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Introduction and Basics






Chapter 1

Introduction

1.1 Introducing the MSSM

1.1.1 Motivation, basic idea and first implications of SUSY

Among all the currently discussed extensions of the Standard Model (SM) Supersymmetry
(SUSY) has to be considered as a particular interesting one. SUSY has risen this particular
attraction and interest since it offers several virtues [1,2]. Firstly, weak scale SUSY has
a natural answer to the gauge hierarchy problem [3-6] and achieves the gauge unification
without the ad hoc introduction of additional particles [7-10]. Moreover, it is able to ex-
plain the electroweak symmetry breaking (EWSB) radiatively [11] and offers a compelling
candidate for the cold dark matter component of the Universe [12,13].

Speaking in simplifying terms, the basic idea of SUSY consists in imposing an additional
symmetry between fermions and bosons. As a consequence each known particle of the
SM obtains a SUSY partner with spin differing by one half. However, since none of these
SUSY particles (sparticles) has been found yet, the symmetry—if present at all—has to
be broken; in exact SUSY the masses of particles and sparticles are identical. If the virtue
of the solved gauge hierarchy problem is supposed to remain for broken SUSY, only a
certain class of terms are possible for SUSY breaking. Essentially these terms—so called
“soft breaking terms”—are not allowed to generate any quadratic divergencies, which are
absent in exact SUSY. Unfortunately, adding all of these phenomenologically required and
theoretically allowed soft breaking terms to the exact SUSY generates an “inflation” of
parameter space unless additional assumptions on the—a priori completely unknown and
undetermined—underlying mechanism of SUSY breaking are made. Here it should be re-
marked that imposing assumptions on the mechanism of SUSY breaking, i.e. assuming a
specific model for SUSY breaking, decorates the used model of SUSY breaking among all
possible ones and hence implies a significant loss of generality. However, many of the pa-
rameters which are in general introduced to parameterize the possible soft breaking terms
arising from an unknown breaking mechanism are complex and hence offer new sources of
C P-violation.

Experimentally C' P-violation was first observed in the neutral kaon system [14] and has re-
cently been confirmed by measurements in B-meson decays [15,16]. In the SM with massless
neutrinos and only one physical neutral Higgs boson the only source of C'P-violation is given
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by the complex phase! of the Cabbibo-Kobayashi-Maskawa-matrix (CKM-matrix) [20].
Moreover, it is known that CP-violating phases are necessary to describe the observed
baryon asymmetry of the Universe [21] and that the phase in CKM-matrix is most likely
not large enough for this purpose. Therefore the presence of C'P-violating phases in soft
breaking terms can be interpreted as another virtue of broken SUSY itself. However, even
today, with no direct signal of SUSY observed yet, these phases are constrained by the
current measurements [18] of the electric dipole moments of the electron (d.), the muon
(d,), the neutron (d,), and the mercury atom (dy,). Generally speaking the consequences
and implications of these measurements for the SUSY parameter space depend strongly on
the SUSY model used for interpreting the measurements. Several of these models offer pos-
sibilities to obtain sizeable values for some of these phases while still being consistent with
the mentioned experimental results—for example by cancellations among various SUSY
contributions to the electric dipole moments [22-26] or by making parts of the SUSY spec-
trum rather heavy [27,28]. However, regardless in which manner sizeable C'P-phases can
be made consistent with the constraints from data, the implication that such C P-phases
cannot be neglected in the study of (possible) SUSY signals at future colliders should be
obvious. To estimate the danger of neglecting C' P-phases in collider physics just recall that
any observable associated with sparticles at a collider—masses, cross sections, branching
ratios—depends not only on the absolute values of the involved SUSY parameters, but also
on their phases, if non-trivial. Hence such C'P-phases should be treated unbiased by the
constraints mentioned above and be included as free parameters in any analysis of possible
SUSY signals at colliders. To be more pathetic, a clear and convincing strategy to estab-
lish C'P-violation by using SUSY signals at colliders and extracting the new C P-phases, if
present, from data is absolutely necessary.

This thesis is devoted to participate in the development of such strategies.

1.1.2 Low-energy Lagrangian of the MSSM

As the technical details of constructing supersymmetric field theories are well known nowa-
days and are of no further interest for the thesis, this point is not treated here and the
motivated reader is referred to textbooks such as [29,30] or review articles such as [31-33];
only a compact summary of the MSSM Lagrangian and its parameters as relevant in this
thesis is given. To be more specific than in Sec. 1.1.1 the framework of this thesis is not
given by a general supersymmetric extension of the SM but by its minimal one—the Min-
imal Supersymmetric Standard Model (MSSM). This extension is minimal in a sense that
it only duplicates the known particles in the lepton, quark and gauge sector of the SM by
introducing their supersymmetric partners. For technical reasons the Higgs sector of the
SM-—a one Higgs dublett model-—has to be extended towards a two Higgs dublett model
(2HDM). The interactions and mass spectra are then described by a Lagrangian which is
conveniently decomposed into a SUSY exact part, Lexact, and a part containing all possible
soft breaking terms, L. In the case that R-parity conservation? is imposed on the MSSM

'The observation of neutrino flavor oscillations opens the possibility that the neutrino mass matrix
contains nontrivial C'P-violating phases, but this has not yet been confirmed experimentally. For a recent
review see for example [17]. In principle, CP could also be violated in the SM by the QCD 6 term, but
bounds on the electric dipole moment of the neutron [18] imply [19] [fqcp| < 10710,

2R-parity is an additional transformation acting on superfields; if this parity is violated, i.e. the
Lagrangian is not invariant under such a transformation, neither baryon nor lepton number would be
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the SUSY exact part contains—beside the differing Higgs sectors—exactly the same num-
ber of parameters as the SM does?, i.e. three gauge couplings and three Yukawa couplings
4 in the form of complex 3 x 3 matrices in generation space. More details on Loy, are
not required at this stage they may either be found in the before mentioned introductory
review articles [31-33] or are presented in the later course if relevant.
Contrarily, the soft breaking part attracts more attention here since it generates most of
the SUSY parameter space. The most general parametrization of the soft breaking terms
is given as

L= [ CA Dy - (1) (n) -+ FEAL B - ( R)] + fLALR, - (ZL>z' ([R):+h.c.]
- {(CIL)}r (m5,),; (@) + ()] (m} ( ) ( ! >'j (CZR)J‘

+ (i), (1), (1), + (ZR)( ) (R>J] ()

1 _ _ _
— 5 [Ml)\l)\l + MQ)\Q)\Q + M3)\3)\3 + hC]

— mji|hi|* = mj|ha|* — [m%th “hy + h.c] ;

where the m? are hermitian, 3 x 3 matrices in generation space and give explicit masses
to the SUSY partners of left- and right-handed SM fermions. Additional mass terms for
these sparticles arise from the quantities A", being complex 3 x 3 matrices in generation
space; note that these—so called Yukawa like soft breaking—terms not only imply flavor
transitions but also generate left-right mixing after EWSB. The real parameters m? and m3
as well as the complex parameter m?, contribute to the masses of the physical, scalar Higgs
fields, whereas the three complex parameters M;, M, and M; generate explicit mass terms
for the fermionic components of the gauge fields. More details on Lg, and the standard
notations for fields in the MSSM may again be found in [31-33].

Counting parameters at this stage of the discussion reveals that the model, including an
additional complex parameter—the 1 parameter—from the SUSY exact Higgs sector, con-
tains the enormous overall number of 94 real parameters and 74 phases. Fortunately not
all of these 168 parameters are physical as some of them can be removed by using addi-
tional symmetries of the Lagrangian [34-36]. After using these symmetries “only” 79 real
parameters and 44 phases remain as physical parameters of the model. Including ©gcp
as free parameter this model is normally referred to as “MSSM-124". Since most of these
parameters are associated with soft breaking terms it is indeed correct to claim that these
terms cause an inflation of parameter space.

Following [36] it is rather clear that the MSSM-124 possesses at least two dangerous proper-
ties; these are potentially large flavor changing neutral currents (FCNC) and the violation
of the lepton family numbers L., L,, and L,. In a general MSSM-124 these features
may serve as severe constraints on parameter space, e.g. from the very tight experimental
bounds [18] on the branching ratios of lepton flavor violating decays like u — ey, p — 3e it
could be concluded that lepton flavor violating parameters are absent in the soft breaking

conserved and hence problems with the stability of the proton would arise, for example see [32]. The
conservation of R-parity is assumed throughout the complete thesis.
3Before the standard reduction of parameter space towards physical parameters.
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terms, or at least very small. Motivated by such observations it is convenient to impose
one of the following ad hoc assumptions on the soft breaking parameters m2 and A™:

i.) horizontal universality [34,35]:
matrices m2 and A" are generation-independent

(m3),; o mp 0, (1.2a)
ii.) universality [34,35]:
matrices m2 and A" are generation-independent and universal
(mi)ij oc m28;;, (1.3a)
(An)ij X A(Sija (1.3b)

iii.) flavor alignment [37]:
matrices m2 and A™ are diagonal in a basis which diagonalizes quark and lepton mass
matrices.

All three assumptions share in common that a separate conservation of L., L,, and L,
is achieved [36] and that FCNC are absent at tree level. Certainly, all these assumptions
are equivalent to a significant restriction of the parameter space of MSSM-124, but are
phenomenological well motivated; at least for first studies of SUSY signals and first data
analyses these assumptions should be sufficient for first attempts to construct the low-
energy Lagrangian of the MSSM.

An alternative way to reduce the immense parameter space of the MSSM-124 consists in
assuming a specific model for SUSY breaking; such a model could be given by mSugra
(e.g. [1]) or GMSB [38,39]. In such an approach a rather small set of parameters is
defined at some GUT scale and the low-energy parameters of the MSSM are replaced a
set of renormalization group equations, describing the evolution of the parameters from
the GUT scale to the weak scale. Note that for such an approach a gain of predictive
power due to a small set of input parameters at the GUT scale is accompanied by a loss
of generality.

As a conclusion of this section it should be summarized that the MSSM possesses, when
compared to the SM, a significantly enlarged parameter space with many physical phases
and that several possibilities to reduce this parameter space are available, being either
theoretically or phenomenologically well motivated.

1.2 Future collider experiments

The next collider project in the close future is the Large Hadron Collider (LHC) [40],
currently being built at CERN and hopefully commencing operation 2007. Using proton
proton collisions it is expected to reach a center of mass (CMS) energy of about 10TeV and
to offer an integrated luminosity of around 100fb ™' per (collider) year to the experiments.
The physical goal of this machine is for sure to establish “new physics”, or in the worst
case at least to find the extensively hunted SM Higgs boson. In the case “new physics”



1.3 Motivation, goals and course of the thesis 7

is indeed found in the form of SUSY, the experiments at LHC are expected to measure
parts of its mass spectrum and to determine some of its parameters or at least to constrain
its parameter space further. For more details on SUSY searches at the LHC, see [41] and
references within.

However, nowadays a certain consensus has been reached that a linear collider using elec-
tron positron collisions is significantly better suited for a precise determination of SUSY
parameters than LHC. This expectation is essentially associated with the elementary na-
ture of electrons and positrons compared to the constituent structure of the proton. As a
consequence of these differing structures the CMS energy and polarizations of the “actu-
ally” colliding particles can be controlled much better at a linear collider than at LHC.
Inspired by this expectation worldwide effort is being spent both on the technical details
of building and operating such a “Future Linear Collider” (FLC) and on the physics pro-
gram that could be completed with it. Among all the various FLC projects (for example,
GLC [42] in Japan, NLC [43] in the US or Tesla [44] at DESY) the Tesla project has made
most progress in the last years. At the current stage a complete technical design report [45]
has been released, containing a broad and detailed physics program [46], which in turn in-
cludes detailed studies on SUSY signals at Tesla. Moreover, most of the technical solutions
suggested for this machine have been tested successfully. Due to this rather highlighted
position of the Tesla project among others my thesis uses its expectations for the central
machine parameters (CMS energy /s, integrated luminosity £ per year, polarization rates
of electron (P.-) and positron beams (P,+)) as reference numbers for an FLC. These refer-
ence numbers are summarized in Tab. 1.1 for the 500GeV option of Tesla; note that Tesla
and most other projects foresee an upgrade to /s = 800GeV at least. Unfortunately it
has to be admitted that the realization of such a presumably powerful tool as an FLC is to
some extent indeed rather far away; even in the most optimistic estimates Tesla is expected
to start data taking in 2015.

Nevertheless, it should be remarked that—assuming SUSY is realized by nature—one of
the core missions of an FLC is the precise determination of fundamental SUSY parameters,
as this is the first step to reveal the mechanism of SUSY breaking and opens a window to
the Planck scale [47,48].

Finally, note that also the e“e™ option for an FLC is intensively discussed; here a much
cleaner experimental environment could be achieved at the price of a reduction of the
luminosity.

\/g L Pe* Pe7L
500GeV | 300fb~" per year | 80% | 60%

Table 1.1: Tesla parameters used as reference parameters for an FLC.

1.3 Motivation, goals and course of the thesis

The elementary idea and motivation for this thesis is best understood by taking the fol-
lowing observations carefully into account:

Firstly, the unconstrained MSSM offers a rather big number of phases as a priori free pa-
rameters. The current experimental measurements of various electric dipole moments do
not necessarily force these phases to be negligibly small.
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Secondly, it can be assumed that an FLC with a CMS energy /s sizeable for “New Physics”
and a sufficiently large enough integrated luminosity £ will commence operation within the
next three decades. As a matter of fact several detailed analyses [46,49-53] investigating
SUSY signals at an FLLC have been presented. These analyses show that sparticles with a
mass of up to \/s/2 can be discovered at an FLC and that their properties such as masses,
spins and couplings can determined precisely from data. However, when studying these
works it can also be observed that some of them [49,50] show the dangerous tendency to
neglect phases completely. This neglect of phases, which are not necessarily small and cor-
rectly should be treated as free parameters of the model, has to be considered as a highly
problematic simplification since both kinematical masses and couplings depend on them.
In turn these phases have a direct impact on observables like cross sections and branching
ratios. Hence neglecting possibly non-vanishing phases during the determination of real
parameters from experimental data could result in wrong inputs for the reconstruction of
the underlying theory at the unification scale.

Thirdly, the construction of sizeable and experimentally accessible C'P-asymmetries is
rather difficult for most production channels at an FLC. These difficulties arise as at
least one secondary decay has to be included. Moreover, at tree-level asymmetries are
only available if the decaying particle has non-zero spin. For the measurement of such an
asymmetry the spin of the decaying particle then has to be partly reconstructed by using
its decay products. Due to experimental issues such as background processes and event
identification the profit of a given decay chain in establishing the C'P-violating MSSM
strongly depends on the chosen parameters points, i.e. the chosen parameter point can not
necessarily be considered as representative for larger regions of parameter space.

Making all the observations summarized above led to the following, elementary questions
which are broadly discussed in Part IT of this thesis:

e How strong are the constraints from leptonic dipole moments?

e How does the “cancellation mechanism” work in detail?

e Which cross sections show a strong dependence on phases, which a weak dependence?
e What are the reasons for such differing behaviors, if present?

e Can a reasonable measure for the impact of C'P-odd phases on C P-even cross sections
be introduced?

e Do cross sections accumulate enough sensitivity to phases to establish C'P-violation
within the MSSM?

e Are phase-sensitivities of cross sections correlated among each other, are they corre-
lated with leptonic dipole moments?

The basic idea of the “combined analysis” presented in Part IT is to take today’s low-energy
data (mass bounds and leptonic dipole moments) as a set of constraints for a scan of pa-
rameter space and then to use the resulting low-energy compatible parameter points to
check whether high-energy experiments at an FLC can provide additional information on
phases.

My elementary assumption on the parameter space given by the MSSM is horizontal uni-
versality within the soft breaking parameters associated sfermions and strict universality
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of these parameters for first and second generation sfermions. Since no specific model
on SUSY breaking is used here all parameters are directly specified at the typical energy
scale of an FLC. Furthermore the restrictive set of unpolarized, total cross sections for the
following production channels® at an FLC is used here

efe” = XIX; ij=1,...,4 (1.4a)
ete” = XN i,j=1,2; (1.4b)
ete” — &e; i,j=1,2; (1.4c)
e e ¢ i,j=1,2; (1.4d)

whereas the leptonic dipole moments used as constraints are restricted to the electric
dipole moment of the electron d, and the anomalous magnetic moment of the muon a,.
Note that this selection of low- and high—energy observables yields a complementarity:
several diagrams involving neutralinos as well as charginos contribute coherently to the
low-energy observables, hence these observables can only give bounds on combinations of
phases. Contrariwise, as different vertices whose combinations contributed to the leptonic
dipole moments now appear separated from each other in different amplitudes, high-energy
observables can be used to investigate separate sectors of the theory.
Since the major aim within Part II is to study the impact of C'P-odd phases on C P-even
cross sections, a significance S(f f2) is assigned to each of the final states given by the re-
actions in Eqgs. 1.4. This significance is defined as the difference in counting rates between a
C P-conserving point® (CPC point) and a C'P-violating point® (CPV point) normalized to
the statistical error of the cross section in the CPC point. In order to distinguish between
phase-dependences from a variation of the couplings with phases and phase-dependences
from a variation of kinematical masses with phases a second significance S(f, f,) is intro-
duced. For the calculation of this significance the CPV point is chosen such that parts of
the mass spectrum are kept fixed by absorbing the variation of (some) kinematical masses
into a variation of the absolute values of (some) SUSY parameters.
A detailed numerical analysis using several points in SUSY parameter space shows that
some of the reactions (mainly some among those given by Eqs. 1.4a and 1.4d) yield very
large sensitivities to phases, whereas others (all chargino production modes in Eq. 1.4b) are
almost insensitive to phases once the low-energy bounds are taken into account. Moreover,
the numerical analysis also reveals that both significances do not correlate with d,. Con-
trariwise, the significances of two different production modes are in most cases strongly
correlated among each other. Slightly weaker correlations are observed between signifi-
cances and a,.
On the way to these results remarkable insight into the cancellation mechanism concerning
leptonic dipole moments and into the phase-dependences of cross sections is achieved by
a semi-analytical treatment of these observables using perturbative treatments of sparticle
mixing. These semi-analytical treatments constitute a major difference or improvement

“In the MSSM fermionic partners of gauge bosons and of scalar Higgses mix if they have same quantum
numbers. The corresponding mass eigenstates are referred to as neutralinos and charginos, denoted by X9
and )2?: Similarly, éf denotes selectrons, which are the mass eigenstates obtained from the mixing of the
scalar partners of left- and right-handed electrons.

®A CP-conserving point is defined by a set of real parameters and all phases being either 0 or =.

6 A CP-violating point is given by the same set of real parameters together with non-trivial, but low-
energy compatible choices for at least one phase.



10 1. Introduction

compared to related work concerning both low [22-26, 54, 55] and high-energy observ-
ables [56,57].

However, despite all gains in understanding and quantifying the impact of C'P-odd phases
on C'P-even cross sections, it is rather clear that no cross section, regardless of its sensitivity
to phases, is sufficient to establish C'P-violation in the MSSM. Note that the significances
introduced above only quantify the deviation from the C'P-conserving MSSM, but do not
contain any information on the source of such a deviation. This implies that production
modes with high significances can be used to determine C'P-odd phases only once CP-
violation has been established by measuring some C'P-odd observables. To obtain a first
estimate of how large such C'P-odd observables in the investigated production modes can
be the C' P-odd components of the polarization vector of the produced charginos and neu-
tralinos are included to the combined analysis of Part II. Numerically it is observed that
these C'P-odd polarization vector components are sizeable in most neutralino production
modes, but rather small in chargino production modes with the exception of a few privi-
leged points in parameter space.

Motivated by the obviously unavoidable necessity to measure C'P-odd observables to es-
tablish C'P-violation at an FLC and by the promising size of the C'P-odd polarization
vector component in neutralino production as well as by several works devoted to similar
attempts [58-60], a specific decay chain following x?x5 production is studied in Part III.
As general framework the MSSM is still used, but differing assumptions are applied. Here
an inverted hierarchy for sfermions is assumed, i.e. sfermions of the first and second gen-
eration are assumed to be significantly heavier than third generation sfermions. Note that
such assumptions are motivated by some GUT models for SUSY breaking [61-63] and that
such an assumption naturally cures the problems associated with electric dipole moments
allowing phases to be of O(1).

Using these assumptions the focus of Part III is on the production ee™ — x9x3 followed
by the two step decay ¥ — 77T — ¥)7F7F as signal process and the production of a
stau pair ee” — %ii%f succeeded by two stau decays 7 — ¥V7* as background process.
Concerning the goal of sizeable and experimentally accessible C'P-odd observables sepa-
rate discussions of signal and background production cross sections and of both decays
are required to obtain first estimates of the size and accessibility of possible asymmetries.
Several experimental issues such as the distinction between signal and background events,
the assignment of 7 leptons in the final state to primary and secondary vertices and the
measurement of the 7 lepton polarization vector through its decay products are discussed
and used to derive criteria for “optimized” parameter sets. Finally the complete decay
chain has to be modeled and experimentally measurable C'P-asymmetries have to be de-
fined in terms of quantities measurable in the laboratory frame. As a final result of a case
study using two optimized parameter sets and Monte Carlo techniques for the modeling
of the complete decay chains (signal and background process) it is found numerically that
some of these C'P-asymmetries defined in the laboratory frame can reach an excess of up
to 30% confirming the highlighted position of ¥?¥5 production that was already observed
in Part II. Note also that all the difficulties concerning the construction and measurement
of C'P-asymmetries at an FLC which motivated the work in Part II are nicely illustrated
by the contents and efforts of Part III.
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1.4 Organization and structure of the work

Despite the logical structure of the thesis is already laid out in Sec. 1.3 the organization of
the thesis in the remainder is summarized now. Chapter 2 starts with recalling and briefly
discussing the assumptions on the MSSM used in Parts II and III, the issue of rephas-
ing invariance is covered here. In Sec. 2.2 the relevant mixing patterns are investigated
both analytically and perturbatively. Afterwards the relevant parameters are summarized
in Sec. 2.3 and the interaction Lagrangian as relevant through this thesis is presented in
Sec. 2.4. Note that the results of Secs. 2.2, 2.3, and 2.5 are valid for Parts 1T and III.
Chapter 3, being the first step of the combined analysis of low- and high-energy observ-
ables presented in Part II, treats leptonic dipole moments, in particular d, and a,, in great
detail. Beginning with a short introduction to leptonic dipole moments and their current
experimental status in Sec. 3.1, the restriction to d. and a, as the only leptonic dipole
moments relevant for the combined analysis is justified here. Afterwards analytical and
semi-analytical results for the neutralino and chargino contributions to d. and a, are pre-
sented in Sec. 3.2. These results are in turn used in Sec. 3.3 for a detailed discussion of
numerical results concerning low-energy observables and their impact on parameter space.
Chapter 4 is devoted to the investigation of the relevant production cross sections. After
defining the kinematical situation in Sec. 4.2 the elementary steps in the calculation of
these cross sections are presented. Using the perturbative treatments of sparticle mixing
the results for production cross sections from Sec. 4.3 are treated semi-analytically with
the goal to work out the dominant sources of phase-dependences for each production cross
section in Sec. 4.4. At the end of this chapter it will be obvious which cross sections develop
strong dependences on phases and for what reasons. Chapter 5 introduces and discusses
polarization vectors for produced fermions. Before a few generalities and definitions for the
calculation of polarization vector components are introduced in Sec. 5.3, the problems asso-
ciated with the construction of C' P-asymmetries without including secondary decays to the
investigated production channels are reviewed in Secs. 5.1 and 5.2. The results for polariza-
tion vector components in the presence and in the absence of initial state polarization are
presented in Secs. 5.3.2 and 5.3.3. The most interesting ones of these components (in the
absence of initial state polarization) are finally discussed semi-analytically in Secs. 5.4 and
5.5. Chapter 6 introduces the significances S(f; f2) and S(fif»), describes their numerical
calculation and overviews the information contained in them critically. The elementary
properties of both significances and of their correlations are investigated in Sec. 6.2 for the
general case and illustrated using simplified toy-models for phase-dependent cross sections.
Finally Part II is completed by the presentation of numerical results for high-energy observ-
ables in Chapter 7; these results and various sets of correlations of high-energy observables
among each other and with low-energy observables are broadly discussed with respect to
the findings of Chapters 3, 4 and 5.

The analysis of a decay chain presented in Part III starts with a short introduction to
models with inverted hierarchy and their phenomenological implications in Chapter 8. Ap-
proaches to construct C'P-asymmetries from SUSY decay chains and first experimental
consequences of these are summarized in Sec. 8.2. This section also applies known re-
sults to obtain for restrictions on parameter space from the experimental accessibility of
C P-asymmetries and from theoretical predictions on their size. In Chapter 9 the rele-
vant production cross sections and sparticle decays are briefly addressed and investigated
numerically for a parameter set optimized by the findings of Chapter 8, this numerical
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investigation serves as “pre-study” for possible asymmetries. Afterwards several experi-
mental issues are discussed in Sec. 9.3, these issues finally complete the criteria for the
“optimized” parameters sets, which are in turn used as inputs for the case studies in
the same section. Within these case studies the previously introduced C'P-asymmetries
in terms of laboratory frame observables are investigated numerically using Monte Carlo
techniques for the phase space integration. The discussion of the results of these case
studies is also contained in Sec. 9.3.

The results of Parts IT and III are summarized in Chapter 10. First the results of Parts II
and IIT are summarized separately in Secs. 10.1 and 10.2, respectively; first conclusions are
also drawn in these sections. Consequently, Sec. 10.3 is a kind of synthesis of the findings
of Parts II and III, more common conclusions are given here. Finally the thesis closes with
a short outlook on the issue of C'P-violation in the MSSM. Note that various details of
technical nature appearing through the course of the thesis are given in the appendices.



Chapter 2
Masses and interactions

After collecting the basic assumptions on SUSY parameters and investigating the physical
phases as relevant for the thesis, the appearing mixing patterns between current eigenstates
are briefly discussed using analytical and perturbative results. The relevant parameters
are summarized briefly. The chapter closes with a collection of the relevant parts of the
interaction Lagrangian.

2.1 Assumptions on SUSY-parameters

As laid out in Sec. 1.1.2 experimental data strongly indicates that flavor mixing in the
slepton sector is negligible. This observation is most easily accommodated by assuming
the soft breaking parameters for sleptons—Al,, (ml?L)ij, and (ml?R)ij,—to be diagonal in
generation space. Such an assumption is made in Part II and III, with the extension that
the soft breaking parameters for first and second generation sleptons are even identical.
Note that under this assumption of diagonality in generation space the only mixing in the
slepton sector occurs between SU(2) dublett and singlet sleptons, I; and iR, respectively.
Neglecting the “colored sector” (quarks, squarks, gluons and gluinos) from the further
discussion! the physical phases of this simplified model are now (re)addressed. In the
limiting case of universal A terms for all slepton generations and working in a basis for
(lepton) superfields where the Yukawa coupling Z-lj is diagonalized with real and positive
eigenvalues, the remaining complex parameters are ju, m2,, A, M, and M,. According
to [36] the supersymmetric Lagrangian possesses two global U(1) symmetries,? of which
one is broken® by p and m?, and the second by by u, A, My, and M,. Therefore these
symmetries can be used to eliminate two phases of these five complex parameters by suitable
redefinitions of the fields. The remaining three phases, being combinations of the initial
five phases, are the so called “physical phases” or “rephasing invariant combinations of

phases”. In the case of the discussed, simplified model these physical phases are given as

®,4 = Arg [M; M]], (2.1a)
P = Arg [uMomi}], (2.1b)

!This is a suitable simplification since only purely leptonic observables are involved in this thesis.

2These two symmetries were already included during the counting of physical phases of the general
MSSM in Sec. 1.1.2.

3This is to say, terms linear in these parameters are not invariant under the two U(1) symmetries.
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O = Arg[AM]]. (2.1¢)

Since physical observables are invariant under such redefinitions of the fields, their phase-

dependence can only arise from the physical phases in Eqgs. 2.1 and from combinations of
these phases. For example, in a convention where m?, is real, the combination ¢, + ¢; is
expressed in terms of rephasing invariant quantities as

Ou+ 91 =Ps+ Pp. (2.2)

The consideration of physical phases (rephasing invariant quantities) is rather helpful since
the requirement that physical observables only depend on them offers a stringent check
for the consistency of calculations performed with unfixed conventions for the complex
parameters. This is the elementary reason for treating M, as complex in Chapter 2 and
Sec. 3.2.2. The convention ¢o = 0 is applied from Sec. 3.2.3 onwards if not noted otherwise.
Note that the convention Arg[m?,] = 0 is invoked throughout the thesis, this convention
removes C' P-violation from the tree-level Higgs potential [2]. For more details on rephasing
invariance see [54] or, more elementary, [64].

2.2 Mixing of superparticles - analytical results

All mixing patterns between the current eigenstates relevant within the framework of this
thesis can be calculated analytically. The results for the mixing of sleptons, charginos and
neutralinos are briefly summarized in the next three subsections. All our results have been
obtained by calculations independent from the ones published so far by other groups. The
results within this thesis are found to be consistent with these.

2.2.1 Sfermions

Using the above assumptions the generic slepton mass term is given by [2]

RPN A (/4 N A A W
£l = (0, ) w7 ) =) (2.3)

-~

where the entries of the mass matrix M12 are defined as

2
X;=m} +m? + COSQ B vz —on2), (2.4a)
Yi=mi + mlgR + cos2B(Mz — Mg,), (2.4b)
Z; = my | A} + ptan ] e, (2.4c)

where m; is the mass of the charged lepton [, ml?L . and A; are soft SUSY breaking param-
eters, p is the Higgsino mass parameter, and tan ,ﬁ is the ratio of the vacuum expectation

values of the two neutral Higgs fields. In general, u = |ple!®* and A; = |A4;|e"*4 can be
complex, while all other parameters appearing in Eqs. 2.4 are real. Here, ¢; is the argument

of the off-diagonal entry, which is given by

o7 = arg(—A; — p* tan ) (2.5a)
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|:U/| Sin(¢Al + ¢u)
= ¢4, — arctan < . 2.5b
f ot A+ u]cos(, + 07) (2:30)
The hermitian mass matrix Ml2 is diagonalized by a unitary transformation U;
UIM2U; = diag(m3 ,m?), (2.6)

which may be parametrized as [65]

- costy —sinfe i\ [ U;
Ur= ( sin f;e' cos 0; ) N ( Up )’ (2.7)

where —7/2 < 6; < 7/2 and 0 < ¢; < 27 and the eigenvalues are sorted in an increasing
order. After introducing the quantities

2 2
mp X+ Y

—2
Ap=md —md = (X, - Y)? + 412 (2.8b)
one obtains for the mass eigenvalues and mixing angle
—  Aj
mi =M F 71 (2.9a)
Z X;i—Y;
sin 20; = —2%, cos 20; = lTZl' (2.9b)

Some simple observations on slepton mixing should be mentioned after all these formulae
were given: first of all, I denoted the first and second line of Uj in Eq. 2.7 by U;; and Up,
in order indicate to which entry of U; results in a SU(2)-doublet (singlet) component of
the i.th mass eigenstate: . . .

This notation will allow an easy back-tracing of contributions in observables to interactions
with SU(2) or U(1) gauge bosons. Second, Eqgs. 2.4 and 2.9 show that the amount of left-
right mixing in the slepton sector is controlled by the absolute value of the off-diagonal
entry in the mass matrix. In the case of the absolute value of this entry being negligible
compared to the diagonal entries, left-right mixing is absent and only the two choices
6; = 0 or §; = 7/2 corresponding to m; < my, and m; < my; for 6; are possible.
Therefore, in the case of collider physics concerning processes which involve first and/or
second generation sleptons, slepton mixing can safely be neglected, since m, , < mi, -
This is no longer correct, either if leptonic dipole moments are considered since then the
corresponding operators involve at least one power of the lepton mass, or if high energy
signals with third generation sleptons are studied. Furthermore, Eqgs. 2.4 and 2.9 also
indicate that increasing values for |u| and/or tan 8 enhance left-right mixing. Finally,
Eq. 2.5b clearly illustrates that ¢; itself is no rephasing-invariant quantity and therefore
cannot solely enter a physical quantity.

As sneutrinos are only present as components of left-handed superfields in the MSSM,
there is no partner to mix with and their mass simply reads

1
my = mlgL + 5 €os 2BM3. (2.10)
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2.2.2 Charginos

The Dirac mass matrix for charginos mixes the SU(2) gaugino W= and the charged Hig-
gsino H*. The corresponding mass term reads as [2]

Ex;xg _ (F
v == (UrMc¥y +hoe). (2.11)

Using the basis (W*, }NI*> the Dirac mass matrix M is found to be
M, V2Myy cos 3
Mg = 2.12
© < V2 My sin 3 m ’ (2.12)

where the soft breaking mass parameter My, = |M,|e'?? for SU(2) gauginos is taken to be
complex here for the reasons given in Sec. 2.1. In general it can be made real without loss
of generality by appropriate field redefinitions. This mass matrix is asymmetric and hence
has to be diagonalized by bi-unitary transformations Ug and Uy,

UpMoU} = diag(mg-,my-). (2.13)

It follows that the increasingly ordered mass eigenstates (Y; )o are given as

( i; )L,R — Upr ( g_ ) . (2.14)

For the mixing matrices U, and Uy the following structure can be assumed [66]

B oS ¢, sin ¢pe”Pr

U= < —sin¢rer  cos¢r ) ’ (2.152)
[ em 0 cos g sin pre PR

Ur = ( 0 e ) ( — sin pre?Pr cos Op _ (2.15b)

with —7/2 < ¢ r < /2 and 0 < 7y19,6,r < 2m. Here 7, and 7, denote two possible
Dirac phases which have to be introduced to ensure that the eigenvalues of M are real
and positive. The parameters of Uy, and Ug can be determined from Mé]\/[c and MCMg,
respectively. Introducing the quantity

A = { (1M = |uP)” + 40, cos?(26) + 405, (|M ] + |l
1
+8 My ||| Ms| sin 23 cos(¢, + ¢2) } 2
= m% — mfhi, (2.16)

we obtain for the mass eigenvalues

1
m2. = 5 (|Ma)* + |uf? + 2My, F Ac) (2.17)

i
The mixing angles can be computed from

—|My|? + |u|* + 2M3, cos 23

2.1
X (2.182)

cos2¢;, =
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4M 1
sin 2¢;, = \/_AW (|Ma)? cos® B + |u|”sin® B + |Ms||p] cos(¢, + ¢2) sin283) 2, (2.18b)
c
—|M,)? 2 _ oM 2
oS 2¢ M)+ w €08 5, (2.18¢)
Ac
—4 My 2 2 2 . 2 - 3
sin 2¢p = (|Ma)?sin® B + |u|? cos® B + |Ms||p] cos(¢, + ¢2) sin283) >, (2.18d)

and the phases read
|11] sin ¢, — cot B| My | sin ¢,

t = — 2.19
an f || cos ¢y, + cot B| Ms| cos ¢y (2.19a)
tan 3 || sin ¢, — tan S| M,|sin ¢y (2.19h)
R || cos @, + tan S| Ma| cos ¢y’ '
M3, |p|sin28 cos ¢, + MQ(mzi — |u)?) cos ¢
cot Y] = = _ , 5 , , (2.19¢)
M, |p| sin2fsin ¢, — MQ(m>~<1i — |1|?) sin ¢y
\p|(m2. — MZ) cos ¢, + ME, My sin 23 cos ¢y
cot yy = — u (2.194)

|u|(m>2~<;t — M2)sin ¢, — M3, My sin 25 sin ¢y

Eqs. 2.18 and 2.19 show that the mixing angles which contain only rephasing invariant
combinations of ¢, and ¢, can be physical quantities while no phase, all of them containing
¢, and ¢ separately, can enter an observable solely.

2.2.3 Neutralinos

The most dedicated mixing pattern occurs in the neutralino mass matrix as it mixes the
neutral components of both Higgsinos H?’Z with hypercharge £1/2, the U(1)y gaugino

By s e N\T
BY and the SU(2) gaugino W3. Using the basis £° = (BO, Wy, HY, HS) , the mass term
reads [2]

. 1
Ly = -3 (€)" Myoc® + hec, (2.20)
with the mass matrix Mo
My 0 —My cos Bsinfly, My sin 3 sin Oy,
Moo — 0 My — My cos Bcos by My sin 3 cos Oy
X7 | =My cos Bsinby  — My cos B cos Oy 0 —
M sin (3 sin Oy, M sin [ cos Oy — 0

(2.21)

The U(1)y gaugino mass parameter M; = |M,|e’®* generally is complex. This mass matrix
is symmetric and hence has to be diagonalized by a unitary transformation N as follows

NTM oN = dlag(m $0, g0, Mgo, My 0) (2.22)

X2? X337 X

where once more an increasing order of the mass eigenvalues is assumed. Therefore the
n-th mass eigenstate is given by the complex conjugate of the n-th column of N

(;z?) = N}, (2.23)
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and satisfies
Mo ()" = mge (0)", (2.24)

when written in the given basis, and is not an eigenvector of My in the usual sense.

The mass eigenvalues and the mixing matrix elements can even be calculated analyt-
ically for arbitrary CP-phases ¢,, ¢, and ¢, [67,68], but the general expressions are too
lengthy and allow little insight in the involved physics, so they are not presented here.
Contrarily, a better physical understanding of neutralino mixing is achieved by performing
a perturbative diagonalization of the mass matrix as presented in the next section. Of
course, a numerical calculation of N is straightforward.

2.3 Mixing of superparticles - perturbative results

As already stated above, the analytical results allow only limited insight into the dynamics
of particle mixing. A much deeper insight into the parameter dependence of mixing param-
eters is obtained if the mass matrices can be diagonalized by using a perturbative approach.
In the case of all three mixing patterns which have already been treated analytically a suit-
able expansion parameter can be found. Hence such an approach is possible. The most
important results of the perturbative treatment of particle mixing will be illustrated in this
section.

2.3.1 Sfermions

In the case of slepton mixing the necessary conditions for a perturbative treatment are
given by

my L my, —my |, (2.25a)
My — My, < mi —mj (2.25b)
| A} + tan Bu| ~ m; +m; . (2.25¢)

If these conditions are fulfilled (the trigonometric functions of) the mixing angles are given
as

2 2
my —m; 1 if m; <ms:
cos 26; ~ % = { £ iz lr? (2.26a)
mf — 7nl~2 -1 1 mj, > mj,.,
1 my|Af+ptan 8| .
s 122 9 my < ms;
. my|AF + ptan g 2 mf —m} Iz lr?
sin 26; ~ 2 oy = (A g tan B (2.26Db)
- — = 1my M tan .
mh ml2 — 3 mgl 2 if m[L > mfRa
L lr
and the mixing angle reads
1\ m|Aj+ptan Bl . B B
(1) =S i my, <my,
b7 ~ LR (2.27)

) my|Af +p tan B

vl

= (

if my, > m[R.

=

iL g
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In contrast to the mixing angle 6; the phase ¢; is independent of the lepton mass, Eq. 2.5b
yields explicitly

—|p|sin(¢, + ¢a)
|| cos(da + bp) + cot B A|

This expression simplifies only if an assumption on the relative size of the entering SUSY-
parameters is made

¢; = ¢a; + T + arctan [ (2.28)

bt i |ultan > |4,
o1 = { da+7 if |p|tan < |A]. (2.29)
Note that the reliability of the perturbative treatment of slepton mixing is not only limited
by Egs. 2.25a and 2.25b, but also by Eq. 2.25¢: overlarge values of the off-diagonal entry
| A%+ p tan 3| compared with m;, +m;, can (over)compensate the negligible ratio m;/(m;, —
mj,) and may therefore lead to a break-down of the perturbative ansatz. Due to the rather
large mass of the 7 lepton, perturbative treatment of stau-mixing should only be used with
great care.

2.3.2 Charginos

A perturbative treatment of the chargino matrix is possible, if
My < |[|p] = |Ma]] (2.30)

holds. As ansatz the following expansion of the mixing matrices Uy, and Ug into powers of
My is chosen:

[ 1+en €12 . o 1+ Bn Bi2
U= < €21 T+ €2 ) ’ Ur=FVr=P ( P21 L+ P2 )’ (2.31)

where the matrix P = diag (¢!, ") separates the Dirac phases from the mixing matrix
Ug. The €;; and j3;; denote possible contributions to chargino mixing in O(My). The mass
eigenvalues are expanded analogously

2(0 2(1 2(2
mzi = mfc(i) + 5m>~<(ii) + 5m>~<(ii), (2.32)

i i

where 5m>2~<(_f) indicates the n.-th order correction to the squared mass of the ¢.th chargino

and mz(ﬁ) is the corresponding, squared mass in (.th order. Keeping only terms up to
O(M?;) one finds for the entries €;; and f3;;
€11 = €22 = f11 = Ba2 = 0, (2.33a)
* —M \/§ : *
€19 = —€5 = m [Ms sin 3 + p* cos 3], (2.33b)
— M2 :
Pz = =P = EESIAR [M3 cos B+ psin 3], (2.33¢)

while the corrections to the squared eigenvalues (m;(if) = (|Ms|, |1u])) are

5m§$) =0, 5m§$) =0, (2.34a)
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—2 M, | M|
om?P) = W2l in 2 2.34b
mX1 |:U’|2 _ |M2|2 H 2| + |M|Sln BCOS(¢M+¢2)]1 ( )
2My |1
om?P = Wil + | M| sin 23 cos(¢p, + , 2.34c
X:2t |,U/|2 — |M2|2 [|/l’| | 2| (¢H d)Q)] ( )

if the hierarchy |u| > |M,| is assumed. Then the correction to the masses themselves read

2
2 _ _ —My :
5m>~<1i = =GP [|Ma| + |p] sin 28 cos(¢,, + ¢2)], (2.35a)
2
@ My My sin 2 2
(5mﬁ PIEESIYAE (|| + | Ms| sin 26 cos(¢,, + ¢2)] - (2.35b)

Finally, the expressions for the Dirac phases v, and v, read

MI%V |M| . Sin(¢2 + d)u)
t = —t - Y S A 2.36
o o |u]? — | Ma? | Mo 20 cos?hy ( )
M3, |Ma| . _sin(és + @)
t S— Y p 2 2.36b
A% = ANt LT LE Ja Tt cost g, (2.36b)

Basically these results can also be derived by a perturbative expansion of the analytical
formulae given in Sec. 2.2.2, but the illustrated ansatz is more straightforward and can
easily be extended to higher orders in Myy. Furthermore, a violation of the condition in
Eq. 2.30 indicates a breakdown of the perturbative diagonalization of the chargino mass
matrix. More details on the approach for a perturbative diagonalization of the chargino
mass matrix may be found in App. A.1 and App. A.2.

2.3.3 Neutralinos

For a perturbative treatment of neutralino mixing the sufficient conditions are
My < |pl, [ Mal, |Ma], (2.37a)
My < ||ul = [Myl], [[p] = [Me]]. (2.37b)

The basic idea in the perturbative treatment is to expand then eigenvectors and masses
into powers of M

Mmyo =~ mg? + 5m§~<1?) + 5m§~<2?), (2.38a)
eid:”
B o (0004 (50,00, + (52,62,62,60)] . (2390

where qSZ(-O) denotes the phase associated with the i.th eigenstate in O(M}) and N; is a
normalization factor. Explicitly, the 0.th order eigenstates are [69]

()@ = (e,0,0,0), (2.392)
() = (0,%2/%,0,0), (2.39D)
¢ilButm)/2

(ig)(o) = (07 0,1, 1) (2.39(:)

IR
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\/5 .

In contrast to the perturbative treatment of chargino mixing, where a degeneration of
the mass eigenstates only occurs for |Ms| = |ul|, the two Higgsino-like eigenstates are
always degenerate in the neutralino sector. This point may lead to some problems in the
entries containing Higgsino-Higgsino mixing, however it can be shown that these entries
are irrelevant for Part II. For more details on the perturbative treatment of neutralino
mixing in general and on this problem see App. A.1 and App. A.3. Using the results in
App. A.3, the corrections to the masses are given as

(22)(0) = (07 07 ]-7 _1)

(2.39d)

omly) =0, (2.40a)
—MZ2sin%6 ,

5m§;?> ~ W [|My] + |p] sin 2 cos(¢, + 61)] (2.40b)
—M?2 cos® 6

om) ~ —— 2 W (| M| + || sin 28 cos(d,, + )], (2.40¢)

e [uf? = [ Maf?
f? — [ ML

5 2 M 2 O s
Mg [|12] F [Mi] cos(@y + é1)] + cot” Ow 12 — [My]?

