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Abstract

The research presented in this thesis is part of the research area of controlled nuclear fu-
sion, more specifically magnetic confinement fusion. It is motivated by observations in the
experiment currently closest to an operating fusion reactor, the tokamak. In tokamaks large
transport fluxes of particles and energy arise, which are thought to be the consequence of
micro-instabilities, leading to a turbulent state. Although much progress in the understand-
ing of turbulent tokamak transport has been made, the understanding is still incomplete.
The gyrofluid model, which is further developed in this thesis, is one of the most com-
monly used models to describe the turbulent transport. It is a fluid like moment model able
to treat finite-Larmor-radius effects to all orders.

Up to now, the gyrofluid equations were derived by taking moments of the Gyrokinetic
equation (the kinetic equation in which an average over the fast gyromotion has been per-
formed), using the so called strong drift ordering to partly linearise the final equation of
evolution, and closing the system such that only a finite number of moments is retained.
This method leads to equations that are homogeneous in the plasma parameters. Further-
more, the associated conservation laws are results of the construction of the equations, and
it is therefore not clear how to generalise them.

In this thesis we present a method of deriving the gyrofluid equations that guarantees
full non-linearity as well as an exact energy conservation law. Two sets of electrostatic
gyrofluid equations are presented, in the first only the perpendicular temperature is kept,
while the second retains both the parallel as well as the perpendicular temperature. In
both cases a Lagrangian is used to derive the equations of evolution, such that the energy
conservation law is automatically satisfied through Noether’s theorem. The equations of
evolution are calculated from the variation of the action integral with the help of constraints
that in both cases represent conservation laws of the system. Two different variational
methods are used, one in which the field variables are retained as dynamical variables
(Lagrange multipliers method) and another in which the field variables are expressed as
functions of only one dynamical variable (virtual displacement method). Both variational
methods are equivalent, and yield the same equations of evolution. After the equations
are obtained from the variation of the Lagrangian, diamagnetic cancellations are inserted
manually in such a way that energy conservation is preserved. Comparison with previous
models shows a very good agreement for the lowest order so called zero-Larmor-radius
terms in both the sets of the gyrofluid equations. The final set of equations includes the
evolution of the three or four first moments, as well as a Polarisation (Poisson) equation
that determines the electric field, and an exact energy conservation law.

The new features of the models, namely the full-nonlinearity and the exact energy con-
servation law are important for understanding tokamak turbulent transport. Fully nonlinear
equations are needed to study the highly nonlinear phenomena that occur especially in
the edge of the tokamak, and furthermore, turbulent transport phenomena in general cover
a spatial range involving significant variations of the background parameters. Moreover,
a lack of an energy conservation law exact in all levels of nonlinearity can give rise to
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unphysical drive or damping of the large scale fluxes and currents that participate in the
turbulence. These considerations will help in the further study of turbulence in tokamaks.
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Chapter 1

Introduction

The research presented in this thesis is part of the larger research area of controlled nuclear
fusion. This area of research has a practical application in a future energy source that has
several advantages compared with the current sources of energy. Once achieved, nuclear
fusion could provide the world with energy for a long time since there is no lack of fuel,
also it would be CO2 neutral, and would not produce large amounts of long lifetime nuclear
waste [1]. However, the road to an operating fusion reactor is still long, partly due to the
lack of the understanding of basic physics phenomena.

Nuclear fusion is more difficult to obtain than fission due to the large repulsive force
between the nuclei. Only if the temperature (thermal velocity) of the fuel is large enough,
the Coulomb barrier can be overcome in a collision between the nuclei and a fusion reaction
can occur. The most favourable reaction in terms of minimum required thermal energy is
that between Deuterium and Tritium generating an alpha particle and a neutron as well as
releasing 14 MeV of energy

D � T � 4 He � n � 17 � 5 MeV � (1.1)

Even for this reaction, though, the maximum fusion rate is obtained at energies around 10
keV, at which the nuclei are fully ionised, i.e. form a plasma. Since the thermal velocity
of the ions is around 106 m/s at these energies they can move over the size of the device
in a very short timescale, and a natural problem that occurs is that of their confinement
for a sufficient long time such that enough fusion reactions have occurred. One can either
use a very dense plasma for very short times, as is done in inertial fusion [2] , or confine
the particles through an imposed magnetic field as is done in magnetic confinement fusion
[3, 4]. This thesis deals with the latter area of research.

1.1 The tokamak
The concept closest to an operating reactor is the tokamak sketched in figure 1.1. Here
we will outline the concept of a tokamak; a detailed description can be found in many
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Figure 1.1: Schematic picture of the tokamak

textbooks, for example in [5]. In this device a toroidal magnetic field is imposed from
the outside using the toroidal magnetic field coils. In an homogeneous magnetic field the
charged particles move on spiral orbits, their motion perpendicular to the field being limited
by the Lorentz force leading to a gyration around the field lines with a typical radius known
as the Larmor radius, whereas the motion parallel to the field is force free. The magnetic
field in the tokamak is strong (several Tesla) in the sense that the Larmor radius is much
smaller than the size of the device. In a lowest order approximation, therefore, the motion
is that of the particles in a homogeneous field determined by the local magnetic field at the
particles position. The Lorentz force prevents the particles to move over large distances,
whereas the topology of the field is such that the free motion of the particles along the
field lines does not lead to their loss from the device. This picture suggests perfect particle
confinement. Typical sizes for modern tokamaks are about one meter for the minor radius,
a few meters for the major radius and about one millimetre for the ion Larmor radius.

The description in the above paragraph, however, is incomplete in the sense that higher



1.1. THE TOKAMAK 5

order effects cannot be neglected. Although small, the finite Larmor radius allows the
particles to feel the inhomogeneity of the magnetic field. The latter is a direct consequence
of the toroidal curvature. Because of this the gyration orbits are not perfectly closed, and
the particles slowly drift away from the field lines. One can think of these drifts as being
the consequence of a perpendicular (to the magnetic field) force acting on the particles,
which is compensated by the Lorentz force leading to a velocity, the drift velocity. For
stationary conditions these forces are due to the field inhomogeneity (F ��� µ∇B with µ
being the magnetic moment and B the magnetic field strength) the centrifugal force due to
the motion along the toroidally curved field, and the possible perpendicular electric field
(E). Approximately the velocity (v) of the centre of gyration can for the tokamak be written
in the form

v � v � b � v2� � v2�	� 2

ωcR
ez

� E 
 B
B2 (1.2)

where b is the unit vector in the direction of the magnetic field and the z-axis is in the
direction of the axis of symmetry, ωc is the gyration frequency, R the distance to the axis
of symmetry which is a measure of the toroidal curvature, and the indices parallel and
perpendicular refer to the direction with respect to the magnetic field. The term due to v2�
gives the curvature drift due to the magnetic field curvature b � ∇b. In a simple torus both
b � ∇b and ∇ logB are approximated by � ∇R � R. Later in this thesis more accurate formulae
are given, but for the present discussion the equation given above is sufficient.

The gyration frequency ωc � eB � mc, depends on the charge e and mass m of the par-
ticles. Therefore the vertical drift, the second term in equation (1.2), is in the opposite
direction for the electrons and ions, and leads to a charge separation resulting in a vertical
electric field. The latter will generate a drift radially outward through the last term of equa-
tion (1.2) leading to a rapid loss of the plasma. This is the reason why a tokamak cannot
operate with only a toroidal field. A toroidal current is induced in the plasma using a trans-
former coil sketched in figure 1.1. This current generates a poloidal magnetic field, which
makes that the field lines are helically wound mapping out magnetic flux surfaces. The
helical field lines then connect top and bottom and short-circuit the electric field, prevent-
ing it from being formed and, therefore, preventing the outward motion of the plasma and
the loss of confinement. A bulk toroidal hoop force in the outward direction of the major
radius still exists, but is balanced by a vertical field (cf. vertical field coils in figure 1.1).
Theoretically, it is sufficient to take the location of the outermost magnetic flux surface as
given, and investigate the dynamics within. One can show that in a toroidally symmetric
field, in which the poloidal magnetic field is of sufficient strength the particle orbits are
perfectly confined inside the device. The poloidal magnetic field therefore provides the
confinement through (partially) eliminating the effect of the drift. We will see however,
that the drifts can play an important role in plasma instabilities leading to a turbulent state
and radial transport of particles and energy.

In the discussion above the concept of charge separation has been used. Although, it
did lead to an easy to understand physical picture of the dynamics, it is oversimplified.
One of the main properties of a plasma is namely that of quasineutrality. For almost all
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the phenomena of interest one can assume the electron and ion density to be equal. Only
at very small length scales (below the so called Debye length) or high frequencies (above
the plasma frequency) does charge separation play a role. These concepts (charge separa-
tion and quasineutrality) are reconciled by a phenomenon known as polarisation, by which
corrections from the ion inertia in a time-dependent electric field effectively neutralise the
total charge by maintaining a divergence-free total current. Polarisation will be treated in
detail within the models discussed in this thesis.

To obtain fusion a sufficiently dense plasma of sufficiently high temperature (T ) must
be confined for a sufficiently long time for a large amount of fusion reactions to occur. The
confinement is usually measured in the so called confinement time (τE) which is the ratio
of the total stored energy and the power used to heat the plasma. The most favourable state
to operate a reactor is when this heating is provided by the fusion products themselves. In
the reaction (1.1) the heating must come from the alpha particles, since the neutrons are not
confined by the magnetic field. The energy carried by the neutrons is then used to generate
electricity. The state in which the fusion reactions are able to sustain the temperature with-
out any external heating is referred to as an ignited plasma, and this condition is reached
when nT τE � 5 � 1021 keVsm  3, where n is the particle density. A plasma that produces
as much energy through fusion reactions as is being used from the outside to heat it is said
to have reached breakeven. It is the latter state that can be reached in the largest tokamak
experiments today, and the next step is projected to generate ten times more energy through
fusion than is used from the outside for heating.

From the discussion above it is clear that confinement is a key issue in obtaining a burn-
ing reactor. Single particle orbits are perfectly confined in a tokamak, but two effects can
make that the particles are lost from the device. Collisions between the charged particles
can scatter them out of there orbits. The transport fluxes that are due to these processes are
described by neo-classical theory. The prefix “neo” is used here to stress that the fluxes
depend critically on the magnetic field topology exceeding the fluxes in an homogeneous
magnetic field by one or two orders of magnitude. Nevertheless, the observed transport
fluxes largely exceed the neo-classical transport and are referred to as anomalous. This
anomalous transport is thought to be the consequence of micro-instabilities leading to a
turbulent state. The understanding of these instabilities and the nonlinear dynamics is of
vital importance for the understanding of the energy confinement, which in turn is a key
element in the operation of a burning reactor.

1.2 Turbulent transport

The tokamak equilibrium, discussed in the previous section, is not necessarily stable. Sev-
eral sources of free energy exist: the density and temperature gradients of the components
as well as the current, which can lead to instabilities [6]. These are often split into large
and small scale instabilities, due to the difference in theoretical description they require.
Large scale instabilities can often be described within the framework of Magneto-Hydro-
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Figure 1.2: Schematic picture of the ITG instability.

Dynamics (MHD) which is essentially a one fluid theory, whereas smaller scale (known
as micro-instabilities) require two (or more) fluid theories as well as careful treatment of
the effects due to the finite Larmor radius (in general, temperature and parallel velocity
fluctuations behave differently for the electrons, due to the smaller mass). Large scale
instabilities are often (but not always) fatal for the plasma, leading to a rapid loss of con-
finement. They limit the operational space in terms of a maximum pressure that can be
confined, and a maximum current that can be generated inside the plasma, both at a given
toroidal magnetic field strength.

Micro-instabilities on the other hand have (perpendicular) length scales of the order of
the Larmor radius. They are not fatal, although they do lead to turbulence and hence to a
reduction of confinement. Because of there small scale they are often not directly observed
(although they can be with special diagnostics) but lead to a radial flux of particles and en-
ergy as a function of the density and temperature gradients that drive them. It is commonly
believed that they are the cause of the anomalous transport, and that they can hardly be
avoided. That is, in the current reactor designs one expects the confinement time, of both
energy as well as particles, to be set by these instabilities [7]. Some insight in the physics
effects that has to be kept in order to study these instabilities can be obtained by discussing
the physical picture of one of them, the toroidal ion temperature gradient mode (ITG). Con-
sider an ion temperature perturbation in a magnetic surface in the form of a Fourier mode,
as sketched in figures 1.2. It can be seen from equation (1.2) that the vertical drift veloc-
ity is proportional to the energy of the particles. It is, therefore, larger in the hot regions
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compared to the cold regions. Associated with the temperature perturbation is a modulated
velocity pattern that compresses the ions on the surface. The result is an ion density pertur-
bation that is 90 degrees out of phase with the temperature perturbation. The compression
of ions inside the magnetic surface then generates an electric field perturbation. The latter
is a consequence of quasi-neutrality and the electron parallel force balance. Because of
quasi-neutrality the electron and ion densities must be equal. The motion of the electrons
over the surface, however, is much faster than the turbulent timescales, resulting in a force
balance solution between the electron pressure perturbations due to the density fluctuations
Te∇ � ne and the electric field en∇ � φ. The balance of these forces makes that the potential
and the density perturbations are directly related (this response is known as the adiabatic
electron approximation). The potential fluctuations lead to an E 
 B drift (last term of (1.2)
that moves plasma from inside into the warm regions and from outside into the cold re-
gions. On the outboard side of the magnetic surface, and for normal conditions in which
the temperature gradient points inward, warm plasma is moved into the warm regions and
cold plasma into the cold regions, therefore, enhancing the initial perturbation and causing
an instability. On the inboard side cold plasma is moved into the warm regions and the
mode is stable. This makes that these instabilities balloon on the outboard side of the flux
surface. Inside and outside of the magnetic surface, however, are connected through the
helical structure of the magnetic field. The drive of the mode has to be large enough to
overcome the equilibrating along the magnetic field line. Since both the compression of
the ions on the flux surface as well as the E 
 B velocity involve a spatial derivative along
the magnetic surface the growth rate of the mode increases as the wave vector of the per-
turbation increases. However, for wave lengths approaching the Larmor radius, the finite
size of the particle orbits makes that the particles start averaging the electric field potential
leading to a reduction in the E 
 B velocity. This effect is known as a finite Larmor radius
effect, and it reduces the growth rate of the mode. The maximum growth rate is therefore
often obtained at kρi � 0 � 3, where k is the wave vector and ρi is the Larmor radius. The
small scale of the order of the Larmor radius has led to the terminology micro-instabilities.
Turbulence dependent on the ITG physical mechanism has been found to describe the ion
heat transport in the tokamak core reasonably well.

The description above shows that it is important to keep two fluid effects while the elec-
trons are in parallel force balance, describe the finite ion Larmor radius effects accurately
and, in a moment approach, keep at least the evolution of the temperature besides density
and fluid velocity. The ITG is not the only instability that can occur in the plasma. Of the
many others that can occur it is worth here to mention the drift wave. Different from the
ITG which does not need any dissipation to be unstable, and which is therefore referred
to as reactive, the drift wave is driven unstable due to the friction between electrons and
ions breaking the adiabatic force balance discussed above. It also does not rely on the drift
velocity due to the magnetic field inhomogeneity (although its character is altered by it),
and therefore, can also appear in an homogeneous magnetic field. Opposite to the ITG, the
electrons mostly provide the dynamics for the drift wave, and the ions the inertia. Because
the growth rate of this instability is proportional to the friction, it is more prominent in
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the edge of the plasma which is more collisional, whereas the ITG dominates more in the
core. Both are fundamentally two-fluid mechanisms, and hence cannot be treated with a
conventional MHD (magneto-hydro-dynamics) model.

The micro instabilities are not fatal to plasma operation and are always present in the
normal plasma discharges. Obviously they are in a saturated state, and it is this state that
determines the fluxes of particles and energy. The saturated state is a turbulent state with
many modes (different wave numbers, stable and unstable) present at the same time. Only
nonlinear simulations can accurately determine the fluxes.

1.3 This thesis

From the previous sections it is clear that non-linear simulations of the turbulent state are
essential for the understanding of the confinement properties of a tokamak. Although much
progress towards the prediction of turbulent tokamak transport [8, 9, 10] has been made,
there are still many transport phenomena which are poorly understood. Different models
can be employed for this purpose. A full kinetic description is the most accurate, and
is indeed used in several codes. However such a model is a five dimensional problem
(2 dimensions in velocity space since one can average over the fast gyro-motion, and 3
dimensions in configuration space) that has to be integrated in time, and is, therefore, very
resource intensive in computations. Many physics effects can be well captured in fluid
equations that can be obtained through momentum building of the kinetic equation. The
gyrofluid model [11, 12, 13, 14, 15, 16] is one of the most commonly-used. It is much less
computationally intensive than the analogous gyrokinetic [17, 19, 18] models, and although
it is less accurate than the gyrokinetic one [20], experience shows it to retain most of the
qualitative properties necessary for understanding turbulent transport [12, 13, 14, 15, 16].

Up to now, tokamak microturbulence has been treated using strong drift ordering, also
called gyrokinetic ordering: because all gradient lengths (density, temperature) are assumed
large compared to the Larmor radius, nonlinearities are discarded except in the processes
of advection by the ExB velocity and the contributions to the dynamics parallel to the mag-
netic field due to field line disturbances, which are kept because the gradients across the
magnetic field of the background and the disturbances are taken to be of similar size [21].
This yields equations which are homogeneous in their parameters, even though variations
in the background profiles are treated self consistently. For example, parameters such as
the ion gyroradius normalised to the plasma radius and the plasma beta (pressure energy
over magnetic field energy) are treated as constants even though the density and temper-
ature of each species is a dependent variable. Both electrostatic (treating perturbations of
only the electric field) [12, 13, 14] and electromagnetic (treating perturbations both of the
electric and the magnetic field) [11, 15, 16] gyrofluid models in the literature depend on this
partially linearised derivation. They start by taking moments of the gyrokinetic equation
under the ordering and close the hierarchy using approximate forms for higher moments
not retained in the model. These approximations include a gyroaveraging procedure which
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allows finite Larmor radius (FLR) effects to be treated to arbitrary order (cf. also [22]). The
focus on the linear part of the dynamics is underscored by the lack of an energy theorem for
the resulting equations. In computational work, nonlinear evolution subsequent to a linear
growth phase often remains undiagnosed, merely assumed to follow the same physics as
the linear instability itself.

At any level of nonlinearity in the equations, however, an energy conservation law is
crucial for the various processes, which deal not only with the instability mechanism itself
but also several conservative transfer pathways all of which can influence the overall statis-
tical equilibrium of the turbulence. That is, although in the linear theory small errors in the
conservation laws lead merely to small errors in the growth rate, in the non-linear theories
any error in the conservation laws is a possible source of free energy. Thus in turbulence,
an inexact energy conservation law can give rise to unphysical drive or damping of the
quantities examined, which can be especially damaging when the conservative interaction
of turbulence and large scale flows is considered [23, 24]. This last scale flows or zonal
flows play an important role in controlling the turbulent fluctuation level. To describe mag-
netised plasma turbulence, a consistently derived model which includes an exact energy
conservation law is desired.

Although the underlying gyrokinetic equation conserves energy exactly [18], existing
gyrofluid models usually do not regard an energy theorem at all (cf. however [25]). Un-
der drift ordering, conservation of a quadratic quantity related to energy (commonly called
“free energy” or “entropy”) should still be maintained, as is done in the more conventional
two fluid treatments [26, 27, 28, 29]. It can be shown that the best developed model [14]
maintains free energy conservation at zeroth order in the finite Larmor radius (FLR), but
breaks it in the FLR terms due to the different techniques it uses in forming the FLR cor-
rections to the moment equations and to the field potential equations which provide self
consistency [30]. Beyond this, for such a robustly nonlinear situation as edge turbulence,
which is not necessarily dependent upon linear microinstabilities [28, 31], it is desired to
move beyond these local treatments and form a gyrofluid model which conserves global
energy as well, as was recently done for the two fluid drift equations including polarisation
currents [32]. While it is simple to set up the moment equations themselves in terms of
total divergences [12, 14], thereby conserving thermal and kinetic energy, self consistent
incorporation of the “drift energy” due to the electrostatic potential is more subtle. This
step is required to put gyrofluid theory on the same level as gyrokinetic theory.

The first attempt of deriving a gyrofluid model that conserves global energy, was one
neglecting FLR effects more or less based upon a magnetohydrodynamic (MHD) ordering
in the sense that its set of assumptions were consistent with the ion pressure gradient being
ordered small compared to the force density due to the electric field [33]. By contrast, the
usual situation for gradient driven turbulence, for which the adiabatic response of the elec-
trons is always important [26, 31], finds the perpendicular electric field and ion pressure
gradient at comparable levels for the regime of comparable ion and electron temperatures
[35]. In this first attempt, an equation for the fluid velocity is obtained from the variation of
a system Lagrangian using constrained variations of a fluid spatial displacement field. The
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energy conservation law then follows consistently from Noether’s theorem [34]. The La-
grangian is not systematically derived, but constructed from the one for particles under the
drift-kinetic ordering (all scale lengths are large compared to the Larmor radius). It includes
the polarisation drift current but not the corresponding FLR corrections. Specifically, the
“diamagnetic vorticity” (vorticity of the diamagnetic velocity, a fluid velocity perpendicu-
lar to the magnetic field that arrises from the balance of the perpendicular pressure gradient
and the Lorentz force) is lost, and the model is restricted to the MHD limit. Another feature
of the fluid models, the so called diamagnetic cancellation, is also not taken into account.
In the fluid models advection terms due to the diamagnetic velocity are cancelled naturally
by other terms in the fluid equations. This is because, although the diamagnetic velocity
produces a current, there is no actual motion of the guiding centers of the particles, such
that there is no advection of particles or energy. In this model advection by the diamagnetic
velocity appears in the final equations, an incompatibility with pure fluid models in which
these cancellations are made automatically [36, 37]. So we have to extend the model to
capture these nominally FLR effects which are nevertheless important at large scale.

In this thesis two different models of gyrofluid equations are derived in a systematic
way using methods from field theory already known from studies of fluid dynamics or
MHD [38]. Rather than building moments of the kinetic equations, a Lagrangian is used
here to derive the equations. This approach can guarantee energy conservation through
the Noether theorem [34]. In this approach several technical problems appear, that will be
pointed out, and solved to obtain a consistent set of equations. Among them, diamagnetic
cancellations and diamagnetic vorticity are treated in detail. Furthermore, the equations
derived do not only conserve energy but also are fully nonlocal and non-linear (i.e. no
linearisation is applied anywhere in contrast to the previous derivations of the theory).

