
Quark Mass Dependence

of Nucleon Observables

and Lattice QCD

Ph.D. thesis by

Massimiliano Procura

Physik-Department

Technische Universität München





Technische Universität München

Physik-Department
Institut für Theoretische Physik T39

Univ.-Prof. Dr. W. Weise

Quark mass dependence of nucleon observables
and lattice QCD

Massimiliano Procura
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Summary

Understanding hadron structure from first principles is one of the great unsolved problems
in physics. Lattice QCD on one side and chiral effective field theory on the other are
progressively developing as important tools to deal with the non-perturbative nature
of low-energy QCD and the structure of the nucleon. At present, however, there is
a gap between the relatively large quark masses accessible in fully-dynamical lattice
simulations and the small quark masses relevant for comparison with physical quantities.
We combine Chiral Perturbation Theory, which predicts the quark mass dependence
of nucleon observables, with lattice computations where the quark mass is a tunable
parameter. We explore the feasibility of a systematic approach, based on the chiral
effective Lagrangian, for the chiral extrapolation of lattice QCD data. In the framework
of baryon chiral effective field theories with and without explicit ∆ (1232) degrees of
freedom, we work out the quark mass dependence of the nucleon mass MN and the axial-
vector coupling constant gA at one-loop order and perform a numerical analysis of the
relevant formulae using as input the most recent lattice QCD results.

Zusammenfassung

Es ist eines der großen ungelösten Probleme in der Physik, die hadronische Struktur
von Anfang an zu verstehen. Gitter-QCD auf der einen Seite und chirale effektive
Feldtheorie auf der anderen entwickeln sich schrittweise zu wichtigen Werkzeugen, mit der
nicht-perturbativen Natur der Niederenergie-QCD und der Nukleonstruktur umzugehen.
Momentan besteht jedoch eine Lücke zwischen den relativ großen Quarkmassen, die in
voll-dynamischen Gittersimulationen verwendet werden müssen, und den kleinen Quark-
massen, die für den Vergleich mit physikalischen Größen relevant sind. Wir kombinieren
Chirale Störungstheorie, die die Quarkmassenabhängigkeit von Nukleon-Observablen
vorhersagt, mit Gitterrechnungen, in denen die Quarkmasse ein veränderbarer Parame-
ter ist. Wir untersuchen, ob ein systematischer Zugang zur chiralen Extrapolation von
Gitter-QCD-Daten, basierend auf der chiralen effektiven Lagrangedichte, möglich ist.
Im Rahmen von baryonischen chiralen effektiven Feldtheorien mit und ohne explizitem
∆ (1232)-Freiheitsgrad berechnen wir die Quarkmassenabhängigkeit der Nukleonmasse
MN und der Axialvektor-Kopplungskonstante gA in führender Ein-Schleifen-Ordnung
und führen eine numerische Analyse der relevanten Formeln mit den neuesten Gitter-
QCD-Ergebnissen als Input durch.
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Chapter 1

Introduction

According to present understanding, the observed diversity of the strong interaction
phenomena is described by Quantum Chromodynamics (QCD), the gauge field theory
of quarks and gluons. These are the relevant degrees of freedom at high energies and
short-distance scales, r < 0.1 fm, where the renormalized gauge coupling becomes weak
(asymptotic freedom [1]). On the other hand, as we move towards low energy-momentum
scales, the perturbative expansion breaks down, and the physical picture associated with
Feynman diagrams derived from the QCD Lagrangian, expanding in powers of the gauge
coupling, becomes invalid.

Dealing with the nucleon is a genuine non-perturbative problem. Lattice field theory
provides a mathematically well-defined framework for a formulation of non-perturbative
QCD [2]. The idea is to replace the four-dimensional Minkowski space-time continuum
with a discrete lattice in a four-dimensional Euclidean space. In quantum field theory,
information is obtained from correlation functions, which have a functional integral re-
presentation. Lattice field theory introduces an ultraviolet cutoff at the outset and gives
a non-perturbative definition of the functional integral. For any lattice spacing a, the
maximum momentum which can arise on the lattice is pmax ∼ π/a, which goes to infinity
as a → 0. The fermion fields ψ(x) and ψ̄(x) live on lattice sites x. Gauge fields live on
links through the variables

Uµ(x) = P exp

� a

0

dsAµ(x+ s eµ) (1.1)

where P denotes the path ordering, Aµ = Aµa λ
a/2 (with Aµa the gluon fields and λa/2 the

generators of the SU(3) color gauge group), and eµ is the unit vector in the µ direction.
In lattice QCD the correlation function are expressed as [3]

〈O1 . . . On〉 =
1

Z

�
∏

x,µ

dUµ(x)
∏

x

dψ(x)dψ̄(x)O1 . . . On e
−SQCD (1.2)

where

Z =

�
∏

x,µ

dUµ(x)
∏

x

dψ(x)dψ̄(x) e−SQCD (1.3)

and SQCD is the lattice QCD action. With quarks on sites and gluons on links, it is
possible to devise lattice actions that respect gauge symmetry.
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Chapter 1 Introduction

When a is taken to zero we must also specify how the lattice (bare) couplings behave.
The proper continuum limit is taken with a → 0 holding the physical quantities (e.g.
hadron masses) fixed. Ultimately one must ensure that the dependence of any observa-
ble on the lattice spacing satisfies the appropriate renormalization group equation: the
calculated values should scale correctly with a, as a→ 0.

In view of practical results, the breakthrough of the lattice formulation is that Eq.(1.2)
turns quantum field theory into a mathematically well-defined problem in statistical me-
chanics. Numerical lattice QCD is concerned with numerical integration of the functional
integral by Monte Carlo methods. On a computer with finite memory, one must intro-
duce a finite space-time volume – providing an infrared cutoff – in order to keep under
control the number of integration variables. Even with a finite lattice, this number is
large. For NS sites in each spatial direction and a temporal extent L4 = N4 a, there are
(4 × 8)N3

SN4 variables for gluons and (4 × 3)N3
SN4 for each flavor of quarks. If one only

demands a volume a few times the size of the nucleon and also several grid points within
nucleon’s diameter, one already requires, say, 10 points along each direction. In four-
dimensional space-time this leads to ∼ 32 × 104 gluonic variables. Therefore, the only
feasible methods are based on Monte Carlo integration: an ensemble of random variables
is generated according to Boltzmann weighting and the integrals involved in Eq.(1.2) are
approximated by averages on the simulated ensemble. One first selects a desired level of
precision, and then using appropriate theorems, determines an algorithm and a number
of independent samples that yield such a precision. Apart from systematic effects due
to non-zero lattice spacing and finite volume, lattice QCD “simulations” produce results
that are exact on the given lattice, up to statistical errors.

Quarks pose problems. The functional integral formalism must be prepared to ac-
commodate anticommuting fields. This is solved by describing the fermion fields using
Grassmann variables. In all cases of interest, the quark lattice action can be written
as [3]

Sq =
∑

αβ

ψ̄αMαβ ψβ , (1.4)

where α and β collectively label discrete space-time, spin and internal quantum numbers.
The matrix Mαβ is a discretized version of the Dirac operator D/ + m, where m is the
quark mass matrix. Mαβ depends on the gauge field U(x). Since the quark action is a
quadratic form, the integral can be carried out exactly:�

∏

αβ

dψ̄α dψβ e
−ψ̄Mψ = detM . (1.5)

With the quarks integrated analytically, it is the gluons that are subject to the Monte
Carlo method. The weighting factor in the path integrals in Euclidean space-time is now
e−Sg(U)detM , where Sg is the lattice pure gauge action. Assuming that detM is positive,
one can devise a Monte Carlo with “importance sampling”. This is crucial to make lattice
QCD numerically tractable. The random number generator creates gauge fields weighted
according to e−Sg(U)detM . The appearance of the minus sign in front of Sg(U) instead
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of i is due to the use of imaginary time. Working in Euclidean space-time has also the
important practical advantage that to isolate lowest-lying state and compute hadronic
matrix elements can be done by looking at the asymptotic behavior of Euclidean-time
correlation functions.

Generating statistically independent configurations of the U ’s involves computing how
the effective action Sg(U) − ln detM changes when the set of U ’s are varied. The
presence of the fermion determinant makes this problem very difficult. The sampling
involves the inversion of the fermion matrix M(U) 1. Moreover, the products of ψαψ̄β in
the integrand O1 . . . On are replaced by quark propagators [M−1]αβ by Wick contraction.
The eigenvalues of M span a very large range, from 2π down to mqa, where mq is
the quark mass. The ratio of the largest λmax to the smallest λmin of such eigenvalues
determine the convergence rate of iterative methods to invert M . The CPU time needed
for such calculations, even with the best algorithms, is proportional to

(λmax/λmin)
p ∼ min{1/(mqa)

p, (L/a)p} . (1.6)

The exponent p depends on the algorithm and is typically between 1 and 3 [5]. At
fixed a, it is therefore costly to reduce mq. The dependence of the ratio (1.6) on the
lattice size L can be explained as follows. For a pure gauge theory, changing a variable
at one location only affects the action at sites “near” the variable, so the attempt to
update one link variable on the lattice involves a computational effort independent of
the lattice volume. However, the fermion determinant is non-local and so, updating one
gauge variable involves an amount of work proportional to the lattice volume. In addition
to difficulties embodied in Eq.(1.6), statistical uncertainties increase as the quark mass
decreases. With present techniques it is not yet possible to run lattice simulations at
masses as small as those of the up and down quarks in nature.

The determinant of M generates sea quarks inside a hadron. An enormous numeri-
cal simplification occurs if one makes the so-called quenched approximation, replacing
detM by 1 (no closed fermion loops) and compensating the corresponding omission of
vacuum polarization effects with shifts in the bare couplings: valence quarks and gluons
in hadrons are treated fully, while sea quarks are merely modeled or ignored altogether.
The quenched approximation becomes exact in the limit of infinitely massive quarks.
Only a full-QCD calculation can provide us with an answer to the question about the ac-
curacy of such approximation. It is also very well established that as mq → 0, quenched
QCD and full QCD, with non-zero flavor numbers, differ strongly 2.

The quenched approximation is now out-of-date. At present the challenge in lattice
QCD is to devise efficient simulation methods for the full theory (including quark pola-
rization effects) that will work well on large lattices and with small quark masses. The
number of arithmetic operations that are required to generate the subsequent statistically

1For a comprehensive review of the algorithms used for present simulations with dynamical fermions
see [4] and references therein.

2Cf. for example [5] and references therein.
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Chapter 1 Introduction

independent field configurations can be estimated by the empirical formula [6]3

# operations

field configurations
≃ 3.3

[

140 MeV

mπ

]6 [
L

3 fm

]5 [
0.1 fm

a

]7

Tflops years (1.7)

which shows the dependence on the lattice spacing a, lattice spatial size L and on the cal-
culated value of mπ of the pion mass, which is related to the specified values of the quark
masses. The result is given in Tflops years, the number of operations that a computer
with a sustained speed of 1 Tflop (1012 floating-point operations per second) performs in
1 year of running time. While such machines are becoming available to the lattice com-
munity, the poor scaling behavior of the algorithms tells us that it will not be possible
to vary the lattice parameters over a wide range. This unfavorable situation calls for
new algorithmic ideas and theoretical guidance to realize the relevant extrapolations, in
lattice spacing, lattice size and quark masses.

QCD is a multiscale problem: there is not only the energy scale Λ characteristic of
non-perturbative gluonic effects but also a wide range of quark masses. Furthermore, two
more scales are introduced in order to put QCD on a lattice. Firstly, for “light” quarks
the lattice size must be such that L ≫ m−1

q , light quarks must “fit” into the lattice.
Secondly, for “heavy” quarks the lattice spacing a must be smaller than the Compton
wavelength of such quarks, a≪ m−1

Q . The idealized hierarchy

L−1 ≪ mq ≪ Λ ≪ mQ ≪ a−1 (1.8)

is forced by limited computing resources to be

L−1 < mq < Λ < mQ ∼ a−1 . (1.9)

Nevertheless, all the parameters a, L and mq can be varied over certain ranges, providing
numerical lattice QCD with one of its most important strength.

Effective field theories can provide sound theoretical guides to connect present lattice
results with phenomenology [5]. Heavy quark effective theory and non-relativistic QCD
are used in controlling and quantifying systematic uncertainties of lattice calculations
for heavy quark systems. Lattice spacing effects can be described by an effective field
theory due to Symanzik [7], while Lüscher developed a theoretical framework to study
finite-volume effects [8] in terms of the asymptotically observed hadrons.

In our work we focus on the (light) quark mass dependence of nucleon observables and
the so-called chiral extrapolation problem. In the limit of vanishing quark masses, QCD
becomes a “theoretical paradise”, being characterized by chiral symmetry. The sponta-
neous breakdown of this symmetry implies the absence of a mass gap in the spectrum
of the asymptotically observed particles. Equipping up and down quarks with a small
mass, the deviation from the chiral limit can be explored in a perturbative fashion. The
pions are characterized by masses much smaller than those of all other hadrons, as they

3We use standard units ~c = 1 throughout this work.

12



are the Goldstone bosons associated with spontaneous chiral symmetry breaking in the
two-flavor case. In Chiral Perturbation Theory [9–11], the effective low-energy theory of
QCD, the relevant degrees of freedom are the hadrons observed in the low-mass meson
and baryon spectrum. In the present context these are pions coupled to “heavy” nucle-
ons and ∆ (1232) states. Chiral symmetry imposes strong constraints on the form of the
interactions among them. In particular, it enables a perturbative expansion of the QCD
Green functions in terms of small external momenta and quark masses.

It is natural to combine both Chiral Perturbation Theory and lattice QCD to benefit
from their respective advantages. For small enough quark masses, Goldstone bosons are
expected to dominate the long-range behavior of correlation functions. On one side Chiral
Perturbation Theory provides the dependence of low-energy observables on quark masses
and external momenta. On the other side, the quark masses can be varied continuously
in a lattice computation. In order to directly compare these two approaches, quarks
have to be taken sufficiently light. The aim of our work is to investigate whether this
is already achieved in present state-of-the-art simulations for the nucleon mass MN and
the axial vector coupling gA, two quantities which have been extensively studied on the
lattice in the very last years.

13
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Chapter 2

Theoretical framework

Quarks and gluons are the fields that experience the strong interactions described by
QCD [12]. The statement that QCD is a gauge theory based on the SU(3) group with a
“color” triplet of quark fields, fixes the QCD Lagrangian density to be

L = −1

4

8
∑

a=1

Ga
µνG

µν
a +

Nf
∑

j=1

q̄j(iγµDµ −mj)qj . (2.1)

A summation over repeated Lorentz indices is implied. Here qj are the quark fields of
Nf flavors with mass mj and Dµ is the covariant derivative defined as

Dµ = ∂µ − ig
8
∑

a=1

λa
2
Aaµ , (2.2)

where g is the gauge coupling, Aaµ are the gluon fields and the λa/2 are the SU(3) group
generators in the triplet representation of the quarks. The gluon field strength tensor is
given by

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfijkA

j
µA

k
ν (2.3)

with fijk the totally antisymmetric structure constants of SU(3). As far as gauge invari-
ance is concerned, the QCD Lagrangian density could also include a term

Lθ = − θ

64π2
ǫµνρσ

8
∑

a=1

Ga
µνG

a
ρσ , (2.4)

where ǫµνρσ is the totally antisymmetric Levi-Civita tensor, ǫ0123 = 1. The inclusion of
the term (2.4) would violate P and CP conservation. For example, a non-zero vacuum
angle θ would generate a neutron electric dipole moment proportional to |θ|. Present
empirical information [13] gives the upper bound |θ| < 10−9 following [14] and even less
according to Refs. [15]. In our work we do not consider P or CP violating effects. We
will set θ = 0 in the following.

The basic input of QCD is the dimensionless bare coupling g. The parameters are
the bare quark masses mj . In dimensional regularization [16] and using the modified
minimal subtraction MS renormalization scheme [17], the β-function determining how

15



Chapter 2 Theoretical framework

the renormalized coupling gren changes with the running scale µ, is independent of the
quark masses:

µ
dgren

dµ
= β(gren) . (2.5)

If gren(µ) is small, we can compute β(gren) in perturbation theory. The leading term in
the perturbative expansion is of order g3,

β(g) = −β0
g3

(4π)2
+ O(g5) , β0 =

1

3
(11Nc − 2Nf ) . (2.6)

Here Nc is the number of colors. The last equation shows that, for small positive coupling
g, β is negative, provided 11/2Nc exceeds the number of quark flavors with masses below
the energy scale under consideration. For the case of physical interest, this condition is
met, such that the theory is (ultraviolet) asymptotically free. Using Eq.(2.6) in Eq.(2.5)
and integrating, one obtains

αs(µ) ≡ g2
ren

4π
=

4π

β0 ln(µ2/Λ2
QCD)

(2.7)

where ΛQCD is an integration constant. The calculation at three-loop order together with
the Particle Data Group average for αS at the mass of the Z resonance, gives ΛQCD =
217+25

−23 MeV for 5 active quark flavors, in the MS scheme of dimensional regularization
[13]. The procedure of quantization, regularization and renormalization introduces the
scale ΛQCD: the dimensionless coupling g in the Lagrangian is exchanged for a free
dimensionful parameter.

In Eq.(2.6) it is justified to neglect higher-order contributions to the β−function only
if the running coupling is small; accordingly, the above representation of the scale de-
pendence of the coupling constant only holds for µ≫ ΛQCD. Moreover, for small values
of the running scale, the perturbative approach is no longer justified.

Analogously, the tuning of the quark masses is determined by the function γm, see for
example Ref. [18],

µ
dmren

dµ
= γm(gren)mren (2.8)

γm(gren) = −γ0
g2
ren

(4π)2
+ O(g4

ren) , γ0 =
3(N2

c − 1)

Nc
. (2.9)

For large values of µ, the solution is of the form

mren = m̄

(

ln
µ

ΛQCD

)−γ0/(2β0)

. (2.10)

The integration constant m̄ is the renormalization group invariant quark mass. In the
following we will work with running quark masses, even if we do not explicitly indicate
that these quantities depend on µ.

As far as strong interactions are concerned, the different quark flavors u, d, . . . have
identical properties, except for their mass. The quark masses represent free parameters
of the QCD Lagrangian — the theory makes sense for any value of mu, md, . . . .

16



2.1 Chiral symmetry

2.1 Chiral symmetry

If Nf quarks are massless, the Lagrangian does not contain any terms that connect the
right- and left-handed components of the quark fields

qR,j =
1

2
(1 + γ5)qj , qL,j =

1

2
(1 − γ5)qj , (2.11)

for each flavor j. The Lagrangian of massless QCD therefore remains invariant under
“chiral” rotations, i.e. independent global transformations of the right- and left-handed
quark fields,

qR → VRqR qL → VLqL VR, VL ∈ U(Nf ) . (2.12)

where qR = (qR,1 . . . qR,Nf
)T and the same for the left-handed quarks. The Noether

currents associated with this symmetry are given by

V µ
a = q̄γµ

λ̄a
2
q , Aµa = q̄γµγ5

λ̄a
2
q , a = 1, . . . , N2

f − 1 (2.13)

V µ
0 = q̄γµq , Aµ0 = q̄γµγ5q , (2.14)

where the matrices λ̄a form a complete set of traceless, Hermitian Nf × Nf matrices
and q = (q1 . . . qNf

)T . The singlet axial current Aµ0 fails to be conserved at the quantum
level (axial U(1) anomaly [19]). Hence the actual symmetry group G of massless QCD,
generated by the charges of the conserved currents, consists of those pairs of elements
VR, VL ∈ U(Nf ) that obey the constraint det(VRV

−1
L ) = 1, i.e.

G = SU(Nf ) × SU(Nf ) × U(1)V . (2.15)

The factor U(1)V is generated by the charge associated to the singlet vector current V µ
0 ,

referring to baryon number.
The next sections are devoted to the presentation of Chiral Perturbation Theory

(ChPT), the effective low-energy theory of QCD which exploits the symmetry properties
which we have described so far. We review the basic concepts underlying the construction
and use of such a theory, emphasizing the aspects relevant for our analysis of the quark
mass dependence of baryon properties. For clarity we will first focus on the mesonic sec-
tor of ChPT, where the Goldstone bosons associated with spontaneous chiral symmetry
breaking are the only effective degrees of freedom. Particular attention will be paid to
the explicit chiral symmetry breaking through non-vanishing quark masses and to the
systematic, model-independent character of this theoretical approach. We will come to
the meson-baryon system in Sec.2.8.

2.2 Spontaneous chiral symmetry breaking in QCD

In our work we concentrate on the Nf = 2 sector of the quarks u and d. There is strong
evidence from hadron spectroscopy that the chiral SU(2)L × SU(2)R symmetry of the
QCD Lagrangian is spontaneously broken, the ground state (vacuum) being invariant
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Chapter 2 Theoretical framework

only under the isospin subgroup generated by the charges of the vector currents V µ
a .

Indeed, if chiral symmetry were exact and unbroken, then the ground state would be
invariant under chiral rotations, G = SU(2)L × SU(2)R × U(1)V being realized as a
Wigner-Weyl symmetry. The hadron spectrum would consist of degenerate multiplets
that transform irreducibly under G and thus contain degenerate states of opposite parity
and equal spin, baryon number and strangeness. This is most strikingly not the case
for the light pseudoscalar mesons which have masses much lower than the lightest scalar
mesons. Moreover, if the axial charges would annihilate the vacuum, then the correlation
functions of vector and axial currents 〈0|T{V µ

a (x)V ν
b (0)}|0〉, 〈0|T{Aµa(x)Aνb (0)}|0〉 should

coincide. Consequently, the spectral distributions of vector and axial-vector mesonic
excitations of the vacuum should also be identical, which they are not: the ρ mass is
far smaller than the mass of the axial a1 meson, mρ ≈ 0.77 GeV ≪ ma1 ≈ 1.23 GeV.
Hence we are forced to conclude that if the massless limit with its chiral SU(2)× SU(2)
symmetry is a good approximation at all, then it must be spontaneously broken to
its isospin subgroup SU(2), since the hadron spectrum can be organized in (nearly)
degenerate isospin multiplets.

In the massless theory, a sufficient (but not a necessary) condition for spontaneous
chiral symmetry breaking is a non-vanishing scalar quark condensate

〈0|ūu|0〉 + 〈0|d̄d|0〉 ≡ −Tr lim
y→x+

〈0| T{q(x)q̄(y)}|0〉 (2.16)

where the trace is taken over flavor indices. The available lattice results support the
hypothesis of the formation of a non-vanishing scalar quark condensate [20], which is
invariant under the subgroup generated by the vector charges, but correlates the right-
and left-handed fields and thus is not chiral invariant.

Assuming that the spontaneous chiral symmetry breakdown gives rise to non-vanishing
order parameters — vacuum expectation values of local operators which do not commute
with all the charges of SU(2)L × SU(2)R —, Goldstone’s theorem [21] asserts that the
spectrum of the theory contains three massless particles (Goldstone bosons) with the
same quantum numbers as the broken symmetry generators: spin zero, negative parity,
unit isospin, zero baryon number and strangeness — the same quantum numbers of
π+, π0, π−. Let us denote as |πa(p)〉 the one-particle state vectors of the Goldstone
bosons, with four-momentum pµ. Goldstone’s theorem implies non-vanishing transition
matrix elements of the axial current operators between the vacuum and |πa(p)〉. Lorentz
invariance and a suitable choice of phase for the states |πa(p)〉 imply

〈0|Aµa(x)|πb(p)〉 = ipµδabf
0
πe

−ip·x , (2.17)

with f 0
π real and positive: this denotes the pion decay constant in the SU(2) chiral limit,

i.e. for vanishing u- and d-quark masses. Its magnitude cannot be determined by means
of symmetry considerations alone but it is a dynamical issue.

Following Gasser and Leutwyler [10, 11], we introduce in the QCD Lagrangian with
θ = 0 the couplings of the conserved vector and axial currents as well as scalar and
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2.3 Low-energy expansion and effective Lagrangian

pseudoscalar quark densities to the external c-number fields vµ(x), aµ(x), s(x) and p(x):

L = L0
QCD + Lext = −1

4
Ga
µνG

µν
a + q̄ iγµDµ q + q̄ γµ(vµ + γ5aµ) q − q̄ (s− iγ5p) q . (2.18)

L0
QCD denotes the QCD Lagrangian for vanishing quark masses. The external fields are

color-neutral, Hermitian 2 × 2 matrices in flavor space and commute with the Dirac
matrices. Since we are not concerned with effects of the axial U(1) anomaly, we omit the
coupling to the singlet axial current and set Tr aµ = 0. The ordinary two-flavor QCD
Lagrangian is recovered by setting vµ = aµ = p = 0 and s = diag(mu, md).

Let us define the generating functional Z[v, a, s, p] by

exp(iZ[v, a, s, p]) = 〈0 out|0 in〉v,a,s,p = 〈0| T exp

[

i

�
d4xLext(x)

]

|0〉 , (2.19)

where the external fields play the role of classical auxiliary variables. The expansion of
the generating functional in powers of the external fields determines the Green functions
of the theory. The quantity exp(iZ[v, a, s, p]) is the vacuum-to-vacuum transition am-
plitude in the presence of external fields and describes the response of the system to the
perturbations generated by them. The external field method has an important advan-
tage: in the absence of anomalies, the Ward identities obeyed by the Green functions of
the currents (the so-called chiral Ward identities) are equivalent to the statement that the
generating functional is invariant under a local transformation of the external fields [22].

2.3 Low-energy expansion and effective Lagrangian

We are interested in determining the low-energy structure of the QCD Green functions,
from Eq.(2.19). Let us first consider massless QCD. We will treat the case of non-
vanishing quark masses in Sec.2.4. The Fourier transforms of the Green functions are
dominated by the singularities generated by Goldstone bosons [22]. For example, the
two-point function of the conserved axial current Aaµ(x) exhibits a pole at p2 = 0 corre-
sponding to the propagation of a massless Goldstone boson,�

d4x eip·x〈0|T{Aµa(x)Aνb (0)}|0〉 = if 0
π

2
δab

pµpν

p2 + iǫ
+ . . . (2.20)

The residue is proportional to f 0
π

2
according to Eq.(2.17). The dots in Eq.(2.20) refer

to cuts for multipion exchange as well as singularities associated with the exchange of
massive particles.

Let us now suppose that at sufficiently small momenta, the Green functions are domi-
nated by the one-particle-reducible contributions, namely the poles due to the exchange
of Goldstone bosons. The corresponding residues are polynomial in the momenta. This
assumption is called pion pole dominance hypothesis [22] and represents also the theore-
tical foundation of the venerable PCAC approach [23]. The singularities associated with
multipion exchange occur only at subleading order in the low-energy expansion: the dots
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Chapter 2 Theoretical framework

in Eq.(2.20) refer to contributions beyond the leading order in the low-energy expansion.
The vertices involving any number of pions, can be written as a Taylor series in the mo-
menta. The S-matrix elements admit a low-energy expansion, which does not represent
a Taylor series like for theories with mass gap [24], but involves singular functions of the
momenta.

The hidden symmetry, which gives birth to the Goldstone bosons, at the same time
also determines their low-energy properties. Indeed, starting from current conservation
which requires

pµ 〈πa1(p1)π
a2(p2) . . . out|Aµ(0)|0〉 = 0 , (2.21)

with pµ = pµ1 + pµ2 + . . . the four-momentum of the final state, and applying pion pole
dominance, one can show that vertices involving any number of pions disappear if the
pion momenta tend to zero, see for example Ref. [22]. At low-energies, the interaction
among the Goldstone bosons is weak and pions of zero four-momentum do not interact at
all. This crucial feature is the starting point of Chiral Perturbation Theory which treats
the interaction among Goldstone bosons as a perturbation and the momenta as expan-
sion parameters. The opposite behavior in the underlying quark-gluon theory prevents a
perturbative low-energy analysis of the interaction in terms of the “fundamental” QCD
degrees of freedom.

The one-particle-reducible contributions, which describe the pole terms occurring in
the various Green functions, may be viewed as tree graphs of a local field theory, with
pion fields as dynamical variables. Since the Goldstone bosons do not carry spin, they
are described by scalar fields which we denote as πa(x), a = 1, 2, 3: they are in one-to-one
correspondence with the massless one-particle states |πa(p)〉 occurring in the spectrum
of asymptotic states. The effective field theory is described by a local Lagrangian and
the long-range correlations arise from the propagation of the local effective field πa(x).
In this language, pole terms generated by pion exchange arise from propagation of the
pion field and the vertices represent interactions among these fields. The Lagrangian of
this effective pion field theory is called chiral effective Lagrangian.

The expansion of the vertices as a Taylor series in the momenta corresponds to a
derivative expansion of the interaction Lagrangian. The various terms occurring in the
Taylor series represent local interaction terms, containing the pion fields and their deriva-
tives. Including the standard kinetic term, the effective Lagrangian with at most two
derivatives can be cast into the form

Leff =
1

2
∂µπ

a∂µπa + v1
ab(π) ∂µπ

a∂µπb , (2.22)

since Goldstone’s theorem implies that terms without derivatives are absent. The func-
tion v1

ab(π) starts with a term quadratic in π and accounts for the leading term in the
low-energy expansion of the four-pion vertex.

The coupling of the pion to the conserved currents may also be accounted for in the
effective Lagrangian. Let us collectively denote the relevant external fields as f iµ(x) =
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2.3 Low-energy expansion and effective Lagrangian

{viµ(x), aiµ(x)}. The full effective Lagrangian, which includes the purely pionic vertices
as well as those involving external fields is of the form

Leff
π = Leff

π (π, ∂π, ∂2π, . . . ; f, ∂f, . . . ) . (2.23)

Using a symbolic notation, the general vertex occurring in this Lagrangian is of the
type ∂DvfFvπPv , where Dv is the total number of derivatives, Fv specifies the number of
external fields and Pv counts the pion fields entering the interaction term in question. It
is convenient to define the order of the vertex as Ov = Dv +Fv, i.e. to treat the external
fields as small quantities of the same order as the momentum. Note that in this ordering
of the vertices, the number Pv of pion fields is left open. The sum of all vertices,

Leff
π =

1

2
∂µπ

a∂µπa +
∑

v

gv ∂
DvfFvπPv , (2.24)

amounts to an expansion of the function (2.23) in powers of the fields and their deriva-
tives. Lorentz invariance implies that the effective Lagrangian only contains vertices of
order Ov = 2, 4, 6 . . . Counting powers of momentum associated with tree graphs, it turns
out that the leading term in the low-energy expansion of the Green functions exclusively
receives contributions from vertices with Ov = 2.

The virtue of the representation in terms of effective fields is that the Feynman graphs
of a local field theory automatically obey the cluster decomposition property: whenever
a given number number of pions and currents meet, the same vertex occurs, irrespective
of the remainder of the graph. The sum of all contributions, involving the exchange of
an arbitrary number of pions between the various vertices is given by the sum over all
Feynman diagrams of the effective theory. While the tree graphs represent the classi-
cal limit, loops describe the quantum fluctuations. Accordingly, the representation of
the generating functional Z[f ] in terms of effective fields takes the standard form of a
Feynman path integral

exp(iZ[f ]) = Z−1

�
[dπ] exp

(

i

�
d4xLeff

π (π, ∂π, . . . ; f, ∂f, . . . )

)

, (2.25)

where Z stands for the integral on the right-hand side evaluated at f = 0. The last equa-
tion represents the link between the underlying and the effective theories: the quantity
Z[f ] one the left-hand side is the generating functional of the Green functions formed
with the current operators of the underlying theory, while the right-hand side exclusively
involves the effective field theory. Pion pole dominance hypothesis implies that the two
sides coincide, order by order in the low-energy expansion.

The most remarkable property of the method is that it does not mutilate the theory
under investigation: the effective field theory is no more than an efficient machinery
to work out the low-energy expansion, within its radius of convergence, at any desired
order. If the effective Lagrangian includes all the terms permitted by the symmetry of
the underlying theory, ChPT is mathematically equivalent to QCD [9, 22]. The former
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Chapter 2 Theoretical framework

theory exclusively exploits the symmetry properties of the latter and involves an infinite
number of effective coupling constants, which represent the Taylor coefficients of the
modified expansion.

