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Chapter 1

Introduction

This thesis puts forward a three-dimensional model of scanning tunnelling
microscope images. This model, which is based on the so—called source the-
ory, is capable of simulating a multitude of experimental pictures, such as
images of quantum corrals and quantum mirages.

The scanning tunnelling microscope (STM) was invented by Binnig and
Rohrer in 1982. Four years later, they were awarded the Nobel Prize for
their work. One of the most extraordinary features of the STM is that it
can resolve single atoms even in closed packed surfaces, that is, it can resolve
single atoms in the smoothest known objects.

Basically, an STM (figure 1.1) consists of a metal tip that scans the surface
of the probe, without actually touching the probe. The tip—probe distance is
about 3-10A. The tip is moved by three piezoelectric elements, so that the
position of the tip relative to the surface can be controlled on a 0.1A scale. A
voltage is applied between the tip and the probe. The resulting total current
through the tip is the quantity that determines the STM image generation.
The total current through the tip depends, in a zero order approximation,
exponentially on the tip—probe distance. In the ‘straightforward’ mode of
operation—the constant height mode—it is the total current values that are
directly visualised. Due to some experimental problems, however, especially
the unintended drift of the tip towards or away from the probe (which results
from e.g. temperature change), this mode of operation is hardly used now.
Instead of the constant height mode, it is the constant current mode that is
used nowadays. In the constant current mode, the total current through the
tip is kept constant. The height of the tip is controlled by a feedback loop so
that the current stays constant while the tip moves along the probe. In this
mode of operation, the height changes of the tip (the so called corrugation)
are visualised. Nonetheless, the STM pictures of the two different modes look
very alike. The raw data for these STM images consist of a single value for
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Figure 1.1: A schematic illustration of the scanning tunnelling microscope.

each (xz, y) position of the tip. These values are usually graphically enhanced
in false colour to yield the well known STM pictures.

The actual measurement takes approximately one minute. This is ex-
tremely long compared to the typical time scale of the observed atoms (for
the propagation of a sound wave the oscillation period of the atoms is about
~ 10713s). Therefore, to achieve atomic resolution, the STM must be oper-
ated at about 4K. Experimentally, with an STM only relative distances and
the total current through the tip can be controlled very precisely. It must be
emphasised that the absolute tip-probe distance (apart from the difficulty to
define this distance) is unknown on a 0.1A scale and can be only speculated
upon.

The STM has several constraints on the probe and on the measurement.
Only conducting probes can be inspected by an STM. To get around this
limitation, the so called atomic force microscope (AFM) has been developed.
Until now, the AFM could not achieve the extremely high resolutions that
an STM can, but due to its broader field of application, it is more often used
today. One of the most fundamental problems for all scanning techniques
is the very bad time resolution. This drastically reduces the possible appli-
cations. Especially in the medical and biological sciences, where one would
prefer to study chemical reactions with an atomic resolution, the scanning
techniques are almost useless. Nevertheless, they are still employed due to
the extraordinary spatial resolution. In experimental solid state physics, for
instance, the STM is a useful instrument to study the crystal surface. It
is namely the straightforward way to analyse the results of epitaxial experi-
ments.

The history of quantum corrals begins with the pioneering work of Ki-



Figure 1.2: Here, some intermediate steps during the experimental construc-
tion of a quantum corral are shown. The surface is a Cu(111) surface, while
the adatoms are Fe atoms. The corral has a radius of 71.3A.

gler and Schweizer (1990), who were the first to demonstrate that the STM
could be used to controllably move atoms from place to place on the surface
of a substrate (figure 1.2). Not long afterwards, Crommie et al built the
first quantum corrals from iron atoms on the Cu(111) surface and observed
standing—wave patters inside them. In the early experiments it was thought
that “stadium”shaped corrals could be used as a laboratory to study “quan-
tum chaos”, but the walls proved too leaky for the electrons to bounce around
the unstable periodic orbits long enough to detect any “scarring” effects [27].
A very intriguing recent STM corral experiment was done by Manoharan et
al [26], who combined the physics of quantum corrals with the Kondo ef-
fect. In a special corral geometry, a “mirage” of the spectroscopic response
of a spatially localized Kondo impurity can be observed. The mirage experi-
ment achieves this by taking advantage of both the locally modified electron
density in the corral and the scattering properties of a Kondo impurity.

In this thesis, a unified theoretical model of the STM is presented. The
model is unified because it is possible to reproduce by this theory STM
images of simple metallic surfaces, STM images of the famous circular quan-
tum corral as well as STM images of the relatively new quantum mirage
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that is based on the Kondo effect. In addition, the theoretical approach is
fully three-dimensional. The quantum corral and the Kondo mirage are usu-
ally treated only in two space dimensions. Although this two-dimensional
treatment is of enormous importance, as it could clarify some common mis-
understandings that will be explained shortly, nevertheless, it will be shown
in this thesis that the third space dimension contributes some fundamental
ingredients to the understanding of the corral images.

Even in some recently published works, it is claimed that the electron were
confined inside the corral. The name “corral” suggests this interpretation, but
it was shown almost a decade ago that the electron is not confined within
the circular area. The corral wall of 48 adatoms with a nearest neighbour
distance of approximately 9A are definitely too leaky to limit the electron
propagation in the direction parallel to the surface. Omne could say that
this recognition is one of the most significant results of the two—dimensional
model of the quantum corral. This result, published long ago, will of course
be reproduced by the presented three—dimensional theory.

The theory used in this thesis to simulate the STM is the so—called source
theory. Mathematically, a source region is introduced in the model. In
this source region, particle conservation is not valid. Such an approach has
some great advantages. Usually, in scattering theory, the incident and the
evanescent waves are only considered asymptotically. Such a description is
inadequate for an STM since the tip is by no means infinitely far away from
the probe. The fact that the STM could not be treated by ordinary scattering
theory turned the theoretical treatment of an STM into a challenge. The first
theory that was capable to describe the STM theoretically was the Tersoff—
Hamann theory. Although it is the standard theory of an STM, it lacks some
mathematical precision. The transfer Hamiltonian method used is based on
Fermi’s golden rule (which is called a rule and not a theorem or law for good
reasons). The presented theory sets out from a model Hamiltonian, and from
that point onwards rigorous derivations lead finally to the prediction of STM
images that can be compared with experimental results. Thus from the point
of view of formal clarity, the source theory of an STM should be considered
superior to the standard theory.

In this thesis, a single particle approach is taken. It should be mentioned,
however, that there exist some multi—particle calculations for an STM that
employ extensive numerical know how. These calculations already try to
reproduce STM pictures quantitatively. Although the presented approach
cannot reproduce the STM images in full detail, and the assumed model
Hamiltonian obviously contains some drastic approximations, nevertheless,
these simplifications make the problem much more tractable and finally lead
to insights that might have been disguised by the overall complexity of the



more realistic multi-—particle treatment. One of the greatest merits of the
presented theory is that the wavelength of the standing wave pattern in the
corral can be explained and predicted. Although the starting point of the
three-dimensional approach taken here is quite different from that of the
two—dimensional model introduced by Heller, it will be seen in chapter 4.3
that these two theories are closely related to each other.

The second chapter introduces the theoretical foundations on which the
simulation of the STM is based. In particular, some fundamental properties
of the source theory are presented. Although this chapter is no easy read-
ing, it provides the essentials for the application of the source theory to an
STM. All physical quantities and parameters that will be referred to in later
chapters are introduced here.

The third chapter presents a multitude of simulated STM images, includ-
ing images from simple metal surfaces as well of various quantum corrals.
This chapter illustrates the flexibility of the theory on which the simulation
of an STM is based.

In the fourth chapter, the influence of the parameters of the model on the
images is studied in detail. The goal of this chapter is to provide a physical
interpretation of these parameters. Thus, the so far purely mathematical
model can be filled with ‘philosophy’.

Since this simulation of an STM was actually implemented, several nu-
merical problems had to be addressed. The fifth chapter shows how these
difficulties can be handled so that a simulation may achieve the accuracy
required to reproduce STM images. Although motivated from a numerical
point of view, this chapter also reveals some interesting physical properties
of the model.

The sixth chapter is entirely devoted to the Kondo effect and its appli-
cation in the quantum mirage. The “Kondo effect” in fact embraces several
anomalous properties of dilute magnetic alloys. The necessary aspects for
the quantum mirage are not addressed in standard solid state physics text-
books. Thus, this chapter starts with a comprehensive but still ‘digestible’
assembly of well known properties, and sketches their theoretical background
with regard to the solution of the quantum mirage. Equipped with these
fundamentals, the simulation of an STM is extended to quantum mirages.
The chapter concludes with simulated images that exhibit the experimental
properties of quantum mirages.
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Chapter 2

Foundations

2.1 Source theoretical method in a nutshell

The source theoretical approach — abbreviated in the following as source
theory — can be used and has been used to solve very different physical
problems. In the following, the basic ideas of this theory will be illustrated
by examining a concrete problem, a scanning tunnelling microscope (STM).
The STM is modelled by the source theory, making the prediction of mea-
surable quantities possible. In case of an STM, the only directly measurable
quantities are the current and the relative distances of tip positions.

