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Abstract

The present work is motivated by recent experiments on active microrheology
of actin solutions. In these experiments response of microbeads in actin
solutions to constant forces has been studied and a new regime has been
found, in which the bead displacement scales with the square root of time.

In this work we report computer simulations of the enforced bead motion
through entangled network of semiflexible polymers modelling the experi-
ments described above.

In the Ch. 2 a simulation model is built on the basis of the Dissipative
Particle Dynamics (DPD) method, which is a sort of molecular dynamics
method.

The simulations reveal that the response of the bead possesses two regimes.
In the initial regime the displacement of the bead is found to be y ∼ t0.75.
This regime is followed by y = Atα with α taking the values close to 0.5. It
is found that this regime lasts for at least two decades in time.

Responses of the bead on various force amplitudes f are studied and it
is found that in the square root regime A ∼ f . The amplitude of the square
root regime is shown to depend on the concentration c of polymers as A ∼ cβ,
with β ≈ −1.4. Simulations of beads of various radii R show that A ∼ R−1.6.

The simulations reveal that the square root regime is characterized by
an increased concentration of polymers in front of the moving bead and a
strongly decreased behind with respect to the bulk value. Furthermore, it is
found that in the square root regime the force resisting the bead motion is
mainly due to polymers and that it is osmotic in origin.

In order to characterize the motion of polymers in active microrheological
experiments a study of diffusion of semiflexible polymers in solution is first
performed in the Ch. 3. In accordance with the reptation theory it is found
that the transversal motion of the polymers is hindered and that they move
by means of longitudinal diffusion (reptation). The longitudinal diffusion
coefficient D|| of semiflexible polymers is found to be inversely proportional
to the contour length of the polymers. No apparent dependence of D|| on the
mesh size of the polymer network is observed.
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Abstract

In the Ch. 4 the motion of polymers in front of the moving bead in active
microrheological experiments is analyzed. It is found that the polymers in
front of the moving bead move by means of longitudinal diffusion with the
diffusion coefficient being close to that in the bulk.

Furthermore, it is found that in the square root regime of active microrhe-
ology A ∼ √

D||.
The Ch. 5 is concerned with interpreting the active microrheological mea-

surements in terms of the complex relaxation modulus G∗ (ω). It is shown
that the square root regime of the compliance found in the experiments de-
scribed above as well as in our simulations corresponds to the ω0.5 scaling of
the relaxation modulus with frequency.

On the basis of the performed computer simulations a scaling theory of
the active microrheology is suggested in the Ch. 6. The model accounts for
the osmotic pressure of polymers due to the suppression of their undulations.
The motion of polymers is assumed to be described by the diffusion equation
with the diffusion coefficient being that of the longitudinal diffusion. In this
framework scaling laws are found for the square root regime as well as for
the subsequent viscous-like steady state motion. The results are in good
agreement with the experiments as well as with the computer simulations.

Finally, in the Ch. 7 an analytical treatment of the steady state regime
of the bead motion is performed. For low external forces the velocity of
the bead as well as the concentration distribution of polymers around it are
obtained.
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Chapter 1

Microrheology

1.1 Experimental techniques

Microrheology is a rapidly growing field comprising a variety of techniques
for measuring local viscoelastic parameters on the scales of microns. There
are different motivations for the development of such methods. One of the
strongest motivations is that many samples are available only in small quan-
tities. Related to it is the intention to study inhomogeneities in various
systems, for example inside living cells. Many systems show different physi-
cal properties on different length scales, therefore such techniques provide an
ability of probing a particular scale. Furthermore, microrheology techniques
extend the capabilities of the conventional macroscopic rheology making pos-
sible studies of the viscoelasticity at higher frequencies.

The main principle behind microrheology is that a small spherical probe
of micrometer size is introduced into the medium under study and its move-
ment is detected using various techniques. Modern experimental techniques
provide spatial resolution up to nanometers. All microrheology methods may
be divided into two classes: those employing active manipulation of probe
particles in the sample, and those utilizing passive observation of thermal
fluctuations of such probe particles [1, 2]. Both approaches are being devel-
oped and improved, they have their advantages and complement each other.

Observation of thermal fluctuations of probes embedded in the studied
medium provides information about its rheological properties. This is be-
cause the thermal fluctuations reflect the linear response parameters of the
medium and their complete frequency dependence. Thermal fluctuations of
a single or several probes can be observed and analyzed, as well as a simul-
taneous averaging over the whole ensemble of the embedded particles can be
done using light scattering methods.
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Chapter 1.1

One of such methods is the diffusing wave spectroscopy (DWS) [3]. The
intensity of the multiply scattered light fluctuates over time due to the rela-
tive motion of individual scattering elements and is sensitive to their displace-
ments much smaller than the wavelength of light. Moreover, an extraordi-
narily wide range of timescales can be probed, from 10−8 to 105s. The DWS
technique has been used to study the properties of various systems, including
colloids, polymer solutions and gels [4].

The basic advantage of the DWS technique over various single-particle
tracking methods is that an ensemble average over many particles is intrin-
sically performed. In contrast, in the single-particle tracking it may be nec-
essary to average the results for many different particles in order to obtain
a statistically meaningful measurement. On the other hand, observation of
the motion of single particles permits the study of inhomogeneities within
the sample.

The spatial resolution of various microscopical methods reaches nanome-
ter scale favoring their extensive use in the microrheological studies. Increas-
ing temporal resolution provides a wide frequency range permitting measur-
ing of particle displacements over short times. The measured mean square
displacement of the thermally fluctuating particle allows the determination
of local viscoelastic parameters of the embedding medium [1]. Methods based
on cross correlating the thermal motion of pairs of embedded probe parti-
cles, the so-called two-point microrheology, are believed to determine the
viscoelastic behavior of soft materials more accurately than do the conven-
tional single-particle methods [5, 6].

The active manipulation of micron-size particles dates back to the early
1920s when the properties of gelatin were studied using small magnetic parti-
cles [7]. Recent advances in high-resolution and rapid microscopy have led to
increased interest in similar micromanipulation techniques, magnetic tweez-
ers. This method is based on the fact that inhomogeneous magnetic field
exerts a force on the magnetic particle embedded in the studied sample. Lo-
cal viscoelastic responses of biopolymer solutions and gels have been studied
using magnetic tweezers [8–11], as well as the viscoelastic properties of cell
membranes and cell compartments [12, 13].

The applied forces in such techniques are calibrated by measuring the
velocity of the same kind of bead exposed to the same field gradient in a
purely viscous fluid of known viscosity. The values of the forces exerted on
the magnetic beads cover the range from ∼ 1 pN to tens of ∼ 10 nN. The
length of the applied force pulses has some limitations due to the overheating
of the magnetic coil but can be extended currently up to several minutes.

Other methods of active microrheology include optical tweezers, which is
similar to the magnetic tweezers method except that the force is exerted on
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Theoretical approach describing rheological measurements

the probe particle with the help of an optical laser trap [14], and methods
based on the atomic force microscopy.

In the family of the active microrheological methods described above,
there exist methods concerned with the determination of the strain field
around the probe particle, employing, for example, non-magnetic beads,
which are embedded in the vicinity of the magnetic probe. The deforma-
tion of the surroundings of the probe particle caused by its displacement
when the external force is applied can be mapped by observing the respec-
tive displacements of the non-magnetic beads [10].

1.2 Theoretical approach describing rheolog-

ical measurements

Fundamental to any kind of rheology using probe particles is a quantitative
modelling of the interaction of the probe with its surroundings. One of the
key characteristics describing the linear viscoelastic behavior of a complex
fluid is the relaxation modulus G (t). The relaxation modulus relates the
time dependent strain in the system γ (t) to the stress σ (t)

σ (t) =

∫ t

−∞
G (t− t′) γ̇ (t′) dt′, (1.1)

where the dot indicates the time derivative. The Laplace transform of the
relaxation modulus is extensively used

G∗ (ω) = iω

∫ ∞

0

G (t) e−iωt dt, (1.2)

revealing the response of the medium to an oscillating stress
σ (ω) = G∗ (ω) γ (ω). The real G′ (ω) and imaginary G′′ (ω) parts of the
complex relaxation modulus G∗ (ω) are called storage and loss modulus, re-
spectively. These quantities, as the names suggest, reflect respectively the
elastic and the dissipative components of the complex viscoelastic behavior.
It is useful to mention that the storage and loss moduli are not indepen-
dent in fact. As a consequence of the causality principle these quantities are
interrelated through the Kramers-Kronig relations [15].

Instead of the relaxation modulus, the active microrheological methods
often permit a direct measurement of the compliance J (t)

γ (t) =

∫ t

−∞
J (t− t′) σ̇ (t′) dt′. (1.3)
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Chapter 1.3

a b kh

Figure 1.1: Fundamental elements for composition of mechanical circuits:
dashpot with the viscosity η (a) and spring with the spring constant k (b).

The relaxation modulus can then be calculated through the convolution iden-
tity relating it to the compliance

∫ t

0

G (t− t′) J (t′) dt′ = t. (1.4)

The basis of the active methods of microrheology is in extracting the
storage and loss moduli by the simultaneous measurement of the applied force
and the resulting displacement of the probe particle. Alternatively, the same
information can be extracted from the observation of thermal fluctuations of
the embedded particles as the fluctuation-dissipation theorem suggests [15].

The other frequently used way of interpreting the viscoelastic behavior
is the description in terms of the so-called mechanical circuits composed of
dashpots and springs [16], Fig. 1.1. These elements can be joined in parallel
or in series producing various mechanical systems with different viscoelas-
tic properties. The responses of these systems to an external force can be
theoretically calculated and may be used for fitting the mechanical response
of the medium under study. The significant disadvantage of this method is
that a lot of elements might be required for a reasonable fit, which prevents
from distinguishing between physical mechanisms responsible for the studied
behavior.

1.3 Solutions of semiflexible polymers

Actin solutions are intensively studied by microrheology. Actin is a globular
protein and is present in an enormous variety of biological species bearing
different crucial functions, from structural to motile. Actin monomers self-
assemble under appropriate conditions to form filaments with a diameter of
7− 9 nm and lengths of up to 50 µm.

One of the key motivations for the actin solutions to be a subject of con-
stant microrheological studies is the prominent role of actin in the mechanical
properties of cells. Actin is a building block of the cytoskeleton, which is re-
sponsible for the form maintenance of cells, and, therefore, their viscoelastic
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Solutions of semiflexible polymers

De

Figure 1.2: Reptation tube. The polymer is confined to an effective tube with
diameter De, the walls of the tube are dynamically created by the neighboring
fluctuating polymers.

properties. Furthermore, actin plays an important role in cell division and
locomotion.

In addition to its important biological roles in cells, which draw constant
interest to actin, it has become a prominent model of a semiflexible polymer.
Filamentous actin possesses a persistence length of Lp = 17 µm [17, 18].
Therefore, in in vitro experiments the ratio of the average contour length L
to the persistence length is intermediate between the limit of flexible polymers
L/Lp >> 1 and a rod-like one L/Lp << 1. At appropriate salt concentra-
tion (physiological conditions) globular actin polymerizes to form isotropic
entangled solutions of filamentous actin. Variation of the monomer actin
concentration permits controlling the mesh size of the formed network and
allows obtaining the tightly-entangled solutions in which the mesh size ξ is
much smaller then the persistence length Lp [19].

Microrheological techniques allow testing different length and time scales
in the actin solutions. Apart from the conventional microrheology, fluores-
cent labeling of single actin filaments permits real-time observation of their
behavior in the actin solutions. Direct binding of micro- and nanoparticles to
single actin filaments opens the possibilities of tracking the positions of the
actin filaments as well as of enforced reptation experiments when a filament
is pulled through the network [20, 21]. Actin solutions are thus very rich sys-
tems for rheological studies and pose challenging problems in the dynamics
of cellular systems.

The presence of different length and time scales in the tightly-entangled
semiflexible polymer solutions complicates their mechanical properties. Each
polymer is assumed to be confined over certain times specified later to an
effective dynamical tube with a diameter De << Lp [22], Fig. 1.2. The
walls of the tube are dynamically created by collisions with other fluctuating
polymers.

The tube is a consequence of the steric constraints present in such sys-
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Chapter 1.3

tems, which are responsible for the interesting mechanical behavior. Different
time and length scales naturally appearing in the tube model of tightly-
entangled polymer solutions are directly connected to various viscoelastic
regimes observed in experiments.

Related to the width of the confinement tube is the entanglement (or
deflection) length Le, which can be interpreted as the distance between the
collisions of the polymer with the walls of the tube. In the tightly-entangled
regime the tube diameter and the entanglement length vary according to [23]

Le ∼ D2/3
e L1/3

p . (1.5)

Different arguments lead to different dependencies of the tube width and the
entanglement length on the polymer contour length density ρ, which is the
ratio of the total contour length of all the polymers Ltot (i.e. the sum of the
contour lengthes of all polymers in the volume) to the volume of the system
V

ρ =
Ltot

V
. (1.6)

Simple geometrical arguments [24] and the binary collision approximation [25]
give the scaling

Le ∼ ρ−2/5L
1/5
p , De ∼ ρ−3/5L

−1/5
p , (1.7)

while the effective medium approximation [25] gives the power laws

Le ∼ ρ−1/3L
1/3
p , De ∼ ρ−1/2. (1.8)

1.3.1 High frequency viscoelasticity

Confined to an effective dynamical tube the polymer experiences shape fluc-
tuations transversely to the tube as well as longitudinal Brownian motion.
The width of the tube, which is dynamically created by fluctuating poly-
mers, is orders of magnitude larger than the backbone diameter of the poly-
mer, which is of the order of 10 nm, consequently on sufficiently short time
scales the dynamics of the polymer is similar to the one of a free semiflexible
polymer in solution. Such an approach is valid at times shorter than the
typical time between successive collisions of the polymer with the walls of
the tube. This time τe, called also entanglement time, can be estimated as
the relaxation time of the modes with wavelengths shorter than Le [26]

τe ∼ ζ⊥L4
e

kBTLp

, (1.9)
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Solutions of semiflexible polymers

where ζ⊥ is the friction coefficient for the perpendicular motion of the poly-
mer, kB is the Boltzmann constant and T is the temperature. Consequently,
at frequencies ω > τ−1

e the polymers in the solution can be regarded as free
and the complex frequency dependent shear modulus may be shown to vary
with frequency ω as [26]

G∗(ω) ∼ ρkBT

Lp

(
iω

ζ⊥L3
p

kBT

)3/4

, (1.10)

which is a direct consequence of the finite rigidity of the actin filaments.
Thus, the storage and the loss moduli G′(ω) and G′′(ω) both vary with the
frequency as ω3/4. In the time domain this power law corresponds to the
dependence of the relaxation modulus on time

G(t) ∼ t−3/4 (1.11)

at times t . τe. The power law dependence on frequency 1.10 has been found
experimentally by a number of researchers [8, 20, 27–30] in passive as well
as in active microrheology of actin solutions.

