium polytropes with respect to non-axisymmetric
perturbations is studied with non-linear numerical simulations. It is found that in many cases a fragmen-
tation of the polytrope occurs, the number of fragments being determined by the discrete symmetry of
the perturbation function. A systematic study of this feature is performed with the objective to relate
the fragmentation process to gravitational collapse and black hole formation. In one case, adaptive mesh
refinement techniques are applied to connect the “collapse of the lapse” in a representative example to the
formation of an apparent horizon centered on a fragment, and, together with the parameter space study,
a preliminary identification of certain limit surfaces in parameter space signalling the onset of unstable
modes and black hole formation from fragmentation is performed. Finally, some evidence for motion
of the corotation point of the m = 1 mode towards the pole is found, which supports recent arguments
by Watts et al. on the development of spiral arm and low-T/|W | instabilities in differentially rotating
polytropes.

Furthermore, the performance of finite-difference and dissipation operators with the summation-by-parts
property is tested in the context of spherically symmetric black hole evolutions with excision, multiple
coordinate patches, constraint-preserving boundary conditions and a first order symmetric hyperbolic
formulation of the Einstein-Klein-Gordon system. It is found that the discrete system, which should be
considered a test case for efforts to evolve black hole spacetimes in three spatial dimensions with multiple
coordinate patches and Cauchy-perturbative matching, is stable in equilibrium and dynamical settings,
including the inflow of strong scalar field pulses through the outer boundary. A particular example, a
black hole accreting a spherically symmetric scalar pulse, is demonstrated to be stable for a coordinate
time of 1,000,000 M.

Erzeugung Schwarzer Löcher durch nicht-axialsymmetrische
Instabilitäten in quasi-toroidalen Sternen

Die Stabilität allgemein-relativistischer, quasi-toroidaler Gleichgewichts-Polytropen gegen nicht-axial-
symmetrische Störungen wird mit nichtlinearen numerischen Simulationen untersucht. In vielen Fällen
wird eine Fragmentation der Polytrope gefunden, wobei die Anzahl der Fragmente durch die diskrete
Symmetrie der Störungsfunktion bestimmt ist. Eine systematische Studie dieses Prozesses wird mit dem
Ziel durchgeführt, den Fragmentationsprozess mit der Produktion Schwarzer Löcher in Verbindung zu set-
zen. In einem Fall werden "adaptive mesh refinement"-Techniken eingesetzt, um den Kollaps der Lapse-
Funktion mit der Ausbildung eines "apparent horizon" an dem Fragment zu verbinden, und, zusammen
mit der Parameterraumstudie, eine vorläufige Identifikation gewisser Grenzflächen im Parameterraum mit
dem Auftreten instabiler Moden und der Formation Schwarzer Löcher aufzustellen. Schliesslich werden
einige Hinweise für die Bewegung des Kororationspunktes der m = 1-Mode in Richtung des Pols ge-
funden, was Argumente, die kürzlich von Watts et al. zu dem Auftreten von Spiralarminstabilitäten und
solchen, die mit niedrigem T/|W | verbunden sind, unterstützt.
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Weiterhin wird die Leistungsfähigkeit von diskreten Differential- und Dissipationsoperatoren mit der
sog. "summation by parts"-Eigenschaft im Kontext der Evolution von sphärisch symmetrischen Schwarzen
Löchern mit “excision”, meheren Karten, Randbedingungen mit der “constrain preservation”-Eigenschaft,
und einer symmetrisch hyperbolischen Formulierung erster Ordnung des Einstein-Klein-Gordon-Systems
getestet. Es stellt sich heraus, dass das diskrete System, welches als Testfall für Versuche, Schwarz-
lochraumzeiten in drei Raumdimensionen mit mehreren Karten und “Cauchy-perturbative matching” zu
entwickeln, angesehen werden kann, stabil in Gleichgewichts- und dynamischen Situationen ist, ein-
schliesslich dem Einfluss von starken Skalarfeldpulsen über den äusseren Rand. In einem speziellen
Beispiel, in dem ein Schwarzes Loch einen sphärisch symmetrischen Skalarfeldpuls akkretiert, wird
demonstiert, dass das System über eine Koordinatenzeit von 1.000.000 M stabil entwickelt wird.
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1. Foreword

What happens when a black hole forms? Under which conditions is black hole formation possible? And:
How can we model black holes with discrete techniques? Since the development of the general theory
of relativity and Schwarzschild’s first non-trivial exact solution, black holes have evolved from a curious
mathematical artefact of the field equations to an object of considerable astrophysical significance, not
only because their existence has been shown to be no limitation to the predictive power of the theory (at
least from the point of view of an observer exterior to the event horizon), but also, and specifically, after
Chandrasekhar’s monumental discovery that stars can achieve evolutionary states in which a collapse is
unavoidable, and thus has connected the field of stellar astrophysics to the study of general relativity.

Since then, the investigation of black hole properties has initiated a number of rapid developments in
the different fields of general relativity and astrophysics associated with them. On the side of gravitational
physics, some of these are: global properties of black hole space-times, horizons and their dynamics, the
hoop and cosmic censorship conjectures, the “no hair” uniqueness theorems, connections between black
holes and thermodynamics, critical collapse, the structure of singularities, the stability of black holes and
their Cauchy horizons, and their treatment with discrete techniques. On the side of astrophysics, black
holes have appeared in models to explain violent phenomena like active galactic nuclei and their associ-
ated jet outflows, microquasars and X-ray binaries, collapsars, and gamma-ray bursts. One of the most
important developments in general relativistic astrophysics, however, is clearly the advent of gravitational
wave astronomy, which opens a new window of observation to processes involving relativistic sources, of
which, again, black holes of all kinds are a prominent example due to their extreme compactness. While
there are a number of dynamical scenarios associated with black holes, the most promising gravitational
wave sources would likely include binary black hole mergers and black hole formation. And although it is
usually expected that these processes are unrelated, we will here collect evidence that they might indeed
be connected in some cases.

Effectively starting with the study of spherically symmetric gravitational collapse by Oppenheimer and
Snyder in 1939, and incorrectly rejected by Einstein in the very same year, the study of the properties of
black hole formation processes has spawned a large variety of publications illuminating issues ranging
from the mathematical consistency of the theory to observational signatures. One limitation, however,
is shared by many works on this subject: the assumption of approximate spherical symmetry or axisym-
metry. This is to be explained not only by the fact that both analytical and numerical models increase
significantly in complexity when relaxing this assumption, but also by stability considerations for equi-
librium system and the implications of the no-hair theorems. During the formation process however, the
system is not in an equilibrium state, and it is in precisely these phases where a breaking of approximate
symmetry can occur.

The agent to induce such large deviations from symmetry are non-axisymmetric unstable modes, and
indeed, black hole formation is closely connected to the investigation of stellar stability, as the phase of
dynamical collapse is usually preceded by an evolution on secular timescales. If we think of the secular
state to be approximated by an equilibrium system of similar structure, the question which systems might
form black holes directly connects to the theory of the stability of relativistic stars. It is from this point
of reference where we will conduct a study of fragmentation processes in toroidal stars, which will,
as compared to the canonical axisymmetric collapse scenario, lead us to a new channel of black hole
production.
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Foreword

Given that black holes and their production are such a rich area of phenomenology, it is rather unfor-
tunate that they have also proven to bring forth a number of technical difficulties in their mathematical
treatment. This is already true for the analysis of the continuum system and perturbations thereof: the
very notion of a black hole as a physical system has brought about, or is accompanied by, an increased
understanding of the geometrical properties of Einstein’s field equations. However, it has been even more
elusive to model black holes with discrete methods. Numerical simulations have been plagued by instabil-
ities and generally quite undesirable behaviour, and only recently methods introduced by the application
of theorems from discrete analysis, combined with considerations of the hyperbolic nature of the field
equations and their non-constrained extended system as an initial value problem, have brought about the
development of highly accurate, stable techniques to investigate black holes. We will try to give partial
answers to the third question posed above by considering the performance of these methods in black hole
evolutions.

The history of the black hole phenomenon should teach us one important lesson about the scientific
endeavour: A single thing can offer a multitude of facets not previously expected by any limited mind
(and whose is not?), but a collective effort involving different paths of approach, while seemingly chaotic
and uncoordinated at times, may bring forth more than any individual could achieve. But: if prejudice and
narrow-mindedness are dominating our minds at any time, such communal achievement of significance
could be made unnecessarily arduous. Therefore, the study of black holes is not one of either astrophysics
or rather general relativity, not an issue of observation versus mathematics, and not a decision between
fundamental generality and detailed particularity. It is all of this.

Burkhard Zink, Garching bei München, March 2006
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2. Preface

This thesis is concerned with two related problems: Firstly, the formation of black holes from non-
axisymmetric instabilities, and secondly, the numerical representation of black holes with techniques
from discrete analysis.

The first problem is discussed in Chapter 5, where we will be concerned with the development of non-
axisymmetric instabilities in quasi-toroidal polytropes, that is, stars whose stratification satisfies a fixed
two-parametric relation P = KρΓ between pressure P and rest-mass density ρ, and which additionally have
at least one isodensity surface with toroidal shape. To investigate this system, the Cactus computational
toolkit [1] has been applied with several modules (not developed by the author) to construct differentially
rotating, quasi-toroidal stars, and evolve them in general relativity. Details of the physical setup and the
numerical tools can be found in Chapters 3 and 5. We will find that many of the quasi-toroidal polytropes
are unstable to low-order non-axisymmetric perturbations, even, in contrast to classical stability consid-
erations from idealized homogeneous models [2], those models with low ratios of rotational kinetic over
gravitational binding energy T/|W |, and that these instabilities subsequently evolve into fragments, one
or several, depending on the discrete symmetry of the perturbation function, and the degree of instability
of the initial polytrope. Cases with one, two or three fragments have been found, and, given a sufficient
compactness of the initial model, a collapse of the fragments can proceed, apparently without bound. In
a specific case of one fragment, an apparent horizon, which may be considered a local definition of a
black hole surface in replacement of the unknown location of the globally defined event horizon [3], is
identified.

The results from a parameter space study of quasi-toroidal polytropes and the development of their
instabilities together enable us to identify the approximate location of several surfaces of interest in this
space, namely those separating systems exhibiting fragmentation with a certain number of azimuthal
nodes (and thus fragments) from those which collapse by axisymmetric modes, and those forming black
holes from others which do not.

All these studies are performed in three-dimensional general relativity, use high-resolution shock-capturing
techniques, and mesh refinement for the computational grids. Still, with the present impressive range of
tools, it has proven impossible to evolve the physical system much beyond the formation of a black hole.

The issues with obtaining discrete models of black hole spacetimes are well-known in the field. They
are connected to the non-linear nature of the continuum system, and the fact that black holes contain
singularities. While the introduction of excision, that is, the placement of a spherical boundary of the
computational domain inside the black hole to avoid singular boundaries [4], has been able to stabilize
the discrete evolution of black holes in certain cases, the question how to generically treat these systems
must still be considered open. Many problems can be attributed to possibly ill-posed initial-boundary-
value problems [5], while others, and specifically those related to discretization errors and extraction of
gravitational waves from the computational domain, could be improved upon by more accurate methods.

Two approaches are being pursued nowadays: the application of pseudo-spectral methods [6], and finite-
difference and dissipation operators with the so-called summation-by-parts property [7], a discrete version
of integration by parts, which, given a well-posed initial-boundary-value problem, satisfy linear stability
requirements and admit the use of quasi-spherical grids with multiple coordinate patches. The resulting
improvements in stability and accuracy directly relate to the astrophysical question of gravitational wave
signatures from black hole spacetimes, since only a stable evolution beyond black hole formation allows
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Preface

the gravitational waves to propagate far enough from the source to extract the signal by projection of the
dynamical metric onto some static background geometry (typically Schwarzschild) [8]. While in a very
compact source like neutron star collapse, a short extension of the simulation time can be sufficient to
extract the signals, the more demanding collapse of, say, supermassive stars (radiation-pressure dominated
stars with masses beyond 104 M�), requires advanced techniques.

During a collaboration with the Center for Computation and Technology and the Horace Hearne Jr. In-
stitute for Theoretical Physics, both at Louisiana State University in Baton Rouge, the author has started to
work on methods based on recent theorems from discrete analysis. These methods, which are all obtained
from notions of “energy” (squared norms) in systems of partial differential equations, can be used to con-
struct well-posed initial-boundary-value problems for numerical relativity [9], and to define constraints
for the construction of discrete representations of these well-posed systems by enforcing stability prop-
erties, to find bounds on the discrete energy associated with a certain metric. One of these properties is
called summation by parts, and, combined with a technique for interface boundaries called penalization,
the discrete operators satisfying these properties admit highly accurate and stable (in the linear sense)
representations of the continuum system, even when the domain is covered by several coordinate patches
[10]. This is also crucial for the evolution of general-relativistic stars, since the coordinate lines can be
adapted to Killing fields (generators of spacetime symmetries), and the treatment of excision and outer
boundaries is then much more natural.

In Chapter 6, an application of all these techniques, and an additional one, constraint-preserving bound-
ary conditions, is applied to the case of the spherically symmetric Einstein-Klein-Gordon system, which
can be considered a test case for a three-dimensional case with an interface between a full non-linear
interior and a perturbative outer computational domain (Cauchy-perturbative matching). Multiple coor-
dinate patches, penalties and the same summation-by-parts derivative and dissipation operators as in the
three-dimensional case are applied to evolve Schwarzschild black holes in a certain coordinate system,
Painlevé-Gullstrand coordinates, which cover the event horizon smoothly, and black holes with inflow
of scalar and gauge pulses through the outer boundary. The resulting system is remarkably stable, even
when high-order operators are used.

Some additional notes on the organization of the thesis: Since the results in Chapters 5 and 6 are
concerned with different questions, each of them contains a separate introduction to the physical and
technical issues connected with them. Also, the numerical code used in Chapter 6 is not the Cactus code,
but has been implemented to large parts, up to the summation-by-parts operators, by the author.

The thesis is structured as follows: Chapter 3 covers some relevant equations and tools, Chapter 4 con-
tains results from code tests with the Cactus/Carpet/Whisky code, Chapter 5 deals with fragmentation and
black hole formation in differentially rotating, quasi-toroidal, general relativistic polytropes, and Chap-
ter 6 presents results from the application of SBP operators, penalty techniques, symmetric hyperbolic
systems, and constraint-preserving boundary conditions to spherically symmetric, accreting black holes.
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3. Theory and Tools

In this chapter the physical evolution systems, Einstein-Klein-Gordon and Einstein-Euler, in several for-
mulation as used in the numerical codes, are introduced in Section 3.2. The basic notions of well-
posedness, stability, the summation-by-parts property and the penalty methods are introduced in Sec-
tion 3.3. Finally, the set of tools used in Chapter 5 is introduced in Section 3.4.

3.1. Notations and conventions

We use the standard notations introduced e.g. in [11]. Greek tensor indices denote spacetime components
and run from 0 to 3, while Latin indices run from 1 to 3 and denote components on a spacelike hypersur-
face. The signature of the spacetime metric is (−,+,+,+), as conventional in numerical relativity. Tensors
are written in bold face, e.g. G for the Einstein tensor, while the normal face letter associated with a
tensor, and without component indices, denotes the determinant or trace of the tensor, depending on the
context.

A system of units is fixed by setting G = c = 1. In addition, in situations where polytropes are used
as initial data, the constant K in the polytropic pressure-density relation P = KρΓ is set to unity. The
resulting system can then be rescaled to SI or cgs units by insertion of appropriate factors of unity [11],
and, in the case of stellar evolution, by setting a length scale through the mass of the star or black hole.

3.2. The physical system

The physical model system we will attempt to describe here is a spacetime coupled to either a perfect fluid,
for the investigations of stellar stability and black hole formation in Chapters 4 and 5, or a Klein-Gordon
field, for studies of the stability and accuracy properties of summation-by-parts operators in dynamical
black hole spacetimes in Chapter 6.

In general relativity, the content of the field equations can be quickly summarized in covariant form by
[11]

G = 8πT (3.1)

∇ · T = 0, (3.2)

where G is the Einstein tensor, T the energy-momentum tensor, and ∇ the covariant derivative. For
hydrodynamics, the vector J = ρu built from the rest-frame mass density ρ and the fluid four-velocity u
is conserved as well:

∇ · J = 0 (3.3)

.
These equations are not directly solvable, even when expressing them in terms of tensor components

with respect to a certain coordinate chart. For any physical situation, we are interested in finding solutions
to an initial-boundary value problem, i.e. given initial and boundary data, we are looking for the time
development of the model. A common way to recast the equations of general relativity into such an
evolutionary form is by performing a 3+1 split, that is, by selecting a time function which foliates the
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spacetime manifold into spacelike 3-surfaces, introducing coordinates on these surfaces, and expressing
Einstein’s field equations by projection onto the tetrad obtained from the time function and the triads [11,
12]. The Arnowitt-Deser-Misner formalism [13] is such a split, and introduces canonical variables g i j and
πi j, which now represent the local geometrical properties of the manifold at each point. g i j are components
of the induced 3-metric on the hypersurface, while πi j is closely related to the second fundamental form,
also extrinsic curvature, Ki j of the embedding of the hypersurfaces into the spacetime, which measures
the convergence and divergence of the surface normals over the time sequence.

In fact, it is nowadays customary to express the ADM system in terms of gi j and Ki j [14]:

∂tgi j = −2αKi j +Lβgi j (3.4)

∂tKi j = α(Ri j − 2KikKk
j + KKi j) − DiD jα +LβKi j − 8πα(S i j −

1
2
gi j(S − ρ̃)) (3.5)

Here, D is the 3-covariant derivative, L the 3-Lie derivative, R is the 3-Ricci tensor, α and β are the
lapse function and the shift 3-vector, which comprise the four gauge fields in the system, and ρ̃ and S are
source tensors built from the energy-momentum tensor by the surface normal vector n and the tangential
projection tensor h = n ⊗ n + g:

ρ̃ ≡ nµnνTµν (3.6)

S i j ≡ hi
µh j

νTµν (3.7)

T ≡ gµνTµν (3.8)

The line element can then be written in the form

ds2 = −α2dt2 + gi j(dxi + βidt)(dx j + β jdt). (3.9)

In addition, the initial data (and each subsequent 3-surface) is subject to the Hamiltonian and momentum
constraint equations

H ≡ R + K2 + Ki jK
i j − 16πρ̃ = 0 (3.10)

Pi ≡ D j(K
i j − gi jK) − 8πS i = 0, (3.11)

where S i is again built from T by projection (S i = −nµhi
νTµν).

3.2.1. The NOK-BSSN form of the initial-value problem

While the ADM equations can be implemented in a straightforward manner into a numerical system, e.g.
by replacing the spatial first and second derivatives by polynomial approximants and using a standard
ODE integrator on the semi-discrete problem, it has been demonstrated that a reformulation of the system
can improve discrete stability significantly [15]. One such system is the NOK-BSSN scheme [16, 17, 15],
in which the 3-metric and extrinsic curvature are conformally split to yield new variables:

φ ≡ 1
12

ln(det gi j) (3.12)

g̃i j ≡ e−4φgi j (3.13)

Ai j ≡ Ki j −
1
3
gi jK (3.14)

Ãi j ≡ e−4φAi j (3.15)
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3.2.2 The Einstein-Christoffel form of the initial-value problem

In addition, a set of conformal connection coefficients is introduced by contracting the Christoffel symbols
Γ̃i

jk from the metric connection of the conformal metric g̃i j:

Γ̃i ≡ g̃ jkΓ̃i
jk (3.16)

which results in the following evolution equations for the variables φ, K, g̃ i j, Ãi j and Γ̃i:

∂tφ = −1
6
αK +Lβφ (3.17)

∂tK = −gi jD jDiα + α(Ãi jÃ
i j +

1
3

K2) +
1
2
α(ρ̃ + S ) +LβK (3.18)

∂tg̃i j = −2αÃi j +Lβg̃i j (3.19)

∂tÃi j = e−4φ[−(DiD jα)T F + α(RT F
i j − S T F

i j )] (3.20)

+α(KÃi j − 2ÃilÃ
l
j) +LβÃi j

∂tΓ̃
i = −2Ãi j∂ jα + 2α(Γ̃i

jkÃk j − 2
3
g̃i j∂ jK − g̃i jS j + 6Ãi j∂ jφ) (3.21)

+∂ j(β
l∂lg̃

i j − 2g̃m( j∂mβ
i) +

2
3
g̃i j∂lβ

l)

Here the symbol T F stands for the trace-free part of 3-tensors, i.e. AT F
i j ≡ Ai j − 1

3gi jA.

3.2.2. The Einstein-Christoffel form of the initial-value problem

In addition to the NOK-BSSN form, which is first order in time and second order in space, a number of
entirely first order formulations have been obtained in the past, specifically to enable a direct analysis of
the level of hyperbolicity of the system of PDEs (cf. Section 3.3). One of these first order systems is
the Einstein-Christoffel form [18], which is symmetric hyperbolic and admits only physical propagation
speeds of evolutionary and constraint variables, and is therefore especially interesting in the context of
excision, a method to evolve the exterior spacetime of a black hole by placing a physical outflow boundary
on or interior to the event horizon [19, 20, 4], thus avoiding physical singularities on the grid. A convenient
property is that the Einstein-Christoffel (EC) system also admits the full set of Bona-Massó slicings [21].

The system consists of the 3-metric gi j, the extrinsic curvature Ki j, and the quantities fki j, which are
built from the 3-Christoffel symbols Γi

jk via symmetrization and anti-symmetrization1 by

fki j ≡ Γ(i j)k + gkig
lmΓ[l j]m + gk jg

lmΓ[li]m. (3.22)

Using the conventions in [6], we now write the lapse function as N, and define a densitized lapse α by

α ≡ N
√
g
. (3.23)

1The symmetric part of a tensor is defined by A(i j) ≡ 1
2 (Ai j + A ji), and its antisymmetric part correspondingly by A[i j] ≡

1
2 (Ai j − A ji)

9
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The EC evolution system then reads [6]:

∂tgi j = −2NKi j +Lβgi j (3.24)

∂tKi j = −Ngkl∂l fki j + N
{

gkl(KklKi j − 2KkiKl j) + g
klgmn(4 fkmi f[ln] j + 4 fkm[n fl]i j − fikm f jlm (3.25)

+8 f(i j)k f[ln]m + 4 fkm(i f j)ln − 8 fkli fmn j + 20 fkl(i f j)mn − 13 fik j f jmn)

−∂i∂ j lnα − (∂i lnα)(∂ j lnα) + 2gi jg
klgmn( fkmn∂l lnα − fkml∂n lnα)

+gkl[(2 f(i j)k − fki j)∂l lnα + 4 fkl(i∂ j) lnα

−3( fikl∂ j lnα + f jkl∂i lnα)
]}

+LβKi j − 8πNS i j + 4πNgi jT

∂t fki j = −N∂kKi j + N
{

gmn[4Kk(i f j)mn − 4 fmn(iK j)k + Ki j(2 fmnk − 3 fkmn)
]

(3.26)

+2gmngpq[Kmp(gk(i f j)qn − 2 fqn(ig j)k) + gk(iK j)m(8 fnpq − 6 fpqn)

+Kmn(4 fpq(ig j)k − 5gk(i f j)pq)
] − Ki j∂k lnα

+2gmn(Km(ig j)k∂n lnα − Kmngk(i∂ j) lnα)
}

+Lβ fki j + 16πNgk(iS j).

If we restrict consideration to spherically symmetric spacetimes, and define polar coordinates (t, r, θ, φ)
and the additional variables

gT ≡ gθθ

r2
(3.27)

KT ≡ Kθθ

r2
(3.28)

frT ≡ frθθ
r2

(3.29)

α̃ ≡ αr2 sin θ, (3.30)

the evolution system eqns. (3.24-3.26) simplifies significantly [6], and the resulting dynamical spacetime
variables are grr, gT ,Krr,KT , frrr, and frT :

∂tgrr = −2NKrr + 2grr∂rβ
r + βr∂rgrr (3.31)

∂tgT = −2NKT + 2
βr

r
gT + β

r∂rgT (3.32)

∂tKrr = βr∂rKrr −
N
grr

∂r frrr + N
[

2 f r
rr

(

f r
rr +

1
r
− 4 frT

gT

)

− 6

r2
+ Krr

(

2
KT

gT
− Kr

r

)

(3.33)

−6
( frT

gT

)2
− ∂2

r ln α̃ − (∂r ln α̃)2 +
(4

r
− f r

rr

)

∂r ln α̃
]

+ 2Krr∂rβ
r

+4πN(Tgrr − 2S rr)

∂tKT = βr∂rKT −
N
grr

∂r frT + N
(

KT Kr
r +

1
r2
−

2 f 2
rT

grrgT
− frT

grr
∂r ln α̃

)

+ 2
βr

r
KT (3.34)

∂t frrr = βr∂r frrr − N∂rKrr + N
[

4grr
KT

gT

(

3
frT

gT
− f r

rr +
2
r
− ∂r ln α̃

)

(3.35)

−Krr

(

10
frT

gT
+ f r

rr −
2
r
+ ∂r ln α̃

)]

+ 3 frrr∂rβ
r + grr∂

2
rβ

r

+16πNS rgrr

∂t frT = βr∂r frT − N∂rKT + N
[

KT

(

2
frT

gT
− f r

rr − ∂r ln α̃
)]

+
(

∂rβ
r +

2βr

r

)

frT . (3.36)
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3.2.3 The massless Klein-Gordon field

A characteristic decomposition2 of the principal part of eqns. (3.31-3.36) can be obtained by introducing
the variables u1 . . . u6 as defined in [22]:

u1 = grr (3.37)

u2 = gT (3.38)

u3 = Krr −
frrr√
grr

(3.39)

u4 = KT −
frT√
grr

(3.40)

u5 = Krr +
frrr√
grr

(3.41)

u6 = KT +
frT√
grr

(3.42)

Additional variables are required when matter sources are part of the system. The variables u1 . . . u6 are
associated with speeds β for u1 and u2 (surface modes), β + α̃gT for u3 and u4, and β − α̃gT for u5 and
u6 (light-cone modes), making the physical nature of the characteristics explicit. Note that the subsidiary
system of constraint propagation equations, discussed in Section 3.2.5, can be decomposed into surface
and light-cone modes, too.

