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Chapter 1IntrodutionThe Standard Model (SM) [1℄ is very suessful in desribing the known phenomenaof partile physis. However, it also has some drawbaks. Supersymmetry (SUSY) [2, 3℄,whih is a symmetry whih onnets fermions with bosons, is one of the best motivatedextensions of the SM.In the Minimal Supersymmetri Standard Model (MSSM) [2, 3℄, we introdue a super-partner to every known partile, i.e. salar superpartners (sfermions) to the SM fermions,fermioni superpartners (gauginos and higgsinos) to the gauge bosons and Higgs bosons.After eletroweak symmetry is broken, �elds with same quantum numbers an mix. Wetherefore have sfermion mixing, and higgsino and gaugino mixing into harginos andneutralinos. Moreover two Higgs doublets are neessary in the MSSM. This leads to �vephysial Higgs bosons after the eletroweak symmetry is broken. If R-parity is onserved,the lightest supersymmetri partile (LSP), whih in many senarios is the lightest neu-tralino ~�01, appears at the end of the deay hain of eah supersymmetri partile. TheLSP esapes the detetor, giving the harateristi SUSY signature of missing energy. IfSUSY exists at the eletroweak sale, experiments at future high energy olliders shouldbe able to disover the superpartners of the known partiles, and to study their properties[4, 5℄.At the Large Hadron Collider (LHC), the total SUSY prodution-ross setion isexpeted to be dominated by the prodution of gluinos and squarks, whih deay intolighter harginos or neutralinos. Of partiular interest are deay hains leading to thenext-to-lightest neutralino ~�02. ~�02 in turn an always deay into the LSP ~�01 and twofermions f �f , at least for light SM fermions. Depending on the neutralino, sfermion andHiggs boson masses, the possible deays of ~�02 are three-body deays ~�02 ! ~�01f �f , asadetwo-body deays ~�02 ! ~f �f ! ~�01f �f and/or ~�02 ! ~�01Z=~�01�0 ! ~�01f �f , where �0 stands forone of the neutral Higgs bosons or the neutral Goldstone boson of the MSSM. The leptoni�nal states are of partiular interest, sine they an be identi�ed relatively easily even atthe LHC. Moreover, the dilepton invariant mass distribution an be measured auratelyat the LHC. In partiular, its endpoint is used in several analyses whih aim to reonstrutthe mass di�erenes of the supersymmetri partiles [4, 6℄. Under favorable irumstanesit has been shown that this endpoint an be measured to an auray of 0:1% at the1



2 CHAPTER 1. INTRODUCTIONLHC [4℄. In order to math this auray in the theoretial predition, at least one-looporretions to ~�02 deays have to be inluded. At the planned e+e� linear ollider ILC [5℄,the lighter supersymmetri partiles an be produed diretly. The detailed analysis of~�02 deays an then yield information about the supersymmetri partiles. Moreover, themasses of the supersymmetri partiles are expeted to be determined with high preisionat the ILC [5℄, again making the inlusion of quantum orretions mandatory to math theexperimental preision.Leptoni two-body deays ~�02 ! ~l�1 l� ! ~�01l�l+ have been investigated at tree levelin Ref.[6℄, where ~l1 stands for the lighter slepton of a given avor. Three-body deaysof ~�02 have also been studied at tree level in Refs.[9, 10℄. In this thesis, we alulateleptoni ~�02 deays at one-loop level. Cases where two-body deays ~�02 ! ~l�1 l� ! ~�01l�l+are kinematially alowed are treated both ompletely and in a single-pole approximation.In the omplete alulation one has to employ omplex slepton masses in the relevantpropagators and one-loop integrals. The single-pole approximation in this ase is performedin the way that the ~�02 deays are treated as the prodution and deay of the sleptons~l1. We ompare the results from the omplete and approximate alulations and �nd agood agreement. We also analyze a senario where ~�02 only has three-body deays. Thealulations for these deays are similar to the omplete alulation exept that we do nothave to introdue omplex masses. The di�erential deay width of ~�02 as a funtion of thedilepton invariant massMl+l� is alulated. The shape of theMl+l� distribution is expetedto be altered by real photon emission ontributions, whih must be added to the one-looporrretions in order to anel the infrared divergenes in the virtual ontributions. Inorder to obtain the total deay width of ~�02 and hene the branhing ratios of its leptonideays, the invisible deays ~�02 ! ~�01�l��l and the hadroni deays ~�02 ! ~�01q�q are alsoalulated.The general MSSM has more than one hundred unknown free parameters. We assumeCP-onserving MSSM with real parameters. For spei� numerial evaluation we onsiderthe SPS1a parameter set [7, 8℄, whih is one of the standardized benhmark senarios.It gives rise to a partile spetrum where many states are aessible both at the LHCand at ILC [6℄. Note in partiular that the two-body deays ~�02 ! ~l�1 l� ! ~�01l�l+ arekinematially allowed in the SPS1a senario. No other two-body deay mode is open.



3The outline of this thesis is as follows:In Chapter 2 the basi ideas of SUSY are presented �rst, where we introdue the SUSYalgebra, the super�elds and the SUSY Lagrangian in detail. Then the MSSM Lagrangianand the soft SUSY-breaking Lagrangian are onstruted. At last all the physial �elds ofthe MSSM are disussed and the expressions for their masses are presented.The MSSM is renormalized in Chapter 3 where we follow the strategy of Refs.[11, 12, 13℄.All relevant parameters in the MSSM are assumed to be real quantities. This amountsto the assumption that the soft SUSY-breaking terms onserve CP. We introdue tworenormalization shemes, the DR and the on-shell sheme. The SM setor, the hargino andneutralino setor and the sfermion setor are renormalized via the on-shell renormalizationsheme, while the Higgs setor is renormalized via a mixing of on-shell and DR shemes.In Chapter 4 the leptoni deays ~�02 ! ~�01l�l+ are alulated at one-loop level. The tree-level alulations for these leptoni deays are outlined in Setion 4.1, where we alulatethe leptoni deays in both a omplete and an approximate way where ~l1 an be on shell.In Setion 4.2 we disuss how to alulate these deays ompletely at one-loop level, wherethe virtual orretions and the real photon bremsstrahlung are investigated in detail. Theapproximate one-loop alulations for these deays where ~l1 an be on shell are given inSetion 4.3. We study the total deay width of ~�02 and the branhing ratios of the leptonideays in Setion 4.4. In Setion 4.5 the expliit values of the MSSM parameters and thespetrum of the supersymmetri partiles at the SPS1a benhmark point are given �rst.Then the numerial results of the alulations are presented.
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Chapter 2The Minimal SupersymmetriStandard Model (MSSM)
2.1 The Standard ModelThe Standard Model (SM) of partile physis desribes the eletroweak and strong intera-tions with very good preision. It is based on the gauge group SU(3)C�SU(2)L�U(1)Y [1℄,where SU(3)C and SU(2)L � U(1)Y desribe the strong and eletroweak interations, re-spetively.The elementary partiles inlude spin-12 fermions and spin-1 gauge bosons. The intera-tions in the nature are desribed as the exhange of di�erent gauge bosons. The SM gaugebosons are eight gluons Gk�(8; 1; 0), three weak bosons W a� (1; 3; 0) and a hyperharge bosonB�(1; 1; 0), where we have indiated their quantum numbers with respet to the gaugegroup SU(3)C � SU(2)L � U(1)Y . These gauge bosons are the mediators of the strong,weak and eletromagneti interations.The SM fermions are hiral beause the left-handed and right-handed fermions trans-form as doublets and singlets of the gauge group SU(2)L, respetively. The fermions, i.e.leptons and quarks, an be arranged in three generations as below,1st generation 2nd generation 3th generation group representation� �ee �L, � ��� �L, � ��� �L, (1; 2;�1)eR, �R, �R, (1; 1;�2)� ud �L, � s �L, � tb �L, (3; 2; 1=3)uR, R, tR, (3�; 1; 4=3)dR, sR, bR, (3�; 1;�2=3) .In the SM we introdue one salar doublet H with hyperharge Y = +1, whih imple-ments the spontaneous breaking of the eletroweak SU(2)L � U(1)Y symmetry down to5



6 CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)the eletromagneti U(1)EM symmetry,SU(3)C � SU(2)L � U(1)Y ! SU(3)C � U(1)EM :This is alled the Higgs mehanism[14℄, whih gives masses to the fermions and produesthree massive vetor bosons W� and Z, and a massless photon . The Higgs mehanismalso predits a new partile: the Higgs boson.The SM provides an extremely suessful desription of the known phenomena of par-tile physis. All the partiles that it predits, exept for the Higgs boson, have beendisovered experimentally. The mass of the Higgs boson is severely onstrained from ele-troweak preision data[15℄. Moreover, the present experimental data agree with the SMpreditions very well[15, 16℄. However, the SM also has some drawbaks and unsolvedproblems. Here we fous on why we need supersymmetry.The SM is an "e�etive low-energy theory" for energy sales up to 100 GeV. Morereasonably, we regard the SM as part of a larger fundamental theory whih desribesphysis at arbitrarily high energies. The Quantum gravitational e�ets beome importantat the Plank sale Mp ' 2:4� 1018GeV. A Grand Uni�ation Theory (GUT) may appearat a somewhat lower energy sale. The surprising thing is that the ratio MPmW � 1016 is sohuge. This is alled "hierarhy problem"[17℄.Moreover, radiative orretions must be inluded in the theoretial preditions in or-der to math the preision of experimental measurements. When we onsider radiativeorretions to the Higgs boson mass, m2H is found to be quadratially divergent at one-loop level[18℄. For example, onsider the ontributions to m2H from a loop ontaining thefermion f as shown in Figure 2.1(a) and suppose the Lagrangian term is ��fHf �f . Thenthe orretion is given by�m2H � � �2f8�2�2 + logarithmially divergent terms ; (2.1)where � is a momentum uto� used to regulate the loop integral, whih represents theenergy sale at whih new physis appears. If � is of order of the Plank saleMp, the one-loop quantum orretion �m2H is some 30 orders of magnitude larger than m2H � (1TeV )2,�H f(a) . �H S(b) .
Figure 2.1: Radiative orretions to the Higgs boson mass



2.2. SUPERSYMMETRY 7whih is needed to preserve unitary in the sattering of the longitudinal gauge bosons[19℄.This is the tehnial aspet of the hierarhy problem. One needs extreme �ne-tuning ofthe parameters to anel the large quadrati ontributions against a ounterterm, leaving aresulting Higgs boson mass of about 1 TeV. Suh a anellation is unnatural and in generalnot aeptable. Additionally, in every order of the perturbative theory, the parametersmust be re-tuned.The only known way to anel these quadrati divergenes is by introduing a newpartner with spin di�ering by 12 for every known partile. The properties of the knownpartiles and their new partners are related by a symmetry, whih is known as supersym-metry. As shown in Figure 2.1(b), suppose there is a new partner S for fermion f , whihouples to the Higgs boson with a Lagrangian term ��SH2S2, then the ontributions are�m2H � �S8�2�2 + logarithmially divergent terms : (2.2)If eah of the SM quarks and leptons has a new supersymmetri partner with �S = �2f ,then the quadrati divergenes neatly anel.2.2 SupersymmetryIn order to protet the Higgs boson mass from quadratially divergent radiative orretions,we introdue supersymmetry(SUSY), whih is a symmetry whih onnets fermions andbosons. In this setion we �rst introdue the SUSY algebra and the di�erent super�elds,and then ome to the onstrution of the SUSY Lagrangian. The breaking of SUSY is alsodisussed. The disussions in this setion are based on Refs. [2, 3, 20℄.2.2.1 SUSY AlgebraThe generators of SUSY must turn a fermioni state into a bosoni state, and vie versa,Qjbosoni = jfermioni; Qjfermioni = jbosoni:This implies that the SUSY generators are fermioni, so they must satisfy the antiommu-tation relations below [21℄, fQ� ; Q�g = � �Q _� ; �Q _�	 = 0 ; (2.3)�Q� ; �Q _�	 = 2��� _�P� ; (2.4)�Q� ; P�� = � �Q _� ; P�� = 0 ; (2.5)�Q� ;M��� = i (���)��Q� : (2.6)Here the SUSY generators are 2-omponent (Weyl) spinors, their indies �; � and _�; _�equal 1 or 2, P � and M�� are the four-momentum and angular momentum operators, and�� and ��� are de�ned in appendix A. We have used the simplest ase whih is alledN = 1 SUSY, where N denotes the number of SUSY generators.



8 CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)2.2.2 Super�eldsIn order to desribe the SUSY transformations, we introdue the superspae [20℄ whih isdi�erent from the normal spae by adding two new "Grassmann" oordinates ��(� = 1; 2)and �� _�( _� = 1; 2). They are antiommutingf��; ��g = ��� _�; �� _�	 = ���; �� _�	 = 0 : (2.7)A "�nite" SUSY transformation in the superspae (x�; �; ��) an be de�ned asG(x; �; ��) = exp�i ��Q + �Q�� � x�P ��� : (2.8)Here the indies have been dropped. The super�elds � should be funtions of �; �� and x�suh that they transform under the SUSY transformations as follows,G(y; �; ��)�(x; �; ��) = �(x + y � i���� + i����; � + �; �� + ��) ; (2.9)where � and �� are again "Grassmann" variables. Considering in�nitesimal SUSY transfor-mations on the super�eldÆS(�; ��)�(x; �; ��) = i ��Q+ �Q�� � x�P ���(x; �; ��)= �h� ��� + �� ���� � i ������ � ������ ��i�(x; �; ��) ; (2.10)one obtains the representation of the SUSY generators,Q� = i� ���� � i��� _� �� _���� ; (2.11)�Q _� = i� ���� _� + i����� _��� _���� : (2.12)The SUSY ovariant derivatives antiommute with the SUSY transformations (2.10), i.e.D� (ÆS�) = �ÆS (D��) : (2.13)This gives the expressions for the SUSY ovariant derivatives,D� = ���� + i��� _� �� _��� ; (2.14)�D _� = ���� _� � i����� _��� _��� : (2.15)Beause the SM fermions are hiral, the �rst super�eld we need is a hiral super�eld,whih an desribe the left- and right-handed fermions as well as their superpartners. Theleft- and right-handed hiral super�elds are de�ned via�D�L = 0 ; (2.16)D�R = 0 ; (2.17)



2.2. SUPERSYMMETRY 9respetively. The de�nition of the SUSY transformation, SUSY generators and SUSYovariant derivatives in the L(R) representation are similar to the de�nitions above [3℄.The L(R) representation of the SUSY ovariant derivatives areDL = ��� + 2i������ ; �DL = ���� ; (2.18)DR = ���� � 2i����� ; �DR = ��� : (2.19)From (2.16) we know that �L is independent of ��, therefore we an expand it as,�L(x; �) = �(x) +p2�� �(x) + ����"��F (x) ; (2.20)where "�� is the anti-symmetri tensor in two dimensions. From (2.7) we know that �2� = 0,therefore the terms with three or more fators of � vanish. The �eld � is a omplex salar�eld, and  is a left-handed Weyl spinor. They are alled superpartners to eah other.The �eld F is an auxiliary �eld, whih we an get rid of by using the equations of motion.Under SUSY transformations the "omponent" �elds �;  ; F transform asÆS(�; ��)� = p2� ; (2.21)ÆS(�; ��) = p2F + ip2������� ; (2.22)ÆS(�; ��)F = �ip2�� ���� ; (2.23)whih shows that SUSY transforms fermions into bosons and the variation of the F �eldis a total derivative.The hiral super�eld ontains the spin-0 bosons and spin-12 fermions. One also needssuper�elds whih desribe the spin-1 gauge bosons of the SM. Hene we introdue a vetorsuper�eld V (x; �; ��) whih satis�esV (x; �; ��) = V y(x; �; ��) : (2.24)In omponent form it an be written as,V (x; �; ��) = C(x) + i��(x)� i�� ��(x)+ i2��[M(x) + iN(x)℄� i2 ����[M(x)� iN(x)℄� �����v�(x) + i����[��(x) + i2 ������(x)℄� i�����[�+ i2���� ��(x)℄ + 12������[D(x) + 12����C(x)℄ ; (2.25)where C;M;N;D are real spin-0 �elds, �; � are Weyl spinors and v� is a spin-1 gauge�eld. Under the non-Abelian supersymmetri gauge transformation the vetor super�eldtransforms as e2gV �! e�i2g�ye2gV ei2g� ; (2.26)



10CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)where �(x; �; ��) is a hiral super�eld, g is the gauge oupling, and V = V aT a, � = �aT awhere T a are the generators of the non-Abelian gauge group. For the Abelian ase, thetransformation simpli�es to V �! V + i ��� �y� : (2.27)One an hoose the Wess-Zumino gauge[22℄, whereC(x) = �(x) =M(x) = N(x) � 0 ; (2.28)leaving the gauge �eld v�, its superpartner � (gaugino) and the auxiliary �eld D. In thisgauge, the vetor super�eld is expressed asV (x; �; ��) = ������v�(x) + i������(x)� i������(x) + 12������D(x) : (2.29)Similarly to the hiral super�eld, one �nds that the D omponent of the vetor �eld trans-forms into a total derivative under SUSY transformations. This is very important for theonstrution of the SUSY Lagrangian.2.2.3 Constrution of the SUSY LagrangianIn this setion SUSY Lagrangian is onstruted in the notation of super�elds. The prinipleof onstrution is that the ation should be invariant under SUSY transformations, i.e.ÆS R d4xL(x) = 0. It is satis�ed when L transforms into a total derivative under SUSYtransformations. From the disussions above we know that the highest omponents ofhiral (F-term) and vetor (D-term) super�elds satisfy this demand. They an be obtainedwith integration over the Grassmann variables � and �� via the de�nition,Z d�� = 0 ; Z ��d�� = Æ�� : (2.30)Therefore, the general form of the SUSY invariant Lagrangian is,L = Z d2�LF + Z d2�d2��LD ; (2.31)where the Lagrangian densities LF and LD are hiral and vetor super�elds, respetively.In order to obtain the expliit expressions for the SUSY invariant Lagrangian, weonsider the produt of left-hiral super�elds. From the de�nition of the hiral super�eldin (2.16), it is easy to see that the produt of left-handed super�elds is always a left-handedsuper�eld. Therefore it an take the role of LF . The superpotential W (�) (orrespondingto LF ) is introdued asW (�i) = Xi �i�i + 12Xij mij�i�j + 13Xijk yijk�i�j�k ; (2.32)



2.2. SUPERSYMMETRY 11where �i are left-hiral super�elds, and mij and yijk are totally symmetri onstants.Beause of the renormalizability onstraint the superpotential does not ontain terms withfour or more powers of super�elds. The F-omponent of the superpotential an be writtenas Z d2�W (�i) = Xi �iFi +Xij mij ��iFj � 12 i j�+Xijk yijk (�i�jFk �  i j�k)= Xj �W (�)��j Fj � 12Xjk �2W (�)��j��k  j k : (2.33)This gives a fermion mass term and Yukawa interations.Considering the produt of the left-hiral super�eld and its onjugate, one �nds that�+i �i is a vetor super�eld. Hene, it an take the role of LD in (2.31). The D-omponentof �+i �i is obtained byZ d2�d2���+i �i = FiF �i + ���i����i + i � i���� i ; (2.34)whih ontains the kineti terms for the salar omponent �i and the fermioni omponent i. Therefore the SUSY invariant Lagrangian an be written asL = Xi Z d2�d2�� �+i �i + �Z d2�W (�i) + h::� : (2.35)In the disussions above, only the SUSY invariant Lagrangian is onsidered. But thisis not suÆient. In order to desribe the SUSY theory, we need a SUSY Lagrangianwhih is not only SUSY invariant, but also gauge invariant. Considering the non-Abeliansupersymmetri gauge transformations, the vetor super�eld transforms as in (2.26), andthe hiral super�eld transforms as �! e�i2g��. The kineti terms for the hiral super�eldan be written asZ d2�d2�� �+i �i ! Z d2�d2���+i e2gV�i= D��iD���i + i � i���D� i �p2g � � i���i + ��i� i�+g��iD�i + F 2i ; (2.36)where the gauge-ovariant derivative D� is de�ned byD� = �� + igva�T a ; (2.37)and T a are the generators of the gauge group. The �rst two terms of the seond line in(2.36) are the kineti terms for salars and fermions, and they also desribe the interationsof matter �elds (fermions and salars) with the gauge �elds. The ouplings of fermions andsalars with gauginos an be found in the third term of the seond line, while the thirdline ontains the auxiliary �elds D and F .



12CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)The kineti term for the vetor super�eld is produed with the help of the �eld strengthtensor, whih is de�ned byW� = �14 �D �D�exp(�2gV )D� exp(2gV )� ; (2.38)where D and �D are SUSY ovariant derivatives and W� is a left-hiral super�eld beause�D��W� = 0. It is easy to show that the produt W�W � is gauge invariant. Therefore itsF-omponent an appear in the Lagrangian,116g2 Z d2��W a�W �a + h::� = �14F a��F ��a + i��a��� (D��)a + 12DaDa ; (2.39)where F a�� = ��va� � ��va� + fabvb�v� (2.40)and fab are the group struture onstants. The kineti terms for the gauge �elds andgauginos �elds, as well as the oupling of the gauginos to the gauge bosons are ontainedin (2.39).The Lagrangian invariant under SUSY and gauge transformations an be written asL = Xi Z d2�d2���+i e2gV�i + 116g2 Z d2��W a�W �a + h::�+�Z d2�W (�i) + h::� : (2.41)The auxiliary �elds an be integrated out with the help of their equations of motion,�L�Fj = 0 ) F �j = ��W (�)��j ; (2.42)�L�Da = 0 ) Da = �gXi ��iTa�i : (2.43)Substituting these expressions for the F- and D-�elds into the SUSY Lagrangian (2.41),the auxiliary �elds in the Lagrangian disappear. The salar potential an then be writtenas V = VF + VD =Xi ��W (�)��j �2 + g22 �Xi ��iTa�i�2 ; (2.44)where VF and VD are the F- and D-term of the salar potential, respetively.