The study [8] comprises a set of active and passive microrheological ex-
periments on the actin polymer networks with the mesh size ξ ≈ 1µm. It
is shown that the beads with the diameter d smaller than the mesh size ex-
hibit usual Brownian diffusion 〈x2(t)〉 ∼ t, where x(t) is the coordinate of
the bead’s center of mass. It means that the movement of the small beads
is weakly influenced by the polymer network and the beads are able to dif-
fuse freely. On the contrary, beads larger than the mesh size show the mean
square displacement scaling as

〈
x2(t)

〉 ∼ t3/4. (1.12)

When an external force is applied on the bead with the diameter d/ξ ∼ 3 its
displacement is given by the power law

x(t) ∼ t3/4 (1.13)

The power laws 1.12 and 1.13 are related to the ω3/4 high frequency scal-
ing 1.10 of the complex relaxation modulus G∗(ω) and were observed at
times t . 2 sec [8].

Passive microrheology studies of actin solutions with the 5 µm beads,
which are about 20 times larger than the mesh size as well show the scal-
ing 1.10 for frequencies above 10 Hz [28].

Summarizing, extensive experimental data reveals the ω3/4 scaling of both
the storage G′(ω) and the loss G′′(ω) moduli at frequencies ω > τ−1

e with τe

being in accord with the estimate 1.9.

- 13 -



Chapter 1.3

1.3.2 Elastic plateau

Whereas there is a significant agreement between the theoretical predictions
and various experimental observations on the high frequency viscoelastic re-
sponse of the semiflexible polymer solutions, the experimental data at fre-
quencies below τ−1

e deviate from one research group to another. It is generally
assumed [26, 31] that solutions of semiflexible polymers exhibit elastic be-
havior at times τe < t < τrep, where τrep is the so-called reptation time a
polymer requires to disengage from its tube by longitudinal diffusion (repta-
tion) [22]. This regime is characterized by a plateau in the time dependence
of the relaxation modulus G(t) at times τe < t < τrep. Accordingly , in the
frequency domain the storage modulus G′(ω) as well experiences a plateau
at frequencies τ−1

rep < ω < τ−1
e , whereas the loss modulus G′′(ω) shows a min-

imum in this frequency range being much smaller than the storage modulus
G′(ω) À G′′(ω), which is a signature of an elastic behavior. The value of the
plateau modulus Gpl is defined as the value of the storage modulus at the
frequency where the loss modulus G′′(ω) experiences a local minimum.

A broad elastic plateau measured using the diffusing wave spectroscopy
technique has been reported in an actin solution with the mesh size ξ ≈
0.15 µm, in which microspheres with the diameter 0.96 µm were embed-
ded [29, 30, 32]. The plateau with the value of about 1.4 Pa spanned a
frequency range of several orders of magnitude 10−3 < ω < 101 Hz. Other
studies [33] report a significantly higher plateau modulus of over 10 Pa in
the frequency range 10−2 < ω < 102 Hz as well as much lower values of the
order of 0.1 Pa [34].

The origin of the elastic plateau is considered to be in the forces resisting
the transverse deformations of the conformations of the tubes [35]. This
mechanism is expected to give

Gpl ∼ kBT

Leξ2
. (1.14)

At frequencies even lower than τ−1
rep the viscoelastic behavior is believed [26,

31] to be similar to that of a viscous fluid. Therefore, at frequencies ω ¿ τ−1
rep

the storage and the loss moduli scale as G′(ω) ∼ ω2 and G′′(ω) ∼ ω. The
reptation time takes the values of 1000 s and longer as suggested by the
experiments [32, 34].

Thus, schematically the real and the imaginary parts of the complex mod-
ulus G∗(ω) vary with the frequency as sketched in the Fig. 1.3. In the time
domain the relaxation modulus G(t) corresponding to the complex modulus
from the Fig. 1.3 is sketched in the Fig. 1.4a. The respective time dependence
of the compliance J(t), which can be found solving the convolution identity

- 14 -



Solutions of semiflexible polymers

ω

τ τ

Figure 1.3: A sketch of the storage G′ (solid line) and the loss G′′ (dashed
line) moduli as functions of frequency. At high frequencies ω À τ−1

e both
moduli exhibit a power law ω0.75, at intermediate frequencies τ−1

rep ¿ ω ¿ τ−1
e

an elastic plateau is found, and at low frequencies ω ¿ τ−1
e a viscous flow

scaling takes place G′(ω) ∼ ω2 and G′′(ω) ∼ ω.

ττ ττ

Figure 1.4: Sketches of the time dependent relaxation modulus G(t) (a) and
the compliance J(t) (b) corresponding to the complex modulus G∗(ω) from
the Fig. 1.3.
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Eq. 1.4, is sketched in the Fig. 1.4b.

The differences of 2 orders of magnitude in the reported values of the
plateau modulus as well as in the frequency range spanned by the plateau
regime suggest that this can be due to the presence of cross-linkage between
the filaments [27, 31]. A small uncontrolled quantity of proteins, which can
act as chemical cross-links, can dramatically change the viscoelastic proper-
ties of an actin solution. This point of view is confirmed by the study [36]
showing that the viscoelastic properties of actin filament networks strongly
depend on the history of the sample.

Apart from the behavior shown in the Figs. 1.3 and 1.4 there exist studies
that report different dependence of the complex modulus G∗(ω) on frequency
at frequencies ω < τ−1

e . No elastic plateau is observed in [28] within the ex-
perimentally studied frequency window up to frequencies as low as 0.1 Hz.
This study reports results of passive microrheology of actin filament solu-
tions with the mesh size of ξ ≈ 0.2 µm using the 5 µm beads, which are,
therefore, about 20 times larger than the mesh size. Whereas the complex
modulus G∗(ω) shows the usual ω0.75 scaling at frequencies above 10 Hz, in
the frequency range 0.1 < ω < 10 Hz it varies as ωα with a lower expo-
nent 0.5 < α < 0.75. The exponent α = 0.5 was found by the two-point
microrheology in the frequency range 0.4 < ω < 80 Hz [5].

1.3.3 Recent active microrheological experiments on
actin solutions

Recent active microrheological studies of actin networks are in accord with
the ω0.5 scaling of the complex modulus G∗(ω) in the frequency range 0.1 /
ω / 10 Hz [37]. This treatise describes a set of experiments on enforced
motion of a microbead in actin solutions using a magnetic tweezers setup.
The advantage of these experiments with respect to the earlier ones [38] with
a similar setup is that the spatial resolution, the time resolution as well as
the possible duration of the applied force pulses have been improved by an
order of magnitude. The mesh size of the studied networks was 10 to 20
times smaller than the diameter of the microbeads 4.5 µm.

The main results can be formulated as follows. Three distinct regimes are
found in the time dependence of the compliance J(t), which is proportional
to the displacement of the bead x(t). These regimes can be represented as
power laws

J(t) ≈ Ait
αi , (1.15)

where the exponents αi take the values:
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Figure 1.5: Compliance of actin networks as measured in active microrheo-
logical experiments [37]. With a kind permission of Jörg Uhde.

• In the initial regime at times 0 < t < τ1, where τ1 ≈ 0.3 s, the exponent
takes the value α1 = 0.75

• In the intermediate regime spanning the time window τ1 < t < τ2,
where τ2 ≈ 10 s, a square root time dependence of the compliance is
found α2 = 0.5

• The intermediate regime is followed at times t > τ2 by the viscous-like
motion with the exponent taking the values α3 ≈ 1.

Some typical measured compliances of the actin networks are shown in the
Fig. 1.5. Furthermore, it is found that the amplitude A2 of the square root
regime is force dependent A2 ∼ f−0.25 and that it varies with the concentra-
tion c of polymers as A2 ∼ c−1.3.

The described results can not be interpreted using mechanical circuits
composed of the dashpots and springs shown in the Fig. 1.1 as it has been
done in [38].

The behavior of the compliance shown in the Fig. 1.5 is not in accord
with the relaxation modulus shown in the Fig. 1.3. As we assert in the Ch. 5
instead of the plateau both the storage and the loss moduli experience ω0.5

scaling in the frequency range corresponding to the square root dependence
of the compliance on time. The latter scaling was observed for the first time
in the active microrheology. The power law G? ∼ ω0.5 has been predicted
theoretically for polymer networks with L/Lp À 1 by accounting for the
diffusion of the excess length of the filaments [26, 31]. In actin networks
L/Lp ≈ 1.2 and therefore, this mechanism is not expected to manifest itself
over two decades as observed in experiments [37].

In this work we study theoretically the active microrheology of the en-
tangled semiflexible polymer networks aiming to understand the origin and
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Chapter 1.3

peculiarities of the square root regime. We first simulate the enforced motion
of the bead through the network. The simulations enable us to model the ex-
periments as well as to establish scaling relations between the parameters of
the system. On the basis of these results we then propose a new mechanism
of the response of the network to the bead motion and develop an analytical
scaling theory.
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Chapter 2

Computer simulation of
polymer networks
microrheology

Rapid development of computational power facilitates the use of numerical
methods in a great number of fields where the analytical models are ill-develo-
ped or fail due to the complexity of the geometry. Our aim is to gain insight
into the microrheology of solutions of filamentous proteins as well as to study
the diffusional properties of semiflexible polymers in solutions.

A great number of methods is concerned with predicting hydrodynamic
behavior of complex systems (fluids). The traditional methods of solving
partial differential equations meet only limited success, therefore favoring the
use of different molecular dynamics methods. Rapid development of various
kinds of molecular dynamics methods opens great possibilities for studies
of not only microscale systems but provides wide opportunities in tackling
mesoscopic problems.

The simulation of polymer networks and all the more of the microrheol-
ogy of such objects is a difficult task due to the complexity of the system
manifesting itself in the presence of different time and length scales. The
time scales relevant to the viscoelastic behavior range from below the char-
acteristic time τe for a chain to explore the tube to the characteristic time
τrep and longer for the chain to disengage from the tube by reptation, Ch. 1.
At the same time characteristic length scales for actin range from ≈ 0.1 µm
which is a typical mesh size to ≈ 20 µm which is of the order of the per-
sistence length [17, 18]. Such a wide range of length and time scales makes
it difficult to perform any microscopic simulation due to very big number of
objects which would then have to be taken into consideration and a small
time step because of the strongly varying interaction potentials. Therefore
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some sort of coarse-grained technique has to be used. One of such techniques
is the dissipative particle dynamics method introduced a decade ago.

2.1 The dissipative particle dynamics method

The dissipative particle dynamics (DPD) method introduced by Hooger-
brugge and Koelmann [39] is a rapidly developing promising technique for the
simulation of hydrodynamic behavior. The DPD system can be imagined as
bridging the gap between microscopic simulation methods such as molecular
dynamics and macroscopic approaches involving the solution of the fluid flow
equations. This method can be understood as a coarse-graining of the fluid
particles on the physically significant length scale so that all smaller scale
motions are ignored. Alternatively, DPD can be interpreted as a stochas-
tic description of the macroscopic differential fluid equations on a smaller
length scale [40]. The thermodynamics of the model has much in common
with the Langevin approach, being its generalization where the presence of
two-particle interactions results in the addition of hydrodynamics.

The DPD approach enables one to obtain a correct hydrodynamic behav-
ior [41–43]. On the length scales larger than the particle interaction range
the system is completely described by the hydrodynamic equations, i.e. the
Navier-Stokes limit is recovered.

The DPD method has been successfully applied to a number of systems.
It has been used to study the liquid-vapor coexistence [44], to simulate the
colloidal particle scattering and aggregation in colloids [45], and to study
the phase separation in immiscible fluids [46]. The DPD method has been
successfully applied to study the spontaneous aggregation of amphiphiles into
bilayers, determination of their equilibrium properties and measuring of the
surface tension and the bending rigidity of the bilayers [47, 48], as well as
to study the spontaneous vesicle formation [49]. Electrostatic interactions
were incorporated in the DPD method and the modified model was applied
to polyelectrolyte solutions [50].