The thesis is structured as follows. Chapter 2 deals with Lagrangian field theory, and
outlines the necessary tools to deal with the problem such as the Lagrangian multipliers
and the virtual displacement. Chapter 3 then treats the gyro-kinetic and gyro-fluid theory.
It reviews the state of gyro-fluid theory before the work presented in this thesis. Chapter
4 addresses a set of gyro-fluid equations that has all the properties of energy conservation,
non-linearity and non-locality, but assumes an one temperature model dealing only with the
thermal motion in the component perpendicular to the magnetic field (the use of only one
temperature simplifies greatly the constraints that have to be imposed on the Lagrangian).
Although not complete in the sense that it neglects the thermal motion along the field lines,
it forms a system in which energy transfer mechanisms can be investigated. Chapter 5 then
deals with the two temperature system keeping both the perpendicular as well as the parallel
temperature. The constraints that have to be used in this case are much more complex, and
a different method, the virtual displacement instead of the Lagrangian multipliers, is used
to derive the equations of motion. Finally the last chapter gives a summary, conclusion,
and outlook of the work presented.
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Chapter 2

Lagrangian field theory

In classical mechanics there exist a large amount of tools for dealing with dynamical sys-
tems. The purpose of this chapter is not to analyse in detail all these tools, but rather to
describe some of the methods that will be used later in dealing with gyrokinetic and gy-
rofluid equations. Since a Lagrangian will be used in the formulation of these equations,
this chapter will introduce some methods in describing both discrete as well as continu-
ous systems and fields with the use of a Lagrangian formulation. Section 2.1 treats the
Lagrangian of a discrete system. The Euler-Lagrange equations are derived and the Lie
perturbation method is introduced. In section 2.2 the Lagrangian formulation of a con-
tinuous system and fields, for field variables independent of each other, is described, and
the energy conservation law is derived from Noether’s theorem. Finally, section 2.3 de-
scribes the Lagrangian formulation of a continuous system in which the field variables are
dependent on each other. Two methods for solving such systems are presented through the
derivation of the evolution equations of an ideal charged fluid together with the equations
for the electromagnetic fields.

2.1 Lagrangian methods of discrete systems

Here, some properties of the Lagrangian of a discrete system are summarised. These can
be found in any good text book on classical mechanics [1, 2, 3], as well as in many papers
dealing with gyrokinetics [4, 5, 6, 7]. In general, the state of any system with N degrees
of freedom requires the specification of 2N variables, which in Lagrangian mechanics are
taken to be the generalised coordinates q and their time derivatives q̇. The equations of
motion are obtained from the Lagrangian function L � q � q̇ � which is defined as the difference
between the kinetic (Ekin) and potential (V ) energy of the system

L � Ekin � V � (2.1)

In Hamiltonian mechanics, on the other hand, the 2N variables describing the state of a
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system are taken to be the generalised coordinates q and their momenta p, where

p � ∂L
∂q̇

(2.2)

The evolution of the system is obtained from the Hamiltonian H � q � p � which is connected
with the Lagrangian through the Legendre transformation. For canonical coordinates this
relation is

H � p � q̇ � L � (2.3)

and the evolution of the system are given by Hamilton’s equations:

q̇ � ∂H
∂p

� ṗ ��� ∂H
∂q

� (2.4)

The Lagrangian can then (again for canonical coordinates) be written in the form

L � q � q̇ � Hc � q � p � t ��� (2.5)

where Hc is the canonical Hamiltonian, and � q � p � the canonical coordinates.
For an arbitrary coordinate system z � z � q � p � t � the Lagrangian transforms to

L � γiżi � H � z � t ��� (2.6)

where

γi � p � ∂q
∂zi � H � Hc � p � ∂q

∂t
� (2.7)

A more convenient form for the Lagrangian is then the notation of the fundamental one-
form of Poincare-Cartan

γ � γµdzµ � γidzi � H dt (2.8)

where z0 � t � γ0 ��� H. The fundamental one-form has the advantage that it does not change
its structure under a coordinate transformation Zµ � Zµ � z � t � :

γ � γµdzµ � ΓµdZµ � Γµ � γσ
∂zσ

∂Zµ (2.9)

With the Lagrangian given, the equations of motion can be derived from the variation
of the action integral

S ��� t2

t1
Ldt � (2.10)

yielding the Euler-Lagrange equations

ω̂i j
dz j

dt
� ∂H

∂zµ
� ∂γi

∂t
� (2.11)

where

ω̂i j � ∂γ j

∂zi � ∂γi

∂z j (2.12)
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are the components of the Lagrange tensor also called “’symplectic structure’. The Euler-
Lagrange equations are invariant under any gauge transformation γ � γ � dS, where S is
any scalar function of the extended phase-space.

The equations above show the well known property that, once the Lagrangian is given,
the equations of motion can be derived from it. Furthermore, properties of the Lagrangian
are translated in properties of the dynamical system. Every symmetry of the Lagrangian,
for instance, leads to a conservation law through Noether’s theorem. But the Lagrangian
can also be manipulated to obtain approximate equations in which a fast periodic motion
is eliminated. This is the object of gyro-kinetics in which the fast gyration of the particles
around the field line is eliminated, with the equations describing the motion of the centre
of gyration. Below the procedure through which the new Lagrangian is derived is briefly
outlined. Further reading on this topic can be found in the references [4, 5, 6, 7].

Consider a fundamental one-form that can be written in two separate parts, one equi-
librium and one perturbed part:

γ � γ0
� εγ1 � (2.13)

where ε is a small parameter. Moreover, consider that the first order fundamental one-form
depends on a coordinate θ, which one wants to eliminate from the Euler-Lagrange equa-
tions. This is done using the following steps:
(1) considering only the equilibrium part of the fundamental one-form, one finds coordi-
nates such that they include the coordinate θ and its canonical momentum, and transforms
the Lagrangian in the new coordinates.
(2) Then the equilibrium and perturbed part are considered together, and another trans-
formation is found that removes the coordinate θ from the perturbed part. This is done
efficiently by the Lie transformation method.

A Lie coordinate transform can be written as:

Zµ � T zµ � (2.14)

where T is in general a series of individual Lie transforms T ������� T3T2T1, the nth- order
transformation Tn eliminating the coordinate θ dependence in the n-th order component of
the symplectic structure and Hamiltonian. An individual Lie transform Tn can be written as

Tn � exp � εnLn ��� (2.15)

Scalars transform as S � T  1s, and the Lie derivative Ln acts on scalars as

Ln f � gµ
n

∂ f
∂zµ � gµ

n � ∂Zµ

∂εn � (2.16)

where gµ
n is the generator of the Lie transformation Tn. The one-form transforms as

Γ � T  1γ � dS � Γ � γµdZµ � (2.17)

where S is a gauge transformation, and the Lie derivative Ln acts on one-forms as� lnγ � µ � gσ
n � ∂γµ

∂zσ � ∂γσ
∂zµ � � (2.18)
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Under the Lie transformation, the fundamental one-form to various orders in ε is given
by

Γ0 � γ0
� dS0 � (2.19)

Γ1 � γ1 � L1γ0
� dS1 � (2.20)

Γ2 � γ2 � L1γ1
� � 1

2
L2

1 � L2 � � dS2 � (2.21)

The generators gσ
n as well as the gauge functions dSn can be chosen arbitrarily such that the

final one-form and thus the final equations of motion do not depend on θ. The elimination
of the coordinate θ is then done by the following rules: First the generators gσ

n are chosen
such that all explicitly time dependent parts appear only in the perturbed Hamiltonian,
thereby eliminating the explicit time derivative from equation (2.11). Secondly, the gauge
functions dSn are chosen such that the θ dependence is removed from the transformed one-
form. The Lie transform eliminates the coordinate θ from the Lagrangian without changing
the symplectic structure or the form of the Lagrange tensor.

2.2 Lagrangian methods for continuous systems
The transition from a discrete to a continuous system is achieved by introducing the La-
grangian density (L) as well as the field variables (η) of the system. The action integral of
a continuous system then contains an integral over configuration space

S � � dt � d3xL � ηα � η̇α � ∇ηα � x � t � (2.22)

such that the Lagrangian of the system is given by the integral over the Lagrangian density

L ��� ηα ����� η̇α ����� � dxLα � ηα � η̇α � ∇ηα � x � t � � (2.23)

The field variables ηα � ηα � x � t � specify the state of the system (e.g. density, pressure,
velocity, electric and magnetic potential etc.) and α is a label that denotes a member of the
set of fields. The Lagrangian density L depends on the field variables, their first derivatives
towards space and time, and can also depend explicitely on space and time. For closed
systems the Lagrangian density does not depend explicitly on space or time, similar to the
situation of a closed discrete system where the Lagrangian does not depend explicitely on
time. From now on we will investigate only closed systems, for which the Lagrangian can
be written as

L ��� ηα ����� η̇α ���!� � dxLα � ηα � η̇α � ∇ηα �"� (2.24)

In the case of field variables ηα that are independent, the evolution equations of the sys-
tem resemble the Euler-Lagrange equations of a discrete system, and can be found through
the variation of the action integral

d
dt � ∂L

∂η̇α � � ∇ � ∂L
∂∇ηα � � ∂L

∂ηα
� 0 � (2.25)



2.2. LAGRANGIAN METHODS FOR CONTINUOUS SYSTEMS 19

The Euler-Lagrange equations are then as many as there are independent fields.
As mentioned before, the Lagrangian formulation provides the means of finding con-

servation laws that the system obeys, such as energy, momentum, or angular momentum
conservation, through Noether’s theorem. Conservation laws are related to symmetries. For
every Lagrangian system, momentum conservation is directly related to space symmetry,
and energy conservation is directly related to time symmetry. Here, the energy conserva-
tion law of a continuous system will be derived, since it will play an important role in the
following chapters. Consider the infinitesimal transformation

t � t #$� t � δt �
x � x #$� x �
ηα � x � t �%� η #α � x #&� t #'�(� ηα � x � t � δt ��� (2.26)

such that
δηα � x � t �%� η #α � x � t �)� ηα � x � t �%� δt η̇α � (2.27)

This infinitesimal transformation changes the action integral

S � S # ��� t *2
t *1 L # dt # � (2.28)

Using the Euler -Lagrange equations, we can write the variation of the action integral as

δS � S #+� S �,� � t2

t1
dt - dG

dt
� ∑

α
� dx∇ � Jα . � (2.29)

where

G � δt � ∑
α

� dxη̇α
∂Lα
∂η̇α

� L � � (2.30)

and

Jα � δt η̇α
∂Lα

∂∇ηα
� (2.31)

The Lagrangian that we have considered has no explicit time dependence, i.e. its time
dependence is only through the field variables ηα � x � t � . Thus the action integral S is in-
variant under the infinitesimal transformation in equation (2.26). Then, it follows from
equation (2.29) that

dG
dt

� ∑
α

� dx∇ � Jα � 0 � (2.32)

since the boundaries t1 and t2 can be arbitrarily chosen. If the quantity Jα vanishes on the
boundaries of the integral / dx, then the quantity G is conserved

dG
dt

� 0 � (2.33)
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Thus, from equation (2.33), one immediately obtains the conservation law for the total
energy

Etot � ∑
α

� dx η̇α
∂Lα
∂ηα

� L � const � (2.34)

The energy conservation law arising from the time symmetry of the problem, is an example
of Noether’s theorem, that deals with the connection between symmetries and conservation
properties of a Lagrangian system. The properties derived in this section will be used in
subsequent chapters. Again they can be found in any good text book [1, 2, 3], to which the
reader is also referred for further reading.

2.3 Ideal fluid equations and electrodynamics
An additional complication in the study of a continuous system with the use of a Lagrangian
method, appears when the field variables are not independent. In this case, equation (2.25)
is not valid. Two methods for finding the evolution equations for such systems are in-
troduced here through the example of an ideal fluid of charged particles embedded in an
electromagnetic field. This system contains five field variables: the density n, the velocity
u, the pressure p, the electric field E, and the magnetic field B. These are not independent
of each other because the system is constrained by the conservation laws. Conservation
of mass, for instance, connects the evolution of the density with the velocity field. And
besides mass conservation, the system satisfies energy and entropy conservation.

The conservation laws of mass and entropy can be conveniently formulated in two
distinct coordinate systems, either by considering a volume of fluid which is fixed in space
(in which case one obtains the Eulerian form), or by considering a volume which is moving
with the fluid (the Lagrangian form). The fixed volume system and the comoving system
are related to each other by a transformation in the spatial coordinates

dt # � dt dt � dt #
dx # � dx � udt dx � dx # � udt �

where the prime denotes the comoving system. The transformation of the derivatives from
one frame to the other is

∇ #0� ∇
d
dt

� ∂
∂t

� u � ∇ �
where d � dt denotes the time derivative in the comoving system (advective derivative) and
∂ � ∂t denotes the time derivative in the fixed volume system (for more information see [1])

The conservation laws of mass and entropy will be derived below using the co-moving
frame, i.e. in the Lagrangian form. Let V be a specified volume that moves with the fluid
at a velocity u. After a time interval δt the volume has moved over a distance δx, such that,
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if δt � 0, δx � δt � u. Since the volume moves with the fluid there is no flux of material
across its boundaries, but the volume itself can be deformed. The latter leads to a change
in the volume, which can be proven to satisfy

δV � V ∇ � δx � (2.35)

The conservation of mass demands that the total particle number (N) inside the co-moving
volume is constant

δN � δnV � nδV � 0 � (2.36)

Thus the change in the density (n) is

δn ��� n
δV
V

�,� nδt ∇ � u � (2.37)

Letting δt � 0, the mass conservation law is

dn
dt

� n∇ � u � 0 � (2.38)

Entropy conservation can be derived in a similar way. For the element moving with the
fluid the change in entropy (s) is

δs � 0 � (2.39)

or
ds
dt

� 0 � (2.40)

Both conservation laws can then be tranformed to the Eulerian form using the transforma-
tions of the derivatives from one frame to the other:

∂n
∂t

� ∇ �1� nu �2� 0

∂s
∂t

� u � ∇s � 0 � (2.41)

The entropy conservation can also be written as

∂ns
∂t

� ∇ �1� nsu �2� 0 � (2.42)

or, in terms of pressure
∂p
∂t

� u � ∇p � γp∇ � u � 0 � (2.43)

for s � p � nγ with γ � 5 � 3 for an ideal fluid. The first equation of (2.41) and the equation
(2.43) form two constraints on the evolution of the fluid. They link density and pressure to
the velocity field making them dependent field variables.
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The Lagrangian of a fluid of charged particles with charge e and mass m in an electro-
magnetic field is given by [1, 3]

L ��� dx - ne
c

A � u � nm
2

u2 � 3
2

p � neφ � 1
8π

� E2 � B2 � . � (2.44)

where φ and A are the electric and magnetic potentials respectively, related to the electric
and magnetic field through

E ��� 1
c

∂A
∂t

� ∇φ B � ∇ 
 A � (2.45)

The above representations of the fields make that Faraday’s law is automatically satisfied
and that the magnetic field is divergence free.

In the Lagrangian, the term � 3 � 2 � p appears as a potential energy. This term is in fact
the internal energy of the system, and follows from the equipartition theorem for non-
equilibrium gases. Consider a system of N particles that are not in equilibrium but are
moving with an average (flow) velocity

u � 2
Nm ∑

i
pi � (2.46)

where ∑i denotes the summation over all particles and pi � mvi is the canonical momentum
of the particle i that moves with velocity vi. The equipartition theorem states that the kinetic
temperature of the system is

3
2

NT � ∑
i

1
2m 3 ∑

i
� pi � mui � 2 4 � (2.47)

If the energy of this system is given by kinetic energy only

E � ∑
i

1
2m

p2
i �

the corresponding fluid energy, and thus the Hamiltonian, will be

E � Hc ��� dx � 1
2

mu2 � 3
2

p � � (2.48)

The Lagrangian of the fluid is then given by

L � p � q̇ � Hc � � dx � 1
2

mu2 � 3
2

p � � (2.49)

The term � E2 � B2 � � 8π is the Lagrangian for the electromagnetic field. The field vari-
ables in this expression are � n � u � p � φ � A � , and, as stated before, constraints in the form of
the mass and entropy conservation laws must be used to specify the connection between
the field variables.

There are two methods to insert the constraints into the Lagrangian, the Lagrange mul-
tiplier method (Euler-Lagrange), and the virtual displacement method (Euler-Poincare).
Below we will examine each one separately.
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2.3.1 Lagrange multipliers method
In this method every constraint is directly introduced in the action integral, however, mul-
tiplied with an arbitrary function of space and time, called the Lagrange multiplier. For
fields the Lagrange multipliers depend on � x � t � and therefore are themselves an additional
set of fields. The action integral is then varied towards the fields as well as the multipliers,
treating all as independent variables. The resulting equations contain the multipliers, which
must then be eliminated to obtain the evolution equations. These equations can be proven
to minimise the action, under the boundary condition that the evolution is limited by the
constraints.

In our example the Lagrange multipliers q0 � x � t � and q1 � x � t � are introduced for the mass
and entropy conservation, respectively. The action integral then is

S � � dt � dx - L � q0 � ∂n
∂t

� ∇ �5� nu � � � q1 � ∂ns
∂t

� ∇ �1� nsu � � . � (2.50)

where L is the Lagrangian density of the fluid

L � ne
c

A � u � nm
2

u2 � 3
2

nγs � neφ � 1
8π

� E2 � B2 � (2.51)

and the constraints are written in a way that the calculations for finding the equation of
evolution become easier. As before, the entropy is chosen to be that of an ideal fluid with
three degrees of freedom

s � p
nγ � γ � 5

3
� (2.52)

The variation of the action towards the field variables and Lagrange multipliers leads
to an equation where each varied quantity (δn � δu, etc.) is multiplied with some coefficient
that, in this case, is a differential equation. In each case the coefficients of the variations
must independently vanish. This yields the dynamical equations of the system, which, for
each varied quantity, are

δn :
∂L
∂n

� ∂q0

∂t
� u � ∇q0

� s � ∂q1

∂t
� u � ∇q1 � � (2.53)

δu :
∂L
∂u

� n∇q0
� ns∇q1 � (2.54)

δs :
∂L
∂s

� n � ∂q1

∂t
� u � ∇q1 � � (2.55)

δq0 :
∂n
∂t

�,� ∇ �5� nu ��� (2.56)

δq1 :
∂ns
∂t

�,� ∇ �1� nsu ��� (2.57)

δφ :
1

4π
- 1
c

∇ � ∂A
∂t

� ∇ � ∇φ � . � ne � (2.58)

δA : � 1
4πc

∂
∂t � 1

c
∂A
∂t

� ∇φ � � 1
4π

∇ 
6� ∇ 
 A �7� 1
c

neu � (2.59)
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The fourth and fifth equation, due to the variation of the multipliers, are the original
constraints, and the two last equations, resulting from the variation of the electric and mag-
netic potentials, are the Maxwell’s equations

1
c

∂E
∂t

� ∇ 
 B � 4π
c

neu � ∇ � E � 4πne � (2.60)

The final task is, therefore, to eliminate the multipliers from the first three equations to
obtain the fluid velocity (the constraints already give the equations for the evolution of the
density and pressure). From equation (2.54) the Clebsch representation of the fluid velocity
[8, 9] is found

e
c

A � mu � ∇q0
� s∇q1 � (2.61)

Taking the curl of equation (2.61), one finds

∇ 
98 e
c

A � mu :;� ∇s 
 ∇q1 � (2.62)

This equation when s � const will give that the vorticity is equal to

∇ 
 u ��� e
mc

B � (2.63)

That is, the vorticity is then entirely specified by the magnetic field. To avoid specifying the
vorticity, one can introduce one more constraint (Lin constraint) in the Lagrangian, which
will then have the form

L � � dx - L � q0 � ∂n
∂t

� ∇ �5� nu � � � q1 � ∂ns
∂t

� ∇ �1� nsu � � � q2 � ∂C
∂t

� ∇ �5� Cu � � . �
(2.64)

where C is an arbitrary variable (Lin variable) [9, 10, 11]. The Lin constraint gives for the
Clebsch representation of the velocity

e
c

A � mu � ∇q0
� s∇q1

� C
n

∇q2 (2.65)

such that the magnetic field and the vorticity have an arbitrary form. It does, however, not
change any of the other results of the variation, so the rest of the calculations will be done
with equation (2.61).

First q0 is eliminated. This is done by adding two equations: the time derivative of
equation (2.61), and the gradient of equation (2.61) contracted with u. After some calcula-
tions, one arrives at

∂
∂t

8 e
c

A � mu : � ∇ � 8 m
2

u : ��� 1
n

∇p � e∇φ � u 
6� ∇s 
 ∇q1 ��� (2.66)

Observing then from equation (2.61) that

u 
<� ∇s 
 ∇q1 �2� u 
6� ∇ 
6� ∇q0
� s∇q1 ���!� u 
>= ∇ 
 8 e

c
A � mu :@? � (2.67)
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one finds the equation for the evolution of the fluid velocity

nm � ∂u
∂t

� u � ∇u � � en � E � u 
 B
c � � ∇p � (2.68)

The energy conservation law can be found by Noether’s theorem. From equation (2.34)
the global energy is

E � � dx - nm
2

u2 � 3
2

p � 1
8π

� E2 � B2 � . � (2.69)

which constitutes of the kinetic energy, the thermal energy, and the energy in the electro-
magnetic field.

2.3.2 Virtual displacement method
The second method for introducing the constraints in the Lagrangian is the virtual dis-
placement method. In this method a perturbation of the Lagrangian is expressed in terms
of a virtual displacement (in space) as well as the perturbed electric and magnetic poten-
tials. To obtain such an expression the perturbed density, velocity, as well as pressure must
be expressed as a functional form of the virtual displacement and background quantities.
These expressions are obtained directly from the conservation laws or, equivalently, from
the evolution equations in Lagrangian form that describe these constraints.