2.3. THE MSSM 132.2.4 Spontaneous Breaking of SUSYThe superpartners have the same masses as the orresponding SM partiles, but no super-partners have been disovered yet. Hene SUSY must be broken. From the relation of theSUSY algebra (2.4) one an deriveH = P 0 = 14 � �Q1Q1 +Q1 �Q1 + �Q2Q2 +Q2 �Q2� � 0 ; (2.45)where H is the Hamiltonian. Suppose the vauum state j0i is supersymmetri, whihmeans Q�j0i = �Q _�j0i = 0 ; (2.46)then the vauum expetation value isEva � h0jHj0i = 0 : (2.47)This implies that SUSY is spontaneously broken (Q�j0i 6= 0) if the vauum expetationvalue is positive, i.e. Eva > 0. It an be ahieved if the salar potential V does not vanishfor any �eld on�guration. Therefore we an break SUSY spontaneously with Da 6= 0(D-term breaking) by the Fayet-Iliopoulos mehanism [23℄, or Fi 6= 0 (F-term breaking)by the O'Raifeartaigh mehanism [24℄. Unfortunately, none of these mehanisms works inthe Minimal Supersymmetri Stand Model (MSSM). In the MSSM one introdues all thepossible "soft-breaking" terms to the Lagrangian instead of assuming an expliit SUSY-breaking mehanism [25℄. After these terms are introdued the quadrati divergenes inÆm2H are aneled. The details of the soft SUSY-breaking will be explained in Setion(2.3.2).2.3 The MSSM2.3.1 The Field Content of the MSSMThe minimal supersymmetri extension of the SM, whih is alled the Minimal Supersym-metri Standard Model (MSSM) [26, 27℄, keeps as few interations and partiles as possible.It means that the MSSM is also based on the gauge group SU(3)C�SU(2)L�U(1)Y . It isnot possible that one of the known SM partiles is the superpartner of another one. Henethere must be a new superpartner for eah known partile of the SM [27℄.The SM hiral fermions and their superpartners are desribed by hiral super�elds. Theleft-handed super�elds an be arranged in SU(2)-doublets and the harged onjugates ofthe right-handed ones in SU(2)-singlets. For every generation we have �ve hiral super-�elds: L̂, Ê, Q̂, Û , and D̂. L̂ and Q̂ are the SU(2)-doublet hiral super�elds whih ontainlepton(slepton) and quark (squark) doublets, respetively. Ê is the SU(2)-singlet hiralsuper�eld ontaining lepton (slepton) singlets. There is no right-handed neutrino in the



14CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)SM, hene the orresponding superpartner does not exit. The SU(2)-singlet hiral super-�elds Û and D̂ ontain the up-quark (up-squark) and down-quark (down-squarks) singlets,respetively. In the SM gauge setor we introdue gluinos �ks(k = 1; 2; : : : 8) as the super-partners of the gluons Gk�, winos �a(a = 1; 2; 3) as the superpartners of the weak bosonsW a� , and a bino as the superpartner of the hyperharge boson B�. They are desribed bythe vetor super�elds V ks , V a, and v0, respetively.Super�eld Bosoni �eld Fermioni �eld SU(3) SUL(2) UY (1)sleptons leptonsL̂ ~L = � ~�L~eL � L = � �LeL � 1 2 -1Ê ~eyR eR 1 1 2squarks quarksQ̂ ~Q = � ~uL~dL � Q = � uLdL � 3 2 1=3Û ~uyR uR 3� 1 �4=3D̂ ~dyR dR 3� 1 2=3V ks gluons Gk� gluinos �ks 8 1 0V a weak bosons W a� winos �a 1 3 0v0 hyperharge boson B� bino �0 1 1 0Higgses higgsinosĤ1 H1 = � H11H21 � ~H1 = � ~H11~H21 � 1 2 -1Ĥ2 H2 = � H12H22 � ~H2 = � ~H12~H22 � 1 2 1Table 2.1: Field Content of the MSSMThe Higgs salar boson has spin 0, hene we must desribe it and its superpartner bya hiral super�eld. But it turns out that one hiral super�eld is not enough. One reason isrelated to the hiral (triangle) anomaly, whih is proportional to Tr [Y 3℄, where Y denotesthe weak hyperharge. In the SM, the hiral anomaly is aneled by the known quarksand leptons. However if one introdues only one hiral Higgs super�eld, whih ontainshiral fermions with weak hyperharge Y = 1 or Y = �1, it leads to a nonvanishingontribution to the hiral anomaly, hene spoils gauge invariane. One therefore has toadd a seond Higgs doublet with opposite hyperharge. From Setion 2.2.3 we know thatthe superpotential does not ontain any produts of left- and right-hiral super�elds. Henethe Yukawa oupling term HQuR annot be replaed by �HQuR and the HQdR and HLeRterms annot be replaed by �HQdR and �HLeR, respetively. Therefore it is impossibleto give masses to both up and down quarks if we only have one Higgs doublet. This isanother reason why we need two Higgs doublets. Starting from the SM, we get the MSSMby introduing a superpartner to eah known partiles and adding another Higgs doublet



2.3. THE MSSM 15(with its superpartner). The �elds of the MSSM are summarized in Table 2.1 where theolor and generation indies are suppressed.2.3.2 The MSSM LagrangianAs disussed in Setions 2.2.3 and 2.2.4, the MSSM Lagrangian an be written asL = LSUSY + Lsoft ; (2.48)where LSUSY is the SUSY-invariant term and Lsoft is the soft SUSY-breaking term. Allsuper�elds of the MSSM were presented in Setion 2.3.1. The oupling onstants of thegauge groups U(1), SU(2) and SU(3) are denoted by g0, g and gs, respetively. We de�nethe �eld strengths of these groups asW 0� = �14g0DD �D��V 0 ;W a� = �14 �D �D�exp(�2gV )D� exp(2gV )� ;W ks� = �14 �D �D�exp(�2gsVs)D� exp(2gsVs)� : (2.49)Here V 0 = Y v0; V = T aV a; Vs = T kV ks , and Y , T a and T k are the generators of U(1), SU(2)and SU(3), respetively. Aording to Setion 2.2.3 the SUSY-invariant Lagrangian of theMSSM is written asLSUSY = Z d2�d2�� � �̂Leg0V 0+2gV L̂+ �̂Eeg0V 0+2gV Ê+�̂Qeg0V 0+2gV+2gsVsQ̂+ �̂Ueg0V 0+2gV+2gsVsÛ + �̂Deg0V 0+2gV+2gsVsD̂+�̂H1eg0V 0+2gV+2gsVsĤ1 + �̂H2eg0V 0+2gV+2gsVsĤ2� +Z d2�h 116g02W 0�W �0 + 116g2W a�W �a + 116gs2W ks�W �s k + h::i +"Z d2�"ij ��uĤj2Q̂iÛ + �dĤ i1Q̂jD̂ + �eĤ i1L̂jÊ � �Ĥ i1Ĥj2�+ h::#;(2.50)where we have suppressed the olor and generation indies. The last line in (2.50) is theF-omponent of the superpotential, where "ij is antisymmetri, i.e. "12 = �"21 = 1 and �is the mass parameter mixing the two Higgs �elds. The Yukawa oupling onstants �u, �dand �e are 3� 3 matries in family spae.The superpotential in (2.50) does not ontain some terms whih are gauge invariantand analyti in the hiral super�elds. These terms areW 0 = "ij ��L̂iL̂jÊ + �0L̂iQ̂jD̂ � �0Ĥ i1L̂j�+ �00D̂D̂Û ; (2.51)



16CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)where �, �0, �00, and �0 are oupling onstants. The �rst and seond term in 2.51 violatethe lepton (L) and baryon (B) numbers, respetively. B- and L-violating proesses havenever been seen experimentally, hene these terms are not inluded in the MSSM potential.In Setion 2.3.3 we will analyze R-parity whih is related to B and L number onservation.In order to desribe the MSSM ompletely, we need to speify the soft SUSY-breakingterms. Girardello and Grisaru [25℄ found out that the allowed terms are the salar massterms, gaugino mass terms and trilinear salar interation terms. The soft SUSY-breakingLagrangian an be written asLsoft = �M2~Q �~uyL~uL + ~dyL ~dL��M2~uR ~uyR~uR �M2~dR ~dyR ~dR�M2~L �~�yL~�L + ~eyL~eL��M2~eR~eyR~eR�m21Hy1H1 �m22Hy2H2 + �m23"ijH i1Hj2 + h::�+ 12 �M1�0�0 +M2�a�a +M3�ks�ks + h::�� "ij ��uAuHj2 ~Qi~uyR + �dAdH i1 ~Qj ~dyR + �eAeH i1 ~Lj~eyR + h::� : (2.52)The �rst and seond lines in (2.52) onsist of slepton and squark mass terms. The param-eters M2~Q, M2~uR , M2~dR , M2~L and M2~eR are 3 � 3 matries in family spae. In the third linewe have the soft SUSY-breaking ontributions to the Higgs potential with the Higgs massparameters m21, m22 and m23. The gaugino mass terms are in the fourth line with the bino,wino, and gluino mass parameters M1, M2, and M3. The last line in (2.52) are trilinearsalar interation terms with parameters Au, Ad, and Ae, whih are 3�3 matries in familyspae. Similarly to the superpotential in (2.50), there are no terms whih violate the B orL numbers in the soft-breaking Lagrangian.As disussed in Setion 2.2.2, the super�elds an be expanded in omponent form. Theauxiliary �elds (F- and D- �elds) an be eliminated with the help of their equations ofmotion whih are similar to (2.42) and (2.43). Expliit expressions an e.g. be found inRef.[28℄.For the quantization of the lassial Lagrangian and for higher-order alulations weneed to speify the gauge. A renormalizable 't Hooft gauge is hosen for this purpose.The priniples an be found in Ref.[29, 30℄. For the MSSM Lagrangian whih ontainsthe SUSY-invariant and soft SUSY-breaking terms, the gauge �xing Lagrangian an bewritten as[31℄ Lfix = � 12�A (��A�)2 � 12�Z ���Z� + �ZmZG0�2� 1�W ����W+� + i�WmWG+��2 � 12�G ���Gk��2 (2.53)with arbitrary parameters �A, �Z, �W , and �G. Here A�, Z�, and W�� are the physialeletroweak gauge �elds, G0, G� are unphysial Higgs �elds (Goldstone bosons). Sine



2.4. THE PHYSICAL FIELDS OF THE MSSM 17Lfix involves the unphysial omponents of the gauge �elds, one has to add the Fadeev-Popov ghost term Lgh for ompensating these e�ets [30℄. The omplete Lagrangian of theMSSM is L = LSUSY + Lsoft + Lfix + Lgh : (2.54)In the 't Hooft-Feynman gauge �A = �Z = �W = �G = 1. The propagators for theunphysial Higgs �elds then have poles at the masses of the orresponding physial partilesW� and Z.2.3.3 R-parity and Its ConsequenesIn the SM the B and L numbers are onserved aidentally. In the MSSM, we an separatethe most general gauge-invariant superpotential into two parts, one whih onserves Band L numbers and the another one whih violates them. Sine B and L violation isnot observed in nature, these terms must be suppressed or exluded. B and L numberonservation together with spin onservation an be related to a new disrete symmetry,R-parity[32℄ or equivalently matter-parity[33℄. The R-parity is de�ned asPR = (�1)3(B�L)+2s ; (2.55)where s is the spin of the partile. Thus, all SM partiles have R-parity PR = 1, while allsuperpartners have R-parity PR = �1. Usually R-parity is assumed to be onserved in theMSSM, hene the superpotential W 0 whih violates R-parity is forbidden.If R-parity is assumed to be onserved, we have two important phenomenologial on-sequenes:� The lightest supersymmetri partile (LSP) must be stable. This means that super-symmetri partiles other than the LSP must eventually deay into a state whihontains an odd number of LSPs.� The supersymmetri partiles an only be produed in even numbers in ollider ex-periments.Moreover, a stable LSP has to be eletrially neutral and interats only weakly with ordi-nary matter, it an therefore make a good old dark matter andidate [34℄.2.4 The Physial Fields of the MSSMIn this setion the eletroweak-symmetry breaking is disussed briey. The Higgs �eldsin the MSSM have eight real salar degrees of freedom. When the eletroweak symmetrySU(2)L�U(1)Y is broken down to U(1)EM , three of them turn into Goldstone bosons whihare subsequently absorbed by W� and Z. The remaining �ve degrees of freedom form thephysial Higgs bosons h0; H0; A0, and H� [28, 35℄. After the eletroweak symmetry isbroken, �elds with the same SU(3)C � U(1)EM quantum numbers an mix. Therefore wehave sfermions mixing and higgsinos and gauginos mixing into harginos and neutralinos.This will be studied in this setion.



18CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)2.4.1 Higgs BosonsThe salar Higgs potential in the MSSM arises from the auxiliary F- and D-�elds and thesoft-SUSY breaking terms. It an be written asV = VF + VD + Vsoft= �m21 + j�j2�Hy1H1 + �m22 + j�j2�Hy2H2 �m23"ij �H i1Hj2 + h::�+18 �g2 + g02� �Hy1H1 �Hy2H2�2 + g22 jHy1H2j2 : (2.56)We an take advantage of the arbitrary nature of the soft SUSY-breaking parametersm21; m22, and absorb j�j2 into them, i.e. m21 + j�j2 ! m21, m22 + j�j2 ! m22. Without losinggenerality, we an hoose the vauum expetation values of the Higgs �elds ashH1i = � v10 � ; hH2i = � 0v2 � ; (2.57)where v1; v2 are non-negative. The eletroweak symmetry SU(2)L�U(1)Y is broken downto U(1)EM if these onditions are satis�ed,m21 +m22 � 2m23 � 0 ;m21m22 �m43 < 0 : (2.58)The Higgs doublets H1 and H2 are deomposed in the following way:H1 = � v1 + 1p2(�01 + i�01)���1 � ;H2 = � �+2v2 + 1p2(�02 + i�02) � ; (2.59)where �01 and �02 denote the neutral CP-even Higgs �elds, �01 and �02 denote the neutralCP-odd Higgs �elds, and ��1 and ��2 denote the harged Higgs �elds. Inserting (2.59) intothe Higgs potential (2.56), one obtainsV = �T�01�01 � T�02�02 + 12 � �01 �02 �M�0 � �01�02 �+ 12 � �01 �02 �M�0 � �01�02 � + 12 � �+1 �+2 �M�� � ��1��2 � : (2.60)Here we only onsider the linear and quadrati terms in the Higgs potential (2.56). T�01and T�02 denote the tadpoles of the Higgs �elds �01 and �02. They must vanish sine theHiggs potential should have a minimum,T�01 = �4m21v1 + 4m23v2 � �g2 + g02� v1 (v21 � v22)2p2 = 0 ;T�02 = 4m23v1 � 4m22v2 + �g2 + g02� v2 (v21 � v22)2p2 = 0 : (2.61)



2.4. THE PHYSICAL FIELDS OF THE MSSM 19In (2.60), M�0 is the mass matrix of the neutral CP-even Higgs �elds,M�0 = � m21 + 14~g2(3v21 � v22) �m23 � 12~g2v1v2�m23 � 12~g2v1v2 m22 + 14~g2(3v22 � v21) � ; (2.62)M�0 is the mass matrix of the neutral CP-odd Higgs �elds,M�0 = � m21 + 14~g2(v21 � v22) �m23�m23 m22 + 14~g2(v22 � v21) � ; (2.63)and M�� is the mass matrix of the harged Higgs �elds,M�� = � m21 + 14 (~g2v21 + �g2v22) �m23 � 12g2v1v2�m23 � 12g2v1v2 m22 + 14 (�g2v21 + ~g2v22) � ; (2.64)with ~g2 = g2 + g02, �g2 = g2 � g02. These mass matries an be diagonalized with the helpof the unitary 2� 2 matries U�, U�n , and U�, respetively,U�M�0U y� = MD�0 = � m2h0 00 m2H0 � ; U� = � � sin� os�os� sin� � ; (2.65a)U�nM�0U y�n = MD�0 = � m2A0 00 0 � ; U�n = � � sin�n os �nos �n sin�n � ; (2.65b)U�M��U y� = MD�� = � m2H� 00 0 � ; U� = � � sin� os �os � sin � � : (2.65)These transformations result in the Higgs boson mass eigenstates: two neutral CP-evenHiggs bosons h0 and H0, � h0H0 � = U�� �01�02 � ; (2.66)the neutral CP-odd Higgs boson A0 and Goldstone boson G0,� A0G0 � = U�n � �01�02 � ; (2.67)and the harged Higgs bosons � H�G� � = U� � ��1��2 � : (2.68)In terms of the Higgs boson mass eigenstates, the salar Higgs potential(2.60) an bewritten as V = �Th0h0 � TH0H0 + 12 � h0 H0 �MD�0 � h0H0 �+ (2.69)12 � A0 G0 �MD�0 � A0G0 � + � H+ G+ �MD�� � H�G� � :



20CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)Here Th0 ; TH0 denote the tadpoles of the physial �elds h0, H0,� Th0TH0 � = U�� T�01T�02 � : (2.70)From (2.65b) one gets,m2A0 = m23 �ot � os2 �n + tan� sin2 �n + sin 2�n� ; (2.71)where we have applied (2.61). Using the physial parameters e, �W (sW = sin �W ; W =os �W ), tan�, Th0 , TH0 , mZ , mA0 instead of the parameters v1; v2; g2; g02; m21; m22; m33 via(2.71) and the relations,tan� = v2v1 ; sW = 1�m2W=m2Z; e = g0W = gsW ; m2Z = 12(g21 + g22)(v21 + v22) ; (2.72)we obtain�U�M�0U y��11 = m2Z sin2(�+ �) +m2A0 os2(�� �)= os2(� � �n)+ e2mZsW W TH0 os(�� �) sin2(�� �n)= os2(� � �n)+ e2mZsW W Th0 12 sin(�� �n) (os(2�� � � �n)+3 os(� � �n)) = os2(� � �n) ; (2.73a)�U�M�0U y��12 = �m2Z sin(�+ �) os(� + �) +m2A0 sin(�� �) os(�� �)= os2(� � �n)+ e2mZsW W TH0 sin(�� �) sin2(�� �n)= os2(� � �n)� e2mZsW W Th0 os(�� �) os2(�� �n)= os2(� � �n) ; (2.73b)�U�M�0U y��22 = m2Z os2(� + �) +m2A0 sin2(�� �)= os2(� � �n) +e2mZsW W TH02 os(�� �n) (os(2�� � � �n)�3 os(� � �n)) = os2(� � �n)� e2mZsW W Th0 sin(�� �) os2(�� �n)= os2(� � �n) ; (2.73)�U�nM�0U y�n�12 = �m2A0 tan(� � �n)� e2mZsW W (TH0 sin(�� �n)+Th0 os(�� �n)) = os(� � �n) ; (2.73d)�U�nM�0U y�n�22 = m2A0 tan2(� � �n) +e2mZsW W (�TH0 os(�+ � � 2�n)+Th0 sin(� + � � 2�n)) = os2(� � �n)) ; (2.73e)



2.4. THE PHYSICAL FIELDS OF THE MSSM 21�U�M��U y��11 = m2A0 +m2W ;�U�M��U y��12 = � �m2A0 +m2W � tan(� � �)� e2mZsW W (TH0 sin(�� �) + Th0 os(�� �)) = os(� � �) ;�U�M��U y��22 = �m2A0 +m2W � tan2(� � �)� e2mZsW W Th0 os(�+ � � 2�)= os2(� � �)+ e2mZsW W TH0 sin(�+ � � 2�)= os2(� � �) : (2.73f)The matries U�M�0U y�, U�nM�0U y�n and U�M��U y� should be diagonal at tree level. Thisleads to the following onlusions,�n = � = �; tan 2� = tan 2�m2A +m2Zm2A �m2Z ; ��2 < � < �2 : (2.74)Therefore, the tree-level masses of the physial Higgs bosons arem2h0 = 12 �m2A0 +m2Z �q(m2A0 +m2Z)2 � 4m2A0m2Z os2 2�� ; (2.75a)m2H0 = 12 �m2A0 +m2Z +q(m2A0 +m2Z)2 � 4m2A0m2Z os2 2�� ; (2.75b)m2H� = m2A0 +m2W : (2.75)In the 't Hooft-Feynman gauge, the masses of the Goldstone bosons aremG0 = mZ ; mG� = mW : (2.76)



22CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)2.4.2 W and Z Gauge BosonsIn analogy to the SM, the physial gauge bosons W�� , Z� and A� are obtained from theeletroweak interation eigenstates W a� (a = 1; 2; 3) and B� via the following de�nition,W�� = 1p2 �W 1� �W 2�� ;Z� = �sWB� + WW 3� ;A� = WB� + sWW 3� ; (2.77)and orrespondingly their superpartners transform as�� = 1p2 ��1 � �2� ;�Z = �sW�0 + W�3 ;�A = W�0 + sW�3 : (2.78)The SU(2)� U(1) ovariant derivative isD� = �� + igT aW a� + ig0Y2 B�= �� + igp2T+W+� + igp2T�W�� +igW �T 3 �Qs2W �Z� + ieQA� : (2.79)Here we introdued the new operatorsT� = T 1 � iT 2 ;Q = T 3 + Y2 ; (2.80)where Q is the harge operator. Hene the kineti terms for the Higgs �elds areLHiggskineti = (D�H1)y (D�H1) + (D�H2)y (D�H2) : (2.81)After gauge symmetry breaking the Higgs �elds aquire their vauum expetation valuesas in (2.57). From (2.81) we an obtain the masses of the gauge bosons,m2W = g22 �v21 + v22� ;m2Z = g222W �v21 + v22� = 12 �g2 + g02� �v21 + v22� ; (2.82)and the masses of the gluons and photons are zero. This is onsistent with the preditionsof the SM.



2.4. THE PHYSICAL FIELDS OF THE MSSM 232.4.3 FermionsConsidering the Yukawa oupling terms in the superpotential in the SUSY Lagrangian(2.50), LY ukawa = �"ij ��uHj2QiuR + �dH i1QjdR + �eH i1LjeR�+ h:: ; (2.83)the fermion mass terms an be obtained when the Higgs �elds get their vauum expetationvalues, Lf�mass = ��uv2uLuR � �dv1dLdR � �ev1eLeR + h:: : (2.84)Introduing four-omponent Dira spinors,u = � uL�uR � ; d = � dL�dR � ; e = � eL�eR � ; (2.85)the fermion mass terms an be written asLf�mass = ��uv2u�u� �dv1d �d� �ev1e�e : (2.86)Hene the fermion masses aremu = �uv2 ; md = �dv1 ; me = �ev1 ; (2.87)and the Yukawa oupling onstants an be written as�u = muv2 = mugp2 sin �mW ; �d = mdv1 = mdgp2 os �mW ; �e = mev1 = megp2 os �mW : (2.88)Here we have used tan� = v2v1 and m2W = g22 (v21 + v22).2.4.4 SfermionsThe mass terms of the sfermions arise from the soft SUSY-breaking Lagrangian, the aux-iliary F- and D-�elds. When the eletroweak symmetry SU(2)L � U(1)Y is broken downto U(1)EM , the Higgs �elds get their vauum expetation values, the sfermion mass termsan be written asL ~fsoft = �M2~Q �~uyL~uL + ~dyL ~dL��M2~uR ~uyR~uR �M2~dR ~dyR ~dR�M2~L �~�yL~�L + ~eyL~eL��M2~eR~eyR~eR� ��uAuv2~uL~uyR + �dAdv1 ~dL ~dyR + �eAev1~eL~eyR + h::� ; (2.89)L ~fAux�F = ��2ev21 �~eyL~eL + ~eyR~eR�� �2dv21 � ~dyL ~dL + ~dyR ~dR�� �2uv22 �~uyL~uL + ~uyR~uR�+ ��ev2�~eyR~eL + �dv2� ~dyR ~dL + �uv1�~uyR~uL + h::� ; (2.90)



24CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)L ~fAux�D = v21 � v222 "g2 �~�yLT 3�L~�L + ~eyLT 3eL~eL + ~uLT 3uL ~uL + ~dLT 3dL ~dL��g02 �~�yLY�L2 ~�L + ~eyLYeL2 ~eL + ~eyRYeR2 ~eR+~uyLYuL2 ~uL + ~dyLYdL2 ~dl + ~uyRYuR2 ~uR + ~dyRYdR2 ~dR!#= �m2Z os 2�Xf " ~f yL(T 3fL �QfLs2W ) ~fL + ~f yRQfRs2W ~fR# (2.91)Here we have applied g2(v21�v22)22W = m2Z os 2�. T 3, Y and Q are the weak isospin, weakhyperharge and eletri harge of the fermions, respetively. They satisfy the relationQ = T 3 + Y2 . For the right-handed fermions T 3fR = 0, so QfR = YfR2 .Adding together the Lagrangian above, the sfermion mass terms of the Lagrangian anbe written as L ~f�mass = �~�yLM~�~�L � � ~f yL; ~f yR�M ~f � ~fL~fR� : (2.92)After replaing the Yukawa oupling onstants �e; �u, and �d with the expressions in (2.88),we get the sfermion mass matrixM ~f ,M ~f =  m2f +M2~fL +m2Z os 2�(T 3f �Qfs2W ) mf(Af � ��)mf(Af � ��) m2f +M2~fR +m2Z os 2�Qfs2W! ; (2.93)where M2~eL = M2~L, M2~qL = M2~Q, and the parameter � is de�ned as � = ot � for up-typesquarks and � = tan � for down-type squarks and sleptons. The sneutrino mass matrixM~� for a given avor is 1-dimensional, and only has the left-handed entry of (2.93),M~� =M2~L + 12m2Z os 2� : (2.94)The sfermion mass matrix(2.93) an be diagonalized by a unitary 2� 2 matrix U ~f ,U ~fM ~fU y~f =MD~f =  m2~f1 00 m2~f2 ! ; (2.95)with the mass eigenvalues m2~f1 ; m2~f2 ,m2~f1;2 = 12(M2L +M2~fR) +m2f + 12T 3fm2Z os 2�� 12q�M2~fL �M2~fR +m2Z os 2�(T 3f � 2Qfs2W )�2 + 4m2f (Af � ��)2: (2.96)



2.4. THE PHYSICAL FIELDS OF THE MSSM 25The sfermion mass eigenstates are given by� ~f1~f2 � = U ~f � ~fL~fR � ; (2.97)where the matrix U ~f is determined by (2.95).2.4.5 Charginos and NeutralinosThe mass terms of the higgsinos and gauginos arise from the SUSY Lagrangian�p2hi �~H1�g��+ 12g0��0�H1 + i �~H2�g��+ 12g0��0�H2 + h::i ; (2.98)the superpotential "ij �� ~H i1 ~Hj2 + h::� ; (2.99)and the soft-breaking terms 12 (M1�0�0 +M2�a�a + h::) : (2.100)The harginos are a mixture of the harged higgsinos and gauginos. We introdue 2�1matries  L = � �i�+~H12 � ;  R = � �i��~H21 � (2.101)for the harged higgsinos and gauginos, where �� is de�ned via (2.78). Apply (2.101) tothe mass terms of the higgsinos and gauginos Lagrangian (2.98, 2.99, 2.100), one obtainsthe mass term of the harginos after the Higgs �elds aquire their vauum expetationvalues, L��mass = �� R>X  L +  L>Xy  R�; (2.102)with the mass matrix X = � M2 p2mW sin�p2mW os � � � : (2.103)The mass matrix (2.103) an be diagonalized by two unitary 2� 2 matries U and V ,U X V > = MD~�+ =  m~�+1 00 m~�+2 ! ; (2.104)



26CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)with the eigenvalues m2~�+1 ; m2~�+2 ,m2~�+1 ; m2~�+2 = 12 �M22 + �2 + 2m2W � h(M22 � �2)2+ 4m4W os2 2� + 4m2W (M22 + �2 + 2�M2 sin 2�)i12� : (2.105)Hene the hargino mass eigenstates an be written as�R = U  R; �L = V  L ; (2.106)with the unitary matries U and V whih are determined by (2.104). The four-omponenthargino spinors are de�ned as~�+i = � �Li�Ri � ; i = 1; 2 : (2.107)Similarly to the hargino ase, the neutralinos arise from mixing of the neutral higgsinosand gauginos. In the following we introdue a 1� 4 matrix 0> = � �i�A ; �i�Z ; ~H11 ; ~H22 � ; (2.108)to the Lagrangian of the higgsinos and gauginos (2.98, 2.99, 2.100), where �A; �Z arede�ned in (2.78). After the eletroweak symmetry is broken, one obtains the mass term ofthe neutralino LagrangianL�0�mass = �12� 0>Y  0 +  0>Y y  0� (2.109)with the mass matrixY = 0BB� M1 0 �mZ sW os � mZ sW sin �0 M2 mZ W os � �mZ W sin��mZ sW os � mZ W os � 0 ��mZ sW sin� �mZ W sin� �� 0 1CCA : (2.110)In order to diagonalize the mass matrix and get the neutralino mass eigenstates, the fol-lowing transformations must be performed:N�Y N y = MD~�0 = 0BB� m~�01 0 0 00 m~�02 0 00 0 m~�03 00 0 0 m~�04 1CCA ; (2.111)
�0 = N  0 ; (2.112)



2.4. THE PHYSICAL FIELDS OF THE MSSM 27where N is a unitary 4� 4 matrix and �0 are the neutralino mass eigenstates. One of theeigenvalues in (2.111) might be negative if the matrix N is real. Therefore, this matrixshould be omplex for positive neutralino masses even if all the elements in Y are real.The neutralinos are Majorana fermions, their Majorana spinors are de�ned by~�0i = � �0i�0i � ; i = 1; : : : ; 4 : (2.113)We have four neutralinos ~�01; ~�02; ~�03; ~�04. They are labeled in asending order, m~�01 < m~�02 <m~�03 < m~�04 . The lightest neutralino ~�01 is the only MSSM partile whih an make a goodold dark matter andidate.2.4.6 GluinosThe gluinos �ks are the superpartners to the gluons Gk�. Their mass terms arise from thesoft-breaking terms of the Lagrangian,L = 12 �M3�ks�ks + h::� : (2.114)Sine the gluinos are Majorana fermions, their Majorana spinors are de�ned by~gks = � �ks��ks � (2.115)with the Majorano mass M3.



28CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)



Chapter 3Renormalization of the MSSMIn order to alulate higher-order orretions, one must renormalize the parameters and�elds of the MSSM. Several approahes for the renormalization of the MSSM have beendeveloped [12, 13, 37, 38, 39, 40℄. Here we follow the strategy of Refs.[12, 13℄, i.e. we employon-shell renormalization. We assume here that all relevant parameters are real quantities.This amounts to the assumption that the soft supersymmetry breaking terms onserveCP. In this hapter the basi ideas of regularization and renormalization are presentedbriey. The DR and on-shell renormalization sheme are introdued and expliit on-shellrenormalization onditions for the di�erent �elds are formulated. The renormalization ofthe SM setor, the hargino and neutralino setor, the sfermion setor, and the Higgs setorare disussed in detail.3.1 Priniples of Regularization and RenormalizationAt tree level, the parameters of the Lagrangian are diretly related to the physial quan-tities. In higher-order perturbation theory, these diret relations are destroyed. Further-more, the divergent loop integrals make the alulation ambiguous. The theory has tobe regularized for mathematial onsistene. One usually employs dimensional regular-ization [41℄ for higher-order alulations of the SM, where the integrals are alulated inD dimensions. Dimensional regularization preserves Lorentz and gauge invariane of thetheory, but breaks hiral symmetry and SUSY. In supersymmetri theories, if we treatthe vetor �elds in D dimensions, this will lead to a mismath between the fermioni andbosoni degrees of freedom, hene SUSY is broken. In order to avoid the disadvantage ofdimensional regularization, dimensional redution was developed in Ref.[42℄, where onlythe momenta are alulated in D dimensions, while the �elds and the Dira algebra arekept 4-dimensional. It is ommonly used in supersymmetri theories.After regularization the parameters in the original Lagrangian (the so-alled bareparameters), whih are physially meaningless, are di�erent from the orresponding physi-al quantities by UV-divergent ontributions. These divergenes anel in relations betweenphysial quantities. Therefore, one may replae the bare parameters by the renormalized29



30 CHAPTER 3. RENORMALIZATION OF THE MSSMones and the renormalization onstants (ounterterms) in the Lagrangian,g0 �! g + Æg ; (3.1)where the renormalized parameters g are UV �nite and measurable, while the ountertermsÆg are UV divergent and absorb the divergent parts of the loop integrals. They are �xedby renormalization onditions, whih determine the relation between the renormalizedparameters and the physial quantities. One must hoose a set of independent parametersin order to make preditions from the theory.Parameter renormalization is suÆient to get �nite S-matrix elements when vave fun-tion renormalization for external on-shell partiles is inluded, but the o�-shell Green fun-tions are not �nite. In order to obtain �nite propagators and verties, we must renormalizethe �eld by the multipliative renormalization 0 �!pÆZ  one-loop=  + 12ÆZ  : (3.2)After the parameters and �elds are renormalized, the Lagrangian an be written asL0(g0;  0) = L(g;  ) + ÆL(g; Æg;  ; Æ ) ; (3.3)where the renormalized Lagrangian L has the same form as the bare Lagrangian L0 butdepends on the renormalized parameters and �elds and ÆL ontains the ounterterms.3.2 Renormalization ShemeThe renormalization onstants an be hosen arbitrarily. Their divergent parts are deter-mined by the struture of the relevant loop integrals, while their �nite parts depend on thehoie of the renormalization onditions. Here we fous on two di�erent renormalizationshemes:� On-shell renormalization shemeThe ounterterms are �xed in a way suh that the �nite renormalized parameters areequal to some physial quantities.� DR renormalization shemeThe ounterterms are de�ned suh that they only ontain the UV-divergent parts ofthe bare parameters or �elds. The UV-divergent parts are proportional to �, whihan be written as � = 24�D � E + log 4� ; (3.4)where E is Euler's onstant.



3.3. ON-SHELL RENORMALIZATION SCHEME 313.3 On-shell Renormalization ShemeThe basi idea of the on-shell renormalization sheme is:� The ounterterms for parameters of the physial partiles are hosen in a way suhthat the renormalized masses are equal to the physial masses, whih are the realparts of the poles of the orresponding renormalized propagators.� The diagonal entries of the �eld renormalization matrix are �xed by the requirementthat the real parts of the renormalized propagators have unity residues.� The renormalized 1PI two-point funtion (the inverse of the renormalized propagator)is diagonal for on-shell external partiles. This determines the non-diagonal entriesof the �eld renormalization matrix.In the on-shell renormalization sheme all renormalization onditions are formulated foron-shell external partiles. Now we ome to the on-shell renormalization onditions fordi�erent types of �elds.3.3.1 On-shell Renormalization Conditions for SalarsConsider the salar one-partile irreduible(1PI) diagram i�(p2). Via the Dyson summa-tion the full propagator an be written asi�(p2) =� +� +� + � � �= ip2 �m2 + ip2 �m2 i�(p2) ip2 �m2 + ip2 �m2 (i�(p2) ip2 �m2 )2 + � � �= ip2 �m2 + �(p2) : (3.5)If there are n mass eigenstates �i(i = 1; � � �n), the renormalized 1PI two-point funtionan be written as �̂ij(p) = i �p2 �m2j� Æij + i�̂ij(p2); (3.6)�̂ij(p2) is the renormalized 1PI self-energy.The on-shell renormalization onditions require that the poles in the renormalized prop-agators our at p2 = m2j and the renormalized 1PI two-point funtion is diagonal, whihare equivalent to ~Re�̂ij(p)��p2=m2j = 0 =) ~Re�̂ij(m2j) = 0 : (3.7)



32 CHAPTER 3. RENORMALIZATION OF THE MSSM~Re takes the real parts of the loop integrals in the self-energies. It an be replaed byRe if all the relevant ouplings are real. Furthermore the real parts of the renormalizedpropagators have unity residues,limp2!m2i 1p2 �m2i ~Re�̂ii(p) = i =) ~Re�̂0ii(m2i ) = 0 ; (3.8)where �̂0ii(m2i ) = ddp2 �̂ii(p2)���p2=m2i .3.3.2 On-shell Renormalization Conditions for FermionsSimilarly to the salar ase, the renormalized 1PI two-point funtions for the fermions anbe written as �̂fij(p) = iÆij( 6p�mi) + i�̂ij(p2) : (3.9)�̂ij(p2) is the renormalized 1PI self-energy for the fermions, whih an be deomposed via�̂ij(p2) = 6p!L�̂Lij(p2)+ 6p!R�̂Rij(p2) + !L�̂SLij (p2) + !R�̂SRij (p2) : (3.10)where !L;R = (1� 5)=2.The on-shell renormalization onditions for fermions are~Re�̂fij(p)�j(p)��p2=m2j = 0; ��i(p0) ~Re�̂fij(p0)��p02=m2i = 0 ; (3.11)limp2!m2i 6p+mip2 �m2i ~Re�̂fii(p)�i(p) = i�i(p); limp02!m2i ��i(p0) ~Re�̂fii(p0) 6p0 +mip02 �m2i = i��i(p0); (3.12)here �(p); ��(p) are Dira spinors of the external fermion �elds. The diagonal equations of(3.11) ensure that the renormalized fermion masses are the poles of the orresponding prop-agators, while its non-diagonal equations make the renormalized 1PI two-point funtiondiagonal for on-shell external partiles. The onditions that the renormalized propagatorshave unity residues are satis�ed by (3.12). These on-shell renormalization onditions aretranslated into the relations between the renormalized self-energies for the fermions,mj ~Re�̂Lij(m2j) + ~Re�̂SRij (m2j) = 0 ; (3.13a)mj ~Re�̂Rij(m2j) + ~Re�̂SLij (m2j) = 0 ; (3.13b)~Re�̂Lii(m2i ) +m2i � ~Re�̂L0ii (m2i ) + ~Re�̂R0ii (m2i )�+mi � ~Re�̂SL0ii (m2i ) + ~Re�̂SR0ii (m2i )� = 0 ; (3.13)~Re�̂Rii(m2i ) +m2i � ~Re�̂L0ii (m2i ) + ~Re�̂R0ii (m2i )�+mi � ~Re�̂SL0ii (m2i ) + ~Re�̂SR0ii (m2i )� = 0 : (3.13d)



3.4. RENORMALIZATION OF THE SM-LIKE SECTOR 333.3.3 On-shell Renormalization Conditions for Gauge BosonsUsing the 't Hooft-Feynman gauge, the renormalized 1PI two-point funtion for the gauge�elds an be written as�̂ij��(p) = �ig�� �p2 �m2i � Æij + i�g�� � p�p�p2 � �̂ijT (p2)� ip�p�p2 �̂ijL (p2) : (3.14)Here �̂ij(p2) is the renormalized self-energy for the gauge �elds, and the indies T and Ldenote the transversal and longitudinal parts, respetively. The on-shell renormalizationonditions require that the renormalized masses are equal to the physial masses and therenormalized 1PI two-point funtion is diagonal when the external partiles are on theirmass shell, ~Re�̂ij��(p)"�j (p)��p2=m2j = 0 ; ~Re�̂ij��(p)"�i (p)��p2=m2i = 0 ; (3.15)and the renormalized propagators have unity residues,limp2!m2i 1p2 �m2i ~Re�̂ii��(p)��i (p) = �i�i;�(p) ; (3.16)where �� are the polarization vetors and satisfy p���i (p) = 0 when p2 = m2i . Applying(3.14) to the on-shell onditions (3.15, 3.16), one obtains the on-shell onditions for therenormalized self-energies, ~Re�̂ijT (m2i ) = 0 ; ~Re�̂ii0T (m2i ) = 0 : (3.17)Note that the longitudinal part of the gauge boson self-energies are dropped sine they arealways �nite.3.4 Renormalization of the SM-like SetorIn the SM the input parameters are hosen to be the eletri harge e, the fermion massesmf , and the masses of the W and Z gauge bosons. The on-shell renormalization of theStandard Model has been performed in [11, 43℄. Here we follow the onventions of Ref. [11℄.3.4.1 Fermion Setor RenormalizationThe bilinear part of the Lagrangian for SM fermions isL = �fi ( 6p�mfi) fi ; (3.18)



34 CHAPTER 3. RENORMALIZATION OF THE MSSMwhere f = �; e; u; d denotes the four-omponent Dira spinors and i = 1; 2; 3 denotes thegeneration index. The fermion masses and �elds are renormalized viamf �! mf + Æmf ; (3.19)!Lfi �! �Æij + 12ÆZf;Lij �!Lfj ;!Rfi �! �Æij + 12ÆZf;Rij �!Rfj ; (3.20)where Æmf is the ounterterm for the fermion masses mf , and ÆZf;Lij and ÆZf;Rij are the �eldrenormalization onstants for the left- and right-handed fermion �elds, respetively. Ap-plying the transformations (3.19, 3.20) to (3.18), one obtains the ounterterm Lagrangian,ÆL = �fi 6phÆZf;Lij !L + ÆZf;Rij !Rifj � hmfi �ÆZf;Lij + ÆZf;Rij � + Æmfi� �fifj : (3.21)In general the renormalized self-energy is equal to the unrenormalized self-energy �ij(p2)plus the orresponding ounterterms, whih are the derivatives of the ounterterm La-grangian ÆL with respet to the �elds �fi and fj,�̂ij(p2) = �ij(p2) + �� �fi ��fj ÆL : (3.22)Therefore the renormalized self-energies for the SM fermions an be written as�̂f;Lij (p2) = �f;Lij (p2) + ÆZf;Lij ; (3.23a)�̂f;Rij (p2) = �f;Rij (p2) + ÆZf;Rij ; (3.23b)~Re�̂f;SLij (p2) = ~Re�̂f;SRij (p2) = �̂f;Sij (p2)= �f;Sij (p2) +mfi �ÆZf;Lij + ÆZf;Rij � + Æmfi : (3.23)Assuming the CKM matrix as an identity matrix Vij = Æij, all the �eld renormalizationonstants and the self-energies are diagonal,ÆZf;Lij = ÆZf;Rij = 0 ; for i 6= j : (3.24)Applying the renormalized fermion self-energies (3.23) to the on-shell renormalization on-ditions (3.13), one an �x the renormalization onstantsÆmfi = mfi2 � ~Re�f;Lii (m2fi) + ~Re�f;Rii (m2fi)� + ~Re�f;Sii (m2fi) ; (3.25a)ÆZf;Lii = � ~Re�f;Lii (m2fi)�m2fi � ~Re�f;L0ii (m2fi) + ~Re�f;R0ii (m2fi)�� 2mfi ~Re�f;S0ii (m2fi) ; (3.25b)ÆZf;Rii = � ~Re�f;Rii (m2fi)�m2fi � ~Re�f;L0ii (m2fi) + ~Re�f;R0ii (m2fi)�� 2mfi ~Re�f;S0ii (m2fi) : (3.25)



3.4. RENORMALIZATION OF THE SM-LIKE SECTOR 353.4.2 Gauge Setor RenormalizationThe bilinear part of the Lagrangian desribing the gauge �elds isL = W�� �p2 �m2W �W+ � + Z� �p2 �m2Z�Z� + A�p2A� : (3.26)The gauge setor is renormalized via the transformationsm2W �! m2W + Æm2W ; (3.27a)m2Z �! m2Z + Æm2Z ; (3.27b)W� �! W� + 12ÆZWW� (3.27)� ZA � �! � 1 + 12ÆZZZ 12ÆZZA12ÆZAZ 1 + 12ÆZAA �� ZA � : (3.27d)After the renormalization one obtains the Lagrangian whih gives us ountertermsÆL = W�� �ÆZW (p2 �m2W )� Æm2W �W+ �+ Z��ÆZZZ(p2 �m2Z)� Æm2Z�Z� + A�p2A�ÆZAA+ 12A��ÆZZA(p2 �m2Z) + ÆZAZp2�Z� : (3.28)The renormalized self-energies for gauge �elds an be written as follows,�̂WT (p2) = �WT (p2) + ÆZW (p2 �m2W )� Æm2W ; (3.29a)�̂ZZT (p2) = �ZZT (p2) + ÆZZZ(p2 �m2Z)� Æm2Z ; (3.29b)�̂AAT (p2) = �AAT (p2) + ÆZAAp2 ; (3.29)�̂AZT (p2) = �AZT (p2) + 12 �ÆZZA(p2 �m2Z) + ÆZAZp2� : (3.29d)Using the on-shell renormalization onditions (3.17), we an determine the renormalizationonstants for the gauge setor of the SM,~Re�̂WT (m2W ) = 0 =) Æm2W = ~Re�WT (m2W ) ; (3.30a)~Re�̂ZZT (m2Z) = 0 =) Æm2Z = ~Re�ZZT (m2Z) ; (3.30b)~Re�̂AZT (m2Z) = 0 =) ÆZAZ = �2 ~Re�AZT (m2Z)m2Z ; (3.30)~Re�̂AZT (0) = 0 =) ÆZZA = 2 ~Re�AZT (0)m2Z ; (3.30d)~Re�̂W 0T (m2W ) = 0 =) ÆZW = � ~Re�W 0T (m2W ) ; (3.30e)~Re�̂ZZ0T (m2Z) = 0 =) ÆZZZ = � ~Re�ZZ0T (m2Z) ; (3.30f)~Re�̂AA0T (0) = 0 =) ÆZAA = � ~Re�AA0T (0) : (3.30g)



36 CHAPTER 3. RENORMALIZATION OF THE MSSMThe on-shell de�nition of the weak mixing angle �W (sW = sin �W ; W = os �W ) is [44℄s2W = 1� m2Wm2Z : (3.31)Hene its ounterterm is diretly related to the ounterterms of the gauge boson masses,ÆsWsW = �12 2Ws2W �Æm2Wm2W � Æm2Zm2Z � ;ÆWW = 12 �Æm2Wm2W � Æm2Zm2Z � : (3.32)3.4.3 Eletri Charge RenormalizationThe three-point funtion  �ff vertex at one-loop level an be depited as
�̂ �ff� (p; p0) = �A� f; p�f; p0 + � +�= �ieQf� + ie� �ff� (p; p0) + ieÆ� �ff� : (3.33)The on-shell renormalization ondition for the eletri harge requires that all orretionsto the  �ff vertex should vanish for the on-shell external partiles in the Thomson limit(p = p0), �u(p)�̂ �ff� (p; p)u(p)���p2=m2f = �ieQf �u(p)�u(p)=) �u(p)�� �ff� (p; p) + Æ� �ff� � u(p) = 0 : (3.34)The eletri harge is renormalized viae �! (1 + ÆZe)e : (3.35)Together with the fermion �eld (3.20) and photon �eld transformation (3.27d) one obtainsthe ounterterm for the  �ff vertex,Æ� �ff� = �Qf��ÆZe + 12ÆZAA + ÆZf;L!L + ÆZf;R!R�+ �(vf � af5)12ÆZZA ; (3.36)



3.4. RENORMALIZATION OF THE SM-LIKE SECTOR 37where vf and af are the vetor and axial vetor oupling of the Z boson to the fermion f .Inserting the Ward-identity�u(p)� �ff� (p; p)u(p) = �Qf �u(p)h ��p��ff (p)iu(p)� 2af �u(p)�!Lu(p)�AZT (0)m2Z ;(3.37)where �u(p)h ��p��ff (p)iu(p) = ��u(p)� �ÆZf;L!L + ÆZf;R!R�u(p) ; (3.38)into the harge renormalization ondition (3.34), we an �x the harge renormalizationonstant ÆZe. Its expliit expression isÆZe = �12ÆZAA � 12 sWW ÆZZA ; (3.39)where we have used the relation vf � af = � sWWQf .The fermion-loop ontributions to the photon �eld renormalization onstant ÆZAA in(3.39) give rise to large logarithm lnmf (f denotes the light fermion). The �ne strutureonstant � = e24� and the Fermi onstant G� have the relation as� = m2W s2W� p2G�1 + �r ; (3.40)where �r summarizes all the radiative orretions to the muon deay [11, 45, 46, 47℄. Onetherefore an parameterize the Born matrix element by G�, i.e.e = 2mWsW  p2G�1 + �r! 12 : (3.41)Combine the harge renormalization onstant (3.39) and the �r ontributions in (3.41),one obtainsÆ ~Ze = ÆZe � 12�r= 12 2Ws2W (Æm2Zm2Z � Æm2Wm2W )� 12 �WT (0)� Æm2Wm2W � 1sW W �AZT (0)m2Z ; (3.42)where the large logarithm lnmf disappears.



38 CHAPTER 3. RENORMALIZATION OF THE MSSM3.5 Renormalization of the Chargino and NeutralinoSetorRenormalization of the Chargino SetorThe kineti and mass terms of the hargino Lagrangian in terms of the four-omponenthargino spinors ~�+i an be written asL = ~�+i �6pÆij � !L (MD~�+)ij � !R (MD~�+)>ij�~�+j ; (3.43)where MD~�+ = UXV > is the diagonalized mass matrix of the harginos. In order to renor-malize the hargino setor, we introdue the ounterterm for the hargino mass matrixX, X �! X + ÆX ; (3.44)ÆX = � ÆM2 p2 Æ�mW sin��p2 Æ�mW os �� Æ� � ; (3.45)in whih the ounterterms ÆM2 and Æ� are determined in the hargino setor renormal-ization. The ounterterm for the W boson mass has been determined in (3.30a) and therenormalization of tan � will be disussed in Setion 3.7.The hargino �elds are renormalized via the transformations!L ~�+i �! �Æij + 12 �ÆZL�ij�!L ~�+j ;!R ~�+i �! �Æij + 12 �ÆZR��ij�!R ~�+j ; (3.46)where the �eld renormalization onstants ÆZL, ÆZR are general 2� 2-matries. Applyingthe transformations (3.46) and (3.44) to the Lagrangian (3.43), one gets the ountertermLagrangian �L = ~�+i 6p�12 �ÆZL + ÆZLy�ij !L + 12 �ÆZR� + ÆZR>�ij !R�~�+j� ~�+i ��UÆXV > + 12ÆZR>MD~�+ + 12MD~�+ÆZL�ij!L�(UÆXV >)> + 12MD~�+>ÆZR� + 12ÆZLyMD~�+>�ij!R�~�+j : (3.47)
Aording to (3.10) and (3.22), the renormalized self-energies �̂ij(p) for the harginos an



3.5. RENORMALIZATION OF THE CHARGINO AND NEUTRALINO SECTOR 39be written as�̂Lij(p2) = �Lij(p2) + 12 �ÆZL + ÆZLy�ij ;�̂Rij(p2) = �Rij(p2) + 12 �ÆZR� + ÆZR>�ij ;�̂SLij (p2) = �SLij (p2)� �UÆXV > + 12ÆZR>MD~�+ + 12MD~�+ÆZL�ij ;�̂SRij (p2) = �SRij (p2)� �(UÆXV >)> + 12MD~�+>ÆZR� + 12ÆZLyMD~�+>�ij : (3.48)The ounterterms ÆM2 and Æ� are determined by renormalizing the two harginos viathe on-shell renormalization sheme. Aording to the on-shell renormalization onditionsfor the fermions in Setion 3.3.2, we obtain the on-shell renormalization onditions for theharginos, m~�+j ~Re�̂Lij(m2~�+j ) + ~Re�̂SRij (m2~�+j ) = 0 ; (3.49a)m~�+j ~Re�̂Rij(m2~�+j ) + ~Re�̂SLij (m2~�+j ) = 0 ; (3.49b)~Re�̂Lii(m2~�+i ) +m2~�+i � ~Re�̂L0ii (m2~�+i ) + ~Re�̂R0ii (m2~�+i )�+2m~�+i ~Re�̂SL0ii (m2~�+i ) = 0 ; (3.49)~Re�̂Rii(m2~�+i ) +m2~�+i � ~Re�̂L0ii (m2~�+i ) + ~Re�̂R0ii (m2~�+i )�+2m~�+i ~Re�̂SL0ii (m2~�+i ) = 0 : (3.49d)(3.49) and (3.49d), whih make the renormalized hargino propagators have the residues1, �x the diagonal entries of the hargino �eld renormalization matries,ÆZLii = � ~Re�Lii(m2~�+i )� 2m~�+i ~Re�SL0ii (m2~�+i )�m2~�+i � ~Re�L0ii (m2~�+i ) + ~Re�R0ii (m2~�+i )� ; (3.50)ÆZRii = � ~Re�Rii(m2~�+i )� 2m~�+i ~Re�SL0ii (m2~�+i )�m2~�+i � ~Re�L0ii (m2~�+i ) + ~Re�R0ii (m2~�+i )� : (3.51)The diagonal equations of (3.49a) and (3.49b), whih ensure that the renormalizedhargino masses are the poles of the orresponding propagators, determine the ounterterms