3.2.3. The massless Klein-Gordon field

One of the two sources of interest here is the minimally coupled generalization of the massless, real
Klein-Gordon field:

∇2Ψ = 0 (3.43)

This field equation is associated with the energy-momentum tensor [6]

Tµν =
1

4π
[(∂µΨ)(∂νΨ) − 1

2
gµν(∂κΨ)(∂κΨ)] (3.44)

and can be reduced to first-order form via introduction of the variables

Π ≡
∂tΨ − LβΨ

N
(3.45)

Φi ≡ ∂iΨ, (3.46)

where N denotes the lapse function. With these variables, the matter sources and additional dynamical
equations of the first order system read [6]

4πρ =
1
2

(Π2 + ΦiΦi) (3.47)

4πS i = ΠΦi (3.48)

4πT = Π2 − ΦiΦi (3.49)

4πS i j = ΦiΦ j +
1
2
gi j(Π

2 − ΦkΦk) (3.50)

∂tΠ = Ngi j[−∂iΦ j + ΠKi j − Φi∂ j ln α̃ + 4Φk f[ki] j] +LβΠ (3.51)

∂tΦi = −N[∂iΠ + Π∂i ln α̃ + Πg jk(3 fi jk − 2 fki j)] +LβΦi (3.52)

2The set of first-order linear equations ∂tu = A∂xu, where u is a vector-valued function and A is a matrix, admits a characteristic
decomposition into a set of uncoupled advection equations ∂tvi = λivi with vi ∈ R and λi ∈ R, provided that A is diagonaliz-
able. Each of the vi is called a characteristic mode, and it is advected with the characteristic speed λi independently of the
remaining modes. If the boundary of a computational domain is under consideration, the set of modes can be divided into
incoming (λi > 0 on the right boundary, λi < 0 on the left boundary), outgoing (vice versa), and boundary modes (λi = 0).
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Again, restriction to spherical symmetry greatly simplifies the equations. When introducing the variable
Φ ≡ Φr in spherical polar coordinates, the evolution equations are [6, 22]:

∂tΠ = βr∂rΠ + N
[

− 1
grr

∂rΦ + Π
(Krr

grr
+

2KT

gT

)

− Φ
grr

(4 frT

gT
− 2

r
+ ∂r ln α̃

)]

(3.53)

∂tΦ = βr∂rΦ − N
[

∂rΠ + Π
( frrr

grr
− frT

gT
− 2

r
+ ∂r ln α̃

)]

+ Φ∂rβ
r (3.54)

In the same manner as for the EC system, characteristic variables can be introduced by [22]

u7 = Π +
Φ
√
grr

(3.55)

u8 = Π − Φ
√
grr

(3.56)

with speeds β − α̃gT and β + α̃gT , which are again light-cone modes, as expected.

3.2.4. The perfect fluid

A special relativistic perfect fluid, that is, a fluid without any heat transport or shear stresses, has the
energy-momentum tensor [11]

T = ρhu ⊗ u + Pg, (3.57)

where ρ is the density given in a rest frame (an orthonormal tetrad where ∂ t is parallel to the four-velocity
u), P the isotropic pressure, g the flat spacetime metric, and, given the specific internal energy ε, h =
1 + ε + P/ρ denotes the specific enthalpy. Its generalization to general relativity is straightforward.

To solve the initial-value problem, a 3+1 split is performed. It is convenient in numerical relativity to
define an Eulerian observer, that is, an observer normal to the spacelike 3-surfaces, by introduction of the
tetrad (n, ∂i) and projection of the conservation laws ∇ · J = 0 and ∇ · T = 0 onto this tetrad.

The resulting system of equations can then be brought into flux-conservative form: A differential system
with this property admits to be cast into the form

∂tw + ∂i f i(w) = s(w), (3.58)

where the state vector w is associated with fluxes f i and sources s. This form makes it explicit that a
change in the state can only occur through inflow and outflow over a differential cell boundary, or through
external forces embodied in the terms s.

For general relativistic hydrodynamics, a typical choice of conservative variables, which are the com-
ponents of the state vector w, is [23]3:

D ≡ √
gWρ (3.59)

S j ≡
√
gρhW2v j (3.60)

τ ≡ √
g(ρhW2 − P) − D (3.61)

Here, g is the determinant of the 3-metric, W = (1 − gi jv
iv j)−1/2 is the Lorentz factor, and the velocity

components vi are defined by [23]

vi =
u · ∂i

−u · n
. (3.62)

3This is the set of variables used in the Whisky code, which slightly differ from the variables in [23].

12



3.2.5 Excision and constraint-preserving boundary conditions

With the set of variables defined by eqns. (3.59-3.61), one obtains the fluxes and sources [23]

f i = α



























D
(

vi − βi/α
)

S j

(

vi − βi/α
)

+ δi
j
√
gP

τ
(

vi − βi/α
)

+
√
gPvi



























(3.63)

s = α
√
g





















0
TµνgνσΓ

σ
µ j

Tµ0∂µα − αTµνΓ0
µν





















. (3.64)

The system of equations needs to be closed by defining an equation of state P(ρ, ε). Throughout this
thesis, we will use the ideal fluid gamma law P = (Γ − 1)ρε, which neglects chemical (and nuclear)
reactions and surface effects in the perfect fluid. In specific cases, the polytropic constraint P = KρΓ is
imposed in addition to this, which yields the structure equations of homentropic stars if used on the initial
data, and of isentropic flows if used during evolution.

A serious complication arises when representing the system of equations (3.58) by finite differences
or spectral methods: this is due to the fact that the continuum perfect fluid model might develop shocks
after a finite time interval, even from smooth initial data [24]. Therefore, one must either extend the
model to avoid the crossing of characteristics, or one extends the solutions space to include weak solu-
tions, i.e. those which are consistent with an integral representation of the differential system subject to
some set of trial functions. It is clear that physically the first option is preferable, since the limitation
in predictive power from smooth initial data is a failure of our model. Indeed, the classical generaliza-
tion of the Euler equation in Newtonian gravity to include viscosity, the Navier-Stokes equation, extends
the principal part by second derivatives and transforms the Euler system, which is hyperbolic, into a
mixed hyperbolic-parabolic type, and avoids discontinuous solutions from smooth data by dissipating
high-frequency modes. However, the generalization of the Navier-Stokes equation to general relativity is
anything but obvious, since we expect any physical transport to be limited by the speed of light. Secondly,
and more importantly, fluids with low viscosity, commonly encountered in astrophysical problems, can
exhibit very steep gradients, which, to a typical discrete representation, indeed appear like a discontinuity.
These phenomena, shocks and contact discontinuities, are actually better represented when looking for
weak solutions to the Euler equations.

However, standard polynomial or spectral approximations are not sufficient to represent the partial
derivative terms in the equations if discontinuities are present, which is why high-resolution shock cap-
turing techniques are used: for a review of these methods in special or general relativistic hydrodynamics,
see [25, 26]. In short, the integral system is split into cells, and the values of the conservative variables are
represented by their cell averages. Then, the fluxes on the cell boundary are determined, direction-wise,
by considering the local Riemann problem, a solution to the idealized shock tube problem, where a fluid
in two different states, separated by a boundary layer, is observed after the layer is suddenly removed.
This Riemann problem is of an algebraic nature, in form of the Rankine-Hugoniot conditions, since the
conservation laws represent the conservation of mass, momentum and energy across each wave (shocks,
contact discontinuities, and rarefaction waves, cf. [25]), and can be solved either directly or by iterative
techniques. To improve the accuracy of the evolution in smooth parts of the solution, high-order extrap-
olation techniques, e.g. PPM or ENO, are often used to determine the initial data for the local Riemann
problem.

3.2.5. Excision and constraint-preserving boundary conditions

The initial-boundary-value problem for general relativistic evolutions is often formulated as a free evolu-
tion problem. This refers to the fact that the Hamiltonian and momentum constraints are only considered
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when constructing initial data, but not when setting boundary data. In addition, free evolution schemes
often do not actively use the constraints to solve for a part of the state vector on each time step. In these
cases, the values of the constraints can be used as rough indicators of the solution error.

If one decides to not only enforce the constraint equations on the initial data surface, but also on the
spatial domain boundaries, one requires a specific subclass of free boundary data, namely constraint-
preserving boundary conditions. We will only discuss this class in the case of the spherically symmetric
Einstein-Christoffel-Klein-Gordon system described above; for more general cases, see [27].

In the following exposition, we will follow [22]. Assume that the inner and outer boundary of a spheri-
cally symmetric domain are given by the shells r = rinner and r = router . If we model Schwarzschild black
holes with horizon-penetrating coordinate systems4, e.g. the Eddington-Finkelstein [11] or Painlevé-
Gullstrand [28, 29, 30] coordinates, the inner boundary can be positioned inside the event horizon, where
the Killing field5 ∂t is spacelike. Then, since the outgoing shell r = rinner is also spacelike in consequence,
we need to impose no boundary data on the inner boundary provided we describe the boundary in terms
of its normal characteristic decomposition. This kind of boundary is called an excision boundary [19, 20].

If the outer boundary is external to the event horizon, it is clearly timelike, and we need to impose
boundary data on the incoming modes, or on their time derivatives. However, this data is also subject to
the requirement that the inflow of Hamiltonian and momentum constraint modes is zero. In fact, there are
additional constraints in the Einstein-Christoffel system due to the first order reduction [18], such that, in
spherical symmetry, the constraints read [6]

C =
∂r frT

grrgT
− 1

2r2gT
+

frT

grrgT

(2
r
+

7 frT

2gT
− f r

rr

)

(3.65)

−KT

gT

(

Kr
r +

KT

2gT

)

+ 4πρ̃

Cr =
∂rKT

gT
+

2KT

rgT
− frT

gT

(

Kr
r +

KT

gT

)

+ 4πS r (3.66)

Crrr = ∂rgrr +
8grr frT

gT
− 2 frrr (3.67)

CrT = ∂rgT +
2gT

r
− 2 frT , (3.68)

where C is the Hamiltonian constraint, Cr the radial momentum constraint, and Crrr and CrT are additional
constraints from the definition of the first-order system. By use of the evolution equations for the grr, gT ,
KrT , and frT , eqns. (3.31-3.36), the constraints can be written as a subsidiary evolution system, which
admits a decomposition into the characteristic variables [22]

C1 = C +
Cr√
grr

(3.69)

C2 = C − Cr√
grr

(3.70)

C3 = Crrr (3.71)

C4 = CrT , (3.72)

where the modes C1 and C2 are light-cone modes with speeds β ± α̃gT , and the modes C3 and C4 are
surface modes with speed β.

4A coordinate system of a black hole spacetime is horizon-penetrating if it covers the event horizon in a smooth manner.
5A Killing vector field k satisfies Lkg = 0, i.e. it is compatible with a spacetime symmetry.
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3.3 Well-posedness, hyperbolicity, and the summation-by-parts property

From this decomposition it follows that, in a black hole setting, we have three incoming subsidiary
constraint modes C2, C3 and C4 on the outer boundary, which is generated by the Killing field ∂t. For the
boundary data data, represented by the four incoming modes u1, u2, u3, and u4 (eqns.3.31-3.36), to be on
the constraint hypersurface, we therefore require C2(u1, . . . , u4) = C3(u1, . . . , u4) = C4(u1, . . . , u4) = 0.
which leaves us with one freely specifiable incoming mode. This is easy to see from a physical point
of view as well: since spherically symmetric vacuum spacetimes are static exterior to an event horizon,
we are only left with the gauge freedom of the equation: therefore, the remaining free incoming mode is
called a gauge mode. We note that in the spherically symmetric Einstein-Klein-Gordon system, the scalar
field has an additional incoming physical mode, in our notation u8.

3.3. Well-posedness, hyperbolicity, and the summation-by-parts
property

3.3.1. Well-posedness

This short exposition is based on the textbook by Gustafsson, Kreiss, and Oliger [31]. See also [24].
The concept of well-posedness is necessary to determine the limits of predictability in a certain physical

model, and it is crucial in constructing stable numerical algorithms. Given a system of PDEs, the basic
idea is to require that solutions must be unique and depend continuously on the data. This appears a
reasonable constraint on physical models based on classical field equations, and it is an important property
if we expect discretizations of the problem to have diminishing distance (in some sense) to the exact
solution.

The definition of well-posedness, which we will only discuss for the simplest case of a one-dimensional
periodic linear problem, involves a norm on the solution space, which might be the L2 norm or something
more sophisticated involving additional weight functions. Also, the solution and data considered here
will be assumed to be C∞, but this requirement can be relaxed as well. Keeping this in mind, well-posed
systems have these properties:

Definition. Consider a system of partial differential equations on the compact interval I ⊂ R given by

∂tu = P(x, t, ∂x)u (3.73)

u(x, t0) = f (x)

where P denotes the principal symbol, t0 is the initial time, and f the initial data. This problem is called
well-posed if, for every t0 and every f ∈ C∞(x):

1. There exists a unique solution u(x, t) ∈ C∞(x, t), which is 2π-periodic in every space dimension and

2. there are constants α and K, independent of f and t0, such that

‖u(·, t)‖ ≤ Keα(t−t0 )‖ f (·)‖. (3.74)

Thus, a well-posed problem admits only solutions which are bounded by exponential growth, and which
are determined uniquely by the data. Note that the use of the exponential function is arbitrary, and another
function class could be used as well. However, the exponential function is necessary to exclude simple
low-order terms of the form ∂tu = u from consideration in proofs of well-posedness.
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3.3.2. Hyperbolicity

A hyperbolic system of PDEs is, roughly speaking, one in which only real speeds of propagation exist.
Therefore, hyperbolic PDEs admit the formulation of initial-boundary-value problems (IBVPs) by setting
data at some time t0 and determining the future development of the data, as is often required in physics.

It is convenient to define different classes of hyperbolicity in the first order form of a system of PDEs.
For the simplest case of a linear, constant coefficient problem, the classes are defined by:

Definition. Consider the linear system of partial differential equations given by

∂tu = A∂xu (3.75)

u(x, 0) = f (x)

where u ∈ Rn and A ∈ Rn × Rn. The system is called

• weakly hyperbolic, if all eigenvalues of A are real,

• strongly hyperbolic, if it is weakly hyperbolic, and if there exists a complete system of eigenvectors,

• strictly hyperbolic, if it is strongly hyperbolic, and if all eigenvalues are distinct, and finally

• symmetric hyperbolic, if it is strongly hyperbolic, and if A is Hermitian.

Note that sometimes the term symmetrizable hyperbolic is used to refer to systems where symmetric
hyperbolicity can be achieved by a change of base, using an appropriate symmetrizer H, i.e. such that H A
is Hermitian. In such a case, and also when H = 1, the quantity E =< u,Hu > built from some scalar
product < ·, · > is called the energy of the solution.

The most important property of strongly hyperbolic systems is its relation to well-posedness:

Theorem. The initial value problem for the system (3.75) is well-posed if, and only if, the system is
strongly hyperbolic.

Thus, we can reduce the analytical problem of determining well-posedness to the much simpler alge-
braical problem of performing an eigendecomposition on the principal part. This also holds if we add a
low-order term B ∈ Rn to the PDEs in the form ∂tu = A∂xu + B.

For non-constant coefficient and multi-dimensional system, the requirement “strongly hyperbolic” needs
to be restricted to “symmetric hyperbolic”. The Einstein-Christoffel-Klein-Gordon system applied in this
thesis has this property [18], and thus admits a well-posed continuum problem.

Finally, note that, while non-linear systems clearly cannot satisfy such a theorem, they at least do so
on some finite time interval. This is to be expected, since not even the existence of solutions can be
guaranteed for all times in many problems.

3.3.3. Strict stability

In a discrete approximation, there is no direct representation of the well-posedness property in the contin-
uum problem. However, another property of discrete systems can be formulated which ensures a bounded
solution in a similar manner as for the continuum problem, and, in addition, guarantees that a series
of such discrete solutions will converge to the solution of the well-posed problem for diminishing grid
spacing.

First, consider the discrete representation of the system (3.75)

vn+1 = Q(tn)vn (3.76)

v0 = f.
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3.3.4 The summation-by-parts property

We can write the solution vn+1 using the solution operator S h(t, t0) as vn+1 = S h(tn, 0)f, where h denotes
the grid spacing. Next, we need a discrete norm, which can quite generally be constructed from a bilinear
form by

‖v‖2h =< v, v >h≡ h
N

∑

i, j=1

σi jv
iv j, (3.77)

where N is the number of grid points. The form σ is called the discrete metric, and different forms of
this metric may be used depending on the problem. For the construction of the SBP operators used in
Chapter 6, diagonal and non-diagonal metrics were used.

With these notions, the strict stability property of a discrete representation of well-posed systems is
defined by:

Definition. Assume that the solution operator S (t, t0) of the continuum problem satisfies the estimate

‖S (t, t0)‖ ≤ Keα(t−t0). (3.78)

We call the difference approximation strictly stable for 0 < h ≤ h0, if there exist KS and αS such that

‖S h(t, t0)‖h ≤ KS eαS (t−t0), (3.79)

αS ≤ α + O(h).

That is, for each discrete solution, there is an exponential bound in the same way as for the continuum
system, up to O(h).

3.3.4. The summation-by-parts property

Given an interval I ⊂ R, real-valued differentiable functions u, v : I → R, and the scalar product

< u, v >≡
∫

I
u v dx (3.80)

we have the well-known integration-by-parts property of the differential operator ∂ x:

< u, ∂xv > + < v, ∂xu >= [uv]∂I (3.81)

To illustrate why this is important in the context of well-posedness, consider the symmetric hyperbolic
advection equation on the interval [0, 1]

∂tu = ∂xu (3.82)

u(0, ·) = f

u(t, x = 1) = u(t, x = 0)

with arbitrary smooth initial data. Since the symmetrizer is trivial, we have the energy E =< u, u >= u2,
and can calculate its time derivative:

∂tE = ∂t < u, u > (3.83)

= 2 < u, ∂tu >

= 2 < u, ∂xu >

= 2[u2]1
0

= 0
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In the second last step, we have made use of the integration-by-parts property of ∂ x, and in the last one
we have used the periodicity of the solution. Since the time derivative of the squared norm is zero, the
periodic advection equation is energy-conserving.

Consider, next, a semi-discrete representation of (3.82) on the grid x i ∈ I, i = {1, . . . ,N} with corre-
sponding values ui(t):

∂tu = Du (3.84)

u(0, ·) = f

uN (t) = u1(t).

Here, D ∈ RN ×RN is a discrete representation of the differential operators ∂x. The discrete version of the
energy, given some metric σ and the grid spacing h, is defined as

Eh =< u, u >h= h
N

∑

i, j=1

σi ju
iu j. (3.85)

This energy will not be conserved even for this simple problem, since the proof (3.83) has no discrete
equivalent for the integration-by-parts property. However, if the operator D is additionally constrained by
the requirement

< u,Dv >h + < v,Du >h= [uv]1
0, (3.86)

the proof can be directly transferred to the discrete system, and thus it is energy-conserving as the contin-
uum one. Such a discrete operator D is said to have the summation-by-parts (SBP) property.

Operators of this kind can be constructed by first assuming a certain metric σ, and then solving the
algebraic system (3.86). The most simple types of metrics are diagonal, and SBP operators constructed
from these metrics have, on the boundary (where they are one-sided by definition!) half the order of
accuracy as in the interior. Therefore, an operator which is, say, 8th order accurate in the interior would
only be 4th order accurate at the boundary points, and it is then denoted by D8−4. The global order of
convergence is then 4th order. In the same manner, certain non-diagonal metrics admit construction of
SBP operators which have only one order less accuracy on the boundary, say e.g. D6−5. Finally, it should
be noted that operators of higher orders are highly non-unique, and sophisticated optimization algorithms
are required to find operators with suitable properties.

3.3.5. The penalty method

If a solution is covered by several separate domains with common boundaries, e.g. in the multi-patch
approach, its discrete representation needs a stable prescription for setting boundary condition at inter-
patch boundaries. The simple advection example, again, demonstrates how this is achieved [10].

W.l.o.g. we assume the computational domain to be R, and divide it into the two semi-bounded intervals
(−∞, 0] and [0,∞). We slightly generalize the advection equation to ∂tu = Λ∂xu, and denote the solutions
on the left and right domains by ul and ur, respectively. To ensure that the boundary data from incoming
modes is set correctly, we add to the semi-discrete system two penalty terms (we assume the inter-patch
boundary point x = 0 to have the same index zero on both discrete patch representations):

∂tu
l
i = ΛDlul

i +
δi,0S l

hlσl
00

(ur
0 − ul

0) (3.87)

∂tu
r
i = ΛDrur

i +
δi,0S r

hrσr
00

(ul
0 − ur

0)
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The numbers S l and S r are parameters, which can now be constrained by the requirement that the entire
system satisfies a certain inequality for the total energy E ≡ E l + Er. This leads to certain inequalities for
S l and S r [10], which also involve the characteristic speed Λ, if one requires the penalty boundary to be
symmetric and either energy-conserving or dissipative (i.e. ∂tE ≤ 0), and the amount of dissipation can
then be controlled by one free parameter.

3.4. Cactus, Carpet and Whisky

The Cactus Computational Toolkit [1] is a computational infrastructure originally developed by members
of the Albert Einstein Institute in Golm, Germany, of Washington University in St. Louis, Missouri, and of
the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign,
for simulations of the merger of black hole binaries. The infrastructure itself, however, is based on general
concepts of code interoperability, scheduling and common interfaces, and can thus, in principle, be used
for a diverse range of applications in scientific computing.

The basic components of Cactus are a central set of services called the flesh, providing interoperability,
basic communication and profiling, and a number of user-provided modules, here named thorns. Thorns
need to adhere to a set of interface standards imposed by the flesh, and the interfaces themselves are
realized as text files in each thorns’ home directory.

A set of thorns of specific significance, denoted by the term driver, is responsible for providing services
like discrete grid structures, memory allocation, parallelization, input/output, hyperslab extraction and
interpolation. The internal administration of grid variables is thus a function provided by the driver, and
application thorns only need to take care of set-local operations. The currently implemented drivers for
finite differencing and finite volume applications are PUGH (unigrid), Carpet (domain-based adaptive
mesh refinement, multi-patch) [32] and recently also TAKA (block-structured adaptive mesh refinement,
based on SAMRAI) [33].

The flesh and driver together, in turn, provide an additional abstraction service called scheduling. Each
thorn consists of a set of functions which are read into a database of scheduling relations. A Perl-based
parser in the flesh produces an effective calling sequence of all thorn functions, and the driver then calls
the functions appropriately.

All services described so far are not restricted to a specific physical system, and in fact, the intention
is to provide with Cactus a generic set of interfaces for all types of scientific computing applications.
However, the applications realized so far are mostly in the field of numerical relativity, and as such a
number of well-tested user thorns exist for this field. The most important one is an implementation of
the BSSN system for binary black hole mergers in the thorns ADM_BSSN and BSSN_MoL, the latter
being an adaptation of ADM_BSSN to the method of lines. A number of support thorns provide important
functionality, like modules for finding apparent and event horizons (see below), modules for calculating
the constraints and setting physical boundary conditions, extracting gravitational waves and so on.

The Whisky code [34] is an implementation of general relativistic hydrodynamics for the Cactus in-
frastructure, and was planned and developed in the context of the EU network program on Sources of
Gravitational Waves mostly by Luca Baiotti, Ian Hawke, Pedro Montero and Luciano Rezzolla. Whisky
uses high-resolution shock-capturing methods to handle the development and propagation of shocks accu-
rately. In addition, Nikolaos Stergioulas has implemented an interface for his initial data solver for rotating
neutron stars (SF, here also called RNS) into Whisky. Together with an interface between Whisky and
BSSN_MoL it is then possible to evolve the full system of general relativistic hydrodynamics, and in-
vestigate e.g. the collapse of rotating neutron stars, including horizon dynamics and gravitational wave
emission.

Recent efforts to improve the numerical stability of single and binary black hole evolutions have led to
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the development of an infrastructure to implement a multi-patch or multi-block grid setup. This includes
an appropriate driver, here Carpet, and a number of additional thorns which represent the SBP derivative
and dissipation operators, the penalty boundary conditions and the characteristic structure associated with
the hyperbolic evolution system. 6

In this chapter, we will shortly describe the functionality provided by each of these components.

3.4.1. The Cactus Computational Toolkit

Cactus has been developed and maintained by a large number of people: the Cactus code server [1] has
an incomplete list of contributors. As a core system for scientific applications, Cactus is intended as a
community effort, not exclusively for numerical relativity, but in practice still mainly so.

From the perspective of a user of this toolkit, which will be our preferred one here, Cactus and some
driver provide a computational grid, together with parallelization and input/output of data. The user then,
in turn, provides a number of modules which specify the grid variables, initial data, evolution system,
physical boundary conditions and runtime data analysis functionality. Each such thorn module has an
interface to the core system, realized in text files written in the Cactus configuration language, or CCL.
The file interface.ccl specifies variable declarations needed by the thorn, and function interfaces between
different thorns. The file schedule.ccl attaches to functions a scheduling relationship, which is evaluated
later in the flesh to generate global relationships between the code’s functions. Finally, the file param.ccl
declares parameters to steer the thorn’s functionality during runtime by the parameter text file, or even by
other thorns or web interfaces.

Thorns may be written in C, C++, Fortran 77 and Fortran 90, and the actual configuration of thorns used
in practical application is indeed a mixture of the different programming languages. Cactus has a stan-
dard interface for passing data and aliasing functions between the source files in different programming
languages.

3.4.2. The PUGH driver

The first, and at the time the author started his PhD work only, available driver for Cactus was PUGH, a
unigrid7 driver written entirely in C by Gabrielle Allen, Tom Goodale, Thomas Radke, Matei Ripeanu and
Paul Walker. PUGH provides a single, three-dimensional grid with a simple domain-based parallelization
and ghost zones8. The driver is, after a number of optimizations, rather efficient and has been shown to
scale to over 1000 processes [35]. PUGH has been used in numerical relativity applications like single
[4, 36, 37] and binary black evolutions [38], and the collapse of rotating neutron stars [39]. Today, this
driver is mostly superseded by Carpet.

3.4.3. The Carpet driver

Carpet, written by Erik Schnetter and Thomas Radke, is an implementation of domain-based adaptive
mesh refinement for Cactus, based on an earlier C++ library by Erik Schnetter. The total coordinate
domain, which is assumed to be of rectangular shape, is represented by several levels of increasing res-
olution called refinement levels, and each such level contains a number of Cartesian grids (patches or

6There is also another multi-patch implementation for Cactus: it has been developed by Jonathan Thornburg and uses the
standard BSSN_MoL thorn and its regular derivative operators. The grid patches are overlapping, and interpolation is used
to obtain the ghost zone values.