Shortly after its creation the DPD method has been recognized to be well-
suited for the simulation of polymer systems and has been applied to study
polymer solutions. The studies comprise polymer-solvent phase separation
and the influence of branching [51, 52], effects of the solvent quality on the
conformation and relaxation of polymers [53], block copolymer microphase
separation [54]. Scaling laws for polymers in the DPD method were checked
in dilute solutions as well as in polymer melts and a good agreement with
the predictions was found [55, 56].
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2.2 Constituent equations

Each DPD particle is represented by a sphere possessing a mass. Its time
evolution is governed by Newton’s equations of motion

drαi

dt
= vαi, mα

dvαi

dt
= fαi, (2.1)

where Greek letters refer to the sort of the particle, while the Latin ones
refer to the number of the particle within a sort. For our simulations we
utilized three sorts of particles: the bead, the water spheres and the monomer
spheres. All interactions are pairwise and include a conservative force FC, a
dissipative force FD and a random force FR

fαi =
∑

β,j

(FC
αβij + FD

αβij + FR
αβij), (2.2)

where (β, j) 6= (α, i). All interactions except for the persistence and spring
forces, which will be introduced later, possess cutoff lengths depending on
the radii Rα of the interacting particles. The conservative force is a soft
repulsion acting along the line of centers

FC
αβij =

{
aαβ(1− rαβij

Rα+Rβ
)r̂αβij, rαβij < Rα + Rβ

0, rαβij ≥ Rα + Rβ

, (2.3)

where aαβ is a maximum repulsion between the particles of sorts α and β,
rαβij = rαi − rβj, rαβij = |rαβij|, r̂αβij = rαβij/|rαβij|. The remaining two
forces are a dissipative or drag force and a random force. They are given by

FD
αβij = −γαβwD

(
rαβij

Rα + Rβ

)
(r̂αβij · vαβij)r̂αβij

(2.4)

FR
αβij = σαβwR

(
rαβij

Rα + Rβ

)
θαβij r̂αβij,

where γαβ and σαβ are respectively the dissipative and random force con-
stants, wD and wR are r-dependent weight functions specified below, vαβij =
vαi − vβj, and θαβij(t) is a randomly fluctuating variable with the Gaussian
statistics

〈θαβij(t)〉 = 0

〈θαβij(t)θα′β′i′j′(t
′)〉 = (δαα′δii′δββ′δjj′ + (2.5)

δαβ′δij′δβα′δji′)δ(t− t′).
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The dissipative and random forces 2.4 also act along the line connecting the
centers of the spheres and conserve linear and angular momentum. There is
an independent random function θαβij(t) for each pair of particles.

On the basis of the fluctuation dissipation theorem [57] it was shown
that one of the two weight functions appearing in Eqs. 2.4 can be chosen
arbitrarily and that this choice fixes the other weight function as well as that
the amplitudes of the random and dissipative forces are related to kBT as

wD(r) =
[
wR(r)

]2
, σ2

αβ = 2γαβkBT. (2.6)

Following [58] we take

wD(r) =
[
wR(r)

]2
=

{
(1− r)2, r < 1
0, r ≥ 1

. (2.7)

For the iteration scheme we use a modified version of the velocity-Verlet
algorithm to advance the set of positions and velocities of the particles [58, 59]

rαi(t + ∆t) = rαi(t) + ∆tvαi(t) + (∆t)2 fαi(t)

2mα

,

ṽαi(t + ∆t) = vαi(t) + ∆t
fαi(t)

2mα

,

fαi(t + ∆t) = fαi (r(t + ∆t), ṽ(t + ∆t)) ,

vαi(t + ∆t) = vαi(t) + ∆t
fαi(t) + fαi(t + ∆t)

2mα

,

where ∆t is the time step of the iteration. The random force takes the
form [58]

FR
αβij = σαβwR

(
rαβij

Rα + Rβ

)
ζαβij∆t−1/2r̂αβij, (2.8)

where ζαβij is a random number with zero mean and unit variance chosen
independently for each pair of interacting particles at each time step.

2.3 Polymer model

We utilize the bead-and-spring model [22] for the connection of monomers
into polymers. Therefore, a spring force acts between two adjacent monomers.
The spring force acting on a monomer (αi) from the adjacent monomer (αj)
is given by

FS
ααij = −k(rααij − d)r̂ααij, (2.9)

where k is the spring constant, and d is the equilibrium bond length.
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j

Figure 2.1: Persistence forces. The forces ~F1 and ~F2 act on the monomers 1
and 2 and are normal to the bonds 1-3 and 2-3, respectively. The force ~F3

acting on the monomer 3 is opposite to the vector sum ~F1 + ~F2.

Our aim is the simulation of solutions of semiflexible polymers, therefore,
we introduce forces providing persistence of the polymers as depicted in the
Fig. 2.1. The absolute values of the forces ~F1 and ~F2 are

F1 =
µϕ

r1

, F2 =
µϕ

r2

, (2.10)

where r1 and r2 are the lengths of the bonds 1-3 and 2-3, respectively, and µ
is the force constant. Such a choice of the forces ~F1 and ~F2 implies that the
torques they exert on the monomer 3 compensate each other. Together with
the choice ~F3 = −~F1 − ~F2 that the total force acting on the trimer is zero it
implies that the total torque of these forces with respect to any point in space
is also zero. Such a choice of forces favors the straight configuration with
ϕ = 0, therefore introducing persistence to the polymers. The persistence
length can be varied by changing the force constant µ.

2.4 Simulation box and boundary conditions

If one could have a simulation box with solid sides, which is orders of mag-
nitude bigger than the biggest typical length scale in the system, e.g. the
contour or the persistence length of the polymers, it would resemble the sit-
uation met in the in vitro experiments: polymer solution in a chamber with
the beads embedded. The time, which is required for a computer to make
a single time step of the simulation, grows only linearly with the volume
of the simulation box, owing to the presence of the cutoff distances for all
interaction forces in the system. In spite of this linear scaling, the present
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Figure 2.2: Boundary conditions in the simulation box. The objects are
allowed to go through the walls appearing on the opposite side (the object
1 goes through the wall A and appears on the other side near the wall A′),
and interact through a wall if they are within the interaction distance (the
object 2 near the wall B interacts with the object 3 near the wall B′).

computer facilities, unfortunately, let us simulate systems, which are only
few times larger than the bead size. On the other hand, performing the sim-
ulations in such a small solid box would introduce uncontrolled influence of
the solid walls of the box on the system. It would influence the viscosity of
the system because the hydrodynamics near a wall is different than that in
the bulk. Furthermore, it would as well force the polymers to bend near the
walls influencing their conformations. In order to avoid these problems we
introduce the following three properties of the simulation box. (i) we utilize
periodic boundary conditions by making the opposite sides of the simulation
box equivalent.

The DPD simulation of the semiflexible polymer solution is performed
in a three-dimensional box with dimensions Lx, Ly and Lz filled with water
spheres, monomer spheres, which are connected into polymers as specified
in the sec. 2.3, and a bead. All polymers possess the same contour length,
which is chosen as to not exceed the smallest dimension of the simulation
box. All the opposite walls of the box are made equivalent, therefore objects
going away through a wall enter the box from the opposite side, see Fig. 2.2.
Furthermore, the objects are allowed to interact through the walls if they are
within the cutoff distance, the objects 1 and 2 in the Fig. 2.2.

Such a choice of the boundary conditions ensures that the polymers are
not influenced by the walls. On the other hand, the contour length of the
simulated polymers is shorter than the smallest dimension of the simulation
box, which provides the absence of the spurious self interaction of polymers,
Fig. 2.3.

In the simulations an external force is applied on the bead embedded in
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Figure 2.3: The contour length of the simulated polymers is shorter then the
smallest dimension of the wall (polymer A) in order to prevent the possible
spurious self interaction of the polymers (polymer B in the picture).

the solution of semiflexible polymers. This causes the bead’s displacement,
which is then analyzed. The intrinsic peculiarity of the DPD method is that
all interactions are pair-wise providing the conservation of linear momentum.
The simulations are initialized in a state with zero total momentum and with
a Maxwell-Boltzman velocity distribution appropriate to the temperature of
the simulation. In the absence of an external force, the total linear momen-
tum remains zero. In the case when an external force is applied, however, the
total linear momentum of the system increases, which means that the entire
system moves. Therefore, the movement of the system’s center of mass also
contributes to the displacement of the bead. To avoid this spurious contribu-
tion we implement the second property of the simulation box (ii) introducing
non-slip boundary conditions for water spheres near the walls of the simu-
lation box parallel to the external force applied on the bead, Fig. 2.4. The
components of the velocities of all water spheres in a thin layer near the walls,
which are parallel to them, are explicitly put to zero at every iteration step.
Finally, the third property of the simulation box (iii) is that the non-slip
boundary conditions do not apply to the monomers in order not to freeze the
whole system.

2.5 Active microrheology of semiflexible poly-

mer solutions

Our goal is to simulate the microrheology of the tightly entangled semiflexible
polymer solutions. In order to obtain reliable results characteristic features
of such microrheological experiments have to be in line with the simulations.
These are, first of all, the length scales met in the experiments, which form
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Figure 2.4: Thin non-slip layers near the walls parallel to the direction of
the application of the external force on the bead. The water spheres in the
layers are only able to move perpendicular to them.

a certain hierarchy that has to be preserved. Therefore, the mesh size of the
simulated polymer network is approximately one order of magnitude smaller
than the diameter of the bead, which probes the viscoelastic properties of the
medium. It, thus, resembles the experiments on filamentous actin solutions
when the mesh size is of the order of 0.5 µm, whereas the diameter of the
probing bead is of the order of 5 µm. The size of the bead in the simulations
is few times smaller than the length of the polymers, which as well meets the
experimental conditions where the average actin filament length is 10−20 µm.
The persistence length of the filamentous actin is 17 µm and that of the
polymers in the simulations is also of the order of their contour length.

It has to be noted that in the simulations all quantities such as, for
example, the dimensions of the simulation box, the simulation time or the
interaction constants are in arbitrary simulation units. The simulations are
performed in a 3-dimensional box with dimensions Lx = 40, Ly = 80 and
Lz = 40 units, which is filled with water spheres with radius Rw = 0.8,
monomer spheres with radius Rm = 0.3 and a bead with the radius Rb = 10.
The Ly dimension is taken to be bigger than Lx and Lz, because the external
force on the bead will be applied along the Oy axis. Following [58], the
number density of water spheres, which is the ratio of the number of water
spheres in the simulation box to its volume, is chosen to be 3 and the repulsion
parameter aww of the conservative force 2.3 for water-water interaction is
chosen aww = 45 in order for the compressibility of the DPD fluid to be
close to that of water [58]. The dissipative force constant γww, Eqs. 2.4, of
the water-water interaction is γww = 1, this choice fixes the random force
constant through the Eqs. 2.6.

Each polymer is composed of 70 monomers, which are connected by mass-
less harmonic springs acting between two adjacent monomers, Eq. 2.9. The
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Figure 2.5: The calculated correlation function 〈ti · tj〉 (data points) and
fitting (solid line), Eq. 2.11, with Lp = 150.

bond length is d = 0.5 and the polymers are, therefore, 34.5 units long. The
spring constant is k = 400. The bond length d is shorter than the diameter
of the monomers 2Rm = 0.6, which prevents bonds from crossing each other
and provides, therefore, the topological constraints present in polymer sys-
tems. Furthermore, the chosen value of the spring constant provides that the
number of bonds longer than the diameter of the monomer is less than 2% of
the total number of bonds, which has been checked during our simulations.

Persistence forces are added as described in the Sec. 2.3 and the persis-
tence force constant is µ = 385, which gives a persistence length of approxi-
mately Lp = 150 units. To obtain this value of the persistence length out of
our simulations the correlation function 〈ti · tj〉 is calculated, where ti is the
unit vector directed from the monomer i to the monomer i + 1 of the same
polymer. This correlation function decays according to [15]

〈ti · tj〉 = exp

(
−|i− j| · d

Lp

)
, (2.11)

which allows to obtain the persistence length by the fitting procedure. The
calculated correlation function and the fitting with Lp = 150 are showed in
the Fig. 2.5 (see also Fig. 2.7).

The monomer-monomer conservative force constant is amm = 35 and the
dissipative one is γmm = 5. The monomer-water conservative force constant
is amw = 0 and the dissipative one is γmw = 1 unless specified. The masses
of the water and monomer spheres are mw = 0.0001 and mm = 0.0001.

The mass of the bead is mb = 1 and the force constants for the bead-
water and bead-monomer interactions are chosen to be abw = 550, abm = 550,
γbw = 0.1 and γbm = 0.1.
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Table 2.1: Parameters of the DPD model used for simulating active microrhe-
ology of semiflexible polymer solutions

Parameter Lx Ly Lz Rb Rm Rw

Value 40 80 40 10 0.3 0.8

Parameter aww γww amm γmm amw γmw

Value 45 1 35 5 0 1

Parameter abw γbw abm γbm kBT ∆t

Value 550 0.1 550 0.1 1 0.00005

Parameter mb mw mm d k µ

Value 1 0.0001 0.0001 0.5 400 385

The time step in the simulations is 0.00005, which provides good temper-
ature control. The temperature has been controlled by monitoring the mean
kinetic energy of the monomer and water spheres, which was to an accuracy
of approximately 2% equal to 3kBT/2. In all simulations we choose kBT = 1.
The parameters of the simulation model are summarized in the Tab. 2.1

2.5.1 Enforced movement of the bead in pure water

In order that the microrheology simulations be reliable, the hydrodynamics
of the simulated water by the dissipative particle dynamics should be close
to that of a real fluid. To check this simulation of the enforced movement of
the bead in pure water has been performed.

