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The reader should note that important background information for the lecture of the present
manuscript can be found in the appendices. In particular, a list of all used abbreviations and
symbols can be found in appendix B, information on the composition of natural rocks can be
found in appendix C, appendix D provides information on the scattering experiments at the
Institut Laue-Langevin, and appendix E shows the input file for the CPMD code (version
3.4.3) for the molecular dynamics computer simulations
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English Summary

In recent years the influence of water on the structure and viscosity of silica (SiO3) and silicate
melts has attracted the interest of many experimental groups due to its importance in geology
(e.g., magmatic flow in the earth crust and explosive volcanism) as well as technology (e.g.,
glassy optical fibers and semiconductor devices).

These, mostly spectroscopic, measurements suggest that the mechanism of dissolution of
water in silica(te) melts varies strongly with the total amount of water. In addition to
dissolved water, molecular water may be present. In chemical terms it represents a balance
of the form

Si— O — Si + Hy0 «— 2(SiOH)

that follows the Chatelier principle and which can be shifted to either side by the variation
of external conditions like temperature or concentration of one species.

This project is an attempt to perform a quantum-chemical verification of the existing and
new experimental data (for reviews see [Bu79, Mi94, Ko00]) and hence to obtain a deeper
understanding of the dissolution mechanisms of water. Neutron scattering experiments that
give experimental access to statistical quantities extracted from the simulation (such as vi-
brational densities of states and structure factors) are performed in parallel.

The equilibration of hydrous silica systems has been successfully set up with the CPMD
code at temperatures of 3000 K and 3500 K. The results for the system 30Si0,-4H,O are
chemically and physically reasonable and all water is dissolved to SiOH groups. It is for the
first time possible to investigate the diffusion mechanisms for hydrogen in real space and to
reveal important intermediate states.

Quenches to ambient temperature allow comparisons to the experiments. Concerning the
neutron scattering structure factor, the agreement between the simulation and the experi-
ment is rather good. The structure factor of the hydrous SiO, is (in both approaches) very
close to the one of the pure material. Nevertheless the simulation shows that the silica
tetrahedral network is partially broken. Also the vibrational density of states was extracted
from the simulation and a neutron scattering experiment. In this case, the agreement is
not as good since the statistics is dominated by the 8 hydrogen atoms in the simulation. In
the experiment the silicate composition was varied from silica over sodium silicates to albite
(sodium alumino silicate). It is found that the densities of states depend considerably on
the silicate matrix but they do not show a dependence on the total water content. This is a
very surprising result since Raman and Infrared spectroscopy suggest that the ratio of SIOH
to HoO changes significantly with the total water content. Therefore one concludes that the
dynamics of the matrix is not affected by the SIOH/H50 ratio, and neither are all associated
mechanisms like the viscosity of the silicate.

Quenches of selected configurations in the simulation allow also the electronic structure to be
studied. In particular states in the electronic band gap of pure silica were found. The corre-
lation of these electronic states with the structural intermediate states for hydrogen diffusion
has been discussed for a long time due to their importance in semiconductor technology.
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Deutsche Zusammenfassung

In den letzten Jahren bestand von experimenteller Seite ein reges Interesse an wasserhaltigen
Schmelzen von Siliziumdioxyd und Silikaten aufgrund der hohen Bedeutung dieser Materi-
alien in der Geologie (z.B. dem Magmafluss in der Erdkruste und explosivem Vulkanismus)
und bei technologischen Fragestellungen (z.B. in Lichtleitern und Halbleiterbausteinen).
Diese meist spektroskopischen Untersuchungen legen nahe, dass die Losung von Wasser in
Silikaten stark von der Gesamtwasserkonzentration abhéngt. Zuséatzlich zu gelostem Wasser
kann auch molekulares Wasser vorhanden sein. In chemischer Terminologie stellt das ein
Gleichgewicht der Form
Si — O — Si + Hy0 «— 2(SiOH)

dar, das dem Prinzip von Chatelier unterliegt und das auf jede Seite verschoben werden kann,
ensprechend den dufleren Bedingungen wie Temperatur oder Konzentration einer Kompo-
nente.

Dieses Projekt ist ein Versuch einer quantenchemischen Verifikation existierender und neuer
Daten (Ubersichtsartikel [Bu79, Mi94, Ko00]), um damit ein tieferes Verstindnis der Losungs-
mechanismen von Wasser zu erhalten. Neutronenstreuexperimente die experimentellen Zu-
gang zu statistischen Groflen (wie der Schwingungszustandsdichte oder Strukturfaktoren)
geben, werden parallel durchgefiihrt.

Die Aquilibration von wasserhaltigem Siliziumdioxyd bei Temperaturen von 3000 K und
3500 K wurde erfolgreich mit dem CPMD Code bewerkstelligt. Die Ergebnisse fiir das Sys-
tem 305102-4H,0 sind chemisch und physikalisch sinnvoll und das ganze Wasser ist in Form
von SiOH Gruppen gelost. Es ist zum ersten Mal mdglich, die Diffusionsmechanismen von
Wasserstoff im reellen Raum zu untersuchen und wichtige Ubergangszustéinde zu ermitteln.
Abkiihlung auf Raumtemperatur ermoglicht Vergleiche mit Experimenten. Beziiglich des
Neutronenstrukturfaktors ist die ["Jbereinstimmung von Experiment und Simulation ziemlich
gut. Der Strukturfaktor des wasserhaltigen Materials ist dem des trockenen Materials sehr
ahnlich (in beiden Ansitzen). Nichtsdestotrotz zeigt die Simulation, dass das Tetraedernet-
zwerk des Silikates gebrochen ist. Die Schwingungszustandsdichte wurde ebenfalls aus dem
Experiment und der Simulation extrahiert. In diesem Fall ist die Ubereinstimmung nicht so
gut, da die Statistik von den nur 8 Wasserstoffatomen der Simulation bestimmt wird. Im
Experiment wurde die Silikatzusammensetzung von Siliziumdioxyd iiber Natriumsilikat zu
Albit (Natriumaluminiumsilikat) hin variiert. Es konnte herausgefunden werden, dass die
Zustandsdichten betrachtlich von der Silikatmatrix abhiangen, jedoch nicht vom Wasserge-
halt. Das ist ein sehr iiberraschendes Ergebnis, da Infrarot- und Ramanspektroskopie nahe
legen, dass sich das SiOH/H,O Verhéltnis signifikant mit dem Gesamtwassergehalt dndert.
Man schliefit daraus, dass die Dynamik der Matrix vom SiOH/H,O Verhéltnis ebensowenig
beeinflusst ist, wie alle von ihr abhdngenden Mechanismen wie z.B. die Viskositat der Si-
likate.

Kiihlen von ausgesuchten Konfigurationen in der Simulation erlaubt es auch die elektronische
Struktur zu untersuchen. Insbesondere wurden Zustande in der elektronischen Bandliicke
von Siliziumdioxyd gefunden. Die Korrelation dieser elektronischen Zustande mit den struk-
turellen Ubergangszustinden fiir die Wasserstoffdiffusion wird schon lange wegen ihrer Be-
deutung in der Halbleitertechnologie diskutiert.
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Resumé Francais

L’influence de I'eau sur la structure et la viscosité de la silice et des silicates a fait I'objet
de nombreuses études dans les années précédentes grace & son importance géologique (par
exemple le flux magmatique dans la crotite du globe terrestre et le volcanisme explosif) ansi
que technique (par exemple dans les fibres optiques et les semiconducteurs).

Ces mesures spectroscopiques proposent que le mécanisme de dissolution de ’eau dans la
silice et les silicates est bien une fonction de la concentration totale de 'eau. De l'eau
dissociée ainsi que de ’eau moléculaire peuvent étre présentes. En termes chimiques, le
probléme représente une balance de la forme

Si — O — Si + Hy,O «— 2(SiOH)

suivant le principe de Chatelier, qui peut étre déplacé des deux cotés en fonction des condi-
tions externes comime la température ou la concentration d’une espece.

Ce travail de these constitue une tentative de vérification des données existantes et nouvelles
(voir les références [Bu79, Mi94, Ko00]) en utilisant des méthodes de la chimie quantique
pour mieux comprendre le mécanisme de dissolution de ’eau. Des expériences neutroniques
ont été parallelement poursuivies, donnant acces aux mémes quantités statistiques que celles
extraites de la simulation numérique (par exemple le facteur de structure et la densité d’états
vibrationnels).

La simulation de la silice hydratée a été mise en ceuvre avec le code CPMD a des températures
de 3000 K et 3500 K. Les résultats pour le systeme 30SiO9-4H5O sont chimiquement et
physiquement raisonnables et ’eau est entierement dissociée en groupes SiOH. Il est pour
la premiere fois possible d’étudier les mécanismes de diffusion de I’hydrogene dans 1’espace
reél et de révéler ainsi des états intermédiaires importants.

Les trempes a des températures ambientes permettent la comparaison a ’expérience. Concer-
nant le facteur de structure neutronique, la correspondance entre la simulation et I’expérience
est remarquablement bonne. Le facteur de structure du matériau hydraté est (dans les deux
approches) tres proche de celui de la silice pure. Les simulations montrent cependant que
le réseau tetrahédrique du silicate est partiellement brisé. La densité d’états vibrationnels
a été également extraite de la simulation et de I’expérience neutronique. Dans ce cas-la,
la correspondance n’est pas aussi bonne car la statistique est dominée par les 8 atomes
d’hydrogene de la simulation. Dans I'expérience la composition du silicate a été variée de la
silice aux silicates du sodium et a I’albite (silicate du sodium aluminium). Il a été trouvé
que les densités d’états dépendent considérablement de la matrice silicatée mais qu’elles ne
montrent pas de dépendance en fonction de la concentration en eau. C’est un résultat tres
surprenant car les spectroscpies infrarouge et Raman suggerent que la relation SiOH/H,O
change considérablement avec la concentration en eau. On conclue ansi que ni la dynamique
de la matrice est affectée par la relation SIOH/H,O, ni les mécanismes associés comme la
viscosité des silicates.

Des trempes réalisées a partir de configurations selectionnées dans la simulation permettent
également d’étudier la structure électronique du verre. En particulier, des états dans la
bande interdite électronique de la silice hydratée ont été trouvés. La corrélation de ces états
électroniques avec les états structuraux intermédiaires pour la diffusion de I’hydrogene a été
discutée depuis longtemps étant donnée leur importance pour la technologie des semicon-
ducteurs.
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Chapter 1

Introduction and Motivation

1.1 Introduction

The structure of silica and silicate glasses has long been considered to be a disordered network
of SiO, tetrahedrons and optional alkali and earth-alkali atoms as displayed in figure 1.1
[Wa38]. That this picture is not completely true has recently been confirmed [Ho01, Me02].
However, it was early recognized that an even more important question is if and how a water
molecule can attack a silicon oxygen bond in such a silicate [Bo28|. How and to what extent

Figure 1.1: Two dimensional pro-
jection of a silicate structure as
proposed by Warren and Biscoe in
the 1930s [Wa38]. A perfect ran-
domly disordered metwork of silica
and metal units is realized.

C

this dissolution is actually performed is still under debate and it is one of the main goals of
this work to analyze this process. The current idea of the underlying process is displayed in
figure 1.2. Many questions have been and are still associated with this reaction: On which

H H .
/ N\ \ )

Figure 1.2: Reaction of water with a silica bond of the network.

side is the chemical equilibrium as a function of pressure and temperature? What is the
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influence of the composition of the silicate? What are the macroscopic consequences of this
dissolution, especially for the viscosity and optical properties. Is there an increase of the
electrical conductivity due to proton injection?

In fact, it has already been found that the effect of water on the above mentioned quantities
is very strong. The viscosity of silicate melts seems to decrease by up to 6 (six!) orders of
magnitude by the addition of only one percent weight of water [Di96b] and even the addition
of water in the ppm regime affects the viscosity of silica [Ba86] in the percent range. In silica
water reduces the refraction index, the sound velocity and the density, while it increases the
thermal expansion coefficient [He62, Br64, Sc59]. Effects on the crystallization rate [Wa64]
and on the irradiation resistance [Ar59, We64] have also been reported.

1.2 Applications and Motivations

The release of water and hydrogen from the silica structure is the main danger associated to
hydrous silicates in nature and technology.

1.2.1 Geology

Explosive volcanic eruptions are one of the most spectacular and also most dangerous events
on earth. Fortunately not all eruptions are explosive. In fact, the eruption style of a volcano
depends on the composition of the magma (molten silicate rock ') in the magma chamber and
the way it breaks into small particles, a process that is called fragmentation [Di96a, Sa99].
If and how such fragmentation occurs is correlated with the viscosity of the magma and
hence its ability to react on external strains imposed by temperature or pressure changes.
If such deformations are slow enough relative to the material’s viscosity, the melt can relax
as a viscous liquid. On the other hand, if the stress is imposed fast enough relative to the
material’s viscosity, relaxation is suppressed and brittle failure and fragmentation are the
logic consequence. According to this picture, it is the viscosity of the melt that is decisive for
the fragmentation process. However, it is very well known that volatiles like carbon dioxide
and especially water govern the viscosity of a silicate melt.

Figure 1.3 shows the viscosity of the haplogranitic melt HPG8&? as a function of the water
content. It can be seen that the viscosity drops by four orders of magnitude with the addition
of the first wt.% of water. More viscous magmas have slower diffusivities for volatiles [Sa99].
The process of fragmentation is supposed to be strongly related to the separation of volatile
(in particular water) bubbles from the melt [Sa99, Pr98]. The equations that control the
evolution of the bubbles will be presented in section 2.3. In the column of a volcano their
growth is governed by the inward diffusion of gas and expansion due to relaxed pressure.
Smaller pressure reduces also the gas solubility in the melt and accelerates further the bubble
growth. When the foam can no longer support the stress induced by bubble growth, brittle
failure and fragmentation occur in the remaining glass. The key for fragmentation is that
the remaining melt has a considerably lower volatile content and therefore a higher viscosity
than the foam (see figure 1.3). Hence the magma has no more time to relax like a viscous
liquid if the volatiles are released sufficiently fast.

'For the composition of natural rocks see appendix C
2HPGS corresponds to the composition (in mol%) of 83.8%Si0s, 8.1%Al>03, 4.7%Na20, and 3.4%K>0
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1016 T T T T T T T T T T T Figure ]..3: Depende’nce Of the
0¥ i viscosity of the haplogranitic melt
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§ 10° ter [Di96b]).
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To conclude the section on explosive volcanic eruption, it should be briefly mentioned how
water comes into the magma. Current models propose that water is already physically
adsorbed in minerals at the sea floor. With continental plate drifting the water saturated
minerals can get into the earth mantle. At typical mantle temperatures of several thousands
of Kelvin and several kbars of pressure, the water dissolves chemically to the silicates [Za02)].

1.2.2 Semiconductor Devices

A major concern in silicon technology is the reliability of metal-oxide field-effect transistors
(MOSFETSs). The MOSFETS consist in principle of a three layered structure, a metal (mostly
aluminum), the dielectric (mostly silicon dioxide), and silicon. The performance of every day
computers scales with the number of such transistors in the central processing unit and in
storage devices. The impressive progress of the semiconductor industry in the fabrication of
integrated circuits accommodating more and more transistors is commonly described by the
so called Moore’s Law. This law summarizes the history of the last 40 years of integrated
circuit fabrication by the statement that the power (measured in the number of transistors) of
CPUs increase by a factor of ten each ten years. This was indeed the case from the year 1970
to the year 2000. The main challenge in the forthcoming years will be to prevent Moore’s
law from becoming more and more flat. This will impose a further miniaturization on the
structures in microchips. However, a natural limit of the miniaturization is certainly given
by the atomic length scale. The requirements for the next 15 years on device processing
are summarized and regularly updated by the “road map” of the Semiconductor Industry
Association [STAO1]. The main features of this road map were recently summarized by Arden
[Ar03].

Regarding the MOSFET, mainly problems related to the gate-oxide interfere with the road
map requirements. Among the problems encountered are an increased leakage current, a
reduced threshold for dielectric breakdown, and gate-oxide charging. These problems have
been attributed to various defect states in the oxide and on the silicon - silicon oxide interface.
This was reviewed by Helms et al in 1994 [He94]. These defects are separated in ones that
cause a positive oxide charge Q,, and others leading to charged interface traps Q;; [P095].
The most prominent candidate for a Q;; is the so called P, center on the silicon side of the
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Si-Si0y interface: -Si = Si3. Dangling Si bonds in the oxide, an example for Q,, are the
so called E' centers: O3 = Si- .... 1Si = O3. Water and / or hydrogen is now introduced
in order to compensate such oxide charges. This can either happen directly at the oxide
growth process (“wet oxidation”) as it was described by Deal and Grove [De65] or later.
The passivation of a P, center by a water molecule is demonstrated in Figure 1.4. During
the diffusion and the passivation process, water molecules can of course dissolve to SiOH
groups as it was indicated in Figure 1.2. This opens, in principle, the possibility of an

. Figure 1.4: Passivation of

. : Si dangling orbitals (P, cen-
8102 '-_H‘o’H b 5y ters) at the Si-SiOs interface
; ’ by water molecules. On the
_____ other hand water can dissolve

to SiOH groups in the oxide.
After [Po95].

oxygen exchange between water molecules and the silica matrix. In fact it was found using
isotope studies that such oxygen exchange takes place [Pf81]. The process of water molecule

diffusion, water molecule dissolution and defect center passivation was reviewed by Helms
et al 1994 and Poindexter 1995 [He94, Po95]. It is pointed out by Poindexter that despite
the outstanding importance of the subject, systematic research on the complex interplay
of the mentioned processes has never been done and only fragmental knowledge has been
obtained. This has certainly to do with the complexity of the processes on the one hand
and absence of appropriate investigation tools on the other. It should be mentioned that
the application of high electric fields in the device or the irradiation during the fabrication
process introduce many more effects that are not mentioned here. Finally, the SiOH site can
now themselves degrade the oxide gate if hydrogen is released by a thermal process or by
irradiation. According to the reaction

SiO-H — SiO-+-H (1.1)

SiO dangling bonds with an unpaired electron that may serve as electron capturers can
be formed. In section 3.1.1 it will be shown that the electronic states of such structural
anomalies are situated in the electronic band gap of amorphous silica. Hence, if the half-
occupied SiO dangling state captures an electron, it operates like an acceptor level in a
semiconductor. The electronic properties of the insulator SiO, are lost and device failures
will occur. Nishikawa et al [Ni93] found with ESR spectroscopy that the SiO- defect density
in fused SiO, is 5-10'% ¢cm 3 at a SiOH density of 4-10'° cm 3. An overview on the hydrogen
release of SiIOH sites in silica is given in [Gr03].
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1.2.3 Fuel Cells

It is generally considered that water bearing silicates can serve as proton conductors for
example in fuel cells [N099, Sh96]. This is also indicated in figure 2.9. However, the detailed
nature of the diffusion process (i.e if the protons are transported by water molecules or diffuse
independently) is less important in this context than a high diffusion constant. Indeed it
could be shown by Nogami et al [No97] that the activation energy for proton conductivity
decreases linearly with the logarithm of proton concentration and if molecular water was
added the activation energy decreased with the logarithm of the product of proton and water
concentration. Starting from this work, efforts are currently undertaken to functionalize
silicates in order to achieve faster proton conduction [Mi02].

1.2.4 Optical Wave Guides

Silica glasses are often used as under water waveguides for information transmission. The
inward diffusion of sea water and/or hydrogen becomes a concern when hydrogen related
defects weaken the intensity of the transmitted signal. Indeed it is known that hydrogen
gives rise to rotational absorption bands in the cable [Fr86].

1.3 The Comparison to Sodium Silicates

A class of silicates that has been investigated with success in the past years was sodium
silicates of the composition xNayO+(1-x)SiO2 [Ho02, Me04]. The mobility of sodium atoms
in sodium silicates exceeds the one of the Si-O network by orders of magnitude [Jo51]. It
has been assumed in the 1980’s by Greaves and Angell et al that sodium silicates contain
a channel structure in which the sodium atoms diffuse [An82, Gr85] to assure the high
mobility. Note that also the addition of sodium oxide to silica causes a viscosity drop similar
to the one presented for hydrous silicate in figure 1.3 [Kn94|. Due to the equivalent valence
shell configuration of the sodium atom and the hydrogen atom, compositions of the type
xHoO+(1-x)SiOy (“hydrous silica”), may show equivalent chemical and physical properties
to sodium silicates. In particular it is interesting if pathways for diffusion exist also in
hydrous silica and if the formation of bubbles could be related to such phenomenon.

Recently, on the experimental side it was predominantly neutron scattering that was able to
give new insights into the structure and dynamics of sodium silicate systems, also at elevated
temperature [Me02]. Here it is a prepeak in the neutron scattering structure factor at roughly
0.9 A ! that emerges with the addition of more and more sodium to the silica network.
Whereas at room temperature this prepeak is almost invisible it becomes very pronounced
at elevated temperatures. This behavior is shown in Figure 1.5 for sodium trisilicate. With
the invention of the effective interatomic potential for silica by van Beest et al [Be90] and its
generalization by Kramer et al. [Kr91] the basis for a computational description was set up.
The problem regarding sodium silicates remained that with the originally assigned charges
of gs; = 2.4, go = —1.2 and qn, = 1.0 charge neutrality could not be achieved for sodium
silicates. Finally it was Horbach, Kob, and Binder [Ho01] who overcame this problem by
introducing distance dependent charges gno(r) for the sodium atom. It became possible
to perform computer simulations for sodium disilicate and sodium trisilicate with 8064 and
8016 atoms, respectively. These simulations could completely confirm the idea of Angell
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et al [An82] for the preferential ion conducting pathways for sodium atoms in the silica
matrix. It turned out that that these channels have a characteristic distance of 6-8 A . The
simulations were able to show that this 6-8 A length scale leads exactly to the the prepeak at
0.9 A~' in the neutron scattering structure factor and that therefore the prepeak is assigned
to the channel network [Me04]. An idea of such channel structure can be obtained from
Figure 1.6. Recalling the chemical similarity of sodium and hydrogen regarding the single

Figure 1.6: Snapshot of the com-
puter simulation of Horbach et al
[Me04].  Sodium atoms (enlarged
blue) diffuse in channels in the ma-
triz formed by Si atoms (yellow) and
ozygen atoms (red).

valence shell electron, the question emerges whether water and hydrogen have equivalent
relaxation mechanisms compared to sodium. Unfortunately, the research on hydrous silica is
confronted with two dramatic restrictions: An appropriate classical potential for silica and
water is not known and on the experimental side, it was found that the amount of water
dissolved to the silica matrix goes with the square root of pressure [Go31]. Hence, in order
to generate samples of hydrous silica that contain as much water as e.g. sodium trisilicate
contains sodium, it is necessary to apply pressures in the kbar range. This condition is of
course naturally fulfilled in the inner of the earth where magmatic activity takes place, but in
the laboratory pressure in these magnitudes, at high temperature, remains an experimental
challenge. Table 1.1 summarizes the differences regarding the experimental and theoretical
approach to hydrous silica compared to sodium silicates.
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‘ sodium silicate hydrous silica
suitable interatomic potential known not known (— ab initio)
experimentally relatively easy difficult (pressure)

Table 1.1: Comparison of sodium silicates and hydrous silica on the experimental and theoretical

side.

The organization of the present manuscript is the following: In chapter 2 the problem of
hydrous silicates is reviewed from a classical thermodynamic point of view. The following
chapter 3 summarizes briefly the successes and the lacks of previously employed methods
of investigation and draws a picture of the current state of the art. The methods for the
present work are presented in chapter 4. The setup of the simulation and the experiments
is described in chapter 5, results from the computer simulation are shown in chapter 6 and
results from the experiments are shown in chapter 7. First comparisons of both are made in
the concluding chapter 8.
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Chapter 2

The Thermodynamic Problem

2.1 Water Dissolution

If water is added to silica (at any temperature) it is generally not obvious if and how water
molecules will dissolve. The silicon atom, as the carbon atom, is four fold coordinated and
has in principle affinities to any of silicon, oxygen and hydrogen. Hence the formation of
Si-Si, O-O, H-H and Si-H bonds has a priori to be considered as likely as the formation of
SiOH groups according to reaction 1.2. However, if a certain analogy to sodium silicates
is existing, SiOH groups should be among the dissolution products. Figure 2.1 gives an
overview over SiOH gas phase units and their chemistry. The arrows in the figure indicate

—— SiHy +Hp

0 s Figure 2.1: Known gas phase

S £ * molecules involving silicon,
/-/(HQSiO)Z oxygen and hydrogen; after

Ha0
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2510 4616 mam HoSiOH K \ ~
* HOSi0
H SIOH-— HSIO 5i0y
o || +H .
510 H
; {HSIO(OHY, HSi(OH)3
(51094

the directions of the exothermal reactions. Indeed, it can be seen that oxygen-rich and
hydrogen-poor species seem to be the energetically preferable states. A brief look at the
formation (or bond) enthalpies of several possible units will confirm this picture. Figure 2.2
shows the formation enthalpies of possible structural units in a hydrous silica liquid. The line
at 0 kJ/mol separates exothermal (H® < 0) and endothermal (H® > 0) species. Note that
endothermal behavior does not necessarily rule out the existence of a structural unit since
counterbalancing of coexisting exothermal structural units has to be taken into account.
It can be seen from figure 2.2 that a silica tetrahedral network is, at any temperature, an
energetically extremely preferable state with formation enthalpies of less than -500 kJ/mol.
Also the formation of water is exothermal with a value of -250 kJ/mol at 300 K, but, with
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increasing temperature, the formation enthalpy gets close to zero kJ/mol at 4500 K. HOSiO
units have a formation enthalpy of -315 kJ/mol [Za95] a value that is located between that
of water molecules and the one of a silica tetrahedral network. In fact this shows that it
is questionable if a lower energy balance is obtained for coexisting silica and water liquids
(summing up a very low and a rather high formation energy), or the dissolution of water to
OSiOH units as indicated in Figure 1.2.

The formation of SiH units would also require the rupture of the silica tetrahedral network
at a very high energy cost. Since the SiH formation to counterbalance is then higher than
the SiOH formation enthalpy, the formation of SiH instead of SiOH is not very likely.
Silicate-water systems are often described as miztures between two liquids [Bu71, Bu94, Oc97,
Ri96, Sc96, Ze96, Tud8, Wa57]. On the other hand it is known that over large temperature
scales neither of the two compounds is a liquid. Under ambient pressure conditions the
fluid range of water (0°C to 100°C) is far away from that of any silicate having liquidus
temperatures of usually more than 1000°C. From this point of view it becomes quickly
evident that the mizture of liquids concept will have its strict limitations by the inventions
of vapor and solid phases and that temperature and especially pressure will govern the
miscibility.

However, basic thermodynamic features of the system will be revealed by a mizture of liquids
model as presented in the following section.

2.1.1 Silicate-Water Systems as Regular Solutions

! Within the fundamental work of Wasserburg [Wa57] it became evident that classical ther-
modynamics is able to predict the impact of pressure and temperature on the composition
of these melts.

This theory represents in principle the application of the Flory-Meyer theory for polymer
solutions [F142, Me35] on the wet silicate problem. The basic idea of this theory is that a
certain volume element can be either occupied by a water molecule or a SiO, unit. Like
atoms in real gases, solvent (water) molecules cannot occupy sites that are already occupied
by SiOs. In the Flory-Meyer approach for polymer solutions, this matter of fact is usually

1The expression “regular” was formed by Hildebrand [Hil6].
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referred to as “excluded volume”. The main idea of Wasserburg is that each of the SiO,
units can share a fraction 7 (0< 7 <2) of its two oxygens with a water molecule. Each of the
total volume sites N can carry one of the Ny SiO5 units or, Ny = N — 7Ny water molecules.
Hence there are

N =  N;+T7N, ways of placing the first water molecule
N —-1= N;+7Ny; —1 ways of placing the second water molecule
N—-2= N1+FN2—2 ....the third ...

the total number of possible choices €2 is given by the binomial coefficient

o (MHTN ) (Ny +7No) (N1 + TNy — 1)....(FNy + 1) 2.1)
B TNQ B Nl' )

Using Stirling’s approximation, the (mixing) entropy S,, = RIn{2 of the system can be

/\
/
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Figure 2.3: Two dimensional model of water speciation in a silicate; Si — O — Si bridge positions
(dashes) and water positions (squares); left: before water dissolution, water positions are collected
on the right hand side; right: after water attack some bridge bonds are broken and water positions

are distributed in a random array. No Further assumptions are made in this model [Wa57].

written as

Ny TNy

m=—RN;In ——— — RFNyIn ——— 2.2
s PN N, TN TN, (2:2)

or, for the mixing entropy per unit cell S,, in terms of molar fractions

Ny TNy
TN TN, o TN TN, (23)

the simple expression

Sm=—RZInT+R(1—-7)In(1—-7) (2.4)

remains. Inspection of equations 2.2 and 2.4 shows that S, is the entropy of an ideal mixture
of N; water molecules and 7Ny molecular segments, or, in other words the perfect solution
of the oxygen atoms of H,O and the bridging oxygens in the silicate.
Taking into account interactions between particles in the melt (i.e. dealing with non-ideal
mixtures), activity coefficients 7; replace the activities a; of a melt component i in the ideal
solution

a;

= 2.5
%=z (2.5)



12 CHAPTER 2. THE THERMODYNAMIC PROBLEM

where T; is the molar fraction of the component. In these terms the Gibbs free energy of
mixing is [St89] for a n-component system

AGm =TiRT N1 + TRT N9z + oo + T RT In (2:6)

Using the regular solution equation for binary mixtures RT In v; = BE? [Hi16], the Gibbs
free energy of mixing can be rewritten as

AG,, = B(®T; +T%2) + RT(T1 In Ty + To In 23)
= Bi(1-Z)+RTZInT+ (1—-7)In(1 —7)) (2.7)

again making use of 7; = T and Ty = 1 — T since the mixture is binary. From of the basic
equation for chemical thermodynamics

AG = AH —T AS (2.8)

related to 2.7 and 2.4, the first term in 2.7 can be revealed as the enthalpy contribution to
the Gibbs free energy:
AH,, = Bz(1 - 7) (2.9)

It can be shown that for some value of x the Gibbs free energy of mixing AG,, is negative
for any value of B. This can be interpreted in the way that each pair of two liquids A and B
is mixable to some extent, which might be tiny as will be shown for the silica water case, or,
unlimited like in the sodium chloride water case. However, equation 2.7 demonstrates that
the miscibility is governed by the temperature dependent interplay between the enthalpy and
the entropy. The actual value of the constant B has to be deduced by fits to experimental
data. At this point it becomes decisive whether B is positive or negative:

1. Positive B’s

For high temperatures only one minimum of the Gibbs free energy exists. The two liquids

Figure 2.4: Temperature depen-
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B N T>T, below a critical temperature T, two
= — T=T, A L.
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=

O
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are mixable to any extent. For temperatures below a critical temperature 7, the energy
of the system can be decreased most if the two compositions z, and zz (and hence two
phases) corresponding to the two minima of G, are realized. For any imposed composition
ZTo < x < zp the system will aim for a more preferable state and return to the equilibrium
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concentrations z, and zg. A miscibility gap emerges.

Figure 2.5 shows the resulting solubility curve. For any temperature below 7, the system

will separate if the composition of the mixture is such that z, < 2 < x3. Two equilibrium
phases, one rich of A and one B rich will form.

oo Figure 2.5: Solubility curve corre-
one liquid sponding to the Gibbs free energy af-
ter equation 2.7. For temperatures
o and compositions below the curve,
% 7777777777777777777777777777 T, the system will decompose in two
o decomposition phases. Rapid quenches freeze the
% mizture and suppress the separation.
1 1 1 1 | 1 1 1 1
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900 ' ' ' ' ' Figure 2.6: Solubility gap in sodium
1 silicate after [Re68].
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2. Negative B’s

For B < 0 for any temperature only one minimum is present. Liquid immiscibility does not
occur and the two compounds are mixable to any extent at any temperature.

The thermodynamic behavior of various silicate-water compositions seems to be quite differ-
ent. In particular the systems silica-water and sodium-silicate-water seem to show a B > 0
behavior and hence a liquid miscibility gap [Tu48, Ke62, Sh64|, whereas sodium alumino-
silicate systems show a B < 0 behavior with continuous miscibility [Ze96, We94, Wa57|.

Due to the high pressures and temperature ranges involved, the exploration of the entire
curves for SiO,-H5O is very difficult. For the system SiO5-NayO the exploration is much

easier. The curve is shown in figure 2.6. Though having started the above derivation of the
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solubility thermodynamics from a model of silica and water, it turned out to be equivalent to
that of any pair of liquids with a miscibility gap. To conclude, it should be mentioned that the
physics of the miscibility gap is the one of a spontaneously broken symmetry, a phenomenon
that this widely known in several disciplines of physics. The most prominent examples are
the broken O(3) symmetry of ferromagnetism or the broken chiral SU(2),xSU(2)g in quan-
tum chromo dynamics. The analogy to such general phenomena leads necessarily to the
question if and how the results -especially the formation of two phases and the existence of
a critical temperature- hold for silicate water systems?

2.1.2 Deviations from the Regular Solution Concept

As already mentioned, complications plug in at this point since the solution does not behave
regularly in any pressure and temperature range. Crystallization and/or the formation of
dry amorphous phases will occur at low temperatures and the question of the existence of
the above described two liquid or one liquid phases arises. As will be seen below, usually
water is kept fluid (or at least as a dense gas) under high pressures in the kilobar range and
is pressed into the dry silicate (crystal) causing a depression of its freezing point. Therefore
at least a phase with two liquids is experimentally accessible. This two liquid phase will have
a lower boundary to the dry crystalline/amorphous phase and an upper boundary to the
one liquid phase. The position of the lower boundary (in the dry case the silicate’s liquidus
temperature) will be governed by the freezing point depression under water addition. This
behavior was investigated by Wasserburg [Wa57].

2.1.3 Phase Diagrams

Due to the numerous phases (fluid, crystalline, amorphous,..) and phase transitions, the
phase diagrams of the silicate water systems are usually rather complicated. The limita-
tion to two dimensions enforces projections to either the pressure-temperature plane, the
pressure-composition or the temperature-composition plane. To provide systematic access,
the diagram of silica-water (which is presented in Figure 2.7) is discussed first.

The main feature of the diagram in the pressure-temperature representation is the melting
relation. The first two kbar pressure shift the liquidus temperature of silica from 1720°C to
1120°C. Further pressure decreases the liquidus point just slightly. On the right side of this
melting line a water rich and a silica rich liquid (according to section 2.1.1) can coexist with
a crystalline phase. Due to these three phases, the area is usually denoted as the three phase
region and the melting (liquidus) curve as the three phase boundary. At the left side, of the
melting relation quartz is in equilibrium with only one fluid phase, a water rich liquid. This
region is denoted as the two phase region. As indicated in figure 2.7, only samples from the
three phase region can be quenched to glass containing ambient mixtures. At 9.7 kbar and
1100°C a critical end point is found, corresponding to the critical temperature of figures 2.4
and 2.5. The two immiscible liquids of the three phase region merge to one as described in
section 2.1.1. The critical temperature 7, of this dissolution gap is strongly pressure depen-
dent. It is 1100°C at 9.7 kbar and should increase as pressure is decreased. Unfortunately
no data is available on this pressure dependence of 7,. The temperature-composition and
pressure-composition projections have so far only been investigated along the three phase
boundary.
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The measured pressure composition diagram along the three phase boundary is similar to
a diagram such as proposed in figure 2.5 if the critical temperature is replaced by a critical
pressure. For a given volume, the easiest and worst way to do this is to use the ideal gas law.
The thermodynamics of these systems has been experimentally intensively investigated in
the 1950’s and 1960’s. How many phases are actually in equilibrium with each other depends
on the composition of the silicate. For silica three crystalline phases are known.

The phase diagrams for sodium silicate - water and albite - water systems are naturally
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much more complicated. They can be found in references [Tu48] and [We94], respectively.