7We will denote with the term unigrid a discrete grid setup based on a sampling with constant distances.
8Ghost zones are additional computational cells extending beyond the proper domain of computation to provide finite-difference

operators with centered stencils with the required data. The data is either filled by synchronization with other processes (for
domain-based parallelization), or by physical boundary conditions.
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3.4.3 The Carpet driver

components) which, together, form the computational domain on the sub-levels. Consistency between the
data representation on the levels is achieved by the standard techniques of prolongation and restriction
[40], which are interpolation operations in time and space. Details of the implementation can be found in
[41].

The driver uses non-global time stepping, that is, finer resolved grid components are evolved more often,
subject to the same Courant factor, than coarser ones. In all application cases presented here the relative
factor of resolution between refinement levels is 2, so that the refinement level n + 1 is evolved twice as
often as the level n.

The hierarchical sequence of time evolution steps in Carpet first involves the coarsest refinement level,
and then successively the finer levels, which obtain boundary conditions from the evolution of the coarser
ones by prolongation. If a solution value has been set at the same coordinate location, but on different
refinement levels, each coarser level’s value is replaced by restriction from the finer levels. In this way the
grid hierarchy is traversed down, including prolongation, and up, including restriction.

The currently available restriction operation is a simple copy operation, which proves to be sufficient in
practice. Prolongation is a more delicate issue, especially when possibly non-continuous grid functions
are involved, as is the case with shocks in hydrodynamics. Therefore, Carpet provides a number of high-
order ENO interpolators implemented into Carpet by Ian Hawke. These operators work equally well with
the spacetime variables, since they reduce to standard high-order polynomial interpolations in smooth
parts of the solution9 .

Carpet makes use of the concept of buffer zones to evolve hyperbolic systems. Since each point has a
certain past domain of dependence, which, for numerical stability, is contained in the past Courant cone,
the stencil of an evolution method will determine the size of the discrete future domain of determinacy of
some time slice. For any time integrator using sub-time steps, like e.g. the Runge-Kutta class of integra-
tors, the points outside the domain of determinacy are not filled by prolongation, but are understood as
buffer zones, which are then obtained by prolongation after the whole time step is calculated. This method
has been found to perform well [41]. As a consequence of this, a typical evolution stencil for general rel-
ativistic hydrodynamics with the PPM method (seven points) will need six buffer zones with a three-step
time integrator. This has to be considered when determining the effective size of grid components.

Like every Cactus driver, Carpet has parallelization services. It makes use of the MPI standard, which
often also provides a shared memory implementation on appropriate machines. Each refinement level is
distributed via standard domain decomposition, which makes it necessary to communicate the prolonga-
tion results between processes. The performance of Carpet with a single refinement level was significantly
inferior to PUGH beyond 16 processes for a long time, until a more efficient MPI communication scheme
by collecting packages was implemented recently. Now Carpet scales well beyond 64 processes. However,
with a mesh-refined grid, it is always preferable to make use of machines with fewer, faster processors.

From the perspective of a thorn using Carpet, all grid components appear as unigrids with ghost zones.
Therefore, code written to run with PUGH will often without effort work with Carpet as well, at least as
long as it performs local operations. Global code, like e.g. elliptic solvers, is more difficult to port to
Carpet, and indeed there is no elliptic solver right now for Carpet, although there is one for PUGH.

Recently, Carpet has been extended to support multi-patch grids, i.e. grids where each refinement level
is logically composed of several independent components, but their topological relationship is determined
by application thorns. These extensions were done in the general efforts to achieve stable and accurate
evolutions of black holes, and are only a part of the multi-patch infrastructure.

Output is available in two variants: either as explicit ASCII tables, including global reductions like
norms and extrema, and data sections along the coordinate axes, or as three-dimensional binary data in

9The geometric quantities will typically be smooth functions of the coordinates, but inappropriate choices of gauge can intro-
duce non-differentiability or discontinuity.
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the HDF5 format. Visualization tools such as OpenDX or Amira have custom import modules for Carpet
data. OpenDX also contains a module to import multi-patch output from Carpet.

3.4.4. Thorns for numerical relativity

These set of thorns include the NOK-BSSN system module BSSN_MoL, tools for finding apparent and
event horizons (see below), setting gauge conditions, calculating the constraints and performing simple
versions of black-hole excision. We will describe four thorns of this set which are most relevant to black
hole formation.

The most important module is BSSN_MoL: the stable evolution of black holes has, over years of expe-
rience, turned out to be a challenging task, and it must still be considered an unsolved problem. However,
significant advances in evolution time for single and binary black holes have been achieved by the use
of the BSSN formulation and a set of specific gauge conditions [15, 37]. These are implemented in
BSSN_MoL, and also a number of modifications which improve numerical stability in several situations.
The module has been tested over many years in diverse applications in numerical relativity. It might be
replaced at some point by the HyperGR code, which uses a first order formulation of Einstein’s equa-
tions and supports the multi-patch infrastructure of Carpet, but right now all practical applications use
BSSN_MoL.

When dealing with gravitational collapse, horizons are clearly the most important geometrical quantity,
since they are used for defining black holes. The most important practical difference between the event
horizon of a black hole and an apparent horizon is that an event horizon is a null surface only defined in the
context of the global structure of space-time, while apparent horizons, which approximate event horizons
after a newly formed black hole has settled down, are defined locally, by the expansion or contraction of
null rays crossing the surface under consideration. Strictly speaking, the Cactus module AHFinderDirect
written by Jonathan Thornburg [42], which, starting from an initial guess, evaluates the total expansion of
outgoing null geodesics of surfaces, and thus defines an iterative process to obtain surfaces of vanishing
outgoing expansion, can only identify marginally trapped surfaces, a superset of apparent horizons, but
if one assumes to cover all such surfaces by this process, the outermost surface found is also an apparent
horizon. This assumption is often made in practice. These surfaces can define a foliation of a marginally
trapped tube, and depending on whether this tube is timelike, null, or spacelike, timelike membranes,
isolated and dynamical horizons can be identified as well. For details on the different definitions of
horizons and their relation see [3, 43].

The classical definition of black holes is by the event horizon, and since it is global, it can be obtained
only after evolving a system long enough that it reaches a state near stationarity. If that is achieved, the
EHFinder by Peter Diener [44] is able to use three-dimensional output from the computational domain
to find approximations of event horizons, assuming that the exterior spacetime is asymptotically flat and
close to Schwarzschild. The method proceeds by injecting null surfaces into the domain, starting from
some guess in the future and propagating back in time. At least 30 to 50 M of near-stationary evolutions
is needed to recognize an event horizon with some certainty. Given the numerical stability problems with
evolving black holes, this is barely enough for neutron star collapse simulations, but not enough for binary
black hole mergers, collapsars or more complicated channels of collapse like the fragmentation described
in this thesis, at least with the numerical techniques currently implemented in Cactus.

Simple versions of excision are also implemented in a set of thorns [4]. A global mask can be set to
define the excised region; this would typically be done by an apparent horizon finder. The evolution thorns
then have to be aware of this mask, and approximate outgoing boundary conditions are set by the excision
thorns, under the assumption that the boundary is indeed outflow. It turns out in practice that this approach
only performs well in very controlled situations, like in the case of a single, non-rotating, stationary black
hole, but tends to fail in more complicated scenarios.
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3.4.5. The Whisky code

To simulate astrophysical scenarios beyond black hole dynamics, the EU network program on Sources of
Gravitational Waves has supported a project to develop an implementation of general relativistic hydrody-
namics for the Cactus infrastructure. The resulting set of Fortran 90 thorns, called the Whisky code [34],
was planned and developed mostly by Luca Baiotti, Ian Hawke, Pedro Montero and Luciano Rezzolla.

Whisky is based exclusively on the finite volume model, and uses high-resolution shock-capturing tech-
niques, specifically also the PPM and ENO reconstruction methods and the Marquina approximate Rie-
mann solver. This allows to investigate astrophysical systems involving shocks (core collapse, jets), but it
is also easily applicable if the solution is mostly smooth (neutron star collapse, supermassive star collapse,
stellar oscillations). Since all methods are grid-local, Whisky directly ports to Carpet as well.

Because axisymmetric, rotating stars are a typical system under consideration, Nikolaos Stergioulas
has implemented a version of his SF/RNS code in Whisky. This code [45, 46] generates models of uni-
formly rotating barotropes10 in general relativistic equilibrium by means of the KEH (Komatsu, Eriguchi,
Hachisu) iterative scheme [47, 47], including the compactification of the radial domain suggested by
Cook, Shapiro, Teukolsky [48] and some additional modifications (see [46]). The Whisky version of
SF/RNS can also generate differentially rotating equilibrium polytropes.

One of the first and most significant application of Cactus/Carpet/Whisky is the simulation of the col-
lapse of unstable rotating neutron stars to black holes, including analyzing the dynamics of dynamical and
event horizons [39] and the extraction of gravitational wave signatures from this process [49]. A first set
of code tests has been published in [50]. Recent efforts also aim to apply this code to core collapse, stellar
oscillations, and, in this thesis, black hole formation by fragmentation.

3.4.6. Mode extraction

If a star develops non-axisymmetric instabilities, one convenient way to analyze the mode growth is by
Fourier decomposition of the density function on certain coordinate radii [51]. This allows to find growth
times, frequencies and pattern speeds of a mode while its development is almost linear. An implementation
in Cactus has been provided by Ian Hawke, which makes use of the interpolator interface provided by
Carpet to obtain the appropriate density projections, and their Fourier components, at a set of coordinate
radii in the equatorial plane defined by the user.

3.4.7. Solution-adaptive mesh refinement

While Carpet has the internal capabilities to generate and move grid components on refinement levels,
it is the user’s task to define grid hierarchies in a manner well-suited to the solution. For a central col-
lapse problem, like core collapse or supermassive star collapse, one option is to use progressive mesh
refinement, where the maximum of the density is used to switch on additional refinement levels in the
center.

An extension of this method to the fragmentation problem presented in Chapter 5 has been implemented
by the author. Here, the location of the global maximum of the rest-mass density is obtained from Whisky
by reduction operations, and the refinement steering module then instructs Carpet to center a hierarchy
of components, with a number of refinement levels determined by the maximum value of density as in
progressive mesh refinement, on the location of the maximum. For a fragmentation, this means that, as
the fragment collapses and moves across the grid, it is tracked by an increasingly better resolved number
of additional grid components.

10A barotrope is a star which satisfies a relation P = P(ρ), where P is the pressure and ρ is the rest-mass density.
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4. Code tests

Cactus, BSSN_MoL, Whisky and Carpet are a well-tested set of tools, and have been used for publication-
quality results for several years now (see references in Section 3.4). In this section, a number of additional
tests of the non-linear evolution of selected systems is presented to highlight certain aspects and limitations
of the code’s performance.

First, results from unigrid evolutions with the PUGH driver are presented, specifically focusing on the
evolutions of uniformly rotating neutron stars1, in Section 4.1. The collapse of these stars to black holes
is studied in Section 4.2, with a specific focus on the typical phenomenology (“collapse of the lapse”) and
the numerical difficulties associated with the development of NaNs2.

In Section 4.3, we shortly discuss the outcome of a failed experiment by the author to follow the collapse
of iron cores or supermassive stars by using the gauge freedom in the shift vector on a uniform grid, at a
time when Carpet was not yet available. And finally, in Section 4.4, Carpet is tested in several settings,
namely a special relativistic shock tube, the evolution of a TOV solution, and the evolution of uniformly
rotating neutron stars provided by SF/RNS.

4.1. Rotating neutron stars on a uniform grid

The term unigrid was already introduced in the description of the PUGH driver for Cactus in 3.4.2. For
our purposes, it is a uniform Cartesian grid in coordinate space, and our typical choices of gauge are
asymptotically flat in the naïve sense: that is, the spacetime metric reduces to ds2 = dt2 + dx2 + dy2 + dz2

at spacelike infinity. This provides a good amount of flexibility for describing a large number of systems,
including single and binary stars, but has also the disadvantage that the coordinate lines are hard to adapt
to certain spacelike Killing vectors, if present, in the initial data. Specifically, a neutron star will be
approximately spherically symmetric or axisymmetric, and a typical excision surface of a black hole is
also spherical.

The uniformity property of the grid means fixed distances between grid points. While this clearly applies
only to coordinate space, adaptivity by choice of gauge turns out to be difficult in practice. A specific
example of this will be provided in 4.3, but most generally it is clear that a unigrid, by its very nature,
does not support the operation of smoothly inserting points between existing ones, which is exactly what
mesh refinement will admit. Some simple systems are not greatly troubled by this, but most are: this is
specifically true in general relativistic simulations, where the outer boundary conditions are often wave-
like conditions assuming a background close to Schwarzschild. A mesh refinement technique, even when
not applied to the support3 of the density function, can greatly reduce computational cost by extending the
location of the matching hypersurface between the computational domain and the external Schwarzschild
background.

However, while grid adaptivity is essential for the three-dimensional representation of systems like core

1We will sometimes use the terms polytropes and neutron stars interchangeably, as it is customary in numerical relativity. It
should be obvious that in both cases we refer to models, not to an actual physical object.

2The term NaN or not a number specifies an undefined state of the finite representation of real numbers. Typically, NaNs are
produced by either division by zero, or by trying to construct numbers beyond the domain of the finite representation.

3The support of a real function is the set closure of arguments not mapped to zero.
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collapse, at least with present-day computational resources, this is not necessarily so for systems like
neutron stars and black holes, where the dynamical processes have a limited range of scales. Specifically,
the proper areal radius of a collapsing neutron star only reduces by a factor of ≈ 10 when it collapses to a
black hole, at least from the point of view of a distant observer, so there is reasonable hope to handle this
process with unigrids. There is ample use of three-dimensional unigrids in the literature, for systems like
single black holes (e.g. [52] and references therein), neutron stars ([53] and references) and gravitational
collapse ([39] and references).

Before one turns to black hole formation, however, one would like to gain experience with the numerical
tools at hand by consideration of stationary systems. The most natural choice are neutron stars and black
holes, since they are compact, relativistic objects. Since black holes must be treated with excision or
singularity-avoiding coordinates, neutron stars are, in a numerical sense, simpler systems. Here and in all
what follows, our model of a neutron star will be a polytrope. The perturbative stability of these equilibria
has been investigated with linear methods in spherical symmetry and in uniform rotation [54, 55, 56],
so that one has reasonable hope to use them as a numerical test-bed. If an equilibrium configuration is
expected to be stable, the numerical scheme should converge to a stable solution, where each discrete
representation exhibits oscillations around some equilibrium state, and possibly an additional linear drift.

In this section we will turn to the performance of Whisky in evolving stationary, rotating neutron stars.
Some equivalent results were published in [39], but the author would like to take the opportunity to
enlighten some aspects of this comparatively simple system which are not elaborated on in detail in that
publication.

Let us first fix the parameters of the polytrope. A commonly used model for a testbed calculation is
obtained from the choice K = 100[P]/[ρ]Γ and Γ = 2. We will not argue for its proximity to realistic neu-
tron star models here, although the stiffness of the equation of state and resulting masses are more or less
in the expected range. We will only need its stability properties: For non-rotating and uniformly rotating
sequences, the graphs M(e0) relating the gravitational mass to the central energy density can be found e.g.
in [39], and the graphs clearly indicate a turning point around e0 ≈ 4 ·10−3. From the turning point method
[57] it follows that the non-rotating model has a neutral radial fundamental mode for dynamical stability
at the turning point. Perturbative studies [58, 59, 60] indicate that the low-density branch is stable, while
the high-density branch is not. For the rotating models we note that the convenient criterion provided
by the Friedman-Ipser-Sorkin theorem [61] only applies to secular stability, but numerical evidence [62]
indicates that the neutral point for the quasi-radial fundamental mode is not far from the turning point.
Finally, the stability of non-axisymmetric modes is unclear, but since the equation of state is quite stiff,
there is hope that some indication can be gained from properties of the Maclaurin spheroids, which are dy-
namically stable for any T/|W | below some critical value, which is not attained below the mass-shedding
sequence. Numerical evidence, again, [63, 64] shows that general relativity and inhomogeneity do not
greatly affect this conclusion, and it is therefore that we expect the uniformly rotating polytropes used
here to be stable.

A typical initial model constructed in this way is shown in figures 4.1 and 4.2, and the corresponding
parameters and integral quantities can be found in table 4.1. This specific model is not near the mass-
shedding sequence, as the quantity Ω/ΩK , which is the ratio of angular velocity over the limit angular
velocity defined by Keplerian motion on the equator, is only ≈ 0.4. However, even this moderate amount
of rotation can lead to numerical problems, as is indicated in figure 4.3. In this plot, the maximum of the
density is displayed over time. While the choice of gauge is of course arbitrary, the choice β i = 0 quickly
leads to a numerical instability4 by a coordinate distortion phenomenon commonly called grid stretching,

4We note here that in the context of evolutions with BSSN_MoL the term numerical instability is used in opposition to physical
instability, and as such also includes instabilities caused by motions from the constraint surface, or by an ill-posed continuum
formulation.
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4.1 Rotating neutron stars on a uniform grid
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Figure 4.1.: Density profiles in x and z direction of a moderately fast rotating neutron star (see Table 4.1)
constructed by the equilibrium solver RNS. In the mapping from RNS to Cactus, the z axis generally coincides
with the axis of symmetry, while the x and y axes are located in the equatorial plane.
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Figure 4.2.: ∂y velocity profile in x direction of a rotating neutron star constructed by RNS.
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Polytropic K K 100
Polytropic Γ Γ 2
Central rest-mass density ρc 10−3

Central rest-frame energy density ec 1.100 10−3

ADM mass M 1.3331
Rest mass M0 1.4222
Equatorial proper radius Re 10.611
Axes ratio rp/re 0.9
Equatorial compactness Re/M 7.9595
Total angular momentum J 0.58908
Normalized angular momentum J/M2 0.33148
Kinetic over potential energy T/|W | 2.4366 10−2

Equatorial surface angular velocity Ω 1.3257 10−2

Equatorial surface Keplerian angular velocity ΩK 3.3426 10−2

Mass shedding factor Ω/ΩK 0.3966

Table 4.1.: Parameters and integral quantities of a stable rotating neutron star. The quantities are all measured
in units of K = 100 and G = c = 1. Note that K, Γ, ρc and rp/re are parameters, and as such exact.
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Figure 4.3.: Evolution of the maximum of the density of the rotating neutron star model defined in table 4.1
with different numerical setups. The figure caption denotes the number of grid points used, and the location of
the outer boundary rmax with respect to the stellar surface rstar. The first graph uses a zero shift function, while
the second and third one make use of a outer boundary close to the stellar surface. Both quickly encounter
numerical instabilities, which can be partially avoided by shifting the outer boundary to about 1.5 times the
stellar radius. The unit of time can be converted to seconds by a choice M = M� ≈ 5µs.
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Figure 4.4.: Evolution of the 3-metric component gxy along the x axis with time, for a rotating neutron star
with the gauge choice βi = 0. The dragging of inertial frames caused by the rotating, relativistic star introduces
grid stretching and, finally, a numerical instability. Note that the outer boundary of the computational domain
is slightly beyond the diagram abscissa, at xouter = 12.

which is apparent in the temporal evolution of the metric function gxy in figure 4.4. The function is
initially zero as a consequence of the gauge choice in RNS, but since the gauge β i = 0 is not adopted to
the Killing field ∂φ, the metric function changes over time. At late times, the interaction with the outer
boundary introduces oscillations and a numerical instability. The plots in Figure 4.3 make it clear that
the location of the outer grid boundary suppresses a numerical instability in the system, which is possibly
introduced by the use of ill-posed boundary conditions on the surface of the computational domain.

Since M� ≈ 5 µs [11], the coordinate time ≈ 2000M relates to an asymptotic observer time of ≈ 14ms
for a neutron star of mass 1.4 M�. It may be possible to improve on this by shifting the outer boundary and
increasing resolution, but if long-term stability, as opposed to dynamical processes, is under consideration,
methods involving solution-adapted grid geometries, higher accuracy, and stable discrete representations
have clear advantages.

4.2. Rotating neutron star collapse on a uniform grid

A primary objective of this thesis is to study gravitational collapse and black hole formation. A compar-
atively simple test system for this is the collapse of an axisymmetric equilibrium polytrope in a unigrid
evolution using BSSN_MoL and Whisky. This system is specifically interesting since it shows a number
of typical features and problems encountered also in the more complex collapse situations discussed later.
We note that a more extensive study of this system with the same set of evolutionary tools is presented in
[39, 49].

To initiate collapse, an unstable stellar model needs to be set up. The Friedman-Ipser-Sorkin turning
point theorem [61] states that in axisymmetric, general relativistic equilibrium polytropes, an extremum
of the function M(λ), for a sequence constrained to J = const and parameterized by λ, indicates a change
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Stable model Unstable model
Polytropic K K 100 100
Polytropic Γ Γ 2 2
Central rest-mass density ρc 10−3 8 · 10−3

Central rest-frame energy density ec 1.100 10−3 1.440 · 10−2

ADM mass M 1.3331 1.4858
Rest mass M0 1.4222 1.5741
Equatorial proper radius Re 10.611 6.0976
Axes ratio Rp/Re 0.9 0.9
Equatorial compactness Re/M 7.9595 4.1039
Total angular momentum J 0.58908 0.616469
Normalized angular momentum J/M2 0.33148 0.27924
Kinetic over potential energy T/|W | 2.4366 10−2 1.9424 · 10−2

Equatorial surface angular velocity Ω 1.3257 10−2 3.4482 · 10−2

Equatorial surface Keplerian angular velocity ΩK 3.3426 10−2 7.9344 · 10−2

Mass shedding factor Ω/ΩK 0.3966 0.4346

Table 4.2.: Parameters and integral quantities of a rotating neutron star on the unstable branch (last column).
The quantities are all measured in units of K = 100 and G = c = 1. Note that K, Γ, ρc and Rp/Re are
parameters, and as such exact. For comparison, the third column shows the parameters of the stable model in
Table 4.1.

in secular stability.
A few qualifications are appropriate here: (a) the Friedman–Ipser–Sorkin theorem is only valid in some

open interval containing the extremum λ0, (b) the neutral mode of dynamical stability may be different
from λ0 for rotating models, and (c) the unstable model has evolutionary channels to stable models, which
is typically not the case for accretion-induced collapse. (a) and (b) are limitations of the applicability of
the theorem, which will make numerical experiments necessary in practice. Results of such experiments,
e.g. in [39], have shown that for uniformly rotating, stiff (Γ = 2) configurations, the turning point criterion
is reasonably applicable to the stability of the fundamental p mode5 as well. The limitation (c) refers
to the fact that the evolution of the system can proceed to another model with the same mass on the
stable branch (e.g. [57]); however, in accretion-induced collapse, the star will evolve close to a stable
equilibrium branch, until it obtains its maximum equilibrium mass and encounters a dynamical instability
which leads inevitably to black hole formation. Since a sequence of numerical models can approach the
sequence maximum arbitrarily with sufficient resolution, such a sequence of simulations would converge
to the neutral model applicable to accretion-induced collapse situations.

The equilibrium quantities of the model constructed for this series of tests are displayed in table 4.2,
and it has been checked that the model is on the unstable branch. There are now two distinct possibilities
to perturb the model out of its continuum equilibrium limit: (i) We make use of the fact that the sequence
of discrete models limiting in the continuous equilibrium fails to be in discrete equilibrium, or (ii) we
impose a certain perturbation function to the model. Possibility (i) has the advantage that — assuming
momentarily that the system is stable and well-posed — the set of discrete evolutions naturally converges

5The classification of oscillations of spherical stars into f, p and g modes has been introduced by Cowling [65]. The p modes are
dominated by pressure perturbations, and their fundamental has a spherical harmonic index ` = 0, i.e. it is purely radial. On
a sequence of slowly rotating stars smoothly limiting in a non-rotating model, the associated modes of oscillations limiting
in the p mode of the non-rotating member are then often also called p modes.
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4.2 Rotating neutron star collapse on a uniform grid

to a solution satisfying the geometric constraints. However, there are two disadvantages of (i): Firstly,
since there is almost no control over the perturbation function, which has to be considered a numerical
artefact, the system might as well expand to another stable equilibrium, a process sometimes called migra-
tion (e.g. [50]). Secondly, again assuming well-posedness, the system does not converge to a collapsing
or migrating neutron star, but rather to a stationary star without further dynamics. Possibility (ii) has the
advantage that we can control the perturbation function, but the disadvantage that the perturbation might
be constraint-violating. As long as it is kept small, however, there is no significant concern related to this,
since any discrete representation of free evolution will bring about a certain level of constraint violation.
It is possible to project the set of perturbations to the constraint surface, or, alternatively, to reduce the
perturbation amplitude with resolution. In the latter case, the limit system is again stationary, while in
the former case the limit is a collapsing or migrating continuum star. In both cases, however, the induced
perturbation permits control over the numerical artefact of discrete symmetry violation, and therefore the
author suggests that possibility (ii) is preferable.

Here, a density perturbation function of the form

ρ(P)→ ρ(P) + Aρc
sin(πr(P)/re)

re
(4.1)

is applied, where A denotes the amplitude of the perturbation (in our case A = 10−2), ρc the central
density, r(P) the coordinate radius of the event P and re the coordinate equatorial radius of the star. The
perturbed initial model thus specified is evolved using different grid resolutions, with a common outer
boundary location at 6M. Since the outer boundary is close to the star due to unigrid constraints, it has to
be expected that improper boundary conditions will affect the evolution to some extent.

The resolutions chosen for these tests are ∆x = ∆y = ∆z = 0.3M, 0.2M, 0.15M, 0.1M, and 0.075M.
No grid symmetry is assumed. Excision has not been applied in these early set of tests. As a choice of
gauge, the initial values of lapse and shift are given by RNS, while subsequently the shift is kept fixed and
the lapse function is given by the “1+log” approximation to maximal slicing [66]. The time evolution of
the central density and lapse is shown in Figure 4.5, and it is clear from these plots that the star evolves
to high central density and vanishing central lapse. The simulations all terminate around t ≈ 50 with
the appearance of NaNs, which is first and foremost a resolution issue (more details below). From these
graphs it is found that, while a very low resolution of 0.3M yields qualitatively correct results, reasonable
relative accuracy of better than 10% is only achieved for ∆x < 0.15M.

