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Prüfer der Dissertation: 1. Univ.-Prof. Dr. Peter B̈oni
2. Univ.-Prof. Dr. Winfried Petry

Die Dissertation wurde am 04.04.2006 an der Technischen Universität München
eingereicht und durch die Fakultät für Physik am 25.04.2006 angenommen.





Dedicated to
Laurick Moriel, Shirel Hodiya and H́elène.





Abstract

Critical magnetic fluctuations in localized and itinerant magnets have been studied by
means of bulk methods and small angle scattering of polarized neutrons. The effect of
three and four-spin correlations corresponding to the dynamical and spontaneous chiral-
ity, respectively, on the critical behavior is discussed.
Results of spin fluctuations in the critical temperature range of the Heisenberg ferromag-
net EuS are presented. We used the inclined magnetic field geometry in SANS experiment
to induce the chirality in EuS and thus determine the three-spin correlation function. Two
contributions to the critical scattering were studied close toTC = 16.5 K. The polariza-
tion dependent symmetric contribution originates from the pair correlation function and
asymmetric contribution that is caused by the three-spin correlation function and depends
on the polarization. We proved that the critical spin fluctuations are strongly affected by
the magnetic field as the temperature goes toTC . The correlation lengthξ is suppressed
according to the scaling lawξ = a0(gBµB/TC)1/z. We determined the dynamical critical
exponentz = 2.1 ± 0.1. Due to the effect of dipolar interactions the value ofz devi-
ates from the value predicted by the theoryz = 2.5. However our results are in good
agreement with those obtained in previous studies by means of triple axis spectroscopy.
Therefore the inclined geometry in SANS is an efficient and an alternative method to the
conventional triple-axis spectrometer for the determination of critical exponents.
The chiral fluctuations in the itinerant weak magnet MnSi were studied by AC, DC mag-
netization, specific heat and by magnetic small angle neutron scattering. Due the lack
of a centre of symmetry the magnetic moments are arranged along a left-handed spiral
as a result of the Dzyaloshinskii-Moriya interaction. We demonstrated that the incom-
mensurate magnetic peaks evolve with increasing temperature into diffuse scattering that
is mainly concentrated in rings around the nuclear Bragg peaks. The ring of the critical
scattering was found to be anisotropic so that the critical spin fluctuations obey the scaling
hypothesis in the easy magnetization direction namely the〈±1,±1,±1〉. The scattering
is fully polarized for~q ‖ ~P0 and depolarized for~q ⊥ ~P0 proving the chiral nature of the
spin fluctuations and the single handedness of the magnetic spiral. We have determined
the critical exponentsβc = 0.44(1) andνc = 0.64(3) that are in agreement with values
predicted for a chiral universality class.
In the presence of a magnetic field we studied the wave-vector and spin reorientation
phase transitions at low temperatures. We studied the magnetic behavior of MnSi in the
so-called A-phase, that is located close toTc in low fields region. The specific heat data
shows a tiny anomaly at the border of the A-phase characteristic of a well defined phase
transition. We observed a ring of scattering intensity in the A-phase. These results in-
dicate that magnetic structure in the A-phase cannot be interpreted in terms of an abrupt
change of orientation of a simple helical modulation.





Contents

Abstract v

1 Motivation and Goal of this Investigation 1

2 Magnetic Phase Transitions and Critical Fluctuations 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Description of Critical Phenomena . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Critical Exponents and Universality Class . . . . . . . . . . . . . 7
2.2.2 Chiral Critical Exponents . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Critical Spin Fluctuations in Magnetic Systems . . . . . . . . . . . . . . 10
2.3.1 Spin Fluctuations in Localized Magnetism . . . . . . . . . . . . 10
2.3.2 Spin Fluctuations in Itinerant Magnetism . . . . . . . . . . . . . 12

2.4 Magnetic Reorientation Transitions . . . . . . . . . . . . . . . . . . . . . 14

3 Experimental Methods 19
3.1 Measurements of Bulk Properties . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Magnetic Scattering . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Magnetic Scattering by Small Angle Neutron Scattering . . . . . . . . . . 27
3.3.1 Conventional Approach to Critical Exponents . . . . . . . . . . . 28
3.3.2 The Inclined Geometry in Small Angle Neutron Scattering . . . . 29

3.4 Instrumental Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 The SANS-2 Diffractometer at FRG-1 Reactor of the GKSS . . . 33
3.4.2 The Double Axis Diffractometer MIRA at FRM-2 . . . . . . . . 34

4 Induced Magnetic Chirality in EuS 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Crystal Structure and Magnetic Properties of EuS . . . . . . . . . 38
4.1.2 Previous Studies on EuS . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Results of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Discussions of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS CONTENTS

4.4.1 Pair Correlation Function . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Three-Spin Correlation Function . . . . . . . . . . . . . . . . . . 48

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Critical Magnetic Scattering from the Itinerant Magnet MnSi 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Review of Previous Findings on MnSi . . . . . . . . . . . . . . . . . . . 56
5.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Results of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 Bulk Measurements on MnSi . . . . . . . . . . . . . . . . . . . 61
5.4.2 Magnetic Neutron Scattering from MnSi . . . . . . . . . . . . . 63

5.5 Discussions of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.1 Critical Spin Fluctuations in MnSi . . . . . . . . . . . . . . . . . 67
5.5.2 New Magnetic Phase Transitions in MnSi? . . . . . . . . . . . . 70

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Effect of Magnetic Field on the Magnetic Structure of MnSi 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Results of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Bulk Measurements . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Small Angle Polarized Neutron Scattering from MnSi . . . . . . 80

6.4 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.1 Spin and Wave-vector Reorientation belowTc . . . . . . . . . . . 85
6.4.2 Field Induced Disorder of the Helix in the A-Phase . . . . . . . . 87

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusions and Outlook 89

References 91

A List of Abbreviations and Symbols 97

B List of Publications 99

Acknowledgements 107



Chapter 1

Motivation and Goal of this
Investigation

In all things of nature there is something of the marvelous.
Aristotle

Magnetic materials can be classified into localized and itinerant electron models. The
localized spin model is one of the models for understanding the magnetism of matter. In
this model, electrons which carry the magnetic moment localize at atomic positions and
the magnetic structure is determined by the interactions between the localized magnetic
moments. This is established to be the case in magnetic insulator like EuS and in the
majority of rare-earth metals. The Heisenberg type inter-atomic interactionJSiSj is used
in this model also known as the Heisenberg model.
If the electrons that carry the magnetic moment are free to move in the crystal as it is
the case in transition metals, the magnetic properties are thought to be determined by the
band structure whithin the Stoner theory. This model is called the itinerant electron or
band model. In the case of itinerant weak ferromagnetism, the Stoner model does not
explain the fact that the susceptibility follows the Curie-Weiss theory above the Curie
temperature. The theory of Moriya et al. [1] explains satisfactorily the spin fluctuations in
itinerant weak ferromagnetic materials (MnSi, ZrZn2, Ni3Al, Sc3In are typical examples)
at finite temperatures including the temperature dependence of the susceptibility.
With our enhanced understanding of the fundamental theory of magnetism these materi-
als now form what is probably the most important testing ground of the theory of phase
transitions that is considered as one of the challenges of modern physics.
The physical properties of a magnetic material are related to the time and spatial spin cor-
relation functionG(r, t), which is the Fourier transform of the dynamical susceptibility
χ(q, ω), whereq andω represent the wave vector and energy of the magnetic fluctuations,
respectively. For the characterization of magnetically ordered compounds three physical
parameters are necessary namely the ordering temperature, the magnetic moment and the
spin correlation length.
Traditionally the pair correlation function is used to described the critical behavior. How-
ever in magnetic materials three and four spin correlations are present due to the spin
chirality.
In extremely simple terms, chirality means “handedness”, that is the existence of left/right
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opposition. The human hand is just one of the many examples of chirality in nature. Chi-
rality has been recognized to play an important role not only in living systems (organic
molecules, proteins) but also in magnetism.

Figure 1.1:Electron in the presence of
a magnetic field. Its spin starts to rotate
in a certain direction.

An electron in a magnetic field~B will start to rotate in a certain direction as illustrated in
Fig. 1.1.
The quantum mechanical amplitude obtains a complex factor with its phase determined
by the vector potential~A corresponding to~B = ∇× ~A. In magnetic materials, the analo-
gous complex factor may occur when an electron moves along non coplanar spin config-
urations and the effective magnetic field is represented by the spin chirality, namely the
solid angle subtended by the spins. Chirality in magnetic material arises spontaneously
from spin interactions or is induced by an external magnetic field. Recently Braun et al.
reported on the emergence of quantum soliton chirality in the Ising quantum antiferro-
magnet CsCoBr3 [2]. They first applied a magnetic field to remove degeneracy of the
chiral states and used polarized neutrons to distinguish different chirality.

Figure 1.2: Spontaneous spin chiral-
ity has been observed in MnSi. The he-
licity is found to be left-handed. The
scattering pattern is obtained above the
critical temperature on a SANS diffrac-
tometer.

In this thesis we investigate the spin fluctuations close to the critical temperature in local-
ized and itinerant magnets. In order to study the effect of chirality on the critical behavior
we choose a typical Heisenberg magnet EuS where we induced the chirality by applying
an external magnetic field. Another magnetic material we use is the itinerant electron
system MnSi with an intrinsic chirality as depicted in Fig. 1.2.
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The thesis is organized as follows: Chapter 2 is intended to give a short review of the ba-
sic concepts of critical phenomena and magnetic phase transitions. Chapter 3 deals with
a general presentation of the experimental techniques used for these investigations. Par-
ticular emphasis is given to the method of “inclined geometry” used to study the induced
chirality. In Chapter 4 we present the critical spin fluctuations in the localized magnet
EuS. We discuss the effect of two- and three-spin correlation (induced chirality) on the
critical behavior of the system. The results are compared with previous studies on triple
axis spectroscopy. Chapter 5 describes the critical fluctuations due to the four-spin corre-
lation (spontaneous chirality) in the itinerant weak ferromagnet MnSi. Chapter 6 presents
results of the effect of magnetic field on the spiral structure at low temperatures and in the
vicinity of the critical temperature. Conclusions and outlooks are given in Chapter 7.
The meaning of the symbols and abbreviations which are often used in the text is de-
scribed in the Appendix A.





Chapter 2

Magnetic Phase Transitions and
Critical Fluctuations

Not only is the universe stranger than we imagine, it is stranger than we can
imagine

Sir Arthur Eddington

2.1 Introduction

Phase transitions play an essential role in everyday life. In a given system a phase transi-
tion can take place involving a non-zero amount of heat (latent heat) that is released while
the substance is cooled through an infinitesimally small temperature interval around the
transition temperature. This type of phase transitions is usually called first-order transi-
tions. Phase transitions that do not involve latent heat are called continuous transitions or
second-order phase transitions. They are particularly interesting since typical length and
time scales of fluctuations diverge when approaching the critical point. These divergences
and the resulting singularities of the order parameters are characteristic of the critical be-
havior.
In this chapter we will focus on phase transitions in magnetic systems and briefly intro-
duce the basic concepts of critical fluctuations. We refer to the text book of Stanley [3]
for a detailed description.

Andrews discovered in 1862 a very special point in the phase diagram of carbon diox-
ide. At a temperature about31◦C and a pressure of73 at, the properties of the liquid and
vapor phases became indistinguishable. In the neighborhood of this point carbon diox-
ide strongly scattered light. Andrews called this point the critical point and the strong
light scattering the critical opalescence. Later, Pierre Curie (1895) noticed that ferromag-
netic iron also shows such a critical point which is called today the Curie point. It is
located at zero magnetic field and a temperature of about770◦ C, the highest temperature
for which a permanent magnetization can exist at zero field. Due to the direction of the
magnetization different phases that are indistinguishable appear at this temperature. This
phenomenon, that has been classified under “thermal equilibrium phase transitions”can
be very well described qualitatively by the Landau theory of phase transitions [4] and are
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well understood. The discovery of new interesting transitions in chiral magnetic systems
has attracted great scientific interest to this field. In this thesis we investigate equilibrium
phase transitions occuring in magnetic systems with intrinsic or induced chiral symmetry.

2.2 Description of Critical Phenomena

For the description of critical phenomena and phase transitions, one can make use of the
intrinsic properties of the system such as internal energyU that is described byU =
F − TS, the free energyF defined asF = kBT ln Z, the entropyS, the magnetization
M defined by

M = −
(

∂F

∂B

)
T

, (2.1)

and the specific heatC defined as

C = −T

(
∂2F

∂T 2

)
B

, (2.2)

whereT is the temperature, andB the external magnetic field.
According to Landau and Lifshitz [4], we can distinguish between two types of phase
transitions denoted first-order and second-order, or discontinuous and continuous, respec-
tively. Usually a continuous phase transition is characterized by an order parameter, a
concept introduced by Landau. An order parameter is a thermodynamic quantity that is
zero in the disordered phase and non-zero and unique in the ordered phase. The choice
of an order parameter is related to a particular phase transition. In the case of a magnetic
transition the order parameter is the magnetization. If a singularity appears in the order
parameter at a well define critical point, it will have an effect on an entire region around
the critical point: a so called critical region. The size of this critical region depends on the
materials, but is usually below and above the critical temperature or pressure [3] that the
response functions are signifcantly affected. Therefore it is not required that the system
is exactly at its critical point in order that the system exhibits remarkable behaviour. It is
for this reason that critical phenomena are particularly interesting.
In case the system approaches the critical point, the spatial correlations of the order pa-
rameter fluctuations become long ranged. For magnetic systems the correlation lengthξ
is defined as the distance over which the magnetic moments perceive each other. Close
to the critical point the correlation length diverges asξ ∝ τ−ν whereν is the critical
exponent due to the correlation length and the variableτ = (T − Tc)/Tc is the reduced
temperature.

Critical Fluctuations

We consider fluctuations in the order parameterM . These fluctuations are given byM −
〈M〉 and they describe the deviation ofM from its average at a pointr in the material.
Furthermore they are tied to the similar fluctuations at the neighboring positionr′. The
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mathematical description of the magnetic fluctuations is given by the correlation function
defined by

G(r, r′) = 〈[M(r)− 〈M(r)〉][M(r′)− 〈M(r′)〉] (2.3)

As the temperature approachesTc, the fluctuations become increasingly important and
they strongly depend on the spatial dimensionality of the system.

2.2.1 Critical Exponents and Universality Class

Near the critical point the behavior of a system can be represented by power laws of
the deviations of thermodynamic variables from their values at the critical point, hereby
defining the critical exponents. The critical behavior of a system at a particular phase
transition is completely described by a set of critical exponents. In continuous phase
transitions, the equilibrium variables behave in terms of the reduced temperatureτ as

C = C0|τ |α, for B = 0 (2.4)

M(T ) = M0|τ |β, τ → 0, for B = 0 (2.5)

χ(T ) = χ0|τ |−γ, τ → 0, for B = 0 (2.6)

ξ(T ) = |τ |−ν (2.7)

B ∝ |M |δ, B → 0, τ = 0 (2.8)

(2.9)

whereα, β, γ, ν, δ, andη are the static critical exponents. The typical time scale for
a decay of the fluctuations is the correlation timeτc which diverges by approaching the
critical point via the relationτc ∝ ξz, wherez is the dynamical critical exponent.
One of the particular features of a second order phase transition is their universality: All
critical exponents are the same for entire classes of phase transitions which may occur
in very different physical systems. Theses classes are called universality classes and are
determined only by the dimension of the order parametern, the spatial dimensionality
of the systemd and the range of the interaction. For a model system belonging to the
same universality class, the corresponding critical exponents of a phase transition can
be calculated by renormalisation group theory. The mechanism behind universality is
the divergence of the correlation length.The values of the most commonly used critical
exponents from different model systems are listed in Tab. 2.1.

Scaling Hypothesis

The critical exponents are related via scaling laws and the correlation function as well as
the temperature range of the fluctuations scale with the correlation length of the system.
The critical exponent are connected by the scaling relations

2− α = 2β + γ (2.10)

2− α = β(δ + 1) (2.11)
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Parameter Physical quantity Ising X-Y Heisenberg

D spin-dimensionality 1 2 3
d space dimensionality 3 3 3
γ correlation length 1.2378 1.316 1.388
ν susceptibility 0.6312 0.669 0.707
α specific heat 0.106 -0.01 -0.121
β magnetization 0.326 0.345 0.367
δ critical isotherm 4.78 4.81 4.78
η Fischer exponent 0.039 0.03 0.037

Table 2.1: Critical exponents for various universality classes with short range interactions
as taken from Refs. [5, 6].

The exponents of the correlation length and the correlation function are connected by the
hyperscaling relations

2− α = dν (2.12)

γ = (2− η)ν (2.13)

The dynamical critical exponentz is completely independent from all others since statics
and dynamics are decoupled in classical statistics. In the case of isotropic Heisenberg
ferromagnets, dynamic scaling states that the critical frequency of the spin fluctuations
behaves as

ω(q, ξ) = qzΩ(qξ) (2.14)

where the dynamic critical exponent isz = d+2−η
2

. Hered is the spatial dimension of
the system. Ω(q, ξ) is a dynamical scaling function that followsΩ(q, ξ) → A as Tc

approaches.A is a constant. The stiffness constantD ∼ ξ(2−d+η)/2 vanishes at the crit-
ical temperature, a phenomenon known as renormalisation of the spin waves. Therefore
hydrodynamic and dynamical scaling as shown in Fig. 2.1 allow one to determine the
behavior of the system nearTC [7]. The impact of the correlation length in the spin corre-
lation function has been demonstrated in the well-known review article by Halperin and
Hohenberg (1977) [8]. As illustrated in Fig. 2.1, in the(q, κ)-plane, three regions can
be distinguished, in which the spin correlation function has different asymptotic behav-
iors. The shaded region (a), whereκ/q � 1 andT < TC , corresponds to the situation
where the wavelength of the spin fluctuations is much larger than the correlation length.
This region is called hydrodynamic, since the dynamics of the system can be described
by macroscopic equation of motion for spin densities. The region (c) is also related to the
long-wavelength or hydrodynmic regime, but in the paramagnetic phase. The region (b)
is the critical regime where phenomena occur on a small scale (κ/q � 1) when compared
to the correlation length and the hydrodynamic description of the system is not applicable
anymore. The spin correlation function is assumed to merge at the linesκ = q. This
region is accessible by neutron scattering.
In the case of the Heisenberg ferromagnet, the Hamiltonian is rotation invariant and a
spontaneous symmetry breaking appears in the ordered phase since the magnetization
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Figure 2.1: Graph from Halperin and Hohenberg showing the macroscopic domain of wave
vectorq and correlation lengthξ. In the shaded regions the correlation functions have different
characteristic behaviors.(a) Low temperatures hydrodynamic region:qξ � 1, T > TC (b) the
critical region:qξ � 1, T ∼ TC (c) the high temperature hydrodynamic region:qξ � 1, T < TC .

points in a preferred direction. This effect is responsible for the divergence of the trans-
verse and longitudinal susceptibility belowTC . Please note that in the mean field approx-
imation the longitudinal susceptibility does not diverge belowTC .

