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Prüfer der Dissertation : 1. Hon.-Prof. I. Cirac, Ph. D.
2. Univ.-Prof. Dr. M. Kleber

Die Dissertation wurde am 16.06.05 bei der
Technischen Universität München eingereicht und

durch die Fakultät für Physik am 27.07.05 angenommen.





Abstract

This work is about the implementation of quantum information processing
in the realm of cavity QED. The first part deals with trapping an atom in
a cavity, the second part discusses the utilization of an atom as a source of
entangled flying qubits and the third part turns to multi-atom effects.

The aim of the first part is to find ways to trap an atom in a cavity.
In contrast to other approaches we propose a method where the cavity is
basically in the vacuum state and the atom in the ground state. The idea
is to induce a spatial dependent ac-Stark shift by irradiating the atom with
a weak laser field, so that the atom experiences a trapping force. The main
feature of our set-up is that dissipation can be strongly suppressed. We
present analytic expressions for the lifetime of the atom as well as for the
trapping potential parameters and compare our estimations with numerical
simulations.

In the second part we consider the deterministic generation of entangled
multi-qubit states by the sequential coupling of an ancillary system to ini-
tially uncorrelated qubits. We characterize all achievable states in terms of
classes of matrix-product states and give a recipe for the generation on de-
mand of any multi-qubit state. The proposed methods are suitable for any
sequential generation-scheme, though we focus on streams of single photon
time-bin qubits emitted by an atom coupled to an optical cavity. We show,
in particular, how to generate familiar quantum information states such as
W , GHZ, and cluster states, within such a framework.

Finally we investigate an ensemble of atoms coupled to a single cavity
mode via a Raman transition between two ground states. In the bad cavity
regime we identify traces of interference effects in the output-field of the
cavity. Within a conditional scheme they can be employed to prepare the
atoms in entangled states. We introduce an appropriate model and show that
current experimental set-ups are in principle suitable for the implementation
of such a scheme.
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Chapter 1

Introduction

Quantum information theory is based on ideas from quantum physics, classi-
cal information theory and computer science. It employs coherent quantum
effects to accomplish tasks which are untractable by classical means. Its most
intriguing applications are quantum computing and quantum cryptography.

A quantum computer [1–5] employs two-level quantum systems (qubits)
to store information. In contrast to classical bits an n-qubit register can be
prepared in a state representing a superposition of 2n different numbers. For
certain tasks, processing this information by unitary transformations on the
corresponding 2n-dimensional complex Hilbert space leads to an exponential
speedup compared to classical computers [5–7]. Most remarkable are Shor’s
algorithm for factorizing numbers [8] and Grover’s algorithm for unstructured
search [9]. A quantum computer would allow to break all classical cryptosys-
tems which are based on the impossibility of factorizing large numbers in
relatively short times.

The most mature field in quantum information is quantum cryptogra-
phy [10]. In fact, first commercial equipment is already offered [11]. Quantum
cryptography protocols (see, for instance [12]) employ the laws of quantum
mechanics to establish a secret random key between spatially separated par-
ties via a quantum channel in a provable secure way. The basic idea is sim-
ple: since every measurement perturbs the system and one cannot duplicate
an unknown quantum state, any eavesdropper can be detected and, in this
case, the transmitted key is discarded. Using photonic degrees of freedom
as qubits, say, polarization states or time-bins of energy eigenstates, has the
advantage that photons propagate safely over long distances. Therefore pho-
tonic devices are the most promising systems for quantum communication
tasks. However, the distance for direct quantum communication is bound
by the absorption length of the fiber used to transmit the photonic quantum
state. To overcome this limitation, the concept of quantum repeaters has
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8 Introduction

been introduced [13,14].
The basic building block for such a device is provided by cavity QED,

which constitutes a natural interface between atoms as quantum memory
and photons. Consequently, in quantum networks, atoms coupled to a cav-
ity mode represent the nodes [15–17]. In those cases the idea is to store
the quantum information in two internal ground levels of each atom and to
entangle them by using real or virtual photon exchange through the cavity
mode. In this context, a coherent and controllable evolution of the system is
essential since a single spontaneous emission or cavity loss may have dramatic
effects for all quantum information tasks (see, however [18]). Moreover, all
proposals for quantum computation using atoms interacting via a common
cavity mode [19] require that the atoms are trapped in the cavity in a fixed
position. In this work, we address the prospects of cavity QED with respect
to system control and coherent effects.

During the last years, a significant experimental progress has taken place,
allowing to observe quantum phenomena in the interaction of a single atom
with a single mode of the electromagnetic field, both in the optical [20–30]
and the microwave [31, 32] regime. Some of these experiments are currently
limited by the fact that (neutral) atoms typically move almost freely in the
cavity and eventually leave it, which restricts the duration of the experiment
as well as its controllability. For example, in the optical regime, the coupling
between the atoms and the cavity mode strongly depends on the position of
the atom, and thus when it moves this can strongly affect the interaction.

In order to overcome these problems, several strategies to trap an atom
in a cavity have been put forward [33–45]. Some of them involve using some
external laser fields, which exert a confining force to the atom, something
that has been successfully realized in recent experiments [42–45]. In a far-off
resonant trap this is achieved by employing a far-off resonant trapping beam
along the cavity axis. A more intriguing approach consists of using the cavity
mode itself to confine the atom [33–37]. In remarkable experiments [38–41] it
has been possible to keep an atom in a cavity just using the force provided by
a single photon. In this work we will show that it is in principle possible to
trap an atom in its ground state in a cavity, which is basically in the vacuum
state. This is accomplished by irradiating the atom with a weak laser field,
which induces a spatial dependent ac-Stark shift, so that the atom experi-
ences a trapping force. Compared to other strategies, our method may have
some practical advantages for the implementation of quantum information
processing since decoherence processes are appreciable reduced.

A single atom interacting coherently with a single mode of an optical
cavity can be employed as a deterministic source of single photons [46].
Compared to the widely used parametric down-conversion scheme, which
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is a reliable source of entangled twin-photons, it has the advantage that the
pulse shape and the time of the emission are in principle well-controlled.
Therefore a lot of effort has been made in recent years to develop efficient
and deterministic single photon sources [28–30]. Photonic multi-qubit states
can be generated by letting a source emit photonic qubits in a sequential
manner [47,48]. If we do not initialize the source after each step, the created
qubits will in general be entangled. Moreover, if we allow for specific opera-
tions inside the source before each photon emission, we will be able to create
different multi-qubit states at the output.

Entangled multi-qubit states are a valuable resource for the implemen-
tation of quantum computation and quantum communication protocols, like
distributed quantum computing [49,50], quantum cryptography [51] or quan-
tum secret sharing [52]. The question arises, which multi-qubit photon states
can be generated with certain resources, i.e. the number of accessible atomic
levels and the allowed operations on the atom-cavity system. We will solve
this problem within a more general framework, realizing that the cavity
QED approach is only a particular instance of a general sequential gener-
ation scheme, where an ancillary system is coupled in turn to a number of
initially uncorrelated qubits.

It is the purpose of this work to provide a complete characterization of
all multipartite quantum states achievable within a sequential generation
scheme. It turns out that the classes of states attainable with increasing
resources are exactly given by the hierarchy of so-called matrix-product states
(MPS) [53,54]. These states typically appear in the theory of one-dimensional
spin systems [55], as they are the variational set over which density matrix
renormalization group techniques are carried out [56]. Thus, our analysis
stresses the importance of MPS, since we show that they naturally appear
in a completely different and relevant physical context. Moreover, particular
instances of low-dimensional MPS, like cluster states [57] or GHZ states [58],
are a valuable resource in quantum information [59]. Conversely, we will
provide a recipe for the generation on demand of any multi-qubit state within
a sequential generation scheme. Due to the general validity of these results,
we will first state and prove them without referring to any particular physical
system. This will be then applicable to all sequential set-ups, like streams
of photonic qubits emitted either by a cavity QED source [28–30,46] or by a
quantum dot coupled to a microcavity [60,61].

Leaving the realm of the single atom in a cavity, we finally turn to a
system of many atoms coupled to the same cavity mode. We will consider a
situation which resembles recent cavity QED experiments [62] and investigate
traces of collective effects in the output-field of the cavity mode.

In particular, we consider an ensemble of atoms coupled to a single cavity
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mode via a Raman transition between two internal ground levels. In the
bad cavity regime we observe an enhanced transfer of excitation into the
cavity output-field compared to the case of independent atoms. This so-called
superradiance effect was predicted by Dicke [63] for atoms in a completely
symmetric state decaying via a symmetric interaction. States belonging to
other families of Dicke states [64], i.e. with a different symmetry type, evolve
into subradiant states, which span a decoherence free subspace [65–67]. These
states raised considerable interest recently since they are in general entangled
and stable. In order to break the symmetry of the initial atomic state,
usually individual addressing of the atoms by a laser field is required [68–
70]. Albeit this is not feasible in the scenario considered here, subradiant
states appear naturally with a certain probability due to inhomogeneous
atom-cavity coupling. Therefore the set-up is in principle suitable for the
generation of entangled multi-atom states employing a scheme, which relies
on the concept of conditional dynamics due to continuous monitoring of
photons leaking out of the cavity [69,70].

The work is structured as follows. In the first chapter we introduce the
theoretical model for an atom coupled to a single cavity mode. We also sum-
marize the most important concepts used throughout this work. In the sec-
ond chapter we introduce a scheme for trapping an atom in the vacuum-field
of a cavity. In the third chapter we characterize all sequentially generated
multi-qubit states in terms of classes of matrix product states. In particular
we refer to a cavity-QED single-photon source, which generates multi-qubit
photon states. In the final chapter we investigate collective effects for an en-
semble of atoms in a cavity and point out that the system can be employed
for the probabilistic generation of entangled atomic states.

If not explicitly stated otherwise, we use ~ = 1.



Chapter 2

Basic concepts

Throughout this work we will consider systems of one or many atoms inter-
acting with a single cavity mode. In this chapter we derive the theoretical
model for such a system and consider the case of one two-level atom as a
representative example. The coupling between the atomic transition and the
quantized cavity field is described by the Jaynes-Cummings model introduced
in section 2.1.1. Both, the atom and the cavity mode couple also to the free
radiation field. In section 2.1.2 we consider the resulting losses and derive
the master equation for cavity and atomic decay. The complete model for a
driven two-level atom, coupling to a single cavity mode will be presented in
section 2.1.3. An efficient simulation technique for solving the master equa-
tion is provided by the quantum-jump approach, which will be discussed in
section 2.2. In section 2.3. we derive the quantum regression theorem. It
enables us to determine two-time expectation values for a dissipative sys-
tem described by a master equation. Finally we define input and output
modes and derive a relation between the corresponding operators and the
system operators in section 2.4. Therefore we employ the quantum Langevin
equation.

2.1 Atom-cavity interaction including dissi-

pation

2.1.1 Jaynes-Cummings model

The interaction between a single cavity mode and a two-level atom is de-
scribed by the Jaynes-Cummings model [71]. In the following we will intro-
duce it in a similar way as in [72]. We denote the frequency of the transition
between the ground state |g〉 and the excited state |e〉 of the atom by ωa.

11



12 Basic concepts

This transition couples to a cavity mode with frequency ωc. The Hamiltonian
of the system in the dipole approximation is

H =
ωa

2
σz + ωc a†a− ig

(
σ+ + σ−

)(
a− a†

)
, (2.1)

with the atomic operators σ+ = |e〉〈g|, σ− = |g〉〈e| and σz = |e〉〈e| − |g〉〈g|.
a† and a are the creation and annihilation operator of the cavity mode.
In an interaction picture rotating with ωc we obtain the Jaynes-Cummings
Hamiltonian [71]

HJC =
∆ac

2
σz − ig

(
σ+a− σ−a†

)
, (2.2)

where we introduced the detuning ∆ac = ωa − ωc. In (2.2) we neglected the
fast oscillating terms of the form σ−a and σ+a†. They do not preserve the
number of quanta and are strongly suppressed. This is the so-called rotating-
wave approximation. We also neglected the coupling of the system to the
environment. This is justified if the spontaneous emission rate of the atom
γ and the cavity decay rate κ obey

γ ¿ g
√

n̄,

κ ¿ g/
√

n̄, (2.3)

with n̄ being the average photon number in the cavity.
We will now calculate the time evolution of the system for an initial state

|ΨI(0)〉 =
∞∑

n=0

an|g, n〉, (2.4)

where |g, n〉 is the product state with the atom in |g〉 and n photons in the
cavity mode. HJC is block-diagonal in the basis {|e, n〉, |g, n + 1〉} with n
being the number of photons in the cavity. In other words, the total number
of quanta is conserved and |e, n〉 only couples to |g, n + 1〉 while |g, 0〉 is
uncoupled. Substituting the ansatz

|ΨI(t)〉 =
∞∑

n=0

(
cg,n(t)|g, n〉+ ce,n(t)|e, n〉) (2.5)

into the Schrödinger equation with the Hamiltonian from Eq. (2.2) leads to
the equations of motion

dcg,n(t)

dt
=

i∆

2
cg,n(t) + g

√
n ce,n−1(t),

dce,n−1(t)

dt
= −i∆

2
ce,n−1(t)− g

√
n cg,n(t) (2.6)
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for the probability amplitudes with initial conditions cg,n(0) = an and ce,n−1(0) = 0.
The solution of Eqs. (2.6) is given by

cg,n(t) = an

[
cos

(√
∆2

ac + 4g2n t/2
)

+
i∆ac sin

(√
∆2

ac + 4g2n t/2
)

√
∆2

ac + 4g2n

]

ce,n−1(t) = −an

2g
√

n sin
(√

∆2
ac + 4g2n t/2

)
√

∆2
ac + 4g2n

. (2.7)

For the resonant case, we set ∆ac = 0 and obtain for the probability to find
the system in the atomic ground state

Pg(t) =
∞∑

n=0

|cg,n(t)|2 =
1

2

∞∑
n=0

|an|2
(
1 + cos(2g

√
n t)

)
. (2.8)

To illustrate this result, we assume the field being initially prepared in a
coherent state with mean photon number n̄, i.e.

|an|2 =
n̄ne−n̄

n!
(2.9)

and plot Pg(t) in Fig. 2.1 for n̄ = 10. It oscillates at a frequency approx-

Figure 2.1: The plot shows the probability Pg to find the atom in its ground
state |g〉. Initially we assumed a coherent state with mean photon number
n̄ = 10. One observes Rabi oscillations at a frequency of approximately 2g

√
n̄

under an envelope that periodically collapses and revives. The first revival
appears at approximately Trev ' 2π

√
n̄/g.

imately equal to 2g
√

n̄ under an envelope that periodically collapses and
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revives. The reason for this behavior is the interference between the indi-
vidual oscillatory terms with different frequencies 2g

√
n. So the collapse is

a consequence of the initial spread of different photon numbers in the field.
The peak of the revival appears at time Trev when a significant number of
oscillating terms are in phase. For the first revival we find

2g
√

n̄ Trev − 2g
√

n̄− 1 Trev = 2π (2.10)

with the approximate solution

Trev ≈ 2π
√

n̄/g. (2.11)

Also other initial field states lead to the phenomenon of collapses and re-
vivals. Their form depends on the initial probability distribution of the
photon numbers.

A different behavior of the system arises if the cavity mode is initially
prepared in a Fock state. Then the initial state is

|ΨI(0)〉 = |g, n〉. (2.12)

It couples only to |e, n − 1〉 and the system remains in the corresponding
subspace. The time evolution is then governed by the Hamiltonian

Hn = −∆ac

2
σz − ig

√
n
(|e, n− 1〉〈g, n| − |g, n〉〈e, n− 1|), (2.13)

which is diagonal in the basis of the so-called dressed states( |+, n〉
|−, n〉

)
=

(
sin θn cos θn

cos θn − sin θn

)( |g, n〉
|e, n− 1〉

)
. (2.14)

Here, tan 2θn = −2g
√

n/∆ac and 0 ≤ 2θn ≤ π. Together with |g, 0〉 the
dressed states form the eigen subspaces of HI . The corresponding eigen
values are

E0 = ∆ac/2,

En
± = ±

√
(∆ac/2)2 + g2n. (2.15)

This result shows that the permanent exchange of excitation between the
atom and the cavity mode due to the Jaynes-Cummings interaction leads to a
shift of the original eigenvalues of the system. In the resonant case (∆ac = 0)
the original eigen frequencies are shifted by ±√n g. For n = 1 one speaks
of ”vacuum Rabi oscillations” and in the Schrödinger picture for n = 1 the
original resonance frequency ωa = ωc is then shifted by ±g. The effect can be
verified experimentally by measuring the transmission spectrum of the cavity
and identifying the shifted resonance peaks. Since dissipation (due to atom
and cavity decay) suppresses the effect, observing it, as reported in [27], is a
clear evidence for the strong-coupling regime (g À κ, γ).
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2.1.2 Dissipation

If (2.3) is not fulfilled, one has to consider the coupling of the atom and the
cavity mode to the free radiation field. The time-evolution of the system is
then described by the master equation. First we introduce a general recipe
for its derivation. Then we apply it on the one hand to the case of a harmonic
oscillator, which is a suitable model for a cavity mode, and on the other hand
to a two-level atom. Similar derivations of the master equation can be found
in [73–75].

System-reservoir approach

We consider a system S which couples to a reservoir of modes R. The
Hamiltonian is then of the form

H = HS + HR + HSR. (2.16)

Here, HR and HS describe the free evolution of S and R. The coupling
is given by HSR. The reduced density operator of the system is deduced
from the system-reservoir density operator χ(t) by tracing over the reservoir
modes, i.e. ρ(t) = trR(χ(t)). The time evolution of χ(t) is governed by the
Schrödinger equation

dχ

dt
= −i[H, χ]. (2.17)

In an interaction picture with respect to the free Hamiltonian HS + HR we
obtain

dχ̃(t)

dt
= −i[H̃SR(t), χ̃(t)], (2.18)

with

χ̃(t) = ei(HS+HR)t χ(t) e−i(HS+HR)t,

H̃SR(t) = ei(HS+HR)t HSR e−i(HS+HR)t. (2.19)

We formally integrate (2.18), substitute the result for χ̃(t) on the right hand
side of (2.18) and obtain the exact equation

dχ̃(t)

dt
= −i[H̃SR(t), χ(0)]−

∫ t

0

dt′[H̃SR(t), [H̃SR(t′), χ̃(t′)]]. (2.20)

If the system-reservoir coupling is turned on at t = 0 and there are no
correlations between S and R initially, the initial state factorizes in

χ̃(0) = χ(0) = ρ(0)⊗R0, (2.21)
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where R0 is the density operator of the reservoir at t = 0. For the system
density operator in the interaction picture

ρ̃(t) = eiHSt ρ(t) e−iHSt (2.22)

the master equation is then given by

dρ̃(t)

dt
= −

∫ t

0

dt′ trR

([
H̃SR(t), [H̃SR(t′), χ̃(t′)]

])
. (2.23)

The assumption of weak system-reservoir coupling and the fact, that the
reservoir is, due to its size, basically not affected by the coupling to the
system, leads to the relation

χ̃(t) = ρ̃(t)⊗R0 +O(HSR). (2.24)

Substituting this into (2.23) and neglecting terms of higher than second order
in HSR amounts to making the Born approximation. The master equation
reads then

dρ̃(t)

dt
= −

∫ t

0

dt′ trR

([
H̃SR(t), [H̃SR(t′), ρ̃(t′)⊗R0]

])
. (2.25)

This implies that the future evolution of the system depends on its history.
This is in principle a reasonable assumption since an earlier state of the
system changed the reservoir state in the past and the latter interacts with
the system again in the future. On the other hand the reservoir is a large
system in thermal equilibrium and we can assume that the changes due to the
interaction with the system are not preserved for a long time. The question is
whether this time is long enough to affect the future evolution of the system.
To figure this out one has to compare the reservoir correlation time with the
time scale for significant changes in the system, as is done in the next section.
For a Markovian process the future depends only on the present state. In
the Markov approximation we replace ρ̃(t′) therefore by ρ̃(t) and obtain the
master equation in the Born-Markov approximation

dρ̃(t)

dt
= −

∫ t

0

dt′ trR

([
H̃SR(t), [H̃SR(t′), ρ̃(t)⊗R0]

])
. (2.26)

Master equation for the harmonic oscillator

We will now consider an harmonic oscillator with frequency ω0 and creation
and annihilation operators a† and a. The reservoir R is modelled as a collec-
tion of harmonic oscillators with frequency ωj and creation and annihilation



2.1 Atom-cavity interaction including dissipation 17

operators r†j and rj. The coupling strength between the system oscillator and
the jth reservoir mode is given by κj. In the rotating-wave approximation
the Hamiltonian of the composite system (2.16) is

HS = ω0a
†a,

HR =
∑

i

ωir
†
i ri,

HSR =
∑

i

(
κ∗i ar†i + κia

†ri

)
= aΓ† + a†Γ. (2.27)

We introduced a collective reservoir operator Γ. Assuming that the reservoir
is in thermal equilibrium at temperature T we have the initial state

R0 =
∏

j

e−ωjr†jrj/kBT
(
1− e−ωj/kBT

)
, (2.28)

where kB is the Boltzmann constant. In an interaction picture with respect
to HS + HR the Hamiltonian is given by

H̃SR =
∑

i

(
κ∗i a r†i e

i(ωi−ω0)t + κi a
†rie

−i(ωi−ω0)t
)

= aΓ̃†e−iω0t + a†Γ̃eiω0t, (2.29)

where Γ̃ is introduced as the collective reservoir operator in the interaction
picture.

Substituting this into the master equation in the Born approximation
(2.25) leads to

dρ̃(t)

dt
= −

∫ t

0

dτ
[(

aa†ρ̃(t− τ)− a†ρ̃(t− τ)a
)
e−iω0τ 〈Γ̃†(t)Γ̃(t− τ)〉R + h.c.

+
(
a†a ρ̃(t− τ)− a ρ̃(t− τ)a†

)
eiω0τ 〈Γ̃(t)Γ̃†(t− τ)〉R + h.c.