(4] F M) cos(6, + @)1}

y M2 sin® 0y 1 F sin 23
> = |M 2 2

(2.40d)

The first order corrections to the eigenstates relevant for the later calculations are

(1) MZSiHGW

O3 = 03 2
|ul? — | M|

5(1) . MZ sin 9W

(M7 cos f+ psin ), (2.41a)

W= g (Misin g+ peos B), (2.41b)
My cos
o) = — ZTPIW (ko8 3 4+ pusin , 2.41c
23 |M|2_|M2|2( 2 5 2 5) ( )
My cos
o) = 272 W rxsin B+ pcos , 2.41d
24 |M|2_|M2|2( 2 5 H 6) ( )
My sin 6
oW — _ 22 7W (in B — cos *— M), 241e
31 |M|2_|M1|2( 5 5) (M 1) ( )
My cosf
o) = 27 W (6in B — cos *— M,), 2.41f
32 |M|2_|M2|2( B 5) (/l’ 2) ( )
Mz sin 6
o) = - 22 W (0 B+ cos 4+ M), 2.41
41 |/L|2— |M1|2 ( 5 5) (M 1) ( g)
M 0
5 — 22208 Uw (sin B + cos B) (u* + M), (2.41h)

o ul? — (M
while the second order corrections to the relevant off-diagonal entries read

M sin O cos O [|M1|* + M} My + sin 2B8(p* M} + py)]

5@ _ :
” (IMa|? — [My2)(|pf? = [M:]?)

(2.42a)
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52 _ M2 sin Oy cos Oy [| Ma|> + My My + sin 28(p* My + puMy)]
! (IMa]? = [My2)(|pf? = [Ms]?) '
For the O(M3)-corrections to the diagonal entries 5;2), no closed formulae can be found;
hence their real and imaginary parts have to be calculated separately. The real parts

(2.42D)

Re [51(12)] are related by the unitary conditions with O(My)-corrections via

Re[s] =3 3

k, k#i

2

5| (2.43)

ik

whereas the imaginary parts of the relevant diagonal entries read
1 MZsin®Ow |p
2 [pf? — | My |2 [ M|

1 MZcos? Oy |l
T [0 | = =2
Sl R Y PER VAR T A

Eqgs. 2.41 to 2.44 show that the expansion will already break down if the condition in
Eq. 2.37b is not fullfilled. In other words this implies that even if all dimensionful parame-
ters in the neutralino mass matrix are > M a large mixing between gaugino and Higgsino
can be generated. Furthermore it should be mentioned that corrections of O(My) only af-
fect gaugino-Higgsino mixing, which is absent in order O(M2). Contrarily, corrections of
O(M?3) only affect gaugino-gaugino mixing and Higgsino-Higgsino mixing.

Im [69] sin(¢,, + ¢1) sin 23, (2.44a)

sin(¢,, + ¢2) sin 2. (2.44D)

2.4 Summary of involved parameters

| [ tan 8 [ lul | ¢ | M [ &1 | Vo] [ 62 [ [Ad [ @4 | g, [, |

slepton sector X X | X | — | —| — |—| X X X X
chargino sector X X | X —_ | — X X | — | — | — | —
neutralino sector X X | X X X X X | — | —| — | —

Table 2.1: Summary of relevant SUSY parameters. Here “x” denotes the presence of a
parameter in a sector of the model, whereas “—” indicates its absence.

Under the assumptions given in Sec. 2.1 the mixing patterns in the part of the SUSY
spectrum relevant for this work depend on 11 SUSY parameters. Some of these parameters
(mg,, mj_, |Ail, ¢a, |Mi], ¢1) only enter into a single sector (sleptons and neutralinos,
respectively), while |Ms| and ¢, appear in both the neutralino and chargino mass matrix,
and |p|, ¢,, and tan /3 affect all three sectors. Therefore the mixing patterns in the separate
sectors are partly correlated to each other. In particular, choosing the parameters of the
neutralino mass matrix completely determines the chargino mass matrix as well. Moreover,
increasing |u| suppresses gaugino-Higgsino mixing but enhances left-right mixing in the
slepton sector. Finally, taking tan # > 1 again enhances left-right mixing but reduces the
impact of all phases on the physical masses. The relevant SUSY parameters and their
impact on the three discussed mixing patterns are summarized in Tab. 2.1. Of course, all
observables that will be investigated later on contain dependences on SM parameters like
M or sin 6y, whose values are already known to a good accuracy.
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2.5 Interaction Lagrangian

In order to make this work self-contained as well as to fix the notations the next three sub-
sections present a short collection of the relevant pieces of interaction Lagrangian expressed
in terms of mass eigenstates. I start with the interactions involving only SM-particles,
continue with interactions between SM-particles and superparticles and close with pure
supersymmetric interactions.

2.5.1 SM part

The only part of the SM interaction Lagrangian relevant for this work is the well known
coupling between charged leptons and gauge bosons

Linz = el (A,Q5" Pu+ Z,Q5'Pa) 1. (2.45)
where e is the QED coupling constant and P,, a € {+,—} = {R, L}, are the standard

chirality projection operators defined as P, = (1 & 75)/2. The linear charges in Eq. 2.45
are

Q' =1, P = —tan Oy, (2.46a)
-1 1
.y —,l 102
v — 1 VY= —_ 0 —_ = . 2.46b
@ ’ 7 sin By cos By (sm v 2) ( )

Other parts of the SM interaction Lagrangian are not required here.

2.5.2 Gauge interactions with sparticles

Slepton left-right mixing does not affect the coupling between sleptons and photon, it only
enters the coupling between sleptons and Z-boson. Therefore the vertices with two charged
sleptons and a gauge boson are defined via the momentum-space Lagrangian

Liir = ¢ (AuQ5 + Z,Q37 ) (h + by L) ()", (2.47)
where i, 7 € {R, L}. The corresponding linear charges Qlj% are
QQ” = 0ij, (2.48a)
1
Lid — 5. |tan Qur — N (U, | 2.48b
Z “ [ anvw 2 cos By sin Oy (G, (Ul)“] (2.48b)

In the case of high-energy applications with selectrons involved, left-right mixing can safely
be neglected within the coupling between sleptons and Z-boson. Hence the coupling reduces
to 4

. 1
5 = —6;; |tan by — 0it | - 2.4
@7 " [an " 2cos Oy sinfy (249)

4As only the d, and the a, are considered the coupling to the Z-boson is irrelevant for the low-energy
observables and the neglect of selectron (smuon) mixing within this vertex is without consequences.
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The couplings between physical Majorana neutralinos and the Z boson are given by

(&

Loven, — 7. X0 Q% p 0 2.50
X377 95in Oy cos Oy pXi" Qo Faj, (2:50)
where the linear charges Q;;fj are defined as
+j AN x £) —
QL = - (QXO ) = 5 (NaiN3; = Nuly)) = Z. (2.51)

The first equality in Eq. 2.51 follows from the Majorana nature of the neutralinos. Of
course, there is no neutralino-photon coupling.
Finally, the interactions between neutral gauge bosons and charginos are given by

Lo =X 1" (QS Pady + PaZ,Q30,) X5 (2.52)
with
Q= Q3 = b, (2.53a)
s A (sin? Ouwd; — (W), (2.53b)
X5Z cos By sin Oy J ij

The matrices (W.),; can be obtained from the chargino mixing matrices Uz, and Ug via

1
(Wﬂ:)ij = (Ui)ﬂ (Ui);1 + 5 (Ui)m (Ui)}} [+, - =R, L] J (2-54)
and read explicitly in terms of chargino mixing angles and phases as
3,1 1 i
3+ lcos2¢ —isin2¢ppeir
— TR , 4
W-= ( Usin2grets I Loos2g, ) (2.55a)
3,1 1 i(v1—Br—7:
2 4 7 c0820R —=sin 2¢Rel(% Br—"2)
— 4 4 - 4
W+ - ( —i Sin 2¢R6_Z(’71_/3R_’Y2) % _ iCOS 2¢R . (255b)

2.5.3 Pure SUSY interactions

The relevant “pure” SUSY interactions are the ones between sleptons and chargino or
neutralino. The neutralino-slepton-lepton vertices receive contributions from both gauge
and Yukawa interactions

e

I N al ! ~07.
Lio = Toam 9Wl (G +Y5) Paxili + hec., (2.56)
with
Y;; = —\/§Y2N3i (Ui)lj , Gz; = —2tan Hth (Ui)2j , (2573)
Yif = —V2ViNg (Up),,, G = (tanOw Nf; + N3;) (U),; - (2.57b)
Here the dimensionless, rescaled Yukawa coupling Y] is given by
Y; i (2.58)

B V2My cos
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Note that terms proportional to Y} as well as a non-trivial sleptonic mixing matrix U; have
to be kept when computing leptonic dipole moments. On the other hand, for high-energy
applications Y, can be set to zero, which implies YZJi = 0 in case of selectrons. In the same
limit left-right mixing can be neglected, in which case the gauge contributions Giij simplify
to

G;] = —2tan QWNli(SRja (259&)

G = (tanw Ny + N3;) or. (2.50b)

The coupling between chargino, sneutrino and lepton also receives gauge and Yukawa
contributions

€ o Qjr~x
a5t = in X; Na,iPlU) + h.c., (2.60)
where
NC“’i = —lar (UR)il + dar (UL)iQ Y. (2.61)

As before, the term proportional to Y, in Eq. 2.61 can be dropped in collider physics
applications, but it has to be kept when computing the leptonic dipole moments.
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Chapter 3
Leptonic dipole moments

This chapter starts with a short summary of the introduction of leptonic dipole moments,
the current status of experiments concerning leptonic dipol moments, and a derivation
of the bounds on the possible SUSY contributions. Next the analytical results for these
contributions as relevant for this work are summarized to some extent and perturbative
expressions for these low energy observables are given. The chapter concludes with a
presentation of the parameter scenarios which will be explored in the remainder of the
thesis and a detailed numerical analysis of the low energy compatible phase ranges within
these scenarios.

3.1 Status and relevance of leptonic dipole moments

3.1.1 Introducing leptonic dipole moments

This introduction to dipole form factors closely follows Ref. [54]. First of all, the most
general effective Lagrangian describing the interaction of a neutral vector boson V with
two fermions can be written as

Lysp =VH@)U(2) [vulgv — g9a75) + i 0 (9u — i9E7Y5) +1 0 0 (975 — igreys) | U(z)

+ [10"VY (2)] W() 9, (195 + 9PYs) + o (igrmr + grEYs)] ¥ () + h.c. (3.1)

Only operators of dimension four or five are included here. The reason for this restriction
will be clarified later. When Ly sy is restricted to dimension four and five operators, the
given operators and complex coefficients g; are independent from each other and describe
the V f f interaction completely.

The next step is to classify these operators with respect to their chirality behavior and their
transformation properties under C-, P-, and T-transformations. This is done by using

(1775) = P—|2—:|:P27
U (1,9, 00) Py = (Vg Uiy, Uroy,)
as well as the properties of V# and ¥ under these transformations as they can be found

in standard text books such as [70,71]. The results of this classification are summarized
in Tab. 3.1. In accordance with Ref. [54] it may be observed that out of the dimension
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operator coefficient || C | P | T || CP || chirality flip
VAU, U av + |+ |+ || + NO
VME’)/M’YE)\I’ Jga — | - + + NO
Vil 9, o |+ |+ ]+ + YES
VIT 3, 7,0 . vl = - YES
VIT; 0 0,0 R (R A YES
Vi 5;/ ) ] grp — | =]+ | * YES
0-V)TU Js — |+ - - YES
(10 - V) Uy U gp — | =+ | + YES
(0"V¥) Vo, ¥ grv || F ||+ YES
(10*VV) WJW%\II ITE + 1 =1 = = YES

Table 3.1: Classification of the operators in Eq. 3.1 by their properties under C-, P-, and
T-transformations and their helicity flipping behavior. A similar table is given in Ref. [54].

four operators only those two that are proportional to the usual vector and axial couplings
gy and g4 are chirality conserving while all dimension five operators are chirality flipping.
Furthermore the operators associated with gy, g4, g9, 9p, 9ra, and grp are even under
a C P-transformation, whereas the operators proportional to gz, grs, gs, and grg are odd
under such a transformation. Therefore the presence of non-vanishing g, grs, g5, and grg
implies a CP-violating theory. As dimension five operators at the tree level would make
the theory unrenormalizable, all chirality flipping operators and the associated coefficients
can only originate from quantum corrections in renormalizable theory.

The effective Lagrangian in Equation 3.1 is Fourier transformed to obtain the effective
V f f vertex in momentum space as [54]

U =i[yu(fv = favs) + (0 — Qu(far +ifevs) + (a4 @)ulifs + fps)
+ (¢ — )0 (frs +ifreys) + (¢ + @) o (frm +ifreys)], (3.2)

where ¢ and ¢ are the outgoing momenta of the fermions. The complex form factors f; are
functions of the kinematical invariants. Eq. 3.2 gives the most general Lorentz structure of
the effective V f f which justifies the restriction to dimension five operators in Eq. 3.1 by
the following argument [54]: Adding an additional dimension six operator to the effective
Lagrangian Ly ;s would indeed lead to a new coefficient gg in Ly, but by the Fourier
transformation to obtain the effective vertex Fl‘ff / this operator can not result in a new
Lorentz structure. Hence the contribution of the Fourier transformed dimension six oper-
ators can be absorbed into a redefinition of the corresponding form factor f; obtained by
the Fourier transformation of dimension four or five operators.! Therefore the form factors
fi can be considered to be more general than the coefficients g;. The second reason for

LAs an example consider the dimension six operator g60,0”V#W¥~, ¥ which Fourier transforms into a
contribution « gs(g + 7)*7, and hence can be absorbed into the contributions of the Fourier transformed
dimension four operator V“WWM\II.
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restricting the operators in Eq. 3.1 to dimension four and five is that additional dimension
six operators in the discussed case can arise only from inserting an additional derivative
acting either on the bosonic or the fermionic field. Hence we expect an additional, relative
suppression of contributions from such operators by the ratio of external momentum to
internal mass scale. In the case of SUSY contributions to d, or a,, this ratio is either the
vanishing momentum of the photon or the lepton mass divided by the mass scale of the
internal SUSY particles, and hence can be safely neglected for lepton dipole moments.
The number of independent form factors f; can be reduced significantly by imposing on-
shell conditions both for the fermions and the gauge bosons. Using Gordon identities as in
App.B.3 eliminates® fras, fre, frs, and frp, whereas fg and fp are removed from Fl‘ff ! by
using the gauge bosons on-shell condition (¢ +¢),e* = 0. After these simplifications the ef-
fective V f f vertex for two on-shell fermions and one on-shell gauge boson is conventionally
represented by [54]

Ty (s) = ie {% (VY (s) — A7 (s)75) + o (a0 + )"

) d¥(8)75] } . (33)

2my e

where m; is the fermion mass and e is the standard QED coupling constant. The form
factors V" (s) and AY (s) are connected with chirality conserving, C'P-even operators. Con-
trarily, the form factors a} (s) and dj (s) are associated with chirality flipping, C'P-even,
respectively C'P-odd operators. All of them only depend on the gauge boson’s momentum
via s = (¢ + ¢)%. In a renormalizable theory the two chirality flipping form factors, known
as anomalous magnetic dipole form factor and electric dipole form factor respectively, can
only receive contributions from quantum corrections from operators with dimension five
(or higher).

The electric dipole moments are obtained by specifying V' = v and taking the limit s — 0.
Finally, the anomalous magnetic dipole moment of a fermion (AMDM/) and the electric
dipole moment of a fermion (EDMy) are

EDM; = d}(0), (3.4a)
AMDM; = a7(0). (3.4b)

The most important conclusions from this introduction to dipole form factors are these:
Firstly, a}(0) and d}(0) are associated with chirality flipping dimension five operators. This
implies that in the explicit calculation of the SUSY contributions to these form factors the
Yukawa coupling may not be neglected, even for electrons and muons. Furthermore, as
counterterms can only be given for dimension four operators, the SUSY contributions to
a}(s) and d}(s) have to be UV-finite, i.e. all e-divergences from dimensional regularization
of the various appearing tensor loop integrals have to cancel out in each of these two contri-
butions. Finally, d}(O) is connected to C'P-variant operators, hence a non-vanishing SUSY
contribution to d}(()) is only possible in the presence of C'P-violating phases. Contrarily,
a}(()) arises from C'P-invariant operators and therefore the SUSY contribution is expected
to be non-vanishing even in the absence of C'P-violating phases.

2More accurate, they allow the absorption of fras, fre, frs, and frp into fy, fa, fur and fg when
the condition of on-shell gauge bosons is used simultaneously.
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3.1.2 Selection of relevant leptonic dipole moments

As already stated in Sec. 1.4, purely leptonic processes are the main subject of this thesis.
Therefore the (quite stringent) experimental constraints on the electric dipole moments of
the neutron and the mercury atom are ignored, the main reason being that leptonic dipole
moments suffer much less from uncertainties due to non-perturbative strong interactions.
For example, Ref. [72] finds that different models relating the electric dipole moments of
quarks to that of the neutron or Hg typically differ by a factor of two. Since large phases in
the hadronic sector can be tolerated if there are cancellations between contributions which
have different hadronic matrix elements, a conservative interpretation of the experimental
bounds on d,, tends to give significantly weaker constraints on model parameters than does
the bound on the electric dipole moment of the electron [22]. This holds even if one as-
sumes some connection between the CP-violating phases in the squark and slepton sectors.
The only CP-violating (more exactly, T-violating) low-energy quantity of relevance to this
work is therefore the electric dipole moment of the electron d,. Given our assumption of
flavour universality of the soft breaking terms in the slepton sector, at least as far as the
first and second generation are concerned, the bound on the electric dipole moment of the
muon [18] need not be considered separately: since (d;)sysy o my, all combinations of
parameters that satisfy the constraint on the SUSY contributions to d, will be at least five
orders of magnitude below the maximally allowed SUSY contribution to d,,.?

On the other hand, our assumption of universal sleptonic soft breaking terms for the first
two generations also implies [73] that the measurement [74,75] of the anomalous magnetic
moment of the muon, a, = (g, — 2)/2, gives a tighter constraint of SUSY parameters
than does the anomalous magnetic moment of the electron. The reason for this is that for
universal soft breaking masses the SUSY contribution to these leptonic dipole moments
is essentially proportional to the squared mass of the lepton, and the experimental errors
satisfy [18,74,75] da,/m? S da./m?. This implies that the size of a possible SUSY con-
tribution to a; relative to m? can be extracted more accurately from a, than from a,.
Therefore the second leptonic dipole moment relevant for this work is a,. Note that the
SUSY contributions to d. and a, show very similar dependences on the absolute values of
the relevant parameters; however, d, receives non-vanishing contributions only in the pres-
ence of nontrivial phases, i.e. ¢ # (0,7), while the contributions to |a,| become maximal
if all phases are zero or .

3.1.3 Derivation of bounds on SUSY contributions

The derivation of an allowed range for a possible SUSY contribution to d, is straightforward.
This is because the prediction for the SM contribution is smaller by more than 5 orders of
magnitude (see e.g. [76]) than the current experimental limit [18]

(de)exp = (0.069 4 0.074) x 10~ *¢ - cm. (3.5)

Therefore the SM prediction can be neglected and the experimental limit can be directly
translated into a 20 range for the supersymmetric contribution to d,

—0.079 x 107%¢ - em < (d,)susy < 0.217 x 107*%¢ - cm. (3.6)

3The experimental bounds on d. and d,, satisfy d./d, ~ 10~® [18]; this ratio is not compensated by
my/me ~ 200.
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The interpretation of the most recent measurement [74,75] of a,,,
(ap)exp = (11659208 £ 6) x 10717, (3.7)

is less clear, since that non-perturbative hadronic terms do contribute to a,, at about the
108 level. In principle this contribution can be calculated from experimental data using
dispersions relations [77-79]. Unfortunately, calculations based on different data do not
quite agree, although the discrepancy has become smaller following the recent release of
corrected data by the CMD-2 collaboration [80]. Using ee™ annihilation data as input
tends to give a SM prediction which falls a little short of the experimental value in Eq. 3.7.
A recent analysis [81] which includes all existing ete™ data finds?

(au)sm = (11659180.9 + 8.0) x 10~ . (3.8)

Adding all errors in quadrature, this results in a ~ 2.70 discrepancy. On the other hand,
using data from 7 decays gives [81]

(au)sm = (11659195.6 +6.8) x 107", (3.9)

which is only ~ 1.40 below the measurements. Since even the eTe~ data lead to a dis-
crepancy of less than 30 between the prediction for and the measurement of a,, evidence
for a non-vanishing SUSY contribution is not claimed within this work. In order to be
conservative, the upper limit of the “20 allowed” range for (a,)susy = (au)exp — (@)sm 18
constructed by using as estimate of (a,)susy the lower value as given in Eq. 3.9, reduced
by two combined standard deviations. Similarly, the lower end of this “2¢c allowed” range
is obtained when (a,)susy is estimated by adding two standard deviations to the higher
value given by Eq. 3.8. This gives

—5.7x 107" < (a,)susy < 47.1 x 1071°. (3.10)

as a conservatively estimated range for the size of a possible SUSY contribution (a,)susy
to the anomalous magnetic moment of the muon.

The upper bound in Eq. 3.10 constrains the SUSY parameter space only for large values
of tan 3, but the lower bound is significant also for moderate values of tan 3.

3.2 Results for leptonic dipol moments

3.2.1 Analytical results

The supersymmetric one-loop contributions to leptonic dipole moments are shown in
Fig. 3.1. The left diagram depicts the neutralino contribution, the right one the chargino
contribution. Using the interaction Lagrangians given in Sec. 2.5, we find for the chargino
contribution to electric dipole moment of the electron

2
ot 1 2 N
(de)susy = 0672 Z — fi (%) Tm [c]cRi] - (3.11)

i=1 Xi

4Similar analyses, which are also using both data sets as alternative inputs may be found in [82,83].
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Figure 3.1: SUSY contributions to leptonic dipole operators

The chargino loop contribution to the magnetic anomalous magnetic moment of the muon
is

2 2
()5 = 159 O {iffj fu (w0) Relcien] + g fs (2) [lenl? + lemsl] } - 312)

19272
i=1 X; bes

The corresponding results for the neutralino contribution read

4 2
1
(d SUsy — 967T2 Z me yla Im [anaana] (3133)

1 a=1

4 2 2
dm,, 9 9
(au)SUSY 19271'2 Z Z { yza Re [annRzoz] m f (yza) [|nLio¢| + |nRia| ] } .

i—=1 a=1 (=69
(3.13b)
The variables z; and y;, are defined as
2
m_. m%
X; [3
P= g = e 3.14
e 2, (3.14)
and the loop functions f; are
3z 9
3z 9
fo(2) = o1 (2 =1+ 2zlogz), (3.15b)
2
f3(z) = € _Z1)4 (2> — 62% + 32 + 2+ 62log 2). (3.15¢)

These functions are normalized such that f;(1) =1, = 1,2,3. Finally the couplings cg;
and n4;, may be written as

—€

‘L SiH QW( R)Zl ( a)
(&

= — YU, 3.16b

R = o 1 (UL) ;s ( )

(&

ia = —=———— | (N2 + tan 0w Ny; 2Y]N3; , 3.16
Mhin = oo (Vo tan O Vi) (U, = VOViNG (U] (8160
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—e
NRia = —F7= .
V/2sin Oy

These results agree with those of refs. [22,54,55], the neutralino contribution in ref. [24]
seems to contain some misprints. For more details on the calculation of the leptonic
moments the interested reader is referred to App. B.

2 tan Oy Ny, (Uy)r,, + V2VING (U} (3.16d)

Lal -

3.2.2 Perturbative results

The analytic expressions of Sec. 3.2.1 can be used to rewrite both chargino contributions
in terms of the loop functions f; and the basic SUSY parameters

2

N e tan Blul | My sin(d, + 6) 1 (@)

de X:t _ m e m _1 1 317

(de)Susy 4872 sin? Oy Ac ;( ) m?%* | )
~i m 2 fl :I’.Z 1 + YMQ f3 l‘l)

(a)3usy = 967r2 sin? fy { Zz:‘ m? 7= - ; m?z-i

oM+ [nf? + 2 tan || My | cos(@, + 62) + 2Miy cos 28 22:(_
Ac

i

_i (|M)? — |p?) (1 — Y‘?)A;L 2MZ; cos 23(1 + Y,?) Z(_l)z%} . (3.17b)

i=1 )2}

where A¢ has been defined in Eq. 2.16. These results are obtained by re-expressing mixing
matrix elements in terms of basic SUSY parameters, and therefore hold for the complete
SUSY parameter space. Together with Eqgs. 3.15 they show explicitly that the Chargino
contributions to the leptonic dlpole moments decouple like 1/m 2, for m? x> m?2 , and

like 1/m? in the opposite limit mZ > mxi For completeness terms proportlonal to Yu2
have been included, even though Eq. 2.58 shows that Ylf < 1; if these terms are neglected,

ot
X 2 . .
(au)§ugy X M, as advertised earlier.

Furthermore, providing a perturbative ansatz for chargino mixing as discussed in Sec. 2.3.2
can be applied, these results can be used to derive approximative expressions for the
chargino loop contribution to leptonic dipole moments. These read®

(de)§;SY’per - 487Tj sTlrlie O |/;|T;\l/[f|s(l|z§f” TA?2|) 2) [|M|2f1 (z1) — [ Ma]? fi (iEQ)] ,  (3.18a)
<t t
(au)SUSY,per = = 247: STlrIL:; O { |M|T;452|C(TZ|(§51TA322|)2) [|M2|2f1 (z2) — |M|2f1 (xl)]
1 f3 (xl)
TEZ LR [fi (x2) = fi (21)] - IAE } : (3.18b)

Analogous statements also hold for the neutralino contributions, but because of the more
complicated nature of neutralino mixing it is extremely difficult to find a simple exact
analytic expressions for these contributions. However, making use of the results of the

>The ordering |Ms|? < |u|? is assumed here.
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ansatzes for a perturbative diagonalization of the slepton and neutralino mass matrices
as presented in Sec. 2.3.1 and Sec. 2.2.3, one can derive approximate expressions for the
neutralino contribution to d. and a,

v 2 A*+utanﬁ|f2(x3)—f2(xL)
DE . cm [ _—
( )SUSY,per. 9671'2 COS2 9W|M1| mgL — ng Sln(¢1 ¢ )
tan sin(¢, + ¢1)

cor? By [V (1~ [V )
i (o = 2E2) i (1o - 2520

2 2

tan §sin(¢, + ¢2) [l fo (yr) — | Mo f2 (21))] }
T 25T Ml (k= [E) ’ (3.152)
-0 e*m? (|A% + ptan g f. —f
(aﬂ)gUSY,per. = = 4875 { ccl)LSZ 0o 0] Q(Tigj — T%(LjL) cos(¢1 — d)
tan 5 cos(¢, + ¢1)

" cos? By JU[VE | (1P — | ML)
[ (atom = 252 s (agem - 2520

tan [ cos(¢, + ¢o) 2 2
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where 74 = mZ ; /IMi*, yo = mZ_; 1/IMo|?, and 2o = mZ , /|uf?. As pointed out
before, both the electric dipole moment and the anomalous magnetic moment are chirality
flipping and hence proportional to powers of the Yukawa coupling. Therefore slepton mix-
ing, being proportional to the Yukawa coupling, cannot be neglected and an approbate,
perturbative treatment of slepton mixing has to be used. This results in the first lines of
Eq. 3.19a and Eq. 3.19b, both of which contain the relative phase between A; and ¢; from
slepton mixing. These lengthy expressions for the perturbative results yield some insight
into the physics and the parameter dependences of the SUSY contributions from chargino
and neutralino loops to a, and d.. As already mentioned the contributions to d. and
a,, shows—at least for the phase dependent terms—an almost identical dependence on the
SUSY parameters, i.e. the chargino(neutralino) contribution to d, can be obtained from the
chargino(neutralino) contribution to a, by dropping the phase-independent terms, replac-
ing cosine with sine as well as the lepton index (4 — €e) and dividing by 2m,. Furthermore
the appearance of phase-independent and cosine-terms for both contributions to a,—in
contrast to the exclusive presence of sine-terms for the contributions to d.—emphasize
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once more that the C'P-odd observable d, requires non-trivial phases to be nonvanishing
whereas the SUSY contributions to a, are non-vanishing even for trivial phases. Note
also that the phase dependent SU(2) contributions to (d.)X* (last line of Eq. 3.19a) and
to (a,)*" (third line of Eq. 3.19b) are almost identical to the corresponding terms in the
chargino contribution, but relatively suppressed by a factor of four. Hence, if only the
SU(2) interactions are considered, the chargino contribution dominates the corresponding
neutralino contribution.

Finally, the results show that the relative phase between the gaugino masses M; and M,
does not enter the contributions at all, the only relevant phases entering the contributions
being the relative phase between the Higgsino mass parameter ;1 and the gaugino masses
and the relative phase between M; and the phase ¢;. In our general convention the ab-
sence of terms proportional to the relative phase ¢, — ¢; between the phase from slepton
mixing and the phase of M, might seem surprising. But this fact can be understood by
noticing that effectively the leading order contributions to (de)é(;SY and (au)’sz%SY have been
calculated here. These are of order M) x m;. Terms of such order in My can arise from
either zeroth order neutralino mixing or first order corrections to the Higgsino content of
neutralinos multiplied with the rescaled Yukawa coupling Y;. Multiplying the second class
of terms with first order corrections to slepton mixing (in order to obtain a dependence on
¢;) would lead to subleading terms of order M9 x m}. Therefore, the only terms of order
MY x m} with dependence on both ¢, and ¢; are terms from zeroth order neutralino mix-
ing and first order slepton mixing; but for zeroth order neutralino mixing the neutralino
mixing matrix element N5 appearing in ngs, vanishes, and hence we find no dependence

on ¢y — ¢y

3.2.3 Possibilities for suppressing the SUSY contributions to d.
and a,

It is well established [22-25,27,28,84-86] that the experimental bound in Eq. 3.5 on d,
provides stringent bounds on the MSSM parameter space. For example, the chargino
contribution can roughly be estimated as [69]

100Ge\/> 2
—— ) ecm,

(de)gtijsy ~ 3 x 107* tan Bsin ¢, (
msusy

(3.20)

where mgysy stands for the relevant sparticle (sneutrino or chargino, whichever is heavier)
mass. Also, from now the convention ¢, = 0 is used.® A similar, rough estimate for the
chargino loop contribution to (a,)susy reads

100GeV

2
) X (1.2 + tan S cos ¢,) (3.21)
msusy

(de)gtiJSY ~2x10°" (

In contrast to the estimate for the chargino contribution to d,, which is almost four orders
of magnitude above the experimental limit, the estimate for the contribution to a, is just
one order above the allowed limit.” Hence the problem of suppressing the chargino contri-
bution to a, can be understood to be much less severe than suppressing the corresponding

6Keep in mind that up to now I used ¢» # 0 in order to keep results symmetric and to illustrate
rephasing invariance. In the following numerical analysis the convention ¢, = 0 will explicitly be invoked.

"To be precise the given estimate holds for |u| > |Ma| ~ m;. Other choices for these three mass scales
give even smaller numbers.
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contributions to d.. As a matter of fact the remainder of this section will mainly focus on
possibilities for fulfilling the bound on (d.)gygy-*

The chargino contribution by itself can therefore only satisfy the experimental constraint
by Eq. 3.6 for a very small phase ¢, and/or very large sparticle masses. For sparticle
masses not much above 100GeV, one would need phases of order 1073 (1072) or less in
the chargino (neutralino and slepton) mass matrices; for tan 5 > 1, this constraint would
become even stronger. Such small phases are unlikely to lead to measurable effects in high
energy collider experiments [56,57] and hence are of no interest for the remainder of this
work. Alternatively one can postulate that sparticle masses are very large [27,28]. Since
gaugino masses are coupled to parameters in the Higgs sector via one loop renormaliza-
tion equations, whereas a similar coupling between first generation sfermion masses and
the Higgs sector only exists at two loop level [33,87], naturalness arguments favor models
with large slepton masses and relatively modest gaugino masses. The estimate in Eq. 3.20
indicates that for such scenarios first generation sleptons masses well above 1 TeV would
be required if the relevant phases are of O(1). In that case these sleptons would be be-
yond the reach of the next linear ete™ collider, which will have a center of mass energy
Vs < 1TeV. Hence such scenarios are not of interest within Part II where the interest
is explicitly on the consequences of non-vanishing sizeable C'P-phases on selectron pair
production. Moreover, since FCNC constraints would then also indicate very large masses
for the second generation sleptons (recall that I assume them to be exactly degenerate
with the first generation), a possible excess in a, could not be accommodated within the
MSSM.

Therefore the focus within Part II is on the third possibility for satisfying the constraint
from Eq. 3.6, where the different contributions to d, largely cancel [22,23]; i.e., the neu-
tralino contribution must cancel the chargino contribution. In the following numerical
analyses I study this possibility qualitatively for three scenarios specified in the next sec-
tion. Later onwards I will analyze high energy observables that are sensitive to phases
within the same three scenarios.

3.3 Numerical analysis

The first subsection briefly introduces the three scenarios discussed within Part II and
explains the additional bounds used for the numerical analysis. The numerical analysis
first investigates the low energy compatible ranges of phases and then studies correlations
between the low energy observables and the allowed ranges for the phases.

3.3.1 Choice of parameters

First of all, for the definition of the studied parameter sets and the following numerical
analysis the gaugino mass parameter M, is assumed to real and positive, i.e. ¢ = 0. As
mentioned before this reduction of the number of phases can be achieved by suitable field
redefinitions and leads to some loss of generality within the analytical results. Note that
in this convention together with Arg[m?,] = 0 the physical phases are those of y, A, and
M, (see. Eq 2.1). In all cases it is then assumed that the ratio of M, and |M,| is similar

8This should not be misunderstood to say that a, does not restrict parameters at all. There will later
discussion of scenarios where a, indeed constrains parameter space.
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to that in models with gaugino mass unification at the GUT scale, which predicts [33,87]
| M| ~ 0.5M, at the weak scale. Similarly, values for the soft breaking masses of SU(2)
singlet and doublet sleptons that are consistent with the assumption of universal scalar
masses at the GUT scale are used. Recall that degenerate first and second generation soft
breaking parameters in the slepton sector are assumed

Mme, =My, =My, (3.22a)
Mep = My =My, (3.22b)
A, =A, = A (3.22¢)

The assumption of universal scalar masses at the GUT scale implies [33,87] that

mi ~mji +0.46M3, (3.23)
at the weak scale. Finally, I'm interested in scenarios where at least [L, [R, )N(li, and X9,
can be pair-produced at a “first stage” linear collider operating at /s = 500GeV.

This leads to consider three different scenarios, which are referred to as B1, B2, and B3.
Scenario Bl has |u| = My, i.e. is characterized by strong mixing between SU(2) gauginos
and Higgsinos; this will occur in both the neutralino and chargino sector. Contrariwise,
B2 has |u| > M, i.e. all Higgsino-gaugino mixing is suppressed. In these two cases
a relatively large value of |A|, which enhances slepton left-right mixing for small tan 3,
is taken; it will be shown that this increases the possibility of a cancellation between the
neutralino and chargino contributions to d.. On the other hand, selectron left-right mixing,
while important for the calculation of d., remains negligible as far as selectron production
at high energies is concerned. Case B3, which is almost? identical to the much-studied
Snowmass ”benchmark point SPS1A” [88], has intermediate Higgsino-gaugino mixing, as
well as slightly reduced slepton masses. In all three cases four different values for tan
are used. Moreover, the three relevant phases ¢, ,¢1, and ¢4 are allowed to flow freely,
i.e. random numbers between 0 and 27 for these phases are picked. These three scenarios
are summarized in Tab. 3.2. Of course, during the scan of the three phases ¢,, ¢, and

My | My | my, | omy, | Al | |p tan 3 O, Guy Pa
BL| 100 | 200 | 235 | 180 | 500 | 200 | 3,6,9,12 | € [-m, 7]
B2 | 100 | 200 | 235 | 180 | 500 | 500 | 3,6,9,12 | € [-m, 7]
B3 | 102.2 | 191.8 | 198.7 | 138.2 | 255.5 | 343.2 | 5, 10, 15, 20 | € [—m, 7]

Table 3.2: The three scenarios studied in Part II. All dimensionful parameters are in GeV.

¢4, all relevant limits from direct searches for superparticles at colliders are respected. In
particular, for searches at LEP2 [18] these limits read

me > 95GeV, (3.24a)
mp > 88GeV, (3.24b)
my > 40GeV, (3.24¢)

9The agreement becomes exact for the “benchmark value” tan 3 = 10 and vanishing phases.
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mgo > 37GeV, (3.24d)
< 0.78pb, (3.24e)

TwExT
where an upper limit on the production cross section of light chargino pairs instead of a
lower bound for the mass of the light chargino is used for technical reasons. Since in all
three scenarios the real, dimensionful parameters are chosen so as to be large enough, this
second set of “low-energy constraints” essentially has no restrictive impact on parameter
points if these are compatible with d, and a,. However, while being of no importance
for the studied parameters sets, these bounds are implemented as additional cuts in the
program itself. Thus the program can easily be applied to more generalized parameter

scans or other scenarios.'©

3.3.2 Correlations between phases

Before discussing the allowed ranges for the phases ¢,, ¢, and ¢4, a brief investigation
of the “cutting efficiency” of the bound on (d.)susy (Eq. 3.6), of the bound on (a,)susy
(Eq. 3.10), and of both bounds together is prepended. The absolute number of initial
randomly generated sets for (4., ¢1, ¢a) as well as the absolute and relative number of
sets passing each separate constraint and the combination of both are given in Tab. 3.3.
First of all, it is observed that the constraints are quite stringent, less than 0.5% of the

‘ ‘tanﬁ H points H d.-survival H a,-survival H combined survival‘

B1 3 500 000 || 1268 | 0.25% || 353218 | 70.1% || 528 0.11%
6 500 000 || 593 | 0.12% || 294575 | 58.9% || 291 0.06%
9 500 000 || 422 | 0.08% || 279039 | 55.8% || 218 0.04%
12 500 000 || 286 | 0.06% || 271547 | 54.3% || 151 0.03%

B2 3 750 000 || 4327 | 0.58% || 710723 | 94.8% || 3892 0.52%
6 750 000 || 2096 | 0.28% || 574163 | 76.6% || 1469 0.19%
9 750 000 || 1412 | 0.19% || 508093 | 67.7% || 811 0.11%
12 750 000 || 1069 | 0.14% || 467759 | 62.4% || 543 0.07%

B3 5 750 000 || 1495 | 0.20% || 507068 | 67.6% || 746 0.10%
10 750 000 || 675 | 0.09% || 434395 | 57.9% || 340 0.05%
15 750 000 || 516 | 0.07% || 414060 | 55.2% || 245 0.03%
20 750 000 || 354 | 0.05% || 354988 | 47.3% || 111 0.01%

Table 3.3: Absolute number of the points passing the “low-energy constraints” given by d.
(4.th column), by a, (6.th column) and by both (8.th column). The survival rate relative
to the number of initially scanned points is given in the 5.th, 7.th and 9.th column.

initially generated points survive after cutting on the low energy observables d, and a,.
Furthermore, in all cases the bound from d, is significantly stronger than the bound from
a,. At least 99.4% of the initial points fail to meet the constraint from d.. This reinforces
the already stated point that the ”cancellation problem” given by Eq. 3.6 is much more

OFor further details of the code refer to App. E.
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severe than the one from Eq. 3.10. The cutting efficiency of d. in good approximation
grows linearly with tan 3. ' Concerning the stronger rejections from d,, this behavior will
be discussed to some extent shortly. The significant drops of the survival rate from q,, in
scenarios B1 and B3, when increasing tan  from 3 to 6, reflect the appearing disallowance
of negative values for a,, which is due to the asymmetric range for a, in Eq. 3.10. This
asymmetry also explains why the overall survival rate from both bounds is smaller than
the one from d, alone: phases which lead to negative but allowed d, can give a negative
a, whose absolute value is too large; and hence these phases are forbidden. Of course,
the small numbers of overall surviving points are the reason why O(10°) points have to be
generated initially, otherwise the numerical analysis could not accumulate enough statistics
and could not be considered representative.

For simplicity, and because of limited space for representation, in the remainder only the
results for the two extreme choices of tan f = 3 and 12 in scenarios B1 and B2 are shown.
For scenario B3 tan 5 = 10 is chosen, so that the benchmark point SPSTA is indeed studied,
and the extreme value tan 5 = 20. Results for the other, omitted cases are qualitatively
similar and can be obtained by extrapolation from the extreme cases. Furthermore, note
that the results shown below are projections of a three-dimensional parameter space onto
two-dimensional planes. Hence it should be kept in mind that each correlation in the
¢ — ¢, plane has been obtained by scanning over the entire allowed range for ¢,. In
the following we will quote upper bounds on |¢,| that result from the constraint given by
Eq. 3.6. A similar band ¢, = 7 exists for small tan 5 and large |u|.

First of all, Fig. 3.2 shows the allowed combinations of the phases ¢, and ¢;. Very strong
constraints on ¢, are observed in scenario B1, which become stronger as tan 3 increases.
Scenario B2 allows much larger values of |¢,|, which moreover do not decrease much with
increasing tan (3, while scenario B3 is intermediate between these two. This behavior can
be understood from Eqs. 3.17a, 3.18a, and 3.19a, describing the chargino and neutralino
loop contributions to (d.)sysy analytically/perturbatively in terms of basic SUSY input
parameters. It was remarked that the contributions involving SU(2) gauge interactions
have very similar structures in both cases, but the chargino loop contribution is bigger
by a factor of four than the corresponding term in the neutralino loop contribution. The
potentially most important cancellation therefore occurs between the chargino contribu-
tion [more exactly: the total contribution involving SU(2) interactions, which, however, is
always dominated by the chargino contribution] and the neutralino contributions involving
U(1)y interactions.

Scenario B1 has |u| = My, i.e. very strong mixing between Higgsinos and SU(2) gauginos.
It is obvious that Eq. 3.19a no longer gives an accurate estimate of the neutralino contri-
bution within this limit, but one expects it to remain qualitatively correct; note that it
gives a finite answer (involving the derivative of the function f5) in this case. In particular,
the contributions involving the SU(2) gauge coupling would be much bigger than those
involving the U(1)y interactions if the relevant phases had similar magnitude; in other
words, a significant cancellation can only occur if |¢,| is well below |¢;|. Furthermore,
for this choice of parameters a strong internal cancellation occurs between the two con-
tributions from U(1)y interactions that grow proportional to tan 3, i.e. between the first

"This indicates that rather severe fine-tuning is required [57] to obtain the necessary cancellations if all
phases are indeed independent quantities. To put it differently, one faces the challenge to construct models
that ”naturally” explain the required cancellations between these phases. This work will not attempt to
do so.
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Figure 3.2: Combinations of ¢, and ¢, that are allowed for at least one ¢4 € [—m,7].

and the second addend in Eq. 3.19a. As a result we find |¢,| < 7/30 even for tan 5 = 3.
Moreover, the dominant contribution from U(1)y interactions in this scenario involves A,
i.e. is independent of tan 3, whereas the contribution from SU(2) interactions increases
proportional to tan 5. The upper bound on |¢,| therefore scales essentially like cot 5. This
scaling basically explains the scaling of the total cutting efficiencies in scenario Bl as well.
The importance of ¢4 in this scenario also explains why there is almost no correlation
between the allowed values of ¢, and ¢;. Moreover, in this scenario values of ¢, near 7
are excluded by the lower bound on (a,)susy in Eq. 3.10.

Eq. 3.17a shows that increasing |u| while keeping all other parameters constant decreases
the chargino contribution to d.. Further, according to Eq. 3.19a it also decreases the neu-
tralino contributions that involve SU(2) interactions, but actually increases the neutralino
contribution that is sensitive to selectron left-right mixing, i.e., the first line of Eq. 3.19a.!2
Much larger values of |¢,| therefore become possible for larger |p|. For the given choice
of parameters in scenario B2 the coefficient of the neutralino contribution o sin(¢; — ¢;)
is still about 5 times smaller than the coefficient of sin¢, in the chargino contribution,
leading to an upper limit of ~ 7/4 on |#,|. Since these two coefficients have the same
sign, cancellations occur only if ¢; + ¢, and ¢, have opposite signs. Note that both of
these contributions are (essentially) oc tan 5. The upper bound on |¢,| is therefore almost
independent of tan 8. However, one needs increasingly stronger cancellations as tan 3 in-
creases; moreover, the relative importance of the phase ¢4 diminishes with increasing tan 3,

12Tn principle one could therefore have large cancellations between the chargino and the neutralino
contributions even for My ~ |u|, if Ms ~ m; > |M;|, mz, . However, if M, and m; are as in scenario
B1, this would require values of mg, well below the direct search limit ~ 100GeV.
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since its contribution to the selectron left-right mixing is not enhanced within this limit.
These two considerations explain why the width of the allowed band essentially decreases
like cot 3 for large tan (3; this behavior directly transfers to the total cutting efficiency in
scenario B2.