It is well known that the constant current or constant height images of
an STM are determined by the physical properties of the tip—vacuum—probe
region. Due to the very small size of this region, it is standard to describe
the tip—vacuum-probe region by the Schrédinger equation. Since the STM
tip is fixed in space (its motion is very slow on microscopic time scales) and
the whole system is in equilibrium during the measurement, it is adequate
to treat the measurement as a stationary problem. Thus the problem of
evaluating the total current and other measurable quantities is best solved
by the stationary Schrédinger equation.

(E - %VQ - U(r))¢(r) = 0. (2.1)

Next, the potential U(r) would be used to describe the tip—vacuum-probe
region. But there is a principal problem with equation (2.1) describing an
STM.

In the approach sketched above, it seems to be natural to view the tip
as an electron source. Accordingly, the electrons start from the tip and end
in infinity, the boundary of the physical space. In between, their motion
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is subject to the tip—vacuum-probe potential. But equation (2.1) does not
permit a region other than the boundary of the physical space to be a particle
source. This can be seen from:

() =~ (6 () V() — GV (r) = 1 Im (6 (V6. (22)

This shows that the total current through any closed surface 0S is zero:

e = [ iwmdr=7 [ @vem)ar—o. (3

J(E) is the contribution to the total current of the electrons that have the
energy E. In the source theory, equation (2.1) is modified by a source term
¢(r) on the right hand side. This method was also proposed by Schwinger [57]
and is very similar to the introduction of heat sources in the heat conduction
equation. The fundamental equation of source theory is thus:

(E + ;’—Mv? - U(r)) 6(r) = o(r). (2.4)

That the introduction of the source term ¢(r) has the desired effect of in-
troducing particle sources other than the boundaries of physical space shows
the following calculation:

Here the identity:

- h . 2 .
divj(r) = i Im(¢*(r)V?¢(r)) = 5 Im (¢*(r)s(r)) (2.6)
has been used. Now equation (2.5) states that the total current through any
surface must disappear as long as the source ¢(r) is not inside this surface.
Or more precisely:

supp(s(X))NS=0 =  J(E)=0. (2.7)

Equation (2.6) is the equation of continuity within the stationary source
model.

To solve equation (2.4), the Green’s function formalism is very useful,
since it has been developed to solve partial differential equations with inho-
mogeneity. Some very fundamental theorems will be merely stated here; for
their rigorous derivation, see for example |3].



2.2 Connecting theory and experiment 9

Let ¢ and v be solutions of equation (2.4). Then ¢ — 1 is a solution of
the stationary Schrodinger equation (2.1). Thus determining all solutions of
the homogeneous equation (2.1) and only one special solution of the inhomo-
geneous equation (2.4) suffice to solve the problem. This special solution of
the inhomogeneous equation (2.4) is given by the Green’s functions theory:

(E—l—Qh—MVQ—U(r))G(r,r’,E) =i(r—r). (2.8)

The product G*(r,r’, E)G(r,r’, E') is proportional to the probability to find
a particle at r that has been created at r’. If a single Green’s function
G(r,r’, E) has been determined then the special solution of the inhomoge-
neous equation (2.4) is given by:

o(r) = /R3 s(r)G(r, v, E)d*r'. (2.9)

After presenting the fundamental mathematical properties of the source
theory, it must be illustrated how the so far still unspecified quantities U(r),
G(r,r’, F) and ¢(r) are used to describe an STM.

2.2 Connecting theory and experiment

The measured quantity in an STM experiment is the total current that runs
through the tip at a certain tip position. In the constant height mode, the
current is directly measured. In the constant current mode, it is again the
total current through the tip that directly controls the corrugation via the
feedback loop. This total current can be directly calculated from Green’s
functions: Substituting equation (2.9) in equation (2.6) and applying the
divergence theorem leads to:

J(E) = —% /R3 /}R3 Im(¢*(r')G(r, ¥, E)s(r))d*r d*r. (2.10)

The total current .J;; is given by the corresponding occupation probability
factors of the tip and the probe:

Do = [1F(E = e+ V) = F(E = ep) J(EVIE. (211)
For sufficiently low temperatures, the occupation probability factor

fE—p)=—5 (2.12)
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degenerates to a step function. The conductivity defined as

g = _Jtot (213)

can now be calculated for very small temperatures. Using the non trivial
relation,

. d
ilplir%)Wf(E—eF—l—eV) =ed(E —ep +eV), (2.14)

the conductivity is given by:
o=c*J(ep —eV). (2.15)

From equation (2.13), the total current Jy,; can now be easily calculated.
Since the total current disappears when the applied voltage V' = 0, the total
current Ji, is given by the following integral:

\% \%4
Jiot =/ o(V')av' = e2/ J(ep — eV")dV'. (2.16)
0 0

The bias voltage V' has typically a magnitude of 10mV in an STM experiment.
If the conductivity happens to be constant in this relatively small region, the
total current is given by:

Jiot =V -0 =eVJ(ep —eV). (2.17)

In general, equation (2.17) will only be an approximation of the exact current
through the STM. As long as the sample does not expose any extremely en-
ergy dependent effects, the approximation (2.17) is justified and employed in
almost every theoretical description of STM pictures. For small temperatures
and small bias voltages V', only the electrons with energy ez contribute to
Jiot- The well known “quantum mirage” discussed in section 6 is a prominent
example where this approximation must fail, since the scattering properties
of the Kondo adatoms are highly energy dependent. In both cases (equa-
tion (2.17) and (2.16)), the simulation of STM pictures is reduced to the
evaluation of Green’s functions.

2.3 The physical Green’s function
The retarded Green’s function G (r, 1, E') is a special solution of

(E - H)G(r,x,E) =5(r — ), (2.18)
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where H as usually denotes the Hamiltonian defined as:

. h?
H=—A+U 2.19
AL U) (219)

M is the mass of the electron. The retarded Green’s function can be obtained
from the time development operator U (r,r’,t—#') via a Laplace transform. It
is well known that the time development operator is given by: U (1) = e
(compare for instance [3|, pages 260-261). The retarded Green’s function
defined as
Ghret (1,1, F) ©f 2 jim Ulr,r', T)ei(EJrnin‘)T dr (2.20)

n—0T Jo

satisfies equation (2.18). This can be verified by a simple substitution (com-
pare [35], pages 349-351). Let ¢(E,r) be the bounded and normalised solu-
tion (eigenfunction) of the Schriodinger equation:

(E + ;L—MA Ulr ))¢(E, r) =0. (2.21)

Equation (2.20) shows that the retarded Green’s function can be expressed
in terms of the eigenfunctions:

S 1)" (1)
re E = i . 2.22
Guulr, ) =l [ 2 WU dy (2.22)

n—0%t

Here the integral over p is understood as integration over the continuous
energy spectrum and summation over the discrete energy spectrum. Using
the well known identity

: o(1) o(1) . /
lim —  du= ——d s Ol — ENd
n~o+/E—uimM T (u)o(p — E)dp
and the definition of the fundamental Green’s function

o, )" (p, 1')

Ge(r, v, E def
f )= PV E—pn

dp, (2.23)

where PV means the principal value, the relation (2.22) can be recast in the
form:

Gret(r, v’ E) = Gi(r, v’ F) — 2'7?/¢(u, r)o*(p, v')o(u — E)dp. (2.24)
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These general properties stated above hold for Green’s functions of any di-
mension, where the dimension of the Green’s function is defined by the di-
mension of the vector r. The following treatment focuses on one-dimensional
Green’s functions:

(E + ;—Mag - U(x)) Gz, E) = 8z — 7). (2.25)

Furthermore, it is assumed that the spectrum is not degenerate, that is: if
¢1(E,-) and ¢o(E,-) are two wavefunctions with energy F € R, it follows
that ¢ = ¢o. Now equation (2.24) can be written as:

Giret(2, 2", E) = Gye(x, 2/ E) —inp(E, z)p*(E, 2). (2.26)

The fundamental Green’s function Gy¢(x, 2’, F) satisfies equation (2.18). This
can be verified by simple substitution. Thus the fundamental Green’s func-
tion solves the Schrodinger equation for (r < 2’) and (¢ > 2’). Thus
Gif(z,2’, E') can be written as a linear combination of solutions of the Schrédinger
equation (not necessarily eigenfunctions). In fact, the following theorem can

be proved: Let y_(z, E) and y,(z, F) be solutions of the Schrodinger equa-
tion. y_(z, E) is bounded if x — —o0, and y, (z, F) is bounded if x — oc.
Then the fundamental Green’s function is given by (compare [6]):

y-(z, E)y (2", E) (v <a')

yi(z, E)y_(¢, E) (z > 7). (2.27)

Gi(z, 2, FE) = {

y_(z, E) describes the particle in the area (z < z’), while y, (z, F) is the
solution for (z > 2). In case of a potential well, (that is U(x) — oo if
|z| — 00), the spectrum is discrete. Equation (2.27) can be rewritten in the
following way

2M ¢ (x< )P4 (2>)
Rt W(o-, 1)

with W being the Wronskian. ¢_ and ¢, are the unique (up to a factor)
bounded solutions in the area (xr < 0) and (x > 0), respectively. In case of
a continuous spectrum, only the solution in the tunnelling region is unique.
The classically allowed region has two linear independent bounded solutions.
Using the definition for the fundamental Green’s function, the following iden-
tity can be proved:

Gi(z, 7', FE) = (2.28)

2M ¢(:1:<)¢+(x>).

