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Summary

The goal of this work is to draw a connection from the nuclear many-body problem
to the fundamental theory of the strong interaction, quantum chromodynamics. Chiral
perturbation theory, which is based on the symmetries and symmetry breaking patterns
of low-energy QCD, is used to treat the relevant pion-nucleon dynamics in a systematic
expansion in small scales. In a second step, the ∆(1232)-isobar is included as explicit
degree of freedom since the delta-nucleon mass splitting is of a size comparable to the
other relevant small scales, the Fermi momentum and the pion mass. Using this sys-
tematic framework, the equations of state of isospin-symmetric nuclear matter and of
pure neutron matter, the asymmetry energy, and the in-medium single particle potential
are calculated. The scheme is then extended to non-zero temperatures and the liquid-
gas phase transition of nuclear matter is reproduced. In addition, the energy density
functional relevant for inhomogeneous systems is computed.

Zusammenfassung

Das Ziel dieser Arbeit ist es, einen Zusammenhang zwischen dem Vielteilchenproblem
der Kernphysik und der fundamentalen Theorie der starken Wechselwirkung, der Quan-
tenchromodynamik, herzustellen. Die chirale Störungstheorie, welche auf den Symme-
trien und der Symmetriebrechungsstruktur der Niederenergie-QCD basiert, wird ver-
wendet um die Pion-Nukleon-Dynamik in einer systematischen Entwicklung in kleinen
Skalen zu behandeln. In einem zweiten Schritt wird das ∆(1232)-Isobar als expliziter
Freiheitsgrad eingeführt, da die Delta-Nukleon-Massendifferenz eine zu den anderen re-
levanten kleinen Skalen, dem Fermiimpuls und der Pionmasse, vergleichbare Größe hat.
Mit diesem systematischen Entwicklungsschema werden die Zustandsgleichungen von
Isospin-symmetrischer Kernmaterie und von Neutronenmaterie, sowie die Asymmetrie-
energie und das Einteilchenpotential in Materie berechnet. Das Schema wird dann auf
nicht verschwindende Temperaturen erweitert, wobei der Flüssigkeits-Gas-Phasenüber-
gang von Kernmaterie reproduziert wird. Außerdem wird das Energiedichtefunktional
berechnet, welches für inhomogene Systeme von Bedeutung ist.
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Chapter 1

Introduction

One of the central problems in nuclear physics is the description of nuclear matter and
finite nuclei in terms of a microscopic theory. In this context, microscopic theory usu-
ally means that one uses a model of the free nucleon-nucleon (NN) interaction, which
is tuned to reproduce the available NN-scattering phase-shifts and deuteron properties.
Such nucleon-nucleon interactions usually have a phenomenological repulsive short-range
core which implies that nuclear matter is a strongly correlated quantum liquid. A descrip-
tion starting from these NN-interactions requires advanced many-body methods such as
(relativistic) Brueckner-Hartree-Fock [1] or quantum Monte Carlo techniques [2–4].

In general, an accurate reproduction of nuclear matter properties demands either a
relativistic treatment or the inclusion of a three-body force in addition to the phenomeno-
logical NN-interaction. The present status is that nuclei with up to A = 10 nucleons [3]
have been calculated using Green’s function Monte Carlo methods. Systems containing
only neutrons (or homogeneous neutron matter) have been calculated both with Green’s
function Monte Carlo [4] and auxiliary field diffusion Monte Carlo techniques [5].

Apart from such ab-initio approaches there are less basic frameworks using effective
interactions. Examples are shell model calculations which perform exact diagonalizations
of the Hamiltonian matrix in finite but large model spaces [6]. Self-consistent mean field
models are also widely used [7]. The effective interactions introduced in such models are
adjusted exclusively for the respective model. The Gogny force and the many variants of
the Skyrme force [8] are examples for nonrelativistic variants of such effective interactions.
On the other hand, relativistic mean field models [9–12] often use interactions formulated
in terms of the exchange of scalar and vector bosons.1 An important advantage of such
relativistic approaches is that they explain the strong nuclear spin-orbit force in a natural
way by the interplay of strong scalar and vector fields.

While the methods mentioned so far are successful in describing the properties of
nuclear matter and finite nuclei they are all lacking one important aspect: there is
no direct connection to quantum chromodynamics, the underlying theory of the strong
interaction which is ultimately responsible for the nuclear forces.

This issue has been addressed recently by a novel approach to the nuclear matter prob-
lem [13–15]. This approach, which is also the subject of this thesis, is based on effective
field theory (in particular chiral perturbation theory) which exploits the separation of

1The bosons appearing in such approaches (σ, ω, ρ, . . . ) are effective fields named according to their
spin and isospin quantum numbers and are not to be confused with existing physical mesons.
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Chapter 1 Introduction

scales present in QCD. In the particle spectrum, this separation is visible in the mass
gap between the pion mass and other typical hadronic mass scales, such as the nucleon
mass. This allows one to reformulate the low-energy sector of QCD in terms of pions and
nucleons, the degrees of freedom active at those energies. Details of the short-distance
NN-interaction are not resolved at low-energies and can therefore be subsumed in a few
effective NN-contact interactions. This leads to a separation of long- and short-distance
dynamics and an ordering scheme in powers of small momenta [16,17].

The importance of the pion is also demonstrated by a simple consideration of scales.
The relevant scale in nuclear matter at nuclear saturation density ρ0 ' 0.16 fm−3 is the
Fermi momentum kf,0 ' 262 MeV, about twice the pion mass m� . Therefore, pions must
be included as explicit degrees of freedom in the description of the nuclear many-body
dynamics. A similar consideration also suggests the inclusion of the ∆(1232)-isobar.
The delta-nucleon mass splitting ∆ = 293 MeV is comparable in magnitude with the
Fermi momentum kf,0 at equilibrium. Propagation effects of virtual ∆(1232)-isobars can
therefore be resolved at the densities of interest. The importance of the ∆(1232)-degrees
of freedom has also been pointed out in refs. [3, 18].

The separation of scales present in the nuclear many-body problem becomes also ap-
parent when considering the model dependence of the phenomenological NN-interactions.
While the long-range part of all realistic phenomenological potentials is given by one pion
exchange, they employ quite different treatments of the intermediate- and short-range
dynamics. However, since the details of the short-range dynamics are not resolved at low
energies, the different potentials can all be combined into a single model-independent
low momentum interaction Vlow k [19].

The effective field theory approach has also been used to calculate the free NN-
interaction. Thus, it is possible to establish a connection between nuclear physics and
low-energy QCD by using this interaction in many-body calculations instead of a phe-
nomenological NN-potential. The work on the NN-interaction has now reached fourth
order in chiral perturbation theory [20] and has resulted in a potential of a precision
comparable to the best phenomenological potentials available.

Nevertheless, in this thesis we follow the more direct approach from [13–15] and calcu-
late nuclear matter properties from in-medium chiral perturbation theory directly with-
out first calculating a high-precision NN-potential.

10



This thesis is structured as follows:

Chapter 2 starts with an overview of some properties of nuclei and nuclear matter.
We then outline elements of QCD and its symmetries which lead to chiral perturbation
theory. The last section provides details about chiral perturbation theory at finite density.

In chapter 3, we first describe the calculational framework introduced in refs. [14, 15],
which deals with homogeneous nuclear matter at zero temperature. We then present
results for the equations of state of isospin symmetric nuclear matter and pure neutron
matter, the asymmetry energy, and the single particle potential. In this first step, using
in-medium chiral perturbation theory with pions and nucleons as the only “active” de-
grees of freedom, the description of nuclear saturation is already very good, whereas the
strong momentum dependence of the single particle potential hints at remaining problems
we will encounter later at finite temperatures. We also discuss the relative importance
of the various pieces of chiral pion exchange and consider the density dependence of the
chiral condensate.

In chapter 4, we extend our framework to finite temperatures. The pressure isotherms
for symmetric nuclear matter show the characteristic behavior of a liquid-gas phase tran-
sition of the van der Waals type. However, the critical temperature is somewhat higher
than the one usually assumed for the liquid-gas phase transition in nuclear matter. This
is a reflection of the too strong slope of the single particle potential near the Fermi
surface.

Chapter 5 is devoted to inhomogeneous systems. We calculate the energy density func-
tional for weakly inhomogeneous nuclear matter based on the density-matrix expansion
method. Problems with the spin-orbit strength and the behavior of the energy density
functional at very low densities cause the calculation of the 40Ca ground state properties
to give unsatisfactory results. Possible reasons for these shortcomings are considered. In
the last section we give a brief summary of an alternative ansatz to finite nuclei taking
into account both chiral pion dynamics and strong scalar and vector mean fields con-
strained by in-medium QCD sum rules [21,22]. This method has the advantage of giving
a correct description of the nuclear spin-orbit force.

In chapter 6, we investigate what influence the detailed treatment of the short-range
NN-contact terms has on our results. A comparison with a Dirac-Brueckner calculation
lets us conclude that the short-range NN-terms must not be iterated further since they
already represent the complete short-range T-matrix information. This prescription is
the main difference between our framework and the work of Lutz et al. [13].

We then extend our framework to include the ∆(1232)-isobar as an explicit degree
of freedom in chapter 7. We investigate the influences on the various (semi-)empirical
properties discussed in the previous chapters. Most importantly, there is a considerable
improvement of the single particle properties and, as a consequence, the finite tempera-
ture behavior. The equation of state of neutron matter and the density dependence of
the asymmetry energy are also improved.

The thesis finishes with conclusions and an outlook in chapter 8.

11



12



Chapter 2

Basics of nuclear matter and
low-energy QCD

2.1 Nuclei and nuclear matter

Atomic nuclei are aggregates of nucleons (protons and neutrons) that interact through
nuclear and Coulomb forces. Nucleons in turn consist of quarks and gluons whose behav-
ior is described by quantum chromodynamics. In nuclei and at low energies in general,
these constituents are tightly bound and confined in the nucleons and need not be explic-
itly considered when describing the low-energy properties of nuclei. However their strong
interaction is responsible for the nuclear interaction in a similar way as the electromag-
netic interaction is responsible for the effective van der Waals forces between atoms. It is
therefore interesting and important to establish a theoretical connection between nuclear
physics and QCD.

In stable nuclei, the attractive part of the nuclear force overcompensates the repulsive
Coulomb-force leading to a bound state in equilibrium. The charge distribution of the
protons in a nucleus can be probed with electron scattering. For not too small nuclei
with a nucleon number A ? 15, the radius scales with the mass number as

R ≈ r0A
1/3

with r0 ≈ 1.12 fm [23]. This behavior implies an approximately constant density of the
nuclear core. It is a consequence of the saturation properties of nuclear matter.

For first orientation, we summarize bulk properties of nuclei and nuclear matter which
have been discussed already very early in the history of nuclear physics, but can still
serve as a basis for further discussion.

Liquid drop model and semi-empirical mass formula

The bulk of nuclear matter in the interior of heavy nuclei behaves like a Fermi liquid. An
ancient, very simple but useful model is the so-called liquid drop model. In this model, a
nucleus is considered to be a drop of incompressible nuclear liquid. The usefulness of the
model becomes apparent when the energy of the drop is calculated. For a nucleus with
N neutrons and Z protons, the result can be written in the form of the Bethe-Weizsäcker

13
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formula

Enucl = ZMp +NMn − a1A+ a2A
2/3 + a3

Z(Z − 1)

A1/3
+ a4

(Z −N)2

A
+

aP

A1/2
, (2.1)

with Mp,n being the proton/neutron mass. The coefficients a1, . . . , a4 and aP are fitted
to the empirical masses of nuclei. A recent fit [24] yields a1 = 15.4 MeV, a2 = 16.9 MeV,
a3 = 0.695 MeV, a4 = 22.4 MeV and aP = 11.2 MeV (odd N/odd Z), 0 MeV (odd A),
−11.2 MeV (even N/even Z).

The binding energy Enucl − ZMp −NMn is predominantly determined by the volume
term −a1A which grows linearly with the number of nucleons A. If all nucleons in the
nucleus were interacting pairwise with all other nucleons, one would expect an approxi-
mately quadratic behavior, proportional to the number of pairs A(A−1)/2. An analogous
behavior, modified by the characteristic 1/r dependence, is found for the Coulomb force
a3Z(Z − 1)/A1/3 of the protons. On the other hand, the linear growth of the volume
energy with A means that the NN-interaction has a finite range and a repulsive com-
ponent. Thus, the nucleons only interact with a small number of other nucleons that is
independent of the size of the nucleus. The binding energy per nucleon remains approx-
imately constant even with growing A. This and the constant density in the interior of
heavy nuclei lead to the idea to study the saturation properties of a system of infinite
nuclear matter at constant density and equal numbers of protons and neutrons. In this
system, there are no surface effects and the electromagnetic interaction is ignored. Later
in this section we will briefly describe the properties of nuclear matter. The explanation
of those properties in terms of a theory exhibiting the connection to QCD is one of the
main topics of this thesis.

The surface term a2A
2/3 in eq. (2.1) takes into account the effects caused by the finite

size of the nucleus. Furthermore, the asymmetry energy proportional to (Z − N)2/A
accounts for the fact that nuclei are preferably stable in states with equal numbers of
protons and neutrons (apart from effects of the Coulomb interaction). The same is true
for nuclei with even proton and neutron numbers, leading to the pairing energy aP.

Fermi gas

The starting point for discussions of the nucleus as a system of Fermions (nucleons) is
the Fermi gas. It emphasizes the essential role of the Pauli principle but ignores all
interactions between nucleons at this stage.

Since no two fermions can be in states with the same quantum numbers, the nucleons,
confined in a finite volume, move with a characteristic momentum distribution. At
temperature T = 0, all states with a momentum p below the Fermi momentum kf are
occupied, i. e. the distribution is proportional to a step function θ(kf − p). With this
information, one can connect the density and the Fermi momentum: For an unpolarized
isospin symmetric (N = Z) system the particle number density is

ρ(kf) = 2
spin

· 2
isospin

·
� kf

0

4πp2dp

(2π)3
=

2k3
f

3π2
. (2.2)

14



2.1 Nuclei and nuclear matter

The (relativistic) energy density is E (kf) =
(
MN + Ēkin(kf)

)
ρ(kf) with the kinetic energy

per particle, Ēkin(kf) = Ekin/A, and the nucleon mass MN = 939 MeV. The kinetic
energy density has the nonrelativistic expansion:

Ēkin(kf)ρ(kf) = 4

� kf

0

d3p

(2π)3

(√
p2 +M2

N −MN

)
= ρ(kf)

(
3k2

f

10MN

+
3k4

f

56M3
N

+ . . .

)
.

(2.3)
The Fermi gas model also allows to calculate how the energy changes when neutron and
proton numbers are not equal. One finds that the Pauli principle alone is responsible for
approximately half of the empirically determined asymmetry energy a4 in eq. (2.1) (see
ref. [23]).

The most precise determination of the nuclear Fermi momentum for isospin-symmetric
systems comes from extrapolation of quasi-elastic electron-nucleus scattering data, ana-
lyzed using the Fermi gas model. The result is [25]

kf,0 = (262 ± 4) MeV , (2.4)

corresponding to a density ρ0 = (0.158 ± 0.008) fm−3.

The equation of state of nuclear matter

The part of the equation of state of infinite symmetric nuclear matter that is accessible
to experiments is the vicinity of the saturation point. It is defined by the equilibrium
Fermi momentum and the energy per particle. The empirical value for the latter is

Ē0 = (−16 ± 1) MeV , (2.5)

quoted in ref. [1], and kf,0 is given in eq. (2.4). From the fact that Ē(kf) must have
a minimum at the saturation point, it is possible to derive a simple but surprisingly
realistic parametrization in powers of the Fermi momentum:

Ē(kf) =
3k2

f

10MN

− α
k3

f

M2
N

+ β
k4

f

M3
N

. (2.6)

The first term is the kinetic energy contribution of a free Fermi gas. The powers of MN in
the other terms have been chosen such that α and β are dimensionless. The interesting
feature of this parametrization is that once α and β are adjusted to the nuclear matter
saturation point (2.4,2.5), the empirical nuclear matter compressibility [26]

K = k2
f,0

∂2Ē(kf)

∂k2
f

∣∣∣∣
kf=kf,0

= (220 ± 50) MeV (2.7)

comes out correctly. Adjusting the parameters α and β to the saturation point results
in α = 5.29 and β = 12.29, which leads to a predicted value K = 236 MeV for the
compressibility.

In fig. 2.1 we compare the density dependence of Ē(kf), given by eq. (2.6) (full line)
with the equation of state resulting from the many-body calculation of ref. [27] (dashed
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Figure 2.1: Energy per particle of isospin symmetric nuclear matter as a function of
baryon density. The full line is the parametrization of eq. (2.6) with α = 5.29
and β = 12.29. The dashed line stems from the many-body calculation of
ref. [27].

line). Of course, the low density part of the curves with negative slope is not stable.
Nuclear matter at those densities would not be a uniform Fermi gas of nucleons but
rather a gas of tightly bound clusters. Therefore, the equation of state should not go to
zero energy for ρ → 0 but rather approach the per-particle binding energy of deuterons
(or even larger clusters).

Returning to fig. 2.1, one observes that the relative deviation of both curves does not
exceed 10% even at very high densities, ρ ' 1.0 fm−3. Keeping in mind that eq. (2.6)
provides a realistic parametrization of the nuclear matter equation of state will be very
useful in order to understand the saturation mechanism underlying the chiral two-pion
exchange. In the chiral limit (m� = 0) and truncating to order O(k4

f ), the equation of
state resulting from one- and two-pion exchange will be precisely of the form of eq. (2.6).

Approaches to nuclear structure

Before we outline the chiral perturbation theory approach to the nuclear many-body
problem and its connection to low-energy QCD, we briefly mention other successful
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2.1 Nuclei and nuclear matter

methods for nuclear structure calculations.
The free nucleon-nucleon interaction known from scattering experiments is attractive

at long and medium distances and strongly repulsive at short distances. This strongly re-
pulsive core makes calculations of nuclei and nuclear matter difficult, since a perturbative
expansion using the strength of the interaction is not possible. Many models avoid these
difficulties by starting from an effective in-medium interaction that has no connection to
free-space scattering data.

The shell model, for example, uses a simple oscillator mean-field and performs an
exact diagonalization of the Hamiltonian matrix in a band of nucleon states around
the Fermi surface. The residual interaction used in this valence space is usually fitted
phenomenologically. However, there are also calculations starting from the bare NN-
interaction (“no-core” shell model). For a recent review, see ref. [6].

Self-consistent mean-field models are also widely used. Such models determine the
nuclear mean-field in a self-consistent way by varying an energy density functional and
thus minimizing the ground state energy of the nucleus. Nonrelativistic self-consistent
mean-field models usually use the density dependent Hartree-Fock method (equivalent
to Kohn-Sham theory in electronic systems) with variants of the Skyrme force or the
Gogny force (see appendix A and ref. [7]).

Relativistic mean-field models, on the other hand, usually use relativistic Hartree ap-
proximation with finite range potentials which are parametrized in terms of one-boson
exchange [9–12]. At first glance, the need for relativity is not obvious since the momenta
of interest in nuclei are considerably smaller than the (free) nucleon mass. However,
this argument is weakened by the reduced effective nucleon mass in a nuclear medium.
Furthermore, it turns out that the distinction of scalar and vector fields specific to a
relativistic treatment is quite important, in particular for the explanation of the strong
nuclear spin-orbit force (see also chapter 5 and section 7.4).

There are also various methods which start from the bare free-space NN-interaction. To
solve the problem of the strong repulsive core, nonrelativistic Brueckner theory performs
a self-consistent resummation of ladder diagrams up to infinite order. The Brueckner
G-matrix obtained by this procedure serves as an effective in-medium two-body interac-
tion. A systematic expansion can then be achieved using a hole-line or Brueckner-Bethe-
Goldstone expansion. A diagram with n hole-lines in this expansion accounts for n-body
correlations. One- and two-body correlations dominate because the average distance
dNN ' 1.8 fm between nucleons in the bulk of nuclei is much larger than the radius of the
repulsive core of the NN-interaction. A review of this method can be found in ref. [28].

While nonrelativistic Brueckner theory describes the nuclear saturation mechanism
qualitatively, it fails on a quantitative level. The saturation points obtained with different
NN-interactions do not meet the empirical region but lie on a so-called Coester-line in
the Ē–ρ plane. This deficiency is fixed by using a relativistic treatment which leads to
Dirac-Brueckner theory. For a recent review, see ref. [12].

Other ab-initio approaches starting from a phenomenological free-space NN-interaction
are the quantum Monte Carlo techniques. They determine an approximation to the en-
ergy and wave functions of the ground state by employing variational methods with cor-
related trial wave functions. The Green’s function Monte Carlo technique then projects
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Chapter 2 Basics of nuclear matter and low-energy QCD

out the exact ground state by propagation in Euclidean space [2,18]. Common to all cal-
culations of this type is however the need for an additional phenomenological three-body
force that cannot be determined from NN-scattering [3].

2.2 Elements of QCD

Quantum chromodynamics (QCD) in its “fundamental” form is written in terms of quarks
and gluons as basic degrees of freedom. This form is not suitable for the description of
nuclear matter since at low energies, quarks and gluons are confined and do not appear as
explicit degrees of freedom. Symmetries and symmetry breaking patterns of low-energy
QCD are the basis for chiral perturbation theory. We briefly outline some properties of
QCD in the following.

2.2.1 The QCD-Lagrangian

QCD is a SU(3) gauge field theory that describes point-like, massive spin– 1
2

fermions
interacting with massless spin–1 gauge bosons, which in turn interact nonlinearly with
each other. The Lagrangian is given by

L = ψ̄(� Dµγ
µ − m̃)ψ − 1

2
Tr GµνG

µν , (2.8)

with the gluonic field strength tensor

Gµν = ∂µA
a
νta − ∂νA

a
µta + gfabcA

a
µA

b
νtc ,

the covariant derivative
Dµ = ∂µ − � gAa

µta ,

and the generators ta = λa/2 (a = 1, . . . , 8) of SU(3). The fields ψ describe the six
species of quarks which are usually classified into two groups according to their mass:
the light quarks with mu ' 4 MeV, md ' 8 MeV, ms ' (100 . . . 150) MeV and the heavy
quarks with mc ' 1.3 GeV, mb ' 4.2 GeV, mt ' 174 GeV (at a renormalization scale of
approx. 1 GeV). The heavy quarks are irrelevant for the physics of nuclear matter and
the s–quark will also be neglected in the main part of this thesis. Therefore, we will
restrict ourselves to the two lightest quarks, u and d, in the following. In this case, ψ
and the quark mass matrix m̃ are of the form:

ψ(x) =

(
u(x)
d(x)

)
, m̃ =

(
mu 0
0 md

)
. (2.9)

Here, u(x) and d(x) are triplets in color space. For example,

u(x) =



uR(x)
uG(x)
uB(x)


 .
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2.2 Elements of QCD

An important property of QCD is that the coupling strength αs = g2/4π depends on
the momentum scale Q. At high energies, αs is small leading to the so-called asymptotic
freedom. In this regime, it is possible to apply perturbation theory in αs. However, for
Q > 1 GeV αs rises strongly and the elementary colored quarks and gluons are no longer
visible as degrees of freedom. Instead, they are replaced by color neutral bound states,
the hadrons. This property of QCD is called confinement. At those energies, one needs
tools and methods different from those used in perturbative QCD, e. g. lattice QCD or
effective field theories such as chiral perturbation theory.

2.2.2 Symmetries

Besides the local SU(3) gauge symmetry, the QCD Lagrangian also possesses a global
U(1) symmetry, i. e. the Lagrangian is invariant under global phase transformations ψ →
e� θψ. By applying Noether’s theorem, this symmetry yields the conservation of baryon
number,

B =
1

3

�
d3xψ†ψ .

More symmetries exist in the limit of massless quarks. This limiting case is important
as the u- and d-quark masses, those relevant for nuclear systems, are small compared to
typical hadronic mass scales like the nucleon mass MN.

Let us decompose the u and d–quark fields into parts with left or right handed chirality:

(
u
d

)

L

=
1 − γ5

2

(
u
d

)
,

(
u
d

)

R

=
1 + γ5

2

(
u
d

)
,

ψ =

(
u
d

)
=

(
u
d

)

L

+

(
u
d

)

R

.

In the Lagrangian ( /D ≡ γµD
µ)

L = ψ̄(� /D − m̃)ψ = ψ̄L � /DψL + ψ̄R � /DψR − ψ̄Rm̃ψL − ψ̄Lm̃ψR , (2.10)

only the mass terms mix the left and right handed contributions of the quark fields. For
m̃ = 0, L is therefore invariant under separate SU(2) transformations in flavor space,

(
u
d

)

L

→ UL

(
u
d

)

L

,

(
u
d

)

R

→ UR

(
u
d

)

R

. (2.11)

Noether’s theorem yields the conserved currents corresponding to these symmetries:

jµa
L = ψ̄Lγ

µ τ
a

2
ψL and jµa

R = ψ̄Rγ
µ τ

a

2
ψR .

Addition or subtraction gives the often useful isospin or axial vector currents, respec-
tively:

jµa
V = ψ̄γµ τ

a

2
ψ , jµa

A = ψ̄γµγ5
τa

2
ψ .
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Chapter 2 Basics of nuclear matter and low-energy QCD

From the particle spectrum observed in nature, one deduces that the “axial SU(2)A

symmetry” related to the axial current jµa
A is spontaneously broken: For an intact

SU(2)L × SU(2)R symmetry, the particles should exist in parity doublets. However,
such doublets are not observed. For example the lightest pseudoscalar (JP = 0−) mesons
have much smaller masses than the lightest scalar (JP = 0+) mesons.

According to Goldstone’s theorem, in a quantum field theory every spontaneously
broken continuous global symmetry leads to massless particles with the same quantum
numbers as the generators of the broken symmetry. In our case the Goldstone bosons
belonging to SU(2)A are the three pions. However, chiral symmetry is not an exact
symmetry of QCD but is explicitly broken by the small but finite quark masses. As a
consequence the pion mass is finite (but small compared to other typical hadronic masses
like the nucleon mass).

The same arguments are valid when one also considers the s quark. However, its larger
mass leads to a stronger SU(3)L × SU(3)R symmetry breaking resulting in larger masses
of the other mesons of the pseudoscalar SU(3)–octet (kaons, � –meson).

2.2.3 Chiral condensate

Spontaneous symmetry breaking is linked to a scalar operator whose nonvanishing ex-
pectation value plays the role of the order parameter of the symmetry breaking. In our
case, this is the so-called chiral condensate or (scalar) quark condensate:

〈0|ψ̄ψ|0〉 = 〈0|ψ̄LψR + ψ̄RψL|0〉 = −Tr lim
y→x+

〈0|T ψ(x)ψ̄(y)|0〉 . (2.12)

Here, T is the time ordering operator. The chiral condensate is connected to the pion
decay constant in the chiral limit (mu,d = 0), f0, and the quark and pion masses by the
Gell-Mann–Oakes–Renner relation (GOR):

m2� = − 1

2f 2
0

(mu +md)
〈
ūu+ d̄d

〉
+ O(m2

u,d) .

We note that the square of the pion mass is proportional to the sum of u- and d-quark
masses and also indicates the amount of the explicit chiral symmetry breaking. It vanishes
in the chiral limit. Small corrections to f0 yield the physical pion decay constant f � =
92.4 MeV = f0 + O(mu,d). Thus, the GOR relation can also be written as

m2� = − 1

2f 2� (mu +md)
〈
ūu+ d̄d

〉
+ O(m2

u,d) . (2.13)

Taking mu + md ' 12 MeV leads to a vacuum expectation value of the condensate of
〈q̄q〉 := 〈ūu〉 =

〈
d̄d
〉
' −(239 MeV)3 ' −1.8 fm−3.

It is also possible to express the condensate in terms of the energy density Eφ =
〈φ|HQCD|φ〉. Let the QCD Hamiltonian HQCD be decomposed into the quark mass-term
and the part from massless QCD,

HQCD = H
(0)

QCD +mu ūu+md d̄d ≈ H
(0)

QCD + m̄(ūu+ d̄d) ,
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2.3 Chiral perturbation theory

where m̄ = (mu+md)/2 is the average quark mass. The Hellmann–Feynman theorem [29]
gives for a state φ

∂Eφ

∂m̄
=

〈
φ

∣∣∣∣
∂HQCD

∂m̄

∣∣∣∣φ
〉

= 〈φ|ūu+ d̄d|φ〉 . (2.14)

For the vacuum |φ〉 = |0〉, using the GOR relation (2.13) leads to

m̄
∂E0

∂m̄
= m̄〈ūu+ d̄d〉0 = −m2� f 2� . (2.15)

For a state |ρ〉 with finite baryon density and energy density E (ρ), one gets (after inserting
eq. (2.15) into eq. (2.14))

〈ūu+ d̄d〉ρ = 〈ūu+ d̄d〉0 +
∂

∂m̄
(E (ρ) − E0) .

The GOR relation can then be used to convert the derivative with respect to the quark
mass to one with respect to the pion mass:

〈q̄q〉ρ
〈q̄q〉0

= 1 − m̄

m2� f 2�
∂

∂m̄
(E (ρ) − E0) = 1 − 1

2m� f 2�
∂

∂m� (E (ρ) − E0) . (2.16)

This relation will allow us to study the behavior of the chiral condensate as a function
of the density.

It is interesting to note that one can draw a connection from the chiral condensate
and the vector condensate 〈q†q〉 (which is directly related to the nucleon density) to the
large scalar and vector self-energies of relativistic nuclear phenomenology. QCD sum
rules suggest [30] that the change of the QCD condensates with the nucleon density gives
rise to large scalar and vector self-energies of approximately equal size but opposite sign.
Such large background fields agree qualitatively with the findings of relativistic mean
field models [9].

2.3 Chiral perturbation theory

2.3.1 Mesonic sector

At low energies, the effective degrees of freedom of QCD are no longer quarks and gluons
but hadrons. A description of low energy QCD is nevertheless possible by reformulating
the theory in terms of the new active degrees of freedom. This implies replacing the QCD
Lagrangian with an effective Lagrangian Leff with the same symmetry and symmetry
breaking properties. Leff can then be expanded with respect to some small external
momentum over some characteristic scale of the theory:

Leff = L2 + L4 + . . . . (2.17)

For this expansion, momenta and derivatives are equivalent. Therefore, Ln contains
exactly n derivatives or momenta. Only even n are possible since the Lagrangian has to
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Chapter 2 Basics of nuclear matter and low-energy QCD

be a Lorentz scalar. The expansion converges if the momenta are much smaller than a
characteristic scale. In the case of chiral perturbation theory, this scale is Λχ = 4πf� =
1161 MeV. In actual calculations of physical amplitudes, nearby resonances can limit the
convergence radius to smaller scales.

The active degrees of freedom at low energies are the pseudo-scalar Goldstone bosons
that are, in the two-flavour case, the pions.