The increase of |p| when going from scenario B1 to B2 also reduces the supersymmetric
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Figure 3.3: Combinations of ¢, and ¢4 that are allowed for at least one value of ¢; €
[—m, 7).

contribution to a,. Hence, for tan 8 = 3 an additional allowed band with ¢, ~ 7 is found;
however, this band disappears at tan 3 ~ 10. Note that the phase ¢, enters a, mostly
in the combination'® cos(¢, + ¢1). This means that ¢; ~ 0 will give positive (negative)
contributions to a, if ¢, ~ 0(). In other words, for values of ¢; near zero the U(1)y in-
teractions contribute with equal sign to a, as the (usually leading) SU(2) interactions do,
whereas ¢; ~ 7 leads to a particular cancellation between U(1)y and SU(2) contributions.
¢, ~ m therefore remains allowed to slightly higher values of tan § if ¢; >~ 7 as well.

If |p| is increased by another factor ~ v/5, chargino and neutralino loop contributions to
d. can be of the same size, in which case no upper limit can be given either on |¢,, + ¢:| or
|| separately [22], although a strong (anti-)correlation between these two phases still has
to hold. If |u| is increased even further, the neutralino contribution becomes dominant. In
that case ¢, could take any value (after scanning over the other phases), but significant
absolute constraints on the combination ¢, + ¢, would emerge that hold even after scan-
ning over all ¢4 and ¢,. However, most models of supersymmetry breaking prefer [33,87]
values of || that are not much larger than M. Therefore scenarios with |u| > Ms are not
discussed any further.

Y3For |u|tan B > |A;|, cos(¢1 — ¢j) =~ cos(¢,, + ¢1) as well.
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Scenario B3 has a significantly smaller value of || than scenario B2, although the value
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Figure 3.4: Combinations of ¢; and ¢4 that are allowed for at least one value of ¢, €
[—m, 7).

is larger than in B1. The absolute upper bound on |¢,| is therefore reduced to ~ /8.
The allowed bands in Fig. 3.2c,f are narrower than in Fig. 3.2b,e due to the larger values
of tan 4 and the slightly lighter slepton masses; both effects tend to increase the SUSY
contributions to d., requiring correspondingly more perfect cancellations. Note also that
for tan 8 = 20 values of ¢, near zero give a, above the range from Eq. 3.10, i.e. in this case
the neutralino and chargino contributions to a, must not add constructively. Parameter
sets with ¢, near m are allowed only for tan 3 S5

The allowed regions in the (¢, ¢4)-plane are shown in Fig. 3.3. Most of the discussed
scenarios have tan (3|u| significantly above |A|, in which case the value of ¢, is not very
important. Even if ¢4 is important, as in scenario B1, there is little correlation between ¢4
and ¢, since ¢4 only enters from the combination ¢s — ¢, and ¢, is scanned in Fig. 3.3.
In all cases the bound on |¢,| is slightly weaker for ¢4 ~ 0 than for ¢, ~ , since in
the former case A and p add (mostly) constructively to the mixing of selectrons, thereby
increasing the first line in Eq. 3.19a.

It was observed from Figs. 3.2 and 3.3 that in all cases the entire range of values for ¢,
and ¢, is allowed by the d, constraint for some combinations of the other phases. Fig. 3.4
shows that there is little correlation between the allowed ranges for these two phases. In-
deed, the d, constraint allows all combinations of these two phases, for some value of ¢,.
On the other hand, in case B3 with tan 8 = 20 the a, constraint form Eq. 3.10 excludes

1| ~ 7/2, see Fig. 3.2.
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3.3.3 Correlations between (a,)susy, (d.)susy and the phases

Sec. 7.3.1 will study correlations between low- and high-energy observables. To that end
it is instructive to see how the low-energy observables a, and d. correlate with the SUSY
phases in the experimentally allowed region of parameter space. It was observed above that
¢,, is tightly constrained, whereas ¢4 and ¢; are not. Since ¢4 does not affect high energy
observables, the most interesting correlations are those between low-energy observables
and ¢, after scanning over ¢4 and ¢,.

One finds that there is no correlation between d, and ¢; as shown in Fig. 3.5, whereas in
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Figure 3.5: (d.)susy vs. ¢ after scanning over ¢, and ¢4.

scenarios B2 and B3 a, shows a behavior oc a cos ¢; + b with a finite scatter, see Fig. 3.6.
This difference originates from the requirement of very strong cancellations in d,, discussed
above. In particular, the phases ¢; and ¢, have to be correlated such that the leading
terms o sin(¢, + ¢;) and sin ¢, cancel each other to an accuracy determined by the size of
(subleading) terms o< sin ¢4 as well as by the experimental bound on d.. This completely
removes the correlation between d, and sin ¢, that one might naively expect from Eq. 3.19a.
The phase-dependent neutralino loop contribution to a, is given in Eq. 3.19b. Since for
the given examples ¢, is constrained to be small (or near to 7), | cos ¢, | =~ 1, and one finds
a cosine-like dependence of a, on ¢;. The crucial observation is that the ¢;-dependent and
the ¢,-dependent terms do not cancel in this case, so the “naive” dependence of a, on ¢;
survives. In passing it may be noted that (a,)susy can usually not be achieved for a given
choice of the absolute parameters once large cancellations in (d.)sysy have been required,
i.e. one cannot choose the phases such that there are large cancellations both in (d.)susy
and (a,)susy. A better measurement of, and more accurate SM prediction for, a, therefore
has higher potential to further constrain the SUSY phases than improved measurements
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of d.. Of course, experimentally establishing a nonvanishing value d, (well above the SM
prediction) would be of the greatest importance, since it would require physics beyond
the SM. However, while it would require some SUSY phases to be non-zero, it would not

further reduce the allowed ranges of any one of these phases after scanning over the two
phases.
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Figure 3.6: (a,)susy vs. ¢ after scanning over ¢, and ¢4.



Chapter 4

Cross sections

This chapter is devoted to cross sections. It starts with giving a short road map for the
calculation of (tree level) cross sections, then gives analytic results for the cross sections of
the four processes under discussion. The analytic results are used to derive perturbative
expressions for the relevant production processes. Finally the perturbative results are
discussed to some extent.

4.1 Road map to the calculation of cross sections

For reasons of completeness I give here the basic steps for calculating tree level cross section
in form of a short road map:

1.) Derive Feynman rules
2.) Fix the kinematical situation

3.) Write down all tree level diagrams contributing to the considered process using chi-
rality projection operators

=

D
N Y N

Calculate the helicity amplitudes

ot

Include initial beam polarization by using polarisation density matrices

Include phase space and flux factors to obtain the differential, polarized cross section

=~

Perform the phase space integration to find the total, polarized cross section

%

Taking the limit of vanishing polarization rates finally delivers the unpolarized dif-
ferential and total cross section.

Keeping the goal in mind, the first step has already been achieved, the Feynman rules were
basically given in Sec. 2.5 and the kinematical situation will be fixed shortly. Details on
steps four to six are given in App.C.1, whereas step three has to be taken separately for
each cross section.

In general the phase space integration in step 7 could be done numerically using suitable
subroutines. However, for the purposes of the numerical analysis, where a great amount of
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cross sections has to be evaluated up to 10 times' for more than 1000 parameter points, a
substantial reduction in computing time can be achieved by finding analytical expressions
for the total, unpolarized cross sections. An ansatz to find such results as used for this
work is summarized in App. C.3.

4.2 Kinematical situation

. b(k1, A1)
fe, !
Ly =
e (p1,01) /Q‘ et,e (p2_,_0_25"

C(kQ, )\2)

Figure 4.1: Kinematical situation

The kinematic situation is illustrated in Fig. 4.1. The momenta and helicities of the

ingoing (first) electron and positron (second electron) are denoted by pi and oy, and p}
and o9, respectively. The momenta of the produced superparticles, generally labeled by b
and ¢, are denoted by ki and k4. In case of fermions being produced their helicities are
denoted by A; and \s.
Working in the center of mass (CMS) frame, the z-axis of the coordinate system is defined
such that p; points in +z direction. The event plane is then completed by the momentum
EI of particle b, this plane defines the (x, z)-plane of the coordinate system. The scattering
angle 0 is defined as angle between p; and k1. The nominal range range for 6 which
is used when going from the differential to the total cross section extends from 0 to .
However, if the final state consists of two identical particles physically 6 has to be < 7/2;
therefore the cross section for the production of identical particles has to be multiplied
with a factor of 1/2. Notice that this convention implies a vanishing azimuthal angle ¢.
This definition of the (z, z) plane is convenient since Part II is only interested in total cross
sections for unpolarized e* beams.? Of course, the phase space integration, which should
be performed in a lab-fixed coordinate system, still gives a factor of 27 from the integration
over the azimuthal angle. Explicit expressions for the momenta p! and k! may be found
in App. C.1.1.

I This factor of 10 for each cross section is due to the evaluation of significances; for further details see
Chapter 6. Depending /s up to 25 cross sections have to investigated.

2A nontrivial dependence on the azimuthal angle would arise only if transversely polarized e* beams
were considered, and/or if in the kinematical distribution of the decay products of the produced superpar-
ticles b and ¢ were investigated.



4.3 Analytical results for total cross sections 49

4.3 Analytical results for total cross sections

Here I briefly present the calculation of the corresponding unpolarized total cross sections.
All these processes have already been discussed in literature: results for €; ¢, and ¢é; ¢é;
production can be found in [89-96] and [97], whereas results for x; x; and x{xj production
are given in [66,92,93,98-103] and [67]. Nevertheless I list my own results here in order to
provide a self-contained presentation and to illustrate consistency with previous works.

4.3.1 ete — é;réj_

e RN 6]‘ e - - e

Figure 4.2: Diagrams for ete™ — é;7¢]

Fig. 4.2 shows the s- and ¢-channel diagram contributing to selectron pair production.
By introducing a dimensionless Z propagator

s
Dy, = 4.1
Z S — M% + irzMZ, ( )
and bilinear charges Z%
(sin2 Ow — l)2 sin? @y — L
Z;, =1 22Dy, Zpp=1 2D 4.2
LL + sin? By cos? Oy, 0 TRE + cos2 Oy (4.22)
sin? Oy — L sin” 6
7 =1 2D Zfe=1+—"D 4.2b
LL cos2 By 2 RR + cos Oy 2 ( )
Zig = Zp, =0, (4.2¢)
the gauge contribution can be written as
2
0102, e «
Mij G = ?U (pg, 0'2) Zijpau (pl; 0'1) (kz — k])u . (43)
The neutralino contribution is
0102, _ j « %
Mijl 2Xk — g (p2, 02) (Kiak)*P (P — F1 + mxg)DfKﬁkPﬁU (p1,01) (4.4)
The coefficients K', are given by
e
KL = cos Oy Noy. + sin Oy N1 ) 4.5a
Lk /2 sin Oy cos Oy ( ek w i) ( )
-2
KE = ‘ (4.5b)

— = N¥,
V2 cos Oy L
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ka = K}gk = 0? (45C)
and the neutralino propagators are

1
k
= 4.6
t,u (t, u) . m;g ( )

where t = (p; — k1)? and u = (p, — k2)?. By introducing a shorthanded notation for the
helicity amplitudes

0102,
(T102)i; = M7 4 M7 (4.7)
and using the explicit expressions for helicity amplitudes given in App. C.1.3 and the

definition of the neutralino functions as in App. C.2 one finds six non-vanishing helicity
amplitudes

(++)rr = —2e2Mp (s, 1), (4.8a)
(—=Vrr = 2> M (s, 1), (4.8b)
(+—)rRr = —62)\%21{ sin@ (Ngrr(s,t) + Z1z) (4.8¢)
(+=Vpn = —€2\Z, sin 071, (4.84)
(—+VrRr = —€*A2 . sin 07, (4.8¢)
(—+)rL = —62)\%L sin f (NLL(s,t) + ZZL) ) (4.8f)

Here, the kinematical factors )\i%j = )éiéj are as in Eq. C.3 and, as defined in Sec. 4.2,
f is the angle between the incident e~ and the produced € . As usual, the unpolarized
cross sections can be obtained by averaging over initial helicities. Alternatively, one can
calculate polarized cross sections using polarisation density matrices for the incident beams
(as described in App. C.1.4) and taking the limit over vanishing longitudinal and transversal
polarizations for both beams. After integrating over the azimuthal angle, in both cases
one obtains

1

o0t — D (b + = H)aP), (490

TE — ZEE (|l + [(—+P). (4.9b)
1

j((:joLsRG - 1;\;}:3 (==deal (4.9¢)

dory )\%zL () |2 (4.9d)

dcosf  1287s

Finally, for these and following reactions the total, unpolarized cross sections may be
obtained by performing the remaining integration over the scattering angle

! dO'ij
= . 4.1
i /_1dcose<dcosﬁ> (4.10)
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Figure 4.3: Diagrams for e e~ — ¢€;°¢;

4.3.2 e e — éi_éj_

The t- and u-channel diagram contributing to €; ¢;
corresponding invariant amplitude can be written as

production are shown in Fig. 4.3, the

MG = K K (pay 02) (4.11)
— — myo mco
{5ﬁ,—a ﬁl 621 + ﬁl 1%22 + (Sﬁ,a sz Xk2 } Py (pl, 0'1) .
t—m2, U — M, t—m2, U — mi,
Xk Xk Xk Xk

Using the results of App. C.1.3 the helicity amplitudes may be evaluated and one finds

o102,%° S . 1 i i i i
MO X = (0109)ij = —5 sin R S— (K. K’ glkDf — Kﬁkafnkij)
+ myVsK} (K2 10106, 4, (D} + D) . (4.12)

Rewriting these results in terms of neutralino functions as given in App. C.2, one finds
four non-vanishing helicity amplitudes. Here 6 is the angle between the momenta of an
incident e~ and a produced e~. It does not matter which initial and final state particles
are chosen, since the cross section is invariant under 6 — 7 — 6.

(++4)rr = 2€° [Mgr(s,t) + Mgg(s,u)]", (4.13a)
(—=)o = —2€" [Myp(s,t) + My (s,u)], (4.13b)
(—+)Lr = eZA%RsinﬂNLR(s,t), 4.13c¢)
(+—)rL = —62)\%}z sin ONpg(s,u). (4.13d)

After calculating the polarization averaged squared matrix elements and including the
phase space factor, differential cross sections are

1
dorr, AL 2
_ L 4.14
dcos@ 2567r5|< Jels ( ?)
dorr )‘I%R 2
dcos®  256ms (el (4140)
do )\%
= = S () prf* + (=) rel?) - (4.14c)

dcos®  1287s

Note that orr and op; are not physically distinguishable in this case, unlike for ete™
annihilation.
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4.3.3 ete” — )Z;")Z]_

e Xi et < . < )%;r
v, Z l
+ i D,
e Xj e > : > Xi

Figure 4.4: Diagrams for e”e* — x; X;

Fig. 4.4 shows the s- and ¢-channel contributions to )Z{)Z;“ production. After a suit-
able Fierz-rearrangement of the 7 contribution, as described in App. C.1.5, the invariant
amplitude can be written as

2

0102,A1 A2 —e a ij —
MG = 0 (P2, 02) P u (p1, 01) Qs (1, A) 7 PPuj (ka, Az) (4.15)

where bilinear charges gﬁ have been introduced as (with = = sin? fy)

Dy (2z —1) 3 1
p= 14+ = (o= 7 — S cos2 4.16
=1+ 20(1— ) =T 1008 oL ) (4.16a)
D 3 1
Pr=1+ 1 _Zx <x — 7 g C0s 2¢R> , (4.16b)
DIJ
TR=1+ (( (x cos 2¢R> 84; (14 cos2¢g), (4.16¢)
D 3
Qrr = T _Zx <$ 1 Z cos 2¢L> ; (4.16d)
Dy (2z — 1) 3 1
=1+ S (o= T+ S cos2 41
LL + 21'(1 _ l') x 4 + 4 COs ¢L ) ( 7&)
D 3 1
2 =1+ ] _Zx (x ~1 + 1 608 2¢R> : (4.17Db)
Dz(2x —1) 3 1 D7
Th=1+——= |z — 5+ cos2 L(1 — cos?2 41
LR + 20(1=2) z-7 + 7 €08 Or ) + i (1 — cos2¢g), (4.17c)
D 3 1
AL =1+ 1 _Zx (f Ty o8 2¢L> ; (4.17d)
* D (2!1,’ - 1) . o
12 _ (n2\*_ Yz iy
= =—————-sin2 4.18
iz = (Q1r) el —a) 0 pre ", (4.18a)
12 = ( 21 )* = 7DZ sin 2¢Rei(71_ﬂR_72) (418b)
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D? .
in= Q)" = ( (( )) - 84; ) sin 2¢ e’ —PRT2), (4.18¢)
2= Q)" = ol sin2g,e . (4.184)

Here the sneutrino propagator DY is defined analogously to the neutralino propagators in
Eq. 4.6. Using the results of App. C.1.3, one finds for the generic helicity amplitude (8 is
the angle between the momenta of the incident e~ and the produced x ™)

oA —e? el
MZO;’ 17)\1A2 — <Ul, 0-1’ )\ )\2>7/] — T {)\léAl,)Q ]_ — 775)\1 Slng
B

# B+ BAatn) (L BNen,) (14 A (119

where the kinematical functions 7sy, are defined in Eq. C.1.3. The unpolarized cross
sections can be computed from Eq. 4.19 by averaging over initial helicities and summing
over the final ones. Including the phase space factor one finds

doij T’

2 2 ij
dcosf @AZ { (1 Ajj) + i cos 0] QY + 8pip; Q5 J 4 2)\2 cos 0QY } , (4.20)

where 4mar = €2, p; = my=/\/s and Ay = pf — pf. The new quartic charges are given by

G |QUL "+ QY|+ Q1. + Q7 (4.21a)
¥ =Re [Q7, Q7 +Q7_Q7%], (4.21b)
V= QL) - QU QL[ + Q[ (4.21)
4.3.4 ete” = xiX]
+ 0 + %
e Xi e < ; Xi()
£ + e
e X? e > : X?(i)

Figure 4.5: Diagrams for e"et — x{x}

In Fig. 4.5 the s- and ¢-channel contributions to x? X] production are shown, the addi-
tional, destructively interfering u-channel diagram is indicated by the indices in parenthe-
ses. Applying a Fierz rearrangement on both the ¢- and u-channel diagram and re-ordering
the u-channel amplitude, the invariant amplitude reads

2
0102,A1A2 e _ a ij —
M, MR = 7 (pa, ) 1, P u (pr, o) QuaT0; (k1, M) v PPuj (ka, Aa) - (4.22)

S
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Here, the bilinear charges foﬁ are given (z = sin? fyy) as

ij Dy I
ir= 72:6(1 — 1) (22 — 1)ij — sD,/gLijs (4.23a)
ij Dy .
R = T1_ xZij - SngLija (4.23b)
i D2 o0 g4 sDEgr 41.23
o= g2 = 025+ 5Dl (1230
i = D2 gy DRy 4.23d
RL= T, ij T 8Dy grij; (4.23d)
with
1 *
9rLij = Iz (Ng; + tan Oy Ny;)" (Ny; + tan Oy Nyj) , (4.24a)
1
JRrij = ENE'NIJ" (4.24b)

The selectron propagators are defined as

1
) — 4.25
tau (t, U) . m2 ( )

€L.R
Since this amplitude has the same structure as the amplitude for )Z[)Z;r production, see
Eq. 4.15, the result in Eq. 4.19 from this calculation can be transfered directly; only the
bilinear charges have to replaced. Also the result for the unpolarized, total cross section
as in Eq. 4.20 can be transfered , but a statistical factor has to be included, so that

dO'Z'j —5i ™

2 g . 1 .
2 2 2 2 ) 2 )
Toosd 2 » A { (1= AF) 4+ Xijcos® 0] QY + 8 Q5 + 2M3 cos 9Q3j} . (4.26)

Of course, now the bilinear charges of Egs. 4.23 have to be used when evaluating the quartic
charges defined in Eqs. 4.21.

4.4 Perturbative results for total cross sections

The results presented in the previous subsections allow the exact (tree-level) calculation of
the phase-dependences of the selectron, neutralino, and chargino production cross sections.
Similar to the results for the chargino and neutralino loop contributions to a, and d., the
results offer little insight into the explicit dependences of the cross sections on SUSY input
parameters, i.e. they neither indicate in which production mode a strong dependence on the
phases is to be expected, nor where such a strong dependence may originate from. To obtain
such predictions on phase-dependences, the next sections are devoted to a perturbative
analysis of the cross sections calculated above. Within this analysis the approximative
diagonalization of the neutralino and chargino mass matrices as presented in Sec. 2.3.2 and
2.3.3 is used. Furthermore all kinematical and ”SM” factors are dropped wherever doing
so is convenient for a more compact presentation. More details on the general perturbative
treatment of cross sections may be found in App. C.4.
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4.4.1 efe = é e

Since the cross sections for €; e and é;é;

) production are of very similar structure, see
Eqgs. 4.8 and 4.13, T will treat both sets of cross sections together. First of all, due to Uy (1)
interactions all six modes receive O(MY) contributions from the exchange of the bino-like
neutralino. Contrarily, only the é;, pair production modes contain SU(2) interactions also
and hence the exchange of a wino-like neutralino also contributes at order M. However,
all these contributions by themselves do not lead to a phase-dependence of the cross sec-
tions at order MY. The only phase-dependence that can contribute to cross sections at
O(MY) occurs when Uy (1) and SU(2) contributions can interfere; this is only possible for
the é; ¢, mode.® For this exquisite mode the cross section is sensitive to the relative phase
between M; and M, independently from tan 3.
All other cross sections show sensitivity to phases only at O(M%). These phase-dependences
basically arise from three sources: first from the exchange of heavier, Higgsino-like neutrali-
nos which develop gaugino components at O(My), secondly from the O(M2%) corrections
to the gaugino components of the gaugino-like neutralinos. Finally, the O(M2) shifts
5m§~<2_0) of the neutralino masses may also contribute to the phase-dependence of the cross

sections. The presence of the second source explains why the second order corrections in
Eq. 2.42 and 2.43 have been included to the g)erturbative treatment of Neutralino mixing
in Sec. 2.3.3. The effects from the shifts 6m§<20 are either direct (if the physical masses are
allowed to vary with phases?) or indirect (if i)hysical masses are kept fixed, in which case
the absolute values of the input parameters have to be varied along with the phases). In
the second case the variation of the SUSY input parameters |AM;|, My, and || is of order
M2 (see App. A.4) and hence the changes of the eigenstates x? due to these variations are
at least O(M3). For all modes this change generates additional phase-dependences which
are suppressed by two additional powers of M, relative to the leading phase-dependence,
hence such indirect effects can safely be ignored in the following.

Since éj does not have SU(2) interactions, o (658%) are at O(M2) only sensitive to the
phase combination ¢, + ¢;, whereas the other modes are also sensitive to ¢; and ¢,.°
Furthermore it should be remembered that the matrix elements for both diagonal é~é*
production modes receive large, phase-independent contributions from ~ and Z exchange
in the s-channel. In fact, the phase-dependence of these two modes arising from interfer-
ence terms between s- and ¢-channel is diluted by the gauge-contributions.

The phase-dependence of the selectron production cross sections for fixed physical neu-
tralino masses® is summarized in Tab. 4.1. Here the coefficients of the various phase-
dependent terms that can appear relative to the leading (phase-independent) contribution
to the cross section are shown. Furthermore I have assumed |p| > |M;|, |M>| and omitted
both kinematical and numerical factors, as well as factors involving the weak mixing angle.
Nevertheless this overview can be used to draw some conclusions on the phase-dependences

*For the & &; mode the relevant neutralino function perturbatively reads Nrr,(s,¢/u) o< Dy, + D),
whereas M1 (s, t/u) o< My Di(u) + M2Dt2(u) is involved in é; &, production. That explains why the Uy (1)-
SU(2) interference, although present, does not lead to a phase-dependence at O(M) in &7 &} production.

. . o2
4The phase-dependence then enters via Dg(u) o Dg(u) —2mygo (5m%) [Dg(u)] , where the propagators on

the right hand side are to be evaluated for mgo = m;%).

5 Again the convention ¢, = 0 is invoked.
60nly phase-dependences that arise from coupling factors are tabulated here.
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cos(d, + ¢1) cos ¢, cos ¢y
2 2 2
5— 5+ : Mz | M| : Mz Mz | M|
e;e sin 2 sin 2
L™L A M3 |u| BMz\u\ My |u|?
2 2 2
~— . M7 . M7 M7 Mo
€LEx Sm26\M1m sm2BM2M RAIE
2
R . MZ|M;]|
€r€r || sin2p e none none
S . M2 . M | M|
Z Z 1
€, €L sin 251\/12\#\ sin 251\/12\#\ Vs
U . MZ|M;| . M2 MZ|M;|
e;e sin 23 —=%Z sin 2 Z ——Z
LER B M2yl BMzm\ Mz|p]?
[ 2 M2
€r€r || sin B\Mlu\ none none

Table 4.1: Phase-dependence of the cross sections for selectron pair production in ete™ as
well as e~ e~ annihilation for fixed physical neutralino masses. Each entry gives the depen-
dence of the coefficient of the indicated (combination of) phase(s) on the supersymmetric
parameters relative to the leading (phase-independent) contribution to this cross section,
under the assumption |M;| < My < |u|. “None” means that the corresponding term does
not exist to O(M3).

of the cross sections. First, all dependences on the phase ¢, shown in the second and third
column of Tab. 4.1 vanish like 1/ tan 3 for large values of tan 3.7 The reason is that the de-
pendence on this phase in the neutralino mass matrix could be rotated® into the off-diagonal
gaugino-Higgsino entries o< cos 3. However, the dependence of the relative phase between
the two soft gaugino masses, ¢, in our convention, does not vary with tan (3, see the fourth
column of Tab. 4.1. The €, €, mode contains additional phase-dependences  cos(¢; —¢,,)
and o cos(2¢; + ¢,).> The coefficients of these phase-dependences are |M;|MZsin25/|u|?
and |M;|? M2 sin 23/ (|u|> Ms), respectively. Due to the additional suppression oc 1/|u|? rel-
ative to the coefficients of cos(¢, + ¢1) and cos ¢, these phase-dependences are neglected
in the following.

Second, with the exception of é; &, mode, all phase-dependence vanishes as |pu| — oo,
but the |u|-dependence varies for different modes. In particular, the phase-dependence of
the diagonal mode é,é;, vanishes oc 1/|u|? for large |u|, whereas all other cross sections
receive phase-dependent contributions that merely fall as 1/|u|; however, for tan § — oo
the |u|-dependence of the total sensitivity becomes stronger, as can be seen in the last
column. In most cases the leading phase-dependence derives from the exchange of the
lighter, gaugino-like neutralinos.'® The exception is the é,é, mode, where the exchange
of the heavier, Higgsino-like neutralinos contributes dominantly at the same order as the

7 _ 2 1
sin2f = @B TF/tan 5 )

8This rotation does not introduce any phase in those parts of ff¥ vertices that come from gauge
interactions, but does introduce a phase in the Yukawa contributions to these vertices. Recall that these
Yukakwa contributions can be ignored when calculating cross sections, but have to be kept when computing
leptonic dipole moments. This explains why the ¢, dependence of (d.)susy and (a,)susy is not suppressed
at large tan 3.

9In a convention with ¢» # 0, the rephasing invariance of the arguments is restored. They read
(Gu + ¢1) = (92 — ¢1) and (G + ¢2) — (d1 — ¢2).

IOMore precisely, for the modes éZé'L", € €5, and €, €y the contributions from gaugino exchange is
dominant. Within the modes égé; and éz&; gaugino and Higgsino exchange are of same size.
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gaugino exchanges do in the other modes with phase-dependences at O(M%).

Clearly, as already observed by [96], the é;é; mode will reveal the strongest phase-
dependence of all é7é~ channels, and indeed of all selectron production channels, since
it already occurs at O(M3), as noted earlier. The phase-dependent terms in é;é; and
é; € production are of similar size. For our choice of parameters the second mode is
preferable, since it is accessible at lower energies, and since the cross section near threshold
scales like A\ rather than \3. The two remaining modes in e~ ¢~ pair production are also
of similar size. For these two modes the better accessibility of the é,€é, mode goes in hand
with a )\%—scaling of the cross section near threshold compared to s)\%—scaling of the e, ey,
mode. The only argument in favor of the second mode is the presence of tan # independent
terms which will give a sizeable phase-dependence even for large tan 3. Obviously, the é,é5
mode, at least within the reliability of the perturbative treatment, is the most disfavored
mode, as the phase-dependence scales like 1/|u|> and decouples for large tan 3. Finally,
the relative importance of phase-sensitive and phase-insensitive terms in most selectron
production modes does not strongly depend on the beam energy.!’ Therefore the best
statistical accuracy for the determination of the relevant phases can be expected when the
beam is chosen such that the cross section being investigated is maximal.

So far T have only studied phase-dependences from coupling effects. This corresponds
to keeping the physical neutralino masses fixed and varying the parameters |M;|, |Ms],
and |p| along with the phases. As shown above, this variation of the three parameters
affects the cross sections only at O(M2) relative to the leading term. If the input pa-
rameters are held fixed instead, the physical neutralino masses will vary at O(M32) and
hence lead to additional phase-dependences originating from the ¢-(u-)propagators. Since
the exchange of gaugino-like states already gives contributions at O(MY) for all modes!?
the masses of the two lighter states are of particular interest. Obviously, the €;¢; mode
with phase-dependence at O(M}) only receives additional phase-dependent contributions
at subleading order M%. The relevant O(M2%) shifts are given in Eqs. 2.40. The phase-
dependences from these two shifts, as relevant for the remaining five modes, vanish also
like o< 1/ tan 8 for large tan 3, but only drop like 1/|p| for large |u|. This directly implies
that they dominate the total phase-dependence of the é,é} mode. For the other modes,
the dependence on cos(¢, + ¢;) and cos ¢, deriving from the variation of the physical
masses of the gaugino-like neutralinos is qualitatively the same as shown in the second
and third columns of Tab. 4.1, if factors |M,|/My ~ O(1) are ignored. Therefore a more
detailed analysis, including the in-cooperation of previously dropped factors, is required to
decide which source —variation of kinematical masses or coupling effects— dominates the
phase-dependence. Such an analysis, although it has been performed in course of the work
presented here, depends strongly on the chosen input values for the SUSY parameters as
well as on /s and hence is of little advantage for a deeper understanding of the balance
between kinematical and coupling effects. Hence it is not shown or discussed here.

LAt least, if terms of same order in M% are compared.
12The exchange of Higgsino-like neutralinos requires gaugino components of these neutralinos. Such
components are first generated in O(M}) corrections. Hence the contributions from Higgsino exchange

are of order M% and the shifts 5m§2/)4 lead to O(M3%) effects.
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4.4.2 etem — )Z;")Z]_

The next cross sections to be studied are the ones for )Z;)Z;“ pair production. Using the
convention ¢, = 0, the only phase entering the chargino mass matrix is ¢, and all phase-
dependence of the chargino production modes is due only to this phase. As it already was
found in Sec. 3.3.2, ¢, is strongly constrained, the phase-dependences in all chargino pro-
duction modes are expected to be rather small. Nevertheless, for reasons of completeness
these production channels are discussed here.

First of all, both diagonal modes Y; x; and X, X5 already receive contributions from s-
and t-channel diagrams at order MJ; but these contributions are all phase-independent.
The off-diagonal mode Y] X5 requires non-vanishing gaugino-Higgsino mixing and therefore
starts directly at O(M3,). For all three modes, phase-dependences that may arise from
an adjustment of the parameters |u| and M, while keeping the physical masses fixed are
of order M3, relative to the leading phase-dependence.'® Therefore the discussion can be
focused on the phase-dependences from couplings, i.e. effects from the quartic charges in
appearing in Eqs. 4.20 and 4.21, and kinematical effects, i.e. effects from the variation of
the physical chargino masses in the kinematical functions of Eq. 4.20. The phase-dependent

| | Q1 Qs | Qo |
2 2 2
~— ~+ . MW Mo . MW Mo M2
Sin20+—% 72 | sin2p/+% 72 —2
Xi X BTt Tl BTt Tt =
~— o~ . . M.
XiXo sin 25% sin 25#

~— ~+ . M2 M- . M2 M.
X2 X5 sm2ﬁﬁﬁ sin 23 sW\_uT

Table 4.2: Phase-dependences of the cross sections for chargino pair production for
fixed physical neutralino masses (“coupling effects”). The second column displays phase-
dependences from (); and ()3, the contributions from (), are already multiplied with p;p;.
All contributions are proportional to cos ¢, and have been normalized to the leading phase-
independent contribution of the cross section.

terms that are found in the quartic charges of Eq. 4.21 are summarized in Tab. 4.2; all kine-
matical and numerical factors have been neglected. Nevertheless some conclusions about
the sensitivities to ¢, can be drawn. First, all phase-dependences are proportional to
sin 23 and hence vanish like 1/tan /3 for large tan 5. Second, the phase-dependences from
()1 and Q3 are at least o< 1/|u|, the diagonal modes contain an additional suppression fac-
tor M3, /|u|?, and all sensitivities to ¢, from @; and Q3 hence vanish in the limit of large
|| . Concerning the contributions from @y including the reduced masses in the diagonal
modes generates additional suppression factors of M2 /s and |u|?/s, respectively.!® As both
factors are smaller than one in the physical region (/s > Ms + |p|) the sensitivity of the
diagonal modes is not increased. On the contrary, even after including the factor Ms|ul|/s,

I3However, note that the adjustment of |u| leads to a dependence of the chargino modes on the relative
phase between M7 and p, see Eqs. A.28. But such an indirect dependence on ¢; is of subleading order.

Y41 |u| gets too big, the production modes containing at least one heavy chargino are above threshold
and vanish kinematically. Therefore, for this part of the discussion, /s is assumed to be a completely free
parameter.

15An explicit calculation shows Q% oc Q¥
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the quartic charge (), yields a somewhat larger phase-sensitivity for the off-diagonal mode
than do the corresponding contributions!'® from @ and Q3. In particular, if |u| is increased
while remaining in the physical region this sensitivity even increases linearly with |u|. Al-
together the ¥; x5 mode displays the strongest sensitivity to ¢,. This sensitivity is only
apparently independent from Mg3,/|u|* as the production cross section itself vanishes for
M2, /|u* — 0. Tt is due to the fact that phase-independent and phase-dependent terms are
both of O(ME,). In the case of the diagonal modes, the phase-independent contributions
already start at O(MJ,). This fact explains the small, relative phase-dependences when
the O(M},) phase-dependent terms are normalized to the former contributions.

As long as only phase-dependences from coupling factors are concerned, the off-diagonal
mode appears to be preferable to the diagonal modes. However, the attractivity of the
X1 X4 mode is decreased by its cross section. First, the presence of a heavy chargino might
limit the accessibility of this mode in the first stage of an FLC. Secondly, even if the mode
is accessible, the cross section is expected to be rather small'”, and accumulating statistics
for an accurate determination might turn out to be difficult.

So far, I have only investigated phase-dependences in ;- )2;’ production that arise from cou-
pling effects, i.e. phase-dependences that are present even when the kinematical masses
are fixed and the parameters are varied along with the phases. If the absolute values of
the parameters are kept fixed and the kinematical masses are allowed to vary along with
the phases, additional phase-dependences arise from the shifts 5m;i via the kinematical

functions in Eq. 4.20. However, these shifts in Eqs. 2.35 are only relevant for the diagonal
modes. Concerning the off-diagonal mode these shifts can be neglected as they only lead to
relatively suppressed effects of order M, when inserted into the kinematics of a O(M3,)
cross section. The phase-dependent parts of the shifts of the squared masses are identical
(in absolute value) and basically read as M3, M sin 23 cos ¢, /|p|. This shows that these
effects per se vanish like 1/|u| and 1/ tan 8 for large |u| and large tan 3, respectively. How-
ever, the shifts directly enter the “diagonal” cross sections through the reduced masses u;
and in the kinematical functions \;;, hence the final order of magnitude of effects from these
shifts is determined by these functions. The simplest example for a kinematical function

1
is A%, which enters the cross section already as an overall factor, see Eq. 4.20. For this

%)

example the “complete” phase-dependence due to mass shifts reads
1 ME, M,
V1—4u2 sl

This example already illustrates the two important features of the phase-dependent terms
from mass shifts in chargino pair production. First, the factor 1/4/1 — 42 causes a large
enhancement of such contributions near threshold. Secondly, the factor 1/s reduces them
significantly far above threshold. The specifics of this simple example already indicate that
a prediction of whether kinematical or coupling effects dominate again strongly depends
on the concrete choices for the SUSY input parameters and /s. Hence, such an analysis,
although possible, leads only to y/s-dependent predictions for selected parameter points
and is of no general use. Nevertheless, it should be emphasized that both diagonal modes
may develop a strong dependence on ¢, close to threshold due to kinematical effects.

sin 23 cos ¢,,. (4.27)

6Here the explicit calculation reveals that Q1 and Q3? are independent from each other.
17This mode only contains M3,-contributions as discussed above, hence the corresponding cross section
is suppressed.
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4.4.3 ete” — )Z?)Z?

The discussion of phase-dependences of cross sections in a perturbative regime now con-
cludes with an investigation of the neutralino production modes. It is a straightforward
conclusion that out of the 10 distinct cross sections for neutralino pair production in ete™
annihilation, o;; = o (X?x?), only four receive O(M?) corrections. The cross sections o7y,
012, 099 describing the production of two gaugino like neutralinos receive contributions
from selectron exchange in the ¢- and u-channel, while o3, receives contributions from 7
exchange in the s-channel. The cross sections o33 and 044 describing the production of two
equal Higgsino-like states receive non-vanishing contributions at O(M7) only, whereas the
cross sections for the production of one Higgsino-like and one gaugino-like neutralino start
at O(M2). This first classification of the cross sections for neutralino production can most
easily be understood in a diagrammatical approach as described in App.C.4.2.
Only o1 has sensitivity to some phase (in this case the relative phase between M; and
M) at order MY. All other cross sections are only sensitive to phases at order M2 or even
M. The strong phase sensitivity of o5 can be traced back to the Q12-term in Eq. 4.26. It
derives from the fact [84] that the production of two Majorana fermions is P-waved sup-
pressed near threshold if they have the same relative C'P-phase, whereas any difference in
this phase leads to an S-wave contribution to the cross section. This effect can be probed
with optimal statistical significance rather close to the threshold, in this case for /s not
too much above | M| + Ms.
For an observation of phase-dependent terms the production of mixed “gaugino-Higgsino”
final states should be most suitable since here phase-dependent and phase-independent
contributions to the cross sections o3, 014, 093, and o9 both start at O(M%) Also,
the cross sections for equal Higgsino-like final states, o33 and 044, only contain phase-
independent and phase-dependent terms of same order M; but these modes are clearly
disfavored for an observation of phase-dependent contributions as the cross sections are
of O(M%) and hence tiny. Accumulating statistics for an accurate determination within
these modes appears to be almost impossible. Furthermore, within the parameter choices
of scenarios B2 and B3 they lie above the discovery limit of a first stage FLC.!® The two
diagonal, gaugino-like modes also are of less interest for an observation of phase-dependent
contributions, as the phase-independent contributions to o;; and g9, already are present in
O(M?) whereas phase-dependent contributions only start at O(M%). Hence observing a
”signal” (phase-dependent terms) of O(M%) in a "background” (phase-independent terms)
of O(M?Y) is a tedious task. The same argument holds for o34. Furthermore, under the
given assumptions, x? is the LSP and the production of a x%-pair cannot be observed at
all. Therefore the further discussion of phase-dependences in neutralino pair production is
restricted to the mixed ”gaugino-Higgsino” final states.
Firstly, it has to be noticed that the two Higgsino-like neutralinos are closely mass degen-
erated within the reliability of our perturbative treatment. This makes it very difficult to
experimentally distinguish between the production of 3 and xY. Therefore in the follow-
ing discussion these two Higgsino-like-states always summed over, i.e. the cross sections
discussed are

O, = 043 + 04, 1= 1,2 (428)

As all kinematical functions in Eq. 4.26 are identical under the assumption mg = my

18Within B2 they are even out of reach for foreseen upgrades of an FLC, which typically assume the
achievement of /s = 800GeV in the second stage of operation.
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01/ Oofr
sin 28| M| sin 28| M1 || ] sin 28| M| sin 28| M1 | M2
cos(d, + 01 il 5 I als
sin 28 Mo sin 28| M |2 Mo sin 26 Mo sin 23 |p| M2
oS @,
|l || s |l s
| M| My | M| My | M| My | M| My
CoS ‘ 12l
d)l ME s [ s
sin 28| M1 | M3
cos(pr — ép) none % none none
in 28| M; |2 M.
cos(2¢1 + ¢,) none none none %

Table 4.3: Phase-dependences of o, and 0,5 under the assumption |u| > |M;| > M.
Columns two and four show the dominant, phase-dependent terms from @ and ()3, whereas
columns three and five display 1/s- and phase-dependent contributions from (. Numerical
and all other kinematical factors have been dropped and all contributions are normalized to
the characteristic size M%/(|u|*s) of the leading phase-independent contribution. “None”
denotes that the corresponding phase-dependence does not exist at O(M%).

this summation corresponds to summing the quartic charges in Eq. 4.26. The results of
the analysis of phase-dependences from coupling effects are summarized in Tab. 4.3. The
cross sections also contain terms o cos(¢; — ¢,) and o cos(2¢; + ¢,,) which result from
combinations of the rephasing invariant quantities ¢;(2) + ¢, and ¢; — ¢, in the convention
¢o = 0, as noted earlier in Sec. 4.4.1.

Again all terms involving the phase ¢, come with a common factor sin23 and are sup-
pressed at large tan S. Furthermore both modes contain sensitivity to the relative phase
between the gaugino masses M; and M, ¢, in the convention ¢ = 0. This sensitivity
remains for large values of tan 8. The s-dependent terms o ()9, listed in the third and
fifth column if present, reveal a different dependence on || than the terms that survive for
s — 0o do. Some of them still vanish oc 1/|u| for large |u|, whereas others seem to grow
with |u]/+/s in this limit. However in the physical region |u|/v/s < 1 holds and hence the
accessibility limits the growth of these terms. Finally, the results shown in Tab. 4.3 allow
the conclusion that o, 7 might show a slightly stronger overall dependence on phases in the
region of parameter space allowed by low-energy data. The expectation of such a stronger
phase-dependence for o, is based on the fact that all contributions involving the rather
unconstrained phase ¢, are either of the size for both modes or prefer o, ;5; whereas terms
pure in the strongly constrained phase ¢, prefer o,;. This preference of o, is fortunate,
since the )2[1’]:1 mode is accessible at lower energies.

So far only phase-dependences that arise from couplings have been discussed. Again, simi-
lar to selectron and chargino modes, all phase-dependences that may arise from a variation
of a the parameters M, |M;|, and || along with the phases while keeping physical neu-
tralino masses fixed may be neglected. The reason for this is that, as already pointed out
in Sec. 4.4.1, such adjustments of parameters affect the perturbative neutralino mixing at
O(M3}) only and hence lead to subleading phase-dependences in all modes. The sources
of phase-dependences are completed by the shifts of neutralino masses in Eqs. 2.40. These
shifts (5m>2~<0 are relevant when the absolute values of the parameters are kept fixed and

the physiclal masses vary with the phases. Note that these shifts only need to be dis-
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cussed when the leading phase-independent and the leading phase-dependent term are not
of same order of M, i.e. for o1, 092 and o34. In all other modes the mass shifts lead to
phase-dependences of subleading order. Concerning the remaining cross sections o1, 099
and o34, which were already marked as less helpful for an observation of phase-dependent
terms, it may merely be observed that the phase-dependent parts of the mass shifts show
phase-dependences similar to those that might be expected from phase-dependent coupling
contributions. Hence only a detailed parameter dependent analysis could show which effect
——coupling or kinematical— dominates the phase-dependences of these three cross sections.
However, it should be remembered from the discussion of kinematical effects in chargino
pair production that kinematical effects can be greatly enhanced close to threshold. This
point applies to all neutralino production modes.



Chapter 5

Polarization vectors

The numerical analysis presented in Chapter 7 will show that some of the cross sections cal-
culated and discussed in Chapter 4 depend quite sensitively on the C'P-violating phases ¢,
and/or ¢,. Nevertheless, if measurements of these cross sections establish a deviation from
the C'P-conserving MSSM, it will necessary to measure some C'P-violating asymmetries in
order to reach the conclusion that the observed deviation is indeed due to non-vanishing
phases, rather than due to some extension of the MSSM. Consequently, this chapter is
devoted to the discussion of C'P-asymmetries that can be defined at the level of cross sec-
tions, i.e. without including any decay chains in the production of SUSY particles. The
discussion starts with investigating the possibility of constructing C'P-odd observables from
the studied production channels. Afterwards the components of final states polarization
vectors in 2-fermion production are calculated. Finally, only the C'P-violating components
are investigated for a perturbative treatment of chargino and neutralino production.