]
,

(2.30)

where we defined τ = t− t′. The reservoir correlation functions are given by

〈Γ̃†(t)Γ̃(t− τ)〉R =

∫ ∞

0

dω eiωτf(ω)|κ(ω)|2 n̄(ω, T )

〈Γ̃(t)Γ̃†(t− τ)〉R =

∫ ∞

0

dω e−iωτf(ω)|κ(ω)|2(n̄(ω, T ) + 1
)
. (2.31)

We introduced a density of states f(ω) such that f(ω)dω is the number of
oscillators with frequencies in the interval [ω, ω + dω] and

n̄(ω, T ) =
e−ω/kBT

1− e−ω/kBT
(2.32)
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is the mean number of photons for an oscillator with frequency ω in thermal
equilibrium at temperature T . If the reservoir correlation time is short on
the time scale of significant changes in the system, the reservoir correlation
functions can be approximated by δ(τ) and ρ̃(t− τ) → ρ̃(t) (Markov approx-
imation). An analysis of the reservoir correlation functions [75] reveals that
they are peaked at τ = 0. The width of the peak is given by the reservoir cor-
relation time tR = 1/kBT . At room temperature we have tR ≈ 0.25 10−13s
while, if the oscillator a represents an optical cavity mode, the typical time-
scale on which ρ̃(t−τ) varies is given by tS ∼ 10−8s. This clearly justifies the
Markov approximation. For the master equation of the harmonic oscillator
in the Born-Markov approximation we obtain

dρ̃

dt
=

(
aρ̃a† − a†aρ̃

) ∫ t

0

dτ

∫ ∞

0

dωe−i(ω−ω0)τf(ω)|κ(ω)|2

+
(
aρ̃a† + a†ρ̃a− a†aρ̃− ρ̃aa†

)×∫ t

0

dτ

∫ ∞

0

dωe−i(ω−ω0)τf(ω)|κ(ω)|2n̄(ω, T ) + h.c.. (2.33)

The upper limit of the τ integration is given by t ∼ tS while the integration
is dominated by much shorter times ∼ tR. Therefore we can extend the
integration to infinity and obtain

lim
t→∞

∫ t

0

dτ e−i(ω−ω0)τ = πδ(ω − ω0) +
iP

ω0 − ω
, (2.34)

where P is the Cauchy principal value. With the definitions

∆ = P

∫ ∞

0

dω
f(ω)|κ(ω)|2

ω0 − ω
,

∆′ = P

∫ ∞

0

dω
f(ω)|κ(ω)|2

ω0 − ω
n̄(ω, T ),

κ = πf(ω0)|κ(ω0)|2,
n̄0 = n̄(ω0, T ) (2.35)

we obtain for the master equation in the interaction picture

dρ̃

dt
= −i∆[a†a, ρ̃] + κ

(
2aρ̃a† − a†aρ̃− ρ̃a†a

)

+2κn̄0

(
aρ̃a† + a†ρ̃a− a†aρ̃− ρ̃aa†

)
. (2.36)

Transforming back to the Schrödinger picture and grouping the terms such
that they appear in the Lindblad form leads to the master equation for the



2.1 Atom-cavity interaction including dissipation 19

damped harmonic oscillator

dρ

dt
= −iω′0[a

†a, ρ] + κ(n̄0 + 1)
(
2aρa† − a†aρ− ρa†a

)

+κn̄0

(
2a†ρa− aa†ρ− ρaa†

)
, (2.37)

where

ω′0 = ω0 + ∆. (2.38)

The decaying harmonic oscillator is a suitable model for a single cavity mode
coupled to the environment through lossy cavity mirrors.

Spontaneous decay of a two-level atom

We will now employ the formalism developed above to describe a two-level
atom with ground state |g〉 and excited state |e〉 coupled to the modes of the
radiation field in thermal equilibrium at temperature T . The Hamiltonian
(2.16) is given in the rotating-wave and dipole approximation by

HS =
ωa

2
σz,

HR =
∑

k,λ

ωk r†k,λrk,λ,

HSR =
∑

k,λ

(
κ∗k,λr

†
k,λσ− + κk,λrk,λσ+

)
, (2.39)

where ωa is the atomic transition frequency and

κk,λ = −ieik·rA

√
ωk

2ε0V
êk,λ · deg. (2.40)

Here, the summation over the reservoir modes involves a summation over the
wavevector k and the polarization λ. They correspond to the reservoir mode
rk,λ with frequency ωk and unit polarization vector êk,λ. The position of the
atom is given by rA and V is the quantization volume. The dipole matrix
element of the atomic transition is given by

deg = e〈e|q̂|g〉,
dge = (deg)

∗, (2.41)

where e is the electronic charge and q̂ is the coordinate operator for the
bound electron. κk,λ is then the dipole coupling constant for the reservoir
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mode with wavevector k and polarization λ. The collective reservoir operator
is given by

Γ =
∑

k,λ

κk,λrk,λ (2.42)

in the Schrödinger picture and transforms to

Γ̃ =
∑

k,λ

κk,λrk,λe
−iωkt (2.43)

in the interaction picture with respect to HS + HR.
The derivation of the master equation for the two-level atom is analogous

to the case of the harmonic oscillator. Substitution of the operators a and a†

by the atomic lowering and raising operators σ− and σ+ in Eq. (2.33) leads
to

dρ̃

dt
=

[
γ(n̄a + 1) + i(∆′ + ∆)

](
σ−ρ̃σ+ − σ+σ−ρ̃

)

+
(
γn̄a + i∆′)(σ+ρ̃σ− − ρ̃σ−σ+

)
+ h.c., (2.44)

with

∆ =
∑

λ

P

∫
d3k

f(k)|κ(k, λ)|2
ωa − kc

,

∆′ =
∑

λ

P

∫
d3k

f(k)|κ(k, λ)|2
ωa − kc

n̄(kc, T ),

γ = π
∑

λ

∫
d3k f(k)|κ(k, λ)|2 δ(kc− ωA),

n̄a = n̄(ωa, T ). (2.45)

After the transformation back to the Schrödinger picture the master equation
for the radiatively damped two-level atom turns out to be

dρ

dt
= −i

ω′a
2

[σz, ρ] + γ(n̄a + 1) (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+γn̄a (2σ+ρσ− − σ−σ+ρ− ρσ−σ+) , (2.46)

with
ω′a = ωa + 2∆′ + ∆. (2.47)

The difference ω′a − ωa is called Lamb shift and contains a temperature de-
pendent contribution ∆′ which did not appear for the harmonic oscillator.
This follows from the commutator [σ−, σ+] = −σz which replaces [a, a†] = 1
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for the harmonic oscillator. Note that this result does not provide an ac-
curate calculation of the Lamb shift, which for example includes relativistic
effects. The Lindblad term proportional to γ(n̄a + 1) describes the transi-
tion rate from |e〉 to |g〉. It contains the spontaneous emission rate which is
independent of n̄a and the stimulated emissions induced by thermal photons
from the reservoir. The Lindblad term proportional to γn̄a describes the
transition rate from |g〉 to |e〉, where a thermal photon from the reservoir is
absorbed.

2.1.3 A driven two-level atom in a cavity

In this section we combine the results of the preceding sections and present
the master equation for a two-level atom driven directly by a laser and cou-
pled to a single cavity mode taking into account cavity losses through im-
perfect mirrors and spontaneous emissions of the atom into the background
modes.

In the absence of dissipation the time-evolution of the system is described
by the Jaynes-Cummings model. In general the dynamical behavior of the
atom depends on the statistical properties of its environment. The cavity re-
stricts the mode structure of the free radiation field for a certain space angle.
If the cavity is far off-resonant the coupling of the atom to the environment
is suppressed and an inhibition of spontaneous emission is predicted [76].
On the other hand, a resonant cavity can cause an enhancement of atomic
decay via a lossy cavity mode [77]. In principle an accurate description of an
atom in a cavity therefore involves the quantization of the electromagnetic
field with the cavity mirrors as boundary conditions. Fortunately this is not
necessary since in the optical regime the inhibition of spontaneous decay in
the off-resonant case is negligible. The enhancement in the resonant case
is a consequence of the coupling between atom and cavity mode (described
by the Jaynes-Cummings model) and a strong coupling of the latter to the
free radiation field (κ À g). The combination of the presented methods is
therefore appropriate to describe the system and leads to the master equation

dρ

dt
= −i[H, ρ] +

(La + Lc

)
ρ. (2.48)

Here, Laρ and Lcρ are the Linblad terms from Eq. (2.46) and Eq. (2.37)
and account for the coupling to the free radiation field of the atom and the
cavity mode, respectively. The mean number of photons in a reservoir-mode
with an optical frequency is negligible at room temperature. Therefore we
set

n̄a = n̄0 = 0 (2.49)
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in Eqs. (2.46) and (2.37). Terms which describe induced emissions and
absorptions vanish. The Lindblad terms are then given by

Laρ = γ (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) ,

Lcρ = κ
(
2aρa† − a†aρ− ρa†a

)
, (2.50)

where we neglected the effect of the interaction between the atom and the
laser with Rabi frequency Ω on the atomic damping. Therefore we need
ωa À Ω [75], which is justified for atomic transitions in the optical regime.

The Hamiltonian of the system is given by Eq. (2.1) and a term which
accounts for the laser field with frequency ωl. In the rotating-wave approxi-
mation we obtain

H = ωca
†a +

ωa

2
σz +

Ω

2

(
e−iωltσ+ + eiωltσ−

)
+ g

(
σ+a + a†σ−

)
, (2.51)

where we applied the unitary transformation a 7→ ia. The coupling-strength
between the cavity mode and the atom is given by g. The ”new” free energies
of the cavity mode and the atomic transition

ωc ≡ ω′0,

ωa ≡ ω′a (2.52)

absorb the corrections from Eqs. (2.38) and (2.47). It is desirable to trans-
form H into a time-independent form. In an interaction picture rotating with
the frequency of the laser ωl we obtain

HI = −∆cl a†a− ∆al

2
σz +

Ω

2
(σ+ + σ−) + g

(
σ+a + a†σ−

)
, (2.53)

where

∆cl = ωl − ωc,

∆al = ωl − ωa. (2.54)

This model contains already the most important ingredients we will use
throughout this work.

2.2 Quantum-jump approach

In order to solve master equations of the form (2.48) for more than one
atom or strong driving it is favorable to employ a numerical method. The
quantum-jump approach [78–81] yields a very efficient simulation technique.



2.2 Quantum-jump approach 23

As long as we consider a closed system it can be described by a pure
state. Its time evolution is given by the Schrödinger equation. For the
derivation of the master equation we traced out the reservoir modes and
therefore have to deal with mixed states described by density operators. The
master equation can be understood as the time-evolution equation of an
ensemble average. The idea of the quantum-jump approach is to simulate
only a single trajectory. From the master equation one can derive an effective
Hamiltonian which describes the time evolution according to the Schrödinger
equation as long as no quanta of excitation is transferred to the reservoir
modes. This has the advantage that one has to deal only with pure states.
The emission of a photon is described as a sudden change of the system wave-
function and is therefore called jump. Finally one averages over the single
trajectories to obtain the solution of the master equation.

We will now introduce the quantum-jump method by applying it to the
master equation

dρ

dt
= −i[H, ρ] + Lρ. (2.55)

The Hamiltonian H describes the coherent evolution of the system while L
describes the decay and is given in the Lindblad form by

Lρ =
∑

i

κi

(
2aiρa†i − a†iaiρ− ρa†iai

)
, (2.56)

where we consider the optical regime, i.e. we assume the vacuum state for the
reservoir. a†i and ai are the system operators which couple to the reservoir.
In the system discussed in 1.3 they are given by the annihilation operator of
the cavity mode (a1 ≡ a) and the lowering operator of the atomic transition
(a2 ≡ σ−). Equation (2.55) can be rewritten as

dρ

dt
= −i

(
Heffρ− ρH†

eff

)
+ Lρ (2.57)

employing a non-Hermitian effective Hamiltonian

Heff = H − i
∑

i

κia
†
iai. (2.58)

It describes the time-evolution of the system according to the Schrödinger
equation

d|Ψ〉
dt

= −iHeff |Ψ〉 (2.59)

under the condition that no photon has been emitted yet. The effective time
evolution causes the norm of the state to decrease. The probability for ”no
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jump” in the time interval [t, t + ∆t] is given by

P0 = 〈Ψeff |Ψeff〉 (2.60)

with

|Ψeff〉 = e−iHeff∆t |Ψ(t)〉
≈ |Ψ〉 − iH∆t|Ψ(t)〉 −∆t

∑
i

κi a
†
iai|Ψ(t)〉. (2.61)

We have chosen ∆t such that terms of the order ∆t2 are negligible and the
probability of the emission of two photons within ∆t vanishes. A jump is
described by the reset operators

√
2κi ai. (2.62)

In the following we give a recipe for the simulation of the system using
the quantum-jump technique:

• determine the probability of no emission in the time-interval [t, t+∆t]:

P0 = 〈Ψeff |Ψeff〉
≈ 1− 2∆t

∑
i

κi〈Ψ|a†iai|Ψ〉 (2.63)

• choose a random number in [0, 1]: r

• if r > P0 a jump occurred and the particular choice is determined
randomly according to the probabilities:

pi =
κi〈Ψ|a†iai|Ψ〉∑
j κj〈Ψ|a†jaj|Ψ〉

(2.64)

the renormalized reset state after the jump is then given by:

ai|Ψ〉√
〈Ψ|a†iai|Ψ〉

(2.65)

• if r < P0 no jump occurred and the system evolves according to the
effective Hamiltonian into:

|Ψeff〉√
〈Ψeff |Ψeff〉

(2.66)
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• repeat the procedure for the following time-steps to obtain a complete
single trajectory of the system;

• average over many trajectories to obtain the solution for ρ(t).

We will now convince ourselves that this procedure simulates the master
equation (2.55). After each time-step ∆t the system ends up either in in one
of the reset states (2.65) with probability pi(1−P0) or performs a conditional
time evolution and ends up in the normalized conditional state (2.66) with
probability P0. In terms of a density matrix, the state of the system after a
time ∆t is given by the sum over the two possible outcomes weighted with the
corresponding probabilities. For the sake of simplicity we use |Ψ(t + ∆t)〉 =
|Ψ(∆t)〉 and |Ψ(t)〉 = |Ψ〉 and write

|Ψ(∆t)〉〈Ψ(∆t)| = P0
|Ψeff〉〈Ψeff |
〈Ψeff |Ψeff〉 + (1− P0)

∑
i

pi
ai|Ψ〉〈Ψ|a†i
〈Ψ|a†iai|Ψ〉

. (2.67)

Substituting P0 from Eq. (2.63) and pi from Eq. (2.64) leads to

|Ψ(∆t)〉〈Ψ(∆t)| = |Ψeff〉〈Ψeff |+ 2∆t
∑

i

κiai|Ψ〉〈Ψ|a†i . (2.68)

With the conditional density operator

|Ψeff〉〈Ψeff | ≈ |Ψ〉〈Ψ| − i
[
H, |Ψ〉〈Ψ|]∆t−

∑
j

κja
†
jaj, |Ψ〉〈Ψ|∆t (2.69)

and ρ = |Ψ〉〈Ψ| we end up with

ρ(t + ∆t)− ρ(t)

∆t
= −i[H, ρ(t)] + Lρ(t). (2.70)

In the limit ∆t → 0 we recover the master equation (2.55).

2.3 Quantum regression theorem

Two-time expectation values provide valuable information about the proper-
ties of quantum systems. In the case of a single-mode a(t) of a cavity, which
couples to the free radiation field, the first order correlation function

G1(t, t + τ) ∝ 〈a†(t)a(t + τ)〉 (2.71)

is employed to calculate the spectrum of the field and the second order cor-
relation function

G2(t, t + τ) ∝ 〈a†(t)a†(t + τ)a(t + τ)a(t)〉 (2.72)
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reveals information about the photon statistics. Solving the master equation
for the system density operator ρ(t) allows us to calculate time-dependent
expectation values only at one instance of time. In the following we will derive
the quantum regression theorem [82,83] which enables us to evaluate products
of operators at different times. Therefore we use the method presented in [75].

In the Heisenberg picture the expectation value for a product of arbitrary
system operators O1 and O2 evaluated at two different times is given by

〈O1(t)O2(t
′)〉 = tr [χ(0)O1(t)O2(t

′)] , (2.73)

where χ(0) denotes the initial state of system S and reservoir R. The evolu-
tion of O1 and O2 is given, according to the Heisenberg equation of motion,
by

O1(t) = eiHtO1(0)e−iHt,

O2(t
′) = eiHt′O2(0)e−iHt′ , (2.74)

where H is the Hamiltonian acting on S⊗R. From the Schrödinger equation
we obtain for the system-reservoir density operator χ(t)

χ(t) = e−iHtχ(0)eiHt. (2.75)

Substituting (2.74) and (2.75) in (2.73) leads to

〈O1(t)O2(t
′)〉 = trS

[
O2(0)trR

(
e−iH(t′−t)χ(t)O1(0)eiH(t′−t)

)]
, (2.76)

where we used the cyclic property of the trace and the fact that O2 acts only
on the system S. With τ = t′ − t (t′ ≥ t) we define

χ1(τ) = e−iHτχ(t)O1(0)eiHτ . (2.77)

The time evolution of χ1(τ) is given by

dχ1(τ)

dτ
= −i[H,χ1(τ)] (2.78)

with the initial condition χ1(0) = χ(t)O1(0). Since we are looking for an ex-
pression independent of the reservoir, we define the reduced density operator

ρ1(τ) = trR (χ1(τ)) . (2.79)

Under the assumption, that χ(t) = ρ(t) ⊗ R0, i.e. the reservoir is described
by its initial state R0, we can write

χ1(0) = ρ1(0)⊗R0. (2.80)
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In analogy to the derivation of the master equation in section 2.1.2, we apply
the Born-Markov approximation and since χ1(τ) in Eq. (2.78) and χ(t) in
Eq. (2.17) obey the same Hamiltonian, we find

dρ1(τ)

dτ
= Lρ1(τ), (2.81)

where L is the Lindblad operator in the system master equation for ρ(t).
The formal solution is given by

ρ1(τ) = eLτρ1(0) = eLτρ(0)O1(0) (2.82)

and with this result we obtain from Eq. (2.76)

〈O1(t)O2(t + τ)〉 = trS

(
O2(0)eLτ [ρ(t)O1(0)]

)
. (2.83)

Similar analysis leads to

〈O1(t)O2(t + τ)O3(t)〉 = trS

(
O2(0)eLτ [O3(0)ρ(t)O1(0)]

)
. (2.84)

In the following we will show that the equations of motion for the expec-
tation values of system operators are also the equations of motion for the
two-time expectation values. Therefore we assume that there exists a com-
plete set of system operators Ai, such that for an arbitrary operator O and
for each Ai

trS

(
Ai[LO]

)
=

∑
j

MijtrS

(
AjO

)
, (2.85)

where the Mij are time-independent. The time evolution equation for each
of them is then given by

d〈Ai(t)〉
dt

= trS

(
Aiρ̇(t)

)
= trS

(
Ai[Lρ(t)]

)

=
∑

j

MijtrS

(
Ajρ(t)

)

=
∑

j

Mij〈Aj(t)〉. (2.86)

In vector notation this set of coupled linear equations for the expectation
values 〈Ai〉 reads

d〈A(t)〉
dt

= M〈A(t)〉, (2.87)
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where M is the evolution matrix defined by the Mij and A is the column
vector of the operators Ai. With Eq. (2.83) we find for an arbitrary system
operator O1

d

dτ
〈O1(t)Ai(t + τ)〉 = trS

[
Ai(0)

(LeLτ [ρ(t)O1(0)]
)]

=
∑

j

MijtrS

(
Aj(0)eLτ [ρ(t)O1(0)]

)

=
∑

j

Mij〈O1(t)Aj(t + τ)〉 (2.88)

and in vector notation

d

dτ
〈O1(t)A(t + τ)〉 = M〈O1(t)A(t + τ)〉. (2.89)

The statement, that the set of correlation functions 〈O1(t)Ai(t+ τ)〉 satisfies
the same system of linear equations as the set expectation values 〈Ai(t + τ)〉
is called quantum regression theorem. Analogously

d

dτ
〈O1(t)A(t + τ)O2(t)〉 = M〈O1(t)A(t + τ)O2(t)〉. (2.90)

holds for two arbitrary system operators O1 and O2.

2.4 Input and output in damped quantum

systems

The decay of a quantum system leads to an excitation of the reservoir modes.
Measuring this output-field reveals information about the dynamics of the
system. On the other hand, if excitation from the reservoir modes is trans-
ferred to the system, one is interested in the effect of this input-field on the
system. In the following we derive a relation between input and output field
and system operators by establishing the quantum Langevin equation. This
method was originally proposed in [84,85].

The Hamiltonian of a system coupling to the environment is of the form
(2.16). The reservoir modes are described by creation and annihilation op-
erators r(ω) and r†(ω) with

[r(ω), r†(ω)] = δ(ω − ω′). (2.91)

The free evolution of the continuum of reservoir modes is given by

HR =

∫ ∞

−∞
ω r†(ω) r(ω)dω (2.92)
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and the system-reservoir coupling is described by

HSR = i

∫ ∞

−∞
κ(ω)

(
r†(ω)a− a†r(ω)

)
dω. (2.93)

Here, a is the system operator which couples linearly to the reservoir modes
with coupling strength κ(ω). Note that the lower limit of the integration
is extended to ”−∞” since we consider a frame rotating with some system
frequency, which is typically much larger than the obtained bandwidths.

The Heisenberg equations of motion for r(ω) and an arbitrary system
operator s are given by

dr(ω)

dt
= −iω r(ω) + κ(ω)a,

ds

dt
= −i[s,HS] +

∫
κ(ω)

(
r†[s, a]− [s, a†]r(ω)

)
dω, (2.94)

with HS being an arbitrary system Hamiltonian. The solution of the differ-
ential equation for r(ω) is given by

r(ω) = e−iω(t−t0)r0(ω) + κ(ω)

∫ t

t0

e−iω(t−t′)a(t′)dt′, (2.95)

where r0(ω) is the value of r(ω) at t = t0. We substitute this result into Eq.
(2.94) and apply the first Markov approximation

κ(ω) =
√

κ/2π, (2.96)

i.e. the system-reservoir coupling strength is independent of frequency. In-
troducing the input field

rin =
1√
2π

∫
e−iω(t−t0)r0(ω)dω, (2.97)

which satisfies the commutation relation

[rin(t), r
†
in(t

′)] = δ(t− t′), (2.98)

we finally obtain the quantum Langevin equation

ds

dt
= −i[s,HS]−

(
[s, a†]

(κ

2
a +

√
κ rin(t)

)− (κ

2
a† +

√
κ r†in(t)

)
[s, a]

)

(2.99)



30 Basic concepts

for the system operator s. With (2.96) we derive from Eq. (2.95) as well

∫
r(ω)dω = rin(t) +

√
κ

2
a(t). (2.100)

We consider now t1 > t and define r1(ω) as the value of r(ω) at t = t1.
Instead of Eq. (2.95) we obtain

r(ω) = e−iω(t−t1)r1(ω)− κ(ω)

∫ t1

t

e−iω(t−t′)a(t′)dt′ (2.101)

and define the output mode as

rout(t) =
1√
2π

∫
e−iω(t−t′)r1(ω)dω. (2.102)

Using this definition leads to the time-reversed quantum Langevin equation

ds

dt
= −i[s,HS]−

(
[s, a†]

(− κ

2
a +

√
κ rout(t)

)− (− κ

2
a† +

√
κ r†out(t)

)
[s, a]

)
.

(2.103)

As above, we obtain

∫
r(ω)dω = rout(t)−

√
κ

2
a(t). (2.104)

Substracting this from Eq. (2.100) leads to the desired input-output relation

rout(t)− rin(t) =
√

κ a(t), (2.105)

which can also be used to transform between the Langevin equation (2.99)
and its time-reversed version (2.103).

The formalism presented here is suitable for a complete description of
a system with input and output. The quantum Langevin equation (2.99)
enables us to determine the time-evolution of an arbitrary system operator
s(t) for a given input. The output-field can then be calculated employing
the boundary condition (2.105). For a detailed discussion of these results we
refer to [86,87].



Chapter 3

Trapping atoms in the vacuum
field of a cavity

In this chapter we propose a new scheme for trapping an atom in a cavity by
employing the cavity mode itself. Compared to others our approach has the
advantage that spontaneous decay is strongly suppressed because the atom
is in its ground state and the cavity is in the vacuum state.

The plan of this chapter is as follows. In Section 3.1 we give a qualitative
description of our scheme and estimate its operating conditions such as the
depth of the trapping potential and the lifetime of the state. In section 3.2
we give a full description of the method including dissipative processes. The
analytical results and estimations are checked numerically in section 3.3.

3.1 Description

We consider an atom with two internal ground levels |g〉 and |g′〉, which can
be employed to store quantum information. They are resonantly coupled
by two cavity modes to two excited levels |e〉 and |e′〉, respectively. Addi-
tionally, an external plane-wave laser field detuned by ∆ excites the same
transition (see Fig. 3.1). In the following we will consider only the levels |g〉
and |e〉, since for the other two levels the same description applies (they are
independent).

