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Mehrdimensionale Simulationen von Kernkollaps-Supernovae mit einer variablen
Eddingtonfaktormethode für den energieabhängigen Neutrinotranport

Kernkollaps-Supernovae sind extrem interessante und spektakuläre Phänomene, zum Einen we-
gen ihres Beitrags zur Nukleosynthese schwerer Elemente, zum anderen wegen der Erzeugung
messbarer Neutrino- und Gravitationswellensignale. Numerische Simulationen sind zum Ver-
ständnis der extrem komplexen Vorgänge in Supernovae unerlässlich. Die vorliegende Arbeit
präsentiert die weltweit ersten Supernovarechnungen in denen zwei für den Explosionsmecha-
nismus wichtige Effekte in bisher unerreichter Genauigkeit berücksichtigt werden konnten: Der
Transport von Neutrinos und ihre Wechselwirkung mit dem Medium des Sterns, sowie hydro-
dynamische Instabilitäten. Ein neuer Typ von Instabilität konnte identifiziert werden, der in
unseren Simulationen Explosionen begünstigt und wichtige Konsequenzen für den Explosions-
mechanismus hat. Weitere Rechnungen sind notwendig um diese Aussage zu verifizieren.
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1 Introduction

Ever since Arnett published the first simulations of stellar core-collapses which failed to show
the expected supernova explosions in 1967 people have been speculating on what might be the
right recipe to seduce the dying star into exploding. This unremitting cooking contest which
has now gone on for almost fourty years has resulted in a variety of promising proposals. One
of the first, and most important, ingredients originated from Colgate & White (1966): In their
world-wide first core-collapse simulations they showed that the neutrinos emitted from the col-
lapsed core of a star could actually be the source of the energy necessary to induce a supernova
explosion in the stellar envelope. However, their inclusion of neutrino effects in the hydrody-
namic simulation was too simplistic while the simulations of Arnett (1967) were the first to
consistently calculate the transport of neutrinos and their interaction with the stellar medium.

Of course, the 37 years which have passed since these poineering works were published have
changed completely the view we have of core-collapse supernovae. For one, many physical
aspects of significant importance for supernovae have been revealed, e.g. the existence of weak
neutral current interactions (Tubbs & Schramm 1975). Also, the limited computational power
has always enforced strong simplifications of this very complex problem so that several im-
portant effects were found only after an increase in computational power allowed for more
sophisticated simulations.

Although there still exist physical uncertainties such as for the properties of the nuclear equa-
tion of state and neutrino interaction rates at high densities, and the computers are still not fast
enough to allow for simulations which would satisfy all the requirements of the theorists, the
basic picture of stellar core collapse is quite well established nowadays. This picture has more-
over been confirmed by the detection of the neutrinos which were produced by the Supernova
1987A. But the exact nature of the explosion mechanism is still unclear.

We know that core-collapse supernovae—not to be confused with the “standard candle” super-
novae, which are the results of accretion-induced thermo-nuclear explosions of white dwarfs—
are produced by massive stars with more than eight solar masses. These stars generally evolve
a core which consists of iron-like nuclei and is stabilized against gravitational collapse mainly
by the pressure of the degenerate electron gas. The slow contraction of the iron core due to the
emission of neutrinos which carry away lepton number leads to a rise of the temperature. This
evolution speeds up significantly when the photons in the medium become energetic enough
to dissociate the nuclei. Together with the increasing neutrino emission rate the endothermic
photo-dissociation destabilizes the core.

When the collapsing matter reaches densities above 1012g cm−3 coherent scattering of neutri-
nos on nuclei becomes so frequent that the neutrinos are trapped inside the core on dynamical
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2 CHAPTER 1. INTRODUCTION

timescales. The neutrino-matter interactions come into equilibrium while the energy loss by
neutrino diffusion is negligible. Still, the collapse is only halted when the matter reaches nuclear
densities at about 3 · 1014g cm−3 where the nuclei transform to a homogeneous phase of non-
relativistic free nucleons and the pressure and the “stiffness” of the equation of state increase
strongly due to repulsive nuclear forces. The dynamic collapse causes the core to overshoot the
nuclear density and to rebound. The outer parts of the core, however, are by now falling with
supersonic velocities, and where the rebounding inner core collides with the infalling outer core
a shock forms.

This energetic, outward-moving “prompt” shock, which reverses the infall of the matter it plows
through, quickly loses its power: First, the iron-like nuclei in the matter falling through the
shock are dissociated immediately at the high temperatures present behind the shock, a highly
endothermic process. Second, when the shock has moved out to densities below 1011g cm−3

where the matter is no longer opaque to neutrinos the shocked hot matter radiates away large
amounts of lepton number and energy in form of electron neutrinos. Even if the nuclear dis-
sociation would not deprive the shock of its energy, this “neutrino burst” at “shock breakout”
(i.e. when the shock passes the “neutrinosphere”) does it for sure. The “post-shock” velocities
(i.e. the velocities of the shocked material) change from positive (i.e. expansion) to negative:
After only a few milliseconds, the prompt shock “fails” while the matter behind it continues
to settle onto the compact remnant of the collapse, the so-called proto neutron star (Bruenn
1989a,b).

For quite a long time it was believed that the explosion would occur promptly, i.e. the hydrody-
namic shock would make its way out through the star directly, but all suggested attempts to keep
the prompt shock alive ultimately failed (see Bethe 1990). There remain only few uncertainties
concerning how far the prompt shock may expand before it inevitably stalls, which depend on
details of the neutrino processes during collapse (Bruenn & Mezzacappa 1997; Langanke et al.
2003) and on the still remaining ambiguity of the equation of state at nuclear densities (Marek
2003).

It was in 1982 that Wilson revolutionized the field by performing a numerical calculation made
possible by the availability of computational power: A simulation which was allowed to fol-
low the evolution after shock formation for as long as several hundred milliseconds yielded an
explosion: The neutrinos emitted from the slowly cooling proto neutron star and from the hot,
shocked material that is accreted onto the proto neutron star (Bethe & Wilson 1985) were found
to deposit enough energy in the layers just below the stalled prompt shock to revive it.

Newer models with a more sophisticated treatment of neutrino transport than by Wilson (1982),
however, have shown that this so-called “neutrino-driven delayed explosion mechanism” may
not work: The energy deposition of the neutrinos below the shock, which is only a few percent
of the total amount of energy emitted with neutrinos and therefore sensitive to details of the
interaction processes and the treatment of the transport, might not be sufficient to drive the
shock (Bruenn 1987, 1993).

For understanding why it is so hard to explain the explosion it is helpful to discuss the situation
after the prompt shock has stalled: Energy is overabundant in the proto neutron star where
it was stored as internal energy during gravitational infall; energy is needed just below the
shock to drive it outwards. In between, two effects dominate the evolution: neutrino cooling,
which is roughly proportional to the sixth order of the temperature, and neutrino heating, which
is roughly proportional to the neutrino flux and the matter density. As a consequence of the
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specific, close to hydrostatic, structure between the neutrinosphere and the shock there will
always exist a region, the “cooling region”, where cooling is stronger and above this a region,
the “gain layer”, where cooling is weaker than heating. The pivot of all this is that the border
between these two regions, the so-called “gain radius” where cooling and heating balance each
other, is not at all fixed. Matter in the cooling region contracts steadily due to the energy loss.
As a consequence the matter in the lower region of the gain layer will move inward and thereby
contract to adopt to the hydrodynamic contitions at the lower radius. This contraction increases
the temperature, and therefore the neutrino emission, and the matter becomes part of the cooling
region. Hence material in the gain layer has only a limited time to absorb energy from neutrinos
before it is lost to the cooling region and reemits this energy. Therefore it needs rather high
neutrino fluxes to reverse the contraction of the gain layer. Close to the shock where the energy
would be needed the density and neutrino flux are much lower and heating is less efficient. The
search for the explosion mechanism is therefore concentrated on finding out how the energy is
efficiently brought to just below the shock.

Over the years it became clear that several multi-dimensional phenomena would appear in a
supernova (for a review see Bethe 1990). Many of these processes enhance the transport of
energy from the proto neutron star to just below the shock or are helpful for shock revival in
some other way. However, hydrodynamic simulations testing these effects had to wait until the
needed computational power became available in the 1990s.

Two effects which both power the shock by increasing the efficiency of the neutrino heating ori-
gin from the formation of two convectively unstable regions. For one, in the proto neutron star,
which is optically thick for neutrinos, convection transports energy towards the neutrinosphere
(Epstein 1979) and thus has the potential of increasing the neutrino fluxes, and thus heating,
if the convective region is large enough (Burrows 1987). Wilson & Mayle (1993) assumed a
special, neutrino diffusion driven type of convection, the so-called “neutron finger instability”,
to arise just below the neutrinosphere. They obtained explosions in one-dimensional simula-
tions that imitated this convective energy transport mechanism originally proposed by Smarr
et al. (1981). However, the appearance and exact mode of convective instability depends sen-
sitively on properties of the equation of state as well as on the structure of the proto neutron
star. The latter in turn depends on the neutrino processes and transport during collapse, bounce,
and neutrino burst. Especially the conditions for convective instabilities which are driven by
neutrino diffusion, such as the neutron finger instability, are very sensitive to the details of the
neutrino transport and interaction processes (Bruenn et al. 1995, 2004). Both the equation of
state used by Wilson & Mayle (1993) as well as their treatment of neutrinos are not generally
accepted. Thus it is no wonder that two-dimensional simulations—with a different equation
of state—do not find neutron finger instabilities (see e.g. Keil et al. 1996; Mezzacappa et al.
1998a). Nevertheless other types of convective modes may occur deeper inside the proto neu-
tron star as shown in a two-dimensional proto neutron star simulation by Keil et al. (1996) and
as predicted by analytic studies based on one-dimensional simulations (Burrows 1987; Pons
et al. 1999; Bruenn et al. 2004). These energy transport mechanisms also affect the neutrino
emission, in general however to a smaller extent than seen in the one-dimensional models of
Wilson & Mayle (1993). The extent to which these energy transport mechanisms affect the
neutrino emission depends on the size of the convectively stable layer between the convective
region and the neutrinosphere, where the energy can be transported only by means of neutrino
diffusion. Except for in the analysis of Bruenn et al. (2004), this layer is found to be much larger
than in Wilson & Mayle (1993). The question whether the convection-induced increase of the
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neutrino flux can change the supernova dynamics significantly can only be answered by fully
multi-dimensional supernova simulations with an adequate treatment of the neutrino physics.

The other convective instability occurs far above the neutrinosphere in the gain layer. Here,
the neutrino heating of the material, the strength of which decreases quickly with increasing
distance from the gain radius, establishes a negative entropy profile which makes the region
convectively unstable (Bethe 1990; Herant et al. 1992). This convection transports heated ma-
terial from close to the gain radius to just below the shock. Thereby the material expands nearly
adiabatically and thus no longer is prone to energy losses via neutrino reemission. The expan-
sion also pushes the shock farther out. Simultaneously yet unheated matter from above can
flow down past the uprising matter to be heated more efficiently. Again, the results of numerical
simulations of this so-called “hot bubble” convection are controversial. While all simulations
feature this neutrino-driven convective instability and numerical parameter studies confirm that
it is helpful for shock revival (Janka & Müller 1996), only in some of the simulations this de-
cides the explosion (Herant et al. 1992, 1994; Burrows et al. 1995; Fryer 1999; Fryer & Heger
2000; Fryer & Warren 2002, 2004), while others find this process to be too weak (Miller et al.
1993; Mezzacappa et al. 1998b).

While all the just mentioned simulations use for the description of the neutrino transport a
diffusion scheme in which a flux limiter governs the transition from diffusion to free streaming,
the class of exploding simulations assumes a thermal spectrum for the neutrinos and thus does
not adequately account for the fact that the cross sections of neutrino interactions are very
sensitive to the neutrino energy and the heating may thus be altered significantly for non-thermal
spectra. Although Mezzacappa et al. (1998b) therefore uses the more elaborate multi-energy
group treatment, the flux-limited diffusion scheme is known to lead to too large neutrino fluxes
and therefore underestimates the neutrino density and thus heating in the gain layer (Messer
et al. 1998; Yamada et al. 1999).

Other multi-dimensional effects which have been under suspicion of helping with the explosion
since Leblanc & Wilson (1970) are rotation and magnetic fields: Strong rotation can deform
the proto neutron star, affect convective processes significantly, alter the neutrino emission, and
provides an energy reservoir in form of rotational energy. Due to the action of magnetic fields
supernovae are further believed to be able to create jet-like outflow. Magnetic fields and rotation
could probably even link the enigmatic gamma ray bursts with supernovae, see Postnov (2004)
for a recent collection of scenarios with magnetic fields. However, it is still uncertain how
fast rotation and how strong magnetic fields can become in the cores of evolved massive stars.
Recent calculations suggest moderate rotation (Heger et al. 2004) which would hardly affect
the stellar core collapse and supernova evolution. In addition, the observation of neutron stars
which are not pulsars, in particular the compact remnant of Cas A, and thus either lack strong
rotation or strong magnetic fields or both can be interpreted such that the explosion mechanism
does not depend on rotation or magneto-hydrodynamic effects.

If we ignore all exotic effects which have been suggested to support the explosion of a su-
pernova, such as photon–mirror photon mixing in a left-right symmetric gauge group (Foot &
Silagadze 2004) or non-standard neutrino interaction rates (Rampp et al. 2002; Amanik et al.
2004), as well as rapid rotation and strong magnetic fields, we are left with a model for the
explosion mechanism in which neutrinos, supported by convective instabilities in two regions
above and below the neutrinosphere, revive the stalled shock on a timescale of several hundred
milliseconds. No doubt the reader has noted that the main uncertainty in previous simulations
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discussed above was always concerning the treatment of neutrino transport and neutrino in-
teractions. This is a critical shortcoming because the neutrinos are the main means of energy
transport between the proto neutron star and the gain layer. It is exactly in this region where
approximations of the neutrino transport mostly fails because the neutrinos still interact too fre-
quently with the medium to be treated as freely streaming but also are no longer trapped so that
the diffusion limit does not hold. Further, the energy emitted in form of neutrinos is more than
a factor of ten larger than the amount needed for shock revival. Thus, e.g. absorbing only one
additional percent of the total neutrino flux can have a dramatic influence on the evolution of
the shock.

With the development of numerical codes which solve the energy-dependent Boltzmann equa-
tions in spherical symmetry for neutrinos in the supernova environment (Mezzacappa & Bruenn
1993a; Burrows et al. 2000; Rampp & Janka 2002) a strongly improved and now very reliable
treatment of neutrino transport has recently become possible. The computational power has now
reached a level where these equations can be solved with sufficient resolution in a reasonable
amount of time, which was not the case a few years ago, see e.g. Yamada et al. (1999). Further,
neutrino interactions which play a role in the supernova environment have been calculated to
better accuracy or have only recently been recognized in their importance (Hannestad & Raffelt
1998; Burrows & Sawyer 1998, 1999; Buras et al. 2003, and many more). These advancements
allowed me to perform one-dimensional simulations for various progenitors with 11.2–25 solar
masses, using the neutrino transport and hydrodynamics code VERTEX1 of Rampp & Janka
(2002) which was supplemented with an update of all relevant neutrino interaction rates. These
simulations together with those presented by Mezzacappa et al. (2001), Liebendörfer et al.
(2001), and Thompson et al. (2003) have finally proven that Wilsons delayed neutrino-driven
mechanism definitely does not work in spherical symmetry.

The most important goal of this work, however, was the application of the improved energy-
dependent treatment of neutrino transport in two-dimensional hydrodynamic supernova simu-
lations, which take into account the effects of convection. The extension of the code VERTEX
to two dimensions is called MuDBaTH2 and features a reasonable approximation of the non-
radial part of the neutrino transport which can be justified in the absence of a strong deformation
of the proto neutron star from spherical symmetry due to rapid rotation. The current version
of MuDBaTH does not allow for simulations in three dimensions. Although an extension to
three dimensions is straightforward, it currently is not feasible due to the computational limita-
tions. Yet two dimensions are already sufficient for a description of basic effects of convection.
Therefore these runs, which have been performed for three different progenitor models with
masses varying from 11.2 to 20 solar masses, represent the world-wide first simulations with
both an accurate spectral treatment of the neutrino transport and the multi-dimensional feature
of convection.

The implications of this new generation of models are manifold. They show a moderate sensitiv-
ity of the dynamical evolution of core collapse supernovae on the progenitor model in spherical
symmetry. Comparison with simulations with previously used approximations of the neutrino
interaction rates also reveal only moderate differences. The effects of convective processes are
most significant. The two-dimensional models confirm the existence of convection both in the
proto neutron star as well as in the gain layer, and show that convection can take the evolution

1An abbreviation of Variable Eddington factor Radiative Transfer for supernova Explosions.
2An abbreviation of Multi-Dimensional Boltzmann Transport and Hydro.



6 CHAPTER 1. INTRODUCTION

considerably closer to explosion. For one model indeed a weak explosion is obtained.

The simulations are also interesting in other aspects. They provide detailed and reliable infor-
mation about the spectra and fluxes of the emitted neutrinos of all types (νe, ν̄e, νµ, . . . ) which
have been used in detection analyses of supernova neutrinos (Kachelriess et al. 2004). Further,
by artificially inducing an explosion in a two-dimensional model the neutron-to-proton ratio
in the supernova ejecta could be determined more reliably than before with less sophisticated
neutrino treatments. This led to interesting results for the nuclear composition of these ejecta
(Pruet et al. 2004).

This thesis is splitted in three parts. In Chapter 2 I describe and justify the technical details
of how the one-dimensional code VERTEX (described in Rampp & Janka 2002) was extended
to two dimensions, creating the code MuDBaTH. In Chapter 3 all models, i.e. one- and two-
dimensional ones, are presented that used the “reference” progenitor model s15s7b2 of Woosley
& Weaver (1995). Chapter 4 discusses simulations for nine different progenitor models in
spherical symmetry. Two progenitor models were investigated by two-dimensional runs and
were compared with the two-dimensional run for the progenitor s15s7b2. Finally, in Section
4.3.3 a simulation that produces a weak explosion is discussed. Although this model should be
interpreted carefully, it supports my conclusions in Chapter 5 that the explosion mechanism is
nearly understood.



2 Equations for the two-dimensional

problem and their numerical

implementation
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8 CHAPTER 2. EQUATIONS FOR THE TWO-DIMENSIONAL PROBLEM AND IMPLEMENTATION

A variable Eddington factor method was developed by Rampp (2000) and Rampp & Janka
(2002) for tackling the Boltzmann equation of neutrino transport in spherically symmetric sim-
ulations of core-collapse supernovae. They also proposed a generalization of their method to
multi-dimensional problems (see Rampp & Janka 2002, Sect. 3.8). Based on their sugges-
tions, we have developed a two-dimensional version of their code, called MuDBaTH (MUlti-
Dimensional BoltzmAnn Transport and Hydrodynamics).

We will elaborate on the equations to be solved in multidimensional problems, present a de-
tailed discussion of the approximations we found necessary to achieve a tolerable computational
speed, and point out possible limitations of our approach. We also describe a new treatment of
the equation of state (EoS) in the sub-nuclear density regime and compare a dynamic model ob-
tained with this EoS with the corresponding model that was computed with the EoS of Rampp
& Janka (2002).

In order to be able to exploit symmetries of the problem we work in a system of spherical
coordinates with radius r, latitudinal angle ϑ, and longitudinal angle ϕ. For all simulations
performed so far we have assumed that azimuthal symmetry holds with respect to the polar axis,
but a generalization of the presented method to three-dimensional situations is straightforward.

Like the one-dimensional version documented by Rampp & Janka (2002) the algorithm relies
on an operator splitting approach which means that the coupled system of evolution equations
is processed in two independent steps, a hydrodynamic step and a neutrino-transport/interaction
step. In each timestep these two steps are solved subsequently.

2.1 Hydrodynamics

For an ideal fluid characterized by the mass density ρ, the radial, lateral, and azimuthal compo-
nents of the velocity vector (vr, vϑ, vϕ), specific energy ε = e+ 1

2 (v2
r +v2

ϑ+v2
ϕ) and gas pressure p,

the Eulerian, nonrelativistic equations of hydrodynamics in spherical coordinates and azimuthal
symmetry read:

∂
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r sinϑ
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where Φ denotes the gravitational potential of the fluid, and ~QM = (QMr,QMϑ) and QE are the
neutrino source terms for momentum transfer and energy exchange, respectively. Eqs. (2.1–2.5)
are closed by the equation of state (EoS) which, in the case of nuclear statistical equilibrium
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(NSE), yields the pressure p for given ρ, e, and electron fraction Ye. To achieve latter variable
the hydrodynamic equations are supplemented by the conservation equation

∂

∂t
(ρYe) +

1
r2

∂

∂r

(

r2ρYe vr

)

+
1

r sinϑ
∂

∂ϑ
(sinϑ ρYe vϑ) = QN , (2.6)

where the source term QN/mB is the rate of change of the net electron number density (i.e. the
density of electrons minus that of positrons) due to emission and absorption of electron-flavour
neutrinos and mB is the baryon mass. In case the medium is not in the state of NSE, the EoS
additionally needs the chemical composition of the plasma to determine p. Thus, an equation
like Eq. (2.6) also has to be solved for the abundance of each nucleus k, Yk ≡ nk/nby, using

∂

∂t
(ρYk) +

1
r2

∂

∂r

(

r2ρYk vr

)

+
1

r sinϑ
∂

∂ϑ
(sinϑ ρYk vϑ) = Rk , (2.7)

where nk and nby are the number density of nucleus k and the baryon number density, respec-
tively, and Rk ≡ ρ δYk/δt, where δYk/δt is a source term that describes the rate of composition
changes by nuclear reactions for species k.

For the numerical integration of Eqs. (2.1–2.7) we employ the Newtonian finite-volume code
PROMETHEUS (Fryxell et al. 1989, 2000), which was supplemented by additional problem
specific features (Keil 1997) and the improvements described in Kifonidis et al. (2003). PRO-
METHEUS is a direct Eulerian implementation of the Piecewise Parabolic Method (PPM) of
Colella & Woodward (1984). As a time-explicit, third-order in space, second-order in time
Godunov scheme with a Riemann solver it is particularly well suited for following disconti-
nuities in the fluid flow like shocks, contact discontinuities, or boundaries between layers of
different chemical composition. A notable advantage in the present context is its capability
of solving multi-dimensional problems with high computational efficiency and numerical ac-
curacy. Our code makes use of the “Consistent Multifluid Advection” (CMA) method (Plewa
& Müller 1999) for ensuring an accurate advection of different chemical components of the
fluid, and switches from the original PPM method to the HLLE solver of Einfeldt (1988) in the
vicinity of strong shocks to avoid spurious oscillations (the so-called “odd-even decoupling”,
or “carbunkel”, phenomenon) when such shocks are aligned with one of the coordinate lines in
multidimensional simulations (Quirk 1994; Liou 2000; Kifonidis et al. 2003; Sutherland et al.
2003).

Although our hydrodynamic scheme is Newtonian, we have included effects of general rela-
tivistic (GR) gravity approximately in the following way: the gravitational potential used in
our simulations can be symbolically written as Φ(r, ϑ) = ΦNewt

2D (r, ϑ) +
(

ΦGR
1D (r) − ΦNewt

1D (r)
)

.
We compute the Newtonian gravitational potentialΦNewt

2D for the two-dimensional axisymmetric
mass distribution by expanding the integral solution of the Poisson equation into a Legendre
series, truncated at l = 10 (cf. Müller & Steinmetz 1995). General relativistic effects are ap-
proximately taken into account by the spherically symmetric correction termΦGR

1D −Φ
Newt
1D , where

ΦGR
1D denotes an effective general relativistic gravitational potential as employed for spherically

symmetric simulations (see Rampp & Janka 2002, Eq. 53) and ΦNewt
1D is its Newtonian coun-

terpart. The general relativistic potential ΦGR
1D is deduced from a comparison of the Newtonian

and relativistic equations of motion in spherical symmetry and includes terms due to the pres-
sure and energy of the stellar medium and neutrinos (see Rampp & Janka 2002). Both, ΦGR

1D (r)
and ΦNewt

1D (r) are computed using angular averages of the evolved variables. In two-dimensional
simulations which cover only a limited range of latitudes 0 < ϑmin ≤ ϑ ≤ ϑmax < π around the
equatorial plane we set Φ(r, ϑ) = ΦGR

1D (r).



10 CHAPTER 2. EQUATIONS FOR THE TWO-DIMENSIONAL PROBLEM AND IMPLEMENTATION

The source terms QMr, QMϑ, QE, and QN on the right-hand sides of Eqs. (2.2,2.3,2.5,2.6) are
determined by the solution of the neutrino transport equations. The source terms Rk depend on
changes of the composition according to nuclear burning. Unless stated otherwise, the EoS we
apply is the same as described in detail in (Rampp & Janka 2002, App. B).

Note that PROMETHEUS only solves the left-hand sides of the hydrodynamic Eqs. (2.1–2.7)
and that the EoS is not evaluated during this procedure. The terms on the right-hand sides,
i.e the gravitational, neutrino, and burning effects, as well as the evaluation of the EoS and, if
applicable, of the NSE composition, are applied in operator split steps.

2.2 Neutrino transport

Solving the full two-dimensional set of moments equations is definitely the most precise way
of simulating supernovae in two dimensions. However, starting from a one-dimensional code
such an extension would be a huge step. It would introduce several more degrees of freedom to
the moments equations which would require one additional moments equation to be solved and
five more closure relations to account for. Thus we restrain ourselves to a mimimal extension of
the one-dimensional moments equations to two dimensions in which new degrees of freedom
(including, in case of our azimuthal symmetry, the lateral flux and off-diagonal pressure tensor
terms which account for neutrino viscosity) are set to zero, but the additional moments equations
(in our case for the lateral flux) is taken into account. In the next section, we will justify why
we believe this approximation is sufficient for simulating two-dimensional neutrino transport
in the context of core-collapse supernovae, but also explain why further simplifications are not
allowed.

