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Abstract

In this thesis an extension of the Standard Model of particle physics in Universal Extra
Dimensions (UED) is discussed. The flavour-changing neutral current (FCNC) decays
B → Xsγ, B → Xs gluon and B → Xsµ

+µ− are used to constrain the compactification
scale 1/R in the model introduced by Appelquist, Cheng and Dobrescu (ACD). Values of
1/R ≥ 300 GeV are found to be consistent with experimental data.

In addition, the ultraviolet completion of UED models in the framework of Dimen-
sional Deconstruction is investigated. In particular, the realization of chiral fermions
and the issue of Kaluza-Klein parity is discussed. The calculated radiative corrections of
fermion masses permit to draw conclusions on the renormalizability and structure of the
fundamental Lagrangian. Moreover, the running contribution to the fermion masses from
the cut-off scale is extracted and compared to the result in the corresponding continuum
theory.
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10 CHAPTER 1. INTRODUCTION

The Standard Model (SM) of elementary particle physics has been established as the
basis of the phenomenological description of high-energy physics. It accounts for all ele-
mentary particles discovered so far and their interactions according to the gauge principle
as well as Yukawa interactions between fermions and the Higgs field. The flavour struc-
ture in the quark sector is described by the Cabbibo-Kobayashi-Maskawa (CKM) matrix,
and electroweak symmetry breaking is conveniently described by the Higgs mechanism.

Up to the present day, all experimental data in particle physics, with the exception of
neutrino oscillations, are fully explained and consistent within errors with the description
of nature by the SM. In spite of this tremendous success, it is commonly believed for
several reasons that the SM is not the final answer. The SM is a renormalizable quantum
field theory, and its parameters have to be determined by experiment. However, we do
not understand the origin of the mass hierarchies in the quark and lepton sector and the
corresponding mixing patterns. In particular, it is unclear why there exist quarks and
leptons much lighter than the electroweak scale. We do not understand the mechanism
of electroweak symmetry breaking that is responsible for the generation of these masses
and the hierarchy between the electroweak scale and the Planck scale. In addition, the
values of the different gauge couplings may appear arbitrary and not correlated at low
energies. Furthermore, the attempts to reconcile gravity with quantum mechanics have
been elusive up to the present. It is therefore expected that our current description of
nature breaks down at the Planck scale where gravitational effects are no longer negligible
in the interactions of elementary particles.

From these arguments, it is clear that the SM cannot be the ultimate description
of nature. In fact it can be argued quite generally that any physical theory comprising
quantum mechanics and special relativity will look like a relativistic quantum field theory
at low energies. Despite its renormalizability, the SM is merely an effective theory valid at
energies accessible at present-day colliders, with deviations accounted for by the inclusion
of higher dimensional operators.

A promising framework for new physics is the extension of the SM to more than the
common four dimensions of space-time. In recent years there has been an increasing
interest in those models, motivated by the demand of extra dimensions in string theory
and specifically the possibility of a compactification scale in the TeV range [1]. At low
energies, the relevant degrees of freedom are towers of Kaluza-Klein (KK) excitations of
the Standard Model particles.

Orbifold compactifications are used to realize chiral fermions and build models that
look like the Standard Model at low energies. The simplest possibility is one extra di-
mension with the geometry of S1/Z2 where translational Lorentz symmetry is broken at
the two fixed points.

A special role among extra dimensional models is played by those with universal
extra dimensions (UED), where all SM fields live in all available dimensions. The model
introduced by Appelquist, Cheng and Dobrescu (ACD) [2] consists of one universal extra
dimension compactified to the orbifold S1/Z2. Compared to the SM, the only additional
free parameter is the compactification radius 1/R. All masses of the KK particles and
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their interactions are described in terms of 1/R and the SM parameters.

A very important property of the ACD model is the conservation of KK parity which
implies the absence of tree-level contributions beyond those already present in the SM.
Processes which are forbidden at the classical level are a particularly useful probe for
extensions of the SM. Such processes are induced by quantum effects and the effect of
new physics could be similar in size. Since flavour-changing neutral current (FCNC)
processes are induced radiatively, they are particularly interesting in this respect. In [3]
the contributions of the KK modes to the KL−KS mass difference ∆MK , the parameter
εK , the B0

d,s − B̄0
d,s mixing mass differences ∆Md,s and the rare decays K+ → π+νν̄,

KL → π0νν̄, KL → µ+µ−, B → Xs,dνν̄ and Bs,d → µ+µ− were calculated. It was
found that the effects are significant in processes governed by the CKM element |Vts| like
B → Xsνν̄ and Bs → µ+µ−, in which the enhancement through the KK modes in Z0

penguin diagrams is not softened by the suppression of the relevant CKM parameters in
contrast to the processes governed by |Vtd|.

The calculation of the γ penguins, gluon penguins, γ–magnetic penguins and chromo-
magnetic penguins in this thesis allow the study of further processes. Here we analyse in
detail the impact of the KK contributions on the decays B → Xsγ, B → Xs gluon and
B → Xsµ

+µ−. Among these processes only the decay B → Xsγ has been so far consid-
ered in the ACD model in the literature [4]. As we will see our results are consistent with
the ones obtained by these authors. However, we have included the numerically relevant
next-to-leading order QCD corrections which are indispensable for a reliable phenomeno-
logical analysis, along with an accurate treatment of the theoretical and experimental
uncertainties.

With the calculation of the penguin diagrams in this work together with the results
in [3], it is also possible to analyse the decay KL → π0e+e− and the CP-violating ratio
ε′/ε. Unfortunately, for the decay KL → π0e+e− there exists only an upper bound on
the branching ratio [5] which is still by two orders of magnitude away from the SM and
ACD model expectations, while for the ratio ε′/ε hadronic uncertainties in the lattice
calculation are still substantial. Because of these obstacles both observables are presently
not suited for the extraction of the compactification radius 1/R from the data [6].

Also other processes of interest have been investigated in the framework of universal ex-
tra dimensions. From precision electroweak observables the lower bounds 1/R ≥ 300 GeV
and 1/R ≥ 250 GeV have been established for a light Higgs with mH ≤ 250 GeV and
a heavy Higgs, respectively [2, 7]. In [8] vacuum stability in a simplified ACD model
has been examined. Also the investigation of the anomalous magnetic moment of the
muon [9] and of the Z → bb̄ vertex [3, 10] are consistent with a compactification scale of
1/R ≥ 300 GeV.

Quantum field theories with extra dimensions are generally not renormalizable, which
is also the case for the ACD model. They have to be taken as effective theories valid
below some cut-off scale Λ. The physics above this cut-off is a priori not determined but
can in principle be accounted for by non-renormalizable operators, giving contributions
to low-energy observables suppressed by powers of 1/Λ.
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If the cut-off is implemented by a truncation of the KK modes, several difficulties arise.
This naive approach violates local gauge invariance in the extra dimensions. Moreover,
without a definite renormalizable ultra-violet (UV) completion, the influence of the physics
above the cut-off scale remains undetermined.

Extra dimensions emerge dynamically in dimensional deconstruction [11, 12]. Here a
given theory can be associated with a moose diagram in theory space consisting of sites
and links. Dimensional deconstruction can serve as a renormalizable, gauge invariant
UV completion for extra dimensional theories. It acts as a regulator, where the extra
dimensions are replaced by a discrete lattice providing a natural cut-off. Dimensional
deconstruction also stands on its own right as a framework for building models that do not
necessarily correspond in any way to extra dimensions. The applications of dimensional
deconstruction comprise topics such as electroweak symmetry breaking, gauge coupling
unification and GUT theories, supersymmetry, gravity and warped geometries [14, 15, 16,
17, 18, 19, 20].

In dimensional deconstruction, the orbifold S1/Z2 is modelled by an aliphatic setup
with chiral fermions. In theory space this geometry is represented by a line, with its
two endpoints corresponding to the fixed points of the orbifold. In this thesis we inves-
tigate which properties of the higher dimensional orbifold models are reproduced in the
deconstructed aliphatic setup with fermions in the bulk.

The parameters of the deconstructed theory are matched to those of the continuous
theory so as to yield the same mass spectrum and couplings at low energies. In order
to be a faithful low energy representation of a higher dimensional field theory, also the
Feynman rules have to be equivalent and characteristic properties like KK parity have to
be reproduced. We will elaborate on the Feynman rules in the aliphatic setup and point
out the differences to the continuum, in particular the violation of KK parity.

In orbifold models quantum loop effects produce infinite contributions that require
renormalization by introducing couplings at the fixed points [26]. These brane couplings
arise from integrals over the 4-dimensional momentum running inside the loop and thus
are given by the cut-off of the 4-dimensional theory. Since the deconstructed models
are designed to reproduce the higher dimensional models in the low-energy regime, it
is interesting to study how loop corrections affect the renormalization of couplings at
the individual lattice sites. We will show that an additional counterterm needs to be
introduced at one endpoint of the lattice. In addition, we will demonstrate how loop
corrections substantiate the naturalness problem of the fermionic mass spectrum that is
already present at the tree level.

One-loop corrections to the masses of the KK excitations in dimensional deconstruction
were calculated for Yang-Mills gauge theories [22], in supersymmetric models [23, 24] and
for the KK gauge boson excitations in deconstructed 5-dimensional QED compactified on
a circle [25]. Assuming vanishing boundary terms at the cut-off scale, the divergent parts
of the self-energy diagrams give the running mass correction between the cut-off scale
and the renormalization scale. We compute these contributions in the aliphatic model
with fermions in the bulk and compare our findings to the result obtained in the ACD
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model [21].
This thesis is organized as follows. In Chapter 2 we give an introduction into the

technical tools needed for the phenomenological discussion of B meson decays and the
comprehension of the role dimensional deconstruction plays as an effective theory for extra
dimensional models. We discuss effective field theories, regularization methods, renormal-
ization and the renormalization group. We take a closer look at the renormalization of
the flavour changing vertex sAµb which is important for the internal consistency of the
calculation of the radiative weak decays in this thesis.

In Chapter 3 we address the impact of the KK modes on the FCNC decays B → Xsγ,
B → Xs gluon and B → Xsµ

+µ−. We start with the discussion of the penguin diagrams
involved in the calculation and show the effective vertices that contribute to the processes.
Then we expose the general structure of the calculation and present the resulting Inami-
Lim functions in the ACD model. Next we discuss the impact of the KK modes on the
branching ratios of the decays B → Xsγ and B → Xs gluon. The last section deals with
the decay B → Xsµ

+µ− where we analyse the branching ratio and the forward-backward
asymmetry.

The dimensional deconstruction of universal extra dimensions is discussed in Chap-
ter 4. We start by introducing the framework of gauge fields and fermions on the aliphatic
lattice. Next we take a closer look at the Feynman rules of the model and the issue of
Kaluza-Klein parity. Then we compute the renormalization of fermion masses and the
associated counter terms.

In the final chapter we summarize our results and give a short outlook. In the appen-
dices, we discuss some technical details of this work. In Appendix A the application of
the method of background fields to universal extra dimensions is discussed. We present
the relevant Feynman rules of the ACD model in background field gauge in Appendix B.
Relevant formulae for the derivation of the Feynman rules in the aliphatic model are col-
lected in Appendix C. Finally the contributions of the various diagrams contributing to
the fermion self-energy are given in Appendix D, which concludes this thesis.
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p k
p′

γ

Figure 2.1: One-loop vertex correction to the electron scattering off a photon.

2.1 Effective Field Theories

The basic idea of effective field theories is that all effects of possibly unknown high-energy
physics can be simulated by a new set of local interactions. The states with energy greater
than a certain cut-off are discarded from the theory. Their effect on low-energy physics is
accounted for by the coefficients of the old and new interactions in the Lagrangian. The
change of coefficients in the Lagrangian through this procedure is called renormalization.

As an example, we show the renormalization of the electric charge in QED defined by
the Lagrangian

L0 = ψ(i∂/− e0A/−m0)ψ −
1

4
FµνF

µν . (2.1)

Here we assume that the theory is regulated by a cut-off Λ0 up to which all loop inte-
grations are performed. From this theory, we now remove all states having energy or
momenta larger than some new cutoff Λ. The scattering for an electron off an external
vector field is at one-loop level described by Fig. 2.1. The part of the amplitude that is
discarded is given by

A(Λ < k < Λ0) = −e30
∫ Λ0

Λ

d4k

(2π)4
gµν

k2

× u(p′)γµ
(p/′ − k/) +m0

(p′ − k)2 −m2
0

A/ext
(p/− k/) +m0

(p′ − k)2 −m2
0

γνu(p).

(2.2)

We can simplify the integral by neclecting p, p′ and m0 which are assumed to be much
less than Λ:

A(Λ < k < Λ0) = −e30u(p′)A/extu(p)
∫ Λ0

Λ

d4k

(2π)4
1

(k2)2
. (2.3)

Also including the other one-loop corrections, we find that the discarded part of the
electron scattering amplitude is given by

A(Λ < k < Λ0) = −e0c1(Λ/Λ0)u(p
′)A/extu(p), (2.4)
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where the dimensionless constant c1(Λ/Λ0) is given by

c1(Λ/Λ0) = −
α0

6π
log

Λ

Λ0

. (2.5)

Such a contribution can be reincorporated into the theory by adding the new interaction

δL0 = −e0c1(Λ/Λ0)ψA/ψ (2.6)

to the Lagrangian. This amounts to a redefinition of the electric charge

e = e0 + δe0, (2.7)

δe0 = e0c1(Λ/Λ0), (2.8)

where e is the renormalized value.
Other processes require further interactions in the Lagrangian. For example for the

electron-electron scattering, the analogous modification of the Lagrangian is given by

δL0 = c2(Λ/Λ0)
1

Λ2
ψγµψψγ

µψ. (2.9)

Generally, the omission of states beyond the cut-off can be represented as an expansion
in p/Λ. This follows from the uncertainty principle. From the low-energy point of view
(p ¿ Λ), interactions involving intermediate states with energy and momenta greater
than the cut-off are local, since they are higly virtual and therefore short-lived. This
locality is reflected in the fact that the contributions to all processes can be accounted
for by terms that are polynomial in fields and derivatives.

2.2 Dimensional Regularization

In practical calculations, it is often convenient not to work with a cut-off Λ0. Such an
explicit cut-off can cause problems, since it is violating gauge invariance and possibly other
important symmetries. A regulation procedure preserving gauge invariance symmetries is
dimensional regularization. Here the loop integration is performed in d = 2−ε dimension,
where ε can be an arbitrary complex number.