For the formulation of Leff it is useful to collect the pseudo-scalar fields πa (a = 1, 2, 3)
in a unitary matrix U that transforms linearly under chiral rotations ψR → RψR and
ψL → LψL:

U → LUR† with U = exp (� τ · π/f0) . (2.18)

It is easy to see, that

Tr(∂µU ∂µU
†) → Tr(L∂µUR†R∂µU

†L†) = Tr(∂µU ∂µU
†)

is invariant under chiral transformations. This term is part of L2. A completely sym-
metric Lagrangian would lead to massless Goldstone bosons, whereas the physical pions
are massive. This is fixed by adding a symmetry breaking term:

L2 =
f 2

0

4
Tr(∂µU ∂µU

†) +
m2�
4
f 2

0 Tr(U + U †) . (2.19)

This Lagrangian contains already all possible terms up to second order. Expansion to
leading order with respect to powers of π yields the pion Lagrangian plus a constant
vacuum contribution:

L2 =
1

2
∂µπ · ∂µ

π − 1

2
m2� π · π +m2� f 2

0 + O(π4) . (2.20)

The GOR relation (2.13) converts the vacuum contribution m2� f 2
0 to the expectation

value of the mass term of the original QCD Lagrangian, −(mu〈ūu〉 + md〈d̄d〉). This
means that Leff breaks chiral symmetry in the same way as QCD does.

2.3.2 Adding baryons

Of course, before applying our effective theory to nuclear matter, we have to include
baryons. The derivation of the lowest order Lagrangian can be found e. g. in ref. [17].
Expansion to second order in the pion fields yields:

L� N = N̄
(� /∂ −MN

)
N− gA

2f� N̄γµγ5τN ·∂µπ− 1

4f 2� N̄γ
µ
τN ·π×∂µπ+

σ� N
2f 2� N̄Nπ

2 . (2.21)

Since the theory described by this Lagrangian gives rise to ultraviolet divergences it
requires renormalization and regularization. The resulting counter terms, not shown in
eq. (2.21), subsume short-range dynamics not resolved at low energies. We will return to
this issue in the next chapter.
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2.3 Chiral perturbation theory

Now we want to expand the theory resulting from eq. (2.21) in powers of momenta.
However, this leads to problems since the nucleon mass MN introduces another dimen-
sionful quantity besides f� that does not vanish in the chiral limit and is not small
compared to the characteristic scale Λχ ' 1 GeV of the theory. In fact, MN (taken in the
chiral limit) reflects just that scale. Therefore, loop corrections can be formally of order
O(1) making a consistent expansion impossible.

Nevertheless, by eliminating the nucleon mass from the Lagrangian it is possible to
construct a consistent expansion scheme. In this case, only momenta relative to the rest
mass MN appear and these can be small compared to Λχ. This amounts to taking the
nonrelativistic limit of the full theory and expanding in powers of the inverse nucleon
mass. All in all, this leads to an expansion in small momenta q, where the higher powers
are suppressed either by Λχ or by MN. Here, the pion mass is also considered to be a
small quantity. A complete derivation of the procedure can be found in ref. [17].

In the nonrelativistic limit, it is also possible to include the ∆(1232)-resonance without
the large ∆(1232)–mass appearing explicitly in the expansion. Only the delta-nucleon
mass difference ∆ = 293 MeV contributes. It can be treated as a small quantity, i. e. of
order O(q).

2.3.3 Finite density

Finally, we must spend some thought on calculations in a system of finite density. We
will limit ourselves to temperature T = 0 in this section. The extension to non-zero
temperatures will be done in chapter 4. In a medium, the occupation of all nucleon
states up to some Fermi momentum kf has to be taken into account. Instead of the empty
vacuum |0〉, one has a new ground state |φ0〉 with a filled Fermi sea. The creation and
annihilation operators as†

p
and as

p
for nucleons exchange their meaning below the Fermi

momentum and annihilate and create holes respectively. Which of the two operators
annihilates the ground state now depends on the momentum:

as
p
|φ0〉 = 0 for kf < |p| ,

as†
p
|φ0〉 = 0 for 0 ≤ |p| < kf .

(2.22)

The Feynman propagator in coordinate space changes to:

S0
F (x− y) = 〈0|T ψ(x)ψ̄(y)|0〉 → SF (x− y) = 〈φ0|T ψ(x)ψ̄(y)|φ0〉 ,

with |φ0〉 being the ground state of the filled Fermi sea. In momentum space, this change
leads to a changing sign of the infinitesimal imaginary part characterizing the pole of the
propagator:

SF (p) =
� (/p+MN)

p2 −M2
N + � ε sgn(|p| − kf)

.

There is a very useful additive decomposition of this in-medium nucleon propagator,

SF (p) = (/p+MN)

[ �
p2 −M2

N + � ε − 2π δ(p2 −M2) θ(kf − |p|) θ(p0)

]
. (2.23)
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Chapter 2 Basics of nuclear matter and low-energy QCD

The first term in the square brackets is the vacuum nucleon propagator. The second
term takes into account all effects caused by the non-zero density and is therefore called
medium insertion. Ordering the contributions according to the number of medium inser-
tions will simplify our calculations significantly.
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Chapter 3

Chiral approach to nuclear matter

3.1 Chiral expansion

In [14, 15] we have used chiral perturbation theory for a systematic expansion of the
equation of state of nuclear matter. Its key element is a separation of long- and short-
distance dynamics and an ordering scheme in powers of small momenta. In a medium,
the relevant quantity for this expansion is the Fermi momentum kf , which defines the
nucleon density at temperature T = 0 via the relation

ρ(kf) = 2
spin

· 2
isospin

·
� kf

0

d3p

(2π)3
=

2k3
f

3π2
. (3.1)

At nuclear matter saturation density ρ0 ' 0.16 fm−3 the Fermi momentum kf,0 and the
pion mass m� are comparable scales (kf,0 ' 2m� ), and therefore pions must be included
as explicit degrees of freedom in the description of the nuclear many-body dynamics. In
the expansion of the energy per particle Ē(kf) = E (kf)/ρ(kf) −MN, the coefficients are
nontrivial functions of the ratio kf/m� which must not be expanded further:

Ē(kf) =
∑

n

kn
f Fn

(
kf

m �
)
. (3.2)

The contributions to Ē are obtained by calculating closed vacuum diagrams which
are connected to the ground state energy density. Of course, instead of the free nucleon
propagator, the in-medium propagator (2.23) is used. A demonstration of the procedure
can be found in appendix A of ref. [15].

Naive chiral power counting (which is basically a counting in terms of mass dimension)
suggests that closed vacuum diagrams with L loops (which represent the ground state
energy density in diagrammatic language) give rise to a contribution to the energy per
particle of the form Ē(kf) = k2L−1

f FL(kf/m� ). The number 2L − 1 = L · 4 + 2(L − 1) ·
1 + 2(L− 1) · (−1) + (L− 1) · (−2) − 3 is simply counting the mass dimensions of loop
integrations, vertex factors, fermion propagators, and pion propagators appearing in the
respective diagram. However, the two-nucleon system is known to provide exceptions
to the naive counting rules by the so-called iterated one-pion exchange. In that case
the relevant energy denominator is a difference of nucleon kinetic energies causing the
large scale factor MN (the nucleon mass) to appear in the numerator of the Feynman
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Chapter 3 Chiral approach to nuclear matter

amplitude. There are indeed certain closed three-loop diagrams (see the second and
third diagrams in fig. 3.1) which contribute to the energy per particle already at fourth
order in small momenta [13]. By the same argument one expects that the four-loop Fock
diagram which includes the twice-iterated one-pion exchange (proportional to M 2

N) will
contribute already at order O(k5

f ).
1 Luckily, the analogous four-loop Hartree diagram

vanishes when taking the spin- or Dirac-trace. Because of the enormous complexity
of four-loop diagrams we restrict ourselves (as in [14]) to all contributions up-to-and-
including order O(k5

f ) as they are given by closed three-loop diagrams incorporating
pions and nucleons. These contributions are the kinetic energy, the one-pion exchange
Fock diagram (the corresponding Hartree diagram is zero), the iterated one-pion exchange
Hartree and Fock diagrams, and the irreducible two-pion exchange Fock diagrams (the
corresponding Hartree diagrams contribute only at O(k6

f )).
Not included are diagrams involving virtual ∆(1232)-excitations in intermediate states.

Some effects of these diagrams are included in the low-energy coupling constants c1, . . . , c4
of the next-to-leading-order chiral pion nucleon Lagrangian [17]. Diagrams with these
effective couplings would contribute only at O(k6

f ) and higher in our counting scheme.
Of course, including virtual ∆-excitations via low-energy constants implicitly assumes
that the characteristic scale arising from the calculation of such diagrams, the Delta
nucleon mass difference ∆ ' 293 MeV, is large compared to the momenta appearing
in our problem. Obviously, this is not the case. Rather, the Fermi momentum kf at
nuclear matter density is comparable to the mass splitting ∆, and therefore it makes
more sense to treat the Delta isobar as explicit degree of freedom. We will include these
diagrams with explicit Delta excitations later in chapter 7. Formally, with the mass
splitting ∆ treated as small quantity, they contribute at order O(k5

f ). However, it turns
out that basic properties of the equation of state for isospin-symmetric nuclear matter
can already be quite well reproduced by � N-dynamics alone [13–15]. Therefore, we will
first investigate what other properties of nuclear matter are mainly determined by � N-
dynamics and will, in the first step, omit the diagrams involving virtual ∆-excitations as
was done in [14,31,32].

For the calculation of the vacuum diagrams, the additive decomposition (2.23) of the
in-medium nucleon propagator into a vacuum part and a medium part is very conve-
nient. If one organizes the diagrammatic calculation according to the number of medium
insertions, diagrams with no medium insertion lead to an unobservable shift of the vac-
uum energy. Diagrams with exactly one medium insertion just renormalize the nucleon
mass to its measured value MN. Thus the interesting nontrivial many-body effects from
interactions start with diagrams having two or more medium insertions.

The pion-nucleon interaction vertices relevant in this work are the pseudovector � NN-
vertex and the Tomozawa-Weinberg ��� NN-contact vertex of the form,

gA

2f� /qaγ5τa and
1

4f 2� (/qb − /qa)εabcτc .

Here, the pion four-momenta qa,b are out-going and f� = 92.4 MeV denotes the pion

1Note that due to the form of the expansion eq. (3.2), the expression O(kn
f ) is synonymous to “n-th

order in small momenta”, where the quantities kf , m� (and ∆) are considered to be small.
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3.2 Saturation properties

Figure 3.1: One-pion exchange Fock diagram and iterated one-pion exchange Hartree and
Fock diagrams.

Figure 3.2: Irreducible two-pion exchange Fock diagrams.

decay constant. For the nucleon axial vector coupling constant gA we choose the value
gA = 1.3. Via the Goldberger-Treiman relation this corresponds to a 	 NN-coupling
constant of g
 N = gAMN/f
 = 13.2 which agrees with present empirical determinations
of g
 N from 	 N-dispersion relation analysis [33].

In addition to the important pion dynamics, there is also unknown short-distance
dynamics relevant in nuclear matter. However this short-distance dynamics works at
momenta p À kf much higher than the Fermi momentum and is thus not resolved in
detail. Instead it can be accounted for by the introduction of nucleon-nucleon contact
interactions. Equivalently it is also possible to introduce a high momentum cut-off Λ
which is then tuned to adjust the strength of the contact interaction. The latter approach
has been taken in the first part of this work.

3.2 Saturation properties

The energy per particle of symmetric nuclear matter has been calculated up to O(k5
f )

and up to three loops in refs. [14, 15]. There, we have taken into account the contri-
butions from the kinetic energy (contributing at O(k2

f )), from chiral one-pion exchange
(O(k3

f )), from iterated one-pion exchange (O(k4
f )), and from irreducible two-pion ex-

change (O(k5
f )). The corresponding closed-loop diagrams are shown in figs. 3.1 and 3.2.

Note that there is one Fock diagram that has both a reducible part contributing to the
iterated 1	 exchange and an irreducible part. The analytical results are summarized
in appendix B.2.1. The few divergent parts from iterated one-pion exchange and ir-
reducible two-pion exchange have been regularized with a three-momentum cut-off Λ.
The cut-off dependent contributions are attractive and grow (apart from a small cor-
rection from irred. 2	 exchange) linearly with the nucleon density ρ ∝ k3

f and are thus
indistinguishable from the contributions of a NN-contact interaction.
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Chapter 3 Chiral approach to nuclear matter

3.2.1 Chiral limit

To illustrate the saturation mechanism, we briefly go to the chiral limit, m � = 0, and
truncate the expansion at O(k4

f ). In that case the complete expression for the energy per
particle Ē(kf) turns into the form of the parameterization eq. (2.6), with the coefficients
α and β given by

α = 10
(g� N

4π

)4 Λ

MN

−
(g� N

4π

)2

and (3.3)

β =
3

70

(g� N
4π

)4

(4π2 + 237 − 24 ln 2) − 3

56
= 13.55 . (3.4)

Note that the parameter-free expression for β gives a number quite close to β = 12.29
as extracted from the empirical saturation point. Furthermore, by adjusting the cut-off
scale to Λ = (0.5 . . . 0.6)MN (which in fact lies in the physically reasonable range), α
will take on its required value. Therefore, as long as the effects due to the finite pion
mass and the higher order terms do not change this picture completely, realistic nuclear
binding is guaranteed by chiral pion-nucleon dynamics, together with fine-tuning of the
single scale Λ representing the short-distance NN-dynamics.

We also note that there is no physical scale in the problem that would suggest the
small binding energy at the saturation point. Rather, the value Ē0 = −16 MeV is due
to a cancellation of individually much larger terms. This feature is common to most
microscopic calculations of nuclear matter.

3.2.2 Finite pion mass

Now we set m� = 135 MeV (the neutral pion mass) and adjust the cut-off Λ to fix
the (negative) binding energy at the value Ē0 = −15.3 MeV obtained in ref. [34] from
extensive fits to nuclide masses. The resulting equation of state is shown in fig. 3.3
including all calculated terms up to order O(k4

f ) (dotted line) and O(k5
f ) (full line). In

the O(k5
f ) case with a cut-off scale of Λ = 646.3 MeV, the energy per particle Ē(ρ) has

a minimum with the value Ē0 at a density ρ0 = 0.178 fm−3 corresponding to a Fermi
momentum of kf,0 = 272.7 MeV. This value is slightly larger than the currently accepted
empirical value of kf,0 = (262 ± 4) MeV [25]. The nuclear compressibility K related to
the curvature of the saturation curve at its minimum comes out as K = 255 MeV, in very
good agreement with the nowadays accepted empirical value K = (220 ± 50) MeV [26].

If one truncates the expansion at order O(k4
f ) and readjusts the cut-off to Λ =

611.4 MeV to yield the same binding energy Ē0, the equation of state remains nearly
unchanged (dotted line in fig. 3.3). The saturation density changes only slightly to
ρ0 = 0.173 fm−3 corresponding to kf,0 = 270 MeV.

At the saturation point, the decomposition of the binding energy into contributions
from the chiral powers O(kν

f ), (ν = 2, 3, 4, 5) is given by Ē0 = (23.8−154.5+124.6−9.1) =
−15.3 MeV. As in the chiral limit, there is a cancellation of large O(k3

f ) and O(k4
f )

terms. However, the O(k5
f ) term is clearly less important. Therefore we conclude that

the saturation mechanism is primarily generated by Pauli blocking acting on iterated
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Figure 3.3: Energy per particle of symmetric nuclear matter as determined by chiral one-
and two-pion exchange up to order O(k5

f ) with Λ = 646.3 MeV (full line) and
up to order O(k4

f ) with Λ = 611.4 MeV (dotted line). The dashed line shows
the result of ref. [27].

one-pion exchange. Specifically, in the chiral limit, strong attraction proportional to k3
f

is produced by its cut-off dependent pieces and stabilizing repulsion proportional to k4
f is

largely due to Pauli blocking effects from the diagrams with three medium insertions [15].

Judging by the fact that nuclear saturation is described well already by a chiral expan-
sion to O(k4

f ), it seems that higher order terms are not very important for the equation
of state of symmetric nuclear matter. However we will see that they play an important
role for more detailed observables like the single particle potential.

Finally, we point out that the saturation mechanism of our scheme is quite different
from the one observed in relativistic mean field models [9]. There, saturation is achieved
by the balance of the large scalar and vector mean fields S and V of opposite sign
which are absent at this stage in our nonrelativistic calculation. Our framework, on the
other hand, shows that pionic fluctuations alone can explain saturation. Therefore, we
argue that the difference of the absolute values of the scalar and vector mean fields, and
therefore their influence on the nuclear equation of state, is quite small. However, the
difference S − V , which contributes prominently to the nuclear spin-orbit force, is large
due to the different signs of S and V . The fact that the spin-orbit force is not correctly
reproduced in our nonrelativistic approach (see sections 5.1 and 7.4) then leads to the
idea of treating pionic fluctuations on top of strong scalar and vector background fields
of approximately equal size [21,22]. We will come back to this idea briefly in section 5.2.
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Chapter 3 Chiral approach to nuclear matter

3.3 A toy model

The fact that a second order tensor force gives a large contribution to the energy in
nuclei and nuclear matter has been known for a long time (see e. g. ref. [35]). Actually,
the tensor character of the pion exchange potential is crucial for realistic nuclear binding
as can be illustrated by considering a toy model with an isovector–spin-spin potential of
range λ and strength C:

V(toy)(r) = σ1 · σ2 τ 1 · τ 2C
e−λr

4πr
. (3.5)

This potential corresponds to the (Born) T-matrix

T (toy)
NN =

C

λ2 + q 2
σ1 · σ2 τ 1 · τ 2 , (3.6)

which is, except for the spin structure, very similar to the well known pion exchange
amplitude,

T (� )
NN =

g2
A

4f 2�
(σ1 · q)(σ2 · q)

m2� + q 2
τ 1 · τ 2

=
g2
A

12f 2�
(
S12(q) −m2� (σ1 · σ2)

m2� + q2
+ σ1 · σ2

)
τ 1 · τ 2 , (3.7)

with the tensor operator S12(q) = 3(σ1 · q)(σ2 · q) − (σ1 · σ2)q
2. For the first order

diagram, the contribution to the energy per particle is (with u = kf/λ):

Ē(1)(kf) =
9Cλ

4π2

[
1

8u
− 3u

4
+ arctan 2u−

(
3

8u
+

1

32u3

)
ln
(
1 + 4u2

)]
. (3.8)

With values of the range and strength parameters of

λ� = m� C� =
g2
Am

2�
12f 2� = 0.3 , (3.9)

one recovers exactly the corresponding 1� -exchange result (the first line in eq. (B.12))
except for a missing term ∝ k3

f . The second order contributions to the energy per particle
can be found in appendix B.5.

After combining all contributions and adding the kinetic energy, one finds that, for the
pion-like parameter set (3.9), the toy interaction (3.5,3.6) gives only weak contributions
and does not yield enough repulsion at higher densities to stabilize nuclear matter. For
high densities, all contributions of the interaction to the energy per particle rise in fact
slower than the kinetic energy (which is ∝ ρ2/3). Therefore one can not achieve saturation
in the way of eq. (2.6), even after adding an appropriate contact force (which here cannot
be parametrized as a momentum cut-off, since all contributions from the toy force are
finite).
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3.4 Single particle potential

In principle, it is possible to produce a saturation minimum by adjusting the strength
C of the interaction. A value of C = 1.2 results in the correct saturation density of
ρ0 = 0.16 fm−3 but completely unrealistic binding energy Ē0 ≈ −5 MeV and compression
modulus K ≈ 28 MeV. The binding energy could be fixed by adding a repulsive contact
interaction contributing to Ē with a strength of 0.52k3

f /M
2
N and readjusting the toy

interaction strength to C = 1.81. However, this would still leave the compressibility at
an unrealistic value of K = 86 MeV.

These two cases of “saturation” show us that the structure of an attractive k3
f term

balanced by a repulsive k4
f term as in eq. (2.6) is indeed essential to get all three quantities

Ē0, ρ0, and K in the right regime. Structures of the type attractive k2
f term versus

repulsive k3
f term are simply not realistic.

Furthermore one can conclude that the pion exchange tensor-force is required to get
the necessary amount of repulsion at higher densities to stabilize nuclear matter.

On the other hand, individually large terms in the equation of state of nuclear mat-
ter balance each other to generate the much smaller binding energy of about 16 MeV.
Therefore, even the smaller contributions to the energy per particle are comparable to Ē0

and thus are also important for the correct saturation behavior (except when they can
be accounted for by readjusting the cut-off Λ). Consequently, a calculation omitting less
important terms, such as the Fock diagrams or the spin-spin part of the pion exchange
T-matrix (3.7), does not yield realistic values for all three empirical quantities Ē0, ρ0,
and K at the same time (even if the short-range NN interaction is readjusted). All in all
we conclude that the second order tensor force alone does not provide realistic saturation
properties.

Therefore, it is far from trivial that all the contributions of chiral pion exchange produce
the right balance of density dependent attraction and repulsion for realistic saturation
properties already at order O(k4

f ) and furthermore that the saturation behavior is not
spoiled when going to order O(k5

f ).

3.4 Single particle potential

As we have seen in section 3.2, the bulk properties of nuclear matter can be well described
by chiral pion-nucleon dynamics treated up to three loop order. In a next step, consider
quantities which characterize in more detail the behavior of a single nucleon moving
in the dense nuclear matter environment. In ref. [31], we calculated the momentum
and density dependent (complex-valued) single particle potential of nucleons in isospin-
symmetric nuclear matter using the same framework.

Let us consider the structure of the energy density according to an ordering by the
number of medium insertions. It consists of a sum of convolution integrals of the form,

E [d] =

�
d3p1K1d(p1) +

�
d3p1d

3p2K2d(p1)d(p2) +

�
d3p1d

3p2d
3p3K3d(p1)d(p2)d(p3)

+

�
d3p1d

3p2d
3p3d

3p4K4d(p1)d(p2)d(p3)d(p4) . (3.10)
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Chapter 3 Chiral approach to nuclear matter

The one-body kernel K1 = 4Tkin(|p1|) is four times the relativistically improved kinetic
energy (see eq. (3.12)). K2,3 are two- and three-body kernels related to contributions of
closed diagrams with two and three medium insertions. In three-loop approximation the
four-body kernel K4 is proportional to δ3(p1 + p2 + p3 + p4) and purely imaginary. The
quantity d(pj) denotes the density of states in momentum space. Inserting the density
of states of a filled Fermi sea, d(pj) = (2π)−3 θ(kf −|pj|), into eq. (3.10) yields the energy
density of nuclear matter, ρĒ(kf), with the nucleon density ρ = 2k3

f /3π
2. The single

particle potential can now be directly constructed from the energy density functional
(3.10) by adding a test nucleon of fixed momentum p to the filled Fermi sea. This
situation is described by the density of states d(pj) = (2π)−3 θ(kf − |pj|) + η δ3(p − pj)
with the infinitesimal parameter η to be interpreted as (±) the inverse (infinite) volume.
The plus sign applies for a particle (|p | > kf) and the minus sign for a hole (|p | < kf).
Inserting this density of states into eq. (3.10) leads to

E = ρ Ē(kf) + 4η
{
Tkin(p) + U(p, kf) + iW (p, kf)

}
, (3.11)

with

Tkin(p) =
p2

2MN

− p4

8M3
N

, (3.12)

the relativistically improved kinetic energy. The factor 4 in eq. (3.11) simply counts the
spin and isospin multiplicity of a nucleon. The real and imaginary parts of the single
particle potential have, according to eq. (3.10), a decomposition into two-, three- and
four-body contributions,

U(p, kf) = U2(p, kf)+U3(p, kf) , W (p, kf) = W2(p, kf)+W3(p, kf)+W4(p, kf) , (3.13)

where the index on each term refers to the corresponding kernel Kν in eq. (3.10).
In isospin asymmetric nuclear matter, the deviation from equal numbers of neutrons

and protons leads to different single-particle potentials for protons and neutrons [36].
For a relative neutron excess of δ = (N −Z)/(N +Z), the total single particle potential
is given by

U(p, kf) + � W (p, kf) − [UI(p, kf) + � WI(p, kf)]τ3δ + O(δ2) , (3.14)

with UI(p, kf) + � WI(p, kf) the (complex) isovector single-particle potential and τ3 → ±1
for a proton or a neutron. The isovector single-particle potential in this framework has
been evaluated by N. Kaiser [36].

3.4.1 Real part

In this section we present results for the real part of the single particle potential U(p, kf)
as given by chiral one- and two-pion exchange with only nucleons in intermediate states.
The closed vacuum diagrams related to one-pion exchange (Fock-diagram) and iterated
one-pion exchange (Hartree- and Fock-diagrams) are shown in fig. 3.1. Each nucleon
propagator (2.23) consists of a vacuum part and a medium insertion. Self energy dia-
grams are obtained from these closed graphs by opening one nucleon line with a medium
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Figure 3.4: The real part of the single-particle potential U(p, kf,0) versus the nucleon
momentum p at nuclear saturation density, kf,0 = 272.7 MeV.

insertion. In order to keep their number small and in order to avoid repetitions we asso-
ciate the contributions to the (real) nuclear mean field U(p, kf) with the closed vacuum
diagram before the opening of a nucleon line. The explicit results from ref. [31] for a
nucleon momentum p below the Fermi surface are given in appendix B.6.1. In addition
to that, the corresponding results for the extension to p > kf are given in appendix
B.6.2. In general this extension is not just an analytical continuation of the potential
from below the Fermi surface.

The momentum dependence of the real part U(p, kf,0) of the single particle potential
evaluated up to order O(k5

f ) at nuclear saturation density kf,0 = 272.7 MeV is shown
in fig. 3.4. For a nucleon at rest, we find U(0, kf,0) = −53.2 MeV. For comparison,
the calculation of ref. [37] based on the phenomenological Paris NN-potential finds a
potential depth of U(0, kf,0) ' −64 MeV. In the relativistic Dirac-Brueckner approach of
ref. [38] using the Bonn-A NN-potential a somewhat deeper real single particle potential
with U(0, kf,0) ' −80 MeV has been found. Also, the empirical optical-model potential
U0 ≈ −52 MeV deduced by extrapolations from elastic nucleon-nucleon scattering data
is of comparable magnitude [39].

The dashed line in fig. 3.4 represents the total single particle energy, Tkin(p)+U(p, kf,0),
i.e. the sum of single nucleon kinetic and potential energy. As required by the Hugen-
holtz-van Hove theorem [40],

Tkin(kf) + U(kf , kf) = Ē(kf) +
kf

3

∂Ē(kf)

∂kf

, (3.15)
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Chapter 3 Chiral approach to nuclear matter

the dashed line ends at the Fermi surface, p = kf,0 = 272.7 MeV, with the value Ē(kf,0) =
−15.26 MeV. The total single particle energy Tkin(p)+U(p, kf,0) rises monotonically with
the nucleon momentum p, as it should. Note however that there is no a priori guarantee
for such a behavior in a perturbative calculation. As a matter of fact, an earlier chiral
expansion scheme by Lutz et. al [13] treating the short-range dynamics differently fails
to meet this criterion [41].

While the value of U(0, kf,0) lies in the right region and the value of U(kf,0, kf,0) is
fixed by the Hugenholtz–van-Hove theorem, the momentum dependence of U(p, kf,0)
between those two points is stronger than other calculations indicate [37, 38]. Also, the
dropping of U(p, kf,0) above the Fermi surface is not seen in other calculations. Such a
strong momentum dependence is only possible since the small pion mass is present as a
dynamical scale in our calculation. The mass scales appearing in commonly used boson
exchange potentials are much larger.

The momentum dependence of U(p, kf0) translates into a variable effective nucleon
mass M?

N(p) by the relation,

1

M?
N(p)

=
1

p

∂

∂p

[
Tkin(p) + U(p, kf,0)

]
. (3.16)

The strong momentum dependence in our result leads to a considerable negative slope
of U(p, kf,0) at p = kf,0 resulting in a too large effective nucleon mass M?

N(kf,0) ' 3.5MN

at the Fermi surface. Since the single-particle properties around the Fermi surface are
decisive for the spectrum of thermal excitations and therefore crucially influence the
low-temperature behavior of nuclear matter, the strong momentum dependence seen in
fig. 3.4 poses a problem for the finite temperature behavior (see chapter 4). A significant
improvement of the momentum dependence of U(p, kf,0) is possible by explicitly including
diagrams involving virtual ∆-excitations (see chapter 7).

3.4.2 Imaginary part

In this section, we discuss the imaginary part W (p, kf) of the single particle poten-
tial. Below the Fermi surface, one-hole states can be prepared by removing a nucleon
with restricted momentum 0 ≤ p ≤ kf from the Fermi sea. Their total energy is
−Tkin(p) − U(p, kf) − iW (p, kf), according to eq. (3.11). The (positive) imaginary sin-
gle particle potential W (p, kf) accounts for the finite life time of such a hole state via
τ−1
hole = 2W (p, kf). By on-shell NN-scattering processes the energy of a deeply bound hole-

state gets redistributed among two-hole-one-particle states, with the two holes closer to
the Fermi surface and a nucleon particle-state in the continuum (i.e. above the Fermi
surface). On the other hand, a nucleon above the Fermi surface p > kf can scatter into
one hole-state and two continuum particle-states closer to the Fermi surface. The life
time of such a nucleon-particle state is given by τ−1

part. = −2W (p, kf). In both cases,
energy and momentum conservation as well as Pauli blocking limit the available phase
space. According to Luttinger’s theorem [42], W (p, kf) vanishes quadratically ∼ (kf −p)2

for p→ kf and its curvature is equal in magnitude but of opposite sign above and below
the Fermi surface (in the close vicinity of the Fermi surface).
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Figure 3.5: The imaginary part of the single-particle potential W (p, kf,0) versus the nu-
cleon momentum p at nuclear saturation density, kf,0 = 272.7 MeV.

Within the present three-loop chiral perturbation theory calculation of nuclear mat-
ter the contributions to the imaginary single particle potential W (p, kf ) arise entirely
from iterated one-pion exchange. The analytical results from ref. [31] for p < kf are
summarized in appendix B.6.3. The results for p > kf , which are not simply analytical
continuations from below the Fermi surface, are given in eqs. (B.109,B.110) in appendix
B.6.4. As before, we associate the contributions to W (p, kf ) with the closed vacuum
diagram (see fig. 3.1) before the opening of a nucleon line. The results are completely
parameter-free (to the order we are working here).

It is also interesting to consider the imaginary single-particle potential W (p, kf) in the
chiral limit m� = 0. One finds the following closed form expressions:

W (p, kf)|m � =0 =
9πg4

AMN

4(4πf� )4
(k2

f − p2)2 , p < kf ,

(3.17)

W (p, kf)|m � =0 =
3πg4

AMN

(4πf� )4

{
7k5

f

5p
− k3

f p−
2

5p
(2k2

f − p2)5/2 θ
(√

2kf − p
)}

, p > kf ,

(3.18)

to which the iterated 1� -exchange Hartree and Fock diagrams have contributed in the
ratio 4 : −1. The analytical results (3.17,3.18) agree with Galitskii’s calculation [43]
of a contact interaction to second order. In the chiral limit m � = 0 the spin-averaged� NN-interaction vertices get canceled by the pion propagators and thus one is effec-
tively dealing with a zero-range NN-contact interaction. The agreement with Galitskii’s
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Chapter 3 Chiral approach to nuclear matter

result [43] serves as an important check on the technically involved calculation behind
eqs. (B.109,B.110).