The great advantage of our minimal 2D neutrino transport is that the neutrino moments of dif-
ferent spatial angle (except for some terms which can be accounted for explicitly in an operator
split) decouple from each other. Therefore, for each “radial ray”, i.e. all zones of same spatial
angle, the moments equations can be solved independently. Up to some terms this problem is
identical to the problem of solving the moments equations for a spherically symmetric star.

We further make following usual assumptions: first, we ignore any kind of neutrino oscillations.
This is justified if one ignores the results of LSND; then the parameters for atmospheric and so-
lar neutrino oscillations predict the resonant MSW effect to be at densities far below 105g/cm3

so that this effect has no influence on the region of interest. Furthermore, non-resonant oscil-
lations are strongly suppressed in the proto neutron star (PNS) due to first and second order
refractive effects, see Hannestad et al. (2000). Second, as the medium, even in the PNS, hardly
contains any muons and tauons, which implies small or vanishing chemical potential for the µ
and τ type neutrinos, and the opacities are nearly equal for νµ, ν̄µ, ντ, and ν̄τ we treat these four
neutrino types identically and set µνµ ≡ µντ ≡ 0. We will notate them collectively as “νx”.

2.2.1 Moments equations

In a two-dimensional transport scheme assuming azimuthal symmetry, the specific intensity
I(t, r, ϑ, ϕ, ε, n) does not depend on the azimuth ϕ. We describe the direction of propagation
n by the angle cosine µ ≡ n · r/|r|, measured with respect to the radius vector ~r, and the
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angle ω. Then azimuthal symmetry implies I(. . . , µ, ω) = I(. . . , µ,−ω), see also Appendix B.
Making the additional assumption that I is independent of ω, each of the angular moments of
the specific intensity can be expressed by one scalar, namely

{J,H,K, L, . . . }(t, r, ϑ, ε) ≡
1
2

+1
∫

−1

dµ µ{0,1,2,3,... }I(t, r, ϑ, ε, µ) , (2.8)

where we have used the Eqs. (B.9-B.12), which follow from our assumptions, to reduce the
number of independent variables in the angular moments of the neutrino intensity as defined in
Eqs. (B.3). As usual, ε labels the energy of the neutrinos. As a consequence of the afore men-
tioned assumptions the three-dimensional set of moments equations for describing the evolution
of neutrino energy and flux in the comoving frame, given by Eqs. (B.4-B.7) in the Newtonian,
O(v/c) approximation, simplifies to

(

1
c
∂

∂t
+ βr
∂

∂r
+

βϑ

r
∂

∂ϑ

)

J + J

(

1
r2

∂(r2βr)
∂r
+

1

r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

(2.9)

+
1
r2

∂(r2H)
∂r

+
βr

c
∂H
∂t

−
∂

∂ε

{

ε

[

1
c
∂βr

∂t
H + K

(

∂βr

∂r
−
βr

r
−

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

+ J

(

βr

r
+

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)]}

+ K

(

∂βr

∂r
−
βr

r
−

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

+ J

(

βr

r
+

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

+
2
c
∂βr

∂t
H = C(0) ,

(

1
c
∂

∂t
+ βr
∂

∂r
+

βϑ

r
∂

∂ϑ

)

H + H

(

1
r2

∂(r2βr)
∂r
+

1

r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

(2.10)

+
∂K
∂r
+

3K − J
r
+ H

(

∂βr

∂r

)

+
βr

c
∂K
∂t

−
∂

∂ε

{

ε

[

1
c
∂βr

∂t
K + L

(

∂βr

∂r
−
βr

r
−

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

+ H

(

βr

r
+

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)]}

+
1
c
∂βr

∂t
(J + K) = C(1)

r ,

where, βr = vr/c and βϑ = vϑ/c. For the moment, Eqs. (B.6-B.7) can be ignored as the variables
which evolution they describe, i.e. Hϑ and Hϕ, are strictly zero. The functional dependences
βr = βr(t, r, ϑ), J = J(t, r, ϑ, ε), . . . , are suppressed in the notation. With J = J/ε, H = H/ε,
K = K/ε, and L = L/ε, the moments equations describing the evolution of neutrino number
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read
(

1
c
∂

∂t
+ βr
∂

∂r
+

βϑ

r
∂

∂ϑ

)

J +J

(

1
r2

∂(r2βr)
∂r
+

1

r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

(2.11)

+
1
r2

∂(r2H)
∂r

+
βr

c
∂H

∂t

−
∂

∂ε

{

ε

[

1
c
∂βr

∂t
H +K

(

∂βr

∂r
−
βr

r
−

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

+J

(

βr

r
+

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)]}

+
1
c
∂βr

∂t
H = C(0) ,

(

1
c
∂

∂t
+ βr
∂

∂r
+

βϑ

r
∂

∂ϑ

)

H +H

(

1
r2

∂(r2βr)
∂r
+

1

r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

(2.12)

+
∂K

∂r
+

3K − J
r

+H

(

∂βr

∂r

)

+
βr

c
∂K

∂t

−
∂

∂ε

{

ε

[

1
c
∂βr

∂t
K +L

(

∂βr

∂r
−
βr

r
−

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

+H

(

βr

r
+

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)]}

− L

(

∂βr

∂r
−
βr

r
−

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

− H

(

βr

r
+

1

2r sin ϑ

∂(sin ϑβϑ)

∂ϑ

)

+
1
c
∂βr

∂t
J = C(1)

r .

This system of moments equations (2.9–2.12) is very similar to the Newtonian,O(v/c) moments
equations in spherical symmetry (see Rampp & Janka 2002, Eqs. 7,8,30,31), we have set the
additional terms arising from our approximative generalization to two dimensions in boldface.
Adding general relativistic (GR) effects in the spirit of Rampp & Janka (2002) to our approxi-
mative 2D transport proves not to alter the boldface terms, so that the corresponding equations
are Eqs. (54–57) in the latter paper, which handle the GR effects for 1D transport, plus those
terms in Eqs. (2.9–2.12) that are typeset in boldface. The equations are closed by substituting
K = fK · J and L = fL · J, where fK and fL are the variable Eddington factors.

In order to discretize Eqs. (2.9–2.12), the computational domain [0, rmax]×[ϑmin, ϑmax] is covered
by Nr radial and Nϑ angular zones, where ϑ = 0, π correspond to the polar axis and ϑ = π/2
to the equatorial plane of the spherical grid. All radiation variables are defined on the angular
centres of the zones with the coordinate ϑk+ 1

2
≡ 1

2 (ϑk + ϑk+1) being defined as the arithmetic
mean of the corresponding interface values. The equations are solved in two operator splitted
steps corresponding to a lateral and a radial sweep.

In a first step, we treat the boldface terms in the respectively first lines of Eqs. (2.9–2.12) which
describe the lateral advection of the neutrinos with the stellar fluid, and thus couple the radiation
moments of neighbouring angular zones. For this purpose we solve the equation

1
c
∂Ξ

∂t
+

1
r sinϑ

∂(sinϑ βϑ Ξ)
∂ϑ

= 0 , (2.13)

where Ξ represents one of the moments J, H, J , or H . After integration over the volume of a
zone (i + 1

2 , k +
1
2 ) the finite-differenced version of Eq. (2.13) reads:

Ξn+1
i+ 1

2 ,k+
1
2

− Ξn
i+ 1

2 ,k+
1
2

ctn+1 − ctn

+
1

∆Vi+ 1
2 ,k+

1
2

(

∆Ai+ 1
2 ,k+1 βϑi+ 1

2 ,k+1Ξ
n
i+ 1

2 ,κi+1/2(k+1)
− ∆Ai+ 1

2 ,k
βϑi+ 1

2 ,k
Ξn

i+ 1
2 ,κi+1/2(k)

)

= 0 , (2.14)
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with the volume element ∆Vi+ 1
2 ,k+

1
2
= 2π

3 (r3
i+1 − r3

i ) (cosϑk − cosϑk+1) and the surface element
∆Ai+ 1

2 ,k
= π (r2

i+1 − r2
i ) sinϑk. Note that additional indices of Ξ which label energy bins and the

different types of neutrinos are suppressed for clarity. To guarantee monoticity, upwind values
of the moments Ξn

i+ 1
2 ,κi+1/2(k)

, with

κi+1/2(k) ≡















k − 1
2 for βϑi+ 1

2 ,k
> 0 ,

k + 1
2 else ,

(2.15)

are used for computing the lateral fluxes across the interfaces of the angular zones. The time-
step limit enforced by the Courant-Friedrichs-Lewy (CFL) condition is

∆tCFL = min
i,k

∆xϑ;i+ 1
2 ,k+

1
2

∣

∣

∣

∣

vϑ;i+ 1
2 ,k+

1
2

∣

∣

∣

∣

, (2.16)

where ∆xϑ is the zone width in lateral direction. It turns out that this condition is not restrictive
in our simulations. In practice, the numerical time-step is always limited by other constraints.

Now, in the second step, the radial sweep for solving Eqs. (2.9–2.12) is performed. Considering
a radial ray with given ϑk+ 1

2
, the radial discretization of the equations (and of their general

relativistic counterparts) proceeds exactly as detailed in Rampp & Janka (2002). The terms in
boldface not yet taken into account in the lateral sweep do not couple the radiation moments
of neighbouring angular zones and thus can be included into the discretization scheme of the
radial sweep in a straightforward way.

It should be noted that so far we have not included in our computer code the βr ∂/∂t-derivatives
of the moments which appear at the end of the respective second lines of Eqs. (2.9–2.12),
cf. Rampp & Janka (2002).

2.2.2 Eddington factors

In analogy to the treatment of the moments equations in the previous section the calculation of
the variable Eddington factors could in principle also be done on (almost) decoupled radial rays.
However, such a procedure would account for a sizeable amount of computer time. On the other
hand, the Eddington factors are normalized moments of the neutrino phase space distribution
and thus, in the absence of persistent global deformation of the star, should not show significant
variation with the angular coordinate (cf. Rampp 2000; Rampp & Janka 2002). Therefore we
have decided to determine the variable Eddington factors only once for an “angular averaged”
radial ray instead of computing them for each radial ray separately. The corresponding reduction
of the computational load can be up to a factor of 10 (Rampp & Janka 2002). We will discuss
and try to estimate the possible errors associated with our approximate 2D transport treatment
in Sect. 2.3.

Independent of, and in advance of, our two dimensional approximation of the moments equa-
tions, the code solves a time-step of the one-dimensional neutrino transport on a spherically
symmetric image of the stellar background. The latter is defined as the angular averages of
structure variables ξ ∈ {ρ, T, Ye, βr, . . . } according to ξ(t, r) ≡ 1

b−a

∫ b

a
d cosϑ ξ(t, r, ϑ) f (t, r, ϑ),

where a = cos(ϑmax) and b = cos(ϑmin) and f is a weighting function which can be either ρ or 1
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depending on which choice is more sensible. The computation of the 1D transport step proceeds
exactly as described for the spherically symmetric version of the code, i.e. the coupled set of
the 1D moments equations and a 1D model Boltzmann equation are iterated to convergence to
obtain solutions for the variable Eddington factors fK and fL (see Rampp & Janka 2002). These
variable Eddington factors are used for all latitudes ϑ of the multidimensional transport grid
when solving the two-dimensional moments equations.

2.2.3 Coupling to the hydrodynamics

The system of neutrino transport equations (2.9–2.12) is coupled with the equations of hydro-
dynamics (2.1–2.6) by virtue of the source terms

QN =
∑

ν

−4πmB sgn(ν)
∫ ∞

0
dε C(0)

ν (ε) , (2.17)

QE =
∑

ν

−4π
∫ ∞

0
dε C(0)

ν (ε) , (2.18)

QMr =
∑

ν

−
4π
c

∫ ∞

0
dε C(1)

r,ν (ε) , (2.19)

QMϑ =
∑

ν

−
4π
c

∫ ∞

0
dε C(1)

ϑ,ν
(ε) , (2.20)

where mB denotes the baryon mass, C(0)
ν (ε) ≡ ε−1C(0)

ν (ε), and C(0)
ν (t, r, ϑ, ε) ≡ (4π)−1

∫

dΩ

Cν(t, r, ϑ, ε, ~n) and C(1)
ν (t, r, ϑ, ε) =

(

C(1)
r,ν ,C

(1)
ϑ,ν

)

= (4π)−1
∫

dΩ n Cν(t, r, ϑ, ε, ~n) are angular mo-
ments of the collision integral of the Boltzmann equation, Cν. Note that in Eqs. (2.17–2.20) the
moments of the collision integral are summed over all neutrino types ν ∈ {νe, ν̄e, νµ, ν̄µ, ντ, ν̄τ},
and sgn(ν) = + 1 for neutrinos and − 1 for antineutrinos. Remember that we treat νµ, ν̄µ, ντ and
ν̄τ identically because their matter interactions are nearly equal. They do not transport electron

lepton number and therefore do not contribute to QN. In the following we suppress the index ν.

Our simplification of the neutrino transport equations enforces a radial flux vector, i.e. the
angular flux component Hϑ ≡ 0. However, as we shall demonstrate below, the corresponding
lateral component of the momentum transfer from neutrinos to the stellar medium, described by
the source term QMϑ, can not be neglected in the Euler equation of the stellar fluid (2.3) when
the neutrinos are tightly coupled to the medium. This implies that we should solve the moments
equation for the lateral transport of neutrino momentum (B.6) which, using the assumptions
Eqs. (B.9-B.12), simplifies to

C(1)
ϑ

(ε) =

(

∂βϑ

∂r
−
βϑ

r

)

H +
1
2r
∂(J − K)
∂ϑ

+
1
2c
∂βϑ

∂t
(3J − K) +

βϑ

2c
∂(J − K)
∂t

−
∂

∂ε

{

ε

[

1
2c
∂βϑ

∂t
(J − K) +

1
2

(

∂βϑ

∂r
+

1
r
∂βr

∂ϑ
−
βϑ

r

)

(H − L)

]}

. (2.21)

On the other hand, under the conditions present in the optically thick PNS diffusion is a good
approximation (i.e. J ≡ 3K) and the above equation simplifies considerably to (assuming also
stationary and static conditions, ∂/∂t ≡ 0 and ~β ≡ 0)

C(1)
ϑ

(ε) =
1
2r
∂(J − K)
∂ϑ

=
1
3r
∂J
∂ϑ
. (2.22)
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Given J(r, ϑ) as the solution of the moments equations (2.9, 2.10), Eq. (2.22) together with the
definition Eq. (2.20) allows us to compute an approximation for the momentum exchange rate,
QMϑ, between neutrinos and the stellar fluid. Applying this procedure in supernova simulations
turned out to give satisfactory results (see Sect. 2.3.2).

Finally, Eq. (B.7) would result in a momentum transfer from the neutrinos to the medium in
azimuthal direction, C(1)

ϕ , in the presence of rotation, βϕ , 0. Using our usual assumptions
Eqs. (B.9-B.12) we obtain for Eq. (B.7)

C(1)
ϕ (ε) =

(

∂βϕ

∂r
−
βϕ

r

)

H +
1
2c

∂βϕ

∂t
(3J − K) +

βϕ

2c
∂(J − K)
∂t

−
∂

∂ε

{

ε

[

1
2c

∂βϕ

∂t
(J − K) +

1
2

(

∂βϕ

∂r
−
βϕ

r

)

(H − L)

]}

(2.23)

However, again assuming diffusion, stationary and static conditions, this term vanishes com-
pletely.

The numerical discretization of Eq. (2.22) reads

C(1)
ϑ i+ 1

2 ,k+
1
2
=

Ji+ 1
2 ,k+

3
2
− Ji+ 1

2 ,k−
1
2

3 ri+ 1
2
(ϑk+ 3

2
− ϑk− 1

2
)
. (2.24)

Since Eq. (2.22) is only valid in the limit of an optically thick medium we set C (1)
ϑ i+ 1

2 ,k+
1
2
= 0

if the density ρi+ 1
2 ,k+

1
2

in a zone drops below 1012 g cm−3. The chosen cut-off value is obvi-
ously specific to the core-collapse supernova problem where outside of this density the neutrino
pressure gradients, in particular in the lateral direction, turn out to be negligibly small.

2.3 Discussion and tests of the numerical scheme

In the last section we described our implementation of an approximative neutrino transport
scheme for two-dimensional geometry with spherical coordinates and azimuthal symmetry.

Besides adopting the approximations of general relativistic effects from the spherically sym-
metric VERTEX code of Rampp & Janka (2002) we made two major approximations of the
transport equations. First, the dependence of the specific intensity on the direction of propaga-
tion ~n is replaced by a dependence on only one angle cosine µ. Secondly and closely related to
the first approximation, we use scalar variable Eddington factors. These are obtained from the
solution of the one-dimensional transport equations on a spherically symmetric image of the
stellar background. Note, however, that our treatment described here is considerably less ap-
proximative than the simpler ray-by-ray transport scheme suggested in Rampp & Janka (2002,
Sect. 3.8).

In the following we point out limitations of our approach and try to critically assess their influ-
ence on the results obtained with our method.
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2.3.1 Treatment of general relativity

The radial neutrino transport contains gravitational redshift and time dilation, but ignores the
distinction between coordinate radius and proper radius. This simplification is necessary for
coupling the transport code to our basically Newtonian hydrodynamics. Of course, one would
ultimately have to work in a genuinely multi-dimensional GR framework which, among other
complications (see e.g. Cardall & Mezzacappa 2003), entails abandoning the use of the Lind-
quist metric.

Tests showed that in spherically symmetric simulations our approximations seem to work satis-
factorily well (Liebendörfer et al. 2003), at least as long as there are only moderate (∼10–20%)
deviations of the metric coefficients from unity and the infall velocities do not reach more than
10–20% of the speed of light in decisive phases of the evolution. Unless very extreme condi-
tions are considered (e.g. very rapid rotation or a very compact collapsed stellar core) gravity
effects in the supernovae are dominated by radial gradients. We therefore expect that new effects
from multi-dimensional GR are small and are likely to be dwarfed by the other approximations
made in the multi-dimensional treatment of the transport.

2.3.2 Lateral advection and neutrino pressure gradients

A ray-by-ray non-equilibrium transport scheme which completely neglects lateral gradients in
the moments equations (as e.g. suggested by Rampp & Janka 2002) is not suitable for multi-
dimensional core-collapse supernova simulations. Performing numerical experiments we found
empirically that disregarding terms in the neutrino moments equations that assure lateral cou-
pling of the radial rays gives rise to unphysical fluid instabilities that grow from small perturba-
tions in regions of the proto neutron star which are not expected to become unstable.

There are two reasons which we made out for this effect. First, in optically thick regions where
neutrinos are tightly coupled to the stellar fluid, neutrinos must be allowed to be carried along
with laterally moving fluid elements. This assures the conservation of the total lepton number
(Ylep = Ye + Yν) in these fluid elements in the absence of neutrino transport relative to the
medium. If this conservation is violated, e.g. by omitting the terms describing lateral advection
in the neutrino moments equations, fluctuations in the lepton number are artificially induced
which grow and trigger macroscopic fluid motions. Secondly, when neutrinos yield a significant
contribution to the pressure (as is the case in the dense interior of the hot, nascent neutron
star) the inclusion of lateral neutrino pressure gradients is again important to prevent artificial
acceleration of the fluid by gradients of the gas pressure.

In contrast, the omission of angular flux components (Hϑ = 0) means the disregard of “active
propagation” of neutrinos relative to the stellar fluid. This is unlikely to lead to fundamental
inconsistencies, because it is the correct physical limit for situations where the opacity is very
high. In the same spirit also off-diagional terms of the neutrino pressure tensor (Pi j with i , j)
can be dropped, implying that effects of neutrino viscosity are ignored.

We point out here that another inconsistency is imported into our treatment of 2D transport. The
omission of angular flux components causes the problem that the correct limit at large radii and
small optical depth may not be accurately reproduced since the neutrino density and flux are still
advected laterally in accordance with fluid elements as though they would be strongly coupled
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to the medium. Fortunately, here the specifics of the supernova problem help us justifying our
approach: at large radii and low optical depth the lateral component vϑ of the fluid velocity is
usually small so that all terms scaling with βϑ = vϑ/c become of minor importance.

We performed three test calculations which were started by imposing random seed perturbations
in the density with a maximum amplitude of ±2.5% on an early post-bounce model which was
taken from a spherically symmetric simulation. The perturbed model was then evolved for a
few milliseconds (corresponding to a multiple of the relevant dynamical timescale) in order to
test different variants of the 2D transport code described above.

The time of the model was chosen such that the Ledoux criterion, evaluated for laterally aver-
aged conditions,

CL ≡
ds
dr

(

∂ρ

∂s

)

Ylep,P

+
dYlep

dr

(

∂ρ

∂Ylep

)

s,P

(2.25)

predicts stability everywhere inside the PNS, i.e. CL < 0. In Fig. 2.1b we show the correspond-
ing Brunt-Väisälä frequency

ωBV ≡ sign(CL)
√

−
g
ρ

CL (2.26)

which is closely related to CL and denotes the growth rate of fluctuations if positive (unstable)
and the negative oscillation frequency for stable modes if negative.

Applying the Ledoux criterion here means that we assume that fluid elements do not exchange
lepton number or heat with their environment. In the presence of neutrino diffusion this is not
exactly true as was shown lately by Bruenn et al. (2004) where so-called “response functions”
account for effective lepton number and entropy transport via diffusion induced by gradients of
the same. Latter paper showed that including diffusive neutrino transport can affect the stabil-
ity criteria significantly and can even be responsible for new types of convective instabilities.
Unfortunately, latter paper did not present detailed information on the values of these response
functions in the different regions of the proto neutron star. Since also the calculation of these
response functions is not trivial, we restrained ourselves to use the Ledoux criterion as a mea-
sure for stability. We justify this simplification by the fact that this criterion actually predicts
the stable and unstable regions in our 2D simulations fairly well, see Sect. 3.2.1 for a more
elaborate discussion.

Figure 2.1a shows the standard deviation of density fluctuations in lateral direction

σρ(r) ≡

√

√

1
N

∑

k

∆cϑk ·

[

ρk(r) − 〈ρ(r)〉ϑ
〈ρ(r)〉ϑ

]2

, (2.27)

where ∆cϑk ≡ cos(ϑk− 1
2
) − cos(ϑk+ 1

2
), N ≡

∑

k′ ∆cϑk′ , and 〈ρ(r)〉ϑ ≡
1
N

∑

k′ ρk′(r)∆cϑk′ , as a
function of radius after 3.6 ms of 2D evolution. The quantity σρ serves as a convenient measure
to specify the magnitude of the density fluctuations. Employing the full implementation of our
neutrino treatment, which takes into account both lateral advection in the neutrino moments
equations as well as lateral gradients of the neutrino pressure in the fluid equations, the initial
perturbations do not grow to instabilities anywhere inside the PNS, which is in accordance with
the prediction by the Ledoux criterion. We consider the residual fluctuations which can be
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discerned at radii between 15km and 27km to be of physical origin since the Ledoux criterion
predicts only marginal stability there.

When switching off the effects of neutrino pressure gradients we notice a strong amplification
of the initial perturbations in a region where the damping should be strongest. This is clearly
unacceptable. A naive ray-by-ray scheme, which in addition to the neutrino pressure gradients
also disregards lateral advection of neutrinos, produces spurious convective activity in a broad
region between 15 km and 25 km. Latter convection could easily could be misinterpreted as
proto neutron star Ledoux convection but transports lepton number and entropy in the wrong
direction. A lateral fluid motion which has been induced to flatten a lateral density gradient of
the stellar fluid will, in the absence of lateral neutrino density advection, build up an artificial
lepton number gradient. Apparently, and not surprisingly, this gradient generation creates an
instability.

We have not attempted to perform a very detailed analysis of all effects of lateral advection and
pressure gradients of neutrinos to extend our understanding beyond the more qualitative insights
described above. However, we interprete our tests as a demonstration that approximations of
multi-dimensional transport schemes must be tested carefully for the possibility of producing
spurious convective activity (or suppression of convection) in the newborn neutron star, where
neutrinos contribute significantly to the total pressure and total lepton number density.

a b
Figure 2.1: a Standard deviation of the density σρ (see Eq. 2.27) indicating convective activity inside

the neutron star. The 1D Model s15Gio_1d.b was mapped to 2D (16 zones with a resolution of 2.7o) at

tPB = 27ms and the density distribution ρ was perturbed. The plot shows the situation after 3.6ms of dy-

namic evolution computed with different implementations of the 2D transport equations. The dotted line

is the initial deviation, the thick solid line shows the standard deviation σρ when we include the lateral

terms in our scheme as described in Sects. 2.2.1 and 2.2.3. For comparison, the thin solid line shows

σρ when running with pure ray-by-ray transport, and the dash-dotted line corresponds to a simulation

where we included the lateral terms of Sects. 2.2.1 but not the momentum transfer to the fluid discussed

in Sect. 2.2.3.

b Brunt-Väisälä frequency for the same model, derived from the Ledoux criterion. Negative ωBV indi-

cates convectively stable regions.



2.3. DISCUSSION AND TESTS OF THE NUMERICAL SCHEME 19

2.3.3 Lateral propagation of neutrinos

A number of our two-dimensional supernova simulations, in particular those which produced
lively hot-bubble convection, showed transient neutrino-bursts when narrow downflows of ac-
creted stellar gas entered the cooling region and penetrated down to the vicinity of the neu-
trinosphere. In our simulations such bursts occured roughly every 20 ms, typically persisting
for a few ms. The neutrinos of such bursts, which are the result of locally enhanced neutrino
emission, would naturally propagate in all directions in a fully multi-dimensional treatment
and would therefore illuminate the surroundings in all directions. Our code ignores the lateral
propagation of neutrinos, thus the burst is only propagated outward radially and its width is
essentially constrained to the layers above the hot, radiating area. Here we shall argue that al-
though locally and transiently the neutrino heating rates can be incorrect by up to a factor of two
due to the disregard of lateral neutrino propagation, the transfer of energy between neutrinos
and stellar gas is not significantly changed on larger spatial and time scales, and therefore the
global dynamics of our supernova simulations is not likely to be affected significantly.