Technically, this is achieved in a two-step procedure. As the first step, the loop
integrals are evaluated in integer dimension d, where d is chosen such that the loop
integral converges. A typical one-loop integral is given by

∫
ddlE
(2π)d

1

(lE +∆)2
=

1

(4π)d/2
Γ(2− d/2)

Γ(2)

(
1

∆

)2−d/2

, (2.10)

where Γ(z) is the Euler gamma function with isolated poles at z = 0,−1,−2, . . . , and ∆ is
a function of masses and external momenta.1 We also have to introduce a renormalization

1Note that for d = 4 the integral diverges.
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scale µ in order to maintain dimensionless coupling constants. In the case of QED, this
would be done by

e→ eµ2−d/2. (2.11)

In the second step, the result expressed in terms of d is analytically continued to
arbitrary d = 2 − ε. The Euler gamma function is expanded around the poles in integer
dimensions via the identity

Γ(ε) =
1

ε
− γE +O(ε), (2.12)

where γE = 0.5772 . . . is the Euler-Mascheroni constant. With this identity, the integral
can be expanded around d = 4:

∫
ddlE
(2π)d

1

(lE +∆)2
→ 1

(4π)2

(
1

ε
− log∆− γE + log 4π +O(ε)

)
. (2.13)

In a renormalizable theory, for observable quantities all poles 1/ε must cancel after
renormalization of the parameters of the Lagrangian, yielding a finite and well-defined
result.

For the renormalization of Feynman amplitudes, we must specify some renormalization
conditions. In dimensional regularization, two convenient renormalization schemes are the
MS and the MS scheme. In the MS scheme the fields and parameters in the Lagrangian
are redefined to solely cancel the 1/ε poles. The MS scheme differs from the MS scheme
by a redefinition of the renormalization scale

µMS = µeγE/2(4π)−1/2, (2.14)

with the effect of also eliminating the unphysical terms γE + log 4π.
Undoubtely, there are several advantages that make dimensional regularization in

combination with the MS scheme a very convenient choice in practical calculations:

• It leads to simpler expressions in the loop integrals, which makes the calculations
easier than in other regularization schemes.

• The divergencies are subtracted automatically, while physical renormalization con-
ditions are generally more complicated to implement.

• The renormalization group functions are independent of µ, since it is a mass-
independent subtraction scheme.

However, there also arise several drawbacks which require special care:

• Dimensional regularization not only affects physics at high energies, but can modify
it at large distances as well, and is therefore, in general, not a sensible regulator.
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• Ultra-Violet (UV) and Infra-Red (IR) divergencies can mix, in which case they
usually have to be separated by introducing regulator masses for massless particles.

• The Appelquist-Carazone decoupling theorem [27] does not work in a mass-independent
scheme [28]. To deal with this problem, the best solution is to use effective field the-
ory. The physics of the Appelquist-Carazone theorem is put in by hand by explicitly
integrating out the heavy particles.

• There is no entirely satisfactory way of defining γ5 in non-integer dimensions [29,
30]. For practical calculations in non-supersymmetric theories, the most convenient
choice is the “naive dimensional regularization” (NDR) scheme, although expres-
sions like Tr(γ5γµγνγργλ) are not unambigously defined. If it is not possible to avoid
such expressions, one must resort to other schemes, for example the one proposed
by ’t Hooft and Veltman [31] (HV), which is more time consuming in computer
calculations. However, the problem of defining chirality is a fundamental issue in
every regularization scheme and not limited to dimensional regularization.

2.3 Renormalization

The simple MS scheme is not always sufficient in practical calculations. Since it fixes
only the divergent poles, it cannot describe the finite mixing of states with the same
gauge quantum numbers. When making connection to physical quantities, additional
renormalization conditions have to be specified.

To illustrate this characteristic of the MS scheme, we work out the renormalization of
the flavour-changing coupling of the photon Aµ to the quark fields b and s in the following.
This part of the Lagrangian is relevant for the calculation of the penguin diagrams in the
processes B → Xsγ, B → Xs gluon and B → Xsµ

+µ−.

The flavour-changing vertex sAµb is not present in the bare Lagrangian. The corre-
sponding amplitude is therefore only renormalized by the mixing of the quark fields under
radiative corrections to the self-energy. The flavour-conserving vertex is given by

L = −1

3
e0d

0

i γµd
0
iA

0,µ, (2.15)

with the down-type quark fields di = d, s, b. The index “0” indicates that the fields and
paramters are unrenormalized. The flavour-changing vertex is generated via the quark
field-strength renormalization. The field-strength renormalization of the left-handed quark
fields can be written to first order as

dL,0i =
(
(Zd,L)1/2

)
ij
dLj =

(
Zd,L
ij

)1/2
dLj =

(
δij +

1

2
δZd,L

ij

)
dLj . (2.16)

The expression for the right-handed fields is analogous. The expression for the complex
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conjugated fields is

d
0

i = dj

(
δij +

1

2
δZd,L∗

ij

)
. (2.17)

Now we can write (2.15) in terms of renormalized fields. The flavour-changing part is
given to one-loop order by

−1

3
ed

L
γµ

1

2
(δZd,L∗

ji + δZd,L
ij )dLj A

µ − 1

3
ed

R
γµ

1

2
(δZd,R∗

ji + δZd,R
ij )dRj A

µ. (2.18)

In order to determine δZd,L
ij and δZd,R

ij , we have to specifiy renormalization conditions
on the quark self-energy, for which we will first derive a formal expression. Written in
flavour eigenstates d0j

′
, the kinetic part of the Lagrangian reads

L = d
0

i

′

i∂/d0i
′ − d0i

′

µ0d,ijd
0
j
′
, (2.19)

where µd,ij is the down-type mass matrix. The flavour eigenstates are transformed into
mass eigenstates with a biunitary transformation that also yields the CKM matrix. The
resulting Lagrangian is

L = d
0

i i∂/d
0
i − d

0

iM
0
d,ijd

0
j , (2.20)

with a diagonal mass matrix Md,ij .
The mass renormalization is given by

M0
d,ii ≡ m0

d,i = Zd,m
i md,i. (2.21)

Note that we introduce only a flavour-diagonal mass renormalization constant Zd,m
i , since

the mass matrix of the bare fields is diagonal in (2.20). With the help of (2.16) and (2.21)
we can write the Lagrangian (2.20) in terms of renormalized fields. In particular, the
flavour-diagonal part of the mass counterterms is given by

−dLi
[
δZd,m

i +
1

2
Re
{
δZd,L

ii + δZd,R
ii

}
− i

2
Im
{
δZd,L

ii − δZd,R
ii

}]
md,id

R
i + h.c. . (2.22)

The last two terms in (2.22) are fixed by the field strength renormalization. The imaginary
part of the field strength renormalization in the third term is needed for the arsorptive
part of the self-energy, while there are no contributions coming from the CKM matrix
since it is unitary.

The unrenormalized self-energy can be written as

Σij(p/) = ΣL
ij(p

2)p/PL + ΣR
ij(p

2)p/PR + Σl
ij(p

2)PL + Σr
ij(p

2)PR, (2.23)

with the chiral projectors PL/R = (1∓γ5)/2. In the SM as well as in the ACD model, the
part independent of p/ can be written at one-loop order as

Σl
ij(p

2)PL + Σr
ij(p

2)PR = (md,iPL +md,jPR)Σ
S
ij(p

2), (2.24)
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with the function ΣS
ij common to both the left-handed and the right-handed part.

As the next step we include the counterterms. The resulting renormalized self-energy
reads

Σ̂ij(p/) = Σij(p/) + Σc.t.
ij (p/)

=

[
ΣL
ij(p

2)− 1

2
(δZd,L∗

ji + δZd,L
ij )

]
p/PL

+

[
ΣR
ij(p

2)− 1

2
(δZd,R∗

ji + δZd,R
ij )

]
p/PR

+

[
δijmd,iδZ

d,m
i + Σl

ij(p
2) +

1

2

(
δZd,R∗

ij md,j +md,iδZ
d,L
ij

)]
PL

+

[
δijmd,iδZ

d,m
i + Σr

ij(p
2) +

1

2

(
δZd,L∗

ij md,j +md,iδZ
d,R
ij

)]
PR. (2.25)

The renormalization condition that we exert on the self-energy is such that there
is no flavor-changing propagation. However, since this requirement cannot be fulfilled
in general for off-shell amplitudes, there is a certain ambiguity involved in the precise
renormalization scheme. A common choice is the renormalization scheme by Denner [32].
For the inverse of the full propagator Γ̂ij, the following two conditions are imposed:

R̃e Γ̂ij(p/)dj(p) = 0, (2.26a)

lim
p/→md,i

i

p/−md,i

R̃e Γ̂ii(p/)di(p) = di(p), (2.26b)

along with their hermitian conjugates, which we do not show here. The first expression
fixes the positions of the poles in the propagator, whereas the second condition fixes the
residuae. Here R̃e takes only the real part of the loop integrals appearing in the self-
energy but not of the elements of the CKM matrix. Since the renormalized Lagrangian
should be hermitian, the counterterms can only affect the non-absorptive parts.

The inverse of the full propagator is related to the self-energy (1-PI function) −iΣ̂ij(p/)
by the identity

Γ̂ij(p/) = −i(p/−md,i)δij + iΣ̂ij(p/). (2.27)

The conditions (2.26a) and (2.26b) translate readily into

R̃e iΣ̂ij(p/)dj(p) = 0, (2.28a)

lim
p/→md,i

i

p/−md,i

R̃e iΣ̂ii(p/)di(p) = di(p). (2.28b)
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Of these, we only need the first condition (2.28a) that fixes the off-diagnonal part of the
self-energy. For the special case di = s, dj = b we can set ms = 0 and use

Σl
sb(p

2) ∼ ms, ΣR
sb(p

2) ∼ ms. (2.29)

Applying (2.28a) and its conjugate to (2.25) now yields the four conditions

δZd,R
sb = 0, (2.30a)

δZd,R∗
bs = 0, (2.30b)

mbR̃e iΣ
Lsb(m2

b) + R̃e iΣr
sb(m

2
b)−

i

2
mbδZ

d,L
sb = 0, (2.30c)

R̃e iΣrsb(0) +
i

2
mbδZ

d,L∗
bs = 0. (2.30d)

These conditions completely specify the counterterm vertex (2.18) to be

Lb→sγ,c.t. = −
1

3
eR̃e

(
ΣL
sb(m

2
b) +m−1

b Σr
sb(m

2
b)−m−1

b Σr
sb(0)

)
sγµPLbA

µ. (2.31)

It should be emphasized that the structure of this counterterm depends on the renor-
malization conditions. In the renormalization scheme proposed by Gambino, Grassi and
Madricardo [33], the counterterm is given by

Lb→sγ,c.t. = −
1

3
eΣL

sb(0)sγµPLbA
µ. (2.32)

Of course, all physical observables are independent of the renormalization scheme.

2.4 The Renormalization Group

The values of the renormalized parameters do not only depend on the values of their bare
counterparts but also on the renormalization scheme and the renormalization scale. In
a cut-off regularization this scale would be given by the cut-off scale Λ0. In dimensional
regularization we have introduced the scale µ in (2.11). In the following, we only discuss
the MS scheme in dimensional regularization.

Due to the occurrence of large logarithms in the loop calculations, the renormalization
scale must correspond to the typical masses and momenta of particles involved. In the MS
scheme, heavy particles do not decouple automatically and therefore have to be integrated
out explicitly. In this process a low-energy theory without the heavy particles is matched
to the full theory at the scale of the heavy particles. The couplings of the parameters and
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operators in the new Lagrangian are then evolved down to a lower scale with the help of
the renormalization group (RG). This lower scale is given by the masses and momenta of
the external particles involved in the processes we are interested in.

An infinitesimal change in µ will result in a shift of the renormalized parameters of the
Lagrangian. The differential equations that describe this change are called renormalization
group equations (RGEs). For the coupling constant in QCD we have

µ
dg

dµ
= β(g(µ, ε)), (2.33)

where the function β is given by

β(g(µ, ε)) = −εg − gµdZg
dµ

1

Zg
(2.34)

with the renormalization constant Zg defined by

g0 = Zggµ
ε (2.35)

and

β(g(µ), ε) = −εg + β(g). (2.36)

We have already mentioned that in the MS (MS) scheme, the renormalization group
function β(g) depends only on g but not explicitly on µ. The function β(g) can therefore
be written as

β(g) = −β0
g3

16π2
− β1

g5

(16π2)2
+O(g7). (2.37)

The generalization to theories with more complicated gauge groups like the Standard
Model gauge group SU(3)c × SU(2)L × U(1)Y is obvious. The leading order solution for
the RGE of the SU(3)c (QCD) coupling contant reads

αs(µ) =
αs(µ0)

1− β0αs(µ0) log(µ0/µ)/2π
, (2.38)

with the leading order coefficient of the β-function

β0 =
11N − 2f

3
(2.39)

depending on the number of colours N (N = 3 for QCD) and the number of quark flavours
f . Simliar formulae can be derived for the anomalous dimensions of the masses and fields
strengths of the quark fields

γm = Z−1m µ
dZm
dµ

, γ−1ψ = µ
dZψ
dmu

. (2.40)
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3.1 Penguin Diagrams in the ACD Model

3.1.1 Effective vertices

The rare decays in the ACD model we consider in this thesis are governed as in the
SM by various penguin diagrams. The SM contributions to the ∆F = 1 box diagrams
are subleading but have to be included in the analysis. On the other hand the KK
contributions to the box diagrams are tiny [3] and can be neglected.

The penguin vertices including electroweak counterterms can be conveniently ex-
pressed in terms of the functions C,D,E,D′ and E ′ which correspond to Z0 penguins,
γ penguins, gluon penguins, γ-magnetic penguins and chromomagnetic penguins, respec-
tively. In the ’t Hooft–Feynman gauge for the W± and G± propagators they are given
as:

s̄Zd = iλt
GF√
2

g2
2π2

M2
W

cos θw
C(xt, 1/R)s̄γµ(1− γ5)d, (3.1)

s̄γd = −iλt
GF√
2

e

8π2
D(xt, 1/R)s̄(q

2γµ − qµ 6q)(1− γ5)d, (3.2)

s̄Gad = −iλt
GF√
2

gs
8π2

E(xt, 1/R)s̄α(q
2γµ − qµ 6q)(1− γ5)T aαβdβ, (3.3)

s̄γ′b = iλ̄t
GF√
2

e

8π2
D′(xt, 1/R)s̄[iσµλq

λ[mb(1 + γ5)]]b, (3.4)

s̄G′ab = iλ̄t
GF√
2

gs
8π2

E ′(xt, 1/R)s̄α[iσµλq
λ[mb(1 + γ5)]]T

a
αβbβ, (3.5)

where GF is the Fermi constant, θw is the weak mixing angle and the CKM factors are

λt = V ∗tsVtd, λ̄t = V ∗tsVtb . (3.6)

In these vertices qµ is the outgoing gluon or photon momentum and T a are QCD colour
matrices. The last two vertices involve an on-shell photon and gluon, respectively. We
have set ms = 0 in the above vertices.