The resulting curve for W (p, kf,0) is shown in fig. 3.5. The half-width for a hole-state
of a nucleon at the bottom of the Fermi sea is W (0, kf,0) = 29.7 MeV. This value lies in
between the values W (0, kf,0) ' 20 MeV and W (0, kf,0) ' 40 MeV obtained in the self-
consistent Brueckner calculation of ref. [37] and the calculation employing the Gogny D1
effective interaction ref. [44], respectively. Taking these two calculations as reasonable
benchmark, we conclude that our result is probably realistic. As a consequence of the
decreasing phase-space for redistributing the hole-state energy, the curve in fig. 3.5 drops
with momentum p and W (p, kf,0) and reaches zero at the Fermi surface p = kf,0. The
curve in fig. 3.5 clearly shows this vanishing to be of quadratic order, ∼ (p − kf)

2, and
thus fulfills Luttinger’s theorem [42].

When crossing the Fermi surface the curvature of the imaginary single-particle poten-
tial W (p, kf) changes sign. We have checked numerically that the absolute value of the
curvature has the same limit when approaching kf from both sides. Above the Fermi sur-
face, a rapid fall to negative values sets in. In fact the width Γsp = −2W (p, kf) represents
the spreading of a single-particle state above the Fermi surface into two-particle-one-hole
states with growing phase space as p− kf increases.

The rapid growth of Γsp at large momenta p > 400 MeV is not shared by the results
of refs. [37,44]. Presumably this shows the limited range of validity of the present chiral
perturbation theory calculation.

3.5 Asymmetry energy

The saturation properties of isospin symmetric nuclear matter can be well reproduced
in our framework with just one single adjustable cut-off scale Λ. The minimal way
to extend this scheme to isospin asymmetric matter is to use the same cut-off for all
isospin channels. In order to test the isospin dependence of such an approach, we have
investigated the asymmetry energy [14]. In isospin asymmetric matter the Fermi seas of
protons and neutrons are not equally filled. With the help of the projection operators
(1 ± τ3)/2, such an isospin-asymmetric situation is realized by the simple substitution,

θ(kf − |p|) → 1 + τ3
2

θ(kp − |p|) +
1 − τ3

2
θ(kn − |p|) (3.19)

in the in-medium nucleon propagator eq. (2.23). Here kp and kn denote the (different)
Fermi momenta of protons and neutrons. Choosing kp,n = kf(1 ∓ δ)1/3 (with δ a small
parameter) the nucleon density ρ = ρp + ρn = (k3

p + k3
n)/3π

2 = 2k3
f /3π

2 stays constant.
The expansion of the energy per particle of isospin asymmetric nuclear matter,

Ēas(kp, kn) = Ē(kf) + δ2Ā(kf) + . . . ,

around the symmetry line (kp = kn or δ = 0) defines the asymmetry energy per nucleon,
Ā(kf). Note that the parameter δ is equal to (ρn − ρp)/(ρn + ρp) or (N − Z)/(N + Z).
The explicit expressions for Ā(kf) as given by chiral pion exchange can be found in eqs.
(B.48) to (B.55) in the appendix.
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Figure 3.6: The asymmetry energy Ā(ρ) versus the nucleon density ρ. The cut-off pa-
rameter is Λ = 646.3 MeV. The dashed line shows the result of ref. [45]

In fig. 3.6, we show the density dependence of Ā(kf) as determined by � N-dynamics up
to O(k5

f ) and up to three loop order. At the saturation point kf,0 = 272.7 MeV, we find
the asymmetry energy to be Ā0 = Ā(kf,0) = 33.8 MeV which is in very good agreement
with the empirical value of Ā0 = 33.2 MeV obtained in ref. [34] from extensive fits to
nuclide masses. The O(k5

f ) contributions of irreducible 2� -exchange (see fig. 3.2) which
plays only a very minor role in the saturation mechanism of symmetric nuclear matter
shifts the asymmetry energy noticeably downwards. If we truncate the series expansion
at O(k4

f ) we get the value Ā(kf,0 = 270 MeV,Λ = 611.4 MeV) = 38.9 MeV.

However, the downward bending of our asymmetry energy Ā(kf) at densities ρ >
0.2 fm−3 is not influenced by irreducible 2� exchange and presumably indicates the limits
of validity of the chiral expansion scheme as long as it is restricted to pion-nucleon
dynamics only. It is remarkable, however, that the isospin dependent forces generated
by chiral � N-dynamics alone are already sufficient to produce a realistic value of the
asymmetry energy. The result from ref. [45] (the dashed line in fig. 3.6) gives, as most
other calculations of the asymmetry energy, a curve monotonically rising with ρ.

3.6 Pure neutron matter

The extreme of asymmetric nuclear matter is pure neutron matter. While empirical
constraints exist only for relatively high densities ρ & 2ρ0 and involve large uncertainties

37



Chapter 3 Chiral approach to nuclear matter

0 0.05 0.1 0.15 0.2 0.25
ρn [fm

-3]

0

5

10

15

20

25

E
n [M

eV
]

Figure 3.7: The density dependence of the energy per particle of pure neutron matter
(solid line). The cut-off parameter is Λ = 646.3 MeV. The dotted line shows
Ēn,kin/2. The other lines give the results of ref. [27] (dashed) and ref. [18]
(dash-dotted).

[46], all existing realistic calculations agree that pure neutron matter is unbound [4, 5,
18, 27, 38]. Its energy per particle rises monotonically with the neutron density. For
very low densities ρn < 0.05 fm−3, many calculations agree that the equation of state
Ēn(ρn) should behave approximately as half the (neutron) kinetic energy, 1

2
Ēn,kin (see

also ref. [4]). This behavior is confirmed by the complete resummation of in-medium
multi-loop diagrams for a system with an unnaturally large scattering length (such as
neutron matter), as demonstrated in ref. [47] in the limit of a large number of space-time
dimensions D. For an infinite scattering length ann and neglecting 1/D corrections, one
gets Ēn(kn) = 4

9
Ēn,kin. Positive corrections for a finite scattering length shift the result

even further towards 1
2
Ēn,kin.

In order to arrive at the energy per particle Ēn(kn) of neutron matter in our diagram-
matic framework it is sufficient to substitute

θ(kf − |p|) → 1 − τ3
2

θ(kn − |p|) (3.20)

in the in-medium nucleon propagator eq. (2.23). Here kn denotes the Fermi momentum
of the neutrons which is related to the neutron density by ρn = k3

n/3π
2. As a consequence

of the substitution (3.20) only the isospin factors of individual diagrams change and all
Fermi spheres have the radius kn. The explicit expressions for Ēn(kf) as given by chiral
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3.7 Chiral condensate

pion exchange can be found in appendix B.4.
The equation of state determined by � N-dynamics up to O(k5

f ) is shown as the solid
line in fig. 3.7. One sees that neutron matter is indeed unbound. A priori, this is not
guaranteed in a perturbative calculation and is thus already a nontrivial result. For com-
parison, we also show the results of ref. [27] and ref. [18] as the dashed and dash-dotted
lines in fig. 3.7. At higher densities ρn > 0.2 fm−3, our result starts to become unrealistic
because of its downward bending. This feature is inherited from the asymmetry energy
(see fig. 3.6). At low densities, even if our result shows qualitatively the right behavior, it
fails to reproduce these curves on a quantitative level. Most importantly, for very small
densities it does not lie as close to 1

2
Ēn,kin as expected.

However, one should not forget that the treatment of the short-range dynamics with
just one single momentum cut-off for all isospin channels is too simplistic. In fact, if
one uses the same cut-off as for isospin symmetric nuclear matter, our neutron matter
equation of state has no free parameters. The situation will be much improved once� N∆-dynamics is incorporated (see sections 7.5, 7.6).

3.7 Chiral condensate

Our calculation of the nuclear equation of state results in analytic expressions as functions
of the pion mass m� (see eqs. (B.11-B.18)). This allows in principle to determine the
density dependence of the chiral condensate which is the order parameter of spontaneous
chiral symmetry breaking in QCD.

An expression for this density dependence has been given in eq. (2.16). Written in
terms of the energy per particle Ē, it is

〈q̄q〉ρ
〈q̄q〉0

= 1 − ρ

2m� f 2�
d

dm�
(
MN + Ē(kf)

)
= 1 − ρ

2m� f 2�
(

2σ� N
m� +

dĒ(kf)

dm�
)
. (3.21)

Here, the so-called � N-sigma term σ � N is that part of the nucleon mass MN that is caused
by the nonvanishing average quark mass m̄. It is

σ� N = m̄
∂MN

∂m̄
=
m�
2

∂MN

∂m� (3.22)

with the empirical value [48]
σ� N = (45 ± 8) MeV .

As leading term in eq. (3.21), the σ� N term causes a linear decrease of the chiral conden-
sate 〈q̄q〉ρ/〈q̄q〉0 with density ρ.2 At ρ ' 3ρ0 , this leading term by itself would cause
the condensate to vanish and chiral symmetry to be restored. However, there is general

2The correct leading term for a Fermi gas of nucleons is given in terms of the scalar density ρs = 〈N̄N〉
(see e. g. [49]):

〈q̄q〉ρ
〈q̄q〉0

= 1 − σ� N
m2� f2� ρs .

This leading term is approximated in our nonrelativistic approach by expanding the difference be-
tween the scalar density and the baryon density to order k2

f /M
2
N.
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Figure 3.8: Influence of the explicit m� dependence of 1� - and 2� -exchange on the chiral
condensate at density ρ. Not included are any contributions from short-range
dynamics. The dashed line shows the leading term from eq. (3.21) which
involves σ� N.

agreement that the nonlinear contributions stabilize the order parameter such that chiral
restoration is shifted to higher densities (see e. g. ref. [50]).

In addition to the explicit m� dependence, the energy per particle contains also an
implicit dependence on m� via various physical constants being modified by chiral sym-
metry breaking: MN = MN(m� ), gA = gA(m� ), and f� = f� (m� ). While it is possible to
get some estimates of the m� dependencies of gA(m� ) and f� (m� ) from chiral logarithms,
their exact form is not known. Because of these uncertainties we will restrict ourselves
here to the explicitm� dependencies only. Note that the considerations in ref. [15] showed
that the influence of the the implicit m� dependence arising via MN(m� ) in the long range
pion exchange contributions is quite small. Note also that our considerations are neces-
sarily incomplete at this point since the m� dependence of the momentum cut-off Λ and
the effects of short-range correlations are unknown.

The full line in fig. 3.8 shows the influence of the finite parts of chiral one- and two-
pion exchange on the chiral condensate as a function of ρ. As one can see, the long
range dynamics drive the condensate even faster towards chiral restoration than the
leading linear term (the dashed line in fig. 3.8). This behavior is caused mainly by the
iterated 1� -exchange Hartree diagram (the middle diagram in fig. 3.1) with two medium
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3.7 Chiral condensate

insertions [15]. Its finite part eq. (B.13) gives a large repulsive contribution of 46 MeV
to Ē at finite pion mass m� = 135 MeV but vanishes in the chiral limit m� → 0. This
strong m� dependence results in a large positive contribution to dĒ/dm� in eq. (3.21)
pushing the chiral condensate further downwards.

If there were no other contributions affecting the chiral condensate, the behavior shown
in fig. 3.8 would cast serious doubt on the expansion scheme described in this chapter:
Chiral perturbation theory is based on the spontaneous breaking of chiral symmetry
and the occurrence of the corresponding Goldstone bosons. Chiral restoration occur-
ring already at relatively low densities ρ < 2ρ0 in nuclear matter would invalidate the
applicability of chiral perturbation theory in nuclear matter.

On the other hand, there is general agreement that many body effects at finite density
work against chiral restoration. This behavior is shown by several other calculations, e. g.
with Brueckner or Dirac-Brueckner approach [50]. There, short-range correlations give
the crucial contribution to stabilize the chiral condensate. If our scheme is extended to
include diagrams involving virtual ∆(1232)-excitations, there are additional contributions
working against chiral restoration and there are also indications that the short-range
contributions work in the same direction as well (see section 7.7).
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Chapter 4

Finite temperature

The analysis of data from low-energy heavy-ion collisions in the regime of nuclear frag-
mentation has lead to the picture that heated nuclear matter undergoes a phase transition
from a liquid-like state to a vaporized gas state [26,51]. This liquid-gas phase transition
of isospin symmetric nuclear matter is in fact very similar to that of the familiar van der
Waals gas. The experimental determination of the critical point of this phase transition
from heavy-ion collisions is made difficult by the facts that phase transitions in finite
systems are not as well defined as in infinite systems and that an estimation of the tem-
perature is difficult for nonstationary systems with finite life-times. However, there is
some agreement that for nuclear matter the critical temperature is Tc ' (16 − 18) MeV
and the critical density is ρc = (0.06−0.07) fm−3 [26]. Recently, Natzowitz et al. inferred
the value Tc = (16.8 ± 0.9) from experimental observations of limiting temperatures in
heavy ion collisions [52].

Clearly, the dynamical description of this phase transition is an important topic in
any microscopic calculation of nuclear matter. In the σω mean-field model of Serot and
Walecka [9] nucleons are described as Dirac quasi-particles moving in self-consistently
generated scalar and vector mean fields. In such approaches a critical temperature of Tc '
19 MeV is typically found [53]. Furthermore, the sophisticated many-body calculations
of the Urbana group using the V14 effective NN-interaction (plus an adjustable three-
nucleon interaction) predict a critical temperature of Tc ' 18 MeV [27]. For earlier work
on this topic using effective Skyrme forces, see ref. [54].

In the previous section, we have seen that many properties of nuclear matter can be
well described by chiral � N-dynamics treated (perturbatively) up to three loop order.
Of course it is now interesting to also consider finite temperatures T in order to check
whether the first-order liquid-gas phase transition of nuclear matter is correctly repro-
duced by this particular dynamics [32].

4.1 Calculational framework

For the relatively low temperatures T ≤ 30 MeV which are of interest in this context one
can safely neglect effects from thermal pions or thermally excited nucleon-antinucleon
pairs. As a consequence, nucleons can be treated nonrelativistically and the new param-
eter, the temperature T , enters only through the nucleons’ thermal occupation probabil-
ities given by a Fermi-Dirac distribution.
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Chapter 4 Finite temperature

In the framework described in chapter 3, the diagrammatic calculation of the energy
density at T = 0 (as a function of the particle density ρ) has been organized in the
number of medium insertions. A thermodynamically consistent extension of such an
ordering scheme to finite temperatures is to relate it directly to the free energy density
ρ F̄ (ρ, T ), since its natural thermodynamical variables are the particle density ρ and the
temperature T . In that case the free energy density of isospin symmetric nuclear matter
consists of a sum of convolution integrals of the form,

ρ F̄ (ρ, T ) = 4

� ∞

0

dp1 p1 K1 d(p1) +

� ∞

0

dp1

� ∞

0

dp2 K2 d(p1)d(p2)

+

� ∞

0

dp1

� ∞

0

dp2

� ∞

0

dp3 K3 d(p1)d(p2)d(p3) + ρ Ā(ρ, T ) , (4.1)

with the kernels Kj corresponding to the contributions with j medium-insertions and the
anomalous contribution Ā(ρ, T ) to be specified.1 The quantity

d(pj) =
pj

2π2

[
1 + exp

p2
j − 2MNµ̃

2MNT

]−1

, (4.2)

denotes the density of nucleon states in momentum space. It is the product of the tem-
perature dependent Fermi-Dirac distribution and a kinematical prefactor pj/2π

2 which
has been included in d(pj) for convenience.2 MN = 939 MeV stands for the (free) nucleon
mass. The particle density ρ is calculated from the density of states in momentum space
as

ρ = 4

� ∞

0

dp1 p1 d(p1) = −
√

2

(
MNT

π

)3/2

Li3/2

(
−eµ̃/T

)
, (4.3)

and this relationship determines the dependence of the effective one-body “chemical po-
tential” µ̃(ρ, T ) on the thermodynamical variables ρ and T . The “true” chemical poten-
tial is different and given by the formula µ = F̄ + ρ ∂F̄ /∂ρ. Concerning eqs. (4.1,4.2,4.3)
we are following here (partially) the approximation scheme of ref. [55]. Our approach
is (by construction) thermodynamically consistent, since all thermodynamic quantities
are derived (via standard relations) from the free energy density ρ F̄ (ρ, T ). The infinite
series Liν(x) =

∑∞
k=1 k

−νxk defines the polylogarithmic function of index ν for |x| < 1.
The factor 4 in eqs. (4.1,4.3) counts the spin-isospin multiplicity of a nucleon.

1Let us briefly motivate our approach. The standard procedure in field theory is to calculate the grand
canonical partition function Z or equivalently the thermodynamic potential Ω(µ, T ) = −(T/V ) ln Z
as a function of its natural variables, the (nonrelativistic) chemical potential µ and the temperature
T . In the case of nuclear matter at T = 0 the functional relationship Ω(µ, 0) is however double-valued
for µ ≤ 0. Since perturbation theory usually gives single-valued thermodynamic functions it is more
appropriate to calculate first the (single-valued) energy density ρ Ē(kf) of nuclear matter as a function
of the particle density ρ, as done in chapter 3. Then eq. (4.1) defines a thermodynamically consistent
extension to finite temperatures T , with the correct T = 0 limit. This calculational scheme can also
be understood such that in the Legendre-transformation from Ω(µ, T ) to the free energy density,
ρ F̄ (ρ, T ) = Ω(µ, T )−µ∂Ω/∂µ, the derivative term is taken into account only for the noninteracting
(free nucleon gas) part and the (static) one-pion exchange contribution, but not for the higher order
contributions coming from chiral 2� -exchange.

2Note that this is not the same notation as in section 3.4.
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4.2 Anomalous contribution

Figure 4.1: Anomalous Fock diagram contributing at finite temperature.

The one-body kernel K1 in eq. (4.1) represents the contribution of the noninteracting
nucleon gas to the free energy density and reads

K1 = µ̃− p2
1

3MN

− p4
1

8M3
N

. (4.4)

While the first two terms are standard [55], the correction term, −p4
1/8M

3
N, has been

constructed according to the following criteria: First, it ensures the correct T = 0 limit for
the energy per particle Ē(kf) up to order k4

f , in which µ̃(ρ, 0) = k2
f /2MN and ρ = 2k3

f /3π
2.

Secondly, the so-constructed kernel K1 combined with the nonrelativistic Fermi-Dirac
distribution (see eq. (4.2)) gives a very accurate approximation of the free energy density
of a fully relativistic free nucleon gas [53] for the densities and temperatures of interest
here.

The (non-anomalous) contributions to the free energy density ρ F̄ (ρ, T ) arising from
pion exchange interactions are encoded in the kernels K2,3 in eq. (4.1). The closed vacuum
diagrams related to one-pion exchange (Fock diagram) and iterated one-pion exchange
(Hartree and Fock diagrams) are shown in fig. 3.1. In addition to that, the diagrams of
irreducible 2� -exchange are shown in fig. 3.2. The explicit expressions for K2,3 are given
in eqs. (B.29) to (B.36) in appendix B.2.2.

4.2 Anomalous contribution

Next, we come to the so-called anomalous contribution Ā(ρ, T ) in eq. (4.1). This is a
special feature at finite temperatures [56–58] with no counterpart in the calculation of
the ground state energy density ρ Ē(kf) at T = 0. The Fock diagram in fig. 4.1 involves
an integral over θ(kf − p) θ(p − kf) and thus vanishes for T = 0. At T > 0, on the
other hand, the thermal occupation probabilities yield a non-zero value that does not
vanish even when taking the T → 0 limit. However, in a Fermion system in the absence of
symmetry breaking, this contribution is canceled by the perturbative shift of the chemical
potential

µ̃→ µ̃− Ω′
1� (ρ, T )/Ω′′

0(ρ, T ) , (4.5)

as shown by Kohn, Luttinger, and Ward [56]. Their theorem holds of course in our case
since the Fermi surface and the pion-induced interactions are invariant under spatial
rotations.

The diagram in fig. 4.1 gives the following contribution to the free energy per particle
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of isospin symmetric nuclear matter:

Ā(ρ, T ) = − [Ω′
1� (ρ, T )]2

2ρΩ′′
0(ρ, T )

+
9g4

A

8f 4� Tρ
� ∞

0

dp1

� ∞

0

dp2

� ∞

0

dp3 d(p1)d(p2)[2π
2d(p2) − p2]d(p3)

×
[
p1 −

m2�
4p2

ln
m2� + (p1 + p2)

2

m2� + (p1 − p2)2

][
p3 −

m2�
4p2

ln
m2� + (p3 + p2)

2

m2� + (p3 − p2)2

]
, (4.6)

with the µ̃-derivative of the thermodynamical potential due to static 1� -exchange,

Ω′
1� (ρ, T ) =

3g2
AMN

2f 2�
� ∞

0

dp1

� ∞

0

dp2 d(p1)
d(p2)

p2

[
(p1 + p2)

3

m2� + (p1 + p2)2
+

(p1 − p2)
3

m2� + (p1 − p2)2

]
,

(4.7)
and the second µ̃-derivative of the free nucleon gas part,

Ω′′
0(ρ, T ) = −4MN

� ∞

0

dp1
d(p1)

p1

=
√

2T
(MN

π

)3/2

Li1/2(−eµ̃/T ) . (4.8)

The first term in eq. (4.6) originates from taking into account the (static) 1� -exchange
contribution in the Legendre transformation from the thermodynamical potential to the
free energy density and from the perturbative shift of the chemical potential, eq. (4.5) (for
details on that procedure, see ref. [56]). We have explicitly checked the Kohn-Luttinger-
Ward theorem, i. e. that the anomalous contribution Ā(ρ, T ) vanishes identically at T = 0
for all densities ρ. For T > 0, we find the anomalous contribution always negative,
Ā(ρ, T ) < 0, as it should be [56]. Furthermore, it is interesting to observe that the
temperature and density dependent anomalous contribution Ā(ρ, T ) vanishes identically
in the chiral limit m� = 0.

The calculation in ref. [59] shows (using the same toy interaction as in section 3.3), that
for temperatures near the Fermi temperature Tf = k2

f /2MN the anomalous contribution
can be of considerable size. Note also that the anomalous contribution Ā(ρ, T ) is (for-
mally) of the same order in small momenta as the contributions to F̄ (ρ, T ) coming from
iterated 1� -exchange. It should therefore not be neglected in a consistent and complete
calculation. However, our calculations show that the contribution of Ā(ρ, T ) to the free
energy is quite small compared to the other contributions from pion exchange.

4.3 Results

Via general thermodynamical relations [53] one can derive from the free energy per
particle F̄ (ρ, T ) the pressure P (ρ, T ) and the entropy per particle S̄(ρ, T ):

P (ρ, T ) = ρ2 ∂F̄ (ρ, T )

∂ρ
, S̄(ρ, T ) = −∂F̄ (ρ, T )

∂T
. (4.9)

We are now in the position to present numerical results for isospin symmetric nuclear
matter at finite temperatures. We use the same value of the cut-off scale Λ = 646.3 MeV
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Figure 4.2: The free energy per particle of isospin symmetric nuclear matter F̄ (ρ, T )
versus the nucleon density ρ. Each curve is labeled with its corresponding
constant temperature T .

as in chapter 3. Figure 4.2 shows the free energy per particle F̄ (ρ, T ) as a function of the
nucleon density ρ for various temperatures T = 0, 10, 18, 25.5, 30 MeV. The uppermost
line is the nuclear matter saturation curve at T = 0. The singular behavior of the free
energy per particle F̄ (ρ, T ) for ρ → 0 at T > 0 is a generic feature (see e.g. the figures
and tables corresponding to the results of the Urbana group in ref. [27]). The internal
energy per particle F̄ (ρ, T ) + T S̄(ρ, T ), on the other hand, approaches approximately
the value 3T/2 for ρ→ 0.

Figure 4.3 shows the calculated pressure isotherms P (ρ, T ) of isospin symmetric nuclear
matter. As it should be these curves display a first-order liquid-gas phase transition
similar to that of the van der Waals gas. The coexistence region between the liquid and
the gas phase (determined by the Maxwell construction [53]) terminates at the critical
temperature Tc. From there on the pressure isotherms P (ρ, T ) grow monotonically with
the particle density ρ. At this stage, with only pions and nucleons as explicit degrees
of freedom, we find a critical temperature of Tc = 25.5 MeV and a critical density of
ρc = 0.09 fm−3 ' 0.5ρ0 (with ρ0 = 0.178 fm−3, the predicted nuclear matter saturation
density). Together with the critical pressure P (ρc, Tc) = 0.69 MeV fm−3 this prediction
of the critical point still deviates considerably from most other calculations. The too
high value of the critical temperature, Tc = 25.5 MeV, finds its explanation in the strong
momentum dependence of the underlying single-particle potential U(p, kf,0) near the
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Figure 4.3: Pressure isotherms P (ρ, T ) of isospin symmetric nuclear matter. The co-
existence region of the liquid and gas phase ends at the critical point
ρc ' 0.09 fm−3 and Tc ' 25.5 MeV.

Fermi surface p = kf,0 (see fig. 3.4). The nominal value of the effective nucleon mass at
the Fermi surface isM?

N(kf,0) ' 3.5MN. The latter quantity determines, via the density of
states at the Fermi surface, the low-temperature behavior of a Fermi liquid. In the present
calculation the density of thermally excitable quasi-particles is too low, so that nuclear
matter has to be heated up to relatively high temperatures until it evaporates completely.
As we will see in section 7.2, this particular problem of the large effective nucleon mass
M?

N(kf,0) can be cured by including diagrams involving virtual ∆-excitations. Note that
despite its large isospin factor 18 the anomalous contribution Ā(ρ, T ) does practically
not influence the behavior of nuclear matter at low temperatures T < 30 MeV.

As a final remark, we consider the chiral limit m � = 0. With a reduced cut-off scale
of Λ = 555.8 MeV (and fixed gA, f� ,MN) the same maximum binding energy per particle
(15.26 MeV) is obtained at a saturation density of ρ0 = 0.145 fm−3. Interestingly, the
critical temperature Tc ' 27 MeV remains nearly unchanged when taking the chiral limit.
This confirms the expectation that the critical temperature Tc is primarily determined
by the binding energy per particle −Ē(kf,0) and the effective nucleon mass M?

N(kf,0) at
the Fermi surface.
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Chapter 5

Inhomogeneous Systems

Given the fact that many properties of infinite homogeneous nuclear matter can be well
described by chiral � N-dynamics in the framework described in the previous chapters it
is natural to extend this scheme to inhomogeneous many-nucleon systems. We do this by
using the density-matrix expansion of Negele and Vautherin [60] to calculate the relevant
energy density functional. In order to motivate this approach, we now have a brief look
at the Skyrme force [8].

The Skyrme force is a phenomenological zero-range effective interaction that is very
popular for nuclear structure calculations because of its analytical simplicity and its
ability to reproduce nuclear properties over the whole periodic table. While the corre-
sponding energy density functional is derived using the density-matrix expansion, there
is no microscopic interpretation of the parameters of this interaction. Rather, these
parameters are tuned for the exclusive use in the restricted wave function space of the
self-consistent Hartree-Fock approximation. A brief outline of the Skyrme-Hartree-Fock
method is given in appendix A.

Many different Skyrme parameterizations have been tailored to account for different
observables such as single-particle spectra [61], giant monopole resonances [62] or fission
barriers of heavy nuclei [63]. Recently, a new Skyrme force which also reproduces the
equation of state of pure neutron matter up to neutron star densities, ρn ' 1.5 fm−3, has
been proposed in ref. [64] for the study of nuclei far from stability.

In the following, we will use the density-matrix expansion to obtain the form of the
medium insertion eq. (2.23) relevant in an inhomogeneous nuclear medium. This will
allow us to calculate the energy density functional from chiral one pion and iterated
one pion exchange, leading to novel density dependence compared to the Skyrme force’s
energy density functional. In section 5.1.4 we take this additional density dependence
into account when calculating the ground state properties of 40Ca. In this chapter, we
will restrict ourselves to the isospin symmetric case of equal proton and neutron number
N = Z.

The procedure described above has its limitations which we shall discuss in detail. We
will also briefly outline in section 5.2 an alternative (relativistic) approach to finite nuclei
by Finelli et al. [21,22] that turns out to have some advantages over the (nonrelativistic)
energy density functional method.
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Chapter 5 Inhomogeneous Systems

5.1 Energy density functional from chiral pion-nucleon

dynamics

5.1.1 Density-matrix expansion and energy density functional

The starting point for the construction of a nuclear energy density functional is the
density-matrix as given by the sum over the occupied energy eigenfunctions φi of this
(nonrelativistic) many-fermion system. According to Negele and Vautherin [60] the bilo-
cal density-matrix can be expanded in relative and center-of-mass coordinates, a and r,
as follows:

∑

i∈occ

φi(r − a/2)φ†
i (r + a/2) =

3ρ

akf

j1(akf) −
35

2ak3
f

j3(akf)

[
τ − 3

5
ρk2

f −
1

4
∇

2ρ

]
+

i

2
j0(akf) σ · (a × J) + . . . , (5.1)

where the functions jl(akf) are ordinary spherical Bessel functions. The other quantities
appearing on the right hand side of eq. (5.1) are the local nucleon density,

ρ(r) =
2k3

f (r)

3π2
=
∑

i∈occ

φ†
i (r)φi(r) , (5.2)

written here in terms of the local Fermi momentum kf(r), the local kinetic energy density,

τ(r) =
∑

i∈occ

∇φ†
i (r) · ∇φi(r) , (5.3)

and the local spin-orbit density,

J(r) =
∑

i∈occ

φ†
i (r)� σ × ∇φi(r) . (5.4)

For notational simplicity we have dropped the argument r in eq. (5.1) and will continue
doing so in the following. It is important to note that a pairwise filling of time-reversed or-
bitals i has been assumed in eq. (5.1). If the many-body ground state is not time-reversal
invariant (as it is the case for odd nuclei and for rotating nuclei) various additional
time-reversal-odd fields come into play [7]. The Fourier transform of the density-matrix
eq. (5.1) with respect to both coordinates a and r defines the medium insertion for the
inhomogeneous many-nucleon system characterized by the time-reversal-even fields ρ(r),
τ(r), and J(r):

Γ(p,q) =

�
d3r e−iq·r

{
θ(kf − |p|)

[
1 +

35π2

8k7
f

(5p2 − 3k2
f )

(
τ − 3

5
ρk2

f −
1

4
∇

2ρ

)]

+
π2

4k4
f

[
δ(kf − |p|) − kf δ

′(kf − |p|)
]
σ · (p × J)

}
. (5.5)
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5.1 Energy density functional from chiral � N-dynamics

The double line in fig. 5.1 symbolizes this medium insertion together with the assignment
of the out- and in-going nucleon momenta p±q/2. The momentum transfer q is provided
by the Fourier components of the inhomogeneous (matter) distributions: ρ(r), τ(r), and
J(r). As a check one verifies that the Fourier transform (1/2π3) � d3p e−ip·a of the (partly
very singular) expression in the curly brackets in eq. (5.5) gives exactly the right hand
side of the density-matrix expansion in eq. (5.1). For homogeneous nuclear matter (where
τ = 3ρk2

f /5 and ∇ρ = J = 0), only the step-function θ(kf − |p|) known from eq. (2.23)
remains from the medium insertion (5.5) as the density of nucleon states in momentum
space.