2.2 Water Diffusion

Two different kinds of diffusion play a role in hydrous silicates: diffusion due to an entropy
gradient (also known as self-diffusion) and diffusion due to chemical bond energy gradients
(also known as uphill-diffusion).

Self diffusion processes occur also in chemically homogeneous solids. It will be demonstrated
in section 2.3 that in particular the second type of diffusion is responsible for water release
in magmas and associated phenomena.

2.2.1 Fundamentals of Diffusion Processes

The mathematical theory of diffusion in isotropic substances is based on the hypothesis that
the particle flux J through a unit area of a cross section is proportional to the concentration
gradient C' measured orthogonal to this cross section. Hence:

oC
=-D— 2.1
J Ox (2.10)

D is called the diffusion coefficient. The fundamental differential equation of diffusion in an
isotropic medium can be obtained considering the flux through the faces dxdy, dydz, and
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dzrdz of a volume element. The differential equation obtained this way is given by

oC
— =DV?*C 2.11
The three dimensional generalization of equations 2.10 and 2.11 are usually referred to as
Fick’s first and second law of diffusion [Cr75].
The diffusion of atoms in an isotropic liquid or solid results from a random movement. This
motion is usually called a random walk process. Each diffusional jump is independent of all
others. The analysis of such random walk processes leads to a flux in one dimension that
can be expressed as follows:
() _ (a*)0C 3
J(z,t)=C— ———-+0 2.12

(z,1) T " o gy TOUE) (2.12)
Here z is the displacement of one atom and (z) and (z?) are averaged and the squared
averaged displacement (or mean square displacement) of all atoms, respectively. For the case
of an isotropic three-dimensional liquid (z) = (y) = (2) = 0 and (r?) = (2?) + () + (2?) =
3(z?) equation 2.12 reduces to Fick’s first law with the self diffusion coefficient

2 2
D = Jim &2 = i ) (2.13)
t—oo 2t t—oo Of

Equation 2.13 is called the Einstein diffusion equation. The average distance that an atom
diffuses in time ¢ is approximately given by L = ,/(z?) ~ v/ Dt.

2.2.2 Self-Diffusion

Figure 2.8 visualizes the self-diffusion as a thermally activated process. At a finite temper-
ature an atom can jump to a neighboring site at distance a with a reaction rate R(T). In
order to perform such jump the energy barrier £, has to be overcome.

Q@
Ea

<

>

a

Figure 2.8: Potential barrier and activation energy E, for an atom jump to a suitable neighbor
site. The atom vibrates with the frequency w.

The rate R(T) is proportional to the vibrational frequency of the atom w and a Boltzmann
factor

w E,
R(T) ~ o OXP (— kBT) (2.14)

where T is the absolute temperature. Equation 2.14 has the general form of a thermally
activated process which is usually described with an Arrhenius law.
If in this simple one dimensional model R/2 of the jumps are to the right and R/2 are to
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the left, the net flux between two potential minima in Figure 2.8 in positive x-direction is

given by
aR dN a’RdC dC
J=—— = T2 D 2.15
2 dx 2 dx dz (2.15)
where the one dimensional concentration C(z) is given by C(x) = N(z)/a. D is the so called
diffusion constant or diffusivity which is usually given in units of [m?/s]. From 2.14 and 2.15
one reads off 2R (T) ) 5
a a~w a
D(T) = ~ — 2.1
)= dr P ( kBT) (2.16)

In the liquid state, the above described hopping like diffusion is accompanied by uncorrelated
collisions of atoms. The atoms are confined in nearest neighbor cages and by collisions cages

are ruptured, allowing a displacement motion. The transition from the liquid like diffusion to
the hopping processes in the solid is usually referred to as the glass transition. The behavior
of the cage rupture in viscous liquids and its relation to the glass transition is theoretically
well described by the so called mode coupling theory [Go92]. Liquid like diffusion leads to
deviations from the Arrhenius law (Eq. 2.16) for the diffusion constant.

2.2.3 Uphill-Diffusion in Hydrous Silicates

If water is not randomly distributed in a silicate, or external conditions like pressure and
temperature are changed, diffusion processes other than self-diffusion will govern the the
behavior of the mixture.

In order to quantify the water speciation, it is useful to define a chemical standard equilibrium
constant K (see for example [St89]) for the reaction indicated in Fig. 1.2:

_ C2(0H)
~ C(H;0)
where C(OH) is the concentration of SiOH groups in the glass and C(H,0) is the concen-
tration of molecular water. Since the concentration of lattice groups Si-O-Si remains nearly

Si-O-Si + Hy0 +— 2 Si-O-H with K (2.17)

constant in the range of 0-10 mol.% water, it is omitted from the equilibrium constant K.
Since a chemical reaction is involved, the uphill-diffusion of water molecules in a silicate net-
work cannot be considered to obey the above given standard Fick’s diffusion laws. Due to
the reaction of 2.17, water molecules become immobilized. At this point it becomes evident
that at least two diffusion constants are necessary to describe water diffusion in silicates, one
for water molecules and one for OH groups. It is also clear that, the one for water molecules
will be higher.
Extensions of Fick’s second law to the case of partial immobilization of the diffusing species
are known [Cr75]. In the simplest case, the concentration of immobilized substance C'(OH)
is directly proportional to the concentration of molecular water C'(H;0), i.e. C(OH) =
R C(H30). The extended diffusion law is then given after Crank [Cr75]

0C(H»0) 0C(OH)

— 2 _
5 = Dh,0 VC(H:0) ¥ (2.18)

The equilibrium constant K (Eq. 2.17) can be introduced into the extended diffusion equa-
tion 2.18. The gradient of the water concentration VC' can be calculated for Eq. 2.17
as

VC(H,0) = &I?H)VC(OH) (2.19)
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In non-equilibrium (water dissolution process) it is appropriate to assume that 0C(OH)/dt >
0C(H,0)/0t [Do95], and equation 2.18 becomes therefore

dC(OH) _ _ [2C(OH)Dy o
— =V I VC(OH) (2.20)

Equation 2.20 has the form of Fick’s second law (2.11) with the concentration-dependent
effective diffusion coefficient 2C(OM

D.g = DHQO% (2.21)
As predicted above, it turns out that the real (or effective) diffusion constant for OH groups
Do is different from the one for water molecules DHQO' The shape of the diffusion profile
C(OH, r, t) was investigated by Doremus [Do69]. It was found that the shape is quite differ-
ent from the one for a regular Gaussian diffusion profile, but fits much better to experimental
data [Do69].
The diffusion constants of water diffusion and release in the silicate melt are mostly de-
duced from the associated relaxation times. Relaxation times for water release in liquids
are experimentally accessible by the measurement of the relaxed Newtonian shear viscosity
nn and the un-relaxed elastic shear modulus G2 with the Maxwell relationship [Di95, Go92]:

nn
= — 2.22
= (2:22)

The shear viscosity is hence proportional to the relaxation time 7. The proportionality G
is usually approximated as a constant [Di90]. Relaxation times of hydrous species in silicate
melts were reviewed by Dingwell in 1995 [Di95]. Figure 2.9 shows relaxation times in water
bearing rhyolite . According to the above theory, relaxation times for the silicate matrix

Figure 2.9: Relazation map of wa-
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and water molecules are situated in two different domains. A third domain with much
smaller relaxation times is ascribed to proton transport in the liquid that leads to electrical
conductivity.

2The index oo refers to the modulus above a resonance [Go92].
3For the composition of natural rocks see appendix C.
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2.3 Water Release

It seems plausible that a re-exsolution of the successfully dissolved water (and hence phenom-
ena like bubble formation and explosive volcanism) is possible if temperature and pressure
conditions of the system are changed after the dissolution process. It is clear that such a
release can only take place if the dynamics of the hydrogen atoms decouples from the dy-
namics of the silicate matrix. This can happen in the solid state (below the glass transition
temperature T}) if the sample is exposed to stresses such as radiation as well as in the melt
above T,. Whereas the exsolution in the solid was important in section 1.2.2, the exsolution
in the liquid state is discussed in the following:

Most of the established models for water release in melts suffer from certain number of pa-
rameters that have not been measured yet due to the difficulty of in-situ measurements at
elevated pressures and temperatures. In addition the microscopic origin of the bubbles is
not yet understood and the models are limited to the growth and the stability of the bubbles
[Sa99]. Therefore it will be an essential point of this thesis to understand the initialization
of the water release on an atomic level.

Figure 2.10 shows the approach suggested by Proussevitch et al [Pr98]. The main idea is
to model an isolated spherical bubble surrounded by a viscous liquid. This model reduces
the number of parameters considerably since only one (the radial) direction is taken into
account. Once the bubble is initialized its life is determined by several physical conserva-
tion laws and the bubble radius R(t) of the growing (or shrinking) bubble and its velocity
v(t) are the parameters of interest. The underlying conservation laws shall be presented here:

Continuity equation and momentum conservation
The “first principles” for any kind of flow are the continuity equation

divI +p =0 (2.23)

(with the density p and the mass flux J) and the momentum conservation

dv
P— = —Vp + almk (2.24)
dt
with the radial velocity v, the pressure p and the stress tensor 7;;,. For Newtonian liquids,
the stress tensor can be related to the liquid’s viscosity and the integration of 2.24 with

appropriate boundary conditions for a spherical bubble yields the pressure equilibrium

+ 27 R /z(“’) (2)d (2.25)
= — — 4u z)dz .
Py Da R o(R) n
with the bubbles gas pressure py, the external (ambient) pressure p,, the pressure due to the
surface tension p, = 20/R and the dynamic pressure caused by the work performed on a
viscous liquid. The abbreviation z stands for r=2 and r is the usual radial coordinate.

Mass balance and diffusion
At the bubble interface the volatile diffusion must be balanced against the volatile mass flux

in the melt. Hence p
m
— =47 R%*J 2.2
o TR (2.26)
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Figure 2.10: Bubble Growth Model (BGM) after Proussevitch [Pr98]. The time evolution of bubbles
depending on temperature, pressure, melt composition is modeled. These decisive variables are
driven by numerous processes. The bubble temperature is affected by vaporization cooling, work of
isobaric expansion (pdV ) and heating from the melt heat reservoir. The total pressure of the gas
in the bubble is the sum of the ambient pressure py, the contribution of the bubble’s surface tension
ps and the resistance of the melt upon gas diffusion p,. Aiming for mass and heat balance at the
bubble interface, and a volatile diffusion obeying a diffusion equation, equilibrium profiles for the
volatile concentration C, the temperature T', viscosity n and water diffusivity Dy,o as well as the
bubble radius can be obtained from the model [Pr98].
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Modeling water as an ideal gas (which is considered to be an appropriate approximation in
the melt [We76]) the bubble radius can be directly related to the diffusion constant D of
the volatile in the melt. The diffusion equation itself becomes in spherical coordinates for
spatially variable water concentration

(2.27)

— e
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ot UaT_T28T

Heat balance

The total enthalpy H® of the system is composed of several contributions (1) the enthalpy
mpcpdT’ of the bubble gas (2) cooling due to gas volume expansion at bubble growth (3)
cooling due to latent heat of the volatile exsolution and (4) heating due to heat flux from
the melt. Heat balance in the bubble requires

dH® =0 (2.28)

Again, expressing the contributions (1)-(4) in terms of an ideal gas and spherical coordi-
nates, the heat conservation can be written in terms of calculable variables and measurable
constants. Problems show up at this point since experimental data such as heat capacities
of the volatile in the melt have not been measured yet.

Thermal conductivity
The equation for heat transport can be modeled with a Fourier-Kirchhoff equation for in-

compressible fluids
dT

pc,— =div(k grad T') + i(T,-;C)2 + dQu (2.29)
dt 2n

The first term of the right of equation 2.29 is the normal expression for the thermal con-
ductivity. The second term on the right takes into account dissipative heating processes due
to the viscous resistance of the liquid. The third term, @,; is the latent heat of a optional
phase transition (crystallization or vitrification) of the liquid. The dissipative term can be
expressed in spherical coordinates and hence be related to » and v. The only unknown pa-
rameters entering this expression remain therefore the heat capacity c, and the latent heat

Qvt .

These conservation laws govern in principle the bubble life. The temperature dependent
viscosity can be modeled with an Arrhenius behavior. The diffusion constant is found with
the equilibrium constant of the water speciation reaction and a reference value. The follow-
ing table shows what such a model is really able to perform: It gives an overview over the
required input parameters and the obtained quantities
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required input output parameters

p density T temperature

7 viscosity reference p pressure of the gas

o surface tension C volatile concentration in the melt
cm heat capacity of the melt 7 viscosity of the melt

cp heat capacity of the gas D volatile diffusion constant

Q.+ heat of vitrification R bubble radius

T, vitrification temperature v expansion velocity

Ky Henry’s constant (relates the volatile
concentration at the bubble

surface to the bubble pressure)

x heat diffusion constant

It was shown by Proussevitch et al [Pr98] that the above mentioned equations can be inte-
grated numerically and solutions for stable bubbles can be obtained. Figure 2.11 shows for
example the dependence on the final bubble radius on the initial temperature of the rhyo-
lite* melt. It can be seen clearly that bubbles can grow faster at higher temperature since
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Figure 2.11: The effect of ini-
tial temperature on the bubble radius
dependent on time for a magma.
Higher temperatures lead to lower
viscosities and therefore higher wa-
ter diffusivities. Thin lines indicate
corresponding growth rates. After
[Pr8].

the resistance caused by viscosity is significantly smaller (equation 2.25). The final bubble
radius depends slightly on the temperature due to thermal expansion of the gas (equation
2.28). A nice microscope image of a bubble in a natural silicate rock is shown by Navon et

al [Na9s].

4For the composition of natural rocks see appendix C



Chapter 3

Methods of Investigation

The aim of this chapter is to give an overview of theoretical end experimental methods for
the investigation of hydrous silicates. The history of the application of the particular method
and its suitability are briefly discussed.

3.1 Theoretical Methods

3.1.1 Ab Initio Approaches

Despite of the demanding computational effort, ab initio methods started to be applied very
early to hydrous silicate systems. Interestingly, many ab initio studies have an industrial
rather than an academic origin. The early investigations were mainly driven by the interest of
the semiconductor industry as demonstrated in section 1.2.2. The first ab initio study is the
one of Bennett and Roth which goes back to the year 1971 [Be71]. The investigations were
based on an extended Hiickel approach [Hu31]. Despite the rudimentary electronic structure
method at fixed atomic positions, Bennett and Roth were able to explain basic features
of defect states in amorphous silica. Studies based on tight binding methods [As76] which
seemed to confirm the ideas of Bennett and Roth followed in the 1980’s [Re83, Ro88]. At that
time one had already a detailed picture of the electronic structure of amorphous SiOy and
how defects, also defects related to water, influence the electronic structure. It became indeed
evident that the structural defects mentioned in section 1.2.2 produce electronic states in the
band gap of amorphous silica and hence degrade the electronic insulating properties. The
situation of several defect states in the electronic band gap of silica is illustrated in figure 3.1.
Note that in particular the -O° dangling bond defect is related to the presence of water. It was
also in the 1980’s when the first investigations based on Hartree and Hartree Fock frameworks
appeared. With the development of ab initio packages as GAUSSIAN in the 1990’s [Ga90],
much more systematic studies became feasible. In addition, the computational power allowed
equilibrium geometries of molecular fragments to be computed directly from the electronic
structure. It was Pelmenschikov et al [Pe97]| who first compared the results of Hartree Fock
based calculations to structures of the same clusters obtained using a density functional
framework (DFT) [Ko65]. The predominant accuracy of (DFT) with respect to Hartee Fock
based approaches was commonly recognized in the 1990’s. Hence it is understandable that
DFT is the basis of nearly all modern work on the subject. The current understanding of
hydrous silica from the ab initio point of view is presented by Bakos et al [Ba02, Ba03, Ba04].

23
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Figure 3.1: Electronic states in the
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The latter studies place water and oxygen molecules at several positions of a silica network
and determine the dissolution of the molecules to the matrix with geometry optimizations
by means of energy minimization. The authors were able to obtain activation energies for
diffusion of a water molecule dependent on the ring sizes. It was found that water molecules
exhibit an energy barrier for diffusion of 0.8-0.9 eV in six and seven membered rings of
the silica network. As soon as the water molecules encounter a smaller ring, the activation
energy for diffusion increases rapidly to more than 2 eV. Hence it becomes more likely for
a water molecule to react with the silicate matrix by the formation of two SiOH groups
as demonstrated in figure 1.2. The ratio between SiOH groups and water molecules in the
structure is accordingly determined by the fact if all water molecules had enough time to
diffuse to a less than six membered ring. Such an idea leads finally to the question of an
equilibration time. The studies of Bakos et al refine also the picture of defect creation and
annihilation [Ba04] and the associated consequences for the electronic states (figure 3.1)
[Ba03].

3.1.2 Classical Molecular Dynamics

An instructive review on classical molecular dynamics computer simulations and its appli-
cation to silicate melts was given by Poole et al [P099]. The motion of the nuclei in a solid
is determined by the properties of the electronic structure as will be extensively discussed
in section 4.3. However, the most important features of the vibrations in a solid can be
obtained without detailed knowledge of the electronic properties. The only thing that is
required in order to deduce vibrational properties is an (approximate) idea of the shape of
the electrostatic energy surface throughout the solid (usually referred to as a “potential”).
In this section the effort made in order to find suitable potentials for water bearing silicates
is briefly reviewed.

The discussion should be started by the consideration of pure silica. Several interatomic
potentials for silica have been proposed among which the one proposed by van Beest et al
[Be90] turned out to be one of the best [Ko99]. In this potential the interactions ®;; between
the ions I and J at a distance r are given by

Cus

+A[J6Xp(—B[JT‘) — T—6 (31)

CIIQJ€2

®py =
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where e is the electronic charge. The constants are given by Ag;s; = 0.0 eV, Agio =
18003.7572 eV, Apo = 1.388.7730 eV, Bg;s; = 0.0 A~ Bgio = 4.87318 A~1, Bop = 2.76000
A=Y Csiszs = 0.0 eVA™!, Cgi0 = 133.5381 eVA™!, Cpp = 133.5381 eVA~! [Be90]. The
partial charges are qg; = 2.4, go = —1.2, and €? is given by 1602.19/(478.8542) eVA. The
remarkable property of the van Beest’s potential (BKS potential) is that it contains only
two-body terms and it is nevertheless able to describe a disordered tetrahedral network.
Indeed it could be shown that the competition between the different two body terms mimic
the three body forces [Vo96]. From the computational point of view the lack of three body
contributions is well appreciated since three-body interactions are costly to evaluate.

It was already mentioned in the introduction that the BKS potential has been extended to
alumino-silicates by Kramer, de Man, and van Santen [Kr91] and it was Horbach and Kob
[Ho01] who found an appropriate modification of Kramer’s potential in order to describe
sodium silicate systems. According to the already mentioned analogy between sodium sili-
cates and hydrous silica systems, a similar adaption of Kramer’s potential to hydrous silica
could be envisaged. Unfortunately this idea is rather bad, since the O-H interaction -in con-
trast to the O-Na interaction - was approximated by an effective oxygen Oy in the approach
of Kramer et al. A rupture of an OH bond or a formation of a water molecule is hence
naturally not accessible with the potential of Kramer et al. Clearly this means that despite
the chemical similarity of sodium and hydrogen, the two atoms are completely differently
implemented in the BKS potential, making an adaption possible for sodium silicates only.
The remaining way to go would now be to try an adaption of a three body potential to
hydrous silica. Two kinds of three-body potentials have been adapted to hydrous silicates.

Hill and Sauer Hill used the method illustrated in figure 3.2 to adjust appropriate molec-
ular dynamics potentials for zeolites [Hi94]. Hill’s method consists of an iteration of results
obtained from ab initio calculations. These results are fitted to a molecular potential expres-
sion of the consistent force field (CFF) type [Ma90]. The so generated potential is used to
perform a molecular dynamics whose structural results are compared to the original ab initio
results. The parameters for the potential are refined until the desired accuracy is reached.
The quality of the obtained potential was not tested within the present work.

Garofalini Garofalini and coworkers tried to merge a Born-Meyer-Huggins (BMH) ionic
potential [Fe89] for the silica part with a Rahman-Stillinger-Lemberg (RSL2) water poten-
tial [St78]. The potential seems to work satisfactorily for the description of polymerization
reactions of silica sols [Fe90], but seems to perform badly for basic structural features of
silica [Be04].

Summarizing the simulation work on the subject, it should be pointed out that it can be
considered to be relatively hard to construct a suitable potential. The reason for this are the
many different forms in which water can exist in the silicate network (SiOH groups, free water
molecules, dissolved water molecules...). On the other hand no ab initio molecular-dynamics
simulation has been applied yet. Note that an ab initio simulation and its structural and
dynamical results would also be a highly appreciated basis in order to construct a potential.
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Figure 3.2: Method used by Hill et al to predict zeolite structures. After [Hi94].

3.2 Experimental Tools

3.2.1 Light Scattering

If an incident monochromatic light beam hits an isolated molecule J with a polarizability
tensor o/, the electric field E of the incident light induces a dipole moment

m(t) = o’ - E(t) (3.2)

which varies with time. The spectral density of scattered light can be expressed as [BP76]

Ik} 1 oo ,
— of —twt *
Lif(q,w) = [m] %/_oo dt e " (6a;;(q,0) daif(q, 1)) (3.3)
where v
daip(q,t) =) oz;-]f glaRs(?) (3.4)
J=1

is the component of the polarization fluctuation tensor ;s along the initial ¢ and the final f
polarization directions of the light. The intensity 3.3 has the characteristic A™* dependence
and the attenuation in space which goes as r—2, where 7 is the distance from the sample. I,
is the incident intensity and ¢, the vacuum dielectric constant.

The polarizability component oz{ 1 is regarded as the sum of two contributions: (i) the po-
larizability of the molecule in its equilibrium position with a displacement v = 0, and (ii)
the term linear in vibrational displacements u ~ exp(i§2t) [BP76]. Therefore equation 3.3,
will consist of four terms. One term contains only the rigid molecule polarizability, two
cross terms containing both, polarizability and displacements, and a quadratic term with
the vibrational displacements. The contributions from the polarizability changes involve
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changes of molecular orientation and translations. This type of scattering is usually called
Rayleigh-Brillouin scattering. The scattering arising from the vibrational contributions (ii)
is usually referred to as the Raman spectrum. A mode is Raman allowed if

aaif
(). o

The Raman terms give rise to frequency shifts to w + 2 and w — € which are called the
Stokes and anti-Stokes band. The frequency displacements of Raman shifts are usually in
the range of 100 to 4000 cm~!. These frequencies are much higher than those related to the
equilibrium position polarizabilities arising from (i).

From the above presentation it is already clear that light scattering is not able to scan all
vibrational modes in the solid and certain selection rules will apply. A review of infrared
and Raman modes in hydrous silicates is given in [Da96b|. In the following the main ideas
and problems of the two types of light scattering applied to hydrous silicates are discussed.

Infra Red Spectroscopy The main idea of infrared spectroscopy is to determine the
absorption of infrared light. This absorption is measured in terms of an imaginary refraction
index 7 where n = n’+in"” with the ordinary refraction index n’ and the extinction coefficient
n”. Since the complex refraction index is the square root of the (complex) dielectric constant,
1 = /€ where € = € + i€” the following relations emerge:

6, — n/2 _ nl/2
e =2n'n" (3.6)

The complex dielectric constant is then proportional to I;f(q,w) as given in equation 3.3.
Several ways exist to determine €”. The most common are the measurement of n” by direct
absorption of infrared light and the so called Fourier Transform Infra Red Spectroscopy
(FTIR).

Once the spectrum is obtained, the peaks have to be related to the concentration of SIOH
and H,O units. That this is a rather arbitrary task has already been discussed by Kohn
[Ko00]. Indeed several groups seem to have different ways of processing data. For example it
is controversial if the peak heights or the area under the peak is the quantity of interest for
the concentration. If the area is chosen as a criterion, the subtraction of a baseline becomes
crucial. Here Stolper [St82] and Zhang [Zh97] used a baseline fit by the eye, whereas Behrens
et al [Be96] used a linear extrapolation from different parts of the spectrum. To conclude,
it should be pointed out that infrared spectroscopy is nevertheless a suitable method for
the investigation of hydrous silicates and in the literature there exists a broad agreement
that different hydrous species such as hydroxyl groups and water molecules can be clearly
distinguished with this tool [Da96a].

A particular problem regarding a possible speciation change with temperature arises from
the temperature dependence of the dielectric constants itself. Clearly this means that a
change in the recorded spectrum does not necessarily need to be due to a speciation change
of the dissolved water. This behavior was first recognized and systematically investigated
by Behrens et al in 2003 [Be03].

Raman Spectroscopy In contrast to IR spectroscopy, Raman spectroscopy provides
mainly information on the silicate matrix of a hydrous silicate. Although the OH stretch
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vibrations can be clearly identified at roughly 3500 cm ™! they do not really provide struc-
tural information about the speciation of the OH groups. A review on Raman spectra of
dry glasses was provided by McMillan [Mi84], stimulated by the early work of Stolen and
Walrafen [St76]. A very detailed analysis of the spectra of water containing silicate glasses is
given by Mysen and Virgo [My86]. Raman spectroscopy was able to identify the vibrations
of silicate and aluminosilicate tetrahedron with varying numbers of non-bridging oxygen
sites. However, some Raman bands are still not assigned to vibrations. A severe problem
of Raman spectroscopy is the overlap of numerous bands of a spectrum. Such overlapping
requires under-determined deconvolutions of a spectrum, a process that leads to disagree-
ments and over-interpretations of studies between different groups [Ko00]. Nevertheless it
should be pointed out that Raman spectroscopy is a suitable tool for high temperature and
high pressure studies since the laser can be focused on the small cell geometries that are
used in high temperature and pressure apparatus.

3.2.2 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is one of the most powerful tools to analyze molecular
structures. It measures the chemical shift on the energy spectrum of a nucleus that is due
to its chemical environment. The chemical shift is then recorded with respect to a reference.
The most common reference is tetra methyl silane (TMS). In contrast to any light scattering
technique (where the scattering arises from the total electronic density), NMR is element
specific. Most of the nuclei involved in hydrous silicates have suitable NMR isotopes. A
further plus of NMR spectroscopy is that it is quantitative to a much higher accuracy than
light scattering where the exact determination of the peak heights causes problems. In
addition NMR is capable of probing a variety of dynamic processes in a sample. Nevertheless
NMR can only hardly be applied at elevated temperatures and pressures.

Mainly three types of NMR spectroscopy are applicable and have already been applied to
hydrous silicates: 2°Si NMR [Fa87, Ku92], 'H NMR [Ko89, Ku92] and 7O NMR [Ma98]. It
was in particular the study of Farnan et al [Fa87] performed with #Si (magic angle spinning)
MAS NMR that gave a very clear picture of water speciation in hydrous silica. It could be
clearly demonstrated that four coordinated silicon atoms Q* are converted to Q3-OH and at
high water concentrations to @?-(OH),. Relating the data to the highest theoretical possible
value of OH groups, it was possible to extract a ratio between dissolved and molecular
water. The data could be roughly confirmed by the 'H NMR studies of Kohn et al [Ko89)].
According to the study of Kiimmerlen et al [Ku92] the same ratios are present in hydrous
sodium silicates.

3.2.3 X-Ray and Neutrons

The application of X-Ray diffraction on hydrous glasses is rather limited by the small scatter-
ing factor of hydrogen (due to the low electronic density of the hydrogen atom). Nevertheless
impacts of water on the position of the first sharp diffraction peak (FSDP) of silica were re-
vealed with X-Ray diffraction [Z092, Hi85|. It has already been pointed out by Kohn [Ko00]
that it is very difficult to extract reliable structural information from the radial pair distri-
bution functions obtained from X-Ray diffraction, since they contain contributions from all
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atoms in the glass. The analytical power of such studies is therefore limited.

Neutron diffraction provides similar correlation functions. The absolute values of the coher-
ent neutron scattering length of hydrogen (b, = —3.741-107'5 m) and its isotope deuterium
(beor, = 6.674 - 107'° m) are close to the ones of silicon (bep = 4.149 - 107'° m) and oxygen
(beor, = 5.805 - 107 m). Therefore the structure factor for neutron scattering is more sen-
sitive to hydrogen than that of X-rays. Even if concrete structural information is hard to
obtain, comparisons of the pure and hydrous materials can be made. Zotov at al compared
neutron scattering structure factors for dry and deuterated sodium tetra-silicate [Z096]. It
could be confirmed in this study that the structure factor of the silicate is only slightly
influenced by the presence of water. Note that nevertheless the viscosity drops rapidly upon
water addition (see figure 1.3).

3.3 Vibrations

Once a potential energy function for a structure is theoretically found (by means of ab initio
calculations or by classical molecular dynamics), the vibrational properties can be determined
in the so called harmonic approximation as presented in the following. The vibrational
properties can therefore be considered as the intersection point between experiment and
theory.

For sufficiently small displacements s7,, from the equilibrium position R7 ,the total potential
energy of the system ®(R;,) can be expanded in a Taylor series

3,N 3,N 3,N 2
0P (RS 1 0°®(R
@(Rla) == + E ( Ia) E 5 Ia) Sa[SﬂJ + 0(3) (37)
0R;, OR,10Rg;
. , a,l B,J /3
=0 aﬂ(R Ro)

The first term in 3.7 is the potential at the equilibrium position, the second term is zero
per definition. The derivatives ®,5(R?, R) are usually referred to as coupling or force
constants. Since third and higher order effects are neglected in 3.7 it is called the harmonic
approrimation. Vibrational effects that need to be described by higher terms are usually
called anharmonic effects.

The equations of motion read then in harmonic approximation

@ a 3,N
00 Fra) _ _ > ®os(RE, RG)sps (3.8)
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This is a set of 3N coupled differential equations. The plane wave ansatz

1 .
Sal = \/_M_Iual(q)el(qRI—‘Ut) (39)

leads to the eigenvalue problem

5(Rf, Ry)e IR0 5, (q) = 0 (3.10)
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which has a solution if the secular determinant vanishes:
det {D?f(q) — w? 1} =0 (3.11)

The matrix D}’f (q) is the so called dynamical matrix. The 3N eigenvectors and 3N eigenfre-
quencies of the system are hence obtained by the diagonalization of the dynamical matrix.
In this formalism the eigenvectors {eF} are 3N component vectors (k = 1,...,3N). The real

space vectors e¥ (I = 1,...., N) are proportional to the displacement u¥ of atom I. The 3N
space eigenvectors satisfy the ortho-normality and closure conditions:
S elel = G (3.12)
i
> el el = 0ap0 3.13
€,1€3r = 0aporIr (3.13)
k

Having obtained the eigenvalues wy, and the eigenvectors e¥ it becomes possible to define
widely used quantities in order to describe the vibrational properties of a solid: The vibra-
tional density density of states (vdos)

1 3N
= — ow — 3.14
0(6) = 3 260~ (3.14)
and the partial vibrational density of states (pvdos) with respect to atom type a

() = 5 25 leb0(w — ) (3.15)

k Iea

Definitions 3.14 and 3.15 imply the relation

g(w) = ga(w) (3.16)

The wibrational spectrum is composed by the well explored one of the silicate matrix (1meV
to 160meV) [Be02, Mi84, Zo0la] and the additional modes of OH and H,O [H096, Mi86,
My86, Si89, St82]. The vibrational spectrum of amorphous SiOs is shown in Figure 3.3 as
obtained from classical and ab initio molecular dynamics simulations and a neutron scatter-
ing experiment. The composition of the vibrational spectrum of amorphous SiO, of bend
and stretch vibrations has been analyzed by Taraskin et al [Ta97a]. According to this study
it is the SiO bending and rocking components that principally form the vdos curve in the
range between 0 meV and 100 meV, whereas the stretch vibrations are responsible for the
broad asymmetric peaks at 120 meV and 140 meV. Ispas et al studied the effect of the
addition of sodium oxide on the vibrational spectrum of amorphous SiO, [Is03]. They find
a vibrational spectrum also in the range of 1-150 meV for sodium tetra-silicate but with a
dramatically altered shape.

The vibrational spectrum of the silicate matrix has now to be accomplished by the vibra-
tional excitations of water. Vibrations of water are preferably characterized in crystalline
or amorphous solid phases. Figure 3.4 shows the vibrational excitations as obtained from a
neutron scattering experiment in two forms of crystalline ice. It should be generally recog-
nized that vibrational excitations differ only little between the many forms of ice that are
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known today. However, in liquid water the characteristic excitations are smeared out. In
figure 3.4 one can clearly distinguish several regions of vibrational excitations of ice. The
crystalline phonons are located in a range between 0 and 40 meV. Internal vibrations of
the water molecules are represented by the OH bend vibrations (140 meV -240 meV) and
the OH stretch vibrations (380 meV - 460 meV). It is clear that vibrational excitations are
for molecules accompanied by rotational bands. A precursor for rotational excitations in a
dense crystalline or amorphous structure are the so called librations. These librations are
situated between 50 meV and 130 meV as can be seen from figure 3.4.

3.4 Conclusion and Synthesis

3.4.1 Summary of the Previous Work

Driven by the recognition of the fundamental importance of water for the viscosities of sili-
cates melts, the above tools have been extensively applied to the subject. As demonstrated
above, many experimental techniques have already been employed to get insight into disso-
lution mechanisms and structural features of water in silicates. Considerable progress was
made over the years with these methods but nevertheless almost all seem to lack at one or
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the other point and “unresolved peaks” remain.

On the simulation side, dynamical approaches are absent. Thus, comparisons to experi-
mentally recorded vibrational spectra do neither exist. In literature it is generally accepted
that

e according to figure 1.2, water is found in at least two chemical different forms in silicate
melts, namely water molecules and SiOH groups

e the equilibrium 1.2 is strongly influenced by the total amount of water (see [Di90] for
data of albite)

In particular Raman and infrared spectroscopy suggest that for total water concentrations
smaller than 3wt.% SiOH groups are the dominating dissolution species and for concentration
greater than 3wt.%, HoO molecules become more numerous than SiOH units.

On the other hand, neither a clear picture of the diffusion reactions of water and hydrogen
nor an idea of diffusion constants do exist. Questions of the position of the balance 1.2,
dependent on temperature, pressure and silicate composition as well as the initialization of
the bubble formation are not understood and are still debated.

The aim of the present work is to provide explanations for these questions with molecular
dynamics computer simulations and neutron scattering techniques.

3.4.2 The “hydrous silicate area”

Before employing any further experimental or theoretical method to the subject of hydrous
silicates it is necessary to have an idea where typical vibrational excitations and typical space
correlations are found in such system.

The “hydrous silicate area” has to be such that the complete wvibrational spectrum and
diffustonal motions are covered. The vibrational spectrum of pure SiO; and water were
discussed in section 3.3. It became evident that the principle excitations of silica and water
are situated between 0 and 160 meV. Stretch vibrations of OH bonds have energies of more
than 350 meV. Between 240 meV and 350 meV no significant vibrations can be expected.
Figure 2.9 proposes relaxation times for an extended temperature scale between 10~8s and
10~°s. The assumption of an equivalent channel relaxation behavior as was observed for
sodium atoms (see section 1.3) gives rise to a range of typical space correlations of roughly 6
A . Taking into account the different size of the hydrogen atom and also a different affinity
to certain atoms, it seems realistic to assume a relaxation structure for hydrogen atoms
between 2 A and some 10 A.

Figure 3.5 gives an overview over accessible time and space ranges by each method and
relates these to problem specific frequencies and interatomic distances of hydrous silicates
as discussed above.

3.4.3 New Approaches

Figure 3.5 indicates that space and time correlations of interest for hydrous silicates should
be accessible with molecular dynamics simulations.