2.2.2 Chiral Critical Exponents

The predictions of Kawamura [9] on the existence of new universality classes for magnetic
systems with chiral symmetry motivated several theoretical and experimental investiga-
tions of critical phenomena in helical magnets. In spite of some experimental validation
of the hypothesis of new chiral universality classes, Kawamuras predictions are still sub-
ject of controversy. Azaria et al. [10] suggest that the lack of universality of experimental
results from Ho, Dy and Tb can be understood as the consequence of a tricritical mean-
field behavior for the Heisenberg-like spin-order. In any case, the chirality influences the
critical behavior by modifying the conventional critical exponentsα, β, γ andν. New crit-
ical exponentsβc, γc andνc originate from the chirality, the chiral susceptibility and the
chiral correlation length, respectively. Most of the recent experimental studies on stacked-
triangular antiferromagnets CsMnBr3 [11], RbMnBr3 [12] and rare-earth helimagnets Ho,
Dy [13] appear to support the theoretical predictions of Kawamura. The values of chiral
critical exponents as predicted theoretically are summarized in Table 2.2

βc γc νc Φc

X-Y stacked 0.45± 0.02 0.77± 0.05 0.55± 0.02 1.22± 0.06
Heisenberg 0.55± 0.04 0.72± 0.08 0.60± 0.03 1.27± 0.1

Table 2.2: Critical exponents for chiral universality classes as taken according to Ref. [14]
.
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Comparing the value of the chiral exponents with those of the conventional universality
classes, the exponentα andβc in the chiral case is clearly larger than the standard values,
while γc andνc are smaller. The differenceβc − 2β = 0.137 has been found experimen-
tally [15]. The obtained chirality exponents also satisfy the scaling relations as predicted
by the renormalization group analysis

αc + 2βc + γc = 2 (2.15)

This observation, as well as the finding that the chirality ordering occurs simultaneously
with the spin ordering supports the scenario suggested by the renormalization group the-
ory, namely, the chirality ordering ind = 3-dimensional chiral systems is parisitic to the
spin ordering and is controlled by a new chiral crossover exponentΦc = βc + γc whose
value can be estimated asΦc = 1.22± 0.06 [14].
Chiral critical exponents in in 3d-antiferromagnet CsMnBr3 have been determined ex-
perimentally by Plakhty [11], who findβc = 0.42, γc = 0.84 andΦc = 1.28 in good
agreement with theoretical predictions.

2.3 Critical Spin Fluctuations in Magnetic Systems

Magnetism in solids originates from the magnetic moment of the atoms of the system.
The magnetic moment itself is caused by the spin and angular momenta of the electron.
Two opposite concepts have been proposed to describe the magnetism: the localized and
itinerant models. The former start with the electronic states localized in real space, while
the latter start with states localized in reciprocal space [16].
In this section we briefly introduce some general aspects of the theory of spin fluctuations
in localised and itinerant electron magnetism. We refer to the book of Moriya for detailed
information [16].

2.3.1 Spin Fluctuations in Localized Magnetism

The idea of localized moments was introduced by Weiss. He argued that the individual
magnetic moments interact between each other and therefore can align. He explained this
interaction by a mean molecular field. Heisenberg attributed this field to the quantum
mechanical exchange between neighboring atoms as schematically illustrated in Fig. 2.2.
If ~Si is the atomic spin operator at a given position, the Heisenberg model for magnetism
is described by

H =
∑
i,j

Jij
~Si

~Sj (2.16)

whereJij is the inter-atomic exchange interaction between theith andjth spins. Within
this model the Curie-Weiss law predicting a linear temperature dependence of the inverse
magnetic susceptibilityχ−1 ∝ (T − Tc) is naturally explained. Moreover, systems with
localized moments are expected to have a saturation magnetizationMS, which is an inte-
ger multiple of the Bohr magnetonµB.
If dipolar forces between spins are taken into account, an additional interaction term can
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Figure 2.2:Heisenberg model of magnetism based on localized moments.

be introduced, which is purely of magnetic origin. Therefore the Heisenberg Hamiltonian
is modified as

Hdipolar = −
∑
i,j

∑
α,β

Uαβ
ij Sα

i Sβ
j (2.17)

hereUαβ
ij = Jijδ

αβ + g(δαβ/r3
ij − 3rα

ijr
β
ij/r

5
ij) whereg is the strength of the dipolar

interaction that are long range and anisotropic andrij is the distance between theith and
jth spins. The dipolar interaction leads to new critical behaviour.

Critical Behaviour

A theory to explain the critical behaviour of a spin system near the transition temperature
Tc has been proposed by Kadonoff [17]. This theory claims that the long range corre-
lation of spin fluctuations in the vicinity ofTc is responsible for any singularity in the
order parameter, namely for the magnetic phase transition. This statement is related to the
existence of a spin correlation length.
In the ordered phase of a single domain isotropic ferromagnet, the direction of the mag-
netization defines three natural directions connected with diagonal components of the
susceptibility tensor. There is one component directed alongM that is denotedχ‖(q)
and two components transverse toM , namelyχ⊥1,2(q). In the case of an isotropic ferro-
magnet, the static susceptibilty belowTc is predicted within the mean field theory to vary
as

χ‖(q) ∝ 1/(q2 + κ2) (2.18)

χ⊥1,2(q) ∝ 1/q2 (2.19)

whereq is the reduced scattering vector andκ the correlation length belowTc. In the
paramagnetic phase the correlation length has the same temperature dependence as the
one belowTc.
Close toTc and at small wave-vectorsq, the mean field approximation fails to describe
the actual behaviour of the system since the fluctuations are neglected. Furthermore the
static susceptibilityχ(q) is connected with the spin correlation function as

χ(q) ∝ qη−2f(κ/q) (2.20)

whereκ is the inverse correlation length,q is the wave vector andη the Fischer exponent
that is the correction term to the mean field approximation. According to Ref.[18] its
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value isη = 0.042 ± 0.014 in the case of 3D ferromagnets. Eq. 2.20 shows that the spin
correlation function at any temperature nearTc and wave-vectorq is determined by the
static properties atTc via the scaling functionf(κ/q) that take an Ornstein-Zernicke form
[7]

f(κ/q) =
1

1 + (κ/q)2
. (2.21)

Beyond mean field approximation, the spin dynamics of an isotropic ferromagnet can be
described within the framework of mode coupling theory. In the hydrodynamic regime
(q/κ � 1) the parallel susceptibility is modified as follows

χ‖(q) ∝ 1/qκ (2.22)

Therefore in the limitq → 0 the longitudinal susceptibility is predicted to diverge at
any temperature belowTc. So far the crossover between the hydrodynamic regime and
the critical regime (see Fig. 2.1) can not be observed experimentally since theq/κ-range
needed is rather difficult to achieve by means of neutron scattering.

2.3.2 Spin Fluctuations in Itinerant Magnetism

An alternative approach to understand the magnetism in metals is given by the itinerant
model as proposed by Stoner [19]. One of the main reasons to propose a different model
is that the saturation magnetizationMS is not an integer multiple ofµB. In the Stoner
model, magnetism in metals arises from a splitting between up- and down-spin bands and
it is favored when the density of states is high at the Fermi level as shown schematically
in Fig. 2.3.

Figure 2.3:Stoner model of itinerant
magnetism. The shaded region is oc-
cupied by electrons. If the magnetiza-
tion increases, the kinetic energy of an
electron system splits the energy bands
for up- and down-spin electrons (lower
panel) [16].

The magnetic susceptibility of the interacting system can be obtained by determining the
total magnetization of the system and taking the derivative

χStoner =
∂M

∂H
=

g2µ2
B

2
ρ(EF )

1

1− Uρ(E)
(2.23)

whereρ(E) is the electron density of states at the Fermi level andg2µ2
Bρ(EF )/2 is the

Pauli paramagnetic susceptibility. The magnetic susceptibility of an interacting system
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is enhanced by the Stoner factor1/[1 − Uρ(EF )] when compared with the free electron
susceptibility. IfUρ(EF ) > 1 then the system becomes ferromagnet. However, in this
form, the Stoner model fails to reproduce the measuredTc and the observed Curie-Weiss
law aboveTc. Indeed , the temperature dependence of the magnetization is expressed as

M(T ) = M(0)
(
1− (T/Tc)

2
)1/2

(2.24)

This expression fits the actual behavior of itinerant magnets only nearT = 0. The effect of
critical spin fluctuations and spin waves is expected to modify significantly the magnetic
equation of state at finite temperatures.

Random Phase Approximation (RPA)

In a better approximation the dynamical spin susceptibility of itinerant systems is given
by the Heisenberg equation of motion for spin densities that are solved within a random
phase approximation. This theory predicts that in addition to the spin-flip excitations
(Stoner excitations), collective spin excitation may exist at long wavelengths.

χRPA(q, ω) =
χ∆0(q, ω)

1− Iχ∆0(q, ω)
(2.25)

with

χ∆0(q, ω) =
∑

κ

f(Eκ+q + ∆)− f(Eκ −∆)

Eκ − Eκ+q − 2∆ + ω
(2.26)

where2∆ is the energy gap between the spin-up and spin-down electron band andf(E)
the Fermi-Dirac distribution function.I = U/N is an effective interaction between the
electrons. In this form, the RPA theory is a valuable contribution in understanding the itin-
erant magnetism. However, serious discrepancies between theoretical and experimental
data still presist.

SCR Theory of Spin Fluctuations

The development of the self-consistent renormalization theory (SCR) [16] was mostly
motivated by the results of magnetic susceptibilities in weakly ferromagnets as ZrZn2 and
Sc3In, where the data showed a good agreement with the Curie-Weiss behavior. The local
moment picture is clearly inadequate and the RPA theory cannot explain the Curie-Weiss
law consistently. Moriya and Kawabata proposed the SCR theory, which takes into ac-
count the spin fluctuations and it requires that the susceptibility and the free energy of the
system must be calculated at the same time, so that the static as well as long wavelength
limit of the dynamic susceptibility agrees with that calculated from the renormalized free
energy. For this purpose the dynamical susceptibility is modified as follows [16]

χ(q, ω) =
χ0(q, ω)

1− Iχ0(q, ω) + λMI(q, ω)
. (2.27)

HereλMI(q, ω) represents the mode-mode coupling of the spin fluctuations.λMI(q, ω)
contributes to produce aT 3/2 dependence of the magnetization at low temperatures and
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the Curie-Weiss law forχ(0, 0) above the Curie temperature. In other words this term pre-
dicts long wavelength spin fluctuations in the itinerant electron system like in the Heisen-
berg system.
In weak itinerant ferromagnets like MnSi, only fluctuations with long wavelengths are
important.χM0(q, ω) andλ(q, ω) are expressed as [20]

χ0(q, ω) = χ0(0, 0)(1− Aq2 + ... + iB(ω/q)) (2.28)

λMI = λ(0, 0) = λ0T. (2.29)

Therefore Eq. 2.27 can be expressed as [20]

χ(q, ω) =
cωq

Γ2
0q

2[κ(T )2 + q2]2 + ω2
(2.30)

whereκ2(T ) = κ2
0(T/Tc − 1), Γ0 = A/B andκ2

0 = λ0Tc/I0χ0A. This is equivalent to
the double Lorentzian expression for paramagnetic spin fluctuations in an itinerant spin
system [16]

χ(q, ω) =
cq

κ(T )2 + q2

Γ(q)ω

Γ(q)2 + ω2
(2.31)

if Γ(q) is expressed as

Γ(q) =
cq

χ(q)
= Γ0q(κ

2 + q2). (2.32)

The difference with the localised spin system appears in the expression forΓ(q). In the
localized spin system,Γ = cq2/χ(q) is proportional to the square of the wave-vectorq
[16].

Moriya and Makoshi [21, 22] developed the SCR theory of helical spin structure.
They showed that the helical structure is stable when the system has a small magnetic
anisotropy and the spin ordering vector is small. Therefore the spin structure is predicted
to be conical in an external magnetic field. The cone angle decreases with increasing
field but the amplitude of the local spin density remains unchanged until the cone angle
becomes zero at the critical fieldBC , beyond which simple ferromagnetism arises. The
magnetization increases forB > BC with increasing magnetic field as in weak ferromag-
netic systems. The SCR theory successfully describes several properties of weak itinerant
ferromagnets. These weak itinerant systems like for example MnSi are characterized by
(i) a low Curie temperature (usually lower than50 K), (ii) they follow a Curie-Weiss law
quite precisely in the temperature intervalTc < T < 10Tc (iii) the magnetization inferred
from the Curie-Weiss law is several times lower than the saturation magnetization.

2.4 Magnetic Reorientation Transitions

After the work of Nakinishi et al. [23] and Bak and Jensen [24] who show the impor-
tance of the crystal structure of itinerant systems like MnSi in stabilizing the helical spin-
density-wave. Plumer and Walker [25] proposed a mean-field theory to explain the spin
and wave-vector rotation induced by an external magnetic field in itinerant magnets.
Shown in Fig. 2.4 is a schematical representation of a typical helical spin density wave.
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Figure 2.4: Schematic representation of an
helical spin density wave that is described by
Eq. 2.33.

By assuming that the external magnetic field is homogeneous, the spin density is defined
as

s(r) = m + S exp(i~q · ~r) + S? exp(−i~q · ~r) (2.33)

wherem is the homogeneous contribution to the spin density which is induced by the ex-
ternal magnetic field.~q is the wave vector.S is called the spin-density-wave polarization-
vector. The free energy is assumed to be a function ofS, m and~q. All terms of the
ordersS2 m2, qS2, q2S2, m2S2, S4 andm4, which are invariant under the operations of
the crystal symmetry group and the operationS → S? and~q → −~q are considered. The
resulting free energy is simplified to [25]

F =
1

2
A0m

2 + AqS
2 + B0(m

2S2 + S4 +
1

4
m4)

+B′m2
⊥S2 + (

1

2
D̃q2S2 +

1

2
ES4)g −m‖H cos θ −m⊥H sin θ (2.34)

g = 1 + β4
1 + β4

2 + β4
3 (2.35)

where all coefficients depend only on temperature.β1, β2 andβ3 are the direction cosines
of q relative to the crystallographic axes,θ is the angle betweenq and the external field
H; m‖ andm⊥ are the components ofm parallel and perpendicular toq, respectively.
Dm is the Dzyaloshinskii-Moriya term. For smallq values the expansion coefficientsA0

andAq = A0 + A1q
2 + Dmq are expressed byA0 = a(T − T0) andAq = a(T − Tq)

with T0 ≤ Tq because the details of the Dzyaloshinskii-Moriya interaction of the form
2Dm~q · (Sx × Sy) are hidden inAq [25, 26]. A andD̃ are the anisotropy coefficients,
that are considered to be much smaller than the corresponding coefficients to the isotropic
terms thereforeE � B andD̃q2 � A0 − Aq.
In the absence of an external magnetic field, the free energy is minimized withq ‖ 〈111〉
if the coefficient ofg is positive. If g < 0, the spiral is stabilized withq along〈100〉.
The chirality of the magnetic helix is controlled by the sign of the coefficientDm of the
Dzyaloshinskii-Moriya term.
In the presence of a finite applied magnetic field~H the Zeeman coupling− ~H · ~m is
included. Plumer and Walker [25] argue that a coupling between~q and ~H exists through
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the relation
−~m · ~H + B′m2

⊥S2 (2.36)

where the first term may be minimized by a configuration where~q is parallel to ~H, a
situation, which is in agreement with experimental results [26]. The coefficientB′ must
be positive so thatS will be forced to lie perpendicular to an applied magnetic field [25].
The termB′m2

⊥S2 tends to cause~q to become parallel to the magnetic field direction
(sinceB′ > 0). The competition between this term and the other anisotropy terms leads
to the gradual rotation of the wave vector towards the field with increasing field. The
theories developped for MnSi by Plumer and Walker [25] and Kataoka and Nakanishi
[27] have both predicted that the rotation of a wave-vector~q initially along the〈001〉
direction should be about the〈1 − 10〉 direction so that~q is rotated towards the〈111〉
direction. Walker [28] suggest that there is not one, but two successive phase transitions
as the magnetic field is reduced in magnitude. At the first transition, the wave-vector
~q initially along 〈001〉, begins to rotate about〈010〉 or 〈100〉; subsequently, a second
transition takes place in which the~q begins to rotate towards the〈111〉 direction when the
magnetic field is reduced below a certain critical value.

Paramagnetic Fluctuations in Systems with DM Interaction

Maleyev [29] proposed a theoretical description of the paramagnetic fluctuations in sys-
tems without inversion symmetry based on the Bak-Jensen model [24], which takes into
account the exchange interaction, the Dzyaloshinskii-Moriya (DM) interaction and the
anisotropic exchange interaction. The bilinear part of the free energy density has been
derived [29]

W (q) =

(
J

2
(q2 + κ2

0)δαβ + iDmεαβγq

)
Sα

q Sβ
−q +

Am

2
(q2

x|Sx
q |2 + q2

y|Sy
q |2 + q2

z |Sz
q |2),

(2.37)
where the terms with the coefficientsJ , Dm and Am correspond to the isotropic ex-
change interaction, the Dzyaloshinskii-Moriya interaction and the anisotropic exchange
interaction, respectively.κ2

0 = C0(T − Tc0) andTc0 are the non-renormalized square of
the inverse correlation length and the transition temperature, respectively. According to
Maleyev [29, 30], the Dzyaloshinskii-Moriya interaction and the anisotropic exchange
interaction are of first and second order in the spin-orbit interaction. As a result we have
J > Dma > Am, wherea is the lattice constant [29]. In the exchange approximation
for the magnetic susceptibility we have the well-known expressionχαβ = χ0δαβ and
χ0 = T/[J(q2 + κ2)] and using Eq. 2.37 for the susceptibility tensor we obtain

χαβ(q) = χ0(q)δαβ + χ0(q)Kαµ(q)χµβ(q), (2.38)

where the tensorK = KA +KS. Its antisymmetric partKA
µβ = −i(Dm/T )qεγµβ. For the

symmetric part we haveKS
xx = −(Am/J)q2

x, KS
yy = −(Am/J)q2

y, KS
zz = −(Am/J)q2

z .
The solution of Eq.2.38 has the form [29, 31]

χαβ =
χ0

Det

(
δαβ −

2ikq

q2 + κ2
0

q̂εγαβ −
(

2kq

q2 + κ2
0

)2

q̂αq̂β

)
, (2.39)
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whereq̂ = ~q/|~q|, k = |Dm|/J = 2π/d andd is the length of the spiral. Here, in the
numerator small terms of the orderAmq2

x,y,z/[J(q2 + κ2
0)] were omitted [29] and

Det = 1−
(

2kq

q2 + κ2

)2

− 4k2q4

(q2 + κ2
0)

3

Am

J
(q̂4

x + q̂4
y + q̂4

z) (2.40)

here we retain only one term proportional to the small ratioAm/J as it has cubic sym-
metry that breaks the full rotational symmetry of the problem. It is responsible for the
orientation of the helices with respect to the cubic axes. Using these equations we can
write

χαβ =
T

JZ

(
(q2 + κ2

1 + κ2)δαβ − 2ikqγεγαβ −
(2qk)2

q2 + κ2
1 + κ2

qαqβ

)
(2.41)

Z = [(q + k)2 + κ2]

(
(q − k)2 + κ2

1 −
q2k2

q2 + κ2
1 + κ2

Am

J
(q̂4

x + q̂4
y + q̂4

z)

)
,(2.42)

whereκ2
1 = κ2

0 − κ2 = C0(T − Tc1) andTc1 = Tc0 − κ2/C0. As the ratio|Am|/J is very
small the last term in the expression forZ is important only in the vicinity ofTc. As a re-
sult forκ2

1 > |Am|/J critical fluctuations are maximal atq = k and uniformly distributed
on a ring. However very close toTc, whenκ2

1 ≤ |Am|/J the last term determines the form
of the critical fluctuations.
The expression̂q4 = q̂4

x + q̂4
y + q̂4

z is a cubic invariant. It has two extrema equal to1
and1/3 for ~q along the edges and the diagonals of the cubic unit cell, respectively. As a
result forAm > 0 we have a transition to a state with the helix axes along the edges (for
example in the case of FeGe [32]) and forAm < 0 along the diagonals as it is the case for
MnSi [33] and follwing expression is obtained

Z = [(q + k)2 + κ2]

(
(q − k)2 + κ2 +

k2|Am|
2J

(
q̂4 − 1

3

))
, (2.43)

whereκ2 = κ2
1 + k2|Am|/6J . Here, in the first factor and in the last term we neglected a

small difference betweenκ2
1 andκ2 and setq = k, respectively.