Each function in (3.1)-(3.5) possesses the structure

F (xt, 1/R) = F0(xt) +
∞∑

n=1

Fn(xt, xn), F = C,D,E,D′, E ′, (3.7)

with

xn =
m2
n

M2
W

, mn =
n

R
. (3.8)

The functions Fn(xt, xn) in (3.7) are defined through

Fn(xt, xn) = G(xt(n))−G(xu(n)), (3.9)
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with

xi(n) = m2
0 +

n2

R2
. (3.10)

Here m0 is the zero-mode mass, as MW , MZ , mt. The functions G(xt(n)) and G(xu(n))
represent the contributions of the Qt(n), Ut(n) and Qu(n), Uu(n) modes, respectively.

The functions F0(xt) result from SM penguin diagrams, whereas the sum represents the
KK contributions. The penguin diagrams in the SM were calculated by various authors,
in particular by Inami and Lim [34]:

C0(xt) =
xt
8

[
xt − 6

xt − 1
+

3xt + 2

(xt − 1)2
lnxt

]
, (3.11)

D0(xt) = −
4

9
lnxt +

−19x3t + 25x2t
36(xt − 1)3

+
x2t (5x

2
t − 2xt − 6)

18(xt − 1)4
ln xt, (3.12)

E0(xt) = −
2

3
lnxt +

x2t (15− 16xt + 4x2t )

6(1− xt)4
ln xt +

xt(18− 11xt − x2t )
12(1− xt)3

, (3.13)

D′0(xt) = −
(8x3t + 5x2t − 7xt)

12(1− xt)3
+
x2t (2− 3xt)

2(1− xt)4
ln xt, (3.14)

E ′0(xt) = −
xt(x

2
t − 5xt − 2)

4(1− xt)3
+

3

2

x2t
(1− xt)4

lnxt. (3.15)

The Z0 penguin functions Cn(xt, xn) have been calculated in [3]:

Cn(xt, xn) =
xt

8(xt − 1)2

[
x2t − 8xt + 7 + (3 + 3xt + 7xn − xtxn) ln

xt + xn
1 + xn

]
. (3.16)

In this thesis we calculate the remaining functions Dn(xt, xn), En(xt, xn), D
′
n(xt, xn) and

E ′n(xt, xn).

3.1.2 General Structure of the Calculation

The function Fn(xt, xn) with F = D,E,D′, E ′ are found by calculating the vertex dia-
grams in Fig. 3.1. Contrary to the Z0 penguins where one has to add an electroweak
counterterm as discussed in [35], this is not necessary for the γ and gluon penguins. Here
the counterterms are only formally used to render zero the coefficients of the dimension 4
operators s̄A/PLq and s̄TaG/aPLq with q = d, b. This is a consequence of gauge invariance
when the quark fields are set on-shell with the renormalization condition given in [32].

In contrast to the calculation of the Z0-vertex the external momenta in Fig. 3.1 and
the masses of external quarks cannot be neglected.

The effective Hamiltonian at the matching scale µW reads

Heff(b→ sγ,G) = −GF√
2
V ∗tsVtb

[
36∑

i=30

Ci(µW )Qi + C7γ(µW )Q7γ + C8G(µW )Q8G

]
, (3.17)
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Figure 3.1: Penguin diagrams contributing to Fn(xt, xn). The external gauge bosons are back-
ground fields.

with the operators [36]

Q7γ =
e

4π2
mb(s̄σµνPRb)F

µν , (3.18)

Q8G =
gs
4π2

mb(s̄σµνPRT
ab)Ga,µν , (3.19)

Q30 =
i

4π2
M2

W (s̄D/PLb), (3.20)

Q31 =
gs
4π2

(s̄PRγµT
ab)DνG

a,µν +Q4, (3.21)

Q32 =
1

4π2
mb(s̄PRD/D/b), (3.22)

Q33 =
i

4π2
(s̄PRD/D/D/b), (3.23)

Q34 =
igs
4π2

s̄PR

[←−
D/σµνT

a −Taσµν(D/+ imb)
]
bGa,µν , (3.24)

Q35 =
ie

4π2
s̄PR

[←−
D/σµν − σµν(D/+ imb)

]
bF µν , (3.25)

Q36 =
e

4π2
(s̄PRγµb)∂νF

µν −Q9. (3.26)

The covariant derivative in the effective Lagrangian is defined as1

Dµψ = (∂µ + ieQψAµ + igsT
aGa

µ)ψ. (3.27)

In the operators Q34 and Q35 it acts only on the spinors, but not on the field strength
tensors F µν and Ga,µν .

In this off-shell operator basis we have omitted the four-quark operators as they are not
relevant for the calculation of the functions F. They can be found in [36], in particular the
operators Q4 and Q9 that appear in the definition of Q31 and Q36. The effective vertices
(3.2)-(3.5) correspond to the operators Q36, Q31, Q7γ and Q8G, respectively.

1On the effective side we use a different sign convention for the couplings e and gs compared to the
Feynman rules in this thesis and in [3].
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In the calculation of the functions F we used the off-shell amplitude for the matching,
i.e. no equations of motion are applied. In order to maintain gauge invariance the method
of background fields [37] is used, see Appendix A. Consequently the matching is done
with the full set of operators (3.18)-(3.26). For the derivation of the Feynman rules of the
ACD model in the background field method, we developed a suitable computer program
using Mathematica [38].

For the full side the diagrams (1)-(4) in Fig. 3.1 were evaluated in ’t Hooft-Feynman
gauge with the Feynman rules given in Appendix B.

The effective side can be directly matched to the full side. Comparing (3.2)-(3.5) with
(3.17) we can read off

D = −C(0)
36 (µW ), D′ = −2C(0)

7γ (µW ), (3.28)

E = −C(0)
31 (µW ), E ′ = −2C(0)

8G(µW ), (3.29)

where “(0)” indicates the leading coefficients without QCD corrections.
The functions F can also be determined in an on-shell calculation where the equations

of motion for the quark fields and the relation q2 = 0 are applied [6, 39].

3.1.3 The functions D,E,D′, E′ and Z

For the evaluation of the diagrams of Fig. 3.1 we also wrote a computer program in
Mathematica. We find

Dn(xt, xn)

=
xt (35 + 8xt − 19x2t + 6x2n (10− 9xt + 3x2t ) + 3xn (53− 58xt + 21x2t ))

108(xt − 1)3

+
1

6

(
4− 2xn + 4x2n + x3n

)
ln

xn
1 + xn

− 1

18(xt − 1)4

[
12− 38xt + 54x2t − 27x3t + 3x4t + x3n (3 + xt)

+ 3x2n
(
4− xt + x2t

)
+ xn

(
−6 + 42xt − 33x2t + 9x3t

)]
ln
xn + xt
1 + xn

, (3.30)

En(xt, xn)

= −xt (35 + 8xt − 19x2t + 6x2n (10− 9xt + 3x2t ) + 3xn (53− 58xt + 21x2t ))

36(xt − 1)3

− 1

2
(1 + xn)

(
−2 + 3xn + x2n

)
ln

xn
1 + xn

+
(1 + xn) (−6 + 19xt − 9x2t + x2n (3 + xt) + xn (9− 4xt + 3x2t ))

6(xt − 1)4
ln
xn + xt
1 + xn

, (3.31)
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D′n(xt, xn)

=
xt (−37 + 44xt + 17x2t + 6x2n (10− 9xt + 3x2t )− 3xn (21− 54xt + 17x2t ))

36 (−1 + xt)
3

+
xn (2− 7xn + 3x2n)

6
ln

xn
1 + xn

− (−2 + xn + 3xt) (xt + 3x2t + x2n (3 + xt)− xn (1 + (−10 + xt)xt))

6 (−1 + xt)
4

× ln
xn + xt
1 + xt

, (3.32)

E ′n(xt, xn)

=
xt (−17− 8xt + x2t − 3xn (21− 6xt + x2t )− 6x2n (10− 9xt + 3x2t ))

12(xt − 1)3

− 1

2
xn (1 + xn) (−1 + 3xn) ln

xn
1 + xn

+
(1 + xn) (xt + 3x2t + x2n (3 + xt)− xn (1 + (−10 + xt)xt))

2(xt − 1)4
ln
xn + xt
1 + xn

. (3.33)

In Figs. 3.2 - 3.5 we show the dependence of the functions F (xt, 1/R) on 1/R. The
constant dashed lines are the SM values. Due to a partial cancellation of two contribu-
tions, the impact of the KK modes on the function D is negligible. The function E is
moderately enhanced but this enhancement plays only a marginal role in our phenomeno-
logical applications. Most interesting are the very strong suppressions of D′ (36%) and
E ′ (66%) relative to the SM values for 1/R = 300 GeV.

200 400 600 800 1000
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-0.474
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D(xt, 1/R)

R−1 [GeV]

Figure 3.2: The functions D(xt, 1/R) and D0(xt).
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Figure 3.3: The functions D′(xt, 1/R) and D′0(xt).
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Figure 3.4: The functions E(xt, 1/R) and E0(xt).

While the penguin functions E, D′ and E ′ are gauge independent, this is not the case
for C, D and the ∆F = 1 box functions Bνν̄ and Bµµ̄ considered in [3]. They can be
combined to the gauge independent functions [40]

X(xt, 1/R) = C(xt, 1/R) +Bνν̄(xt, 1/R) = X0(xt) + ∆X, (3.34)

Y (xt, 1/R) = C(xt, 1/R) +Bµµ̄(xt, 1/R) = Y0(xt) + ∆Y, (3.35)

Z(xt, 1/R) = C(xt, 1/R) +
1

4
D(xt, 1/R) = Z0(xt) + ∆Z, (3.36)

with ∆X, ∆Y and ∆Z representing the corrections due to KK modes. The SM contri-
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Figure 3.5: The functions E ′(xt, 1/R) and E′0(xt).

butions are given as follows (mt = 167 GeV):

X0(xt) =
xt
8

[
xt + 2

xt − 1
+

3xt − 6

(xt − 1)2
lnxt

]
= 1.526, (3.37)

Y0(xt) =
xt
8

[
xt − 4

xt − 1
+

3xt
(xt − 1)2

ln xt

]
= 0.980, (3.38)

Z0(xt) = −
1

9
lnxt +

18x4t − 163x3t + 259x2t − 108xt
144(xt − 1)3

+
32x4t − 38x3t − 15x2t + 18xt

72(xt − 1)4
ln xt = 0.679. (3.39)

The KK contributions to the functions Bνν̄ , Bµµ̄ [3] and to the function D found here are
negligible. The corrections to the functions X, Y and Z are therefore given by

∆X = ∆Y = ∆Z =
∞∑

n=1

Cn(xt, xn) (3.40)

to an excellent approximation.
In Table 3.1 we give the values of the functions X, Y C calculated in [3] and of

Z, D E, D′, E ′ calculated here for different values of 1/R and mt = 167 GeV. For
1/R = 300 GeV, the functions X, Y , Z are enhanced by 10%, 15% and 23% relative
to the SM values, respectively. These enhancements are smaller than the corresponding
suppressions of D′ and E ′, but sizable additive QCD corrections will soften the effect of
the latter suppressions in the branching ratios considered here.
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1/R [GeV] X Y Z E D′ E ′ C D
200 1.826 1.281 0.990 0.342 0.113 −0.053 1.099 −0.479
250 1.731 1.185 0.893 0.327 0.191 0.019 1.003 −0.470
300 1.674 1.128 0.835 0.315 0.242 0.065 0.946 −0.468
400 1.613 1.067 0.771 0.298 0.297 0.115 0.885 −0.469
SM 1.526 0.980 0.679 0.268 0.380 0.191 0.798 −0.476

Table 3.1: Values for the functions X, Y , Z, E, D′, E′, C and D. The gauge dependent
functions C and D are given in ’t Hooft-Feynman gauge.



34 CHAPTER 3. FLAVOUR PHYSICS

3.2 The decays B → Xsγ and B → Xs gluon

3.2.1 Effective Hamiltonian

We will first present the LO analysis of the decays where the impact of the KK modes
can be seen most clearly. The effective Hamiltonian for the decays B → Xsγ and B →
Xs gluon is given by

Heff(b→ sγ) = −GF√
2
V ∗tsVtb

[
6∑

i=1

Ci(µb)Qi + C7γ(µb)Q7γ + C8G(µb)Q8G

]
. (3.41)

Here we have neglected the term proportional to V ∗usVub which is suppressed relative to
V ∗tsVtb in view of | V ∗usVub/V ∗tsVtb |< 0.02 . The explicit form of the four-quark operators
can be found in [42]. The magnetic penguin operators Q7γ and Q8G are given in (3.18).

The matching calculation is performed at the scale µW = O(MW ), yielding the Wilson
coefficients

C
(0)
2 (µW ) = 1, C

(0)
7γ (µW ) = −1

2
D′(xt, 1/R), C

(0)
8G(µW ) = −1

2
E ′(xt, 1/R). (3.42)

At this scale, all other coefficients are zero. However, at NLO they generally obtain
non-zero values through the renormalization group running to the scale µb = 5 GeV.

In order to keep the LO Wilson coefficients renormalization scheme independent [43],

we also introduce the effective coefficients C
(0)eff
7γ and C

(0)eff
8G . Using the formulae in [43]

we get

C
(0)eff
7γ (µb) = η

16

23C
(0)
7γ (µW ) +

8

3

(
η

14

23 − η 16

23

)
C

(0)
8G(µW ) + C

(0)
2 (µW )

8∑

i=1

hiη
ai , (3.43)

C
(0)eff
8G (µb) = η

14

23C
(0)
8G(µW ) + C

(0)
2 (µW )

8∑

i=1

h̄iη
ai , (3.44)

with η = αs(µW )/αs(µb). The superscript “0” indicates the LO approximation. The
values of ai, hi and h̄i are given in Table 3.2. The resulting LO values of the Wilson
coefficents C

(0)eff
7γ (µb) and C

(0)eff
8G (µb) can be found in Table 3.3.

i 1 2 3 4 5 6 7 8
ai

14
23

16
23

6
23
−12

23
0.4086 −0.4230 −0.8994 0.1456

hi 2.2996 −1.0880 − 3
7
− 1

14
−0.6494 −0.0380 −0.0185 −0.0057

h̄i 0.8623 0 0 0 −0.9135 0.0873 −0.0571 0.0209

Table 3.2: Magic Numbers.
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µb = 2.5GeV µb = 5.0GeV µb = 7.5GeV

1/R[ GeV] C
(0)eff
7γ C

(0)eff
8G C

(0)eff
7γ C

(0)eff
8G C

(0)eff
7γ C

(0)eff
8G

200 −0.236 −0.076 −0.192 −0.053 −0.169 −0.040
250 −0.264 −0.100 −0.223 −0.079 −0.201 −0.068
300 −0.282 −0.114 −0.242 −0.096 −0.221 −0.086
400 −0.301 −0.131 −0.264 −0.114 −0.244 −0.105
SM −0.331 −0.156 −0.296 −0.142 −0.278 −0.135

Table 3.3: Wilson coefficients C
(0)eff
7γ and C

(0)eff
8G in LO for mt = 167GeV as functions of

1/R and various values of µb.