The section for water relaxation dynamics is naturally more challenging from the simulation
point of view since relatively large space correlations have to be covered, a fact that imposes
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Figure 3.5: Overview of time and space ranges covered by several experimental tools and computer
simulations. Techniques that do not directly provide distance information are indicated only as bars
parallel to the time axis. Arrows show zones to which techniques are aimed to be extended. All
correlations situated right of the purple line are accessible with present day’s computers. Both, the
position of typical vibrational frequencies as well as the area where one expects water diffusion are
accessible with neutrons and molecular dynamics techniques. After [ESS02].
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a large simulation box. The interesting space correlations are nevertheless at least one order
of magnitude within the current limit. The situation for time correlations is even better.
This opens in principle the use of “luxury” methods such as ab initio approaches.

On the experimental side the instruments of a neutron scattering center like the Institute
Laue-Langevin (ILL) are able to cover the interesting regions. An exception may be the
OH stretch vibrations at several hundred meV that are hardly accessible with neutrons.
Since Raman scattering turned out to be capable of resolving these vibrations the lack of a
neutron scattering description is acceptable. Apart from a relatively good coverage of the
interesting time and space correlations, neutrons have further well appreciated advantages
for the investigation of hydrous silicates:

e Neutrons are sensitive to the complete vibrational spectrum from 0 to roughly 150
meV. Selection rules for specific modes that govern the Raman spectra do not apply for
neutrons. Furthermore, as it will be shown in section 4.2, quantities that can be easily
related to a true vibrational density of states can be extracted from neutron signals.
Note that this quantity is directly comparable to results extracted from molecular
dynamics simulations.

e Neutrons are not sensitive to the electronic density in the solid, which would be very
low for the case of hydrogen. Neutrons have, on the opposite a very high sensitivity
to hydrogen atoms, a fact that is reflected by the very high neutron scattering cross
section of hydrogen (o; = 81.67 barn) compared to those of silicon (o5 = 2.173 barn)
and oxygen (0s = 4.234 barn). In addition, the hydrogen isotope deuterium has a
rather low scattering length. This opens in principle the possibility of extracting the
contributions of the protons to the vibrational spectrum. The higher nuclear mass of
deuterium can give interesting insights into the speciation of hydrogen since the mass
difference between hydrogen and deuterium has different consequences for vibrational
and rotational motions.

What remains to be summarized in this section is that despite the immense body of previous
work, molecular dynamics simulations and neutron scattering techniques have not yet been
applied with their full potential to the subject. It should again be pointed out that it was
exactly this combination which lead to fundamental new ideas in the case of sodium silicates.
This is the starting point of the present work. The aim of this work is to build up a basis
from which it will be possible to merge the two approaches for hydrous silicates as was
done for sodium silicates [Me04]. That this is a rather demanding task due to the elevated
pressures on the one hand side and the lack of a potential for molecular dynamics simulation
on the other was already pointed out in table 1.1. The lack of a suitable potential should
be overcome with the use of ab initio Car-Parrinello molecular dynamics, a method that
was already successfully applied to many silicate systems [Pa0l]. Details for silica and
sodium silicate systems are given in references [Sa95a, Sa95b, Pa97, Be02, Is01, Is03]. The
compromise of a small simulation cell and the loss of the access to dynamical properties is
unavoidable. Note that also the development and the testing of a potential would require
the comparison to an ab initio study. On the experimental side the access to dynamical
properties with neutrons can be supposed to give some new insight into the system, even if
currently un situ measurements in the neutron beam at high temperature and high pressure
are not feasible.



Chapter 4

Methods for this Approach

4.1 Neutron Scattering - the Experiment

Neutrons coming from a reactor beam tube have usually a broad distribution of energies.
Neutron guides lead the neutrons to the scattering instrument. So called single crystal
monochromators select a beam of neutrons in a narrow energy band by means of Bragg
reflection. The monochromated beam penetrates the sample which is usually mounted on a
sample table. The neutrons are scattered by the sample into all directions. In the sample the
neutrons can conserve their energy -elastic scattering- or they gain or lose energy -inelastic
scattering. At a finite temperature the neutrons can interact with phonons in the sample,
leading to inelastic contributions. Accordingly behind the sample the neutron beam has
again a broad distribution of energies.

4.1.1 Neutron Diffraction

Neutron diffraction measurements are usually carried out at so called two-axis spectrometers.
Two-axis spectrometers can be understood best by starting from the more complex three-axis
spectrometers. These three-axis spectrometers are used to selectively measure the scattering
function S(q,w) at chosen values of q and w. The g-w selection is performed using a second
type of monochromator, the so called analyzer crystal. The name three-axis spectrometer
refers to the axis of the monochromator, sample and analyzer crystals.

In contrast to three-axis spectrometers, the analyzer crystal is now missing in two-axis
spectrometers. At a given value of q the integration over all neutron energies is the logic
consequence. If the scattered intensity is recorded in a detector, the signal is proportional
to the static structure factor defined in Eq. 4.12.

For the present work, the ILL diffractometers D20 and D4 were used. The diffractometer D20
has a very high flux and is equipped with a very large position sensitive detector. Figure 4.1
gives an overview over the instrument. The diffraction pattern is recorded at 1600 positions
covering the 160° angle.

4.1.2 Time-of-Flight Spectrometry

An additional time-of-flight measurement is the only principal difference between diffraction
and time-of-flight spectroscopy. In time of flight spectrometry the energy of the scattered

35
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Figure 4.1: Layout of the ILL diffractometer D20.

neutrons is analyzed by measuring their time of arrival at the detectors which cover a wide
angular distribution, too. Such a flight time scan can be obtained if the monochromated
beam is pulsed by a chopper. Neutrons that lost energy in the sample will then have
a longer flight time and hence a later arrival at the detectors than elastically scattered
neutrons, whereas neutrons that gained energy will arrive earlier than elastically scattered
neutrons at the detectors. Figure 4.2 shows the setup of the time of flight spectrometer ING
at the ILL. The triple monochromator with slightly different angles of the monochromator
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Figure 4.2: Layout of the ILL time-of-flight spectrometer ING.

assures a flux increase at the cost of an energy band broadening. Second order Bragg reflexes
are suppressed with a Beryllium filter. The chopper system consists of two choppers, the
suppressor chopper and the pulse chopper itself. Both have so called Fermi geometry which
means that the slit(s) are rotating around a vertical rotation axis. Appropriate tuning of
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the angular velocity of the two choppers assures the suppression of neutrons of the n+1 and
n — 1 acceptance cycle at the detection interval for neutrons of the nth chopper acceptance
cycle. The relation between the two angular velocities of the chopper is usually called the
ratio. The detectors count then the neutrons arriving in a certain detection time A7 in the
time channel n. Identifying A7 with an energy width AF, the count rate in the detector is
the one given in Eq. 4.4. The absolute flight time is given as

t=nAr (4.1)

The energy transfer in the sample is then given as

2
1 L

hw = E; — —my, (4.2)
2 (L\/mn/QE,- + AnAT>

with the incident neutron energy FEj;, the neutron mass m, and the flightpath L from the
sample to the detectors which is 2.43 m in the case of IN6. An is the difference between the
flight path number n and the flight path number n; of the elastic channel.

4.2 Neutron Scattering - the Theory

The principle goal of neutron scattering experiments is to measure the number of scattered
neutrons depending on the momentum hq and energy E exchanged with a sample. In terms
of the neutrons’ incident and scattered wave vector, k; and ky, the wave vector transfer q
is given as q = ky — k; and the magnitudes of the momentum and energy transfers read as
follows:

¢ = kI+ k? — 2k;k¢cos 20
hw = 1?/2my (k7 — k7) (4.3)

where k; = \/2m, E;/h® and k; = \/ 2m,(E; + hw)h?. In neutron scattering experiments the
scattering intensity is described by a double differential cross section per atom d%c/dQ2dE
and 20 is the angle between k; and ks (scattering angle). This cross section is related to
experimental quantities as follows: The number of counts in a detector I is proportional to
the time averaged neutron flux at the sample ®, the number of atoms in the beam N, the
detector solid angle A2 and the detector efficiency f, and finally the width of an energy
channel AE. Hence

dQdFE
In order to obtain a quantity that is completely independent of the details of the scattering

I = ONAQfAE ( o ) (4.4)

experiment and hence being exclusively a property of the sample under investigation, the
average scattering function S(q,w) is introduced:

™

do b2 f S(q,w) (4.5)

=)L

dwdFE () k

Since the interaction of a neutron with a nucleus happens on a much smaller distance than
a distance constituted by the neutron’s wave length, the scattering is isotropic. It becomes
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possible to describe the scattering process with the amplitude of the scattered wave, the so
called scattering length b;. In Eq. 4.5 the scattering lengths are averaged over all atoms
(b?) = 1/N ¥, b2 and the spin and isotope distributions of each element (indicated by the
bar). The average scattering function is given by

S(q,w) = 72 o [ S Bt O 0) ety (4.6)
™

> 1J

It contains a double indexed sum. The spins of the nuclei are generally not correlated,
hence, b;b; = b; by for I # J. Therefore it becomes possible to separate the sum into two
contributions that are called coherent and incoherent:

Seon(qyw) = m/w ;EE(eiqu(o)eiqRJ(t)> et (4.7)
Sinc ) = — / b2 — b_2 —iqR7(0) ,iqR1(?) iwtdt 4.8
(@) 27rhN @) ) 00 ) e (4.8)

If solids at ambient temperature are investigated, the atoms move around well defined equilib-
rium positions R;. If the corresponding wave vector is small compared to typical vibrational
frequencies wy, (wy, > fig®/2M7), it is appropriate to expand the scattering function (eq. 4.6)
in terms of orders of the phonon scattering [Pr86:

S(q; (,U) = Selastic(qa w) + Sl phonon(qa UJ) + SQphonon(q; (,U) +.... (49)

In the harmonic approximation (see section 3.3) the first terms may be given in a closed form.
In the following the various terms will be discussed regarding their physical information on
the sample.

The 0-th order:
The first term in Eq. 4.9 contains information on the elastically scattered neutrons. Its
coherent part reads

Scoh,elastic(qaw) = Sel(q)é(w)

1 S :
= J(w) —= brby e~ (WitWo) gia(Rs—Ri) (4.10)
N 37

~ >

Sel(q)

Sei(q) is the so called elastic structure factor. For an isotropic system the exponent terms

in the Debye-Waller factors are
1
L) (4.11)
where (u?) is the time averaged mean-square displacement of atom I averaged over time (see
section 2.2.1).

The integration over the energy of Eq. 4.7 gives the static structure factor

Wi(q) =

+oo

S(q) = Scoh(q: )

—00

by by (e "aR1(0)giaRs(0)) (4.12)

It is important to note the difference between S(q) in Eq. 4.12 where S(q) depends on the
instantaneous relative positions of the particles, and S¢(q) in Eq. 4.10 which depends on
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relative positions of equilibrium sites.

The first order:

For phonon orders higher than zero, the scattering is naturally inelastic and two possibilities
for a neutron arise: Scattering with energy gain (“up-scattering”) and scattering with energy
loss (“down scattering”). According to these two possibilities, the higher order terms have
always two contributions. The first order can be written as follows:

1 1Fi(a)?
Slphanon(q: w) = 2N<b—2> ; Wi [ﬁnk + 1){((“) - wk)J+Snk>5((i) + wkZ] (413)
energy loss energy gain
with the dynamic structure factor
brbs ;
|Fr.(q Z L o=Wila)-Wi(a) (qe'}) (qeﬁ) e"aRi—Ry) (4.14)

LT

where ek is the displacement vector of atom I belonging to the normal mode k with eigen
frequency wy, and the population factor (ny) = [exp{hwy/ksT} — 1]"L. A common approx-
imation in order to further simplify the expression for the first order phonons (Eq. 4.13) is
the so called incoherent approrimation. The main idea of this approximation is that if Eq.
4.13 is averaged over a certain range of ¢, the interference effects of the phase factors cancel
out. It can be shown that indeed this is the case if the scattering arose completely from
the incoherent part of 4.13. For the case of neutron energy loss (phonon creation +1) the
incoherent part is given as

1
N(®?)

with the one phonon density of states g(w) = 1/3N 3V §(w — wy). If the average over Eq.

Siner1(q,w) = 3Zb2 —ZWI‘;WI' (g + 1)g(w) (4.15)
I w

4.15 could be performed over each term separately, the result would be the following:

_ 2
Sinecr1(4,0) = ¢ i (i + 1)g(w) (4.16)

where M ' = Sy M;'/N and the Debye Waller factor is calculated using a mean square
displacement taken over all atoms in the sample: W = ¢%(u2)/6. Equation 4.16 is strictly
valid only for incoherent scatterers if only one atom type is involved. For all other systems,
the approximation works more or less well if sufficiently high g-ranges are taken into account.
Usually computer simulations help to estimate the magnitude of the error. In general it is
recognized that even in the worst cases the error does not exceed 20 % [Sc02].

Second and higher orders:
The third term S phonon(d, w) and higher orders in Eq. 4.9 represent scattering processes to
which two or more phonons contribute simultaneously. In the case of an isotropic system

the the n-phonon scattering function can be written in incoherent approximation as [Re84]
1.
T, (hw)

n!

hw h2 2
Sncla.) = ¢ e 3 (U ) (417
1Strictly M would be here M = Y, M;/N which goes over to the above given definition for M ! if the

atomic masses are not too different. Note that the actual form of the normalized spectrum is indeed very
insensitive to the value of the mass.
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The mean square displacement 7y can be expressed as

— K oo g(hw hw
y=u?= QM/O (ﬁw )cosh (2/€BT> d(hw) (4.18)

and the functions T, (Aw) are recursively defined via the expression

“+o00o
T, (hw) = / T (hw — he') Ty (F) d(Fis) (4.19)
starting at
Ty (hw) = 9(hw) (4.20)
2hw sinh (21?:T)

In an iterative process it becomes then possible to determine the whole inelastic scattering.
The first step is to calculate the density of states as if higher orders would not exist. The
result is taken into Eq. 4.18 and Eq. 4.20 in order to calculate the next higher order with
Eq. 4.19 and Eq. 4.17. The deviation of the measured scattering function and the iterated
one (after Eq. 4.17) is then used to refine the guess for the vibrational density of states
g(w). This process is repeated until the g(w) converges in a self consistent way. The order
of phonon terms is freely chosen under the limits of a good and rapid convergence.

Equation 4.17 shows that the n-th phonon term varies as (hg?/2Mw)". Hence the terms
become decreasingly significant as n increases (note that (fig?/2Mw) < 1 was the condition
for the multi phonon expansion 4.9). The higher order phonon terms constitute normally a
relatively smooth and low background under the one-phonon vibrational spectrum.

The equations 4.17 to 4.20 are valid for one particular wave vector transfer q. If the inco-
herent approximation has to be applied or, in order to have a better statistics, it is often
desirable to sum over all wave vector transfers q. This summation leads to [Re84]:

1 1w & R2\" 1 T (hw)
S — 2kgT _ I, 2 -1, 2 n 4.21
kzkf (q,w) 2]{126 nzl(ZM> f)ﬂH—l( (fyCImam) (fqum)) TL' ( )
where o
I,,(z) :/ y"e Ydy (4.22)
0

It it obvious that the averages over the masses and the scattering vectors taken in 4.16
can only lead to an effective density of states gess(q,w) if several atom types, in particular
coherent scatterers are involved. Such an effective density of states g.r;(q,w) can be defined
via the relation

gerf(d,w) = B(q,w)S(q,w) (4.23)
with »
B(q,w) = 2q—2(n +1)7t (4.24)

The effective density of states 4.23 is experimentally accessible. The structure factor can
be extracted from inelastic neutron scattering data while the averaged Debye-Waller factor
in 4.16 and 4.24 is obtained from a comparison of the ¢ dependence between the elastic
structure factor 4.10 (extracted from the ¢ dependence of the elastic line) and the static
structure factor 4.12 (extracted form a neutron diffraction experiment). The remaining task
is now to relate the effective vibrational density of states g.rr(q,w) to the true vibrational
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density of states g(w) = 1/3N 3V §(w—wy) 3.14. A suitable way to do this was proposed by
Taraskin and Elliott [Ta97b]. Taraskin and Elliott introduced a correction function C(q, w)

defined by
1 3N

Gers(@yw) = Cla,w)g(w) = o ; C(d, wk)d(w — wi) (4.25)

where C(q,w) becomes unity for the already considered totally incoherent scatterer of a
single atom type.

For all other scatterers the mass and q averages have to be taken into account. Using
equations 4.25, 4.23, 4.24, and 4.15 it can be shown that C(q,w) has in the incoherent
approximation the general form [Ta97b]

A
Clarn) = g7y 2 g paln) (4.26)

where a runs over all species of atoms in the system. The quantity is related to the partial
vibrational density of states 3.15

9o (wi) k|2

Palwr) = = e 4.27

() = S = S el (.27

and constitutes relative partial vibrational density of states. The index 7 refers to all atoms

of type a. A further simplification of 4.26 can be obtained setting the Debye-Waller factors

to unity. This approximation works rather well for ambient temperature and of course below.
The correction factor C(¢,w) can then be written as
M b2

Clw)=-=)) —2pu(w 4.28

) = a5 Z 3o-palin (4.29

and depends therefore in the simplified form only on the masses and scattering lengths of

the involved atoms. Substituting 4.28 into 4.25 leads to the final relations between the true
and the neutron vibrational density of states

0is() = |35 5 )| 960 = 1 3 oo (429

It should be pointed out that the small mass of the hydrogen atom and its huge incoherent
scattering length make the correction particularly important for hydrous silicates. For further
use, according to commonly used abbreviations, g(w), g,(w), and gs(w) will, will be referred
to as vdos, pvdos, and ndos, respectively.

4.3 Ab-Initio Molecular Dynamics - the Principles

The goal of molecular dynamics simulation is to solve the time-dependent Schrédinger equa-
tion

ih%@ ({r:}, {R/},t) = H® ({r;}, {R/}, 1) (4.30)

for the electronic {r;} and nuclear {R;} degrees of freedom of a material. The Hamiltonian
for such an atomic many-body system is composed of the kinetic contribution of each particle
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(T7 and T;), electron-electron interactions Vj;, nucleus-nucleus interaction V7; and electron-

K
nucleus interactions V;r:
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The study of the dynamics of a polyatomic system according to equations 4.30 and 4.31 is
according to [Bo98] far beyond computational possibilities - now and for decades to come.
Note that the equations to solve do not even contain relativistic properties!

In order to facilitate the complex equations, one switches commonly to dimensionless units
where h = e = 1.

4.3.1 The Born-Oppenheimer Approximation

The most prominent approach to come to a computationally feasible molecular dynamics is
the so called quantum adiabatic or Born-Oppenheimer approximation [Bo27]. This approxi-
mation allows to split, at a fixed time, the time independent Schrodinger equation

HP ({r:}, {Rs}) = E@ ({r:}, {Rs}) (4.32)

into an electronic and a nuclear subsystem and to establish separate Schrodinger equations
for the two subsystems. Since the Hamiltonian H is additive, the Ansatz

@ ({ri}, {Rr}) = ¥({r:}, {Rr})x({Rr}) (4.33)

is used yielding

T+ Vi + Vi W(rh (Ra)) = Ea¥({rib {Re)) (4.34)
T+ Bt Vi xR = Bu(Ra)) (4:35)

It is clear that Eq. 4.35 is not exact since the nuclear kinetic energy operator 77 acts accord-
ing to the Ansatz 4.33 also on the electronic wavefunctions ¥({r;}, {R;}). The neglected
terms are of the form 1/(2M;)V¥ and 1/(2M;)V3W¥. Note that these terms represent
the electron-phonon coupling and therefore the separation in Eq. 4.34 and Eq. 4.35 will
break down completely for the case of superconductors. For other cases, the contributions
of such a typical term can be approximated. Since |V;¥| < |V;¥| (in the worst case the
electrons follow the nuclei instantaneously) one finds with the momentum of an electron
Pe = 1/(2me)V;:

VL R ~ (59) T (4:36)

Due to the mass ratio m./M; of roughly 1/10000, the terms are neglected and 4.34 and 4.35
are justified.

A first type of molecular dynamics can be obtained applying the time dependent Schrodinger
equation ihd/0tx({R;}) = Hix({R;}) on Eq. 4.35. Further simplification of such dynamics
is achieved if the time dependent ionic Schrédinger equation is replaced by a classical New-
tonian equation of motion. In the limit A — 0 the time dependent Schrédinger equation
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reduces to the energy conservation H; = const and the equations of motions are obtained
from 4.35 within in the Hamilton-Jacobi formalism:

MR, (t) = —V,E.(R;)  where E,=ming{(¥|He + Viy |T)} (4.37)
He

A molecular dynamics algorithm consists then of solving the static electronic structure prob-
lem according to
HV = E ¥ (4.38)

at fixed atomic positions at a molecular dynamics time step and a consecutive ionic displace-
ment according to a classical molecular dynamics. The time dependence of the electronic
structure is only a consequence of the nuclear motion. The molecular dynamics described
by 4.37 and 4.38 is usually referred to as Born-Oppenheimer Molecular Dynamics.

4.3.2 Car-Parrinello Molecular Dynamics

Typical classical molecular dynamics simulation trajectories are of the order of 10*-10° time
steps. A straight forward computation of the adiabatic approach as presented above would
require the solution of a self-consistent electronic structure problem at each time step. Pa-
store, Smargiassi and Buda [Pa91] noted in 1991 in their paper on the Theory of ab-initio
molecular dynamics calculations that the adiabatic approach is not feasible for larger systems
since even modern minimization algorithms need in the order of ten iterations to converge.
However, Car and Parrinello invented a method to circumvent the explicit minimization
by partly undoing the adiabatic approach [Ca85]. Note that the quantum-adiabatic ap-
proximation reduced the computationally, extremely demanding, oscillatory behavior of the
electronic wave functions to the averaged motion around the minimum of the potential en-
ergy surface (still expensive to compute). In 1985 Car and Parrinello proposed to replace the
adiabatic dynamics of the electrons by a fictious classical Newtonian motion which oscillates
around the energy minimum again. The logic of this idea is shown in figure 4.3.

= fictious Newtonian system
full quantum system < .
1 v - (Car-Parrinello)
quantum classical
adiabatic adiabatic
approximation approximation
adiabatic model adiabatic model with
(time-dependent Born-Oppenheimer) DET Kohn-Sham operator

Figure 4.3: Logic of the Car-Parrinello method (after [Bo98]). The aim of a molecular dynamics
computer simulation is to model the quantum mechanical system. This can happen in the Born-
Oppenheimer framework (see section 4.3.1) or, preferably by the invention of a fictious classical
Newtonian system, the Car-Parrinello approach.

The idea of the replacement Newtonian dynamics is developed in the Lagrangian formalism.
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The following class of Lagrangians with a nuclear and an electronic kinetic energy and the
electronic potential was invented

1. . 1 . . ,
Lep=) §MIR§ + Z §u<wi|1/1,~> —  (Vo|H|¥,) + constraints (4.39)
- — - potential energy orthonormality
kinetic energy

L is a function of the ionic positions R; and a functional of the ground state electronic wave
function ¥,. This wavefunction is usually built up by the one particle wave functions ;
(which are treated as classical scalar fields) in terms of a Slater determinant ¥, = det{v;}.
The parameter u is a fictive electronic mass of the unit energy x time?. If the electronic
wave-functions are treated as classical particles, the corresponding equations of motion are
obtained from the associated Euler-Lagrange equations:

MR;(t) = =V (U,|H.|¥,) + V {constraints} (4.40)
. ) J )
p(t) = _(5—%“(\1’0‘%6@0) + rw{constralnts} (4.41)

According to these equations of motion, a temperature > ; M IR% can be assigned to the
ions and a fictive temperature ), p(?/),\?/)z) is associated to the electronic degrees of freedom.
In these terms zero electronic temperature means the electronic subsystem is on the Born-
Oppenheimer surface (follows the nuclei instantaneously). The electronic mass p constitutes
a kind of control parameter for the deviation from the Born-Oppenheimer surface [Pa9l,
Bo99]. For the time evolution of the system it is important to note that an electronic
subsystem close to the Born-Oppenheimer surface will stay close if its temperature can be
kept low. In fact it turns out that one of the main tasks in Car-Parrinello molecular dynamics
is to achieve a separation of the electronic and nuclear motion such that the electrons stay
cold for the considered trajectories. This is possible if the energy spectra of the nuclear and
electronic vibrations do not overlap.

4.3.3 The better method?

Both methods, Born-Oppenheimer and Car-Parrinello dynamics require the efficient calcu-
lation of the forces on the nuclei (Eq. 4.37 and Eq. 4.40). A straightforward numerical
determination of

FI = _VI<‘IIO‘%6“IIO)
= (VU He|TUp) — (U,|ViH Vo) — (V| He |V T,) (4.42)

is too costly for molecular dynamics. Fortunately, if ¥, are eigenfunctions, two of the terms
in Eq. 4.42 vanish. Hence
F; = —(U,|ViH|T,) (4.43)

Equation 4.43 is known as the Hellmann-Feynman Theorem [He33, Fe39]. In practice
ViV, = 0 will never be fulfilled due to a numerical error. Two different types of errors
occur. Errors arising from

e the incompleteness of the basis set and localization of basis functions



4.3. AB-INITIO MOLECULAR DYNAMICS - THE PRINCIPLES 45
e the non self-consistency of the effective one particle Hamiltonian (e.g. Eq. 4.51)

It is obvious that with the employment of non-localized complete basis sets (such as plane
waves) the first type of error can be suppressed. For all other types of basis sets the in-
completeness forces (also known as Pulay forces [Pu69]) have to be properly included in the
calculation. Unfortunately things are more delicate concerning the errors emerging from non
self-consistency. These contributions vanish only if the wavefunction ¥, is an exact eigen-
function of the Hamiltonian H, in the subspace spanned by the finite basis set used. Due to
numerical errors, complete self-consistency is never reachable in a numerical approach.

It is now crucial that the impact of these errors on the accuracy of Car-Parrinello simulations
is irrelevant. Since the Car-Parrinello method does not make use of the minimized expec-
tation value of the electronic Hamiltonian, ming, {(¥,|H|¥,)} as the Born-Oppenheimer
method does (Eq. 4.37), full self-consistency is not even required in Car-Parrinello dynam-
ics. Furthermore, the finite deviation from the Born-Oppenheimer surface (the deviation
from full self-consistency), pi);(t) # 0, counterbalances the non self-consistency force. In
this picture, a vanishing mass-time-acceleration /J,zz/Jz(t) = (0 would correspond to the tight
minimization ming, {(¥,|H.|¥,)}. The conservation of the Car-Parrinello energy is the logic
consequence:

dECY  d (1 . 1 Y
= g o (Wl + 5 3D MIRY + (oM To) =0 (4.44)
i I

This motivates the formulation of the “Car-Parrinello credo”:

Whereas deviations from the Born-Oppenheimer surface degrade
the accuracy of the forces in Born-Oppenheimer dynamics,
Car-Parrinello dynamics is stabilized by the conservation
of the so called extended Car-Parrinello energy 4.44

The actual choice of the molecular dynamics method between Born-Oppenheimer and Car-
Parrinello depends on the system to be investigated. As it was already pointed out in section
4.3.2, it is essential for Car-Parrinello molecular dynamics that the electronic temperature is
kept stable (within oscillations), i.e. electrons stay close to the Born-Oppenheimer surface.
In practice this works for systems where electronic and nuclear vibrations are energetically
well separated, in particular for materials with high electronic band gap. A further limitation
in the application of the Car-Parrinello method is the smallness of the allowed time steps
which is for comparable accuracy up to ten times smaller than the one for Born-Oppenheimer
dynamics. Since Born-Oppenheimer dynamics on the other hand requires a much higher
accuracy for the convergence of the electronic optimization (see the Car-Parrinello credo),
the choice is a compromise between greater time step in Born-Oppenheimer dynamics or more
steps (the execution time for each being much smaller than in BO MD) in Car-Parrinello
dynamics.

4.3.4 Density Functional Theory

The verification and classification of commonly used electronic structure methods (Hartree,
Hartree-Fock and their various extensions, Thomas-Fermi approximations and density func-
tional approaches....) is not the aim of this thesis. Since the density functional theory (DFT)
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is used in combination with the Car-Parrinello technique in the CPMD code [Hu99], the main
ideas shall be briefly recalled here.

DFT is mainly based on the Hohenberg-Kohn theorem: It says that the ground state energy
of an interacting electronic system can be obtained by a minimization of the Kohn-Sham
energy EXS = miny, (U,|H|¥,) with respect to the electronic density

occ

n(r) =3 filvu(r))” (4.45)

where the sum is over the occupied orbitals and f; is the integer occupation number. The
one particle orbitals ;(r), which are called the Kohn-Sham orbitals are required to be
orthogonal:

[ dr v; @) = 6 (4.46)

The electronic Hamiltonian H. (equation 4.34) can be expressed as a functional of the
electronic density 4.45. With the density 4.45 the functional reads

EXS[n] = T,[n] + / dr Vg (t)n(r) + % / dr Vg (r)n(r) + Eye[n] (4.47)

The first term T[n] is the kinetic energy of the electrons expressed as a functional of the
electronic density. The second term represents the fixed external potentials V;; and Vj; (see

equation 4.31):
Zr Z1Z,
Vig(r) = =S 2L~ 2197 4.48
t( ) ; |R[—I'| Z |R[_RJ| ( )

1<J
The third term comes in analogy to V;; from the electrostatic repulsion energy of two elec-
tronic charge clouds. In DF'T approaches it is usually called the Hartree potential:

/
Vu(r) = /dr' % (4.49)
So far the electronic Hamiltonian of equation 4.34 is only rewritten in terms of the electronic
density. The main point of the new approach is now to take into account the (unknown)
exchange correlation interactions due to the spins of the electrons. These interactions are
lumped together in the functional E,.[n] which builds (loosely speaking) the bridge between
the exact energy EXS[n] and the decomposition of this energy presented above. Its exact
form is unknown and approximations have to be found.

The minimization of the energy functional 4.47 under the constraint 4.46 is performed using
Euler-Lagrange techniques. The associated Euler-Lagrange equations are

’HKS%’(I') = €;1;(r) (4.50)

with the Lagrange multiplicators ¢; and the Hamiltonian

2

%KS:_h

TV 4 Ve (£) + Vi (1) + () (4.51)

where fi,.(r) = JJE;(CJ?]

Kohn-Sham equations [Ko65]. They are the theoretical basis of modern electronic structure

is the exchange correlation potential. The equations 4.50 are called the

calculations.
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4.3.5 Exchange Correlation Functionals

The application of density functional formalism as presented above is subject to the avail-
ability of an exchange and correlation functional. Since its exact form is unknown, Ansatzes
of the form

ESGA[p] = / dr n(r)eS64 (n(r), Va(r)) (4.52)

xc

commonly denoted as Generalized Gradient Approzimation (GGA) are employed. The func-
tion is normally split into additive terms of exchange and correlation contributions. The
simplest of the approximation is the so called Local Density Approxzimation (LDA) [Ko65]
where the exchange and correlation electron density of an interacting but uniform electron
gas at the local density n(r) of the simulated system is used. It should be pointed out
that LDA performs remarkably well for many systems. However, significant improvement
is obtained with the inclusion of the gradient of the electronic density. The most promi-
nent candidates of GGAs are the exchange functional of Becke [Be88| combined with the
correlation functional of Lee, Yang and Parr [Le88] (=BLYP), the ones of Perdew, Burke,
and Ernzerhof (=PBE and RPBE) [Pe96, Ha99], Hamprecht, Cohen, Tozer, and Handy
(=HCTH) [Ha98]. In so called meta GGAs, V? terms are considered which bring some
improvement for slowly varying densities. Examples are the ones of Perdew, Kurth, Zupan,
and Blaha (=PKBZ) [Pe99] and Filatov and Thiel (=FT98) [Fi98]. Figure 4.4 demonstrates
how LDA and several GGAs perform for small molecules.

NIq-ILL_I-l__INUNNN
r O O T 0 o T 2 0O 0o

Figure 4.4: Atomization energy errors (Ecgec — Eegp) of small molecules (after [Be93, Ku99]).
LSDA black [Ko65], GGAs: PBE red, RPBE [Ha99] green, FT98 [Fi98] blue and BSLYP [Be&8,
Le88] gray. All GGA functionals work well for water whereas LSDA is rather poor.
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4.3.6 Minimization Techniques

Various techniques are established in order to optimize the Kohn orbitals in Eq. 4.50.
Traditional techniques follow the way of numerical diagonalization of the Kohn-Sham matrix
4.50 in an appropriate basis, for example one formed by atomic orbitals. On the other hand,
modern methods aim for a direct minimization of the Kohn-Sham energy functional using
the gradient of the Car-Parrinello Lagrangian 0L°F /0v;. Commonly used minimization
techniques like steepest descent and conjugate gradient methods [Pr89] are then applicable
this problem. The most successful of these optimization algorithms is the one of direct
inversion in iterative subspace (DIIS) [Hu94| where the information of previous optimization
steps is used to predict the appropriate way for the proceeding step. It should be mentioned
that also the Car-Parrinello molecular dynamics method itself is successfully used today in
order to minimize the Kohn Sham energy functional [Ca85].

4.4 Ab Initio Dynamics - Implementation in a Plane
Wave Basis

The density functional theory - Car-Parrinello molecular dynamics approach has been im-
plemented in a computer code named CPMD by Jiirg Hutter and coworkers [Hu99].

This practical implementation employs a plane wave basis set that is the generic basis for
periodic systems in solid state physics. Molecular dynamics making use (in many cases) of
a periodically repeated simulation box highly appreciates the natural periodicity of these
plane waves. A plane wave is given by

I e
el\r) = —F—= er 4.53
folr) = (4.53)
where the wave vector G is compatible with the periodic boundary condition of the cell
of volume 2. The plane waves constitute a complete and orthonormal basis. Hence any
periodic function can be expanded in this basis:

1 iGr
Yi(r) = 70 EG: ci €'¢ (4.54)

Apart from their natural periodicity, the plane waves have the advantage of being originless.
This point is especially important regarding the appearance of Pulay terms as it was discussed
in section 4.3.3. Furthermore they allow to switch very efficiently from real to momentum
space by means of a fast Fourier transform (FFT). This implies the important correspondence
between the wave functions ¢ (r) and the plane wave coefficients ¢; g:

FFT
real space  ;(r) <— ¢,  reciprocal space (4.55)

For practical calculations the infinite sum over G vectors has to be truncated. Only G
vectors with a kinetic energy lower than a given maximum are retained:

1
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The number of involved plane waves Npy can then be approximated by the assumption
that, in reciprocal space, each plane wave state occupies the volume (27)3/Q of a Fermi
sphere of radius $7|Gey[*. Therefore:

1 3/2
Npw = Q—ﬂQEcut (4.57)
The Car-Parrinello Lagrangian and the equations of motion 4.40 and 4.41 have now to

be written in terms of plane waves. In the plane wave representation the Car-Parrinello
Lagrangian 4.39 reads

Lep = MZ%: 16(G) PP + % ;MIRf — EX9G,Ry]
+2_ Ay (Z ;(G)e(G) — 5z'j) (4.58)
ij G

The corresponding Euler-Lagrange equations are

" OE*S
. aEKS
MR, = — IR (4.60)

4.4.1 Pseudopotentials

In order to avoid an all electron calculation which is computationally very demanding and
chemically not necessary it is appropriate to introduce pseudopotentials for the core electrons
of an atom. The pseudopotential has to reproduce atomic wavefunctions such that beyond
a certain cut off radius r. the pseudo wavefunction equals the total atomic wavefunction. In
particular, the electronic charge distribution has to be correctly described at any point in
space by the pseudopotential wave function, a requirement that leads to the so called property
of norm-conservation [To74]. Inside the cutoff radius r. the pseudo potential wavefunction
®(r) should replace the real wavefunction in a very smooth way (of course with the constraint
of norm-conservation). The smoother shape allows then to reduce the number of plane waves
and hence to save computer time. The most common approach going back to Trouiller and
Martins [Tr91] for such smooth wavefunction is to adapt a polynomial basis

®(r) = ¢, + cor? + car® + 67 + cgr® + 107 + cior™? (4.61)

Recently relaxations from the norm conservation have been proposed which lead to signifi-
cant gains in computational time when dynamics is considered. The approach is called the
Vanderbilt ultra-soft pseudopotential [Va90].