5.1 Rate asymmetries and polarization vectors in two
fermion production

To start with, the production of fermionic (charginos or neutralinos) final states and the
C P-conjugated process may be summarized as

—

e (P, 51) et (P, §2) — Xik1, gl?j(k% 52), (5.1a)
CP: e (=pi,51) e (=P, 52) = X; — (k. 51)X; — (K2, 52), (5.1b)

where the momenta 7 » and IZLQ have been defined in Fig. 4.1, and 52 and 51,2 are the
spin vectors of the initial and final states, respectively.
In the CMS the following relations between the momenta hold

—

Br=—P, k= ke (5.2)

Therefore the initial state will self-conjugate if §; = S5, in particular for unpolarized beams.
Comparing reactions (5.1a) and (5.1b) one can introduce two C'P-odd asymmetries even
after summing over the spins of the final states. A rate asymmetry can be defined for
chargino production, essentially o ()ZDZ;) -0 ()fo(;), as well as an angular asymmetry for
the production of two different neutralinos, proportional to do ()2?)22, 0) —do ()Z?)Z?, T —0).



64 5. Polarization vectors

However, far from the Z pole, both these asymmetries vanish identically at the tree-level.
The reason is that they are both odd under a combined C'PT-transformation, where the
“naive time reversal” T reverses the direction of all 3-vectors, but does not exchange initial
and final state. Quantities that are odd under C'PT can be non-zero only in the presence
of absorptive phases [104]. Such phases can only be provided by nearly resonant s-channel
propagators or by loop corrections if the kinematics allow the particles in the loop to be on-
shell. As we are dealing with tree-level cross sections at CMS energies /s far above the Z
pole, no absorptive phases are available. Hence the two introduced C'P-odd asymmetries,
also being C'PT odd, vanish.!

In the absence of absorptive phases a C'P-odd quantity can therefore only be non-zero if it
is also T-odd. This is true for triple products of momentum and spin vectors. In general,
the spin of the final state fermions in (5. la) can be decomposed into three components:
P} is the component of § §; in direction of k;, averaged over many events (Wlth fixed 6); Py
is orthogonal to kl, but lies in the event plane; and P]ZV” is orthogonal to kz and orthogonal
to the event plane, i.e.

P = (5 k), PE=(G - xk)), Py=(G- [k x @ xk)), (5.3)

where (...) denotes averaging over many events for a fixed scatterlng angle 6. The
components Pi’TN are obtained from Egs. 5.3 by the replacement kl — k2 and 5, — 5.

Obviously, P} and P}/ are T-even quantities, but Py is T-odd.?

From this we can conclude that the production of fermionic final states offers some handle
on C' P-violating phases via the normal components P;éj M of final state polarization vectors
already at the level of differential cross sections. Analytical results for these components
will be shown in Sec. 5.3, a discussion of the normal components within the perturbative
regime follows in Secs. 5.4 and 5.5. The measurability of these quantities will be commented

on during the presentation of numerical results.

5.2 Absence of CP-violating observables in selectron

production

Concerning C' P-odd observables in both selectron production modes, €; e and €; e, the

] Y
situation is quite discouraging. First of all, for e; e, production the react1on and its C'P-
conjugated reaction are

J

e (Pr,51) e (P2, 52) — 5;(121)5;(42), (5.4a)

CP: et (—p1,51) et (=P, 52) = & (=K1 )éf (—Fka). (5.4b)

The processes summarized in (5.4a) and (5.4b) illustrate that the C'P-conjugated initial
state consists of two positrons. Therefore, even if any C'P-asymmetry could be constructed

1Tn the absence of absorptive phases, “naive time reversal” T' and “normal” time T reversal are essen-
tially the same. Hence C'PT-violation would indicate C'PT-violation.

2Strictly speaking, Pf;}ij is CP-odd only for self-conjugate final states (any two neutralinos, or X; )Z:r)
However, since T and T are essentially the same in the absence of absorptive phases, a non-vanishing P]i\}u
in x; )Z; production can also be considered evidence for C' P-violation.
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from the two reactions above, measuring such an asymmetry requires two rather different
experimental setups and environments. Hence, even in the quite unlikely case that both
environments were available simultaneously, the accurate extraction of any asymmetry
from two well distinguished sets of data is a rather sophisticated challenge within the
experiment. Since this thesis primarily attempts to determine the accessibility of C'P-
phases at an FLC, the “experimental doubts” given above explain why no further effort
on determing C'P-asymmetries in €; ¢ is made.
Considering the availability of the C'P-conjugated initial state, the reaction for €; éj and
its C'P-conjugated
e~ (51, 51) et (B, 52) — &7 (kr)ef (k). (5.5a)
CP: et (=p,51) e (=ph, 5o) = & (—k1)é; (—Fks), (5.5b)

look more promising. However, for the discussion of possible C' P-asymmetries available
from the reactions given by (5.5a) and (5.5b), reference [65] can be followed closely. In
that work we classified and discussed all polarization and rate asymmetries available for
prpT = 7:[7:;“ with scalar, pseudoscalar, axial and vectorial couplings as well as with
arbitrary initial state polarization. Transferring the conventions and the results from [65]
to the reactions in (5.5a) and (5.5b) it can be observed that most contributions to polarized,
differential cross section vanish® and that only two C'P-odd asymmetries are available a
priori. Unfortunately, both asymmetries are also odd under CPT. Again this implies that
they vanish far from the Z pole.

As a consequence of the discussion in Secs. 5.1 and 5.2 it may be noted that the only
C P-odd quantity that can be defined without the inclusion of any secondary decays are
the normal components of polarization vectors in the production of fermionic final states
as discussed in Sec. 5.1.

5.3 Calculation of polarization vectors in 2f — 2f

In this section the framework for the calculation of polarization vector components in
the presence of initial state polarization is provided and these components are defined.
Afterwards the starting point of the calculation and the results for the polarization vector
components are given. Finally, I show the results for P]ZV(])’” in absence of initial state
polarization and discuss them briefly.

5.3.1 Generalities and definitions

The calculation of polarization vector components starts by defining a suitable coordinate
system for the decomposition of §:~(j): the outgoing momentum /;i(j) is chosen as z-axis, the
y-axis is then introduced as perpendicular to the event plane and finally the z-axis is given
as cross product of these two

gii) = 10 (5.6a)

3This is due to the rather restricting structure of the helicity amplitudes in Eq. 4.8; they are either
helicity diagonal and mass off-diagonal or vice versa, whereas in the general case mass indices and helicity
labels are not correlated.
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event-plane

Figure 5.1: Coordinate system for the decomposition of the polarization vector 5.

. X (i
gi) = PLZ TG (5.6b)
|101 X kz‘(j)|

Ry ' T : (5.6¢)
Y i) [|PL X K i)

Using this right-handed orthonormal system the components of gi(j) are projections of gi(j)
onto the coordinate-axes in the rest frame of ¥; according to*

Pl = Sigy - @19, (5.7a)
PO - Sig) - €20, (5.7b)
Pjv(j)’ij _ §}(]~) .gyi(j)_ (5.7¢)

This description and the resulting decomposition of §; are summarized in Fig. 5.1.
Following [66,105] the initial state polarization averaged, squared matrix element may be
expanded into polarization vector components and spin-spin-correlations as

Y (0102, A)(010h, NN 1 Py =

0'1’0—’170—270',2
N [Sxabsn + Pi(ta)xadan + PL(Ta)sxdnn + Qus(Ta)wa(m)in] . (5.8)

where p' and p? are the initial state polarization density matrices as defined in Eq. C.20
and Eq. C.21, respectively; N is a general normalization factor. The final state index
pair 7j has been dropped wherever it can be designated as superfluous. P9 denote the
components® of §1) as defined in Eq. 5.7, and 7, are the standard Pauli-matrices associated

“The average over many events with fixed scattering angle 6, denoted by (...) in Eq. 5.3, is neglected
here; but still it should be kept in mind since this averaging will determine the measurability.
5To clarify the notation: PZY(] )

are the components of polarization vectors in the presence of initial state
polarization, p&(]),w

are the same components in the absence of initial state polarization.
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with the coordinate system used for the decomposition of 5U), i.e. Pir, = Pir,. Finally
the spin-spin-correlations are denoted by Qifﬁ. They are not relevant for the further course
of this thesis. For the production processes under consideration the initial helicities are
off-diagonal (09 = —0y), and Eq .5.8 slightly simplifies to

Z <Ul — 01, )‘5‘> <O-1 - 0-17 )‘IS‘I>*p£10’1p2—01—0’1 =

!
01,07

N [0xadsy + Pi(ra)xadsy + PL(Ta)anOna + Qs (7o) xa(78)an] - (5.9)

The normalization N and the polarization vector components PY) can be extracted from
Eq. 5.9 by multiplying with suitable combinations of dyx, dxx, (Ta) vy, and (7,)55 and sum-
ming over the final state helicities. An example of this calculation is illustrated in App. C.1.
The results obtained by the procedure are summarized in the next two subsections.

5.3.2 Results with initial state polarization

In this subsection the results for polarization vector components with arbitrary initial
state polarization are presented. Initial state polarization is described by the longitudinal
polarizations PLI’(Z), the transversal polarizations P;J(Z), and the polarization angles oy o)
for electron and the positron. Focusing on the polarization density matrix elements on the

left-hand side of Eq. 5.9, one notices that four “polarization functions” f;, given as
fi=fuv=1-P P} (5.10a)
fo= fL =P} — P}, (5.10b)
f3s = fr = PpP2cos (o + aw), (5.10c)
fi = fx = PrPrsin (o) + a) , (5.10d)

are sufficient to describe all dependences of the polarization vector components on initial
state polarization. Using these four functions, the normalization N and the polarization
vector components Pi?) may be decomposed as®

16N =Y Nifi, (5.11a)
k
pil) — &k i) 18 5.11b

First the coefficients N, and Oéj,i( ;) are expressed in terms of helicity amplitudes. These
intermediate results may be found in App. C.2. When these intermediate results are further
reduced to kinematical functions and quartic charges, several new quartic have to be added
to Eq. 4.21 and the complete set of quartic charges finally reads

Q7 = 1Qi > + Q- +1Q—1 I + |Q—_]", (5.12a)
QY = Q4+ + Q= — 1Q—+” — @I, (5.12b)

6The inserted factor 16 serves to cancel common factors both from the normalization of polarization
density matrices and from sums over A, X', X, and X.
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§=Re [QQi_ +Q-—Q ], (5.12¢)
)Y =TRe [Qi4Q_ — Q-—Q~], (5.12d)
éj = Q4 — Q- — Q-+ + |Q——]%, (5.12e)
) = Q4+ = 1Q+- 1P + Q-+ = 1Q—-P, (5.12f)
V=Im[Q Q5 +Q Q.], (5.12g)
)] =TIm Qi Q7 —Q Q*], (5.12h)
U =Re[QQ", +Q Q% ], (5.12i)
) =Re [Q+Q" |, — Q-_Q" ], (5.12j)
J=Im[QQ", —Q-—Q% ], (5.12K)
)0 =Tm [Q Q% +Q-—Q%_], (5.121)

where the bilinear charges gﬁ have been introduced in Eqs. 4.16-4.18 for chargino pair
production and in Eq. 4.23 for neutralino pair production. Using the quartic charges above,
the components N, of the normalization are

N, =4 { [(1 — AZ) + X cos? 9] @+ 2\ cos Q3 + 8/LZ~/LJ~Q2} , (5.13a)
Ny =4 { [(1 — AZ) + X cos? 9] Q1 + 2\ cos 0Q; + 8/LZ'/LjQ2} , (5.13b)
N3 = 8sin” OAQs, (5.13c)
N, = 8sin? H7Qs, (5.13d)

while the coefficients C¥ , . for the longitudinal components read
Cha=4{[2(1= A) Q1 + 81t Qs cos 4+ A3 [1 4 cos?0 — Asin? 0] Qs |, (5.14a)
Ch =4 { [2 (1-A)Q: + 8uiuj622] cos0 + A* [1 + cos>0 + Asin® 0] Q3} (5.14b)
C3o=4{[2(1= A) Qi + 8y @] cosf+ A} [+ cos? — Asin® 0] Qs ), (5.140)

Gy =—4{[2(1- A) Qi + 8111 Qs] cos 0+ A3 [1+cos? 0+ Asin 0] Qs } ,(5.14d)

O3, = 8sin? A% (1 + A) Qs, (5.14e)
O3 = —8sin?0A2 (1 — A) Qs (5.14f)
Ot =8sin?0A2 (1+A) Qs (5.14g)
Cf ;= —8sin?OA2 (1 — A) Qs. (5.14h)
For the coefficients C:’ﬁ’i( i) of the transversal polarization one obtains
Cr,; = —8sinf [,ui (1—-A)Qy + 112 cos 005 + 2115 (1 4+ A) QZ] , (5.15a)

Chy = 8sind |11y (1+A) Q1 + i\ cos 0y + 21 (1 - A) Qs (5.15b)
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C%,i = —8sinf [Mz‘ (1-A)Q, + ui)\% cos0Qs + 215 (1 + A) QQ] , (5.15¢)
C’%ﬂ. = 8sinf |:/l/]‘ (1+A)Q + /Lj)\% cos Q3 + 2p; (1 — A) QQ] , (5.15d)
C}; = 16sinf cos 01Nz 0s, (5.15e

O3 = —165in 0 cos ;A2 Qs, (5.15f

C{ﬁ’i = 16sin 6 cos H/Li)\%Qg,

C’%’j = —165sinf cos Quj)\%Qg.

Finally the coefficients Czkv,i( i) of the normal polarization are found to be

Ol = 1617 sin 6Q., (5.16a
Ok, = — 161,27 5in 6Q, (5.16b
C’?V,i = 16/1]-)\% sin 0Q,
C’]?VJ = —16/@-)\% sin 0Q),
C’]?’w = —16/@-)\% sin 0@6,
C’]?’VJ = 16/1]-)\% sin 0Qs,
Cr, = 161,17 sin 0Qs, (5.16g
O = — 164,22 sin 0Qs. (5.16h

Here A denotes the kinematical function A;; as introduced in Eq. C.3; A = A;; is defined
in Eq. C.16 and A = A;; is given by

Agj = pif + 15 (5.17)

These are complete results describing the polarization vector of both produced fermions in
suitable coordinate systems with arbitrary initial state polarization. Despite being lengthy
they are presented here as they will be used again in the later course of this thesis. Another
reason for noting these results in full is that apparently have not as yet been published.

5.3.3 Results without initial state polarization

Without initial state polarization the polarization vector components of the produced

fermions are generally given by the coefficients C ; ; and N' as
ct .
i(4)45 — » _ T ei(g)
PaJ J = Pa,z(]) Pi=Pi=0 N, . (518)

As only P]iv(j)’ij is of further interest within Part II , the results for Pz(j)’ij and P%(j 9 are
omitted here. The C'P-odd normal components are found to be

1
4#]')\57'@4]

. 1 . P

[(1 = AZ) + Xij cos? 0] QF + 207 cos 0Q5 + 8puip1;QF

P — : (5.19a)
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1.
—4u\Q7
[(1 = AZ) + Aij cos? 0] QY + 222 cos 0Q + 8pu;p1; Q5

Pii = (5.19b)

These results, as well as the omitted ones, can be compared with [66,105]. Agreement in
all six components without initial state polarization is found.
Firstly, Eqs. 5.19 reveal that the denominator of P]ZV(] ) is essentially given by the cor-
responding differential cross sections if the phase space factors in Eq. 4.20 are neglected.
Thus the results of the discussion of cross sections within the perturbative regime can be
transferred directly to these denominators. Secondly, from Eqs. 5.19 one can conclude that
P9 vanishes both at the threshold (where A; — 0) and far above threshold (where
;i — 0). Furthermore, Eqs. 4.16 and 4.17 show that all bilinear charges describing x; x;
production are real. Likewise, Eqs. 4.23 and 4.24 together with Eq. 2.51 illustrate that
the couplings appearing in the expressions of Eq. 5.19 of the bilinear charges are real for
final states consisting of two identical neutralinos. Thus @7 and hence P]ZV(] "7 can only be
non-vanishing for off-diagonal chargino or neutralino production modes (i # j). Moreover,
the identity

pyii = _Lipiii (5.20)

Hj

shows that there is only one independent Py for each distinct x;x; production channel.
This amounts to a total of seven independent C'P-odd observables.

5.4 P]{,(Q)’n in perturbative chargino production

The results of the perturbative treatment of chargino mixing are now applied to the nor-
mal component P;,(Q)’m in )Zf)ﬁ—production. Remember that these components are the
only C'P-odd ones available for all chargino production modes. When normalized to the
leading phase-independent contributions within the cross section, which are oc M3, /|u|?,
the quartic charge Q}? reads’

)2 o< sin23sin . (5.21)
The quartic charge Q}? contains pure s-channel contributions as well as contributions from
the interference between s- and t-channel. In both cases first order corrections to the
Higgsino (gaugino) component of the gaugino-like (Higgsino-like) state are crucial. As
PP i given as the O(M32,)-quantity Q12 normalized to an O(M32,) cross section, it is of
order O(Mj,) itself. Therefore, when the reduced masses ji1(2) (see Eq. 5.19) are included

in Eq. 5.21 in order to obtain the normal polarizations P]{,(Z)’u are basically given as

Py = |i\/8_| sin2@sin¢,, Po'> = % sin 23 sin ¢,,. (5.22)
Trivially, but as expected for a C'P-odd quantity, here the dependence on ¢, is exclusively
through sine functions and vanishes like 1/ tan § for large tan 8. The included kinematical
terms fi;(;)/+/s yield a suppression of PJIV(Z)’12 in the physical region, where M,/\/s <
|| /+/s < 1. However, this additional suppression “prefers” the normal polarization vector
components of the lighter, gaugino-like chargino ;. Additional phase-dependences arising

TAgain I work with the convention ¢» = 0 and assume |u| > Mo.
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either from the variation of physical masses with the phases or from variations of the
absolute values along the phases with fixed kinematical masses need not be included; both
lead to contributions of subleading, relative order of M3,. Following these arguments P}V’IZ
could be considered the best C'P-odd observable available from chargino pair production,
but unfortunately the observed, quite stringent bounds on ¢,, (see Sec. 3.3.2) strongly limit
its utility. Moreover, the utility of Py'? also suffers from being associated with an O(M2,)
cross section. This fact narrows down the statistics available for a determination of Py
As a consequence it has to be concluded that normal polarization in chargino production

is most probably not sufficient to probe C P-violation directly.

5.5 P]i\;j i in perturbative neutralino production

Within the framework of the perturbative treatment of neutralino mixing as given in
Sec.2.3.3 it was observed that the two heavier, Higgsino-like neutralino are closely de-
generated in mass. Hence only four off-diagonal production channels, i.e x; s, )Z(l’ﬁ, )ng[,
and HH, are available. This reduces the number of independent normal polarizations
available in neutralino production from six to four. To start with, Py for HH (33%9) can
be neglected in the further course of discussion as @Q3* vanishes to O(M2%) and therefore
Py itself is an O(M32) effect after normalizing Q3* to the corresponding cross section of
O(M}). In contrast, one finds that the numerators in Egs. 5.19 receive O(MY) corrections
only for the ¥0%9-mode; in the case of the Y9H and YJH mode the numerator starts at
O(M32), just like the corresponding total cross sections, and hence the denominators in
Egs. 5.19. In all these cases Py will be an effect of order M2. This argument again in-
dicates that additional phase-dependences, which might arise either from the variation of
physical masses along with the phases or from the variation of mass parameters, need not
be included.

The normal polarization of the heavier, wino-like neutralino in x93 is explicitly given as

1
—4A7 IJ\;%I sin 0 sin ¢

2,12

Py~ =
| M| Mo 3

— 82 cos 1 + 2A 5 cos b

: . (5.23
(DE)*+(DE)? (5.23)
DEDL

(pF)’ (LY’
DD}

(1 — A%, + Ajgcos? )

As expected for a C' P-odd quantity the dominant dependence on ¢; is through a sine func-
tion, while the denominator (basically the differential cross section discussed in Sec. 4.4.3)
contains a C'P-even dependence on ¢, through a cosine. In general, Eq. 5.20 shows that
‘P}V’u‘ is larger than ‘Pﬁ,’u‘ by a factor of M,/|M;| ~ 2. However, since it has been as-
sumed that y? is the LSP and hence stable (if R-parity is conserved), the spin of x{ cannot
be measured.

Due to their mass degeneracy we have to average Py for the mixed gaugino-higgsino modes
over the production of both Higgsino-like neutralinos. Using the event numbers N as
weights, we obtain

o i(3),i3 i(4),i4
pili)if _ NisPy " + NiaPy i=1,2. (5.24)
N Nis + Ny ’ ,

This amounts to replacing the quartic charges in Eqs. 5.19 with

Q" = Qi + Q. (5.25)
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With this description the calculation of the relevant quartic charges Q4 to O(M2) becomes
a straightforward, if somewhat tedious procedure. The results of this calculation are sum-
marized in Tab. 5.1, where they have been normalized to the leading phase-independent
contribution to the differential cross sections, characterized by MZ%/|u?. Due to this nor-
malization the terms in Tab. 5.1 correspond directly to terms in Py, up to an additional
factor of |M;|//s (My/+\/s or |u|/+/s) for PH 1H (P]f,l 20 o P2 2H) As expected, the phase-
dependence of these terms is through sine functlons. All terms that are sensitive to ¢, are
suppressed at large tan 5. A similar behavior has already been observed and discussed in
Sec. 4.4.3 for the corresponding contributions to the cross sections. The dominant phase-

1H 2H
4 1
sin(¢1 + ¢y.) sin 23 sin 26‘]‘/'[;"342
sin ¢, sin 2[3 W‘[I “]2‘/[2 sin 2[3
: Mp M
sin 1 I I
: e
sin(¢1 — @) sin 25“”22 none
sin(2¢1 + ¢,,) none sin 25‘M1|

Table 5.1: Phase-dependences of Q;®" under the assumption |u| > M, > |M;]|, normal-
ized to the characteristic size M%/|u|?* of the leading contributions in the denominators of
Eqs. 5.19. The terms proportional to sin ¢; get additional contributions of the same size,
but scaling with cos23. As these contributions do not affect the following conclusions,
they are omitted here.

HOH

dependence of Py " is due to sin(¢; + ¢,); this contribution remains finite for |u| — oo,

but vanishes o 1/ tan 3 for large tan 3. Taking the additional, kinematical factor |M1|/\/_

H,LH - .
suffer from an additional suppression

into account we notice that all contributions to Py
that increases with i 1ncreasmg |8
On the other hand, in the x5 0 H-mode the polarization of the lighter, gaugino-like neutralino

can be measured, in this case giving rise to an extra factor of |u|/\/s. We thus see that

(as long as \/5 > |u| + My) the contribution to Py*™ proportional to sin ¢, (third entry
in the third line of Tab. 5.1) rises with increasing |u|. Unfortunately, for the range of
|| of interest to this work, this contribution is suppressed by the stringent upper limit
on |sin@,|, see Sec. 3.3.2; only in scenario B2 with small tan / magnitude comparable to
the contribution proportional to sin ¢; (third entry of the fourth line in Tab. 5.1) can be

attained. This contribution to Py*"" approaches a constant for large |u| (when |pu|/\/s
is included), and remains finite for large tan 5. Therefore it can be concluded that the
production of )Zgﬁ should allow a somewhat more sensitive direct probe of C'P-violation
than the production of Y0 H.

8In order to remain within the physical region /s has to be increased with increasing |u|.



Chapter 6

Significances

In the course of this thesis I have so far explored the possible size of phases as well as
developed an expectation about which out of the various production channels considered
here might be sensitive to these phases. But a tool to quantify these sensitivities was not
yet introduced. This lack is addressed by this chapter. After introducing such a tool,
referred to as significance later onwards, a few properties of these significances are studied
briefly using simple toy-models of phase-dependent cross sections.

6.1 Introduction of the significances S and S

A major goal of this thesis is to quantify the impact of C'P-odd phases on total cross
sections, which are C'P-even quantities. To this end the difference in counting rates between
a C' P-conserving point in parameter space (CPC: all phases ¢; = 0 or 7) and a C' P-violating
one (CPV: identical absolute values, but at least one ¢; # 0 and low-energy compatible) is
compared to the statistical error at the CPC point. This determines the significance S with
which a deviation from the cross section predicted for the CPC point can be measured. It
may be written as

S — ANCPCfCPV‘ (6.1)

dNcpc

Since there are two C'P-conserving values (0, 7) for each phase, one has to deal with eight
CPC points for each set of absolute values, and hence the same number of significances
is available for each kinematical accessible cross section. The smallest of these evidently
determines the statistical significance with which the presence of C'P-violating phases can
be inferred from this cross section for given values of the absolute values of all SUSY
parameters. Therefore the final measure of the sensitivity of a given cross section to
phases the significance is defined as

CPV _ _CPC,
‘Ufifj Tfif

CPC,,
V Ufifj

+

x VL, (6.2)

where oy,;. is the total cross section for e7e* — fif;, and n = 1,...,8; only include
CPC points which are low-energy compatible are included.! Finally, £ is the integrated

!Since oy, #; does not depend on ¢4, there are only four different values of J?Z_P}?“ for a given CPV
point. However, occasionally both ¢4 = 0 and ¢4 = 7 have to be checked to find a CPC point that is
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luminosity which is expected to be different for the e e™ and e e~ options.

In the procedure outlined so far, CPC and CPV points have the same absolute values of M,
M, and p. This means that these points will in general have different physical neutralino
and chargino masses [106]. Recall that the phase-dependence of the ¥ masses is suppressed
by Mé(W)/(|u|m>2) in the perturbative limit, see Eqs. 2.35 and 2.40. Nevertheless, changes
of several percent are possible, in particular in the neutralino sector. This could lead to
similar changes? in the cross sections through kinematical factors (in y production) or
through neutralino propagator factors (in é production). Moreover, these masses are often
more easily measurable than the cross sections which are the focus of this analysis.
Therefore a second set of significances S, where CPC and CPV points have the same
physical masses for Y, X3 and xi, is introduced. In the limit of large ¥ masses and for the
choice of |p| > My > | M|, these three masses essentially fix | M|, |p|, and Ms, respectively.
Note that only three (dimensionful) absolute values that can be adjusted in the neutralino
and chargino mass matrices are available. Therefore it can not be guaranteed that all
chargino and neutralino masses are the same in the CPC and CPV points. However, after
ensuring that these three y masses are the same in both points, the remaining variations of
the other three y masses between the CPC and CPV points are quite small. For technical
reasons | M|, My, and |p] are kept fixed (at the values listed in Tab. 3.2) for the CPC points,
and are adjusted at the CPV points. Since the eight CPC points have four different y mass
spectra, a given set of phases now also produces several different CPV points, labeled as
CPV,,. The new significance can thus be written as

CPV, _ _CPC,
Ufifj Ufifj

CPC,
\ 95ifi

The algorithm for calculating the significances S and S can be summarized as follows:

S (fif;) = min, x VL. (6.3)

- Select a CPV point: For a set of the absolute values of the relevant SUSY parameters,
as listed in Tab. 3.2 for our three scenarios B1, B2, and B3, this amounts to randomly
choosing values for the phases ¢4, ¢, and ¢;. Repeat this step until a point that is
compatible with the low-energy constraints has been found.

- For each process, find the low-energy allowed CPC point that minimizes S (f;f;) as
defined in Eq. 6.2. Note that there are only eight CPC points for each scenario if
tan [ is kept fixed, however, this procedure in general selects different CPC points
for different processes. This completes the calculation of S.

- Define eight new CPV points CPV,, by adjusting |M;|, M, and |u| such that mye,
Mgk, and myo are the same in points CPV,, and CPC,,.

- Calculate the significances S (f;f;) as described in Eq. 6.3.

Note that S and S only measure statistical significances. In addition there will be sys-
tematic uncertainties, both from experiment and theory. Little can be said here about

compatible with the bound on a,. Trivially, all CPC points satisfy the bound on d,.
2These possible changes have already partially been discussed within Sec. 4.4, under the heading of
“kinematical effects”.
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experimental uncertainties, except to express the hope that they will be small. A theoreti-
cal error is introduced since our cross sections can only be predicted with finite precision. At
tree-level these cross sections are determined uniquely by the parameters listed in Tab. 3.2,
plus a few SM parameters that at this time are already known with high precision. How-
ever, explicit calculations for )Zli pair production show that quantum corrections can easily
amount to O(10%) [107,108]. Some of these corrections can be calculated unambiguously
once the parameters listed in Tab. 3.2 are specified, but the remaining corrections can still
amount to several percent. In particular, the lepton-slepton-gaugino “gauge couplings” de-
pend (logarithmically) on the squark mass scale [109-113]. The production of Higgsino-like
charginos [107,108] and, presumably, neutralinos also depends on the parameters appearing
in third generation sfermion masses. These corrections will only be calculable once the pa-
rameters of the (presumably quite heavy) squark sector have been determined. Until then,
out of two processes with roughly equal significances as defined above, the process with
the smaller cross section should be preferred since here a given significance corresponds to
a larger relative variation of the cross section with the phases.

6.2 Elementary properties of significances

This section is devoted to a brief analysis of the elementary properties that a significance
can reveal if the corresponding cross section is varied along with some phases.® T start
with giving three statements which allow almost the complete determination of the sig-
nificance from the corresponding cross section. These statements are briefly motivated
and illustrated for three examples. I complete Chapter 6 with deriving an instance of the
possible correlation pattern of significances from these examples and studying the case of
constrained ranges for the phases.

6.2.1 General case

In order to understand the elementary properties of significances a cross section ¢ and the
associated significance S(o), where o is depending on two phases, are studied here.? As the
general case includes the presence of two phases®, one has to deal with four CPC points and
correspondingly have four CPC cross sections, denoted by o-F¢ i =1,...,4, available as
CPC reference points in the definition of S(o) by Eq. 6.2. Hence the minimization implied
in Eq. 6.2 chooses one out of these four CPC points. Moreover, the case the numerical

value of the cross section for a non-trivial choice of the phase coincides with the value of a

3Within this section the significances S and S are treated equally, i.e. I do not distinguish between
the two different treatments of the physical masses. Therefore the phase-dependence of the cross sections
discussed here may originate from any of the three sources mentioned in Sec. 4.4, which generalization
does not affect this section’s results adversely.

“In general, a cross section could depend on more than just two phases. For example, in 7 pair
production the phase ¢4 of the soft, trilinear coupling can not be removed from high-energy phenomena
and ¢4 enters as a third phase. However, the case of only two phases being relevant for collider physics is
more than sufficient to derive and understand the basic properties of the significances. The extension to
more than two phases may be somewhat tedious, but is principally self-evident.

SHere I assume that both phases are available over their complete range. The case of re-
stricted phases will be discussed later. Furthermore, due to the properties of cosine-like functions
[f(¢) = f(2m — ¢) = f(—¢)] the discussion of the interval [0, 7] is sufficient.
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CPC cross section, is referred to as “the cross section takes a CPC-like value”. Hence, the
properties of significances may be reduced to the phase-dependence of the cross section by
the following three statements:

Statement I

If the variation of the phase ¢ between the two CPC choices 0 and m with a fived CPC
choice for the second phase leads to a variation of the cross section o between the
two CPC cross sections oY and oS$FC such that the cross section takes no CPC-like
value on |0, [, then the corresponding significance S has two local minima (0, 7) and
a global maximum in ¢15 €]0, 7]

Statement 11

If the variation of the phase ¢ between the two CPC choices 0 and m with a fived CPC
choice for the second phase leads to a variation of the cross section o between the two
CPC cross sections oFC and oS$TC such that the cross section o takes a CPC-like
value oS¢ for some @3 €]0,7[, where o3 can be any cross section out of the four
CPC cross sections, then the first statement can be applied to the subintervals |0, @3]
and |¢s, w[. Therefore the significance S will take three local minima (at 0, ¢3, and
7) and two local mazima.

Statement I11

If the variation of the phase between ¢ the two CPC choices 0 and w with a fized
CPC choice for the second phase leads to a variation of the cross section o between
the two CPC cross sections o\*° and oS¥C such that the cross section takes n CPC-
like values aS¥C for ¢, €]0,n[ then the first statement can be applied to the n + 1
subintervals 10, ¢1[, ..., |on_1, Oul, and |pn, 7[. In this case the significance will have
n + 2 local minima and n + 1 local maxima.

Since statement 1T and III follow directly from the stated suitable decomposition of |0, 7]
into subintervals from statement I, only statement I is derived here and the second and
third one are considered as justified under certain specifications to be given later.

The presence of local minima at the boundaries 0 and 7 of [0, 7] follows trivially from
Eq.6.2.° The expected existence of a global maximum is most easily understood by inter-
preting the significance S as a relative norm acting on cross sections. Using this interpre-
tation of § as a norm, it is of striking clarity that for a certain value ¢ of the phase ¢, the
cross section o(¢y2) has equal distance to both CPC reference points. Hence, seen from
the point of view of the minimization instruction in Eq. 6.2, the two CPC reference points
are equal; this equality then results in a global maximum for S(o) at ¢15. Furthermore, in

$12 both absolute size and sign of the slope of S change.” Given the values of o and
o§FC the value ¢5, which maximizes the significance, is derived from
CPC CPC
o —0 Lo —0
o (¢12) — 07| i |o(12) — 057 (6.4)

6The physical interpretation of these minima is straightforward, CPC-cross sections are simply insen-
sitive to C'P-violating phases.

"The change of the sign of the slope is trivial, whereas the change of the slope is due to the change of
the CPC reference point, i.e. ,among others, the denominator in Eq. 6.2 changes.
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and ¢y is determined independently from the integrated luminosity £ by

o(p12) = \/oFCSPEC, (6.5)

Statement I is valid for every cross section if the following two conditions are fulfilled:

a.) o is strictly monotone on |0, 7|,

b.) none of the remaining two CPC points lays between ot

[0CPC oSFC] for | = 3,4,

c CPC
and o5"%],

ie. o, ¢

If the second condition is not satisfied, statement II or the generalized formulation in
statement IIT may be applied. Moreover, statement IT (or statement III) also apply if
the first condition is violated such that o possesses a local extremum o, with either
min (01, 02) > 0, or max (o0FC, 057C) < o,.

When generalizing statement I to statements IT and III, some attention has to be focused
on Eq. 6.5; in the general case it reads

0 (diir1) =\ o7 "ol C, (6.6)

when o; and 0,41 are two different CPC cross sections that define [¢;, ¢;11]. If 0; and 0,14
are identical, i.e. o takes an extremum in ey € |Ps, Gir1[ With o(dert) ¢ [0, 0i11], then
Eq. 6.6 must replaced by

¢i,i+1 = ¢e:1:t- (67)

The three statements given above, together with the added specifications, are sufficient
to understand the behavior of significances. The transfer of the general conditions and
their implications to practical cross sections will be studied for three examples in the next
section.

6.2.2 Examples

As examples the three toy-model cross sections o; and the associated significances S(o;)
are now briefly investigated. The first two cross sections are chosen such that they depend
solely on the phase ¢, while the third one depends on two phases ¢ and w

o1(¢) = 3+ 2cos ¢, (6.8a)
03(¢) = 4 + cos ¢ — cos® ¢, (6.8b)
o3(¢p,w) =4+ 2cos ¢ + cosw. (6.8¢)

Here the interest is in the shape of S(o;) when ¢ is varied between 0 and .

First of all, oy is a monotone cross section on |0, 7| (see Fig. 6.1.a) and hence statement I
from Sec. 6.2.1 is sufficient to derive the properties of S(oy). As predicted S(oy) has two
minima (at 0 and 7) and a maximum at ¢1,, see Fig. 6.1.d.

The phase-dependence of o, is shown in Fig. 6.1.b; due to the negative cos®-term, o, is not
monotone on |0, 7[, i.e. 02(0) = 03(7/2), and o, takes a global maximum on |0, 7/2[. Such
a case is covered by statement II together with Eq. 6.7, and indeed the significance S(o5)
possesses three minima and two maxima (gez, ¢%,) as illustrated in Fig. 6.1.e.
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Finally, we observe that the four CPC reference cross sections for o3 fulfill o3(0,0) >
03(0,m) > o3(m,0) > o3(m, 7). Now, if ¢ is varied from (0,0) to (m,0) then o3 coincidents
with o3(0, 7) for some value ¢35 of the phase ¢, see Fig. 6.1.c. Again such a case is covered
by statement IT and we expect S(o3) to have three minima and two maxima (¢3;, @3,);
this is observed in Fig. 6.1.f.

a: o1(¢) b: o3(9) c: 03(¢,0)
| | | | | | | | |
- . 8 30,0 .
451 - o1(0) | 451 """ 220) 6 ™ o )(¢ 0)
= =N S =~ B 3\Py —
£ 3 0-1(¢) — = 3+ 02(¢) N — S ot S
G | _ g | I | g 4 0'3(0377) ]
2 o1(m) E e T st
1l — 1k o2 (m) _ 2F o3(m0) -
0 I I I 0 I I I 0 I I I
0 025 05 075 1 0 02505 0.7 1 0 0.25 0.5 0.75 1
¢[7] ¢[r] ¢[7]
d: 8 (oy) e: S(09) f: S (o3)
3F | | | — 3 F | | | — 3F | | | —
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Figure 6.1: The significances S(o;) (lower panels) of the three toy-model cross section o;
(upper panels) as examples of the determination of significances by their associated cross
sections. The cross sections are given in arbitrary units of squared length [LE]?, for the
integrated luminosity £ T took 5 x [LE]72.

Together with the discussion of constraint ranges for phases in Sec. 6.2.4 the examples
basically cover all patterns for significances that are discussed within the numerical analysis.
Of course, in this analysis the situation concerning the variation of phases is not as simple
as assumed here. More precisely, in most cases the phase ¢, is varying within the range
(D1, Omaz] U [@lhas, ™) Whereas the phase ¢, shows some finite scatter around 0 (or/and 7

depending on the scenario). However, the elementary outcome of the discussion in Sec. 6.2.1
and the examples given here can be transferred to the numerical analysis.

6.2.3 Correlations

In the numerical analysis of Chapter 7 the correlations between significances of different
modes will be studied. To provide a better understanding of the upcoming figures, the
correlation between S(o1) and S(o3) is shown and briefly discussed here. The correlation
between S(o7) and S(o3) is illustrated in Fig. 6.2.c, whereas Fig. 6.2.b just repeats S(o3)
and Fig. 6.2.a shows the phase ¢ plotted against S(oq). The observed correlation pattern
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Figure 6.2: The correlation of the significances S(oq) (left panel) and S(o3) (middle panel)
as an example. The correlation pattern of S(o3) against S(oy) (right panel) can be under-
stood directly from the two left panels. The arrow in the right panel indicates the direction
of increasing ¢. All conventions as in Fig. 6.1.

can now be explained as follows:

1.) From the starting point ¢ = 0 both significances increase with ¢ until ¢ = ¢3,. Here
S(o3) is maximal at the first kink.

2.) For ¢3 > ¢ > ¢}, the significance S(o) continues to increase whereas S(o3) decreases
to reach the second minimum at ¢3. This corresponds to the second kink.

3.) For ¢ > ¢3 both significances increase again, until ¢ = ¢}, is reached at the third
kink, where (o) is maximal.

4.) From this kink onwards S(oy) decreases continously towards its minimum for ¢ = 7.

5.) The fourth and last kink is generated when ¢ passes ¢3, and S(o3) begins to decrease
in order to reach the minimal value for ¢ = 7.

Despite its simplicity this example of a correlation pattern covers and explains almost all
correlation patterns that are found in the numerical analysis. Of course, correlations of
“simpler” significances are trivially covered by this example.

6.2.4 Constrained ranges for phases

Assuming more physical ranges for the phases naturally affects the behavior of the sig-
nificances chosen as examples in Sec. 6.2.2. First of all, if a physical bound excludes
CPC-points that correspond to intermediate CPC-values when the cross section is scanned
between two allowed CPC choices the number of extrema is reduced correspondingly. If,
for example, the CPC-point (0,7) was excluded during scanning ¢ for o3, then the signifi-
cance S(o3) would reveal the same properties as S(oy) in Fig. 6.1.d.

Secondly, if the physical bounds forbid a subinterval around one of the two CPC points that
were initially used as boundaries of the scan, then the significance receives a local extremum
at the physically allowed boundary ¢n.x for ¢. The magnitude of this “new” minimum
depends on whether the former maximizing value ¢4 is included in the physically allowed
range or not. In case of inclusion one obtains S(¢12) < S(Pmazr) While S(¢12) > S(dmaz)
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holds for the contrary case. Examples for such a behavior are given for S(oy) in Figs. 6.3.a
and 6.3.b.

Finally, if the effect of the physical bound only consists of cutting out a range [@min, Pmaz]
from a subinterval [¢;, ¢; 1] without reducing the number of available CPC reference points,
then the behavior of the studied significance is essentially unchanged; only the correspond-
ing subinterval is missing. An example of such a case is illustrated in Fig. 6.3.c.

a: S(oq) b: S(oy) c: S(oq)
AF T 1 AF T T 0 4
3t 3+ 3
£ 9t Oy O .
) o) )
L/ Al D4 N
0 02040608 1 0 02040608 1 0 02040608 1
¢[7] ¢|[7] ¢[7]

Figure 6.3: The examples for the possible impact of physical bounds on the phase ¢ in the
case of S(oq1). The shaded region indicates the subinterval for ¢ excluded by a physical
bound. The solid (red) line shows S(oq) with the bound imposed, the dashed (blue) one
recalls S(oy) without the bound on ¢. All conventions as in Fig. 6.1.



Chapter 7
Numerical analysis

The thesis has now reached the stage where numerical results for our high-energy observ-
ables can be presented. First the available observables are briefly recalled and the enormous
number of possible correlations between these observables is estimated. Sec. 7.2.1 collects
the numerical results for the cross sections; the impact of C'P-odd phases on these (CP-
even) observables is discussed in Sec. 7.2.2. Afterwards the results of the (7-odd) normal
components of polarization vectors are given in Sec. 7.2.3. Finally, in Sec. 7.3 a few of the
possible correlations between phase-sensitive quantities are studied. More details on the
code used to obtain these results appear in App. E.

7.1 Overview and organizing principle

The number of observables provided by the numerical calculation is quite large; regardless
of /s, i.e. the kinematical accessibility of production channels, two low-energy and 64
high-energy observables are available. The 64 high-energy observables consist of 19 total,
unpolarized cross sections, each with two significances S and S, as well as the seven inde-
pendent normal components of the polarization vectors in the off-diagonal production of y
final states. This already amounts to 128 different correlations among low- and high-energy
observables. The number of possible correlations between the high-energy observables is
still larger by far. First, for each of the 19 production channels there are 3 correlations
between CPC high-energy observables. Secondly, each of the 7 off-diagonal x production
modes allows three additional correlations between CPC and CPV high-energy observ-
ables within a production channel. Moreover, there are 171 possibilities to choose a pair of
two distinguished production modes, each pair offering 3 x 3 different correlations of CPC
high-energy observables; in total this amounts to 1539 correlations of CPC high-energy ob-
servables of different modes. In contrast, there are only 21 correlations of CPV high-energy
observables from two different production modes. Finally, CPV and CPC high-energy ob-
servables of different production modes can be correlated. This corresponds to 7 x 18 x 3
additional correlations. Adding up, the overall number of possible correlations a priori
is of order 2,000, and a clear organizing principle to obtain a compact and meaningful
presentation of the numerical results is necessary.

Of course, the information provided by the total cross sections and the corresponding sig-
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nificances S, respectively S, can be considered redundant. Hence o can be eliminated as
a quantity other observables may correlate with.? Unfortunately, this restriction merely
roughly halves the number of possible correlations.

As a next restriction, S can be removed from the discussion in the sense that it is suf-
ficient to study the correlation between S and S for each mode. The reason for this is
that the correlation between any other observable, say X and S, can be derived from the
correlation between X and S and the correlation between S and S, i.e. the information
contained in C(X,S) is redundant to the information contained in C(X,S) if C(S,S) is
known.? For similar reasons it is not necessary to investigate the correlations between CPC
and CPV high-energy observables originating from two different production channels. Ap-
plying these three considerations one is left with 270 possible correlations, if no production
mode is distinguished from the others.

A criterion to distinguish production channels from each other is obviously given by the
significances and, if available, by the normal components of polarization vectors. In order
to find such accented production channels, the numerical results for the total cross sections,
the significances S and S, and the normal component of polarization vectors P;éj I are
presented in a tabular form and discussed briefly in Secs. 7.2.1-7.2.3. These tables are
used to select a few production channels with high sensitivity to phases as well as a few
promising production channels with sizeable Pi?”7. Once this reduced set of high-energy
observables is selected, some correlations among these observables and with the low-energy
observables are studied in Secs. 7.3.1-7.3.3. The limited set of correlations obtained by
this “selective” procedure is sufficient to reveal the basic patterns that may appear when
observables are correlated and to discuss the underlying physics of such correlations.

7.2 Discussion of the results

7.2.1 Cross sections

As discussed in Sec. 3.3.1, the SUSY parameters are chosen such that selectron pair pro-
duction as well as production of the two lighter neutralinos or charginos is already possible
at the the first stage of a FLC operating at /s = 500GeV. However, in scenario B2
the Higgsino-like states are not accessible at this energy. I take therefore in this scenario
Vs = 800GeV when discussing reactions where at least one x3, x9, or X5 state is produced.
Note that all current FLC designs foresee an upgrade to at least that energy. A similar
treatment is used in scenario B3, except for the )2?)2%74 final state, which in this case is
already accessible at /s = 500GeV.