The Eqs. 2.37 to 2.43 are expected to give a qualitavely description of the paramagnetic
spin fluctuations in itinerant systems and they will be used to analyse the experimental
data from MnSi.
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Experimental Methods

Imagination is more important than knowledge.
Albert Einstein

3.1 Measurements of Bulk Properties

In the vicinity of the Curie temperature the magnetisation diverges. A suitable method is
required. One must also impose more stringent requirements on the system for control-
ling the temperature. In this section we present briefly the principle of measurement of
macroscopic magnetic properties relavant for the present work.

3.1.1 Magnetization

The DC and AC magnetization of a ferromagnetic sample may be measured in several
ways. Here we mention three of them. These are the force method, the torque method
and the induction technique, the latter being the most common in modern instruments
like the Quantum Design Physical Property Measurement System [34] used for our in-
vestigations. A schematic view of experimental set-up used for AC and DC magnetic
measurements on PPMS is shown in Fig. 3.1.
In DC magnetometry using induction technique, the sample moves either by vibration or
by one-shot extraction relative to a set of pickup coils. A typical extraction speed for the
PPMS is100 cm/s. The magnetization is obtained by magnetising the sample with a con-
stant magnetic field and measuring the voltage induced by the sample in the pick-up coils.
The detected voltage is proportional to the magnetic flux through the coils. The magnetic
momentM(H) of the sample is obtained through a numerical integration of the voltage
profile and then fitting the data to the known waveform of a dipole moving through the
pick-up coils.
In AC magnetic measurements, a small AC drive magnetic field is superimposed on
the DC field, causing a time-dependent moment in the sample. The field of the time-
dependent moment induces a current in the pick-up coils making measurement without
sample motion possible [34]. The AC field amplitude range available on the PPMS is
2 mOe to15 Oe with a frequency range from10 Hz to 10 kHz. The magnetometer cir-
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Figure 3.1:Schematic view of experimental set-up used for AC and DC magnetic measurements
on PPMS. Left: Cut view of the dewar. Middle: Sample chamber. Right: Schematic of PPMS
magnetic coil set [34].

cuitry is configured to detect only in a narrow frequency band corresponding to the fre-
quency of the AC drive field. At very low frequencies AC magnetometry is most similar
to DC magnetization. At higher frequencies, the AC moment of the sample is different
from the DC magnetization curve due to dynamic effects in the sample. Therefore the AC
susceptibility is also called dynamic susceptibility. The sample magnetization may lag
behind the drive field, an effect that is detected by the detection circuitry. Thus, the AC
magnetic susceptibility yields two quantities, the magnitude of the susceptibility,χ, and
the phase shift,φ = arctan(χ′′/χ′) via χ = χ′ + iχ′′. Hereχ′ is an in-phase, or real part
of the susceptibility andχ′′ is an out-of-phase, or imaginary component of the suscepti-
bility and gives indications of dissipative processes in the sample. AC magnetometry is
very sensitive to small changes in the dynamic susceptibility and thus a powerful tool to
explore the magnetic phase transitions.
The accuracy of both AC and DC magnetic measurements varies from3.10−5 emu to
1.10−8 emu. The available temperature is1.9 K < T < 400 K with an accuracy better
than0.05 K.

3.1.2 Specific Heat

The specific heat anomaly is a key signature of any phase transition. Indeed a careful
examination of the specific heat anomaly in magnetic systems is expected to yield useful
information regarding the mechanism of magnetic phase transitions. The PPMS uses a
sensitive technique to measure the specific heat via the relaxation method developed by
Hwang et al. [35]. The principle of this method is illustrated on Fig. 3.2. The heat capac-
ity C is measured at constant pressure (p < 10−4 Torr) at zero or applied magnetic field
employing this method. It controls the heat added and removed from a sample while mon-
itoring the resulting change in temperature as illustrate in Fig. 3.3. A heater connected to
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the sapphire platform of the sample holder induces a constant heat pulse in the sample.
The relaxation is then measured at the equilibrium temperature.

Figure 3.2:Illustration of the relaxation method for specific heat measurements. A heat pulse is
applied on the sample and the time relaxation of the sample temperature is measured.

Figure 3.3:Heat capacity puck with sample platform and connecting wires are visible. A sapphire
platform is hold by eight wires that are used to measure the time relaxation.

Fig. 3.3 shows the heat capacity puck used in the PPMS heat capacity option as used
for this work. The vacuum grease Apiezon N from Quantum Design is used in the tem-
perature range from1.9 − 320 K and the silicon oil based Wakefield compound 120-2 is
used for thermal coupling. Typical sample masses are in the range1− 200 mg. Due to a
Schottky anomaly of the wire material that changes in the signal, the sample holder wires
connecting the outer frame and the sapphire platform must be calibrated in each magnetic
field belowT = 20 K. Thermal contact between the sample and the sample platform is
provided by a thermal joint compound whose contribution to the sample specific heat has
to be calibrated for each sample at each applied magnetic field.

3.2 Neutron Scattering

3.2.1 Introduction

The magnetic moment of neutrons make it a powerful tool for investigating physical prop-
erties of condensed matter. The interaction of the neutron spin with the electronic and nu-
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clear spin of the system provides information about structural properties as well as lattice
dynamics and magnetic fluctuations.
In this section we present an overview of the principle of magnetic neutron scattering and
introduce some concepts and formula that are relevant for the present investigation. We
refer to the text books of Squires, White and Lovesey [36, 37, 38] for detailed informa-
tions.

Magnetic neutron scattering plays a crucial role in the determination and compre-
hension of the microscopic properties of a large number of magnetic systems, from the
fundamental nature and symmetry of magnetically ordered materials to elucidating the
magnetic characteristics essential in applications.
Small angle neutron scattering is a technique to explore the magnetism over longer dis-
tances than conventional diffraction, and is ideal to study domain structures and other
spatial variations of the magnetization density on length scales from1− 1000 nm.
The general idea of a neutron scattering experiment is to place a sample in the beam of
incident neutron of massmn, with a well-defined wave vectorki and known incident
flux and to measure the number of neutrons scattered in a solid angledω (as illustrated
Fig. 3.4) with an energy betweenEf andEf + dEf .
The non-polarized neutron scattering cross section is then given by

(
dσ2

dΩdEf

)
λi→λf

=
kf

ki

(
mn

2πh̄2

)2 ∑
λi,λf ,σiσf

pλi
|〈kfσfλf |V̂ |kiσiλi|2δ(h̄ω + Eλi

− Eλf )

(3.1)
whereσ andλi,f are the spin state and quantum state of the sample respectively.pλi

is
the probability that the sample is in the initial state|λi〉. V̂ is the scattering potential that
represents the scattering between the neutron and the sample.h̄ω is the energy transfer
which is defined via the conservation law of energy and momentum

h̄ω =
h̄2

2m
(k2

i − k2
f ) = Ei − Ef (3.2)

h̄ ~Q = h̄(~ki − ~kf ) (3.3)

whereEi andEf are the initial and final energy of the neutron respectively.q represents
the scattering vector.

Nuclear Scattering

The nuclear forces between the neutron and the nuclei are very short range when com-
pared with the typical inter-atomic spacing. It is represented by the Fermi pseudo-potential

V̂ (r) =
∑

j

2πh̄2

m
bjδ(~r − ~rj) (3.4)
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Figure 3.4: Geometry of a scattering experiment. An incident neutron with wavelengthki is
scattered into a solid angledΩ.

wherebj is the scattering length of a nucleusi located at positionrj. This leads to the
differential cross section(

d2σ

dΩdEf

)
=

(
d2σ

dΩdEf

)
coh

+

(
d2σ

dΩdEf

)
incoh

(3.5)

= NScoh(q, ω)
σcoh

4π

kf

ki

+ NSincoh(q, ω)
σincoh

4π

kf

ki

(3.6)

whereScoh represents the coherent scattering of elements that are correlated in space and
time, whereasSincoh gives only the space correlation of the same nuclei at different times.
The coherent scattering gives rise to interference effects which provide information about
the collective excitations of the material. In the case of SANS the incoherent contribution
to the scattering process is negligeable due to the small angles. For our investigations the
nuclear scattering is not relevant since we focus on the magnetic scattering.

3.2.2 Magnetic Scattering

Due to the spin of the neutron, there is a strong interaction between the magnetic moment
of the neutron and the magnetic field~B created by the unpaired electrons in the sample.
The magnetic interaction operator between sample and neutrons is given by:

Um = −~µ · ~B = −γµN~σ · ~B (3.7)

whereγ = −1.913 is the gyro-magnetic ratio andµN = 5.051× 10−27J/T is the nuclear
magneton. Note that~µ is anti-parallel to~σ. An unpaired electron atr = 0 produces at the
positionsrj a magnetic field that is given by:

~Bj = ∆× {µe × ~rj

|~rj|3
}+

(−e)

c

~ve × ~rj

|~rj|3
. (3.8)

The first term (~µe = −2µB
~S) describes the field due to the magnetic moment of the

electron and the second term describes the magnetic field due to the orbital motion of the
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electron.ve is its velocity. The Fourier transformation of Eq. 3.8 gives the expression for
the magnetic scattering lengthp of an electron

p = −γr0~σ ·
(

~q × (~S × ~q) +
i

h̄|~q|
(~Pe × ~q)

)
= −γr0

g

2
~σ ·
(
~q × (~S × ~q)

)
. (3.9)

wherer0 = 0.2818 · 10−12 cm is the classical radius of the electron withe momentum~Pe.

Eq. 3.9 shows that only spin components perpendicular to the scattering vector~q con-
tribute to the magnetic scattering cross section. This provides an important selection rule
for distinguishing between magnetic and nuclear scattering.

In order to obtain the cross section for magnetic scattering, we replaceUm in Eq. (3.7)
by

Um =
2πh̄2

m

∑
j

pjFj(q)δ(~r − ~rj(t)) (3.10)

wherepj is the magnetic scattering length of an electron,Fj(q) is the magnetic form factor
of the atomj at the positionrj. Fj(q) is given by the Fourier transform of the normalized
spin density of the unpaired electrons, i.e.Fj(q = 0) = 18. Because the atomic orbitals
are extended in space,F (q) is peaked near the forward direction, but not necessarly at
q = 0.
The magnetic cross section for neutrons with the initial and final spin statesσi andσf ,
respectively, becomes(

dσ

dΩdEf

)σi→σf

mag

=
kf

ki

(γr0
g

2
F (q))2

∑
α,β

(δαβ − qαqβ)Sαβ(q, ω), (3.11)

whereSαβ(q, ω) is the magnetic scattering function.

Sαβ(~q, ω) =
1

2πh̄

∫ ∑
ij

〈Sjα(0)Siβ(t)〉〈e−i~q·~rj(0)ei~q·~ri(t)〉e−iωtdt. (3.12)

Its correspond to the Fourier transform of the magnetic pair correlation function that gives
the probability to find a magnetic moment at the positionrj at the timet. Therefore, the
magnetic cross section depends on magnetic as well as on vibrational degrees of freedom.

Generalized Spin Susceptibility

The magnetic scattering function is also directly related to the imaginary part (=) of
the wave-vector and frequency dependent susceptibilityχαβ(~q, ω) via the fluctuation-
dissipation theorem by:

Sαβ(~q, ω) =
h̄

π

1

1− e−h̄ω/kBT
=χαβ(q, ω). (3.13)
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This theorem implies that the magnetic moment of the neutron acts on the sample as a
frequency and wave-vector dependent magnetic field~B(~q, ω), monitoring the response of
the sample:

Mα(q, ω) =
∑

β

χαβ(~q, ω) ~Bβ(~q, ω), (3.14)

whereχαβ(~q, ω) is the generalized susceptibility tensor. The fluctuation-dissipation the-
orem allows the direct comparison ofχαβ as obtained by neutron scattering with bulk
measurement ofχ.
The magnetic scattering cross-section can therefore probe the magnetic response func-
tion of a system. Neutron scattering is a resonance technique and therefore the quantity
measured is the response functionS(~q, ω) for modes of the system with scattering vector
~q and frequencyω. The fluctuation-dissipation theoremS(~q, ω) is related to the fluctu-
ations of the system in thermal equilibrium: this is exactly the properties of interest for
the study of phase transitions. In the case multiple scattering is neglected, one obtains the
Fourier-transformed pair correlation functionSα

0 (0)Sβ
R(t) between the componentsα and

β of spins at positionR and in timet.

Bragg Scattering

For a system with long-range magnetic order, the magnetic moments of the unpaired
electrons align spontaneously. Such materials behave as if small magnetic moments were
located at each atomic site with all the moments ordered in space. These moments give
rise to Bragg diffraction of neutrons. The expression of the differential cross-section can
be derived for magnetic Bragg scattering [37](

dσ

dΩ

)
Bragg

= N
(2π)3

v0

∑
τ

(δ(~q − ~τ)|FM(~q)|2 (3.15)

where

|FM(~q)|2 =
(
γr0

g

2
〈S〉f(~q) exp−W

)2 (
1− (~q · ~S)2

)
(3.16)

This expression shows that the magnetic Bragg peaks coincides with the nuclear Bragg
peaks for ferromagnets. For a multi-domain sample the averaging process leads to〈1 −
(~q · ~S)2〉 = 2/3.

In magnetic structures like incommensurate helical magnets, the magnetic Bragg peaks
appear as satellites that are displaced from the nuclear Bragg peaks by the modulation
wave-vector~k that defines the periodicity of the arrangement of the moments, i.e. peaks
appear at positions~q = ~τ ± ~k. The displacement of the satellite peaks from the nuclear
peaks can be used to determine both the direction of the helical axis and the magnitude of
the turn angle between successive helical planes.

The major difference between the nuclear and magnetic cross section is the vectorial
dependence of the magnetic scattering on the relative orientation between~q and the direc-
tion of the magnetic magnetic moments allowing often a distinction between the nuclear
and magnetic scattering contributions without using polarization analysis.
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Scattering from a Helical Structure

Blume [39] was the first to discuss the cross section for polarized neutrons scattering from
a helical spin structure. We present here the essential part of the results from Ref. [39] as
they are related to this work. The polarized neutron cross section of the helical magnetic
structure is given by

dσ

dΩ
=

1

4
N

(2π)3

v0

(
γe2

mec2

)2

S2
0 |F (~k)|2[f+(P )δ(~k + ~q−~τ) + f−(P )δ(~k− ~q−~τ)] (3.17)

where~k is the scattering vector,~τ is the reciprocal lattice vector which is zero(000) in
the case of small angle scattering.F (k) is the magnetic form factor and the factorsf±(P )
are written as

f±(P ) = 1 + (êk · êz)
2 ± 2(~P · êk)(êk · êz) (3.18)

whereêk andêz represent the unit vectors in the direction of~k and~q respectively, and~P
is the polarization vector of the neutrons. According to Eq. 2.33, the vector~q is parallel
to êz in the case of the right-handed spiral, while~q is antiparallel toêz in the case of the
left-handed spiral.
As a result from Eqs. 2.33 and 3.17, the helical structure scatters according to the handed-
ness of the system either spin-up or spin-down neutrons under experimental conditions of
êk ‖ êz and ~P ‖ ±êk. In small angle polarized neutron scattering experiments the follow-
ing selection rule gives the chirality of the magnetic structure: (1) if~P ‖ −~k scattering
from a right-handed spiral is allowed and~P ‖ ~k is forbidden. (2) if~P ‖ ~k scattering from
a left-handed spiral is allowed while~P ‖ −~k is forbidden.

Neutron Cross Section from Paramagnetic Fluctuations

In the approximations made in the calculations in Sec.2.4, the scattering of polarized
neutrons from a magnetic helix aboveTc is given by [31, 40]

dσ

dΩ
= [rF (k)]2

T

J [(q + k)2 + κ2]

k2 + q2 + κ2 + 2kqP0

(q − k)2 + κ2 + k2U(q̂4
x + q̂4

y + q̂4
z − 1/3)

(3.19)

wherer = 5.410 × 10−13 cm, F (k) is the magnetic form factor of the unit cell,P0 is
the neutron polarization and we have taken into account for MnSi thatDm is negative
(k = |Dm|/J see Sec. 2.4), as the helix is the left-handed [33].κ is the inverse correlation
length of the spin fluctuations, and~q is the scattering vector with the coordinatesqx, qy

andqz. U = |Am|/2J . The remarkable features of this expression are

(i) This function has a singularity atq = κ. For non-polarized neutrons (P0 = 0)
this singularity itself has no preference direction in~q and therefore the scattering
intensitydσ/dΩ forms the ring aroundq = 0 with the radiusκ and the width of the
ring is of order ofκ.

(ii) For polarized neutrons (P0 ≈ 1), the scattering intensity depends on the mutual
orientation of the vectors~q andP0. In case~P0 ‖ ~q, the scattering is maximal and
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is equal to[rF (q)]2(T/J)(1/κ2) at q = κ. The singularity disappears and the
scattering intensity is minimal. Thus for polarized neutrons the scattering looks as
a half of the ring with maximal intensity at~P0 ‖ ~q.

It is convenient to determined the so-called polarization of the scattering as [41]

Ps =
σ(P0)− σ(−P0)

σ(P0) + σ(−P0)
= − 2kqP0 cos Φ

q2 + k2 + κ2
. (3.20)

It should be noted that the last two features were mentioned by Brazovskii [42], who
predicted for MnSi the first order transition if one neglects the anisotropic exchange in-
teraction.

3.3 Magnetic Scattering by Small Angle Neutron Scatter-
ing

Small angle neutron scattering (SANS) is known as a suitable technique for studying
density- and concentration fluctuations on a length scale between0.5 nm and300 nm
which corresponds to typical sizes of micro-structural features in nanoscaled materials
[43]. In addition magnetic fluctuations in domain like structures can be monitored by
SANS.
The concept and experimental set-up for SANS is very simple and schematically shown
in Fig. 3.5.

Figure 3.5:Basic schematic of a traditional SANS instrument.