Gl 2 B) = S 3 (6

(2.29)
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¢ is the (up to a factor) unique bounded solution in the region x € R.
is characterised by its asymptotic behaviour: For very large x, the particle
moves in a classically allowed region, due to the choice of the potential as
given in section 2.5. In this region, the WKB approximation converges to
the exact solution of the problem, thus

é(z, E) \/7\/75m</ (&, B)dE + §(E, @)) and

sz\/iCOS(/ (&E)dg_i_(g(E,@)), (2.30)

The known solution ¢(z, ) defines the scattering phase 6(E). As usual,
Kz, B) = \/BH(E - U()).

Remark 1 The equations (2.30) can be derived from three conditions, that must be
satisfied by the fundamental Green’s function Gy;:

er(x:E)

1. Abel’s theorem for the Schrodinger equation shows that the Wronskian of the fun-
damental solutions must be constant. This is due to the special structure of the
differential equation (2.18) (see for instance [5], page 167).

2. The eigenfunctions ¢(z, E') must be orthonormal.

3. The following equation [, ¢(x, E)Gf(x,2’, E) dr = 0 must be satisfied. The sub-
stitution of the definition (2.23) of the fundamental Green’s function into this ex-
pression verifies the identity.

The retarded Green’s function can now be written as

2M p(z<)hy(25)
h2 W(¢7 th) ’

where the definition hy(x, E) = ¢y (x, E) — in¢(z, E) is used. The equa-
tions (2.30) show that h(x, EY) behaves like an outgoing wave in the asymp-
totic region. That means that the current flows from smaller z to greater
x (as physically sensible due to the choice of the potential). From now on,
when Green’s function is mentioned, it is the retarded Green’s G (r, 1, F)
function that is implicitly meant, if not stated otherwise.

Glret( / E) (231)

2.4 Specifying the source ¢(r)

2.4.1 The multipole source

To achieve atomic resolution with an STM, extremely good tips are necessary.
The tunnelling current is mainly flowing through a single tip atom. Since
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the electrons are emitted from the valence orbital of the tip atom, they have
well-defined multipole characteristics. The tip can be seen as a multipole
point source. What properties must this point—like multipole source fulfil?
Consider the free particle case. As it is well known from the partial wave
analysis, the outgoing spherical wave in quantum mechanics is given by:

i (1, E) = adm (F)1 (kr) = &yz:l(r) R (kr). (2.32)

The centre of the spherical wave has been chosen as the origin of the coor-
dinate system. Since the boundary condition for outgoing waves has to be
satisfied, the Hankel functions

+ikr

hf(k‘r) —

. for r— o0 (2.33)
must be chosen. The constant factor « is determined by the normalisation
condition for scattering states.

What is the point-source generating this wavefunction? Before this ques-
tion is answered, it should be pointed out that a point source that generates
the multipole wavefunctions ¢, in free space should be called a multipole
source. Or turning it the other way round: What should a pointlike multi-
pole source be, but a point—source that has the multipole wavefunctions ¢,
as solutions in free space? The question of uniqueness of the multipole point—
source given by this definition must of course be addressed by the following
derivation. With the following identities

J&m(r)__ 1
rAH (20— 1)

in(=9)- 2:3)

and 1
V2= = —476(r), (2.35)
T

(see [52] equation (20) for a proof), the construction of the source is straight
forward:
(v +#)a i (E) (o)t = i (g2 YT, (2.36)

241 241

Remark 2 To show that the other terms appearing on the right hand side cancel is not
difficult, though it is cumbersome. The terms are:

ak? Yim (P) 1y (K1), (2.37)
ylm (I‘)

7"2[+1

V2h (kr)rtt (2.38)
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and

2a(vy“”(r)) (Vhf(kr)rl“) _ @ 2D Vin®) g g e (2.39)

2041 " 2041
The last identity holds since VA;" (kr)r'*! is parallel to e,. The sum of term (2.38) and
term (2.39) can be written as:

aylm( )

2l+1

k- lk-?(a,w i 8k,,)h;r(kr)(kr)l“. (2.40)

Employing the differentiation formula [1] 10.1.23 for Bessel functions gives:

21 1 20—-1 20 —
22l oyl 1y 44—l oyl L+ AT
(ax - 8z)hl (2)z (xaxxam . 6m)hl (@) =z (hl_Q( )-— Lt e ))
(2.41)
Since the term on the right hand side is the recurrence relation ([1] 10.1.19):
20-1
2 (hif g(2) = ——hi",(@)) = =" (@), (2.42)
the sum of the term (2.38) and term (2.39) simplifies to:
ylm( ) ~
—a =g kT LR (k) R (k) = — ok Vi (F)R (kr), (2.43)

which is exactly the negative of the term (2.37).

With the above relations (2.34) and (2.35), the source is now easily con-
structed:

Yim
<V2 + k;Q)oz Tl%g) hf (kr)r™ = —ahf (kr)r' ™ (21— 1)”ylm( V)i(r).

(2.44)
Since the source term on the right hand side is zero except for r = 0, the
asymptotic behaviour

(21 — 1)l

e (2.45)

lir% b (kr)r'™ = (—i)

(this relation can be derived from [1| 10.1.16) and the definition

ef 0 ’
O (x — 1) = ylm( ) (r—1)=Vim <—m)5(r —1')  (2.46)
can be used to get the important result:
o, 21h?
(5777 + E) (. B) = i 0um(v). (2.47)

In analogy to equation (2.8), the free multipol Green’s functions can be
defined as:

(QMVQ+E)Glm(r ¥, E) = §pm(r — '), (2.48)
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where the multipol source is located at r’. From equation (2.47) it is easily
seen that the free multipole Green’s function is given by:

1 Mk,lJrl

Glm(I‘ I‘ E) ; o h2 ylm( )th(k’R) (249)

with R = |r — r’|. Obviously, the spherical wave is related to the multipole
Green’s function by:

27h?

0= G (1,0, E). (2.50)

Gim (T, E) =

2.4.2 The normalisation condition

The normalisation condition is given by

S(E— B = /R bum(r, BV, (. B')dr. (2.51)

With the well know relation
2 T
/ / Vi (0, 6)Y7in (60, 6) sin(0) dd = 1 (2.52)
0 0

(see |55], page 454) for spherical harmonics, equation (2.51) can be written
as:

0)(F —FE') =aa /000 h (kr)h; (K'r)r? dr. (2.53)

The singular part of this integral depends only on the asymptotic behaviour
of the spherical Hankel functions given by equation (2.33). Thus the Hankel
functions can be replaced by their asymptotes in the above integral:

2
S(E— E') = aa wﬁa(/ﬂ ¥) = aa ﬂ%ﬂé(E ). (254)

Thus the spherical wave is given by:

Gim (1, E) \/ ylm (2.55)

The arbitrary phase factor —i has been chosen, so that later quantities (in
particular the \;,) do not have a complex phase.
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2.4.3 The multipole source in arbitrary potentials

It will be shown that although the multipole source is embedded in a non—
constant potential, the Green’s function
2

<E + 2h—M — U(r)) Gim(r, v E) = 6 (r — 1) (2.56)

shows the (I, m)-multipole characteristics in the vicinity of the the source.
From the definition (2.46) of the multipole sources it is obvious that the
Green’s function Gy, is given by:

B
Gim(r, ', E) = ylm<$)a(r, v, E), (2.57)

where the Green’s function G is retarded and fulfils equation (2.9). The
above statement about the behaviour of the multipole Green’s function can
be expressed as:

_ ylm(r - IJ)

rl

Gin(r, ' E) = Vi (6, 0)R(r) R(r) for r~r', (2.58)

where R(r) is an arbitrary radial function and r, ¢ and 6 are the spheri-
cal coordinates of r — r’. The following fundamental theorem describes the
behaviour of the Green’s G function in the vicinity of the tip:

Let H(r) = %VQ + U(r) be a self-adjoint Hamiltonian with a potential
U(r) which is analytic in a sector S C R®. When the retarded Green’s
function G(r,1r’, E) exists for an E € R, it may be displayed in the form:

M f(r,x',E)
2rh? |r —r/|
where f(r,v',E) = f(r/,r, E) is a real symmetric function which is analytic

for r,r’ € S. Furthermore, the leading—order expansion of f reads:

M(E - U(x'))
h2

The function h(r,r’, E) is a solution of the homogeneous Schrodinger equa-

tion and analyticinr,r’ € S. If E'is not an eigenvalue of H(r), then h(r,r’, E)

is also a real and symmetric function. (See 6], appendix 5 for a proof of this

important theorem.)

With this theorem at hand, it is an easy task to calculate the leading—
order expansion of the multipole Green’s functions Gj,,:

0 , B
ylm(%)G(r,r,E) =
M 0 f(r, v, E) 0 ,
- 27Th2ylm(%)( ‘I‘—I‘/’ ) +ylm(%) h(I‘,I‘,E).