Up to second order in spatial gradients (i. e. deviations from homogeneity) the energy
density functional relevant for N = Z even-even nuclei reads [65]:

E [ρ, τ,J] = ρ Ē(kf) +

[
τ − 3

5
ρk2

f

][
1

2MN

− 5k2
f

56M3
N

+ Fτ (kf)

]

+ (∇ρ)2 F∇(kf) + ∇ρ · JFso(kf) + J2 FJ(kf) . (5.6)

Here, Ē(kf) is the energy per particle of isospin symmetric nuclear matter evaluated at
the local Fermi momentum kf(r). The (small) relativistic correction term −5k2

f /56M
3
N

has been included in eq. (5.6) for the following reason: When multiplied with −3ρk2
f /5,

it cancels together with the foregoing term 1/2MN the relativistically improved kinetic
energy in Ē(kf) (see eq. (2.3)). The functions Fτ (kf), F∇(kf), Fso(kf) and FJ(kf) aris-
ing from NN-interactions encode new dynamical information specific for inhomogeneous
many-nucleon systems. In Skyrme parameterizations (see eq. (A.21)), Fτ (kf) depends
linearly on the (local) density ρ = 2k3

f /3π
2 whereas F∇,so,J(kf) are just constants (by

construction). Note that Fso(kf) gives the strength of the nuclear spin-orbit coupling
while F∇(kf) is responsible for the formation of the nuclear surface. Variation of the en-
ergy density functional E [ρ, τ,J] with respect to single-particle wave functions under the
condition that these are normalized to unity leads to self-consistent density dependent
Kohn-Sham equations [65].

Returning to the medium insertion in eq. (5.5), one sees that the strength function
Fτ (kf) emerges via a perturbation relative to the density of states θ(kf − |p|). As shown
in section 3.4, the single-particle potential in nuclear matter can actually be constructed
in the same way by introducing a delta-function-like perturbation. Consequently, the
strength function Fτ (kf) can be directly expressed in terms of the real part U(p, kf) of
the momentum and density dependent single-particle potential as:

Fτ (kf) =
35

4k7
f

� kf

0

dp p2(5p2 − 3k2
f )U(p, kf) . (5.7)

In eq. (5.5) the term τ − 3ρk2
f /5 is accompanied by −∇

2ρ/4. Performing a partial in-
tegration of the energy � d3r E one sees immediately that part of the strength function
F∇(kf) is given by the ρ-derivative of Fτ (kf)/4. These considerations lead to the following
decomposition:

F∇(kf) =
π2

8k2
f

∂Fτ (kf)

∂kf

+ Fd(kf) , (5.8)
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−Γ(p,q)

p − q/2

p + q/2

r + a/2

r − a/2

Figure 5.1: The double line symbolizes the medium insertion de-
fined by eq. (5.5).

where Fd(kf) comprises all those contributions for which the (∇ρ)2-factor originates
directly from the interactions. An example for this mechanism is described in appendix
B.7.2.

As a check on the present formalism (summarized in eq. (5.5)) we rederived the Skyrme
energy density functional eq. (A.21) from the matrix elements of the underlying two-body
potential eq. (A.15) in a purely diagrammatic framework.

In ref. [66] we have used this formalism to compute the nuclear energy density func-
tional eq. (5.6) from one-pion and iterated one-pion exchange diagrams. The contribut-
ing graphs are shown in fig. 3.1. The analytical formulas for the four strength functions
Fτ (kf), Fd(kf), Fso(kf) and FJ(kf) are repeated in appendix B.7. We give for each di-
agram only the final result omitting all technical details related to extensive algebraic
manipulations and solving elementary integrals. Some “master integrals” used for the
calculation are listed in appendix B.7.4.

The analytical results given in appendix B.7 do not involve any adjustable parameter
(since all loop integrals are ultraviolet-convergent). Only well-known physical quanti-
ties like the nucleon axial-vector coupling constant gA = 1.3, the nucleon mass MN =
939 MeV, the pion decay constant f� = 92.4 MeV, and the (neutral) pion mass m� =
135 MeV enter.

Let us end this section with general power counting considerations for the nuclear
energy density functional E [ρ, τ,J]. Counting the Fermi momentum kf , the pion mass
m� and a spatial gradient ∇ collectively as small scales one deduces from eqs. (5.2-5.4)
that the nucleon density ρ(r), the kinetic energy density τ(r) and the spin-orbit density
J(r) are quantities of third, fifth and fourth order in small momenta, respectively. With
these counting rules the contributions from 1� -exchange to the nuclear energy density
functional E [ρ, τ,J] are of sixth order in small momenta while all contributions from
iterated 1� -exchange are of seventh order. For consistency, the saturation curve Ē(kf)
appearing in eq. (5.6) must of course be truncated at O(k4

f ) (corresponding to the dotted
line in fig. 3.3). Concerning NN-interactions induced by pion exchange the nuclear energy
density functional presented here is in fact complete up-to-and-including seventh order
in small momenta.

5.1.2 Isospin asymmetric case

For an extension to even-even nuclei with N > Z the first obvious step would be to
include the density dependent asymmetry energy Ā(kf) [14,41] (subtracted by its kinetic
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energy contribution) in the nuclear energy density functional:

Eas[ρp, ρn, τp, τn,Jp,Jn] = E [ρ, τ,J] + ECoul[ρp, τp,Jp] +
(ρn − ρp)

2

ρ

×
{
Ā(kf) −

k2
f

6MN

+
k4

f

12M3
N

− 5τk2
f

56ρM3
N

}
+ . . . , (5.9)

with ρ = ρp + ρn = 2k3
f /3π

2, τ = τp + τn and J = Jp + Jn. In an ordering scheme where
one counts deviations from homogeneity and deviations from isospin symmetry simulta-
neously as small, the energy density functional in eq. (5.9) would already be complete.
However, such a formal consideration may be too simplistic in view of neutron skins,
neutron halos etc. In any case, the density-matrix expansion in eq. (5.1) can be straight-
forwardly generalized to the isospin asymmetric situation and this way the strength func-
tions of terms like [τn− τp +k2

f (ρp−ρn)](ρn−ρp), (∇ρn−∇ρp)
2, (∇ρn−∇ρp) · (Jn−Jp)

and (Jn−Jp)
2 in the nuclear energy density functional become also accessible in our dia-

grammatic framework. The isovector spin-orbit strength functions have been calculated
by N. Kaiser [67]. For the Coulomb energy density ECoul[ρp, τp,Jp] of the protons, see
ref. [68].

5.1.3 Results for the strength functions

Returning to the energy density functional E [ρ, τ,J] in eq. (5.6) one observes that the
expression in square brackets multiplying the kinetic energy density τ(r) has the inter-
pretation of a reciprocal density dependent effective nucleon mass:

M̃?
N(ρ) = MN

[
1 − 5k2

f

28M2
N

+ 2MN Fτ (kf)

]−1

. (5.10)

We note that this effective nucleon mass M̃?
N(ρ) is conceptually different from the so-

called “Landau” mass which is derived from the slope of the single particle potential
U(p, kf) at the Fermi surface p = kf . Only if the (real) single particle potential has a
simple quadratic dependence on the nucleon momentum, U(p, kf) = U0(kf) + U1(kf) p

2,
do these two variants of effective nucleon mass agree with each other.

In fig. 5.2 we show the ratio of effective over free nucleon mass, M̃?
N(ρ)/MN, as a

function of the nucleon density ρ = 2k3
f /3π

2. One observes a reduced effective nucleon
mass 0.89MN < M̃?

N(ρ) < MN for densities ρ < 0.11 fm−3 and an enhanced effective
nucleon mass M̃?

N(ρ) > MN for higher densities. In the region below the nuclear matter
saturation density, ρ < ρ0 = 0.174 fm−3, relevant for nuclear structure the deviations
of the effective nucleon mass M̃?

N(ρ) from its free space value MN do not exceed ±15%.
Let us give a qualitative explanation for the (unusual) behavior of the curve in fig. 5.2.
Consider the iterated 1� -exchange Hartree diagram in fig. 3.1 at sufficiently high densities
such that the pion massm� can be neglected in comparison with the Fermi momentum kf .
In this (limiting) case the � N-interaction vertices get canceled by the pion propagators.
One is effectively dealing with a zero-range contact interaction in second order which
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Figure 5.2: The effective nucleon mass M̃?
N(ρ) divided by the free nucleon massMN versus

the nucleon density ρ.

according to Galitskii’s 1958 calculation [43,58] generates an enhanced in-medium mass.
In this sense the curve in fig. 5.2 delineates the two density regimes kf <

√
3m� and

kf >
√

3m� where the (qualitative) behavior in the latter is ruled by Galitskii’s second
order result. Interestingly, a recent large scale fit of 1888 nuclide masses by Pearson
et al. [69] using a “Hartree-Fock nuclear mass formula” has given an effective nucleon
mass of M̃?

N(ρ0) = 1.05MN. This value is comparable with our parameter-free result
M̃?

N(ρ0) = 1.15MN. Most other (nonrelativistic) mean-field calculations [61–64] give
however a reduced effective nucleon mass 0.7MN < M̃?

N(ρ0) < MN. Fit functions for
M̃?

N(ρ)/MN and for the strength functions F∇,so,J(ρ) are given in appendix B.7.5. These
can be used for nuclear structure calculations (see section 5.1.4). We recall that at this
stage, the framework is still limited to pion-nucleon dynamics. The role of the ∆-isobar
as an additional explicit degree of freedom will turn out to be very important in this
context (see section 7.4).

Next, we show in fig. 5.3 by the full line the strength function F∇(kf) belonging to
the (∇ρ)2-term in the nuclear energy density functional eq. (5.6) versus the nucleon
density ρ. The three horizontal dashed lines represent the constant values F∇(kf) =
[9t1 − (5 + 4x2)t2]/64 of the Skyrme forces Sly [64], SIII [61] and MSk [69]. In the
case of Sly and MSk we have performed averages over the various parameter sets Sly4-7
and MSk1-6. At nuclear matter saturation density ρ0 = 0.174 fm−3 our parameter-free
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Figure 5.3: The strength function F∇(kf) related to the (∇ρ)2-term in the nuclear en-
ergy density functional versus the nucleon density ρ = 2k3

f /3π
2. The three

horizontal dashed lines show the constant values F∇ = [9t1 − (5 + 4x2)t2]/64
of the Skyrme forces Sly [64], SIII [61] and MSk [69].

prediction F∇(kf,0) = 80.1 MeV fm5 is comparable to these empirical values. The strong
increase of the strength function F∇(kf) with decreasing density has to do with the
presence of a small mass scale, m� = 135 MeV, and with associated chiral singularities
(of the form m−2� and m−1� ). We will return to this issue again towards the end of this
section.

The strength function F∇(kf) and the equation of state Ē(kf) are the parts of the
energy density functional that mainly determine the nuclear surface energy as [70]:

as =

(
36π

ρ2
0

) 1

3
� ∞

−∞

dz
{
E [ρ(z)] − Ē0ρ(z)

}
. (5.11)

By inserting for ρ(z) the density profile that minimizes as and using the approximation
τ = 3ρk2

f /5, one gets

as = 2

(
36π

ρ2
0

) 1

3
� ρ0

0

dρ
√
ρF∇(ρ)

[
Ē(ρ) − Ē0

]
, (5.12)

which evaluates to as = 25.2 MeV for our result from chiral pion exchange. This value
is about 20% larger than semi-empirical determinations of the surface energy, such as
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as = 20.7 MeV of ref. [71], as = 18.2 MeV of ref. [70], or as = 18.56 MeV used in ref. [23]
(a2 in eq. (2.1)). The reason for our high value as = 25.2 MeV is of course the strong
increase of F∇(kf) at low densities. While for constant F∇(kf), the integrand in eq. (5.12)
peaks around ρ0/3, it gives sizable contributions also for lower densities.

As we will see in sections 5.1.4 and 7.4, the strong rise of F∇(kf) at low densities also
prevents reproducing the correct binding energy in 40Ca. Therefore, this strong increase
is probably unrealistic and could hint at limitations of the density-matrix expansion
of Negele et al. [60]. Recently, there have been some indications that this expansion
might get unreliable at low densities [72] and it is also known that a derivation of the
parameters of the expansion from given Brueckner-Hartree-Fock calculations gives only
a fair reproduction of nuclear properties but fails at a quantitative level [7]. Therefore
one should probably not trust the curve in fig. 5.3 below ρ = 0.05 fm−3.

The full line in fig. 5.4 shows the result of iterated 1� -exchange for the strength function
Fso(kf) related to the spin-orbit coupling term in the nuclear energy density functional.
For comparison we have drawn the constant values Fso(kf) = 3W0/4 of the three Skyrme
forces Sly [64], SIII [61] and MSk [69] (horizontal dashed lines). One observes that the
strength of the nuclear spin-orbit interaction as generated by iterated 1� -exchange at
ρ0 is about half as large as the corresponding empirical value, however, with the wrong
(negative) sign.

This “negative” result is dominated by the contribution of the iterated 1� -exchange
Hartree diagram with two medium insertions (see eq. (B.116)). For example, one ob-
tains numerically from this diagram at saturation density ρ0 = 0.174 fm−3 (where u =

kf,0/m� = 2.0) the negative contribution F
(H,2)
so (kf,0) = −83.7 MeV fm5. The other dia-

grams with lower spin- and isospin weight factors reduce this number to approximately
half its magnitude. The “negative” result for Fso(kf) is to some extent already indicated
by the calculation of the momentum and density dependent nuclear spin-orbit strength1

Uls(p, kf) in ref. [36]. Going back to the medium insertion in eq. (5.5) one learns that
only the values of Uls(p, kf) near the Fermi surface p = kf will contribute to Fso(kf). As a
matter of fact the curves in fig. 7 of ref. [36] drop from positive to negative values when
p runs from zero to kf,0 = 272.7 MeV. Actually, for the contributions to Fso(kf) from
diagrams with two medium insertions (see eqs. (B.116,B.119)) the following relationship
holds:

Fso(kf) =
π2

4k2
f

[
∂Uls(p, kf)

∂kf

+
kf

3

∂2Uls(p, kf)

∂p∂kf

]

p=kf

, (5.13)

to be applied to the expressions U
(a,e)
ls (p, kf) in eqs. (9,17) of ref. [36]. Our finding that the

(leading order) long-range pion-induced contribution to the spin-orbit coupling Fso(kf) is
sizable and of the wrong sign poses a problem for the microscopic understanding of the
phenomenological nuclear spin-orbit interaction. There must obviously be mechanisms
beyond chiral two-pion exchange that are responsible for the extraordinarily large and
“positive” nuclear spin-orbit force. Possible sources are the large scalar and vector back-

1This quantity is defined via the spin dependent interaction energy Σspin = i
2σ·(q×p)Uls(p, kf) of a nu-

cleon scattering off weakly inhomogeneous isospin-symmetric nuclear matter from initial momentum
p − q/2 to final momentum p + q/2.
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Figure 5.4: The strength function Fso(kf) related to the spin-orbit coupling term in the
nuclear energy density functional versus the nucleon density ρ = 2k3

f /3π
2.

The three horizontal dashed lines show the constant values Fso(kf) = 3W0/4
of the Skyrme forces Sly [64], SIII [61] and MSk [69]. The dashed-dotted line
shows the contribution from irreducible 2� -exchange written in eq. (5.14) for
a cut-off Λ = 0.65 GeV.

ground fields of the QCD ground state in the presence of a nuclear medium (see section
2.2.3) not being included in our nonrelativistic calculation. According to relativistic phe-
nomenology, the difference of these mean fields gives rise to a large spin-orbit force [9].
In contrast, the contributions from iterated 1� -exchange to Fso(kf) are not a relativistic
effect; they are proportional to the nucleon mass MN.

It is well-known that irreducible two-pion exchange generates (via relativistic 1/MN-
corrections) spin-orbit amplitudes in the T-matrix of elastic nucleon-nucleon scattering
[73]. Their effect on the nuclear spin-orbit interaction has been calculated in ref. [74].

Inserting the expression U
(2� )
ls (p, kf) in eq. (18) of ref. [74] into the “master formula”

eq. (5.13) one derives the following contribution from irreducible 2� -exchange to the spin-
orbit strength function:

Fso(kf) =
g2
A

πMN(4f� )4

{
(16 + 19g2

A)
Λ

2π
+
m3�
6k2

f

(4 − 3g2
A) ln

k2
f +m2�
m2�

− m�
3

(8 + 27g2
A) +

2

3kf

[
3m2� (g2

A − 2) − 4k2
f

]
arctan

kf

m�
}
. (5.14)

Here, Λ is the momentum cut-off which has been used to regularize the linear divergences
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of the irreducible 2� -exchange (triangle and box) diagrams. The dashed-dotted line in
fig. 5.4 shows the relatively small contribution of irreducible 2� -exchange to the spin-orbit
strength Fso(kf) for a cut-off scale of Λ = 0.65 GeV (as appropriate for O(k5

f ), see section
3.2). We note that without the zero-range Λ-dependent term in eq. (5.14) the dashed-
dotted curve would be shifted downward by 45.7 MeV fm5 to negative values. From the
point of view of the expansion in small momenta the contribution to Fso(kf) in eq. (5.14)
is a higher order correction.

In this context we mention also the relativistic 1/M 2
N-correction to Fso(kf) from the

1� -exchange Fock diagram. Inserting the expression U
(1� )
ls (p, kf) in eq. (6) of ref. [36] into

the “master formula” eq. (5.13) leads to the simple result: Fso(kf) = g2
A[ln(1 + 4u2) −

4u2]/(16MNf� u)2, with u = kf/m� . As expected, this contribution is negligibly small:
Fso(2m� ) = −0.86 MeV fm5.

Finally, we show in fig. 5.5 the strength function FJ(kf) accompanying the squared
spin-orbit density J2 in the nuclear energy density functional versus the nucleon density
ρ = 2k3

f /3π
2. For comparison we have drawn the constant values FJ(kf) = [t1(1− 2x1)−

t2(1+2x2)]/32 of the three Skyrme forces MSk [69], SIII [61] and Sly [64] (dashed lines).
One observes that our prediction for FJ(kf) is considerably larger. Again, there is a

strong rise of the strength function FJ(kf) as one goes down to very low nucleon densities
ρ < ρ0/10. This time the dominant contribution comes from the iterated 1� -exchange
Hartree diagram with three medium insertions (see eq. (B.124)), which gives numerically

F
(H,3)
J (2m� ) = 52.5 MeV fm5 at saturation density. It should also be noted that the J2-

term in the energy density functional is often neglected in nuclear structure calculations.
The J2-term in the energy density functional gives rise to an additional spin-orbit

single-particle field of the form 2FJ(kf)J. According to our calculation this additional
spin-orbit field is rather large and strongly density dependent. However, it turns out that
the effects from the additional spin-orbit field 2FJ(kf)J are still too small to compensate
the wrong sign of the “normal” one Fso(kf)∇ρ (see section 5.1.4).

The full curves in figs. 5.3 and 5.5 show a strong increase as the density ρ tends to zero.
Although not visible, each curve approaches a finite value at ρ = 0. One can analytically
derive the following low density limits:

lim
ρ→0

ρ−1Fτ (kf) =
3g2

A

(4m� f� )2

[
1 − g2

AMNm�
128πf 2�

]
= 571.3 MeV fm5 , (5.15)

F∇(0) =
g2
A

(8m� f� )2

[
3 +

59g2
AMNm�

128πf 2�
]

= 339.2 MeV fm5 , (5.16)

FJ(0) =
3g2

A

(4m� f� )2

[
1 − 3g2

AMNm�
256πf 2�

]
= 552.2 MeV fm5 , (5.17)

Fso(0) = − g4
AMN

πm� (4f� )4
= −101.4 MeV fm5 , (5.18)

to which only the diagrams with two medium insertions contribute. The large numbers
in eqs. (5.15-5.18) arise from negative powers of the pion mass m � (so-called chiral sin-
gularities). The most singular m−2� -terms can be traced back to the 1� -exchange Fock
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Figure 5.5: The strength function FJ(kf) accompanying the squared spin-orbit density
J2 in the nuclear energy density functional versus the nucleon density ρ =
2k3

f /3π
2. The three horizontal dashed lines show the constant values FJ(kf) =

[t1(1 − 2x1) − t2(1 + 2x2)]/32 of the Skyrme forces MSk [69], SIII [61] and
Sly [64].

diagram. At extremely low densities kf ¿ m� /2 the remnant of the pion-propagator
[m2� + (p1 − p2)

2]−1 becomes a proportionality factor m−2� . Moreover, with given fixed
powers of f−1� and MN in the prefactors of the 1� -exchange and the iterated 1� -exchange
diagrams, negative powers of the pion mass m � are simply necessary in order to get
the correct mass dimension of F∇,so,J(0) in eqs. (5.16-5.18). The chiral singularities in
eqs. (5.15-5.18) are of same physical origin as the diverging values of the isovector mag-
netic radius and electromagnetic polarizabilities of the nucleon [75] in the chiral limit
m� → 0.

In this context it is important to keep in mind that if pionic degrees of freedom are
treated explicitly in the nuclear matter problem the low density limit is realized only at
extremely low densities, kf ¿ m� /2. On the other hand, the opposite limit where the
pion mass m� can be neglected compared to the Fermi momentum kf is usually already
applicable at the moderate densities relevant for conventional nuclear physics. This is
exemplified here by the approximate density dependence F∇,so,J(kf) ∼ k−1

f . Such a ρ−1/3-
behavior becomes exact in the chiral limit m � = 0 as can be deduced by simple mass
dimension counting of the dominant iterated 1� -exchange diagrams (the basic argument
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is that MN/f
4� kf has the correct unit of MeV fm5).

5.1.4 Finite nuclei

Using the energy density functional with its novel density dependence derived in the
previous section, we now proceed to calculate some ground state properties of actual
nuclei. For this purpose, we have adapted a publicly available spherical Skyrme-Hartree-
Fock Fortran code by P.-G. Reinhard which is both fast and well documented [76].

Skyrme-Hartree-Fock calculations of the nuclear ground state start with the energy
density functional,

E = ESkyrme/� N + ECoulomb + Epair − Ecm . (5.19)

Of course, in our case the Skyrme energy functional ESkyrme from eq. (A.21) will be re-
placed by the one obtained from chiral pion-nucleon dynamics, eq. (5.6). In addition one
has to add the Coulomb energy, ECoulomb, the contribution of some schematic pairing
interaction Epair, and a correction for the spurious center-of-mass motion of the mean
field Ecm.

Since the results for F∇(kf) and Fso(kf) shown in figs. 5.3 and 5.4 seem problematic
when compared to the values used in Skyrme calculations, we add to each strength func-
tions a constant (C∇ and Cso) representing short-range dynamics of unspecified origin.

We now briefly mention the approximations used in the program. For a detailed
description of the methods, see ref. [76]. The Coulomb exchange term is treated in the
so-called Slater approximation. In the direct part of the Coulomb interaction, the finite
size of the protons is taken into account. A BCS pairing with a constant pairing force
is used. The center-of-mass correction is only computed after variation and does not
contribute to the Hartree-Fock equations. The difference between proton and neutron
mass is neglected. For the solution of the Hartree-Fock equations, an inverse gradient
step method is used.

Because of the explicit density dependence in all terms of the density functional
eq. (5.6), an optimization for the calculation of the energy used in the program had
to be removed. Instead of “half single-particle energies plus half kinetic energy plus rear-
rangement energy”, we calculate the energy directly from the energy functional eq. (5.6).

Here we present only the results for the doubly magic N = Z even-even nucleus 40Ca.
The results for 16O are quite similar. From experiment, one knows the total energy per
nucleon and the charge radius:

40Ca : E/Aexp = −8.55 MeV , rexp
C = 3.49 fm . (5.20)

For the pure energy density functional as derived from chiral pion nucleon dynamics
(i. e. with C∇ = Cso = 0), we obtain unrealistic values of E/A = −4.95 MeV and rC =
3.74 fm. Also, the ordering of the single-particle energy levels is 1s1/2, 1p1/2, 1p3/2, 1d3/2,
1d5/2, 2s1/2, instead of the empirical 1s1/2, 1p3/2, 1p1/2, 1d5/2, 2s1/2, 1d3/2. Of course,
considering the wrong sign of the spin-orbit strength function Fso(kf), this was to be
expected. The strength function FJ(kf) has a much smaller influence on the nucleus

60



5.2 A point coupling model for finite nuclei

than Fso(kf). Therefore, even the comparatively large value of FJ(kf) does not cancel the
effects from the negative Fso(kf).

Because of the too large surface energy coefficient as = 25.2 MeV obtained in section
5.1.3, the radius of 40Ca is too large. Also, the surface contribution to the total energy
is much too large resulting in a too small total binding energy.

The shell ordering can be fixed by adjusting the constant Cso which subsumes the
effects of all short-range dynamics not explicitly included in our approach. A value of
Cso = 134 MeV fm5, which changes the sign of Fso(kf), leads to the correct empirical
spin-orbit splitting in the 1d orbital of ∼ 6 MeV. Clearly, the nuclear spin-orbit strength
cannot be generated by (long-range) pion exchange dynamics. Rather, its successful
description by relativistic phenomenology leads to the picture that it is mainly caused
by the large scalar and vector mean fields experienced by the nucleus in the QCD vacuum.
We will return to this idea in the next section.

In a similar way, the constant C∇ contains additional short-range contributions to
F∇(kf). A value of C∇ = −53.2 MeV fm5 gives the correct Coulomb radius for 40Ca.
This also reduces the surface energy of the nucleus, leading to E/A = −6.71 MeV and
rC = 3.49 fm. However, this value of the binding energy is still more than 20% from the
experimental value.

This result is of course not satisfactory. Unfortunately, the inclusion of diagrams with
∆(1232)-excitations gives only a small improvement (see section 7.4.2). Therefore, the
main problem is presumably the strong density dependence of F∇(kf). However, one
should keep in mind that this density-matrix expansion is an expansion in small density
gradients ∇ρ. Thus it is strictly speaking only valid for weakly inhomogeneous nuclear
matter. Since ∇ρ/ρ is not that small at the surface of finite nuclei, one should not be
surprised that problems ensue.

5.2 A point coupling model for finite nuclei

As we have seen, the approach to inhomogeneous nuclear matter described in the previous
section has problems at low density. Also, the correct spin-orbit strength seems to be
a relativistic or short-range effect that is not included in our framework but has to be
modeled by adjusting an additional parameter. Therefore it is a logical step to try
different approaches to finite nuclei while still taking into account the fact that the pion
mass and the Fermi momentum are of comparable magnitudes.

Finelli et al. have done this in refs. [21, 22]. Their relativistic point-coupling model
includes chiral pionic fluctuations which, in combination with Pauli blocking effects, are
mainly responsible for nuclear binding and saturation as we have described in chapter 3.
However, these pionic fluctuations are treated on top of a nuclear ground state charac-
terized by large Lorentz scalar and vector fields of approximately equal magnitude but
opposite sign. These fields are connected to QCD by their origin in the leading-order
changes of the chiral condensate and of the quark density in the nuclear medium.

A quantitative connection of the mean fields to the quark condensates can be derived
from QCD sum rules [30]. Taking into account only the leading linear term of the
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density dependence of the chiral condensate (3.21), one gets for the ratio of the nucleon
self-energies generated by scalar and vector mean fields:

Σ
(0)
S

Σ
(0)
V

= − σ� N
4(mu +md)

ρs

ρ
, (5.21)

where σ� N ' 50 MeV is the pion-nucleon sigma term and the quark masses are taken as
mu +md ' 12 MeV (at a renormalization scale of about 1 GeV). At nuclear saturation
density, the scalar and the nucleon densities are approximately equal, ρs ' ρ, and the
ratio eq. (5.21) is compatible with -1 (though with an uncertainty of about 20%, as
pointed out in ref. [22]).

The model of Finelli et al. takes into account the � N-dynamics by adjusting density
dependent coupling constants to the self-energies calculated from chiral pion exchange.
After this, the remaining free parameters are the momentum cut-off Λ introduced in
chapter 3, two couplings G

(0)
S,V encoding the background fields Σ

(0)
S,V , and an additional

small parameter subsuming higher order effects proportional to k6
f . These free parameters

are then fitted to the empirical properties of nuclear matter. Remarkably, the resulting
values for the couplings G

(0)
S,V deviate from relation (5.21) by less than 10%, thus fulfilling

the QCD sum rule expectations. For finite nuclei, Finelli et al. include an additional
parameter, the strength of an isoscalar-scalar derivative coupling that does not contribute
in (translational invariant) infinite nuclear matter. This parameter is then adjusted to
the ground state properties of 16O and 40Ca. After this fitting procedure, the model of
ref. [22] reproduces the ground state properties of many light and medium-heavy even-
even nuclei to an accuracy of less than a few per cent.

Interestingly, even with contributions only from chiral pion exchange, Finelli et al. can
already approximately reproduce most ground state properties of nuclei except for the
spin-orbit splittings. The spin-orbit partners are however nearly degenerate in this case.
This fact again emphasizes that the spin-orbit potential is mainly due to the difference
between strong scalar and vector background fields which is large because of the different
signs of these fields.

62



Chapter 6

Dealing with the short range NN-terms

In the previous chapters, we have seen that chiral two-pion exchange restricted to nu-
cleon intermediate states (basically the second-order spin-spin and tensor force plus Pauli
blocking effects), together with a single contact term representing short-distance dynam-
ics, is already surprisingly successful in binding and saturating nuclear matter and re-
producing the compression modulus. We have also seen that while the prediction for the
asymmetry energy at saturation density Ā(kf,0) = 33.8 MeV is in good agreement with
its empirical value, one finds a downward bending of Ā(kf) at densities ρ > 0.2 fm−3 (see
fig. 3.6). Such a behavior of the asymmetry energy Ā(kf) is presumably not realistic. The
energy per particle of pure neutron matter Ēn(kn) as a function of the neutron density
shows a similar downward bending behavior (see fig. 3.7) and at lower neutron densities,
there is also some deviation from realistic neutron matter calculations. The mere fact
that neutron matter comes out to be unbound with no further adjusted parameter is
however nontrivial.