40 CHAPTER 3. RENORMALIZATION OF THE MSSMÆM2 and Æ�,ÆM2 = hU22V22�m~�+1 � ~Re�L11(m2~�+1 ) + ~Re�R11(m2~�+1 )�+ 2 ~Re�SL11 (m2~�+1 )�� U12V12�m~�+2 � ~Re�L22(m2~�+2 ) + ~Re�R22(m2~�+2 )�+ 2 ~Re�SL22 (m2~�+2 )�+ 2 �U12U21 � U11U22�V12V22 Æ(p2mW sin �)+ 2U12U22�V12V21 � V11V22� Æ(p2mW os �)i=� ; (3.52)Æ� = hU11V11�m~�+2 � ~Re�L22(m2~�+2 ) + ~Re�R22(m2~�+2 )�+ 2 ~Re�SL22 (m2~�+2 )�� U21V21�m~�+1 � ~Re�L11(m2~�+1 ) + ~Re�R11(m2~�+1 )�+ 2 ~Re�SL11 (m2~�+1 )�+ 2U11U21�V12V21 � V11V22� Æ(p2mW sin�)+ 2 �U12U21 � U11U22�V11V21 Æ(p2mW os �)i=� ; (3.53)with � = 2(U11U22V11V22�U12U21V12V21). In ontrast their non-diagonal equations, whihmake the renormalized hargino 1PI two-point funtions diagonal for on-shell externalpartiles, determine the non-diagonal entries of the hargino �eld renormalization matries,ÆZLij = 2m2~�+i �m2~�+j hm2~�+j ~Re�Lij(m2~�+j ) +m~�+i m~�+j ~Re�Rij(m2~�+j ) +m~�+i ~Re�SLij (m2~�+j )+m~�+j ~Re�SRij (m2~�+j )�m~�+i (UÆXV >)ij �m~�+j (UÆXV >)jii ;ÆZRij = 2m2~�+i �m2~�+j hm2~�+j ~Re�Rij(m2~�+j ) +m~�+i m~�+j ~Re�Lij(m2~�+j ) +m~�+j ~Re�SLij (m2~�+j )+m~�+i ~Re�SRij (m2~�+j )�m~�+j (UÆXV >)ij �m~�+i (UÆXV >)jii : (3.54)



3.5. RENORMALIZATION OF THE CHARGINO AND NEUTRALINO SECTOR 41Renormalization of the Neutralino SetorIn terms of the neutralino Majorana spinors the Lagrangian whih desribes the kinematiand mass terms of the neutralinos an be written asL = 12 ~�0i �6p Æij � �N� Y N y�ij !L � �N Y yN>�ij !R� ~�0j : (3.55)In analogy to the hargino ase, we introdue the ounterterm for the neutralino massmatrix Y and the �eld renormalization onstants for the neutralino �elds by the transfor-mations Y ! Y + ÆY ; (3.56)!L ~�0i = �Æij + 12 �ÆZ0�ij�!L ~�0j ;!R ~�0i = �Æij + 12 �ÆZ0��ij�!R ~�0j ; (3.57)where the �eld renormalization onstant ÆZ0 is a general omplex 4� 4-matrix. One doesnot need to renormalize the left and right omponents of neutralinos independently due tothe de�nition of their Majorana spinors in (2.113). The elements of the matrix ÆY are theounterterms for the parameters in the mass matrix (2.110),ÆY = 0BB� ÆM1 0 �Æ (mZ sW os �) Æ (mZ sW sin�)0 ÆM2 Æ (mZ W os �) �Æ (mZ W sin�)�Æ (mZ sW os�) Æ (mZ W os �) 0 �Æ�Æ (mZ sW sin�) �Æ (mZ W sin�) �Æ� 0 1CCA :(3.58)Applying the transformations (3.56, 3.57) to the Lagrangian(3.55), one arrives at theounterterm LagrangianLCT = 12 ~�0i 6p h12 �ÆZ0� + ÆZ0>�ij !R + 12 �ÆZ0 + ÆZ0y�ij !Li ~�0j� 12 ~�0i h N�ÆY N y + ÆZ0>MD~�0 +MD~�0ÆZ02 !ij !L+  NÆY yN> + MD~�0ÆZ0� + ÆZ0yMD~�02 !ij !Ri ~�0j ; (3.59)



42 CHAPTER 3. RENORMALIZATION OF THE MSSMhere MD~�0 is the diagonalized neutralino mass matrix whih has been de�ned in (2.111).Similarly to the hargino ase, the renormalized neutalino self-energies an be written as�̂Rij(p2) = �Rij(p2) + 12 �ÆZ0� + ÆZ0>�ij�̂Lij(p2) = �Lij(p2) + 12 �ÆZ0 + ÆZ0y�ij�̂SRij (p2) = �SRij (p2)� NÆY yN> + MD~�0ÆZ0� + ÆZ0yMD~�02 !ij�̂SLij (p2) = �SLij (p2)� N�ÆY N y + ÆZ0>MD~�0 +MD~�0ÆZ02 !ij : (3.60)Obviously they obey the relations�̂Lij(p2) = �̂Rji(p2) ; �̂SRij (p2) = �̂SRji (p2) ; �̂SLij (p2) = �̂SLji (p2) ; �̂SLij (p2) = �̂SRij (p2)y :(3.61)Only the ounterterm for the parameter M1 in the hargino/neutralino setor is notdetermined so far. We an �x it by renormalizing one of the four neutralinos via theon-shell renormalization sheme. Conventionally, the lightest neutralino ~�01 is hosen forthis task. From the previous disussions, the on-shell renormalization onditions for theneutralino setor an be expressed as follows,m~�0j ~Re�̂Lij(m2~�0j ) + ~Re�̂SRij (m2~�0j ) = 0 ; (3.62a)m~�0j ~Re�̂Rij(m2~�0j ) + ~Re�̂SLij (m2~�0j ) = 0 ; (3.62b)for (i 6= j) _ (i = j = 1)~Re�̂Lii(m2~�0i ) + 2m2~�0i ~Re�̂Lii0(m2~�0i ) + 2m~�0i ~Re�̂SLii 0(m2~�0i ) = 0 : (3.62)The diagonal equations (i = j = 1) of (3.62a) and (3.62b), whih ensure that the renor-malized lightest neutralino mass is the pole of the orresponding propagator, determinethe ounterterm ÆM1. In ontrast their non-diagonal equations, whih �x the non-diagonalentries of the neutralino �eld renormalization matrix, make the renormalized neutralino1PI two-point funtion diagonal when the external partiles are on their mass shell. Thediagonal entries of the neutralino �eld renormalization matrix are determined by (3.62),whih make the renormalized neutralino propagators have the residues 1.Inserting the renormalized neutralino self-energies (3.60) into the on-shell renormaliza-tion onditions, one obtains the expressions for the renormalization onstants ÆM1, ÆZ0iiand ÆZ0ij whih are as follows,ÆM1 = 1N211 h2N11�N13 Æ(mZ sin �W os �)�N14 Æ(mZ sin �W sin�)��2N12�N13 Æ(mZ os �W os �)�N14 Æ(mZ os �W sin�)��N212 ÆM2+2N13N14 Æ�+m~�01 ~Re�L11(m2~�01) + ~Re�SR11 (m2~�01)i ; (3.63a)



3.6. RENORMALIZATION OF THE SFERMION SECTOR 43ÆZ0ii = � ~Re�Lii(m2~�0i )� 2m~�0i �m~�0i ~Re�L0ii (m2~�0i ) + ~Re�SL0ii (m2~�0i )� ; (3.63b)ÆZ0ij = 2m2~�0i �m2~�0j �m2~�0j ~Re�Lij(m2~�0j ) +m~�0im~�0j ~Re�Rij(m2~�0j ) +m~�0i ~Re�SLij (m2~�0j )+m~�0j ~Re�SRij (m2~�0j )�m~�0j (NÆY N>)ij �m~�0i (N�ÆY N y)ij� : (3.63)3.6 Renormalization of the Sfermion SetorThe kineti and mass terms of the sfermion Lagrangian areL = � ~f y1 ~f y2 � �p2 �MD~f �� ~f1~f2 �+ ~�yl (p2 �M~�l)~�l ; (3.64)where MD~f = U ~fM ~fU y~f is the diagonalized sfermion mass matrix. At one-loop level, theounterterms for the sfermion mass matries M ~f and M~�l are introdued viaM ~f !M ~f + ÆM ~f ; M~�l !M~�l + ÆM~�l : (3.65)The elements of the matrix ÆM ~f and ÆM~�l are the ounterterms for the parameters in themass matries(2.93), (2.94), respetively,ÆM ~f =  ÆM2~fL + ÆC ~f11 mfÆAf + ÆC ~f12mfÆAf + ÆC ~f12 ÆM2~fR + ÆC ~f22 ! ; (3.66a)ÆM~�l = ÆM2~lL + Æ�12m2Z os 2�� ; (3.66b)where ÆC ~f11 = Æ �m2f +m2Z os 2�(T 3f �Qfs2W )� ;ÆC ~f12 = AfÆmf � Æ (mf��) ;ÆC ~f22 = Æ �m2f +m2Z os 2�Qfs2W� : (3.67)In order to get �nite Green funtions, the �eld renormalization onstants are introduedvia the transformations � ~f1~f2 � ! �1 + 12ÆZ ~f�� ~f1~f2 � ; (3.68a)~�l ! �1 + 12ÆZ ~�l� ~�l : (3.68b)



44 CHAPTER 3. RENORMALIZATION OF THE MSSMThe �eld renormalization onstants Æ ~Z ~f are general 2 � 2 matries. Inserting (3.65) and(3.68) into the Lagrangian (3.64), one obtains the ounterterm LagrangianLCT = � ~f y1 ~f y2 � 12p2 �ÆZy~f + ÆZ ~f�� ~f1~f2 �� � ~f y1 ~f y2 � "12 �ÆZy~fMD~f +MD~f ÆZ ~f� + U ~fÆM ~fU y~f#� ~f1~f2 �+ ~�yl "12 �p2 �M~�l� �ÆZy~�l + ÆZ ~�l�� ÆM ~�l#~�l : (3.69)Hene the renormalized self-energies for the sfermions are�̂ ~fij (p2) = � ~fij (p2) + 12p2 �ÆZy~f + ÆZ ~f�ij � 12 �ÆZy~fMD~f +MD~f ÆZ ~f�ij� �U ~fÆM ~fU y~f�ij ; (3.70)�̂ ~�l(p2) = � ~�l(p2) + 12 �p2 �M~�l� �ÆZy~�l + ÆZ ~�l�� ÆM ~�l : (3.71)For onveniene we de�neÆm2~fi = �U ~fÆM ~fU y~f�ii ; Æm ~f12 = �U ~fÆM ~fU y~f�12 : (3.72)The independent parameters in the sfermion setor are the soft-SUSY breaking parametersM2~fL , M2~fR, and Af . Their ounterterms are determined in the sfermion setor. Here wetreat squarks and sleptons separately.3.6.1 Renormalization Constants for the SquarksThere are �ve independent parameters: M2~QL, M2~uR , M2~dR , Au and Ad in every generationof squarks. In order to �x their ounterterms, one an renormalize two up- and one of thedown-type squarks via the on-shell renormalization sheme. Here we hoose the lighterdown-type squark ~d1. The on-shell renormalization onditions an be written as follows,~Re�̂~uii(m2~ui) = 0 ; ~Re�̂ ~d11(m2~d1) = 0 ;~Re�̂ ~f12(m2~f1) = 0 ; ~Re�̂ ~f12(m2~f2) = 0 ; ~Re�̂0~fii(m2~fi) = 0 ; (3.73)where i = 1; 2 is the index of the squarks. f an be an up- or a down-quark. Inserting therenormalized self-energy (3.70) into the on-shell onditions above, and hoosingÆZ ~f12 = ÆZ ~f21 ; (3.74)



3.6. RENORMALIZATION OF THE SFERMION SECTOR 45one gets the ounterterms of the mass matries and �elds for the squarks. They an bewritten as Æm2~ui = ~Re�~uii(m2~ui) ; (3.75a)Æm2~d1 = ~Re� ~d11(m2~d1) ; (3.75b)Æm ~f12 = ~Re� ~f12(m2~f1) + ~Re� ~f12(m2~f2)2 ; (3.75)ÆZ ~f12 = � ~Re� ~f12(m2~f1)� ~Re� ~f12(m2~f2)m2~f1 �m2~f2 ; (3.75d)ÆZ ~fii = � ~Re�0~fii(m2~fi) : (3.75e)The ounterterms ÆM2~QL, ÆM2~uR , ÆAu are formulated from (3.75a) and (3.75) (f = u),whih an be expressed asÆM2~QL = U2~u11Æm2~u1 + U2~u12Æm2~u2 � 2U~u12U~u22Æm~u12 � ÆC~u11 ; (3.76a)ÆM2~uR = U2~u12Æm2~u1 + U2~u11Æm2~u2 + 2U~u12U~u22Æm~u12 � ÆC~u22 ; (3.76b)ÆAu = 1mu hU~u11U~u12�Æm2~u1 � Æm2~u2�+ (U~u11U~u22 + U~u12U~u21)Æm~u12 � ÆC~u12i : (3.76)The other ountertems are derived from (3.75b) and (3.75) (f = d). Their expressions areÆM2~dR = U2~d12 � U2~d11U2~d12 Æm2~d1 + 2U ~d11U ~d12U2~d12 Æm ~d12 + U2~d11U2~u11U2~d12 Æm2~u1 (3.77a)+ U2~d11U2~u12U2~d12 Æm2~u2 � 2U2~d11U~u12U~u22U2~d12 Æm~u12 � ÆC ~d22 + U2~d11U2~d12 (ÆC ~d11 � ÆC~u11) ;ÆAd = 1md hU ~d22U ~d12 Æm2~d1 + U ~d21U ~d12 Æm ~d12 � U ~d11U2~u11U ~d12 Æm2~u1 (3.77b)� U ~d11U2~u12U ~d12 Æm2~u2 + 2U ~d11U~u12U~u22U ~d12 Æm~u12 � ÆC ~d12 � U ~d11U ~d12 (ÆC ~d11 � ÆC~u11)i :The ounterterm Æm2~d2 an be expressed by the ounterterms of the soft-breaking para-meters, Æm2~d2 = U2~d21ÆM2~QL + 2U ~d21U ~d22mdÆAd + U2~d22ÆM2~dR+ U2~d21ÆC ~d11 + 2U ~d21U ~d22ÆC ~d12 + U2~d22ÆC ~d22 : (3.78)



46 CHAPTER 3. RENORMALIZATION OF THE MSSM3.6.2 Renormalization Constants for the SleptonsThe independent parameters in eah generation of the sleptons areM2~lL ,M2~lR , and Al. Theirounterterms are determined by renormalizing the two harged sleptons in the on-shellrenormalization sheme. From the previous disussion, one gets the on-shell renormaliza-tion onditions for the slepton setor,~Re�̂~lii(m2~li) = 0 ; ~Re�̂~l12(m2~l1) = 0 ; ~Re�̂~l12(m2~l2) = 0 ;~Re�̂0~lii(m2~li) = 0 ; ~Re�̂0~�l(m2~�l) = 0 : (3.79)Similar to the squark renormalization, the ounterterms and the �eld renormalization on-stants are obtained by solving the equations (3.79),Æm2~li = ~Re�~lii(m2~li) ; (3.80a)Æm2~l12 = ~Re�~l12(m2~l1) + ~Re�~l12(m2~l2)2 ; (3.80b)ÆZ~lii = � ~Re�0~lii(m2~li) ; (3.80)ÆZ~l12 = � ~Re�~l12(m2~l1)� ~Re�~l12(m2~l2)m2~l1 �m2~l2 ; (3.80d)ÆZ ~�l = � ~Re�0~�l(m2~�l) : (3.80e)From(3.80a) and (3.80b), one �nds the expressions for the ounterterms ÆM2~lL; ÆM2~lR andÆAl, ÆM2~lL = U2~l11Æm2~l1 + U2~l12Æm2~l2 � 2U~l12U~l22Æm~l12 � ÆC~l11 ; (3.81a)ÆM2~lR = U2~l12Æm2~l1 + U2~l11Æm2~l2 + 2U~l12U~l22Æm~l12 � ÆC~l22 ; (3.81b)ÆAl = 1ml hU~u11U~l12�Æm2~l1 � Æm2~l2�+ (U~l11U~l22 + U~l12U~l21)Æm~l12 � ÆC~l12i : (3.81)The ounterterm for the sneutrino mass M�l is not independent. It an be expressed byÆM2~lL as in (3.66b).



3.7. RENORMALIZATION OF THE HIGGS SECTOR 473.7 Renormalization of the Higgs setorIn the CP-onserving MSSM the bilinear terms of the Lagrangian whih desribe the MSSMHiggs setor an be written asL = � hy1 hy2 � �p2 �MDh �� h1h2 � ; (3.82)where the Higgs multiplet � h1 h2 � an be � A0 G0 � ; � h0 H0 � or � H� G� �.MDh is the mass matrix of the Higgs bosons, MDh = U�M�0U y�, U�M�0U y� or U�M��U y�,respetively. Their de�nitions and expressions an be found in (2.65) and (2.73).In order to renormalize the Higgs setor we introdue the renormalization onstants fortheir mass matries and �elds by the transformationsM�0 !M�0 + ÆM�0 ; M�0 !M�0 + ÆM�0 ;M�� !M�� + ÆM�� ; � h1h2 � �! �1 + 12ÆZh�� h1h2 � ; (3.83)where ÆZh is a general 2� 2 matrix. Inserting these transformations into the Lagrangian(3.82), one an get the ounterterm LagrangianÆL = � hy1 hy2 � h12p2 �ÆZh + ÆZyh�� 12 �MDh ÆZh + ÆZyhMDh �� ÆMDh i� h1h2 � : (3.84)The renormalized self-energies for the Higgs bosons an be derived from the ountertermLagrangian:�̂ij(p2) = �ij(p2) + h12p2 �ÆZ + ÆZy�� 12 �MDh ÆZh + ÆZyhMDh �� ÆMDh iij : (3.85)The independent parameters in the Higgs setor are hosen to be the tadpoles Th0 ; TH0 ,the mass m2A0 , and the ratio of the vauum expetation values tan �. Their ountertermsare �xed in the Higgs setor.



48 CHAPTER 3. RENORMALIZATION OF THE MSSM3.7.1 Counterterms for the TadpolesThe tadpoles Th0 and TH0 are equal to zero at tree-level. Their ounterterms an be �xedby requiring that the renormalized tadpoles, whih are de�ned as the unrenormalized onesplus the ounterterms, are equal to zero at one-loop order as well,~ReT̂h0 = ~ReTh0 + ÆTh0 = 0 ; (3.86)~ReT̂H0 = ~ReTH0 + ÆTH0 = 0 : (3.87)Hene the ounterterms for the Tadpoles an be expressed asÆTh = � ~ReTh0 ; ÆTH = � ~ReTH0 : (3.88)3.7.2 Counterterm for tan�Sine tan � is the ratio of the vauum expetation values, tan � = v2v1 , we introdue therenormalization onstants for the vauum expetation values v1 and v2,v1 ! �1 + 12ÆZH1� (v1 + Æv1) ;v2 ! �1 + 12ÆZH2� (v2 + Æv2) : (3.89)ÆZH1 and ÆZH2 are the �eld renormalization onstants for the Higgs doublets H1 and H2,respetively. v2v1 ! �1 + 12ÆZH2� (v2 + Æv2)�1 + 12ÆZH1� (v1 + Æv1) one-loop= v2v1 1 + 12ÆZH2 + Æv2v21 + 12ÆZH1 + Æv1v1� v2v1 �1 + 12ÆZH2 + Æv2v2 ��1� 12ÆZH1 � Æv1v1 �= v2v1 �1 + 12ÆZH2 � 12ÆZH1� ; (3.90)where we take Æv2v2 � Æv1v1 = 0. The transformation (3.90) an also be expressed as,Æ tan� = tan � ÆZH2 � ÆZH12 : (3.91)The Lagrangian of the oupling of the neutral Higgs boson to Z boson isL�Z = imZ (p��1Z� os � + p��2Z� sin �) ; (3.92)After renormalization, its ounterterm Lagrangian an be written asL�ZCT = LA0ZCT + LG0ZCT ;LA0ZCT = �imZp�A0Z� sin� os � (ÆZH2 � ÆZH1) ;LG0ZCT = imZp�G0Z� ÆZG0G0 + ÆZZZ2 + iÆmZp�G0Z� : (3.93)



3.7. RENORMALIZATION OF THE HIGGS SECTOR 49Hene the renormalized self-energies are expressed as�̂A0Z(p2) = �A0Z(p2)� imZ sin� os � (ÆZH2 � ÆZH1) ;�̂G0Z(p2) = �G0Z(p2) + i�mZ ÆZG0G0 + ÆZZZ2 + ÆmZ� : (3.94)Aording to [39℄ one an determine Æ tan� by the requirement that the A0 � Z mixingvanishes for an on-shell A0 boson,~Re�̂A0Z(m2A0) = 0 ) Æ tan �OStan � = 12mZ sin� os � Im h ~Re�AZ(m2A)i : (3.95)A onvenient hoie is the DR renormalization of tan � [40℄, whih means that the oun-terterm only ontains the UV-divergent parts,Æ tan �DRtan� = 12mZ sin� os � �Im�A0Z(m2A)�div : (3.96)Here the subsript "div' means that only the UV-divergent parts are onsidered. Sinethis hoie has the advantage of providing the gauge invariant and proess independentounterterms, it has been assessed to be the best hoie of de�ning tan � [48℄.3.7.3 Renormalization Constants for the Neutral CP-odd HiggsBosonsThe renormalized self-energies for the CP-odd Higgs bosons an be expressed as�̂A0A0(p2) = �A0A0(p2) + �p2 �m2A0� ÆZA0A0 � Æm2A0 ; (3.97a)�̂G0G0(p2) = �G0G0(p2) + �p2 �m2G0� ÆZG0G0 � Æm2G0 ; (3.97b)�̂A0G0(p2) = �A0G0(p2) + 12p2 (ÆZA0G0 + ÆZG0A0)� 12m2A0ÆZA0G0 � 12m2G0ÆZG0A0 � Æm2A0G0 : (3.97)From (2.73d) and (2.73e), one gets the expliit expressions for the ounterterms Æm2A0G0and Æm2G0 , Æm2A0G0 = � e2mZsW W (ÆTH0 sin(�� �) + ÆTh0 os(�� �)) ; (3.98a)Æm2G0 = e2mZsW W (�ÆTH0 os(�� �) + ÆTh0 sin(�� �)) ; (3.98b)whih are dependent on the ounterterms ÆTh0 and ÆTH0 .The ounterterm for m2A0 is determined by renormalizing the neutral CP-odd Higgsboson A0 via the on-shell renormalization sheme,~Re�̂A0A0(m2A0) = 0 ; (3.99)



50 CHAPTER 3. RENORMALIZATION OF THE MSSMwhih makes the renormalized mass equals to the pole of the propagator. The diagonal en-tries of the �eld renormalization matrix are �xed suh that the residues of the renormalizedpropagators are equal to 1,~Re�̂0A0A0(m2A0) = 0 ; ~Re�̂0G0G0(m2G0) = 0 : (3.100)The on-shell renormalization sheme also requires that the renormalized 1PI two-pointfuntion for the CP-odd Higgs boson is diagonal for the external on-shell partiles, whihdetermine the non-diagonal entries of the �eld renormalization matrix,~Re�̂A0G0(m2A0) = 0 ; ~Re�̂A0G0(m2G0) = 0 : (3.101)Inserting the expressions for the renormalized self-energies (3.97) into the on-shell renor-malization onditions above, we obtain the expressions for the renormalization onstants,Æm2A0 = ~Re�A0A0(m2A0) ; (3.102a)ÆZA0A0 = � ~Re�0A0A0(m2A0) ; (3.102b)ÆZG0G0 = � ~Re�0G0G0(m2G0) ; (3.102)ÆZG0A0 = 2�� ~Re�A0G0(m2A0) + Æm2A0G0�m2A0 �m2G0 ; (3.102d)ÆZA0G0 = 2�� ~Re�A0G0(m2G0) + Æm2A0G0�m2G0 �m2A0 : (3.102e)
3.7.4 Renormalization Constants for the Neutral CP-even HiggsBosonsThe renormalized self-energies for the CP-even Higgs bosons an be expressed as�̂h0h0(p2) = �h0h0(p2) + �p2 �m2h0� ÆZh0h0 � Æm2h0 ;�̂H0H0(p2) = �H0H0(p2) + �p2 �m2H0� ÆZH0H0 � Æm2H0 ;�̂h0H0(p2) = �h0H0(p2) + 12p2 (ÆZh0H0 + ÆZH0h0)�12 �m2h0ÆZh0H0 +m2H0ÆZH0h0�� Æm2h0H0 : (3.103)