Two lessons can be learnt from these results. First, the impact of the KK modes on
the coefficients C

(0)eff
7γ (µb) and C

(0)eff
8G (µb) is substantially smaller than on C

(0)
7γ (µW ) and

C
(0)
8G(µW ) in (3.42). This is due to the large QCD correction in the last term in (3.43)

and (3.44), respectively. This correction, which is also responsible for the large QCD
enhancement of B → Xsγ and B → Xs gluon [44, 45] screens considerably the effects
of the KK modes. For the values mt = 167GeV, 1/R = 300GeV, µb = 5GeV and

α
(5)
s (MZ) = 0.118, we find

C
(0)eff
7γ (µb) = 0.695 C

(0)
7γ (µW ) + 0.085 C

(0)
8G(µW )− 0.158 C

(0)
2 (µW )

= 0.695 (−0.121) + 0.085 (−0.033)− 0.158 = −0.245 (3.45)

and

C
(0)eff
8G (µb) = 0.727 C

(0)
8G(µW )− 0.074 C

(0)
2 (µW )

= 0.727 (−0.033)− 0.074 = −0.098, (3.46)

to be compared with the SM values −0.300 and −0.144, respectively.
The second observation we make is the large µb-dependence of the coefficients. This

LO scale uncertainty is substantially reduced when including NLO corrections which we
have to do for a phenomenologically viable analysis. For the SM these corrections are well
know. For scales µ < 1/R there are no KK excitations present, hence the only unknown
NLO part are the ACD corrections to the Inami-Lim functions D′ and E ′. Since these
are of order O(αs) and further suppressed by the high masses of order O(1/R), we can
neglect them to a good approximation.

3.2.2 Branching Ratio for B → Xsγ

In our analysis we used the experimental world average resulting for the decay B → Xsγ
from the data by CLEO, ALEPH, BABAR and BELLE [46]

Br(B → Xsγ)Eγ>1.6 GeV = (3.28+0.41
−0.36) · 10−4 . (3.47)
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A more resent value [47]

Br(B → Xsγ)Eγ>250 MeV = (3.39+0.30
−0.27) · 10−4 (3.48)

is given for a photon spectrum extrapolated down to Eγ > 250 MeV. It implies only a mi-
nor change of (3.47), while the uncertainties are somewhat reduced, leading to essentially
the same results.

The SM prediction [48, 49] is

Br(B → Xsγ)
SM
Eγ>1.6 GeV = (3.57± 0.30) · 10−4 (3.49)

which is consistent with the experimental value.
The LO approximation of the branching ratio is given by

Br(B → Xsγ)

Br(B → Xceν̄e)
=
|V ∗tsVtb|2
|Vcb|2

6α

πf(z)
|C(0)eff

7 (µb)|2 , (3.50)

where f(z) with z = mc/mb is the phase space factor in Br(B → Xceν̄e).
The corresponding NLO formulae that include also higher order electroweak effects

[50] are complicated and can be found in [48]. As reviewed in [51, 52, 53], many groups
contributed to obtain these NLO results. In our numerical NLO analysis we benefited
enormously from the computer programs of the authors of [48, 50].

In Fig. 3.6 we can clearly see the strong suppression of the branching ratio by the KK
modes. The shaded region represents the data in (3.47) and the upper (lower) dashed
horizontal lines are the central values in the SM for mc/mb = 0.22 (mc/mb = 0.29). The
solid lines represent the corresponding central values in the ACD model. The theoretical
errors, not shown in the plot, are roughly ±10% for all curves.

The theoretical prediction for Br(B → Xsγ) depends sizably on the ratio mc/mb,
which is the main uncertainty at NLO level. Since the charm mass enters the calculation
first at NLO level, its renormalization ambiguity can only be resolved at the NNLO level.
For the results in Table 3.4, we used mc/mb = 0.22 in accordance with the arguments put
forward in [48]. As seen in Fig. 3.6, for a value mc/mb = 0.29 that has been used in the
past, the branching ratio is smaller by roughly 10%.

At present, in view of the sizable experimental error and the theoretic uncertainties,
the strong suppression of Br(B → Xsγ) by the KK modes does not yet provide a pow-
erful lower bound on 1/R and the values 1/R ≥ 250GeV are fully consistent with the
experimental result. Once the NNLO calculation is completed and the experimental un-
certainties reduced, Br(B → Xsγ) may provide a very powerful bound on 1/R that is
substantially stronger than the bounds obtained from the electroweak precision data.

The suppression of Br(B → Xsγ) in the ACD model has already been found in [4].
Our result presented above is consistent with the one obtained by these authors but differs
in details as only the dominant diagrams have been taken into account in the latter paper
and the analysis was performed in the LO approximation.
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Figure 3.6: The branching ratio for B → Xsγ and Eγ > 1.6 GeV as a function of 1/R. The
meaning of the various curves is explained in the text.

µb = 2.5GeV µb = 5.0GeV µb = 7.5GeV
1/R[ GeV] Br(LO) Br(NLO) Br(LO) Br(NLO) Br(LO) Br(NLO)

200 1.54 2.32 1.02 2.30 0.79 2.28
250 1.92 2.66 1.37 2.65 1.11 2.63
300 2.18 2.89 1.61 2.88 1.35 2.86
400 2.49 3.15 1.90 3.15 1.63 3.13
SM 2.99 3.57 2.39 3.58 2.11 3.56

Table 3.4: The branching ratio for B → Xsγ in LO and NLO in units of 10−4 as a function
of 1/R for mc/mb = 0.22 and various values of µb.

3.2.3 Branching Ratio for B → Xs gluon

For the decay b → sg, the domination operator is Q8G and consequently the value of
the coefficient C8G is crucial here. The SM branching ratio is strongly enhanced by NLO
QCD corrections [54] with the result

Br(b→ sg) = (5.0± 1.0) · 10−3, mc/mb = 0.29 . (3.51)

Compared to the LO prediction, it is enhanced by a factor of 2.5. Taking mc/mb = 0.22,
we find, using the computer program of [54],

Br(b→ sg) = (4.1± 0.7) · 10−3, mc/mb = 0.22 . (3.52)

The uncertainty in mc/mb and the renormalization scale dependence constitute the main
uncertainties in the prediction.
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Figure 3.7: The branching ratio for B → Xsg for mc/mb = 0.22 and µb = 2.5, 5, 7.5 GeV.
Br(B → Xsg) decreases with increasing µb. The dashed lines represent the SM prediction.

The results for the branching ration in the ACD model are shown in Fig. 3.7. The
dashed lines represent the SM prediction and the solid lines the ACD prediction. The
uncertainty is solely due to the renormalization scale dependence. We notice a strong
suppression of the branching ratio by the KK modes which is already visible in the LO
results of C

(0)eff
8G (µb) in Section 3.2.1.

At present, these results cannot be used to put a lower bound on the compactification
scale 1/R in the ACD model. Not only is it still necessary to reduce the large theoretical
uncertainties in µb and mc/mb, also the extraction of the branching ratio from the data
turns out to be very difficult, if not impossible. If these obstacles can be overcome, the
decay B → Xs gluon could offer a very powerful constraint on 1/R.



3.3. THE DECAY B → XSµ
+µ− 39

3.3 The decay B → Xsµ
+µ−

The inclusive B → Xsµ
+µ− decay has been the subject of very intensive theoretical

and experimental research during the last 15 years. Like the decay B → Xsγ, it is an
important testing groung for the flavour structure of the SM and offers a window for
exploring new physics at the TeV scale.

3.3.1 Effective Hamiltonian and Branching Ratio

The relevant part of the effective Hamiltonian at scales µ = O(mb) is given by

Heff(b→ sµ+µ−) = Heff(b→ sγ)− GF√
2
V ∗tsVtb [C9V (µ)Q9V + C10A(MW )Q10A] , (3.53)

where Heff(b → sγ) is given in (3.41). There are two new operators Q9V and Q10A in
addition to those relevant for the decay B → Xsγ:

Q9V = (s̄γb)V−A(µ̄µ)V , Q10A = (s̄b)V−A(µ̄µ)A , (3.54)

For this decay, a proper treatment of the cc resonances is mandatory. As the theoret-
ical side relies on the domination of perturbative contributions, one has to remove these
resonances by appropriate kinematical cuts in the dilepton mass spectrum. Introducing

ŝ =
(pµ+ + pµ−)

2

m2
b

, z =
mc

mb

, (3.55)

the low dilepton mass window is given by region

(
2mµ

mb

)2

≤ ŝ ≤
(
MJ/ψ − 0.35GeV

mb

)2

. (3.56)

The theoretical calculations are cleanest for ŝ0 ≤ 0.25 where the numerically relevant parts
of the NNLO corrections for the inclusive decays are known [55, 56, 57] and resonant effects
due to J/ψ, ψ′, etc. are expected to be small.

The experimental value by the BABAR collaboration reads [58]

Br(B → Xsµ
+µ−) = (5.0± 2.8± 0.6± 1.0) · 10−6, (3.57)

which is consistent with the value reported by the BELLE collaboration [59]

Br(B → Xsµ
+µ−) = (4.13± 1.05+0.73

−0.69) · 10−6. (3.58)

However, these values include the contributions from the full dilepton mass spectrum.
Future experimental analyses are supposed to give the results corresponding to the low
dilepton mass window so that a direct comparison between experiment and theory will
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Figure 3.8: d
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+l−) in the SM (dashed line) and the ACD model for R−1 = 250
GeV in the low ŝ region.

be possile. At the moment, it is necessary to integrate the theoretical expressions over
the whole dilepton mass spectrum [61].

In these two cases, the SM expectations are given by

B̃r(B → Xsµ
+µ−)SM = (2.75± 0.45) · 10−6, (3.59)

where the dilepton mass spectrum has been integrated in the limits suggested by BELLE [60]
and given in (3.56), and

Br(B → Xsµ
+µ−)SM = (4.15± 0.7) · 10−6, (3.60)

which corresponds to the full dilepton mass spectrum. The predictions of the ACD model
(1/R = 250 GeV ) for the differential branching ratio in both cases are shown in Fig. 3.8
and Fig. 3.9.

In Fig. 3.10 we show the branching ratio B̃r(B → Xsµ
+µ−) as a function of 1/R.

In obtaining these results we followed closely the procedure of the authors of [55, 61]
and generalized their computer programs to include the KK contributions. We observe a
modest enhancement of B̃r(B → Xsµ

+µ−)ACD, corresponding to the low dilepton mass
window, that for 1/R = 300 GeV amounts to roughly 12%.

For the whole spectrum, we find Br(B → Xsµ
+µ−)ACD = (4.8 ± 0.8) · 10−6. The

SM prediction nearly coincides with BELLE’s result in (3.58), while the ACD model
prediction is closer to BABAR’s value in (3.57). However, the large experimental errors
and still sizable theoretical uncertainties in the branching ratio corresponding to the full
dilepton mass spectrum, also of non-perturbative origin, preclude definite conclusions at
present. As we stated before it is safer to consider the branching ratio for the low dilepton
mass window as given in in Fig. 3.10.
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ŝ
B
r(
B
→

X
s
l+
l−
)
×

10
5

ŝ
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GeV for the full dilepton mass spectrum.

3.3.2 Forward-Backward Asymmetry

In the decay B → Xsµ
+µ−, the forward-backward asymmetry is particularly interesting.

At the NLO level where it first becomes non-zero, it is given by [62]

AFB(ŝ) =
1

Γ(b→ ceν̄)

∫ 1

−1

d cos θl
d2Γ(b→ sµ+µ−)

dŝd cos θl
sgn(cos θl) (3.61)

= −3C̃10

[
ŝRe C̃eff

9 (ŝ) + 2C
(0)eff
7γ

]

U(ŝ)
, (3.62)

where θl is the angle between the µ+ and B meson momenta in the center of mass frame.
The function U(ŝ) is given by

U(ŝ) = (1 + 2ŝ)
(
|C̃eff

9 (ŝ)|2 + |C̃10|2
)
+ 4

(
1 +

2

ŝ

)
|C(0)eff

7γ |2

+ 12C
(0)eff
7γ Re C̃eff

9 (ŝ), (3.63)

and C̃eff
9 (ŝ) is a function of ŝ that depends on the Wilson coefficient C̃NDR

9 and includes
also contributions from four quark operators [63, 64].

The asymmetry AFB(ŝ) vanishes in exclusive [65] and inclusive decays. In the latter
case, the zero of the forward-backward asymmetry is given by

ŝ0Re C̃
eff
9 (ŝ0) + 2C

(0)eff
7γ = 0. (3.64)

The asymmetry AFB(ŝ) and hence also the value of ŝ0 are sensitive to short-distance
physics. As the non-perturbative uncertainties are very small, they provide a particularly
useful test for physics beyond the SM.
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Figure 3.10: B̃r(B → Xsµ
+µ−) in the SM (dashed line) and in the ACD model. The integration

limits have been chosen as defined in (3.56).

For our analysis, we used the computer program of [55, 61] that includes the sizable
NNLO corrections [55, 56], which we modified to include also the KK contributions. In
Fig. 3.11 we show the normalized forward-backward asymmetry

ÂFB(ŝ) = Γ(b→ ceν̄)× AFB(ŝ)/

∫ 1

−1

d cos θl
d2Γ(b→ sµ+µ−)

dŝd cos θl
. (3.65)

In Fig. 3.12 the dependence of ŝ0 on 1/R is shown.
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Figure 3.11: Normalized forward-backward asymmetry in the SM (dashed line) and ACD for
R−1 = 250 GeV.

The coefficient C̃eff
9 is only weakly affected by the KK contributions, whereas C

(0)eff
7γ

is substantially suppressed. Consequently, the value of ŝ0 is considerably reduced relative
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Figure 3.12: Zero of the forward-backward asymmetry AFB in the SM (dashed line) and the
ACD model.

to the SM as can be seen in Fig. 3.12. For 1/R = 300 GeV we find a value for ŝ0 that is
very close to the NLO prediction of the SM. This demonstrates clearly the importance of
the higher order QCD corrections, in particular in quantities like ŝ0 that are theoretically
clean. We expect that the results in Fig. 3.11 and Fig. 3.12 will play an important role
in the tests of the ACD model in the future.
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4.1 Framework

The ACD model with one universal extra dimension is not renormalizable. This is gener-
ally the case for quantum field theories in more than the usual 4 space-time dimensions.
They can be regarded as effective theories valid up to some cut-off scale Λ. A naive
cut-off by truncation of the tower of KK modes violates local gauge invariance in the
extra dimensions and is therefore inconvenient. A solution to this problem is provided by
dimensional deconstruction.

