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Summary

Goal of this work is the consistent description of elastic Compton scattering from
the single nucleon and the deuteron. The theoretical framework chosen is Chiral
Perturbation Theory, which is the low-energy formulation of Quantum Chromo-
dynamics, where we extend the spectrum of active degrees of freedom from only
pions and nucleons to also the ∆(1232) resonance. In the deuteron sector, we treat
the nucleon-nucleon interaction non-perturbatively. Besides the Compton cross sec-
tions, our main concern is with the nucleon polarizabilities, which are a useful tool
to describe the reaction of the internal nucleonic degrees of freeedom to the external
electromagnetic field. Experimentally, only a few nucleon polarizabilities are known.
Especially our present knowledge of the neutron polarizabilities is not satisfying.
The reason why it is so difficult to determine these quantities experimentally is the
finite lifetime of the free neutron. Therefore, we want to contribute to the ongoing
discussion of the neutron polarizabilities by fitting the average over proton and neu-
tron polarizabilities to the elastic deuteron Compton-scattering data. Similarly, we
determine the proton polarizabilities from fits to the single-proton Compton data.
We finally combine both results in order to identify the neutron polarizabilities.

Zusammenfassung

Ziel dieser Arbeit ist die konsistente Beschreibung von elastischer Compton-Streu-
ung am einzelnen Nukleon und am Deuteron. Als theoretischen Rahmen wählen
wir chirale Störungsrechnung, die Niederenergieformulierung der Quantenchromo-
dynamik, wobei wir das Spektrum der aktiven Freiheitsgrade von Pionen und Nu-
kleonen um die ∆(1232)-Resonanz erweitern. Im Deuteron-Sektor behandeln wir die
Nukleon-Nukleon-Wechselwirkung nichtperturbativ. Neben den Compton-Streu-
querschnitten gilt unser Hauptinteresse den Nukleon-Polarisierbarkeiten, einem
nützlichen Instrument, um die Reaktion der inneren Freiheitsgrade des Nukleons
auf das äußere elektromagnetische Feld zu beschreiben. Experimentell sind nur
wenige der Nukleon-Polarisierbarkeiten bekannt. Insbesondere unsere momentane
Kenntnis der Neutron-Polarisierbarkeiten ist nicht zufriedenstellend. Der Grund,
warum es so schwierig ist, diese Größen experimentell zu bestimmen, ist die endliche
Lebensdauer des freien Neutrons. Deshalb wollen wir zu der aktuellen Diskus-
sion der Neutron-Polarisierbarkeiten beitragen, indem wir das Mittel von Proton-
und Neutron-Polarisierbarkeiten an die elastischen Deuteron-Compton-Streudaten
anfitten. Ebenso bestimmen wir die Proton-Polarisierbarkeiten aus Fits an die
Proton-Compton-Streudaten. Schließlich kombinieren wir beide Ergebnisse, um die
Neutron-Polarisierbarkeiten zu ermitteln.
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Chapter 1

Introduction

1.1 Compton Scattering and the Nucleon

Polarizabilities

The structure of protons and neutrons as analyzed with electromagnetic probes
has been under experimental and theoretical investigation for a number of decades.
While for photon energies below 25 MeV the experimental cross section is well de-
scribed with the assumption of a point-like spin-1/2 nucleon with an additional
anomalous magnetic moment κ [1], the internal structure of the nucleon starts to
play a role at higher energies. In Compton scattering, the external electromagnetic
field of the photon attempts to deform the nucleon. The electromagnetic polarizabil-
ities provide a measure of the global resistance of the nucleon’s internal degrees of
freedom against displacement in an external electric or magnetic field, which makes
them an excellent tool to study the structure of the nucleon. The most prominent
two nucleon polarizabilities, the electric and magnetic dipole polarizabilities1 ᾱE1

and β̄M1, are connected via the famous Baldin sum rule with the total photon-
nucleon cross section [2]. This sum rule is derived via the Kramers-Kronig relation
from the low-energy theorems, an expansion of the forward-scattering amplitude in
the photon energy [3]. It reads

ᾱE1 + β̄M1 =
1

2 π2

∫ ∞

ωth

dω
σtot(ω)

ω2
(1.1)

with ω the photon energy and ωth the threshold energy for pion photo-production.
The leading-order effective Hamiltonian, which arises due to the nucleon being

polarized by the photon, is (see e.g. [4])

Heff = −1

2
4π
[

ᾱE1
~E2 + β̄M1

~B2
]

. (1.2)

This Hamiltonian, however, includes only terms of second order in ω and can be
extended, as long as symmetries like gauge-, Lorentz- and isospin-invariance are re-
spected. One of the O(ω4)-terms is proportional to the square of the time derivative
of the electric field:

δHeff = −1

2
4π
[

αν
E1

~̇E2
]

(1.3)

Such corrections may be resummed to a dynamical, i.e. energy-dependent polariz-
ability

ᾱE1 + αν
E1 ω

2 + · · · → αE1(ω), (1.4)

1We denote the static polarizabilities, i.e. the polarizabilities in the limit of vanishing photon
energy, by a bar throughout this work.
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12 CHAPTER 1. INTRODUCTION

which in turn provides information on the energy dependence of the internal nu-
cleonic degrees of freedom. In this work we deal with dynamical polarizabilities in
terms of multipole expansions.

Apart from αE1(ω) and βM1(ω) there exist further polarizabilities, such as the
spin-dependent dipole polarizabilities and quadrupole polarizabilities. In this work
we are mainly concerned with the dipole polarizabilities because we will see that in
the energy range where our calculation is supposed to be valid, polarizabilities of
higher multipole order are negligible in describing nucleon Compton cross sections.
Stated differently, we observe a fast convergence of the Compton multipole expan-
sion. On the other hand, the spin polarizabilities do give important contributions.
Therefore, we rewrite Eq. (1.2), extended to the (energy-dependent) spin dipole
polarizabilities:

Heff = −2π
[

αE1(ω) ~E2 + βM1(ω) ~B2 + γE1E1(ω)~σ · ~E × ~̇E (1.5)

+ γM1M1(ω)~σ · ~B × ~̇B − 2 γM1E2(ω)σi Eij Bj + 2 γE1M2(ω)σi Bij Ej

]

This Hamiltonian can be found e.g. in [4], with ~σ denoting the nucleon spin, Tij =
1
2 (∂iTj + ∂jTi) and the indices of the spin polarizabilities chosen such that γTlT ′l′

parameterizes a T l (T ′l′) transition at the first (second) photon vertex.
The experimentally best-known nucleon polarizabilities are the static electric

and magnetic dipole polarizabilities of the proton, ᾱp
E1 and β̄p

M1. They are extracted
from proton Compton-scattering data, and a large number of such experiments has
been performed over the past decades, see e.g. Refs. [5-9]. In [5], a global, Baldin-
sum-rule-constrained fit to the wealth of Compton-scattering data on the proton
yielded

ᾱp
E1 = (12.1 ± 0.3 (stat) ∓ 0.4 (syst) ± 0.3 (model)) · 10−4 fm3,

β̄p
M1 = (1.6 ± 0.4 (stat) ± 0.4 (syst) ± 0.4 (model)) · 10−4 fm3, (1.6)

where the errors include statistical and systematic uncertainties as well as estimates
of model dependence in the analysis. These numbers are very close to those recom-
mended in a recent review [10], which were obtained as the weighted average over
several experiments:

ᾱp
E1 = (12.0 ± 0.6) · 10−4 fm3

β̄p
M1 = (1.9 ∓ 0.6) · 10−4 fm3 (1.7)

Comparing these values to the typical size of a proton (∼ 1 fm3) we find that nucle-
ons are hard to deform, i.e. they are rather stiff objects. Note that the experiments
from which the numbers of Eq. (1.6) are derived, have not been performed for near-
static photons but in an energy range of about 55 - 800 MeV. Therefore theoretical
input, e.g. from a Dispersion-Relation Analysis, is unavoidable in the extraction of
ᾱE1 and β̄M1.

Stable single-neutron targets do not exist. It is therefore much harder to access
the neutron polarizabilities experimentally. An experiment on quasi-free Compton
scattering from the proton and neutron bound in the deuteron [11] gives results for
the neutron polarizabilities which suggest very small isovector components2 when
compared to Eqs. (1.6, 1.7):

ᾱn
E1 = (12.5 ± 1.8 (stat) +1.1

−0.6 (syst) ± 1.1 (model)) · 10−4 fm3

β̄n
M1 = (2.7 ∓ 1.8 (stat) +0.6

−1.1 (syst) ∓ 1.1 (model)) · 10−4 fm3 (1.8)

2The isovector polarizabilities are defined as αv
E1

≡
1

2
(αp

E1
− αn

E1
), βv

M1
≡

1

2
(βp

M1
− βn

M1
).
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The central values of Eq. (1.8) are identical to those suggested in [10], which were
obtained – like the proton values given in Eq. (1.7) – as the weighted average over
several experiments:

ᾱn
E1 = (12.5 ± 1.7) · 10−4 fm3

β̄n
M1 = (2.7 ∓ 1.8) · 10−4 fm3 (1.9)

The two procedures entering Eq. (1.9) are quasi-free Compton scattering from the
neutron and electromagnetic scattering of neutrons on lead. A similar observation
for ᾱn

E1 has been made in [12], where the latter process was investigated:

ᾱn
E1 = (12.6 ± 2.5) · 10−4 fm3 (1.10)

However, the precision of this result has been questioned by the authors of [13].
Their estimate of the correct range for the result from [12] is 7 ≤ ᾱn

E1 ≤ 19. On the
other hand, another experiment [14], using the same technique, gives a completely
different result:

ᾱn
E1 = (0.6 ± 5.0) · 10−4 fm3 (1.11)

On the theory side, non-relativistic Chiral Perturbation Theory predicts that
the proton and neutron polarizabilities are equal at leading-one-loop order [15],
since the pion loops that generate these contributions are isoscalar in nature. The
absence of large isovector pieces in αE1 and βM1 is therefore in accord with this
picture. The isoscalar O(p4)-HBχPT estimate [16], ᾱs

E1 = (11.95± 2.5) · 10−4 fm3,
β̄s

M1 = (5.65±5.1) ·10−4 fm3, is consistent with vanishing isovector polarizabilities,
when compared to the numbers given in Eq. (1.9), but no meaningful conclusion
can be drawn due to the large error bars in the O(p4) estimate, which in addition is
cutoff dependent. The reason for the huge error bars is sensitivity to short-distance
contributions that were estimated using the resonance-saturation hypothesis.

Another possible way to determine the neutron polarizabilities is elastic low-
energy Compton scattering from light nuclei, e.g. from the deuteron. Several
experiments have already been performed [17, 18, 19] and further proposals ex-
ist – e.g. Compton scattering on the deuteron or 3He at TUNL/HIγS [20]3 and
on deuteron targets at MAXlab [21]. The latter proposal has already been ac-
cepted and promises an extensive study of elastic deuteron Compton scattering
below the pion-production threshold. From a theorist’s point of view, extracting
the neutron polarizabilities from elastic γd scattering requires an accurate descrip-
tion of the nucleon structure and of the dynamics of the low-energy degrees of
freedom within the deuteron, as one has to account for the proton polarizabilities
as well as for nuclear binding effects. A first attempt to fit the isoscalar polar-
izabilities ᾱs

E1 ≡ 1
2 (ᾱp

E1 + ᾱn
E1), β̄

s
M1 ≡ 1

2 (β̄p
M1 + β̄n

M1) to the elastic deuteron
Compton-scattering data from [17, 19] has been made in [22]. The extracted neu-
tron polarizabilities ᾱn

E1 = (9.0 ± 3.0) · 10−4 fm3, β̄n
M1 = (11.0 ± 3.0) · 10−4 fm3

indicate the possibility of a rather large isovector part, in contrast to the quasi-
elastic results from [11]. They also disagree with the isoscalar Baldin sum rule,
ᾱs

E1 + β̄s
M1 = (14.5 ± 0.6) · 10−4 fm3, cf. Chapter 5 for details. The same pattern

is observed, albeit less pronounced, in the fit of Ref. [23] to the data measured at
49 MeV [17] and 55 MeV [18] within an Effective Field Theory with pions integrated
out: ᾱs

E1 = (12.3 ± 1.4) · 10−4 fm3, β̄s
M1 = (5.0 ± 1.6) · 10−4 fm3. On the other

hand, comparing the elastic deuteron Compton calculation of Ref. [24] with the
data from [17] is in good agreement with nearly vanishing isovector polarizabilities:
ᾱn

E1 = (12.0 ± 4.0) · 10−4 fm3, β̄n
M1 = (2.0 ± 4.0) · 10−4 fm3, albeit within rather

large error bars.

3Experiments on 3He are especially well suited to investigate the spin structure of the neutron,
which mainly carries the spin of the 3He-nucleus.
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It is obvious from these partly contradictory results that there is still a lot of
work to be done in order to have reliable values for ᾱn

E1 and β̄n
M1. Therefore, in

this thesis we contribute to the ongoing discussion of the neutron polarizabilities,
investigating single-nucleon Compton scattering and elastic Compton scattering
from the deuteron. The framework is Chiral Effective Field Theory (χEFT), al-
lowing for non-perturbative methods in the deuteron section. In general, χEFT
provides a consistent, controlled framework for elastic γp and γd scattering within
which nucleon-structure effects can be disentangled from meson-exchange currents,
deuteron binding, etc. It also allows for an estimate of the uncertainties arising
from higher-order corrections.

We perform a multipole expansion of the Compton amplitude in the single-
nucleon Compton calculation, mainly for two reasons: Firstly, we are interested in
the Compton multipoles themselves, which we combine to dynamical polarizabili-
ties, cf. Eq. (1.4). These multipole amplitudes exhibit the response of the various
nucleonic degrees of freedom to the external electromagnetic field of the scattered
photon and therefore provide valuable information on the structure of the nucleon.
The second reason is that it is often sufficient to include only the leading terms of
the multipole expansion in order to achieve a good approximation of the full calcu-
lation. We demonstrate that this scenario also holds in nucleon Compton scattering
and conclude that the few contributing parameters, i.e. the six dipole polarizabili-
ties, may be extracted from a combination of spin-averaged and polarized Compton
experiments. The two parameters ᾱp

E1 and β̄p
M1, which are a priori free in our

calculation, are determined via fits to proton Compton data.
The central goal of this work is to extract not only the proton but also the

neutron values for ᾱE1 and β̄M1 from data. Therefore in the second main part
we are concerned with elastic deuteron Compton scattering, which was introduced
before as one of the possible ways to determine the isoscalar polarizabilities. We
present two partly different calculations of deuteron Compton scattering. The first
one agrees well with the high-energy data but it fails to describe the low-energy
regime, say the region ω ≪ 50 MeV, correctly, a feature that we have in common
with other calculations such as [25]. On the other hand, all calculations on elastic
deuteron Compton scattering existing so far, which reach the correct low-energy
limit, have problems to describe the high-energy data from [19], see e.g. [22, 24].
Therefore, we consider it as one of the central points of this work that in our second
approach to γd scattering we obtain a consistent and novel description of all existing
deuteron Compton data, which also fulfills the low-energy theorem, i.e. we obtain
the well-known Thomson-limit of elastic deuteron Compton scattering. The good
description of the data enables us to perform a global fit of the isoscalar polariz-
abilities to all data points. These numbers are combined with our fit results for the
proton polarizabilities, yielding values which prove that the data basis on elastic γd
scattering is in good agreement with even vanishing isovector polarizabilities.

Parts of this work have been published in our papers Refs. [26], [27] and [28].
Some elements are based on my diploma thesis [29].

1.2 Outline

This thesis is structured in the following way:
In Chapter 2 we give a brief introduction to the two versions of Chiral Effective

Field Theory applied in this work, starting with “Heavy Baryon Chiral Perturbation
Theory” (HBχPT, Section 2.1), which is the low-energy formulation of Quantum
Chromodynamics (QCD) with pions and nucleons as active degrees of freedom. In
Section 2.2 we review how this theory is modified in the so-called “Small Scale
Expansion”, an extension of HBχPT including the ∆(1232)-resonance field as an
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additional explicit degree of freedom. In both sections we write down the respective
Lagrangeans relevant for this work.

Chapter 3 is dedicated to spin-averaged single-nucleon Compton scattering. We
derive a multipole expansion for this process and compare the Compton cross sec-
tions, calculated in leading-one-loop order HBχPT and SSE, respectively, to a
Dispersion-Relation Analysis and experiments. In the SSE description we allow
for free polarizabilities ᾱE1 and β̄M1, which we fit to proton Compton data. Fur-
thermore, we use the various multipole amplitudes to define dynamical, i.e. energy-
dependent nucleon polarizabilities, cf. Section 1.1, and we compare the results
achieved for these quantities within the three theoretical frameworks.

After the chapter on unpolarized cross sections we turn to polarized Compton
scattering in Chapter 4, where we calculate several asymmetries, using circularly
and linearly polarized photons. We demonstrate that determining the six dipole
polarizabilities directly from experiment is possible, due to the strong sensitivity of
selected observables to the spin polarizabilities.

Our most prominent aim is to extract the proton and the neutron values for
ᾱE1 and β̄M1 from data within one consistent framework. As there are no data
on Compton scattering from the neutron, we turn in Chapters 5 and 6 to elastic
deuteron Compton scattering in order to determine the isoscalar polarizabilities.
The main difference between the two chapters is that in Chapter 5 we restrict
ourselves to photon energies of the order of 100 MeV which enables us to calculate
the γd kernel strictly according to the power-counting rules of the Small Scale
Expansion. In Chapter 6, we allow for non-perturbative aspects via the inclusion
of the two-nucleon T -matrix in the intermediate state, which turns out to be a
necessary modification in order to describe low-energy deuteron Compton scattering
correctly. In both approaches we fit the isoscalar polarizabilities ᾱs

E1, β̄
s
M1 and

combine the respective numbers with our results for the proton polarizabilities in
order to determine those of the neutron. Both extractions agree well with each
other within their (small) error bars and with the results of Ref. [11], however only
in Chapter 6 we are able to fit to all existing elastic deuteron Compton data.

We conclude in Chapter 7, having shifted the most technical parts of this thesis
to the appendices.



Chapter 2

Chiral Effective Field

Theories

In this chapter we want to give a brief survey of the two Effective Field Theories
applied in this work, starting with “Heavy Baryon Chiral Perturbation Theory”
(HBχPT), which is the low-energy formulation of Quantum Chromodynamics in-
cluding nucleons and pions as active degrees of freedom. In the succeeding section
we shortly introduce the so-called “Small Scale Expansion” (SSE), an extension
of the former theory that, in addition, also includes the ∆(1232) resonance as an
explicit degree of freedom.

2.1 Heavy Baryon Chiral Perturbation Theory

The theory of strong interactions, QCD, describes point-like fermions of spin 1
2 , the

so-called quarks, which interact with each other via the exchange of gauge-bosons,
the gluons. These particles couple to the “color” of the quarks, an additional
degree of freedom which was introduced in order to maintain the demand of totally
antisymmetric fermion wave functions, see e.g. [30]. At low momentum transfer,
however, the coupling constant of QCD becomes rather strong and quarks and
gluons are no longer the relevant degrees of freedom. In fact they are confined in
color-neutral objects, the hadrons, which therefore are the active degrees of freedom
of low-energy QCD.

When we compare the masses of the six different quark flavors, we find three
flavors – “up”, “down” and “strange” – which are considerably lighter than the
nucleon. Their masses (at a renormalization scale of about 1 GeV) are [31]

mu ≈ 4 MeV, md ≈ 8 MeV, ms ≈ 164 MeV. (2.1)

The other quark flavors (“charm”, “bottom” and “top”) are heavy, i.e. their masses
exceed the nucleon mass. Therefore, it is sufficient for many applications to only
calculate with the three light flavors, or even with only up and down quarks.

Due to the low masses of the light quark flavors, it is instructive to investigate
the so-called “chiral limit”, i.e. the limit of vanishing quark masses. In this limit,
the QCD-Lagrangean exhibits another symmetry, the “chiral symmetry”, which
forbids the coupling of right-handed to left-handed quarks. In order to demonstrate
this symmetry we write the Lagrangean of a free, mass-less fermion,

L = iψ̄γµ∂
µψ (2.2)

in terms of right- and left-handed particles:

L = iψ̄Rγµ∂
µψR + iψ̄Lγµ∂

µψL (2.3)

16
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with

ψR =
1

2
(1 + γ5)ψ, ψL =

1

2
(1 − γ5)ψ. (2.4)

Obviously, the two kinds of fermions in Eq. (2.3) do not interact with each other,
i.e. in the chiral limit the Lagrangean of QCD is invariant under the global, unitary
transformations in flavor space

ψR → UR ψR = exp
[

iθa
R

τa
2

]

ψR, ψL → UL ψL = exp
[

iθa
L

τa
2

]

ψL (2.5)

with τa the Pauli isospin matrices. Here we restrict ourselves to the lightest two
quark flavors, i.e. UR, UL ∈ SU(2). The corresponding conserved Noether currents
are

Jµ
R,a = ψ̄Rγ

µ τa
2
ψR, Jµ

L,a = ψ̄Lγ
µ τa

2
ψL, (2.6)

which can be rewritten by addition or subtraction as the often used isospin (vector)
and axial-vector currents

V µ
a = ψ̄γµ τa

2
ψ, Aµ

a = ψ̄γµγ5
τa
2
ψ. (2.7)

Including the SU(2)-quark-mass matrix m̂ in the Lagrangean explicitly breaks
chiral symmetry, as such a term couples left- to right-handed quarks:

Lm = ψ̄ m̂ ψ = ψ̄L m̂ ψR + ψ̄R m̂ ψL (2.8)

Nevertheless, due to the small size of the quark masses, chiral symmetry might
still be fulfilled to a good approximation. In this case, all hadrons would appear
as doublets of nearly equal mass but opposite parity. However, investigating the
hadronic spectrum we find that chiral symmetry has to be spontaneously broken, as
e.g. the pseudoscalar (JP = 0−) mesons are considerably lighter than their pendants
with positive parity. On the other hand, mu ≈ md, cf. Eq. (2.1), i.e. isospin
symmetry is nearly exactly preserved. Therefore, the symmetry SU(2)L × SU(2)R

is obviously broken to SU(2)V .
Whenever a global, continuous symmetry of the Lagrangean is spontaneously

broken, Goldstone’s theorem applies and massless Goldstone-bosons occur. In the
case of chiral symmetry with two active quark flavors there are three generators
broken, i.e. we expect the observation of three Goldstone-bosons. These are the
three pions, which are by far the lightest of the hadrons. Their quantum numbers
coincide with breaking the axial-vector symmetry: Like the 0-component of the axial
current they are of pseudoscalar nature [31]. Although they are the Goldstone-
bosons of chiral symmetry breaking, the pions do have a small mass due to the
non-vanishing quark masses, which explicitly break chiral symmetry. Nevertheless,
the mass gap between the pions and all other hadrons suggests that the pions are
the relevant low-energy degrees of freedom of QCD.

It is at the heart of perturbation theory to have a small expansion parameter.
In Chiral Perturbation Theory (χPT), the low-energy formulation of QCD with
only pions as active degrees of freedom [32], this parameter is given by the pion
mass or a small momentum, divided by the characteristic scale, which is Λχ =
4πfπ ≈ 1161 MeV with the pion-decay constant fπ. Obviously, the expansion only
converges for momenta of the external probe – in our case the scattered photon –
which are much smaller than the breakdown scale Λχ.

In this work we are interested in processes involving one or two nucleons. There-
fore we use Heavy Baryon Chiral Perturbation Theory, an extension of χPT which
explicitly includes the nucleon as an additional degree of freedom [33]. Weinberg
showed [34], how one can systematically include contributions from pion loops to



18 CHAPTER 2. CHIRAL EFFECTIVE FIELD THEORIES

the tree-level diagrams. These corrections are often referred to as contributions
from the “pion-cloud” around the nucleon.

In HBχPT one assumes small momenta of the heavy nucleons and therefore
includes their kinetic energy only perturbatively. As long as the nucleons are on-
shell, this is a valid procedure for low energies, however we will encounter a severe
problem in our deuteron calculation, where even for external sources of vanishing
energy the nucleons are non-static, due to their slight off-shellness.

For completeness, in the following we list all HBχPT Lagrangeans relevant for
real Compton scattering up to O(p3), the order to which we are working. However,
except for the leading-order Lagrangeans we restrict ourselves to those parts which
actually contribute to Compton scattering. We choose the Weyl-gauge, i.e. v ·A = 0
with the four-velocity vµ of the nucleon and the photon field Aµ. Further details
can be found in Ref. [35], albeit our convention differs from [35] in the sense, that
we split the photon field into isoscalar and isovector parts.

The Lagrangean is composed of baryonic and purely pionic parts,

L(3)
CS = L(1)

πN + L(2)
πN + L(3)

πN + L(2)
ππ + L(4)

ππ (2.9)

with

L(1)
πN = N̄v (iv ·D + gA S · u)Nv, (2.10)

L(2)
πN =

1

2mN
N̄v

{

(v ·D)2 −D2

− i

2
[Sµ, Sν]

[

(1 + κv) f
+
µν + 2 (1 + κs) v

(s)
µν

]

+ . . .

}

Nv, (2.11)

L(3)
πN =

−1

8m2
N

N̄v

{

(1 + 2κv) [Sµ, Sν ] fµσ
+ vσ D

ν

+ 2 (κs − κv) [Sµ, Sν ] vµσ
(s) vσ D

ν + h. c.+ . . .

}

Nv. (2.12)

gA is the axial pion-nucleon coupling constant at leading order, mN the nucleon
mass and κs = κp +κn (κv = κp−κn) the anomalous isoscalar (isovector) magnetic
moment of the nucleon. The velocity projection operator

P+
v =

1

2
(1 + v/) (2.13)

projects from the relativistic nucleon Dirac field ΨN to the velocity-dependent nu-
cleon field via

Nv = exp [imNv · x]P+
v ΨN . (2.14)

Sµ is the Pauli-Lubanski vector (see e.g. [35]) and

Dµ = ∂µ + Γµ − iv(s)
µ (2.15)

denotes the covariant derivative of the nucleon. The chiral tensors contained in the
above equations are

U = u2 = exp [i~τ · ~π/fπ] , (2.16)

Γµ =
1

2

{

u†
(

∂µ − i e
τ3

2
Aµ

)

u+ u

(

∂µ − i e
τ3

2
Aµ

)

u†
}

(2.17)

and

uµ = i

{

u†
(

∂µ − i e
τ3

2
Aµ

)

u− u

(

∂µ − i e
τ3

2
Aµ

)

u†
}

(2.18)
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with ~π representing the pion field. v
(s)
µ = e

2 Aµ denotes an isoscalar photon field
and the corresponding field-strength tensors are

v(s)
µν = ∂µv

(s)
ν − ∂νv

(s)
µ , (2.19)

fµν
+ = u e

τ3

2
(∂µAν − ∂νAµ) u† + u† e

τ3

2
(∂µAν − ∂νAµ) u. (2.20)

As far as the purely mesonic sector is concerned, we need

L(2)
ππ =

f2
π

4
tr
[

(∇µ U)† ∇µ U + χ† U + χU †
]

(2.21)

and

L(4)
ππ = − e2

32 π2 fπ
ǫµναβ fµν fαβ π

0 + . . . , (2.22)

where ǫ0123 = 1. Eq. (2.22) is responsible for the decay of an uncharged pion into
two photons, i.e. for the pion-pole diagram, Fig. B.1(d). For further details on
this decay we refer the reader to Refs. [36, 37]. The chiral tensors in Eqs. (2.21)
and (2.22) are

∇µU = ∂µU − i
e

2
Aµ [τ3, U ] , (2.23)

χ = 2B m̂ (2.24)

with the quark-condensate parameter B and the SU(2)-quark-mass matrix m̂ in the
isospin limit mu = md, which has already been introduced in Eq. (2.8). fµν is the
well-known field-strength tensor

fµν = ∂µAν − ∂νAµ. (2.25)

Now we have prepared all tools in order to calculate real Compton scattering up
to leading-one-loop order in HBχPT. However, it has been known for many decades
that the ∆(1232) resonance plays a crucial role in this process. Therefore, in the
next section we extend the spectrum of explicit degrees of freedom for this first
nucleonic resonance.

2.2 Small Scale Expansion

Concerning the mass difference ∆0 between the ∆(1232) and the nucleon, there
exist two complementary points of view: Some authors consider ∆0 to be much
larger than mπ and therefore argue that the contributions from the ∆ resonance
may be absorbed into higher-order contact terms [35]. In other publications the
∆ resonance is included as an explicit degree of freedom because one might expect
that due to the strong N∆-coupling the ∆(1232) gives as important contributions
as the pion cloud. The idea to extend HBχPT in such a way has its origin in
the early 1990’s [38]. Whether or not it is advantageous to include the ∆(1232)
explicitly of course depends on the process under investigation, e.g. the pion-mass
dependence of the nucleon mass is rather weakly influenced by the ∆(1232) [39],
whereas the anomalous magnetic moment of the nucleon depends strongly on the
∆ resonance [40].

In nucleon Compton scattering, the ∆(1232) resonance is well-known to play
a crucial role, see e.g. [9]. Therefore, in this work we include the ∆ resonance
explicitly, i.e. we need to specify how the ∆N mass splitting ∆0 is treated in the
power counting. Here we use the so-called Small Scale Expansion (SSE) [41, 42]1,

1We note that there also exist alternative approaches for Chiral Effective Field Theories with
explicit π, N and ∆ degrees of freedom, e.g. the δ-expansion [43], which was recently shown to
describe γp cross-section data well in an energy range from ω = 0 MeV to ω = 300 MeV.
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where the expansion parameter is called ǫ, denoting either a small momentum, the
pion mass or the mass difference ∆0 between the real part of the ∆ mass and the
nucleon mass:

∆0 = Re[m∆] −mN (2.26)

We note that the SSE power counting is constructed such that up to a certain order
in ǫ all HBχPT diagrams to the same order are included as well. In this work, real
Compton scattering on the nucleon and on the deuteron is investigated up to third
order (O(ǫ3)) in the Small Scale Expansion.

In the following we summarize all parts of the SSE Lagrangean, which are rel-
evant for our calculation and contain the explicit ∆ field. The notation is adapted
from [42] and [26].

L(1)
∆ = −T̄ µ

i gµν

[

iv ·Dij − ∆ δij + . . .
]

T ν
j (2.27)

L(1)
N∆ = gπN∆ T̄

µ
i w

i
µN + h.c. (2.28)

L(2)
N∆ = T̄ µ

i

[

i b1
M

Sν f i
+µν + . . .

]

N + h.c. (2.29)

Here
T i

µ(x) = P+
v P

3/2
(33)µν ψ

ν
i (x) exp(iM v · x) (2.30)

denotes the “light” part of the spin-3/2 baryon field ψi
µ, which is projected from

the relativistic Rarita-Schwinger field via the spin-3/2 projection operator for fields
of constant “velocity”,

P
3/2
(33)µν = gµν − 1

3
γµ γν − 1

3
(v/ γµ vν + vµ γν v/) , (2.31)

whereas the remaining “heavy” parts are integrated out. For further details cf.
Ref. [42]. The chiral tensors in Eqs. (2.27-2.29) are

Dij
µ = ∂µ δ

ij − i
e

2
(1 + τ3)Aµ δ

ij + e ǫi3j Aµ + . . . , (2.32)

wi
µ = − 1

fπ
∂µ π

i − e

fπ
Aµ ǫ

i3j πj + . . . , (2.33)

f i
+µν = e δi3 (∂µAν − ∂ν Aµ) + . . . . (2.34)

The two coupling constants in Eqs. (2.28) and (2.29) are gπN∆, which parameterizes
the leading-order πN∆ coupling, and b1, the leading-order constant of the ∆ → Nγ
transition.

In the original formulation of SSE, the only contributions to a leading-one-loop
order calculation of nucleon Compton scattering come from the Lagrangeans given
in Section 2.1 and Eqs. (2.27-2.29). However, we found that including only these
tools we are missing strong diamagnetic contributions, which are necessary to render
the magnetic dipole polarizability a small number, as found in experiments such
as [5, 11]. In fact, using only the above Lagrangeans, β̄M1 turns out to be of the same
order of magnitude as the electric dipole polarizability ᾱE1, in clear contradiction
to experiment. Therefore, we include two additional γγNN couplings g1, g2 [44]2

in the leading-one-loop SSE analysis, which are formally of higher order, but will
turn out to be anomalously large. The corresponding short-distance Lagrangeans
are

Lsd
1 =

2 g1
(4π fπ)2mN

N̄ vµ vν
〈

f̃λµ f̃
λ
ν

〉

N, (2.35)

Lsd
2 =

2 g2
(4π fπ)2mN

N̄
〈

f̃µν f̃
µν
〉

N (2.36)

2The coupling constants g1 and g2 correspond to g117 and g118 in [44].



2.2. SMALL SCALE EXPANSION 21

with the electromagnetic field-strength tensor f̃µν = e
2 τ3 (∂µAν − ∂νAµ) [35]. To

promote these two structures to leading-one-loop order modifies the power counting,
as they are formally part of the next-to-leading one-loop order chiral Lagrangean
[44]. However, we will see in the next chapter that due to their unnaturally strong
contributions to nucleon Compton scattering we cannot avoid this modification.

Now that we have fixed – albeit very briefly – the theoretical framework of
our calculation, we turn to the first main part of this work: Elastic, spin-averaged
Compton scattering from the single nucleon.



Chapter 3

Unpolarized Compton

Scattering and Nucleon

Polarizabilities

We turn now to the first main part of this work: Compton scattering on the single
nucleon. While we discuss both proton and neutron Compton scattering, we are
aware of the fact that experiments using single-neutron targets are not feasible due
to the finite life-time of the free neutron. Therefore the main focus will be on proton
Compton cross sections, where a large amount of data exists (Section 3.3). We also
discuss in detail the response of the internal degrees of freedom of the nucleon to
an external electromagnetic field, represented e.g. by a photon that is scattered on
the nucleon. This reaction is described in Section 3.5 in terms of dynamical nu-
cleon polarizabilities, which show a characteristic dependence on the photon energy.
These polarizabilities are defined via a multipole expansion in Compton scattering,
derived in Section 3.1. One of the advantages is that the inclusion of only a few
multipoles is often sufficient to obtain a good approximation of the full calculation.
Only when such a reduction of the parameters can be achieved, there is hope that
the unknown structure can be fitted to experimental data. We show that our full
calculation is nearly indistinguishable from an approximation which includes only
the six dynamical dipole polarizabilities. Therefore we conclude that determining
the dipole polarizabilities of the nucleon is possible, combining spin-averaged cross
sections (Chapter 3) and polarized ones (Chapter 4).

The results of this chapter are published in our Ref. [26] and partly in my
diploma thesis, Ref. [29]. Throughout the chapter we will indicate new results with
respect to [29].
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3.1 Multipole Expansion for Nucleon Compton

Scattering

3.1.1 From Amplitudes to Multipoles

The T -matrix for real Compton scattering off the nucleon is written in terms of six
structure amplitudes Ai(ω, z), i = 1, . . . , 6:

Tfi(ω, z) = A1(ω, z)~ǫ
′ · ~ǫ+A2(ω, z)~ǫ

′ · k̂ ~ǫ · k̂′

+ i A3(ω, z)~σ · (~ǫ ′ × ~ǫ ) + i A4(ω, z)~σ · (k̂′ × k̂)~ǫ ′ · ~ǫ

+ i A5(ω, z)~σ ·
[

(~ǫ ′ × k̂)~ǫ · k̂′ − (~ǫ× k̂′)~ǫ ′ · k̂
]

+ i A6(ω, z)~σ ·
[

(~ǫ ′ × k̂′)~ǫ · k̂′ − (~ǫ× k̂)~ǫ ′ · k̂
]

(3.1)

For the Compton multipole expansion, we follow Ritus et al. [45] and work in the
center-of-mass (cm) frame, i.e. ω denotes the cm energy of a real photon scattering
under the cm angle θ (z = cos θ) off a nucleon. ~σ is the vector of the Pauli spin

matrices, ~̂ki = ~ki/ω (~̂kf = ~kf/ω) denotes the unit vector in the momentum direction
of the incoming (outgoing) photon with polarization ~ǫ (~ǫ ′).

Expanding the Compton-scattering amplitude into multipoles has a long tradi-
tion [45], albeit then it was common to use a slightly different basis. The connection
between the amplitudes used in [45] and written in Eq. (3.4), and those of Eq. (3.1),
reads

A1 =
4πW

mN
(R1 + zR2),

A2 =
4πW

mN
(−R2),

A3 =
4πW

mN
(R3 + zR4 + 2zR5 + 2R6),

A4 =
4πW

mN
(R4),

A5 =
4πW

mN
(−R4 −R5),

A6 =
4πW

mN
(−R6) (3.2)

with W =
√
s = ω+

√

m2
N + ω2 denoting the total cm energy and mN the nucleon

mass.
The multipole expansion is defined for the complete Compton amplitude. Nu-

cleon structure effects as for example expressed in ᾱE1 and β̄M1, cf. Section 1.1,
involve processes for which the particle content between the interactions of the in-
and outgoing photon goes beyond the single nucleon. This corresponds to subtract-
ing from the full amplitudes the Powell amplitudes [1] of Compton scattering on a
point-like nucleon of spin 1

2 and anomalous magnetic moment κ. Therefore, we sep-
arate the six amplitudes into structure-independent (pole) and structure-dependent
(non-pole) parts,

Ri(ω, z) = Rpole
i (ω, z) + R̄i(ω, z). (3.3)

We specify the pole contributions as those terms which have a nucleon pole in the s-
or u-channel and in addition as terms with a pion pole in the t-channel. Schemat-
ically, we show these three contributions in Fig. 3.1 and note that any theoretical
framework utilized to calculate Compton scattering has to clearly state the sep-
aration of these pole contributions before any information on static or dynamical
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Figure 3.1: Schematic representation of the three types of pole contributions to
nucleon Compton scattering in the s-, u- and t-channel (left to right).

polarizabilities can be obtained. Obviously, any Compton observable is independent
of the choice of separating the amplitudes.

As the pole contributions to nucleon Compton scattering and the resulting
low-energy theorems have been known for many decades [3], the main interest in
Compton studies over the past few years focused on the non-pole contributions R̄i.
Ref. [46] suggested that the Compton multipole expansion should be applied only
to these structure-dependent terms. In analogy to Ref. [45], one obtains [4]1

R̄1(ω, z) =

∞
∑

l=1

{

[

(l + 1) f l+
EE(ω) + l f l−

EE(ω)
] (

l P ′l (z) + P ′′l−1(z)
)

−
[

(l + 1) f l+
MM (ω) + l f l−

MM (ω)
]

P ′′l (z)

}

,

R̄2(ω, z) =
∞
∑

l=1

{

[

(l + 1) f l+
MM (ω) + l f l−

MM (ω)
] (

l P ′l (z) + P ′′l−1(z)
)

−
[

(l + 1) f l+
EE(ω) + l f l−

EE(ω)
]

P ′′l (z)

}

,

R̄3(ω, z) =
∞
∑

l=1

{

[

f l+
EE(ω) − f l−

EE(ω)
] (

P ′′l−1(z) − l2 P ′l (z)
)

−
[

f l+
MM (ω) − f l−

MM (ω)
]

P ′′l (z) + 2f l+
EM (ω)P ′′l+1(z) − 2f l+

ME(ω)P ′′l (z)

}

,

R̄4(ω, z) =
∞
∑

l=1

{

[

f l+
MM (ω) − f l−

MM (ω)
] (

P ′′l−1(z) − l2 P ′l (z)
)

−
[

f l+
EE(ω) − f l−

EE(ω)
]

P ′′l (z) + 2f l+
ME(ω)P ′′l+1(z) − 2f l+

EM (ω)P ′′l (z)

}

,

R̄5(ω, z) =
∞
∑

l=1

{

[

f l+
EE(ω) − f l−

EE(ω)
] (

l P ′′l (z) + P ′′′l−1(z)
)

−
[

f l+
MM (ω) − f l−

MM (ω)
]

P ′′′l (z)

+ f l+
EM (ω)

[

(3l + 1)P ′′l (z) + 2P ′′′l−1(z)
]

− f l+
ME(ω)

[

(l + 1)P ′′l+1(z) + 2P ′′′l (z)
]

}

,

R̄6(ω, z) =

∞
∑

l=1

{

[

f l+
MM (ω) − f l−

MM (ω)
] (

l P ′′l (z) + P ′′′l−1(z)
)

−
[

f l+
EE(ω) − f l−

EE(ω)
]

P ′′′l (z)

+ f l+
ME(ω)

[

(3l + 1)P ′′l (z) + 2P ′′′l−1(z)
]

− f l+
EM (ω)

[

(l + 1)P ′′l+1(z) + 2P ′′′l (z)
]

}

.

(3.4)

The prime denotes differentiation with respect to z = cos θ in the cm system, and
Pl(z) is the lth Legendre polynomial. The functions f l±

TT ′(ω) are the Compton
multipoles and correspond to transitions T l → T ′l′, where T, T ′ = E,M labels
the coupling of the incoming or outgoing photon as electric or magnetic. Here

1We correct here the factors of 2 in front of f l+
ME

(f l+
EM

) in R5 (R6), which appear in Ref. [4].
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l (l′ = l ± {1, 0}) denotes the angular momentum of the initial (final) photon,
whereas the total angular momentum is j± = l± 1

2 , abbreviated by l±. We note that
mixed multipole amplitudes T 6= T ′ only occur in the spin-dependent amplitudes
R̄i, i = 3, . . . , 6.

Having defined the structure-dependent Compton multipoles in the cm frame,
we now move on to connect them to polarizabilities.

3.1.2 Dynamical and Static Polarizabilities

In order to derive a consistent connection between the Compton multipoles fTT ′ and
the polarizabilities of definite spin structure and multipolarity at a certain energy,
we recall the low-energy behavior of the multipoles in the cm frame [45]:

f l±
TT ′(ω) ∼ ω2l, T = T ′,

f l+
TT ′(ω) ∼ ω2l+1, T 6= T ′. (3.5)

With this information, dynamical spin-independent electric or magnetic dipole and
quadrupole polarizabilities were defined as linear combinations of Compton multi-
poles in [46]:

αE1(ω) =
[

2f1+
EE(ω) + f1−

EE(ω)
]

/ω2

βM1(ω) =
[

2f1+
MM (ω) + f1−

MM (ω)
]

/ω2

αE2(ω) = 36
[

3f2+
EE(ω) + 2f2−

EE(ω)
]

/ω4

βM2(ω) = 36
[

3f2+
MM (ω) + 2f2−

MM (ω)
]

/ω4 (3.6)

We note that the normalization of these linear superpositions has been chosen in
such a way that the usual (static) electric and magnetic polarizabilities of the nu-
cleon can be recovered from the dynamical dipole polarizabilities via

ᾱE1 = lim
ω→0

αE1(ω), β̄M1 = lim
ω→0

βM1(ω). (3.7)

Likewise, the static electric and magnetic quadrupole polarizabilities ᾱE2 and β̄M2

discussed in Refs. [4] and [47] can be obtained as the zero-energy limit of the cor-
responding dynamical quadrupole polarizabilities.

Extending Ref. [46], we also introduce dynamical spin-dependent dipole polariz-
abilities2 via

γE1E1(ω) =
[

f1+
EE(ω) − f1−

EE(ω)
]

/ω3,

γM1M1(ω) =
[

f1+
MM (ω) − f1−

MM (ω)
]

/ω3,

γE1M2(ω) = 6 f1+
EM(ω)/ω3,

γM1E2(ω) = 6 f1+
ME(ω)/ω3. (3.8)

The notation is such that γTlT ′l′ parameterizes a T l (T ′l′) transition at the first
(second) photon vertex. In the limit of zero photon energy, one again recovers the
four static spin polarizabilities γ̄E1E1, γ̄M1M1, γ̄E1M2, γ̄M1E2 of the nucleon:

γ̄TlT ′l′ = lim
ω→0

γTlT ′l′(ω), T, T ′ = E,M. (3.9)

Here, these four static spin polarizabilities are written in the so called multipole-
basis [4]. The connection to the Ragusa-basis γi, i = 1, . . . , 4 [48], is discussed

2The definition of the dynamical spin quadrupole polarizabilities can be found in Ref. [29].
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in Ref. [49]. We note that at present there exists little information on the spin-
dependent nucleon polarizabilities. Only two linear combinations – typically de-
noted as the forward γ̄0 and the backward γ̄π spin polarizabilities of the nucleon –
are constrained from experiments, e.g. see the discussion in Ref. [50]. Both quan-
tities involve all four (dipole) spin polarizabilities:

γ̄0 = −γ̄E1E1 − γ̄E1M2 − γ̄M1M1 − γ̄M1E2

γ̄π = −γ̄E1E1 − γ̄E1M2 + γ̄M1M1 + γ̄M1E2 (3.10)

While the static polarizabilities of the nucleon are real, we note that the dynami-
cal polarizabilities become complex once the energy in the intermediate state is high
enough to create an on-shell intermediate state, the first being the physical πN in-
termediate state. Below the two-pion-production threshold, the imaginary parts of
the dynamical polarizabilities can be understood very easily. They are simply given
by the well-known multipoles of single-pion photoproduction (see e.g. [51]). One
obtains [26]

Im[αE1] =
kπ

ω2

∑

C

(2|E(C)

2− |2 + |E(C)

0+ |2),

Im[αE2] = 36
kπ

ω4

∑

C

(3|E(C)

3− |2 + 2|E(C)

1+ |2),

Im[γE1E1] =
kπ

ω3

∑

C

(|E(C)

2− |2 − |E(C)

0+ |2),

Im[γE1M2] = 6
kπ

ω3

∑

C

Re[E(C)

2− (M (C)

2− )∗],

Im[βM1] =
kπ

ω2

∑

C

(2|M (C)

1+ |2 + |M (C)

1− |2),

Im[βM2] = 36
kπ

ω4

∑

C

(3|M (C)

2+ |2 + 2|M (C)

2− |2),

Im[γM1M1] =
kπ

ω3

∑

C

(|M (C)

1+ |2 − |M (C)

1− |2),

Im[γM1E2] = −6
kπ

ω3

∑

C

Re[E(C)

1+ (M (C)

1+ )∗],

(3.11)
where kπ is the magnitude of the pion momentum and E(C)

l± and M (C)

l± are the
pion-photoproduction multipoles which are summed over the different isotopic or
charge channels C. In the following, we therefore focus only on the real parts of the
dynamical polarizabilities. The imaginary parts of our calculation can be found in
Ref. [29].

This concludes our section pertaining to the definitions of the dynamical po-
larizabilities and their connection to static polarizabilities as well as to single-pion
photoproduction. Before we discuss the numerical values of the (static) polarizabil-
ities in the upcoming section, we first provide some background on the theoretical
machinery employed to analyze nucleon Compton scattering.

3.2 Theoretical Framework

Many calculations of nucleon Compton scattering – some even up to next-to-leading
one-loop order – have been performed using Chiral Effective Field Theory (χEFT)
during the past decade [35, 43, 52, 53, 54]. Here, we extract information on the
dynamical polarizabilities of the nucleon both from the leading-one-loop Heavy
Baryon Chiral Perturbation Theory (HBχPT) calculation of Ref. [35] as well as from
the leading-one-loop “Small Scale Expansion” (SSE) calculations of Refs. [55, 56].
We remind the reader of Chapter 2, where we introduced the HBχPT as well as
the SSE formalism. The first one only involves explicit πN degrees of freedom,
whereas the latter is one possibility to also systematically include explicit spin-3/2
nucleon-resonance degrees of freedom, i.e. the ∆(1232), in χEFT.
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The pole contributions to nucleon Compton scattering at leading-one-loop order
in χEFT are given in Appendix B. As discussed in Section 3.1, it is the non-pole con-
tribution to Compton scattering which determines the polarizabilities. In HBχPT,
these structure-dependent contributions are solely given by πN intermediate states
(Fig. 3.2), whereas SSE takes into account in addition π∆ diagrams (Fig. 3.3) as
well as the ∆(1232) s- and u-channel pole terms (Fig. 3.4 (a),(b)).

Figure 3.2: Leading-one-loop Nπ-continuum contributions to nucleon polarizabili-
ties.

Figure 3.3: Leading-one-loop ∆π-continuum contributions to nucleon polarizabili-
ties.

Figure 3.4: ∆-pole and short-distance contributions to nucleon polarizabilities.

We note that we go beyond the existing leading-one-loop HBχPT/SSE calcula-
tions [35, 55, 56] of nucleon Compton scattering in four aspects:

1) Both HBχPT and SSE are non-relativistic frameworks leading to a 1/mN ex-
pansion of the amplitudes, where mN is the mass of the target nucleon. In the
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leading-one-loop structure amplitudes R̄i, the one-pion-production threshold

ωπ =
m2

π + 2mπ mN

2 (mπ +mN)
≈ 131 MeV (3.12)

is therefore not at the correct location. We correct for this purely kinematical
effect by replacing the photon energy ω with the Mandelstam variable s via

ω →
√

s(ω) −mN . (3.13)

There are various possibilities to perform such a threshold correction (cf.
Ref. [16]), but it is clear that all these choices agree within the strict trun-
cation of the χEFT employed. Obviously this replacement should only be
applied in those places where an imaginary part arises above threshold. In
contrast to Ref. [29], the u-channel diagrams are left unchanged. We are aware
that this procedure violates crossing symmetry, but the crossing-violating ef-
fects in the u-channel are small. Formally, the terms correcting for the exact
location of the pion threshold start to appear at O(p4). We implement this
kinematical correction in the leading-one-loop πN -continuum contribution to
the χEFT amplitudes throughout all chapters of this work on single-nucleon
Compton scattering. Such kinematical corrections should be employed in non-
relativistic χEFTs at all particle thresholds. However, as our calculation is
valid only below the ∆(1232) resonance, the one-pion-production threshold is
the only one to be taken care of. The formulae for the SSE amplitudes are
given in Refs. [26] and [29], albeit in Ref. [29] we also corrected the u-channel,
in analogy to Eq. (3.13).

2) Another kinematical effect concerns the exact location of the ∆(1232) pole.
In Ref. [51], it was determined as a T -matrix pole in the complex W =

√
s

plane at the location m∆ = (1210− i 50) MeV. We therefore employ the same
substitution prescription ω → √

s − mN as in Eq. (3.13) in s-channel pole
contributions of the ∆(1232) resonance, generating a pole at

√
s = mN +∆0 =

1210 MeV. Given that ∆(1232)-pole contributions in the u-channel can also
affect higher multipoles, we make an analogous replacement ω → mN −√

u in
the ∆(1232) u-channel-pole contributions and note that the corrections of the
∆ pole are new with respect to Ref. [29]. While these kinematical details are
of minor importance when one only discusses static polarizabilities (with the
exception of β̄M2, see Section 3.4.2), they do become important in dynamical
polarizabilities once the photon energy is higher than 100 MeV. We note again
that via these modifications, we have not introduced any additional physics
content into the χEFT calculations, as in the mN → ∞ limit all these purely
kinematical modifications reduce to the strict O(ǫ3) truncation of SSE [55, 56].
The detailed form of the modified amplitudes can be found in Appendix B of
our Ref. [26].

3) The parameters required for the leading-one-loop HBχPT calculation are well
known. For completeness, we list them in Table A.1. Also shown are the
two parameters ∆0 and gπN∆ utilized in the leading-one-loop SSE Compton-
scattering calculation of Refs. [55, 56]. The numbers given here differ slightly
from Ref. [55], as we determine them now from the exact kinematical loca-
tion of the ∆(1232)-pole in the complex W -plane, discussed in the previous
paragraph.

To leading-one-loop order, the HBχPT calculation for nucleon Compton scat-
tering is therefore parameter-free (in the sense that all parameters shown in
Table A.1 can be determined outside Compton scattering). On the other
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hand, in the corresponding SSE calculation we are left with one free parame-
ter b1 – which in χEFT corresponds to the leading γN∆ coupling [41, 55, 50].
In Ref. [56], b1 was estimated from the measured ∆ → Nγ decay width to
be |b1| ≈ 3.9. As this determination is very sensitive to the numerical value
of the parameter ∆0 (for the value ∆0 = 271 MeV shown in Table A.1, we
would obtain |b1| ≈ 4.4), we choose a different strategy here and determine
b1 directly from a fit to Compton cross-section data, whereas in Ref. [29] we
used the Dispersion-Relation result for γ̄M1M1 [26] to fix this coupling.

4) With the γN∆ coupling constant b1 as a fit parameter in the SSE analysis, we
can constrain the crucial paramagnetic contribution from the ∆ directly from
data. In [31] an estimate of its contribution to β̄M1, based on the N → ∆
transition matrix element from [57] gives β∆ ≈ 12 · 10−4 fm3. This number
agrees with the result β∆ = (13 ± 3) · 10−4 fm3 from [58]. However, it has
been known for a long time that there must also be substantial diamagnetism
in the nucleon – otherwise the small numbers for the static magnetic polariz-
ability of the proton cannot be understood, see e.g. Ref. [50] for details. At
leading-one-loop order neither HBχPT nor SSE in their respective counting
schemes, based on (näıve) dimensional analysis, allow for such a contribution
[55]. Both schemes assume that this is a “small” higher-order effect, which
can be accounted for at the next-to-leading one-loop order. As a side remark
we remind the reader that in Ref. [16] it was shown in a next-to-leading one-
loop HBχPT calculation that for “reasonable” values of the regularization
scale λ, a large part of this diamagnetism could be accounted for by πN loop
effects. Working only to leading-one-loop order, we cannot contribute to the
discussion of the physical nature of this diamagnetism in the nucleon. How-
ever, from our combined analysis of proton and deuteron Compton data we
conclude that dynamics beyond our leading-one-loop order calculation indeed
strongly contributes to ᾱE1 and β̄M1. We can constrain these contributions
to be of isoscalar nature and, reminiscent of short-distance dynamics, they
are largely energy independent.

As we determine the paramagnetic response of the nucleon from data and as
there is a well-known delicate interplay between para- and diamagnetic con-
tributions at small photon energy, we introduce two additional O(p4) γγNN
couplings g1 and g2, cf. Eqs. (2.35, 2.36). If they turned out to give only small
corrections, we could safely neglect them as a higher-order effect in accordance
with the counting assumptions of SSE. However, as will be demonstrated in
Section 3.4.1, this is not the case and these two couplings have to be included
already at leading-one-loop order, modifying the näıve power counting due
to their unnaturally large sizes. Two independent structures are needed to
separate magnetic and electric contributions via different linear combinations
of g1 and g2. Promoting these two structures from O(ǫ4) to leading-one-loop
order obviously modifies the power counting. Nevertheless, in light of the rea-
soning given above, we must include them as free parameters in our SSE fit to
Compton cross sections. We find that the two couplings in Eqs. (2.35, 2.36) are
sufficient to parameterize any quark-mass independent unknown magnetic and
electric short-distance physics in nucleon Compton scattering (cf. Fig. 3.8).
The contributions of g1, g2 to the Compton structure-amplitudes are shown
explicitly in Appendix B of our Ref. [26]3.

The leading-one-loop structure-dependent Compton amplitudes of Ref. [26] include
the four modifications discussed above. In order to extract from them the dynam-
ical polarizabilities of the nucleon in χEFT frameworks, one first projects out the

3We correct for a missing factor of -2 in Ref. [29].
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Compton multipoles fTT ′(ω) of Section 3.1.1, using the formulae in Appendix C.
The dynamical polarizabilities at definite multipolarity as a function of the photon
energy follow then from Eqs. (3.6, 3.8).

This concludes our brief summary of leading-one-loop χEFT calculations for
nucleon Compton scattering. We now move on to a determination of the three free
parameters b1, g1 and g2 from cross-section data.

3.3 Spin-Averaged Compton Cross Sections

3.3.1 General Remarks

In the previous section, we have briefly introduced the theoretical framework of
our nucleon Compton-scattering calculation, which we now confront with actual
proton Compton data. This will also serve as a check for the parameters employed
(in the case of HBχPT), respectively allow us to constrain some parameters (in
the case of SSE). To be precise, we compare the experimental differential cross
sections with predictions from leading-one-loop HBχPT, which does not contain
any additional free parameters to be determined from Compton scattering, and
with the Dispersion-Relation Analysis from [26]. This method makes use of the
optical theorem to deduce the imaginary part of the transition amplitude from
measured break-up cross sections, in our case γN → X . The real part of the
amplitude is derived from the imaginary part via the Kramers-Kronig dispersion
relations. Although we do not show any error bands for the Dispersion-Analysis
curves in our figures, we must stress that there are non-negligible uncertainties also
in this framework, which arise e.g. due to error bars in the input parameters ᾱE1,
β̄M1 and γ̄π, cf. Ref. [26]. For further details on the Dispersion-Theory formalism
we refer the reader to the literature, e.g. to the review given in Ref. [50].