Table 7.1 shows the maximal allowed cross sections for the 19 different production chan-
nels discussed in Secs. 4.3 and 4.4, for the three scenarios B1, B2, and B3, and the same
choices for tan 8 employed in Sec. 3.3. Only combinations of phases that are allowed by
the low-energy constraints on d. and a, have been included in the maximization. These
cross sections have been calculated at tree-level, as described in Secs. 4.3.1-4.3.4. Correc-

'Recall that S and S summarize the phase-sensitivity of the total cross section using two different
treatments of the physical masses.

2Nevertheless, the numerical results for ¢ are still relevant as they directly show the accessibility and
serve to estimate the event rates for a given production channel.

3Here the notation C (X,Y) for the correlation between the observables X' and ) was introduced.
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tions due to initial-state radiation and beamstrahlung have been ignored. These effects
are often larger than the dependence on C'P-violating phases; they should therefore cer-
tainly be included in any future experimental analysis (along with radiative corrections,
which will likely be known before the first FLC commences operations). However, they
are largely independent of C'P-phases, and should therefore not affect the upcoming con-
clusions. In Secs. 2.3.3, 4.4.3, and 5.5 it was noted that the two heaviest, Higgsino-like
neutralinos are close in mass if || > My, |M;| and |u|? > M2; the degeneracy is only lifted
at O(M2/(|u|> — M3) and O(MZ/(|p|* — |M1]?) (as well as by radiative corrections, which
however are sizeable only in the presence of large A-terms in the stop sector [114,115]).

Numerically, it can be observed that the relative difference between my o and myo ranges
from 24% to 35% in scenario B1, but only from 0.2% to 3.5% (0.1% to 7. 5%) in scenario
B2 (B3). Since the production of nearly degenerate particles is difficult to distinguish ex-
perimentally, one simply sums over the production of X3 and xJ in scenarios B2 and B3.
In particular, only results for a single process of heavy Higgsino-like neutralino pair pro-
duction are shown in these cases. Recall that the same treatment was used in Secs. 4.4.3
and 5.5, see Eq. 4.28 and Tab. 4.3, respectively Eqgs. 5.24, 5.25 and Tab. 5.1. As is well
known [66,97,103], many of the discussed cross sections can be enhanced by a factor of a
few if both beams are polarized. Moreover, the discussions of Secs. 4.4.1 and 4.4.3 indicate
that the greatest sensitivity to phases comes (through ¢;) from the interference of SU(2)
and U(1)y interactions; these contributions will be suppressed if one chooses e, beams,
since ey, is a singlet under SU(2). However, the sensitivity to other combinations of phases
is enhanced for different choices of beam polarizations. Therefore only results for unpolar-
ized beams are shown, with the understanding that in many cases the cross section (phase
sensitivity) could be enhanced by a factor of 4(2) if fully polarized beams were available.

Table 7.1 shows that the cross sections for selectron pair production are generically bigger
at e”e” colliders than at eTe™ colliders [94,95]. This difference is only partially com-
pensated by the higher eTe™ luminosity, if one assumes [ L£dt = 500(100)fb™" for e*e~
(e~e™) collisions. These relatively conservative values are used since efficiency factors are
not included. These are expected to reduce the event samples that are actually available
by a factors of few, the precise value depending on both the process under consideration
and the sparticle spectrum. Moreover, at e~e™ colliders the diagonal chirality-conserving
modes have higher cross sections than the off-diagonal chirality-violating mode; recall that
the latter is P-wave suppressed near threshold, see Eqs. 4.13 and 4.14. At ete™ colliders
the diagonal selectron production modes are P-wave suppressed, see Eqs. 4.8 and 4.9; this
explains the rather small cross sections for é; é; production. Finally, the selectron produc-
tion cross sections are highest in scenario B3, since selectron masses are somewhat smaller
than in the other two scenarios; this effect is particularly significant for é;¢é; production,
which is a P-wave process comparatively close to threshold. The strong dependence of
the maximal €; €, production cross section in this scenario follows from the fact that the
region near ¢; = ¢, = 0 is excluded by the constraint from q,, for tanﬁ = 20, see Fig. 3.2.1.
The biggest cross sections at e~e™ collisions are those for é,é5, Y1 X1, and ¥?x} produc-
tion. However, the latter leads to an invisible, and hence undetectable, final state if y?
is a stable LSP; I will therefore not analyze it further. These large cross sections can be
explained by noting that all three modes are above to a fair degree threshold and hence,
compared with other modes, not phase space suppressed. Secondly, épé5 and x; X{ re-
ceive large s-channel contributions, whereas for YV the coupling of left- and right-handed
selectrons to the Bino-component results in sizeable t-channel contributions. This implies
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Bl B2 B3

tanf || 3 | 12 ] 3 [12] 10 | 20
Erér | 378 | 371 || 398 | 390 | 513 | 512
érér || 798| 79.0 | 80.3 | 75.1 | 181 | 182
éréy || 272 | 261 || 281 | 270 || 523 | 378

Epcp || 180 | 172 182 | 176 || 296 | 293
e ép || 106 | 104 || 96.5 | 94.5 || 168 | 160
erel || 83 | 7.2 8.0 | 6.9 || 60.9 | 60.3

XoXT |l 250 | 212 || 144 | 126 || 175 | 170
XiXa || 179 | 173 || 16.0* | 7.5 || 43.6* | 38.7*
XaXs | — | - — | 85.9% | 89.4*
WOR0 || 201 | 197 || 236 | 231 || 271 | 271
Ox9 || 130 | 120 || 140 | 132 || 159 | 161
500

Q)ié gg: 2;3 6.4 | 5.7 | 201 | 19.7
OXY || 74.6 | 49.6 || 58.5 | 49 || 76.2 | 68.9
XS || 73.6 | 77.7
W9 || 27.1 | 22.8
X9 |1 0.26 | 0.43
W50 |1 366360 - — || 38.3* | 38.6*

Xaxa | | -

5.1% | 5.2% || 22.3% | 21.4%

Table 7.1: Maximal values of the total cross sections [in fb] for unpolarized e* beams, for the
scenarios defined in Table 3.2 . “~” means that the corresponding mode is not accessible.
In scenarios B2 and B3 I have summed over the production of the heavy Higgsino-like
neutralinos, as described in the text. The beam energy is 500 GeV in most cases, but has
been raised to 800 GeV for the production of Y3 and 922’4 states in scenarios B2 and B3 as
indicated by the asterisk. Note that the charge—conjugate mode is included if it is distinct
from the listed one.

that for the two lightest x final states the gaugino-like nature (or sizeable gaugino com-
ponents) are crucial. A similar argument also holds for the modes Y5 and ¥5¥5. Again
a (still) sizeable phase space goes hand in hand with the gaugino-like nature of the final
states, and one finds acceptably large cross sections. Contrariwise, the cross sections for
producing two heavy charginos or neutralinos are suppressed both by phase space and their
Higgsino-like nature. Finally, the production of one light and one heavy y state is possible
in all three scenarios. Since, as discussed in Secs. 4.4.2 and 4.4.3, these cross sections are
non-vanishing only in the presence of Higgsino-gaugino mixing, they fall with increasing
|| (Bl — B3 — B2). Nevertheless, even in scenario B2 one will have several thousand
events containing these Higgsino-like states. For the other channels, typically several tens
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of thousands of events will be available, meaning that the cross section could be measured
with a statistical uncertainty of 1% or less.

7.2.2 Significances

The maximal possible values for the significances S and S of Eqs. 6.2 and 6.3 that can
be found in the three scenarios are summarized in Tab. 7.2. The €,€;, mode shows the
strongest phase-dependence of all selectron production channels, i.e. the highest signifi-
cance, largely independent of || and tan 8. The tan S-dependence of S in scenario B3 is
due to the fact that the point ¢; = ¢, = 0 is excluded by the a, constraint at tan § = 20,
but still allowed at tan 3 = 10, as shown in Fig. 3.2.c, and S(é;é;) behaves similar to
the example illustrated in Fig. 6.3.b. As expected from Tab. 4.1 the mixed é; ¢}, mode
is the most promising selectron production mode for our purposes at ete™ colliders. It
would allow to unambiguously detect (at more than five statistical standard deviations)
the presence of C'P-violating phases over much of the allowed parameter space, although
the effect diminishes with increasing || and increasing tan 5 (except in scenario B3, for
the reason given above). For both these modes S and S give very similar results. With
the exception of scenario B1 with strong Higgsino-gaugino mixing, €r pair production at
both e e~ and ete™ colliders is much less promising, especially if the physical masses of
X0, X9, and X7 are held fixed, i.e. for S. Similarly, é;é5 is also relatively insensitive to
phases, but here the sensitivity to phases decreases if the physical masses are allowed to
vary with phases, i.e. S < S. Most of these features can be understood from the discussion
of Tab. 4.1 in Sec .4.4.1.

The poor phase sensitivity of the é;é; mode relative to the €; €}, mode can partly be ex-
plained by the smaller cross section of the former mode; recall that the significances scale
with the square root of the number of events. In addition, closer inspection of the matrix
elements shows that in the case of é; é; production, the terms proportional to cos ¢; and
cos(¢; + ¢,,) are suppressed by extra factors* of sin? @y, and sin? @y relative to the leading
phase-independent terms; for the €; €}, mode the corresponding factors are 1 and sin? @y,
respectively.

Concerning the é;¢é; and é,é; mode, the similar, yet respectively quite different results
for S and S have already been explained in Sec. 4.4.1. Here it was noted that the dom-
inant phase-dependence of the former mode is of order MY. Hence both treatments of
the physical neutralino masses only lead to subleading phase-dependences and very similar
results for S and S must be expected. Furthermore, in the same section it was pointed
out that the phase-dependence of the latter mode is dominated by phase-dependent cor-
rections to the neutralino masses. Therefore, if these masses are kept fixed the dominant
phase-dependences are eliminated and S < S is observed. Concerning the remaining four
selectron production modes, it has already been emphasized in Sec. 4.4.1 that the revela-
tion of the dominant phase-dependence (either from coupling or from kinematical effects)
strongly depends on the given choices for SUSY and collider parameters. Hence the results
of such an analysis can not be generalized, and I do not attempt to explain the different
relative sizes of S and S in the €45, éféR, and é7¢é; modes. However, the presence of
three different hierarchies (S < S, S ~ S, § > &) in general can be explained by con-

“These terms also come with relative factors |M;|/Msy and |M;|?/M2, respectively. These factors lead
to some additional suppression of the phase-dependence in éZéf
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B1 B2 B3
tan 8 3 12 3 12 10 20

€RrCR 3.7 170 08 |50 29| 1.0 |08 |04 ] 05 | 1.1 [ 0.3 | 0.8
€r.€n 3.0 10 28 [47] 09| 25 |08 | 13| 27| 42| 29 | 41
€rer 61 60 61 60 || 59 S7 29 | 59 90 90 | 136 | 136

ERpth 10 27 22 | 78] 6.7 | 1.1 1.8 105 || 43 | 26 | 3.0 | 2.1
ereh 43 68 32 39 16 16 11 12 20 23 22 24
e e 1.9 3.3 1.5 (09 1.2 | 1.3 | 05 | 0.7 || 3.3 | 40 | 3.5 | 3.8

XXT |l 04 109 | <0125 25| 1.6 | 28|02 13| 03|06 | 0.6
XX || <0.1] 1.8 | <0.1]6.4 | 70¢ | 70 | 3.5% | 3.5% || 2.4* | 1.7% | 1.4* | 2.9
X2 Xa - - | = - - — | = | ra| e [ o | 15
WX 41 46 | 34 |32 8 | 8 | 92 | 92 | 100 | 100 | 94 | 94
X 56 73| 30 |29
o5 92 1101 82 | 89 9.9* | 10.5* | 6.2% | 6.2* || 21.5 | 23.8 | 21.1 | 23.2
WY 74 | 90 56 | 66| 11 | 82 | 52 | 52| 17 | 18 | 18 | 19
=050

Eig ;g ?Z ;2 EZ 6.0 | 6.2 | 2.9 | 2.8 | 1.9 | 1.1* | 3.1* | 2.0
Sl 63 | 54 | 84 |93
XYl 093 | 11 ] 93 |10 | - - - — || 2.4 | 3.1% | 2.6* | 3.4~

XiXi

Table 7.2: The maximal significances S of Eq. 6.2 and S of Eq. 6.3 that can be found for
choices of phases which are compatible with all low—energy constraints. The scenarios B1,

B2 and B3 have been defined in Table 3.2. Notation and calculational procedures are as
in Table 7.1.

sidering that coupling and kinematical effects can have a relative sign, i.e. can contribute
constructively or destructively to the total phase-dependence. The former case always
leads to S > S, whereas in the latter case the hierarchy is controlled by the relative size of
both contributions to the total phase-dependence. This consideration holds for any mode
where coupling and kinematical effects contribute at the same order in M and where these
contributions are of the same size. For example, from S ~ S, as observed for the é;eh
mode, it can be concluded that the coupling effects dominate heavily the kinematical or
that both contributions have a relative sign and the ratio of the kinematical contribution
to the coupling contribution is roughly two.

Turning to chargino modes, it is observed that they are sensitive to phases only in scenario
B2, with large |¢|, and for small tan 5. The only relevant phase here is ¢,. Recall from
the discussion of Sec. 3.3 that the maximal allowed value of this phase scales like |u/|®.
This means that the maximal deviation of |cos ¢,| from unity scales like |u|*. In case of
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X1 X: production, the main phase sensitivity® derives from the phase-dependence of My,

which gives an extra factor of sin23/|u|. Altogether the maximal S (Y, X;) therefore
scales like |u|? sin 23; this reproduces the numerical behavior in scenarios B2 and B3, with
little Higgsino-gaugino mixing. A similar scaling also holds for the mixed Yi x5 mode.
However, in this case the cross section itself vanishes in the absence of Higgsino-gaugino
mixing, implying that now the phase-dependent terms are of same order in My, as the
phase-independent ones; see the discussion of Sec. 4.4.2. Moreover, the significant phase-
dependence proportional to sin23/|u| now derives from the Zx] X5 coupling instead of
from the phase-dependence of the chargino masses. The latter phase-dependence is of rel-
ative order M3, and could only contribute if this suppressing factor was compensated by
a kinematical enhancement near threshold as suggested by Eq. 4.27. As both definitions
of the significance give very similar results, this is not the case. Finally, the very strong
tan § dependence of these significances, as observed in scenario B2, is due to the fact that
values of ¢, near 7 are only allowed for small tan 3 in this case; see Fig. 3.2.b.

In contrast to the chargino modes, some neutralino modes are promising for all considered
scenarios, the noticeable exception being the production of two heavier neutralinos.® This
is true in particular for the Y3 mode. It was found in Sec. 4.4.3 that in this case both the
total cross section and the phase-dependence (on ¢) already start at O(M2), i.e. they are
not suppressed for large |u| or large tan 8. Indeed, one finds that this mode often allows a
somewhat better sensitivity than the celebrated €, ¢, mode. The mixed Higgsino-gaugino
modes also do well, especially for not too large values of |u|. As expected from the discus-
sion of Tab. 4.3, the )Z(l)f[ is somewhat more promising than the )2317 mode. The rather
good phase sensitivity of the Y5Y5 mode at first seems surprising, given that the phase-
dependence only enters at O(M2), whereas the cross section is O(My). However, closer
inspection of the sensitivities for the ¥3%3 and ¥OH modes shows that the relative factor
between them is in fact O(|M;|/Mz), which is close to unity in the studied case. Note
that the relatively large size of the Y5X5 cross sections facilitates its precise measurements
and therefore increases the significances. However, as remarked at the end of Sec. 6.1 the
mixed )2(1’]:[ final state is still considered to be more promising, since it will be less sensitive
to systematic uncertainties.

Concerning the quite similar results for S and S in %3, X2H, and X3H production, this
observation once again points to the fact that for these three production cross sections,
phase-dependent and phase-independent terms are of same order in My and hence kine-
matical effects only lead to subleading phase-dependences; i.e. the different treatments
of the kinematical masses do not result in different values for S and S. Contrariwise,
for x5x5 production, phase-dependences from coupling and kinematical effects contribute
at the same order of My, hence S # S should be expected. In this case the unexpect-
edly similar values of & and S (for some scenarios) are due to “accidental” kinematical
fine-tuning.

5The dominance of the “kinematical effect” in ¥, X; production for scenario B2 is obvious when S and
S are compared.
6Since these modes were already disfavored in Sec. 4.4.3, they are not commented on any further here.
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7.2.3 Polarizations

It has been emphasized earlier that, strictly speaking, the significances S and S only mea-
sure deviations from the C'P-conserving MSSM, regardless of the origin of these deviations;
i.e. they do not directly measure C'P-violation. Direct evidence for C'P-violation might
be found in the measurement of the T-odd normal component of Y polarization vectors
introduced and discussed in Chapter 5. The maximal possible absolute values for these
“polarization asymmetries” for scattering angle § = 7/2 are collected in Tab. 7.3. Recall
that a nonzero asymmetry can emerge only from the production of two different x states,
and that the asymmetry will be larger for the lighter of the two final states. However, the
polarization can only be measured through x decay products; therefore the polarization of
the x%, which is probably the LSP, is not, considered.

As expected from Sec. 5.4, chargino polarization is indeed too small to be useful, except in
scenario B2 with large |u| and small tan 5. Recall from the discussion in Sec. 5.4 that this
asymmetry (for the lighter chargino) scales like |u|sin2/4sin ¢,; it was found in Sec. 3.3
that the upper bound on |sin ¢,| scales like |u|?. Altogether, the maximal value of Py of
the lighter chargino therefore scales like |u|3. The very rapid decrease of this polarization
with increasing tan 3 is partly due to the explicit sin 23 dependence, and partly due to the
disappearance of the band around ¢, ~ , see Fig. 3.2.b.

In scenarios with large |p| (B2, B3) the x?x5 mode again proves the most sensitive to
C P-violating phases. Eq. 5.23 shows that in this case a nonzero Py already emerges at
O(M}) and remains finite both for large |u| and large tan 3. This well describes the be-
havior seen in cases where the perturbative diagonalization of the neutralino mass matrix
is reliable. Moreover, recall from Tab. 7.1 that this mode has a fairly high cross section.
This is important, since even with perfect (100%) analyzing power one needs nearly 1,000
events to detect a 10% asymmetry at the 3o level.

i Bl B2 B3
tan 3 3112 3 [ 12 ] 10 | 20

X1 Xa Xi 1402 57 | 5.2 || 1.6* | 0.9*
D% e 6.4 |78 | 34 | 33 31 | 31
X || X3 (H) | 22 ] 27
XiXa || Xi (H) || 5.5 6.6

7.2% | 2.4F 6.3 | 6.8

~0.~0 ~0

XaX X 5.5 | 6.4

=3 - 23 | 7.8 | 9.7% | 9.9
X2X4 Xo 45 | 30

B9 | X (H) || 4.9 6.8 - - 1.9 | 1.8*

Table 7.3: Maximal absolute values of P]i}ij in percent. The scattering angle ¢ is set to 7.
Notations and conventions are as in Table 7.1.

As expected from the earlier discussion of Tab. 5.1, the mixed Higgsino-gaugino modes also
have sizeable asymmetries even for large |u|, the heavier )ngl mode being more promising.
However, the relatively small cross sections of these modes imply that one would need a
very large luminosity for a meaningful measurement of polarization asymmetries in these
modes, except in scenario B1 with strong Higgsino-gaugino mixing. Indeed, in this last
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case the Y?x3 and x5x} modes are far more promising than the x!x3 mode.

As noted earlier in this thesis the spin of the produced y particles can only be determined on
a statistical basis by (partly) reconstructing their decays. Therefore it is encouraging that
recent dedicated studies demonstrated sensitivity to phases in the neutralino mass matrix
using T-odd variables constructed in ete™ — YIx? with x? — X%~ [58], x) — x?Z [60],
and X? — 7577 — 777 [59,116]. The latter decay chain will be discussed intensively in
Part III.

7.3 Correlations between observables

In addition to their absolute sizes, the correlations between various phase-dependent quan-
tities are also of interest. Such correlations can provide stringent tests of the MSSM, since
they are a consequence of the limited number of parameters affecting these leptonic ob-
servables in the MSSM. Recall that all the given high-energy observables (cross sections
and polarizations) depend on the phase ¢,; most of them also depend on the phase ¢,
the exception being observables related to chargino pair production. In Sec. 3.3 it was
observed that ¢, is tightly constrained by the low-energy observables (a,)susy and (espe-
cially) (de)susy, while ¢; in most cases can take any value (for some combination of the
other phases). Moreover, the d, constraint enforces a tight correlation between ¢ and ¢,,
see Fig. 3.2.

Therefore this section is devoted to the presentation of a few of the large number of pos-
sible correlations. Motivated by the findings of Secs. 7.2.1 to 7.2.3 the focus is strictly
on high-energy observables associated with €, ¢;, €, €5, X1 X3, X.X9, and XIx3 production
modes. For all remaining production channels the high-energy observables were found to
be less promising. However, the various correlations discussed here cover the “range” of
correlation patterns and therefore are representative. Correlations between S and S are
not presented here; they are either trivial (if the leading phase-dependence of a cross sec-
tion is of same order in My as the leading phase-independent contributions) or depend
strongly on the choices for SUSY parameters and /s. The latter point was already em-
phasized during the discussions in Sec. 4.4, and the numerical results for S and S were
commented on in Sec. 7.2.2.

7.3.1 Low- and high-energy quantities

The presentation of selected numerical results starts with comparing high- and low-energy
quantities in Fig. 7.1. Obviously the phase-sensitive high-energy observables are not cor-
related at all with (d.)sysy. This is true both for T-even observables (Fig. 7.1.a) and
T-odd ones (Fig. 7.1.b); in scenarios with strong Higgsino-gaugino mixing (Fig. 7.1.a) and
in scenarios where this mixing is suppressed (Fig. 7.1.b); and for quantities that depend
on ¢; and ¢, (Fig. 7.1.a) as well as those that depend only on ¢, (Fig. 7.1.b). This can
be explained by the observation made at the end of Sec. 3.3.3, namely that (d.)sysy itself
is not correlated with any of the phases after scanning over the other two phases; recall
that the low-energy observables also depend on ¢ 4. For example, except at the very edges
of the allowed range of ¢,, (de)susy can still take on any value within its experimentally
allowed range even after ¢, is fixed. This is due to the variation of ¢; and ¢4.

On the other hand, in some cases significant correlations between high-energy observables
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Figure 7.1: Correlations between low— and high—energy quantities. Most high—energy
observables have been computed at /s = 500 GeV, except for panels b) and f), which are
for \/s = 800 GeV. The parameter sets Bl and B2 have been defined in Table 1, and the

significance S is defined via Eq. 6.2.

and (a,)susy are observed. A cosine-like dependence of (a,)susy on ¢; was observed in
Fig. 3.6 for scenarios B2 and B3; in some cases (e.g. B2 at small tan ), two separate
bands of (a,)susy values exist, corresponding to cos¢, ~ +1. However, in scenario Bl
(a,)susy shows very little correlation with ¢y, see Figs. 3.6.a,d. Correspondingly, Fig. 7.1.c
shows no correlation for scenario B1, while Figs. 7.1.d-f reveal significant correlations be-
tween (a,)susy and T-even high-energy observables for scenario B2. Comparison of panels
d and e shows that this correlation becomes stronger at larger tan 5. This is due to the
diminished role of ¢4 and the reduced width of the allowed band in the (¢,, ¢1) plane;
the overall size of |(a,)susy| also increases with increasing tan /3, see Eq. 3.17b. Finally,
Fig. 7.1.f illustrates that high-energy observables whose only phase sensitivity is through
¢, also correlate with ¢,. Note in particular that S(y{ X5 ) is much bigger for (a,)susy < 0
(which corresponds to ¢, ~ ) than for (a,)susy > 0 (which corresponds to |¢,| < 1).
This confirms the explanation that was given in the discussion of Tab. 7.2 for the very
strong tan 5 dependence of this quantity. For this class of observables, the correlation with
(a,)susy also becomes stronger with increasing tan ; however, as remarked in Secs. 4.4.2
and 5.4, the sensitivity to ¢, at least disappears proportional to sin 2.

7.3.2 Significances of different modes

In most cases, different phase sensitive high-energy observables are strongly correlated with
each other. This is illustrated by Fig. 7.2, where the two significances that are usually most
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promising, i.e. for the é;é; and xJx3 final states, are plotted against each other. The
simplest correlation obtains for scenarios B3 for tan f = 20, shown in panel f. In this case
the constraint on (a,)susy excludes values of ¢, near 0 as well as ¢, near 7, see Fig. 3.2.f.
Hence the minimization in the definition of & in Eq. 6.2 only goes over the single CPC
point ¢, = 0, ¢; = 7. The strong correlation observed in Fig. 7.2.f then follows from the
fact that both significances shown here are in leading order of M essentially proportional
to cos ¢; as explained in Secs. 4.4.1 and 4.4.3. The next simplest situation obtains if both

a: Bl,tanf =3 b: B2, tanf =3 c: B3, tang =10
wE T "I:.:.:.I‘&::; ] g T T T 1] 1(2]8 : | N — :
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Figure 7.2: Correlations between the significances, defined as in Eq. 6.2, for the processes
e"e” — é,¢; and ete” — I3, both taken at /s = 500 GeV.

¢1 = 0 and ¢ = 7 are allowed, but ¢, = 7 is still forbidden, and tan 3 is not too small
[panels ¢, d, and e]. Now the minimization in Eq. 6.2 runs through two CPC points.
Recall that this minimization is performed independently for the two significances shown
in Fig. 7.2. The upper (lower) branch connected to the origin is populated by combinations
of phases where both significances are minimized by ¢; = 0 (¢; = 7). These two bands are
connected by sets of points where our algorithm picks the CPC point ¢, = 0 for S(é;é;),
but chooses the point ¢ = 7 for S(YVx9).

Fig. 7.2.a shows that in scenario Bl the correlations get weaker at smaller tan 3. To
understand this, recall that B1 has strong Higgsino-wino mixing, and hence a relatively
strong dependence on ¢, through the combination cos(¢; + ¢,), which linearly depends
on ¢, when |¢;| and |¢; — ¢,| are sizeable. In contrast, cos ¢, only depends quadratically
on ¢, for small |¢,|, and can therefore, as a good approximation, be set to 1 in scenario
B1, see Figs. 3.2.a,d. This dependence on ¢, will be numerically different for the two
modes present, loosening the correlation. This effect is important only at small tan 3
for two reasons. First, all contributions to our cross sections that are sensitive to ¢,
are suppressed by a factor sin2f at large tan 3. Secondly, the upper bound on |¢,| was
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observed to decrease with increasing tan  for scenario B1.

Fig. 7.2.a shows another new effect on the lower branch, where both significances are
evaluated with the CPC point ¢, = ¢; = 0. The cross section for %3 production in
this case reveals a non-monotonous dependence on ¢;. As expected from the expansion
of the result in Eq. 4.26 in powers of M, using Eqs. 2.39-2.44, this cross section reaches
its absolute minimum at cos ¢; = +1, where the S-wave contribution vanishes. However,
cosp; = —1 is also a (local) minimum, the maximum being reached at cos¢; ~ —0.8;
recall that the expansion in powers of My is not reliable for scenario B1, since My = |pu.
As a result of this non-monotonous behavior, the cross section at cos ¢; ~ —0.6 becomes
identical to that at cos ¢, = —1. Since o(é;€;) does decrease monotonically with cos ¢,
values of cos ¢ ~ —0.6 give rise to scenarios with very small S(x{x3) but sizeable S(¢7 €7 ).
The comparison of Figs. 7.2.b and 7.2.e shows that the correlation becomes weaker also for
smaller tan 3 in scenario B2. This is partly due to the width of the allowed band in the
(¢, 1) plane decreasing with increasing tan 3, see Fig. 3.2. In addition, in scenario B2
with tan 8 = 3, the low-energy constraints also allow values of ¢, near 7. One can then
find values of ¢; not far from m where o(x)x3) for CPV points with |¢,| < 1 is very close
to this cross section at the point ¢, = ¢; = m. This again leads to scenarios where S(x]x35)
is very small but S(é; é;) is sizeable. The existence of different allowed CPC points also
explains the occurrence of additional bands in Fig. 7.2.b. In some cases the correlations

e .

oot
2

S(xix

Figure 7.3: Correlation between the significances for the processes e”e”™ — €,€, and
ete” — X1 X3, both taken at /s = 800 GeV, for scenario B2 with tan = 3.

between the significances of different production modes are quite weak. The most extreme
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case that can be found in the complete set of correlations is shown in Fig. 7.3 and occurs for
B2 at tan 8 = 3, in the case of the significances S(é; ¢;) and S(x; x4 ). Tab. 7.2 shows that
here (and only here) o(X; X3 ) allows a significant probe of the phase ¢,, whereas S(é; é;)
is always almost determined by ¢;. Moreover, Fig. 3.2.b shows that in the allowed band
with ¢, ~ =, the deviation |¢, — ¢1| becomes maximal for ¢; quite close to £m. This
leads to scenarios with large S(X7 X4 ), but very small S(é;é;). Conversely, ||cos ;| — 1]
can be quite large for small |¢,|, leading to scenarios with S(é;é;) > S(X7 X3 ), although
the latter cannot be strictly zero if the former is bigger than 10. However, it was noticed
earlier that other combinations of parameters do not allow meaningful probes of ¢, using
high-energy quantities. Therefore it can be concluded that in most cases, significances that
can be large are also fairly strongly correlated. Furthermore most of these correlations can
be understood by arguments similar to those given in the discussion of Fig. 7.2 and with
help of the examples given in Secs. 6.2.2-6.2.4.

7.3.3 Significances and polarizations

Finally, in Fig. 7.4 the correlations between the normal component of the polarization
vector of the heavier neutralino in mixed neutralino pair production and the significance
of the same mode are shown. For scenarios B2 and B3 x99 production is used, whereas
in scenario B1 x9x% production is used; recall that this final state was found to be more
promising in Tabs. 7.2 and 7.3. These figures appear somewhat simpler than those in

a: Bl, tanf3 =3 b: B2, tan§ = 3 c: B3, tan g =10
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Figure 7.4: Correlation between the significance & and the absolute value of normal polar-
ization Py, measured at scattering angle # = 7/2, for mixed neutralino pair production at
/5 = 500 GeV. For scenarios B2 and B3 x!Y5 production is considered, but replaced by
the Y?%? final state for scenario B1.
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Fig. 7.2, since now the existence of two allowed CPC points only results in two bands,
as compared to three in Fig. 7.2. Of course, scenarios with a single allowed CPC point
(Fig. 7.2.f) once more only yield a single band. In panel b, again scenarios with sizeable

phases, hence sizeable |PJ>\<73,X?><S|, and yet vanishing S(xVx9) are found; an analogous be-
havior was observed in Fig. 7.2.b.

More importantly, Fig. 7.4 shows that the polarization |Py| increases much more quickly
as the (relevant) phase ¢; is moved from 0 to 7 than the significance S does. The reason
for this is that | Py/|, being T-odd, has a sine-like dependence on ¢, i.e. grows linearly with
|¢1] or |¢1 — 7|. In contrast, the T- and C'P-even quantity S has a cosine-like dependence
on all phases, and thus only grows proportional to |¢;|* or |¢; — 7|?. T-odd observables
like Py are therefore in principle better suited to probe small phases.
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Analysis of a decay chain






Chapter 8

Introduction and a SUSY scenario

8.1 Introduction

Contrarily to the rather general scenarios used in Part II this part of the thesis uses rather
large masses for first and second generation sfermions well above 1TeV to satisfy the severe
bounds from leptonic dipole moments. As discussed in Chapter 3 such a choice of mass
parameters allows a “trivial” suppression of SUSY contributions to leptonic dipole mo-
ments' and hence phases of O(1). In addition, other difficulties associated with potentially
large flavour changing neutral currents, see [117] for example, and rapid proton decay in
SUSY GUTs [118] prefer very heavy first two generations sfermions [61-63]. Contrarily, in
such models third generation sfermions are expected to be rather light (“inverted hierar-
chy”); this expectation is motivated by the central role of third generation sfermions in the
naturalness problem and by their large Yukawa couplings which substantially reduce their
masses at the weak scale. Therefore SUSY scenarios with O(1) C'P-violating phases and
relatively small masses for third generation sfermions can be considered as well motivated
and phenomenological viable.

If such SUSY scenarios with an inverted hierarchy were realized by nature an FL.C oper-
ating with a CMS energy of \/s = 500GeV is expected to produce some light neutralinos,
charginos and third generation sfermions, whereas the remaining parts of the SUSY parti-
cle spectrum are not accessible [88]. Hence the stau sector should allow the first measure-
ments of C'P-violating phases within such models. The main focus of Part III is on the
C P-violating phase ¢; associated with left-right mixing in the stau sector (see Sec. 2.2.1).
As discussed within this section left-right mixing in the slepton sector is enhanced for large
values of tan 5. This is fortunate, since such large values for tan 3 of up to 50 are preferred
by some SO(10) GUT models with Yukawa unification [119,120], while values of tan 3 near
unity are severely constrained by Higgs searches at LEP [121]. Later in Chapter 9 it will
be observed that already a rather moderate value of tan # = 10 is sufficient to generate
sizeable C'P-violating effects.

From the phenomenological point of view the crucial question concerning the measurement
of the C'P-violating phase ¢+ is which observable is sensitive to this phase and in addition
offers a comfortable experimental environment. A priori the stau sector is expected to
be advantageous for constructing C'P-violating observables since the 7 lepton as a decay

!Chapter 3 only discussed the electric dipole moment of the electron d., however statements similar to
those in Sec. 3.2.3 also hold for d,, and dy,.
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product of the stau also decays. The decays of the 7 lepton allow a reconstruction of the
7 lepton polarization using the energy distribution of the 7 lepton decay products. Unfor-
tunately, in the simplest decay channel 7.5 — 759 the invisibility of the neutralino x9,
which is still assumed to be the LSP, allows only two measurable vectors, the three mo-
mentum and the polarization of the 7 lepton. With only these two three-vectors available
no C'P-violating observable can be constructed, hence two step decay cascades offering
more three-vectors have to be employed. Among these two step decay cascades, the decay
of the second lightest neutralino Y3 into a stau and 7 lepton, followed by the stau decay,
is one of the most promising candidates especially if tan S is not too small. First of all,
X2x9 production has one of the lowest thresholds of all SUSY processes with visible final
states. Secondly, for the mass order myo < mz < myg, the decay X9 — 7577 has a large
branching ratio, often near 100%. Finally, the final state offers twice the number of three-
momenta (compared to 7.© — 75%)) and the intermediate X3 is polarized, hence C'P-odd
observables can be constructed.? Several previous studies [57,58,84,122-124] have focused
on Xy — [T17X? decays with [ = (e, 1, 7) and used the triple product of the /¥ momenta
with the incident e~ beam momentum as C'P-odd observable. A common finding of these
studies is that with this triple product C' P-violation in the neutralino sector can be probed,
but no sensitivity to ¢; can be achieved. Here the focus is on the case [ = 7 and C' P-odd
observables involving the spin of the 7 lepton produced in the first step of Y3 decay. The
same process, ete™ — Vx5 — ¥V¥07777, has recently also been studied in [59]. However,
this study assumes universal soft breaking masses for e and 7. As it will be clarified in
Sec. 9.1.2 this leads a priori to a much larger cross section for x!x5 production. On the
other hand the experimental bound on d, as discussed in Chapter 3 will severely constrain
the size of C'P-phases and in turn also the size of C'P-odd observables. This point was not
included in [59].

In order to obtain a detailed study of C'P-odd observables first restrictions on SUSY param-
eter space are derived in Sec. 8.2. Results for the production cross sections for eTe™ — ¥y
as signal process and ete™ — %ii%f as possible background process are given in Sec. 9.1
using polarized incident beams. The decay of 7; and Y3 are treated in Sec. 9.2 with a
special emphasis on the 7 lepton polarization. In Secs. 9.1 and 9.2 the mixing patterns and
interaction Lagrangian discussed in Chapter 2 are applied. The discussion of further ex-
perimental issues in Sec. 9.2.3 finally allows the characterization of “optimized” parameter
sets. Using such a parameter set a Monte Carlo study is performed, its results are finally
presented as completion of Chapter 9.

8.2 A SUSY scenario

The C'P-noninvariant MSSM with sizeable values for tan [ is in continuation of Part IT still
used as general framework. Contrarily to Part II first and second generation sfermions are
assumed to be heavy enough to decouple from the theory for a 500 GeV FLC. As already
stated and in Chapter 3 and Sec. 8.1 a large C'P violating phase in the stau sector is then
consistent with the current experimental bounds on d, d,, and dus. The CMS energy /s
is chosen such that x9x3 production is possible and x{x3 production is beyond kinematical
accessibility. Furthermore, it is also assumed that the stau sector can be studied in %f[%f 5

2As stated in Chapter 5 the CPT theorem is assumed to hold, hence CP and T-violation are not
distinguished.



8.2 A SUSY scenario 99

production, by a possible adjustment of 1/s to higher values if necessary. Furthermore, the
assumption of R-parity conservation and that hence the lightest neutralino x? is the LSP
is kept. This is important since then the decay products of any SUSY particle contain at
least one LLSP which escapes from detection.

The fundamental SUSY parameters of the chargino, neutralino and slepton sector were
given within Sec. 2.2 and summarized in Sec. 2.4. Specifying [ = 7 and using the convention
¢2 = 0, the seven real parameters and the three phases involved are

{|M1|7 MQ? |:U’|7 tanﬁa Mz, Mip, |A‘?|} and {¢ua ¢1; ¢Ar}' (81)

Concerning the chargino and neutralino sector strategies for the determination of |M;|,
M, and || have been worked out in great detail [50,66—68]. Since the mixing patterns
in the chargino and neutralino sector are rather insensitive to tan 3 for large values of this
parameter, a determination of tan  for values larger than ~ 10 is rather difficult within
the chargino and neutralino sector. In such a situation the decay 7;* — Y977, in particular
the longitudinal polarization of the 7 lepton, which could be measured with an accuracy
of 5%, proves as useful [125,126]. The measurement of the longitudinal 7 polarization
with the error margins given above, can be used to determine high values of tan 5 with an
accuracy of 5% [127]. In addition, Ref. [127] also showed that the measurement of both 7;
masses in combination with the 77F production cross section in the C' P-conserving case
allows a determination of |A,| if |u| is known from other measurements: under favorable
circumstances an error of about 5% in tan 5 and of about 5% in m;, would result in the
measurement of |A.| with an accuracy of about 8%. However, none of these observables is
sensitive to the C' P-violating phase ¢; in the stau sector.®> On the other hand, this phase
cannot be determined independently of the other parameters in the stau sector.
Therefore the following observables in the neutralino and stau sector are relevant for a
detailed study of C'P-odd observables in ete™ — x0x5 — x0x)rErF:

1. The masses myz , of the staus and the masses mgo of the two lighter neutralinos.

,2

2. The cross sections for neutralino pair production, o (¥9X9), as signal process and
for stau pair production, o (ﬁi%f_}), as SUSY background process; in both cases
longitudinal polarization of the incident beams is included.

3. The average polarizations of the intermediate, neutralino Y5 and of the 7 leptons
produced in the decay cascade.

4. The spin/momentum correlations between the intermediate, neutralino x5 and the 7
lepton from the decay Y3 — 7*7F and the spin/angular/momentum correlations of
the two final 7 leptons.

The masses were essentially covered in Secs. 2.2.1 and 2.2.3 and are of interest here since
these parts of the mass spectrum control the decay patterns and have influence on the
experimental accessibility of C'P-odd observables discussed in the latter sections. The
cross sections are important since they indicate the order of magnitude of signal and back-
ground events and hence point to possibilities to suppress the SUSY background processes.

3More precisely, all these observables contain a cosine-like dependence on some rephasing invariant
combinations of the phases ¢,, ¢1, and ¢4, , but none of these observables is sufficient to distinguish
between C P-violating and C' P-conserving models.
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The quantities summarized in the third item estimate the sensitivity of observables to the
C P-violating phase ¢; and contain first informations on the parameter dependence of the
observables themselves. Note that all physical quantities summarized above have some
dependence on the C'P-violating phases in the neutralino sector, in the stau sector or in
both sectors. However, in Secs. 9.2.2, 9.2.3, and 9.3 it will be shown that only observables
involving components of the 7 spin orthogonal to the 7 momentum have a potential to
probe ¢-.

Obviously, the details of the decay pattern depend on the neutralino and stau mass spectra.
Restricted to the case where the decay of X5 into a stau is allowed, i.e. mgo > my, the
following two mass spectra have to be considered:

ts, te

3¢ 1

t# 7

Bt @

SPECTRUM 1 SPECTRUM II
These spectra result in different decay patterns:

SPECTRUM I: 7 = 7°xX}, Xo =77, 7 —7 X5 (8.2a)
SPECTRUM 1II: X) =777, & —7X), 7 =7 X (8.2b)

In the case of SPECTRUM I, the production process ete™ — x9x) may also be possible if
7i£7F is accessible. The former production modes leads to events with four 7 leptons and
two LSP’s in the final state through the sequential decay X3 — 7-77x). Since the decay
patterns of SPECTRUM II in Eq. 8.2b will lead to additional event topologies from x%x5
production, which require an independent analysis, SPECTRUM I is in the focus for the
remainder.

Considering the decay patterns in Eq. 8.2a the production cross sections for ee™ — Y05
and ete™ — 77 can give rise to the same final state with two 7 leptons and two LSP’s,
while the process ete™ — 77, could eventually lead to 2 (or 4) 7 leptons and 2 LSP’s, or
27’s+2v,’s+2 LSP’s if the decays 7% — Yiv, and X{ — 7i-v, are kinematically allowed.
Since it is already known that the 7 lepton polarization from 7; decays is rather insensitive
to the C'P-violating phase ¢z (see Sec. 8.1), it is crucial to find some distinct features to
disentangle these production channels leading to the same final state 27 + 2LSP. First
of all, a simple assumption is that yx9 production is studied at a beam energy where
775 production is not accessible. This eliminates one “background process” and leaves
us with at most two competing processes; note that xx5 production becomes possible at
lower energy than 7, pair production if mz > (myo + myg)/2. If kinematical accessible,
77T production tends to yield the two 7 leptons back to back, whereas Y?x3 would have
them more collinear, since they originate from the same parent x5. However, since above
threshold o (7{77) > o (¥V%3), angular distributions will not be sufficient to suppress
the background from 77 pair production. Therefore later onwards in Secs. 9.2.3 and 9.3
SUSY parameters will be chosen such that the 7 energy distributions from the competing
processes do not overlap and hence can be used to distinguish between the final states from
signal and background processes.



Chapter 9

Production cross sections and decays

9.1 Production cross sections

Concerning the production cross sections for ete™ — %ii%f and ete” — x0x) as well as
the polarization vectors of the produced neutralinos one is in the fortunate situation that
most work was already completed in Secs. 4.3.1, 4.3.4, and 5.3.2. Hence the results from
these sections can be transferred with minor modifications.

9.1.1 Stau pair production

In principle the calculation of the total and differential cross section for ete™ — %ii%f
is identical to the calculation of the corresponding quantities for ete™ — é;-té;-F presented
in Sec. 4.3.1. The only differences are the absence of the ¢-channel contribution' and the
presence of left-right mixing in the stau sector.? Incorporating these two differences the

general helicity amplitudes for ete™ — %iif'f are

(0,—0);; = —e”sin N2 27 (9.1)

i <igo

where the kinematics are chosen as in Sec. 4.2 and the kinematical function J;; is defined
in Eq. C.3. The vector chiral couplings are

2 l—0
sin® Oy — =2 1
Zf’-:&--—i—D 4 sin29 (Si'——
K J 7 cos? Oy sin? Oy W5

(U2)7; (Us)y; - (9-2)

The dimensionless Z boson propagator D, was introduced in Eq. 4.1 and 0 = {+, -} =
{R, L} denotes the helicity of the two incident electrons. The calculation of the total,
unpolarized cross section is straightforward, one finds

i = —)\2 [1Z; |2 + |Z;;|2] . (9.3)

With the parametrization introduced in Eq. 2.7 the total and differential, polarized and
unpolarized cross sections for diagonal production modes 7*7;7 depend on cos 26;, i.e. are
parabolic functions in cos 20;. As suggested by [127], measuring unpolarized and polarized
cross sections fixes cos 26; uniquely, in the parametrization of Eq. 2.7 this is consequently
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Figure 9.1: The total cross sections for efe™ — 777 and ete™ — 7577 as a function of

\/s. Parameters are set as explained in the text.

sufficient to fix 6; up to a sign ambiguity. The total, unpolarized cross sections for ete™ —
Fi7F and ete” — 75T are presented in Fig. 9.1 as functions of the CMS energy +/s for

the following choice of SUSY parameters
mz, = 185GeV, m;, = 115GeV, |u| =200GeV, |A,|=1TeV,
¢p=0, ¢4, =0, tanf =10. (9.4)
First of all, the total cross section for 757 production amounts to about 100 fb, offering
large enough statistics for a detailed probe of the 7| sector. Secondly, the cross sections are

P-wave suppressed near threshold, oy o )\i%j as in Eq. 9.3, and rise slowly near threshold.
This behavior makes a determination of 7 masses through threshold scans rather difficult.
Finally, the suppression of 77 production compared to 77 production results from
the smallness of the off-diagonal coupling in Eq. 9.2.