Although the symmetry of the underlying theory is spontaneously broken, it constrains
the form of the effective Lagrangian [22,24]. The pion field variables can be viewed as the
coordinates of a Riemannian manifold, the quotient space G/H , where G is the symmetry
group of the QCD Hamiltonian, while H is the subgroup under which the ground state
is invariant. In our case G = SU(2) × SU(2) and H = SU(2). Since G/H is isomorphic
to SU(2) – a manifold with the topology of the three-dimensional sphere –, the pion field
may be represented as a matrix field U(x) ∈ SU(2). We can decompose the element
g = {VR, VL} of G into a product of the form nh, where n belongs to the quotient space
and is a representative element in the equivalence class of g, while h is an element of the
unbroken subgroup SU(2). Under the action of the group G, the element n = {U, 1} is
taken into

gn = {VRU, VL} = {VRUV †
L , 1}{VL, VL} , (2.26)

so that gn and n′ = {VRUV †
L , 1} belong to the same equivalence class. This shows that

the field U transforms according to

U ′ = VRUV
†
L . (2.27)

The choice of representatives in the equivalence class is not unique. One may also pick
elements of the form n = {1, U}, which transform according to U ′ = VLUV

†
R. This

amounts to replacing the pion field U by U †.
Since three coordinates are needed to parameterize the elements of SU(2), the matrix

field U is equivalent to a set of three scalar fields. We can, for example, express U as
an exponential of the corresponding representation of the Lie algebra. In terms of the
Pauli matrices τa, the generators of the Lie algebra are given by τa/2. Accordingly, the
canonical coordinates πa of U ∈ SU(2) are defined by

U = exp

(

i
~τ · ~π

2

)

. (2.28)

According to Eq.(2.27) the pion field π carries a nonlinear representation of the symmetry
group.

If anomalies do not occur, Green functions of the currents obey Ward identities if and
only if the generating functional Z[f ] is invariant under a gauge transformation of the
external fields. Let us define

fRµ = vµ + aµ , fLµ = vµ − aµ (2.29)

which corresponds to the right- and left-handed currents, respectively. The right-handed
fields transform like a gauge field of the first factor of G,

fRµ (x) ′ = VR(x)fRµ (x)VR(x)† − i∂VR(x)VR(x)† , (2.30)

22



2.4 Explicit chiral symmetry breaking

and fLµ transforms in the same manner with VL(x). In the construction of the leading
term in the derivative expansion of the effective Lagrangian with two traceless external
vector fields, it is convenient to introduce a covariant derivative for the pion field,

DµU(x) ≡ ∂µU(x) − ifRµ (x)U(x) + iU(x)fLµ (x) . (2.31)

One can show that the symmetries of the underlying theory fix the leading effective
Lagrangian, except for an overall constant. There is only one gauge invariant expression
of order p2. The quantity Tr(DµU D

µU †) is gauge invariant and the kinetic term assumes
the standard form 1/2 ∂µπ

a∂µπa if in Eq.(2.28) πa is replaced by 2πa/f 0
π . Therefore the

leading term in the derivative expansion of the effective Lagrangian reads [10]

L(2)
π =

1

4
f 0
π

2
Tr(DµU D

µU †) , (2.32)

with, for example,

U(x) = exp

(

i
~τ · ~π
f 0
π

)

. (2.33)

The generating functional is invariant under coordinate transformations. As already
mentioned, in the low-energy expansion of the Green function formed with n currents, the
vertices which are relevant at leading order are those described by L(2)

π : the remainder of
the effective Lagrangian only matters if the low energy expansion of the n-point function
is carried beyond leading order.

2.4 Explicit chiral symmetry breaking

Chiral symmetry is explicitly broken by non-vanishing quark masses. The relevant piece
in the QCD Hamiltonian is

Hχsb =

�
d3x(muūu+mdd̄d) . (2.34)

Both lattice and continuum determinations of the quark masses show mMS
u,d (µ = 2 GeV) <

10 MeV [13]. For “small” symmetry breaking parameters mu,d, the energy eigenvalues
are close to those of the symmetric theory. In particular, the spectrum must contain a set
of one-particle states, whose masses tend to zero if the quark masses are turned off. As
we are going to show, explicit chiral symmetry breaking does not remove the Goldstone
bosons, but equips them with a mass. The approximate global SU(2)L × SU(2)R sym-
metry of QCD easily explains a crucial property of the observed hadronic mass pattern:
the pion mass is remarkably small compared to the masses of all other hadrons.

Explicit symmetry breaking may be accounted for in the effective field theory, provided
it is sufficiently weak [22]. If the masses of the Goldstone bosons are small, the poles
which they generate still dominate the low-energy structure of the theory. Clearly, the
excitation energy of all other levels must be large compared to the excitation energy of
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the Goldstone bosons: if this condition is not met, the latter loose their distinguished
role in the low-energy analysis. In the following we will assume that the explicit sym-
metry breaking part is weak and treat it as a perturbation. At low energies, we expect
strong interaction physics to be governed by the softest excitations of the QCD ground
state, the “light” degrees of freedom. Here “light” is meant compared to Mnucleon or
Mρ−meson, the lightest masses of non-Goldstone states. Kaons and the η-meson indeed
can be regarded as Goldstone bosons associated with spontaneous chiral symmetry break-
ing SU(3)L × SU(3)R → SU(3)V . In our work we consider the expansion in powers of
mu and md, keeping the remaning quark masses fixed at their physical values. The pions
are the only Goldstone bosons.

The symmetry breaking part of the QCD Lagrangian is of the form

Lsb = −q̄RmqL − q̄Lm
†qR , (2.35)

where m is the quark mass matrix. Let us rewrite for convenience

Lsb = mαOα (2.36)

where the operators Oα = (q̄iRq
j
L, q̄

i
Lq

j
R) are bilinear in the quark fields. The elements of

the quark mass matrix play the role of the symmetry breaking parameters mα.
Compared to the case of vanishing quark masses, the Ward identities involve Green

functions which do not only contain the currents but also the operators Oα. It is therefore
convenient to extend the generating functional, treating also the symmetry breaking
parameters formally as external fields mα = mα(x), on the same footing as the f iµ(x)
associated with the currents. As before, the effective action is defined by the vacuum-
to-vacuum transition amplitude

exp(iZ[f,m]) = 〈0 out|0 in〉f,m . (2.37)

To obtain Green functions in the presence of explicit symmetry breaking, it is sufficient
to set mα(x) = mα

0 + m̃α(x) and expand the functional Z[f,m] in powers of f iµ(x) and
m̃α(x). We expand around the non-zero, constant value of the light quark masses mα

which occurs in LQCD. In the following we will be concerned with the two-flavor case.
The symmetry breaking also manifests itself in the effective theory. Including explicit

chiral symmetry breaking, the low-energy analysis then involves a combined expansion,
which treats both the momenta and the quark masses as small parameters. The effective
Lagrangian now contains an external scalar field mα(x),

Leff
π = Leff

π (π, ∂π, . . . ; f, ∂f, . . . ;m, ∂m, . . . ) = L0
eff + Lsb

eff . (2.38)

The effective Lagrangian considered in Sec.2.3 is what remains if the symmetry breaking
field mα(x) is turned off, i.e. L0

eff . The extra term is the effective field theory analogue
of the symmetry breaking piece which occurs in the original QCD Lagrangian.

Since we assume that the symmetry breaking is small, Lsb may be treated as a per-
turbation. The corresponding perturbation series is ordered according to the powers of
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2.4 Explicit chiral symmetry breaking

the external field mα(x). The effective Lagrangian can be expanded accordingly. The
leading term in Lsb

eff is of first order in mα(x). Since derivatives can be removed by partial
integration, we can, without loss of generality, write the leading term in the form

Lsb
eff = mαlα (π, ∂π, . . . ; f, ∂f, . . . ) + O(m2) . (2.39)

At low energies, lα(π, . . . ) is dominated by the leading term in the derivative expansion.
Both the derivative and the field f iµ(x) count as quantities of order p, the pion external
momenta. Lorentz invariance only permits even powers of p. It is convenient to simplify
the bookkeeping by counting the external field mα(x) as a quantity of order p2, such
that both the symmetric and the symmetry breaking part of the Lagrangian consist of
a series of terms of even order in p, starting at O(p2). At leading order, the symmetry
breaking term does not contain derivatives of the pion field and is independent of f iµ(x),

Lsb
eff = mαlα(π) + O(p4) . (2.40)

The explicit form of the function lα(π) can be worked out using the constraint imposed
by the symmetry [22, 24]. Using matrix notation,

Lsb
eff = Tr{ml(π) +m† l†(π)} + O(p4) , (2.41)

where l(π) is a 2 × 2 matrix. Gauge invariance requires this matrix to transform in the
same manner as the operator qL × q̄R [24],

l(π) → VLl(π)V †
R , (2.42)

which apart from an interchange of VL and VR, coincides with the transformation of the
covariant pion field U(π). Since the transformation law fixes the matrix up to a multi-
plicative constant, this implies l(π) = λU(π)†. We write the effective coupling constant
λ in the form 1/2 f 0

πB. Parity conservation implies that B is real. At leading order in the
low-energy expansion, the effective Lagrangian thus contains two real coupling constants,

L(2)
π =

1

4
f 0
π

2
Tr{DµUD

µU †} +
1

2
f 0
π

2
B Tr{mU † +m† U} . (2.43)

In order to interpret the new parameter B, let us consider the energy density of the
ground state (U = 1),

〈0|Heff |0〉 = −f 0
π

2
B(mu +md) (2.44)

and compare its derivative with respect to any of the light quark masses with the corre-
sponding quantity in QCD, using the fact that the vacuum is invariant under SU(2)V ,

∂〈0|HQCD|0〉
∂mq

∣

∣

∣

∣

mu=md=0

= 〈0|ūu|0〉0 = 〈0|d̄d|0〉0 ≡ 〈0|q̄q|0〉0 , (2.45)
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where 〈0|q̄q|0〉0 denotes the scalar quark condensate in the SU(2) chiral limit. Therefore,
at first order in m, we obtain

〈0|q̄q|0〉0 = −f 0
π

2
B . (2.46)

As we are taking the quark masses mu, md to be real and positive, the configuration
πa = 0 represents a minimum of the potential arising from explicit symmetry breaking

Veff(π) = −1

2
f 0
π

2
BTr{m(U(π) + U(π)†)} (2.47)

provided B is positive. For the ground state of the effective theory to be stable against
decay into multipion configurations, B must therefore be positive.

Let us consider the leading effective Lagrangian in Eq.(2.43). We switch off the external
vector field and take a constant diagonal quark mass matrix m = diag(mu, md) with
mu,d ≥ 0. Since for unitary, unimodular 2 × 2 matrices U , the quantity U + U † is a
multiple of the unit matrix, the leading term of the effective Lagrangian only involves
Trm = mu + md. Using the parameterization in Eq.(2.33) and expanding in powers of
the pion field, we get

L(2)
π = f 0

π
2
B(mu +md) +

1

2

[

~τ · ∂µ~π ~τ · ∂µ~π −B(mu +md)(~τ · ~π)2
]

. (2.48)

Up to a sign, the first term represents the vacuum energy generated by the quark masses.
The contribution of order π2 describes a free pion of mass

M2
π+ = M2

π0 = M2
π− = B(mu +md) . (2.49)

Expressing the low-energy constant B in terms of the order parameter 〈0|q̄q|0〉0, the last
equation leads to the Gell-Mann – Oakes – Renner relation [25]:

m2
πf

0
π

2
= −(mu +md) 〈0|q̄q|0〉0 + O(m2

u,d) . (2.50)

As required by the Goldstone theorem, the pion mass disappears when the quark masses
are turned off — the approximate chiral symmetry becomes an exact one. As long as
the symmetry breaking is small, the pions only pick up a small mass proportional to the
square root of the symmetry breaking parameter mu + md. As the symmetry breaking
term grows, higher powers of mu and md are expected to become increasingly important.
Since the effective Lagrangian used here neglects these terms, the above result for m2

π

only holds up to corrections of O(m2).
The explicit symmetry breaking shifts the poles generated by one-pion exchange. Ac-

cordingly, the Feynman propagator of the effective field is modified, 1/(p2 + iǫ) →
1/(p2 − m2

π + iǫ). In the counting of powers which treats the quark masses as quan-
tities of order p2, the two terms occurring in the denominator are of the same order
of magnitude, according to Eq.(2.50). We can also evaluate on-shell matrix elements
without running into conflict with the power counting: the mass shell p2 = m2

π links two
quantities of the same algebraic order.
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We notice that while the quark masses and the condensate depend on renormaliza-
tion scheme and scale used in QCD, the product B(mu + md) does not. According to
the expression of mπ(mu,d) in ChPT, one can always translate the quark mass depen-
dence of physical observables into a pion-mass dependence, avoiding complications with
renormalization-group non-invariant quantities.

The leading effective Lagrangian is characterized by two scales, namely f 0
π and B.

Such parameters not fixed by the symmetry are called low-energy constants (LECs).
They have to be determined by fits to experimental data or according to some model.
The LECs encode information on underlying short-distance effects. All the low-energy
constants are in principle calculable from QCD. They do not depend on the light quark
masses, but are determined by the scale ΛQCD and the masses of the heavy quarks. In
practice, however, such calculations are not feasible yet. In Sec.2.9 we will discuss in
detail present knowledge of the low-energy constants relevant for our work.

2.5 Loops and power counting in the mesonic sector

The perturbative expansion of a local field theory generates a unitary scattering ma-
trix, provided all graphs are taken into account, including those containing loops. The
corresponding path integral representation of the effective action is given by Eq.(2.25).
The tree graphs represent the classical limit of this path integral. The quantum fluc-
tuations described by the graphs containing loops contribute at non-leading order. At
this point the effective Lagrangian method shows its full strength: the path integral not
only yields all the pole terms, but automatically also accounts for all singularities due to
multipion exchange contributions. Moreover, this approach systematically accounts for
all singularities relevant at a given order in the low-energy expansion.

Dimensional regularization for ultraviolet divergences in loop integrals maintains the
Ward identities in the context of Chiral Perturbation Theory. It avoids power-law diver-
gences and momentum independent contributions generated by a cutoff regularization.
Of course, there is no physics in the regularization and it is perfectly legitimate to use
cutoff procedures, see for example [26, 27]. Since the effective Lagrangian contains all
possible vertices, involving any number of derivatives, the divergences may be absorbed
in a renormalization of the bare couplings, quite irrespective of the regularization used.
The Ward identities may then be imposed order by order in the loop expansion. The
net result for the low-energy representation of the Green function does not depend on
the method used. The contributions from individual graphs, however, do depend on
the regularization. Moreover, as we are going to show, using dimensional regularization,
the renormalization of the coupling constants of a given order in Leff

π can be worked out,
once for all, by analyzing the low-energy expansion to that order. If the expansion is car-
ried further, the renormalized coupling constants do not change. In particular, the bare
couplings f 0

π and B, which enter the leading term of the effective Lagrangian, represent
quantities of physical interest. Employing dimensional regularization, the leading order
relations which connect these quantities with the pion decay constant and the quark
condensate of massless QCD are not modified by higher-order contributions.
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Weinberg [9] pointed out that at any given order in momenta or quark masses, only
graphs with a limited number of loops contribute and the derivative expansion of the
effective Lagrangian is needed only to that corresponding order. This is crucial to turn
the effective Lagrangian with its infinite number of terms into a practical tool. The
effective field theory does not get out of control when extended beyond leading order.
Using dimensional regularization, indeed, the path integral over the effective field can
be evaluated in a controlled manner, order by order in the low-energy expansion. The
effective Lagrangian

Leff
π = Leff

π (π, ∂π, . . . ; f, ∂f, . . . ;m, ∂m, . . . ) . (2.51)

is represented as an infinite series of the type

Leff
π =

1

2
∂π∂π +

∑

v

gv ∂
DvfFvmMvπPv , (2.52)

where the integers Dv, Fv, Mv and Pv count the overall number of derivatives and fields
entering the vertex v. Counting the external fields f iµ(x) and mα(x) as quantities of O(p)
and O(p2), respectively, the order of a vertex is given by

Ov = Dv + Fv + 2Mv . (2.53)

It is convenient to decompose the Lagrangian accordingly, collecting all of the vertices
of a given order into a corresponding contribution to the effective Lagrangian

Leff
π = L(2)

π + L(4)
π + L(6)

π + . . . (2.54)

Consider now a Green function formed with n1 currents and n2 scalar operators. The
perturbative evaluation of the path integral leads to a representation for this quantity
in the form of a sum of contributions arising from an infinite set of Feynman diagrams.
The tree graphs are given by a product of vertices and propagators. The expressions
for the loop diagrams involve similar products, integrated over the loop momenta. In
dimensional regularization, the loop integrals extend over a d-dimensional momentum
space, each loop contributing with a volume element of the form ddq. The integrand
is a homogeneous function of the external and internal momenta: scaling all external
momenta by the same factor t and the light quark masses by t2, the integrand remains
the same, except for an overall power of t 1. For the graph γ to contribute, we must have

∑

v∈γ
Fv = n1 ,

∑

v∈γ
Mv = n2 . (2.55)

Looking at the topology of loop graphs, one can show that a graph γ with Lγ independent
loops 2 gives a contribution to the generating functional of order pOγ with

Oγ =
∑

v∈γ
(Ov − 2) + (d− 2)L− n1 − 2n2 + 2 (2.56)

1The issue of convergence has to be addressed in order for the procedure of rescaling to be well-defined.
2Lγ is the maximum number of internal lines that can be cut without disconnecting the diagram.
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2.5 Loops and power counting in the mesonic sector

where the sum extends over all vertices of the graph [24]. Clearly, for sufficiently small
momenta and quark masses, the diagrams with small Oγ should dominate. According
to Eq.(2.56), if the space-time dimension is larger that two, the occurrence of loops
suppresses the magnitude of the graph at low-energies: in four dimensions, graphs con-
taining one loop are suppressed by two powers of momentum compared to tree graphs,
those with two loops by four powers and so on. This property is crucial for Chiral Pertur-
bation Theory to be a coherent framework [9]. It implies that the standard perturbation
series, organized accordingly to the number of loops, goes along perfectly well with the
low-energy expansion. In the mesonic sector there is a one-to-one correspondence be-
tween chiral and loop expansion.

Chiral effective field theory leads to a double expansion in “small” momenta and quark
masses. The effective couplings have the dimensionality of negative powers of mass and
the theory is expected to loose its predictive power at energies of the order of the common
mass scale that characterizes the various couplings.

The question of how large the radius of convergence of the low-energy expansion is,
has been explored by Georgi and Manohar [28]. They argue that since higher-order
terms are required as counterterms for loops involving lower-order interactions, it is
inconsistent to assume that the size of these terms is smaller than the typical loop
corrections. Any running coupling L(µ) in a counterterm should be at least as big
as its anomalous dimension µ dL(µ)/dµ [29]. Since higher-order terms in the effective
Lagrangian are identified by more powers of ∂ and m, dimensional analysis suggests
that these terms should be associated with inverse powers of a dimensional parameter
Λχ that controls the convergence of the expansion. Therefore, in general, a term in
Leff
π with 2i derivatives and j powers of m is expected to have coupling constants of

the form c/Λ
2(i+j)
χ , with c of order one. Then the momentum and quark mass expansion

converges for p/Λχ ≪ 1 and mπ/Λχ ≪ 1. The calculation of the ππ scattering amplitude,
for example, can be carried to arbitrary order in Q (the typical pion energy), always
with the net result that at each order we encounter a finite number of new couplings
whose renormalization serves to eliminate the scale dependence of physical amplitudes.
The ratio of the O(p2), to the O(p4) corrections is of order Q2/(16π2f 0

π
2
). The factor

16π2 is generic for one-loop integrals in 3 + 1 dimensions. This leads to the “naive”
dimensional estimate Λχ . 4πf 0

π . A more refined analysis investigated how the bound
on Λχ varies with the number of flavors Nf [30, 31]. The loop expansion is found to be
yield Λχ . 4πf 0

π/
√

Nf . This pattern persists to all orders in the loop expansion.

A more quantitative picture can be achieved, for example, by saturating suitable dis-
persion relations with contributions from resonances. The low-energy structure is domi-
nated by the poles and cuts generated by the lightest particles. The effective theory is
constructed using the asymptotic (color singlet hadron) states of QCD. In the sector with
zero baryon number and light quarks only, the Goldstone bosons form a complete set
of such states, all other mesons being unstable against decay into these. The Goldstone
degrees of freedom are explicitly accounted for in the effective theory — they represent
the dynamical variables. All other levels manifest themselves only indirectly through the
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Chapter 2 Theoretical framework

values of the effective coupling constants. In some channels, like the I = J = 1 channel,
the scale of the chiral expansion is set by the mass of the ρ meson, in others by the masses
of the scalar or pseudoscalar states occurring around 1 GeV. The cuts generated by the
Goldstone pairs are significant in some cases and are negligible in others, depending on
the numerical value of the relevant Clebsch-Gordan coefficient. A case-by-case analysis
is mandatory to formulate quantitative statements about convergence of the chiral ex-
pansion.

Let us now examine the runnings ofmπ and fπ with the light quark masses, which are of
particular relevance for our study. In the following we will not take into account isospin-
breaking effects and work with degenerate light u- and d- quark masses, mu = md = mq.

2.6 Pion mass versus quark mass

In our study we translate the functional dependence of physical observables on the (light)
quark mass mq into a pion-mass dependence according to the Gell-Mann – Oakes – Ren-
ner relation, Eq.(2.50), which represents the leading term in the quark-mass expansion of
mπ in the so-called “standard symmetry breaking scenario”. As pointed out in Ref. [32],
if the term proportional to m2

q in Eq.(2.50) were comparable or even larger than the
linear one, a different bookkeeping for the chiral perturbation series would be required.
The leading correction to the Gell-Mann–Oakes–Renner relation is given by

m2
π = 2Bmq −

l̄3

32πf 0
π

2 (2Bmq)
2 + O(m3

q) , (2.57)

where l̄3 is a mq-dependent coefficient related to the low-energy constant l3 in L(4)
π [10].

The standard chiral power counting is adequate only if l̄3 is not too large.
In the low-energy regime the phases of the form factors relevant for the decay K+ →

π+π−e+νe are related to the corresponding phases of I = 0 S-wave and I = 1 P -wave
elastic ππ scattering. Using a dispersion theoretical approach in terms of Roy equations,
Colangelo, Gasser and Leutwyler obtained a value for the scattering length a0

0 which
gives the upper limit |̄l3| 6 16 [33]. Even with this coarse estimate, the Gell-Mann-
Oakes-Renner relation turns out to be a decent starting point: more than 94% of the
physical pion mass stems from the first term in Eq.(2.57). This supports the conjecture
that the quark condensate is the leading order parameter of the spontaneously broken
chiral symmetry and there is no need for a reordering of the ChPT series in the two-flavor
case.

Of course, higher-order terms in the quark-mass expansion of mπ are expected to
become more important with increasing mq. For reasons not yet understood, fully dy-
namical lattice QCD simulations show a linear relationship between m2

π and the explicit
chiral symmetry breaking parameter mq even for pion masses ranging from beyond the
physical kaon mass up to 1 GeV. A recent systematic analysis [34] of full Nf = 2 lattice
QCD simulations by the CP-PACS and UKQCD collaborations shows that the leading-
order result, Eq.(2.50), agrees with the data up to 1 GeV in mπ, at least. However, this
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Figure 2.1: The square of the pion mass versus the current quark mass, in lattice units.
Recent data for Nf = 2 are compared with leading- (dotted) and next-to-
leading-order formulae (full curve) in Chiral Perturbation Theory [35]. The
lattice spacing is determined, at the specified values of the gauge coupling,
by setting the Sommer scale [36] r0 = 0.5 fm at the quark mass where r0mπ =
1.26. The point represented by an open square is obtained by extrapolation
to the physical pion mass.

amazing feature is not shared by higher-order ChPT expressions for mπ(mq) for such an
extended range in quark mass. In order to assess the convergence behavior of m2

π versus
mq, in Ref. [34] leading and next-to-leading-order predictions for a given quark mass have
been compared. It turns out that the chiral expansion is sufficiently well behaved up to
pion masses of about 600 MeV. In this analysis the low-energy constants have been fixed
consistently with empirical information and the estimate l̄3(m

phys
q ) = 2.9 ± 2.4 [10] has

been used.

Fig.2.1 from Ref. [35] shows very recent results with dynamical standard Wilson
fermions, on a 32 × 243 lattice, with spacing of about 0.08 fm and spatial size close
to 2 fm. Pion and current quark masses are extracted from the correlation functions
of the isovector axial current and density. The dotted line, which is a linear fit of all
four lattice data points, passes through the origin within errors. If we omit the point
at the largest mass and fit to the three remaining lattice data with Eq.(2.57), we obtain
the solid curve in Fig.2.1, and the values of the fit parameters B and l̄3 come out close
to the phenomenologically expected ones, see Ref. [35]. One-loop chiral perturbation
theory with phenomenologically acceptable values of the coupling constants is able to
make contact with the quark-mass range that can be reached in present simulations with
dynamical quarks.
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Figure 2.2: The 1-σ band of the pion mass dependence of fπ at NNLO, as determined in
Ref. [37].

2.7 Pion mass dependence of fπ

At next-to-leading order, the quark mass expansion for fπ reads [10]

fπ = f 0
π

[

1 +
(2Bmq)

2 l̄4

16π2f 0
π

2 + O(m4
q)

]

. (2.58)

In this case the relevant effective coupling is known rather well: chiral symmetry implies
that it also determines the slope of the scalar form factor of the pion. Let us define

l̄4 ≡ ln
Λ2

4

(2Bmq)2
. (2.59)

Analyticity relates the pion scalar form factor to the I = 0 S-wave phase shift of ππ
scattering. Evaluating the relevant dispersion relation with the remarkably accurate
information about this phase shift that follows from the Roy equations, Colangelo, Gasser
and Leutwyler found [33]

Λ4 = 1.26 ± 0.14 GeV . (2.60)

This information determines the quark mass dependence of the pion decay constant to
within rather narrow limits, see Fig.2.2 from Ref. [37], where the plot refers to the next-
to-next-to-leading order formula. Here the impact of the relevant combination of O(p6)
couplings has been neglected since this contribution is small. The analysis of Ref. [37]
gives the estimate f 0

π ≈ 86.2 MeV.
Fig.2.3 from Ref. [35] shows recent results with standard Wilson fermions on a 32×243

lattice, with spacing of about 0.08 fm and spatial size close to 2 fm. Tadpole improved
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Figure 2.3: Simulation results for the pion decay constant, plotted versus the pion mass
squared, in lattice units [35]. The lattice spacing is determined by setting the
Sommer scale [36] r0 = 0.5 fm at the quark mass where r0mπ = 1.26. The
curves are linear and leading-one-loop chiral fits. The point represented by
an open square is obtained by extapolation to the physical pion mass.

perturbation theory has been used to estimate the renormalization factor relevant for
the pion decay constant and a small finite-volume correction, computed according to
one-loop ChPT, has been applied to data. The three smallest pion mass points are fitted
using Eq.(2.58), treating f 0

π and Λ4 as free parameters. The fit result for the latter comes
out to be in agreement with the range (2.60), while the value for fπ at the physical pion
mass, fπ = 80(7) MeV, is slightly lower than the empirical one. However, uncontrolled
systematic errors affect this preliminary set of data points. The results need to be
confirmed at several lattice spacings, due to the absence of O(a)-improvement terms in
the Wilson action presently employed [35].

2.8 The pion-nucleon system

In this section we discuss the inclusion of baryons in Chiral Perturbation Theory. We will
make use of the resulting effective field theory to systematically investigate the impact
of spontaneous and explicit chiral symmetry breaking on the long-distance structure of
the nucleon. After an introduction to the formalism, both in the manifestly covariant
formulation and in the non-relativistic limit, we will focus on the infrared regularization
method, the framework we use for our analysis of the quark mass dependence of nucleon
observables.
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Chapter 2 Theoretical framework

The relativistic formalism for the low-energy πN effective field theory dates back to
Weinberg [39], Coleman et al. [40], Langacker and Pagels [41] and others, see Ref. [42].
The connection to QCD Green functions was performed in a systematic fashion by Gasser,
Sainio and Švarc [43] and Krause [44]. Here we specialize to the case of two flavors, with
pions and nucleons as the asymptotically observed fields — the explicit degrees of freedom
of the effective field theory.

The time-ordered nucleon matrix elements of the quark currents are generated by the
nucleon-to-nucleon transition amplitude

F(~p ′, ~p; v; a; s; p) = 〈~p ′ out|~p in〉connected
v,a,s,p , ~p ′ 6= ~p (2.61)

determined by the Lagrangian (2.18). Here |~p in〉 denotes an incoming one-nucleon state
of momentum ~p. The idea is to construct, in analogy with Eq.(2.25), a pion-nucleon
field theory which allows to evaluate the functional F to any order in the low-energy
expansion [43].

First we consider the general structure of the effective πN Lagrangian, Leff
πN . The

pions are collected in the SU(2) matrix-valued field U(x) while proton and neutron are
combined in the isospinor Ψ = (p, n)T . To construct a theory incorporating nucleons, we
must first decide how the nucleon field transform under SU(2)L × SU(2)R. There is a
variety of ways to describe these transformation properties. All of them lead to the same
physics: different representations in a theory containing Goldstone bosons are connected
via field redefinitions [45]. We can therefore choose a maximally convenient description,
where both ππ and πN interactions are of derivative nature: these interactions are easy
to classify according to their contribution to the low-energy expansion. This calls for
a non-linear realization of chiral symmetry. Following Refs. [39, 40], we introduce a
matrix-valued function K, defined as

VRu = u ′K (2.62)

with u2(x) = U(x) and U ′(x) = VRU(x)V †
L = u ′ 2(x) and VR, VL ∈ SU(2). The baryon

field transforms as

Ψ → K(VL, VR, U) . (2.63)

The most general effective πN Lagrangian for processes with one incoming and one
outgoing nucleon and no nucleon loops which

- has a local SU(2)L×SU(2)R×U(1)V symmetry in order that single-nucleon Green
functions satisfy chiral Ward identities,

- is a Hermitian Lorentz scalar,

- is even under the discrete symmetries C, P and T ,

- has the smallest number of derivatives
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2.8 The pion-nucleon system

is given by [43]

L(1)
πN = Ψ̄

(

iD/−M0 +
g0
A

2
γµγ5uµ

)

Ψ . (2.64)

where

Dµ = ∂µ + Γµ

Γµ =
1

2
[u†, ∂µu] −

i

2
u†rµ u−

i

2
u lµu

†

uµ = i{u†, ∂µu} + u†rµ u− u lµu
†

rµ = vµ + aµ, lµ = vµ − aµ

χ± = u†χu† ± uχ†u, χ = 2B(s+ ip) . (2.65)

L(1)
πN contains two parameters not determined by chiral symmetry, which must be pinned

down by a fit to data: the nucleon mass M0 and the axial-vector coupling constant of
the nucleon g0

A, both taken in the chiral limit, i.e.

MN = M0 [1 + O(mq)] gA = g0
A [1 + O(mq)] . (2.66)

The overall normalization in Eq.(2.64) is chosen in such a way that in the case of no

external fields and no pion fields, L(1)
πN reduces to the Lagrangian of a free nucleon.

The nucleon mass does not vanish in the chiral limit and represents an additional,
“large” scale comparable to Λχ

3. This means that the zeroth component of the par-
tial derivative acting on a nucleon field does not produce a “small” quantity: DµΨ =
O(p0) whereas (iD/ −M0)Ψ = O(p) where p denotes a generic (external) nucleon three-
momentum. As pointed out by Gasser, Sainio and Švarc, in dimensional regularization
and MS scheme [43], the fact that the nucleon mass does not vanish in the chiral limit
spoils the exact one-to-one correspondence between loop and small momentum expan-
sions characterizing ChPT in the mesonic sector. An amplitude of a specific chiral order
may receive contributions from diagrams with an arbitrary number of loops. More pre-
cisely, in the manifestly Lorentz invariant framework with dimensional regularization and
MS scheme, the chiral expansion of loop graphs involving nucleon propagators in general
starts at the same chiral order as the corresponding tree graphs, so that the renorma-
lization of divergences requires also the tuning of effective couplings appearing at lower

order 4. Furthermore, the lowest order coefficients M0 and g0
A get renormalized at every

order of the series. In this framework it is complicated to establish a systematic method
of assessing the relative importance of diagrams generated by Leff

πN .