The most serious problem we have found in our approach, up to this point, concerns
the single-particle properties, represented by the complex-valued momentum and density
dependent nucleon self energy U(p, kf) + iW (p, kf). On the one hand, the resulting
potential depth U(0, kf,0) = −53.2 MeV is in good agreement with that of the empirical
nuclear shell [39] or optical model [77]. However, the momentum dependence of the real
single-particle potential U(p, kf,0) with its up- and downward bending (see fig. 3.4) turns
out to be too strong. As a consequence, the nominal value of the effective nucleon mass
at the Fermi surface p = kf,0 would be much too high: M?

N(kf,0) ' 3.5MN. However,
the single-particle properties around the Fermi surface are decisive for the spectrum of
thermal excitations and therefore they crucially influence the low temperature behavior
of isospin-symmetric nuclear matter. The rather high critical temperature Tc ' 25.5 MeV
for the liquid-gas phase transition obtained in chapter 4 is a visible manifestation of this
intimate relationship.

Consequently, there is need to improve our approach. As mentioned in section 3.1, one
obvious way is the inclusion of diagrams involving virtual ∆(1232)-excitations. We follow
this strategy in the next chapter and introduce explicit ∆(1232)-degrees of freedom into
our framework. Before proceeding in this direction, we want to briefly investigate the
role of short-range NN-terms and their influence on the nuclear matter results.

In the previous chapters, we have used a 3-momentum cut-off Λ to regularize the
divergent parts of iterated 1� -exchange and irreducible 2� -exchange. The resulting terms
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Chapter 6 Dealing with the short range NN-terms

Figure 6.1: Additional in-medium diagrams generated by the NN-contact interaction.
The filled square vertex symbolizes this zero-range NN-contact interaction.

proportional to powers of the cut-off Λ are understood to subsume all short-range physics
that is not resolved at the relatively low momenta relevant in nuclear matter of moderate
densities. In fact, since these terms are proportional to the nucleon density, they are
equivalent to the contribution of a momentum independent isoscalar-scalar NN-contact
interaction (the first diagram in fig. 6.1).

However, there are several aspects of this approach which should be investigated fur-
ther. Firstly, by using the same cut-off momentum for pure neutron matter as for isospin
symmetric nuclear matter, one assumes that the isospin behavior of all unresolved short-
range dynamics is correctly described by the isospin structure of chiral one- and two-pion
exchange. This simplifying assumption is not realistic and one should in principle allow
for different NN-contact interactions (or equivalently different cut-off momenta) in the
different isospin channels. Secondly, the introduction of an explicit NN-contact interac-
tion leads to additional contributions when iterating the contact interaction with pion
exchange or with itself (the second and third diagrams in fig. 6.1). When treating the
short-range dynamics by means of a cut-off, such terms do not appear. Finally, mo-
mentum dependent NN-contact terms contribute already at order O(k5

f ). While, due to
the higher order in small momenta, one expects these contributions to be smaller than
those from momentum independent contact terms, they should be included in a complete
O(k5

f ) calculation. We will take the effects of such contributions into account in chapter
7 and focus now on the other two aspects mentioned.

In ref. [22], Finelli et al. have compared the kf-dependence of the self energies ΣS,V (ρ) of
their point-coupling model, based on the chiral perturbation theory calculation described
in chapter 3, with that of the self energies obtained in full Dirac-Brueckner calculations
using the realistic Bonn A NN-potential [78]. After slightly readjusting the background
field parameters (controlling the “trivial” linear density dependence in the energy per par-
ticle) to account for the somewhat higher saturation density ρ0 = 0.185 fm−3 of ref. [78],
they have found that the difference in the kf-dependence is less than 10% over the entire
range of densities from 0.5ρ0 to 2.5ρ0 (see fig. 6.2).

Both the compared approaches treat pion exchange explicitly, including the Pauli
blocking effects on iterated one pion exchange which create the nontrivial kf-dependence
in the self energies (beyond order k3

f ). On the other hand, the iteration of short-distance
interactions to all orders in the Brueckner ladder (involving momenta much larger than
kf) generates similar self energy pieces (proportional to the density ρ) as a contact inter-
action described by a single high-momentum cut-off scale Λ. The successful comparison
between the perturbative chiral dynamics approach and the nonperturbative Brueckner
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Figure 6.2: Comparison of the kf-dependence of the isoscalar vector and scalar self ener-
gies resulting from a Dirac-Brueckner G-matrix calculation (crosses: DB [78]),
with the self energies generated from in-medium chiral perturbation theory
(solid line: CHPT + point-couplings up to 3-loop order in the energy density).
This plot is taken from ref. [22].

calculation implies that this contact interaction already represents the full short-range
T-matrix information and must not be iterated further.

Nevertheless, there have been calculations [13, 41, 79] which iterate the contact inter-
action or parts of it with itself and with pion exchange. We will briefly look at the
results obtained in these approaches. In their O(k4

f ) calculation, Lutz et al. [13] have, in
addition to chiral pion exchange, explicitly introduced two zero-range NN-contact inter-
actions (acting in 3S1 and 1S0 NN-states) proportional to the dimensionless parameters
g0 + g2

A/4 and g1 + g2
A/4 (see eq. (4) in ref. [13]). The components proportional to g2

A/4
cancel (order by order) the zero-range contribution generated by one-pion exchange. The
other components proportional to g0 and g1 are understood to subsume all nonpertur-
bative short-range NN-dynamics relevant at densities around nuclear matter saturation
density ρ0. Because of the nonperturbative dynamics contained in the parameters g0,1,
Lutz et al. do not iterate these parts with themselves. However, the g0,1 and g2

A/4 terms
are iterated with pion exchange and the g2

A/4 parts are also iterated with itself.
While in ref. [13] Lutz et al. obtain an equation of state with realistic saturation and

compressibility, we have shown in ref. [41] that the asymmetry energy and the neutron
matter equation of state in their approach suffer from the same deficiencies as the ones
shown in chapter 3, namely a downward bending at higher densities. The most serious
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Chapter 6 Dealing with the short range NN-terms

problem are however the unrealistic single-particle properties obtained in this scheme.
The potential depth of U(0, kf,0) = −20 MeV is by far too weakly attractive while on the
other hand the imaginary single-particle potential W (0, kf,0) = 51 MeV is too large. Most
importantly, the total single-particle energy Tkin(p)+U(p, kf,0) does not rise monotonically
with the nucleon momentum p, thus implying a negative effective nucleon mass at the
Fermi surface p = kf,0 (see fig. 3 in ref. [41]). In such an abnormal situation there exist
occupied nucleon-states in the Fermi sea with total energy higher than the Fermi energy,
indicating an instability of the system. As a matter of fact the overly strong momentum
dependence of the nuclear mean-field U(p, kf) in the scheme of Lutz et al. (leading to
∂U/∂p < −p/M) originates from those diagrams in which the strong and attractive
NN-contact interaction (proportional to g0 + g1 + g2

A/2) is further iterated. Of course,
such unrealistic single-particle properties also ruin the finite temperature behavior. This
becomes visible in a much too high critical temperature of the liquid-gas phase transition
of Tc & 40 MeV.

We have also studied an extended version of the Lutz approach in ref. [79]. There, pion
exchange is complemented by two zero-range NN-contact interactions thus exhausting
all possible terms up-to-and-including O(k4

f ). Alternatively, the interacting part of the
energy per particle can be understood (within this approximation to order O(k4

f )) as
to result from the Hartree and Fock contributions of a nucleon-nucleon T-matrix of the
form

TNN =
g2
A

4f 2�
[
σ1 · q σ2 · q
m2� + q2

τ 1 · τ 2 +
γ0 + 3γ1

2
+
γ1 − γ0

2
τ 1 · τ 2

]
, (6.1)

which is evaluated in first and second order perturbation theory (i. e. it is also iterated
once with itself). The two coefficients γ0 and γ1 parameterize the strength of the contact
interaction in NN-states with total isospin I = 0, 1. The linearly divergent loop-integrals
resulting from this iteration are regularized by a momentum cut-off Λ0,1 which is allowed
to depend on the total isospin I = 0, 1 of the two-nucleon system thus resulting in total
in four adjustable parameters.

The finding of ref. [79] is that within such a complete fourth order calculation there is
no optimal set of the four short-range parameters with which one could reproduce simul-
taneously and accurately all semi-empirical properties of nuclear matter. The conditions
for a good neutron matter equation of state and an improved strength function F∇(kf)
in the energy density functional (5.6) on the one hand and equally good single-particle
properties (and consequently a realistic finite temperature behavior) on the other hand
are in fact mutually exclusive in that approach.

The results of refs. [13, 41, 79] show that allowing an isospin dependence of the short-
range interaction does not significantly improve the detailed description of nuclear and
neutron matter. It seems that the isospin structure dictated by chiral one- and two-pion
exchange gives already a surprisingly good description of the isospin dependence of the
short-range dynamics. Furthermore, we see that iterating the NN-contact interaction
gives no improvement either. Therefore we stick to the conclusion that this iteration
should not be done, as indicated by the comparison to the Dirac-Brueckner results.
The NN-contact interaction already represents the full nonperturbative short-distance
dynamics.
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Chapter 7

Including virtual ∆(1232)-excitations

As already mentioned, the previously discussed chiral calculations of nuclear matter
[13, 14, 79] are still incomplete from the point of view of the driving pion-nucleon dy-
namics. They include only (S- and) P-wave Born terms but leave out the excitation of
the spin-isospin-3/2 ∆(1232)-resonance which is the prominent feature of low-energy � N-
scattering. It is also well known that the two-pion exchange between nucleons with exci-
tation of virtual ∆-isobars generates most of the needed isoscalar central NN-attraction.
In phenomenological one-boson exchange models this part of the NN-interaction is of-
ten simulated by a fictitious “σ”-meson exchange. A parameter-free calculation of the
isoscalar central potential ṼC(r) generated by 2� -exchange with single and double ∆-
excitation in ref. [80] (see fig. 2 therein) agrees almost perfectly with the phenomeno-
logical “σ”-exchange potential at distances r > 2 fm, but not at shorter distances. The
more detailed behavior of the 2� -exchange isoscalar central potential with single virtual
∆-excitation has the form [80]

Ṽ
(N∆)
C (r) = − 3g4

A

64π2f 4� ∆
e−2x

r6
(6 + 12x+ 10x2 + 4x3 + x4) ,

reminiscent of the van der Waals potential. Here x = m � r and the prefactor includes the
spin-isospin (axial) polarizability of the nucleon [81], g2

A/f
2� ∆ = 5.2 fm3, from the virtual

N → ∆(1232) → N transition. The familiar r−6-dependence of the nonrelativistic van
der Waals interaction emerges in the chiral limit, m � = 0.

As pointed out earlier, a consideration of mass scales also suggests to include the
∆(1232)-isobar as an explicit degree of freedom in nuclear matter calculations. The
delta-nucleon mass splitting of ∆ = 293 MeV is comparable to the Fermi momentum
kf,0 ' 262 MeV at nuclear matter saturation density. Propagation effects of virtual
∆(1232)-isobars can therefore be resolved at the densities of interest. Based on these
scale arguments we adopt a calculational scheme in which we count the Fermi momentum
kf , the pion mass m� and the ∆N -mass splitting ∆ simultaneously as “small scales”.
The nonrelativistic treatment of the nuclear matter many-body problem naturally goes
conform with such an expansion in powers of small momenta. Relativistic corrections
are relegated to higher orders in this expansion scheme. The leading contributions from
2� -exchange with virtual ∆-excitation to the energy per particle (or the single-particle
potential) are generically of fifth power in the small momenta (kf ,m� ,∆). With respect
to the counting in small momenta the effects from irreducible 2� -exchange evaluated in
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Chapter 7 Including virtual ∆(1232)-excitations

Figure 7.1: One-loop two-pion exchange diagrams with single and double ∆(1232)-isobar
excitation. Diagrams for which the role of both nucleons is interchanged are
not shown.

chapters 3 and 4 belong to the same order. However, since the � N∆-coupling constant is
about twice as large as the � NN-coupling constant, one can expect that the ∆-driven 2� -
exchange effects are the dominant ones. The importance of ∆(1232)-degrees of freedom
has also been pointed out in the “ab-initio” calculations of the Illinois group [3, 18].

In this chapter we extend the calculations of chapters 3 to 5 and systematically in-
clude all effects from 2� -exchange with virtual ∆-excitation up to three-loop order in the
energy density. The contributions to the energy per particle (or the single-particle poten-
tial) are again classified as two-body terms and three-body terms. The two-body terms
can be directly expressed through the NN-scattering T-matrix (i. e. the NN-potential in
momentum space). The three-body terms on the other hand can be interpreted as Pauli
blocking effects on the two-body terms imposed by the filled Fermi sea of nucleons. Note
that the notion of “three-body term” is taken here in a generalized context, namely in
the sense that three nucleons in the Fermi sea participate in interactions.

The NN T-matrix involves pion-loop diagrams which are in general ultra-violet di-
vergent and require regularization (and renormalization). We adopt here a suitably
subtracted dispersion-relation representation of the T-matrix where this procedure is
accounted for by a few subtraction constants. These constants are understood to en-
code unresolved short-distance NN-dynamics and include all contributions from both
momentum independent and p2 dependent NN-contact interactions (which are not fur-
ther iterated with pion exchange or with itself). The associated k3

f - and k5
f -terms in the

energy per particle are then adjusted to some empirical property of nuclear matter (e.g.
the binding energy of 16 MeV). This procedure replaces the cut-off regularization used
in chapters 3 to 5 and now also takes into account the effects from p2-dependent contact
terms.

7.1 Equation of state of symmetric nuclear matter

We start the discussion with the equation of state of isospin-symmetric nuclear matter.
We first present the contributions to the energy per particle Ē(kf) as they arise from
2� -exchange with single and double virtual ∆-isobar excitation.

Figure 7.1 shows the relevant one-loop triangle, box, and crossed box diagrams con-
tributing to the NN T-matrix (or the momentum space amplitude). The finite parts
of these diagrams have been evaluated analytically in section 3 of ref. [80] employing
the usual nonrelativistic ∆ ↔ � N transition vertices and ∆-propagator (see eq. (4) in
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7.1 Equation of state of symmetric nuclear matter

ref. [80]). By closing the two open nucleon lines to either two rings or one ring one gets
(in diagrammatic representation) the Hartree or Fock contribution to the energy density
of nuclear matter. The Hartree contribution to the energy per particle evidently goes lin-
ear with the nucleon density ρ = 2k3

f /3π
2, namely Ē

(H)
2 (kf) = −VC(0) ρ/2 with VC(0) the

isoscalar central NN-amplitude at zero momentum transfer [80]. The Fock contribution
on the other hand is obtained by integrating the spin- and isospin-contracted T-matrix
(depending on the momentum transfer variable |p1 −p2|) over the product of two Fermi
spheres |p1,2| < kf of radius kf . We separate regularization dependent short-range parts
in the T-matrix (originating from the divergences of the loop diagrams) from the unique
long-range terms with the help of a twice-subtracted dispersion relation. The resulting
subtraction constants give rise to a contribution to the energy per particle of the form:

Ē(NN)(kf) = B3
k3

f

M2
N

+B5
k5

f

M4
N

, (7.1)

where B3 and B5 are chosen for convenience as dimensionless. We interpret the param-
eters B3,5 to subsume all unresolved short-distance NN-dynamics relevant for isospin-
symmetric nuclear matter at low and moderate densities. The contributions of the 2� -
exchange (two-body) Hartree diagrams are proportional to ρ and thus are also included in
eq. (7.1) by means of the subtraction procedure. The long-range parts of the 2� -exchange
(two-body) Fock diagrams can be expressed as:

Ē
(F)
2 (kf) =

1

8π3

� ∞

2m� dµ Im(VC + 3WC + 2µ2VT + 6µ2WT )

{
3µkf −

4k3
f

3µ

+
8k5

f

5µ3
− µ3

2kf

− 4µ2 arctan
2kf

µ
+

µ3

8k3
f

(12k2
f + µ2) ln

(
1 +

4k2
f

µ2

)}
, (7.2)

where ImVC , ImWC , ImVT and ImWT are the spectral functions of the isoscalar and
isovector central and tensor NN-amplitudes, respectively. Explicit expressions of these
imaginary parts for the contributions of the triangle diagram with single ∆-excitation
and the box diagrams with single and double ∆-excitation can be easily constructed from
the analytical formulas given in section 3 of ref. [80]. The µ- and kf-dependent weighting
function in eq. (7.2) takes care that at low and moderate densities this spectral integral
is dominated by low invariant ��� -masses 2m� < µ < 1 GeV. The contributions to the
energy per particle from irreducible 2� -exchange (with only nucleon intermediate states)
can also be cast into the form eq. (7.2). The corresponding nonvanishing spectral func-
tions [73] are given in eqs. (B.20) and (B.21). The dispersion integrals � ∞

2m � dµ Im(. . . ) in
this and all following sections are understood to include the contributions from irreducible
2� -exchange (with only nucleon intermediate states).

Next, we come to the three-body terms which arise from Pauli blocking of intermediate
nucleon states (i. e. from the −2πθ(kf −|p|) terms of the in-medium nucleon propagators
eq. (2.23)). The corresponding closed Hartree and Fock diagrams with single virtual ∆-
excitation are shown in fig. 7.2. In the case of isospin-symmetric nuclear matter their
isospin factors are 8, 0, and 8, in the order shown. For the three-loop Hartree diagram
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Chapter 7 Including virtual ∆(1232)-excitations

Figure 7.2: Hartree and Fock three-body diagrams related to 2� -exchange with single
virtual ∆-isobar excitation. A single line with a double bar denotes the
medium part of the in-medium nucleon propagator, eq. (2.23). Thus the
shown diagrams represent interactions between three nucleons in the Fermi
sea.

the occurring integral over the product of three Fermi spheres of radius kf can be solved
in closed form and the contribution to the energy per particle reads:

Ē
(H)
3 (kf) =

g4
Am

6�
∆(2πf� )4

[
2

3
u6 + u2 − 3u4 + 5u3 arctan 2u− 1

4
(1 + 9u2) ln(1 + 4u2)

]
, (7.3)

with the abbreviation u = kf/m� where m� = 135 MeV again stands for the (neutral)
pion mass. The Delta propagator shows up in this expression merely via the (reciprocal)
mass-splitting ∆ = 293 MeV. Additional corrections to the Delta propagator coming
from differences of nucleon kinetic energies, etc. will make a contribution at least one
order higher in the small-momentum expansion. In eq. (7.3) we have already inserted
the empirically well-satisfied relation g � N∆ = 3g� N/√2 for the � N∆-coupling constant
together with the Goldberger-Treiman relation g � N = gAMN/f� (see e. g. eq. (5) in ref. [80]
for the ∆ → N� decay width). As usual f� = 92.4 MeV denotes the weak pion decay
constant and we choose the value gA = 1.3 in order to have a pion-nucleon coupling
constant of g� N = 13.2 [33].

We note that eq. (7.3) includes a repulsive term quadratic in the nucleon density.
This term is the only one which survives in the chiral limit m � = 0. In that limit the
momentum dependent � N∆-interaction vertices get canceled by the pion propagators
and thus one is effectively dealing with a zero-range three-nucleon contact interaction.
It is important to notice that this equivalence holds only after taking the spin-traces
but not at the level of the (spin and momentum dependent) 2� -exchange three-nucleon
interaction. The contribution of the (right) three-body Fock diagram in fig. 7.2 to the
energy per particle is given in eq. (B.24) in appendix B.2.1. The contributions to Ē(kf)
from the (relativistically improved) kinetic energy, from the 1� -exchange Fock diagram
and from the iterated 1� -exchange Hartree and Fock diagrams have been written down
in eqs. (B.11) to (B.16). The strongly attractive contribution from iterated 1� -exchange
linear in the density and the cutoff Λ (see eq. (B.17)) is now of course not counted extra
since B3 in eq. (7.1) collects all such possible terms.

At this stage, let us look at some generic properties of the nuclear matter equation of
state. Binding and saturation occurs in a wide range of the two adjustable parameters
B3,5. However, due to the repulsive ρ2-term from the three-body Hartree diagram (see
eq. (7.3)) the saturation curve rises much too steeply with increasing density. This causes
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7.1 Equation of state of symmetric nuclear matter

Figure 7.3: A 4-loop diagram which generates an
attractive ρ2-term similar to the NNN-
contact term (7.4).

a too low saturation density ρ0 and a too high nuclear matter compressibility, K >
350 MeV. We cure this problem in a minimal way by introducing an attractive three-
body contact term,

Ē(NNN)(kf) = B6
k6

f

M5
N

. (7.4)

The need for introducing such a three-body term into our calculation points to some
short-distance physics whose dynamical origin lies outside the present framework of per-
turbative chiral pion-nucleon interactions. On the other hand, there are certain four-loop
diagrams (such as the diagram in fig. 7.3 and the corresponding Fock diagram) which gen-
erate such attractive ρ2-terms.

Adding all pieces we arrive at the full energy per particle Ē(kf) at three-loop order.
It involves three parameters, B3 and B5 of the two-body contact term eq. (7.1) and
B6 which controls the three-body contact term, eq. (7.4). With these three adjustable
parameters it is in principle possible to fit the three quantities Ē0, ρ0, and K exactly.
On the other hand, one has to take into account that the parameter B5 also influences
the momentum dependence of the single-particle potential U(p, kf) (see next section).
For example, while the values B3 = −8.25, B5 = 10.5, and B6 = −57 yield excellent
saturation properties, Ē0 = −16 MeV, kf,0 = 262 MeV, and K = 270 MeV, the resulting
single-particle potential at p = 0 is too deep, U(p = 0, kf,0 = 262 MeV) = −107 MeV.

Both good saturation and good single-particle properties can be generated in the pa-
rameter range B3 ' −7.95 . . .−8, B5 ' −1 . . . 1, and B6 ' −29 . . .−34. Compared
to B3,5, the given values of B6 controlling the three-body contact term appear to be
relatively large. The resulting contribution to the energy per particle is however compa-
rable to the contributions from the 3-loop 3-body diagrams shown in fig. 7.2: Using the
value B̃6 = −g4

AM
5
N/[2∆(2πf� )4] = −31.3, the three-body contact term eq. (7.4) exactly

cancels the ρ2-term in eq. (7.3) and an analogous attractive contribution from the three-
body Fock diagram in eq. (B.24). For comparison, relativistic corrections (at sixth order
in small momenta) to iterated 1� -exchange and irreducible 2� -exchange (see appendix
B.1 in ref. [15]) generate an attractive ρ2 term of approximately −4.8k6

f /M
5
N. On the

other hand, the ρ2 contribution to Ē(kf) from the 4-loop diagram in fig. 7.3 is also quite
large. The energy per particle from this diagram and the corresponding Pauli blocking
diagram with four medium insertions (fig. B.1) has been evaluated in cut-off regulariza-
tion in appendix B.2.3. For a cut-off momentum of Λ & 460 MeV, the (cut-off dependent)
ρ2-term coming from these diagrams is equal to or larger than the NNN-contact term
(7.4) with B6 = B̃6 = −31.3. Therefore, a value B6 ' −30 is not unrealistic.

In the following, we set the three parameters to B3 = −7.99, B5 = 0, and B6 = B̃6 =
−31.3. We consider this choice to be optimal in order to obtain at the same time good
saturation properties and realistic single-particle properties (see next section). The full
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Figure 7.4: The energy per particle Ē(kf) of isospin-symmetric nuclear matter as a func-
tion of the nucleon density ρ = 2k3

f /3π
2. The dashed line refers to the result

of chapter 3, with only pions and nucleons as active degrees of freedom. The
full line includes effects from 2� -exchange with virtual ∆-excitation. The
short-range parameters are B3 = −7.99, B5 = 0, and B6 = −31.3.

line in fig. 7.4 shows the energy per particle resulting from these parameter values. The
predicted value of the saturation density is ρ0 = 0.157 fm−3, corresponding to a Fermi
momentum kf,0 = 261.6 MeV = 1.326 fm−1. This is very close to the semi-empirical
value ρ0 = 0.158 fm−3 obtained by extrapolation from inelastic electron scattering off
heavy nuclei [25]. The decomposition of the negative binding energy Ē0 = −16.0 MeV
into contributions of second, third, fourth, fifth, and sixth power in small momenta reads:
Ē0 = (21.9−145.5+107.8+13.6−13.8) MeV with the typical balance between large third
and fourth order terms (see section 3.2). Evidently, since Ē0 = −16.0 MeV is a small
number that needs to be fine-tuned in our calculation, there remains the question of the
“convergence” of the small momentum expansion. The nuclear matter compressibility
K = k2

f,0Ē
′′(kf,0) related to the curvature of the saturation curve at its minimum comes

out as K = 304 MeV. This value is somewhat large but still acceptable. It exceeds e. g.
the value K = 272 MeV obtained in the relativistic mean-field model of ref. [82] by only
12%. The dashed line in fig. 7.4 shows for comparison the equation of state resulting
from our previous chiral calculation from section 3.2 with no � N∆-dynamics included.
That calculation yielded a somewhat too high saturation density of ρ0 = 0.178 fm−3.
The compressibility K = 255 MeV had a better value, but the single-particle properties
and the density of states at the Fermi surface were not satisfactory. The stronger rise of
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7.2 Single-particle potential

the full curve in fig. 7.4 with density ρ is a consequence of including higher order terms
in the (small-momentum) kf-expansion. Of course, such behaviour at high density will
be modified by further four-loop contributions to the energy density, in which genuine
attractive three-body terms with intermediate ∆-hole excitations (such as fig. 7.3) play
a prominent role.

7.2 Single-particle potential

7.2.1 Real part

In this section we discuss the real part U(p, kf) of the nucleon’s single-particle potential.
As outlined in section 3.4 the contributions to the (real) nuclear mean-field U(p, kf)
can be classified as two-body and three-body potentials. The parameters B3,5 and B6

introduced in eqs. (7.1) and (7.4) reappear in contributions to the two- and three-body
potentials, respectively. They have the form

U
(NN)
2 (p, kf) = 2B3

k3
f

M2
N

+B5
k3

f

3M4
N

(3k2
f + 5p2) , (7.5)

U
(NNN)
3 (p, kf) = 3B6

k6
f

M5
N

. (7.6)

Their density and momentum dependence (or lack thereof) is completely fixed by the
Hugenholtz-van Hove theorem (3.15) and the sum rule,

Ē(kf) =
3

k3
f

� kf

0

dp p2

[
Tkin(p) +

1

2
U2(p, kf) +

1

3
U3(p, kf)

]
, (7.7)

which connects the single-particle potential to the energy per particle Ē(kf) [31]. By
splitting both sides of the sum rule (7.7) into contributions from the different diagrams
it is possible to directly relate Ē(NN)(kf) and Ē(NNN)(kf) to the corresponding integrals

over U
(NN)
2 (p, kf) and U

(NNN)
3 (p, kf), respectively.

Note that the three-body contact interaction (7.6) has no influence on the momentum
dependence of the single-particle potential. The contributions of 2� -exchange with virtual
∆-excitations are given in equations (B.95) to (B.97) in the appendix. The real single-
particle potential U(p, kf) is completed by adding to the terms eqs. (7.5,7.6) and (B.95-
B.97) the contributions from 1� -exchange and iterated 1� -exchange written down in
eqs. (B.87-B.91).

The slope of the real single-particle potential U(p, kf) at the Fermi surface p = kf

determines the effective nucleon mass (in the nomenclature of ref. [83], the product
of “k-mass” and “E-mass” divided by the free nucleon mass MN = 939 MeV) via the
relation:

M?
N(kf) = MN

[
1 − k2

f

2M2
N

+
MN

kf

∂U(p, kf)

∂p

∣∣∣∣
p=kf

]−1

. (7.8)
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Figure 7.5: Full line: real part of the single-particle potential U(p, kf,0) at saturation
density kf,0 = 261.6 MeV as a function of the nucleon momentum p. The
dotted line includes in addition the relativistically improved kinetic energy
Tkin(p) = p2/2MN − p4/8M3

N.

The second term −k2
f /2M

2
N in the square brackets comes from the relativistic correction

−p4/8M3
N to the kinetic energy.

The full line in fig. 7.5 shows the real part of the single-particle potential U(p, kf,0)
at saturation density kf,0 = 261.6 MeV as a function of the nucleon momentum p. The
dotted line includes in addition the relativistically improved kinetic energy Tkin(p) =
p2/2MN−p4/8M3

N. With the parameters B3 = −7.99, B5 = 0, and B6 = −31.3 chosen in
section 7.1 we find a potential depth of U(0, kf,0) = −78.2 MeV. This is very close to the
result U(0, kf,0) ' −80 MeV of the relativistic Dirac-Brueckner approach of ref. [38]. For
comparison, the calculation of ref. [37] based on the Paris NN-interaction finds a some-
what shallower potential depth of U(0, kf,0) ' −64 MeV. One observes that with the
chiral � N∆-dynamics included, the real single-particle potential U(p, kf,0) grows mono-
tonically with the nucleon momentum p. The downward bending above p = 180 MeV
displayed in fig. 3.4 is now eliminated. The slope at the Fermi surface p = kf,0 translates
into an effective nucleon mass of M?

N(kf,0) = 0.88MN. This is now a realistic value com-
pared to M?

N(kf,0) ' 3.5MN obtained in section 3.4.1 without explicit ∆-isobars. Note
also that the chiral approach of ref. [79] (see also chapter 6) has found the lower bound
M?

N(kf,0) > 1.3MN.
The dotted curve in fig. 7.5 for the total single-particle energy Tkin(p) + U(p, kf,0)

hits the value Ē(kf,0) = Ē0 = −16 MeV at the Fermi surface p = kf,0, as required
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Figure 7.6: The full line shows the real part of the single-particle potential U(0, kf) at
nucleon momentum p = 0 versus the density ρ = 2k3

f /3π
2. The band is ob-

tained from the universal low-momentum NN-potential Vlow k in linear density
approximation.

by the Hugenholtz-van Hove theorem eq. (3.15). This important theorem holds strictly
in our (perturbative) calculation, whereas (nonperturbative) Brueckner-Hartree-Fock ap-
proaches using ladder approximations often fail to respect it [84]. The smooth rise of
U(p, kf,0) as it crosses the Fermi surface and proceeds up to p ' 400 MeV is compatible
with other calculations [37,38]. Beyond this momentum scale one presumably exceeds the
limits of validity of the present chiral perturbation theory calculation of nuclear matter.