3.1.1 Trapping an atom with a single photon

In order to understand the mechanism that we propose, it is convenient
first to revise the method used in previous experiments [38–41] to keep an
atom in a cavity. The interaction between the atom and the cavity mode is

31
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Figure 3.1: Level scheme of the atom. The two ground levels |g〉 and |g′〉
are resonantly coupled by two cavity modes to two excited levels |e〉 and |e′〉.
The coupling strength is given by g and g′. There is an additional external
laser field which couples to the atomic transitions with the Rabi frequencies
Ω and Ω′.

characterized by a coupling constant

g(z) = g0 exp
(− z2/2σ2

)
, (3.1)

which depends on the distance z of the atom from the cavity axis. σ denotes
the width of the Gaussian profile of the cavity mode. In Fig. 3.2 we show the
set-up, as well as the instantaneous energy levels of an atom as a function
of its position (in one dimension). The ground state of the composed atom-
cavity system is |g, 0〉, where |n〉 is the cavity state with n photons (in this
case n = 0). The corresponding energy, E0 is position independent. The first
two excited levels are the dressed states of the Jaynes-Cummings Hamiltonian
(2.2)

HJC = g(x)
(
σ+a + σ−a†

)
, (3.2)

where we assumed that cavity mode and atomic transition are resonant
(∆ac = 0). They are given by (2.14)

|±〉 =
1√
2
(|g, 1〉 ± |e, 0〉), (3.3)

with corresponding energies E±(z) = ±g(z) in an interaction picture rotat-
ing with the cavity resonance frequency. As Fig. 3.2 shows, the position-
dependence of E−(z) provides the atom with a confining potential at the
center of the cavity. Thus, if the atom can be prepared in the state |−〉 with
a kinetic energy smaller than g0 = g(0), it will remain trapped [33–41]. As
the state |−〉 contains a linear combination involving one photon, one can
state that the atom is trapped by a single photon. On the other hand, the
state |−〉 can be efficiently prepared by starting in the state |g, 0〉 and tuning
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Energy

Figure 3.2: Set-up and instantaneous energy levels of the atom as a function
of its position. E±(z) and E0 are the energies for the upper and lower dressed
state and the ground state. The external laser field is on resonance with the
transition |g, 0〉 → |−〉 near z = 0 and its Rabi frequency is denoted by Ω.

the external laser field to be resonant with the transition |g, 0〉 → |−〉 near
z = 0, as indicated in Fig. 3.2 [88].

The above discussion has omitted an important element which is present
in all experiments, namely the dissipation mechanism. On the one hand,
excited atoms may decay very fast (as long as the state |e〉 does not corre-
spond to some Zeeman level, which is coupled to the cavity mode by some
Raman transition [89]). More importantly, cavities have usually losses, so
that the photons will leave the cavity after some time t ' 1/κ, where κ is the
cavity damping rate. Any of these mechanisms will induce the spontaneous
transition |−〉 → |g, 0〉, and therefore the atom will no longer experience the
trapping force. The typical time scale of this processes is of the order of
γ−1 and κ−1, where γ and κ are the spontaneous emission and the cavity
damping rate, respectively. In practice [38–41] the atom can be promoted
several times to the state |−〉 by the external laser, so that the trapping time
inside the cavity can be several hundreds of κ−1. Note, however, that these
spontaneous transitions will break the atomic coherence if we are using more
internal levels to store, for example, some quantum information in the atom
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(see Fig. 3.1).

3.1.2 Position-dependent ac-Stark shift for the ground
state

Our idea is to detune the external laser slightly below the transition |g, 0〉 →
|−〉 at z = 0. If the laser intensity is low enough, its only effect will be to
produce an ac-Stark shift for the level |g, 0〉, whose energy E0(z) will now
depend on the position, as shown in Fig. 3.3. Thus, if the atom is in the level

Energy

Figure 3.3: The detuned external laser with Rabi frequency Ω leads to a
position dependent ac-Stark shift of |g, 0〉. If the system is in the level |g, 0〉
its energy E0(z) depends on the position of the atom. Therefore there exists
a trapping force towards the center of the cavity.

|g, 0〉, it will experience a trapping force towards z = 0, and therefore, it can
be trapped (as long as the corresponding potential supports bound states).
Note also, that since the atom is basically in the ground state and no photon
is present, all the dissipative mechanisms may be drastically reduced.

In the following sections we will compute the performance of our scheme.
In the rest of this section we will use very simple estimates to characterize
the trapping potential and the corresponding time scales.

Denoting by Ω the Rabi frequency of the external laser, and by ∆ its
corresponding detuning with respect to the |g〉 → |e〉 transition (∆ < 0), we
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have that the regime of validity of our analysis will be

Ω ¿ |∆ + g0| ¿ g0, (3.4)

where g0 is the maximal coupling-strength in the center of the cavity. In this
case, the depth of the trapping potential V0 will be approximately equal to
the ac-Stark shift of the level |g, 0〉 due to its coupling to |−〉 at z = 0, i.e.

V0 ' Ω2

8 |∆ + g0| . (3.5)

On the other hand, losses will be due to the small contamination of level
|g, 0〉 with level |−〉 given by the off-resonant coupling. The population of
this level will be of the order of Ω2/4|∆ + g0|2, and therefore the lifetime of
the state will be

τ ' 4|∆ + g0|2
Ω2

min(γ−1, κ−1). (3.6)

Equations (3.5) and (3.6) indicate that the lifetime can be made arbitrarily
big at the expense of reducing the potential depth.

In three dimensions, one can easily estimate the condition for a potential
to possess a bound state. It is given by [90] 2mV0σ

2/~2 & π2/4, where σ is
the cavity width, m is the atomic mass, and we have included ~ to make the
dimensions more explicit. We can rewrite this as 16V0(σ/λ)2 & ER, where λ
is an optical transition wavelength and ER the corresponding energy of one
photon recoil. Since σ & λ in all cases we see that by taking V0 > ER we will
always have an atomic bound state. Note that in a one dimensional set-up
there is always a bound state for any value of V0 [90].

So far, we have shown that it is possible to have atoms trapped in the
cavity with basically zero photons and in the atomic ground state. However,
the trapping potential may become very weak. Thus, in order to trap atoms
it will be required that they move very slowly in the cavity in the state |g, 0〉
and then, when they are close to z = 0, the external field is turned on. Let
us estimate what will be, in this case, the lifetime of the trapped state. We
will assume that we have Rb atoms and the kinetic energy is of the order of
one optical recoil (ER = ~2k2/2m, where k is the optical wavevector). Thus,
we take ER = 4kHz < V0 = 10kHZ. Let us analyze separately the optical
and microwave regimes.

For the optical regime we take the parameters from [40]. There the
52S1/2F = 3 → 52P3/2F = 4 transition of 85Rb with a frequency of 3.8 ×
1014Hz was used. The maximal coupling between cavity and atom is g0 ≈
16× 2π MHz, the cavity loss rate is κ ≈ 1.4× 2π MHz and the spontaneous
decay rate is γ ≈ 3×2π MHz. Employing Eq. (3.6) we estimate a decay time
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of 2.1×10−5 s. For the microwave regime we consider circular Rydberg states,
so we have [33, 91] g0 ≈ 67 × 2π kHz, κ ≈ 1.6 × 2π Hz and γ ≈ 1.6 × 2π Hz,
where γ is the spontaneous decay rate of the Rydberg transition. We reach
a life time of 40 s (3.6).

These estimates look very promising. They will be optimized and com-
pared with numerical calculations in the following sections. On the other
hand, let us stress that we have calculated here the time for a single loss
event, since it will destroy the coherence present in the atomic state. For the
reference [34–41], in the optical experiments in which the atom is trapped
in a cavity both the effective decay rate and the potential depth seen by the
atom scale proportionally to the population of the excited level. However, in
our case the potential depth (3.5) scales in a different way. Thus we expect
that our scheme will be useful under appropriate conditions (small initial
velocities). In the following sections we will also analyze the trapping time
if several loss events are allowed.

3.2 Model

In this section we will introduce in detail the model that describes the sit-
uation we have in mind. In the first subsection we will start with the full
Hamiltonian characterizing the atom-cavity interaction and perform some
approximations in order to derive the estimates given in the previous sec-
tion. Then we will introduce the decay mechanisms in this picture.

3.2.1 Hamiltonian dynamics

The Hamiltonian describing the dynamics of the atom and the cavity mode
is given by Eq. (2.51). Here we consider also the kinetic energy p2/2m
of the atom and, since it couples resonantly to the cavity mode, we define
ω0 ≡ ωa = ωc and write

H =
p2

2m
+ ω0(a

†a +
1

2
σz) + g(z)(σ+a + a†σ−)

+
Ω

2
(σ+e−iωlt + σ−eiωlt). (3.7)

Here, ωl and Ω are the frequency and the Rabi frequency of the laser and
g(z) the position dependent coupling constant between the cavity mode and
the atom.

In order to make the analysis simpler, we will project our system in the
subspace spanned by the states {|g, 0〉, |e, 0〉, |g, 1〉}. In any case, the reader
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can easily verify that the population of all other levels will be much smaller
than the last two, which will be scarcely populated. The Hamiltonian (3.7)
in this subspace can be rewritten as H = p2/2m + H ′(z) with

H ′(z) = g(z)
(|e, 0〉〈g, 1|+ |g, 1〉〈e, 0|) +

Ω

2

(|g, 0〉〈e, 0|+ |e, 0〉〈g, 0|)

− ∆

2

(|g, 1〉〈g, 1|+ |e, 0〉〈e, 0| − |g, 0〉〈g, 0|) (3.8)

in a frame rotating with the laser frequency ωl. H ′(z) can be diagonalized
exactly but instead of doing that, we calculate its eigenstates and eigenvalues
in lowest order perturbation theory with respect to Ω, which is assumed to
be small with respect to |∆ + g(z)| for all values of z (see Fig. 3.3), where
∆ = ωl − ω0. We obtain

|Ψ0(z)〉 = |g, 0〉+
Ω/2

∆2 − g(z)2

(
g(z)|g, 1〉+ ∆|e, 0〉),

|Ψ1(z)〉 =
1√
2

(
|g, 1〉 − |e, 0〉 − Ω/2

∆ + g(z)
|g, 0〉

)
,

|Ψ2(z)〉 =
1√
2

(
|g, 1〉+ |e, 0〉 − Ω/2

∆− g(z)
|g, 0〉

)
, (3.9)

and the corresponding eigenvalues

λ0(z) =
∆

2
+

Ω2

8

( 1

∆ + g(z)
+

1

∆− g(z)

)
,

λ1(z) = −∆

2
− g(z)− Ω2/8

∆ + g(z)
,

λ2(z) = −∆

2
+ g(z)− Ω2/8

∆ + g(z)
. (3.10)

As we see, the ground state is basically |g, 0〉 with a vanishing contribution
of levels |g, 1〉 and |e, 0〉 in the limit Ω ¿ |∆ + g(z)|. However, it acquires a
position-dependent shift in its energy. The two terms in the shift come from
the ac-Stark shifts due to |−〉 and |+〉, respectively, which, with the chosen
detuning, do not compensate each other. The shift is maximal at z = 0. To
obtain the potential depth V0 we have to subtract the shift at g(z) = 0. This
gives

V0 = − Ω2g2
0

4∆ (∆2 − g2
0)

. (3.11)

In the limit (3.4) we have ∆ ≈ −g0. If we plug this into (3.11) we obtain
(3.5).
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Starting out with Ω = 0, if the atom is initially in |g, 0〉 and has a small
velocity near z = 0, and we turn the laser on, it will basically remain in the
eigenstate |Ψ0(z)〉, and therefore will experience the potential λ0(z). For this
picture to be valid, we need the kinetic energy of the atom to be smaller than
|∆ + g0| since in this case we can adiabatically eliminate the levels |g, 1〉 and
|e, 0〉 and obtain the effective Hamiltonian

Had =
p2

2m
+ λ0(z)|g, 0〉〈g, 0|. (3.12)

3.2.2 Dissipation

We introduce a cavity decay rate κ and a spontaneous decay rate γ for the
atom. To take both into account we use the master equation (2.48) that
describes the time evolution of this open quantum systems. The state of the
system, which is now in general a mixed one, is given by a density matrix ρ.
For our system we obtain

dρ

dt
= −i[H, ρ] + (Lc + La)ρ. (3.13)

Here,
Lcρ = κ

(
2 a ρ a† − a†a ρ− ρ a†a

)
(3.14)

describes the cavity damping, whereas

Laρ = γ
(
2

∫ 1

−1

N(u) σ− e−iuz ρ eiuz σ+du− σ+σ− ρ− ρ σ+σ−
)

(3.15)

describes spontaneous emission. In the first term of this expression we take
into account the photon recoil experienced by the atom after a photon emis-
sion (u is the momentum shift). The angular factor N(u) accounts for the
pattern of the dipole radiation. Since we consider here a one dimensional
version, we have N(u) = 1.

To simulate a single trajectory we use the quantum-jump approach in-
troduced in section 2.2. Therefore one defines an effective non-Hermitian
Hamiltonian

Heff = H − iκa†a− iγσ+σ−, (3.16)

which describes the time evolution of the system under the condition that no
emission takes place. The master equation can than be written in the form

dρ

dt
= 2 κ a ρ a† + 2 γ

∫ 1

−1

N(u) σ− e−iuz ρ eiuz σ+du

− i

[(
Heff +

p2

2m

)
ρ− ρ

(
H†

eff +
p2

2m

)]
. (3.17)
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The decay rates contribute to the effective time evolution as damping terms.
Therefore the norm of the state decreases. This means that the probability
to find no photon in the time interval (0, t) decreases with time ”t”.

Dissipation occurs in our model due to the small contamination of level
|Ψ0〉 with the states |g, 1〉 and |e, 0〉, which in turn decay due to cavity damp-
ing and spontaneous emission, respectively. In order to determine the effec-
tive decay rate (or jump time) we take the sum over the probabilities for the
excited states |g, 1〉 and |e, 0〉 in |Ψ0〉 weighted with the cavity decay rate κ
and the spontaneous emission rate γ. For the coupling constant we assume
that the atom is in the center of the cavity (g(z) = g0). We obtain

γeff = κ · |〈g, 1|Ψ0〉|2 + γ · |〈e, 0|Ψ0〉|2

= κ ·
∣∣∣∣

g0Ω/2

∆2 − g2
0

∣∣∣∣
2

+ γ ·
∣∣∣∣

∆Ω/2

∆2 − g2
0

∣∣∣∣
2

=
Ω2 (κ g2

0 + γ ∆2)

4 (∆2 − g2
0)

2 . (3.18)

This gives an effective decay time of

τeff =
1

γeff

=
4 (∆2 − g2

0)
2

Ω2 (κ g2
0 + γ ∆2)

. (3.19)

For the estimation of the life time in Eq. (3.6) we neglected the contribution
of the upper dressed level |+〉 to the disturbed eigenstate |Ψ0〉. If we consider
this and the approximation ∆ ≈ −g0 and plug it with κ = γ = max(κ, γ)
into (3.19) we end up with the expression (3.6).

3.2.3 Potential depth and effective life time

In Fig. 3.4 and Fig. 3.5 we have plotted the potential depths V0 and the
effective life time τeff versus ∆ and Ω. From Fig. 3.4(A) we see that in order
to get a long decay time it would be desirable to have |∆| À |g0|. In Fig.
3.4(B) the region −g0 < ∆ < 0 is not of interest since there one obtains no
attractive potential (V0 < 0). One has to find a compromise between ∆ close
to −g0 in order to get a deep potential and |∆| À |g0| in order to obtain
a long decay time. This behavior is not surprising because if the detuning
is close to −g0 the population in |−〉 increases. This leads to a short decay
time and a deep potential. The same reasoning explains the plots in Fig. 3.5
since the Rabi frequency Ω is a measure for the coupling strength between
the atomic transition and the laser.



40 Trapping atoms in the vacuum field of a cavity

-100

0.4

0

0.2

0.3

-0.2

-0.4

0

0.1

0.8

-100

-200

-200

teff (ms)

D ( )MHz

D ( )MHz

V (MH )0 z

(A)

(B)

Figure 3.4: Effective decay time τeff (A) and potential depth V0 (B) versus
laser detuning ∆ = ωl − ω0. For the Rabi frequency of the laser we took
Ω = 0.70 × 2πMHz. The coupling strength between cavity and atom is
g0 = 16×2π MHz, the cavity loss rate κ = 1.4×2π MHz and the spontaneous
decay rate γ = 3× 2π MHz.

For the parameters from [40] and a potential depth of V0 = 10 kHz the
longest effective life time we can achieve in the optical regime is τeff = 0.18 ms.
The corresponding values for the laser parameters are

Ω = 0.70× 2π MHz,

|∆| = 1.90 g0 = 30× 2π MHz. (3.20)

In the microwave regime [33,91] we get τeff = 1.26 sec with

Ω = 54× 2π kHz,

|∆| = 2.06 g0 = 0.14× 2π MHz. (3.21)

It is remarkable that since we used the expressions from (3.11) and (3.19) we
are not in the limit ∆ ≈ −g0 (3.4). This inreases the life time in the optical
regime considerably.
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Figure 3.5: Effective decay time τeff (A) and potential depth V0 (B) versus
Rabi frequency Ω of the laser. For the laser detuning we took |∆| = 1.90 g0 =
30× 2π MHz. The other parameters are the same as in Fig. 3.4.

3.3 Numerical results

Here we investigate the behavior of the system numerically. For the analytic
results we made certain approximations. The comparison with the numerical
results will show if these assumption are justified for realistic parameters.
Furthermore we will include spontaneous emission and photon recoil.

We denote the state of the system by |Φ〉. For the simulation we write it
as

|Φ〉 = |ϕg0〉+ |ϕg1〉+ |ϕe0〉, (3.22)

where |ϕi〉 = |i〉〈i|Φ〉. We consider only the contributions of |g, 0〉, |g, 1〉
and |e, 0〉 since the population of the levels with two and more excitations
is negligible. As for the analytic estimations we restrict the investigations
to one dimension. The probability amplitudes for the system being in the
states |g, 0〉, |g, 1〉 and |e, 0〉 at position ”z” are given by ϕg0(z) = 〈z|ϕg0〉,
ϕg1(z) = 〈z|ϕg1〉 and ϕe0(z) = 〈z|ϕe0〉.

In the first subsection we calculate the ground state of the system with
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and without the assumptions made above. In the following we include dis-
sipation and compare the decay time with the effective decay time τeff we
estimated in the last section. Finally we consider spontaneous emissions and
recoil and investigate how long the atom remains in the cavity for differ-
ent parameters. Apart from one simulation with the parameters from the
analytic estimation we will only consider the optical regime in this section.

3.3.1 The ground state

To obtain the ground state we apply the imaginary time evolution [92] to
an arbitrary initial state until it remains unchanged. Instead of the time
evolution operator e−iH∆t one uses a modified operator e−H∆t. Denoting the
eigenvectors of H with |Φi〉 and the corresponding eigenvalues with µi we
obtain in each time-step

e−H∆t|Φ〉 =
∑

i

e−µi∆t|Φi〉〈Φi|Φ〉

= e−µ0∆t
∑

i

e−(µi−µ0)∆t|Φi〉〈Φi|Φ〉, (3.23)

where µ0 is the lowest eigenvalue. Since we normalize the state after each
step the corresponding eigenvector |Φ0〉 is not damped. After a sufficient
number of iterations this damps away all states orthogonal to |Φ0〉, which is
the ground state of the system.

The Hamiltonian of the system is given in Eq. (3.7). For Ω and ∆
we took the values from (3.20). According to the analytic approximation
they should give the maximal decay time which is achievable for a potential
depth of 10 kHz. The numerical simulation of the ground state leads to
the probability distribution shown in Fig. 3.6. The three plots show the
population distribution of the three internal states separately. The excited
states are only very weakly populated. The probability to find an atom in
the center of the cavity with the system being in state |g, 1〉 or |e, 0〉 is three
to four orders of magnitude smaller than to find it there with the state |g, 0〉.
We also found that the atom is well localized in the center of the cavity. At
0.1 σ, where σ is the width of the cavity, the probability to find the atom is
already reduced by more than 1/2.

In order to valuate the approximations made for the analytic estimation
we calculated the ground state also using the Hamiltonian from Eq. (3.12).
We denote its ground state solution by |ξ0〉. We find

|Φ0〉 ≈ |g, 0〉 ⊗ |ξ0〉. (3.24)
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Figure 3.6: Numerical simulation of the ground state. The plots show
|ϕg0(z)|2, |ϕg1(z)|2 and |ϕe0(z)|2 versus z. They satisfy the normaliza-
tion condition

∫
(|ϕg0(z)|2 + |ϕg1(z)|2 + |ϕe0(z)|2) dz = 1. The plots are

in units of σ, which is the cavity width. For the laser detuning we took
∆ = 1.90 g0 = 30 × 2π MHz and for the Rabi frequency of the laser
Ω = 0.70 × 2πMHz. The coupling strength between cavity and atom is
g0 = 16 × 2π MHz, the cavity loss rate κ = 1.4 × 2π MHz and the sponta-
neous decay rate γ = 3× 2π MHz.

This means that nearly all the population is in |g, 0〉. So the approximations
in the analytical approach are justified and one can trap an atom in a basically
empty cavity.

3.3.2 Dissipation and photon emissions

In this subsection we include the coupling of the system to the environment
and as a consequence the spontaneous emission of photons. First we will
only consider the time evolution of the system under the condition that no
photon is emitted and compare the decay time with the analytic estimation.
Then we include also spontaneous emissions and the recoil kick the atom
experiences.

In the quantum-jump approach one describes the time evolution of the
system with an effective Hamiltonian as long as no photon is emitted. The
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emissions which cause the system to jump in a different state are described
by reset operators. The effective Hamiltonian is given by

Heff =
p2

2m
− ∆

2

(|g, 1〉〈g, 1|+ |e, 0〉〈e, 0| − |g, 0〉〈g, 0|)

+ g(z)
(|e, 0〉〈g, 1|+ |g, 1〉〈e, 0|) +

Ω

2

(|g, 0〉〈e, 0|+ |e, 0〉〈g, 0|)

− iκ|g, 1〉〈g, 1| − iγ|e, 0〉〈e, 0|, (3.25)

where we used an interaction picture rotating with the laser frequency ωl and
assumed that there is at most one excitation in the system.

After preparing the system in the ground state |Φ0〉 using the imaginary
time evolution we simulated the time evolution with the effective Hamiltonian
Heff . This leads to a damping of the state of the system. So the probability
〈Φ|Φ〉 that no photon has been emitted also decreases. We compare the
time after which this probability has reached 1/e with the effective life time
τeff we estimated analytically. For the parameters from (3.20) we obtained
τeff = 0.18 ms, which is reasonably close to the decay time from the numerical
simulation of 0.14 ms.

In the quantum-jump approach the jumps are described by reset opera-
tors. We obtain them from the master equation (3.17). For the spontaneous
emission of the atom we get

e−iuz
√

2γ|g, 0〉〈e, 0|, (3.26)

where e−iuz describes the momentum shift ”u” due to the photon recoil. If
the cavity emits a photon one has to apply

√
2κ |g, 0〉〈g, 1|. (3.27)

In both cases the population of the excited level gets shifted to the ground
state. After that one has to normalize the wave function.

In the following we will discuss the trapping time τtrap of the atom. We
define it as the time when the probability to find the atom in the cavity
(|z| < σ) is reduced to 0.5. The atom has an initial kinetic energy and
gains a momentum kick when it spontaneously emits a photon. When the
motional energy is bigger than the trapping potential the atom leaves the
cavity. So it is desirable to achieve a long decay time in order to get a low
photon emission rate. On the other hand a deeper potential provides the
possibility of a bound state for an atom which experienced more recoil kicks.
From our analytic estimations we know that these requirements contradict
each other. For the simulation we took the parameters from (3.20) for a
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potential depth of V0 = 10kHz and the longest corresponding effective decay
time τeff = 0.18 ms. We applied the operator e−iuz to the ground state which
we got from the imaginary time evolution in order to take into account an
initial kinetic energy. The momentum shift ”u” corresponds to the energy of
one photon recoil ER = 4 kHz. After a couple of spontaneous emissions the
atom leaves the cavity at time τtrap = 0.73 ms.