2.8.1 The non-relativistic limit

To overcome such a mismatch between chiral and loop expansion in the baryonic sector,
the so-called Heavy-Baryon projection has been proposed [47–49]. It is modeled after

3Cf. the analysis of the quark mass dependence of the nucleon mass in Chapter 3.
4This also happens when employing a mass-dependent regularization scheme, like a momentum cutoff,

see for example Refs. [29, 46].
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heavy-quark effective field theory methods and historically it is the first scheme including
baryons with a power counting analogous to the mesonic sector. If one considers the
baryons as very heavy, with masses large compared to the typical external momenta
transferred by pions or any external source, only baryon momenta relative to the rest
mass will count and these can be small. The emerging picture is that of an almost static
source surrounded by a cloud of light pions.

Jenkins and Manohar [47, 48] formulated Heavy-Baryon Chiral Perturbation Theory
(HBChPT) taking the extreme non-relativistic limit of the manifestly covariant theory
and performing a systematic expansion in powers of the nucleon mass. The approach
is analogous to the Foldy-Wouthuysen non-relativistic reduction [50] which provides a
systematic procedure to block-diagonalize a relativistic Dirac Hamiltonian in powers of
the inverse of the mass M of the Dirac field and produce a decoupling of the large and
small components of this field to any desired order in 1/M , see for example Ref. [51] 5.

For a general four-vector vµ with the properties v2 = 1 and v0 ≥ 1, one defines the
projection operators

P±
v =

1

2
(1 ± v/), P+

v + P−
v = 1, P±

v
2

= P±
v , P±

v P
∓
v = 0 . (2.67)

For a nucleon of four-momentum pµ and mass MN , the particular choice vµ = pµ/MN

correspond to its world velocity. Let us decompose the nucleon field Ψ into the so-called
velocity-dependent fields Hv and hv defined as

Hv ≡ exp[iM0 v · x]P+
v Ψ, hv ≡ exp[iM0 v · x]P−

v Ψ . (2.68)

In the nucleon rest-frame vµ = (1, 0, 0, 0) this decomposition leads to the standard non-
relativistic reduction of a Dirac spinor into upper (large) and lower (small) components.
Using Eq.(2.68) in the equation of motion for Ψ from the relativistic πN effective La-
grangian in Eq.(2.64), one finds that the component hv is suppressed by powers of 1/M0

compared to Hv. The nucleon mass disappears from the leading-order πN Lagrangian,
it only shows up in an infinite string of higher-order vertices suppressed by powers of
1/M0. These terms together with new chiral structures from the most general chiral
πN effective Lagrangian at higher orders allow to systematically go beyond the extreme
non-relativistic (static) limit.

An ordinary partial derivative acting on a Heavy-Baryon field Hv produces a small
“residual” four-momentum kµ appearing in the separation pµ = M0 vµ + kµ. In the
Heavy-Baryon approach, four-momenta are considered small if their components are
much less than the nucleon mass or 4πf 0

π , which are indeed comparable in size. This
leads to a low-energy expansion in terms of p/(4πf 0

π) and p/M0, where p collectively
denotes external pion momenta, four-momenta transferred by external sources, residual
nucleon momenta and Goldstone boson masses.

The power counting scheme in HBChPT can be formulated in close analogy to the
mesonic sector, cf. Sec.2.5. The chiral order Oγ of a given diagram with exactly one

5A criterion for the Foldy-Wouthuysen method to work is that the potential in the Hamiltonian are
small in comparison with the mass of the Dirac field. This can be regarded as the analogue of treating
external fields as small quantities, of order p or p2 in ChPT.
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2.8 The pion-nucleon system

baryon in the initial and one baryon in the final state, in four space-time dimensions,
reads [53, 54]

Oγ = 2NL + 1 +
∞
∑

n=1

2(n− 1)Nπ
2n +

∞
∑

n=1

(n− 1)NπN
n ≥ 2NL + 1 . (2.69)

Here NL is the number of independent loop momenta, Nπ
2n the number of vertices origi-

nating from the purely mesonic Lagrangian L(2n)
π and NπN

n the number of vertices from

the pion-nucleon Lagrangian of order n, L(n)
πN . In the baryonic sector the chiral order of

the effective Lagrangian increases in units of one, because of the possibility of forming
Lorentz invariants by contracting derivatives with Dirac matrices.

According to Eq.(2.69), loops start contributing at Oγ = 3, which means that the
low-energy constants in the second order πN effective Lagrangian are not needed to
absorb infinities from one-loop calculations. Moreover, the parameters of the lowest-
order Lagrangian do not get modified due to higher order corrections in the chiral limit,
like in the mesonic sector.

2.8.2 Infrared regularization

A vast majority of applications of ChPT in the one-nucleon sector were performed in the
Heavy-Baryon framework [47, 49, 52]. However, such an approach may generate Green
functions which do not satisfy the analytic properties resulting from a fully relativistic
theory. This is crucial for connections with dispersion relations. An instructive example
is the triangle-graph, Fig.2.4. One needs to consider the properties of the integral

γ(t) ≡ i

�
d4k

(2π)4

1

k2 −m2
π + iǫ

1

(k − q)2 −m2
π + iǫ

1

(p− k)2 −M2
0 + iǫ

, (2.70)

where q is the four-momentum transferred to the virtual pion (for example by an external
source) and t ≡ q2. A diagram of this type appears in many calculations such as the
scalar or electromagnetic form factors of the nucleon, πN or Compton scattering. The
analytic properties of such a graph as a function of t are determined by the pole structure
of the propagators.

Counting powers one can see that the integral (2.70) converges. The function γ(t) is
analytic in t except for a cut along the positive real axis starting at t = 4m2

π corre-
sponding to the fact that two on-shell pions can be produced for t ≥ 4m2

π. This diagram
has also a singularity in the second Riemann sheet, at tc = 4m2

π −m4
π/M

2
N = 3.98m2

π,
i.e. very close to physical threshold. To leading order in the Heavy Baryon approach,
this singularity coalesces with the threshold [55]. Near t = 4m2

π, γ(t) does not admit
an expansion in powers of meson momenta and quark masses. The Heavy-Baryon re-
presentation does not make sense there and, within such approach, an infinite series of
internal line insertions must be summed up to properly describe the behavior near two-
pion threshold. In a fully relativistic treatment, such constraints from analyticity are
automatically fulfilled, since the full function γ(t) is involved and not the first terms in
its chiral expansion.

37



Chapter 2 Theoretical framework

P P-q

q

P-k

k k-q

Figure 2.4: Triangle graph. The solid, dashed and wiggly lines represent nucleons, pions
and an external scalar source, respectively.
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Figure 2.5: Self-energy graph analyzed in the text.

Methods which produce both the correct analytic structure and a consistent power
counting have been developed. Ellis and Tang [56] argued that relativistic one-loop
integrals can be separated into “soft” and “hard” parts, according to the portion of
internal loop momenta involved: while for the former the HBChPT power counting
applies, the contributions from the latter can be absorbed in some LECs. A more formal
implementation of such a program, called infrared regularization [57], is due to Becher
and Leutwyler 6. Let us illustrate this method by means of the dimensionally regularized

scalar one-loop integral, Fig.2.5,

H(p2, d) =
1

i

�
ddk

(2π)d
1

k2 −m2
π + iǫ

1

k2 − 2p · k + (p2 −M2
N) + iǫ

. (2.71)

Here d is an arbitrary space-time dimension and the right-hand side is thought to be
analytically continued as a function of d. Infrared regularization relies on dimensional
regularization, it is a variant thereof which preserves low-energy power counting rules
underlying HBChPT. The integral (2.71) converges for d < 4. In the limit mπ → 0, this
integral develops an infrared singularity, generated by small values of k = O(p). In that
region the first factor in the integrand counts as O(p−2) while the second is of order p−1.

6For a procedure, alternative to infrared regularization, to overcome the problems of covariant Baryon
ChPT with dimensional regularization and MS, we refer to [58].
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We therefore naively expect the part originating the infrared singularity to be of order
O(pd−3). On the other hand, for “large” loop momenta (of the order of the nucleon mass)
we expect power counting to fail.

Let us introduce the dimensionless variables

α =
mπ

MN
, Ω =

p2 −M2
N −m2

π

2MNmπ
, (2.72)

which count as O(p) and O(p0) respectively, since we analyze nucleon momenta close to
the mass shell. Using the standard Schwinger-Feynman parameterization

1

AB
=

� 1

0

dz

[(1 − z)A + zB]2
, (2.73)

we perform the shift k → k + pz in the integration variable and obtain

H =
1

i

� 1

0

dz

�
ddk

(2π)d
1

[k2 − A(z) + iǫ]2
(2.74)

where

A(z) = z2p2 − z(p2 −M2
N +m2

π) +m2
π = M2

N [z2 − 2αΩz(1 − z) + α2(1 − z)2] . (2.75)

The last equivalence has been written in order to facilitate the comparison with the result
in Ref. [57]. Performing the integration over k we get

H = f(d)

� 1

0

dz [A(z) − iǫ]d/2−2 (2.76)

with

f(d) =
Γ(2 − d/2)

(4π)d/2
. (2.77)

In this representation, the infrared singularity arises from small values of z: A(z) becomes
correspondingly small if mπ tends to zero. We can isolate this divergent part by scaling
the variable of integration, z = αx. The upper limit then becomes large: x = 1/α→ ∞
as mπ → 0. An integral I having the same infrared singularity as the integral H is then
defined as

I ≡ f(d)

� ∞

0

dz [A(z) − iǫ]d/2−2 . (2.78)

Accordingly, the infrared regular part of H is defined as

R ≡ −f(d)

� ∞

1

dz [A(z) − iǫ]d/2−2 (2.79)

so that H = I + R. In the terminology of Ellis and Tang [56], I represents the “soft”
component of the amplitude, while R is the “hard” component. For arbitrary values of
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d, the explicit expressions for H , I and R involve hypergeometric functions. The chiral
expansion of I has the form

I = O(pd−3) + O(pd−2) + O(pd−1) + . . . (2.80)

while for any value of d the corresponding expansion of R is

R = O(p0) + O(p1) + O(p2) + . . . (2.81)

The integral (2.78) converges for d < 3. The analytical continuation to d = 4 is
performed via partial integration. We notice that the factor f(d) in Eq.(2.77) contains a
pole there. Throughout this work the subtraction of the 1/(d− 4) poles is done via the
definition of

L(λ) =
λd−4

16π2

{

1

d− 4
− 1

2
[ln (4π) + Γ′(1) + 1]

}

, (2.82)

where λ is a (mass) regularization scale which makes the logarithms appearing in the
expansion of I to have dimensionless arguments. According to the last equation,

I = −2L(λ)
α(Ω + α)

1 + 2αΩ + α2
+ Ī (2.83)

where Ī denotes the renormalized amplitude after removing the pole as d→ 4:

Ī = − 1

8π2

α
√

1 − Ω2

1 + 2αΩ + α2
arccos

(

− Ω + α√
1 + 2αΩ + α2

)

− 1

16π2

α(Ω + α)

1 + 2αΩ + α2

(

2 ln
mπ

λ
− 1
)

, (2.84)

for −1 < Ω < 1. The chiral expansion of Ī starts at order p, in agreement with power
counting. Furthermore, the series giving the chiral expansion of I converges if Ω is in
the disk [57]

|α| < |Ω ±
√

Ω2 − 1| , (2.85)

a range which covers the entire low-energy region.
At threshold, p2 = (MN +mπ)

2, we get

Hthr =
Γ(2 − d/2)

(4π)d/2(d− 3)

(

md−3
π

MN +mπ
+

Md−3
N

MN +mπ

)

, (2.86)

where the first term is the infrared singular part Ithr and the second represents Rthr. From
the previous expressions of the chiral expansions of I and R, Eqs.(2.80) and (2.81), it is
clear that the distinguishing feature between I and R is the following: for non-integer
values of the space-time dimension d, I gives rise to non-integer powers of p, whereas
the regular part may be expanded in an ordinary Taylor series in momenta and quark
masses. For the integrals at threshold this can be nicely seen by expanding in powers of
mπ counting as O(p). For the “soft” contribution the power counting is respected. On the
other hand, it is the regular part which does not satisfy counting rules and contains the
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2.8 The pion-nucleon system

problematic polynomial terms in M0. However, at any order, R can be absorbed in the
LECs of the effective Lagrangian. In the standard renormalization procedure, ultraviolet

infinite contributions from loop integrals are absorbed in the coupling constants; in the
infrared regularization, not only the infinite parts are moved to the couplings, but also
finite parts originating from the propagation of very massive states. The latter mess up
the power counting in dimensional regularization and MS scheme, giving rise to terms
of the type (M0/Λχ)

n which obscure the convergence of the chiral expansion — possibly
saved by unnaturally large counterterms.

On the other hand, the infrared singular part I has the same analytical properties as
the full integral H in the low-energy region. Its chiral expansion leads to the non-trivial
momentum and quark mass dependence (unambiguously predicted) in ChPT, leading to
chiral logarithms or fractional powers of the quark masses.

Becher and Leutwyler also showed that their procedure to separate infrared and regular
parts through a suitable Feynman parametrization leads to a unique result, in agreement
with the chiral Ward identities of QCD. The proof is essentially based on the fact that
terms with fractional versus integer powers in the pion mass must be separately chirally
symmetric. Consequently, the infrared regularization prescription, which replaces any
dimensionally regularized one-loop integral H with its infrared singular part I, defines a
symmetry preserving regularization scheme.

As discussed in detail in Ref. [57], the infrared regularization method can be easily
generalized to any one-loop integral in Baryon Chiral Perturbation Theory. All of these
integrals can be reduced to the form

Hµ1...µr

mn =
1

i

�
ddk

(2π)d
kµ1 . . . kµr

a1 . . . am b1 . . . bm
, (2.87)

where the denominator involves meson and nucleon propagators

ai = (k + qi)
2 −m2

π + iǫ

bj = (pj − k)2 −M2
N + iǫ . (2.88)

The numerator arises from both the derivative couplings characteristic of ChPT and the
term k/ that occurs in the numerator of the nucleon propagator.

In view of Lorentz invariance, the integral (2.87) can be decomposed in a basis formed
with tensor polynomials of the external momenta pµj and qµk . The other Lorentz covariant
object involved is the metric tensor gµν . Contracting with kρ and gρσ, the coefficients of
the decomposition can be expressed in terms of scalar integrals of the form

Hmn =
1

i

�
ddk

(2π)d
1

a1 . . . am b1 . . . bm
, (2.89)

which can easily be related to the “master” scalar integral H in Eq.(2.71) through partial
derivatives with respect to m2

π and M2
N . In Appendix C we explicitly show the tensor

reduction for all integrals relevant for our analysis.
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Chapter 2 Theoretical framework

Baryon Chiral Perturbation Theory with infrared regularization is fully systematic and
model-independent. It is able to account for all contributions arising to a given order in
the low-energy expansion of the various observables. The price to pay is that the loop
integrals cannot be interpreted directly in physical terms. The machinery does incor-
porate the finite extension of the nucleon, but only indirectly, through pion loops and
effective coupling constants, which parameterize short-distance physics contributing to
the internal structure of the nucleon. The replacement of pointlike vertices by form fac-
tors [46, 59], resulting in an effective cutoff of the virtual meson momenta, gives a more
intuitive physical picture but in general ruins the Ward identities of chiral symmetry
and messes up the systematic power counting. On the other hand, when loop diagrams
are calculated, the reliable part of the result comes only from the low-energy portion of
the loop, for which ChPT is appropriate. In a cutoff approach one can check whether
a loop integral is saturated by low-momentum modes. Using dimensional regularization
or variants thereof, in addition to the correct long-distance behavior, there is a residual
dependence on the short-distance portion of the loop integral, whose “weight” is not
under direct control: indeed any of such high-energy contributions can be accounted
for by a shift in the coefficients of the effective Lagrangian. After renormalization, an
incorrect short-distance effect can still be removed by adjusting parameters. However,
those parameters can consequently turn out to be unnaturally large, obscuring the con-
vergence pattern at finite order in the low-energy expansion. Finally, we notice that by
construction infrared regularization does enhance the contribution from small internal
loop momenta, if mπ is sufficiently small.

2.8.3 Comparison between infrared regularization and the

Heavy-Baryon approach

Let us now establish the connection between the infrared singular part I of the integral
H and the corresponding result in HBChPT. In the Heavy-Baryon framework, the scalar
self-energy diagram of Fig.2.5 is replaced by an infinite string of one-loop graphs, invol-
ving an arbitrary number of internal line insertions. This can be understood looking at
the relativistic nucleon propagator and expressing the four-momentum as pµ = M0v

µ+rµ,

i

p/−M0 + iǫ
= i

p/+M0

2M0 v · r + r2 + iǫ

−→ p/+M0

2M0

i

v · r + iǫ

[

1 +
ir2

2M0

i

v · r + iǫ
+

(

ir2

2M0

i

v · r + iǫ

)2

+ . . .

]

(2.90)

where we assumed rµ small enough to allow for an expansion in terms of a geometric
series. The result is shown in Fig.2.6 and can be interpreted as an infinite series in
terms of the Heavy-Baryon propagator and self-energy insertions which have the form of
a non-relativistic kinetic energy.

Let us apply the expression (2.90) to the loop integralH in Eq.(2.71) by first expanding
and then performing the summation: the integral over the first term in (2.90) converges
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2.8 The pion-nucleon system

⇒ + + +   ...

Figure 2.6: Internal line insertions. The double line denotes the Heavy-Baryon propaga-
tor [v · (k − r) + iǫ]−1 and the cross an insertion of (k − r)2/(2M0), where k
is the pion loop momentum.

for d < 3 and gives a contribution of order pd−3, the integral over the second term
converges for d < 2 and yields a term of order pd−2 and so on. For d < 3 − n, the
region k = O(p) yields all the terms in the chiral expansion of H , up to and including
pd−3+n. In that region of integration it is legitimate to interchange the integration with
the expansion. Hence, the infrared singular part of the relativistic one-loop integral
represents the (infinite) sum of the corresponding integrals occurring in the Heavy-Baryon
series. The difference between the two formulations of Baryon ChPT is in the regular
part: in the Heavy-Baryon approach it is zero, order by order.

The advantage of the relativistic scheme is clear: for a general one-loop amplitude
it may be very difficult, if not impossible, to obtain a closed expression for the sum
of all insertions. Infrared regularization produces a reordering of the Heavy-Baryon
series, which can lead to an improvement of the convergence properties [57]. The chiral
expansion of an infrared regularized graph of a certain order defined in Eq.(2.69), starts

with the corresponding contribution at that order in dimensionally regularized HBChPT
and includes a whole series of terms suppressed in HBChPT by higher powers of 1/M0.
This full tower of recoil correction can be recovered in the non-relativistic framework only
going to higher orders in the calculation. Moreover, as mentioned before for the triangle-
graph, the chiral expansion in HBChPT is known to break down in certain regions of
phase space and a coherent Heavy-Baryon representation only results if the insertions
required by relativistic kinematics are summed up to all orders. This problem arises from
the interchange of the loop integration with the non-relativistic expansion, which is not
always legitimate. The infrared regularization method avoids these difficulties ab initio,
because it does not rely on a non-relativistic expansion of the loop integrals. This fact has
a consequence on renormalization within the relativistic approach. In general, infrared
singular parts of loop integrals contain ultraviolet divergent pieces that can be absorbed
only by higher-order counterterms. This means that in order to get a regularization
scale independent result while keeping the full tower of recoil corrections, in general it is
not sufficient to tune the coupling constants of those terms in the effective Lagrangian
that enter at the order at which one works. This is in marked contrast both with the
mesonic sector and the Heavy-Baryon framework. In order to avoid the unphysical scale
dependence, Becher and Leutwyler suggest to set the regularization scale λ = M0 since
the nucleon mass represents a “natural” scale in this context. In our work we do not set
λ = M0, but either introduce higher-order counterterms or numerically study the effects
of the residual scale dependence.
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Chapter 2 Theoretical framework

2.9 Effective Lagrangian and low-energy constants

In our analysis of the quark mass dependence of the nucleon mass MN and nucleon axial
coupling gA up to chiral order p4, the relevant effective Lagrangian has the following
form:

Leff = L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + L(2)
π . (2.91)

Eq.(2.43) gives the expression of the leading pion effective Lagrangian. We use

L(1)
πN = Ψ̄ (iγµD

µ −M0) Ψ +
1

2
g0
A Ψ̄ γµγ5u

µ Ψ

L(2)
πN = c1 Tr(χ+)Ψ̄Ψ − c2

4M2
0

Tr(uµuν) (Ψ̄DµDνΨ + h.c.)

+
c3
2

Tr(uµu
µ) Ψ̄Ψ − c4

4
Ψ̄ γµγν [uµ, uν ] Ψ + ...

L(3)
πN =

1

2
B9 Ψ̄γµγ5 uµΨ Tr(χ+) +B20 Ψ̄(iγµD

µ −M0)Ψ Tr(χ+) + . . .

L(4)
πN = e38 [Tr(χ+)]2Ψ̄Ψ +

e115
4

Tr(χ2
+ − χ2

−)Ψ̄Ψ

− e116
4

[

Tr(χ2
−) − (Tr(χ−))2 + Tr(χ2

+) − (Tr(χ+))2
]

Ψ̄Ψ + . . . , (2.92)

cf. Eq.(2.65). L(3)
πN is written according to Ref. [60]. For L(4)

πN we follow Ref. [61]. The
B9-term is needed for renormalization of gA to leading one-loop level. The counterterm
proportional to B20 is related to nucleon wave-function renormalization. Such a term can
be transformed away through a nucleon field redefinition [62], using the nucleon equation
of motion from the lowest order πN Lagrangian 7.

In our study we ignore the effects of isospin breaking and work with degenerate masses
for the up and down quarks.

One of our aims is to check whether present lattice calculations are consistent with
the quark mass dependence of nucleon observables in ChPT. Crucial in this respect is a
precise knowledge of the low-energy constants. In this section we will be concerned with
empirical determinations of dimension-two, -three and -four LECs of relevance for our
analysis.

Second-order low-energy constants

The constants ci carry the dimension of an inverse mass and according to “naive” di-
mensional arguments should be of order 1/Λχ. These low-energy constants have been
determined (to some accuracy) from low-energy hadron phenomenology. Consider first
c1. It is related to the so-called pion-nucleon sigma term, defined as the limit for vanishing
momentum transfer t = (p′ − p)2 of the nucleon scalar form factor

σN (t) = 〈N(p′)|muūu+mdd̄d|N(p)〉 . (2.93)

7This convention has been adopted in Ref. [61], where, moreover, the coupling corresponding to B9 is
called d16.
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2.9 Effective Lagrangian and low-energy constants

We will show in Sec.3.5 that c1 drives the quark-mass expansion of the pion-nucleon
sigma term [43]:

σN ≡ σN(0) = −4 c1m
2
π −

9g0
A

2
m3
π

64πf 0
π

2 + O(m4
π) . (2.94)

Neglecting higher-order terms and using as input the empirical values f 0
π ≡ fπ =

92.4 MeV, mπ = 138 MeV and g0
A ≡ gA = 1.267, together with the outcome of the

analysis by Gasser, Leutwyler and Sainio in the early 1990’s, σN(0) = 45 ± 8 MeV [63],
Eq.(2.94) gives

c1 = −0.88 ± 0.11 GeV−1 . (2.95)

However, the value of the pion-nucleon sigma term is still an open issue. For a detailed
discussion we refer the reader to Sec.3.5. Recent studies of πN scattering data suggest
larger values for σN (0) [64], outside one-standard deviation from the central value in
Ref. [63]. Just to fix ideas, σN (0) = 60 MeV corresponds to c1 = −1.08 GeV−1, according
to Eq.(2.94).

The constants c2, c3 and c4, contributing to the πN → πN process, have been deter-
mined from πN phase-shifts using the expressions for the relevant scattering amplitudes
in HBChPT, both at the leading [65] and next-to-leading [66] one-loop level. In these
studies three different partial-wave analyses [67–69] have been used as input to pin down
LECs by fitting to S- and P -wave phase-shifts in the range of pion momenta in the nu-
cleon rest frame between 40 [66] - 50 [65] and 100 MeV. At leading-one-loop order, O(p3),
the following intervals for the central values in units of GeV−1 have been obtained [65]:

c1 = (−1.53 · · · − 1.23) c2 = (3.13 . . . 3.28)

c3 = (−6.20 · · · − 5.85) c4 = (3.47 . . . 3.51) . (2.96)

The spread of values corresponds to the different data sets used as input for the fits. The
values of c1 found in this analysis are sizeably bigger in magnitude than the estimate
(2.95) and lead to a very large pion-nucleon σ-term, between 73 and 96.4 MeV, which is
difficult to reconcile with phenomenology. However, fixing c1 corresponding to a σ-term
of 47.6 MeV the authors report only somewhat worse χ2 per degree of freedom for the fits
based on the input data in Refs. [67,69]. Furthermore, c1, c2, c3 and c4 receive significant
contributions in going from the tree to the one-loop level. The O(p2) best fits based
again on [67–69] leads indeed to

c1 = (−1.06 · · · − 0.77) c2 = (2.36 . . . 2.69)

c3 = (−4.04 · · · − 3.78) c4 = (2.35 . . . 2.64) (2.97)

in units of GeV−1. These values are in good agreement with the tree level analysis of
elastic πN scattering performed in Ref. [70]. Indeed, taking as input Koch’s values for
the threshold parameters [67], Becher and Leutwyler obtain [70]

c1 = −0.9M−1
N c2 = 2.5M−1

N

c3 = −4.2M−1
N c4 = 2.3M−1

N , (2.98)
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while using as input subthreshold coefficients in Ref. [71], the same authors get [57]

c1 = −0.6M−1
N c2 = 1.6M−1

N

c3 = −3.4M−1
N c4 = 2.0M−1

N . (2.99)

The bulk of the discrepancy between the results (2.98) and (2.99) for c2,3,4 is argued to
be due to the ∆ (1232) [70].

An analysis to order p4 seems to be mandatory in this context. The fits in Ref. [66]
at next-to-leading one-loop level, O(p4), in HBChPT do not, however, provide further
constraints on these LECs. At this order indeed it is impossible to disentangle the effects
of the ci from the contributions of higher-order couplings, without information on the
latter from other processes.

In the scattering process π(q) +N(p) → π(q′) +N(p′), the Mandelstam variables are
defined as follows:

s = (p+ q)2 = (p′ + q′)2

t = (q′ − q)2 = (p′ − p)2

u = (p− q′)2 = (p′ − q)2 . (2.100)

These kinematic variables are subject to the constraint s + t + u = 2M2
N + 2m2

π. The
chiral expansion is expected to converge best inside the so-called Mandelstam triangle,
the region of the Mandelstam plane bounded by the three lines s = (MN + mπ)

2, u =
(MN + mπ)

2 and t = 4m2
π. In Ref. [72] Büttiker and Meißner reconstruct the πN

amplitude inside this unphysical region by means of dispersion relations, taking as input
the Karlsruhe partial-wave analysis [67]. The determination of the ci has then been
performed by fitting the O(p3) HBChPT result to the extrapolated amplitude. The
LEC c2 is basically an undetermined quantity since its contribution carries a kinematical
prefactor which turns out to be very small around the center of the Mandelstam triangle.
Büttiker and Meißner perform two fits, around ν = t = 0 (Fit 1) and around ν = 0, t =
2m2

π/3 (Fit 2), which represent the “ideal points” in the chiral limit and for physical

nucleons and pions, respectively. They obtain

c1 = −0.81 ± 0.15 c3 = −4.69 ± 1.34 c4 = 3.40 ± 0.04 (Fit1)

c1 = −0.80 ± 0.07 c3 = −4.70 ± 0.95 c4 = 3.40 ± 0.04 (Fit2) (2.101)

in units of GeV−1. These results are consistent within the large error bars with previous
studies at leading one-loop in HBChPT, see Refs. [73, 74]. However, the uncertainties
quoted in Ref. [72] must be taken with care, since no error analysis is available for KA84
phase-shifts and elasticities [67]. It is therefore impossible to reliably quantify theoreti-
cal errors for the dispersive amplitudes inside the Mandelstam triangle. The authors of
Ref. [72] simply assume an error of 10% for the amplitudes of interest.

In Chapter 3 we will show that the precise value of the low-energy coupling c3 is crucial
in the discussion of the quark mass dependence of the nucleon mass, at least for the large
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quark masses accessible to present lattice calculations. A relatively large magnitude for
c3 is in agreement with constraints imposed by the isospin-even pion-nucleon scattering
amplitude at threshold. Consider the on-shell πN forward scattering amplitude for a
nucleon at rest. Denoting by b and a the isospin of the outgoing and incoming pion,
respectively, the scattering amplitude takes the form

T ba = T+(ω) δba + T−(ω) iǫbacτ c . (2.102)

Defining qµ as the pion four-momentum, ω = q0. At threshold, ~q = 0, and the pertinent
scattering lengths are defined by

a± =
1

4π

(

1 +
mπ

MN

)−1

T±(mπ) . (2.103)

Crossing symmetry implies that L(2)
πN contributes to T+(ω) only via the terms propor-

tional to c1, 2, 3. For the isospin-even threshold amplitude the following chiral expansion
holds at the leading-one-loop level in HBChPT [52]:

T+(mπ) =
2m2

π

f 0
π

2

(

c2 + c3 − 2c1 −
g0
A

2

8M0

)

+
3g0

A
2
m3
π

64πf 0
π

4 + O(m4
π) . (2.104)

The expression for the pion-mass dependence of a+ at next-to-leading one-loop level,
O(p4), has been worked out in Ref. [66]. Here the authors checked that keeping the
dimension-two LECs fixed to the central values (2.96), the fourth-order contributions to
a+ are small. This is not surprising since with c1,2,3 in Eq.(2.96), the right-hand side of
Eq.(2.104) is already compatible with the empirical T+ at threshold. Without further
input on the relevant fourth-order couplings, no firmer statement can be made about
higher-order corrections in Eq.(2.104).

Measurements of the hadronic energy shift and width of the 1s level in the pionic
hydrogen and deuterium atoms performed by the PSI group [75] give

a+ = (−0.22 ± 0.43) · 10−2m−1
π , (2.105)

and therefore
T+

thr = (−0.045 ± 0.088) fm . (2.106)

For a thorough investigation of pion-deuteron scattering at threshold in the framework
of low-energy effective field theories we refer to [76], where the authors establish limits of
accuracy for extracting πN scattering lengths from the measured πd scattering lengths.
A comparison with existing approaches is also included in Ref. [76]. An updated analysis
by the PSI group [77] which gives

a+ = −0.0001+0.0009
−0.0021 m

−1
π (2.107)

and consequently T+
thr = −0.045 . . . 0.016 fm, has been examined in Ref. [78]: here an

improved description of the deuteron effects gives, in the isospin limit,

a+ = (−12 ± 2(statistical) ± 8(systematic)) · 10−4m−1
π . (2.108)
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which corresponds to T+
thr = −0.041 · · · − 0.004 fm.

Assuming that higher-order effects in Eq.(2.104) are negligible, one can regard that
relation as a constraint on the combination c2+c3−2c1 of dimension-two LECs. However,
one should keep in mind that the next-to-leading order term 3g2

Am
3
π/(64πf 4

π) = 0.174 fm
is much larger than the typical accuracy of the most recent estimates of T+ at threshold.
According to the empirical values of T+(mπ), c1 and c2 in literature, Eq.(2.104) implies
c3 ≈ −5 GeV−1.

Such a large value in magnitude for c3 is not compatible with the analysis of nucleon-
nucleon phase-shifts in Ref. [79]. Here Entem and Machleidt evaluate the impact of
the complete set of two-pion exhange contributions at two-loop, fourth chiral order, on
peripheral partial waves of NN scattering [79]. Their results are not affected by the
variations of c1 and c2 within the ranges

c1 = −0.81 ± 0.15 GeV−1 c2 = 3.28 ± 0.23 GeV−1 , (2.109)

while c3 is crucial. The input c3 = −3.4 GeV−1 is found to be consistent with empirical
peripheral NN phase-shifts, whereas values which substantially differ from that, turn
out to be unacceptable in this analysis [79]. The same input value is also successfully
used in the study of nucleon-nucleon scattering at next-to-next-to-next-leading order by
Epelbaum et al. in Ref. [80]. For a comprehensive and updated discussion on c3 in the
context of NN phase shift analyses, we refer to [81].