9.1.2 Neutralino pair production

As discussed in Chapter 8 first generation sfermions are assumed to decouple from the
theory for a 500 GeV FLC. This implies that the selectron exchange contributions included
to X{Xj production in Sec. 4.3.4 are absent here, therefore the bilinear charges in Eqs. 4.23

reduce to
T=—(Qip) = aLDz 7}, (9.5a)
ij i \*
wr=— (QRL) = —arDzZy, (9.5b)

where oy, = (sin® fy — 1)/(sin” Oy cos? By) and ap = 1/cos?fy,. The matrix Z;; was
defined in Eq. 2.51. Note that the definition of Z;; o (N3Z'N§j — N4Z-NZ]-) implies the C P-
relation Zj; = (Z;;)*, and hence Q7, = (Q%)* if the Z-boson width is neglected.

!There is no coupling e7;Y? if R-parity is conserved.
2Due to the large tau mass left-right mixing in the stau sector is not negligible as discussed in Sec. 2.2.1.
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It is known that polarized electron and positron beams are useful to determine the wave-
functions of the neutralinos [67,128] and may enhance the production cross sections. Using
the helicity amplitudes in Eqs. 4.19 together with the bilinear charges from Eqs. 9.5 and
polarisation density matrices® as in Eqs. C.20 and C.21 the polarized, differential cross
section reads

doij 5, 0" |} 5 5 5

o =2 {[Q@—PPr)+ &P — Pr)| S + PrPrcosnEr}, (9.6)
where £ = (a% — a?)/(a% +a}) = —0.147 and 7 is introduced in Eq. C.22. If the Z-width
is neglected the Z-propagator is real and the coefficients Xy 1 are

EU = 2D%(O&% + OZ%) { []_ - AZQ] + )‘ij COS2 91] |Zz'j|2 - 4[111/,L]Re [ZZQJ] }], (97&)
ET = 4)\ijD%aRaL|Zij|2 sin2 01', (97b)

with \;; and A;; as given in Egs. C.3 and C.16, respectively. The coefficients ¥ reveal
two remarkable points about the cross sections for neutralino pair production: First, the
only angular dependence is through the polar angle 6; of the produced Y? exclusively. Sec-
ond, the dependence of the cross section on neutralino mixing is completely described by
the two quantities |Z;;|* and Re [Z3] for each production mode x?x9. This implies that
transversely polarized beams do not offer any independent information on neutralino mix-
ing. Therefore the opportunity of transversely polarized beams is not further investigated
in the remainder, i.e. Pr = Py =0 is used from now onwards.

In order to probe the stau sector through the subsequent decay x5 — 7~'1i7':F following
ete” — xUx9, the first question is whether the x?x9 production cross section is sufficiently
large. The cross section oy (e7e™ — X7x3) as a function of /s with tan 8 = 10 and ¢, = 0
is shown in Fig. 9.2 for three different choices of ¢,. The beam polarizations are set as
P, = —0.8 and P, = 0.6, which maximizes the cross section if |P;| < 0.8 and [P| < 0.6.
The same choice of beam polarization minimizes the 7; pair background if mz, < m;,
as expected in most SUSY scenarios. Moreover, the gaugino mass unification relation
My = 3/5 cot? Oy | M| with ¢ = 0 is employed. For ¢, = 0, the parameters are set as

|M;| = 85GeV, |u| =200GeV, tanj = 10. (9.8)

For ¢, = /3 and ¢, = m/2, parameters are chosen to yield (partly) the same neutralino
mass spectrum as the parameters set in Eq. 9.8, i.e.

myo = 76.5 £ 0.1GeV, myg =132.2+£0.1GeV, my > 200GeV. (9.9)

First of all, it may be observed that large values of ¢, increase the cross section slightly.
Secondly, the smallness of the cross section compared with the results in Tab. 7.1 is due
to the absence of the selectron exchange diagrams. Dropping these diagrams eliminates
the leading contribution of O(MY) and reduces the cross section for X3 production to
a O(M3}) effect within the reliability of the perturbative treatment of neutralino mixing
presented in Sec. 2.3.3. Nevertheless, using the quite conservative estimate of 500fb™" for
the luminosity of an FLC (see Sec. 7.2.1) a few thousand events are available for further
analysis.

3Put PLl =P, lew = Pr, PL2 = ﬁL, and P72, =Pr.
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Figure 9.2: The total, polarized cross section for xx5. Parameters are set as explained in
the text.

Otot [fb]

9.1.3 Neutralino polarization vectors

Further information on neutralino mixing in general and especially on the chiral structure of
the neutralinos is contained in the neutralino polarization vectors. Following the definitions
of Sec. 5.3.1 and using the general results for fermion polarization vector components in
ete” — 2f with polarized beams from Sec. 5.3.2 together with the modified bilinear
charges from Eq. 9.5, one finds the following, compact results for the polarization vector
component of X7 in X?X} production*

o £(1— PLﬁL) + (P, — ?L) ) AZL”TN

Piry=Ply= L — 4 9.10
L,T,N LT,N (1 - PLPL) + é'(PL _ PL) AZL; ( )
The coefficients AZLZ{F v and AY are
Ap7 = 2cos0; {(1 = Ay)|Zyi* — 2pipRe [(Z35)°] } (9-11a
AR = =2sinb; {1 — Ay) 1 Z5| — (1 + Ayj)Re [(Z5)] } (9-11b

AR = 2007 5in 0,7m [(Z;)*] , (9-11c
Af = [1 = A%+ Aijcos 0] | Zy | — dpapRe [(Z)°] (9.11d

where the quantity A;; was defined in Eq. 5.17. Since the parameter £ is small, sizeable
polarization vector components of the produced neutralinos require the presence of large
beam polarizations P;, and Py,.

In Fig. 9.3 the components of the polarization of x93 are presented as a function of cos 923
with a C'P-violating choice for the phases ¢; and ¢,. Note that the sizeable beam po-
larizations P;, = —0.8 and P = 0.6 indeed do generate a substantial polarization of the

4Compared with Chapter 5 the short-handed notation P£7T7 N is used for Pil% N-
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neutralino. In Sec. 9.2.2 it will be illustrated that a non-vanishing polarization of the neu-
tralino x9 is essential for probing C P-violation through the C P-violating phase ¢; in the
stau sector.

1
0.8
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Figure 9.3: Polarization vector components P7 ;. y of x3 in x3x] production as a function
of cos ng. The collider parameters are /s = 300GeV, P, = —0.8, and Py, = 0.6. The real
SUSY parameters are set as in Eq. 9.4, but the phases are changed to ¢; = ¢, = 7/4.

9.2 Decays of sparticles

The next step in modeling the discussed decay chain consists in calculating the decay
distributions and polarization vector components of 7 leptons for the decays 7.;f — 7F X!

and 9 — 77+

9.2.1 Stau decays

The decay distribution of the stau decay 7.t — 77x? and the polarization 4-vector of the
final 7 lepton in the rest frame of the tau slepton are given by

2
dF;F )\% 12 12 m2 Mo m:msgo
= ‘ ; 1 - 7 — L —2 L A 9.12
sy 64n%ms, (‘Qm‘ + Qi ) mZ  mZ mZ AL (s (9:12)
A m-q; k
F L THip  Mp
m_%a—m?r—m?zo T

where d€)} = dcosf#id¢y is the solid angle of the 7 lepton in the 7,7 rest frame, £k; and

¢; are the 4-momenta of the the 7 lepton 7F and the neutralino Y%, and the phase space
L,R

factor \ is to be evaluated as A (m%a,mz,mfzo). The couplings Q" are related to the
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neutralino-fermion-sfermion couplings ny,;, and ng;, in Egs. 3.16¢ and 3.16d via (a = a)

Lo o ¢ {( NE + tan 0w N%) (Us),, — V2V, NE (U;)Ra] . (9.14a)
V/2sin Oy
R * €
R = e = —=——— |2tan O Ny (Us) g, + V2YoNai (Us) 1| - 9.14b
o = 5 (200 O Vit (U, 2 (U),] (9.14b)

where the reduced Yukawa coupling Y; is defined by Eq. 2.58 as Y, = m../(v/2Myy cos f3).
For the sake of a compact notation three 7 polarization asymmetries are introduced as

2 2
%_\Qﬁ - |Qf, %_27%6[52%*] %_Hm[ﬁ%a*]
- 2 2 - 2 27
QEI" 4+ 1Qf, Q" +1Qf,

= . (9.15)
QEI" +1QLI"

The average polarization of the 7 lepton can be measured through 7 lepton decays within
the detector [129-131]. Eq. 9.13 indicates that it is purely longitudinally polarized;® its
degree of polarization is given by

— + A for mz > m,. (9.16)

In the rest frame of the stau slepton the decay distribution given by Eq. 9.12 is isotropic,
as in all two body decays of scalar particles. The degree of longitudinal polarization in
Eq. 9.16 is constant over phase space, depending on the couplings QZ’L. The magnitude of
P7™ depends not only on the left-right mixing in the stau sector but also on the neutralino
mixing as shown in Eq. 9.14. Since the gaugino interaction with (s)fermions preserves
chirality while the Higgsino interaction action flips chirality, P~ is sensitive to the 7
Yukawa coupling [125,126]. Note that 7 mass effects, which have been neglected in [59,
125-127,132], introduce some dependence of PLTJF on the phase ¢;, via A%. However,
this dependence is almost always too weak to allow a measurement of this phase through
71 — 7} decays. Not only is m.mgzo < mZ —m2 — mfz? unless myo is very close to ms,
the coefficient A} is usually also significantly smaller in magnitude than 1.

At this stage it is instructive to consider some limiting cases of the decay 7, — 7x? in the
limit mz > m., involving the couplings Qﬁ’L. If the lightest neutralino is a pure Bino,
the degree of longitudinal polarization of the 7 lepton becomes

. o 2
4sin” 0;: — cos” 0x
4sin? 0 + cos? ;'

P (%ﬁ = ﬁé) =+ (9.17)

which has some dependence on the stau mixing angle, which is most probably already
known from %f%f production cross sections once Pf is measured. If the lighter stau is
right-handed, one has

2tan2 gw|N11|2 — Y?|N31|2
2133112 ew|N11|2 +YT2|N31|2.

P (F =) =+ (9.18)
This ratio will deviate significantly from unity only if tan 3 is large, so that Y, becomes
comparable to the U(1)y gauge coupling, and the LSP has a significant Higgsino compo-
nent. Since in most models, including the numerical examples to be presented below, the

5The boost in the lab frame will in general produce a small transverse polarization; however, it is
suppressed by a factor m,/E;.
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LSP is indeed Bino-like and 7; is dominantly 7g, i.e. 6 is near 7/2, the polarization of 7
from 7;" decays is usually quite close to +1, with little dependence on SUSY parameters
(within the ranges allowed by the model) [133]. Measuring this polarization can thus test
this (large) class of models, but is often not very useful for determining parameters.

9.2.2 Neutralino decays

As already discussed in Sec. 8.1 the following neutralino production process with the suc-
ceeding decay chain attracts the main interest of the thesis within Part III:

et +em = x)+ X}

7'$+ﬁt
|—>Ti+>~<&’

As described in Secs. 5.3.1 and 5.3 the produced spin-one-half neutralino is polarized
through its production. Therefore non-trivial spin correlations between the decaying neu-
tralino and the tau lepton produced in the first step of the x? decay are generated. In order
to describe the decay distribution and the tau polarization, a “starred” coordinate system
is defined, where the (z*, z*) plane is still the production plane of the neutralino pair, but
the neutralino Y momentum points along the 2* axis. The “starred” set of axes is thus
related to the coordinate system used in Sec. 9.1.2 through a rotation around the y = y*
axis by the production angle 9>~<io. In this coordinate system the polarization vector of the

neutralino Y° is P! = (P%, Pi,, Pi) in the rest frame of the neutralino. The expressions for
the polarization vector components were given in Eqgs. 9.10 and 9.11.

Using the polar and azimuthal angle 65 and ¢} of the 7 momentum direction with respect
to the neutralino momentum direction in the rest frame of the neutralino, the angular
distribution and polarization vector of the 7 lepton are given by

1

z;z B 62;2 b (‘Qﬁ ek 2) [1 + pr A £ B AL (P : 53)] ’ (9.19)
L ELAL + (L prAR) <]3’i , sg)
e 5 (9.20a)
L i Alf = B AY (P 53)

prr _ W AT (P-51) Ay (P 55) (9.20b)

T = 1+/LTA§9iﬁTAZE(J3i-§§) ’ .
Pt = (e + A7) <13i ' 85) + BrA% (ﬁi ' §1> (9.20¢)

A .

L e A & B AR (P )

The energy of the 7 lepton in the XV rest frame is

me 2 2
B =X (1 + = - m;a> . (9.21)

2 m m
x? x?
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The kinematical function \ has to be evaluated using the argument (1, mZ, [mZ,, m7/ m)%(_o).
The reduced mass . of the 7 lepton is m,/E, and the 7 lepton’s speed [, is given by
Br=Az/ [1 — (mZ —m?) /mi?] Finally, the three unit vectors 5}, 5 are defined by

§7 = (cos 05 cos ¢, cos 05 sin ¢y, — sin 63) | (9.22a)
85 = (—sin ¢3, cos ¢3,0) , (9.22b)
§% = (sin 03 cos ¢, sin 05 sin @3, cos 63) . (9.22¢)

Note that Pﬁ, P](,:F, PLT:F are the polarization components of the 7 polarization vector in the
7 rest frame along the 57, 3, 55 directions, respectively. Combining the three polarization
components leads to the 7 polarization 3-vector

(i + Aif) P+ [ (1= pir) (1= Ap) (P 35) = B, Af | 35 — 8,43 (P x 55)

P -
1+ MTA?]? + 57-’4% (ﬁl ’ '§§>

(9.23)
The polarization 4-vector of the 7 lepton in the neutralino rest frame can be obtained by
applying a Lorentz boost along the §3 direction with the 7 lepton speed f; to the 4-vector
(0, PT7).
In Part III the main focus is the decay Xy — 7F7E. If the decaying neutralino xJ is
unpolarized (]32 = 0), only the polarization asymmetry A%' as defined in Eq. 9.15 can be
determined by measuring the longitudinal polarization of the 7 lepton. Some limiting
cases of this asymmetry are

A7 (923 = Ws) =1, (9.24a)
Azl (;23 = f[{)) = cos 20;, (9.24b)

. 2|N12|2tan2 9W - K2|N32|2
N 2|N12|2 tan2 QW + Y7_2|N32|2‘

AT (71 = 7g) (9.24c)
The GUT relation |M;| ~ 0.5M; suppresses the value of |Nis| in most of the parameter
space, but for |u| > M, |N3s| is also suppressed. Even a small 7;, component in 7; can
therefore change A?%' significantly, making it a far more sensitive probe of SUSY parameters
than AL

If the polarization of the decaying neutralino X3 is sizeable, which is possible only with the
longitudinal polarization of the e* beams, A2' and A% become measurable. The explicit
expression of the numerator of A32 is (besides e?/sin® fyy)

Im [QF Q%] o< V2 tan Oy Y, sin® 0:Zm [Ny Nao]

Y. 5
———c08” 0:Zm | N3y (Nap + tan Oy V-
/s [N32 (Nago wN12)]

— tan Oy sin 0; cos 0:Zm [ng (Ny + tan y Nio) eid’*] (9.25)
+Y7_2 sin 9; COS H;Im [N32N326_i¢7~'] .

6Note that y, < 1 and hence PJ "~ ~ 4+, A%
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The numerator of A2 is obtained by replacing Zm by Re in the equation above. The
C P-violating phase ¢: from stau left-right mixing is present in the two last terms of
Eq. 9.25. Note that these contributions to A% (and A%¥) are only non-zero in the presence
of nontrivial left-right mixing in the stau sector. This point is rather expectable since
the phase ¢; is associated with the off-diagonal entries of the stau mixing matrix U=
from Eq. 2.7. These two contributions thus increase with increasing tan J3; in particular
this increase is rapid for the last contribution, due the factor Y2, but this term is only
important for tan 5 > 20. On the other hand, if the U(1)y gaugino mass is real, which
is true in our convention if gaugino mass unification also holds for their phases, the first
two terms in Eq. 9.25 are proportional to sin 2/, i.e. they become small as tan S becomes
large. Finally, recall that x? and x3 have to have significant Higgsino components in order
to obtain a sizeable XX production cross section, see Eq. 2.51.7 Therefore the necessary
conditions for the studied process to be sensitive to the phase ¢; are:

e sizeable left-right mixing in the stau sector, this prefers large values of tan f3;

e sizeable gaugino—Higgsino mixing, which requires |u| not to be too large.

9.2.3 Numerical results for tau polarization asymmetries

Before numerical results of the 7 polarization asymmetries for a sample parameter set can
be presented, some discussions of experimental issues are in order here. Since the final
state consists of two 7 leptons with two LSP’s, the first question is whether and how the
two 7 leptons originating from the primary and secondary decay can be distinguished. For
example, the negatively charged 7 lepton can be produced through the following decay
channels:

Decay 1: x)— 7f7 followed by 7" — {077, (9.26a)

Decay IT: {5 — 7, 7+ followed by 7, — X\7 . (9.26b)

If these two processes are indistinguishable, a substantial reduction of the efficiency is
inevitable; recall from the discussion in Sec. 9.2.1 that the (almost purely longitudinal)
polarization of the 7 lepton produced in 7 decay depends only very weakly on ¢;.

In the rest frame of Y3, the 7= energy from DECAY I is given by Eq. 9.21 with i = 2
and a = 1, whereas for DECAY II the 7 lepton energy in the same reference frame is
distributed over

k- € [VﬁE: o 7?157:1 |ﬁ:| 77?1E: + 7?157:1 |ﬁ:|] : (927)
Here, E7 is the energy of the 7 lepton from 7, decay in the 7y rest frame, given as
* Mz, m? m>2~<0
Ef =71+ —F -3, 9.28
T 2 m72~—1 mgl ( )

and |p¥| = \/E? —m2. The boost factors vz, = E /msz and v 0z = (/EZ/mZ —1

describe the boost from the rest frame of 7; to the rest frame of x93, with the energy of 7

THowever, if ¥ was Higgsino-like, the X3 — x{ mass splitting would be small, making the ordering
mgo < mz < Mgy assumed in this analysis implausible.
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in the second frame given as

mso m2 mg
E, = —X2(1-—=Z iRy 9.29
! 2 ( m)%(o + m%0> ( )

2 2

The final boost into the lab frame will again broaden the energy distribution of the 7
lepton from the 7; decay and will in addition lead to a broad energy distribution for the
7 lepton from the x9 decay. Nevertheless, for some choices of the parameters the ranges
of these energy distributions do not overlap. In such a fortunate situation the question
which 7 lepton originates from the x5 decay can be answered using the energies of the two
7 leptons. However, the neutrino(s) produced in the succeeding decay of the 7 limit(s) the
measurement, of the 7 energy. Especially in the decay modes 7 — nwv and 7 — evv, uvv,
usually less than half of the 7 energy is visible. On the other hand, in the decays 7 — pv
or 7 — a,v the substantial mass of the p or a; meson enhances the visible energies of the
T lepton.

As remarked earlier, the situation is cleanest if the two 7 energy distributions show little or
no overlap even after the boost to the lab frame. One rather safe case is when m;, is close
to either mgo or myg. In this case the signal usually has one rather hard and one rather
soft 7 so that the overlap of the two 7 energy distributions is not serious. Moreover this
signal is easy to distinguish from the possible background process ete™ — 77T followed
by 7 — 7F%? which tends to have either two soft tau leptons (if ms, is close to Myo) Or
two hard ones (if mz is close to myg).

The second issue is the measurement of the 7 polarization, which is analyzed through its
decay distributions with the decay modes 7 — 7v, pv, ayv, evv, pvv. The 7 — 7v decay
mode is useful for determing the 7 polarization only if the 7 energy is known, which is
the case in ete” — 777~ production studied at LEP, but not in the case studied here.
Therefore only the final states pr and a;v with the combined branching ratio of about 34%
are considered here: The energy distribution of p or a; decay products can determine the p
or a; polarization which can specify, in turn, the 7 polarization [129-131]. Unfortunately,
the efficiency of the 7 transverse polarization measurement is usually smaller than that
of the 7 longitudinal polarization [134], and is further reduced as the 7 energy increases.
Since the 7~ energy is approximately proportional to the mass difference between x5 and
71, the following mass spectrum is best suited to clearly probe A%I’N:

: : : » Mass
X1 X
After this discussion of experimental issues concerning a clear probe of A%l ~ which led to
mass spectrum for which this probe would be easiest, the final issue is how to fix the SUSY
parameters without a single signal of supersymmetric particles. Within this part of the
thesis the major goal is to study the dependence of A%I’T’N on the phase ¢;. However, a
variation of this phase through a variation of the phases ¢, and/or ¢4 while keeping all the
other SUSY parameters fixed results in differing mass spectra for the neutralino and stau
sectors. As these masses most likely will be measured much earlier than the polarizations
observables investigated here, such a treatment of SUSY parameters is rather unreasonable.
The neutralino and stau sector is determined by the real parameters |u|, |M;|, My, tan j3,
M3, , Miy, and the three phases ¢, ¢1, and ¢4 if the GUT relation My = 3/5 cot? Oy | M|
and the convention ¢y = 0 are used. As noted earlier, m;, is expected to be smaller than
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msz, since T has no SU(2) interactions. For definiteness, the following SUSY parameters
are fixed
tan 8 =10, ¢; =0, |A;]=1TeV, (9.30)

while all other, remaining SUSY parameters are a priori varied. Considering the optimal
scenario for probing ¢; derived above, the neutralino and stau mass spectrum and the stau
mixing angle are fixed as

mgo =80 £0.5GeV,  my =140 £ 0.5GeV, mygo = 225 £ 5GeV,

31
mz, =130+ 0.1GeV, msz, =210+ 1GeV,  6:[r] = —0.477 £ 0.006. (9:31)

Using these bounds, the mass parameters (in GeV) are constrained as
M, € [81.8,88.3], |u| € [206,220], ms, € [122.5,128.5], ms —ms, € [72,82.5], (9.32)

while the C'P-violating phase ¢; is completely unconstrained.
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Figure 9.4: The longitudinal polarization asymmetry Ay, of 7= from DECAY I. Parameters
are as discussed in the text.

Figure 9.4 presents the longitudinal polarization asymmetry of the 7~ lepton produced in
DECAY 1, while Fig. 9.5 shows its transversal and normal polarization asymmetries. The
finite spread of points for a fixed value of ¢; is attributed to the choice of the SUSY scenario
by fixing the neutralino and stau mass spectra within finite error margins, rather than fixing
the fundamental SUSY parameters. The dominant dependence of A%! on ¢; is introduced
through this procedure (see Fig. 9.4), mostly through the change of the decomposition
of X9. FEarlier it has been shown that this quantity is very sensitive to various SUSY
parameters. However, the spread of the points is too large to allow a good measurement
of ¢:. In contrast, Fig. 9.5 clearly illustrates that A2' and A% are quite sensitive to
this phase. As expected from Eq. 9.15, which reveals (A%)% + (A%)? + (A%)2 = 1 after
a short calculation, these two polarization asymmetries show complementary behavior:
When |A3}| ~ 1 (particularly when QF is almost real and Q% is almost imaginary or vice
versa), A2 becomes minimized; when | A% | ~ 1 (particularly when both Q¥ and QZ, are
almost either real or imaginary) A% becomes minimized.
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Figure 9.5: The transverse and normal polarization asymmetries A7 and Ay of 7~ from
DECAY I. Parameters are as discussed in the text.

9.3 Case studies

In the previous sections it has been illustrated that the 7 polarization asymmetries AZTI’N
lead to a sensitive dependence of the polarization of the 7 lepton from the decay x5 — 77,
on the phase ¢7. Unfortunately the polarization asymmetries A2T1 ~ cannot be extracted di-
rectly from the measurable 7 polarization unless the event can be reconstructed completely.
In the case at hand a complete event construction would be possible (up to possible dis-
crete symmetries) if the masses of all participating SUSY particles were known, and if the 7
energies could be measured. Since even in the 7 — pr, a,v decays a significant fraction of
the 7 energy will usually be carried away by the neutrinos such an approach is impractical.
Since obviously the direct reconstruction of 7 lepton polarization asymmetries is practi-
cally impossible this section is devoted to a discussion of the 7 polarization in the lab
frame, as a function of kinematical variables that are also defined in the lab frame. To this
end the 7 four-momentum, whose spatial component in the “starred” coordinate system,
i.e. in the neutralino rest frame, points in the direction of the unit vector s defined in
Eq. 9.22¢, is boosted into the lab frame. In order to describe the behavior of the 7 lepton
produced in the second step of the Y3 decay, 7; decays have to be modeled in the 7| rest
frame as described in Sec. 9.2.1, afterwards this decay has to be boosted into the lab frame.
Altogether five angular variables have to be integrated: the production angle 6y used in
Sec. 9.1.2, and the angles 6%, ¢%, and 6%, ¢4 describing 7 — 75%) and Y3 — 77T decays,
respectively. This is done using Monte Carlo methods.

Using the achievements of the previous chapter two points in the parameter space defined
by Egs. 9.30 and 9.31 are chosen. Both have

mz, = 205GeV, msz, = 124GeV, |u| = 215GeV, (9.33)

Set I is chosen to conserve C'P, whereas C'P is violated for Set II:
SETI: |M;|=87.5GeV, ¢,=0, ¢a, =71 = ¢;=m; (9.34a)
SETII: |M;|=84.3GeV, ¢, = g - g = ¢ = g (9.34b)

Note that the phase of pA; is the same for both sets, hence |Z;| and in consequence of
this the mixing angle - is identical in both cases, see Eqgs. 2.4 and 2.9. Contrariwise, the
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phase ¢: differs between SET I (¢ = m) and SET II (¢7 = 7/2).
The CMS energy is chosen as /s = 300GeV, comparison with Fig. 9.2 indicates that the
signal cross section e~et — VX3 is near its maximum values for this choice. Unfortunately,
for this choice of the CMS energy the background process e*e™ — 77 is also significantly
above threshold, see Fig. 9.1 where the cross sections has a slightly lower threshold. The
incident beam polarizations are set to P, = —0.8 and P, = 0.6, as discussed earlier such a
choice suppresses the cross section for %f[%f production significantly, see Sec. 9.1.1, and is
on the other hand sufficient to obtain a sizeable polarization for the intermediate Y9, see
Sec. 9.1.3.

As advertised earlier signal and background process can be separated by the energy
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Figure 9.6: Energy distribution of the “soft” (solid) and “hard” (dashed) 7 lepton from
X3 decay, as well as for the 7 lepton from 7, pair production and decay (double-dashed).
Parameters are as in Egs. 9.30, 9.33, and 9.34a.

distributions of the 7 leptons, the same distributions are also sufficient to distinguish be-
tween the 7 lepton from the primary decay of x5 and the one from the secondary decay
7 — 75XY. To this end the three resulting 7 energy distributions in the lab frame are dis-
played in Fig. 9.6. Since both parameter sets lead to (essentially) the same mass spectrum,
this figure is valid for SET T and SET II. The solid curve gives the energy distribution
for the “soft” 7 lepton from the primary x9 decay, whereas the dashed curve is for the
“hard” 7 lepton produced in the second x93 decay step. As advertised earlier these two
distributions do not overlap® and are hence well suited to distinguish between the 7 lep-
tons from primary and secondary decay step of 3. Moreover, the energy distribution
from ete™ — 775 — 7577X%%) (double-dashed curve) is also well separated from that
of the “soft” 7 lepton from x9. Note that the energy distribution for the “soft” 7 lepton is
completely flat. Comparing with Fig. 9.3, which uses very similar parameters and shows
that the intermediate Y can be strongly polarized this behavior appears as a surprise.
The energy of the “soft” 7 lepton in the rest frame depends only on the angle 63, the

8 At higher /s some overlap between these distributions does occur.
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minimal (maximal) values given by cos 5 = —1(1). Furthermore, Eq. 9.19 shows that the
angular dependence of the angular decay distribution for X3 is given by p?. 54, integrat-
ing over the azimuthal angle ¢4 reduces the angular dependence to P?cos#3. In turn the
longitudinal polarization of X3 is, according to Eqs. 9.10 and 9.11, proportional® to cos 6.
Integrating over cos fy will therefore lead to a vanishing average longitudinal polarization
P?, and finally to flat energy distributions of the primary x5 decay products. The angular
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Figure 9.7: Angular distributions of the 7 leptons from y9x? production and decay. Pa-
rameters are as described in the text.

distributions of the 7 leptons from DECAY I of Eq. 9.26a are shown in Fig. 9.7. The solid
and dotted curves show the differential cross section as function of the cosine of the angle
between the incident e~ beam and the direction of the “soft” and the “hard” 7 lepton,
respectively; the corresponding distributions for DECAY II can be obtained by sending
cosf) — —cosf. The “soft” 7 lepton shows quite a pronounced forward-backward asym-
metry. This can again be explained from Eqs. 9.19, 9.10, and 9.11. In the case that the
intermediate X5 goes in forward direction, cosfy > 0, its longitudinal polarization P} is
negative according to Fig. 9.3. Since A%' > 0, see Fig. 9.4, this means that the “soft” =
lepton will be emitted preferentially in the direction opposite to that of X3, i.e. in backward
direction. On the other hand, if cos @, < 0 the longitudinal polarization P? is positive and
the “soft” 7 lepton will be emitted preferentially collinear with x93, i.e. again in backward
direction. The size of this effect depends on the longitudinal polarization asymmetry A2':
Fig. 9.4 reveals a smaller value for A?' for SET II with ¢; = 7/2 compared to SET T with
¢ = m. The dashed curve in Fig. 9.7 indeed shows a less pronounced forward-backward
asymmetry for SET II. Finally, the double-dashed curve shows the differential cross section
as a function of the opening angle between the “soft” and the “hard” 7 lepton, 6,,. As
expected from the discussion at the end of Sec. 8.2 this distribution peaks at small angles,
i.e. cosf,, near 1. However, this peak is not very pronounced, since the boost from the 5
rest frame to the lab frame is not very large. This distribution is the same for DECAY I

9More precisely, P} o cosfy /(1 + bcos? f). This does not spoil the argumentation above.
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and DECAY II.
In the discussion of Sec. 9.2.3 it was observed that the main sensitivity to the phase
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Figure 9.8: Energy dependence of the components of the polarization vector of the 7~
produced in Decay I. The transverse T and normal N components are defined either with
respect to the plane spanned by the e~ and 7 3—-momenta (subscript “ev”), or with respect
to the plane spanned by the 3-momenta of the two 7 leptons in the final state (subscript
“r7”). Phase ¢; = m(7/2) refers to parameter SET I (SET II).

¢ comes from the components of the 7 lepton polarization that are orthogonal to the
7 lepton three momentum. In principle, both polarization asymmetries A2! and A% are
equally well suited to determine this phase. However, the observation of a C'P- or T-
odd quantity would clearly be a more convincing proof of C'P-violation in the stau and/or
neutralino sector. The choice of beam polarization implies that the initial state is not C' P
self-conjugate. On the other hand, since the Born approximation is used and finite width
effects are neglected here, the T transformation can be replaced by the naive T trans-
formation, which was briefly discussed in Sec. 5.1. Remember that the positive 2- and
z-directions of our coordinate system were defined by the three-momentum of the incident
e~ beam and the transverse component of the three-momentum of the produced x9. In this
coordinate system a T-transformation, which reverses the directions of all three-momenta
and spins, amounts to changing the y-components of all three momenta and spins; recall
that the y axis is the same in the original coordinate system and the “starred” one intro-
duced in Sec. 9.2.2. Practically speaking the T conjugate of some kinematic configuration
can therefore be obtained by simply sending ¢7 — —¢} and ¢5 — —¢@3. The existence of
T-violation, and hence of C'P-violation, is established if some observable takes different
values for some configuration and the T conjugate one. Note that these two configura-
tions result in the same 7 energies; the angular variables whose distributions are shown in
Fig. 9.7 also remain unchanged.

The simplest such observables involve the triple product of three momentum or spin vec-
tors. The triple product of the momenta of the final-state leptons with the incoming e~
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Figure 9.9: Dependence of the components of the polarization vector of the 7= produced
in Decay I on the cosine of the angle between this 7= and the e~ beam. Parameters and
notation are as in Fig. 9.8.

momentum has been studied in refs. [57,58,84,122-124]. As mentioned in Sec. 8.1 this
observable shows sensitivity to the C'P-violating phases in the neutralino sector, but is not
sensitive to ¢z. This observation can be traced back to the fact that the 7 lepton energy
distribution only depends on A7', not on A7 y. Therefore the component of the “soft” 7
polarization that is normal either to the “event” plane defined by the e~ beam and the
three-momentum of this 7, or normal to the “77” plane spanned by the three momenta of
the two 7’s in the final state is studied here. In both cases the “transverse” component of
the 7 polarization that lies in this plane is also analyzed.

The dependence of the 7 polarization of the “soft” 7 lepton on its energy is shown in
Fig. 9.8 for DECAY I. The dotted and triangled curves show the longitudinal polarizations
for SET I and SET II, respectively. It may be observed that this component is essentially
independent of F, after integrating over the production angle 6. Up to terms of order m?
the longitudinal polarization component is boost-invariant. Its average value can thus be
calculated from Egs. 9.19 and 9.20a to

B A2

(P7y ~ 72 L (9.35)
L 1+ p, A%

which well describes the numerical results presented in Fig. 9.8. Note in particular that
this component of the polarization has opposite sign for DECAY II, where the “soft” 7
lepton is positively charged.

The dashed and solid curves show the transverse polarization in the “event” plane for SET
I and SET TI, respectively. This polarization component clearly reflects the behavior of
A2 as shown in Fig. 9.5, being sizeable and negative for ¢ = 7, but small for ¢z = 7/2.
It has some dependence on the 7 energy, reaching its maximal absolute value for some
intermediate E,. Such values for E, correspond to small values of cos @, i.e. |sinf}| ~ 1,
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which in turn maximizes the product P2 - §* that multiplies A2! in Eq. 9.20b; recall from
Fig. 9.3 that P? is the potentially biggest component of P2 In contrast, the double-dashed
curve shows that the transverse polarization in the “77” plane is small even for ¢; = 7/2.
It should be suspected that such a small polarization, of less than 5%, will be very difficult
to measure.

The dashed curve with dots in Fig. 9.8 shows the 7 polarization normal to the “event”
plane for SET II; since this polarization component is a T-odd quantity, it vanishes for
SET I. It again tracks the behavior shown in Fig. 9.5, being large and positive for ¢; = /2.
Also like Pr,, it shows a pronounced maximum at intermediate values of E;. Note that

the product p?. s/, which is maximized in this region of phase space, now multiplies the
CP-odd quantity A3} in Eq. 9.20c. The 7 polarization normal to the “77” plane (not
shown) is always much smaller than the one normal to the “event” plane.

Fig. 9.9 shows the same 7 polarization components as in Fig. 9.8 as functions of the cosine
of the angle 6, between the incoming e~ and the outgoing 7 three momenta. It may be
observed that the longitudinal 7 polarization depends quite strongly on this angle. A value
of cosf, near —1 is easiest to achieve if cosfly ~ —1 and cosf@; ~ +1, which results in
p?. 53 > 0 after integrating over ¢35, so that both terms in the numerator of Eq. 9.20a are
positive. In contrast, cosf, ~ 1 is most easily achievable if cosf, ~ cos@; ~ +1, which
gives a negative product P. §%. For the parameters in SET II, where A% is smaller, this
even leads to negative P/ in the forward direction. As before, P/ has to be reversed for
DECAY II.

The overall behavior of the transverse and normal components defined with respect to
the “event” plane again follows the behavior of A2' and A%, respectively, as displayed in
Fig. 9.5. Above it has been observed that these components reach their maximal values if
| sin 85| ~ 1, which implies small cos 63 and also the lab system variable |cos 6, | well away
from unity. On the other hand, the transverse 7 polarization defined with respect to the
“r7” plane can now reach up to 20% for the parameters in SET I, which however is still
well below the maximal value of |Pf ,,|.

Finally, the components of P were also investigated as functions of the opening angle
between the 7 leptons in the final state. However, the numerical results revealed only a
very weak dependence on this angle in all cases; hence these results are not shown here.
Note that the opening angle between the two 7 leptons is independent of the production
angle 0y, and only weakly dependent on the X3 decay angle #3. It has been seen above
that these two variables largely determine the 7 polarization. Integrating over them thus
essentially reduces these polarizations to their average values.
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Chapter 10
Summary

This final chapter summarizes the most important findings of my thesis. First, Parts II
and III are treated on separate footing in Secs. 10.1 and 10.2. In each of these sections the
underlying assumptions are recalled and the most interesting results are resumed. After-
wards both sections are compared and combined to obtain more generalized conclusions in
Sec. 10.3. Finally, a short outlook on possible developments in the discussed field is given.

10.1 Summary of Part II

In part II of this thesis the question to what extent the phases of dimensionful parameters
in the MSSM Lagrangian can be determined from leptonic observables was discussed in
great detail. All relevant results for low- and high-energy observables were presented and
discussed using semi-analytical approximations obtained from a perturbative diagonaliza-
tion of sparticle mass matrices. A detailed numerical analysis was performed for three sets
of points in parameter space. The results of this numerical analysis and the conclusions
following from them were broadly discussed. During this discussion the “initial” questions
as summarized in Sec. 1.3 were clearly answered.

The main assumption within Part IT was the universality of soft breaking parameters
for first and second generation sleptons. Since no observables involving third generation
(s)particles were investigated through Part IT the only dimensionful, complex parameters
are the Higgsino mass parameter u, the U(1)y gaugino mass M;, and the leptonic trilinear
soft breaking parameter A;. The phases of these parameters are measured relative to the
SU(2) gaugino mass M, which is taken to be real and positive by convention for most of
the analytical results and in the numerical analysis. The additional assumptions made on
the relation of |M;| to M, and the relation of mlgL to mlgR serve no special purpose, both
refer to models with universal gaugino and scalar masses at the GUT scale. In contrast to
the first assumption which has quite important consequences and implications for the anal-
ysis in Part II, these two assumptions can be considered as arbitrary and can be dropped
in any further applications of the developed code.

The main focus of Part Il is clearly on quantities that can be measured at an FLC using the
ete” and e e~ option, nevertheless the low-energy constraints from d. and a, were first
analyzed in great detail. Given the numerically studied scenarios with moderate slepton
masses it is well known that sizeable phases of dimensionful parameters are only allowed
if the chargino and neutralino contributions to d,. cancel each other to a precision given by
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the current experimental measurement of d,. In agreement with earlier work [22,23] it was
found that—unless |p| > M,, mj—the phases of M; and A; may take any value for some
combination of the other phases. Contrarily, the phase of y is tightly constrained with the
maximal deviation from 0 or 7 scaling like |u|?>. The perhaps unexpected result during
the analysis of low-energy constraints was the fact that further improved measurements
of d, will not significantly reduce the allowed ranges for any of these three phases after
scanning over the other two phases in this case. This statement holds independently of
whether the improved measurements lead to an improved, upper bound on |d.| or establish
a non-vanishing value above the SM-prediction. In contrast, improved measurements of a,,
if combined with improved SM predictions for the hadronic contributions, have the power
to further restrict the allowed ranges of these phases.

After the discussion of low-energy constraints from leptonic dipole moments the course of
my thesis turned to high-energy observables and I broadly studied the phase-dependences
of a rather large set of total, unpolarized cross sections and their sensitivity to phases.
After the semi-analytical discussion of cross sections with the goal to isolate the dominant
sources of phase-dependences in a given production mode I introduced a measure to quan-
tify the impact of non-trivial C' P-odd phases on C'P-even cross sections. This measure was
referred to as significance. These significances determine the statistical significance with
which the presence of non-trivial phases can be determined in a given production channel.
For the €; ¢, mode, which was already known [96] to depend strongly on the relative phase
between M; and M, a significance of 60-90 standard deviations was found. However, since
several neutralino production channels have comparable or even better sensitivity to the
same phase this result does necessarily argue in favor of an e~e™ collider. In particular, for
lu] > M, the x9x3 production mode reveals significances of 80 or more standard deviations
from the C'P-conserving MSSM and is still doing quite well (~ 30 standard deviations)
for |u| &~ M,. Moreover, the é;é; production mode is still rather promising, showing
somehow smaller significances between 10 and 70 standard deviations depending on the
scenario. Note that the term of the cross section dependent on the relative phase between
M; and M, is for the former two modes (within the reliability of the semi-analytical treat-
ment of cross sections) independent of sin 23 and allows a determination of this phase even
for quite small values of tan 8. Concerning the chargino production modes the numerically
found significances are in general discouragingly small and indicate that these production
channels most probably are not useful for the determination of phases. For the given choice
of slepton masses m; ~ 200GeV the only significant dependence in chargino production on
phases over the complete experimentally allowed parameter space occurs for |pu| > 2Ms.
The d. constraint on the phase of i, which is the only phase entering chargino production
modes, becomes weaker for larger slepton masses. Hence the minimal ratio |p|/Ms where
chargino production can become useful for probing C'P violating phases should decrease
for larger m;. However, since the relevant significances of all chargino production modes
scale like sin 23, these production modes will be useful only for quite small values of tan .
However, since the introduced significances only measure the deviation of cross sections
from the predictions of the C P-conserving MSSM, all measurements of cross sections—
regardless of their significances—are not sufficient to distinguish between the C'P-violating
MSSM and other, possible extensions of the MSSM without new C'P-phases. This is the
reason for studying the component of the polarization vector of produced charginos and
neutralinos normal to the production plane. This polarization vector component is a C'P-
odd quantity and hence could in principle be used to establish C'P-violation in the MSSM.
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I found that these components can reach values exceeding 30% in the production of two
different neutralinos. In particular the normal component of the polarization vector of
the heavier neutralino in ¥?%9 production shows quite promising values. Again, chargino
modes are apparently rather useless, in general they offer quite small normal components.
Only for || > M, and small tan 8 the lighter chargino in ¥, X5 production offers values
larger than in the neutralino modes. Note that recent studies [58-60] as well as the findings
of Part III indicate that such large C'P-odd polarizations might indeed lead to measurable
C P-asymmetries in the phase space distributions of x¥ decay products.

Finally, the various correlations between phase-dependent observables were studied. Here
no correlation was found between d, and any phase-sensitive high-energy observable. This
is due to the rather precise cancellation required between the different contributions to d,
and implies that further improved measurements of d, will not further restrict the ranges for
phase-sensitive high-energy observables. In contrast correlations were observed between q,,
and phase-sensitive high-energy observables. These correlations allow the conclusion that
improved measurements and better predictions for the hadronic contribution to a, have
the power to restrict the possible ranges of high-energy observables. Finally, most pairs
of high-energy observables are strongly correlated. This reflects that most of them probe,
given the strongly constrained phase of p in our scenarios, the phase of M;. This set of
correlations is rather fortunate and should be important, since the measurement of one
phase-sensitive high-energy observable in turn constrains the allowed ranges for most of
the remaining phase-sensitive high-energy observables and hence allows stringent tests of
the model itself. However, in scenarios with large |u| and small tan 8 the phase of u can
still play an important role, in particular in chargino production modes. In that case
phase-sensitive high-energy observables correlate poorly with those in the neutralino or
slepton sector. This lack of correlations underscores the importance of measuring as many
phase-sensitive observables as possible.

Altogether it may be concluded that even after including the current low-energy constraints
most of the considered high-energy observables still show a significant dependence on the
constrained phases. Unfortunately, the measurement of cross sections is not sufficient to es-
tablish C'P-violation in the MSSM, for this purpose a non-vanishing value of some C'P-odd
observable has to be measured.