The velocity of a spherical particle v(t) as a function of time t moving
under a constant applied force f from the state with zero velocity v(0) = 0
is given by

v(t) =
f

g

(
1− exp

(
− g

m
t
))

, (2.12)

which is the solution of the equation mv̇(t) + gv(t) = f , where the dot
indicates a time derivative, m is the mass of the particle and g is a viscous
drag coefficient (for a sphere of radius R in an infinite fluid g = 6πRη, where
η is the viscosity of the fluid). Velocity of the bead as a function of time in a
simulation with f = 1000 applied at t = 0 parallel to the Oy axis is shown in
the Fig. 2.6a by the dotted line. The mass and the radius of the bead were
taken m = 1, R = 10 as specified above. The solid line in the Fig. 2.6a is

- 28 -



Active microrheology

Figure 2.6: (a) Velocity of the bead as a function of time moving under an
applied force f = 1000 at t = 0 (dotted line). The solid line is a fit by the
dependence Eq. 2.12 with m = 1. The value of g obtained by the fitting is
g = 70.06. (b) The distribution of the fluid velocity component parallel to
the external force in front of the bead. The coordinate origin is in the center
of the bead and the z = 0 section is shown.
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Figure 2.7: A polymer composed of 70 monomers as simulated by the DPD
method.

a fit with the help of the Eq. 2.12. The value of g obtained by the fitting is
g = 70.06. It follows from the Eq. 2.12 that the bead accelerates within the
characteristic time τacc = m/g ≈ 0.015, which is the characteristic time of
the inertial motion. At times t > τacc the bead reaches on average a steady
velocity. Since the characteristic time τacc is two orders of magnitude shorter
than the typical simulation time we will not discuss the inertial regime of the
motion of the bead further on.

The Fig. 2.6b depicts the velocity component parallel to the externally
applied force of the fluid in front of the moving bead. The data is represented
in a coordinate system with the origin in the center of the bead. The force
is applied along the Oy axis and the z = 0 section is shown. The data are
averaged over the time window t ∈ [0, 0.7].

2.5.2 Responses of the bead on external forces

The number of time steps in a typical simulation was of the order of 100000,
which required 1 to 2 months of the CPU time of a personal workstation.
Therefore, a typical simulation spans a time window of about 5 time units.
Depending on the applied force, during such a simulation time the bead
displaces over a distance comparable to its radius.

A polymer composed of 70 monomers and possessing a contour length
of about 34.5 units is shown in the Fig. 2.7. During the simulations a bead
moves in a solution of such polymers under an applied constant external
force, Fig. 2.8. At the moment of the application of the external force ta
the polymers are homogeneously distributed around the bead, Fig. 2.8a. At
times tc > tb > ta the bead displaces in the direction of the force deforming
the network, Figs. 2.8b and 2.8c.
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Figure 2.8: A series of snapshots of the bead moving under an applied con-
stant external force as simulated by the DPD method. The applied force is
directed to the right at time ta (upper figure). The figures b and c are taken
at times tc > tb > ta. Note, that only a small amount of the monomers be-
longing to the polymers in the vicinity of the bead is shown. At the moment
of application of the external force (a) the distribution of polymers around
the bead is homogeneous. At times tb and tc the concentration of polymers in
front of the bead is increased and behind is strongly decreased with respect
to the concentration far from the bead.
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Figure 2.9: Typical response of the bead. Different responses correspond to
different applied external forces: f1 = 200, f2 = 400, f3 = 800, f4 = 1000,
f5 = 1300. The force is applied at t = 0.

Typical responses of the bead on the applied constant external forces are
shown in the Fig. 2.9. The number of polymers in these simulations is 4500
and the mesh size ξ of the entangled solution can be estimated using the
following arguments. Divide the total volume of the system V in n cubes
with the size ξ. Thus, nξ3 = V . The number n can be obtained as the ratio
of the total lengths of all the polymers in the system ρV , where ρ is defined
by the Eq. 1.6, to the length of the edges of the small cubes per cube 3ξ:
n = ρV/3ξ. Combining these two equations we obtain

ξ =

√
3V

L ·N , (2.13)

where V = Lx · Ly · Lz, N is the number of polymers in the system and L is
their contour length. Taking the dimensions of the simulation box 2.5, the
contour length L = 34.5 and the number of polymers N = 4500, we obtain
ξ = 1.57. Therefore, the mesh size is approximately 12 times smaller than
the diameter of the bead.

The same graph in a log-log scale is shown in the Fig. 2.10. The log-
log representation clearly indicates the existence of different regimes of the
motion of the bead. At early times, t . 0.2, the bead moves according to
the power law y ∼ tα, where α ≈ 0.75 (the dashed line in the Fig. 2.10 has
a slope 0.75). At times t & 0.2 the exponent of the power law changes to
α ≈ 0.5 (the dotted line in the Fig. 2.10 has a slope 0.5). This regime covers
2 decades in time.
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Figure 2.10: Responses of the bead to the applied force in the double log-
arithmic scale. Different responses correspond to different applied external
forces: f1 = 200, f2 = 400, f3 = 800, f4 = 1000, f5 = 1300. The mesh size in
these simulations is ξ ≈ 1.57 units. The eye-guiding dotted line has a slope
0.5, and the dashed line 0.75.

2.5.3 Distribution of polymers around the moving bead

During the simulations the numbers of monomers neighboring the front and
the rear hemispheres of the bead were separately stored. When no force is
applied, these numbers are (approximately) equal, which is a consequence
of the initial homogeneous distribution of polymers. As soon as the force
is applied the number of neighbors in front of the bead grows while behind
the bead it decreases. Both neighbor numbers saturate and remain approx-
imately constant during the rest of the simulation. This is shown in the
Fig. 2.11. It indicates that the polymer concentration in the close vicinity of
the bead reaches steady distribution and stays constant during the enforced
motion of the bead. This distribution is characterized by the increased poly-
mer concentration in front of the bead and decreased behind with respect to
the bulk polymer concentration.

The distribution of the polymer concentration around the bead was as
well monitored during the simulations. Owing to the presence of the cylin-
drical symmetry in the problem we introduce a spherical coordinate system
as shown in the Fig. 2.12. The origin of the coordinate system is the center
of the bead and the azimuthal angle θ is calculated with respect to the di-
rection of the application of the external force. The polymer density c(r, θ)
is calculated as follows. Firstly, the numbers of monomers are counted in
every cell of the two-dimensional grid, which is comprised by dividing the in-
terval θ ∈ [0, π] into 12 parts (π/12 each) and the interval r ∈ [0, 20] into 20
parts. Secondly, to obtain the polymer concentration c(r, θ) these numbers
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Figure 2.11: Number of monomers neighboring the bead at the front and at
the rear hemispheres (indicated) as a function of time. The external force is
applied at t = 0.

q

Figure 2.12: Orientation of the spherical coordinate system for the determi-
nation of the polymer concentration around the moving bead. The origin is
in the center of the bead and the azimuthal angle θ is calculated with respect
to direction of the application of the force F .
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Figure 2.13: Polymer density as a function of the distance from the bead
center r and the azimuthal angle θ. The radius of the bead is 10. The
graphs a, b, c, and d are the polymer densities at different times of the same
simulation ta = 0, 0 < tb < tc < td. The external force f = 1300 is applied at
t = ta. Shown are the graphs corresponding to the mesh size of the polymer
network ξ ≈ 1.57.

are divided by the elementary volume r2 sin θ.
A sequence of the polymer density distributions c(r, θ) is shown in the

Fig. 2.13. The graphs Figs. 2.13a, b, c, and d are the polymer densities
at different points of time of the same simulation. The mesh size in this
simulation is ξ ≈ 1.57 and the external force f = 1300. When no force
is applied on the bead, i.e. t = 0, Fig. 2.13a, the distribution of polymers
around the bead is uniform. As the bead moves due to the application of
the external force the polymer concentration in front of the bead grows and
decreases behind the bead, Figs. 2.13b, c, and d. This difference is clearly
seen in the Fig. 2.14 where the polymer concentration profile in the vicinity
of the bead c(r = Rb, θ) is shown. This profile corresponds to the Fig. 2.13d.

The polymer concentration profiles in the vicinity of the bead in simula-
tions with the mesh size ξ ≈ 1.57 with the external forces taking the values
f = 200, 400, 800, 1000 and 1300 are shown in the Fig. 2.15. Clearly seen
is the increase in the concentration difference in front and behind the bead
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Figure 2.14: Polymer concentration profile in the vicinity of the bead (r =
Rb) at time td of the simulation from the Fig. 2.13 as the function of the
azimuthal angle θ.
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Figure 2.15: Polymer concentration profiles in the vicinity of the bead (r =
Rb) in the square root regime of the bead motion as the function of the
azimuthal angle θ. Shown are the graphs corresponding to the mesh size
ξ ≈ 1.57. The curves correspond to different forces f1 = 200, f2 = 400,
f3 = 800, f4 = 1000 and f5 = 1300 force units.
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with increasing external force. The consequence of this polymer concentra-
tion difference is the additional force, which will be shown to be osmotic in
origin, resisting the motion of the bead.

2.5.4 Forces resisting the moving bead

As it has been shown, the enforced motion of a microbead in a solution of
semiflexible polymers exhibits a square root dependence of its position on
time within several time decades, see Figs. 2.9 and 2.10. This regime is
characterized by the increased concentration of polymers in front of the bead
while it is strongly decreased behind the bead, Fig. 2.14. Therefore, besides
the viscous force acting on the moving bead due to the viscosity of the fluid,
the polymers exert an additional force, which as well resists the bead motion.

Computer experiments permit direct monitoring of the forces exerted on
the bead by the water and monomer spheres separately. Let Fv denote the
projection of the total force exerted on the bead by the neighboring water
spheres on the direction of the bead motion. Fv consists of the conservative,
random and viscous contributions, eq. 2.2. We interpret it as the viscous
force experienced by the bead.

Let Fpol denote the force which is defined similar to Fv except that it is
the projection of the total force exerted by the neighboring polymers. These
forces as the functions of time obtained during the simulation of the enforced
motion of the bead are depicted in the Fig. 2.16. The external force applied
on the bead in this simulation is 1000 force units and the mesh size is ξ ≈ 1.57.
It can been seen, Fig. 2.16a, that the force Fpol is approximately zero at the
moment of the application of the external force, which is a consequence of
the initial uniform distribution of the polymers around the bead. At later
times as the bead moves and the polymer concentration in front of the bead
becomes higher than that behind the bead, the resisting force due to polymers
gradually grows. The force Fpol grows with the increasing concentration of
polymers at the front hemisphere of the bead and rapidly becomes on average
equal to the external force. In contrast, the viscous force experienced by the
bead, Fig. 2.16b, in the very beginning of its motion is close to the external
force, Fig. 2.16c. Later, as the velocity of the bead decreases this force
becomes much smaller than the resistance force due to polymers.

Contributions to the polymer resistance force

The resistance force created by the neighboring monomers Fpol consists of the
conservative contribution F c

pol, the random contribution F r
pol and the viscous

contribution F v
pol, Eq. 2.2. As seen in the Fig. 2.17 the viscous contribution
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Figure 2.16: The forces exerted by the polymers Fpol (a) and by the fluid Fv

(b, c) acting on the moving bead. The external force applied on the bead is
1000, the mesh size ξ ≈ 1.57.
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F v
pol is more than 4 orders of magnitude smaller than the sum F c

pol + F r
pol,

which can be interpreted as the osmotic force exerted by the polymers on the
bead. The conservative force Eq. 2.3 represents a steric repulsion. Therefore,
the main contribution to the resisting force F c

pol originates from the pressure,
which the polymers piled up in front of the bead exert on its surface. The
pressure arises from the local entropy decrease and is thus related to the
osmotic pressure. Therefore, the resistance force Fpol is mainly osmotic in
origin and can be denoted as Fosm.

Thus, at the initial stage of the motion of the bead, when the distribution
of polymers around the bead is still approximately uniform, the motion of
the bead is dominated by the viscosity of the water. The osmotic force in this
regime is small compared to the viscous force exerted by water on the bead.
It is followed by the regime in which the compliance of the bead experiences
the square root dependence on time. In this regime the motion of the
bead is dominated by the osmotic force. On average the osmotic force
due to the polymer concentration difference in front of and behind the bead
is at this stage close to the externally applied force.

The time dependencies of the ratio of the force exerted by polymers to the
external force f are similar to each other for all simulations as shown in the
Fig. 2.18. The value Fosm/f quickly approaches -1 indicating that the osmotic
force provides the main contribution to the resistance force experienced by
the bead.

2.5.5 Microrheology of solutions with various concen-
trations of polymers

We performed simulations of the enforced bead motion in polymer solutions
with various polymer concentrations. The responses of the bead in the poly-
mer solutions with the mesh sizes ξ ≈ 1.67, ξ ≈ 1.78, and ξ ≈ 1.96 are shown
in the Figs. 2.19a, b, and c, respectively. The same data in the log-log scale is
depicted in the Fig. 2.20. For every polymer concentration simulations with
5 different external forces of 200, 400, 800, 1000, and 1300 force units have
been done.

Analogously to the case shown in the Fig. 2.10 where the mesh size of the
network was ξ ≈ 1.57 units, one can distinguish the initial regime when the
dependence of the bead displacement on time exhibits a power law y ∼ tα

with α ≈ 0.75. This regime is indicated in the Fig. 2.20 by the lines with the
slope 0.75 and takes place at times t . 0.2.

At times t & 0.2 the displacement of the bead is described by the power
law y ∼ tα with α close to 0.5. The slopes of the responses, which give the

- 39 -



Chapter 2.5

-1200

-1100

-1000

-900

-800

6.96.86.76.66.5

40

20

0

-20

6.96.86.76.66.5

-0.10

-0.05

0.00

0.05

0.10

6.96.86.76.66.5

Fpol

t

c

t

Fpol
r

t

Fpol
v

Figure 2.17: The conservative F c
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pol and the viscous F v
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contributions to the polymer resistance force Fpol experienced by the bead in
active microrheological experiments. The data corresponds to the Fig. 2.16
and the dashed line in the upper graph indicates the value −f .
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Fosm/f

t

high fluctuations correspond to

low external forces (f=200, 400)

Figure 2.18: The ratios of the force exerted by polymers to the external force
on the bead f as functions of time for a set of 5 simulations with the mesh
size ξ ≈ 1.57. The external forces take the values 200, 400, 800, 1000, and
1300. All dependencies fall approximately on the same curve. The lower the
external force is, the higher the fluctuations are. The curves on this graph
had been smoothed compared to the ones in the Fig. 2.16.

exponents, are indicated in the Fig. 2.20.