Consider an Eulerian displacement field ξ � x � t � , where x � t � is the unperturbed position
of a fluid element at time t. Here, ξ will be a virtual displacement of the fluid, that is, a
displacement of fluid elements in the co-moving frame subject to conservation laws, which
enter as constraints that determine the variation of the field variables (usually the fluid ones)
after the arbitrary displacement field ξ � x � t � is applied. Let then x̂ � t � be the new position of
the fluid element after applying the virtual displacement ξ. The perturbed location at time
t will be the sum of the unperturbed position and the virtual displacement ξ

x̂ � t �A� x � t � � ξ � x � t ��� t � � (2.70)

The time derivative of x̂ is a new velocity at the new position

dx̂
dt

� û � x̂ � t �2� dx
dt

� ∂ξ
∂t

� dx
dt

� ∇ξ � (2.71)

Since dx � dt � u � x � t � , one obtains

û � x̂ � t �2� u � x � t � � ∂ξ
∂t

� u � ∇ξ � (2.72)

In an Eulerian description the variation of a quantity is the value of the quantity after
the displacement but at the original position minus the quantity before displacement at the
original position

δu � û � x � t �)� u � x � t ��� (2.73)
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where û � x � t � can be found through an expansion of û � x̂ � t � with respect to ξ, retaining terms
up to the first order in ξ

û � x̂ � t �2� u � x̂ � t � � ξ � ∇û � (2.74)

Thus the Eulerian variation of the velocity is

δu � ∂ξ
∂t

� u � ∇ξ � ξ � ∇u � (2.75)

Below the density and pressure variation will be directly derived from the conserva-
tion laws. The density variation can be found from mass conservation. The mass of the
perturbed volume element is equal to the mass of the unperturbed volume element

n̂ � x̂ � t � dx̂ � n � x � t � dx � (2.76)

The volume element in the new coordinates is related to that of the old coordinates through
the Jacobian J � x � t � of the transformation

dx̂ � J � x � t � dx � (2.77)

with the Jacobian satisfying

J � x � t �%� det
∂x̂i

∂xk
� 1 � ∇ � ξ (2.78)

up to the first order in ξ. Expanding then n̂ up to the first order in ξ

n̂ � x̂ � t �%� n̂ � x � t � � ξ � ∇n � (2.79)

mass conservation yields

n̂ � x � t � � ξ � ∇n � n � x � t �
1 � ∇ � ξ � n � x � t �5� 1 � ∇ � ξ�"� (2.80)

and the density variation is

δn � n̂ � x � t �)� n � x � t �7��� ∇ �5� uξ ��� (2.81)

Proceeding in the same way, the constraint of entropy conservation can be written as

p̂ � x̂ � t �� n̂ � x̂ � t ��� γ � p � x � t �� n � x � t ��� γ � (2.82)

Using the equation for the perturbed density yields

p̂ � x̂ � t �%� p � x � t �5� J � x � t ���  γ � (2.83)
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and thus the equation for the variation of the pressure is

δp � p̂ � x � t �)� p � x � t �7�,� ξ � ∇p � γp∇ � ξ � (2.84)

The variations of density and pressure can also be found from their equations of evolu-
tion, which will be shown below. The two approaches are equivalent, since the evolution
equations can be directly derived from the conservation laws. Starting point are the equa-
tions

dn
dt

� n∇ � u � 0 (2.85)

dp
dt

� γp∇ � u � 0 � (2.86)

Here, one must differentiate between the Eulerian and Lagrangian variations. The Eulerian
variation δη of a field variable η � x � t � is given by

δη � η̂ � x � t �7� η � x � t ��� (2.87)

whereas the Lagrangian variation δ̂η of η is given by

δ̂η � η̂ � x̂ � t �7� η � x � t ��� (2.88)

The relation between the two variations can be found using the equation (2.70)

δη � δ̂η � ξ � ∇η � (2.89)

which can be used to describe the Eulerian variation of a space integral for fixed volumes:

δ � dV nη � � dV �B� η∇ �1� nξ � � nδη ���� � dV � nδ̂η � ∇ �5� nηξ ���C�D� dVnδ̂η � (2.90)

Thus the Lagrangian variation of the fluid velocity is

δ̂u � dx̂
dt

� dx
dt

� dξ
dt

� � ∂
∂t

� u � ∇ � ξ̂ � (2.91)

The Lagrangian variation of the density is derived by considering the finite time-difference
of equation (2.86)

∆n
∆t

� n∇ � ∆x
∆t

� 0 � (2.92)

In the limit ∆t � 0 and ∆x � ξ one finds for the Lagrangian variation of the density

∆n � δ̂n ��� n∇ � ξ � (2.93)
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Then the Eulerian variation of the density is

δn ��� ∇ �1� nξ ��� (2.94)

Combining equation (2.94) with equation (2.75) the Eulerian variation of the momentum
can be found:

δ � nu �E� ∂ � nξ �
∂t

� ∇ �5� n � uξ � ξu ���F� ξ � ∂n
∂t

� ∇ � nu � �� ∂ � nξ �
∂t

� ∇ �5� n � uξ � ξu ��� � (2.95)

In a similar way we can proceed in finding the variation of the pressure from equation
(2.86). The Lagrangian variation is

δ̂p ��� γp∇ � ξ � (2.96)

and the Eulerian variation is

δp � p̂ � x � t �)� p � x � t �7�,� ξ � ∇p � γp∇ � ξ � (2.97)

After deriving the variations of the density, velocity and pressure in terms of the virtual
displacement, the variation of the Lagrangian in Eulerian form can be expressed in terms
of the displacement as well as the perturbed electric and magnetic potentials, through the
replacement of δn � δu and δp with their equivalent equations that involve ξ. After doing
some manipulations with the space and time derivatives, the variation of the Lagrangian
can be written in the form

δL � δφ � ∇ � E
4π

� en � � δA � � 1
4πc

∂E
∂t

� ∇ 
 B
4π

� e
c

nu � �� ξ � - n d
dt

8 mu � e
c

A : � ∇p � n∇u � 8 mu � e
c

A : �� n∇ 8 m
2

u2 � eφ � e
c

u � A :@? � ∂
∂t

- nξ �!8 mu � e
c

A :G� E � δA
4πc . �� ∇ �%- 5

2
pξ � nu 8 mu � e

c
A :H� ξ �� nξ 8 m

2
u2 � eφ � e

c
u � A : � � Eδφ

4π
� δA 
 B

4π � . � (2.98)

Then stationarity of the action integral / dtdx with respect to the variations of φ and A
will again yield the Maxwell equations

1
c

∂E
∂t

� ∇ 
 B � 4π
c

neu � ∇ � E � 4πne � (2.99)
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whereas stationarity of the action integral with respect to the virtual displacement yields
the fluid momentum equation

nm � ∂u
∂t

� u � ∇u � � en � E � u 
 B
c � � ∇p � (2.100)

The rest of the terms gives the local and global energy conservation laws

δL � ∂
∂t

- nξ �!8 mu � e
c

A :G� E � δA
4πc . � ∇ �%- 5

2
pξ � nu 8 mu � e

c
A :H� ξ �� nξ 8 m

2
u2 � eφ � e

c
u � A : � � Eδφ

4π
� δA 
 B

4π � . � (2.101)

Here, ξ � δA and δφ are taken as a result of the dynamical evolution of the system, and not
as virtual variations, that is

ξ ��� uδt � δφ ��� ∂φ
∂t

δt � δA ��� ∂A
∂t

δt � (2.102)

The variation of the Lagrangian density is

δL ��� ∂L
∂t

δt � (2.103)

Replacing the variations, and after some calculations the local energy conservation law is
retrieved

∂
∂t

- nm
2

u2 � 3
2

p � 1
8π

� E2 � B2 � . �� ∇ �A- u � nm
2

u2 � 5
2

p � � c
4π

E 
 B . � 0 � (2.104)

and, integrating this equation over space gives the global energy conservation law. The
global energy then is

E � � dx - nm
2

u2 � 3
2

p � 1
8π

� E2 � B2 � . (2.105)

The difference in the two methods presented here, the Lagrange multiplier (Euler-
Lagrange) method and the virtual displacement (Euler-Poincare) method, is that in the
former the the dynamical fields are varied independently, while in the latter the variations
are introduced through the displacement. Both methods are commonly used in many ap-
plications of classical mechanics, as well as quantum field theory and relativity, and are
useful for studying systems under constraints. They are equivalent, yielding the same evo-
lution equations as well as the same conservation laws[12]. They can be used alternatively,
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depending on the problem studied. In general the mathematics connected with the virtual
displacement method is somewhat easier compared with the method using Lagrange multi-
pliers. The latter method, however, is more elegant and has the advantage that the equations
of motion can be expressed in an alternative form if the multipliers are not (or are not all)
eliminated.

In both the methods there is an arbitrariness that is introduced through the choice of
the Lagrangian and its constraints. In fact, the Lagrangian and the constraints of a problem
cannot be derived, and the validity of them is verified only by the validity of the final
equations of evolution.

In the next chapters, we will use both methods to derive gyrofluid equations starting
from a gyrofluid Lagrangian and imposing constraints for the fields. Thus on Chapter 4 we
will use the Lagrange multiplier method to derive gyrofluid equations for only one tem-
perature, and in Chapter 5 we will use the virtual displacement method to derive gyrofluid
equations for two temperatures. The change in method from Chapter 4 to Chapter 5 was
motivated by the far greater mathematical complexity of the two temperature system.
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Chapter 3

Gyrokinetic and gyrofluid theory

Two of the most commonly used descriptions in the study of low frequency plasma turbu-
lence are the gyrokinetic and gyrofluid models. The latter describes the evolution of a few
moments of the former. Although, gyrofluid is not as accurate a description as the kinetic
description, it is computationally more economic, and retains most physics effects, needed
for a qualitative as well as quantitative description of turbulence [1]. In this chapter both
models are presented, and the derivation of the evolution equations is briefly outlined. In
Section 3.1 the physics assumptions of the two models, giving the ordering and limitations,
are discussed. In Section 3.2 the derivation of the gyrokinetic equations is sketched and
discussed. And, finally, Section 3.3 discusses the derivation of the gyrofluid model prior to
the work of this thesis.

3.1 Gyrokinetic and gyrofluid
Gyrokinetics deals with the motion of individual charged particles in an electromagnetic
field. It is a reduced description that can be applied in the case of low frequency dynamics
in a strong magnetic field, as will be explained below.

The trajectory of a charged particle in a magnetic field can be viewed as the sum of
two separate motions: a circular motion around the magnetic field lines (gyromotion) with
frequency Ω � eB � mc which is called gyrofrequency (cyclotron frequency), and a drifting
motion (Fig.3.1). The combination of the two motions makes a spiral trajectory around a
central line created by the centers of the circular motion, which are called the gyrocenters.

In many cases in plasma physics one has to deal with phenomena that evolve much
slower than the gyromotion, and for which the electromagnetic field with space scale
lengths of the order of the gyroradius can be treated as a small perturbation against a
background field that has scale lengths much larger than this radius. One can then use
a perturbation theory that essentially consists of an average over the fast gyromotion, and
reduces the description to the motion of the gyrocenters rather than the particle position.
This theory is known as gyrokinetics.

In electrostatic gyrokinetics the small parameter that is used to describe the perturbed

33
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1 2
φ  ≠ φ

φ
1

φ
2

Figure 3.1: Left: Motion of a particle: gyration and motion of the gyrocenter. Right: The electric and
magnetic fields in the position of the gyrocenter and the real position of the particle are not the same.

quantities is the relative amplitude of the electrostatic potential eφ � Te where Te is the elec-
tron temperature. The length scales associated with this small parameter however are ar-
bitrary. These assumptions are in contrast with the complementary theory known as drift
kinetics in which the electrostatic potential amplitude is arbitrary but the small parameter
that describes the perturbations is the perpendicular wave length k2� ρ2

i .
In gyrokinetics care is to be taken in the evaluation of the electric and magnetic field,

which change from the position of the real particle to that of the gyrocenter (Fig. 3.1).
The gyroaveraging procedure must be applied to the fields, with the relevant field for the
gyrocenter motion being given by the mean value of the fields on the particle gyro-orbit.
However, also in calculating the electromagnetic field itself one has to consider the finite
size of the orbit. This is shown in Fig. 3.2: the gyrocenter P contributes charge to all the
points of the ring, and the gyrocenters that contribute charge to Q lie on the dashed ring.

The distribution function of the particles can be separated in a (small) part that depends
on the gyroangle and a part that is gyroangle independent. The latter describes the gyro-
centers, while the former is treated as an additional perturbative contribution to the density
and formulates the polarisation term in the Poisson equation. The gyrokinetic polarisation
density includes polarisation effects to all orders in the gyroradius. In contrast, the polar-
isation effects appears in the drift kinetic description not as a density perturbation, but in
the form of the polarisation drift.

Since gyrokinetics is an approximation to the full particle motion, it has limited validity.
It can describe phenomena that are slower than the gyrofrequency, and energies of the field
perturbation smaller than the thermal energy. The gyrokinetic ordering for the electrostatic
case is given by

ω
Ω I k �

k � I eφ
Te I ρi

Ln
� O � ε � and k � ρi � O � 1 ��� (3.1)
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P

Q

fig. a fig.b

Figure 3.2: The gyrocenter P contributes charge to all the points of the ring and is sensitive to the field
potential at the points on the ring. The gyrocenters that contribute charge to Q lie on the dashed ring.

Here ω and Ωi are the characteristic fluctuation frequency and the ion gyrofrequency re-
spectively, k � and k � are the components of the wave vector parallel and perpendicular to
the magnetic field respectively, ρi is the ion gyroradius, Ln � n �@J ∇n J is the density scale
length of the background, φ is the fluctuating electrostatic potential and ε is a parame-
ter indicating the smallness of ρi compared with Ln. Note that, although eφ � Te � O � ε � ,
eLn∇φ � Te � O � 1 � since small scales are allowed for the perturbed potential. If ∇n � 0,
then instead of the density scale length of the background Ln, the temperature scale length
of the background LT � T �@J ∇T J is used, which is always defined since in general a confined
plasma has a finite ∇p.

Because of the gyro-averaging performed in gyrokinetics, the final equations depend
on five instead of six coordinates, and no longer contain the fast gyrofrequency. Thus,
although gyrokinetics is mathematically more demanding than the full particle description,
it is computationally more efficient since the numerical time integration does not have
to resolve the very fast gyromotion, while, within its limits, giving qualitatively as well
as quantitatively correct results. The gyrokinetic theory is a basic framework to describe
microinstabilities, turbulence and anomalous transport observed in magnetically confined
plasmas.

Gyrofluid deals with the motion of many gyrocenters (Fig. 3.3). It can essentially
be viewed as a moment approach applied to the gyrokinetic equations. Therefore, the
gyrokinetic ordering applies, and also gyrofluid contains the gyro-averaging procedure for
the fields. Due to finite amount of moments kept in the gyrofluid theory it is less accurate
than gyrokinetics, but also more computationally efficient.

3.2 Electrostatic gyrokinetic equations
The gyrokinetic theory describes the motion of charged particles in an electromagnetic
field, no longer resolving the fast gyration, but retaining it only in an averaging procedure
of the fields and in the space density corrections known as polarisation. Here, the derivation
of the gyrokinetic equations is briefly outlined, keeping only perturbations in the electric
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Figure 3.3: Gyrofluid follows many gyrocenters together, viewed as parts of a fluid.

field (generated by other particles or externally applied), i.e. in the electro-static limit.
The derivation uses the phase-space Lagrangian variation method, and the gyromotion is
eliminated using the Lie perturbation method. The formalism that is discussed briefly here
can be found in the publications [2, 3, 4, 5].

The motion of charged particles in an electromagnetic field, as well as the evolution
equation for the electromagnetic field, can be described by a Lagrangian that is the sum of
the Lagrangian of the particles and the Lagrangian of the electromagnetic field (L f ) [5]

L � L f
� ∑

α
� d3x0d3v fα � x0 � v0 � t0 �7�

Lα � x � x0 � v0 � t0; t ��� v � x0 � v0 � t0; t ��� ẋ � x0 � v0 � t0; t ��� � (3.2)

where fα � x0 � v0 � t0 � is the distribution function of species α at an arbitrary specified initial
time t0, and x � x0 � v0 � t0; t � and v � x0 � v0 � t0; t � are the position and velocity of a particle at
time t, which satisfy the initial condition

x � x0 � v0 � t0; t0 �2� x0 � v � x0 � v0 � t0; t0 �(� v0 � (3.3)

In equation (3.2) the single-particle Lagrangian (Lα)

Lα � 8 mv � e
c

A : � ẋ � � 1
2

mv2 � eφ �LK p � ẋ � Hc � (3.4)

where p is the canonical momentum and Hc is the canonical Hamiltonian, is summed over
all particle species α. The field Lagrangian L f for the electro-static case reduces to

L f � 1
8π

� d3x J ∇φ J 2 � (3.5)

where only the perturbed electric potential is considered.
The Lagrangian in equation (3.2) is the starting point for the derivation of the equations

for the single-particle motion, the gyrokinetic equation, as well as the Poisson equation and
the energy conservation law of gyrokinetics.
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3.2.1 Particle motion
To derive the equations for the particle motion, one only needs to manipulate the single-
particle Lagrangian in equation (3.4).

In the gyrokinetic electrostatic system, the electric field and its scalar potential is as-
sumed to consist of a static and a perturbed part

E � E0 � x � � εE � x � t �M� φ � φ0 � x � � εφ � x � t ��� (3.6)

However, assuming the static E 
 B drift velocity to be of the order O � εvt � , where vt is the
thermal velocity, one can treat both perturbation and static parts together. That is, one can
put E0 � φ0 � 0, retaining the perturbations E and φ that now include also the static part.

The fundamental one-form corresponding to the single-particle Lagrangian is separated
into two parts, the equilibrium (γ0), and the perturbed part (γ1) as in equation (2.13)

γ0 � 8 mv � e
c

A : � dx � 1
2

mv2dt � (3.7)

γ1 ��� eφdt � (3.8)

Both parts depend on the gyromotion. To be able to proceed with the Lie perturbation
method, two transformations are needed: one to retrieve the gyroangle coordinate and its
canonical momentum, and one to remove the gyroangle dependence from the equilibrium
part of the fundamental one-form [2]. The first transformation is (Fig. 3.4)� x � v �2� z �N� x � v � � µ � θ ��� (3.9)

where

v �%� v � b � µ � mv2�
2B

� v � � v � v � b � θ � arctan
v � ê1

v � ê2
� (3.10)

and � ê1 � ê2 � b � B � B � are unit vectors which form a right- handed orthogonal system at x.
To follow the perpendicular part of the velocity v � , one can also introduce another

right-handed orthogonal system at x, consisting of the vectors � â � ĉ � b � such that

â � cosθê1 � sinθê2

ĉ �,� sinθê1 � cosθê2 � (3.11)

with â � b 
 ĉ and the velocity given by

v � v � b � v � ĉ � (3.12)

To remove the gyroangle θ dependence from the equilibrium part of the fundamental
one-form, the guiding-center transformation is introduced (Fig. 3.5)

z �O� x � v �P� µ � θ �2� Z �N� X � V ��� µ � θ ��� (3.13)
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Figure 3.4: Coordinates Q x R v S and Q x R v TUR µ R θ S
where

X � x � ερ � O � ε2 ��� V �%� v � � O � ε ��� µ � µ � O � ε ��� θ � θ � O � ε ��� (3.14)

and the gyroradius and the gyrofrequency are defined by

ρ � v 
 b
Ω

� v � â
B

� Ω � eB
mc

� (3.15)

In the last transformation the space coordinate introduced X follows the guiding center
of the motion of the particle (in figure 3.5) rather than the actual particle (in figure 3.4),
while the space coordinate θ and the momenta V �P� µ stay the same. In this way the space
coordinate that indicates the position of the particle x can be divided in two parts, one X
that does not depend on θ and another ρ that does. Thus the separation of the coordinates,
and hence the removal of the gyroangle, becomes easier.

For the transformation of the fundamental one-form from the particle phase space co-
ordinates to the guiding center coordinates, the value of the background potential is taken
at the guiding center positions and then Taylor expanded in the actual particle positions
retaining up to the first order in the small parameter ε. Then a gauge transformation is
applied to arrive at a Lagrangian that does not depend on the guiding-phase angle.

In our case, the only part of the Lagrangian that changes is the symplectic part. Thus
for the transformation, the magnetic potential is Taylor expanded as

A � x �2� A � X � ρ � � A � X � � ρ � ∇A � X � (3.16)

and the differential dx becomes
dx � dX � dρ � (3.17)
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Figure 3.5: Guiding - center coordinates. The space coordinate X is now pointing to the gyrocenter, instead
of the actual particle in figure 3.4. The space coordinate θ, as well as the momenta µ R V T remain the same.

Inserting the Taylor expansion in the fundamental one-form of Eq. (3.7), new gauge-
dependent terms appear. To remove these a gauge transformation is applied. In general, if
one considers the Lagrangian L � z � ż � t � and if S � S � z � t � is an arbitrary scalar, the equations
of motion are invariant under the substitution L � L � dS � dt, or

γi � γi
� ∂S

∂zi
� H � H � ∂S

∂t
� (3.18)

The gauge S that is chosen to simplify the Lagrangian is

S �,� ev �
cB

â � A � ε
ev2�
2cB

â � ∇A � â � (3.19)

After performing the Taylor expansion and adding the gauge transformation, in terms of
the guiding-center coordinates � X � V ��� µ � θ � the fundamental one-forms are

γ0 � = e
c

A � X � � mV � b � X ��?V� dX � mc
e

µdθ �XW µB � mV 2�
2 Y dt � (3.20)

γ1 ��� eφ � X � ρ � dt � (3.21)

Now the Lie perturbation method is applied. Since the equilibrium part γ0 does not depend
on the gyroangle, one can put the gauge dS0 � 0, and

Γ0 � γ0 � (3.22)
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since the transformations do not involve time, one can also put gt
n � 0 for the generators of

the Lie transform.
For the first order one-form, equation (2.20) gives

Γ1 � dS1 � eφdt � gθ
1dµ � gµ

1dθ � m � gX
1 � bdV � � g

V Z
1 b � dX � �� e

c
gX

1 
 B [%� dX � � Ωgµ
1
� mV � gV Z

1
� µgX

1 � ∇Ω � dt � (3.23)

where
B [ � ∇ 
 A � mc

e
V � ∇ 
 b � (3.24)

In B [ the parallel velocity V � commutes with the space derivative ∇, such that the gener-
alised field B [ is divergence-free.

The Lie transform generators as well as the gauge scalars can be chosen such that the
perturbations appear only in the Hamiltonian and Γ1 has no θ- dependence. One then
obtains

Γ1 ��� e \ φ � dt � (3.25)

where \ φ � � 1
2π

� dθφ � X � ρ � t ��� (3.26)

The generators of the transformation g1 are calculated such that equations (3.23) and (3.25)
are equal. After some calculations the generators are found to be:

gX
1 �,� ε

B ] b 
 e
B

∇ \ φ � � eb � ∂Φ̃
∂V �_^ � g

V Z
1 � 0 �

gµ
1 � ε

e
B

\ φ̃ � � gθ
1 ��� ε

e
B

∂Φ̃
∂µ

� (3.27)

We apply the same procedure for the second order one-form. For that we have that
γ2 � 0, such that

Γ2 � dS2 � 1
2

L1γ1 � 1
2

L1Γ1 � L2γ0 (3.28)

The gauge S2 as well as the generators g2 can be arbitrarily chosen, whereas the generators
g1 are the ones found in the evaluation of the first order one-form. In this case the gauge
and generators are calculated such that only the Hamiltonian part of Γ2 is non-zero. After
extensive calculations and by applying the gyrokinetic ordering, the second order part is
found to be

Γ2 � e2

2Ω � ∂
∂µ

\ φ̃2 � � 1
Ω

\ ∇Φ̃ � b 
 ∇φ̃ � � dt � (3.29)

where

φ̃ � φ ��\ φ � � Φ̃ �D� θ
φ̃dθ � (3.30)
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Although the Lie transform can be taken to higher order in ε, the combination of zeroth,
first and second order is enough to capture the necessary physics completing the parts of the
energy conservation law. Obviously, every next order is smaller by a factor ε and represents
a smaller correction to the equations of motion. First order in this description, however, is
not sufficient since it is the second order that yields the polarisation density in the Poisson
equation and part of the E 
 B energy in the energy conservation law, effects that must be
kept in an accurate description of the plasma dynamics [3].