In the case of leading-one-loop SSE calculations, we perform a fit of the three
free parameters b1, g1, g2 discussed in the previous section to proton Compton data.
In this section, we can therefore only check whether the two curves from Field
Theory are consistent with data and Dispersion Theory. A detailed discussion of
the electromagnetic structure of the proton will be given in Section 3.5.

So far, only spin-averaged cross sections on the proton have been measured. We
draw from a large set of data [5, 6, 7, 8], covering proton Compton scattering from
low energies to above pion-production threshold. We present the low-energy data
as functions of the differential cross section in the cm system versus the photon
energy (in the cm system) at different angles θlab. Note that in the plots we work
in the cm system when comparing with the SAL data, and in the lab system for all
other cases.

In the differential Compton-scattering cross sections, the artificial separation
between pole and non-pole contributions is absent and both terms have to be added.
The differences between lab and cm system are expressed via the flux factors

Φcm =
mN

4π
√

s(ω)
, Φlab =

ωf

4π ωi
, (3.14)

with

ωf =
mN ωi

mN + ωi (1 − cos θlab)
. (3.15)

ωf (ωi) denote the energy of the outgoing (incoming) photon in the lab frame, ωi

being related to the photon energy in the γN cm frame by

ω =
ωi

√

1 + 2ωi/mN

. (3.16)
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In the spin-averaged case, the differential cross section is then given by

dσ

dΩ

∣

∣

∣

∣

frame

= Φ2
frame |T |2. (3.17)

The absolute square of the Compton amplitude, averaged over the initial and
summed over the final nucleon and photon polarizations, is [35]

|T |2 =
1

2
|A1|2

(

1 + z2
)

+
1

2
|A3|2

(

3 − z2
)

+
(

1 − z2
)

[4 Re[A∗3 A6] + Re[A∗3 A4 + 2A∗3 A5 −A∗1 A2] z]

+
(

1 − z2
)

[

1

2
|A2|2

(

1 − z2
)

+
1

2
|A4|2

(

1 + z2
)

+ |A5|2
(

1 + 2z2
)

+ 3 |A6|2 + 2Re[A∗6 (A4 + 3A5)] z + 2Re[A∗4 A5] z
2

]

. (3.18)

After these general remarks, we now move on to the comparison with experiment.

3.3.2 Comparison to Experiments on Proton Compton

Scattering

Figs. 3.5 and 3.6 compare several different cross-section data at selected angles with
the third-order HBχPT prediction, the DR prediction from Ref. [26] and with the
result of our SSE fit (details of the fit will be discussed in the next section). Similar
pictures can already be found in Ref. [29]. In Fig. 3.5 we also give the comparison
to the O(p4)-HBχPT result of [54] for two angles: 59◦ and 155◦. The data of
Hallin et al. [6] (Fig. 3.6) provide important constraints for the fit above pion
threshold. However, we must caution that close to 200 MeV there may already be
a sizeable error in the SSE calculation due to our treatment of the ∆(1232), which
behaves like a stable particle in the SSE. Its width is only included perturbatively
and it is zero at leading-one-loop order. We are aware that such procedure violates
unitarity. However, sufficiently far below the resonance we can expand in powers of
ω/∆0, so that unitarity and the width are built up order by order in this expansion
parameter. Nevertheless, violating unitarity may cause a non-negligible uncertainty
for ω ≈ 200 MeV. The DR calculation is only shown up to 170 MeV in Fig. 3.6,
which is the upper energy limit of the plots in [26].

All four theoretical curves in Fig. 3.5 describe the available data quite well in
the forward direction. The upwards trend in the data above 130 MeV related to
the opening of the πN channel is also present in all three frameworks. However,
while the SSE and DR results are rather similar at all angles, the HBχPT curve
deviates from the data significantly in the backward direction, starting from photon
energies around 80 MeV. This observation holds for both the O(p3) and the O(p4)
calculation. The detailed analysis of the dynamical polarizabilities in the next
section will show that this different energy dependence is due to the lack of explicit
∆(1232)-resonance degrees of freedom in HBχPT. Even a broad variation of the two
O(p4)-HBχPT counter terms, such that ᾱE1 = 8 · 10−4 fm3, β̄M1 = 6 · 10−4 fm3,
is not sufficient to properly account for the ∆ resonance, cf. Ref. [54]. We find
the well-known fact that cross-section calculations in leading-one-loop order χEFT
discarding the ∆ as explicit degree of freedom fail for large-angle scattering θ > 90◦,
even at energies well below pion threshold. The reason is that the ∆ resonance
dominates in spin-flip M1 processes, which are primarily observed in back-angle
scattering, see e.g. [59, 9, 50].

Having shown that the full Compton amplitudes A1, . . . , A6 of leading-one-loop
SSE provide a good description of the available Compton data up to energies above
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Figure 3.5: Comparison of the differential cross-section data for Compton scattering
off the proton (diamonds: Olmos de Leon et al. [5], circles: Federspiel et al. [7],
boxes: MacGibbon et al. [8]) with Dispersion Theory and leading-one-loop order
HBχPT respectively SSE at fixed lab angle. At 59◦ and 155◦ we also compare
to the O(p4) HBχPT calculation of [54]. Solid line: SSE results; dashed line:
O(p3) HBχPT; dotted line: DR; dotdashed line: O(p4) HBχPT. Note that the
data of [7] are not given at 59◦ and 133◦ but at 60◦ and 135◦; the data of [8] are
not given at 85◦ and 133◦ but at 90◦ and 135◦.

pion threshold, we now examine what kind of physics dominates in the kinematic
regime considered here. A well-established procedure to answer this question is of
course a systematic multipole expansion of the Compton amplitudes Ai(ω, z) as dis-
cussed in Section 3.1.1. In Fig. 3.7, we compare the contributions of the first three
terms of the Compton multipole expansion to the same data as shown in Fig. 3.5.
The l = 0 truncation only contains the pole contributions to nucleon Compton scat-
tering as shown by the diagrams in Fig. 3.1, see also Appendix B. Truncating the
multipole expansion at l = 1, the curve includes in addition all dynamical dipole
polarizabilities. All dynamical quadrupole polarizabilities are contained in the l = 2
truncation. As has been known for a long time, a theoretical framework which only
incorporates the pole contributions for nucleon Compton scattering gives a rather
poor description of the cross sections, especially at small angles. The discrepancy
between the l = 0 result and the data therefore is a clear indication of internal
nucleon structure not contained in the standard pole terms. According to χEFT
calculations, this structure can be interpreted as chiral dynamics in the nucleon: It
is largely the contributions from the pions as the Goldstone Bosons of low-energy
QCD (cf. Section 2.1) – or in other words the contribution from the pion cloud of
the nucleon – which closes the gap between the pole contributions and the Compton
data, at least for energies below the pion threshold. While this is after many years
of χEFT calculations in nucleon Compton scattering a well-known fact, the surpris-
ing find from our multipole analysis is that up to energies of ω ≈ 200 MeV, there
is no visible difference between the l = 1 and the l = 2 truncation. Therefore, the
multipole expansion for the nucleon Compton cross section converges very fast in
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Figure 3.6: Comparison of the differential cross-section data for Compton scattering
off the proton from Hallin et al. [6] with leading-one-loop order HBχPT respectively
SSE and DR at fixed cm angle. Solid: SSE; dashed: HBχPT; dotted: DR.

Figure 3.7: Comparison of the SSE multipole expansion to the differential cross-
section data for Compton scattering off the proton. Note that the l = 1 and
l = 2 truncations are indistinguishable in the energy region shown here. (l = 0
truncation: dash-dotted curve; l = 1 truncation: dashed curve; l = 2 truncation:
solid grey curve)

the entire energy region considered. In Chapter 4, this suppression of higher-order
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multipoles is also demonstrated in a variety of asymmetries in Compton scatter-
ing. Furthermore, we see that aside from the well-known standard pole terms of
Fig. 3.1, all one needs to know for a good description of nucleon Compton scattering
are the six dynamical dipole polarizabilities αE1(ω), βM1(ω), γE1E1(ω), γM1M1(ω),
γE1M2(ω) and γM1E2(ω) representing the complete l = 1 information. In Section 4.2
we present a proposal how to directly determine the spin-dependent polarizabilities
γi from experiment, and in Section 4.3 we demonstrate their non-negligible con-
tribution even to spin-averaged Compton cross sections. While χEFT calculations
for nucleon Compton scattering in the past have either focused on the static values
of the polarizabilities or on the (rather complicated) full Compton amplitudes, one
can now dissect the role of chiral dynamics (and of explicit resonance contributions)
in this process by looking at the individual multipole channels.

Before we move on to a detailed comparison of the results for these six dynamical
polarizabilities derived in leading-one-loop order HBχPT, SSE and DR, respectively,
we first give details regarding the three free parameters of SSE fitted to the Compton
data.

3.4 Fit to Proton Compton Data and Static

Polarizabilities

3.4.1 Small Scale Expansion Fit

The two energy-independent short-distance terms with couplings g1 and g2 of Eqs.
(2.35, 2.36) give contributions only to the electric and magnetic dipole polariz-
abilities. The three free parameters of the leading-one-loop SSE analysis therefore
correspond to a fit which determines ᾱE1, β̄M1 plus the leading γN∆ coupling b1,
cf. Section 3.4.2. Note that we go beyond Ref. [29], where we only fitted the two
polarizabilities. We are able to fit the two static spin-independent dipole polariz-
abilities because the fourth-order Lagrangeans Eqs. (2.35, 2.36) are promoted to
leading-one-loop order. For the fit, we use the data from [5], which cover the low-
energy region (ω ≤ mπ) very well with extremely small error bars, and those from
[6], which is the only data set available in the energy regime mπ ≤ ω ≤ 200 MeV.
The results are displayed in Table 3.1, together with their corresponding χ2/d.o.f.-
values, which we calculate using the standard definition of χ2, i.e.

χ2 =
∑

(

σexp − σtheo

∆σ

)2

(3.19)

with σexp the experimental, σtheo the calculated cross sections and ∆σ the experi-
mental error bars. In a first step, the number of degrees of freedom (d.o.f.) is the
number of data points (115) minus the number of free parameters (3). Note that
the value of ᾱE1 + β̄M1 from the three-parameter fit is consistent within error bars
with the Baldin sum rule for the proton, ᾱE1 + β̄M1 = (13.8±0.4) ·10−4 fm3 [5], cf.
Section 1.1.4 One can therefore in a second step use the value of the Baldin sum rule
as additional fit constraint and thus reduce the number of free parameters to two.
If not stated differently, we use these Baldin-sum-rule constrained values in all plots
throughout this work. The resulting static spin-independent dipole polarizabilities,
given in Table 3.1, compare very well with state-of-the-art Dispersion Analyses [50]
and the values recommended in the recent review [10], cf. Eq. (1.7). Nevertheless,
the χ2/d.o.f.-values of our fits are relatively large, but they are more an indication

4We note that an alternative extraction yielded ᾱE1 + β̄M1 = (14.0±0.3) ·10−4 fm3 [22], which
was combined with [5] to (13.9 ± 0.3) · 10−4 fm3 in Ref. [10]. The error bars of the value adopted
in this work cover the whole range of this result.
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of the spread in the Compton data, which we have not allowed to float with a free
normalization constant. We note that at θ = 133◦ our calculation yields values
which are systematically larger than the data from [5], but agree very well with the
data from [7, 8], cf. Fig. 3.5. The encouraging results of Table 3.1 therefore prove
that by utilizing the SSE amplitudes of [26], one has an alternative technique to
extract the static polarizabilities ᾱE1, β̄M1 from low-energy Compton data below
the ∆-resonance. We note that a determination of ᾱE1, β̄M1 from Compton data
using next-to-leading one-loop order HBχPT was presented in [25]. The results
obtained there are comparable to ours, although the authors had to restrict their
fit to the lower-energy data to exclude effects from the ∆(1232), due to the known
inadequate description of the Compton cross sections in the backward direction in
HBχPT, cf. Section 3.3.2.

The values we obtain in the two fits for the leading γN∆ coupling b1, cf. Ta-
ble 3.1, agree with the previous analysis [56] from the radiative ∆-width as discussed
in Section 3.2. Note that we could also employ the strategy to rely on the DR-results
for ᾱE1, β̄M1 and γ̄M1M1 to determine the three unknowns. In this case, the whole
energy-dependence is predicted. The values thus obtained are identical with the
fit-results within the error bars, see [29].

As our leading-one-loop order SSE calculation only describes an isoscalar nu-
cleon, we cannot contribute to the ongoing controversies over the size of the neutron
polarizabilities [50, 25, 60] at this point. These quantities will be discussed in length
in Chapters 5 and 6, where we fit the isoscalar polarizabilities, i.e. the average be-
tween proton and neutron, to elastic deuteron Compton data. From these values
and the known proton numbers we are then able to deduce the elusive neutron
polarizabilities.

Quantity 3-parameter fit 2-parameter fit [5]
χ2/d.o.f. 2.87 2.83 1.14
ᾱE1 11.52± 2.43 11.04 ± 1.36 12.4 ± 0.6(stat) ∓ 0.5(syst) ± 0.1(mod)
β̄M1 3.42 ± 1.70 2.76 ∓ 1.36 1.4 ± 0.7(stat) ± 0.4(syst) ± 0.1(mod)
b1 4.66 ± 0.14 4.67 ± 0.14

Table 3.1: Values for ᾱE1, β̄M1 (in 10−4 fm3) and b1 from a fit to MAMI- [5]
and SAL-data [6], compared to the results from [5]. Note that the definition of
χ2/d.o.f. used in [5] is different from Eq. (3.19). The error bars in our fits are only
statistical, i.e. the error ±0.4 due to the Baldin sum rule in the 2-parameter fit and
uncertainties from higher orders are not included.

3.4.2 Static Spin-Independent Polarizabilities

The spin-independent static dipole polarizabilities to leading-one-loop order in SSE
consist of the following individual contributions:

ᾱE1 =
5αg2

A

96 f2
π mπ π

(

1 − mπ

mN

1

π

)

− 2α (g1 + 2g2)

(4π fπ)2mN

+
α g2

πN∆0

54 (fπ π)2

[

9 ∆0

∆2
0 −m2

π

+
∆2

0 − 10m2
π

(∆2
0 −m2

π)3/2
lnR

]

= [11.87 (Nπ)− (5.92 ± 1.36) (c.t.) + 0.0 (∆-pole) + 5.09 (∆π)] × 10−4 fm3

= (11.04 ± 1.36) × 10−4 fm3 (3.20)
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β̄M1 =
α g2

A

192 f2
π mπ π

+
4αg2

(4π fπ)2mN
+

2α b21
9 ∆0m2

N

+
αg2

πN∆0

54 (fπ π)2
1

√

∆2
0 −m2

π

lnR

= [1.25 (Nπ) − (10.68 ± 1.17) (c.t.) + (11.33 ± 0.70) (∆-pole)

+ 0.86 (∆π)] × 10−4 fm3 = (2.76 ∓ 1.36)× 10−4 fm3 (3.21)

where R =
(

∆0 +
√

∆2
0 −m2

π

)

/mπ is a dimensionless parameter [55] and the re-

sults from the Baldin-constrained fit have been used, cf. Table 3.1.
In the case of ᾱE1, one notices a strong cancellation between the π∆ contri-

butions and the short-distance physics contained in g1, g2. In Section 3.5, we will
demonstrate that this mutual cancellation holds throughout the low-energy region
also in the case of the dynamical electric dipole polarizability, forcing us to the not
surprising conclusion that for photon energies far below on-shell ∆π intermediate
states such contributions are indistinguishable from counterterms parameterizing
the short-distance physics. However, the physics content of the short-distance op-
erators is not yet completely understood. Assuming that corrections from next-to-
leading order are suppressed by mπ/mN with respect to the leading-order result,
comparing the leading-order pion-cloud contribution to ᾱE1 and δᾱsd

E1 demonstrates
that the “natural” size of g1, g2 is unity. Therefore, näıve dimensional analysis for
next-to-leading order contributions to ᾱE1 and β̄M1 predicts that their size is

|ᾱNLO| ∼ |β̄NLO| ∼
α

Λ2
χmN

∼ 1 · 10−4 fm3 (3.22)

with Λχ ∼ 1 GeV the breakdown scale of HBχPT, cf. Section 2.1, but appar-
ently fails to give a correct estimate of their magnitudes. The numerical values
of Eqs. (3.20, 3.21) tell us post factum that they must already be included in the
analysis at leading order. We note that the extra, quark-mass-independent term
in the πN contribution arises from our pion-threshold correction discussed in Sec-
tion 3.2. This term does not appear in Ref. [29] due to the analogous correction of
the u-channel applied there.

In β̄M1, we encounter the well-known cancellation between a large paramag-
netism from the ∆(1232)-pole contributions and the nucleon diamagnetism, arising
from short-distance effects parameterized by the coupling g2. Several proposals
to explain this effect were put forward in the literature. One attributes it to an
interplay between short-distance physics and the pion-cloud occurring from the
next-to-leading order chiral Lagrangean [16], another one to the t-channel exchange
of a meson or correlated two-pion exchange [61, 10]. An alternative explanation
for the smallness of β̄M1 due to off-shell effects in the γN∆-transition form factors
has been presented in [62]. Whether either of these explanations gives a convincing
quantitative description of the short-distance coefficients is not clear yet.

In contrast to the cancellation in ᾱE1 discussed above, the sum of dia- and
paramagnetic effects is strongly energy dependent and therefore leads to a clear
signal in the dynamical magnetic dipole polarizability βM1(ω), see Section 3.5.
Apart from the contribution proportional to g2, Eq. (3.21) agrees with the result
found in Ref. [55] (modulo the different convention for the coupling b1), where it
was already noted that the ∆π contributions to β̄M1 are considerably smaller than
in the case of ᾱE1.

Already from this discussion, one can see that the two extra terms g1, g2 are
not just small higher-order effects. For a consistent description both of the data
and of the static polarizabilities, they are in contrast required in a leading-one-loop
SSE analysis. Translating the fit results of Table 3.1 back into these two unknown
couplings, one obtains

g1 = 17.44± 2.11 (stat), g2 = −5.64± 0.88 (stat) (3.23)
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for the 3-parameter fit and

g1 = 18.82±0.79 (stat)±0.4 (Baldin), g2 = −6.05∓0.66 (stat)±0.4 (Baldin) (3.24)

for the Baldin-constrained fit. Therefore, these two couplings are significantly larger
than their “natural” values, which in the Lagrangean employed (Eqs. (2.35, 2.36))
would be expected to be unity. These couplings – though formally being part of
the next-to-leading one-loop order Lagrangean – therefore break the näıve power
counting underlying SSE and have to be taken into account already at leading-one-
loop order. There are indications that this feature is not specific to SSE but occurs in
all chiral calculations of αE1(ω) and βM1(ω), if high-energy modes in the pion-loop
graphs are to be properly accounted for, cf. [63]. Having determined g1, g2 from
fits to Compton-scattering data, we now have fixed all our unknown parameters
and have full predictive power in the determination of the energy dependence of the
polarizabilities discussed in Section 3.5.

Finally, we note again that not only the energy dependence of the dynamical
polarizabilities is independent of the two extra couplings g1, g2, but also the values of
the four spin-dependent static dipole polarizabilities γ̄E1E1, γ̄M1M1, γ̄E1M2, γ̄M1E2.
The results obtained in Ref. [56] are therefore reproduced5, as expected. For better
comparison with Dispersion Theory and experiment, we present in Table 3.2 the
numbers for the linear combinations γ̄0, γ̄π of Eq. (3.10). For more detail, we refer
the interested reader to the extensive literature on these two elusive structures [50].

Quantity SSE experiment DR [10]
γ̄p
0 0.62 ∓ 0.25 −1.01 ± 0.08(stat) ± 0.10(syst) −0.7 —
γ̄p

π 8.86 ± 0.25 10.6 ± 2.1(stat) ∓ 0.4(syst) ± 0.8(mod) 9.3 8 ± 1.8
γ̄n
0 0.62 ∓ 0.25 — −0.07 —
γ̄n

π 8.86 ± 0.25 — 13.7 11.9 ± 4.0

Table 3.2: Comparison of proton γ̄p
0 , γ̄p

π and neutron γ̄n
0 , γ̄n

π spin polarizabilities
(in 10−4 fm4) between leading-one-loop SSE, experiment and fixed-t Hyperbolic
Dispersion Theory [50]; the experimental values for γ̄p

0 , γ̄p
π are taken from [64] and

[5], respectively. The last column corresponds to the averaged values recommended
in Ref. [10]. Note that the O(ǫ3)-SSE results are purely isoscalar.

The spin-independent static quadrupole polarizabilities ᾱE2, β̄M2 have been
analyzed in Ref. [47] to leading-one-loop order in SSE. Here we present the details
of our results for these l = 2 polarizabilities, as they include some additional features
with respect to Refs. [47] and [29].

ᾱE2 =
αg2

A

32 f2
π m

3
π π

(

7

5
+

9

10

mπ

mN

1

π

)

+
αg2

πN∆0

135 (fπ π)2m2
π

[

∆0

(

11 ∆2
0 − 41m2

π

)

(∆2
0 −m2

π)
2 +

3m2
π

(

3 ∆2
0 + 7m2

π

)

(∆2
0 −m2

π)
5/2

lnR

]

= [21.48 (Nπ) + 0.0 (c.t.) + 0.0 (∆-pole) + 4.99 (∆π)] × 10−4 fm5

= 26.47 × 10−4 fm5 (3.25)

5We note that in the case of γ̄E1E1 we obtain a small extra term δ γ̄E1E1 = −
αg2

A
96f2

ππmN mπ

due to our correction of the pion threshold discussed in point 1 of Section 3.2. This term is part
of the next-to-leading one-loop order contributions to this polarizability discussed in Ref. [53].
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β̄M2 = − 3αg2
A

160 f2
π m

3
π π

− 2αb21
3 ∆2

0m
3
N

+
αg2

πN∆0

15 (fπ π)2m2
π

[

−∆0

∆2
0 −m2

π

+
m2

π

(∆2
0 −m2

π)
3/2

lnR

]

= [−8.93 (Nπ) + 0.0 (c.t.) − (5.18 ± 0.32) (∆-pole) − 3.37 (∆π)] × 10−4 fm5

= (−17.48± 0.32)× 10−4 fm5 (3.26)

In particular we note the extra piece ∼ m−2
π from the one-pion-threshold correction

in ᾱE2, as well as the kinematically induced u-channel ∆(1232) contribution to β̄M2,
which was not yet included in Ref. [29]. For details on the origin of these terms
we refer to Section 3.2, items 1 and 2. Each of these effects seems to improve the
agreement between SSE and Dispersion Theory, as we will see in the plots of the cor-
responding dynamical quadrupole polarizabilities, given in Section 3.5.1. However,
as discussed in Section 3.3.2, we remind the reader that the l = 2 polarizabilities
are in effect so small that they cannot be determined directly from state-of-the-art
nucleon Compton-scattering experiments.

3.5 Chiral Dynamics and

Dynamical Polarizabilities

Dynamical polarizabilities are a concept complementary to generalized polarizabil-
ities of the nucleon [65, 66, 67]. The latter probe the nucleon in virtual Compton
scattering, i.e. with an incoming photon of non-zero virtuality and an outgoing, soft
real photon. Therefore, they provide information about the spatial distribution of
charges and magnetism inside the nucleon at zero energy. Dynamical polarizabilities
on the other hand test the global low-energy excitation spectrum of the nucleon at
non-zero energy and answer the question, which internal degrees of freedom govern
the structure of the nucleon at low energies.

In the following detailed discussion of the dynamical polarizabilities, the error
bars for the input parameters as discussed in Section 3.3.2 induce uncertainties in
the static and dynamical polarizabilities. The grey bands in the figures around the
SSE curves arise from the (statistical) uncertainty in the fit parameters determined
with the help of the Baldin sum rule in Section 3.4.1. Albeit only a full higher-
order calculation will give a good estimate of the higher-order effects in EFT, this
permits already a rough guess of their size, at least in αs

E1(ω) and βs
M1(ω), given

that the statistical uncertainties in Table 3.1 are at least as large as the corrections
one expects from higher orders, cf. Eq. (3.22). Similar pictures of the dynamical
polarizabilities have already been presented in [29], however without error bars.

3.5.1 Isoscalar Spin-Independent Polarizabilities

Turning first to αs
E1(ω) as shown in Fig. 3.8, it is obvious that its energy dependence

in the low-energy region is entirely controlled by chiral dynamics arising from single-
πN intermediate states. All three theoretical analyses agree rather well within the
statistical uncertainty band of the SSE calculation. As already discussed for the
static electric polarizability ᾱE1 in the previous section, no effects from any inherent
π∆ intermediate states can be detected, pointing to the fact that these rather heavy
degrees of freedom are effectively frozen out at low energies. This makes them – as
far as the energy dependence of the dynamical polarizabilities is concerned – indis-
tinguishable from short-distance contributions represented by the couplings g1, g2.
We also note that the strength and shape of the cusp associated with the one-pion-
production threshold is reproduced extremely well by the leading-one-loop chiral
calculations. It will serve as an interesting check for the convergence properties of
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Figure 3.8: Comparison of the leading-one-loop order SSE (solid) and HBχPT
(dashed) results for the real parts of the isoscalar, spin-independent dynamical
electric and magnetic dipole (top) and quadrupole (bottom) polarizabilities with
Dispersion Theory (dotted).

the chiral theories to see whether the rather good agreement is maintained, once
the higher-order corrections are included.

The other spin-independent l = 1 dynamical polarizability, βs
M1(ω), shows quite

a different picture. We note that the three theoretical frameworks only agree (within
the uncertainty of the SSE parameters) for the value of the static magnetic polar-
izability β̄M1. For increasing values of the photon energy, it becomes obvious from
the agreement between SSE and Dispersion Theory that explicit ∆(1232) contri-
butions via s-channel pole graphs lead to a paramagnetic behaviour quickly rising
with energy. Any ∆π contributions remain small and are effectively frozen out.
The near cancellation between para- and diamagnetic contributions for the static
value discussed in the previous section is completely taken over by ∆(1232)-induced
paramagnetism when the photon energy goes up. We explicitly point to the scale on
the y-axis of this plot, indicating a rise by a factor of four at photon energies near
the one-pion-production threshold. While the leading-one-loop HBχPT calculation
[15] provides a good prediction for β̄M1, it fails to describe the energy dependence
of βs

M1(ω), as shown in Fig. 3.8. In contrast to αs
E1(ω), hardly any cusp is visible in

βs
M1(ω). Beyond the static limit, the chiral πN contributions play a minor role in

this polarizability. We note that while the fine details of the rising paramagnetism
in βs

M1(ω) differ between SSE and Dispersion Theory, they are consistent within the
uncertainties of the SSE curve. The discrepancy between the two schemes above
the one-pion-production threshold is likely to be connected to a detailed treatment
of the width of the ∆ resonance, which is neglected in leading-one-loop SSE.

We further note that the good agreement between SSE and Dispersion Theory
for the l = 1 spin-independent dynamical polarizabilities provides a non-trivial
check regarding the physics parameterized in the couplings g1, g2. Given that these
two structures are energy independent, cf. Eqs. (2.35, 2.36), the fact that only
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the πN and ∆ degrees of freedom suffice to describe the energy dependence in the
low-energy region quite well supports our idea that the physics underlying g1, g2 is
“short-distance” from the point of view of χEFTs.

It is also interesting to look at the spin-independent l = 2 dynamical polariz-
abilities, even if in actual analyses of Compton data they only play a minor role.
In αs

E2(ω) we observe a visible contribution from ∆π intermediate states. It hardly
modifies the shape of the energy dependence, but does affect the overall normaliza-
tion of this polarizability, as can be seen from the difference between the SSE and the
HBχPT curve. The agreement between SSE and Dispersion Theory is surprisingly
good throughout the entire low-energy region. Another interesting higher-order dy-
namical polarizability is βs

M2(ω). The chiral πN contribution seems to play only a
minor role in the energy dependence of this polarizability. ∆π and a surprisingly
large ∆(1232) u-channel pole contribution can close a significant part of the gap
between the HBχPT and the Dispersion Theory result. The remaining gap be-
tween SSE and Dispersion Theory might well be accounted for by next-to-leading
one-loop chiral πN corrections, given that the slope of the energy dependence be-
low pion threshold seems to agree between the two frameworks. Nevertheless, the
energy dependence of this polarizability is quite peculiar. The magnetic quadrupole
strength has decreased rather fast by more than a factor of two when the photon
energy reaches the one-pion-production threshold. This shape is reminiscent of a
relaxation effect typically discussed in textbook examples for dispersive effects [46].
While both in HBχPT and SSE the strengths for βM2(ω) tend to zero for large
photon energies, the DR-curve seems to point to additional physics contributions
above the pion threshold.

We now move on to a discussion of the l = 1 spin-dependent dynamical polar-
izabilities.

3.5.2 Isoscalar Spin-Dependent Polarizabilities

We again remind the reader that no fit parameters analogously to g1 and g2 are
present in the leading-one-loop SSE results for the spin-dependent polarizabilities.
The only free parameter entering the dynamical spin polarizabilities is b1, which
we have determined from the fit to Compton cross sections in Section 3.4.1; how-
ever, it influences only γs

M1M1(ω). As Fig. 3.9 demonstrates, the contributions of
the ∆π continuum to the spin polarizabilities are small throughout the low-energy
region. The energy dependence in γs

E1E1(ω) is completely governed by chiral dy-
namics and agrees well among the three frameworks, quite analogously to the sit-
uation in αs

E1(ω). The ∆(1232)-pole contribution – rising with energy – is visible
in γs

M1M1(ω), but it does not rise as dramatically as in the case of βs
M1(ω) (cf.

Fig. 3.8). The HBχPT calculation for γs
M1M1(ω) deviates strongly from both the

SSE and DR result, signaling again the need for explicit ∆(1232) degrees of freedom
in resonant multipoles. The slight disagreement between SSE and DR for photon
energies above pion threshold in γs

M1M1(ω) might be connected to a detailed treat-
ment of the width of the ∆ resonance, which is not included in leading-one-loop
SSE, see Refs. [29, 26]6. Both HBχPT and SSE predictions for the mixed spin
polarizabilities are rather similar, disagreeing with the DR result. While γs

E1M2(ω)
constitutes a rather tiny structure effect which will be hard to pin down precisely,
the “large” gap between SSE and the DR result in γs

M1E2(ω) could possibly arise
from the missing E2 excitation of the ∆ resonance in a leading-one-loop SSE calcu-
lation. This effect can be accounted for at next-to-leading one-loop order. On the
other hand, the overall shape of the energy dependence in γs

M1E2(ω) is rather sim-

6We do not include a chapter on polarizabilities in the resonance region in this work, as we did
not investigate this issue further than reported in Ref. [29].
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Figure 3.9: Comparison of the leading-one-loop order SSE (solid) and HBχPT
(dashed) results for the real parts of the isoscalar, spin-dependent dynamical dipole
polarizabilities with Dispersion Theory (dotted).

ilar between the chiral and the DR results, indicating that a πN loop contribution
at the next-higher chiral order might also suffice to close the gap.

In conclusion, among the four isoscalar spin-dependent dipole polarizabilities,
only γs

E1E1(ω) seems to be dominated by πN chiral dynamics, which can be ac-
counted for rather well already at leading-one-loop order throughout the low-energy
region. A detailed understanding of the dynamical spin dipole polarizabilities re-
quires explicit ∆(1232)-resonance degrees of freedom.

We now close our discussion of the nucleon polarizabilities, which will, how-
ever, show up several times in this work, as polarizability is one of the fundamental
properties of the nucleon when tested by an external electromagnetic field. In the
next chapter we turn to polarized nucleon Compton cross sections and present our
predictions for various asymmetries. The aim of this investigation is to demon-
strate the possibility to extract spin polarizabilities from Compton experiments. In
this context, we will have another look at spin-averaged Compton cross sections,
as these observables may also give important constraints on the spin-dependent
polarizabilities.



Chapter 4

Polarized Nucleon Compton

Scattering

In Chapter 3, we showed results for unpolarized proton Compton cross sections,
which are derived by averaging over the initial and summing over the final spin
states. Now, we concentrate on spin-polarized cross sections for proton and neu-
tron, albeit we will briefly return to spin-averaged ones in Section 4.3. These in-
vestigations aim to demonstrate that determining spin polarizabilities directly from
experiment is possible. They serve as a guideline for forthcoming experiments on
spin-polarized Compton cross sections.

4.1 Asymmetries – Formalism

In this section we define the various quantities under investigation. These are asym-
metries with the incoming photon polarized circularly, Section 4.1.1, and linearly,
Section 4.1.2. Our predictions for the asymmetries using circularly polarized pho-
tons are published in Ref. [27].

4.1.1 Asymmetries with Circularly Polarized Photons

Triggered by a forthcoming proposal on polarized Compton scattering off 3He at
the HIγS lab of TUNL [20], we choose the incoming photon to be right-circularly
polarized,

~ǫ =
1√
2





1
i
0



 (4.1)

and to move along the positive z-direction, while the final polarization and nucleon
spin remain undetected. The two nucleon spin configurations we investigate are

1) the difference between the target-nucleon spin pointing parallel or antiparallel
to the incident photon momentum

dσ↑⇑
dΩcm

− dσ↓⇑
dΩcm

; (4.2)

2) the difference between the target-nucleon spin aligned in positive or negative
x-direction:

dσ→⇑
dΩcm

− dσ←⇑
dΩcm

. (4.3)

42
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The first arrow in our notation denotes the direction of the nucleon spin, the second
one the direction of the incoming, right-circularly polarized photon. Both configu-
rations are sketched in Fig. 4.1.
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Figure 4.1: The two configurations investigated using circularly polarized photons;
the nucleon spin is aligned parallel (upper panel) and perpendicular (lower panel)
to the direction of the photon momentum.

The corresponding formulae for |T |2 have already been derived in [35], albeit
there they are given only for real amplitudes A1 − A6. However, these amplitudes
become complex for photon energies above the pion-production threshold ωπ, cf.
Section 3.1.2. Including the imaginary part of the amplitudes, the formulae read

1

2

(

|T |2↑⇑ −|T |2↓⇑
)

= −Re[A1A
∗
3] (1 + cos2 θ) −

[

|A3|2 + 2 |A6|2 + 2 |A5|2 cos2 θ

+ Re[A6 (A∗1 + 3A∗3)] +

(

Re[A3 (3A∗5 +A∗4 −A∗2)] + Re[A5 (4A∗6 − A∗1)]

)

cos θ

+ Re[A5 (A∗2 −A∗4)] sin2 θ

]

sin2 θ (4.4)

and

1

2

(

|T |2→⇑ −|T |2←⇑
)

=

[

Im[A1 (A∗3 + 2A∗6 + 2A∗5 cos θ)] cos θ + Im[A1A
∗
4] (1 + cos2 θ)

− Im[A2 (A∗3 + 2A∗6)] sin2 θ − Im[A2 (A∗4 + 2A∗5)] cos θ sin2 θ

]

sin θ sinφ

+

[

Re[A3 (A∗3 −A∗1 + 2A∗6)] cos θ + Re[A3 A
∗
5] (3 cos2 θ − 1)

+

(

Re[A1 A
∗
5] + Re[A2A

∗
3] + Re[A6 (A∗2 +A∗4 − 2A∗5)]

)

sin2 θ

+ Re[A3 A
∗
4] (cos2 θ + 1) + Re[A5 (A∗2 −A∗4 − 2A∗5)] cos θ sin2 θ

]

sin θ cosφ.

(4.5)

Here, φ is the angle between the reaction plane and the plane spanned by the
momentum of the incoming photon and the target-nucleon spin, cf. Fig. 4.1. Ob-
viously, the difference Eq. (4.5) takes on the largest values – at least below the
pion-production threshold – for φ = 0. Therefore, we choose the nucleon spin in
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the reaction plane, which simplifies Eq. (4.5) considerably. Using left- instead of
right-circularly polarized photons changes the overall sign in Eqs. (4.4) and (4.5).
The spin-averaged cross section can be derived by taking the sum instead of the
difference in Eq. (4.4) (or as well in Eq. (4.5)). The corresponding |T |2 is given in
Eq. (3.18).

The asymmetries we consider1 are

Σcirc
z =

|T |2↑⇑ − |T |2↓⇑
|T |2↑⇑ + |T |2↓⇑

, (4.6)

Σcirc
x =

|T |2→⇑ − |T |2←⇑
|T |2→⇑ + |T |2←⇑

. (4.7)

Σ is a frame-independent quantity, as the frame-dependent flux factor cancels in
the ratio between difference and sum of the cross section, while |T |2 can be written
in terms of the frame-independent Mandelstam variables.

From the experimentalist’s point of view, it is more convenient to measure the
asymmetry – i.e. the difference divided by the sum – instead of the differences
Eqs. (4.4) and (4.5), as the former is more tolerant to systematic errors in ex-
periments. However, division by a small quantity, say a small spin-averaged cross
section, may enhance theoretical uncertainties. Sensitivity on the nucleon struc-
ture, e.g. the spin polarizabilities, may be lost by dividing the difference by the
sum. Whenever this happens in Sections 4.4 and 4.5, we will give hints in the text,
but we refrain from showing our results for the differences (4.4, 4.5) for reasons of
compactification, as it is questionable whether one can compare with experimental
data for absolute values of polarized Compton cross sections within the next few
years.

4.1.2 Asymmetries with Linearly Polarized Photons

Besides the asymmetries with circularly polarized photons in the initial state, de-
fined in Eqs. (4.6, 4.7), we also investigate asymmetries with linearly polarized
photons. Again there are two configurations to be considered. The only difference
between these asymmetries is the direction of the nucleon spin, which is aligned
in the positive z- or x-direction, respectively. In both cases we define φ as the
angle between the plane perpendicular to the y-direction and the reaction plane.
Our calculation shows that for fixed angle φ it is necessary to change the photon
polarization between the two measurements, in order to obtain a non-vanishing
asymmetry below the pion-production threshold. The two asymmetries read

Σlin
z =

|T |2↑→ − |T |2↑⊙
|T |2↑→ + |T |2↑⊙

, (4.8)

Σlin
x =

|T |2→→ − |T |2→⊙
|T |2→→ + |T |2→⊙

. (4.9)

Again the first arrow corresponds to the direction of the nucleon spin, whereas here
the second one denotes the photon polarization, with the positive y-axis symbolised
by ⊙. Obviously, Σlin

x is equivalent to having the nucleon spin aligned in the positive
y-direction – both cases emerge from each other under the rotation φ → φ + 90◦.
The two kinematical systems are illustrated in Fig. 4.2.

1Σcirc
z corresponds to Σ2z in the notation of [4], Σcirc

x to Σ2x.
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Figure 4.2: The two configurations investigated using linearly polarized photons;
the nucleon spin is aligned parallel (upper panel) and perpendicular (lower panel)
to the direction of the photon momentum. Note that in both systems the photon
polarization is flipped between the two measurements.

The numerators of Eqs. (4.8) and (4.9) are

1

2

(

|T |2↑→ − |T |2↑⊙
)

=
1

2

{[

Re[A3 (A∗3 + 4A∗6)] − |A1|2 + 4 |A6|2

+ 2 (Re[A3A
∗
4] − Re[A1A

∗
2] + 2 Re[A3A

∗
5] + 2 Re[(A4 + 2A5)A

∗
6]) cos θ

+ 4 Re[(A4 +A5)A
∗
5] cos2 θ + (|A2|2 − |A4|2) sin2 θ

]

(

2 cos2 φ− 1
)

+ 4

[

Im[(A1 +A3)A
∗
6] + Im[A1A

∗
3] + (Im[A1 A

∗
5] + Im[A2A

∗
3] + Im[A3 (A∗4 +A∗5)]

−2 Im[A4A
∗
6]) cos θ − Im[A2 A

∗
5] sin2 θ − Im[A4A

∗
5] (cos2 θ + 1)

]

sinφ cosφ

}

sin2 θ

(4.10)

and

1

2

(

|T |2→→ − |T |2→⊙
)

=
1

2

{[

Re[A3 (A∗3 + 4A∗6)] − |A1|2 + 4 |A6|2

+ 2 (Re[A3A
∗
4] − Re[A1 A

∗
2] + 2 Re[A3A

∗
5] + 2 Re[(A4 + 2A5)A

∗
6]) cos θ

+ 4 Re[(A4 +A5)A
∗
5] cos2 θ + (|A2|2 − |A4|2) sin2 θ

]

(

2 cos2 φ− 1
)

sin θ

+

[

2

(

(

Im[A2A
∗
3] + 2 Im[A5A

∗
6] + Im[A1 A

∗
4] (1 − 2 cos2 φ) + 2 (Im[A3A

∗
4]

−Im[A4 A
∗
6]) cos2 φ+ 2 Im[A2A

∗
6] sin2 φ

)

sin2 θ − 2 Im[A1A
∗
5] (cos2 θ + cos2 φ sin2 θ)

− 2 Im[A3A
∗
5] (1 − cos2 φ sin2 θ)

)

+2

(

(

Im[A2 A
∗
4] (1 − 2 cos2 φ) − 2 Im[A4 A

∗
5] cos2 φ

+2 Im[A2A
∗
5] sin2 φ

)

sin2 θ − Im[A1 A
∗
3] − 2 Im[(A1 +A3)A

∗
6]

)

cos θ

]

sinφ

}

sin θ.

(4.11)

In the first configuration the sum gives the spin-averaged cross section, however in
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the latter this is not the case. Here an additional term arises above threshold:

1

2

(

|T |2→→ + |T |2→⊙
)

=
1

2
(|T |2↑⇑ + |T |2↓⇑)

+

[

Im[A1 (A∗3 + 2A∗6)] cos θ + Im[A1A
∗
4] (1 + cos2 θ) + 2 Im[A1 A

∗
5] cos2 θ

− (Im[A2 (A∗3 + 2A∗6)] + Im[A2 (A∗4 + 2A∗5)] cos θ) sin2 θ

]

sinφ sin θ

(4.12)

Comparing Eqs. (4.10) and (4.11), we find that the real parts of the various
products of amplitudes contributing to the two differences are identical. Therefore
there is no difference between the two configurations below the pion-production
threshold. Furthermore the factor (2 cos2 φ−1) is largest for φ = 0. For this choice
of φ, however, the real parts are the only contributions in both cases. Therefore we
set φ ≡ 0 and only investigate one asymmetry with linearly polarized photons in
Sections 4.4 and 4.5, denoted by Σlin.

Another interesting observation in Eqs. (4.10, 4.11) is the fact that there exist
no interference terms in the real parts between spin-independent (A1, A2) and spin-
dependent (A3-A6) amplitudes. We are interested in the structure of the nucleon,
especially in its spin structure. Therefore, we suspect that in the proton case this
configuration is less suited than the other two, where such effects are amplified by
interference with the strong proton pole amplitudes Apole

1 and Apole
2 , cf. Appendix B.

4.2 Extracting Spin Polarizabilities from

Experiment

One of our aims in this chapter is to prove the possibility of a direct determination of
dynamical spin polarizabilities from experiment. We start from our findings for the
spin-independent dipole polarizabilities αE1(ω) and βM1(ω), which show very good
agreement with Dispersion-Relation Analysis up to about 170 MeV, cf. Fig. 3.8.
Truncating the multipole decomposition at l = 1, this leaves no unknowns in A1 and
A2. As higher polarizabilities are negligible (cf. Sects. 4.3-4.5), the spin-dependent
dipole polarizabilities could then be fitted to data sets which combine polarized
and spin-averaged experimental results, taken at a fixed energy and varying the
scattering angle. As starting values for the fit one may use our χEFT results (see
Fig. 3.9), as indicated in Eq. (4.13), where we show the structure amplitudes up to
l = 1 with the spin polarizabilities γi(ω) replaced by γi(ω) + δi, introducing the fit
parameters δi. The expansion (4.13) has been derived using Eqs. (3.2, 3.4, 3.6) and
(3.8). Small fit parameters mean correct prediction of the dynamical spin-dipole
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polarizabilities within the Small Scale Expansion.

Ā1(ω, z) =
4πW

M
[αE1(ω) + z βM1(ω)] ω2

Ā2(ω, z) = −4πW

M
βM1(ω)ω2

Āfit
3 (ω, z) = −4πW

M
[(γE1E1(ω) + δE1E1) + z (γM1M1(ω) + δM1M1)

+ (γE1M2(ω) + δE1M2) + z (γM1E2(ω) + δM1E2)]ω
3

Āfit
4 (ω, z) =

4πW

M
[−(γM1M1(ω) + δM1M1) + (γM1E2(ω) + δM1E2)] ω

3

Āfit
5 (ω, z) =

4πW

M
(γM1M1(ω) + δM1M1)ω

3

Āfit
6 (ω, z) =

4πW

M
(γE1M2(ω) + δE1M2)ω

3 (4.13)

Thus, one obtains the spin-dipole polarizabilities at a definite energy. Repeating
this procedure for various energies gives the energy dependence, i.e. the dynamics
of the l = 1 spin polarizabilities. Therefore, the amplitudes Eq. (4.13) provide one
possible way to extract dynamical spin polarizabilities directly from the asymmetry
observables of the previous section, using χEFT. Note that the δi may show a weak
energy dependence. At first trial, they can be taken as energy-independent quan-
tities. This corresponds to a free normalization of the spin-dipole polarizabilities,
assuming the energy dependence derived from χEFT to be correct. This assump-
tion is well justified, as at low energies only ∆(1232) and pion degrees of freedom
are supposed to give dispersive contributions to the polarizabilities, and usually the
pion-cloud dispersion is well captured in Chiral Perturbation Theory.

For certain scattering angles, the theoretical error due to the dynamical spin-
independent dipole polarizabilities αE1(ω) and βM1(ω) is even further reduced. In
order to prove this claim we rewrite the effective Hamiltonian up to dipole order,

Heff = −2π
[

αE1(ω) ~E2 + βM1(ω) ~B2 + γE1E1(ω)~σ · ~E × ~̇E (4.14)

+ γM1M1(ω)~σ · ~B × ~̇B − 2 γM1E2(ω)σi Eij Bj + 2 γE1M2(ω)σi Bij Ej

]

with Tij = 1
2 (∂iTj + ∂jTi), cf. Section 1.1. Obviously, when the polarizations of

the incoming and the outgoing photon are perpendicular to each other, i.e. ~ǫ ⊥ ~ǫ ′,
the scalar product ~E2 ∝ ~ǫ · ~ǫ ′ vanishes and therefore αE1(ω) cannot contribute.
This scenario is depicted in the left panel of Fig. 4.3, where the incoming photon
is polarized along the x-direction and the outgoing photon is detected under this
very direction, i.e. under the scattering angles θ = π

2 , φ = 0. In the right panel, the
incoming photon is polarized along the y-direction, and therefore the magnetic fields
of initial and final photon are perpendicular to each other. In this case βM1(ω) gives
no contribution. One might expect that there exist similar exclusion principles for
the spin polarizabilities γE1E1(ω) and γM1M1(ω), when the nucleon spin is aligned
along a well-defined direction in the initial state. However, this would only be the
case, if we would calculate asymmetries with polarized nucleons also in the final
state. Nevertheless, for θ = π

2 , φ = 0 and the initial nucleon polarized parallel to
the x-direction, one spin polarizability vanishes, namely γM1E2(ω) for the incoming
photon polarized parallel to the nucleon spin, γE1M2(ω) for ~ǫ ‖ ~ey. Unfortunately,
these mixed spin polarizabilities are highly non-intuitive. Therefore we cannot give
a heuristic explanation for this behaviour.

In the next section we confirm our claim that determining spin polarizabilities
from experiment is possible by demonstrating that also spin-averaged Compton
cross sections may contribute to this demanding task.
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Figure 4.3: Two experimental configurations with linearly polarized photons, which
exclude contributions from αE1(ω) (left panel) and βM1(ω) (right panel).

4.3 Spin Contributions to Spin-Averaged Cross

Sections

Figure 4.4: Complete O(ǫ3)-SSE predictions (grey) for the spin-averaged proton
cross section; dotted: spin polarizabilities not included, dashed: quadrupole polar-
izabilities not included.

Figure 4.5: Spin-averaged neutron cross section; for notation see Fig. 4.4.

Before discussing the asymmetries in detail, we briefly turn to the question which
polarizabilities are seen in unpolarized Compton cross sections. To this end we have
another look at the O(ǫ3) SSE results already discussed in Section 3.3, but here we
focus on the influence of the spin polarizabilities. As shown in Fig. 4.4, we find
a large contribution of the dynamical spin polarizabilities to spin-averaged proton
Compton cross sections above ω ∼ 100 MeV. We also show our results for the
neutron (Fig. 4.5), exhibiting a huge sensitivity on the spin polarizabilities in the
backward direction. This can be well understood, as the right hand side of Eq. (3.18)
simplifies to |A1|2 + |A3|2 for θ = 0◦ and θ = 180◦. In the forward direction, the
spin-independent amplitude |A1|2 dominates, in the backward direction the spin-
dependent amplitude |A3|2, as can be seen in Appendix A of Ref. [27].
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Recall that we found in Section 3.3 that any effects of quadrupole polarizabil-
ities are invisible at the level of the unpolarized proton cross sections. According
to Fig. 4.5, the same observation holds for the neutron. It suffices therefore to
terminate the multipole expansion at the dipole level, which leaves the six dipole
polarizabilities at given energy ω as parameters.

While effects from the spin polarizabilities are non-negligible in unpolarized ex-
periments, to extract all four of them from such data is clearly impossible. Thus,
double-polarized experiments as discussed in the rest of this chapter are necessary
additional ingredients in a combined multipole analysis. Nevertheless, spin-averaged
Compton data may give valuable constraints on such fits. As proof of principle, we
show in Fig. 4.6 results from fitting the dynamical spin polarizabilities γE1E1(ω)
and γM1M1(ω) to data from [5, 6, 7, 8] at fixed energy and varying angle. Note that
here we extend the data base with respect to our global proton fits of Section 3.4.1,
as we try to increase the number of data points per energy value as far as possible.
The results are compared to the prediction from the Dispersion-Relation Analysis
of [26]. However, these fits are rather unstable, as the sensitivity to γE1E1(ω) and
γM1M1(ω) does not suffice to compensate for the spread in the data, cf. right panel
of Fig. 4.6, which are oriented around a straight line, whereas the cross section is
actually of cosine shape. In order to improve the convergence by minimizing the un-
certainty in the fit amplitudes, we therefore use the multipoles from DR [26] for their
construction, rather than the SSE amplitudes. Thus, Fig. 4.6 is not supposed to
be considered quantitatively, but we believe to have established that spin-averaged
Compton cross sections do help to pin down the dynamical spin polarizabilities.

Figure 4.6: Fits of the dynamical spin polarizabilities γE1E1(ω) and γM1M1(ω) to ex-
perimental proton Compton data from [5, 6, 7, 8] at fixed energy and varying angle.
The solid line in the left two panels is the prediction from the Dispersion-Relation
Analysis of [26]. The right panel shows one example for the fitting procedure – for
the experimental data cf. Figs. 3.5 and 3.6.

4.4 Proton Asymmetries

4.4.1 Proton Asymmetries from Circularly Polarized

Photons

We turn now to the results for the asymmetries of the proton, using circularly
polarized photons in the initial state. Analogously to the previous section, we
confirm for each observable that the quadrupole polarizabilities are negligible. Thus,
the multipole expansion of the amplitude can always be truncated at the dipole level,
leaving at most six parameters. However, it will turn out that not all asymmetries
are equally sensitive to the spin polarizabilities. As expected, most asymmetries
are indeed governed by the pole part of the amplitudes.

In order to determine which asymmetries are most sensitive to the structure
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parts of the Compton amplitudes, and which of the internal low-energy degrees of
freedom in the nucleon dominate the structure-dependent part of the cross section,
we will first compare three scenarios for each asymmetry: (i) the result when only
the pole terms of the amplitudes are kept; (ii) the same when the effects from
the pion cloud around the nucleon are added, as described by the leading-one-loop
order HBχPT result; and finally (iii) a leading-one-loop order calculation in SSE,
including also the ∆(1232) as dynamical degree of freedom.

An ideal asymmetry should thus fulfill three criteria: It should be large to give
a good experimental signal, it should show sensitivity on the structure amplitudes,
and it should allow a differentiation between the pion cloud and ∆ resonance con-
tributions in resonant channels, revealing as much as possible about the role of at
least these low-energy degrees of freedom in the nucleon. In Section 4.5, we will
repeat this presentation for the neutron asymmetries. To simplify connection to
experiment, we give the scattering angle in the following plots in the lab frame.

Similar plots for the nucleon asymmetries are already shown in [4], using Disper-
sion Theory techniques. Direct comparison to those plots is however not possible,
as in [4] the asymmetries are plotted against ωlab and because of a different choice of
angles – the authors of [4] concentrated on the extreme angles 0◦, 90◦, 180◦, whereas
we show our results for 30◦, 90◦ and 150◦, as the extreme forward and backward
direction is nearly impossible to access experimentally.2 Nevertheless, qualitative
agreement between our χEFT results and [4] can be deduced.

We emphasize also that our predictions are parameter free, as all constants
are determined from unpolarized Compton scattering, see Section 3.4.1. In the
following, the fit parameters δi introduced in Eq. (4.13) are all set to zero, as no
measured asymmetries exist at this point.

Proton Spin Parallel to Photon Momentum

Figure 4.7: O(p3)-HBχPT (dashed) and O(ǫ3)-SSE predictions (grey) for the proton
asymmetry Σcirc

z,p ; the dotdashed line describes the third-order pole contributions.

As one can see in Fig. 4.7, the proton asymmetry Σcirc
z,p reaches values of O(1)

and is therefore quite large, although for ω = 0 it vanishes independently of the
scattering angle, due to the vanishing difference and the finite static spin-averaged
cross section, given by the familiar Thomson limit.

Comparing the three curves in Fig. 4.7 – third-order pole, O(p3)-HBχPT and
O(ǫ3)-SSE – one recognizes the strong influence of the pole amplitudes, given by
Eq. (B.1). This is exactly what one expects for the charged proton, and can also be
deduced from Eqs. (4.4, 4.13, B.1): The asymmetry starts linearly in ω, while the
leading term of the structure part of Σcirc

z,p is proportional to ω3, as there is no term
in Eq. (4.4) that contains only spin-independent amplitudes. As we are interested

2Note that for reasons of compactification we reduce the number of angles with respect to
Ref. [27], where we present our results for 70◦ and 110◦ instead of 90◦.
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in information about the structure of the nucleon, i.e. in the deviation of the dashed
and grey lines from the dotdashed (pole contributions only) line in Fig. 4.7, and
as this deviation is not as strong as later in Σcirc

x,p and in the neutron asymmetries,

Σcirc
z,p does not seem to be an ideal choice.

Sizeable contributions from the explicit ∆ degrees of freedom exist only above
ωπ. The only exception is noticed in the extreme forward direction, but this is
an artifact of the asymmetry, which is extremely sensitive at small angles due to
the small spin-averaged cross section at ωπ (Fig. 4.4), and neither visible in the
difference, described by Eq. (4.4), nor in the spin-averaged cross section.

At ωπ, the cusp at the pion-production threshold is clearly visible for all an-
gles. Polarized cross sections are much more sensitive on the fine structure of the
nucleon than their unpolarized pendants. Therefore, our results might considerably
deviate from experiment above threshold, as there are sizeable uncertainties in our
imaginary parts, due to the vanishing ∆ width in our leading-one-loop order SSE
calculation, cf. [29]. Nevertheless, qualitative agreement should be fulfilled, so we
use the same plot range as for the unpolarized results in Section 3.3, with a max-
imum photon energy of 170 MeV. In [4], the plots end below threshold since the
Dispersion-Relation Analysis is compared to a low-energy expansion of the polariz-
abilities, which cannot reproduce signatures like the steep rise in αE1(ω), connected
with the non-analyticity of the pion-production threshold, see Fig. 3.8.

Figure 4.8: Dependence of the proton asymmetry Σcirc
z,p on spin and quadrupole

polarizabilities; for notation see Fig. 4.4.

The asymmetry Σcirc
z,p exhibits only a weak dependence on the spin polarizabil-

ities in the forward direction below ωπ (Fig. 4.8). The largest sensitivity is noted
around 90◦, whereas in the extreme backward direction the dependence on the spin
polarizabilities partly cancels in the division of the difference by the sum. The sharp
rise of the result without spin polarizabilities in Fig. 4.8 above the pion-production
threshold in the forward direction is due to a sharply rising difference and the small
spin-averaged cross section which enters the denominator presented in Fig. 4.4.

In the literature, e.g. in [68], the pion pole (Fig. B.1(d)) is often considered as one
of the structure diagrams, giving the dominant contribution to the static backward
spin polarizability γ̄π. We treat the term as pole, as it contains a pion pole in the
t-channel and we assume that its contribution to nucleon Compton scattering is well
understood. So the question arises why we are sensitive to the spin polarizabilities,
despite of having removed this supposedly dominant part from them. The reason is
that the pion pole dominates over the structure part of γπ(ω) only for low energies.
The pion-pole contribution to γπ(ω) looks like a Lorentzian (Eq. (B.1)) and becomes
smaller than the structure contribution above 100 MeV, as the latter rises due to
the increasing values of γE1E1(ω) and γM1M1(ω), cf. Section 3.5.