We will show in Sec.3.3.2 that the discrepancy with the previous estimate c3 ≈
−5 GeV−1 can be understood in terms of resonance exchange and ∆ (1232) dominance,
taking into account the different kinematical regions effectively probed by πN and NN
scattering. The latter kind of process provides the better (more indirect though) estimate
of c3 in the chiral, static limit.

Third- and fourth-order couplings

Dimension-three and -four LECs absorb infinities from ultraviolet divergent loop inte-
grals. Each of those couplings decompose as

bi ≡ bri (λ) +
βi

f 0
π

2 L(λ) , (2.110)

where any infinity in the limit d→ 4 is subsumed in

L(λ) =
λd−4

16π2

{

1

d− 4
− 1

2
[ln (4π) + Γ′(1) + 1]

}

. (2.111)

Here λ is the regularization scale and bri (λ) is the remaining finite piece that has to be
fixed from phenomenology.

In the infinite part, βi denotes the β-function associated with the corresponding coun-
terterm. The renormalized LECs bri (λ) are measurable quantities satisfying the renor-
malization group equations

λ
d

dλ
bri (λ) = − βi

16π2f 0
π

2 . (2.112)
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In HBChPT for the couplings B9 and B20 in Eq.(2.92), we have [60]

β9 =
1

8
g0
A(4 − g0

A
2
) β20 = −9g0

A
2

16
. (2.113)

When analyzing the chiral tensors in Eq.(2.92), one notices that B9 also contributes in
inelastic pion-nucleon scattering processes like πN → ππN [82]. In Ref. [83] this process
was analyzed to O(p3) in HBChPT. Values for the couplings of interest were obtained by
fitting to differential and total cross-sections and setting all the relevant dimension-two
and -three LECs already determined in Ref. [65] equal to their central values. A second
analysis of πN → ππN scattering [84] unfortunately does not specify the value for the
analogue of the coupling B9 they used. We quote here the results of the revised study in
Ref. [85]. Translating these findings into our conventions we obtain

Br
9(λ = mphys

π ) = (−1.4 ± 1.2)GeV−2 , Br
20(λ = mphys

π ) ≡ 0 . (2.114)

The central value of B9 is the average of the central values for the three fits described in
Ref. [85]. The error bar is the superposition of the corresponding uncertainties. We note
that Refs. [83, 85] follow the convention of Ref. [62] to apply a nucleon field transforma-
tion to eliminate all equation-of-motion-dependent terms from the effective Lagrangian:
according to Eq.(2.92), Br

20(λ) is therefore equal to zero at the scale of their analysis,
which corresponds to λ = 139.57 MeV.

Concerning the fourth-order couplings e38, e115, e116 in Eq.(2.92), dimensional analy-
sis suggest that they should be of order 1/Λ3

χ. No estimate of the numerical value of
the couplings e115, 116 is available. The term involving e38 gives rise to a quark mass
renormalization of c1; e38 enters in a linear combination of LECs whose value cannot
be pinned down accurately from fits to phase-shifts, even if input values from O(p3) fits
are used [66]. Therefore we will treat e38, e115, e116 as free parameters in our numerical
analysis.

2.10 Including the ∆ (1232) as an explicit degree of

freedom

In Baryon Chiral Perturbation Theory, pions and nucleons are the dynamical degrees of
freedom, i.e. the fields appearing in the chiral effective Lagrangian. Resonances are also
included implicitly, in the form of local counterterms. However, the ∆ (1232) resonance
has a special status in two respects. First its mass lies only about 300 MeV above the
nucleon mass. Treating it as a heavy state compared to the nucleon is of questionable
validity from the phenomenological point of view. It also couples very strongly to the πN
system, and contributes substantially through resonance exchange graphs in those chan-
nels where such effects are possible 8. The experimental π+p and π−p total cross-sections
show the dominant role of the ∆ (1232) resonance in the P -wave spin-3/2 isospin-3/2

8The same holds true for the full decuplet in relation to the baryon octet [48].
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channel. Moreover, for Nc → ∞ the nucleon and the delta resonance become degene-
rate in mass. The special role played by the ∆ (1232) in low-energy nuclear and particle
physics can be understood in terms of the quark model: the octet and decuplet baryons
have wave-functions differing only in the arrangement of their quark spins. The higher
resonances, on the other hand, differ in their orbital wave-functions. A spin-flip does not
cost much energy, because the hyperfine spin-spin interaction is rather weak. Thus it is
relatively easy for an octet baryon to be converted into a decuplet baryon, whereas it is
more difficult to convert it into other excited states.

We have computed the quark mass dependence of MN and gA using a chiral effective
Lagrangian of pions, nucleons and deltas coupled to external sources. In the two-flavor
chiral effective field theory which we describe in this section, the ∆ (1232) occur as a
dynamical variable, as an independent baryonic species. Quantum fluctuations also ge-
nerate graphs that contain delta propagators instead of nucleon propagators. The scheme
we adopt allows to systematically account for all contributions arising to a given order
in the chiral expansion of the various observables. It also enables us to go beyond the
extreme non-relativistic limit, described by the ∆-isobar model in the 1970’s [86]. The
power counting scheme we follow is the so-called Small Scale Expansion (SSE) [87]: the
delta-nucleon mass splitting in the chiral limit, ∆ = M0

∆ −M0, is treated as a “small”
parameter together with external momenta and pion masses. In the literature the usual
collective label for the small scale is ǫ. ∆ is a dimensionful parameter of the theory which
stays finite in the chiral limit. The choice to treat it as a “small” parameter corresponds
to the fact that the nucleon spin-isospin polarizability is large and it is therefore easy
to excite the nucleon and get the ∆ (1232). For alternative approaches to the inclusion
of spin-3/2 particles in chiral effective field theories we refer to [88, 89]. Other counting
schemes rely, for example, on the SU(6) limit where the nucleon and delta states are de-
generate to leading order or the “heavy resonance” limit, where ∆ counts as a parameter
of order p0.

The effective Lagrangian relevant for our study up to leading-one-loop order, can be
organized as follows:

Leff = L(1)
πN + L(2)

πN + L(3)
πN + L(1)

πN∆ + L(1)
π∆ + L(2)

π + L∆ . (2.115)

Here L∆ denotes the Lagrangian of the free ∆ (1232) field.
The standard form of the relativistic Lagrangian for a free spin-3/2 field ψ(x) is

L3/2 = ψ̄α Λαβ(A)ψβ (2.116)

where α, β are Lorentz indices and the matrix Λ depends on a free, unphysical parameter
A, with A 6= −1/2 [90], see Ref. [87] for notation. This Lagrangian is invariant under
the so-called point transformation [91],

ψα(x) → ψα(x) + aγαγβψ
β(x)

A → A− 2a

1 + 4a
, (2.117)
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where a is an arbitrary parameter, except that a 6= −1/4. Point-invariance means
that an admixture a of “spurious” spin-1/2 components (which are always present in
the relativistic spin-3/2 field ψ) can be compensated by a corresponding change in A.
Physical quantities are guaranteed to be independent of the choice of the parameter A
by the “KOS-theorem” [92].

The matrix Λαβ(A) can be decomposed as

Λαβ(A) = OA
αµ Λ̄µν OA

νβ (2.118)

where the tensor

OA
αβ = gαβ +

2A

d
γαγβ (2.119)

takes care of the point-invariance [87] and d is the number of space-time dimensions.

The first-order πN∆ Lagrangian has the form [87]

L(1)
πN∆ = cA ψ̄

i
αO

αβ
A Θγ

β(Z)wiγΨN + h.c. , (2.120)

with

wiµ = Tr(τ iuµ)/2

Θµν = gµν − (Z + 1/2)γµγν , (2.121)

where τ i, i = 1, 2, 3, denote the Pauli matrices in isospin space and Z is a so-called off-
shell parameter, involved in the coupling with the spin-1/2 components. In Eq.(2.120), ψαi
denotes the spin-3/2 isospin-3/2 delta field in Rarita-Schwinger notation, see Appendix
A for details. The chiral tensors uβ, w

i
β encode couplings to pions and external sources.

The low-energy constant cA represents the leading axial-N -∆ coupling, frequently called
gπN∆ in the literature. In Ref. [87] all (non-relativistic) Lagrangians are written in terms
of the transformed fields

Ψµ(x) = OA
µν ψ(x) (2.122)

and are therefore A-independent.

Tang and Ellis showed that in the framework of effective field theories, the off-shell
parameters in LπN∆ and Lπ∆ can be absorbed in the infinite number of parameters in
the effective Lagrangian [94]. Neglecting them, the term in Eq.(2.115) describing the
delta propagation and its coupling to pions and external sources, reads [87]

L(1)
π∆ = −ψ̄iαOαµ

A

{[

iD/ ij −M0
∆δ

ij +
g1

2
u/ ijγ5

]

gµν −
γµγλ

4

(

iD/ ij −M0
∆δ

ij
)

γλγν

}

Oνβ
A ψ

j
β ,

where

Dij
µ = Dµδ

ij − iǫijk Tr(τkDµ)

uijµ = ξik3/2 uµ ξ
kj
3/2 (2.123)
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and ξij3/2 denotes the isospin-3/2 projector, ξij3/2 = δij − τ iτ j/3, see Appendix A. Further-

more, g1 denotes the axial-∆-∆ coupling in the SU(2) chiral limit, whereas M0
∆ is the

delta mass in the chiral limit.

Including explicit ∆ (1232) degrees of freedom, in the Small Scale Expansion counting
scheme, the O(ǫ3) πN Lagrangian contain these additional terms allowed by symmetry:

L(3)
πN = Ψ̄

[

B23 ∆Tr(χ+) + ∆2 B30 (iγµD
µ −M0) + ∆2 B31

1

2
γµγ5u

µ +B32 ∆3

]

Ψ + . . .

(2.124)
Here we follow the nomenclature of Ref. [95] where a complete set of counterterms
is listed, appropriate for renormalization of both leading-one-loop HBChPT and non-
relativistic SSE calculations. The generalization to the relativistic framework is straight-
forward. We notice that B23,30,31,32 are identically zero in absence of explicit ∆ (1232)
degrees of freedom, but are required for a leading-one-loop calculation in the Small Scale
Expansion. All the Bi have a finite, regularization scale λ dependent part Br

i (λ) as well
as an infinite part as d→ 4, cf. Eq.(2.110).

The terms in Eq.(2.124) make sure that the chiral limit values for MN and gA are the
same in HBChPT and SSE. They guarantee the decoupling of the delta. If the ∆ (1232) is
regarded to be too heavy to propagate, its effects are encoded into couplings between the
light fields, pion and nucleons. The decoupling theorem [96,97] describes how the heavy
particles must enter into the low-energy theory. According to that theorem, ∆ (1232)
effects are characterized by inverse powers of the delta mass and renormalize coupling
constants. Inverse powers of heavy-particle mass arise from propagators involving virtual
exchange of this particle. This result is in accord with physical intuition. If the heavy-
particle mass becomes infinite, one would expect that the direct influence of the particle
disappears. Any shift in the couplings is not directly observable since they have to be
determined from experiment.

The decoupling of the delta represents an important constraint and a consistency check
of the theory: in the limit of an infinitely heavy delta, the SSE result should reproduce
that in the scheme with πN degrees of freedom, at any given chiral order.

2.10.1 The ∆ (1232) propagator

Choosing A = −1, the propagator for a spin-3/2 isospin-3/2 particle in the Rarita-
Schwinger formalism has the general form:

S∆
µν(p) = Sijµν(p) ξ

ij
3/2 (2.125)

where

Sijµν(p) = −i p/+M0
∆

p2 − (M0
∆)2 + iǫ

[

gµν −
1

d− 1
γµγν −

(d− 2) pµpν
(d− 1) (M0

∆)2
+
pµγν − pνγµ
(d− 1)M0

∆

]

.

(2.126)
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The Dirac tensor Sµν can be written as a linear combination of spin-3/2 and spin-1/2

projection operators P
3/2
µν , P

1/2
µν , see Appendix A:

−i S∆
µν(p) = − p/+m0

∆

p2 − (M0
∆)2 + iǫ

P 3/2
µν − 1√

d− 1M0
∆

(

(

P
1/2
12

)

µν
+
(

P
1/2
21

)

µν

)

+
d− 2

(d− 1) (M0
∆)2

(p/+M0
∆)
(

P
1/2
22

)

µν
. (2.127)

Only the spin-3/2 components are associated with a propagation, whereas the (spurious)
spin-1/2 components correspond to local contact operators [93, 98]. Since the chiral
effective field theory for a coupled pion-nucleon-delta system contains the most general
set of local contact operators allowed by chiral symmetry, we can just take into account
the propagation of the spin-3/2 degrees of freedom since the effects of the spurious off-shell
spin-1/2 components are completely absorbed by the counterterms of the theory. In the
low-energy theory also the field theoretical deficiencies of the Rarita-Schwinger approach
discussed in Ref. [99], can be accounted for via counterterms. Bernard, Hemmert and
Meißner have proposed the decomposition [93]

S∆
µν = −i p/+M0

∆

p2 − (M0
∆)2 + iǫ

p2

(M0
∆)2

P 3/2
µν + i Rµν , (2.128)

where

Rµν =
p/+M0

∆

(M0
∆)2

[

gµν −
1

d− 1
γµγν

]

+
1

(d− 1) (M0
∆)2

(pµγν − γµpν) (2.129)

is not connected with the spin-3/2 propagation, is local and only generates contributions
which can be subsumed in counterterms. The propagator [93]

Gij
µν(p) = −i p/+M0

∆

p2 − (M0
∆)2 + iǫ

p2

(M0
∆)2

P 3/2
µν ξij3/2 . (2.130)

is therefore sufficient to incorporate the physics of the delta in the low-energy theory. In
our analysis, we work with the propagator in Eq.(2.130). This form facilitates the com-
parison with the non-relativistic formulation of SSE where only the spin-3/2 components
propagate [87, 100].

2.10.2 Low-energy parameters in the framework with explicit

∆ (1232)

In view of investigating the quark mass dependence of MN and gA in SSE to one-loop
order, we summarize what is known about the low-energy parameters of interest in the
effective Lagrangian with explicit ∆ (1232) degrees of freedom.

53



Chapter 2 Theoretical framework

The delta-nucleon mass difference

Lattice data show an almost parallel running of MN and M∆ with mπ [101]. Although
present simulations are performed with relatively large quark masses, it is reasonable
to assume that the delta-nucleon mass splitting at the physical pion mass is a good
approximation of the low-energy parameter ∆.

The position of the ∆ (1232) resonance pole in the (complex) total center-of-mass

energy plane has been determined from the magnetic dipoleM
(3/2)
1+ and electric quadrupole

E
(3/2)
1+ amplitudes of pion photoproduction: M∆ − iΓ∆/2 = (1211− i 50) MeV, according

to Ref. [102]. According to the Particle Data Group average [13], the ∆ (1232) pole
position in the complex energy plane leads to M∆ = 1210 MeV and Γ∆ = 100 MeV.
According to that, M∆ −MN = 271.1 MeV.

If we look at the 900 πN phase-shift in the spin-3/2 isospin-3/2 channel, the Particle
Data Group average gives M∆ = 1232 MeV [13]. In this case, M∆ −MN = 293 MeV.

A recent study indicates that the delta-nucleon mass splitting becomes slightly larger
in the chiral limit: in Ref. [93] the quark mass dependences of the nucleon and the delta
mass are analyzed in the framework of manifestly covariant SSE at next-to-leading one-
loop accuracy, O(ǫ4). The comparison of the relevant formulae with lattice data from
Ref. [101] suggests ∆ ≈ 330 MeV.

The couplings cA and g1

In our numerical analysis we used for cA estimates at the physical value of mπ since
nothing is known about the quark mass dependence of this coupling. The expression for
the strong ∆ → N π decay width Γ in the relativistic framework can be deduced from
the tree graphs of L(1)

πN∆. In the rest frame of the decaying delta it reads

Γ∆→Nπ =
c2A q

3
∆

24πf 0
π

2M0
∆

2

[

(M0
∆ +M0)

2 −m2
π

]

=
c2A

6πf 2
π

(E2
π −m2

π)
3/2 M

0
∆ +M0 − Eπ

2M0
∆

,

(2.131)
where q∆ is the momentum of the decay products for the decay at rest and

Eπ =
M0

∆
2 −M2

0 +m2
π

2M0
∆

. (2.132)

Using in Eq.(2.131) the empirical Breit-Wigner width of the ∆ (1232), Γ∆→Nπ = 120 ±
5 MeV [13], together with M∆ = 1232 MeV and physical values of fπ, mπ and MN , we
get cA between 1.4 and 1.5. If we look at the position of the delta pole in the complex W -
plane we have Γ∆→Nπ ≈ 100 MeV, which corresponds to cA ≈ 1.5 for M∆ = 1210 MeV.
In our numerical study we set the estimate corresponding to Eq.(2.131) as cA = 1.5, a
value somewhat larger than the spin-flavor SU(4) relation

cA = 3/(2
√

2) gA = 1.34 . (2.133)
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The calculation in the non-relativistic framework, at leading order in HBChPT, gives
[103]

ΓHB
∆→Nπ =

c2A
6πf 2

π

(∆2 −m2
π)

3/2 . (2.134)

Here Γ∆→Nπ = 120 ± 5 MeV gives cA ≈ 1, while for Γ∆→Nπ = 100 MeV, cA = 1.125.

Little is known about the value of the axial-∆-∆ coupling g1:

- using SU(4) spin-flavor quark symmetry, one finds

g1 =
9

5
gA . (2.135)

The non-relativistic SU(4) quark model (where no spin-dependent interaction be-
tween quarks is considered) predicts gA = 5/3 and consequently g1 = 3. According
to Eq.(2.135), if gA = 1.267 then g1 = 2.28.

- A special quartet scheme of chiral symmetry realization for even- and odd-parity
baryon resonances was proposed in Ref. [105]. According to such a scheme the
authors found that the parity non-changing couplings such as π∆±∆± are forbidden
at leading order.

- Fettes and Meißner analyzed elastic πN scattering to O(ǫ3) in the framework of non-
relativistic Small Scale Expansion [104]. By fitting to S- and P -wave amplitudes
for different sets of available pion-nucleon phase-shifts in the physical region at low
energies, the authors could not determine reliably g1.
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Chapter 3

Quark mass dependence of the nucleon

mass

We have studied the nucleon mass MN in the framework of the effective low-energy
theory of QCD in the one-nucleon sector and for the two-flavor case. In particular,
we have analyzed the functional dependence of this nucleon observable on the explicit
chiral symmetry breaking parameter mq, comparing two versions of SU(2) Baryon Chiral
Effective Field Theory (BChEFT): with and without explicit ∆ (1232) degrees of freedom.
The main features of the formalism have been described in Chapter 2. Here we present
the relevant formulae both at leading- and next-to-leading one-loop level. We then discuss
the outcome of a numerical analysis performed using as input a selected set of the most
recent full-QCD lattice data. The basic results appear in two papers, Refs. [106] and [107].

3.1 The nucleon mass in QCD and in ChEFT

Consider the matrix element of the QCD energy-momentum tensor Θµν at zero momen-
tum transfer between one-nucleon states |Ns(~p)〉. Lorentz invariance requires

〈Ns(~p ) |Θµν |Ns(~p )〉 = a pµpν + b gµν (3.1)

where a and b are scalar constants. Using the normalization

〈Ns′(~p
′) |Ns(~p )〉 =

E~p
MN

δs′s (2π)3 δ3(~p ′ − ~p ) ,

where E~p =
√

~p 2 +M2
N and s, s′ = ±1/2 are the spin projections, the Hamiltonian

H =

�
d3~xΘ00(0, ~x ) (3.2)

has the following matrix element in the one-nucleon state:

〈Ns(~p ) |H|Ns(~p )〉 =
E2
~p

MN

(2π)3 δ3(~0) . (3.3)

Comparing Eq.(3.3) with Eq.(3.1), we get

〈Ns(~p ) |Θµν |Ns(~p )〉 = pµpν/MN . (3.4)
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The nucleon mass is therefore given by the forward matrix element of the trace of the
symmetric QCD energy-momentum tensor in the one-nucleon state:

MN = 〈Ns(~p ) |Θµ
µ|Ns(~p )〉 . (3.5)

If the quark masses were set equal to zero, the Lagrangian of QCD would exhibit scale
invariance at the classical level. This would lead to a traceless energy-momentum tensor
and would imply zero nucleon mass. However, at the quantum level one gets

Θµ
µ =

β(g)

2g
Ga
µνG

µν
a + (1 + γm) q̄mq , (3.6)

as far as matrix elements between physical states are concerned [108]. Here g is the
SU(3) gauge coupling of QCD, Gµν

a the gluon field strength tensor and β(g) is the QCD
β-function; m denotes the quark mass matrix in flavor space and γm is the anomalous
dimension of the mass operator Om = q̄mq, cf. Eq.(2.9) and Ref. [18],

γm = µ
d lnZm
dµ

(3.7)

where Zm is the renormalization factor for the quark masses and µ is the renormaliza-
tion scale. Renormalization introduces a scale parameter and the quantum corrections
destroy scale invariance. The trace of the energy-momentum tensor, which is equal to
the divergence of the scale current, shows an anomaly.

Neglecting consistently γm and higher order terms in β(g) in Eq.(3.6), Eq.(3.1) implies

MN = 〈Ns(~p ) | αs
8π

(

2

3
Nf − 11

)

Ga
µνG

µν
a +mu ūu+md d̄d+ms s̄s+ . . . |Ns(~p )〉 (3.8)

where Nf is the number of quark flavors with masses much less than the typical energy un-
der consideration. The dots indicate contributions from quarks heavier than the strange.
This fundamental expression emphasizes the important role played by gluons in building
up the nucleon mass. Note that Ga

µνG
µν
a = ~B2 − ~E2, in terms of the color magnetic and

electric fields. As already mentioned, the matrix element

〈Ns(~p ) |muūu+mdd̄d|Ns(~p )〉 (3.9)

is the so-called pion-nucleon sigma-term σN , the nucleon scalar form factor at zero mo-
mentum transfer. Although its precise empirical value is currently still under debate and
an even larger uncertainty affects the strange-quark mass term (see Sec.3.5), the gluon
trace is by far the dominant contribution on the right-hand side of Eq.(3.8).

According to Eq.(3.9), the physical nucleon mass has the following decomposition:

MN = M0 + σN

where M0 is the nucleon mass in the SU(2) chiral limit, i.e. for vanishing u− and
d−quark masses.
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3.2 Analytic results

In a chiral effective field theory, formulated in terms of the asymptotically observed
fields, the physical (renormalized) nucleon mass is defined by the position of the pole in
the two-point function of the nucleon Dirac field Ψ(x):�

d4x eip·x〈0| T{Ψ(x)Ψ̄(0)} |0〉 =
i

p/−M0 − Σ(p/)
, (3.10)

where Σ(p/), the nucleon self-energy, is the one-particle irreducible contribution to the
full propagator SF (p). The position of the pole,

MN = M0 + δM , (3.11)

where δM is the nucleon mass-shift, is given by the solution of the equation

[p/−M0 − Σ(p/)]|p/=MN
= 0 . (3.12)

Expanding the nucleon self-energy around MN ,

Σ(p/) = Σ(p/)|p/=MN
+ (p/−MN ) Σ′(p/)|p/=MN

+ O(p/−MN )2 , (3.13)

using Eq.(3.12) we have

p/−M0 − Σ(p/) = (p/−MN)
[

1 − Σ′(p/)|p/=MN

]

+ O(p/−MN )2 . (3.14)

We can express the full nucleon propagator as

SF (p) =
i ZN

p/−MN − ΣR(p/)
(3.15)

where

ΣR(p/)|p/=MN
= 0 and

∂

∂ p/
ΣR(p/)|p/=MN

= 0 . (3.16)

The renormalization factor ZN is evaluated as the residue of the full propagator SF (p)
at the pole p/ = MN :

Z−1
N = 1 − Σ′(p/)|p/=MN

. (3.17)

3.2 Analytic results

In our study we neglect isospin breaking effects and work with equal u−and d− quark
masses, mu,d = mq. Furthermore, we translate the functional dependence on the (light)
mq into a pion-mass dependence according to the Gell-Mann – Oakes – Renner relation,
consistently with our power counting scheme (see Sec.2.6):

m2
π = 2Bmq + O(m2

q, m
2
q lnmq/λ) . (3.18)

Let us concentrate first on the ChEFT scheme with nucleons and pions as the only
explicit degrees of freedom.

L = L(1)
πN + L(2)

πN + L(4)
πN + L(2)

π (3.19)

is the effective Lagrangian needed to work out the quark mass dependence of MN up to
and including chiral order p4, see Sec.2.9. The vertices relevant for our calculations are
collected in Appendix B.

59



Chapter 3 Quark mass dependence of the nucleon mass

�N� �� �N � N(a) (b) (
)
Figure 3.1: One-particle-irreducible one-loop graphs of NLO (a) and NNLO (b, c)

contributing to the nucleon self-energy in Baryon ChPT (without explicit

∆(1232) degrees of freedom). The solid dot denotes a vertex from L(1)
πN , the

diamond a vertex from L(2)
πN .

3.2.1 O(p3) results

The leading-order (LO) term in the nucleon mass-shift comes from the explicit chiral

symmetry breaking piece in L(2)
πN , involving c1. The next-to-leading order (NLO) con-

tribution is represented by the diagram (a) of Fig.3.1, with the πN vertex appearing in

L(1)
πN .
We have evaluated all the relevant one-loop integrals using infrared regularization, in

order to match chiral power counting and manifest Lorentz invariance. In our approach
we keep the whole tower of recoil corrections attached to any infrared regularized one-
loop diagram with baryon propagators. It has been shown that this can improve the
convergence properties in the low-energy region [57]. Besides, it permits a more efficient
numerical analysis of the mπ-dependence for the relatively large pion masses presently
accessible to fully dynamical lattice QCD simulations.

In terms of the loop functions in Appendix C, graph (a) gives [57]

Σa(p/) =
3g0

A
2

4f 0
π

2 (M0 + p/)
[

m2
π IN(p2, m2

π) + (M0 − p/)p/ I
(1)
N (p2, m2

π)
]

, (3.20)

which develops an ultraviolet divergence proportional to m4
π. In order to have a finite,

regularization-scale-independent result, we include the contact term −4 e1m
4
πΨ̄Ψ genera-

ted by L(4)
πN . In the notation of Eq.(2.92), at fourth chiral order, e1 = −(4e38 + e115/2 +

e116/2).
The expression for the mπ-dependence of MN at NLO reads:

MN = M0 − 4c1m
2
π +

[

4 er1(λ) +
3g0

A
2

64π2f 0
π

2M0

(

1 − 2 ln
mπ

λ

)

]

m4
π

− 3g0
A

2

16π2f 0
π

2 m
3
π

√

1 − m2
π

4M2
0

arccos

(

− mπ

2M0

)

, (3.21)

where er1(λ) is defined as the finite (regularization scale λ dependent) part of e1,

e1 = er1(λ) +
3 g0

A
2

8f 0
π

2M0

L(λ) . (3.22)
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Figure 3.2: One-particle-reducible one-loop graphs contributing to MN (mπ) at chiral or-

der p4. The diamond denotes the quark-mass insertion involving the coupling
c1 in L(2)

πN .

Any ultraviolet divergences are subsumed in L(λ), Eq.(C.2). According to Eq.(3.22),
er1(λ) scales in such a way that the overall right-hand side of Eq.(3.21) is scale indepen-
dent.

For further discussion we show the expansion of Eq.(3.21) in powers of the pion mass:

MN = M0 − 4c1m
2
π −

3g0
A

2

32πf 0
π

2m
3
π +

[

4 er1(λ) − 3g0
A

2

64π2f 0
π

2M0

(1 + 2 ln
mπ

λ
)

]

m4
π

+
3g0

A
2

256πf 0
π

2M2
0

m5
π + O(m6

π). (3.23)

The sum of the first three terms coincides with the leading-one-loop expression for MN

in Heavy Baryon Chiral Perturbation Theory (HBChPT) [52]. The third piece is the
leading non-analytic term in the quark-mass expansion of MN . The counterterm that
controls the contributions at m4

π encodes short-distance dynamics, including effects of
the ∆ (1232) and possibly other resonance excitations of the nucleon. We notice that the
parameters c1 and er1(λ) absorb the leading correction to the Gell-Mann – Oakes – Renner
relation (2.50), corresponding to the choice of expressing the quark mass dependence of
MN in terms of mπ(mq) at next-to-leading order.

3.2.2 O(p4) analysis

Both tree and one-loop diagrams contribute at next-to-next-to-leading order (NNLO).

The latter are labelled by (b) and (c) in Fig.3.1 and include vertices generated by L(2)
πN .

The O(p4) one-particle reducible one-loop diagrams are drawn in Fig.3.2.
In d space-time dimensions, diagram (b) gives [57]

Σb =
3m2

π ∆π

f 0
π

2

(

2c1 −
p2

M2
0d

c2 − c3

)

, (3.24)

where ∆π is the tadpole integral in Appendix C. Graph (c), together with those in
Fig.3.2, can be calculated from Eq.(3.20). Indeed, for small mπ,

i

p/−M0 − 4 c1m2
π

=
i

p/−M0
+

i

p/−M0
(i 4 c1m

2
π)

i

p/−M0
+ . . . . (3.25)

We can therefore compute the c1-insertions by a simple shift of the pole of the nucleon
propagator, from the “bare” nucleon mass to its renormalized value at second chiral order

MN → M0 − 4 c1m
2
π . (3.26)

61



Chapter 3 Quark mass dependence of the nucleon mass

Afterwards, in order to avoid higher-order terms, we have to expand the result in powers
of c1 and retain the term linear in c1.

Finally, at NNLO we have

MN =
1

128 π2 f 0
π

2M3
0

√

4 −m2
π/M

2
0

{

12 arccos

(−mπ

2M0

)

g0
A

2
m3
π (4 c1m

4
π +m2

πM0 − 4M0
3)

+M0

√

4 − m2
π

M0
2

[

− 24 c1 g
2
Am

6
π + 6 g2

Am
4
πM0 − 512 c1 π

2f 0
π

2
M2

0 m
2
π

+3 c2m
4
πM

2
0 + 128 π2f 0

π
2
M3

0 − 12m4
π ln

mπ

λ

(

M2
0 (−8 c1 + c2 + 4 c3)

+g0
A

2
(4 c1m

2
π +M0)

)]}

+ 4 er1(λ)m4
π + 64 er2(λ)m6

π . (3.27)

Here er2(λ) is the finite part of the sixth-order coupling needed to compensate of the scale
dependence at this level,

e2 = er2(λ) +
6 c1g

0
A

2

f 0
π

2M2
0

L(λ) .

The factor 64 in front of it reminds that e2 is the coupling which should be of “natural
size” according to “naive” dimensional arguments [28], see Sec.2.5. Indeed

L(6)
πN = Ψ̄ ǫ2 [Tr(χ+)]3Ψ + · · · = 64 ǫ2m

6
π + · · · (3.28)

for which we expect that ǫ2 is of order 1/Λ5
χ.

In Eq.(3.27),

e1 = er1(λ) +
3L(λ)

8f 0
π

2

(

g0
A

2

M0
− 8c1 + c2 + 4c3

)

.

The β-function describing the λ-dependence of the renormalized effective coupling er1 has
changed from O(p3) to O(p4). However, infrared regularization has the property that
the fourth-order β-function in question will not be affected by higher orders.