The total fundamental one-form after the transformation is

Γ � Γ0
� Γ1

� Γ2 � = e
c

A � X̄ � � mV̄ � b � X̄ � ? � dX̄ � µ̄dθ̄ �
] mV̄ 2�

2
� µ̄Ω � X̄ � � eΨ ^ dt � (3.31)

where

Ψ �`\ φ � � e2

2Ω � ∂
∂µ̄

\ φ̃2 � � 1
Ω

\ ∇Φ̃ � b 
 ∇φ̃ � � � (3.32)

Together with the Lagrangian, the coordinates are transformed as well. Through the Lie
transform, the coordinates transform from guiding-center to gyrocenter

Z �N� X � V � � µ � θ �%� Z̄ �O� X̄ � V̄ � � µ̄ � θ̄ ��� (3.33)

where
Z � Z̄ � ḡ1

� O � ε2 �M� (3.34)

Substituting the transformation generators ḡ1 found in equation 3.27, in equation 3.34, the
Lie transformed coordinates are:

X � X̄ � ε
B ] b 
 e

B
∇ \ φ � � eb � ∂Φ̃

∂V � ^ �
V � � V̄ � �
µ � µ̄ � ε

e
B

\ φ̃ � �
θ � θ̄ � ε

e
B

∂Φ̃
∂µ

� (3.35)

The gyrokinetic one-form in equation (3.31) is written in the gyrokinetic coordinates. Fi-
nally, the nonvanishing components of the Lagrange tensor in equation (2.12) are

ω̂X̄iX̄ j
� e

c
εi jkB [k �

ω̂tµ̄ � Ω � e
∂Ψ
∂µ̄

�
ω̂tX̄ � µ̄∇Ω � e∇Ψ �
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ω̂X̄V̄ Z ��� mb �
ω̂tV̄ Z � mV̄ � �
ω̂θ̄µ̄ ��� 1 � (3.36)

From equation (2.11) the equations of motion for the single particle can be found

dµ̄
dt

� 0 � (3.37)

dθ̄
dt

� Ω � e
∂Ψ
∂µ̄

� (3.38)

dX̄
dt

� V̄ � b � 1
B [ � b 
 W c

e
µ̄∇Ω � mcV̄ 2�

e
b � ∇b � c∇Ψ Y � (3.39)

m
dV̄ �
dt

��� 1
B [ � B [ �1� µ̄∇Ω � e∇Ψ �a� (3.40)

where B [ � � B [ � b such that B [ � B [ � b � � mcV̄ � � e � b 
 b � ∇b
Equations (3.37, 3.38,3.39, 3.40) describe the motion of the gyrocenter in an inhomoge-

neous magnetic field, under a perturbation due to the electric field. Equation (3.37) shows
that there is an invariant of motion, the magnetic moment µ̄, and equation (3.38) shows that
to zeroth order in ε, the time evolution of the gyroangle is given by the gyrofrequency Ω.
It is also instructive to analyse the different contribution to the velocity given in equation
(3.39), which were already mentioned in the introduction (a) a velocity parallel to the mag-
netic field V̄ � b,
(b) a velocity perpendicular to the magnetic field due to the inhomogeneity of the magnetic
field strength, the grad B drift

1
B [ � b 
 c

e
µ̄∇Ω � (3.41)

(c) a velocity perpendicular to the magnetic field due to the parallel motion of the particle
in a curved magnetic field, the curvature drift

1
B [ � b 
 mcV̄ 2�

e
b � ∇b � (3.42)

The curvature drift given above is derived from the equation of motion by splitting B [ in
its components B [ � B [ � b � � mcV̄ � � e � b 
 b � ∇b.
(d) a velocity perpendicular to the magnetic field due to the electric field, the E 
 B velocity

1
B [ � b 
 c∇Ψ � (3.43)
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In equation (3.39) the polarisation drift due to the time dependence of the electric field does
not appear. Technically, this is because the electric field appears only in the Hamiltonian
and not the symplectic part of the Lagrangian. The physics effects due to this drift, however,
are still contained in the model. Instead of a polarisation drift in the equation of motion, a
polarisation term will appear in the Poisson equation, describing the same physics.

3.2.2 Gyrokinetic equation
The gyrokinetic equation is directly derived from the Liouville theorem of volume conser-
vation in phase space, and represents the time evolution of the distribution function f � Z̄ � t �
of the particles [6].

The statistical state of any system is determined by a phase-space distribution function
f � q � p; t � where � q � p � are the coordinates of the system. The distribution function satisfies� dQdP J J � Q � P � J f � Q � P; t �b� N � (3.44)

where N is the total number of particles in the system. Upon any transformation � q � p �	�� Q � P � , even if this is non-canonical, the distribution function [7] transforms as:

f � q � p; t �%� J J � Q � P � J f � Q � P; t ��� (3.45)

where J J � Q � P � J is the Jacobian of the transformation. Since the coordinates that we will use
do not depend on time, the Jacobian of the transformation � q � p �2� � Q � P � will be assumed
here time-independent.

For any coordinates � Q � P � , and for every variable a � a � Q � P; t � , Hamilton’s equations
(equations 2.4) can be written in the compact form

ȧ �N� H � a � � (3.46)

The distribution function then satisfies

∂ f
∂t

�O� H � f �"� (3.47)

or, more explicitely
∂ f
∂t

��� H � Q � ∂ f
∂Q

� � H � P � ∂ f
∂P

� (3.48)

This is the Liouville equation, which states that for a non-interacting system, the distribu-
tion function obeys an equation of evolution that makes that the total volume of the system
in phase space is conserved.

From Hamilton’s equations, one can also prove that

∂
∂Qi

� J J J � H � Qi �c� � ∂
∂Pi

� J J J � H � Pi �c�2� 0 � (3.49)
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Combining equation (3.48) with equation (3.49), it is easily derived that

∂
∂t

� J J J f �2� ∂
∂Q

�d� H � Q � J J J f � � ∂
∂P

�d� H � P � J J J f ��� (3.50)

This is the basic evolution equation of the distribution function.
Returning to the gyrokinetic coordinates, and substituting the Lagrange tensor compo-

nents equation (3.36) in equation (3.48), one finds the gyrokinetic equation

∂ f
∂t

� dV̄ �
dt

∂ f
∂V̄ � � dX̄

dt
� ∂ f
∂X̄

� 0 � (3.51)

where dV̄ � � dt and dX̄ � dt are given by equations (3.40) and (3.39), respectively. Moreover,
from equation (3.50) one obtains

∂
∂t

� B [ � f � � ∂
∂V̄ � W dV̄ �

dt
B [ � f Y � ∂

∂X̄
� � dX̄

dt
B [ � f � � 0 � (3.52)

where B [ � is the Jacobian of the transformation � x � v �2� � Z̄ � .
3.2.3 Poisson equation and energy conservation law
To find the Poisson equation, and the energy conservation law, the full Lagrangian of par-
ticles and fields is needed [5]. This Lagrangian is obtained by substituting equation (3.31)
into equation (3.2)

L � ∑
α

� d6Z̄B [ � � Z̄ � f � Z̄ � t �7� Lα � Z̄ � ˙̄Z � t � � 1
8π

� d3x J ∇φ J 2 � (3.53)

where

Lα � Z̄ � ˙̄Z � t ��� 8 e
c

A � mV̄ � b : � ˙̄X � µ̄ ˙̄θ � W m
V̄ 2�
2

� µ̄Ω � eΨ Y � (3.54)

The gyrokinetic Poisson equation is derived from the variation of the action integral
towards φ, δS � δφ � 0:

∇2φ ��� 4π∑
α

eα � d6Z̄ � B [ � � δ3 � X̄ � ερ̄ � x �F� - f � e
Ω � φ̃

∂ f
∂µ̄

� 1
Ω

∇Φ̃ � b 
 ∇ f � . � (3.55)

The polarisation arrises from the term that contains � e � Ω � φ̃∂ f � ∂µ in the Poisson equa-
tion. To see this, one has to go back to the second order Lagrangian, and manipulate the
term �e� e2 � 2Ω � ∂ \ φ̃2 � � ∂µ. Taylor expanding the electric potential φ � ρ � in a series of ρ
and retaining only the two first terms in the expansion yields

φ �`\ φ � � ρ � ∇φ � (3.56)
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such that \ φ̃2 � � ρ2

2
� ∇ � φ � 2 � (3.57)

Then the term �G� e2 � 2Ω � ∂ \ φ̃2 � � ∂µ in the Lagrangian can be proven to be equal to� e2

2Ω
∂ \ φ̃2 �

∂µ
��� 1

2
mu2

E � (3.58)

Using this approximation in the Lagrangian and taking the variation towards the potential
φ one finds the new approximated Poisson equation to be

∇2φ �f� 4π∑
α

eα � d6Z̄ � B [ � � δ3 � X̄ � ερ̄ � x �F� - f � e
Ω2 ∇Φ̃ � b 
 ∇ f � ∇ � f mc2

B2 ∇ � φ . �
(3.59)

The last term in the Poisson equation is a more common representation of the polarisation
term.

Equation (3.59) can be written in a somewhat simplified way as

nie �`\ nie � � ∇ � nimic2

B2 ∇ � φ � nee (3.60)

where ni � ne are the ion and electron particle density respectively, and \ nie � is the con-
tribution to the ion particle density from the gyrophase independent part of the distribution
function. In Equation (3.60) we have neglected the space charge density since it is small
compared to the polarisation piece, and have set the total space densities equal because
of quasineutrality. The double requirement that the densities must be equal and that the
electric field is electrostatic is made possible by the existence of the polarisation term. This
necessity of the polarisation term in the Poisson equation then makes it necessary to keep
the second order corrections in the Lagrangian.

The energy conservation law is found by applying Noether’s theorem, equation (2.34),
to the Lagrangian of equation (3.53). Using equation (3.40) the conserved total energy is
given by

Etot � ∑
α

� d6Z̄B [ � f � Z̄ � t �)� � ˙̄Z
∂Lα

∂ ˙̄Z � � L �� ∑
α

� d6Z̄B [ � f � Z̄ � t � H � Z̄ � t �7� L f �� ∑
α

� d6Z̄B [ � f � ] mV̄ 2�
2

� µ̄B � e2

2Ω � ∂
∂µ̄

\ φ̃2 � �� 1
Ω

\ ∇Φ̃ � b 
 ∇φ̃ � � . � 1
8π

� J E J 2d3x � (3.61)
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To see this derivation clearly, we use a more simplified representation of the Poisson
equation

∑
α

- � d3veJ0 f � ∇ � nmc2

B2 ∇ � φ . � 0 � (3.62)

where n ��/ d3v f the particle density and J0 is a Hermitian operator that denotes the gy-
roaveraging procedure. Here we have kept only the polarisation and the electric potential
term. Multiplying the Poisson equation (3.62) with φ and integrating over the whole vol-
ume one can find that

∑
α

� d3x � d3veJ0φ f � ∑
α

� d3xnmv2
E � (3.63)

since the operator J0 is Hermitian. Thus we have that

∑
α

� d3x � � d3veJ0φ f � nm
v2

E
2 � � ∑

α
� d3x nm

v2
E
2

(3.64)

which means that the potential energy e g φ h f together with � mnv2
E
� 2 represent the the E 
 B

energy.
The same approximations for the Lagrangian yields

L �i8 e
c

A � mv � b : Ẋ � µθ̇ �XW m
v2�
2

� µB � eJ0φ � nm
2

v2
E Y (3.65)

and then by using equation (3.64) the energy becomes

E � ∑
α

� d6Z f H � ∑
α

� d6Z W m
v2�
2

� µB � eJ0φ � nm
2

v2
E Y �

∑
α

� d6Z W m
v2�
2

� µB � nm
2

v2
E Y � (3.66)

Here one can easily distinguish the different parts of the total energy of the system, namely
the thermal � mv2� � 2 � µB � and drift � nmv2

E � � 2 energy.

3.3 Gyrofluid electrostatic equations
The gyrofluid equations describe the time evolution of a few moments of the gyrokinetic
equation. Here, the electrostatic model first derived by [8, 9], to which the reader is referred
for a more detailed derivation, is presented. We will concentrate on a set of four moments:
the gyrocenter density n, the parallel velocity u � , and the parallel p � and perpendicular
pressure p � . In the work presented in references [8, 9] the equations of evolution are
directly derived from the Gyrokinetic equation, and the moment hierarchy is closed by
approximations of the higher order moments.
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3.3.1 General approximations used for the model
In taking the moments of the gyrokinetic equation (3.52), many approximations [8, 9, 10,
11, 12] are introduced. In this section these approximations will be discussed, since they
are important for understanding the limitations of the model.

Before taking the moments an approximation is introduced through a simplification of
the gyrokinetic Lagrangian, where only the O � ε � terms are kept. Thus, Ψ is approximated
with \ φ � � J0φ, where J0 is the linear operator that performs the gyroaveraging, which
in Fourier space is the Bessel function J0 � k � v � � Ω � . This approximation eliminates the
polarisation term in the Poisson equation. it is then, however, put back by hand in linearised
form.

The final gyrofluid equations are partly linearised, i.e. the usual gyrofluid models are
delta-f models. Although the E 
 B advection nonlinearity is kept, all other terms are
linearised according to the gyrokinetic ordering. The E 
 B advection nonlinearity is kept
due to the fact that, although the electric field is of order epsilon eφ � Te � O � ε � , its gradient
is of order 1 eLn∇φ � Te � O � 1 � , and the perpendicular wave vector satisfies k � ρi � O � 1 � .
Then the term uE � ∇ (and hence ∇φ 
 ∇) is of the same order as the other terms in the
equations. For all other terms of the form � ∂ f � ∂v �j�@� g � φ � , where g is any operator acting
on φ, the distribution function f is approximated by the Maxwellian.

Also the model uses the approximations B [ � � B and B [ � B, after the ∇B and curvature
drifts are fully developed in the equations of motion. Consequently, the Jacobian of the
transformation from Cartesian to gyrokinetic coordinates is approximated by B.

The model is derived for low-beta plasmas in which J ∇ 
 B J \H\ J ∇B J . The ∇B and
curvature drift can then be approximated to

vd � v2� � µB

ΩB2 B 
 ∇B � (3.67)

The approximation in the curvature drift makes the model a zero-current model, since this
approximation for the gyrokinetic equation means

∇ 
 b � ∇ f � ∇ � 1
B � 
 B � ∇ f � 1

B
∇ 
 B � ∇ f � ∇ � 1

B � 
 B � ∇ f � (3.68)

i.e. it assumes that the term ∇ 
 B � ∇ f and thus the term J � ∇ f is small.
Moreover, terms of the form ∇B � ∇ 
 B and ∇φ 
k� ∇ 
 B � are put to zero, since for

low-beta plasmas the current J �D� c � 4π � ∇ 
 B is mostly parallel and the ∇φ and ∇B mostly
perpendicular.

A set of approximations is made for the gyro-averaging operator J0. According to [12],
J0 and its derivatives are approximated by\ J0 � � Γ1 l 2

0 �m\ J0v � � � vtΓ
1 l 2
0 �n\ J0v2� � � v2

t Γ1 l 2
0 �\ J0v2� � � v2

t � 2Γ1 l 2
0

� ∇̂2� ���n\ J0v3� � � v3
t Γ1 l 2

0 �\ J0v � v2� � � v3
t � 2Γ1 l 2

0
� ∇̂2� ��� (3.69)
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with the modified Laplacian operators defined by

1
2

∇̂2� Ψ � b
∂Γ1 l 2

0
∂b

φ � ˆ̂∇
2� Ψ � b

∂2

∂b2 � bΓ1 l 2
0 � φ � (3.70)

where Ψ � Γ1 l 2
0 φ � b �D� k2� v2

t
� Ω2 � , and vt is the thermal velocity vt �Oo T� � m. Derivatives

of J0 are approximated as

∇J0 � α �2� J1 � α � α
2B

∇B � α � k � v �
Ω\ J1α �p� ∇̂2� � 2 ˆ̂∇

2� � (3.71)

The final gyrofluid equations are also normalised. For normalisation the following
relations are used � t � k � � k � �q� � tvt

Ln
� k � Ln � k � ρ �� φ � n � u � p �%� ρ

Ln
� eφ

T0
� n1

n0
� u1

vt
� p �
n0mv2

t
� � (3.72)

here the quantities with the subscript “1” are perturbed quantities and the quantities with the
subscript “0” are background quantities, ρ is the Larmor radius and Ln is the equilibrium
scale length of the density.

3.3.2 Gyrokinetic equation
The derivation of the gyrofluid equations starts from the gyrokinetic equation

∂
∂t

� B [ � f � � ∂
∂V̄ � W dV̄ �

dt
B [ � f Y � ∂

∂X̄
� � dX̄

dt
B [ � f � � 0 � (3.73)

For convenience, from now on, the gyrokinetic coordinates are written as � x � v � � µ � θ � . The
particle parallel velocity will be denoted by v � , and the fluid velocity by u � . Under the
approximations discussed in the previous section, equation (3.73) can be written as

∂
∂t

� f B � � ∇ �sr f B � v � b � vE
� vd �ut �� ∂

∂v � = f B 8 � e
m

b � ∇ \ φ � � µb � ∇B � v � � b � ∇b �7� vE :@? � 0 � (3.74)

where vE �O� c � B � b 
 ∇ \ φ � is the E 
 B velocity, and vd is given by equation (3.67).
Equation (3.74) is manipulated, grouping together all velocity dependent terms, to bring

it in a more suitable form for the integration over velocity space. For more compact notation
the following definition

iωd � v2
t

ΩB2 B 
 ∇B � ∇ � (3.75)
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is introduced. Using the approximations of low-beta plasmas, and linearising the terms,
after some algebra, the gyrokinetic equation can be written as

∂
∂t

� f B � � B∇ � f Bv �
B

� vE � ∇ � f BJ0 � � 2 f BJ0 � e
T

iωdφ �� e
T

iωd � f BJ1φ
k � v �
2Ω � � iωd

v2
t

� f B � v2� � µB �u�$� e
m

∇ � W J0φB
∂ f0

∂v � Y �� e
m

J0φB
∂ f0

∂v � � µB
v2

t
� 1 � ∇ � lnB � µB

∂
∂v � � f B � ∇ � lnB �� ∂

∂v � � f BJ0v � � e
T

iωdφ � 0 � (3.76)

where f0 is the Maxwellian distribution function.

3.3.3 General gyrofluid equations
While deriving, from equation (3.76), the evolution equations for the four moments of
interest, the following moments will appear in the equations

n �>� d3v f � nu � �>� d3v f v � � nT � � p � �>� d3v f � v � � v � � 2 �
nT� � p � � m

2
� d3v f v2� � q � � m � d3v f � v � � v � � 3 �

q � � m
2

� d3v f v2� � v � � u � ��� r �uvw� � � d3v f � v � � u � � 4 �
r �Uv � � m

2
� d3v f v2� � v � � u � � 2 � r � v � � m

4
� d3v f v4� � (3.77)

Using these expressions, the integrals of the form / dv � dµv j� µk of the equation (3.76) lead
to the following four equations

∂n
∂t

� B∇ � nu �
B

� vφ � ∇ � n \ J0 � � � 2n \ J0 � e
T

iωdφ �� e
T

iωd � φn
\ J1α �

2 � � 1
T

iωd � p � � p � � nmu2� �(� 0 � (3.78)

∂
∂t

nu � � B∇ � 8 p �
m

� nu2� : � B � vφ � ∇ � n \ J0v � � � � 2n \ J0v � � e
T

iωdφ �� e
T

iωd � φn \ J1v � α �
2 � � 1

T
iωd � q � � q � � 3p � u � � p � u � � nmu3� � �� e

m
∇ � n \ J0 � φ � e

m
n \ J0 � v2� � 2v2

t � 1 � � φ∇ � lnB � p �
m

∇ � lnB �� n \ J0v � � e
T

iωdφ � 0 � (3.79)
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∂
∂t

� p � � nmu2� � � B∇ � q � � 3p � u � � nmu2�
B

� vφ � ∇ � n \ J0v2� � � �� 2n \ j0v2� � e
T

iωdφ � e
T

iωd W φn \ J1v2� α �
2 Y �� 1

T
iωd � r �Uvx� � r �Uv � � 4q � u � � 6p � u2� � p � u2� � nmu4� � �� 2
e
m

∇ � v \ J0v � � φ � 2e
m

n \ j0v � � v2� � 2vt � 1 � � φ∇ � lnB �� 2 � q � � p � u � � ∇ � lnB � 2n \ j0v2� � e
T

iωdφ � 0 � (3.80)

∂
∂t

p �
B

� B∇ � q � � p � u �
B2

� vφ � ∇n \ J0v2� �
2B

� 2
n \ J0v2� �

2B
e
T

iωdφ �� e
T

iωd � φn \ J1v2� α �
4B � � 1

T
iωd

r �Uv � � r � v � � q � u � � p � u2�
B

� 0 � (3.81)

where the notation n \ A � ��/ d3v f A � 2π / dv � dµ f BA has been used. These are the
general evolution equations for the first four gyrofluid moments. Each equation for the
time evolution of a moment contains terms that depend on higher moments. A closure
approximation is needed for all those moments for which no evolution equation exists.
In this case these are the heat fluxes q �M� q � and r �uvw�P� r �Uv � � r � v � . The closures are made
empirically, by comparing gyrofluid with gyrokinetic results in the linear regime [9], and
will not be discussed here.

3.3.4 Finite Larmor radius effects

The terms in the evolution equations that contain angle brackets are integrals over the gyro-
average operator, and are connected with the gyroaveraged potential. Since the finite size
of the Larmor radius is explicitly introduced through such terms they are known as Finite
Larmor Radius (FLR) terms. The terms have the form of a Bessel function (or its derivative)
multiplied with parallel and/or perpendicular velocity components to a certain power: \
J0vi� µ jv � . These can be approximated with expressions given in Section (3.3.1), leading,
after normalisation, to

∂n
∂t

� B∇ � u �
B

�D8 1 � η �
2

∇̂2� : iω [ Ψ � � 2 � 1
2

∇̂2� � iωdΨ � iωd � p � � p � �(� 0 � (3.82)

∂u �
∂t

� B∇ � p �
B

� ∇ � Ψ � � p � � 1
2

∇̂2� Ψ � ∇ � lnB � iωd � q � � q � � 4u � �2� 0 � (3.83)
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∂p �
∂t

� B∇ � q � � 3u �
B

� 2 � q � � u � � ∇ � lnB � 8 1 � η � � η �
2

∇̂2� : iω [ Ψ �� � 4 � 1
2

∇̂2� � iωdΨ � iωd � r �uvw� � r �Uv � �2� 0 � (3.84)

∂p �
∂t

� B2∇ � q � � u �
B2 � - 1 � 1

2
∇̂2� � η � � 1 � 1

2
∇̂2� � ˆ̂∇

2� � . iω [ Ψ �� � 3 � 3
2

∇̂2� � ˆ̂∇
2� � iωdΨ � iωd � r �uv � � r � v � �(� 0 � (3.85)

where
iω [ �,� cT

eBn0
∇n0 � b 
 ∇ (3.86)

and η � � Ln
� LT Z , η � � Ln

� LTy , with LTZ and LTy being the equilibrium scale lengths of
parallel and perpendicular temperature.

These are the evolution equations of the first four gyrofluid moments in which all in-
tegrals over velocity space have been worked out. Only the closure would still have to be
applied. For comparison of this model with our model, which is worked out in the follow-
ing chapters, only the Maxwellian parts of the higher moments r �Uvw� � r �uv � � r � v � are needed.
These are

r �Uvw� � 3p2�
n

� r �Uv � � p � p �
n

� r � v � � 2p2�
n

� (3.87)

The gyrofluid model of [8] presented here retains much of the physics of a confined
plasma. However, it lacks two major features necessary for the correct description of tur-
bulent transport especially in the edge of the tokamak, namely the full-nonlinearity and the
energy conservation law.