Basically, our simplified neutrino transport overestimates the heating in the radial rays that
contain a “hot spot”, while adjacent rays experience less heating than in a 2D neutrino transport
which includes lateral neutrino fluxes. Truely two-dimensional transport tends to redistribute
neutrinos in lateral direction, in particular in the semi-transparent and transparent regimes where
the mean free path becomes large. This can lead to a more uniform spatial distribution of
neutrinos exterior to the neutrinosphere than in case of our ray-by-ray treatment, in particular
in the presence of local hot spots (see also the discussion in Livne et al. 2004).

To test the implications of lateral neutrino redistribution for the neutrino heating behind the
shock, we performed a post-processing analysis in which we angle-averaged the frequency-
dependent neutrino densities at a given radius and time and used it to recalculate the local net
heating rates. Then we compared the recalculated heating rate with the actual heating rate of the
simulation, each integrated over the respective gain layer, for different times. Here the gain layer
was defined as the region between the shock and, for each radial ray separately, the innermost
radial point at which the net heating is not yet negative (gain radius). For this purpose, the
position of the gain radius was also redetermined for the recalculated heating rates.

We have carried out this analysis for an 11.2M� progenitor (s11.2, Woosley et al. 2002) com-
puted with 32 angular zones during its post-bounce evolution (Model s112_32, which will be
discussed in Sect. 4.3), a model which showed lively hot bubble convection. The evaluation was
started at tpb = 100ms; before that time hot bubble convection is weak and no strong local bursts
of accretion luminosity do occur. We find that the angular averaging of the neutrino densities
hardly changes the total net heating rate in the gain layer, δtEgl, see Fig. (2.2, upper panel).
Merely at a handful of evaluation times do we find a significant increase in δtEgl by at most
30%. In the temporal average this difference is reduced to only a few percent. For the average
net heating per baryon in the gain layer (Fig. 2.2, middle panel), which, concerning global su-
pernova dynamics, we consider to be the more decisive quantity (Janka 2001), the values for
the two heating rates are almost indistinguishable.

Interestingly, the differences are somewhat larger if we separately analyze downflows of cold
material and hot bubbles in the gain layer; a zone of the numerical grid is attributed to a down-
flow if the negative velocities are more than 1.5 times the angle-averaged (negative) velocity
〈v〉ϑ at given radius r, otherwise we define the zone to belong to a high-entropy bubble. For
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Figure 2.2: The upper panel compares total (volume integrated) neutrino heating rates in the gain layer

δtEgl. The bold upper solid line shows the evolution of δtEgl for the 11.2M� supernova Model s112_32

to be discussed in Sect. 4.3. The post-processed heating rate obtained by averaging the neutrino densities

over all latitudes is represented by diamond-like symbols. For a consistency check crosses are drawn

for the post-processed neutrino heating rate without using the lateral averages of the specific neutrino

density. Ideally the latter post-processed results should be equal to the values returned from the model

run. Remaining differences result from the fact that the post-processing may yield a gain radius shifted

by one radial zone. The symbols trace the original values taken from the simulation. For drawing the

second curve (thin solid line) and the corresponding symbols the analysis was restricted to downflows in

the gain layer, i.e. for regions with velocity v < 1.5 〈v〉ϑ < 0. The middle panel shows the average net

heating rate per baryon (symbols have the same meaning as in the upper panel), i.e. the total neutrino

heating rate in the gain layer divided by the total mass Mgl contained in this region. The lower panel

shows the maximum neutrino flux as measured slightly above the gain radius normalized to the flux

average over all latitudes at the same radius, FN
max = maxϑ (F) / 〈F〉ϑ. The values indicate the relative

strength of localized luminosity outbursts.
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the downflows (see also Fig. 2.2, upper panel, lower curve), the time-averaged total net heating
decreases by 14% for the angle-averaged neutrino density. On the other hand it increases by
12% for the high-entropy bubbles.

The results from this analysis should be read carefully: it does not take into account the dy-
namical influence of the altered heating rates. Also, the angle-averaging of the neutrino density
overestimates the spreading of the flux bursts to other rays, especially close to the gain radius,
where we obtain by far most of the heating. The modest sensitivity of the integral quantities
to the described averaging of the neutrino distribution, however, gives us confidence that our
approximation of the moments equations is a reasonable step towards fully consistent multidi-
mensional simulations.

Even more difficult to assess quantitatively is the effect of replacing the Eddington tensors by
scalar variable Eddington factors which are calculated from a solution of the one-dimensional
transport equations using a spherically symmetric image of the star. We have to rely on the
fact that these variables are normalized moments of the neutrino phase space distribution and
thus, in the absence of persistent global deformation of the star, should not show significant
variation with the angular coordinate (cf. Rampp 2000; Rampp & Janka 2002). Anyway, as
we have seen, ignoring the lateral propagation of neutrinos does not seem to largely affect the
neutrino-matter coupling in the semi-transparent region. We hope that the transport also shows
sufficient insensitivity to our approximation concerning the variable Eddington factors. Final
answers can only be expected from simulations employing a fully multidimensional treatment
of the neutrino transport.

2.4 Equation of state

All calculations presented in this paper were run with the equation of state (EoS) described in
detail in Rampp & Janka (2002, App. B). The EoS of Lattimer & Swesty (1991) (LS EoS)
is employed to treat matter at densities above 6 × 107g/cm3. Recently it became clear that
this EoS underestimates the fraction of alpha particles (due to an error in the definition of the
alpha particle rest mass; J. Lattimer, personal communication) and concerns were expressed that
improvements of the EoS in the density regime between 108g/cm3 and 1011g/cm3 could favor
an explosion which we fail to achieve with the LS EoS (C. Fryer, personal communication).

In order to test this we have implemented a new EoS in our code. This EoS is similar to the
low-density EoS (Janka 1999) described by Rampp & Janka (2002, App. B), but the very
approximate description of nuclear dissociation and recombination in nuclear statistical equi-
librium (NSE) in that EoS is replaced by a composition table in the (ρ, T, Ye)-space. This table
was computed assuming matter to be in NSE and solving the equations of Saha equilibrium for
a mixture of free neutrons and protons, 4He, and 54Mn as a representative heavy nucleus (Janka
1991). We use the table for T > 5 × 109K, where NSE is a reasonably good assumption. Given
the nuclear composition, variables such as pressure and entropy can be calculated from the EoS
of Janka (1999).

A comparison of this simple NSE table with a sophisticated NSE solver that takes into ac-
count 32 different species of heavy nuclei showed excellent agreement in entropy, pressure,
and helium composition for typical conditions met in the post-shock layer. Note that this table
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overestimates the fraction of free nucleons in parameter regions where heavy nuclei dominate
the composition and Ye is far from 25/54 ' 0.463 (e.g. for T = 1MeV, Ye = 0.3 this is the
case at ρ > 3 × 1010g/cm3, see Fig. 2.3). This problem originates from the restriction to one
representative heavy nucleus and the necessity to fulfill charge neutrality. However, NSE in
the post-shock layer of a supernova is not characterized by a significant mass fraction of heavy
nuclei.

Comparing our composition table with data from the LS EoS (Fig. 2.3) we indeed observe a
significantly larger helium mass fraction for certain combinations of density and temperature.
Moreover, the region where helium contributes significantly to the composition is larger. This
also affects the pressure and entropy, especially at low temperatures and entropies (Fig. 2.3).

Figure 2.3: Comparison of the LS EoS (thick lines) with the four-species NSE table introduced here

(thin lines), for Ye = 0.3 and T = 1 (solid), 2 (dotted), and 3 (dashed) MeV.

To test whether the sizeable differences between the EoS using our table and the LS EoS have
an influence on supernova simulations we reran the spherical symmetric 11.2M� model (Model
s11.2, which will be decribed in Sect. 4.2) with the LS EoS replaced by our NSE table at
densities below 1011g/cm3. This comparison directly tests the influence of the different EoS
implementations on the dynamical evolution of the supernova.

Surprisingly, both runs showed virtually no difference in the post-bounce history of the super-
nova (Fig. 2.4) and only small difference in the post-shock structure (Figs. 2.5 and 2.6) even
though a post-processing analysis where profiles of T , ρ, Ye were fed into the two variants of
the EoS revealed differences in entropy and pressure of up to 15% and 10%, respectively, below
the shock (Fig. 2.7). This phenomenon has a simple explanation: On the one hand the relatively
high entropies behind the shock in our models imply that the influence of α-particles is not very
important (Fig. 2.3). On the other hand the accretion layer behind the supernova shock can be
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Figure 2.4: Shock positions for the two dynamical simulations of the post-bounce evolution of an

11.2M� star with the LS EoS (dashed) and the four-species NSE table (solid) used in the density regime

below 1011g/cm3.

Figure 2.5: Comparison of the profiles for the two dynamical simulations of the post-bounce evolution

of an 11.2M� star with the LS EoS (dotted) and the four-species NSE table (solid) used in the density

regime below 1011g/cm3 at selected times of the evolution.
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Figure 2.6: Relative difference of temperature and density between the simulations described in Fig. 2.5

at t = 50ms. ∆T > 0 means higher T in the simulation with the four-species NSE table (solid) used in

the density regime below 1011g/cm3, dito for ∆ρ.

Figure 2.7: Enlarged comparison of the entropy and the pressure (renormalized with r6) between the

two simulations described in Fig. 2.5 at t = 50ms. The thin lines correspond to the actual values, the

thick lines correspond to a post-processing analysis of the profiles using the other variant of the EoS.
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considered as an approximately hydrostatic situation where velocities of the shocked medium
and of the shock itself are much smaller than the sound speed cs. In this case the stellar structure
is then determined by the boundary conditions, i.e. the mass and radius of the proto neutron star
(and therefore its gravitational field) on the one hand, and the mass accretion rate at the shock
on the other (Janka 2001). Keeping in mind that the Rankine-Hugoniot conditions connect the
flow in the infall region with the conditions in the post-shock layer, the pressure profile in the
accretion layer is determined.

Thus, for a given pressure profile other variables, such as ρ and T , may vary for different
EoSs (see Fig. 2.6) without changing the dynamical evolution of the supernova. Only if these
variables have an effective influence on the evolution, e.g. by temperature-dependent neutrino
emission, do we have to worry about the subtleties of the composition. Neutrino cooling, how-
ever, is unimportant in the gain layer while in the cooling region the composition differences
between the EoSs can be neglected.

We conclude that, although the LS EoS might not be reliable for certain variables in the low
density regime at supernova conditions we do not find a major effect on the dynamics of our
simulations.

2.5 Entropy wiggles

All the models presented here feature a numerical problem, the origin of which we found only
recently. In all profiles of 1D calculations, and also in part in 2D calculations, artificial wiggles
appear below the shock. These wiggles are most pronounced in the entropy and pressure with
amplitudes of up to 10%, see e.g. Fig. 2.7. The feature is connected to the polytropic index
Γe ≡

p
e + 1 and the specific energy ε = e + ekin which are needed for solving the hydrodynamic

equations (2.1–2.7) with PROMETHEUS, see Sect. 2.1. By definition, the energy e should be
equal to the internal energy eint. However, analytically it is allowed to add certain terms to e
thereby retaining the validity of Eqs. (2.1–2.7). In our code, we chose to use the definition

e = eint + erm + e0 (2.28)

where erm is the specific baryon and electron rest mass energy and e0 is a constant offset chosen
to be in accordance with the energy definition in our high density EoS provided by Lattimer &
Swesty (1991).

Although analytically correct, Γe is no longer the polytropic index Γe =
p

eint
+ 1 as it should be

physically. In particular, in regions with moderate internal energy and large erm + e0 (in case of
our code where the material predominantly consists of free nucleons, e.g. below the shock), Γe

can have values which are significantly below the physical minimal value of 4/3. Apparently,
PROMETHEUS has problems finding a smooth solution of the hydrodynamic equations for
these low values of Γe.

We have solved this problem by strongly reducing the additional terms erm + e0 in Eq. (2.28),
the procedure is described in detail in App. C. We can not set e = eint exactly since eint is not
known in the high density EoS of Lattimer & Swesty (1991). However, in a test calculation
with the new implementation the wiggles turn out to disappear completely, see Fig. 2.8b.

As can also be seen from Fig. 2.8 the dynamic and global evolution of the simulations is
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not at all affected by the wiggles which confirms that the hydrodynamic solutions given by
PROMETHEUS are (on a larger scale) correct even if e from Eq. (2.28) and eint deviate sig-
nificantly from each other. Therefore the simulations presented in this paper can be believed
in spite of the appearing wiggles. Of course, future calculations will be performed using the
procedure in App. C.

a b
Figure 2.8: a Shock trajectories of the Model s15Gio_1d.b, described in Sect. 3.1.1 (solid), and a cal-

culation with identical physics but with our new definition of the energy e (dashed). Note that the dif-

ferences actually origin from a slightly different gravitational potential. b Entropy profiles for the Model

s15Gio_1d.b (thin) and the simulation with our new definition of the energy e (thick) at the times 20ms,

40ms, and 60ms after bounce.
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We here present the first results from two-dimensional simulations with our “coupled ray-by-
ray” approximation of spectral neutrino transport and an improved implementation of neutrino
opacities with respect to Bruenn (1985). First, we will discuss the differences resulting from the
extended opacities in the context of spherically symmetric (1D) models. We will also discuss the
influence of general relativistic corrections on the core collapse and post-bounce evolution and
will investigate the importance of velocity-dependent terms in the neutrino momentum equation,
especially for a quantitatively correct description of neutrino heating and cooling between proto
neutron star (PNS) and supernova shock. In this context we shall present an interesting 1D
model which shows large-amplitude oscillations of the shock position and neutrino luminosities.
Then we will elaborate on our first two-dimensional (2D) neutrino-hydrodynamical simulations
with spectral neutrino transport. Finally, we present a 2D model that develops an explosion
when the velocity dependent terms in the neutrino momentum equation are neglected.

Figure 3.1: Progenitor structure. Temperature T , entropy per baryon s, electron fraction Ye, density ρ,

and shell binding energy Eshell
bind , defined in Eq. (3.1), as functions of the enclosed mass. At 1.42 M� the

interface between the pure silicon shell and the oxygen-enriched silicon shell is located.

Progenitor and model notation: The names of our models are chosen with the aim to pro-
vide information about the employed input physics. All models in this paper were started from
the progenitor “s15s7b2”, a star with a main-sequence mass of 15 M� kindly provided to us by
S.Woosley (Woosley & Weaver 1995), see Fig. 3.1. Thus our model names start with “s15”.
The models were performed either with Newtonian (“N”) or with our approximative implemen-
tation of general relativistic gravity (“G”). While most simulations included the most advanced
description of neutrino interactions (“io”), we performed a few calculations with the standard
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Bruenn opacities plus nucleon-nucleon bremsstrahlung (“so”). One-dimensional models are la-
belled with “_1d”, the names of the two-dimensional models give away the number of lateral
zones Nϑ (in this paper only “_32”). Combining this with the chosen size of the angular wedge
allows one to infer the equidistant angular zoning of the model. Finally, it is very important
whether a model ran with our full implementations of the neutrino transport, case B (“.b”),
or whether the velocity dependent terms (except for the advection terms) in the neutrino mo-
mentum equation were omitted, case A (“.a”). The presented models are listed in Table 3.1.
The collapse phase was calculated Lagrangian, the post-bounce phase Eulerian, and the sim-
ulations were run with 400 radial hydro zones and 230 radial neutrino transport zones, both
with geometric spacing. Inside of 400km, the hydro and transport zones were identical, outside
of 400km only a few transport zones were added to correctly simulate the propagation till the
outer boundary of the simulation at 104km. All models were run with 17 neutrino energy zones.
When necessary, the radial grids were refined to encounter the increasing density gradient at the
surface of the PNS.

Definitions: We define the shock radius rshock as the radius where the radial velocity in the
shock flank is half of its minimum value. The gain radius rgain is the zone interface below
the innermost zone for which the net energy transfer from neutrinos to the medium is not yet
negative. Thus the gain layer is between rgain and rshock while the cooling region is below rgain

and includes the PNS. The total net energy transfer rates between neutrinos and medium, δtEcool

and δtEgl in the cooling region and gain layer are defined as integrals over the respective region.
An interesting quantity is the “shell binding energy” Eshell

bind , i.e. the energy needed to lift all
material above a considered radius out of the gravitational potential of the mass enclosed by
this radius and thus move the material to infinity. In the approximation with Newtonian 1D
gravity its definition is

Eshell
bind (r) ≡

4π
cosϑmax − cosϑmin

∫ ∞

r

∫ cos ϑmax

cosϑmin

εshell
bind (r′, ϑ)ρ(r′, ϑ)r′2d cosϑdr′ , (3.1)

where εshell
bind is our so-called local specific binding energy,

εshell
bind (r, ϑ) ≡ eint(r, ϑ) + (v2

r + v2
ϑ + v2

ϕ)(r, ϑ) + Φenclosed
1D (r) . (3.2)

The gravitational potential Φenclosed
1D (r) is calculated taking into account only the mass inside of

the radius r. These energies, as well as the neutrino luminosities, are generally given in the
unit FOE, which is a short-cut for “ten to the fifty-one erg”. Finally, the spectrally averaged
transport optical depth is evaluated according to the formula (in analogy to Raffelt 2001)

τν(r) ≡
∫ ∞

r
κT,ν(r

′)dr′; κT,ν(r
′) ≡

∫ ∞

0
κtr,ν(r

′, ε)Hν(r
′, ε)dε

/ ∫ ∞

0
Hν(r

′, ε)dε (3.3)

where κtr,ν(r′, ε, ν) is the transport opacity for neutrino species ν, defined as

κtr,ν(r
′, ε) =

∫ +1

−1
d cos θ (1 − cos θ)

dσν(r′, ε, θ)
d cos θ

(3.4)

and dσν/d cos θ is the differential scattering cross section for neutrinos of energy ε and type ν
including all neutrino-matter interactions. The neutrinosphere (radius) is defined by τν(rν) = 1.
For radial profiles of quantities for 2D models the values are calculated by laterally averaging
the 2D data, see Sect. 2.2.2 for the definition of this procedure. This also includes the definition
of mass shells in 2D, i.e. a mass shell corresponds to the radius which encloses this mass.
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a b
Figure 3.2: a The uppermost plot shows the shock positions versus time for all presented models. Thin

lines are for 1D models, thick lines for 2D. The next plot shows the gain radius below which neutrino

cooling dominates and above which neutrino heating is stronger. The third plot shows the total heating

rate in the gain layer, i.e. between the gain radius and the shock. Finally, the plot at the bottom shows the

total cooling rate below the gain radius. Note that the curves in the lower three plots were smoothed over

intervals of 5ms. The evolution of Models s15Gio_1d.a and s15Gio_32.a was followed to later times.

Their complete evolution can be seen in Figs. 3.15, 3.16, 3.28, and 3.34.

b The three plots show the average energies of the emitted νe (top), ν̄e (middle), and νµ,τ or ν̄µ,τ (bottom)

as measured by an observer at rest at 400km.
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a b
Figure 3.3: Comparison of neutrino luminosities for all models. a Luminosities for an observer at rest

at 400km. The uppermost plot shows the total luminosity, the three lower ones those for the different ν

types. The plot at the bottom gives the luminosity of νµ, ν̄µ, ντ, or ν̄τ, which are all assumed to be equal.

b The uppermost plot shows the electron neutrino burst, again for an observer at rest at 400km. Note the

different scale on the x-axis of this plot. The lower three plots display the neutrino luminosities of νe, ν̄e,

and heavy-lepton neutrinos individually, evaluated at their respective neutrinospheres (for a comoving

observer).
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Table 3.1: Input physics for our sample of computed models.

Model Dim. Gravity ν Reactions Transport Wedgea ϑ-zones

s15Nso_1d.b 1D Newtonian standard Case B

s15Gso_1d.b 1D approx. GR standard Case B

s15Gso_1d.b∗ 1D approx. GR standardb Case B

s15Gio_1d.a 1D approx. GR improvedc Case A

s15Gio_32.a 2D approx. GR improved Case A ±43.2o 32

s15Gio_1d.b 1D approx. GR improved Case B

s15Gio_32.b 2D approx. GR improved Case B ±43.2o 32
a Angular wedge of the spherical coordinate grid around the equatorial plane.
b Calculation without neutrino-pair creation by nucleon-nucleon bremsstrahlung.
c Calculation without the neutrino-antineutrino processes of Buras et al. (2003).

3.1 Spherically symmetric models

3.1.1 The standard model

This one-dimensional model was run with the state-of-the-art description of neutrino opacities
described in Appendix A and references therein. This treatment of neutrino-matter interaction-
sis improved compared to the standard rates by Bruenn (1985) by including effects of nucleon
recoil and thermal motion, weak-magnetism corrections, and nucleon-nucleon correlations in
neutrino-nucleon interactions. Moreover the reduction of the effective nucleon mass at nu-
clear densities and the quenching of the axial-vector coupling in nuclear matter was taken into
account. In addition, we included nucleon-nucleon bremsstrahlung and purely neutrinic in-
teractions which consist of scattering as well as pair creation processes between neutrinos of
different flavors. The full list of included rates and their references can be found in Table A.1.

Further, we applied the approximation of general relativity described in Chapter 2. Finally,
the simulation was done including the velocity dependent terms in the radiation momentum
equation, i.e. the terms proportional to βr in Eqs. (2.10,2.12). Despite of being formally small
(βr ≤ 0.1) these terms turn out to be important when performing supernova simulations as we
will elaborate in Section 3.1.3.

The evolution of this model can be seen in Fig. 3.5. The progenitor needs 174ms to reach core
bounce. The central values of Ylep and s evolving during collapse can be seen as a function of
the central density in Fig. 3.4. The shock is then created at an enclosed mass of Msc = 0.49M�
and a radius of rsc = 10.6km. The prompt shock stalls around 1ms at r =32km, turning into an
accretion shock. At first the high mass accretion rate through the shock leads to matter being
accumulated between the PNS and the shock; the energy cooling via neutrinos is not quick
enough to effectively compress this material so that the shock quickly expands. After 6ms,
when the shock reaches 80km, this expansion is slowed down as the mass accretion rate drops
and the neutrino cooling has become more effective, leading to an “equilibrium” between mass
accreting through the shock and mass settling onto the PNS. The shock now slowly expands
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Figure 3.4: Evolution of the central values of the entropy and lepton number as functions of the

central density during the collapse of Models s15Nso_1d.b (dash-triple-dotted), s15Gso_1d.b (dotted),

s15Gio_1d.b (solid), and s15Gio_1d.a (dashed).

to 140km at 60ms. Then however, the shock slowly retreats as a consequence of the high ram
pressure at these small radii, which can not be compensated by the weak neutrino heating in a
relatively small gain layer (see also δtEgl in Fig. 3.2a). At 170ms, when the shock has reached
a radius of less than 90km, we see a transient reexpansion of the shock setting in which is
stopped after a few km. This feature results from a sudden drop of the density in the progenitor
(see Fig. 3.1), and thus of the ram pressure, and is connected with the “interface” between
the pure silicon shell and the oxygen-enriched silicon shell (i.e. Si-SiO interface, at 1.42M�).
This feature of transient shock expansion can be seen in all our models, with strongly differing
consequences (even explosions, see Sect. 3.2.2). In Model s15Gio_1d.b the shock expands only
by about 20km. Already while the expansion sets in, the neutrino luminosities decrease due to
the drained accretion onto the PNS, and therefore the heating of the shocked material decreases.
The shock finds a new equilibrium radius at only 90km to then follow the subsequent contraction
of the nascent neutron star.

The neutrino emission reflects the different phases of the evolution. One distinguishes several
phases: After the collapse phase, where only νe are emitted in significant numbers, the prompt
νe burst is created few ms after bounce (in Fig. 3.3, note that the signal is delayed by approxi-
mately 1ms due to the time-of-flight). The burst lasts approximately 25ms, has a fwhm of 6ms,
and reaches a peak luminosity of 350FOE/s (FOE = ten to the fifty-one erg), see Fig. 3.3b.
Simultaneously, the newly created PNS starts emitting ν̄e and νx. Their rise in luminosity takes
35ms and 15ms, respectively. In the following accretion phase, the emitted neutrinos come
from two regions, a layer below the neutrinosphere of the cooling PNS as well as from the layer
of newly accreted material between the PNS surface and the gain layer. The luminosity from
the latter source depends sensitively on the mass accretion rate as can be seen in the drop of the
luminosity when the Si-SiO interface enters the cooling region. Interestingly, the mean energies
of ν̄e and νx become very similar in the later phases after 100ms, this feature has been discussed
in detail in Keil et al. (2003).

We will discuss the differences of this simulation with its newly implemented improvements
relative to a less sophisticated treatment of the physics in others of our models in the following
section.

Looking more closely at our simulation, we find that its outcome is not very surprising. Fol-
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lowing shock stagnation and during the whole subsequent evolution we see that the shock is
unable to stop the infall of the accreted material: Behind the shock, the matter still has negative
velocities of several 1000km/s, thus falling quickly through the narrow gain layer. As an exam-
ple, at the time of maximal shock expansion at 72.5ms, the infall velocity behind the shock is
still 4 · 104km/s (see Fig. 3.6), and the short distance between shock and gain radius of at most
50km corresponds to an advection timescale through the gain layer of less than 2ms. With a
moderate neutrino heating rate of 300MeV/by/s only ∼ 0.6MeV per baryon can be deposited
in these 2ms, an amount which is clearly insufficient to promote shock expansion: At the high
entropies (> 10kB/by) behind the shock nuclei are nearly completely dissociated to nucleons.
Only a small fraction of α-particles (less than 20%) survive the shock passage, and are quickly
dissociated during infall. Thus, the shock loses 8–9MeV/by due to nuclear photo-dissociation.

Figure 3.5: Mass shells for Model s15Gio_1d.b. The plot also shows the neutrinospheres for νe (thick

solid line), ν̄e (thick dashed), and νx (thick dashed-dotted), the mass shell at which the silicon shell

becomes oxygen-enriched (knotted solid line, at 1.42M�), and the shock (thick solid line with superim-

posed dashes). Further we have marked the regions with a mass fraction of more than 60% in iron-group

elements (dark shaded). Also shown are regions with a mass fraction between 30% and 60% in 4He (light

shaded). Finally the lower thin dashed line marks the gain radius, while the upper one marks the inter-

face between our high-density and low-density EoSs (i.e. the thin dashed line corresponds to a density of

ρ = 6 · 107g/cm3).
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Figure 3.6: Stellar profiles of different quantities at post-bounce times 11.6ms (solid), 72.5ms (dashed),

113.7ms (thick solid), and 170.7ms (thick dashed) versus radius for our reference Model s15Gio_1d.b.