The full line in fig. 7.6 shows the potential depth U(0, kf) for a nucleon at the bottom
of the Fermi sea as a function of the nucleon density ρ = 2k3

f /3π
2. The band spanned

by the dotted lines stems from the universal low-momentum NN-potential Vlow k [19].
This Vlow k is found by decimating model dependent details of various short-distance NN-
interactions, using renormalization group methods. In linear density approximation the
single-particle potential depth generated by Vlow k(p, p

′) simply reads:

U(0, kf) =
3πρ

2MN

[
V

(1S0)
low k (0, 0) + V

(3S1)
low k (0, 0)

]
, (7.9)

with V
(1S0)
low k (0, 0) ' −1.9 fm and V

(3S1)
low k (0, 0) ' −(2.2 ± 0.3) fm [19, 85, 86], the two S-

wave potentials at zero momentum. It is interesting to observe that both potential
depths agree fairly well at low densities, ρ ≤ 0.07 fm−3. This agreement is by no means
trivial since Vlow k is constructed to reproduce accurately the low-energy NN-scattering
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Chapter 7 Including virtual ∆(1232)-excitations

data (phase-shifts and mixing angles) when iterated in a two-body Lippmann-Schwinger
equation, whereas our adjustment of the parameters Bi is made at saturation density,
ρ0 = 0.16 fm−3. It is evident from fig. 7.6 that a linear extrapolation does not work
from zero density up to nuclear matter saturation density. Strong curvature effects set
in already at Fermi momenta around kf ' m� once pion dynamics is treated explicitly.1

We note also that an “improved” determination of the potential depth U(0, kf) from
Vlow k, taking into account its momentum dependence in the repulsive Fock contribution,
leads to concave curves which bend below the straight dotted lines in fig. 7.6. In the case

V
(3S1)
low k (0, 0) = −1.9 fm the potential depth U(0, kf,0) at saturation density would increase

to −132.6 MeV (compared to −113.4 MeV in linear density approximation). The present
observations concerning the potential depth U(0, kf) may indicate why the calculations
of ref. [87] based on Vlow k did not find saturation of nuclear matter. It seems that
the Brueckner ladder does not generate all relevant medium modifications which set in
already at rather low densities kf ' m� (if the pion dynamics is treated explicitly).

7.2.2 Imaginary part

For completeness, we reevaluate the imaginary part W (p, kf) of the single-particle poten-
tial. To the three-loop order we are working here it is still given completely by iterated
1� -exchange with no contribution from the � N∆-dynamics or the contact interactions.
The only difference from the result in section 3.4.2 is the changed Fermi momentum.

Figure 7.7 shows the imaginary part of the single-particle potential W (p, kf,0) at the
new equilibrium Fermi momentum kf,0 = 261.6 MeV as a function of the nucleon mo-
mentum p. The quantity ±2W (p, kf) determines the width of a hole-state or a particle-
state of momentum p < kf or p > kf , respectively. The finite life time of such states
originates from redistributing energy into additional particle-hole excitations. Our pre-
dicted value W (0, kf,0) = 24.0 MeV at p = 0 is slightly reduced compared to the value
W (0, kf = 272.7 MeV) = 29.7 MeV found in section 3.4.2. However, it still lies in between
the results W (0, kf,0) ' 20 MeV of ref. [44] employing the Gogny D1 effective interaction
and W (0, kf,0) ' 40 MeV of ref. [37] using the Paris NN-potential.

The rapid growth of Γsp = −2W (p, kf) at large momenta is again an indication that
the validity of our chiral perturbation theory calculation is limited to small momenta,
p . 400 MeV.

7.3 Nuclear matter at finite temperature

We have seen that the inclusion of � N∆-dynamics greatly improves the momentum de-
pendence of the single particle potential near the Fermi surface. Now it is of further
interest to see what this improved behavior implies for nuclear matter at finite tempera-
ture, T ≤ 30 MeV, in particular with respect to the first-order liquid-gas phase transition.

1As example for the extreme inherent nonlinearities, consider the formula for the three-body potential

U
(H)
3 (0, kf) in eq. (B.96). Its mathematical Taylor-series expansion converges only for kf < m� /2.

This corresponds to tiny densities, ρ < 0.003 fm−3.
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Figure 7.7: The imaginary part of the single-particle potential W (p, kf,0) at saturation
density (kf,0 = 261.6 MeV) as a function of the nucleon momentum p. The
quadratic behavior around the Fermi surface p = kf,0 with a sign change of
the curvature is required by Luttinger’s theorem [42].

The critical temperature Tc = 25.5 MeV found in chapter 4 was considered too high in
comparison with the accepted empirical range.

As described there, we express the free energy density ρF̄ (ρ, T ) of isospin-symmetric
nuclear matter as a sum of convolution integrals over interaction kernels Kj multiplied
by powers of the density of nucleon states in momentum space. The kernel involving the
subtraction constants B3,5 reads

K(NN)
2 = 24π2B3

p1p2

M2
N

+ 20π2B5
p1p2

M4
N

(p2
1 + p2

2) , (7.10)

while the additional three-body contact interaction generates the following kernel:

K(NNN)
3 = 144π4B6

p1p2p3

M5
N

. (7.11)

Note that the B3- and B6-terms in eqs. (7.10) and (7.11) generate temperature inde-
pendent contributions to the free energy per particle, F̄ (ρ, T )(B3) = 3π2B3ρ/2M

2
N and

F̄ (ρ, T )(NNN) = 9B6π
4ρ2/4M5

N. The additional interaction kernels K2,3 arising from 2� -
exchange with virtual ∆-excitation are given in eqs. (B.39) to (B.41) in the appendix.
Temperature and density dependent Pauli blocking effects are incorporated in the three-
body kernel K3. The remaining kernels building up the free nucleon gas part and the
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Figure 7.8: Pressure isotherms P (ρ, T ) = ρ2∂F̄ (ρ, T )/∂ρ of isospin-symmetric nuclear
matter at finite temperature T . The coexistence region of the liquid and the
gas phase ends at the critical point: ρc ' 0.053 fm−3, Tc ' 15 MeV.

interaction contributions from 1� -exchange and iterated 1� -exchange have been written
in eqs. (B.28-B.31), eqs. (B.33-B.34), and eq. (4.6). It is needless to say that the extension
of our nuclear matter calculation to finite temperatures T does not introduce any new
adjustable parameter.

Figure 7.8 shows the calculated pressure isotherms P (ρ, T ) = ρ2∂F̄ (ρ, T )/∂ρ of isospin-
symmetric nuclear matter at six selected temperatures T = 0, 5, 10, 15, 20, 25 MeV. As
before these curves display a first-order liquid-gas phase transition similar to that of
the van der Waals gas. We find here a critical temperature of Tc ' 15 MeV and a
critical density of ρc ' 0.053 fm−3 ' ρ0/3. This critical temperature is close to the value
Tc = (16.6± 0.9) MeV extracted in ref. [52] from an analysis of limiting temperatures in
heavy ion collisions. In comparison, a critical temperature of Tc = (20±3) MeV has been
deduced in ref. [88] from multi-fragmentation data in proton-on-gold collisions. Other
nuclear matter calculations find a critical temperature typically around Tc ' 18 MeV
[27, 53, 54]. The reduction of Tc in comparison to Tc ' 25.5 MeV obtained previously
in chapter 4 results from the substantially improved momentum dependence of the real
single-particle potential U(p, kf,0) near the Fermi surface p = kf,0 (see fig. 7.5). As a
general rule the critical temperature Tc grows with the effective nucleon mass M?

N(kf,0)
at the Fermi surface.

The single-particle properties and the density of states around the Fermi surface are
decisive for the thermal excitations. They crucially influence the low temperature be-
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7.4 Nuclear energy density functional

havior of nuclear matter. The inclusion of the chiral � N∆-dynamics leads to a realistic
density of (thermally excitable) nucleon states at the Fermi surface, in contrast to an
approach based on pions and nucleons only. This is an important observation.

7.4 Nuclear energy density functional

In section 5.1 we have calculated the nuclear energy density functional from 1� - and
iterated 1� -exchange. Here we investigate the influence of � N∆-dynamics on this energy
density functional.

7.4.1 The strength functions

The contributions to the strength functions Fτ,d(kf) generated by 2� -exchange with vir-
tual ∆-excitation are given in appendix B.7.3. With the decomposition (5.8), these
expressions determine the contributions to the strength functions F∇(kf). The contribu-
tions from � N∆-dynamics to the spin-orbit strength function Fso(kf) have been calculated
in ref. [89]. The relevant equations are quoted in eqs. (B.142) and (B.143).

The regularization dependent contributions are again encoded in subtraction constants:

F (NN)
τ (kf) = B5

5k3
f

3M4
N

, F
(NN)
d (kf) =

Bd

M4
N

, F (NN)
so (kf) =

Bso

M4
N

, (7.12)

where the new parameter Bd = −M 4
NV

′′
C (0)/4 relates to the two-body Hartree diagrams

and the momentum transfer dependence of the isoscalar central NN-amplitude VC(q),
while the new parameter Bso = −3M 4

N[Vso(0) +Wso(0)]/4 comes from two-body Hartree
and Fock diagrams and the momentum transfer dependence of the isoscalar and isovector
spin-orbit NN-amplitudes Vso(q) and Wso(q). The strength functions Fτ,d,so(kf) are com-
pleted by adding to the terms in eqs. (B.134-B.145) the contributions from 1� -exchange
and iterated 1� -exchange as written in appendices B.7.1 and B.7.2. In order to be consis-
tent with the calculation of the energy per particle Ē(kf) and the single-particle potential
U(p, kf) we include the relativistic 1/M 2

N-correction eq. (B.113) to the 1� -exchange con-
tribution.

In the energy density functional (5.6), the expression multiplying the kinetic energy
density τ(r) has the interpretation of a reciprocal density dependent effective nucleon
mass:

M̃?
N(ρ) = MN

[
1 − 5k2

f

28M2
N

+ 2MN Fτ (kf)

]−1

. (7.13)

We note again that this effective nucleon mass M̃?
N(ρ) (entering the nuclear energy density

functional) is conceptually different from the so-called “Landau”-mass M?
N(kf) defined

in eq. (7.8). Only if the real single-particle potential has a simple quadratic dependence
on the nucleon momentum, U(p, kf) = U0(kf) + p2U1(kf), do these two variants of effec-
tive nucleon mass agree with each other (modulo very small differences related to the
relativistic k2

f /2M
2
N-correction).

In fig. 7.9 we show the ratio M̃?
N(ρ)/MN as a function of the nucleon density ρ =

2k3
f /3π

2. The dotted line corresponds to the result of section 5.1 based on 1� - and iterated
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Figure 7.9: The effective nucleon mass M̃?
N(ρ) divided by the free nucleon mass MN as a

function of the nucleon density ρ. The dotted line shows the result of section
5.1 based on single and iterated pion exchange only. The full line includes in
addition the effects from 2� -exchange with virtual ∆-excitation.

1� -exchange only. The full line includes in addition the effects from 2� -exchange with
virtual ∆-excitation. It is clearly visible that the inclusion of the � N∆-dynamics leads
to a substantial improvement of the effective nucleon mass M̃?

N(ρ) as it now decreases
monotonically with the density. This behavior is a direct reflection of the improved
momentum dependence of the real single-particle potential U(p, kf) (see fig. 7.5). Our
prediction for the effective nucleon mass at saturation density, M̃?

N(ρ0) = 0.64MN, is
comparable to the typical value M̃?

N(ρ0) ' 0.7MN found with phenomenological Skyrme
forces [61, 64]. The full curve in fig. 7.9 again displays strong curvature effects at low
densities ρ < 0.05 fm−3. They originate from the explicit presence of the small mass
scale m� = 135 MeV in our calculation.

Figure 7.10 shows the strength function F∇(kf) attached to the (∇ρ)2-term in the nu-
clear energy density functional, versus the nucleon density ρ = 2k3

f /3π
2. The dotted line

gives the result of section 5.1 based on 1� - and iterated 1� -exchange only and the full line
includes in addition the effects from 2� -exchange with virtual ∆-excitations. The sub-
traction constant Bd (representing density independent short-range contributions) has
been set to zero. In the region around saturation density ρ0 ' 0.16 fm−3 one observes a
clear improvement. Now the full line meets the band spanned by the three phenomeno-
logical Skyrme forces SIII [61], Sly [64] and MSk [69]. However, the strong rise of F∇(kf)
towards low densities remains. As explained in section 5.1.3, this behavior reflects chi-
ral singularities (of the form m−2� and m−1� ) in the contributions from 1� -exchange and
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Figure 7.10: The strength function F∇(kf) multiplying the (∇ρ)2-term in the nuclear
energy density functional versus the nucleon density ρ = 2k3

f /3π
2. The

dotted line shows the result of section 5.1 based on single and iterated pion
exchange only. The full line includes in addition the effects from 2� -exchange
with virtual ∆-excitation.

iterated 1� -exchange.
At lower densities ρ . 0.5ρ0, the strength function F∇(kf) and the equation of state

Ē(kf) are quite close to the results of section 5.1.3. The values of F∇(kf) and Ē(kf) in
this density regime determine, via eq. (5.12), the surface energy as of semi-infinite nuclear
matter. It is thus not surprising that the value as = 24.2 MeV, including the effects from
2� -exchange with virtual ∆-excitations, is only 1 MeV smaller than the value found in
section 5.1.3 based solely on 1� -exchange. The number as = 24.2 MeV still overestimates
semi-empirical determinations of the surface energy, such as as = 20.7 MeV of ref. [71]
or as = 18.2 MeV of ref. [70], by 17% or more.2 Of course, considering the strong rise
of the strength function F∇(kf) at low densities, the same reservations regarding the
reliability of the density-matrix expansion of Negele and Vautherin [60] at low densities
apply as in section 5.1.3. Therefore, one should not trust the curves in fig. 7.10 below
ρ = 0.05 fm−3. Getting the right order of magnitude for F∇(kf) in the density region
0.1 fm−3 < ρ < 0.2 fm−3 is already a highly satisfactory result.

In fig. 7.11 we show the strength function Fso(kf) related to the ∇ρ · J-term in the
energy density functional. The dotted line includes only the contributions from 1� - and

2One could reproduce the surface energy as = 20.7MeV of ref. [71] by adjusting the short-range
parameter Bd in eq. (7.13) to the value Bd = −75. The full curve for F∇(kf) in fig. 7.10 would then
be shifted downward by 29MeV fm5.

81



Chapter 7 Including virtual ∆(1232)-excitations

0 0.05 0.1 0.15 0.2

ρ [fm-3]

-100

-50

0

50

100

F so
 [M

eV
 fm

5 ]
Sly, S III, MSk

Figure 7.11: The strength function Fso(kf) multiplying the ∇ρ ·J-term in the nuclear en-
ergy density functional versus the nucleon density ρ = 2k3

f /3π
2. The dotted

line shows the result of section 5.1 based on single and iterated pion exchange
only. The full line includes in addition the effects from 2� -exchange.

iterated 1� -exchange. The full line also includes the contributions from 2� -exchange.
The corresponding expressions involving ∆-excitations have been calculated in ref. [89]
and are quoted in eqs. (B.142) and (B.143) while the contribution involving only nucleons
in intermediate states is given in a suitably subtracted form in eq. (B.145) (see also [90]).
Comparison of the full and dotted lines in fig. 7.11 shows that near saturation density,
ρ ' 0.16 fm−3, the contributions involving ∆-excitations nearly cancel the negative con-
tributions from 1� - and iterated 1� -exchange. To get close to the empirical values from
Skyrme calculations (the dashed lines in fig. 7.11), one still has to add a large positive
term by adjusting the subtraction constant Bso. This would account for the short range
spin-orbit strength resulting from the strong scalar and vector background fields of the
QCD ground state which is beyond chiral perturbation theory.

7.4.2 Example: Calculation of 40Ca

The results for F∇(kf) and Fso(kf) shown in figs. 7.10 and 7.11 already indicate that
the inclusion of � N∆-dynamics will not change the results for 40Ca significantly. Since
Fso(kf) still does not give a positive contribution, the conclusion that the spin-orbit force
is mainly generated by the large scalar and vector mean fields of the nuclear ground
state remains unchanged. Compared to section 5.1.4, a slightly smaller positive shift of
Cso ' 108 MeV fm5 (corresponding to a value of Bso ' 280 in eq. (7.12)) is required to
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7.5 Equation of state of pure neutron matter

reproduce the correct 6 MeV spin-orbit splitting in the 1d orbital.
Compared to the results in section 5.1, the shift of F∇(kf) towards the empirical region

and the resulting slightly lower surface energy as = 24.2 MeV entail somewhat improved
values E/A = −6.9 MeV for the binding energy and rC = 3.53 fm for the charge radius.
Adjusting Bd = −23.5 in eq. (7.12) (shifting F∇(kf) downward by C∇ = −9 MeV fm5)
leads to the correct Coulomb radius rC = 3.49 fm. However, even in this case the binding
energy E/A = −7.3 MeV is still approximately 15% below the empirical value Eexp/A =
−8.55 MeV.

On the other hand, by using a constant strength function F∇(kf) = 72.7 MeV fm5

and minimally adjusting the nuclear matter saturation point to kf,0 = 262.1 MeV and
Ē0 = −16.2 MeV (using B3 = −8.0) leads to a reproduction of the experimental binding
energy and Coulomb radius of 40Ca with an error of only 1%. This shows again that the
failure to describe 40Ca is mainly due to the unrealistically strong rise of F∇(kf) at low
densities.

7.5 Equation of state of pure neutron matter

This section is devoted to the equation of state of pure neutron matter. In comparison
with the calculation of isospin-symmetric nuclear matter in section 7.1, the only change
is in the isospin factors of the 2� -exchange diagrams with virtual ∆-excitation. The
short-range contribution reads

Ē(NN)
n (kn) = Bn,3

k3
n

M2
N

+Bn,5
k5

n

M4
N

, (7.14)

where Bn,3 and Bn,5 are two new subtraction constants. Note that the Pauli exclusion
principle forbids a three-neutron contact interaction. The remaining contributions from
2� -exchange are given in eqs. (B.71-B.73) in the appendix. All three three-body dia-
grams in fig. 7.2 have now the same isospin factor 2/3 since only the 2� 0-exchange is
possible between neutrons. The additional contributions to Ēn(kn) from the (relativis-
tically improved) kinetic energy, from 1� -exchange and from iterated 1� -exchange have
been written down in eqs. (B.62-B.67).

Figure 7.12 shows the energy per particle Ēn(kn) of pure neutron matter as a function
of the neutron density ρn = k3

n/3π
2. The dashed (concave) curve gives the result based

on chiral � N-dynamics only (see section 3.6). The full curve includes the chiral � N∆-
dynamics. The short-range parameters Bn,3 and Bn,5 (controlling the contribution of
a nn-contact interaction to Ēn(kn)) have been adjusted to the values Bn,3 = −0.95
and Bn,5 = −3.58.3 The dashed-dotted curve in fig. 7.12 is the result of the many-
body calculation of the Urbana group [18], to be considered as representative of realistic
neutron matter calculations. Moreover, the dotted curve gives one half of the kinetic
energy of a free neutron gas, Ēkin(kn)/2 = 3k2

n/20MN. Results of recent quantum Monte-
Carlo calculations in ref. [4] have demonstrated that the neutron matter equation of

3The short-range parameters Bn,3 and Bn,5 have been adjusted such that the asymmetry energy at
saturation density takes on the value Ā(kf,0) = 34MeV.
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Figure 7.12: The energy per particle Ēn(kn) of pure neutron matter as a function of the
neutron density ρn = k3

n/3π
2. The dashed curve gives the result of section

3.6. The full curve includes the � N∆-dynamics and two adjusted short-range
parameters Bn,3 = −0.95 and Bn,5 = −3.58. The dashed-dotted curve stems
from the sophisticated many-body calculation of the Urbana group [18]. The
dotted curve gives one half of the kinetic energy Ēn,kin(kn)/2 = 3k2

n/20MN.

state at low neutron densities ρn < 0.05 fm−3 is well approximated by this simple form.
One observes that up to ρn = 0.16 fm−3 our result for Ēn(kn) is very close to that of
the sophisticated many-body calculation [4, 18]. At higher densities we find a stiffer
neutron matter equation of state. This behavior cannot be changed much by tuning
the parameters Bn,3 and Bn,5. Again, one should not expect that our approach works
at Fermi momenta larger than kn ' 350 MeV corresponding to ρn = 0.19 fm−3. Note
that the same Fermi momentum in symmetric nuclear matter corresponds to twice this
density.

One of the most important results of the present calculation is that the unrealistic
downward bending of Ēn(kn) (as shown by the dashed curve in fig. 7.12) disappears after
the inclusion of the chiral � N∆-dynamics. This is a manifestation of improved isospin
properties.

7.6 Asymmetry energy

As a further test of isospin properties we consider in this section the density dependent
asymmetry energy Ā(kf). As outlined in section 3.5, the asymmetry energy is generally
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defined by the expansion of the energy per particle of isospin-asymmetric nuclear matter
(described by different proton and neutron Fermi momenta kp,n = kf(1 ∓ δ)1/3) around
the symmetry line:

Ēas(kp, kn) = Ē(kf) + δ2 Ā(kf) + O(δ4) . (7.15)

Following the scheme in the previous sections we get the following contribution to the
asymmetry energy Ā(kf) involving the subtraction constants B3,5:

Ā(NN)(kf) = (2Bn,3 −B3)
k3

f

M2
N

+ (3Bn,5 −B5)
10k5

f

9M4
N

. (7.16)

Here we have taken care of the fact that there are only two independent (S-wave) NN-
contact couplings which can produce terms linear in density. It is remarkable that also
the other coefficient 10(3Bn,5 − B5)/9 in front of the k5

f /M
4
N-term is completely fixed.

This fact can be shown on the basis of the most general order-p2 NN-contact interaction
written down in eq. (2.2) of ref. [91]. Out of the seven low-energy constants C1, . . . , C7

only two independent linear combinations, C2 and C1 + 3C3 + C6, come into play for
homogeneous and spin-saturated nuclear matter.

The additional three-nucleon contact interaction ∼ B6(N̄N)3 has the interesting prop-
erty that it contributes equally but with opposite sign to the energy per particle Ē(kf)
(see eq. (7.4)) and the asymmetry energy Ā(kf):

Ā(NNN)(kf) = −B6
k6

f

M5
N

. (7.17)

The asymmetry energy Ā(kf) is completed (at 3-loop order) by adding to the new terms
involving virtual ∆-excitations and the additional three-body contact interaction given
in eqs. (7.16-7.17) and (B.57-B.59) the contributions from the (relativistically improved)
kinetic energy, 1� -exchange and iterated 1� -exchange written down in eqs. (B.48-B.53)
in the appendix.

In the calculation of the asymmetry energy we use consistently the previously fixed
short-distance parameters B3 = −7.99, Bn,3 = −0.95, B5 = 0, Bn,5 = −3.58, and B6 =
−31.3. Figure 7.13 shows the asymmetry energy Ā(kf) as a function of the nucleon density
ρ = 2k3

f /3π
2. The dashed (concave) curve corresponds to the result based on chiral � N-

dynamics only (see section 3.5). The full curve includes the chiral � N∆-dynamics. The
corresponding value of the asymmetry energy at saturation density ρ0 = 0.157 fm−3 is
Ā(kf,0) = 34.0 MeV. It decomposes as Ā(kf,0) = (12.1 + 119.3 − 109.9 − 1.3 + 13.8) MeV
into contributions of second, third, fourth, fifth, and sixth power of small momenta, again
with a balance between large third and fourth order terms. The value Ā(kf,0) = 34.0 MeV
is consistent with most of the existing empirical determinations of the asymmetry energy.
For example, a recent microscopic estimate in a relativistic mean-field model (constrained
by some specific properties of certain nuclei) gave the value Ā(kf,0) = (34± 2) MeV [92].
For comparison, other empirical values obtained from extensive fits of nuclide masses are
Ā(kf,0) = 36.8 MeV [71] or Ā(kf,0) = 33.2 MeV [34]. The slope of the asymmetry energy at
saturation density, L = kf,0A

′(kf,0), is likewise an interesting quantity. As demonstrated
in fig. 11 of ref. [93] the neutron skin thickness of 208Pb is linearly correlated with the
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Figure 7.13: The asymmetry energy Ā(kf) as a function of the nucleon density ρ =
2k3

f /3π
2. The dashed curve shows the result of section 3.5. The full curve

includes the chiral � N∆-dynamics.

slope parameter L. We extract from the full curve in fig. 7.13 the value L = 90.8 MeV.
This prediction is not far from the values L ' 100 MeV quoted in ref. [71] and L =
119.2 MeV obtained from the “standard” relativistic force NL3 [94]. Furthermore, we
extract from the curvature of our asymmetry energy Ā(kf) at saturation density ρ0 the
positive asymmetry compressibility Kas = k2

f,0A
′′(kf,0) − 2L = 160.5 MeV.

Again, the most important feature visible in fig. 7.13 is that the inclusion of the chiral� N∆-dynamics eliminates the (unrealistic) downward bending of the asymmetry Ā(kf)
at higher densities ρ > 0.2 fm−3 (as displayed by the dashed curve in fig. 7.13). This is
once more a manifestation of improved isospin properties.

Via a generalization of the Hugenholtz-van Hove theorem eq. (3.15) to isospin-asym-
metric nuclear matter, one can relate the asymmetry energy Ā(kf) to the isovector single-
particle potential UI(p, kf) at the Fermi surface (p = kf):

UI(kf , kf) = 2Ā(kf) −
k2

f

3MN

+
k4

f

6M3
N

− kf

3

∂U(p, kf)

∂p

∣∣∣∣
p=kf

. (7.18)

The isovector single-particle potential UI(p, kf) is defined by the following decomposition
of the (real) single-particle potential in isospin-asymmetric nuclear matter:

U(p, kf) − UI(p, kf) τ3 δ + O(δ2) , δ =
ρn − ρp

ρn + ρp

, (7.19)
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with U(p, kf) the isoscalar (real) single-particle potential discussed in section 7.2. The
decomposition eq. (7.19) expresses the fact that any relative excess of neutrons over
protons in the nuclear medium leads to a different “mean-field” for a proton and a
neutron. UI(p, kf) can also be calculated explicitly in our framework. The results are
presented in ref. [95].

7.7 Chiral condensate

In this section we reinvestigate the influence of 1� - and 2� -exchange on the chiral con-
densate, now taking into account virtual ∆-excitations in intermediate states. As we
have seen in section 3.7, the chiral condensate at finite density is determined by the
dependence of the equation of state on the average quark mass m̄. This quark mass
dependence can be rewritten in terms of the pion mass:

〈q̄q〉ρ
〈q̄q〉0

= 1 − ρ

2m� f 2�
(

2σ� N
m� +

dĒ(kf)

dm�
)
. (7.20)

Apart from the explicit dependence on m� , Ē(kf) contains several quantities that have
unknown m� (or equivalently m̄) dependence. Apart from MN, gA, and f� already
mentioned in section 3.7, the inclusion of ∆-excitations now leads to the appearance of the
∆N-mass splitting ∆ and the ∆N-coupling (approximated as 3gA/

√
2 in our calculations),

which might also be modified when the pion mass changes. Because of these uncertainties,
we again restrict ourselves to the explicit m� dependencies in Ē(kf).

The full line in fig. 7.14 shows the ρ dependence of the chiral condensate caused by
1� - and 2� -exchange taking into account both nucleon and virtual ∆(1232)-intermediate
states. Comparison with the corresponding result incorporating only nucleon intermedi-
ate states (the dash-dotted line in fig. 7.14) shows that the contributions involving virtual
∆-excitations work against chiral restoration. However, even with this additional con-
tribution, the long-range dynamics represented by chiral 1� - and 2� -exchange does not
stabilize the chiral condensate. Therefore we expect that short-range dynamics encoded
in the regularization dependent subtraction constants B3 and B5 will have a crucial
influence on the behavior of the chiral condensate at finite density.

To improve the prediction of the chiral condensate, one would also have to take into
account the implicit m� dependence of gA, MN, etc. and calculate explicit expressions for
the subtraction constants B3 and B5 in e. g. dimensional or cut-off regularization. How-
ever, these expressions would include not only the contributions from pion loops (with
their specific m� dependence) but also terms involving low energy constants encoding
the contributions of contact interactions. These contact terms would then (just as the
three-body term involving B6) give rise to additional unknown m� dependence. There-
fore the best one could do within this given framework is calculate a band estimating a
range for the behavior of the chiral condensate. Similar problems were encountered in a
calculation of the deuteron binding energy in the chiral limit [96].

However, we can get an idea about the size of the missing corrections to the chiral
condensate by looking at terms contributing to the subtraction constants B3 and B5.
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Figure 7.14: The chiral condensate at density ρ as given by the explicit m � dependence
of 1� - and 2� -exchange taking into account both virtual ∆ and nucleon
intermediate states (full line) and only nucleon intermediate states (dash-
dotted line). These two curves do not include any contributions from short-
range dynamics, while the dotted curve corresponds to the full line plus
eq. (7.21). The dashed line shows the leading term from eq. (7.20) which
involves σ� N.

Terms proportional to odd powers of m � (i. e. fractional powers of the average quark
mass m̄) can only originate from pion loops since contact terms in the Lagrangian always
involve integer powers of the quark mass. As a matter of fact, the contributions of the
second and third diagram in fig. 7.1 give contributions to B3 and B5 proportional to m3�
and m1� respectively:

B3 = B
(rest)
3 − 15g4

AM
2
N

128∆f 4� π3
m3� B5 = B

(rest)
5 +

11g4
AM

4
N

1280∆f 4� π3
m� (7.21)

The m� dependent terms shown in eq. (7.21) are equal for dimensional and cut-off regu-
larization.4 While the m� term is quite small, the m3� term gives a sizable contribution
to the chiral condensate working against chiral restoration. The condensate including
this effect is shown as the dotted line in fig. 7.14. Including more regularization and

4The explicit results for B3,5 in cut-off regularization can be extracted from eqs. (B.12) to (B.18) of
ref. [15].
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scale dependent contributions from the pion loops to B3 and B5 results in a broad band
around the dotted line in fig. 7.14.

Note that at saturation density ρ0 the dotted line in in fig. 7.14 deviates from the
leading linear term by only about 10%. The use of the leading linear approximation for
the derivation of the scalar self energy from QCD sum rules in refs. [21, 22] is justified
within such errors, modulo remaining short range pieces not covered by the present
expansion.

As a conclusion we stress again that the long range contributions of 1� - and 2� -
exchange alone do not allow a reliable estimate for the chiral condensate. The short
range dynamics encoded in the subtraction constants B3 and B5 gives large corrections
which probably work against chiral restoration.

7.8 Final remarks

We have seen that by including the effects from two-pion exchange with single and double
virtual ∆(1232)-isobar excitation, the description of several semi-empirical properties of
nuclear matter can be greatly improved, however at the price of introducing an addi-
tional three-nucleon interaction involving the new parameter B6. This three-body term
accounts for short-range correlations in three-body terms outside of chiral perturbation
theory and for higher order terms such as 4-loop contributions to the energy density. The
momentum dependence of the real single-particle potential U(p, kf) is improved signifi-
cantly by including the chiral � N∆-dynamics. As a consequence the critical temperature
of the liquid-gas phase transition gets lowered to the realistic value Tc ' 15 MeV. The
isospin properties of nuclear matter are also substantially improved. The energy per
particle Ēn(kn) of pure neutron matter and the asymmetry energy Ā(kf) now show a
monotonic growth with density. In the density regime ρ = 2ρn < 0.2 fm−3 relevant
for conventional nuclear physics, we find good agreement with sophisticated many-body
calculations and (semi)-empirical values.