Eq.(3.27) contains too many parameters to be useful for our numerical analysis, based
on a low-statistics set of input lattice data. Hence we have expanded the expression
(3.27) around mπ = 0 and truncated up to and including O(m5

π):

MN = M0 − 4c1m
2
π −

3g0
A

2

32πf 0
π

2m
3
π

+

[

4 er1(λ) − 3

64π2f 0
π

2

(

g0
A

2

M0
− c2

2

)

− 3

32π2f 0
π

2

(

g0
A

2

M0
− 8c1 + c2 + 4c3

)

ln
mπ

λ

]

m4
π

+
3g0

A
2

256πf 0
π

2M2
0

m5
π + O(m6

π) . (3.29)

The terms up to m4
π have already been discussed in [43]: their sum represent the O(p4)

Heavy Baryon result. Up to m5
π no counterterm other than the combination denoted by
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3.2 Analytic results

e1 is required to achieve scale independence. We will argue numerically that the Eq.(3.29)
does represent a good approximation of the full expression.

The relativistic result truncated at m5
π, Eq.(3.29), has the same structure as the ex-

pansion of the nucleon mass in HBChPT to O(p5), since there are no genuine two-loop
graph contributions at this order in the chiral expansion [109]. More specifically, in the
evaluation of the nucleon mass-shift in the Heavy-Baryon framework, the sum of the
terms proportional to m3

π and m5
π gives [109]

δm(3) + δm(5) = − 3g2
πNN

32πM2
N

m3
π

(

1 − m2
π

8M2
N

)

, (3.30)

where
gπNN
MN

=
g0
A

f 0
π

[

1 −m2

(

g0
A

2

16 π2f 0
π

2 +
l̄4

f 0
π

2 − 4d̄16 − 2d̄18

g0
A

)]

(3.31)

and

m2
π = m2

(

1 +
2 l̄3m

2

f 0
π

2

)

(3.32)

with m2 = 2Bmq; d̄i, l̄i are suitable LECs, defined to absorb ln (m/λ)-terms [65]. In
Eq.(3.30) the fifth-order contribution toMN in the non-relativistic framework is expressed
through the quark mass dependence of quantities which enter at order m3

π: the m5
π term

represents just a 1/M2
N recoil correction of the O(m3

π) result. In the relativistic approach,
the running of gA and fπ gives rise to contributions starting at O(p5) with the term
proportional to m5

π in Eq.(3.30).

3.2.3 Inclusion of ∆ (1232): O(ǫ3) results

An EFT with a Lagrangian involving only pions and nucleons still feels the effects of heavy
fields - like the ∆ (1232) - through virtual contributions encoded in various couplings
between the light fields. When integrating out the heavy fields from the Lagrangian,
effects of particles that “decouple” are characterized by inverse powers of their mass and
contribute to coupling constant renormalization. Since we are working at limited pertur-
bative order, “freezing” the ∆ (1232) and relegating its effects to higher order terms could
reduce the degree of accuracy of the approximation and the range of applicability of the
formulae worked out in the standard BChPT approach. The inclusion of the ∆ (1232)
as an explicit degree of freedom can represent more effectively the physics responsible of
the low-energy behaviour of the observable under study. Furthermore, such extension of
standard BChPT represents a way to explore the influence of higher-order effects in the
scheme restricted to πN degrees of freedom only.

We have described the manifestly Lorentz invariant formulation of the so-called Small
Scale Expansion in Sec.2.10: the ∆ (1232) contributions are treated in a systematic
expansion in ǫ, which collectively denotes soft external momenta, pion mass and delta-
nucleon mass difference in the SU(2) chiral limit. We have worked out the expression
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Chapter 3 Quark mass dependence of the nucleon mass���
Figure 3.3: Leading-one-loop diagram contributing to the nucleon self-energy with an

intermediate ∆ (1232). The vertex comes from L(1)
πN∆.

for the pion mass dependence of MN within the fully relativistic approach because it
enables us to recover immediately the non-relativistic result and examine the importance
of recoil effects.

The leading-one-loop contribution to the nucleon self-energy with an intermediate
∆ (1232) is represented by the graph in Fig.3.3. The leading πN∆ interaction Lagrangian,
Eq.(2.120), contains the relevant vertex. The dependence on the so-called off-shell pa-
rameter Z is spurious (see Sec.2.10) and its effects can be absorbed by a redefinition of
the couplings. In terms of the basic integrals in Appendix C, the O(ǫ3) graph yields the
following shift to the nucleon mass in d space-time dimensions 1:

δM
3/2
N = − c2A (d− 2)

4(d− 1)f 0
π

2M0M0
∆

2×
{

I∆ (M2
0 − 2M0

∆M0 +M0
∆

2 −m2
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2
0 + 2M0

∆M0 +M0
∆

2 −m2
π)

2

+∆π

[

M4
0 + 2M0

∆M
3
0 + 4m2

πM
2
0 − 2(M0

∆
3 −M0

∆m
2
π)M0 − (M0

∆
2 −m2

π)
2

]

− 4

d
∆πM

2
0m

2
π

}

. (3.33)

At O(ǫ3) the full result is schematically given by

MN = M0 − 4 c1m
2
π + δMπN

N + δM
3/2
N + counterterms , (3.34)

where δMπN
N is the nucleon mass-shift at order p3 in the scheme with πN degrees of

freedom:

δMπN
N = Σa(p/ = M0) , (3.35)

according to Eq.(3.20).

The spin-1/2 components of the delta field give rise to purely polynomial terms in mπ

starting to contribute at m4
π. They can consequently be accounted for by a redefinition

of higher-order couplings.

Let us have a closer look at the terms in Eq.(3.33) which diverge in the limit d → 4.

1See Ref. [93] for the O(ǫ4) result.
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Expanding in powers of mπ and ∆, we get
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∣
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π . (3.36)

In order to obtain a renormalized expression for MN (mπ), an infinite number of coun-
terterms would be required. In the following we discuss different approaches to give a
meaning to Eq.(3.34).

First, we note that in the non-relativistic limit M0 → ∞, two counterterms would be
sufficient:

L(3)
πN = Ψ̄

[

B32 ∆3 + B23 ∆ Tr(χ+)
]

Ψ + . . . , (3.37)

see Sec.2.10. These terms are, among the whole set needed for renormalization in
Eq.(3.34), the only ones appearing in L(3)

πN , all the others being of higher order in the
standard power counting. Keeping the leading term in the 1/M0 expansion in Eq.(3.33),
one recovers the O(ǫ3) result in non-relativistic SSE:

MN(mπ) = M0 −Br
32(λ)∆3 − 4 c1m

2
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23(λ) ∆m2
π −

3g0
A

2
m3
π

32f 0
π

2π

− c2A∆3

3π2f 0
π

2 ln
mπ

λ
+

c2A∆3

9π2f 0
π

2 +
c2A∆

2π2f 0
π

2 m
2
π ln

mπ

λ
− c2Am

2
π∆

12π2f 0
π

2

− c2A
3π2f 0

π
2 (∆2 −m2

π)
3/2 ln

(

∆

mπ
+

√

∆2

m2
π

− 1

)

+ O(ǫ4) . (3.38)

The expansion around the chiral limit,

M chir
N (mπ) = M0 −

∆3
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8π2f 0

π
2∆

m4
π ln
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2∆
+ O(m6

π) ,

makes clear how we can achieve scale-independent decoupling of the delta for mπ/M∆ →
0. Setting indeed Br

23(λ) and Br
32(λ) such that the first two terms in the chiral expansion
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of MN (mπ) coincide with those in the πN sector,

Br
23(λ) =

1

(4πf 0
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2
2c2A ln
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λ
, (3.39)
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, (3.40)

we obtain the result [103, 110]

MSSE
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Coming back to the relativistic case, our “full formula” has been worked out as fol-
lows, cf. Ref. [93]. We take care of divergences at m0

π and m2
π in Eq.(3.36) via two

terms, −Ḃ32∆
3 and −4Ḃ23∆m

2
π: each of them is thought to absorb an infinite string of

divergences in powers of ∆. Scale dependence at order m4
π has been removed by intro-

ducing the counterterm −4ė1m
4
πΨ̄Ψ, as we did at order p3 in the πN sector. Like in the

non-relativistic calculation, we choose the finite parts Ḃr
23,32(λ) in such a way that the

chiral expansion of MN (mπ) at order ǫ3 starts as

MN = M0 − 4 c1m
2
π + O(m3

π) . (3.42)

The decoupling of the ∆ (1232) is now realized up to and including O(m3
π). Since we are

going to compare our expressions for MN(mπ) with a data sample of limited statistics, we
do not introduce other free parameters and live with uncompensated scale dependence
at m6

π and m8
π. Both effects of partial implementation of the decoupling and residual

scale dependence are of higher order in the chiral expansion and therefore are part of the
“systematic uncertainty” attached to the covariant SSE calculation. We will show the
numerical impact of these effects in Sec.3.3.4.

If we truncate the relativistic SSE expression up to and including the term proportional
to 1/M0, the counterterms B̃32∆

3Ψ̄Ψ, 4B̃23∆m
2
πΨ̄Ψ and −4ẽ1m

4
πΨ̄Ψ are sufficient to

ensure both renormalization and exact decoupling, cf. Eq.(3.36). Setting
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, (3.43)
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these two renormalized couplings do not appear in the final equation, which reads
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Eqs.(3.41) and (3.44) are valid only for mπ ≤ ∆ —as it is in Nature. Since in our
numerical analysis we take input lattice data at pion masses larger than the physical
one, we need the analytic continuation of the expressions above to mπ ≥ ∆. This is
achieved via the replacement

√

∆2 −m2
π ln

[
√

−1 +
∆2

m2
π

+
∆

mπ

]

→ −
√

m2
π − ∆2 arccos

∆

mπ

.

In the same way we worked out the analytic continuation of the full relativistic formula.

3.3 Numerical analysis and contact with lattice QCD

Let us now assume that there is an overlap between the region of validity for the expres-
sions in Sec.3.2 and the range of quark masses presently accessible to full-QCD lattice
simulations. In this section we describe our numerical study of Eqs.(3.21), (3.27), (3.29),
(3.34), (3.44) and (3.41), in the ChEFT schemes with and without explicit ∆ (1232)
degrees of freedom, in the continuum and infinite volume limit. Parameters not fixed
by chiral symmetry have been determined by fitting to a combined set of fully dynam-
ical two-flavor lattice QCD results by the CP-PACS [111], JLQCD [112] and QCDSF-
UKQCD [113] collaborations. Let us first examine our data sample.

3.3.1 Brief survey of lattice QCD results

In lattice QCD calculations, hadron masses are extracted analyzing the large Euclidean
time behavior of correlation functions for zero-momentum operators OH(τ) carrying the
appropriate quantum numbers to create the hadron of interest. In this way, nucleon
and pion masses are deduced by studying the fall-off pattern for large values of τ of
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correlation functions

C(τ) = 〈0|O†
H(τ)OH(0)|0〉 =

�
DUDψ̄Dψ e−SQCDO

†
H(τ)OH(0)�

DUDψ̄Dψ e−SQCD
, (3.45)

where SQCD is the (Euclidean) lattice action of QCD, i.e. the sum of the gauge field
action and the action of fermions (quarks) coupled to gauge fields. If |Ω〉 is the state
created from the vacuum by the operator OH(0) and En denotes the energy of the n-th
eigenstate |n〉 of the Hamiltonian, we have

C(τ) =
∑

n

|〈n|Ω〉|2 e−En τ . (3.46)

Hence, in the large τ limit, C(τ) is dominated by the lowest energy state carrying the
quantum numbers of OH .

The actual quantity computed on the lattice is the hadron mass in units of the inverse
of the lattice spacing a. In order to convert this dimensionless quantity into physical
units, one has to determine a by comparison with phenomenology. The presence of
systematic errors due to large quark masses, lattice spacing and finite-volume effects,
makes it non-trivial to set the scale for the simulation results. A popular method is to
use the force parameter r0 [36], calculated assuming that the QCD static qq̄ potential
coincides with the phenomenological effective potential which describes the energy levels
of heavy quarkonia. The scale r0 is implicitly defined through

r2 d V (r)

dr

∣

∣

∣

∣

r=r0

= 1.65 (3.47)

where V (r) denotes the static quark-antiquark potential. The numerical value on the
right-hand side is adjusted such that fitting to the bottomonium spectrum with phe-
nomenological or lattice potentials yields r0 ≈ 0.5 fm. In the following we shall adopt
this procedure to set the scale and use r0 = 0.5 fm [113]. It is not obvious that the quark
mass effects on the static qq̄ force at distances around 0.5 fm are negligibly small. The
study of the dependence of r0 on the masses of dynamical quarks is at an early stage: in
Ref. [114] a weak dependence is reported for a ≈ 0.1 fm at least for some combination of
gauge and fermion actions. It would certainly be advantageous to avoid the lattice scale
problem completely by considering dimensionless ratios (e.g. ratios of the masses to the
pion decay constant) and performing the whole mπ-dependence study in ChPT for these
ratios. This would be possible if more data points for different observables with the same
simulation parameters were available.

The Monte Carlo data that we used have been computed with different actions: the
UKQCD and QCDSF collaborations work with the standard Wilson plaquette gauge
action and the non-perturbatively O(a)-improved clover action for the fermions [113].
JLQCD uses the same actions as QCDSF-UKQCD but with a slightly different value for
the improvement parameter cSW [112]. CP-PACS data instead are worked out with a
renormalization-group improved gauge action and a mean-field clover quark action [111].
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Table 3.1: Lattice data points selected for the analysis ofMN (mπ). See text and Ref. [113]
for details.

Collaboration a [fm] L [fm] mπ L mπ [GeV] MN [GeV]

UKQCD 0.11 1.68 6.5 0.760(11) 1.657(26)
UKQCD 0.10 1.56 6.1 0.7791(76) 1.629(20)
QCDSF 0.09 2.21 6.2 0.5570(69) 1.320(19)
QCDSF 0.09 2.16 7.8 0.7172(29) 1.5062(94)

CP-PACS 0.11 2.68 7.1 0.5214(21) 1.2751(82)
CP-PACS 0.12 2.83 10.2 0.7088(25) 1.4971(77)
CP-PACS 0.09 2.22 6.7 0.5946(52) 1.348(13)
CP-PACS 0.10 2.29 8.5 0.7345(37) 1.519(11)
JLQCD 0.11 2.16 8.0 0.7324(84) 1.509(18)
JLQCD 0.10 1.96 5.4 0.5453(90) 1.300(22)

The available data points are collected in Ref. [113]. In order to minimize artifacts from
discretization and finite volume effects, we have selected the simulations with a < 0.15 fm
and mπ L > 5, where L is the spatial size of the lattice. In Ref. [115] a lattice regularized
version of ChPT is used to determine the typical size of discretization errors. For physical

values ofmq, baryon masses turn out to be essentially independent of lattice spacing when
π/a & Λχ. However, as pointed out in Ref. [116], the explicit chiral symmetry breaking
of Wilson-type quark actions could require a modification (due to finite lattice spacing)
of the ChPT formulae used for extrapolations on a coarse lattice (a ≈ 0.2 fm). It is
a remarkable fact that the Monte Carlo data compatible with our cuts, while obtained
with different (improved) actions, all lie close to a single curve (see Fig.3.4). This makes
us confident that lattice artifacts in the selected set of points are minimized.

The authors of Ref. [113] studied finite-size effects for MN [117] in the framework of
SU(2) BChPT, up to and including O(p4). They computed the graphs in Fig.3.1, re-
placing any integral over the spatial components ~p of the loop momentum by a sum over
the discrete set of momenta allowed by periodic boundary conditions. The parameters
in the relevant formulae have been fixed according to our results in the infinite-volume
limit [106] and a successful, parameter-free prediction of finite-size effects has been ob-
tained [113]. We have then checked that for mπ L > 5 finite-size corrections to MN are
within error bars for the data points that we used as input. Furthermore, in Ref. [107] we
performed fits to lattice data using the finite volume formulae in Ref. [113]. The results
confirm and sharpen the outcome of our study in Ref. [106].

In the numerical analysis we restricted ourselves to simulations with mπ < 600 MeV
and equal valence and sea quark masses. For further discussion, in Table 3.1 we collect
the data up to 800 MeV in pion mass. The cut atmπ < 600 MeV represents a compromise
between the smallest available pion masses and an amount of data sufficient to perform a
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Chapter 3 Quark mass dependence of the nucleon mass

meaningful statistical analysis. At the time of writing there are no unquenched two-flavor
data with mπ . 500 MeV. None of the recent simulations in Ref. [118] survives our cuts
in a, L and mπ, see Ref. [107]. A large span is still left between physical nucleon mass
and lattice results. Of course, it would be more reassuring to have a data sample with
good statistics and smaller pion masses because ChPT is thought to work for small u-
and d-quark masses, although a priori we do not know how small. Our work describes a
systematic way to explore whether some inconsistencies emerge by assuming that BChPT
makes contact with state-of-art full-QCD results. Future lattice simulations will allow
to test and strengthen our predictions in the region of smaller quark masses and will
provide the missing input for reliable extrapolations.

3.3.2 Numerical results without explicit ∆ (1232) degrees of freedom

The statistics of our data set forces us to constrain some low-energy parameters. We
have fixed g0

A = gphys
A = 1.267, f 0

π = fphys
π = 92.4 MeV and checked the sensitivity

of our results to such input values. The regularization scale λ has been chosen equal
to 1 GeV, without any loss of generality since we are dealing with scale-independent
relations. At order p3 we are then left with three parameters – M0, c1 and er1(1 GeV):
we have determined them by fitting to the selected lattice data. At fourth order we deal
with four parameters in the truncated expression, Eq. (3.29) – M0, c1 and the two linear
combinations er1(1 GeV)+3c2/(128π2f 2

π) and c2 +4c3. In the full formula, Eq.(3.27), the
renormalized coupling er2(1 GeV) enters in addition.

The results of our best-fit analysis are summarized in Table 3.2. All quoted errors are
of purely statistical origin and have been determined through the MINUIT package and
maximum likelihood method. In these fits we neglect the errors on mπ. If not explicitly
mentioned, the physical nucleon mass has been included as input to improve the statistics
without considering very large pion masses. Of course, it is not optimal to fit both to
the physical point and to two-flavor lattice data: the effects of quarks heavier then u
and d – encoded in the LECs – are different in the real and the lattice world. However,
the results obtained by fitting to three-flavor data by the MILC collaboration [101] are
statistically compatible with the outcome of our two-flavor numerical analysis [119].

We investigate whether it is possible to extract from the lattice some reliable estimate
of the LECs, by looking at the mq axis, not accessible to experiments. We look for good
interpolating functions from the chiral limit, across the physical point, up to lattice data.
We check the agreement of the output parameters with available information from low-
energy hadron phenomenology and determine whether the formula shows an acceptable
convergence pattern.

A naive, linear extrapolation in the quark mass turns out to be totally inappropriate.
Indeed the O(p2)-fit based on the leading pion-mass dependence of MN (Fit 0),

MN = M0 − 4 c1m
2
π , (3.48)

leads to a value of c1 which is about a factor 3 larger than in reality, see Sec.2.9. We
must use more sophisticated extrapolation functions.
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3.3 Numerical analysis and contact with lattice QCD

Table 3.2: Fit results for MN (mπ) in BChPT. The errors from the MINUIT package have
been rounded to the first significant digit.

M0 [GeV] c1 [GeV−1] er1(1 GeV) [GeV−3] χ2/d.o.f.

Fit 0 0.914 ± 0.001 −0.322 ± 0.006 - 1.52
Fit I 0.891 ± 0.004 −0.79 ± 0.05 0.9 ± 0.2 0.24
Fit Ia 0.891 ± 0.004 −0.80 ± 0.05 0.9 ± 0.2 0.24
Fit II 0.883 ± 0.003 −0.93 ± 0.04 0.7 ± 0.2 0.29
Fit IIa 0.872 ± 0.003 −1.11 ± 0.04 0.8 ± 0.2 0.39
Fit III 0.89 ± 0.06 −0.93 ± 0.05 0.7 ± 0.1 1.77
Fit IIIa 0.76 ± 0.06 −1.24 ± 0.05 0.4 ± 0.1 1.72

O(p3) analysis

Let us consider the O(p3) result, Eq.(3.21), with gA and fπ equal to their physical values
(Fit I). The corresponding best-fit curve is the solid line drawn in Fig.3.4. Remarkably,
the low-energy constants come out of natural size, a non-trivial result. Furthermore,
c1, which determines the slope of MN (m2

π) for small m2
π, has the correct sign and size

and the estimate of M0 is consistent with empirical information about the pion-nucleon
sigma term, see Sec.3.5 for a detailed discussion. The use of chiral limit values for gA
and fπ leads to statistically indistinguishable results, as we can see in Fit Ia where we
set g0

A = 1.2 (cf. Ref. [120] and Chapter 4) and fπ = 86.2 MeV (cf. Sec.2.7).

We can therefore conclude that a remarkably good interpolation between the relatively
large quark masses accessible in full-QCD simulations, and the small quark masses rele-
vant for comparison with the physical MN , can already be achieved by a leading-one-loop
calculation in BChPT with infrared regularization.

The counterterm at m4
π turns out to be numerically crucial to get a good interpolation.

This term, required for renormalization in our approach, is equivalent to that introduced
in Ref. [121], in the context of one-loop HBChPT. Evaluating the loop diagrams in Fig.3.1
with the help of a radial cutoff, the authors of Ref. [121] show that the term −4 e1m

4
πΨ̄Ψ

is necessary to reduce the sensitivity to momentum modes close to Λχ for pion masses
larger 400 MeV.

Fig.3.4 also shows how Fit I develops term by term when the NLO expression is
expanded around mπ = 0, Eq.(3.23). The leading-one-loop Heavy Baryon expression is
inadequate for pion masses larger than 300 MeV. Instead, truncating the expansion at
m5
π already provides a good approximation to the full O(p3) result. Higher powers in mπ

do not destroy this convergence pattern, for the whole range in mπ that we consider.

In our approach, all the terms beyond the leading c1-contribution in Eq.(3.23) are part
of the same chiral order p3. We count powers according to Eq.(2.69) while keeping the
full relativistic propagator. Compared to the HBChPT result, the infrared regularization
scheme resums a string of terms with increasing powers of mπ/M0, which are of higher
order in the non-relativistic framework. When higher-order counterterms are needed
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Figure 3.4: Solid line: O(p3) best-fit curve based on Eq.(3.21). Input: four lowest lattice
data points with mπ < 600 MeV and physical nucleon mass (Fit I). All data
points by CP-PACS, JLQCD, QCDSF-UKQCD collaborations in Table 3.1
are shown. The dot-dashed, dashed and long-dashed curves show, respecti-
vely, the contributions from the sum of the first three, four and five terms in
the expansion in powers of mπ of the O(p3) expression, Eq.(3.23).

for renormalization, we include them in the calculation. Fig.3.4 shows that the large
fluctuations in dimensionally regularized chiral extrapolation functions reported in Ref.
[122,123], arise from examining only the very first terms in Eq.(3.23), instead of keeping
the full O(p3) expression, Eq.(3.21).

O(p4) results

At next-to-leading one-loop order, Eq.(3.29), we fixed one of the four parameters using
input values for c2 and c3. We set c2 = 3.2 GeV−1 according to different low-energy pion-
nucleon scattering analyses, see Sec.2.9. The dimension-two LEC c3 is known with much
less accuracy than c2: in Fit II and Fit IIa we set c3 = −3.4 GeV−1 and c3 = −4.7 GeV−1,
respectively. The former choice is consistent with empirical peripheral NN phase shifts
[79]2 while the latter coincides with the central value obtained in Ref. [72], for πN
scattering inside the Mandelstam triangle (see Sec.2.9 for a detailed discussion). In this
section we will show that:

- our numerical analysis, both in the infinite and finite volume, supports small values
in magnitude for c3, about −3 GeV−1;

- the truncated expression in Eq.(3.29) represents a good approximation of the full
Eq.(3.27);

2See also Refs. [80, 81].
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3.3 Numerical analysis and contact with lattice QCD

- an amazing result can be obtained by fitting to the ten lattice data up to mπ ≈
800 MeV, without the physical point as input.

Remarkably, for c3 = −3.4 GeV−1, c1 turns out to be in agreement with Ref. [72]
and with the outcome of a (tree-level) analysis of low-energy πN scattering in SU(2)
Baryon ChPT with infrared regularization [70], the same framework we use. Applying the
Feynman-Hellmann theorem and the Gell-Mann – Oakes – Renner relation to Eq.(3.9),

σN = mq
∂MN

∂mq
≈ m2

π

∂MN

∂m2
π

, (3.49)

see Sec.3.5 for details. Combining this result with Eq.(3.29) and the outcome of Fit
II, we get σN = 49 ± 3 MeV. Fit IIa with c3 = −4.7 GeV−1, gives c1 ≈ −1.10 GeV−1

and σN = 57 ± 3 MeV. The correlation between larger magnitudes for c3 in input and
larger magnitudes for c1 and pion-nucleon σ-term is confirmed for other choices of c3. A
large theoretical uncertainty affects the empirical determination of σN and a relatively
broad range of values for c1 is consistent with πN scattering analyses: hence, in such
fits, there is agreement between output and phenomenology for the extended input range
c3 = −5.5 · · · − 3.4 GeV−1.

However, resonance exchange shows that c3 receives an important contribution from
the singularities generated by the ∆ (1232) [52, 73]. Consider an effective Lagrangian
with mesonic and baryonic resonances chirally coupled to nucleons and pions. One can
generate local pion-nucleon operators of higher dimension with given LECs by letting the
resonance masses become very large with fixed ratios of coupling constants to masses.
This procedure amounts to decoupling the resonance degrees of freedom from the effective
field theory. However the traces of these frozen particles are encoded in the numerical
values of certain LECs.

The physics underlying c3 can be sorted out as follows. Let us start from elastic πN
scattering at lowest order in the theory with explicit ∆ (1232) degrees of freedom: at tree

level we have to compute the direct and crossed ∆ (1232)-pole diagrams. L(1)
πN∆ provides

the relevant vertex. We then match the result in the non-relativistic limit with the
πN → πN graph from the second-order pion-nucleon Lagrangian L(2)

πN , which involves
the ci. Equating the P -wave isospin-even non-spin-flip terms and choosing the off-shell
parameter Z = −1/2, we obtain that c3 corresponds to

−4c2A
9

∆

∆2 − ω2
, (3.50)

where ω is the pion energy in the laboratory frame, cf. [86,124]. According to this result,
the ratio between the ∆ (1232) contributions to c3 in the chiral (static) limit and at
threshold, is about 3/4. What is relevant for our analysis is the value of c3 in the chiral
limit. For cA = 1.5 and ∆ = 293 MeV, the expression (3.50) gives c3 = −3.4 GeV−1 as
ω = 0, while c3 = −4.4 GeV−1 at threshold. The fact that ∆ ≈ 2mπ plays a crucial role
in the energy denominator.

We showed in Sec.2.9 that c3 ≈ −5 GeV−1 is compatible with the isospin-even pion-
nucleon scattering amplitude at threshold. If we multiply by the factor 3/4, c3 comes out
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Figure 3.5: Solid curve: O(p4) best fit based on Eq.(3.29), with c3 = −3.4 GeV−1 as input
(Fit II). Dashed curve: O(p3) result from Eq.(3.21), using as parameters the
central values of Fit II at the matching scale λ̄ = 1.175 GeV. Dotted curve:
O(p2) result.

in agreement with peripheral NN phase shift analyses. This is not surprising. Indeed,
the one-loop 2π-exchange diagrams with single ∆ (1232) excitation (planar and crossed
box graphs) give the dominant contribution to the isoscalar central component of the
on-shell nucleon-nucleon scattering amplitude. In the sum of those diagrams, the energy
dependence of the delta propagator disappears [125] and we would obtain the same result
using a NNππ-contact vertex with c3 = −4c2A/(9∆) – the ω → 0 limit of the expression
(3.50) from the spin-isospin averaged P -wave πN scattering volume.

Numerical analyses of present lattice data agree nicely with this picture of the physics
in c3. The input value c3 = −3.4 GeV−1 leads for example to a successful prediction of
finite size effects for MN [113]. The finite-volume dependence of MN can also be exploited
to gain statistics: we can indeed fit to an enlarged set of data using the O(p4) expression
in Ref. [113], which takes into account finite-size corrections. The parameters which enter
in such an analysis are the same as for our study in the infinite volume. Thanks to the
improved statistics, we can release c3. A fit to the lattice data in Refs. [111–113, 118]
with mπ < 650 MeV and L > 1 fm, gives c3 = −2.9 ± 0.6 GeV−1 and strongly rules out
values about −5 GeV−1 [107].

Furthermore, only for a c3 small in magnitude, the O(p4) correction to the O(p3) result
indicates a reasonable convergence pattern for relatively large quark masses. In Fig.3.5 we
demonstrate that, according the central values from Fit II, higher-order chiral corrections
are indeed acceptably small, even at pion masses well above the physical one. For Fit
IIa, these corrections are sensibly larger, as one can appreciate from Fig.3.6. In drawing
the curves for the O(p3) results in Figs.3.5 and 3.6, we used the estimate of er1(λ) in the
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Figure 3.6: The same as in Fig.3.5, but for Fit IIa, with c3 = −4.7 GeV−1 as input. Here
λ̄ = 1.042 GeV.

fit at order p4, which we consider our best description of MN(mπ). Since the running
of the effective coupling er1(λ) changes from O(p3) to O(p4), importing any information
about that from fourth to third order has to take place at a specific λ. We have chosen
this matching scale λ̄ as the scale for which the estimates of er1(λ̄) in the fits at order
p3 and p4 coincide. We get λ̄ = 1.175 GeV for c3 = −3.4 GeV−1 and λ̄ = 1.042 GeV for
c3 = −4.7 GeV−1.

We notice that the shape of our O(p4) best-fit curve is in good agreement up to
mπ ≈ 600 MeV with extrapolation curves that has been worked out in different theoreti-
cal frameworks [126]. In particular, we refer both to the studies of MN (mπ) in the chiral
quark soliton model [126] and to the approach of the Adelaide group, employing suitable
vertex form factors, which are referred to as “finite range regulators” and intended to
model effects of the pion cloud in the presence of a finite size of the nucleon [123].

Let us now concentrate on the full Eq.(3.27), where the term −e2 m6
πΨ̄Ψ has been

included for renormalization. Using the central values from Fit II, we are left with one
free parameter, er2(1 GeV). Fitting to the four lattice data up to 600 MeV in mπ, we
obtain er2(1 GeV) = 0.090± 0.003 GeV−5, with χ2/d.o.f. = 0.12. The trend of the lattice
data is nicely reproduced, even for pion masses larger than 600 MeV. The function is
sensitive to the precise value of er2(1 GeV): if we set it equal to zero, the resulting curve
is not compatible with lattice data. Unfortunately, there is no available information on
this O(p6) effective coupling from low-energy hadron phenomenology. However, in view
of the small size of our estimate of e2, we can argue that the truncation at m5

π of the full
O(p4) expression looks quite natural and reliable in the range of pion masses of interest
here. In order to make firmer statements, a better statistics together with an accurate
determinations of the relevant dimension-two and -three LECs are mandatory.
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Figure 3.7: Chiral extrapolation according to the O(p4) formula (3.29). All the points
up to 800 MeV in pion mass are included in input, except the physical one.
Here we show the best fit curve with three free parameters corresponding to
the choice c3 = −3.4 GeV−1 (Fit III).

From the numerical point of view, it is sufficient to truncate at m4
π, i.e. to use the

HBChPT result at order p4. The fits indeed yield results that are statistically compatible
with Fit II and Fit IIa, for different c3 as input, cf. Ref. [121].

We performed also extrapolations for the ten lattice data up to mπ ≈ 800 MeV, with-
out the physical point as input. The outcome is amazing (Fits III and IIIa, for different
c3, as before). In particular, for the choice c3 = −3.4 GeV−1 we get the best-fit curve
shown in Fig.3.7. The O(p4) Eq.(3.29) seems to work astonishingly well also for pion
masses up to 800 MeV. This remarkable result deserves a thorough statistical analysis.

3.3.3 Statistical analysis

We have obtained an excellent description of the mπ-dependence of MN shown by fully
dynamical lattice simulations (at least) up to 600 MeV in pion mass. Successful inter-
polations between lattice data and physical point have been achieved: the low-energy
parameters in output nicely agree with phenomenology and the comparison of different
orders exhibits a convergent pattern. We now try to answer the following questions in
order to examine the reliability and the efficiency of our approach [107,119]:

- What is the region in the parameter space where we expect to find the “true” value
for the parameter set at some confidence level?