3.7. RENORMALIZATION OF THE HIGGS SECTOR 51From (2.73a), (2.73b) and (2.73) one derives the expressions for the ounterterms Æm2h0 ,Æm2H0 and Æm2h0H0 ,Æm2h0 = Æm2A0 os2(�� �) + Æm2Z sin2(� + �) +e2mZsW W ÆTH0 os(�� �) sin2(�� �) +e2mZsW W ÆTh0 sin(�� �)(1 + os2(�� �)) +Æ tan� os2 � �m2A0 sin 2(�� �) +m2Z sin 2(�+ �)� ; (3.104a)Æm2H0 = Æm2A0 sin2(�� �) + Æm2Z os2(� + �)�e2mZsW W ÆTH0 os(�� �) �1 + sin2(�� �)��e2mZsW W ÆTh0 sin(�� �) os2(�� �)�Æ tan� os2 � �m2A0 sin 2(�� �) +m2Z sin 2(�+ �)� ; (3.104b)Æm2h0H0 = 12 �Æm2A0 sin 2(�� �)� Æm2Z sin 2(� + �)�+e2mZsW W �ÆTH0 sin3(�� �)� ÆTh0 os3(�� �)��Æ tan� os2 � �m2A0 os 2(�� �) +m2Z os 2(� + �)� ; (3.104)where all the ounterterms appearing on right-hand side are already determined. Henein the neutral CP-even Higgs setor, only the �eld renormalization onstants are to be�xed. Similarly to ase of the neutral CP-odd Higgs boson, the on-shell renormalizationonditions for the CP-even Higgs setor an be formulated as~Re�̂0h0h0(m2h0) = 0 ; ~Re�̂0H0H0(m2H0) = 0 ;~Re�̂h0H0(m2h0) = 0 ; ~Re�̂h0H0(m2H0) = 0 : (3.105)Applying the expressions for the renormalized self-energies (3.103) to the on-shell ondi-tions above, one obtains the �eld renormalization onstants,ÆZh0h0 = � ~Re�0h0h0(m2h0) ; ÆZH0H0 = � ~Re�0H0H0(m2H0) ;ÆZH0h0 = 2� ~Re�h0H0(m2h0) + Æm2h0H0m2h0 �m2H0 ;Æ ~Zh0H0 = 2� ~Re�h0H0(m2H0) + Æm2h0H0m2H0 �m2h0 : (3.106)



52 CHAPTER 3. RENORMALIZATION OF THE MSSM3.7.5 Renormalization Constants for the Charged Higgs BosonsThe renormalized self-energies for the harged Higgs bosons an be expressed as�̂H�H+(p2) = �H�H+(p2) + �p2 �m2H�� ÆZH�H+ � Æm2H� ; (3.107a)�̂G�G+(p2) = �G�G+(p2) + �p2 �m2G�� ÆZG�G+ � Æm2G� ; (3.107b)�̂H�G+(p2) = �H�G+(p2) + 12p2 (ÆZH�G+ + ÆZH�G+)� 12m2H�ÆZH�G+ � 12m2G+ÆZG+H� � Æm2H�G+ : (3.107)From (2.73f) one gets the expliit expressions for the ounterterms Æm2H�, Æm2H�G+ andÆm2G� , Æm2H� = Æm2A0 + Æm2W ; (3.108a)Æm2H�G+ = � e2mZsW W (ÆTH0 sin(�� �) + ÆTh0 os(�� �))� Æ tan �m2H� os2 � ; (3.108b)Æm2G� = e2mZsW W (�ÆTh0 os(�� �) + ÆTh0 sin(�� �)) : (3.108)The �eld renormalization onstants are determined by the on-shell onditions,~Re�̂0H�H+(m2H�) = 0 =) ZH�H+ = � ~Re�0H�H+(m2H�) ; (3.109a)~Re�̂0G�G+(m2G�) = 0 =) ZG�G+ = � ~Re�0G�G+(m2G�) ; (3.109b)~Re�̂H�G+(m2H�) = 0 =) ÆZG+H� = 2� ~Re�H�G+(m2H�) + Æm2H�G+m2H� �m2G� ; (3.109)~Re�̂H�G+(m2G�) = 0 =) Æ ~ZH�G+ = 2� ~Re�H�G+(m2G�) + Æm2H�G+m2G� �m2H� : (3.109d)One an also �x the �eld renormalization onstants for the Higgs �elds via the DR sheme,where the ounterterms ontain only the UV-divergent parts,ÆZDR = �ÆZOS�div : (3.110)



Chapter 4Calulations for the Next-to-lightestNeutralino ~�02 DeayThe Minimal Supersymmetri Standard Model (MSSM) is the supersymmetri extensionof the Standard Model (SM) with the minimal partile ontent, the details have beenpresented in Chapter 2. In the MSSM with onserved R-parity, the lightest supersymmetripartile (LSP), whih in many senarios is the lightest neutralino ~�01, appears at the end ofthe deay hain of eah supersymmetri partile. The LSP esapes the detetor, giving theharateristi SUSY signature of missing energy. While this helps to suppress bakgroundsfrom SM proesses, it also makes the measurement of supersymmetri partile masses morediÆult.At the LHC, the total SUSY prodution-ross setion is expeted to be dominated bythe prodution of gluinos and squarks, whih deay into lighter harginos or neutralinos.Of partiular interest are deay hains leading to the next-to-lightest neutralino ~�02. ~�02 inturn an always deay into the LSP ~�01 and two fermions f �f , at least for light SM fermionsf . The leptoni �nal states are of partiular interest, sine they an be identi�ed relativelyeasily even at the LHC. Depending on neutralino, slepton and Higgs boson masses, thepossible leptoni deays of ~�02 are three-body deays ~�02 ! ~�01l�l+, asade two-body deays~�02 ! ~l�l� ! ~�01l�l+ and/or ~�02 ! ~�01Z(�0)! ~�01l�l+, where �0 stands for one of the threeneutral Higgs bosons or the neutral Goldstone boson of the MSSM. The dilepton invariant-mass distribution of these deays has a spei� shape with a sharp edge near the endpointwhih only depends on the kinematis. This distribution an be measured aurately atthe LHC. In partiular, its endpoint is used in several analyses that aim to reonstrut(di�erenes of) supersymmetri partile masses [4, 6℄. Under favorable irumstanes ithas been shown that the endpoint an be measured to an auray of 0:1% at the LHC [4℄.In order to math this auray in the theoretial predition, at least one-loop orretionsto ~�02 deays have to be inluded.Turning to the planned e+e� linear ollider ILC, ~�01 ~�02 prodution is often the �rstproess that is kinematially aessible [49℄ (other than ~�01 pair prodution, whih leads toan invisible �nal state). The detailed analysis of ~�02 deays an then yield information about53



54 CHAPTER 4. CALCULATIONS FOR ~�02 DECAY�~qs l+~�01q~�02 l�.Figure 4.1: The Feynman diagram for the squark deay ~qs ! q ~�02 ! q ~�01l�l+ at the LHC,s = 1; 2 labels the squark mass eigenstates.heavier supersymmetri partiles. Under favorable irumstanes, O(104) �02 ! �01l+l�deays may be observed at the ILC, again making the inlusion of quantum orretionsmandatory to math the experimental preision.In this hapter, we alulate leptoni ~�02 deays at one-loop level. Cases where ~�02 hastwo-body deays ~�02 ! ~l�1 l� ! ~�01l�l+ (~l1 stands for the lighter one of the two hargedsleptons) are treated both ompletely and in a single-pole approximation. In the ompletealulation one has to employ omplex slepton masses in the relevant propagators andone-loop integrals. The single-pole approximation in this ase is performed in the way thatthe ~�02 deays are treated as the prodution and deay of the sleptons ~l1. We ompare theresults from the omplete and approximate alulations and �nd a good agreement. We alsoanalyze a senario where ~�02 only has three-body deays. The virtual photoni ontributionsare infrared (IR) divergent, hene the ontributions of the real photon bremsstrahlung mustbe added to the one-loop orrretions in order to anel these IR divergenes. In additionto alulating the integrated partial widths, we study the di�erential deay width of ~�02 asa funtion of the dilepton invariant mass. In order to obtain the total deay width of ~�02and hene the branhing ratios of the leptoni deays, the invisible deays ~�02 ! ~�01�l��l andthe hadroni deays ~�02 ! ~�01q�q are also alulated.This hapter is organized as follows. Setion 4.1 gives the tree-level alulations for~�02 leptoni deays. In Setion 4.2 we disuss how to alulate these deays ompletely atone-loop level, where the virtual orretions and the real photon bremsstrahlung are on-sidered in detail. When the lighter sleptons ~l1 an be on shell, these deays are alulatedapproximately in Setion 4.3. The total deay width of ~�02 and the branhing ratios of theleptoni deays are disussed in Setion 4.4, where the invisible deays and the hadronideays are alulated. The numerial results and disussions are given in Setion 4.5, wherethe SPS1a parameter set [7, 8℄ is presented in detail.



4.1. TREE-LEVEL CALCULATIONS FOR ~�02 ! ~�01L�L+ 554.1 Tree-level Calulations for ~�02 ! ~�01l�l+The Born Feynman diagrams for ~�02(k1) �! ~�01(k2)l�(k3)l+(k4)(l = e; �; �) are displayedin Figure 4.2. The Mandelstam variables are de�ned asT = (k1 � k3)2 ; T12 = (k1 � k2)2 ; S23 = (k2 + k3)2 : (4.1)The deay width of this proess an be written as (see Appendix C.2)�(0) = 1(2�)5 12m~�02 Z X��M (0)��2d�1!3 ; (4.2)where M (0) is the matrix element of the Born diagrams, it is squared and averaged overthe spin of the external partiles. The expressions for the phase-spae element d�1!3 anbe found in Appendix C.2.If the two-body deays ~�02 ! ~l�1 l� ! ~�01l�l+ are kinematially allowed, i.e. the sleptons~l1 an be on shell at some points in the phase spae, a �nite width of ~l1 is neessary. Itarises from the imaginary part of the slepton self-energy. A �nite width is introdued viaDyson summationik2 �m2~l1 + ik2 �m2~l1 i�̂(k2) ik2 �m2~l1 + � � � = ik2 �m2~l1 + �̂(k2) ; (4.3)where �̂(k2) is the renormalized ~l1 self-energy. Following Ref.[53℄, a gauge invariant matrixelement is obtained by a Laurent expansion around the omplex pole:1k2 �m2~l1 + �̂(k2) = 1k2 �m2p  1� Re�̂(k2)k2 �m2~l1! ; (4.4)were m2p denotes the position of the omplex pole in (4.3). It is obtained as the solution ofm2p �m2~l1 + �̂(m2p) = 0 : (4.5)
~�02 l� ~�01l+~l+s ~�02 l+ ~�01l�~l�s ~�02 ~�01 l�l+Z ~�02 ~�01 ���+�0(a) (b) () (d)Figure 4.2: The Born Feynman diagrams for ~�02 �! ~�01l�l+(l = e; �; �), s = 1; 2 labels theslepton mass eigenstates, �0 denotes the MSSM neutral Higgs boson h0; H0; A0 and neutralGoldstone boson G0. Sine the Yukawa oupling �0l�l+ is proportional to the lepton mass,the Higgs intermediate states are negleted when l = e and �.



56 CHAPTER 4. CALCULATIONS FOR ~�02 DECAYFor the tree-level amplitude the omplex pole m2p is alulated at one-loop level. Itsexpliit expression is m2p = m2~l1 � im~l1�(0)~l1 ; (4.6)where we have employed on-shell renormalization sheme as in Setion 3.6.2, and �(0)~l1 isthe tree-level deay width of ~l1, m~l1�(0)~l1 is the imaginary part of the slepton self-energy�(m2~l1). Sine the seond term in the parentheses in (4.4) is at one-loop level, we do notneed it in the tree-level alulations. Therefore, the gauge-invariant tree-level amplitudefor the deays ~�02 ! ~�01l�l+ an be written asM (0) = V (0)~�02~l�1 l�(k2)V (0)~l�1 ~�01l�(k2)k2 �m2~l1 + im~l1�(0)~l1 +B(k2) ; (4.7)where V (0)~�02~l�1 l� and V (0)~l�1 ~�01l� represent the ~�02~l�1 l� and ~l�1 ~�01l� verties, respetively, B(k2)denotes the non-resonant part of the matrix element, i.e. the matrix element of the diagram(a) and (b) for s = 2 and diagram () and (d) in Figure 4.2.Using the residue theorem one an easily obtain the relation for an analyti funtionf(k2), Z 1�1 dk2 f(k2)���k2 �m2~l1 + i�(0)~l1 m~l1���2 ' �m~l1�(0)~l1 f(m2~l1) ; if �(0)~l1 � m~l1 : (4.8)This means that the funtion f(k2) in (4.8) will be dominated by the regions of k2 loseto m2~l1 if �(0)~l1 � m~l1 . The non-resonant part of the matrix element is muh smallerthan the resonant one (diagram (a) and (b) for s = 1 in Figure 4.2), hene it an benegleted approximately. Applying (4.7, 4.8) to (4.2), negleting the ontributions fromthe non-resonant diagrams, the deay width of ~�02 ! ~�01l�l+ an be written approximatelyas �(0)(~�02 ! ~�01l�l+) ' 1(2�)2 12m~�02 Z X��M (0)(~�02 ! ~l�1 l�)��2d�~�02!~l�1 l�� 1(2�)2 12m~l1�(0)~l1 Z X��M (0)(~l�1 ! ~�01l�)��2d�~l�1 !~�01l�= �(0)(~�02 ! ~l�1 l�)Br(0)(~l�1 ! ~�01l�) ; (4.9)where the branhing ratio of the deay ~l�1 ! ~�01l� is de�ned byBr(0)(~l�1 ! ~�01l�) = �(0)(~l�1 ! ~�01l�)�(0)~l1 : (4.10)Hene, when the lighter sleptons ~l1 an be on shell, we an ompute the relevant partialwidths in the single-pole approximation, where the deays ~�02 ! ~�01l�l+ are treated as theprodution and deay of the sleptons ~l1.



4.2. COMPLETE ONE-LOOP CALCULATION FOR ~�02 ! ~�01L�L+ 574.2 Complete One-loop Calulation for ~�02 ! ~�01l�l+4.2.1 Virtual CorretionsIn general the virtual one-loop orretions to three-body deays an be lassi�ed as vertexontributions, self-energy ontributions and box ontributions. The �rst two lasses areUV �nite after adding the ontributions from the ounterterms that originate from therenormalization of the MSSM, as disussed in Chapter 3. The box diagrams are by them-selves UV �nite. Di�erent types of diagrams and their ounterterm diagrams are shownin Figure (4.3). The MSSM Feynman rules, as well as the resulting ounterterms, are im-
. . . . . . . .

. . . . . .Figure 4.3: Classi�ation of the one-loop virtual diagramsplemented in the FeynArts pakage of omputer program [51℄, whih allows an automatedgeneration of the Feynman diagrams. The matrix element and the one-loop integrals arealulated with the help of the pakages FormCal and LoopTools [52℄, respetively. Thesquared matrix element at one-loop level an be written as��M (1)��2 = ��M (0) +Mvirt��2 ' ��M (0)��2 + 2Re�M (0)M yvirt� ; (4.11)whereMvirt is matrix element of the virtual one-loop diagrams for the proess ~�02 ! ~�01l�l+.The generi virtual one-loop diagrams are shown in Appendix D. Applying (4.11) to theexpressions for the width (4.2) one obtains�(1) = �(0) + �virt : (4.12)Similarly to the tree-level ase, diagrams with a slepton ~l1 propagator have singularitieswhen ~l1 an be on shell. The single-pole approximation an also be used at the one-looplevel, whih will be disussed in Setion 4.3. Here we fous on the omplete alulation.Following the strategy in Setion 4.1, one an obtain a gauge invariant matrix elementat one-loop level. In order to obtain O(�) auray near the ~l1 resonane, one needs toalulate the omplex pole m2p to two-loop level [53℄,m2p = m2~l1 � im~l1�(1)~l1 ; (4.13)



58 CHAPTER 4. CALCULATIONS FOR ~�02 DECAYwhere we have applied the on-shell renormalization sheme at two-loop level, and �(1)~l1denotes the one-loop-level width of ~l1. Then the gauge invariant matrix element at one-loop level an be written asM0 +Mvirt = A(k2)k2 �m2~l1 + im~l1�(1)~l1 + C(k2) ; (4.14)where C(k2) denotes the non-resonant part of the matrix element, the residue A(k2) anbe expressed asA(k2) = V (0)~�02~l�1 l�(k2)V (0)~l�1 ~�01l�(k2) 1� Re�̂(k2)k2 �m2~l1!+V (0)~�02~l�1 l�(k2)V̂ (1)~l�1 ~�01l�(k2) + V̂ (1)~�02~l�1 l�(k2)V (0)~l�1 ~�01l�(k2) ; (4.15)where V̂ (1)~�02~l�1 l� and V̂ (1)~l�1 ~�01l� represent the renormalized ~�02~l�1 l� and ~l�1 ~�01l� verties at one-looplevel, respetively.
. ~�02 l� l+ .~�01~l+s . ~�02 l� l+ .~�01~l+s . ~�02 l� l+.~�01~l+s(a1) (a2) (a3)
. ~�02 l+ l� .~�01~l�s . ~�02 l+ l� .~�01~l�s . ~�02 l+ l�.~�01~l�s(b1) (b2) (b3)
~�02 ~�01 l�

l+Z ~�02 ~�01 ��
�+�0() (d)Figure 4.4: Virtual photoni orretions in the omplete alulation, s = 1; 2 labels theslepton mass eigenstates, �0 denotes the neutral Higgs boson h0; H0; A0 and the neutralGoldstone boson G0.



4.2. COMPLETE ONE-LOOP CALCULATION FOR ~�02 ! ~�01L�L+ 59Moreover, the one-loop integrals in the diagrams shown in the �rst two lines of Figure 4.4also give singularities when the sleptons ~l1 are on shell. One should therefore use omplexslepton masses, 1k2 �m2~l1 �! 1k2 �m2~l1 + im~l1�(1)~l1 ; (4.16)in the one-loop integrals from these diagrams. The one-loop integrals with omplex massesan be alulated automatially by LoopTools. The analytial expressions for salar three-point and four-point funtions with real arguments an be found in Refs. [11, 54, 55, 56℄. Wegeneralized the salar four-point funtion to allow for omplex arguments. The salar three-point funtions from the diagrams (a1), (a2), (b1) and (b2) in Figure 4.4 are alulatedanalytially. The analytial results are presented in Appendix B.4.2.2 Analytial Results for Virtual Photoni Corretions (l = e; �)The virtual photoni diagrams are shown in Figure 4.4, where the diagrams (a3), (b3),() and (d) have the property that the virtual photons are attahed to external on-shellharged partiles. This results in IR divergenes, whih we regularized by introduinga �titious photon mass �. The IR divergenes anel after we add ontributions fromreal photon bremsstrahlung, whih will be disussed in Setion (4.2.3). The masses of thelight leptons, i.e. ml (l = e; �), are negleted exept when they appear in the one-loopintegrals. The virtual photoni orretions are alulated analytially, where the termswhih ontain the soft singularity ln�, the mass singularity lnml and the large logarithmln(m~l1=�~l1) (only exits when ~l1 an be on shell), are treated separately as the singular partof the virtual photoni orretions.The photoni orretions from the diagrams in the �rst two lines of Figure 4.4 (withtheir ounterterms) an be written asd�~ls;virt = ��Q2l �Ævirt;aX jM (0)a j2 + Ævirt;bX jM (0)b j2� d�1!3 ; (4.17)where M (0)a and M (0)b are the matrix element of the Born diagram (a) and (b) in Figure4.2, respetively, Ql denotes the lepton harge, Q2l = 1. The fator Ævirt;a an be expressedas Ævirt;a = m2�02T �m2�02 �B0(m2�02 ; m2l ; m2~ls)� B0(T; 0; m2~ls)�+m2�01T �m2�01 �B0(m2�01 ; m2l ; m2~ls)� B0(T; 0; m2~ls)�+2�B0(m2l ; m2l ; 0)� 12B0(T; 0; m2~ls)�� (m2�02 �m2~ls)Ca0 �(m2�01 �m2~ls)Cb0 � T12(T �m2~ls)D0 + 2 ÆZll ; (4.18)



60 CHAPTER 4. CALCULATIONS FOR ~�02 DECAYwhere Ca0 , Cb0 and D0 are salar three- and four-point funtions, ÆZll is the photoni partof the lepton �eld renormalization onstant ÆZ l;Lii or ÆZ l;Rii whih have been expressed in(3.25b) and (3.25), respetively. The general de�nitions of the salar one-loop integralsan be found in Appendix B. The arguments of Ca0 , Cb0 and D0 in (4.18) are expressed asfollows, Ca0 = C0(m2l ; m2�02 ; T; 0; m2l ; m2~ls) ;Cb0 = C0(m2l ; m2�01 ; T; 0; m2l ; m2~ls) ;D0 = D0(m2l ; m2�02 ; m2�01 ; m2l ; T; T12; 0; m2l ; m2~ls; m2l ) : (4.19)As disussed before, one should use omplex massesm2~ls ! m2~ls+im~ls�(1)~ls in the salar three-and four-point funtions shown in (4.19) when the slepton ~ls an be on shell. The salartwo-, three- and four-point funtions as well as the lepton �eld renormalization onstantin (4.18) are alulated in Appendix B, where the three- and four-point funtions withomplex arguments are also presented. One �nds that the expressions in (4.18) are UVdivergent. This indiates that the virtual photoni orretions are UV divergent. Addingthese UV-divergent part to the non-photoni virtual orretions, one obtains UV-�niteresults.The terms in (4.18) whih ontain the soft singularity ln�, the mass singularity lnmland the large logarithm ln(m~l1=�~ls) are treated separately as the singular part of Ævirt;a,whih an be expressed asÆsingvirt;a = � ln�m2lT12� ln� �2m2l �� 12 ln2�m2lT12�� 32 ln�m2lT12�� ln� �2m2l �+ln0�m2~ls � T � i�(1)~ls m~lsm2~ls 1A"ln m2�02 � TT12 !+ln T �m2�01T12 !+ ln m2�02 � TT !+ ln T �m2�01T !# ; (4.20)where the terms proportional to ln�(m2~ls � T � i�(1)~ls m~ls)=m2~ls� only exist when the slepton~ls an be on shell. The fator Ævirt;b in (4.17) is alulated in the same way as Ævirt;a. Itssingular part an be obtained by replaing T with S23 in (4.20),Æsingvirt;b = Æsingvirt;a���T! S23 : (4.21)The photoni virtual diagram () in Figure 4.4 is alulated and its ontribution anbe written as d�Z;virt = ��Q2l Ævirt; X jM (0) j2d�1!3 ; (4.22)



4.2. COMPLETE ONE-LOOP CALCULATION FOR ~�02 ! ~�01L�L+ 61where M (0) is the matrix element of the Born diagram () in Figure 4.2. The fator Ævirt;reads Ævirt; = �C0 T12 + 2B0(m2l ; 0; m2l )� 32B0(T12; m2l ; m2l ) + 2 ÆZll ; (4.23)where C0 is the salar three-point funtion C0 = C0 (m2l ; m2l ; T12; 0; m2l ; m2l ). The salartwo-point and three-point funtions as well as the lepton �eld renormalization onstant in(4.23) are alulated in Appendix B. One �nds that the fator Ævirt; is UV �nite. Thesingular part of Ævirt;, whih ontains the singularities ln� and lnml, areÆsingvirt; = � ln�m2lT12� ln� �2m2l �� 12 ln2�m2lT12�� 32 ln�m2lT12�� ln� �2m2l � : (4.24)Combining the expressions for the photoni virtual orretions (4.17), (4.20), (4.21),(4.22) and (4.24), the singular part of virtual photoni orretions (l = e; �) an be writtenas d�virt��sing = ��Q2l "�(Æsingvirt;a � Æsingvirt;)X jM (0)a j2 + (Æsingvirt;b � Æsingvirt;)X jM (0)b j2�s=1+Æsingvirt; X jM (0)j2#d�1!3 : (4.25)Here we have onentrated on the ase where the lighter slepton ~l1 an be on shell. Thefator Æsingvirt;a� Æsingvirt; is proportional to ln�(m2~l1 � T � i�(1)~l1 m~l1)=m2~l1�. After integration overthe Mandelstam variable T , one obtainsZ ln0�m2~l1 � T � i�(1)~l1 m~l1m2~l1 1A d T = i�(1)~l1 m~l1 ln0��i�(1)~l1m~l1 1A + � � � ; (4.26)where we have set T = m2~l1 beause in this region the integrated result is dominant. Theellipses in (4.26) represent terms whih have nothing with �(1)~l1 . Sinelim�(1)~l1 !0 i�(1)~l1 m~l1 ln0��i�(1)~l1m~l1 1A = 0 ; (4.27)the large logarithm ln��(1)~l1 =m~l1� disappears in the integrated result when �(1)~l1 ! 0. Sim-ilarly there is a large logarithm ln��(1)~l1 =m~l1� in the fator Æsingvirt;b � Æsingvirt; in (4.25), whihalso disappears in the integrated result when �(1)~l1 goes to 0.Sine we keep the � mass everywhere, the virtual photoni orretions with ���+ �nalstates are alulated numerially.