Dimensional deconstruction is the modelling of extra dimensions on a finite lattice of
space-time points. It gives rise to two possible interpretations. On the one hand, it can
be viewed as a gauge invariant regulator of a higher dimensional theory1. The parameters
of the deconstructed model are matched to the continuum theory in the low energy limit.
In this way, possible influences from physics at the cut-off scale can be studied, although
one has to bear in mind that these results are specific to this particular UV completion
and may not be generally true in others.

On the other hand, dimensional deconstruction stands on its own right as a framework
for model building, and a correspondence to continuous extra dimensions is not necessary.
There is a great freedom in choosing the topology, particle content and couplings, to which
the analogy to extra dimensions may be used as a guiding principle. Although the model
we consider in this work is an emulation of a continuous extra dimension, we always
interpret our results regarding both points of view.

The simplest geometry for a compact extra dimension is the circle S1. In dimensional
deconstruction the corresponding moose diagram is a circle consisting of discrete lattice
points, where the matter and gauge fields live, connected by linking Higgs fields.

In higher dimensional models, chiral fermions are realized by orbifold compactifica-
tions. The simplest possibility is the orbifold S1/Z2 which is in dimensional deconstruction
implemented by an aliphatic setup [12]. The moose diagram consists of a line with its two
endpoints corresponding to the fixed points of the orbifold. This aliphatic structure can
have the matter fields living on every lattice site [12] corresponding to the UED models
[2] where all fields live in the bulk. It is also possible to have only the gauge fields in the
bulk and place the fermions on specific sites [66].

In this thesis we study an aliphatic model with chiral fermions on the lattice sites
together with a replicated U(1) as the gauge group. This is the deconstructed version of a
5D UED theory with a chiral fermion, compactified on the orbifold S1/Z2. In this section
we discuss the Lagrangian of the model.

4.1.1 Gauge field lattice

First we consider the deconstruction of a 5D U(1) gauge theory. We have N + 1 lattice
sites connected by N linking Higgs fields in the bifundamental representation of their
neighbouring gauge groups, see Fig. 4.1. The Lagrangian for this moose diagram reads

1Other regularization schemes of higher dimensional field theories have been discussed in [13].
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N−1 N20 1

Figure 4.1: Moose diagram of the aliphatic model. The circles denote the lattice sites with the
gauge fields, connected by the linking Higgs fields.

L = −1

4

N∑

n=0

FµνnF
µν
n +

N∑

n=1

(DµΦn)
†(DµΦn)− V (Φ) (4.1)

with the covariant derivative

DµΦn = [∂µ − igAµn−1 + igAµn] Φn. (4.2)

The link field Φn connects the lattice sites n− 1 and n.
In higher dimensional models, the masses of the KK excitations are generated by

derivative terms along the extra dimensions. This leads to a linear spectrum of a tower of
KK modes which is universal for all fields. In dimensional deconstruction the KK masses
are basically generated by the vacuum expectation value (VEV) of the linking Higgs field.
The Higgs potential V (Φ) is chosen such that every Φn gets a universal VEV

〈Φn〉 =
v√
2g
, (4.3)

where we have included a factor of 1/
√
2g for notational simplicity. This VEV sponta-

neously breaks local gauge invariance in the latticized fifth dimension and gives masses
to the gauge boson KK modes. The associated Goldstone bosons are the imaginary parts
of the complex fields Φn.

The mass term of the gauge fields

1

2
v2

N∑

n=1

(Aµn−1 − Aµn)2 (4.4)

originates from the linking Higgs kinetic terms, where Φn is replaced by its VEV. It is
diagonalized by

An,µ =

√
2

N + 1

N∑

k=0

(
1√
2

)δk
cos

(n+ 1/2)kπ

N + 1
Aµ(k), (4.5)

giving the masses

mA(k) = 2v sin
kπ

2(N + 1)
. (4.6)
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We have put paranteses around the KK mode number to distinguish the KK mass eigen-
states from the position eigenstates in lattice space.

In the low-energy limit k ¿ N we can identify the parameters of the orbifold model
with those in the deconstructed setup. The mass spectrum is then approximately linear:

mA(k) ≈
vkπ

N + 1
↔ k

R
, (4.7)

where R is the radius of the orbifold. Introducing the lattice spacing a we can identify
πR = (N+1)a and get the tree-level relation v = 1/a. One could say that for fixed N the
size of the deconstructed dimension is given dynamically by the VEV of the link field.2

For the fields Φn we work with the linear representation

Φn =
v√
2g

+
1√
2
(Σn + iGn) , (4.8)

where the Gn are the Goldstone modes and the Σn are physical real scalars. We apply an
Rξ-gauge fixing similar to the one used in the periodic case for the non-linear realization
of the gauge symmetry [22]:

LGF = −1

2

N∑

n=0

G2n (4.9)

with

Gn =
1√
ξ
[∂µA

µ
n + vξ(Gn+1 −Gn)] (4.10)

and GN+1 ≡ 0. The gauge fixing generates mass terms for the Goldstone modes which
are diagonalized by

Gn =

√
2

N + 1

N∑

k=1

sin
nkπ

N + 1
G(k), (4.11)

resulting in the masses

mG(k) =
√
ξ2v sin

kπ

2(N + 1)
. (4.12)

Not surprisingly, the masses of the Goldstone bosons are the same as in (4.6) with an
additional factor of

√
ξ.

The Higgs potential can in principle contain any renormalizable, gauge invariant com-
bination of the Φn. The simplest choice is

V (Φ) =
N∑

n=1

[
−µ2Φ†nΦn +

λ

2
(Φ†nΦn)

2

]
. (4.13)

2See [67] for a discussion of nonperturbative corrections to the radius.
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Here the Φn are decoupled from each other in the potential, and after spontaneous sym-
metry breaking (SSB) the VEV is given by (4.3). The physical modes Σn get the universal
mass mΣ =

√
2µ =

√
λv/g, with its natural value given by the cutoff of the 4-dimensional

theory. The Σn are degenerate in mass, so we are free to carry out an arbitrary orthog-
onal transformation on them. For the purpose of analogy to the Goldstone modes, we
transform the mass eigenstates Σn to Σ(n) as in (4.11).

By taking the limit µ→∞, λ→∞ while keeping the Higgs VEV fixed, we can make
the Σn arbitrary heavy, decoupling them from low-energy dynamics. It can then be useful
to switch to a non-linear sigma model representation

Φn −→
v√
2g

exp(igφn/v) (4.14)

that reflects the role of the linking Higgs as a Wilson line [12]. The physical modes are
eliminated at the price of leaving a non-renormalizable theory. At low energies this non-
linear sigma model is indistinguishable from the linear sigma model. The choice of one
representation is just a matter of convenience [11]. As we are mainly interested in the
renormalizability of the model, we will use the linear representation given by (4.8).

A remark is in order here about more complicated Higgs potentials. Even if we restrict
ourselves to renormalizable operators, we can introduce couplings between different lattice
sites, for example the nearest neighbour coupling

V ′(Φ) = V (Φ) + λ′
N−1∑

n=0

Φ†nΦnΦ
†
n+1Φn+1. (4.15)

The tree level minimum of the potential is then no longer given by a universal VEV,
although KK parity is still respected, that is 〈Φn〉 = 〈ΦN+1−n〉. This results in a change of
the mode expansion, masses and couplings of the fields. If we let us guide by locality in 5D,
it is natural to assume that couplings between distant lattice sites are suppressed (λ′ ¿ λ).
However, from the point of view of moose model building there is no fundamental reason
which dictates locality3.

In the general case there can appear terms coupling arbitrary lattice sites with each
other. Moreover, the individual couplings do not necessarily have to be universal but can
depend on the individual lattice sites. The freedom of non-universal VEVs and couplings
can be used to build models that describe warped backgrounds [18, 19]. In the remainder
of this work, we will use (4.13), which ensures, at least at tree level, a universal VEV for
all Φn.

4.1.2 Fermions in the aliphatic setup

We consider the deconstructed version of a higher dimensional model similar to the one
studied in [69, 26]. Relevant for us is the occurrence of a fermion in 5D with a chiral zero-
mode. As has been pointed out in [70], the analogy of the deconstructional setup to the

3Examples of strictly non-local theory spaces can be found in [68].
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Figure 4.2: The lattice of the fermions without the Wilson term. The vertical lines represent
the bare mass terms. The diagonal lines represent the link fields which connect fermions of
neighbouring lattice sites.

continuous case is not obvious, since the orbifold boundary conditions cannot be directly
translated to the lattice. In this section we review the construction of the Lagrangian of
the fermions, following the presentation of [71], where the periodic lattice was considered.

We start with 2N + 2 chiral fermions that are charged under the U(1) of their lattice
site. The kinetic term reads

N∑

n=0

[
ψLniD/ψLn + ψRniD/ψRn

]
, (4.16)

with the covariant derivative

DµψL/Rn = (∂µ + igAµn)ψL/Rn. (4.17)

We couple the linking Higgs to the fermions in such a way that the imaginary (un-
physical) part of the scalar can be identified with the fifth component of the U(1) vector
field coupled covariantly to the fermions. We also introduce a bare mass term coupling
two chiral fermions of the same lattice site:

N∑

n=0

[
−Mψnψn −

1√
2
gη(ψn−1γ5Φnψn + h.c.)

]
, (4.18)

with ψn ≡ ψLn+ψRn. This setup is illustrated in Fig. 4.2. In order to remedy the fermion
doubling problem, we have to introduce a Wilson term

N∑

n=0

{
vη′ψnψn −

1√
2
gη′(ψn−1Φnψn + h.c.)

}
. (4.19)

The coupling between the fermions and the Higgs field is given by a dimensionless constant
η′, and the parameter v is set to match the Higgs VEV. Putting (4.18) and (4.19) together
we get

N∑

n=0

{
−(M − vη′)ψnψn −

1√
2
g
([
ψLn−1ΦnψRn + ψRnΦ

†
nψLn−1

]
(η′ + η)

+
[
ψRn−1ΦnψLn + ψLnΦ

†
nψRn−1

]
(η′ − η)

)}
. (4.20)
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Figure 4.3: The lattice of the fermions after elimination of half of the links by the Wilson term
and removal of one of the right-handed modes.

In order to eliminate half of the links between two adjacent sites, we set η ′ = η. This
leaves us with

N∑

n=0

{
−M̃ψnψn −

√
2gη

[
ψLn−1ΦnψRn + ψRnΦ

†
nψLn−1

]}
, (4.21)

where M̃ =M − vη. Inserting the Higgs VEV (4.3) we get the mass terms

N∑

n=0

{
−M̃

[
ψLnψRn + ψRnψLn

]
− vη

[
ψLn−1ψRn + ψRnψLn−1

]}
. (4.22)

The “kink”-massM in the Lagrangian yields an offset ofM 2 in the fermion mass spectrum
[70, 71]. In order to end up with an orbifold-like mass spectrum, we have to set M = 0
and therefore M̃ = −vη. The mass terms then read

−vη
N∑

n=0

[
(ψLn−1 − ψLn)ψRn + h.c.

]
. (4.23)

This last step is actually a fine-tuning of the parameters, since the parameter v in (4.23)
has two different origins. The term coupling two fermions of neighbouring lattice sites
is generated by SSB, where the linking Higgs field is replaced by its VEV. On the other
hand, in the coupling of two fermions of the same site we have put in the VEV by hand in
(4.19) and by settingM = 0. We can do so at tree level, but as we will see later, radiative
corrections spoil this naive choice.

We want a single chiral zero-mode, which is accomplished by setting ψR0 ≡ 0. The
sums in (4.21) and (4.23) now run from 1 to N :

N∑

n=1

{
vηψnψn −

√
2gη

[
ψLn−1ΦnψRn + ψRnΦ

†
nψLn−1

]}
. (4.24)

This is illustrated in Fig. 4.3. For the fermion masses, we get the terms

− vη
N∑

n=1

[
(ψLn−1 − ψLn)ψRn + h.c.

]
= −(ψL0, ..., ψLN)M̂(ψR1, ..., ψRN )

T + h.c. . (4.25)
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The (N + 1)×N mass matrix M̂ takes the form

M̂ = vη




1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 . . . . . . −1 1
0 . . . . . . 0 −1



. (4.26)

It is diagonalized by

ψLn =

√
2

N + 1

N∑

k=0

(
1√
2

)δk
cos

(n+ 1/2)kπ

N + 1
ψL(k), (4.27)

ψRn =

√
2

N + 1

N∑

k=1

sin
nkπ

N + 1
ψR(k), (4.28)

resulting in the fermion masses

mψ(k) = 2vη sin
kπ

2(N + 1)
. (4.29)

Getting the same mass spectrum as for the gauge bosons (4.6) requires the choice of η = 1.
This also justifies the ad-hoc setting M = 0. In the following, we keep the parameter
η explicitly in all expressions in order to keep track of the various contributions to our
results.

For arbitrary M and η we would get the mass spectrum

m2
ψ(k) =M2 + 4(vη −M)vη sin2

kπ

2(N + 1)
, k ≥ 1. (4.30)

The zero-mode ψ(0) must always stay massless, even for M 6= 0, since it has no chiral
partner. In a phenomenologically realistic setup, two sets of fermions, one with a left-
handed zero-mode and one with a right-handed zero-mode, would be coupled to a Higgs
field. After SSB at the electroweak scale, the usual SM fermion masses for the zero-modes
arise. This also remedies the possible occurence of gauge anomalies that are generally
present in a setup with chiral fermions. However, this issue is not important for the
calculation of the fermion self-energies in the next section.
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4.2 Feynman rules and Kaluza-Klein parity

In order to be a gauge invariant, renormalizable UV completion of a higher dimensional
theory, the deconstructed theory not only has to possess the same mass spectrum in the
low energy limit. It is essential that the Feynman rules are also equivalent and important
properties of the higher dimensional theory are reproduced.

In orbifold theories translational Lorentz symmetry is broken at the fixed points, and
the momentum in the extra dimensions is no longer conserved. However, if the field
content is appropriately chosen, for example in models with universal extra dimensions,
there is a discrete remnant of this symmetry that is still intact, namely Kalzua-Klein
parity. This is the reflection generated by the transformation y → πR− y, where y is the
coordinate in the extra dimension.