For the latest time the cooling rate reaches a maximum value of QE = −10GeV/by/s.
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3.1.2 Variations of the input physics

“Standard” opacities vs. improved opacities We have performed most of our calcula-
tions either using a set of neutrino interactions which we call “standard opacities” (so) or our
fully updated (“state-of-the-art”) description of neutrino interactions which we call “improved
opacities” (io)1. The treatment of neutrino interactions in case “io” is described in Appendix
A. Case “so” uses the neutrino interactions found in Bruenn (1985) and Mezzacappa & Bruenn
(1993a,b), implemented as described by Rampp & Janka (2002), but supplemented by neutrino
pair creation and annihilation due to nucleon-nucleon bremsstrahlung.

The special properties of the different interaction rates can best be explained by comparing
the corresponding opacities. In Figs. 3.7 and 3.8 we have plotted the opacities of all reactions
included in Model s15Gio_1d.b for νe, ν̄e, and heavy-lepton neutrinos (νx) for two different
energies and times. For completeness, we also show the “standard” (approximate) rates for
scattering and absorption on nucleons, i.e. the rates without effects from nucleon recoil and
thermal motions, weak magnetism, effective nucleon masses, and nucleon-nucleon correlations.
During the discussion, remember that absorption and emission fulfill detailed balance.

We have two types of charged-current absorption reactions. Absorption on nucleons is domi-
nant after bounce, when the post-shock material is essentially fully dissociated. However, we
can see that in the PNS core, the improved rate is reduced significantly compared to the stan-
dard rate, for νe by a factor of up to 30, for ν̄e even by up to 100. In the region around the
neutrinosphere, including the gain layer, recoil and weak magnetism reduce the ν̄e absorption
rate by 10–20%, while the effects nearly compensate each other in case of νe. Absorption on
nuclei is small relative to nucleon absorption even in the pre-shock material. However, our rates
for νe absorption by nuclei are still rather approximative, and ν̄e capture by nuclei is neglected.
Improving this treatment is desirable.

Neutrino-antineutrino pairs can be produced or destroyed in different charged- and neutral-
current reactions. One of these is nucleon-nucleon bremsstrahlung which contributes signif-
icantly to the emitted flux of heavy-lepton neutrinos νx (Keil et al. 2003; Thompson et al.
2003) because this process dominates the production of νx at high densities. Interestingly,
bremsstrahlung is also the dominant production/absorption reaction for ν̄e in the PNS core,
where the electron neutrino degeneracy is very high and therefore νe are orders of magnitudes
more abundant than ν̄e. The second pair process is the annihilation of ν ν̄ pairs to e+e− pairs. It
dominates bremsstrahlung in creating ν̄e at low densities and is also a very important process for
the generation of νx. This rate, however, is surpassed by the rate of ν ν̄ pair conversion between
different flavors, which in most regimes is approximately a factor of two more important for
producing νx ν̄x pairs than e+e− annihilation. Both rates dominate the νx production around the
neutrinosphere, thus being crucial in the spectrum formation process. For higher energies, the
leptonic pair production rates become increasingly important relative to bremsstrahlung.

Finally, scattering processes contribute to the neutrino opacity. Scattering of neutrinos on nuclei
dominates the scattering rates above the shock. Scattering on nucleons are the dominant rates
in the NS core and postshock layer. Dense medium effects (see App. A), however, reduce the
rate by a factor of 2–3 at high densities below the neutrinosphere. Again, weak magnetism
and recoil produce a 10% difference for ν̄e-nucleon scattering around the neutrinosphere, and

1The new treatment of electron captures on nuclei during core collapse with rates from Langanke et al. (2003),

however, is not yet included in any of our models presented here.
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a much smaller effect for νe (see App. A). For νx scattering off electrons and off νe, ν̄e are of
similar importance.

At later times the temperature in the postshock layer increases and e− degeneracy is reduced
so that the e+e− pair process and νe± scattering become more important (see Fig. 3.7 compared
with Fig. 3.8).

The influence of the neutrino interactions can be seen in dynamic simulations with different
input physics (Figs. 3.2, 3.3). In addition to the above presented Model s15Gio_1d.b with the
set of “improved” opacities, we have performed two dynamic simulations s15Gso_1d.b and
s15Gso_1d.b*, which both were run with our the traditional approximations for the opacities.
In the latter case bremsstrahlung was also ignored to make a direct comparison to simulations
by other groups. The first 50ms are well fit for comparisons, here the structure of the PNS
and the above lying layer where the neutrinospheres are situated are still very similar in all
general relativistic models. Also, convection has not yet set in so that the 2D models can be
considered as 1D. Even the simulations neglecting the β-terms can be used for comparison in
a limited sense, the β-terms have no effect in the layers emitting the neutrinos (Note that the
shock evolution is influenced by the β-terms from the bounce on).

In a nutshell, the main difference between standard and improved opacities is produced by
the purely neutrinic interactions. The improvements on neutrino-nucleon interactions and the
quenching of the axial coupling, as well as bremsstrahlung, have a surprisingly weak effect on
the dynamic evolution of the star. Merely the neutrino signal is affected by these improvements.

The collapse phase is hardly influenced by improving the neutrino interactions, since the only
changes affect interactions with free nucleons, which during collapse are rare (Yn + Yp ' 10−3).
(Note that our collapse simulations ran without ν̄e and νx, both being irrelevant in this phase.)
The improved opacities slightly increase the νe production rate, while the coherent scattering
rate, which dominates the opacity during collapse, remains constant. Thus, more νe are emitted
before the matter becomes optically thick. As a consequence, the simulation with standard
opacities yields slightly higher entropies (∆s ' 0.06) and slightly increased Ylep (∆Ylep ≤ 0.01)
in the core with respect to the improved opacities simulation, see Fig. 3.4. Thus, the homologous
core is slightly larger (∆Msc ' 0.02) and the collapse time, too (∆tcoll ' 2.3ms).

Comparing s15Gso_1d.b* with s15Gio_1d.b, we obtain somewhat increased ν̄e energies and
strongly reduced νx energies, but no changes in the νe energies. Bremsstrahlung (s15Gso_1d.b)
has only a weak effect. The luminosities are affected similarly. Here we see some increase
in the electron flavor neutrinos, and a strong increase for the other neutrinos. The effect of
bremsstrahlung can be seen in an increased νx luminosity.

Taking the model s15Gio_1d.a into account, where purely neutrinic reactions were omitted,
we see that the νx energies are similar to those in the Model s15Gio_1d.b, suggesting that the
improved neutrino-nucleon interactions change their energies. However, the luminosities of
Model s15Gio_1d.a resemble the Models s15Gso_1d.b and s15Gso_1d.b*, meaning that the
change in luminosity is steered by the νν scattering and absorption rates of Buras et al. (2003).
The total change in the dynamic evolution is thus moderate and mainly contributed to by the
process νe ν̄e ↔ νx ν̄x, which significantly fastens the cooling of the neutrinospheric region. The
sum of improvements also alters the neutrino energies, so that the ν̄e and νx spectra become
more similar.

These results are very well in agreement with the results by detailed Monte Carlo simulations
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Figure 3.7: Opacities for the neutrino interactions taken into account in Model s15Gio_1d.b at t =

11.6ms post-bounce for two representative energies. Neutrino (“ν”) reactions with electrons (“e”, solid),

nucleons (“N”, dash-dotted), nuclei (“A”, dashed), and electron-type neutrinos (“ν e”, dash-triple-dotted,

for νx only) are shown. For comparison the “standard” opacities for the neutrino-nucleon interactions are

also displayed (dotted). Thin lines represent scattering processes, thick lines correspond to absorption

processes. Note that different from this convention nucleon-nucleon bremsstrahlung is also represented

by thick dashed lines. (See also notes in Fig. 3.8).
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Figure 3.8: Same as Fig. 3.7, but for t = 73.4ms. The opacities include processes with all possible

interaction partners, i.e. “N” stands for nucleons and can represent protons and/or neutrons, “e” can be

electrons and/or positrons, “A” represents all nuclei, “ν” can be any type of neutrino or anti-neutrino,

“ν e” can be electron neutrinos and/or antineutrinos, and “ν x” can be any type of heavy lepton neutrino or

anti-neutrino. The opacities include all phase-space blocking factors. The short vertical lines on the top

of the plots indicate the radii of the neutrinosphere (solid) and of the shock (dashed).
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by Keil et al. (2003).

Note that recoil and weak magnetism do have an effect on Ye in the gain layer, where the
evolution of Ye depends sensitively on the ratio of νe to ν̄e absorption.

Figure 3.9: Spectra of the neutrino fluxes for four different models. The fluxes were evaluated for an

observer at rest at 400km.

Newtonian vs. general relativistic simulations Finally we discuss the differences arising
between general relativistic (GR) and Newtonian calculations by comparing s15Gso_1d.b with
s15Nso_1d.b. In the Newtonian simulation, the gravitational force is of course smaller, there-
fore the star has to loose more leptons and energy to reduce the pressure to collapse. Hence
the longer collapse time of 196.1ms and the lower central lepton fraction (∆Ylep ' 0.02), see
Fig. 3.4. Although the smaller Ylep would suggest a smaller homologous core, the smaller gravi-
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Figure 3.10: Various variables at the times 12.4ms (solid), 73.0ms (dashed), 177.7ms (thick), and

290.0ms (thick dashed) over radius for the Model s15Nso_1d.b.

tational force and infall velocities overcompensate this, and the shock creates at Msc = 0.61M�,
which is 0.1M� further out of the core than in the GR simulation. Also, the shock creates at a
larger radius rsc = 12.5km.

The less compact structure of the PNS strongly influences the post-bounce evolution: the stand-
ing accretion shock is at a larger radius, the increase of temperature and entropy in the gain
layer is slower, and the neutrino luminosities are lower, see Figs. 3.10, 3.2, and 3.3.

3.1.3 Velocity terms in the first order moments equation

It is generally believed that the terms proportional to β in the radiation momentum equations
(2.10,2.12) except for the β∂/∂r-terms in the first lines can be omitted (Mihalas & Mihalas
(1984), see also the discussion in Rampp & Janka (2002)). Unfortunately, in the process of
producing simulations, we found that this is not true at all. Our dynamic simulations show that
these terms, which we will subsequently call β-terms, can contribute up to 20% of the LHS of
the radiation momentum equation in the neutrino-heated region below the shock. Thus we find
that the omission of these terms alters the dynamical evolution of our supernova simulations
significantly and can trigger an artificial explosion (Sects. 3.1.4 and 3.2.2). If the β-terms can
make the difference between explosion and failure, they must definitely be taken into account
in supernova simulations.

We want to explain the problem on a snapshot of the Model s15Gio_1d.b at tpb = 114ms.
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a b

c
Figure 3.11: Comparison of the different terms in the radiation momentum equation (2.10) for the

Model s15Gio_1d.b at tpb = 114ms. The terms are collected in three lines: the β-terms (thick solid),

the remaining terms on the LHS of Eq. (2.10) (dotted), and the source term on the RHS (dashed). We

have also plotted the sum of all three (dashed-dotted), which should be zero, but is not due to our post-

processing. All terms have been multiplied with mB/ρ. Finally, the thin solid line depicts the velocity.
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a

b
Figure 3.12: a Comparison of neutrino parameters for a stationary solution of the Model s15Gio_1d.b

at tpb = 114ms. The left panel shows the parameters for a solution where the β-terms have been dropped

in the neutrino momentum equation, the right panel gives a solution consistent with the full neutrino

momentum equation. We plot the neutrino energy density J, the flux factor f H = H/J (both thick),

the neutrino energy flux H and the variable Eddington factor f ed = K/J (both thin) for electron (solid),

electron anti- (dashed) and muon neutrinos (dash-dotted).

b For the same situation as in (a), we show the velocity (thick), the total neutrino luminosity of all flavors

(dashed) and the net source term (thin solid).
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For this time we calculated the terms in the radiation momentum equation (2.10) for energies
close to the spectral maxima (see Fig. 3.11). The β-terms contribute up to 20% of the LHS
of Eq. (2.10) in the neutrino-heated region between 70-110km (see Fig. 3.12b); for the muon
neutrinos, which do not heat significantly, the contribution can even dominate the LHS. If we
interprete the β-terms as source terms, i.e. write them on the RHS, they have the effect of
reducing the opacity. Thus, if we neglect the β-terms, the neutrinos stream less quickly, stay
longer in the post-shock region, and thus the neutrino density is higher, leading to an increased
heating above and below the gain radius. Note that for higher energies, the velocity terms
become decreasingly important.

These statements are affirmed by Fig. 3.12, where we have calculated the stationary solutions
for the above mentioned model and time both with and without the β-terms. The neutrino flux is
larger in the solution with the β-terms, and consequently the neutrino density is smaller, which
directly decreases the neutrino heating. From the plots, it can also be seen that the solution
with the β-terms looks more consistent: the blue-shift (remember that the neutrino transport is
solved in a comoving frame) of the neutrinos when they pass the shock leads to an increase in
both luminosity and energy density, the shift in the energy density however can not be found
in the solution without β-terms (the small peak designates the shock flank). Additionally, the
flux factor of the solution with β-terms is consistent with other Boltzmann transport codes (see
Liebendörfer et al. 2003). The variable Eddington factor fed = K/J is not very sensitive on the
β-terms.

Dynamically, neglecting the β-terms can have dramatic effects. In Fig. 3.2a we see the evolution
of the Models s15Gio_1d.a and s15Gio_1d.b, which merely differ in that only the Model “b”
does include the β-terms. We see that the shock positions evolve increasingly different. Initially,
the missing β-terms in Model “a” increase the heating. At later times, the increased heating has
driven the shock further out, thus increasing the size and mass of the gain layer. The resulting
positive back-reaction between increasing gain layer and thus increasing heating on the one
hand and expanding shock radius on the other leads to a much larger shock radius than in
Model “b”, where we obtain a negative back-reaction of decreasing gain layer and retreating
shock.

A snapshot of the two models (Figs. 3.13, 3.14) confirms the static solution: in the consistent
Model “.b”, the flux factor fH ≡ H/J increases much faster in the regions of effective cool-
ing and heating than in Model “.a”, thus lowering the neutrino energy density and therefore
decreasing the neutrino absorption rate significantly.

3.1.4 A model with marginal behaviour

Although the Model s15Gio_1d.a was not run with a consistent neutrino transport since the
β-terms were neglected, its outcome is so fascinating that we decided to present it here. The
oscillating shock behaviour, ending in an explosion, represents an, although hypothetical, nev-
ertheless interesting riddle worth solving.

As discussed in the previous section, the omitted β-terms lead to an increased heating rate, thus
driving the shock further out before it stalls into a standing accretion shock at 180km. Here,
the shock remains until the oxygen-enriched silicon-shell passes through and leads to a sudden
decrease of the ram pressure. The following cyclic behaviour is described as follows (see also
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Figure 3.13: Comparison of the dynamical evolution of neutrino parameters for two models. The left

panel shows the parameters for Model s15Gio_1d.a where the β-terms have been dropped, the right panel

shows the Model s15Gio_1d.b, which is consistent with the full radation momentum equations. We show

the luminosity (thin) and average energy (thick) over time for electron (solid), electron anti- (dashed) and

muon neutrinos (dash-dotted), evaluated at a radius 400km for an observer at rest.

Fig. 3.15): the shock starts expanding, the matter passing is shocked more strongly and thus
accreted slower into the cooling region. Slightly retarded, the neutrino luminosity drops as
a consequence of the decreased mass accretion into the cooling region. As a consequence,
the heating almost simultaneously drops due to the decreased luminosity, but also because the
down-falling material has piled up close to the shock, where heating is inefficient. The shock
is no longer resupplied with energy, but looses its strength because it has to cope with the ram
pressure and the dissociation of nuclei. After propagation few tens of km, the shock has lost all
its energy, and the material piled up just below it is not sufficiently supported by deeper layers.
Both quickly fall inwards. The sudden accretion of matter into the cooling region increases
the luminosities extremely, and the sudden increase of matter just above the gain radius, where
heating is most efficient, drives the heating rate up to much more than 10% of the cooling rate.
The shock bounces and is driven out with renewed energy. This cycle is repeated several times.
Obviously, the backreaction of the cycle is positive, since the amplitudes increase with time and
the cycle finally leads to an explosion.

However, it seems very difficult to pin down the reason why exactly this model features such an
up and down, while no other of our models suffer this vertiginous fate. The fact that the β-terms
are neglected surely increases the heating, especially during the sudden slump when negative
velocities are high, which leads to even more efficient heating.
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a

b
Figure 3.14: a Comparison of neutrino parameters for two models at tpb = 73ms. The left panel shows

the parameters for Model s15Gio_1d.a where the β-terms have been dropped, the right panel shows

the Model s15Gio_1d.b, which is consistent with the full radation momentum equations. We plot the

neutrino energy density J, the flux factor f H = H/J (both thick), the neutrino energy flux H and the

variable Eddington factor fed = K/J (both thin) for electron (solid), electron anti- (dashed) and muon

neutrinos (dash-dotted).

b For the same situation as in (b), we show the velocity (thick), the total neutrino luminosity of all flavors

(dashed) and the net source term (thin solid).
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We see two possibilities for explaining the phenomenon, however make no effort to perform a
detailed analysis of any of these. On the one hand the physical conditions which characterize
the expansion and contraction phases resemble the conditions that allow for non-adiabatic vi-
brational instability (κ-mechanism) in stellar atmospheres where the outward-going heat flow is
modulated by the rhythm of the pulsation and instability occurs if durng adiabatic compression
the absorption coefficient increases (see, e.g. Kippenhahn & Weigert 1990, Chapter 39.1).

On the other hand, the model might reveal the action of the so-called acoustic-advective cycle
proposed by Foglizzo & Tagger (2000) for adiabatic accretion flows to black holes. In this
scenario, acoustic waves created at the PNS surface propagate to the shock and cause entropy
fluctuations there. When these fluctuations are advected to the PNS surface by the accretion
flow, they create new acoustic waves and so on. If the feedback is positive, an l = 0 mode
can be built up, as seen in our model. A preliminary analysis by T. Foglizzo (2003, personal
communication) revealed that our oscillating model has favorable conditions for developing an
l = 0 instability by the advective acoustic cycle. However, in our model neutrino heating and
cooling dominate and the accretion flow is not at all adiabatic. A more reliable analysis has to
account for this fact and remains to be done.

3.2 Two-dimensional models

A look at the Ledoux criterion for the 1D models (Figs. 3.20b, 3.22, 3.30a) tells us that the
gain layer as well as an extended region in the PNS are convectively unstable, so that multi-
dimensional simulations become mandatory. Here, we present the first two-dimensional simu-
lations run with a neutrino Boltzmann solver. The two Models s15Gio_32.a and s15Gio_32.b
correspond to the one-dimensional Models s15Gio_1d.a and s15Gio_1d.b, respectively, pre-
sented in Sects. 3.1.1 and 3.1.4, i.e. they include state-of-the-art neutrino processes as described
in (Rampp & Janka 2002) and Appendix A and an approximate, spherically symmetric treat-
ment of general relativity (Sect. 2.1). Remember that Model “b” is the one with the correct
treatment of neutrino transport, while Model “a” wrongly neglects the β-terms in radial direc-
tion (see Sect. 3.1.3). In the angular direction both models consist of 32 zones with a resolution
of 2.7o, thus covering a wedge around the equator from −43.2o to +43.2o. Both models were
collapsed in one dimension and mapped to 2D around 7ms after the bounce. Simultaneously,
lateral perturbations were seeded by randomly changing the radial velocity by up to ±1% in
the entire star. The treatment of the lateral neutrino transport was carried out as described in
Sect. 2.2. Note that in Model s15Gio_32.b the inner 2km were treated spherically symmetric to
maintain a reasonable CFL time step. Model s15Gio_32.a did not include the lateral momentum
transfer to the fluid, Eq. (2.22), and therefore had to be run spherically symmetric below 25km,
thus inhibiting artificial, and unfortunately also physical, PNS convection (for a discussion see
Sect. 2.3.2).

3.2.1 A model with full transport treatment

While Model s15Gio_32.b represents the present acme of supernova computation, it neverthe-
less fails to explode. In Fig. 3.18 we see the shock trajectory and mass shells of this model. After
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Figure 3.15: Detailed analysis of Model s15Gio_1d.a. The upper panel depicts the summed luminosity

of electron type neutrinos at the neutrinosphere of the νe (solid), at the gain radius (dotted) and at 400km

(dashed), latter for an observer at rest. The lower dashed line shows the luminosity for any one neutrino

of type µ or τ, also for an observer at rest at 400km. The middle panel depicts the evolution of shock

(upper thick), gain (striped) and νe-sphere (lower thick) radius. The thin lines stand for mass shells,

starting at M = 1.41M� and moving upwards in 0.002M� steps. The lines where cut off at the νe-sphere.

The lower panel shows the total energy transfer into the neutrino sector in the cooling region (solid,

divided by 10) related to the total net heating in the gain layer (dashed).
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Figure 3.16: Mass shells for Model s15Gio_1d.a. We have supplemented the plot with the transport

neutrinospheres for νe (thick solid), ν̄e (thick dashed) and νx (thick dashed-dotted), the mass shell at

which the silicon shell becomes oxygen-enriched (knotted solid line, at 1.42M�), and the shock (thick

solid line with dashes). Further we have marked the regions which consist to more than 60% of nickel-

like elements (dark shaded) and 4He (shaded, not present). Also shown are regions which consist of

more than 30% of 4He (light shaded). Finally the lower thin dashed line marks the gain radius, while the

upper one marks where we have the interface between our two EoS (i.e. at ρ = 6 · 107g/cm3).
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Figure 3.17: Various variables at the times 228.6ms (solid), 236.4ms (dashed), 254.4ms (thick), and

262.6ms (thick dashed) over radius for the Model s15Gio_1d.a. For the time 254ms the cooling extends

down to QE = −30.1GeV/by/s.
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the prompt shock expansion, the shock expands slowly to a maximal radius of 150km around
60ms, and then starts to retreat slowly. This is quite similar to the 1D case (c.f. Fig. 3.2a), 2D
effects merely shift the shock position further out by some 10km.

Figure 3.18: Angle-averaged mass shells for the failing Model s15Gio_32.b. We have supplemented the

plot with the transport neutrinospheres for νe (thick solid), ν̄e (thick dashed) and νx (thick dashed-dotted),

the mass shell at which the silicon shell becomes oxygen-enriched (knotted solid line, at 1.42M�), and

the shock (solid line with dashes). Further we have marked the regions which consist to more than

60% of nickel-like elements (dark shaded) and 4He (shaded). Latter is surrounded by the regions which

consist of more than 30% of 4He (light shaded). Finally the lower thin dashed line marks the gain radius,

while the upper one marks where we have the interface between our two EoS (i.e. at ρ = 6 · 107g/cm3).

The original hope in performing 2D calculations was that the hot bubble (HB) convection in
the gain layer would strengthen the shock. This happens by means of a more effective neutrino
energy deposition: strongly heated material close to the neutrino surface is brought up to the
shock in bubbles by buoyant forces, at the same time narrow downflows passing besides the
bubbles feed the region of effective neutrino heating with cool material. 2D calculations also
get rid of one big disadvantage of 1D calculations: when the shock starts expanding in 1D
calculations, the accretion of fresh material into the cooling region is drained, the sudden drop
in luminosity and thus heating is fatal for the expanding shock.

In the current model, the convection has difficulties developing: starting to become distinct at
60ms, the HB convection (Fig. 3.20) has not yet formed large scale structures when the shock
starts retreating, and thus does not yet push the shock significantly further out with respect to
the 1D shock. Also in the subsequent phase the HB convection can not develop large, efficient
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Figure 3.19: Various angle-averaged variables at the times 11.6ms (solid), 30.7ms (dashed), 72.3ms

(thick), 150.7ms (thick dashed), and 181.4ms (dash-triple-dotted) over radius for the state-of-the-art

Model s15Gio_32.b.
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a b
Figure 3.20: a Snapshots of the HB region of Model s15Gio_32.b. All panels show the entropy s, the

lines mark the shock position (thick), the gain radius (upper thin), and the νe-sphere (lower thin). The

solid black line denotes the equator.

b Brunt-Väisälä frequency for the times 72.3ms (dashed) and 181.4ms (solid) for the Model s15Gio_1d.b

(thin) and s15Gio_32.b (thick). We only depict the lines below the shock.

a b
Figure 3.21: a Convective regions for Models s15Gio_32.b. The dark shaded region has lateral velocities

above 700km/s, the light shaded region shows where the Ledoux criterion predicts instability (CL > 0).

The results were only evaluated below the shock (thick solid line).

b Same as a except that the light shaded region shows where the standard deviation of Ye variations

(defined in analogy to Eq. 2.27), σYe > 0.03.
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modes: during the ms the advecting matter dwells in the gain layer, it can not establish strong
buoyant forces; only small bubbles develop far below the shock, which shortly after are engulfed
by the cooling region. The shock itself feels nothing of the convection and remains spherically
symmetric throughout the run. The HB convection in this model remains a minor correction to
the one-dimensional model.

Eventually, the transient shock expansion correlated with the sudden decrease of ram pressure
when the oxygen-enriched silicon shell meets the shock revives the hot bubble convection, but
by this time (180ms), the shock has already retreated to below 100km, and an explosion has
become but a distant dream.

We should comment on the Helium visible in Fig. 3.18 at t>180ms and 150km<r<200km. This
Helium is produced by the pseudo-NSE described in Rampp & Janka (2002, App. B), however,
as soon as the material falls into the high-density EoS above 6 × 107g/cm3, the Helium recom-
bines again to heavy nuclei. This feature can be accounted for by the inadequate description
of the composition by the pseudo-NSE. In this model, however, the evolution is not affected by
this: the material is falling super-sonically, thus the transient dissociation and recombination of
the material does not influence anything at all.