4.4.2 The Molecular Dynamics Algorithm

The flowchart for the Car-Parrinello molecular dynamics algorithm is shown in figure 4.5.
At t = 0 the electronic wavefunction ; of a particle is chosen according to the electronic
structure at the given ionic configuration. For the first molecular dynamics time step the
velocities are assigned to the atoms in order to follow a Maxwell Boltzmann distribution at
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the desired temperature. This allows the total energy and the forces on the atoms, which are
then given by the derivatives of the total energy with respect to the ionic positions {R;} to be
calculated. The integration of equations 4.59 and 4.60 is performed using a velocity-Verlet
algorithm [Sw82, An83|. The two equations are coupled through the Kohn-Sham energy
functional. The numerical integration procedure itself is optimized, however, regarding low
computational cost and low storage capacity. In a first step the derivative with respect to
the plane wave coefficient is expressed in terms of the Kohn-Sham Hamiltonian 4.51:

5EKS
ici(GQ)

Hence 4.59 reads without its orthogonality part:

= HES¢,(G) (4.62)

péi(G) = —H%%¢;(G) (4.63)

This avoids the need for a complete diagonalization and storage of the Hamiltonian matrix
since the evaluation of H%¢; is sufficient in this algorithm. Compared to direct diagonaliza-
tion techniques this can be considered as an tremendous advantage. Once H%¢; is known,
4.63 can be integrated in a velocity Verlet / rattle scheme [Sw82, An83]. Equation 4.63 does
not yet contain the orthogonality forces that were taken out by definition. Therefore, an
extra step is included in order to orthogonalize the electronic wavefunctions. Now the ionic
equations 4.60 have to be integrated in an extra step, again using a velocity Verlet algorithm.
Finally the time is increased and the current values for the electronic wavefunctions and the
nuclear positions enter the following molecular dynamics step described in 4.59 and 4.60.
The complete details of the integration procedure have been described by Tuckerman and
Parrinello in [Tu94].

4.4.3 Thermostats and chain Thermostats

An overview of appropriate molecular dynamics thermostating is given in [Tu00]. The ther-
modynamic ensemble considered in ordinary Newtonian molecular dynamics is the micro-
canonical or NVE (constant particles, volume and energy) ensemble where the particle num-
ber, the volume and the energy are the control variables. However, for practical applications
it is desirable to establish a molecular dynamics that allows the temperature of the system
to be controlled.

The following set of equations defines the so called Nosé-Hoover chain dynamics [Ma92]:

. | )
.= 4.64
he B (164
pi = F; — /o2 (4.65)

o
iy = Dk k=1,.... M (4.66)

Qk
P, = Gy — Dl k=1, M—1 (4.67)

Qr+1
with the thermostat forces
N p2

Gi1=Y_ -+ —3NksT (4.69)
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inial choice for — y = 2 ¢; (G) e

— t =1+ 5t

computation of V[p(r)], E[p(r)] and V E

— for each electronic state

computation of 6E/6c*(G) = H c(G)

for each plane wave coefficient

infegration of the equations of motion
HC(G) = -H ¢{(G)

orthogonalization of the wavefunctions

molecular dynamics loop

for each ion

integration of the equations of motion
M| R.| = —Vl E

incrementation of &t

Figure 4.5: The Car-Parrinello molecular dynamics cycle as implemented in the CPMD code.

2
Go="ms _por k=2, M (4.70)
Qr—1
Within this method, a heat bath is coupled to the system by M thermostat variables
My aennnn , M and their conjugate momenta p,),, ........ y Ppae- The @y are the so called “masses”

of the thermostat. They are given by @, = 3NkgT 7% and Q) = kpT'7? and relate the time
scale of a the thermostat motion via a single time scale 7 to a characteristic time scale of the
system which can e.g. be a vibrational frequency. The M thermostats, which successively
thermostat each other, are coupled to the particles by equation 4.65 enabling a modula-
tion/control of the kinetic energy of the particles.

The great advantage of Nosé-Hoover chains is that they generate the canonical distribution
of the canonical NVT ensemble. In Newtonian dynamics, the Hamiltonian of an N-particle
system is given by

H(p,r) = H(P1,-eees PNy T1y convee ,IN) = Z p,-' +U(ry, ey TN) (4.71)
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with a corresponding micro-canonical distribution function
f(p,r)=46(H(p,r) - E) (4.72)

Hence, if Nosé-Hoover chains generate indeed the distribution of the canonical ensemble it
has to be shown that

M2 M
H = H(p,r)+ 3 ~% + kgT l3N771 + > nk] (4.73)
=1 2Qk k=2

has a distribution

2
[

N
=1

P S P )] (4.74)

1
f(p7 r, pna 77) ~ €Xp [_ kBT (V(r) + sz k=1 2Qk

In the general case this is true for M > 2. The special case M = 1 is usually referred to
as (ordinary) Nosé-Hoover thermostating. In fact it turns out that for M =1 the canonical
distribution is not well reproduced for some cases. Figure 4.6 shows the exact position and
momentum distributions for an one-dimensional harmonic oscillator in comparison to the
Nosé-Hoover thermostated (M = 1) and Nosé-Hoover chain (M = 2) thermostated system.
It becomes evident that for this system Nosé-Hoover thermostating is unacceptable if an
invariant probability distribution is desired. An extreme case of Nosé-Hoover chain thermo-
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Figure 4.6: Distribution functions of position (left panel) and momentum (right panel) for an
harmonic oscillator with r(0) =0, p(0) =0, p,(0) =1, Q = 1. Ezact distributions (red lines) and
distributions as obtained by Nosé-Hoover thermostating (M = 1, dashed lines) and Nosé-Hoover
chain thermostating (M = 2, solid lines). After [Ma92].

stating is the so called “massive thermostating” where one separate Nosé-Hoover thermostat
is coupled to each degree of freedom of the (nuclear) system [Ma96]. It was shown by Mar-
tyna et al [Ma96] that this way of thermostating leads to a very rapid equilibration of an
atomic system.

To conclude the section on molecular dynamics, it should again be pointed out that the
integration of the Car-Parrinello equations of motions according to figure 4.5 with an effi-
cient thermostating of the electronic and the nuclear degrees of freedom are the kernel of
Car-Parrinello computer simulations of silicates at high temperature. The complete imple-
mented combined theory can be found in [Tu94].



Chapter 5

Theoretical and Experimental Setup

5.1 Conception and Hardware Performance

The concept of equilibration of a liquid in a molecular dynamics simulation is strongly
related to the available computer power. The equilibration of a particular ensemble at a
finite temperature takes a certain (real) time, depending on the size and the composition of
the ensemble. Since the real equilibration time is strongly temperature dependent (that is a
system equilibrates faster at higher temperatures) an equilibration on the computer is much
less demanding at high temperatures. Indeed with present day’s computers the times needed
for an equilibration of a reasonably sized system of around 100 atoms at several thousands
of Kelvin require a feasible amount of computer time. For a 100 atom system the today’s
accessible time window is several pico seconds in ab initio approaches.

The correspondence given in Eq. 4.55 allows the electron density and the contributions
of the different terms to the Kohn-Sham energy of 4.47 to be expressed in the reciprocal
space where they have a much more convenient form (that means where the numerical
calculation is less demanding). The main work load for a computer is then to perform the
fast Fourier transform from real space to momentum space (where the Kohn-Sham energy
is easily accessible) and vice versa.

The question then is if the FFT to momentum space and back plus the energy determination
in momentum space is more demanding than a direct minimization of EX5 (4.47). Several
methods are feasible for a minimization in real space among which the direct inversion in
iterative subspace [Hu94] is the fastest. Denoting the number of plane waves with M and the
number of Kohn-Sham orbitals with N, this method scales with N?M. On the other hand,
the minimization in momentum space including the Fourier transforms scales with N MlogM
[An00] and is hence indeed much faster. An overview of the evolution of the benchmark for
CPMD calculations in the 1990’s is given in Table 5.1.

5.2 Implementation of the Simulations

In this section the setup of the hydrous silica system consisting of 30 SiO, units and 4 H,O
units is described. At important points, results are compared to a second system composed
of 26 SiO, units and 8 H,O units.

For the equilibration of hydrous silica systems a density functional (DFT) approach in a
general gradient approximation with the PBE functional [Ko65, Pe96] was used. The core

5%
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Year System (limit) Type of calculation ~ Hardware Type of algorithm

1992 One organic molecule Dynamics; RISC6000/580 Serial
of roughly 50 atoms  electronic structure (125 MFlops)

1994 Liquid 100 atoms Reaction dynamics SP1-16 nodes  Parallel
Organics water free energy (2 GFlops)

1996 Biomolecules Reaction dynamics; SP2/66 MHz  Parallel
200 atoms electronic structure 16 nodes
in water (4.2 GFlops)

1998 Complex interfaces All of the above SP2/166 MHz  Parallel
400 atoms. Water 32 nodes
oxide organic / metal (20.5 GFlops)

Table 5.1: Benchmark evolution of CPMD calculations on the 1990’s. After [An00].

electrons were described with a Troullier-Martins type pseudopotential [Tr91]. A plane wave
[' point expansion with an energy cutoff of 50 Ry turned out to be sufficient for an appro-
priate description of the inter atomic forces. The 50 Ry cutoff with the PBE functional was
first tested on the HoO dimer and on a-quartz. The results of these tests are shown in Figure
5.1 for a-quartz and in Figure 5.2 for the HoO dimer. From the left panel of Figure 5.1 one
recognizes that the experimentally measured Si-O-Si angle of 144° is at best approximated
in the local density approximation (LDA). The angle found using generalized gradient ap-
proximations (GGA) with the PBE and BLYP [Be88, Le88| functionals are 140.5° and 139°,
respectively which is in rather poor agreement with the experimental value of 144°. However,
for the PBE functional the value changes only very slightly if the cutoff is reduced from 70
Ry to 50 Ry. Also, for the generalized gradient approximation with the PBE functional,
the two SiO distances of a-quartz are equal to 1.624 A and to 1.628 A independent on the
energy cutoff between 50 Ry and 70 Ry as can be seen from the right panel of Figure 5.1.
Again the experimental values of 1.608 A and 1.611 A are much better reproduced in a
local density approximation and the use of the LDA seems to be preferable. On the other
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Figure 5.1: Left: Si-0-Si angle for a- quartz. The experimental value is best represented in LDA
followed by gradient approrimations using the PBE and the BLYP functional. Right: The two
Si-0 interatomic distances in a-quartz. Again LDA approzimates the erperimental values at best,
followed by gradient approximations with PBE and BLYP.
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hand, it is known that LDA describes hydrogen very poorly. This becomes evident from
figure 4.4 where the deviation of the calculated atomization energy from the experimental
one is compared for several exchange correlations and for several small molecules. As already
mentioned, the local density approximation is generally rather poor for systems containing
hydrogen. Hence the use of the generalized gradient approximation using the PBE functional
(which describes a-quartz next best after LDA) was tested on the HoO dimer. For the H,O
dimer it was found that the O-O distance, the quantity which is the most sensitive to a
change of the cutoff, shows, in GGA with the PBE functional, only a variation from 2.925 A
to 2.950 A if the cutoff is decreased from 90 Ry to 50 Ry (Fig. 5.2) and the cohesive energy
for the hydrogen bond in the water dimer was found to vary from 21.6466 kJ/mol at 80 Ry
to 21.5883 kJ/mol at 50 Ry, both values being close to experiments (25.1 £+ 3.2 kJ/mol )
[Si92]. On the other hand, if the cutoff is varied in this range for the BLYP functional, the
O-0O interatomic distance changes considerably more.

It was also tested if the use of Vanderbilt ultra-soft pseudopotentials (USPP) [Va90] could
be an alternative. Ultra-soft pseudopotentials would allow to reduce the cutoff to 25 Ry
as can be seen from Figure 5.2. The 25 Ry energy cutoff compared to 50 Ry reduces the
number of plane waves considerably which should speed up the calculations. To test this,
two wavefunction optimizations, one with ordinary Troullier-Martins type pseudo potentials
at a cutoff of 50 Ry and one with Vanderbilt pseudo potentials at a cutoff of 25 Ry were

performed for the same atomic configuration on one processor on the Hitachi SR8000. The
result was the following

pseudopotential duration of an optimization step (30SiO5+4H,0)
50 Ry Troullier-Martins 42.6 s
25 Ry Vanderbilt 52.6 s

Obviously, the optimization with Troullier-Martins pseudo potentials is faster. This holds
also for molecular dynamics runs. Also other systems like the water molecule, with and with-
out periodically repeated box and several memory assignment like the BIGMEM keyword of
CPMD were investigated. However, the runs with the Vanderbilt pseudo potentials have
never been considerably faster than the ones with conventional Troullier-Martins pseudo
potentials. The CPMD authors explained that this is most likely related to the fact that
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CPMD runs on the Hitachi in vector mode. The USPP code has never been optimized for
this type of machine and therefore they assume that some of the routines are very slow
[HuO3a]. With the help of Jirg Hutter, CPMD version 3.8 was set up in which some sub-
routines were reprogrammed. Here it was possible to obtain a speedup of about 30 % using
Vanderbilt pseudo potentials. However since this version of CPMD is not fully tested yet,
the risk of using it for the present work was not taken.

According to the details presented above, it turned out that the use of Troullier-Martins
norm-conserving pseudopotentials in a generalized gradient approximation with the PBE
functional at a 50 Ry plane wave energy cutoff is the best compromise between an accurate
description of SiOy on the one hand and hydrogen on the other hand. Also regarding com-
puter time it did not become evident that the choice of Vanderbilt pseudopotentials at an
energy cutoff of 25 Ry could speed up the calculations.

With the cutoff value of 50 Ry a series of tests on the Hitachi SR8000 machine have been
performed in order to determine the speedup as a function of the number of processors used.
The result of these tests are presented in Fig. 5.3 where the execution time for one step
as a function of the number of processors is shown. Ideal scaling holds if this time is pro-
portional to the 1/(number of processors) (see straight line in the figure). From the graph
one recognizes that the program shows this ideal scaling up to 8 processors and that using
16 processors is also quite reasonable. Simulations are performed preferably at a density

100 e ey Figure 5.3: Ezecution time per

i ] processor and CPMD time step as
a function of number of proces-
sors used on the Hitachi SR8000-
F1. The data shown was computed
E for the system 30S8105-4Ho O with a
] cutoff of 50 Ry. Results for the sys-
tem 265109-8Hy O are quite similar.
The straight line represents a slope
of -1.
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that corresponds to a zero internal stress for the system. Since densities of water containing
silicates, especially in the liquid state, are not known, these densities have to be found nu-
merically with CPMD. The CPMD code allows the internal stress during a MD trajectory to
be recorded. Results are shown here for the system of 265i0,-8H,O where longer trajectories
are available, but the procedure is similar for the system 30Si05-4H50O. The ensemble was
equilibrated at 3000 K for several picoseconds with Car-Parrinello dynamics and the internal
pressure was recorded for several hundred femtoseconds at three box lengths at 11.0 A, 11.5
A, and 12.0 A in order to find the equilibrium density. These simulations were performed
with a plane-wave energy cutoff of 80 Ry in order to obtain a good convergence of the stress.
Note that the absolute value of the stress depends on the energy cutoff an the chosen GGA
[Fr90]. Figure 5.4 shows the trace of the internal stress tensor along the molecular dynamics
runs at 3000 K that have been carried out after a geometry optimization for each box size.
From Fig. 5.4 one notes that the box length of 12.0 A corresponds best to the requirement
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of a low internal stress. However, the trace of the stress tensor fluctuates considerably. In
particular it is not possible to distinguish between zero kbar and typical experimental pres-
sures of 2-3 kbar. Figure 5.5 shows the resulting densities of the two equilibrated systems in
comparison to the model established by Ochs and Lange [Oc97].

The model of Ochs and Lange is based on thermal expansion data of silicate melts of

Figure 5.5: Densities of hydrous
silica systems as found by CPMD
and after the model of Ochs and
Lange [Oc97] and Hetherington and
Jack [He62].
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various composition at various temperatures. As can be seen from figure 5.5, the effect of
the thermal expansion is overestimated by the model compared to the Car-Parrinello simu-
lations. Moreover, in the model of Ochs and Lange, the influence of the silicate temperature
on the density is about one order of magnitude higher than the influence of the pressure.
Accordingly a considerable alteration of the pressure would only require a very small adap-
tion of the density and hence the simulation box size. Note that the temperature dependent
behavior of the density of silicate melts is generally rather complex and hard to describe
[La94].

The choice of the appropriate dynamics between Born-Oppenheimer (see section 4.3.1) and
Car-Parrinello (see section 4.3.2) was made on the basis of short test trajectories. The fol-
lowing table gives the comparison of the execution time for a 100 fs trajectory of the system
305105-4H50, using Born-Oppenheimer and Car-Parrinello dynamics:
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method CPUh for 100 fs of trajectory on the IBM SP3
Born-Oppenheimer 451
Car-Parrinello 55

Based on these results, Car-Parrinello dynamics was selected for the present work, also
because of the stability against error accumulation (see the Car-Parrinello Credo in section
4.3.3). The next step in the setup was to find appropriate parameters for the Car-Parrinello
electronic mass and the Nosé-Hoover thermostats. For the equilibration of 30Si0,-4H,0,
the masses of the ions were all set to 28 a.u. (the mass of a silicon atom). Note that a
change of the ionic masses does not affect the structure of the liquid since at equilibrium all
structural quantities are independent of the mass. On the other hand, the increase of the
ionic masses (from 1 to 28 for hydrogen and from 16 to 28 for oxygen) allows an increase of
the Car-Parrinello electronic mass and hence the use of a larger time step which thus leads
to a faster equilibration. The equilibration of the system was performed at the two ionic
temperatures of 3000 K and 3500 K employing Nosé-Hoover thermostats and an electronic
mass of 600 a.u. (energy x time?) at a time step of 4.5 a.u. (0.1088 fs). At high temperature,
the electronic gap is too small compared to kg7 to ensure the decoupling of the ionic and
the electronic degrees of freedom, which is needed to perform Car-Parrinello dynamics. The
use of thermostats is therefore compulsory. To speed up the equilibration and to perform
an efficient canonical sampling, one separate Nosé-Hoover thermostat chain for each ionic
degree of freedom was used (known as “massive” thermostating [Ma96], see section 4.4.3).
The ionic thermostat was coupled to the OH stretch vibrations at a frequency of 3000 cm ™.
As it was mentioned in section 4.4.3, such coupling is required in order to define a time scale
for the thermostat motion. The electrons were controlled with one single thermostat chain
[Ma92, Tu94|. Unfortunately, due to the use of thermostats the direct access to dynamical
properties is no longer available. The complete input for the Car-Parrinello equilibration of
the system is given in appendix E.

Having set up the system, it becomes immediately possible to make rough predictions about
the dissolution of water. Starting from the model of section 2.1.1 one can predict the critical
temperature for water exsolution with the ground state energies obtained in the calculations.
Minima of the Gibbs free energy are found by a derivative of the free enthalpy of mixing
(Eq. 2.7) [St89]
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The best way to approximate 0AH = AH,; — AH; is to compare the two systems 30Si0,-
4H50 and 26Si05-8H,0. 0AH is roughly given by

OAH = E*%(305i09-4H,0) — E*9(265i04-8H,0) + 4 EX®(H,0) — 4 EX5(Si0y)  (5.3)

Using the values of the optimization of the water dimer for EX5(4H,0) and the one of
the simulation of pure silica for FX5(4Si0,) [Be04] one can extract AH =3.64 a.u.. With
equation 5.2, a critical temperature of 2309 K is found. Note that this value is only a very
rough approximation since, in particular, the pure SiO, system was simulated with different
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parameters than the hydrous liquids. However, it was already mentioned that the application
of the regular solution model itself is critical. Nevertheless, such approximations give a first
hint that if the system will be equilibrated at higher temperatures it is stable and will not
decompose into silica and water. Note that, if silicate systems demix thermodynamically
this can be clearly seen in molecular dynamics simulations [Wi03].

The system 30SiO9-4 H,O was equilibrated at two temperatures (3500 K and 3000 K) until
in a log-log plot the averaged mean square displacements (MSD) of each particle type a

1 X

(Ra()) = 77 (R (1) — R4(0)) (5.4)

a 7=1

showed at long times a slope close to unity according to equation 2.13. The thermal average
was performed using the autocorrelated approximation

9 1 NstepsAt_t 1 N,
Rot) = v—— > |+ 2 [Rult+kAL) - Ry(kAL)* (5.5)
Nsteps =t 2 Na 15

Usually MSDs of viscous liquids are composed of three regions: The ballistic one in which
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Figure 5.6: Mean square displace-
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the atoms move without noticing their neighbors and hence a MSD that is proportional to
t2. This ballistic region is followed by a region where the atoms are temporarily confined in
a cage made of their nearest neighbors (as already reported in section 2.2.2). In this regime,
the atoms rattle around in the cage without significant displacement, leading to a MSD that
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increases only slowly. Finally the atoms leave this cage and start to show a diffusion motion,
i.e. a MSD that is proportional to ¢ after equation 2.13. The choice of the masses and the
thermostats affect also the MSD. However, the height of the plateau and the displacement
at the onset of the diffusional regime should be independent of the thermostat. Hence, one
can consider the system to be equilibrated once the diffusional regime is reached which was
the case after 4.4 ps at 3500 K and 10.9 ps at 3000 K.

In order to check that the liquids were indeed well equilibrated and that there were no aging
effects, the trajectories were cut into three equal parts. The averaged mean square displace-
ments were then calculated for each part separately and compared to each other. Figure 5.7
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shows the msd of three parts of the trajectory at 3500 K. Since the three different averaged
MSDs did not show any drift, aging effects can be excluded and equilibration was indeed
obtained after the above mentioned times.

At temperatures of 3000 K and 3500 K the liquid reaches equilibrium after 10.9 ps and 4.4
ps, respectively. The total lengths of the recorded trajectories were 22.5 ps at 3000 K and
12.5 ps at 3500 K. With a time step of 4.5 a.u. (0.1088 fs), the numbers of computed time
steps were 114900 at 3500 K and 206800 at 3000 K. Using a single processor, where one
time step takes about 52 s on the Hitachi SR8000 (see Fig. 5.3), this corresponds to 1660
one processor CPU hours (13280 budget units) and 2990 one processor CPU hours (23920
budget units), respectively (the budget units are counted taking into account that CPMD
runs on one processor per node, where one node has 8 processors).

5.3 Neutron Scattering at the ILL

5.3.1 Sample Preparation and Characterization

The samples were prepared at the laboratories of E13 at Munich Technical University and
the facilities of the geological department of the Ludwig-Maximilians University Munich.
The samples were prepared in platinum tubes of 5.0 mm diameter (0.1 mm wall thickness)
and a length of 25 mm. In order to meet the temperature of 1200 K to 1700 K at several
kbars of pressure, an internally heated autoclave was used. The samples were characterized
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with optical microscopy, X-ray diffractometry, infra-red spectroscopy (FTIR), differential
scanning calorimetry (DSC) and by simultaneous thermal analyzers (STA). It could clearly
be shown that water is dissolved, partially to SIOH groups, partially in the form of physically
dissolved water molecules. The details of the sample preparations were previously described
by Miiller [Mu04]. Unfortunately the preparation of deuterated samples was not successful
in this work, due to exchange between normal and deuterated water in the autoclave.

5.3.2 Available Samples

The sodium and sodium alumino silicates were available as solid pieces as well as powders.
The following samples were available for neutron scattering experiments. Note that NS3
refers to NasO+3Si03=NaySi3O; and albite refers to NaAlSi3Og. In order to obtain the

silicate X=00 X=18 X=30 X=34 X=45
SiOy + X wt.% p S - - S -
NS3 + X wt.% H,O p p/s p/s - -
albite + X wt.% H,0O p p/s p/s - S

Table 5.2: Samples provided by Azel Muiller [Mu04]. Powder samples (p) and solid piece samples
(s) were used for different types of experiments.

physical properties of the samples it is necessary to switch from mass percentages to molar
percentages. The following table gives the conversions to mol% of for the compositions of
table 5.2. Since all physical the properties of the systems scale with the molar percentage of

silicate X=00 X=18 X=30 X=34 X=45
Si0y + X wt.% Hy0 0.0 - - 10.5 -
NS3 + X wt.% HyO 0.0 5.8 9.4 - -
albite + X wt.% H,0O 0.0 5.8 9.4 - 13.7

Table 5.3: Molar water percentages of the samples

water, all concentrations are given in mol% in the following. Average molecular masses are,
according to equations 4.16 and 4.17 needed in order to perform an incoherent approximation.
The average atomic molecular masses of water (HyO) and heavy water D,O are 6 g/mol and
6.67 g/mol respectively. With these values and the molar percentages given in table 5.3 it
is possible to compute the average atomic molar masses which are presented in table 5.4.

silicate X=00 X=58 X=94 X=105 X =137
Si0Oy 4+ X mol% H,O 20.0 - - 18.5 -
NS3 + X mol% H,O 20.2 19.4 18.8 - -
albite + X mol% H,O 20.2 19.3 18.8 - 18.2

Table 5.4: Average atomic molar masses [g/mol] of the samples.
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The neutron scattering properties of the samples are given by their average scattering and
absorption cross sections and the average number of scattering atoms in the beam. According
to the compositions given in table 5.2 the average scattering cross sections for each sample
can be calculated: This splits into coherent and incoherent contributions as follows The

silicate X=00 X=58 X=94 X=105 X =137
Si0y + X mol% H,O 3.544 - - 9.066 -
NS3 + X mol% H,O 3.566 6.603 8.505 - -
albite + X mol% H,O  3.472 6.524 8.424 - 10.664

Table 5.5: Scattering cross sections o4 [barn] at of samples investigated in the present work.

silicate X=00 X=58 X=94 X=10.0 X =13.7
SiO0, + X mol% H,O 3.542 - - 3.434 -
NS3 + X mol% H,O 3.285 3.244 3.225 - -
albite + X mol% H,O  3.346 3.301 3.274 - 3.240

Table 5.6: Coherent scattering cross sections oo, [barn] at of samples investigated in the present
work.

silicate X=00 X=58 X=94 X=10.0 X =13.7
SiOy + X mol% H,O 0.002 - - 5.632 -
NS3 + X mol% H,O 0.281 3.359 5.280 - -
albite + X mol% H,O  0.126 3.223 5.150 - 7.424

Table 5.7: Incoherent scattering cross sections o, [barn] at of samples investigated in the present

work.

absorption cross section are given in 5.8

5.3.3 Sample Environments

The first step in a successful experimental setup is the appropriate choice of the sample con-
tainer. Unfortunately experiments are currently restricted to temperature below the glass
transition temperature T,. The desired environment for quasielastic experiment above T
would be a pressure cell for elevated temperatures.

For the measurements below Ty, of course the ratio of neutron scattering from the sam-
ple container and the sample itself should be as small as possible and self-absorption and
multiple scattering have to be suppressed. For this reason, a hollow cylinder is generally fa-
vorable. Solid piece sample were nevertheless put into full cylinders, in order not to destroy
the pieces. The so called “cryoloop” was used for high and low temperature measurements.
Here a flat slab, filled with powdered sample, is fixed inside a loop with heating and cooling
(liquid nitrogen) facilities. The temperature can be kept stable with this apparatus within
+0.5 K between 100 K and 500 K.
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silicate X=00 X=58 X=94 X=105 X=13.7
SiOy + X mol% H,O 0.057 - - 0.074 -
NS3 + X mol% H,0 0.131 0.136 0.140 - -
albite + X mol% H,O  0.098 0.105 0.110 - 0.115

Table 5.8: Absorption cross sections o, [barn] at 2200 m/s of samples investigated in the present
work.

For the material of the container, a good compromise of intensity and multiple scattering
/ absorption has to be found. The material that is commonly used is aluminum, except
for neutron diffraction. Since aluminum is a crystalline metal with a relatively high coher-
ent scattering cross section of 0., = 1.495 barn , it would “contaminate” the amorphous
diffraction pattern considerably. Therefore vanadium containers are preferred due to the
high incoherent and a coherent scattering cross section of only 0.018 barn. On D20, the
spectra were recorded, the solid sample pieces (as fabricated) put into full vanadium cylin-
ders of 6 mm diameter and 0.1 mm thickness. For the time-of-flight measurements on ING,
the intensity of the samples respective to the aluminum can is sufficient in order to extract
clean vibrational spectra (see figure 7.17). Also multiple scattering events seem to play
no role. Unfortunately a really well defined geometry could only be realized with powder
samples in full cylinders. The solid pieces have the natural disadvantage that they don’t
fill up the sample can completely. The same holds for powder samples in the flat slabs of
the cryo-loop where the powder assembled in the bottom half of the vertically fixed slab.
In the latter cases it is hence rather difficult to perform good self absorption and multiple
scattering corrections.

5.3.4 Neutron Wave Lengths

For diffraction experiments the choice of the neutron wavelength A is rather obvious since
for elastic scattering the covered g-range is given by

q= 4; sin (©) (5.6)

According to equation 5.6 lower wave lengths give access to higher g-ranges. Since the main
interest in the case of hydrous silicates is the variation of the main structural peaks in the
structure factor of pure silica, a wavelength of 0.95 A on D20 is sufficient to record the
structure factor from 0 A~! to roughly 13 A1

In the case of inelastic scans on time-of-flight spectrometers, the choice of the appropriate
wavelength follows in principle the same criteria. IN6 can be operated at only four wave-
lengths between 4.14 A and 5.9 A. The available neutron flux varies considerably between
the four possible wavelengths. According to Eq. 4.3 the choice of the wavelength and hence
k; has also consequences for the inelastic part of the spectrum. Note that for elastic scat-
tering Eq. 4.3 becomes Eq. 5.6. The full g-w domain accessible on IN6 for a wavelength
of 4.1 A is shown in figure 5.8. For smaller wavelengths the accessible wave vector transfer
range is higher for any energy transfer Aw. This property becomes particularly important
if the inelastic spectrum has to be related to a vibrational density of states. It was pointed
out in section 4.2 that in order to achieve a good cancellation of the interference terms
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exp{iq(R; — R;)} in equation 4.13, a high g-range in preferable. For that reason the wave-
length of 4.1 A was chosen on IN6 in order to record the vibrational properties of hydrous
silicates. The chopper phases were mostly chosen such that all elastically scattered neutrons
reach the detectors at the same time (elastic focusing). This corresponds to a chopper phase
of one. Since the goal of the time of flight experiments on IN6 are to extract inelastic prop-
erties, a chopper focus on another energy could improve the instrument resolution. However,
since time-of-flight focusing on inelastic parts of the spectrum would require a chopper phase
of two which only allows half of the neutrons to be exploited, the option of inelastic focusing
was not always chosen.

Further information on specific setups can be found in appendix D.



Chapter 6

Results of the Simulation

6.1 Structure of the Liquid

It should be mentioned at the beginning of this discussion that pure amorphous silica is
a perfectly geometrically disordered network of SiO, tetrahedrons up to temperatures of
several thousands of Kelvin. Apart from two membered SiOSiO rings that tend to form at
elevated temperatures [Sa95al, no other significant structural changes occur at elevated tem-
peratures. The following figure shows snapshots of pure and hydrous silica at a temperature
of 3500 K. Apparently all hydrogen atoms are attached to the silica matrix in the form of

Figure 6.1: Snapshot of Si0y at 3500K. Figure 6.2: Snapshot of
Silicon atoms (green spheres) and ozygen S109+11.8mol%HyO at 38500K. Hy-
atoms (red spheres) ordered in a tetrahe- drogen (white spheres) and SiO dangling
dral network. Drawn from [Be00). bonds (yellow spheres) and O tri-cluster

(blue spheres).

SiOH groups in the hydrous liquid. It can be seen that, apart from the presence of hydrogen
atoms, the structure of the hydrous liquid exhibits also other states whose appearance is
not a priori evident. In particular SiO dangling bonds highlighted in yellow and oxygen

65
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tri-clusters highlighted in orange are present.

The aim of the present section is to specify quantitatively the occurrence of structural prop-
erties in the hydrous liquid compared to pure silica. The basis of the analysis is certainly not
only the snapshot of figure 6.2 but an average over all configuration in the equilibrated part of
the molecular dynamics trajectories at 3500K and 3000K. Commonly considered quantities
like pair distribution functions, bond angle distributions, coordination numbers, ()-species
distributions and bridging to non-bridging oxygen ratios will be discussed and, as far as
possible, be compared to the data extracted from ab initio simulated silica and sodium
silicate (NS4) melts [IsO1, Be01]. In particular the comparison to a recently investigated
sodium tetra-silicate melt [Is01] is highly interesting since the valence shell configuration of
the sodium and the hydrogen atoms are equivalent.

In order to analyze the structure with particular attention to the formation and the rupture
of the silica network, water molecules and hydroxyl groups, it turns out to be useful to dis-
tinguish several types of oxygen atoms:

o hydroxyl group oxygen Si-O-H

(oxygen with one hydrogen and one silicon nearest neighbor)
wO  water molecule oxygen H-O-H

(oxygen with at least two hydrogen atoms as nearest neighbors)
BO  bridging oxygen Si-O-Si

(oxygen with two silicon atoms as nearest neighbors)
NBO non-bridging oxygen Si-O(-?)

(oxygen with less than two silicon nearest neighbors)
03 tricluster oxygen

(oxygen with three nearest neighbors)

O3H hydrogen containing tricluster g: >0-H
(oxygen with two silicon and one hydrogen neighbor)

Note that, within these definitions, all the O* are also counted as NBO and that all the O3H
are also counted as O3 as well as BO. The wO oxygen atoms can also have silicon neighbors,
e.g. the oxygen atom in H,OSi is considered as a wO.

The Si and H nearest neighbors of the oxygen atoms were determined as the Si and H atoms
being located within a sphere the radius of which is given by the positions of the first minima
in the Si-O and O-H pair distribution functions, respectively (see section 6.1.1).
Concerning the dynamical properties of the system, the restriction imposed by the ther-
mostats should be recalled. Nevertheless it will be shown that also the structural analysis
of the liquid is able to provide considerable information on the dynamics.

6.1.1 Radial Distribution Functions

In this subsection the short range correlations of the liquid are analyzed in terms of the
radial distribution functions (RDF)
Dab (T‘) Nb

w(r) = -—%5—7— with p,=— d Ay=Ny,—4, 1
9ar(r) A7r? puAp dr b P 1% an b b b (61)

where D, (7) is the number of inter atomic distances between a and b atoms found between
r and r + dr. N; denotes the number of atoms of each kind and V is the volume of the
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simulation box. The corresponding integrated coordination numbers (ICN) are
1 T
ICNw(r) = - / Du(r') dr' with Ay = N, — 8y (6.2)
a0

The RDF and ICN are presented in the left panel of Fig. 6.3 for the network forming atoms
silicon and oxygen (a,b =Si,0) and in the right panel for the pairs involving H.
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Figure 6.3: Radial distribution function (solid lines) and integrated coordination numbers (dashed
lines) of Si-Si (a), Si-O (b), O-0 (c), Si-H (d), H-O (e), and H-H (f) for the SiO2-Hy0 liquids at
3500 K (bold lines) and 3000 K (thin lines).

From this figure, one recognizes that the peaks of the distributions become broader as the
temperature is increased. The RDFs involving the matrix atoms show a first peak followed
by a well defined first minimum which becomes more pronounced if the temperature is de-
creased from 3500 K to 3000 K. In particular, the Si-O RDFs present, after the first peak,
a very well defined minimum at 2.37 & 0.05 A for 3500 K and at 2.35 + 0.05 A for 3000
K. From the position of the Si-O first peak, one can deduce that the most probable Si-O
distance is around 1.65 4 0.02 A for 3500 K and around 1.63 + 0.02 A for 3000 K.