The model described here is partly non-linear. Although the E 
 B nonlinearity is kept,
all other nonlinearities are discarded following the gyrokinetic ordering, making the model
a delta-f model. The consequence of the linearisation is that the nonlinear evolution of
microinstabilities following the linear evolution is often undiagnosed.

Moreover, the gyrofluid model described here does not conserve any form of energy.
Although in linear theory the impact of the lack of energy conservation to the transport
computations is small, since a small deviation of energy conservation leads to a small
change in the growth rate, in the nonlinear theory the impact can be very large, since then
violation of the energy conservation can lead to a source of free energy and, hence, in large
errors in the description of the turbulent state.

In this model equations (3.82, 3.83, 3.84 and 3.85) are conservation laws but only in the
neglect of field energy and momentum. Thus equation (3.82) represents the conservation
of mass, equation (3.83) represents the conservation of parallel momentum, and equations
(3.84) and (3.85) represent the conservation of the internal energy at zero order in the
Larmor radius. However, the equations together with the Poisson equation of the model do
not conserve total energy, since the energy conservation breaks in the FLR terms because
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of the different treatment used for the moment equations and the Poisson equation. Thus
although the internal energy is conserved (at least to the zeroth order in the FLR terms) in
this model, the internal energy together with the field energy is not conserved. Although
the field energy is much smaller than the internal energy, because of the interaction between
flows and turbulence which have comparable energy, and because the transfer dynamics is
all of similar magnitude, we need to conserve field and thermal energy together.

From the above it is obvious that the model should be extended such that the main
drawbacks of it are removed. A new model should be derived, that in fully nonlinear
and conserves total energy. The new model presented in the next chapters, although more
evolving algebraically, contains both of these features.
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Chapter 4

Gyrofluid theory: three-moment model

The gyrofluid equations (3.82, 3.83, 3.84, 3.85) derived in the previous chapter are partly
linearised, and, although they maintain free energy conservation at zeroth order in the FLR,
they break it in the FLR terms due to the different techniques the model uses in forming
the FLR corrections to the moment equations and to the field potential equations which
provide self consistency.

In this chapter we present a new method for a consistent derivation of the gyrofluid mo-
ment equations and the (field) polarisation equation starting from a gyrofluid Lagrangian.
The equations are derived in a two part procedure. The first part is purely Hamiltonian,
in which the equations are obtained from the principle of least action. The gyrofluid La-
grangian is constructed using the gyrokinetic one as a guide as in [23]. Particle and entropy
conservation are used as constraints, and are introduced in the Lagrangian using the La-
grange multiplier method. The velocity is written in the “Clebsch” representation, which
is introduced in Section 2.3.1, and previously used in hydrodynamic and MHD models
[29, 30, 31]. The action involves the density, velocity and pressure, but not higher mo-
ments. Variation of the fluid variables and the Lagrange multipliers leads to the generalised
drift velocity and the gyrofluid moment equations. Variation of the potential leads to the
self consistent polarisation equation. The energy conservation law is then obtained in a
consistent way from the Jacobi integral of the gyrofluid Lagrangian (Noether’s theorem).
The proper conservation law follows directly from the Lagrangian, and it is exactly satisfied
by the equations of evolution.

In the second part, we account for the higher moments by incorporating the diamag-
netic cancellation in each equation [26, 28], that is, insertion of perpendicular diamagnetic
momentum and heat fluxes to cancel advection by the diamagnetic velocity (the part due
to the pressure gradient) in a way not impacting the energy conservation law. Diamagnetic
fluxes arise from the combination of first-order FLR corrections and general gradients in the
kinetic theory [27]. This diamagnetic cancellation is automatically satisfied in the conven-
tional gyrofluid derivation, which obtains the residual compressional effects arising from
the diamagnetic fluxes in a different way [5]. However, this relies on the higher moments
(eg. viscosity, heat flux) which cannot be treated in a Lagrangian unless they are kept as
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dynamical variables, so in our method the diamagnetic fluxes have to be treated separately.
The procedure however is systematic, as will be shown in chapter 4.4. The advantage of
the Lagrangian method is its rigorous treatment of the exchange between fluid energy and
ExB drift energy. The systematic construction of the diamagnetic fluxes — through pure
divergences arranged to cancel the diamagnetic advection effects term by term — ensures
that this exact energy conservation is not lost.

The model presented herein is electrostatic and keeps only the perpendicular temper-
ature (a two degree of freedom model). The organisation of the rest of the Chapter is as
follows: in Section 4.1 the construction of the gyrofluid Lagrangian from the gyrokinetic
one is presented, and the constraints that will be used are given. In Section 4.2 the Cleb-
sch forms for the magnetic field and velocity are presented and the gyrofluid moment and
polarisation equations before the diamagnetic cancellation are found. In Section 4.3 the
energy conservation law from the Noether’s theorem, which must subsequently survive
the diamagnetic cancellations is derived. In Section 4.4 the diamagnetic cancellations are
described and the final equations for momentum and temperature are presented. In Sec-
tion 4.5 the explicit form of the energy conservation law, determining the energy exchange
terms is presented.

4.1 Lagrangian and constraints
In this Section, we construct the gyrofluid Lagrangian starting with the gyrokinetic one.
Taking only the long wavelength form of gyroscreening, the gyrokinetic one-form equation
(3.31) can be written as

γ �i8 e
c

A � mv � b :G� dX � µ
mc
e

dθ ��W e \ φ � � µ � X � t � � µB � mv2�
2

� mv2
E

2 Y dt � (4.1)

where the coefficient of dt is the Hamiltonian and the terms left of it represent the sym-
plectic form. The velocity variables v � and µ refer to the particle motion itself, while

vE �O� c � B2 � B 
 ∇φ (4.2)

is the ExB velocity. The mv2
E
� 2 term represents the long wavelength form of gyroscreening,

and is derived from the second order potential term in the Hamiltonian, and will lead to the
field potential term in the polarisation equation [32]. It can be thought of as a form of
field energy, coming from the interaction of the particles with the electromagnetic field. In
combination with the electric potential energy � e \ φ � and the electric field Lagrangian
it gives the E 
 B energy in the energy conservation law (equation 4.36 for the gyrofluid
energy).

Although we take the long wavelength limit for the gyroscreening, the potential is still
gyroaveraged since this is necessary to obtain the finite pressure corrections to the polari-
sation equation, as will be clear later. The long wavelength limit for the gyroscreening is
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taken for reasons of computational tractability. It is actually a useful approximation be-
cause although the turbulence extends down to ion gyroradius scales, the gyroscreening
correction to the potential is significant only for large flow velocities, at long wavelength.
Its contribution to polarisation is then modelled as a simple elliptic operator which is easily
solved. Many computational models revert to this long wavelength form for polarisation; it
does not affect results unless the “hyperfine” scale dynamics between the ion and electron
gyroradii [33] are addressed. It is important to note that the different level of the treatment
of gyroaveraging and gyroscreening does not affect consistency, as these effects enter the
energetics separately, the gyroscreening through polarisation and by adding to the poten-
tial, and the gyroaveraging as an Hermitian operator in the consistency between ExB and
thermal energy (cf. Section 4.5).

To construct the gyrofluid Lagrangian, we follow the “recipe” applied in [23], based on
two steps:

(i) The terms that do not contribute to the internal energy of the fluid are constructed
by simply taking the lowest moment of the respective terms of the gyrokinetic Lagrangian.
For example, the term � e � c � A � v in the gyrokinetic Lagrangian becomes n � e � c � A � u in the
gyrofluid one, where v is the particle velocity and u is the fluid velocity.

(ii) The terms that contribute to the internal energy of the fluid are replaced with the
internal energy nT� .

Then we can set the gyrofluid Lagrangian density to be

L f � nmu � b � u � nm
u2�
2

� n
e
c

A � u � nT� � ne J�J φ J�J � x � t;T� � � nm
v2

E
2

� (4.3)

where now J�J ����� J�J denotes a gyrofluid gyroaveraging operator to be specified later, and x is
the gyrofluid space coordinate. It is important to keep in mind that J�J ����� J�J depends upon T �
while taking variations and, later, time derivatives. Although the drift-fluid Lagrangian of
[23] and our gyrofluid Lagrangian are similar, there exist three differences: the gyrofluid
Lagrangian contains FLR corrections to φ, we treat T� rather than an isotropic T , and we
arrange the terms such that the gyroscreening term appears only in the Hamiltonian (i.e.,
not in the “symplectic” part involving contraction with u).

Here one should note that the Lagrangian is constructed, not derived, and the method
that we followed here is not a mathematical derivation of the gyrofluid Lagrangian from
the gyrokinetic one. Thus the validity of the Lagrangian follows from the correspondence
of the resulting model equations to the other models in regimes where both are valid, as
well as the energy conservation law.

Secondly, that here the u � is not a priori equal to u � b. This is found by varying the
quantity u � , in the action integral arising from the gyrofluid Lagrangian (equation 4.3)
which yields

u � � u � b � (4.4)

analogously to the extra velocity variable used by Littlejohn [34]. After this, we can replace
the quantity u � with u � b in the Lagrangian. Thus we can re-set the gyrofluid Lagrangian
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density as

L f � n
e
c

A � u � nm
u2�
2

� nT� � ne J�J φ J�J � nm
v2

E
2

� (4.5)

Together with L f , we introduce constraints for the system, arising from the conservation
of particles and thermal entropy. To have a nonvanishing magnetic field in the absence of
an entropy gradient, we also introduce a Lin variable, q2, which however does not change
the resulting moment equations (in compressible hydrodynamics this is done to allow an
arbitrary fluid vorticity [29]). The constraints are

∂n
∂t

� ∇ �1� nu �2� 0 � (4.6)

∂T�
∂t

� ∇ �1� T� u �(� 0 � (4.7)

∂q2

∂t
� ∇ �1� q2u �q� 0 � (4.8)

The first constraint (equation (4.6)) sets material continuity as the equation governing the
density, and the second (equation (4.7)) is equivalent to constancy of perpendicular thermal
entropy along flow streamlines: ds � � dt � 0, where s � � p � � n2, with p � � nT� is the
perpendicular pressure [35]. Finally, equation (4.8) inserts the Lin variable.

The general Lagrangian of this model contains the Lagrangian of the gyrofluid, that of
the electric field, and the constraints. We introduce the Lagrange multipliers p0 � p1 � p2 for
the constraints, and insert the additional Lagrangian for the electric field. The final form
for the Lagrangian is then:

L � � d3x ] ne
c

A � u � nm
u2�
2

� nT� � ne J�J φ J�J � nm
v2

E
2

�� p0 � ∂n
∂t

� ∇ � nu � � p1 � ∂T�
∂t

� ∇ � T� u � � p2 � ∂q2

∂t
� ∇ � q2u � �� E2

8π . � (4.9)

where E ��� ∇φ is the electric field. Variation of this with respect to the dependent variables
and Lagrange multipliers will yield the system of equations describing the model.

4.2 Dynamical equations of the model
Herein we present the Clebsch form of the magnetic field and velocity, determined by
the coefficients of the velocity variation, then derive the gyrofluid moment equations by
eliminating the Lagrange multipliers, and then derive the polarisation equation by taking
the variation of the electrostatic potential. The method that we will use is the method of the
Lagrange multipliers, presented in Section 2.3.1 for a hydrodynamic model.
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4.2.1 Clebsch forms
We proceed by varying the Lagrangian with respect to the independent variables n � u � T � � p1 � p2 � p3 � q2
and φ. From the variation of the Lagrange multipliers we recover the constraint equations
(4.6,4.7,4.8). From the variation of u, remembering that u �7� u � b, we get the Clebsch form
for the generalised magnetic potential:

e
c

A � mu � b � ∇p0
� T�

n
∇p1

� q2

n
∇p2 � (4.10)

As shown in Section 2.3.1, in a hydrodynamic or MHD model one finds a form like this
for the velocity [29, 30, 31], but here the term in L f contracted with u is proportional to a
generalised form of A rather than u, so we find this form on the left hand side of equation
(4.10) instead. One can see the necessity of the Lin variable q2, and its Lagrange multiplier
p2, by taking the curl of equation (4.10):

∇ 
 8 e
c

A � mu � b : � ∇ � T�
n � 
 ∇p1

� ∇ 8 q2

n
: 
 ∇p2 � (4.11)

The role of the Lin variable q2 is to allow arbitrary forms in the magnetic field (∇ 
 A) and
the parallel velocity, in the absence of an entropy gradient (cf. reference [29]), noting that
∇s � � ∇ � T� � n � .

From the variation of the density, we get:

∂L f

∂n
� ∂p0

∂t
� u � ∇p0 � 0 � (4.12)

and from the variation of the temperature, we get

∂L f

∂T� � � ∂p1

∂t
� u � ∇p1 � � 0 � (4.13)

Finally, from the variation of the quantity q2 we get

∂
∂t

p2
� u � ∇p2 � 0 � (4.14)

4.2.2 The gyrofluid moment equations
We can eliminate the Lagrange multipliers from equations (4.10, 4.12, 4.13) by first taking
the time derivative of equation (4.10), then contracting equation (4.10) with u and tak-
ing its gradient, and then adding the two resulting equations. This re-introduces u to the
model, and determines the form of the drift velocity across the magnetic field. After some
calculations, we find

nm
∂u �
∂t

b � n∇ W m
u2�
2 Y � ∇p � �
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v2

E
2 � � T� ∇ � ne

∂ J�J φ J�J
∂T� � �� nu 
,- ∇ � T�

n � 
 ∇p1
� ∇ 8 q2

n
:;
 ∇p2 . � (4.15)

where once again p � � nT� is the perpendicular pressure. The term involving the derivative
with respect to T� arises from the dependence of J�J ����� J�J upon T� . We will see the role this
has in energy conservation later.

The manipulations that follow become simpler if we define generalised potentials, given
by

ψ � J�J φ J�J � m
e

v2
E
2

Ω � ∂ J�J φ J�J
∂T� � (4.16)

These can be regarded as the total potential and its first FLR correction, respectively.
The right hand side of equation (4.15) contains some of the Clebsch potentials from

equation (4.10) in the brackets. Substituting in for these, we arrive at the general equation
determining the gyrofluid velocity:

nm
∂u �
∂t

b � nm � u � ∇u � � b � ne
c

u 
 B [ � ∇p � � n∇ � eψ � � T� ∇ � neΩ �2� 0 � (4.17)

where
B [ � ∇ 
 A � mc

e
u � ∇ 
 b � (4.18)

To find the gyrofluid velocity itself we cross equation (4.17) with b to find

nu � nu � b [ � c
eB [ � b 
 ∇p � � nc

eB [ � b 
 ∇ � eψ � � cT�
eB [ � b 
 ∇ � neΩ �!� (4.19)

where b [ � B [ � B [ � , with B [ � � b � B [ . The gyrofluid velocity consists of the parallel velocity,
diamagnetic velocity, and generalised ExB drift. It is important to note that B [ is not a
divergence free field, in contrast to the gyrokinetic version where v � (appearing instead of
u � ) is a separate velocity variable commuting with the gradient. Here, u � is a field variable
with spatial dependence, whose appearance in B [ arises from the fact that B [ is a fluid
moment of the gyrokinetic version of the generalised magnetic field (cf. reference [9]). We
could have constructed B [ as ∇ 
6� e � c � A [ , with � e � c � A [ �O� e � c � A � mu � b, but at the cost
of less transparency in the role of advection by u � in the equations.

From equation (4.19) one can see that the diamagnetic velocity still appears — it is the
part due to ∇p � . Advection by this piece is what we will have to eventually cancel by
adding diamagnetic fluxes in Section 4.4.

Contracting equation (4.17) with b [ we get the equation for parallel momentum

nm � ∂
∂t

u � � u � ∇u � � � b [%� ∇p � � nb [%� ∇ � eψ � � T� b [A� ∇ � neΩ ��� (4.20)
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The moment equations for n and T� are already given in equations (4.6,4.7). These three
equations, with the drift velocity given in equation (4.19), constitute the gyrofluid moment
part of the model, prior to the diamagnetic cancellations, below.

Comparison to previous models, especially [5], requires expansion of the compact
forms, especially in u, in the three gyrofluid moment equations. We will delay this, how-
ever, until after the diamagnetic cancellations.

4.2.3 The polarisation equation
The equations presented so far describe independent evolution of each species of the plasma
particles, through the gyrofluid moment variables, each with its own charge state and par-
ticle mass. Moreover, a specific equation for the gyroaveraged potential has not appeared,
and an arbitrary form may be used for the gyroaveraging of φ denoted by J�J φ J�J . We now
specify the field equation by taking the functional derivative of the Lagrangian with respect
to φ. Here, we may still have an arbitrary form for J�J ����� J�J but now it must have a well defined
Hermitian conjugate, denoted by J�J ����� J�J †. We also have to add up the contributions of all the
species to the total system Lagrangian.

The part of the Lagrangian dependent upon φ is

L �,�d�d� � � d3x W ∑
i

- nm
v2

E
2

� ne J�J φ J�J . � E2

8π Y � (4.21)

where the subscript i is the species label, and the species dependent nature of e, m, n, andJ�J ����� J�J , dependent upon T� , is understood. Variation with respect to φ, noting that v2
E and E2

are quadratic in the gradients of φ, integrating in each case one of these gradients by parts,
and denoting the Hermitian conjugate of J�J ����� J�J as J�J ����� J�J †, yields

δL ���d�d��� � d3xδφ W ∑
i

- J�J ne J�J † � ∇ � nmc2

B2 ∇ � φ . � ∇2φ
4π Y � (4.22)

The demand that this be stationary requires the quantity in parentheses to vanish, so that

∑
i

- J�J ne J�J † � ∇ � nmc2

B2 ∇ � φ . � ∇2φ
4π

� 0 � (4.23)

This is the polarisation equation. The last term is the divergence of the electric field, and
it comes from the electric field energy in the Lagrangian. The terms inside the square
brackets give the total space charge density of species i. The two contributions to this
are the gyrocenter density, the first term, reflecting the part of the gyrokinetic distribution
function which is independent of the gyrophase, and the polarisation density, the second
term, reflecting the gyrophase dependent part [9, 3].

If the electric field divergence is neglected, we recover the situation of quasineutrality:
effects due to the actual space charge density are neglected even though the electric field
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divergence is finite. This is a matter of assuming the space charge is overcome by polarisa-
tion, or in terms of parameters, that the Alfvén velocity is subrelativistic. One can see here
why the gyroscreening term in the Hamiltonian is important, since it is what gives rise to the
polarisation density in equation (4.23). Neglecting this would have made quasineutrality
impossible to recover.

It is possible to use a Taylor expansion form for the gyroaveraging, which will lead
to computationally tractable forms. The formal gyroaverage given a particular directed
Larmor radius ρ is [10]z

dθφ � z
dθφ � R � ρ �2� z

dθexp � ρ � ∇ � φ � R ��� (4.24)

with the integral taken over the gyrophase angle and the Taylor expansion compactly writ-
ten as the exponential operator. The fluid moment of this over a Maxwellian is constructed,
term by term, using the fact that for the Maxwellian all even moments can be expressed in
terms of the temperature, yieldingJ�J φ J�J � exp � ρ2

i
2

∇2� � φ � R ��� (4.25)

where ∇2� is the perpendicular Laplacian given by ∇ � ∇ � , and ρi is the thermal gyroradius
for species i, given by ρ2

i � m � c � eB � 2T� . It is important to note that this operator is not
self-adjoint, so that in the integrations by parts used to derive the polarisation equation the
entire chain in the order of operations is reversed. The polarisation equation then becomes

∑
i

- exp � ∇2� ρ2
i

2 � � ne � � ∇ � nmc2

B2 ∇ � φ . � ∇2φ
4π

� 0 � (4.26)

in which each power of the combination of ∇2� and ρ2
i acts upon ne.

Using these forms we may also directly compute the FLR potential,

Ω � ∂ J�J φ J�J
∂T� � ρ2

i
2T� ∇2� J�J φ J�J � (4.27)

It is also possible to use a Padé approximant for the gyroaveraging operator, as in the
standard local models [3, 5]. Therein, the gyroaveraging is done at the gyrokinetic level
using the Bessel function J0 in Fourier space, taking as argument the product of the per-
pendicular wavenumber k � and the particle velocity v � . The closure therein uses the fact
that the average of J2

0 over a Maxwellian is the function Γ0, taking as argument the product
k2� ρ2

i . So the model uses the approximation J�J φ J�J � Ψ, which is defined as

Ψ K Γ1 l 2
0 � k2� ρ2

i � φ � ∑
k

r Γ0 � k2� ρ2
i � t 1 l 2 φk exp � ik � R ��� (4.28)

wherein the gyroradius ρi is a constant parameter. In a fully nonlocal model it is not
possible to use Fourier forms explicitly. Nevertheless, the Padé approximants given in
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[3, 5] can be used generally if k2� is replaced by � ∇2� , as is necessary even in a local model
if the boundary conditions preclude Fourier methods [6]. In this case we haveJ�J φ J�J � � 1 � ρ2

i
2

∇2� �  1

φ � (4.29)

and the polarisation equation becomes

∑
i ] � 1 � ∇2� ρ2

i
2 �  1 � ne � � ∇ � nmc2

B2 ∇ � φ ^ � ∇2φ
4π

� 0 � (4.30)

where the operator in the first term is the Hermitian conjugate of the Padé approximant to
the gyroaveraging operator acting upon the potential.

In models which do not involve scales below the gyroradius of any species it is possible
to use these expansions keeping only the first term in each case. Whichever version is used,
the principal consideration is consistency between J�J φ J�J and the polarisation equation, and
the dependence of J�J ����� J�J upon T� .

The corrections to the density variable due to the finite gyroradius are what give rise
to the diamagnetic vorticity. Assuming a single component, singly charged, quasineutral
plasma in which the electron gyroradius is negligible, both this FLR effect and the polar-
isation itself come solely from the ions. Taking the lowest order FLR correction to the
gyroaveraging (equations (4.25),(4.26)), we have

nie
� ∇2� Mic2niTi

�
2eB2

� ∇ � niMic2

B2 ∇ � φ � nee � (4.31)

The second term on the left hand side, the FLR correction to nie, is the same size as the
polarisation term if nie∇2� φ is comparable to ∇2� pi

� . The term due to φ reflects the ExB
vorticity, and the term due to pi

� reflects the diamagnetic vorticity. Since the electron par-
allel dynamics causes nee∇φ to be comparable to disturbances in ∇pe generally, it follows
that if the electron and ion temperatures are comparable, then the ExB and diamagnetic
vorticities will be comparable. This is also known from fluid drift models and it is im-
portant in breaking the conservation of mean squared vorticity in small scale turbulence
[25]. Even at arbitrarily large scale, therefore, we require retention of this lowest order
FLR correction to the ions if the perpendicular electric field is not large compared to the
ion pressure gradient; in other words, any time MHD ordering is not applicable. This is the
usual situation of gradient driven turbulence [17, 21].