G(r,r'" E) =

+ h(r, v, E), (2.59)

fle,x, E) = f(r,r,E) =1- (r=r)*+0(r},r}). (2:60)

(2.61)
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A relatively easy calculation shows that (for details refer to [6])

()58

Yim(r — 1) M(E-U{'))(r —r')? "
(25+1)!!|rl_r,|2l+1 (1+ Pl 1) +0((r—1) )).

(2.62)

Since ylm(%)h(r, ', F) is analytic, as a derivative of an analytic function,
the Green’s function is given by

”ylm(r - I‘/)

G, ) 2 (2 + I

when r=r' (2.63)

This behaviour is independent from the surrounding potential.

2.4.4 Transport limit for multipole sources

By now, the source term has been determined except for a constant factor
/\lm:

(E + ;L—MVQ — U(r))gb(r, v’ E) = N0y (r — 1), (2.64)

This parameter ), is called source strength for obvious reasons. As shown
in section 2.4.2, this factor is determined by the orthonormality of the states
¢. The orthonormality of the states is a mathematical reformulation of the
Pauli principle, that only one particle is in a certain energy eigenstate. In
case of an STM, the particles emitted by the source are electrons. The spin
quantum number of the electrons has not been taken into account so far.
Since electrons emitted from the STM tip are not spin polarised, it would
just bloat the formalism if spin up ¢' and spin down ¢' wavefunctions where
used. Instead, the Pauli principle can be adapted to this special case: only
two particles (spin up, spin down) can be in the same energy eigenstate

o(r,v', E)p*(r,v', E') d°r = 26(E — E'). (2.65)
R3

Even if this expression (2.65) could be evaluated for arbitrary potentials
U(r), the parameter \;, will usually depend on the energy E as well as
on the potential U(r). To eliminate the dependancy on the potential U(r),
the following approximation can be employed: The parameters )\, for a
potential U(r) is equal to the parameter X, for U(r) = 0. Therefore, the
Aim are independent from the potential in this approximation.
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Comparing equation (2.64) and equation (2.56), it is easily seen that
o(r, v’ E) = NG (v, ¥/, E). (2.66)

At first, the function ¢ will be evaluated for the field free case. Then the
Aim’s are given by equation (2.66), since the free multipole Green’s functions
are well known (equation (2.49)). The necessary integrals have all been
evaluated in section 2.4.2 (see especially equation (2.54)) and differ only by
a factor 2, so the result can be stated immediately:

1 kn?

20(E — E') = ax Wﬁ—5(E E. (2.67)

o(r,x', E) ,/ ylm Vg (k). (2.68)

With equation (2.66) and equation (2. 49 , the source strength A, is:

87h?
M2

Due to the approximation, the parameter k in equation (2.69) needs some
thought. In case of an arbitrary potential, it cannot be the energy F that
determines the source strength of the STM tip. The excess energy U(r') — E
of the electron at the tip would come to mind in an ad hoc interpretation
of k. But since the tip in an STM is located in the tunnelling region, this
interpretation must fail. On the other hand, it is plausible that the mo-
mentum £ of the electron at the STM tip is given by the momentum of the
electron that propagated through the STM tip. Thus addressing continuity,
the parameter k£ can been seen as the Fermi wave vector of the tip material.
The Fermi wave vector of typical metals used for the tip (like tungsten) is
approximately 1.5A-1. From now on, this specific value is used consistently
through all calculations. Furthermore, this Fermi wave vector will be referred
to as Kyip.

Now ¢ is:

A = — (2.69)

2.4.5 The multipole tips for an STM simulation

The tunnelling current is exponentially suppressed with increasing distance
between the tip and the probe. The spatial extensions of the orbitals (&
0.5A) are of the same magnitude as the tip-probe distance (=~ 4A). Thus
orbitals directed towards the probe give the dominant contribution to the
total current. For instance, if the least bound electron is a d—electron, the
dominant contribution to the current will come from d.>—electrons. Here,
mainly the following three different multipole tips are considered:
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s—orbital: Voo <%) — \/%7
p.—orbital: ym(%) — % 0.
d.e-orbital: oo (2 ) = /12202 — 0% — 82) = \ /15 (202 — 10,0))

2.5 The potential

From now on, the experimental setup is chosen in such a way that the tip is
to the left and the probe to the right. Furthermore, the surface of the probe
is perpendicular to the z—direction. The potential U(r) = Uy(z) + Us(r) is
split in two parts. The idea is to separate the contribution of single atoms
Us(r) from a mean tip—vacuum—probe potential U;(z). The mean potential
Uy (z) only varies in the z—direction, while the atomic contribution Us(r) does
not possess this symmetry.

2.5.1 The jellium—model

The jellium—model can be used to calculate the mean tip—vacuum—probe po-
tential U; (). This model for the vacuum—probe transition is relatively simple
and still exactly solvable. The positively charged ion cores are approximated
by a homogeneous background charge, with charge density p,. The conduc-
tion electrons move in the potential p,0(z — zy), where z, is the surface of
the probe. This problem has been solved with the self-consistent equations
by Kohn and Sham (see for instance [37, 42, 65, 23]). The potential for the
jellium-model has been calculated by the usage of a local approximation of
the exchange— and the correlation terms for the inhomogeneous electron gas
(figure 2.1). The only parameter of this model is the charge density py. As-
suming that each ion has one positive charge, the charge density p, can be
calculated by the mean nearest ion distance 2r,:

4 —1
Py = (gwi) : (2.70)

For instance, the quite reasonable choice ry = 3agqnr leads to a charge density
of p. = 5.94-10*2cm 3. This result is almost the correct charge density for
silver and gold. The wavefunction of the exact potential of the jellium-model
can only be determined numerically, even in the one-dimensional case. For
simplicity, and without loss of physical effects (as will be shown later), the
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Figure 2.1: The potential distribution of the jellium—model is shown. For
details on the calculation of this potential see [42]. A “smooth barrier” with
the parameters Vp = 9.08¢V, o = 0.8A~! and ¢ = 0.56Ais fitted to the exact
potential distribution of the jellium-model.

exact potential is approximated by a smooth barrier that is given by:

Ui(z) = % = % (1 - atanh(%(z - C))) (2.71)

2.5.2 Overview: How to evaluate the three—dimensional

Green’s function

The evaluation of the Green’s function of the complete problem

<E + QH—MV2 —Ui(z) — UQ(r)) G (v, v’ E) = 1 (r — 1) (2.72)

is done in two steps:

1. Assuming that the one-dimensional Green’s function G, for the problem

h2
<E g - Ul(z))>G1(z, JE)=d(z— 2 (2.73)
is known, the three-dimensional multipole Green’s function G},

h2 2 w / /
<E+ mv o U1(2>>Glm(r7r7E> - 5lm(r_r) (2'74)
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can be evaluated. For the following tip-vacuum—probe potentials, one—
dimensional Green’s functions are presented here: The “step barrier”
defined by Uy (z) = V10(2) + V20(—2) (see section 5.1.2 for details), the
“triangular barrier” and the “smooth barrier”. The triangular barrier
Uy(z) = —Fz is the potential of the pure electric field (see section 5.1.3)
and the “smooth barrier”, given by equation (2.71), is a good approxi-
mation to the solution of the jellium-model (see section 5.1.1).

2. In the second step, the potential Us(r) is taken into account. At first,
only the Green’s function for the complete problem

R’
<E 5V = Ui(2) - Ug(r)>G(r, v E)=dr—r)  (2.75)
is determined by the Dyson equation. Then from this Green’s function
the multipole Green’s function Gy, is constructed via equation (2.57).

2.5.3 Three—dimensional Green’s function from a one—
dimensional Green’s function

As already stated, it is assumed that the one—dimensional Green’s function
G, is known in closed—form. For the various tip—vacuum—probe potentials
and their one—dimensional Green’s function see section 5.1.2, 5.1.3 and 5.1.1.
Here it is shown how any multipole Green’s function G, can be calculated
from the corresponding one-dimensional Green’s function G;.

Gun(r, v/, E) = o Vim(V)G(r,r', E) satisfies the following equation:

(E + 2h—M (240, +02) —Ui(z )) G (v, 7' E) = 0y (r — 17). (2.76)

The Fourier transform of the Green’s function Gy, (r,r’, E) in the two coor-
dinates x, y is given by

1
(27h)?

P(I £} qu v’

Glm(r7 IJ? E) = / Glm(p7 q, %, 4 E) dpdq (277)

It is well known that p and ¢ are the momenta in x and y direction. Substi-
tuting equation (2.77) in (2.76) leads to

2 hQ r—T qyy
/(E—p kAL ())Glm@,q,zz E)e™ 52 ™ dpdg =
RQ

2M 2M ¢
0 plz—a') aly—y’
ylm(%) /]R2 §(z —2')e’ i )dpdq.
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This can be further simplified to

2 2
_P + ¢ h_ 2 = , .
<E Wi +2M32 Ul(Z))Glm(paq,Z,Z,E) ylm<h h@)&(z 2.
(2.78)

By Comparison of this equation with the defining equation for G\(z, 2/, £ —
%) it is found that

: 2+ ¢ - /
ylm( 7 h (9 )Gl(ZwZ,E_pQMq ) :Glm(p,q,Z,Z,E). (279)

Equation (2.79) states that the momentum Green’s function (in x, y—direction)
can be determined directly from the one-dimensional Green’s function G,(z, 2/, E).
The basic reason why this could be derived is that the potential U;(z) does

not depend on z, y. It should be stated that there is no limitation on ).
Especially, they do not need to be translationally symmetric in the z, y
direction (that is equation (2.79) is also true for m # 0). Substituting equa-
tion (2.79) in (2.77) leads to

by 1 , P’ +¢
Glm(raraE)_W/ ylm( h h a )Gl(Z,Z,E— IM

ip(x—r) q(y y')

e r dpdg.