It is crucial to notice that the quadrupole polarizabilities (l = 2) play again a
negligibly small role, see Fig. 4.8. The most important quadrupole contribution is
observed at 90◦ and 150◦ above threshold, but the relative size is still < 0.1 and
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therefore presumably within the experimental error bars. As repeatedly stated,
that these contributions are small is mandatory if one wants to determine spin
polarizabilities via polarized cross section data, because only then can the multipole
expansion be truncated at l = 1 as in Eq. (4.13).

Proton Spin Perpendicular to Photon Momentum

Figure 4.9: Dependence of the proton asymmetry Σcirc
x,p on pion and ∆ physics; for

notation see Fig. 4.7.

The asymmetry Σcirc
x,p in Fig. 4.9 looks quite similar for the different angles: It

always starts with a falling slope and exhibits a sharp minimum at the pion cusp,
therefore staying negative in a wide energy range.

Even more striking than for Σcirc
z,p is the weak sensitivity of the asymmetry Σcirc

x,p

on explicit ∆ degrees of freedom. Once again, the only exception to this rule
is the extreme forward direction around ωπ because of the small spin-averaged
cross section which enhances the small deviations between the HBχPT and the
SSE calculation of the difference Eq. (4.5) and makes Σcirc

x,p extremely sensitive
to theoretical uncertainties. Therefore, we consider the forward angle regime as
inconvenient for measuring proton asymmetries. In the other panels of Fig. 4.9, the
∆ dependence cancels in the asymmetry, whereas we found the ∆(1232) resonance to
give sizeable contributions to both the difference and the sum. This is demonstrated
for θlab = 150◦ in Fig. 4.10, where we show the difference Dcirc

x,p , corresponding to
Eq. (4.5), the spin-averaged cross section and the resulting asymmetry. This is one
example that an asymmetry actually hides interesting physical information.

Figure 4.10: Cancellation of contributions from the ∆ resonance to the asymmetry
Σcirc

x,p (right) in the division of the difference (left) by the spin-averaged cross section
(middle); for notation see Fig. 4.7.

The dominance of the pole amplitudes is – as in Σcirc
z,p – clearly visible. The

argument is the same as before. Nonetheless, we find a stronger dependence of
Σcirc

x,p on the nucleon structure than for Σcirc
z,p , especially around ωπ.

As one can see in Fig. 4.11, Σcirc
x,p is very sensitive to the spin polarizabilities

for all angles. Therefore – and because of our findings in the previous subsection –
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Figure 4.11: Dependence of the proton asymmetry Σcirc
x,p on spin and quadrupole

polarizabilities; for notation see Fig. 4.4.

choosing the proton spin perpendicular to the photon momentum seems to be more
convenient than parallel to examine the spin structure of the proton. In the back-
ward direction, the spin dependence of the asymmetry is less pronounced than in
the forward direction.

The quadrupole contributions are extremely small.

4.4.2 Proton Asymmetries from Linearly Polarized Photons

Figure 4.12: Dependence of the proton asymmetry Σlin
p on pion and ∆ physics; for

notation see Fig. 4.7.

The most striking difference between Fig. 4.12 and the asymmetries using circu-
larly polarized incoming photons is the fact that the proton asymmetry Σlin

p is non-
vanishing even for zero photon energy. The reason is the term |A1|2 in Eq. (4.10),
which in leading order does not depend on the photon energy. The resulting formula
for Σlin

p in the static limit is

Σlin
p (ω, θ) = − sin2 θ

1 + cos2 θ
, (4.15)

which can be derived from Eqs. (3.18, 4.4, B.1). A strong dependence on ∆ physics
is only observed in the forward direction, which is, however, a most delicate region
with respect to theoretical errors, as already discussed.

A similar picture arises for the spin-polarizability dependence, Fig. 4.13. Except
for the energy region above threshold in the extreme forward direction, these degrees
of freedom are not as dominant as they are in Fig. 4.11. In the forward direction,
however, we observe a relatively strong influence of the quadrupole polarizabilities.
As these quantities were nearly invisible so far, this confirms our hypothesis that
the forward direction is not the ideal choice to determine spin polarizabilities from
asymmetries. Another disadvantage of Σlin

p is the small size of this asymmetry,

except for θ ≈ 90◦, due to the overall factor sin2 θ in Eq. (4.10).
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Figure 4.13: Dependence of the proton asymmetry Σlin
p on spin and quadrupole

polarizabilities; for notation see Fig. 4.4.

As a short résumé of the proton asymmetries, we consider the second configu-
ration, i.e. Σcirc

x,p , as the best choice to determine spin polarizabilities from experi-
ments. The reasons are the clear signal of the spin polarizabilities and the nearly
invisible contributions of multipole order l > 1. However, we have to caution that
due to the very small spin-averaged proton cross section around ωπ, there may be
considerable theoretical errors in our calculation in the forward direction. Therefore
we consider experiments performed above 60◦ most promising, see also Ref. [27] for
a different set of angles.

4.5 Neutron Asymmetries

4.5.1 Neutron Asymmetries from Circularly Polarized

Photons

In the absence of stable single-neutron targets, the following results for the neutron
have to be corrected for binding and meson-exchange effects inside light nuclei –
analogously to our spin-averaged deuteron Compton calculation, described in Chap-
ters 5 and 6. Here, we present the neutron results to guide considerations on future
experiments using polarized deuterium or 3He [20].

As in the proton case, the neutron asymmetries reach quite large values of O(1)
as the photon energy increases. In the neutron, pole contributions might be expected
to be small, because it is uncharged and thus only the pion pole and the anomalous
magnetic moment contribute. On the other hand, spin polarizabilities are then
not enhanced by interference with large pole amplitudes. Therefore, whether and
which neutron asymmetries are sensitive to the structure parts, and hence to the
spin polarizabilities, must be investigated carefully.

We follow the same line of presentation as outlined at the beginning of Sec-
tion 4.4 for the proton asymmetries: First, we investigate which internal degrees of
freedom are seen in a specific asymmetry, and then show that quadrupole polariz-
abilities give negligible contributions. Thus, the asymmetries most sensitive to spin
polarizabilities are identified. Note that we may use the SSE parameters – ᾱE1,
β̄M1 and b1 – which we derived from proton cross sections in Section 3.4.1, because
non-relativistic Chiral Perturbation Theory predicts that the proton and neutron
polarizabilities are equal at leading-one-loop order [15].

Neutron Spin Parallel to Photon Momentum

Comparing Fig. 4.14 to the proton analogs, Figs. 4.7 and 4.9, we notice that the
neutron is much more sensitive to the structure amplitudes. The pole curves show
only a weak energy dependence, so that nearly the whole dynamics is given by the
neutron polarizabilities. This minor influence of the pole amplitudes is due to the
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Figure 4.14: Dependence of the neutron asymmetry Σcirc
z,n on pion and ∆ physics;

for notation see Fig. 4.7.

vanishing third-order pole contributions to A1 and A2, which make the difference
Eq. (4.4) start with a term proportional to ω2, whereas the leading structure part
is O(ω3). The lowest order in ω of the spin-averaged cross section is ω2, rendering
finite static values of Σcirc

z,n . The angular dependence of this static value can be
derived from Eqs. (3.18, 4.4, B.1) as

Σcirc
z,n (ω = 0, θ) =

4 sin2 θ

−5 + cos(2 θ)
. (4.16)

The structure dependence of the neutron is also visible in the huge sensitivity of
Σcirc

z,n to the ∆ resonance, which influences the polarized cross sections considerably
even for very low energies. As is well known, the influence of the ∆(1232) increases
with increasing angle.

Concerning the shape of the asymmetry, one recognizes a similar behaviour for
the whole angular spectrum. It always reaches a local minimum at the pion cusp.
A precise interpretation of the shape of Σcirc

z,n is hard to give, as the denominator
has the leading power ω2, while it was ω0 in the proton case.

Figure 4.15: Dependence of the neutron asymmetry Σcirc
z,n on spin and quadrupole

polarizabilities; for notation see Fig. 4.4.

Fig. 4.15 exhibits that there are sizeable spin contributions to the asymmetry
Σcirc

z,n for each angle. Nevertheless, one recognizes a decreasing spin dependence with
increasing angle.

As in the proton case we find the quadrupole part to be negligibly small within
the accuracy of this analysis (Fig. 4.15).

Neutron Spin Perpendicular to Photon Momentum

The shape of the asymmetry Σcirc
x,n in Fig. 4.16 with the minimum at ωπ is similar to

Σcirc
z,n (Fig. 4.14), especially in the forward direction. The curve is shifted downward

with increasing angle θ. The angular dependence of the static value is determined
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Figure 4.16: Dependence of the neutron asymmetry Σcirc
x,n on pion and ∆ physics;

for notation see Fig. 4.7.

by the pole contributions. It is

Σcirc
x,n(ω = 0, θ) =

4 sin θ cos θ

5 − cos(2 θ)
, (4.17)

but as for Σcirc
z,n , the dynamics of Σcirc

x,n is completely dominated by the neutron
polarizabilities.

Another interesting feature in Fig. 4.16 is the fact, that the explicit ∆ degrees
of freedom only play a minor role in the forward direction but dominate for large
angles.

Figure 4.17: Dependence of the neutron asymmetry Σcirc
x,n on spin and quadrupole

polarizabilities; for notation see Fig. 4.4.

Turning to Fig. 4.17, Σcirc
x,n exhibits of all asymmmetries by far the largest sen-

sitivity to the spin polarizabilities. Therefore, and due to our observations for the
proton asymmetries, an experiment with the nucleon spin aligned perpendicularly
to the photon momentum seems from the theorist’s point of view to be the most
promising of the considered configurations to extract the spin polarizabilities.

As in Σcirc
z,n , the quadrupole polarizabilities are negligibly small in Σcirc

x,n (Fig. 4.17).

4.5.2 Neutron Asymmetries from Linearly Polarized

Photons

In the neutron asymmetries with circularly polarized photons only the leading
(static) terms are identical, when we expand the pole contributions and our full
O(ǫ3)-calculation in the photon energy; in Σlin

n we find that also the slope at ω = 0
is the same. The reason for this behaviour is that in the real parts of the various
products of amplitudes in Eq. (4.10) there is no interference term between spin-
independent (A1, A2) and spin-dependent (A3-A6) amplitudes, as already men-
tioned at the end of Section 4.1.2. Therefore there is no structure contribution at
O(ω3). This missing interference term already suggests that the asymmetry Σlin

n is
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not as sensitive to the neutron structure as are Σcirc
x,n and Σcirc

z,n . In fact the three
approximations in Fig. 4.18 are quite close to each other. The static limit in this
configuration is described by

Σlin
n (ω = 0, θ) =

2 sin2 θ

−5 + cos 2θ
. (4.18)

Figure 4.18: Dependence of the neutron asymmetry Σlin
n on pion and ∆ physics; for

notation see Fig. 4.7.

On the other hand, Fig. 4.19 suggests that the spin sensitivity of the configura-
tion is huge, except for the forward direction. However, we have to caution that the
absolute scale of the asymmetry in the backward (and also in the forward) direc-
tion is rather small – recall the factor sin2 θ in Eq. (4.10). Nevertheless we believe
that this asymmetry is able to give valuable contributions to the determination of
the spin polarizabilities, at least for scattering angles close to 90◦. Another dis-
advantage appears in Σlin

n in the forward direction, namely the surprisingly strong
contributions of the dynamical quadrupole polarizabilities.

Figure 4.19: Dependence of the neutron asymmetry Σlin
n on spin and quadrupole

polarizabilities; for notation see Fig. 4.4.

As a short conclusion of Sections 4.4 and 4.5 we find a much stronger sensitivity
of the neutron asymmetries on the nucleon structure, while the proton asymmetries
are dominated by pole terms up to at least 50 MeV. Contributions from the ∆(1232)
resonance are crucial only for certain asymmetries and angles. For both nucleons,
the spin configuration Σcirc

x turned out as the one which is most sensitive to the
nucleon spin structure, comparing to Σcirc

z and Σlin. However, this last configuration
may give valuable contributions in the neutron case around θ = 90◦. Dynamical
quadrupole contributions are negligible in each of the considered cases3.

As we consider Σcirc
x the most promising configuration, we investigate two aspects

of this quantity in more detail: Its sensitivity to the (statistical) errors of the three
SSE fit parameters, cf. Table 3.1 and Eq. (3.24), and to the four spin-dependent

3The only exception to this rule is Σlin
n in the forward direction, but this configuration is also

for other reasons unfavorable, e.g. due to the small absolute size.



58 CHAPTER 4. POLARIZED NUCLEON COMPTON SCATTERING

dipole polarizabilities. Fig. 4.20 tells us that the statistical errors play only a minor
role in the proton asymmetry, whereas for the neutron they are considerably larger,
due to the weaker constraint by the pole terms, which renders the neutron more
sensitive to its structure than the proton. This behaviour is observed independently
of the scattering angle θ.

Figure 4.20: Dependence of the proton (left) and neutron (right) asymmetry Σcirc
x

on the statistical errors in g1, g2, b1, denoted by the grey band around our full O(ǫ3)
SSE calculation (solid); in the dotted line the spin polarizabilities are switched off.

In Fig. 4.21, we vary the four spin dipole polarizabilities successively by
+5 · 10−4 fm4, in order to investigate the dependence of Σcirc

x on these quantities.
For θlab = 150◦ the asymmetry is about equally sensitive to all four of them, whereas
around 90◦ we find that the spin dependence is dominated by γE1E1(ω). We also
note that although the asymmetries are sensitive to all four spin polarizabilities,
the dominant contribution comes from γE1E1(ω), which is the largest in size.

Figure 4.21: Dependence of the proton (left) and neutron (right) asymmetry Σcirc
x on

the various spin dipole polarizabilities. We compare our full O(ǫ3) SSE calculation
(grey, solid) to the same result with a variation by +5 ·10−4 fm4 in γE1E1(ω) (short-
dashed), γM1M1(ω) (dotted), γE1M2(ω) (dotdashed) and γM1E2(ω) (long-dashed).
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Before we conclude the one-nucleon part of this work, let us resume the main
aspects of Chapters 3 and 4. In Chapter 3 we derived a multipole expansion for
single-nucleon Compton scattering, which we use to define dynamical, i.e. energy-
dependent polarizabilities. These quantities have been calculated in the framework
of Chiral Effective Field Theory and are compared to predictions from a Dispersion-
Relation Analysis [26] – the agreement between both approaches in most of the
multipole channels was found to be very good. Before, we fixed three parameters,
including the static dipole polarizabilities ᾱE1 and β̄M1, via fits to spin-averaged
proton Compton cross sections, yielding results close to alternative extractions.
Comparison of the resulting, fitted cross sections with experiment and Disper-
sion Relation looks very promising. Contributions from quadrupole polarizabilities
turned out nearly invisible below 170 MeV. Nevertheless it is clear that not all of the
six dipole polarizabilities can be determined via fits to spin-averaged cross sections
alone. Therefore we investigated in Chapter 4 several single-nucleon asymmetries
and demonstrated that neglecting quadrupole polarizabilities is a valid approxima-
tion also for spin-polarized observables. We conclude that determining the elusive
spin polarizabilities from a combination of spin-polarized and spin-averaged experi-
ments is feasible. However, such experiments are nearly impossible for the unstable
neutron. So in order to investigate the neutron polarizabilities, one has to rely on
light nuclei like the deuteron or 3He. With this in mind we turn now to the second
main part of this work, the calculation of Compton scattering from the deuteron.



Chapter 5

Deuteron Compton

Scattering in Effective Field

Theory

So far we were only concerned with Compton scattering from the single nucleon.
We found that describing proton and neutron Compton scattering theoretically is
quite similar in the framework and up to the order of the chiral expansion chosen
in this work. As we saw in Section 3.3.2, our calculation gives a good description
of the experimentally measured proton Compton cross sections below 200 MeV.
Therefore, in Section 3.4.1, we were able to fit the (static) proton polarizabilities
ᾱp

E1 and β̄p
M1 reliably to the existing data.

However, as there is no stable single-neutron target, the direct experimental
investigation of neutron Compton scattering is nearly impossible. Therefore, in
order to access the neutron polarizabilities, one has to rely on other experimental
methods, e.g. quasi-free Compton scattering from neutrons bound in a light nu-
cleus, scattering neutrons on heavy nuclei or elastic Compton scattering from light
nuclei. In the Introduction (Section 1.1), we reviewed several attempts to extract
the neutron polarizabilities from data and we found a rather broad range quoted
for ᾱn

E1 and β̄n
M1, e.g. ᾱn

E1 ∈ [−4; 19]. Therefore, in order to contribute to the on-
going discussion of these quantities, we are in this and the next chapter concerned
with elastic deuteron Compton scattering. The cross sections resulting from our
calculation are fitted to experimental data, with the isoscalar polarizabilities as fit
parameters. These numbers are then combined with our fit results for ᾱp

E1 and β̄p
M1

from Section 3.4.1 in order to deduce the elusive neutron polarizabilities.
In this first chapter on deuteron Compton scattering we aim for an improved

description of the elastic deuteron Compton data at ω ∼ 50-100 MeV, compared
to the calculations presented in [22, 24], which cannot describe the data from [19],
measured at ωlab ∼ 95 MeV. In the next chapter we show how to extend the region
of validity of our calculation down to the limit of vanishing photon energy.

This chapter is based on the calculations of Refs. [69, 25], where Compton scat-
tering off the deuteron was examined for photon energies ω ranging from 50 MeV to
100 MeV. The central values for the isoscalar polarizabilities, derived in the recent
O(p4)-HBχPT analysis [25] of the data from [17, 18, 19] are

ᾱs
E1 = (13.0 ± 1.9)+3.9

−1.5 · 10−4 fm3,

β̄s
M1 = (−1.8 ± 1.9)+2.1

−0.9 · 10−4 fm3. (5.1)

Comparing with Table 3.1, these results indicate a small isovector electric polariz-
ability, but allow for values of β̄v

M1 which are considerably larger than β̄p
M1. How-

60
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ever, the range for ᾱs
E1 and β̄s

M1 quoted in [25] is large: ᾱs
E1 = (9.6 . . . 18.8) ·

10−4 fm3, β̄s
M1 = (−4.6 . . .2.2) · 10−4 fm3. The authors of Refs. [69, 25] followed

Weinberg’s proposal [70] to calculate the irreducible kernel for the γNN → γNN
process in Heavy Baryon Chiral Perturbation Theory, cf. Section 2.1. Proceed-
ing in this fashion means working within an Effective Field Theory in which only
nucleons and pions are active degrees of freedom. The kernel is then folded with
external deuteron wave functions, derived from high-precision NN -potentials such
as Nijm93 [71], CD-Bonn [72] or AV18 [73]. This combination of various elements,
calculated within different theoretical frameworks, is called “hybrid” approach and
has proven quite successful in describing e.g. radiative np capture [74] and πd [75],
e−d [76] and also γd [69, 25] scattering. As we have seen in Chapter 3 that the
∆(1232) is an important degree of freedom in single-nucleon Compton scattering,
we extend in this chapter the calculation of Ref. [69] to the framework of the Small
Scale Expansion, cf. Section 2.2. The advantage of our approach with respect to
the NNLO calculation of Ref. [25] is that we have a more realistic energy depen-
dence of the Compton multipoles, which in Ref. [25] is only partially contained in
the two short-distance parameters, contributing to ᾱE1 and β̄M1. As we already
saw in Chapter 3, the strong energy dependence induced by the ∆(1232) plays an
important role in quantities such as the magnetic dipole polarizability βM1(ω) and
in the spin-averaged Compton cross sections. It is therefore interesting to also in-
vestigate the role of these degrees of freedom in elastic γd scattering, which is the
main focus in this chapter.

In Section 5.2, we discuss our predictions for the deuteron Compton cross sec-
tions for four different energies between 50 MeV and 100 MeV, comparing to data
and to the O(p3)-HBχPT calculation [69]. Before that, we give a brief survey of
the theoretical formalism in Section 5.1 and show that combining Weinberg’s count-
ing ideas with the SSE power-counting scheme leads to no additional diagrams in
the two-body part of the kernel with respect to [69]. In Section 5.3, we present
our results for the isoscalar polarizabilities, derived from a fit to elastic deuteron
Compton-scattering data, which turn out to be in good agreement with the the-
oretical expectation that the isovector components are small. The corresponding
curves are compared to the plots resulting from one of the O(p4)-HBχPT fits from
Ref. [25]. All the results reported in this chapter have been published in our paper
Ref. [28].

5.1 Theory of Deuteron Compton Scattering

We calculate Compton scattering off the deuteron in the framework of the Small
Scale Expansion [41], cf. Section 2.2. The power-counting scheme that we use for
Compton scattering off light nuclei is motivated by Weinberg’s idea to count powers
only in the interaction kernel. While the kernel is power counted according to the
rules of the Effective Field Theory, the deuteron wave functions we use are obtained
from state-of-the-art NN potentials: Nijm93 [71], the CD-Bonn potential [72], the
AV18 potential [73] (see also Appendix K) and the NNLO chiral potential [77] with
the cutoff chosen as Λ = 650 MeV1. This last potential is derived by applying the
HBχPT power counting, proposed by Weinberg for the two-nucleon sector, to the
NN potential V . The latter two wave functions are sketched in Appendix D. The
anatomy of our deuteron Compton calculation is illustrated in Fig. 5.1.

The diagrams contributing to the scattering process considered can be classified
into “one-body” pieces, in which all photon interactions take place on a single nu-
cleon, and “two-body” pieces, in which both nucleons are involved in the Compton-

1We note that it has been questioned in Ref. [78], whether there is a unique ’NNLO’ chiral po-
tential due to the observed limit-cycle-like cutoff dependence of the leading-order chiral potential.
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Figure 5.1: Anatomy of the deuteron Compton calculation. The blob symbolises
the γγd interaction kernel, Ψi,f denote the deuteron wave function in the initial
and final state, respectively.

scattering process, see Fig. 5.2. As we calculate in the γd cm frame, the two nucleon
momenta in the initial state must add up to −~ki. The relative momentum ~p = ~p1−~p2

2
of the two nucleons is non-vanishing. The momenta of the outgoing nucleons de-
pend on whether only one or both nucleons are involved in the scattering process.
In the first case, they are completely determined by the momenta of the incoming
nucleons and the photons, whereas momentum is transferred in the latter from one
nucleon to the other, e.g. via the exchange of a pion. Of course, in both cases the
momenta of the outgoing nucleons have to add up to −~kf cf. Fig. 5.2.

Figure 5.2: Momenta in single- and two-nucleon contributions to deuteron Compton
scattering.

This, though, is not the only way to classify diagrams. They can also be divided
like

Gγγ = GKγ GKγ G+GKγγ G, (5.2)

where we defined the Green’s function for Compton scattering from the NN system
as Gγγ . It is the sum of all Feynman graphs which contribute to γNN → γNN in
which the photon interacts with the NN system. G is the two-particle Green’s func-
tion, constructed from the two-nucleon irreducible interaction V and the free two-
nucleon Green’s function. Kγ denotes the coupling of one photon to the two-nucleon
system, Kγγ is the two-nucleon irreducible kernel for the coupling of incoming and
outgoing photon.

The first piece in Eq. (5.2) is called the “two-nucleon reducible” part and the
second is the “two-nucleon irreducible” part. Two-nucleon reducible diagrams are
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those which contain an intermediate state with only the two nucleons as particle
content. Note that, according to this classification, KγGKγ and Kγγ each contain
one-body and two-body pieces. An example of an O(ǫ3) one-body contribution to
the two-nucleon reducible part is given in Fig. 5.3(a). Two-nucleon reducible two-
body contributions to Gγγ begin at O(ǫ4). One such diagram is given in Fig. 5.3(b),
whereas Figs. 5.3(c) and (d) are two examples of two-nucleon irreducible diagrams
in the one-nucleon and the two-nucleon sector, respectively.

(a) (b) (c) (d)

Figure 5.3: Examples of two-nucleon reducible (a, b) and two-nucleon irreducible
diagrams (c, d). Except for diagram (b), which is of O(ǫ4), all graphs displayed are
of third order in the Small Scale Expansion.

The amplitude for Compton scattering off the deuteron is derived as the matrix
element of the interaction kernel, consisting of the two-nucleon irreducible part
Kγγ and the two-nucleon reducible part Kγ GKγ , evaluated between an initial-
and final-state deuteron wave function, cf. [69]:

M = 〈Ψf |Kγγ +Kγ GKγ |Ψi〉 , (5.3)

see also Eq. (5.10).
In this chapter, we apply the same power-counting rules to both Kγγ and

KγGKγ , calculating all contributions to O(ǫ3). Therefore, also the interaction
between the two nucleons in the intermediate state of e.g. Fig. 5.3(a) is built up
only perturbatively. Up to the order to which we work, G turns out as the Green’s
function of two free nucleons, while it represents the full NN -scattering Green’s
function in Chapter 6. We refer therefore to the approach to deuteron Compton
scattering used in this chapter as the approach without rescattering, whereas in
Chapter 6, we insert the full two-particle Green’s function in the intermediate state
of Fig. 5.3(a).

In order to determine which diagrams contribute to our leading-one-loop order
calculation, we first remind the reader that a diagram appearing at a certain order
in q in HBχPT contributes at the same order ǫ in SSE, cf. Section 2.2. In HBχPT,
the leading-order propagator of a nucleon with the energy ω of the external probe
flowing through it is i

ω [35]. Corrections from the kinetic energy of the nucleon
are treated perturbatively. In the deuteron, such a perturbative treatment is not
applicable for low photon energies, due to the relative momentum ~p between the two
equally heavy nucleons. Therefore, one has to use the full non-relativistic nucleon
propagator i

ω−p2/2mN
in the low-energy regime. Nonetheless, the approximation

i
ω is useful for ω much larger than the expectation value

〈

p2/mN

〉

of the kinetic
energy inside the deuteron, which we found to be of the order of 20 MeV for the wave
functions we are using. These considerations demonstrate that for ω ≫

〈

p2/mN

〉

,
the nucleon propagator may be counted as O(ǫ−1) like in standard HBχPT, whereas
in the “nuclear” regime, i.e. ω ∼ O

(〈

p2/mN

〉)

, it has to be counted as O(ǫ−2), since
p ∼ ǫ. Therefore, from the point of view of χEFT, one has to strictly differentiate
between two energy regimes: the nuclear regime ω ∼ O

(〈

p2/mN

〉)

and the regime
ω ∼ O(mπ). In this chapter we restrict ourselves to the latter one, as we are mainly
concerned with photon energies ω ≥ 50 MeV, which is the energy region where one
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starts to be sensitive to the nucleon polarizabilities, cf. Ref. [60]. Therefore, our
calculation is only valid above some lower energy limit, which will turn out to be
of the order of 50-60 MeV (cf. Section 5.2). In Chapter 6, we present an approach
to deuteron Compton scattering which does not suffer from such a lower energy
limit. Nevertheless, the strict perturbative calculation of this chapter has some
advantages with respect to the one presented in Chapter 6: The most important
point is the computational effort which as we shall see is considerably smaller. The
second advantage is that it is much easier to employ a systematic expansion scheme
for the interaction kernel. This systematicity leads to a high degree of transparency,
which makes it easy to disentangle the various nuclear degrees of freedom from each
other.

In the regime ω ∼ O(mπ), the contributions from KγGKγ can be treated using a
perturbative chiral expansion. Heuristically, this can be easily understood, because
the absorption of a high-energy photon immediately separates the nucleons from
each other, so the deuteron would be destroyed if the second photon was not emitted
near-instantaneously. Such a perturbative treatment is not valid in the nuclear
regime, ω ∼ O

(〈

p2/mN

〉)

, as described in detail in [69, 25], and applying it there
leads – not surprisingly – to violations of the low-energy theorems which govern
the limit ω → 0. For example, the Thomson limit for Compton scattering from a
nucleus of charge Qe and mass AmN ,

AThomson = A(ω = 0) = −Q2 e2

AmN
~ǫ · ~ǫ ′, (5.4)

is a direct consequence of gauge invariance [79] and cannot be recovered without
the full two-nucleon Green’s function in the intermediate state of diagram 5.3(a).
It is one of the central results of Chapter 6 that the correct low-energy limit will be
obtained (see Section 6.2). Some attempts to reach this limit at least approximately
by the inclusion of O(p4)-pion-exchange diagrams are reported in Section 5.4.

Due to the inapplicability of our calculation at small photon energies, we strictly
constrain ourselves in this chapter to ω ∼ O(mπ), where a perturbative expansion
of the kernel in the standard HBχPT counting scheme, i.e. counting the nucleon
propagator as O(ǫ−1), is possible2. The lower limit of this power counting turns
out to be ω ≈ 50 MeV, so we have to caution the reader that the calculation is
not supposed to work in the region ω ≪ 50 MeV. In this energy regime, pions
may be treated as “heavy” compared to the photon energy, and it can therefore be
more convenient to use an Effective Field Theory approach to deuteron Compton
scattering where pions are integrated out, see Refs. [60, 23]. These calculations
describe the very-low-energy region well and also reach the exact Thomson limit.

As we calculate γd scattering in the Small Scale Expansion, we have to fix
our counting rules also for diagrams including ∆(1232) propagators. For the one-
body contributions this is straightforward, as we apply the SSE counting scheme,
cf. Refs. [26, 42]. As far as the two-body physics is concerned, we combine the
SSE counting rules, e.g. counting the ∆-propagator as ǫ−1, with Weinberg’s pre-
scription of counting only within the interaction kernel. To O(ǫ3), the order up to
which we are working, this leads to identical meson-exchange diagrams as in the
O(p3)-HBχPT calculation. All additional diagrams are at least one order higher,
an example is given in Fig. 5.4(b) (an example of an O(ǫ4)-one-body diagram is
sketched in Fig. 5.4(a)). Note that only nucleon propagators with the energy of the
scattered photon flowing through them are supposed to be counted as ǫ−1. There-
fore, up to O(ǫ3) there are no diagrams with ∆ excitations in outgoing lines, since
the ∆ propagator always has to be counted as −1.

2The only exception to this rule is Section 5.4, where we investigate the Thomson limit.
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Figure 5.4: Two examples of O(ǫ4) contributions to deuteron Compton scattering
with explicit ∆(1232) degrees of freedom in the one- and two-body sector.

As a side remark we note that a modified counting scheme in the two-body
sector has been suggested in [75], as certain pion-exchange diagrams may be en-
hanced when the photon energy comes close enough to the pion mass that the pions
in the two-body diagrams are almost on mass shell. We do not consider such a
modification necessary for our calculation, as we restrict ourselves to photon en-
ergies ω ≤ 100 MeV. Therefore, the diagrams contributing to deuteron Compton
scattering up to O(ǫ3) are:

• One-body contributions without explicit ∆(1232) degrees of freedom. These

are the single-nucleon seagull with the two-photon vertices from L(2)
Nπ and

L(3)
Nπ (see Fig. 5.5(a) and Appendix B). The former gives the only contribution

at O(ǫ2), the latter enters at O(ǫ3). Also at O(ǫ3), the nucleon-pole terms
(Fig. 5.5(b) and Appendix B) and the contributions from the leading chiral
dynamics of the pion cloud around the nucleon enter (Figs. 5.5(d)-(g), see also
Fig. 3.2). We note that at O(ǫ3) the nucleon s-channel pole term is the only
contribution from Kγ GKγ , cf. Eq. (5.2). The pion pole (Fig. 5.5(c)), i.e.
the π0-exchange in the t-channel, does not contribute to deuteron Compton
scattering at this order, as it is an isovector and we neglect isospin-breaking
effects.

Figure 5.5: One-body interactions without a ∆(1232) propagator contributing to
deuteron Compton scattering up to O(ǫ3) in SSE. Permutations and crossed graphs
are not shown.

• One-body diagrams with explicit ∆ degrees of freedom, as shown in Fig. 5.6:
The ∆-pole diagrams (Fig. 5.6(a)) and the contributions from the pion cloud
around the ∆(1232) (Figs. 5.6(b)-(e)).

• The two isoscalar short-distance one-body operators (Fig. 5.6(f)), introduced
in Section 3.3. We note that except for these two contact operators, the δ-
expansion [43] (cf. Section 2.2) up to NNLO is equivalent to O(ǫ3) SSE in the
energy range ω ∼ mπ considered.

• Two-body contributions with one pion exchanged between the two nucleons
(Fig. 5.7). In total there are nine two-body diagrams at O(ǫ3). As discussed
before, the meson-exchange diagrams are identical in third-order HBχPT and
SSE.
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Figure 5.6: Additional one-body interactions which contribute to deuteron Compton
scattering at O(ǫ3) in SSE compared to third-order HBχPT. Permutations and
crossed graphs are not shown.

Figure 5.7: Two-body interactions contributing to the kernel for deuteron Compton
scattering at O(ǫ3) in SSE. Diagrams which differ only by nucleon interchange are
not shown.

All these diagrams (Figs. 5.5-5.7) make up our interaction kernel. The SSE
single-nucleon amplitudes can be found in [26], however there is one difference com-
pared to the T -matrix for Compton scattering off the single nucleon (Eq. (3.18)):
The nucleon-pole amplitudes, which are given in the γN center-of-mass frame in
Appendix B, have to be boosted to the γNN center-of-mass system, as our calcu-
lation is performed in the γd cm frame. This is easily accomplished by evaluating
the pole diagrams (Fig. 5.5(b) plus crossed) in a frame with non-zero total γN
momentum, see Fig. 5.8. We verified the resulting formula for the boost, given in
Ref. [69]:

Tboost = − Q2 e2

2m2
N ω

{

(~ǫ · ~kf ) (~ǫ ′ · ~ki) + 2
[

(~ǫ · ~p) (~ǫ ′ · ~ki) + (~ǫ · ~kf ) (~ǫ ′ · ~p)
]}

(5.5)

We note that we have simplified the expressions for the single-nucleon amplitudes
given in [26] with respect to the exact position of the pion threshold, cf. Section 3.2,
as we are only analysing Compton scattering for photon energies ≤ 100 MeV. For
such low energies, shifting the pion threshold has only a minor effect [29]. An
estimate of the (small) size of this simplification is given in Section 5.2.2.

−→

Figure 5.8: Momenta in the s-channel nucleon-pole diagram comparing the γd-
cm frame (right) to the γN -cm frame (left). The analogous replacement in the
u-channel is not shown.

The two-nucleon amplitude corresponding to Fig. 5.7 has been calculated in [69]
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and verified by us. It reads (with ~τ t = (τx, τy, τz))

T γNN = −e
2 g2

A

2 f2
π

(~τ1 · ~τ2 − τz
1 τ

z
2 )
(

t(a) + t(b) + t(c) + t(d) + t(e)
)

(5.6)

with

t(a) =
(~ǫ · ~σ1) (~ǫ ′ · ~σ2)

2 [ω2 −m2
π − (~p− ~p ′ + 1

2 (~ki + ~kf ))2]
+ (1 ↔ 2),

t(b) =
(~ǫ · ~ǫ ′) (~σ1 · (~p− ~p ′ − 1

2 (~ki − ~kf ))) (~σ2 · (~p− ~p ′ + 1
2 (~ki − ~kf )))

[(~p− ~p ′ − 1
2 (~ki − ~kf ))2 +m2

π] [(~p− ~p ′ + 1
2 (~ki − ~kf ))2 +m2

π]
,

t(c) = − (~ǫ ′ · (~p− ~p ′ + 1
2
~ki)) (~σ1 · ~ǫ) (~σ2 · (~p− ~p ′ + 1

2 (~ki − ~kf )))

[ω2 −m2
π − (~p− ~p ′ + 1

2 (~ki + ~kf ))2] [(~p− ~p ′ + 1
2 (~ki − ~kf ))2 +m2

π]
+ (1 ↔ 2),

t(d) = − (~ǫ · (~p− ~p ′ + 1
2
~kf )) (~σ1 · (~p− ~p ′ − 1

2 (~ki − ~kf ))) (~σ2 · ~ǫ ′)
[ω2 −m2

π − (~p− ~p ′ + 1
2 (~ki + ~kf ))2] [(~p− ~p ′ + 1

2 (~ki − ~kf ))2 +m2
π]

+ (1 ↔ 2),

t(e) =
2 (~ǫ · (~p− ~p ′ + 1

2
~kf )) (~ǫ ′ · (~p− ~p ′ + 1

2
~ki)) (~σ1 · (~p− ~p ′ − 1

2 (~ki − ~kf )))

[ω2 −m2
π − (~p− ~p ′ + 1

2 (~ki + ~kf ))2] [(~p− ~p ′ − 1
2 (~ki − ~kf ))2 +m2

π]

× (~σ2 · (~p− ~p ′ + 1
2 (~ki − ~kf )))

[(~p− ~p ′ + 1
2 (~ki − ~kf ))2 +m2

π]
+ (1 ↔ 2). (5.7)

(1 ↔ 2) is a shortcut for the corresponding amplitude with the two nucleons ex-
changed, as e.g. in Fig. 5.7(a) the incoming (outgoing) photon can couple to nucleon
1 (2) or vice versa. Such an exchange term obviously does not exist for diagram
5.7(b), which is invariant under the exchange of nucleon 1 and nucleon 2.

In order to calculate the amplitude for deuteron Compton scattering we now have
to evaluate the kernel between an initial- and final-state deuteron wave function,
cf. Eq. (5.3). The isospin operator (~τ1 ·~τ2 − τz

1 τ
z
2 ) in Eq. (5.6) reflects the fact that

the photon couples only to charged pions. Its evaluation yields

〈 d | ~τ1 · ~τ2 − τz
1 τ

z
2 | d 〉 = −2, (5.8)

with the isospin wave function of the isospin-0 deuteron

〈 d |= 1√
2
〈 p n− n p | . (5.9)

Now we write down the amplitude according to [69], separating the single-nucleon
amplitude with its kernel T γN from the two-nucleon contributions:

Mfi(
~ki, ~kf ) =

∫

d3p

(2π)3
Ψ∗f(~p+ (~ki − ~kf )/2)T γN(~ki, ~kf ; ~p)Ψi(~p)

+

∫

d3p d3p′

(2π)6
Ψ∗f (~p ′)T γNN(~ki, ~kf ; ~p, ~p ′)Ψi(~p) (5.10)

The deuteron wave functions – explicit expressions can be found in Appendix D –
depend on half of the difference between the momenta of the two nucleons, see
Fig. 5.2. Due to the momentum transfer by the pion we have to integrate over
momentum space twice in the two-nucleon amplitude, whereas there is only one
loop integral to perform in the single-nucleon part. The indices i, f denote the
dependence of the amplitude on the initial and final photon polarization and also
on the projections of the total angular momentum of the deuteronMf andMi. Note
that we have to sum over all possible combinations of spins of the two nucleons in
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the initial and final state, cf. Eq. (D.9). These sums are not explicitly shown in
Eq. (5.10).

The spin-averaged differential cross section for deuteron Compton scattering
is calculated like the single-nucleon cross section, cf. Section 3.3.1: We take the
absolute square of Eq. (5.10), average over the initial and sum over the final photon
and deuteron states and multiply the result by the square of the appropriate phase-
space factor, depending on the frame, in which we want to evaluate the cross section.
Therefore we find, using

∑

i,f as a shortcut for
∑

Mi,Mf ,λi,λf

dσ

dΩ

∣

∣

∣

∣

γd

= Φ2 · 1

6

∑

i,f

|Mfi|2, (5.11)

as there are six possible initial states: three deuteron polarizations times the two
polarizations of the photon. The phase-space factors Φ read

Φcm =
md

4π
√
sγd

,

Φlab =
ωf

4π ωi
, (5.12)

with

√
sγd = ω +

√

ω2 +m2
d,

ωf =
md ωi

md + ωi (1 − cos θlab)
, (5.13)

cf. Eqs. (3.14, 3.15). The relation between the initial photon energy in the lab
frame ωi and the photon energy in the γd-cm frame ω is

ω =
ωi

√

1 + 2ωi/md

, (5.14)

in analogy to Eq. (3.16).
Now that we have defined the theoretical framework for γd scattering, we com-

pare in the next section our O(ǫ3)-SSE results for the deuteron Compton cross
sections to the O(p3)-HBχPT calculation performed in [69] and to the available
data. The comparison to the O(p4)-HBχPT fit from Ref. [25] is postponed to Sec-
tion 5.3, where we fit the isoscalar polarizabilities ᾱs

E1, β̄
s
M1 to these data. Special

emphasis is put on the energy and wave-function dependence of the cross sections.

5.2 Predictions for Deuteron Compton Cross

Sections

In Fig. 5.9, we compare the O(ǫ3)-SSE predictions to the O(p3)-HBχPT calcula-
tion of Ref. [69], using the wave function derived from the NNLO chiral potential
with spectral-function regularization and cutoff Λ = 650 MeV [77]; this is the wave
function that we always use if not stated differently. We also show the O(p2) result,
which consists only of the single-nucleon seagull (Fig. 5.5(a)). As we discuss only
predictions for deuteron Compton scattering in this section, we postpone the com-
parison to the O(p4)-HBχPT fits of Ref. [25] to Section 5.3. The experiments shown
have been performed at a lab energy of 49 MeV [17], 55 MeV [18], ∼67 MeV [18],
69 MeV [17] and ∼94.2 MeV [19]. (The last experiment used photons in an en-
ergy range from 84.2 − 104.5 MeV; the deviation from the central value has been
corrected for [19].)



5.2. PREDICTIONS FOR DEUTERON COMPTON CROSS SECTIONS 69

Figure 5.9: Comparison of the O(p3)-HBχPT (dashed) and the O(ǫ3)-SSE (solid)
prediction at ωlab = 49 MeV, ωlab = 55 MeV, ωlab = 68 MeV and ωlab = 94.2 MeV
using the chiral NNLO wave function [77]. The data are from Illinois [17] (circle),
Lund [18] (star) and SAL [19] (diamond). The dotted line is the O(p2) result.

The numerical values for the various input parameters are given in Table A.1.
We use for the coupling constants g1 and g2, connected with the two short-distance
γN -operators (cf. Sections 3.3 and 5.1), and the γN∆ coupling b1 the results of
the Baldin-sum-rule-constrained fit to the spin-averaged proton Compton-scattering
data from Section 3.4.1. Determining the isoscalar parameters g1, g2 – or, eqiva-
lently, the polarizabilities ᾱs

E1, β̄
s
M1 – from proton data alone is possible, because the

O(ǫ3)-SSE calculation predicts αn
E1 ≡ αp

E1, β
n
M1 ≡ βp

M1, as the isovector contribu-
tions only come in at O(ǫ4). This is in agreement with small isovector polarizabilities
found in Dispersion-Theoretical Analyses based on pion-photoproduction multipoles
(see e.g. [50]). We use the central values of the fit, which are ᾱp

E1 = 11.04·10−4 fm3,
β̄p

M1 = 2.76 · 10−4 fm3, cf. Section 3.4.1. Therefore, like in third-order HBχPT,
there are no free parameters in our deuteron Compton calculation.

From the 49 MeV, 55 MeV and 68 MeV curves shown in Fig. 5.9 it is obvious
that explicit ∆ degrees of freedom may well be neglected for these low energies.
The two calculations – HBχPT and SSE – yield results which differ only within
the uncertainties one expects from higher-order contributions. This is an important
check, as it demonstrates the correct decoupling of the resonance, leading to the
same low-energy limit in both theories. The 49 MeV data are best described by the
O(p2) calculation but we regard this as a coincidence, as the low-energy theorems
are violated at this order too.

By comparing our results to data, we can now quantify the region of applica-
bility of our calculation. The counting scheme described in Section 5.1 seems to
break down for energies somewhere between 50 and 60 MeV, as both theoretical
descriptions miss the 49 MeV data points, whereas the 68 MeV data are well de-
scribed within both theories3. The 55 MeV curves are still in agreement with the

3We neglect the minor corrections due to the data of [18] ([17]) being measured around 67 MeV
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data within the (large) error bars but lie systematically above the central values.
As discussed before, we assume ω ∼ mπ in this chapter. For ω ≈ 20 MeV, this
counting is known to break down, see Section 5.1. In the remaining part of this
chapter we are therefore only concerned with the data published for energies higher
than 60 MeV.

In the high-energy regime of our calculation – i.e. for describing the 94.2 MeV
data correctly – the inclusion of the explicit ∆ field seems to be advantageous in
a third-order calculation, as can be seen in Fig. 5.9. Here, O(p3) HBχPT misses
the data in the backward direction. It also fails to reproduce the shape of the data
points, which shows a slight tendency towards higher cross sections in the back-
ward than in the forward direction. This shape is very well reproduced in SSE,
demonstrating once again the importance of the ∆ resonance in Compton backscat-
tering, due to the strong M1 → M1 transition. This feature can be clearly seen
in the dynamical magnetic dipole polarizability βM1(ω), even for photon energies
below the pion-production threshold, cf. Fig. 3.8. We believe that this is the main
reason why calculations like the ones presented in Refs. [22, 24], which truncate
the Compton amplitudes after the leading [22, 24] and subleading terms [22] of a
Taylor expansion in ω, fail to describe the data around 95 MeV, at least without
introducing an unexpectedly large magnetic dipole polarizability βM1 [22].

5.2.1 Energy Dependence of the γd Cross Sections

In order to decrease the statistical uncertainties, the experiment [19] had to accept
scattering events in an energy range of 20 MeV. Therefore we think it worthwhile to
examine the sensitivity of our results to the photon energy. In fact, our calculations
suggest that the forward-angle cross section, in particular, has a sizeable energy
dependence, which is, however, nearly linear. In Fig. 5.10 we show our results for
three different photon energies around 68 MeV and 95 MeV, respectively, in steps
of 5 MeV. This emphasizes the importance of having a well-known spectrum of the
photon flux, especially in the forward direction, when one wants to examine the
effects of αE1 and βM1 experimentally.

Figure 5.10: O(ǫ3)-SSE results for 63 MeV, 68 MeV, 73 MeV and, respectively,
90 MeV, 95 MeV, 100 MeV (from upper to lower curve in each panel), using the
χPT wave function [77].

5.2.2 Correction due to the Pion-Production Threshold

In low-order (non-relativistic) HBχPT/SSE calculations, the γd→ πNN threshold
ωπ is not at the correct position as demanded by relativistic kinematics. For a

(69 MeV), and account for this deviation by calculating at the averaged energy 68 MeV.
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Figure 5.11: Estimate of the effect of a threshold correction (dotdashed) on the
O(ǫ3)-SSE results (solid), using the chiral NNLO wave function [77].

similar problem, regarding the correct position of the pion-production threshold in
the single-nucleon sector, see Section 3.1.2. Thus far we have refrained from an
analogous correction for γd scattering. However, in Fig. 5.11 we investigate what
deviations one would expect from our present results, as indicated by an estimate
which uses the single-nucleon SSE amplitudes [26] with the exact expression for√
s−mN . Obviously, even at the highest photon energies considered here, 94.2 MeV,

the corrections are negligible, given the sizeable error bars of the experimental data
and the theoretical uncertainties of a leading-one-loop order calculation. This is no
surprise, as we found in Ref. [29] that the threshold correction is only mandatory
close to ωπ, i.e. above 100 MeV. There, however, it should not be neglected anymore,
see also discussion in Ref. [80].

5.2.3 Wave-Function Dependence of the γd Cross Sections

Figure 5.12: Upper panels: O(ǫ3)-SSE results for 68 and 94.2 MeV, using four dif-
ferent wave functions: NNLO χPT with Λ = 650 MeV [77] (solid), Nijm93 [71]
(grey), CD-Bonn [72] (dotted), AV18 [73] (dashed). Lower panels: O(ǫ3)-SSE re-
sults for 10, 50 and 94.2 MeV, using the NNLO χPT wave function [77] (solid) and
the AV18 wave function [73] (dashed).
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Another interesting issue is the wave-function dependence of our results. Fig. 5.12
investigates the sensitivity to the wave function chosen, showing sizeable deviations
between the NNLO χPT wave function with cutoff Λ = 650 MeV [77] on one hand
and the wave function derived from the AV18 potential [73] on the other, which are
both given in Appendix D. The latter yields results which are nearly indistinguish-
able from those obtained with the Nijm93 wave function [71], but are considerably
higher than the cross sections found with the wave function from the chiral poten-
tial [77]. We note that our results using the chiral wave function from Ref. [77] with
the cutoff chosen to be 450 MeV are even smaller by about 5% than those achieved
with Λ = 650 MeV. With the CD-Bonn wave function [72] we obtain results in
between NNLO χPT and Nijm93/AV18. This pattern is identical for both energies
under investigation, 68 MeV and 94.2 MeV. In the lower three panels of Fig. 5.12,
where we compare our results obtained with the NNLO chiral wave function and
the AV18 wave function at 10 MeV, 50 MeV and 94.2 MeV, we demonstrate that
the wave-function dependence is largely energy independent. Note that the main
difference between the two curves in each panel is an angle-independent off-set,
reminiscent of a systematic error.

The main contribution to the sensitivity on the deuteron wave function comes
from the two-body diagrams (Fig. 5.7), as is shown in Fig. 5.13, where we calculate
deuteron Compton cross sections at various energies, including only the O(ǫ3)-SSE
one-body diagrams. The curves in Fig. 5.13 corresponding to the NNLO χPT wave
function [77] are nearly indistinguishable from those obtained with the AV18 wave
function [73]. The same observation was made in Ref. [25].

Figure 5.13: Results for 10, 50 and 94.2 MeV, including only the third-order SSE
one-body diagrams, calculated with the NNLO χPT wave function [77] (solid) and
the AV18 wave function [73] (dashed).

Given that our calculation is based on a low-energy Effective Field Theory of
QCD, the dependence on the wave function is somewhat worrisome. Our calcula-
tion describes deuteron Compton scattering up to next-to-leading one-loop order
in the Small Scale Expansion, therefore instead of the 10%-discrepancy observed in
Fig. 5.12 one would rather expect such higher-order corrections to be of the order
of (mπ/mN)2 ∼ 2%. We interpret this feature, which will be discussed further
in Section 6.3.1, as an unwanted sensitivity to short-distance physics, because the
long-range part of all wave functions, described by one-pion exchange, is identical.
However, one must caution that the NNLO χPT potential reproduces the Nijmegen
partial-wave analysis with less precision than the CD-Bonn, AV18 or Nijm93 po-
tentials. It will be one of the major successes of our deuteron Compton calculation
described in Chapter 6, that it is largely insensitive to the deuteron wave function
chosen, cf. Section 6.3.1.
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Figure 5.14: O(ǫ3)-SSE results with various upper integration limits Λ. The curves
in the upper left panel have been calculated with the NNLO χPT wave function [77],
those in the upper right panel with the AV18 wave function [73]. In the lower panel
the solid lines correspond to the chiral, the dashed lines to the AV18 wave function.

5.2.4 Dependence on the Upper Integration Limit

Here we want to investigate how fast our integrals converge, and in which energy
regime the main part of the wave-function dependence enters, cf. Section 5.2.3. This
question is addressed in Fig. 5.14 for an exemplary photon energy ω = 50 MeV,
with the respective upper integration limits Λ given in the figures. The upper
left panel corresponds to the NNLO χPT wave function, the upper right one to
the wave function derived from the AV18 potential. Obviously, the integrals are
well saturated below 1 GeV, the one using the chiral wave function already below
620 MeV, due to the cutoff Λ = 650 MeV chosen. This observation agrees with
Fig D.1, where we show the momentum-space representation of both wave functions.
The only significant deviations between the two wave functions are observed in w(p),
corresponding to the orbital angular momentum l = 2. Here we notice that the χPT
wave function converges faster to zero for p → ∞ than the AV18 wave function,
resulting in a faster saturation of the integrals entering the cross section. In the
lower panel of Fig. 5.14 we give a direct comparison of our results, derived from the
two wave functions for three different upper integration limits. We note that the
largest part of the wave-function dependence enters between 400 MeV and 1 GeV,
which is no surprise, because in this energy range the l = 2 wave functions differ
most, cf. Fig. D.1.

In this section we presented our predictions for γd differential cross sections.
These are parameter-free, as we fixed the isoscalar nucleon polarizabilities via pro-
ton Compton data. The good agreement of the SSE results with experiment at
68 MeV and 94.2 MeV leaves little room for large isovector polarizabilities, since
this formalism treats the proton and neutron polarizabilities on the same footing
to the order we are working. The good description of the high-energy data further
encourages us to determine the isoscalar dipole polarizabilities ᾱs

E1 and β̄s
M1 di-
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rectly from the deuteron Compton cross sections. The results are given in the next
section, together with the results one obtains from analogous fits using the O(p3)
and the O(p4)-HBχPT [25] amplitudes, respectively.

5.3 Determining ᾱsE1 and β̄sM1 from γd Scattering

An accurate and systematically-improvable description of Compton scattering on
deuterium offers the possibility to extract the isoscalar polarizabilities directly from
deuteron Compton-scattering experiments in a well-defined way. The results can
then be combined with the known numbers for the proton to draw conclusions
about isovector pieces ᾱv

E1 and β̄v
M1, or, equivalently, the elusive neutron polariz-

abilities. As our SSE calculation provides a reasonable description of the 68 MeV
and the 94.2 MeV data (see Section 5.2), we present in the following our results
from a least-χ2 fit of the isoscalar polarizabilities to these two data sets. This
corresponds to fitting the coupling strengths of the two short-distance isoscalar
γN -operators (Fig. 5.6(f)), which we now fit to γd rather than to γp data. In this
way we can check the SSE claim that the short-distance operators are isoscalar at
leading order. If their coefficients as extracted from γd data are consistent with
those obtained from γp data, that argues in favour of short-distance mechanisms
which are predominantly isoscalar. The value for the γN∆-coupling b1 is adopted
from our Baldin-constrained 2-parameter fit, cf. Table 3.1, as there is no isovector
contribution to this coupling up to third-order SSE.

Our SSE results are compared to the fit results for ᾱs
E1 and β̄s

M1 when we use
modified O(p3)-HBχPT amplitudes. This modification consists of including in our
calculation isoscalar short-distance γN operators which change both the electric
and magnetic polarizability from their O(p3) values. In other words, we write

ᾱs
E1 =

5αg2
A

96 f2
π mπ π

+ δα,

β̄s
M1 =

αg2
A

192 f2
π mπ π

+ δβ , (5.15)

where δα, δβ are energy-independent quantities, connected to g1 and g2, cf. Ref. 2.2.
Therefore, the energy dependence of the polarizabilities is still given solely by the
leading-order pion cloud. Eq. (5.15) promotes the short-distance contributions to α
and β from O(p4) to O(p3). As the loops are isoscalar, we associate purely isoscalar
counter-terms which renormalize the loop integrals. In order to avoid confusion we
denote the fits done with this procedure as HBχPT O(p̄3).

Fits similar to our O(ǫ3) and O(p̄3) ones have already been performed in [25],
calculating in HBχPT up to O(p4). The authors of [25] used all available data
sets but had to exclude the two 94.2 MeV data points measured in the backward
direction, due to the inadequate description of back-angle Compton scattering in
fourth-order HBχPT, cf. Fig. 3.5 and Ref. [54]. As [69, 25] and the O(ǫ3)-SSE
calculation are not designed to work below 60 MeV, we decided to only include the
data around 68 MeV [17, 18] and 94.2 MeV [19] in the fit. We do not make any
cuts on the angles and, in contrast to [25], we do not allow the normalizations in
the various experiments to float in the fit within their quoted systematic errors.

5.3.1 Wave-Function Dependence of the Fits

To have an estimate on the systematic error in the deuteron fits due to the wave-
function dependence, we show our results when we use two different wave functions
for the fit: the NNLO chiral wave function [77] and the wave function from the
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Nijm93 potential [71]. These wave functions mark the two extremes in our cross
sections with the CD-Bonn wave function in between (cf. Fig. 5.12). Therefore,
we consider the difference between the two fits using Nijm93 and NNLO χPT as a
measure of our wave-function induced error, which is typically of the order of 10 %
for ᾱE1. Higher-order effects are expected to contribute to the systematic error by
about ±1 · 10−4 fm3 from näıve dimensional analysis, cf. Eq. (3.22), but we refrain
for the moment from including this error explicitly into our findings. However, we
are aware that it is comparable in size with our statistical error.

We fit the 16 data points using 2 free parameters (ᾱs
E1 and β̄s

M1), leaving us
with 14 degrees of freedom. Averaging over the results of our 2-parameter SSE fits
with the NNLO χPT [77] and the Nijm93 wave function [71], respectively, given in
Table 5.1, results in the isoscalar polarizabilities

ᾱs
E1 = (13.2 ± 1.3 (stat) ± 1.1 (wf)) · 10−4 fm3 ,

β̄s
M1 = (1.7 ± 1.6 (stat) ± 0.2 (wf)) · 10−4 fm3 , (5.16)

where we assume the same statistical errors as in Table 5.1. The systematic error
due to the differing results when we use different wave functions (wf) is estimated
to be half of the difference between the results obtained with the extreme wave
functions, i.e. Nijm93 and NNLO χPT. Fitting the γd cross sections using the
Nijm93 wave function yields larger results for ᾱE1 and smaller ones for β̄M1 with
respect to the chiral wave function, but both extractions are in reasonable agreement
with the values given in Eq. (1.8) [11].