4.3 The energy integral
The energy conservation law can be obtained from the Lagrangian using the Noether’s
theorem [24], or Jacobi integral, as has been done for the gyrokinetic-Maxwell system
[36, 37], and been presented here in Section 2.2 In general, if ηα � x � t � are the field variables,
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and Lα is the part of the Lagrangian density that contains ηα and η̇α K ∂ηα
� ∂t, the energy

integral will be given by equation (2.34)

∂E
∂t

� 0 with E � ∑
a

� d3x η̇a
∂La

∂η̇a
� L � (4.32)

In the present case, the field variables ηa are { n � T� � q2 | for each species (the variables
appearing explicitly with the time derivative). This form is also found using the Legendre
transformation

E �>� d3x � ṅ
∂L
∂ṅ

� Ṫ� ∂L
∂Ṫ� � q̇2

∂L
∂q̇2

� L � � (4.33)

where L is the Lagrangian density given by L �D/ d3xL .
Each of the time derivatives appears in a quadratic form with a Lagrange multiplier, so

that the latter drop out of the energy (Hamiltonian density). The energy is given by

E � � d3x W ∑
i ] nm

u2�
2

� nT� � ne J�J φ J�J � nm
v2

E
2 ^ � E2

8π Y � (4.34)

noting the sum over species i. The terms in the square brackets are the parallel kinetic
energy, thermal energy and the drift energy due to the generalised potential including the
gyroscreening, respectively, and the last term is the proper electric field energy. The drift
energy appears as a combination with a term that looks like a charge density, which is
ultimately why the ExB drift energy and electric field energy appear with minus signs. The
positive sign can be restored using the polarisation equation: multiplying equation (4.23)
by φ and integrating over d3x, we find� d3x W ∑

i
- nm

v2
E
2 . � E2

8π Y � � d3x W ∑
i

- ne J�J φ J�J � nm
v2

E
2 . � E2

8π Y � (4.35)

Substituting into equation (4.34) for ne J�J φ J�J , we then find the total energy in more familiar
terms:

E ��� d3x W ∑
i ] nm

u2�
2

� nT� � nm
v2

E
2 ^ � E2

8π Y � (4.36)

Now we have just the three contributions: parallel kinetic energy, thermal energy, and
potential energy, the latter split between the ExB drift energy of the plasma and the proper
electric field energy. In the case of quasineutrality (cf. discussion after equation (4.23)), the
neglect of the electric field divergence in equation (4.23) corresponds consistently to the
neglect of E2 � 8π in equation (4.36)

A similar treatment is used to recast the time dependence of the terms in E involving φ
in terms of the time derivatives of the density and temperature. We present this below, after
treating the diamagnetic cancellation.
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4.4 Diamagnetic cancellation
The equations of evolution of the parallel velocity and temperature as derived here con-
tain terms reflecting advection by the diamagnetic velocity, u [ �}� c � neB [ � � b 
 ∇p � , as
noted after equation (4.19). More specifically, the momentum equation contains the term
u [ � ∇u � , and the temperature equation contains the combination u [ � ∇T� � T� ∇ � u [ arising
from advection by and divergence of u [ . Since the diamagnetic velocity does not corre-
spond to a displacement of the gyrocenters, and thus to an actual transport of the conserved
quantities, these diamagnetic advection terms in the gyrofluid moment equations should
be cancelled by introducing appropriate flux divergences corresponding to higher moments
not appearing in the original Lagrangian. This procedure is also necessary to obtain the
correct correspondence between fluid and gyrofluid models as explained elsewhere [38].

For fluid models this cancellation appears automatically through the higher moments.
There too exists the diamagnetic velocity arising from the pressure gradient. In the tem-
perature equation a diamagnetic heat flux arises from the temperature gradient, and in the
momentum equation gyroviscosity arises from the velocity gradient. The diamagnetic ad-
vection terms arising from the diamagnetic velocity are then cancelled from the diamag-
netic fluxes. For instance, u [ � ∇T� is cancelled in the fluid temperature equation by the
diamagnetic heat flux [26], and u [ � ∇u � is cancelled in the fluid momentum equation by
the non-diagonal elements of the pressure tensor, equivalent to the diamagnetic momentum
flux [28].

In a gyrofluid model this cancellation must be done manually, since the higher moments
are not included in the Lagrangian. During this it is necessary to avoid changes to the
energy integral arising from the application of Noether’s theorem to the model. Thus the
final equations of evolution do not arise in all detail directly from the Lagrangian, but they
still conserve energy exactly.

In the velocity equation, the term added is

∇ � � � � ∇ �@W mc
eB [ � p � b 
 ∇u � Y � (4.37)

and it resembles the divergence of the perp-parallel component of the pressure tensor that
does the diamagnetic cancellation in the fluid models. Since this term is a total divergence,
it conserves parallel momentum exactly. Further, since the contraction of the stress tensor
itself (the term in brackets) with ∇u � vanishes, it also conserves energy exactly. This term
is the same as the Braginskii gyroviscosity for the parallel flow [27].

To zeroth order in φ, the term that is added to the temperature equation is

∇ � q ~ 0 �� � ∇ �AW 2
c

eB [ � p � b 
 ∇T� Y � (4.38)

which resembles the divergence of the perpendicular heat flux that works together with the
diamagnetic velocity divergence to do the cancellation in the fluid models. This term is the
same as the Braginskii diamagnetic heat flux for this model [27].
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This zeroth order heat flux by itself breaks energy conservation (potential plus thermal),
so this must be restored using appropriate FLR corrections. The heat flux affects the part
of the energy evolution resulting from the time derivative of the temperature, according to

∂E
∂t

���d�d� � � d3x∑
i

- n∂T�
∂t

� neΩ
∂T�
∂t . � (4.39)

where the second term is the FLR correction to the evolution of the potential energy (cf.
next Section), arising from the dependence of J�J φ J�J upon T� (this is also the origin of Ω).
The appropriate corrections to cancel this piece are added to the heat flux. In addition, we
must specify a further FLR correction, given by

w � cT�
eB [ � b 
 ∇ � eΩ �!� (4.40)

to the velocity advecting the temperature in order to maintain the energy conservation law
— this will correspond the extra FLR nonlinearity present in the perpendicular temperature
equation of [3, 5], as noted below. The origin of this quantity is the residual arising from
q ~ 0 �� � ∇ � eΩ � which would be left uncancelled in the energy theorem if we did not further
correct the temperature equation. The manipulations make use of the fact that w � ∇ � eΩ �
and q ~ 0 �� � ∇ � eΩ � � 2nw � ∇T� both vanish. It is important to note that these forms occur
with ∇ � eΩ � and not ∇ � neΩ � , in contrast to the term appearing in the gyrofluid velocity,
equation (4.19).

The final correction to the temperature equation is

2T� ∇ �1� nw � � ∇ �1� q � �(�� ∇ �AW 2
c

eB [ � p � b 
 ∇T� Y � 2
c

B [ � p � b 
 ∇
∂ J�J φ J�J
∂T� � ∇T� �

� ∇ �@W 2
c

B [ � ∂ J�J φ J�J
∂T� p � b 
 ∇T� Y � ∇ �@W 2T 2� n

c
B [ � b 
 ∇

∂ J�J φ J�J
∂T� Y � (4.41)

where the FLR-corrected heat flux is given by

q � �N� 1 � eΩ � q ~ 0 �� � 2p � � 1 � eΩ � c
eB [ � b 
 ∇T� � (4.42)

Thus we cancel the diamagnetic advection by adding a heat flux term, and order by order
we assure energy conservation by adding further FLR corrections to both the heat flux and
the advecting velocity. The procedure remains systematic.

Including these diamagnetic flux terms in the gyrofluid moment equations, we find the
density evolution unchanged

∂n
∂t

� ∇ � nu � 0 � (4.43)
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and the parallel velocity equation becomes,

nm � ∂
∂t

u � � u � ∇u � � � ∇ � � � ��� b [%�!8 ∇p � � ne∇ψ � T� ∇neΩ :�� (4.44)

and the temperature equation becomes

n � ∂T�
∂t

� u � ∇T� � � p � ∇ � u � 2T� ∇ � nw � ∇ � q � � 0 � (4.45)

These three equations, plus specification of u, � � , w, and q � in equations (4.19, 4.37,
4.40, 4.42), respectively, plus the polarisation equation, form the final equations of the
model. The corresponding energy conservation law is given in equations (4.32, 4.36).

For comparison to previous models, we expand these forms by substituting equations
(4.19, 4.37, 4.41), leaving forms in which only the dependent variables appear. This gives
the expanded density equation:

∂n
∂t

� c
B [ � b 
 ∇ψ � ∇n � ∇ ��� nu � b [P� � nK � ψ �7� 1

e
K � p � � �� c

B [ � b 
 ∇ � nΩ �)� ∇T� � T� K � nΩ �2� 0 � (4.46)

the expanded parallel velocity equation

nm
∂u �
∂t

� nm
c

B [ � b 
 ∇ψ � ∇u � � nmu � b [2� ∇u � � m
e

p � K � u � � �� b [ � ∇p � � neb [ � ∇ψ �� T� m
c

B [ � b 
 ∇ � nΩ �)� ∇u � � T� b [ � ∇ � neΩ �2� 0 � (4.47)

and the expanded perpendicular temperature equation

n
∂T�
∂t

� n
c

B [ � b 
 ∇ψ � ∇T� � n∇ � � T� u � b [P���� nT� K � ψ �)� T�
e

K � p � �7� 2
p �
e

K � T� � �� T 2� c
B [ � b 
 ∇Ω � ∇n � 2p � c

B [ � b 
 ∇Ω � ∇T� �� T 2� K � nΩ �)� 2nT 2� K � Ω �)� 2p � ΩK � T� �(� 0 � (4.48)

while the conserved energy is still that appearing in equations (4.34, 4.36). In these forms,
the operator K denotes the compressibility of perpendicular drift fluxes in a toroidal mag-
netic field, defined as

K � f � K ∇ �AW c
BB2� B 
 ∇ f Y � (4.49)



68 CHAPTER 4. GYROFLUID THEORY: THREE-MOMENT MODEL

for any scalar f . The equations of evolution of the gyrofluid moment variables resemble to
a large extent equations (3.82, 3.83, 3.84, 3.85) by Beer and Hammett [5]. The differences
that arise can be separated in three groups: (1) differences because of the use of only one
temperature in this model (2) differences because of lack of higher order moments in the
Lagrangian and (3) differences because of the energy conservation.

In the first group lie differences in the terms that include pressure or temperature, and
arise because of the different models used. More specifically, in this paper we treat only
the perpendicular temperature, for two degrees of freedom, rather than the separate set of
parallel and perpendicular temperatures. Especially in the density equation, those differ-
ences can disappear if one replaces p � with � p � � p � � � 2 in the curvature terms (including
the FLR curvature term).

In the second group lie differences in terms that come from the closures of higher order
moments (e.g., heat flux). In this model we do not include higher order moments than
the pressure in the Lagrangian, and the closures are done automatically, by choosing the
gyro-averaged potential to be operated by the Bessel function (equation (4.23)). Thus for
instance, Landau damping terms do not appear in our model.

In the third, and most important group, lie differences because of the energy conserva-
tion law. Especially in the FLR terms, previous models do not follow energy conservation.
Beer and Hammett use three potentials, all arising from φ: the gyro-reduced potential, Ψ,
defined in equation (4.28), an FLR potential arising from the first derivative with respect
to temperature, � 1 � 2 �5�∇2� Ψ, and a second FLR potential arising from a further temperature

derivative, ��∇2� Ψ. The first two of these correspond to our J�J φ J�J according to equation (4.28)
and �Ω � nΩ (note the v2

E component in our ψ doesn’t appear due to the drift ordering used

in the local models), and we could also derive a second FLR potential ��Ω by taking a further
temperature derivative of �Ω. As shown elsewhere [20] these FLR potentials correspond en-
ergetically with the second and higher moments in the polarisation energetics, e.g., �Ω with

T� and ��Ω with the non-Maxwellian fourth moment r � (where the Maxwellian part is in our
case the combination 2p � T� appearing in the diamagnetic cancellations). If r � is not kept

as a dynamical variable in its own right, there is no place for ��Ω in the energetics. Reference

[20] repairs the situation by substituting ��Ω with �Ω with the appropriate coefficients. In our

model terms with ��Ω do not appear, and one can see the correlation between T� and �Ω in
the energetics. Thus in the density and temperature equations the curvature terms K � p � �
and T� K � nΩ � appear in combination. Moreover, one can see that our polarisation equation
(equation (4.23)) reduces to the local one [5, 6], i.e., in agreement with the local model in
the local limit.
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4.5 Explicit form of the energy conservation law
Here we present the energy conservation law in terms of the evolution of each of the con-
tributions to the total energy and the transfer mechanisms which exist between them. The
total energy is given by

E ��� d3x W ∑
i ] nm

u2�
2

� nT� � nm
v2

E
2 ^ � E2

8π Y � (4.50)

representing the parallel kinetic energy, thermal energy, ExB drift energy, and electric en-
ergy, the latter two collectively making up the potential energy. Here and below, quantities
appearing in square brackets are summed over species.

The time derivative of the potential energy involves contributions due to ∂φ � ∂t, which
are eliminated using the polarisation equation. We use equation (4.35) to recast these as

∂
∂t

� d3x W ∑
i

- nm
v2

E
2 . � E2

8π Y� � d3x∑
i

- eψ
∂n
∂t

� neΩ
∂T�
∂t .� � d3x W ∑

i
- J�J ne J�J † � ∇ � nmc2

B2 ∇ � φ . � ∇2φ
4π Y ∂φ

∂t
� (4.51)

wherein it is evident that the last combination in parentheses vanishes, due to equation
(4.23). The Hermitian property of the gyroaveraging operator has been used to have it act
upon ne in this line. Together with the time derivatives of the thermal and parallel kinetic
energies, we have

∂
∂t

� d3x W ∑
i

- nm
v2

E
2 . � E2

8π Y � � d3x∑
i

- eψ
∂n
∂t

� neΩ
∂T�
∂t . (4.52)

∂
∂t

� d3x∑
i

- nT� . � � d3x∑
i

- T� ∂n
∂t

� n
∂T�
∂t . (4.53)

∂
∂t

� d3x∑
i ] nm

u2�
2 ^ � � d3x∑

i ] mu2�
2

∂n
∂t

� nmu � ∂u �
∂t ^ � (4.54)

for the evolution of the pieces of the total energy, cast in terms of the time derivatives
solely of the gyrofluid moment variables multiplied by various combinations involving all
the dependent variables.

Applying equations (4.46–4.48) to evaluate the time derivatives, we obtain equations
that contain either total divergences — which conserve energy within each equation — or
terms that exchange energy between the kinetic, thermal and potential contributions to the
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energy. Use is made of the Poynting cancellation [22], whose simplest form in this context
is

∇ �1� p � uE
� eψu [1�2��� K � p � eψ �a� (4.55)

where uE is the main ExB drift given by uE �f� c � eB [ � � b 
 ∇ � eψ � . In the following, we also
define the FLR correction to the ExB velocity as wE �,� cT� � neB [ � � b 
 ∇ � neΩ � , noting that
due to the factors of n this differs slightly from w. It is useful to do the manipulations
involving only n, u � , T� or p � , and the pieces of u first, and then add the corrections due
to � � , q � , and w.

The contribution of each species to the ExB energy equation is given by

eψ
∂n
∂t

� neΩ
∂T�
∂t

� ∇ �%-F� neψ � p � eΩ � u � p � uE
� wE � � eΩ � q � � 2pw � .� u � b [%�5� ne∇ψ � T� ∇ � neΩ �u� � p∇ � uE

� p∇ � wE � 2nw � ∇T� � (4.56)

The contribution of each species to the parallel kinetic energy equation is given by

∂
∂t

W nM
u2�
2 Y � ∇ � - nM

u �
2

u � u � [ . ��� u � b [ �5� ne∇ψ � T� ∇ � neΩ � � ∇p �5� (4.57)

The contribution of each species to the thermal energy equation is given by

∂p �
∂t

� ∇ � - p � uE
� wE � � 2p � u [ � u � b [ � w � � q � .� u � b [ � ∇p � p∇ � uE � p∇ � wE

� 2nw � ∇T� � (4.58)

Terms appearing under the total divergences give the main transport effects, of which the
largest contributors are those due to uE [22]. Pairs of identical terms appearing with op-
posite sign in two equations give the transfer processes. The Poynting cancellation is rep-
resented by the ExB transport entering with the single factor of p and direct transfer from
ExB to thermal energy occurring through compression of uE and wE . The transport effects
conserve energy within each corresponding equation, with the nonlinear parts (dominantly,
the ExB fluxes) exchanging energy within a given dependent variable but between various
scales. The transfer processes are very useful in computations to decide the physical mech-
anism behind particular aspects of the dynamics [15, 21]. They are conservative, which is
shown trivially by summing equations (4.56–4.58), upon which the transfer terms cancel
mutually.

The transfer processes are all clearly identifiable. The ones directly between the ExB
and thermal energy are the main and FLR ExB compression, and the FLR heat flux pieces
arising from w � ∇T� , or equivalently q ~ 0 �� � ∇ � eΩ � . The parallel dynamics also transfers en-
ergy between the ExB and thermal components, but mediated by the parallel kinetic energy.
These include the Alfvén transfer (from ∇ψ), its FLR correction (from ∇neΩ), and the par-
allel compressibility (from ∇p). Note that upon summation the ion and electron charges
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subtract, so that ∑i neψ is the generalised vorticity and ∑i neu � is the parallel current, J � .
The parallel compressibility splits into two pieces given by sound waves (u � ∇ � p, with p
the total pressure) and the adiabatic transfer between the pressure and the Alfvén dynamics
(J � ∇ � pe, with pe the electron pressure).

The model derived in this chapter describes correctly the dynamics in the perpendicular
plane. ExB velocity, diamagnetic compression and FLR terms are all retained. It does,
however, not distinguish between the parallel and perpendicular temperature, and contains
no dissipation due to collisions and Landau damping. The lack of dissipation makes that
this model does not describe drift waves. Reactive instabilities like the ion temperature
gradient (ITG) and electron temperature gradient (ETG) modes are retained. Although
the principle dynamics of these modes occurs in the perpendicular plane non negligible
corrections due to the different parallel temperature and landau damping occur. Our model
can therefore be used for basic studies on the dynamics but is not expected to describe the
instabilities with high accuracy. In the next chapter we will lift one of the restrictions of
the model, and include the parallel temperature as a dynamical variable.
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Chapter 5

Gyrofluid theory: four-moment model

In Chapter 4, we derived a fully nonlinear set of electrostatic gyrofluid equations that satisfy
an exact energy theorem. This set contains the evolution equations for density, momentum,
and perpendicular temperature, as well as the polarisation equation for the electrostatic po-
tential. The energy conservation law, which is guaranteed by the Noether method through
the Lagrangian formulation of gyrofluid dynamics, is a unique and important feature of this
model, which is thought to be especially important for the numerical simulation of turbu-
lence. Although the single-temperature gyrofluid model is consistent, it does not contain
the parallel-temperature effects necessary for a quantitatively accurate description of tur-
bulence in magnetised plasmas. In the present Chapter, we extend our previous model to
include these effects. Although the model is still electrostatic, it should give an accurate
description of low β turbulent plasmas.

The extension to anisotropic temperatures � T ���� T� � turns out to be nontrivial. In the
single-temperature case, the constraints used in the variation of the Lagrangian density
can be chosen to be the particle and entropy conservation laws. In the two-temperature
case, one needs an additional constraint and one can no longer rely on (only) conservation
laws. The approach used here is to derive the constraints for the parallel and perpendic-
ular pressure through the full Chew-Goldberger-Low (CGL) equations [8, 9]. Alternative
constraints (despite being physically motivated) are later shown to fail in deriving valid
gyrofluid moment equations. A further difference with the previous Chapter is the use of
the virtual fluid displacement ξ in deriving Eulerian variations for the gyrofluid moments,
instead of the Lagrangian-multiplier method (which turns out to be algebraically more in-
volved).

Gyrofluid equations that include anisotropic parallel and perpendicular pressures have
been derived previously through the derivation of moments of the gyrokinetic equation [1]-
[6]. Although these equations (see Section 3.3.4) do not conserve energy, they agree to a
large extent with our present gyrofluid model.

The remainder of this Chapter is organised as follows. In Section 5.1, the gyrofluid
Lagrangian is presented and the constraints on the density and anisotropic pressures used
in the variational principle are given. In Section 5.2, the variation of the gyrofluid action
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functional is presented, and the gyrofluid equations of motion before the insertion of dia-
magnetic cancellations, as well as the polarisation equation are derived. In Section 5.3, the
energy conservation law by applying the Noether method is derived. In Section 5.4, we
describe how the diamagnetic cancellations are inserted into our gyrofluid equations and
present the final equations for density, momentum, parallel and perpendicular pressures.
Also the explicit form of the energy conservation law with each energy-exchange term
clearly identified is presented. Lastly, in Section 5.5, the validity of other possible con-
straints is discussed and each resulting set of equations with previous models is compared.

5.1 Gyrofluid Lagrangian density and Lagrangian
constraints

5.1.1 Gyrofluid Lagrangian density
The four-moment gyrofluid Lagrangian for the anisotropic-temperature model is constructed
in the same way as that of the one-temperature model in Section 4.1, based on the work of
Pfirsch and Correa-Restrepo [10]. Here, the gyrofluid Lagrangian density is defined as

L f � 1
2

nm 8 u2� � J uE
J 2 : � 8 p � � p �

2
: � en 8 A � u

c
�9� φ � : � (5.1)

where uE ��� c � B � b 
 ∇φ is the E 
 B velocity, u � K u � b denotes the gyrofluid velocity
parallel to the magnetic field B K ∇ 
 A � Bb, and the nonlocal operator �_������� denotes a
gyrofluid gyro-averaging operator. For better understanding of the calculations, we define
the gyrofluid gyroaveraging operator as follows. First, we note that, in our four-moment
model, the electrostatic gyro-potential � φ � depends on the perpendicular temperature T � K
p � � n and is assumed not to depend on higher-order gyrofluid moments. Thus, a general
expression for � φ � can be given as� φ � K P � ρ2

2
∇2� � φ � ∑

k

P ~ k � � 0 �
2k k!

ρ2k∇2k� φ � (5.2)

where ρ2 ��� mc2 � e2B2 � T� is the squared Larmor radius and P � x � represents a smooth
function such that P 0 � 0 � K 1, i.e., we have � φ �q� φ in the zero-Larmor-radius (ZLR) limit.
Two choices for P � x � will be discussed below; here, we note that the operator ∇2� in the
Taylor expansion (5.2) acts on φ alone. The Hermitian conjugate operator �_������� † is defined
in terms of equation (5.2) as� χ � † K ∑

k

P ~ k � � 0 �
2k k!

∇2k� 8 χρ2k :;� P � ∇2� ρ2

2 � χ � (5.3)

where χ is an arbitrary function and we made use of the identity

χ � φ ��� φ � χ � † � ∇ � �(r � χ1
� ∇2� χ2

� �d���x� ∇ � φ � φ ∇ � � χ1
� ∇2� χ2

� �d�d�w�� � χ2
� �d�d��� ∇ � ∇2� φ � ∇2� φ ∇ � � χ2

� �d�d�x� � �d����t@� (5.4)
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where

χk K ∂ � χ � φ ���
∂ � ∇2k� φ � � P ~ k � � 0 �

2k k!
χρ2k �

Note that the operator ∇2� in equation (5.3) now acts on χ and powers of the Larmor radius
ρ.