62 CHAPTER 4. CALCULATIONS FOR ~�02 DECAY4.2.3 Real Photon BremsstrahlungIn order to anel the IR divergenes in the virtual orretions, we have to add ontributionsfrom real photon bremsstrahlung to the one-loop orretions. The diagrams for the proess~�02(k1) �! ~�01(k2)l�(k3)l+(k4)(q) (l = e; �; �) are displayed in Figure 4.5. Generally thedeay width of the real photon bremsstrahlung an be written as�brems = 1(2�)8 12m~�02 Z X��Mbrems��2d�1!4 ; (4.28)where Mbrems denotes the matrix element of the diagrams in Figure 4.5. The de�nition forthe phase-spae element d�1!4 an be found in Appendix C.2. One must use the omplexslepton masses in the propagators as (4.16) when the lighter sleptons ~l1 an be on shell.From Figure 4.5 we know that the real photon an be emitted from the harged leptonsand sleptons. In the ase of photon emission from a harged lepton, the amplitude for thereal photon emission has the propertyMbrems / 1(ki + q)2 �m2i = 12ki � q : (4.29) ; ql�; kiThis will give rise to IR divergenes whih are regularized by a photon mass. The \softphoton bremsstrahlung" ontributions are de�ned via the ondition that the photon en-ergy E � �E, where the uto� parameter �E should be small ompared to the rel-evant physial energy sale. The omplementary ontributions are alled \hard photonbremsstrahlung", whih are de�ned as real emission ontributions with E > �E. Theontributions of soft photon bremsstrahlung are IR divergent, whih are suÆient to an-el the IR divergenes in the virtual orretions, while the ontributions of hard photonbremsstrahlung are IR �nite. The ontributions of the real emission an be expressed as�brems = �soft(�E) + �hard(�E) : (4.30)The dependene on the largely arbitrary parameter �E anels after summing soft andhard ontributions, provided it is suÆiently small. The ontributions of the photon radi-ation from harged sleptons are always �nite beause the sleptons are internal partiles.If we neglet the light lepton masses, the fator 12ki�q in (4.29) an be written as12ki � q = 12ki0E(1� os �l) ; (4.31)where �l is the angle between momentum of the photon and momentum of the emittingpartile. If os �l � 1, i.e. the photon and its emitter are ollinear, the ontributions ofthe hard photon bremsstrahlung also ontain a divergene. It is regularized by the massesof the leptons in the �nal state. However, sine the lepton masses, i.e. me and m�, are verysmall, it is very diÆult to get stable numerial results from a diret numerial evaluation
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�+�0Figure 4.5: The Feynman diagrams for the real photon bremsstrahlung ~�02(k1) �!~�01(k2)l�(k3)l+(k4)(q), s = 1; 2 labels the slepton mass eigenstates, �0 denotes the neutralHiggs boson h0; H0; A0 and the neutral Goldston boson G0.of hard photon bremsstrahlung even we keep the light lepton masses everywhere. This anbe overome by dividing hard photon bremsstrahlung into a ollinear part, where the anglebetween the photon and the radiating partile is smaller than a very small angle ��, andthe omplementary non-ollinear part,�hard(�E) = �oll(�E;��) + �non�oll(�E;��) : (4.32)The angular uto� �� should be so small that we an assume that the ollinear-photonemission does not hange the diretion of the three-momentum of the emitting lepton.So far we have divided the four-partile phase spae into a soft, a ollinear and anon-ollinear region. This is alled phase-spae-sliing method. The soft and ollinearontributions an be alulated analytially, while the non-ollinear ontributions are al-ulated numerially using the multi-hannel-approah in the Monte Carlo program [57, 58℄.The details about this tehnique are presented in Appendix C.



64 CHAPTER 4. CALCULATIONS FOR ~�02 DECAYSoft Photon BremsstrahlungSine the energy of the emitted soft photon is by de�nition very small, this emissionessentially does not hange the momenta of the other �nal state partiles. In the softregion, the squared amplitude ��Msoft��2 an be written as the Born squared amplitude��M (0)��2 multiplied by a soft fator,��Msoft��2 = �Q2l e2� k�3k3 � q � k�4k4 � q�2 ��M (0)��2 ; (4.33)where we have negleted all the terms proportional to the photon momentum q in thenumerator. The four-partile phase spae an also be fatorized into a three-partile phasespae and a soft part. Therefore the ontributions of the soft photon bremsstrahlung anbe written asd�soft = � �2�2Q2l Zj~qj��E d3j~qj2E � k�3k3 � q � k�4k4 � q�2X jM (0)j2d�1!3= � �2�2Q2l (I33 + I44 � 2I34)��M (0)��2d�1!3 ; (4.34)where Iij = Zj~qj��E d3j~qj2E ki � kj(ki � q)(kj � q) ; (4.35)E =pj~qj2 + �2.The general analytial expressions for the integrals Iij an be found in Refs. [11, 54℄.This has been implemented in the pakage of FormCal. The light lepton mass, i.e. ml (l =e; �) is kept only when it ats as a regulator for the mass singularity, hene the analytialexpressions for the soft ontributions an be written asd�soft = ��Q2l "ln�m2lT12� ln� �24�E2�� 14 ln2� m2l4k230�� 14 ln2� m2l4k240�+ ln� �24�E2���23 � 12 ln� m2l4k230�� 12 ln� m2l4k240�� Li2�1� 4k30k40T12 �#d�(0) ; (4.36)where ki0 denotes the energy of the harged lepton whose four-momentum is de�ned as ki,the dilogarithm Li2(x) is de�ned in Appendix B.



4.2. COMPLETE ONE-LOOP CALCULATION FOR ~�02 ! ~�01L�L+ 65Collinear Photon BremsstrahlungFrom the disussions above we de�ne the ollinear region: E > �E and 1�Æ� < j os �lj <1, where Æ� = 1�os��. This means that the ollinear part desribes real photon radiationoutside the soft photon region and ollinear to the emitter. We onsider a �nal-stateradiation, l(~ki)! (q) + l(ki); i = 3; 4 (see Figure 4:5) : (4.37)The squared matrix element of the ollinear photon bremsstrahlung an be written asX jM j2oll = 4Xi=3 Q2l e2ki � q �P (zi)� m2iki � q�X jM (0)( ~ki)j2 ; (4.38)where zi = kiki+q , P (zi) = 1+z2i1�zi , ~ki = kizi . The phase spae in the ollinear region an beseparated into a three-partile phase spae multiplied by a ollinear fator,d�k1!k2+k3+k4+q = d3k22k20 d3k32k30 d4k42k40 d3q2E Æ(4)(k1 � k2 � k3 � k4 � q)= d3k22k20 d2 ~k32 ~k30 d3k42k40 z2 d3q2E Æ(4)(k1 � k2 � ~k3 � k4)= d�k1!k2+ ~k3+k4z2 d3q2E : (4.39)This is orresponding to the phase spae of the radiation l(~k3) ! (q) + l(k3). Thereforethe di�erential ollinear ontributions an be expressed asd�oll = �2�Q2l 4Xi=3 Gi d�(0)( ~ki); (4.40)where Gi = 1� Z 1ki � q �P (zi)� m2iki � q� z2i d3q2E : (4.41)It an be written asGi = Z 1��E~ki00 "P (zi) ln 4 ~ki02m2i Æ�2 z2i!� 2zi1� zi#dzi (4.42)after integrating out the solid angle of the momentum q analytially.If we treat a harged lepton and a ollinear photon inlusively, i.e. the momentumof ollinear photon is added to that of emitting lepton, the variable zi in (4.42) an beintegrated out analytially. Hene the di�erential ontributions of the ollinear emissions



66 CHAPTER 4. CALCULATIONS FOR ~�02 DECAYare written as the di�erential tree-level deay width multiplied by a universal funtion[59, 60℄,d�oll = �2�Q2l d�(0) 4Xi=3"h32 + 2 ln��Eki0 �ih1� ln�4k2i0m2i Æ�2 �i+ 3� 23�2# : (4.43)This approah is for ollinear-safe observables [60℄. If one adds the soft and ollinearontributions to the virtual orretions, all singularities (lnml and ln�) anel. This isin aordane with the Kinoshita-Lee-Nauenberg theorem [61℄. At the LHC the eletronenergy is determined alorimetrially. In this ase a ollinear photon would hit the sameell of the alorimeter as the eletron, so the two energies annot be disentangled. Henethe eletron observables are de�ned as ollinear-safe observables in our alulation.We also onsider the non-ollinear-safe observables [60℄, i.e. the lepton and its ollinearphoton are not treated inlusively. Sine the phase spae depends on the variables zi, theintegration over zi annot be performed analytially. The di�erential ontributions of theollinear photon bremsstrahlung are written asd�oll = �2�Q2l 4Xi=3 Z 1��E~ki00 dzi"P (zi) ln 4 ~ki02m2i Æ�2 z2i!� 2zi1� zi#d�(0)( ~ki) : (4.44)In this ase the mass singularity lnml annot be aneled in the di�erential width and henebeome visible. At the LHC, muons pass through the alorimeter, where the photons aredeteted, and measured forther outside in the muon detetor. Hene the muon observablesare treated as non-ollinear-safe observables in our alulation.4.2.4 QED CorretionsThe virtual photoni orretions by themselves are UV divergent, hene one annot mean-ingfully separate the QED orretions from the one-loop ontributions by simply seletingdiagrams whih ontain a photon. Sine the light lepton (e and �) �nal states and the � �-nal states are treated di�erently, the orresponding QED orretions are de�ned di�erentlyas following.In the ase of the light lepton �nal states, the photoni virtual orretions and the softphoton bremsstrahlung are alulated analytially. We an pik out potentially large QEDterms from the the sum of virtual and soft photon bremsstrahlung orretions, d�virt+d�soft,d�virt + d�soft = d~� + d�remainder : (4.45)



4.2. COMPLETE ONE-LOOP CALCULATION FOR ~�02 ! ~�01L�L+ 67Here d~� ontains all the potentially large QED terms,d~� = ��Q2l ("�ln�m2lT12� + 1� ln�k30k40�E2 �� 32 ln�m2lT12�# d�(0)+ln0�m2~l1 � T � i�(1)~l1 m~l1m2~l1 1A"ln m2�02 � TT12 !+ ln T �m2�01T12 !+ln m2�02 � TT !+ ln T �m2�01T !#X jM (0)a j2d�1!3+ln0�m2~l1 � S23 � i�(1)~l1 m~l1m2~l1 1A"ln m2�02 � S23T12 !+ ln S23 �m2�01T12 !+ln m2�02 � S23S23 !+ ln S23 �m2�01S23 !# X jM (0)b j2d�1!3) ; (4.46)where we have assumed that the lighter slepton ~l1 an be on shell. The matrix elementM (0)a andM (0)b are obtained from the Born diagrams (a) and (b) in Figure 4.2, respetively.As disussed in Setion 4.2.3 the terms proportional to ln��(1)~l1 =m~l1� in (4.46) disappearin the integrated width. d�remainder de�ned in (4.45) is IR and UV �nite and free of suhlarge QED logarithms in (4.46). The \QED ontributions" an then be de�ned asd�QED = d~� + d�hard : (4.47)Note that the QED orretions de�ned in this way do not depend on the uto� parame-ters �E and ��. Moreover, terms proportional to logml in (4.47) anel in the integratedwidth and in the di�erential width for the ollinear-safe observables. Using the de�nitions(4.45) and (4.47), the omplete one-loop ontributions an be written asd�(1) = d�(0) + d�virt + d�brems= d�(0) + d�remainder + d�QED : (4.48)When ���+ are the �nal states of ~�02 deay, the � mass m� is kept everywhere. Thismass is so large that a stable numerial result an be obtained from the hard photonbremsstrahlung, hene we do not need to divide the hard photon bremsstrahlung ontri-bution into ollinear and non-ollinear parts. We follow a slightly di�erent proedure tode�ne the \QED part" of the orretion. The virtual orretions ontain photoni andnon-photoni ontributions, d�virt = d�virt + d�non�virt ; (4.49)both of whih are UV divergent, while the sum is �nite. The photoni virtual orretionsan be split into an UV-�nite part d~� and an UV-divergent part d�UV�div,d�virt = d~� + d�UV�div : (4.50)



68 CHAPTER 4. CALCULATIONS FOR ~�02 DECAYHere d�UV�div ontains the terms that would be subtrated in the dimensional redutionregularization of d�virt. After this rearrangement, the virtual orretions an be written asd�virt = d~� + d�UV�div + d�non�virt= d~� + d�remainder ; (4.51)where d�remainder = d�UV�div+d�non�virt as well as d~� are UV �nite. The \QED orretions"are �nally de�ned as d�QED = d~� + d�brems ; (4.52)where d�brems stands for the ontribution from all diagrams with real photon emission. Byonstrution, d�QED is UV and IR �nite.4.3 Approximate One-loop Calulation for ~�02 ! ~�01l�l+If ~�02 ! ~l�1 l� two-body deays are allowed and ~�02 does not have other two-body deaymodes, at one-loop level, just like at tree-level, the deays ~�02 ! ~�01l�l+ (l = e; �; �) anbe approximately treated as prodution and deays of the slepton ~l�1 ,�(1)(~�02 ! ~�01l+l�) ' �(1)(~�02 ! ~l�1 l�)Br(1)(~l�1 ! ~�01l�) ; (4.53)with Br(1)(~l�1 ! ~�01l�) = �(1)(~l�1 ! ~�01l�)�(1)~l�1 : (4.54)The virtual ontributions of the prodution and deay of the slepton ~l�1 , whih now onlyontain vertex type orretions, are again alulated with the help of the programs Fey-nArts, FormCal and LoopTools. The virtual photoni diagrams are shown in Figure 4.6,whih are IR and UV divergent. The salar three-point funtions orresponding to thesediagrams are expressed analytially in Appendix B in the ase of l = e; �. An IR �-nite result is obtained by adding the ontributions from the real photon bremsstrahlung(see Figure 4.7), where both the diagrams (a2) and (b2) must be inluded in order topreserve the gauge invariane. The ontributions of the real photon bremsstrahlung areagain separated into an IR-divergent soft part and an IR-�nite hard part. The division ofthe hard photon bremsstrahlung ontribution into a ollinear part, whih an be alulatedanalytially, and a non-ollinear part, whih is alulated numerially, proeeds along thelines desribed in Setion 4.2.3. As disussed in Setion 4.2.4, the UV-divergent photoniontributions annot be treated separately as \QED orretions". We de�ne the \QEDorretions" in the same way as the omplete alulation in Setion 4.2.4. One �nallyarrives at a total one-loop ontribution whih is independent of the uto� parameters.



4.4. TOTAL WIDTH OF ~�02 AND THE BRANCHING RATIOS OF ~�02 ! ~�01L+L� 69. ~�02 l� ~l�1. ~l�1. l�~�01.(a) (b)Figure 4.6: Virtual photoni orretions in the approximate alulation.
. ~�02  l�~l�1. . ~�02 l� ~l�1. .~l�1  l�~�01. .~l�1  l�~�01.(a1) (a2) (b1) (b2)Figure 4.7: Diagrams for the real photon bremsstrahlung in the approximate alulation.4.4 Total DeayWidth of ~�02 and the Branhing Ratiosof the Deays ~�02 ! ~�01l+l�As disussed in the beginning of this hapter, the next-to-lightest neutralino ~�02 an deayinto the LSP ~�01 and two fermions f �f . The leptoni �nal states are important beausethey an be identi�ed at the LHC. Moreover, the endpoint of the dilepton invariant-massdistribution is used to determine the mass relations of supersymmetri partiles. Theinvisible ~�02 deay modes, i.e. ~�02 ! ~�01�l��l, do not e�et the dilepton invariant-massdistribution. But they ontribute to the total width of ~�02. Sine it is very diÆult toidentify quarks at the LHC, the hadroni deays ~�02 ! ~�01q�q are less interesting thanleptoni deays. In order to obtain the total deay width of ~�02, these hadroni deaysmust be alulated . The total deay width of ~�02 an be written as�~�02 = Xl=e;�;�h�(~�02 ! l�l+ ~�01) + �(~�02 ! �l��l ~�01)i + Xq=u;d;;s;b�(~�02 ! q�q ~�01) : (4.55)Here we assume that the deay ~�02 ! ~�01�tt is not kinematially allowed. The branhingratios of the leptoni deays ~�02 ! ~�01l+l� are de�ned asBr(~�02 ! ~�01l+l�) = �(~�02 ! ~�01l+l�)�~�02 : (4.56)



70 CHAPTER 4. CALCULATIONS FOR ~�02 DECAY4.4.1 The Invisible Deays ~�02 ! ~�01�l��lThe invisible deays ~�02 ! ~�01�l��l are alulated at tree and one-loop level. The BornFeynman diagrams are shown in Figure 4.8. Here we fous on the ase where the deays
~�02 ~�01 �l��LZ ~�02 �L ~�01��L~�l ~�02 ��l ~�01�l~�lFigure 4.8: The Born Feynman diagrams for ~�02 �! ~�01�l��l.~�02 ! ~�01�l�l are pure three-body deays. Similarly to the alulations for the leptonithree-body deays ~�02 ! ~�01l�l+, these deays are also alulated with the help of FeynArts,FormCal and LoopTools. The one-loop orretions are again lassi�ed as vertex, self, andbox ontributions. Sine none of the external partiles arries eletri harge, there areno orretions involving real or virtual photons, and hene no IR divergenes. Therefore,there are also no QED orretions in these deays. This makes the alulations for theinvisible deays muh simpler than for the leptoni deays.4.4.2 The Hadroni Deays ~�02 ! ~�01q�q (q 6= t)The hadroni deays of ~�02 are alulated in order to obtain the total width of ~�02. TheBorn Feynman diagrams for the deays ~�02 ! ~�01q�q (q 6= t) are shown in Figure 4.9 wherethe masses of the light quarks, i.e. u; d and s, are negleted. Here we only onsider the ase

~�02 q ~�01�q~qs ~�02 �q ~�01q~qs ~�02 ~�01 q�qZ ~�02 ~�01 ; b�;�b�0Figure 4.9: The Born Feynman diagrams for ~�02 �! ~�01q�q (q 6= t), s = 1; 2 labels the squarkmass eigenstates, �0 denotes the neutral Higgs boson h0; H0; A0 and the neutral Goldstoneboson G0.where the hadroni deays ~�02 ! ~�01q�q are pure three-body deays. Sine the SUSY-QCDorretions are not onsidered in our alulations, the deays ~�02 ! ~�01q�q an be treated inthe same way as ~�02 ! ~�01l�l+.The one-loop virtual orretions for the deays ~�02 ! ~�01q�q are also lassi�ed into threetypes: vertex ontributions, self-energy ontributions and box ontributions, where thevertex and self-energy ontributions have been ombined with their ounterterms. Thealulations for these ontributions are performed with the help of FeynArts, FormCaland LoopTools. The virtual photoni orretions (the diagrams are similar to the ones of



4.4. TOTAL WIDTH OF ~�02 AND THE BRANCHING RATIOS OF ~�02 ! ~�01L+L� 71the leptoni deays, i.e. Figure 4.4) are IR divergent. The ontributions of the real photonbremsstrahlung are neessary for the anellation of the IR divergenes. We neglet thelight quark masses, i.e. mq(q = u; d; s), exept when they appear in the one-loop integrals.This gives a mass singularity lnmq. The virtual photoni orretions an be alulatedanalytially in the same way as in Setion 4.2.2 .The diagrams for the real photon bremsstrahlung ~�02 ! ~�01q�q are similar to the di-agrams in Figure 4.5. In analogy to Setion 4.2.3, the ontributions of the real photonbremsstrahlung are also splitted into an IR-divergent soft part and an IR-�nite hard part.For the light quark �nal states, we separate the hard photon bremsstrahlung into a ollinearpart and a non-ollinear part in order to obtain stable numerial results. As presented inSetion 4.2.3, the soft and ollinear ontributions are alulated analytially. The ana-lytial expressions for the singular part of the virtual photoni orretions, the soft andollinear ontributions an be obtained by performing the replaementsQ2l ! Q2q ; lnml ! lnmq (4.57)in the orresponding expressions in Setion 4.2.2 and 4.2.3. We treat the deays with heavyquark �nal states in the same way as ���+ �nal states. The QED orretions are de�nedin the same way as in Setion 4.2.4 sine the photoni ontributions are UV divergent andannot be treated separately.