From the white neutron beam produced by a reactor a small band of wavelengths∆λ is
selected, collimated and directed to the sample. The scattered neutrons are counted by a
position sensitive detector whereas the transmitted beam is absorbed in a beam stop. The
Fourier transform of the intensity distributionI(q) as function of the scattering vectorq
gives access to the correlation function in real space i.e to size, composition and magneti-
zation of the sample. Small angle neutron scattering is a special regime of smallq-values
between10−2 nm−1 and5 nm−1 which allows to investigate fluctuations on a length scale
d ∝ 2π/q ranging from1 nm to500 nm.
Elastic scattering of neutrons with wavelengthλ leads to a momentum transferQ accord-
ing to

Q =
4π

λ
sin θ (3.21)
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where2θ is the scattering angle.

3.3.1 Conventional Approach to Critical Exponents

Conventionally critical magnetic scattering is explored by a triple axis spectrometer. How-
ever in this thesis we present results of magnetic SANS experiments as an alternative
“poor-man” method to study the critical spin fluctuations.
As shown in Fig. 3.6 the triple axis instrument is composed of three main parts. First
Axis: The incoming neutrons with a wave-vector|~ki| = 2π/λi are selected out of the
white neutron beam according to Bragg’s law (2d · sin θ = n · λi) via reflection from a
monochromator crystal (e.g. pyrolytic graphite or copper).
Second Axis: The selected neutron is scattered from the sample into a solid angledΩ.
Third Axis: The scattered neutrons with a wave-vector~kf are analyzed via Bragg-reflection
from an analyzer. Finally the neutrons are counted by a detector. In most cases a3He de-
tector is used.

Figure 3.6:Schematic view of a three-axis spectrometer. The three axis consist of (i) monochro-
mator (ii) sample and (iii) analyzer.

The particular advantage of the triple axis spectrometer is that it can performe scans in
energy at a chosen fixed momentum transferQ (constant-Q method) or scans in wave
vector at chosen fixed energy transferE (constant-E method) or even scans in which both
Q andE vary in a predetermined manner. Thus precise information can be obtained on
the details of the scattering functionS(Q,ω). The scattering geometry in triple axis ex-
periment in the reciprocal space is shown in Fig. 3.7
The main disadvantage of the triple axis spectrometer is also a result of this selectivity in
measurement. Only one position in (Q,E)-space is explored at a time and since the solid
angle subtended is relatively small. The final detected signal is therefore often low and
long measurement times are required. On the other hand, due to the collimators used to
define the neutron flight paths and the possibility of shielding efficiently the detector, the
background count rate is also low. In Sec. 3.3.2 an alternative method is presented and
improved for investigation of magnetic fluctuations around the transition temperature of
magnetic systems.
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Figure 3.7:(a) Scheme of an elastic scattering process (Bragg scattering)|~ki| = |~kf |. (b) For
inelastic scattering|~ki| 6= | ~kf |. The scattering vector~Q is decomposed into a reciprocal lattice
vector~τ and the wave-vector~q of the excitation that is analyzed. The dashed boxes mark the
boundaries of the first Brillouin zone and the black circles the sites of the reciprocal lattice.

3.3.2 The Inclined Geometry in Small Angle Neutron Scattering

By means of small-angle neutron scattering with polarized neutrons one can extract valu-
able informations about the magnetic fluctuations. Apart from the well-known triple-axis
spectrometer some other method has been applied which does not require energy transfer
analysis. In the so called inclined geometry, the applied magnetic field at the sample po-
sition is inclined relative to the primary beam by the angleφ 6= π/2 [44].

Figure 3.8:Basic schematic of SANS in the so called inclined geometry.

In magnetic systems nontrivial high-order spin correlations can persist. Particularly there
are three or four-spin (in the presence of the Dzyaloshinskii-Moriya interaction) chiral
fluctuations which should be strongly enhanced in the critical region near the second order
phase transition [29, 45]. Details on the theoretical study of this method were presented
in [46]. Here we present an overview of this method.

As shown in Sec. 3.2.2, the magnetic scattering is determined by the pair correlation
function that is directly related to the imaginary part of the wavelength dependent sus-
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ceptibility χ(~q, ω). In zero magnetic fieldχ(~q, ω) the neutron scattering intensity does
not depend on the neutron polarization. In a magnetic field~B, the tensorχ(~q, ω) attains
antisymmetric parts. If~B is along thez direction we have〈SxSy〉 6= 〈SySx〉 and the cross
section depends on the initial polarization of incident neutronsP0. In small field ~B, the
antisymmetric part is proportional to~B and is determined by the three spin (〈[Sx×Sy]Sz〉)
correlation function. This chiral part of the neutron scattering gives rise to three-spin in-
teraction. Indeed the transverse component of the spin in ferromagnets saturated inz
direction, are always related to the excitations.

For small angle scattering the chiral cross section has the following form [41]:

σchiral(~q, ω) = (
2r2P0T

πω
)(~q · ~B)2=C(~q, ω), (3.22)

In this expression we have taken into account that both the dynamical chiralityC(~q, ω)

and the polarizationP0 are directed along the field~B.
In small angle neutron scattering experiment elastic components of magnetization per-
pendicular to the incident wave vectorki are visible in the detector:q⊥ = ki(θx + θy),
whereθx andθy are the scattering angles in thex andy-direction, respectively. Inelastic
contributions to the scattering process cannot be detected:q‖ = kiω/2E. Thus, no energy
analysis is performed in a conventional SANS experiment but integration over the energy
is automatically performed. Therefore in theory Eq. 3.22 has to be integrated over all
energies of the scattered neutrons. Recalling that=C(q, ω) is an even function ofω, the
integrated chiral cross section becomes zero if there is noω-odd term in the factor(~q · ~B)2

of Eq. 3.22. Such anω-odd term appears if~B is inclined with respect to the incident beam
at an angleφ as shown in Fig 3.8. Then, for the inclined field, we have

(~q · ~B)2 =
(2Eθ)2 cos2 φ + ω2 sin2 φ + 2Eθω sin 2φ

(2Eθ)2 + ω2
(3.23)

Obviously, only the third part isω odd. Hence, theω-integrated chiral cross section is
given by

σchiral(θ) =
2

π
r2P0T sin 2φ

∫ +∞

−∞

2Eθ=C(q, ω)

(2Eθ)2 + ω2
dω. (3.24)

This integral can be evaluated in the critical paramagnetic regionT > TC . According
to scaling theory all physical parameters have a scaling dimensionality determining the
general form of the corresponding correlation function. For example the pair correlation
function has the form [29]

G(q) =
1

(κa)2−η
f(

q

κ
) ≈ 1

a2(q2 + κ2)
, (3.25)

whereκ is the inverse correlation length of the critical fluctuations defined asκ = τ ν/a.
Here,τ = |T − Tc|/Tc is a reduced temperature.ν ≈ 2/3 is the critical exponent of the
correlation length anda is a length scale of order of the lattice spacing. The Ornstein-
Zernicke relation on the right-hand side of Eq. 3.25 is valid forη � 1. This is the case
for the three dimensional spin systems. Therefore, we will neglectη below.
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In a magnetic field, we have to compare the energy of the magnetic fieldgµBB
with the energy of the critical fluctuationskBTc(κa)5/2 in order to determine the con-
dition for the weak-fieldh � 1 and strong field regimeh � 1, respectively, where
h = gµBB/kBTC(κa)5/2 is a dimensionless number.

In a weak field the chiral scattering is proportional to~B. Therefore the dimensionality
is determined by the producthg(q) and following expression is obtaines in the case of
ferromagnets [47]

=C(~q, ω) =
gµBB

kBTc(κa)9/2
f [

q

κ
,

ω

Ω(q)
], (3.26)

whereΩ(q) = kBTc(qa)5/2 is the characteristic energy of the critical fluctuations with
scattering vector~q.

The dynamical chirality or induced chirality is a three spin correlation function and
it may be considered as a result of the scattering of critical fluctuation on the uniform
magnetic field [29]. From this point of view it is clear thatC(q) is a function of two
momenta, namely the momentum of the fluctuationq and the momentum of the field
qB = 0. The principle of critical factorization was formulated by Polyakov [48, 49, 50]
and is known as Polyakov-Kadanov-Wilson operator algebra. It states that in any multi-
spin correlation function, the dependence on the largest momentumq (q � κ) appears as
a factor(q/κ)−5+1/νΦ[ω/Ω(q)]. In our case, puttingν = 2/3 we obtain

=C(q, ω) =
gµBB

TC(qa)7/2(κa)
Φ[

ω

Ω(q)
]. (3.27)

In this expression we haveq = ki[θ
2 + (ω/2E)2]1/2. The dependence ofq on ω may

be neglected in the quasi-elastic approximation, if the residence time of the neutron in a
region of the size of the order of1/q is much smaller than the characteristic lifetime of
the fluctuation of the same sizeh̄/Ω(q). The corresponding condition can be expressed as

q � qin =
(2E/kBTCκa)2/3

a
. (3.28)

Hence we can replaceq by kiθ and neglectω in the denominator of Eq 3.24. Therefore,
the chiral cross section becomes

σchiral(θ) =
2

π
r2P0 sin 2φ

gµBB

2E(κa)θ2

1

κa
sgnθ. (3.29)

Often, it is convenient to normalize Eq. 3.29 by the symmetric cross sectionσ(θ) =
(2/3)r2G(Q) and one obtains

σ =
σchiral(θ)

σ(θ)
= AP0 sin 2φ

gµB

Bκ
sgn(θ). (3.30)

HereA is a constant of the order of unity. We will use Eq. 3.30 for analyzing our experi-
mental results from the isotropic ferromagnet EuS.
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3.4 Instrumental Aspects

The Available q-range of the Instruments

The momentum transferQ = 4π/λ sin θ, where2θ is the scattering angle andλ the
neutron wavelength at a given point on the detector is given by

Q(r) =
4π

λ
sin

(
1

2
arctan(r/D)

)
(3.31)

wherer is the radial distance of the point on the detector from the beam axis andD the
sample-to-detector distance. Since the wavelength range at sample position is3Å≤ λ ≤
20 Å for SANS-2, the calculated range of momentum is0.01 nm−1 ≤ Q ≤ 3 nm−1.

Instrumental Resolution

In this work a very simple approximations for the experimental resolution has been used
and is briefly described below. We assume a Gaussian distribution for each component
as generally done for calculations in spectrometer resolution [43]. Fig. 3.9 display a
schematical view of the beam geometry and the set-up used to calculated the instrumental
resolution.

Figure 3.9: Simplified view of beam geometry for a typical SANS experiment with pin-hole
apertures. The instrumental resolution is determined by the configuration of the apertures.

The radial and longitudinal resolution has two contributions. One from the angular col-
limation of the neutron beam and one from the wavelength spread of the neutrons. The
azimuthal resolution is only affected by the collimation. The total resolution is then deter-
mined by a superposition of angular divergence contribution due to the size of the entrance
slit dE, the sample slitds and their distancel, the contribution from the wavelength spread
∆λ and of detector resolution. An approximation for the total FWHM called[∆(2θ)]tot

is written as
[∆(2θ)]tot ≈

(
[∆(2θ)]2λ + [∆(2θ)]2colli + [∆(2θ)]2det

)1/2
(3.32)

where[∆(2θ)]λ = 2θ · (∆λ/λ) is the contribution to the resolution due to the wavelength
distribution. The collimation resolution is[∆(2θ)]colli = 1

l
(d2

e + d2
s)

1/2.
The scattered neutrons are counted by the 2-dimensional position sensitive detector (PSD)
into 0.7× 0.7 cm2 pixels which correspond to the spatial resolution of the detector given
as [∆(2θ)]det = deff/D with deff = 2D tan(∆(2θ)/2)/ cos2(2θ). This resolution is
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better than the size of the Bragg peak produced by the collimation and therefore can be
neglected in the calculations of the in plan resolution [43].

The q-resolution in the three directions is now given as follow

∆qrad =

(
2π

λ
[∆(2θ)]λ

)2

+

(
2π

λ
[∆(2θ)]colli

)2

(3.33)

∆qazim =

(
2π

λ
[∆(2θ)]colli

)2

(3.34)

∆qlong = (q[∆(2θ)]λ)
2 + (q[∆(2θ)]colli)

2 . (3.35)

These equations were used to calculated the instrument resolution of the SANS-2 instru-
ment as well as of the instrument MIRA.
For SANS-2 experiments we achieve a configuration given in all directions aq-resolution
∆q/q = 12%. This is a required value to resolve the magnetic helix expected atq =
0.035 Å−1 and to detect the wave vector rotation occuring in MnSi.
The q resolution for the instrument MIRA was different in radial, longitudinal and az-
imuthal directions due to the different beam divergence in these directions resulting from
the apertures and the rectangular shape of the neutron guide. The instrument was config-
ured in such a way that a radial resolution of∆q/q = 11%, a longitudinal resolution of
∆q/q = 27% and an azimuthal resolution of∆q/q = 10% could be achieved.

3.4.1 The SANS-2 Diffractometer at FRG-1 Reactor of the GKSS

The measurement of microscopic properties have been carried out partially on the SANS-
2 instrument of the GKSS Forschungszentrum in Geesthacht.
This instrument is designed to be used for scattering experiments with polarized neutrons.
The principle layout is illustrated schematically in Fig. 3.10.
SANS-2 is installed at a cold neutron guide, which is curved to filter out epithermal and
higher energy neutrons. It uses in its basic configuration a mechanical velocity selector
for monochromatisation. The standard wavelength spread is∆λ/λ = 10% (FWHM); by
tilting the selector relative to the neutron beam direction this value can be decreased to8%
or increased up to20.6%. A straight pin-hole collimation is used to tail the primary beam.
Behind the sample, in the secondary flight path, a two dimensional sensitive detector is
used to register the neutrons scattered around the primary beam. The detector is placed
into a vacuum chamber to reduced the background. The detector can be moved up to
20 m behind the sample position. In this concept the coveredq-range is a linear function
of the selected average neutron wavelength and sample-detector distance. Further the
resolution is a linear function of the wavelength spread, the collimation angle and the size
of the detection elements. These simple relations fulfill the condition of a straight-forward
choice of the appropriate instrument configuration.

Sample Environment

SANS-2 is equiped with a flexible sample environment. The experiment was carried out
with a conventional electromagnet of a maximal horizontal field of800 mT. A cryostat
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Figure 3.10: Basic schematic view and picture of small-angle neutron scattering instrument
SANS-2 at FRG-1 (GKSS) Geesthacht. The electromagnet is mounted in such a way that the
applied magnetic field was horizontal.

offers the possibility to drive the temperature down to8 K. The sample was mounted in
vacuum and insulation shields, in order to reduce the small angle background, that other-
wise arise from passing the neutron beam through isolation shilds made of aluminum.
The flux of polarized neutrons at the sample position is27 n.cm−2.s−1 for a wavelength of
0.58 nm. A goniometer for sample alignment was not available. It was difficult to adjust
the single crystal in a proper way. Therefore we performed further experiements at the
new neutron facility in Munich on the instrument MIRA.

3.4.2 The Double Axis Diffractometer MIRA at FRM-2

Fig. 3.11 shows a basic schematic of the instrument MIRA. It is a versatile instrument for
very cold neutrons (VCN) with wavelength of8 Å and above. It is situated at the cold
neutron guide NL6b in the neutron guide hall of the FRM-II.
The instrument consists of a6 m-curved (R = 84 m) 58Ni neutron guide with a cross
section of1 cm×12 cm resulting in a limiting wavelength for the guide of about8 Å. The
upper and lower face are coated with supermirrorsm = 2.
At the end of the guide the monochromator mechanics is situated inside a round shield-
ing. Currently anm = 4.3 multilayer monochromator allows to choose a wavelength
between8 Å and30 Å. After monochromatisation the neutrons enter a vacuum tube and
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Figure 3.11:Basic schematic view and picture of the instrument MIRA at FRM-2.

are scattered on the sample. The reflection geometry used is vertical, thus the sample
table performs a2θ scan. Furthermore it is equipped with a full goniometer for sample
orientation. The scattered neutrons are counted using a 2-dimensional position sensi-
tive detector. The detector is put inside a shielding chamber that is not evacuated as in
the SANS-2 instrument. Therefore the background is expected to be larger than on the
SANS-2. A slit system of4 apertures before and behind the monochromator and the sam-
ple position is used to choose a particularq-resolution. All moving parts, the detectors and
in a later stage also the polarizers are fully automated in order to control the experiment
by a computer. The whole instrument has a60 Gauss guide field of permanent magnets
for polarized neutrons. Multilayer polarizers are used for polarizing and analyzing the
neutron spins with respect to the magnetic guide field. More details on the instrument
parameters of MIRA are available in [51].
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Induced Magnetic Chirality in EuS

Natur is just enough, but men and women must comprehend and accept her
suggestions.

Antoinette Brown Blackwell

4.1 Introduction

EuS belongs to the most intensively investigated ferromagnets. Its simple fcc structure
and weak anisotropy permit description of its magnetism within the isotropic Heisenberg
model. Therefore it is interesting to study the behaviour of a typical Heisenberg system
such as EuS for three reasons. (1) It is possible to induce the magnetic chirality be ap-
plying a magnetic field. Two and three-spin correlations can be studied in the critical
temperature region. (2) There are competing exchange interactionsJ1 > 0 andJ2 < 0.
The ratio ofJ1/J2, which is of particular interest for understanding the magnetic phase
diagram of spin glass system like EuxSr1−xS is found to beJ1/J2 = −2.2± 0.1 which is,
in fact, close to the value−2 used in most theoretical works [52]. (3) The magnitude of
the exchange interactions is comparable to the dipolar interactions. They are expected to
influence the spin fluctuations of the system.
Traditionally magnetic fluctuations are studied by triple axis spectroscopy. In this thesis
we use small angle neutron scattering to investigate the magnetic critical fluctuations of
the localized ferromagnet EuS. We study the effect of the induced chirality also called dy-
namical chirality on the critical spin fluctuations in EuS using the pair correlation and the
three-spin correlation function. Both functions can be measured with small-angle scat-
tering of polarized neutrons in the inclined experimental geometry of the magnetic field.
Both contributions are studied as a function of temperature and magnetic field. Firstly,
we studied the critical scaling behavior of the pair correlation function. The temperature
dependence of the correlation length in zero field obeys the scaling lawξ ∼ τ ν , where
ν = 0.68±0.02 in agreement with previous studies [45]. From experiments in a magnetic
field at q < qd = 0.23 Å andT close toTC = 16.5 K we obtained the dynamic critical
exponentz = 2.1 ± 0.1, which is in agreement with the theoretically predicted value
z = 2. The results of our study of the pair correlation function are in good agreement
with those obtained previously [53, 49, 50]. On this basis the scattering intensity due to
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the three spin correlation (induced chirality) is studied. It is shown that in the limit of
small fields the scattering increases with increasing external magnetic field, showing the
scaling temperature behavior proportional toτ−ν with ν = 0.64± 0.04. These results are
close to those reported in the Ref. [54].
The importance of studying the high-order correlation functions should be pointed out
because in many cases the physical properties of a system are defined by interaction of
numerous neighboring particles. As a consequence, not only the pair correlation func-
tions but also many-point(three, four spins) correlation functions play fundamental roles
in the description of statistical properties of such systems and are important for condensed
matter research [49]. Numerous studies on this subject involved different theoretical con-
siderations and computer simulations [50]. Comparison of our results with previous stud-
ies allow us to improve the method of SANS with inclined geometry by determining the
critical exponents of EuS.