- Our functions are evaluated at a specific order in BChPT. What is the convergence
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Figure 3.8: Error bands corresponding to the joint 68 and 95% confidence regions for the
free parameters in Fit II. We fit to physical point and lattice data only up to
600 MeV in mπ: the light grey points have not been used for our statistical
considerations [119].

radius of the perturbative expansion forMN (mπ)? How large is the error associated
to the omission of higher order effects?

The first problem concerns the statistical errors associated with the uncertainties in in-
put parameters and lattice data. The second point raises the issue of the “theoretical”,
systematic error attached to a (chiral) perturbative approach for a certain range of mπ.

We have addressed the first question for Fit II at order p4. Through a Monte Carlo
routine we have explored the joint 68% and 95% confidence regions for the free parameters
M0, c1 and er1(1 GeV); g0

A and f 0
π are given as input. The resulting error bands, shown

in Fig.3.8, refer to the case g0
A = gphys

A = 1.267, f 0
π = fphys

π = 92.4 MeV and c3 =
−3.4 GeV−1. The errors on mπ have been taken into account. The inclusion of the
physical point is crucial to shrink the band below 300 MeV in mπ. The (surprising)
agreement between best-fit curve and lattice data up to mπ ≈ 750 MeV, visible already
at O(p3) (Fig.3.4), should be taken with the necessary caveat. Indeed, we loose predictive
power about the shape of the curve for mπ > 600 MeV: the input (in the form of lattice
data and parameters), even though suitably “squeezed”, constrains weakly the shape of
the interpolating functions at very large pion masses.

In a second step we have studied how the 68% error bands change if we vary in input
g0
A and f 0

π . We scanned the ranges 1.1 . . . 1.3 for g0
A (see [120] and Chapter 4) and
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86.2 . . . 92.4 MeV for f 0
π , according to uniform probability distributions. No change in

the error bands is visible up to mπ = 600 MeV [107,119].
Our fit strategy does not allow to perform a chiral extrapolation of present lattice data

with small uncertainties. The region spanned by the statistical bands grows dramatically
for mπ < 350 MeV if the physical point is not included. However, an advantage of chiral
effective field theories over “naive” polynomial fits is its ability to produce expressions
for different observables involving a common subset of LECs. By fitting to data for se-
veral observables one can get redundancy for the unknown parameters. In order to gain
statistics, one can make use of lattice features that can be encoded in a chiral effective
field theory framework, like finite size effects and dependence on the lattice spacing. A
posteriori, one should analyze convergence and check agreement with phenomenological
information about the parameters. Our work is a first step in this direction: we resort
to low-energy hadron phenomenology and investigate whether, within errors and up to
mπ ≈ 600 MeV, lattice data are compatible with one-loop BChPT.

Let us now come to the second question formulated at the beginning of this section.
The best (systematic) way to evaluate the impact of higher-order effects is, of course, to
work out the O(p5) calculation – which involves also two-loop graphs – and repeat the
procedure described in the previous sections. However, due to the increasing number of
parameters not fixed by chiral symmetry, at O(p5) there is no hope to extract quantitative,
stringent results from the presently available data sample.

A simple way of reducing the weight of the operators of higher dimension is to include
the ∆ (1232) as an explicit degree of freedom.

As already pointed out, the running of gA and fπ with the pion mass starts contributing
at fifth order: the difference between results using either g0

A, f 0
π or gA(mπ), fπ(mπ), is a

measure of the importance of higher-order effects. It would be therefore interesting to
have under control the quark mass dependence for gA and fπ for relatively large quark
masses. While this is the case for the former (see Chapter 4), present knowledge of the
latter is not completely satisfactory (see Sec.2.7). In Eq.(3.29), we have replaced g0

A

with our successful extrapolation function for gA(mπ): the O(ǫ3) non-relativistic SSE
expression in Ref. [120]. We checked that the running of gA can be fairly attributed to
higher orders. This is not surprising: the pion mass dependence of gA on the lattice is
quite flat and the height of the typical data plateau is close the physical value gA = 1.267,
see Chapter 4. We already know, however, that varying g0

A in input between 1.1 and 1.3
does not affect the shape of the best-fit curve at order p4. Still, one should keep in mind
that this is not a systematic way to analyze the impact of higher-order effects since we
do not take into account other contributions that belong to the same order.

3.3.4 Including explicit ∆ (1232) degrees of freedom

Following the strategy outlined in Sec.3.3.2, we have analyzed the O(ǫ3) expressions for
MN(mπ) worked out in Sec.3.2.3: the non-relativistic formula in Eq.(3.41), the O(1/M0)-
truncated Eq.(3.44) and the “full” relativistic expression.

We have treated the nucleon-axial-delta coupling cA and ∆ = M0
∆−M0 as input values.
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Figure 3.9: Best-fit curves based on the formula at order ǫ3 in manifestly covariant SSE,
with cA = 1.5 as input parameter [107]. For comparison, we plot also the
O(p4) 68% error band of Fig.3.8, where the ∆ (1232) is not an explicit degree
of freedom.

For cA, we have used phenomenological estimates at the physical value of mπ, since
nothing is known about the quark mass dependence of this coupling. We have performed
fits both with cA = 1.5 and cA = 1.125, the values extracted from the strong decay
width of the ∆ (1232) in the relativistic and non-relativistic framework, respectively, see
Sec.2.10.2. We identify the parameter ∆ with the physical delta-nucleon mass splitting
and fit setting ∆ = 271.1 and 293 MeV, see Sec.2.10.2. The former value corresponds
to the real part of the ∆ (1232) pole in the complex W -plane, the latter to the 900 πN
phase-shift in the spin-3/2 isospin-3/2 channel, see Sec.2.10.2.

We fix the regularization scale λ = 1 GeV. Both Eqs.(3.41) and (3.44) are scale
independent.

The O(ǫ3) non-relativistic SSE result – without an additional “improvement term” at
m4
π [110] – cannot provide a satisfactory interpolation between lattice data and physical

point. Compared to O(p3) HBChPT, the inclusion of explicit ∆ (1232) in the non-
relativistic framework does not improve the situation.

Fit delta I in Table 3.3 refers to Eq.(3.44), with cA = 1.5, ∆ = 271.1 MeV, gA = 1.267
and fπ = 92.4 MeV. We fit to the four data with mπ < 600 MeV including the physical
point, see Fig.3.9. Nothing is known about the linear combination of couplings ẽr1(1 GeV)
from low-energy hadron phenomenology. The input parameters cA and ∆ together with
ẽr1(1 GeV) govern the behaviour of the curve in the region where the lattice data are.
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Table 3.3: Fit results for MN(mπ) at leading-one-loop order, including explicit ∆ (1232)
degrees of freedom. Here λ = 1 GeV.

M0 [GeV] c1 [GeV−1] ẽr1/ ė
r
1(1 GeV) [GeV−3] χ2/d.o.f.

Fit delta I 0.894 ± 0.004 −0.76 ± 0.05 4.5 ± 0.1 0.19
Fit delta II 0.873 ± 0.004 −1.08 ± 0.05 2.8 ± 0.2 0.43
Fit delta IIa 0.881 ± 0.004 −0.95 ± 0.06 2.0 ± 0.2 0.34

As discussed in Sec.3.2.3, in the “full” relativistic formula the decoupling of the delta
is implemented only up to and including m3

π in the chiral expansion and, at m6
π and

m8
π, there is a residual scale dependence due to missing counterterms. We fit with three

free parameters: M0, c1 and the effective coupling ėr1(1 GeV), which appears in the
counterterm −4ė1m

4
πΨ̄Ψ in Eq.(3.34). In Fit delta II we fix cA = 1.5, ∆ = 271.1 MeV,

g0
A = 1.267 and f 0

π = 92.4 MeV, see Table 3.3 and Fig.3.9. For Fit delta IIa, cA = 1.125.
The LEC c1 comes out larger in magnitude than in Fit delta I, and correspondingly
σN = 57±4 MeV since the pion-nucleon sigma-term is basically driven by c1, see Sec.3.5.
However, both of them are still compatible with present knowledge from low-energy
hadron phenomenology (see Sec.2.9 and Sec.3.5). If we vary the regularization scale
within a broad range around 1 GeV and keep equal to zero the finite parts of higher-
order counterterms at the scale at which we are working, the output parameters M0

and c1 are pretty stable (within error bars). The residual scale dependence is basically
absorbed by ėr1(λ). Our analysis shows that the differences in the outcome between Fit
delta I and Fit delta II can be fairly attributed to higher order effects.

In Fig.3.9 we plot the curves corresponding to Fit delta I and Fit delta II, together
with 68% error band in Fig.3.8. At that confidence level, BChPT O(p4) and O(ǫ3) SSE
are compatible, for the whole range of pion masses under study: treating the ∆ (1232)
as a propagating field is not essential for a satisfactory description of the quark mass
dependence of the nucleon mass. An equally successful interpolating function can be
obtained by “freezing” the delta effects into LECs. In other words, for the nucleon mass,
the graphs describing the exchange of a ∆ (1232) are adequately represented by those
terms of the chiral expansion that occur up to and including O(p4). These conclusions
hold for any choice of the input parameters, within phenomenologically motivated ranges
for them.

3.4 Conclusions after the numerical analysis

The results of our study can be stated as follows:

- There exists a range of overlap in mq accessible both to one-loop baryon ChPT
and present full-QCD lattice calculations. Interpolations between this range and
the physical region of small mq are feasible.
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3.5 The pion-nucleon sigma term

- The parameters resulting from the interpolation are consistent with the constraints
imposed by low-energy hadron phenomenology.

- There is a decreasing hierarchy among contributions of increasing orders.

- For a correct description of the quark mass dependence of the nucleon mass, it is not
essential that the ∆ (1232) is incorporated as a dynamical field in the effective La-
grangian. Its contribution is effectively accounted for through low-energy couplings.

3.5 The pion-nucleon sigma term

As already mentioned in Sec.3.1, the pion-nucleon sigma term σN is defined as the nucleon
scalar form factor σN(t) at zero momentum transfer,

σN ≡ σN(0) = 〈Ns(~p ) |muūu+mdd̄d|Ns(~p )〉 . (3.51)

If the nucleon (eigen)states have a continuous dependence on the parameter mq = mu,d,
then the Feynman-Hellmann theorem leads to

σN = mq
∂MN

∂mq

(3.52)

where we have neglected isospin breaking effects setting mu = md = mq. Hence σN is
a measure of the strength of the light quark scalar density in the nucleon and it is the
response of the nucleon mass to a variation in the light quark masses which are related
to the explicit chiral symmetry breaking in QCD. Making use of the Gell-Mann – Oakes
– Renner relation (2.50), we obtain,

σN = m2
π

∂MN

∂m2
π

. (3.53)

Applying Eq.(3.53) to the O(p3) expression for MN in Eq.(3.23) yields

σN = − 4c1m
2
π −

9g0
A

2

64πf 0
π

2 m
3
π + 2er1(λ)m4

π −
3g0

A
2

64π2f 0
π

2M0

(

3 + 4 ln
mπ

λ

)

m4
π

+
15g0

A
2

512πf 0
π

2M2
0

m5
π + O(m6

π) . (3.54)
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Chapter 3 Quark mass dependence of the nucleon mass

The next-to-next-to-leading-order result derives from Eq.(3.29) 3:

σN = −4c1m
2
π −

9g0
A

2

64πf 0
π

2 m
3
π

+

[

2er1(λ) − 1

16π2f 0
π

2

(

9g2
A

4M0
− 6c1 + 3c3

)

− 3

16π2f 0
π

2

(

g0
A

2

M0
− 8c1 + c2 + 4c3

)

ln
mπ

λ

]

m4
π

+
15g0

A
2

512πf 0
π

2M2
0

m5
π + O(m6

π) . (3.55)

In Table 3.4 we collect values for σN (mphys
π ) from fits to MN(mπ). The contribution

from the term proportional to m5
π in Eqs.(3.54, 3.55) amounts to about 0.1 MeV. All

our estimates lie within the most widely accepted range for the empirical σN , as we now
going to discuss.

Table 3.4: πN sigma-terms deduced from Fits to MN(mπ), see Tables 3.2-3.3.

σN [MeV]

Fit I 43 ± 4
Fit II 49 ± 3
Fit IIa 58 ± 3

Fit delta I 39 ± 4
Fit delta II 57 ± 4

To relate the pion-nucleon sigma-term to phenomenology, consider the standard repre-
sentation for the πN amplitude:

TπN = ū(p′) [A(ν, t) +
1

2
γµ(q + q ′)µB(ν, t)] u(p) , (3.56)

where qµ and q′µ are the four-momenta of the incoming and outgoing pion, respectively.
The crossing variable ν is given by

ν =
s− u

4MN

(3.57)

in terms of the Mandelstam variables s and u, see Sec.2.9. The amplitude D is defined
as

D(ν, t) = A(ν, t) + νB(ν, t) . (3.58)

The isoscalar (+) and the isovector (−) combinations D± are related to the amplitudes
in the physical channels,

D± =
1

2
(Dπ− p ±Dπ+ p) . (3.59)

3For an analogous calculation in SU(3) Heavy-Baryon ChPT see Ref. [136].
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3.5 The pion-nucleon sigma term

Chiral symmetry connects the nucleon scalar form factor to the isoscalar πN scattering
amplitude D̄+(ν, t) at the Cheng-Dashen point, ν = 0 and t = 2m2

π [127]. The bar over
D+ indicates that the pseudovector Born term has been subtracted. In particular, we
have

Σ ≡ f 2
π D̄

+(ν = 0, t = 2m2
π) = σN (0) + ∆σ + ∆R . (3.60)

Here ∆R is the so-called remainder term. An O(p4) HBChPT calculation, with pertinent
LECs saturated via resonance exhange, yields the upper limit ∆R ≈ 2 MeV [128]. ∆σ is
the shift of the nucleon scalar form factor from t = 2m2

π to t = 0,

∆σ = σ(2m2
π) − σ(0) . (3.61)

Its value, about 15 MeV, has been extracted from a ππ and πN dispersion relation
analysis [129] and confirmed by a calculation in SU(2) BChPT with infrared regulariza-
tion [57].

The Cheng-Dashen point lies outside the physical πN scattering region: the experi-
mental D̄+ amplitude must be extrapolated to obtain Σ. The most reliable estimates
are based on dispersion relation analyses of the scattering amplitudes. The result in
Ref. [130], Σ = 64 ± 8 MeV, has been obtained using hyperbolic dispersion relations; in
Ref. [131], from the subthreshold expansion of D̄+, Σ ≃ 60 MeV.

Using as input Σ = 64 ± 8 MeV Gasser, Leutwyler and Sainio, according to their
estimate of ∆σ, obtained σN = 45 ± 8 MeV [63]. In Fig.3.10 we plot the behaviour of
the sigma term as a function of the pion mass in SU(2) BChPT, as it comes out from
the expression of the pion mass dependence of the nucleon mass at order p4, Eq.(3.29),
and from Fit IIa. Within errors, this curve is perfectly compatible with the empirical
value of the pion-nucleon sigma-term in Ref. [63]. This is a non-trivial fact since no
such constraint has been built into the procedure. Our result is also consistent with the
broad range for σN quoted in Ref. [123]: by fitting finite-range regulated expressions for
MN (mπ) to CP-PACS lattice data [111] up to 1 GeV in mπ, the Adelaide group gets
σN = 35 − 73 MeV, depending on the choice of the regulator.

The SESAM collaboration tried to determine σN directly on the lattice, by evaluating
〈N |ūu + d̄d|N〉. They performed a two-flavor full-QCD calculation of this matrix ele-
ment, reconstructed the scale invariant quantity mq 〈N |ūu + d̄d|N〉 and extrapolated
from the simulated large quark mass to the physical one, without resorting to any for-
mula motivated by ChPT [132]. They obtained σN = 18± 5 MeV. This result illustrates
how difficult this procedure is. Our approach in extracting a value for σN from the
lattice is indirect, but has the important advantage that one only needs to work with
renormalization-group invariant quantities.

Coming back to phenomenology, we point out that the estimates of Σ quoted above
refer to the KH80 solution of the relevant dispersion relations by the Karlsruhe group
[133]. The VPI/GWU group has recently published the outcome of a partial wave analysis
[64] which indicates that Σ could be 20-30% larger than the numbers reported above [134]:
these results are currently under debate and the issue about Σ is still open. On-going
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Figure 3.10: The pion-nucleon sigma-term at chiral order p4 as a function of m2
π from

Eq.(3.55), using as input the central values from Fit II, see Table 3.2. The
small mπ region is magnified in the right panel and plotted together with
the empirical value σN = 45 ± 8 MeV of Ref. [63].

novel analysis of meson-factory data should help in fixing the value of this quantity more
accurately [131].

A pion-nucleon sigma-term of 60 MeV or more is disfavored by our analysis and gives
puzzingly large values for the strangeness fraction y. The parameter y is defined by

σN =
〈N |mq (ūu+ d̄d− 2s̄s)|N〉

1 − y
(3.62)

from which

y =
2 〈N |s̄s|N〉

〈N |ūu+ d̄d|N〉 . (3.63)

The Okubo–Zweig–Iizuka (OZI) rule and any naive quark model picture of the nucleon
would imply y = 0. This parameter is a measure of the (scalar) strange quark content
of the nucleon. Under the assumption that SU(3) symmetry breaking is small, ChPT
determines the combination (1 − y) σN . At first order,

(1 − y) σN =
mq

ms −mq
(MΞ +MΣ − 2MN ) . (3.64)

Including one-loop corrections in SU(3) HBChPT [135, 136], together with σN = (45 ±
8) MeV, one gets y ≈ 0.2±0.2. This result is affected by large uncertainties and has to be
interpreted as a qualitative result: it can indicate a non-vanishing admixture of strange
quark pairs in the nucleon wave-function but it is also compatible with zero. In order to
shed light on this issue, an analysis of lattice data with three active flavors seems to be
mandatory. In particular, from the quark mass expansion of the nucleon mass, one gets
the expression

y = 2
∂MN

∂ms

(

∂MN

∂mq

)−1

(3.65)

which allows for a direct determination of y from MN = MN(mu, md, ms).
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3.5 The pion-nucleon sigma term

Strictly speaking there is no reason a priori for the matrix element 〈N |s̄s|N〉 to be
small, apart from the OZI rule. In spite of a large “strangeness content” y (somehow a
misleading term), the total contribution of the strange to the nucleon mass can be small.
In Ref. [137] Ji evaluated 〈N |mss̄s|N〉 adopting two approaches. Treating the strange
quark mass as small with respect to QCD scale and using ChPT to calculate SU(3)
symmetry breaking effects, he got about 115 MeV for the matrix element of interest.
Considering instead the strange quark as heavy on the QCD scale and using heavy-quark
expansion, Ji found a value about 62 MeV. These numbers do not take into account
higher-order perturbative effects and errors on the sigma term and the current quark
masses. However, the total effect of such errors is quantified as about 5 to 10 MeV [137].
Ji argues that the total strange contribution to the nucleon mass is quite small, between
−45 and −30 MeV. This result has been obtained by summing up the contribution of
the strange quark to the trace anomaly term, the contributions to the mass term and to
the quark and antiquark kinetic and potential energies. The smallness of the result is, to
a large extent, insensitive to the precise value of the matrix element 〈N |mss̄s|N〉 [137].
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Chapter 4

Quark mass dependence of gA

In this chapter we investigate the quark mass dependence of the nucleon axial-vector cou-
pling constant both in SU(2) Baryon ChPT (BChPT) and in the Small Scale Expansion
(SSE), at one-loop order.

Historically, attempts to obtain a chiral extrapolation function for gA based on the
leading-non-analytic (LNA) term in the quark-mass expansion in combination with a
phenomenological (quark-mass dependent) regularization procedure did not yield sa-
tisfactory results, displaying axial couplings less than unity at the physical point [138].
We will show that the LNA quark-mass behavior dominates only for quark masses which
are extremely close to the chiral limit of the theory. Such a feature has also been
observed in the quark-mass expansion of the anomalous magnetic moment of the nu-
cleon [139]. More recently, Detmold et al. [140], in their analysis of moments of polarized
deep inelastic scattering structure functions, found an improved extrapolation formula
for gA(mπ) using a chiral quark model which also allows for contributions from inter-
mediate ∆ (1232) states [141]. However, the resulting extrapolation function – which
has most of the ∆ (1232) related couplings fixed from SU(4) spin-flavor symmetry – still
does not provide an enhancement of gA(mπ) near the physical point, which would at the
same time connect lattice results with the real world. In our analysis we specify a power
counting scheme plus a certain order in that scheme and then systematically evaluate all
(short- and long-distance) contributions to that order. We then apply those results to
chiral extrapolations of present lattice data.

4.1 gA in QCD and in ChEFT

Let us consider the on-shell nucleon matrix element of an isovector axial-vector field
Aiµ(x). Lorentz invariance and parity conservation require this matrix element to take
the form

〈N(p2)|Aiµ(0)|N(p1)〉 = ū(p2)

[

GA(Q2)γµγ5 +
GP (Q2)

2MN
qµγ5 + i

GT (Q2)

2MN
σµνγ5q

ν

]

u(p1) η
† τ

i

2
η

where u(p) is the nucleon Dirac spinor and η is a unit (two-component) isospinor. The
momentum transfer is q ≡ p2 − p1 and Q2 ≡ −q2. The form factors GA(Q2), GP (Q2)
and GT (Q2) reflect the structure of the nucleon as seen by a probing external axial field.
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Chapter 4 Quark mass dependence of gA

According to time reversal invariance the phases are chosen so that each form factor is a
real function of Q2. The nucleon mass MN is introduced for dimensional convenience.

Consider the specific case of the isovector axial-vector current

Aiµ = ψ̄qγµγ5
τ i

2
ψq (4.1)

where ψq is the (u, d)T quark isospin doublet. This operator enters into strangeness
conserving semileptonic weak interactions like nuclear β-decay 14O → 14N∗ + e+ + νe,
muon capture µ−+p→ νµ+n, neutrino scattering ν̄µ+p→ µ++n. The charge changing
currents Aµ± = Aµ1 ± iAµ2 have charge conjugation properties that make the coefficient GT

of the axial tensor term vanishing. Such term would violate G-parity invariance, but the
existence of second-class currents [142] is experimentally excluded to high precision [143].
gA is defined as the limit for vanishing momentum transfer of the nucleon axial form

factor GA(Q2). The most suitable process to determine the empirical value of gA is the
β-decay since the momentum transfer in this reaction is so small that in the nucleon
matrix element of the axial current only the axial-vector piece contributes. The neutron-
to-proton matrix element of the charged hadronic weak current in the zero-momentum
transfer limit is

cos θC 〈p|V µ
+ (0) − Aµ+(0)|n〉 = ūp(gV γ

µ − gAγ
µγ5)un , (4.2)

where θC is the Cabibbo angle. The vector part of the hadronic weak current belongs to
a triplet of conserved currents V µ

1,2,3 associated with the isospin symmetry of the strong
interactions (Conserved Vector Current (CVC) hypothesis [144]). If isospin is an exact

symmetry, then gV = 1 in units of cos θC . Moreover, according to CVC, gV is equal (in
units of e and cos θC) to the isovector combination of proton and neutron Dirac form
factors. While any deviation of gV from unity is a signal of breakdown of the CVC
hypothesis, gA is not related to any manifestly conserved charge and in general deviates
from 1 because of spontaneous and explicit chiral symmetry breaking, as we will show in
Sec.4.4.3. The most accurate determination of the ratio gA/gV from β-decay gives [13]

gA/gV = 1.2695 ± 0.0029 . (4.3)

gA is called the axial-vector coupling constant of the nucleon due to the form of the
first order πN effective Lagrangian, see Eq.(2.64). In ChEFT gA is calculated from the
response of the nucleon to the presence of an external axial field 1. As we will show in
the next section, the leading term in the quark-mass expansion of the nucleon axial form
factor for vanishing momentum transfer is precisely the coupling g0

A appearing in L(1)
πN .

gA is also related to the nucleon spin structure function gp,n1 (x,Q2) defined in deep
inelastic lepton scattering processes where both beam and target are polarized. The

1Cf. for example the pioneering works [47, 145].
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4.2 Analytic results in BChPT

structure functions measured in deep inelastic scattering are related to the nucleon matrix
element of the correlation function of two currents

Tµν = i

�
d4z 〈N(P ′)|T{Jµ(z) Jν(0)}|N(P )〉 . (4.4)

Using the Operator Product Expansion we can express the nonlocal product of currents
as a series of local operators and relate moments of structure functions to matrix elements
of certain operators in a twist expansion. For the polarized structure function g1(x,Q

2)
we are dealing with local twist-2 operators

O5,σµ1...µn =

(

i

2

)n

ψγ{σγ5Dµ1 . . .Dµn}ψ − traces (4.5)

where all the indices are symmetrized. The expression is made traceless on all pairs
of indices by subtracting contractions with the metric tensor gµiµj . Lorentz invariance
requires

〈N(~p, s)|O5,σµ1...µn |N(~p, s)〉 =
2

n + 1
an(s

σpµ1 . . . p
µ
n − traces) (4.6)

where sσ is the covariant spin vector.
The n-th moment of the structure function g1(x,Q

2) is then related both to the
nucleon matrix element of the leading twist operator and to the Wilson coefficients
EMS(Q2/µ2, gMS(µ)) which can be evaluated using perturbative QCD:

2

� 1

0

dx xngp−n1 (x,Q2) =
∑

f

E
(f) MS
g1;n

(

Q2

µ2
, gMS(µ)

)

a(f) MS
n (µ) + O

(

1

Q2

)

. (4.7)

Here we consider the flavor f = u, d and non-singlet or “p−n” matrix elements. The an
have an interpretation in the parton model. For n = 0 the structure of the operator in
Eq.(4.5) is the same as in Eq.(4.1). gA is therefore related to the zeroth-order moment of
gp−n1 (x,Q2), cf. the Bjorken sum rule [146]. In the parton model language gA amounts
to the difference between the “spin fractions” carried by quark u and quark d,

gA = ∆u− ∆d (4.8)

where

∆q =

� 1

0

dx [q↑(x, µ) − q↓(x, µ) + q̄↑(x, µ) − q̄↓(x, µ)] . (4.9)

∆q is µ-independent according to the DGLAP [147–149] equation, cf. for example Ref.
[150].

4.2 Analytic results in BChPT

In order to work out the vertices relevant for our calculation, in the effective Lagrangian
we have to look at the term linear in the external axial field aµ(x): this a hermitian
color-neutral 2 × 2 matrix in flavor space, which can be written as

aµ(x) = aiµ(x)
τ i

2
(4.10)

89



Chapter 4 Quark mass dependence of gA

��N

π

�N

π

�N

π

N �
π

(1) (2) (3) (4) (5)

Figure 4.1: Diagrams contributing to the quark mass dependence of gA up to order p3.
The wiggly line denotes an external isovector axial-vector field, interacting
with a nucleon (solid line). In the loop graphs all the vertices belong to

the leading πN Lagrangian L(1)
πN . Wave-function renormalization effects are

shown in Fig.4.2. Graph (1) encodes contributions from the counterterms.

��
Figure 4.2: Nucleon field renormalization contributions at order p3. All the vertices ap-

pear in L(1)
πN .

where τ i denote the Pauli matrices acting on the isospin indices.
The leading-one-loop contribution to gA is represented by the graphs in Fig.4.1. In

order to simplify the calculation, we have made use of the gauge condition aµq
µ = 0,

without any loss of generality. The detailed form of the relevant amplitudes can be found
in Appendix D.

At order p3, nucleon field renormalization contributes in the way shown in Fig.4.2. At
this level of accuracy

Σ(p/ = MN ) ≈ Σ(p/ = M0) , (4.11)

which implies

ZN ≈ 1 +
∂Σa

∂p/

∣

∣

∣

∣

p/=M0

. (4.12)

Here Σa is the nucleon self-energy at order p3, according to the notation in Sec.3.2.1.
Using Eq.(3.20) and infrared regularization, we obtain

ZN = 1 − 1

32π2f 2
πM

3
0

√

4 −m2
π/M

2
0

{

3g0
A

2
m2
π

[

(2m3
π − 6M2

0mπ) arccos

(

− mπ

2M0

)

+M0

√

4 − m2
π

M2
0

(

48L(λ)π2M2
0 +M2

0 + (3M2
0 − 2m2

π) ln
mπ

λ
− 32L(λ)m2

ππ
2
)

]}

− 8B20m
2
π + 32F2m

4
π , (4.13)

where L(λ) subsumes any ultraviolet divergence for d → 4, Eq.(C.2). F2 denotes a
fifth-order counterterm needed to absorb the divergence proportional to m4

π. Expanding
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around the chiral limit we have

ZN = 1 +

(

−9g0
A

2
L(λ)

2f 2
π

− 9g0
A

2

32π2f 2
π

ln
mπ

λ
− 3g0

A
2

32π2f 2
π

)

m2
π − 8B20m

2
π +

9g0
A

2
m3
π

64f 2
πM0π

+
3g0

A
2

64f 2
πM

2
0π

2
(64π2L(λ) + 3 + 4 ln

mπ

λ
)m4

π + 32F2m
4
π + O(m5

π) , (4.14)

which up to and including the m3
π term coincides with the result in the Heavy Baryon

formalism [151]. For a detailed discussion on ZN in the non-relativistic framework we
refer to [152].

Projecting out the contributions to gA from the leading-one-loop amplitudes in Fig.4.1,
we obtain the following expression in terms of the basic integrals IN and ∆π in Appendix
C:

gA = g0
A ZN + ∆π

(

g0
A

3

4f 2
π

− g0
A

f 2
π

)

+
g0
A

3
m2
π

32f 2
ππ

2
+ 4B9m

2
π +

(

g0
A

3

4f 2
π

− 2g0
A

f 2
π

)

m2
π IN

− g0
A

3
m4
π

64π2f 2
πM

2
0

+
g0
A

3
m4
π

8f 2
πM0

∂

∂M0

IN(p2)

∣

∣

∣

∣

p2=M0

+ 32F1m
4
π . (4.15)

B9 is the third-order counterterm defined in Eq.(2.92) and F1 takes care of a divergence
at m4

π.

Substituting ZN appearing in Eq.(4.15) with Eq.(4.13), our result at order p3 is

gA =
1

16π2f 2
πM

3
0

√

4 −m2
π/M

2
0

{

g0
Am

3
π(8(g0

A
2
+ 1)M2

0 − (3g0
A

2
+ 2)m2

π) arccos

(

− mπ

2M0

)

−M0

√

4 − m2
π

M2
0

[

M2
0m

2
πg

0
A

3
+ (m4

π − 16f 2
πM

2
0π

2)g0
A

+g0
A((4g0

A
2
+ 2)M2

0 − (3g0
A

2
+ 2)m2

π)m
2
π ln

mπ

λ
− 64Cr(λ)f 2

πM
2
0m

2
ππ

2
]}

+ 32F r(λ)m4
π . (4.16)

Cr(λ) ≡ Br
9(λ)−2g0

AB
r
20(λ) and F r(λ) = F r

1 (λ)+F r
2 (λ) are the renormalized, regulariza-

tion scale λ dependent parts of the corresponding couplings. They encode short-distance
dynamics effects and scale in such a way that the right-hand side of Eq.(4.16) is scale
independent:

Cr(λ) = B9 − 2g0
AB20 −

L(λ)

f 2
π

(

1

2
g0
A + g0

A
3
)

(4.17)

F r(λ) = F +
L(λ)

32f 2
πM

2
0

g0
A(2 + 3g0

A
2
) . (4.18)
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Figure 4.3: One-particle-irreducible fourth order diagrams contributing to gA at the next-
to-leading one-loop level. The triangle denotes a vertex appearing in L(2)

πN .

B20 absorbs the divergence proportional tom2
π in the nucleon Z-factor. The corresponding

term in the third-order Lagrangian can be eliminated through a field redefinition. There-
fore the finite part of this coupling cannot be observed independently (of Br

9(λ) in our
case).