The collapse of the lapse is associated with regions of high curvature; this observation comes from
the well-known property of maximal slices, i.e. those spacelike hypersurface with vanishing trace of the
extrinsic curvature, that singular spacelike boundaries of the spacetime manifold are approached asymp-
totically. While this is no proof that a black hole has formed, it is indeed a good indicator, unless we
expect the spacetime to obtain non-singular regions of extreme curvature not covered by an event horizon.
There is, however, another tool available: The singularity theorem by Penrose [3] states that a spacetime
cannot be null geodesically complete if (i) the null projection of the Ricci tensor is positive semi-definite,
(ii) there exists a non-compact Cauchy surface6 and (iii) there exists a closed trapped surface. Condition
(i) is true for hydrodynamics with positive pressure, and condition (iii) can be tested by an “apparent
horizon” finder, which actually solves for surfaces of vanishing momentary outgoing null expansion, i.e.
marginally trapped surfaces. Condition (ii) is more involved since the initial spacelike slice containing the
star, while certainly non-compact, may or may not be Cauchy. Starting from smooth initial data covering
a spacelike hypersurface containing the entire star up to spacelike infinity, the spacetime may develop a

6A Cauchy surface is a spacelike hypersurface from which, given appropriate data, the entire spacetime can be constructed. A
spacetime which admits a Cauchy surface is globally hyperbolic.
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Figure 4.5.: Collapse of an unstable, uniformly rotating neutron star (see Table 4.2): Evolution of the central
density ρc (top) and lapse function αc (bottom) for different uniform (∆x = ∆y = ∆z) grid resolutions.
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4.2 Rotating neutron star collapse on a uniform grid

Cauchy horizon7 . Recent studies of the stability of Cauchy horizons in Reissner-Nordstrom spacetimes8

([68] and references therein) seem to indicate that it is indeed singular, but it also is apparent that ob-
servers passing the horizon will observe finite tidal forces [69]. The situation is completely unclear for
Kerr or more general black hole spacetimes, and it is therefore that the implications of Penrose’s theo-
rem have to be considered with some care.9 However, if we assume a singularity or a Cauchy horizon
is always covered by an event horizon (the first part of this statement is the content of the weak cosmic
censorship conjecture [3]) then we can make use of trapped surfaces to indicate black hole formation. To
some extent, operational notions of black holes can even be built out of locally defined surfaces instead
of event horizons, e.g. in the framework of trapping [70], isolated [71] and dynamical [72] horizons, or
their generalization, the marginally trapped tubes [73].

In the spacetimes constructed in these tests, the Cactus module AHFinderDirect has been used to locate
trapped surfaces, which, in the usual language of numerical relativity, we will assume to be apparent
horizons. The angular average of the coordinate radius and areal mass of the horizon found here, for
different grid resolutions, is shown in Figure 4.6. On a certain time surface the apparent horizon is found
for the first time, and then subsequently accretes matter from the star. After the mass of the star is located
almost entirely inside the horizon, the system settles down, under the assumptions stated above, to an
isolated horizon of the expected mass.

The time evolution of a number of grid functions is shown in part in Figures 4.7 and 4.8. All profiles
are taken from the highest resolution case with ∆x = 0.075M, and are extracted along the x axis (which is
contained in the initial equatorial symmetry plane and intersects the axis defined by the initial ∂φ Killing
field10 of the star). Shown are the rest-mass density ρ, the 3-metric component gxx , the lapse function
α and the Hamiltonian constraint H. The density profile exhibits a collapse behaviour. It is apparent in
Figure 4.5, that at late times the collapse seems halted. The density profiles at t = 50 and t = 55 hardly
differ. A look at the lapse function in Figure 4.8 explains this behaviour: At t = 50, the apparent horizon
is located at approximately x = 4 (see Figure 4.6), and inside the black hole the lapse function is almost
zero. This corresponds, for an infalling observer, to a reduction in the ratio of proper to coordinate time,
and thus, while any comoving observer measures an exponentially growing unstable mode, the choice of
coordinates entails an equally exponentially growing collapse of the lapse. In effect, the evolution inside
the black hole is almost frozen. A look at the evolution of the metric in Figure 4.7, however, indicates the
disadvantages of this choice of gauge. At late times, the region around the horizon expands in response
to the “1+log” lapse. Immediately within the horizon, high-frequency noise in the Hamiltonian constraint
violation in Figure 4.8 indicates an instability, and shortly afterwards NaNs terminate the simulation.

There are several ways imaginable to address this problem. One might immediately think of using more
grid points in the region around and inside the event horizon. However, a practical difficulty with this
suggestion is that the growth of the metric profile is super-linear, and thus the requirements in resources are
likely too severe. Also, this depends crucially on the question whether the numerical system is ill-posed
or not: if it is ill-posed, no simple strategy but changing the continuum system will alleviate the issues.
One possible change is the introduction of an excision boundary. The basic idea behind excision has
already been mentioned in Section 3.2. An excision surface must necessarily be outflow, since otherwise
we are forced to impose boundary conditions on it — a failure to do so would lead to ill-posedness. The
outflow property is only defined for sufficiently, i.e. strongly, strictly or symmetric, hyperbolic systems,

7A Cauchy horizon is a limit of predictability, see [67].
8The Reissner-Nordstrom geometry models black holes with charge. Its structure interior of the event horizon is vastly different

from the Schwarzschild black hole, which also applies to the idealized rotating black hole (Kerr geometry).
9A variation has been provided by Hawking and Penrose [3] which avoids global hyperbolicity and replaces it with a number

of causality assumptions.
10Note that the tangential vectors associated with coordinates are derivatives, i.e. ∂φ is the basis vector associated with the

angular coordinate φ.
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Figure 4.6.: Collapse of an unstable, uniformly rotating neutron star (see Table 4.2): Apparent horizon (an-
gular average of the) coordinate radius (top) and areal mass (bottom) over coordinate time, for different grid
resolutions.
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Figure 4.7.: Collapse of an unstable, uniformly rotating neutron star (see Table 4.2): Time evolution of the x
axis profiles of the density ρ (top) and gxx (bottom) for the highest resolution case ∆x = 0.075M.
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Figure 4.8.: Collapse of an unstable, uniformly rotating neutron star (see Table 4.2): Time evolution of the x
axis profiles of the lapse function α (top) and the Hamiltonian constraint H (bottom), for the highest resolution
case ∆x = 0.075M.

36



4.3 A failed experiment: Core collapse with adaptive shift

preferably with “physical” speeds of propagation limited by the speed of light. The simple kind of excision
boundaries available in Cactus are insufficient to render the evolution in the example presented here stable.

It is worthwhile to take a moment and stress the difficulties this type of problem presents for evolutions
of gravitational wave sources. One of the main applications of GRHD simulations is certainly the predic-
tion of gravitational wave signatures from certain astrophysical models. It is in the nature of gravitational
waves that they are only well defined far from a dynamical source (as perturbations of a background
spacetime), which requires the domain of simulation to extent far enough into the local wave zone [8]
of the source. This can, in principle, be achieved by mesh refinement or more advanced techniques like
Cauchy–perturbative [74, 75, 76, 77] or Cauchy–characteristic [78, 79, 80] matching. However, if the
simulation can not evolve a black hole stably, part of the domain of dependency of the signal may not
intersect the world-sheet of the detector. To some extent, different prescriptions of excision boundaries
have helped to increase the lifetime of stationary [4] black holes and those forming by collapse [81].
The author is uncertain whether the method in [81] can be considered a solution to this problem; with
Cactus/Whisky, no stable evolution of neutron star collapse appears to be possible beyond a certain time
interval [82]. This interval may appear sufficient for the specific scenario of neutron star collapse, but is
insufficient for more complex scenarios, like, say, collapsars, or the fragmentation discussed later.

4.3. A failed experiment: Core collapse with adaptive shift

It is, in principle, possible to use uniform grids for systems with a large range of scales like core collapse
or supermassive star collapse, where an initial object of typical compactness R/M ≈ 1000 collapses
to a neutron star or black hole with R/M ≈ 1 . . . 10. In Newtonian physics, a well-known and simple
technique is to re-write the equations of motions in Lagrangian form, in which each fluid element is
marked by its initial location, and the subsequent trajectory in phase space is a function of the marker and
time. Equivalently, this can be viewed as a coordinate transformation from the Eulerian form, where the
fluid is a set of fields depending on location and time, to the comoving Lagrangian system. In spherical
symmetry, this allows to produce simple unigrid algorithms to calculate discrete models of collapse [83].
Without the restriction to spherical symmetry the comoving system can be disadvantageous due to grid
deformations which may be difficult to control, but a simple radial prescription analogous to the spherical
case may be sufficient for certain collapse situations [84].

In any Newtonian spacetime, the equations of motions, which are canonically given in inertial frames
of reference, need to be explicitly transformed to allow for a Lagrangian or partially Lagrangian treat-
ment with unigrids. This is not necessary in general relativity, since the physical meaning of coordinate
distances is part of the solution, and the associated gauge freedom is manifestly contained in the theory.
Specifically, the gauge functions lapse (α) and shift (βi) can be chosen freely11. A possible way to emu-
late the advantages of Lagrangian variables in a general relativistic, unigrid simulation is thus to choose
a radial shift vector component which moves coordinate shells towards the center while the collapse pro-
ceeds. This is not a comoving system, since the set of observers in typical formulations of GRHD is in
the Eulerian frame [23] given by the normals of the spacelike hypersurfaces. Still, the central idea of
mesh refinement, to enhance resolution where necessary, appears achievable in the specific case of stellar
collapse.

To implement a radial shift vector of this kind, a matching between two functions has been used to
obtain a function which is C2. For core collapse, a natural choice is

βr(r) =

{

ar r < rm

b exp(−c(r − r0)2) r ≥ rm
(4.2)

11But not every choice yields a well-posed system.
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where the parameters are chosen appropriately to satisfy smoothness at the matching radius rm. This
choice is natural insofar as the discussion of Newtonian collapse by Goldreich and Weber [85] and nu-
merical experiments (e.g. [86, 87, 88, 89]) suggest that some central part of a collapsing polytrope with
soft equation of state will collapse in a self-similar way, while the outer parts, which are sonically de-
coupled, are in free fall. If one selects a reasonable initial matching radius rm and time dependence of
the maximal shift amplitude, one can follow the collapse of the self-similar core with monotonously de-
creasing physical distance between grid shells, while the outer, low density part of the star is covered
by less shells. The dynamical steering of the parameters can be performed in different ways; the exam-
ples discussed below have used a simplified prescription which, under the assumption of approximately
self-similar collapse in the center, fixes the location of the minimum of the radial velocity profile on the
grid.

The first test of this kind has been performed with the collapse of a spherically symmetric N = 3
polytrope in the so-called octant symmetry, which is a reflection symmetry about all three axis planes and
allows to reduce the computational domain — and computational resource requirements — to an eighth.
The equation of state used, however, was not polytropic, but, in expectation of applying the code to a
core collapse scenario, a hybrid equation of state modelling a transition to a hard supranuclear phase at a
certain transition density [90]. To simplify the first test of the adaptive shift vector, the transition density
has been lowered significantly to about four times the initial central density of the iron core. As it is
expected that the hybrid equation of state results in either a black hole or an almost stationary central core
of high pressure (a neutron star in the core collapse analogy), the radial shift modification is set to zero
again a certain time after the transition density has been exceeded.

This test resulted in the profiles shown in Figure 4.9. The radial component of the shift vector has the
form described in eqn. (4.2), and this leads to the evolution of the metric depicted in the third graph. The
physical resolution in the inner part is increasing with time, while the resolution decreases in the outer
regions of the star. The outer boundary remains almost unchanged, which requires that the metric must
have a maximum between the homogeneously contracting region and the outer boundary. This maximum
can lead to problems as will be apparent in a simulation where the transition density is set to nuclear
density in the iron core analogue: Figure 4.11 demonstrates that the metric function can develop significant
curvature, and is not represented well by the discrete grid, which quickly leads to the termination of the
simulation. On the other hand, the coordinate location of the minimum of the radial velocity profile (cf.
Figure 4.10) is kept almost fixed, as expected, and in this manner approximately retains the resolution in
the self-similar part of the collapse.

These experiments do not imply that this approach is entirely hopeless: A more careful adjustment
of the coordinate shells, more grid resolution, and most importantly, a different treatment of the outer
boundary might yield a metric profile with a less pronounced peak, or even none at all. However, at the
time these results were obtained, the Carpet mesh refinement driver became available, which admitted a
more natural, and more flexible, solution to the refinement problem. Therefore, the shift vector approach
was abandoned by the author.

4.4. Carpet tests

4.4.1. Shock propagation across mesh refinement boundaries

The shock tube is one of the most basic test cases for hydrodynamics. It consists of a hydrodynamical sys-
tem with one fluid in distinct states of constant density, velocity and temperature separated by an interface
at the initial time. Physically, such a setup can be imagined to model a fluid inside a tube with a sepa-
rating membrane, which is removed; the subsequent evolution can then be described algebraically using
the conservation laws across the fronts of elementary waves in form of the Rankine-Hugoniot conditions
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Figure 4.9.: Collapse of a soft polytrope with the hybrid equation of state of Janka et al. [90], and a low
transition density ρT = 5 ·10−8. The panels show the x axis profiles at different times, for the rest-mass density
ρ (top), x component of the shift vector (βx, middle) and the metric component gxx (bottom), respectively.
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Figure 4.10.: Collapse of a soft polytrope with the hybrid equation of state of Janka et al. [90] , and a
transition density ρT = 3.2 · 10−4. The panels show the rest-mass density ρ (top) and the x component of the
3-velocity vector (vx, bottom), respectively. Note that the coordinate location of the minimum of the velocity
profile is kept almost fixed by the adaptive shift condition.
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Figure 4.11.: Collapse of a soft polytrope with the hybrid equation of state of Janka et al. [90], and a transition
density ρT = 3.2 · 10−4. The panels show the x axis profiles at different times, for the x component of the shift
vector (βx, top) and the metric component gxx (bottom), respectively. The explicit locations of grid points is
indicated here to exhibit the lack of resolution. The simulation terminated with NaNs shortly after t = 7600.
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Figure 4.12.: Shock tube test with and without mesh refinement. The graphs show the density profile ρ(x) after
a certain coordinate time, and compare the solutions obtained by using a uniform grid to Carpet evolutions
with linear and ENO interpolation operators, with a mesh refinement interface at |x| = 0.25. The “exact”
solution is obtained by solving the algebraic system with iterative methods [25]. Note that the results for
different prolongation operators are almost identical.

[25]. These waves are shock waves, contact discontinuities and rarefaction waves, and their fronts sepa-
rate fluid states of constant density, velocity and temperature. A closed solution of the algebraic system is
not available, but iterative methods can provide reference solutions with arbitrary levels of accuracy.

To use the special relativistic shock tube solution as a test case for a general relativistic code, it is
necessary to assume a flat spacetime and a test fluid approximation, which will be provided in the present
case by fixing the metric quantities to their initial values. We are then interested in how the introduction
of mesh refinement boundaries affect the propagation of shock and rarefaction waves.

In Figure 4.12, we compare the evolution of a shock tube model, with initial values ρ l = 10, ρr = 1,
vl = vr = 0, Pl ≈ 13.3, and Pr ≈ 6.66 · 10−7, between a uniform grid and a nested grid with a central patch
from x = −0.25 to x = 0.25, and a coarser patch from x = −0.5 to x = 0.5. The uniform grid has the same
resolution as the central Carpet patch. In addition, the effects of using a linear or ENO12 interpolation
operator are compared. The “exact” results were obtained using the program riemann from [25]. We can
see that the Carpet results naturally suffer from the lower grid resolution near the fronts, but the shock is
represented reasonably well, even after passing a refinement boundary. Since the solution region near the
shock wave and contact discontinuity only needs first order accurate discrete representation, the nature of
the interpolation operators has no significant effect here.

A related, but numerically more demanding example is the diagonal shock tube, which is simply ob-
tained by a coordinate rotation by π/4 in every direction. On a Cartesian grid, and keeping in mind that
all fluxes are split by direction, this can exhibit more artefacts than the one-dimensional example above.
Figures 4.13 and 4.14 show the evolution of the function ρ(x, y) with two nested grids. The refinement

12Essentially non-oscillatory; an special high-order interpolation operator used in numerical hydrodynamics.
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4.4.1 Shock propagation across mesh refinement boundaries

Figure 4.13.: Evolution of a diagonal shock tube with states ρl = 10, ρr = 1, vl = vr = 0, Pl ≈ 13.3 and
Pr ≈ 6.66 · 10−7, with a nested grid setup in Carpet. The plot shows the function ρ(x, y) at different times.
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Code tests

Figure 4.14.: Continuation of Figure 4.13.
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4.4.1 Shock propagation across mesh refinement boundaries

Figure 4.15.: Evolution of a spherical shock tube in Carpet, with central state ρc = 10, vc = 0 and Pc ≈ 13.3,
and outer state ρo = 1, vo = 0 and Po ≈ 6.66 · 10−7. The plot shows the function ρ(x, y).
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Figure 4.16.: Continuation of Figure 4.15.
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4.4.2 TOV solution
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Figure 4.17.: Maximal density in a TOV solution evolved with Carpet. The exact solution is maxρ = 10−3.
In the first two plots, the mesh refinement boundary is located at the stellar surface, while it is located inside
the star in the next two. Note that, for a neutron star with M = 1.4M�, we have 1000 M ≈ 7 ms.

interface does not produce any apparent artefacts. Note that the outer boundary is stationary, i.e. the
waves introduce reflections. The final example is a spherical shock tube, where two constant fluid states
are separated by a coordinate sphere. The evolution of this system is shown in Figures 4.15 and 4.16:
again, the mesh refinement boundary does not introduce any significant artefacts.

4.4.2. TOV solution

As we have already discussed, the evolution of TOV solutions is one of the simplest test cases for general
relativistic hydrodynamics. To test TOV evolutions with Carpet, the next test models a TOV solution with
a central density ρc = 10−3, and Γ = 2 on two patches of 323 (low resolution) or 643 (high resolution)
zones, in an octant symmetry. In one case, the mesh refinement boundary is near the star’s surface,
for our particular setup at 10 M, and in a related case it is inside the star at 7.5 M. The evolution of the
maximum density is displayed in Figure 4.17. It is apparent that the code converges to the exact solution of
max ρ = 10−3 with increasing resolution. The stellar surface with its large density gradient is particularly
difficult for the interpolation operators. Therefore, a stronger growth in the maximal density is introduced
as opposed to cases with a mesh refinement boundary inside the star. Note that these problems are less
severe for soft polytropes.

The long-term behaviour of the code, displayed in Figure 4.18, demonstrates the evolution of the same
TOV solution on a grid using four refinement levels and a resolution of 503 zones per patch. If the TOV
solution is understood as an approximate model of a neutron star with mass M = 1.4M�, then the evolution
is stable for ≈ 50 ms, and does not show any sign of computational instability. However, the oscillations
in the maximum density obtain some high-frequency components at later times.
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Figure 4.18.: Long-term evolution of a TOV star with Carpet and four refinement levels with a resolution of
503 in octant symmetry.

(From Table 4.1)
Polytropic K K 100 100
Polytropic Γ Γ 2 2
Central rest-mass density ρc 10−3 10−3

Central rest-frame energy density ec 1.100 10−3 1.100 10−3

ADM mass M 1.3331 1.5612
Rest mass M0 1.4222 1.6702
Equatorial proper radius Re 10.611 14.319
Axes ratio rp/re 0.9 0.574
Equatorial compactness Re/M 7.9595 9.1721
Total angular momentum J 0.58908 1.6387
Normalized angular momentum J/M2 0.33148 0.6724
Kinetic over potential energy T/|W | 2.4366 10−2 9.3956 10−2

Equatorial surface angular velocity Ω 1.3257 10−2 2.3343 10−2

Equatorial surface Keplerian angular velocity 3.3426 10−2 ΩK 2.3378 10−2

Mass shedding factor Ω/ΩK 0.3966 0.9985

Table 4.3.: Parameters and integral quantities of a rapidly rotating neutron star (last column). The quantities
are all measured in units of K = 100 and G = c = 1. Note that K, Γ, ρc and rp/re are parameters, and as such
exact. The third column shows the parameters of the model in Table 4.1 for comparison.
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4.4.3 Rotating star solution
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Figure 4.19.: Evolution of the maximum density of the rapidly rotating neutron star in Table 4.3 with Carpet.
Either two or three refinement levels are used, where the innermost one or two cover the star.

4.4.3. Rotating star solution

To test Carpet with rapidly rotating equilibrium solutions, a star with ρc = 10−3 and an axes ratio rp/re =

0.574, which is near the mass-shedding limit, has been constructed. The parameters and integral quantities
of the model are summarized in Table 4.3. In this case, the grid consists of either two or three refinement
levels, where the innermost one (or two) cover the star itself. No grid patch boundary is located near
the stellar surface to achieve higher accuracy (see preceding section). Resolutions used are 323 and 643

zones, using an octant of the domain like in the previous section, but applying an π/2 symmetry to the
meridional boundary planes for consistency with the ∂φ Killing field.

The results from evolving this system are shown in Figure 4.19. We note immediately that the dis-
crete system is convergent to the exact solution. Also, adding refinement levels inside the star does not
necessarily decrease the solution error, in accordance with what we have found before. Therefore, mesh
refinement will be mostly useful in soft polytropes with their core-halo structure, or in collapse situations.
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5. Fragmentation and black hole formation in
quasi-toroidal polytropes

The study of oscillations and stability of stars has a long history (see e.g. [91]), and, while its classical
results tried to address the limits of possible models for main-sequence stars, and the question of binary
star formation from protostellar clouds, it has been extended in the last century to examine the proper-
ties of relativistic fluid equilibria, and their connection to the formation of black holes by axisymmetric
instabilities.

Due to the recent prospect of detecting gravitational radiation directly, the connection between the
local dynamics of collapse and gravitational wave emission receives increased attention nowadays (e.g.
[92, 49]). In this context, a non-axisymmetric instability in a star is expected to change the nature of
the signal, and to enhance the chances of detecting it [93]. We shall discuss a number of scenarios for
gravitational collapse and black hole formation to illustrate this point.

1. Stars retaining spherical symmetry: If the initial matter distribution has spherical symmetry, no
gravitational waves are emitted as a consequence of Birkhoff’s theorem. The famous exact solution
by Oppenheimer and Snyder [94] already exhibits many features of the local dynamics, while the
connection to dynamical stability in general relativity has been made explicit by Chandrasekhar
[60]. The assumption of spherical symmetry admits already a simple model of phenomena like
mass limits for compact stars, the bulk properties of black hole formation from supermassive stars,
neutron stars and iron cores (or proto-neutron stars, if the center of the iron core stabilizes tem-
porarily after a first dynamical collapse phase) (e.g. [83, 95, 96]), and the dynamics of apparent and
event horizons (ibido).

2. Stars retaining (approximate) axisymmetry: If the symmetry assumption is relaxed to axisymmetry,
models of gravitational collapse admit to represent a number of additional features: most impor-
tantly, the emission of gravitational radiation. Stars in axisymmetry can be rotating, which changes
the radial modes of the non-rotating member of a sequence into a “quasi-radial” mode. If that is
unstable, the star may collapse to a black hole in a manner which is similar to the spherical sym-
metric case in its bulk properties, and it proceeds by (i) contraction due to a quasi-radial instability,
(ii) formation of an event horizon centered on the axis, and (iii) ring-down to a Kerr black hole with
a disk. We will call this process the canonical scenario to represent that it provides the expected
properties of the collapse of slowly rotating stars. It has been studied extensively in numerical in-
vestigations [97, 98, 99, 100, 101, 102, 103, 84, 104, 105, 106, 107, 81, 49, 62, 39], and seems even
appropriate to describe the quality of collapse of some rapidly and differentially neutron stars [81].
It should not be considered implicit here that the canonical scenario is generic for axisymmetric
collapse: see e.g. [108, 109] for systems involving toroidal black holes.

3. Stars not retaining (approximate) axisymmetry: As already mentioned, even in many numerical
models with three spatial dimensions, the collapse to a black hole proceeds in an almost axisym-
metric manner, although the initial data is represented on discrete Cartesian grids. One has found
that, even when non-axisymmetric perturbations are applied to the collapsing material, no large
deviations from axisymmetry obtain during the collapse [62], which, at least judging from the per-
turbative theory of Newtonian polytropes [91], indicates that either the amount of rotational over
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Fragmentation and black hole formation in quasi-toroidal polytropes

gravitational binding energy T/|W | is insufficient, or that the growth time of an unstable, non-
axisymmetric mode is in the order of, or larger than, the collapse timescale.

The situation can be quite different when the system is not unstable to axisymmetric modes, or if
the collapse stabilizes around a new equilibrium with higher T/|W |. The classical limit of T/|W | ≈
0.27 for Maclaurin spheroids [2] indicates the onset of a dynamical instability to transition to the
x = +1 Riemann S-type sequence [2, 110]. To which extent this idealized behaviour is also realized
in general relativistic compressible polytropes, and, more specifically, how it is connected to the
formation of black holes, is the issue we would like to address in part here.

If a general relativistic star encounters a non-axisymmetric instability, the nature of its subsequent evo-
lution may be characterizable by certain properties of the equilibrium model, like the rotation law, T/|W |,
compactness, and equation of state. For the limit of uniformly rotating, almost homogeneous models of
low compactness, we expect, if T/|W | > 0.27, a dynamical transition to an ellipsoid by a principle of
correspondence with Newtonian gravity. For this very reason, the system would also fail to form a black
hole.

By relaxing all but the assumption of low compactness, we can make use of the rich body of knowledge
about the stability and evolution of stars in Newtonian gravity. Two classical applications of stability
theory are the oscillations of disks and the fission problem, which most prominently appears in the context
of iron core collapse, and the question how binary stellar systems are formed. These matters have been
investigated extensively over the last decades [111, 112, 51, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125], and a number of possible scenarios have emerged for the non-linear evolution of
non-axisymmetric dynamical instabilities in rotating polytropes:

1. The polytrope develops a bar-mode instability similar to the Maclaurin case, and possibly retains
this shape over many rotational periods (e.g. [119]).