The E 
 B kinetic term m J uE
J 2 � 2 in equation (5.1) is again the long-wavelength form

of gyro-screening (i.e., the ZLR part of the second-order potential term in the gyrokinetic
Hamiltonian [11]), which plays a major role in the derivation of the polarisation equation.
Although the E 
 B kinetic term is only an approximation of the full second-order gy-
rokinetic Hamiltonian, it is useful since the gyro-screening correction to the potential is
important only for large flow velocities and long wavelengths. Thus, the addition of full
finite-Larmor-radius (FLR) effects for this quadratic term will not qualitatively alter any
computational results. The fact that the gyro-screening term appears only in the Hamilto-
nian leads to the appearance of polarisation effects only in Poisson’s equation for the scalar
potential φ, which is desirable for computational reasons.

Although the drift-fluid Lagrangian of [10] and our gyrofluid Lagrangian are similar,
there exist three differences: (a) the gyrofluid Lagrangian (5.1) contains FLR corrections
to the scalar potential φ, (b) the anisotropic temperatures T� and T � are treated separately
rather than as a single isotropic temperature T , and (c) we have arranged the terms such
that the gyro-screening term appears only in the Hamiltonian (i.e., not in the symplectic
part involving contraction with u; see [7] for further details). The total Lagrangian density
for our four-moment gyrofluid model is the sum of the gyrofluid Lagrangian density (5.1)
and the Lagrangian density of the electric field, expressed as

L � 1
2

nm 8 u2� � J uE
J 2 : � n � T� � T �

2 � � en 8 A � u
c

��� φ � : � J E J 2
8π

� (5.5)

where the variational fields are the four gyrofluid moments � n � u � p � � p � � for each fluid
species (here, summation over particle species is assumed wherever appropriate) and the
electrostatic potential φ.

5.1.2 Lagrangian constraints
In order to proceed with our variational principle, we introduce constraints on the gyrofluid
moments � n � p � � p � � , based on the continuity (mass conservation) equation

dn
dt

� n ∇ � u � 0 � (5.6)

where d � dt � ∂ � ∂t � u � ∇ denotes the total time derivative, and the modified CGL equa-
tions for the perpendicular and parallel pressures [8, 9]:

dp �
dt

� p � ∇ � u � 2 p � bb : ∇u � � 2∇ � q � � � 4q � � �P� b � ∇b �M� (5.7)

dp �
dt

� p � ∇ � u � p � � I � bb � : ∇u � � ∇ � q �A� � 2q � � �P� b � ∇b �M� (5.8)
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where q � � and q �A� are the parallel and perpendicular heat fluxes, respectively. The pres-
sure constraints, without the terms including the heat fluxes, can also be obtained by general
conservation laws. If the heat fluxes are removed from the pressure equations (5.7)-(5.8),
all gyrofluid quantities ηa �X� n � p � � p � � are directly related to the velocity u. Using these
equations as constraints for the Lagrangian density (5.5), we can obtain the evolution equa-
tion for the gyrofluid velocity u.

We obtain expressions for the Lagrangian variations ∆ηa in terms of the virtual fluid
displacement ξ by taking the limits

lim
∆t � 0 � dηa

dt
∆t � K ∆ηa and lim

∆t � 0
� u ∆t � K ξ �

so that the variations of the pressures from equations (5.7) and (5.8) become

∆p �E� � p � ∇ � ξ � 2 p � bb : ∇ξ

∆p � � � p � ∇ � ξ � p � � I � bb � : ∇ξ ���� � (5.9)

The heat-flux terms in equations (5.7)-(5.8), which were not used in the Lagrangian varia-
tions (5.11) for p � and p � , are added to the pressure equations later on since they play an
important role in the diamagnetic cancellations; these cancellations refer to the fact that the
diamagnetic velocity does not lead to advection. The present Lagrangian formulation also
requires one additional Lagrangian variation:

∆u K dξ � dt � ∂ξ � ∂t � u � ∇ξ (5.10)

for the fluid velocity u. For a correct treatment of FLR effects associated with the gyrofluid
electrostatic potential � φ � , instead of the pressure variations we will use the temperature
variations, such that the set of the Lagrangian variations used will be:

∆n � � n ∇ � ξ
∆u � ∂ξ � ∂t � u � ∇ξ

∆T � � � 2T � bb : ∇ξ

∆T� � � T� � I � bb � : ∇ξ

��������������������
� (5.11)

where ∆n is obtained from equation (5.6). The variations used are the temperature ones
rather than the pressure ones, since the FLR corrections of the gyrofluid electrostatic po-
tential J�J φ J�J depend on T� rather than p � . If the pressure constraints are used, after the
Lagrangian variation terms in the form ∂ ��� φ ���

∂p y are introduced, which are more difficult to
handle. The variations in equation (5.11) will be used to derive the equation of evolution
for the system as well as the polarisation equation and the energy conservation law. For
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better comparison though with previous models, the pressure constraints will be used to
derive the gyrofluid equations and to make the diamagnetic cancellation, such that the final
equations of evolution will be for the quantities � n � u � � p � � p � � .

Lastly, one should note that the gyrofluid Lagrangian density (5.5) was constructed, not
derived, and that the method adopted here is not a mathematical derivation of the gyrofluid
Lagrangian from the gyrokinetic (single-particle) Lagrangian. The validity of the present
gyrofluid Lagrangian follows from the correspondence of the resulting gyrofluid equations
to those of the other models in regimes where both are valid, as well as the exactness of
the energy conservation law. The same applies to the constraint equations, e.g., equations
(5.7)-(5.8), which can be introduced arbitrarily, and their validity follows from the validity
of the resulting evolution equations.

5.2 Gyrofluid dynamical equations

In this Section, we present a variational principle based on the action functional S K/ L d3xdt using the virtual-displacement method associated with the Eulerian variations� δn � δu � δT � � δT� � , as was done for the simple fluid case in Section 2.3.2. Here, each Eule-
rian variation δχ is defined in terms of its Lagrangian variation ∆χ as δχ K ∆χ � ξ � ∇χ, so
that, using equation (5.11), we find

δn � � ∇ �P� n ξ �
δu � ∂tξ

� � u � ∇ � ξ ��� ξ � ∇ � u
δT � � � ξ � ∇T � � 2T � bb : ∇ξ

δT� � � ∇ �P� T� ξ � � T� bb : ∇ξ

� ������������������
� (5.12)

From the Eulerian variation of the gyrofluid Lagrangian (5.5), we can now derive the mo-
ment equation for the gyrofluid velocity u, as well as the polarisation equation for the
scalar potential φ. Note that the Eulerian variation δT� in equation (5.12) is used also in
connection with the FLR dependence of � φ � :

δ � φ �F� φ � T� � K � δφ � � δT� ∂ � φ �
∂T� � (5.13)

where
∂ � φ �
∂T� � mc2

2e2B2 P # � ρ2

2
∇2� � ∇2� φ K Ω � φ � T� ;B �M� (5.14)

and P # � x � denotes the first derivative of P � x � . As a result of the mass scaling in equation
(5.14), the ion FLR correction Ωi is much larger than the electron FLR correction Ωe.
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5.2.1 Variation of the Lagrangian density
It is straightforward to derive the total variation δL of the gyrofluid Lagrangian density
(5.5), which depends on the variational fields � n � u � T � � T� � φ � , so that we obtain

δL � � ∇δφ � ∂L
∂ � ∇φ � � en � δφ � � � δn

∂L
∂n

� δu � ∂L
∂u

�O= n
2

δT � � � 1 � eΩ � nδT� ? � (5.15)

Here, from equation (5.5), we find

∂L
∂n

� m
2

u2� � e
c

A � u � e ψ � � T� � 1
2

T � � and
∂L
∂u

� n 8 m u � b � e
c

A :�� (5.16)

where we introduced the definition

eψ � φ � T� ;B � K e � φ �%��� mc2 � 2B2 � J ∇φ J 2 � (5.17)

which combines the linear (with FLR corrections) and nonlinear (in the ZLR limit) elec-
trostatic terms of the gyrokinetic Hamiltonian [11].

By inserting the Eulerian variations (5.12) into the gyrofluid Lagrangian variation (5.15),
we obtain (after some algebra)

δL � � ξ �b� ∂
∂t

∂L
∂u

� ∇ � � u
∂L
∂u � � ∇u � ∂L

∂u� ∇ �d A[A� n - ∇ � ∂L
∂n

� T� � 1
2

T � � � eΩ ∇T� .6¡� δφ � ∇ � ∂L
∂ � ∇φ � � � en � † � � ∂Λ

∂t
� ∇ � Γ � (5.18)

where the tensor   [ denotes the FLR-corrected CGL pressure tensor  [ K   CGL
� eΩ p � � I � bb �(� p � bb � p � � 1 � eΩ �¢� I � bb ��� (5.19)

the Hermitian conjugate operator �@���d��� † is defined in equation (5.3), and we introduced the
scalar field

Λ K ξ � ∂L
∂u

� (5.20)

and the vector field

Γ K u Λ � �   [ � n
∂L
∂n

I � � ξ � δφ
∂L

∂ � ∇φ �� - � δφ ∇ � ∂ � en � φ ���
∂ � ∇2� φ � � ∇ � δφ

∂ � en � φ ���
∂ � ∇2� φ � � � �d��� . � (5.21)

Note that, while the last two terms ∂tΛ
� ∇ � Γ in equation (5.18) do not play a role in

the variational principle / δL d3xdt � 0, they play a crucial role in the derivation of exact
conservation laws based on the Noether method.
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5.2.2 Gyrofluid equations
Gyrofluid velocity

From the Eulerian variation of the Lagrangian density (5.18), the stationarity of the action
functional with respect to a arbitrary virtual fluid displacement ξ yields the Euler-Poincaré
equation

0 � ∂
∂t

∂L
∂u

� ∇ � � u
∂L
∂u � � ∇u � ∂L

∂u
� ∇ �d  [� n - ∇ � ∂L

∂n
� 1

2
T � � T� � � eΩ ∇T� . � (5.22)

which describes the evolution of the gyrofluid velocity u. Upon substituting the Lagrangian
derivatives (5.16) into the Euler-Poincaré equation (5.22), and using the fact that the back-
ground magnetic field B is assumed to be a time-independent nonuniform vector field, we
obtain

0 � mn � ∂u �
∂t

� u � ∇u � � b � en
c

u 
 B [ � en ∇ψ� ∇p � � T� ∇ � en Ω � � ∇ ��� p∆ � eΩ p � � bb �+� (5.23)

where p∆ � p � � p � , and we have introduced the following definitions

B [ K B � � mc � e � u � ∇ 
 b

B [ � K B [ � b � B � � mc � e � u � b � ∇ 
 b

b [ K B [ � B [ � � b � mu � C

��������������
� (5.24)

with the magnetic-curvature term C defined as C K � c � eB [ � � b 
£� b � ∇b � .
Equation (5.23) can also be written in a more compact form by introducing the gradient

of ψ evaluated at constant perpendicular temperature, ∇ ¤ ψ, defined through equations (5.2)
and (5.14) as

∇ � φ ����� ∇φ � � ∂ � φ �
∂B

∇B � ∂ � φ �
∂T� ∇T� K ∇ ¤ � φ � � Ω ∇T� �

where ∂ � φ � � ∂B K � 2 � T� � B � Ω. Then equation (5.23) can be written as:

0 � mn � ∂u �
∂t

� u � ∇u � � b � en
c

u 
 B [ � en ∇ ¤ ψ � ∇ �� %[+� (5.25)

Note that the vector field B [ is again not a divergenceless field (since ∇u � �� 0), as
is common to all guiding-center and gyrocenter Hamiltonian models (in which parallel
gyrofluid velocity u � is replaced with the parallel guiding-center velocity v � ).
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It is easy to see that equation (5.23) can be divided into two equations: one equation
that expresses the gyrofluid velocity u in terms of the gyrofluid moments � n � u �P� p �M� p � �
and the electrostatic potential φ, and one equation that describes the time evolution of the
parallel gyrofluid velocity u � . The first equation is obtained by taking the cross-product of
equation (5.23) with b, which yields the following expression for the gyrofluid velocity

u K u � b [ � cb
enB [ � 
<¥ en∇ψ � ∇p � � T� ∇ � en Ω � � ∇ ��� p∆ � eΩ p � � bb �P¦£� (5.26)

Therefore, according to equation (5.26), the gyrofluid velocity u, consists of the parallel
velocity u � K u � b and the following perpendicular gyrofluid velocities

u [ K � c � enB [ � � b 
 ∇p �
uψ K � c � B [ � � b 
 ∇ψ

uC K � p∆
� n � C

������������
� (5.27)

which represent the diamagnetic velocity, the generalised E 
 B velocity, and the curvature-
drift velocity, respectively, and the following gyro-potential FLR corrections

wΩ K cT� b
nB [ � 
 ∇ � nΩ � and wC K � eΩT� C (5.28)

to the E 
 B velocity and curvature-drift velocity, respectively.

Evolution equation for u �
The evolution equation for parallel gyrofluid velocity u � can be derived by taking the dot-
product of equation (5.23) with b [ :

mn � ∂u �
∂t

� u � ∇u � � � � b [7�P� en ∇ψ � ∇p � � T� ∇ � enΩ �@�� ∇ �C�0� p∆ � eΩ p � � b �5� (5.29)

where we have used the identity (valid for any function f )

∇ ��� f bb �§� � ∇ �d� f b �A� b � f � b � ∇b �M�
so that we find b [ � ∇ ��� f bb �¨� ∇ �d� f b � . The gyrofluid equation (5.29) for u � includes
terms associated with the parallel electric field and its FLR corrections as well as parallel
thermal forces.

The set of gyrofluid equations of motion for the four gyrofluid moments � n � p � � p � � u � �
are, thus, given by equations (5.6), (5.7)-(5.8), and (5.29), respectively. Each of these
gyrofluid equations involves the advection operator u � ∇ and the divergence ∇ � u; it is the
diamagnetic part of the advection operator that must be eliminated from equations (5.7)-
(5.8) and (5.29) by adding suitable diamagnetic fluxes.
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5.2.3 Polarisation equation
The polarisation equation for φ can be found by considering the terms in the variation
(5.18) that involve the variation of the potential δφ. Here, we must remember to add up the
contributions of all the species to the total Lagrangian density.

Using the variation of the Lagrangian density (5.18), we obtain the Euler-Lagrange
equation for φ:

0 � ∑
i

�F� en �©� † � ∇ � ∂L
∂ � ∇φ � � (5.30)

where summation over particle species � ∑i � is shown explicitly. Using equation (5.5), we
find

∂L
∂ � ∇φ � � 1

4π
∇φ � ∑

i

nmc2

B2 ∇ � φ � (5.31)

so that the Euler-Lagrange (5.30) becomes the polarisation equation

∑
i

- �F� en �©� † � ∇ � � � nmc2

B2 ∇ � φ � . � 1
4π

∇2φ � 0 � (5.32)

Comparing equation (5.32) with equation 4.23 it is clear that the polarisation equation is
not affected by the introduction of the parallel temperature in the model. This arises from
the fact that the terms that contain the gyrofluid electrostatic potential (5.2) do not depend
on p � . Further details concerning equation (5.32) can be found in Section 4.2.3.

Lastly, we note that two versions for the function P � x � , appearing in the definition
of the gyrofluid scalar potential (5.2), are commonly used in gyrofluid applications: the
function P � x ��� ex or its Padé approximant P � x ���N� 1 � x �  1. It is important to note that,
whatever form is adopted for the gyrofluid scalar potential � φ � , it must be used consistently
throughout the model in order to ensure energy conservation.

5.3 Energy conservation law
In this Section we present the local and global forms of the energy conservation law, as they
arise from the application of the Noether method. For this purpose, we point out that, as a
result of the variational principle / δL d3xdt � 0, the only remaining terms in the Eulerian
variation of the Lagrangian density (5.18) become the Noether equation

δL � ∂Λ
∂t

� ∇ � Γ � (5.33)

where Λ and Γ are defined in equations (5.20)-(5.21). The energy and momentum conser-
vation laws are derived from the Noether equation (5.33) by considering infinitesimal time
and space translations, respectively. Here we focus our attention on the local and global
energy conservation laws associated with our electrostatic gyrofluid model.
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5.3.1 Local energy conservation law
We derive the local form of the energy conservation law from the Noether equation (5.33)
by considering infinitesimal time translations t � t � δt, from which we obtain the fol-
lowing expressions for the virtual fluid displacement ξ and the Eulerian variations δφ and
δL :

ξ �ª� uδt � δφ �ª� δt ∂tφ � and δL �ª� δt ∂tL � (5.34)

Inserting these expressions into equations (5.20)-(5.21), we obtain

Λ K � δt � u � ∂L
∂u � � (5.35)

Γ K � δt - u � u � ∂L
∂u

� n
∂L
∂n � �  %[)� u � ∂φ

∂t
∂L

∂ � ∇φ �� � ∂φ
∂t

∇ � ∂ � en � φ ���
∂ � ∇2� φ � � ∇ � ∂φ

∂t
∂ � en � φ ���
∂ � ∇2� φ � � �d�d� � . � (5.36)

where summation over fluid species is implied wherever appropriate. By combining these
expressions, we arrive at the primitive form of the local energy conservation law;

∂ε #
∂t

� ∇ � S # � 0 �
where the primitive energy density is

ε # K u � ∂L
∂u

� L � 1
2

nmu2� � p � � p �
2

� � enψ � J E J 2
8π � � (5.37)

and the primitive energy-density flux is

S # K u � u � ∂L
∂u

� n
∂L
∂n � �  A[)� u � ∂φ

∂t
∂L

∂ � ∇φ �� � ∂φ
∂t

∇ � ∂ � en � φ ���
∂ � ∇2� φ � � ∇ � ∂φ

∂t
∂ � en � φ ���
∂ � ∇2� φ � � �d�d� �� u � 1

2
nmu2� � p � � p �

2
� enψ � �  A[7� u � ∂φ

∂t
∂L

∂ � ∇φ �� - ∂φ
∂t

∇ � � ∂ � en � φ ���
∂ � ∇2� φ � � �d�d� � � ∇ � ∂φ

∂t � ∂ � en � φ ���
∂ � ∇2� φ � � ���d� � . � (5.38)

In order to arrive at the final form of the energy conservation law, we need to rearrange
terms in equation (5.37). By substituting the polarisation equation (5.30) into equation
(5.4), we find

en � φ �«� J E J 2
4π

� mn J uE
J 2 � ∇ � D � (5.39)
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where

D K φ
∂L

∂ � ∇φ � � ∂ � en � φ ���
∂ � ∇2� φ � ∇ � φ � φ ∇ � � ∂ � en � φ ���

∂ � ∇2� φ � � � �d�d� (5.40)

so that the last terms in equation (5.37) become

enψ � J E J 2
8π

� 1
2

nm J uE
J 2 � J E J 2

8π
� ∇ � D � (5.41)

Hence, we express the primitive energy density (5.37) as ε # K ε � ∇ � D, where the final
form of the energy density is defined as

ε K 1
2

nm 8 u2� � J uE
J 2 : � p � � p �

2
� J E J 2

8π
� (5.42)

and we obtain the local form of the energy conservation law

∂ε
∂t

� ∇ � S � 0 � (5.43)

where the final form of the energy density flux is defined as

S K S #+� ∂D
∂t

� (5.44)

After some partial cancellations, the final form of the energy density flux is

S � u � 1
2

nmu2� � p � � p �
2

� enψ � �  %[b� u � Sφ � (5.45)

where   [ � u � p � � 1 � eΩ � u � � p∆ � eΩ p � � u � b and the electrostatic energy density flux
is defined as

Sφ � � φ
∂
∂t � ∂L

∂ � ∇φ � � ∇ � ∂ � en � φ ���
∂ � ∇2� φ � � �d��� � � ∇ � φ

∂
∂t � ∂ � en � φ ���

∂ � ∇2� φ � � �d��� � � (5.46)

In the next Section, after heat fluxes are inserted back into the pressure evolution equations
and diamagnetic cancellations are performed with the addition of terms in the gyrofluid
equations, the local energy conservation law (5.43) is converted into a new energy equa-
tion ∂tε

� ∇ � S [ � 0, in which heat fluxes and diamagnetic-cancellation terms result in a
modified energy density flux S [ . This new form ensures that the total energy E � / εd3x
satisfies the global energy conservation law dE � dt � 0.

5.3.2 Global energy conservation law
The global energy conservation law dE � dt � 0 can be derived from the local energy con-
servation law (5.43) by integrating it over space. Here, the global energy is defined as

E �E� d3x - 1
2

nmu2� � 8 p � � p �
2

: � � 1
2

nm J uE
J 2 � J E J 2

8π � . � (5.47)
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In this form, the parallel kinetic energy, the internal energy, and the electric field energy
explicitly appear. In a later section, we will present the time evolution of each of the
separate terms that constitute the energy conservation law in order to identify the energy-
exchange processes that allow the transfer of energy between the three types of gyrofluid
(parallel kinetic, internal, and field) energies.

5.4 Diamagnetic cancellations and energy conservation

The gyrofluid velocity (5.23) contains the diamagnetic velocity u [ . Since the gyrofluid
moment-equations are derived by inserting the gyrofluid velocity u in the Lagrangian con-
straints, diamagnetic advection terms appear in the equations of evolution for the parallel
velocity and the two anisotropic pressures. More specifically, the momentum equation for
u � contains the term u [ � ∇u � , and the parallel and perpendicular pressure equations contain
a combination of the terms u [ � ∇p and p∇ � u [ (where here p is either p � or p � ). These
diamagnetic-advection terms should be cancelled in the gyrofluid evolution equations by
the introduction of appropriate terms containing higher-order moments, as was done in
Section 4.4 for the one temperature gyrofluid model. These correspond to the FLR correc-
tions to perpendicular fluxes in conventional fluid models [16, 15], but arise naturally due
to grad-B and curvature drifts in the moment-based derivation of local gyrofluid models
[4]. Here, due to the presence of two temperatures instead of one in section 4.4, although
the gyroviscosity and the zeroth order in FLR perpendicular heat flux added stay the same,
the FLR corrections of the perpendicular heat flux change to include the parallel temper-
ature. Moreover a parallel-perpendicular heat flux is introduced to make the diamagnetic
cancellation in the parallel temperature equation.

Since the higher-order moment terms cannot be derived from the Lagrangian, the dia-
magnetic cancellations must be done manually. However, there exists a constraint in the
addition of higher-order moment terms, namely, that the global energy conservation law
should not be altered. Here, the terms added are derived from the Vlasov equation, and
FLR corrections are then introduced to conserve energy. Thus, the final moment equations
are not directly derived from the Lagrangian, but they still conserve energy exactly.