4.1.1 Crystal Structure and Magnetic Properties of EuS

EuS crystallizes in the fcc structure as shown in Fig. 4.1.1, the lattice parameter being
a = 5.95 Å and the moments order below the Curie temperatureTC = 16.5 K.

Figure 4.1:fcc crystal structure of EuS with a lattice constanta = 5.973 Å. The large moment of
Eu++ ions of7µB leads to strong dipolar interactions [55].

The magnetism is due to the well localized4f electrons of theEu2+-ions. The easy axis
of magnetization is the〈111〉 crystallographic direction. The divalent europium forms an
8S7/2 ground state with a stable moment of7µB (spinS = 7/2), as can be seen from spin-
density measurements [56]. In EuS, because of the relatively weak exchange interaction
and the low Curie temperatureTc = 16.5 K, the dipolar interactions in the vicinity of the
critical temperature have to be taken into account.

4.1.2 Previous Studies on EuS

The importance of the influence of the dipolar anisotropic interactions on the critical spin
fluctuations of EuS has been demonstrated for theq = 0 susceptibility [57, 58] and by
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neutron scattering [59, 53]. Along with theoretical work [60, 7] based on the mode cou-
pling approach, these results led to an almost complete description of the important effect
of the inevitable long-range dipolar interactions on the spin dynamics. The dynamic sus-
ceptibility of EuS has been investigates belowTC by Görlitz et al. [61]. They found that
for internal magnetic fields larger than the anisotropy fieldsHA(T ) of the compound, the
static susceptibilites exhibit a1/

√
H-divergence which reveals quantitatively the dom-

inance of dipolar-anisotropic spin-wave fluctuations, which is larger than the exchange
interaction. This result shows the importance of the dipolar anisotropic fluctuations be-
low TC .

Figure 4.2:q2 dependence of the inverse of the integrated intensities of the spin-wave and longitu-
dinal spin fluctuations. Data are well described by the inverse static suscestibilitiesχ−1

sw ∼ [q2+κ2
g]

(κg = 0.04 Å−1) andχ−1
z (q → 0) ∼ [q2 + κ2]. The susceptibility diverges as1/q is at rather

smallq [55].

AboveTC the dipolar fields prevent the susceptibility of the long-wavelength longitudinal
fluctuations from criticality. On the basis of theoretical and experimental studies it is
known that the paramagnetic susceptibility is given by [62, 63]

χi
p(q, T ) =

q2
d

κ2(T ) + q2 + δi,Lq2
d,

(4.1)

whereκ is the inverse correlation length forT > TC . Eq. 4.1 defines a region of dipolar
anisotropic behavior around the critical temperature(κ2(T ) + q2 ≤ q2

d) and shows that the
longitudinal fluctuations (i = L) do not diverge. In contrast, the transverse fluctuations
(i = T ) diverge and are responsible for the phase transition atTC . As a measure of the
strength of the dipolar interactions one can define a dipolar wave numberqd that can be
inferred from the inverse correlation lengthκ(T ) and the homogeneous internal suscep-
tibility above TC via the relationq2

d = χ(q = 0, T )κ2. There is a good agreement of
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theoretical predictions and experimental value of the dipolar wave vectorqd = 0.23 Å−1.
The theoretical prediction that magnetic fluctuations are still present at high temperature
far aboveTC is confirmed by experiments [64]. This is surprising since one would expect
the lifetime of the spin fluctuations to be zero and the spin correlation to vanish.
In the dipolar critical regime, where the inverse correlation length andq are smaller than
the dipolar wave numberqd, Böni et al. [55] show that the static susceptibility of the spin
waves displays the Goldstone divergence while the longitudinal spin fluctuations follow
the Ornstein-Zernicke expression giving a possible indication of a thermal mass renor-
malization at the smallestq values. They observed in agreement with predictions of the
renormalization group theory [65] indications the1/q divergence of the longitudinal sus-
ceptibility as illustrate in Fig. 4.2.
Under the assumption that the isotropic exchange interaction dominates the ordering pro-
cess, the parameters defining the static properties of EuS in the critical temperature range
agree well with the theoretical critical exponents presented on Tab. 2.1. The dynamic
properties for systems with an isotropic exchange interaction are well interpreted in terms
of the dynamic scaling hypothesis [66, 67].
The complication arises when the relativistic interactions, such as dipolar forces or anisotropic
exchange interactions are considered. The dipolar forces should gain importance in the
critical regime (see Fig. 2.1), where the inverse correlation length and the wave-vector are
small compared to the dipolar wave numberqd. The effects of dipolar forces on the spin
dynamics of Heisenberg ferromagnet have been taken fully into account in Ref. [47, 7].
An excellent agreement of the theory [60, 7] with experiments was obtained for the crit-
ical slowing down of the line widthΓ(q) observed forq → 0 andT → TC on the trans-
verse fluctuations in Fe [68] and on the transverse and longitudinal fluctuations in EuS
[53]. One important result of these studies is the crossover fromΓ(q > qd) ∼ q2.5 in the
exchange-dominated regime toΓ(q � qd) ∼ q2 in the dipolar regime.

4.2 Experimental Details

The isotopically enriched sample153EuS was assembled from approximately100 small
EuS crystals on a machined aluminum substrate. The[100] axes of all crystals were
aligned in one direction to within a precision of0.75◦[55] as illustrated in Fig. 4.3.
The average size of a single crystal is1 − 2 mm2 and the square of the whole sample
is 600 mm2. Fig.4.4 shows a picture of the sample holder and the sample used for these
studies.
The small angle polarized neutron scattering (SAPNS) experiments were performed using
the SANS-2 instrument of the research reactor FRG-1 at the GKSS-Forschungszentrum in
Geesthacht (Germany). The schematic outline of the experiment is given in Fig. 3.8. All
measurement were conducted using polarized neutrons (P0 = 0.95) of fixed wavelength
λ = 5.8 Å(∆λ/λ = 0.1) with an angular divergence of10 mrad. The scattered neutrons
were counted in aq range0.30 to 2.5 nm−1. The scattering was measured in a temperature
range14 K < T < 50 K, i.e, from below to far aboveTC . The external magnetic field
1 mT< B < 200 mT was applied at an angle ofφ = 45◦ with respect to the incident beam
ki (inclined geometry). The adiabatic condition for the transmission of polarized neutrons
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Figure 4.3:Rocking curve of theτ200 Bragg peak of the isotopically enriched sample. The overall
mosaic isη = 0.75◦ ± 0.02◦.

was sufficiently satisfied to obey the relationP0 ‖ B. Two scattering intensitiesI↑(q) and
I↓(q) were measured for the incident neutron beam polarized along (↑) and opposite (↓)
to the magnetic field.
The method of the inclined geometry allows to distinguish two contributions to the mag-
netic scattering: the symmetric polarization-independent (SPI) scattering and the asym-
metric polarization-dependent (APD) scattering. First we separated the magnetic critical
scattering from the nuclear contribution. Following the standard procedure we deter-
mined the pure magnetic scatteringIm(q⊥, T ) by subtracting from the measured intensity
the nonmagnetic background as measured atT � TC

Im(q⊥, T ) = I(q⊥, T )− I(q⊥, 50K). (4.2)

Whereq⊥ is a projection ofq onto the detector plane. In the following we will omit the
subscript “⊥”.
To separate the SPI term from the APD one, we take the sum of the measured intensities
I∑(q) = Im(P0, q) + Im(−P0, q) and average it over2π for each|~q| =

√
q2
x + q2

y. As
a consequence, the asymmetric part is averaged out and only the SPI part survives. It is
related to the pair correlation function. The polarization dependent part of the scattering
∆I(P0, q) = I(P0, q)−I(−P0, q) is asymmetric. The asymmetry is directly related to the
direction of the magnetic field~B. In the particular case of~B being in the (xz) plane (see
Fig. 3.8), the asymmetry is most pronounced along thex component of the momentum
transferqx due to the selection rules. Thus the asymmetric contribution was extracted by
taking the difference of the measured intensitiesI(±P0,±qx)

∆I(q) =
1

4
[I(P0, qx)− I(−P0, qx)] +

1

4
[I(−P0,−qx)− I(P0,−qx)]. (4.3)
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Figure 4.4:Picture showing the EuS sample and the sample holder used for SAPNS experiments.

For the analysis of the data, the SPI and the APD contributions were attributed to the pair
correlation function and the induced chirality (three spin correlation) respectively.

4.3 Results of Experiments

The maps of scattering intensity at zero field forT = 14 K for T = 16.55 K and for
T = 60 K are shown on Fig. 4.5. The magnetic scattering is distributed on distances
aboveq = 0.3 nm−1 from the direct beam (q = 0). The intensity due to magnetic scatter-
ing increases asTC approaches and is maximal atTC . As the temperature increases the
scattering intensitity is reduced considerably forT = 60 K and is dissolved to the back-
ground at temperatures aboveT = 60 K. Data have been recorded for the polarization
along (upper panel) and opposite (lower panel) to the incoming beam.
Fig. 4.6 displayed theq dependence of the pure magnetic intensityIm atTC . Clearly seen
is the1/q2 dependence (solid line) of the intensity atB = 1.4 mT.
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Figure 4.5: Maps of SANS intensity at1.4 mT (guide field) and at temperaturesT = 14 K,
T = 16.55 K andT = 60 K. Data have been recorded for the polarization along (upper panel) and
opposite (lower panel) to the incomming beam.
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Figure 4.6:Pure magnetic scattering intensity as function of the scattering vector~q for T < TC

at zero magnetic field. The first two data points were neglected during the fitting procedure.
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Figure 4.7:Maps of SANS intensity atT = 16.55 K for different magnetic fieldsB = 50 mT,
B = 150 mT andB = 200 mT. Data have been recorded for the polarization along (upper panel)
and opposite (lower panel) to the incomming beam.

The spectrum of SANS intensity as function of applied magnetic field atT = 16.55 K
is presented in Fig. 4.7 forB = 50 mT,B = 150 mT andB = 200 mT. Data have
been recorded for the polarization along (upper panel) and opposite (lower panel) to the
incomming beam. The intensity decreases with increasing magnetic field and dissappears
aboveB = 200 mT. At higher magnetic fields the intensity is decreased considerably at
B = 200 mT the maximal available field.
Fig.4.8 shows the temperature dependence of the magnetic intensity for two different
momentum transfers. It is clearly seen that the intensity has a pronounced maximum at
T ∼ TC . It is more pronounced for smallq (for exampleq = 0.5 nm−1) than for largeq
(for exampleq = 1.5 nm−1).
This behavior demonstrates the appearance of critical fluctuations and an increase of the

correlation length asT approachesTC from low and high temperatures. Theq dependence
of the intensityIm is treated in a standard way using the Ornstein-Zernicke expression

Im(q) =
Zm

q2 + κ2
, (4.4)

whereκ = ξ−1 is the inverse correlation length. The parametersZm andκ have been
obtained from the least-squares fit to the data using Eq. 4.4.
The temperature dependence ofZm andκ are shown in Figs. 4.9 and 4.10 forB = 1.4 mT
andB = 50.6 mT respectively.Zm does not depend on the magnetic field in the whole
temperature range except close toTC .
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Figure 4.8:Temperature dependence of magnetic scattering intensity at a residual magnetic field
B = 1.4 mT atq = 0.5 nm−1 andq = 1.5 nm−1.
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Figure 4.9:Temperature dependence of the parameterZm for two magnetic fieldsB = 1.4 mT
and50.6 mT. Solid lines serve only as a guide to the eye.
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Zm = χ(0)κ2 is expected to be constant at all temperatures as reported in numerous stud-
ies (q ≥ 1 nm−1) with triple axis spectroscopy [69, 53]. Our SANS data show a rather
surprising temperature dependence of the amplitude of spin fluctuationsZm.
The parameterZm exhibits a smooth growth whenT approachesTC from the high tem-
perature side. ThenZm becomes almost constant in the critical regime atTC < T <
TC(1 + τ) with τ < 0.1. Zm decreases sharply as soon as the temperature crosses the
critical temperatureTC = 16.5 K. First we guess that a possible explanation of the temper-
ature bahaviour ofZm may be related to the fact that the linewidthΓ of spin fluctuations
increases with increasing temperature and therefore for a SANS experiment where the
integration over the energy is performed, we did not integrated over all spin fluctuations.
This is not true since for EuS the linewidth of the spin fluctuations isΓ(T = TC) =
AEuSq2.5 = 0.006 meV (whereAEuS = 2.1 meV Å2.5 [53]) for q = 0.5 nm−1 is sig-
nificantly smaller than the energy of the incomming neutronsEi = 2.27 meV. It should
be noticed that our measurement was performed in the dipolar regime for0.5 nm−1 ≤
q ≤ 2.5 nm−1 while results of triple axis spectroscopy in [69, 53] are in the range1 nm−1
≤ q ≤ 3.5 nm−1. Therefore we conclude that the amplitude of the spin fluctuationsZm

may be strongly affected by the dipolar interactions. As displayed in Fig. 4.10, the cor-
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Figure 4.10:Temperature dependence of the correlation length for two magnetic fieldsB =
1.4 mT and50.6 mT. Solid lines serve only as a guide to the eye. Our data agree with previous
studies of critical properties of EuS [69].

relation lengthξ shows a sharp maximum as the temperature approachesTC . BelowTC ,
the correlation length decreases first as the contribution of the longitudinal fluctuations
decreases with decreasing temperature and increases again due to the domain formation.
When the magnetic field is applied, the maximum atTc vanishes and the transition is
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Figure 4.11: Inverse correlation lengthκ as function of the reduced temperatureτ = (T −
TC)/TC on a log-log scale atB = 1.4 mT. Solid line is a fit to data using the expressionκ =
(a)−1τν .

smeared out. The temperature dependence of the inverse correlation lengthκ is shown in
Fig. 4.11 on a log-log scale.κ obeys the scaling lawκ = (a)−1τ ν whereτ is the reduced
temperature in a range of0.005 < τ < 0.2, with the constanta = 0.17± 0.01 nm and the
critical exponentν = 0.67± 0.02. The obtained parameters are close to those obtained in
Ref. [49], where they were found to bea = 0.19 nm andν = 0.70± 0.02. There is clear
crossover atτ = 0.2 (T ≈ 20 K) to the non critical regime.

4.4 Discussions of Results

4.4.1 Pair Correlation Function

Effect of Magnetic Field on the Correlation Length

As seen in Fig. 4.10, the magnetic field affects the correlation lengthξ in the close vicin-
ity of TC . Fig. 4.12 shows the magnetic field dependence of the correlation length at
T = 16.55 K. The value ofξ depends strongly on the field forT = TC , while it has
a weak dependence atT ∼ 17 K and almost no dependence atT > 17 K as shown in
Fig. 4.13 (Right panel). These results agree very well with previous studies [69]. As was
noted above, the parameterZm has little or no change with magnetic field. The effect of
magnetic field on the correlation length of the critical fluctuations can be understood in
terms of the balance between the energy of the magnetic fieldgBµB and that of the criti-
cal fluctuationsκBTC(κa0)

z with κ = ξ−1. Here the dynamic critical exponent isz = 2 in
the dipolar dominated regime forq < qd andz = 2.5 in the exchange dominated regime
for q > qd [60, 7]. ForgBµB � κBTC [a0κ0]

z, the correlation length is renormalized as a
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Figure 4.12:Inverse correlation lengthκ = ξ−1 as function of the magnetic field as measured at
T ≈ TC = 16.5 K. Solid line is a fit to the data with Eq. 4.5 giving a value ofz = 2.08 for the
dynamical critical exponent.

function of the magnetic field:

a0κB =

(
gBµB

TC

)1/z

. (4.5)

The observed behavior ofκ at T ≈ TC is a result of the crossover to the strong field
regime. We fitted the data using Eq. 4.5 and get a value for the parameter1/z =
0.48 ± 0.02, which is close to theoretical value in the dipolar regime where1/z = 0.5.
The observed renormalization ofκB indicates that forq ≤ κB the energy of the critical
fluctuationsΩ = κBTC(κ0a0)

z is determined by the fieldB. For q ≥ κB the energy is
equal toΩc = κBTC(qa0)

z and the magnetic field can be considered to be a weak pertur-
bation. Shown in Fig. 4.13 is the field dependence of the correlation length atT = 17 K,
T = 18 K andT = 19 K on a log-log scale. The solid line is a fit to the data using Eq. 4.5.
We get the value1/z = 0.267 which is much smaller than the universal dynamic critical
exponent. Then we conclude that for temperatures aboveTC Eq. 4.5 does not described
the correlation length of the spin fluctuations in the presence of an external magnetic field.

4.4.2 Three-Spin Correlation Function

Fig. 4.14 shows typical asymmetric scattering data∆I(q) at the magnetic fieldB =
50 mT for T = 16.55 K.
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Figure 4.13:Correlation lengthξ = κ−1 as function of the magnetic field as measured atT =
17 K. Data have been fitted with Eq. 4.5 (solid line). At temperaturesT = 18 K andT = 19 K the
correlation length shows no dependence on the applied magnetic field.

0 . 4 0 . 8 1 . 2 1 . 6 2 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

 

 

∆I 
(ar

b. 
un

its)

q ( n m - 1 )

B  =  5 0 . 6  m T

∆I  ~  q - n ,  n  =  1 . 0 9 2

T  =  1 6 . 5 5  K

Figure 4.14: q dependence of the asymmetric part of the SAPNS difference intensity∆I in
magnetic fieldsB = 50 mT atT = 16.55 K. Data have been fitted with∆I ∝ qn (solid line) and
we getn = 1.09.
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Figure 4.15:Normalized values of∆I/I∑ in magnetic fieldsB = 50 mT andB = 150 mT. The
value of the dipolar wave numberqd = 2.3 nm−1 is marked by an arrow. The solid lines serve
only as a guide to the eye.

The analytical expression for∆I(q) given by Eq. 4.3 is known in a rough approximation
and is valid within the rangeκ < kiθ < qin,where the inelastic characteristic momentum
qin in Eq. 3.28 is of the order of10 mm−1 for EuS. Our data follow closely1/q however
the theory presented in [41] predicts a1/q2. The reason of this discrepency is not known.
The remarkable features of this APD scattering contribution are the following:

(1) It appears only when the inclination angleφ between the magnetic fieldB and the
incident beam directionki is not equal to0 or π/2. Its appearance in this inclined
geometry implies the dynamical nature of the scattering.

(2) ∆I(q) changes sign when the scattering vectorq changes sign indicating a single
handedness.

(3) It increases with the applied magnetic field~B.

(4) It vanishes for non-polarized neutrons (P0 = 0).

All these features clearly identify this scattering to arise from the three spin correlations.
It is sometimes convenient to normalize the asymmetric scattering by the symmetric mag-
netic scatteringσ = ∆I(q)/I∑(q) as shown in Sec.3.3.2.σ is presented in Fig. 4.15 as
a function ofq. These data demonstrate that it is constant at smallq and in low fields
and has a tendency to increase at largeq. Therefore, theq dependences of∆I(q) and
I∑(q) are equivalent at smallq while they are different at largeq. The last feature may
be connected with the dipolar interactions of the spin system atq = qd ≈ 2.2 nm−1. The
restrictedq range of measurements does not allow us, however, to make more definite
conclusions on theq dependence of the asymmetric scattering.
Due to the very low intensities obtained for∆I as function of the temperature and mag-
netic field we have averaged∆I(q) overq ranges within the limits (i)0.50 < q < 1 nm−1;
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(ii) 1 < q < 1.5 nm−1; and (iii) 1.5 < q < 2.3 nm−1. Fig. 4.16 displays the averaged
values versusB for T = 16.55 K. For all q values,〈∆I〉 increases with increasing field
and saturates aboveB ∼ 150 mT. The increase of〈∆I〉 is clearly related to the range of
B whereq > κB (i.e to the weak field regime) and it saturates as soon asκB ∼ q. This
observation demonstrates the validity of the weak field approximation for the concept
described above.