The factor 32 in the fifth-order counterterm emphasizes that F is the LEC to which
one should apply “naive” dimensional arguments, cf. [28] and Sec.2.5. The effective πN
Lagrangian at order p5 can indeed contribute via

L(5)
N = f Ψ̄[Tr(χ+)]2 u/γ5Ψ + · · · ≈ 32fm4

π Ψ̄
τ i

2
aiµγµγ5Ψ + . . . (4.19)

for which we expect f = O(1/Λ4
χ).

Expanding Eq.(4.16) around mπ = 0 we obtain

gA = g0
A +

[

4C(λ) − g0
A

3

16π2f 2
π

− g0
A + 2g0

A
3

8π2f 2
π

ln
mπ

λ

]

m2
π +

g0
A + g0

A
3

8πf 2
πM0

m3
π

+

[

32F (λ) +
g0
A + 2g0

A
3

16π2f 2
πM

2
0

+
g0
A(2 + 3g0

A
2
)

16π2f 2
πM

2
0

ln
mπ

λ

]

m4
π + O(m5

π) . (4.20)

The sum of the first two terms in this expansion coincides with the leading-one-loop
expression for gA in HBChPT, as expected in BChPT with infrared regularization. The
relativistic calculation gives a full tower of “recoil corrections” in the form of increasing
powers of 1/M0. We will test their numerical impact at the relatively large pion masses
that can be presently handled in lattice QCD calculations. These recoil corrections are
naturally part of the same chiral order p3, but the terms starting with m3

π can be modified
by higher orders, as we will show explicitly at O(p4).

We include the counterterm 32F m4
π in the third-order calculation in order to achieve

renormalization without truncating the recoil corrections. Since contact terms up to and

including O(p3) cannot absorb higher-order divergences at m4
π, their β-functions cannot

compensate for scale dependence which is suppressed by two powers of 1/M0. By intro-
ducing the counterterm 32F m4

π, we remove this unphysical scale dependence.
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Figure 4.4: c1-insertion in a nucleon line. The diamond corresponds to the vertex i 4 c1m
2
π

from L(2)
πN .

��
Figure 4.5: One-particle-reducible graphs contributing to gA at order p4. The square

denotes a vertex from L(2)
πN involving c1, c2 and c3.

The next-to-leading one-loop result O(p4) is obtained again through the evaluation of
both one-particle irreducible and reducible graphs. The former are shown in Fig.4.3. The
triangle there denotes a vertex from the second order πN Lagrangian L(2)

πN containing
the two LECs c3 and c4. The explicit expressions of amplitudes (6) and (7) are given in
Appendix D.

The reducible graphs are evaluated through nucleon field and mass renormalization,
consistently with the accuracy at which we are working. We draw as a diamond the
second order insertion in the nucleon line proportional to c1, Fig.4.4. At order p4 we
have to compute all the graphs resulting from the insertion of at most one c1 vertex in at

most one nucleon line in the diagrams (2), (3) and (4) in Fig.4.1 and in those of Fig.4.2.
Since for small mπ

i

p/−M0 − 4 c1m2
π

=
i

p/−M0

+
i

p/−M0

(i 4 c1m
2
π)

i

p/−M0

+ . . . , (4.21)

we can summarize the c1-insertions by a simple shift of the pole of the nucleon propagator
from the “bare” nucleon mass to its renormalized value at second chiral order,

MN = M0 − 4 c1m
2
π + O(p3) . (4.22)

Since at most one c1-insertion is allowed at fourth order, we have worked out the relevant
amplitudes through the shift M0 → MN and extract the contribution to gA looking at
the expansion of the result in powers of c1: only the terms up to and including the one
linear in c1 have been retained, cf. Appendix D.

The remaining reducible O(p4) graphs are drawn in Fig.4.5. The evaluation of these
amplitudes is done through nucleon wave-function renormalization, cf. Appendix D.
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The pion mass dependence of gA at order p4 is finally given by

gA =
1

576π2f 2
πM
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√
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+ 32F r(λ)m4
π + 128Gr(λ)m6

π . (4.23)

Gr(λ) is a seventh-order coupling appearing in the counterterm needed to absorb the
divergence at m6

π: this compensates the unphysical scale dependence at this power in
mπ. The factor 128 is motivated by the fact that the effective πN Lagrangian at order
p7 can contribute via

L(7)
N = g Ψ̄[Tr(χ+)]3 u/γ5Ψ + · · · ≈ 128 gm6

π Ψ̄
τ i

2
aiµγ

µγ5Ψ + . . . (4.24)

“Naive” dimensional arguments suggest g ≈ 1/Λ6
χ. At order p4 we have

F r(λ) = F +
L(λ)

32f 2
πM

2
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The expansion of the next-to-leading one-loop expression in Eq.(4.23) around the chiral
limit gives

gA = g0
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Figure 4.6: Diagrams contributing to the nucleon axial-vector coupling constant gA at
leading-one-loop order in SSE. The wiggly line denotes an external isovector
axial-vector field. All the vertices shown here appear in the leading πN and
πN∆ Lagrangians. Wave-function renormalization contributions are shown
in Fig.4.7.

The sum of the first three terms coincides with the O(p4) expression in HBChPT [152].
See also the results in covariant BChPT with infrared regularization for the nucleon axial
form factor and gA in Ref. [153].

4.3 Analytic results in SSE

We now turn to the result in the Small Scale Expansion approach, which includes explicit
∆ (1232) degrees of freedom. The delta-nucleon mass difference (in the chiral limit) is
treated as a small parameter and incorporated in the power counting in ǫ.

In this section we describe the O(ǫ3) formulae used for the numerical analysis, first in
the manifestly covariant and then in the non-relativistic framework. For details on the
formalism we refer the reader to Sec.2.10.

The bare result for the pion mass dependence of gA at leading-one-loop order originates
from diagrams 1-8 in Fig.4.6. Graphs (2) and (3) are non-vanishing when the intermediate
nucleon is replaced by a spin-3/2 baryon. However, the leading-order N∆ transition
Lagrangian in Eq.(2.120) does not include operators connecting N∆ via an even number
of axial-vector fields. The corresponding diagrams are therefore of higher order than the
graphs considered here.

Wave-function renormalization contributes at order ǫ3 in the way shown in Figs.4.2 and
4.7. The resulting expressions for gA(mπ) and ZN(mπ), in manifestly Lorentz invariant
SSE with infrared regularization, can be found in Appendix E, in terms of the basic loop
integrals I∆, IN and ∆π in Appendix C.

Let us clarify the structure of the ultraviolet divergences in Eqs.(E.1) and (E.5) per-
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�
∆
�

∆

Figure 4.7: Nucleon field renormalization effects related to the propagation of the
∆ (1232), at order ǫ3.

forming an expansion of the terms proportional to L around the point (0,∆) in the mπ-∆
plane. For the Z-factor we get
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while the result for gA has the following form:
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The last two equations show that one has to include higher-order counterterms for re-
normalization. The situation is the same as in the O(ǫ3) calculation in covariant SSE
for MN (mπ), see Sec.3.2.3. Looking at the πN and πN∆ effective Lagrangians, four
counterterms are available at third order in ǫ: −8m2

πB20, −∆2B30 and 4m2
πB9, ∆2B31.

These are sufficient to renormalize the nucleon Z-factor and gA only at leading order
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in the expansion in powers of 1/M0, i.e. in the non-relativistic limit. In the numerical
analysis we will mainly focus on the non-relativistic expression.

Finally, Eqs.(E.1) and (E.5) are valid only for mπ ≤ ∆. Their analytic continuations
to the mπ region suitable for comparison with lattice simulations are obtained through
the replacements

ln
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π

2M0mπ
+

√

(∆2 + 2M0∆ −m2
π)

2

4M2
0m

2
π

− 1

)

→ i arccos

(

∆2 + 2M0∆ −m2
π

2M0mπ

)

√

∆2 −m2
π → i

√

m2
π − ∆2 .

Let us now move to the non-relativistic framework. After performing the limit M0 →
∞ in Eqs.(E.1, E.5), we have set Br

30(λ) and Br
31(λ) in such a way that the chiral limit

values for gA and the Z-factor are g0
A and 1, respectively. The resulting expression of

gA(mπ) is non-relativistic SSE result at order ǫ3 (cf. Refs. [95] and [120]):
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Expanding around mπ = 0 we obtain
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In the non-relativistic framework Br
30(λ) and Br

31(λ) amount to
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While the result in Eq.(4.30) is unique, the separation into Br
30 and Br

31 is not. With the
choice of Eqs.(4.34) we have restored g0

A as the chiral limit value of gA(m2
π). Furthermore,

the structure of the leading non-analytic term in the quark-mass expansion, proportional
to m2

π lnmπ, is not modified by the addition of explicit ∆ (1232) degrees of freedom,
consistently with chiral symmetry [26], cf. Eq.(4.20). According to Eq.(4.34), in the
limit ∆ → ∞ we recover the O(p3) result in HBChPT:
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New features in the leading-one-loop non-relativistic SSE result compared to Eq.(4.35),
are the terms proportional to m3

π as well as the logarithms depending explicitly on the
delta-nucleon mass splitting.

We can link Cr(λ) in the framework with πN degrees of freedom and CSSE(λ) in the
theory with explicit delta. Comparing the terms proportional to m2

π in Eq.(4.32) and
Eq.(4.35), it is clear that the renormalized third order couplings in the two schemes have
different λ-dependence:
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Let us now analyze the separate contributions to Eq.(4.30) coming from the different
diagrams in Fig.4.6. Graphs (1)-(5) give the pion mass dependence of gA in HBChPT at
order p3. At the leading-one-loop level, the inclusion of ∆ (1232) degrees of freedom brings
new wave-function renormalization contributions, new counterterms and the graphs (6)-
(8) with propagating deltas. The explicit ∆ (1232) degrees of freedom leave their marks
in the running of Br

30(λ), Br
31(λ) and CSSE(λ). We identify the “πN contribution” with

the order p3 result in HBChPT, which can be recovered from Eq.(4.30) using Eq.(4.36)
and setting cA = g1 = 0. In the difference between the left-hand sides of Eqs.(4.30) and
(4.35), the term proportional to g1 – the “∆∆ contribution” – stems only from graph
(8). The structure of its chiral expansion is what we expect according to the decoupling
theorem:
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Subtracting then the ∆∆ contribution, we are left with the effects of the graphs (6) and
(7). Expanding this single-delta contribution in the chiral limit, we get
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In the limit ∆ → ∞, graphs (6) and (7) correspond to the diagrams of Fig.4.3 in BChPT:
both of them start indeed contributing at m3

π in the chiral expansion, cf. Eq.(4.27).
Comparing the term at m3

π in Eq.(4.38) and the term involving the LECs c3 and c4 in
Eq.(4.27), we obtain

c∆3 = −2c∆4 = −4c2A
9∆

, (4.39)

which coincides with the prediction from resonance saturation in the chiral (static) limit,
cf. the expression (3.50).

If we shrink the delta propagator to a point, graph (8) in Fig.4.6 starts contributing at
order p5 as a fifth order tadpole with an attached external axial field, which is responsible
for a structure of the type Am4

π + Bm4
π lnmπ/λ. We exemplify this in Fig.4.8. Hence

even the leading term in the mπ/∆ expansion of the ∆∆ contribution in leading-one-
loop in SSE is of higher order compared to our calculation in BChPT, performed up to
next-to-leading one-loop.� � � −→�

π

+ higher orders

Figure 4.8: Contribution of the diagram with two delta propagators in the limit M∆ →
∞. The pentagon indicates a vertex from the third order πN Lagrangian.
The tadpole graph is of fifth order.

4.4 Numerical analysis

This section is devoted to the comparison of the expressions for gA(mπ) derived in the
previous sections with the most recent lattice data. The strategy is the same as for the
nucleon mass in Chapter 3.

After the description of the different lattice data sets used as input for our fits, we will
discuss in detail the outcome of our numerical analysis of Eqs.(4.16), (4.23), (4.30). We
postpone to Sec.4.4.7 the discussion of our results in the manifestly covariant framework
with explicit ∆ (1232).

4.4.1 Lattice data

The calculation of gA on the lattice involves the computation of the nucleon matrix
element of the axial-vector current operator in Eq.(4.1). Such hadronic matrix elements
can be extracted from ratios of three-point functions over two-point functions. First,
one has to choose interpolating fields for the particle to be studied. For a proton with
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momentum ~p a suitable choice is:

Bα(t, ~p) =
∑

x;x4=t

e−i~p·~xǫijku
i
α(x)u

j
β(x)(C γ5)βγd

k
γ(x) (4.40)

where the Latin (Greek) indices are color (Dirac) indices and C is the charge conjugation
matrix. As the time extent of the lattice tends to infinity, the ratio R between three-
and two-point functions

R ≡ 〈B(t)O(τ)B̄(0)〉
〈B(t)B̄(0)〉 = 〈proton|O|proton〉 + . . . (4.41)

will be independent of the times τ and t, if t ≫ τ ≫ 0 so that excited states can be
neglected.

The proton three-point function for a 2-quark operator contains quark-line connected
as well as quark-line disconnected pieces. The latter are very hard to compute. However,
in the limit of exact isospin invariance, the disconnected contributions of the u and d
quarks cancel in the case of non-singlet two-quark operators, the case relevant for gA.

In our work we focus mainly on a set of two-flavor lattice QCD data provided by the
RIKEN-BNL-Columbia-KEK (RBCK) collaboration [154]. These simulations are per-
formed with Domain Wall Fermions (DWF), a lattice formulation of the Dirac operator
based on a solution of the Ginsparg-Wilson relation. Ginsparg-Wilson fermions need
more computer time, but permit to work with considerably lighter quarks than most
other lattice fermions. DWF preserve chiral symmetry on the lattice by introducing a
fictitious fifth dimension with extent Ls: if the lattice spacing is sufficiently small, the
symmetry violation is exponentially suppressed with finite Ls in quenched simulations if
the gauge field is sufficiently smooth [154].

The simulations in Ref. [154] are all quenched: five points with 395 MeV < mπ <
860 MeV. First low-statistics results by the RBCK group within full-QCD simulations
show, within error bars, perfect consistency with the quenched results [154]: for the
relatively large pion masses computed on the lattice, the effects of “quenching” turn out
to be negligible. However, the difference between “quenched” and fully dynamical QCD
simulations should become visible at lower pion masses: in quenched QCD indeed the
axial coupling of the nucleon develops a singularity gA(mπ → 0) ∼ logmπ in the chiral
limit [155], in contrast to the finite value g0

A in full QCD.
While we are confident that (un)quenching effects are small in the presently accessible

pion mass range, corrections arising from the finite (small) simulation volume turn out to
be important. The data points that we take from Ref. [154] refer to simulations performed
on lattices with spatial size L = 2.4 fm, mπ L ≥ 4.8 and lattice spacing a ≈ 0.15 fm. The
latter has been determined in such a way that mρa reproduces the physical value of the
ρ mass. In the same paper the RBCK collaboration compares simulations at L = 1.2
and L = 2.4 fm: gA is shown to be sensitive to finite size corrections. For small lattices
gA exhibits a strong quark mass dependence [156] while for large L it basically shows a
plateau for mπ & 400 MeV. Among the results quoted in Ref. [154] we have restricted
ourselves to mπ < 665 MeV and the largest available lattice size. A recent analysis of
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finite volume effects for gA at order ǫ3 in non-relativistic Small Scale Expansion [157]
shows that for L ≈ 2.5 fm these lattice artifacts are quite negligible for the lattice pion
masses that we take as input, see also Ref. [158].

Other possible sources of systematic error in the calculation of gA on the lattice have
been discussed in Ref. [154]. They can basically be identified with: operator renormaliza-
tion, nonzero lattice spacing and loss of chiral symmetry for Wilson and Kogut-Susskind
fermions. The loss of chiral symmetry on the lattice is dangerous for our purposes: gA
is sensitive to both spontaneous and explicit chiral symmetry breaking. Therefore the
explicit breaking of chiral symmetry at nonzero lattice spacing for Wilson fermions may
induce significant errors which are removed only in the continuum limit. The determi-
nation of the renormalization factor for the axial current seems also to be important.
The DWF calculation of gA should not suffer from the systematic errors due to operator
renormalization and loss of chiral symmetry: this fermion discretization scheme greatly
simplifies the non-perturbative determination of renormalization factors for quark bilin-
ear currents [159]. For example, the renormalization factors of local vector and axial-
vector current operators turn out to be equal, ZA = ZV : this means that the ratio gA/gV
calculated on the lattice directly yields the continuum value, i.e. it is not renormalized.
By employing the DWF scheme, one eliminates the ambiguity in the renormalization of
quark currents, which may be present and problematic in other fermion discretization
schemes.

The RBCK data that we use for our analysis are obtained with an improved gauge
action in order to meet both large volume and chiral symmetry, the latter requiring a
sufficiently small lattice spacing. Such “renormalization group inspired” improved gauge
actions, differently from Wilson actions, preserve with good accuracy the chiral symmetry
of DWF while not demanding a very small a [160].

As already pointed out, for the largest volume considered in Ref. [154], the data exhibit
very mild quark mass dependence. A simple linear extrapolation of (gA/gV )ren underesti-
mates the experimental value of 1.267 by less than 5%. For the purpose of our numerical
analysis the gA simulation data provide the constraint of specifying the location of the
“data plateau”. Any sensible formula for the interpolation between lattice data and the
physical point must have enough structure in mπ to reproduce such a plateau, at least
over a certain range in pion mass. In essence, this implies a strong constraint: different
terms in the quark mass expansion of gA must co-operate in such a way that the inter-
polation function is basically flat once the pion mass exceeds 400 MeV. Given that the
available lattice data are still restricted to relatively large quark/pion masses, can one
nevertheless make use of this information to determine the interpolating function? What
can we say about the relevant physics in the region where the quark mass is much smaller
than in lattice simulations? We expect that the role of the “pion cloud” sorrounding the
nucleon becomes important there. Nevertheless, the values of gA(mπ) at the relatively
large quark masses that one can presently handle on the lattice lie just a few percent
below the experimental value and show little dependence on the quark mass. So, what
can we conclude about the role of the “pion cloud”? We are going to shed some light on
that in the next sections, where we describe the outcome of our numerical analysis.
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In Ref. [120] we used as input five quenched data by the QCDSF collaboration [161–
163], with Wilson fermions on small lattices, L = 1.45 . . . 1.60 fm 2. The pion masses
range from 580 to 750 MeV. The same collaboration together with UKQCD has been
performing also full-QCD simulations for gA with two active flavors, nonperturbatively
improved Wilson quarks (clover fermions) and the standard plaquette action for the gauge
fields [164]. Unfortunately, at the time of writing, these results are still preliminary and
we could not compare them with the quenched data.

Although the status of the RBCK results is more advanced then the QCDSF simula-
tions, we have also performed fits to the quenched data points by the latter collaboration,
exploring the feasibility of a chiral extrapolation based only on the lattice data, Sec.4.4.5.

In Sec.4.4.6 we compare our formulae with full-QCD data recently released by the
LHP Collaboration [165] 3. These simulations are performed with three active flavors
within a so-called “hybrid” framework, using domain-wall valence quarks and improved
Kogut-Susskind sea quarks (the so-called Asqtad action by the MILC collaboration [166]).
This scheme – although breaking unitarity at finite lattice spacing – will still have the
same continuum limit as a fully dynamical calculation provided this limit exists. The
collaboration is able to treat pion masses as light as 359 MeV in volumes with spatial size
as large as 3.5 fm. At the lowest pion mass the simulations in lattice volumes of (2.6 fm)3

and (3.5 fm)3 yield statistically indistinguishable results, indicating the absence of finite
volume corrections at this lattice size. The full data set consists of five points with pion
masses of 359, 498, 605, 696 and 775 MeV.

The three full-QCD points by the RBCK collaboration [154] in a (1.9 fm)3 box are
consistent with the LHP data within error bars, whereas the full QCDSF-UKQCD re-
sults in a smaller volume lie systematically lower [165]. At present the reason of that
discrepancy is not clear yet. Future simulations with chirally improved actions, larger
volumes and better statistics will help to solve that issue.

Since we cannot combine data by different collaborations, the statistics for our nu-
merical study is very limited. We have therefore treated f 0

π , M0, cA and ∆ as input
parameters in our fits. All couplings and masses on the right-hand side of the relevant
equations refer to their leading-order values in their quark-mass expansions: as discussed
in detail in Chapter 2, only a few of those parameters are accurately determined by
matching ChPT with low-energy hadron phenomenology.

Setting the regularization scale λ = 1 GeV, we are then left with the following param-
eters not fixed by chiral symmetry:

- g0
A and the third-order combination of couplings Cr(1 GeV) or CSSE(1 GeV),

- M0, F
r(1 GeV) and Gr(1 GeV) in the expressions with πN degrees of freedom,

Eqs.(4.16) and (4.23),

2The data provided have been obtained with an improved action for clover fermions on three different
grids (163 × 32, 243 × 48 and 323 × 48 points) with lattice spacings a = 0.09, 0.07, 0.05 fm.

3We are grateful to LHP Collaboration for providing us data prior publication.
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- g1 in the πN∆ framework.

We now first focus on the three RBCK data points with mπ ≤ 665 MeV. The available
statistics is too low to extract quantitative information on the unknown parameters from
lattice data alone. We have therefore treated the physical point as input. Of course, it
is somehow arbitrary to compare our formulae simultaneously with the empirical value
of gA and two-flavor lattice QCD simulations. However, our analysis of the LHP data
in Sec.4.4.6 shows that the effects of the addition of one heavier flavor on the lattice are
absorbed within the error bars of the output parameters.

4.4.2 BChPT: “freezing” the ∆ (1232)

Several low-energy πN scattering analyses give estimates for the dimension-two low-
energy constants c1, c2, c3 and c4, see Sec.2.9. The analysis in Refs. [83,85] of πN → ππN
scattering at leading-one-loop order in HBChPT constraints the combination of couplings
B9 and B20, cf. Sec.2.9.

We have first exploited the information on the quark mass dependence of gA contained
in O(p3, p4) BChPT expressions together with this input from low-energy hadron phe-
nomenology, without fitting to the lattice data. We have produced Monte Carlo bands
both from the relativistic expressions in Eqs.(4.16), (4.23) and the HB formulae at order
p3 and p4: we have eliminated g0

A through the physical constraint gA(mphys
π ) = 1.267 and

chosen randomly the remaning parameters in phenomenologically motivated ranges, cf.
Sec.2.9. For the couplings F and G we had to resort to naive dimensional arguments,
at the regularization scale λ = 1 GeV. None of the these bands, which take into account
also the uncertainties on the input parameters, comes close to the lattice data in the mπ

region of interest. The recoil corrections to the non-relativistic results do not improve the
situation. In the framework without propagating ∆ (1232), up to the order at which we
are working, it is not possible to obtain a satisfactory interpolation between the physical
point and lattice data, as we convinced ourselves by fitting with the relevant formulae.
Either we get unacceptably large values of χ2/d.o.f. or the output parameters are not in
agreement with phenomenology. This holds for any of the RBCK, QCDSF, LHP data
sets. At order p4, for example, including the physical point as input, in order to adapt
the curve to the lattice data, the price we have to pay is that c3 must be tuned to a value
which is totally inconsistent with the empirical one. Freezing the delta and relegating its
effects into low-energy couplings is not enough to capture the physics in the quark mass
dependence of gA. This does not come as a surprise: intermediate ∆ (1232) contributions
are known to play an important role in axial current matrix elements between nucleon
states and quark spin-flip transitions [167], due to the quantum numbers of the ∆ (1232),
its near degeneracy with the nucleon and its strong coupling with the πNγ system. We
discuss this in the specific example of relevance here.
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Figure 4.9: Total π+p and π−p cross sections plotted against the pion momentum in
the laboratory frame. In the left panel the direct and crossed ∆ (1232)-pole
graphs are included, in the right panel not.

4.4.3 The Adler-Weisberger sum rule

The Adler-Weisberger sum rule [168] connects low-energy parameters of the πN system
(fπ and gA) with an integral over the difference of the π+p and π−p total cross-sections.
Let us choose the laboratory frame where the nucleon is at rest and ω is the pion energy.
Consider T−(ω), the isospin-odd πN T -matrix for forward scattering. Regge pole theory
suggests that this amplitude should behave at asymptotically high energies as T− ∼√
ω, see for example [169]. Consequently, T−(ω)/ω satisfies an unsubtracted dispersion

relation:
T−(ω)

ω
=

2g2
A

f 2
π

m2
πM

2
N

4M2
Nω

2 −m4
π

+
2

π

� ∞

mπ

dω′ ImT−(ω′)

ω′2 − ω2 − iǫ
, (4.42)

where the first term on the right-hand side is the contribution from the nucleon-pole
piece of the πN amplitude.

Let us now go to threshold (ω = mπ) and use the Weinberg-Tomozawa low-energy
result [170]

T−(ω) =
ω

2f 2
π

. (4.43)

Neglecting the corrections of order m2
π/(4M

2
N) ≪ 1 in the denominator of the nucleon-

pole piece, we get
1

2f 2
π

=
g2
A

2f 2
π

+
2

π

� ∞

mπ

dω
ImT−(ω)

ω2 −m2
π

. (4.44)

Using the optical theorem to connect ImT− with the π±p total cross-sections, we obtain
the Adler-Weisberger sum rule

g2
A = 1 +

2f 2
π

π

� ∞

0

dq

ω
[σπ+p(ω) − σπ−p(ω)] + O

(

m2
π

M2
N

)

, (4.45)

where the integral is taken over the pion laboratory momentum, q = |~q | =
√

ω2 −m2
π.

The deviation of gA from 1 is tied to pion-nucleon dynamics and spontaneous (and ex-
plicit) chiral symmetry breaking. The left- and right-hand sides of the sum rule turn out
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to be consistent at the percent level using fπ = 92.4 MeV and an accurate parameteriza-
tion of the measured π±p cross-sections [78].

According to the optical theorem, for any spin – isospin channel α = (2I, 2J),

σα(ω) =
4π

|~q | Imfα(ω) (4.46)

where σα and fα are total cross-section and partial wave amplitude in that channel,
respectively; the amplitude f(ω) for forward scattering in the laboratory frame is defined
so that the laboratory frame differential cross-section in the forward direction is |f(ω)|2.
In terms of the K-matrix, or “reaction matrix” [171],

fα(ω) =
Kα(ω)

1 − i|~q |Kα(ω)
. (4.47)

Kα has poles on the real axis for each intermediate state in the scattering amplitude
and each pole is located at the physical mass of the corresponding state. In the present
case, there are poles representing the nucleon and the ∆ (1232) intermediate state, for
example. Identifying the direct and crossed nucleon- and ∆ (1232)-pole terms with the
corresponding pieces of the K-matrix, we find in the extreme non-relativistic (static)
limit and at threshold,

K13 = K31 =
1

4
K11 =

~q 2

12πm2
π

[

−2f 2

mπ

+
4f 2

∆

9(∆ +mπ)

]

K33 =
~q 2

12πm2
π

[

4f 2

mπ

+
f 2

∆

∆ −mπ

+
f 2

∆

9(∆ +mπ)

]

, (4.48)

cf. Ref. [124]. Here

f 2 =
g2
Am

2
π

4f 2
π

, f 2
∆ =

c2Am
2
π

f 2
π

. (4.49)

Using physical values on the right-hand sides of these last two equalities — and crucially
cA = 1.5 —, the P -wave πN scattering volumes agree very well with experiments, see
also Ref. [124]. Eq.(4.47) and the optical theorem lead to the total π+p and π−p cross-
sections in the left panel of Fig.4.9. The curves are in good agreement with the empirical
ones from near threshold up to q ≈ 0.5 GeV [78,124]: the region between 0.5 and 2 GeV is
partly dominated by higher resonances. Using these cross-sections to evaluate Eq.(4.45),
we obtain gA = 1.24 for the physical mπ and fπ. If the calculation includes only the
P -wave Born terms for static nucleons, σπ±p change as in the right panel of Fig.4.9.
“Switching off” the πN∆ coupling, the contribution from the dispersion integral in the
Adler-Weisberger sum rule changes sign and gA is reduced to 0.94.

4.4.4 Non-relativistic SSE

In the framework with explicit ∆ (1232), we first analyze the non-relativistic expression
for gA(mπ), Eq.(4.30), where renormalization and decoupling do not give rise to any
ambiguities.
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Table 4.1: Input parameters in the fits to the RBCK data [154].

Fit cA fπ [MeV] ∆ [MeV]

1 1.5 92.4 271.1
2 1.125 92.4 271.1
3 1.5 86.2 271.1
4 1.125 86.2 271.1
5 1.5 92.4 293
6 1.125 92.4 293
7 1.5 86.2 293
8 1.125 86.2 293

With three free parameters and three RBCK data points, we cannot afford a meaning-
ful chiral extrapolation with small single-parameter errors in output. We have therefore
performed several fits including the physical constraint, in order to quantify the sensi-
tivity to the input parameters, cf. Table 4.1. The outcome is summarized in Table 4.2.
Only the precise value of cA turns out to be crucial: in the fits with cA = 1.125 the
SU(4) quark model prediction for g1 is badly broken. Moreover, both for Fit 2 and Fit 4,
Cr(1 GeV) from Eq.(4.36) is not compatible with πN → ππN scattering. The fit results
are also insensitive, within error bars, to a 15% larger value of the delta-nucleon mass
difference in the chiral limit [93].

The best fit curve in Fit 1 is the solid line in Fig.4.10, with χ2/d.o.f. = 0.2. For il-
lustrative purpose we also plot its dotted extension for pion masses larger than 665 MeV
and the RBCK data points with the same simulation parameters that we did not in-
clude in the fit [154]. The O(ǫ3) non-relativistic SSE expression represents a good inter-

Table 4.2: Fit results for gA(mπ) at order ǫ3. The physical point is included as input.
Central values and errors have been obtained using the MINUIT package and
have been rounded to the first significant digit.

Fit g0
A CSSE(λ = 1 GeV)

[

GeV−2
]

g1 χ2/d.o.f.

1 1.223 ± 0.007 −1.7 ± 0.4 2.8 ± 0.3 0.2
2 1.207 ± 0.007 −3.5 ± 0.4 5.8 ± 0.5 0.4
3 1.217 ± 0.007 −1.8 ± 0.4 2.8 ± 0.2 0.2
4 1.198 ± 0.007 −3.9 ± 0.4 5.7 ± 0.4 0.4
5 1.221 ± 0.007 −1.8 ± 0.4 2.9 ± 0.3 0.2
6 1.205 ± 0.007 −3.8 ± 0.4 6.0 ± 0.5 0.4
7 1.214 ± 0.007 −2.0 ± 0.4 2.8 ± 0.4 0.2
8 1.196 ± 0.007 −4.2 ± 0.4 5.8 ± 0.4 0.5
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Figure 4.10: Solid/dotted curve: O(ǫ3) SSE best fit to the three RBCK lattice data [154]
with mπ up to 665 MeV including the physical point in input, Fit 1. Dashed
curve: corresponding leading-one-loop result in HBChPT.

polating function between physical point and lattice data with parameters compatible
with phenomenology. The estimate of g1 is not far from the SU(4) quark model pre-
diction, 9/5 g0

A ≃ 2.2. However, imposing g1 = 9/5 g0
A in the fit, the χ2 comes out

unacceptably large. The value of CSSE(1 GeV) in Fit 1 is consistent with πN → ππN
scattering. Indeed, using the central values of g0

A and g1 in Fit 1, Eq. (4.36) gives
Cr(1 GeV) = −4 GeV−2, in perfect agreement with the (broad) range derived from
Ref. [85]:

Cr(λ = 1 GeV) = −6.2 · · · − 3.8 GeV−2 . (4.50)

In order to obtain the last result, we set g0
A and f 0

π as in Fit 1 in the HBChPT β-functions
used to run the couplings Br

9(λ) and Br
20(λ) from λ = mphys

π , the scale in Ref. [85].
Treating the physical point on the same level as data from lattice calculations is, of

course, not optimal. The error bar of the former is also one order in magnitude smaller
than for the lattice data. Therefore the quoted errors on the output parameters have to
be taken cum granu salis.