5.4.1 Parallel gyrofluid dynamics

The diamagnetic cancellation needed for the parallel momentum equation (5.29) involves
the addition of the term � ∇ � Π [ � , associated with the non-diagonal part of the pressure
tensor [13], on the right side of equation (5.29). From Vlasov theory, the diamagnetic-
cancellation term is found to be [14]:� ∇ � Π [ � �ª� ∇ �¬W p � mcb

eB [ � 
 ∇u � Y � mnu [)� ∇u � � p � K � mu � ��� (5.48)
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where the magnetic differential operator K �j���d��� is defined by the identity

K � f �2��� ∇ W c
eB [ � b 
 ∇ f Y � (5.49)

valid for arbitrary functions f . This term is the same as the one used in section 4.4 for the
one-temperature model, since only the perpendicular pressure is involved in gyroviscosity,
and no additional term is required to be added for the energy conservation law. In fact as
written here, equation (5.48) conserves energy by itself, since u � ∇ � Π [ � � ∇ ��� u � Π [ � � . We
should note that the substitution of B to B [ � is done here, and throughout this Section, to
make the diamagnetic cancellation exact.

The time evolution of the parallel kinetic energy density is, therefore, expressed as

∂
∂t

8 mn
2

u2� :;��� ∇ �28 mn
2

u2� u � u � Π [ � :� u ��{ en∇ψ � ∇p � � T� ∇ � enΩ � � ∇ �'� p∆ � eΩ p � � bb � | � (5.50)

where we used the expression (5.26) for the gyrofluid velocity to write u � b [ ��{C�d�d� | �
u ��{C�d�d� | for the second term on the right side of equation (5.50).

5.4.2 Internal energy
To consider the time evolution of the internal energy p � � p � � 2, we rewrite the two pressure
equations (5.7)-(5.8) in the form

∂p �
∂t

� ∇ �P� p � u � � 2p � bb : ∇u ���� 2∇ � q � � � 4q � � �P� b � ∇b � � 2 Q � � (5.51)
∂p �
∂t

� ∇ �P� p � u � � p � � I � bb � : ∇u ���� ∇ � q �@� � 2q � � �P� b � ∇b � � Q � � (5.52)

where Q � and Q � are additional terms (to be determined later) associated with FLR cor-
rections to the electrostatic scalar field φ.

To zeroth order in the electrostatic potential φ, the heat fluxes are derived from the
Vlasov equation directly and are found in [9] to be expressed as

q � � � 1
2

cp � b
eB [ � 
 ∇T � � p � uC � (5.53)

and
q �A� � 2

cp � b
eB [ � 
 ∇T� � (5.54)
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Inserting these diamagnetic heat fluxes, using the definition (5.49), we find� 2∇ � q � � � 4q � � �P� b � ∇b �E� nu [7� ∇T � � p � K � T � �� 2 p � C � ∇T � � 2 ∇ � � T � p∆ C � (5.55)

for the parallel pressure equation (5.7), and� ∇ � q �A� � 2q � � �P� b � ∇b �m� 2 nu [ � ∇T� � 2 p � K � T� � � p � C � ∇T � (5.56)

for the perpendicular pressure equation (5.8).
Using equations (5.51) and (5.52), the time evolution of the internal energy can, there-

fore, be expressed as

∂
∂t

8 p �
2

� p � : � � ∇ � = 8 p �
2

� p � : u �   CGL � u � � q � � � q �@� � ?� u � ∇ �j  CGL
� � Q � � Q � �(� (5.57)

where suitable energy-conserving expressions for the FLR-corrected heat fluxes Q � and Q �
are now determined by considering the expression for the time evolution of the electrostatic
field energy.

5.4.3 Electrostatic field energy

By making use of the electrostatic field energy equation (5.41), we write the following
expression for the time evolution of the electrostatic field energy

∂
∂t � mn

2
J uE

J 2 � J E J 2
8π � � ∇ � ∂D

∂t
� ∂

∂t � enψ � J E J 2
8π �� e � ψ � T� Ω � ∂n

∂t
� eΩ

∂p �
∂t

� ∇ � Sφ � (5.58)

where we made use of the polarisation equation (5.32) and the definition (5.46) for Sφ.
Here, using the gyrofluid continuity (5.6), we obtain

e � ψ � T� Ω � ∂n
∂t

��� ∇ ��� e � nψ � p � Ω � u � � enu �a� ∇ψ � ∇ � T� Ω �@�+�
and, using the perpendicular pressure equation (5.52), we obtain

eΩ
∂p �
∂t

� � eΩ ∇ �P� p � u �7�  Ω : ∇u � eΩ r ∇ � q �A� � 2q � � ��� b � ∇b �)� Q � t� � ∇ �C� eΩ p � u �   Ω � u � � u �!� p � ∇ � eΩ � � ∇ ��  Ω �� eΩ r ∇ � q �A� � 2q � � �P� b � ∇b �7� Q � t%�
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where   Ω K   [ �k  CGL � eΩ p � � I � bb � denotes the FLR-correction to the CGL pressure
tensor. Hence, the first two terms on the right side of equation (5.58) can be written as

e � ψ � T� Ω � ∂n
∂t

� eΩ
∂p �
∂t

� � ∇ �C� enψu �   Ω � u �� u �!� en ∇ψ � enΩ∇T� � ∇ ��  Ω �� eΩ r ∇ � q �A� � 2q � � ��� b � ∇b �7� Q � t � (5.59)

We now require that, in order for the last term QΩ K Q � � Q � appearing on the right side of
equation (5.57) to cancel the last three terms on the right side of equation (5.59), the latter
terms must be written up to an exact spatial divergence as� eΩ ∇ � q �A� � 2eΩ q � � �P� b � ∇b � � eΩ Q � � � QΩ � ∇ � SΩ �
Hence, we set the additional terms Q � and Q � in equations (5.57) and (5.59) to be

Q �®� 2 eΩ q � � �0� b � ∇b �
Q � � � q �A� � ∇ � eΩ �7� ∇ �C� q �A� eΩ ������ � (5.60)

so that

QΩ K Q � � Q � � nwC � ∇T � � 2eΩ p � K � T� � � 2n � 2wΩ � eΩu [���� ∇T� � (5.61)

and SΩ K eΩ � 2 � eΩ � q �@� , with q �A� defined in equation (5.54). Combining equations
(5.59)-(5.61) into equation (5.58), the time evolution of the electrostatic field energy is,
therefore, expressed as

∂
∂t � mn

2
J uE

J 2 � J E J 2
8π � � � ∇ � � enψu �   Ω � u � Sφ

� SΩ �� u ��� en ∇ψ � enΩ∇T� � ∇ �d  Ω �b� QΩ � (5.62)

5.4.4 Explicit form of the energy conservation law
When diamagnetic cancellations and heat fluxes are introduced into the four-moment gy-
rofluid equations, the local energy conservation law (5.43) is modified. By combining the
evolution equations for the parallel kinetic energy (5.50), the internal energy (5.57), and
the electrostatic field energy (5.62), the local energy conservation law (5.43) becomes the
local energy equation

∂ε
∂t

� ∇ � S ��� ∇ �¢= u � Π [ � � q � � � � 1 � eΩ � 2 q �A� ? � (5.63)

which ensures that the total energy E � / εd3x still satisfies the global energy conservation
law dE � dt � 0.
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We now identify the energy-exchange processes that transfer energy between the three
different types of gyrofluid energy. First, we write down expressions describing the time
evolution of each type of energy (e.g., parallel kinetic energy, internal energy, and field
energy). Thus, the contribution of each species to the integrated parallel kinetic energy
(5.50) is

d
dt

� 8 mn
2

u2� : d3x �ª�X� u �!� en ∇ψ � enΩ∇T� � ∇ �� A[M� d3x � (5.64)

the contribution of each species to the integrated internal energy (5.57) is

d
dt

� 8 p �
2

� p � : d3x �E��� u ��� ∇ ��  CGL � � QΩ � d3x � (5.65)

and the contribution of each species to the integrated electrostatic field energy (5.62) is

d
dt

� � mn
2

J uE
J 2 � J E J 2

8π � d3x �¯��� u �a� en ∇ψ � enΩ∇T� � ∇ ��  Ω �)� QΩ � d3x � (5.66)

The terms on the right side of equations (5.64)-(5.66) appear in pairs with opposite sign,
and give the energy-exchange processes. For example, the FLR-correction heat flux QΩ is
involved in energy exchange between the electrostatic field energy and the internal energy,
while the FLR-correction pressure tensor   Ω is involved in energy exchange between the
electrostatic field energy and the parallel kinetic energy. The contributions from en ∇ψ,
enΩ∇T� and ∇ �d  CGL in equations (5.64)-(5.66), on the other hand, describe standard
energy-exchange processes.

5.4.5 Comparison with previous models

We now write explicit final expressions for the gyrofluid density n, the gyrofluid parallel
velocity u � , and the parallel and perpendicular gyrofluid pressures p � and p � . The gyrofluid
continuity is expressed in expanded form as

dEn
dt

� ∇ �qr n � u � b [ � uC
� wC �5t � � K � p � � � n K � eψ � � T� K � enΩ �@�� u [7� ∇ � enΩ � � wΩ � ∇n � (5.67)

where dE
� dt K ∂ � ∂t � uψ � ∇. With the insertion of the diamagnetic-cancellation term

(5.48), the evolution equation for the gyrofluid parallel velocity is expressed in expanded
form as

mn � ∂u �
∂t

� u # � ∇u � � � p � K � mu � �¯� � b [ ��� en ∇ψ � ∇p � � T� ∇ � enΩ �@�� ∇ ���$� p∆ � eΩ p � � b �5� (5.68)
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where u # K u � u [ denotes the gyrofluid velocity without its diamagnetic contribution.
Lastly, with the insertion of the diamagnetic-cancellation terms (5.55)-(5.56) and (5.60),
the gyrofluid parallel and perpendicular pressure equations are

∂p �
∂t

� � ∇ �b� p � u � 2 p � u � b � 2q � � � � 2u � ∇ �)� p � bb �� 4 � 1 � eΩ � q � � �P� b � ∇b �M� (5.69)

and
∂p �
∂t

� � ∇ ��� p � u � p � � I � bb �a� u � � 1 � eΩ � q �A� � � u � ∇ ��� p � � I � bb �%�� 2q � � �P� b � ∇b �)� q �A� � ∇ � eΩ �M� (5.70)

where the heat fluxes q � � and q �A� are defined in equations (5.53) and (5.54).
The results of the present two-temperature gyrofluid model can be compared with the

one-temperature model presented in Chapter 4, where the gyrofluid equations are derived
by including the perpendicular temperature only. Since the FLR-corrected CGL pressure
tensor (5.19) includes the parallel pressure p � , the two gyrofluid models agree except for
the terms that arise from the pressure anisotropy p∆ � p � � p � .

Our results can also be compared with the gyrofluid model of Beer and Hammett [4]
presented in Section 3.3.4, since this Beer-Hammett model is the most extended one, which
contains all the previously developed gyrofluid models. The equations of evolution of the
gyrofluid moments presented here are nearly identical to those of Beer and Hammett. The
differences that arise can be separated in two categories: (1) differences in the non-FLR
terms and (2) differences in the FLR terms.

The non-FLR terms coincide almost exactly in the two models, except terms that come
from closures of higher-order moments, which our model is not able to retrieve. In our
model, gyrofluid moments higher than pressure moments cannot be included in the gy-
rofluid Lagrangian, and the closures are done automatically when choosing the constraints
for the variation. Thus, for instance, Landau damping is not included in our model, though
it can be added by hand afterwards as long as the energy conservation remains exact. A
special difference in the non-FLR terms between the two models - and the only one of the
kind that appears - is a different term in the momentum equation (5.68): the magnetic term
K � u � � in our model compared to 2K � u � � � iωd � 4u � � in Section 3.3.4. This difference
arises from the fact that the additional magnetic contribution originates from the parallel-
parallel heat flux q ��� , which we cannot fully retrieve.

The differences in the FLR terms between the two models arise from the higher-order
moment closures, but also because of the energy conservation law. Especially in the FLR
terms, previous models do not conserve energy. Although our polarization equation reduces
to the local one [5] and so is in agreement with the local model in the local limit, we do not
exactly retrieve the results of [5]. That is, although we find a strong correlation between n
and � φ � and p � and Ω, there exists another FLR term that is not correlated with p � . This
difference arises because of the constraints introduced here, which lead to another closure
than that of [5].
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5.5 Other pressure constraints

As noted before, both the Lagrangian and the constraints can at first be chosen arbitrarily.
Their validity follows from the validity of the resulting equations of evolution, and also
from the energy conservation law. Although the choice for the density-constraint equation
(5.6) is straightforward, the choice for the pressure-constraint equations is not, since there
are many sets of pressure equations used in the literature. In the course of constructing a
valid gyrofluid model, we examined many possible pressure constraints. As a test for their
validity, we chose to compare the non-FLR terms of the evolution equations with those in
Section 3.3.4.

Here, we will discuss two sets of pressure constraints: (1) constraints that are derived
from the conservation of entropy for one and two degrees of freedom for p � and p � , re-
spectively; and (2) constraints derived from the double adiabatic theory [8].

The first set of constraints include the conservation of particles as well as the conserva-
tion of the entropy d � p � nγ � � dt � 0 for p � (γ � 3) and p � (γ � 2), respectively, each written
in conservative form as

∂n
∂t

� ∇ �P� nu �(� 0

∂
∂t

8 p �
n2 : � ∇ � 8 p �

n2 u : � 0 (5.71)

∂
∂t

8 p �
n

: � ∇ � 8 p �
n

u : � 0

After doing the variation of the action as was done here, one can find the gyrofluid velocity
excluding terms that contain Ω to be:

u � u � b [ � cb
enB [ � 
 ∇ � p � � p � � � uψ � (5.72)

Inserting the gyrofluid velocity in the constraints equation (5.72), the gyrofluid equations
of evolution are derived. From the gyrofuid velocity one can see already the differences be-
tween the two models. In the velocity derived with the entropy constraints the diamagnetic
drift includes both pressures, whereas in the velocity derived with the CGL constraints the
diamagnetic velocity depends only on p � . Moreover, in the velocity equation (5.72), there
exists no curvature drift uC, since it comes from the dependence of the pressure constraints
on the magnetic field. These constraints lead to differences between this first model and
previous results even in the density equation, and more specifically in the curvature terms,
where this model finds twice the curvature terms than found in Section 3.3.4. Moreover,
all terms that arise from the curvature drift do not appear in this first model. To eliminate
these differences, another set of constraints that includes dependence on the magnetic field
and that does not include the parallel pressure in the diamagnetic drift is needed.

The second set of constraints include the density conservation as well as the double
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adiabatic equations [8] written in conservative form as

∂n
∂t

� ∇ ��� nu �(� 0

∂
∂t

8 p �
B

: � ∇ � 8 p �
B

u : � 0 (5.73)

∂
∂t

W p � p2�
n4 Y � ∇ � W p � p2�

n4 u Y � 0

The two last constraints can be derived from the conservation of magnetic moment for the
perpendicular pressure equation d � p � � nB � � dt � 0, and the conservation of bounce action
for the parallel pressure equation d � p � B2 � n3 � � dt � 0. Proceeding as we did before, we can
find the gyrofluid velocity, which excluding terms that contain Ω is:

u � u � b [ � cb
enB [ � 
 ∇p � � uψ

� uC � (5.74)

Here, the curvature drift velocity appears, but the diamagnetic drift depends only on the
parallel pressure and not on the perpendicular one. This is not consistent with the fluid
theories, where the diamagnetic velocity depends only on the p � . In this second model,
the density equation coincides with equation (3.82) found by previous models. However,
there are differences between the two models on the momentum and the pressure equations
on the diamagnetic terms, even after diamagnetic cancellations are applied. Moreover, this
second model also does not retrieve the correct curvature terms in the momentum equation.

To summarise, of the three sets of constraints presented in this chapter, only the total
CGL constraints (5.6)-(5.8) give the expected from fluid theory gyrofluid velocity, and also
equations of evolution that coincide to zeroth order in the FLRs with the previous models
derived from the Gyrokinetic equation.

The model described in this chapter has similar limitations as the model described in the
previous chapter with one important difference in that it keeps the parallel temperature as a
dynamical variable. The timescales associated with the turbulence are often shorter than the
collision time and, therefore, an isotropic temperature can not be maintained through colli-
sions. The dynamics perpendicular and parallel to the field is largely (but not completely)
decoupled and the temperature perturbations are determined by different equations. For an
accurate description of the system one therefore needs to distinguish between the parallel
and perpendicular temperatures and keep both as dynamic variables.
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Chapter 6

Conclusions

In this dissertation two sets of electrostatic gyrofluid equations that describe the evolution
of the density, momentum and temperature have been derived, one for a single temperature
and one for an anisotropic temperature. In each case, a polarisation equation derived from
the same formalism allows for the calculation of the electric field evolution. Each model
satisfies an exact energy conservation law that includes energy-exchange terms involving
parallel kinetic energy, internal energy, and field energy. Together, they provide an accurate
description of much of the physics relevant for microinstability driven turbulence.

Previous electrostatic gyrofluid models are local, that is nonlinearities are discarded ex-
cept the E 
 B velocity advection. These models are delta-f models with equations which
are homogeneous in the plasma parameters. Moreover, although previous models conserve
free energy in the zeroth order FLR terms, they do not conserve energy in the FLR correc-
tions because of the different approximations used in the moment equations and the field
potential equation, and also because of the different closures.

Our model is the first fully inhomogeneous gyrofluid model as well as the first one
that satisfies an exact energy conservation theorem. The fact that the model is inhomoge-
neous makes the set of equations especially suited for turbulence computations which in-
tend to treat either large amplitude disturbances (relative fluctuation levels of order unity) or
strong variations of parameters (e.g., collisionality, relative magnetic inductivity, tempera-
ture, etc.) across the spatial domain. Energy conservation is essential because even a small
violation of energy conservation which would not strongly affect the turbulence dynamics
per se becomes damaging when treating secondary (e.g., zonal flow) effects. These zonal
flows are global flows which play an important role in controlling the level of turbulent
fluctuations.

To guarantee energy conservation we have used the Lagrangian approach in which the
conservation property is directly obtained via Noether’s theorem. This method is new com-
pared with the usual approach which uses moment building of the gyrokinetic equation.
The Lagrangian is constructed to be analogous to the single particle Lagrangian, and a
variation procedure yields all the equations of our set. The validity of the Lagrangian
and the constraints introduced for the variational procedure was verified by the validity of
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the final evolution equations and the energy conservation theorem. Diamagnetic cancella-
tion is taken into account in a second step, through the addition of the non-diagonal part
of the pressure tensor and the perpendicular heat flux in the momentum and temperature
equations, respectively. This is done according to a systematic procedure chosen to main-
tain energy conservation. Thus all non-electrostatic diamagnetic-corrections terms were
computed from the Vlasov equation, and the FLR-corrected terms associated with φ were
chosen such that the energy conservation is still satisfied.

The constraints, used to derive the evolution equations, play an important role, since
different constraints yield strongly different evolution equations. For the three-moment
model the used constraints are density and entropy conservation. For the four-moment
model in addition to density conservation, the Chew-Goldberger-Low equations are used
to constrain the parallel and perpendicular pressures. Other equations often used in the
literature are also examined, and the results for each were presented and compared.

To verify the validity of the Lagrangian and the constraints, a comparison with previous
models was necessary. The agreement of the models can not be perfect because of the
energy conservation law and the different ways used to derive the evolution equations.
Thus, although our model should agree with the previously published to zeroth order in the
FLR terms except those derived from higher order moments (eg. heat fluxes), the models
should not have the same FLR terms since previous models do not conserve energy in these
terms. Actual comparison with previous models shows that there is a very good agreement
in the zero order FLR terms, but not in the FLR corrections. From the comparison we can
deduce that the Lagrangian and the constraints used are the correct ones for the derivation
of an electrostatic four moment gyrofluid model.

6.0.1 Future directions

In this thesis a consistent set of gyrofluid equations has been developed which allows for nu-
merical computation of turbulent transport. However, in order to provide a more complete
and accurate model of turbulent transport, the model presented here should be extended,
and the approximations used to derive the gyrofluid equations should be relaxed. Here we
will emphasise three of the most important approximations: the electrostatic approxima-
tion, the four-moment approach and the use of only passing electrons.

So far the model described uses the electrostatic approximation, assuming that turbu-
lence can be described purely in terms of a fluctuating electrostatic potential, i.e. the mag-
netic fluctuations are neglected. This is equivalent to assuming that the electrodynamical
beta βe K c2

s
� v2

A is smaller not only than unity, but also [1] the mass ratio βe \°\ me
� Mi,

which does not hold in modern tokamaks. Additionally, steep gradient phenomena [2]
make drift wave turbulence itself electromagnetic when β̂ � βe � qR � LT � 2 � 1. The electro-
static approximation removes all electromagnetic modes such as shear Alfven waves, and
their associated instabilities from the system. Hence simulations using the model presented
here cannot describe such modes, which are predicted by linear theory to be unstable in the
core as well as the edge of tokamak plasmas at sufficient high β. In addition, the electro-
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static model cannot describe finite-β modifications to electrostatic modes such as the ITG
instabilities, which are, however, substantial at the experimentally observed β values. Thus,
future work should extend the current model to include electromagnetic effects. This can
be done by including the parallel magnetic potential fluctuation in the Lagrangian, specifi-
cally in the symplectic part, in a similar way as is done for the gyrokinetic electromagnetic
Lagrangian.

Another approximation that needs to be relaxed is the four-moment approximation. So
far, we have included only the first four moments (density, parallel velocity, parallel and
perpendicular pressure) as dynamical variables, and we have derived evolution equations
for those four moments. A next step would be to include the next moments, namely the
parallel heat fluxes, as dynamical variables, thus arriving to a six-moment model. The
addition of the parallel heat fluxes is necessary to include physics such as Landau damping,
which, in the case of the four moment model derived with the Lagrangian method, is not
included. The addition of the heat fluxes is nontrivial, since the Lagrangian used so far
does not depend on them. Since the heat fluxes are odd moments in the velocities (like the
fluid velocity itself), the variation of the heat fluxes should in some way follow that of the
velocity. Thus, it is possible that an additional displacement, namely a heat displacement,
is needed together with the fluid (mass) displacement [3, 4, 5].

Another physical aspect of a tokamak plasma in the tokamak core that should be in-
cluded in the model to correctly describe turbulent transport is the trapping of the electrons
in the inhomogeneous magnetic field. There are instabilities associated with the trapped
electrons like the one known as the Trapped Electron Mode (TEM) and, furthermore,
trapped electrons also increase the growth rate of the ITG mode. For low frequency turbu-
lence the trapped electron response could be described by bounce averaged equations, i.e.
equations in which one has averaged over the trapped orbit in much the same way as one
averages over the gyromotion. Trapped electrons equations have been developed in a local
model [6], but as with previous versions the emphasis was only on the linear theory and
there was no treatment of conservative energetics. The starting point for the derivation of
global, fully nonlinear trapped electron equations with an energy conservation law would
not be gyrokinetics, but a new theory should be developed in which the bounce averaging is
treated. Despite this complication a complete transport model should be able to predict par-
ticle and electron transport, and thus, the nonadiabatic electron dynamics are a necessary
ingredient.
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