2. Two spiral arms and an ellipsoidal core region develop, where the latter transports angular momen-
tum to the the spiral arms by gravitational torques, is spun down, and collapses (e.g. [112]). This
scenario is interesting for black hole formation, since the rotational support of the initial model can
be partially removed by such a mechanism. If this transport is efficient enough, the core ellipsoid
might collapse, resulting in a Kerr black hole with a disk of material around it. One might conjec-
ture that, if the equation of state is soft enough, the disk itself may be subject to fragmentation, and
form several smaller black holes which are subsequently accreted.

3. One spiral arm develops, and the mode saturates at some amplitude [116, 126], leaving a central
condensation. This might also lead to central black hole formation. Note that the onset for this
dynamical instability in terms of T/|W | is significantly lower than the Maclaurin limit.

4. For polytropes with strong differential rotation, the initial model may be quasi-toroidal, i.e. it has
at least one isodensity surface which is homeomorphic to a torus. If models of this kind, or purely
toroidal ones, are subject to the development of a non-axisymmetric instability, they may exhibit
fragmentation [118, 121]. This is clearly the most interesting setting for the fission problem, but has
been discussed also in the context of core collapse (“collapse, pursuit and plunge” scenario, Fig.
24.3 in [11], also [115, 123]).

It is this last kind of instability we will investigate here in the context of general relativity, and its relation
to the formation of black holes.
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5.1 Previous work

Concerning the nature of the spiral-arm and low-T/|W | instabilities, Watts et al. ([127], see also [128,
129]) have suggested a relation to the location of the corotation band1 with respect to the frequency of
f modes2. That corotation has a bearing on the nature of oscillations in differentially rotating disk has
been known for some time; the perturbation operator is singular at corotation points, which gives rise to
a continuous spectrum of “modes.” While the initial-value problem of perturbations associated with the
continuous spectrum of stars is not well understood even in Newtonian gravity, there is evidence [130,
131, 132, 128] that a mode entering corotation may be subject to a shear-type instability, or that it merges
with another mode inside the corotation band, which appears to admit a certain class of solutions showing
similar properties as the solutions in the discrete spectrum [129]. While three-dimensional Newtonian
simulations would appear, at least as a first step, most appropriate to gain more intuition in these matters
[133], we will collect some evidence on corotation points in the evolutions presented here as well.

Since the parameter space of possible initial models is large, and given that three-dimensional simu-
lations of this kind are still quite expensive in terms of computational resources, we restrict attention to
several isolated sequences, where just one initial model parameter is varied to gain evidence on its sys-
tematic effects, and to a plane in parameter space defined by a constant central rest-mass density and a
fixed parameter Γ = 4/3 in the Γ-law equation of state P = (Γ − 1)ρε; the latter choice will be motivated
in a moment. We will find that, at least as long as we are concerned with the question when certain modes
become dynamically unstable on a sequence, the restriction to constant central density is not severe, while
the nature of the final remnant might be rather sensitive to it. This latter issue, namely whether a black
hole forms or not, will not be answered in full here, since we will only determine whether the fragment
stabilizes during collapse, and re-expands, or if it does not. We leave the location of the apparent horizon
with adaptive mesh-refinement techniques and the subsequent evolution with excision, to future work, and
concentrate here on the general structure of the parameter space and its relation to the non-axisymmetric
instability.

The choice Γ = 4/3 is well-known to approximately correspond to the adiabatic coefficient of a degen-
erate, relativistic Fermi gas or a radiation pressure dominated gas [57], and is thus closely connected to
iron cores and supermassive stars. The author would like to point out on this occasion that a collapsing
iron core, even if its initial state is assumed to be determined mostly by electron pressure, is subject to
a complex set of nuclear reactions, which involve the generation of neutrinos and transition to nuclear
matter at high densities. It is for this complexity, which we do not take into account here to reduce the
numbers of free parameters, that we do not suggest the use of the fragmentation and black hole formation
investigated in [134] as a highly idealized model of core collapse. For supermassive stars, the situation is
different, since an event horizon can form before thermonuclear reactions become important, depending
on the metallicity and mass of the progenitor [135]. Because of this, it is not inconceivable that the type
of evolution in [134] can be used as an approximate model of supermassive black hole formation. Finally,
we would like to mention the possibility that gravitational wave detection may uncover so-far unexpected
processes involving black hole formation, and in that case it is useful to have a general understanding of
possible dynamical scenarios.

5.1. Previous work

The background for this study comes from three areas: the study of (i) fragmentation in Newtonian poly-
tropes, (ii) non-axisymmetric instabilities in general relativistic polytropes, and (iii) black hole formation
by gravitational collapse. The first area is represented by a large number of publications, as already

1The corotation band in a differentially rotating star is the set of frequencies associated with modes having at least one corota-
tion point, i.e. a point where the local pattern speed of the instability matches the local angular velocity.

2The term f mode is introduced in [65].
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Fragmentation and black hole formation in quasi-toroidal polytropes

above, but we would like to mention specifically the recent work by Centrella, New et al. [136, 121],
since the kind of initial model and subsequent evolution studied in these publications are similar to the
ones presented by us in [134] and here, apart from the fact that Newtonian gravity and a softer equation
of state (Γ = 1.3) was used. New and Shapiro [137] investigated equilibrium sequences of differentially
rotating Newtonian polytropes with Γ = 4/3 to present an evolutionary scenario where supermassive stars
develop a bar-mode instability instead of collapsing axisymmetrically. This kind of scenario (see also
[138, 93]) would also be important when connecting the general relativistic fragmentation presented here
to the evolution of supermassive stars.

Non-axisymmetric dynamical instabilities in general relativistic, self-gravitating fluid stars have been
studied by several authors [63, 64, 139, 81, 140]. Some evidence of fragmentation has been found in
[81] in a ring resulting from a “supra-Kerr” collapse with J/M2 > 1, but no black hole was identified.
Finally, black hole formation by gravitational collapse has been studied extensively, (see references in the
introduction), and in recent years also in three spatial dimensions [103, 104, 107, 141, 81, 49, 39, 142].
The collapse of differentially rotating supermassive stars in the approximation of conformal flatness has
been investigated by Saijo [62].

In addition, the work on low-T/|W | instabilities by Watts et al. [128, 129, 127] has already been de-
scribed in the introduction, and recent numerical studies of related interest can be found in [143, 144, 133].

5.2. Initial data

5.2.1. Quasi-toroidal polytropes

We will focus on relativistic, differentially rotating polytropes which are quasi-toroidal: Such a polytrope
has at least one isopycnic (constant density) surface which is homeomorphic to a torus. To construct
equilibrium polytropes of this kind, an extended version of the Stergioulas-Friedman (SF, also RNS) code
is used [45, 145, 46], which applies a modification of the method developed by Komatsu, Hachisu and
Eriguchi [47, 146]. The code assumes a certain gauge in a stationary, axisymmetric spacetime, such that
we can write the line element in terms of potentials ν, ψ, ω and µ, and the Killing fields ∂ t and ∂φ as [46]

ds2 = −e2νdt2 + e2ψ(dφ − ωdt)2 + e2µ(dr2 + r2dθ2). (5.1)

Matter is modelled as a perfect fluid with

T ab = ρh(ρ, ε)uaub + Pgab, (5.2)

where ρ is the rest-mass density, ε is the specific internal energy, h = 1 + ε + P/ρ the specific enthalpy,
and the four-velocity is parameterized by

ua =
e−ν
√

1 − v2
(∂a

t + Ω∂
a
φ). (5.3)

To compute an equilibrium polytrope, the central rest-mass density ρc, the coordinate axes ratio rp/re

and a barotropic equation of state P(ρ) need to be specified3. In addition, the equations of structure [46]
contain an additional freely specifiable function F(Ω). We will use the common choice

F(Ω) = Ã2(Ω(r = 0) −Ω) (5.4)

which reduces to uniform rotation in the limit Ã → ∞, and to the constant specific angular momentum
case in the limit Ã → 0. We will, however, often use the normalized parameter A = Ã/re, where re

3A purely toroidal model would have the constraint rp/re = 0.
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5.2.1 Quasi-toroidal polytropes

is the coordinate radius of the intersection of the stellar surface with the equatorial plane θ = π/2. For
construction of a polytrope, the barotropic equation of state is constrained to

P = KρΓ (5.5)

with the polytropic constant K and the coefficient Γ, which can also be expressed by the polytropic index
N = (Γ − 1)−1. Without loss of generality we set K = 1 in all cases.

The resulting set of equations is solved iteratively [46], where the initial trial fields are a suitable so-
lution of the TOV system. To converge to the desired model, it may be necessary to select a number of
intermediate attractors as trial fields. Some models are thus constructed by first obtaining a specific quasi-
toroidal model, and then moving in parameter space in the quasi-toroidal branch to the target model. In
this work, a hook model with parameters Ahook = 0.3 and (rp/re)hook = 0.15 is generated, which then is
used as initial guess to construct the target model.

If we include the polytropic coefficient Γ, we have to consider a four-dimensional parameter space
(Γ, ρc, A, rp/re). We will not study the whole parameter space here: Rather, we first use a reference model
and explore sequences in ρc, Γ and rp/re containing this model, and will subsequently concentrate on the
important case Γ = 4/3, since it approximately represents a radiation-pressure dominated star.

Most polytropes have been constructed with a meridional grid resolution of nr = 601 radial zones and
ncos θ = 301 angular zones, a maximal harmonic index `max = 10 for the spectral grid and a solution
accuracy of 10−7. Selected models have been tested for convergence with resolutions up to nr = 2401,
ncos θ = 1201, and `max = 20.

To investigate the stability of the polytropes constructed with the SF code, two kinds of perturbations
are applied: the pressure is reduced by 0.1%, and a cylindrical density perturbation of the form

ρ(x)→ ρ(x)
[

1 +
1
re

4
∑

m=1

λmB f ($) sin(mφ)
]

(5.6)

is added to the equilibrium polytrope. Here, m ∈ {1, 2, 3, 4}, λm is either 0 or 1, $ is the cylindrical radius
and f ($) is a radial trial function. Experiments have been made with f ($) = $ and f ($) = $m, but
the exact choice was found not to affect the results significantly. This is true quite generally, since we
only require the trial function to have some reasonable overlap with a set of quasi-normal modes. It is
beyond our scope to investigate the full spectrum of quasi-normal modes of general relativistic polytropes;
therefore, we determine stability only with respect to specific trial functions. The choice made is not
completely arbitrary, however: a quasi-toroidal polytrope has an off-center toroidal region of maximal
density, and it is this region which will dominate the gravitational wave signal if a fragmentation instability
sets in. A linear perturbation without nodes in this region can be expected to be compatible (have non-
zero scalar product) with most low-frequency quasi-normal modes. The function f ($) = $m has the
additional property of smoothness at the center, but, as already noted, numerical experiments have shown
the difference to be negligible in practice. An additional note on the use of language: If we find that a
perturbation with λ j = δi j, j ∈ {1, 2, 3, 4} leads to an instability with the associated number of node lines
in the equatorial plane, we will denote this instability with the term m = j mode (and the corresponding
perturbation m = j perturbation). This is a simplification insofar as each m is expected to represent a
(discrete) infinite spectrum of modes [147], from which we will observe only the fastest-growing unstable
member. While we will attempt to discuss the nature of the global evolution to some extent, we will, for
the reasons stated above, concentrate on the high-density torus, and mostly neglect the dynamics of its
halo.

The perturbations applied are both constraint-violating. This is no significant issue, since the discrete
evolution of the BSSN system will necessarily introduce constraint violations even if some minimiza-
tion technique has been applied to the initial data. Fig. 5.1 shows the evolution of the L2 norm of the
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Figure 5.1.: Time evolution of the L2 norm of the Hamiltonian constraint for different resolutions. The time
is normalized to the dynamical timescale tD = Re

√
Re/M.

Hamiltonian constraint for different grid resolutions. Note that, for a typical perturbation amplitude of
δρ/ρ ≈ 10−3, the Hamiltonian constraint will be violated by δH ≈ 16πρ · 10−3 ≈ 2.5 · 10−7, which is suffi-
ciently smaller than the violations during evolution in Fig. 5.1. Also, tests have been performed where the
perturbation amplitude B (cf. eqn. 5.6) is reduced by a factor of 10, and found that this does not affect the
growth rate of the perturbation, as one might expect from small perturbations. To conveniently compare
different resolutions, the amplitude is kept constant; however, it is possible to reduce the perturbation
amplitudes for resolutions significantly higher than the ones used here (specifically, in the regime where
δH would become comparable to the constraint violations during evolutions) to obtain a system where
convergence, now to the equilibrium system, does only depend on the well-posedness of the continuum
IBVP and the stability of the discrete system4.

5.2.2. The reference polytrope and associated sequences

We start with a polytrope with the same central rest-mass density (ρc = 3.38 · 10−6) as Saijo’s series
of differentially rotating supermassive star models [62]. To obtain experience with the influence of cer-
tain parameters on the stability properties of the relativistic quasi-toroidal polytropes, some sequences
containing this reference model have been constructed.
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5.2.2 The reference polytrope and associated sequences

Polytropic index Γ Γ 4/3
Central rest-mass density ρc 3.38 · 10−6

Degree of differential rotation A 1/3
Coordinate axes ratio rp/re 0.24
Density ratio ρmax/ρc 16.76
ADM mass M 6.989
Rest mass M0 7.037
Equatorial inverse compactness Re/M 11.71
Angular momentum J 52.00
Normalized angular momentum J/M2 1.065
Kinetic over binding energy T/|W | 0.227
(See caption) Ωe/ΩK 0.467

Table 5.1.: Parameters and integral quantities of the reference quasi-toroidal polytrope [134]. The quantities
Γ, ρc, A and rp/re are parameters. The quantity Ωe is the angular velocity on the equator, while ΩK is the
associated Keplerian velocity. Therefore, the mass-shedding sequence is located at Ωe/ΩK = 1.

Figure 5.2.: Decadic logarithm of the density in a meridional plane of the model constructed with the param-
eters in Table 5.1. The model is of quasi-toroidal nature.
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Model ρc rp/re ρmax/ρc M M0 Re/M J J/M2 T/|W | Ωe/ΩK

R0.20 3.38 · 10−6 0.20 38.12 6.181 6.200 9.660 38.59 1.010 0.235 0.487
R0.22 3.38 · 10−6 0.22 25.69 6.662 6.710 10.41 45.46 1.024 0.228 0.475
R0.24 3.38 · 10−6 0.24 16.76 6.989 7.037 11.71 52.00 1.065 0.227 0.467
R0.26 3.38 · 10−6 0.26 11.07 7.334 7.391 13.10 58.99 1.097 0.223 0.460
R0.28 3.38 · 10−6 0.28 7.312 7.585 7.646 14.83 65.19 1.133 0.219 0.455
R0.30 3.38 · 10−6 0.30 4.733 7.764 7.825 17.13 70.82 1.175 0.213 0.452
R0.32 3.38 · 10−6 0.32 2.934 7.847 7.905 20.46 75.48 1.226 0.207 0.452
R0.34 3.38 · 10−6 0.34 1.539 7.755 7.803 27.42 78.72 1.309 0.196 0.463

Table 5.2.: Parameters and integral quantities of the R sequence of axes ratios, which contains the reference
model for rp/re = 0.24. Each member of the sequence is denoted by the term R<rp/re>. All models have
Γ = 4/3 and A = 1/3.

5.2.2.1. The reference model

The reference model is identical to the model used in [134]; its parameters and integral quantities are
shown in Table 5.1. Fig. 5.25 is a graph of the density in the meridional plane for this model. This model
has been found to be unstable to perturbations with m = 1 and m = 2 (see below, and [134]), which lead
to a fragmentation. In the case m = 1, black hole formation has been demonstrated by location of an
apparent horizon centered on the fragment.

5.2.2.2. The sequence of axes ratios

A number of sequences containing this model have been constructed to study the stability properties when
varying typical parameters. The first of these sequences is parameterized by the coordinate axes ratio
rp/re. Its members are denoted by R<rp/re>, and their properties can be found in Table 5.2. It is apparent
that, with increasing axes ratios, the quantity T/|W | and the ratio of maximal to central rest-mass density
ρmax/ρc both decrease monotonically. None of the sequence members is close to the mass-shedding limit.
Below rp/re = 0.20, no models could be constructed due to failure of convergence. We will also not
consider models with larger rp/re. The reason for this is indicated in Fig. 5.3: Beyond an axes ratio of
rp/re ≈ 0.3423, quasi-toroidal models could not be constructed, and the discontinuity in T/|W | indicates
that the sequence terminates at this value.

5.2.2.3. The sequence of stiffnesses

This sequence is a variation of the parameter Γ in the polytropic relation P = KρΓ, which also determines
the stiffness of the ideal fluid equation of state P = (Γ − 1)ρε used for evolution. To obtain a sequence
of comparable compactness, we adjust the central density ρc to yield approximately the same Re/M.
The parameters and integral quantities are shown in Table 5.3, and selected stratifications are depicted in
Fig. 5.5. Along the sequence of increasing Γ, the value T/|W | decreases from 0.227 to 0.159. Therefore, it
would be also interesting to consider a sequence of models with varying Γ, but constant T/|W | by adjusting
the axes ratio rp/re accordingly. Unfortunately, such a sequence could not be obtained, since the initial
data solver did not converge to models with the required (low) axes ratios.

4In addition, this would, of course, require to reduce the density of the artificial atmosphere with resolution.
5Note that the contour plots are included to demonstrate the qualitative properties of representative solutions. Therefore, no

detailed scale is provided.

58



5.2.2 The reference polytrope and associated sequences
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Figure 5.3.: ρmax/ρc (top) and T/|W | (bottom) for the R sequence. Beyond an axes ratio of rp/re ≈ 0.3423, the
initial data solver converges to spheroidal models. The discontinuity in T/|W | indicates that the quasi-toroidal
sequence terminates there.

59



Fragmentation and black hole formation in quasi-toroidal polytropes

Figure 5.4.: Decadic logarithm of the density in a meridional plane of the R sequence members R0.20 (top)
and R0.34 (bottom).
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5.2.2 The reference polytrope and associated sequences

Figure 5.5.: Decadic logarithm of the density in a meridional plane of the G sequence members G1.45 (top)
and G2.0 (bottom). The model G1.333, which is the reference polytrope, is shown in Fig. 5.2.
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Model Γ ρc ρmax/ρc M M0 Re/M J J/M2 T/|W | Ωe/ΩK

G1.333 4/3 3.38 · 10−6 16.76 6.989 7.037 11.71 52.00 1.065 0.227 0.467
G1.4 1.4 1.32 · 10−5 16.44 2.805 2.856 11.69 8.337 1.059 0.211 0.424
G1.45 1.45 3.7 · 10−5 13.83 1.624 1.662 11.70 2.767 1.049 0.202 0.404
G1.5 1.5 9.2 · 10−5 11.53 1.038 1.066 11.65 1.115 1.035 0.194 0.390
G1.6 1.6 3.75 · 10−4 8.349 0.5197 0.5363 11.80 0.2758 1.021 0.183 0.370
G2.0 2.0 8.2 · 10−3 3.880 0.1270 0.1323 11.69 0.0155 0.9633 0.159 0.331

Table 5.3.: Parameters and integral quantities of the G sequence of polytropic coefficient Γ, which contains
the reference model for Γ = 4/3. Each member of the sequence is denoted by the term G<Γ>. The central
density is adjusted to yield approximately the same inverse equatorial compactness Re/M as in the reference
model. The models G1.7 to G1.9 have not been constructed, since the models G1.6 and G2.0 were found to
be stable. All models have A = 1/3 and rp/re = 0.24.

Model ρc rp/re ρmax/ρc M M0 Re/M J J/M2 T/|W | Ωe/ΩK

C1 3.38 · 10−6 0.24 16.76 6.989 7.037 11.71 52.00 1.065 0.227 0.467
C2 1 · 10−7 0.24 31.06 10.65 10.74 22.72 167.0 1.474 0.225 0.434
C4 7.5 · 10−9 0.24 37.01 12.54 12.60 45.65 326.0 2.073 0.225 0.423
C8 8 · 10−10 0.24 39.64 13.47 13.51 89.91 525.6 2.897 0.225 0.419

Table 5.4.: Parameters and integral quantities of the C sequence of compactnesses, which contains the refer-
ence model for ρc = 3.38 · 10−6. Each member of the sequence is denoted by the term C<a>, where a denotes
the approximate ratio of Re/M to (Re/M)re f of the reference model C1. The sequence is obtained by varying
the central rest-mass density. All models have γ = 4/3 and A = 1/3.

5.2.2.4. The sequence of compactnesses

The next sequence is a variation of the central rest-mass density ρc while leaving all other parameters
fixed. The resulting sequence, as is apparent from Table 5.4, is also a sequence of inverse equatorial
compactnesses Re/M. The members have been selected to represent models which are half to one eighth
as compact as the reference polytrope. The sequence shows that T/|W | is only slightly affected by the
choice of ρc, but Re/M and J/M2 change significantly. The density structure of selected models is shown
in Fig. 5.6.

5.2.3. Quasi-toroidal and spheroidal models of constant central rest-mass density

In addition to sequences containing the reference model, we explore a more extended part of the parame-
ter space of models. We use Γ = 4/3 and ρc = 10−7 to define a surface in the parameter space spanned by
the axes ratio rp/re and the degree of differential rotation A. While an ideal fluid with Γ = 4/3 is an ap-
proximation for the material properties of radiation-pressure dominated stars, the restriction to ρc = 10−7

is arbitrary. However, as discussed in Section 5.3, the non-axisymmetric stability of the quasi-toroidal
models is probably less sensitive to ρc than to rp/re or A. The restriction to a plane is necessary since
three-dimensional simulations of quasi-toroidal relativistic stars are still expensive; however, selected
models will also be studied with different ρc in Section 5.3.

The general structure of the polytropes obtained with the SF code is shown for central rest-mass den-
sities ρc = 10−7 and 10−10 in Fig. 5.7 to 5.11. The first plot shows the function Ωe/ΩK , where Ωe is the
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5.2.3 Quasi-toroidal and spheroidal models of constant central rest-mass density

Figure 5.6.: Decadic logarithm of the density in a meridional plane of the C sequence members C2 (top) and
C8 (bottom). The model C1, which is the reference polytrope, is shown in Fig. 5.2.

Model ρc A rp/re ρmax/ρc M M0 Re/M J J/M2 T/|W | Ωe/ΩK

A0.1R0.15 10−7 0.1 0.15 246.8 4.896 4.893 20.82 18.62 0.777 0.124 0.195
A0.1R0.50 10−7 0.1 0.5 1.881 5.387 5.390 106.2 31.69 1.092 0.0706 0.126
A0.3R0.15 10−7 0.3 0.15 356.9 7.964 8.034 12.04 70.66 1.114 0.228 0.434
A0.3R0.50 10−7 0.3 0.5 1.00005 6.291 6.300 151.4 77.10 1.948 0.108 0.360
A0.6R0.15 10−7 0.6 0.15 541.2 21.29 21.39 61.62 1360 3.000 0.276 0.650

Table 5.5.: Parameters and integral quantities of selected quasi-toroidal models in the parameter space plane
defined by ρc = 10−7 and Γ = 4/3. The models are labelled by A<A>R<rp/re>. All models have Γ = 4/3.
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Fragmentation and black hole formation in quasi-toroidal polytropes

Figure 5.7.: Polytropic models constructed with the SF code. Shown are contours of the function Ωe/ΩK

(equatorial stellar angular over Keplerian angular velocity) over the axes ratio rp/re and the differential rotation
parameter A, for ρc = 10−7 (top) and ρc = 10−10 (bottom). The mass-shedding sequence corresponds to the
function value 1. The plot has been obtained by construction of 6400 (80× 80) models in the (rp/re, A) plane.

64



5.2.3 Quasi-toroidal and spheroidal models of constant central rest-mass density

Figure 5.8.: As Fig. 5.7, but showing the contours of the decadic logarithm of the ratio of maximal to central
density log10(ρmax/ρc). Models in the region without contours have ρmax/ρc ≈ 1, and are thus spheroidal.
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Figure 5.9.: Same as Fig. 5.7, but showing the contours of the rotation parameter T/|W |.
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5.2.3 Quasi-toroidal and spheroidal models of constant central rest-mass density

Figure 5.10.: Same as Fig. 5.7, but showing the contours of the decadic logarithm of the inverse equatorial
compactness Re/M.
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Figure 5.11.: Same as Fig. 5.7, but showing the contours of the function J/M2.
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5.2.3 Quasi-toroidal and spheroidal models of constant central rest-mass density

Figure 5.12.: Parameters space constrained by ρc = 10−7 and Γ = 4/3. The thick continuous line marks the
discontinuity apparent in Fig. 5.7 to 5.11, the thick dashed line is the mass-shedding limit, and the thin dashed
line indicates an approximate division between spheroidal and quasi-toroidal models. The models selected for
numerical evolution are marked by circles.

Figure 5.13.: Decadic logarithm of the density in a meridional plane of the model A0.1R0.15.
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Figure 5.14.: Decadic logarithm of the density in a meridional plane of the model A0.1R0.50.

Figure 5.15.: Decadic logarithm of the density in a meridional plane of the model A0.3R0.15.
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5.2.3 Quasi-toroidal and spheroidal models of constant central rest-mass density

Figure 5.16.: Decadic logarithm of the density in a meridional plane of the model A0.3R0.50.

Figure 5.17.: Decadic logarithm of the density in a meridional plane of the model A0.6R0.15.
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Model Γ ρc A rp/re ρmax/ρc M M0 Re/M J J/M2 T/|W | Ωe/ΩK

L1 4/3 10−4 0.2 0.354 1.874 3.621 3.578 14.85 9.952 0.760 0.144 0.301
L2 4/3 10−5 0.2 0.378 2.434 5.173 5.177 20.67 24.06 0.900 0.144 0.280
L3 4/3 10−6 0.2 0.392 2.644 6.505 6.524 35.69 49.51 1.170 0.144 0.269
L4 4/3 10−7 0.2 0.4 2.689 7.348 7.362 69.41 87.33 1.617 0.144 0.264

Table 5.6.: Parameters and integral quantities of the L sequence. This sequence is constructed by starting
from the model A0.2R0.40 (cf. Section 5.2.3), which is identical to the model L4, and keeping T/|W | fixed
while reducing the central density.

equatorial stellar angular velocity, and ΩK is the corresponding Keplerian angular velocity. The disconti-
nuity in the equilibrium model surface has already been found in the R sequence, see Fig. 5.3.