The dashed curve in Fig.4.10 corresponds to the leading-one-loop HBChPT result,
where Cr(1 GeV) has been extracted from the central values in Fit 1 via Eq.(4.36). By
construction of the SSE expression, we have required that the chiral limit value of g0

A

is the same in both EFT schemes. Moreover, the identification of the terms propor-
tional to m2

π through Eq.(4.36) is expected to be valid for sufficiently small pion masses:
HBChPT and SSE can indeed build up the contributions to a particular term in the
chiral expansion more or less effectively in their respective perturbative series. Fig.4.10
clearly shows that the leading-non-analytic term does not describe correctly the quark
mass dependence of gA outside a quark-mass region which is extremely close to the chiral
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Figure 4.11: Solid curve: O(ǫ3) non-relativistic SSE fit to the RBCK data [154], Fit
1. Dashed, dot-dashed, dotted curves: contributions from the diagrams
without, with one and with two ∆ propagators in Fig.4.6, respectively.

limit.

It is instructive to look at the separate contributions to the best-fit curve coming from
the different diagrams in Fig.4.6, as explained in Sec.4.3. These contributions are drawn
in Fig.4.11 and are based on Fit 1. The inclusion of the explicit ∆ (1232) degrees of
freedom is crucial to compensate the downward bending of the πN contribution, at this
order 4. In what we call “πN contribution” we include also the effects of graphs with
propagating deltas which are absorbed by g0

A and Cr(λ). Therefore the chiral expansion
of graphs (6) and (7) in Fig.4.6 starts at m3

π/∆ and for graph (8) at m4
π/∆, cf. Sec.4.3.

Fig.4.11 explicitly shows that the graph with two delta propagators plays an impor-
tant numerical role in order to compensate the πN trend at the pion masses presently
manageable on the lattice. Since graph (8) encodes higher-order effects with respect to
our BChPT calculations, SSE seems to be effective in resumming powers of mπ/∆. In
the region of present lattice data, mπ/∆ is not a good expansion parameter. We show,
“empirically”, that in SSE important effects due to the ∆ (1232) are moved to low chiral
orders. However, before any firm conclusion can be drawn it is mandatory to study gA
at order ǫ4. It is needless to say that for a numerical study of the fourth-order formula,
we must wait for an improvement of the statistics for the lattice data.

4Such a cancellation of individually large πN and π∆ loop effects in gA was already observed in
Ref. [100].
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Table 4.3: Fits to the QCDSF data [161].

Fit g0
A Cr/SSE(1 GeV)

[

GeV−2
]

g1 χ2/d.o.f.

Ia 0.71 ± 0.04 +0.12 ± 0.03 - 0.4
Ib ≈ 0.78 ≈ +1.06 ≈ 0.0 0.55
IIa 0.94 ± 0.04 −0.25 ± 0.04 9/5 g0

A 0.4
IIb 1.14 ± 0.03 −0.66 ± 0.04 9/5 g0

A 0.45
III 1.19, 1.25, 1.31 −1.2, −2.0, −2.8 2.47, 3.05, 3.63 0.48, 0.53, 0.58
IVa 1.21 ± 0.01 −3.4 ± 0.4 5.6 ± 0.5 0.5
IVb 1.22 ± 0.01 −1.7 ± 0.4 2.8 ± 0.3 0.5

4.4.5 Comparison with QCDSF data

We now compare the quark mass dependence of gA at leading-one-loop level in non-
relativistic SSE and HBChPT [120] by analyzing the quenched data provided by the
QCDSF Collaboration in the range between 580 and 752 MeV, see Refs. [162,163]. The
scale is set through the Sommer parameter r0 ≈ 0.5 fm, see Sec.3.3.1 for details. We
assume that lattice artifacts are negligible.

In the first round of fits we have explored whether the five available lattice data are
sufficient to constrain the unknown parameters in Eq.(4.30) and Eq.(4.35). The results
are summarized in Table 4.3 under the labels Fit Ia, Fit Ib for HBChPT and SSE,
respectively. The χ2/d.o.f. for either curve is small, but both extrapolation functions
miss the physical point by a wide margin. Such a strong downward bending in the region
of small mπ has also been reported in Ref. [138].

We refrain from quoting errors for the free parameters in FitIb, because the MINUIT
routine is not able to give reliable estimates for them: the lattice data analyzed here
are not sufficiently accurate yet, the statistics of our data sample is too low to properly
constrain the parameters in the SSE formula. Additional physical constraints have to be
invoked to sharpen our analysis.

In a second step we have fixed the axial-∆-∆ coupling g1 = 9/5 g0
A, leaving free g0

A and
CSSE(1 GeV) in Eq.(4.30). The outcome for cA = 1.125 and cA = 1.5 as input is shown
in Table 4.3 under the label Fit IIa and IIb, respectively.

With cA = 1.125 as input, the constraint on g1 does not allow for the correct en-
hancement of the chiral extrapolation curve around the physical pion mass. Similar
conclusions can be drawn from the calculation by Detmold et al. [140], which also in-
cludes – not systematically though – explicit ∆ (1232) contributions and makes use of
SU(4) symmetry assumptions to reduce the number of unknown couplings.

Fit IIb, with cA = 1.5, represents a bigger improvement compared to the unconstrained
fits.
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Figure 4.12: Analysis of QCDSF data [161], incorporating information from πN → ππN
into the leading-one-loop SSE result (Fit III). In input cA = 1.5. The dashed
curves correspond to the upper and lower boundaries for the parameter
Cr(λ) from Ref. [85].

When varying g0
A, CSSE(λ = 1 GeV) and g1 in such a way that the resulting curve fits

to the lattice data, the parameter CSSE(λ) is crucial for an enhancement of gA(mπ) at
small pion masses, close to the physical point. We profit by the Heavy Baryon analysis of
πN → ππN in Refs. [83,85] to constrain Cr(λ) in the fits. While we can directly use the
outcome of such a study in the BChPT framework, there is no unique procedure to import
this information into the scheme with explicit ∆ (1232) degrees of freedom: Br

9(λ), Br
20(λ)

indeed have different β-functions in HBChPT and SSE. We have determined a “matching
scale” λ̄ as follows. Starting from the result of Ref. [85],

Br
9(λ = mphys

π ) = (−1.4 ± 1.2)GeV−2 , Br
20(λ = mphys

π ) ≡ 0 , (4.51)

we run these couplings up to λ̄ according to their HB β-functions [60] with g0
A = 1.267

and f 0
π = 92.4 MeV. We then fix λ = λ̄ and CSSE(λ̄) ≡ Cr(λ̄). Several input values of

CSSE(λ̄), inside the range corresponding to Eq.(4.51), have been used in the fits. We have
then obtained a set of best-fit curves and checked whether the physical point is inside
the envelope of those curves. As a self-consistency test, we have required that, using
the fit results and Eq.(4.36), the HBChPT and SSE expressions for gA(mπ) agree within
error bars up to and including the term proportional to m2

π in the chiral expansion. It
turns out that a suitable matching scale is λ̄ = 300 MeV. The outcome of this analysis is
labelled as Fit III in Table 4.3: for an easier comparison with other fits we run CSSE(λ)
from λ̄ up to λ = 1 GeV, according to the relevant SSE β-function. Fig.4.12 shows the
resulting SSE chiral extrapolation curves for gA(mπ), with cA = 1.5 as input. The solid
line in Fig.4.12 refers to the central value for CSSE(λ = 300 MeV) given by the matching
condition, whereas the two dashed curves show the effects of the uncertainty on Br

9(λ)
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Table 4.4: Numerical results for the fits to the 2 + 1 – flavor data provided by the LHP
Collaboration based on the non-relativistic SU(2) leading one-loop formula in
the Small Scale Expansion. For the input parameters see Table 4.1. In Fit 9
cA = 1.5, fπ = 92.4 MeV and ∆ = 271.1 MeV.

Fit g0
A CSSE(λ = 1 GeV)

[

GeV−2
]

g1 χ2/d.o.f.

1 1.226 ± 0.004 −1.8 ± 0.1 2.86 ± 0.09 1.2
2 1.208 ± 0.004 −3.5 ± 0.1 5.7 ± 0.2 1.6
3 1.220 ± 0.004 −1.9 ± 0.1 2.79 ± 0.08 1.25
4 1.200 ± 0.004 −3.9 ± 0.1 5.5 ± 0.1 1.7
5 1.224 ± 0.004 −1.9 ± 0.1 2.9 ± 0.1 1.2
6 1.205 ± 0.004 −3.7 ± 0.1 5.9 ± 0.2 1.6
7 1.217 ± 0.004 −2.0 ± 0.1 2.83 ± 0.09 1.3
8 1.196 ± 0.003 −4.1 ± 0.2 5.7 ± 0.2 1.8
9 1.18, 1.24, 1.30 −1.2, −2.0, −2.8 2.45, 3.03, 3.61 0.9, 1.4, 2.3

in Eq.(4.51).
While the χ2/d.o.f. values are comparable with Fits I and II, only Fit III gives a suc-

cessful extrapolation. We can therefore conclude that SSE at the leading-one-loop level
together with information from πN → ππN scattering can provide a meaningful chiral
extrapolation of the present lattice data, consistent with the experimentally known value
for gA.

Taking the physical point as an additional input, we performed two fits with different
values for the axial-N -∆ coupling: cA = 1.125 (Fit IVa) and cA = 1.5 (Fit IVb). Fit III
is stable for the inclusion of the physical constraint.

The outcome of the analysis of the QCDSF data agrees with the results for the RBCK
set. The choice cA = 1.5 allows for g1 to be close to the SU(4) quark model prediction,
cf. also [157]. Moreover, Cr(1 GeV) turns out to be compatible with πN → ππN
phenomenology, according to Eq.(4.36) and the outcome of Fit IVb. We have checked
the sensitivity to the other input parameters, f 0

π and ∆: in both cases the induced
variations in the output are not decisive.

4.4.6 LHP data

We have also fitted to the five full-QCD data provided by the LHP Collaboration with
359 MeV ≤ mπ ≤ 775 MeV [165]. We have remarkably found that the basic features
emerged from the analyses of the other data sets remain unaltered if we take as input
simulations with 2 (light) + 1 (heavy) flavors. Our numerical results are summarized
in Table 4.4: Fits 1-8 differ for cA, f 0

π and ∆ as input and include the physical gA. We
have followed the same nomenclature as in Table 4.1. The best fit curve for Fit 1 is
plotted in Fig.4.13. As reported before, choosing cA = 1.5, g1 comes out in qualitative
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Figure 4.13: Leading-one-loop best-fit curve to the physical point and the three-flavor
LHP data [165], with explicit ∆ (1232) degrees of freedom (Fit 1).

agreement with the SU(4) quark model prediction. In Fits 1-8 the values of Cr(λ)
extracted from both Eq.(4.36), are compatible within error bars with the range from
πN → ππN analysis. The leading-one-loop Heavy Baryon expression has been confirmed
to be totally inadequate for a correct description of the data.

Fig.4.14 shows the band of SSE fits obtained through the matching prescription, in
Sec.4.4.5 at λ̄ = 300 MeV (Fit 9 in Table 4.4). Comparing Tables 4.2, 4.3 and 4.4 we
can conclude that the effects of the heavier flavor (together with possible systematic
discrepancies due to the use of different fermion actions) are absorbed by the error bars
of the output parameters.

4.4.7 Relativistic case

As explained in Sec.4.3, in manifestly covariant SSE the inclusion of the third order
counterterms is not sufficient to get a renormalized result at order ǫ3. The “tail” of recoil
corrections carries an infinite string of divergent terms that can be absorbed only by an
infinite number of higher-order counterterms.

The expression that we have analyzed has been worked out as follows. The starting
point is the combination of Eqs.(E.1) and (E.5). We then introduce suitable combination
of counterterms for ZN ,

−8m2
πB20 − ∆2B̃30 (4.52)

and for gA itself,
4m2

πB9 − ∆2B̃31 . (4.53)

We determine B̃r
30(λ) imposing ZN = 1 as mπ = 0. Here the term ∆2B̃30 is the sum of

the whole string of counterterms able to absorb the divergences proportional to m0
π in the

Z-factor, cf. Eq.(4.28). We then substitute the resulting ZN in Eq.(E.1) and calculate
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Figure 4.14: Leading-one-loop SSE fits to LHP data [165], with input from πN → ππN
(Fit 9). The dashed curves correspond to the upper and lower boundaries
for the parameter Cr(λ) from Ref. [85].

B̃r
31(λ) imposing that gA = g0

A as mπ = 0. Again, the term ∆2B̃31 is the sum of an
infinite string of counterterms. The resulting formula is still affected by (higher-order)
residual regularization scale dependence and violation of decoupling 5.

We have then performed fits to the lattice data and the physical point with three free
parameters, g0

A, CSSE(λ) and g1. In the fit formulae we have chosen a specific value for
the regularization scale and set equal to zero all higher-order counterterms at this scale.

It turns out that the output parameter g1 is strongly affected by the choice of the scale
λ. The term proportional to m4

π, which is crucial to get a “flat” quark-mass behavior, is
plagued by the uncompensated scale dependence: in our relativistic fits g1 simply mimics
the effects of neglected higher-order couplings. Therefore the inclusion of higher-order
counterterms and the O(ǫ4) calculation seem to be crucial to shed light on a possible
comparison of covariant SSE expression for gA with existing lattice data. However, the
available statistics is too low to permit the introduction of other free parameters in the
fit function.

4.5 Summary

To conclude, we summarize the main results of our analysis of gA:

- Up to and including next-to-next-to-leading order, it is not possible to obtain sensi-
ble interpolations between physical point and present lattice data in the framework
of chiral perturbation theory restricted to pion and nucleon degrees of freedom only.

5Cf. the analogous case of the “full formula” for the nucleon mass in manifestiy covariant SSE, Sec.3.2.3.
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Chapter 4 Quark mass dependence of gA

- At the one-loop level, the inclusion of explicit ∆ (1232) is crucial to get a satisfactory
description of the quark mass dependence from the chiral limit across the physical
point up to the lattice data. This does not come as a surprise in view of the
Adler-Weisberger sum rule.

- The “chiral log” in the leading non-analytic quark-mass term is only visible for
pion masses well below the physical point.

- Present lattice simulations alone cannot determine all the parameters in our extra-
polation formula. Additional input from πN → ππN dynamics has to be invoked.
SU(4) spin-flavor symmetry arguments are not sufficient to generate the required
form of gA(mπ).

- The inclusion of one heavier flavor in lattice simulations yields results that are
statistically compatible with the two-flavor case.
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Chapter 5

Summary and outlook

Lattice QCD is developing both on the theoretical and computational side as a major
tool to quantitatively investigate the non-perturbative nature of low-energy QCD and
in particular the nucleon structure. At present, however, such calculations are affected
by sizeable systematic errors like discretization and finite-size effects, violation of chiral
symmetry on the lattice, large quark masses in full-QCD simulations. While we are
confident that all of them will be reduced by future improved algorithms and computing
resources, we are still many years away from a satisfactory, quantitative, description of all
non-perturbative facets of nucleon structure directly from the QCD Lagrangian, without
any intermediate model-dependent assumptions. In the meantime, we are interested to
explore the feasibility of systematic effective field theory approaches to provide a bridge
between the lattice and the real world.

In our work we focus on the quark (pion) mass dependence of two nucleon observables,
mass MN and axial-vector coupling gA. Both lattice QCD and chiral perturbation theory
can provide such a functional dependence, in a complementary way: Green functions of
QCD are computed on the lattice in terms of short-distance degrees of freedom, while
their low-energy/low-mass expansions can be worked out rigorously, order by order, in
terms of an effective field theory with low-energy degrees of freedom, the asymptotically
observed hadrons. In Chiral Perturbation Theory, short-distance dynamics is encoded in
low-energy couplings that can be determined by fits to data.

In Refs. [106,107] we have studied intepolations of MN(mπ) between its physical value
and a selected set of two-flavor full-QCD results, up to mπ ≈ 600 MeV, with degenerate
valence and sea quark masses. A remarkably good intepolation function is found already
at leading-one-loop level (chiral order p3) in the framework of manifestly covariant Baryon
Chiral Perturbation Theory with infrared regularization, in the continuum and infinite
volume limit. We also show that next-to-leading one-loop corrections are small, for the
whole range of pion masses that we analyze. We have checked that fitting to present,
large quark mass lattice data, we find remarkable consistency with information from
low-energy hadron phenomenology for the low-energy couplings relevant for our analysis.
These non-trivial results indicate that for the nucleon mass there exists a range of overlap
in the quark masses accessible to both one-loop Baryon Chiral Perturbation Theory and
present unquenched simulations. From the O(p4) numerical analysis we determine the
nucleon mass in the SU(2) chiral limit, M0 ≈ 0.88 GeV and the pion-nucleon sigma-term
σN = (49 ± 3) MeV, at the physical value of the pion mass. Fits to an enlarged set of
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lattice data taking into proper account finite-size corrections to MN nicely confirm and
sharpen our analysis in the infinite volume.

In the framework of leading-one-loop non-relativistic and manifestly covariant Small
Scale Expansion, we have shown that for a satisfactory description of the quark mass
dependence of the nucleon mass, it is not essential that the ∆ (1232) is treated as a dy-
namical field in the effective Lagrangian. Its contribution is effectively accounted for by
the low-energy couplings, whose numerical values are understood in terms of resonance
exchange.

We have compared two versions of chiral effective field theory, namely Baryon Chiral
Perturbation Theory and Small Scale Expansion (with and without explicit ∆ (1232)
degrees of freedom, respectively), also in the case of the axial-vector coupling gA. Our
analysis clearly shows that up to and including next-to-next-to-leading chiral order, it
is not possible to obtain sensible interpolations between the physical point and present
lattice data, if the ∆ (1232) is “frozen” and its effects are encoded in contact interactions.
This is not surprising in view of the Adler-Weisberger sum rule. The inclusion of explicit

∆ (1232) degrees of freedom permits a successful interpolation already at leading-one-
loop level in non-relativistic Small Scale Expansion [120]. According to our numerical
study the leading “chiral log” is only visible for pion masses well below the physical one.
Our results are pretty stable for different sets of lattice data as input, which are affected
by different systematic errors. Remarkably, we found that the inclusion of one heavier
flavor in the simulations yields statistically indistinguishable fit results compared to the
two-flavor case.

The ultimate goal is to perform chiral extrapolations, enabling us to make predictions in
the small quark mass region, with controlled errors, keeping the full systematics of Chiral
Perturbation Theory, without any model dependence. Our statistical analysis [107] shows
that in order to extract information from present, large quark mass lattice data, one
must either incorporate phenomenological input or perform simultaneous fits to different
observables characterized by a common subset of low-energy constants. We should make
use of the property of Chiral Perturbation Theory of linking different observables via the
same low-energy couplings, and get redundancy for the free parameters. Furthermore, as
shown in the case of MN , the systematic inclusion of lattice artifacts in the expressions
used for the fits helps substantially to gain vital statistics.

Our work represents a first step. The joint analysis of energy and quark mass depen-
dences of many nucleon observables, based both on empirical and lattice data at smaller
quark masses, smaller lattice spacings and larger lattice volumes, will provide stringent
bounds for the low-energy couplings and the chance to reliably test the convergence pat-
tern of the low-energy/low-mass expansions. Such a fruitful synergy of numerical compu-
tation and analytic techniques will be extremely useful to make fundamental progress in
understanding non-perturbative aspects of nucleon structure, one of the great and most
fascinating open problems in physics.
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Appendix A

The ∆ (1232) Formalism

The free spin-3/2 field of mass M∆, represented by the vector-spinor field Ψµ(x), satisfies
the equation of motion

(iγν∂
ν −M∆)Ψµ(x) = 0 (A.1)

with the subsidiary condition
γµΨ

µ(x) = 0 . (A.2)

Expanding the spin-3/2 field into plane wave states of definite spin s∆ = −3
2
...+ 3

2
and

momentum p, we obtain an explicit representation of Ψµ(x) in terms of (anti)-particle
creation and annihilation operators b, b† (d, d†), respectively:

Ψµ(x) =
∑

s∆

�
d3p

JF

(

b(p, s∆) uµ(p, s∆)e−ip·x + d†(p, s∆) vµ(p, s∆)eip·x
)

, (A.3)

where uµ(p, s∆) is a Rarita-Schwinger spinor. For the energy dependent normalization
constant JF we choose

JF = (2π)3 E

M∆
. (A.4)

The Rarita-Schwinger spinor for the spin-3/2 field is constructed by coupling a spin-1
vector eµ(p, λ) to a spin-1/2 Dirac spinor u(p, s) via Clebsch-Gordan coefficients and
then boosting to a velocity v = p/M∆:

uµ(p, s∆) =
∑

λ,s

(1λ
1

2
s|3

2
s∆) eµ(p, λ) u(p, s) , (A.5)

where

eµ(p, λ) =

(

êλ · p
M∆

, êλ +
p(êλ · p)

M∆(p0 +M∆)

)

(A.6)

u(p, s) =

√

E +M∆

2M∆

(

χs
σ·p

E+M∆
χs

)

. (A.7)

For the unit vectors êλ , λ = 0,±1 appearing in Eq.(A.6) we use a spherical representation

ê+ = − 1√
2





1
i
0



 ê0 =





0
0
1



 ê− =
1√
2





1
−i
0



 . (A.8)
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The anti-particle spinors vµ(p, s∆) can be constructed analogously.

The spin-3/2 field, due to its construction via a direct spin-1 – spin-1/2 coupling,
always contains spurious spin-1/2 degrees of freedom. The following complete set of
orthonormal spin projection operators enables the separation of the spin-3/2 and spin-
1/2 components:

(

P
3/2
)

µν
+
(

P
1/2
11

)

µν
+
(

P
1/2
22

)

µν
= gµν (A.9)

(

P I
ij

)

µδ

(

P J
kl

)δ

ν
= δIJδjk

(

P J
il

)

µν
(A.10)

with

(

P 3/2
)

µν
= gµν −

1

3
γµγν −

1

3 p2
(γ · p γµpν + pµγνγ · p )

(

P
1/2
11

)

µν
=

1

3
γµγν −

pµpν
p2

+
1

3 p2
(γ · p γµpν + pµγνγ · p )

(

P
1/2
22

)

µν
=
pµpν
p2

(

P
1/2
12

)

µν
=

1√
3p2

(pµpν − γ · p pνγµ)
(

P
1/2
21

)

µν
=

1√
3p2

(γ · p pµγν − pµpν) . (A.11)

∆ (1232) is an isospin-3/2 system. The four physical states ∆++,∆+,∆0,∆− can be
described by treating the spin-3/2 field Ψµ(x) as an isospin-doublet and attaching an
additional isovector index i = 1, 2, 3 to it. The resulting field, Ψi

µ(x), is therefore a
vector-spinor field both in spin and in isospin space. The vector-spinor construction in
isospin space would allow for six states. We therefore introduce a subsidiary condition,
analogously to Eq.(A.2), to eliminate two degrees of freedom:

τ i Ψi
µ(x) = 0 , (A.12)

where τ i are the three Pauli matrices.
For the three isospin doublets we use the representation

Ψ1
µ =

1√
2

[

∆++ − 1√
3
∆0

1√
3
∆+ − ∆−

]

µ

Ψ2
µ =

i√
2

[

∆++ + 1√
3
∆0

1√
3
∆+ + ∆−

]

µ

Ψ3
µ = −

√

2

3

[

∆+

∆0

]

µ

(A.13)
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One can construct a complete set of orthonormal isospin projection operators to sepa-
rate the isospin-3/2 from the isospin-1/2 components:

ξ
3/2
ij + ξ

1/2
ij = δij (A.14)

ξIijξ
J
jk = δIJξJik (A.15)

with

ξ
3/2
ij = δij − 1

3
τ iτ j =

2

3
δij − i

3
ǫijkτ

k (A.16)

ξ
1/2
ij =

1

3
τ iτ j =

1

3
δij +

i

3
ǫijkτ

k . (A.17)
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Appendix B

Feynman rules

Here we collect the expressions of propagators and vertices relevant for our calculations.

Notation

qµ four-momentum of an external pion

pµ nucleon four-momentum

aµ =
3
∑

i=1

aiµ
τ i

2
external axial field

τ i are the Pauli matrices and isospin indices are written as Latin letters.

From L(2)
π

pion propagator:
iδab

k2 −m2
π + iǫ

(B.1)

From L(1)
πN

nucleon propagator:
i

p/−M0 + iǫ
(B.2)

nucleon – 1 pion (q out):
g0
A

2f 0
π

qµγµγ5τ
a (B.3)

nucleon – axial:

i
g0
A

2
aiµγ

µγ5τ
i (B.4)

nucleon – 1 pion – axial:
i

2f 0
π

abµγ
µǫabcτ c (B.5)

121



Appendix B Feynman rules

nucleon – 2 pions – axial:

i
g0
A

4f 0
π

2 a
c
µγ

µγ5(δ
acτ b + δbcτa − 2δabτ c) (B.6)

From L(2)
πN

nucleon – 2 pions (q1 in, q2 out):

iδab

f 0
π

2

(

−4c1m
2
π +

2c2
M2

0

pµq
µ
1 pνq

ν
2 + 2c3 q

µ
1 q2,µ

)

+ . . . (B.7)

nucleon – 1 pion – axial (q out):

2c3
f 0
π

abµq
µδab − i

c4
2f 0

π

[γµ, γν] qµa
b
ν ǫ

abcτ c + . . . (B.8)

The dots indicate terms which are not needed here.

From L(1)
πN∆

nucleon – delta – 1 pion (q out), Z = −1/2:

cA
f 0
π

qµδabgµν (B.9)

nucleon – delta – axial, Z = −1/2:

icA a
b
µδ

ab (B.10)

From L(1)
π∆

delta – delta – axial:
−ig1

2
abµγ

µγ5 ξ
ik
3/2τ

bξkj3/2 gµν (B.11)

Furthermore, the delta propagator:

−i 1

p/−M0
∆ + iǫ

p2

(M0
∆)2

P 3/2
µν ξij3/2 (B.12)
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Loop integrals

A basic d-dimensional loop integral used at several places in the text is:

∆π(m
2
π) =

1

i

�
ddk

(2π)d
1

m2
π − k2 − iǫ

= md−2
π (4π)−d/2 Γ

(

1 − d

2

)

. (C.1)

Throughout this work we subtract the 1/(d− 4) pole terms via

L(λ) =
λd−4

16π2

{

1

d− 4
− 1

2

[

ln (4π) + Γ′(1) + 1

]}

, (C.2)

where λ is the dimensional regularization scale. Therefore

∆π(m
2
π) = 2m2

π

[

L(λ) +
1

16π2
ln
mπ

λ

]

. (C.3)

For loop integrals involving a nucleon propagator, the subscript I denotes the infrared
singular part, as specified in Sec.2.8.2.

IN(p2, m2
π) =

1

i

�
I

ddk

(2π)d
1

(m2
π − k2 − iǫ)[M2

0 − (p− k)2 − iǫ]
(C.4)

IN(p2, m2
π) = − p2 −M2

0 +m2
π

p2
L(λ) + ĪN(p2, mπ) (C.5)

ĪN(p2, m2
π) = − 1

8π2

α
√

1 − Ω2

1 + 2αΩ + α2
arccos

(

− Ω + α√
1 + 2αΩ + α2

)

− 1

16π2

α(α+ Ω)

1 + 2αΩ + α2

(

2 ln
mπ

λ
− 1
)

(C.6)

α =
mπ

M0

, Ω =
p2 −m2

π −M2
0

2mπM0

. (C.7)
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pµI
(1)
N (p2, m2

π) =
1

i

�
I

ddk

(2π)d
kµ

(m2
π − k2 − iǫ)[M2

0 − (p− k)2 − iǫ]
. (C.8)

Using

p · k =
1

2
(p2 −M2

0 +m2
π) +

1

2
(k2 −m2

π) −
1

2

[

(p− k)2 −M2
0

]

, (C.9)

we obtain

I
(1)
N (p2, m2

π) =
1

2

[

(p2 −M2
0 +m2

π)IN(p2, m2
π) + ∆π(m

2
π)
]

. (C.10)

Throughout our work we use the notation

IN ≡ IN(p2 = M2
0 , m

2
π), I

(1)
N ≡ I

(1)
N (p2 = M2

0 , m
2
π), (C.11)

I∆(p2) ≡ IN(p2,M0 → M0
∆), I∆ ≡ I∆(p2 = M2

0 , m
2
π) . (C.12)
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gA to O(p3) and O(p4) in BChPT

We show the contributions to the axial coupling gA from both the leading- and next-to-
leading one-loop Feynman diagrams (Ampi) in Baryon Chiral Perturbation Theory. To
simplify the calculation we have made use of the gauge condition aµq

µ = 0, without any
loss of generality. According to Fig.4.1, at order p3,

Amp1 = i η†
τ i

2
η ū(p)aiµγ

µγ5u(p)
(

g0
AZN + 4m2

πB9 + 32m4
πF1

)

(D.1)

Amp2 = Amp3 = i
g0
A

f 0
π

2 η
† τ

i

2
η ū(p)aiµγ

µγ5u(p)
(

∆π − 2M2
0 I

(1)
N

)

(D.2)

Amp4 = − i
g0
A

3

4f 2
π

η†
τ i

2
η ū(p)aiµγ

µγ5u(p)

{

∆π − 4M2
0 I

(1)
N − 2M0m

2
π

∂

∂M0
IN

− 8M2
0

d− 1

[(

m4
π

8M3
0

− m2
π

2M0

)

∂

∂M0
IN − m2

π

4M2
0

IN − 1

2
I

(1)
N

]}

(D.3)

Amp5 = − i
g0
A

f 0
π

2 η
† τ

i

2
η ū(p)aiµγ

µγ5u(p) ∆π . (D.4)

Here we use the notation

∂

∂M0
IN =

∂

∂M0
IN(p2)

∣

∣

∣

∣

p2=M2
0

. (D.5)

The nucleon field Ψ is represented in terms of the Dirac spinor u and the isospinor η.
In the O(p4) calculation, we need to evaluate the c1-insertions to Amp2, Amp3 and

Amp4 in Fig.4.1. We replace M0 with M0 − 4c1m
2
π and extract the contribution to gA at

this order by keeping the terms in the expansion in powers of c1 up to and including the
linear one.

The c1-insertions to the graphs of Figs.4.2 and 4.5 contribute to wave-function renor-
malization:

i g0
A ū(p)η

† τ
i

2
η a(i)

µ γ
µγ5

(

1 + Σa(p/ = M0 − 4 c1m
2
π) + Σb(p/ = M0)

)

u(p) , (D.6)
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where Σa and Σb are the nucleon self-energies in Secs.3.2.1, 3.2.2. Again, what is relevant
at our accuracy is the linear term in the expansion of (D.6) in powers of c1.

The graphs shown in Fig.4.3 contribute as follows:

Amp6 = Amp7 = − i
g0
A

(d− 1)f 2
πM0

η†
τ i

2
η ū(p)aiµγ

µγ5u(p)m
2
π

[

c3

(

∆π + IN(m2
π − 4M2

0 )

)

+ c4

(

∆π + 4IN(d− 2)M2
0 + IN m

2
π)

)]

. (D.7)

126



Appendix E

gA to O(ǫ3) in relativistic SSE

The leading-one-loop graphs 1-8 of Fig.4.6 in manifestly covariant SSE give the following
expression:
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where d is the space-time dimension, M0
∆ is the delta mass in the SU(2) chiral limit and
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ZN is the wave-function renormalization factor defined as the residue at the pole of the
nucleon two-point function
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At order ǫ3
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where Σ
(3)
N is the O(ǫ3) nucleon self-energy which includes the contribution of the explicit

∆ (1232) degrees of freedom (see Fig.4.7 and Sec.3.2.3). Explicitly,
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where ∆ is the delta-nucleon mass splitting in the SU(2) chiral limit.
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[80] E. Epelbaum, W. Glöckle and U.-G. Meißner, Nucl. Phys. A747, 362 (2005).

[81] E. Epelbaum, nucl-th/0509032.

136



Bibliography

[82] e.g. see M. Kermani et al., Phys. Rev. C58, 3419 (1998); J. B. Lange et al., Phys.
Rev. Lett. 80, 1597 (1998) and references therein to earlier experiments.

[83] N. Fettes, V. Bernard, U.-G. Meißner, Nucl. Phys. A669, 269 (2000).

[84] J. Zhang, N. Mobed and M. Benmerrouche, nucl-th/9806063.

[85] N. Fettes, Berichte des Forschungszentrums Jülich Nr. 3814 (2000).
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