The conservation of KK parity is an important property of UED models. It causes the
lightest KK particle (LKP) to be stable, providing an excellent candidate for dark matter
in orbifold extensions of the SM [72]. Apart from that, it also implies the absence of tree
level KK contributions to low energy processes taking place at scales µ¿ 1/R. In FCNC
processes it is responsible for the GIM mechanism to improve the convergence of the sum
over KK modes and for the relatively mild impact of the KK modes [3] as opposed to
models with fermions localized on a brane [73]. For these reasons the phenomenological
bounds on the compactification scale are typically much weaker [2, 3, 4, 6, 10, 74] than
in non-universal extra dimensions. In order for the deconstructed theory to be a faithful
low-energy representation of such a 5-dimensional model, it is essential that KK parity is
at least approximately conserved, possibly violated only at a high scale.

We will see that the one-loop corrections to the fermion masses exhibit a structure
quite different from orbifold theories. We therefore take a closer look at the Feynman rules
of the aliphatic model in terms of mass eigenstates in this section. We especially elaborate
to which extent KK parity is reflected in the Lagrangian. We take the coupling of the
gauge bosons to the fermions and to the link fields as examples to show the analogies and
differences to the corresponding orbifold model.

Before we discuss the individual vertices, let us briefly review the impact of KK parity
on correlation functions. In general, we define a parity transformation by its action on
mass eigenstates in order to obtain a definite selection rule. There are two cases relevant
for us:

i) φ′(k) = ∓φ(k) or ii) φ′(k) = ±φ(k), (4.31)

where φ stands for any field in the Lagrangian and the upper (lower) sign is relevant for k
odd (even). We assign to every field either i) or ii) such that the Lagrangian is invariant
under the transformation.

Let us take the two-point function as an example to show how selection rules for
correlation functions can be derived. The generalization to higher correlation functions is
obvious. If we assume that all fields transform as i), we get

〈φ′(k)φ′(k′)〉 = ∓〈φ(k)φ(k′)〉, (4.32)



54 CHAPTER 4. DIMENSIONAL DECONSTRUCTION

where we have a minus (plus) sign if k − k′ is odd (even). If the Lagrangian is invariant
under φ→ φ′ then the correlation functions for the primed fields are the same as for the
unprimed ones, and consequently (4.32) must be zero if k − k′ is odd.

Now we can discuss the Feynman rules and the violation of KK parity. First we note
that the transformations into mass eigenstates (4.5), (4.11) and (4.27) are orthogonal and
yield canonically normalized kinetic terms for all fields.

For the moment we ignore the fermions. In the aliphatic model the link fields couple
to the gauge fields by the covariant derivative. The Φ†AΦ vertex is given by

−ig
N∑

n=1

∂µΦ
†
n(A

µ
n−1 − Aµn)Φn + h.c. =

−ig
2

(
2

N + 1

)3/2 ∑

k,l,m

∂µΦ
†

(k)A
µ
(l)Φ(m)

×
(
1

2

)δl
sin

lπ

2(N + 1)

N∑

n=1

sin
nkπ

N + 1
sin

nlπ

N + 1
sin

nmπ

N + 1
+ h.c. . (4.33)

The sum over n in the second line is given by

1

4
[Ξ(k + l −m)− Ξ(k − l −m) + Ξ(k − l +m)− Ξ(k + l +m)] (4.34)

with (see e.g. [75])

Ξ(j) ≡
N∑

n=1

sin
njπ

N + 1
= sin

Njπ

2(N + 1)
sin

jπ

2
sin−1

jπ

2(N + 1)
. (4.35)

Since Ξ(j) vanishes for any even j, we find that KK parity is violated maximally at each
vertex of a Feynman diagram.

This can be directly seen in terms of position eigenstates on the lattice. The charge
assignment of the Φn induces a direction on the lattice, hence the Aµn must change sign
under reflection for (4.33) to be invariant:

Φn −→ ΦN+1−n, Aµn −→ −AµN−n. (4.36)

The mass eigenstates transform accordingly as ii)

Φ′(k) =
N∑

n=1

sin
nkπ

N + 1
ΦN+1−n = ±Φ(k),

A′µ(k) =
N∑

n=0

cos
(n+ 1/2)kπ

N + 1
(−AµN−n) = ±Aµ(k). (4.37)

For correlation functions with an even number of fields KK parity is still conserved,
while it is violated maximally for an odd number of fields. In the latter case only those
correlation functions do not vanish which break KK parity, i.e. if the sum of external KK
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numbers k1 + · · ·+ kn is odd. Although the imaginary parts Gn of the link fields Φn can
be removed by a gauge transformation, the real parts Σn are physical and KK parity is
violated at the scale given by their mass.

The four-field vertex Φ†AAΦ also has no counterpart in the higher dimensional theory.
Due to the quadratic occurence of the gauge fields, KK parity is conserved here.

The situation gets more complicated once we introduce fermions. The coupling of the
left-handed fermions to the gauge fields given by the covariant derivative reads

− g
N∑

n=0

ψnLA/µnψnL = −g
(

2

N + 1

)3/2 N∑

k,l,m=0

ψL(k)A/µ(l)ψL(m)

×
(

1√
2

)δk+δl+δm N∑

n=0

cos
(n+ 1/2)kπ

N + 1
cos

(n+ 1/2)lπ

N + 1
cos

(n+ 1/2)mπ

N + 1

= − g√
2(N + 1)

N∑

k,l,m=0

(
1√
2

)δk+δl+δm
ψL(k)A/µ(l)ψL(m)δ̂klm, (4.38)

where

δ̂klm = δ̂k+l−m + δ̂k−l−m + δ̂k−l+m + δ̂k+l+m (4.39)

and δ̂k is a modified Kronecker delta symbol defined by (n ∈ Z)

δ̂k =





1 if k = 4n(N + 1),

−1 if k = (4n+ 2)(N + 1),

0 else.

(4.40)

The evaluation of the sum over n in (4.38) is given in Appendix C.
This result should be compared with the corresponding orbifold model where the

δ̂k±l±m in (4.39) are replaced by the ordinary Kronecker δk±l±m symbols. The difference
is due to the fact that the lattice constitutes a discrete dimension and hence multiples of
the mode number 2(N + 1) are equivalent to the mode number 0.

Despite of this discrepancy, KK parity is conserved here. The term (4.38) is invariant
under the transformation

ψLn −→ ψLN−n, Aµn −→ AµN−n, (4.41)

which implies

Ψ′L(k) =
N∑

n=1

cos
(n+ 1/2)kπ

N + 1
ψLN−n = ∓ψL(k),

A′µ(k) =
N∑

n=0

cos
(n+ 1/2)kπ

N + 1
AµN−n = ∓Aµ(k). (4.42)
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Note that since the transformation for Aµ in (4.41) is different from (4.36), correlation
functions involving Aµ with both Φ and ψL fields do not obey simple selection rules.

For the right-handed fermions we have

− g
N∑

n=1

ψnRA/µnψnR = −g
(

2

N + 1

)3/2 N∑

k,l,m=0

ψR(k)A/µ(l)ψR(m)

×
(

1√
2

)δl N∑

n=1

sin
nkπ

N + 1
cos

(n+ 1/2)lπ

N + 1
sin

nmπ

N + 1
. (4.43)

The sum over n in the second line is given by

1

4

[
(N + 1) cos

lπ

2(N + 1)
˜̌δklm − sin

lπ

2(N + 1)

× [Ξ(k + l −m)− Ξ(k − l −m) + Ξ(k − l +m)− Ξ(k + l +m)]

]
, (4.44)

where

˜̌δklm = δ̌k+l−m + δ̌k−l−m − δ̌k−l+m − δ̌k+l+m (4.45)

and (n ∈ Z)

δ̌j =

{
1 if j = 2n(N + 1),

0 else,
(4.46)

not to be confused with δ̂j as defined in (4.40). The first term in (4.44) is similar to the
corresponding vertex in the orbifold model, while the second term is proportional to the
Φ†AµΦ vertex in (4.33).

This vertex differs substantially from the orbifold vertex because it is not invariant
under KK parity transformation

ψRn −→ ψRN−n−1, Aµn −→ AµN−n. (4.47)

It is invariant under the transformation

ψRn → ψRN−n−1, Aµn → AµN−n−1, (4.48)

but this does not lead to a definite transformation of the mass eigenstates Aµ(k).
The coupling of the linking Higgs field to the fermions is given by (4.24). In terms of

mass eigenstates it shows a structure similar to (4.44), only the second term comes with
the opposite sign. Again there is no equivalent to this KK parity violating term in the
orbifold theory.
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We have seen that KK parity is generically violated in the aliphatic setup. As a direct
consequence, fields with different KK parity can mix under renormalization. This can be
seen explicitly in the structure of the fermion self-energies in Appendix D.

In the case of the linking Higgs field the violation of KK parity can be partially removed
by a suitable gauge transformation, while the remaining KK parity violating interactions
are suppressed by the mass of the physical scalars. This is no more possible once fermions
are introduced in the bulk, and KK parity is violated even at low energies, that is for
mode numbers k ¿ N . The lack of symmetry is apparent in Fig. 4.1 and Fig. 4.3, and
the cause is twofold.

First, the coupling of fermions to the linking Higgs induces a direction on the lattice
quite analogous to the direction induced by the gauge field on the linking Higgs, even
in equation (4.18) before the Wilson term is introduced. This is a general feature of
deconstruction models where the link field, introduced to give masses to the KK modes
by its VEV, is coupled in a gauge invariant way to the other fields.

The second cause is the elimination of ψR0 that was done to end up with a single
massless chiral zero-mode. We have to choose some sort of boundary conditions such
that there is a surplus fermion of one chirality. As a fermion without a chiral partner
will always stay massless, we end up with one chiral zero-mode. For boundary conditions
given at the endpoints of the lattice this means that the two endpoints have to be treated
differently if one does not want to eliminate two modes at once.

A remark is in order here about a different class of deconstruction models where
fermions live on unique lattice sites [66]. They emulate non-universal extra dimensions
where fermions are placed at a brane and KK parity is not conserved. As we have seen
above, the most severe troubles in deconstructed UED models come from the fermions in
the bulk. Hence all the considerations above involving fermions do not apply here. With
only gauge fields and the link fields in the bulk, the Feynman rules will resemble more
closely those of an extra dimensional theory. The Goldstone modes can be gauged away
and effects of the physical scalars will be suppressed by their mass. For these reasons it
seems to us that models with fermions on branes are particularly suited for dimensional
deconstruction.
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Figure 4.4: One-loop diagrams contributing to the fermion self-energy.

4.3 Fermion counter terms and mass shift

In higher dimensional orbifold models, bulk interactions generally induce divergent brane
couplings [26]. In two-point functions with different incoming and outgoing 5D momenta
(KK mode numbers), there are at the one-loop level only two non-vanishing contributions
out of the infinite sum over the KK modes running inside the loop. This is due to the
partial conservation of the 5D momentum at each vertex. The divergencies originate from
the 4D momentum loop integrals and do not depend on the finiteness of the sum over KK
modes.

The models in dimensional deconstruction are designed to emulate their higher-
dimensional counterparts in the low energy limit, but differ for high energies. It is there-
fore not expected that the divergent parts of Feynman amplitudes coincide. However,
the divergencies are connected with the renormalization group running of the parameters
in the Lagrangian. In [21] the running contribution from the cut-off scale down to the
mass scale of the respective KK excitations was extracted from the divergent parts of the
self-energies, assuming that the boundary terms vanish at the cut-off scale. Under the
assumption of this renormalization condition, these divergencies give rise to a shift in the
KK mass spectrum that would be observable at the LHC.

In the following we present the divergent part of the fermion self-energy diagrams
and identify the structure of the counterterms needed for renormalization. The relevant
1-loop diagrams are depicted in Fig. 4.4. The scalar tadpole diagrams are finite after
renormalization and do not contribute. The diagrams (1)-(4) describe transitions between
fermions of the same chirality. The diagrams (5)-(8) are chirality changing and do not
contribute to the amplitude proportional to p/ and to the field strength renormalization.

The explicit calculation of the fermion self-energy is illustrated in Appendix D. The
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divergent part of the induced counterterms are given by

Lc.t. =
1

ε

g2

16π2

{
(η2 + 1)

N∑

n=1

ψRnp/ψRn + (η2 + 1)
N∑

n=0

ψLnp/ψLn − η2ψLNp/ψLN

+ 4vη
N∑

n=1

ψnψn

}
. (4.49)

We see that there is a boundary contribution to the field strength renormalization
of ψLN which does not respect the “hopping” symmetry of the Lagrangian. This is not
entirely surprising, since this symmetry is broken in the Lagrangian at the end points.
It is in fact remarkable that the only effect at the one-loop level is in the p/ term on the
lattice site N .

There are only mass counterterms generated of the form ψnψn, and they are identical
for all n. However, due to the different field strength renormalization of ψLN , the bare
coupling vη of the term ψNψN in (4.24) must be assigned a different divergence in the
course of renormalization. We have to conclude that the universality of couplings at all
lattice sites is broken by quantum corrections. The Lagrangian of this deconstructed
model is not renormalizable unless we allow for an independent mass parameter (vη)N .

The divergent parts of the counterterms (4.49) imply a divergent shift of the renor-
malized parameters in the Lagrangian. The relation between bare and renormalized fields
is given by

ψB
L/Rn = Z

1/2
L/RnψL/Rn (4.50)

with

Z
1/2
L/Rn = 1− 1

ε

g2

32π2
(η2 + 1) (4.51)

for all n except

Z
1/2
LN = 1− 1

ε

g2

32π2
. (4.52)

The shift in the mass matrix is then given by

∆M̂ = M̂ − M̂B = Z
1/2
L M̂BZ

1/2
R − δM̂ − M̂B, (4.53)

where we have written the field strength renormalization as diagonal matrices ZL/R. The

bare mass matrix (4.26) is here denoted by M̂B and the mass counterterm matrix by δM̂ .
For the latter we find

δM̂ =
1

ε

g2

16π2
4vη




0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . . 1 0
0 . . . . 0 1



. (4.54)
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There are no counterterms for the “off-diagonal” entries corresponding to the VEV of the
linking Higgs. According to (4.53), the shift in the mass matrix is

∆M̂ =
1

ε

g2

16π2
vη




−η2 − 1 0 0 . . . 0
η2 − 3 −η2 − 1 0 . . . 0

0 η2 − 3 −η2 − 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . . . η2 − 3 −η2 − 1
0 . . . . . . . . . . . . . . . . . 0 1

2
η2 − 3



. (4.55)

The “off-diagonal” entries proportional to −η2 − 1 are purely generated by the field
strength renormalization.