In passing we note that the inclusion of the chiral � N∆-dynamics guarantees the spin-
stability of nuclear matter [97]. These improvements can be traced back to repulsive
two-body Fock terms as well as three-body terms with a very specific density and mo-
mentum dependence. Open questions concerning the role of yet higher orders in the
small momentum expansion and its convergence remain and should be further explored.

Our calculation now accounts for the fact that there exist two hadronic scales, the
pion mass m� = 135 MeV and the delta-nucleon mass splitting ∆ = 293 MeV, which
are smaller than or comparable to the Fermi momentum kf,0 ' 262 MeV of equilibrated
nuclear matter. Propagation effects of quasi-particles associated with these “light” scales
are resolvable. Therefore pions and ∆-isobars must be included as explicit degrees of
freedom in the nuclear many-body problem. Controlled by a systematic expansion in
small scales (kf ,m� ,∆), the dynamics of the interacting � N∆-system is worked out up
to three-loop order in the energy density. In this effective field theory approach the basic
mechanism for nuclear binding and saturation are attractive 2� -exchange interactions
of the van der Waals type on which Pauli blocking acts in the nuclear medium. Most

89



Chapter 7 Including virtual ∆(1232)-excitations

other phenomenological approaches ignore these “light” physical degrees of freedom and
parameterize the relevant low-energy dynamics in terms of strongly coupled heavy scalar
and vector bosons (σ, ω, ρ, δ, etc.). Their propagation takes place on length scales of
0.5 fm or less and can therefore not be resolved in the domain relevant to nuclear physics.
We are instead guided by the observation that the nuclear many-body problem involves
the separation of scales that is characteristic of low-energy QCD and its (chiral) symmetry
breaking pattern.
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Chapter 8

Conclusions and outlook

In this thesis we have established a connection of various (semi-)empirical nuclear matter
observables to important aspects of low-energy QCD, using a calculational framework
based on chiral perturbation theory. The key ingredient is the separation of low and high
energy scales present in QCD. This separation becomes apparent in the hadron spectrum
as a mass gap between the pion mass m� ' 0.14 GeV and other typical hadronic masses
like the nucleon mass MN ' 1 GeV. At the densities of interest in nuclear physics, the
relevant scale in nuclear matter, the Fermi momentum kf ' 2m� , is roughly comparable
in magnitude to the pion mass. This fact leads to the identification of the pion as an
important dynamical degree of freedom that must be treated explicitly in nuclear matter
calculations. On the other hand, the detailed dynamics represented by the exchange of
heavier mesons, such as the  and the ω, is not resolved at the densities of interest and
can be subsumed in a few nucleon-nucleon contact interaction terms.

In addition to the nucleons and the pions, the ∆(1232)-isobar constitutes another im-
portant degree of freedom that should be treated explicitly. Since the relevant scale
arising in its contributions, the delta-nucleon mass splitting ∆ = 293 MeV, is also com-
parable to the Fermi momentum in nuclear matter, propagation effects of the ∆(1232)
can be resolved at the densities of interest. The ∆(1232)-resonance has been included
as a dynamical degree of freedom in the extended version of our calculational scheme
presented in chapter 7.

We have seen that a nuclear equation of state with realistic saturation properties
can already be generated by the simplest version of our framework, including only the
contributions of chiral one- and iterated one-pion exchange up to order O(k4

f ) and pa-
rameterizing all unresolved short-range dynamics with a simple momentum cut-off. This
finding is quite remarkable in two respects. Firstly, it is possible to reproduce three
(semi-)empirical quantities, namely the energy per particle Ē0 ' −16 MeV, the satura-
tion density ρ0, and the compression modulus K, by fine-tuning only a single adjustable
parameter. Secondly, since the saturation energy Ē0 arises by a cancellation of individ-
ually large terms, even comparatively small contributions are important on the scale of
Ē0 as we have demonstrated by omitting various parts of the pion exchange T-matrix. It
is therefore quite surprising how well the equation of state is reproduced by this simple
scheme. On the other hand, it is not important for the bulk saturation properties whether
the ∆(1232)-isobar is treated explicitly as a dynamical degree of freedom or implicitly
via the effective low-energy constants ci of the chiral pion-nucleon effective Lagrangian
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(see ref. [17]), thus counting the corresponding contributions as fifth or sixth order in
small momenta respectively. Nuclear saturation is already achieved by the lower order
terms up to O(k4

f ). In our framework, an adjustable term linear in ρ accounts for all
short-distance and nonperturbative dynamics, including possible strong Lorentz scalar
and vector fields which tend to cancel each other in nuclear properties with the exception
of the spin-orbit splitting.

Besides the saturation point we have also investigated several other interesting proper-
ties of nuclear matter. Among these are the single particle potential and the asymmetry
energy of nuclear matter and the equation of state of pure neutron matter. We have seen
that results for these quantities produced by a simple scheme not including the ∆(1232)-
degree of freedom and subsuming all short-range dynamics in a single adjustable cut-off
parameter are only partially satisfactory. For example, while the asymmetry energy
Ā(ρ0) at the saturation point is well reproduced and neutron matter is predicted to be
unbound, the curves for both the asymmetry energy and the neutron matter equation
of state show a downward bending behavior at higher densities that is presumably not
realistic. Furthermore, while the real part of the single particle potential has the correct
depth at p = 0, its momentum dependence is too strong resulting in an incorrect density
of states near the Fermi surface which in turn leads to a too high critical temperature
for the liquid-gas phase transition in nuclear matter.

These deficiencies are fixed by the extended framework introduced in chapter 7 which
includes the ∆(1232)-isobar explicitly and employs two parameters per isospin channel
for the unresolved short-range physics. The expansion is carried out up to three-loop
order and up to fifth order in small scales (m� , kf , ∆). In this scheme, the asymmetry
energy energy and the neutron matter equation of state are monotonically rising. The
momentum dependence of the single particle potential is significantly improved. As a
consequence the liquid-gas phase transition of nuclear matter has now a realistic critical
temperature Tc ' 15 MeV.

The calculation of inhomogeneous nuclear matter and finite nuclei described in chapter
5.1 using the energy density functional from � N-dynamics alone has not been quite as
successful. Chiral � N-dynamics alone turns out not to be able to provide the strong spin-
orbit force known from nuclear phenomenology. In the standard Skyrme interactions, this
feature is simply fixed by hand. A more satisfactory way is treating chiral pion exchange
as fluctuations on top of the large scalar and vector mean-fields of the QCD ground state
in the presence of a nuclear medium [21,22]. While these background fields mostly cancel
each other in the energy per particle they produce a large spin-orbit force in a natural
way.

The problems caused by the strong density dependence of our energy density func-
tional, leading to incorrect binding energies for finite nuclei, need to be further addressed.
The reason for this is not yet understood and it remains to be seen whether this is an
inherent problem of the density-matrix expansion [72] or whether it is related to our
perturbative framework. Perturbation theory may work in a certain range of Fermi mo-
menta, but fails at very low densities where the in-medium NN-amplitude must turn into
the (unitary) free T-matrix which cannot be handled perturbatively in central partial
waves.
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While these questions require further studies, our framework is successful at describing
most (semi-)empirical properties of nuclear matter such as the equations of state of isospin
symmetric nuclear matter and of pure neutron matter, the asymmetry energy, the single
particle potential, and the liquid-gas phase transition. We can therefore conclude that a
connection from nuclear physics to low-energy QCD in the spirit of effective field theory
is indeed possible. For this purpose it is important to incorporate the fact that there
are two hadronic scales, the pion mass and the delta-nucleon mass splitting that are
smaller than or comparable to the Fermi momentum of nuclear matter in equilibrium.
Therefore pions and ∆-isobars have to be included as explicit degrees of freedom in the
nuclear many-body problem. In our effective field theory approach nuclear binding and
saturation are primarily caused by attractive 2� -exchange interactions of the van der
Waals type on which Pauli blocking acts in the nuclear medium. The main guiding
principle is the separation of scales that is characteristic for low-energy QCD and its
(chiral) symmetry breaking pattern.

While we have investigated many features of the nuclear many-body problem, further
work still remains to be done. An obvious task is to look into the problems we had with
calculating finite nuclei based on the density-matrix expansion. It will also be interesting
to see whether the spin-orbit strength of nonrelativistic origin arising in this approach
will help understanding the much reduced spin-orbit splitting in Λ-hypernuclei.

Another area of interest is the already quite successful point-coupling model of refs. [21,
22] that treats chiral pionic fluctuations on top of the strong background fields arising
from the QCD ground state. This model is being updated towards our extended frame-
work that includes ∆(1232)-isobars explicitly. In this context, one should also verify
that the equivalence of the short-range interactions iterated to all orders in a Dirac-
Brueckner calculation to the effective NN-contact interactions in our approach still holds
when including the ∆(1232).

Of course another possible goal is to see whether our positive results persist when the
expansion in small momenta is carried out one order further, i. e. up to O(k6

f ). While the
relativistic corrections arising from three-loop diagrams seem to be rather small [15], the
very large number and complexity of four-loop diagrams make this enterprise very difficult
indeed. Before venturing this way, one should remember that a perturbative expansion in
quantum field theories generally results in an asymptotic series that converges towards the
real result only up to some optimal order. Such questions could also arise for in-medium
chiral effective field theory, in a window of Fermi momenta for which the expansion
parameter kf/4πf� is still small compared to one.

Finally, we want to mention the possibility to extend our calculations to spin-polarized
nuclear matter [97]. A comparison with Fermi liquid theory would then allow to calculate
the Landau-Migdal parameters g0 and g′0 which are important for many spin dependent
properties of nuclei [98]. The Fermi liquid parameter g ′0 has been accurately determined
from Gamow-Teller resonances [99] and could provide a further quantitative test for our
calculational framework.
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Appendix A

Outline of the Skyrme-Hartree-Fock
method

A.1 The Hartree-Fock method

The notion that nucleons in a nucleus move independently in an average potential created
by all of the nucleons can be justified by the success of the phenomenological shell
model (see section 2.1). This assumption leads to the problem of how to extract such a
single-particle potential out of the sum of two-body interactions. This can be done by a
variational principle using Slater determinants as trial wave functions. In the following,
we will give an outline of this method (see e. g. ref. [65] for a more complete introduction
and proofs of all the statements).

The variational equation,

δE[Ψ] = 0 , (A.1)

with

E[Ψ] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (A.2)

is equivalent to the exact Schrödinger equation

H|Ψ〉 = E|Ψ〉 . (A.3)

Variational methods become approximate as soon as |Ψ〉 is restricted to a set of math-
ematically simple trial wave functions, as is usually the case. If the true function is not
in this set, the variation no longer yields the exact eigenfunction. However, variational
methods are especially well suited for finding the ground state of a system, since the true
ground state energy E0 is a lower bound for the energy of any trial wave function |Ψ〉,

E[Ψ] ≥ E0 . (A.4)

In principle, it is also possible to calculate higher exited states by imposing the ad-
ditional condition that the wave function of the next exited state is orthogonal to the
(previously calculated) wave functions of the ground state and all lower exited states.
Obviously, this approach can get quite complicated for higher excitations.
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For a Fermion system, the simplest trial wave function is a Slater determinant

|HF〉 = |Φ(1 . . . A)〉 =
A∏

i=1

a†i |0〉 , (A.5)

in which the Fermion operators a†k, ak correspond to the single-particle wave functions φk.
This wave function Φ(1 . . . A) is the eigenfunction of an average single-particle potential

HHF =
A∑

i=1

h(i) , (A.6)

where the single-particle wave functions φk are in turn eigenfunctions of the single particle
Hamiltonians:

h(i)φk(i) = εkφk(i), i = {ri, si, ti} . (A.7)

If the Hamiltonian contains the kinetic energy and a two-body interaction, it can be
written as

H =
∑

l1,l2

tl1l2a
†
l1
al2 +

1

4

∑

l1,l2,l3,l4

v̄l1l2l3l4a
†
l1
a†l2al4al3 , (A.8)

with the antisymmetrized matrix elements

v̄l1l2l3l4 = vl1l2l3l4 − vl1l2l4l3 . (A.9)

Carrying out the variation (A.1) while making sure that one stays within the set of Slater
determinants leads to

hkk′ = tkk′ +
A∑

i=1

v̄kik′i = εkδkk′ . (A.10)

In general, one does not know the wave functions φk beforehand and uses some arbi-
trary, complete and orthogonal set of single-particle wave functions {χl}. The φk can
then be expanded in this basis,

φk =
∑

l

Dlk χl , (A.11)

with D unitary, i. e. D†D = DD† = 1. With the transformation D, one converts
eq. (A.10) into the Hartree-Fock equations

∑

l′

hll′Dl′k =
∑

l′

(
tll′ +

A∑

i=1

∑

pp′

v̄lp′l′pDpiD
∗
p′i

)
Dl′k = εkDlk . (A.12)

These represent a Hermitian eigenvalue problem. The coefficients Dlk found by its solu-
tion determine the single-particle wave functions φk. The problem is nonlinear because
the matrix h depends on the wave functions φk and thus on the density ρ. Eq. (A.6) can
now be written as:

HHF =
∑

kk′

hkk′a†kak′ =
∑

kk′

(
tkk′ +

A∑

j=1

v̄kjk′j

)
a†kak′ =

∑

k

εka
†
kak . (A.13)
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A.2 The Skyrme force

The Slater determinant |HF〉, where the lowest A levels are occupied, corresponds to an
energy E which is stationary against small variations of the wave functions. This energy
can be expressed as

EHF
0 =

A∑

i=1

εi −
1

2

A∑

i,j=1

v̄ijij . (A.14)

Note that this is not the sum of the single-particle energies.

A.2 The Skyrme force

Of the many phenomenological interactions that have been used in Hartree-Fock calcula-
tions, the Skyrme force has been particularly popular because of its analytical simplicity
and its ability to reproduce nuclear properties over the whole periodic table. It is a
zero-range, density and momentum dependent force of the form

VSkrme = t0(1 + x0Pσ)δ(r1 − r2) +
1

2
t1(1 + x1Pσ)

[
p 2

12δ(r1 − r2) + δ(r1 − r2)p
2
12

]

+ t2(1 + x2Pσ)p12 · δ(r1 − r2)p12 +
1

6
t3(1 + x3Pσ)ρα(R)δ(r1 − r2)

+ � W0p12 · δ(r1 − r2)(σ1 + σ2) × p12 , (A.15)

with the relative momentum operator p12 = (∇1 − ∇2)/2� , the spin exchange operator
Pσ = 1

2
(1 + σ1σ2), and R = 1

2
(r1 + r2). For x3 = α = 1, the density dependent term

proportional to t3 is equivalent to a zero-range three-body force:

V3 = t3 δ(r1 − r2) δ(r2 − r3) . (A.16)

However, this equivalence is only valid in even-even nuclei with time-reversal symmetry.
For simplicity, we consider only N = Z nuclei with time-reversal invariance, neglect the
Coulomb field, and set x1 = x2 = 0 in the following.

When using density dependent interactions, one has to modify the scheme described
in section A.1 by calculating the energy first and only afterwards vary with respect to
the density [65]. Because of the δ-function character of the Skyrme force, it is possible
to express the expectation value of the energy E in terms of three local quantities, the
nucleon density,

ρ(r) =
∑

i,s,t

|φi(r, s, t)|2 , (A.17)

the kinetic energy density,

τ(r) =
∑

i,s,t

|∇φi(r, s, t)|2 , (A.18)

and the spin orbit densities,

J(r) = (−� ) ∑
i,s,s′,t

φ∗
i (r, s, t)[∇φi(r, s

′, t) × σss′ ] . (A.19)
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Appendix A Outline of the Skyrme-Hartree-Fock method

The sums are taken over all occupied single-particle states. One gets

E =

�
d3r E(r) , (A.20)

with

ESkyrme(r) =
1

2MN

τ +
3

8
t0ρ

2 +
1

16
t3ρ

α+2 +
1

16
(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 +

3

4
W0 J · ∇ρ+

1

32
(t1 − t2)J

2 (A.21)

In general, it is difficult to express τ and J in terms of ρ. However, it is possible to
rewrite the variation of the energy as

δE =

�
d3r[B(r)δτ(r) + U(r)δρ(r) + W(r)δJ(r)] , (A.22)

with the local potentials

B(r) =
δE
δτ(r)

, U(r) =
δE
δρ(r)

, W(r) =
δE
δJ(r)

. (A.23)

B(r) = 1/2M?
N(r) is proportional to the inverse effective mass. After inserting the

variations of δτ , δρ, and δJ with respect to φi into eq. (A.22), one gets the Hartree-Fock
equations in coordinate space:

{
−∇B(r)∇ + U(r) + W(r)

1

� (∇ × σ)

}
φi(r) = εiφi(r) . (A.24)

It is also possible to directly parameterize the energy density functional (A.21) with-
out reference to an effective two-body force. The form of the energy functional is then
obtained as local density approximation to the nuclear T-matrix [7,60]. We have adapted
this procedure to calculate the energy density functional from chiral pion nucleon dy-
namics in section 5.1.
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Appendix B

Analytical expressions for some results

In this appendix we present explicit results that are too bulky to be presented in the
main text. For easy reference, we also include some of the results of refs. [14,15,31,90].

B.1 Abbreviations

Here we collect abbreviations and auxiliary functions used often throughout this ap-
pendix.

u =
kf

m� for symmetric nuclear matter (B.1)

u =
kn

m� for pure neutron matter (B.2)

H = ln
u+ xy

u− xy
(B.3)

s = xy +
√
u2 − x2 + x2y2 (B.4)

t = xz +
√
u2 − x2 + x2z2 (B.5)

σ = ξy +
√
u2 − ξ2 + ξ2y2 (B.6)

σx = ξy +
√
u2 − x2 + ξ2y2 (B.7)

R =
√

(1 + x2 − ξ2)2 + 4ξ2(1 − y2) (B.8)

ymin =
√

1 − u2/x2 (B.9)

G(x) = u(1 + u2 + x2) − 1

4x

[
1 + (u+ x)2

][
1 + (u− x)2

]
ln

1 + (u+ x)2

1 + (u− x)2
(B.10)

B.2 Energy per particle of symmetric nuclear matter

B.2.1 Zero temperature

Here, we repeat for the reader’s convenience the results of ref. [14] for the energy per
nucleon of symmetric nuclear matter.
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Appendix B Analytical expressions for some results

Kinetic energy

including the first relativistic correction:

Ēkin(kf) =
3k2

f

10MN

− 3k4
f

56M3
N

. (B.11)

One-pion exchange

Fock diagram:

Ē
(1� )
2 =

3g2
Am

3�
(4πf� )2

{
u3

3
+

1

8u
− 3u

4
+ arctan 2u−

( 3

8u
+

1

32u3

)
ln(1 + 4u2)+

m2�
40M2

N

[
40

3
u3 − 8u5 + 9u+

1

2u
− (12u2 + 5) arctan 2u− 1

8u3
ln(1 + 4u2)

]}
. (B.12)

When truncating at O(k4
f ), the second line in eq. (B.12) has to be omitted. The one-pion

exchange Hartree diagram vanishes for a spin-saturated system.

Iterated one-pion exchange

Ē
(H,F)
2,3 give the contributions of the Hartree and Fock diagrams with two and three

medium insertions, respectively. The terms coming from linear divergences specific to
cut-off regularization are collected in eq. (B.17).

Ē
(H)
2 =

3g4
AMNm

4�
5(8π)3f 4�

{
9

2u
− 59u+ (60 + 32u2) arctan 2u−

(
9

8u3
+

35

2u

)
ln(1 + 4u2)

}
(B.13)

Ē
(F)
2 =

g4
AMNm

4�
(4π)3f 4�

{
u3

2
+

� u

0

dx
3x(u− x)2(2u+ x)

2u3(1 + 2x2)
×

[
(1 + 8x2 + 8x4) arctanx− (1 + 4x2) arctan 2x

]}
(B.14)

Ē
(H)
3 =

9g4
AMNm

4�
(4πf� )4u3

� u

0

dxx2

� 1

−1

dy
[
2uxy + (u2 − x2y2)H

]
×

[
2s2 + s4

1 + s2
− 2 ln(1 + s2)

]
(B.15)

Ē
(F)
3 =

9g4
AMNm

4�
(4πf� )4u3

� u

0

dx

{
G2(x)

8
+
x2

4

� 1

−1

dy

� 1

−1

dz
yz θ(y2 + z2 − 1)

|yz|
√
y2 + z2 − 1

×
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B.2 Energy per particle of symmetric nuclear matter

[
s2 − ln(1 + s2)

][
ln(1 + t2) − t2

]}
(B.16)

The Hartree and Fock diagram contribute to eq. (B.17) with a ratio of 4:1.

ĒΛ(kf) =
−10g4

AMN

(4πf� )4
k3

f Λ (B.17)

Irreducible two-pion exchange in cut-off regularization

Ē(2� ) =
m5�

(4πf� )4

{[
3

32u3
(43g4

A + 6g2
A − 1) +

3

4u
(23g4

A + 2g2
A − 1)

]
×

ln2(u+
√

1 + u2) +

[
u4

5
(11g4

A − 10g2
A − 1) +

u2

10
(59g4

A − 50g2
A − 9)+

1

40
(883g4

A − 90g2
A − 73) +

3

16u2
(1 − 6g2

A − 43g4
A)

]√
1 + u2 ln

(
u+

√
1 + u2

)
+

3

32u
(43g4

A + 6g2
A − 1) +

u

160
(397 + 210g2

A − 5647g4
A) +

u3

5
(4 + 5g2

A + 31g4
A)+

u5

600
(119 + 710g2

A − 349g4
A) +

[
u3(15g4

A − 6g2
A − 1)+

u5

5
(11g4

A − 10g2
A − 1)

]
ln
m�
2Λ

}
+

(3g2
A + 1)(g2

A − 1)

(4πf� )4
k3

f Λ
2 (B.18)

Regularization with dispersion integral

Here, we give the results for 2� -exchange (involving nucleons and Deltas in intermediate
states) in an dispersion integral representation. The long-range parts of the 2� -exchange
(two-body) Fock diagrams are:

Ē
(F)
2 (kf) =

1

8π3

� ∞

2m� dµ Im(VC + 3WC + 2µ2VT + 6µ2WT )

{
3µkf −

4k3
f

3µ

+
8k5

f

5µ3
− µ3

2kf

− 4µ2 arctan
2kf

µ
+

µ3

8k3
f

(12k2
f + µ2) ln

(
1 +

4k2
f

µ2

)}
. (B.19)

ImVC , ImWC , ImVT and ImWT are the spectral functions of the isoscalar and isovector
central and tensor NN-amplitudes, respectively. Explicit expressions of these imaginary
parts for the contributions of the triangle diagram with single ∆-excitation and the
box diagrams with single and double ∆-excitation can be easily constructed from the
analytical formulas given in section 3 of ref. [80]. The corresponding nonvanishing spec-
tral functions for irreducible two-pion exchange (with only nucleon intermediate states)
read [73]:

ImWC(iµ) =

√
µ2 − 4m2�

3πµ(4f� )4

[
4m2� (1+4g2

A−5g4
A)+µ2(23g4

A−10g2
A−1)+

48g4
Am

4�
µ2 − 4m2�

]
, (B.20)
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Appendix B Analytical expressions for some results

ImVT (iµ) = −6g4
A

√
µ2 − 4m2�

πµ(4f� )4
. (B.21)

The double subtraction of the dispersion integral (B.19) leads to the following contact
contribution with the two subtraction constants B3 and B5:

Ē(NN)(kf) = B3
k3

f

M2
N

+B5
k5

f

M4
N

, (B.22)

The Hartree diagram with three medium insertions gives:

Ē
(H)
3 (kf) =

g4
Am

6�
∆(2πf� )4

[
2

3
u6 + u2 − 3u4 + 5u3 arctan 2u− 1

4
(1 + 9u2) ln(1 + 4u2)

]
. (B.23)

The Fock diagram with three medium insertions gives:

Ē
(F)
3 (kf) = − 3g4

Am
6� u−3

4∆(4πf� )4

� u

0

dx
[
2G2

S(x, u) +G2
T (x, u)

]
, (B.24)

where we have introduced the two auxiliary functions:

GS(x, u) =
4ux

3
(2u2 − 3) + 4x

[
arctan(u+ x) + arctan(u− x)

]
+

(x2 − u2 − 1) ln
1 + (u+ x)2

1 + (u− x)2
, (B.25)

GT (x, u) =
ux

6
(8u2 + 3x2) − u

2x
(1 + u2)2+

1

8

[
(1 + u2)3

x2
− x4 + (1 − 3u2)(1 + u2 − x2)

]
ln

1 + (u+ x)2

1 + (u− x)2
. (B.26)

Additional three-body contact interaction

Ē(NNN)(kf) = B6
k6

f

M5
N

. (B.27)

B.2.2 Finite temperature kernels

In this section, we present the kernels which determine via eq. (4.1) the non-anomalous
contributions to the free energy per particle F̄ (ρ, T ) at finite temperature. The one-body
kernel K1 reads:

K1 = µ̃− p2
1

3MN

− p4
1

8M3
N

(B.28)
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B.2 Energy per particle of symmetric nuclear matter

One-pion exchange

1� -exchange Fock diagram including the relativistic 1/M 2
N-correction:

K(1π)
2 =

3g2
A

16f 2�
{

8p1p2 − 2m2� ln
m2� + (p1 + p2)

2

m2� + (p1 − p2)2

+
1

M2
N

[
− 4p1p2(p

2
1 + p2

2) +m2� (p2
1 + p2

2) ln
m2� + (p1 + p2)

2

m2� + (p1 − p2)2

− 2m2� p1p2(p
2
1 − p2

2)
2

[m2� + (p1 + p2)2][m2� + (p1 − p2)2]

]}
(B.29)

Iterated one-pion exchange

Iterated 1� -exchange Hartree graph (second diagram in fig. 3.1) two-body term:

K(H)
2 =

3g4
AMNm

2�
8πf 4�

{
(p1 + p2) arctan

p1 + p2

m� +

(p2 − p1) arctan
p1 − p2

m� − 5

8
m� ln

m2� + (p1 + p2)
2

m2� + (p1 − p2)2

}
. (B.30)

Iterated 1� -exchange Fock graph (third diagram in fig. 3.1) two-body term:

K(F)
2 =

3g4
AMNm�
32πf 4�

{
2p1p2 +m2�

� (p1+p2)/2m�
|p1−p2|/2m�

dx

1 + 2x2
×

[
(1 + 8x2 + 8x4) arctan x− (1 + 4x2) arctan 2x

]}
(B.31)

In the two previous expression we have omitted the contribution of a linear divergence
proportional to the momentum cut-off Λ. These are given by

K(Λ)
2 = −15g4

AMN

16π2f 4� Λ p1p2 , (B.32)

with the Hartree and Fock diagrams contributing in the ratio 4 : 1. Note that the kernel
K(Λ)

2 in eq. (B.32) (and the term proportional to Λ2 in eq. (B.36)) leads to a temperature
independent contribution to free energy per particle F̄ (ρ, T ) ∼ ρ. Therefore it is fully
equivalent to a momentum independent NN-contact interaction.

Next, we come to the three-body kernel K3 which incorporates the temperature and
density dependent Pauli blocking effects in intermediate NN-states. The iterated 1� -
exchange Hartree graph contributes to the three-body kernel K3 in the form:

K(H)
3 =

3g4
AMN

4f 4�
� p1+p2

|p1−p2|

dq
q4

(m2� + q2)2
ln

|p2
1 − p2

2 + q2 + 2p3q|
|p2

1 − p2
2 + q2 − 2p3q|

, (B.33)

and from the iterated 1� -exchange Fock graph one finds,
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K(F)
3 =

3g4
AMN

16f 4�
{

1

8p3
3

[
4p1p3 + (p2

3 − p2
1 −m2� ) ln

m2� + (p1 + p3)
2

m2� + (p1 − p3)2

]
×

[
4p2p3 + (p2

3 − p2
2 −m2� ) ln

m2� + (p2 + p3)
2

m2� + (p2 − p3)2

]
+

� p2+p3

|p2−p3|

dq
q2

m2� + q2

[
ln

|p1 + h|
|p1 − h| +

m2�
Rh

ln
|p1Rh + (p2

1 − p2
3 −m2� )h|

|p1Rh + (p2
3 +m2� − p2

1)h|

]}
, (B.34)

with the abbreviations

Rh =
√

(m2� + p2
1 − p2

3)
2 + 4m2� (p2

3 − h2) , h =
1

2q
(p2

2 − p2
3 − q2) . (B.35)

Irreducible two-pion exchange in cut-off regularization

The irreducible two-pion exchange Fock diagrams (see fig. 3.2) with only nucleons in
intermediate states yield

K(2π)
2 =

m4�
128π2f 4�

{
I

(
p1 + p2

2m�
)
− I

( |p1 − p2|
2m�

)}
+

(9g2
A + 3)(g2

A − 1)

32π2f 4� Λ2 p1p2 , (B.36)

with the function

I(x) = 3(11g4
A − 2g2

A − 1) ln2(x+
√

1 + x2)+

2(g2
A − 1)

[
g2
A(31 + 22x2) + 5 + 2x2

]
x
√

1 + x2 ln(x+
√

1 + x2)+

(7 − 2g2
A + 91g4

A)x2 + (3 + 14g2
A − g4

A)x4+
[
12(15g4

A − 6g2
A − 1)x2 + 4(11g4

A − 10g2
A − 1)x4

]
ln
m�
2Λ

, (B.37)

obtained from solving the pion-loop integrals.

Note that all integrands in representations of K2,3 are odd functions of their respec-
tive integration variable and therefore one could even drop the absolute magnitude on
the lower integration limits. We also remind that (non-anomalous) terms involving the
product of four Fermi-Dirac distributions are effectively absent in second order perturba-
tion theory [57]. Because of the antisymmetry of the accompanying energy denominator
under the exchange of two pairs of momenta these terms integrate to zero.

The anomalous contribution involving � N-dynamics is given in eq. (4.6).