The ICN for Si-O exhibits a plateau at a value of 4 which indicates that every silicon atom
has on average four oxygen neighbors and hence that the principal units - the SiO, tetrahe-
dron - are preserved also in the presence of water. Indeed only a small percentage of threefold
and fivefold coordinated Si atoms are found in the liquids (7 % fivefold coordinated and 4 %
threefold coordinated at 3500 K and 2 % fivefold coordinated and 1 % threefold coordinated
at 3000 K). On the other hand, the ICN for Si-Si shows an inflection point at around 3.6,
a value which is smaller than the one for a perfect tetrahedral network, 4.0, indicating that
the tetrahedral network is partially broken.

Comparing the matrix distributions to those of the pure silica melt, one notes that the
addition of water does not alter significantly the shapes of the Si-O, O-O and Si-Si RDFs
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presented in [Be(l], as it was already the case in the sodium silicate melt [Is01] upon the
addition of sodium.

The RDFs for H-Si and H-O, right panel of Fig. 6.3, show somewhat better defined inter-
atomic distances as the temperature is decreased, as was the case for the Si-O, Si-Si and
O-O RDFs. On the other hand the H-H distribution seems to deviate from this behavior.
Concerning the H-Si distribution, the first maximum is found around 2.3 A. Since this value
is much larger than the most probable Si-O distances (1.65 & 0.02 A and 1.63 & 0.02 A ), the
presence of stable molecular Si-H units is excluded. The height of the first peak in Si-H and
the absence of a well-defined minimum reflect the presence of a broad distribution of these
distances in the liquid. In contrast to this, the well-defined first peak in the H-O distribution
functions, located at 0.99 + 0.01 A, followed by a well defined minimum at 1.48 + 0.03 A
at 3500 K and at 1.43 £+ 0.03 A at 3000 K, reveals the O-H bond as the dominant stable
configuration for the hydrogen atoms. Because of a lack of a well-defined first peak in the
RDF for H-H, the existence of stable Hy molecules can be excluded too. The striking point
in the H-H distribution is the difference between the RDF at 3000 K and 3500 K between
1.5 A and 3.0 A. Whereas at 3000 K there are almost no H-H pairs with a distance around
2.0 A a weak peak is found at this distance at 3500 K. This distance is very close to the
H-H distance in a free water molecule and hence we have evidence that at this temperature
water molecules do exist. Indeed, in a more detailed analysis of the coordination numbers
as a function of time, it is found that oxygen atoms with two nearest neighbor hydrogens
were stable over times of the order of 500 fs. The absence of this phenomenon at 3000 K is
probably due to the considerably lower displacement of the hydrogen atoms (see Fig. 5.6)
at this temperature which, because of a too small trajectory length, prevents two hydrogen
atoms sufficiently close to each other to form a water molecule from being observed.

At this point it should be recalled that the configuration of the valence shell is the same for
the hydrogen and the sodium atoms (although it is well known that the physical and chemical
properties of compounds of equivalent stoichiometry involving these two atom types (such
as HyO and NayO) are rather different). This behavior motivates a comparison of the results
of this study to those of the liquid sodium silicate [IsO1]. In Fig. 6.4, the comparison of the
above discussed hydrogen-containing RDFs with the corresponding Na-containing RDF's in
the sodium tetra-silicate melt at 3500 K from Ref. [Is01] is presented. Two main properties
seem to govern the character of the distributions: The size of the atoms and the ability of the
two atom types to form either covalent or ionic bonds. In particular, the RDF for Si-X and
X-X (X = Na, H) shown in Fig. 6.4 look quantitatively quite similar except that the peaks
are shifted to larger distances in the case of Na. This behavior can be easily related to the
atom size. In contrast to this, the O-X distribution function for X=H has a very different
shape from the one for X=Na. As described above, for the O-H correlation, a sharp peak
at an O-H distance of 0.99 A + 0.01 is followed by a well-defined minimum. In contrast to
this, the first peak of the O-Na RDFs is much broader with a maximum at 2.32 + 0.05 A
followed by a shallow minimum around 3.6 A. These latter differences are the signature of
the strong covalency of the OH bond and the ionicity of the Na-O bond.

To conclude the section on the radial distribution functions, it should be investigated how
the different oxygen types defined above contribute to the RDF. In order to count the num-
ber of Si and H neighbors of a given oxygen atom, cutoff distances extracted from the first
minima of the Si-O and H-O radial distribution functions, respectively (cutoff for SiO = 2.37
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Figure 6.4: Si-X, X-0, X-X (X=H,Na) radial distribution functions (solid lines) and integrated
coordination numbers (dashed lines) for the hydrous silica (bold lines) and the NS4 melt from Ref.
[1s01] (thin lines) at 3500 K.

A and 2.35 A and cutoff for HO=1.48 A and 1.42 A for the higher and the lower tempera-
ture, respectively) were used. Figure 6.5 shows the H-O radial distribution functions for the
different oxygen types (O*, NBO, BO) compared to the total H-O RDF at 3500 K. Results
obtained for 3000 K are very similar and are therefore not shown here. The radial pair
distributions for the different oxygen types were normalized on the corresponding number
of the considered species at each time step (note that the number of each species can vary
with time).

One notes that the RDFs for all the different oxygen types show a pronounced peak around
1.0 A but that the height of this first peak depends strongly on the considered oxygen type.
The H-O* RDF exhibits a first peak of height 65 which is much larger than the one for the
total H-O which is around 8. In contrast to this, the RDF for H-BO has a first peak of height
1. The most striking point in Fig. 6.5 is that the peak for H-O* is significantly higher than
the one for H-NBO. Since all O* atoms are also NBO atoms (remember that by definition the
O* atoms have a hydrogen atom as second neighbor whereas for the NBO atoms this is not
necessarily the case), the presence of a large number of Si-O dangling bonds becomes now
evident. The existence and the temperature dependence of these dangling bonds will be dis-
cussed below. From the inset of Fig. 6.5, it can be concluded that the H-NBO contribution
is dominant for distances between 1.5 A - 2.5 A. This means that the NBO atoms are also
connected to hydrogen atoms via the so-called hydrogen bonds, the length of which is equal
to 2.0 A in the water dimer. The RDF for the other oxygen types also show a contribution
in this range but it is less important. In Fig. 6.6, the contribution of the different oxygen
types to the Si-O radial distribution function is presented. The height of the first peak of
the Si-BO RDF is around 9.3 whereas the peak height of the total Si-O RDF is close to 8.7
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Figure 6.5: Pair distribution functions at 3500 K for H-O (bold solid line), H-BO (dashed line),
H-NBO (long dashed line) and H-O* (thin solid line). Inset: Zoom of the minima of the radial
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Figure 6.6: Pair distribution functions at 3500 K for Si-O (bold solid line), Si-BO (dotted line),
Si-NBO (dashed line), and Si-O* (thin solid line). (b) and (c) are magnifications of the first peaks
and first minima, respectively.

which indicates that the correlation of the bridging oxygen with silicon atoms is stronger
than the total Si-O correlation (see Fig. 6.6b). The heights of the first peak in the Si-O*
and Si-NBO RDFs are very close to each other at a value of & 5.1. As shown in Fig. 6.6b, a
slight shift of the peak positions can be observed: The Si-NBO and Si-O* peak positions are
around 1.60 A and 1.62 A, respectively, whereas the Si-BO peak position is located at 1.63
A. This result implies that the tetrahedron having one or more NBO atoms are distorted, as
it has already been observed in other silicate systems (see Ref. [Is01] and references therein).
Figure 6.6c shows the presence of a considerable jump in the RDFs for Si-O* and Si-NBO at
the Si-O cutoff. Between 2.37 A (the Si-O cutoff) and 4.0 A, the Si-O* and Si-NBO RDF's
are larger than the total one (Fig. 6.6¢). This jump and the dominance of the Si-O* and
Si-NBO can be associated to oxygens of the O* type or to NBOs that are connected to a
second silicon atom by a weak Si-O bond. As soon as the distance to the second silicon atom
becomes smaller than the cutoff (i.e. an O3H or BO is formed) the oxygen is considered
as BO and therefore the Si-O* or Si-NBO distribution drops abruptly to zero at the cutoff
distance. Thus this behavior gives insight into the formation and decay processes of the O3H
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clusters and the Si-O dangling bonds, that will turn out to be one of the essential transition
states for hydrogen diffusion.

6.1.2 Angular Distributions

Figure 6.7 presents the different angular distributions in the SiO9-H5O liquids at 3500 K and
3000 K and the comparison with NS4 at 3500 K. The angular distributions for the network
formers (Si-O-Si) and (O-Si-O) are close to the ones of pure silica at 3500 K [Be01]. In
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Figure 6.7: (a)-(c) Angular distributions of the hydrous silica sample at 3500 K (bold lines) and
3000 K (thin lines); (d) comparison to NSj at 3500K (dashed line).

agreement with the behavior of the RDFs (Sec. 6.1.1), the angular distributions at the lower
temperature are sharper and more peaked. The Si-O-Si distribution shows an additional
hump at 90° that is also present in pure silica at 3500 K but much less pronounced. This
hump is due to the two membered rings which are formed by two SiO, units connected by
an edge and having two common oxygen atoms. As will be seen in Sec. 6.1.4, these units are
related to intermediate states that are relevant for the diffusion process. From the Si-O-Si
distribution in Fig. 6.7, one notes that the number of such rings increases with increasing
temperature. The O-Si-O angular distributions present a well-defined maximum at ~ 110°
which corresponds to a typical intra-tetrahedral angular distribution (the ideal tetrahedral
angle &~ 109°). Finally, one recognizes that the temperature dependence of the Si-O-H distri-
bution seems to be significantly weaker than the one of the Si-O-Si and O-Si-O distributions.
The Si-O-X (X= H, Na) angular distributions at 3500 K (Fig. 6.7d) present very similar
shapes with a slight shift to larger angles for the sodium silicate liquid. In both cases a
broad maximum can be seen at angles between 108° and 115°. A maximum in this range
shows that, in both cases, the chemistry of a twofold coordinated oxygen with a lone pair is
realized. The shift of the mean angle to a higher value for the sodium silicate is certainly
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an effect of the larger size of the sodium atom since for larger atoms the repulsion of the
electron shells of the two oxygen-ligand atoms becomes more important.

6.1.3 Structure Factors

The neutron scattering structure factor was calculated according to

1 5 2 bibi{expliq - (rg — 17)]) (6.3)

Sn(q) =
(9) Neib; + Nobd + Nubf 4

where by (k=Si,O,H) are the coherent neutron scattering lengths and (-) is the thermal
average. The scattering lengths were taken from Ref. [Ni95] where bs; = 0.41491 x 1014
m, bp = 0.5803 x 10 m and by = —0.374 x 10 '* m are reported. A very important
feature for the experimental verification of the simulation is the replacement of hydrogen by
its isotope deuterium. Since the coherent scattering length of deuterium (bp = 0.671 x 10~
m) is quite different from that of hydrogen, the contribution of the hydrogen atoms to the
total structure factor can be revealed. Figure 6.8a shows the neutron scattering structure
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Figure 6.8: (a) Total neutron scattering structure factor of the hydrous silica liquids at 3000 K
(thin line) and at 3500 K (bold line) and of a pure silica liquid at 3500 K (dashed line); (b) Total

neutron scattering structure factor for the hydrous silica liquid at 3500 K (bold solid line), the
deuterated liquid (bold dashed line) and the difference (thin solid line).

factor S, (q) for both simulated temperatures in comparison to the simulated dry silica liquid
at 3500 K [Be01]. For ¢ > 2.0 A=, the three curves can be considered to be identical which
is in agreement with the fact that we did not see any differences in the Si-Si, Si-O and O-O
radial distribution functions for silica, the sodium silicate, and the hydrous silica liquids.
In contrast to this, the ¢ < 2.0 A ~' region of S,(g) of the hydrous silica liquid exhibits a
prepeak at 0.95 A~ at 3500 K and at 1.3 A~! at 3000 K which is not present in the pure
silica melt. (It should be mentioned that the box size of the hydrous silica liquid is 11.5 A,
corresponding to a minimum value of ¢ of 0.55 A~" and thus the prepeak found at 0.95 A~
can not be attributed to a size effect. Note also that the number of silicon and oxygen atoms
was almost equivalent in the simulation of pure silica and hence the statistical accuracy is
as well comparable.)

For the sodium silicate it turned out that the long range correlations (¢ < 2.0 A=) contain
important information on the diffusion mechanism as it was shown recently [Ho01, Ho02,
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Me02, Me04]. It was found that in the liquid a network of channels is formed which enables
the sodium atoms to move rapidly through the SiO-matrix. This channel structure is thus
able to explain the relatively high diffusion constant of sodium atoms in sodium silicate
melts. The characteristic distance between these channels is around 6 A, i.e. two tetrahedron
diameters, and gives rise to a prepeak in the structure factor at about 1 A~', a structural
feature which has indeed been found in recent neutron scattering experiments [Me02] (see
also figure 1.5).

Fig. 6.8b shows the structure factor at 3500 K for the hydrated silica and deuterated silica
liquids as well as their difference. Remarkable differences of the two signals are found at 0.95
A-', around 2.0 A~! and around 5.0 A~!. Since the most important contributions to the
difference are located in the g-vector region of the prepeak (at 0.95 A‘l), the prepeak can
be directly attributed to the presence of the hydrogen atoms. For a deeper understanding of
the prepeak origin in the hydrous melts, we analyzed the partial structure factors presented
in Fig. 6.9.
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Figure 6.9: Partial structure factors of the hydrous silica liquids at 3000 K (dashed line) and at
3500 K (bold line).

The partial structure factors S,,(q) are related to the total S,(q) presented in Fig. 6.8 as

follows: N
1
SH(Q) = 72 babbSab(Q) (64)
2o Naba 5
where S,;(q) are given by
fab Na Db

Sav(9) = 77 22 D _{expliq - (v — 1)) (6.5)

k1
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and f, is equal to 0.5 for a # b and equal to 1.0 for a« = b. The partial structure factors in
Fig. 6.9 can be separated in a group describing the silica matrix distributions (Si-Si, Si-O,
0-O) and in a group involving distributions with H (Si-H, O-H, H-H) as it was done for
the RDFs (see Sec. 6.1.1). For the matrix part, we find for ¢ > 2.0 A ! a nearly perfect
agreement between the structure factors presented in Fig. 6.9 and the ones extracted from
the NS4 liquid simulation from Ref. [Is01]. The only difference is the prepeak at 0.95 A~
for 3500 K and at 1.3 A" for 3000 K. One recognizes therefore a modification of the matrix
at a length scale between 4.8 A and 6.6 A which was not visible in the RDF representation.
Since the prepeak is present not only in the partial structure factors involving hydrogen, but
also in the O-O and Si-Si distributions, one notes that the network modification does not
only concern the hydrogen atoms. This behavior can be understood by taking into account
the strong and well defined bonding of the hydrogen atoms to the silica network (see the
O-H radial distribution function in Fig. 6.3).

6.1.4 Distribution of Nearest Neighbors

In this section the nearest neighbor coordination numbers are discussed. The nearest neigh-
bors of an atom were again determined as the atoms that are located within a sphere with
a radius that is given by the positions of the first minima in the corresponding radial distri-
bution function. Whereas the average coordination number has already been extracted from
the RDFs themselves (Fig. 6.3), the distributions are presented now. The discussion is lim-
ited to the coordinations of the network forming atoms. The errors for the results presented
in this section are related to the number of independent configurations in the liquid. A con-
figuration is assumed to be independent of a previous one if they are separated by the time
it takes for the atoms to show a diffusive motion. From Fig. 5.6 it can be recognized that for
T=3000 K and T=3500 K one has two and three independent configurations, respectively.
Thus the relative errors are 1/v/2 = 0.71 at 3000 K and 1/v/3 = 0.58 at 3500 K which are
then divided by the square root of the average quantities in question. The resulting absolute
errors will be given in the text.

As for the other quantities described above, we begin with the temperature dependence of
the distributions in the hydrous liquid and extend the study of the comparison of these
distributions with the ones found in the sodium silicate liquid.

Figures 6.10a and b present the Si-O and O-Si distributions for the two temperatures of the
hydrous silica liquid. Both coordination probabilities confirm the picture drawn from the
analysis of the previous quantities: The silica network is still present in the hydrous silica
liquid since one finds a maximum of the Si-O distribution at a coordination of four and a
maximum of the O-Si distribution at a coordination of two.

In agreement with the temperature dependence of the RDFs and of the angle distribu-
tions, the coordination distributions become broader as the temperature is increased. For
the higher temperature, the Si-O distribution shows significant contributions at coordination
numbers of three and five and the O-Si distribution shows contributions at a coordination
of one.

In addition, the O-Si coordination reveals the speciation of the water molecules, since one
does not find a significant contribution at a coordination number of zero. Therefore the
existence of free water molecules can be excluded (a free water molecule has zero silicon
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Figure 6.10: Si-0O (a) and O-Si (b) coordination distributions for the hydrous silica liquids at 8500
K (black bar) and 3000 K (white bar) and Si-O (c¢) and O-Si (d) for the sodium tetra-silicate at
3500 K (gray bar) [Is01]. The black bars in (c¢) and (d) are identical to the ones in (a) and (b) and
represent the hydrous liquid at 3500 K.

neighbor). Note that in reality the numerical value is non-zero (but too small to be visible
in the figure) because of the presence of transient water molecules in the liquid at 3500 K.
In contrast, the contribution at a coordination of one is roughly é at both temperatures,
corresponding to the fraction of the non-bridging oxygens in the system that compensates
the charges of the eight hydrogen atoms in the form of O-H groups.

Since the dissolution product of water in silica is almost exclusively made of Si-OH units, the
dissolution mechanism is similar to that of disodium oxide in the NS4 liquid. To compare
these two mechanisms, the Si-O and O-Si coordination numbers of the hydrous silica liquid
and of the sodium tetra-silicate liquid at 3500 K are presented in Figs. 6.10c and d [IsO1].
When comparing these two systems, the concentration of sodium atoms of 13.3 mol % in the
NS4 melt and the concentration of hydrogen atoms of 7.8 mol % in the hydrous silica melt
should be taken into account. The Si-O coordination distribution has basically the same
shape for both systems with a clear maximum at a coordination number of 4 even though
the distribution for NS4 is, somewhat broader. The O-Si coordination probability presents
stronger differences. Both distributions have their maximum at 2 (indicating that in both
cases the silica network is still present) but the absolute values are quite different. In both
cases the O-Si probability for having one silicon neighbor deviates significantly from zero.
This indicates the formation of O* in the hydrous melt and equivalent oxygen types in the
NS4 melt (hereafter denoted by NaO*). If the dissolution product was exclusively given by
O* and NaO*, the coordination probability would correspond to the Ny /Ng ratio or to the
Nna/No ratio, respectively, where Ny, No and Ny, are the number of hydrogen, oxygen or
sodium atoms in the different systems. These ratios are equal to é—i = 0.222 for the sodium
silicate liquid and to 6844 = (0.125 in the hydrous silica one. Figure 6.10d shows a contribution
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of 0.139 + 0.027 for the hydrous silica sample and of 0.218 4 0.037 for the NS4 sample which
is in agreement with the simple theoretical prediction. In the hydrous case, one notes again
the important presence of Si-O dangling bonds at 3500 K compared to the NS4 liquid at the
same temperature.

A quantity closely related to the O-Si and Si-O coordinations is the distribution of the Q"
species, where n denotes the number of bridging oxygens attached to a silicon atom. For the
simulated systems, one notes that for a perfect dissolution of the water into OH groups, one
expects a probability for Q* equal to % = 0.267, the ratio between the number of hydrogen
and silicon atoms, if all OH groups are attached to different silicon atoms. Indeed Fig. 6.11
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Figure 6.11: Probability to have a Q™ speciation for the hydrous sample at 3500 K (black bars)
and 3000 K (white bars).
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exhibits a probability of Q? sites of 0.229 + 0.062 at 3000 K and of 0.269 + 0.055 at 3500 K,
respectively. The contributions at n = 2 of 0.029 4 0.022 at 3000 K and of 0.023 £ 0.016 at
3500 K are relatively small. In particular, these contributions are smaller than %% = 0.062,
the probability that two H among the eight of the system are found on the same Si tetrahe-
dron, which indicates that the Si-O-H groups tend to avoid each other. Due to the absence
of contributions at n = 1 and n = 0, one can exclude the possibility for a clustering of O-H
groups on specific silicon atoms. Consequently a relatively homogeneous distribution of the
O-H groups over the silicon atoms is observed. Besides, note that one Q? site in the system
would give a probability of % = 0.033 which is larger than the probabilities for % presented
in Fig. 6.11. This indicates that the Q? sites do not exist throughout the trajectories.

The Q™ species distribution is experimentally accessible with NMR spectroscopy. Farnan
et al. [Fa87] have determined these quantities for hydrous silica glasses from 2°Si NMR
spectroscopy. Their samples contained 7.9 and 24.1 mol % H,O and the measured Q* prob-
abilities were 0.086 4+ 0.008 and 0.235 £ 0.025, respectively, e.g. values that are significantly
lower than the Q3 probabilities found in the present study. This might be due to the fact
that in the samples of Ref. [Fa87] only half or less of the water molecules were dissolved into
OH groups. For the 7.9 mol % H,O sample, the authors found a ratio of OH over H,O of 1/1
and an even lower value in the 24.1 mol % H,O sample. Since the samples were prepared
at only 1550°C, these difference in the concentration of the Q® species might be due to the
difference between the experimental temperature and the present simulation temperatures.
The probabilities to find oxygen atoms of different types during the trajectories at 3000 K
and 3500 K were also evaluated. In particular the appearance of intermediate states like Si-O
dangling bonds and O3H triclusters as well as water oxygens (wO) can have consequences
for the hydrogen diffusion in the melt. Figure 6.12 shows the probability of finding O* and
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O3H cluster units in the trajectories at 3000 K and 3500 K.

10 T T T T T 10 T T T T T
> 0.8  =m 3500K @ 1 >o08¢} (b)
S 06 | — 3000K 1 Sost |
3 3
9 04 ' e 04 4
o 02 R o 02 h L :
0.0 n L 0.0 I -
4 5 10 4 5
number of O* number of 03H

Figure 6.12: Probability to find O* (a) and O3H cluster (b) in the hydrous silica liquid at 3500 K
(black bar) and 3000 K (white bar).

It should be recalled that a dissolution of all hydrogen atoms into O-H groups would give
an exact number of eight O* (the number of H atoms). As it can be seen in Fig. 6.12a,
the probability distribution is shifted towards values smaller than eight and that at 3500 K
the maximum is not even at eight. In contrast, the number of O3H cluster increases with
increasing temperature (Fig. 6.12b). Since the number of free O-H groups and free water
molecules is negligible, one concludes that the decrease in concentration of O* at high tem-
perature is due to a direct conversion into O3H clusters. The important re-decay of O3H
clusters into O*, which will be presented in Sec. 6.2, seems to confirm this hypothesis. From
Fig. 6.10 and the simulation of pure silica at 3500 K [Be01], it is known that three silicon co-
ordinated oxygen atoms are hardly present. The tricluster site formation is hence facilitated
by the presence of hydrogen atoms. Obviously the O-H groups constitute “dead-end-pieces”
and a higher angular mobility for an O* oxygen than for a BO one can be expected. This
higher angular mobility enables the approach of the O* to another silicon atom and hence
the formation of a tricluster. The lower mobility of BO atoms seems to suppress this process
in pure silica. The relation of the O3H cluster and the two membered rings was also studied
and significant correlation was found since more than half of the O3H clusters is part of two
membered rings. The existence of Si-O dangling bonds has been demonstrated in Fig. 6.5.
In Fig. 6.13 the temperature dependence of the probability of finding a given number of these
oxygen types in the hydrous silica liquid is presented. Whereas at 3000 K the maximum of

0.8 T T T T T
Il 3500K
— (1 3000K 7

probability

o
N
T
I

° o 1 2 3 4 5
number of Si—O dangling bonds

Figure 6.13: Probability distribution of the Si-O dangling bonds for the hydrous silica liquid at
3500 K (black bars) and 3000 K (white bars).

the distribution is at zero, it shifts to a value of two at 3500 K and the probability to find
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zero dangling bonds at this temperature is small. Hence, the formation of these species is
an effect of the elevated temperature. Since this structural feature is not found in a pure
silica liquid, the question of its origin emerges. The existence of these dangling bonds might
be directly linked to the formation of the O3H cluster. Since these tricluster units increase
the coordination of the oxygen atom from two to three, the system attempts to compensate
this stoichiometry violation. Since the coordination of the hydrogen and silicon atoms are
rarely violated, the appearance of the Si-O dangling bonds (where O has only one neighbor)
is certainly associated to the appearance of the O3H clusters.

Now that the existence of the Si-O dangling bonds is evident, the question of their contri-
bution to an eventual fast hydrogen diffusion emerges. Do these dangling bonds serve as
acceptor and donor states for hydrogen ? From Figs. 6.5 and 6.6, one knows that Si-O
dangling bonds exist both with a weak bond to a silicon atom and with a weak bond to a
hydrogen atom. But the analysis of the recombination of these sites shows that only about
17 % of the dangling bonds recombine to a O* site and 83 % recombine to a BO site (see
Sec. 6.2). The last oxygen species to be presented here is the water oxygen (wO). As already
discussed in the introduction, these units are supposed to play a decisive role for the proton
transport. One also knows from the H-H RDF first peak at 3500 K (Fig. 6.3) that such
units exist at this temperature. Figure 6.14 shows the probability of finding such water units.
Indeed at the higher temperature, one water unit is present with a probability of roughly 10
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Figure 6.14: Probability for HyO units at 3500K (black bars) and 3000K (white bars).

% along the trajectory. At 3000 K this probability is only 2 %. The corresponding water
concentrations are 0.30 mol % and 0.06 mol %, respectively. Note that the concentration of
0.30 mol % at 3500 K should give rise to a probability of 0.003 for the zero O-Si coordination
in Fig. 6.10 if the water molecules were free. Since the contribution at zero is two orders
of magnitude lower, one should underline the important point that those water units are
not free. A detailed analysis reveals an O3 coordination with two hydrogen neighbors and
one silicon neighbor. As already mentioned above, the water unit concentrations are far
remote from experimentally measured water concentrations. Considering again the data of
Farnan et al. [Fa87] where a ratio of OH over H,O of 1/1 (50 mol % H,0) at a total water
content of 8.9 mol % is found, one would expect important contributions around two in Fig.
6.14. Again these differences in the concentration of molecular water probably arise from
the difference between the experimental temperature and the present simulation ones.

The section on the structural properties shall be concluded with a brief summary of the
figures that showed evidence of the existence of the different intermediate states and that
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quantify their probability of occurrence in the liquid:

structural unit relevant figures

SiOH groups 6.3e (evidence), 6.12a (quantification)

Si-O dangling bonds | 6.5 (evidence), 6.6 (evidence), 6.13 (quantification)
O3H triclusters 6.6¢ (evidence), 6.12b (quantification)

water molecules 6.3f (evidence), 6.14 (quantification)

Table 6.1: Figures that show evidence for the existence of the transition states and that quantify
their probability of occurrence.

6.2 Dynamics in the Liquid

In this section the possible mechanisms for hydrogen diffusion are discussed. It should be
emphasized again that, due to the presence of thermostats, dynamical quantities like the
diffusion constants cannot be extracted reliably. Nevertheless, the structural characteristics
of the melt should allow it to obtain at least some insight into its dynamical properties. The
aim is therefore to determine whether the structural units we discussed in Sec. 6.1.4, such as
the O3H clusters or the Si-O dangling bonds, can serve as intermediate states for hydrogen
diffusion processes in SiO5-H,O liquids.

This discussion is started by making a list of the possible hydrogen diffusion mechanisms
in liquid silica, eliminating the free water molecules or stable O-H groups as possible free
hydrogen carriers since, as discussed above, they are absent in the simulation data. As the
hydrogen atoms are attached to the silica matrix in the form of Si-O-H groups, three possible
mechanisms come into play:

1. motion of the hydrogen in the form O-H- - -O — O- - -H-O
2. motion of the oxygen in the form H-O- - -H — H- - -O-H
3. motion of the O-H group in the form Si-(OH)- - -Si — Si- - -(OH)-Si.

The first two mechanisms require the rupture of an O-H bond whereas the third one requires
the rupture of a Si-O bond. In the following, it will be shown that among processes 1. and
2., the first one dominates with ~ 90 % and that the third process is indeed present in the
liquid. A typical reaction involving the two first processes are shown in Figs. 6.15 and 6.16.

s
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Figure 6.15: Typical hydrogen diffusion reaction of process 1.. A hydrogen is released from an
Si-O-H (0*) to a bridging oxygen (BO) forming subsequently another O*. A Si-O dangling bond
and an unsaturated silicon atom are the resulting products.
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Figure 6.16: Typical hydrogen diffusion reaction of process 2.. A hydrogen is released from an
Si-O-H (0*) to another Si-O-H group (O*) forming a water like structure. An Si-O dangling bond
and an released hydrogen atom are the resulting products.

In the simulated trajectories, one can easily count the number of O-H ruptures in order
to find out whether the first two mechanisms exist in the liquid. However, it is possible
to distinguish the two processes only by looking at the reactants and the decay products
associated with each O-H rupture. The possible reactants (resp. decay products) for the
formation (resp. rupture) of an O-H group are given in Tab. 6.2 where the O* refers to an
oxygen in a Si-O-H group, wO to an oxygen atom in a water molecule, BO to an oxygen atom
in a Si-O-Si group and O3H to an oxygen atom in a Si-(OH)-Si group (see the definitions in
the introduction of Sec. 6.1). Note that the formation or rupture of an O-H bond associated
with a wO — O* requires the water molecule to be close to a silicon atom which is indeed
the case since it was deduced from Fig. 6.10 that no free water molecules exist in the liquid.
The average number of O-H bonds in the SiO5-H50 melts is found to be equal to 8.4 at 3500

O-H formation O-H rupture
reactant final state || initial state decay product
Si-O dangling O~ O~ S5i-O dangling
o* wO wO o*

BO O3H O3H BO

Table 6.2: List of possible reactants for the O-H formation and of possible decay products for
the O-H rupture. The notations refer to the definition of the different ozygen types given in the
introduction of Sec. 6.1. The final (resp. initial) state gives the type of the oxygen atom in the
formed (resp. destroyed) O-H unit.

K and to 8.1 at 3000 K and is therefore larger than the total number of hydrogen atoms in
the system. Hence one concludes that intermediate states with two oxygen atoms close to a
single hydrogen exist and that they must serve as intermediate states for hydrogen exchange
reactions (process number 1.).

By counting the number of O-H ruptures along the trajectories and the type of reac-
tants/decay products associated with these ruptures, it is possible to show the existence
of hydrogen diffusion processes of types 1. and 2.. For the following it is assumed that an
O-H bond was formed if the O-H interatomic distance was larger than the O-H cutoff at
step ¢t and smaller than the O-H cutoff at step ¢ + At (At being the length of a time step
of 0.1088 fs). The nature of the reactant is found by counting, at time ¢, all silicon and
hydrogen neighbors (again in terms of the nearest neighbor cutoff) of the later O-H oxygen.
A rupture of an O-H bond was assumed to have happened if one H and one O atom had an
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interatomic distance smaller than the O-H cutoff at time ¢ and if their interatomic distance
became larger than the O-H cutoff at step ¢ + At, irrespective of whether subsequently the
same bond was formed again or not. The decay product of an O-H rupture is the H donor
unit (without the H atom) and is found by counting, at step t + At, all silicon and hydrogen
neighbors (again in terms of the nearest neighbor cutoff) of the former O-H oxygen.

At 3500 K the total number of O-H formations and ruptures was 97 and 94 respectively,
during the equilibrated part of the trajectory (8.1 ps). At 3000 K the number of 68 O-H
formations and 69 ruptures was found during the equilibrated part of the trajectory (11.6
ps). However, in order to take into account the O-H formations and ruptures that serve for
hydrogen diffusion, one also has to distinguish between the formations and ruptures that
give rise to hydrogen transfers or recombinations. In order to perform this separation be-
tween transfers and recombinations it is necessary to relate each decay of an OH bond to a
formation of an OH bond. A hydrogen transfer requires the rupture of one O-H bond and
the formation of a different one, whereas a recombination implies only one bond. Note that
the rupture of the first bond will occur before the formation of the new bond if a transient
free hydrogen is formed, or, as in almost every case, after the formation of a new bond which
implies the formation of the intermediate state. Making this distinction between transfers
and recombinations, one finds 28 transfers at 3500 K (corresponding to a ratio of g—i =288%
transfers and 71.2 % recombinations) and 8 transfers at 3000 K (corresponding to a ratio
of & = 11.8 % transfers and 88.2 % recombinations). The ratio between the number of
ruptures involved in a transfer and the total number of ruptures gives the recombination
rate.

Figs. 6.17a and b give the percentage of the reactants and decay products for the O-H
formations and ruptures including recombinations and Figs. 6.17c and d the related transfer
reactions (i.e. without recombinations). For the transfers, due to the small numbers, the
error bars are quite large. At both temperatures, the contributions of the Si-O dangling
bonds are higher for the transfer related ruptures than for the overall ruptures, i.e. transfers
and recombinations. Furthermore it can be recognized from Figs. 6.17c and d that the Si-O
dangling bonds and the BOs are the main acceptors and rupture products, with almost equal
probability.

Concerning transfers, the Si-O dangling bonds react with a probability of 40 % at 3500 K
and 60 % at 3000 K into an SiOH group and the SiOH group (O*) decays with a probability
of 40 % at 3500 K and 50 % at 3000 K into a Si-O dangling bond. However the corresponding
probability that includes recombinations is for both the formation and the decay around 30
%. This result indicates that the Si-O dangling bonds are more involved in the formation
and rupture of the O-H bonds when the transfers are considered and the recombinations
are taken out. Furthermore it also demonstrates the existence of large vibrations of the H
atoms around the O atoms of the Si-O dangling bonds and hence the existence of the ” weak”
hydrogen bonds described in Sec. 6.1.1.

The BOs serve, with a probability of 50 % at 3500 K and of 40 % at 3000 K, as reactants
for a hydrogen transfer leading to a new O-H group (60 % including recombinations at both
temperatures). On the other side, the BOs serve as products of a hydrogen transfer with a
probability of about 50 %, and therefore the participation of the BOs to the formation and
rupture of the O-H bonds is slightly decreased when transfers are compared to the reactions
including recombinations.
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Figure 6.17: Probabilities of O-H group formation and decay including recombinations, (a) and
(b), and without recombinations, (c) and (d), associated to Si-O dangling bonds, O* and BO. Black
and white bars correspond to 3500 K and 3000 K, respectively.

Finally, the O* contribute much less to the O-H group formation and decay than the other
species, with a probability of about 10 % (12 % including recombinations) at 3500 K and 0
% (8 % including recombinations) at 3000 K.

From Fig. 6.17, one can deduce that hydrogen transfers involving Si-O dangling bonds or
BOs as reactants as well as decay products dominate with ~ 90 %. Since these units are
associated to O* or O3H as initial or final states, they correspond to the hydrogen diffusion
process number 1. which means that among the processes 1. and 2., the former dominates
with & 90 %.