The topological nature of the polytropes is shown in Fig. 5.8, which plots the ratio of maximal to central
rest-mass density ρmax/ρc. This value measures the degree of toroidal deformation of the model, with the
limiting cases ρmax/ρc = 1 (purely spheroidal polytrope) and ρmax/ρc = ∞ (purely toroidal polytrope).
Since we are interested in the properties of quasi-toroidal models, we will concentrate our study on the
part of this plot covered by contour lines.

Judging from the study of Newtonian polytropes, one would expect that the function T/|W | is related
to non-axisymmetric stability. For the sequence of Maclaurin spheroids, the dynamically unstable subset
can be described by the simple inequality T/|W | ≥ (T/|W |)dyn [2], suggesting to use T/|W | to parameterize
the sequence. While the situation is clearly more complicated with differentially rotating models, Fig. 5.9
suggests that the quasi-toroidal models near the axis rp/re = 0.15 are more likely to be unstable to non-
axisymmetric perturbations. We will study this in Section 5.3.

Comparing the results for both choices of central rest-mass density, the structure of the space of equi-
librium models appears quite similar. The inverse equatorial compactness Re/M and the specific angular
momentum J/M2 are sensitive to the choice of ρc, while T/|W | is almost unchanged. We will discuss the
relevance of this observation in Section 5.4.

Fig. 5.12 is an illustration of the initial model parameter space. The polytropes which have been evolved
numerically are marked by circles. The equilibrium parameters and associated quantities of a selected set
of these polytropes are listed in Table 5.5. In Fig. 5.13 to 5.17, the density stratifications of these models
are plotted.

5.2.4. A sequence of central rest-mass densities containing the model A0.2R0.40

The L sequence (see Table 5.6) is a variation of the C sequence in Section 5.2.2.4. It starts from the model
A0.2R0.40 instead of the reference model. In contrast to the C sequence, we do not keep the axes ratio
rp/re fixed while varying the central rest-mass density, but rather the quantity T/|W |. This sequence is
constructed to study the influence of the compactness on a model near the boundary to the region denoted
by “I” in Fig. 5.50 (see also Section 5.3.8).
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5.3 Results

5.3. Results

The models constructed in Section 5.2 have been evolved numerically to study their stability properties.
We will start with discussing the reference model, and show that it is unstable to a non-axisymmetric
perturbation which leads to black hole formation. Then, the sequences of axes ratios, compactness and
stiffness from Section 5.2 are studied. Finally, the parameter plane for Γ = 4/3 and ρc = 10−7 is sampled,
and the coordinate location of the corotation point on a sequence in this plane is investigated.

5.3.1. Evolution of the reference model

The main results from evolving the reference polytrope defined in Section 5.2.2.2 have already been
discussed in [134]. When subject to a perturbation of the form given in eqn. 5.6, the torus transforms into
one (m = 1) or two (m = 2) fragments. The dominant mode is m = 1, and in this case, it has been shown
that the fragment is partially covered by an apparent horizon, indicating black hole formation.

In this section, we will take a more detailed look at this model, and discuss some technical issues of
importance for the parameter space study below.

5.3.1.1. Development of the instability

Fig. 5.18 shows the development of the non-axisymmetric instability in the equatorial plane when using
a perturbation of the form given by eqn. 5.6 and λm = 1 for m = 1, . . . , 4. The density perturbation is not
apparent in the initial model, but, after a few dynamical timescales, an instability has developed which
entirely destroys the structure of the star. In this case, one collapsing off-center fragment forms in the
system. Judging from Fig. 5.19 and 5.20, there is a “collapse of the lapse”, which is a well-known effect
when using singularity-avoiding slicings, and which indicates the development of a black hole.

To investigate the instability more closely, the Fourier mode extraction discussed in Section 3.4 has
been applied to the coordinate radius of highest density in the initial model, which is at r = 0.25Re (note
that part of the low-density halo of the star is covered by the atmosphere, which makes the star to appear
slightly smaller in Fig. 5.18). We concentrate on this radius for reasons already discussed: different
extraction radii will be considered in Section 5.3.1.3. Fig. 5.21 displays the evolution of the amplitude of
the first four Fourier modes Am, m = 1, . . . , 4. Although all four modes have been injected with the same
amplitude (≈ 10−4), the m = 4 mode displays a significant initial growth of about an order of magnitude,
and then oscillates around this level until t/tdyn ≈ 6, where non-linear effects become important. The
high level of m = 4 noise is very likely an artefact of the Cartesian grids used for the simulation. Support
for this argument can be obtained by considering that the equatorial section of the grid has a discrete C 4

symmetry, and by comparing Fig. 3 and 4 in [121], where results from the development of a similar non-
axisymmetric instability, though in Newtonian gravity, were achieved on cylindrical and Cartesian grids.
We note that the model appears to be stable against this mode, and also against the m = 3 mode. The
remaining modes m = 1 and m = 2 are unstable, and the growth times of both modes are almost the same.
In this specific case the m = 1 mode is dominant, and leads to the spiral arm structure and fragmentation
visible in Fig. 5.18.

The structure of the numerical noise depends on the grid geometry, resolution, finite difference operators
and discrete methods for treating hydrodynamics, the outer boundary conditions and the artificial atmo-
sphere. Therefore, it is important to know to which degree the four Fourier modes are coupled during the
evolution. Since the initial perturbation is considered to be “small”, which holds when compared to the
m = 4 noise level discussed above, we expect that coupling becomes important as soon as the amplitudes
Am get close to unity. To determine this in the reference model, a number of simulations have been per-
formed with perturbations of the form given by eqn. 5.6, but with λm = δm j for different j ∈ {1, . . . , 4}
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Figure 5.18.: Development of the fragmentation instability in the reference polytrope. Each plot shows the
decadic logarithm of rest-mass density in the equatorial plane. The snapshots correspond to times t/tdyn = 0
(top), 6.28 (middle) and 7.48 (bottom). The initial model, perturbed by eq. 5.6 with λm = 1 for m = 1, . . . , 4,
develops a spiral arm instability and a collapsing fragment. Here, and in all evolution sequences which follow,
the extent of the spatial coordinate domain plotted is the same in all snapshots.
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5.3.1 Evolution of the reference model

Figure 5.19.: As Fig. 5.18, but showing the lapse function. Note the collapse of the lapse at late times.
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Figure 5.20.: Minimum of the lapse function α for the evolution shown in Fig. 5.19.
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Figure 5.21.: Mode amplitudes versus time for the evolution shown in Fig. 5.18 at r = 0.25Re, the radius of
highest rest-mass density in the initial model. The amplitude Am is the m-th harmonic Fourier projection of
the density, normalized to the average value.
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5.3.1 Evolution of the reference model

Figure 5.22.: Similar to Fig. 5.18, but now for a perturbation λm = δm1. Shown is the decadic logarithm of
the density in the equatorial plane. The snapshots correspond to times t/tdyn = 6.28 (top), 7.11 (middle) and
7.48 (bottom). While the m = 2 mode is now suppressed, the qualitative evolution is similar to that displayed
in Fig. 5.18.
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c

Figure 5.23.: Similar to Fig. 5.18, but for a perturbation λm = δm2. Shown is the decadic logarithm of the
density in the equatorial plane. The snapshots correspond to times t/tdyn = 6.28 (top), 7.66 (middle) and 8.85
(bottom). Two fragments develop and encounter a runaway instability while orbiting each other.
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Figure 5.24.: Mode amplitudes versus time for the evolution shown in Fig. 5.22 at r = 0.25Re, the radius of
highest rest-mass density in the initial model.
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Figure 5.25.: Mode amplitudes versus time for the evolution shown in Fig. 5.23 at r = 0.25Re, the radius of
highest rest-mass density in the initial model.
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Figure 5.26.: Mode amplitudes versus time for the reference polytrope perturbed according to eqn. 5.6 and
λm = δm3 (top), λm = δm4 (middle), and no explicit perturbation (bottom), extracted at r = 0.25Re, the radius
of highest rest-mass density in the initial model.
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Figure 5.27.: Comparison of mode amplitude versus time for different initial perturbations. The upper panel
shows the mode amplitude A1, and the lower one shows A2. Note that, in the case λm = δm1, the m = 2 mode
is dominated by non-linear effects from the fragmentation (cf. also Fig. 5.24).
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Figure 5.28.: Local growth time τm(t) := (d ln A/dt)−1 for modes m = 1 and m = 2, both taken from
simulations with the corresponding initial perturbation.
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5.3.1 Evolution of the reference model

to select individual modes, and one simulation where no perturbation is applied. The mode amplitudes
in these simulations are shown in Fig. 5.24 to 5.26, and the m = 1 and m = 2 modes are compared to
the perturbation with λm = 1 in Fig. 5.27. As long as the mode development is not dominated by another
mode which has an amplitude near unity, e.g. as in the case of the m = 2 mode in Fig. 5.24, the growth
times are comparable for different perturbations.

The high-amplitude, strongly non-linear development at late times is sensitive to the perturbation func-
tion, as is visible from the evolutions shown in Fig. 5.22 and 5.23. In the case of the m = 1 perturbation,
a single fragment develops and collapses in a similar manner to the case λm = 1. With an m = 2 perturba-
tion, however, two orbiting fragments develop, contract, and subsequently encounter a runaway instability
in the center (bottom panel in Fig. 5.23). Any perturbation with different values for λ1 and λ2 might pro-
duce a mixture of this spiral arm and binary-system fragmentation instability. One might argue that a
fine-grained parameter space study in the space of λ1 and λ2 is necessary to obtain a more complete un-
derstanding of the remnants. However, the reference polytrope is already well inside the unstable region
of the parameter space. We will see in Section 5.3.5 that, on a sequence of increasing T/|W |, the m = 1
mode dominates at first, and we in the next section it is shown that an apparent horizon is located around
the fragment visible in the bottom panel of Fig. 5.22. Therefore, this process of fragmentation is also
black-hole forming.6

To investigate the growth time τ of the modes, which, in the context of linear theory, is defined by
the relation Am(t) = Am(t = 0) exp(t/τm), we plot the function τm(t) := (d ln A/dt)−1 in Fig. 5.28 for
m = 1 and m = 2. As expected for a dynamical instability, the growth times are of the order of the
dynamical timescale. Finally, in Fig. 5.29 the mode frequencies ω(t) = tdyndφ/dt are plotted versus time.
These, and the connected pattern speeds ω/m, will be important in the discussion of the corotation band
in Section 5.3.1.4.

5.3.1.2. Black hole formation

Using the solution-based adaptive mesh refinement technique discussed in Section 3.4, the collapse of the
fragment in the case m = 1 is followed further. This admits to look for apparent horizons on the grid. Due
to technical difficulties, this was done in a number of post-processing steps based on three-dimensional
output of the metric and extrinsic curvature.

The resulting horizon is displayed in Fig. 5.30: During the collapse of the fragment, a highly distorted
apparent horizon has been located: its shape is close to ellipsoidal, with an axes ratio of ≈ 2 : 1.1 : 1. The
apparent horizon is covered by three refinement levels and 50 to 100 grid zones along each axis.

5.3.1.3. The global nature of the instability

While we will not focus on the global nature of the quasi-normal modes of general relativistic quasi-
toroidal polytropes here, this section will give some indication about the structure of the instability. Con-
sider Fig. 5.31 and 5.32, which display the equatorial distribution of the function log10(|ρ(x, y, z, t) −
ρ0(x, y, z)| + ε), where ρ0 is the density function of the equilibrium polytrope and ε = 10−10. These log-
arithmic difference plots exhibit the node lines of the unstable mode in the equatorial plane, and show
the spiral-arm structure of the m = 1 fragmentation instability in Fig. 5.31. We therefore expect that the
m = 1 contribution is dominant throughout the star, although the phase angle varies with the radial coor-
dinate. The m = 2 instability has a core region which encounters, at late time, injection of matter from
two orbiting fragments, and two trailing “bar arms” in the low-density halo.

6The case λm = δm2 also exhibits a “collapse of the lapse” at late times, which suggests that in this case a black hole has formed,
too. Unfortunately, it was not possible to locate an apparent horizon in this case due to numerical difficulties.
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Figure 5.30.: Time evolution of the density in the equatorial plane of the reference polytrope using the
perturbation parameters λm = δ1m. Shown are isocontours of the decadic logarithm of the rest-mass density.
The four snapshots extend to 0.37 re and are taken at t/tD = 0 (top left), 6.43 (top right), 7.14 (bottom left)
and 7.45 (bottom right), respectively. They show the formation and collapse of the fragment produced by the
m = 1 instability. The lower right panel contains an apparent horizon demarked by the thick white line. Note
that the shades of grey used for illustration are adapted to the current maximal density at each time, and that
darker shades denote higher densities.
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5.3.1 Evolution of the reference model

Figure 5.31.: Contour plot of the function log10(|ρ(x, y, z, t) − ρ0(x, y, z)| + ε) in the equatorial plane, where ρ
denotes the rest-mass density of the m = 1 evolution shown in Fig. 5.22, ρ0 denotes the the density function
of the equilibrium polytrope, and ε is a small number (ε = 10−10 in this plot).
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Figure 5.32.: Same as Fig. 5.31, but for the m = 2 evolution shown in Fig. 5.23.

86



5.3.1 Evolution of the reference model

0 2 4 6 8
t / t

dyn

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
1

r = 1/8 R
e

r = 1/4 R
e
 (maximal density)

r = 1/2 R
e

r = 3/4 R
e

0 2 4 6 8
t / t

dyn

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
2

r = 1/8 R
e

r = 1/4 R
e
 (maximal density)

r = 1/2 R
e

r = 3/4 R
e

Figure 5.33.: Evolution of the mode amplitudes A1 and A2 in the reference polytrope perturbed by λm = δm1,
for different mode extraction radii. The radius of highest initial density is indicated.
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Figure 5.34.: Same as Fig. 5.33, but for the mode amplitudes A3 and A4.

88



5.3.1 Evolution of the reference model

4 5 6 7
t / t

dyn

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

t dy
n d

φ 
/ d

t
r = 1/8 R

e

r = 1/4 R
e
 (maximal density)

r = 1/2 R
e

r = 3/4 R
e

4 5 6 7
t / t

dyn

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

t dy
n d

φ 
/ d

t

r = 1/8 R
e

r = 1/4 R
e
 (maximal density)

r = 1/2 R
e

r = 3/4 R
e

Figure 5.35.: Local mode frequency tdyndφ/dt for the modes m = 1 (top) and m = 2 (bottom) in the reference
polytrope, extracted at different radii in the equatorial plane.
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Figure 5.36.: Angular velocity of the reference polytrope over the x axis (black line), and approximate lo-
cation (with error bar) of the pattern speed of the m = 1 mode (red rectangle), and the m = 2 mode (blue
rectangle). Both modes are inside the corotation band.

The mode amplitudes at different extraction radii in the equatorial plane are shown, for a perturbation
with λm = δm1, in Fig. 5.33 and 5.34. The development of the unstable modes is not very sensitive
to the extraction radius, at least as long as the amplitude of the dominant mode is not close to unity.
Fig. 5.35 suggests that the local mode frequency does not depend strongly on the radius, at least within
the considerable uncertainties of the plot.

5.3.1.4. The location of the unstable modes in the corotation band

To determine the location of the instability with respect to the corotation band (see introduction to this
chapter), we define a coordinate angular velocity of the initial model by

Ω($) ≡ αvφ − βφ

$
. (5.7)

.
This can be compared to the mode pattern speed 1/m dφ/dt, which we will assume to be valid for the

whole star (cf. Fig. 5.35), to determine whether a certain mode has a corotation point. In Fig. 5.36, the
angular velocity is plotted in addition to the numerical approximation of the location of the m = 1 and
m = 2 pattern speeds. We find that both modes have corotation points: the m = 1 mode near the radius of
highest density at 0.25 Re, and the m = 2 mode near 0.5 . . . 0.6 Re.

5.3.1.5. Grid resolution and convergence

For any parameter study with numerical methods, it is important to have an understanding of the amount
of grid resolution needed to extract the physical features under consideration. A typical way to gauge this

90



5.3.1 Evolution of the reference model

0 2 4 6 8
t / t

dyn

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
1

49 x 49 x 25
65 x 65 x 33
97 x 97 x 49
129 x 129 x 65

0 2 4 6 8
t / t

dyn

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
2

49 x 49 x 25
65 x 65 x 33
97 x 97 x 49
129 x 129 x 65

Figure 5.37.: Evolution of the mode amplitudes A1 (top) and A2 (bottom) for different grid resolutions. The
resolutions in the legend refer to the four outermost grid patches; the innermost patch covering the high-
density central toroidal region of the star has a resolution of 65 × 65 × 33, 97 × 97 × 49, 129 × 129 × 65 or
193 × 193 × 97, correspondingly.
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Figure 5.38.: Same as Fig. 5.37, but for the evolution of the maximal rest-mass density ρmax.
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Figure 5.39.: Same as Fig. 5.37, but for the evolution of the total rest mass M0. The last graph is from a
simulation with a less dense artificial atmosphere.
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is to evolve a system with different resolutions and to compare the results. For the black-hole forming
fragmentation instability shown in Section 5.3.1.1, it is expected that different phases of the evolution have
substantially different resolution requirements. During the nearly exponential growth of the instability at
low amplitudes (which we will call linear regime), the equilibrium structure of the star as a whole needs
to be covered appropriately. The instability is, at first, a low-frequency effect on the star, and as such is
not expected to dominate the resolution requirements. However, if the fragment evolves into a black hole
(in the non-linear regime), it needs to be resolved with significantly more grid points.

As explained in Section 3.4, the star is covered by a grid with fixed mesh refinement. Typically, five grid
patches are used, centered on each other, and with an increase of resolution by a factor 2 each. Only the
central patch with highest resolution, which covers the region of highest density, is 0.75 times as extended
as the second finest one to reduce artefacts from inter-patch boundaries. To test convergence, the reference
model has been evolved with 49× 49× 25, 65× 65 × 33, 97 × 97× 49 and 129× 129× 65 zones per outer
grid patch; the innermost patch covering the high-density toroidal region has 65 × 65 × 33, 97 × 97 × 49,
129×129×65 or 193×193×97 grid zones. Also, the initial data was calculated with a grid of 401×201,
601 × 301, 1201 × 601 and 2401 × 1201.

The results from evolving the reference model with an m = 1 perturbation at different resolutions are
shown in Fig. 5.1, 5.37, 5.38 and 5.39. The convergence of the Hamiltonian constraint has already been
discussed in Section 5.2.1. The amplitude of the dominant m = 1 mode is virtually independent of
resolution, while the m = 2 amplitude is slightly smaller at the lowest resolution. The evolution of the
maximal rest-mass density (Fig. 5.38) exhibits a similar behaviour. Finally, the total rest mass of the
system is conserved from within 1.4% (lowest resolution) to 0.1% (higher resolutions). The drift in the
rest-mass can be explained by our use of an artificial atmosphere: The rest-mass density of the atmosphere
is 10−5ρc = 3.38 · 10−11, which corresponds to an approximate total mass of M0,atmo ≈ 4.7 · 10−3 in a
domain of coordinate volume 5203 (not taking into account the volume form). This translates into a
systematic shift in the total rest mass of the system as apparent when comparing to an evolution with a
lower atmospheric density (bottom panel in Fig. 5.39), and a drift caused by the intrinsic atmospheric
dynamics and the interaction with the outer boundary. Note that this is to be considered a (non-sharp)
upper limit on the systematic errors induced by the atmosphere, because one could always extend the total
computational domain arbitrarily without affecting the core region significantly.

Judging from the plots, we think that the lowest resolution considered here (which already covers the
equatorial radius of the star with about 60 grid points when comparing to uniform grids) is sufficient to
get qualitatively correct results. Quantitively, the errors are in a range of a few percents. The next higher
resolution of 65 × 65 × 33 seems accurate to within about one percent. This resolution will therefore be
used for the parameter study below. This is reasonable since the structure of the quasi-toroidal models has
similar features, and therefore similar requirements concerning resolution. Nevertheless, selected models
have been tested for convergence independently from the reference polytrope.

5.3.1.6. Influence of the artificial atmosphere

The standard artificial atmosphere we employ in our simulations has a density several orders of magnitude
lower than the average density in the star, so we expect that it does not influence the dynamical properties
of the star significantly. The atmospheric density is set in terms of the central density of the star: we
have used a ratio of 10−5 in most simulations. To test the influence of this parameter, we have evolved
the reference model also with a ten times lower atmospheric density (i.e. 10−6ρc), and with an m = 1
perturbation. The results are shown in Fig. 5.39 and 5.40. The latter shows that the dominant m = 1
mode is not influenced by the atmospheric setting, while the m = 2 amplitude shows dependence on the
atmosphere setting only as long as its amplitude is on the level of the numerical noise.
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Figure 5.40.: Evolution of the mode amplitudes A1 and A2 in the reference polytrope, for artificial atmo-
spheres of different density ρatmo/ρc.

5.3.1.7. Extraction of gravitational waves

Since the simulations are all fully relativistic, it is possible to extract gravitational radiation from the sys-
tem. However, the simulations terminate shortly after black hole formation, which poses a dilemma: any
detector used for wave extraction should be as far away from the source as possible, but at the same time,
the domain of influence of the source is limited by the finite domain of integration. In no case were we able
to extract signals from the black hole formation proper, but we could obtain partial signals from the pro-
cess of fragmentation. The kind of signals one might expect would have two major frequency components:
one lower-frequency component induced by the pattern motion of the instability, with an exponentially
rising temporal amplitude before black-hole formation, and a higher-frequency one from oscillations of
the fragment and the new-born black hole, which should have burst and ring-down characteristics. We are
not able to discuss the higher-frequency component given the limitation of our simulations. However, we
expect that we can predict the approximate frequency and an approximate lower limit on the amplitude of
the lower-frequency component.

The WaveExtract module developed at the Albert Einstein Institute extracts the complex quantities Q+
`m

and Q×
`m [148] at certain specified coordinate radii. Given these, the strains h+ and h× can be obtained by

evaluating eqn. 101 in [148]7. During the development of the instability, most bulk motion will be visible
from an observer at the polar angular coordinate θ = 0. In Fig. 5.41 and 5.42 we plot the strains h+ and h×
for a star of mass 106 M� at a distance of 1 Gpc for different detector locations and resolutions. The signal
has the expected form of an exponentially growing oscillation. Detectors closer to the stellar surface, at
re ≈ 11M in the equatorial plane, exhibit a larger part of the whole signal, but at the expense of suffering

7Note that ref. [148] contains a small error in Appendix D: The correct explicit form of the quantity X22 is given by X22 =

iei2φ
√

15/8π sin 2θ, which guarantees that X22/ sin θ is regular.
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Figure 5.41.: The strain from gravitational radiation h+ measured at different radial detector locations for a
resolution of 65 × 65 × 33 per patch (top) and 97 × 97 × 49 per patch (bottom), emitted from the process
depicted in Fig. 5.22. The amplitude is normalized to a star of 106 M�, and a distance of 1 Gpc.
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Figure 5.42.: Same as Fig. 5.41, but for the strain h×.
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from systematic errors due to the assumption of a Schwarzschild background. Judging from the insets,
the detector at rex = 14.3 overestimates the signal amplitude by about a factor of two. The frequency is
not very sensitive to the detector location. While we clearly cannot obtain the whole signal in this manner,
we are, as already discussed, able to give a lower limit on the low-frequency part. The frequency of the
signal is then

fGW ≈ 5.5

(

106 M�
M

)

mHz (5.8)

with a corresponding lower limit on the amplitude of about

hGW ≈ 10−18
(

M

106 M�

) (

1 Gpc
d

)

. (5.9)

Given the aforementioned technical limitations, we will not study gravitational-wave signals in further
detail, since a stable evolution of the final black hole would be necessary to obtain the most interesting
part of the signal, and since we consider the comparison of partial signals to be of limited astrophysical
value.

5.3.2. Evolution of the sequence of axes ratios

The R sequence has been described in Section 5.2.2.2. From Table 5.2, it is apparent that higher values of
rp/re are connected to lower T/|W |. In Maclaurin spheroids, this is related to a stabilization of the initial
model. Consider Fig. 5.43: The growth time of the modes m = 1 and m = 2 increases with lower r p/re,
which indeed is a sign for approaching a limit of stability. The mode m = 2 even seems stable in the
model R0.34.

5.3.3. Evolution of the sequence of stiffnesses

The change in the instability along the G sequence described in Section 5.2.2.3 is shown in Fig. 5.44. With
increasing Γ, and T/|W | decreasing from 0.227 to 0.159 (cf. Table 5.3), both the m = 1 and the m = 2
modes are stabilized. The member G2.0 with Γ = 2 is of special interest, since this choice is often used to
obtain a simple polytropic equilibrium model of neutron stars. While it is known that strong differential
rotation can induce bar-mode instabilities in neutron stars [63, 64], the particular model G2.0 does not
seem to have enough rotational energy to exhibit a growth of the m = 2 mode.

5.3.4. Evolution of the sequence of compactnesses

The mode amplitudes A1 and A2 for different members of the C sequence (cf. Section 5.2.2.4 and Ta-
ble 5.4) is shown in Fig. 5.45. The plot demonstrates that different choices of ρc do not have a significant
effect on the growth time of the mode, which is in contrast to the effects of Γ and r p/re discussed above.
However, while the linear development of the mode is similar for different compactnesses, the non-linear
behaviour is not. Consider Fig. 5.46: The reference polytrope C1 and the model C2, which is about half as
compact, both show an unbounded growth in maximal density and a collapse of the lapse, indicating black
hole formation. The models C4 and C8, however, appear to avoid black hole formation and re-expand af-
ter a state of maximum compression. Fig. 5.47 to 5.49 show these different evolutions in more detail:
While the late-time evolution of C2 (Fig. 5.47) is quite similar to that of the reference model evolution
(Fig. 5.18), the fragment in the less compact models C4 and C8 re-expands after the collapse. This is
expected, since the Newtonian limit, for an equation of state Γ = 4/3, admits a stable equilibrium state of
the fragment, if it has non-zero rotation. We conclude therefore that, even when the growth time of the
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Figure 5.43.: Evolution of the mode amplitudes A1 and A2 for different members of the R sequence (cf.
Table 5.2).
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Figure 5.44.: Evolution of the mode amplitudes A1 and A2 for different members of the G sequence (cf.
Table 5.3).
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Figure 5.45.: Evolution of the mode amplitudes A1 and A2 for different members of the C sequence (cf.
Table 5.4).
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Figure 5.46.: Evolution of the maximum of the rest-mass density ρ and the minimum of the lapse function α
for different members of the C sequence.
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Figure 5.47.: Evolution of the density in the equatorial plane of the model C2. Shown is the decadic logarithm
of the rest-mass density. The snapshots were taken at times t/tdyn = 0 (top), 6.28 (middle) and 7.48 (bottom).
Compare also to Fig. 5.18.