Two-pion exchange involving virtual Delta excitations

The two-body kernels read:

K(NN)
2 = 24π2B3

p1p2

M2
N

+ 20π2B5
p1p2

M4
N

(p2
1 + p2

2) , (B.38)
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K(F)
2 =

1

π

� ∞

2m � dµ Im(VC + 3WC + 2µ2VT + 6µ2WT )×
{
µ ln

µ2 + (p1 + p2)
2

µ2 + (p1 − p2)2
− 4p1p2

µ
+

4p1p2

µ3
(p2

1 + p2
2)

}
. (B.39)

The contributions of the Hartree and Fock diagrams in fig. 7.2 to the three-body kernel
read:

K(H)
3 =

3g4
Ap3

∆f 4�
{

2p1p2 +
2m4� p1p2

[m2� + (p1 + p2)2][m2� + (p1 − p2)2]
−

m2� ln
m2� + (p1 + p2)

2

m2� + (p1 − p2)2

}
, (B.40)

K(F)
3 = − g4

A

4∆f 4� p3

[
2X(p1)X(p2) + Y (p1)Y (p2)

]
, (B.41)

X(p1) = 2p1p3 −
m2�
2

ln
m2� + (p1 + p3)

2

m2� + (p1 − p3)2
, (B.42)

Y (p1) =
p1

4p3

(5p2
3 − 3m2� − 3p2

1) +
3(p2

1 − p2
3 +m2� )2 + 4m2� p2

3

16p2
3

ln
m2� + (p1 + p3)

2

m2� + (p1 − p3)2
. (B.43)

Additional three-body contact interaction

K(NNN)
3 = 144π4B6

p1p2p3

M5
N

. (B.44)

B.2.3 Selected higher order diagrams

Let us consider diagrams of the type of fig. 7.3 and fig. B.1, where a pion couples to a
Delta-hole pair. The energy per particle generated by such diagrams can be calculated by
considering iterated 1� -exchange diagrams and replacing one pion propagator according
to fig. B.2. The additional factors introduced by this replacement can be implemented
by a combination of derivatives with respect to the pion mass. In the case of the two

Figure B.1: A 4-loop diagram which can be eas-
ily calculated from results from iterated
1� -exchange by replacing the pion prop-
agator.

−→ Figure B.2: Replacement which generates fig. B.1
from iterated 1� -exchange (see fig. 3.1).
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Figure B.3: Comparison of the contribution Ē(4H)(ρ,Λ) from the 4-loop Hartree diagrams
figs. 7.3 and B.1 for Λ = 440 MeV (dashed line) and Λ = 460 MeV (full line)
with the three-body contact interaction eq. (7.4) using B6 = −31.3 (dotted
line).

Hartree diagrams of fig. 7.3 and fig. B.1 this procedure results in:

Ē(4H)(kf ,Λ) =
4g2

Aρ

∆f 2�
(
Ē(it.1� ,H)(kf ,Λ) +

m�
4

∂

∂m� Ē(it.1� ,H)(kf ,Λ)

)
, (B.45)

where

Ē(it.1� ,H)(kf ,Λ) = Ē
(H)
2 (kf) + Ē

(H)
3 (kf) +

4

5
ĒΛ(kf ,Λ) (B.46)

is the result (using cut-off regularization) from the (3-loop) iterated 1� -exchange Hartree
diagram (see eqs. (B.13), (B.15), and (B.17)). A possible numerical approximation to
eq. (B.45) is:

Ē(4H)(kf ,Λ) '
(
2.742u6 − 0.4424u7 + 0.1865u8

)
MeV − Λu6

153.3
, (B.47)

with u = kf/m� . With a cut-off Λ ' 460 MeV, the ρ2-term in the approximation
eq. (B.47) is equal in magnitude to the three-body contact term Ē(NNN)(kf) with a
strength parameter B6 = −31.3. The complete contribution Ē(4H)(ρ,Λ = 460 MeV)
is shown as the full line in fig. B.3. For comparison, Ē(NNN)(ρ) is drawn as dotted line in
this figure. The dashed curve in fig. B.3 shows Ē(4H)(ρ,Λ = 440 MeV). Obviously, there
is a strong cut-off dependence in Ē(it.1� ,H)(kf ,Λ).
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B.3 Asymmetry energy

B.3 Asymmetry energy

The abbreviations s, t, H, and G(x) are given in section B.1. The kinetic energy contri-
bution reads:

Ākin(kf) =
k2

f

6MN

− k4
f

12M3
N

. (B.48)

1� -exchange yields:

Ā(1� ,F)(kf) =
g2
Am

3�
(4πf� )2

{(
u

3
+

1

8u

)
ln(1 + 4u2) − u

2
− u3

3

+
m2�
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N

[
u3 − u2

2
arctan 2u− u3

3
ln(1 + 4u2)

]}
. (B.49)

The contributions from the iterated 1� -exchange Hartree and Fock diagrams with j
medium insertions are given by Ā

(H,F)
j (kf) respectively. The corresponding cut-off depen-

dent pieces have been collected in eq. (B.55).

Ā
(H)
2 (kf) =

g4
AMNm

4�
(8π)3f 4�

{(
25

3
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7

6u

)
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3
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}
, (B.50)

Ā
(F)
2 (kf) =

g4
AMNm

4�
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{
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, (B.51)

Ā
(H)
3 (kf) =
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AMNm
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}
. (B.52)

Here, s′ and s′′ denote the partial derivatives

s′ = u
∂s

∂u
and s′′ = u2 ∂

2s

∂u2
.

Ā
(F)
3 (kf) =
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AMNm
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24
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[
2s3t4(8s′ − 3s)

(1 + s2)(1 + t2)
+
[
(3 + s2)(8ss′ − 3s2 − 8s′2)+

4s(1 + s2)(6s′ − 3s− 2s′′)
]s2[t2 − ln(1 + t2)]

(1 + s2)2

]}
. (B.53)

The partial derivatives of G(x) are written in the following way:

Gij = xiuj ∂
i+jG(x)

∂xi∂uj
, 1 ≤ i+ j ≤ 2 .

Cut-off regularization

The Hartree and Fock diagrams of irreducible 2� -exchange with only nucleons in inter-
mediate states give the following contribution (in cut-off regularization):

Ā(2� )(kf) =
m5�

(4πf� )4

{[
1

12u

(
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A − 23g4
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)
+
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3
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×
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√
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√
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A − 245

12
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[
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3
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]
ln
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}
. (B.54)

The polynomial divergences from iterated 1� - and irreducible 2� -exchange give rise to
the following cut-off dependent terms:

Ā
(Λ)
2 (kf) =

k3
f

3(4πf� )4

[
26g4

AMNΛ + 5(3g2
A + 1)(1 − g2

A)Λ2
]
. (B.55)

Two-pion exchange in dispersion integral representation

On the other hand, using the dispersion integral representation of chapter 7 and including
the full � N∆-dynamics, we get the following contributions from irreducible 2� -exchange:

Ā(NN)(kf) = (2Bn,3 −B3)
k3

f

M2
N

+ (3Bn,5 −B5)
10k5

f

9M4
N

, (B.56)

Ā
(2� ,F)
2 (kf) =

1

12π3
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2m� dµ
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Im(VC + 2µ2VT )×
[
µkf −

2k3
f

µ
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16k5
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Im(WC + 2µ2WT )

[
3µkf +

2k3
f

µ
− µ

4kf

(8k2
f + 3µ2) ln

(
1 +

4k2
f

µ2

)]}
, (B.57)

Ā
(2� ,H)
3 (kf) =

g4
Am

6� u2

9∆(2πf� )4

[(
9

4
+ 4u2

)
ln(1 + 4u2) − 2u4 − 8u2 − u2
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]
, (B.58)

Ā
(2� ,F)
3 (kf) =

g4
Am

6� u−3

36∆(4πf� )4

� u

0

dx
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4GS01GS10 − 2G2
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7G2

T01 − 3G2
T10 +GT (3GT + 8GT01 − 3GT02 + 2GT11 − 3GT20)

}
. (B.59)

The auxiliary functions GS,T (x, u) have been defined in eqs. (B.25,B.26) and we have
introduced a double-index notation for their partial derivatives:

GIjk(x, u) = xjuk ∂
j+kGI(x, u)

∂xj∂uk
, I = S, T , 1 ≤ j + k ≤ 2 . (B.60)

For notational simplicity we have omitted the arguments x and u in the integrand of
eq. (B.59).

Additional three-body contact interaction

Ā(NNN)(kf) = −B6
k6

f

M5
N

. (B.61)

B.4 Equation of state of pure neutron matter

In this section, the meaning of u changes to u = kn/m� . The kinetic energy contribution
to the neutron matter equation of state reads:

Ēn,k(kn) =
3k2

n

10MN

− 3k4
n

56M3
N

. (B.62)

1� -exchange yields:

Ē(1� )
n (kn) =

g2
Am

3�
(4πf� )2
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4
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]}
. (B.63)

The contributions from the iterated 1� -exchange Hartree and Fock diagrams with j
medium insertions are given by Ē

(H,F)
n,j (kn) respectively. The corresponding cut-off de-

pendent pieces have been collected in eq. (B.69).
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Ē
(H)
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Ē
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Ē
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Cut-off regularization

The Hartree and Fock diagrams of irreducible 2� -exchange with only nucleons in inter-
mediate states give the following contribution (in cut-off regularization):
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The polynomial divergences from iterated 1� - and irreducible 2� -exchange give rise to
the following cut-off dependent terms:

Ē
(Λ)
n,2 (kn) = − k3

n

3(4πf� )4

[
2g4

AMNΛ + (3g2
A + 1)(g2

A − 1)Λ2
]
. (B.69)

Two-pion exchange in dispersion integral representation

On the other hand, using the dispersion integral representation of chapter 7 and including
the full � N∆-dynamics, we get the following contributions from irreducible 2� -exchange:

Ē(NN)
n (kn) = Bn,3

k3
n

M2
N

+Bn,5
k5

n

M4
N

, (B.70)
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. (B.71)

Here, the relative weights of isoscalar (VC,T ) and isovector (WC,T ) NN-amplitudes have
changed by a factor 3 in comparison to eq. (7.2). The diagrams with three medium
insertions yield:

Ē
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� u

0

dx
[
G2
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]
, (B.73)

with GS,T (x, u) defined in eqs. (B.25,B.26).

B.5 Toy model

Here we present the results for the toy model of section 3.3 and ref. [59]. For T = 0 the
contributions to the energy per particle Ē are:

Ē
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Ē
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Ē
(i,H)
j and Ē

(i,F)
j denote the contribution of the ith order Hartree and Fock diagrams with

j medium insertions, respectively.

The kernels for T 6= 0 are:
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, (B.79)

K
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, (B.80)
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with
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The anomalous contribution is:

Ā = −
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with
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B.6 Single-particle potential

As usual, we use u = kf/m� and x = p/m� . U (H)
j and U

(F)
j are the contributions of the

iterated 1� -exchange Hartree and Fock diagrams with j medium insertions, respectively.
The abbreviations s, t, σ, R, and ymin are given in sec. B.1.

B.6.1 Real part below the Fermi surface

One-pion exchange

U
(1� ,F)
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]}
(B.87)

Iterated one-pion exchange

The contributions of the linear divergence which are proportional to the momentum
cut-off Λ are given in eq. (B.93).
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(B.91)

Irreducible two-pion exchange in cut-off regularization

This expression does not include the effects from � N∆-dynamics.
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The contributions of the polynomial divergence which are proportional to Λ2 are given
in eq. (B.93).

Polynomial divergences from cut-off regularization

U
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2k3
f
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− 10g4
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Dispersion integral form of irreducible two-pion exchange

The subtraction constants B3,5 subsuming unresolved short distance dynamics give the
following contribution:

U
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k3
f
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The contribution of the Fock diagrams of 2� -exchange (both with and without virtual
∆-excitations) to the two-body potential can be written as a (subtracted) dispersion
integral:
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}
. (B.95)

By opening a nucleon line in the three-body diagrams of fig. 7.2 one gets (per diagram)
three different contributions to the three-body potential. In the case of the (left) Hartree
diagram they read altogether:

U
(H)
3 (p, kf) =

g4
Am

6�
∆(2πf� )4

{
2u6 + u2 − 7u4 − 1

4
(1 + 9u2) ln(1 + 4u2) + 5u3

[
arctan 2u+

arctan(u+ x) + arctan(u− x)
]

+
u3

2x
(2x2 − 2u2 − 3) ln

1 + (u+ x)2

1 + (u− x)2

}
. (B.96)

On the other hand the (right) Fock diagram in fig. 7.2 generates a total contribution to
the three-body potential of the form:

U
(F)
3 (p, kf) = − g4

Am
6� x−2

4∆(4πf� )4

{
2G2

S(x, u) +G2
T (x, u)+

� u

0

dξ

[
4GS(ξ, u)

∂GS(ξ, x)

∂x
+ 2GT (ξ, u)

∂GT (ξ, x)

∂x

]}
, (B.97)

with GS,T (x, u) defined in eqs. (B.25,B.26).

Additional three-body contact interaction

The additional three-body contact interaction generates the following (momentum inde-
pendent) contribution:

U
(NNN)
3 (kf) = 3B6

k6
f

M5
N

. (B.98)

B.6.2 Real part above the Fermi surface

Eqs. (B.87,B.88,B.93-B.98) remain unchanged. Eq. (B.89) is modified to:

U
(F)
2 (p, kf) =

g4
AMNm

4�
(4π)3f 4�

{
u3 +

3

4x

� (u+x)/2

(x−u)/2
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u2 − (2ξ − x)2

1 + 2ξ2
×

[
(1 + 8ξ2 + 8ξ4) arctan ξ − (1 + 4ξ2) arctan 2ξ

]}
. (B.99)
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Eq. (B.90) gets modified to:

U
(H)
3 (p, kf) =

6g4
AMNm

4�
(4πf� )4

{ � 1
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. (B.100)

Eq. (B.91) gets modified to:

U
(F)
3 (p, kf) =

3g4
AMNm

4�
(4πf� )4

{
G2(x)

8x2
+

� u

0

dξ G(ξ)

[
1 +

ξ2 − x2 − 1

4xξ
ln

1 + (x+ ξ)2

1 + (x− ξ)2

]
+

� 1

ymin

dy

� 1

ymin

dz
θ(y2 + z2 − 1)

4
√
y2 + z2 − 1

Ay

[
s2 − ln(1 + s2)

]
Az

[
ln(1 + t2) − t2

]
+

� 1

−1

dy

� u

0

dξ
ξ2

x

[
ln(1 + σ2) − σ2

](
ln
x+ ξy

x− ξy
+

1

R
ln
xR + (x2 − ξ2 − 1)yξ

xR + (1 − x2 + ξ2)yξ

)}
, (B.101)

where we have introduced the antisymmetrization prescription Ay[f(y)] = f(y)−f(−y).
The auxiliary functions G(x) and R are given in section B.1. Eq. (B.92) gets modified
to:

U (2� )(p, kf) =
m5�

(4πf� )4

� (u+x)/2
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1

x
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)
×
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A(11ξ4 + 16ξ2 + 8) − 2g2
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]
+

(1 − 14g2
A + 61g4
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6(15g4

A − 6g2
A − 1)ξ + 4(11g4

A − 10g2
A − 1)ξ3

]
ln
m�
2Λ

}
. (B.102)

B.6.3 Imaginary part below the Fermi surface

W
(H)
j and W

(F)
j are the contributions from the iterated 1� -exchange Hartree and Fock

diagrams with j medium insertions respectively.
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B.6 Single-particle potential

W
(H)
2 (p, kf) =

πg4
AMNm

4�
(4πf� )4

{(
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(B.103)

W
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2 (p, kf) =

3πg4
AMNm
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(B.104)

W
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3 (p, kf) =
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AMNm
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(B.105)

W
(F)
3 (p, kf) =

3g4
AMNm

4�
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W
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4 (p, kf) =
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B.6.4 Imaginary part above the Fermi surface

Hartree diagrams of iterated one-pion exchange

W (H)(p, kf) =
πg4

AMNm
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(4πf� )4
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9 + 6u2 +

4u3
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. (B.109)

Note that there is a term in eq. (B.109) which vanishes identically above p =
√

2kf . A
geometrical explanation for this nonsmooth behavior is that an orthogonal pair of vectors
connecting the origin with two points inside a sphere ceases to exist if the center of the
sphere is displaced too far from the origin (namely by more than

√
2 times the sphere

radius). The orthogonality of the (momentum difference) vectors is imposed here by the
nonrelativistic on-mass-shell condition for a nucleon.

Fock diagrams of iterated one-pion exchange

W (F)(p, kf) =
πg4

AMNm
4�

(4πf� )4
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u3x+
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+
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(B.110)
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B.7 Energy density functional

B.7.1 One-pion exchange

The Hartree diagram vanishes. The nonvanishing contributions for the Fock diagram
with two medium insertions read up to O(k4

f ) (as used in chapter 5):

F (1� )
τ (kf) =

35g2
Am�

(16πf� )2u5

{
4

3
u4 + 24u2 − 1 − 20u arctan 2u+

(
9

2
− 6u2 +

1

4u2

)
ln(1 + 4u2)

}
, (B.111)

F
(1� )
J (kf) =

g2
A

(8m� f� )2

{
10 + 24u2

(1 + 4u2)2
+

1

2u2
ln(1 + 4u2)

}
. (B.112)

The expression for F 1�
τ (kf) in eq. (B.111) follows simply from inserting the static 1� -

exchange single particle potential (eq. (B.87) in the limit MN → ∞) into the “mas-
ter formula” (5.7). The vanishing of F 1�

d (kf) has the following reason. The momen-
tum transfer ±q at the upper and lower medium insertion does not flow into the ex-
changed virtual pion line (because of momentum conservation at each interaction ver-
tex). Therefore there is no factor of q2 which could produce via Fourier transformations
a (∇ρ)2-factor. The spin-orbit strength F 1�

so (kf) vanishes as a result of the spin-trace:
Tr[σ · (p1 − p2) σ · (p1,2 × J) σ · (p1 − p2)] = 0.

When doing the expansion up to order O(k5
f ) (as in chapter 7), one has to include the

additional relativistic 1/M 2
N-correction:

F (1π,rel)
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g2
Am

3� u−5

(32πf� MN)2

{
280

3
u6 − 15

2
+ 2u(525 − 700u2 − 96u4) arctan 2u−

64u8 + 744u4 − 1777u2 +

(
1050u2 − 77 +

15

8u2

)
ln(1 + 4u2)

}
. (B.113)

B.7.2 Iterated one-pion exchange

Hartree diagram with two medium insertions

We find the following closed form expressions:

F (H,2)
τ (kf) =

g4
AMNm

2�
(8π)3(uf� )4

{
151

3
u3 − (350 + 16u4) arctan 2u+

444u− 55

4u
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(
55

16u3
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− 245

2
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}
, (B.114)

F
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d (kf) =
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AMN

πm� (4f� )4
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4

u
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16u2
ln(1 + 4u2) − 3 + 20u2
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}
, (B.115)
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F (H,2)
so (kf) =

g4
AMN

πm� (4f� )4

{
4

1 + 4u2
− 3

2u2
ln(1 + 4u2)

}
. (B.116)

Again, F
(H,2)
τ (kf) in eq. (B.114) stems from inserting the two-body potential U

(H)
2 (p, kf)

from eq. (B.88) into the “master formula” (5.7). Note that any p-independent contri-
bution, in particular the cut-off dependent term eq. (B.93), drops out. The vanishing

of F
(H,2)
J (kf) results from the spin-trace over a nucleon ring being equal to zero (as

demonstrated in the previous section). Let us briefly explain the mechanism which

generates the strength function F
(H,2)
d (kf). The exchanged pion-pair transfers the mo-

mentum q between the left and the right nucleon ring. This momentum q enters
both the pseudovector � N-interaction vertices and the pion propagators. After expand-
ing the inner loop integral to order q2 the Fourier transformation in eq. (5.5) converts
this factor q2 into a factor (∇kf)

2. The rest is a solvable integral over the product

of two Fermi surfaces. The spin-orbit strength F
(H,2)
so (kf) arises from the spin-trace:

Tr[σ · (l + q/2) σ · (l − q/2) σ · (p1,2 × J)] = 2� (q × l) · (p1,2 × J) where q gets again
converted to ∇kf by Fourier transformation. The remainder is a solvable integral over
delta-functions and derivatives thereof.

Fock diagram with two medium insertions

We find the following contributions from the last diagram in fig. 3.1 with two medium
insertions at non-neighboring nucleon propagators:

F (F,2)
τ (kf) =

35g4
AMNm

2�
(4π)3f 4� u7

� u

0

dx
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]
, (B.117)
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, (B.118)
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AMN

πm� (4f� )4
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1
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, (B.119)

F
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AMN
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. (B.120)

120



B.7 Energy density functional

The basic mechanisms which lead to these results are the same as explained before. Con-
cerning kinematics and spin-algebra the iterated 1� -exchange Fock diagram is somewhat
more involved than the Hartree diagram. Even though all occurring inner d3l-loop inte-
grals can be solved in closed form there remain some nonelementary integrals from the
integration over the product of two Fermi spheres of radius kf .

Hartree diagram with three medium insertions

In this case one has to evaluate nine-dimensional principal value integrals over the product
of three Fermi spheres of radius kf . Using the techniques explained in the appendix we
find the following contributions to the strength functions:

F (H,3)
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175g4
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8
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, (B.121)
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, (B.122)
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. (B.123)

Here we have used the partial derivatives s′ = u∂s/∂u and s′′ = u2∂2s/∂u2.

F
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AMN

π2m� (4f� )4
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96u6 + 24u4 − 12u2 − 1
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� 1

0

dy
8u3y2

(1 + 4u2y2)4

[
(30 + 32u2)y2 − 5 + (16u4 − 24u2 − 35)y4−

56u2y6 − 48u4y8
]
ln

1 + y

1 − y

}
. (B.124)

The last contribution F
(H,3)
J (kf) in eq. (B.124) is obtained when both insertions propor-

tional to σ · (p1,2 × J) (producing, after integration, the overall J2-factor) are under a
single spin-trace. For the other two possible combinations the spin-traces are equal to
zero.

Fock diagram with three medium insertions

The evaluation of this diagram is most tedious . It is advisable to split the contributions
to the four strength functions F

(F,3)
τ (kf), F

(F,3)
d (kf), F

(F,3)
so (kf) and F

(F,3)
J (kf) into “fac-

torizable” and “nonfactorizable” parts. These two pieces are distinguished by whether
the nucleon propagator in the denominator can be canceled or not by terms from the
product of � N-interaction vertices in the numerator. We find the following “factorizable”
contributions:
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with the auxiliary function:

L =
1
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1 + (u− x)2
, (B.126)
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2(5 − 2u2)(2 + 3u2)

u(1 + u2)
arctan 2u+

8(8u6 − 158u4 − 73u2 − 9)

3(1 + 4u2)2
+

8

� u

0

dx

{[
3(1 + u2)2x−2 + 3x2 − 2 − 2u2

]
uL2 + 3u3x−2+

2
[
2 + u2 − 3x−2(u2 + u4) + (u2 − ux− 1)[1 + (u+ x)2]−1+

(u2 + ux− 1)[1 + (u− x)2]−1
]
L

}}
. (B.129)

The “nonfactorizable” contributions (stemming from nine-dimensional principal value
integrals over the product of three Fermi spheres of radius kf) read on the other hand:

F (F,3n)
τ (kf) =

35g4
AMNm

2�
(8πf� )4u7

� u

0

dxx2

� 1

−1

dy

� 1

−1

dz
yz θ(y2 + z2 − 1)

|yz|
√
y2 + z2 − 1

×
[
t2 − ln(1 + t2)

]{
(45x2 − 27u2 − 30) ln(1 + s2)+

120xy arctan s+ 2sxy(17u2 − 30 − 35x2 + 20x2y2)

}
, (B.130)
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√
y2 + z2 − 1

{
2s2

(1 + s2)2
×

[
2 ln(1 + t2) − t2(3 + t2)

(1 + t2)2

][
(6s+ 4s3)s′ − (3 + s2)s′2 − (s+ s3)s′′

]
+

4s3s′t2(2t4 + 5t2 − 1)

(1 + s2)(1 + t2)3

}
, (B.131)
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F (F,3n)
so (kf) =

g4
AMN

π2m� (4f� )4

� 1
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{
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)
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� u
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√
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ln(1 + 4u2z2) − 4u2z2
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16u3(3 + 4u2y2)z2(1 − 2z2)
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x4s2t2(1 − y2 − z2)

4u10(1 + s2)2(1 + t2)2

[
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with the partial derivatives t′ = u∂t/∂u and t′′ = u2∂2t/∂u2. For the numerical evalu-
ation of the dy dz-double integrals in eqs. (B.130-B.133) it is advantageous to first anti-
symmetrize the integrands both in y and z and then to substitute z =

√
y2α2 + 1 − y2.

This way the integration region becomes equal to the unit-square 0 < y, α < 1.

B.7.3 Two-pion exchange

Here we list the contributions of 2� -exchange with virtual ∆-excitation to the strength
functions Fτ,d(kf).

Contact terms:

F (NN)
τ (kf) = B5

5k3
f

3M4
N

, F
(NN)
d (kf) =

Bd

M4
N

. (B.134)

Two-body Fock diagrams contribute only to Fτ (kf) via a (subtracted) dispersion integral:

F (2� F,2)
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35

24π3k4
f
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2m� dµ Im(VC + 3WC + 2µ2VT + 6µ2WT )×
{

8k7
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35µ3
− µk3

f

3
− 6µ3kf +

µ5

4kf

+ 5µ4 arctan
2kf

µ
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µ3

16k3
f

(24k4
f − 18k2

f µ
2 − µ4) ln

(
1 +

4k2
f

µ2

)}
. (B.135)
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The evaluation of the (left) three-body Hartree diagram in fig. 7.2 leads to the results:

F (∆H,3)
τ (kf) =

35g4
Am

4�
∆(2πf� )4

{
13

4
− 5

24u2
+
u2

9
− 35

12u
arctan 2u+

(
5

96u4
+

3

4u2
− 3

4

)
ln(1 + 4u2)

}
, (B.136)

F
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}
. (B.137)

Somewhat more involved is the evaluation of the (right) Fock diagram in fig. 7.2 for which
we find:

F (∆F,3)
τ (kf) =

35g4
Am

4�
∆(8πf� )4u7

� u

0

dx
[
2GS(x, u)G̃S(x, u) +GT (x, u)G̃T (x, u)

]
, (B.138)

G̃S(x, u) =
4ux

3
(6u4 − 22u2 − 45 + 30x2 − 10u2x2)+

4x(10 + 9u2 − 15x2)
[
arctan(u+ x) + arctan(u− x)

]
+

(35x2 + 14u2x2 − 10x4 − 5 − 9u2 − 4u4) ln
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, (B.139)
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ux
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4
−
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×
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, (B.140)

F
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3
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2(3 + 6u2 + 16u4)

u3(1 + 4u2)

}
, (B.141)

with GS,T (x, u) defined in eqs. (B.25,B.26).
The contributions to the spin-orbit strength function Fso(kf) caused by virtual ∆-ex-

citations have been calculated in ref. [89]. The two relevant equations are

F (∆H)
so (kf) =

g4
Am�

8π2∆f 4�
[
u+ 2u3

1 + 4u2
− 1

4u
ln
(
1 + 4u2

)]
(B.142)

and

F (∆F)
so (kf) =

g4
Am�

π2∆(16f� )4u3

[
8u2 − 12 +

(
3

u2
+ 4

)
ln
(
1 + 4u2

)]2

. (B.143)
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In addition to that, there is the contact term,

F (NN)
so (kf) =

Bso

M4
N

. (B.144)

The contribution to Fso(kf) by the irreducible 2� -exchange with only nucleons in inter-
mediate states is given in cut-off regularization in eq. (5.14). After subtracting the value
at ρ = 0 to remove all regularization dependent parts, one gets [90]:

F (2� )
so (kf) =

g2
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πMN(4f� )4

{
m3�
6k2

f

(4 − 3g2
A) ln
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2

3kf

[
3m2� (g2

A − 2) − 4k2
f

]
arctan

kf

m�
}
. (B.145)

B.7.4 Master integrals

In this appendix we collect the set of master integrals one encounters in the diagram-
matic evaluation of the energy density functional E [ρ, τ,J]. Contributions to the strength
functions Fτ,d,J(kf) from diagrams with two medium insertions are of the generic form:

�

|p1,2|≤kf

d3p1d
3p2

(2π)6
(5p2

1 − 3k2
f )f(|p1 − p2|) =

2k8
f

3π4

� 1

0

dxx3(1 − x)2(2x2 + 4x− 3)f(2xkf) , (B.146)
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, f(0) = 0 . (B.149)

These reduction formulas can be derived with the help of a power series ansatz, f(q) =∑∞
ν=0 fνq

2ν , which covers all practically relevant cases. The Hartree diagram with three
medium insertions leads to nine-dimensional principal value integrals of the form:
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�

|pj |≤kj

d3p1d
3p2d

3p3

(2π)3

f(|p1 − p2|)
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3 − p2y2) ln
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0

dq q f(q) , (B.150)

with qmax = py +
√
k2

2 − p2 + p2y2 under the subsidiary condition k1 ≤ k2,3. In order to
achieve this reduction one eliminates p2 in favor of q = p1−p2 whose integration domain
is a shifted Fermi sphere |q−p1| ≤ k2. By taking appropriate (multiple) derivatives ∂/∂kj

one can also handle δ- and δ′-type weighting functions in this principal value integral.
For analogous contributions from the Fock diagram with three medium insertions one
performs this shift of integration variable for p2 and p3 simultaneously, and one employs
the identity:

1

2π

� 2π

0

dφ

yz +
√

(1 − y2)(1 − z2) cosφ
=
yz θ(y2 + z2 − 1)

|yz|
√
y2 + z2 − 1

. (B.151)

The denominator on the left hand side arises through the application of the cosine law
of spherical geometry.

B.7.5 Fits to the strength functions

The fits in eqs. (B.152–B.155) reproduce the curves shown in figs. 5.2–5.5 respectively.

M̃?
N(ρ)/MN|fit = 1 − 3.054 fm2 · ρ2/3 + 6.345 fm3 · ρ (B.152)

F∇(kf)|fit = 45.43 MeV fm4 · ρ−1/3 − 0.229 MeV fm2 · ρ−1 (B.153)

Fso(kf)|fit = 1.898 MeV fm3 · ρ−2/3 − 29.37 MeV fm4 · ρ−1/3 (B.154)

FJ(kf)|fit = 12.80 MeV fm7/2 · ρ−1/2 + 7.041 MeV fm4 · ρ−1/3 (B.155)

In this context we mention also the fitted form of the nuclear matter equation of state
truncated at O(k4

f ) [41] underlying the calculation of chapter 5 (and ref. [66]):

Ē(kf)|fit = 111.63 MeV fm2 · ρ2/3 − 752.82 MeV fm3 · ρ+ 832.74 MeV fm4 · ρ4/3 . (B.156)

The results including full � N∆-dynamics shown in figs. 7.9–7.11 can be approximated
by the fits given in eqs. (B.157–B.159) respectively:

M̃?
N(ρ)/MN|fit =

(
2.66046 fm2ρ2/3 − 3.38432 fm3ρ+ 13.1732 fm6ρ2

)−1
(B.157)

F∇(kf)|fit = − 2.00791 MeV fm3ρ−2/3 + 42.1051 MeV fm4ρ−1/3

+ 64.7979 MeV fm5 − 128.492 MeV fm6ρ1/3 (B.158)

Fso(kf)|fit = − 273.048 MeV fm5 − 0.212279 MeV fm3ρ−2/3

+ 10.5076 MeV fm2ρ−1/3 + 837.849 MeV fm6ρ1/3

− 985.005 MeV fm7ρ2/3 + 520.285 MeV fm8ρ (B.159)
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