The results for ᾱs
E1 and β̄s

M1, given in Eq. (5.16), correspond to the obviously
important short-distance contributions

ᾱs
sd = (−4.4 ± 1.3 (stat) ± 1.1 (wf)) · 10−4 fm3,

β̄s
sd = (−11.7 ± 1.6 (stat) ± 0.2 (wf)) · 10−4 fm3. (5.17)

In Section 3.1.2, we already saw that they are indeed comparable in size with the
other leading-order contributions to the polarizabilities, demonstrating the neces-
sity of including the couplings g1 and g2 at leading-one-loop order. The plots
corresponding to the fits with the chiral wave function are displayed in Fig. 5.15,
together with the results of our O(p̄3) fits.

Using the experimental values for the proton polarizabilities from [5] as input,
one can derive the neutron polarizabilities from the isoscalar ones:

ᾱn
E1 = (14.3 ± 1.3 (stat) ± 1.1 (wf)) · 10−4 fm3,

β̄n
M1 = (1.7 ± 1.6 (stat) ± 0.2 (wf)) · 10−4 fm3. (5.18)

From these results we deduce that the isovector polarizabilities are rather small (see
Table 5.1), in good agreement with χPT expectations, which predict the isovector
part to be of higher than third order. Therefore we find no contradiction anymore
between the results from quasi-free [11] and elastic deuteron Compton scattering.
Furthermore, our calculation demonstrates that the experiments performed at Illi-
nois [17] and Lund [18] are consistent with the SAL-data [19].

Our results for ᾱs
E1 and β̄s

M1 in SSE (cf. Eq. (5.16)) are well consistent with the
isoscalar Baldin sum rule

ᾱs
E1 + β̄s

M1

∣

∣

∣

world av.
= (14.5 ± 0.6) · 10−4 fm3, (5.19)

which has been a serious problem in former extractions [22, 25], cf. Eq. (5.1). The
numerical value for the sum rule is derived from

ᾱp
E1 + β̄p

M1 = (13.8 ± 0.4) · 10−4 fm3 [5],

ᾱn
E1 + β̄n

M1 = (15.2 ± 0.5) · 10−4 fm3 [22]. (5.20)



76 CHAPTER 5. DEUTERON COMPTON SCATTERING IN EFT

Due to the consistency of our fit results with the sum-rule value from Eq. (5.19), one
can in a second step use this number – we use the central value – as an additional
fit constraint and thus reduce the number of free parameters to one. The resulting
values of the 1-parameter SSE fit (see Table 5.1),

ᾱs
E1 = (13.1 ± 0.7 (stat) ± 0.8 (wf) ± 0.6 (Baldin)) · 10−4 fm3 ,

β̄s
M1 = (1.5 ∓ 0.7 (stat) ∓ 0.8 (wf) ± 0.6 (Baldin)) · 10−4 fm3 , (5.21)

are in good agreement with the average of the proton numbers from Table 3.1 and
the neutron polarizabilities given in Eq. (1.8).

Comparing our fit results to the isoscalar O(p4)-HBχPT estimate [16], ᾱs
E1 =

(11.95 ± 2.5) · 10−4 fm3, β̄s
M1 = (5.65 ± 5.1) · 10−4 fm3, cf. Section 1.1, we see

only minor deviations in ᾱs
E1. Our values for β̄s

M1 are significantly smaller, but still
consistent within the (large) error bars of the O(p4) estimate.

Amplitudes Quantity 2-par. fit 1-par. fit 2-par. fit 1-par. fit
NNLO χPT NNLO χPT Nijm93 Nijm93

O(ǫ3) SSE χ2/d.o.f. 1.78 1.67 2.45 2.35
ᾱs

E1 12.1 ± 1.3 12.3 ± 0.7 14.3 ± 1.3 13.8 ± 0.7
β̄s

M1 1.8 ± 1.6 2.2 ∓ 0.7 1.5 ± 1.6 0.7 ∓ 0.7
ᾱs

E1 + β̄s
M1 13.9 ± 2.1 14.5 (fit) 15.8 ± 2.1 14.5 (fit)

ᾱn
E1 12.1 ± 1.3 12.5 ± 0.8 16.5 ± 1.3 15.5 ± 0.8

β̄n
M1 2.0 ± 1.6 2.8 ∓ 0.8 1.4 ± 1.6 −0.2 ∓ 0.8

O(p̄3) HBχPT χ2/d.o.f. 2.14 2.01 2.87 2.75
ᾱs

E1 11.0 ± 1.3 11.3 ± 0.7 13.2 ± 1.2 12.7 ± 0.7
β̄s

M1 2.8 ± 1.6 3.2 ∓ 0.7 2.5 ± 1.5 1.8 ∓ 0.7
ᾱs

E1 + β̄s
M1 13.8 ± 2.1 14.5 (fit) 15.7 ± 1.9 14.5 (fit)

ᾱn
E1 9.9 ± 1.3 10.5 ± 0.8 14.3 ± 1.2 13.3 ± 0.8

β̄n
M1 4.0 ± 1.6 4.8 ∓ 0.8 3.4 ± 1.5 2.0 ∓ 0.8

Table 5.1: Values for the isoscalar and neutron polarizabilities (in 10−4 fm3) from a
fit to the full 68 MeV and 94.2 MeV data sets [17, 18, 19], using the O(ǫ3)-SSE and
the O(p̄3)-HBχPT amplitudes, respectively. The neutron results are derived using
the proton values from [5] (Table 3.1) as input. All error bars displayed are only
statistical (and added in quadrature).

In the next section we demonstrate that even without an explicit ∆ field a good
fit of the data can be achieved, however at the cost of an enhanced β̄s

M1.

5.3.2 Comparison of O(ǫ3)-SSE and O(p̄3)-HBχPT Fits

When we compare the O(ǫ3)-SSE fit results for ᾱs
E1 and β̄s

M1 with the corresponding
O(p̄3)-HBχPT results (Table 5.1), we see that in the HBχPT fit (cf. Eq. (5.15))
the electric dipole polarizability is smaller, whereas β̄s

M1 turns out to be larger.
The reason for the systematic shift of the magnetic polarizability is that due to the
missing ∆(1232) resonance in HBχPT the static value of βM1(ω) is inflated in order
to compensate for the paramagnetic rise of the resonance, which can be clearly seen
in Figs. 3.8 and 5.9.

As we see in Fig. 5.15, this compensation works very well in the γd cross sec-
tions: the curves, which correspond to the O(ǫ3)-SSE and to the O(p̄3)-HBχPT
fits are nearly indistinguishable, i.e. the two fit results only differ in the associated
pairs ᾱE1, β̄M1. Therefore, from the available γd data alone one cannot draw any
firm conclusion regarding the importance of explicit ∆(1232) degrees of freedom.
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Figure 5.15: O(ǫ3)-SSE (solid) and O(p̄3)-HBχPT (dashed) results with ᾱs
E1, β̄

s
M1

from Table 5.1, using the chiral NNLO wave function [77]. The upper panels corre-
spond to a fit of both polarizabilities, in the lower panels the Baldin sum rule (cf.
Eq. (5.19)) is used as additional fit constraint. The grey bands are derived from our
(statistical) errors. The dotted line in the upper panels represents “fit IV”, one of
the O(q4)-HBχPT fits from Ref. [25], with central values ᾱs

E1 = 11.5, β̄s
M1 = 0.3.

For the O(q4) calculation the NLO chiral wave function of Ref. [81] has been used.

However, as we demonstrated in Section 3.1.2, it is clear from γp scattering exper-
iments that third-order HBχPT does not describe the dynamics in the γd process
correctly. Given that the SSE calculation describes both the γp and the γd ex-
periments we have shown that a Chiral Effective Field Theory which includes the
explicit ∆ field is an efficient framework to identify the relevant physics underlying
low-energy Compton scattering.

5.3.3 Comparison of O(ǫ3)-SSE and O(p4)-HBχPT Fits

In Fig. 5.15, we also show the O(p4)-HBχPT fit of Ref. [25]. We consider the quality
of our O(p̄3) fit to be comparable to those curves. Note that the numbers used for
ᾱs

E1 and β̄s
M1 in the O(p4) curves differ from Eq. (5.1), as they were derived from

fitting a different set of data. The values from Eq. (5.1) are the best fit results of
Ref. [25] in the sense of the least χ2, which excluded, however, the two data points
at 94.2 MeV in the backward direction. As here we are concerned with all five data
points at this energy, we compare to “Fit IV” of Ref. [25] where all of the γd data
were fitted.

5.3.4 Why Equal Statistics at all Energies would be Useful

There are eleven data points at ωlab ≈ 68 MeV, centered around only two different
angles, and five points at ωlab ≈ 94.2 MeV, distributed over the whole angular
spectrum. Especially at θlab ≈ 130◦, the experimental efforts at Lund and Illinois
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angle [deg] dσ/dΩ [nb]
45.6 17.3 ± 1.9
130.5 14.1 ± 1.4

Table 5.2: Effective data points gained by rebinning the 67 MeV data from [18].

to get a large integrated number of counts around 65-69 MeV mean that there is
a wealth of data at these energies (six points from [18] and one from [17]), which
gives a strong constraint to our fit routines.

In the following we demonstrate what would happen if there were comparable
statistics at 94.2 MeV and 68 MeV. Of course we cannot generate data at higher
energies. Therefore, we replace in this subsection the Lund data [18] by two “ef-
fective” data points (cf. Table 5.2 and Fig. 5.16), which represent the data in the
forward and backward direction, respectively. These data have been obtained by
rebinning4 the data from [18], and thus the statistical error of the effective data
points is reduced with respect to the errors of the individual data points published
in [18]. In order to calculate the rebinned data we weight the angles and the dif-
ferential cross-section values and also the systematic errors of the represented data
points by the inverse of their errors, e.g. the cross sections are derived via

dσ̄

dΩ
=
∑

i

(

dσ

dΩ

)

i

· 1

∆
(

dσ
dΩ

)

i

/

∑

i

1

∆
(

dσ
dΩ

)

i

(5.22)

with ∆
(

dσ
dΩ

)

i
denoting the statistical errors of the rebinned data points. The sta-

tistical error of the effective data is obtained as

∆

(

dσ̄

dΩ

)

=
dσ̄

dΩ

/

√

√

√

√

∑

i

[(

dσ

dΩ

)

i

/

∆

(

dσ

dΩ

)

i

]2

. (5.23)

Therefore, the remaining data are the two data points from [17] at 69 MeV, the two
“effective” data at ∼67 MeV, shown in Table 5.2, representing [18], and the five
data points from [19] around 94.2 MeV. With these nine data points we perform
the same fits as we did before for the complete data sets. The resulting values for
ᾱE1 and β̄M1 are presented in Table 5.3. The plots (including the two effective data
points), shown in Fig. 5.16, exhibit better agreement with the 94.2 MeV data than
the fits of Section 5.3.2 (Fig. 5.15); that is exactly what we expected, because due
to the reduced number of data points at 68 MeV, the sensitivity of the fits to the
94.2 MeV data is increased.

The results for the static isoscalar polarizabilities, averaged as before over the
two wave functions are

ᾱs
E1 = (12.8 ± 1.4 (stat) ± 1.1 (wf)) · 10−4 fm3 ,

β̄s
M1 = (2.1 ± 1.7 (stat) ± 0.1 (wf)) · 10−4 fm3 . (5.24)

Including the Baldin constraint we get

ᾱs
E1 = (12.6 ± 0.8 (stat) ± 0.7 (wf) ± 0.6 (Baldin)) · 10−4 fm3 ,

β̄s
M1 = (1.9 ∓ 0.8 (stat) ∓ 0.7 (wf) ± 0.6 (Baldin)) · 10−4 fm3 . (5.25)

The results of all four extraction methods, given in Eqs. (5.16, 5.21, 5.24, 5.25),
agree well with each other, albeit we note that the central values for ᾱE1 (β̄M1)

4We are indebted to Bent Schröder for valuable comments made on this point.
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given in Eqs. (5.24/5.25) are slightly smaller (slightly larger), comparing to the
results from our fits to all data points. However, we consider the result from the
rebinned data set as more reliable as the procedure weights the 69 MeV data and
the 94.2 MeV data in a more equal fashion.

We also see in Table 5.3 once again that the theory without explicit ∆ degrees
of freedom leads to a systematically larger value for β̄s

M1 than obtained in the O(ǫ3)
fit, supporting our hypothesis that this enhancement is due to insufficient dynamics
in the multipoles (cf. Table 5.1). In HBχPT, the static value is artificially enlarged
by the fit constraint from the 94.2 MeV data in order to compensate for the missing
dynamics. Both in Fig. 5.15 and Fig. 5.16 the enhanced static magnetic dipole
polarizability β̄M1 cures the γd cross sections and makes the resulting curves very
similar to the plots from the SSE fits, albeit the resulting picture in the Compton
multipoles is very different (see Fig. 3.8).

Therefore, for understanding the available γd data via fits of ᾱs
E1 and β̄s

M1,
it is essential to combine the pairs ᾱE1, β̄M1 resulting from the γd analysis with
an energy-dependent multipole analysis of γp scattering. From the information
available on Compton multipoles from γp scattering experiments, it is clear that
third-order HBχPT is too simplistic a picture for the dynamics of the γd process at
energies of O(100 MeV). It is therefore crucial that deuteron and proton Compton
experiments are available at comparable energies and that they are analyzed within
the same framework.

Putting equal statistical weight on the 68 and the 94.2 MeV data can be seen as a
demonstration of the importance of obtaining comparable statistics at all energies.
We therefore urge for more experimental information at photon energies around
100 MeV. With such information, deuteron Compton cross sections below the pion
mass provide an excellent window to investigate which internal nucleonic degrees of
freedom contribute in both processes, γp→ γp and γd→ γd.

Amplitudes Quantity 2-par. fit 1-par. fit 2-par. fit 1-par. fit
NNLO χPT NNLO χPT Nijm93 Nijm93

O(ǫ3) SSE χ2/d.o.f. 2.79 2.47 3.97 3.59
ᾱs

E1 11.7 ± 1.4 11.9 ± 0.8 13.8 ± 1.3 13.3 ± 0.7
β̄s

M1 2.2 ± 1.7 2.6 ∓ 0.8 2.0 ± 1.6 1.2 ∓ 0.7
ᾱs

E1 + β̄s
M1 13.9 ± 2.2 14.5 (fit) 15.8 ± 2.1 14.5 (fit)

ᾱn
E1 11.3 ± 1.4 11.7 ± 0.9 15.5 ± 1.3 14.5 ± 0.8

β̄n
M1 2.8 ± 1.7 3.6 ∓ 0.9 2.4 ± 1.6 0.8 ∓ 0.8

O(p̄3) HBχPT χ2/d.o.f. 3.38 2.98 4.69 4.24
ᾱs

E1 10.6 ± 1.3 10.8 ± 0.8 12.7 ± 1.3 12.2 ± 0.8
β̄s

M1 3.3 ± 1.7 3.7 ∓ 0.8 3.1 ± 1.6 2.3 ∓ 0.8
ᾱs

E1 + β̄s
M1 13.9 ± 2.1 14.5 (fit) 15.8 ± 2.1 14.5 (fit)

ᾱn
E1 9.1 ± 1.3 9.5 ± 0.9 13.3 ± 1.3 12.3 ± 0.9

β̄n
M1 5.0 ± 1.7 5.8 ∓ 0.9 4.6 ± 1.6 3.0 ∓ 0.9

Table 5.3: Values for the isoscalar and neutron polarizabilities (in 10−4 fm3) from
a fit to the 68 MeV and 94.2 MeV data sets [17, 19], using the O(ǫ3)-SSE and the
O(p̄3)-HBχPT amplitudes, respectively. The data from [18] have been replaced by
two effective data points, specified in Table 5.2. The neutron results are derived
using the proton values from [5] as input. All error bars displayed are only statistical
(and added in quadrature).
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Figure 5.16: O(ǫ3)-SSE (solid) and O(p̄3)-HBχPT (dashed) results with ᾱs
E1, β̄

s
M1

from Table 5.3, using the chiral NNLO wave function [77]. The upper panels corre-
spond to a fit of both polarizabilities, in the lower panels the Baldin sum rule (cf.
Eq. (5.19)) is used as additional fit constraint. The grey bands are derived from
our (statistical) errors. The two data points plotted as boxes are the effective data
that we use as representatives for the data from [18], cf. Table 5.2.

5.4 Attempts to Restore the Thomson Limit

In Section 5.2, we demonstrated that our calculation provides a good description of
the data measured around 68 and 94.2 MeV. However, below a certain energy limit,
which we found to be of the order of 50-60 MeV, the approach used in this chapter
is not valid anymore. This observation is no surprise, as the power-counting scheme
that we apply has been designed for photon energies of the order of the pion mass.
Only for such large energies it is possible to approximate the nucleon propagator
inside the deuteron by i/ω, whereas the kinetic energy of the nucleon is treated
perturbatively. Such a perturbative treatment is always possible in single-nucleon
calculations. However, the two nucleons bound in the deuteron have a non-vanishing
momentum relative to each other and therefore cannot be treated as static, even if
the energy of the external probe is zero. Therefore, only for large photon momenta
it is possible to approximate the non-relativistic nucleon propagator i

ω−p2/2mN
by

i/ω, as already explained in Section 5.1.
From these considerations it becomes obvious that – unlike e.g. the Effective

Field Theory with pions integrated out [60, 23] – our calculation cannot reach the
correct static limit, i.e. the limit of vanishing photon energy, Eq. (5.4). There
are only two contributions to our calculation in this limit: The proton seagull,
Fig. 5.5(a), and the pion-exchange diagrams from Fig. 5.7. The first one gives
the Thomson limit of the proton, which is larger by a factor of 4 than the correct
deuteron limit, cf. Eqs. (5.4) and (5.11). Therefore, one might assume that the
pion-exchange diagrams partly cancel this contribution, which is, however, not the
case. In contrast, they even enhance the static limit and render the result too
large by a factor of 6, a clear signal that gauge invariance is violated [79]. This
is shown in Fig. 5.17 by comparing the static cross section of our calculation to



5.4. ATTEMPTS TO RESTORE THE THOMSON LIMIT 81

the correct limit as dictated by gauge invariance, given in Eq. (5.4). Although we

Figure 5.17: Comparison of the static limit of our deuteron Compton calculation
(black) to the correct Thomson limit for the deuteron, Eq. (5.4) (grey).

know that our calculation cannot work for small photon energies, this enhancement
is surprising. Therefore we undertook some efforts to – at least approximately –
restore the correct Thomson limit, which we describe in the following.

So far we used the leading HBχPT approximation i/ω for the nucleon prop-
agator, which is, however, not valid for low photon energies, as explained above.
Therefore, we replace the expression i/ω by the full non-relativistic nucleon prop-
agator. We do so in the nucleon-pole diagrams, Fig. 5.5(b), which we sketch once
again in Fig. 5.18.

Figure 5.18: Nucleon-pole terms in the s-channel (left) and in the u-channel (right).

In order to calculate the pole diagrams with the full non-relativistic nucleon
propagator, we first write down the nucleon 4-momenta corresponding to Fig. 5.18:

p1 =

(

−B
2 + ω2

8mN
− p0

−~p− ~ki

2

)

, p2 =

(

−B
2 + ω2

8mN
+ p0

~p+
~ki

2 − ~kf

)

, p4 =

(

−B
2 + ω2

8mN
+ p0

~p− ~ki

2

)

,

ps
3 =

(

ω − B
2 + ω2

8mN
+ p0

~p+
~ki

2

)

, pu
3 =

(

−ω − B
2 + ω2

8mN
+ p0

~p− ~ki

2 − ~kf

)

. (5.26)

The photon-nucleon vertex is taken from L(2)
πN , cf. [35]. However, as we are only

interested in contributions which do not vanish in the static limit, we may restrict
ourselves to

i e

4mN
(1 + τz) ǫ · (pa + pb), (5.27)

whereas we neglect the term

i e

2mN
[S · ǫ, S · k] (1 + κs + (1 + κv) τ

z) . (5.28)
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After evaluating the p0-integral (we close the contour via the four-momentum p1),
we find for the two amplitudes

T s(~ki, ~kf ; ~p) = − e2

m2
N

~ǫ ′ · (~p+ ~ki/2)~ǫ · ~p 1

ω −B − ~p 2+~p·~ki

mN

, (5.29)

T u(~ki, ~kf ; ~p) = − e2

m2
N

~ǫ · (~p− ~kf )~ǫ ′ · (~p− ~ki/2)
1

−ω −B − ω2+~ki·~kf +2~p 2−2~p·~kf

2mN

.

(5.30)

Note that Eqs. (5.29, 5.30) do give non-vanishing contributions in the static limit,

whereas in the approximation i/ω they cancel each other exactly for ω = |~k| = 0.
So far, we have been counting the nucleon propagator as O(ǫ−1). However,

when we look at the propagator of e.g. Eq. (5.29), we see that for small photon
energies this counting is not justified anymore. For ω → 0, the dominant part
in the denominator of the propagator is ~p 2/mN . Therefore, in the low-energy
regime one has to count the nucleon propagator as O(ǫ−2), as already discussed
in Section 5.1. In this counting scheme, however, there are many additional pion-
exchange diagrams at O(ǫ3), which contribute in the static limit. All these diagrams
are sketched in Fig. 5.19, distributed into several classes (class 1 corresponds to the
diagrams of Fig. 5.7).

The calculation of the amplitudes corresponding to Fig. 5.19 is straightforward.
Again we only include the part of the photon-nucleon coupling which does not vanish
with the photon energy, Eq. (5.27), and of course we use the full nucleon propagator.
The results are given in Appendix E. Including them in our calculation, together
with the corrected nucleon-pole terms, leads to the static limit shown in Fig. 5.20.
We see that these contributions help to come closer to the Thomson limit, but still
we lack a factor of nearly 2. In Chapter 6 we show that this discrepancy is resolved
when we include the full two-nucleon Green’s function G in the intermediate state,
cf. Eq. (5.2), i.e. we allow the two nucleons to rescatter. Therefore we now close
our efforts to reach the exact static limit and postpone this challenge to Chapter 6
(Section 6.2).

In this chapter we reported a calculation of elastic deuteron Compton scattering,
using a so-called hybrid approach, i.e. we calculated the interaction kernel according
to the rules of perturbative Effective Field Theory in the Small Scale Expansion,
and folded this kernel with deuteron wave functions derived from modern NN -
potentials. We found good agreement with experimental data at photon energies
above 60 MeV and thus fitted the Compton cross sections to these data in order to
determine the isoscalar nucleon polarizabilities. The results are in good agreement
with the expectation that the isovector polarizabilities are small. However, there are
also certain shortcomings of this approach: As it is designed for photon energies of
the order of the pion mass, our calculation fails to describe the data below 60 MeV
and also violates the well-known low-energy theorem for deuteron Compton scat-
tering. Furthermore, our results show a stronger sensitivity on the deuteron wave
function than we expected. Therefore we turn now to a partly different approach
to deuteron Compton scattering, including rescattering of the two nucleons, and we
will find that all three disadvantages can be cured within this framework.
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class 2: +1 ↔ 2

class 3: +1 ↔ 2

class 4: +1 ↔ 2

class 5: +1 ↔ 2

class 6: +1 ↔ 2

Figure 5.19: Additional pion-exchange diagrams which appear at O(ǫ3) in the low-
energy regime.

Figure 5.20: Attempt to restore the Thomson limit. The grey line marks the correct
static limit for the deuteron, Eq. (5.4). The black line is our result with the nucleon-
pole diagrams calculated with the exact nucleon propagator and also including the
diagrams of Fig. 5.19.



Chapter 6

Non-Perturbative Approach

to Deuteron Compton

Scattering

In this chapter we go beyond the strictly perturbative approach to deuteron Comp-
ton scattering described in the previous chapter, in which gauge invariance was not
manifest, leading to a violation of the low-energy theorem and a surprisingly strong
dependence on the deuteron wave function. We do so by use of non-perturbative
methods, summing over all possible np-intermediate states, in combination with
coupling the photon field to the two nucleons in a more complete manner than in
Chapter 5. This part of our calculation follows closely the work of J. Karakowski
and G.A. Miller [24]1. The results of this chapter are contained in Ref. [82].

6.1 Theoretical Framework

The main difference to the previous, perturbative expansion of the interaction kernel
is that we now allow the two nucleons in the intermediate state to interact with each
other, i.e. to rescatter, whereas such processes contribute only at higher orders in the
power counting applied in Chapter 5. Diagrammatically, this difference is expressed
by replacing the nucleon pole diagrams (cf. Fig. 5.5(b)) by analogous diagrams with
interacting nucleons between the two photon vertices. We distinguish between the
two scenarios – with and without rescattering – in Fig. 6.1 by a square, denoting
the np-potential. In other words, we no longer do a perturbative treatment of the
two-nucleon Green’s function G which is contained in the two-nucleon reducible
part of the interaction kernel KγGKγ , cf. Eq. (5.2). In the next two sections we
explain how to calculate the thus modified nucleon-pole diagrams.

6.1.1 Dominant Diagrams with Intermediate NN-Scattering

The diagrams shown in Fig. 6.1 are calculated using second-order time-ordered per-
turbation theory in the two-photon interaction, while the intermediate two-nucleon
system is treated non-perturbatively. In general, the scattering amplitude for these

1We note that the sign convention of Ref. [24] for the deuteron Compton amplitude is different
from ours. This difference will show up several times in our work. We fix the relative sign via the
proton seagull diagram, Fig. 5.5(a).
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−→

Figure 6.1: Sketch of the main difference between the purely perturbative approach
to the deuteron Compton kernel used in Chapter 5 and the non-perturbative calcu-
lation described in this chapter. The square symbolises the possible interaction of
the two nucleons.

processes can be written as

Mfi =
∑

C







〈 df , γf | H int | C 〉〈C | H int | di, γi 〉
ω + ω2

2md
−B − EC − ~PC

2

2mC

+
〈 df , γf | H int | C, γf , γi 〉〈C, γf , γi | H int | di, γi 〉

−ω + ω2

2md
−B − EC − ~PC

2

2mC







. (6.1)

The amplitude is constructed by writing down (from right to left) the deuteron
in the initial state, the interaction Hamiltonian which describes the coupling of
the incoming (outgoing) photon, intermediate states C which are summed over,
another interaction Hamiltonian and the final-state deuteron. In the denominator,
the energy of the intermediate nucleons appears. Note that – as in Chapter 5 – we
calculate the amplitudes in the γd-cm frame. Therefore, the incoming and outgoing
photons have the same energy. The energies appearing in the intermediate state of
the s-channel diagram (the first diagram on both sides of Fig. 6.1, corresponding
to the first amplitude in Eq. (6.1)) are as follows:

• the photon energy +ω

• the deuteron energy −B with B ≈ 2.225 MeV denoting the deuteron binding
energy

• the excitation energy of the intermediate state C, −EC

• the kinetic energy of the incoming deuteron + ω2

2md
with md = 2mN − B the

deuteron mass (in the γd-cm frame, ~Pi = −~ki with ~Pi (~ki) the initial deuteron
(photon) momentum)

• the kinetic energy − ~PC
2

2mC
of the intermediate two-nucleon system (for our

numerical evaluations we use mC = 2mN)

In the u-channel, the same energy denominator appears, except for the replacement

ω → −ω. As we calculate in the cm frame of the γd system, we have
~PC

2

2mC
= 0

in the s-channel diagram, whereas ~PC = −~ki − ~kf in the u-channel, i.e.
~PC

2

2mC
=

ω2

mC
(1 + cos θ). Therefore, an amplitude containing ~PC

2
always corresponds to a

u-channel diagram throughout this work.
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The interaction Hamiltonian is given by

H int = −
∫

~J(~ξ ) · ~A(~ξ ) d3ξ. (6.2)

For the photon field ~A(~ξ ), we use the multipole expansion derived in [24] in analogy
to Chapter 7 of Ref. [83], see also Appendix F. The result is

ǫ̂λ ei~k·~ξ =

∞
∑

L=1

L
∑

M=−L

dL
M,λ(θ) iL

√

2π (2L+ 1)

L (L+ 1)
(6.3)

×
{

− i

ω
~∇ξ ψL(ωξ)YL M (ξ̂) − i ω ~ξ jL(ωξ)YL M (ξ̂) − λ ~LYL M (ξ̂) jL(ωξ)

}

,

cf. Eq. (F.28). Note that in this chapter we use photon polarization-vectors given
in the spherical basis, Eq. (L.10), which we denote by ǫ̂, whereas so far we used
Cartesian polarization vectors, written as ~ǫ. The functions dL

M,λ(θ) are part of the
WignerD-functions, as explained in detail in Appendix F, YL M denote the spherical
harmonics and ψL(ωr) = (1+ r d

dr ) jL(ωr) with the spherical Bessel functions jL(z)
defined in Eq. (L.29). In the static (long-wavelength) limit only the gradient term
in Eq. (6.3) survives, as for ω → 0, j1(ωr) → 1

3 ωr and ψ1(ωr) → 2
3 ωr. This term

will turn out to be the dominant part of the photon field for all energies under
consideration. Therefore, we define two scalar functions

φi(~r) = −
∞
∑

L=1

L
∑

M=−L

δM,λi

iL+1

ω

√

2π (2L+ 1)

L (L+ 1)
ψL(ωr)YL M (r̂),

φf (~r) =

∞
∑

L′=1

L′

∑

M ′=−L′

(−1)L′−λf dL′

M ′,−λf
(θ)

iL
′+1

ω

√

2π (2L′ + 1)

L′ (L′ + 1)
ψL′(ωr)YL′ M ′(r̂),

(6.4)

which allow us to write

ǫ̂λi ei~ki·~ξ ≈ ~∇φi(~ξ ),

ǫ̂∗λf
e−i~kf ·~ξ ≈ ~∇φf (~ξ ), (6.5)

cf. Eqs. (F.29) and (F.32). The largest contributions to Eq. (6.1) are thus the

ones where we replace ~A(~ξ ) → ~∇φ(~ξ ) in both interaction Hamiltonians. Further

terms, where the replacement ~A(~ξ ) → ~∇φ(~ξ ) is made only once, are calculated in
Appendices H and I. Only a few combinations of interactions without the gradient
part of ~A give sizeable contributions. These are also calculated in Appendices H
and I.

In this section, however, we calculate Eq. (6.1) with H int → −
∫

~J(~ξ )· ~∇φ(~ξ ) d3ξ
simultaneously at both vertices, i.e. we restrict ourselves to the terms arising from
minimal coupling. In order to simplify the calculation on one hand, and to ensure
gauge invariance and the correct Thomson limit on the other, we integrate by parts
and use current conservation:

−
∫

~J(~ξ ) · ~∇φ(~ξ ) d3ξ =

∫

~∇ · ~J(~ξ )φ(~ξ ) d3ξ (6.6)

~∇ · ~J(~ξ ) = −∂ρ(
~ξ )

∂t
= −i

[

H, ρ(~ξ )
]

(6.7)

The fact that we only need to know the charge density ρ in order to calculate the
amplitude in the long-wavelength limit is referred to as “Siegert’s theorem” [84].
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For ρ(~ξ) one can find in Section 8.3 of Ref. [57] the general separation

ρ(~ξ ) = ρ(0)(~ξ ) + ρex(~ξ; ~x1, ~x2) (6.8)

with ρ(0) the charge density of the two nucleons and ~x1, ~x2 the position of nucleon
1 and 2, respectively. ρex(~ξ; ~x1, ~x2) is the charge density due to meson-exchange
currents. The dominant term in Eq. (6.8) is

ρ(0)(~ξ ) =
∑

j=n,p

ej δ(~ξ − ~xj) = e δ(~ξ − ~xp), (6.9)

which is the only non-vanishing contribution to ρ(~ξ ) in the static limit (“Siegert’s
hypothesis” [84]). Note that the δ-functions in Eq. (6.9) indicate that the two nu-
cleons are treated as pointlike particles, i.e. we do not introduce any form factors as
e.g. the authors of Ref. [22]. We also performed calculations including ρex(~ξ; ~x1, ~x2).
From these investigations, which are reported in Appendix J, we conclude that ρex

is negligible in the energy range considered. Therefore in the following we are only
concerned with ρ(0)(~ξ ).

Albeit it is not obvious, meson-exchange currents (cf. Fig. 6.2) are also implicitly
included in the calculation, as by the continuity equation (6.7)

~∇ · ~Jex = −i
[

V ex ~τ1 · ~τ2, ρ(0)
]

− i [H, ρex] (6.10)

with the np-potential from one-pion exchange V ex [57], which is part of the Hamil-
tonian H . ~τi is the isospin operator of the ith nucleon. Therefore, the diagrams

Figure 6.2: One-pion-exchange currents contributing to our calculation: the “Kroll-
Ruderman current” (a) and the “pion-pole current” (b).

sketched in Fig. 6.1, which show only one-body currents, are to be replaced by
Fig. 6.3, which includes the two-body exchange currents, Fig. 6.2. The np-potential
is again sketched as a square.

Substituting ~∇ · ~J by −i
[

H, ρ(0)
]

in Eq. (6.6), the integral over the dummy

variable ~ξ can easily be performed to yield

H int ≈ −
∫

~J(~ξ ) · ~∇φ(~ξ ) d3ξ = −i [H, e φ(~xp)] , (6.11)

where H is the full Hamiltonian of the np-system

H =
~p 2

p

2mp
+

~p 2
n

2mn
+ V (6.12)

with the np-potential V including V ex, cf. Eq. (6.10). With ~pp = −i~∇xp and

~∇xp

2
φ(~xp) ≈ 0 for real photons (cf. Eq. (6.5)), the part of the commutator containing
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−→

Figure 6.3: Sketch of the diagrams arising from the replacement ~A → ~∇φ at both
vertices simultaneously. The blobs denote coupling to the one-body current and
possible one-pion exchange, the square symbolises the np-potential.

the proton kinetic energy yields

H int,p = −i
[

~p 2
p

2mp
, e φ(~xp)

]

= − e

mp

~∇xpφ(~xp) · ~pp ≈ − e

mp

~A(~xp) · ~pp. (6.13)

This approximate relation becomes exact in the extreme long-wavelength limit,
where only the gradient part of ~A contributes, as explained after Eq. (6.3). There-
fore, the operators responsible for electric dipole (E1) transitions are contained in
the commutators of H and φ. In order to evaluate the commutator (6.11), we now
switch to cm variables, i.e.

~p =
~pp − ~pn

2
, ~P = ~pp + ~pn, ~r = ~xp − ~xn, ~R =

~xp + ~xn

2
. (6.14)

Omitting the np-potential V for the moment we find

H int
kin = −i

[

~p 2
p

2mp
+

~p 2
n

2mn
, e φ(~xp)

]

= −i
[

~p 2
p

2mp
, e φ(~xp)

]

= − e

mp

~∇xpφ(~xp) ·
(

~p+ ~P/2
)

. (6.15)

The term including the total momentum operator ~P is a recoil correction and has
been calculated in [24]. Our evaluation of this term showed that its contribution to
the cross section is invisibly small. Therefore we neglect such corrections throughout
this work.

The cm coordinate ~R only gives rise to a momentum-conserving δ-function,
which has to be separated off the scattering amplitude, cf. [24]. Therefore we may

set ~R = ~0, i.e. we neglect the cm velocity of the two nucleons, which means that
~xp = ~r

2 , ~xn = −~r
2 . Note that this procedure is consistent with neglecting the recoil

corrections in Eq. (6.15). Now we can simplify this equation further:

− e

mp

~∇xpφ(~xp) · ~p = − e

mp

(

~∇xp − ~∇xn

)

φ(~xp) · ~p

= −i e
mp

2~pφ(~r/2) · ~p = −i
[

~p 2

mp
, e φ(~r/2)

]

(6.16)

Defining the “internal” Hamiltonian

Hnp =
~p 2

mp
+ V, (6.17)
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which is identical to Eq. (6.12) under the assumption ~pp = −~pn, we end up with

H int = −i [Hnp, e φ(~r/2)] . (6.18)

This expression is equivalent to Eq. (6.11), neglecting the cm motion of the deuteron.

Inserting the commutator (6.18) into Eq. (6.1) and defining φ̂i = e φi(~r/2), φ̂f =

e φf (~r/2) in analogy to [24] we get (remember,
~PC

2

2mC
= 0 in the s-channel diagram)

Mφφ
fi = −

∑

C







〈 df |
[

Hnp, φ̂f

]

| C 〉〈C |
[

Hnp, φ̂i

]

| di 〉
ω + ω2

2md
− B − EC

+
〈 df |

[

Hnp, φ̂i

]

| C 〉〈C |
[

Hnp, φ̂f

]

| di 〉

−ω + ω2

2md
−B − EC − ~PC

2

2mC







. (6.19)

In order to keep track of the various combinations of interaction Hamiltonians we
have labelled the double-φ transition matrix ’φφ’; the photon states have been
skipped for brevity. Now the commutators are expanded and, as | di,f 〉, | C 〉 are
eigenstates of Hnp, we can act with Hnp on these states. Looking only at the
s-channel term for the moment we find that

Mφφ,s
fi = −

∑

C







1

2

〈 df | (−B − EC) φ̂f | C 〉〈C |
[

Hnp, φ̂i

]

| di 〉
ω + ω2

2md
−B − EC

+
1

2

〈 df |
[

Hnp, φ̂f

]

| C 〉〈C | (EC +B) φ̂i | di 〉
ω + ω2

2md
−B − EC







. (6.20)

Now we add and subtract terms in order to perform some cancellations against
the denominator. In the resulting expressions without energy denominator, the
sum over C can be collapsed. In the other terms, the remaining commutator is
expanded and again some cancellations against the energy denominator are made.
We find

Mφφ,s
fi =

1

2
〈 df |

[

Hnp, φ̂f

]

φ̂i | di 〉 −
1

2
〈 df | φ̂f

[

Hnp, φ̂i

]

| di 〉 (6.21)

−
(

ω +
ω2

2md

)

〈 df | φ̂f φ̂i | di 〉 +

(

ω +
ω2

2md

)2
∑

C

〈 df | φ̂f | C 〉〈C | φ̂i | di 〉
ω + ω2

2md
−B − EC

.

The u-channel amplitude is derived via ω + ω2

2md
→ −ω − ~PC

2

2mC
+ ω2

2md
, φ̂i ↔ φ̂f as

Mφφ,u
fi =

1

2
〈 df |

[

Hnp, φ̂i

]

φ̂f | di 〉 −
1

2
〈 df | φ̂i

[

Hnp, φ̂f

]

| di 〉

+

(

ω +
~PC

2

2mC
− ω2

2md

)

〈 df | φ̂i φ̂f | di 〉

+

(

ω +
~PC

2

2mC
− ω2

2md

)2
∑

C

〈 df | φ̂i | C 〉〈C | φ̂f | di 〉
−ω − ~PC

2

2mC
+ ω2

2md
−B − EC

. (6.22)
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Adding the amplitudes (6.21) and (6.22) we get (φ̂i φ̂f = φ̂f φ̂i)

Mφφ1
fi =

(

ω +
ω2

2md

)2
∑

C

〈 df | φ̂f | C 〉〈C | φ̂i | di 〉
ω + ω2

2md
−B − EC

, (6.23)

Mφφ2
fi =

(

ω +
~PC

2

2mC
− ω2

2md

)2
∑

C

〈 df | φ̂i | C 〉〈C | φ̂f | di 〉
−ω − ~PC

2

2mC
+ ω2

2md
−B − EC

, (6.24)

Mφφ3
fi =

(

~PC
2

2mC
− ω2

md

)

〈 df | φ̂f φ̂i | di 〉, (6.25)

Mφφ4
fi =

1

2
〈 df |

[[

Hnp, φ̂i

]

, φ̂f

]

+
[[

Hnp, φ̂f

]

, φ̂i

]

| di 〉. (6.26)

These four amplitudes have already been derived in [24], albeit in the lab frame.

Mφφ4
fi is the only one which contributes in the static limit, since for ω = 0 also

~PC
2

= 0. It is responsible for the correct low-energy behaviour of the calculation,
as will be discussed in great detail in Section 6.2.

Mφφ1
fi will be calculated first. Defining the shortcut E0 ≡ ω + ω2

2md
− B and

neglecting prefactors for the moment we can write this amplitude as

Mφφ1
fi ∝

∑

C

〈 df | ψL′ YL′ M ′ | C 〉〈C | ψL YL M | di 〉
E0 − EC

, (6.27)

where we suppressed the sums over L,M and L′,M ′ for brevity, cf. Eq. (6.4). Each
wave function can be separated into a radial part, denoted by the index ’rad’, and
an angular part, denoted by a hat. Furthermore, | C 〉 is an eigenstate to Hnp with
eigenvalue EC , so we can write

Mφφ1
fi ∝

∑

Crad Ĉ

〈 dfrad d̂f | ψL′ YL′ M ′

1

E0 −Hnp

Ĉ

| Crad Ĉ 〉〈Crad Ĉ | ψL YL M | di rad d̂i 〉.

(6.28)
Ĉ is used as a shorthand notation for all angular quantum numbers of the interme-
diate state, i.e. | Ĉ 〉 =| LC SC JC MC 〉. After acting with the Hamiltonian on the
angular state | Ĉ 〉, which will be explained in detail in Eq. (6.37), Hnp depends on
the quantum numbers of the intermediate state | C 〉. However, the only differential
operator in Hnp is a radial one. Therefore we may separate the radial from the
angular part of | C 〉. Finally we insert two complete sets of radial states | r 〉 and
| r′ 〉 to get

Mφφ1
fi ∝

∑

Crad Ĉ

∫ ∞

0

∫ ∞

0

r2dr r′2dr′〈 d̂f | YL′ M ′ | Ĉ 〉〈 dfrad | ψL′ | r′ 〉 (6.29)

× 〈 r′ | 1

E0 −Hnp

Ĉ

| Crad 〉〈Crad | r 〉〈 r | ψL | di rad 〉〈 Ĉ | YL M | d̂i 〉.

Now we replace the deuteron wave function by the position-space expression given

in Eq. (D.5), Ψ1m(~r ) =
∑

l=0,2
ul(r)

r Y l11
m (r̂) with u0(r) ≡ u(r) and u2(r) ≡ w(r),

see e.g. Section 3.4 of [57]. The indices l11 of the angular wave functions Y denote
orbital angular momentum, spin and total angular momentum of the deuteron state,
m ∈ {−1, 0, 1} is the projection of the total angular momentum of the deuteron onto
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the quantization axis. Using this notation we can write Eq. (6.29) as

Mφφ1
fi ∝

∑

Ĉ

∑

l=0,2

∑

l′=0,2

〈 l′ 1 1Mf | YL′ M ′ | Ĉ 〉〈 Ĉ | YL M | l 1 1Mi 〉 (6.30)

×
∫∫

rdr r′dr′ul′(r
′)ψL′(

ωr′

2
) 〈 r′ | 1

E0 −Hnp

Ĉ

| r 〉ψL(
ωr

2
)ul(r),

where we have removed the sum over Crad. Integrals without limits are always
integrated from 0 to infinity throughout this work.

We now have to evaluate the double integral in Eq. (6.30), including the Green’s
function

GĈ(r, r′;E0) = 〈 r′ | 1

E0 −Hnp

Ĉ

| r 〉. (6.31)

However, we need to evaluate the integral for arbitrary functions of r. Therefore
we describe how to calculate

Ill′Ĉ
fi =

∫∫

rdr r′dr′ ul′(r
′)Jf (r′)GĈ(r, r′;E0)Ji(r)ul(r). (6.32)

We do so in two steps and define

χl′Ĉ
f (r) ≡

∫

r′dr′ ul′(r
′)Jf (r′)GĈ(r, r′;E0). (6.33)

Once we have solved this first part of the integral, it is easy to numerically calculate
the remaining integral

Ill′Ĉ
fi =

∫

rdr ul(r)Ji(r)χ
l′Ĉ
f (r). (6.34)

In order to find the function χl′Ĉ
f (r) – in the following we use the abbreviation

χĈ(r) for simplicity – we first note that

(

E0 −Hnp

Ĉ

)

GĈ(r, r′;E0) = 〈 r′ | r 〉 =
δ(r′ − r)

r2
. (6.35)

Eq. (6.35) defines the Green’s function corresponding to Schrödinger’s equation with
a central potential and the Hamiltonian

H =
~p 2

2m
+ V (r) = − 1

2m

(

1

r

d2

dr2
r

)

+
~L

2

2mr2
+ V (r), (6.36)

where ~L denotes the orbital angular momentum operator. Note that the neutron-
proton potential contains a tensor part and therefore not only depends on the
distance r but on the vector ~r. The tensor force mixes e.g. the deuteron s- and d-
states in Schrödinger’s equation. Nevertheless, on the level of the Green’s function
this matrix equation decouples, cf. Section 3.7 of Ref. [57]. Therefore, we may
replace the Hamiltonian in Eq. (6.35) by

Hnp

Ĉ
=

~p 2

mp
+ VĈ(r) = − 1

mp

(

1

r

d2

dr2
r

)

+
LC (LC + 1)

mp r2
+ VĈ(r), (6.37)

where we explicitly show the dependence of the potential on the quantum numbers
of the interim state | C 〉. The decoupling of Eq. (6.35) guarantees that only the
diagonal terms of the tensor force contribute. Therefore, the orbital angular mo-
mentum is well defined, which allows us to replace ~L2 → LC (LC +1) in Eq. (6.37).
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Usually we use the AV18 potential as published in [73], one of the modern phe-
nomenological high-precision potentials. An explicit expression for this potential is
given in Appendix K. In Section 6.3.2, however, we compare to results with the
LO chiral potential, and we demonstrate that our calculation is rather insensitive
to this choice.

Eqs. (6.35) and (6.37) combine to

[

E0 +
1

mp

d2

dr2
− LC (LC + 1)

mp r2
− VĈ(r)

]

r GĈ(r, r′;E0) =
δ(r′ − r)

r
, (6.38)

which e.g. in the deuteron case reduces to the two differential equations

[

E0 +
1

mp

d2

dr2
− Vcent(r)

]

r G0(r, r
′;E0) =

δ(r′ − r)

r
, (6.39)

[

E0 +
1

mp

d2

dr2
− 6

mp r2
− Vcent(r) + 2Vten(r)

]

r G2(r, r
′;E0) =

δ(r′ − r)

r
(6.40)

with Vcent(r) the central part and Vten(r) the tensor part of the potential. The
indices of the Green’s functions in Eqs. (6.39, 6.40) reflect the orbital angular mo-
mentum state, whereas J = 1, S = 1 is not written down explicitly. The factor −2
in front of Vten(r) in Eq. (6.40) can be read off Table K.1.

Returning to the calculation of the double-integral (6.32), we act now with the
operator given in square brackets in Eq. (6.38) on χĈ(r). The integral over r′

collapses due to the δ-function and we find

[

d2

dr2
+mp

(

E0 − VĈ(r)
)

− LC (LC + 1)

r2

]

r χĈ(r) = mp ul′(r)Jf (r). (6.41)

This is a second-order differential equation in r with an inhomogeneity, which can
be interpreted as a source term. Its solutions are real for E0 < 0 and complex for
E0 > 0. The latter case corresponds to ω > B, i.e. the photon carries enough
energy to break up the deuteron into its two constituents. Whenever such a new
channel opens, an imaginary part starts to exist. Another example of an amplitude
becoming complex at a particle-production threshold is the single-nucleon Compton
amplitude for ω ∼ mπ, cf. Section 3.1.2. There, the imaginary part signals that the
photon energy suffices to put a pion on-shell; here it indicates that there is enough
energy to split the deuteron into two free nucleons. Like in Section 3.1.2, such an
imaginary part appears only in the s-channel diagrams, where the incoming photon
is absorbed before the other one is emitted. In Section 6.4 we will use the imaginary
part of the amplitudes to derive total deuteron-photodisintegration cross sections
via the optical theorem.

For r → ∞, ul′(r)Jf (r) → 0 due to ul′(r) → 0, i.e. Eq. (6.41) reduces to a
homogeneous differential equation. Furthermore, VĈ(r) → 0 for r → ∞ because of
the finite range of the NN -potential, see Appendix K. Therefore, we are for large
distances left with

[

d2

dr2
+ E0mp − LC (LC + 1)

r2

]

r χĈ(r) = 0. (6.42)

This equation is known to be solved by a linear combination of the spherical Bessel
functions of the first and second kind, jLC (Qr) and nLC (Qr) with Q =

√

mpE0,
see e.g. Section 17.3 in [85]. Note that Q can be real or imaginary2 depending on

2In order to fix the sign of the imaginary solution, one has to add an infinitesimal imaginary
part to −B, i.e. B → B − iǫ. The sign of this imaginary part follows from the pole structure of
the nucleon propagators.
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E0. In our case the boundary condition is that χĈ(r) must be an outgoing spherical
wave for large r, cf. e.g. Section 7.1 of [86]. Therefore we may write

lim
r→∞

χĈ(r) ∝ h
(1)
LC

(Qr), (6.43)

with h
(1)
LC

(Qr) the spherical Hankel function of the first kind, defined as

h
(1)
LC

(Qr) = jLC (Qr) + inLC (Qr). (6.44)

We now have to find solutions for the homogeneous and the inhomogeneous differen-
tial equation (6.41). Numerically, this can be easily done. As the equation is of sec-
ond order, we have to specify two initial conditions, e.g. χĈ(r = 0) and d

drχĈ(r)|r=0.
In order to improve the stability of the numerics routine it is worth thinking about
proper values for these conditions, which are, however, not to be confused with
the boundary condition (6.43), that the final solution has to fulfill. For r → 0 the
right-hand side of Eq. (6.41) vanishes due to the wave function ul′(r). Furthermore,

as VĈ(r) is regular at the origin, cf. Fig. K.2, LC (LC+1)
r2 ≫ mp

(

E0 − VĈ(r)
)

for
LC > 0 and sufficiently small r. Therefore, for r → 0 Eq. (6.41) can be approxi-
mated by

[

d2

dr2
− LC (LC + 1)

r2

]

r χĈ(r) = 0. (6.45)

The general solution of Eq. (6.45) is given by r χĈ(r) = ArLC+1 + B r−LC . As
we want χĈ(r) to be regular at the origin, i.e. r χĈ(r) = 0 for r → 0, we find
B = 0 and therefore close to the origin r χĈ(r) is of order rLC+1 plus higher powers
in r, which means that the leading contribution to χĈ(r) is proportional to rLC .
Therefore it is advantageous to choose χĈ(r = 0) 6= 0, d

drχĈ(r)|r=0 6= 0 for LC = 0,

χĈ(r = 0) = 0, d
drχĈ(r)|r=0 6= 0 for LC = 1 and χĈ(r = 0) ≈ 0, d

drχĈ(r)|r=0 ≈ 0
for higher angular momenta3.

Once we have solutions for the homogeneous and the inhomogeneous differential
equation, we need to find the correct linear combination which satisfies the condi-
tion (6.43). In other words we have to determine the coefficient λ which fulfills

lim
r→∞

{

χin
Ĉ

(r) + λχhom
Ĉ

(r)
}

∝ h
(1)
LC

(Qr), (6.46)

where χin
Ĉ

(r) (χhom
Ĉ

(r)) denote the solution to the inhomogeneous (homogeneous)

differential equation. In the asymptotic limit, χĈ(r) must be a linear combination

of jLC (Qr) and nLC (Qr) or, equivalently, of jLC (Qr) and h
(1)
LC

(Qr). Therefore we
can write the general solutions in the following way:

χhom
Ĉ

(r) = Chom
Ĉ

(r)
[

jLC (Qr) + thom
Ĉ

(r)h
(1)
LC

(Qr)
]

, (6.47)

χin
Ĉ

(r) = C in
Ĉ

(r)
[

jLC (Qr) + tin
Ĉ

(r)h
(1)
LC

(Qr)
]

(6.48)

with functions C
in/hom

Ĉ
(r), t

in/hom

Ĉ
(r) which become the constants C

in/hom

Ĉ
, t

in/hom

Ĉ

for large r. With the choice λ = −C in
Ĉ
/Chom

Ĉ
we find

lim
r→∞

{

χin
Ĉ

(r) + λχhom
Ĉ

(r)
}

= C in
Ĉ

(

tin
Ĉ
− thom

Ĉ

)

h
(1)
LC

(Qr), (6.49)

which satisfies the condition (6.43). Therefore we need to determine the coefficients
C in

Ĉ
, Chom

Ĉ
. This has to be done in the region where CĈ(r), tĈ(r) are constant, i.e.

their derivatives vanish. In this region

lnχ
in/hom

Ĉ
(r) = lnC

in/hom

Ĉ
+ ln

[

jLC (Qr) + t
in/hom

Ĉ
h

(1)
LC

(Qr)
]

. (6.50)

3The choice 0 in both cases is impossible, as it would give the trivial solution χ
Ĉ

(r) ≡ 0 for
the homogeneous equation.
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Defining Din/hom = d
dr lnχ

in/hom

Ĉ
=

χ′

Ĉ

in/hom

χ
in/hom

Ĉ

we find

Din/hom =
d

dr
ln
[

jLC (Qr) + t
in/hom

Ĉ
h

(1)
LC

(Qr)
]

=

d
dr jLC (Qr) + t

in/hom

Ĉ
d
drh

(1)
LC

(Qr)

jLC (Qr) + t
in/hom

Ĉ
h

(1)
LC

(Qr)
.

(6.51)

This equation is easily solved for t
in/hom

Ĉ
:

t
in/hom

Ĉ
=

Din/hom jLC (Qr) − d
dr jLC (Qr)

d
drh

(1)
LC

(Qr) −Din/hom h
(1)
LC

(Qr)
(6.52)

Using these results we can solve Eqs. (6.47, 6.48) for C
in/hom

Ĉ
and so determine λ.

Numerically, this is one of the most involved parts of this work. Fortunately, a
nice and valuable cross-check to the routine can be performed. For this we consider
again the double integral to be calculated, Eq. (6.32). This integral is obviously
invariant under the interchange r ↔ r′. A general feature of Green’s functions
is that they are symmetric under r ↔ r′, i.e. GĈ(r′, r;E0) = GĈ(r, r′;E0) [87].
Therefore

Ill′Ĉ
fi =

∫∫

r′dr′ rdr ul′(r)Jf (r)GĈ (r, r′;E0)Ji(r
′)ul(r

′). (6.53)

This expression is identical to Ill′Ĉ
fi , Eq. (6.32), with i ↔ f , l ↔ l′, i.e. our results

must be symmetric under i ↔ f , l ↔ l′. This is a non-trivial check, because for

Jf (r) 6= Ji(r) completely different functions χl′Ĉ
f (r) are generated. Our routine

agrees well with this symmetry – the deviation caused by numerical uncertainties
is less than 1%.

Now all tools to calculate Mφφ1,2
fi are prepared. However, as the algebraic manip-

ulations are not too complicated, we shift this rather technical part to Appendix G.
There we also calculate Mφφ3

fi and Mφφ4
fi .

We turn now to the calculation of those contributions where the replacement
~A(~ξ ) → ~∇φ(~ξ ) (cf. the beginning of this section) is made at most once.

6.1.2 Subleading Terms

So far we only considered contributions arising from minimal coupling of the photon
field to the two-nucleon system at both vertices. In the following we describe how
to calculate the amplitudes given in Eq. (6.1), when the replacement

H int = −
∫

~J(~ξ ) · ~A(~ξ ) d3ξ → −
∫

~J(~ξ ) · ~∇φ(~ξ ) d3ξ (6.54)

is made only once, again drawing substantially from Ref. [24]. The term ’subleading’
refers to the fact that the resulting amplitude is numerically less important than
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that of Section 6.1.1. It is denoted by Mφ
fi and follows immediately from Eq. (6.1):

Mφ
fi =

∑

C

{

〈 df |
∫

~J(~ξ ) · ~∇φf (~ξ ) d3ξ | C 〉〈C |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | di 〉
ω + ω2

2md
−B − EC

+
〈 df |

∫

~J(~ξ ) · ~A(~ξ ) d3ξ | C 〉〈C |
∫

~J(~ξ ) · ~∇φi(~ξ ) d3ξ | di 〉
ω + ω2

2md
− B − EC

+
〈 df |

∫

~J(~ξ ) · ~∇φi(~ξ ) d3ξ | C 〉〈C |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

+
〈 df |

∫

~J(~ξ ) · ~A(~ξ ) d3ξ | C 〉〈C |
∫

~J(~ξ ) · ~∇φf (~ξ ) d3ξ | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC







(6.55)

Now we perform the same steps as described in Eqs. (6.11-6.21), i.e. we first re-

place
∫

~J(~ξ ) · ~∇φ(~ξ ) d3ξ by i [Hnp, e φ(~r/2)], then act with Hnp on | d 〉 and | C 〉,
respectively, and finally add and subtract terms in order to do some cancellations
against the denominator. We find, again neglecting recoil terms and the deuteron
velocity,

Mφ
fi = i

∑

C

{

〈 df | φ̂f | C 〉〈C |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | di 〉

−
(

ω +
ω2

2md

) 〈 df | φ̂f | C 〉〈C |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | di 〉
ω + ω2

2md
− B − EC

− 〈 df |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | C 〉〈C | φ̂i | di 〉

+

(

ω +
ω2

2md

) 〈 df |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | C 〉〈C | φ̂i | di 〉
ω + ω2

2md
−B − EC

+ 〈 df | φ̂i | C 〉〈C |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | di 〉

+

(

ω − ω2 − ~PC
2

2mC

) 〈 df | φ̂i | C 〉〈C |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

− 〈 df |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | C 〉〈C | φ̂f | di 〉

−
(

ω − ω2 − ~PC
2

2mC

) 〈 df |
∫

~J(~ξ ) · ~A(~ξ ) d3ξ | C 〉〈C | φ̂f | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

}

. (6.56)

In those terms in which the energy denominator has been cancelled, the sum over

C may be collapsed. As φ̂
(

∫

~J(~ξ ) · ~A(~ξ ) d3ξ
)

=
(

∫

~J(~ξ ) · ~A(~ξ ) d3ξ
)

φ̂, these four

terms cancel exactly, and only the terms including an energy denominator remain.