In order to achieve a longer trapping time we first varied the detuning
∆ and left the Rabi frequency Ω = 0.70× 2πMHz unchanged. The result is
shown in Fig. 3.7. A larger detuning of the laser leads to a smaller potential

Figure 3.7: Numerical results for the trapping time τtrap versus detuning ∆
for a Rabi frequency Ω = 0.70 × 2πMHz. The coupling strength between
cavity and atom is g0 = 16× 2π MHz, the cavity loss rate κ = 1.4× 2π MHz
and the spontaneous decay rate γ = 3× 2π MHz.

depth V0 and a longer effective life time τeff . From Fig. 3.7 we see that
the longer life time has a bigger influence on the trapping time since τtrap

increases with growing detuning. It is not surprising that the effective life
time has a crucial influence on the trapping time since it determines how fast
the motional energy of the atom grows.

A larger Rabi frequency causes a smaller effective life time and a deeper
potential. Consequently, we expect a decreasing trapping time when we
enlarge the Rabi frequency. This is confirmed by Fig. 3.8, where we plotted
τtrap versus Ω for a fixed detuning |∆| = 1.90 g0 = 30× 2π MHz. Comparing
this plot with the plot in Fig. 3.5(A) we ascertain a qualitative agreement.
This is not surprising if we assume that the decisive variable for the trapping
time τtrap is the effective decay time τeff .

The longest trapping times we can achieve in the optical regime are of
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Figure 3.8: Numerical results for the trapping time τtrap versus Rabi fre-
quency Ω for a detuning |∆| = 1.90 g0 = 30 × 2π MHz. The coupling
strength between cavity and atom is g0 = 16 × 2π MHz, the cavity loss
rate κ = 1.4× 2π MHz and the spontaneous decay rate γ = 3× 2π MHz.

the order of 1 ms. For the microwave regime we took g0 = 67 × 2π kHz,
κ = 1.6× 2π Hz and γ = 1.6× 2π Hz. The trapping time we obtained for the
laser parameters from (3.21) was τtrap ≈ 10 s. The reason for the good result
are the very small decay rates for the Rydberg state and the micro-cavity.
Another important advantage over the optical regime is that the recoil due
to spontaneous emissions is practically zero.



Chapter 4

Sequential generation of
entangled multi-qubit states

In this chapter we consider the deterministic generation of entangled multi-
qubit states by the sequential coupling of an ancillary system to initially
uncorrelated qubits. In section 4.1 we give a short introduction to the concept
of matrix-product states (MPS). In section 4.2 we characterize all achievable
states in terms of classes of MPS and give a recipe for the generation on
demand of any multi-qubit state. The results are valid for any sequential
generation-scheme.

In section 4.3 we will focus on the physical implementation of these ideas
within the realm of cavity QED. The role of the ancillary system will be per-
formed by a D-level atom coupled to a single mode of an optical cavity. The
sequentially generated qubits will be time-bin qubits |0〉 and |1〉, describing
the absence and presence of a photon emitted from the cavity in a certain
time interval (see Fig. 4.1). We show how this set-up can be employed for

Figure 4.1: A trapped D-level atom is coupled to a cavity qubit, determined
by the energy eigenstates |0〉 and |1〉. After arbitrary bipartite source-qubit
operations, photonic time-bins are sequentially and coherently emitted at the
cavity output, creating a desired entangled multi-qubit stream.

the generation of arbitrary multi-qubit states. Considering the limitations of

47



48 Sequential generation of entangled multi-qubit states

current experimental set-ups [28–30] we also show how to generate familiar
multi-qubit states like W [93], GHZ [58], and cluster states [57]. Finally we
use so-called matrix-product density operators (MPDO) to take into account
imperfections of the scheme and to calculate the fidelity of the cluster state.

4.1 Matrix-product states

In this section we define the matrix-product states [53,54] using a picture in-
troduced in [94–96]. In Fig. 4.2 a collection of n virtual D-level systems paired

Figure 4.2: A matrix product state with D-dimensional bonds is obtained
by applying linear maps A[i] to a collection of virtual D-level systems paired
in maximally entangled states. They transform the D2-dimensional Hilbert
space of pairs of virtual systems into the local Hilbert spaces associated with
the physical systems of dimension d.

in maximally entangled states
∑D

γ=1 |γ, γ〉 is projected onto local Hilbert
spaces associated with physical systems of dimension d by linear maps

A =
d∑

i=1

D∑

α,β=1

Ai
αβ|i〉〈α, β|, (4.1)

where {α, β} are any of the D levels of the virtual systems. Applying the n
maps to the virtual systems leads to the n-qudit MPS

|ψ〉 = A[n] ⊗ . . .⊗ A[i]

( D∑
γ=1

|γ, γ〉
)⊗n

=
d∑

i1,...,in=1

tr
(
Ai1

[1] . . . A
in
[n]B

)|i1, . . . , in〉. (4.2)
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The coefficients are given by products of D-dimensional matrices Ai defined
as

Ai =
D∑

α,β=1

Ai
αβ|α〉〈β|. (4.3)

Therefore the MPS are completely defined by the linear maps A[i] and the
matrix B, which contains the boundary conditions. For translational invari-
ant states we have identical maps A = A[1] = . . . = A[n]. Periodic boundary
conditions correspond to B = 1l.

In [97] the MPS formalism has been extended to mixed states. The basic
idea is to replace the linear maps A by a general completely positive map.
The states obtained from this procedure define the class of matrix product
density operators. A n-qudit MPDO with D-dimensional bonds is given by

ρ =
d∑

i1,i′1...,in,i′n=1

tr
(
M

i1,i′1
[1] . . .M

in,i′n
[n] B̃

)|i1, . . . , in〉〈i′1 . . . i′n|, (4.4)

where M i,i′ are D2 ×D2 matrices that can be decomposed as

M i,i′ =
de∑

e=1

Ai,e ⊗ Āi′,e, (4.5)

with D-dimensional matrices Ai,e and de ≤ dD2. Condition (4.5) ensures that
the maps are completely positive. For M i,i′ = δi,i′1l we obtain the maximally
mixed state while M i,i′ = Ai ⊗ Āi′ gives a pure state.

Any MPDO can be expressed by a MPS applying the concept of purifi-
cation [5], i.e. choosing a larger Hilbert space for the latter. Therefore we
associate with each physical system an auxiliary system of dimension de and
choose an orthonormal basis |i, e〉. The corresponding MPS is then given by

|ψe〉 =
d∑

i1,...,in=1

de∑
e1,...,en=1

tr
(
Ai1,e1

[1] . . . Ain,en

[n] B
)|i1e1, . . . , inen〉. (4.6)

Tracing over the ancillas re-establishes the MPDO ρ = tr(|ψe〉〈ψe|) with the

boundary condition B̃ = B ⊗ B̄.

4.2 Sequential generation of MPS with D-

dimensional bonds

In the following we investigate the sequential generation of entangled multi-
qubit states. We will proof the following statements:
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• Entangled multi-qubit states, sequentially generated by a D-dimensional
source, belong to the class of D-dimensional MPS;

• Any D-dimensional MPS can be generated by a D-dimensional source
such that the source decouples in the last step.

The proof of the latter implicates a recipe for the generation of any D-
dimensional MPS. In appendix A we demonstrate that any state has an MPS
representation. Together the two statements imply that the set of states
sequentially generated by a D-dimensional source and the D-dimensional
MPS are equivalent. In the second part of this section we consider a 2D-
dimensional, not completely controllable source and show that the accessible
set of states is also equivalent.

4.2.1 D-dimensional source

Here, we will concentrate on set-ups where all intermediate operations are
arbitrary unitaries and the ancilla decouples in the last step. The latter en-
ables us to generate pure entangled states in a deterministic manner without
the need of measurements. Let HA ' CD and HB ' C2 be the Hilbert spaces
characterizing a D-dimensional ancillary system and a single qubit (e.g. a
time-bin qubit) respectively. In every step of the sequential generation of a
multi-qubit state, we consider a unitary time evolution of the joint system
HA ⊗ HB. Assuming that each qubit is initially in the state |0〉 (i.e., the
time-bin is empty), we disregard the qubit at the input and write the evolu-
tion in the form of an isometry V : HA → HA ⊗HB. Expressing V in terms
of a basis

V =
1∑

i=0

∑

α,β

V i
α,β|α, i〉〈β| , (4.7)

the isometry condition reads

1∑
i=0

V i†V i = 1l, (4.8)

where each V i is a D × D matrix. We choose a basis where {|α〉, |β〉} are
any of the D ancillary levels.

If we now apply successively n, not necessarily identical, operations of
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this form to an initial state |ϕI〉 ∈ HA, we obtain the state

|Ψ〉 = V[n] . . . V[2]V[1]|ϕI〉

=
1∑

i1...in=0

( ∑

αn,βn

V in
αn,βn

|αn〉〈βn|
)

. . .

(∑

α1,β1

V i1
α1,β1

|α1〉〈β1|
)
|ϕI〉 |in, . . . , i1〉

=
1∑

i1...in=0

V in
[n] . . . V

i1
[1] |ϕI〉 |in, . . . , i1〉. (4.9)

Here, and in the following, indices in squared brackets represent the steps
in the generation sequence. The n generated qubits are in general entangled
with the ancilla as well as among themselves. Assuming that in the last step
the ancilla decouples from the system, such that |Ψ〉 = |ϕF 〉 ⊗ |ψ〉, we are
left with the n-qubit state

|ψ〉 =
1∑

i1...in=0

〈ϕF |V in
[n] . . . V

i1
[1] |ϕI〉 |in, . . . , i1〉. (4.10)

Comparing this result with the MPS definition in Eq. (4.2) for d = 2, we
identify Ai = V i and the boundary condition B = |ϕI〉〈ϕF |. The scheme is
illustrated in Fig. 4.3. The analogy to the MPS presentation in Fig. 4.2 is

Figure 4.3: The ancillary system A is sequentially manipulated by isometric
operations V[i]. In each step a qubit |i〉B is generated. Comparing this illus-
tration with the depiction of MPS in Fig. 4.2, it becomes evident that the
sequentially generated multi-qubit states are MPS, where the dimension of
the ancilla corresponds to the dimension of the maximally entangled virtual
systems.

evident.
Equation (4.10) shows that all sequentially generated multi-qubit states,

arising from a D-dimensional ancillary system HA, are instances of MPS
with D×D matrices V i and open boundary conditions specified by |ϕI〉 and
|ϕF 〉. We will now prove that the converse is also true, i.e. that every MPS
of the form

|ψ̃〉 = 〈ϕ̃F |Ṽ[n] . . . Ṽ[1]|ϕ̃I〉, (4.11)



52 Sequential generation of entangled multi-qubit states

with arbitrary maps Ṽ[k] : HA → HA ⊗HB, can be generated by isometries
of the same dimension, and such that the ancillary system decouples in the
last step. Since every state has a MPS representation, this is at the same
time a general recipe for its sequential generation. The idea of the proof is
an explicit construction of all involved isometries by subsequent application
of singular value decompositions (SVD). We start by writing

〈ϕ̃F |Ṽ[n] =
(〈ϕ̃F | ⊗ 1l2

)
Ṽ[n] = V ′

[n]M[n], (4.12)

where the 2 × 2 matrix V ′
[n] is the left unitary in the SVD and M[n] is the

remaining part. The recipe for constructing the isometries is the induction

(
M[k] ⊗ 1l2

)
Ṽ[k−1] = V ′

[k−1]M[k−1], (4.13)

where the isometry V ′
[k−1] is constructed from the SVD of the left hand side,

and M[k−1] is always chosen to be the remaining part. After n applications of
Eq. (4.13) in Eq. (4.11), from left to right, we set |ϕI〉 = M[1]|ϕ̃I〉, producing

|ψ̃〉 = V ′
[n] . . . V

′
[1]|ϕI〉. (4.14)

Simple rank considerations show that V ′
[n−k] has dimension 2 min [D, 2k] ×

min [D, 2k+1]. In particular, every V ′
[k] could be embedded into an isometry

V[k] of dimension 2D ×D. Physically, this just means we would have redun-
dant ancillary levels that we need not to use. Finally, decoupling the ancilla
in the last step is guaranteed by the fact that, after the application of V[n−1],
merely two levels of HA are yet occupied, and can be mapped entirely onto
the system HB. This is precisely the action of V[n] through its embedded
unitary V ′

[n].
This proves the equivalence of two sets of n-qubit states, which are de-

scribed either as D-dimensional MPS with open boundary conditions, or as
states that are generated sequentially and isometrically via a D-dimensional
ancillary system which decouples in the last step.

It is instructive to estimate an upper bound for the number of free pa-
rameters available for an n-qubit MPS with D-dimensional bonds. Taking
into account that the isometry condition (4.8) does not restrict the set of
allowed states and that a transformation of the form

V i 7→ Ui V
i Ui+1, (4.15)

employing D-dimensional unitary matrices Ui and Ui+1 (i = 1, . . . , n) does
not alter the coefficients of the MPS (4.10) we obtain an upper bound of
nD2/2. Since the number of free parameters for a general n-qubit state is
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given by 2n− 1 the dimensionality of a source capable of generating an arbi-
trary n-qubit state grows exponentially with n. Fortunately many interesting
states like for instance GHZ, W , AKLT [55] and cluster states belong to
the class of MPS with 2-dimensional bonds [59].

4.2.2 2D-dimensional source

Motivated by current cavity QED set-ups, we will now provide a third equiva-
lent characterization, namely, a set of multi-qubit states that are sequentially
generated by a source consisting of a 2D-level atom. In contrast to the first
sequential scheme, the latter will not require arbitrary isometries. Consider
an atomic system with D states |ai〉 and D states |bi〉 (see also Fig. 4.4), so

Figure 4.4: D-standard map: Levels |ai〉 are mapped on the corresponding
levels |bi〉 accompanied by the generation of a photon in a certain time-bin.
In a cavity-QED set-up the 2D atomic levels are considered to be ground
states coupled via a Raman transition or an adiabatic passage. Therefore
spontaneous decay is suppressed.

that HA = Ha ⊕ Hb ' CD ⊗ C2. That is, we will write |ϕ〉|1〉 for a super-
position of |ai〉 states, whereas |ϕ〉|0〉 corresponds to a superposition of |bi〉
states. Since the last qubit marks the atomic state, whether it belongs to
the |ai〉 or to the |bi〉 subspace, we will refer to it as the tag-qubit and write
HA = HA′ ⊗HT , with an effective ancilla system A′. Now we consider the
atomic transitions from each |ai〉 state to its respective |bi〉 state accompa-
nied by the generation of a photon in a certain time-bin. This is described
by a unitary evolution, since now called “D-standard map”, of the form

T : |ϕ〉A′|1〉T |0〉B 7→ |ϕ〉A′|0〉T |1〉B ,

|ϕ〉A′|0〉T |0〉B 7→ |ϕ〉A′|0〉T |0〉B . (4.16)

Hence, T effectively interchanges the tag-qubit with the time-bin qubit as
illustrated in Fig. 4.5. If, additionally, arbitrary atomic unitaries UA are
allowed at any time, we can exploit the swap caused by T in order to generate
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Figure 4.5: The box represents one step of the sequential generation scheme.
After the preceding step the atom is in a superposition of ground states, i.e.
the tag-qubit is in |0〉T . Since after the exchange with the initially empty
time-bin qubit it is again in state |0〉T , it can be ignored for the sequential
generation scheme.

the operation

V |ϕ〉 = 〈0|T T
(
UA

(|ϕ〉A′|0〉T
)|0〉B

)
, (4.17)

which is the most general isometry V : HA′ → HA′ ⊗HB.
Therefore, the so generated n-qubit states include all possible states aris-

ing from subsequent applications of 2D × D-dimensional isometries. On
the other hand, they are a subset of the MPS in Eq. (4.11) with arbitrary
2D × D-dimensional maps, assuming that the atom decouples at the end.
Hence, these three sets are all equivalent.

4.3 Implementation within cavity QED

Now, we show how these results can be applied in the realm of cavity QED,
where an atom is trapped inside a high-Q optical cavity, and we aim at gener-
ating multi-photon entangled states. A laser may excite the atom, producing
subsequently a photon in the cavity mode, which, after some time, is emit-
ted outside the cavity (see Fig. 4.1). Desirable properties of a cavity QED
single-photon source are:

• Deterministic emission time, i.e. the probability for a failure of the
source is negligible;

• Control over the temporal profile of the emitted single-photon pulse.

The first point is essential since the time-bin qubits are defined by the absence
(|0〉) and the presence (|1〉) of a photon in a certain time-interval, i.e. a
failure will be misinterpreted as |0〉. The idea is to control the emission-time
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by the laser which excites the atom but spontaneous atomic decay into the
background modes reduces the efficiency of the source. In order to suppress
these losses one usually employs two meta-stable ground states of the atom
and couples them to the cavity mode via a Raman transition or an adiabatic
passage. Pulse-shape control is crucial for later use of the emitted pulse. Note
in this context, that two single-photon pulses interfere at a beam splitter only
if they have identical shapes (see, for instance [98]). A lower limit for the
width of the pulse is given by the decay time of the cavity. If the excitation-
transfer to the cavity mode takes much longer than this, one can tailor the
pulse at will.

We consider two different scenarios, corresponding to the two families of
states considered in section 4.2. First, we may have fast and complete access
to the atom-cavity system. In consequence, after the implementation of the
desired isometry in each step, we should wait until the photon leaks out of the
cavity before starting the next step. In this case, according to the analysis in
section 4.2.1, we will be able to produce arbitrary D-dimensional MPS with
D equal to the number of involved atomic levels. Second, we may have a
2D-level atom (D |ai〉 levels and D |bi〉 levels) and two kind of operations:
(i) fast arbitrary operations which allow us to manipulate at will all atomic
levels; (ii) an operation which maps each |ai〉 state to its corresponding |bi〉
state while creating a single cavity photon, allowing a tailored output. Here,
we will also be able to produce arbitrary D-dimensional MPS (see section
4.2.2).

4.3.1 Arbitrary atom-cavity operations

In this section we will suggest how to implement an arbitrary operation on
the atom-cavity system based on present cavity QED experiments [28–30].
We consider a three-level atom coupled to a single cavity mode in the strong-
coupling regime. An external laser field drives the transition from level |a〉 to
the excited level |e〉 with coupling strength Ω, and the cavity mode a drives
the transition between |e〉 and level |b〉 with coupling strength g, in a typical
Λ configuration (see Fig. 4.6(a)). We choose the detuning ∆, with

|∆| À g, Ω, (4.18)

and assume that the cavity decay rate κ is smaller than any other frequency
in the problem, so that we can ignore cavity damping during the atom-cavity
manipulations.

In an appropriate interaction picture, the Hamiltonian of the system is
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(a) (b)

Figure 4.6: (a) Atomic level structure: levels |a〉 (|b〉) and |e〉 are coupled by
a laser (cavity mode) off resonance. (b) After adiabatic elimination of the
upper state |e〉, we are left with a Jaynes-Cummings type of Hamiltonian,
where states |a, n〉 and |b, n + 1〉 are coupled. Both, the energy difference
of those levels and the corresponding Rabi frequency depends on n. The
reason for the first is the ac-Stark shift, whereas the second is due to the
Jaynes-Cummings coupling.

then given by

H = −∆
(
σaa + a†a

)
+ g

(
σeba + a†σbe

)
+

Ω

2

(
σea + σae

)
, (4.19)

with σkl = |k〉〈l| and {k, l} = {a, b, e}.Using condition (4.18) and that level
|e〉 is initially not populated, we can adiabatically eliminate it. A detailed
derivation is given in section 5.1 for the case of N atoms. The Hamiltonian
for the effective D = 2 atomic system plus cavity mode, in an interaction
picture with respect to −∆(σaa + a†a), is then

Had =
Ω2

4∆
σaa +

g2

∆
a†a σbb +

gΩ

2∆

(
σaba + a†σba

)
. (4.20)

It describes an effective Jaynes-Cummings coupling between the cavity mode
and the atomic |a〉 → |b〉 transition with Rabi frequency gΩ/2∆. The other
terms correspond to ac-Stark shifts (see Fig. 4.6(b)).

We will show how, by controlling the laser frequency and intensity, it is
possible to generate arbitrary 2-dimensional MPS. Note that, by allowing the
manipulation of D effective atomic levels, it is straightforward to extend these
results to the generation of D-dimensional MPS. According to the results
presented in section 4.2.1, we just have to show that we can implement any
isometry V : HA → HA ⊗ HB. In fact, we will show how it is possible
to implement arbitrary operations on the atomic qubit and the

√
SWAP

operation on the atom-cavity system, which suffice to generate any isometry
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V (since they give rise to a universal set of gates for the two qubit system [5]).
The atomic qubit can be manipulated at will using a Raman laser system,
as it is normally done with trapped ions [99,100].

In order to implement the
√

SWAP , we notice that the Hamiltonian
(4.20) is block separable in the sub-spaces spanned by {|a, n〉, |b, n+1〉}. The
energy shift due to the ac-Stark shifts for n = 0, δ0

ab, may be compensated
by the laser frequency or some external action on the atom (dc-Stark shift).
The detunings for the other subspaces are then given by

δn = δn
ab − δ0

ab =
ng2

∆
. (4.21)

By choosing the Rabi frequency of the laser small enough, one can ensure
that δn À gΩ/2∆. Then the effective interaction in the remaining subspaces
is dispersive and a laser pulse of appropriate duration will implement the
unitary operation

U = exp
[− i

(|a, 0〉〈b, 1|+ |b, 1〉〈a, 0|)π/4
]
, (4.22)

which corresponds to the desired
√

SWAP operation. This so-called selective
interaction has been employed in a recent experiment [100] and was originally
proposed in [101].

In order to generalize this scheme to an arbitrary D-level system, we
notice that we can view the atom as a set of M qubits (with D ≤ 2M).
Thus, if we are able to perform arbitrary atomic operations, together with
the

√
SWAP operation on two specific atomic levels as explained above,

we can then implement a universal set of gates and, in consequence, any
arbitrary isometry. These operations have to be performed fast compared
to the cavity decay time. The temporal profile of the single-photon pulse is
then determined by the cavity decay rate.

4.3.2 1-standard map with one additional level

In the following we introduce another method which is closely related to
current experiments [28–30] and optimizes our second method for MPS gen-
eration (see section 4.2.2).

We consider an atom with three effective levels {|a〉, |b1〉, |b2〉} trapped
inside an optical cavity. With the help of a laser beam, state |a〉 is mapped
to the internal state |b1〉, and a photon is generated, whereas the other states
remain unchanged. This physical process is described by the map

MAB : |a〉 7→ |b1〉 ⊗ |1〉B ,

|b1〉 7→ |b1〉 ⊗ |0〉B ,

|b2〉 7→ |b2〉 ⊗ |0〉B , (4.23)
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and can be realized with the techniques used in [28–30]. After the application
of this process, an arbitrary operation is applied to the atom, which can be
performed by using Raman lasers. The photonic states that are generated
after several applications are those MPS where the isometries are given by
V[i] = MABU

[i]
A , with i = 1, . . . , n, U

[i]
A being arbitrary unitary atomic opera-

tors.
One might implement MAB as a particular case of the Raman scheme

presented in the preceding section. Since here we are only interested in a
complete transfer of the population from |a, 0〉 ⊗ |0〉B to |b, 0〉 ⊗ |1〉B, it is
preferable to operate the system in the bad-cavity regime. Then the temporal
profile of the outgoing pulse is controlled by the Rabi frequency Ω of the laser.