To further simplify this equation, a variable transformation to cylindrical
coordinates that reflect the symmetry of the problem is necessary. The new
variables k, 6, p, ¢ are defined as follows:

% © kcosh % © Lsing (2.80)

(z—2)Y peosg and (y—y) Y psing (2.81)
2 2

= K :2—2+% and PP =(x—12')+ (y—y) (2.82)

With these definitions, the three—dimensional Green’s function can be written
as

1 [e) 21 : 21.2
Glm(rurlvE):W\/ / ylm(kco.seuks%nevaz’)Gl(zyzlvE_Z]]\Z)
™ 0 0 1 1
ek eosO=Ldh .

(2.83)
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Taking into account the structure of the ), as given in [52] yields:

<kcos€ K sin 6 5 )_ V@E+ 1)1 —m)(l +m)!
im . ’ i y Uzl ] — /_47T2ll'
I' skcos@  ksinfye b c(kcos®  ksinfye
_azm () @y (i) =

a+b+c=l
a,b,cGZS‘

\/(2l+1)(l_m)!(l+771)! kcos@  ksinO\m
Va2 < T )
2 a!é!!c! ((kC?SQ)Q + <ksln0)2) (20.)°(~1)".

c—a=m
a+b+c=l
a,b,cGZS‘

7 7

(2.84)

The term

((k‘c?se)? N <ks§n6’)2)a (1)

is independent from 6. Considering only the integral over 6 in equation (2.83),
in other words collecting all § dependent terms, leads to:

2 1 m
/ <k C(?S 0 N ik 51.n 9) pikpeos(6—9) 19 —
0

7 7

21
(Zk)m / eim9€ikp cos(0—¢) do =
0

(2.85)
2
(ik,)meimd) / eim(G—d)) eikp cos(60—¢) do =
0
(=)™ (2m)e™ (k).
In the last step the identity [1] 9.1.21 has been used:
i
— emieikreostan — g (kp). (2.86)

2 Jo
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Substituting all these simplifications into equation (2.83) leads to

pon L VR DI=m) I m)r
Cunlr ¥ B) = /0 — M T (ep)

I h2 k>
> k2(20.)°G, (z, JE— )kdk =

= alblc! Wi
atbtc=1
a,b,cezar
VDT =—miT+m) .,

Ta0l+2

L - 2a+m+1 b , K2L2
C—azm alblc! /O' k Jm(kp)(2az’) Gl Z,Z 7_E — i dk.
atbte=l
a,b,cGZS‘

(2.87)

For m = 0, this equation is independent from ¢, as expected, since in this
case the source term also exhibits rotational symmetry.

As a very important special case, the direct connection between one—
dimensional Green’s function and three—dimensional Green’s function can be
established:

1

00 271.2
G(r,r', E) = V4rGy(r,r', E) = 2—/ kJo(kp)G, (z,z’,E Ik dk
T Jo

2M ‘

(2.88)
Thus the multipole or the three-dimensional Green’s function is given by an
one—dimensional integration. This integration must be solved numerically in
almost all presented simulations. For details of the numerical evaluation of
this so—called “Hankel transform”, see section 5.2.

2.5.4 Zero-range potentials

The second part of the potential U(r), that is Us(r), should account for the
contribution of individual lattice atoms. As a possible approximation for this
potential, so—called zero-range potentials can be used:

Uy(r) = Z Wi (T — )0 py |1 — 13- (2.89)

A pure delta function would not lead to scattering in three-dimensions. Reg-
ularised d-functions or Fermi pseudopotentials are required in order to make
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the Schrodinger equation well behaved [11, 67]. Still, the Green’s function
G(r,r', E) for the complete problem

h2

(E b V2 Uy(2) — Ug(r)>G(r, rE) =6 —1)  (2.90)
2M

must be determined. The Green’s function G¥(r,r’, E) of the reduced prob-

lem

h2
<E + WVQ - Ul(z)>GW(r, v E)=4(r—r) (2.91)
is given by equation (2.88). In principle, the unknown Green’s function can

be calculated via the Dyson equation:

G(r,v',E)=G"(r,v', F) +/ G(r,x", EYUsy(2")GY (¢" ¥/, E) d*r". (2.92)
R3
The order of the Green’s function’s in this equation may be unusual, but in
fact, the order can be changed as has been proved in section 8.4. Due to the
special structure of the potential Us(r), the Green’s function G(r,r/, E) can
be evaluated directly from the Dyson equation. The zero-range potentials
turn the integral Dyson equation into an algebraic equation.
Simple substitution of equation (2.89) into equation (2.92) leads to:

G(r,v',E) = G"(r,x',E) + Y _G(r,r;, E)u,G"(r;, v, E), (2.93)

if v’ # r;, since then there exists a neighbourhood M of r; so that G¥(-,r/, E)
is analytic in M. On the other hand, if ' = r; then

G(r,r;, E) = G"(r,1;,E) + Y G(r,1;, E)u;C(E))y;, (2.94)

where the matrix elements of C(E) are given by

GV (r;,rj, E) fori # j

2.95
[6‘r,rj|]r —r;|G"(r, 1}, E)L:ri fori=j ( )

(C(E); & {

Remark 3 If the single atoms were not modelled by regularised —functions, the real part
of the diagonal elements of C(F) would diverge. Hence it would not be possible to assign
the atoms different scattering strengths u;.

For further calculations with equation (2.94), it is extremely convenient
to rewrite it in matrix notation: Let G be the row vector

G" Y (Glr.r, B).... G(rr, B)). (2.96)
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and
KT (G (e, B), . G (rm ). (2.97)

and finally let the matrix U denote the following diagonal matrix:
Uy diag(uy, ug, ..., uy). (2.98)

With these definitions it is easily verified that equation (2.94) can be rewrit-
ten as:

G'=K" + G'"UC(E). (2.99)
Applying linear algebra, equation (2.99) is immediately solved:

GTzaKT(L—meED_3 (2.100)

By substituting this relationship in equation (2.93), it is immediately found
that:

G(r,r', E) =G"(r,r',E) + i G"(r,r;, E)(T(E));;G" (rj,x', E), (2.101)

ij=1
where the so—called T-matrix T(E) is given by

-1

T(E) = (1-UC(E))"'U = (U! = C(E)) (2.102)

2.5.5 Total elastic cross section of zero—range potentials

Until now, the parameters u; have been only considered as a measure for the
strength of the regularised delta potential. In this section it will be shown
that the u; directly determine the total cross section of the regularised delta
potential. From equation (4.10) the scattering amplitude f(k,k’) can be
directly derived since

1 eikr eikr

Yir) = _(27rh)% (i, k) r * (27?7‘1)%'

(2.103)

(see for instance [4, 28, 55]). The scattering amplitude is thus given by:
2Mu
2Muik + 4mh’

Since the scattering amplitude in forward direction and the total cross section
are directly related by the optical theorem

f(k7 k,) =

(2.104)

koot

I £k ) = =7,

(2.105)
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the total elastic cross section of the regularised delta potential is:

4m
Otot — m (2106)

Mu

Since the adatoms are usually very close to the tunnelling exit of the electrons,
the energy of the electrons is almost zero. Thus in this approximation the
total cross section is given by:

(Mu)*

Otot =

2.5.6 Generalisation of the model to include multipoles

The T-matrix equation (2.101) must now be extended to multipole sources.
For this purpose, the following property of the Green’s function GV is very
important: G is symmetric in the spatial arguments:

GY(r,r',E) = G"(r',r, E). (2.108)

This can be easily seen from equation (2.31) and (2.88). From this symmetry,
the following important feature of the multipole Green’s function can be
derived:

vy, )defylm( )G (e x', B) = ylm< )G B). (2109)

From expression (2.10) the multipole current is thus given by:

Jom(E) = },ig(—nmylm(i)ylm <§)Gw(r, v, E)+

ZG (rj,r, E)(T(E)) kG (xe, v/, E).
’ (2.110)

This important relationship is derived from equation (2.10) and the fact that
Vim(2) = (=1)"Vi=m(2). (2.111)

In equation (2.110), the multipole current Y, (0:)G)Y (v, ', E') appears. The
evaluation of this term is similar to the evaluation of G}\, (r,r’, E'). The exact
relationship is presented in section 5.3.
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Chapter 3

Basic numerical results

This chapter shows a multitude of simulated STM images, and thus illus-
trates that a broad spectrum of setups can be calculated by this simulation.
Starting with simple metallic surfaces, it will be demonstrated that this sim-
ulation is capable of reproducing the high corrugation observed on closed
packed surfaces. This high corrugation could not be predicted by the orig-
inal theory of Tersoff-Hamann [60, 61]. (Due to this shortcoming, several
extensions to the Tersoff-Hamann theory have been proposed in the past.)
Next, the simulation of quantum corrals is addressed. From the resulting
images a basic interpretation of the corral images can be already derived
(section 3.5). In the following sections 3.6, 3.7 and 3.8, the effect of various
parameters of the theory on the STM images is analysed. The chapter con-
cludes with the presentation of some unusual corrals which also illustrate the
previously developed interpretation.