102
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Figure 5.48.: Evolution of density in the equatorial plane of the model C4. Shown is the decadic logarithm
of the rest-mass density. The snapshots were taken at times t/tdyn = 0 (top), 6.28 (middle) and 8.28 (bottom).
In contrast to the more compact models C1 (Fig. 5.18) and C2 (Fig. 5.47), the fragment re-expands after a
maximal compression.
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Figure 5.49.: Same as Fig. 5.48, but showing the evolution of the model C8.
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5.3.5 Evolution of quasi-toroidal models of constant central rest-mass density

Figure 5.50.: Stability of quasi-toroidal models with ρc = 10−7 (cf. Fig. 5.12). A Latin number denotes the
highest azimuthal order of the unstable modes, i.e. “I” for m = 1 unstable, “II” for m = 1, 2 unstable, and “III”
for m = 1, 2, 3 unstable. Models denoted by “(I)” are either long-term unstable with growth times τ � t dyn,
or stable, and models denoted by “A” exhibit an axisymmetric instability. The red line is the approximate
location of the sequence J/M2 = 1 (cf. Fig. 5.11), and the three blue lines are the approximate locations of
sequences with T/|W | = 0.14 (right), T/|W | = 0.18 (middle) and T/|W | = 0.26 (left) (cf. Fig. 5.9).

instability is quite similar for stars of different compactness, the outcome of the fragmentation can differ
drastically.8

5.3.5. Evolution of quasi-toroidal models of constant central rest-mass density

The structure of the parameter space plane Γ = 4/3 and ρc = 10−7 has been discussed in Section 5.2.3.
As already noted, the necessity of investigating only one plane is determined primarily by the compu-
tational cost of three-dimensional general relativistic hydrodynamical simulations. Also, the choice of
the central density does not seem to affect the linear development of a non-axisymmetric unstable mode
considerably, even for very compact quasi-toroidal polytropes (cf. Section 5.3.4), which is in contrast to
axisymmetric modes. Finally, we note that the models with ρc = 10−7 are already quite compact, with
Re/M ≈ 10 . . . 100, and rp/M ≈ 2 . . . 70.

To investigate the stability of these models, members marked with a circle have been evolved in Fig. 5.12,
imposing a perturbation of the form given by eqn. 5.6 with λm = 1, and with a resolution of 65 × 65 × 33
grid points in the outer patches, and 97×97×49 in the innermost patch. Selected models have been tested
against individual m = j perturbations with λm = δm j, with different resolutions, and different densities of
the artificial atmosphere, to test consistency and convergence. Also, central rest-mass densities different
from 10−7 were investigated in a few models.

Fig. 5.50 gives an overview of the stability properties of the selected models. The Latin numbers “I”
to “III” refer to the highest m with an unstable mode, i.e. in addition to the reference polytrope, which

8These results have been confirmed with lower and higher resolutions.
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Figure 5.51.: Remnants of the models from Fig. 5.50, which are unstable with respect to non-axisymmetric
modes. The non-linear behaviour has been analyzed by observing the evolution of the function minα (see also
Fig. 5.46). Models which show a minimum in this function are marked by “B” for “bounce”, while models
exhibiting an exponential collapse of the lapse are marked by “C” for “collapse.”
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Figure 5.52.: Mode amplitudes in the model A0.1R0.15 (cf. Table 5.5), extracted at the radius of highest
initial rest-mass density.
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5.3.5 Evolution of quasi-toroidal models of constant central rest-mass density
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Figure 5.53.: Mode amplitudes in the model A0.1R0.50 (cf. Table 5.5), extracted at the radius of highest
initial rest-mass density.
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Figure 5.54.: Mode amplitudes in the model A0.3R0.15 (cf. Table 5.5), extracted at the radius of highest
initial rest-mass density.
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Figure 5.55.: Mode amplitudes in the model A0.3R0.50 (cf. Table 5.5), extracted at the radius of highest
initial rest-mass density.
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Figure 5.56.: Mode amplitudes in the model A0.6R0.15 (cf. Table 5.5), extracted at the radius of highest
initial rest-mass density.
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5.3.5 Evolution of quasi-toroidal models of constant central rest-mass density

Figure 5.57.: Equatorial density evolution of the model A0.6R0.15, with an m = 3 perturbation. Shown is the
decadic logarithm of the rest-mass density. The snapshots were takes at times t/tdyn = 0 (top), 6.28 (middle)
and 7.60 (bottom). Three fragments develop and subsequently encounter collapse similar to the two-fragment
case (cf. Fig. 5.23). The evolution of the model perturbed with m = 1 and m = 2 is similar to the corresponding
one in the reference polytrope.
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Figure 5.58.: Equatorial density evolution of the model A0.1R0.15. Shown is the decadic logarithm of the
rest-mass density. The snapshots were takes at times t/tdyn = 0 (top) and 6.28 (bottom). The model exhibits
an axisymmetric instability.
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5.3.6 The location of the instability in the corotation band

belongs to the class “II”, we find models which are unstable to an m = 3 perturbation, and models which
appear stable against m = 2 (within the restrictions illustrated in Section 5.3.7). The models denoted
with an “A” have been found to be unstable to an axisymmetric mode, and collapse before any non-
axisymmetric instability could develop. Finally, the models marked with “(I)” are either stable or long-
term unstable with a growth time τ � tdyn. Each model has been evolved for up to 10 tdyn to determine its
stability. This limit is arbitrary, but imposed by the significant resource requirements of these simulations.
If no mode amplitude exceeds the level of the m = 4 noise during this time, the model is marked with
a “(I)”. This does not imply that the model is actually stable, and we will investigate a specific model
denoted by “(I)” later. We will find it to be unstable to an m = 1 mode with slow growth (Section 5.3.7).

The additional lines in Fig. 5.50 are approximate isolines of the functions T/|W | for the values 0.14,
0.18 and 0.26 (cf. also Fig. 5.9) and of the function J/M2 for the value 1. As long as the models do not
rotate too differentially, T/|W | still seems to be a reasonable indicator of the non-axisymmetric stability
of the polytropes, even though they are quasi-toroidal and relativistic.

The nature of the non-linear behaviour of models exhibiting a non-axisymmetric instability is indicated
in Fig. 5.51. We primarily use the evolution of the minimum of the lapse function to classify the models,
see also Fig. 5.46. Models denoted by “B” have a global minimum in the lapse, while models denoted
by “C” do not. Given that the compactness of the models increases with smaller axes ratios in this plot
(cf. Fig. 5.10), we expect that a black hole forms for each member of the “C” class. To determine this
uniquely, each of these models should be tested using the adaptive mesh-refinement technique presented
in [134], which is, however, beyond the scope of this study.

In Fig. 5.52 to 5.56, we have plotted the mode amplitudes Am for selected models (cf. Table 5.5). The
evolution of the model A0.3R0.15 (Fig. 5.54) is quite similar to that of the reference polytrope. Model
A0.6R0.15 is further inside the unstable region, and exhibits also an m = 3 instability: the density evolution
of this mode is plotted in Fig. 5.57. The models A0.1R0.50 and A0.3R0.50 are stable within the numerical
restrictions mentioned above.

Only the model A0.1R0.15 seems to have an unusual evolution of the mode amplitudes; this also applies
to the model A0.1R0.20, which is not shown here. The density evolution of A0.1R0.15 (Fig. 5.58) shows
that the model has encountered an axisymmetric instability, before any non-axisymmetric modes can
grow to an appreciable amplitude. We note that both models A0.1R0.15 and A0.1R0.20 have J/M 2 < 1,
in contrast to most other models in the parameter space plane considered here; only the model A0.1R0.25
has J/M2 = 0.961. In Fig. 5.50, the isoline J/M2 = 1 is marked. It approximately separates the region of
axisymmetric from that of non-axisymmetric instability.

5.3.6. The location of the instability in the corotation band

Fig. 5.59 shows the location of the unstable modes in the corotation band, for three different models on
the sequence Γ = 4/3, ρc = 10−7, and A = 0.3. All modes are in corotation, but there is evidence that,
for decreasing T/|W |, the corotation point moves toward the pole. This gives support to the arguments
presented in [127], where the existence of low T/|W | and spiral-arm instabilities in differentially rotation
polytropes are connected to corotation9 . Limitations of resources did not permit us to investigate the
assumed boundary of the corotation region, where growth times of many tdyn are expected, however, with
the results of Sections 5.3.4 and 5.3.8, one can be are optimistic that a purely Newtonian investigation
might give results which are qualitatively similar to a relativistic study.

9There is evidence that, on a sequence of increasing rotation parameter, some modes in the discrete spectrum become unstable
when entering the corotation band (which has a continuum spectrum), or might annihilate with other modes inside the band
and become unstable. These are mechanism not present in uniformly rotating polytropes.
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Figure 5.59.: Angular velocity of the polytropes A0.3R0.15 (top), A0.3R0.30 (middle) and A0.3R0.40 (bot-
tom) over the x axis (black line), and approximate location of the pattern speed of the m = 1 mode (red
rectangle) and the m = 2 mode (blue rectangle), cf. also Fig. 5.36.
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5.3.7 Evolution of a model with a slow growth of the m = 1 instability
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Figure 5.60.: Long-term evolution of the mode amplitudes for the model A0.2R0.45, which is unstable to an
m = 1 perturbation. The mode, however, grows rather slowly over a time of 20 tdyn.

5.3.7. Evolution of a model with a slow growth of the m = 1 instability

As already discussed, the nature of the class “(I)” models in Fig. 5.50 could not be investigated in detail
due to the high computational cost when evolving general relativistic, three-dimensional models. How-
ever, to illustrate the behaviour in one specific case, a long-term simulation of the model A0.2R0.45 has
been performed (Fig. 5.60). A slowly growing m = 1 instability is apparent in the evolution, which satu-
rates at high amplitudes only after 20 tdyn. While the m = 1 mode is clearly dominant, the m = 2 might be
unstable as well. A detailed investigation of these sequences should be attempted in the limit of vanishing
compactness, with a Newtonian model and preferably, with a cylindrical grid (see also the discussion in
Section 5.4).

5.3.8. Evolution of a sequence of models with different compactness starting from
the boundary between the regions “I” and “(I)”

In Section 5.3.4, we have already studied the influence of the compactness on the development of the
instability in the reference polytrope. According to the results of Section 5.3.5, the reference model
is located inside region “II” of the parameter space plane for ρc = 3.38 · 10−6. Thus, it is instructive
to investigate the effect of compactness on a model’s evolution which is located close to the boundary
between regions “I” and “(I)” in Fig. 5.50 (although this boundary is not sharply defined). A selected
model, A0.2R0.40, has been extended to the L sequence of constant Γ, A, and T/|W | (cf. Table 5.6). The
influence of compactness on the m = 1 mode is illustrated in Fig. 5.61: The most compact models L1
and L2 show a growth of the non-asymmetric mode already early on, but collapse due to an axisymmetric
instability (both models have J/M2 < 1). The growth rate of the non-axisymmetric instability is not very
sensitive to the compactness, which confirms our findings for models of the C sequence. One can therefore
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Figure 5.61.: Amplitude of the m = 1 mode for different models from a sequence with constant T/|W | limiting
in the model A0.2R0.40, which has ρc = 10−7. Cf. also Table 5.6.

be quite optimistic that the non-axisymmetric stability properties of quasi-toroidal N = 3 polytropes are
well-represented by Fig. 5.50, even for a different choice of central rest-mass density. The axisymmetric
stability, and the question whether the collapse of the fragment will be halted or not, is sensitive to ρc.

5.4. Summary

In this chapter, we have investigated the non-axisymmetric instabilities, fragmentation and black hole
formation in general-relativistic, quasi-toroidal polytropes. Our focus was to gain an understanding how
various parameters determining the structure of the equilibrium polytrope affect the development of the
instability, and the nature of its remnant. In addition, we have investigated the location of the unstable
modes in the corotation band of the differentially rotating models.

All investigations have been performed using three-dimensional numerical simulations in general rel-
ativity, and assuming the stars to be self-gravitating perfect fluids with an adiabatic coefficient equal to
the polytropic constant Γ. The equations of general relativistic hydrodynamics have been evolved using
high-resolution shock-capturing methods, and the NOK-BSSN formalism has been used for the metric
evolution. All grids use centered fixed mesh refinement, and impose an equatorial plane symmetry. The
development of unstable modes has been followed by the use of a discrete Fourier transform of the rest-
mass density computed at certain coordinate radii in the equatorial plane, with a preference on the radius
of initial highest density.

The central results are represented in Fig. 5.30, 5.50, 5.51, and 5.59. For a plane of constant rest-
mass density ρc = 10−7 and Γ = 4/3, we have determined the region where quasi-toroidal models become
dynamically unstable to non-axisymmetric fragmentation. From the structure of the space of initial models
presented in Fig. 5.7 to 5.11, it appears that there is a rough relation between T/|W | and the highest order
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5.4 Summary

of unstable modes, at least as long as the degree of differential rotation is not too high. Since the numerical
method is not well-suited to follow the development of instabilities with growth times much longer than a
dynamical timescale, we could not determine the fate of models from class “(I)” with certainty. However,
we have shown in one specific case that the model is actually unstable. In the same manner, a model from
class “I” could be subject to a slowly growing mode with m > 1; however, in this case the m = 1 mode
would clearly be dominant.

From the investigation of a sequence emanating from the model used in the publications [134], we have
found that the central rest-mass density ρc, which controls the compactness of the polytrope, does not
affect the development of the non-axisymmetric instability significantly. This is related to the fact that
T/|W | is insensitive to ρc. However, ρc determines the nature of the final remnant: While the model in
[134] forms a black hole, two models having one fourth and one eighth as much compactness show a
re-expansion of the fragment after maximal contraction.

The regions of models in the plane ρc = 10−7 and Γ = 4/3 where such a re-expansion was observed is
indicated in Fig. 5.51 by a “B”. If one accepts that the models not exhibiting this behaviour, marked with
“C” in Fig. 5.51, are forming black holes in the same manner as shown in [134], then we can draw the
following tentative picture of black hole formation by fragmentation of single stars.

The nature of the final system, either an almost unperturbed axisymmetric star, a single central black
hole, single or multiple non-central black holes with a disk, or one or several expanding remnants with-
out trapped surfaces, depends on the symmetry properties of the perturbation, and the location of the
equilibrium star with respect to three types of surfaces in the space of parameters:

1. Surfaces indicating the onset of the instability of a mode of a certain order m. These surfaces might
be close to isosurfaces of T/|W | as indicated in Fig. 5.50, but the resource requirements of perform-
ing three-dimensional general relativistic simulations limit our ability to identify slowly growing
modes. However, if only modes growing on the order of a dynamical timescale are considered, then
T/|W | might yield a reasonable indicator of the location of the limit surfaces. The compactness of
the initial model seems to have no significant effect on the location of these surfaces, at least for
Γ = 4/3. Thus, one may attempt to obtain a more precise location using a computationally less
expensive Newtonian approach.

2. Surfaces indicating the onset of an axisymmetric instability. In our samples, all models with J/M 2 <

1 were unstable to quickly growing axisymmetric modes, and hence will likely evolve to central
black holes. The surface J/M2 = 1 can therefore be used as an approximate separator between
axisymmetric collapse and stability (cf. [149] for a more detailed discussion of this point).

3. Surfaces separating black-hole formation from re-expansion. In Fig. 5.51, an approximate determi-
nation of such a surface has been attempted. In a first approach, and assuming that results for the
stability of slowly and uniformly rotating relativistic polytropes [54, 55, 56] can be applied to the
fragments, we expect a fragment with a higher compactness to be destabilized, and, given that the
geometric development of the fragmentation process is similar for different choices of compactness
of the equilibrium polytrope, that there is a close connection to isosurfaces of Re/M. However,
when comparing Fig. 5.10 and 5.51, the situation appears more complicated, and deserves further
attention.

With respect to the question whether multiple black holes may form or not, two comments are in order:
First, in the unstable systems of class “II” and “III”, all growth times of modes with different m are of
comparable magnitude, i.e. the nature of the actual time development in a specific star will depend on
the symmetry of the perturbation, as already mentioned. If the perturbation is random, it appears that one
dominant fragment (the superposition of, say, m = 1 and m = 2) develops and collapses. Since our code
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encounters numerical problems after black hole formation, we cannot determine the fate of the remaining
disk of material in this interesting case. Second, even when two fragments are forming and collapsing,
in all cases considered here a runaway instability develops and leads to a central collapse (Fig. 5.23). In
this case, the gravitational wave signal is expected to resemble the ring-down phase of a highly deformed
black hole.

Concerning the nature of the non-axisymmetric mode, we have collected evidence that, along a sequence
with decreasing T/|W |, the corotation point moves towards the pole region of the polytrope. This gives
support to the arguments by Watts et al. [127]. To also investigate the cases with large growth times,
however, a Newtonian model, preferably with a cylindrical grid, would be of advantage to obtain more
detailed results.

Possible future work on this problem can be roughly divided into three approaches. First, the nature
of the low-T/|W | and m = 1 instabilities in quasi-toroidal polytropes could be investigated in Newtonian
gravity, or perhaps using some perturbative approximation of general relativity, to determine the location
of the corresponding surfaces in parameter space, and to suggest regions where the quantity T/|W | is
still a good indicator for instability. Since the Newtonian polytropes can be considered to be limit points
of relativistic sequences with vanishing compactness, the systematic effect of general relativity on their
stability properties can be determined separately.

Second, the location of the surfaces separating black hole formation from “bounce” behaviour, and its
relation to the initial compactness Re/M, needs to be determined with more detail, specifically also its
dependence on Γ. Could a newly formed, rapidly and differentially rotating neutron star fragment in this
way? We have found no example of this kind here, but such a question deserves further attention.

Third, to connect more closely to certain astrophysical systems, a detailed model of the micro-physical
processes, particle transport, and magnetic fields is necessary in many cases to obtain specific answers.
The most important bulk property appears to be a change in Γ during evolution, since this would modify
the non-linear evolution of the fragmentation significantly. In the specific case of core collapse, results in
this context have been obtained already [139, 126].

116



6. Spherically symmetric dynamical black holes
modeled with high-order summation-by-parts
techniques

This chapter is based on a joint publication [150] with Peter Diener, Enrique Pazos and Manuel Tiglio.
All simulations have been performed by the author. The numerical evolution code has been developed by
the author, with the exception of the SBP operator implementation, which is by Peter Diener.

In this chapter, the discrete representation of the spherically symmetric Einstein-Klein-Gordon system
is attempted with several modern tools in numerical relativity (see also Chapter 3).

1. A first order hyperbolic formulation: A first order system admits an easier discussion of the level
of hyperbolicity, and therefore of the well-posedness of the initial-boundary-value problem. Also,
one can easily guarantee that the system has only physical speeds of propagation (i.e. those which
are inside or on the light cone), which is an important requirement for setting up excision surfaces.
Here, the symmetric hyperbolic Einstein-Christoffel system is used (cf. Section 3.2.2).

2. Multiple coordinate patches: The coordinate domain is covered by one or several coordinate patches
which do not intersect, with the intention to emulate the multi-patch setups to be applied to three-
dimensional numerical relativity. Since any discrete function may be two-valued on an interface
point, a stable technique to ensure consistency, penalty boundary conditions, is necessary.

3. Excision: The inner boundary is chosen in a way that it is always purely outflow for all modes.
Since the modes are restricted to the light cone, and since the system is strongly hyperbolic, it is
sufficient that the inner boundary is spacelike and ingoing.

4. Constraint-preserving boundary conditions: The outer boundary data is subjected to the require-
ment that it satisfies the constraint equations of the Einstein-Christoffel-Klein-Gordon system,
which leaves only two modes of inflow: one mode associated with gauge, and one wave mode
of the massless Klein-Gordon field.

5. Cauchy-perturbative matching: A simplified model of Cauchy–perturbative matching1 is obtained
by freezing the spacetime on the outermost patch, and using the Klein-Gordon field as a scalar
analogue of gravitational radiation.

6. Summation-by-parts operators: To obtain a stable (in the linearized sense) discrete evolution system
from the well-posed initial-boundary-value problem, finite difference and dissipation operators with
the summation-by-parts property are used to evaluate derivatives. These operators also use one-
sided stencils on the boundaries, and thus are ideal for excision and multiple coordinate patches.

1The term Cauchy–perturbative matching refers to dividing the computational domain of a compact source into a central
“Cauchy” part, which is evolved using the full set of equations, and an outer part which only evolves perturbations on a fixed
background (often Schwarzschild). This procedure allows to propagate weak gravitational waves far from the source without
the computational cost associated with the full evolution system.
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7. Penalty boundary operators: Ensuring consistency and convergence with multiple patches while
still maintaining the global stability requirements is possible with a penalty operator applied to the
inter-patch boundaries. The free outer boundary is treated in the same manner by penalizing to
analytically specified boundary data on the incoming modes.

6.1. Numerical setup

6.1.1. Cauchy–perturbative matching

Since there is no radiative degree of freedom in spherically symmetric spacetimes, we use the massless
Klein-Gordon field as a scalar analogue of gravitational waves. To emulate the setup of three-dimensional
Cauchy–perturbative matching as closely as possible, the scalar wave is evolved on a fixed Schwarzschild
background in a “perturbative” patch defined for r ≥ rm, while the fully non-linear Einstein’s equations
are evolved in the “Cauchy” patch, defined for r ∈ [re, rm], where re and rm denotes the excision radius
and the matching radius, respectively.

The fact that we are using constraint-preserving boundary conditions allows us to perform a clean
matching. From the analytical point of view our matching works in the following way: As explained
in Section 3.2.5, after the constraint projection procedure, only two free characteristic modes are entering
the Cauchy computational domain (at r = rm), denoted by u3 and u8. Since in a very precise sense u3 is a
gauge mode, we are free to give boundary conditions to it in a very simple way: we just set it to its initial
value. Regarding u8, we use the "perturbative” value of the same quantity coming from the perturbative
domain as counterpart, and communicate these two modes (how this is done at the numerical level is ex-
plained below). Similarly, there is only one characteristic mode entering the perturbative domain, which
is the linearized version of u7. We therefore communicate the non-linear and linear versions of that mode
as well.

6.1.2. Numerical code

A one-dimensional code which supports constraint-preserving boundaries, multiple grid patches, and the
use of the aforementioned high order summation-by-parts derivative and dissipation operators has been
developed. In addition, the code is able to reproduce the (single grid and without Cauchy–perturbative
matching) second-order methods of Ref. [151] for comparison. The time integration is performed by a 4th
order Runge-Kutta method. The grid patches that we consider here are not intersecting, but touching. This
implies, that each grid function is double valued at the patch interface coordinate since the SBP derivative
operators are one-sided at the boundaries. To ensure consistency without compromising (linear) stability,
we make use of a penalty method (cf. Section 3.3.5). Constraint-preserving boundary conditions require
the calculation of derivatives of certain grid functions at the outer boundary, which we also obtain by using
the summation-by-parts derivative operators. An illustration of the computational domain is provided in
Figure 6.1.

In a black hole setting, the computational domain next to the excision boundary tends to quickly amplify
high frequency noise, which is not represented accurately on the discrete grid. This is especially true
for high order accurate derivative operators. Thus, high order accurate simulations of black holes need
a certain amount of numerical dissipation to be stable. This dissipation is here provided by the SBP
dissipation operators constructed in Ref. [152] (cf. Section 3.3.4). The free parameters of these operators,
e.g. the strength of numerical dissipation, are found by numerical experiment.
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6.1.2 Numerical code

Figure 6.1.: Illustration of the computational setup used in this chapter. The solution is assumed to be
spherically symmetric. The singularity at coordinate r = 0 is avoided by introducing the excision boundary,
which must remain inside the apparent horizon to ensure that all modes are outflow there, i.e. no boundary
data is necessary at the inner boundary. The division into several coordinate patches is optional, and it is
indicated in the text whether one or two patches are used.
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6.2. Results

The numerical experiments presented in this section are set up to systematically test the performance of
the new techniques in several situations of increasing difficulty. We start with a series of tests evolving
a Schwarzschild black hole in Painlevé-Gullstrand coordinates with either a single patch or two patches
matched via the penalty method, and compare the performance of all SBP operators with the second-order
finite-differencing method presented in [151]. Next, to test more dynamical situations, a gauge or scalar
field signal is injected in a constraint-preserving manner through the outer boundary and accreted onto
the black hole. A robust stability test is then performed with noise on the incoming gauge mode u3, and,
with Cauchy–perturbative matching, on the scalar field mode u8. Finally, a series of high-precision tests
involving all techniques are presented, in which a black hole accretes a scalar field injected through the
outer boundary of the perturbative patch. These simulations also include a test of the long-term stability
and accuracy after accretion and ring-down.

6.2.1. Schwarzschild black hole in Painlevé-Gullstrand coordinates

In our first series of tests, a Schwarzschild black hole is evolved with high-order accurate SBP operators,
constraint-preserving boundary conditions and excision. Cauchy–perturbative matching is not used in
these tests. To fix the coordinate system, we make use of the horizon-penetrating Painlevé-Gullstrand
coordinates [29, 30], and we fix the coordinate functions α̃ and β of Section 3.2.2 to their exact values.

For all tests, the inner boundary is located well inside the event horizon (more precisely, it is located at
re = 1M), which implies that all modes are outflow due to the facts that the vector ∂ t is spacelike, and that
the light cone is contained in the section of tangent space exterior to the boundary. Therefore, no boundary
conditions may be applied at the excision boundary. The exact boundary location is not crucial as long
as it is inside the apparent horizon, but this choice facilitates comparison with [151]. Also, in dynamical
situations, the apparent horizon location may move significantly on the coordinate grid, and to ensure
that ∂t is spacelike at the inner boundary some penetration into the black hole is of advantage. To match
the setup of [151], we set the outer boundary to r = 10M. To ensure well-posedness of the continuum
problem, boundary conditions should be applied to the incoming modes u1, u2, u3, u4, and u8. However,
three of these modes, namely u1, u2, and u4, can be fixed by the use of constraint-preserving boundary
conditions, which leaves the freely specifiable gauge mode u3 and the scalar field mode u8. Since in these
initial tests we are only interested in obtaining a stationary black hole solution, the initial scalar field is
set to zero, and the (scalar field) characteristic mode u8 is penalized to zero as well. The incoming gauge
mode u3 is penalized to the exact solution.