Another possibility is to couple the levels |a〉 and |b1〉 via an adiabatic
passage. Schemes based on adiabatic passage (see for instance [28, 29]) are
usually more insensitive to certain parameter changes as the corresponding
Raman schemes. In this section we will therefore focus on this method to im-
plement MAB and discuss under which circumstances the pulse generation is
deterministic. In particular we will estimate the losses due to non-adiabatic
contributions in a realistic scenario (with the parameters from [28]). Fur-
thermore we will give a recipe for the sequential generation of W , GHZ, and
cluster states within this set-up. Finally we employ the concept of MPDO
to take into account a reduced efficiency of the single-photon source and
calculate, as an example, the fidelity of the cluster state.

Adiabatic passage

It is convenient to explain the basic idea of the adiabatic passage scheme as-
suming that the coupling of the cavity mode and the atom to the environment
are negligible on the time-scale of the relevant system dynamics.

The Hamiltonian of the system is then given by H from Eq. 4.19 with
∆ = 0 and |b1〉 ≡ |b〉. We obtain

H ′ =
Ω

2

(
σea + σae

)
+ g

(
σeb1a + a†σb1e

)
. (4.24)

A laser drives the transition between level |a〉 and |e〉 resonantly with Rabi
frequency Ω and g is the coupling strength between the cavity mode a
and the resonant atomic transition between level |b1〉 and |e〉. In the ba-
sis {|a, 0〉, |b1, 1〉, |e, 0〉} the Hamiltonian has the eigenstates

|D〉 = cos θ|a, 0〉 − sin θ|b, 1〉,
|ξ±〉 =

1√
2

(|B〉 ± |e, 0〉), (4.25)
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where |D〉 is the so-called dark state with zero eigenvalue,

|B〉 = sin θ|a, 0〉+ cos θ|b, 1〉 (4.26)

is the bright state and the mixing angle is given by tan θ = Ω/2g. Initially we
have Ω(0) = 0 and the atom prepared in the dark state |D(0)〉 = |a, 0〉. Then
we increase Ω within a time T until Ω(T ) À g. If the adiabatic following
condition (B.9)

|〈ξ±|H|ξ±〉 − 〈D|H|D〉| À |〈ξ±|Ḋ〉|, (4.27)

which is derived in appendix B, is fulfilled, the system will remain in the
dark state and end up in |D(θ = π/2)〉 = |b1, 1〉 without exciting level |e, 0〉.
If we increase θ linearly we obtain for right-hand side of (4.27)

|〈ξ±|Ḋ〉| = |θ̇|/
√

2 =
π

2
√

2 T
. (4.28)

The frequency gap between the dark state and the other eigenstates is given
by

|〈ξ±|H|ξ±〉 − 〈D|H|D〉| =
√
|g|2 + |Ω|2/4 = δ. (4.29)

With (4.28) and (4.29), the adiabatic following condition can then be written
as

T À π

2
√

2 δ
(4.30)

and the probability for non-adiabatic contributions, i.e. the probability to
populate the other eigenstates of the system, is given by

P± =
π2

2δ2T 2
. (4.31)

Since the frequency gap δ depends on the coupling strength g between the
cavity mode and the atom, a significant change of g caused by the motion of
the atom might spoil the adiabatic condition. By a sufficiently long operation
time T however, we can guarantee that the adiabatic condition is fulfilled.

During the adiabatic passage we neglected the coupling of the cavity mode
to the free radiation field. This only justified for T ¿ 1/κ, where κ is the
cavity decay rate. After the preparation of |b1, 1〉 the cavity mode decays
and a single-photon pulse builds up in the output-field. In order to fulfill
the adiabatic condition (4.30) and to modulate the temporal profile of the
outgoing pulse, it is favorable to operate the system in the limit T ≥ 1/κ.
Then one has to include the coupling of the cavity mode to the environment
from the beginning.
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Single-photon pulse generation

In the following we demonstrate how an adiabatic passage between |a〉 and
|b1〉, induced by an external laser field and the cavity mode, leads to a single-
photon pulse in the output-field of the cavity. Similar methods have been
employed in [102,103].

Fig. 4.7 (a) illustrates the atomic level scheme. We introduce the spon-
taneous decay rates γa and γb for the transition from the excited state |e〉 to
the ground states |a〉 and |b1〉 respectively. In Fig. 4.7 (b) the experimental
set-up is sketched. The laser drives the atom directly, as a consequence a
single-photon pulse builds up in the output-field of the cavity and the atomic
decay to levels |a〉 and |b1〉 leads to an excitation of the environment modes
|1〉E and |2〉E . Here, we are not interested in these modes and describe the

(a) (b)

Figure 4.7: (a) Atomic level structure: levels |a〉 (|b1〉) and |e〉 are driven
by a laser with Rabi frequency Ω (cavity mode with coupling strength g) on
resonance and couple to the environment. The latter leads to spontaneous
emission with decay rate γa (γb). The ground state |b2〉 is not affected. (b)
Experimental set-up: An external laser field excites the atom. The cavity
mode decays through the right lossy mirror and a single-photon pulse |1〉B
builds up in the corresponding time-bin. Spontaneous decay of the atom to
level |a〉 (|b1〉) leads to an excitation in the environmental modes |1〉E (|2〉E).

evolution of the system by the master equation

dρ

dt
= −i

(
Heffρ− ρH†

eff

)
+ 2γa σae ρ σea + 2γb σb1e ρ σeb1 . (4.32)

with the non-Hermitian Hamiltonian Heff . In the rotating-wave approxima-
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tion and an appropriate rotating frame it is given by

Heff =
Ω

2
(σea + σae) + g

(
σeb1a + a†σb1e

)− iγ σee

+ i

√
κ

2π

∫ ωb

−ωb

dω
(
a†r(ω)− ar†(ω)

)
+

∫ ωb

−ωb

dωωr†(ω)r(ω),

(4.33)

where the term proportional to γ = γa + γb accounts for the damping of the
excited atomic state |e〉 due to spontaneous decay. For the free space modes
r(ω) we consider only frequencies within a finite bandwidth ωb around the
cavity resonance frequency ωc, where the coupling between r(ω) and the
cavity mode a is approximately constant (first Markov approximation). The
coupling term is then given by Eq. (2.93) using the condition (2.96). The
bandwidth satisfies the condition ωc À ωb À κ.

In the quantum-jump approach (see chapter 2.2) the time-evolution of
the wave-function of the system is described by the Schrödinger equation

d|Ψ〉
dt

= −iHeff |Ψ〉 (4.34)

and subject to quantum jumps at random times. We expand the state of the
system into

|Ψ(t)〉 =
(
cd(t)|D〉+ cb(t)|B〉+ ce(t)|e, 0〉

)⊗ |vac〉+ |b1, 0〉 ⊗ |φ1(t)〉, (4.35)

where |vac〉 denotes the vacuum state of the free-space modes r(ω) and

|φ1(t)〉 =

∫ ωb

−ωb

dω cω(t)r†(ω)|vac〉 (4.36)

represents the state of the single-photon output pulse. Substituting (4.35)
into the Schrödinger equation (4.34) leads to a system of differential equations
for the time-dependent coefficients given by

dcd

dt
= −θ̇cb −

√
κ

2π
sin θ

∫ ωb

−ωb

dω cω

dcb

dt
= θ̇cd +

√
κ

2π
cos θ

∫ ωb

−ωb

dω cω − iδce

dce

dt
= −γce − iδcb

dcω

dt
= −iωcω +

√
κ

2π

(
sin θcd − cos θcb

)
. (4.37)
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The coupling between the dark state |D〉 and the bright state |B〉 due to
a non-adiabatic change of the mixing angle θ is described by the terms
proportional to θ̇. Furthermore we have the coupling between the |b1, 1〉-
contributions of |D〉 and |B〉 to the modes of the free radiation field which is
proportional to

√
κ/2π sin θ and

√
κ/2π cos θ respectively. The excited state

|e, 0〉 couples to |B〉 with iδ and decays with a rate γ.
Initially the system is prepared in |Ψ(0)〉 = |a, 0〉 ⊗ |vac〉 and Ω(0) = 0,

i.e. cb(0) = ce(0) = cω(0) = 0 and cd(0) = 1. Here |D〉 is not eigenstate of
the system and in fact it is the aim of the procedure to populate modes of
the environment. In the following we will show how this is achieved by slowly
increasing Ω(t) and under which conditions the states |B〉 and |e, 0〉 can be
adiabatically eliminated. Then losses due to spontaneous atomic decay are
suppressed and the excitation is completely transferred to the outgoing pulse.
For T À 1/γ we can set ċe ≈ 0 and obtain for the population of the bright
state

dcb

dt
= −δ2

γ
cb + θ̇cd +

√
κ

2π
cos θ

∫ ωb

−ωb

dω cω. (4.38)

The decay of |B〉 via the excited state |e, 0〉 with an effective decay rate δ2/γ
is the reason for the choice of the name ”bright” state. Substituting the
straight-forward solution

cω(t) =

√
κ

2π

∫ t

0

e−iω(t−τ)
(
2 sin θ(τ)cd(τ)− cos θ(τ)cb(τ)

)
dτ (4.39)

for the amplitudes of the environment modes into Eq. (4.38) leads to

dcb

dt
=

κ cos θ

2π

∫ t

0

sin[ωb(t− τ)]

t− τ

(
sin θ(τ)cd(τ)− cos θ(τ)cb(τ)

)
dτ

+ θ̇cd − δ2cb

γ

≈
(
θ̇ +

κ sin 2θ

4

)
cd −

(δ2

γ
+

κ cos2 θ

2

)
cb. (4.40)

In the second line we used the approximations

cd(t) ≈ cd (t + 1/ωb) ,

cb(t) ≈ cb (t + 1/ωb) ,

Θ(t) ≈ Θ (t + 1/ωb) . (4.41)

They are well justified since the system evolves significantly only on the time-
scale of the operation time T À 1/ωb. If the bright state decays much faster
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than it is populated from the dark state, that is

δ2

γ
+

κ cos2 θ

2
À θ̇ +

κ sin 2θ

4
, (4.42)

we can adiabatically eliminate it (cb ≈ 0). From Eq. (4.29) and cos2 θ ≥ 0
we have g2/γ as a lower bound for the left-hand side of Eq. (4.42) and with
1 ≥ sin 2θ we obtain the condition

g2

γ
À θ̇ +

κ

4
=

π

2T
+

κ

4
, (4.43)

where we assumed again that θ increases linearly from 0 to π/2. In contrast to
the adiabatic following condition (4.30) derived for the simple three-level case
considered in the previous section, this condition implies that spontaneous
atomic emission can not be suppressed only by increasing the operation time
T since at the same time the strong-coupling condition g2 À γκ has to be
fulfilled, i.e. also the transfer of population to the environment modes should
happen slowly. With cb ≈ 0 we obtain for the amplitude of the dark state

dcd

dt
= −

√
κ

2π
sin θ

∫ ωb

−ωb

dω cω. (4.44)

Substituting the solution for cω (4.39) into Eq. (4.44) we end up with

dcd

dt
= −

√
κ

2π
sin θ

∫ t

0

sin(ωb(t− τ))

t− τ
cd(τ) sin θ(τ)dτ

≈ −κ

2
cd sin2 θ. (4.45)

In the second line we used again the conditions from Eq. (4.41). The decay
rate of the dark state is proportional to the probability |〈b1, 1|D〉|2 = sin2 θ
for the |b1, 1〉 component in the dark state, which couples to the environment.
The solution of Eq. (4.45) is given by

cd(t) = exp

(
−κ

2

∫ t

0

dτ sin2 θ(τ)

)
. (4.46)

The temporal profile ϕ(t) of the single-photon pulse |φ1〉 is provided by
the Fourier transformation [104]

ϕ(t) =
1

2π

∫ ωb

−ωb

cω(T )e−iω(t−T )dω. (4.47)
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Substituting cω from (4.39) with cb ≈ 0 and cd from (4.46) we obtain

ϕ(t) =

√
κ

2
sin θ exp

(
−κ

2

∫ t

0

dτ sin2 θ(τ)

)
. (4.48)

The pulse shape is determined by θ(t) which in turn is completely controlled
by the Rabi frequency Ω(t) of the external laser field given that the coupling
strength g between the atom and the cavity mode is known and constant.
To guarantee this one has to control the position of the atom in the cavity.
Since g is proportional to sin(kcx), where the wave-vector kc corresponds to
the optical frequency ωc of the standing-wave cavity field, it is very sensitive
to a variation of the position x of the atom with respect to the cavity-axis.
A possibility to overcome these problems is to ensure that the driving pulse
and the cavity mode have the same spatial mode structure. This can be
accomplished by driving the atom through the cavity mode [102]. Then θ(t)
becomes independent of the random position of the atom and the passage
can be controlled by Ω(t).

If g is not known or changes significantly within the operation time T this
reduces not only the controllability of the pulse-shape but also the efficiency
of the source. In particular if the atom is close to a node of the cavity
field, condition (4.42) may not be satisfied and therefore losses due to atomic
spontaneous emissions occur.

Efficiency of the source

For the simple three-level system considered above the adiabatic following
condition (4.27) can always be fulfilled by choosing a sufficiently long opera-
tion time T . This argument based on level spacing is spoiled by the coupling
of the system to the continuum of reservoir modes in the more realistic sce-
nario with T ≥ 1/κ. Here, the condition for the adiabatic elimination of the
excited state and the bright state (4.42) also requires the strong coupling
regime (g2 À γκ). If the system is not operated in the adiabatic limit, where
ce(t) ≈ cb(t) ≈ 0, the population of the excited state |e, 0〉 causes losses.

In the quantum-jump model the probability for a spontaneous emission
of the atom in a time-interval [0, t] is given by

Pspont(t) = 1− |ce(t)|2 − |cb(t)|2 − |cd(t)|2 −
∫ ωb

−ωb

|cω(t)|2dω. (4.49)

From (4.37) and (4.40) we obtain with ċe ≈ ċb ≈ 0 (T À 1/γ) for the
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coefficients of the bright state and the excited state

cb(t) ≈ A(t) cd(t)

ce(t) ≈ − iδ

γ
A(t) cd(t) (4.50)

with

A(t) =
Θ̇(t) + κ

2
sin Θ(t) cos Θ(t)

δ(t)2

γ
+ κ

2
cos2 Θ(t)

. (4.51)

Since here the contribution proportional to cb in the solution for cω (4.39)
does not vanish, the differential equation for the dark state amplitude cd is
now given by

dcd

dt
= −κ

2
sin2 Θcd −

(
Θ̇− κ

2
sin Θ cos Θ

)
cb, (4.52)

where we used again approximations (4.41). Substitution of cb from Eq.
(4.50) leads to

dcd(t)

dt
= −R(t)cd(t), (4.53)

with the decay rate

R(t) =
Θ̇(t)2 + κδ(t)2

γ
sin2 Θ(t)

δ(t)2

γ
+ κ

2
cos2 Θ(t)

. (4.54)

For the environment modes we obtain with (4.41)

∫ ωb

−ωb

|cω(t)|2dω = κ

∫ t

0

dt′
(
sin Θ(t′)− A(t′) cos Θ(t′)

)2|cd(t)|2. (4.55)

Substituting the results from (4.50) and (4.55) into (4.49) we find

Pspont(t) = 1−
(

1 + A(t)2 +
δ(t)2A(t)2

γ2

)
|cd(t)|2

− κ

∫ t

0

dt′
(
sin Θ(t′)− A(t′) cos Θ(t′)

)|cd(t
′)|2 (4.56)

for the probability of a spontaneous atomic emission. The probability to find
the system in the dark state is given by

|cd(t)|2 = exp

(
−2

∫ t

0

R(t′)dt′
)

. (4.57)
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The first implementation of a cavity QED single photon source was re-
ported in [28]. In this experiment cold Rubidium 85 atoms were dropped
from a magneto-optical trap (MOT) and fall through the cavity. The atom
flux is controlled by the loading time of the trap and one can ensure that
there is at most one atom in the cavity at the same time. The scheme used
for the single photon pulse generation is basically equivalent to the method
described above. The states |a〉 and |b1〉 correspond to the F = 3 and F = 2
hyperfine state of the 5S1/2 ground state of Rubidium 85. The excited state
|e〉 corresponds to 5P3/2(F = 3). The spontaneous emission rate is given by
γ ≈ 3.0 × 2π MHz and the cavity decays with a rate κ ≈ 1.25 × 2π MHz.
The initial velocity of the atom is negligible compared to the internal dy-
namics of the system. On the other hand the axial position x of the atom
is not controlled. For the estimation of the losses we consider therefore
an average coupling strength g ≈ 2.5 × 2π MHz. For the adiabatic pas-
sage the Rabi frequency of the laser is increased linearly from Ω(0) = 0 to
Ω(T ) = 8.0×2π MHz within an operation time T = 15.7/κ. Since a non-zero
time-derivative of the function Ω(t) at t = 0 is unphysical we approximate it
by

Ω(t) = sin2
( πt

2T

)
8.0× 2π MHz, (4.58)

as depicted in Fig. 4.8 (b). In Fig. 4.8 (a) we plot Pspont(t) (4.56). We
observe an increasing probability for a spontaneous emission only in the
middle section, where the excited state |e, 0〉 is populated. The probability
for a failure of the source, i.e. a spontaneous atomic emission in the time-
interval [0, T ], is given by Pspont(T ) = 0.28.

The control over the position of the atom is considerably improved by
employing an additional far off-resonant laser beam as a dipole trap for the
atom. In [29] this technique has been applied to built a single-photon source.
The parameters of the experiment are given by γ ≈ 2.6 × 2π MHz, κ ≈
4.2 × 2π MHz, g ≈ 16 × 2π MHz and T = 26.4/κ. For the probability of a
spontaneous emission we obtain Pspont(T ) = 0.01. Note that passive cavity
losses reduce the efficiency of the source in this case, while for the previous
example [28] the losses are dominated by Pspont(T ).

In [30] an ion trap is used to hold a single atom inside the cavity. This
approach provides an excellent control over the atom-cavity coupling and as a
consequence a precisely defined pulse-shape. On the other hand the ion trap
requires a relatively big distance between the cavity mirrors and therefore
enhances passive cavity losses, which are the main reason for a single-photon
efficiency of 0.08. Unless this problem can be solved, for instance by shrinking
the whole apparatus, the set-up is unsuitable for the reliable generation of
time-bin qubits.
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Figure 4.8: In (a) we plot the probability for a spontaneous emission Pspont(t).
Figure (b) shows the Rabi frequency Ω(t) of the laser for the same time-
interval [0, T ].

A possibility to circumvent the problems caused by a low single-photon
efficiency is to use polarization states of the emitted photons as qubits [47,48].

Examples

Let us now provide some simple recipes for the generation of W , GHZ and
cluster states by employing the map MAB (4.23) and arbitrary unitary atomic

operators U
[i]
A . The resulting photonic states are then given by (4.10) with

V[i] = MABU
[i]
A . Note, that the states considered here belong to the class of

MPS with 2-dimensional bonds. In section 4.2.2 we showed that for their
generation we need a 2-standard map. It turns out that the second excited
level is not necessary, i.e. a 1-standard map with one additional level is
sufficient.

To generate a W-type state of the form

|ψW 〉 = eiΦ1 sin Θ1|0...01〉+ cos Θ1e
iΦ2 sin Θ2|0...010〉

+... + cos Θ1... cos Θn−2e
iΦn−1 sin Θn−1|010...0〉

+ cos Θ1... cos Θn−1|10...0〉, (4.59)
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we choose the initial atomic state |ϕI〉 = |b2〉 and operations

U
[i]
A = U b1

ab2
(Φi, Θi) , (4.60)

with i = 1, . . . , n− 1, where

Um
kl (Φi, Θi) = cos Θi|k〉〈k|+ cos Θi|l〉〈l|+ eiΦisin Θi|k〉〈l|

−e−iΦi sin Θi|l〉〈k|+ |m〉〈m| (4.61)

and {k, l,m} = {a, b1, b2}. To decouple the atom from the photon state, we
choose the last atomic operation as

U
[n]
A = U b1

ab2
(0, π/2) (4.62)

and, after the last map MAB, the decoupled atom will be in state |b1〉.
To produce a GHZ-type state in a similar way, we choose |ϕI〉 = |a〉,

U
[1]
A = U b1

ab2
(Φ1, Θ1),

U
[i]
A = U b2

ab1
(0, π/2), (4.63)

with i = 2, . . . , n− 1, and finally

U
[n]
A = Ua

b1b2
(0, π/2)U b2

ab1
(0, π/2). (4.64)

We end up with

|ψGHZ〉 = cos Θ1|0...0〉+ eiΦ1 sin Θ1|1...1〉. (4.65)

For generating cluster states, we choose |ϕI〉 = |b2〉 and

U
[i]
A = U b1

ab2
(Φi, Θi)U

b2
ab1

(0, π/2) , (4.66)

with i = 1, . . . , n− 1, and for the final step

U
[n]
A = U b2

ab1
(Φn, Θn)Ua

b1b2
(0, π/2)U b2

ab1
(0, π/2) . (4.67)

We obtain

|ψ〉 =
n⊗

i=1

(
O0

i−1|0〉i + O1
i−1|1〉i

)
, (4.68)

where

O0
i−1 = cos Θi|0〉i−1〈0| − e−iΦi sin Θi|1〉i−1〈1| ,

O1
i−1 = eiΦi sin Θi|0〉i−1〈0|+ cos Θi|1〉i−1〈1| , (4.69)

with i = 2, . . . , n− 1. Operators O0
i−1 and O1

i−1 act on the nearest neighbor-
qubit i − 1 under the assumption O0

0 ≡ cos Θ1 and O1
0 ≡ eiΦ1 sin Θ1. If one

chooses Φi = 0 and Θi = π/4 this leads to the cluster states defined by

|ψcl〉 =
1

2n/2

n⊗
i=1

(
σz

i−1|0〉i + |1〉i
)

, (4.70)

with σz
0 ≡ 1.
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Fidelity of the cluster state

In the following we take into account the reduced efficiency of the map MAB
due to non-adiabatic contributions. They cause a population of the excited
state |e〉 and therefore spontaneous atomic emissions with decay rates γa

and γb to levels |a〉 and |b1〉. If there was an emission into the free radiation
field, the corresponding time-bin qubit remains empty and counts as |0〉. We
investigate the effect of this ”misinterpreted” events on the resulting multi-
qubit state.

Until now we described the losses by damping terms in an effective Hamil-
tonian (4.33). The time-evolution of the system is then described by the mas-
ter equation (4.32) and leads in general to a mixed state. Here, we include
the two modes |1〉E and |2〉E of the free radiation field, which are populated
by a spontaneous emission (see Fig. 4.7), in an extended map MA(BE). This
has the advantage that the sequentially generated multi-qubit state can be
written as an MPS.

We disregard the environment at the input and introduce MA(BE) : HA →
HA⊗HB⊗HE , where HE ' C3 is the three-dimensional Hilbert space of the
environment with three orthogonal states |1〉E , |2〉E and the vacuum |0〉E . It
is defined as

MA(BE) : |a〉 7→
√

1− pa − pb |b1, 1〉 ⊗ |0〉E
+
√

pa |a, 0〉 ⊗ |1〉E +
√

pb |b1, 0〉 ⊗ |2〉E ,
|b1〉 7→ |b1, 0〉 ⊗ |0〉E ,
|b2〉 7→ |b2, 0〉 ⊗ |0〉E , (4.71)

where pa (pb) is the probability for a spontaneous decay of the atom to level
|a〉 (|b1〉) during one passage. They are given by

pa =
γa

γa + γb

Pspont(T )

pb =
γb

γa + γb

Pspont(T ), (4.72)

where Pspont(T ) is the probability for an atomic spontaneous emission during
one map.