If we ignore for a moment that the last entry in (4.55) is different from the other
“diagonal” entries, the shift in the mass matrix is equivalent to a shift in the parameters

∆(vη) =
1

ε

g2

16π2
vη(−η2 − 1), (4.56)

∆M̃ =
1

ε

g2

16π2
vη(η2 − 3). (4.57)

With M̃ =M − vη this implies

∆M = −1

ε

g2

16π2
4vη. (4.58)

Although we have set M = 0 at tree level, radiative corrections induce a divergent shift
∆M .

If we take the model as an effective theory valid up to a cut-off scale Λ, then (4.55)
gives the running contribution to the mass matrix between the cut-off scale and a renor-
malization scale µ̃ via the replacement

1

ε
−→ log

Λ2

µ̃2
. (4.59)

Expanding (4.30), the mass shift to one-loop order is given by

∆mψ(k) = [2∆(vη)−∆M ] sin
kπ

2(N + 1)
. (4.60)

Inserting (4.56) and (4.58), and including the boundary contribution at the lattice site
N , we find

∆mψ(k) = mψ(k)
g2

16π2
log

Λ2

µ̃2

[
−η2 + 1 + η2

1

N + 1
cos2

kπ

2(N + 1)

]
. (4.61)
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We see that the leading order mass shift is proportional to the tree-level mass. The
boundary contribution, given by the last term in (4.61), vanishes in the limit N → ∞,
while the remaining part is actually zero, since we have set η = 1 at tree-level.

The continuum limit is reached by taking a→ 0 andN →∞, while keeping a(N+1) =
πR fixed. In this limit

∆mψ(k) → mψ(k)
g24

16π2
log

Λ2

µ̃2
, (4.62)

where the 4-dimensional coupling g4 is given by

g2 =
2πRg24
2a

. (4.63)

In comparison to the boundary contributions in the 5-dimensional orbifold model, equa-
tion (37) in [21], there is a difference of a factor 9/4 that is not reproduced here. Since
the deconstructed setup differs from the continuum theory in the UV, it is not expected
that they agree in the divergent parts of the self-energy. However, as we have already
mentioned, these divergencies can be interpreted as the running contribution to the mass
shift between the cut-off scale and the masses of the KK excitations, which turns out to
be different here.

Moreover, equation (4.62) is only valid in the continuum limit. When taking di-
mensional deconstruction as a setup independed of the interpretation in terms of extra
dimensions, we only have a finite number of lattice sites. This gives rise to additional
differences according to (4.61), especially for low values of N which are not unrealistic for
a cut-off scale in the TeV range. However, the numerical difference is quite small for the
lowest KK modes.
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5.1 Conclusions

In this thesis we have investigated the extension of the Standard Model in universal extra
dimensions. We presented the analysis of the decays B → Xsγ, B → Xs gluon and
B → Xsµ

+µ− in the Appelquist, Cheng and Dobrescu (ACD) model with one universal
extra dimension. In addition, we discussed Kaluza-Klein parity, renormalization and
fermion mass corrections in the framework of dimensional deconstruction.

The decays B → Xs gluon and B → Xsµ
+µ− are calculated for the first time. The

radiative decay B → Xsγ has been considered in the past [4]. In contrast to that work,
our analysis includes the numerically important NLO QCD corrections and a careful
consideration of the experimental and theoretical uncertainties. Without them a reliable
comparison between the SM, the ACD model and the experimental data would not be
possible. As a byproduct, we generalize the background field method to five dimensions.

The calculated Inami-Lim functions also allow the analysis of the the decay KL →
π0e+e− and the CP-violating ratio ε′/ε. Unfortunately, these observables can presently
not be used to constrain the parameter 1/R of the ACD model due to either theoretical or
experimental limitations. The same problems affect the SM analysis of these observables.
However, the ACD model is fully consistent with the data within the theoretical und
experimental uncertainties in these two observables [6].

The compactification radius 1/R is the only additional parameter of the ACD model
compared to the SM. For 1/R = 300 GeV, we observe the following interesting pattern:

The short distance function Z, relevant for B → Xsµ
+µ−, KL → π0e+e− and ε′/ε

is enhanced by 23% relative to the SM value. The functions D′ and E ′, relevant for
B → Xsγ and B → Xs gluon are suppressed by 36% and 66%, respectively. The effects
in the function D are negligible due to a cancellation of two contributions. The function
E is moderately enhanced, which is, however, of no phenomenological relevance.

The branching ratio Br(B → Xsγ) is suppressed by 20%. The phenomenological im-
plications of this result depend sensitively on the value of mc/mb and on the experimental
data. The lower bound on 1/R is stronger for mc/mb=0.29 than for mc/mb=0.22.

The branching ratio Br(B → Xs gluon) is suppressed by 40%. At present, this result
is phenomenologically not relevant. If, however, the large hadronic uncertainties can be
reduced and the branching ratio can be extracted from the data, along with the reduction
of the perturbative uncertainties, this observable will become relevant, since the impact
of the KK modes is quite substantial.

In the decay B → Xsµ
+µ− we obverse an enhancement of the branching ratio of

12% and 16% for the low dilepton mass window and for the full spectrum, respectively.
The zero in the forward-backward asymmetry ŝ0 in this decay provides an even more
interesting test for the ACD model. The theoretical uncertainties are very small and the
impact of the KK modes is quite large, shifting the zero from ŝ0 = 0.162 in the SM to
ŝ0 = 0.142 in the ACD model.

These findings show that the ACD model is consistent with current experimental data
for 1/R ≥ 300 GeV. The results should also be compared with the ones obtained in the
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analysis [3] of rareK and B decays. The value of 1/R = 200 GeV that was fully consistent
with the decays considered there, is excluded by the decay B → Xsγ which is suppressed
relative to the SM by a factor of 1.6 at this low compactification scale. This is clearly
excluded by the data. Unfortunately, the even stronger suppression of B → Xs gluon
cannot be used in this respect for the reasons explained above.

For a compactification scale of 1/R = 300 GeV, the following enhacements were
found for the decays [3]: K+ → π+νν̄ (9%), KL → π0νν̄ (10%), B → Xdνν̄ (12%),
B → Xsνν̄ (21%), KL → µµ̄ (20%), Bd → µµ̄ (23%) and Bs → µµ̄ (33%). Combining
these findings with the ones in this thesis, we observe that the main effects of the KK
modes are felt in Z0-penguins, γ-magnetic penguins and chromomagnetic penguins.

Compared to the SM, the ACD model is even closer to the central experimental values
in the phenomenologically most relevant decays. The enhancement of the Z0-penguins
triggers an enhancement of the decay modesK+ → π+νν̄ and B → Xsµ

+µ−. On the other
hand, the experimental value for Br(B → Xsγ) is presently below the SM expectation,
and the suppression of the γ-magnetic penguins could also be welcome. However, in view
of the present experimental and theoretical uncertainties, no definite conclusions can be
drawn to prefer the ACD model over the SM.

Possibly, the most interesting result of this work is the sizable downward shift of the
zero of the forward-backward asymmetry ŝ0 in the decay B → Xsµ

+µ−. We emphasize
that this shift has a definite sign and the theoretical uncertainties are small.

In this work we completed the study of the most interesting FCNC processes in the
ACD model. The pattern of enhancements and suppressions relative to the SM predictions
was determined as follows. There is an enhancement for KL → π0e+e−, ∆Ms, K

+ →
π+νν̄, KL → π0νν̄, B → Xdνν̄, B → Xsνν̄, KL → µ+µ−, Bd → µ+µ−, B → Xsµ

+µ−

and Bs → µ+µ−, and a suppression for B → Xsγ, B → Xs gluon, the value of ŝ0 in the
forward-backward asymmetry of B → Xsµ

+µ− and ε′/ε.

As we already pointed out, the predictions of the ACD model are generally closer
to the central values of the experimental data. However, future experiments and better
control of the theoretical uncertainties will show whether this pattern is required by the
data or the ACD model with a low compactification scale of a few hundred GeV will be
excluded. In the limit 1/R→∞, all KK modes become infinitely massive and disappear
from the spectrum, leaving only the particle content of the SM. Hence, there cannot be
derived an upper limit on 1/R without ruling out the SM at the same time.

Dimensional deconstruction is a way of introducing a gauge-invariant UV regulator in
a higher dimensional theory, for example the ACD model. It also stands on its own right
as a framework for building models that do not necessarily correspond in any way to extra
dimensions. In the former case it its important that the deconstructed model agrees with
the extra dimensional theory at low energies. This equivalence should comprise not only
the mass spectrum but also the Feynman rules and important features like Kaluza-Klein
parity conservation in UED models.

In this thesis we discussed the deconstructed aliphatic model of 5-dimensional QED
with chiral fermions in the bulk. We show how to modify the Lagrangian and gauge fixing



66 CHAPTER 5. CONCLUSIONS

from the non-chiral periodic case to apply to the aliphatic setup. The Feynman rules are
shown to differ from the corresponding orbifold ones by terms violating KK parity.

We point out that due to the fermions in the bulk, there arise difficulties when using
this setup as a UV completion of a UED model, since KK parity is no longer a symmetry
of the Lagrangian. One reason is that the coupling of the fermions and gauge fields to
the link fields induces a direction on the lattice. The other reason the realization of chiral
zero-modes. In a deconstruction setup with chiral fermions in the bulk, this zero-mode is
generated by asymmetric boundary conditions at the fixed points.

The issue of KK parity is not crucial for deconstructed models with fermions placed
on unique lattice sites as opposed to the deconstructed UED model discussed in this
thesis. For this reason dimensional deconstruction can in principle do a better job as a
UV regulator for a higher dimensional model with fermions located at branes.

We emphasize that the origion of the fermion masses is twofold. It is given by the VEV
of the link fields and by explicit mass terms. The tree level matching of the fermion mass
spectrum requires a tuning of the parameters in the latter. We calculate the divergent
part of the one-loop fermion self-energy and see that this structure is reflected here. Each
Feynman diagram corresponds to a particular term in the Lagrangian and the required
counterterms are easily identified. The divergencies differ for the two sets of fermion mass
terms, substantiating the above naturalness problem. From the calculation of the fermion
self-energy we also deduce the running contribution of the radiative corrections to the
fermion mass spectrum. In the continuum limit our result differs by a factor 9/4 from the
5-dimensional orbifold model [21].

A peculiarity is the different field strength renormalization of the left-handed fermion
at one endpoint of the lattice which induces a different renormalization of the associated
mass parameter. We have to conclude that the universality of the couplings at all lattice
sites is broken by quantum corrections. This is a consequence of the breaking of the
“hopping” symmetry of the lattice at the endpoints, which is not the case in deconstructed
compactifications on a circle. If one chooses the Lagrangian to possess a certain symmetry,
like the universality of the couplings at all lattice sites, an explicit calculation must show
if this symmetry is respected by quantum corrections. As the deconstructed model we
consider is a gauge-invariant 4-dimensional theory with renormalizable operators, it is in
principle renormalizable. However, this is only guaranteed if all parameters are taken to
be independent.

In our calculation we find that at one-loop order only one lattice site requires a dif-
ferent infinite renormalization. It would be interesting to know whether other sites are
affected in the same way by higher loop corrections. If this is the case, the parameters
at all sites would have taken to be independent, and much of the predictability of the
model would be lost. Setting equal the renormalized parameters by adjusting the coun-
terterms by hand would imply fine-tuning and requires further motivation, for example
the matching to a higher dimensional theory. Without such a reference, there is no gen-
eral guiding principle for the choice of the parameters. However, dynamical realizations
of non-universal couplings to generate curved geometries have been discussed in [19]. A
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different approach was taken in [76], where the Lagrangian of the deconstructed theory is
interpreted as the fixed point of a renormalization group transformation.
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Appendix A

Background Field Method in 5
Dimensions

In order to calculate the functions D, E, D′ and E ′, we have used the method of back-
ground fields. The external particles are replaced by classical fields that do not need gauge
fixing. This is necessary if one wants to calculate off-shell amplitudes while maintaining
explicitly gauge invariance.

As in 1-PI diagrams the background fields only appear on the external legs, there is
no need to fix the gauge for the background gauge fields. With the appropriate choice
of the gauge fixing for the quantum gauge fields, we can ensure the invariance of the
effective action with respect to background field (BF) gauge transformations. The general
procedure in 4 dimensions is described in [37]. In this section we only state the SM case
and modify the gauge fixing to fit the ACD model.

The starting point is the action S[ψ] before gauge fixing, where ψ denotes all gauge
and matter fields in the action. We get the BF action by the transformation

S[ψ] −→ S[ψ + ψ̂], (A.1)

where we have introduced the background fields ψ̂. It is modified by the gauge fixing to

SBF[ψ, ψ̂] = S[ψ + ψ̂]− 1

2ξ

∫
ddx G̃G̃ + ghost terms, (A.2)

where G̃G̃ stands for all gauge fixing functionals. As the terms with ghost fields are not
relevant for us we will not consider them here.

In the 4-dimensional electroweak SM, a convenient choice for the gauge fixing func-
tionals is

G̃B,SM[B, φ, φ̂] = ∂µB
µ − ig′ξ 1

2

(
φ̂†φ− φ†φ̂

)
, (A.3)

G̃aA,SM[A, Â, φ, φ̂] = ∂µA
aµ + g2ε

abcÂbµA
cµ − ig2ξ

1

2

(
φ̂†σaφ− φ†σaφ̂

)
, (A.4)
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with the Higgs fields

φ̂ =
1√
2

(
v + ψ̂ + iχ̂aσa

)(0
1

)
, φ =

1√
2
(ψ + iχaσa)

(
0
1

)
, (A.5)

where σa are the common Pauli matrices. According to (A.2), the gauge fixing part of
the Lagrangian is

LGF = − 1

2ξ
G̃BG̃B −

1

2ξ
G̃aAG̃aA. (A.6)

With this specific gauge fixing, the BF action is invariant under the BF gauge trans-
formation1

δBFB̂µ =
1

g′
∂µβ, (A.7)

δBFÂ
a
µ = fabcÂbµα

c +
1

g2
∂µα

a, (A.8)

δBFφ̂ = i

(
αa
σa

2
+

1

2
β

)
φ̂, (A.9)

combined with a transformation of the quantum fields

δAaµ = fabcAbµα
c, (A.10)

δφ = i

(
αa
σa

2
+

1

2
β

)
φ, (A.11)

where (A.10) and (A.11) are just unitary rotations in the functional integral.
The analogous BF gauge transformation in 5 dimensions is

δBFB̂M =
1

ĝ′
∂Mβ, (A.12)

δBFÂ
a
M = fabcÂbMα

c +
1

ĝ2
∂Mα

a, (A.13)

δBFφ̂ = i

(
αa
σa

2
+

1

2
β

)
φ̂ (A.14)

combined with

δAaM = fabcAbMα
c, (A.15)

δφ = i

(
αa
σa

2
+

1

2
β

)
φ. (A.16)

1We omit the BF gauge transformation of the fermions which is just an ordinary gauge transformation.
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Compared to 4 dimensions, the couplings g′ and g2 have been replaced by their 5-
dimensional analogs ĝ′ and ĝ2. All fields and αa and β are now also functions of the
extra coordinate y and the vector index M can take the values M = 0, 1, 2, 3, 5.