Proto neutron star convection This model represents a unique opportunity to examine
proto neutron star (PNS) convection in a fully self-consistent simulation with neutrino Boltz-
mann transport. The model was run till 243ms post-bounce, thus presenting the early evolution
of the PNS.

a b
Figure 3.22: a Convective region in Model s15Gio_32.b. The dark shaded region has lateral velocities

above 700km/s, the light shaded region fulfills the Ledoux-criterion for marginal stability, Eq. (3.5). The

solid lines denote the radii up to 30km in 5km steps, and 50km, the dashed lines indicate density contour

lines of 1014, 1013, 1012, and 1011g/cm3.

b The Brunt-Väisälä frequency in Models s15Gio_1d.b (thin) and s15Gio_32.b (thick) at times 30ms

(dashed), 62ms (solid), and 200ms (dash-dotted). For 30ms, the lines coincide. We cut off the lines

above 50km.
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a b
Figure 3.23: a Snapshots of the PNS of Model s15Gio_32.b. The upper panels depict the deviation in

Ylep (left) and the absolute velocity |v| =
√

v2
r + v2

ϑ
(right) for t = 151ms. Additionally, the neutrinosphere

for the three types νe, ν̄e and νx are marked (solid white lines left), as well as the radius where the angle-

averaged optical depth of the electron neutrinos τ = 15 (solid white line right). The lower panels show

the same for t = 243ms.

b Variation of the νe fluxes F ϑ at different radii, normalized over the average flux F̄, for the same times as

in a. The normalized flux is shown at the radius where the angle-averaged optical depth for ν e is τ = 15

(dotted, at 32.5km and 26.1km), at the νe-sphere (dashed, at 46.1km and 33.1km), and at 380km (solid).

For clarity, the lines for the later time have been shifted down by 0.5.

Convection appears in regions where the Ledoux criterion predicts instability or marginal sta-
bility. In analogy to Keil et al. (1996), our definition for marginal stability reads

CL(r) > a ·min
r

(CL(r)) , (3.5)

where CL is defined in Eq. (2.25) and we chose a = −0.05. However, we only apply the criterion
for marginal stability at densities above 3 · 1012g/cm3, at lower densities the coupling between
the neutrinos and the medium is too weak so that neutrinos cannot alter the stability criterion.
In Fig. 3.22a, we show how the region where the PNS is only marginally stable (light shaded)
evolves. We see that PNS convection sets in around 40ms. Comparing with the Ledoux criterion
at this time for the 1D model (Fig. 3.22b) this coincides with the time when the Ledoux-criterion
first predicts true instability.

Lately, Bruenn et al. (2004) presented a more elaborate discussion of the stability analysis in
the PNS which incorporates the influence of neutrino diffusion (an extension of the discussion
in Bruenn & Dineva (1996)). They argue that local perturbations in the lepton number will
show up in the neutrino phase space and thus cause a net neutrino diffusion which washes out
the perturbation. Since neutrinos also carry entropy the same neutrino diffusion that smoothes
the lepton number perturbation will create an entropy perturbation. Of course, entropy pertur-
bations will analogously induce a net neutrino diffusion to smooth itself out. However, Bruenn
et al. (2004) found in a numerical analysis that the neutrino diffusion would react much quicker
on lepton number perturbations. Thus they found that for certain conditions which predict
Ledoux stability the fact that neutrinos would build up entropy perturbations in order to wash
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out lepton number perturbations would predict instability. They found two types of convection
which should occur in the PNS: one where the buoyant rise of a perturbed fluid element, to-
gether with neutrino diffusion, will further increase the discrepancy between the entropy of the
fluid element and its surroundings and thus drive the buoyant motion, and one where the neu-
trino diffusion creates an “overstable” situations, i.e. where the effect of neutrino diffusion will
drive a perturbed fluid element back to its original position, but to such an extent that the fluid
element overshoots and thus oscillates around its original position with increasing amplitude.
Bruenn et al. (2004) call the convective types arising from these two instabilities “lepto-entropy
finger” (LEF) convection and “lepto-entropy semi-convection” (LESC), respectively. They also
distinguish Ledoux convection, however, Ledoux and LEF convection are closely connected
(LEF is an extension of Ledoux convection) and we will treat them as one type of convection.

Their analysis of their stellar profiles show that Ledoux/LEF convection should appear in an
extended region of the PNS from around 15km to the neutrinospheres while LESC should be
visible below. We expect that our stellar profiles yield qualitatively similar results if one applies
their analysis. Our two-dimensional simulations, however, do not reproduce these predictions.
Our convection, which we interpret as Ledoux/LEF convection, appears between 10km and
25km but does not extend fully to the neutrinospheres. We suspect that their discussion is not
fully correct in this regime. One of the assumptions which we believe is necessary for their
discussion is that the size of the blobs which are perturbed is very much larger than the mean
free path of the neutrinos. If this assumption does not hold, one can not speak of diffusion
between the fluid element and its surroundings since the neutrinos can travel through the whole
fluid element without interacting once. As a result, any fluctuations which could build up by
their mechanism would be washed out. We find that the mean free path of the neutrinos be-
comes sizeable around the upper boundary of our PNS convective region, explaining why their
predictions are not valid above this point.

Concerning the LESC convection that Bruenn et al. (2004) predicts far inside the PNS, we do not
see this instability. We have not tried to understand the reason for this discrepancy between the
prediction of Bruenn et al. (2004) and our numerical simulations, and argument that convection
this far inside of the PNS should have even less influence on the shock dynamics than the
PNS convection which we obtain. Therefore, with respect to the neutrino luminosities and the
explosion mechanism, we are not very concerned about the absence of LESC convection in our
simulations.

Over the time of the simulation, PNS convection appears above a mass around 0.5M�. This
inner boundary only changes little during the simulation. This evolution is somewhat different
to that found by Keil et al. (1996), whos simulation showed PNS convection in an initially
small region but with a constantly decreasing lower boundary. However, their model was run
up to 1.3s, our model might also have shown a decreasing lower boundary at later times. The
upper boundary of the convective region increases with time in mass, as matter is continuously
advected onto the PNS.

The region with large lateral velocities (>700km/s, dark shaded in Fig. 3.22a) is larger than the
region marked by marginal stability. This has two reasons: first, the PNS convection can over-
and under-shoot the region which supports convection. Second, applying periodic boundary
conditions, as was done in this model, allows rings of uniform, lateral velocities to appear; this
numerical artefact is produced in this simulation by matter from the HB region settling onto
the PNS. The rings are protuding in Figs. 3.22a and 3.21, where they can be seen as a bar
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of high lateral velocity moving from the HB convective zone to the PNS convection region at
t=110–150ms.

Looking at the 2D distribution of velocity, Fig. 3.23a, the rings can be identified around r=30km.
From these plots it is also easy to see that the region with convective overturn is closely related
to the region of marginal Ledoux-stability. E.g. for t=243ms the Ledoux criterion predicts
convection between 10 and 23km (Fig. 3.22a), which coincides with the lower right panel of
Fig. 3.23a (10–24km).

The effect of PNS convection can be seen comparing the profiles of the star after 243ms for the
1D and 2D simulations, Fig. 3.24. The PNS convection transports lepton number and energy
from the lower region of the convective zone (0.6–1.0M�) to the upper region (1.0–1.3M�).
The lower region already has nuclear densities and is thus marginally influenced in its structure.
The upper region, however, is mainly held by the pressure from electron degeneracy, thus the
structure changes significantly due to the larger Ye and the density is lower than in the 1D
model, which subsequently alters the structure of the matter above: the density of the 2D model
drops slower in radius. Since the neutrinospheres tend to be at densities around 1012g/cm3, the
neutrinos consequently are emitted at larger radii and thus lower temperature.

The lower temperature at the neutrinospheres displays in the lower mean energies of the neu-
trinos, see Fig. 3.2b. However, the effect of PNS convection on the luminosities is more subtle:
following the rule L ∝ R2

νT
4(Rν) larger radii with lower T mean that the luminosity should not

have changed strongly with PNS convection (e.g. Janka 1995). This is confirmed by the data
(Fig. 3.3): from 50–150ms, the luminosities are very slightly decreased, after that, they are mod-
erately increased with a stronger impact on νx. As an example, for t = 243ms (see Fig. 3.24),
T (Rν) in the 2D model is 4–7% lower than in the 1D model, while the neutrinosphere radius has
increased by 15%, affirming a slight increase in luminosity.

The PNS convection also affects the neutrino luminosites through the increased lepton number
in the outer regions of the PNS (around 25km). Although the PNS convection only reaches out
to optical depths around 30, the quickly decreasing chemical potential of the νe leads to strong
neutrino diffusion at the Fermi edge. This explains the strong deviations in lepton number
outside the convective part of the PNS (Fig. 3.23). The diffusion partly reaches out to the
neutrinosphere and increases the νe luminosity relative to the ν̄e one.

The structural changes in the region between the neutrinosphere and the shock due to PNS
convection are only moderate. I postpone the discussion of them to Sect. 4.3.

This analysis assumed that all discussed differences between 1D and 2D stem from the PNS
convection. However, the HB convection in this model, although weak, could also have an
impact on the evolution, especially of the ν luminosities and energies, since the material pro-
ducing the main bulk of neutrino emission has to pass the HB region before cooling. The Model
s15Gio_32.a, although without β-terms, gives us a hint on the effect of HB convection, since
it was calculated with spherical symmetry below 25km, thus inhibiting PNS convection. Com-
paring it with its 1D companion, we see a quite similar evolution of the PNS before the onset of
explosion where HB convection already is very lively. This suggests that the above discussed
differences between s15Gio_32.b and s15Gio_1d.b mainly stem from PNS convection.
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Figure 3.24: Comparison of the PNS of Models s15Gio_1d.b (solid) and s15Gio_32.b (dashed) at t =

243ms. For the 2D model we show 1D averaged values.
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Figure 3.25: Spectra of the neutrino luminosities for the two Models s15Gio_32.a and s15Gio_32.b for

a resting observer at ∞. The spectra are shown for an observer at rest (infinity) at three different times:

during the νe burst at shock breakout, when the shock reaches its maximum for Model s15Gio_32.b and

shortly after Model s15Gio_32.a has exploded. The lines depict the νe (solid), ν̄e (dotted) and νx (dashed)

spectra.
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3.2.2 A model with artificial explosion

We have produced one exploding model by omitting the velocity dependent terms (β-terms)
in the radiation momentum equations (2.10,2.12). The model was actually simulated before
we discovered the importance of the β-terms, however, its outcome is a unique opportunity to
present results from an (almost) perfect exploding simulation.

As discussed in Sect. 3.1.3, the β-terms have the same effect as decreasing the opacity, so
dropping them leads to an increase of opacity, especially in the gain layer. Note that we did not
turn off the lateral velocity terms; however, what matters is the artificially increased opacity in
radial direction.

Triggering the explosion was only possible by combining our state-of-the-art code, MuDBaTH,
which features improved opacities, general relativity, and multi-dimensional convection, with
an artificially increased heating by ignoring the velocity terms in the radiation momentum equa-
tions. From our other models, it can be seen that disregarding any of these improvements, or
solving the full radiation momentum equations, would lead to a failure: the correct treatment
of the radiation momentum equations in Model s15Gio_32.b stays far away from an explosion.
The Model 2D s15Nso_20.a with standard opacities and newtonian gravity (see Janka et al.
2004) comes close to exploding but fails in the end. Only the 1D Model s15Gio_1d.a also
succeeds to explode, but the result can not be taken serious, since the hot bubble convection
predicted by the Ledoux criterion (see Fig. 3.30) is omitted.

Note that this model was calculated in spherical symmetry below a radius of 25km, thus inhibit-
ing PNS convection. However, as can be seen from our state-of-the-art calculation (Sect. 3.2.1)
where PNS convection occured we do not expect it to have a significant influence on the ex-
plosion mechanism; PNS convection becomes important on a much longer timescale of several
100ms.

To make it possible to calculate the late stages of the model in a finite time, we have mapped
the 2D calculation to 1D at the time 468ms. At this time, the 2D effects no longer play a major
role. The mapping made it necessary to set the lateral velocities to zero, the momentum and
energy of this dimension were simply dropped. Along with this change we switched on the β-
terms to obtain a more realistic evolution of the late proto neutron star, and switched to the more
sophisticated treatment of nuclear recombination described in Sect. 2.4. Latter was necessary
since the old description of NSE in the low density EoS (see Rampp & Janka (2002, App. B) for
a detailed discussion) basically describes nuclear dissociation and recombination by first order
phase transitions instead of correctly solving the Saha equations. This trifle caused numerical
problems in the late phase of this model.

Note that the steepening of the PNS surface with time made it necessary to refine our eulerian
grid in this region. Rezoning was done at 206ms, 468ms, and 759ms. We should also mention
that the model did only run with Si burning, not yet with O, C, Mg, and Ne burning as described
in Rampp & Janka (2002). A post-processing analysis however showed that oxygen burning
would have contributed less than 0.011×1051erg to the explosion energy, while the other burning
processes would not have occurred, so we do not expect any dynamical changes.

Evolution The advantage of Model s15Gio_32.a is that strong convection can occur. Like
in its brother s15Gio_32.b, convection in the gain layer starts developing around 60ms (see
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Figure 3.26: Various variables at the times 11.0ms (solid), 72.2ms (dashed), 150.1ms (thick), and

178.5ms (thick dashed) over radius for the exploding Model s15Gio_32.a.
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Figure 3.27: Various variables at the times 200.2ms (solid), 400.6ms (dashed), 600.5ms (thick), and

800.9ms (thick dashed) over radius for the exploding Model s15Gio_32.a. The thick lines in the lowest

left panel indicate where E int
bind is negative, i.e. the material is unbound.
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Figure 3.28: Angle-averaged mass shells for the exploding Model s15Gio_32.a. We have supple-

mented the plot with the transport neutrinospheres for νe (thick solid), ν̄e (thick dashed) and νx (thick

dashed-dotted), the mass shell at which the silicon shell becomes oxygen-enriched (knotted solid line, at

1.42M�), and the shock (thick solid line with dashes). Further we have marked the regions which consist

to more than 60% of nickel-like elements (dark shaded) and 4He (shaded). Latter is surrounded by the

regions which consist of more than 30% of 4He (light shaded). Finally the lower dashed line marks

the gain radius, while the upper one marks where we have the interface between our two EoS (i.e. at

ρ = 6 · 107g/cm3).
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a b
Figure 3.29: 2D snapshots of Model s15Gio_32.a for four different times. a shows the entropy s, b

shows the electron fraction Ye. The diagonal lines mark the equator, the horizontal border corresponds

to cos(ϑ) = −0.67. The plots also contain the shock radius (thick line), and the gain radius and νe-sphere

(thin lines).

a
Figure 3.30: a Ledoux criterion for the times 72.2ms (dashed) and 150.1ms (solid) for the Models

s15Gio_1d.a (thin) and s15Gio_32.a (thick). We only depict the lines below the shock. The missing data

points in the thick solid line indicate that the angle-averaged variables are no longer consistent with the

EoS and thus it is no longer possible to evaluate the Ledoux criterion.
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a b
Figure 3.31: Same as Fig. 3.21, but for Model s15Gio_32.a.

Fig. 3.29). However, in this model the heating which is larger due to the omitted β-terms is
strong enough to maintain a standing accretion shock at 70ms instead of a retreating one. As
a consequence the convective region between gain radius and shock has the opportunity of de-
veloping large-scaled structures; these are favored by the convection. We end up in the largest
possible scale of our calculation which with a grid covering the star in a wedge of ±43.2o

around the equator roughly corresponds to an l = 2 mode (see Fig. 3.29). These huge struc-
tures (one bubble, one downflow) are also the most effective ones for efficient energy transport
to the shock. This model develops these large structures around 100ms, the convection has
now already become strong enough to push the shock further out; the gain layer, and thus the
convective region, are slowly expanding outward (Fig. 3.2a).

The onstart of the explosion occurs when the oxygen-enriched silicon shell reaches down to
the shock at 260km and 150ms. The interface between the pure Si-shell and the O-enriched
one features an entropy step, the density drop is much steeper in the O-enriched layer. Conse-
quently, this leads to a sudden decrease of the mass accretion rate, and thus of the ram pressure:
the shock starts expanding. However, we might expect that Model s15Gio_32.a would also
have experienced an explosion without the ram pressure drop since the shock was already in
expanding motion, and the gain layer was gaining on mass and energy (see Figs. 3.28,3.32).
Thus, in this model, the interface was probably not crucial for a successful explosion.

Explosion energy To calculate the explosion energy at a given time, we integrate the local
specific binding (LSB) energy εshell

bind , defined in Eq. (3.2), over all zones between neutrinosphere
and shock where the LSB energy and the radial velocity are positive:

Eexpl =
∑

r,ϑ,cond

εshell
bind (r, ϑ)ρ(r, ϑ)∆V(r, ϑ) (3.6)

Note that the gravitational potential ΦNewt, enclosed
1D (r) used to calculate the LSB energy was cal-

culated assuming a spherically symmetric mass distribution (2D effects play a minor role and
were also ignored in the hydrodynamic simulation itself).

The change of explosion energy in time has several sources: first of all, the deposition of energy
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by neutrinos is the main driving force in the initial stages of the explosion. Second, when
the shock reaches around 400km, the post-shock matter has expanded sufficiently so that the
neutrons and protons start recombining to 4He, which releases 7.5MeV per baryon. Later on,
the Helium further recombines to Iron-type elements, releasing another 1.3MeV per baryon.
Third, when the shock reaches 800km (corresponding to a mass shell around 1.45–1.46M�),
the material hitting the shock is no longer dissociated, instead, the silicon is burned to 56Ni, a
process, however, which ends when the shock reaches 1700km (1.527M�) and the shock does no
longer heat the material for Si-burning. At late times, finally, the shock energy is only increased
by the energy carried along with the neutrino-driven wind. The wind material initially also
recombines, releasing nuclear binding energy, but later on the α particles become too sparse to
recombine (α freeze-out).

On the other hand, the shock also looses energy by having to push outward the shocked material
of the outer layers. Initially, before the shock reaches 800km, this material is even dissociated,
but the energy lost hereby is regained when this material recombines. The time evolution of the
composition is sketched by the shaded regions in Fig. 3.28.

The time evolution of the explosion energy can be seen in Fig. 3.32. Note that the explosion
energy is already positive when the Si-O interface passes the shock at 150ms. We then recognize
a steep increase after the onset of explosion powered by ν-heating, recombination and burning.
At 300ms the burning ceases and the energy increase levels off somewhat. Finally, around
400ms, the ν-driven wind sets in, which only contributes little energy: the energy increases
slowly. The transient jump in explosion energy at 468ms results in the mapping from 2D to 1D.

At the end of the calculation, the shock has reached the mass shell 1.9M�, from Fig. 3.1 we
can thus say that the shock will still loose 0.16FOE (FOE = ten to the fifty-one erg) energy
by sweeping up the outer layers of the star. The end value of the explosion energy will also
be altered by further input from the ν-driven wind, and fall-back of material onto the PNS.
Anyway, the value 0.5–0.6FOE is a good estimate. Thus, our model creates an explosion which
has an energy comparable to, e.g., SN1999br (see Hamuy 2003). Still, the explosion energy of
our model should be called “weak”.

Mass and composition of ejecta Although a successful supernova simulation with a cor-
rect treatment of the β-terms and thus different heating rates might yield different results con-
cerning the lepton number of the ejecta, it does no harm making an analysis here. The cur-
rent model is especially interesting, since it is the first simulation including weak-magnetism
and recoil effects of the neutrino interactions. They have the tendency of increasing Ye in the
neutrino-heated matter (see App. A.3).

Since our code unfortunately does not yet support marker particles, we had to calculate the Ye

distribution of the ejecta in a post-processing analysis: we integrate the outward advection of
mass with given Ye through a surface at a fixed radius r0 over time, resulting in the function

M(Yi < Ye < Yi+1) =
2

cos(ϑmin) − cos(ϑmax)

∑

n

∑

ϑ,cond

∆A(r0, ϑ)·vr(r0, ϑ, tn)·ρ(r0, ϑ, tn)·(tn+1−tn).

(3.7)

Here, the factor in front of the sum normalizes the result for wedges to the whole star and
∆A is the area through which the matter flows. The first sum accomplishes for the integration
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Figure 3.32: Explosion energy for Model s15Gio_32.a as defined in Eq. (3.6). The jump at tpb = 468ms

stems from the mapping of the model to one dimension.

over time, while the second sum means that only the angular bins are taken into account where
following condition is fulfilled: vr(r0, ϑ, tn) > 0 ∧ Yi < Ye(r0, ϑ, tn) < Yi+1.

Choosing r0 is not trivial: on the one hand, it should be as large as possible, so that the advected
matter through the surface at r0 is no longer influenced significantly by neutrino processes. On
the other hand, the advection of material over our Eulerian grid washes out small patches with
extreme values of Ye, so we would like to choose r0 as small as possible. The time resolution of
the processed data lies between one and two ms, the processing ends at tpb = 468ms.

The results are shown in Fig. 3.33, where we have used r0 = 350km. To estimate the sensitivity
of our processing, we show the difference when moving to r0 = 300km (dark shaded) or r0 =

400km (light shaded). In latter, the advection over zones has partly destroyed small patches
of low Ye, while in the first case we miss neutrino processing on the matter at larger radii,
which would have the tendency of increasing Ye. For information, the integrated mass of the
three analyses with r0 = 350, 300, and 400km are Mtot = 0.0267, 0.0273, and 0.0274M�,
respectively. The variation between the three r0 can be interpreted as error bars.

Another problem is given by material falling back through the surface at r0, and then re-
emerging with different Ye; this material is counted double in our analysis. As an example,
in Fig. 3.28 we can see that between 400ms and 425ms, around 10−3M� of the material tem-
porarily falls back below the radius 350km. Also, we do not know whether part of the material
in the downflows was already processed by our analysis earlier. However, we do not expect the
amount of double processed material to be large. Also note that the results are not final, since
we only analyzed the explosion up to 468ms. In any case, the magnitudes of the results can
be seen as good guess values, and for Ye < 0.5 even as upper bounds at early times, since the
subsequent ejecta have Ye > 0.5 (although very late ejecta will have Ye < 0.5 again).

A thorough analysis of the produced nuclei in neutrino-driven winds by Hoffman et al. (1996)
demands that the ejected mass having Ye ∼< 0.47 must be at most 10−4M�. A larger mass would
lead to a rampant overproduction of closed neutron shell isotopes with N = 50, i.e. 88Sr, 89Y, and
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Figure 3.33: Mass of the neutrino-processed ejecta for Model s15Gio_32.a as a function of the local

electron fraction Ye. The function was calculated as defined by Eq. (3.7). The solid bars correspond to

r0 = 350km, while the dark and light shaded bars yield r0 = 300km and r0 = 400km, respectively. The

central plot shows the masses for values of Ye around 0.5 with improved resolution.

90Zr. As can be seen from Fig. 3.33, our simulation really fulfills this constraint. At the time we
stopped the calculation, the wind driven by the neutrinos contains material with Ye > 0.5, so the
constraint will not be violated at later times. This wonderful result can mainly be accounted for
by the improved neutrino opacities. Although we do not have an exploding model with standard
opacities, a comparison of the failing models yields that the improved opacities tend to increase
Ye (see Sect. 3.1.2). Therefore, the absence of weak magnetism and recoil effects in exploding
models of other groups is probably the reason why they do not comply with the constraint by
Hoffman et al. (1996).

Another interesting number is the amount of 56Ni produced by the explosion. Since the sim-
ulation was run with strongly simplified pseudo-NSE and burning, and not with a consistent
network, we can only make an estimate on the magnitude. Integrating the mass of all iron-like
nuclei at the end of the simulation yield Mheavy = 0.12M�. This value contains the 56Ni pro-
duced by 28Si burning, as well as the material ejected from the neutrino-processed region and
recombined to iron-like nuclei. Adding the 0.009M� of 56Ni that would have been produced
additionally if we had turned on oxygen burning (derived from a post-processing analysis), we
conclude that the amount of 56Ni ejected in this simulation is lower than 0.13M�.

Neutrino emission This model is unique, being the hitherto only fully self-consistent sim-
ulation which gives a neutrino signal for a successful explosion with a reasonable treatment of
neutrino transport and interactions (with a small exception). The long-time evolution of the neu-
trino luminosities and mean energies is plotted in Fig. 3.34. We can distinguish four phases: the
collapse phase, the neutrino burst, and the accretion phase are all known from the failing mod-
els, however, after the onset of the explosion we encounter a sudden drop of the luminosities.
Here, the accretion of matter onto the PNS has ceased, so that the luminosity merely is powered
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by cooling of the PNS. However, it would be wrong to already talk about Kevin-Helmholtz
cooling, since the neutrino energies are still increasing; obviously, the PNS surface is still in
a phase of relatively strong contraction. At later times, we expect this tendency to invert, our
model is still on the calculator.

The lively hot bubble convection below the shock also affects the neutrino luminosities. When
strong downflows hit the cooling region, the luminosities of the electron type neutrinos increase
by up to 20%. Due to the locality of the downflows, these fluctuations also show up in lateral
direction, see Fig. 3.35. Note that a fully implemented 2D transport would slightly wash out
these deviations in lateral direction. Interestingly, large fluctuations even show up long after the
onset of the explosion, e.g. at 307ms, triggered by some downflows which still manage to break
through the shock.

a
Figure 3.34: Evolution of the luminosities of Model s15Gio_32.a for νe (solid), ν̄e (dashed), and νx

(dotted) around the bounce (left) and post-bounce (right) evaluated at radius 400km for an observer at

rest. For the post-bounce phase, we also plot the average neutrino energies.
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Figure 3.35: Snapshots of the normalized νe flux of Model s15Gio_32.a at radius 400km as a function

of lateral angle for different post-bounce times. The times were chosen to show as large deviations as

possible.
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To evaluate the sensitivity of the structure of progenitor models on the evolution of core col-
lapse supernovae we have chosen nine progenitors, presented in Section 4.1, for which we have
simulated core collapse and the first 250ms after bounce in spherical symmetry, Section 4.2.
In Section 4.3 we extend the variation of progenitors to two-dimensional simulations for three
chosen progenitor models. We also perform test concerning the numerical resolution and the
initialization of seed perturbations. In Section 4.3.3 we present a model where the chosen ge-
ometry allows for a special type of large scale mode instability which triggers an explosion. We
discuss the validity of the model.