3.1 STM corrugation pictures of simple metal-
lic surfaces

At first, it must be verified whether this model is capable of reproducing the
STM corrugation pictures of simple metals like copper silver or gold. It is
one of the most distingushed features of the STM that it can resolve single
adatoms even in closed packed surfaces, as Ag(111) for instance. Such a
measurement is done at very low temperatures, more precisely, at about 4K.
Since the STM is operated in a low bias voltage regime (V =~ 10mV), the
approximation (2.17) seems valid. The ezact tip surface distance (3A-7A)
is not experimentally accessible with the same precision with which relative
height changes of the tip can be measured. But it is known that the influence
of the STM-tip on the probe is not negligible. This can be seen in the
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Figure 3.1: This is the resulting STM image for a silver surface. Here, the
silver surface is viewed by an s—tip. The Ag(111) surface has a nearest
neighbour distance of 2.89A. The model to describe this surface uses the
following parameters: u; = —27.6A%V, E = 0eV at the tunnel exit. The
resulting corrugation is 0.05A.

following example.

The same area of a sample is scanned twice, where the scanning directions
of the two scans are different. These two measurements are done several
times with different angles between the scan direction of the first and second
scan. The second scan is always performed in the same absolute direction.
For certain samples, the STM pictures of the second scan are not identical,
although they are all done in the same direction. They obviously depend
on the scanning direction of the first scan. Thus, the first scan must have
influenced the surface structure of the probe. In this case, the influence of
the first scan even changes the stable surface configuration. For more details,
see for instance [19].

At first, an s—tip (local rotational symmetric emission) is used in the
following model. In this case, equation (2.64) reduces to

(E + ;—MW - U(r)>¢(r, r', E) = Agodoo(r — ). (3.1)
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Figure 3.2: The same Ag(111) surface as in figure 3.1. The only difference
is that this time, the surface is viewed by an d.>—tip. The setup is identical
to the previous one in figure 3.1; thus, the parameters are: u; = —27.6A3eV,
E = 0eV at the tunnel exit. The resulting corrugation (0.25A) is five times
larger then in figure 3.1.

As already mentioned in section 2.5, the potential is split into the contribu-
tion from single atoms Us(r) and a mean tip—vacuum-probe potential U;(z).
The latter can be calculated within the jellium-model.

To simulate a simple metallic surface, the potential Us is chosen as a slab
of 337 zero-range potentials. These zero-range potentials are arranged on
fee lattice positions of silver with a nearest neighbour distance of 2.89A. The
slab has a radius of 19A and consists of 2 layers with a relative distance of
2.36A. A relatively small 20A-20A part in the centre of the slab is then used
for the STM corrugation picture. The size of the slab must be chosen in
such a way that edge effects are negligible for the region that is selected for
measurement,.

The background potential is a triangular barrier with a slope F' = 1eV/A.
Although this potential is not too realistic, it will be shown that the STM
pictures are not very sensitive to the various background potentials, as long
as they have similar barrier penetration probabilities (see [12]). Hence the
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Figure 3.3: Experimental STM image of a quantum corral. The ring of 48
adatoms is clearly visible. There is no adatom in the centre of the corral.
Outside the ring some artifacts can be seen. Published by IBM, Almaden:
image gallery.

potential U(r) is given by

U)=—F-z+ Zujé(r — 1) 0, T — 15]. (3.2)

J

The parameter u; can be directly related to the total cross section of the
zero-range potentials as given by (2.106).

Although the lattice structure is reproduced by the s—tip measurement
of the Ag(111) surface, the observed corrugation for this surface is not the
experimental corrugation. In the simulation (see figure 3.1), a corrugation
of 0.05A is observed while the experimental corrugation is approximately
0.2A. To explain these high corrugations theoretically, tips with d-orbital
characteristics are essential. Measuring the same surface with a d-tip (see
figure 3.2) leads to a drastically increased corrugation of 0.25A. Thus the
multipole tips or the emission characteristics of the tip material are essential
to explain the high corrugations that are observed in experimental pictures.
The use of multipole tips in order to explain the high corrugations and thus
the high spatial resolutions has been extensively discussed (see for instance
[8, 9, 54]). The direct application of these results to source theory is presented
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Figure 3.4: The setup to simulate quantum corrals. The partially reflect-
ing surface that is necessary to introduce a two—dimensional electron gas is
located at z,. The corral adatoms are in front of this wall. The solution
takes into account all possible scattering events between the adatoms and
the partially reflecting surface.

in [10]. The influence of d-tips on STM images within the source theory is
discussed in much more detail in [12].

3.2 Quantum corrals

Experimentally, a quantum corral is built on top of an atomically smooth
surface, for instance Cu(111). The corral consists of 48 adatoms that are
arranged in a circle on top of the smooth surface. The 48 adatoms are placed
by the STM: The tip is driven towards an adatom, where an attractive volt-
age is applied. By this process the adatom is “torn off the surface”. Then
the STM tip with the adatom on top is driven to the desired location, where
a repulsive voltage is applied so that the adatom is placed on the desired
position. That this process is extremely cumbersome and littered with ex-
perimental difficulties is obvious. The STM is operated at approximately
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Figure 3.5: The STM image of a single adatom. The scanned area is 150 x
150A2. The intrinsic barrier with a strength of 60AeV that builds up the two—
dimensional electron gas at the surface of the probe also causes the circular
oscillations in the electronic density. It is 4.31A away from the classical
turning point, where the adatom is located. The slope of the potential is
F= 0.8eV/A. The tip is 4A away from the adatom emitting electrons with
an energy of —3.2eV. Thus the electrons reach the adatom with OeV energy.
As a reasonable value for the scattering length of the atom, 1.15A was chosen.
Thus the parameter u; = +27.6A%V.

4K. Usually, iron adatoms are used for the construction of the corral. In
the experiment, the diameter of the circle is 142, 8A. Thus it is an extremely
large object compared to the nearest neighbour distance of the substrate (see
figure 3.3).

The Cu(111) surface is essential to see a standing wave pattern. The
reason is that the Cu(111) surface has surface states of the Shockley type.
That is, the surface state electrons cannot propergate in the direction per-
pendicular to the surface, since their momentum k is located in a band gap of
the bulk material. This is sometimes referred to as a two—dimensional elec-
tron gas. Other surfaces and the crystal orientation with Shockley surface
states are Ag(111) and Au(111). All these materials have been used to build
corral-like structures. The scattering adatoms themselves can be replaced
by others metals.
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Figure 3.6: The STM image of a quantum corral. The corral consists of 48
adatoms on a circle with a radius of 71.3A. All the other parameters are
identical to those in figure 3.5. The corrugation in the above picture is 0.5A
when the conductivity is kept constant at 2.7 - 1078A/V. The wavelength of
the oscillation is A = 10A.

Figure 3.7: The STM image of a single adatom. The scanned area is 150 x
150A2. The intrinsic barrier with a strength of 60AeV that builds up the
two—dimensional electron gas at the surface of the probe also causes the
circular oscillations in the electronic density. It is 8.0A away from the STM
tip. The slope of the potential is F' = 1.0eV/A. The tip is 4A away from
the adatom emitting electrons with an energy of —0.3eV. As a reasonable
value for the scattering length of the adatom, 1.15A was chosen. Thus the
parameter u; = —27.6A%eV. The setup is slightly different from the setup in
figure 3.5, resulting in a modified STM image.
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Figure 3.8: The STM image of a quantum corral. The corral consists of 48
adatoms on a circle with a radius of 71.3A. All the other parameters are
identical to those in figure 3.7. The corrugation in the above picture is 0.45A
when the conductivity is kept constant at 3.0 - 1077A/V. The wavelength of
the oscillation is A = 20A. The parameters here differ from those in figure 3.6.

3.3 The model

The simulation of STM pictures of a quantum corral should of course be
possible within the presented theoretical framework. Equation (2.64) will
be the fundamental equation to calculate the pictures. What causes some
trouble are the Shockley surface states. Without these, no standing wave
pattern inside the corral is observed. Thus to model quantum corrals, the
following potential

Ur)=—F-z4ad(z — z,) + Z w;0(r = 14) e, [T — 1] (3.3)

J

(illustrated in figure 3.4) is utilised. The potential U(r) is of course only an
approximation of the “real world”. The only difference between the model (3.2)
to simulate simple metallic surfaces and the model for quantum corrals (3.3)
is the second term. This partially reflecting surface (that is, a surface that
reflects only a portion and not all of the incident particles) is introduced to
account for the two—dimensional electron gas [23|. (Those particles that are
not reflected are transmitted.) Although the electrons cannot propagate into
the bulk due to a band gap, inelastic processes eventually change the energy
of the electron in such a way that it can contribute to the total current.
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These processes that confine the electron onto the surface for a relatively
long time are accounted for by a partially reflecting surface.