In order to reveal the influence of the polymer concentration on the en-
forced bead motion the responses of the bead have been fitted by the expres-
sion y = A

√
t. The dependence of the coefficient of the square root regime

A on the polymer contour length density ρ, Eq. 1.6, A(ρ) in the log-log scale
is shown in the Fig. 2.21. For relatively high forces the dependence is close
to a power law A ∼ ρ−1.4.

2.5.6 Responses of the bead to various force ampli-
tudes

In order to check the dependence of A on the external force f applied on the
bead, various simulations have been performed at different polymer concen-
trations and the external forces taking values 200, 400, 800, 1000 and 1300.
The resulting dependencies A(f) in log-log scales are shown in the Fig. 2.22.
The linear fits for all four concentrations yield slopes close to 1. Therefore,
A ∼ fα, where α ≈ 1. Thus, our DPD approach fails to reproduce the
A ∼ f 0.75 scaling found in the recent experiments described in the Sec 1.3.3.
This failure can be due to the periodic boundary conditions, which have to be
employed in the simulations, as well as it can be due to the insufficiently large
simulation box. Another plausible reason may be related to an additional
interaction between the actin polymers present in the experiments such as a
weak cross-linking, which is not accounted for in the simulation method.

- 41 -



Chapter 2.5

Figure 2.19: Responses of the bead to the constant external force in solutions
with various concentrations of polymers. In all graphs the curves indicated
by the numbers from 1 to 5 correspond to external forces 200, 400, 800,
1000, and 1300, respectively. The responses of the graph (a) are taken in the
polymer solution with the mesh size ξ ≈ 1.67, whereas that in the graph (b)
is ξ ≈ 1.78, and in the graph (c) ξ ≈ 1.96.
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Figure 2.20: Responses of the bead in solutions with various polymer length
densities, Fig. 2.19, in the log-log scale. In all graphs curves 1, 2, 3, 4, and
5 correspond to external forces 200, 400, 800, 1000, and 1300, respectively.
The responses of the graph (a) are taken in the polymer solution with the
mesh size ξ ≈ 1.67, whereas that in the graph (b) is ξ ≈ 1.78, and in the
graph (c) ξ ≈ 1.96. The slopes indicate the two regimes of the bead motion.
At the early stage the response slope is close to 0.75, while at the later stage
the slope varies from 0.52 (a) to 0.63 (c).
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Figure 2.21: Dependence of coefficient of the square root regime A, obtained
by fitting the responses of the bead on the constant external force by the
expression y = A

√
t, on the polymer contour length density ρ, Eq. 1.6 in the

log-log scale. The graphs a, b, c, d, and e correspond to the external forces
f = 200, 400, 800, 1000, and 1300, respectively. The solid lines are linear
fits.
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Figure 2.22: Dependencies of A, obtained by fitting the responses of the bead
with the expression y = A

√
t, on the external force f applied on the bead.

Graphs a, b, c, and d correspond to different concentrations of polymers with
mesh sizes ξ ≈ 1.96, 1.78, 1.67, and 1.57, respectively. The solid lines are
linear fits. Their slopes are close to 1 indicating a linear dependence of A on
f .
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Figure 2.23: Responses of the beads with radii Rb = 10 and Rb = 13 multi-
plied by R

8/5
b on the constant external force.

2.5.7 Beads of different sizes

A larger simulation box would offer a possibility to perform the simulations
of microrheology with different sizes of the probing bead. For this reason we
have made two simulations with a larger simulation box with the dimensions
Lx = 60, Ly = 80 and Lz = 60. The mesh size in these simulations was ξ ≈
1.57 and the external force applied on the bead f = 1000. Two simulations
in such a box have been carried out with the radii of the bead Rb = 10 and
Rb = 13. The responses of the bead multiplied by R

8/5
b are shown in the

Fig. 2.23.

2.5.8 Microrheology of solutions of polymers possess-
ing various diffusion coefficients

Computer simulations provide a much greater flexibility and open broader
opportunities with respect to conventional experiments in changing the pa-
rameters of the system under study as well as in measuring required quanti-
ties in the studied system. By changing the dissipative force constant γmw of
monomer-water interaction one can alter the longitudinal diffusion coefficient
D‖ of the simulated semiflexible polymers as shown in the Sec. 3.3. Conse-
quently, without altering the viscosity of the solvent or the contour length of
the polymers one can control their diffusion coefficient.

Three additional simulations of active microrheology of polymer solutions
with the mesh size ξ ≈ 1.57 have been performed with different dissipative
force constants lower than the one used previously γmw = 1. The values of
the dissipative force constants were taken to be γmw = 0.2, 0.4 and 0.7. Lower
value of the dissipative force constant leads to higher longitudinal diffusion

- 46 -



Conclusions

t

y

D||
.

Figure 2.24: Four responses of the bead normalized by
√

D‖ in simulations
with different dissipative force constants γmw of monomer-water interaction.
The longitudinal diffusion coefficients of polymers are determined in the
Sec. 3.3.

coefficients D‖ as shown in the Sec. 3.3. The measured diffusion coefficients
are summarized in the Tab. 3.3 on the page 60. Therefore, we have four
different simulations of the enforced bead motion taken with the external
force of 1000 force units.

The responses of the bead normalized by
√

D‖ are shown in the Fig. 2.24.
The responses fall on the same curve suggesting that

y ∼ √
D‖, (2.14)

2.6 Conclusions

This chapter has been concerned with the simulations of the active microrhe-
ology of semiflexible polymer solutions. The responses of the bead in such
solutions on external forces have been studied.

The responses clearly show the presence of two different regimes of the
bead motion. In the initial regime the response of the bead exhibits a power
law y ∼ t0.75. At the subsequent stage the displacement of the bead is given
by y ≈ Atα with α ≈ 0.5. We have found the linear dependence of the
response on the applied force, A ∼ f , the square root dependence on the
longitudinal diffusion coefficient A ∼ √

D‖ and the power law dependence
on the polymer concentration A ∼ c−γ with γ ≈ 1.4.

We established that the polymers are piled up in front of the bead, while
behind the bead the fluid is (almost) free of polymers. We analyzed the
force resisting the motion of the bead and established that in the square root
regime the motion is governed by the osmotic force.
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Another open question, which should be addressed, is the character of the
motion of polymers around the moving bead. Knowing the character of the
polymer motion in active microrheological experiments may help building
an analytical model. Therefore, in the next chapter we study the motion of
semiflexible polymers in solutions in order to compare with that in the active
microrheological experiments.
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Diffusion of semiflexible
polymers in solutions

Diffusional properties of semiflexible polymers in solutions are important for
their viscoelastic properties. Such quantities as the relaxation time of the
modes with wavelengths shorter than Le, which determines the time window
of the high frequency viscoelastic response, or the reptation time, which is a
typical time scale of the polymer density fluctuation relaxation, are directly
connected to the diffusion of polymers. Whereas the former is related to a
free diffusion of the polymers, the latter is greatly influenced by the steric
constraints present in polymer solutions. In other words, it is a matter of time
scales: on the time scale shorter than the entanglement time the polymers do
not feel the surrounding network, whereas on the longer time scales collective
effects come into play.

It is generally assumed [31] that the friction coefficients, which yield the
frictional force per unit length and per unit velocity of the polymer, can be
estimated as

ζ|| ' 2πη/ ln(ξ||/d), ζ⊥ ' 4πη/ ln(ξ⊥/d), (3.1)

where ζ|| and ζ⊥ are respectively the friction coefficients for the motion of
the polymer parallel and perpendicular to the polymer backbone, η is the
solvent viscosity, ξ|| and ξ⊥ are the hydrodynamic screening lengths describing
the distance to which the fluid velocity field created by a moving polymer
penetrates away from the polymer backbone, and d is the polymer backbone
diameter.

In order to characterize the diffusional properties of semiflexible polymers
in solutions and elucidate the effect of the polymer concentration and polymer
contour length additional simulations have been performed. In contrast to
the active microrheological studies, Sec. 2.5, we simulated polymer solutions
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x
y

z

Figure 3.1: A plane of cross-section with the coordinate system. Note, that
the lengths of the bonds are exaggerated.

without microbeads. The size of the simulation box has been set to 40 in
all directions. As in the microrheological studies, Sec. 2.5, we used periodic
boundary conditions, except for the non-slip boundary layers, which were
released. The following procedure has been used to study the transversal
and longitudinal diffusion coefficients of semiflexible polymers.

In the initial moment of time of each simulation N cross-sectioning planes
were introduced for every polymer as shown in the Fig. 3.1. The points of
cross-sections are chosen to be every 10th monomer of a polymer, i.e. a 70
monomer long polymer is initially cross-sectioned at monomers 9, 19, 29, 39,
49, and 59, which gives, therefore, N = 6 cross-section planes per polymer.
The cross-section planes are initially defined as to be normal to the lines
connecting two neighboring monomers, Fig. 3.1, and a coordinate system is
assigned to every plane with z-axis being normal to the respective plane.
Total number of cross-sections for each simulation is of the order of 10000
providing a rich statistics.

During the simulation the (x, y) coordinates of the points of intersections
of polymers with the cross-section planes were stored as well as the z coordi-
nates of the monomers, which initially defined the positions of the sectioning
planes. While the latter were interpreted as the longitudinal displacements
of polymers, the former were assigned to be the transversal displacements.

The simulations result in the sets of transversal and longitudinal displace-
ments of polymers for every cross-section, which are analyzed in the following
way. The transversal displacements of the polymers form clouds of points for
every cross-section, Fig. 3.2, which are not necessarily centered around zero.
This is due to the fact that at the beginning, as the coordinate systems in
the cross-section planes are defined, the polymers are not necessarily situated
along the centerlines of their tubes. Therefore, in order to find the average
radius of the clouds of transversal displacements of polymers at time t of
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Figure 3.2: A typical cloud of transversal displacements of a polymer during
the simulation.

the simulation the centers of the clouds for all cross-sections formed by the
transversal displacements of the polymers within the time interval [0, t] were
found. After that all the clouds were combined into one and a histogram of
displacements with respect to the distance to the origin was formed. The
histogram was then fitted by a gaussian distribution

C exp

(
− r2

2R2
⊥

)
, (3.2)

where r is the distance to the center of the joint cloud, R⊥ is the fitting param-
eter, and C is the normalization constant. The fitting procedure, therefore,
gives the dependence R⊥(t) of the radius of the cloud on time.

A similar procedure is used for the study of longitudinal diffusion except
that no center of cloud determination is needed because the joint cloud is
already centered around zero due to the fact that the monomers, the distances
to which from the cross-section planes are tracked during the simulations, are
initially located in the cross-section planes. Therefore, the procedure gives
the dependence R‖(t). We compare the obtained dependencies with the case
of a one-dimensional diffusion of a free particle for which the mean square
displacement is given by 〈

R2(t)
〉

= 2Dt, (3.3)

where D is the diffusion coefficient.

3.1 Short time diffusion of semiflexible poly-

mers

A number of simulations has been performed with various polymer concentra-
tions and contour lengths in order to analyze the influence of these quantities
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on the diffusional properties of the semiflexible polymers. For convenience
the simulations were carried out with the cubic simulation box with dimen-
sions Lx = 40, Ly = 40 and Lz = 40. The simulations can be divided into two
sets. The first one is a set of simulations with the constant polymer contour
length of 34.5 units (70 monomers in a polymer) with various numbers of
polymers yielding the mesh sizes of the network according to the Eq. 2.13
represented in the Tab. 3.1.

Table 3.1: Mesh sizes of the simulated polymer networks in a set of simula-
tions with constant polymer contour length of 34.5 units.

Simulation 1 2 3 4 5 6 7 8

Number of
polymers

2500 2250 2125 2000 1875 1750 1625 1500

Mesh size, ξ
(length units)

1.49 1.57 1.62 1.69 1.72 1.78 1.85 1.93

The simulations of the second set are performed at a constant mesh size of
ξ ≈ 1.57 and with the polymer contour lengths taking the values represented
in the Tab. 3.2. The polymer contour length in some simulations exceeds,
therefore, the dimensions of the cubic simulation box with the size of 40 units,
which may cause the spurious self-interaction of polymers due to the periodic
boundary conditions. The number of spuriously interacting polymers in a
system with the contour length of the polymers of 79.5 is less than 2% of the
total number of polymers and it is even smaller in the systems with shorter
polymers. Consequently, this spurious interaction should not influence the
statistics, which is obtained by averaging over all polymers in the system.

Table 3.2: Polymer contour lengths in the set of simulations at constant mesh
size ξ ≈ 1.57.

Simulation 1 2 3 4 5 6 7

Polymer contour
length, L (length
units)

24.5 34.5 44.5 52 59.5 69.5 79.5

The short time diffusion of a polymer in solutions is defined as the dif-
fusion within the characteristic time τe between successive collisions of the
polymer with its tube. It can be regarded as diffusion of a free polymer.
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ξ

Figure 3.3: Mean square longitudinal and transversal displacements of semi-
flexible polymers. (a) A set of simulations with various polymer concen-
trations (mesh sizes) and a constant contour length of the polymers, (b) A
set of simulations at a constant concentration of polymers, but with various
polymer contour lengths (see text). Arrows show the variations from curve
to curve of the mesh size (a) and polymer contour length (b).