72 CHAPTER 4. CALCULATIONS FOR ~�02 DECAY4.5 Numerial Results and DisussionsIn this setion we present the numerial results both for a senario where ~�02 an undergotwo-body deays ~�02 ! ~l�l� ! ~�01l�l+, and for a senario where ~�02 only has three-bodydeays ~�02 ! ~�01l�l+. The two-body deays are alulated in a omplete and an approximateway, and the orresponding numerial results are ompared. We disuss the total deaywidth of ~�02 and the branhing ratios of its leptoni deays. The dilepton invariant-massMl+l� distribution is also presented and disussed, where the dilepton invariant massMl+l�is de�ned as Ml+l� =p(kl+ + kl�)2 : (4.58)As disussed in Setion 4.2.3, the dilepton invariant mass Me+e� is de�ned as ollinear-safe observable, i.e. we add the momentum of a ollinear photon to that of the emittingeletron, sine it is diÆult to separate their energies at the LHC. The energies of a muonand its ollinear photon an be disentangled easily at the LHC, hene the dilepton invariantmass M�+�� is de�ned as non-ollinear-safe observable, i.e. the momentum of a ollinearphoton is not added to that of its emitter muon. In this ase the large logarithm lnm� annot anel in the distribution, so the mass e�et an be seen in the dilepton invariant-massdistribution. In our alulations the seletrons and smuons have equal masses and the lightlepton mass ml (l = e; �) is negleted exept when it appears in the one-loop integrals, soone will obtain idential distributions for Me+e� and M�+�� if both of them are de�nedas ollinear-safe observables. In order to see the di�erenes of the two treatments (addingand not adding the momentum of a ollinear photon to the emitting lepton), we also showthe omparison of dilepton invariant mass M�+�� and Me+e� distributions.4.5.1 SPS1a Parameter SetIn the MSSM, soft-SUSY breaking is implemented by adding all possible soft terms tothe Lagrangian instead of assuming a partiular SUSY-breaking mehanism. All the pa-rameters in the soft-SUSY breaking Lagrangian (2.52) are general matries in avor spaeand may be omplex. This leads to more than a hundred unknown free parameters inthe MSSM. Therefore, it is not pratiable to san over the entire parameter spae. The"Snowmass Points and Slopes" (SPS), where several \benhmark senarios" have beensuggested [7, 8℄, are meant to illustrate harateristi features of various senarios of SUSYbreaking. Among those, the so-alled SPS1a parameter set has been studied partiularlywidely.The SPS1a parameter set is de�ned in the framework of the mSUGRA senario [50℄,where the SUSY-breaking mehanism is supposed to be minimal supergravity. This se-nario is haraterized by four parameters and a sign, the salar mass parameter M0, thegaugino mass parameter M1=2, the salar trilinear oupling A0, the ratio of the Higgs va-uum expetation values tan �, and the sign of the supersymmetri Higgs mass parameter�. These parameters are de�ned in the DR sheme at the GUT sale MGUT. The SPS1a



4.5. NUMERICAL RESULTS AND DISCUSSIONS 73benhmark point is de�ned by setting [7℄M0 = 100 GeV ; M1=2 = 250 GeV ; A0 = �100 GeV ; tan� = 10 � > 0 : (4.59)The low-energy parameters in the MSSM are obtained via renormalization group runningfrom the high-energy sale to the weak sale. This an be performed with various programs[62, 63, 64℄.In Ref. [8℄ the orresponding low-energy parameters for the SPS1a benhmark pointare obtained with ISAJET 7.58 [62℄, whih readM~g = 595:2 GeV; mA0 = 393:6 GeV; � = 352:4 GeV;tan� = 10; M1 = 99:1 GeV; M2 = 192:7 GeV ; (4.60)whereM1 andM2 are the gaugino mass parameters,M~g denotes the mass of the gluino,mA0is the mass of the neutral CP-odd Higgs boson A0. The soft SUSY-breaking parametersin the diagonal entries of the squark and slepton mass matries have been hosen to bethe same for the �rst and seond generation. The o�-diagonal entries have been negletedfor the �rst two generations, i.e. there are no sfermion mixing. The soft SUSY-breakingparameters in the diagonal entries of the the squark and slepton mass matries areM ~Q1L =M ~Q2L = 539:9 GeV; M ~dR = 519:5 GeV; M~uR = 521:7 GeV;M~lL = 196:6 GeV; M~lR = 136:2 GeV ; (4.61)where the index i in M ~QiL denotes the generation, ~u and ~d denote the up- and the down-squarks for the �rst two generations and ~l stands for the �rst and seond generation slep-tons. The soft SUSY-breaking parameters in the diagonal entries of the squark and sleptonmass matries of the third generation have the following values,M ~Q3L = 495:9 GeV; M~bR = 516:9 GeV; M~tR = 424:8 GeV;M~�L = 195:8 GeV; M~�R = 133:6 GeV; (4.62)while the trilinear ouplings of the third generation readAt = �510:0 GeV; Ab = �772:7 GeV; A� = �254:2 GeV: (4.63)The SPS1a benhmark point gives rise to a partile spetrum where many states areaessible both at the LHC and at the ILC [6℄. The spetrum of supersymmetri partilesat this benhmark point is shown in Figure 4.10 [7, 8, 65℄. Note in partiular that thetwo-body deays ~�02 ! ~l�1 l� ! ~�01l�l+ are kinematially allowed. No other two-bodydeay mode for ~�02 is open. Moreover, the sleptons have the same masses for the �rst twogenerations, i.e. m~�e = m~�� , m~eL = m~�L , m~eR = m~�R .Another set of parameter is alled SPS1a0 whih is proposed in the SUSY ParameterAnalysis (SPA) projet [66℄. Its parameters are lose to the snowmass point SPS1a exeptfor a small hange of the salar mass parameter and the trilinear oupling to omply withthe measured dark matter density. The low-energy parameters for the SPS1a benhmarkpoint whih have been shown in (4.60, 4.61, 4.61, 4.63) are used as the input parametersin alulating the deays of ~�02.
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80 CHAPTER 4. CALCULATIONS FOR ~�02 DECAYTotal Deay Width of ~�02 and the Branhing Ratios of the Deays ~�02 ! ~�01l+l�The partial widths of the di�erent ~�02 deay modes and the branhing ratios of its visibleleptoni deays are listed in Table 4.1, where the numbers in the parentheses are obtainedfrom the approximate alulations. We �nd Pl �(~�02 ! ~�01�l��l) � Pl �(~�02 ! ~�01l+l�).This is not surprising, sine the harged lepton �nal state is aessible via on-shell ~l1intermediate state, whereas for the neutrino �nal state all exhanged partiles are o� shell.Sine squark masses are near 500 GeV in SPS1a senario, hadroni �nal states ontributeeven less than neutrinos do.deay mode tree-level width(MeV), Br one loop-level width(MeV), Bre�e+ ~�01 1:123 (1.122), 5:9% 1:283 (1.284), 6:8%���+ ~�01 1:123 (1.122), 5:9% 1:283 (1.284), 6:8%���+ ~�01 16.870 (16.933), 88:0% 16.300 (16.347), 86:2%�e��e ~�01 0:012 0:011����� ~�01 0:012 0.011�� ��� ~�01 0.013 0:012q�q ~�01 (q 6= t) 0.015 0:014total width 19.168 18.914Table 4.1: Partial widths of di�erent ~�02 deay modes and the branhing ratios of its visibledeays for the SPS1a parameter set. The numbers in parentheses give the orrespondingpartial widths alulated in the single pole approximation.From the results in Table 4.1 one onludes:� The main deay mode of ~�02 is ~�02 ! ���+ ~�01. Its branhing ratio is about 88:0% attree-level, 86:2% at one-loop level. This mode dominates partly beause of the lowermass of ~�1 as ompared to ~e1 (133.0 GeV vs 142.7 GeV). Even more important isthat ~l1 is a pure SU(2) singlet for l = e; �, sine we neglet terms / ml in the massmatries of these sleptons. In ontrast, ~�L� ~�R mixing is quite signi�ant, leading toa sizable SU(2) doublet omponent of ~�1. Therefore ~�02 deays into (real or virtual)~l1 an only proeed through its small U(1)Y gaugino (bino) omponent for l = e; �,while the large SU(2) gaugino (neutral wino) omponent also ontributes for l = � .� The total ~�02 deay width is redued by 1% when one-loop orretions are inluded.Suh modest orretions are typial in the absene of large enhanement fators (e.g.,large logarithms).� One-loop orretions enhane the partial width and the branhing ratio of ~�02 !l�l+ ~�01 (l = e; �) deays by 14% and 15%, respetively.� The single pole approximation reprodues the integrated partial widths to about0.1% auray for the e and � �nal states, and to about 0.3% for the � �nal state.



4.5. NUMERICAL RESULTS AND DISCUSSIONS 81This is true at tree and at one-loop level. This agreement is even better than in theMl+l� distribution shown in Figures 4.13 and 4.16. From (4.8) and the disussions ofthe large logarithm ln��(1)~l1 =m~l1� in Setion 4.2.2 one might expet better agreementfor the integrated partial width than for the kinematial distributions.4.5.3 Numerial Results for the Pure Three-body DeaysWe also investigated the e�et of higher-order orretions on leptoni ~�02 deays for asenario where ~�02 does not have any two-body deay modes. To that end we again use theSPS1a parameter set, exept that the soft SUSY-breaking parameters in the slepton massmatrix are set to m~lL = 230GeV ; m~lR = 183 GeV; l = e; �; � : (4.66)The masses of the relevant neutralinos and sleptons in this modi�ed SPS1a parameter setare listed in Table 4.2 where one �nds that ~�02 has to undergo a pure three-body deay.Therefore we do not have to introdue omplex slepton masses in the one-loop funtions.partile ~�02 ~�01 ~e1 (~�1) ~e2 (~�2) ~�1 ~�2 ~�l (l = e ; � ; �)mass (GeV) 176.6 96.2 187.9 234.9 182.3 239.2 221.0Table 4.2: Masses of the relevant neutralinos and sleptons for the modi�ed SPS1aparameter setThe dilepton invariant mass Me+e� and M�+�� distributions are shown in Figures 4.17and 4.18, respetively. At tree level the Me+e� distribution shows a small peak near itsupper endpoint from the exhange of nearly on-shell Z bosons. Sine the QED and non-QED orretions are very small and negative in this region, this peak is less pronounedone one-loop orretions are inluded. This is of some signi�ane, sine the shape ofthis distribution an now be used to infer the strengths of various ontributing diagrams,whih in turn provides information on slepton masses and neutralino mixing [10, 68℄. Sine~� exhange is muh enhaned relative to ~e exhange, one annot see any ontributions ofZ�exhange even at tree-level from the M�+�� distribution. Moreover we an observethat the invariant mass Me+e� and M�+�� distributions have a rather sharp edge at theirendpoints. These edges are again softened by real photon emission, but remain quitedistint. This should failitate the experimental determination of the endpoint, and henethe measurement of m~�02 �m~�01 .We ompare the dilepton invariant mass M�+�� and Me+e� distributions in Figure4.19, where the tree- and one-loop-level results, the blow-up of the endpoint region and therelative one-loop orretions are shown. From these �gures one obtains that the shapesof the M�+�� and Me+e� distributions are idential at tree level and di�erent at one-looplevel due to the di�erent treatment of ollinear-photon radiations. In ontrast to thenumerial results from the SPS1a parameter set (see Figure 4.14), the mass e�et is small
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4.5. NUMERICAL RESULTS AND DISCUSSIONS 83in Figure 4.19, but it is still distint, espeially in the relative one-loop orretions. Inthe alulations for the invariant-mass distribution, the momentum of a ollinear photonis added to that of the emitting eletron, but it is not added to that of the emitting muon.Hene the invariant mass M�+�� is redued in omparison with Me+e�. It leads to theshifting of events from the upper invariant-mass region to the lower invariant-mass region.This e�et an be seen in the lower frames in Figure 4.19, i.e. in the lower invariant-massregion the relative one-loop orretions of the �+�� �nal state is larger than that of e+e��nal state, while the inverse relation holds in the upper invariant-mass region.
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84 CHAPTER 4. CALCULATIONS FOR ~�02 DECAYThe partial widths of di�erent ~�02 deay modes and the branhing ratios of its visibledeays are shown in Table 4.3. The �+�� ~�01 �nal state is still the largest deay modedeay mode tree-level width(keV), Br 1loop-level width(keV), Bre�e+ ~�01 1:270, 4:4% 1:407, 5:0%���+ ~�01 1:270, 4:4% 1:407, 5:0%���+ ~�01 7:209, 25:1% 7:116, 25:3%�e��e ~�01 1:273 1:308����� ~�01 1:273 1.308�� ��� ~�01 1:273 1:307u�u~�01 2:480 2:361d �d~�01 3:330 3:174�~�01 2:475 2:286s�s~�01 3:330 3:152b�b~�01 3.595 3:266total width 28:778 28:092Table 4.3: The deay width of di�erent ~�02 deay modes and the branhing ratios of itsvisible leptoni deays in the modi�ed SPS1a senario.of ~�02 (25:1% at tree level, 25:3% at one-loop level), but it no longer dominates. Thehadroni �nal states have very large partial deay widths and branhing ratios: �treehadroni =15:210keV (52:9%), �1�loophadroni = 14:239keV (50:7%), though the squark masses are muhheavier than the slepton masses. The part reason is that the Z-exhange diagrams givelarger ontributions to hadroni �nal states than to leptoni ones. Moreover the interferenebetween Z and squark exhanges is large and positive for the hadroni �nal states, whilethe interferene between Z and slepton exhanges is also large but negative for the leptoni�nal states. This is the main reason why the hadroni deays of ~�02 obtain so large branhingratios.Note that exhange of the SU(2) doublet sleptons now dominates for l = e; �. Thisdominane of ~eL exhange also explains why the e+e� ~�01 and �e��e ~�01 �nal states now havequite similar partial widths. We have assumed three exatly degenerate sneutrinos here,unlike in the original SPS1a senario, where ~�� is slightly lighter than ~�e. In the modi�edsenario a tiny di�erene between the one-loop partial widths for �� ��� ~�01 and �e��e ~�01 �nalstates nevertheless results from one-loop orretions involving the � mass or Yukawa ou-pling (e.g. from the ~� and � two-point funtions). The total ~�02 deay width is reduedby 2:4% when one-loop orretions are onsidered. The partial width of the ~�02 deay intoeletron and muon pairs is now enhaned by about 10:8%, leading to an inrease of theorresponding branhing ratios by 13:6% at one-loop level.



Chapter 5ConlusionsIn the MSSM with onserved R-parity, the deays of the next-to-lightest neutralino ~�02 intothe LSP ~�01 and two fermions are always involved in the deay hains of supersymmetripartiles. Moreover, ~�02 is one of the lightest visible supersymmetri partiles that anbe produed diretly at future e+e� olliders and plays a prominent role in the analysisof asade deays of gluinos and squarks at the LHC. An aurate understanding of itsdeays is therefore of onsiderable importane. The leptoni deays of ~�02 are partiularlyinteresting sine the endpoint of the dilepton invariant mass distribution an be used toreonstrut the mass di�erenes of the supersymmetri partiles. In this thesis, we haveinvestigated ~�02 leptoni deays ~�02 ! ~�01l�l+ at one-loop level.For the ases where the intermediate harged sleptons ~l1 an be on shell, these deayswere alulated both ompletely and in a single-pole approximation at one-loop level. In theomplete alulation one has to employ omplex slepton masses in the relevant propagatorsand one-loop integrals. The single-pole approximation in this ase is performed in the waythat the ~�02 deays are treated as a sequene of two two-body deays. For the numerialevaluation we use the SPS1a parameter set. We ompare the results from the ompleteand approximate alulations and �nd that this approximation reprodues the integratedpartial widths to better than 0.5% auray even after one-loop orretions are inluded.From these alulations one obtains a rather small one-loop orretion to the total ~�02deay width, but the branhing ratios for the eletron and muon �nal states are inreasedby about 15% at one-loop level.The dilepton invariant mass Ml+l� distributions were also studied. The shape of thesedistributions is found to be altered by real photon emission ontributions, i.e. its peakis shifted by several GeV below the endpoint. This is very important sine the shape ofthe distribution near the endpoint should be known if the endpoint is to be determinedaurately from real data. In our alulation we de�ne ollinear photons as being emittedat an angle �� < 1Æ relative to the emitting lepton. Sine the seletrons and smuonshave equal masses and the light lepton mass ml (l = e; �) is negleted exept when itappears in the one-loop integrals, one will obtain idential distributions for Me+e� andM�+�� if the momentum of a ollinear photon is added to that of the emitting lepton.The atual e�et of the ollinear-photon radiation depends on details of the measurement85



86 CHAPTER 5. CONCLUSIONSapparatus, and therefore has to be alulated anew for eah experiment. We have fousedon the LHC experiment in our alulation. At the LHC the eletron energy is determinedalorimetrially. In this ase a ollinear photon would hit the same ell of the alorimeter asthe eletron, so the two energies annot be disentangled. Hene we add the momentum ofa ollinear photon to the one of the emitting eletron in our alulation. Sine muons passthrough the alorimeter, where the photons are deteted, and measured forther outside inthe muon detetor at the LHC, the momentum of a ollinear photon is not added to theone of its emitter muon in our alulation. In this ase the mass e�et an be seen in thedilepton invariant-mass distribution. We �nd that the peak ofMe+e� distribution is moveddownwards by about 4 GeV one the one-loop orretions are added. In ontrast to theMe+e� distribution, the peak of theM�+�� distribution is a little shifted to lower invariant-mass values at one-loop level. This is due to the di�erent treatment of the ollinear-photonradiation.We have also analyzed a senario with inreased slepton masses, so that ~�02 an onlyundergo genuine three-body deays. We �nd that the total ~�02 deay width is reduedby 2:4% when one-loop orretions are onsidered, while the branhing ratios of ~�02 deayinto eletron and muon pairs are enhaned by about 13:6% at the one-loop level. Onealso �nds that the shape of dilepton invariant mass Ml+l� distributions are also a�etedby the real photon emission. Moreover, these distributions have a rather ompliatedshape, showing the ontributions from Z exhange near the upper endpoints. In thisase the shape of the distribution away from the endpoint also arries information aboutslepton masses and neutralino mixing angles. Fitting tree-level distributions to real datamight therefore give wrong results for these physial parameters. In this ontext a arefulanalysis of the ollinear-photon radiation is also important, sine di�erenes in the energymeasurements of eletrons and muons ould lead to spurious di�erenes of �tted seletronand smuon masses. Here the ollinear-photon radiations for eletrons and muons aretreated as disussed beforehand. One �nds that the one-loop shapes of the Me+e� andM�+�� distributions are di�erent, though the seletrons and smuons have equal masses inour alulations.



Appendix ANotations and SM ParametersIn this thesis we adopt standard relativisti units, i.e. �h =  = 1. A general ovariantfour-vetor is denoted by a� = (a0; a1; a2; a3) = (a0;~a) (A.1)and a ontravariant four-vetor isa� = �a0; a1; a2; a3� = (a0;�~a) : (A.2)They are onneted by the metri tensorg�� = g�� = diag (1;�1;�1;�1) (A.3)via the relations a� = g��a� : (A.4)The produt of the four-vetors are de�ned asab � a�b� = a0b0 � ~a �~b : (A.5)The four-gradients �� and �� are de�ned�� � ��x� = � ��t ; ~r� ;�� � ��x� = � ��t ;�~r� : (A.6)We also use the ompat "Feynman slash" notation6a = �a� ; (A.7)where � are Dira matries. 87



88 APPENDIX A. NOTATIONS AND SM PARAMETERSA.1 Pauli and Dira MatriesThe pauli matries are de�ned as�1 = � 0 11 0 � ; �2 = � 0 �ii 0 � ; �3 = � 1 00 �1 � : (A.8)They satisfy the ommutator relation[�i; �j℄ = 2i"ijk�k; i; j; k = 1; 2; 3 : (A.9)The totally antisymmetri tensors in three dimensions are de�ned as"ijk = 8<: +1 ; for even permutations of 123�1 ; for odd permutations of 1230 ; otherwise : (A.10)One an arrange the Pauli matries as�� = ��0; ~�� = ��0; �1; �2; �3� ; (A.11)��� = ��0;�~�� ; (A.12)where �0 = � 1 00 1 � : Anti-symmetri matries ��� and ���� are de�ned by��� = i4 (����� � �����) ; (A.13)���� = i4 (����� � �����) : (A.14)The Dira -matries are de�ned via the antiommutation relationsf�; �g = 2g�� : (A.15)A �fth -matrix is de�ned by 5 � 5 � i0123 : (A.16)From these de�nitions one an easily obtain the following properties for the -matries,�5; �	 = 0 ; (5)2 = 0 : (A.17)In the hiral or Weyl representation the expliit expressions for the Dira -matries are� = � 0 ����� 0 � ; 5 = � �1 00 1 � : (A.18)The left- and right-handed operators are de�ned by!L = 12 (1� 5) ; !R = 12 (1 + 5) : (A.19)



A.2. SPINORS 89A.2 SpinorsThe omponents of the two-omponent (Weyl) spinor are Grassmann numbers, i.e.f��; ��g = ���; ��	 = ���; ��	 = 0 ;��� _�; �� _�	 = n�� _�; �� _�o = n�� _�; �� _�o = 0 ; (A.20)and they also have antiommutation relations with other Grassmann numbers. Here theindies �( _�) = 1; 2 and �( _�) = 1; 2. The salar produt of two-omponent spinors � and� is de�ned as �� � ���� ;���� � �� _��� _� ;��� �� � ����� _� �� _� : (A.21)A four-omponent (Dira) spinor 	 in the Weyl representation an be onstruted via	 = � ���� _� � ; (A.22)where �� and �� _� are Weyl spinors. The Dira-adjoint spinor �	 is expressed as�	 = 	y0 = � �� �� _� � : (A.23)The harge onjugation of the Dira spinor 	 is de�ned via	 = C �	T = � ���� _� � ; (A.24)where the harge onjugation matrix C is expressed asC = i� (�2��0)�� 00 (��2�0) _�_� � : (A.25)A Dira spinor 	 is also a Majorana spinor if the relation 	 = 	 is satis�ed. Hene aMajorana spinor � an be written as� = � ���� _� � : (A.26)The left- and right-handed omponents of a Dira spinor an be written as	L = !L	 = � ��0 � ; (A.27)	R = !R	 = � 0�� _� � : (A.28)



90 APPENDIX A. NOTATIONS AND SM PARAMETERSSome useful relations between the four- and two-omponent spinors are�	1	2 = �1�2 + ��1 ��2 ; (A.29)�	1�	2 = ��1����2 � ��2����1 ; (A.30)�	15	2 = ��1�2 + ��2 ��1 ; (A.31)�	1�5	2 = ���1����2 � ��2����1 ; (A.32)�	1���	2 = �1���� ��2 + ��1������2 ; (A.33)�	1!L	2 = �1�2 ; (A.34)�	1!R	2 = ��1 ��2 ; (A.35)�	1�!L	2 = ��1����2 ; (A.36)�	1�!R	2 = ���2����1 ; (A.37)�	1�!L��	2 = ��1������2 ; (A.38)�	1�!R��	2 = �1���� ��2 : (A.39)A.3 SM ParametersFor the numerial evaluation, the following values of the SM parameters are used:me = 0:510999MeV ; m� = 105:6584MeV ; m� = 1:777GeV ;mu = 53:8MeV ; m = 1:5GeV ; mt = 175GeV ;md = 53:8MeV ; ms = 150MeV ; mb = 4:7GeV ;mW = 80:45GeV; mZ = 91:1875GeV ;� = 1=137:0359895; G� = 1:1663910� 10�5GeV�2 :



Appendix BOne-loop Integrals
B.1 De�nition of the One-loop IntegralsWe de�ne the one-loop integrals in the same notation as in LoopTools. As disussed inChapter 3, dimensional redution is used, where only the momenta are alulated in Ddimensions, while the �elds and the Dira algebra are kept 4-dimensional. The de�nitionfor the salar one-loop integrals are shown in the following, their tensor integrals are de�nedby adding the momenta q�; q�q� � � � to the numerator.m A0 �m2� = (2��)4�Di�2 Z dDqq2 �m2 ;m1m2p B0 �p2; m21; m22�= (2��)4�Di�2 Z dDq�q2 �m21��(q + p)2 �m22� ;p1
p3 p2m1 m2m3 C0 �p21; p22; (p1 + p2)2; m21; m22; m33�

= (2��)4�Di�2 Z dDq�q2 �m21��(q + p1)2 �m22��(q + p1 + p2)2 �m23� ;91



92 APPENDIX B. ONE-LOOP INTEGRALSp1 p2p4 p3m2m1 m4 m3 D0 (p21; p22; p23; p24; (p1 + p2)2; (p2 + p3)2; m21; m22; m33; m24)
= (2��)4�Di�2 Z dDq�q2 �m21��(q + p1)2 �m22��(q + p1 + p2)2 �m23��(q + p1 + p2 + p3)2 �m24� :
B.2 Salar One-loop IntegralsThe general formula for the salar one-, two-, three- and four-point funtions were derivedin [54℄. Here we not only outline their general formula but also give the expliit expressionsin some speial ases.Salar One-point FuntionThe salar one-point funtion an be written asA0(m2) = m2 ��� ln�m2�2 �+ 1� ; (B.1)where the UV-divergent part � is de�ned via� = 24�D � E + ln 4� (B.2)with E is Euler's onstant, and � is renormalization sale.Salar Two-point FuntionThe salar two-point funtion an be written asB0(p2; m21; m22) = �� Z 10 dx ln �x2p2 � x(p2 �m22 +m21) +m21 � i��2 � ; (B.3)



B.2. SCALAR ONE-LOOP INTEGRALS 93where � is a in�nitesimal real number. Below are some speial ases,B0(m2l ; m2l ; 0) = �� ln�m2l�2 �+ 2 ; (B.4)B0(0; m2l ; 0) = �� ln(m2l�2 ) + 1 ; (B.5)B0(p2; m2l ; m2l ) = �� ln��p2 � i��2 � + 2; (p2 � m2l ) ; (B.6)B0(p2; 0; m2~ls) = �� ln m2~ls�2 !+ 2 ; (p2 ' m2~ls) : (B.7)Salar Three-point FuntionThe salar three-point funtion an be expressed asC0 �p21; p22; (p1 + p2)2; m21; m22; m33� = � Z 10 dx1dx2dx3 Æ(1� x1 � x2 � x3)(x1 + x2 + x3)g(x1; x2; x3) ; (B.8)where g(x1; x2; x3) = (m21x21 +m22x22 +m23x23)(x1 + x2 + x3)�p21x1x2 � p22x2x3 � (p1 + p2)2x1x3 � i� : (B.9)A speial ase an be expressed asC0 �m2l ; m2l ; (p1 + p2)2; 0; m2l ; m2l � = 1(p1 + p2)2"ln� m2l�(p1 + p2)2 � i�� ln� �2m2l �+12 ln2� m2l�(p1 + p2)2 � i��� �26 # ; (B.10)where � is the photon mass regulator, and we have assumed (p1 + p2)2 � m2l . This analso be found in Ref. [55℄.In the alulations for ~�02 deays one has to alulate the salar three-point funtionCa0 = C0(m2l ; m2~�02; (p1 + p2)2; 0; m2l ; m2~ls) ((p1+ p2)2 � m2l ) analytially. It an be obtainedvia the alulation of (B.8). Below are the analytial expressions in di�erent ases.