Now we have to specify the current ~J(~ξ ) and the relevant parts of the photon

field ~A(~ξ ), which are the non-gradient terms in Eq. (6.3). We want to decompose
the photon field in its electric and magnetic part. Therefore, we write schematically
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~A = ~∇φ+ ~A(1) + ~A(2) with

~A(1)(~ξ ) = −
∑

~k,λ=±1

∞
∑

L=1

L
∑

M=−L

λ

√

2π (2L+ 1)

L (L+ 1)
iL jL(ωξ) ~LYL M (ξ̂)

×
[

a~k,λ δM,λ − a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

, (6.57)

~A(2)(~ξ ) = −
∑

~k,λ=±1

∞
∑

L=1

L
∑

M=−L

√

2π (2L+ 1)

L (L+ 1)
iL+1 ω ~ξ jL(ωξ)YL M (ξ̂)

×
[

a~k,λ δM,λ − a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

, (6.58)

cf. Eqs. (F.29), (F.32) and (L.1). ~A(1) constitutes the magnetic part of the photon

field, ~∇φ + ~A(2) is the electric field, cf. e.g. Chapter 7 of Ref. [83]. The operators

a†~k,λ
(a~k,λ) create (destroy) a photon with momentum ~k and polarization λ.

Now we specify which currents we include in our calculation. The one-body
current is considered first. It consists of two parts, which we call ~J (σ) and ~J (p),
with

~J (σ)(~ξ ) =
e

2mN

∑

j=n,p

[

~∇ξ × µj ~σj δ(~ξ − ~xj)
]

, (6.59)

~J (p)(~ξ ) =
1

2mN

∑

j=n,p

{

ej δ(~ξ − ~xj), ~pj

}

, (6.60)

cf. e.g. [57], Section 8.2. µj is the magnetic moment, ~σj the spin operator and ~pj

the momentum of the jth nucleon; as in the previous chapter we neglect isospin-
breaking effects, i.e. we setmp ≡ mn ≡ mN . All possible combinations of ~A(1), ~A(2)

and ~J (σ), ~J (p) have been calculated in [24]. We also evaluated all these amplitudes,

however we found that only ~J (σ) gives visible contributions to the deuteron Compton
cross sections. The reason is that in the amplitudes resulting from the replacement
~J · ~A→ ~J (p) · ~A(1) in Eq. (6.56), the leading multipoles of the photon field L = L′ =
1 are forbidden due to the matrix elements involved. The amplitudes including
~J (p) · ~A(2), on the other hand, cancel exactly for L,L′ ≤ 2 in the γd-cm frame.
Therefore, we may restrict ourselves to the following combinations: ( ~J (σ), ~A(1)),

denoted by σ1, and ( ~J (σ), ~A(2)), denoted by σ2.

We now calculate
∫

~J (σ)(~ξ ) · ~A(1,2)(~ξ ) d3ξ. We start with the derivation for ~A(1),
writing only the ξ-dependent terms for simplicity.

∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ ∝
∫

∑

j=n,p

[

~∇ξ × µj ~σj δ(~ξ − ~xj)
]

jL(ωξ) · ~LYL M (ξ̂) d3ξ

=

∫

∑

j=n,p

[

εikl ∂k µj σj,l δ(~ξ − ~xj)
]

jL(ωξ)Li YL M (ξ̂) d3ξ

= −
∫

∑

j=n,p

[

εikl µj σj,l δ(~ξ − ~xj)
]

∂k jL(ωξ)Li YL M (ξ̂) d3ξ

=

∫

∑

j=n,p

µj ~σj δ(~ξ − ~xj) · ~∇ξ ×
(

jL(ωξ) ~LYL M (ξ̂)
)

d3ξ,

(6.61)

where one partial integration has been performed. Now we evaluate the integral
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and afterwards replace ~xp → ~r
2 , ~xn → −~r

2 , as in Eq. (6.16), yielding

∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ ∝ 2
[

~∇r ×
(

jL(
ωr

2
) ~LYL M (r̂)

)]

·
(

µp ~σp − (−1)L µn ~σn

)

,

(6.62)

where we used ~∇±r/2 = ±2~∇r and Eq. (L.27). By the help of Eq. (F.17), this
becomes

∫

~J (σ)(~ξ )· ~A(1)(~ξ ) d3ξ ∝ 2
√

L (L+ 1)
[

~∇r × jL(
ωr

2
) ~TL L M (r̂)

]

·
(

µp ~σp − (−1)L µn ~σn

)

.

(6.63)
Now we can use the curl formula (L.44) and the recursion relations for spherical
Bessel functions, Eq. (L.30), to write

∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ ∝
[

i ω jL−1(
ωr

2
)

√

L (L+ 1)2

2L+ 1
~TL L−1 M (r̂) (6.64)

− i ω jL+1(
ωr

2
)

√

L2 (L+ 1)

2L+ 1
~TL L+1 M (r̂)

]

·
(

µp ~σp − (−1)L µn ~σn

)

.

We found that the numerical importance of the various contributions rapidly de-
creases with increasing photon multipolarity L. A similar observation has been
made in Chapters 3 and 4 for our multipole expansion of single-nucleon Comp-
ton scattering. Therefore, the term proportional to ~TL L+1 M (r̂) may be neglected.

Defining ~S =
~σp+~σn

2 and ~t =
~σp−~σn

2 and including all prefactors, we get the result

∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ =

−
∑

~k,λ=±1

∞
∑

L=1

L
∑

M=−L

λ
√

2π (L+ 1)
e ω

2mN
iL+1 jL−1(

ωr

2
) ~TL L−1 M (r̂) (6.65)

×
[

(

µp − (−1)L µn

)

~S +
(

µp + (−1)L µn

)

~t
]

·
[

a~k,λ δM,λ − a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

.

The scalar products are replaced according to the relation

~TJ L M (r̂) · ~V = [YL ⊗ V ]J M , (6.66)

which holds for any vector (rank 1) operator (⊗ denotes the irreducible tensor
product). An explicit proof of this identity is given in Appendix H. We use it to
finally rewrite Eq. (6.65):

∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ = −
∑

~k,λ=±1

∞
∑

L=1

L
∑

M=−L

λ
√

2π (L+ 1)
e ω

2mN
iL+1 jL−1(

ωr

2
)

×
{(

µp − (−1)L µn

)

[YL−1 ⊗ S]L M +
(

µp + (−1)L µn

)

[YL−1 ⊗ t]L M

}

×
[

a~k,λ δM,λ − a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

(6.67)

We turn now to the calculation of
∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ. Again we restrict
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ourselves in the derivation to the ξ-dependent terms, finding

∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ ∝
∫

∑

j=n,p

[

~∇ξ × µj ~σj δ(~ξ − ~xj)
]

· ~ξ jL(ωξ)YL M (ξ̂) d3ξ

=

∫

∑

j=n,p

µj ~σj δ(~ξ − ~xj) · ~∇ξ ×
(

~ξ jL(ωξ)YL M (ξ̂)
)

d3ξ

= ~∇r ×
(

~r jL(
ωr

2
)YL M (r̂)

)

·
(

µp ~σp + (−1)L µn ~σn

)

,

(6.68)

where we have performed the same steps as in the derivation of Eq. (6.62). From
Eq. (F.25) we know that

~r jL(
ωr

2
)YL M (r̂) =

√

L (L+ 1) r jL(
ωr

2
)

[

~TL L−1 M (r̂)
√

(L+ 1) (2L+ 1)
−

~TL L+1 M (r̂)
√

L (2L+ 1)

]

,

(6.69)
which we plug into Eq. (6.68). Using the curl formulae Eqs. (L.45) and (L.46) we
find

~∇r ×
(

r jL(
ωr

2
)

[

~TL L−1 M (r̂)
√

(L+ 1) (2L+ 1)
−

~TL L+1 M (r̂)
√

L (2L+ 1)

])

= −i jL(
ωr

2
) ~TL L M (r̂).

(6.70)

Combining Eqs. (6.68-6.70), together with the definitions of ~S and ~t, cf. Eq. (6.65),
yields

∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ ∝ −i
√

L (L+ 1) jL(
ωr

2
) ~TL L M (r̂)

·
[

(µp + (−1)L µn) ~S + (µp − (−1)L µn)~t
]

. (6.71)

Including all prefactors, we get

∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ = −
∑

~k,λ=±1

∞
∑

L=1

L
∑

M=−L

√

2π (2L+ 1)
e ω

2mN
iL jL(

ωr

2
)~TL L M (r̂)

·
[

(µp + (−1)L µn) ~S + (µp − (−1)L µn)~t
]

·
[

a~k,λ δM,λ − a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

= −
∑

~k,λ=±1

∞
∑

L=1

L
∑

M=−L

√

2π (2L+ 1)
e ω

2mN
iL jL(

ωr

2
)
{

(µp + (−1)L µn) [YL ⊗ S]L M

+(µp − (−1)L µn) [YL ⊗ t]L M

}

·
[

a~k,λ δM,λ − a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

,

(6.72)

where we again used Eq. (6.66).

We are now ready to calculate the amplitudes Mφ σ1
fi and Mφ σ2

fi . The results are

given in Appendix H, together with the amplitudes Mσ1 σ1
fi and Mσ2 σ2

fi , which do
not contain the gradient part of the photon field. Nevertheless, these contributions
are strong, cf. Fig. 6.7, due to the numerically large factor (µp − µn)2 ≈ 22. As

the amplitudes with both photons coupling to the current ~J (p), Eq. (6.60), are
not supported by this factor, these contributions are tiny. Therefore, they are
not included in our work. We also found the mixed amplitudes Mσ1 σ2

fi , Mσ2 σ1
fi

negligibly small, which is no surprise, as explained in Appendix H.
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So far we (explicitly) only considered one-body currents. However, there are
also non-negligible contributions from pion-exchange currents, cf. Fig. (6.2). The
corresponding expressions for the currents in coordinate-space representation are

~J KR
stat(

~ξ; ~x1, ~x2) =
e f2

m2
π

(~τ1 × ~τ2)z

[

~σ1 δ(~x1 − ~ξ) (~σ2 · r̂) + ~σ2 δ(~x2 − ~ξ) (~σ1 · r̂)
] ∂

∂r

e−mπr

r
(6.73)

for the Kroll-Ruderman (pair) current (Fig. 6.2(a)), and

~J pole
stat (

~ξ; ~x1, ~x2) = −e f
2

4π
(~τ1 × ~τ2)z·

(

~∇1 − ~∇2

)

(~σ1·~∇1) (~σ2·~∇2)
e−mπ|~x1−~ξ|

mπ |~x1 − ~ξ|
e−mπ|~x2−~ξ|

mπ |~x2 − ~ξ|
(6.74)

for the so-called pion-pole current (Fig. 6.2(b)), cf. e.g. [57], Section 8.34. ~τi
denotes the isospin operator of the ith nucleon, ~xi its position. The relative vector
~r is defined as ~r = ~x1 − ~x2.

Our numerical evaluations show that the explicit inclusion of the pole current
is well negligible in the process and energies under consideration. Therefore we
are only concerned with the Kroll-Ruderman current, Eq. (6.73). This expression,
however, is derived in the limit of static nucleons (denoted by the index ’stat’ in
Eq. (6.73)), i.e. the correction due to the photon energy is neglected. This being a
rather crude approximation for ω ∼ 100 MeV, which is close to the pion mass, we
use instead of Eq. (6.73)

~J KR(~ξ; ~x1, ~x2) =
e f2

m2
π

(~τ1 × ~τ2)z

[

~σ1 δ(~x1 − ~ξ) (~σ2 · r̂) + ~σ2 δ(~x2 − ~ξ) (~σ1 · r̂)
] ∂

∂r
fKR(r).

(6.75)
The function fKR(r) depends on the photon energy and is defined in Appendix I,
where we derive Eq. (6.75).

Now we have another current at hand, which we can use to replace ~J(~ξ ) in
Eq. (6.1). However, one has to be careful in order not to double-count5 certain

contributions; e.g. it is not allowed to combine H int = −
∫

~J KR(~ξ ) · ~Afull(~ξ ) d3ξ at

one vertex with H int = −
∫

~J(~ξ ) · ~∇φ(~ξ ) d3ξ at the other, because ~J KR is part of ~J .
Therefore, this combination is already included – at least partly – in the dominant
terms of Section 6.1.1, cf. discussion around Eq. (6.10).

First we note that the Kroll-Ruderman current changes isospin, i.e. H int =
−
∫

~J KR(~ξ ) · ~A(~ξ ) d3ξ transforms the isospin-0 deuteron into an isospin-1 object.
This can easily be seen when we act with (~τ1 × ~τ2)z on the deuteron isospin wave
function (Eq. (5.9)):

(~τ1 × ~τ2)z

1√
2

| p n− n p 〉 = (τx
1 τ

y
2 − τy

1 τ
x
2 )

1√
2

| p n− n p 〉 = −2 i
1√
2

| p n+ n p 〉
(6.76)

Therefore we need another isospin-changing interaction at the second vertex. Pauli’s
principle guarantees that the total wave function of the two-nucleon system has to be
antisymmetric under the exchange of the two constituents, as nucleons are fermions.
Stated differently, the wave function has to fulfill (−1)S+L+T = −1, i.e. in order to

have T = 1 we need S + L even. The operators at our disposal are YL from φ̂i,f

(Eq. (6.4)), [YL−1⊗S]L and [YL−1⊗t]L from
∫

~J (σ) · ~A(1) (Eq. (6.67)) and [YL⊗S]L,

[YL ⊗ t]L from
∫

~J (σ) · ~A(2) (Eq. (6.72)). YL and [YL′ ⊗ S]L are spin-conserving
operators, [YL′ ⊗ t]L is spin-changing, i.e. this operator corresponds to SC = 0, cf.
Eqs. (L.37-L.39). When we restrict ourselves to L, L′ = 1, which is a reasonable

4We note that our convention for the pion-nucleon coupling f2 differs by a factor 4π from that
used in [57].

5We are grateful to W. Weise for useful comments made on this point.
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approximation as higher multipoles are strongly suppressed, we find Y1 – remember,
the expansion φ(~ξ ) starts with L = 1 (Eq. (6.4)), [Y0 ⊗ S]1, [Y1 ⊗ S]1, [Y0 ⊗ t]1 and
[Y1⊗ t]1. The operator [Y0⊗S]1 is isospin-conserving, as it transforms the deuteron
into an S = 1-state with even orbital angular momentum, cf. Eq. (L.38)6. So
is the spin-changing operator [Y1 ⊗ t]1. Therefore the possible candidates are Y1,
[Y1 ⊗ S]1 and [Y0 ⊗ t]1. We found that the numerically most important operator is
[Y0 ⊗ t]1. The same observation was made in [24]. Nevertheless, also the operator

Y1, which stems from φ̂i, φ̂f , gives non-negligible contributions, whereas we found
the amplitudes including [Y1 ⊗S]1 invisibly small and therefore these terms are not

written down in our work. However, in the amplitudes including φ̂i or φ̂f at the non-

KR vertex, one is not allowed to use the full photon field in H int = −
∫

~J KR(~ξ ) ·
~A(~ξ ) d3ξ, as explained after Eq. (6.75). Therefore we are left with MKR fullσ1

fi ,

Mφ KR1
fi and Mφ KR2

fi , where ’KR full’ denotes the integral over the Kroll-Ruderman
current, multiplied by the full photon field. There is no danger of double-counting
in MKR fullσ1

fi , as we only take into account the operator [YL−1⊗ t]L. This operator,
however, changes the deuteron spin, cf. Eq. (L.39), whereas the matrix elements
arising from φi,f are spin-conserving, see Eq. (L.37). Further contributions, like

the one where ~J(~ξ ) = ~J KR(~ξ ) at both vertices, turned out to be small. Therefore
we only have to consider the three combinations above. The evaluation of these
contributions is given in Appendix I.

Two-body currents with explicit ∆(1232) degrees of freedom, as displayed in
Fig. 6.4, are suppressed by one order in ǫ with respect to the Kroll-Ruderman

current, due to the γN∆ vertex being part of L(2)
N∆, see Eq. (2.29). This is in

agreement with the findings of [22], where such contributions to elastic deuteron
Compton scattering below 100 MeV were claimed to be negligibly small (of the order
of 2%). A similarly strong influence of the ∆(1232) current to the process np →
dγ is reported in Section 8.5 of [57], where the contributions from these currents
turn out considerably smaller than those from pionic exchange currents. Therefore
and due to the excellent agreement of the total deuteron-photodisintegration cross
section, extracted from our elastic Compton amplitude, with experimental data up
to ω = 100 MeV, cf. Section 6.4, we so far refrain from including these terms into
our calculation. Nevertheless, it would be an interesting future task to perform a
detailed investigation of their size.

Figure 6.4: Exemplary one-pion-exchange currents with explicit ∆(1232) degrees of
freedom.

In the last two subsections we prepared all ingredients of our deuteron Compton
calculation, which are new with respect to Chapter 5. In the next section we
demonstrate that our non-perturbative approach fulfills the well-known low-energy
theorem, i.e. we reach the exact static limit in this approach. In Section 6.3, we
present our results at non-zero energies and compare them to those from the strictly
perturbative approach of Chapter 5 and to data.

6The latter claim follows from the fact that the deuteron has even orbital angular momentum
and from Eq. (L.21).
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6.2 Low-Energy Limit in the Non-Perturbative

Approach

One of the aims to be achieved with the approach to deuteron Compton scattering
described in this chapter is to extend the calculation of Chapter 5 to lower energies.
In this section we prove that we have indeed removed the limitations of Chapter 5
at low energies, i.e. our so-called non-perturbative approach to deuteron Compton
scattering reaches the correct limit of vanishing photon energy.

We remind the reader that the strictly perturbative expansion of the interaction
kernel up to third order in the SSE counting scheme, used in Chapter 5, leads to
a low-energy cross section that is too large by a factor of 6. The amplitude in this
limit, which is the well-known Thomson term for scattering of an electromagnetic
wave from a charged particle, cf. Eq. (5.4), is

AThomson =
Q2 e2

AmN
ǫ̂λi · ǫ̂∗λf

. (6.77)

The overall sign of the amplitude is convention and differs e.g. in Ref. [24] from
this work. As already discussed in Section 5.1, Friar showed that Eq. (6.77) is
a consequence of gauge invariance [79]. Therefore the ansatz used in Chapter 5
obviously violates gauge invariance, which is one of the shortcomings that we cure –
at least approximately – in this chapter. The violation appears when evaluating the
kernel between the deuteron wave functions, without allowing the two nucleons in
the intermediate state to interact with each other. The reason is that the deuteron
wave function implies this interaction, which can be interpreted as the exchange of
mesons, e.g. of pions, between the two nucleons. In order to really achieve gauge
invariance, it is therefore mandatory to include rescattering of the two nucleons
on one hand and to couple the photons to these meson-exchange currents on the
other, cf. Figs. 6.2 and 6.3 and Refs. [22, 24]. Full gauge invariance will however
not be obtained within our calculation, as the np-potential we use (AV18 [73], cf.
Appendix K), contains more than only the one-pion exchange. The short-distance
part of such a phenomenological potential may be interpreted as the exchange of
mesons heavier than the pion (e.g. the ω- or ρ-meson). As we only allow for explicit
pion-exchange currents, gauge invariance will not be fulfilled exactly [22].

For a deuteron target, Eq. (6.77) reads

AThomson
d =

e2

md
ǫ̂λi · ǫ̂∗λf

≈ e2

2mN
ǫ̂λi · ǫ̂∗λf

. (6.78)

This is a non-trivial result because the deuteron mass is involved, whereas the
Thomson seagull for Compton scattering from the proton, Fig. 5.5(a), yields the
amplitude

AThomson
p =

e2

mp
ǫ̂λi · ǫ̂∗λf

, (6.79)

cf. Eq. (B.1). The neutron amplitude is zero in the static limit. Therefore, all
other contributions to deuteron Compton scattering in the limit ω → 0 have to
cancel half of the proton amplitude (6.79). The only non-vanishing terms in the
low-energy limit, except for the proton seagull, are two-body diagrams, namely
the explicit pion-exchange diagrams, Fig. 5.7, and the double-commutator term,
Eq. (6.26), as explained in Appendix G. This double-commutator involves the in-

ternal Hamiltonian Hnp = ~p 2

mN
+ V , cf. Eq. (6.17), and therefore can be separated

into a kinetic energy and a potential part, cf. Appendix G. Arenhövel [88] showed
analytically that in the static limit the potential energy part, using the one-pion-
exchange potential, cancels exactly the contributions from explicit pion exchange,
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Fig. 5.7. It is this consistency between the diagrams explicitly included in the inter-
action kernel and the potential used in the double-commutator, Eq. (6.26), which
guarantees the correct low-energy behaviour of our calculation. Therefore we only
include the one-pion exchange in the amplitude (6.26). Since two-nucleon contact
terms, which parameterize the exchange of heavier particles than pions, are of higher
than third order in the SSE scheme, we do not include such diagrams explicitly, and
therefore they are also not included in the double-commutator. While this proce-
dure is strictly speaking not consistent with the NN -potential [73] that we use for
constructing the np-Green’s function, it is nevertheless a legitimate prescription, as
we show in Section 6.3.2 that using only the one-pion-exchange potential does not
change our results significantly.

As the sum of the explicit pion-exchange diagrams from Fig. 5.7 and the potential
energy part of Eq. (6.26) gives no contribution in the low-energy limit, it is clear
that the kinetic energy part of the double-commutator has to cancel half of the
proton seagull amplitude (6.79). This can easily be shown to be true: in the long-

wavelength limit, i.e. for |~k| → 0, the photon field reduces to the polarization vector

(dipole approximation), as ǫ̂λ ei~k~r → ǫ̂λ. As we already know that only the gradient
part of the photon field survives in the static limit, cf. Section 6.1.1, we find

~∇ξφ(~ξ )
∣

∣

∣

ω→0
= ǫ̂λ. (6.80)

Therefore, φ(~ξ )|ω→0 = ǫ̂λ · ~ξ and, using φ̂ = e φ(~r/2),

φ̂
∣

∣

∣

ω→0
= e

~r

2
· ǫ̂λ. (6.81)

Now we need to evaluate the double-commutator in this limit, finding

lim
ω→0

[

[
~p 2

mN
, φ̂i], φ̂f

]

=
e2

4mN

[

[~p 2, ~r · ǫ̂λi ], ~r · ǫ̂∗λf

]

=
e2

2mN

[

(~p (~r · ǫ̂λi)) · ~p,~r · ǫ̂∗λf

]

=
−i e2
2mN

[

ǫ̂λi · ~p,~r · ǫ̂∗λf

]

= − e2

2mN
ǫ̂λi · ǫ̂∗λf

, (6.82)

where we used ~p =
~pp−~pn

2 = −i
~∇xp−~∇xn

2 and ~r = ~xp−~xn, cf. Eq. (6.14). Eq. (6.82)
is obviously symmetric under i ↔ f . Therefore the second double-commutator in
Eq. (6.26) gives the same result. Adding both commutators cancels the factor 1

2 in
front of the matrix element and we see that the result accounts for exactly half of
the negative Thomson amplitude of the proton. Note that this result is independent
of the deuteron wave function and the np-potential chosen.

Our numerical evaluation agrees well with the Thomson limit (6.77), as demon-
strated in Fig. 6.5, where we see a comparison between the proton Compton cross

section,
(

1
2

)2
= 1

4 of this cross section and the deuteron Compton cross section at

zero photon energy (we remind the reader that dσ
dΩ ∝ |Mfi|2, cf. Eq. (5.11)); the

latter two curves are nearly indistinguishable. In the right panel of Fig. 6.5, where
we show the relative error

(

dσ
dΩ

)

d
/
(

1
4

dσ
dΩ

)

p
−1, we see that the deviation is less than

2% and angle-independent. Therefore it can be accounted for by a constant factor.
When we use the AV18 wave function [73], the curve in the right panel of Fig. 6.5
turns out of about the same absolute size, but with opposite sign. This observation
suggests that the main part of this discrepancy is due to numerical uncertainties in
the normalization of the wave function within our code.
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Figure 6.5: Left panel: Comparison of the proton (black, solid), deuteron (grey,
solid) and 1/4 of the proton (black, dashed) Compton cross section in the static
limit. The function plotted in the right panel is

(

dσ
dΩ

)

d
/
(

1
4

dσ
dΩ

)

p
− 1.

In this section we showed that the approach to deuteron Compton scattering,
that we use in this chapter, fulfills the low-energy theorem and therefore guaran-
tees at least approximate gauge invariance of the calculation. In the next section
we present our results for non-zero photon energies, demonstrating that we have
achieved a consistent description of γd scattering for photon energies ranging from
0 MeV up to ω ∼ 100 MeV.

6.3 Predictions for

Deuteron Compton Cross Sections

Figure 6.6: Comparison of our results from the two different approaches to deuteron
Compton scattering: The black lines are the results of the non-perturbative ap-
proach, Chapter 6, the grey lines are the SSE-results of Fig. 5.9. The data are from
[17] (circle), [18] (star) and [19] (diamond).
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In Fig. 6.6, we show our parameter-free predictions for the elastic deuteron
Compton cross sections, achieved with the “non-perturbative” calculation of this
chapter. These results are compared to the predictions from Section 5.2 and to the
data from Illinois [17], Lund [18] and SAL [19]. Obviously we have reached our final
goal: we have achieved a (chirally) consistent calculation for elastic deuteron Comp-
ton scattering, which describes all existing data reasonably well and also satisfies
the low-energy theorem exactly, cf. Section 6.2. In both calculations presented in
Fig. 6.6 we use for the isoscalar polarizabilities the numbers from our 2-parameter
SSE fit to proton data, given in Table 3.1, which is justified by the fact that the
isovector polarizabilities vanish at leading-one-loop order in the Small Scale Expan-
sion.

There are still minor deviations from the experiments, e.g. our calculation lies
slightly above the three 49 MeV data from [17], which have been measured at angles
below 120◦. However, this is a feature that our calculation has in common with
other approaches, which also reach the correct static limit, e.g. [22, 24, 60]. At
higher energies the two calculations of Chapters 5 and 6 approach each other. A
heuristic explanation of this behaviour, based on the fact that a high-energy photon
immediately separates the two nucleons from each other, is given in Section 5.1.
This is another important cross-check as it demonstrates that the power-counting
applied in Chapter 5 is indeed suited for calculating deuteron Compton scattering
at photon energies of ω ∼ 100 MeV. Consequently, both curves in Fig. 6.6 describe
the 94.2 MeV data from [19] equally well – in fact they nearly lie on top of each
other.

Because of the many contributions to the curves in Fig. 6.6 we resume all am-
plitudes contained in our calculation. These are:

• The single-nucleon Heavy Baryon Chiral Perturbation Theory (HBχPT) con-
tributions from Fig. 5.5, except for the nucleon pole diagrams (Fig. 5.5(b) and
its u-channel analog). These two diagrams are discussed under the final item.
As in Chapter 5, the pion pole, Fig. 5.5(c), gives no contribution because
isospin-breaking effects like the mass difference between proton and neutron
are neglected.

• The single-nucleon contributions sketched in Fig. 5.6, which include the ex-
plicit ∆(1232) resonance and occur at third order in the Small Scale Expan-
sion in addition to third-order HBχPT. For the coupling constants of the two
isoscalar short-distance operators, Fig. 5.6(f), we use the numbers derived
from our Baldin-constrained fit to the proton Compton data, cf. Section 3.3.

• The nine two-body diagrams with both photons coupling to the exchanged
pion, see Fig. 5.7.

• All terms with an intermediate two-nucleon state, which replace the nucleon-
pole diagrams in this chapter, cf. Figs. 6.1 and 6.3. These include the ampli-
tudes Mφφ

fi given in Eqs. (6.23)-(6.26), which have been derived from minimal
coupling, i.e. by replacing the photon field in the interaction Hamiltonian by
the gradient term at both vertices, cf. Eqs. (6.2, 6.3). Our results for these
amplitudes are given in Appendix G. Further contributions are the ampli-
tudes calculated in Appendices H and I, where the above replacement is done
at only one or even at none of the photon vertices, whereas in the other inter-
action Hamiltonians we replace the photon field by ~A(1) or ~A(2), respectively,
cf. Eqs. (6.57) and (6.58). ~A(1) is the magnetic part of the photon field in
our notation, the other two parts are of electric nature. The currents that
we use for these interactions are the spin current ~J (σ) (Eq. (6.59)) and the

Kroll-Ruderman current ~JKR (Eq. (6.75), see also Fig. 6.2(a)), which are the
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only currents that we found to give non-negligible contributions. The cor-
responding amplitudes are called Mφ σ1

fi , Mφ σ2
fi , Mσ1 σ1

fi , Mσ2 σ2
fi , MKR σ1

fi ,

Mφ KR1
fi and Mφ KR2

fi . The indices are ’φ’ for the vertex arising from minimal

coupling, ’σ1’ (’σ2’) for the coupling of ~A(1) ( ~A(2)) to the spin current and
analogously for the Kroll-Ruderman current ’KR’. For example, Mσ1 σ1

fi de-
scribes the coupling of a magnetic photon to the spin current at both vertices.
This amplitude dominates the deuteron-photodisintegration cross section at
threshold, cf. Section 6.4.

It is straightforward to combine the contributions from Chapter 5 with those from
this chapter. The only modification necessary is to replace the Cartesian polariza-
tion vectors ~ǫ, used in Chapter 5, by spherical ones, cf. Eq. (L.10). Of course, one
also has to make sure that the convention adopted for the overall sign of the ampli-
tude is the same in both parts. We use the proton-seagull diagram (Fig. 5.5(a)) in
order to fix the sign. The convention we chose is such that the Thomson amplitude
is given by Eq. (5.4).

We now discuss the strength of several contributions separately. However, there
are certain amplitudes which are closely related to each other: The kinetic energy
part of the double commutator, Eq. (G.16), cancels half of the proton seagull in
the static limit, cf. Section 6.2. The sum of the potential energy part of the
commutator (G.37) and the nine two-body contributions from Fig. 5.7 is zero in
the limit of vanishing photon energy. It stays small in the whole energy range
considered in this work, as already observed in Refs. [24, 89]. Therefore we do not
separate these contributions from each other. Nevertheless, there are a few issues
worth investigating in more detail:

1) The prominent role of the amplitudes Mφφ1,2
fi , which include the case of an

E1-interaction at both vertices.

2) The importance of the amplitudes Mφ σ
fi and Mσσ

fi , with σ denoting the cou-
pling to the spin current.

3) The strength of the amplitudes with the explicit Kroll-Ruderman current at
one vertex, MKR

fi .

In the upper two panels of Fig. 6.7 – we investigate the two extreme energies
of Fig. 6.6 – these contributions are successively added to the remaining terms:
The single-nucleon amplitudes from Figs. 5.5 and 5.6 (except for the nucleon-pole
diagrams Fig. 5.5(b)), the two-nucleon diagrams from Fig. 5.7 and the double-

commutator amplitude Mφφ4
fi , cf. Eq. (6.26). The amplitude Mφφ3

fi (Eq. (6.25)) is

a small correction and has been added to the leading amplitudes Mφφ1,2
fi .

Obviously, the amplitudes Mφφ
fi are the dominant ones in Fig. 6.7. This ob-

servation holds for both energies considered. However, also the amplitudes Mσσ
fi

give important contributions. The same pattern occurs in the calculation of total
deuteron-photodisintegration cross sections, cf. Section 6.4. The contributions from
Mφσ

fi are nearly negligible. The small size of these terms is due to the fact that

the amplitudes Mφσ1
fi and Mφσ2

fi largely cancel each other, cf. Appendix H. The
diagrams with one photon explicitly coupling to the Kroll-Ruderman current are
tiny for low energies, but give a sizeable correction at 94.2 MeV. Their contribution
is stronger in our calculation than it appears in Ref. [24]. This discrepancy may be
attributed to the use of a different pion propagator in the Kroll-Ruderman current,
cf. Appendix I. The difference is that we do not neglect the photon energy in
the denominator, which is a crude approximation for ω ∼ 100 MeV. However, we
have to caution that comparing cross sections is sometimes misleading, as they are
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non-additive quantities and strongly affected by interference between the various
amplitudes, cf. Eq. (5.11).

Figure 6.7: Comparison of separate contributions to our deuteron Compton-
scattering results. In the upper panels we compare the full result (solid) to curves
with several amplitudes subtracted; the subtracted amplitudes are: MKR

fi (dot-

dashed), MKR
fi +Mσσ

fi (dotted), MKR
fi +Mσσ

fi +Mφσ
fi (longdashed), MKR

fi +Mσσ
fi +

Mφσ
fi + Mφφ1,2,3

fi (shortdashed). In the lower panels we compare our full result

(black) to a curve where the amplitudes Mσσ
fi and Mφφ

fi have been replaced by
their L = L′ = 1-approximations (grey). The data are from [17] (circle) and
[19] (diamond).

We also estimate the strength of those contributions where the photons cou-
pling to the NN -rescattering diagrams, Fig. 6.1, have multipolarity L = 2. In
Ref. [24], these next-to-leading terms in the multipole expansion of the photon field
are claimed to be small and therefore have been neglected. However, we slightly dis-
agree from this statement, as can be seen in the lower two panels of Fig. 6.7. There
we show our full results compared to curves which only include the L = L′ = 1-
approximation of the dominant amplitudes Mφφ1,2,3

fi and Mσσ
fi . For low energies

these corrections are certainly negligible, however in the high-energy regime of our
calculation they are of the order of 10% in the forward and in the backward direc-
tion.

Comparing to Ref. [24], we see the main difference of our calculation to this work
in our more involved description of the single-nucleon structure. In [24] the structure
of the nucleon is respected only via the static polarizabilities ᾱE1 and β̄M1, i.e. via
the leading terms of a Taylor expansion of the single-nucleon Compton multipoles,
cf. Section 3.1.2. In our work, these multipoles have been calculated up to third
order in the Small Scale Expansion, as explained in detail in Chapters 3 and 5, and
are included with their full energy dependence. Another advantage of our approach
with respect to [24] is the treatment of the pion propagator in the pion-exchange
diagrams of Fig. 5.7. We calculate these diagrams using the full pion propagator,
whereas the authors of [24] always make the assumption that the photon energy is
small compared to the energy of the virtual pion and therefore may be neglected.
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This, however, is no longer a good approximation as soon as the photon energy
comes close to the pion mass. A similar difference occurs in the Kroll-Ruderman
amplitudes, as discussed above. Finally we do not agree with the statement of [24]
that L = 2-contributions are negligible for all amplitudes and energies considered,
see Fig. 6.7.

We believe to have proven, in the last two sections, that our calculation provides
a consistent description of elastic deuteron Compton scattering below ω ∼ 100 MeV.
We can trust that it also gives reasonable results for even higher energies, say up
to the pion mass. There, however, threshold corrections in analogy to Eq. (3.13)
should not be neglected anymore. Therefore the 120 MeV curve in Fig. 6.8, where
we show our results at various energies, is only a qualitative statement about the
behaviour of the differential cross section for ω → mπ. We also show our prediction
at ωlab = 30 MeV, which is comparable in magnitude to the 49 MeV curve, but its
shape is already closer to the forward-backward symmetry exhibited by the static
cross section, cf. Fig. 6.5.

Figure 6.8: Comparison of our results for differential deuteron Compton cross sec-
tions at various energies: 30 MeV (grey), 49 MeV (shortdashed), 68 MeV (dotted),
94.2 MeV (dotdashed), 120 MeV (longdashed).

In the next section we investigate the sensitivity of our results on the deuteron
wave function, which is another shortcoming of the approach presented in Chapter 5,
where the observed influence turned out unexpectedly strong.

6.3.1 Dependence on the Deuteron Wave Function

As demonstrated in Section 6.2, our calculation fulfills the low-energy theorem,
Eq. (6.77), independently of the wave function chosen. Therefore and because of
the nearly energy-independent offset between the cross sections calculated with
the chiral wave function [77] and the AV18-wave function [73], which we observe
in Fig. 5.12, it is not surprising that also at non-zero energies the wave-function
dependence is reduced with respect to our previous approach, where we did not
have this low-energy constraint. In fact, the remaining dependence is of the order of
1% and therefore nearly invisible, cf. Fig. 6.9, where we compare our cross sections
calculated with two of the extreme wave functions of Fig. 5.12: the AV18 [73] and the
NNLO χPT [77] wave function (the same observation holds for other state-of-the-art
deuteron wave functions). This is another important success of the non-perturbative
approach, as it demonstrates that our calculation is not sensitive to details of short-
distance physics anymore. The 10%-effect observed in Fig. 5.12, however, manifests
a much stronger sensitivity to short-distance effects of the wave function than would
be expected from a low-energy Effective Field Theory, as discussed in Section 5.2.3.
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Figure 6.9: Comparison of our deuteron Compton cross-section results for 68 and
94.2 MeV, using two different wave functions: NNLO χPT (grey) [77] and AV18
(dashed) [73]. In the lower two panels we show

(

dσ
dΩ

)

NNLO
/
(

dσ
dΩ

)

AV18
− 1.

6.3.2 Dependence on the Potential

In this subsection we investigate briefly the sensitivity of our calculation to the np-
potential. Usually we use the AV18-potential [73], given in App. K, which provides
an excellent theoretical description of the Nijmegen partial-wave analysis. Here we
compare our results achieved with this modern ’high-precision’ potential to those
when we use the leading-order chiral potential, which includes only the one-pion
exchange and a simple parameterization of short-distance effects via two point-like,
momentum-independent contact operators. This potential is given e.g. in [74] as

V
1S0

LO (~r) = −f2 vΛ(r) +
4π

mN
C

1S0
0 δ3Λ(r),

V d
LO(~r) = −f2 [vΛ(r) + S12(r̂) tΛ(r)] +

4π

mN
Cd

0 δ
3
Λ(r) (6.83)

for the 1S0 and the (deuteron) 3S1-
3D1 channel, respectively. S12(r̂) = 3 (~σ1 · r̂) (~σ2 ·

r̂) − ~σ1 · ~σ2 is the tensor operator, see also Appendix K.

The authors of Ref. [74] use a Gaussian regulator in order to render the pion-
exchange potential finite at the origin. The resulting central and tensor potential
reads

vΛ(r) =
1

2r

[

e−mπr erfc

(−Λr + mπ

Λ√
2

)

− emπr erfc

(

Λr + mπ

Λ√
2

)]

, (6.84)

tΛ(r) =
r

m2
π

∂

∂r

1

r

∂

∂r
vΛ(r) (6.85)

with

erfc(x) = 1 − erf(x) = 1 − 2√
π

∫ x

0

dt e−t2 .
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The functions given in Eqs. (6.84, 6.85) become Yukawa functions for large distances:

vΛ(r)

∣

∣

∣

∣

r→∞
=

e−mπr

r
(6.86)

tΛ(r)

∣

∣

∣

∣

r→∞
=

(

1 +
3

mπr
+

3

(mπr)2

)

e−mπr

r
(6.87)

δ3Λ(r) is the Fourier transform of the regulator,

δ3Λ(r) =

∫

d3q

(2π)3
ei~q·~r e−

q2

2Λ2 =
Λ3 e−

Λ2 r2

2

(2π)3/2
. (6.88)

At leading order, there are two free parameters, C
1S0
0 and Cd

0 , cf. Eq. (6.83).

C
1S0
0 has been fixed in [74] via the 1S0 scattering length, a0 ≈ −23.75 fm, Cd

0 at the
deuteron binding energy. We use these two constants to parameterize any short-
distance physics in the spin-singlet and -triplet channel, respectively. The results

for C
1S0

0 and Cd
0 , achieved in [74] for the cutoff-value Λ = 600 MeV, are given in

Table 6.1.

C
1S0
0 Cd

0

−0.422 fm 0.795 fm

Table 6.1: Parameters of the LO chiral potential as determined in [74] for Λ =
600 MeV.

Even with this rather crude approximation of the neutron-proton interaction
we obtain results close to those of the AV18-potential, cf. Fig. 6.10. The ob-
served deviations are small (of the order of ≤ 4%), even for photon energies close
to 100 MeV. Obviously the one-pion-exchange potential, adequately regulated for
r → 0, together with the simplest parameterization of the hard core gives an approx-
imation of the potential which is well sufficient for the process under consideration.
We conclude that we are mainly sensitive to the long-range part of the potential.
Nevertheless, there are minor deviations visible in Fig. 6.10, which justify the ap-
plication of a more sophisticated potential than the leading-order chiral one. Not
surprisingly, these deviations, which arise due to the poor description of high-energy
dynamics in the LO chiral potential, increase with increasing photon energy.

6.4 Total Deuteron-Photodisintegration

Cross Section

Besides complying with the low-energy theorem, cf. Section 6.2, another impor-
tant check on our calculation is to extract total deuteron-photodisintegration cross
sections from the Compton amplitude via the optical theorem. This process has
been studied more extensively than elastic deuteron Compton scattering and there
is plenty of data below 100 MeV to compare with. In [24], a comparison to an older
calculation of the process [90] is given, not only of the sum of all contributions, but
also of several terms separately, which we use to cross-check our results for certain
amplitudes.

The optical theorem in our normalization reads

σtot =
1

ω
· 1

6

∑

i=f

Im[Mfi(θ = 0)], (6.89)
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Figure 6.10: Upper panels: Comparison of our result at 68 MeV and 94.2 MeV
using two different np-potentials: the AV18-potential [73] (solid) and the LO chiral
potential [74] (dashed). For both curves the chiral wave function [77] has been used.
Lower panels: Corresponding error plots, calculated in analogy to Fig. 6.5.

i.e. the total cross section is the sum over the imaginary part of all deuteron
Compton amplitudes in the forward direction with identical initial and final states
(λf = λi, Mf = Mi), divided by the photon energy ω. Like in Eq. (5.11), this sum
is divided by 6, as we have to average over the initial states.

We calculate this cross section in the lab frame, in order to be able to compare
to data and the theoretical works [90, 24]7. The amplitudes given in the appendix
have been derived in the γd-cm frame, but they are easily transformed into the lab
frame. First we note that we only need to sum over the s-channel diagrams, as only
they become complex for photon energies above the deuteron binding energy B,
while the u-channel amplitudes stay real for all photon energies, cf. Section 6.1.1.
As the authors of Ref. [24] calculate in the lab frame, we convert our calculation

according to their work. In the s-channel the only change is ω + ω2

2md
↔ ω − ω2

2md
,

because in the lab frame, the deuteron’s initial kinetic energy vanishes, whereas the
total intermediate momentum is ~PC = ~ki. In the cm frame we have ~Pi = −~ki and
~PC = ~0 in the s-channel.

Our result for the total deuteron-photodisintegration cross section is shown in
Fig. 6.11, together with data from [93-100], which are described well by our calcula-
tion. In the lower left panel the low-energy regime is enlarged, in order to emphasize
the non-vanishing value at threshold. The by far most important contribution at
threshold stems from the singlet M1-transition of Mσ1 σ1 a

fi , see Appendix H. It
corresponds to the operator [Y0⊗ t]1, which transforms the deuteron into a (singlet)
SC = 0-state, cf. Eq. (L.39). M1 is the shorthand notation for the magnetic cou-
pling of a photon with L = 1. Nevertheless, as is well-known, already 1 MeV above
threshold the cross section is completely dominated by the amplitude Mφφ 1

fi , where
for L,L′ = 1 we have an E1-interaction at each vertex, and this dominance holds

7We note that many more authors have been working on this process, see e.g. [91] or [92] and
references therein.
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Figure 6.11: Total deuteron-photodisintegration cross section derived from our
deuteron Compton amplitudes, together with data from [93] (open box), [94] (di-
amond), [95] (star), [96] (box), [97] (circle). The triangle corresponds to the
weighted average of the data measured at 2.76 MeV [98, 99, 100], as determined
in [92]. ’Amp. E1, M1’ denotes the contributions from the E1- and the singlet
M1-transition, respectively. B is the binding energy of the deuteron.

for all higher energies. In [90], the E1-contribution is called ’Approximation A’,
whereas ’Approximation B’ is the singlet M1 amplitude added to this first approxi-
mation. We simplify the notation and call the E1-transition ’Amp. E1’, the singlet
M1-amplitude ’Amp. M1’. These two (most important) contributions to the total
photodisintegration cross section are plotted in the lower right panel of Fig. 6.11,
demonstrating the well-known rise of ’Amp. M1’, as ω approaches the breakup
threshold, cf. e.g. [92, 101], whereas ’Amp. E1’ is zero for ω = B. Note that

Amp. E1 not only consists of Mφφ 1
fi but of all amplitudes with an E1-interaction

at the vertex of the incoming photon. Another example for such an amplitude is
Mφ σ2 b

fi (Appendix H).

Strictly speaking there are also contributions from the one-body current ~J (p)(~ξ ),
Eq. (6.60). The corresponding amplitudes are given in [24] but are not written
down in this work, as we found that their contributions to the elastic deuteron
Compton cross sections are tiny (of the order of 1%) and so is their effect on the
total disintegration cross section. Nevertheless, in the high-energy regime of our
calculation, say for ω ∼ 100 MeV, they do give visible contributions to Amp. E1, but
these cancel nearly exactly against other terms which also contain ~J (p). Therefore,
when we only look at the sum of all amplitudes contributing to σtot, we may well
neglect the current ~J (p), cf. Table 6.2. However, in this table we compare our results
for Amp. E1, Amp. M1 with those of [90, 24], where ~J (p) was included. Therefore

we give two numbers for Amp. E1 and σtot, the one in bracket including ~J (p),
the other one not including this current. We report contributions from ~J (p) only
for reasons of cross-checking our calculation, and we find that the deviations from
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[90, 24] may well be attributed to the use of different wave functions and potentials.
This also holds for σtot, which does, however, not include the two-body (Kroll-
Ruderman) current diagrams of Appendix I, as explicit meson-exchange currents
have been neglected in [90].

[90] [24] this work

20 MeV
Amp. E1 [µb] 579.1 583.3 580.0 (583.5)
Amp. M1 [µb] 10.1 9.9 9.4

σtot [µb] 588.2 591.2 594.4 (594.7)

80 MeV
Amp. E1 [µb] 77.2 80.5 75.8 (79.1)
Amp. M1 [µb] 6.4 5.3 5.9

σtot [µb] 87.4 86.4 87.4 (88.2)

140 MeV
Amp. E1 [µb] 34.0 34.6 33.2 (36.1)
Amp. M1 [µb] 5.7 4.0 4.7

σtot [µb] 44.5 39.5 44.5 (44.9)

Table 6.2: Comparison of our results for the two dominant amplitudes contributing
to the total deuteron-photodisintegration cross section with former works at three
different energies. The total cross section is also compared, however excluding
diagrams with exlicit pion exchange. Amp. E1 denotes the contribution due to an
E1-, Amp. M1 due to a singlet M1-transition. The numbers in brackets include
contributions from ~J (p)(~ξ ).

We also compare our results with predictions for the strengths of electric and
magnetic transitions close to threshold from the Effective Range Expansion [102,
103], given by

σel
ER =

2

3

e2

γ2

( ω
B − 1)3/2

( ω
B )3 (1 − γ rt)

, (6.90)

σmag
ER =

1

6

e2

m2
N

(µp − µn)2
k γ

k2 + γ2

(1 − γ as + 1
4 as (rs + rt) γ

2 − 1
4 as (rs − rt) k

2)2

(1 + k2 a2
s) (1 − γ rt)

(6.91)
with γ =

√
mN B. The final-state relative momentum is k = |~pp − ~pn|/2 =

√

mN (ω −B), and for the singlet scattering length as and the singlet (triplet)
effective range rs (rt) we use as = −23.749 fm, rs = 2.81 fm, rt = 1.76 fm given in
[73]. The explicit form of Eqs. (6.90, 6.91) is adopted from [92].

In order to determine which amplitudes correspond to electric and magnetic
transitions, we recall that the gradient part of the photon field, cf. Eq. (F.28), as

well as ~A(2), given in Eq. (6.58), are of electric nature. ~A(1) (Eq. (6.57)) constitutes

the magnetic part of ~A. Therefore, except for two-body-current contributions, σel

is made up by the amplitudes Mφφ 1
fi , Mφ σ1,2 b

fi , Mφ σ2 a
fi and Mσ2 σ2 a

fi , cf. Appen-

dices G and H, whereas σmag consists of the amplitudes Mφ σ1 a
fi and Mσ1 σ1 a

fi , given
in Appendix H.

The only non-negligible contributions to the total disintegration cross section at
low energies including the Kroll-Ruderman current are the amplitudes MKR σ1 a,b

fi ,

cf. Appendix I. MKR σ1 b
fi contributes to σmag, but as we use the full photon

field for H intKR, a unique assignment of MKR σ1 a
fi is not possible. However, as

the amplitudes MKR σ1
fi have a singlet intermediate state, the magnetic part of the
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photon field dominates because flipping the spin is a typical magnetic effect, and
therefore we assign both relevant KR amplitudes to σmag.

In Fig. 6.12 we compare our results with Eqs. (6.90, 6.91), finding excellent
agreement between both approaches. We also demonstrate – in the right panel –
the non-negligible size of the KR diagrams.

Figure 6.12: Comparison of our results (dashed) for the contributions of electric (left
panel) and magnetic (middle and right panel) transitions to the total deuteron-
photodisintegration cross section with predictions from the Effective Range Ex-
pansion (grey). The dotted curve in the right panel does not include the Kroll-
Ruderman diagrams.

The cross-check described in this section, together with the exact reproduction
of the low-energy theorem, cf. Section 6.2, gives a strong hint that the numerically
most important amplitudes have been calculated correctly. Therefore, and due to
the good agreement of our calculation with the elastic deuteron Compton data,
which we observed in Section 6.3, we now fit the isoscalar nucleon polarizabilities
to all existing elastic γd data in the next section.

6.5 Fits of the Isoscalar Polarizabilities

Our results for the elastic deuteron Compton cross sections obtained with the non-
perturbative approach give a good description of all existing data, cf. Section 6.3.
Therefore, as in Section 5.3, we use our deuteron Compton cross sections to fit
the static isoscalar nucleon polarizabilities ᾱs

E1 and β̄s
M1 to these data. This time,

however, we may use all data for the fits, whereas in Section 5.3 we had to restrict
ourselves to the experiments performed around 68 and 94.2 MeV.

The fitting procedure used here is the same as in Section 5.3, i.e. we do a least-
χ2 fit, cf. Eq. (3.19), using the chiral NNLO wave function [77]. Our results for the
isoscalar polarizabilities from the global fit to all data read

ᾱs
E1

∣

∣

∣

global
= (11.5 ± 1.4 (stat)) · 10−4 fm3,

β̄s
M1

∣

∣

∣

global
= (3.4 ± 1.6 (stat)) · 10−4 fm3. (6.92)

We only give the statistical error as we neglect further uncertainties, e.g. the error
induced by the dependence on the deuteron wave function. This error may well be
set to zero, due to the tiny wave-function dependence observed in Fig. 6.9, whereas
the wave function introduces a sizeable uncertainty in Chapter 5, see Fig. 5.12 and
Tables 5.1 and 5.3. Theoretical errors from higher orders are also neglected, albeit
we are aware that they may be comparable in size with our statistical error: in
Eq. (3.22), they were estimated to be |ᾱNLO| ∼ |β̄NLO| ∼ 1 · 10−4 fm3 from näıve
dimensional analysis. The corresponding χ2 per degree of freedom is dramatically
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reduced with respect to Table 5.1:

χ2

d.o.f.

∣

∣

∣

∣

global

= 0.98 (6.93)

with 27 degrees of freedom (4 data points from [17] at 49 MeV, 9 from [18] at 55 MeV,
2 from [17] and 9 from [18] around 68 MeV and 5 from [19] around 94.2 MeV, along
with two fit parameters). In Fig. 6.13 we give a contour plot of the achieved χ2,
together with the ellipse corresponding to the 70% confidence level.

Figure 6.13: Contour plot of the χ2 achieved in our global 2-parameter fit for ᾱs
E1

and β̄s
M1 (left panel) and the 70% confidence ellipse (right panel).

The corresponding plots, together with the (statistical) error bands, are given in
Fig. 6.14. Our predictions, using our results for ᾱp

E1 and β̄p
M1 for the proton and the

neutron polarizabilities, describe the data already well, see Fig. 6.6. It is therefore
no surprise that also the fitted curves are in good agreement with experiment. Like
in Section 5.3 we compare our fit results to “fit IV” from Ref. [25], which is the
O(q4) HBχPT fit to all data with central values ᾱs

E1 = 11.5, β̄s
M1 = 0.3. The only

sizeable deviations are again observed at 94.2 MeV in the backward direction, due
to the ∆-resonance diagram, Fig. 5.6(a), which is not included in the calculation of
Ref. [25], as explained in detail in Section 5.3. In the lower two panels of Fig. 6.14,
we also compare to our 2-parameter fit from Section 5.3.4, which was performed
within the strictly perturbative approach, using the chiral wave function [77] and
the effective data set, cf. Table 5.2. Here we observe a constant offset at 68 MeV,
similarly to Fig. 6.6, whereas at 94.2 MeV the two curves are quite close to each
other.

The value of our global fit for ᾱs
E1 is slightly smaller, the one for β̄s

M1 slightly
larger than the fit results of Eq. (5.24). Nevertheless, both extractions agree well
with each other within their error bars, and there is also very good agreement of
Eq. (6.92) with the values quoted in [11] and those recommended in [10]. Further-
more, we find that the numbers given in Eq. (6.92) add up nearly exactly to the
isoscalar Baldin sum rule, ᾱs

E1 + β̄s
M1 = (14.5 ± 0.6) · 10−4 fm3, cf. Eq. (5.19).

Therefore, in order to reduce the statistical error, we repeat our global fit, using
the central sum-rule value as an additional fit constraint like in Section 5.3. The
results are

ᾱs
E1

∣

∣

∣

global Baldin
= (11.3 ± 0.7 (stat) ± 0.6 (Baldin)) · 10−4 fm3,

β̄s
M1

∣

∣

∣

global Baldin
= (3.2 ∓ 0.7 (stat) ± 0.6 (Baldin)) · 10−4 fm3 (6.94)
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Figure 6.14: Results from a global fit of ᾱs
E1 and β̄s

M1 to all existing elastic γd data
(solid). The grey bands are derived from our statistical errors. The dotted line
represents “fit IV”, one of the O(q4)-HBχPT fits from Ref. [25], with central values
ᾱs

E1 = 11.5, β̄s
M1 = 0.3. For the O(q4) calculation the NLO chiral wave function of

Ref. [81] has been used, whereas our results were derived with the NNLO-version of
this wave function [77]. In the lower two panels we compare to our 2-parameter-fit
results from Section 5.3, using the chiral wave function [77] (dashed).

with χ2/d.o.f. = 0.95. Of course the central values of Eq. (6.94) are very similar to
the ones of Eq. (6.92), due to the nearly perfect agreement of the 2-parameter-fit
result with the sum-rule value. However, the statistical error is reduced by about
50%.

The plots arising from the global, Baldin-constrained fit, together with the cor-
responding error bars are shown in Fig. 6.15. The central curves are nearly indis-
tinguishable from the ones of Fig. 6.14.