Figure 4.16:Magnetic field dependence of〈∆I〉 for three differentq valuesq = 0.75 nm−1,
q = 1.25 nm−1, andq = 1.85 nm−1 atT = 16.55 K. Solid lines serve only as a guide to the eye.

Figure 4.17: Temperature dependence of〈∆I〉 for three differentq valuesq = 0.75 nm−1,
q = 1.25 nm−1, andq = 1.85 nm−1 in a field of B = 50 mT. Solid lines are fits to data using
〈∆I〉 = Aτ−ν whereA is a constant.

The temperature dependence of〈∆I〉 is shown in Fig. 4.17 forB = 50 mT. The theory
predicts that the value〈∆I〉 depends on the temperature asτ ν . The parameters obtained
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by fitting the experimental data (solid lines) areν = 0.62(0.05) for q = 1.85 nm−1;
ν = 0.65(0.03) for q = 1.25 nm−1; andν = 0.64(0.04) for q = 0.75 nm−1. The points
atT = TC do not follow the scaling lawτ−ν . This may be related to the crossover to the
strong field regime and/or to the demagnetization effects. According to the Eq. 3.22, the
observed increase of the intensity∆I is proportional toτ−ν = ξ at q > κ. It is interest-
ing to note that the intensity attributed to the pair correlation functionI∑ ∼ 1/(aκ)2 =
τ−2ν = ξ2 for q � κ. The factor of2 difference between the exponents for the symmetric
and antisymmetric scattering clearly proves the completely different origin of the ob-
served scattering contributions. On the other hand, the exponentsν determined by means
of the static measurements ofξ and the dynamic measurements(using the induced chiral-
ity) are in excellent agreement with each other, demonstrating the internal consistency of
the theory and the experiment.

4.5 Summary

The ferromagnetic to paramagnetic phase transition in EuS has been investigated by
means of small angle scattering of polarized neutrons using the inclined geometry of
the applied fieldB with respect to the incident neutron wave vectorki. This geometry of
the experiment offers an alternative method to the conventional triple axis spectrometry
to study magnetic critical fluctuations. The proposed method allows to distinguish be-
tween the two contribution to the scattering: (i) the pair correlation contribution which is
symmetric and depends on the polarization and (ii) the contribution due to the three spin
correlation function which is asymmetric and polarization independent.

The behavior of the pair correlation function of both contributions to the critical scat-
tering has been studied as a function of temperature and magnetic field. The pair correla-
tion function was deduced with its amplitude and the correlation lengthξ(T,B). At zero
field the correlation length obeys the scaling lawξ = a0τ

−ν with a0 = 0.17 ± 0.01 and
ν = 0.707± 0.02. The magnetic field strongly influences the critical fluctuations nearTc,
so that the correlation length is suppressed by the field asξ(B) = a0(gµBB/TC)1/z with
the dynamic critical exponentz = 2.1± 0.1, which is close to the theoretically predicted
valuez = 2 for the dipolar regimeκ < qd.
The scattering contribution due to the induced chirality (APD) was unambiguously iden-
tified as arising from the three spin correlation function. The specific features of the
scattering may be summarized as follows:

(i) It is asymmetric and depends on the polarization.

(ii) It appears only in the inclined geometry and implies the dynamical and chiral nature
of the fluctuations.

The analytical expression for this scattering is known within the weak field approximation
and for the limitedq rangeκ < q < qin. The theory predicts that the scaling behaviors of
the scattering cross section is proportional toτ−ν with ν = 0.66 [41]. The values of the
critical exponents obtained experimentally for differentq values in the rangeκ < q < qin

are ν = 0.62 ± 0.05, ν = 0.65 ± 0.03, andν = 0.64 ± 0.04. These results are in
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good agreement with the theoretical predictions. Magnetic critical scattering has been
performed on pure ion [54]. Their results agree with our data. Moreover, to the best
of our knowledge, the SANS with the inclined geometry is an efficient method to study
the three-spin correlation functions by inducing the chirality in magnetic systems. It is
an alternative method to the traditional triple axis spectroscopy in the determination of
critical exponents.





Chapter 5

Critical Magnetic Scattering from the
Itinerant Magnet MnSi

Ni la contradiction n’ est marque de faussete ni l’ incontradiction n’ est
marque de verite.

Pascal

5.1 Introduction

Incommensurate ordering and chirality in strongly correlated magnetic materials have
recently received much attention. In this regard non-centrosymmetric cubic MnSi plays a
particular role because it is one of the very few systems with very peculiar properties:

(i) MnSi shows an itinerant ferromagnetic behaviour on length-scales of a few lattice
constants [70].

(ii) The crystal structure lacks an inversion symmetry and weak spin-orbit interactions
assume a Dzyaloshinskii-Moriya (DM) formDm · (~S1× ~S2) which destabilizes the
uniform ferromagnetic order and introduces at ambient pressure a well-understood
long-wavelength helical modulation [24, 23]. The sign of the Dzyaloshinskii term
Dm yields the left- or right handed rotation of the neighboring spins along the pitch
of the helix.

(iii) Well aboveTc chiral magnetic fluctuations have been obeserved. Here the magnetic
anisotropies are lost and the maximum of magnetic scattering is located on spheres
around the nuclear Bragg peaks [27, 71].

(iv) The magnetic ground state appears to switch abruptly from a weakly spin-polarised
Fermi-Liquid to an extended non-Fermi liquid (NFL) phase at a pressure of14.6 kbar
[72].

(v) Neutron scattering shows that large moments survive far into the NFL-phase, where
the scattering intensity observed everywhere on the surface of a small sphere sug-
gests partial order analogous to liquid crystals [73].
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In this part of the thesis we studied the critical spin fluctuations in the weak itinerant
magnet MnSi. We determine the critical exponents and compare these with values pre-
dicted for 3D Heisenberg ferromagnets. Furthermore we investigated the reorientational
processes of the helical modulation at ambient pressure and zero magnetic field. We com-
bine small-angle neutron scattering with AC susceptibility, DC magnetization and specific
heat data. This provides unexpected behaviour of the helical modulation.

5.2 Review of Previous Findings on MnSi

Crystal Structure

MnSi crystallizes in the B20 structure and the cubic space groupP213 with a lattice
constanta = 4.558 Å lacking a center of symmetry [23]. There has been no clear in-
terpretation in terms of chemical bonding of why MnSi prefers the B20 structure. The
cubic structure of MnSi is shown in Fig. 5.1. There are four Mn atoms and four Si
atoms in the unit cell. The positions of Mn and Si atoms in a unit cell are given by
(u, u, u), (1/2 + u, 1/2 − u,−u), (−u, 1/2 + u, 1/2 − u) and(1/2 − u,−u, 1/2 + u).
The corresponding values for the internal atom-position parameters areuMn = 0.137 and
uSi = 0.845. This structural information is important because the symmetry of the crys-
tal structure and the type of magnetic order are connected [74]. The local coordination
of Mn consists of a Si neighbor at2.11 Å (lying along 〈111〉 direction and three neigh-
bors at2.35 Å and another three neighbors at2.69 Å. The point symmetry at the Mn and
Si sites isC3. Taking into account time-reversal symmetry with the twelve space group
operations, the irreducible Brillouin zone is1/24 of the full zone. Note that the Mn-Mn
distance is almost the same as that inγ manganese metals wheredMn−Mn = 2.725 Å [75].

Figure 5.1:Crystal structure of the cubic itinerant magnet MnSi [76].
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B-T Phase Diagram

Shown in Fig. 5.2 is the magnetic phase diagram of MnSi as obtained from results of
the susceptibility [77] and neutron scattering data [75]. Data show good agreement be-
tween the two methods. The cubic inter-metallic compound MnSi becomes magnetically
ordered belowTc = 29 K. It was established by Ishikawa et al. [70] that the magnetic
oder in the absence of a field has a long range modulation with repeat distance up to
λ = 2π/q = 180 Å. The spin arrangement corresponds to a helical structure that has
been attributed to the lack of inversion symmetry in its B20 structure, which brings the
Dzyaloshinskii-Moriya interaction into play [24]. In the ordered phase, spin-orbit inter-
actions lock the direction of the spiral to〈111〉 axis therefore the magnetic spiral prop-
agates along the〈111〉 direction of the crystal with a vectork0 = (2π/a)(ξ, ξ, ξ) where
ξ = 0.017. Thus locally, along the direction of propagation, the spin structure looks very
similar to a ferromagnet. Within each plane the spins are ferromagnetically aligned, but
the spins in neighboring planes are turned by an angle, determined by the ratioDm/J ,
whereDm is the Dzyaloshinskii term andJ the exchange parameter. Typical sizes of
magnetic domains in the ordered phase are104 Å [32].
A magnetic field of0.6 T is sufficient to transform the system to an induced ferromagnetic
state [75]. In a magnetic field greater than0.6 T, the crystal is saturated with a sponta-
neous magnetic momentµs ≈ 0.4µB per manganese atom which is substantially smaller
than the effective moment ofµeff = 2.2µB/Mn evaluated from the Curie-Weiss relation
in the paramagnetic state [16]. The magnetic field and pressure dependences of the mag-
netization are strong and the anomaly in the specific heat at the critical temperature is
much smaller than expected from a Heisenberg ferromagnet. These properties indicate
that MnSi is a weak itinerant magnet [16].

Figure 5.2: Magnetic phase diagram of MnSi resulting from bulk measurements in [77] and
neutron scattering data in [75]. Data show good agreement between the two methods. A small
pocket, the so-called A-phase is observed belowTc. A broad peak appears in the susceptibility at
Tm above the critical temperature.
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AC susceptibility measurements in [77] as well as magnetization and magneto resistance
measurements in [78] reveal anomalous peaks close toTc in magnetic field between0.1
and0.22 T suggesting the existence of a new phase close toTc, a pocket in the low field
region of magnetic phase diagram nearTc and is called the A-phase. While the A-phase
was at first interpreted in terms of a paramagnetic state [79], it was eventually found
that the A-phase also yields a modulated magnetic structure for which the wave-vector~q
assumes a direction perpendicular to the magnetic field that was applied along the〈100〉
direction of the crystal [32, 26]. The nature of the A-phase is still subject of discussions.
In this work, we have revisited the question of the nature of the A-phase of MnSi in a
comprehensive study combining small angle neutron scattering with measurements of the
AC susceptibility, DC magnetization and specific heat.
In magnetic fields above0.3 T a broad peak appears in the susceptibility atTm above
the critical temperature [77].Tm has being interpreted as the temperature at which the
properties of an itinerant magnet change from those of an essentially non-polarized state
atT > Tm to those of an induced ferromagnetic state atT < Tm.

P-T Phase Diagram of MnSi

Fig. 5.3 shows the temperature versus pressure diagram of MnSi as reported in Ref. [73].
The temperature drops with pressure until magnetic order disappears at the critical pres-
surepc = 14.6 kbar [73, 80, 77]. In the pressure range up to5.2 kbar, Bloch et al.

Figure 5.3:Non-Fermi-Liquid behaviour of MnSi under applied pressure as taken from [81]. The
exponentα describing the electrical resistivity changes abruptly from the value of a Fermi-liquid
(α ≈ 2) to a non-Fermi liquid (α ≈ 3/2) when pressures larger thanpc are applied. The non-Fermi
liquid phase extends at least up to2pc [76].

[82] observed a decrease of ordering temperature upon increasing pressure at the rate
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d log Tc/dp = −3.9 × 10−2 kbar−1. Recently Pfleiderer et al. [80, 83, 73] succeeded
to suppress the magnetically ordered phase by a pressure of14.6 kbar and a quantum
phase transition (QPT) is reached. Belowp∗ ≈ 12 kbar the phase transition is of second
order, while abovep∗ it is weakly first order. Close to the QPT the temperature depen-
dent part of the electrical resistivity shows deviations from the Fermi liquid behavior with
∆ρ = AT 3/2 over a wide temperature range [72]. Later it was found that the magnetic
system in the range ofpc < p < 22 kbar at temperatures belowT0 ≈ 8 K is partially
ordered with the preferential direction along〈110〉. This findings support the existence of
novel metallic phases with partial ordering of the conduction electrons as proposed for the
high temperature superconductors [84] and heavy-fermion compounds [85]. Up to now
the origin of the partial order and of the non-Fermi liquid behaviour is unclear.
One of the interesting question to study is whether the partial order observed under pres-
sure and the chiral fluctuations aboveTc at ambient pressure are connected.

5.3 Experimental Details

For the characterization of critical phenomena, high-quality samples preferably single
crystal are needed to avoid smearing ofTc. Two different high quality single crystal of
MnSi denoted as sample-A and sample-J are used for our investigations. Detailed infor-
mations on the samples used for SANS measurements are summarized in Tab. 5.1.
Both samples have to be mounted on a sample holder with a skew of24◦ (vertical direc-
tion) and tilted in the horizontal direction to18◦ in order to have the〈111〉 and the〈111̄〉
in the scattering plane since the crystal grow with these inclinations.
(i) Sample-A has been used for our preliminary SANS measurements. It is a disk with
20 mm diameter and2 mm thickness cut from a single crystal of MnSi grown at Ames
Laboratory. Sample-A has three different grains and the crystallographic mosaicity of
the sample (for each grain) was measured on the neutron spectrometer “Reflex” at the
Forschungszentrum Jülich (Germany). The average value of the FWHM over all mea-
sured reflections is0.22◦. All the SANS measurements on sample-A were performed on
the same crystal grain.
DC and AC magnetization measurements were also carried out on the sample-A with

origin shape size mosaic RRR

sample-A Ames Lab. disc 20 mm×2 mm 0.22◦ -
sample-J Japan (Tohoku) disc 20 mm×2 mm 0.21◦ 70-100

Table 5.1: Characteristics of the samples of MnSi used for SANS measurements.

approximate dimensions3 × 1 × 1 mm3 and a mass of16.6 mg. For specific heat mea-
surements sample-A of approximate size1.5×1.5×1.5 mm3 and a mass of10.07 mg was
used.
(ii) The second single crystal denoted sample-J was grown by the Bridgman method from
high purity starting materials. The sample has a residual resistivity ratio in the range70
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to 100 that indicates the high quality of the sample. Sample-J has a single grain in con-
trast to sample-A. The structural mosaic of the sample is0.21◦ as shown in Fig. 5.4 was
determined with the X-ray diffractometer ”D500” at the Physics Department E21 (TU-
München).
Measurements of AC susceptibility was performed on sample-J weighing23.74 mg with

Figure 5.4:Crystal mosaic of the single crystal MnSi as measured by the X-ray diffractometer
D500 at the Physics Department E21. Data have been fitted with a Gaussian to get the value of the
crystal mosaic of0.21◦.

the size of approximately3 × 1 × 1 mm3. Sample-J used for the specific heat measure-
ments has approximate dimensions1.5× 1.5× 1.5 mm3 and weighing17.9 mg.
Small-angle polarized neutron scattering (SAPNS) experiments during this thesis were
performed on both samples at the SANS-2 instrument of the FRG-1 neutron source in
Geesthacht (Germany). The incomming neutron beam has an initial polarization ofP0 =
0.95 with a selected wavelengthλ = 0.58 nm which is above the spacinga = 0.4558 nm
of MnSi, so that only magnetic scattering and no nuclear Bragg scattering can be ob-
served. The wavelength spread and the beam divergence were∆λ/λ = 0.1 and2.5 mrad,
respectively. The scattered neutrons were detected with a position sensitive detector with
128 × 128 pixels and a spatial resolution of4.4 nm. A q-range from6 × 10−2 to 1 nm−1

was explored. The incident beam was directed along〈1 − 10〉, so that the vectors par-
allel to 〈111〉 and〈11 − 1〉 were in the scattering plane and perpendicular to the beam
as shown schematically in Fig. 5.5. The magnetic guide field of1 mT was in this plane
along〈11 − 2〉 i.e. perpendicular to〈111〉. The temperature was measured with an ac-
curacy that was better than0.05 K using a Lakeshore temperature controller. In all bulk
measurements temperatures were measure by conventional resistance sensors at an accu-
racy better than1%.
Further SANS-experiments were carried out on sample-J at the diffractometer MIRA at
the new neutron source FRM-II in Munich. The sample with a diameter of14 mm was
illuminated by a neutron beam with a wavelengthλ = 9.8 Å. An aperture with10 mm
width and14 mm height was place1.87 m before the sample. The data were recorded by
means of an area detector with1024×1024 pixels and a horizontal and vertical resolution
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of 1 mm and2 mm, respectively, that was placed1.4 m from the sample.

Figure 5.5:Schematic view of the scattering geometry used in the small angle scattering mea-
surements on MnSi. The positions of the magnetic peaks are observed around(000) in the(−110)
plane. The circle surrounding the center of the detector illustrates the ring of constant|q| which
appears in the critical scattering aboveTc.

To perform data reduction on SANS data we used the software tools SANDRA (SANs
Data Reduction and Analysis) [86] and GRASP (Graphical Reduction and Analysis SANS
Program) [87] developped at the GKSS and at the ILL, respectively.

5.4 Results of Experiments

5.4.1 Bulk Measurements on MnSi

We study separately AC susceptibility, specific heat of MnSi at zero magnetic field in the
temperature range of2 to 300 K.

AC Susceptibility

Shown in in the left panels of Figs. 5.6 and 5.7 are the temperature dependence at zero
field of the AC susceptibility of sample-A and sample-J of MnSi, respectively. The sus-
ceptibility increases with decreasing temperatures and shows a sharp peak indicating a
phase transition atT = 29 K for sample-A and atT = 29.7 K for sample-J.
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Figure 5.6:Zero field AC and inverse susceptibility of MnSi single crystal as function of temper-
ature of sample-A. Transition temperature occurs atT = 29 K. The inverse susceptibility shows
the Curie-Weiss behaviour aboveTc with χAC ∝ C/(T − Tc) whereC−1 = 1.77 is the Curie
constant evaluated from linear fit of the data aboveTc (solid line).

Figs. 5.6 and 5.7 shows the inverse susceptibility of MnSi of sample-A and sample-J,
respectively, as function of temperature at zero magnetic field. The AC susceptibility
shows aboveTc a typical Curie-Weiss behaviour whereχAC follows C/(T − Tc). From
the linear fit of the data forT > Tc we obtained the Curie constant (the Cuire constant is
indicative of the number of magnetic spins per atom)C−1 = 1.77 ± 0.12 corresponding
to µeff = 2.53 µB/Mn andC−1 = 1.89 ± 0.1 corresponding toµeff = 2.45 µB/Mn for
sample-A and sample-J, respectively. These values of the effective momentµeff are sim-
ilar within the experimental errors. Therefore a same magnetic behavior is expected for
both samples. BelowTc, the susceptibility for both samples is saturated and the imaginary
part is finite as expected for magnetically ordered phase in which magnetic domains are
formed. Our results are in agreement with previous studies [77, 88].