The isometry W[i] = MA(BE)U
[i]
A , which describes step i of the sequential

generation scheme, can be written in a basis as

W =
2∑

e=0

1∑
i=0

∑

α,β

W i,e
α,β|α, i, e〉〈β| (4.73)
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with {α, β} = {a, b1, b2}. After n steps we obtain the state

|Ψcle〉 = W[n] . . . W[1]|b2〉

=
2∑

en,...,e1=0

1∑
in,...,i1=0

W inen

[n] . . . W inen

[1] |b2〉|inen, . . . , i1e1〉, (4.74)

where |b2〉 is the initial atomic state and

W i,e =
∑

α,β

W i,e
α,β|α〉〈β|. (4.75)

The intermediate unitary operations U
[i]
A on the atom for the generation of a

cluster state are given by Eqs. (4.66) and (4.67) with Φi = 0 and Θi = π/4.

The last unitary operation U
[n]
A was chosen such that the atom was left in a

superposition of levels |a〉 and |b1〉 before MAB mapped the atom on the final
state |b1〉. Here, level |a〉 is also populated by MA(BE) with probability pa and
therefore the atom does not decouple after the last step. Since we are only
interested in the purely photonic state in the output-field of the cavity we
trace over the atomic degrees of freedom and the environment modes. This
leads to a MPDO given by

ρcl = trE
[
trA

(|ψcle〉〈ψcle|
)]

=
1∑

i1,...,in=0

1∑

i′1,...,i′n=0

tr
(
M

in,i′n
[n] . . .M

i1,i′1
[1] B̃

)|in . . . i1〉〈i′n . . . i′1|,

(4.76)

where the coefficients are defined by products of D2×D2 matrices M i,i′ given
by

M i,i′ =
2∑

e=0

W i,e ⊗ W̄ i′,e (4.77)

and the boundary condition is specified by

B̃ =
∑

α

|b2〉〈α| ⊗ |b2〉〈α|. (4.78)

The fidelity of the sequential generation of the cluster state is defined as

Fcl(n) =
√
〈ψcl|ρcl|ψcl〉. (4.79)
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For the overlap between the resulting MPDO ρcl (4.76) and the desired pure
cluster state |ψcl〉 (4.70) we obtain

〈ψcl|ρcl|ψcl〉 =
1∑

i1,...,in=0

1∑

i′1,...,i′n=0

tr
(
M

in,i′n
[n] . . . M

i1,i′1
[1] B̃

)×

tr
(
V

i′n
[n] ⊗ V̄ in

[n] . . . V
i′1
[1] ⊗ V̄ i1

[1] B
⊗2

)
, (4.80)

with the isometries V[i] = MABU
[i]
A and the boundary condition B = |b2〉〈b1|.

In Fig. 4.9 (a) we plot the fidelity Fcl(n) for different probabilities Pspont(T ).
Therefore we refer to [28], where γa/γb = 5/4. The dash-dotted line corre-
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Figure 4.9: (a) The plots show Fcl(n) versus the number of qubits n for
Pspont(T ) = 0.01 (dotted line), Pspont(T ) = 0.28 (dash-dotted line) and
Pspont(T ) = 1 (dashed line). In (b) we compare each Fcl(n) with the function
(f0)

n, where f0 = Fcl(1) is the respective fidelity for the first qubit.

sponds to the probability for a spontaneous emission of Pspont(T ) = 0.28 as
estimated above. For the n = 7 qubit cluster state we obtain the disappoint-
ing fidelity of Fcl(7) = 0.58. With the parameters from [29] we estimated
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Pspont(T ) = 0.01. This leads to a satisfactory fidelity of Fcl(7) = 0.98. The
corresponding function Fcl(n) is depicted by the dotted line. Finally we also
considered Pspont(T ) = 1 (dashed line). In this case all time-bin are left
empty and we end up with the product state |0〉⊗n.

In Fig. 4.9 (b) we compare Fcl(n) with a function (f0)
n, where f0 = Fcl(1)

is the fidelity obtained for the first step, i.e. the generation of the first qubit
of the cluster state. (f0)

n is then the fidelity for the generation of an n-qubit
product state, where the source is initialized in each step and we perform
always the same operation. For Pspont(T ) < 1, Fcl(n) decreases faster than
(f0)

n. This is comprehensible since here an error in a certain generation step
causes an incorrect initial state of the source for the next step and therefore
affects all subsequent steps. If the fidelity for the first step corresponds to
Pspont(T ) = 1, the resulting product state is also |0〉⊗n. The coincidence with
Fcl(n) for Pspont(T ) = 1 shows, that in this case the fidelity for the cluster
state generation is decreased by a constant factor in each step.



Chapter 5

Collective effects in cavity QED

In this chapter we study collective effects in a system of many atoms coupled
to the same mode of an optical cavity. We characterize these effects and point
out how they can be employed for the generation of entangled multi-atom
states.

In section 5.1 we introduce the model for a suitable configuration of an
ensemble of atoms in a cavity. In the bad-cavity limit the system obeys the
superradiance master equation. In section 5.2 we calculate the output field of
the cavity and in section 5.3 we discuss its properties. It turns out that under
certain conditions the system evolves into subradiant states. In section 5.4 we
demonstrate that current experimental set-ups [62] are in principle suitable
for observing these states.

5.1 An ensemble of atoms in a cavity

We consider a system of N atoms coupled to the same cavity mode as il-
lustrated in Fig. 5.1. For the internal structure of atom i we assume an
effective Λ-type three-level system with two ground states |a〉i and |b〉i and
one excited state |e〉i with i = 1, . . . , N . The atomic transition |a〉i → |e〉i is
driven off-resonantly by an external laser field with frequency ωa and Rabi
frequency Ωa. We will refer to it as the pump laser. The other transition
|b〉i → |e〉i couples with rig to a single off-resonant cavity mode with reso-
nance frequency ωc. Here, g is the maximal value of the coupling strength
and ri accounts for its position dependence. For the standing-wave cavity
field we have ri = sin(kcxi), where kc is the wave vector corresponding to the
cavity resonance frequency ωc and xi denotes the position of atom i. Both
transitions couple also directly to the free radiation field and therefore spon-
taneously decay with rates γa and γb. Since each atom couples independently

73
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(a)

N

(b)

Figure 5.1: (a) Level structure of atom i: the ground states |a〉i (|b〉i) and the
excited state |e〉i are coupled by an external laser with Rabi frequency Ωa (the
cavity mode with coupling strength rig) with detuning ∆. The |b〉i → |e〉i
transition is additionally driven resonantly by a recycling laser with Rabi
frequency Ωb. Level |e〉i spontaneously decays into |a〉i and |b〉i with decay
rates γa and γb. (b) Set-up: N atoms couple to a single cavity mode. The
two lasers irradiate the atoms directly and the cavity mode decays mainly
through the less reflective mirror with rate κ.

to the environment this may spoil the collective dynamics which relies on the
coherent coupling of all atoms to the same cavity mode. In order to avoid
population of the excited states |e〉i, we choose the same large detuning ∆
for pump laser and cavity mode from the respective atomic transition. The
direct transitions to |e〉i are then suppressed and we obtain an effective Ra-
man transition between levels |a〉i and |b〉i. The coherent population transfer
from the atom to the cavity mode is then described by a Jaynes-Cummings
interaction of the form

rigΩa

√
n

∆

(|a〉i〈b| ⊗ |n− 1〉〈n|+ |b〉i〈a| ⊗ |n〉〈n− 1|), (5.1)

where n denotes the number of photons in the cavity mode. If the cavity is
initially in the vacuum state we obtain Rabi oscillations between |a〉i ⊗ |0〉
and |b〉i⊗ |1〉. At the same time the coupling to the free radiation field leads
to a decay of the cavity mode with rate κ. If the atoms are initially prepared
in levels |a〉i and the cavity decay is faster then the Rabi oscillations, the
population is gradually transferred to the state |b〉i ⊗ |0〉. In order to repeat
the process we have to recycle the atoms back to the initial state |a〉i. This
is accomplished by an additional recycling laser which drives the |b〉i → |e〉i
transition resonantly with frequency ωb and Rabi frequency Ωb. From level
|e〉i the atoms then spontaneously decay back to level |a〉i.

The Hamiltonian for a single atom is of the form (2.51). It involves the
independent driving of both atomic transitions by the external laser fields
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and the coupling between the |b〉i → |e〉i transition and the cavity mode.
In the following we neglect the dipole-dipole coupling of the atoms. This is
justified if the distance between them is bigger than the wavelength of the
atomic transitions. The Hamiltonian of the system is then given by the sum
of the single-atom Hamiltonians. We obtain

H = ωca
†a + (ωc − ωa)Xaa + ωbXee +

Ωa

2

(
e−iωatXea + eiωatXae

)

+
Ωb

2

(
e−iωbtXeb + eiωbtXbe

)
+ g

N∑
i=1

ri

(
σ

(i)
eb a + a†σ(i)

be

)
, (5.2)

where a and a† are the annihilation and creation operator for the cavity
mode. The collective operators are defined as

Xkl =
N∑

i=1

σ
(i)
kl (5.3)

for {k, l} = {a, b, e} and

σ
(i)
kl = |k〉i〈l|. (5.4)

In an interaction picture with respect to

H01 = ωb(a
†a + Xee) + (ωb − ωa)Xaa (5.5)

we obtain the time-independent Hamiltonian

HI = ∆(a†a + Xaa) +
Ωa

2
(Xae + Xea) +

Ωb

2
(Xbe + Xeb)

+g

N∑
i=1

ri

(
σ

(i)
eb a + a†σ(i)

be

)
, (5.6)

where the detuning ∆ < 0 is defined as

∆ = ωc − ωb. (5.7)

The master equation of the system can be derived employing the method
introduced in section 2.1.2. In the interaction picture with respect to H01 it
is given by

dρI

dt
= −i[HI , ρI ] +

(La + Lb + Lc

)
ρI (5.8)

with the density operator

ρI(t) = eiH01tρ(t) e−iH01t. (5.9)
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The Lindblad operators

Laρ = 2γa

N∑
i=1

σ(i)
ae ρσ(i)

ea − γaXeeρ− γaρXee,

Lbρ = 2γb

N∑
i=1

σ
(i)
be ρσ

(i)
eb − γbXeeρ− γbρXee,

Lcρ = 2κaρa† − κa†aρ− κρa†a, (5.10)

describe the spontaneous decay of the atomic transitions and the cavity decay.
For (5.10) we took the results from Eq. (2.50) assuming that the atoms
decay independently, i.e. they do not influence the coupling of another atom
to the free radiation field. As above we require that the distance between
the atoms is large compared to wave-length of the emitted radiation. Then
spatial correlations in the electromagnetic field vanish and one can assume
that the atoms couple to statistically independent reservoirs.

Raman transition between the two ground states

The advantage of the atomic Λ configuration is, that there exists the pos-
sibility to implement a coherent population transfer to the cavity mode.
Therefore we need equal detuning

|∆| À √
ng, Ωa, Ωb, γa, γb, κ (5.11)

for the off-resonant driving of both atomic transitions. In the following we
use a method described for instance in [105–107] to derive an effective Hamil-
tonian for the Raman coupling between the ground states |a〉i and |b〉i.

In the limit (5.11) the off-resonant terms proportional to g and Ωa in
the original Hamiltonian HI (5.6) can be regarded as small perturbations.
Therefore the idea is to use perturbation theory with respect to the small
parameters g/∆ and Ωa/∆. This is accomplished by applying small nonlinear
rotations U1 and U2 to the original Hamiltonian, such that one can easily
identify negligible terms. We define the rotated density operator

ρ̃(t) = U2U1ρI(t)U
†
1U

†
2 (5.12)

and obtain the master equation

dρ̃

dt
= −i[H̃, ρ̃] + U2U1

(La + Lb + Lc

)
ρIU

†
1U

†
2 . (5.13)
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We will consider the transformation of the Lindblad terms later and concen-
trate now on the derivation of the effective Hamiltonian H̃ = U2U1HIU

†
1U

†
2 .

The unitary transformations are defined as U1 = eS1/∆ and U2 = eS2/∆ with

S1 = g

N∑
i=1

ri

(
σ

(i)
be a† − a σ

(i)
eb

)
,

S2 =
Ωa

2
(Xae −Xea). (5.14)

We employ the Baker-Hausdorff relation

eS/∆He−S/∆ ≈ H +
1

∆
[S, H] +

1

2∆2
[S, [S,H]] (5.15)

and – since |∆| À √
ng, Ωa, Ωb – neglect terms proportional to 1/∆2. The

effective Hamiltonian turns out to be

H̃ ≈ ∆(a†a + Xaa) +
Ωb

2
(Xbe + Xeb) +

gΩa

2∆

N∑
i=1

ri

(
σ

(i)
ab a + a†σ(i)

ba

)

︸ ︷︷ ︸
Raman coupling

+
ΩaΩb

4∆
(Xab + Xba)

︸ ︷︷ ︸
Raman coupling

+
gΩb

2∆
(a + a†)

N∑
i=1

ri

(
σ

(i)
bb − σ(i)

ee

)

︸ ︷︷ ︸
Scattering of the recycling laser

+
Ω2

a

4∆
(Xaa −Xee)

︸ ︷︷ ︸
Stark shifts

+
g2

∆

N∑
i,j=1

rirj

[
a†σ(i)

be , σ
(i)
eb a

]
. (5.16)

Apart from the desired resonant Raman transition with the effective Rabi
frequency gΩa/2∆, we also obtain an off-resonant Raman transition with
an effective Rabi frequency ΩaΩb/4∆. Furthermore we obtain terms which
account for the off-resonant scattering of the recycling laser on the cavity
mode and the dynamic Stark shifts of levels |a〉i and |e〉i due to the off-
resonant driving by the pump laser. The last term in (5.16) can be written
as

N∑
i,j=1

rirj

[
a†σ(i)

be , σ
(i)
eb a

]
=

∑
i

r2
i

(
a†aσ

(i)
bb − aa†σ(i)

ee

)

︸ ︷︷ ︸
Stark shifts

−
∑

i6=j

rirj σ
(i)
be ⊗ σ

(j)
eb .

(5.17)
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We identify the dynamic Stark shifts of levels |b〉i and |e〉i due to the off-
resonant coupling to the cavity mode. The cross-terms describe the excitation
exchange between different atoms via the cavity mode, that is the transition
|b〉i ⊗ |e〉j → |e〉i ⊗ |b〉j.

The master equation for ρ̃ is given by Eq. (5.13). We expand the ro-
tated Lindblad terms in a series with respect to 1/∆ and since |∆| À√

ng, Ωa, γa, γb, κ we can neglect terms of the order 1/∆2. This leads to
an effective master equation

dρ̃

dt
= −i[H̃, ρ̃] + U2U1

(La + Lb + Lc

)
ρIU

†
1U

†
2

= −i[H̃, ρ̃] +
(La + Lb + Lc

)
ρ̃ + L∆ρ̃. (5.18)

with the additional contributions

L∆ρ̃ = −gκ

∆

∑
i

ri

(
2aρ̃σ

(i)
eb + 2σ

(i)
be ρ̃a† −

{
σ

(i)
eb a + a†σ(i)

be , ρ̃
})

+
2γa

∆

∑
i

(
σ(i)

ae ρ̃
[
riga†σ(i)

ba +
Ωa

2

(
σ(i)

aa − σ(i)
ee

)]

+
[
rigσ

(i)
ab a +

Ωa

2

(
σ(i)

aa − σ(i)
ee

)]
ρ̃ σ(i)

ea

)

+
2γb

∆

∑
i

(
σ

(i)
be ρ̃

[
riga†

(
σ

(i)
bb − σ(i)

ee

)
+

Ωa

2
σ

(i)
ab

]

+
[
rig

(
σ

(i)
bb − σ(i)

ee

)
a +

Ωa

2
σ

(i)
ba

]
ρ̃ σ

(i)
eb

)

− γa + γb

∆

{∑
i

rig
(
σ

(i)
eb a + a†σ(i)

be

)
+

Ωa

2
(Xae + Xea), ρ̃

}
.

(5.19)

They describe off-resonant processes.
In an interaction picture with respect to

H02 = ∆
(
a†a + Xaa

)
(5.20)

the off-resonant terms acquire phase factors exp(±i∆t) and can be neglected
within the rotating-wave approximation in the limit (5.11). The master equa-
tion (5.18) for

ρII = eiH02t ρ̃ e−iH02t (5.21)

is then given by

dρII

dt
= −i[HII , ρII ] +

(La + Lb + Lc

)
ρII . (5.22)
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The Hamiltonian in this interaction picture is

HII =
Ωb

2
(Xbe + Xeb) + g̃

N∑
i=1

ri

(
σ

(i)
ab a + a†σ(i)

ab

)

+
Ω2

a

4∆
(Xaa −Xee) +

g2

∆

N∑
i,j=1

rirj

[
a†σ(i)

be , σ
(j)
eb a

]
, (5.23)

where we introduced an effective coupling strength g̃ = gΩa/2∆ for the reso-
nant Raman transition. The off-resonant Raman transition and the scatter-
ing term were discarded in the rotating-wave approximation. In Fig. 5.2 we
illustrate the effective level scheme for atom i.

Figure 5.2: Effective level scheme of the atom. The two ground levels |a〉i and
|b〉i are coupled via a Raman transition with the effective coupling strength
g̃ri = rigΩa/2∆. The recycling laser has the Rabi frequency Ωb. The spon-
taneous decay rates of the atomic transitions are given by γa and γa.

Adiabatic Elimination of the cavity mode

For further investigations we consider a bad-cavity regime, where the condi-
tion

κ À g̃, γa, γb (5.24)

holds. In this case the cavity mode decays instantaneously compared to other
significant changes and it is basically always in the vacuum state. Then, the
master equation of the system (5.22) can be considerably simplified by an
adiabatic elimination of the cavity mode. An appropriate strategy to derive
the resulting atomic master equation is to transform the original master
equation to the so-called dissipation picture [108,109].

In the bad-cavity limit, the Hamiltonian of the system (5.23) is approxi-
mately given by

HII ' Ha + g̃
(
X+a + X−a†

)
(5.25)
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with the collective atomic operators

X+ =
∑

i

riσ
(i)
ab ,

X− =
∑

i

riσ
(i)
ba (5.26)

and the purely atomic Hamiltonian

Ha =
Ωb

2

(
Xeb + Xbe

)
+

Ω2
a

4∆

(
Xaa −Xee

)− g2

∆

∑
i

r2
i σ

(i)
ee

− g2

∆

∑

i6=j

rirj σ
(i)
be ⊗ σ

(j)
eb . (5.27)

We introduce the density operator of the system in the dissipation picture as

ρd(t) = e−LctρII(t), (5.28)

where Lc is the Lindblad operator for the cavity decay defined in Eq. (5.10).
The master equation is then given by

dρd

dt
= −ig̃

(
e−κtL1 + eκtL2

)
ρd − i[Ha, ρd] + (La + Lb)ρd, (5.29)

where we defined

L1ρ = a[X+, ρ] + [X−, ρ]a†,

L2ρ = [a, ρ]X+ + X−[a†, ρ], (5.30)

and used the relations

Lc

(
aρ

)
= a

(Lc + κ
)
ρ,

Lc

(
ρa†

)
=

(
(Lc + κ)ρ

)
a†,

Lc

(
[a, ρ]

)
=

[
a, (Lc − κ)(ρ)

]
,

Lc

(
[a†, ρ]

)
=

[
a†, (Lc − κ)(ρ)

]
. (5.31)

Since we are only interested in the atomic observables we trace over the cavity
degrees of freedom and define a purely atomic density operator

ρa(t) = trc

(
ρd(t)

)
. (5.32)

From Eq. (5.29) we obtain

dρa

dt
= trc

(L1e
−κtρd

)− i[Ha, ρa] + (La + Lb)ρa, (5.33)
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where trc(L2ρd) does not contribute since trc(aρd) = trc(ρda). In order to
find a master equation for ρa we have to eliminate the density operator ρd

which still appears in (5.33). Therefore we integrate Eq. (5.29) formally.
This leads to

e−κtρd = e−κte−iHatρd(0)eiHat + e−κt(La + Lb)ρd

−ig̃e−κt

∫ t

0

dτe−κτe−iHa(t−τ)
(L1ρd(τ)

)
eiHa(t−τ)

−ig̃

∫ t

0

dτe−κ(t−τ)e−iHa(t−τ)
(L2ρd(τ)

)
eiHa(t−τ). (5.34)

In the limit (5.24), already after a short time t & κ−1 all terms on the right-
hand side except the last one are negligible and we have

e−κtρd ' −ig̃

∫ t

0

dτe−κτe−iHaτ
(L2ρd(t− τ)

)
eiHaτ , (5.35)

where we substituted τ by t − τ . Here, the factors in the integral give a
non-vanishing contribution only for τ . κ−1. In this regime the atom-cavity
interaction with coupling strength g̃ and the spontaneous emission of the
atom with decay rates γa and γb can be neglected (5.24) and therefore the
time evolution is determined by the purely atomic part of the Hamiltonian
Ha. Then, the master equation for ρd (5.29) reduces to

dρd

dt
' −i[Ha, ρd] (5.36)

and we substitute the solution

ρd(t− τ) ' eiHaτρd(t)e
−iHaτ (5.37)

into Eq. (5.35). Since we are only interested in times t & κ−1 we can also
extend the upper limit of the integral to infinity. We finally obtain

e−κtρd ' −ig̃
(
[a, ρd]Xa + X†

a[a
†, ρd]

)
, (5.38)

where

Xa =

∫ ∞

0

dτe−κτe−iHaτX+eiHaτ . (5.39)

With this result the master equation for ρa (5.33) turns out to be

dρa

dt
= −g̃2

(
[X+, X†

aρa] + [ρaXa, X−]
)
− i[Ha, ρa] + (La + Lb)ρa. (5.40)
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In the limit

κ À Ωb,
Ω2

a

∆
,
g2

∆
(5.41)

we obtain Xa ' X+/κ and rewrite Eq. (5.40) as

dρa

dt
= −i[Ha, ρa] + (La + Lb)ρa

+
g̃2

κ

(
2X−ρaX+ −X+X−ρa − ρaX+X−

)
. (5.42)

The last term describes the collective decay of the atoms via the cavity mode
with an effective decay rate proportional to g̃2/κ. This collective effect is
caused by the fact that all atoms couple to the same radiation field, i.e. the
common cavity mode. In free space, the same behavior can be observed
if the distance between the atoms is smaller than the wave-length of the
emitted light. Then, dipole-dipole interaction and atomic collisions can not
be neglected.

5.2 The output-field of the cavity mode

In order to identify collective effects in the output-field of the cavity mode,
we need a relation between the internal dynamics of the system and the
evolution of the reservoir modes. The aim of this section is to express the
output-field operator rout in terms of the collective atomic operators X±.
Therefore we employ the formalism developed in section 2.4.