Combining Eqs. (6.92) or (6.94), respectively, with the (Baldin-constrained)
2-parameter-fit results of Table 3.1, we calculate the values for the neutron polar-
izabilities as

ᾱn
E1

∣

∣

∣

global
= (12.0 ± 2.0 (stat) ± 0.4 (Baldin)) · 10−4 fm3,

β̄n
M1

∣

∣

∣

global
= (4.0 ± 2.1 (stat) ± 0.4 (Baldin)) · 10−4 fm3 (6.95)
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Figure 6.15: Results from a global fit of ᾱs
E1 to all existing elastic γd data, using

the chiral wave function [77]. β̄s
M1 is fixed via the Baldin sum rule ᾱs

E1 + β̄s
M1 =

14.5 · 10−4 fm3. The grey bands are derived from our statistical errors.

for the 2-parameter fit and

ᾱn
E1

∣

∣

∣

global Baldin
= (11.6 ± 1.5 (stat) ± 0.6 (Baldin)) · 10−4 fm3,

β̄n
M1

∣

∣

∣

global Baldin
= (3.6 ∓ 1.5 (stat) ± 0.6 (Baldin)) · 10−4 fm3 (6.96)

for the fit of the isoscalar polarizabilities including the Baldin constraint. We regard
these values to be the most reliable ones of this work, as the isoscalar polarizabilities,
from which they are derived, have been determined by fitting our deuteron Compton
calculation, which fulfills the low-energy theorem, to all existing elastic deuteron
Compton-scattering data. That means there is no restriction on either the energy,
as in Section 5.3, or on the angle, like in [25]. From these values we deduce that
the neutron is paramagnetic and that the isovector polarizabilities are considerably
smaller than the isoscalar ones. In other words, our analysis shows that within the
precision of the published data, elastic Compton scattering from the proton and the
deuteron is in agreement with

ᾱp
E1 ≈ ᾱn

E1,

β̄p
M1 ≈ β̄n

M1. (6.97)

These findings agree with those of Section 5.3 and of Refs. [10, 11].



Chapter 7

Conclusion

In this work, Compton scattering from the single nucleon and the deuteron has
been studied theoretically. The framework that we choose for our investigations
is a Chiral Effective Field Theory based on Heavy Baryon Chiral Perturbation
Theory, extended for the ∆(1232) resonance as an explicit degree of freedom. We
also treat important non-perturbative aspects of the NN -system in Chapter 6 on
the deuteron.

One of the central aims of our studies is to extract both the proton and the
neutron polarizabilities from experiments. For the proton polarizabilities one can
rely on the wealth of elastic proton Compton-scattering data, see e.g. [5, 6, 7, 8].
A single-neutron target does not exist, however. Therefore, in order to extract the
neutron polarizabilities one depends on other methods, such as quasi-free Compton
scattering from the neutron bound in the deuteron, or elastic deuteron Compton
scattering. In this work we have chosen the latter process for our extraction of the
neutron polarizabilities. Strictly speaking, from such experiment one cannot di-
rectly determine the neutron polarizabilities, because the deuteron, i.e. the bound
state of a proton and a neutron, is an isoscalar target. Therefore we use the experi-
ments performed at Illinois, Lund and Saskatoon [17, 18, 19] to extract the isoscalar
polarizabilities, i.e. the average over proton and neutron. These numbers may then
be combined with the proton values in order to derive ᾱn

E1 and β̄n
M1.

Our study of elastic proton Compton scattering is based on a multipole analysis
of this process: a systematic expansion of the proton Compton cross sections in
the multipole order (dipole, quadrupole, ...) by projecting the Compton amplitude
on the various multipoles. We are not only interested in cross sections, but also
in the multipole amplitudes themselves which we combine to so-called dynamical
polarizabilities, first introduced in Ref. [46]. These quantities turn out to be a useful
tool for studying the internal nucleonic degrees of freedom in their response to the
external electromagnetic field. We find in Chapter 3 that in the energy range where
we expect our calculation to be valid, contributions to the spin-averaged Compton
cross sections from l ≥ 2 are negligible. This observation also holds in spin-polarized
quantities, as demonstrated by our calculation of several asymmetries in Chapter 4.

Our results for the dynamical polarizabilities are compared to a Dispersion-
Relation Analysis [26]. Both frameworks agree well with each other in most multi-
pole channels – albeit the upper energy limit of our calculation is lower than that
of the Dispersion-Relation approach, because up to third order in SSE, which is the
order chosen in this work, the ∆(1232) is treated as a stable particle. Therefore,
our calculation is certainly invalid above 170-200 MeV, where the finite width of
the ∆ resonance cannot be neglected anymore. Predictions from Dispersion Theory
are at least reliable up to the two-pion threshold.

Not all of our results for the dynamical polarizabilities are predictions. In the
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original formulation of the Small Scale Expansion there is no free parameter up to
third order. Nevertheless, in our procedure of fitting the static dipole polarizabil-
ities ᾱE1 and β̄M1 to proton Compton data, we include two energy-independent
short-distance operators into our calculation, which provide the desired two free
parameters. The energy dependence of the (dynamical) polarizabilities is therefore
still predicted.

Our fit results for ᾱp
E1 and β̄p

M1 are in good agreement with the Baldin sum rule
for the proton. Therefore we use this sum-rule value in order to further reduce the
number of free parameters. The proton polarizabilities thus achieved,

ᾱp
E1 = (11.04 ± 1.36 (stat) ± 0.4 (Baldin)) · 10−4 fm3,

β̄p
M1 = (2.76 ∓ 1.36 (stat) ± 0.4 (Baldin)) · 10−4 fm3, (7.1)

agree well with the analysis from [5] within statistical error bars. Systematic uncer-
tainties from higher orders are not included in Eq. (7.1). They have been estimated
in Section 3.4.2 as |ᾱNLO| ∼ |β̄NLO| ∼ 1 · 10−4 fm3 from näıve dimensional analysis
and are suppressed also in the following equations.

From the good agreement between our results for the Compton multipoles and
the Dispersion-Relation Analysis, and from the fact that our fits describe the low-
energy proton Compton data well over the whole range of scattering angles, we
conclude that all relevant nucleonic degrees of freedom are included in our calcu-
lation. Comparison with third-order HBχPT demonstrates that it is advantageous
and in fact necessary to include the explicit ∆(1232) resonance in a leading-one-
loop-order calculation. Otherwise one misses the data in the backward direction and
fails to reproduce the shape of the resonant multipole channels, such as βM1(ω).

In Chapter 3 we demonstrate that an l = 1-approximation of the multipole ex-
pansion suffices to describe spin-averaged Compton cross sections. In Chapter 4 the
same feature is confirmed for spin-polarized observables, namely for various asym-
metries using circularly and linearly polarized photons. This observation suggests
that it is possible to directly determine the six dipole polarizabilities from exper-
iment – apart from the two spin-independent ones, αE1(ω) and βM1(ω), there are
four spin polarizabilities at dipole order. This suggestion is further confirmed as we
observe a non-negligible influence of the spin polarizabilities on the spin-averaged
Compton cross sections. We show that this dependence suffices to determine –
at least qualitatively – two of the four spin polarizabilities, but it is obvious that
spin-averaged experiments alone are not enough to extract all six dipole polariz-
abilities. Therefore we investigate which configurations are especially well suited in
order to access the spin polarizabilities experimentally. We also propose a model-
independent way to extract the dynamical spin polarizabilities from a combination
of spin-averaged and polarized experimental data.

We investigate not only proton observables but also the corresponding quantities
for the neutron. Direct Compton experiments on the neutron are however not
possible. Therefore, in the second main part of this work we focus on the theoretical
description of elastic Compton scattering from the deuteron, which we use to extract
the isoscalar analogues to Eq. (7.1) from experiments.

Our deuteron Compton calculation is performed in two steps. First, we calculate
the γd interaction kernel strictly following the power-counting rules of the Small
Scale Expansion. This first attempt provides a good description of the experimental
data above 60 MeV, but it breaks down for lower energies. The two main reasons for
this breakdown are the applied power-counting scheme and the approximation of the
nucleon propagator used in this scheme. Both are only valid in the energy regime
ω ≫ 20 MeV. Nevertheless, encouraged by the good agreement at higher energies,
we fit the isoscalar polarizabilities ᾱs

E1 and β̄s
M1 to the data from [17, 18, 19],

which have been measured around 68 MeV and 94.2 MeV, yielding results in good
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agreement with the quasi-elastic experiment from Ref. [11] and with the numbers
recommended in Ref. [10], which both suggest rather small isovector polarizabilities.
Motivated by the statistical imbalance between experimental data around 94.2 MeV
and 68 MeV, we reduce in a second fit the nine data points given in [18] at ∼68 MeV
to only two points by rebinning, in order to obtain an equal weighting between the
two energy sets. The results from this fit, which we consider as the more reliable of
the two, confirm our findings of small values for β̄s

M1, also implying small isovector
components. As we observe a relatively strong dependence of this first approach
on the deuteron wave function, we fit twice, using the two extreme wave functions,
which are the chiral NNLO wave function [77] and the Nijm93 wave function [71].
Averaging over the results of our two 2-parameter SSE fits to the reduced set of
data results in the isoscalar polarizabilities

ᾱs
E1 = (12.8 ± 1.4 (stat) ± 1.1 (wf)) · 10−4 fm3 ,

β̄s
M1 = (2.1 ± 1.7 (stat) ± 0.1 (wf)) · 10−4 fm3 . (7.2)

The systematic error due to the wave-function dependence (wf) is estimated to be
half of the difference between the results obtained with the extreme wave func-
tions. As the numbers presented in Eq. (7.2) are in very good agreement with the
isoscalar Baldin sum rule, we also use the central sum-rule value as an additional
fit constraint, obtaining

ᾱs
E1 = (12.6 ± 0.8 (stat) ± 0.7 (wf) ± 0.6 (Baldin)) · 10−4 fm3 ,

β̄s
M1 = (1.9 ∓ 0.8 (stat) ∓ 0.7 (wf) ± 0.6 (Baldin)) · 10−4 fm3 . (7.3)

Combining the numbers of Eq. (7.2) with our results for the proton polarizabili-
ties, given in Eq. (7.1), we obtain a consistent Effective Field Theory determination
of the neutron polarizabilities with a precision comparable to [11]:

ᾱn
E1 = (14.6 ± 2.0 (stat) ± 1.1 (wf) ± 0.4 (Baldin)) · 10−4 fm3

β̄n
M1 = (1.4 ± 2.2 (stat) ± 0.1 (wf) ± 0.4 (Baldin)) · 10−4 fm3 (7.4)

The isoscalar input of Eq. (7.4) does not include the Baldin-sum-rule constraint,
whereas the one-parameter fit using the Baldin sum rule gives

ᾱn
E1 = (14.2 ± 1.6 (stat) ± 0.7 (wf) ± 0.6 (Baldin)) · 10−4 fm3 ,

β̄n
M1 = (1.0 ∓ 1.6 (stat) ∓ 0.7 (wf) ± 0.6 (Baldin)) · 10−4 fm3 . (7.5)

Eqs. (7.4) and (7.5) prove that small isovector nucleon polarizabilities are not in
contradiction with elastic deuteron Compton-scattering data. This finding is in
good agreement with [11], where quasi-elastic Compton scattering off the proton
and neutron was measured.

Furthermore we use the O(p3)-HBχPT amplitudes for analogous fits, finding
similar values for ᾱE but larger ones for β̄M , which is not surprising, as the dynam-
ics of the resonant Compton multipoles is not well captured in third-order HBχPT.
Therefore, the static value becomes large, since it must correct for the missing ∆ res-
onance, leading O(p3) HBχPT to a disagreement with the single-nucleon Compton
multipoles as observed in Chapter 3. Obviously, γd scattering alone is not sufficient
to investigate the relevant low-energy degrees of freedom in nuclear Compton scat-
tering, but one has to combine information from γd and γp scattering and analyze
both in the same framework.

The results for the isoscalar polarizabilities, extracted in our first chapter on
deuteron Compton scattering, along with the good description of the high-energy
data is certainly a first success. However, as already explained, there are severe
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shortcomings of this way of calculating γd scattering: the unexpectedly strong
sensitivity on the deuteron wave function and, even more importantly, the fact that
the calculation completely fails in the low-energy regime, which is a clear indication
that gauge invariance is violated [79]. We report on several attempts to restore gauge
invariance and the Thomson limit by inclusion of additional diagrams and the full
non-relativistic nucleon propagator. Although we are able to improve on the static
limit – we reduce the factor of 6 that our previous “power-counting” calculation is
off to less than 2 – we cannot restore it exactly. Therefore, in Chapter 6 we turn to
a refined approach to deuteron Compton scattering, following closely Ref. [24]. This
calculation is based on second-order perturbation theory in the interaction of the
photon with the two-nucleon system, with summation over all possible intermediate
two-nucleon states. For the photon coupling we make use of Siegert’s theorem [84],
which is well-known to guarantee the exact static limit [24].

Besides the compliance with the low-energy theorem, this approach provides an-
other valuable cross-check of our calculation: the extraction of the total deuteron-
photodisintegration cross section from the Compton amplitude via the optical the-
orem. There is a wealth of experimental data on this process, see e.g. [93-100],
and we demonstrate in Section 6.4 that our calculation agrees well with these data.
Nevertheless, our primary goal is to have a consistent description of elastic deuteron
Compton scattering in the whole range from 0 MeV up to ω ∼ 100 MeV or even
up to the pion mass. In Section 6.3, we show that we have largely achieved this
aim. We are able to improve the low-energy regime of our calculation, i.e. in this
second approach we obtain a good description of the data published below 60 MeV.
This improvement is of course connected to the correct static limit. Other cal-
culations, reaching this limit, are also able to describe the low-energy data well,
see e.g. [22, 24, 60]. However, unlike most of these calculations, we achieve good
agreement also with the high-energy data, i.e. we have resolved the so-called ’SAL-
puzzle’. In fact, at 94.2 MeV both calculations of ours are very close to each other.
In this energy regime the work of Ref. [24] fails, the theory of [60] is inapplicable
and even the authors of [22] have problems to describe the data in the backward
direction, at least without introducing unrealistically large isovector polarizabili-
ties. The main difference between their approach and ours is in the dynamics of the
resonant multipoles, which is well captured in our calculation due to the inclusion
of the ∆-resonance diagram.

Having achieved a good description of all elastic deuteron Compton-scattering
data enables us to perform a global fit of the isoscalar polarizabilities to all existing
data points, published in [17, 18, 19]. Our 2-parameter-fit results are

ᾱs
E1

∣

∣

∣

global
= (11.5 ± 1.4 (stat)) · 10−4 fm3,

β̄s
M1

∣

∣

∣

global
= (3.4 ± 1.6 (stat)) · 10−4 fm3. (7.6)

We only need to give the statistical error in this case since we have demonstrated in
Section 6.3.1 that the wave-function dependence of our “non-perturbative” approach
is tiny. This source of uncertainty discussed in Chapter 5 has therefore also been
removed. We notice that the numbers of Eq. (7.6) are very close to our results for
the proton (Eq. (7.1)), which leaves little space for large isovector polarizabilities.
Furthermore they are consistent within the error bars with our previous extraction,
Eq. (7.2), and agree extraordinarily well with the isoscalar Baldin-sum-rule value,
cf. Eq. (5.19). Therefore, in order to reduce the statistical error, we repeat our fits
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including this additional constraint, achieving

ᾱs
E1

∣

∣

∣

global Baldin
= (11.3 ± 0.7 (stat) ± 0.6 (Baldin)) · 10−4 fm3,

β̄s
M1

∣

∣

∣

global Baldin
= (3.2 ∓ 0.7 (stat) ± 0.6 (Baldin)) · 10−4 fm3. (7.7)

Combining Eqs. (7.6) or (7.7), respectively, with the Baldin-constrained proton
results of Eq. (7.1), we find the neutron polarizabilities

ᾱn
E1

∣

∣

∣

global
= (12.0 ± 2.0 (stat) ± 0.4 (Baldin)) · 10−4 fm3,

β̄n
M1

∣

∣

∣

global
= (4.0 ± 2.1 (stat) ± 0.4 (Baldin)) · 10−4 fm3 (7.8)

for the 2-parameter fit and

ᾱn
E1

∣

∣

∣

global Baldin
= (11.6 ± 1.5 (stat) ± 0.6 (Baldin)) · 10−4 fm3,

β̄n
M1

∣

∣

∣

global Baldin
= (3.6 ∓ 1.5 (stat) ± 0.6 (Baldin)) · 10−4 fm3 (7.9)

for the fit including the Baldin constraint also in the extraction of the isoscalar
polarizabilities. We consider the values given in Eqs. (7.1) and (7.9) to be most
reliable because of the fact that our second approach to deuteron Compton scat-
tering fulfills the low-energy theorem and enables us to include all experimental
data into our fit of the isoscalar polarizabilities. From these results we deduce that
the magnetic response of the neutron is comparable to that of the proton and that
both nucleons are paramagnetic. We also conclude that the proton and neutron
polarizabilities are identical within the precision of our analysis. In both points our
two deuteron Compton calculations agree with each other.

Nevertheless, we strongly advocate enlarging the deuteron Compton data base.
If further experiments, as planned at TUNL/HIγS or at MAXlab, provide additional
data below the pion mass, an improved global fit with increased statistics would
be possible, which would reduce the statistical error in our determination of the
neutron polarizabilities.



Appendix A

Numerical Values of Physical

Constants

In Table A.1 we list the numerical values that we use for all parameters, except
for those which are determined within this work: b1, g1, g2, cf. Section 3.4.1. The
numbers are from [73, 74, 104].

Parameter Value Comment
mπ 139.6 MeV charged pion mass
mπ0 135.0 MeV neutral pion mass
mN 938.9 MeV isoscalar nucleon mass
mC 1877.8 MeV twice the isoscalar nucleon mass
f2 0.075 pion-nucleon coupling constant
gA 1.267 axial coupling constant
fπ 92.4 MeV pion-decay constant
α 1/137 QED fine-structure constant
µp 2.795 magnetic moment of the proton
µn −1.913 magnetic moment of the neutron
∆0 271.1 MeV N∆ mass splitting
gπN∆ 1.125 πN∆ coupling constant
md 1875.58 MeV deuteron mass
B 2.2246 MeV deuteron binding energy

Table A.1: χEFT parameters determined independently of this work. Magnetic
moments are given in nuclear magnetons.

The pion-nucleon coupling constant f2 is at leading order connected to gA, mπ and
fπ via the Goldberger-Treiman relation [105]:

f2 ≈
(

gAmπ

2 fπ

)2

· 1

4π
= 0.073. (A.1)
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Appendix B

Pole Contributions to

Nucleon Compton Scattering

Figure B.1: Pole contributions to nucleon Compton scattering in the s-channel (a),
u-channel (b) and t-channel (d). The proton seagull (c) occurs in the non-relativistic
reduction of diagrams (a), (b).

In this appendix we explicitly write down the non-structure or pole amplitudes of
nucleon Compton scattering in the cm frame up to third order in the Small Scale
Expansion1, corresponding to Fig. B.1. These are (with the charge Q = 1 (0) for a
proton (neutron) target)

Apole
1 (ω, θ) = −Qe

2

mN
+ O(ǫ4),

Apole
2 (ω, θ) =

Q2 e2 ω

m2
N

+ O(ǫ4),

Apole
3 (ω, θ) =

e2 ω
(

Q (1 + 2κ) − (Q+ κ)2 cos θ
)

2m2
N

− (2Q− 1)
e2 gA

4 π2 f2
π

ω3 (1 − cos θ)

m2
π0 + 2ω2 (1 − cos θ)

+ O(ǫ4),

Apole
4 (ω, θ) = −e

2 ω (Q+ κ)2

2m2
N

+ O(ǫ4),

Apole
5 (ω, θ) =

e2 ω (Q+ κ)2

2m2
N

− (2Q− 1)
e2 gA

8 π2 f2
π

ω3

m2
π0 + 2ω2 (1 − cos θ)

+ O(ǫ4),

Apole
6 (ω, θ) = −e

2 ωQ (Q+ κ)

2m2
N

+ (2Q− 1)
e2 gA

8 π2 f2
π

ω3

m2
π0 + 2ω2 (1 − cos θ)

+ O(ǫ4).

(B.1)

1We note that these amplitudes are identical in third-order HBχPT and SSE.

123



124 APPENDIX B. POLE CONTRIBUTIONS

For the numerical values of the various parameters and their meaning, cf. Ap-
pendix A (κ = µ − Q). The proton seagull, Fig. B.1(c), contributes to Apole

1 and

Apole
3 . The contribution to Apole

1 stems from the two-photon vertex from L(2)
Nπ. The

seagull term in Apole
3 , which is the one proportional to Q (1 + 2κ), is the leading

relativistic correction from spin-orbit coupling and part of L(3)
Nπ. The terms de-

pending on the axial coupling constant gA are the contributions from the pion pole,
Fig. B.1(d). All other terms correspond to the nucleon-pole diagrams, Figs. B.1(a)
and (b).



Appendix C

Projection Formulae

The connection between the Compton structure amplitudes Āi(ω, z), i = 1, . . . , 6,
given in Appendix B of Ref. [26], and the cm Compton multipoles f l±

XX′(ω), X,X ′ =
E,M , introduced in Section 3.1.1, has been derived in [29]. It reads:

f1+
EE(ω) =

1
∫

−1

mN

16 · 4πW

[

Ā3(ω, z)
(

−3 + z2
)

+ 4Ā6(ω, z)
(

−1 + z2
)

+
(

2Ā2(ω, z) + Ā4(ω, z) + 2Ā5(ω, z)
)

z
(

−1 + z2
)

+ 2Ā1(ω, z)
(

1 + z2
)

]

dz

f1−
EE(ω) =

1
∫

−1

mN

8 · 4πW

[

− Ā3(ω, z)
(

−3 + z2
)

− 4Ā6(ω, z)
(

−1 + z2
)

−
(

−Ā2(ω, z) + Ā4(ω, z) + 2Ā5(ω, z)
)

z
(

−1 + z2
)

+ Ā1(ω, z)
(

1 + z2
)

]

dz

f1+
MM (ω) =

1
∫

−1

mN

16 · 4πW

[

2Ā2(ω, z)
(

−1 + z2
)

+ Ā4(ω, z)
(

−1 + z2
)

+ 2
(

Ā5(ω, z)
(

1 − z2
)

+ Ā1(ω, z) 2z − Ā3(ω, z) z
)

]

dz

f1−
MM (ω) =

1
∫

−1

mN

8 · 4πW

[

Ā4(ω, z)
(

1 − z2
)

+ Ā2(ω, z)
(

−1 + z2
)

+ 2
(

Ā5(ω, z)
(

−1 + z2
)

+ Ā1(ω, z) z + Ā3(ω, z) z
)

]

dz

f2+
EE(ω) =

1
∫

−1

mN

72 · 4πW

[

Ā4(ω, z)
(

−1 − 3z2 + 4z4
)

+ Ā2(ω, z)
(

3 − 9z2 + 6z4
)

+ 2
(

Ā5(ω, z)

×
(

−1 − 3z2 + 4z4
)

+ Ā1(ω, z) 3z3 + Ā3(ω, z)
(

2z3 − 3z
)

+ Ā6(ω, z)
(

6z3 − 6z
))

]

dz

f2−
EE(ω) =

1
∫

−1

mN

48 · 4πW

[

Ā4(ω, z)
(

1 + 3z2 − 4z4
)

+ Ā2(ω, z)
(

2 − 6z2 + 4z4
)

+ 2
(

Ā5(ω, z)

×
(

1 + 3z2 − 4z4
)

+ Ā1(ω, z) 2z3 + Ā3(ω, z)
(

3z − 2z3
)

+ Ā6(ω, z)
(

6z − 6z3
))

]

dz
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f2+
MM (ω) =

1
∫

−1

mN

72 · 4πW

[

Ā3(ω, z)
(

1 − 3z2
)

+
(

3Ā2(ω, z) + 5Ā4(ω, z)− 2Ā5(ω, z)
)

z
(

−1 + z2
)

+ Ā1(ω, z)
(

−3 + 9z2
)

]

dz

f2−
MM (ω) =

1
∫

−1

mN

48 · 4πW

[

Ā3(ω, z)
(

−1 + 3z2
)

+
(

2Ā2(ω, z)− 5Ā4(ω, z) + 2Ā5(ω, z)
)

z
(

−1 + z2
)

+ Ā1(ω, z)
(

−2 + 6z2
)

]

dz

f1+
EM (ω) =

1
∫

−1

mN

16 · 4πW

[

Ā3(ω, z)
(

1 − 3z2
)

− 2Ā6(ω, z)
(

−1 + z2
)

−
(

Ā4(ω, z) + 4Ā5(ω, z)
)

z
(

−1 + z2
)

]

dz

f1+
ME(ω) =

1
∫

−1

mN

16 · 4πW

[

Ā4(ω, z)
(

1 − z2
)

− 2z
(

Ā3(ω, z) + Ā6(ω, z)
(

1 − z2
))

]

dz

(C.1)



Appendix D

The Deuteron Wave

Function

For the deuteron Compton calculation of Chapters 5 and 6 we need an explicit
expression for the deuteron wave function (total angular momentum j = 1). This
can in momentum space be written as, see e.g. Section 3.4 in [57],

Ψ1m(~p ) = u(p)Y011
m (p̂) + w(p)Y211

m (p̂), (D.1)

where the radial wave functions u(p), w(p) fulfill the normalization condition
∫ ∞

0

dp p2
(

u(p)2 + w(p)2
)

= 1. (D.2)

The indices of the angular wave functions Y are l11 for orbital angular momentum,
spin and total angular momentum of the deuteron state. m ∈ {−1, 0, 1} denotes the
projection of the total angular momentum of the deuteron onto the quantization
axis. We know from experiment that the deuteron is composed of an s-wave (l = 0)
and a d-wave state (l = 2), cf. Eq. (D.1) – however, the s-wave part is by far the
dominant one, see Fig. D.1.

In position space the wave function is usually written as [57]

Ψ1m(~r ) =
u(r)

r
Y011

m (r̂) +
w(r)

r
Y211

m (r̂), (D.3)

with the normalization
∫ ∞

0

dr
(

u(r)2 + w(r)2
)

= 1. (D.4)

However, as we want to write down a sum over the two orbital angular momentum
states we use the notation

Ψ1m(~r ) =
∑

l=0,2

ul(r)

r
Y l11

m (r̂), (D.5)

with u0(r) ≡ u(r) and u2(r) ≡ w(r).
The angular wave functions are built of the spherical harmonics, multiplied with

the corresponding Clebsch-Gordan coefficients Cj3 m3

j1 m1 j2 m2
, cf. Eq. (L.14) [57]. In

order to determine these coefficients, we first write down the non-vanishing Clebsch-
Gordan coefficients for combining the spins of the two nucleons to the total spin
S = 1:

C1−1
1
2 − 1

2
1
2 − 1

2

= 1 C1 0
1
2 − 1

2
1
2

1
2

= C1 0
1
2

1
2

1
2 − 1

2
=

1√
2

C1 1
1
2

1
2

1
2

1
2

= 1 (D.6)
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In the s-wave state (l = 0), we have ml = 0 and therefore mj = ms. The corre-
sponding Clebsch-Gordan coefficients are

C
1 mj

0 0 1 ms
= δms,mj , (D.7)

always assuming that the projections m only take on physical values, i.e. mL ∈
{−L,−L+ 1, .., L}.

We also need the d-wave coefficients, which project the states l = 2,ml, s = 1,ms

onto j = 1,mj. The relation ml + ms = mj guarantees that there are only nine
non-vanishing Clebsch-Gordan coefficients:

C1−1
2−2 1 1 =

√

3

5

C1 0
2−1 1 1 =

√

3

10

C1 1
2 0 1 1 =

1√
10

C1−1
2−1 1 0 = −

√

3

10

C1 0
2 0 1 0 = −

√

2

5

C1 1
2 1 1 0 = −

√

3

10

C1−1
2 0 1−1 =

1√
10

C1 0
2 1 1−1 =

√

3

10

C1 1
2 2 1−1 =

√

3

5

(D.8)

Now we construct the deuteron wave function, e.g. in position space. The
notation is Ψm1

sm2
s mj

with m1
s, m

2
s ∈ {↑, ↓} the spin projections of nucleon 1 and 2,

respectively, and mj the projection of the total angular momentum of the deuteron.
Note that we skip the spinors of the nucleons for brevity.

Ψ↓↓−1(~r) =
u(r)

r
Y0 0(r̂) +

w(r)

r
Y2 0(r̂) · C1−1

2 0 1−1

Ψ↑↓−1(~r) = Ψ↓↑−1(~r) =
w(r)

r
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2−1 1 0 ·
1√
2
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r
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2−2 1 1

Ψ↓↓ 0(~r) =
w(r)

r
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2 1 1−1

Ψ↑↓ 0(~r) = Ψ↓↑ 0(~r) =

[

u(r)

r
Y0 0(r̂) +

w(r)

r
Y2 0(r̂) · C1 0

2 0 1 0

]

· 1√
2

Ψ↑↑ 0(~r) =
w(r)

r
Y2−1(r̂) · C1 0

2−1 1 1

Ψ↓↓ 1(~r) =
w(r)

r
Y2 2(r̂) · C1 1

2 2 1−1

Ψ↑↓ 1(~r) = Ψ↓↑ 1(~r) =
w(r)

r
Y2 1(r̂) · C1 1

2 1 1 0 ·
1√
2

Ψ↑↑ 1(~r) =
u(r)

r
Y0 0(r̂) +

w(r)

r
Y2 0(r̂) · C1 1

2 0 1 1 (D.9)

Finally, in Fig. D.1 we show the radial functions u(r) (u(p)) and w(r) (w(p)) for
two typical wave functions that we use, namely the NNLO chiral wave function with
cutoff Λ = 650 MeV [77] and the AV18-wave function [73]. Significant differences
are only visible in the d-state. At large distances (small momenta), both wave
functions are dominated by one-pion exchange and therefore lie nearly exactly on
top of each other.
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Figure D.1: The radial wave functions generated from the NNLO chiral potential
with cut-off Λ = 650 MeV [77] (grey) and the AV18-potential [73] (dashed). In
the upper row we compare the position-space wave functions, in the lower the
representation in momentum space. The first column corresponds to the s-state
wave function u, the second to w, the radial wave function of the d-state.



Appendix E

Additional Pion-Exchange

Diagrams

This appendix, where we give our results for the diagrams shown in Fig. 5.19, refers
exclusively to Section 5.4. These pion-exchange diagrams appear at third-order SSE
in addition to those of Fig. 5.7, when we count the nucleon propagator as O(ǫ−2),
which is the correct power in the low-energy regime, cf. Section 5.4. As we are only
interested in contributions to the static limit, we restrict ourselves to the photon-
nucleon coupling given in Eq. (5.27). The full non-relativistic nucleon propagator is
included, like in Eqs. (5.29, 5.30). The notation employed can be read off Fig. 5.19.
Due to the pion exchange, all diagrams calculated in this appendix contribute to
T γNN(~ki, ~kf ; ~p, ~p ′), cf. Eq. (5.10).

Using the abbreviations

~pppp = ~p+ ~p ′ +
~ki + ~kf

2
,

~pmpp = ~p− ~p ′ +
~ki + ~kf

2
,

~pmpm = ~p− ~p ′ +
~ki − ~kf

2
,

~pmmp = ~p− ~p ′ −
~ki + ~kf

2
(E.1)

we find:

T (2a) =
e2 g2

A

4 f2
π mN

~ǫ ′ · ~σ1 ~pmpm · ~σ2 ~ǫ · ~p
[

−m2
π − ~p2

mpm

][

ω −B − ~p2+~p·~ki

mN

]

T (2b) =
e2 g2

A

4 f2
π mN

~ǫ · ~σ1 ~pmpm · ~σ2 ~ǫ
′ ·
(

~p− ~ki

2

)

[

−m2
π − ~p2

mpm

][

− ω −B − 2~p2+ω2+~ki·~kf−2~p·~kf

2mN

]

T (2c) = − e2 g2
A

4 f2
π mN

~ǫ · ~σ2 ~pmpm · ~σ1~ǫ
′ · ~p ′

[

−m2
π − ~p2

mpm

][

ω −B − ~p ′2+~p ′·~kf

mN

]

T (2d) = − e2 g2
A

4 f2
π mN

~ǫ ′ · ~σ1 ~pmpm · ~σ2 ~ǫ ·
(

~p ′ − ~kf

2

)

[

−m2
π − ~p2

mpm

][

− ω −B − 2~p ′2+ω2+~ki·~kf−2~p ′·~ki

2mN

] (E.2)

130



APPENDIX E. ADDITIONAL PION-EXCHANGE DIAGRAMS 131

T (3a) = − e2 g2
A

4 f2
π mN

~ǫ · ~σ2 ~pmmp · ~σ1 ~ǫ
′ · ~p ′

[

ω2 −m2
π − ~p2

mmp

][

ω −B − ~p ′2+~p ′·~kf

mN

]

T (3b) = − e2 g2
A

4 f2
π mN

~ǫ ′ · ~σ2 ~pmpp · ~σ1 ~ǫ ·
(

~p ′ − ~kf

2

)

[

ω2 −m2
π − ~p2

mpp

][

− ω −B − 2~p ′2+ω2+~ki·~kf−2~p ′·~ki

2mN

]

T (3c) =
e2 g2

A

4 f2
π mN

~ǫ ′ · ~σ2 ~pmpp · ~σ1~ǫ · ~p
[

ω2 −m2
π − ~p2

mpp

][

ω −B − ~p2+~p·~ki

mN

]

T (3d) =
e2 g2

A

4 f2
π mN

~ǫ · ~σ2 ~pmmp · ~σ1 ~ǫ
′ ·
(

~p− ~ki

2

)

[

ω2 −m2
π − ~p2

mmp

][

− ω −B − 2~p2+ω2+~ki·~kf−2~p·~kf

2mN

] (E.3)

T (4a) =
e2 g2

A

8 f2
π m

2
N

~pmpm · ~σ1 ~pmpm · ~σ2 ~ǫ · ~p~ǫ ′ · ~p ′
[

−m2
π − ~p2

mpm

][

ω −B − ~p2+~p·~ki

mN

][

ω −B − ~p ′2+~p ′·~kf

mN

]

T (4b) =
e2 g2

A

8 f2
π m

2
N

~pmpm · ~σ1 ~pmpm · ~σ2 ~ǫ ·
(

~p ′ − ~kf

2

)

~ǫ ′ ·
(

~p− ~ki

2

)

[

−m2
π − ~p2

mpm

][

− ω −B − 2~p ′2+ω2+~ki·~kf−2~p ′·~ki

2mN

]

× 1
[

− ω −B − 2~p2+ω2+~ki·~kf−2~p·~kf

2mN

] (E.4)

T (5a) =
e2 g2

A

4 f2
π m

2
N

~pppp · ~σ1 ~pppp · ~σ2 ~ǫ · ~p~ǫ ′ · ~p ′
[

ω2 −m2
π − ~p2

ppp

][

ω −B − ~p2+~p·~ki

mN

][

ω −B − ~p ′2+~p ′·~kf

mN

]

T (5b) = − e2 g2
A

4 f2
π m

2
N

~pmmp · ~σ1 ~pmmp · ~σ2 ~ǫ ·
(

~p ′ +
~kf

2

)

~ǫ ′ ·
(

~p− ~ki

2

)

[

ω2 −m2
π − ~p2

mmp

][

− ω −B − 2~p ′2+ω2+~ki·~kf+2~p ′·~ki

2mN

]

× 1
[

− ω −B − 2~p2+ω2+~ki·~kf−2~p·~kf

2mN

] (E.5)
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T (6a) =
e2 g2

A

2 f2
π mN

~pmpp · ~σ1 ~pmpm · ~σ2 ~ǫ · ~p~ǫ ′ ·
(

~p− ~p ′ +
~ki

2

)

[

ω2 −m2
π − ~p2

mpp

][

−m2
π − ~p2

mpm

][

ω −B − ~p2+~p·~ki

mN

]

T (6b) =
e2 g2

A

2 f2
π mN

~pmmp · ~σ1 ~pmpm · ~σ2 ~ǫ ·
(

~p− ~p ′ − ~kf

2

)

~ǫ ′ ·
(

~p− ~ki

2

)

[

ω2 −m2
π − ~p2

mmp

][

−m2
π − ~p2

mpm

][

− ω −B − 2~p2+ω2+~ki·~kf−2~p·~kf

2mN

]

T (6c) = − e2 g2
A

2 f2
π mN

~pmmp · ~σ1 ~pmpm · ~σ2 ~ǫ ·
(

~p− ~p ′ − ~kf

2

)

~ǫ ′ · ~p ′
[

ω2 −m2
π − ~p2

mmp

][

−m2
π − ~p2

mpm

][

ω −B − ~p ′2+~p ′·~kf

mN

]

T (6d) = − e2 g2
A

2 f2
π mN

~pmpp · ~σ1 ~pmpm · ~σ2 ~ǫ ·
(

~p ′ − ~kf

2

)

~ǫ ′ ·
(

~p− ~p ′ +
~ki

2

)

[

ω2 −m2
π − ~p2

mpp

][

−m2
π − ~p2

mpm

][

− ω −B − 2~p ′2+ω2+~ki·~kf−2~p ′·~ki

2mN

]

(E.6)

Exchange of the nucleons (+(1 ↔ 2), cf. Fig. 5.19) has been skipped for brevity.



Appendix F

Multipole Expansion of the

Photon Field

The multipole expansion of ~A that we use for the non-perturbative approach to
deuteron Compton scattering, described in Chapter 6, has been derived in [24] in
analogy to Chapter 7 of Ref. [83]. Nevertheless, it is worthwhile to repeat the
derivation here.

We start with the expansion for ǫ̂λ ei~k·~r with ~k ‖ ~ez. For real photons, ǫ̂λ ⊥ ~k,
therefore ǫ̂λ ≡ r̂λ, the unit vector in the spherical basis, with λ = ±1. The spherical
basis together with its scalar product is explained in App. L, Eqs. (L.8)-(L.12).

Using the well-known expansion of the exponential function, cf. e.g. [106], we
find

ǫ̂λ ei~k·~r|k̂=ẑ = r̂λ ei~k·~r|k̂=ẑ = r̂λ

∞
∑

l=0

l
∑

m=−l

4π il jl(ωr)Y
∗
l m(k̂)Yl m(r̂)

= r̂λ

∞
∑

l=0

il
√

4π (2l + 1) jl(ωr)Yl 0(r̂), (F.1)

where we have used Eq. (L.28). jl(z) are the spherical Bessel functions of the first
kind, see Eq. (L.29).

The vector spherical harmonic ~TJ l M (r̂) is defined as

~TJ l M (r̂) =
∑

ν=−1,0,1

(−1)1−l−M
√

2J + 1

(

l 1 J
M + ν −ν −M

)

Yl M+ν r̂−ν ,

(F.2)
cf. Eq. (L.42). Eq. (F.2) can be inverted to

Yl m r̂−λ =

∞
∑

J=0

J
∑

M=−J

(−1)−l+M+1
√

2J + 1

(

l 1 J
m −λ −M

)

~TJ l M (r̂). (F.3)

This is easily proven when we use the definition of the Clebsch-Gordan coefficients,
Eq. (L.14), to write

Yl m r̂−λ =

∞
∑

J=0

J
∑

M=−J

CJ M
l m 1−λ

~TJ l M (r̂) (F.4)

and

~TJ l M (r̂) =
∑

ν=−1,0,1

CJ M
l M+ν 1−ν Yl M+v r̂−ν =

∑

ν,m̃

CJ M
l m̃ 1−ν Yl m̃ r̂−ν , (F.5)
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where we have used m̃− ν −M = 0, cf. Eq. (L.16). Inserting (F.5) into (F.4) and
making use of the unitarity of the Clebsch-Gordan coefficients (L.22),

∑

J,M

CJ M
l m 1−λC

J M
l m̃ 1−ν = δλ,ν δm,m̃, (F.6)

Eq. (F.3) follows immediately and can be used to write Eq. (F.1) as

ǫ̂λ ei~k·~r|k̂=ẑ =

∞
∑

l=0

l+1
∑

J=|l−1|
(−1)−l+λ+1 il

√

4π (2l + 1) (2J + 1)

(

l 1 J
0 λ −λ

)

jl(ωr) ~TJ l λ(r̂).

(F.7)
The possible values for J are constrained by the triangular condition of the Clebsch-
Gordan coefficients, Eq. (L.15). This condition guarantees that for l = 0 only J = 1
gives a non-vanishing contribution. Therefore

ǫ̂λ ei~k·~r|k̂=ẑ =

∞
∑

l=0

l+1
∑

J=l−1

(−1)−l il
√

4π (2l + 1) (2J + 1)

(

l 1 J
0 λ −λ

)

jl(ωr) ~TJ l λ(r̂),

(F.8)
where we have used (−1)λ+1 = 1 as λ = ±1. Explicitly writing out the sum over J
yields

ǫ̂λ ei~k·~r|k̂=ẑ =

∞
∑

l=0

(−1)−l il
√

4π (2l+ 1) jl(ωr)

{√
2l− 1

(

l 1 l − 1
0 λ −λ

)

~Tl−1 l λ(r̂)

+
√

2l+ 1

(

l 1 l
0 λ −λ

)

~Tl l λ(r̂) +
√

2l+ 3

(

l 1 l + 1
0 λ −λ

)

~Tl+1 l λ(r̂)

}

.

(F.9)

The 3-j symbols in Eq. (F.9) are given by

(

l 1 l − 1
0 λ −λ

)

=
(−1)−l

√
l − 1

√

2 (2l− 1) (2l+ 1)
,

(

l 1 l
0 λ −λ

)

= −λ (−1)−l

√

2 (2l+ 1)
,

(

l 1 l + 1
0 λ −λ

)

=
(−1)l

√
l + 2

√

2 (2l+ 1) (2l+ 3)
,

so we end up with ((−1)2 l = 1)

ǫ̂λ ei~k·~r|k̂=ẑ =

∞
∑

l=0

il
√

2π jl(ωr)
{√

l − 1 ~Tl−1 l λ(r̂) − λ
√

2 l+ 1 ~Tl l λ(r̂) +
√
l + 2 ~Tl+1 l λ(r̂)

}

.

(F.10)
For l = 0, the first two terms vanish due to the 3-j symbol in the definition of
~TJ l M (r̂), cf. Eq. (F.2), for l = 1, the first term vanishes due to

√
l − 1. Therefore,

we can rearrange Eq. (F.10) such that all of the vector spherical harmonics have
the same total angular momentum, which we call L. The result is

ǫ̂λ ei~k·~r|k̂=ẑ =

∞
∑

L=1

iL
√

2π (2L+ 1)

{

i

√

L

2L+ 1
jL+1(ωr) ~TL L+1 λ(r̂)

− λ jL(ωr) ~TL L λ(r̂) − i

√

L+ 1

2L+ 1
jL−1(ωr) ~TL L−1 λ(r̂)

}

. (F.11)
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Now we want to generalize this expression to arbitrary directions of ~k. This can be
achieved by acting with the rotation operator on the angle-dependent quantities on
the right-hand side of Eq. (F.11), which are the vector spherical harmonics. The
matrix elements of the rotation operator are

〈 j m | D̂(α, β, γ) | j′m′ 〉 = δj,j′ D
j
m,m′(α, β, γ) (F.12)

with the Wigner D-functions Dj
m,m′(α, β, γ). These can be written as

Dj
m,m′(α, β, γ) = e−i m α dj

m,m′(β) e−i m γ . (F.13)

As we only have to take into account one Euler angle, namely the scattering angle
θ, we may choose α = 0, β = θ, γ = 0. Using the well-known relation (see e.g.
[107], Chapter 4)

D̂(α, β, γ)u(j m) =
∑

m′

u(j m′)Dj
m′,m(α, β, γ), (F.14)

which in our case reduces to

D̂(0, θ, 0)u(j m) =
∑

m′

u(j m′) dj
m′,m(θ), (F.15)

we find

ǫ̂λ ei~k·~r =
∞
∑

L=1

L
∑

M=−L

iL
√

2π (2L+ 1)

{

i

√

L

2L+ 1
jL+1(ωr) ~TL L+1 M (r̂)

− λ jL(ωr) ~TL L M (r̂) − i

√

L+ 1

2L+ 1
jL−1(ωr) ~TL L−1 M (r̂)

}

dL
M,λ(θ). (F.16)

The second term can be simplified via [107]

~TL L M (r̂) =
1

√

L (L+ 1)
~LYL M (r̂) (F.17)

with the orbital angular momentum operator ~L. In order to simplify the other two
terms we show that

√

L+ 1

2L+ 1
jL−1(ωr) ~TL L−1 M (r̂) −

√

L

2L+ 1
jL+1(ωr) ~TL L+1 M (r̂)

=
1

√

L (L+ 1)

{

ω ~r jL(ωr)YL M (r̂) +
1

ω
~∇r

(

1 + r
d

dr

)

jLωr YL M (r̂)

}

. (F.18)

First we decompose ~r into spherical components via Eqs. (L.11) and (L.13):

~r =
∑

ν=−1,0,1

r (−1)ν rν r̂−ν =
∑

ν=−1,0,1

r (−1)ν

√

4π

3
Y1 ν(r̂) r̂−ν (F.19)

Using this relation we can write the first term on the right-hand side (RHS1) of
Eq. (F.18) as

RHS1 =
∑

ν=−1,0,1

r ω
√

L (L+ 1)
jL(ωr) (−1)ν

√

4π

3
Y1 ν(r̂) r̂−ν YL M (r̂). (F.20)
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Now, using Eq. (L.26), the spherical harmonics are combined to

RHS1 =
∑

ν=−1,0,1

L+1
∑

J̃=|L−1|

J̃
∑

M̃=−J̃

r ω
√

L (L+ 1)
jL(ωr) (−1)ν+M̃

√

(2L+ 1) (2J̃ + 1)

×
(

1 L J̃
0 0 0

) (

1 L J̃

ν M −M̃

)

YJ̃ M̃ (r̂) r̂−ν . (F.21)

The spherical harmonic can be replaced by a vector spherical harmonic, making use
of Eq. (F.3):

RHS1 =
∑

ν=−1,0,1

L+1
∑

J̃=|L−1|

J̃+1
∑

J′=|J̃−1|

∑

M̃,M ′

r ω
√

L (L+ 1)
jL(ωr) (−1)ν+M̃+J̃−1+M ′ √

(2L+ 1)

×
√

(2J̃ + 1) (2J ′ + 1)

(

1 L J̃
0 0 0

) (

1 L J̃

ν M −M̃

) (

J̃ 1 J ′

M̃ −ν −M ′
)

~TJ′ J̃ M ′(r̂)

(F.22)

The 3-j symbol is symmetric under even permutations of rows and

(

J̃ 1 J ′

M̃ −ν −M ′
)

= (−1)J̃+1+J′

(

J̃ 1 J ′

−M̃ ν M ′

)

,

cf. Eq. (L.19). Furthermore (−1)ν+M ′+M̃ = (−1)ν+M ′−M̃ , as we are only concerned

with integer quantum numbers throughout this work, and (−1)ν+M ′−M̃ = 1 due to
the 3-j symbols in Eq. (F.22). Therefore we find

RHS1 =
∑

ν=−1,0,1

L+1
∑

J̃=|L−1|

J̃+1
∑

J′=|J̃−1|

r ω
√

L (L+ 1)
jL(ωr) (−1)J′

√

(2L+ 1) (2J̃ + 1) (2J ′ + 1)

×
(

1 L J̃
0 0 0

)

~TJ′ J̃ M ′(r̂)
∑

M̃,M ′

(

J̃ 1 L

−M̃ ν M

) (

J̃ 1 J ′

−M̃ ν M ′

)

.

(F.23)

By use of the unitarity of the 3-j symbols, Eq. (L.22), this becomes

RHS1 =

L+1
∑

J̃=|L−1|

r ω (−1)L jL(ωr)

√

2J̃ + 1

L (L+ 1)

(

1 L J̃
0 0 0

)

~TL J̃ M (r̂). (F.24)

The 3-j symbol takes on the values (−1)1−L
√

L+1√
(2L+1) (2L+3)

for J̃ = L + 1, 0 for J̃ = L and

(−1)L
√

L√
(2L−1) (2L+1)

for J̃ = L− 1. Therefore we get

RHS1 = r ω jL(ωr)

[

~TL L−1 M (r̂)
√

(L+ 1) (2L+ 1)
−

~TL L+1 M (r̂)
√

L (2L+ 1)

]

. (F.25)

Now we have to write the second part on the right-hand side of Eq. (F.18) in terms
of vector spherical harmonics. This can be achieved using the gradient formula,



APPENDIX F. MULTIPOLE EXPANSION 137

Eq. (L.43), which gives

~∇r

(

1 + r
d

dr

)

jL(ωr)YL M (r̂) =

+

√

L

2L+ 1

(

(L+ 3)
d

dr
+ r

d2

dr2
+
L+ 1

r

)

jL(ωr) ~TL L−1 M (r̂)

−
√

L+ 1

2L+ 1

(

(2 − L)
d

dr
+ r

d2

dr2
− L

r

)

jL(ωr) ~TL L+1 M (r̂). (F.26)

Using the recursion relations for spherical Bessel functions, Eq. (L.30), we find

1

r
jL(ωr) =

ω

2L+ 1
[jL−1(ωr) + jL+1(ωr)] ,

d

dr
jL(ωr) =

ω

2L+ 1
[L jL−1(ωr) − (L+ 1) jL+1(ωr)] ,

r
d2

dr2
jL(ωr) =

r ω

2L+ 1

[

L (L− 1)

r
jL−1(ωr) − ω (2L+ 1) jL(ωr) +

(L+ 1) (L+ 2)

r
jL+1(ωr)

]

.

Inserting these three expressions into Eq. (F.26), which is used to replace the cor-
responding term in Eq. (F.18), we end up with

RHS2 =
~TL L+1 M (r̂)
√

L (2L+ 1)
(r ω jL(ωr) − L jL+1(ωr))

+
~TL L−1 M (r̂)

√

(L+ 1) (2L+ 1)
((L+ 1) jL−1(ωr) − r ω jL(ωr)) . (F.27)

Adding Eqs. (F.25) and (F.27) we immediately see the identity (F.18). Combining
Eqs. (F.16), (F.17) and (F.18), we get the final result for the multipole expansion:

ǫ̂λ ei~k·~r =

∞
∑

L=1

L
∑

M=−L

dL
M,λ(θ) iL

√

2π (2L+ 1)

L (L+ 1)
(F.28)

×
{

− i

ω
~∇r

(

1 + r
d

dr

)

jL(ωr)YL M (r̂) − i ω ~r jL(ωr)YL M (r̂) − λ ~LYL M (r̂) jL(ωr)

}

The first two terms correspond to electric, the third to magnetic photons, cf.
e.g. [83], Chapter 7.

In our calculation the incoming photon always moves along the z-direction, i.e.
θi = 0. However, dL

M,λ(θ = 0) = δM,λ, cf. e.g. [108]. Therefore we get for the
incoming photon

ǫ̂λi ei~ki·~r = −
∞
∑

L=1

L
∑

M=−L

δM,λi i
L

√

2π (2L+ 1)

L (L+ 1)
(F.29)

×
{

i

ω
~∇r

(

1 + r
d

dr

)

jL(ωr)YL M (r̂) + λi
~LYL M (r̂) jL(ωr) + i ω ~r jL(ωr)YL M (r̂)

}

.

Considering the case of an outgoing photon, the expansion would start with

ǫ̂∗λ e−i~k·~r|k̂=ẑ = r̂∗λ

∞
∑

l=0

l
∑

m=−l

4π (−1)l il jl(ωr)Y
∗

l m(k̂)Yl m(r̂) (F.30)

= (−1)λ r̂−λ

∞
∑

l=0

l
∑

m=−l

4π (−1)l il jl(ωr)Y
∗

l m(k̂)Yl m(r̂).
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The equivalent to Eq. (F.11) therefore is

ǫ̂∗λ e−i~k·~r|k̂=ẑ =

∞
∑

L=1

iL
√

2π (2L+ 1) (−1)L+λ

{

−i
√

L

2L+ 1
jL+1(ωr) ~TL L+1−λ(r̂)

+ λ jL(ωr) ~TL L−λ(r̂) + i

√

L+ 1

2L+ 1
jL−1(ωr) ~TL L−1−λ(r̂)

}

. (F.31)

The signs follow from λ → −λ and (−1)L+1 = (−1)L−1 = −(−1)L. Finally,
dL

M,−λ(θ) appears instead of dL
M,λ(θ) in the pendant to Eq. (F.16). Therefore we

end up with

ǫ̂∗λf
e−i~kf ·~r =

∞
∑

L′=1

L′

∑

M ′=−L′

dL′

M ′,−λf
(θ) iL

′

√

2π (2L′ + 1)

L′ (L′ + 1)
(−1)L′+λf (F.32)

×
{

i

ω
~∇r

(

1 + r
d

dr

)

jL′(ωr)YL′ M ′(r̂) + λf
~LYL′ M ′(r̂) jL′(ωr) + i ω ~r jL′(ωr)YL′ M ′(r̂)

}

,

where we use primed quantities in order to distinguish between outgoing and in-
coming photons, as we will throughout the whole work.



Appendix G

Calculation of the Dominant

Terms with NN-Rescattering

We now evaluate Eqs. (6.23-6.26), which are the amplitudes arising from the re-

placement ~A → ~∇φ at both vertices. The results are already given (in the lab
frame) in Ref. [24]. We start with the two amplitudes including the intermediate

state | C 〉 and an energy denominator, Mφφ1
fi and Mφφ2

fi .

We write out φ̂i and φ̂f according to Eq. (6.4) – remember, φ̂i,f was defined as
e φi,f (~r/2) – separate the radial from the angular wave function of the intermediate
state | C 〉 and insert two complete sets of radial states | r 〉, | r′ 〉, as explained in
Eq. (6.29). We find

Mφφ1
fi =

(

ω +
ω2

2md

)2
∑

Ĉ

∫∫

r2dr r′2dr′ 〈 df | e
∞
∑

L′=1

L′

∑

M ′=−L′

(−1)L′−λf dL′

M ′,−λf
(θ)

× iL
′+1

ω

√

2π (2L′ + 1)

L′ (L′ + 1)
ψL′(

ωr′

2
)YL′ M ′ | Ĉ r′ 〉〈 r′ | 1

E0 −Hnp

Ĉ

| r 〉

× 〈 r Ĉ | −e
∞
∑

L=1

L
∑

M=−L

δM,λi

iL+1

ω

√

2π (2L+ 1)

L (L+ 1)
ψL(

ωr

2
)YL M | di 〉. (G.1)

E0 is defined as E0 = ω + ω2

2md
− B, cf. Sect. 6.1.1. We now use the form (D.5)

for the deuteron wave functions and introduce the Green’s function GĈ(r, r′;E0)
according to Eq. (6.31).

Mφφ1
fi =

∞
∑

L=1

L
∑

M=−L

∞
∑

L′=1

L′

∑

M ′=−L′

∑

LC ,SC ,JC ,MC

∑

l=0,2

∑

l′=0,2

(

1 +
ω

2md

)2

2π e2 (−1)L′−λf

× iL+L′

δM,λi d
L′

M ′,−λf
(θ)

√

(2L+ 1) (2L′ + 1)

L (L+ 1)L′ (L′ + 1)

×
∫∫

rdr r′dr′ ul(r)ψL(
ωr

2
)GĈ(r, r′;E0)ψL′(

ωr′

2
)ul′(r

′) (G.2)

× 〈 l′ 1 1Mf | YL′ M ′ | LC SC JC MC 〉 〈LC SC JC MC | YL M | l 1 1Mi 〉

Now the Wigner-Eckart theorem (L.31) is applied to both matrix elements. The
resulting reduced matrix elements are given in Eq. (L.37) and guarantee that SC =

139
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1. Further we know that M = λi. Therefore we read off Eq. (L.16) MC = Mi + λi

and M ′ = Mf −Mi − λi, which removes the formal sums over M, M ′, MC . The
possible values for JC are determined by the triangular condition (L.15), which the
3-j symbol has to fulfill. LC of course takes on the values |JC − SC |, · · · , JC + SC .
Therefore we find the final result

Mφφ1
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

(

1 +
ω

2md

)2

2π e2 (−1)L′−λf+1−Mf +JC−Mi−λi

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

(2L+ 1) (2L′ + 1)

L (L+ 1)L′ (L′ + 1)

(

JC L 1
−Mi − λi λi Mi

)

×
∫∫

rdr r′dr′ ul(r)ψL(
ωr

2
)GĈ(r, r′;E0)ψL′(

ωr′

2
)ul′(r

′) (G.3)

×
(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

)

〈 l′ 1 1 ‖ YL′ ‖LC 1 JC 〉 〈LC 1 JC ‖ YL ‖ l 1 1 〉,

where we used the shortcut
∑

l,l′ =
∑

l=0,2

∑

l′=0,2 as we always will throughout

the whole work. Due to ψ1(
ωr
2 ) → 1

3 ωr for ω → 0, we see that the amplitude

Mφφ1
fi – as well as Mφφ2

fi and Mφφ3
fi – cannot contribute in the static limit.