Finally the third hydrogen diffusion mechanism shall be considered. It is associated with
the motion of a O-H unit as a whole (without any O-H rupture) which can be obtained via
the formation and decay of an O3H cluster as sketched in Fig. 6.18. Note that this process

! o ? 7 0
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Figure 6.18: Typical hydrogen diffusion reaction of process three involving a O3H. A O-H group
is released from an Si-O-H (0*) to a O3H cluster decaying subsequently in another O*. An over-
saturated and an unsaturated silicon atoms are subsequent products.

requires the presence of "weak” Si-O bonds, the existence of which was inferred from Fig.
6.6 and leads to the formation of threefold and fivefold coordinated silicon atoms. As for the
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O-H bonds, the probabilities to find the different reactants and decay products for the O3H
cluster formation and rupture were analyzed. Along the equilibrated part of the trajectories,
one finds 142 formations and 139 ruptures at 3500 K and 104 formations and 103 ruptures
at 3000 K. In the case of O3H clusters, the possible reactants and decay products are the
oxygen atoms involved in a Si-O-H unit (O*) or a bridging oxygen (BO). The latter case
involves an O-H rupture event whereas the first case does not. This is the reason why a
distinction between recombinations and transfers is not easily feasible for these species since
the transfered object can either be a hydrogen atom (as in Tab. 6.2) or an entire O-H group
(as in Fig. 6.18). Therefore only the distribution for O3H formations and ruptures including
recombinations is displayed in Fig. 6.19. There are only very small differences between
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Figure 6.19: O3H group formation (left) and decay (right) products at 3500 K (black bars) and
3000 K (white bars) including recombinations.

formation and decay. At both temperatures, the O3H clusters form and decay from and into
BO and O*, with almost the same probabilities. However at 3000 K, the probability from
and into O* is slightly preferred with a value of 56 % for O* vs. 44 % for BO. This indicates
that the hydrogen diffusion process involving the motion of a O-H group without any O-H
bond rupture (process number 3.) occurs in the liquids as well.
To conclude this section on the diffusion process, the activation energy for a hydrogen transfer
corresponding to the rupture of an O-H bond (without recombination) is analyzed. One
can calculate the activation energy for a hydrogen transfer reaction assuming an Arrhenius
behavior 5
A

R(T) = Aexp {_kB—T} : (6.6)
where the reaction rate R(7') is given by a constant A and the activation energy E4. Us-
ing the two numbers of O-H ruptures leading to transfers of 28 for 3500 K and 8 for 3000
K one obtains 280 kJ/mol (2.91 eV) for the activation energy (the different lengths of the
equilibrated trajectories already taken into account). Unfortunately the constant A depends
explicitly on the transfers per time and can hence not be determined due to the above
mentioned problem of the thermostats. The activation energies for the generation and dis-
sociation of various Si;O,H, molecules in the gas phase have been determined by Zachariah
et al [Za95] with the GAUSSIAN ab initio package [Ga90]. Zachariah et al found a value
for the activation energy of the formation of OSiOH from SiOy and H of 254 kJ/mol which
compares very well to the above value of 280 kJ/mol for a hydrogen transfer. Also Bakos et
al. [Ba02] estimated a diffusion reaction barrier of more than 2 eV (193 kJ/mol) for water
molecules in small rings. Note that if the activation energy of an OH rupture was much

smaller than the reaction barrier of water molecules, molecular water would form.
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Figure 6.20: Ewvolution of the edge-sharing tetrahedrons as a function of time in the equilibrated
trajectory at 3000 K and in the selected configurations that were driven to 2000 K and 1500 K.
The big dot on the z-azis indicates the configuration from where the 2000 K and 1500 K runs are
started. The selected configuration is the initial one for sample 3.

6.3 The Quench

6.3.1 General Features

Experimental quenches of liquids usually reach cooling rates of 0.1 K/s to 10 K/s [Vo96].
Due to finite computer time, the lowest computationally accessible quench rates are of the
order 10 K/s [Vo96]. This discrepancy hinders the simulated system to perform relaxations
of intermediate states that decay at a natural quench rate. Hence it becomes mandatory to
select carefully initial configurations for the quench. In particular, these initial configurations
must have a low number of these intermediate states (like oxygen tri-clusters, edge-sharing
tetrahedrons or dangling bonds). In pure silica, the number of edge-sharing tetrahedrons
(est) is roughly zero and in hydrous silicates, only little is known about the presence of other
intermediate states at ambient temperature. Therefore we selected initial configurations for
the quench having a low number of edge-sharing tetrahedrons. The selection of appropriate
configurations of the liquid is demonstrated in Fig. 6.20.

These configurations were subsequently quenched to 2000 K and then to 1500 K. Figure
6.20 shows the evolution of the est at the two temperatures started from the selected point
with zero est. Since the est form again at 2000 K nearly similar to the trajectory at 3000
K and no reformation occurs at 1500 K, the relaxation time of the system seems to show a
significant alteration between 2000 K and 1500 K. One can therefore roughly estimate the
glass transition temperature of the system between 2000 K and 1500 K. Once the critical
temperature for the change of the dynamical properties is roughly fixed, it is not clear which
is the most natural way to simulate crossing of the glass transition temperature. However,
since the glass transition is a transition of dynamical properties rather than of structural
ones, the way of quenching can be supposed to have little influence on the structure of the
glass. Note again, that unfortunately due to the use of thermostats, the access to dynamical
properties in the liquid state of the system is lost. Figure 6.21 shows the three different types
of quenches that were used in the present study. The initial configuration for quenches 1.
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and 2. was identical. It was picked from the trajectory at 3000 K at a time of 19.37 ps. The
initial configuration for quench 3. was picked from the 3000 K trajectory at 15.73 ps and the
configuration for quench 4 was picked from the 3500 K trajectory at 4.40 ps. According to
Vollmayer et al [Vo96], within the computationally accessible rates, the actual speed has only
little importance for the final structure. The most “natural” way of quenching is probably
the linear quench, but it is of course questionable what are the final structural differences
compared to a direct quench or a step quench of the same initial configuration.

Having considered the different ways of quenching for the present system it turns out that
indeed different structures are obtained. In particular it is observed that in direct and step
quenches, with a length of the step of several hundred ps below T, we are able to freeze the
structural transition states that occur numerously in the liquid as discussed in the previous
section. The structural transition states like SiO dangling bonds and O3H clusters mostly
decompose if linear quenches at rates of 10!* K/s are used. Since such transition states are
absent in pure silica, the type of quench had a minor importance in the studies of Vollmayer
et al [Vo96]. The use of different quenching techniques is hence in the present study a
nice tool in order to systematically create and investigate structural intermediate states in
hydrous silica glasses.

6.3.2 Implementation of a Linear Quench in CPMD

Quenches are not implemented in the standard CPMD code. Therefore the following modi-
fications had to be applied. The variable TFIRST is the initial temperature (which is fixed),
QUENCHR is the quench rate in K/a.u., NFI is the MD step number, DELT_IONS is the timestep
value in a.u. and TEMPP is the real temperature of the system at MD step NFI. The veloci-
ties are multiplied by a factor ALFAP (see below) which is obtained by the value of ANNERI.
Usually, one enters directly ANNERI in the input file of CPMD, but if the same factor ALFAP
is used at each time step, an exponential quench would be obtained. If a linear quench is de-
sired, one has to recompute the ALFAP factor at each MD step and CPMD has to be modified:

ANNERI=(TFIRST-QUENCHR*#NFI*DELT_IONS)/TEMPP
ALFAP=ANNERI*x(0.25)
DO IS=1,NSP
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DO IA=1,NA(IS)
VELP(1,IA,IS)=ALFAP*VELP(1,IA,IS)
VELP(2,IA,IS)=ALFAP*VELP(2,IA,IS)
VELP(3,IA,IS)=ALFAP*VELP(3,IA,IS)

ENDDO

ENDDO

The 0.25 power comes from the fact that the ALFAP factor is applied twice to the velocities
at each MD step.

For the linear quench, 125 000 MD steps at the quench rate of 1.5 10'* K/s (=0.0036 K/a.u.),
correspond to a final temperature of 650 K if the quench is started from a 2000 K initial
temperature with a timestep of 3.5 a.u. Each MD step costs roughly 9 seconds (real time)
on 16 processors on the IDRIS platform, which makes 9x16=144 sec CPU. So with 125 000
MD steps, 5000 CPU hours were used.

6.3.3 Available Samples

According to the three different quenches presented in figure 6.21, different ambient temper-
ature glass samples were obtained. At 300 K the glass samples were equilibrated for some
hundred femto seconds. During the equilibration the defects were stable. In order to discuss
their properties it is useful to note the structural anomalies the samples exhibit. The fol-
lowing table gives an overview: As already mentioned above, it can be seen that structural

sample quench NBO O* SiO dangling O3H SiO3 SiO; SizO
1 linear from 2000 K 8 8 0 0 0 0 0
2 step from 3000 K 9 7 2 1 0 0 1
3 step from 3000 K 8 7 1 1 0 0 0
4 instantaneous f. 3500 K 9 8 1 0 1 1 1

Table 6.3: Overview over available glass samples, the nature of their quench and the structural
anomalies. Samples 1 and 2 were obtained starting from the same initial configuration.

defects of the liquid can be conserved or decompose depending on the quench rate. Note
that the fact that the most natural, linear quench shows the least anomalies does not mean
that defects will be absent in a natural glass. If the simulation comprised more atoms it is
well believed that also in natural linear quenches some structural anomalies can be preserved
during the quench. Therefore the investigation of the defects in the following chapter is not
without relevance for natural glasses. The investigation will focus on the analysis of the
electronic and vibrational properties of the four samples with particular attention to the
influence of the structural anomalies presented in table 6.3.
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6.4 Electronic Structure

6.4.1 The Electronic Structure of Pure and Hydrous Silica

The electronic structure of amorphous silica is close to the one of crystalline forms of SiO,
such as tridymite or cristobalite [Pa76]. Historically the electronic structure of the amorphous
material was therefore deduced from the crystalline structure. A simple linear-combination-
of-atomic-orbitals (LCAO) approach [Ro51] can monitor the main electronic features. The
starting point for this kind of model is a construction of four tetrahedrally directed sp?
hybrid orbitals for a silicon atom. The main structural unit to be considered in order to
obtain the electronic structure of amorphous silica is then the Si-O-Si unit as displayed in
figure 6.22. Two Si hybrids, |h,) and |hs) point in the direction of the oxygen atom. The
atomic basis set is then composed of the three p-orbitals of the oxygen atom (|p;), |py), and
Ip.)) and the silicon hybrid orbitals |h;) and |hy). If the orbitals are allowed to interact, the
symmetry of the bond allows mixing between |p,) and |h;) and |hs) as well as |p,) and |hq)
and |hy). According to the LCAO Ansatz [Ro51] the following orbitals can be formed:

|Bz) = Bp.|p2) + Bn. (|h1) + |h2)) = Bp.|pz) + Bn.|a) (6.7)
Bs) = Bp. |Pz) + Bn. (IP1) — [h2)) = Bp. |p2) + Bh.[b) (6.8)
1B;) = Bp.|pz) = B () + [h2)) = Bp.|p2) — Ph.|a) (6.9)
|Bz) = BpoPe) = Bne (1) = |h2)) = By, |pz) = Bn. |D) (6.10)

with the so called “bonding” orbitals |B) and the “anti-bonding” orbitals | B*). The numeri-
cal coefficients 5 depend on the overlap integrals (;|1;) (where 1)) is one of the five orbitals
of the atomic basis set) and the bond angle © as introduced in figure 6.22. The orbitals
Ipy) are “non-bonding” in the chosen geometry. The band gap of roughly 9 eV emerges then
between the non-bonding and the anti-bonding orbitals as demonstrated in figure 6.22. The

atoms Si-O-Si bond band structure
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Figure 6.22: Left: Atomic p-orbitals of oxygen and their interaction with the Si hybrids |h). The
y-direction is not affected by the interaction with the Si atoms. The positive and negative linear
combination of the Si hybrids is usually referred to |a) and |b), respectively. Right: Resulting
electronic band structure in amorphous silica. The band gap arises between the bonding orbitals |B)
and anti-bonding orbitals |B*). After [Pa76].

real electronic structure related to the schematic idea obtained in Figure 6.22 is obtained
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from the Kohn-Sham orbitals in the simulation. In order to understand the influence of
water on the electronic structure of silica, it is useful to study quantities like the electronic
density of states (edos).

For the extraction of the Kohn-Sham energies from the samples at 300 K, the diagonaliza-
tion method of Lanczos is employed [Fi01]. The differences between the electronic density of
states of pure silica and two samples of hydrous silica are shown in figure 6.23. According to
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Figure 6.23: The electronic structure of pure and hydrous silica at 300 K. According to table
6.3, the two hydrous samples were quenched from the same initial configuration. Only the rapidly
quenched hydrous sample shows electronic states in the band gap of silica.

the idea developed in figure 6.22, the states from -10 eV to -4 eV correspond to the bonding
orbitals formed by the sp® hybrids and the O 2p orbitals. The O 2p nonbonding orbitals
form the states between -4 eV and the highest occupied orbital. Finally, the states between
-20 eV and -15 eV arise from the oxygen 2s orbitals. The insulating properties of bulk silica
are due to its band gap of ~ 9 eV (not fully shown in figure 6.23). We note that a large
underestimation of the band gap is usual in DFT [Go88|. Nevertheless it is recognized in
the literature that the relative order of the electronic states is well represented in pure silica
[Be00].

Note that according to table 6.3, the two hydrous samples were quenched starting from the
same initial configuration. It can be seen that both edos have rather similar shape, how-
ever, only the rapidly quenched hydrous sample seems to show states in the electronic band
gap of pure amorphous silica. It is well known that hydrogen (atomic or molecular) and
molecular water and also SiOH groups do not possess electronic states in the SiO, band
gap [Ro88, Hu03b]. Hence the states in the band gap have to be due to the intermediate
states like the dangling bonds or O3H clusters present in sample 2. It is therefore interesting
to investigate the influence of these structural anomalies on the electronic structure of the
material with particular attention to the band gap. It has already been proposed in figure
3.1 that the SiO dangling bond created by the reactions presented in Figures 6.15 and 6.16
produces a gap state at around 1 eV. In the following it will be shown that the present
model is indeed able to confirm some of the predictions of the molecular orbital calculations
of the 1970’s and 1980’s. The only difference is that the molecular structure is not arbitrarily
chosen as in the old models but obtained from a molecular dynamics run that really confirms
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predictions on the hydrogen diffusion and the creation of defects. However, the molecular
dynamics run in the present study is performed at an extremely high temperature at a sub-
sequent extremely rapid quench. Therefore it should be pointed out that the investigation
of properties of semiconductor devices with molecular dynamics simulations at very high
temperature followed by a very rapid quench is established in literature [Pa98]. In order to
relate structural defects in the electronic density of states, it becomes necessary to localize
the Kohn-Sham orbitals.

6.4.2 Orbital Localization

Such localization is a rather sophisticated task using origin-less plane waves as basis function
like in the CPMD code. The non-localized basis set was highly appreciated for the molec-
ular dynamics runs since Pulay forces are suppressed (see section 4.3.3) but now, trying to
localize the orbitals, the bill has to be payed. Fortunately methods have been developed to
obtain maximally localized functions, for periodic and amorphous systems.

Here the maximally localized Wannier functions are used. This method has been developed
by Marzari and Silvestrelli [Ma97, Si98] and is fully implemented in the CPMD code. In
periodic systems electronic wave functions are described by Bloch functions ¥, x(r), accord-
ing to their localization in the Brillouin zone k and the band n. Since Bloch functions are
periodic in reciprocal space a Fourier expansion can be given as U, y(r) = Y g wn(r,R) e**
with the Fourier coefficients w, (r, R). In periodic systems they depend only on the difference
r — R. Hence the Wannier functions w,(r — R) [Wa37] are given by

.
(2m)?

wn(r —R) = / &k R, 4 (1) (6.11)
Unfortunately, these Wannier functions are not unique since the Bloch orbitals ¥, i (r) have
a phase indeterminacy ¢®#(®) . This indeterminacy can be resolved by the criterion that the

sum = of the second moments of the expectation value of the position operator

=3 () —(x)2) (6.12)

(1]

is minimized. The expectation value (....), refers to the n-th Wannier function w,(r — R).
For finite systems (systems without periodicity) an equivalent criterion has already been
given much earlier by Boys which is today known as Boys’ localization [Bo66].

For the consideration of amorphous systems, the investigation can be restricted to a I'-
point only sampling. In the limit of a single k-point (the I" point), the distinction between
Bloch and Wannier functions becomes irrelevant. The problem reduces to finding the unitary
matrix that rotates the Kohn-Sham ground state into the maximally-localized representation.
In a cubic simulation supercell of length L the spread criterion of equation 6.12 can, after
[Si98], be reduced to the problem of maximizing = = Y, (| Xpn|? + |Yon|? + | Znn|?) where
X = (wm|e_i2fwm\wn) with analogue definitions for Y;,, and Z,,,. The maximization can
then be performed using numerical methods making use of the above defined matrices and
the KS orbitals.

The x coordinate x, of the n-th Wannier(-function) center is computed as

L 2n
Ty = —%Imln(wn\e*’%‘”\wm (6.13)
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where, again, equivalent formulas hold for ¥, and z,.

As was already indicated above, the Wannier formalism constitutes a description of the
electronic charge distribution in terms of well defined localized functions. In particular it
becomes possible to localize features of the electronic density of states in real space. This
can be achieved by the definition of the “projected density of states”

Nn(E) = Z |<wn|¢m>|2 5(E - Em) (614)

where 1, and F,, are the Kohn Sham eigenvectors and eigenvalues, respectively. Unfortu-
nately CPMD does not currently allow such quantities to be extracted. Thus the convolution
cannot be performed. However, other quantities, that reveal even more details about the
electronic structure are available.

Once the electronic ground states have been decomposed in well-localized Wannier orbitals,
it becomes possible to study the spatial distribution and the distribution of the Wannier
centers. Figure 6.24 shows the atomic positions and figure 6.25 the overlay of the Wannier
centers and the atomic positions (right panel) of a frozen configuration at 300 K.

The Wannier centers are clearly located at the oxygen atoms, and approximately tetra-

Figure 6.24: A given structure (sample Figure 6.25: Overlay with Wannier cen-
2), silicon is yellow, oxygen is red, and ters (green). The Wannier centers cluster
hydrogen is white. around the oxygen atoms.

hedrally disposed. Their localization on the oxygen atoms is a logic consequence of the
high electronegativity of the oxygen atom. In order to analyze the electronic properties of
an (amorphous) solid the whole charge distribution does not have to to be studies. The
knowledge of the positions of the Wannier centers and their spread can reveal most of the
chemistry of a system. In particular anomalies in the electronic properties that are related to
structural properties can be captured just with the knowledge of the position of the Wannier
centers. The Wannier centers are treated as an additional class of particles. The solid can
then be considered as an assembly of ion-particles and Wannier-center-particles.

If the Wannier centers are treated as an additional type of particles, it becomes possible
to consider quantities like pair or angle distributions and coordination numbers in order
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to characterize the electronic properties. According to the discussion of the liquid state
presented in section 6.1, the radial pair distribution of the oxygen atoms and the Wannier
centers, gowc is presented in Figures 6.26, 6.27 and 6.28 for the step and instantaneous
quenches. The main contributions for all samples are between 0.2 and 0.5 A. This reflects
the fact that all Wannier centers are located near the oxygen atoms as was already proposed
by figure 6.25. A common feature of all distribution functions seems to be the two well
separated peaks at roughly 0.3 A and 0.4 A. Taking into account the angle of the Si-O-Si
and Si-O-H bonds this behavior can be rationalized. Note that negative electronic charge
centers on an oxygen atom will order according to the geometry imposed by the bonds to
other atoms. However, relative heights of the peaks at 0.3 A and 0.4 A seem to depend on
the oxygen type. In particular, comparing to BO oxygens, the peak at 0.4 A seems to be less
pronounced for NBO oxygens and more pronounced for SiO dangling oxygens. Only sample
4 seems to deviate from the rule for the case of the SiO dangling bonds. The distribution of
the BO Wannier centers is close to the corresponding quantity of pure silica. This reflects
another time the similarity of the electronic density of states of pure and hydrous silica as
it was already discussed in figure 6.23. If the power of such distributions can certainly be
seen in the fact that they are able to provide a statistical picture of differences between the
electronic structure of different oxygen types, their explicative power is limited.

In the following the anomalies of the Wannier functions and Wannier centers associated with
the structural defects like SiO dangling bonds and O3H clusters are analyzed. The discus-
sion is started by the visualization of two isosurfaces of the density distributions for typical
Wannier functions of a regular OH bond and a SiO dangling oxygen in figure 6.29. As can be
seen in a comparison of the left and the right panels of figure 6.29, the density distributions
of Wannier functions located at SiO dangling bonds are deformed to a “mushroom” like
isosurface. Such deformation is a first indication for electronic anomalies.

A further quantity of interest is the spread = of the Wannier functions as defined in equa-
tion 6.12. Figure 6.30 shows this distribution for three different samples. One notes from
figure 6.30 that all three configurations have rather similar distributions of the spread of the
Wannier functions. Interestingly differences seem to occur between the samples at the high
spread end of the distributions. A detailed analysis reveals indeed that these contributions
arise from Wannier centers located near SiO dangling bonds.

6.4.3 Charge Density Deformations

For the chemist (with experience) it is sufficient to have a close look to the structure of a
molecular system in order to distinguish electron-rich and electron-poor regions. The concept
of electronegativity may stand here as an example. Evidently these concepts have to fail if
a finite temperature is considered and transition states come into play.

Many theoretical measures of atomic charges have been proposed [Mub5, Hi77|. The main
idea of such atomic charge concepts is to divide the molecule into atomic fragments and
to investigate how their charges differ from those of the free atom. Simple it sounds, it
becomes delicate in practice when the atomic fragments have to be defined and their charge
has finally to add up to the one of the molecule. Since the quantity “atomic charge” is not an
experimental observable, the theoretical descriptions cannot be classified into true or false.
Perhaps the most efficient way to compute a measure for atomic charges is the method
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Figure 6.29: Isosurface of 0.05 corresponding to a Wannier function of a regular OH bond (left
panel) and isosurface of 0.05 corresponding to a deformed Wannier function of an SiO dangling
bond.
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proposed by Hirshfeld [Hi77]. In this approach, the molecular electron density for a virtually
constructed pro-molecule pP™(r) at a certain position r is constructed from the sum of atomic
densities p% of the free atoms. To achieve that separation of the total electron density, the
actual molecular density p™°(r) has to be split among the atoms in proportion to their
respective contributions to the molecular density. Mathematically this can be expressed as
follows. The molecular density pP™°(r) is given by a sum of atomic densities

po(r) = 2}: pi(r) (6.15)

with the ground state atomic densities p$'(r). A charge sharing function wy(r) for every
atom is then given by

wi(r) = pf'(r)/p""(x) (6.16)

which assigns the charge fragment

A (x) = wr ()™ (x) (6.17)
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to each bonded atom (b.a.). Subtracting the density p%(r) of the free atom from the one of
the bonded atom p4%(r) yields the atomic charge deformation density:

Spi(r) = pr(r) — pi'(r) (6.18)

The quantity dp;(r) gives the perturbation of the electronic density of the isolated atom due
to the presence of other atoms and the bonds. It is a way to find the difference between the
“total” charge of the free atom and the actual charge of the bonded atom. This difference
is usually referred to as the net charge deformation density. By convention of negatively
charged electrons, the total charge for the bonded and free atom are obtained by

/d?’r or® and Z;= /d37" % ( (6.19)

with the nuclear charge —Z;. The net atomic charge ¢; is then obtained as the sum of the
electronic charge @); and the nuclear charge —Z;:

a=Qr—Z; (6.20)

The net atomic charges for the investigated quenched configuration is given in table 6.4 in
comparison to the values for pure silica computed by Benoit et al [Be00]. Table 6.4 shows

species qr(SiO9-H50) qr(SiOs) qr(Si02-4Nay0)
Si +0.220 + 0.031 +40.218 = 0.010 +0.240 4 0.041
BO oxygen —0.101 +£0.026 —0.109 4+ 0.007 —0.089 4 0.009
SiOX (X=H,Na) —0.116 + 0.021 - —0.249 £ 0.015
Si0 dangling —0.277 £ 0.046 - -
O3H +0.023 £ 0.000 - -
X +0.038 £ 0.030 - +0.082 + 0.34

Table 6.4: Average Hirshfeld atomic net charges (average £ sigma) for sample 2, pure silica [Be00]
as well as sodium tetra-silicate [Is01] (X=Na). Other samples show similar features.

that the atomic net charges for the silicon and bridging oxygen atoms in the hydrous sample
are very similar to those of pure silica. The charges of the different oxygen species in the
hydrous sample differ considerably. In particular the SiO dangling bonds exhibit a negative
charge that is higher than the average BO Hirshfeld net charge. In contrast, the O3H cluster
is undersaturated with electrons and exhibits a positive charge. The analysis of all available
hydrous samples shows that the net charges of the SiO dangling bonds varies considerably.
Interestingly the net charges seem to be correlated to the position of the associated electronic
states in the band gap of amorphous silica. Table 6.5 gives an overview of this correlation.

6.4.4 Electron Localization

A well established tool in order to describe the localization of electrons in a molecular struc-
ture is the so called Electron Localization Function (ELF) [CPFS02]. The definition of the
ELF goes mainly back to Becke and Edgecombe [BE90]. They associated the localization
of an electron with the probability density to find a second electron of the same spin near
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the reference electron. The Pauli repulsion between two electrons of the same spin is taken
as a measure of the electron localization. The ELF itself is only a relative measure of the
electron localization and a reference-localization is required. Becke and Edgecombe [BE90]
took the localization of the uniform electron gas as reference-localization. In the definition
of Becke and Edgecombe, ELF values are bound between 0 and 1, high ELF at a certain
position exhibits a higher localization than in the uniform electron gas and low ELF refers
to low electron localization.

A term used in topological analysis is that of a f-localization domain. It is a region in space
bounded by the isosurface ELF(r) = f. Figure 6.31 shows the isosurface of the ELF to an
isovalue of f = 0.886 for a 300 K sample of hydrous silica. It can be seen that regions
of high electron localization are situated around the hydrogen atoms and that also the lone
pair electrons at O* are well localized. They seem to have a similar electronic localization
compared to oxygen atoms in molecular water [Ma04]. In contrast, electrons on BO do not
seem to exhibit high electronic localization. Decreasing the f-localization boundary value
shows indeed that localized electrons sit also on BO oxygens as it was proposed by the in-
vestigation of silica polymorph structures [Gi03]. Interestingly, the SiO dangling bonds with
energetically elevated states in the band gap exhibit a lower localization than BO and SiO
dangling bonds without electronic contributions in the band gap. Note that such a behavior
is consistent with the picture obtained from the spread of the Wannier functions (see figure
6.30). Figure 6.32 shows the two SiO dangling bonds of sample 2. It can be seen that only
one of the SiO dangling bonds, the one producing the band gap state, carries delocalized
electrons.

From the above discussion it becomes indeed evident that the SiO dangling bonds constitute
electrical active centers that can serve as charge traps in silicon oxide (note the high negative
charge of some dangling bonds) and hence degrade the electronically insulating properties
of the material. But not all of the dangling bonds produce electronic states in the band gap
of pure silica. In order to relate the Kohn-Sham energies (that constitute the edos) to the
physical structure of the silicate, it is useful to visualize the Kohn-Sham orbitals. Even if
the Kohn-Sham orbitals are not localized by definition, the associated charge densities are
centered at certain parts of the structure. Analyzing the spatial localization of the Kohn-
Sham orbitals it becomes possible to get to know which Wannier functions contribute to a
Kohn-Sham state, and vice versa. Clearly that means, that it becomes possible to relate
the electronic localization (expressed in terms of the Wannier-spread) to the Kohn-Sham
states and their energies. For a relation of the Wannier spread to the orbital energies, it is
useful to look at table 6.5. The average of the spread was performed over the four Wannier
centers located at the SiO dangling bond. A comparison to figure 6.30 shows, that indeed
the electrons on the SiO dangling bonds exhibit an average spread at the upper end of the
distribution of the individual spreads.

The chemical potential of pure silica is around 0.5 eV. Therefore, the Kohn-Sham states of
the third and fourth case listed in table 6.5 are clearly located in the electronic band gap.
Generally, higher average spread of the Wannier centers on the SiO dangling bond seems
to be responsible for an energy increase of the electronic state. Obviously, also higher net
charges on the SiO dangling bonds lead to higher electronic energies. Such behavior was
already empirically found by O’Reilly et al [Re83]. The dependency of the energy on the
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Figure 6.31: Electron Localization Function (ELF) corresponding to an isosurface value of 0.886
(yellow surfaces). It can be seen that localized electrons can preferably be found at hydrogen atoms
and NBO ozygens and in particular not at BO oxygens.

SiO dangling SiO dangling
bond with bond with
localized delocalized
electrons electrons

Figure 6.32: Electron Localization Function at the two SiO dangling bonds of sample 2 at an

isovalue of f = 0.87. Only if the electrons are delocalized, the Si0 dangling bonds exhibit an
electronic band gap state.
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average WC spread net charge energy of related Kohn Sham state length of weak H bond

1.508 -0.323 0.155 eV 2.873 A
1.523 -0.166 0.192 eV 1.758 A
1.531 -0.231 1.746 eV 1.522 A
1.564 -0.338 2.427 eV 2.203 A

Table 6.5: Electronic Kohn-Sham energy versus average electronic Wannier-spread and net charge
of 810 dangling bonds. The combination of high charge and high spread increases the energy and
can push the electronic states into the band gap (above 0.5 eV).

net charge carried by the dangling bond comes from charge transfer effects that raise the
self-energies of the dangling oxygen orbitals. Only the first case listed in table 6.5 seems to
deviate from this rule. A particular inspection of this situation shows that the concerned
dangling bond is situated close to an O3H cluster. Hence it might be possible that the close
presence of another structural (and electronic) anomaly leads to a very particular behavior.
It was also investigated if the energy of the KS-states depends on the distance of the associ-
ated weak hydrogen bond. Although the charge seems to scale somehow with the distance in
table 6.5, a clear relation between the bond length and the energy of the Kohn-Sahm state
cannot be fixed.

Therefore, according to the four studied cases, it seems to be the combination of high elec-
tronic charge and electronic delocalization that pushes the states into the band gap. Elec-
tronic delocalization can be achieved, if the dangling bond is stabilized by a weak hydrogen
bond or, generally interaction with another atom. In this picture the band gap states are
a result of a push and pull in the structure; the electrons are pushed by repulsion with the
charge of another electron on the dangling bond and pulled by any kind of interaction with
remote atoms.

As was explained in section 1.2.2 the dangerous situation for semiconductor devices is the
semi-occupied SiO- state in the band gap since it can serve as negative charge trap. In the
present case, in particular the electronic SiO dangling bonds in the band gap are two-fold
occupied, as can be deduced from the high negative charge. This corresponds to the pic-
ture the charge has already been trapped, which is somehow the proof that, indeed, the SiO
dangling bonds serve as electrically active centers in the oxide. It was also examined if the
two-fold occupation is not the result of a spin polarized state. Computing the Kohn-Sham
energies with spin functionals (LSDA), this possibility could be excluded.

Within the present study it became, for the first time, possible to get insight into this concern
of the semiconductor industry from a molecular dynamics point of view. The predictions
and assumptions made for such defects in the 1970’s and 1980’s could be confirmed. More-
over, the present results confirm also experimental findings (see [Gr03] and references cited
therein). It was pointed out by Gritsenko [Gr03] that in particular a charged dangling bond
is likely to form at photon illumination. As already mentioned in section 1.2.2, the SiO
defect density in fused industrial oxides is about 5-10'® cm~3. Hence, note that the number
of 102 in the present study atoms would be totally insufficient to obtain a picture of the
defects. Only the rapid quenches employed enabled us to provide a model.
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6.5 Structural and Vibrational Properties of the Glass

6.5.1 Structure Factors

At ambient temperature, it is however the main interest to look at properties that are
experimentally accessible.

Figure 6.33 shows a comparison between the structure factor at ambient temperature and
the same quantity in the liquid state at 3000 K and 3500 K. The structure factor is averaged
over all samples that were available at 300 K. According to less intense atomic displacements
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at ambient temperature, the network is more ordered and the amplitude of the structure

factor increases. However, the main humps characterizing the structure at 1.7 A-1 3.0A!
and 5.2 A~! are within the statistics at the same positions as in the liquid state. The latter

behavior indicates that important structural changes do not occur during the quench. This
is rather unexpected due to the ultra-fast quench rates. Note that at low quench rates, a
quenched structure is much closer to the equilibrium structure than at high quench rates.
At low quench rates the structure has, in a certain temperature range, much more time to
equilibrate and is hence closer to equilibrium.

The comparison to the structure factor of pure silica [Be02] is presented in figure 6.34.
Both structure factors are almost identical. A small difference can be assumed in the range
of the first sharp diffraction peak at roughly 1.7 A~! and minor deviations are also seen at
wave vector transfers larger than 11 A~'. The differences at 1.7 A~! are interesting since
this region of the structure factor contains information on the relative arrangement of the
tetrahedrons with respect to each other. Unfortunately due to the bad statistics it is not
possible to reveal details. Remember that the structure factor of hydrous silica was already
very close to the one of pure silica in the liquid state (see figure 6.8).

6.5.2 Vibrational Density of States

The vibrational density of states of the glasses was calculated according to the method of
finite displacements which allows to obtain the dynamical matrix [UG97]. The diagonaliza-
tion of this matrix was performed according to section 3.3.

The vibrational spectrum of hydrous silica is compared to the one of pure silica in figure
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6.35. The main frame shows the complete vdos in units of inverse centimeters, whereas the
inset is a zoom on the region of the vibrations of pure silica in units of meV. The use of
different energy units is very common in literature. The region of the vibrations of the silica
matrix is usually investigated with neutrons where meV is the established energy unit. All
vibrations with frequencies higher than 160 meV are the domain of light scattering, a disci-
pline in which cm~! is the traditional energy unit. Note that the conversion factor between
these units is 8.0655. The differences of the densities of states of the differently obtained
hydrous glasses are tiny. But, the differences with the vibrational density of states of dry
silica are statistically significant. Performing an average over all three hydrous samples is
hence suitable. The averaged curve is shown in figure 6.38. The little differences are also
the reason why the relatively costly optimization was not applied to sample three.
As is predicted by Raman spectroscopy, the contributions of the OH-stretch vibrations are
situated at 370 meV to 470 meV (3000-3800 cm™") [My86]. Contributions in the range be-
tween 1400 cm~! and 3000 cm ™! are only present for sample 2. In a detailed analysis these
effects could be related to the O3H anomaly in this sample.
Since only little structural information can be obtained from the OH stretch vibrations, the
discussion is limited to the region between 0 meV and 160 meV (0 cm™!' and 1300 cm™!). Tt
can be seen that the main shape of the vibrational density of SiO, is only slightly altered.
In particular it can be said that the difference between the vdos of hydrous silica compared
to pure silica is much weaker than the difference between the vdos of sodium silicate and
pure silica [Is03]. This result can be expected according to the investigations of the liquid
structure where it became evident that sodium oxide has much more influence on the short
range order of the structure than water. Perhaps the most striking difference between the
vibrational spectrum of pure and hydrous silica in the 0 - 160 meV region is that the exper-
imentally and theoretically observed double peak structure between 120 meV and 160 meV
vanishes. The question of the origin of the double peak structure leads to the contributions
of the partial vibrational densities of states (as defined in equation 3.15) to the total vdos
3.14. Figure 6.36 shows partial vibrational densities of states (pvdos) for Si, BO, NBO and
H atoms in the sample. The Si and BO pvdos are compared to the ones of pure silica.