4.1 The progenitors

We have chosen a total of nine progenitors from different groups, listed in Table 4.1. These
models cover a main sequence mass (MSM) range from 11 to 25 M� and represent various
types of pre-collapse stellar structures. In Figs. 4.1 and 4.2 we compare the models at a core
density of ρc = 1011g/cm3, which was reached by evolving the models with our 1D Boltzmann
transport code VERTEX. At this early stage of the collapse phase none of the models have
changed significantly in structure or composition, the infall velocities are still sub-sonic, and
the neutrinos are still streaming off almost unhindered. The original progenitor model data is
shown in D.

Looking at Fig. 4.1, we see that the density structure of the inner 1.0M� of the iron core is
extremely similar in all progenitors. However, the electron fraction Ye, entropy per baryon s,
and velocity v show moderate differences: while Ye varies only 5% between the progenitors, |v|
and s show differences of up to 40%. There is a general trend that |v| and s increase with the
MSM while Ye decreases.

Above the core, we find larger differences in the progenitors, which are dictated by the com-
position interfaces. In particular, the Fe–Si and the Si–O interfaces are of interest for the early
post-bounce evolution of the supernova shock. The enclosed mass shells at which the interfaces
are situated vary strongly between the progenitors. Generally, the enclosed mass of an interface
increases with MSM, see Table 4.1. Most interfaces are of discrete type, i.e. the composition
changes discontinuously from the heavy to the lighter nucleus. However, some interfaces are
merely positions above which e.g. the Fe shell becomes more and more enriched with Si. Both
types of interfaces mark more or less strong entropy jumps in the progenitors. The stronger
ones, which are underlined in Table 4.1, also show a strong jump in the density profile.

4.2 One-dimensional models

The one-dimensional simulations were performed with our 1D neutrino Boltzmann transport
code VERTEX, using the physics described in Chapter 2. This includes state-of-the-art neutrino
interactions and an approximative general relativistic treatment.

None of the simulations yield explosions. Thus, the evolution can be splitted into collapse,
bounce, prompt shock, neutrino burst, accretion shock, and a possible transient shock expansion
followed by a second accretion shock phase.
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Table 4.1: List of progenitors used in the simulations. The notation (e) indicates that the particular

interface merely means an enrichment of the lighter nucleus above this mass, while the heavier nucleus

carries on to dominate the composition, e.g. these are actually Fe–FeSi and Si–SiO interfaces. Although

several models feature both an enrichment interface as well as a composition jump, we only list the

interfaces which feature entropy jumps. The underlined Fe–Si interfaces feature an entropy increase

of more than 1kB per baryon, the underlined Si–O interfaces an entropy increase of more than 2kB per

baryon.

Model MSM [M�] Reference MFe−Si MSi−SiO Notes

s1b >2.26 Woosley, personal comm. 1.34 1.38 Type Ib

s11.2 11.2 Woosley et al. (2002) 1.24 1.30(e) from homepage

n13 13 Nomoto & Hashimoto (1988) 1.18? 1.50

s15s7b2 15 Woosley & Weaver (1995) 1.28(e) 1.43(e)

l15 15 Limongi et al. (2000) 1.16(e) 1.60

s15a28 15 Heger et al. (2001) 1.42(e) 1.81

s20.0 20.0 Woosley et al. (2002) 1.46 1.82 from homepage

l25 25 Limongi et al. (2000) 1.58 1.84(e)

s25a28 25 Heger et al. (2001) 1.62 1.98(e)

Figure 4.1: Snapshot of the collapse models at a central density ρc = 1011g/cm3.

The collapse times, from a core density of ρc = 1011g/cm3 till bounce, see Table 4.2, differ
somewhat between the models, lying between 20 and 30ms (see Fig. 4.5 and Table 4.2). Ini-
tially, the models are differently strong deleptonized (Figs. 4.2, 4.3); thus the electron pressure
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Figure 4.2: Snapshot of the collapse models at a central density ρc = 1011g/cm3. The data is only shown

within the range of the simulations, i.e. for r ≤ 10000km.
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Table 4.2: Observables of the 1D models from the collapse, prompt shock, and neutrino burst phases.

tcoll is the time passing from when the collapsing core reaches a density of 1011g/cm3 till shock creation,

i.e. when the entropy in the core first reaches 3kB/by. The shock creation radius rsc and enclosed mass

Msc are defined at the same point. The energy loss via neutrinos during collapse Eν,loss
coll is evaluated by

integrating the neutrino luminosity (for an observer at rest at r = 400km) over the time from when the

core reaches ρc = 1011g/cm3 till the dip in the luminosity around 2.5ms after shock creation. We call

the time when the velocities behind the shock drop below 107cm/s the end of the prompt shock, the time

of it, tpse, is given relative to the time of shock creation. At the end of the prompt shock, the shock is

at radius rpse and enclosed mass Mpse. Finally, the energy emission during the burst is defined as the

time-integrated νe luminosity of the FWHM of the burst, Eνburst. The energies are given in units of ten to

the fifty-one erg (FOE).

Model tcoll rsc Msc Eν,loss
coll tpse rpse Mpse Eνburst

[ms] [km] [M�] [FOE] [ms] [km] [M�] [FOE]

s1b 23.9 10.7 0.49 1.00 0.87 32 0.78 1.48

s11.2 25.2 10.7 0.50 1.00 0.87 32 0.78 1.38

n13 28.9 10.7 0.50 0.96 0.88 32 0.78 1.29

s15s7b2 † 23.9 10.7 0.49 1.01 0.91 32 0.78 1.47

l15 20.9 10.6 0.50 1.04 1.03 35 0.82 1.74

s15a28 21.6 10.7 0.49 1.03 0.95 33 0.79 1.60

s20.0 22.7 10.6 0.49 1.03 0.91 32 0.79 1.50

l25 20.0 10.7 0.49 1.06 1.15 37 0.83 1.82

s25a28 19.8 10.6 0.48 1.06 1.00 34 0.79 1.93
† This is the Model s15Gio_1d.b from Sect. 3.1.1.

is differently high. Models with large (small) electron fraction and pressure collapse slower
(faster). As a consequence, they have more (less) time to deleptonize. So all in all, the electron
fraction of the models converges during collapse (Fig. 4.4). Also, the central entropy converges
in all models (Fig. 4.3) indicating that the hydrodynamics coupled with the neutrino interactions
have a self-regulating character so that the entropy in the homologous core at bounce is almost
independent of its original value. Merely the Model s25a28 initially has such high values for the
entropy and low values for the electron fraction that it cannot converge with the other models.
In this model the EoS yields much higher proton abundances which lead to a stronger delep-
tonization. Consistently with the similar collapse phase, all models lose approximately 1FOE
of energy via neutrino emission during collapse.

As a consequence of the similar core structure and collapse history, all the shocks are created at
mass Msc ' 0.49 ± 0.01M� and radius rsc ' 10.7 ± 0.1km, where we define the shock creation
(sc) time and space as the point where the entropy first reaches 3kB per baryon (Bruenn &
Mezzacappa 1997). From now on all times are given with respect to the time of bounce, tcb.
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Figure 4.3: Left panel: Central entropy over central density during collapse. Right panel: Central

electron and lepton fraction over central density during collapse.

Figure 4.4: Left panel: Entropy over enclosed mass at bounce time. Right panel: Electron fraction over

enclosed mass at bounce time.

Figure 4.5: Central density over remaining time till bounce.
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Also the prompt shock phases are quite similar. In most models, the velocities behind the shock
become negative after 0.9ms at Mpse = 0.78 ± 0.01M� and rpse = 32 ± 1km (pse stands for
“prompt shock ends”). Merely the progenitors from Limongi et al. (2000) manage to push their
prompt shocks a bit further.

Although the prompt shock clearly fails, the radial expansion velocity of the shock remains
large, see Fig. 4.6, upper left panel. When the shock reaches the neutrino sphere after 4ms at a
radius of 70–80km, the strong energy and lepton number drain via neutrino emission releases
some of the thermal and degenerate electron pressure of the accreting material, so that the
shock expands more slowly. The strength of this neutrino burst is quite similar for all models,
see Fig. 4.6, lower left panel.

Up to now we have seen little differences since the core structure is similar. At burst the shock
has reached ∼ 1.0M� above which differences in the progenitor structure become important.
Thus the mass infall rate through the shock differs between the models. Simultaneously, due to
energy loss at the burst the shock becomes slow and the simulation enters the accreting shock
phase. In this phase the shock evolution is governed by a complex system of coupled variables.

Recent analytic studies (Janka 2001; Arcones Segovia 2003) are able to find stationary solutions
which represent standing accretion shocks. According to these studies, these solutions depend
on a small set of independent variables only, e.g. the mass accretion rate through the shock,
∂tMsh, the mass MPNS and radius rPNS of the proto neutron star (for simplicity, we set these
equal to the enclosed mass and radius of the electron neutrino-sphere, rνe) and the neutrino
luminosity Lν. These stationary solutions describe the numerical results fairly well provided
that the model does not encounter sudden transients (e.g. sudden drops of ∂t Msh) and as long as
the model stays far from explosion (being a transient in itself).

Our models show that for such quasi-stationary phases even these four variables are coupled.
The most important variable is the time dependent mass accretion rate through the shock, which
is determined by the progenitor structure. Since this mass accretes further onto the PNS with
a small time delay, the mass of the PNS is essentially the time integral of ∂t Msh plus an initial
value. Starting at tpb = 4ms, this initial PNS mass is approximately 1.0M� for all models due to
the similar core structure. Also the neutrino luminosity is closely related to ∂tMsh: the accreted
energy needs to be emitted if the shock is not to expand. Thus the total luminosity can be said to
consist of a term proportional to ∂t Msh (again with a time delay since the material has to accrete
from the shock to the cooling layer) plus a term from cooling of the settled core of the PNS
(which cools on a timescale of 10s). Interestingly, also the neutrino sphere radii depend directly
on ∂t Msh. A larger accretion rate will lead to a stationary solution where more matter piles up
before it can emit its energy in form of neutrinos. Thus, the cooling layer is more extended in
radius, tendentially at higher optical depth, the matter emits its energy on a longer time scale
and has higher densities due to the higher pressure induced by infalling material. This means a
higher rν.

In summary, all these variables depend on the time evolution of ∂t Msh: a higher ∂tMsh means,
with a time delay of few tens of ms, larger rν and Lν, and a faster increase of MPNS. Our
simulations nicely confirm these rules. Looking e.g. at tpb = 80ms in Fig. 4.6 we see that
∂tMsh varies by a factor of five between the models, with n13 and s11.2 with 0.8 and 1.3M�/s,
respectively, at the low end, and l25 and s25a28 with 3–4M�/s at the high end of the spectrum.
Consistently, the rν are only 60km for the light progenitors and 25% higher, i.e. ≈ 80km, for
the heavy models. Also the luminosities differ by a factor of two, and PNS masses show 25%
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differences.

Astonishingly, the effect on the shock radius seems to be negligible, at tpb = 80ms the shock
radii of most models lie within a 5% margin (s20.0 within 10%, the exception of n13 will be
discussed later). The above mentioned much larger differences of ∂t Msh, MPNS, rν, and Lν seem
to cancel each other nicely in the determination of the shock radius. Higher ∂tMsh decreases rsh

due to the higher ram pressure, larger MPNS increases the gravitational pull and thus also lowers
rsh. But larger Lν increases the heating and thus expands the heating region, which is supported
by a large PNS if rν is larger.

Of course, the cancellation is not perfect, and as can be seen at later times, the shock radii can
differ more strongly especially if ∂tMsh suffers a transient in between. However, the relatively
weak depencence of rsh on otherwise large differences between the models make its predictabil-
ity rather safe in one-dimensional models.

Up to now we have ignored the aspect of neutrino heating. To discuss this topic we first define
two timescales: the advection timescale

τadv =

∫ rsh(t)

rgain(t)

1
v(r, t)

dr (4.1)

where the gain radius rgain is defined as the innermost point above which neutrino heating sur-
passes neutrino cooling, and v(r, t) is the radial velocity, and the heating timescale

τheat =

4π
∫ rsh(t)

rgain(t)
εshell

bind (r, t)ρ(r, t)r2dr

N4π
∫ rsh(t)

rgain(t)
Q(r, t)ρ(r, t)r2dr

(4.2)

where Q is the local net heating rate in MeV/s, N = 1 erg
MeV

1
mu

, and

εshell
bind (r) ≡ ε(r) + Φenclosed

1D (r), (4.3)

is our so-called local specific binding energy already introduced in Sect. 3.2.2. Here, ε = e+ 1
2v2

is the specific energy density, and e is the internal energy density. The gravitational potential
Φenclosed

1D (r) is calculated only taking into account the mass inside the radius r. Note that for
two-dimensional models, this definition of the timescale is not applyable. Thus we there use
following definition:

τ∗adv(Mi) ≡ τ
∗
adv(t1) = t2(Mi) − t1(Mi) , where M(r = rgain, t = t2) = Mi

and M(r = rshock, t = t1) = Mi . (4.4)

This method is applied for a number of masses Mi. In case this definition of the advection
timescale is used, we also apply it to the 1D models used for comparison.

While the advection timescale represents the time matter dwells in the gain layer (between shock
and gain radius), the heating timescale tells us how long it takes to deposit enough energy into
the material to make it unbound. Clearly, heating is of no importance as long as τadv � τheat.
Thus, for obtaining a neutrino driven explosion, the condition τheat ∼> τadv must hold over at least
the time span τheat (see also the discussion in Janka & Keil (1998)). Note that this condition
does not necessarily lead to an explosion; in any case it will lead to a visible shock expansion.
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A look at the timescales and their ratio (Figs. 4.7,4.8) immediately tells us that most models
obtain too long heating timescales for an efficient neutrino heating. The ratio τadv/τheat keeps a
factor of two off the above mentioned minimal condition. Merely the two lightest models, s11.2
and n13, feature efficient neutrino heating over a small period of time.

This brings us to the most interesting feature obtained in our sample of models: the entropy-
jump induced transient shock expansion. This phenomenon, which is best visible in Model n13
at tpb = 30ms and in Model s11.2 at tpb = 90ms, but also in a weaker form in the Models
s1b, s20.0, and s15s7b2 at tpb = 120ms, 135ms, and 170ms, respectively, occurs whenever an
entropy jump of the progenitor passes the shock. These jumps are correlated with composition
interfaces as discussed in Sect. 4.1 and mark a change in the density profile of the infalling
material. The consequence is always a more or less strong drop of the mass accretion rate.
Consequently, the ram pressure drops and the freed shock can suddenly start expanding until it
finds a new equilibrium position at larger radius (which is why the model n13 has a larger shock
radius than the other models at tpb = 80ms, see above).

The drop of the ram pressure not only allows the shock to expand, also the material itself is
forced less strongly into the direction of the proto neutron star surface. Thus, the advection
timescale suddenly increases. This becomes interesting when τadv becomes longer than τheat.
Then the effective heating further strengthens the shock support: the shock can expand to even
larger radii. This behaviour is obtained in the Model n13, and especially in Model s11.2, where
τadv/τheat ' 1 over a time of τheat ' 30ms. Unforturnately, after 30ms the advection timescale
drops again far below τheat. Now, the reduced mass accretion rate has reached the gain radius
meaning that the mass of the material in the gain layer and thus also the support for the shock
has dropped significantly. The shock quickly retreats and finds a new quasi-stationary solution
where, however, heating proves to be ineffective again.

As for the Models s15, s20.0 and s1b, although the drop in Ṁsh leads to a shock expansion,
the transient is not strong enough to change τadv significantly; also, in these models the entropy
jump reaches the shock too late when it is already deep inside the gravitational potential well
and the post-shock velocities are fairly high. Thus τadv/τheat remains well below one.

Note that the sudden drop of ∂tMsh also nicely reveals the dependence of rν and Lν on this
variable: 10–20ms after such a drop both these variables decrease. Also, the total lepton num-
ber and energy loss via neutrino emission, see Fig. 4.10, depends strongly on ∂t Msh and thus
the progenitor structure. This feature could be used to deduce the progenitor structure from a
detected supernova neutrino signal.

Summarizing, we find that all our simulations evolve both qualitatively and quantitatively sim-
ilar. Even at their maximum shock radii, around 130–150km, the simulations stay far from
explosions. Merely in the two lightest progenitor models, s11.2 and n13, the drop in ∂tMsh at
the composition interfaces is steep and large enough, and arrives early enough in time, to allow
the shocks to reach 170km. Still, this is far from obtaining an explosion. Thus, the progeni-
tor would have to have a significantly different structure than seen in stellar evolution models
hitherto, if it were to bring the 1D supernova simulations closer to explosion. Note that one
does find explosions for the low mass range of massive stars which are heavy enough to be-
come gravitationally unstable, but have a degenerate NeMgO core at the onset of collapse, see
Kitaura Joyanes (2003) and Nomoto (1984).
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Figure 4.6: Post-bounce evolution of the models. The left panels show the prompt shock, neutrino burst,

and early accretion shock evolution, the right panels depict the whole accretion shock phase. The panels

show, from top to bottom, the shock radius, the mass accretion rate through the shock, the mass enclosed

by the shock (left)/proto neutron star (right), the PNS radius, and the electron neutrino (left)/total (right)

neutrino luminosity at r = 400km for an observer at rest. The PNS mass and radius were taken at the νe

sphere for simplicity.
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Figure 4.7: The advection timescales over time as defined in Eq. 4.1. The lines were smoothed over a

time of 5ms.

4.3 Two-dimensional models

The one-dimensional models analyzed so far have one significant drawback: they do not allow
for convective overturn of the material. Convection, especially the so-called hot bubble (HB)
convection in the gain layer, is believed to strengthen the shock (see Introduction). We can
analyze our 1D models in this aspect: approximately following Bruenn et al. (2004) we define
a new observable,

ngrow(t) = max
r1<r2
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(4.5)

where the Ledoux criterion is defined as

CL =

(

∂ρ

∂s

)

Ylep,p

ds
dr
+

(

∂ρ

∂Ylep

)

s,p

dYlep

dr
(4.6)

and predicts instability if CL > 0. This observable roughly gives us the number of e-folds
a perturbation of the matter will grow between the shock and the gain radius from Ledoux
instability. To obtain effective convection the perturbations must grow strongly in the gain layer,
since the cooling layer is Ledoux stable. Looking at the growth number ngrow for our models
(Fig. 4.9) we see that only few models will really be successful in achieving lively Ledoux
convection.
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Figure 4.8: The heating efficiency, εheat ≡ τadv/τheat, as a function of time. The lines were smoothed

over a time of 5ms.

For our two-dimensional studies we have chosen three representative progenitors, s11.2 which is
expected to show strong Ledoux convection, as well as the two pessimistic progenitors s15s7b2
and s20.0. A total of seven models have been calculated in 2D, see Table 4.3. Most models were
started from a 1D model at 7ms after bounce, thereby perturbing the radial velocity randomly
with an amplitude of ±1%. For each progenitor we calculated a low angular resolution (2.7◦)
model covering a 86.4◦ wedge around the equator. Further we calculated high resolution (1.35◦)
versions for the two lighter progenitors s11.2 and s15s7b2, latter was started at the onset of
collapse with an initial density perturbation of ±2%. One simulation was run covering the full
star for the 11.2M� progenitor, s112_128_f, with a resolution of 1.41◦.

The first subsection discusses PNS convection, starting with explaining what type of PNS con-
vection we see, how it affects the evolution of the supernova and of the neutrino emission. We
end by discussing resolution and perturbation effects and differences between simulations with
different progenitors. The second subsection describes the HB convection. Again, we at first
discuss differences compared to 1D models. Here, the resolution and size of the computated
angular region play a much larger role and we need to elaborate on these subjects. Also the sen-
sitivity of the onset of HB convection on perturbation seeds is discussed. Finally we elaborate
on our calculation which covers a whole star, and signify the importance of the l=1 mode.
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Figure 4.9: Number of e-folds that perturbations would increase in amplitude on their way from the

shock to the gain radius. The lines were smoothed over a time of 5ms. For Model n13, ngrow starts at

values of 20 at tpb = 25ms, and starts decreasing at tpb = 35ms.

4.3.1 Proto neutron star convection

The PNS can largely be studied independent of the HB convection (not vice versa!): Unless the
gain layer changes its mass dramatically (e.g. at the onset of explosion), the mass accretion onto
the PNS will be very similar to the mass accretion through the shock. Several of the discussed
models show very weak HB convection (s15_32, s20_32, s15_64_p) and are thus perfectly
suitable for this discussion.

An evaluation of the Ledoux criterion (Eq. 4.6) in Fig. 4.11 shows that the PNS becomes unsta-
ble around 40ms after bounce. This happens in a region which initially is stable due to a positive
entropy gradient. As neutrino diffusion carries entropy away, this mechanism being more effec-
tive at larger radii where the opacity is lower, the entropy profile flattens and finally the entropy
gradient becomes negative and the PNS gets Ledoux unstable. Similar to Keil (1997), we find
that the structure of convective cycles initially is that of rings with angular sizes between 20◦

and 30◦ and lengths between 10 and 15km which persist for around 5ms and then reform at
shifted locations, see Fig. 4.13. 200ms later, the contraction of the PNS has reduced the radial
sizes of the convective cycles to 10km. The velocities in the rings are around 3 · 108cm/s with
peaks of up to 5 · 108cm/s, at later times the velocities have values around 2 · 108cm/s.

The convection transports energy and lepton number from the inside of the PNS up to very
close to the neutrino spheres, thereby flattening the entropy gradient, but also flattening the



84 CHAPTER 4. PROGENITOR VARIATIONS

Figure 4.10: The lepton number and energy losses of the 1D models over time.

Figure 4.11: Ledoux criterion evaluated for different 1D models at 30, 40, and 50ms after bounce.
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Figure 4.12: Lepton number, entropy, and density as a function of the enclosed mass for chosen models

200ms after bounce (i.e. approximately 160ms after the onset of PNS convection.)

Figure 4.13: Snapshots of PNS convection in Model s15_32 for the times 48ms (left) and 243ms (right).

The upper left panels depict the absolute matter velocity, the other three panels show the luminosities of

the three neutrino types. For latter three panels, the upper range of the color bar corresponds to 110%

of the luminosity at infinity. The thick black lines mark the respective neutrinospheres (which are larger

than 60km for the time 48ms).
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Table 4.3: Parameters of computed 2D models for progenitor stars with different masses. Ω i is the angu-

lar velocity of the Fe-core prior to collapse, θ0 and θ1 are the polar angles of the lateral grid boundaries,

and Nθ is the number of grid points in lateral direction.

Model Progenitor [θ0, θ1] Nθ Resol. Collapse Pert. Boundary

(degrees) (degrees) in 2D (%) conditions

s11_32 s11.2 [46.8, 133.2] 32 2.70 – v,±1 periodic

s11_64 s11.2 [46.8, 133.2] 64 1.35 – v,±1 periodic

s11_128_f s11.2 [0, 180] 128 1.41 – v,±1 reflective

s15_32 † s15s7b2 [46.8, 133.2] 32 2.70 – v,±1 periodic

s15_64_p s15s7b2 [46.8, 133.2] 64 1.35 + ρ,±2 periodic

s20_32 s20.0 [46.8, 133.2] 32 2.70 – v,±1 periodic
† This is the Model s15Gio_32.b from Sect. 3.2.1.

lepton number profile, see Fig. 4.12. However, at the end of the calculation the initially quite
steep negative Ylep gradient has not yet flattened out.

The redistribution of lepton number and energy slowly affects the structure of the PNS. The
“drain” region where Ylep and e drop has densities close to the nuclear density (0.3–2·1014g/cm3)
while the “dump” region where Ylep and e are deposited has lower densities (1012–1013g/cm3).
The pressure in the “drain” region is less sensitive to changes in Ylep and e than the pressure

in the “dump” region. This can be seen in the EoS variable,
(

∂lnp
∂lnYlep

)

ρ,e
, which for the Model

s15s7b2 at times after 100ms post-bounce has values between −0.1 and −0.35 in the “drain” re-
gion and values between +0.1 and −0.15 in the “dump” region, while the EoS variable

(

∂lnp
∂lne

)

ρ,Ylep

lies in the range 1.05–1.40 in the “drain” region and in 1.35–1.90 in the “dump” region. Thus
the decrease of pressure in the “drain” region due to PNS convection is overcompensated by
the stronger increase of pressure in the “dump” region, leading to an expansion of the PNS.
Consequently, also the neutrinosphere radii are larger than in the respective 1D “comparison”
models, see Fig. 4.14.

All this has interesting consequences for the neutrino emission. Immediately after the onset of
PNS convection the increase of Ylep in some lateral zones at the upper end of the convective
region leads to a higher electron chemical potential µe. Thus the ν̄e abundance decreases signif-
icantly in these zones. Although this happens in a region where the ν̄e luminosity has reached
only 5–10% of its final value the decrease is enough to lower the total ν̄e luminosity immediately
by several percent. When the PNS convection is running at full throttle, L ν̄e can be lowered by
up to 10% with respect to the 1D models, see Fig. 4.15.

The decreased ν̄e abundance also affects the νx luminosity via the process νe ν̄e → νx ν̄x. Since
this is the dominant νx production process and the decrease of ν̄e happens in a region where Lνx

is 70% of its final value, the throttling of this process shows in Lνx which decreases by up to
5%.

On a timescale of 100ms these moderate effects are overridden by the structural change of the
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Figure 4.14: Proto neutron star radius for the 2D models and their comparison 1D models. For simplic-

ity, the electron neutrinosphere radius was taken.