The evaluation of Mφφ2
fi is quite similar. Therefore we only give the final result:

Mφφ2
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

(

ω − ω2

2md
+

~PC
2

2mC

)2

2π e2

ω2
(−1)L′−λf+1+JC−λi

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

(2L+ 1) (2L′ + 1)

L (L+ 1)L′ (L′ + 1)

(

1 L JC

−Mf λi Mf − λi

)

×
∫∫

rdr r′dr′ ul′(r)ψL(
ωr

2
)GĈ(r, r′;E′0)ψL′(

ωr′

2
)ul(r

′) (G.4)

×
(

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)

〈 l′ 1 1 ‖ YL ‖LC 1 JC 〉 〈LC 1 JC ‖ YL′ ‖ l 1 1 〉

We remind the reader that we usemC = 2mN . Note that in the u-channel diagrams,

the Green’s function depends on E′0 = −ω − ~PC
2

2mC
+ ω2

2md
− B, rather than on E0

and ul (ul′) depends on r′ (r), as we insert the complete set of states | r′ 〉 (| r 〉) at
the vertex of the outgoing (incoming) photon.

How to evaluate the double integrals over r, r′ in Eqs. (G.3) and (G.4) is de-
scribed in Sect. 6.1.1. However, in the u-channel diagrams we do an approximation
of the energy denominator as we want to avoid the scattering angle θ entering the

denominator via ~PC
2
. The reason is that the numerical effort in solving the double

integral is rather high, so we prefer to solve it only once for each energy. The mo-
mentum of the intermediate two-nucleon state in the u-channel, calculated in the

γd-cm frame is ~PC = −~ki − ~kf . Therefore ~PC
2

= (~ki + ~kf )2 = 2ω2 (1 + cos θ). Now

we expand the denominator of Eq. (6.24) for
~PC

2

2mC
≪ ω and mC ≈ md:

1

−ω + ω2

2md
−B − EC − ~PC

2

2mC

≈ 1

−ω − ω2

2md
−B − EC

+
ω2

md
cos θ

(

−ω − ω2

2md
−B − EC

)2

(G.5)
When we assume that the photon energy is the dominant quantity in the denomina-
tor, which should be justified as for low energies the diagrams including an energy
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denominator become negligible, we can further simplify Eq. (G.5):

1

−ω + ω2

2md
−B − EC − ~PC

2

2mC

≈
1 − ω

md
cos θ

−ω − ω2

2md
−B − EC

(G.6)

Therefore, in this approximation we just have to evaluate the double integral for

θ = π
2 and multiply the result with

(

1 − ω
md

cos θ
)

. Numerical checks, that we

performed for all energies at which we calculate the γd cross sections and for θ =
5◦, 180◦ exhibit that the error on the integrals introduced by this approximation is
well below 2% in all considered cases.

Evaluation of Mφφ3
fi (Eq. (6.25)) is straightforward. It is suppressed by ω

md
and

therefore a small correction, as the photon energy which appears in the prefactors
of Eqs. (6.23, 6.24) drops out. Inserting the explicit expressions for φ̂i, φ̂f we get

Mφφ3
fi =

∞
∑

L=1

L
∑

M=−L

∞
∑

L′=1

L′

∑

M ′=−L′

∑

l,l′

(

~PC
2

2mC
− ω2

md

)

2π e2

ω2
(−1)L′−λf

× iL+L′

δM,λi d
L′

M ′,−λf
(θ)

√

(2L+ 1) (2L′ + 1)

L (L+ 1)L′ (L′ + 1)
(G.7)

×
∫

dr ul(r)ψL(
ωr

2
)ψL′(

ωr

2
)ul′(r) 〈 l′ 1 1Mf | YL M YL′ M ′ | l 1 1Mi 〉.

We only need one complete set of states | r 〉 due to the missing intermediate state.
The spherical harmonics are combined using Eq. (L.26). We find

Mφφ3
fi =

∞
∑

L=1

L
∑

M=−L

∞
∑

L′=1

L′

∑

M ′=−L′

L+L′

∑

L̃=|L−L′|

∑

l,l′

(

~PC
2

2mC
− ω2

md

) √
π e2

ω2
(−1)L′−λf+M+M ′

× iL+L′

δM,λi d
L′

M ′,−λf
(θ) (2L+ 1) (2L′ + 1)

√

2L̃+ 1

L (L+ 1)L′ (L′ + 1)

×
(

L L′ L̃
0 0 0

) (

L L′ L̃
M M ′ −M −M ′

)

×
∫

dr ul(r)ψL(
ωr

2
)ψL′(

ωr

2
)ul′(r) 〈 l′ 1 1Mf | YL̃ M+M ′ | l 1 1Mi 〉. (G.8)

By use of the Wigner-Eckart theorem (L.31) we obtain the final result

Mφφ3
fi =

∞
∑

L=1

∞
∑

L′=1

L+L′

∑

L̃=|L−L′|

∑

l,l′

(

~PC
2

2mC
− ω2

md

) √
π e2

ω2
(−1)L′−λf+1−Mi

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ) (2L+ 1) (2L′ + 1)

√

2L̃+ 1

L (L+ 1)L′ (L′ + 1)

×
(

L L′ L̃
0 0 0

) (

L L′ L̃
λi Mf −Mi − λi −Mf +Mi

) (

1 L̃ 1
−Mf Mf −Mi Mi

)

×
∫

dr ul(r)ψL(
ωr

2
)ψL′(

ωr

2
)ul′(r) 〈 l′ 1 1 ‖ YL̃ ‖ l 1 1 〉. (G.9)

Now we turn to the amplitude containing the double commutators, Eq. (6.26). We
evaluate this contribution by splitting the Hamiltonian Hnp into a kinetic and a
potential energy part. First we discuss the kinetic energy part, denoted by ’kE’, i.e.
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Hnp → ~p2

mN
in Eq. (6.26). The momentum operator ~p is

~p =
~pp − ~pn

2
=

−i ~∇xp + i ~∇xn

2
= −i ~∇r. (G.10)

The only ~r-dependent quantities in φ̂i, φ̂f are ψL YL M and ψL′ YL′ M ′ , respectively.

Therefore we only consider the commutators − 1
mN

[

[~∇ 2
, ψL YL M ], ψL′ YL′ M ′

]

and

− 1
mN

[

[~∇2
, ψL′ YL′ M ′ ], ψL YL M

]

. Evaluating the first double commutator yields

− 1

mN

[

[~∇2
, ψL YL M ], ψL′ YL′ M ′

]

= − 2

mN

[

~∇(ψL YL M )
]

·
[

~∇(ψL′ YL′ M ′)
]

.

(G.11)
The second double commutator in Eq. (6.26) obviously gives the same contribution,

as Eq. (G.11) is symmetric under L ↔ L′, M ↔ M ′. Now we use (~∇f) · (~∇g) =
1
2

(

~∇2
(f g) − f ~∇2

g − g ~∇2
f
)

to rewrite Eq. (G.11) as

− 1

mN

[

[~∇ 2
, ψL YL M ], ψL′ YL′ M ′

]

= − 1

mN

[

~∇2
(ψL YL M ψL′ YL′ M ′) (G.12)

− ψL YL M
~∇2

(ψL′ YL′ M ′) − ψL′ YL′ M ′ ~∇2
(ψL YL M )

]

.

The two spherical harmonics in the first term on the right hand side of Eq. (G.12)

combine to one. Therefore we only need to evaluate the structure ~∇2
(f(r)YL M (r̂)).

We do so by use of the gradient formula (L.43) and Eqs. (L.48, L.49).

~∇2
(f(r)YL M (r̂)) = ~∇

{

−
√

L+ 1

2L+ 1

(

∂

∂r
− L

r

)

f(r) ~TL L+1 M (r̂)

+

√

L

2L+ 1

(

∂

∂r
+
L+ 1

r

)

f(r) ~TL L−1 M (r̂)

}

=
L+ 1

2L+ 1

(

∂

∂r
+
L+ 2

r

)(

∂

∂r
− L

r

)

f(r)YL M (r̂)

+
L

2L+ 1

(

∂

∂r
− L− 1

r

)(

∂

∂r
+
L+ 1

r

)

f(r)YL M (r̂)

=

(

∂2

∂r2
+

2

r

∂

∂r
− L (L+ 1)

r2

)

f(r)YL M (r̂)

= YL M (r̂)

(

1

r

∂2

∂r2
r − L (L+ 1)

r2

)

f(r) (G.13)

By the help of Eq. (L.26) we find

− 1

mN

[

[~∇2
, ψL YL M ], ψL′ YL′ M ′

]

= − 1

mN

∑

J

(−1)M+M ′

√

(2L+ 1) (2L′ + 1) (2J + 1)

4π

×
(

L L′ J
0 0 0

) (

L L′ J
M M ′ −M −M ′

)

YJ M+M ′

{(

1

r

∂2

∂r2
r − J (J + 1)

r2

)

ψL ψL′

− ψL

(

1

r

∂2

∂r2
r − L′ (L′ + 1)

r2

)

ψL′ − ψL′

(

1

r

∂2

∂r2
r − L (L+ 1)

r2

)

ψL

}

. (G.14)

Including all prefactors and inserting one complete set of radial states | r 〉, we

get for Mφφ4 kE
fi (remember, the second double commutator gives exactly the same
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contribution):

Mφφ4 kE
fi = −

∞
∑

L=1

L
∑

M=−L

∞
∑

L′=1

L′

∑

M ′=−L′

L+L′

∑

J=|L−L′|

∑

l,l′

√
π e2

ω2mN
(−1)L′−λf +M+M ′

iL+L′

(2L+ 1)

× (2L′ + 1)

√

2J + 1

L (L+ 1)L′ (L′ + 1)

(

L L′ J
0 0 0

) (

L L′ J
M M ′ −M −M ′

)

× δM,λi d
L′

M ′,−λf
(θ) 〈 l′ 1 1Mf | YJ M+M ′ | l 1 1Mi 〉

×
∫

dr ul(r)ul′(r)

{(

1

r

∂2

∂r2
r − J (J + 1)

r2

)

ψL(
ωr

2
)ψL′(

ωr

2
) − ψL(

ωr

2
)

(

1

r

∂2

∂r2
r

− L′ (L′ + 1)

r2

)

ψL′(
ωr

2
) − ψL′(

ωr

2
)

(

1

r

∂2

∂r2
r − L (L+ 1)

r2

)

ψL(
ωr

2
)

}

.

(G.15)

The derivatives can be written in a more compact form and after using the Wigner-
Eckart theorem (L.31) the formal sums over M, M ′ are removed to yield the result

Mφφ4 kE
fi =

∞
∑

L=1

∞
∑

L′=1

L+L′

∑

J=|L−L′|

∑

l,l′

√
π e2

ω2mN
(−1)L′−λf−Mi iL+L′

(2L+ 1) (2L′ + 1)

×
√

2J + 1

L (L+ 1)L′ (L′ + 1)

(

L L′ J
0 0 0

) (

L L′ J
λi Mf −Mi − λi −Mf +Mi

)

×
(

1 J 1
−Mf Mf −Mi Mi

)

dL′

Mf−Mi−λi,−λf
(θ) 〈 l′ 1 1 ‖ YJ ‖ l 1 1 〉

×
∫

dr ul(r)ul′(r)

{

2

(

∂

∂r
ψL(

ωr

2
)

)(

∂

∂r
ψL′(

ωr

2
)

)

+
L (L+ 1) + L′ (L′ + 1) − J (J + 1)

r2
ψL(

ωr

2
)ψL′(

ωr

2
)

}

. (G.16)

The final task of this appendix is to calculate Eq. (6.26) with the potential en-
ergy part of Hnp inserted into the commutators. It was shown in Ref. [79] that the
correct low-energy limit is a direct consequence from demanding gauge invariance of
the calculation. Therefore, in order to fulfill the low-energy theorem, it is necessary
to be consistent between the explicitly included exchange particles and the potential
used in the double commutator, which is the only part of the two-nucleon reducible
amplitude that survives in the static limit. In fact it was proven in Ref. [88], that
the pion-exchange diagrams of Fig. 5.7 cancel exactly in the static limit against the
double commutator including the one-pion-exchange potential V OPE. The short-
distance (hard-core) part of the two-nucleon potential may be interpreted as the
exchange of mesons heavier than the pion (ρ, ω, ...), see e.g. the CD-Bonn poten-
tial [72]. As pointed out in Ref. [22], in order to achieve full consistency one would
also have to allow for the explicit exchange of such particles. Nevertheless, below
the pion-production threshold our approximation to only include the one-pion ex-
change explicitly is certainly sufficient, and, consequently, we only include V OPE

in the double commutator. The validity of this procedure is further confirmed in
Section 6.3.2, where we demonstrate that our calculation is nearly insensitive to
features of the np-potential which go beyond the one-pion exchange.

The only operators in this potential, which do not commute with φi,f (~xp), are
the isospin operators, because also φ(~xp) depends on the isospin. In the AV18-
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notation [73], V OPE reads, cf. Eq. (K.9),

V AV 18
π (~r) = −f2 vAV 18

π (mπ0) + (−1)T+1 2 f2 vAV 18
π (mπ±)

≈
(

2 (−1)T+1 − 1
)

f2 vAV 18
π (mπ)

= f2 vAV 18
π (mπ) ·

{

−3 T = 0
1 T = 1,

(G.17)

where we neglect the mass difference between charged and neutral pions. The
isospin dependence can be written as

V AV 18
π (~r) = f2 vAV 18

π (mπ) (~τ1 · ~τ2) , (G.18)

because

1

2
〈 p n− n p | (~τ1 · ~τ2) | p n− n p 〉 = −3,

1

2
〈 p n+ n p | (~τ1 · ~τ2) | p n+ n p 〉 = 1. (G.19)

Here we used the isospin-0 (deuteron) wave function 1√
2
| p n− n p 〉 and the isospin-

1 wave function 1√
2
| p n+ n p 〉, respectively. The potential vAV 18

π (mπ) is given as,

cf. [73] and Eq. (K.10),

vAV 18
π (mπ) =

1

3
mπ

[

Y AV 18(r)~σ1 · ~σ2 + TAV 18(r)S12

]

, (G.20)

where we set mπ± = mπ0 = mπ, like in Eq. (G.17). The functions Y AV 18(r),
TAV 18(r) are (see Eqs. (K.11, K.12))

Y AV 18(r) =
e−mπr

mπr

(

1 − e−cr2
)

,

TAV 18(r) =

(

1 +
3

mπr
+

3

(mπr)2

)

e−mπr

mπr

(

1 − e−cr2
)2

, (G.21)

with the cutoff parameter c assigned the value c = 2.1 fm−2 in [73], and the operator
S12 is defined via

S12 = 3 (~σ1 · r̂) (~σ2 · r̂) − ~σ1 · ~σ2. (G.22)

However, it is known [88, 24] that the one-pion-exchange potential1

Vπ(~r) = f2mπ (~τ1 · ~τ2)
[

S12

(

1

3
+

1

mπr
+

1

(mπr)2

)

e−mπr

mπr
+ ~σ1 · ~σ2

e−mπr

3mπr

]

,

(G.23)
cf. e.g. [57], Section 3.2, together with the pion-exchange diagrams of Fig. 5.7
generates the correct Thomson limit, cf. Section 6.2. Therefore we remove the

cutoff factors
(

1 − e−cr2
)

,
(

1 − e−cr2
)2

, which are introduced in [73] in order to

have a finite potential at the origin, and rather use the potential (G.23) instead of
(G.18). We mark the difference between the thus defined functions and the ones
used in [73] by skipping the index ’AV 18’. We are aware that this procedure is
strictly speaking not consistent, as we are using V AV 18

π (~r) in all other parts of this
work, but our aim is to achieve the exact static limit on the one hand and to use a
modern np-potential as far as possible on the other.

1We omit the term proportional to δ(~r), wich gives no contribution due to the vanishing
deuteron wave function at the origin.
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In order to evaluate the double commutators
[

[Vπ, φ̂i], φ̂f

]

and
[

[Vπ, φ̂f ], φ̂i

]

, we

explicitly write the isospin dependence of φ̂i,f (cf. Eq. (6.9)):

φ̂i,f = e φi,f (~xp) =
∑

j=n,p

ej φi,f (~xj) =
∑

j=n,p

1

2

(

1 + τz
j

)

e φi,f (~xj) (G.24)

Therefore, we have

[

[(~τ1 · ~τ2) , φ̂i], φ̂f

]

=
e2

4

∑

l,m=n,p

[[(~τ1 · ~τ2) , (1 + τz
l )], (1 + τz

m)] φi(~xl)φf (~xm)

=
e2

4

∑

l,m=n,p

[

[τ i
p τ

i
n, τ

z
l ], τz

m

]

φi(~xl)φf (~xm)

=
e2

4

{[

[τ i
p τ

i
n, τ

z
p ], τz

p

]

φi(~xp)φf (~xp) +
[

[τ i
p τ

i
n, τ

z
p ], τz

n

]

φi(~xp)φf (~xn)

+
[

[τ i
p τ

i
n, τ

z
n ], τz

p

]

φi(~xn)φf (~xp) +
[

[τ i
p τ

i
n, τ

z
n ], τz

n

]

φi(~xn)φf (~xn)
}

.

(G.25)

Using the commutator relation [τi, τj ] = 2 i εijk τk we find

[

[(~τ1 · ~τ2) , φ̂i], φ̂f

]

= e2 {(~τ1 · ~τ2 − τz
1 τ

z
2 )φi(~xp)φf (~xp) − (~τ1 · ~τ2 − τz

1 τ
z
2 )φi(~xp)φf (~xn)

− (~τ1 · ~τ2 − τz
1 τ

z
2 )φi(~xn)φf (~xp) + (~τ1 · ~τ2 − τz

1 τ
z
2 )φi(~xn)φf (~xn)} .

(G.26)

From this equation it is obvious that
[

[(~τ1 · ~τ2) , φ̂f ], φ̂i

]

=
[

[(~τ1 · ~τ2) , φ̂i], φ̂f

]

. Eval-

uating the isospin operator (~τ1 · ~τ2 − τz
1 τ

z
2 ) between two deuteron (T = 0) wave

functions gives

1

2
〈 p n− n p | ~τ1 · ~τ2 − τz

1 τ
z
2 | p n− n p 〉 = −2. (G.27)

Therefore we can rewrite the potential energy part of Eq. (6.26) as

Mφφ4 pot
fi = 〈 df | −2 e2 f2 vπ(mπ) [φi(~xp)φf (~xp) − φi(~xp)φf (~xn)

− φi(~xn)φf (~xp) + φi(~xn)φf (~xn)] | di 〉. (G.28)

We replace ~xp → ~r
2 , ~xn → −~r

2 as in Eq. (6.16). Inserting one complete set of radial
states and the explicit expressions for φi(±~r/2), φf (±~r/2), cf. Eq. (6.4), we find

Mφφ4 pot
fi =

∞
∑

L=1

L
∑

M=−L

∞
∑

L′=1

L′

∑

M ′=−L′

∑

l,l′

4π e2 f2mπ

3ω2
(−1)1+L′−λf iL+L′

δM,λi d
L′

M ′,−λf
(θ)

×
√

(2L+ 1) (2L′ + 1)

L (L+ 1)L′ (L′ + 1)

{∫

dr ul(r)ul′ (r)ψL(
ωr

2
)ψL′(

ωr

2
)Y (r)

× 〈 l′ 1 1Mf | ~σ1 · ~σ2 YL M (r̂)YL′ M ′(r̂) | l 1 1Mi 〉

+

∫

dr ul(r)ul′(r)ψL(
ωr

2
)ψL′(

ωr

2
)T (r) (G.29)

× 〈 l′ 1 1Mf | S12 YL M (r̂)YL′ M ′(r̂) | l 1 1Mi 〉
}

(

1 − (−1)L′ − (−1)L + (−1)L+L′
)

.

Here we used Eq. (L.27), i.e. YL M (−r̂) = (−1)L YL M (r̂). As explained before,
T (r), Y (r) are identical to TAV 18(r), Y AV 18(r) with the cutoff functions removed.
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We rewrite Eq. (G.29), separating the two operators ~σ1 · ~σ2 and (~σ1 · r̂) (~σ2 · r̂)
from each other. The sum over M may already be removed.

Mφφ4 pot
fi =

∞
∑

L=1

∞
∑

L′=1

L′

∑

M ′=−L′

∑

l,l′

∑

i

4π e2 f2mπ

3ω2
(−1)1+L′−λf +i iL+L′

dL′

M ′,−λf
(θ)

×
√

(2L+ 1) (2L′ + 1)

L (L+ 1)L′ (L′ + 1)

{∫

dr ul(r)ul′ (r)ψL(
ωr

2
)ψL′(

ωr

2
) (Y (r) − T (r))

× 〈 l′ 1 1Mf | σ2 i σ1−i YL λi YL′ M ′ | l 1 1Mi 〉

+
∑

j

3 (−1)j

∫

dr ul(r)ul′ (r)ψL(
ωr

2
)ψL′(

ωr

2
)T (r)

× 〈 l′ 1 1Mf | σ2 j σ1 i r−j r−i YL λi YL′ M ′ | l 1 1Mi 〉
}

×
(

1 − (−1)L′ − (−1)L + (−1)L+L′
)

(G.30)

In this step we also expanded the scalar products into spherical components, ac-
cording to Eq. (L.12).

∑

i is a shortcut for
∑

i=−1,0,1, which we will use throughout
this work. Now we replace r−j , r−i according to Eq. (L.13) and afterwards combine
Y1−j Y1−i and YL λi YL′ M ′ in the second matrix element, using Eq. (L.26). We get

Mφφ4 pot
fi =

∞
∑

L=1

∞
∑

L′=1

L′

∑

M ′=−L′

∑

l,l′

∑

i

4π e2 f2mπ

3ω2
(−1)1+L′−λf +i iL+L′

dL′

M ′,−λf
(θ)

×
√

(2L+ 1) (2L′ + 1)

L (L+ 1)L′ (L′ + 1)

{∫

dr ul(r)ul′ (r)ψL(
ωr

2
)ψL′(

ωr

2
) (Y (r) − T (r))

× 〈 l′ 1 1Mf | σ2 i σ1−i YL λi YL′ M ′ | l 1 1Mi 〉

+
∑

j

∑

J=0,2

L+L′

∑

J̃=|L−L′|

(−1)−i+λi+M ′

3

√

(2J + 1) (2L+ 1) (2L′ + 1) (2J̃ + 1)

×
(

1 1 J
0 0 0

) (

1 1 J
−j −i i+ j

) (

L L′ J̃
0 0 0

)(

L L′ J̃
λi M ′ −λi −M ′

)

×
∫

dr ul(r)ul′(r)ψL(
ωr

2
)ψL′(

ωr

2
)T (r) (G.31)

× 〈 l′ 1 1Mf | σ2 j σ1 i YJ −i−j YJ̃ λi+M ′ | l 1 1Mi 〉
}

(

1 − (−1)L′ − (−1)L + (−1)L+L′
)

,

where the possible values for J, J̃ are given by the 3-j symbols, cf. Eqs. (L.15)
and (L.21). Therefore we need to evaluate the matrix-element structure 〈 l′ 1 1Mf |
σ2 j σ1 i YL M YL′ M ′ | l 1 1Mi 〉. However, as we will be faced with further combina-
tions of spin and orbital angular momenta in the initial and final state in App. I,
we derive the element 〈L1 S1 J1M1 | σ2 j σ1 i Yl m Yl′ m′ | L2 S2 J2M2 〉.

First we write σ2 j σ1 i as sum over tensor products, using Eq. (L.33) and the
fact that the vector operator ~σ is of rank 1.

σ2 j σ1 i =

2
∑

S′=0

S′

∑

M ′=−S′

(−1)M ′ √
2S′ + 1

(

1 1 S′

j i −M ′
)

(σ2 ⊗ σ1)S′ M ′

=

2
∑

S′=0

(−i)i+j
√

2S′ + 1

(

1 1 S′

j i −i− j

)

(σ2 ⊗ σ1)S′ i+j (G.32)
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Combining the two spherical harmonics via Eq. (L.26) and making use of Eq. (L.33)
once more we find

σ2 j σ1 i Yl m Yl′ m′ =

2
∑

S′=0

l+l′
∑

L′′=|l−l′|

L′′+S′

∑

J̃=|L′′−S′|

(−1)S′−L′′

(

l l′ L′′

0 0 0

)

(G.33)

×
(

l l′ L′′

m m′ −m−m′

)(

1 1 S′

j i −i− j

) (

S′ L′′ J̃
i+ j m+m′ −i− j −m−m′

)

×

√

(2l + 1) (2l′ + 1) (2L′′ + 1) (2S′ + 1) (2J̃ + 1)

4π
[(σ2 ⊗ σ1)S′ ⊗ YL′′ ]J̃ i+j+m+m′ .

Now we use the Wigner-Eckart theorem.

〈L1 S1 J1M1 | σ2 j σ1 i Yl m Yl′ m′ | L2 S2 J2M2 〉

=
∑

S′

∑

L′′

∑

J̃

(−1)S′−L′′+J1−M1

(

l l′ L′′

0 0 0

) (

l l′ L′′

m m′ −m−m′

)

×
(

1 1 S′

j i −i− j

) (

S′ L′′ J̃
i+ j m+m′ −i− j −m−m′

)

×
(

J1 J̃ J2

−M1 i+ j +m+m′ M2

)

√

(2l + 1) (2l′ + 1) (2L′′ + 1) (2S′ + 1) (2J̃ + 1)

4π

× 〈L1 S1 J1 ‖ [(σ2 ⊗ σ1)S′ ⊗ YL′′ ]J̃ ‖L2 S2 J2 〉 (G.34)

We separate this matrix element into spin and orbital angular momentum parts,
according to Eqs. (L.40) and (L.41).

〈L1 S1 J1M1 | σ2 j σ1 i Yl m Yl′ m′ | L2 S2 J2M2 〉

=
∑

S′

∑

L′′

∑

J̃

(−1)S′−L′′+J1−M1

√

(2l + 1) (2l′ + 1) (2L′′ + 1) (2S′ + 1) (2J1 + 1) (2J2 + 1)

4π

× (2J̃ + 1)

(

l l′ L′′

0 0 0

) (

l l′ L′′

m m′ −m−m′

) (

1 1 S′

j i −i− j

)

×
(

S′ L′′ J̃
i+ j m+m′ −i− j −m−m′

) (

J1 J̃ J2

−M1 i+ j +m+m′ M2

)

×







S1 L1 J1

S2 L2 J2

S′ L′′ J̃







〈S1 ‖ (σ2 ⊗ σ1)S′ ‖S2 〉 〈L1 ‖ YL′′ ‖L2 〉

=
∑

S′

∑

L′′

∑

J̃

(−1)−L′′+J1−M1+S1+S2 (2J̃ + 1) (2S′ + 1)

(

J1 J̃ J2

−M1 i+ j +m+m′ M2

)

×
(

1 1 S′

j i −i− j

) (

l l′ L′′

m m′ −m−m′

) (

S′ L′′ J̃
i+ j m+m′ −i− j −m−m′

)

×
(

l l′ L′′

0 0 0

)







S1 L1 J1

S2 L2 J2

S′ L′′ J̃







√

(2l + 1) (2l′ + 1) (2L′′ + 1) (2J1 + 1) (2J2 + 1)

4π

× 〈L1 ‖ YL′′ ‖L2 〉
∑

s

{

1 1 S′

S2 S1 s

}

〈S1 ‖S − t ‖ s 〉 〈 s ‖S + t ‖S2 〉

(G.35)

In the last line we defined ~S = ~σ1+~σ2

2 and ~t = ~σ1−~σ2

2 in analogy to Eq. (6.65). The
reduced matrix elements for S and t are given in App. L, Eqs. (L.35, L.36), and we
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find S spin-conserving, t spin-changing, which we also see in Eqs. (L.38, L.39). For
evaluating Eq. (G.31) we need a spin-conserving operator; thus only two of the four
combinations 〈S1 ‖S − t ‖ s 〉 〈 s ‖S + t ‖S2 〉 survive:

〈S1 ‖S − t ‖ s 〉 〈 s ‖S + t ‖S2 〉 → 〈S1 ‖S ‖ s 〉 〈 s ‖S ‖S2 〉 − 〈S1 ‖ t ‖ s 〉 〈 s ‖ t ‖S2 〉
(G.36)

These products of matrix elements can be evaluated according to Eqs. (L.35,L.36),
however we rather keep the compact notation of Eq. (G.31) for the final result.
Nevertheless, in order to simplify the last bracket in Eq. (G.31), we show that
L+ L′ has to be an even number. First we note that J is even in Eq. (G.31). The
index L′′, which is summed over in Eq. (G.35), has to be even due to 〈 l′ ‖ YL′′ ‖ l 〉
with even l, l′, cf. Eqs. (L.34) and (L.21). Therefore also J + J̃ is an even number,
which follows from Eq. (G.35). With J even also J̃ has to be even and the 3-

j symbol

(

L L′ J̃
0 0 0

)

guarantees L + L′ even. This is also true for the first

matrix element in Eq. (G.31), as again the index L′′ in Eq. (G.35) is even and
therefore L+L′ has to be even, i.e. (−1)L+L′

= 1 and (−1)L′

= (−1)L. Finally we
read M ′ = Mf −Mi − λi off Eq. (G.35), which enables us to remove the sum over
M ′ and write down the final result:

Mφφ4 pot
fi =

∞
∑

L=1

∞
∑

L′=1

∑

l,l′

∑

i

4π e2 f2mπ

3ω2
(−1)1+L′−λf+i iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

×
√

(2L+ 1) (2L′ + 1)

L (L+ 1)L′ (L′ + 1)

{∫

dr ul(r)ul′ (r)ψL(
ωr

2
)ψL′(

ωr

2
) (Y (r) − T (r))

× 〈 l′ 1 1Mf | σ2 i σ1−i YL λi YL′ Mf−Mi−λi | l 1 1Mi 〉

+
∑

j

∑

J=0,2

L+L′

∑

J̃=|L−L′|

(−1)−i+Mf−Mi 3

√

(2J + 1) (2L+ 1) (2L′ + 1) (2J̃ + 1)

×
(

1 1 J
0 0 0

) (

1 1 J
−j −i i+ j

) (

L L′ J̃
0 0 0

)

×
(

L L′ J̃
λi Mf −Mi − λi −Mf +Mi

) ∫

dr ul(r)ul′(r)ψL(
ωr

2
)ψL′(

ωr

2
)T (r)

× 〈 l′ 1 1Mf | σ2 j σ1 i YJ −i−j YJ̃ Mf−Mi
| l 1 1Mi 〉

}

2
(

1 − (−1)L
)

(G.37)

We never show results beyond L,L′ = 2, which we found to be a sufficiently good
approximation in all amplitudes. Therefore we may restrict ourselves to L = L′ =
1, as the L = 2-contribution vanishes and our result demands L + L′ even, i.e.
L = 1, L′ = 2 is forbidden.

Now all amplitudes with the photon field replaced by ~∇φ at both vertices have
been evaluated. In the next appendix we calculate the amplitudes where this re-
placement is made only once. We also give the results for the non-negligible contri-
butions obtained from ~A→ ~A(1), ~A(2) at both vertices.



Appendix H

Calculation of further Terms

with NN-Rescattering

This appendix contains the evaluation of the amplitudes given in Eq. (6.56), with
~J(~ξ ) replaced by ~J (σ)(~ξ ), cf. Eq. (6.59). We also calculated the amplitudes includ-

ing ~J (p)(~ξ ) (Eq. (6.60)), but found these contributions invisibly small. Therefore
we abstain from writing down those results. The amplitudes (6.56) were derived

by replacing ~A → ~∇φ at one interaction vertex, but there are also non-negligible
contributions which do not include the ~∇φ-term. These are calculated at the end
of this appendix. All following amplitudes can also be found in Ref. [24], albeit in
the lab frame.

Before we turn to evaluating Eq. (6.56), we prove the relation ~TJ L M (r̂) · ~V =
[YL ⊗ V ]J M , cf. Eq. (6.66), making use of Eqs. (L.32) and (L.42). First we decom-
pose the scalar product into spherical components, cf. Eq. (L.12):

~TJ L M · ~V =
∑

ν=−1,0,1

(−1)ν TJ L M ν V1−ν (H.1)

Now we replace TJ L M ν according to Eqs. (L.11) and (L.42) by

TJ L M ν = ~TJ L M ·r̂ν = (−1)ν (−1)−L−M+1
√

2J + 1

(

L 1 J
M + ν −ν −M

)

YL M+ν .

(H.2)
Therefore,

~TJ L M · ~V =
∑

ν=−1,0,1

(−1)−L−M+1
√

2J + 1

(

L 1 J
M + ν −ν −M

)

YL M+ν V1−ν

=
∑

ν=−1,0,1

(−1)−L−M+1
√

2J + 1

(

L 1 J
M − ν ν −M

)

YL M−ν V1 ν ,

(H.3)

where we replaced ν → −ν which does not change the sum over ν. On the other
hand, Eq. (L.32) gives

[YL ⊗ V ]J M =
∑

µ,ν

(−1)−L+1−M
√

2J + 1

(

L 1 J
µ ν −M

)

YL µ V1 ν (H.4)

=
∑

ν

(−1)−L+1−M
√

2J + 1

(

L 1 J
M − ν ν −M

)

YL M−ν V1 ν ,

149
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which is identical to Eq. (H.3).

Eq. (6.56) consists of eight amplitudes, however we found that four of them can-
cel exactly. Only the amplitudes including an energy denominator remain. These
are

Mφ σ a
fi = −i

(

ω +
ω2

2md

)

∑

C

〈 df | φ̂f | C 〉〈C |
∫

~J (σ)(~ξ ) · ~A(~ξ ) d3ξ | di 〉
ω + ω2

2md
−B − EC

,

Mφ σ b
fi = i

(

ω +
ω2

2md

)

∑

C

〈 df |
∫

~J (σ)(~ξ ) · ~A(~ξ ) d3ξ | C 〉〈C | φ̂i | di 〉
ω + ω2

2md
−B − EC

,

Mφ σ c
fi = i

(

ω − ω2

2md
+

~PC
2

2mC

)

∑

C

〈 df | φ̂i | C 〉〈C |
∫

~J (σ)(~ξ ) · ~A(~ξ ) d3ξ | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

,

Mφ σ d
fi = −i

(

ω − ω2

2md
+

~PC
2

2mC

)

∑

C

〈 df |
∫

~J (σ)(~ξ ) · ~A(~ξ ) d3ξ | C 〉〈C | φ̂f | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

.

(H.5)

The photon field ~A(~ξ ) is replaced either by ~A(1)(~ξ ) or ~A(2)(~ξ ) (Eqs. (6.57, 6.58)).

We start with ~A(1)(~ξ ) and use the expression derived for
∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ in

Eq. (6.67). The corresponding amplitudes are denoted by Mφ σ1
fi , whereas we use

the notation Mφ σ2
fi when we replace ~A(~ξ ) → ~A(2)(~ξ ) later on.

In order to calculate Mφ σ1
fi , we insert two complete sets of radial states | r 〉,

| r′ 〉, as we did in Eq. (G.1). From the explicit expressions for φ̂f and
∫

~J (σ)(~ξ ) ·
~A(1)(~ξ ) d3ξ, Eqs. (6.4) and (6.67), we get

Mφ σ1 a
fi = −i

(

ω +
ω2

2md

)

∑

Ĉ

∫∫

r2dr r′2dr′ 〈 df | e
∞
∑

L′=1

L′

∑

M ′=−L′

(−1)L′−λf

× dL′

M ′,−λf
(θ)

iL
′+1

ω

√

2π (2L′ + 1)

L′ (L′ + 1)
ψL′(

ωr′

2
)YL′ M ′ | Ĉ r′ 〉

× 〈 r′ | 1

E0 −Hnp

Ĉ

| r 〉 〈 r Ĉ | −
∞
∑

L=1

L
∑

M=−L

λi

√

2π (L+ 1)
e ω

2mN
iL+1

× jL−1(
ωr

2
)
(

µp − (−1)L µn

)

[YL−1 ⊗ S]L M δM,λi | di 〉. (H.6)

The term proportional to [YL−1 ⊗ t]L M in Eq. (6.67) changes the spin of the two-
nucleon state, cf. Eq. (L.39). Therefore it gives no contribution as YL′ M ′ demands
SC = Sd = 1, as can be seen from Eq. (L.37), and has been dropped.

We rewrite Eq. (H.6) as

Mφ σ1 a
fi =

∞
∑

L=1

∞
∑

L′=1

L′

∑

M ′=−L′

∑

LC ,JC,MC

∑

l,l′

π e2 λi

mN

(

ω +
ω2

2md

)

(−1)L′−λf+1

× iL+L′+1 dL′

M ′,−λf
(θ)

√

(L+ 1) (2L′ + 1)

L′ (L′ + 1)

(

µp − (−1)L µn

)

×
∫∫

rdr r′dr′ ul(r) jL−1(
ωr

2
)GĈ(r, r′;E0)ψL′(

ωr′

2
)ul′(r

′) (H.7)

× 〈 l′ 1 1Mf | YL′ M ′ | LC 1 JC MC 〉 〈LC 1 JC MC | [YL−1 ⊗ S]L M | l 1 1Mi 〉.
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Applying the Wigner-Eckart theorem (L.31) twice and removing the formal sums
over M ′ and MC , we get the final result

Mφ σ1 a
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

π e2 λi

mN

(

ω +
ω2

2md

)

(−1)L′−λf−λi−Mf−Mi+JC

× iL+L′+1 dL′

Mf−Mi−λi,−λf
(θ)

√

(L+ 1) (2L′ + 1)

L′ (L′ + 1)

(

µp − (−1)L µn

)

×
∫∫

rdr r′dr′ ul(r) jL−1(
ωr

2
)GĈ(r, r′;E0)ψL′(

ωr′

2
)ul′(r

′)

×
(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

) (

JC L 1
−Mi − λi λi Mi

)

× 〈 l′ 1 1 ‖ YL′ ‖LC 1 JC 〉 〈LC 1 JC ‖ [YL−1 ⊗ S]L ‖ l 1 1 〉. (H.8)

The values possible for JC are determined by the second (or, as well, first) 3-
j symbol, and LC takes on the values |JC −SC |, · · · , JC +SC . The reduced matrix
elements can be found in Eqs. (L.37, L.38).

Mφ σ1 b,c,d
fi are calculated quite similarly. Therefore we only give the results.

Mφ σ1 b
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

π e2 λf

mN

(

ω +
ω2

2md

)

(−1)L′−λf−λi−Mf−Mi+JC+1

× iL+L′+1 dL′

Mf−Mi−λi,−λf
(θ)

√

(2L+ 1) (L′ + 1)

L (L+ 1)

(

µp − (−1)L′

µn

)

×
∫∫

rdr r′dr′ ul(r)ψL(
ωr

2
)GĈ(r, r′;E0) jL′−1(

ωr′

2
)ul′(r

′)

×
(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

) (

JC L 1
−Mi − λi λi Mi

)

× 〈 l′ 1 1 ‖ [YL′−1 ⊗ S]L′ ‖LC 1 JC 〉 〈LC 1 JC ‖ YL ‖ l 1 1 〉 (H.9)

Mφ σ1 c
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

π e2 λf

mN

(

ω − ω2

2md
+

~PC
2

2mC

)

(−1)L′−λf−λi+JC+1

× iL+L′+1 dL′

Mf−Mi−λi,−λf
(θ)

√

(2L+ 1) (L′ + 1)

L (L+ 1)

(

µp − (−1)L′

µn

)

×
∫∫

rdr r′dr′ ul′(r)ψL(
ωr

2
)GĈ(r, r′;E′0) jL′−1(

ωr′

2
)ul(r

′)

×
(

1 L JC

−Mf λi Mf − λi

) (

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)

× 〈 l′ 1 1 ‖ YL ‖LC 1 JC 〉 〈LC 1 JC ‖ [YL′−1 ⊗ S]L′ ‖ l 1 1 〉 (H.10)
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Mφ σ1 d
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

π e2 λi

mN

(

ω − ω2

2md
+

~PC
2

2mC

)

(−1)L′−λf−λi+JC

× iL+L′+1 dL′

Mf−Mi−λi,−λf
(θ)

√

(L+ 1) (2L′ + 1)

L′ (L′ + 1)

(

µp − (−1)L µn

)

×
∫∫

rdr r′dr′ ul′(r) jL−1(
ωr

2
)GĈ(r, r′;E′0)ψL′(

ωr′

2
)ul(r

′)

×
(

1 L JC

−Mf λi Mf − λi

) (

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)

× 〈 l′ 1 1 ‖ [YL−1 ⊗ S]L ‖LC 1 JC 〉 〈LC 1 JC ‖ YL′ ‖ l 1 1 〉 (H.11)

Now we calculate the amplitudes Mφ σ2
fi which we get from replacing ~A(~ξ ) by

~A(2)(~ξ ) in Eq. (H.5). As there are no further difficulties in the calculation, once we

have the formulae for φ̂i,f (Eq. (6.4)) and for
∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ (Eq. (6.72)) at
hand, we can immediately write down the results.

Mφ σ2 a
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

π e2

mN

(

ω +
ω2

2md

)

(−1)L′−λf−λi−Mf−Mi+JC

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

(2L+ 1) (2L′ + 1)

L′ (L′ + 1)

(

µp + (−1)L µn

)

×
∫∫

rdr r′dr′ ul(r) jL(
ωr

2
)GĈ(r, r′;E0)ψL′(

ωr′

2
)ul′(r

′)

×
(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

) (

JC L 1
−Mi − λi λi Mi

)

× 〈 l′ 1 1 ‖ YL′ ‖LC 1 JC 〉 〈LC 1 JC ‖ [YL ⊗ S]L ‖ l 1 1 〉 (H.12)

Mφ σ2 b
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

π e2

mN

(

ω +
ω2

2md

)

(−1)L′−λf−λi−Mf−Mi+JC+1

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

(2L+ 1) (2L′ + 1)

L (L+ 1)

(

µp + (−1)L′

µn

)

×
∫∫

rdr r′dr′ ul(r)ψL(
ωr

2
)GĈ(r, r′;E0) jL′(

ωr′

2
)ul′(r

′)

×
(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

) (

JC L 1
−Mi − λi λi Mi

)

× 〈 l′ 1 1 ‖ [YL′ ⊗ S]L′ ‖LC 1 JC 〉 〈LC 1 JC ‖ YL ‖ l 1 1 〉 (H.13)

Mφ σ2 c
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

π e2

mN

(

ω − ω2

2md
+

~PC
2

2mC

)

(−1)L′−λf−λi+JC+1

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

(2L+ 1) (2L′ + 1)

L (L+ 1)

(

µp + (−1)L′

µn

)

×
∫∫

rdr r′dr′ ul′(r)ψL(
ωr

2
)GĈ(r, r′;E′0) jL′(

ωr′

2
)ul(r

′)

×
(

1 L JC

−Mf λi Mf − λi

) (

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)

× 〈 l′ 1 1 ‖ YL ‖LC 1 JC 〉 〈LC 1 JC ‖ [YL′ ⊗ S]L′ ‖ l 1 1 〉 (H.14)
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Mφ σ2 d
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

π e2

mN

(

ω − ω2

2md
+

~PC
2

2mC

)

(−1)L′−λf−λi+JC

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

(2L+ 1) (2L′ + 1)

L′ (L′ + 1)

(

µp + (−1)L µn

)

×
∫∫

rdr r′dr′ ul′(r) jL(
ωr

2
)GĈ(r, r′;E′0)ψL′(

ωr′

2
)ul(r

′)

×
(

1 L JC

−Mf λi Mf − λi

) (

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)

× 〈 l′ 1 1 ‖ [YL ⊗ S]L ‖LC 1 JC 〉 〈LC 1 JC ‖ YL′ ‖ l 1 1 〉 (H.15)

The amplitudes Mφ σ1
fi (Mφ σ2

fi ) alone are numerically large. Their size is a cor-
rection of about 5%-10% at 94.2 MeV. However, they partly cancel each other.
Therefore the net effect of the contributions Mφ σ1

fi , Mφ σ2
fi is well below 5% for all

angles at 94.2 MeV, see Fig. 6.7.

Numerically more important than the amplitudes calculated so far in this ap-
pendix are those, where we replace ~J(~ξ ) · ~A(~ξ ) by ~J (σ)(~ξ ) · ~A(1,2)(~ξ ) at both ver-

tices. However, we found that the mixed contributions, i.e. H int = −
∫

~J (σ)(~ξ ) ·
~A(1)(~ξ ) d3ξ at one vertex and H int = −

∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ at the other are
negligibly small. The reason for this suppression is the product of matrix elements
occuring in these amplitudes, which forbids the leading contribution L = L′ = 1.
It is given by Eq. (L.38) with L′ = 0 and L′ = 1, respectively. However, it follows
from Eq. (L.21) and the fact that l, l′ are even numbers that LC must be even, odd
for L′ = 0, 1. Therefore, this product vanishes for the leading contribution and we
only need to calculate the following four amplitudes:

Mσ1 σ1 a
fi =

∑

C

〈 df |
∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ | C 〉〈C |
∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ | di 〉
ω + ω2

2md
−B − EC

Mσ1 σ1 b
fi =

∑

C

〈 df |
∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ | C 〉〈C |
∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

Mσ2 σ2 a
fi =

∑

C

〈 df |
∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ | C 〉〈C |
∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ | di 〉
ω + ω2

2md
−B − EC

Mσ2 σ2 b
fi =

∑

C

〈 df |
∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ | C 〉〈C |
∫

~J (σ)(~ξ ) · ~A(2)(~ξ ) d3ξ | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

(H.16)

The evaluation of these amplitudes is straightforward, using Eqs. (6.67) and (6.72).

The main difference to Mφ σ1
fi and Mφ σ2

fi is the fact that now the intermediate
state may have total spin SC = 1 or SC = 0. In fact, the singlet (SC = 0) part
of Mσ1 σ1 a

fi , which is the amplitude with two M1-interactions, is the dominant
contribution to the total deuteron-photodisintegration cross section at threshold,
cf. Section 6.4 and Fig. 6.11. Among the amplitudes (H.16), it is also the singlet
transition of Mσ1 σ1

fi which gives the most important contribution to the deuteron

Compton cross sections, whereas the triplet amplitude and Mσ2 σ2
fi are only minor
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corrections. The results are:

Mσ1 σ1 a
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

∑

SC=0,1

JC+SC
∑

LC=|JC−SC |

∑

l,l′

π e2 ω2

2m2
N

(−1)L′−λf−λi−Mf−Mi+JC+1

× iL+L′

λi λf d
L′

Mf−Mi−λi,−λf
(θ)
√

(L+ 1) (L′ + 1)

×
(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

) (

JC L 1
−Mi − λi λi Mi

)

×
{

(µp − (−1)L′

µn) (µp − (−1)L µn) 〈 l′ 1 1 ‖ [YL′−1 ⊗ S]L′ ‖LC SC JC 〉

× 〈LC SC JC ‖ [YL−1 ⊗ S]L ‖ l 1 1 〉 + (µp + (−1)L′

µn) (µp + (−1)L µn)

× 〈 l′ 1 1 ‖ [YL′−1 ⊗ t]L′ ‖LC SC JC 〉 〈LC SC JC ‖ [YL−1 ⊗ t]L ‖ l 1 1 〉
}

×
∫∫

rdr r′dr′ ul(r) jL−1(
ωr

2
)GĈ(r, r′;E0) jL′−1(

ωr′

2
)ul′(r

′) (H.17)

Mσ1 σ1 b
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

∑

SC=0,1

JC+SC
∑

LC=|JC−SC |

∑

l,l′

π e2 ω2

2m2
N

(−1)L′−λf−λi+JC+1

× iL+L′

λi λf d
L′

Mf−Mi−λi,−λf
(θ)
√

(L+ 1) (L′ + 1)

×
(

1 L JC

−Mf λi Mf − λi

) (

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)

×
{

(µp − (−1)L µn) (µp − (−1)L′

µn) 〈 l′ 1 1 ‖ [YL−1 ⊗ S]L ‖LC SC JC 〉

× 〈LC SC JC ‖ [YL′−1 ⊗ S]L′ ‖ l 1 1 〉 + (µp + (−1)L µn) (µp + (−1)L′

µn)

× 〈 l′ 1 1 ‖ [YL−1 ⊗ t]L ‖LC SC JC 〉 〈LC SC JC ‖ [YL′−1 ⊗ t]L′ ‖ l 1 1 〉
}

×
∫∫

rdr r′dr′ ul′(r) jL−1(
ωr

2
)GĈ(r, r′;E′0) jL′−1(

ωr′

2
)ul(r

′) (H.18)

Mσ2 σ2 a
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

∑

SC=0,1

JC+SC
∑

LC=|JC−SC |

∑

l,l′

π e2 ω2

2m2
N

(−1)L′−Mf−Mi+JC−λi−λf

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ)
√

(2L+ 1) (2L′ + 1)

×
(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

) (

JC L 1
−Mi − λi λi Mi

)

×
{

(µp + (−1)L′

µn) (µp + (−1)L µn) 〈 l′ 1 1 ‖ [YL′ ⊗ S]L′ ‖LC SC JC 〉

× 〈LC SC JC ‖ [YL ⊗ S]L ‖ l 1 1 〉 + (µp − (−1)L′

µn) (µp − (−1)L µn)

× 〈 l′ 1 1 ‖ [YL′ ⊗ t]L′ ‖LC SC JC 〉 〈LC SC JC ‖ [YL ⊗ t]L ‖ l 1 1 〉
}

×
∫∫

rdr r′dr′ ul(r) jL(
ωr

2
)GĈ(r, r′;E0) jL′(

ωr′

2
)ul′(r

′) (H.19)



APPENDIX H. FURTHER TERMS WITH NN -RESCATTERING 155

Mσ2 σ2 b
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

∑

SC=0,1

JC+SC
∑

LC=|JC−SC |

∑

l,l′

π e2 ω2

2m2
N

(−1)L′−λf−λi+JC

× iL+L′

dL′

Mf−Mi−λi,−λf
(θ)
√

(2L+ 1) (2L′ + 1)

×
(

1 L JC

−Mf λi Mf − λi

) (

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)

×
{

(µp + (−1)L µn) (µp + (−1)L′

µn) 〈 l′ 1 1 ‖ [YL ⊗ S]L ‖LC SC JC 〉

× 〈LC SC JC ‖ [YL′ ⊗ S]L′ ‖ l 1 1 〉 + (µp − (−1)L µn) (µp − (−1)L′

µn)

× 〈 l′ 1 1 ‖ [YL ⊗ t]L ‖LC SC JC 〉 〈LC SC JC ‖ [YL′ ⊗ t]L′ ‖ l 1 1 〉
}

×
∫∫

rdr r′dr′ ul′(r) jL(
ωr

2
)GĈ(r, r′;E′0) jL′(

ωr′

2
)ul(r

′) (H.20)

The reduced matrix elements are given in Eqs. (L.38, L.39). The operator [Yl ⊗ t]l
corresponds to SC = 0 (singlet), [Yl ⊗ S]l to SC = 1 (triplet).

In this appendix we calculated diagrams where only one-body currents are ex-
plicitly involved. In the next one we allow for explicit coupling of the photon to
two-body, i.e. to meson-exchange currents.



Appendix I

Diagrams with Explicit

Two-Body Currents

In this appendix we calculate diagrams explicitly including the two-body currents
shown in Fig. 6.2. However, it turned out from our calculation that the only non-
negligible of these currents is the Kroll-Ruderman (pair) current, Fig. 6.2(a). There-
fore the pion-pole current, Fig. 6.2(b), is only included via charge conservation, cf.
Eq. (6.10).

First we derive the Kroll-Ruderman current, including corrections due to the
photon energy. We then calculate several contributions with one of the photons
coupling to this current. Diagrams with explicit pion exchange at both vertices
were found to be small and are not considered in this work.

In order to calculate the interaction Hamiltonian, from which we derive the
Kroll-Ruderman current, we first sketch the relevant time-ordered diagrams in
Fig. I.1.

Figure I.1: Possible time-orderings for an incoming photon coupling to the Kroll-
Ruderman current.

Now we need to define the Hamiltonians for the γπN and the πNN coupling.
These are given in Eqs. (L.3, L.4) and can be used, together with Eqs. (L.2) and
(L.5-L.7) to write down the amplitude for the process Fig. I.1(a):

MKR a
fi =

∑

B

∑

±

∫

d3q

(2π)3
2π

Eπ
〈C | − f

mπ
(~σ2 · ~∇2)

1√
2
τ±2 ei~q·~x2 | B 〉 (I.1)

× 1

ω + ω2

2md
−B − EB − Eπ

〈B | i e f
mπ

(~σ1 · ~A(~x1))
1√
2

(∓τ∓1 ) e−i~q·~x1 | di 〉

EB is the energy of the two-nucleon state | B 〉 while the pion is in flight. In order to
derive the expression given for the Kroll-Ruderman current in Eq. (6.73) one would
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have to make the assumption that Eπ =
√

m2
π + ~q 2 is the by far dominant term in

the energy denominator of Eq. (I.1). However, for ω ∼ 100 MeV, this is a rather
crude approximation. Therefore we keep the photon energy in the denominator and

do the approximation ω + ω2

2md
− B − EB − Eπ ≈ ω − Eπ. Nevertheless, we first

approximate the denominator by the negative pion energy −Eπ, i.e. we set ω = 0,
to check whether we get the correct result for ~J KR

stat .

Neglecting the energy of the intermediate state | B 〉 in the denominator, one
can collapse the sum over B and we find

MKR a
fi stat =

π e f2

im2
π

〈C | (τ+
2 τ−1 − τ−2 τ+

1 )

∫

d3q

(2π)3
(~σ2 · ~∇2)

ei~q·(~x2−~x1)

m2
π + ~q 2

(~σ1 · ~A(~x1)) | di 〉.
(I.2)

From our definition for τ± (Eq. (L.5)) follows τ+
2 τ−1 − τ−2 τ+

1 = 2 i (~τ1 × ~τ2)z. Fur-

thermore we define, as in Section 8.3 of [57], ~x1−~x2 = ~r. Therefore ~∇2 = ~∇x2−x1 =
~∇−r = −~∇r. The integral over d3q can easily be evaluated, yielding

∫

d3q

(2π)3
e−i~q·~r

m2
π + ~q 2

=
e−mπr

4π r
. (I.3)

Therefore we find

MKR a
fi stat = − e f2

2m2
π

〈C | (~τ1 × ~τ2)z (~σ2 · ~∇r)
e−mπr

r
(~σ1 · ~A(~x1)) | di 〉

= − e f2

2m2
π

〈C | (~τ1 × ~τ2)z (~σ2 · r̂)
∂

∂r

e−mπr

r
(~σ1 · ~A(~x1)) | di 〉. (I.4)

The calculation of diagram I.1(b), where the pion is destroyed rather than created
at the γπN vertex, is very similar to the derivation of Eq. (I.4). The amplitude is

MKR b
fi =

∑

B

∑

±

∫

d3q

(2π)3
2π

Eπ
〈C | i e f

mπ
(~σ1 · ~A(~x1))

1√
2

(∓τ∓1 ) ei~q·~x1 | B 〉

× 1

−B − EB − Eπ
〈B | − f

mπ
(~σ2 · ~∇2)

1√
2
τ±2 e−i~q·~x2 | di 〉, (I.5)

so the only differences are that ~∇2 → −i ~q rather than i ~q and the interchange
of ~τ1, ~τ2, which gives an additional sign. These two signs cancel and therefore
MKR b

fi = MKR a
fi . Diagrams I.1(c), (d) are identical to diagrams (a), (b) with the

nucleons exchanged. This exchange leads to (~τ1 × ~τ2)z → − (~τ1 × ~τ2)z and r̂ → −r̂
in Eq. (I.4), so we get for diagram I.1(c) (which is, of course, identical to diagram
I.1(d))

MKR c
fi stat = − e f2

2m2
π

〈C | (~τ1 × ~τ2)z (~σ1 · r̂)
∂

∂r

e−mπr

r
(~σ2 · ~A(~x2)) | di 〉. (I.6)

Adding the four amplitudes I.1(a)-(d), we find for the corresponding interaction
Hamiltonian, by removing the initial and final state,

H intKR
stat = −e f

2

m2
π

(~τ1 × ~τ2)z

[

(~σ2 · r̂) (~σ1 · ~A(~x1)) + (~σ1 · r̂) (~σ2 · ~A(~x2))
] ∂

∂r

e−mπr

r
,

(I.7)

which is identical to −
∫

~J KR
stat (

~ξ; ~x1, ~x2)· ~A(~ξ ) with ~J KR
stat (

~ξ; ~x1, ~x2) given in Eq. (6.73).

Now we discuss how this result changes when we retain the photon energy in
the denominator. Again we start with diagram (a) of Fig. I.1 and find instead of
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Eq. (I.2)

MKR a
fi = −π e f

2

im2
π

〈C | (τ+
2 τ−1 − τ−2 τ+

1 ) (I.8)

×
∫

d3q

(2π)3
(~σ2 · ~∇2)

ei~q·(~x2−~x1)

√

m2
π + ~q 2 (ω −

√

m2
π + ~q 2)

(~σ1 · ~A(~x1)) | di 〉.