For the latter ones one notes that the spectra are rather equivalent for pure and hydrous
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Figure 6.35: The vibrational density of states of pure silica (dashed line) [Be02], and the vibrational
density of states of three configurations (solid lines). The spectra are convoluted with a Gaussian
function.

silica. The silicon pvdos is governed by a peak at roughly 100 meV which is also visi-
ble in the total vdos in figure 6.35. The BO pvdos reassembles very much the total vdos.
The highest intensity is situated between 15 meV and 60 meV and between 120 meV and
140 meV. The latter region corresponds to the stretch vibrations of the SiO, tetrahedrons
[Sa97, 0199, Ta97a]. However, the double peak structure seems to be somehow deformed in
the BO pvdos of hydrous silica. The NBO pvdos is characterized by two sharp peaks at 15
meV and 120 meV. Little intensity is present between 60 meV and 100 meV and between
125 to 150 meV. It is now interesting that the double peak structure is totally lost in the case
of the pvdos of NBO atoms. Generally the shape of the NBO pvdos seems to have little to
do with the one of the BO pvdos. Indeed this seems to be a very common feature in glasses
[Is03]. The pvdos of hydrogen shows contributions over the whole range of the vibrational
spectrum from 0 to 150 meV. Obviously hydrogen participates in nearly all vibrations. Such
behavior is certainly related to the very low mass of the hydrogen atom compared to the
other atoms. The statistics for the hydrogen pvdos is rather bad due to the low number of
only 8 hydrogen atoms in the sample.

Since the pvdos for Si and BO for the hydrous sample are very close to those of pure silica,
the differences in the total vdos emerge from the influence of the NBO and H contribu-
tions. Therefore it is interesting to understand why the NBO-vdos differs so much from the
BO-vdos and in particular why the second one of the double peaks at 140 meV is totally
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suppressed in hydrous silica. The origin of the double peaked structure at the high energy
end of the vdos in amorphous SiOy has recently been understood [Sa97, 0199, Ta97al. It
was found that the two peaks arise from two different SiO stretching modes in the SiO4
tetrahedrons. The character table of the group 7, of the SiO, tetrahedron is given in table
6.6. The vibrations of the one dimensional irreducible representation A; and the three di-

Td E 803 302 60'd 654

A 1 1 1 1 1
A, 1 1 1 -1 -1
E 2 -1 2 0 0
T, 3 0 -1 -1 1
n 3 0 -1 1 -1

Table 6.6: Character table for the point group Ty.

mensional irreducible representation 75, are responsible for the double peak structure in the
vdos of pure silica. A; corresponds to an in phase motion of all oxygen atoms towards the
central silicon atom, where as 75 is threefold degenerate and corresponds to a displacement
of two oxygen atoms towards the silicon atoms and two oxygen atoms away from the silicon
atom. It turns out that the peak at 98 meV and at 120 meV are strongly related to the
vibrations with Ty symmetry, whereas the energetically higher one of the double peaks at
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140 meV emerges from vibrations with A; symmetry.
It is now a question why only the peak arising from A; symmetry vibrations is suppressed
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Figure 6.37: Two dimensional visualization of the A1 and T2 vibrational modes of pure silica. If
only the atoms shown inside the circle are considered for vibrational analysis, the replacement of
one 51081 by an SiOH unit should not affect the vibrational properties. In fact, the different charge
on an O compared to an BO suppresses Al.

by the addition of water, whereas the vibrations having Ty symmetry are even more pro-
nounced. It should be pointed out that the considered subunit, the SiO4 tetrahedron, is not
changed if water is introduced. In other words, the replacement of one BO by an NBO does
not modify the underlying SiO, stoichiometry of the silicon atom (interior of the circles in
figure 6.37). The A; contributions to the total vdos are very sensitive to the electronic struc-
ture and hence the interatomic potential. This behavior was already recognized many years
ago in a-quartz by Schober [Sc88|. He investigated the vibrational properties of quartz with
several potentials. He came to the conclusion that only in models that describe very well
the atomic charges, the double peak structure appears. If the charges are badly described,
the double peak structure merges to a one peak structure in a way that the peak with the
higher energy moves onto the one with lower energy. From this point of view the attached
hydrogen changes the charge of an oxygen atom and one should hence observe the same
effect. Despite of the conserved stoichiometry of the silicon atom, the underlying symmetry
(of a coordination four equivalent oxygen atoms) is then broken in the tetrahedron and the
vibrational frequencies change. The condition of four equivalent oxygen atoms is naturally
not required for T2 vibrations.

The last point to be discussed in the section on the vibrational density of states is the cor-
responding neutron vibrational density of states (ndos). As it was shown in section 4.2 the
ndos can be obtained with the knowledge of the pvdos via Eq. 4.29. The ndos for the hydrous
silica is shown in figure 6.38. In order to have the best available statistics for hydrogen, the
pvdos were averaged over all three hydrous samples.

According to the low mass of the hydrogen atom and its high neutron scattering length,
the ndos is dominated by the pvdos of hydrogen. However, this is the worst case since the
statistics of hydrogen vdos is based on only 8 hydrogen atoms in each of the three samples.
The ndos is therefore not very reliable. What can be said from figure 6.38 is that the ndos is
characterized by a shoulder at 50 meV and a dominating peak at 120 meV due to a strong
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hydrogen contribution at this frequency.

— averaged vdos Figure 6.38: Vibrational density of
-- averaged neutron vdos states, vdos (bold line) and effec-
0.020 ' ‘ ' ‘ ' ‘ ' tive neutron vibrational density of
. - p 1 states, ndos (dashed line). The spec-
7% 0.015-- 1"\\\ | tra are convoluted with a Gaussian
unction.
g / | s
|
3 0.010- A, g0 .
© | \ \ A Il \\
c L / VY A \
- ] \ [ I \
8 / \’I \‘ i I ‘
g 0-005% //, v \ II \7 \\ B
| //‘-' \,
/ A i
! | | \h / \
0.0005 50 100 150 200



104 CHAPTER 6. RESULTS OF THE SIMULATION



Chapter 7

Results of the Experiments

Since it is already known that water is released from the samples if the temperature exceeds
the glass transition temperature and no pressure is applied, neutron scattering experiments
are currently restricted to measure the time and space correlations of the samples below the
glass transition temperature. Except for some cases (where it is explicitly mentioned) all
the following results were obtained at ambient temperature (300 K). It was already pointed
out by Miiller [Mu04] that, at these temperatures, the water diffusion is too slow to be
quantitatively recorded by neutron scattering techniques.

7.1 Diffraction

7.1.1 Data Reduction and Correction

Self-Absorption Corrections A simple subtraction of the container signal from the sam-
ple (plus container) signal is not feasible since such simple treatment would not take into
account screening due to absorption. Note that two effects occur: Screening of the container
on the sample and screening of the sample on the container. It was Paalman and Pings in
1962 [Pa62] who first gave the integrals to be evaluated for a proper self absorption correc-
tion. The correct value I(q,w) of the scattering from the sample corrected for absorption in
the sample S and the container C is given as:

1 Ac,sc(q,w)

=—7 , W) —
As,sc(q,w) S+C(q ) AS,SC(Q;W)AC,C(Q;W

IS(q7 w) )IC(qvw) (71)

where Ig, ¢ is the scattering from the sample and the container and I is the container only
scattering and

Acc(q,w)  is the absorption factor for scattering and self-absorption in the container

Acsc(q,w) is the absorption factor for scattering in container and absorption in both
sample and container

Agsc(q,w) is the absorption factor for scattering in sample and absorption for both

sample and container.

The fraction A sc/Ac,c that occurs only in front of the container contribution is usually
grouped to a coefficient called A,;.

105
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Multiple Scattering A major concern in the treatment of neutron scattering data is to
separate primary scattering of neutrons from the higher orders. Multiple scattering can, if
not taken into account properly, represent a substantial portion of the measured intensity. It
is obvious that such corrections have especially to be applied to samples with high diameter,
i.e. full cylinder and flat slab scattering geometries. The case of full cylinders was treated by
Blech and Averbach [BI65] and the case of flat slabs was treated by Agrawal [Ag71]|. Blech
and Averbach evaluated the secondary scattering numerically as a function of the absorption
coefficient y, the cylinder radius R and its height A, and the ratio o5/0;, of the scattering
cross section and the total cross section as shown in Fig. 7.1. The primary scattering takes
place after the paths length L; in the volume element dV'. The secondary scattered intensity
is calculated from a primary scattering at a volume element dV' after the path L. The
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Figure 7.1: Primary and secondary
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intensity of multiple scattering I™ can then be calculated from the isotropic total intensity

()
Otot — Oq

5 (7.2)

M
={I
<> Otot

where the ratio ¢ is obtained by an integration of the Lambert law over the cylinder volume
[BI65]:

R 2 27
5:A€ (47T2R2h)/ [ [ do [ o
r'=0 0=0 0'=0

The ratio § is tabulated as a function of R/h and uR in ref. [B165] and visualized in Figure

L2

h—z e*ML
dz / dz' rrle=#LitLlin) (7.3)
=0

7.2. Of course, it is questionable how to evaluate the isotropic total intensity (I). Is it
preferable to average over all scattering angles, or, should only angles be taken into account
where inelasticity effects are relatively small, i.e. small angles ? In fact, it was shown
by Bertagnolli [Be76] that for hydrogenous (organic) liquids -taking the average over small
angles only- measured signals could be verified at best.

The sample NS3+5.8mol%H,0 was measured in three different scattering geometries. The
following table provides the ratios R and R/h for this sample, that govern the multiple
scattering according to Blech and Averbach. For the values of table 7.1 one reads off from
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
MR
geometry R/h pud  exp[—E&pud]
hollow cylinder (sept. 2001) 0.019 0.019 0.943
flat slab (aug. 2002) - 0.032 0.964

full cylinder (oct. 2003) 0.0833 0.047 0.863

Table 7.1: Quantities for multiple scattering of NS3+5.8mol%Hs O for the different geometries in
use. I/I, ~ exp[—&pd] gives roughly the ratio of unscattered neutrons behind of the sample. The
thickness d corresponds to the distance between the cylinders in the hollow cylinder geometry, to the
cylinder radius R in the full cylinder geometry and to the slab thickness in the flat slab geometry.
The geometry factor & equals w in the case of cylinders and scales with sec ¢ in the case of the
flat slab, where ¢ is the angle between the slab plane and the incoming beam (6(° in the considered
experiment) [Ag71].

figure 7.2 that the coefficient ¢ for multiple scattering is smaller than 0.1 for the cylinder
geometries. Generally the effect of multiple scattering dependent on the scattering geometry
is easy to investigate directly from the experiment. Figure 7.3 shows the g-averaged and
normalized time-of-flight signal (see eq. 7.18) for a NS3+5.8mol%H,0O sample in three
different scattering geometries: Hollow cylinder, flat slab, and full cylinder. As it is predicted
by the calculations of Blech and Averbach, the multiple scattering has minor importance
in all the used geometries. Within the statistics obtained in the experiments, the effect of
multiple scattering vanishes.

Placzek Correction Once the empty can contribution is subtracted and the signal is
corrected for multiple scattering events, the scattered intensity can be normalized and related
to a sample only scattering cross section. In a diffraction experiment the effective differential
scattering cross section do/dS) is measured where, according to Eq. 4.4

d*c

00 do‘ norm
morm — FE' E'~N — 4
[ 1 g = v (5) (74)

with the energy dependent detector efficiency f(E'). The detectors thus carry out the inte-
gration with respect to the final energy. In order to extract the static structure factor 4.12
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it becomes necessary to correct for inelasticity and incoherent contributions. The approxi-
mation in equation 7.4 takes into account the detector efficiency in the factor f, for elastic
scattering only.

Placzek suggested in 1952 a method of calculating the corrections to the static approxima-
tion if the mean energies F — E' = hw obtained by inelastic scattering are small compared
to the incident energy E’ [P152]. Hence it is appropriate to expand the scattering law 4.6
in orders of (F — E')/E. The corrected intensity can be expressed with the self (I = J)
and distinct (I # J) part of the structure factor. The self part comprises naturally some
coherent and all incoherent contributions ((do/dQ)*" = (do/dQ)!>) + (do/dQ)in.) and the

coh
distinct part comprises coherent terms only ((do/dQ)%s = (do/d)17”

7.4 reads:
do \ do \ * Mg m2q*
— — 1+ P — n .
@) ~(w) {or(ie)o(E))) o

with the second order polynomial

2 I 2 [
mq ) _m. Koo (K
F (Mk2> M {3E 2k2 (1 * 3E>} (7.6)

where m,, is the neutron mass and M is the average mass of a nucleus in the liquid. K

). In this expansion

I'ILOTm — Nfo

is the mean kinetic energy of a nucleus equal to %kBT in the classical limit. Equation 7.5
exhibits an expansion of the scattering law S(q,w) in orders of the square of the scattering
vector (q?/k?) and the mass ratio (m,/M). The latter one increases the quality of the
approximation for heavy nuclei and high incident energies. Accordingly the corrections are
significant for systems involving hydrogen where the mass ratio reaches unity. Hence the
Placzek corrections have definitely to be taken into account for hydrous silicates.

The normalization factor f, is obtained from a vanadium run. Since vanadium is a purely
incoherent scatterer, equation 7.5 yields for vanadium in first order in ¢

PR ()

- Mol [L+ P (5]

(7.7)
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with (do/dQ)% = 0 and (do/dQ)*¥ = b2 Inserting 7.7 into 7.4 leads then to an

inc,V*
expression where the normalization factor is expressed in the numbers of atoms in the sample

do norm Jnrorm NV mnq2
- = b Py | — 7.8
(dQ) Iperm N CineVV (Mk2 (78)
If higher orders are neglected, the coherent contribution of the scattered intensity can be
extracted from 7.5 as

do dis do norm do self man
(w),-G@) (@) ver(me)) o

The factor in (do/dS2)*/ in 7.9 can be easily determined since

self self
do = do do — 2 2 33\ _ UOs
<d9> N <dQ> " (dsz)mc = {br)” + by ine = b1) = (7.10)

coh

and the vanadium can:

From equation 4.5 it is evident that the coherent scattering law 7.9 can be easily related to
the static structure factor 4.12. From equation 4.12 one splits the coherent part of the static
structure factor in a self and a distinct part according to

1

S(q) = W

lN(b%,coh) +3 Bl,cohEJ,coh<eiQ<RfRJ>>] (7.11)
I#£J

where the second contribution on the parenthesis can directly be identified with the distinct
contribution of the coherent scattering cross section 7.9. Hence

S(a) = 14 —— <d—">dis (7.12)
<b%,coh) df2 coh '

Equation 7.12 allows the neutron scattering structure factor from the Placzek-corrected
normalized scattering signal 7.9 to be extracted.

7.1.2 Normalized Curves

The first step in order to come to a structure factor from the output of the detectors is to
apply the corrections for self absorption and multiple scattering and to normalize on the
vanadium run. The self absorption coefficients were calculated according to the definitions
given by Paalman and Pings [Pa62] with the IDA program package [Wu01]. Due to the cylin-
der symmetric geometry and the thickness of only 0.1 mm in the diffraction experiment, the
absorption by the screening of the metallic can is rather low. The crucial variable for the
self absorption of the sample is the number density of scatterers (number of scatterers / cell
volume). The number of scatterers is accessible from the mass of the sample and its (known)
composition. The following table gives the number of scatterers for the samples as they
were in use for the diffraction experiment on D20. The density is then obtained dividing by
the container volume. For the diffraction experiment on D20, the illuminated beam height
was 3.6 cm. With an inner container radius of 0.3 cm, the volume of the illuminated part

3

of the container is equal to 1.018 cm®. It should just be mentioned that the sample sizes
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silicate X=00 X=58 X=94 X=105 X =137
Si0, + X mol% H,O 2.791 - - 2.938 -
NS3 + X mol% H,0 2.717 2.439 3.146 - -
albite + X mol% H,O  2.860 2.800 2.740 - 1.555
vanadium 0.496 - - - -

Table 7.2: Number of scatterers in units of [L0*2particles] in the samples investigated in the present
work as derived from the sample mass and the volume of the sample holder.

were much smaller than could actually be accommodated in the beam, but the complicated
and extremely costly fabrication process did not allow us to fabricate more material. For
most of the samples the filling height was around 3.0 cm. Unfortunately the sample pieces
had no cylindrical geometry so that the volume was also not completely filled with sample
material. In order to calculate self absorption coefficients, the sample was assumed to be
distributed homogeneously in the cylinder volume of 1.018 cm?. Note that other treatments
would lead to ill-defined screening contributions in the case of very small occupied volumes.
Figure 7.4 and 7.5 show the correction factor A, for scattering and self absorption for the
sodium silicate samples, energy dependent and energy averaged, dependent on the scattering
angle. The self absorption correction factors are shown for the vanadium container for the

1.00 T T T T T T T T T T T 1.00 T T T T T T T T T T T
0.95 ] 095 7
o T | ]
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Figure 7.4: A,¢ summed over q Figure 7.5: A,¢ averaged over w

diffraction experiments at a neutron energy of 92.58 meV. It can be seen that the curves are
rather flat, in the energy dependent representation as well as in the plot over the scattering
angle. Results for the lower neutron energy for the time-of-flight experiments are similar.
Generally, the coefficient A,.; decreases with increasing water content due to the high scat-
tering cross section of water.

The flat character is a general feature of the self absorption coefficients for the considered
geometries and materials. It is therefore appropriate to approximate the coefficients with a
constant. The following tables summarize the (constant) self absorption coefficients Aggc
and A,.

The corrections for multiple scattering are governed by the scattering cross section and be-
come more important for higher scattering cross sections and therefore higher water content.
For the present geometry these contributions are all below § = 0.1. It turns out that, since
also the self absorption coefficient Aggc is water concentration dependent but in the inverse
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silicate X=00 X=58 X=94 X=105 X=13.7
SiOy + X mol% H,0 0.94 - - 0.87 -
NS3 + X mol% H,0 0.94 0.92 0.87 - -
albite + X mol% H,O 0.95 0.91 0.88 - 0.92

Table 7.3: Constant coefficients Assc for scattering and self absorption in the used samples.

silicate X=00 X=58 X=94 X=10.0 X =137
Si0y + X mol% HyO 0.97 - - 0.91 -
NS3 + X mol% H,O 0.96 0.94 0.91 - -
albite + X mol% H,O 0.96 0.94 0.92 - 0.95

Table 7.4: Constant coefficients A.e; for scattering and self absorption in the used samples.

sense of §, the product Agg.(1—4) ~ 1 equals unity taking the number density of scatterers
into account. Once the sample container is subtracted, a normalized intensity according
to 7.8 can be obtained for the samples. This requires the number of scattering atoms of
the vanadium cylinder. If it is assumed that the container bottom is not in the beam, the
following number is obtained from the density and the thickness of the cylinder according to

Ny = 20— B (e ) (713)
where h = 3.6 cm is the illuminated height of the cylinder, My = 50.94 g/mol is the atomic
mass of vanadium and 7., = 0.31 cm and 7;,,., = 0.30 ¢cm are the outer and inner radius
of the can, respectively. The resulting value for the number of vanadium atoms is 4.962
10%'. With this value and the scattering length of vanadium of 6.35 10~'® m, the normalized
intensity arising from the sample is given after equation 7.8

do norm Is 1 e mnq2
L _ 5 2 900-1 p, [ Zn 14
(dQ) T, Ny 200 W0m by | 7 (7.14)

where Ng is the number of scatterers obtained form table 7.2.

The normalized intensity for the albite samples is shown in figure 7.6. The normalized inten-
sity of vanadium, as completely incoherent scatterer, given by the average scattering lengths
as shown in 7.10 which was fixed in figure 7.6. All other intensities are shown relative to
the intensity of the vanadium can. Also for albite samples the self contribution is accord-
ing to equation 7.10 given by the square of their scattering lengths. These values can be
easily obtained from table 5.5. For the dry and the three hydrous albite samples they are
given as 27.63-1073° m?2, 51.92-1072° m?, 67.04-1073° m?, and 84.86-1073° m?, respectively. A
comparison of these values to the small-q end of the curves of figure 7.6 (where the Placzek
polynomial has little influence) shows quickly that the average intensities as normalized to
vanadium are lower than the expected averages according to equation 7.10. This can be
explained with the fact that the bottom of the vanadium container was not completely out
off the beam. Also the ratios between the albite curves themselves seem to deviate little
from the expected values. This is most likely due to over or underestimated effects of mul-
tiple scattering and self absorption as well as uncertainties in the water content. Since the



112 CHAPTER 7. RESULTS OF THE EXPERIMENTS

100 — T T T T T T T T T 1 Figure 7.6: Normalized intensities
_ albite 1 for the albite samples.
albite+5.8mol%H,O0
80 - albite+9.4mol%H,0
i albite+13.7mol%H,0 i
60 - , vanadium .
40 -

(do/dQ)™™ [10°m?]

Zoj/\/\/\/\vi

q[A™]

wrong normalization on vanadium affects also the “amplitudes” in the final structure fac-
tors, the error will be corrected by a comparison to data found in literature. In particular,
the structure factor of pure SiO, has been measured many times on different instruments
[Si80, Pr87, Su91]. Comparisons with these studies show that in the present case the inten-
sity of the scattering is underestimated by a factor of 1.9. This is in rather fair agreement
with the deviations of the expected total structure factors and the self contributions found
in figure 7.6.

As can be seen from figure 7.6 the absolute intensities are strongly affected by the incoher-
ent and inelastic contributions of hydrogen in the hydrous samples. In order to obtain a
coherent structure factor the curves have to be appropriately corrected for these contribu-
tions according to the Placzek formalism presented in section 7.1.1. The relatively short g
range available on D20 allows only fits of a Placzek polynomial of quadratic order. Higher
orders fitted to the small q range lead to unphysical inflection points in the polynomial. The
quadratic Placzek correction for the sample albite + 5.8mol%H,0 is shown in figure 7.7.
It has to be pointed out that, despite of the quadratic order the quality of the fit is rather
bad and it is known that fits including higher q values than those available on D20 lead to
rather different correction polynomials. In fact it turns out that the corrected curves show
features that are clearly related to insufficient accuracy of the Placzek fit. This becomes
evident if the differences between the corrected curves for different water concentrations are
considered. The differences between the curves are themselves nearly quadratic functions,
except for distinct q values that can be supposed to contain the physical effects associated
to the different water concentrations. In order to reveal these interesting g-values and to re-
move the errors caused by the insufficiency of the polynomial, the differences of each hydrous
sample to the corresponding dry composition were quadratically fitted again and subtracted
from the signal. Note that choosing again a quadratic fit function allows for a correction of
the Placzek correction within the space spanned by the entity of the quadratic fit functions.
Effects that exhibit a more complex behavior than quadratic are naturally untreated by such
a second order correction.

In order to take care of errors that arise from the rather small g-range on D20, comparison
to the curves recorded on the spectrometer D4 were made. On D4, g-ranges up to 35 A1 are
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and the secondary correction of the dry sample with respect to the more reliable curve ob-
tained on D4. In order to obtain reliable data also for wave vectors below 2 A=1 all samples
were remeasured on D20 with a wavelength of 2.41 A . These additional spectra were also
corrected with a Placzek polynomial and for the difference to the D4 data and then matched
to the distinct spectra obtained at a wavelength of 0.95 A—'. The final normalization is
performed according to equation 7.12. The average coherent squared scattering lengths are
the values of table 5.6 divided by 4.

7.1.3 Results of the Data Analysis

Fig. 7.9 shows the structure factors of the dry silicates. The main peaks at 1.7 A~1, 3.0 A~!

2.0 — T T T T T T T T T T Figure 7.9: Structure factor of dry
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and 5.2 A1 are due to typical distances in the tetrahedral network of the silicate. Their
position seems to vary only slightly when the network modifiers are added. In contrast, their
heights are well affected by the modifier addition. In particular, the heights seem to follow
the rule (from low to high) NS3, albite, SiOs. We associate this behavior to the extent that
the perfect tetrahedral network is destroyed by the addition of the modifiers. According to
this, the SiO, network has naturally the highest order, followed by albite and NS3.

It seems strange to find a higher order in the sodium alumino silicate than in the sodium
silicate. This behavior can be understood taking into account the structural properties of
the two compounds. It was found that sodium silicates show a prepeak effect in the structure
factor at roughly 1.0 A~! [Me02, HoO1]. This prepeak was associated by molecular dynamics
studies to channels that maintain sodium diffusion in the silicate [Me04, Ho02]. These sodium
rich channels disrupt the network. The disturbance results obviously in smoother network
related peaks at 1.7 A~1, 3.0 A~! and 5.2 A~! in the structure factor and on the other hand
in the channel related prepeak at roughly 1.0 A=! (see figure 1.5). It was also found that the
channel system is redestroyed by the addition of aluminum [Ka0O4a]. This destruction may
explain the more intense peaks in the albite S(q).

Figures 7.10, 7.11 and 7.12 show the structure factors for the hydrous samples as obtained
after all corrections. It can be seen that for one silicate composition, the structure factors
are very close for different water contents. The main differences regarding the water content
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available. Indeed it turns out that for a dry SiO; sample the corrected spectrum obtained
from D4 differs from the one on D20. Due to the higher g-ranges covered on D4, the data
obtained there can be supposed to be much more reliable. Starting again from the same
argument as above, that secondary corrections within the space spanned by the primary cor-
rections should not touch relevant physical effects, the same procedure can be applied again
on the difference between the signals of D4 and D20. Note that such secondary treatment
practically corresponds to the normalization on a different detector efficiency (vanadium).
Figure 7.8 shows the distinct scattering cross sections for SiO, as obtained on the spec-
trometers D20 and D4 after the Placzek correction. It can be seen that the D20 data have

15 . T . T . Figure 7.8:  Distinct scattering
T cross sections as obtained on the
. spectrometers D20 and Dj for SiOs
. after Placzek corrections with a sec-
. ond order polynomial.
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generally an equivalent shape compared to the D4 data. The D4 data is little reliable below
3 A=' due to an instrument specific high background. However, due to the Placzek fit of
lower quality performed on the D20 data, the D20 curve shows higher intensities below 7
A~! compared to the D4 data and smaller values above 7 A~!. Since the Placzek fit on the
D4 data is more reliable, the D20 data was corrected by the difference to the D4 data.

The above discussion of the correction of the data obtained on D20 can be summarized in
two steps: The secondary correction of the hydrous samples with respect to the dry sample
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for one silicate composition occur at g-vectors of about 4 A~'. Also, in the case of hydrous
silica and hydrous albite, the height of the first sharp diffraction peak seems to be slightly
decreased with increasing water content. The g-vector of 4 A~' corresponds to a real space
distance of roughly 1.6 A. Note that this value is rather close to the H-H interatomic distance
in the water molecule of 1.51 A. Since the partial contributions of the structure factors are
currently not known, the origin of the enhancement in the structure factors at 4 A=! cannot
be unequivocally assigned. However, the characteristic distance and the scaling with the
water content are strong evidence for water molecules in the sample. The results for the
hydrous samples can be compared to those of Zotov et al. [Z096] for deuterated samples which
are shown in figure 7.13. Whereas in the case of hydrous samples the coherent scattering
is dominated by oxygen, in the deuterated material the coherent scattering arises from
deuterium (0con,p = 5.592 barn > o¢on,0 = 4.232 barn > 0o,z = 1.757 barn).

Obviously for deuterated samples, the differences between the dry and deuterated curves

0.2 . L L Figure 7.13: Normalized coherent
L — DO i structure factor of deuterated NS2,
il —— D5 after Zotov et al [Z096]. DO, D5 and
g 01 D10
= D10 refer to NS2+0.0 mol %D>0,
o - . NS§2+15.1 mol % (5.0 wt.%) D50,
'e 0.0 L ) NS§2+27.2 mol % (10 wt.%) Dy O
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occur, in contrast to hydrous samples, in the region around 2.5 A~!. Note that such difference
is in agreement with the simulated structure factor in figure 6.8, where in the region around
2.5 A~' the structure factor of the deuterated sample lies above the one of the hydrated
sample. A similar picture is obtained from the structure factors of hydrous and deuterated
liquid water which are shown in figure 7.14. It can be seen that indeed the substitution
of hydrogen by deuterium leads to a shift of the first sharp diffraction peak (FSDP) in the
structure factor of water from 3.1 A~" to 2 A~'. At elevated temperature or pressures the
FSDP can be shifted to higher wave vectors.

Last but not least it should be mentioned that the prepeak at 1 A~! is not visible in the
structure factor of hydrous silica. Note that a prepeak was neither seen in dry sodium
silicate. Hence, as in the case of sodium silicate it is from the current ambient temperature
measurements not evident that a characteristic length scale of 6 A is present in the glass.
Therefore, experiments at elevated temperature are required in order to validate the results
on the prepeak presented in section 6.1.3.
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0.4 — T T T T T T T T Figure 7.14: Structure factor of
hydrous and deuterated liquid wa-
ter and hydrous water at the critical
point (646 K / 221 bar). Redrawn
from [S097].
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7.2 Inelastic Spectra

Inelastic neutron scattering gives information about the vibrational density of states as was
demonstrated in section 4.2. Such conversion of the inelastic spectra to a vdos is certainly
subject to the incoherent approximation, in particular for coherent scatterers. The large
incoherent scattering length of hydrogen improves the quality of the approximations as will
be demonstrated in figure 7.21.

Remember for the following discussion that the abbreviations vdos, ndos, and pvdos refer
to the vibrational density of states (equation 3.14), the neutron vibrational density of states
(equation 4.29), and the partial vibrational density of states (equation 3.15), respectively.

7.2.1 Ndos of Dry Silicates and Amorphous Ice

Before the discussion of the vibrational properties of hydrous silicates it is useful to summa-
rize the main features of vibrational properties of the dry silicates and molecular water.
The vibrational density of states of SiO, has been extensively investigated with neutron
scattering [CP85] and several computer simulations [Be02, Sa97, 0199, Ta97a]. Its main
features were already presented in section 3.3. The vibrational density of states of sodium
silicates was recently theoretically investigated by Ispas et al [Is03] and Zotov et al [Zo01a].
For dry albite, simulations are not yet completed. Figure 7.15 shows the vibrational densities
of states for dry silica as found by Carpenter et al. [CP85] and dry NS3 and dry albite as
recorded at the ILL-spectrometer IN6. Note that the incoherent approximation (eq. 4.16)
works poorly for dry silicates due to their relatively high coherent scattering length and the
limited g-range available on IN6. Very generally it can be said, that all densities of states
exhibit high intensities in the range from 0 to 60 meV and lower intensities above 60 meV.
However, details are only accessible with computer simulations as mentioned above.

For water, in order to get some insight into the physical background of an experimentally
measured vibrational spectrum it is useful to estimate the different contributions of transla-
tional and rotational motions. If the sample contains water molecules, rotational librations
can be expected to occur (see section 3.3). An approach for the separation of translational
and rotational motions in a neutron frequency spectrum was proposed by Prask and Boutin
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[Pr68]. Their approach starts off by a decomposition of the atomic displacement in 4.6 in
displacements of the center of mass R,,(¢) and molecular internal positions by (¢):

R;(t) = Ron(t) + by (t) (7.15)

It is then possible to show that variations of R, (¢) and by(t) lead - according to eq. 4.15 -
each to a separate vibrational density of states, gr(w) of translations and gg(w) of rotations.
Both parts of the ndos are additive to the total ndos 4.23

gers (W) = gr(w) + =—9r(w) (7.16)

if the (rather bad) assumption of no translation-rotation coupling is made. For the model
case of a molecule whose N strongly scattering nuclei of mass Mg are placed on a sphere
of radius b; = |b;| the effective mass for rotations Mp, is given by M = N - M. The mass
Mt for the translation of the center of mass of a molecular unit is identical with the total
molecular mass. For a water molecule performing librational motions the mass ratio is given

by
My 18

My~ 2
This means that a neutron scattering experiment is roughly a factor of ten more sensitive
to librations than to translations of a water like molecular unit. Therefore, if we had free

(7.17)

water molecules in the samples, one should see this also in the inelastic spectrum due to the
discussed sensitivity on librations. It will be shown later that librations occur indeed in a
rejected water bubble containing sample that showed also quasielastic behavior. It can be
anticipated that for the other samples we have neither experimental evidence from NMR
spectroscopy for inclusions of liquid water [Hi04].

7.2.2 Quasielastic Behavior

Quasielastic behavior is clearly not seen in the considered samples. This fact clearly rules
out the existence of liquid water pockets in the solids. However, the fabrication of some of
the samples failed (samples were rejected if they were not transparent [Mu04]). In these
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cases it turned out with optical microscopy that the samples contain bubbles. We also
investigated one of these samples with time-of-flight spectrometry. The time-of-flight spectra
from detectors at different angles can be summed according to

emam 2
of = 1 / < ¢ )sin@d@ (7.18)

Cy dQdtof

Omin

(with the normalization Cy ~ (Opmaz — Omin)) and optionally be transformed into a summed
scattering law S(260,w) according to equations 4.2 and 4.5. Figure 7.16 shows the elas-
tic lines of the summed scattering law S(26,w) of the bubble containing sample of the
composition SiOy+13.7mol%H,0 and the one of the regular sample of the composition
Si05+10.5mol%H,0. It can be seen that in the sample with 13.7 mol%H,0 it comes in-
deed to a quasielastic broadening of the elastic line as it would be observed in liquid water.
This behavior proves with neutron that the sample contains highly mobile units carrying
hydrogen that are most likely free water molecules.

00— 17— T T Figure 7.16: Summed
- — S0,+10.5mol%H,0 1 quasi- elastic signal of
T B | Si05+10.5mol%Hy O (black
line) and  SiO2+13.Tmol%Hy O
(red line). It can be seen that
the sample Si0O2+13.Tmol%Hy O
shows quasielastic broadening at
the flanks of the elastic line of

Si09+10. 5m0l%H2 0.
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7.2.3 Vibrational Excitations of Hydrous Silicates

The discussion is started off with the consideration of the time-of-flight spectra of the hy-
drous silicates. It is important to note that the sample spectra are not perturbed by noise of
the background or the empty can. Figure 7.17 shows the logarithmic plot of the I**/ spectra
of the empty instrument, the empty can and the sample. It can be seen that the signal of
the sample is roughly one order of magnitude higher than the one of the empty can and even
two orders of magnitude higher than the signal of the empty instrument.

Figure 7.18 shows the summed time-of-flight spectra of the compositions SiO3+10.5mol%H,0,
NS3+9.4mol%H,0 and albite+9.4mol%H,0. The elastic peak corresponding to a neutron
wave length of 4.14 A is situated at a flight time of 1.05 ms / m. Shorter flight times cor-
respond to neutrons that gained energy from the sample due to interactions with phonons.
The time-of-flight spectra of all hydrous silicates show two faint peaks left of the elastic
line. In the case of hydrous silica, the first peak is situated at 0.7 ms/m, for hydrous NS3
and hydrous albite the first peak is shifted to 0.5 ms/m. In contrast to the first peak, the
second peak has a similar location in hydrous silica and hydrous NS3 at 0.35 ms/m, whereas
hydrous albite seems to deviate with a peak position of only 0.3 ms/m. The equivalent peak
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positions in the time-of-flight spectrum give a first indication that some features of the vi-
brational spectrum are retained from SiO, to albite. Some other properties may change with
the composition of the matrix if peak positions are shifted. For flight times shorter than 0.17
ms/m the time-of-flight spectrum approaches again zero. No more phonon excitations occur.
Since a flight time of 0.17 ms/m corresponds to an energy of 180 meV, the estimations of
section 3.4.2 for the energy range of the vibrational excitations in hydrous silicates seem to
be confirmed.

In the above discussion, spectra of hydrous silicates at roughly the same water content were
compared for different matrices. For the matrices where samples with different water con-
tent are available (NS3 and albite), the influence of the water content on the time-of-flight
spectra is discussed in the following.

Figure 7.19 shows the time-of-flight spectra for different albite-water mixtures. It is interest-
ing to note that the relative intensities with respect to the dry sample can be easily predicted.
Starting from eq. 4.29 it can be shown that the differential cross section 4.5 is proportional
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The cross sections og,0 and ogpie are 81.67 barn and 3.74 barn, the molar concentrations
are the ones of table 5.3 and the average atomic masses can be found in table 5.4. With
these values of the tables one finds that according to equation 7.19 the inelastic scattering
intensities of the samples have the ratio:

Ta1640.0mo1%H0 / Latb+5.8mot% 0/ Tatv+9.4mo1% 2,0/ Latb+13.7mor 0 = 1.0/4.1/6.0/8.3 which cor-
responds rather well to figure 7.19. This shows that the water contents obtained from light
scattering were correct within 10%.