For a damped quantum system we found the input-output relation (2.105)

rout(t) = rin(t) +
√

κ a(t). (5.43)

Here, the operator a, which couples linearly to the reservoir modes is the
cavity mode operator. Then the input-output relation expresses the outgoing
field at the mirror as the sum of the incident field plus the field radiated from
the cavity. In order to find an expression for the cavity mode operator a in
the bad-cavity limit we use the quantum Langevin equation (2.99) and choose
the system operator s ≡ a. We obtain

da(t)

dt
= −i[a(t), HS]− κa(t) +

√
κ rin(t), (5.44)

where the system operators HS ≡ HII is given by Eq. (5.25). Substituting
HII into (5.44) leads to

da(t)

dt
= −κa(t)− ig̃X−(t)−√κ rin(t). (5.45)
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For κ À g̃ (bad-cavity limit) we obtain the approximate solution

a(t) = −ig̃X−(t)/κ− rin(t)/
√

κ. (5.46)

For a† we follow the same strategy and obtain the operator identity

a† = ig̃X+/κ− rin/
√

κ. (5.47)

Since we consider frequencies in the optical regime at room temperature
the input-field is in the vacuum state. Using rinρin = ρinr

†
in = 0 we find

simple relations between the output-field operators and the collective atomic
operators given by

rout(t) =
√

κ a(t) = −ig̃X−(t)/
√

κ,

r†out(t) =
√

κ a†(t) = ig̃X+(t)/
√

κ. (5.48)

It is straightforward to determine the output emission rate for N atoms

IN(t) = 〈r†out(t)rout(t)〉 =
g̃2

κ
〈X+(t)X−(t)〉 =

g̃2

κ
tr

(
ρa(t)X+X−

)
(5.49)

if the solution ρa(t) of the master equation (5.42) is known. In order to
calculate the second-order correlation function

G2,N(t, t + τ) = 〈r†out(t)r
†
out(t + τ)rout(t + τ)rout(t)〉

=
g̃4

κ2
〈X+(t)X+(t + τ)X−(t + τ)X−(t)〉 (5.50)

we will employ the quantum regression theorem from section 2.3.

5.3 Collective decay

In the following we assign a characteristic feature of the output emission rate
to the well-known superradiance effect. We will introduce the so-called Dicke
states and point out the origin of the effect. This leads us to the question
whether it is possible to use the set-up for the preparation of the atomic
system in certain entangled states. This issue will be discussed in the second
part of the section.

5.3.1 Superradiance

Here, we are only interested in the collective atomic decay via the cavity mode
and therefore omit the recycling laser (Ωb = 0). Furthermore we assume that
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the excited atomic states |e〉i are initially not populated. The master equation
for the atoms (5.42) in an interaction picture with respect to (Ω2

a/4∆)Xaa is
then reduced to

dρa

dt
=

g̃2

κ

(
2X−ρaX+ −X+X−ρa − ρaX+X−

)
. (5.51)

In order to identify collective effects in the dynamics described by Eq. (5.51)
we compare it with the corresponding master equation for independent atoms.
It is given by

dρind
a

dt
=

g̃2

κ

(
2
∑

i

σ
(i)
ba ρind

a σ
(i)
ab −Xaaρ

ind
a − ρind

a Xaa

)
, (5.52)

where we assumed equal coupling strengths for all atoms (ri = 1 for all i)
and introduced the density operator ρind

a for the independent atoms. In this
case correlations between different atoms vanish and for arbitrary atomic
operators we have

〈OiOj〉 = 〈Oi〉〈Oj〉 for i 6= j. (5.53)

The emission rate (5.49) is then given by

I ind
N (t) =

g̃2

κ
〈

N∑
i,j=1

σ
(i)
ab σ

(j)
ba 〉

=
g̃2

κ
〈Xaa(t)〉 =

g̃2

κ
tr

(
ρind

a (t)Xaa

)
. (5.54)

In the second line we omitted the fast oscillating terms 〈σ(i)
ab 〉 and 〈σ(j)

ba 〉.
We solved (5.51) and (5.52) for N = 2 and N = 3 with an initial state

ρind
a (0) = ρa(0) =

N⊗
i=1

|a〉i〈a|. (5.55)

In Fig. 5.3 (a) we compare the resulting emission rates I2(t) and I ind
2 (t) for

two atoms. For the collectively decaying atoms we observe an enhanced
decay rate for small times. The same effect is even more pronounced for
three atoms. In this case, the so-called superradiance peak is apparent.

Enhanced decay of two atoms

To understand the origin of superradiance, it is instructive to consider the
case of two excited atoms in the quantum-jump picture. Therefore we rewrite



5.3 Collective decay 85

(a)

(b)

0 0.5 1 1.5 2

0.5

1

1.5

2

0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

Figure 5.3: In (a) we compare the emission rate I2(t) for two atoms resulting
from the superradiance master equation with the emission rate I ind

2 (t) for the
case of two independent atoms. In (b) we consider the case of three atoms.
I3(t) and I ind

3 (t) are the emission rates for the collective decay and for the
case of independent atoms, respectively.

the master equation (5.51) employing an effective Hamiltonian Heff = −ig̃2X+X−/κ
and obtain

dρa

dt
= −i

(
Heffρa − ρaH

†
eff

)
+ 2X−ρaX+. (5.56)

The time-evolution under the condition that no photon is emitted is then
described by an effective time-evolution operator

Ueff(t) = exp(−iHefft) = exp(−g̃2X+X−t/κ)

= e−2g̃2t/κ
(|a, a〉〈a, a|+ |t〉〈t|) + |s〉〈s|+ |b, b〉〈b, b|, (5.57)

where we assumed equal coupling strengths for both atoms (r1 = r2 = 1)
and introduced singlet and triplet state. They are defined as

|t〉 =
(|b, a〉+ |a, b〉)/

√
2,

|s〉 =
(|b, a〉 − |a, b〉)/

√
2. (5.58)
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The probability for no jump in the time interval (0, t) is given by

P 0
0 (t) = ‖Ueff(t)|Ψ0〉‖2 = e−4g̃2t/κ, (5.59)

where |Ψ0〉 = |a, a〉 is the initial state. Since the norm of the state decreases,
this single trajectory will be subject to a jump and the normalized state after
the emission is given by

|Ψ1〉 = X−|Ψ0〉/
√

2 = |t〉. (5.60)

The probability for no jump is again

P 1
0 (t) = e−4g̃2t/κ (5.61)

since the triplet state |t〉 is damped with the same rate as the initial fully
excited state.

This shows that the probability for the second emission is the same as for
the first one. Compared to the case of two independent emitters, where the
probability for the second emission is reduced by 1/2, the decay is enhanced.
The reason for this effect is the constructive interference of the two ”decay
channels” of the triplet state. On the other hand destructive interference
preserves the singlet state from decaying. In the quantum-jump picture this
is evident since Ueff does not damp the state |−〉, i.e. the norm is conserved
and the probability for an emission is zero. In this case, population is trapped
in levels |a〉i .

Dicke states

Superradiance was originally studied by Dicke [63] and for the first time
observed in [110]. In order to describe the effect for N atoms, the so-called
Dicke states [64] |j, m〉 build a convenient basis. They are the eigenstates of
the operator

J2 = J2
z +

(
J+J− + J−J+

)
/2. (5.62)

For the atomic system considered here we identify J− = Xba, J+ = Xab and
Jz = (Xaa − Xbb)/2. The possible values of j are N/2, N/2 − 1, . . ., the
smallest value being 0 if N is even and 1/2 if N is odd. The index m with
|m| ≤ j labels the eigenstates of the collective atomic operator Jz, which is
proportional to the energy of the system. It is decreased by one under the
action of the operator J−, i.e.

J−|j,m〉 =
√

j(j + 1)−m(m− 1)|j, m− 1〉. (5.63)
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If m = −j the result is the zero vector, so the states |j,−j〉 are the lowest
ones of the Dicke ladders. They do not couple to states with lower energies
and are therefore called subradiant states. This is a consequence of the
indistinguishability of the atoms and the symmetric coupling to the free
radiation field via the cavity mode (ri = 1 for all i). Then the symmetry type
is preserved and the states |j,−j〉 have already the lowest energy compatible
with their symmetry type.

In the case considered above, the system is initially prepared in the state
|N/2, N/2〉 = |a, . . . , a〉. Since the symmetry type is preserved, i.e. j = N/2,
the collective decay of the atomic system leads down a ladder of N+1 equidis-
tant levels from |N/2, N/2〉 to |N/2,−N/2〉 = |b, . . . , b〉. The intermediate
state of the system after j −m emissions is given by

|j,m〉 =

√
(j + m)!

N !(j −m)!
X

(j−m)
ba |a, . . . , a〉. (5.64)

and the emission rate (5.49) for equal coupling is

IN(j, m) =
g̃2

κ
〈XabXba〉 =

g̃2

κ
〈j,m|J+J−|j, m〉

=
g̃2

κ

(
j(j + 1)−m(m− 1)

)
. (5.65)

It increases from IN(N/2, N/2) = Ng̃2/κ for the fully excited state to IN(N/2, 0) =
N(N/2 + 1)g̃2/2κ for the half-deexcited state. This explains that the result-
ing superradiance peak is more outstanding for a higher number of atoms as
observed in Fig. 5.3.

For the case of two atoms, the triplet state |1, 0〉 and the fully excited
state |1, 1〉 correspond to the same emission rate I2(1, 1) = I2(1, 0) = 2g̃2/κ,
while the antisymmetric singlet state |0, 0〉 does not radiate. Obviously it
would be desirable to prepare the system in such a subradiant state but for
equal coupling strengths the master equation (5.51) is symmetric under the
exchange of two atoms and therefore preserves the symmetry type of the
atomic system.

5.3.2 Subradiance

Subradiant states are neither easy to create nor to observe. Although, in
principle, all physical systems, where cooperative spontaneous decay is ob-
served, are suitable for this task, the first experimental evidence for subradi-
ance [111] was reported more than twenty years after the first observation of
superradiance [110]. In the following we will show, under which conditions
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subradiance appears in the cavity set-up and also point out how it can be
employed for the probabilistic generation of multi-atom entangled states.

The basic idea is that inhomogeneous coupling between the atoms and
the cavity breaks the permutation symmetry and as consequence the initially
symmetric state |N/2, N/2〉 evolves into a mixture of states, which do not
belong to the j = N/2 symmetry type anymore. In order to validate this
assumption, we solve the superradiance master equation (5.51) and the cor-
responding master equation for independent atoms (5.52) for N = 2 and
different coupling strengths r1 = 1 = 2r2. In Fig. 5.4 (a) we compare the
population in the atomic states |a〉i

P ind
a,N(t) = tr

(
Xaaρ

ind
a (t)

)
(5.66)

for independent atoms with

Pa,N(t) = tr
(
Xaaρa(t)

)
(5.67)

for the collectively decaying system. In both cases, the system is initially
prepared in |a, a〉. As expected, in the steady state of the collectively decaying
system, population is trapped in levels |a〉i (Pa,2(t → ∞) 6= 0). In Fig. 5.4
(b) we solve (5.51) and (5.52) for N = 3 and different coupling strengths
r1 = r2 = 1 = 2r3. Also here, the steady state of the superradiance master
equation contains contributions of subradiant states, while the independent
atoms loose their ”excitation” completely.

This shows, that for inhomogeneous coupling the collectively decaying
atoms can be found in a decoherence free subspace with a certain probability.

Inhibited decay of two atoms

In order to understand the underlying mechanism we consider the two-atom
case in the quantum-jump picture. Here, the time-evolution of the system
under the condition of no photon emission is decribed by

Ueff = e−r2g̃2t/κ
(|a, a〉〈a, a|+ |tr〉〈tr|

)
+ |sr〉〈sr|+ |b, b〉〈b, b|, (5.68)

where r =
√

r2
1 + r2

2. We introduced singlet- and triplet-type states

|tr〉 =
(
r2|b, a〉+ r1|a, b〉)/r,

|sr〉 =
(
r1|b, a〉 − r2|a, b〉)/r. (5.69)

For an initial state |Ψ0〉 = |a, a〉 the probability of no emission in the time-
interval (0, t) is given by

P 0
0 (t) = e−r2g̃2t/κ. (5.70)
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Figure 5.4: In (a) we plot the population of the atomic states |a〉i for two
independent atoms P ind

a,2 (t) and for two collectively decaying atoms Pa,2(t).
In (b) we consider the case of three atoms. P ind

a,3 (t) and Pa,3(t) are the popu-
lations of |a〉i for independent and collective decay, respectively.

If we wait long enough this will certainly lead to jump. Here, the normalized
state after the emission is

|Ψ1〉 = X−|Ψ0〉/r
=

r2
1 − r2

2

r2
1 + r2

2

|sr〉+
2r1r2

r2
1 + r2

2

|tr〉. (5.71)

The probability for no second emission is now given by

P 1
0 (t) = ‖Ueff(t)|Ψ1〉‖2

=
(r2

1 − r2
2)

2

(r2
1 + r2

2)
2

+ e−r2g̃2t/κ 4r2
1r

2
2

(r2
1 + r2

2)
2
. (5.72)
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It does not vanish for inhomogeneous coupling. This result shows, that with
a certain probability

P 1
0 (t →∞) =

(r2
1 − r2

2)
2

(r2
1 + r2

2)
2
. (5.73)

the system will evolve into the decoherence free singlet-type state |sr〉.
For the situation considered in Fig. 5.4 (a), where we assumed r1 = 1 =

2r2, we prepare the system in the entangled state

|sr〉 =
(
2|b, a〉 − |a, b〉)/

√
5 (5.74)

with a probability of P 1
0 (t → ∞) = 9/25. This result coincides with the

steady state value for the population Pa,2(t →∞) in Fig. 5.4 (a).
In a conditional scheme the detection of a single photon would indicate

the successful preparation of |sr〉. The success probability can be maximized
by increasing the difference between the coupling constants of the two atoms.
In the standing-wave cavity field this can be accomplished by choosing the
position of the atoms close to a node and an anti-node. On the other hand,
for r1 À r2 the resulting singlet-type state is given by |sr〉 ' |b, a〉. This
corresponds to the case, where the second atom does not couple at all and
the system evolves into a boring product state.

Inhomogeneous Dicke basis

For a system of N atoms, the effect of different coupling strengths can be
understood in the Dicke basis. For homogeneous coupling, the state of the
system after the first emission of an initially fully excited system is given by
|N/2, N/2 − 1〉. In order to trap excitation, one has to disturb the system
such that the symmetry type is changed, i.e. after one emission the state
of the system contains a contribution of |N/2 − 1, N/2 − 1〉. This family of
states traps one excitation since it can only decay into the subradiant state
(j = −N/2 + 1). If one disturbs the system in each step, the state after N/2
emissions would be

J
N/2
− |N/2, N/2〉 =

N/2∑
n=0

cn|N/2− n, 0〉. (5.75)

Unfortunately, this is not possible in the configuration considered above.
On the other hand, we have shown, that for inhomogeneous coupling, we

obtain states, where excitation is trapped. In order to describe this situa-
tion, the homogeneous Dicke basis is not appropriate since X−|j,−j〉 6= 0.
As has been demonstrated in [112, 113], one has to map it on its inhomo-
geneous equivalent. In this new basis it turns out, that the inhomogeneous
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counterpart of the operator J2 is not conserved under the action of the inho-
mogeneous raising and lowering operators X+ and X−. The system evolves
into a statistical mixture of dark states, defined by

X−|D〉 = 0. (5.76)

In order to prepare a specific entangled state, one has to assign a certain
signature in the output-field to it.

In a situation, where the atom-cavity coupling strengths are perfectly con-
trolled, it may be a promising approach to use the inhomogeneous coupling
only for a short time-interval in order to disturb the system. After returning
to homogeneous coupling, the contributions from states with j 6= N/2 would
then evolve into subradiant states.

5.3.3 Photon statistics

In order to identify traces of the collective dynamics of the system, it is
instructive to investigate also second-order correlations in the output-field of
the cavity. Moreover, since the output mode rout and the collective atomic
operators X− are directly related (5.48), correlations between the emitted
photons reveal information about the state of the atoms in the cavity and
could therefore be employed within a conditional scheme to identify certain
entangled states.

In the following we compare intensity correlations in the case of homoge-
neous and inhomogeneous coupling for N = 2 and N = 3. Using Eq. (5.49)
and (5.50), we calculate

g2,N(t, t + τ) =
G2,N(t, t + τ)

IN(t)IN(t + τ)

=
〈X+(t)X+(t + τ)X−(t + τ)X−(t)〉
〈X+(t)X−(t)〉〈X+(t + τ)X−(t + τ)〉 , (5.77)

where we normalized the second-order correlation function G2,N(t, t+τ) with
the emission rates at time t and t + τ . We solve the superradiance master
equation (5.51) for r1 = r2 = 1 and r1 = 2r2 = 1 and employ the quantum
regression theorem to obtain g2,2(t, t + τ) and ginh

2,2 (t, t + τ), respectively. For
N = 3, we assume r1 = r2 = r3 = 1 for g2,3(t, t + τ) and r1 = r2 = 2r3 = 1
for ginh

2,3 (t, t + τ).
In Fig. 5.5 (a) we compare g2,2(0, τ) and ginh

2,2 (0, τ). Due to superradiance
the probability for an emission immediately after an emission at t = 0 is
equal to the probability for an emission at t = 0 in the case of homogeneous
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Figure 5.5: In (a) we compare the normalized second-order correlation func-
tion g2,2(0, τ) for two atoms for homogeneous coupling with the case of in-
homogeneous coupling ginh

2,2 (0, τ). In (b) we consider the case of three atoms.
g2,3(t0, t0τ) and ginh

2,3 (t0, t0 + τ) are the normalized second-order correlation
functions for homogeneous and inhomogeneous coupling, respectively. The
correlation lengths is indicated by arrows.

coupling, i.e. g2,2(0, 0) = 1. On the other hand, for inhomogeneous cou-
pling, ginh

2,2 (0, 0) < 1 since the singlet type contribution |sr〉 does not decay
at all. This explains also the significantly longer correlation time (indicated
by arrows). The case of three atoms is considered in Fig. 5.5 (b). For the
time of the first emission we choose t0 ≈ 0.078κ/g̃2, which corresponds to the
maximum of the superradiance peak in the emission rate I3(t). The resulting
normalized correlation functions g2,3(t0, t0 + τ) and ginh

2,3 (t0, t0 + τ) show now
a similar behavior. The correlation times are basically equal and since the
homogeneous case does not involve any subradiant states, we conclude that
after an emission at t = t0 in the inhomogeneous case subradiant states are
not yet populated.

Second-order correlations in the output-field are a characteristic feature
of collectively decaying systems. For independent atoms the probability for
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an emission is not enhanced or delayed by an emission, i.e. the normalized
second-order correlation function is flat (as long as no recycling mechanism
is involved).

5.4 Experimental conditions

In the preceding section we showed that atoms, coupled to the same cavity
mode, decay collectively. Furthermore, we found that a controlled reduc-
tion of the symmetry, i.e. inhomogeneous but constant coupling between the
atoms and the cavity mode, lead to the interesting phenomenon of subradi-
ance. This effect can be employed to generate entangled multi-atom states.
Therefore it would be desirable that the position of the atoms in the standing-
wave cavity field is well defined. Excellent control over the atomic position
is provided by an ion trap, which holds the atoms at fixed positions inside
the cavity. Unfortunately the photon efficiency of current experimental re-
alizations is very bad (0.08 in [30]) due to passive cavity losses. Since any
probabilistic scheme would be based on the detection of the output field of
the cavity, these set-ups are not appropriate at present.

For the evaluation of the feasibility of our approach, we will therefore refer
to another recent experiment, where atoms are dropped through the cavity
[62]. As pointed out in section 4.3.2 for a similar set-up [28], the motion of the
atoms leads to a significant variation of the atom-cavity coupling strength on
time-scales relevant for the internal dynamics. Since the collective behavior of
the system is based on interference, it is evident that an unknown and varying
atom-cavity coupling will substantially reduce the efficiency of a conditional
generation scheme. On the other hand, as long as traces of collectivity can
be observed, it is, in principle, possible to implement such a scheme. In
the following we will therefore consider the worst case scenario, where the
coupling strength randomly changes on a time-scale fast compared to the
internal dynamics of the system.

In section 5.3.1, we consider the effect of random coupling strength on the
superradiance master equation and compare the resulting time-evolution with
the case of independent atoms. The situation of the experiment [62], where
the approximations from section 5.1 are not well justified will be investigated
numerically in section 5.3.2.

5.4.1 Random coupling

In order to identify traces of collective effects in the superradiance master
equation for random coupling we examine the evolution of the system for
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small times. Since the width of the Gaussian profile of the cavity mode is
much larger than the optical wavelength of the standing wave cavity field,
we assume for the position dependent coupling ri(x) = sin(kcxi), where the
wave-vector kc corresponds to the resonance frequency of the cavity ωc and
xi denotes the position of the atom with respect to the cavity axis. The
effect of the fast and randomly changing atomic positions is considered by
averaging over all atomic positions, i.e.

〈ρa(t)〉x =
1

LN

∫ L

0

dx1 . . . dxNρa(t), (5.78)

where L denotes the length of the cavity.
We write the master equation (5.51) as

dρa(t)

dt
=

g̃2

κ

N∑
i,j=1

rirjLijρa(t) (5.79)

with

Lijρa = 2σ
(i)
ba ρaσ

(j)
ab − σ

(i)
ab σ

(j)
ba ρa − ρaσ

(i)
ab σ

(j)
ba (5.80)

and obtain for the time-evolution of the system

〈ρa(t)〉x = ρa(0) +
g̃2

κ

∑
i,j

〈rirj〉xLijρa(0)t

+
g̃4

2κ2

∑

i,j,k,l

〈rirjrkrl〉xLijLklρa(0)t2 +O(t3)

= ρa(0) +
g̃2

κ

∑
i

〈r2
i 〉xLiiρa(0)t

+
g̃4

2κ2

∑
i,j

〈r2
i r

2
j 〉x

(LijLij + LijLji + LiiLjj

)
ρa(0)t2 +O(t3).

(5.81)

Since L À kc, only terms proportional to sin2(kcxi) and sin2(kczi) sin2(kczj)
survived.

Now, we compare this result with the time-evolution for independently
decaying atoms. The corresponding master equation (5.52) is given by

dρind
a (t)

dt
=

g̃2

κ

N∑
i=1

r2
iLiiρ

ind
a (t). (5.82)
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For the position averaged atomic density operator we obtain

〈ρind
a (t)〉x = ρa(0) +

g̃2

κ

∑
i

〈r2
i 〉xLiiρa(0)t

+
g̃4

2κ2

∑
i,j

〈r2
i r

2
j 〉xLiiLjjρa(0)t2 +O(t3).

(5.83)

Since 〈ρa(t)〉x − 〈ρind
a (t)〉x does not vanish, we conclude that traces of col-

lective effects will be observed even in the case of random coupling. This
result encourages us to investigate the system under realistic experimental
conditions.

5.4.2 Numerical results

The aim of the following numerical simulations is to show that the system
discussed above is appropriate for the observation of collective effects in set-
ups recently used for cavity QED experiments. In particular, we refer to [62].
There, the conditions (5.11), (5.24) and (5.41) for the Raman transition
and the adiabatic elimination of the cavity mode are not fulfilled. As a
consequence, photons from the cavity mode may be reabsorbed by the atoms.
Worse than that, the excited levels |e〉i are populated and spontaneous atomic
emissions into the free radiation field spoil the collective behavior of the
atoms.

We will calculate the emission rate

IN(t) = 〈r†out(t)rout(t)〉 (5.84)

and the normalized intensity-correlation function

g2,N(τ) =

∫
G2,N(t, t + τ)dt

(
∫

IN(t)dt)2
, (5.85)

where we average over the time of the first emission. The second-order cor-
relation function is defined as

G2,N(t, t + τ) = 〈r†out(t)r
†
out(t + τ)rout(t + τ)rout(t)〉. (5.86)

We consider three scenarios:

• The atoms couple to the cavity mode with equal coupling strengths
(ri = 1 for i) at all times.
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• The atom-cavity coupling strengths change fast on the time-scale of
the internal system dynamics. This resembles the situation in [62].

• The atoms evolve independent of each other.