The introduction of the partially reflecting surface directly affects the
calculation of the one-dimensional Green’s function given by equation (2.73),
since the potential U;(z) is now given by

Ui(z) = Up(2) + ad(z — zy), (3.4)

where Uy(z) = —F'-z. The following derivation applies not only for the trian-
gular barrier, but is valid in general. Let Uy(z) be the potential in direction
z (triangular, step or smooth barrier) and assume (as in equation 2.73) that
the one-dimensional Green’s function G,(z, 2/, E)

(E n ;—Mag - Uo(z))Gl(z, J E)=0(z — 2 (3.5)

is known. From this Green’s function Gy(z, 2/, E), the one—-dimensional Green’s

function G\“(z, 2/, F)

<E n ;—Mag ~ Up(2) + ad(z — zW)>G1W(z, S E)=d0(z—2)  (3.6)

can be constructed. The construction is for instance presented in [35]. The
Dyson equation results in the equation:

G (2,2 E) = Gi(2, 7, E) +a / (2, 2, E)(5— 2 )G (5, 2/, E) d5. (3.7)

Setting z = z, gives:
G (2w, 2, E) = G2, 2, E) + aG\(2y, 2w, )G\ (24, 2, E). (3.8)
From this condition G,"(zy, 2/, E') can be easily derived:

Gi(zw, ', F)
1 — aGi(zy, 2w, E)

G (2w, 2, F) = (3.9)

From equation (3.7) and (3.9), the one-dimensional Green’s function G\ (z, 2/, F)

is easily calculated:

Gi(z, 2w, B)Gi(2y, 2/, E)
é — G2y, 20, E)

G (2,7, FE)=G(z,7,E)+ (3.10)

The behaviour of the one-dimensional Green’s function (3.10) has been dis-
cussed many times before (for example [44, 14]). Although the one-dimensional
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Figure 3.9: The STM image of a quantum corral. Here, only the diagonal
elements of the T-matrix (2.102) are different from zero. This picture re-
sults from superposing 48 times the image 3.7. All the other parameters are
identical to those in figure 3.8. The corrugation in the above picture is 0.45A
when the conductivity is kept constant at 3.0 - 1077A/V. The wavelength of
the oscillation is A = 20A.

Green’s function G\Y(z, 2/, E') as given by equation (3.10) cannot be Hankel
transformed analytically as in equation (2.87) or (2.88), still, the denomi-
nator in equation (3.10) will permit some quite accurate approximations of
the three—dimensional Green’s function. This is because the structure of the
Green’s function G,V (z, 2/, F) is mostly determined by the zeros of the denom-
inator. The parameter « is chosen positive, so that the potential ad(z — zy)
represents a wall and not a ditch. Furthermore, « is real and thus there are
no inelastic scattering processes. The fact that « and also w; are real is an
additional restriction which is not imposed by the underlying mathematical
model. Thus the model presented here could be very easily extended into
a complex parameter space without changing the presented equations. As
shown in figure 3.4, the adatoms are positioned in a plane parallel to the
repulsive wall. Although this is a rather crude approximation of the under-
lying effective potential, it turns out that this approximation is sufficient to
produce the typical STM-images of quantum corrals.

3.4 The results

A numerical simulation shows all the characteristic features of quantum cor-
rals seen in experimental pictures. The major difficulty for a numerical simu-



3.4 The results 39

Corral with exact T-matrix
8 Corral with superposition == A b

conductivity [1077A/V]

| | |
0 10 20 30 40 50 60 70 80
lateral distance p [A]

2 | |

Figure 3.10: Here, the direct comparison of figure 3.8 with figure 3.9 is shown.
This is a constant height scan with a tip-adatom distance of 4A. The figure
shows that the superposition approximation is a zero order approximation
which is capable of reproducing the wavelength of the oscillation in the elec-
tronic density. But the figure also shows the limitations of the superposition
approximation, since the approximated current profile significantly deviates
from the exact calculation.

lation is the accurate evaluation of the three-dimensional Green’s function by
equation (2.87). Several algorithms exist, but most of them lack the accuracy
needed. The algorithm employed here is presented in section 5.2. Due to the
simplicity of the model, these pictures can be calculated within minutes on
a standard personal computer.

It is very interesting to study STM pictures not only of the quantum corral
but also of a single adatom. From experiments it is well known (see [46])
that the typical oscillations occur not only in a ring of atoms, but also in the
case of single atoms. Furthermore, the wavelengths of the electronic density
oscillations produced by a single adatom are identical with the wavelengths
appearing in a quantum corral. Although at first sight this detail seems
unimportant, it shows that the wavelengths in a quantum corral have nothing
to do with the radius of the corral. To emphasise the importance of the single
adatom images, the figure pairs 3.5, 3.6 and 3.7, 3.8 are shown. It should be
mentioned that there is no adatom in the centre of the ring. The maximum in
the centre (shown in figures 3.6 and 3.8) results from the circular arrangement
of the adatoms.

The standing wave patterns (for a single adatom as well as for a whole ar-
ray of adatoms) are seen if and only if the surface of the probe harbours a two—
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Figure 3.11: This figure shows the three different potential distributions
used in this thesis. The step barrier is given by 3.2eV/A - sign(z). The

triangular barrier is given by —0.8eV/ A - 2. The smooth barrier is given by
6.4eV /A
1_el.37824A7 12

been chosen so that the area between the step barrier and the triangular
barrier is exactly halved.

—3.2eV. In this case, the parameters of the smooth barrier have

dimensional electron gas. Since in the theory presented the two-dimensional
electron gas results from the potential wall term ad(z — zy) in equation (3.4),
the oscillations will disappear for a@ — 0.

From these pictures some basic understanding of the emerging wavelength
can be already gained. It must be the —F'-z4+«ad(z— zy) term of the potential
and the energy E of the electrons that determines the wavelengths. The
only other parameter that might influence the wavelength of the corral is the
strength wu; that is directly related to the total cross section of an adatom.
But from the experiments it is known that the choice of the adatoms is not
fixed, any material can be chosen. The adatoms can be replaced without
any drastic changes of the STM image. This relative insensitivity of the
STM images to the parameter u; can also be reproduced theoretically (see
section 4.2).

3.5 The superposition approximation
In the previous section, the strong correspondence between the wavelength

of a single adatom and the wavelength for a circular arrangement has been
pointed out. As a zero order approximation, one can try to interpret the



3.5 The superposition approximation 41

1 T T T T T
3 triangular barrier ------
N smooth barrier
2 08 - step barrier - - - -
2 N
o N\
N
g 06 W -
5] W
: \
N
3 )
T 04r AN 4
N N
= \
] \
= 0.2 TN i
g O N
= So ..
N
0 I L L T
0 1 2 3 4 5 6

lateral distance p [A]

Figure 3.12: The resulting tunnelling spots at the position z = 0, that is,
at the exit of the tunnel. These are the tunnelling spots for the different
barriers shown in figure 3.11. Clearly, all the spots have a Gaussian shape.
Furthermore, it can be seen that the step barrier leads to the smallest spot
and thus to the highest resolution. This is followed by the smooth barrier,
and finally, the triangular barrier.

corral pictures as mere superposition of 48 single adatom STM images. More
precisely, in the T-matrix (equation (2.102)) all off diagonal elements are set
to zero.

The resulting conductivity picture of an arbitrary setup of adatoms can be
explained basically by simple superposition. Thus the standing wave pattern
can be calculated not only for a circular arrangement of the adatoms, but for
any arbitrary formation. In how far this zero order approximation is valid is
shown in figure 3.8, 3.9 and 3.10. From the superposition approximation it is
easy to predict when a maximum appears at the centre of the quantum corral.
All experimental pictures show that the rings turn into rings of 48 bumps
when the radius exceeds a certain limit, as it is shown in figure 3.6. Again,
this can be explained by superposition. The reason why this superposition
model is so useful is that the diagonal matrix elements of the T-matrix T(E)
are the dominant ones. They are typically 100 times greater than the biggest
off-diagonal term.

Although this approximation is able to reproduce the quantum corral
qualitatively, it should be emphasised that there are some physical effects
of a quantum corral that cannot be described by this approximation. For
instance, there would be no Kondo mirage if the T-matrix were diagonal.

Since within the superposition approximation the standing wave pattern
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of an arrangement of adatoms is reduced to the standing wave pattern of the
individual adatoms, the understanding of the oscillations for a single adatom
is essential. In other words, the interesting effect is the standing wave pattern
that appears for individual adatoms as shown in figure 3.5 or 3.7 and not the
whole corral of 48 adatoms. Calculating the STM image of a single adatom
yields some useful insights. In this case, the T-matrix reduces to one complex
number. Choosing u; so that T(E) is maximal will lead to maximal changes
in conductivity. Indeed, it turns out that u; mainly determines how much
the second summand in equation (2.101) is amplified. Thus the parameter
uy has hardly any influence on qualitative conductivity pictures. However, it
directly influences the observed corrugation amplitude.