10.2 Summary of Part III

Motivated by the promising numerical results for the normal component of the polarization
vector of the heavier neutralino in Y?%9 production the course of my thesis swayed to
the investigation of possible C'P-asymmetries in neutralino pair production followed by
decays of sparticles. In particular the x5 production followed by the two step decay
Xy = 75T = {9r*rF was studied in great detail. During a study of the production
cross sections for x¥x9 as signal and for %f[%fzm as possible SUSY background as well as
of the primary X3 — 757F decay and the secondary/background decays 77 — 7x9 it
was observed that the polarization vector components of the 7 lepton from the primary
decay that are orthogonal to the 7 momentum are very sensitive to the C'P-odd phase
¢; from stau left-right mixing. In contrast, the polarization vector of the 7 lepton from
the secondary/background decay is mainly longitudinal to the 7 momentum and rather
insensitive to ¢;. This observation directly implied that mass spectra which experimentally
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allow a reconstruction of the origins of the two 7 leptons in the final state and a distinction
between signal and background final states are strongly preferred. A case study using
Monte Carlo techniques performed for such optimized mass spectra revealed that much of
the orthogonal polarization vector components of the 7 lepton from the primary x9 decay
survives after boosting into the laboratory frame. The most sensitive regions in phase
space involve both intermediate values of the energy of the 7 lepton and of its angle with
respect to the beam direction. In particular, for a C'P-phase ¢; = 7/2, a C'P-violating
normal component was found in excess of up to 30% in certain regions of phase space.
During this analysis the absolute necessity of strong (longitudinal) beam polarization was
clearly underscored.

Of course, this quite promising result depends strongly on the assumptions that were made
during the analysis.

To begin with, an inverted hierarchy with very heavy first and second generation sleptons
was assumed. On the one hand this is a rather conservative assumption since it reduces
the signal cross section by two orders of magnitude. On the other hand it is a quite
optimistic assumption as it removes the stringent constraints on C P-violating phases from
the measurements of leptonic dipole moments, in particular those from d.. Note that
this assumption would practically be excluded once an excess in a, has to be accounted
into the MSSM. In the case that 7; lies in mass between the two lighter neutralinos this
assumption also implies that the investigated decay mode has a branching ratio near to
100%. Note that the mass parameters in the gaugino sector were chosen such that relatively
small neutralino masses are obtained and the competing two body decays X3 — x1Z and
X5 — X'h are closed. However, for gaugino-like neutralinos (which in general have a
sizeable mass splitting) these two competing decays have rather small branching ratios,
even if they were allowed.

A second important assumption is that left-right mixing in the stau sector should be
sizeable. This assumption is motivated by the point that the phase ¢; looses its physical
meaning in the absence of left-right mixing. In the numerical studies of x5 decay in its
rest frame it was observed that a quite moderate value of tan § = 10 is already sufficient
for the pursued purpose and generates sizeable effects. Note that for this choice of tan
neutralino masses and couplings begin to decouple from the phase of pu, i.e. show little
sensitivity to ¢,. Together with the universality assumption on gaugino masses at the
GUT scale extended to their phases, i.e. ¢; = ¢o = 0, the CP-observables are indeed
mostly attributed to the C'P-violating phases in the stau sector.

Finally, the third assumption was that 7, is quite close in mass to x9. In this case the origin
of the two 7 leptons in the final state can be reconstructed experimentally in an event-by-
event analysis; more precisely the energy of a 7 lepton indicates whether it originates from
the primary decay of x5 or from the secondary decay of 7. This is an important point since
only the 7 leptons from the Y3 decay have sizeable polarization components orthogonal to
their momentum and since the efficiency of the reconstruction of the 7 polarization is known
to decrease with increasing 7 energy. This implies that in contrary case—7; being close in
mass to Y'—a reduction of the efficiency of the reconstruction of the 7 polarization has to
be accepted. In the worst case, i.e. if no distinction between 7 leptons from the primary
decay and from the secondary decay would be possible, averaging of the 7 polarizations
would be necessary and hence the asymmetries would be reduced by a factor two.

To summarize, within the inverted hierarchy models, the main assumption is thus that
X3 — 717 two body-decays are open, but X3 — 77 two body decays are closed. In
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the case that the second decay mode also is open several more decay chains need to be
investigated. In the case they cannot be distinguished in the experiment the necessary
averaging over them could lead to a further reduction of the 7 polarization. However, in
most SUSY models the region in parameter space with mz, < Mgy 1s quite small, whereas
mz > mgg seems quite feasible. Obviously, in such regions of parameter space the two
body decay X3 — 77 is closed. If the competing two body decays were also closed, the
decay X3 — XJ757T would still have a large, often dominant branching ratio, in many
cases the dominant contributions would arise from virtual 7 exchange [135-137]. Hence it
may be assumed that in this case again sizeable polarizations with sensitivity to ¢ can
be found. In the case that the competing two body decays were open the final state of
interest would receive only very small contributions from virtual 7 exchange and Y3 decays
would not be a good probe of ¢;. However, assuming that a sizeable beam energy will be
available, the decays of heavier neutralinos may then be useful to extract information on
the phase ¢; in such a case.

Altogether, it has to be concluded that neutralino decays into 7 pairs offer a good, indeed
probably the best possibility to probe C'P violation in the stau sector at an FLC.

10.3 Synthesis and Outlook

In general the approaches to address possibly non-vanishing C'P-phases of dimensionful
parameters in the MSSM Lagrangian pursued in Parts II and III are quite different. This
difference is not only reflected by the different assumptions made for the soft breaking
parameters of the slepton sector but also—and actually much stronger—by the presented
methods for studying the impact of non-vanishing phases.

In principle, the complete analysis presented in Part II can be understood as a “blind box”
analysis. Given any parameter set satisfying universality for the first and second generation
sleptons’ soft breaking parameters the analysis calculates the low-energy allowed ranges
for the phases of the dimensionful parameters as well as the significances of the various
cross sections and the size of the normal components of polarization vectors in chargino
and neutralino production.

In contrast, the analysis of C'P-asymmetries in e et — Y9757 with sensitivity to the
the C'P-phase ¢; in the stau sector already starts with rather comfortable assumptions
and modifies them during the analysis in order to obtain sizeable and experimentally well
accessible C' P-asymmetries. The transfer of the obtained numerical results from the stud-
ied parameter point to larger regions in parameter space hence depends strongly on the
assumptions made and leads, roughly speaking, more to expectations than to general pre-
dictions. Unfortunately, due to the requirement of partly reconstructed kinematics for each
event the involved experimental issues are much more difficult than those for measuring
total cross sections and hence such restrictive assumptions can not be avoided. This im-
plies that it is rather preferable to know as much details of the mass spectra before efforts
are made to measure C'P-asymmetries.

Altogether it can be concluded that total cross sections and C'P-asymmetries offer a com-
plementary access to C'P-violating in the MSSM. This complementarity is essentially at-
tributed to the fact that former show a cosine-like dependence on phases, whereas the
latter ones have a sine-like dependence. This implies that the former ones are rather in-
sensitive to small phases (perhaps the most likely scenario) and the measurement of (or
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bounds on) CP-violating asymmetries will have to be used in this case. Contrariwise, if
some CP-phase is near 7/2, where the C' P-odd asymmetries are close to maximal, these
are not well suited to determine the value of this phase. Hence in such a case some cross
sections will have the edge in the determination of this phase.

Also, there is some complementarity between high-energy observables involving selectrons
on the one side and the low-energy observables d, and a, and the C'P-asymmetries in-
volving the stau sector on the other side. Only the latter two depend on the phase of the
corresponding trilinear soft breaking terms, whereas the former ones have only to probe
the phases of M; and p. This implies that in order to extract information on the phase of
the soft trilinear coupling, given universality of these terms for all three generations, both
low-energy observables and high-energy observables involving the stau sector have to be
measured.

Finally, it may be concluded that measurements at high-energy colliders will be necessary
to pin down the phases of dimensionful parameters. Both precision measurements of C'P-
even quantities like total cross sections and masses as well as searches for C'P-asymmetries
are promising in certain regions of parameter space. For both purposes an FLC seems to
be ideally suited.
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Appendix A

More details about the perturbative
treatment of particle mixing

A.1 Generalities
The basic idea for a perturbative treatment of a problem like
UM = diag(\;)U, (A1)

is to expand the mass eigenvalues «;, the mass matrix M, and either the mixing matrices U
or the eigenstates v; into a power series in some suitable perturbative parameter A, A < 1:

a; ~ ol 4 X150 + X26a@ + N26a® 4 ... (A.2a)
U~ U 4+ A6UD + X260 + X36U® 4. (A.2D)

v; UEO) + )\151)2(1) + )\251)2(2) + )\357)53) + (A.2¢)
M~ MO £ X'MW® 4 X260 4 N36M® ... (A.2d)

As the mass matrix is a dimensionful quantity, its dimension fixes the maximum power

of A in its expansion.! The corrections to the mass eigenvalues and the mixing matrices
(eigenvectors) in order A" are then obtained by inserting the decompositions in Eq. A.2
into Eq. A.1, then expanding and dropping all terms with A", m > n. Imposing the
unitarity of the mixing matrix U or ortho-normality of the eigenvectors v; up to O(\")

W+ Mool )@ NG ) = 6 O, (A.3a)

J

(U + XU 4 Y (UO 4 ASUD 4.0 )T £ 5, + O, (A.3D)

completes the set of equations for the determination of the O(A") corrections.

!The expansion parameter \ is associated with a ratio of mass scales within the mass matrix M. Hence,
concerning the mass matrix the use of “decomposition” instead of “expansion” would actually be more
appropriate.
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A.2 Perturbative chargino mixing

After separating the Dirac phases, which will be treated at the end of this section, from
Ug the series for the mixing matrices Uy, and Vg, the squared mass eigenvalues A;, and the
matrices My = MCM(T; and Mp = M};Mc are introduced as

Mp =MD £ X6MY + X26M ., (A.4a)
Mp = MO £ A6MD + X26MP (A.4b)
Ay = AP AGAD 26D (A.4c)
(Vi) = (V}z[’))ij +A (5v};>)ij + N (5v§>)ij o= Gy F A+ A28 (Add)
(U1),; ~ (US’))M + (5U§”)U + X2 (5U£2))ij b= 0y 4 Aeyy + N (Ade)

The dimensionless parameter A corresponds My, (divided by some SUSY mass scale in the
chargino mass matrix), i.e. O(\") = O(Mj},).
Putting the expansions into the equations
VRMR = dlag (Az) VR, (A5a)
ULML = dlag (AZ) UL, (A5b)

I find the following equations by sorting after powers of A

0
A0 (M), = A5, (A6a)
. (10 M) _ saAs o A0
ey (M )jk+ (017) = 6A0 85+ A, (A.6b)

O (oMP) e (0M)) ey (M)
ik gk gk

)

= 5A£2)5zk + (SAZ(I)GZ]C + AEO)G;k, (A6C)

and similar relations for My, 3;; and ;. From these equations it is straightforward to find
the zeroth order squared masses?

AD =02, A = |, (A7)

and the higher corrections to the squared masses and the mixing matrices

sAM =0, (A.8a)
o 0= (), (), [
oA, = AEO) - Ag-o) , with 7 # j, (A.8b)
(),
€ij = m, for i # j, (A.8¢)

2The ordering |Ms| < || is assumed.
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e;; =0, for i #j. (A.8d)

During this calculation 1t is important to notice that the 2 x 2 matrices M and 5]\/[

are diagonal while sMmY L(R) is off-diagonal and that most sums collapse due to this fact.
From unitarity we find

€ij = —62}, (A.9a)
9Re[e,] = —|e; 2. (A.9¢)

After a few manipulations of the original equations using the obtained results, one can
furthermore show

Since the perturbative results must respect the properties of the analytic parameterization
to any order in perturbation theory, we can directly conclude that

m [e5;] = 0. (A.11)

All corresponding results for 3;; and j3;; are obtained with the identical procedure manner
and are given by Eq. A.8 after the replacements M; — Mp and ¢; — [3;;, with this
replacement Eqs. A.9 to A.11 read analogously.

The Dirac phases 7, and = can be extracted from

-1
P! = VaMoU} [diag ([A" + X26A%]2, (A + X200 2) | (A.12)

Inserting Mo = Méo) + A&Mél) and the expansion for Uy, and Vg given in Eq. A.4, pertur-
bative results for sinv; and cosy; and hence for tan~; can be derived. The derivation of
these results is not as simple as the calculation of the corrections to the mixing matrix, so
I do not give the results explicitly here and refer to the ones given in Sec. 2.3.2.

The formalism for a perturbative diagonalization of the chargino mass matrix can easily be
extended to higher orders of perturbation theory, but for Part IT of my thesis the knowledge
of the leading corrections is sufficient.

A.3 Perturbative neutralino mixing

The starting point for a perturbative diagonalization of the neutralino mass matrix is

X277 X3

MyN = N*diag (m 20, M0, Mo, My o) N*ME, (A.13)

or in terms of eigenstates R R
MyX; = x{My = mix]. (A.14)

Then the perturbative series for the mass matrix My, the eigenstates YV, and the masses
m,; are introduced as

My =M +xsMm{, (A.15a)
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R0 P AP P (A.15b)
m; ~m® + xom{" + \2om{P + . (A.15¢)

3

with the eigenstates x? expanded and decomposed as

0 = iy @, (A.16a)
W = et Z cijg'?“”, (A.16b)
O = e S de (A.16¢)

Here A is a dimensionless parameter which only serves for counting the orders of the
perturbation theory.> Plugging these decompositions into Eq. A.14 and sorting by powers
of A, one finds

A (= MY MO =, (A.17a)
A My s MY PO 4 M PO = OO 4 sV PO, (A.17b)
N (= MZ) : MO sy = mP30® 4 smD O 4 smP 0. (A17¢)

After defining

G = (M) (A-18)

)T

one finds by multiplying Eqs. A.17 with )E’?’ and by inserting the expansion of the

eigenstates as in Eq. A.16 the following relations

(M](\?)> = mgo)eiwié (A.19a)
ji

K
(5M1(\})> = 6m£1)5ijei2q'i + cijmgo)em'i — c*-mg-o)em'j, (A.19D)

ji "

Zcfk (5M](\})> 2% = O, mgo)eiz(wj_\yi)d:j 4+ 5mPs,;. (A.19¢)
jk
The zeroth order phases and masses are then given by Eq. A.19a as
mi” = M|, m) = Ml m =m® = |pl, (A.202)
\Ifl = —¢1/2, \Ifg = —¢2/2, \113 == —(d)u + 7T)/2, \114 = _d)ﬂ/27 (A20b)
while Eq. A.19b determines the first order corrections, for which we find

sm =0, (A.21a)

30O(A™) corresponds to O(M3).
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n\ M .

Imposing the ortho-normality of the )z’? up O(\) we obtain two additional relations for the
O(A) corrections
Cij = —C}}, (A.22a)

Note that the O(A) corrections to gaugino-gaugino mixing are either excluded by

M(U)> _ (M(U)> -0
( N 12 N 21 ’

or by the ortho-normality conditions. The second point is still true for the diagonal correc-
tions to Higgsino-Higgsino mixing, whereas the off-diagonal corrections ¢34 and c¢43 remain
correlated to each other but undetermined. This behavior results from the un-lifted degen-
eracy of the Higgsino mass eigenstates. As one can show these two entries do not affect our
observables in a perturbative analysis, and hence can be set to zero by hand. The O()\?)
corrections are obtained from Eq. A.19¢, after some manipulations the results read

(27, (241")

5m£2) - Z (0)2 (0)2 ik {mEO) + ml(c[]) COoS [2(\Ilz + \Ilk)]} ) (A23a)
k ki m; o =My
(5M§V”) <5M§V”) 0

i ik M

Im[d;] = — Z (0)’; o k ’(“0) sin [2(0; + ¥)], (A.23b)
bkt 2 (ml —my, ) m;
1 1
g 1 (5M](V))ki (5M](V))kj (0)2 (0),(0) —i2(¢p; +Wy,)
B R X e Er [T T e

mi T T My kA m; o = my

+m§o)m§0)6i2(xpr\m) + m,(co)mz(o)eﬂ(q”“wj)] D (A.23c)

The additional relations from ortho-normality up to O()\?) are

2Re [d“] = — Z |Cik|2; (A24a)
k

d;i = _dij — ZCZ']CC;,C. (A24b)
k

Again the off-diagonal corrections to Higgsino-Higgsino mixing are correlated to each other,
but remain undetermined due to the un-lifted degeneracy between the Higgsino mass eigen-
states. Since they do not, like c34 and cy3, affect the observables, they are set to zero by
hand. Using all these results the neutralino mixing matrix in the perturbative treatment
reads

N = (X1, X2, X3, Xa)" (A.25)
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6*@1/2(1 + dﬁ) .€7i¢2/2d§1 6*2:(¢7u+7r)/2651 €*Z:¢u/2621
R, o, |
et e 101/° * * e~ %2 * X e—i(optm " e itu/ . .
\'?/2 (013 +ciy) \_?/2 (023 + ¢5y) m(l + d33) —\[%)/2(1 + di,)
—1 1 —1 2 —1 m T —3 @
Sh(eh =) SA(d—ch) (1 +ds) ——A—(1+di)

As already mentioned, corrections to gaugino-gaugino and Higgsino-Higgsino mixing occur
in O(M}) while corrections to gaugino-Higgsino mixing are already an O(Mj)-effect. Cor-
rections to the physical masses are also an O(M2)-effect. The formalism presented here
can easily be extended to higher orders in A\ (= M) by adding the required terms in the
series given by Eq. A.17 and keeping the corresponding terms in Eq. A.16. The calculation
will merely get more tedious and the results more lengthier. However, for the purposes of
Part II a calculation up to second order in M is sufficient.

A.4 Perturbative parameter adjustment

In Part II the thesis discusses the possibility to keep phase-dependent kinematical masses
fixed by an adjustment of the absolute values of input parameters. That is to say, the
variation of the kinematical masses along with the variation of the phases is absorbed into
a change of the absolute values of parameters. This procedure can be written as

mg " (o) = mi(¢i, a; + 0ay), (A.27)

where m¢FC is the kinematical mass of particle i and is fixed with respect to any CP-

conserving reference point (C'PC) depending on a set of parameters «;. The adjustment
of these parameters in presence of non-vanishing phases ¢; is denoted by dc;. In general,
Eq. A.27 corresponds to a set of non-linear equations and has to be treated numerically.
If only the dimensionful parameters in the chargino and neutralino mass matrix, i.e. |M],
|Ms|, and |p], are varied, correspondingly at most three masses can be kept at CPC-values.
In the numerical analysis we choose the masses of X%, Y9, and )N(li For these particle masses
fixed the parameter adjustment can be discussed perturbatively, i.e. the three equations
from Eq. A.27 can be solved to give perturbative expressions for §|M;|, §|Ms, and §|pl.
Using the results for the O(M%) shifts of the mass eigenvalues as given in Eqs. 2.40 and
2.35, the corresponding shifts in the parameters read

|uMZ sin® Oy

5|M1| = W sin 25 [COS(¢M + ¢1) - COS(¢# + ¢1)|CPC] , (A28a)
M2 cos? 0
0| M| = W [cos(¢y + d2) — cos(dp + b2)|pe] (A.28b)
1 —sin?2 M, |sin% 0
dinl =~ =52tz { D (cos(0, + 60) = cos(6 -+ 01 epe)
20
Wﬁ [cos(dy + da) — cos(By + d2)|ope] } : (A.28¢)

where |- indicates that the corresponding cosine-terms have to be evaluated with the

given combination of the “trivial” phases, i.e. these terms are either 1 or —1 corresponding
to ¢, + d12) = 0,27 or ¢, + ¢1(2) = 7. The results in Eq. A.28 show clearly that the shifts
in the absolute values of the varied parameters are indeed of O(M32).



Appendix B

More details on the calculation of the
SUSY contributions to d. and a,

B.1 Calculation of leptonic dipole moments

B.1.1 Generalities

The calculation of the SUSY contributions to a, and d, mediated by chargino and neu-
tralino exchange follows [54] closely. Guided by this work one starts with a generalized
interaction Lagrangian as given by [54]

J— — <
L= eVlfk)\I'j*yu(V}l — Ajl’)/g,)\I’l +e {\I’f(Sjk — P]k’)/g,)\I’k(I)] + hC} + ZGG]]CV”Q); 8# (I)k,
(B.1)
where several terms contained in [54] have been dropped already since they are irrelevant for
the SUSY one loop contributions to be calculated later onwards. Vector bosons are denoted
by Vu(k) = A,, Z,; fermions and scalar bosons by W) and ®y, respectively. Following [54]
the relevant generic vertices are:

e 21
pl/;’/
f\/\/\/\;::z ieG(p1 + p2),u

D2 A
B,

Figure B.1: Generic vertices determined by Eq. B.1.

Given these vertices the generic contributions to lepton form factors in the effective V' f f-
vertex from fermion exchange with two scalars (type A) and from scalar exchange with
two fermions (type B) may be calculated. The corresponding diagrams are depicted in
Fig B.2, the left one resulting later in the neutralino contribution and the right one into
the chargino contribution, when the generic interaction Lagrangian in Eq. B.1 is identified
with the SUSY interaction Lagrangian from Sec. 2.5 and the generic boson V' is specified as
photon. In Apps. B.1.2 and B.1.3 the most important steps during the calculation of these
two generic diagrams are summarized and performed up to a stage where the results can
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f
type A

\
)
‘\
N
N
N

Figure B.2: Generic diagrams for the fermion exchange with two scalars (left) and for the
scalar exchange with two fermions (right).

be compared with [54]. Note that this reference neither presents any intermediate steps
nor executes the limit s — 0 of vanishing vector boson momentum. Furthermore, it only
gives the explicit results for the generic one loop contributions and specifies the generic
vertices for the MSSM, but does not explicitly show the result for the lepton form factors
from neutralino and chargino exchange, i.e. explicit results for (ds)susy and (af)susy
are missing. Contrarily, in App. B.1.4 these results, being of central importance for this
thesis, are derived from the results of Apps. B.1.2 and B.1.3. Several properties of and
manipulations on the loop functions appearing throughout the calculation of the lepton
form factors are collected in App. B.2, whereas the Gordon identities used in the calculation
are summarized in App. B.3. The basic reason for using [54] as guideline is that this work
reveals somewhat more technical details on the calculation of the lepton form factors than
most other references [22,24,55] do.

B.1.2 Calculation of diagram type A (neutralino)

The complete diagram of type A contributions is shown in Fig. B.3, including the precise
vertices and the complete momentum configuration. Using standard propagators for the
exchanged scalars j, k and the exchanged fermion [ together with a careful treatment of
the internal Majorana fermion line the one-loop contribution (Fa),;, from diagrams of type
A to the invariant Feynman amplitude reads as

(Fa)o =1 ‘M4_D/ dPq (S + %P (d + M) (Sj — 95P50) (24 = p1 = P2)uGin
e (2m)P [q2 — MP +i€] [(q — p1)? — M + €] [(g — p2)? — MP +ie] "
(B.2)
Some attention has to be focused on the Majorana nature of the exchanged fermion, re-
garding the correct treatment of vertices with Majorana fermions as well as propagators
of Majorana fermions [138] is of great benefit. The chiral structure of (Fy),, can be
simplified. After introducing four effective vertex factors A%, as

A]llk G (SjSk + PulPyy) = (Allclj)*? (B.3a)
]lk = G (SjPpy + PuSyy) = (Akl]) ; (B.3b)
]lk = G (SpSy — Pubpy) = (Ak:l]) ) (B.3c)
Al = Gk (SpPl — PuSiy) = —(Ap)", (B.3d)
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Figure B.3: Diagram for type A contributions with specified vertices and complete mo-

mentum configuration. The clockwise running loop momentum is labeled by ¢. Arrows
on solid lines indicate the fermion flow, the circled arrow on the right refers to the flow of
fermion number. The momentum flow is indicated by the smaller, solid arrows close to the
particle lines.

the nominator of the integrand in (F4),, reduces to

[d (A]lk ’75A?lk) (2¢ —p1 — pz)“ + M, (A?lk + ’75A?lk) (2¢ —p1 — pz)“ . (B.4)

The next step is to eliminate the g-integration formally by rewriting the Feynman amplitude
(Fa)y, in terms of tensor integrals. Using the conventions for the three-point functions in
the orthogonal decomposition as specified in App. B.2.3, (FA)ﬂk may be rewritten as

ie3

(FA)jlk 167 gupz{'ya 2Ca, — (p1 +p2)uca]zjk (A}lk - 75A§lk) (B.5)

+ M, [QC;L - (pl +p2)ll00]ljk (A?lk - 75‘4;1”6)} Ui

The notation [C{O7N7NV}]ljk denotes the argument of the tensor integrals [C{O7N7NV}]ljk

Clopwy (P1,D2, My, My, My). At this stage of the calculation the explicit use of the or-
thogonal decomposition for the tensor integrals C,, and C}, as given in Eqgs. B.36 of
App. B.2.3 is convenient. The advantage of this decomposition consists in the appear-
ance of p_,, = (p2 — p1),, corresponding to the vector boson momentum. Anticipating the
vector boson on-shell condition p_,e# = 0 all terms proportional to p_, can be dropped
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immediately. Furthermore terms proportional to g,, only lead to corrections of Vf and
AV Hence the relevant parts of the tensor integrals are

Y Coaulye, = P04 C5 " — p-puCo ™ (B.6a)
7" Calya. = p+C1 — p-Cr, (B.6b)
Culyer. = P+uCi (B.6c)

The contracted combinations p. of external fermion momenta are eliminated with use of
the fermion on-shell conditions as given in Eq. B.58

Up, Pt (A + Bys)up, = Up,2mAuy,, (B.7a)
Up, P— (A + Bys)uy, = TUp,2mysBuy, . (B.7b)

Employing all these simplifications and manipulations the relevant part of the Feynman
amplitude (Fy),,, reads as

o
(Fa)juw| = ZeEUmeru{ [2m;(2CFF — OF )i Afy, + Mi(2CT — Co)ij Ay ] (B.8)
+ [2mp (205 — O )inAGy, + Mi(2CT — Co)ijrAfy] 75} tp, -

Finally the momentum p,,, = (p1+p2), is eliminated via the Gordon identities in App. B.3.
By comparing (FA) . With the effective V f f vertex in Eq. 3.3 the contributions arising
from type A dlagrams to the form factors ay (s) and d (s) are given by

a¥ —«
f
<%> e [sz (2057 = CF )y, Ajue + My (2CT = Co) Ajflk] (B.9a)
A,jlk
dy 1’ B B
(?f) = 2my (26 = C7) A%+ My (26 = o), Aly|  (B.9D)
J

To obtain the final result one has to sum over all particles that can be present in the loop
diagram of type A

a¥ a¥ dv dv
f f f f
— E I I — E L . B.10
(2mf> : (2mf> 7 ( e ) : ( e ) . ( )
A ]7kal A,]”C A ]7kal A,]”C

Employing the symmetry properties of A;‘lk (see Eq. B.3) and of the loop functions (see
App. B.2.3) under the exchange j <> k simplifies the summation; in terms of initial cou-
plings S, P, and G the two form factors read

aV
<—f> T A {QWfZ (265" — CY )ijeRe (G (SjuSky + PuPyy)]

2mf Iy

+ > M(2C = Co)ijRe [Gir (SjuSiy — lePk*z)]}, (B.11a)

gkl

dV
<?f> {me Z (205~ OhiieIm (G (S PY + PjSyy)]
A

7.kl
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+ ZM[(QCIJF — C’g)ljkIm [ij (S]lP]:l — leszl)]} . (Bllb)

Ikl

After including an additional minus sign® for C; and C; ™ these results agree with [54].

B.1.3 Calculation of diagram type B (chargino)

Figure B.4: Diagram for type B contributions with specified vertices and complete mo-
mentum configuration. The clockwise running loop momentum is labeled by ¢. Arrows
on solid lines indicate the fermion flow, the circled arrow on the right refers to the flow of
fermion number. The momentum flow is indicated by the smaller, solid arrows close to the
particle lines.

The complete diagram of type B contributions is shown in Fig. B.4, including the precise
vertices and the complete momentum configuration. Using standard propagators for the
exchanged fermions j, k and the exchanged scalar [ the one-loop contribution (Fjp) i from
diagrams of type B to the invariant Feynman amplitude reads as

dPq
_ 33— 4-D
(FB)jlk = —C Up, [ / (271-)D (B12)

o ) St = 75850 (d = P2 — M) v (Vie — v5458) (d — P — M) (S + 95 50) "
[q? — M +ie] [(q — p1)? — M + €] [(q — p2)? — M} + ie] "

!This is due to the slightly differing ordering of arguments in [CO,u,uV]ljk = Co,u,uv (P1, 02, My, M, M)
compared with [CO,u,uV]kjl = Co,puv (P1,P2, My, My, Mj) in [54].
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First of all, for the further calculation it is worth to notice that the term proportional
to the product of the fermion masses MM, has the Lorentz structure ,(A + B~s), and
hence only contributes to the form factors A}/ and VfV. Thus this term can be dropped
immediately as we are only interested in the form factors a¥ 7 and dV The chiral structure
of (Fg),;, can be simplified, by introducing six effective vertex factors Bl as

lelk = Vi (SjuSk + PuPpy) + Ajk (S Pry + PuSyy) = (Blil])*a (B.13a)
glk Vi (S Py + leskl) + Aji (SjSky + P]lPk = (B }‘iz])*, (B.13b)
Bfuc k ( JlSkl ) + Ajk ( Jlsz ) = (Bi?z])*, (B 130)
glk = Vi (SiuPp — P]lskl) + Aji (SjSpy + P]lPkl) - (B gl])*a (B.13d)
B?lk - k ( JlSkl PI:Z) Ajk ( Jlsz lSl:l) (Bgzj)*a (B 136)
By = Vi (SuPly + PuSt) — Ak (SuSt — PuPy) = — (Biy)” (B.13f)

the nominator of the integrand in (Fp);,, reduces to

(dVud — P2vud — drvuir) (B}lk + 75B]2lk) — M;y.q (B]:‘))lk + 75331119) — Mg, (B?lk + 75(3?11@))’

B.14
where all terms that are proportional either to pi) or to bilinears of these momenta
have been dropped. The reason for this is that such terms further reduce to the Lorentz
structure -y, (A + Bs) by the fermion on-shell conditions and hence only contribute to the
form factors A} and V}". By formally performing the loop momentum integration one
obtains?

3
(FB)jlk 167 Taad { ['V T Cocﬁ — P2 Ca 'Ya%ﬁlca]mj (le'lk + ’753]2'1/&) (B.15)

— My, v [Calyy (B?lk + ’Y5B;'lzk) — My v, [Calig (B]E')lk + 75B?Zk)} Up, -

Again the orthogonal decomposition of the tensor integrals is convenient. Employing this
decomposition and standard manipulations of products of y-matrices the relevant parts of
the tensor integrals read as

VU Cosl . = 2 [Prp4uC5 ™ + 2 (Drutr — Popon) C5 ], (B.16a)
’yﬂfyacahel. = 2p2lt (Of o O;) ’ (B16b)
VY Caler, = 2010 (CF +C7) - (B.16¢)

All terms that either contribute only to A} and V}”, i.e. terms proportional to ,p; and
YuPipj, or vanish by imposing the vector boson on-shell condition, i.e. terms proportional
to p_,, have been dropped immediately. The relevant part of the contribution (FB)].”c is
then given as

eq

(F) jun —2EE,,2{ [PrpuCS + 2 (pruhr — Poapan) CF

rel.

2Note that compared to the calculation of diagram type A the masses have been arranged differently.
Therefore the loop functions [C{O,u,w}]w are identical to [C{Oyﬂyﬂl’}]kjl in [54].
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= poulb2 (CF = CT) = i (CF + CT)] s [Bji + 1585
~Mjpay, (CF — Cl_)lkj Bjir, + 15 Bju]

— M (CF +C1) (B + 1585 } (B.17)

Using the fermion on-shell condition and 2p{, = p% F p" together with the vector boson
on shell-condition further simplifies the relevant part of the amplitude (Fp) ilk

1eq_ _ _
—Fumeru{me |:20++ - Of] lkj lelk - 2mf'Y5 [20; - Cl ] BJZHC

— M;[Cf - CF } By + 5B

(FB)jlk rel -

— Mk [C + C ] . [ jlk +,Y5Bglk] } Upl. (B18)

Using the Gordon identities from App. B.3 to eliminate py, and comparing with Eq. 3.3
reveals the contributions from type B diagrams to the form factors ay (s) and dy (s) as

aV o
f _ ++ + 1
B,jlk

~M; [Cf — C7 ],y BYy — My, [CF +CF),,, B?lk} (B.19a)

df e’ _ —
<?>B =i {om; oy - 011, B

™

lkj

M; [CF = CF ), Bl + M [CF +CF ], flk} (B.19b)

As illustrated in Eq. B.10 one finally has to sum over all particles that can be present in
the loop diagram of type B. Employing the symmetry properties of Bj-lk (see Eq. B.13) and
of the loop functions (see App. B.2.3) under the exchange j <> k simplifies the summation,
in terms of initial couplings S, P, V', and A the two form factors read

2my 47 Iy

aV o
—2Mj, [CIJF + Cl_]lkj Re [Vyk (Sjlskl Jlsz) Aj (Sjlpk*z - leszz)]}

(B.20a)

d, « _ _
<_> = - Z {me [eEaEeh ]lkj Im [Vi (SuPpy + Pusiy) + Aji (SpSi + PuPy)]
B

7.kl
—2M; [Cf + O], T [Vi (PjuSiy — SiPea) + A (SjnSiy — alsz)]}
(B.20D)

Again these results agree with [54].
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B.1.4 Final results

The first step to obtain the final results for d7(0) and a;(0) is to specify the vector boson
as photon, in which case the couplings between the vector boson and the two scalars,
respectively two fermions simplify to

ij = (Sjk, V;k = (Sjk, Ajk =0. (B21)

Secondly, the generic scalar and pseudoscalar coupling S and P may be expressed in terms
of chiral couplings L and R,

Lii + R;; L;; — R;;
P ki’ R Y il (B.22)
2 2
which implies for bilinears of S and P
1
1S5 ” + |1 = 3 (1L |” + | Ri|) (B.23a)
|Si* = |Pij|* = Re [Li; Ry, (B.23b)
SiiPl; — PijSt; = iIm [L%Rij] : (B.23c)

Hence the contributions to a}(s) and d}(s) from type A and type B diagrams in terms of
chiral couplings (L(R);j,a # L(R);;5) read

a'} o , 2
<—> - {mf [|le,A| + |Rji, ] [2(]2++ _ Cf“]
A

)~ T i
+MRe [Liaf] 26 - G, ) (B.24a)
a7 (8%
<ﬁ> T ir {mf (L8l + 1 Rapl] 26,7 = O],
f/ B jl
—2M;Re [Lus Ry ) [201],,,} (B.24b)
d) «
<?e> — _E ZMZIHI [L;Z’Ale,A] [QCf - CU] Ljj (B24C)
A jl
dZ o * +
<?> T T un ZMlIm [le,Ble,B] [201 ]l].j . (B.24d)
B 4l

Note that k£ = j as enforced by the photon vertices is used here, this eliminates contribu-
tions proportional to C; and C3 ™. By identifying the couplings L;; 4+ and R;; 4 with those
in Eqgs. 3.16¢ and 3.16d, respectively L;; g and R;; g with those in Eqs. 3.16a and 3.16b via

NLjo NRja
Lij,A = T, Rij,A = e (B25a)

31 31
Lijp = %e Y Riyp= %Tl (B.25b)
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and using the expansions of the appearing combinations for loop functions in external
momenta from App. B.2.6 the final result for the neutralino and chargino loop contributions
to ay = a}(0) and dy = d}(0) are found to be

X’ —1 mfc 4mf
ay = 19972 ; {@J% (2ai) [InLial® + InRjal’] + i f2 (zai) Re [0} jaNRjia) } ,
(B.26a)
-0 —e 1
d?}g = 967{'2 Z {Mf? (Zai)Im [nz’mnR,m] } , (B26b)
= o 2 55 G0 e + ko) + 8%, (2) el (B.25¢)
af N 19272 - ]\42.2‘]03 %i) [ICLi CRi M, fl Zi € |Cr;CRi| ( » .20cC
gt _ € 2 x
U= 962 Z {Mif 1 (2) Im [CLz'CRi]} : (B.26d)

Setting i = 1,...4; @ = L,R; and z,; = M2/M? for the neutralino contribution and
i = 1,2 with z; = M?/M? for the chargino contribution as well as f = e or f = u the
results in Eqs. B.26 reproduce the results for both SUSY contributions to d. and a, as
given in Sec. 3.2.1.

B.2 Relevant loop functions

To make this thesis self-contained the relevant loop functions and their most important
features are briefly presented here. N-point functions which are not appearing during the
calculation of the form factors a}/ and d}/ are not discussed here.

B.2.1 Introducing scalar and tensor integrals

For the calculation of the leptonic dipole moments it is necessary to calculate scalar and
tensor three-point functions Cyg , 3. In general these three-point functions are associated
with the diagrammatical structure and configuration of momenta as shown in Fig. B.5.
In the covariant, standard decomposition the three-point functions are usually defined
as [139]

o _16n? dPl {1,1,,1.0,}
Oy = 5 / 2m)P [(I + p1)? — M7 +i€] [(I + po)? — M3 +i€] [I2 — Mg + ie]’
(B.27)
where p is a parameter of mass dimension and serves to keep the dimension of the inte-
grals fixed for varying dimension D [139]. The reason for calculating these integrals in
D dimensions is the fact that integrals that are divergent in four dimensions converge for
D # 4 dimensions. By going to D dimensions these UV divergencies are regularized and
correspond to singularities in (D —4). More details on this dimensional regularization may
be found in [70,71,139]. The infinitesimal imaginary parts ie are needed to regulate sin-
gularities of the integrand in Eq. B.27 [139]. After integration they determine the correct
imaginary parts of logarithms and dilogarithms, furthermore the correct choices ensure
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—D2

l+p27 M2 l; MU

pQ/_pl/ l+pi, M, \pl\

Figure B.5: General configuration for momenta and masses as used for the standard defi-
nition of three-point functions. The flow of momentum is indicated by arrows.

causality [139].
Later onwards the tensor three-point functions C), ,, are reduced to one- and two-point
functions, these are introduced as

1672 dPl 1
Ay = 4D/ B.2
0 ;P (2m)P [I2 — M2 + ie]’ (B.282)
1672 dPl {1,0,}
B — 4—D/ P . B.28b
{0} e (2m)P [(1 + p1)? — M2 + i€] [I2 — M2 + i€] (B.285)

The arguments of the tensor integrals Ay, Bjo,}, and Cy, my consist of independent
external momenta and the internal masses, i.e.

Ay = Ay (My), (B.29a)
Biouy = Biow (pr, Mo, My), (B.29b)
Cropmt = Cropy (P1, D2, Mo, My, My) . (B.29¢)

The N-point functions Ag, By}, and Cyg .y are the only ones that appear during the
calculation of the form factors ay and dy.

B.2.2 Reduction of tensor integrals

In the “standard” decomposition the tensor integrals are expanded into symmetric Lorentz-

structures constructed from the available, external momenta p;, and the metric tensor g,,,
i.e. [139]

B, = p1,Bu, (B.30a)
Cy = p1,C1 + p2,uCo, (B.30b)
Cuv = P1up1vC11 + P2upay Co2 + p2uP1,Co1 + P12, Crz + G Coo. (B.30c)

By contracting with external momenta p!' and/or the metric tensor g*” the tensor integrals
decomposed in Eq. B.30 are reduced to tensor integrals with less powers of the internal
momentum /,, in the nominator and/or less propagator factors in the nominator. Following
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the general method described by [139] one finds for the two-point function B, and the
three-point functions Cy, ,,y after some tedious calculations

1
B, = 2—1[)2 [AU(MO) - AO(MI) - f1Bo(p1, My, Ml)] ) (B.31a)
1
Cy 1 ( p% —P1P2 ) ( R! )
= B.31b
( Cy ) A T AN (B.31b)
< Cii Cxn ) _ 1 < p% —P1P2 ) ( R% — 2Cy R% )
Cia O 2[pip3 — (pp2)?] \ —Pip2 pi R} R3;—2Ce )
(B.31c)
The coefficients R; and R/ are given as
R!' = Bo(p2, My, M2) - Bo(p21, M, M2) — [10y, (B.32a
R? = Bo(ph My, M1) - Bo(p21, M, M2) — f2Cy, (B-32b
R} = —f1Cy — Bi(p1a, My, My), (B.32c

Ré = — f1Cy + By (p12, M2, My) + By(p12, Ma, My) — By (p2, My, M), (B.32d
R? = By(p1, Mo, My) — By (p1a, My, M) — f>C4, B.32e

)
)
)
)
)
R% = — foC5 + By(p12, Mo, My) + Bi(p12, Ma, M), B.32f)

(
(

where f; = p? — M? + M§ and p;» = —poy = p; — py were introduced. Moreover, the
argument (py, pe, My, My, M) of Co,1,2; has been dropped. The coefficient Cyp has to be
calculated separately, one finds

1 1
Coo = 5D 5 [2M§C’0 + f1Cy + f2Cy + By(pia, Mo, M1)] .

By restricting to singularities in (D —4) and non-vanishing parts for D — 4, this simplifies

to

1
Coo = 1 [Bo(p12, My, My) + f1C1 + foCy + 2M§Cy + 1] + O(D — 4). (B.33)

The determinant present in Eqs. B.31b and B.31c

[(p% — p1p2) (D5 + pip2) + (PT + p1p2) (P3 — p1p2)] ; (B.34)

DO | =

p?pg - (p1p2)2 =

indicates that the reduction formula for C, and C}, become singular if the moment are
collinear, i.e. p; = ®py. As this collinearity is implied by the limit s — 0 of vanishing vector
boson momentum, this limit causes a priori some worries. However, closer inspection of the
combinations of the relevant loop functions during the calculations of App. B.2.5 reveals
that in the case of d} and a} additional factors p? —p;p; and p3 —p; p, arise in these relevant
combinations of loop functions. These factors cancel with the collinear singularities from
Eq. B.34.
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B.2.3 Orthogonal decomposition and symmetries

An alternative way to describe the Lorentz structure of tensor integrals is used by [54],
here the general three-point functions are given as

167% , dPl {1,0,,1,0,}
i 4 / 2m)P [(I — p1)? — My + i€ [(I — p2)? — M3 + ie] [I12 — ME + ie]’
(B.35)
i.e. the loop momentum [, is assigned opposite® to Eq. B.27. Instead of the covariant
decomposition in Eq. B.30 the three-point functions are decomposed using the combinations
Py = (p1 £ p2), as follows

Cloumwy =

Ou = p+ucl+ + p,MCf, (B36&)
Chw = P4upC3 T+ up-Cy ™ + (Pipp—v + P—up40) CF ~ + 9 C5°. (B.36b)

Using the basic relation between orthogonally decomposed and covariantly decomposed

three-point functions
Cortho. — (cova. (B37)

{07/"/7/'“/} luﬁfl,u. {O,M,[,LI/}J
one finds by expanding the linears and bilinears of p., the following relations between the

coefficients Cj;) of the covariant decomposition and the coefficients C;' %) of the orthogonal
decomposition

O = 5 (G4 ). (B.38a)
= —% () — Cy), (B.38b)
Cit = i (Ci1 + Cyo 4 Chy + Co1) (B.38¢)
Cy ™ = i (C11 + Cyy — Chg — Csy) (B.38d)
;= i (Cii — Ca2), (B.38e)
Cy" = Co- (B.38f)

Noticing the invariance of the three-point functions under the snnultaneous exchange p; <>
p2 and My <+ Ms, the following properties of the coefficients C’ #) under this exchange are
evident

Co(p1,p2, Mo, My, M,
CY(p1, p2, Mo, My, M,
Czﬁ(p1;p2,M0,M1,M2
Cgo(p1;p2, My, My, My

Co(p2, p1, My, My, M), (B.39a
(PQ,pl,MO,M2,M1) (B.39b

5 (D2, pr, Mo, My, M), (B.39¢
(p2,p1,MU,M2,M1) (B.39d

) = )
) )
) )
) )

The dependence of the loop functions on the external momenta is exclusively given by
the three Lorentz scalars p?, p2, and pyps. Moreover, considering two equal mass on-shell

3This assignment is in particular relevant for C,,.
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fermions, the Lorentz scalars p? = p2 = mf and p;ps are invariant under the exchange

of the external momenta. Hence the simultaneous exchange p; <> py and M; < M, is
equivalent to the single exchange M, <+ M, in this case. Using the short-handed notation
Clouywy (P1, P2, My, M, My) = [C{Oyl%lﬂ/}]l'k Eqs. B.39 reduce to

[Colije = [Coli; » (B.40a)
[C?]l]‘k =« [C?]lkjv (B.40b)
[05“5 ] =P [Og“ﬂ] b (B.40c)
[C2°] = [C°] ;- (B.40d)
Trivially, this implies
(Cr],; =657, =0, (B.AL)

if pf =p3=m

B.2.4 Scalar integrals

Only the scalar integrals Ay(My), Bo(p1, Mo, My), and Co(py, p2, Mo, My, My) have to be
calculated explicitly, all other tensor integrals can be reduced to those three scalar integrals.
Following standard text books [70,71,140] one finds

AMM@:AK[A—kg<%§>+1}+0u)—®, (B.42a)
B M A1) — A / drtog 22120 = VE£06) V5 — i

+O(D —4), (B.42b)

Co(p1, p2, Mo, My, Ms) = / dx /1 xdy{ [2%p + y°p + 2zypips (B.42c)

—a(p? — M2+ M2) — y(p2 — M2+ M2) — M§+¢e]*1},

where A = 1/(4 — D) + log4n — yg and ~yg is the Euler constant. The variables = and
y denote two Feynman parameters which were used to linearize the denominators of the
integrands.® As the numerical factor log 4w — ~yg is absorbed in A these numerical factors
cancel in a given combination of loop functions only if the singularities in D — 4 cancel,
i.e. when the considered combination is UV-finite. Moreover, note that Cj is already UV-
finite. For the purposes pursued here it is slightly more convenient to keep the Feynman
parameters at this stage and to integrate them out after the appearing loop functions have
been expanded in the external momenta.