An error function δM can be defined by use of the Misner-Sharp mass function [11]
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where all field quantities have been introduced in Section 3.2.2. If the black hole mass is denoted by M,
δM(r) = (M(r) − M)/M. Since the same error measure and continuum system is used in [151], we can
compare the different discrete approaches directly.

6.2.1.1. One grid patch

The computational domain r ∈ [1, 10] is represented by one coordinate patch, which is exactly the same
setup as in ref. [151]. In Fig. 6.2 we compare, for coarse (∆r = M/8) and high resolutions (∆r = M/64),
the performance of the methods used in ref. [151], namely second order spatial derivatives with fourth
order Kreiss-Oliger dissipation (which is set to zero near the boundaries) and a third order extrapolation
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6.2.1 Schwarzschild black hole in Painlevé-Gullstrand coordinates
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Figure 6.2.: Time evolution of the relative error in the Misner-Sharp mass function (eqn. 6.1) when evolv-
ing a Schwarzschild black hole in Painlevé-Gullstrand coordinates with one grid patch, for different discrete
methods. Two resolutions are displayed, corresponding to ∆r = M/8 (upper panel) and ∆r = M/64 (lower
panel). The result from the method presented in ref. [151] is denoted by “second order”, while new results are
marked by the SBP derivative and dissipation operators used. The high-order operators D6−5 and D8−4 display
superior performance already at the lowest resolution.
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Figure 6.3.: Same as Fig. 6.2, but showing the evolution of a Schwarzschild black hole for 100, 000M. Even
with low resolutions of ∆r = M/8 and M/16, the operators D6−5 and D8−4 are able to evolve the black hole in
a stable manner for a significant time.

at the boundaries, with the SBP derivative and dissipation operators D2−1, D4−2, D4−3, D6−3, D6−5 and
D8−4 (see Section 3.3.4). The figure shows the evolution of the L2 norm of the Misner-Sharp mass error
over an evolution time of 10, 000M. In all cases displayed there is a linear growth in the error after some
time. This is an artefact of the discrete representation of the constraint-preserving boundary conditions.

As soon as the error gets close to 1, the code encounters an instability, which, in this case, is associated
with a migration of the excision boundary to the outside of the black hole, and consequently ill-posedness
of the continuum problem. While this migration could be theoretically avoided by choosing horizon-fixing
dynamical coordinate conditions, a solution with this magnitude of error is, in any case, not of practical
use.

In the present numerical code, the SBP operators are also used as one-sided derivatives for determining
the constraint-preserving boundary conditions, which suggests that the operator D2−1, which is only first
order at the boundaries, will yield less accurate outer boundary conditions than the third order method in
[151]. Fig. 6.2 clearly demonstrates this fact. However, the operators D6−3, D6−5 and D8−4 are signif-
icantly more accurate than the results presented in ref. [151], and already so at the coarsest resolution.
Furthermore, at ∆r = M/64 the SBP operator D6−5 induces a solution error of less than 10−7 (that is,
four orders of magnitude smaller than the corresponding errors when using the second order method of
[151] with the same resolution) within 10, 000M, which appears sufficiently accurate for many practical
purposes.

The long-term evolution of a Schwarzschild black hole with the operators D6−5 and D8−4 is displayed in
Fig. 6.3. The linear growth of errors dominates the solution at late times, but since this error significantly
decreases with resolution, long evolution times can be obtained even for moderate radial grid spacings.
This is naturally an interesting feature for simulations with three-dimensional spatial grids, where com-
putational resources are still a viable concern.
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6.2.2 Gauge wave on a Schwarzschild background

6.2.1.2. Two grid patches

As discussed in the introduction, the use of multiple coordinate patches has advantages when modeling
black holes. To implement a stable interface boundary condition, the penalty method is used to ensure
linear stability. Here we first investigate the performance of the SBP operators coupled to an inter-patch
penalty boundary method by evolving a black hole spacetime covered by two non-intersecting spherical
shells, the first one from r = 1M to r = 5.5M, and the second one from r = 5.5M to r = 10M.

The free parameter of the penalty boundary condition δ introduced in section 3.3.5 is set to the value
0, which makes the inter-patch boundary dissipative. Only the operators D6−5 and D8−4 are used for
comparison to the results from the previous section.

In Fig. 6.4 the performance of the multi-patch system is compared to the uni-patch results from the
previous section. As expected, the use of one-sided derivatives at the inter-patch boundary reduces the
total level of accuracy, but only by a very small amount; furthermore, the system is still stable and con-
vergent. The time of the onset of the linear growth observed in all evolutions varies between the grid
setups and choices of discrete operator. Fig. 6.5 shows the 3-metric component grr(r) at the times t = 0
and t = 10, 000M. The region around the inter-patch interface at r = 5.5M is shown in the inset, which
demonstrates that the penalty method introduces no strong visible artifacts in this part of the solution.
This observation also holds for the other solution functions.

6.2.2. Gauge wave on a Schwarzschild background

The next series of tests focuses on a dynamical situation, namely the evolution of a Schwarzschild black
hole in non-stationary coordinates. For this purpose, the initial data is set to a Schwarzschild black hole
in Painlevé-Gullstrand coordinates as in section (6.2.1), as is the lapse and shift function at all times, but
the incoming gauge mode u3 at the outer boundary is set to a Gaussian pulse of the form

u3(t) = uPG
3 (1 + Ae−(t−t0)2/ σ̃2 ). (6.2)

Here, uPG
3 is determined by the exact solution. As in ref. [151], we impose a strong pulse with A = 1,

t0 = 5M and σ̃ = 2M. Since the solution is not adapted to the asymptotically timelike Killing field,
the SBP operators and multi-patch techniques can be tested on a solution with wave propagation without
compromising the use of the error measure ||δM||2 (this is not the case when injecting a Klein-Gordon
pulse). To facilitate comparison with ref. [151], the outer boundary is located at r = 30M in these tests.

Fig. 6.6 shows results from the gauge pulse problem on a single grid patch and two grid patches, here
with an inter-patch boundary at r = 15.5M. While in the stationary case the inter-patch boundary method
only had to deal with small numerically introduced differences between the values of the geometrical
quantities at the interface, the non-stationary case introduces a large pulse traveling over the boundary,
and is thus a much more severe test for accuracy and stability of the penalty method. The solution error
is dominated by the ability of the discrete method to represent the propagation and accretion of the gauge
pulse, and by possible artefacts introduced by the inter-patch boundary.

Judging from Fig. 6.6, the high-order operators are stable and significantly more accurate than a second
order method also in a dynamical situation, and even when using multiple matched domains.

6.2.3. Accretion of a scalar field pulse

Since the outer boundary has two free incoming modes, it is possible to inject a scalar field pulse in a
way similar to the gauge pulse of section (6.2.2). In contrast to the gauge pulse, however, this system will
result in an increase of mass the of the black hole, which also implies that the Misner-Sharp mass cannot
be used as a measure of the errors anymore. A possible choice for a scalar field source with compact
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Figure 6.4.: Comparison of uni-patch and multi-patch evolutions of a Schwarzschild black hole in Painlevé-
Gullstrand coordinates. The graphs denoted by “one patch” and “second order” are those from Fig. 6.2,
while the corresponding graphs for “two patches” cover the computational domain with two non-intersecting
spherical shells, the first one extending from r = 1M to r = 5.5M, and the second one extending from
r = 5.5M to r = 10M. The one-sided derivatives at the interface boundary introduce a very small loss of
accuracy. In the upper and lower panel the resolution is ∆r = M/8 and M/64, respectively. For the late time
behaviour of D6−5 and D8−4 see also Fig. 6.3.
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6.2.4 Robust stability test with gauge noise
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Figure 6.5.: Evolution of the metric function grr for a black hole in Painlevé-Gullstrand coordinates, obtained
with a resolution of ∆r = M/64, two grid patches with an interface at r = 5.5M, and using the SBP operator
D6−5. The two graphs show the metric function at t = 0 (where grr(r) = 1) and at t = 10, 000M. The inset
shows the region around the interface between the grid patches.

support is

u8(t) =























0 t < tI
A
t8F

(t − tI)4(t − tF)4 sin( πt
tF

) t ∈ [tI , tF]

0 t > tF

Here, u8 is the incoming scalar field mode.
To facilitate comparisons with ref. [151] we use an amplitude A = 7.2, and t I = 0M, tF = 10M, and set

the computational domain to be r ∈ [1, 50]M.
For resolutions ∆r = M/20 and ∆r = M/40, the time evolution of the apparent horizon is shown in

Fig. 6.7. The scalar pulse leads to a significant increase of the black hole mass by a factor of ≈ 2.7 after
the pulse is inside the black hole. Larger amplitudes are not obtainable with the simple gauge prescription
used here, but a gauge condition which fixes the coordinate location of the horizon could improve on this
result. As a replacement for the Misner-Sharp error measure, we plot the L2 norm of the Hamiltonian
constraint versus time in Fig. 6.8. It is apparent that the high-order operators are again stable and more
accurate than the second order operator. The graphs indicate a growth of the constraint near t = 200M,
but a long-term evolution with ∆r = M/20 (Fig. 6.9) demonstrates that the system settles down after the
accretion phase.

6.2.4. Robust stability test with gauge noise

The term robust stability test [153, 154] typically refers to the discrete stability of a numerical system in
response to random perturbations. In this case, we will use the same system as in section (6.2.1.2), but
impose random noise on the incoming gauge mode u3 with a certain amplitude. To test the discrete stabil-
ity of the evolution system, we chose a large range of amplitudes from 10−4 to 0.3. Random perturbations
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Figure 6.6.: Comparison of uni-patch and multi-patch evolutions of a gauge wave traveling on a
Schwarzschild background. The graphs denoted by “second order” are obtained with the methods in ref.
[151], while the corresponding graphs for “one patch” and “two patches” cover the computational domain
with either one or two non-intersecting spherical shells, the first one extending from r = 1M to r = 15.5M,
and the second one extending from r = 15.5M to r = 30M. The one-sided derivatives at the interface bound-
ary introduce a small loss of accuracy, but the system is still stable. The upper and lower panels correspond to
∆r = M/8 and M/64, respectively. The feature around t = 25M is related to the most dynamical phase of the
accretion process.
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6.2.5 Cauchy–perturbative matching: robust stability test with scalar field noise
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Figure 6.7.: Evolution of the apparent horizon mass for the accretion of a strong scalar pulse to a
Schwarzschild black hole. Shown are plots for two resolutions, ∆r = M/20 and ∆r = M/40, using the
SBP operator D6−5. The large scalar field amplitude leads to a significant increase in the black hole mass.

of the latter amplitude are significant for a non-linear system2.
For this multi-patch test, results in the mass error for a resolution of ∆r = M/8 are shown in Fig. 6.10.

It is apparent that strong random noise induces a stronger growth in the solution error. However, this
growth is still linear. As in all black hole evolutions in section (6.2.1), the system encounters a numerical
instability when the solution error approaches unity. This, however, is not a consequence of the random
noise, but of the inner boundary becoming partially inflow due to a coordinate motion of the apparent
horizon. Also, with increasing resolution, the growth rate of the error does not increase (Fig. 6.11)3 . We
conclude that this high-order evolution system is discretely stable against strong random perturbations.

6.2.5. Cauchy–perturbative matching: robust stability test with scalar field noise

We now test the stability of the system with Cauchy–perturbative matching against random perturbations
in the scalar field. To this end, the computational domain is again subdivided as in section (6.2.4), but the
outer patch evolves the scalar field on a fixed Painlevé-Gullstrand background. The inter-patch boundary
is thus matching the Cauchy patch to a perturbative one, and we test the stability of the system against
random perturbations by imposing random noise on the incoming scalar field mode on the outer boundary
of the perturbative patch.

Since the mass error is not available for a system accreting a scalar field, the L2 norm of the Hamil-
tonian constraint is used again in Fig. 6.12. No exponential growth can be observed in the Hamiltonian
constraint violation. The same is true when increasing the resolutions (Fig. 6.13), which also deserves

2Beyond this amplitude the inner boundary tends to become timelike, which requires additional boundary data. More sophisti-
cated gauge or inner boundary condition could alleviate this, but since we are interested here in a proof of principle, a simple
system is preferred.

3Note that a discrete system with random noise is not convergent, since the amount of energy on the grid diverges with increas-
ing resolution.
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Figure 6.8.: L2 norm of the Hamiltonian constraint versus time for the accretion of a strong scalar field pulse
to a Schwarzschild black hole, with resolutions ∆r = M/20, M/40 (upper and lower panels, respectively). The
graph denoted by “second order” is obtained with the method presented in [151], and the D 6−5 and D8−4 are
obtained using the corresponding SBP operators. The feature around t = 50M is again related to the most
dynamical phase of accretion.
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Figure 6.9.: Same as Fig. 6.8, covering the evolution up to 10,000 M with ∆r = M/20 to demonstrate the
long-term behaviour after accretion of the pulse.
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Figure 6.10.: Results of a robust stability test for different random noise amplitudes. The system is a
Schwarzschild black hole in Painlevé-Gullstrand coordinates, and the computational domain r ∈ [1, 10] M
is covered by two patches joined at r = 5.5M, and a resolution of M/8. Random noise is superimposed on
the ingoing gauge mode u3, with an amplitude denoted by A. The graphs show the mass error with time for
different random noise amplitudes, obtained with the SBP operator D6−5.
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Figure 6.11.: Same as Fig. 6.10, but for the highest random noise amplitude (0.3) and different resolutions.
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Figure 6.12.: Robust stability test with Cauchy–perturbative matching. The system is a dynamically evolved
Schwarzschild black hole in Painlevé-Gullstrand coordinates matched to a perturbative patch at r = 5.5M.
Random noise is imposed via the incoming scalar field mode at the outer boundary. Plotted is the L2 norm of
the Hamiltonian constraint versus time for different noise amplitudes. All evolutions are done with a resolution
of ∆r = M/8, and the SBP operator D6−5.
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6.2.6 Cauchy–perturbative matching: Accretion of a “gravitational wave” and long-term evolution
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Figure 6.13.: Same as Fig. 6.12, but for the highest random noise amplitude and different resolutions.

some additional comments: The robust stability test does not lead to a converging sequence of solutions,
if the random noise amplitude is not diminished with resolution. However, the purpose of these tests is
to excite any unstable high frequency modes present in the numerical system. The absence of any mode
growing with increasing resolution shows that the system with a Cauchy–perturbative matching interface
is stable even against strong random noise injected into the system. This is a promising result for any
effort to do three-dimensional matching between Cauchy modules and perturbative ones using multiple
patches and high-order summation-by-parts operators.

6.2.6. Cauchy–perturbative matching: Accretion of a “gravitational wave” and
long-term evolution

Finally, using the massless Klein-Gordon field as a scalar analogue of gravitational waves in spherical
symmetry, we model the accretion of a gravitational wave packet across a Cauchy–perturbative matching
boundary. This test is an extension of the single-patch scalar field accretion of section (6.2.3), and makes
use of all ingredients presented above for a stable and accurate evolution of black holes with Cauchy–
perturbative matching.

Since Cauchy–perturbative matching assumes the gravitational wave to be a small perturbation of a
fixed background in the wave zone, the amplitude of the wave packet that we inject through the outermost
boundary is chosen to be A = 0.01. Similarly to section 6.2.3, we describe the wave packet by the function

u8(t) =























0 t < tI
A
t8F

(t − tI)4(t − tF)4 sin( πt
ntF

) t ∈ [tI , tF]

0 t > tF

where the number of half waves in the pulse is set to n = 100. We inject the packet from t I = 0 to
tF = 100M. Fig. 6.14 displays the evolution of the grid function Φ, and specifically the behaviour of
the function around the Cauchy–perturbative matching interface, which is located at r = 25.5M. The
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Figure 6.14.: Accretion of a scalar wave packet across a Cauchy–perturbative matching interface, as a scalar
analog for gravitational wave accretion in three-dimensional simulations. The packet consists of 50 waves
injected from t = 0 to t = 100M, as described in the text. Here, the grid function Φ is plotted over the radial
coordinate at t = 30M (top) and 110M (bottom), for the resolution ∆r = M/20 and the SBP operator D6−5.
The inset shows the behaviour of the grid function around the matching interface, which is at r = 25.5M. Note
that even though the grid function is in principle two-valued on the interface, the penalties in conjunction with
high-order operators only lead to a very small mismatch.
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Figure 6.15.: Accretion of a scalar wave packet across a Cauchy–perturbative matching interface. This plot
shows the apparent horizon mass versus time for evolutions with different resolutions and the SBP operator
D6−5.
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Figure 6.16.: Accretion of a scalar wave packet across a Cauchy–perturbative matching interface. This plot
shows the L2 norm of the Hamiltonian constraint for different resolutions, using the SBP operator D6−5.
Please note, for comparison with Fig. 6.9, that the amplitude of the Klein-Gordon signal is smaller compared
to section (6.2.3).
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Figure 6.17.: Accretion of a scalar wave packet across a Cauchy–perturbative matching interface. To demon-
strate the advantage of using high-order methods, (MAH − 1) is shown for evolutions obtained with the SBP
operators D4−3 and D6−5, at a resolution of ∆r = M/10. The loss of mass after accretion of the wave packet
with compact support in t ∈ [0, 100]M is a numerical artefact, which converges away with resolution. The
inset shows that the evolution obtained with the operator D4−3 is not unstable, but only considerably less
accurate.

corresponding increase in apparent horizon mass is shown in Fig. 6.15. The evolution of the Hamiltonian
constraint violation using the SBP operator D6−5 and different resolutions is shown in Fig. 6.16. It is ap-
parent that the discrete system is not only stable and accurate, but also the amount of non-linear constraint
violations introduced at the continuum by the Cauchy–perturbative matching are very small, in Fig. 6.16
they must actually be smaller than 10−6.

The advantage of using high-order methods is made evident in Fig. 6.17 to 6.20. In these plots, the
performance of the SBP operator D6−5, which is sixth order in the interior and fifth order at the boundaries,
is compared to that of the operator D4−3, which is fourth order in the interior and third order at the
boundaries, for different choices of resolution. Although both operators show convergence, for a mass
increase of about 10−5, the operator D4−3 is unable to reproduce the correct behaviour with reasonable
grid resolutions. We consider this specifically important for three-dimensional simulations, where the
necessary resources scale with n4, if n denotes the number of grid points in each direction. Thus, for all
simulations requiring a certain amount of precision, high-order operators are an essential requirement.

The long-term evolution of a Schwarzschild black hole accreting a wave packet over a Cauchy–perturbative
matching interface and settling down to equilibrium is shown in Fig. 6.21. The black hole is evolved for
1, 000, 000 M with the lowest resolution ∆r = M/10 and the SBP operator D6−5. While an evolution
of this length might appear to be of only technical interest, we note that modeling phenomena like hy-
pernovae and collapsars in general relativity will require the stable evolution of a black hole for at least
several seconds, which is the lower end of time scales associated with the collapsar model of gamma-ray
burst engines [155]. For a stellar mass black hole, M = M� ≈ 5µs, that is 1s ≈ 200, 000M�.
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Figure 6.18.: Same as Fig. 6.17, but for a resolution of ∆r = M/20.
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Figure 6.19.: Same as Fig. 6.17, but for a resolution of ∆r = M/40.
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Figure 6.20.: Same as Fig. 6.17, but for a resolution of ∆r = M/80.
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Figure 6.21.: Long-term stable evolution of a Schwarzschild black hole after accretion of a scalar wave packet
with Cauchy–perturbative matching. The SBP operator D6−5 is used with a grid resolution of ∆r = M/10.
Plotted are the apparent horizon mass and the Hamiltonian constraint versus time. The apparent horizon mass
indicates that the discrete evolution introduces a relative error of about 0.3% after 1, 000, 000 M.
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6.3 Summary

6.3. Summary

To obtain long-term evolutions of compact astrophysical systems in three spatial dimensions, advanced
numerical techniques are preferable in that they may improve stability and accuracy of the associated dis-
crete model system. While high accuracy enables efficient use of the available computational resources,
well-posedness of the continuum model and numerical stability are requirements which can not be met
by increasing computational power. A number of techniques has been suggested to address these issues
[156]: Multiple coordinate patches, typically adapted to approximate symmetries of certain solution do-
mains, combined with high-order operators are expected to increase the accuracy of any model of a stellar
system. Cauchy–perturbative matching provides an efficient way to accurately model the propagation of
gravitational waves to a distant observer, and to yield physical boundary conditions on incoming modes
of the Cauchy evolution. Constraint-preserving boundary conditions isolate the incoming modes on the
constraint hypersurface, and, finally, for evolving black holes, an excision boundary is desirable to concen-
trate on the behaviour of the external spacetime. Only recently the consideration of the well-posedness of
the differential system and the application of theorems on discrete stability of the numerical system have
provided hints as how to address the outstanding issues. In this paper, we have applied all these techniques
to a model system: a spherically symmetric black hole coupled to a massless Klein-Gordon field.

We find that the use of a first-order hyperbolic formulation of Einstein’s field equations, combined with
high-order derivative and dissipation operators with the summation-by-parts property, penalized inter-
patch boundary conditions and constraint-preserving outer boundary conditions leads to a stable and
accurate discrete model. Specifically, isolated Schwarzschild black holes in coordinates adapted to the
Killing fields, and in coordinates on which a gauge wave is imposed, and Schwarzschild black holes ac-
creting scalar wave pulses were taken as typical model systems involving excision. The results show that
the introduction of several coordinate patches and of a Cauchy–perturbative matching interface does not
introduce significant artefacts or instabilities. Rather, the high-order methods allow the accurate long-
term evolution of accreting black holes with excision and Cauchy–perturbative matching in reasonable
resolutions. As an example, we have presented the evolution of such a system with the high-order SBP
operator D6−5, which, at a resolution of ∆x = M/10, introduced an error of only 0.3% after an evolution
time of 1, 000, 000 M.

Most systems of interest in general relativistic astrophysics will necessarily require the use of three-
dimensional codes. Results from a one-dimensional study are useful in that (i) experience can be gained
in a clean but non-trivial physical system, (ii) they can be easily reproduced without the need for imple-
mentation of three-dimensional codes with multiple coordinate patches and (iii) isolation of sources of
difficulty in the three-dimensional setting can be obtained more easily. With the promising results from
this study, we will, as a next step, apply these techniques to a three-dimensional general relativistic setting.
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7. Summary

This thesis is concerned with two related subjects: the formation of black holes from quasi-toroidal, gen-
eral relativistic polytropes (P = KρΓ), and the performance of recently developed techniques in numerical
relativity for long-term stable evolution of black holes.

The main conclusions are at the end of Chapters 5 and 6; therefore, only a short summary will be
attempted here. The technical abilities of general-relativistic hydrodynamics codes like the combina-
tion Cactus/Whisky/Carpet is nowadays advanced enough to construct relativistic polytropes with strong
differential rotation, and follow the subsequent development of a non-axisymmetric instability up to frag-
mentation and black hole formation. The dynamics of these systems as such is already an interesting area
of research, since the stability properties of general relativistic stellar models are quite difficult to analyze
perturbatively (or with numerical simulations), and therefore only very recently the necessary tools have
become available.

It was found that many of the quasi-toroidal stars investigated here are unstable to non-axisymmetric
perturbations, and that the development of the instability leads to a fragmentation process where one or
several fragments are collapsing. In one model, the tentative evidence for black hole formation, namely
the “collapse of the lapse”, has been shown explicitly to be connected with the formation of an apparent
horizon centered on the fragment.

A parameter-space study has demonstrated that, if the degree of differential rotation is not too high, the
parameter T/|W | (relating the rotational kinetic to the gravitational binding energy) commonly used to
compare the location of polytropes on some sequence with the Maclaurin sequence, still approximately
admits to identify the degree of instability, i.e. the order of the highest unstable modes, at least to some
extent. As in similar Newtonian studies, however, some significant differences could be observed: (i) The
development of the m = 2 bar-mode instability well-known from Maclaurin spheroids occurs at much
lower values of T/|W |, (ii) the systems admit the development of spiral-arm m = 1 instabilities, possibly
connected with the existence of a continuous spectrum (the corotation band) of modes corotating with the
star at some radius.

The formation of black holes can occur either by destabilizing modes in a fragment, or by unstable
modes of an orbiting system of fragments; both scenarios have been observed, although it should be noted
again that only the properties of the lapse function were used to identify forming singularities in these
cases, and assuming that the weak cosmic censorship conjecture holds. The equatorial compactness of
the polytrope can give partial evidence for the subsequent evolution, in the sense that, on a sequence of
decreasing compactness, no black hole will form beyond some limit surface in parameter space. This
behaviour is well known from the perturbative theory of slowly and uniformly rotating polytropes.

While the dynamical properties of non-axisymmetric instabilities in general-relativistic polytropes are
an active field of research, there is another question which deserves attention: the gravitational wave
signals emitted by these processes. And, unfortunately, concerning this issue the tools applied by the
author fall short due to numerical instabilities related to black hole evolutions. This is especially important
when evolving soft polytropes, since their extended core-halo structure requires to extract gravitational
waves from the grid at large coordinate radii, resulting in the prediction of only the early, low-frequency
components of the signal.

Since the stable evolution of black holes with matter is the central technical problem not only in these
simulations, but also in simulations of binary black hole mergers, there have been many efforts to gain a
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Summary

better understanding how to discretize these systems. One of these efforts involves multiple coordinate
patches, a well-posed and constraint-preserving form of the continuum problem, and discrete operators
satisfying certain notions of discrete stability. While the performance of these new operators has been
tested already extensively with the classical scalar wave equation, with waves on a fixed Kerr spacetime
background, and with linear gauge waves, no experience had been obtained how they would perform in
the evolution of dynamical black holes, which has been well-known to pose serious problems to finite-
differencing approaches, specifically when (typically less stable) high-order polynomials approximants
are considered.

The results obtained in this thesis are very promising: With the spherically symmetric Einstein-Christoffel
system coupled to a massless Klein-Gordon field, a black hole accreting a scalar wave packet, and the sub-
sequent ring-down, can be followed stably and accurately for a coordinate time of 1, 000, 000 times the
mass of the black hole. If the same kind of success can be repeated in the three-dimensional case, a neu-
tron star collapse, or the more demanding fragmentation collapse, could be followed with significantly
improved stability and accuracy.
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