94 APPENDIX B. ONE-LOOP INTEGRALSFor the general ~�02 three-body deays, i.e. (p1 + p2)2 6= m2~ls , it an be expressed asfollows,Ca0 = � 1(p1 + p2)2 �m2~�02 (� ln m2l(p1 + p2)2 �m2~�02 � i�! ln m2~ls �m2~�02 � i�m2~ls � (p1 + p2)2 � i�!+ln m2~lsm2~ls � (p1 + p2)2 � i�! ln (p1 + p2)2 �m2~�02 � i�(p1 + p2)2 !+ 12 ln2 m2~lsm2~ls �m2~�02 � i�!+�26 � Li2 m2~ls � (p1 + p2)2 � i�m2~ls �m2~�02 � i� !+ Li2 (�m2~�02 � i�)(m2~ls � (p1 + p2)2 � i�)m2~ls(�m2~�02 + (p1 + p2)2 � i� )!�Li2 �m2~�02 � i�(p1 + p2)2 �m2~�02 � i�!) : (B.11)The dilogarithm Li2(x) is de�ned asLi2(x) = � Z 10 dt ln(1� xt)t : (B.12)When the sleptons ~ls an be on shell, i.e. (p1 + p2)2 is lose to m2~ls , using omplexmasses m2~ls ! m2~ls � i�~lsm~ls , one obtainsCa0 = � 1(p1 + p2)2 �m2~�02 (12 ln2 m2~lsm2~ls �m2~�02 � i�!+ �26 �ln m2l(p1 + p2)2 �m2~�02 � i�! ln m2~ls �m2~�02 � i�m2~ls � (p1 + p2)2 � i�~lsm~ls � i�!+ln m2~lsm2~ls � (p1 + p2)2 � i�~lsm~ls � i�! ln (p1 + p2)2 �m2~�02 � i�(p1 + p2)2 !�Li2 �m2~�02 � i�(p1 + p2)2 �m2~�02 � i�!) : (B.13)
Here we have used Li2(0) = 0. This formula is for the omplete alulation.In this ase one an also treat ~�02 deays as prodution and deay of ~ls, i.e. (p1+ p2)2 =m2~ls , the funtion Ca0 is IR divergent. The expliit expressions areCa0 = 1m2~ls �m2~�02 (� ln mlm~lsm2~ls �m2~�02 � i�! ln� �2mlm~ls� + Li2 �m2~�02 � i�m2~ls �m2~�02 � i�!�12 ln m2lm2~ls �m2~�02 � i�! ln m2~lsm2~ls �m2~�02 � i�!) ; (B.14)whih is also given in Ref. [55℄.



B.2. SCALAR ONE-LOOP INTEGRALS 95Salar Four-point FuntionThe salar four-point funtion D0(m2l ; m2~�02; m2~�01 ; m2l ; (p1+ p2)2; (p2+ p3)2; 0; m2l ; m2~ls ; m2l ) isneessary for the alulation of the three-body deays of ~�02. Its analytial expressions anbe obtained from Ref. [55℄,D0(m2l ; m2~�02; m2~�01 ; m2l ; (p1 + p2)2; (p2 + p3)2; 0; m2l ; m2~ls ; m2l )= 1(p2 + p3)2(m2~ls � (p1 + p2)2) (ln2 m~lsmlm2~ls �m2~�02 � i�!+ ln2 m~lsmlm2~ls �m2~�01 � i�!+�23 � 2 ln� m2l�(p2 + p3)2 � i�� ln m~ls�m2~ls � (p1 + p2)2 � im~ls�~ls � i�!+Li2 1� (m2~�02 �m2~ls + i�)(m2~�01 �m2~ls + i�)m2~ls(�(p2 + p3)2 � i�) !) : (B.15)Here we foused on the ase where (p1 + p2)2 is lose to m2~ls and used the omplex massesm2~ls ! m2~ls � i�~lsm~ls .Photoni Part of the Fermion (Sfermion) Field RenormalizationConstantsThe photoni part of the fermion self-energies are given by�f;Lij (p2)���photoni = �f;Rij (p2)���photoni = � �4� ÆijQ2f�2B1(p2; m2fi ; 0) + 1� ;�f;Sij (p2)���photoni = � �2�ÆijQ2fmfi�2B0(p2; m2fi ; 0)� 1� : (B.16)The fermion �eld-renormalization onstants have been presented in (3.25b) and (3.25) inChapter 3. In order to alulate them in the ase of light fermions we need the relations�B0(p2; m2f ; 0)�p2 ���p2=m2f = � 1m2f (ln �mf + 1)B1(m2f ; mf ; 0) = 12(ln(m2f�2 )��� 3)�B1(p2; m2f ; 0)�p2 ���p2=m2f = 1m2f (ln �mf + 32) : (B.17)



96 APPENDIX B. ONE-LOOP INTEGRALSHere we have used the general relations shown as follows (see also [11℄),B1(p2; m1; m2) = m22 �m212p2 (B0(p2; m1; m2)� B0(0; m1; m2))� 12B0(p2; m1; m2) ;�B1(p2; m1; m2)�p2 = m22 �m212p4 (B0(p2; m1; m2)� B0(0; m1; m2)) +m22 �m21 � p22p2 �B0(p2; m1; m2)�p2 ;�B0(p2; m1; m2)�p2 = �m21 �m22p4 ln m2m1 + m1m2p4 �1r � r� ln r� 1p2 �1 + r2 + 1r2 � 1 ln r� ; (B.18)where r and 1r are determined from the equationx2 + m21 +m22 � p2 � i�m1m2 x + 1 = (x+ r)(x + 1r ) : (B.19)The photoni part of the �eld renormalization onstants for the light fermions an beexpressed asÆZf;Lii jphotoni = ÆZf;Rii jphotoni = �4�Q2f �ln�m2f�2 �� 4 ln� �mf ���� 4� : (B.20)The photoni part of the sfermion �eld renormalization onstants an been written asÆZ ~fii��photoni = � ~Re�� ~fii(p2)�p2 ���p2=m2~fiphotoni ; (B.21)where the sfermion self-energies are expressed as� ~fii(p2) = ���Q2fp2 �B0(p2; 0; m2~fi)� B1(p2; 0; m2~fi)� : (B.22)Using the relations in (B.18) one obtains the expression for ÆZ ~fii��photoni. The IR-singularpart reads ÆZ ~fii��singphotoni = ���Q2f ln �m ~fi! : (B.23)



Appendix CMulti-Channel Monte Carlo Method
C.1 Priniples of the Monte Carlo MethodThe Monte Carlo method (see Ref. [69℄) is a way to alulate the integrals with a largenumber of integration variables. The integration variables x are mapped to a set of randomnumbers r via x = h(r) ; 0 � r � 1 : (C.1)An integral an be written asI = Z f(x)dx = Z 10 f(h(r))g(h(r))dr ; (C.2)where g(h(r)) is density, it is de�ned as1g(h(r)) = �h(r)�r : (C.3)This integral an be approximated by sampling the integrand N times and taking theaverage, �I = 1N NXi=1 f(h(ri))g(h(ri)) : (C.4)The integration error is de�ned by � = pI2 � �I2N : (C.5)When the integrand f varies strongly in the phase spae, the eÆieny of the MonteCarlo method is improved by Importane Sampling, i.e. more events are sampled in theimportant region where f beomes large. This is implemented by hoosing the variables x,97



98 APPENDIX C. MULTI-CHANNEL MONTE CARLO METHODthe mappings between these variables and the random numbers r in suh a way that theresulting f=g is muh smoother than f .In pratie, we hoose the variables in suh a way that the Lorentz invariants orre-sponding to the propagators are inluded. The mapping is hosen suh that the densityg behaves in a similar way as the propagator. Below are the mappings belonging to thedi�erent propagator types [58℄.� Propagator with vanishing width 1x�m2 :The expliit expressions for the mapping x = h(r) and the resulting density arewritten as follows,h(r;m2; �; xmin; xmax) = [r(xmax �m2)1�� + (1� r)(xmin �m2)1��℄ 11�� +m2;gx(x;m2; �; xmin; xmax) = 1� �[(xmax �m2)1�� � (xmin �m2)1��℄(x�m2)� (C.6)for m2 < x and � 6= 1,h(r;m2; �; xmin; xmax) = �[r(m2 � xmax)1�� + (1� r)(m2 � xmin)1��℄ 11�� +m2;gx(x;m2; �; xmin; xmax) = �(1� �)[(m2 � xmax)1�� � (m2 � xmin)1��℄(m2 � x)� (C.7)for m2 > x and � 6= 1 andh(r;m2; �; xmin; xmax) = exp�r ln(xmax �m2)� (1� r) ln(xmin �m2)�+m2;gx(x;m2; �; xmin; xmax) = 1�ln(xmax �m2)� ln(xmin �m2)�(x�m2) (C.8)for � = 1.� Breit-Winger propagator 1x�m2+im� :The variable x is mapped toh(r;m2 � im�; 2; xmin; xmax) = m� tan[y1 + (y2 � y1)r℄ +m2 ; (C.9)the resulting density isgx(x;m2 � im�; 2; xmin; xmax) = m�(y2 � y1)[(x�m2)2 +m2�2℄ ; (C.10)where y1=2 = artan(smin=max �m2m� ) : (C.11)The parameter � an be tuned to optimize the Monte Carlo integration and should behosen � � 1. Other variables, i.e. the polar and azimuthal angels � and �, are generatedas following, os � = 2r � 1 ; � = 2�r : (C.12)



C.2. KINEMATICS 99C.2 KinematisFor a mutipartile proess, i.e. a partile with momentum k1 ( mass m1) deays into npartiles with momenta ki (mass mi), the phase-spae element is given byd�1!n = "n+1Yi=2 d3ki2ki0#Æ4(k1 � n+1Xi=2 ki) : (C.13)This proess an be desribed by 3n � 4 independent variables. In order to obtain thekinematis we treat the multipartile proess as taking plae via asade deays, wherethe intermediate states are unstable partiles whih then deay to others and eventuallyform the �nal states partiles. Hene a mutipartile proess an be omposed by isotropipartile deays, whih are desribed as follows.One partile with momentum k1 deays into two partiles with momenta k2 and k3,masses m2 and m3. The polar angle � and azimuthal angle � in the rest frame of thedeaying partile are hosen to be the suitable integration variables. The phase-spaeelement is de�ned asZ d�(k1; m22; m23) = Z d3k22k20 d3k32k30 Æ(4)(k1 � k2 � k3)= �1=2(k21; m22; m23)8k21 Z 2�0 d� Z 1�1 d os � ; (C.14)� is de�ned as follows,�(x; y; z) = x2 + y2 + z2 � 2xy � 2yz � 2xz : (C.15)Using the Monte Carlo method, the angles have to be mapped to the random numbers as(C.12), hene the density an be written asgd(k21; m22; m23) = 2k21�1=2(k21; m22; m23)� : (C.16)Sine the laboratory frame usually does not oinide with the rest frame of the deayingpartile, the Lorentz transformation is introdued [70℄. The Lorentz transformation ofmomentum k into the rest frame of the partile with momentum p is de�ned byk0 = B(; �)k ; (C.17)where  = p0m , � = j~pjm , and m =pp2; the expliit formula for B(; �) an be written asB(; �) = 0BB�  0 0 �0 1 0 00 0 1 0� 0 0  1CCA : (C.18)



100 APPENDIX C. MULTI-CHANNEL MONTE CARLO METHODThe inverse Lorentz transformations is de�ned by replaing ~p by �~p,k = B(;��)k0 : (C.19)The orientation of the oordinate system an be arbitrarily hosen beause the deayis isotropi. The momentum of the outgoing partile an be written ask = R(�; �)B(;��)k0 ; (C.20)with the expliit rotationR(�; �) = 0BB� 1 0 0 00 os� sin� 00 � sin� os� 00 0 0 1 1CCA0BB� 1 0 0 00 os � 0 sin �0 0 1 00 � sin � 0 os � 1CCA= 0BB� 1 0 0 00 os � os� sin� sin � os�0 � os � sin� os� � sin � sin�0 � sin � 0 os � 1CCA : (C.21)
For example, a 1! 4 proess an be expressed as 3 isotropi deays (see Figure C.1):k1 ! k2 + k345 ; k345 ! k3 + k45 ; k45 ! k4 + k5 ; (C.22)where k345 = k3 + k4 + k5, k45 = k4 + k5 . The phase-spae element an be written asZ d�1!4 = Z d�(k1; k22; k2345)d�(k345; k23; k245)d�(k45; k24; k25)dk245dk2345= Z (k245)max(k245)min Z (k2345)max(k2345)min �1=2(k21; k22; k2345)8k21 �1=2(k2345; k23; k245)8k2345 �1=2(k245; k24; k25)8k245dk245dk2345 Z 2�0 d�1 Z 1�1 d os �1 Z 2�0 d�2 Z 1�1 d os �2 Z 2�0 d�3 Z 1�1 d os �3 ; (C.23)with (k245)min = (m4 +m5)2 ; (k245)max = (m1 �m2 �m3)2 ;(k2345)min = (m3 +qk245)2 ; (k2345)max = (m1 �m2)2 :

k1 k2 k3 k5k345 k45 k4
Figure C.1: The 1! 4 proess expressed as 3 isotropi deays



C.2. KINEMATICS 101Similarly to the 1 ! 4 proess, the phase-spae element of the 1 ! 3 proess an bewritten as, Z d�1!3 = Z d�(k1; k22; k234)d�(k234; k23; k24)dk234= Z (k234)max(k234)min �1=2(k21; k22; k234)8k21 �1=2(k234; k23; k24)8k234 dk234Z 2�0 d�1 Z 1�1 d os �1 Z 2�0 d�2 Z 1�1 d os �2 : (C.24)
The deay width of the 1! n proess is de�ned asd�1!n = 1(2�)3n�4 12m1 Z X���M ���2d�1!n ; (C.25)where M is the matrix element of all the diagrams for this proess, it is squared andaveraged over the spin of the external partiles. The prodution proess, i.e. the 2 ! nproess, is treated analogously.



102 APPENDIX C. MULTI-CHANNEL MONTE CARLO METHODC.3 Multi-Channel ApproahThe ontributions of the real photon bremsstrahlung an be expressed as (4.28). Thesingular part is separated by the phase-spae-sliing method and alulated analytially.The �nite part is alulated by the Monte Carlo method. The amplitude of the real pho-ton bremsstrahlung has di�erent propagators orresponding to di�erent diagrams. Thesepropagators behave di�erently in di�erent phase-spae regions. Therefore, in order to ob-tain a stable numerial result and to redue the Monte Carlo integration error, we use amulti-hannel Monte Carlo method [57, 58℄.In the ase of the n-body deay, the deay width is expressed in (C.25). For eah typeof propagator we hoose a suitable variable set xk, the deay width an be expressed asd�1!n = Z f(xk)�(xk)dxk ; (C.26)where f(xk) = 1(2�)3n�4 12m1 X��M ��2(xk) (C.27)and �(xk) is the phase-spae density. Aordingly a mapping xk = hk(r) with the randomnumber 0 � ri � 1 is hosen, d�1!n = Z 10 f(hk(r))g(hk(r))dr : (C.28)The resulting density g(hk(r)) = 1�(hk(r))�hk(r)�r (C.29)desribes the partiular behavior of this propagator. All densities g(hk(r)) are ombinedinto one total density gtot whih is expeted to smooth the integrand over the whole inte-gration region. The phase spae integral (C.26) an be written asd�1!n = MXk=1 Z dxk�(xk)g(xk) f(xk)gtot(xk)= MXk=1 Z 10 dr f(hk(r))gtot(hk(r)) : (C.30)The total density is de�ned as gtot(xk) = MXk=1 g(xk) ; (C.31)where M is the number of the mappings (hannels).



C.3. MULTI-CHANNEL APPROACH 103An exampleFor the deay ~�02 ! ~�01l�l+, we have 14 hannels. Eah hannel smoothes a partiularbehavior of a propagator. The hannels for interferene ontributions are not inluded. A
~�02 (k1) l�(k3) l+(k4)~�01 (k2)(k5)~l+1Figure C.2: An example of diagram of the deay ~�02 ! ~�01l�l+diagram is shown as an example in Figure C.2. The phase spae integral an be deomposedas Z d� = Z (k235)max(k235)min dk235 Z (k224)max(k224)min dk224 Z d�(k1; k235; k224)d�(k35; k23; k25) Z d�(k24; k22; k24) ; (C.32)where k35 = k3 + k5, k24 = k2 + k4. The upper and lower limits on the variables k235 andk224 are (k235)min = (k235)ut ; (k235)max = (m~�02 �m~�01 �ml)2 ;(k224)min = (m~�01 +ml)2 ; (k224)max = (m~�02 �m35)2 :wherem35 =pk235. The infrared and ollinear singularities are exluded by the ut (k235)ut.For the SPS1a parameter set where ~l1 an be on shell, the variables k235 and k224 are mappedvia k235 = h(r1; m2l ; �; (k235)min; (k235)max) ;k224 = h(r2; m2~l1 � im~l1�~l1 ; 2; (k224)min; (k224)max) ; (C.33)where the funtion h has been de�ned in (C.6) and (C.9). The total density for this set ofmappings isg = gx(k224; m2~l1 � im~l1�~l1 ; 2; (k224)min; (k224)max)gx(k235; m2l ; �; (k235)min; (k235)max)gd(m2~�02; k235; k224)gd(k224; k22; k24)gd(k235; k23; k25) ; (C.34)where the densities gx and gd are de�ned in (C.6), (C.10) and (C.16), respetively. Thedensity in (C.34) desribes the propagator of the diagram in Figure C.2. Other diagramsfor the deay ~�02 ! ~�01l�l+ have been shown in Figure 4.5. Their variables and mappingsare hosen similarly to this example.



104 APPENDIX C. MULTI-CHANNEL MONTE CARLO METHOD



Appendix DFeynman DiagramsIn this appendix we present the generi Feynman diagrams for the virtual orretions ofthe deays ~�02 ! ~�01l�l+(l = e; �; �). These Feynman diagrams are lassi�ed into vertexdiagrams, self-energy diagrams and box diagrams. The notations are as follows.Leptons E = f�e; e; ��; �; �� ; �gSleptons ~E = f~�e; ~e; ~��; ~�; ~�� ; ~�gGauge Bosons V = f; Z;W�gNeutral Higgs Bosons and Goldstone Boson �0 = fh0; H0; A0; G0gHiggs Bosons and Goldstone Bosons � = f�0; H�; G�gNeutralinos and Charginos ~� = �~�0i ; ~��j 	 (i = 1; � � �4; j = 1; 2)MSSM Fermions F = fE; u; d; ; s; t; b; ~�gMSSM Salars S = n ~E; ~u; ~d; ~; ~s; ~t;~b; �oFadeev�Popov Ghost U = �uZ; u�	 :
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106 APPENDIX D. FEYNMAN DIAGRAMS

~�02 ~�01l� l+~l+s SFF ~�02 ~�01l� l+~l+s FSS ~�02 ~�01l� l+~l+s V~�E ~�02 ~�01l� l+~l+s E~EV
~�02 ~�01l� l+~l+s ~�V~E ~�02 ~�01l�l+

~l+sSF F ~�02 ~�01l�l+
~l+sFS S ~�02 ~�01l�l+

~l+sV~� E
~�02 ~�01l�l+

~l+sE~E V ~�02 ~�01l�l+
~l+s~�V ~E

~�02 ~�01l� l+~l+s ~�02 ~�01l� l+~l+sFigure D.1: Vertex Feynman diagrams for ~�02 deay into ~�01 and two leptons l�l+ via thethe exhange of the sleptons ~l+s , s = 1; 2 labels the slepton mass eigenstates. The diagramsin the last line are the orresponding ounterterm diagrams.
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~�02 ~�01l+ l�~l�s SFF ~�02 ~�01l+ l�~l�s FSS ~�02 ~�01l+ l�~l�s V~�E ~�02 ~�01l+ l�~l�s E~EV
~�02 ~�01l+ l�~l�s ~�V~E ~�02 ~�01l+l�

~l�sSF F ~�02 ~�01l+l�
~l�sFS S ~�02 ~�01l+l�

~l�sV~� E
~�02 ~�01l+l�

~l�sE~E V ~�02 ~�01l+l�
~l�s~�V ~E

~�02 ~�01l+ l�~l�s ~�02 ~�01l+ l�~l�sFigure D.2: Vertex Feynman diagrams for ~�02 deay into ~�01 and two leptons l�l+ via theexhange of the sleptons ~l�s , s = 1; 2 labels the slepton mass eigenstates. The diagrams inthe last line are the orresponding ounterterm diagrams.
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~�02 l�~�01 l+Z SFF ~�02 l�~�01 l+Z FSS ~�02 l�~�01 l+Z VEE ~�02 l�~�01 l+Z E�V
~�02 l�~�01 l+Z EV� ~�02 l�~�01 l+Z �lWW ~�02 l�

~�01l+
VSF F ~�02 l�

~�01l+
VFS S

~�02 l�
~�01l+

VV~� ~� ~�02 l�
~�01l+

V~�V � ~�02 l�
~�01l+

V~�� V ~�02 l�
~�01l+

V~�V V
~�02 l�~�01 l+Z ~�02 l�~�01 l+VFigure D.3: Vertex Feynman diagrams for ~�02 deay into ~�01 and two leptons l�l+ via thethe exhange of the gauge bosons V . The diagrams in the last line are the orrespondingounterterm diagrams.
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~�02 ��~�01 �+�0 SFF ~�02 ��~�01 �+�0 FSS ~�02 ��~�01 �+�0 VEE ~�02 ��~�01 �+�0 EV�
~�02 ��~�01 �+�0 E�V ~�02 ��~�01 �+�0 EVV ~�02 ��

~�01�+
�0SF F ~�02 ��

~�01�+
�0FS S

~�02 ��
~�01�+

�0V~� ~� ~�02 ��
~�01�+

�0~�V � ~�02 ��
~�01�+

�0~�� V ~�02 ��
~�01�+

�0~�V V
~�02 ��~�01 �+�0 ~�02 ��~�01 �+�0Figure D.4: Vertex Feynman diagrams for ~�02 deay into ~�01 and ���+ via the exhangeof the neutral Higgs bosons and Goldstone boson �0. The diagrams in the last line arethe orresponding ounterterm diagrams. The Higgs intermediate states are negletd forl = e; �.
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~�02 ~�01l� l+~l+s ~l+tS ~�02 ~�01l� l+~l+s ~l+tV ~�02 ~�01l�
l+~l+s ~l+t~�E ~�02 ~�01l� l+~l+s ~l+t�~E

~�02 ~�01l�
l+~l+s ~l+t~EV ~�02 ~�01l+ l�~l�s ~l�tS ~�02 ~�01l+ l�~l�s ~l�tV ~�02 ~�01l+

l�~l�s ~l�t~�E
~�02 ~�01l+ l�~l�s ~l�t�~E ~�02 ~�01l+ l�~l�s ~l�t~EV

~�02 ~�01l� l+~l+s ~l+t ~�02 ~�01l+ l�~l�s ~l�tFigure D.5: Self-enery diagrams for the deays ~�02 ! ~�01l�l+ in the ase of the sleptonmixing, s(t) = 1; 2 labels the slepton mass eigenstates. The diagrams in the last line arethe orresponding ounterterm diagrams.
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~�02 l�~�01 l+Z VS ~�02 l�~�01 l+Z VV ~�02 l�~�01 l+�0 VFF ~�02 l�~�01 l+�0 VSS
~�02 l�~�01 l+�0 Vu�u� ~�02 l�~�01 l+�0 VVV ~�02 l�~�01 l+�0 V�V ~�02 l�~�01 l+Z VFF
~�02 l�~�01 l+Z VSS ~�02 l�~�01 l+Z Vu�u� ~�02 l�~�01 l+Z VVV ~�02 l�~�01 l+Z V�V
~�02 l�~�01 l+Z V ~�02 l�~�01 l+�0 VFigure D.6: Self-enery diagrams for Z � V and �0 � V mixing. The diagrams in the lastline are the orresponding ounterterm diagrams.
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~�02 ��~�01 �+�0 �0S ~�02 ��~�01 �+�0 �0V ~�02 ��~�01 �+�0 �0FF ~�02 ��~�01 �+�0 �0SS
~�02 ��~�01 �+�0 �0UU ~�02 ��~�01 �+�0 �0VV ~�02 ��~�01 �+�0 �0�V ~�02 ��~�01 �+Z �0FF
~�02 ��~�01 �+Z �0SS ~�02 ��~�01 �+Z �0u�u� ~�02 ��~�01 �+Z �0VV ~�02 ��~�01 �+Z �0�V
~�02 ��~�01 �+�0 �0 ~�02 ��~�01 �+Z �0Figure D.7: Self-enery diagrams for �0��0 and Z��0 mixing, where the Higgs intermediatestates are negletd for l = e; �. The diagrams in the last line are the orrespondingounterterm diagrams.
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~�02 ~�01l�l+FS SF ~�02 ~�01l�l+SF FS ~�02 ~�01l�l+~�� VE ~�02 ~�01l�l+~�V �E
~�02 ~�01l�l+~EE EV ~�02 ~�01l�l+V~� ~�~E ~�02 ~�01l�l+~�V VE ~�02 ~�01l+l�FS SF
~�02 ~�01l+l�SF FS ~�02 ~�01l+l�~�� VE ~�02 ~�01l+l�~�V �E ~�02 ~�01l+l�~EE EV
~�02 ~�01l+l�V~� ~�~E ~�02 ~�01l+l�~�V VE ~�02 ~�01l�l+FS SF ~�02 ~�01l�l+SF FS
~�02 ~�01l�l+E~E V~� ~�02 ~�01l�l+~�V ~EE ~�02 ~�01l�l+~EE ~�V ~�02 ~�01l�l+V~� E~EFigure D.8: Box Feynman diagrams for ~�02 deay into ~�01 and two leptons l�l+.
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