Figure 5.7:Zero field AC and inverse susceptibility of MnSi single crystal as function of temper-
ature of sample-A. Transition temperature occurs atT = 29.7 K. The inverse susceptibility shows
the Curie-Weiss behaviour aboveTc with χAC ∝ C/(T − Tc) whereC−1 = 1.89 is the Curie
constant evaluated from linear fit of the data aboveTc (solid line).
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Magnetic Specific Heat

The temperature dependence of the magnetic contribution to the specific heatC of both
samples at zero magnetic field is depicted in Fig. 5.8.C is dominated by a pronounced
peak atT = 28.51 K for sample-A and atT = 29 K for sample-J. With increasing temper-
ature a broad shoulder appears atT ∼ 28.80 K (sample-A) andT ∼ 29.6 K (sample-J).
These values are quite similar within the experimental errors with the temperature val-
ues of the AC susceptibility peaks. Interesting is that the peaks of the susceptibility and
the specific heat measurements occur unexpectedly not at the same temperature. Tradi-
tionally the maximum value of the specific heat is taken as the phase transition from the
paramagnetic state in to the helical phase.
With increasing temperature the specific heat data shows an inflexion point atT = 30.8 K
for the sample-J and another kink appears atT = 29.9 K for sample-A. Notice that for
both samples these values are approximately one degree above the sharp peak of the spe-
cific heat. These results are not consistent with a typical critical behaviour [3] therefore it
is not possible to estimate any critical exponents from the bulk measurements.

Figure 5.8: Temperature dependence of the magnetic specific heat at zero magnetic field of
sample-A (Left panel) and sample-J (Right panel). A sharp peak atTc and a broader shoulder
aboveTc are dominant features.

5.4.2 Magnetic Neutron Scattering from MnSi

Maps of the small angle polarized neutron scattering (SAPNS) intensities from sample-A
atT = 10 K at and aboveTc for two neutron polarizationP0 along and opposite the guide
field are shown in Fig. 5.9.
Below Tc four magnetic Bragg peaks are seen atk = 0.39 nm−1. The observed Bragg
peaks are reflections from the domains oriented along〈111〉 and〈111̄〉. This is possible
due to the large magnetic mosaic, as in the ideal case the Bragg condition would be only
fulfilled for one reflection. In our geometry it is the(111̄) peak. The peaks atk = (111)
andk = (1̄1̄1̄) are polarization-independent, ask is perpendicular toP0 ‖ ±〈11 − 2〉.
Reflections withk = (111̄) andk = (1̄1̄1) depend onPi as expected for helices with
vectors along~q. ApproachingTc, the intensity of the Bragg peaks decreases and slowly
smear out until they form a ring (half-moons shaped) around the position of the direct
beam. These half moons are induced by the strong critical fluctuations in the orientation
of the wave vector of the helix leading to diffuse scattering on a ring around the Bragg
peaks. AboveTc, only diffuse scattering (half moons) is visible. The intensity of the ring
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is maximal at a radiusq ' k. There are weak spots on these half moons corresponding to
former Bragg peaks.

Figure 5.9:(Color online) Maps of the SAPNS intensities from sample-A at zero applied mag-
netic field for the polarizationP0 parallel to a〈11−2〉 direction along the guide field (upper panel)
and opposite to it (lower panel) atT = 10 K, T = 28.7 K andT = 29.1 K.

Figure 5.10:Intensity of the Bragg peak as function of temperature at zero field from sample-A.

The temperature dependence of the Bragg peaks shown in Fig. 5.10 clearly demonstrates
that the intensity is reduced with increasing temperatures. The sharp peaks present at
low temperatures disappear in the vicinity ofTc = 28.8 K, so that the scattering looks
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like critical scattering from a ferromagnet. The temperature valueTc = 28.8 K where the
peak disappears is taken as the critical temperature. Fig. 5.11 displays theq scans along
the easy direction (〈111〉) across the ring at temperatures aboveTc. Up toT = 30 K the
ring is observed then becomes unobservable with further increasing of the temperature.

Figure 5.11:q-scans along the easy direction (〈111〉) across the ring for different temperatures.
Solid lines are guide to the eye. Results obtained from sample-A.

Figure 5.12:The difference of the small-angle scattering intensity (sample-A) for the two polar-
ization directions of MnSi close toTc is fully antisymmetric.

To elimnate the background we extract from the data the difference spectra of the two
polarization directions. Therefore, the effect of background scattering is eliminated and
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only the full anti-symmetric part of the magnetic cross section is considered as shown in
Fig. 5.12.

Figure 5.13:Temperature dependence of the polarizationPs that is parametrised according to
Eq. 3.20 for a finite polarisation of the neutrons. A decrease of the polarization is noticed above
Tc and it is constant for Bragg reflections atT < Tc.

Figure 5.14:The region of integration of the ring of intensity is marked by the white line (Left
panel). Integrated intensity of the ring versus temperature at zero magnetic field as obtained from
sample-J (Right panel). The intensity in the ring is maximal atT = 29.6 K and vanishes above
T ∼ 30.85 K. The solid line is to guide the eye.

The temperature dependence of the polarizationPs as determined by Eq. 3.20 is shown in
Fig. 5.13. A decrease of the polarization is noticed aboveTc and it is constant atT < Tc

in good agreement with the theory [40].
Shown in Fig. 5.14 (Right panel) is the temperature dependence of the ring (diffuse scat-
tering) of intensity from sample-J as integrated whithin the marked region (white line)
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on Fig. 5.14 (Left panel). The ring starts atT ≈ 29.1 K, reaches a maximal value at
T = 29.8 K and then disappears completely into the background aboveT ∼ 30.85 K.
This value coincides with the inflexion point observed in the specific heat data of sample-
J.

5.5 Discussions of Results

5.5.1 Critical Spin Fluctuations in MnSi

We presented in Sec. 3.2.2 a theoretical description of the critical fluctuations in the
mean-field approximation that correctly tackles the symmetry of the problem but can-
not describe the temperature dependence of the relevant quantities. If one neglects the
anisotropic exchange interaction the theory predicts a first order transition [42]. However,
apparently, our SANS data are consistent with a second order phase transition. Therefore
we estimate the corresponding critical exponents. We tried to improve Eq. 3.19 by replac-
ing the mean-field expression forκ2 by κ2 = C1τ

2ν , whereτ = (T − Tc)/Tc andν is the
exponent for the correlation length forq along〈111〉 (easy direction). The corresponding
result is shown in Fig. 5.15 withν = 0.62(1).
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Figure 5.15:Temperature dependence of the inverse correlation length forq ‖ 〈001〉 andq ‖
〈111〉 [30].

Maleyev [40, 29, 31] proposed that ifq deviates from〈111〉 the correlation length is
renormalized according toκ2 − κ2

(111) ∝ (Inv)λ whereInv = (q̂4 − 1/3) is the cubic
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invariant andλ is the critical exponent for the cubic anisotropy. In Fig. 5.16 we plotted the
anisotropic contribution to the inverse correlation length as function ofInv = q̂4 − 1/3.
We obtain the valueλ = 0.22(5).

Figure 5.16:The difference of the square of the inverse correlation lengthsκ2−κ2
(111) as function

of q̂4.

We integrated the intensities along a ring of constantq for both polarizations indepen-
dently (i.e. the integration is performed along the half moon of180◦) and the intensity is
plotted againstq for different temperatures. The resulting structure at each temperature is
fitted with a Lorentzian peak.

Figure 5.17:Area of the peak intensity as obtained by fitting the data with a Lorentzian. Solid
lines are fits to the data usingA0(Tc − T )2β belowTc andA1(T − Tc)γ aboveTc.
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As the intensity of scattering in the ordered phase is proportional to the square of the
magnetization, we get the critical parameter2β for T ≤ Tc by fitting the area of Bragg
intensity (see Fig. 5.17) withA = A0(−τ)2β. For MnSi we obtained2β = βc = 0.44(1).
The value ofβ is surprisingly low for the 3D magnetic system but it is close to that
found in the frustrated CsMnBr3 (βc = 0.43(2)) compound, which belongs to the chiral
universality class [89, 90].
AboveTc the scattering intensity (see Fig. 5.17) is directly proportional to the staggered
susceptibility (χ ∝ τ γ). Therefore we can derive the critical exponentγ for T ≥ Tc

directly from the intensity plot in Fig. 5.17. We obtain a value ofγ = 0.61(1) which is
smaller than the corresponding value of a 3D Heisenberg ferromagnet typically between
γ = 1.3 and1.4. For the chiral universality class the value ofγc = 0.77 is predicted in
[14].
It should be noted that beyond the mean field theory the critical behaviour must have two
crossovers.

(i) At q � k one can neglect the Dzyaloshinskii-Moriya interaction and the anisotropic
exchange interactions as in itinerant ferromagnets.

(ii) For k ∼ q the Brasovskii theory [42], neglecting anisotropic exchange interaction,
should be applicable. Furthermore, for small(q − k)2 and very close to the tran-
sition one can neglect the(q − k)2 terms in Eqs. 2.43 and 3.19 and we will get a
behaviour determined by the singular properties of1/Inv, which goes to infinity as
q approaches the cubic diagonals. So ifq → k, an additional renormalization group
analysis must be done.

Figure 5.18:q scan of the intensity across the ring in easy direction atT = Tc + 0.3 K. The solid
line is best fit result of Eq. 3.19 withk = 0.39 nm−1 andκ = 0.055 nm−1.

Theq dependence of the intensity aboveTc as depicted in Fig 5.18 is very well described
by Eq. 3.19 (solid line). Therefore the parametersJ, Dm andAm of the theory are esti-
mated.J may be given approximately asa2Tc ≈ 50 meVÅ2. This estimation is close to
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the spin-wave stiffnessD ≈ 52 meVÅ2 obtained from inelastic neutron scattering [75].
Further the helix wave vectork = Dm/J = 0.039 Å−1 for the critical range and therefore
Dm = 1.9 meVÅ andDma ≈ 8 meVÅ2. Finally according to Eq. 2.43 the inverse cor-
relation length in the hard direction is determined byκ2 = k2|Am|/(2J). From Fig. 5.15
we getκ〈100〉 ≈ 0.008 Å−1 andAm = 4 meVÅ2. Hence the inequalityJ > Dma > Am

as assumed by the theory [40, 29, 31] holds at least in rough approximation.

5.5.2 New Magnetic Phase Transitions in MnSi?

From the specific heat data (sample-J) at zero field we estimate the temperature depen-
dence of the entropie associated with the magnetic ordering according toS =

∫ T�Tc

2
C
T
dT .

Shown on Fig. 5.19 is the entropieS versus temperature. A change of slope atT = Tc and
T = T ? one degree aboveTc give indications that phase transitions may exist occuring
at these temperatures. The value ofT ? may be qualitatively related at to the temperature
value where the scattering intensity of the ring is dissolved (see Fig. 5.14).

Figure 5.19:Temperature dependence of the entropie as estimate from specific heat data from
sample-J. Arrows indicate temperatures where the slope ofS changes. The solid line is a linear
fit to data aboveT = 30.9 K. A change of slope is observed at the temperatures (T = 29 K and
T = 30.9 K) marked by the arrows.

However to understand the nature of the shoulder in the specific heat and the kink in the
staggered susceptibility both observed aboveTc we compare in Fig. 5.20 data of specific
heat with SANS both obtained from sample-A.
The temperature value where the shoulder appears in the specific heat coincide with the
position of a kink in staggered susceptibility. Therefore the shoulder in the specific heat



Spontaneous Chirality in MnSi 71

is most likely connected with our small angle neutron scattering results. We conclude that
the peak in the specific heat atTc is not entirely due to the transition from the paramagnetic
phase to the helical phase, but may correspond to an additional transition in MnSi.

Figure 5.20:Comparison of magnetic specific heat data with the staggered susceptibility obtained
from SANS measurements. Both experiments were performed on sample-A. Error bars are smaller
than the symbol size.

5.6 Summary

Results of bulk measurements and those of polarized neutron small angle scattering in
MnSi, a cubic itinerant magnet, are presented and analyzed. The diffuse scattering inten-
sity looks like half-moons oriented along the incident neutron polarization. The intensities
for two opposite polarizations form an anisotropic ring with weak spots, which belowTc

transform into the Bragg peaks originating from the helical structure. These results are
in semiquantitative agreement with the mean-field calculations based on the Bak-Jensen
model [24] that takes into account the hierarchy of the interactions: the exchange inter-
action, the isotropic Dzyaloshinskii-Moriya (DM) interaction and the weak anisotropic
exchange (AE) interaction. The DM interaction is responsible for the scattering inten-
sity concentrated in the half moons. The AE interaction provides the anisotropy so that
the correlation length diverges only along〈111〉 with a corresponding critical exponent
ν = 0.62(1). The chiral exponent of the intensity due to the helical structure atT < Tc is
βc = 0.44(1). This value is close to that found in CsMnBr3 compound which belongs to
the chiral universality class [89, 90].
Furthermore the specific heat at zero field shows a sharp peak atTc and a broad shoulder
with increasing temperatures. Combining bulk measurements with SANS data, we found
an indication of an additional phase transition in MnSi. To conclude, we have a quali-



72 Chapter 5

tative understanding of the critical fluctuations in MnSi but further investigations, both
theoretical and experimental are demanding to answer the question whether an additional
transition exists aboveTc in MnSi.



Chapter 6

Effect of Magnetic Field on the
Magnetic Structure of MnSi

In these matters the only certainty is that nothing is certain.
Pliny the Edler

6.1 Introduction

In an external magnetic field the wave vector~k rotates towards the field direction (wave
vector rotation effect) but the value of~k remains unchanged [70]. This rotation takes place
within a field range from0 to 130 mT. Shown in Fig. 6.1 is the rotation of the modulation
vector toward the direction of the field. The bahaviour looks like a second order phase
transition with a critical field about0.17 T [32]. Bak and Jensen [24] predicted within
the renormalization group theory a first order transition. Kataoka and Nakinishi [27],
Plumer and Walker [25, 28] include external magnetic field and magnetic anisotropy in
the Landau type free energy and use it to model the wave vector and spin reorientation in
a magnetic field. They use mean field theory and expand the free energy. Hereby, they
could explain the rotation of the wave vector~k with a magnetic field.
Recently Walker predicted two successive wave vector reorientation phase transitions in
MnSi [28]. In this part of the thesis, we study the magnetic behavior of MnSi in the
presence of an external magnetic field using SANS, AC susceptibility and specific heat
measurements.
We measured the scattering intensity in the temperature range fromT = 10 K to T =
30 K. The external magnetic field (B < 800 mT) was applied perpendicular to the incident
beam. We study the magnetic structure of MnSi belowTc in the so called A-phase. We
present results of bulk measurements and small angle polarized neutron scattering data
of both critical fluctuations and the ordered magnetic structure in MnSi under applied
magnetic field and at ambient pressure. The magnetic field applied along the〈100〉, 〈110〉
and〈111〉 direction produces an single domain sample with the spin oriented along the
field direction. The observed field induced instability is especially pronounced nearTc in
the presence of a magnetic field.
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Figure 6.1:Angle θ between the modulation vector~k and the direction of the applied field at
T = 4.2 K in MnSi as function of external magnetic field [32].

6.2 Experimental Details

For the bulk measurements as well as for the neutron scattering experiments we use both
MnSi samples that have been described in chapter 5.
We measured the AC susceptibility of MnSi (sample-J) as function of temperature and
magnetic field up to1 T. Measurements were carried out on the 9T Quantum Design
Physical Properties Measurement System. The magnetic field was applied in the three
main crystallographic direction of interest namely the〈100〉, 〈110〉 and the〈111〉. Since
the magnetic struture of MnSi has a very complicated irreversible type of behaviour in the
presence of a magnetic field, each experiment (bulk experiments and neutron scattering)
is performed according to the following sequence: (i) the sample was cooled down to20 K
from a temperature above35 K. (ii) field sweep fromB = 0 to the field value of interest.
(iii) The direction of the magnetic field is fixed with respect to the chosen crystallographic
direction. The magnetic mosaic of both samples was measured atT = 10 K. A value of
∆θmag ≈ 4◦ for the magnetic mosaic is obtained. First it should be noticed that the
magnetic mosaic is larger than the mosaic of the crystallographic structure that is∆θ =
0.22◦ for sample-A and∆θ = 0.21◦ for sample-J as presented in chapter 5.
We choose the same instrumental configuration as for SANS experiments in zero field
(see chapter 5).
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6.3 Results of Experiments

6.3.1 Bulk Measurements

DC Magnetization

DC magnetization measurements were performed using sample-A of MnSi. Fig. 6.2 dis-
plays magnetization measurements in fields up to1 T over a wide temperature range. A
small spontaneous momentµS ≈ 0.45µB per manganese atom develops for temperatures
T < 29 K. The magnetization is consistent in rough approximation with the well known
magnetic equation of stateB = aM + bM3, wherea andb are constants [91].

Figure 6.2:Magnetization of MnSi (sample-A) at various temperatures for a magnetic field ap-
plied along the〈110〉 crystallographic direction. Error bars are smaller than the symbol size.

Shown in Fig. 6.3 are temperature and field dependence of the DC magnetization of MnSi
in magnetic fields varying fromB = 0.1 mT to B = 1 T. A pronounced peak appears at
T = 28.80± 0.02 K at low external magnetic fieldsB ≤ 10 mT corresponding to a tran-
sition from the paramagnetic phase into the helically ordered phase. For magnetic fields
B > 10 mT the peak magnitude decreases and finally disappears at fieldsB ≥ 0.1 T. A
ferromagnetic behavior of the susceptibility is observed with increasing magnetic fields.
These results suggest that the field induces a transition to the ferromagnetic phase by
causing the helix to collapse to a fully aligned ferromagnet. BetweenB = 0.15 T and
B = 0.2 T a considerable increase of the susceptibility is noted belowTc.
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Figure 6.3:Temperature and field dependence of the DC magnetization of MnSi (sample-A) in
fields applied along a〈110〉 direction. Error bars are smaller than the symbol size.

AC Susceptibility

All the AC susceptibility data presented here were carried out on sample-J. The field
dependence of the AC susceptibility at fixed temperatures up to40 K is shown on Figs. 6.4,
6.5 and 6.6 for the magnetic field was applied along〈100〉, 〈110〉 and〈111〉, respectively.
As the temperature approachesTc from below, the AC susceptibility atB = 0.2 T revealed
an abrupt change of slope and a minimum in the field rangeBA1 < B < BA2. Typical AC-
susceptibility data in the A-phase are observed close toTc at T = 28.5 K for B ‖ 〈100〉,
B ‖ 〈100〉 andB ‖ 〈111〉. These results are used to determine the field boundaries of the
A-phase.