For the simulations, we omit the approximations from section 5.1 and use
the original description of the system. The Hamiltonian HI and the master
equation for the density operator ρI(t) are given by Eq. (5.6) and (5.8). In
the quantum-jump approach, the time-evolution is described by an effective
Hamiltonian

Heff = HI − iκa†a− i(γa + γb)Xee (5.87)

as long as no spontaneous photon emission occurs. Heff is derived from the
master equation of the system (5.8), which can then be written as

dρI

dt
= −i

(
HeffρI − ρIH

†
eff

)
+ 2κaρIa

†

+ 2γa

N∑
i=1

σ(i)
ae ρIσ

(i)
ea + 2γb

N∑
i=1

σ
(i)
be ρIσ

(i)
eb . (5.88)

We identify the jump-operators
√

2γa σ
(i)
ae and

√
2γb σ

(i)
be . They describe the

spontaneous emission of atom i and cause a ”jump” in the time-evolution
of the system. Analogously we find

√
2κ a for the cavity mode. The effect

of fast and randomly changing coupling strengths is mimicked by choosing
random atomic positions in each trajectory.

The physical system, which corresponds to the case of independent atoms,
would contain a separate cavity mode ai(t) for each atom i, i.e. the atoms do
not interact via a common cavity mode. From the relations (5.48) we obtain
for the second-order correlation function

G2,N(t, t + τ) = 〈r†out(t)r
†
out(t + τ)rout(t + τ)rout(t)〉

= κ2〈
N∑

i,j,k,l=1

a†i (t)a
†
j(t + τ)ak(t + τ)al(t)〉. (5.89)

For independent emitters, relation (5.53) leads to

Gind
2,N(t, t + τ) = N(N − 1)

(|G1,1(t, t + τ)|2 + I1(t)I1(t + τ)
)

+ NG2,1(t, t + τ), (5.90)

where we neglected fast oscillating terms. We introduced the emission rate
I1(t), the first-order correlation function G1,1(t, t + τ) and the second-order
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correlation function for a single atom coupling to the cavity mode a(t). They
are defined as

I1(t) = κ〈a†(t)a(t)〉,
G1,1(t, t + τ) = κ〈a†(t)a(t + τ)〉,
G2,1(t, t + τ) = κ2〈a†(t)a†(t + τ)a(t + τ)a(t)〉. (5.91)

For the emission rate of N independent atoms we obtain analogously

I ind
N (t) = κ〈

N∑
i,j=1

a†i (t)aj(t)〉 = NI1(t). (5.92)

We adopt the parameters from [62]. In the level scheme of Rubidium
85 we identify the Λ-system from Fig. 5.1 by |a〉i = |5S1/2(F = 3)〉, |b〉i =
|5S1/2(F = 2)〉 and |e〉i = |5P3/2(F = 3)〉 for i = 1, . . . , N . The Rabi
frequencies of the laser fields are given by Ωa ≈ 7.6 × 2π MHz and Ωb ≈
3.3× 2π MHz. The detuning of pump laser and cavity mode from the corre-
sponding atomic transitions is given by ∆ ≈ −20 × 2π MHz. The maximal
cavity-atom coupling strength is g = 2.5× 2π MHz and the cavity decay rate
κ ≈ 1.25 × 2π MHz. The rates for the spontaneous decay of the atoms are
γa ≈ 5/9γ and γb ≈ 4/9γ, where γ = 3 × 2π MHz. For all simulations we
assume that the atoms are initially prepared in levels |a〉i.

For N = 1 we solved the master equation directly using the method
described in appendix C. G1,1(t, t + τ) and G2,1(t, t + τ) are then calculated
with the quantum regression theorem. These results were used in Eq. (5.91)
to treat the case of independent atoms. For N = 2 and N = 3 we employed
the quantum-jump approach.

Continuous recycling

In Fig. 5.6 we plotted the emission rates I1(t) for a single atom, I2(t) for
two atoms and I ind

2 (t) for two independent atoms. Since the cavity mode
is initially in the vacuum state, the emission rates vanish at t = 0. Before
they reach their steady state values, we observe small oscillations. They can
be dedicated to first order atomic transitions between level |a〉i and |e〉i due
to the off-resonant coupling to the laser with Rabi frequency Ωa and to the
cavity mode with coupling strength

√
n g. If one increases the detuning ∆

to fulfil the condition (5.11), the oscillations vanish. Since we do not observe
any significant differences between I2(t) and I ind

2 (t) we conclude that the
emission rate is not appropriate to provide evidence for collective effects in
the output-field of the cavity.
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Figure 5.6: Emission rates I1(t) for one atom, I2(t) for two atoms and I ind
2 (t)

for two independent atoms.

We will therefore concentrate on intensity-correlations and consider in
Fig. 5.7 g2,1(τ) for a single atom, g2,2(τ) for two atoms, grand

2,2 (τ) for two
atoms with random coupling and gind

2,2 (τ) for two independent atoms. In Fig.
5.8 we plot the normalized second-order correlation function g2,3(τ) for three
atoms, grand

2,3 (τ) for three atoms with random coupling and gind
2,3 (τ) for three

independent atoms. Apart from the small oscillations, which correspond
to the small oscillations in the emission rate, we observe anti-bunching in
the single-atom case, i.e. g2,1(0) < g2,1(τ). This is not surprising since the
atom has to be initialized in the state |a〉. Here, this is accomplished by the
recycling mechanism via the excited state |e〉 (see Fig. 5.2). The reason for
g2,1(τ = 0) 6= 0 is that we observe the behavior of the atom via the cavity
mode, which is not necessarily empty after a photon emission.

For two atoms, coupled homogeneously to the same cavity mode, the
second-order correlation function indicates bunching for small times (g2,2(0) >
g2,2(τ)). This effect is well understood for the case of independent emitters.
A comparison of g2,1(τ), gind

2,2 (τ) and gind
2,3 (τ) reveals a transition from anti-

bunching to bunching, where the bunching peak develops inside the anti-
bunching minimum at τ = 0. In Eq. (5.90) the bunching peak can be
assigned to the term proportional to |G1,1|2 which results from the beating
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Figure 5.7: Normalized second-order correlation function g2,1(τ) for a single
atom, g2,2(τ) for two atoms, grand

2,2 (τ) for two atoms with random coupling
and gind

2,2 (τ) for two independent atoms.

of light emitted by different atoms. The effect is confirmed by g2,3(τ) for
three collectively evolving atoms and was first reported in [62]. Despite this
agreement, we observe a considerably different behavior than in the case of
independent atoms. This manifests in a less distinctive bunching peak (in
particular for N=3) and in more pronounced oscillations near τ = 0. Both
must be attributed to the interaction of the atoms via the common cavity
mode. For random coupling, the amplitude of the oscillations is comparable
to the one for independent atoms but, in particular for grand

2,2 (τ), the bunching
peak is reduced. This single-atom like behavior can be traced back to situa-
tions where one atom couples only weakly to the cavity mode. This explains
also that the effect is stronger for N = 2.

Even though a comparison of grand
2,2 (τ) with gind

2,2 (τ) and grand
2,3 (τ) with

gind
2,3 (τ) clearly evidences collective effects in the system for random coupling,
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Figure 5.8: Normalized second-order correlation function g2,3(τ) for three
atoms, grand

2,3 (τ) for three atoms with random coupling and gind
2,3 (τ) for three

independent atoms.

we could not assign them to the collective decay considered above, i.e. su-
perradiance or subradiance. Since the continuous recycling of the system via
the excited state involves a spontaneous emission into the free radiation field
it is likely that these effects are indeed suppressed. We found qualitative
agreement with the experimental results from [62]. In order to reproduce
them exactly one needs to take into account that the atoms are dropped
through the cavity and the resulting fluctuations in the number of atoms.

No recycling

We will now focus on the collective decay via the cavity mode and omit
the recycling laser (Ωb = 0). In Fig. 5.9 we plotted the emission rate for
homogeneous coupling I2(t), random coupling Irand

2 (t) and for two indepen-
dent atoms I ind

2 (t). The enhanced decay rate for small times in the case of
collectively decaying atoms with respect to the case of independent atoms
evidences superradiance. For random coupling the peak is shifted towards
smaller times and it is even more pronounced. We conclude that even for
randomly changing atom-cavity coupling collective decay is observed in the
output-field.
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Figure 5.9: I2(t) is the emission rate for two atoms and homogeneous cou-
pling. We plotted also the emission rate I ind

2 (t) for independent atoms and
Irand
2 (t) for randomly changing coupling strengths.

In order to identify subradiance we choose r1 = 2r2 = 1 and determine
the population Pa,2(t) of the atomic levels |a〉i. For the parameters from [62]
we obtain the dotted line in Fig. 5.10. In this case, subradiance is not evident
since the population of the states |a〉i vanishes. This is a consequence of the
spontaneous decay of the atoms via the excited levels |e〉i which disturbs the
collective decay.

For the derivation of the effective master equation (5.18) in section 5.1
we neglected terms proportional to γg2/∆2, γΩ2

a/∆
2 and γgΩa/∆

2 They
account for the spontaneous decay and compete with the collective decay
rate of Ng̃2/κ = NΩ2

ag
2/(κ∆2). In order to observe collective effects one has

to operate the system in the regime

Ω2
a À κγ,

Ng2 À κγ. (5.93)

This can be accomplished – without violating the conditions (5.11), (5.24)
and (5.41) – by assuming smaller values for γa and γb. The solid line in Fig.
5.10 shows Pa,2(t) for γ̃a = γa/10 and γ̃b = γb/10. Albeit we did not change
the other parameters from [62], i.e. they still violate the conditions (5.11),
(5.24) and (5.41), the result could be considerably improved. For small times
the system decays mainly collectively and with a certain probability it evolves
into the singlet-type state |sr〉 = (2|b, a〉 − |a, b〉)/√5 .

In Fig. 5.10 we plot also the population P rand
a,2 (t) of the atomic levels

|a〉i for random atom-cavity coupling. We observe a similar behavior as for
Pa,2(t), i.e. with a non-vanishing probability the levels |a〉i remain populated.



102 Collective effects in cavity QED

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Figure 5.10: Population of atomic levels |a〉i for N = 2: For Pa,2(t) we chose
r1 = 2r2 = 1. For random coupling we obtain P rand

a,2 (t). The dotted lines
correspond to the original values for γa and γb from [62]. For the solid lines
we assumed γ̃a = γa/10 and γ̃b = γb/10.

Unfortunately we do not know the atomic state in this case. Contributions
with r1 À r2 and r1 ¿ r2, where one atom is basically decoupled, lead to the
product states |b, a〉 and |a, b〉. In order to prepare a certain entangled state,
it is therefore essential to control the position of the atoms. In contrast to
other proposals [68–70], we do not require individual addressing of the atoms.

In Fig. 5.11 we consider N = 3 and show plots of the population Pa,3(t) in
levels |a〉i for r1 = r2 = 2r3 = 1 and P rand

a,3 (t) for random coupling. As above,
the dotted lines correspond to the original values for γa and γb from [62],
while the solid lines indicate γ̃a = γa/10 and γ̃b = γb/10. The results resemble
basically the case of two atoms.
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Figure 5.11: Population of atomic levels |a〉i for N = 3: For Pa,3(t) we chose
r1 = r2 = 2r3 = 1. For random coupling we obtain P rand

a,3 (t). The dotted
lines correspond to the original values for γa and γb from [62]. For the solid
lines we assumed γ̃a = γa/10 and γ̃b = γb/10.





Chapter 6

Conclusions

Trapping atoms in the vacuum field of a cavity

In chapter 3 we showed that it is possible to trap an atom in the vacuum
field of a high-Q cavity. To do this we need a weak laser which couples
directly to the atom in the cavity. It induces a position dependent ac-Stark
shift to the ground state of the cavity-atom system. We use this energy shift
as a trapping potential and as we showed by an analytic estimation and a
numerical simulation it is deep enough to trap an atom with a realistic initial
momentum.

The advantage of this approach is the low effective decay rate due to
the little amount of excitation in the system. This requires to cool the
atom to a lower kinetic energy than the potential depth. In order to obtain
a long life time it would be good to have an initial kinetic energy of the
order of one photon recoil. This is still difficult to achieve, even though
it is possible to cool an atom below one photon recoil with the method of
velocity-selective coherent population trapping [114] or Raman-cooling [115].
Another possibility would be a cavity assisted cooling method [34–36].

The trapping time we can achieve in the optical regime with our approach
is of the same order or even lower as observed already in experiments [38–41].
The benefit of this method is that the time after which the first jump occurs is
longer because there is only very little excitation in the system. As mentioned
before this decay time is very important for any kind of quantum information
application since the jump destroys the coherence in the atomic state. In the
microwave regime the trapping times can be much longer. Note that in the
case studied in many references [34, 35, 40, 41] the trapping force may be
velocity dependent since they are also interested in laser cooling, whereas for
us this is not the case. In this sense it will be difficult to exactly compare
the results of both approaches.
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Sequential generation of entangled multi-qubit states

In chapter 4 we characterized all multi-qubit states achievable within a gen-
eral sequential generation scheme, where an ancillary system is coupled in
turn to a number of initially uncorrelated qubits, in terms of matrix-product
states [53, 54]. Furthermore we provided a recipe for the generation on de-
mand of any multi-qubit state within a sequential generation scheme.

In particular we considered a scenario where the role of the ancillary
system is assigned to a single-photon source [28–30] and the generated qubits
are time-bin qubits defined by the absence and presence of a photon. The
formalism presented here is also valid for other types of single-photon sources,
in the context of cavity QED or quantum dots. For example, it could be
extended to characterize the polarization-entangled multi-qubit photon states
generated by an analogous cavity QED photon source [48]. In fact, the
presented ideas and proofs apply to any multi-qudit state with HB ' Cd

that is generated sequentially by a D-dimensional source.

In a wider scope, we have established a formalism describing a general
sequential quantum factory, where the source is able to perform arbitrary
unitary source-qudit operations before each qudit leaves. Apart from the
multiphoton states, the present formalism applies also to many other physical
scenarios: (a) to coherent microwave cavity QED experiments [116], where
atoms sequentially cross a cavity, and thus the outcoming atoms end up in
a MPS with the dimensions given by the effective number of states used in
the cavity mode; (b) a light pulse crossing several atomic ensembles [117],
which will be left in a matrix product Gaussian state [118]; (c) trapped ion
experiments where each ion interacts sequentially with a collective mode of
the motion [99,100,119].

Furthermore we showed that current experimental set-ups [28–30] are
suitable for the generation of W , GHZ and cluster states. Here, the employed
adiabatic passage leads to considerable losses due to spontaneous atomic
emissions. We calculated the fidelity of the cluster state with parameters from
[28, 29]. We included the dissipation in the present formalism, by replacing
MPS by matrix-product density operators [54, 97]. This description applies
also, for example, to the micromaser set-up [120] and other realistic scenarios.

Collective effects in cavity QED

In chapter 5 we investigated collective effects in a cavity QED set-up with
an ensemble of atoms coupled to the same cavity mode. We considered
a Λ-type level scheme for the atoms and employed a Raman transition to
couple them to the cavity mode to avoid spontaneous atomic emissions. For
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homogeneous atom-cavity coupling and in the bad-cavity limit the system
then obeys the superradiance master equation. Compared to a collectively
decaying ensemble of atoms in free space the cavity configuration has the
advantage that dipole-dipole interaction and atomic collisions, who attenuate
the collective dynamics, can be neglected.

We showed that for inhomogeneous atom-cavity coupling the system
evolves into subradiant states with a certain probability. Within a con-
ditional scheme such a scenario can be employed to prepare the atoms in
certain entangled states. Recent cavity QED experiments [28–30, 62] are in
principle suitable for the implementation of these ideas. In particular we
investigated the situation in [62], where the atoms are dropped through the
cavity and the position of the atoms is not controlled. It turned out that
even for randomly changing atomic positions, traces of collective effects can
be observed in the output-field of the cavity mode.

On the other hand it would be desirable to employ a set-up where the
position of the atoms is well-controlled. Then, the success rate of any condi-
tional preparation scheme based on the presented ideas will be considerably
improved. Excellent control over the position of the atoms is provided by an
ion trap [30] placed inside a cavity. At present passive cavity losses reduce
the photon efficiency of this set-up substantially but scaling down the whole
apparatus promises an improvement. New techniques, like additional far-off
resonant dipole traps [42–44] and cavity-induced cooling [34–36] raise hope
that the control over the coupling-strength will improve considerably in the
future.





Appendix A

MPS representation of an
arbitrary state

In section 4.2 we gave a recipe for the sequential generation of any MPS.
Here we show that any n-qudit state

|ψ〉 =
d∑

i1,...,in=0

cin,...,i1|in, . . . , i1〉 (A.1)

has an MPS representation. Similar to the proof in section 4.2.1 we sub-
sequently construct the involved matrices by singular value decompositions
(SVD). Therefore we write the state |ψ〉 as a d× dn−1 matrix

C[n] =
d∑

in,...,i1=1

cin,(in−1,...,i1)|in〉〈in−1, . . . , i1|. (A.2)

This matrix can be decomposed into

C[n] =
d∑

in,kn=1

U in
kn
|in〉〈kn|

d∑

kn,in−1,...,i1=1

Mkn
in−1,...,i1

|kn〉〈in−1, . . . , i1|

= U[n]M[n] , (A.3)

where the d × d matrix U[n] is the left unitary in the SVD and M[n] is the
remaining part with dimension d× dn−1. In the second step we write M[n] as
a d2 × dn−2 matrix

C[n−1] =
d∑

kn,in−1,...,i1=1

Min−1,(in−2,...,i1)|kn, in−1〉〈in−2, . . . , i1| (A.4)
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and perform another SVD. For step m we obtain

C[n−m] =
dm∑

kn−m+1=1

d∑
in−m,...,i1=1

M
kn−m+1

in−m,(in−m−1,...,i1)|kn−m+1, in−m〉〈in−m−1, . . . , i1|

= U[n−m]M[n−m] , (A.5)

where the dm+1 × dm+1 unitary matrix U[n−m] and the dm+1 × dn−(m+1) rest
matrix M[n−m] are defined as

U[n−m] =
dm∑

kn−m+1=1

d∑
in−m=1

dm+1∑

kn−m

U
in−m

kn−m+1,kn−m
|kn−m+1, in−m〉〈kn−m| (A.6)

and

M[n−m] =
dm+1∑

kn−m

d∑
in−m−1,...,i1=1

M
kn−m

in−m−1,...,i1
|kn−m〉〈in−m−1, . . . , i1|. (A.7)

In the last step we write the dn−1× d matrix M[2] as a dn dimensional vector

C[1] =
dn−1∑

k2=1

d∑
i1=1

Mk2
i1
|k2, i1〉 . (A.8)

Since in every step the number of singular values is equal to the rank of
C[n−m] the superfluous dimensions disappear naturally. This is crucial for the
application of the method since the dimension of the matrices correspond to
the dimension of the source for the sequential generation.

The original n qudit state can finally be written as

|ψ〉 = U[n]U[n−1] . . . U[2]C[1]

=
∑

in,...,i1

(
U in

[n]U
in−1

[n−1] . . . U
i2
[2]C

i1
[1]

)
|in, . . . , i1〉. (A.9)

In the second line we introduced dm × dm+1 matrices

U
in−m

[n−m] =
dm∑

kn−m+1=1

dm+1∑

kn−m=1

U
in−m

kn−m+1,kn−m
|kn−m+1〉〈kn−m|. (A.10)

The 1× d matrix U in
[n] and the dn−1 × 1 matrix Ci1

[1] are defined as

U in
[n] =

d∑

kn=1

U in
kn
〈kn| ,

C i1
[1] =

dn−1∑

k2=1

Mk2
i1
|k2〉 (A.11)
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and can be interpreted as the initial and final state of the source. Since after
the application of U[n−1] at most d levels of the source are populated, one
can always map its state onto the physical system. This is performed by U[n]

and therefore the source decouples from the state |ψ〉.





Appendix B

Adiabatic following condition

If the Hamiltonian H(t) of a system is time-dependent, this leads in general
to time-dependent eigenstates |ψi(t)〉 and time-dependent eigenvalues λi(t).
The state of the system is then given by

|Ψ(t)〉 =
∑

i

ci(t) exp
(
− i

∫ t

0

λi(τ)dτ
)
|ψi(t)〉. (B.1)

If the amplitudes ci are constant, one speaks of adiabatic following or an
adiabatic passage. In this case, a system initially (at time t0) prepared in a
certain eigenstate |ψ0(t0)〉 (e.g. a dark state) will always remain in |ψ0(t)〉.
We will now estimate the error probability and find under which condition
the assumption of constant ci’s is valid. An extensive analysis can be found
in [121].

Non-adiabatic contributions to the time-evolution result in a non-vanishing
probability to find the system in an eigenstate |ψk(t1)〉 with k 6= 0 at a time
t1 > t0. It is given by

Pk(t1) = |ck(t1)|2. (B.2)

In order to determine ck(t) we use the Schrödinger equation

〈ψ̃k(t)| d
dt
|Ψ(t)〉 = −i〈ψ̃k(t)|H(t)|Ψ(t)〉 (B.3)

with

|ψ̃k(t)〉 = exp
(
− i

∫ t

0

λk(τ)dτ
)
|ψk(t)〉. (B.4)

Substituting (B.1) into Eq. (B.3) leads to

dck(t)

dt
= −

∑
i

ci(t) exp
(
− i

∫ t

t0

[λi(τ)− λk(τ)]dτ
)
〈ψk(t)| d

dt
|ψi(t)〉. (B.5)
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Assuming that the non-adiabatic corrections are small, we use c0(t) ≈ 1 and
ci(t) ≈ 0 for i 6= 0 and end up with

ck(t1) = −
∫ t1

t0

dt exp
(
− i

∫ t

t0

[λ0(τ)− λk(τ)]dτ
)
〈ψk(t)| d

dt
|ψ0(t)〉. (B.6)

In a sufficiently small time-interval (t0, t1) the expressions λ0(τ)− λk(τ) and
〈ψk(t)| d

dt
|ψ0〉 are approximately constant and we obtain

|ck(t1)|2 = 2

∣∣∣∣∣
〈ψk| d

dt
|ψ0〉

λk − λ0

∣∣∣∣∣

2 (
1− cos[(λk − λ0)(t1 − t0)]

)
. (B.7)

The probability to find the system in |ψk(t)〉 is therefore bound by

Pk(t1) = |ck(t1)|2 ≤ 4

∣∣∣∣∣
〈ψk| d

dt
|ψ0〉

λk − λ0

∣∣∣∣∣

2

. (B.8)

If during the whole time evolution the adiabatic following condition

|λk − λ0| À |〈ψk| d
dt
|ψ0〉| (B.9)

for k 6= 0 is fulfilled, non-adiabatic corrections can be neglected.



Appendix C

Solution of the master equation

For low-dimensional Hilbert spaces, it is more efficient to solve the master
equation directly instead of using the quantum-jump approach. An elegant
way to solve the master equation for the d dimensional density operator ρ(t)
is to rewrite it as a vector differential equation for the d2 dimensional vector
~ρ(t) and diagonalize its formal solution. A master equation

dρ(t)

dt
=

d∑
i=1

Aiρ(t)Bi (C.1)

can always be written in the form

d~ρ(t)

dt
=

d∑
i=1

Ai ⊗BT
i

︸ ︷︷ ︸
M

~ρ(t), (C.2)

where M is the d2 dimensional evolution matrix. If M is time-independent,
the formal solution of Eq. (C.2) is given by

~ρ(t) = eMt~ρ(0). (C.3)

If M has non-degenerate eigenvalues its eigen decomposition is given by

M = PDP−1, (C.4)

where the matrix P is composed of the eigenvectors and D is the diagonal
matrix with the eigenvalues on its diagonal. Since the relation

Mn = PDnP−1 (C.5)
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holds for any positive integer n we obtain

eMt = PeDtP−1. (C.6)

With this result it is also straightforward to employ the quantum-regression
theorem (2.83) and calculate two-time expectation values. For two arbitrary
system operators we obtain

〈O1(t)O2(t + τ)〉 = trS

(
O2(0)eLτ [ρ(t)O1(0)]

)

= trS

(
O2(0)⊗ 1ld eMτ [~ρ(t)O1(0)⊗ 1ld]

)
. (C.7)
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