In order to obtain a neutron vibrational density of states, the time-of-flight spectrum has now
to be brought onto a neutron energy gain based scale. This conversion is performed accord-
ing to equation 4.2. Since the recorded spectrum naturally contains multi-phonon processes,
an appropriate multi-phonon treatment is mandatory. The determination of multi-phonons
in the vibrational spectrum is a rather sophisticated task. The algorithm proposed by Re-
ichart [Re84] (as demonstrated in section 4.2) was employed in order to find the approximate
neutron one phonon density of states. Figure 7.20 shows the ndos obtained for the sum 4.21
truncated after 2,3,4,5 and 6 terms. It can be seen that indeed the increment between two
terms decreases as the order increases. However, it is difficult to obtain a good convergence
for the present form of the non-corrected spectrum. Other algorithms [Wu93] struggled also
with the computation of the multi-phonons at high energies.

In order to test if the incoherent approximation 4.16 works well, it can be tested if the vibra-
tional density of states generated on the basis of spectra corresponding to different values of
momentum transfer lead to the same results. Figure 7.21 shows the ndos for hydrous silica
obtained if the total number of detectors is split in three groups - low ’s, intermediate q’s
and high g’s - each group comprising the same number of detectors. It can be seen that
within statistical limitations and the convergence of the algorithm, differences between the
ndos arising from different g-vectors do not occur.

Apart from the neutron vibrational density of states, another interesting quantity to look at
is the signal of the protons. The contributions of the protons to the vibrational spectrum
cannot be directly extracted experimentally. However, a certain approximate idea of this
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quantity van be obtained from the difference of the hydrous and the dry samples. Performing
such differences in the time-of-flight-angle space

Itof — tof __ gtof (720)

proton hydrous dry

opens -in principle- the possibility of obtaining a density of states free from incoherent
approximations since protons are extremely close to incoherent only scatterers. In addition,
the incoherent contribution of (water-)oxygen (o, = 0.0008 barn) is tiny compared to
hydrogen (0;,. = 80.25 barn). Note that such an approximation of course neglects the
influence of the oxygen atoms of the water molecules and the influence of water on the dry
vibrational spectrum (the “cross terms”). A further restriction of this approximation emerges
from the failure of the multi-phonon expansion 4.9 in the case of very light scatterers such as
protons (remember that (hg?/2Mw) < 1 was the condition for the multi phonon expansion
4.9).

In the following, the proton densities of states of the considered samples will be discussed
using the average masses of table 5.4.

Hydrous Silica Figure 7.22 shows the ndos of a sample of SiO5+10.5mol%H,0 in com-
parison to a water bubble containing sample of Si05+13.7mol%H,0. The ndos of SiO3+10.5
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mol%H,0 is characterized by a very flat shape between 50 meV and 140 meV. In the region
between 0 meV and 50 meV a certain emerging peak at roughly 12 meV can be recognized.
For energies greater than 140 meV, the ndos drops abruptly to zero. This high energy cut
off at roughly 150 meV was already expected according to the discussion in section 3.4.2.
Due to the absence of property-characterizing peaks in the vibrational spectrum of SiO5410.5-
mol%H,0, the comparisons to deuterated samples and other water concentrations would be
of particular importance. Unfortunately deuterated samples are not available. The only
spectrum to compare is the one of the sample of Si0,+13.7wt%H,0O that was rejected since
it turned out during the sample preparations that the sample contains bubbles and shows
therefore quasielastic behavior (see figure 7.16).

Figure 7.22 shows that the vibrational spectrum of the bubble containing SiO5+13.7mol%H,0
spectrum has a rather similar shape compared to the one of the SiO5+10.5mol%H,0O sample.
However, important differences can be recognized: The shoulder at roughly 50 meV is less
pronounced in the vibrational spectrum of SiOy+413.7mol%H,0 and some intensity seems to
be shifted to the region between 60 meV and 120 meV. Since one knows from figure 3.4 and
the discussion of section 7.2.1 that librational vibrations of water molecules are energetically
located in this region, the intensity enhancement between 60 meV and 120 meV in the vibra-
tional spectrum of the SiO,+13.7mol%H,0O can most likely be attributed to the presence of
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free water molecules. The loss of intensity compared to the SiO,+10.5mol%H,0O spectrum
between 10 meV and 50 meV suggests a less important influence of the water molecules in
the bubbles in this region. Hence the interesting point in the comparison between the two
spectra is indeed that a clear picture of the energetic location of contributions of free water
molecules and water dissolved water can be obtained. This is also important for the discus-
sion of the other silicate compositions where it will be shown that scaling of the intensity
around 60 meV is absent.

It is also interesting to compare the vibrational spectrum of SiO9+10.5mol%H>0 to the one
of opal (a crystalline form of silica with water) as obtained by Susnowska et al. [Su97]. The
spectrum of Susnowska et al. for the density of states of hydrous opal exhibits a strong peak
at roughly 8 meV. This corresponds exactly to the region where phonon excitations of ice
are located (see figure 3.4) . Since, in the present study such excitations in this region are
not seen, it must be concluded that water is dissolved in a different way than in opal.

Hydrous Sodium Tri-Silicate Figure 7.24 shows the comparison of the vibrational spec-
tra of NS3+5.8mol%H,0O and NS3+9.4mol%H,0O. The shape of the two spectra deviates
considerably from the one of silica-water system but spectra for sodium silicate with the two
water contents are rather close to each other. The spectrum of hydrous sodium silicate is
characterized by the shoulder at 20 meV and the dominating peak at 140 meV. Information
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on the contributions of water to the vibrational spectrum of sodium silicates can be obtained
if water is heated off at temperatures above the glass transition temperature of the system.
Figure 7.26 shows the comparison of the ndos between a sample of NS3+5.8mol%H,0 before
and after it was kept at 600 K for roughly 60 minutes. From the weight loss of the sample
it was estimated that roughly 30% of the total water content were lost during storage at
600 K. The loss of intensity can be recognized over the total vibrational spectrum but the
intensity loss is higher at energies higher than 50 meV. Note that it became already evident
that this is the range where water contributes most to the vibrational spectrum (see figure
7.23). If a reconversion of SiOH groups to water molecules takes place at such temperature
where the sample is not in thermal equilibrium cannot unfortunately be addressed.

Concerning the general shape of the vibrational spectrum of hydrous sodium silicate, it
would be interesting to understand the origin of the strong peak at 140 meV. Unfortunately
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the experiment alone is not able to provide much explanation. One knows from the vibra-
tional spectrum of dry sodium silicate that it is mainly the stretch vibrations of non bridging
oxygens that contribute to a peak at 120 meV [Is03]. Since it was suggested by the present
computer simulations that also NBO of the form SiOH have significant contributions at 120
meV (see figure 6.36), the large peak in the spectrum may be the result of an addition of
the contributions of NBO of the form SiOH and SiONa. Last but not least, it should be
mentioned that also the shoulder at 25 meV is known to have its origin in the presence of
NBO.

Hydrous Albite The vibrational spectrum of hydrous albite with 5.8mol%H,0,
9.4mol%H,0 and 13.7mol%H,0 is presented in figure 7.27. The spectra are character-
ized by a shoulder at 15 meV and another one at 70 meV. It is striking that the vibrational
spectrum seems to be much closer to the one of hydrous silica than the one of hydrous
sodium silicate. In particular they seem to be close to the spectrum of the hydrous silica
sample that contains liquid water in bubbles. In fact, it is known that protons show a much
higher mobility in hydrous albite than in other silicate compositions [Zo01b]. But from the
vibrational density of states alone it is difficult to draw conclusions since also the altered dry
matrix may change the vibrational spectrum of the hydrous silicate. Indeed, the comparison
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to the vibrational density of states of dry albite shows that also dry albite has a shoulder
in the region of 70 meV. Evidence for similar structure of alumino-silicates and silica comes
also from the fact that the addition of Al,O3 to sodium silicate seems to rearrange the tetra-
hedral network of the silicate in the dry states [Ka04a).

Regarding the spectra of hydrous albites of different water concentration, it can be recog-
nized that, with growing water content the form of the spectrum does not change. It can
be excluded that such effect can be due to (inappropriate) multi-phonon corrections. The
time-of-flight spectra (figure 7.19) were also scaled onto each other. Deviations did neither
occur between the curves corresponding to different water concentrations. Remember that
in figure 7.19 it was well shown that the samples contain different amounts of water. Re-
member also that already the vibrational spectrum for the sodium silicate showed a similar
inertion regarding the alteration of the water content.

The lack of changes with increased water content can be interpreted in a way that the hydro-
gen atoms are attached very strongly to to the silicate network. Due to their small mass and
the strong attachment they mainly sample the vibrations of the matrix. Since the matrix
itself is only little altered by the presence of water, the vibrational properties neither change.
This is also seen by the computer simulation (see figure 6.35). Note that the light scattering
experiments are highly sensitive to stretch vibrations of OH bonds at more than 300 meV. In
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this region the peaks of the OH and H,O vibrations are not “contaminated” by the matrix.

Temperature Dependence For the case of hydrous sodium silicate, temperature depen-
dent ndos are available. Figure 7.29 shows the neutron vibrational density of states for
NS3+5.8mol%H,0 at temperatures of 200 K, 300 K, 400 K, and 500 K. Obviously no im-
portant structural changes that are associated to changes of the vibrational spectrum take
place in this considerable temperature range. Note that usually the vibrational density of
states of a substance can be regarded as a very sensitive probe of structural changes.

At 500 K the ndos deviates slightly from the curves corresponding to the other tempera-
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tures. This might indeed be related to an anharmonic effect but in that case it shows that
the ndos is not very sensitive to anharmonic effects.
The second remarkable point regarding the temperature independence of the vibrational
spectrum is that obviously no physical effects emerge at the freezing point (273 K) and
boiling point (373 K) of liquid water. Such behavior suggests again that inclusions of liquid
water are absent and water is strongly bound to the silicate matrix in any dissolution state.
Since even at 373 K no water speciation change occurs one can even say that water is bound
with much higher forces to the silicate matrix than the inter-molecular forces in liquid water
(the hydrogen bonds) that are broken if water is vaporized at its boiling point.
Also a speciation change of water at or above the glass transition temperature (at roughly
420 K [Mu04]) cannot be observed for the present sample. This is in contradiction with other
studies [Sh95], but it cannot be excluded that such mechanism depends on the composition
on the silicate matrix.
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Chapter 8

Comparisons and General Conclusions

8.1 Comparisons of Simulation and Experiment

8.1.1 The Structure Factor

First of all it should be pointed out that the structure factor -in contradiction to its name-
is rather insensitive to structural details in disordered matter as liquids and glasses. This
restriction is certainly evident if it is taken into account that a three dimensional structure
is mapped in a function depending only on one (the radial) direction. This causes of course
information loss. For example the differences between the structure factors of the dry silicates
are already rather small (see figure 7.9). In the following it will be shown that the insensitivity
on structural details holds in particular upon water addition.

Figure 8.1 shows the simulated and experimental neutron scattering structure factor for

2.0 — T T T T T T T T T Figure 8.1:  Neutron scattering
i f\ structure factor of hydrous sil-
ica at 300 K as obtained from
15T the experiment with a sample
- of 8i02+10.5mol%Hy0 and the
@ 10 k simulation with a system of
] S109+11.8mol% Hs O.
0.5 | —— Si0,+11.8m0l%H,O (sim.) |
i —— sio, |
—— Si0,+10.5mol%H,0
OO 1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12

q[A™]

dry and hydrous silica. Generally the experimental and simulated curves are in relatively
good agreement. Deviations occur only for very low q and between 9 A=* and 12 A1, At
low q the deviations from the simulation to the experiment can be ascribed to the finite box
size in the simulation and the rapid quench. The deviations between 9 A~! and 12 A~! arise
most likely from uncertainties in the data treatment (see section 7.1.2) . However, it should
be recognized that -for a first main outcome- from the experimental and from the simulation
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side there are no indications that water affects the structure factor of silica considerably.
Note that, on the other hand it was shown in figure 6.2 that a silica network is broken by
the addition of water and viscosity changes by orders of magnitude [Ba86].

8.1.2 The Partial Vibrational Density of States

The vibrational density of states is known to be much more sensitive to structural details
than the neutron scattering structure factor. The reason for this is that the density of
states is not only sensitive to interatomic distances but also to the direct environment of the
atoms (“the potential”). Unfortunately, as it was already discussed, the neutron vibrational
density of states is rather difficult to compute since in the simulation the hydrogen atom
which dominates the spectrum due to its high scattering length is the species with the worst
statistics. On the experimental side the most reliable quantity is the proton signal where
uncertainties due to the incoherent approximation can be excluded. Figure 8.2 shows the

0.020 - T - T - T ; Figure 8.2: Proton signal as ob-
| — SiO,+11.8mol%H,O (simulation)

— - simulation 15% shifted
@—e@ proton signal (exp.)

| tained from the experiment with a
R sample of Si03+10.5mol%Hy O and
the partial vibrational density of

0.015

states for hydrogen as extracted from
- the simulation with a system of

Si09+11.8mol%Hy O.

pvdos [meV_l]
o
o
l_\
=

0.005

energy [meV]

comparison of the computed partial vibrational density of states for hydrogen and the exper-
imentally measured proton signal. It is well known that vibrational spectra are considerably
influenced by the exchange correlation functional. Remember the influence of the exchange
correlation functional on the interatomic distances and the angle is crystalline silica (figure
5.1). Therefore, the dashed line in figure 8.2 indicates an arbitrary multiplication of the
simulated data by a factor of 1.15. This is the range of the error we ascribe to the change
of the exchange correlation functional. The main differences occur between 0 and 50 meV
and between 120 and 150 meV where the simulation shows an intense peak. In this energy
range the resolution of the neutron spectrometer is already poor, making an appropriate
comparison even more difficult. Of course one can also compare the ndos as obtained from
the simulation (figure 6.38) and the experiment (figure 7.22), but the agreement is of the
same quality.

8.2 General Conclusions

In order to conclude the discussion, the general framework of the present investigations
should be pointed out again:
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e Erperiments were in principle limited to the glassy state. Since no pressure equipment
is currently available for inelastic neutron scattering instruments at high temperatures,
experimental data could only be obtained up to temperatures where water is released
from the silicate. This was the case above the glass transition temperature of the
mixtures at several hundred Kelvin. (Note that more than 1000 K at several kbar are
required in order to bring the mixtures to equilibrium.)

o Simulations were in principle limited to the liquid state. Today’s available computer
power puts clear limits to the ab initio equilibration of viscous liquids. For the system
size of about hundred atoms, the time limit is at some tens of pico-seconds. The lowest
temperature at which equilibration could be achieved was 3000 K. Information on the
glass could only be obtained from samples based on ultra-rapid quenches.

The main results will now be summarized according to this “technical” separation.

8.2.1 The Liquid State

The main point of the present study is certainly that it provided the first real space picture
ever for a structure of a hydrous silicate and the hydrogen diffusion at finite temperature.
However, due to the thermostats, diffusion constants and diffusion velocities are not acces-
sible.

Nevertheless, a liquid of silica containing 11.8mol% H,O at 3500 K and 3000 K was equili-
brated using first-principles molecular-dynamics simulations. It is observed that the water
is mostly attached to the silica network in the form of Si-OH groups. Water molecules or
free O-H groups occur only at the highest temperature but are not stable and decay rapidly.
The SiO,4 tetrahedrons are still the basic network forming units, as in pure silica. The short
range correlation (i.e. the radial distribution functions) suggest that the structure of the
matrix is as much changed by the addition of water as by the addition of the same amount
of sodium oxide to the liquid. However, characteristic first neighbor distances are smaller
in hydrous silica due to the smaller size of the hydrogen atom. In contrast to this, the way
the modifier cation itself is attached to the matrix seems to be quite different. The sodium
atoms tend to form bonds of ionic character with oxygen, whereas the hydrogen atoms are
attached by covalent bonds. This difference in the bonding character of O-H and O-Na could
be the reason for the slower diffusion of the hydrogen atoms in liquid silica compared to that
of sodium atoms.

The simulated neutron scattering structure factor shows a pronounced prepeak at a wave
vector of about 1A~ i.e. there is evidence for the presence of long range correlations. The
prepeak is even more intense than that for the sodium silicate at the same wave vector
transfer. The origin of this feature in the hydrous liquid seems to be different from that of
the sodium silicate, since the partial structure factor for H-H contributes only little. Fur-
thermore, in the hydrous case, the silica matrix itself seems to be modified since the prepeak
occurs as well in the partial structure factors for the matrix. The data show a shift to higher
g-vectors and a decrease of the intensity at the lowest temperature. At ambient temperature
the prepeak and the first sharp diffraction peak merge.

The other experimentally accessible quantity, the Q™ distribution, shows clearly that the O-
H groups try to avoid each other. Silicon atoms with two and more Si-O dangling bonds or
O* (Q™ sites with n < 2) are rarely found. Despite the strong covalent character of the O-H
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bond, the O-H units have a high radial mobility and oxygen triclusters HO < gi (bridging
hydroxyl groups) have a high tendency to form. These oxygen triclusters violate the oxygen
stoichiometry and the system compensates this violation by the formation of Si-O dangling
bonds. The dangling bonds and the triclusters constitute mainly the intermediate states for
the diffusion mechanism of the hydrogen atoms in the melt.
On the one hand, it turned out that the O-H groups are very stable species and it requires
a certain stoichiometry violation to weaken the O-H bonds (note that in O-H-O transition
units the stoichiometry of the H atom is also violated). On the other hand these bond weak-
ening intermediate states occur in sufficiently high quantity to assure the hydrogen diffusion.
Analyzing the nearest neighbor environments of the oxygen atom of the initial OH bond and
of the oxygen atom of the formed OH bond, the following equilibria were found:
Exchange of hydrogen between a SiOH group and a bridging oxygen

SIOH + 0 <3 «— Si0 + HO <3l (8.1)

Exchange of hydrogen between two bridging oxygens (bridging hydroxyl groups)

g§>OH+O<§i<—>gi>O+HO<g§ (8.2)
Exchange of hydrogen between two SiOH (formation of water)
SIOH + HOSi «— SiO + 4 > OSi (8.3)
Redecay of water ‘ _
S0 <4 + 0 <3 «— SiOH + HO <3} (8.4)

Apart from the hydrogen diffusion reactions associated to OH ruptures (eq. 8.1 to 8.4), there
is also evidence for the transport of OH units. These hydroxyl units can be transfered from
one silicon atom to another involving again a bridging hydroxyl group as intermediate state.
The corresponding equation reads as follows:

SIOH + Si ¢— 21> OH «— Si + HOSi (8.5)
Whatever the influence of pressure and temperature on such system may be, it is likely that
the encountered mechanisms will still be covered by equations 8.1 to 8.5, but with different
reaction constants.
A clustering of hydrogen and the formation of stable water molecules do not take place,
especially at the lower temperature. If the formation of clusters occurred, one would expect
a higher signal in the H-H radial distribution function at typical H-H distances found in
liquid water (2-3 A) and perhaps a signal in the Q™ distribution for n < 2. Hence there is
no evidence for water clustering at the considered temperatures. In this context the present
study should also be compared to previous ab initio approaches to the subject. Bakos et
al [Ba02] pointed out that in an equilibrated structure of silica and water, SIOH should be
the dominating dissolution species. Therefore, from this study it seems to be confirmed that
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from the quantum chemical point of view, the dissolution of water to SIOH groups is the
energetically favorable mechanism in the equilibrated regime. One should recognize that
the sudden alteration of temperature and pressure conditions can bring the system out of
thermal equilibrium and may lead to cluster formation. Also the composition of the silicate
on the water speciation (especially the addition of AlyO3) has not been investigated yet and
further work of the present kind will be mandatory.

8.2.2 The Glass

In the glassy state it is possible to compare statistical quantities like the neutron scattering
structure factor and the vibrational densities of states that can be extracted from the exper-
iment as well as the simulation.

Two main outcomes of the neutron scattering experiments are evident: The small change of
the neutron scattering structure factor and the vibrational density of states with increased
water content and the dependence of the neutron scattering structure factor and the vi-
brational density of states on the silicate matrix (at equivalent water concentration). Note
that the little structural alteration was already ascribed to the small size of the hydrogen
atom (see section 6.1.1). The chemical analogy of hydrous silica and sodium silicates should
be recalled another time at this place. As it can be seen from figure 7.9 and figure 7.10,
the influence of sodium oxide on the structure factor of silica is much larger than the in-
fluence of water. In contrast to sodium, due to their low mass and the strong attachment
to the silicate, the hydrogen atoms sample mostly the vibrations of the matrix. Therefore,
it becomes understandable that also the ndos changes as little as the matrix changes with
increasing water content. Note again that the bend and stretch vibrations of water and
SiOH groups are energetically located outside the region of the matrix vibrations from 0 to
200 meV (0 to 1600 cm™"') where neutrons are sensitive. This is the reason that despite of
the change of the ratio of SiIOH to HyO with increasing total water content (as seen by with
Raman and infrared spectroscopy), neutrons are able to show that the silicate matrix is not
affected by this change. Since the matrix constitutes the viscosity of the silicate one further
concludes that neither the viscosity (as most important quantity for volcanism) is related to
the SiIOH/H,0 ratio.

A prepeak at 0.9 A~! in the neutron scattering structure factor of hydrous silica is not seen
in the glassy state as it was already the case for sodium silicate. Since there are indications
from the simulation for a prepeak in the molten state also for hydrous silica, experiments
at high temperature (and high pressure) will be mandatory in order to calibrate the sim-
ulation. On the other hand, note also that the g-dependence of the prepeak was recently
investigated in various silicates by Kargl et al [Ka04b]. It was found that in the series of
(1-x)SiO2+xK20, (1-x)SiO24+xNay0, and (1-x)SiO+xLiO, the prepeak is shifted into the
first sharp diffraction peak at 1.7 A~!. It can be assumed that the following member of the
chain which is (1-x)SiO9+xH,0O, will have a prepeak which is indistinguishable from the first
sharp diffraction peak at 1.7 A~

As already mentioned above, the comparison to the CPMD simulation is always subject
of the validity of the ultrafast numerical quench. However, the direct comparison of the
experimental and the simulated neutron scattering structure factor showed generally good
agreement. This confirms the picture of a small alteration of the matrix due to the small size
of the hydrogen atom also from the theoretical point of view. Note that it was also seen from
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the simulations that the vibrational density of states is only little affected by the addition of
water (see section 6.5.2). Almost only the high incoherent scattering length of hydrogen is
responsible for the difference of the simulated neutron densities of states of pure and hydrous
silica. A further common result from the experimental and the theoretical side is that hydro-
gen participated in vibrational modes at all frequencies. This is another proof for the strong
coupling of the hydrogen to the matrix. Exactly this fact makes it experimentally difficult
to draw conclusions from the vibrational density of states. It is questionable if deuterated
samples could improve the situation. Since stretch vibrations are far out off the domain of
neutron scattering, direct shifts of characteristic frequencies will not be observable.

A side-outcome of the computer simulation are the results on the electronic structure. To-
gether with the information on the hydrogen diffusion in the liquid (at high temperature),
the results obtained were able to confirm predictions on defects in silica used as dielectric
material in semiconductor devices. In this context the SiO dangling bond as negative charge
trap is of outstanding importance because it provides acceptor states in the electronic band
gap (see figure 3.1). It could be shown that this site can be systematically created at high
temperatures followed by an ultrarapid quench. The analysis of the Hirshfeld charge den-
sity deformations and the electron localization function showed that electronic delocalization
(due to neighbor atoms) pushes the energy of the electronic state in the band gap. Moreover
the present study is the first dynamical approach ever that leads to these results.

8.2.3 Outlook

Last but not least, possible further steps have to be discussed. On the simulation side the
computer power will certainly not increase that much in the forthcoming years so that con-
siderable lower equilibration temperatures and natural quench rates will become accessible.
That means that from the conceptional point of view progress cannot be expected. This is
a relative dramatic restriction since the conditions for the experimental procedure for the
sample preparation cannot be simulated and comparisons to experiments are hence much
more difficult. In particular this might have consequences for the experimentally and the-
oretically found H,O/SiOH ratios. However, as already said above, it is believed that all
possible chemical transformations (at any temperature) in hydrous silica are already covered
by reactions 8.1 to 8.5. This is also important concerning an possible increase of the number
of atoms at the same stoichiometry which might then only improve statistics.

On the other hand, what can be done on the simulation side is the consequent variation
of the composition of the silicate. In particular the equilibration of water richer systems
than the present one could give hints on the existence of stable water molecules. From the
point of view of the questions associated to explosive volcanism, the work should certainly
be extended over hydrous sodium silicates to hydrous albite (the simplest natural lava).
The ultimate goal would be to adapt an interatomic potential to such data (according to
figure 3.2). This would allow to perform longer runs and to extract diffusion constants for
hydrogen since the use of thermostats is no longer compulsory. For that kind of work, it
should be pointed out that the measured structure factors and densities of states can be
used in order to calibrate any new simulation. For ab initio approaches, a certain calibration
with existing experimental data can also be obtained from the generation of the Raman and
infrared spectra according to equation 3.3.

On the experimental side the construction of a pressure cell for the use in neutron spectrom-
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eters is under way. The availability of the new TUM neutron source FRMII will definitely
provide more beam time to the subject. If reliable data in the liquid state could be ob-
tained, an extraction of hydrogen diffusion constants could be envisaged. Moreover it might
be considered to employ also inelastic X-ray methods in order to get information on the
water dynamics via the sound velocities extracted from dispersion curves. Probably the
employment of recently developed numerical methods like the Reverse Monte Carlo (RMC)
method [Ke90] could shed more light on the water speciation issue.
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Alphabetic List of Quantities and
Abbreviations

X2 QNP

L

typical hopping distance
Paalmann-Pings coefficients
scattering length of nucleus I
concentration

vector of plane wave coefficient
number of interatomic distances in (2

electronic charge
(Kohn-Sham) energy
viscosity

exchange correlation density
force

dynamical structure factor
radial pair distribution
vector of reciprocal lattice
activity coefficient
Hamiltonians

rate transfer (flux)

initial wave vector
Boltzmann’s constant
thermal conductivity
Lagrangian

wavelength

electronic mass

mass of nucleus I
Car-Parrinello electronic mass
refraction index

Sy e e o

(¢)
~

M
S
()

3

-
3

chemical activity
polarizability tensor
constant in miscibility model
heat capacity

diffusion constant

coefficient for secondary scattering
k-th eigenvector component

on atom I
activation energy

(vacuum) dielectric constant
electric field

detector efficiency

vibrational density of states
free enthalpy of mixing
elastic shear modulus
enthalpy of mixing

intensity

chemical equilibrium constant
final wave vector

Henry’s constant

length of simulation box
Lagrangian multiplier

dipole moment

neutron mass

average mass of nuclei in a system
number of atoms
Bose-Einstein distribution
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Ne channel number Ny nug%ﬁf;ﬁg;éﬁggsd ol
N, n?f;fgrgfﬁégérﬂ%el N,(w) | projected vibrational density of states
w (vibrational) frequency R gas constant
Q simulation cell volume P Placzek polynomial
P momentum p pressure
o | 0 | paride o fuction
\\J all electron wavefunction W, wavefunction of electron i
q wave vector transfer i charge of atom i
Q heat, thermostat variables R gas constant
T radial variable in R? T fraction Oir?i)ggiﬁnFsl}(;?;ﬁ/%e?r:}?ino del
r; position of electron i R; position of nucleus I
P liquid or solid density prre Hirshfeld pro molecule charge density
p charge density of atom i S displacement
Sm entropy of mixing S(q,w) | scattering law
o surface tension o scattering cross section of nucleus I
Os, Oq sgzg?ﬁ%% cross section t time
T gﬁ%ﬁﬁt:%@ﬁ}lf)erawre T, glass transition temperature
T, multiphonon term of order n T stress tensor
20 scattering angle u displacement
v velocity |% potential energy
V., container solid volume W, Wannier function
W Debye-Waller factor x x-direction in R3
T molar fraction of total water Ty x value of n-th Wannier center
=, o Goond moment) oy saiverion i B
Yn y value of n-th Wannier center || z z-direction in R?
A charge of nucleus I Zn z value of n-th Wannier center

Note that indices are not listed and may be multiply used.
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Accessibility of Natural Rocks

The goal to understand natural lavas with a certain amount of volatiles is to go from systems

of relatively simple chemical composition to more and more complex systems. Starting from
Si09-H20, the way to the simplest natural rock -albite (NaAlSizOg)- goes over hydrous
sodium silicates. For computer simulations, systems become more and more difficult the

more atom types involved. On the experimental side, restrictions emerge with high pressures

and temperatures, that are required in order to make hydrous SiO,. Figure C.1 shows

a classification of the systems by their theoretical and experimental accessibility. Typical

compositions of other types of lava such as rhyolite, dacite, andesite and basalt are given in

the figure C.2.

Simulation Experiment
easy
Si02+H20 NSX+H20
Albite+H20
NSX+H20
Albite+H20 Si02+H20

68-77% I—l[’ Rhyolite

T | -:l:l Dacite

52-63% || -:.j Andesite
48-52% I -:l] Basalt

el (Legend)
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Figure C.1:  Ezperimental and
simulational accessibility of hydrous
8102, hydrous sodium silicates, and
hydrous albite.

Figure C.2: Compositions of natu-
rally found lavas. From [US00].
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List of ILL Experiments

IN6 September 2001

A =414

elastic peak 343/1024
channel width 9.625 us
empty instrument
niobium hollow cylinder
inelastic focussing

cryo-loop, Al-can
A=5.1A

IN6 May 2002

A =4.62A
elastic peak 280/512
channel width 10.875 us

cryoloop, aluminum flat slab

elastic focussing

substance temperature [K] time [min]
dry NS3 300 113
NS3 9.4 mol% H,O 300 34
NS3 9.4 mol% “D50” 300 304
NS3 9.4 mol% H,0O 300 21
NS3 9.4 mol% “D,0O” 300 248
dry albite 300 258
albite 9.4 mol% H,O 300 180
albite 9.4 mol% “D,0” 300 42
substance temperature [K] time [min]
NS3 9.4 mol% H,0 375 10
NS3 9.4 mol% H,0 450 10
NS3 9.4 mol% H,0 500 10
NS3 9.4 mol% H,0 550 10
NS3 9.4 mol% H,0 600 10
substance temperature [K] time [min]
NS3 5.8 mol% H,0 300 60
NS3 5.8 mol% H,O 360 60
NS3 5.8 mol% H,0 420 60
dry NS3 360 60
NS3 9.4 mol% H,0 310 60
NS3 9.4 mol% H,0 420 60
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IN6 August 2002

substance temperature [K] time [min]
NS3 5.8 mol% H,O 200 120

A=41A NS3 5.8 mol% H,0 260 90

elastic peak 400/512 NS3 5.8 mol% H,0 300 240

channel width 10.875 us NS3 5.8 mol% H,O 350 200

cryoloop NS3 5.8 mol% H,0 400 200

aluminum flat slab NS3 5.8 mol% HyO 500 120

inelastic focussing NS3 5.8 mol% H,O 600 20
NS3 remaining water 300 240
NS3 remaining water 400 240

IN4 December 2002

A =224

elastic peak 262/512

channel width 5.8 us

5.719us effective substance temperature [K] time [min]

cryostat, no sample can, dry NS2 300 450

sample fixed in Cd frame

elastic focussing

D20 October 2003
substance temperature [K] time [min]
dry SiO, 300 60
Si05 10.5 mol% H,0 300 60
Si05 10.5 mol% “D,0” 300 90
dry NS3 300 60

A=0944 NS3 5.8 mol% H,0 300 60

no cryostat NS3 5.8 mol% “Dy0” 300 60

Vanadium sample can NS3 9.4 mol% H,O 300 60

6mm diameter dry albite 300 60
albite 5.8 mol% H,O 300 60
albite 5.8 mol% “D,O” 300 60
albite 9.4 mol% H,O 300 60
albite 9.4 mol% “D,0” 300 60

albite 13.7 mol% H,O 300 20




A =24A

no cryostat
Vanadium sample can
6mm diameter

IN6 October 2003

A=41A

elastic peak 805/1024
channel width 5.857 us
empty instrument
aluminum can

elastic focussing

D4 March 2004

A =0.35A

cryostat

Vanadium sample can
6mm diameter
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substance temperature [K] time [min]
dry SiO, 300 90
SiOy 10.5 mol% H,O 300 60
SiO4 13.7 mol% H,O 300 60
dry NS3 300 60
NS3 5.8 mol% H,0 300 60
NS3 5.8 mol% “D,0” 300 60
NS3 9.4 mol% H,O 300 60
dry albite 300 60
albite 5.8 mol% H,O 300 60
albite 5.8 mol% “D20” 300 60
albite 9.4 mol% H,O 300 60
albite 9.4 mol% “D,0” 300 60
albite 13.7 mol% H,O 300 20
substance temperature [K] time [min]
dry SiO, 300 100
SiO9 10.5 mol% H,O 300 100
SiOy 10.5 mol% “Dy0” 300 100
dry NS3 300 100
NS3 5.8 mol% H20O 300 130
NS3 5.8 mol% “D,0O” 300 100
dry albite 300 100
albite 5.8 mol% H,O 300 100
albite 5.8 mol% “D,0” 300 100
albite 9.4 mol% H,O 300 80
albite 9.4 mol% “D,0” 300 100
albite 13.7 mol% H,O 300 100
substance temperature [K] time [min]
dry SiO, 300 1200
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ING6 April 2004
A=41A

i substance temperature [K] time [min]
elastic peak 693/1024 Si0, 10.5 mol% Hy0 300 400
channel width 5.857 pis Si0, 13.7 mol% Hy0 300 315
empt?f Instrument NS3 9.4 mol% H,O 300 270
aluminum can albite 9.4 mol% HoO 300 240
elastic focussing albite 13.7 mol% H,0 300 420
IN6 June 2004
A=41A
elastic peak 693/1024 substance temperature [K] time [min]
channel width 5.857 us albite 5.8 mol% H,O 300 270
empty instrument albite 5.8 mol% H,O 300 275
aluminum can albite 9.4 mol% H,O 300 313
elastic focussing albite 13.7 mol% H,O 300 95
ING6 August 2004
A =4.1A
elastic peak 400/512
channel width 6.75 s substance temperature [K] time [min]
cryostat dry albite 300 420
aluminum bonbon dry NS3 300 480

inelastic focussing



Appendix E

CPMD 3.4.3 Inputs for Molecular
Dynamics

&CPMD
MOLECULAR DYNAMICS
RESTART WAVEFUNCTIONS
RESTART COORDINATE
RESTART VELOCITIES
RESTART NOSEE
RESTART NOSEP
SPLINE POINTS
5000
NOSE IONS MASSIVE
3500.0 3000
NOSE ELECTRONS
0.12 10000 NOSE PARAMETERS
4446157
MAXSTEP
10000
STORE
500
PRINT FORCES COORDINATES
500
TRAJECTORY SAMPLE
5
TIMESTEP
4.5
EMASS
600.0
CONVERGENCE
1.e-6 5.e-3
&END
&SYSTEM
SYMMETRY
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148 APPENDIX E. CPMD 3.4.3 INPUTS FOR MOLECULAR DYNAMICS

1
ANGSTROMS CELL
11.50 1.0 1.0 0.0 0.0 0.0
CUTOFF
50.
&END
&ATOMS
SI.0UT1 KLEINMAN-BYLANDER RAGGIO=1.d0
LMAX=D LOC=D
30
6.224504 6.543059 13.001739

0.0UT1.harder KLEINMAN-BYLANDER RAGGIO=1.0
LMAX=P LOC=P
64
9.211886 10.064283 5.274018

H.OUT1 KLEINMAN-BYLANDER RAGGIO=1.0
LMAX=S
8
-7.602708 3.151306 -2.172956

ISOTOPE
28
28
28

&END
&DFT

FUNCTIONAL PBE
&END
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