Figure 6.4:Field dependence of the AC susceptibility of MnSi (sample-J) when a magnetic field
B is applied along〈100〉 at various temperatures. BelowTc (at T = 28.5 K) an abrupt change of
slope and a minimum is also observed that is characteristic in the A-phase.
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Figure 6.5:Field dependence of the AC susceptibility of MnSi (sample-J) when a magnetic field
B is applied along〈110〉 at various temperatures. In a magnetic field of0.2 T at T = 28.5 K an
abrupt change of slope and a minimum is also observed that is characteristic in the A-phase

Figure 6.6:Field dependence of the AC susceptibility of MnSi (sample-J) when a magnetic field
B is applied along〈110〉 at various temperatures. In a magnetic field of0.2 T at T = 28.5 K an
abrupt change of slope and a minimum is also observed that is characteristic in the A-phase

Fig. 6.7 displays the temperature dependence of the AC susceptibility at different mag-
netic field in the range0 < B < 1 T. An abrupt change of slope and a minimum is also
observed that is characteristic in the A-phase. These discontinuities can be used to deter-
mine the temperature boundaries of the A-phase. At magnetic fields above0.5 T a broad
maximum appears atTm and is shifted to higher temperatures as the field increases.



78 Chapter 6

Figure 6.7:Temperature dependence of the AC susceptibility of MnSi (sample-J) using various
magnetic fieldB ‖s 〈100〉. With increasing temperature, a broad maximum denotedTm appears
above the critical temperature. It is shifted to higher temperatures as the field increases. BelowTc

an abrupt change of slope and a minimum is observed forB = 0.2 T.

The onset of the minimum measured in Figs. 6.4 and 6.5, 6.6 and 6.7 has been mapped
out as function of temperature and is shown in the phase diagrams in Fig. 6.8. The tem-
perature region of the A-phase is different for magnetic fields applied along the three
crystallographic directions (B ‖ 〈100〉, B ‖ 〈110〉, andB ‖ 〈111〉). The A-Phase is ob-
served in the temperature rangeT = 27.3 K ≤ T ≤ Tc for B ‖ 〈100〉 while for B ‖ 〈110〉
andB ‖ 〈111〉 the A-phase appears forT = 28.3 K ≤ T ≤ Tc andT = 28.4 K ≤ T ≤ Tc,
respectively.
Our data agree with previous studies of the magnetization [88] and AC susceptibility [92].
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Figure 6.8: Phase boundaries of the so called A-phase in MnSi (sample-J) belowTc for B ‖
〈100〉, B ‖ 〈110〉, andB ‖ 〈111〉. The onset valuesBA1 andBA2 (Left Panel) has been mapped
out for different temperatures. The resulting phase diagrams are depicted in the Right Panel.

Magnetic Specific Heat

Fig. 6.9 shows the specific heatC of MnSi (sample-J) as function of temperature for
various magnetic fields applied along the〈100〉 direction. At zero field a sharp peak and
a shoulder is seen. Remarkably, as the magnetic field increases to0.15 T and0.18 T, an
additional small maximum marked by an arrow emerges at the low temperature side of
the major peak ofC. These maxima indicate a well-defined transition at the border of the
A-phase as well. At a field higher than0.18 T the shoulder disappears.
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Figure 6.9:Specific heatC of MnSi (sample-J) as function of temperature for magnetic fields
B = 0 andB = 0.15, 0.18 and0.3 T. A small anomaly marked by arrows signals the onset of the
A-phase and indicates a distinct thermodynamic transition.

6.3.2 Small Angle Polarized Neutron Scattering from MnSi

A typical behavior of the magnetic spirals is shown in Fig. 6.10 for the geometry when
the field is applied along the〈110〉 direction in sample-A. These data gives the maps of
diffraction peaks in a logarithmic scale and how it changes with the magnetic field.

Figure 6.10:The two dimensional diffraction spectrum measured on SANS-2 (GKSS) in a loga-
rithmic scale atT = 10 K for magnetic fieldsB ‖ 〈110〉 for B = 1.4 mT (a),B = 50 mT (b) and
B = 150 mT (c).

The contour map atB = 1.4 mT andT = 10 K shows four major and four minor peaks.
Four major peaks(closest to the center) are the Bragg reflections for those domains of
spirals, which are collinear to the axes〈111〉 and〈11− 1〉 visible in this geometry of the
experiment. Observation of two peaks at±q is explained by the mosaic of the magnetic
structure which is larger than crystallographic one of MnSi. We denote these four peaks
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as Left(L), Bottom (B), Right (R) and Top (T), respectively. Additional small peaks at
q = qL + qB, q = qR + qT and q = qR + qB may be a result of a double scattering
process. When a relatively small magnetic field is applied (B ≤ 130 mT), new small
peaks atq = 2qL, q = 2qR, q = 2qB andq = 2qT arise as a response to the magnetic field
as shown in Fig. 6.10b. The peaks move also toward the direction of the magnetic field,
so that the direction of the scattering vector~q changes but its value|q| remains constant.
When the field exceeds the valueB = 130 mT, the peaks collapse to the direction of the
magnetic field~q ‖ ~B, so that only two major peaks are left on the contour map as display
in Fig. 6.10c. These results agree with those reported in [32].
Fig. 6.11 illustrates the rotation of the spiral toward the magnetic field direction by means
of a polar representation.
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Figure 6.11: Schematic representation of the spin and wave vector rotation toward the field
direction. The points are the positions of the peaks at pointed magnetic field.

Small-angle neutron scattering data at various temperatures and magnetic fields are shown
in Figs. 6.12 6.13 and 6.14 as obtained from sample-J with magnetic fields applied along
the 〈100〉, 〈−121〉 and〈111〉, respectively. At temperatures belowTc, we observe well
defined spots of helical magnetic order as reported in numerous studies before.
With increasing magnetic field for example along〈100〉, we observe as an additional
feature a ring of scattered intensity forT = 28.5 K with a radius corresponding to|q| =
0.39 nm−1 that was not present atB = 0.
The appearance of this ring of intensity is only gradual when going fromB = 0 into the
A-phase. The distinct change of slope of the AC susceptibility as well as the sharp peaks
in the specific heat indicate a well defined phase transition into the A-phase that shows
up in the SANS-experiments as a ring of scattering intensity. Interestingly, we observe
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the same qualitative behavior for the field applied in the three main directions of interest
namely forB ‖ 〈−121〉 as depicted in Fig. 6.13 and forB ‖ 〈111〉 as shown in Fig. 6.14.
Therefore, the behavior is isotropic and not related to a particular initial direction of the
helical order that is enforced at lowT by anisotropies enforced by the lattice.

Figure 6.12:Neutron SANS intensity of MnSi (sample-J) as function of temperature and mag-
netic field as recorded at the diffractometer SANS-2 in Geesthacht. A ring of scattering intensity
is visible in the A-phase. The field was applied along the〈100〉. Data at zero field forT = 28.9 K
andT = 29.2 K are missing.
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Figure 6.13:Neutron SANS intensity of MnSi as function of temperature and magnetic field as
recorded at the diffractometer SANS-2 in Geesthacht. Sample-A was used for experiments below
Tc. Four resolution-limited spots are characteristic of long-range helical order are seen atT � Tc,
consistent with previous work. A ring of scattering intensity is visible in A-phase. The field was
applied along the〈−121〉. The data forT > Tc are separated with a black line from data below
Tc because they are obtained from an experiment on the sample-A.
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Figure 6.14:Neutron SANS intensity of MnSi(sample-J) at temperatures above and belowTc as
recorded at the diffractometer SANS-2 in Geesthacht. Four resolution-limited spots are character-
istic of long-range helical order are seen atT � Tc, consistent with previous works. A ring of
scattering intensity is visible in the A-Phase. Out of the A-Phase the intensity is dissolved to the
background. The field was applied along the〈111〉 direction.
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The integrated intensity as function of the azimuthal angle and the magnetic field at
fixed T = 28.85 K and in the A-phase forB ‖ 〈111〉 is displayed in Fig. 6.15.These
measurements were carried out at the new diffractometer MIRA at FRM-II. At zero field
four well defined magnetic Bragg peaks are observed at azimuthal angles−160◦, −99◦,
27◦ and99◦. The helices are originally oriented by the crystallographic anisotropy along
the〈111〉 directions. With increasing field,~q is aligned gradually along the external field
~B. For B = 98 mT the peaks collapse to the applied field direction and only two peaks
are observed at±99◦. The peaks at−160◦ and27◦ disappear completly. In the field range
140 mT ≤ B ≤ 350 mT corresponding to the A-phase, the sharp peaks become broader
and a ring of intensity is visible.

Figure 6.15: Integrated intensity as function of magnetic field and azimuthal angle of MnSi
(sample-J) atT = 28.85 K as measured on the diffractometer MIRA (FRM-II). The field is applied
along the〈111〉. The sharp peaks become broader due to the applied magnetic field and a ring of
intensity is visible in the A-phase region. Going beyond300 mT the peaks disappear in the field
induced ferromagnetic phase. Due the artefact of the detector system the intensity is zero for the
angles0◦,−180◦.

6.4 Discussion of the Results

6.4.1 Spin and Wave-vector Reorientation belowTc

We analyse the neutron scattering data shown in Fig. 6.10 for the polarization directed
along [I(q, P0)] and opposite [I(q,−P0)] to the magnetic field. We parametrised the data
usingPA = ∆I(q)/I(q), where∆I(q) = [I(q, P0) − I(q,−P0] andI(q) = [I(q, P0) +
I(q,−P0].
The integral intensities for the top, right, bottom and left peaks are shown in Figs. 6.16a
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and b respectively as function of the magnetic field. The field dependence of the polar-
ization is presented in Fig. 6.16c. Th position of the peaks is determined by the angleΦ
between the direction of the spiral and the applied magnetic field. This angle is shown
in Fig. 6.16d for two spirals. The intensities of the peaks increases with field increasing
up to130 mT. All peaks move toward the field direction and the polarization of the peaks
increases to the saturation value. The change in polarization of the peaks is related to
the movement of the peaks toward the field direction. Due to high degree of the cubic
symmetry it is well described byPp = (qpP0)/qp = P0cosΦ [93].

Figure 6.16:Magnetic field dependence of (a) the integral intensity of the top (T) and right (R)
peaks, (b) the integral intensity of the bottom (B) and left (L) peaks, (c) the polarization of these
peaks and (d) the angleΦ of their rotation atT = 10 K [94].

At B ∼ 130 mT two peaks collapse to single one withq parallel to the direction of the
magnetic field. The intensity of this united peak decreases strongly with further increase
of the magnetic field and dissolves to the background value atBC ≈ 350 mT as shown
in Fig. 6.16a. The polarization of the peaks decreases slightly as the signal-to-noise ratio
dramatically decreases in the range130 mT < B < 350 mT. The position of the united
peaks remains unchanged. The consequent decrease of the magnetic field shows large
hysteresis loop in the intensity. The peaks become separated again atB = 80 mT. The
intensity of the peaks after applying a magnetic field differs from the intensity at zero
field.
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To show the properties of the magnetic transition atBC = 350 mT, the field dependence
of the angleΦ between the direction of the spiral and the magnetic field is shown on
Fig. 6.17. The value of the angleΦ is scaled with the reduced fieldb = (B −BC)/BC as
Φ ∼ bε [28] with ε = 0.34± 0.03 for B ‖ 〈001〉 andε = 0.39± 0.04 for B ‖ 〈110〉, what
corresponds to the critical exponents of the second order phase transition.

Figure 6.17:Magnetic field dependence (log-log scale) of the angleΦ between the spiral and the
magnetic field that was aligned parallel to the〈001〉 and to〈110〉. The solid lines are fit to the data
with the power law[(B −BC)/BC ]ε.

6.4.2 Field Induced Disorder of the Helix in the A-Phase

In conventional thinking the ring may be interpreted as resulting from one of two ex-
tremes: (i) A random distribution ofq-domains with well-defined helical order or (ii) a
helically ordered state for which the direction of the magnetic moments changes gradu-
ally.
A possible explanation for the ring of intensity may be that random pinning potentials
exist, e.g. defects, that inhibit this gradual change of orientation of long helices, causing
gradual variations in orientation. However, on the basis of present day models of helical
order it appears inconceivable why such pinning mechanism should only be active in a
small temperature interval nearTc. This suggests, that models of reorientation transitions
of helical order in a magnetic field, described for example in Ref. [28], need to be revised
substantially.
We believe that an interpretation of a transition from a simple helical phase into a phase
with a two- or even three-dimensional modulated texture seems to be more likely. Indeed,
it is predicted that two-dimensional modulated textures (so called skyrmions) exist in a
finite T -interval nearTc [95] in magnetic systems with a reduced longitudinal stiffness.
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MnSi as a model system for a weak-itinerant ferromagnet that lacks inversion symmetry
fits well into such a picture.

6.5 Summary

We conclude from our measurements at low temperatures and low fields that the magnetic
structure of MnSi is strongly affected by the magnetic field. First, small Bragg peaks arise
at 2qL and2qB when the fieldB ≤ 130 mT has a component perpendicular to the helix
scattering vectorqL and qB. This demonstrates the deformation of the spiral structure
and that the circular rotation of the spins is replaced by a square one. This ellipse has its
longer axis along the applied magnetic field and its shorter axis perpendicular to the field.
The two magnetic phase transitions atB = 130 mT andBC = 350 mT were observed
at low temperatures forT = 10 K. These transitions are related to the driving forces of
the magnetic structure: (i) Anisotropic exchange energy fixing the spirals along the〈111〉
directions. (ii) The isotropic DM interaction responsible for the spiral structure itself. The
first transition is the orientational one when the helix axis is directed along the field. It is
a first order transition with a rather strong hysteresis of the order of40 mT.
Our experiments show that combining SANS measurements with bulk measurements
helps resolving the microscopic nature of the reorientation transition in MnSi. The re-
sults indicate the appearance of a new form of magnetic ordering that may be interpreted
in terms of skyrmions [95]. Presently, a device for 3-dimensional polarization analysis,
MuPAD, is being installed at the new diffractometer MIRA at FRM-II and will help in
combination with extensive torque measurements to resolve the microscopic magnetic
structure in the A-phase of MnSi and distinguish between the various models.



Chapter 7

Conclusions and Outlook

C’ est tellement inutile que c’ est rigoureusement indispensable.
Joe Simpson

In this thesis we investigated the critical spin fluctuations in localized and itinerant
magnets by means of bulk methods and small-angle scattering with polarized neutrons.
Using the inclined magnetic field geometry we studied the critical magnetic scattering
from the Heisenberg ferromagnet EuS and it was possible to induced the chirality and thus
determine the three-spin correlation functions. Two contributions to the critical scattering
I∑(q) and∆I(q) were studied in the vicinity ofTC = 16.5 K. The symmetric contribu-
tion contribution, namelyI∑(q), comes from the pair correlation function. The scattering
intensity is well described by Ornstein-Zernicke expressionI∑ = A(q2 + κ2)−1 whereκ
represents the inverse correlation length of the critical fluctuations.κ obeys the scaling
law κ = κ0τ

ν , whereτ = (T − TC)/TC is the reduced temperature,κ0 = 5.88 nm−1, and
ν = 0.68± 0.01.
The difference contribution∆I(q) is caused by the three-spin correlation also called in-
duced or dynamical chirality. It represents the asymmetric part of the polarization depen-
dent scattering.∆I(q) depends on the temperature asτ−ν with ν = 0.64 ± 0.05. The
exponentsν as determined by means of static measurements (pair correlation function)
and by dynamic measurements (induced chirality) are in good agreement with each other.
Critical fluctuations nearTC are strongly influenced by the magnetic field.
The correlation length is suppressed by the field asξ(B) = a0(gBµB/TC)1/z with z the
dynamical critical exponentz = 2.1 ± 0.1, which is close to the value obtained by in-
elastic measurements using triple axis spectroscopy. Therefore we demonstrated that the
inclined SANS geometry is a new approach for determining critical exponents. The dy-
namical chirality applied successfully to explore the model system EuS may contribute to
investigate the critical behaviour of other magnetic systems where many spin correlations
are important.
Furthermore the intrinsic chirality in itinerant weak ferromagnet MnSi has been studied
by bulk methods and by small angle polarized neutron scattering. The specific heat at
zero field shows an anomalous behavior around the critical temperatureTc. The scatter-
ing pattern at low temperatures shows four diffraction peaks along the〈111〉 and〈1̄1̄1〉
cystallographic directions. These peaks are characteristic for the helical structure. Due to
the lack of a center of symmetry, the magnetic moments are arranged along a left handed
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spiral due to the Dzyaloshinskii-Moriya interaction. The experiments show that the in-
commensurate magnetic peaks evolve with increasing temperature into diffuse scattering
that is mainly concentrated in a ring with a radiusqc = 0.39 nm−1 centered at the position
of the direct beamq = 0. The scattering is fully polarized for~q ‖ ~P0 and depolarized
for ~q ⊥ ~P0 proving the chiral nature of the scattering and the single handedness of the
spiral. We determined the critical exponents of the magnetization, the susceptibility and
the correlation lengths of the chiral fluctuations. The exponentβc = 0.44(1) of the mag-
netization is close to the value predicted for a chiral universality class. We compared bulk
measurement with polarized neutron scattering data and found an indication of two tran-
sitions in MnSi. More experiments are needed to confirm this observation.
In the presence of a magnetic field we have determined the boundary of the magnetic A-
phase of MnSi from distinct changes of slope in the AC-susceptibility for magnetic field
B applied parallel to the crystallographic〈100〉, 〈110〉 and 〈111〉 directions. The spe-
cific heat displays an anomaly of a few% at the border of the A-phase characteristic of a
well-defined phase transition. In addition to the previously reported change of orientation
of the helical modulation in the A-phase, we observed a gradual appearance of a ring of
neutron small-angle scattering intensity. These results may indicate the appearance of a
new form of magnetic ordering that may be interpreted in terms of skyrmions. More the-
oretical and experimental studies are demanded to resolve the microscopic nature of the
reorientation transition in MnSi. Presently a new device for 3-dimensional polarization
analysis, MuPAD, is being installed at the diffractometer MIRA and will help in com-
bination with torque magnetization measurements to resolve the microscopic magnetic
structure in the A-phase of MnSi and distinguish between various models.
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Appendix A

List of Abbreviations and Symbols

SANS Small Angle Neutron Scattering F (q) Magnetic form factor
TAS Triple Axis Spectrometer P0 The initial polarization
PSD Position Sensitive Detector PS Parametrised polarization
RRR Residual Resistivity Ratio S(Q,ω) Scattering function
DM Dzyaloshinskii-Moriya interaction C Specific heat
RPA Random Phase Approximation EF Fermi energy
SCR Self Consistent Renormalization V̂ Scattering potential
C Specific heat µS Spontaneous moment
S Entropie µeff Effective magnetic moment
~q Scattering vector a Lattice constant
~ki Incident wave vector Im Pure magnetic scattering
~kf Scattered wave vector Zm Amplitude of spin fluctuations
J Exchange interaction term ~B Magnetic field
θ Scattering angle BC Critical magnetic field
θx Scattering angle in x-direction ~A Vector potential
θy Scattering angle in y-direction M Magnetization
k = 2π/d Length of the spiral in reciprocal spaceµB Bohr magneton
d Length of the spiral in real space τ Reduced temperature
qd Dipolar wave number χ(q, ω) Dynamic susceptibility
Q Momentum transfer χAC AC susceptibility
D Stiffness constant F Free energy
κ Inverse correlation length W Free energy density
ξ Correlation length q̂ Cubic invariant
G(q) Correlation function A, D̃ Anisotropy coefficients
Am Weak anisotropic interaction term TC Curie temperature
Dm Isotropic DM interaction term Tc Critical temperature
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