In order to perform the integral, we do an expansion of the integrand in ω. This
expansion is possible to any order, and it converges quite fast. We found that our
results achieved with an expansion up to O(ω7) only deviate by about 0.1% from
analogous results using the expansion up to O(ω6). Therefore the error introduced
by cutting off the expansion at O(ω7) is certainly negligibly small. The resulting
interaction Hamiltonian is

H intKR a ≈ −e f
2

m2
π

(~τ1 × ~τ2)z (~σ2 · r̂) (~σ1 · ~A(~x1))
∂

∂r

{

e−mπr

2 r
+
K0(mπr)

π
ω

+
e−mπr

4mπ
ω2 +

r K1(mπr)

3mπ π
ω3 +

e−mπr (1 +mπr)

16m3
π

ω4 +
r2K2(mπr)

15m2
π π

ω5

+
e−mπr (3 + 3mπr +m2

π r
2)

96m5
π

ω6 +
r3K3(mπr)

105m3
π π

ω7

}

, (I.9)

Ki(z) being the modified Bessel functions of the second kind.
The photon energy ω does not appear in the denominator of diagram I.1(b).

Therefore we find the same interaction Hamiltonian as in the static case. Exchange
of the nucleons is treated as before, leaving us with

H intKR
s = −e f

2

m2
π

(~τ1 × ~τ2)z

[

(~σ2 · r̂) (~σ1 · ~A(~x1)) + (~σ1 · r̂) (~σ2 · ~A(~x2))
] ∂

∂r
fKR

s (r),

(I.10)
with

fKR
s (r) =

e−mπr

r
+
K0(mπr)

π
ω +

e−mπr

4mπ
ω2

+
r K1(mπr)

3mπ π
ω3 +

e−mπr (1 +mπr)

16m3
π

ω4 +
r2K2(mπr)

15m2
π π

ω5

+
e−mπr (3 + 3mπr +m2

π r
2)

96m5
π

ω6 +
r3K3(mπr)

105m3
π π

ω7. (I.11)

The index s signals that Eq. (I.10) is only valid for s-channel diagrams. In the
u-channel, the both time orderings correspond to the (approximate) energy de-
nominators 1

−Eπ
and 1

−ω−Eπ
, respectively. The net effect is an alternating sign in

fKR(r), say

fKR
u (r) =

e−mπr

r
− K0(mπr)

π
ω +

e−mπr

4mπ
ω2

− r K1(mπr)

3mπ π
ω3 +

e−mπr (1 +mπr)

16m3
π

ω4 − r2K2(mπr)

15m2
π π

ω5

+
e−mπr (3 + 3mπr +m2

π r
2)

96m5
π

ω6 − r3K3(mπr)

105m3
π π

ω7. (I.12)

We note that the amplitudes which we calculate in this appendix deviate by about
25%, depending on whether we use the static interaction Hamiltonian (I.7) or a
corrected one, including Eq. (I.11) or (I.12), respectively.



APPENDIX I. EXPLICIT TWO-BODY CURRENTS 159

Figure I.2: Diagrams with one photon coupling to the Kroll-Ruderman current.

We are now able to use the Kroll-Ruderman interaction Hamiltonian to calculate
the diagrams displayed in Fig. I.2. As explained in Sect. 6.1.2, there are only a
few combinations to be taken into account. These are MKR fullσ1

fi , Mφ KR1
fi and

Mφ KR2
fi . The indices ’full’, ’1’, ’2’ denote the coupling of the full photon field ~A or

of ~A(1), ~A(2), respectively. First we compute the contributions MKR fullσ1
fi , where we

skip the index ’full’ for brevity. These four amplitudes have already been calculated
in [24], however using the static Kroll-Ruderman Hamiltonian (I.7). They read

MKR σ1 a
fi = −

∑

C

〈 df |
∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ | C 〉〈C | H intKR
s | di 〉

ω + ω2

2md
− B − EC

,

MKR σ1 b
fi = −

∑

C

〈 df | H intKR
s | C 〉〈C |

∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ | di 〉
ω + ω2

2md
− B − EC

,

MKR σ1 c
fi = −

∑

C

〈 df |
∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ | C 〉〈C | H intKR
u | di 〉

−ω + ω2

2md
− ~PC

2

2mC
−B − EC

,

MKR σ1 d
fi = −

∑

C

〈 df | H intKR
u | C 〉〈C |

∫

~J (σ)(~ξ ) · ~A(1)(~ξ ) d3ξ | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

, (I.13)

which follows immediately from Eq. (6.1). As explained in Section 6.1.2, we only

consider that part of
∫

~J (σ)(~ξ )· ~A(1)(~ξ ) d3ξ, which contains the operator [YL−1⊗t]L,
cf. Eq. (6.67). Plugging this expression and the Kroll-Ruderman-Hamiltonian into
the first amplitude of Eq. (I.13) we find

MKR σ1 a
fi = −

∑

C

〈 df | −
∞
∑

L′=1

L′

∑

M ′=−L′

λf

√

2π (L′ + 1)
e ω

2md
iL

′+1 jL′−1(
ωr

2
)

×
(

µp + (−1)L′

µn

)

[YL′−1 ⊗ t]L′ M ′

(

−(−1)L′+λf dL′

M ′,−λf
(θ)
)

| C 〉 1

ω + ω2

2md
−B − EC

× 〈C | −e f
2

m2
π

(~τ1 × ~τ2)z

{

(~σ1 · ǫ̂λi) (~σ2 · r̂) ei~ki~x1 + (~σ2 · ǫ̂λi) (~σ1 · r̂) ei~ki~x2

} ∂

∂r
fKR

s (r) | di 〉.

(I.14)

We decompose the exponentials into multipoles according to Eq. (F.1), replacing
~x1 → ~r

2 , ~x2 → −~r
2 as usual, and use

1√
2
〈 p n+ n p | (~τ1 × ~τ2)z

1√
2
| p n− n p 〉 = −2 i, (I.15)
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cf. Eq. (6.76). Therefore,

MKR σ1 a
fi = −

∑

Ĉ

∞
∑

L′=1

L′

∑

M ′=−L′

∞
∑

L=0

L
∑

M=−L

∑

l,l′

4π λf e
2 f2 ω

mN m2
π

iL+L′

(−1)L′+λf Y ∗L M (k̂i)

×
(

µp + (−1)L′

µn

)

dL′

M ′,−λf
(θ)
√

2π (L′ + 1) 〈 l′ 1 1Mf | [YL′−1 ⊗ t]L′ M ′ | LC SC JC MC 〉

× 〈LC SC JC MC |
{

(~σ1 · ǫ̂λi) (~σ2 · r̂) + (−1)L(~σ2 · ǫ̂λi) (~σ1 · r̂)
}

YL M (r̂) | l 1 1Mi 〉

×
∫∫

r dr r′ dr′ ul′(r
′) jL′−1(

ωr′

2
)GĈ(r, r′;E0) jL(

ωr

2
)ul(r)

∂

∂r
fKR

s (r). (I.16)

We now apply the Wigner-Eckart theorem (L.31), the identity Y ∗L M (k̂i) = 1
2

√

2L+1
π δM,0

and decompose the scalar products into spherical components, using rj =
√

4π
3 Y1 j(r̂).

We further put SC = 0 due to Eq. (L.39).

MKR σ1 a
fi =

∑

Ĉ

∞
∑

L′=1

L′

∑

M ′=−L′

∞
∑

L=0

∑

l,l′

∑

i,j

4π λf e
2 f2 ω

mN m2
π

√

π

3
iL+L′

(−1)L′+λf +1−Mf+i+j

×
(

µp + (−1)L′

µn

)

(ǫ̂λi)−i d
L′

M ′,−λf
(θ)
√

2 (L′ + 1) (2L+ 1)

×
∫∫

r dr r′ dr′ ul′(r
′) jL′−1(

ωr′

2
)GĈ(r, r′;E0) jL(

ωr

2
)ul(r)

∂

∂r
fKR

s (r)

×
(

1 L′ JC

−Mf M ′ MC

)

〈 l′ 1 1 ‖ [YL′−1 ⊗ t]L′ ‖ JC 0 JC 〉

× 〈JC 0 JC MC | σ2 j σ1 i Y1−j YL 0 + (−1)L σ1 j σ2 i Y1−j YL 0 | l 1 1Mi 〉 (I.17)

The second matrix element in Eq. (I.17) is evaluated according to Eq. (G.35). From

〈S1 ‖S − t ‖ s 〉 〈 s ‖S + t ‖S2 〉 and the definitions of ~S, ~t, cf. Eq. (G.35), we see
that the product σ2 j σ1 i is antisymmetric under the interchange 1 ↔ 2 in the spin-
changing, symmetric in the spin-conserving case. In Eq. (I.17) we have S1 = 0 and
S2 = 1. Therefore only two of the four combinations are possible:

〈S1 ‖S − t ‖ s 〉 〈 s ‖S + t ‖S2 〉 → 〈S1 ‖S ‖ s 〉 〈 s ‖ t ‖S2 〉 − 〈S1 ‖ t ‖ s 〉 〈 s ‖S ‖S2 〉
(I.18)

From Eqs. (L.35, L.36) we find that the only non-vanishing product of spin matrix
elements is

〈 0 ‖ t ‖ s 〉 〈 s ‖S ‖ 1 〉 = −3
√

2 δs,1. (I.19)

The 9-j symbol guarantees that S′ = 1, cf. Eq. (L.25). Therefore we can easily
evaluate the sum over s and find

∑

s

{

1 1 1
1 0 s

}

〈 0 ‖S − t ‖ s 〉 〈 s ‖S + t ‖ 1 〉 = −
√

2. (I.20)

Nevertheless, we keep the compact notation of Eq. (I.17) to write down the final
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result:

MKR σ1 a
fi =

∞
∑

L=0

∞
∑

L′=1

L′+1
∑

JC=|L′−1|

∑

l,l′

∑

i,j

4π λf e
2 f2 ω

mN m2
π

√

π

3
iL+L′

(−1)L′+λf +1−Mf +i+j

×
(

µp + (−1)L′

µn

)

(ǫ̂λi)−i d
L′

Mf−Mi−i,−λf
(θ)
√

2 (L′ + 1) (2L+ 1)

×
∫∫

r dr r′ dr′ ul′(r
′) jL′−1(

ωr′

2
)GĈ(r, r′;E0) jL(

ωr

2
)ul(r)

∂

∂r
fKR

s (r)

×
(

1 L′ JC

−Mf Mf −Mi − i Mi + i

)

〈 l′ 1 1 ‖ [YL′−1 ⊗ t]L′ ‖ JC 0 JC 〉

× 〈JC 0 JC Mi + i | σ2 j σ1 i Y1−j YL 0 | l 1 1Mi 〉
(

1 − (−1)L
)

(I.21)

Obviously the leading orbital angular momenta are L = L′ = 1. As |µp − µn| ≫
|µp + µn|, one may restrict oneself to this contribution.

The evaluation of MKR σ1 b-d
fi is quite similar to the derivation of Eq. (I.21).

Therefore we only give the results:

MKR σ1 b
fi =

∞
∑

L=1

∞
∑

L′=0

L+1
∑

JC=|L−1|

∑

l,l′

∑

i,j

8π λi e
2 f2 ω

mN m2
π

√

π

3
iL+L′

(−1)JC−Mi−λi+i+j

×
(

µp + (−1)L µn

)

(ǫ̂∗λf
)−i Y

∗
L′ Mf−Mi−λi−i(k̂f )

√

2π (L+ 1)

×
∫∫

r dr r′ dr′ ul(r) jL−1(
ωr

2
)GĈ(r, r′;E0) jL′(

ωr′

2
)ul′(r

′)
∂

∂r′
fKR

s (r′)

× 〈 l′ 1 1Mf | σ2 j σ1 i Y1−j YL′ Mf−Mi−λi−i | JC 0 JC Mi + λi 〉

× 〈JC 0 JC ‖ [YL−1 ⊗ t]L ‖ l 1 1 〉
(

JC L 1
−Mi − λi λi Mi

)

(

(−1)L′ − 1
)

(I.22)

MKR σ1 c
fi =

∞
∑

L=1

∞
∑

L′=0

L+1
∑

JC=|L−1|

∑

l,l′

∑

i,j

8π λi e
2 f2 ω

mN m2
π

√

π

3
iL+L′

(−1)−Mf+i+j

×
(

µp + (−1)L µn

)

(ǫ̂∗λf
)−i Y

∗
L′ Mf−Mi−λi−i(k̂f )

√

2π (L+ 1)

×
∫∫

r dr r′ dr′ ul′(r) jL−1(
ωr

2
)GĈ(r, r′;E′0) jL′(

ωr′

2
)ul(r

′)
∂

∂r′
fKR

u (r′)

×
(

1 L JC

−Mf λi Mf − λi

)

〈 l′ 1 1 ‖ [YL−1 ⊗ t]L ‖ JC 0 JC 〉 (I.23)

× 〈JC 0 JC Mf − λi | σ2 j σ1 i Y1−j YL′ Mf−Mi−λi−i | l 1 1Mi 〉
(

(−1)L′ − 1
)

MKR σ1 d
fi =

∞
∑

L=0

∞
∑

L′=1

L′+1
∑

JC=|L′−1|

∑

l,l′

∑

i,j

4π λf e
2 f2 ω

mN m2
π

√

π

3
iL+L′

(−1)L′−λf +1+j+JC−Mf

×
(

µp + (−1)L′

µn

)

(ǫ̂λi)−i d
L′

Mf−Mi−i,−λf
(θ)
√

2 (L′ + 1) (2L+ 1)

×
∫∫

r dr r′ dr′ ul(r
′) jL′−1(

ωr′

2
)GĈ(r, r′;E′0) jL(

ωr

2
)ul′(r)

∂

∂r
fKR

u (r)

× 〈 l′ 1 1Mf | σ2 j σ1 i Y1−j YL 0 | JC 0 JC Mf − i 〉 (I.24)

× 〈JC 0 JC ‖ [YL′−1 ⊗ t]L′ ‖ l 1 1 〉
(

JC L′ 1
−Mf + i Mf −Mi − i Mi

)

(

1 − (−1)L
)
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In MKR σ1 b,d
fi we used

1

2
〈 p n− n p | (~τ1 × ~τ2)z | p n+ n p 〉 = 2 i. (I.25)

We turn now to the calculation of Mφ KR1
fi and Mφ KR2

fi , going beyond Ref. [24].
First we demonstrate the isospin-changing character of φ(~xp). Therefore, we explic-
itly write the isospin-dependence of φ, as we did in Eq. (G.24) and evaluate this
operator between two isospin wave functions with T = 0 and T = 1, respectively.

1

2
〈 p n− n p |

∑

j=1,2

1

2
(1 + τ j

z )φ(~xj) | p n+ n p 〉

=
1

4
〈 p n− n p | τ1

z φ(~x1) + τ2
z φ(~x2) | p n+ n p 〉

=
1

2
(φ(~x1) − φ(~x2)) =

1

2
(φ(~r/2) − φ(−~r/2)) (I.26)

The last step reflects our usual choice ~x1 = ~r
2 , ~x2 = −~r

2 . The only angular operator
contained in φ is YL. As we need an isospin-changing matrix element, L has to be
odd, which follows from Eq. (L.38), see also Section 6.1.2. Due to this observation
and the definition of φ(~r), Eq. (6.4), which implies φL odd(−~r/2) = −φL odd(~r/2),
we may replace 1

2 (φ(~r/2) − φ(−~r/2)) → φ(~r/2) in the following. An explicit proof
of our claim L odd is given after Eq. (I.30).

We start with the calculation of Mφ KR1
fi . The four amplitudes follow immedi-

ately from Eq. (6.56):

Mφ KR1 a
fi = i

(

ω +
ω2

2md

)

∑

C

〈 df | φ̂f | C 〉〈C | H intKR1
s | di 〉

ω + ω2

2md
−B − EC

Mφ KR1 b
fi = −i

(

ω +
ω2

2md

)

∑

C

〈 df | H intKR1
s | C 〉〈C | φ̂i | di 〉
ω + ω2

2md
−B − EC

Mφ KR1 c
fi = −i

(

ω − ω2

2md
+

~PC
2

2mC

)

∑

C

〈 df | φ̂i | C 〉〈C | H intKR1
u | di 〉

−ω + ω2

2md
− ~PC

2

2mC
−B − EC

Mφ KR1 d
fi = i

(

ω − ω2

2md
+

~PC
2

2mC

)

∑

C

〈 df | H intKR1
u | C 〉〈C | φ̂f | di 〉

−ω + ω2

2md
− ~PC

2

2mC
−B − EC

(I.27)

Now we have to specify H intKR1, which is achieved by replacing ~A by ~A(1) in
Eq. (I.10). We find, using Eq. (F.17),

H intKR1
s,u =

∑

~k,λ

∞
∑

L=1

L
∑

M=−L

e f2

m2
π

(~τ1 × ~τ2)z λ
√

2π (2L+ 1) iL jL(
ωr

2
)
[

a~k,λ δM,λ

− a†~k,λ
(−1)L+λ dL

M,−λ(θ)
] {

(~σ1 · ~TL L M (~x1)) (~σ2 · r̂) + (~σ2 · ~TL L M(~x2)) (~σ1 · r̂)
} ∂

∂r
fKR

s,u (r).

(I.28)

The scalar products are expanded into spherical components, according to Eq. (H.2).

H intKR1
s,u = −

∑

~k,λ

∞
∑

L=1

L
∑

M=−L

∑

i,j

2π e f2

m2
π

(~τ1 × ~τ2)z (−1)j−L−M iL
√

2

3
λ (2L+ 1) jL(

ωr

2
)

×
[

a~k,λ δM,λ − a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

(

L 1 L
M − i i −M

)

× σ2 j σ1 i Y1−j YL M−i

(

1 + (−1)L
) ∂

∂r
fKR

s,u (r) (I.29)
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Here we used the fact that the matrix element arising from φ does not change the
spin, i.e. SC = 1 in the following amplitudes, and the symmetry of σ2 j σ1 i under
1 ↔ 2 for spin-conserving matrix elements, as observed in Eq. (G.35). Therefore,
the Hamiltonian (I.29) only holds for spin-conserving matrix elements.

Now the evaluation of the amplitudes (I.27) is straightforward and very similar
to the calculation of MKR σ1

fi . Therefore we only give the results.

Mφ KR1 a
fi =

∞
∑

L=1

∞
∑

L′=1

L′+1
∑

JC=|L′−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

∑

i,j

8π e2 f2

m2
π

(

1 +
ω

2md

)

× (−1)L′−L−λf−λi+j−Mf iL+L′+1 λi d
L′

Mf−Mi−λi,−λf
(θ) (2L+ 1)

√

π (2L′ + 1)

3L′ (L′ + 1)

×
∫∫

r dr r′ dr′ ul′(r
′)ψL′(

ωr′

2
)GĈ(r, r′;E0) jL(

ωr

2
)ul(r)

∂

∂r
fKR

s (r)

×
(

L 1 L
λi − i i −λi

)(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

)

〈 l′ 1 1 ‖ YL′ ‖LC 1 JC 〉

× 〈LC 1 JC Mi + λi | σ2 j σ1 i Y1−j YL λi−i | l 1 1Mi 〉
(

1 + (−1)L
)

(I.30)

Before we write down the remaining amplitudes we prove explicitly our claim in
the context of Eq. (I.26) that L′ has to be an odd number. The last bracket of
Eq. (I.30) demands L even. From Eq. (L.21) we know that the index L′′, which is
summed over in Eq. (G.35), has to be odd and from 〈LC ‖ YL′′ ‖ l 〉 follows that LC

has to be an odd number too, cf. Eq. (L.34), because l is even. That is exactly
what we need, as LC +SC +TC has to be odd (cf. Section 6.1.2) and SC = TC = 1.
Eq. (L.37) then tells us that in fact L′, the orbital angular momentum number of φ,
has to be an odd number. This also holds in the following three amplitudes, albeit
we don’t show it explicitly. These are

Mφ KR1 b
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

∑

i,j

8π e2 f2

m2
π

(

1 +
ω

2md

)

× (−1)1−λf +j−Mf +JC iL+L′+1 λf d
L′

Mf−Mi−λi,−λf
(θ) (2L′ + 1)

√

π (2L+ 1)

3L (L+ 1)

×
∫∫

r dr r′ dr′ ul(r)ψL(
ωr

2
)GĈ(r, r′;E0) jL′(

ωr′

2
)ul′(r

′)
∂

∂r′
fKR

s (r′) (I.31)

×
(

L′ 1 L′

Mf −Mi − λi − i i −Mf +Mi + λi

)(

JC L 1
−Mi − λi λi Mi

)

(

1 + (−1)L′
)

× 〈 l′ 1 1Mf | σ2 j σ1 i Y1−j YL′ Mf−Mi−λi−i | LC 1 JC Mi + λi 〉 〈LC 1 JC ‖ YL ‖ l 1 1 〉,

Mφ KR1 c
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

∑

i,j

8π e2 f2

m2
π ω

(

ω − ω2

2md
+

~PC
2

2mC

)

× (−1)1−λf +λi+j+Mi iL+L′+1 λf d
L′

Mf−Mi−λi,−λf
(θ) (2L′ + 1)

√

π (2L+ 1)

3L (L+ 1)

×
∫∫

r dr r′ dr′ ul′(r)ψL(
ωr

2
)GĈ(r, r′;E′0) jL′(

ωr′

2
)ul(r

′)
∂

∂r′
fKR

u (r′) (I.32)

×
(

L′ 1 L′

Mf −Mi − λi − i i −Mf +Mi + λi

)(

1 L JC

−Mf λi Mf − λi

)

(

1 + (−1)L′
)

× 〈 l′ 1 1 ‖ YL ‖LC 1 JC 〉 〈LC 1 JC Mf − λi | σ2 j σ1 i Y1−j YL′ Mf−Mi−λi−i | l 1 1Mi 〉,
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Mφ KR1 d
fi =

∞
∑

L=1

∞
∑

L′=1

L′+1
∑

JC=|L′−1|

JC+1
∑

LC=|JC−1|

∑

l,l′

∑

i,j

8π e2 f2

m2
π ω

(

ω − ω2

2md
+

~PC
2

2mC

)

× (−1)j−L+L′−λf +JC−Mf iL+L′+1 λi d
L′

Mf−Mi−λi,−λf
(θ) (2L + 1)

√

π (2L′ + 1)

3L′ (L′ + 1)

×
∫∫

r dr r′ dr′ ul(r
′)ψL′(

ωr′

2
)GĈ(r, r′;E′0) jL(

ωr

2
)ul′(r)

∂

∂r
fKR

u (r) (I.33)

×
(

L 1 L
λi − i i −λi

)(

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)

(

1 + (−1)L
)

× 〈 l′ 1 1Mf | σ2 j σ1 i Y1−j YL λi−i | LC 1 JC Mf − λi 〉 〈LC 1 JC ‖ YL′ ‖ l 1 1 〉.

Finally, we need H intKR2
s,u in order to calculate the amplitudes Mφ KR2

fi . We replace

~A by ~A(2) in Eq. (I.10) and find

H intKR2
s,u =

∑

~k,λ

∞
∑

L=1

L
∑

M=−L

e f2 ω

m2
π

(~τ1 × ~τ2)z

√

2π (2L+ 1)

L (L+ 1)
iL+1 jL(

ωr

2
)
[

a~k,λ δM,λ

− a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

{(~σ1 · ~x1) (~σ2 · r̂)YL M (~x1) + (~σ2 · ~x2) (~σ1 · r̂)YL M (~x2)}
∂

∂r
fKR

s,u (r).

(I.34)

We substitute ~x1 → ~r
2 = r

2 · r̂, ~x2 → − r
2 · r̂ and combine the two spherical harmonics

resulting from (~σ1 · r̂) (~σ2 · r̂) via Eq. (L.26). The result is, again assuming spin
conservation,

H intKR2
s,u =

∑

~k,λ

∞
∑

L=1

L
∑

M=−L

∑

J=0,2

∑

i,j

2π e f2 ω

m2
π

(~τ1 × ~τ2)z i
L+1

√

(2L+ 1) (2J + 1)

2L (L+ 1)
jL(

ωr

2
)

×
[

a~k,λ δM,λ − a†~k,λ
(−1)L+λ dL

M,−λ(θ)
]

(

1 1 J
0 0 0

) (

1 1 J
−i −j i+ j

)

× σ2 j σ1 i YJ −i−j YL M

(

1 − (−1)L
)

r
∂

∂r
fKR

s,u (r). (I.35)

The amplitudes are identical to Eq. (I.27), except for H intKR1 → H intKR2. There-
fore we can immediately write down the results:

Mφ KR2 a
fi =

∞
∑

L=1

∞
∑

L′=1

L′+1
∑

JC=|L′−1|

JC+1
∑

LC=|JC−1|

∑

J=0,2

∑

l,l′

∑

i,j

4π e2 f2

m2
π

(

ω +
ω2

2md

)

× (−1)L′−λf−Mf iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

π (2L+ 1) (2L′ + 1) (2J + 1)

L (L+ 1)L′ (L′ + 1)

×
∫∫

r dr r′ dr′ ul′(r
′)ψL′(

ωr′

2
)GĈ(r, r′;E0) jL(

ωr

2
)ul(r) r

∂

∂r
fKR

s (r)

×
(

1 L′ JC

−Mf Mf −Mi − λi Mi + λi

)(

1 1 J
0 0 0

) (

1 1 J
−i −j i+ j

)

(

1 − (−1)L
)

× 〈 l′ 1 1 ‖ YL′ ‖LC 1 JC 〉 〈LC 1 JC Mi + λi | σ2 j σ1 i YJ −i−j YL λi | l 1 1Mi 〉
(I.36)

Obviously, L has to be an odd number. J is even, which means LC has to be odd,
as well as L′. Therefore our prediction of odd angular quantum numbers for φ still
holds.
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The remaining three amplitudes are:

Mφ KR2 b
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

J=0,2

∑

l,l′

∑

i,j

4π e2 f2

m2
π

(

ω +
ω2

2md

)

× (−1)1+L′−λf−λi+JC−Mi iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

π (2L+ 1) (2L′ + 1) (2J + 1)

L (L+ 1)L′ (L′ + 1)

×
∫∫

r dr r′ dr′ ul(r)ψL(
ωr

2
)GĈ(r, r′;E0) jL′(

ωr′

2
)ul′(r

′) r′
∂

∂r′
fKR

s (r′)

×
(

JC L 1
−Mi − λi λi Mi

)(

1 1 J
0 0 0

) (

1 1 J
−i −j i+ j

)

(

1 − (−1)L′
)

× 〈 l′ 1 1Mf | σ2 j σ1 i YJ −i−j YL′ Mf−Mi−λi | LC 1 JC Mi + λi 〉 〈LC 1 JC ‖ YL ‖ l 1 1 〉
(I.37)

Mφ KR2 c
fi =

∞
∑

L=1

∞
∑

L′=1

L+1
∑

JC=|L−1|

JC+1
∑

LC=|JC−1|

∑

J=0,2

∑

l,l′

∑

i,j

4π e2 f2

m2
π

(

ω − ω2

2md
+

~PC
2

2mC

)

× (−1)1+L′−λf−Mf iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

π (2L+ 1) (2L′ + 1) (2J + 1)

L (L+ 1)L′ (L′ + 1)

×
∫∫

r dr r′ dr′ ul′(r)ψL(
ωr

2
)GĈ(r, r′;E′0) jL′(

ωr′

2
)ul(r

′) r′
∂

∂r′
fKR

u (r′)

×
(

1 L JC

−Mf λi Mf − λi

)(

1 1 J
0 0 0

) (

1 1 J
−i −j i+ j

)

(

1 − (−1)L′
)

× 〈 l′ 1 1 ‖ YL ‖LC 1 JC 〉 〈LC 1 JC Mf − λi | σ2 j σ1 i YJ −i−j YL′ Mf−Mi−λi | l 1 1Mi 〉
(I.38)

Mφ KR2 d
fi =

∞
∑

L=1

∞
∑

L′=1

L′+1
∑

JC=|L′−1|

JC+1
∑

LC=|JC−1|

∑

J=0,2

∑

l,l′

∑

i,j

4π e2 f2

m2
π

(

ω − ω2

2md
+

~PC
2

2mC

)

× (−1)L′−λf+λi+JC−Mf iL+L′

dL′

Mf−Mi−λi,−λf
(θ)

√

π (2L+ 1) (2L′ + 1) (2J + 1)

L (L+ 1)L′ (L′ + 1)

×
∫∫

r dr r′ dr′ ul(r
′)ψL′(

ωr′

2
)GĈ(r, r′;E′0) jL(

ωr

2
)ul′(r) r

∂

∂r
fKR

u (r)

×
(

JC L′ 1
−Mf + λi Mf −Mi − λi Mi

)(

1 1 J
0 0 0

) (

1 1 J
−i −j i+ j

)

(

1 − (−1)L
)

× 〈 l′ 1 1Mf | σ2 j σ1 i YJ −i−j YL λi | LC 1 JC Mf − λi 〉 〈LC 1 JC ‖ YL′ ‖ l 1 1 〉
(I.39)



Appendix J

Corrections to the Charge

Density

In this appendix we give an estimate which shows that we do not need to take into
account corrections to the charge density due to meson exchange, cf. Sect. 6.1.1.
As we found that only the Kroll-Ruderman current (Fig. 6.2) gives non-negligible
contributions, we assume that we may also neglect the charge density corresponding
to the pion-pole current. Nevertheless we briefly demonstrate the small size of this
term.

Figure J.1: Momenta in the coupling of a photon to the pion-pole current.

The pion-pole current is proportional to ~k1 − ~k2, with ~k1, ~k2 the momenta
transferred to nucleon 1 and 2, see Fig. J.1. Therefore, ρpion−pole

ex ∝ k0
1 − k0

2 =

p′01 − p0
1 − (p′02 − p0

2) = p′01 − p′02 − (p0
1 − p0

2) with p0
i =

√

m2
N + ~p 2

i ≈ mN +
~p 2

i

2mN
.

In the limit of a static deuteron, which is assumed throughout the whole work,
except for energy denominators, the kinetic energies of the two nucleons are equal
and k0

1 − k0
2 vanishes. We therefore conclude that we only have to take care of ρKR

ex ,
which is the charge density corresponding to the Kroll-Ruderman current.

First we derive an explicit expression for ρKR
ex . The γπN -vertex is proportional

to ǫ · S with the Pauli-Lubanski spin vector defined as, see e.g. [35],

Sµ =
i

2
γ5 σ

µν vν , (J.1)

where σµν = i
2 [γµ, γν ]. We use γ5 =

(

0 1
1 0

)

and σ0i = i

(

0 σi

σi 0

)

, cf. e.g.

[36]. The four-velocity vν is [109]

vν =





1√
1−v2/c2

~v

c
√

1−v2/c2



 , (J.2)
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which in the static limit reduces to

vstat
ν =









1
0
0
0









. (J.3)

In this limit we find for the spin vector

Sµ =
i

2
γ5 σ

µ0 =
1

2





0
(

~σ 0
0 ~σ

)



 , (J.4)

which means that in the non-relativistic reduction we may replace ~S → 1
2 ~σ, i.e.

~J KR ∝ ~σ, in agreement with Eq. (6.73). Our task is therefore to calculate the

leading contribution to S0. Approximating v2

c2 ≈ 0 and returning to units with
c = 1, we find

S0 =
i

2
γ5 σ

0ν vν = − i

2
γ5 σ

0i vi ≈
1

2

(

~σ · ~v 0
0 ~σ · ~v

)

. (J.5)

Therefore we have to replace

S0 → 1

2
~σ · ~v =

1

2
~σ · ~p

mN
, (J.6)

which leads us to [57]

ρKR
ex (~k1, ~k2) = −i e

(

4π f2

mN m2
π

)

(~τ1 × ~τ2)z

{

(~σ1 · ~p1) (~σ2 · ~k2)

~k2

2
+m2

π

− (~σ2 · ~p2) (~σ1 · ~k1)

~k1

2
+m2

π

}

,

(J.7)
or, in position space,

ρKR
ex (~ξ; ~x1, ~x2) =

e f2

mN m2
π

(~τ1 × ~τ2)z

{

δ(~x1 − ~ξ) (~σ2 · r̂) (~σ1 · ~p1)

+ δ(~x2 − ~ξ) (~σ1 · r̂) (~σ2 · ~p2)
} ∂

∂r

e−mπr

r
. (J.8)

We neglect the correction to e−mπr

r described in App. I, as we only want to give an
estimate for the size of corrections due to the meson-exchange charge density.

Now we have to think about how to include ρex into the calculation. In the long-
wavelength limit, the photon cannot resolve the deuteron, i.e. the deuteron appears
as a charged, pointlike, static object to the photon. Therefore also the nucleons
appear to be static in this limit and Siegert’s hypothesis [84] guarantees that the

γd scattering amplitude is described by ρ0(~ξ) only, whereas meson-exchange effects
cannot be resolved. Thus ρex does not contribute in the static limit. However
this does not need to be the case for non-zero photon energies. In the high-energy
regime of our calculation, say in the order of ω ∼ 100 MeV, we found the amplitudes
containing the structure 〈 df | φ̂ | C 〉〈C | φ̂ | di 〉 to be the dominant terms arising

from ~∇ · ~J = −i [H, ρ] (cf. Sect. 6.1.1 and App. G). Therefore we assume that for

a numerical estimate of the importance of ρex we may replace ~∇ · ~J → −i [H, ρ0]

at one interaction vertex and ~∇ · ~J → −i [H, ρex] at the other. Repeating the steps
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described in Eqs. (6.11-6.22) we find

Mρex a
fi =

(

ω +
ω2

2md

)2
∑

C

〈 df | φ̂f | C 〉〈C |
∫

ρex(~ξ; ~x1, ~x2)φi(~ξ ) d3ξ | di 〉
ω + ω2

2md
−B − EC

,

Mρex b
fi =

(

ω +
ω2

2md

)2
∑

C

〈 df |
∫

ρex(~ξ; ~x1, ~x2)φf (~ξ ) d3ξ | C 〉〈C | φ̂i | di 〉
ω + ω2

2md
−B − EC

,

Mρex c
fi =

(

ω − ω2

2md
+

~PC
2

2mC

)2
∑

C

〈 df | φ̂i | C 〉〈C |
∫

ρex(~ξ; ~x1, ~x2)φf (~ξ ) d3ξ | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

,

Mρex d
fi =

(

ω − ω2

2md
+

~PC
2

2mC

)2
∑

C

〈 df |
∫

ρex(~ξ; ~x1, ~x2)φi(~ξ ) d3ξ | C 〉〈C | φ̂f | di 〉
−ω + ω2

2md
− ~PC

2

2mC
−B − EC

.

(J.9)

The index ’KR’ has been skipped for convenience as we are only concerned with the
Kroll-Ruderman charge density. So we need to calculate

∫

ρex(~ξ; ~x1, ~x2)φi,f (~ξ ) d3ξ,
which is trivial due to the δ-functions in ρex.

∫

ρex(~ξ; ~x1, ~x2)φi,f (~ξ ) d3ξ =
e f2

mN m2
π

(~τ1 × ~τ2)z

(

∂

∂r

e−mπr

r

)

(J.10)

× {φi,f (~x1) (~σ2 · r̂) (~σ1 · ~p1) + φi,f (~x2) (~σ1 · r̂) (~σ2 · ~p2)}

We now replace ~x1 → ~r
2 , ~x2 → −~r

2 , ~p1 → −i ~∇1 = −i ~∇r and ~p2 → −i ~∇2 = i ~∇r

with ~∇r acting on the deuteron wave function. For our estimate we restrict ourselves
to the s-wave part of this wave function, cf. Eq. (D.5), which is by far (∼ 95%)

dominating over the d-wave function. The reason is that in this approximation ~∇r

reduces to r̂ ∂
∂r , as the s-wave function is spherically symmetric. We therefore may

rewrite Eq. (J.10) as

∫

ρex(~ξ; ~x1, ~x2)φi,f (~ξ ) d3ξ = − i e f2

mN m2
π

(~τ1 × ~τ2)z

(

∂

∂r

e−mπr

r

)

(J.11)

× (~σ1 · r̂) (~σ2 · r̂) (φi,f (~r/2) − φi,f (−~r/2))
∂

∂r
.

Under these assumptions it is easy to evaluate the amplitudes (J.9). However, we

found them to be about a factor of 4 smaller than e.g. the amplitudes Mφ KR2
fi ,

which are small corrections themselves – their contributions account for less than
5% of the differential cross sections for all energies and angles under consideration.
Therefore we claim that contributions due to ρex may well be neglected in our
calculation and thus abstain from showing the final results for the amplitudes (J.9).



Appendix K

The AV18 Neutron-Proton

Potential

Here we sketch the neutron-proton potential that we use in our Schrödinger-like
differential equation, Eq. (6.41). It is the so-called AV18-potential as published in
[73]. This potential consists of an electromagnetic part (em), a one-pion-exchange
part (π), and an intermediate- and short-distance part (sd):

V (np) = V em(np) + V π(np) + V sd(np) (K.1)

The electromagnetic part is very small for the neutron-proton system, and therefore
nearly invisible in Fig. K.2. Nevertheless, we include it for completeness although
we do not expect any significant influence on our cross sections. It is composed of a
Coulomb term, arising from the neutron charge distribution, and of the interaction
between the magnetic moments of the two nucleons,

V em(np) = VC(np) + Vmm(np) (K.2)

with

VC(np) = αβn
Fnp(r)

r
. (K.3)

α is the fine-structure constant and βn the slope of the neutron electric form factor.
The authors of [73] use βn = 0.0189 fm2, which is the value determined experimen-
tally in [110]. The function Fnp(r) is defined as

Fnp(r) = b2
(

15 br+ 15 (br)2 + 6 (br)3 + (br)4
) e−br

384
(K.4)

with b = 4.27 fm−1 and is shown in Fig. K.1, together with several other functions
contained in the AV18-potential.

The magnetic-moment interaction is given by

Vmm(np) = − α

4mnmp
µn µp

[

2

3
Fδ(r)~σi · ~σj +

Ft(r)

r3
Sij

]

− α

2mnmr
µn

Fls(r)

r3

(

~L · ~S + ~L · ~t
)

. (K.5)

µn, µp are the magnetic moments of the neutron and proton, respectively, mn, mp

their masses. mr is the reduced nucleon mass mr =
mn mp

mn+mp
. The spin operators
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Sij , ~S and ~t are

Sij = 3 (~σi · r̂) (~σj · r̂) − ~σi · ~σj ,

~S =
1

2
(~σi + ~σj),

~t =
1

2
(~σi − ~σj). (K.6)

However, the operator ~t is designated to be very small, cf. [73], and therefore is
neglected in our calculation, as also the other contributions to V em(np) are tiny,

see Fig. K.2. ~L = ~r×~p is the orbital angular momentum operator and the functions
Fδ(r), Ft(r) and Fls(r) – for their derivation cf. [73] and references therein – are
given by

Fδ(r) = b3
(

1

16
+

1

16
br +

1

48
(br)2

)

e−br,

Ft(r) = 1 −
(

1 + br +
1

2
(br)2 +

1

6
(br)3 +

1

24
(br)4 +

1

144
(br)5

)

e−br,

Fls(r) = 1 −
(

1 + br +
1

2
(br)2 +

7

48
(br)3 +

1

48
(br)4

)

e−br (K.7)

and are shown in Fig. K.1, divided by the same power of r as they appear in
Eq. (K.5).

Figure K.1: Various functions used in the AV18-potential. Those which appear in
Eq. (K.5) are divided by the corresponding power of r. In the divergent functions on
the right-hand side the cutoff functions, cf. Eqs. (K.11, K.12), have been removed.

The tensor operator Sij only contributes in the triplet state (S = 1) [57]. The
values of its matrix elements 〈L 1 J | Sij | L′ 1 J 〉 are given in Table K.1, cf.
Appendix 10 of [57]1, for all possible orbital angular momentum numbers L, L′ at
given total angular momentum J .

The eigenvalues of the spin-orbit operator ~L· ~S, which obviously only contributes
in the triplet case due to the total spin ~S, are given in Table K.2, those of ~σi · ~σj

are

~σi · ~σj | S 〉 = 2 [S (S + 1) − 3/2] | S 〉. (K.8)

The next component of the potential to be discussed is the one-pion-exchange
potential, which is the dominant part at large distances, cf. Fig. K.2. It reads

V π(np) = −f2 vπ(mπ0) + (−1)T+1 2 f2 vπ(mπ±), (K.9)

1We note that there is a typo in [57] for L = L′ = J + 1, namely an erroneous factor J .
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L′

L J + 1 J J − 1

J + 1 −2 (J+2)
2J+1

0
6
√
J (J+1)

2J+1

J 0 2 0

J − 1
6
√
J (J+1)

2J+1 0 −2 (J−1)
2J+1

Table K.1: Matrix elements of the tensor operator 〈L 1 J | Sij | L′ 1 J 〉.

L
J + 1 J J − 1

−(L+ 1) −1 L

Table K.2: Matrix elements of the spin-orbit operator 〈L 1 J | ~L · ~S | L 1 J 〉.

where T is the total isospin of the np-system, f the pion-nucleon coupling (f2 =
0.075), cf. Section 6.1.1 and Appendix A, and

vπ(m) =

(

m

mπ±

)2
1

3
m
[

Y AV 18
m (r)~σi · ~σj + TAV 18

m (r)Sij

]

. (K.10)

We mark the Yukawa and tensor functions Ym(r), Tm(r) by the index AV 18, as
we use slightly different functions Y (r), T (r) in App. G. The AV18-functions are
defined as

Y AV 18
m (r) =

e−mr

mr

(

1 − e−cr2
)

, (K.11)

TAV 18
m (r) =

(

1 +
3

mr
+

3

(mr)2

)

e−mr

mr

(

1 − e−cr2
)2

(K.12)

and are plotted in the right panel of Fig. K.1, where we set m ≡ µ ≡ 1
3 (mπ0 +

2mπ±), which is the average over the pion masses. The cutoff parameter c is as-

signed the value c = 2.1 fm−2 in [73]. The cutoff functions
(

1 − e−cr2
)

,
(

1 − e−cr2
)2

are introduced in [73] in order to avoid the 1
rn -divergency for r → 0. However, in

App. G we remove the cutoff functions for calculating one certain amplitude. The
thus truncated functions are also displayed in Fig. K.1.

The remaining part of the potential is the so-called intermediate- and short-
distance phenomenological potential (sd), which is expressed as a sum of central (c),
~L2 (l2), tensor (t), spin-orbit (ls) and quadratic spin-orbit (ls2) terms. The param-
eters of the short-distance potential depend on the total spin S and isospin T of the
system.

V sd
ST (np) = vc

ST (r) + vl2
ST (r) ~L

2
+ vt

ST (r)Sij + vls
ST

~L · ~S + vls2
ST (r)

(

~L · ~S
)2

(K.13)

This part of the potential is the dominant one for short distances, see Fig. K.2.
Each of the functions vi

ST (r) in Eq. (K.13) has the general form

vi
ST (r) = Ii

ST

(

TAV 18
µ (r)

)2
+
[

P i
ST + µr Qi

ST + (µr)2 Ri
ST

]

W (r), (K.14)
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where µ is the averaged pion mass as before. TAV 18
µ (r) is defined in Eq. (K.12), the

Woods-Saxon function

W (r) =
1

1 + e(r−r0)/a
(K.15)

is plotted in Fig. K.1; it dampens out the square bracket in Eq. (K.14) for large
distances and therefore ensures the short-range character of V sd. The parameters of
the Woods-Saxon function chosen in [73] are r0 = 0.5 fm and a = 0.2 fm. The spin-
and isospin-dependent parameters I, P, Q, R are listed in [73]. The eigenvalues

of ~L
2

are L (L + 1) and those of (~L · ~S)2 are the squares of the numbers given in
Table K.2.

The only remaining subtlety is the question, which combinations of S, T and
L are allowed by Pauli’s principle. This principle guarantees that the total wave
function of the two-nucleon system has to be antisymmetric under exchange of the
two nucleons due to their fermionic nature, i.e. the wave function has to fulfill
(−1)S+T+L = −1. Therefore, for S = 1, T = 0, which is the deuteron case, and for
S = 0, T = 1 we find L even, for S = 0, T = 0 and S = 1, T = 1 we have L odd.

Four examples of the resulting potentials for the various combinations of L, S, J
are shown in the first column of Fig. K.2, together with a comparison of the full
potential with the three parts separated from each other, cf. Eq. (K.1). This
comparison is done at short distances (middle column) and at larger distances
(right column). At short distances the contribution sd (dotted) dominates, whereas
above about 4 fm the potential is made up nearly entirely by the one-pion-exchange
(dashed) potential. The electromagnetic part (dotdashed) is negligible in all cases
considered. It only gives sizeable contributions when we look at the proton-proton
rather than the proton-neutron interaction [73]. The first row in Fig. K.2 corre-
sponds to the deuteron s-state, the second to the deuteron d-state, which are both
triplet (S = 1) states. The lower two rows show singlet states.
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Figure K.2: The AV18-potential for four different combinations of L, S, J . In the
left panels we show the full potential, in the middle column we compare the full
potential (solid) with the three contributions em (dotdashed), π (dashed) and sd
(dotted) at short distances, in the right panel we give this comparison for larger
distances.



Appendix L

Formulae

Photon field ~A(~x) and (charged) pion field φ(~x), normalized according to Ref. [24]:

~A(~x) =
∑

~k,λ

(

a~k ǫ̂λ ei~k·~x + a†~k ǫ̂
∗
λ e−i~k·~x

)

(L.1)

φ±(~x) =
∑

~q

√

2π

Eπ

(

a∓,~q ei~q·~x + a†±,~q e−i~q·~x
)

(L.2)

a†± (a±) creates (annihilates) a π±, Eπ =
√

~q 2 +m2
π.

Hamiltonians for πN and γπN coupling, cf. e.g. [57], Section 8.2:

HπNN = − f

mπ
(~σ · ~∇) (~τ · ~φ(~x)) (L.3)

HγπN =
e f

mπ
(~σ · ~A(~x)) (~τ × ~φ(~x))z (L.4)

Definitions:

φ± =
1√
2

(φx ± i φy)

⇒ φx =
1√
2

(φ+ + φ−)

φy = − i√
2

(φ+ − φ−)

τ± = τx ± i τy

τx =
1

2
(τ+ + τ−)

τy = − i

2
(τ+ − τ−)

(L.5)

⇒ ~τ · ~φ = τx φx + τy φy =
1√
2

(τ+ φ− + τ− φ+) (L.6)

(~τ × ~φ)z = τx φy − τy φx =
i√
2

(τ+ φ− − τ− φ+) (L.7)

The following formulae can all be found in textbooks on the quantum theory of
angular momentum, e.g. [108, 107, 83].
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The spherical basis:

r̂+1 = − 1√
2

(~ex + i ~ey)

r̂0 = ~ez

r̂−1 =
1√
2

(~ex − i ~ey) (L.8)

⇒ r̂i · r̂j = (−1)i δi,−j (L.9)

Polarization vectors in the spherical basis:

ǫ̂+1 = r̂+1 = − 1√
2





1
i
0





ǫ̂−1 = r̂−1 =
1√
2





1
−i
0





ǫ̂′∗+1 =
1√
2





− cos θ
i

sin θ





ǫ̂′∗−1 =
1√
2





cos θ
i

− sin θ





(L.10)

Expansion of a vector ~V into spherical components:

~V =
∑

ν=−1,0,1

(−1)ν Vν r̂−ν ; Vν = ~V · r̂ν (L.11)

Scalar product in spherical coordinates:

~U · ~V =
∑

j=−1,0,1

(−1)j Uj V−j (L.12)

Useful identity for rν :

rν = r̂ · r̂ν =

√

4π

3
Y1 ν(r̂) (L.13)

Clebsch-Gordan coefficients:

Cj3 m3

j1 m1 j2 m2
= (−1)j1−j2+m3

√

2j3 + 1

(

j1 j2 j3
m1 m2 −m3

)

(L.14)

(

j1 j2 j3
m1 m2 −m3

)

is the Wigner 3-j symbol and the angular momenta j1, j2, j3

have to fulfill the triangular condition

j1 ≤ j2 + j3, j2 ≤ j1 + j3, j3 ≤ j1 + j2. (L.15)

The projections on the quantization axis have to add up to zero:

m1 +m2 −m3 = 0 (L.16)

Further properties of the 3-j symbol:
The 3-j symbol is symmetric under even permutations of rows,

(

j1 j2 j3
m1 m2 m3

)

=

(

j2 j3 j1
m2 m3 m1

)

=

(

j3 j1 j2
m3 m1 m2

)

. (L.17)
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Under odd permutations it behaves like

(

j1 j2 j3
m1 m2 m3

)

= (−1)j1+j2+j3

(

j2 j1 j3
m2 m1 m3

)

. (L.18)

Further:
(

j1 j2 j3
m1 m2 m3

)

= (−1)j1+j2+j3

(

j1 j2 j3
−m1 −m2 −m3

)

(L.19)

⇒
(

j1 j2 j3
0 0 0

)

= (−1)j1+j2+j3

(

j1 j2 j3
0 0 0

)

(L.20)

⇒
(

j1 j2 j3
0 0 0

)

= 0 for j1 + j2 + j3 odd (L.21)

Unitarity of the Clebsch-Gordan-coefficients:

∑

j,m

Cj m
j1 m′

1 j2 m′
2
Cj m

j1 m1 j2 m2
= δm′

1,m1
δm′

2,m2

∑

m1,m2

Cj′ m′

j1 m1 j2 m2
Cj m

j1 m1 j2 m2
= δj′,j δm′,m (L.22)

Properties of the 6-j and 9-j symbols:

In a non-vanishing 6-j symbol

{

j1 j2 j3
l1 l2 l3

}

the four triads (j1 j2 j3), (l1 l2 j3),

(j1 l2 l3), (l1 j2 l3) fulfill the triangular condition Eq. (L.15).
The 9-j symbol can be written in terms of the 6-j symbols [111]:







j11 j12 j13
j21 j22 j23
j31 j32 j33







=
∑

j

(−1)2j (2j + 1) (L.23)

×
{

j11 j21 j31
j32 j33 j

} {

j12 j22 j32
j21 j j23

} {

j13 j23 j33
j j11 j12

}

The upper limit for j is determined by the triangular condition on the triads of the
various 6-j symbols:

j ≤ Min[j11 + j33, j21 + j32, j12 + j23] (L.24)

We calculate 9-j symbols via Eq. (L.23), 3-j and 6-j symbols are standard functions
in programs like Mathematica.
The 9-j symbol is symmetric under even permutations of rows or columns. Any
9-j symbol with one null entry can be simplified using






Lf Sf Jf

Li Si Ji

L 0 L′







= δSf ,Si δL,L′

(−1)Lf+Sf+Ji+L′

√

(2Si + 1) (2L+ 1)

{

Li Ji Si

Jf Lf L

}

. (L.25)

Product of two spherical harmonics:

Yj m Yj′ m′ =
∑

J

(−1)m+m′

√

(2j + 1) (2j′ + 1) (2J + 1)

4π

×
(

j j′ J
0 0 0

) (

j j′ J
m m′ −m−m′

)

YJ m+m′ (L.26)
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Some properties of the spherical harmonics:

Yl m(−r̂) = (−1)l Yl m(r̂) (L.27)

Yl m(~ez) = δm,0

√

2l + 1

4π
(L.28)

Definition of the spherical Bessel functions (we use the same convention as e.g.
Ref. [57]):

jl(z) =

√

π

2z
Jl+ 1

2
(z) (L.29)

Jl(z) is the Bessel function of the first kind.
Recursion relations for the spherical Bessel functions:

2l+ 1

x
jl(x) = jl−1(x) + jl+1(x)

(2l + 1) j′l(x) = l jl−1(x) − (l + 1) jl+1(x) (L.30)

Wigner-Eckart theorem:

〈Jf Mf | TJ M | Ji Mi 〉 = (−1)Jf−Mf

(

Jf J Ji

−Mf M Mi

)

〈Jf ‖TJ ‖ Ji 〉 (L.31)

The matrix element on the right-hand side is called “reduced matrix element”.

Tensor product (⊗) definition:

[Tk1 ⊗ Tk2 ]k m =
∑

m1,m2

√
2k + 1 (−1)−k1+k2−m

(

k1 k2 k
m1 m2 −m

)

Tk1 m1 Tk2 m2

(L.32)
Inversion:

Tk1 m1 Tk2 m2 =
∑

k,m

(−1)k1−k2+m
√

2k + 1

(

k1 k2 k
m1 m2 −m

)

[Tk1 ⊗ Tk2 ]k m

(L.33)
Reduced matrix elements:

〈 l′ ‖ YL ‖ l 〉 = (−1)l′

√

(2l′ + 1) (2L+ 1) (2l + 1)

4π

(

l′ L l
0 0 0

)

(L.34)

〈Sf ‖S ‖Si 〉 =
√

6 δSi,1 δSf ,1 (L.35)

〈Sf ‖ t ‖Si 〉 =
√

3 (δSi,0 δSf ,1 − δSi,1 δSf ,0) (L.36)

〈Lf Sf Jf ‖ YL ‖Li Si Ji 〉 = (2L+ 1)

√

(2Li + 1) (2Lf + 1) (2Ji + 1) (2Jf + 1) (2Sf + 1)

4π

× (−1)Lf δSf ,Si







Lf Sf Jf

Li Si Ji

L 0 L







(

Lf L Li

0 0 0

)

(L.37)

〈Lf Sf Jf ‖ [YL′ ⊗ S]L ‖Li Si Ji 〉 =

√

3 (2Li + 1) (2Lf + 1) (2Ji + 1) (2Jf + 1)

2π

×
√

(2L+ 1) (2L′ + 1) (−1)Lf δSf ,Si δSi,1







Lf Sf Jf

Li Si Ji

L′ 1 L







(

Lf L′ Li

0 0 0

)

(L.38)
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〈Lf Sf Jf ‖ [YL′ ⊗ t]L ‖Li Si Ji 〉 =

√

3 (2Li + 1) (2Lf + 1) (2Ji + 1) (2Jf + 1)

16π

×
√

(2L+ 1) (2L′ + 1) (−1)Lf [(−1)Si − (−1)Sf ]







Lf Sf Jf

Li Si Ji

L′ 1 L







(

Lf L′ Li

0 0 0

)

(L.39)

S and t are related to ~S = ~σ1+~σ2

2 , ~t = ~σ1−~σ2

2 ; ~L is the angular momentum operator.

Formulae for uncoupling tensor products:

〈 j1 j2 j ‖ [Tk1 ⊗ Tk2 ]k ‖ j′1 j′2 j′ 〉 =
√

(2j + 1) (2j′ + 1) (2k + 1) (L.40)

×







j1 j2 j
j′1 j′2 j′

k1 k2 k







〈 j1 ‖Tk1 ‖ j′1 〉 〈 j2 ‖Tk2 ‖ j′2 〉

〈 j ‖ [Tk1 ⊗ Tk2 ]k ‖ j′ 〉 = (−1)k+j+j′
√

2k + 1 (L.41)

×
∑

J

{

k1 k2 k
j′ j J

}

〈 j ‖Tk1 ‖ J 〉 〈J ‖Tk2 ‖ j′ 〉

Definition of the vector spherical harmonic:

~TJ L M (r̂) =
∑

ν=−1,0,1

(−1)−L−M+1
√

2J + 1

(

L 1 J
M + ν −ν −M

)

r̂−ν YL M+ν(r̂)

(L.42)
The gradient formula:

~∇ f(r)YL M (r̂) = −
√

L+ 1

2L+ 1

(

∂

∂r
− L

r

)

f(r) ~TL L+1 M (r̂)

+

√

L

2L+ 1

(

∂

∂r
+
L+ 1

r

)

f(r) ~TL L−1 M (r̂) (L.43)

Curl version of the gradient formula:

~∇×
[

f(r) ~TL L M(r̂)
]

= i

(

∂

∂r
− L

r

)

f(r)

√

L

2L+ 1
~TL L+1 M (r̂) (L.44)

+ i

(

∂

∂r
+
L+ 1

r

)

f(r)

√

L+ 1

2L+ 1
~TL L−1 M (r̂)

~∇×
[

f(r) ~TL L+1 M (r̂)
]

= i

(

∂

∂r
+
L+ 2

r

)

f(r)

√

L

2L+ 1
~TL L M(r̂) (L.45)

~∇×
[

f(r) ~TL L−1 M (r̂)
]

= i

(

∂

∂r
− L− 1

r

)

f(r)

√

L+ 1

2L+ 1
~TL L M(r̂) (L.46)

Divergence version of the gradient formula:

~∇ ·
[

f(r) ~TL L M (r̂)
]

= 0 (L.47)

~∇ ·
[

f(r) ~TL L+1 M (r̂)
]

= −
√

L+ 1

2L+ 1

(

∂

∂r
+
L+ 2

r

)

f(r)YL M (r̂) (L.48)

~∇ ·
[

f(r) ~TL L−1 M (r̂)
]

=

√

L

2L+ 1

(

∂

∂r
− L− 1

r

)

f(r)YL M (r̂) (L.49)
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