The longitudinal and transversal mean square displacements of polymers for
the two sets of simulations in the time domain t ∈ [0, 1] are shown in the
Figs. 3.3. The transversal polymer diffusion is, as seen from the Fig. 3.3a, is
very much influenced by the concentration, i.e. the mesh size, of the polymer
solution. In contrast, the contour length of the polymers at constant mesh
size has no effect on the transversal diffusion – the transversal MSDs1 of the
Fig. 3.3b fall on the same curve. In turn, the mesh size has no apparent in-
fluence on the longitudinal diffusion of polymers, whereas there is a contour
length dependence of the longitudinal MSD.

Nevertheless, the transversal and longitudinal mean square displacements
of polymers at different concentrations and polymer contour lengths share

1MSD - mean square dislacement
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Figure 3.4: The data of the Figs. 3.3 in log-log scale. The dotted lines possess
slopes 0.5 corresponding to the power law dependence of the MSDs t0.5, while
the dashed lines have slopes 0.75 and correspond to the power law t0.75.

common features in the initial dependence on time shown in the Figs. 3.4.
The initial regime of the transversal mean square displacement of polymers
as it has been shown in [8, 60] is a power law R2

⊥(t) ∼ tα with the exponent
α = 0.75. This power law holds for times t < τe, i.e. for times shorter than
the characteristic collision time of the polymers with the surroundings. At
longer times the transversal mean square displacement saturates reflecting
the fact that after the polymer has explored its tube the following transversal
motion is severely hindered by the steric constraints.

The longitudinal mean square displacement of semiflexible polymers
shows a power law dependence on time at the initial stage of motion with
the exponent 0.5, Figs. 3.4. This sub-Fickian diffusion has been observed in
simulations and is a consequence of the extensibility of polymer chains [61].
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3.2 Long time diffusion of semiflexible poly-

mers

In this section we consider the long time diffusion of semiflexible polymers,
which is characterized by a saturation in the transversal mean square dis-
placement and a linear scaling of the longitudinal MSD with time. Mean
square longitudinal displacements R2

‖ of polymers of constant contour length
of 34.5 units at various mesh sizes from the Tab. 3.1 are shown in the Fig. 3.5a.
We find no noticeable influence of the mesh size of the network on the longi-
tudinal diffusion of polymers. In contrast, the transversal diffusion is influ-
enced by the polymer concentration. The transversal MSDs R2

⊥ of polymers
are shown in the Fig. 3.5b. It can be seen that the transversal MSD tends
to saturate at different values depending on the mesh size of the network.

Results of the set of simulations of polymer networks with various polymer
contour lengths at a constant mesh size ξ ≈ 1.57 are shown in the Fig. 3.6.
The longitudinal MSD is strongly dependent on the contour length of the
polymers as can be seen from the Fig. 3.6a. The curves in the Fig. 3.6a
corresponding to different polymer contour lengths possess different slopes,
which are determined by the longitudinal diffusion coefficients. At the same
time, the Fig. 3.6b shows that there is no influence of the polymer contour
length on the diffusional properties of polymers transverse their tubes.

The square root of the saturation value of the transversal MSD
√

R2
⊥ is

directly related to the radius of the fluctuation tube Re. Since the size of the
monomers in the simulations is comparable with the saturation value of the
transversal MSD, the average radius of the tube is given by Re = Rm + R⊥,
where Rm is the radius of the monomers. In order to elucidate the effect
of the concentration of polymers on the average tube radius Re the values
R⊥ are taken at the moment t = 5 of the simulations and the tube radius is
plotted against the mesh size ξ in the Fig. 3.7. The data are fitted with a line
suggesting the linear scaling of the tube radius with the mesh size Re ∼ ξ
in accordance with the Eq. 1.8, since from the Eq. 2.13 we get ξ ∼ ρ−1/2.
The coefficient of proportionality between the average radius of the reptation
tubes Re and the mesh size ξ, which would be useful to obtain, can not be
extracted from our simulations since in the simulations the monomer radius
Rm is comparable with the mesh size whereas in real systems the polymer
backbone diameter is about two orders of magnitude smaller than the mesh
size.

The longitudinal diffusion coefficient of polymers can be extracted by
fitting the linear part of the mean square longitudinal displacement R2

‖ of
polymers as shown in the Fig. 3.6. The diffusion coefficients obtained in such
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ξ

Figure 3.5: Longitudinal (a) and transversal (b) MSD of 34.5 units long poly-
mers in polymer networks of various mesh sizes. The curves in the bottom
figure are numbered according to the Tab. 3.1. Additional axis indicates the
change in the mesh size ξ from simulation to simulation.
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Figure 3.6: Longitudinal (a) and transversal (b) MSD of polymers of various
contour lengths in a solution with a constant mesh size of ξ ≈ 1.57. The
curves in the upper figure are numbered according to the Tab. 3.2. Additional
axis indicates the change in the polymer contour length L from simulation to
simulation. The slope of the curve 1 in the upper figure obtained by fitting
gives the doubled longitudinal diffusion coefficient according to the Eq. 3.3.
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ξ

Figure 3.7: Dots: the average radius of the fluctuation tube Re as a function
of the mesh size ξ. The solid line is a linear fit of the data.

a way are plotted against the polymer contour length L in the log-log scale
in the Fig. 3.8. The solid line, which is a linear fit of the data, has a slope
−1.0037. It shows, therefore, that the longitudinal diffusion coefficient of
polymers in solution is inversely proportional to the polymer contour length

D‖ ∼ 1

L
, (3.4)

which is in accord with the Eq. 3.1.

3.3 The dissipative force constant γmw of mo-

nomer-water interaction controls the lon-

gitudinal diffusion coefficient of polymers

It is natural to assume that the monomer-water dissipative force constant de-
termines the diffusion coefficient of polymers, which is the case for a Brownian
particle. Whereas it is not our aim to obtain the exact dependence of the
diffusion coefficient of polymers on the monomer-water dissipative interac-
tion constant γmw, in this section we determine the diffusion coefficients of 70
monomers long polymers for the values of γmw used in the active microrhe-
ology simulations in the Sec. 2.5.8.

The mesh size of the polymer network in these simulations is ξ ≈ 1.57 and
the monomer-water dissipative interaction constant takes the values γmw =
0.2, 0.4 and 0.7. Together with the simulation 2 from the Tab. 3.1, where
γmw = 1, we have a set of four simulations with different γmw.

The transversal mean square displacements of polymers for the taken
values of γmw are shown in the Fig. 3.9. It can be seen that the saturation
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Figure 3.8: The dots represent the longitudinal diffusion coefficient D‖ of
polymers obtained by fitting the linear regime of the longitudinal MSD R2

‖
as shown in the Fig. 3.6 as a function of the polymer contour length L. The
solid line is a linear fit of the data. The slope of −1.0037 indicates that D‖
is inversely proportional to L.

γ

Figure 3.9: Transversal mean square displacements of 70 monomers long
polymers. The monomer-water dissipative interaction constant γmw in these
simulations takes the values 0.2, 0.4, 0.7, and 1. The mesh size is ξ ≈ 1.57.
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γ

Figure 3.10: Longitudinal mean square displacements of 70 monomers long
polymers. The monomer-water dissipative interaction constant γmw in these
simulations takes the values 0.2, 0.4, 0.7, and 1. The mesh size is ξ ≈ 1.57.

time of the transversal MSD decreases with decreasing γmw in qualitative
accordance with the scaling of the entanglement time τe, Eq. 1.9.

The longitudinal mean square displacements of polymers are shown in
the Fig. 3.10. The longitudinal diffusion coefficient D‖, thus, increases with
decreasing γmw. The diffusion coefficients D‖ are summarized in the Tab. 3.3.

Table 3.3: Longitudinal diffusion coefficients D‖ of 70 monomers long poly-
mers corresponding to the dissipative force constants γmw of monomer-water
interaction.

γmw 0.2 0.4 0.7 1.0

D‖ 0.105 0.063 0.044 0.032
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Motion of polymers in front of
the bead

In this chapter we will determine the character of the polymer motion in
front of the bead in the square root regime and compare it with the results
of the previous chapter.

The analysis has been made as follows. At time t = 6.5 of the simulation
represented by the curve 4 in the Figs. 2.9 and 2.10 the monomers in the
cylindrical region in front of the bead (shown in the Fig. 4.1) have been
determined. The mesh size in this simulation ξ ≈ 1.57, the external force
applied to the bead is f = 1000, and the radius of the bead is Rb = 10. At
t = 6.5, as can be seen from the Fig. 2.10, the bead is in the square root
regime of motion. The length of the generatrix of this cylindrical region has
been taken to be 4, which is comparable with the distance travelled by the
bead from the beginning of the simulation. The radius of the section of the
cylinder is equal to that of the bead. Therefore, the tracked monomers are
those with the coordinates at t = 6.5 satisfying the conditions 10 < y < 14
and x2 + z2 < R2

b whereas the origin of the coordinate system is located in
the center of the bead.

The first part of the analysis of the motion of polymers has been done
in the following way. The averaged ’y’ coordinate of the tracked monomers
〈y(t)〉 has been stored during the simulation. The average displacement
of the tracked monomers from the beginning of observation is given by
〈y(t + 6.5)− y(t = 6.5)〉. This displacement during approximately 1.5 time
units is shown in the Fig. 4.2.

A function of the form A
√

t with A ≈ 0.167 provides a good fit of the data.
The form of the fitting function suggests that the motion of the monomers

61



Chapter 4.0

Figure 4.1: We analyze the motion of monomers which at the moment of
time t = 6.5 were located in front of the bead in the region shown by the
cylinder. The bead moves under an externally applied force in the positive
Oy direction.

.

Figure 4.2: Displacement of monomers in front of the bead moving in the
square root regime and a fit 0.167

√
t to the data.
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Motion of polymers in front of the bead

Figure 4.3: Longitudinal and transversal mean square displacements of seg-
ments of polymers formed by the tracked monomers in front of the bead.
The same data for the diffusion of polymers in the bulk is shown.

in front of the bead is diffusive with the diffusion coefficient being

D ∼ A2

2
≈ 0.014. (4.1)

This value is very close to the longitudinal diffusion coefficient D‖ ≈ 0.032 of
the polymers of the same length in a solution with the same concentration
obtained as described in the Ch. 3. It is smaller, though, than D‖ due to
the fact that the polymers are only able to diffuse along their fluctuation
tubes, i.e. their diffusion is effectively one-dimensional, and that the tracked
monomers form segments of polymers, which not necessarily lie parallel to
the Oy axis, i.e. parallel to the direction of the enforced bead movement.

The same type of analysis as performed in the Ch. 3 for the study of
longitudinal and transversal diffusion of polymers in solutions has been em-
ployed to study the motion of the segments of polymers formed by the tracked
monomers in front of the bead. The results for the longitudinal and transver-
sal MSDs of segments of polymers in front of the bead are shown in the
Fig. 4.3. For comparison the data for the diffusion of polymers in the bulk
are shown in the same graph, which is obtained as described in the Ch. 3 for
the same polymer contour length as in the enforced bead motion simulation
and at the same polymer concentration.

The good coincidence of the two data sets allows one to infer that the
motion of polymers in front of the bead is similar to that in the bulk. It
follows that the transversal motion of polymers is hindered by the neighbor-
ing polymers and that the polymers experience longitudinal diffusion. The
longitudinal diffusion coefficient of polymers in front of the bead is close to
that in the bulk as can be inferred from the Fig. 4.3.
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Chapter 5

Power laws of the compliance
and the relaxation modulus in t
and ω domains

As it has been mentioned in the introduction Ch. 1 the compliance of actin
networks measured in recent active microrheological experiments [37] is not
in accord with the behavior shown in the Fig. 1.4b, which corresponds to the
relaxation modulus sketched in the Fig. 1.4a and to the complex modulus
behavior depicted in the Fig. 1.3. In this chapter we find the complex re-
laxation modulus G∗(ω) corresponding to the compliance behavior observed
in [37] and shown in the Fig. 1.5 as well as we find the scaling of the relax-
ation modulus G(t) corresponding to the square root dependence behavior
of the compliance.

Recent active microrheological experiments [37], as described in the
Sec. 1.3.3, reveal that the compliance of the tightly-entangled actin networks
can be sketched as shown in the Fig. 5.1. Thus, the compliance possesses
three distinct regimes described in the Sec. 1.3.3. The relaxation modulus
G(t) corresponding to the compliance sketched in the Fig. 5.1a as well pos-
sesses three distinct regimes. The compliance in the Fig. 5.1 is given by
J(t) = A1t

0.75 at times t < τ1. Therefore, as in the Fig. 1.4a, the relaxation
modulus G(t) experiences the power law t−0.75, Fig. 5.1b. This can be shown
using the convolution identity Eq. 1.4, which is satisfied when the relaxation
modulus is given by

G(t) =
2
√

2

3πA1t0.75
. (5.1)

In order to find out the behavior of the relaxation modulus corresponding
to the square root regime of the compliance we consider the convolution
identity 1.4 at times τ1 ¿ t < τ2, which is possible since in the experiments
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ττττ

Figure 5.1: (a) A sketch of the compliance J(t) of actin networks as measured
in the active microrheological experiments [37]. (b) A sketch of the relaxation
modulus G(t) corresponding to the compliance in the shown left figure.

this regime spans two orders of magnitude in time [37]. The identity 1.4 can
be rewritten as

∫ τ1

0

G (t− t′) J (t′) dt′ +
∫ t

τ1

G (t− t′) J (t′) dt′ = t. (5.2)

Because the relaxation modulus G(t) is a decreasing function of time the
first integral in the left hand side of the Eq. 5.2 can be majorized as

∫ τ1

0

G (t− t′) J (t′) dt′ <
∫ τ1

0

G (τ1 − t′) J (t′) dt′ = τ1. (5.3)

Therefore, since t À τ1 we can neglect this term in 5.2.
Assume that the compliance is given by

J (t) = A2

√
t. (5.4)

Then under the assumption t À τ1 the relaxation modulus

G (t) =
2

πA2

√
t

(5.5)

satisfies the identity 5.2, because under the assumption t À τ1

∫ t

τ1

2

π
√

t− t′
√

t′ dt′ = t +
2

π

√
τ1(t− τ1)− 2t

π
arccot

√
t

τ1

− 1 ≈ t (5.6)

Consequently, at times τ1 < t < τ2 the relaxation modulus is a power
law G(t) ∼ t−0.5. Analogously it can be shown that at times t À τ2, when
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the compliance is proportional to time J(t) ∼ t, the relaxation modulus
experiences an exponential decay corresponding to a viscous flow. Therefore,
the relaxation modulus G(t) corresponding to the compliance shown in the
Fig. 5.1a can be sketched as depicted in the Fig. 5.1b.