PNS as well as the persisting deposition of energy in the region below the νx sphere. The regions
affected by PNS convection contribute 30%, 30%, and 90% to the νe, ν̄e, and νx luminosities,
respectively, at late times. The increase of the neutrino radii without the energy deposition
would lead to lower luminosities, see Marek et al. (2005), because the expanded material would
have lower temperatures at rν and this would overcompensate the rν factor in the relation L ∝
r2
νT

4
ν . However, in our 2D models the luminosities increase. We do find lower Tν which result in

lower neutrino energies 〈εν〉, see Fig. 4.16, by almost up to 10% after 200ms of PNS convection.
But this decrease in Tν is much weaker than it would be in case of pure adiabatic expansion.
The energy deposition close to the neutrinospheres heats up the material strong enough to lead
to a net increase of luminosity. The effect is strongest for the νx which decouple energetically
from the medium already at the upper boundary of the convective region; after 200ms Lνx is
almost 20% larger than in the 1D models, see Fig. 4.15. Lνe increases only by few %, while
L ν̄e is almost identical in 1D and 2D models, since the higher µe and the structural differences
nearly compensate each other.

If we look at the total energy and net lepton number losses due to neutrino emission, comparing
the 2D models with the 1D models, we find that after ∼ 100–140ms of reduced energy emission,
the emission is stronger in 2D models. However, even 250ms after bounce, the total energy loss
is only 2–4% higher with PNS convection. The deleptonization at that time is up to 10% larger
with PNS convection.

Note that the luminosities in 2D models relative to 1D models are increased by 25%, 15%, and
25% for νe, ν̄e, and νx at their respective neutrinospheres after 200ms, thus the effect of the PNS
showing much stronger. These differences have been reduced when the neutrinos leave the star
due to structural differences above the neutrinospheres; note also that the high energy end of the
spectra decouple above the spectrum-averaged neutrinosphere.

We have run different simulations varying the resolution (2.7◦ and 1.35◦/1.41◦) and the size
(wedge with 86.4◦ around the equator and a full star). The results show that these differences
change little in the behaviour of the PNS convection. Thus, the resolution of 2.7◦ large angular
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Figure 4.15: Neutrino luminosities for the 2D models and their comparison 1D models, evaluated at a

radius of 400km for an observer at rest. The lines were smoothed over a time of 5ms.
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Figure 4.16: Neutrino average energies for the 2D models and their comparison 1D models, evaluated

at a radius of 400km for an observer at rest. The lines were smoothed over a time of 5ms.
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zones is sufficient to simulate PNS convection. As the convective rings only have a size of
20–30◦, it is no surprise that the full star simulation s112_128_f does not differ in the PNS
convection effect from the model s112_64.

The PNS convection also evolves similarly in simulations with different progenitors. The rela-
tive differences with respect to the 1D models is quite similar for all progenitors. The moderate
differences, e.g. in

∫

L2Ddt −
∫

L1Ddt, see Fig. 4.17, are quite small with regard to the large
differences in the mass accretion rates and the different evolution of HB convection.

Figure 4.17: Difference between the lepton number and energy losses of the 2D models and their re-

spective 1D models.

Even the influence of the choice of perturbation seeds has little effect on the evolution of the
PNS. Large seeds like e.g. in Model s15_64_p merely lead to an earlier onset of PNS convection
by 10–20ms. During this short period of time the PNS convection will hardly change anything.

In summary, the PNS convection amounts to two important consequences: first, the emitted
neutrinos have lower energies than in 1D models (10% lower after 200ms), while the neutrino
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luminosities increase, after 200ms of PNS convction by 20%, few %, and 20% for νe, ν̄e, and νx,
respectively. Second, the PNS convection affects the evolution of the gain layer and shock by a
less compact PNS and by neutrinospheres at larger radii and with slightly lower temperatures,
and thus significantly higher luminosities near the neutrinospheres. The less compact PNS
of course implies a different structure between neutrinospheres and shock even without HB
convection. However, looking at the models s15_32, s20_32, and s15_64_p, we see that the
PNS convection only has a minor effect on the shock radius.

Figure 4.18: Shock radii for the 2D models of Table 4.3 and their 1D comparison models.

4.3.2 Hot bubble convection

We now turn to the discussion of the Ledoux-convection in the gain layer, the so-called hot
bubble (HB) convection. As expected the Models s15_32 and s20_32 do not manage to develop
significant overturn of material in the gain layer. This was explained with the small growth of
perturbations between shock and gain radius, see Fig. 4.9. Although perturbations do show in
the angular distribution of e.g. velocity and entropy (see e.g. Fig. 4.19), the radial structure is
not influenced by this “weak” HB convection. Thus we can use these models to describe how
the expansion of the PNS due to PNS convection alters the structure of the gain layer.
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Figure 4.19: The left figure shows entropy snapshots of Model s15_32 for four times. The right figure

shows the radial velocity for the same times. The upper range of the color bar corresponds to 2500km/s.

Remember that the radii of the neutrinospheres are larger than in 1D while the enclosed masses
of the neutrinospheres are smaller due to the less compact PNS. For quite similar reasons this
also applies for the gain radius and its enclosed mass. However, the mass which is enclosed by
the shock is identical in 1D and 2D since the accretion rate merely depends on the gravitational
mass of the PNS which is not different in 2D. Thus the mass in the gain layer has to be larger in
2D. Fig. 4.20 confirms this deduction, we find that the mass in the gain layer Mgl can be more
than a factor of two larger than in 1D. Inevitably, the shock radius is also larger than in 1D, see
Fig. 4.18. Since the density at given radius is higher in 2D (a structural consequence of the larger
νe-sphere radius which is situated at ρ ' 1011–1012g/cm3) and the mass accretion rate Ṁ(r) is
approximately constant in radius above the gain radius (a feature of quasi-stationary solutions)
and Ṁ(r) is equal in 1D and 2D (a consequence of the Rankine-Hugoniot conditions), the post-
shock velocities are smaller in 2D. This implies a larger advection timescale, see Fig. 4.20, by
up to a factor of two. What we find very surprising is that the total heating rate of the gain layer
δtEgl is almost identical in 1D and 2D. The gain layer is situated at larger radii, the neutrino
luminosities are higher while the neutrino energies and thus the interaction rates are lower, and
the position of the actual gain radius depends sensitively on all these values as well as on the
temperature and density profile. All this would suggest a different value for δtEgl, so we suspect
an underlying mechanism which controls this variable in the absence of HB convection.

As a consequence, τheat ∝ Mgl/δtEgl also increases. Again surprisingly, the heating efficiency
εheat = τadv/τheat does not increase although these two timescales seem to be independent of
each other. Therefore we also suspect a correlation between Mgl and the velocity profile.

During the entropy-jump induced transient shock expansion the advection timescale becomes
long enough to allow strong convection to develop. We will however discuss effective HB
convection using the Model s112_64, since here the effects are much more pronounced.

As we can see from Fig. 4.9, the perturbation growth rate increases to values of five when the
models with the s112 progenitor reach the time where the Si-SiO interface passes the shock
90ms after bounce. This leads to a quick expansion of the shock see Fig. 4.18. Although there
is no real difference in the convective pattern before and right after the shock expansion (see
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Figure 4.20: First panel: Mass of gain layer. Second panel: Advection time as defined by Eq. 4.4. Third

panel: Total heating rate in gain layer. Fourth panel: Heating efficiency. All lines were smoothed over a

time of 5ms.
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Figure 4.21: The left figure shows entropy snapshots of Model s112_64 for four times. The right figure

shows the radial velocity for the same times. The velocities can reach up to 35000km/s (bright yellow).

Figs. 4.21a–b, upper left and right panel), the conditions for convection are much more favor-
able and convection is not suppressed as in the models with the heavier progenitors: The long
advection timescale of 30–40ms (Fig. 4.20) leads to a higher heating efficiency of more than
0.8 (Fig. 4.20). This implies that the matter in the gain layer is less strongly bound (Fig. 4.22)
so that the stationary solution would predict a larger shock radius due to the larger energy con-
tent which influences the pressure. The shock position is of course varying strongly due to the
convective overturn in the gain layer.

We find that large scale modes which tend to be the most stable modes can develop in this
environment. In Model s112_64 the number of hot (high-entropy) bubbles decreases from
more than five at 40ms to only one at 110ms. All bubbles persist for about 20ms and then
collapse. Also at 140ms and 170ms do large single bubbles appear which also collapse after
20ms. After the third large bubble has collapsed, the convection becomes weak again, i.e. small
scale bubbles appear.

The three large scale bubbles are in fact correlated: As seen in 1D models, the shock and the
region between shock and PNS surface can produce a back-reacting oscillatory behaviour, see
Sect. 3.1.4. What we see here is in fact very similar to this 1D effect. The expansion of the
dominant HB lowers the accretion rate through the gain layer, so that the neutrino luminosity
descreases and thus the heating rate decreases. In short, the expanding HB cuts off its own
energy supply. When it weakens and collapses, the mass of the former HB accumulates just
above and below the gain radius and the reverse happens, the heating strongly increases and a
new HB emerges. The crucial question is whether the performance of one such cycle increases
the energy in the gain layer or whether it descreases it. In the first case we would end in an
explosion such as in the simulation discussed in Sect. 3.1.4. However, in this case the cycle
ends after three periods: the decisive quantity is the heating efficieny, which on a time average
should be higher than one to obtain a cycle with positive energy balance. For Model s112_64
this does not happen. In short, although the Model s112_64 gets much closer to explosion than
any of the other simulations due to the strong convection and the high heating efficiency of
about one, the simulation fails to produce an explosion. To reach a heating efficiency above
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one, some ingredient(s) is still missing.

Figure 4.22: The lines show how much mass in the gain layer has a local specific binding energy above

a certain value.

Turning to resolution studies, we can compare the Model s112_64 with the Model s112_32
which has only half the lateral resolution but is else identical in input of physics and in radial
grid. Clearly, the shock does not reach as far as in the low resolution model and convection is
not as pronounced, see Figs. 4.18. Although the large scale mode with one HB and one down-
flow also develops in this model, these overturns are weaker. One reason is that the downflow
generally becomes very narrow and can not be dissolved in the low resolution model. Thus it is
artificially wider than in reality.

Whether the resolution in Model s112_64 is sufficient is questionable, however, the decisive
quantity for explosion, the heating efficiency, only increases slightly when increasing the lateral
resolution from 2.7 degrees to 1.35 degrees. We doubt that further increasing the resolution
can move the heating efficiency above 1 and so induce an explosion. Anyway, the resolution
in Model s112_64 absolutely is the lowest we are allowed to use for realistic simulations. A
resolution of 1 degree would be favorable (L. Scheck, private communication).

The choice of seed perturbations shows no significant influence on HB convection. Comparing
the models s15_32 and s15_64_p we find that larger seeds (as in latter model) will lead to
an earlier onset of convection by O(10ms). However, the timescales relevant for starting an
explosion (τadv and τheat) are much larger than 10ms.

4.3.3 A full star simulation

We now pay special attention to the Model s112_128_f. Clearly, the shock in this model man-
ages to reach large radii of up to 600km (Fig. 4.18) and is expanding with a speed that is typical
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Figure 4.23: The left figures show entropy snapshots of Model s112_128_f for four times. The right

figures show the radial velocity for the same times. The velocities can reach up to 47000km/s (bright

yellow).
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for shocks in exploding models (∼ 10000km/s). Although at the end of the simulation it was
still too early to speak of an explosion the situation looks very favorable for explosion. Unfortu-
nately, the simulation had to be stopped due to very small timesteps, as the equatorial downflow
created strong local fluctuations in the medium below the neutrinospheres.

The model is different from Model s112_64 by two points. First, the complete star was simu-
lated, from pole to pole, in Model s112_128_f, compared to a wedge around the equator which
corresponds to ∼ 70% of the total volume in Model s112_64. This allows larger scale modes in
Model s112_128_f. Second, while Model s112_64 used periodic lateral boundary conditions,
the full star model necessarily had reflective boundary conditions at the poles. As we will show
it is the latter difference that changes the behaviour of the simulation.

Figure 4.24: The upper panel shows the explosion energy of Model s112_128_f, defined in Eq. 3.6. The

lines in the lower panel show how much mass in the gain layer has a local specific binding energy above

a certain value.

Already early in the simulation of the full star do we see differences with respect to Model
s112_64 (see Fig. 4.23, 88ms and Fig. 4.21, 87ms): Most of the convective structure resembles
that of Model s112_64, but we find that the bubbles at the poles extend to larger radii. This
is surely a numerical artefact connected to the geometry, in particular to the small volume
of the zones near the poles. Therefore perturbations grow more quickly near the poles, see
e.g. Kane et al. (2000). In the further development of the simulation the polar hot bubbles begin
to dominate the convective structure of the gain layer as they become more and more prominent,
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while the convective structure near the equatorial plane resembles very much the structure and
size of hot bubbles and downflows seen in Model s112_64. Although the polar hot bubbles
are weakened due to ram pressure and transient drops in heating they never really collapse and
their starting infall is reversed by new waves of high-entropy, high-velocity matter streaming
out along the pole. The snapshot at 225ms in Fig. 4.23 shows this when looking at the “left”
pole: Above 400km the matter is expanding, but below it has started retreating due to pdV
work applied from the matter falling through the shock. However, from below 300km a new
hot bubble with very high velocities is already reviving the expansion of the matter betweeen
300km and 400km.

Eventually, 180ms after bounce, the gain layer is completely dominated by the two polar hot
bubbles and one or two downflows near the polar axis, in latter case with a small transient hot
bubble in between.

Interestingly, the reinforcement of the two hot bubbles occurs alternating, which is a conse-
quence of the fact that the downflow flows alternately northward and southward into the cooling
layer and thereby heats alternately the northern and southern hot bubble.

The capricious behaviour of the downflow has a simple explanation: Let us look at the situation
where the downflow is turning northwards so that we have a strongly heated, strongly expand-
ing, large, northern hot bubble, and a smaller, faltering, southern hot bobble. Roughly speaking
the silhouettes of the hot bubbles describe axisymmetric surfaces which have their radial maxi-
mum at the poles and smoothly retreat in radius for increasing angle from the pole. The surface
of the shock envelops the bubbles at slightly larger radii with cooler, dense shocked material in
between. Now we consider an infalling fluid element in the northern hemisphere being halted
by the shock. When this fluid element is shocked by the askew shock its velocity component
vertical to the shock surface is strongly decreased while the velocity component parallel to the
shock remains constant. Thus the fluid element will move with large lateral velocity (we find
10000km/s) towards the equatorial downflow. While moving towards the equator the fluid ele-
ment will accelerate due to the gravitational pull and will therefore increase both its radial and
lateral velocities (latter due to angular momenum conservation). When it reaches the downflow
it has accelerated to high lateral velocity so that it has a tendency of ending up near the south
pole cooling layer. Of couse, matter falling onto the south pole will experience the opposite
lateral acceleration and meet the downflow material from the northern hemisphere at the equa-
torial downflow. However, as the northern bubble is larger, it extends over the equator. Thus,
the matter falling through the askew shock at the equator will also be diverted southwards and
the larger lateral momentum of the southward flowing material will win over that of the north-
ward moving material so that the whole material will be pushed down to the neutrinosphere in
the southern hemisphere. Later, when the southern hot bubble has expanded due to the strong
heating while the northern bubble has stagnated or started retreating the southern bubble will
push itself above the northern bubble at the equator and will thus redirect the equatorial infalling
matter in the direction of the north pole: the downflow will turn northward.

This mechanism has also been seen in other 2D simulations and even in 3D simulations (L.
Scheck, personal communications). This bi-polar instability seems sure to develop. However, it
is questionable how strongly we enforce this mechanism to develop in our simulation. A true 3D
simulation without angular boundary conditions might experience a slower development of this
mechanism. By fixing the axis along which the mechanism shall develop we enhance its growth
in this direction and completely suppress its growth in all other directions. It is possible that the
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formation of these instabilities on different axes might interfere with each other and slow the
development of one dominating direction. One argument which weakens this criticism is that
even for very small rotation rates the polar axis obtains a physical meaning and the development
of the bi-polar instability is likely to be enhanced on this axis and slightly suppressed in other
directions. This question can of course only be answered with 3D calculations.

Therefore, we have to be careful with the results of this simulation. It yields a marginal ex-
plosion, so that details which could imply a weaker bi-polar instability might retard the time
of explosion (and thus quantities such as the final proto neutron star mass and the explosion
energy) or even change the explosion to a dud. Still, this model is much more realistic than
the exploding model presented in Sec. 3.2.2, where the explosion resulted from an inconsistent
treatment of the neutrino transport equations while here the explosion relies on a mechanism
which is indeed physical, but whichs strength might be overestimated by the specific geometry
of our simulation.

The choice of boundary conditions has proven to decide whether the bi-polar instability is sup-
pressed completely (periodic boundary conditions) or allowed and probably enforced (reflect-
ing boundary conditions). For the 11.2M� progenitor, this makes the difference between a
model that marginally fails to explode (s112_64) and a model that barely manages to explode
(s112_128_f). The bottomline is that we finally stand on the borderline between failure and
success. But the effect which actually ensures successful explosions, i.e. the bi-polar instability
(BPI), can only be simulated approximately in two-dimensional simulations, and thus we can
not exclude that the success is a result of overestimating this effect. Therefore, to prove that the
“delayed neutrino-, convection-, and BPI-driven explosion mechanism” works, we have to wait
for three-dimensional calculations.

We turn to the discussion of the global quantities of Model s112_128_f. From Fig. 4.20 we see
that the heating efficiency reaches values above 1 in this model. The advection timescale does
no longer decrease, and after a time of ∼ τadv the heating efficiency starts increasing even more.
This means that the neutrino heating, coupled with the bi-polar instability which is an even more
efficient energy transport mechanism than the “standard” Ledoux convection, manages to heat
material in the gain region sufficiently so that this matter can escape the star. This also can be
seen in Fig. 4.24 which shows that the mass of matter with enough energy to escape the gravita-
tional potential is increasing, and the mass of matter which is only weakly bound is increasing
quickly. Thus, also the explosion energy is already increasing. In Fig. 4.15 we see that the
neutrino luminosity is not yet decreasing, which implies that the mass accretion is not yet being
throttled by the explosion. This is a good sign because then the neutrino heating/convective
engine can still pump a significant amount of energy into the ejecta.
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5 Conclusions

Core collapse supernovae are highly complex phenomena whose theoretical study requires the
insight that can be gained by detailed numerical simulations. Even after almost fourty years the
mechanism responsible for the explosion is not yet secured knowledge. The simulations made
so far leave the impression that the revival of the stalled shock is sensitive to many details. It
even seems possible that the conditions needed for explosions require fine-tuning. Or could it
be that we are looking in the wrong direction, that we have completely missed a crucial point?

These thoughts of doubt naturally arise whenever success is not achieved for so many decades.
However, the discouraged should not forget some important facts: For one, the explosion energy
is only a small fraction—few percent—of the gravitational binding energy released during core-
collapse. In this sense almost all observed core collapse supernova explosions could be called
marginal, the explosion being only a weak side effect of the neutrino emission. If the energy
transfer from neutrinos could easily revive the shock we would observe much larger explosion
energies. Therefore it should be expected that obtaining the right amount of energy transfer is a
difficult task.

Current supernova models, even the most sophisticated ones, have deficiencies associated with
employed approximations which are known—or at least suspected—to underestimate effects
which support shock revival. In other words, the reasons why these simulations do not yield
explosions may be guessed. Therefore the obvious course of procedure is to patiently refine the
simulations until one can ascertain that no important effects are under- or overestimated. The
end of this path promises a deeper understanding of the explosion mechanism. And one should
keep in mind that not necessarily all core-collapse events have to lead to explosions, but that
a certain fraction of massive stars may well end their lives as black holes formed in a “silent”
catastrophic collapse.

In course of this work significant progess has been made towards more realistic and more com-
plete simulations of core collapse supernovae in one and two dimensions.

• With a detailed spectral treatment of neutrino-matter interactions and a reasonably good
description of the two-dimensional transport—using a variable Eddington factor tech-
nique for describing the radial transport and an approximative handling of the lateral
dimension—a new level of accuracy was reached in core collapse modeling.

• Neutrino-matter interactions were improved compared to previous, more schematic or ap-
proximative descriptions. Moreover, so far disregarded neutrino processes were included.

• A simple and computationally very efficient approximative treatment of general relativis-
tic effects was developed which was tested to produce very good agreement with fully

101
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relativistic simulations in spherical symmetry (Liebendörfer et al. 2003).

With these features implemented our newly developed neutrino-hydrodynamics code MuD-
BaTH is an excellent and currently the most elaborate tool for simulating stellar core collapse
in two dimensions.

Simulations were performed for a large variety of progenitors with 11–25 solar masses in spher-
ical symmetry and for a number of these models in two dimensions to study the effects of
convection. The results are manifold:

• The simulations confirm that a state-of-the-art treatment of the microphysics, i.e. of the
neutrino interactions and of the nuclear equation of state, does not allow for successful
explosions in spherical symmetry. This result is in agreement with recent results by other
groups (Mezzacappa et al. 2001; Liebendörfer et al. 2001; Thompson et al. 2003), which
employed numerically different treatments of the hydrodynamics and neutrino transport.
This means that according to our present knowledge multi-dimensional processes are
crucial for explaining the explosion of massive stars.

• The two-dimensional models with limited (90◦) lateral wedge do not yield explosions and
thus cannot confirm previous simulations (Herant et al. 1994; Burrows et al. 1995; Fryer
1999; Fryer & Heger 2000), which obtained explosions by the convectively supported
neutrino-driven mechanism in two dimensions but used a much less sophisticated treat-
ment of neutrino transport and neutrino-matter interactions by a grey, i.e. non-spectral,
flux-limited diffusion method. Our simulations therefore demonstrate that simulations
with such radical simplifications of the neutrino physics have to be taken with great cau-
tion. This is also true for the most recent three-dimensional models of Fryer & Warren
(2002, 2004) where the same approximations of the transport physics were used.

• A first simulation with a full 180◦ grid produced a weak explosion, in contrast to the
failure of the corresponding run with a 90◦ wedge. This simulation revealed an interesting
phenomenon which could be a new twist in the explosion mechanism of massive stars.
In addition to the “standard” Ledoux hot-bubble convection the gain layer developed
a new mode of large-scale “bi-polar” instability. This allowed convection to become
much stronger and more violent than in the wedge simulation where this large mode
was suppressed by artificial (and unphysical) boundary conditions. This result is very
encouraging and opens a new perspective for finally successful models of massive star
explosions. Simulations for different progenitors are currently underway.

The models also provide information of so far unattained accuracy for the neutrino emission,
nucleosynthesis conditions, and gravitational wave emission in core-collapse supernovae. De-
tailed spectral information of the neutrino signal produced by different progenitors was used
to analyze, e.g., the detectability of the electron neutrino burst in a future generation of under-
ground or underwater experiments, also with respect to the possibility of determining yet un-
known neutrino properties, e.g. the yet unknown neutrino mixing angle ϑ13 (Kachelriess et al.
2004). An explosion model which was produced with a slight, artificial enhancement of the
neutrino-energy transfer in the hot-bubble region showed that the matter which is ejected dur-
ing the early phase of the explosion must be expected to be proton-rich and not neutron-rich
as thought before. The interesting consequences for supernova nucleosynthesis were evaluated
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in a recent paper by Pruet et al. (2004). The over-production problem of N = 50 closed neu-
tron shell nuclei seen in previous supernova models is found to be solved. Finally, our models
provided the so far most realistic model data for the gravitational wave emission from stel-
lar core collapse events. This information is indispensible for detecting supernova signals in
currently built or operative interferometer experiments (LIGO, VIRGO, and GEO600) and the
detectability was analyzed in detail in recent papers by Müller et al. (2004) and Buonanno et al.
(2004).

Of course this thesis is only one more step towards increasingly more refined, more detailed,
and more accurate numerical simulations of core-collapse supernovae. A lot of work remains
to be done, also for the exploration of the interesting new perspectives revealed by the pre-
sented models. It is clear from this work that an accurate treatment of the neutrino transport
and neutrino-matter interactions is indispensable for reliable simulations of core-collapse su-
pernovae and for reliable investigations of the explosion mechanism. A limited wedge in two
dimensions constrains the convective modes which are allowed to develop, and the possibly
crucial importance of low-mode convective instabilities indicated by our weakly exploding 11.2
solar mass model calls for future simulations in three dimensions.
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Reaction Implementation described in References

νe± 
 νe± Rampp & Janka (2002) Mezzacappa & Bruenn (1993b); Cernohorsky (1994)

νA 
 νA Rampp & Janka (2002) Horowitz (1997); Bruenn & Mezzacappa (1997)

νN 
 νN Sect. A.1 Burrows & Sawyer (1998)

νen 
 e−p Sect. A.1 Burrows & Sawyer (1999)

ν̄ep 
 e+n Sect. A.1 Burrows & Sawyer (1999)

νeA′ 
 e−A Rampp & Janka (2002) Bruenn (1985); Mezzacappa & Bruenn (1993c)

ν ν̄ 
 e−e+ Rampp & Janka (2002) Bruenn (1985); Pons et al. (1998)

ν ν̄NN 
 NN Rampp & Janka (2002) Hannestad & Raffelt (1998)

νµ,τ ν̄µ,τ 
 νe ν̄e Buras et al. (2003) see Buras et al. (2003)
(−)
νµ,τ

(−)
ν e 


(−)
νµ,τ

(−)
ν e Buras et al. (2003) see Buras et al. (2003)

Table A.1: Overview of all neutrino-matter interactions currently implemented in the code. For each

process we list the sections or point to references where the fundamental aspects of the calculation

of the corresponding rate are summarized and details of its numerical implementation are given. The

references in the third column point to papers where more information can be found about the physics

and the approximations employed in the rate calculations. In the first column the symbol ν represents

any of the neutrinos νe, ν̄e, νµ, ν̄µ, ντ, ν̄τ, the symbols e−, e+, n, p, and A denote electrons, positrons, free

neutrons and protons, and heavy nuclei, respectively, the symbol N means n or p.

A Neutrino opacities

Our set of so-called “standard” neutrino opacities closely follows the conventional descrip-
tion as introduced by Bruenn (1985) and Mezzacappa & Bruenn (1993a,b) with the only ex-
ception that we in addition take into account neutrino pair processes due to nucleon-nucleon
bremsstrahlung. A complete list of reactions, corresponding pointers to the literature and de-
tails of the numerical implementation into our transport code can be found in the appendix of
Rampp & Janka (2002).