B.2.5 Divergent parts of loop integrals and effective loop func-
tions

As stated in Sec. 3.1 it is not possible within renormalizable theories to write down con-
tributions to the form factors dy and a} at tree level, hence counterterms for dy and ay

*Using L fo dz[a(1 — z) + bz] ™ and =2 fol dx fol_x dy[(c —a)y + (b—a)z +a] >
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are forbidden. This implies that the singularities appearing in the combinations of loop
functions contributing to d}/ and A}/ have to cancel among each other, i.e. these contribu-
tions have to be UV-finite. This postulate provides a stringent test for the consistency of
the calculation performed within Apps. B.1.2 and B.1.3. The divergent parts of all loop
functions discussed so far are

(D — 4)Aog(My) = —2M2 + O(D — 4), (B.43a)

(D — 4)By(p1, My, My) = =2+ O(D — 4), (B.43b)

(D —4)Co(p1, p2, My, My, M) = O(D — 4), (B.43c)

(D — 4)By(py, My, My) = 1+ O(D — 4), (B.43d)

(D — 4)Ci(pr, pa, Mo, My, M) = O(D — 4) {i} = {1,2}, (B.43e)

(D — 4)Cy(py, pa, My, My, My) = O(D —4) {i, 5} = {1,2}, (B.43f)
(D — 4)Coo(p1, p2, My, My, My) = —% +O(D —4). (B.43g)

These divergent parts as far as shown here agree with [139].

Now the combinations of the orthogonal decomposition coefficients C* (8) appearing in d}
and a} (see Egs. B.11b and B.20) are defined as “effective loop functions” Fj(my, M;, M)
via

Fy(my, My, My) = lim {C" (my, mp, My, M;, M)}

= 2 Hm {[Cy + Co] (myg, my, Mi, My, M)} (B.44a)
Ey(my, My, Mj) = lim { [2C" = Co] (my, my, My, M, M;) }

= —tim {[Cy + G + Col (my, my. My, M;, M)} (B.44D)
Fy(my, My, Mj) = lim { [2C57F — C] (my, my, My, M, M;) § (B.44c)

1.
= 3 g%{[cn + Cia + Cy + Coy + Cy + (Y] (mfamfa M;, M;, Mj)};

where the limit s — 0 of vanishing momentum for vector boson V' is already performed and
M), = M; as enforced by the photon vertices is used. Taking this limit is straightforward,
the collinear singularities discussed at the end of App. B.2.2 cancel with suitable factors
from the nominators of the effective loop functions. Using the reduction formula from
Eqgs. B.31 for covariant decomposed tensor integrals one finds for the effective loop functions
Fi(my, My, M;)

1
!
—(m§ — M + M?)Co(my, my, My, Mj, M;)] (B.452)

-1
FQ(mfaMlan) = 2—”@ [Bo(mf,Ml,Mj) — BO(O,M]-,M]-)
+(m?‘ + M]2 — M})Co(my, my, My, My, M;)] (B.45b)
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1
Fy(my, My, M;) = —— { 2Bo(my, My, M;) — 1 — Bo(0, M;, M;)
!
—2(m% — M} + 2M7)Co(myg, my, My, M;, M;)]
1
+— [Ao(Mi) = Ao(M;) — (mj — M + M) Bo(my, My, M;)]
I
6(m2 — M? + M?)
—— yr: [Bo(my, My, Mj) — Bo (0, M;, M;)
!
— (% — M + MP)Co(my, 5, My, My, M)] }. (B.45¢)

Using the results in Eq. B.43 the singularities of the functions Fj(m¢, M;, M;) are extracted,
one finds

(D —4)Fy(my, M;, M;) = O(D —4), for i=1,2,3; (B.46)

as expected. The structure of the functions F;(my, M;, M;) is generalized as
F;(my, My, M Zc (my, My, M;)G(my, My, M;), ©=1,2; (B.47a)
Fy(my, My, M. Zc (mys, My, M;)G(my, My, Mj), (B.47b)

where the five scalar integrals Ag(M;), A¢(M;), Bo(my, M;, M;), By(0, M;, M;), and
Co(my,mys, My, M;, M;) are referred to by Gy,.

B.2.6 Expansion in external momenta

A suitable parameter for the expansion of loop functions in external momenta is given by
the ratio g = m?/Mf. In our case the lepton is specified either as electron or as muon,
whereas the loop mass M; is either a neutralino mass or the sneutrino mass; in all cases
< 1 holds. The generalized, effective loop functions F;(my, M;, M;) from Eq. B.47 are
first rewritten as

Fi(8, My/M;) = mif S (B, My /MG (B, My/My), = 1,2 (B.ASa)
F3(8, M;/My) = —% > (8, M;/ M) G (8, M;/ M), (B.48D)
and then formally expanded as
Fo(B, M,/ M) = mi? (FO+ " + P +.), i=12  (BA9)
Fa(B, M;/M,) = mi% (ng> + B 4+ TP 4 ) , (B.49b)

where the Taylor coefficients an) are

FY =T, =Y @.Gul,, (B.50a)
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—(1) oct — 6@,”)‘
2 555 )
=@ 1 o . G, 0 0G,
F, = 5 zm: <—852 Gm +7¢, o5 + 38 08 )|,y (B.50c)

Since the form factors d} and a'} are at least finite® for vanishing fermion mass my, the
(n)

Taylor coefficients F; ~ have to satisfy

= (B.51a)
Fy =o. (B.51b)

These conditions imply that the scalar integrals By, and C have to be expanded up to
O(B?) in order to obtain the correct results for the form factors a} and dj.

The next step consists in rewriting and expanding the scalar loop functions Ay, By, and Cj,.
For this intention in addition to 3 a second, dimensionless quantity A = (M7 — Mp)/M;
is introduced and the finite parts of the loop functions are rewritten as

2 M?
Ao(My)|g, = M[ [ 1 —log ) (B.52a)
Aog(Mj) g, = (1 + A) [Ao(Mi)]g, — M log[l + AJ], (B.52b)
M2
Bu(0, 3,35y, = ~tog || ~ g1 + 4] (B.520)
Ml2 1 )
By(B, A, M))|g, = —log il dzlog [(2* — z)8 + Az + 1], (B.52d)
0
_1 1 11—z 1
Colf A M)y = [ o [y [0+ my =g s )+ A ]
i Jo 0
(B.52e)

where some of the Feynman integrations have already been performed. The infinitesimal,
imaginary parts ie have been dropped, because they are formally relevant only for the
zeroth order Taylor coefficients BSO) and Céo); a closer inspection of the relevant integrals
for these coefficients shows that neither the argument of the logarithm in B(()O) nor the
denominator in Céo) contains a zero within the integration area. Moreover, the integrands
for the remaining Taylor coefficients are formally independent of ¢ and furthermore do not
contain singularities or zeros in the integration area.

The Taylor coefficients Bén) and Cén) are defined by the expansions of the scalar integrals
Bo(5, A, M;) and Cy(f, A, M) as

Bo(8, 4, M) = B + BV 8+ B{' g2 + ...
0B, 1 8280

= Bolso* 55,71 3 op

5In Sec. 3.1 these form factors were associated with chirality flipping operators, this implies
limmfgo(d}) = limmfﬂg(a}’) =0.

B+, (B.53a)
B8=0

B+

p=0
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Co(B, A, M) =C + OB+ P B2+ ...
oC 1 0%2C
0 54_ 0

A

By calculating these derivatives and performing the Feynman integration over z (and y)
one finds after some tedious calculations

B2+ ... (B.53b)
B=0

M2l 1
BY = _log {,Tl] 1A= (14 A)log[1 + 4, (B.54a)
W _ 1 e _
By = 55 [A%+24 = 2(1+ A) log[1 + A]] (B.54b)
1
B = o [A° 1247 +124 - 6(4 + 34+ 2) log[1 + A]] (B.54c)
O — L4 togll 4 4] (B.54d)
RN VR ’
~1
(1) _ 2
Cy’ = AT [A* —6A — (4A +6) log[1 + A]], (B.54e)
@  —2 3 2 o A2
Cy” = ST [A® + 21A% + 304 — (94% + 364 + 30) log[1 + A]] . (B.54f)
l

Contrariwise, the expansion of the coefficients Eg- is almost trivial. After some further,
tedious calculations one finds for the effective loop functions

1 1

Fi(8,4, M) = =575 [A7 =24+ 21og[L + A]] + 0(5), (B.55a)
l
Fy(8,A, M) = 2]\142 % [A% + 24 +2(1 + A) log[1 + A]] + O(B), (B.55b)
l
F3(8,A, M) = ﬁ% [A® — 3A% — 64 +6(1 + A) log[L + A]] + O(B). (B.55¢)
l

Introducing z;; = 1+ A = M; /M the effective loop functions are finally given as

. -11
Fi=—nhim)+ O(m}/M}), (B.56a)
J
11
Fy = ——=fa(zj1) + O(m3/M}), (B.56b)
6 M;
_ 11
= ﬂmf3(zﬂ) + O(mff/Mf), (B.56¢)
J

where the functions f;(z) were defined in Eq. 3.15 and are normalized as f;(1) = 1.

B.3 Gordon identities

The Gordon identities relevant for the calculation of the dipole moments are [54]

2m gy vg = {tg(q — q)"vg + itg(q + @)™ vg}, (B.57a)
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2m gV y5vg = {tg(q + @) v5vq +itig(q — @)u0™ 504}, (B.57h)
0 = {uy(q + 9)"vg +itg(q — ),0" vg}, (B.57¢)
0 = {uy(q — Q)" y5v4 + tugy(q + q) o™ v5v4} - (B.57d)

Using the Dirac equation

pu=mu, (B.58a)
up=mu, (B.58b)

the Gordon identities can be checked directly.



Appendix C

Formula for the calculation of cross
sections

C.1 Details of the road map

C.1.1 Kinematics

Working in the CMS frame with total energy /s and neglecting the electron mass, the
(first) electron and positron (second electron) momenta can be written as

v =7 (1.0.0,0), (C.1a)
Py = ? (1,0,0,-1). (C.1b)
The outgoing momenta of the produced superparticles b and ¢ are
ki = % (1 + M A2 sinf,0, A2 cos 9) , (C.22)
K = ? (1 _m o me ~ M _\) sind,0,~ A% cos 9> , (C.2b)

here \y. denotes the usual two body final state kinematical function

2 2
Abe = A < 7%7 %) ’ (C3a)

s’ s
MLz, y)=1+2>+y° —2(z +y + 7y). (C.3b)

Furthermore the kinematical invariants (Mandelstam variables) are

S = (p1 + k1)2, (C4a)
t=(pr— k1)?, (C.4D)
u = (p — kp)*. (C.4c)
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C.1.2 Two body phase space
According to [141] the two body phase space is given as

1 d3k d3ks
APy = —————=6(E1 + By — 2E) 8 (k1 + k) . :
>~ 1622 B, B, (E1 + By ) 0% (k1 + k2) (C.5)

Performing the implied integrations one finds

dq)g 1 9 9 1
—_— = 1 . .
Following [142] the flux factor reads
F =2\ (1,42, 42)?, (©7)

where e, p1, and po are the reduced masses (m/y/s) of the incident electrons and the
produced particles, respectively. Taking the limit of (kinematical) massless electrons, p, —
0, the complete phase space factor is finally found to be

1 d®, 11 1

F a0~ 64n2 g)\ (LM%:M%V : (C.8)

C.1.3 Helicity amplitudes

The basic idea for helicity amplitudes techniques as introduced in [143] is a change from
the generic four spinors to two component Weyl-spinors as helicity eigenstates

po
= XA
1]

where & = (01, 09, 03) are the standard Pauli matrices. The two component Weyl spinors
are related to four component spinors by

Pou(p, A) = ua(p, A) = war(p)xa(p), (C.10a)
P,v(p, \) = va(p, \) = adw_ax(p)x_A(p), (C.10b)

() = Axa(p), (C.9)

where way(p) = (E + aA|p])2. The helicity eigenstates for the ingoing particles are chosen
as

X+(p1) = ( 0 ) ;o x-(m) = ( (1) ) , (C.11a)
X+(p2) = ( _01 ) , X-(p2) = < (1) ) , (C.11b)

and

cos ¢ —gin?
X-l—(kl) = < . 92 ) ) X—(kl) = ( 92 ) ) (C'12a)
sin COS 5

X+(k2) = ( _Sinf ) , X-(k2) = ( COSE ) : (C.12b)
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for the outgoing particles.! With these conventions it is straightforward to obtain the fol-
lowing results for the scalar and vectorial fermionic string associated with massless fermions

E(p270-2) Pau (plaal) - _a\/§6a0'160'10'27 (C]-Ba‘)
v (p27 02) quPau (pla Ul) = \/gfsaal 602,—01 (07 17 iUl, 0) ) (Cle)

where the four choices in Eq. C.13b correspond to = 0, 1,2, 3. In the case of neutralinos
or charginos with non-negligible mass only the vectorial string is required. It can be written
as

s .
; (k1, M) VP v (ka, A2) = % [\/ 1— 77§>\15,\1Az (8, Arsind, 0, Ay cos 0) (C.14)

+ \/(1 + 6)‘177,3/\1) (1 + 5)\177_/3/\1)5)\1,_/\2 (0, COS 9, —i)\l, — sin 9)

where .
Mex = Ay + BAAG, (C.15)
and ) )
ms — m?=
S

C.1.4 Polarisation density matrices

After the calculation of helicity amplitudes the polarization of the incoming electron and
positron (second electron) is incorporated by polarization density matrices p' and p®. The
initial state polarization averaged, squared (helicity) matrix element is then given as [143]

Mi[> =TV [MijPQMZ‘Lj (PI)T] = Y {010) {0105 0t P (C.17)

’ ’
01,01,02,05

when two scalar particles produced. In case two fermions are produced, their helicity has
to be included and the formula for the initial state polarization averaged, squared matrix
element reads

A As NN,
M2 = Z (0102,)\1)\2>(aiaé,)\'1)\'2>*p:;w,1p§20(2. (C.18)

’ ’
01,01,02,05

As long as the final state polarizations are of no interest, the initial state polarization
averaged and final state helicity summed, squared matrix element is obtained as

MGP =D IMERE = 37 003 00 (0100, MA) (0105, Mo Pl 1 P2y
A1z 01,04 ,02,0%
(C.19)
Finally, the polarization density matrices read

_ 1 ( 1+ P} Plemi™ )

ptfl[f’l - 5

!The convention for a momentum-dependent Weyl spinor for fermions going in the —z direction used
here differs by an overall sign from that of [143].
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and

| 1+ P} —PZel
ptfl[f’l - 5 ( _P%e—iaz 1 — Pl% . (021)

Here P;, and Pr denote the longitudinal and transversal polarization, respectively, « is the
angle between each transversal polarization and the normal direction of the event plane. If
these angles are replaced by the azimuthal angle ¢ and their rotation invariant difference
n via

o = ¢, (0223)
ay =1n— ¢, (C.22Db)

they lead to a non-trivial dependence of polarized cross sections for non-vanishing transver-
sal polarizations.

C.1.5 Fierz rearrangement

During the calculation of the 2 fermion — 2 fermion cross sections a Fierz-rearrangement
has to be applied to get identical current structures for the s-channel and the ¢-/u-channel
contributions. The generic s-channel amplitude has already the structure of e™-current®
neutralino(chargino)-current

M* =0(e"),PaQu(e”) @ ﬂﬂ“P/jQ’ij, (C.23)
whereas the ¢t-channel amplitude consists of two "mixed” currents
Mt =T, P,Q%u(e”) @ T(e™) PsQv;. (C.24)

By a Fierz re-arrangement given as

ety Paule”) @ uiy* Pavj, (C.25)

DN =

u;Pyu(e”) @ v(e") Psuj =

the ¢-(u-)channels can be transformed into the desired current structure and finally the
complete amplitude may be written as

M = Qo‘ﬁﬁ(eJ“)*yuPau(e*) ® uy" Pgvy, (C.26)
where )
Q™ = Q7Q] +507Q)- (C.27)

More details on Fierz-transformations may be found in standard text books such as [70]
or in [143].

C.2 Neutralino functions

After introducing two effective neutralino mixing coefficients

Ny Ny

Vi =
L 9cosby  2sinfy’

(C.28a)
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Vi= C(‘:Zgw, (C.28D)
two dimensionless neutralino functions for the ¢- and u-exchanges are defined as
4
Mg (s, t/u) = Zm 0\/_VkV5 o (C.29a)
4
Nag (s, t/u) =Y sVIVF D}, (C.29D)
k=1

where the propagators DF and DF have been defined in Eq. 4.6. Very similar neutralino
functions were introduced in [94,95]; it was seen in Sec. 4.3.1 and 4.3.2 that they allow to
give compact expressions for the slepton production amplitudes.

C.3 Analytical phase space integration

Without specifying the nature of the exchanged and produced particles the most general
differential cross section for the studied processes may symbolically be written as

2

1 .
dcosHoc; >—<j+ j + l . ®( ,cos B, cos 0), (C.30)

o~

1

where the diagrams from left to right symbolize the s-, ¢-, and u-channel contribution; the
factors 1, cosf, and cos?f summarize all possible terms in the scattering angle. In the
case that several particles can be exchanged in the ¢- and u-channel these are denoted by
[. The problem of the analytical phase space integration of such a differential cross section
is then addressed as follows:

First the appearing t- and u-channel propagators D;(s) and D,(s) are generalized to

y 1 sDy(s) if v=1
DY = = 2t . C.31
v Ay + v cos0B;; { 5Dy(s) if y=-1" ( )

where 1
Aija =i + 5 =1 =27, By =\ (C.32)

Treating the implicit double summation in Eq. C.30 correctly only six combinations of
propagators are possible, these are summarized in Tab. C.1. The equalities

9 i 1 9 i

DIDY =2 i (D7, + DY ), (C.33a)
ij i 1 9 9

DYDY = o (DY, —y6D,) for 1#m, (C.33b)

allow a decomposition of the differential cross section into sums of products between cou-
pling factors and kinematical factors (with z = cos ) as

EEY T aRree Y it e -emie]. s

n,k=0,2 I,m n=0,2
=% m#£l v,0=+
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where the indices i, j denote the produced particles and the subscripts [ and m refer to
the particles exchanged in the ¢- and u-channel diagrams. The superscripts v and/or §
indicate whether ¢- and/or u-channel contribute. Finally, the indices n and k count the
powers of z = cos @ in the numerator and the power of involved ¢-/u-channel propagators,
respectively, i.e.

12,—1 . <

B = g (C.35)
The coefficients C’Z{“l” and C{Lj,ll’w serve to absorb all coupling coefficients as well as all 6-
independent terms so that the nine “master-functions” FZ;';” are functions of A;;;, B;; and
cos 6 only. For the first addend in Eq. C.34 I have used Eq. C.33a to linearize terms with
D%Dij%l. In the second addend terms containing D%D;{m have been linearized with the
help of Eq. C.33b. As all interferences with the s-channel diagram are included in the first
addend, only one power of D,iy];l (Dg]m) is contained in the second addend and the initial

sum, ranging over k = 0, 2, collapses to k = 1 after the mentioned linearization.

‘ combination ‘ source ‘
1 s |
Dijl interferences between s- and ¢(u)-channel
(D,iy];l)2 t?(u?) for same exchanged particles
D;] lDi_j%l interferences between - and u-channel for same exchanged particles
D%fo;m t2(u?) for different exchanged particles
D%Di_j%m interferences between ¢- and u-channel for different exchanged particles

Table C.1: All possible combinations of propagators that can arise from expanding the
products in Eq. C.30.

Using the general decomposition in Eq. C.34 the analytic phase space integration

! daij
045 = /_1 dz <E> y (036)

reduces to the calculation of nine “master-integrals”
k ! k
L) (2) = / dzFy;;7 (2), (C.37)
-1

and a “book-keeping” problem given by the correct determination of the coefficients C{Ljﬁ”

and C*17° from a given differential cross section. Finally, the total cross section reads

ij,lm
o nk,y rnk,y nl,yd nl,y nl,0
Oij = E : E : Cij,l [ij,l +§ : E : Cij,lm Iz'j,l _‘WIij,m . (C.38)

[ n,k=0,2 k, n=0,2

y== k#l y,0=%

The “master integrals” can be calculated easily, one finds

I =2, (C.39a)

17,
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LAy, Bij]
il = =g (C.39D)
I} =2F [A;;, By, (C.39¢)
I =0, (C.39d)
1
L = V57 {2B;; — Ay L [Aij, Byl} (C.39)
1112177 - ij [AZJaBzJ] - [Az];B 1}, (C.39f)
2
I = 5, (C.39g)
21
[1]; )= B3 {A Al]? B 2A Bzg} (C39h)
I?j?ﬂ {A2 B;; F [Azav Bzy] + Bij — Ay L [Az]a B, ]} . (C.39i)
where
Ai' + Bi'
[ IR z ] =lo {Q} ) (C40a)
ne Aij — By
1
[AZJa Bz]] = m (C40b)

Of course, the coefficients C”k” and C7 ’75 still have to be determined for each process.
However, after this “book keeplng task i 1s performed the general expression for o;; in terms
of “master integrals” and coupling coefficients indeed provides a complete, analytical result
for the phase space integration of the investigated cross sections. This analytical result can
easily be implemented in the code and allows a much faster numerical evaluation of cross
sections than any numerical subroutine for the phase space integration could provide.

C.4 Perturbative treatment of cross sections

This part of the appendices briefly introduces two concepts that were used for the derivation
of perturbative expressions for the phase-dependences of cross sections: a general decom-
position of the (differential) cross section by sources and by powers of the perturbative
parameter and an approach for the diagrammatical expansion of cross sections.

C.4.1 Decomposition of cross sections

The class of cross sections that is considered within this work depends on absolute values
of SUSY parameters o; and SUSY phases ¢; and may be generically written as

o = (ai, ¢5) = oK (i, ;) + ¢ (i, ¢5) K (v, 6;) = oK + K, (C.41)

where ¢y collects all SUSY independent couplings factor and ¢ (cv, ¢;) all SUSY dependent.
K and K summarize all kinematical factors, both depend on (a;, ¢;). The contribution to
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o in n.th order of the generic expansion parameter \ reads

o™ = XK 4 A B R, (C.42)

k=0

where F(l), K® and ¢® denote the coefficients of the I.th order of X in the expansions

of K, K and c¢. The coupling coefficients c(a;, ¢j) always contain at least two mixing
matrix elements.? Hence the expansion of ¢(a, ¢;) can only be calculated exactly up to
the same order of A as the expansions of the mixing matrices have been performed. As
mixing matrices have only been calculated up to second order, (the reliable part of) the
expansion of o reads

o= coR” 4 OO 4\ [eo Y + (VRO 4 O K(l)]

+ 22 (oK + KO 4 DO 4 c(O)K@)] + ) ot (C.43)
n>2
——
undetermined

The next observation is that the coefficient ¢(!) vanishes for all considered cross sections.
In the case of X\ pair production one power of A corresponds to a O(A) bilinear (in mixing
matrix elements) of type “gaugino-Higgsino” multiplied with a O(\°) bilinear either of the
type “gaugino-gaugino” or of the type “Higgsino-Higgsino”. Such a product of bilinears
is forbidden as a contribution to a cross section with definite final states since each of
these bilinear refers to a final state. For selectron modes the two relevant vertices contain
only gauge-interactions. Hence gaugino-Higgsino mixing, being the only mixing at O()),
cannot contribute to cross sections at O(\). Finally, as no physical mass is shifted at O(\)
the coefficients F(l) and KM are identical to zero. Therefore the expansion of the cross
section up to second order perturbation theory finally is

o= co?(o) + O K0 4 )2 [cof@) + KO 4 O (C.44)

where the coefficients K and K are explicitly given as

+-(2) 0K 2(2)
K" = — ~omy (C.45a)
; Omi =g *
oK
k k IX=0

The expression in Eq. C.44 can be used to extract the sources of possible phase-dependences
either for fixed SUSY parameters or for fixed physical masses. In the first case the phase-
dependent part of the expanded cross section oy, is given as

(C.46)

Op; = cg;)K(O) + A2 [coffj) + cgj)K(O) + C(O)Kg) ,

2For all s-channel diagrams the Zyy-vertex is proportional to a bilinear of mixing matrix elements
or contains no such matrix elements, whereas the vertices vff, Zff and yxx involve none. The ¢- and
u-channel diagrams contain two vertices either of type ffy or fogx, each of them is linear in mixing
matrix elements. Therefore, if a contribution to the cross section contains mixing matrix elements these
elements are appearing at least as bilinears.
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where the subscript ¢; implies that all phase-independent terms have been dropped. In
the second case with parameter variations da; of second order in A and phase-independent
kinematical functions the phase-dependent part of the cross section is

(0) B,
_(0) 5 (0) | 2 0c™ (0) 4 \2,.(2) 7-(0) | 4 o (0)
Ty, —c¢jK + A <El e 5al)¢ K™ + )\ c¢jK + A <El o ooy ¢ K'Y,
j '

wV
subdominant

(C.47)
These decompositions nicely illustrate that with zeroth order phase-dependences present,
all other sources of phase-dependences are subleading (like e.g. in the Y?¥5 mode). Fur-
thermore, it can be observed that zeroth order phase-dependences exclusively originate
from coupling effects. Secondly, in the case of absent zeroth order phase-dependences, i.e.
ng) = 0, coupling effects are of same order A as the kinematical effects (like e.g. in épé,
mode), respectively the effects from parameter adjustment are. Moreover, if all zeroth or-
der contributions vanish, i.e. ¢y = ¢{®) = 0, phase-dependences from O (\?) coupling effects
dominate for both treatments of the physical masses (like e.g. in the x{x}, mode).
In the case that not all physical masses are kept fixed it is obvious that coupling effects,
kinematical effects and effects from parameter shifts contribute to the phase-dependence
of the cross sections. For this rather complicated case the phase-dependent part oy, of the
expansion of o takes the general form

! ;
K K
+A2y° {CO 0 _ omi 4 O 0 . -5mz<2>] (C.48)
Imi; [x=o Imi; [x=o é;
oK 0m? 0K 0Om?
+)\2Z |:C[) pr 8mk Say + ¥ e 8mk -5041} + O\,

where the index k sums over all varying masses my,. Again, if phase-dependences of O(\?)
are present, they dominate. Otherwise, in the case that they are absent, Eq. C.49 shows
that the determination of the dominant contribution in the general case requires a precise
specification of couplings, kinematics and parameters. Therefore the results of such an
analysis will depend strongly on the latter ones as already pointed out before. The con-
clusions drawn from Eq. C.46 and C.47 have been applied in Sec. 4.4. The advantage of
such decompositions clearly consists in a better overview on the bookkeeping problem and
hence in a simplification of the derivation of perturbative results for cross sections.

C.4.2 Diagrammatical approach

The diagrammatical approach for deriving the leading powers in M, (or My,) and sorting
out the leading contributions is introduced and illustrated for the example of neutralino
production. The diagrammatic approach starts with writing down the relevant tree-level
diagrams and cutting the lines associated with neutralinos. Kinematical details such as
distinguishing between ¢- and u-channel are of no importance for the ansatz. The parts
of these cut lines associated with final states get labels referring to the mass eigenstates,
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whereas parts of lines connected to vertices are labeled with current state indices de-
termined uniquely by the vertices. For the case of neutralino pair production the three
diagrams obtained by this description are shown in Fig. C.1. The next step is to introduce

et ) et 1 et 1,2
1

7 34
34

T T

1 1

1 1

1 1
[ [
| CR eL
1 1

1 1

1 1

1 1

.

- j = 1 J = 12 !

Figure C.1: Initial, “cut” diagrams for the diagrammatical approach to power-counting
in neutralino production. The labels 7 and j denote final states. The indices at vertices
indicate the current eigenstates associated with the vertex.

“links” which are used as insertions into the gaps generated by cutting neutralino lines.
These links are sorted by powers of M, and receive labels k, [ accordingly to the presence
of the neutralino mixing matrix element Ny; in the considered order of M. Consistently,
if the entry Ny is absent in a given order of M the corresponding link between k£ and [
does not exist. The links associated with the perturbative diagonalization of the neutralino
mass matrix are shown in Fig. C.2. The perturbative expansion of the invariant amplitude

O(Mg) k_._l (k,l):(l,l), 2721 3737 3747 453; 454
O(My) k_O_l (k,0) = (1,3), (1,4), (2,3), (2,4), (3,1), (4,1), (3,2), (4,2)
O(M%) k_D_l (kal) = (171)1 (172)1 (211)7 212)7 (373)a (474)

Figure C.2: “Links” for neutralino lines up to O(M%), the power of My is indicated on the
left, the links them self are displayed in the middle, and the pairs of numbers on the right
summarize the possible pairs of labels for the link.

is then obtained symbolically by specifying the final state labels ¢ and j according to the
studied production mode and inserting suitable, non-vanishing links. Of course, if several
links have to be inserted to close all cuts, these links can be of different order in M. This
procedure results in a set of diagrams with distinguished order of My and one or several
index pairs indicating directly what kind of mixing (gaugino-gaugino, Higgsino-Higgsino
or gaugino-Higgsino) is involved. The powers of M, appearing in the cross section follow
directly from multiplying all diagrams previously obtained among themselves.

The method is briefly illustrated for the xJx3-mode. First of all, the specified, cut dia-
grams are shown in Fig. C.3. . In the next step the relevant “links” have to be collected,
these are summarized in Fig. C.4. By looking at the O(M3)-links we notice immediately
that all contributions to the invariant amplitude are vanishing at this order. This obser-
vation reflects the point that the Y%y mode requires gaugino-Higgsino mixing which is an
O(M},) effect. Similarly, there are no diagrams of O(M2) arising from one O(M})- and
one O(M?)-link inserted, since the second ones are associated with gaugino-gaugino and
Higgsino-Higgsino mixing. Also there are no O(M32) contributions to the amplitude from
two O(M))-links inserted, the insertion of such links would be relevant for two gaugino-
like or two Higgsino-like final states. Therefore the amplitude for this example contains
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O(Mg) k_._l (k,l) = 1,1), 3,3), (4,3
O(Mé) k_O_l (kal) = (173)1 (213)7 (311)7 (471)
O(M%) k_D_l (kvl) = (lal)v (2v1)7 (3v3)

Figure C.4: Relevant “Links” for neutralino lines up to O(M%) for xx3 production

only O(M},) terms, i.e. only insertions of one MY link and one M}, link contribute. The
corresponding diagrams with links inserted are displayed in Fig. C.5 As a matter of the
fact that the leading diagrams contributing to the amplitude are O(My), the cross section
itself is in leading order® of O(M%).

The transfer of the given example to other neutralino, chargino, and selectron production
modes is self-evident, only an additional description for cutting internal neutralino lines is
necessary: an internal neutralino line has to be cut twice, lines connected with vertices get
“current labels” as used before. The remaining internal line, i.e. the part of the neutralino
line that is not connected to vertices receives a label k£ referring to the exchanged mass
eigenstate. For epe, production this description leads to the cut diagram as shown in
Fig. C.6.

The diagrammatical approach introduced here, while being rather intuitive, allows a sys-
tematic and straightforward determination of the relevant powers of M in the perturbative
expansion of the invariant amplitude and hence of the cross section itself. The advantage
of this approach is that the terms which may contribute can easily be figured out and be
calculated before the cross section is treated perturbatively. Compared with initially 15
diagrams for a calculation of the cross section up to O(M2%) the simplification of the per-
turbative treatment is enormous. Obviously, the approach is very similar to the standard
method of mass insertions in loop-calculations.

In general one might consider cutting each external (internal) neutralino line more than
once (twice). However, this is not necessary. First, since each “link” connects current and
mass eigenstates one would always have to insert an odd (even) number of cuts into external
(internal) neutralino lines. If these cuts are then filled by links, the chain of links gener-
ated is equivalent to another link of higher order in M . Therefore the “power-counting”
described here is not affected.

3Unless cancellations due to the detailed structure of couplings occur. An example for such cancella-
tions is given by the equal Higgsino modes x9x3 and x9x}: Here the diagrammatical approach predicts
amplitudes of leading order O(Mz), but these contributions vanish due to the structure of Zss(44).



164 C. Formula for the calculation of cross sections

et 3 et 3
(3,1) (3,1)
_ 1 _ 1
e e
et 5 et 3
(4,1) (4,1)
_ 1 _ 1
e e
et (1A3) 1 et (1,2\3) 3 et (2;\3) 3
E éR E éL E éL
_ . o 3 - . o 1 - . o 1
€ (1,1) € (1,1) € (1,1)

Figure C.5: The complete set of O(M)) diagrams contributing to the amplitude for x9x3-
production. The bracketed pairs of number indicate the inserted links.

Figure C.6: Cutting of internal neutralino lines in the example of € €y production.



Appendix D

Polarisation vector components

D.1 The longitudinal component Pé’ij as an example

In order to illustrate some details of the general calculation of polarisation vector com-
ponents in the presence of initial state polarisation the basic steps in the calculation of
P = P} are shown here as an example. The calculation starts by multiplying Eq. 5.9
with d55 and summing over A and \'. From this one obtains

1 _ _ . . .
ﬁ <O’ -0, )\)\> <O’ -0, )\,)\>*p(1701p2_0_01 == (S)\/)\ + (Tz))\/)\PE + (Tx)/\/,\P% + (Ty),\l)\P}V. (Dl)

o, 0, A

The longitudinal component is then extracted by multiplying with (7,),y = Adyy and
summing over A and \’. This leads to

. 1 - =
Pi= v ZAMU —0, A\ (o =, MY pl i p® . (D.2)

After inserting the polarisation density matrix elements given in Eqs. C.20 and C.21 the
final result reads

Ph = — TN (1= PLP2) ([(+=, AN + (=4, AN )

+ (PL = PL) (1= AN P = [(=+, AN [)
— 2P} Ppe o) (4 ANN(—+, AA)*
— 2P} PRt (— 4 AN (+—, AN} (D.3)

Now the coefficients C7 ; defined in Eq. 5.11b can be read off from Eq. D.3.

D.2 Polarisation vector components in terms of helic-
ity amplitudes

During the calculation of polarisation vector components the coefficients C’éf i) of Pi9) and
the coefficients N, of the normalization defined in Eqs. 5.11 have to be expressed in terms
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of helicity amplitudes. For reasons of completeness these intermediate results are listed
are. First of all, the coefficients IV, read

Ny = g: (o —0, AN))?, (D.4a)
Ny = ;2; ol{o —o, A2, (D.4b)
N; = —202 Re [(+—, M) (—+, A\, (D.4c)
Ny =2 iIm [(+=, AN (—+, AN)"] . (D.4d)

The coefficients C’f i) in the decomposition of the longitudinal polarisation vector compo-
nents are

Cri= Y Ao —0,AN)| (D.5a)
Ao
Cli= Y Aol(o -, AN, (D.5b)
CPo==2> ARe[(+=, A (—+,A\)] (D.5c¢)
Li — 9 9 9 .
A A
Cti= =23 A Tm [(+= ) (—+ )], (D.5d)
PYD
Cri=Y_ M{o—0,\)) (D.5e)
Ao
Cri= > Aol{o -0, AN, (D.5f)
Mo
Cry=—2 Z A Re [(+=, M) (—+, AN, (D.5g)
PYD
Cly=—2Y ATm [(+—, M) (—+ )], (D.5h)
DY

while the coefficients C{,ﬁi( j) are given as

Cr; =2 ZRe [(o =0, +A\) (0 —0, = A\)*], (D.6a)
C3;=2 Z o Re [(0 —0,+\) {0 —0, =\)*] (D.6b)
Chi=-2) Re[(+= M) (—+, - )], (D.6c)

DYDY
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Cp;=—2 sz [(+=, AN (—+, =AN)*] (D.6d)
Ct; = 2ZRe o —0, M) (o —0, A=), (D.6e)
C2, =2 Z oRe (0 —0, \M) (0 —0, \=)*], (D.6f)
C3,=-2 Z Re [(+=, M) (—+, A = \)*], (D.6g)
Cr; = QEIm (= A (—+, A = A\)"] . (D.6h)

Finally I find for the coefficients of P]iv(j)

Chi=—2 sz [(0 —0, +A) (o —0, —\)*], (D.7a)
C%i=—2 Z o Im [(o =0, +\) (o —o, —\)*], (D.7h)
Cri=2 Z A Zm [(+—, M) (=4, =2\, (D.7c)
Cr, = —?Z A Re [(+—=, A {(—+, —AN*], (D.7d)
Ch;= Qsz o —0, M) o —o, A=), (D.7e)

=2 Z o Im[(o —0, A\ ) (o —0,A\=)"], (D.7f)
CR,; =2 ATIm [(+—, M) (—+,A = 2], (D.7g)
Cy,; = —;AZ A Re [(+—=, A (—+, A = )] (D.7h)

Again the index pair ij, referring to the final state particles, has been omitted. After
replacing the generic helicity amplitudes (o — o, A\) with the explicit ones from Eq. 4.19
the coefficients C”€ ) can be expressed in terms of the quartic charges given by Eq. 5.12.
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Appendix E

The code

The code consists of the main program “READ.F” linked to 22 subroutines in total. This
amounts to approximately 3,500 lines written in FORTRAN. Most of the code, except a
few “library subroutines”, were written and debugged by myself. As far as possible the
produced data were compared with published numerical results. This check was fulfilled
successfully. The time consumption of coding and debugging can roughly be estimated
as equal to the efforts invested in Chapters 2-7. A detailed “README” is available on
request. The code is introduced and summarized in Secs. E.1 and E.2, whereas Sec. E.3
points to a few (minor) shortcomings and possible improvements or extensions.

E.1 Organization and work flow

The basic operational scheme of the code as used for the numerical analysis within Part. II
of this thesis is summarized in Fig. E.1. The code essentially separates into four major,
logical blocks. Accordingly to their purpose these blocks are referred to as “PRESCAN”,
“LOW ENERGY”, HIGH ENERGY”, and “SIGNIFICANCE”.

The code is started by RUN, the executable script-file where all the choices for SUSY param-
eters and the “collider parameters” /s and 6 are to be made. Furthermore the parameters
to specify the scan are to be chosen here, i.e. the dimension of the scan (d=1,2,3), the
number of iterations per scan loop (for d=1,2) or the number of randomly generated points
for d=3. Additionally the ratio of the minimal (maximal) value of the scanned parameters
to their previously fixed (“central”) values may be adjusted here. In the case that phases
are scanned they can be restricted either to the interval [—m/2,7/2] or [0, 27]. Moreover,
for d=1 or d=2 the parameters to be scanned are to be selected, where the “collider pa-
rameters” are available opportunities. Contrarily, for d=3 the phases ¢,, ¢1, and ¢4 are
scanned by default. Finally, for d=3 the choice between B1 and B2 or B3 has to be made
explicitly. The code is “mastered” by the the main program READ.F, which serves to link
the logical blocks and hence to process the scan. For any choice of the dimension of the
scan the scan begins with completing the block “PRESCAN”. Within this block all SM
constants, SUSY and collider parameters as well as the values for the low-energy cuts are
filled and the parameters to be scanned are prepared for this procedure.

Once the scan is prepared the block “LOW ENERGY” is evoked for the first time, i.e.
(de)susy, (au)susy, the relevant part of the mass spectrum and o(XEXT) are calculated
and passed to the subroutine CUTTER. Here the previously calculated low-energy observ-
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ables are compared with the given bounds.
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Figure E.1: Organization and work flow of the code as used for the numerical analysis.
The solid boxes denote central subroutines. The minor dashed boxes indicate important
steps during the processing of the scan. The major dashed boxes show the four central
blocks the code is grouped in, the ellipses refer to the two most relevant if-cases during
the scan. The main program “READ” and the executable file "RUN” are emphasized by
doubled boxes. Several “unphysical subroutines have been omitted.

If any of these observables fails to satisfy the given experimental bound, the “LOW EN-
ERGY” block is repeated for the next point, otherwise the “HIGH ENERGY” part is
performed. Note that for d=3 a random number generator is required, whereas for d=1
or d=2 simple iterative loops are sufficient. Of course, within “LOW ENERGY” the sub-
routine SIGMACHAR is called using /s as given from the last run at LEP and the running
of aqep is taken into account between the “LOW ENERGY” and the “HIGH ENERGY”
blocks. Intermediate between these two blocks resides the subroutine COUNTING, which
serves for bookkeeping of cutting losses.
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In the block “HIGH ENERGY?” all differential and total cross sections as well as the po-
larization vector components in ¥ production are calculated for the given values of /s and
6.

Afterwards the scan continues with the block “SIGNIFICANCE” which calculates first the
significance S(f; f;) and then, after the parameters have been adjusted by PARACHANGE as
described in Sec. 6.1, the significance S(f;f;). Once the calculation of S(f;f;) and S(f;f;)
is completed all observables (of interest) are written into suitable files and the scan is either
completed and ends or continues with the next iteration of the “LOW ENERGY” block.
These steps as described here and the mentioned subroutines give a basically complete
overview of the code without going into too much detail. Several subroutines (“hidden” or
“unphysical” ones) are not illustrative and hence not commented on here.

E.2 Physical subroutines

In this section the physical subroutines, i.e. subroutines that directly calculate observables,
are summarized by their obligatory output. If present, additional outputs, benefits, and
specialities are mentioned.

1. EDM

obligatory output:
additional output:

(de)susy, (au)susys N, mgo; Ug, Ur, mgx; me,, my,
(ae)SUSYa (du)SUSY; Us, Uﬁ

speciality: slepton mixing
benefit: provides mixing matrices for all other subroutines
. SIGMACHAR

obligatory output: a()ﬁ)ﬁ)
speciality: no slepton mixing, analytic phase space integration
. SIGMANEUT

obligatory output:
additional output:

speciality:

. EECOLLSIONS

o(XiX3)
polarized cross sections o (x{x7}), o (X}X9), o' (X{X})
no slepton mixing, analytic phase space integration

obligatory output: o (é;é;)
speciality: mass ordered cross sections, no slepton mixing,
analytic phase space integration
. DSIGMACHAR

obligatory output:
additional output:

speciality:

o (oto ((5) i

d((:iOSQ(Xi X;F)’ Pfl\;])m
i(4),ij

Py

no slepton mixing
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6. DSIGMANEUTR

obligatory output: d(‘fég(g?g?), p]iv(j),ij

additional output: Pi(JT)” , polarized differential cross sections 22T (2 X7)
speciality: no slepton mixing
7. EEDIFFERENTIAL
obligatory output: 92 (ete;)
speciality: no slepton mixing, mass ordered differential cross sections

8. SIGNIFICATOR
obligatory output: S(fif;), S(fif;)
additional output: adjusted parameters in CPV,, that minimizes S for each
production mode and o|epy,

All “obligatory” output beside the mixing matrices is directly written into files. Contrari-
wise the “additional” output is in most case only accessible at the level of the corresponding
subroutine, i.e. can currently not be written to files.

E.3 Shortcomings and possible improvements

Most of the shortcomings that may be revealed from the code are associated with the d=3
scan. In the current version this scan is strictly limited to three, i.e. the variation of more
than three parameters (SUSY and/or collider parameters) is not possible. Secondly, the
3-dimensional scan is restricted to phases only and thirdly, tan 5 has to be fixed by hand
in the source files for such a scan. All these unfavorable features can easily be removed
(even in the current version) by hand in the source files. But a more customer friendly
version should for sure contain a solution of these problems such that all specifications are
to be made exclusively in the executable file RUN.

A second set of deficits may be located in the treatment of initial state polarization; cur-
rently these collider parameters are only implemented for a few production channels with
fixed choices of the beam polarization configuration (for example o%®T in neutralino pair
production). In this sense beam polarization is not included as free parameter at all. How-
ever, removing this shortcoming should be straightforward. Moreover and consequently,
the results for polarization vector components in polarized two fermion production are not
included, this deficit for sure has to be removed if an interface to decay chains or decay
chains themselves were included. Finally, including radiative corrections both to the pro-
duction cross section and to the beam performance as mentioned in Secs. 6.1 and 7.2.1,
respectively, might be an issue if this code was extended.

However, still it can and has to be emphasized that this code, despite the mentioned short-
comings and possibilities for “upgrades”, is indeed rather optimized for the initially given
job which was defined as to check the consistency of C'P-phases with low-energy bounds
and, if consistent, to study the impact of these C'P-phases on observables defined at the
level of differential or total, unpolarized cross sections without including any decay chains.
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