The relaxation modulus G(t) determined from the measurement of the
compliance [37] (Fig. 1.5) experiences thus no plateau. It shows the initial
∼ t−0.75, intermediate ∼ t−0.5 and long time viscous regimes. Therefore,
the corresponding complex modulus G∗(ω) defined by the Eq. 1.2 as well
experiences no elastic plateau in the frequency interval τ−1

2 < ω < τ−1
1 .

Taking into account that

iω

∫ ∞

0

1√
t
e−iωt dt ∼ ω1/2, (5.7)

it can be found that both the storage and the loss moduli scale with frequency
as ω0.5 in the frequency range τ−1

2 < ω < τ−1
1 , while at high frequencies

ω > τ−1
1 they scale as ω0.75 and at low frequencies ω < τ−1

2 the storage and
the loss moduli scale as G′(ω) ∼ ω2 and G′′(ω) ∼ ω, which corresponds to
the viscous behavior.

Here we suggest a simple ansatz to calculate the complex relaxation mod-
ulus G∗(ω) from the compliance measured in the active microrheological ex-
periments. A response of the bead on the constant external force measured
in [37] is shown in the Fig. 5.2a. The three distinct regimes described above
are clearly seen in the Fig. 5.2b. The displacement of the bead is proportional
to the compliance J(t) in the case of a constant applied external force [62]

J(t) =
6πR

f
x(t), (5.8)

where R is the radius of the bead and f is the applied external force. There-
fore, one can determine the complex relaxation modulus G∗ (ω) correspond-
ing to the compliance in the Fig. 5.2a in the following way.

First of all, we fit the compliance of the bead with an analytical func-
tion, the form of which can be chosen taking into consideration the different
regimes experienced by the compliance, Fig. 5.2b. The only requirement
is that, as we will see, the fitting function permits an analytical Laplace
transform. We choose the fitting function in the form

J(t) = A1t
3/4e−t/τ1 +A2t

1/2
(
1− e−t/τ1

)
e−t/τ2 +(a+A3t)

(
1− e−t/τ2

)
, (5.9)

where A1, A2, a, A3, τ1 and τ2 are the fitting parameters. The three terms
of the Eq. 5.9 describe the three consequent regimes and the numeration of
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x, µm

Figure 5.2: (a) Response of a 4.5 µm diameter bead on a constant external
force of 15 pN in an actin network solution with the mesh size ξ ≈ 0.5 µm
measured in [37]. (b) The same data shown in the log-log scale. The bead
exhibits the initial x ∼ t0.75 regime followed by the x ∼ t0.5 law of motion
spanning over two orders of magnitude in time. The square root regime
changes to viscous like motion at later times. With a kind permission of
Jörg Uhde.
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ω

τ τ

Figure 5.3: The storage G′ (solid line) and the loss G′′ (dashed line) moduli
corresponding to the compliance from the Fig. 5.2 obtained by fitting with
the function 5.9 and utilizing the Eq. 5.12.

the coefficients Ai corresponds to that given in 1.15. The Laplace transform
of the fitting function 5.9 is given by

J̃ (s) = A1

Γ
(

7
4

)

(s + τ−1
1 )7/4

+ A2

√
π

2

(
1

(s + τ−1
2 )3/2

− 1

(s + τ−1
1 + τ−1

2 )3/2

)

+
aτ−1

2

s(s + τ−1
2 )

+
A3τ

−1
2 (2s + τ−1

2 )

s2(s + τ−1
2 )2

, (5.10)

where Γ(x) is the Gamma function.

The Laplace transform G̃(s) of the relaxation modulus G(t) can be ob-
tained from the identity 1.4, which can be rewritten as

s2G̃(s)J̃(s) = 1. (5.11)

Taking into account the Eq. 1.2 we obtain for the complex relaxation modulus

G∗(ω) =
1

iωJ̃(iω)
. (5.12)

The fitting of the data shown in the Fig. 5.2 with the fitting function 5.9
gives the characteristic times τ1 ≈ 0.29 s and τ2 ≈ 8.33 s and the amplitudes
A1 ≈ 18.86 Pa−1 · s−3/4, A2 ≈ 11.23 Pa−1 · s−1/2, a ≈ 12.49 Pa−1 and
A3 ≈ 2.32 Pa−1 · s−1. The real and the imaginary parts of the complex
modulus G∗(ω) corresponding to the compliance from the Fig. 5.2 are shown
in the Fig. 5.3. Thus, as asserted above the square root time dependence of
the compliance corresponds to the ω1/2 scaling of both the relaxation and
the loss moduli.

- 69 -



Chapter 5.0

At frequencies ω > τ−1
1 the storage and the loss moduli G′(ω) and G′′(ω)

scale as ω3/4, Fig. 5.3. Consequently, as asserted in [37] the characteristic
time τ1 can be identified with the characteristic time τe of single filament
dynamics.

At the same time, the characteristic time of the system to reach a steady
state velocity (viscous flow regime) τ2 is at least 2 orders of magnitude shorter
than the characteristic time τrep measured in experiments [29, 30, 32, 33],
which takes the values 1000 s and longer.
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Osmotic force

The computer simulations described in the chapters 2, 3 and 4 enable us
to make the following conclusions about the motion of the bead in active
microrheological experiments on semiflexible polymer solutions

• The square root regime of the motion of the bead is correlated with
the increase of the polymer concentration in front of the bead and a
significant decrease behind it

• The resistance force experienced by the bead is mainly due to the sur-
rounding polymers, i.e. the water contribution to the resistance force
is negligible

• The motion of the polymers in front of the moving bead is similar to
that in the bulk, i.e. they move by means of longitudinal diffusion with
the diffusion coefficient being very close to that in the bulk

On the basis of our simulations we suggest the following scaling theory of the
active microrheology of semiflexible polymer solutions.

6.1 Osmotic pressure of polymers

Consider a semiflexible polymer with contour length L confined to a reptation
tube Fig. 6.1. As it has been asserted in [60, 63–66], the segments of polymers
of length Le contribute a value of the order of kBT to the free energy of the
polymer. Therefore, the free energy of the polymer is proportional to the
number of segments of length Le in the polymer. Using the Eqs. 1.6, 2.13
and 1.8 we find

Le ∼ L1/3
p ξ2/3. (6.1)
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Le

ξ

Figure 6.1: Reptation tube of a semiflexible polymer in solution.

Thus, the free energy of a confined polymer can be written in the form

F1 = γkBT
L

L
1/3
p ξ2/3

, (6.2)

where γ ≈ 2.46 has been estimated from computer simulations [65].

The pressure exerted by the polymer on the walls of the confining tube
can be calculated in the following way. Assume that there are N polymers
of length L in the volume V . The free energy of the polymers is given by

F = NF1 = γkBT
(NL)4/3

L
1/3
p (3V )1/3

, (6.3)

where we have used Eq. 2.13 for the mesh size of the network. The pressure
is then given by

p = −∂F

∂V
= γkBT

(NL)4/3

L
1/3
p (3V )4/3

. (6.4)

Introducing the concentration of segments of length Le

c? =
NL

LeV
=

3

L
1/3
p ξ8/3

, (6.5)

where the Eqs. 6.1 and 2.13 have been used, we can rewrite the osmotic
pressure of polymers Eq. 6.4 in a simple form

p =
γ

3
c?kBT. (6.6)

- 72 -



Motion of the bead

f

x(t)

(Dt)1/2

x
a b

Figure 6.2: (a) A bead in a solution of semiflexible polymers. (b) An exter-
nal force f applied on the bead causes its displacement x(t). The polymer
network is deformed resulting in an increased concentration of polymers in
front of and decreased behind the bead.

6.2 Osmotic resistance force

At the moment of application of an external force f on the bead the distribu-
tion of polymers around it is homogeneous, Fig. 6.2a (cf. also Fig. 2.8a). The
applied force causes the displacement of the bead leading to the deformation
of the polymer network, Fig. 6.2a. As it has been shown in the Sec. 2.5.3
the concentration of polymers in front of the bead is higher than that in the
bulk, whereas the concentration behind the bead is much lower than in the
bulk, cf. also Fig. 2.8c. In the Sec. 2.5.4 it has been shown that the bead
experiences an osmotic resistance force due to the difference in the polymer
concentration in front of and behind the bead, and that the viscous contri-
bution is negligible. Therefore, the external force is balanced by the osmotic
resistance force

f ∼ p · πR2 ∼ γπ

3
c?kBTR2, (6.7)

where we have used πR2 for the section area of the front hemisphere of the
bead.

6.3 Motion of the bead

It has been found in the Ch. 4, that the motion of polymers in front of the
bead is similar to that in the bulk, i.e. the polymers move my means of
the longitudinal diffusion with the same diffusion coefficient D|| as in the
bulk. Therefore, the polymers can be described with the help of the diffusion
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equation
∂c

∂t
= D||4c, (6.8)

where c is the polymer concentration

c =
3

Lξ2
. (6.9)

6.3.1 Square root regime

Consider a bead moving in such a diffusing medium under an applied external
force f , Fig. 6.2. Let us assume that within time t the bead displaces a
distance x(t). During its motion the bead rakes up polymers in front of
itself. The number of polymers raked up within the distance x(t) is given by

N = c0πR2x(t), (6.10)

where c0 is the concentration of polymers far from the bead, where the mesh
size is ξ0. Within the time t the polymers diffuse a distance

√
D||t and spread,

thus, over the volume πR2
√

D||t, Fig. 6.2b. Therefore, the concentration
right in front of the bead is given by

c ∼ N

πR2
√

D||t
∼ x(t)√

D||t
c0. (6.11)

From the Eqs. 6.5 and 6.9 we find the relation between the concentrations c
and c?

c =
L

1/3
p ξ2/3

L
c?. (6.12)

Assuming that the deformation δξ of the polymer network is small, i.e.
δξ/ξ0 ≈ 0, we can use ξ = ξ0 in the Eq. 6.12. Combining the Eqs. 6.5,
6.11 and 6.12 we find

c? ∼ 3x(t)

L
1/3
p ξ

8/3
0

√
D||t

c0. (6.13)

Finally, using the Eqs. 6.7, 6.9 and 6.13 we find that the displacement of
the bead is given by

x ∼ L
1/3
p ξ

8/3
0 f

√
D||

γπR2kBT

√
t. (6.14)
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6.3.2 Steady state regime

If t > τ2 = R2/2D|| the polymers have time to diffuse sidewards and escape
the path of the bead. In this case the motion of the bead is steady. Assume
that the bead moves with a constant velocity v. The number of polymers
N+ raked up by the bead within the time ∆t is given by

N+ ∼ πR2v∆tc0. (6.15)

In front of the bead a region with concentration c is formed which is higher
than that in the bulk. The flux of polymers diffusing away from that region
~j = −D||∇c can be estimated as

j ∼ −D||c
R

, (6.16)

where we assume that the size of the region of increased concentration is
of the order of the size of the bead R. Thus, the number of polymers N−
escaping this region sidewards within the time ∆t is

N− ∼ −2πR2j∆t ∼ 2πRD||c∆t. (6.17)

In the steady state the numbers of raked up polymers and those diffusing
away from the bead’s path are equal N+ = N− and we obtain for the velocity
of the bead

v ∼ 2D||c
Rc0

. (6.18)

Using the Eqs. 6.5, 6.7, 6.12 and 6.18 we find that the velocity of the bead
is given by

v ∼ 2L
1/3
p ξ

8/3
0 D||

γπR3kBT
f. (6.19)

6.3.3 Characteristic time of the square root regime

Deriving the displacement of the bead in the square root regime Eq. 6.14 with
respect to time we find the velocity of the bead in the square root regime

v =
L

1/3
p ξ

8/3
0 f

√
D||

2γπR2kBT
√

t
. (6.20)

Comparing it with the velocity in the steady state Eq. 6.19 we find that the
characteristic time of emerging of the steady state regime is given by

τ2 =
R2

2D||
, (6.21)

which is, thus, the characteristic time for a polymer to diffuse a distance of
the order of the size of the bead.
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6.4 Comparison with the experiments

In this section we compare the scaling results on the osmotic force mechanism
of this chapter with the experimental values obtained by the fitting procedure
in the Ch. 5. Using the Eq. 5.8 we get from the Eq. 6.14 the amplitude A2

of the square root regime of the bead motion

A2 =
6L

1/3
p ξ8/3

√
D||

γRkBT
. (6.22)

The longitudinal diffusion coefficient of polymers is given by

D|| =
kBT

ζ||L
, (6.23)

where ζ|| is given by the Eq. 3.1. Inserting the values ξ ≈ 0.3 µm, L ≈ 20 µm,
R ≈ 2.25 µm into the Eq. 6.22 we find A2 ≈ 9.2 Pa−1 · s−1/2 in excellent
agreement with the experimental value A2 ≈ 11.23 Pa−1 · s−1/2, Ch. 5.