The “improved description” of neutrino opacities that is used in our latest simulations is summa-
rized in Table A.1. Specifically, the so-called iso-energetic or elastic approximation (cf. Bruenn
1985; Reddy et al. 1998), which the standard description for calculating rates of neutral-current
neutrino scatterings off free nucleons and the corresponding charged-current absorption reac-
tions relies on has been abandoned in order to take into account energy exchange due to recoil

105



106 APPENDIX A. NEUTRINO OPACITIES

and thermal motion of the nucleons as well as nucleon-nucleon correlations in the dense medium
(Burrows & Sawyer 1998, 1999; Reddy et al. 1998, 1999). Modifications of the neutrino opac-
ities which are due to the weak magnetism of the nucleon are also accounted for (cf. Horowitz
2002). We employ a density dependent effective mass of the nucleon which, at nuclear densi-
ties, is different from its free value and also take into account the effect of a possible quenching
of the axial coupling in nuclear matter (Carter & Prakash 2002) on the neutrino opacities.

In the following we shall describe the numerical handling of these neutrino-matter interactions
in some detail. Note that our list of considered interactions also contains the purely neutrinic
reaction channels (last two lines of table A.1) which before have received only little attention
from core-collapse supernova modellers. Their significance as well as their numerical imple-
mentation is discussed elsewhere (Buras et al. 2003).

A.1 Neutrino-nucleon interactions

A.1.1 Neutrino-nucleon scattering (νN
 νN)

Differential rates for inelastic scattering of neutrinos off free nucleons are calculated accord-
ing to Eq. (38) of Burrows & Sawyer (1998). For incorporating this type of neutrino-matter
interactions into our transport code the formalism developed for inelastic scattering of neutri-
nos off electrons (NES) can be exploited (see Rampp & Janka 2002, Appendix A). Different
from NES, however, the angular integration (let ω denote the cosine of the scattering angle) of
the scattering kernels R(ε, ε ′, ω) to yield the coefficients φl(ε, ε′) of the corresponding Legen-
dre expansion (cf. Bruenn 1985, Appendix C) cannot be performed analytically in the case of
neutrino-nucleon scattering. Moreover, the characteristic width of the kernels as a function of
in and outgoing neutrino energies ε, ε ′ can be small (but finite) compared with the numerical
resolution of the neutrino spectrum in the transport scheme, in which typically only about 20
energy bins with a resolution of ∆ε/ε ' 0.3 can be afforded. Hence, in order to adequately sam-
ple the scattering kernels on such a coarse energy grid it is not sufficient to simply evaluate the
functions φl(ε, ε′) at each combination of energies (ε j+ 1

2
, ε j′+ 1

2
). Instead, we introduce for each

energy bin [ε j, ε j+1] a numerical subgrid of Nε j neutrino energies ε j ≤ ε ≤ ε j+1 and Nω angle
cosines −1 ≤ ω ≤ 1 and compute R(ε, ε ′, ω) as given by Burrows & Sawyer (1998, Eq. 38)
for all such combinations of ε, ε ′ and ω. For fixed values of ε and ε ′ we numerically integrate
R(ε, ε′, ω), appropriately weighted with the Legendre polynomials Pl(ω) over angles to yield
φl(ε, ε′). Averaging φl(ε, ε′) over the energy bins [ε j, ε j+1] and [ε j′ , ε j′+1] the final, binned Leg-
endre coefficients φl(ε j+ 1

2
, ε j′+ 1

2
) which are used in our neutrino transport scheme are obtained.

In practice a six-point Gauss-quadrature scheme is used for the numerical integrations within
each of the spectral and angular bins. In order to correctly reproduce the low-density limit,
where only tiny energy transfers ε − ε ′ between neutrino and nucleon occur and the coefficients
φl become increasingly narrowly peaked functions of ε−ε ′, we calculate φl according to the (an-
alytically tractable) iso-energetic approximation (Bruenn 1985; Reddy et al. 1998) if the density
drops below 108 g cm−3. Note that evaluating Eq. (38) of Burrows & Sawyer (1998) requires
the knowledge of nucleon-nucleon interaction potentials. Within the framework pursued by
Burrows & Sawyer (1998) the latter can be expressed in terms of the Fermi-liquid parameters,
which, in turn, are directly related to macroscopic observables such as the incompressibility Ks
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or the symmetry energy S v of bulk nuclear matter (see Reddy et al. 1999). Accordingly, we
select values for the Fermi-liquid parameters which are consistent with the parameters chosen
for the nuclear EoS we use for our simulations (Lattimer & Swesty 1991, with Ks = 180 MeV,
S v = 29.3 MeV).

Once the Legendre coefficients φ0 and φ1 are known the contribution of neutrino-nucleon scat-
tering to the collision integral of the Boltzmann equation and its angular moments is calculated
in exactly the same way as described for NES in Rampp & Janka (2002, Appendix A).

A.1.2 Absorption of electron-flavour neutrinos by free nucleons

(νen
 e−p, ν̄ep
 e+n )

The calculation of the inverse mean free path 1/λ(ε) for absorption of electron (anti)neutrinos
by free neutrons (protons) is based on Eq. (2) of Burrows & Sawyer (1999). For the numer-
ical implementation we employ the same techniques that we have already described for the
neutral-current reactions in Sect. A.1.1. Different from neutrino-nucleon scattering, however,
the outgoing lepton is a charged lepton, which, in our context is assumed to be in local thermo-
dynamical equilibrium with the stellar medium. Hence no dependence of the scattering kernels
on the energy ε′ of the outgoing lepton needs to be retained and the averages over the energy
bins [ε j′ , ε j′+1] are consequently replaced by an integral over the entire spectrum of energies ε ′

of the outgoing charged lepton. Given 1/λ(ε), the absorption opacity corrected for stimulated
absorption κ∗(ε) which enters our neutrino transport scheme can be calculated straightforwardly
(cf. Rampp & Janka 2002, Appendix A).

A.1.3 Effective mass of the nucleons

Following Burrows & Sawyer (1999) we substitute an effective mass m∗ for the nucleon mass
m, wherever the latter appears explicitly in the formalism. Notably m∗ is also used for inverting
the particle density-chemical potential relation in order to compute the chemical potentials of
protons and nucleons (including interaction potentials) for given number densities (cf. Burrows
& Sawyer 1998, Eq. 11).

For the effective mass we adopt the density dependence (Reddy et al. 1999)

m∗(ρ) =
m

1 + α · ρ/ρnuc
, (A.1)

where the constant α is defined by the value of the effective mass at nuclear saturation density
(ρnuc/m = 0.16 fm−3) being m∗(ρnuc) = 0.8 m.

A.1.4 Weak magnetism corrections

Correction factors for the iso-energetic cross-sections describing both weak magnetism and
recoil effects of the nucleon are provided are provided by Horowitz (2002). Both effects appear
at the level of O(ε/m) with ε being the neutrino energy and m the nucleon mass. For our
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Figure A.1: Cross section as function of neutrino energy for absorption of νe (left column) and ν̄e (right

column) by free nucleons. Note the different scale of the ordinates. The bold lines show the comparison

between the “standard description” (dashed) and our ”improved description”. Thermodynamic condi-

tions are given in the top left corners of the plots. For given density effective values for the nucleon

mass m∗ and the axial coupling g∗A were calculated using Eq. (A.1) and Eq. (A.9), respectively. Thin

dashed-dotted lines show the weak-magnetism plus recoil correction of Horowitz (2002) applied to the

iso-energetic cross section of Bruenn (1985) which is drawn as a dashed line. The dotted lines correspond

to the recoil and thermal motion approximation of Schinder (1990). In all cases neutrino phase-space

was assumed to be empty. Lines connect values computed on an energy grid of 100 points which are

linearly spaced between 0 and 380 MeV. For comparison, crosses show the improved rates on a geomet-

rical energy grid with 17 bins and six-point Gauss-quadratures for the angular and spectral intergrations

(relevant for the improved description; see text). This is the typical spectral resolution of our dynamical

supernova simulations. Results obtained by using 30-point Gauss-quadratures instead are displayed by

open diamonds.
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Figure A.2: Same as Figure A.1 but showing the corresponding neutral-current scattering cross sections

of neutrinos (left column) and antineutrinos (right column). In order to obtain the quantity 1/λ(ε) the

differential scattering rate R(ε, ε ′, ω) was integrated over all angle cosines ω and final neutrino energies

ε′.
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purposes, however, we have to disentangle the contributions of both effects to the final rates
in order to obtain a pure weak-magnetism correction for the formalism described above, which
already includes recoil and also nucleon-nucleon correlations but unfortunately disregards weak
magnetism. This is achieved by analytically averaging the differential rates which include weak
magnetism as well as recoil and those for recoil alone over the scattering angle and using the
resulting angle-independent ratio as the weak-magnetism correction to the rates of Burrows &
Sawyer (1998, 1999). For the charged-current reactions the angular reduction is performed by
simply integrating the differential rates over all angles between the momenta of the neutrino
and the charged lepton while for the neutral current scatterings a (1−ω)-weighting is used. The
latter is motivated by the definition of the transport opacity (for details, see Horowitz 2002).

The Legendre coefficients for neutral-current scatterings as described in Sect. A.1.1 are finally
modified according to φout

l (ε, ε′)→ ξnc(ε) · φout
l (ε, ε′), where

ξnc(ε) ≡
nn · X

nc:n
WM,Rec.(ε) + np · X

nc:p
WM,Rec.(ε)

nn · X
nc:n
Rec.(ε) + np · X

nc:p
Rec.(ε)

(A.2)

is the ratio of the full correction factor (Horowitz 2002, Eq. 32)

X
nc:n/p
WM,Rec.(ε) =

=

{

C2
V

[

e − 1
2e3

ln ζ +
3 + 12e + 9e2 − 10e3

3e2 (ζ)3

]

+ C2
A

[

1 + e
2e3

ln ζ −
10e3 + 27e2 + 18e + 3

3e2ζ3

]

± (CV + F2) CA













1
e2

ln (ζ) −
2 + 10e + 28

3 e2

eζ3













+ CVF2

[

1
e2

ln ζ −
2
3

(

3 + 15e + 22e2

eζ3

)]

+F2
2

[

1
4e2

ln ζ +
8e3 − 22e2 − 15e − 3

6eζ3

]}/ {

2
3

(

C2
V + 5C2

A

)

}

, (A.3)

and the correction factor for recoil alone

X
nc:n/p
Rec. =

{

C2
V

[

e + 1
e3

ln ζ −
2
e2

]

+ C2
A

[

2e2 − 1 − e
e3

ln ζ +
2

e2ζ

]}/ {

2
3

(C2
V + 5C2

A)

}

, (A.4)

In Eqs. (A.3, A.4) we have used the abbreviations

e(ε) ≡
ε

m c2
, and ζ(e) ≡ 1 + 2e . (A.5)

Numerical values of the coupling constants CV, CA and F2 can be found in Horowitz (2002,
Table I). Since the values of CV, CA and F2 are different for the reactions νp
 νp and νn
 νn
the individual correction factors for protons Xnc:p and neutrons Xnc:n are weighted with the cor-
responding number densities nn and np, respectively, to yield the final correction factor ξnc for
neutral-current scatterings (Eq. A.2). Given φout

l (ε, ε′), detailed balance arguments (see Cer-
nohorsky 1994) are exploited to compute the coefficient φin

l (ε, ε′) corresponding to the inverse
reaction (for details, see Rampp & Janka 2002, Appendix A).

Analogously one modifies the inverse mean free path for charged-current reactions (see Sect.
A.1.2) according to 1/λ(ε)→ ξcc(ε) · 1/λ(ε), where

ξcc(ε) ≡
Xcc

WM,Rec.(ε)

Xcc
Rec.(ε)

, (A.6)
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with

Xcc
WM,Rec.(ε) =















C2
V

(

1 + 4e +
16
3

e2

)

+ 3C2
A

(

1 +
4
3

e

)2

± 4 (CV + F2) CAe

(

1 +
4
3

e

)

+
8
3

CVF2e2 +
5
3

e2

(

1 +
2
5

e

)

F2
2

}/

{(

C2
V + 3C2

A

)

(1 + 2e)3
}

, (A.7)

as given by Horowitz (2002, Eq. 22), and

Xcc
Rec.(ε) =

{

C2
V

[

1
e
−

1
e2

ln ζ

]

+ C2
A

[

4e2 − 2e + ζ ln ζ
2e2ζ

]}/

{

C2
V + 3C2

A

}

. (A.8)

The ±-symbol in Eqs. (A.3, A.7) refers to a positive sign for neutrinos and a negative sign for an-
tineutrinos, respectively. In our transport method, we presently do not discriminate between νµ,τ
and the corresponding antiparticles. For these flavours we therefore take the particle/antiparticle
average of Eqs. (A.3, A.7), respectively, which in effect means that all terms that are multiplied
by the ±-symbol vanish for the heavy-lepton neutrinos.

Recall that we switch from the description of Burrows & Sawyer (1998, 1999) to the iso-
energetic approximation (Bruenn 1985) if ρ < 108 g cm−3 (see Sect. A.1.1). Consequently, in or-
der to take into account nucleon recoil and weak-magnetism also for these conditions the correc-
tion factors defined in Eqs. (A.2, A.6) are replaced by ξnc = (nn ·X

nc:n
WM,Rec.+np ·X

nc:p
WM,Rec.)/(nn+np),

and ξcc = Xcc
WM,Rec., respectively, wherever the density falls short of 108 g cm−3.

A.2 Quenching of the axial coupling

In the calculations of all neutrino-matter interactions we replace the axial coupling gA = 1.254
by an effective, "quenched" value g∗A which depends on the baryon density and is given by
Carter & Prakash (2002, Eq. 13):

g∗A(ρ) = gA

(

1 −
ρ

4.15 (ρnuc + ρ)

)

. (A.9)

In effect, opacities are reduced by a factor (g∗A/gA)2 at densities ρ & ρnuc.

A.3 Discussion

In Figures A.1, A.2 opacities for neutrino-nucleon interactions computed with the procedures
described above are compared with the iso-energetic approximation adopted by Bruenn (1985)
and the description of Schinder (1990). The latter work approximately takes into account the
reaction kinematics (recoil, thermal motions and final-state blocking of the nucleons) but dis-
regards weak magnetism and nucleon-nucleon correlations. According to our core-collapse
simulations for the 15 M� star the chosen combinations of values for the density ρ, temperature
T , and electron fraction Ye of the stellar medium are roughly characteristic for the conditions in
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Figure A.3: Cross section for absorption of νe by free neutrons for the conditions given in the last row

of Fig. A.1. The solid (improved description) and dashed (standard description) lines show reference

solutions which were obtained with high spectral resolution (see Fig. A.1). The result of averaging the

rates over the comparably coarse bins of the energy grid used in dynamical simulations results in rates

shown by crosses (improved description) and open triangles (standard description).

the gain layer, where neutrino heating is strongest (top rows of Figs. A.1, A.2), the region where
most of the neutrino luminosity is produced (middle rows), and the interior of the forming proto
neutron star (bottom rows).

As discussed in detail by Horowitz (2002) the effects of weak-magnetism and recoil of the
nucleons counterbalance each other for νe while in the case of ν̄e both add up leading to an
appreciable net reduction of the standard opacities (computed according to Bruenn 1985). This
can be seen in Figs. A.1, A.2 by comparing the bold, dashed lines with the thin, dashed-dotted
lines. While the size of the weak-magnetism and recoil effects is independent of the density the
additional reduction of both νe and ν̄e opacities due to nucleon-nucleon correlations shows up
only at nuclear densities (see Burrows & Sawyer 1998, 1999; Reddy et al. 1998, 1999; Horowitz
2002, for a thorough discussion).

Employing the averaging procedure described in Sects. A.1.1, A.1.2 we calculated energy-
averaged cross sections for a numerical energy grid with a resolution that is typically used
in our dynamical supernova simulations. The results are shown by crosses drawn at the centres
of the energy bins. Notable deviations from the reference solutions show up only in the vicinity
of large opacity gradients which arise, e.g., due to final state blocking of the degenerate electron
gas in the reaction νe + n → e− + n (see Fig. A.3). Note, however, that this phenomenon is not
specific to our improved physical description (see the open triangles in Fig. A.3).

Increasing the number of quadrature weights for the numerical integrations within the spectral
and angular bins by a factor of five each, i.e. employing 30-point Gauss-quadratures (open
diamonds in Figs. A.1, A.2), we find good agreement with the standard six-point results (crosses
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in Figs. A.1, A.2).
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B Moments equations in three

dimensions

To order O(v/c) of the fluid velocities (the so-called Newtonian approximation) the full three-
dimensional moments equations are given by (Kaneko et al. 1984, correcting a number of
misprints):

ρ

c
D
Dt

(

J
ρ

)

+ ∇ ·H +
1
c
∂

∂t
(β ·H) −

ε

c
∂β

∂t
·
∂H
∂ε
− ε∇β :

∂P
∂ε
= C(0) (B.1)

ρ

c
D
Dt

(

H
ρ

)

+∇ · P+H · ∇β+
1
c
∂

∂t
(β · P)+

J
c
∂β

∂t
−

1
c
∂β

∂t
·
∂(εP)
∂ε
−∇β :

∂(εN)
∂ε

= C(1) , (B.2)

where β = v/c. In general spherical coordinates, the moments are defined by

J =
1

4π

∫ ∫

IdΩ, H =
1

4π

∫ ∫

IndΩ, P =
1

4π

∫ ∫

InndΩ, N =
1

4π

∫ ∫

InnndΩ. (B.3)

Here, n = (nr, nϑ, nϕ) = (cosΘ, sinΘ cosω, sinΘ sinω), µ = cosΘ, and Θ and ω are the two
angles defining the direction of propagation. The moments equations written in coordinate form
are the following:
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Note that using the continuity equation yields
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The different moments defined in Eqs. (B.3) are linked by the following relations, which are
generally valid:

Prr + Pϑϑ + Pϕϕ = J ,

Nrrr + Nrϑϑ + Nrϕϕ = Hr ,

Nrrϑ + Nϑϑϑ + Nϑϕϕ = Hϑ ,

Nrrϕ + Nϑϑϕ + Nϕϕϕ = Hϕ . (B.9)

Also note that P and N are completely symmetric tensors, i.e. the indices can be permutated
arbitrarily. The number of independent variables therefore is #(J,H, P,N) = (1, 3, 5, 7) after
applying Eqs. B.9.

In two dimensions the symmetry relation I(−ω, µ) = I(ω, µ) holds which leads to

Hϕ = Prϕ = Pϑϕ = Nrrϕ = Nrϑϕ = Nϑϑϕ = Nϕϕϕ ≡ 0 (B.10)

and therefore #(J,H, P,N) = (1, 2, 3, 4); note that the last equation in (B.9) becomes redundant.
In one dimension one has I(ω, µ) = I(µ) so that in addition

Hϑ = Prϑ = Nrrϑ = Nϑϑϑ = Nϑϕϕ ≡ 0. (B.11)

This time, the third equation in (B.9) becomes redundant. Furthermore, one obtains two new
equations from comparing the relations in Eqs. (B.3):

Pϑϑ = Pϕϕ, Nrϑϑ = Nrϕϕ, (B.12)

which results in #(J,H, P,N) = (1, 1, 1, 1). Now one can introduce the definitions H ≡ Hr,K ≡
Prr, L ≡ Nrrr.
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C Specific energy without offset

Here we describe our procedure for solving the Eulerian equations of hydrodynamics, Eqs. (2.1–
2.7), together with a general EoS without the side effect of ugly fluctuations in the entropy and
pressure as dependent variables.

As discussed in Sect. 2.5 the wiggles disappear if we feed the hydrodynamics solver PROME-
THEUS with the total specific energy

ε = eint + ekin , (C.1)

where eint is the internal specific energy and ekin =
1
2 (v2

r + v2
ϑ + v2

ϕ) is the kinetic energy per
unit of mass. Then the polytropic index Γe ≡

p
ε−ekin

+ 1 = p
eint
+ 1 yields physical values ≥ 4/3,

which deem necessary for PROMETHEUS to find smooth hydrodynamic solutions. On the
other hand, our high density EoS, provided by Lattimer & Swesty (1991), yields an energy
definition which contains the nucleic rest masses and the rest masses of the unpaired electrons,
the so-called “relativistic” specific energy, plus a constant offset energy:

erel,0 = eint + erm + e0 , (C.2)

where the total specific rest mass energy is defined as

erm =

nY
∑

k=1

Yk ·
mk

mB
· c2 + Ye ·

me

mB
· c2 . (C.3)

and the specific energy offset e0 is a constant (equal to −930.7731MeV × 1.602 · 10−6 erg
MeV/mB

in our case). This energy definition is also the one which was used in our hydrodynamics
solver hitherto, i.e. ε = erel,0 + ekin. For reasons explained below, we still wish to retain the
energy definition Eq. (C.2) when evaluating the EoS and at the same time use the new definition
Eq. (C.1) when solving the hydrodynamics. This is possible using the following scheme.

The Eulerian equation for the total specific energy, Eq. (C.1), can be derived by subtract-
ing the normalized sum over the Eqs. (2.7) and further subtracting Eq. (2.6), i.e. “(2.5) −
∑

k(2.7)kmkc2/mB − (2.6)mec2/mB”:

∂
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1
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∂

∂r

(

r2 (ρε + p) vr

)

+
1

r sinϑ
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= −ρ
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∂Φ

∂r
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vϑ
r
∂Φ

∂ϑ

)

+QE+Qnuc ,

(C.4)

where the nuclear sourcterm is

Qnuc = −

nY
∑

k=1

mk

mB
c2Rk −

me

mB
c2QN . (C.5)
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The abundance of each species k is evolved according to Eq. (2.7):

∂

∂t
(ρYk) +

1
r2

∂

∂r

(

r2ρYk vr

)

+
1

r sinϑ
∂

∂ϑ
(sinϑ ρYk vϑ) = Rk (C.6)

and the electron fraction according to Eq. (2.6):

∂

∂t
(ρYe) +

1
r2

∂

∂r

(

r2ρYe vr

)

+
1

r sinϑ
∂

∂ϑ
(sinϑ ρYe vϑ) = QN . (C.7)

Starting at time step n, we calculate a hydrodynamic time step with PROMETHEUS using
the initial total specific energy of this time, εn, as defined in Eq. (C.1). Remember that
PROMETHEUS only solves the LHS of the hydrodynamic equations (in this implementation
Eqs. 2.1–2.4,C.4,C.6,C.7), i.e. the source terms and gravitational effects on the RHS of the equa-
tions are ignored for the present. Also note that the EoS is not solved in PROMETHEUS so
that for instance composition changes, even in regions with NSE, origin solely from advection,
Eqs. (C.6)!

The solution of the evolution equations, after applying the gravitational effects and all source
terms except for Qnuc, QN, and Rk yields ε∗ as well as the advected nuclear abundances Y ∗k and
the electron fraction Y∗e . The asterisk denotes that the nuclear reaction effects and the neutrinic
source term QN of time step n + 1 have not yet been taken into account.

Next, we transform the energy to

e∗rel,0 = ε
∗ − en+1

kin +

nY
∑

k=1

Y∗k ·
mk

mB
· c2 + Y∗e ·

me

mB
· c2 + e0 , (C.8)

where en+1
kin is the specific kinetic energy after the hydrodynamics step.

This energy transformation analytically transforms Eq. (C.4) back to its form Eq. (2.5) while
the other hydrodynamic equations are invariant to this transformation. In the context of this
energy definition we can now apply the remaining source terms to the hydrodynamic variables
as well as update the EoS and NSE composition exactly in the same way as we did in our former
version of the code since Qnuc has disappeared from the energy equation. This results in the new
composition Yn+1

k and electron fraction Yn+1
e .

We now transform the energy back to

εn+1 = en+1
EoS + en+1

kin −

nY
∑

k=1

Yn+1
k ·

mk

mB
· c2 − Yn+1

e ·
me

mB
· c2 − e0 , (C.9)

where we use en+1
rel,0 = e∗rel,0. By this trivial treatment, we have indirectly taken into account the

nuclear source term Qnuc since

εn+1 − ε∗ = −

nY
∑

k=1

(Yn+1
k − Y∗k ) ·

mk

mB
· c2 − (Yn+1

e − Y∗e ) ·
me

mB
· c2 = Qnuc∆tn , (C.10)

where ∆tn is the size of the time step n.

In other words, because we apply effects which transform mass into internal energy and vice
versa, i.e. composition changes due to nuclear transmutation and transmutation of electrons
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to massless neutrinos, at a stage where the energy is defined including the rest masses of the
particles which change abundance, Eq. (C.2), this energy is not affected by the transmutations
and does not change. The shift of energy from eint to erm or back is not visible in their sum,
erel = eint + erm. Note that, in order to achieve the abundances Y ∗k which are needed in Eq. (C.8)
the advection of abundances Eqs. (C.6) has to be solved even in regions for which NSE applies!

This procedure of changing the energy definition during computation seems at first sight to
origin from the laziness of the programmer to fix his scheme. However, it features several ad-
vantages: first, we do not need to calculate any nuclear source terms. This includes the NSE
regime, where the nuclear composition and temperature are well defined functions of ρ, Ye,
and erel,0 so that an iteration between T , eint, and the composition becomes unnessecary if we
have saved the NSE EoS in a table. Also in a regime where a burning procedure applies, the
conservation of erel,0 ensures strict energy conservation in accordance whith the philosophy of
PROMETHEUS. Second, at high densities the nucleon masses are not equal to their masses in
vacuum because of nucleon-nucleon interactions. The problems which arise from this physical
effect is avoided by our implementation. For the energy transformations, Eqs. (C.8,C.9), we
use the vacuum rest masses, while we demand that erel,0 must be exact, as the correctness of
this variable is needed to derive correct temperatures, composition, and especially the gravita-
tional potential (via the gravitational mass, which is proportional to erel = eint + erm in general
relativity). The arising uncertainty in ε of course brings us back to the initial problem, that
Γe =

p
ε−ekin

+ 1 , p
eint
+ 1. However, this discrepancy now takes place in the PNS, which tends to

have Γe � 4/3 and has high temperature and electron degeneracy which are likely to be larger
than the remaining discrepancy between eint and ε − ekin. Finally, our test runs with this new
procedure show that the profiles remain smooth, even in the PNS.
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D Progenitor data

Figure D.1: The progenitor data as provided by the originators (see Table 4.1 for references.
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