In the ACD model, we have to add −ξ∂5B5 to (A.3) and −ξ∂5Aa5 to (A.4) in order to
diagonalize the mass matrices of the bosonic modes [3]. However, this spoils BF gauge
invariance, so we add another term to (A.4) to fix this and get

G̃B,ACD[B, φ, φ̂] = G̃B,SM[B, φ, φ̂]− ξ∂5B5, (A.17)

G̃aA,ACD[A, Â, φ, φ̂] = G̃aA,SM[A, Â, φ, φ̂]− ξ∂5Aa5 − ξĝ2εabcÂb5Ac5, (A.18)

where it is understood that g′ and g2 have been replaced by ĝ′ and ĝ2.
The use of (A.17) and (A.18) ensures invariance of all 1-PI diagrams under BF gauge

transformations in 5 dimensions. However, as we are only interested in external zero-mode
fields, the last term in (A.18) does not affect our calculation.

In the diagrams for the calculation of the functions E and E ′, the external gluon
couples only to the quarks. As there are no fermions involved in the gauge fixing, the
background gluon couples to quarks just like a quantum gluon, and there is no need to
specify a gauge fixing functional for QCD. For completeness, we note that

G̃aG,ACD[G, Ĝ] = ∂µG
aµ + ĝsf

abcĜb
µG

cµ − ξ∂5Ga
5 − ξĝsfabcĜb

5G
c
5 (A.19)

would be an appropriate choice. Here f abc are the SU(3)C structure constants and ĝs is
the strong coupling constant.
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Appendix B

Feynman Rules in the ACD Model:
Photon and Gluons

In this section we list the Feynman rules needed for the calculations in this work except
for those already given in [3]. The Feynman rules are derived in the 5d background field
Rξ-gauge described in Appendix A. The rules for vertices involving only quantum fields
are the same as in the conventional 5d Rξ-gauge described in [3].

In order to simplify the notation, we omit the KK indices of the fields. There is no
ambiguity because in one-loop calculations at least one field is always a zero-mode. In
the vertex rules given below, this is the photon A, the gluon G and their background
equivalents. Due to KK parity conservation, the other two fields have equal KK mode
number, i.e. either zero or n ≥ 1.

Fermion zero-modes have substantially different Feynman rules than their KK excita-
tions. The up-type quarks Qi and Ui are always supposed to be (n ≥ 1)-modes, while the
zero-mode is labeled u. The generation index i can take the values i = u, c, t.

In the vertices below, S± stands for the scalar modes G± and a±. All momenta and
fields are assumed to be incoming. The Feynman rules for the vertices are:

���� ���

�	��

���

= g2swMW (n)gµνC.
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GLUONS

AW+G− : C = 1, AW−G+ : C = −1, (B.1)

AW+a− : C = 0, AW−a+ : C = 0, (B.2)

ÂW+G− : C = 0, ÂW−G+ : C = 0, (B.3)

ÂW+a− : C = 0, ÂW−a+ : C = 0. (B.4)

�������� � �	�
���� 


��
������

= −ig2sw(k2 − k1)µC.

AG+G− : C = 1, Aa+a− : C = 1, (B.5)

AG+a− : C = 0, Aa+G− : C = 0, (B.6)

and the same values of C for the analogous vertices with a background photon Â.

���������� ��� ����!

"�#�$�%'& ���)(

= ig2swC.

AW+W− : C = gµν(k2 − k1)λ + gµλ(k1 − k3)ν + gλν(k3 − k2)µ, (B.7)

ÂW+W− : C = gµν(k2 − k1 +
1

ξ
k3)λ + gµλ(k1 − k3 −

1

ξ
k2)ν (B.8)

+ gλν(k3 − k2)µ. (B.9)

*,+ *.-

/�0�1�2�3

= ig2swγµC.
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Auiui : C =
2

3
, (B.10)

AQiQi : C =
2

3
, AU iUi : C =

2

3
, (B.11)

AQiUi : C = 0, AU iQi : C = 0, (B.12)

and the same values of C for the analogous vertices with a background photon Â.

����� �����

	�
 ��
����

= igsT
a
αβγµC.

Guiui : C = 1, (B.13)

GQiQi : C = 1, GU iUi : C = 1, (B.14)

GQiUi : C = 0, GU iQi : C = 0, (B.15)

and the same values of C for the analogous vertices with a background gluon Ĝ.
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Appendix C

Useful formulae

C.1 Orthogonality relations

N∑

n=1

sin
nkπ

N + 1
sin

nlπ

N + 1
=

{
0 if k = l = 0,
N+1
2
δ̌k−l else,

(C.1)

where (n ∈ Z)

δ̌j =

{
1 if j = 2n(N + 1),

0 else,
(C.2)

not to be confused with δ̂j as defined in (4.40).

N∑

k=0

(
1

2

)δk
cos

(n+ 1/2)kπ

N + 1
cos

(n′ + 1/2)kπ

N + 1
=
N + 1

2
δ̌n−n′ . (C.3)

(
1√
2

)δk+δl N∑

n=0

cos
(n+ 1/2)kπ

N + 1
cos

(n+ 1/2)lπ

N + 1
=
N + 1

2
δ̌k−l. (C.4)

C.2 Vertex sums

Ξ(j) ≡
N∑

n=1

sin
njπ

N + 1
= sin

Njπ

2(N + 1)
sin

jπ

2
sin−1

jπ

2(N + 1)
. (C.5)

For integer j this can be written as

Ξ(j) = ω(j) cos
jπ

2(N + 1)
sin−1

jπ

2(N + 1)
(C.6)

77



78 APPENDIX C. USEFUL FORMULAE

with

ω(j) =

{
1 if j is odd,

0 if j is even.
(C.7)

Ω(j) ≡
N∑

n=0

cos
njπ

N + 1
= cos

Njπ

2(N + 1)
sin

jπ

2
sin−1

jπ

2(N + 1)
. (C.8)

For integer j this can be written as

Ω(j) = (N + 1)δ̌j + ω(j). (C.9)

C.3 Sum in the ψLA/ψL vertex

Here we give the derivation of the coupling of the gauge field to the left-handed fermions
in (4.38). First we note that

N∑

n=0

cos
(n+ 1/2)jπ

N + 1
=

N∑

n=0

[
cos

njπ

N + 1
cos

jπ

2(N + 1)
− sin

njπ

N + 1
sin

jπ

2(N + 1)

]

=

[(
(N + 1)δ̂j + ω(j)

)
cos

jπ

2(N + 1)
− ω(j) cos jπ

2(N + 1)

]

= (N + 1)δ̌j cos
jπ

2(N + 1)
= (N + 1)δ̂j, (C.10)

where we have used (C.6) and (C.9), and δ̂j is defined in (4.40). With the help of (C.10)
we can easily evaluate the sum

N∑

n=0

cos
(n+ 1/2)kπ

N + 1
cos

(n+ 1/2)lπ

N + 1
cos

(n+ 1/2)mπ

N + 1

=
1

4

N∑

n=0

[
cos

(n+ 1/2)(k + l −m)π

N + 1
+ cos

(n+ 1/2)(−k + l +m)π

N + 1

+ cos
(n+ 1/2)(k − l +m)π

N + 1
+ cos

(n+ 1/2)(k + l +m)π

N + 1

]

=
N + 1

4
δ̂klm, (C.11)

where δ̂klm is given by (4.39).
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Fermion self-energy

Here we give the calculation of the Fermion self-energy diagrams in Fig. 4.4 in ’t Hooft
Feynman gauge (ξ = 1). The 4D loop integrals were regularized dimensionally with
d = 4 − 2ε. As an example, we evaluate the first diagram of Fig. 4.4 with the scalar G
running in the loop. The incoming (outgoing) state is labeled by the KK index k (k ′),
and the fermion (boson) in the loop by the index l (m). There is only a contribution
proportional to p/. For given mode numbers k, k′, l and m the amplitude reads

−iΣ(1)l,m
(S) =

1

ε

ig2η2

16π2
1

4
p/(1 + γ5)

(
2

N + 1

)3 N∑

n,n′=1

sin
nkπ

N + 1
sin

n′k′π

N + 1

×
(
1

2

)δl
cos

(n− 1/2)lπ

N + 1
cos

(n′ − 1/2)lπ

N + 1
sin

nmπ

N + 1
sin

n′mπ

N + 1
. (D.1)

The full amplitude is given by the sum of (D.1) over the internal KK mode numbers l and
m. We can interchange the summation over the mode numbers with the summation over
the lattice sites n and n′. The calculation of the diagram would be much more laborious
is we used expressions for the vertices where the sum over the lattice sites is already
evaluated. Moreover, we get the result in a form that is very convenient for us, namely
with one remaining sum over lattice sites.

The result for this particular diagram is

−iΣ(1)
(S) =

1

ε

ig2η2

16π2
1

4
p/(1 + γ5)

2

N + 1

N∑

n=1

sin
nkπ

N + 1
sin

nk′π

N + 1
. (D.2)

The other diagrams are evaluated in a similar manner. The diagrams (5)-(8) depend
on the mass of the fermion in the loop. Since the dependence is linear in the mass, there
is simply a factor of m(l) = 2vη sin(lπ/2(N + 1)) included in the summation over mode
numbers.
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The results for all diagrams in Fig. 4.4 are

−iΣ(1)
(S) =

1

ε

ig2η2

32π2
2

N + 1

N∑

n=1

sin
nkπ

N + 1
sin

nk′π

N + 1
p/PR, (D.3)

−iΣ(2)
(V ) =

1

ε

ig2

16π2
2

N + 1

N∑

n=1

sin
nkπ

N + 1
sin

nk′π

N + 1
p/PR, (D.4)

−iΣ(3)
(S) =

1

ε

ig2η2

32π2
2

N + 1

(
1√
2

)δk+δk′ N−1∑

n=0

cos
(n+ 1/2)kπ

N + 1
cos

(n+ 1/2)k′π

N + 1
p/PL, (D.5)

−iΣ(4)
(V ) =

1

ε

ig2

16π2
2

N + 1

(
1√
2

)δk+δk′ N∑

n=0

cos
(n+ 1/2)kπ

N + 1
cos

(n+ 1/2)k′π

N + 1
p/PL, (D.6)

−iΣ(5)
(S) = −

1

ε

ig2η2

16π2
vη

2

N + 1

(
1√
2

)δk′ N∑

n=1

sin
nkπ

N + 1
cos

(n− 1/2)k′π

N + 1
PR, (D.7)

−iΣ(6)
(V ) =

1

ε

ig2

16π2
4vη

2

N + 1

(
1√
2

)δk′ N∑

n=1

sin
nkπ

N + 1
cos

(n+ 1/2)k′π

N + 1
PR, (D.8)

−iΣ(7)
(S) = −

1

ε

ig2η2

16π2
vη

2

N + 1

(
1√
2

)δk N∑

n=1

cos
(n− 1/2)kπ

N + 1
sin

nk′π

N + 1
PL, (D.9)

−iΣ(8)
(V ) =

1

ε

ig2

16π2
4vη

2

N + 1

(
1√
2

)δk N∑

n=1

cos
(n+ 1/2)kπ

N + 1
sin

nk′π

N + 1
PL. (D.10)

Note that the mass of the boson in the loop does not enter the divergent part of the self-
energy, and thus we cannot ignore the possibly very heavy fields Σ. The scalar amplitudes
above are given for the Goldstone modes G running in the loop. The physical scalars Σ
gives the same contributions but with different sign for diagrams (5) and (7). This is due
to charge conservation, and consequently these two contributions cancel.

The sums in (D.3), (D.4) and (D.6) are given by the orthogonality relations (C.1) and
(C.4). We can write, for example for (D.3),

−iΣ(1)
(S) =

1

ε

ig2η2

32π2
δk−k′p/PR. (D.11)

This does not work for (D.5), since there the sum runs only from 0 to N − 1. The reason
is that the two vertices in the corresponding diagram are given by a sum over only N
lattice sites. Moreover, the finite contributions will in general include transitions between
arbitrary KK levels for all diagrams.
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The amplitudes (D.3) - (D.10) can be readily converted into position space on the
lattice. Remembering that the amplitudes describe transitions between arbitray modes k
and k′ and comparing with the mode expansion of the fermions (4.27), we can write

−iΣ(1)
(S) ∼

1

ε

ig2η2

32π2

N∑

n=1

ψRnp/ψRn, −iΣ(2)
(V ) ∼

1

ε

ig2

16π2

N∑

n=1

ψRnp/ψRn, (D.12)

−iΣ(3)
(S) ∼

1

ε

ig2η2

32π2

N−1∑

n=0

ψLnp/ψLn, −iΣ(4)
(V ) ∼

1

ε

ig2

16π2

N∑

n=0

ψLnp/ψLn, (D.13)

−iΣ(5)
(S) ∼ −

1

ε

ig2η2

16π2
vη

N∑

n=1

ψLn−1ψRn, −iΣ(6)
(V ) ∼

1

ε

ig2

16π2
4vη

N∑

n=1

ψLnψRn, (D.14)

−iΣ(7)
(S) ∼ −

1

ε

ig2η2

16π2
vη

N∑

n=1

ψRnψLn−1, −iΣ(8)
(V ) ∼

1

ε

ig2

16π2
4vη

N∑

n=1

ψRnψLn. (D.15)

We see that each diagram corresponds to a particular term in the Lagrangian. Including
the appropriate factors for the scalar diagrams as discussed above, we can directly read
off the counterterms. The incomplete sum in the first relation in (D.13) induces an extra
contribution to the counterterm on the lattice site N .
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Many thanks go to Elke Krüger, Karin Ramm and Rosita Jurgeleit for their patience
and help under all bureaucratic circumstances.

It is a great pleasure to thank my friends Cara-Isabel “Isi” Engler, Christina “Tinti”
Huber, Georgios “Jorgo” Papanikolau, Anne Sassmann, Christine Schaab, Alexander
“Heinzi” Schmidt, Stefan Sojer and many others for their faith, support and the wonder-
ful time I had with them during the years.

Very special thanks go to the honorable members of the Cd19F Franz Fisch, Hubert
Krenner, Uli Grasemann and Harald Wenninger. Bobok!

Mein grösster Dank gilt meiner Familie, im Besonderen meiner Mutter und meinem
Bruder für die viele Geduld, die große Unterstützung und das beständige Vertrauen, ohne
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