In the steady state we find

A3 =
12L

1/3
p ξ8/3D||

γR2kBT
. (6.24)

Inserting the same values gives A3 ≈ 2.7 Pa−1 · s−1 in agreement with the
measured experimental value A3 ≈ 2.32 Pa−1 · s−1.

Finally, for the characteristic time τ2 we find τ2 ≈ 23 s, which is in the
same order of magnitude with the characteristic time τ2 ≈ 8.33 s of the
emerging of the steady state in the active microrheological experiments.

6.5 Comparison with the computer simula-

tions

As shown in the Sec. 6.3.1 the displacement of the bead in the square root
regime is given by x = A

√
t with

A =
L

1/3
p ξ8/3f

√
D||

γπR2kBT
. (6.25)

Using the Eqs. 1.6 and 2.13 one finds A ∼ ρ−4/3f
√

D|| in perfect agreement
with the results of the computer simulations presented in the sections 2.5.5,
2.5.6 and 2.5.8. The theoretical scaling A ∼ R−2 is close to A ∼ R−8/5

obtained by computer simulations, Sec. 2.5.7.
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Substituting the values ξ = 1.57, L = 34.5, R = 10, Lp = 150, kBT = 1,
f = 1000 and D|| = 0.032 in the Eq. 6.25 we find A ≈ 4.1, which is in a good
agreement with the value A ≈ 1.7 obtained by computer simulations.

For the characteristic time of the square root regime we find τ2 ≈ 103 time
units. Since the typical simulations time was about 5 time units, the steady
state regime of the bead motion has not been reached. Whether this regime
can be simulated with the present computer facilities should be a subject of
additional work.
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Chapter 7

Steady state regime:
asymptotic analytical solution

The scaling estimates of the Ch. 6 show that semiflexible polymer networks
in active microrheological experiments can be described with the help of the
diffusion equation

∂c

∂t
= D||4c. (7.1)

In this chapter we consider the steady state regime of the motion of the bead
analytically. For this purpose we first derive the diffusion equation for the
concentration c? of segments of polymers of length Le.

Applying the Laplace operator to the Eqs. 6.9 and 6.5 we find

4c = − 6

Lξ3
4ξ (7.2)

4c? = − 8

L
1/3
p ξ11/3

4ξ, (7.3)

where we have neglected the terms proportional to (∇ξ)2 assuming the de-
formation of the polymer network to be small. Therefore, we find

4c

4c?
=

3L
1/3
p ξ2/3

4L
. (7.4)

Taking the time derivative of the Eqs. 6.9 and 6.5 we find

ċ = − 6

Lξ3
ξ̇ (7.5)

ċ? = − 8

L
1/3
p ξ11/3

ξ̇. (7.6)
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Therefore,

ċ

ċ?
=

3L
1/3
p ξ2/3

4L
. (7.7)

Combining the Eqs. 7.4, 7.7 and 7.1 we find that in the linear regime the
concentration c? satisfies the same diffusion equation

∂c?

∂t
= D||4c?. (7.8)

We assume that in the regime of the steady motion of the bead the system
is characterized by a steady concentration distribution of polymers around
the bead. The latter moves with constant velocity ~v. It is more convenient to
tackle the problem in the coordinate frame connected with the bead c(~r, t) =
c(~r − ~vt, t). Thus, the Eq. 7.8 takes the form

D||4c? − ~v · ∇c? = 0. (7.9)

We utilize a spherical coordinate system (r, θ, ϕ) as shown in the Fig. 2.12.
The external force applied to the bead is f and the velocity of polymers at
infinity is

~v = (−v cos θ, v sin θ, 0) , v > 0. (7.10)

The concentration of polymers at infinity is constant, therefore the first
boundary condition is

c? (r = ∞, θ, ϕ) = c?
0. (7.11)

The second boundary condition is the requirement that the flux of polymers
normal to the bead surface vanishes

D
∂c?

∂r

∣∣∣∣
r=R

+ vc? (R, θ, ϕ) cos θ = 0. (7.12)

The osmotic force experienced by the bead is calculated as an integral of the
pressure Eq. 6.6 over the surface of the bead

fosm =
γ

3
kBT

2π∫

0

π∫

0

c? (R, θ, ϕ) cos θR2 sin θ dθ dϕ (7.13)

and the osmotic force should be balanced by the external force in the steady
state f = fosm.

The general solution of the equation 7.9 satisfying the boundary condi-
tion 7.11 takes the form

c? (r, θ, ϕ) = c?
0

(
1 + e−kr cos θ

∞∑
n=0

Bn
1√
r
Kn+1/2(kr)Pn(cos θ)

)
, (7.14)
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where Pn(x) is the Legendre polynomial, Kn (x) is the modified Bessel func-
tion of the second kind, Bn are coefficients and

k =
v

2D||
. (7.15)

One can expect that the coefficients Bn decrease with the number n. There-
fore, we keep only the first two modes in the series in the Eq. 7.14 and later
justify this truncation. Thus, we have

c? (r, θ, ϕ) = c?
0

(
1 + e−kr cos θ

(
B0

1√
r
K1/2(kr)+

B1
1√
r
K3/2(kr)P1(cos θ)

))
. (7.16)

The coefficients B0 and B1 are determined by substituting the solution 7.16
into the boundary condition 7.12. Using the identity

ez cos ϕ =
∞∑

n=−∞
In(z) cos nϕ (7.17)

where In (x) is the modified Bessel function of the first kind, we obtain

B0 =
4
√

2µ3/2
√

Reµ(µ(1 + µ)I0(µ) + (1 + µ(1 + µ))I1(µ)√
π(1 + µ)(2 + µ)2

(7.18)

B1 =
4
√

2µ3/2
√

Reµ(2µ(1 + µ)I0(µ)− (2 + µ(2− µ))I1(µ)√
π(1 + µ)(2 + µ)2

,

where µ = kR ≡ vR/2D||.
The approximate solution 7.16 with the mode amplitudes given by 7.18

can be regarded as a reasonable approximation under the assumption

µ ≡ vR

2D||
< 1 (7.19)

since one can calculate the ratio B2/B1 as a function of µ and find that under
this assumption B2/B1 < 0.15. A sketch of the concentration distribution
around the bead calculated with the help of the Eq. 7.16 is shown in the
Fig. 7.1.

Substituting the solution 7.16 with the amplitudes given by 7.18 into the
equation for the osmotic force acting on the bead Eq. 7.13 we find in the first
order with respect to kR

fosm =
2πγc?

0kBTvR3

9D||
. (7.20)
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Figure 7.1: A sketch of the polymer concentration distribution around the
bead moving with a constant velocity as calculated using Eq. 7.16. The
external force is applied along the Ox axes and the z = 0 section is shown.
(i) the region of increased concentration of polymers in front of the bead, (ii)
the region of decreased concentration of polymers behind the bead.

Therefore, in the first order with respect to vR/2D‖ we obtain for the velocity
v of the bead moving in a semiflexible polymer solution under an external
force f

v =
3L

1/3
p ξ8/3D||

2πγR3kBT
f, (7.21)

where we have used the Eq. 6.5. This result yields the same behavior as the
Eq. 6.19 obtained within the scaling estimates. In addition we obtained here
the geometric prefactor.
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Conclusions

This treatise has been concerned with the studying of active microrheology
of semiflexible polymer solutions. As described in the introduction, Ch. 1,
there is a lack of understanding of the viscoelastic properties of semiflexible
polymer solutions on the time scales when the mechanical response of the
medium becomes governed by the collective dynamics of polymers. Experi-
ments on actin solutions, which has become a prominent model of a semiflex-
ible polymer, show contradictory results. Some groups report the existence
of an elastic plateau in the complex relaxation modulus G∗ (ω) followed by
a viscous flow regime. The value of the elastic plateau, however, varies from
group to group by as much as two orders of magnitude. Other studies instead
of the elastic plateau report a power law behavior of the complex modulus
G∗ (ω), which is found to vary as ωα with α ≈ 0.5. Recent experiments on
active microrheology of actin solutions [37] are in accord with this scaling
as shown in the Ch. 5. These experiments reveal that the response of a
bead on a constant external force possesses three distinct regimes. At the
initial stage the compliance of the bead is a power law J(t) ∼ t0.75. At times
greater approximately 0.3 s a square root dependence of the compliance is
found J(t) ∼ √

t. This regime spans over about two orders of magnitude in
time and changes then into a viscous-like motion J(t) ∼ t.

In order to provide a better understanding of active microrheology of
semiflexible polymer solutions we studied it by computer simulations using
a sort of molecular dynamics method.

The simulation model accounts only for viscous and steric interactions
between polymers. In this framework the first two regimes of the compliance
are found, Ch 2. The third regime could not be reached apparently due to
the lack of the computer power. It is shown that the square root regime
of the motion of the bead is characterized by an increased concentration of
polymers in front of the bead and a significantly decreased behind. The
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simulations show that in this regime the resistance force experienced by the
bead is mainly due to the polymers and that the viscous contribution of water
is negligible. Furthermore, it is found that the resistance force created by the
polymers is due to the difference in concentrations in front of and behind the
bead and is, thus, osmotic in origin. The scaling dependence of the amplitude
of the compliance in the square root regime on the concentration of polymers
is in good agreement with that in experiments.

In order to characterize the motion of polymers in the vicinity of the
moving bead, diffusion of semiflexible polymers in the bulk has been studied.
By comparing these results with the analysis of the motion of polymers in
front of the moving bead it is found that the latter move similar to the
polymers in the bulk. Thus, the polymers in front of the moving bead move
by means of longitudinal diffusion with the diffusion coefficient being close
to that in the bulk.

Based on these findings a scaling theory of the active microrheology of
semiflexible polymer solutions is suggested. The polymers are thought to be
described by a diffusion equation and the osmotic pressure of polymers due to
the suppression of their undulations is taken into account. Both the square
root regime as well as the subsequent viscous-like motion of the bead are
described by this model. The obtained scaling laws are in excellent agreement
with the experimental results as well as with the computer simulations.

Finally, the viscous-like steady regime is tackled analytically. In the limit
of small external forces an approximate concentration distribution of poly-
mers around the moving bead is obtained as well as the relation for the
velocity of the bead.

Summary

• We have simulated solutions of semiflexible polymers with viscous and
steric interactions

• In this model we established the existence of the square root regime in
the microrheology

• The square root regime is correlated with the increase of the polymer
concentration in front of the bead and decrease behind it

• The resistance force experienced by the bead in the square root regime
is mainly due to polymers and is osmotic in origin

• The bead displacement is linear with respect to the external force and
proportional to c−1.4
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Conclusions

• Motion of polymers in front of the bead is similar to that in the bulk,
they move by means of longitudinal diffusion with the same diffusion
coefficient D||

• The compliance is proportional to
√

D||

• An analytical scaling model accounting for the osmotic pressure of the
polymers due to the suppression of their undulations is proposed
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[57] P. Español and P. Warren. Europhys. Lett., 30:191, 1995.

[58] R Groot and P Warren. Dissipative particle dynamics: Bridging the
gap between atomistic and mesoscopic simulation. J. Chem. Phys.,
107(11):4423–4435, 1997.

[59] M.P. Allen and D.J. Tildesley. Computer simulation of liquids. Claren-
don, Oxford, 1987.

- 91 -



Bibliography

[60] L. Harnau and P. Reineker. Equilibrium and dynamical properties of
semiflexible chain molecules with confined transverse fluctuations. Phys.
Rev. E, 60(4):4671–4676, 1999.

[61] T. McLeish. Tube theory of entangled polymer dynamics. Adv. Phys.,
51(6):1379–1527, 2002.

[62] FJ. Ziemann. Untersuchungen der lokalen viscoelastischen Eigen-
schaften von Zellen und Zellmodellen mit einem Magnetkugel-
Mikrorheometer. PhD thesis, Technical University of Munich, 1997.

[63] D. Bicout and T. Burkhardt. Simulation of a semiflexible polymer in a
narrow cylindrical pore. J. Phys. A, 34:5745, 2001.

[64] T. Burkhardt. Free energy of a semiflexible polymer in a tube and
statistics of a randomly-accelerated particle. J. Phys. A, 30:L167, 1997.

[65] M. Dijkstra, D. Frenkel, and H. Lekkerkerker. Confinement free energy
of semiflexible polymers. Physica A, 193:374, 1993.

[66] W. Helfrich and W. Harbich. Chem. Scr., 25:32, 1985.

- 92 -



Acknowledgements

I would like to thank many people without whom this work could not have
been done. I am very much grateful to

. . . Dr. habil. Alexei Boulbitch for the introduction to the field of bio-
physics and patient supervising of my work

. . . Prof. Erich Sackmann for giving me a great opportunity of making a
PhD in E22

. . . Prof. Vladimir Sakhnenko for encouraging support over many years

. . . Prof. David Pink and Bonnie Quinn for introducing me to the DPD
method and for their hospitality during my stay at the St. Francis
Xavier University, Antigonish, Canada

. . . Jörg Uhde for his inspiring experiments

. . . Adam MacDonald for the great 3D visualisations of my simulations

. . . my friends in Munich who made my staying there a wonderful time.
These are Alex, Christian, Kheya, Gjertrud, Laurent, Laurent, Guy,
Samuel, Felix, Ana, Manfred, as well as the members of the ’russian
community’ Dassia, Maxim, Kostja, Elena, Nadja, and many others. I
am grateful to the Verein Gorod and its KSP Abteilung.

. . . the rest of E22 for the great atmosphere and valuable help