Sometimes in scientific publications the standing wave pattern inside a
quantum corral is attributed to an electron that is confined in a ring. As
it is clear from the experimental data, this interpretation cannot be valid.
Indeed, Heller has shown a decade ago that the electrons are not confined
inside the corral [15]. Obviously, one cannot speak of the confinement of the
electron if there is only an individual adatom present (at least, it cannot be
confined in the direction parallel to the surface of the probe). Nonetheless,
a standing wave pattern can be observed experimentally (for experimental
images see [46]). In the present thesis it will be shown that the standing
wave pattern is a result of electron confinement—however, the electrons are
not confined in the direction parallel to the surface of the probe (z,y) but
in the direction perpendicular to the surface (z). For details see section 4.3.
The name “quantum corral” is thus misleading, but it has been nevertheless
established due to historic reasons.

3.6 Comparison of different barriers

Since the mean background potential is not exactly known, its influence on
the STM pictures must be studied. Although the tunnelling potential can
be calculated within the jellium-model (see section 2.5.1), the precise form
of the potential is not known. This potential does not depend only on the
probe material but also on the position and material of the tip. In addition,
the bias voltage has definitely an effect on the tunnelling potential. Since
the experimental STM pictures look alike for a variety of different materials,
tip positions and bias voltages, the precise shape of the tunnelling potential
cannot have a great influence on the STM images. It could even be stated
that if the STM were much more sensitive to the tunnelling barrier, it could
hardly be used as a surface visualisation instrument. This relative stability
of the STM images in spite of the changes of the tunnelling barrier must also
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Figure 3.13: A smooth background barrier has been employed in the simula-
tion of this quantum corral. The partially reflecting surface with a strength
of 60AeV causes the circular oscillations in the electronic density. It is 8.5A
away from the STM tip. The parameters for the potential are: Vy = 7eV,
o = 0.8A~'. The tip emitting electrons with an energy of 0.262eV is 4.5A
away from the adatom.

Figure 3.14: The same corral as in figure 3.8 with a slightly different energy.
All parameters of the model are identical to those in figure 3.8 except for the
energy of the emitted electrons. The tip emitting electrons with an energy of
—0.242¢V is 4A away from the adatom. This slight energy shift turned the
maximum in the centre of the corral into a plateau.
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Figure 3.15: The same corral as in figure 3.8 with a slightly different energy.
All parameters of the model are identical to those of figure 3.8 except for the
energy of the emitted electrons. The tip emitting electrons with an energy of
—0.246¢V is 4A away from the adatom. In this case, the energy shift turned
the maximum in the centre of the corral into a minimum.
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Figure 3.16: These are the resulting current distributions for the triangular
barrier. Tips with different orbital emission characteristics are used. The
d,>—tip gives the highest spatial resolution, while the s—tip has a broader
tunnelling spot and thus a lower resultion. These spots explain the observed
increase in corrugation from figure 3.1 to 3.2.
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be seen theoretically.

Three different test—potential distributions are studied here. The poten-
tials are shown in figure 3.11. The distributions are: a step potential, a
triangular barrier, and the smooth barrier. A step potential is an often used
zero order approximation. The triangular barrier would be the solution of the
free electric field. And finally, the smooth barrier has one more free param-
eter than the other two. Basically, the slope in the origin can be adjusted.
Here the parameters of the smooth barrier have been chosen so that the area
between the step barrier and the triangular barrier is exactly halved.

In [12], the resulting current distributions for various potentials have been
studied. So only the main results are recapitulated here:

The total current is approximately exponentially suppressed by increasing
tunnelling distance. One of the most important quantities is the radius of
the tunnelling spot, where the tunnelling spot is the area of the probe that
is illuminated by the STM. The radius of the tunnelling spot determines
the smallest structures that can be resolved. The resulting tunnelling spots
for the different barriers in figure 3.11 are shown in figure 3.12. All these
distributions have a Gaussian shape. The precise deviations of a Gaussian
can be calculated as in [12|. This observation can be exploited theoretically
in the minimum uncertainty model (see [10] for details). The step barrier
leads to the smallest spot and thus to the highest resolution, whereas the
triangle barrier has the worst resolution.

In how far different barriers affect the image of quantum corrals is shown
in figure (3.13). There, the same corral as in picture 3.8 is shown, but a
smooth barrier is used instead of a triangular barrier. Although the spots
and thus the resolution of the STM changes slightly for the various potentials,
the resulting STM pictures of the quantum corrals hardly change. This is
due to the fact that the standing wave pattern inside the corrals has typically
a wavelength of 10 to 20A. These standing waves are thus much bigger than
the typical spot of the STM, which is about 2A in radius.

3.7 The energy dependence

The only parameter that is changed in this section is the energy of the emitted
electrons. From equation (2.17) it can be seen that the energy of the emitted
electrons is ez —eV in this approximation. Thus a change of the energy of the
emitted electrons can be interpreted as a change of the bias voltage. From
experiments it is known that the STM pictures of quantum corrals are quite
sensitive to changes of the bias voltage (see for instance [18]). Typically, the
STM image significantly changes when the bias voltage is changed by 10meV.
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Figure 3.17: The same corral as in figure 3.8 except that here the quantum
corral is scanned by an p,-tip instead of an s—tip. All other parameters
are identical to those in the setup for figure 3.8. At first sight, the two
images seem to be identical. A detailed analysis reveals an increase in the
corrugation above the adatom sites (see figure 3.19). The corrugation is 0.5A
when the conductivity is 2.7 - 107%A/V.

Figure 3.14 shows exactly the same corral as picture 3.8, except that the en-
ergy of the emitted electrons has been shifted from —0.3eV to —0.242eV.
The maximum in the centre of the corral disappeared and instead, a plateau
can be seen in the centre. The appearance of the plateau can be explained in
terms of the superposition model (see section 3.4) in case the wavelength of
the single adatom (shown in figure 3.7) changed due to the shift in the bias
voltage. That the wavelength of a single adatom can be directly controlled
by the bias voltage will be shown in section 4.3. If the energy of the elec-
trons is further increased, this plateau can be turned into a minimum in the
centre of the corral. This is shown in figure 3.15. Although in experimental
publications there is a clear preference to present corrals that have a maxi-
mum in the centre, there are unpublished experimental pictures of quantum
corrals with a minimum, plateau or anything in between. In the publication
of Rieder [18], only the energy dependence of triangular corrals is studied.
Rieder presents experimental evidence that these corrals are very sensitive to
the change of the bias voltage, and thus it is no great surprise that circular
corrals also show this sensitivity. From the superposition approximation the
maximum in the centre of the corral can be easily understood: The standing
wave pattern for a single adatom (as shown in figure 3.5 or 3.7) must have a
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Figure 3.18: The same corral as in figure 3.8 except that here the quantum
corral is scanned by an d,.—tip instead of an s—tip. All other parameters
are identical to those in the setup for figure 3.8. At first sight, the two
images seem to be identical. A detailed analysis reveals a drastic increase in
the corrugation above the adatom sites (see figure 3.19). The corrugation is
0.8A when the conductivity is 2.7 - 1073A/V.

maximum 71.4A away from the adatom. When the ring of 48 adatoms is set
up, then the 48 maxima interfere constructively in the centre of the corral.

3.8 The corral with different multipole tips

In section 3.1 it was shown that multipole tips are essential to reproduce
the relatively high corrugation for smooth metal surfaces. Here only tips
with s, p. and d,2 emission characteristics will be considered. The different
resolutions that can be achieved with these tips can be illustrated by studying
the tunnelling spot, as in section 3.6. In figure 3.16 the resulting spots
for the three different multipole tips are shown. It is not surprising that
the d,2—tip has the smallest tunnelling spot and thus the highest resolution.
Until now in this thesis, all corrals have been simulated with an s—tip. In
figure 3.17 and 3.18 the resulting STM image of a corral with a p, and d.2 tip
is shown. The orbital character of the tip has no influence on the wavelength
of the corral. However, the corrugation at the adatom sites is increased with
increasing multipole. In figure 3.19, a cut from the centre of the corral to
one of the adatom sites is shown. From this detailed picture it can be seen
that the standing wave pattern is not influenced by the different multipole
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Figure 3.19: This figure shows the corrugation profiles of the image 3.8,
image 3.17 and image 3.18. This direct comparison shows that the standing
wave pattern is hardly affected by the different multipolarity of the tip. On
the other hand, with higher orbital character of the tip, the corrugation above
the adatom sites drastically increases.

Figure 3.20: These is a half corral consisting of 25 adatoms. Otherwise, the
setup is identical to the setup of figure 3.8. Although the electrons cannot
be confined in the direction along the surface, a standing wave pattern is
observed.
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Figure 3.21: This is a parabola with the coefficients: y = (35.654)~1-22. The
35 adatoms all have a nearest neighbour distance of 9.333A. The physical
setup is the “standard setup” of figure 3.8. A maximum can be observed in
the focus of the parabola. Far from the vertex of the parabola, the oscillations
of electronic density show a plane wave behaviour.

tips. Especially the d.2 gives a high corrugation above the adatom sites.

3.9 Unusual corrals

After the publication of the experimental results for the original circular
corral, a variety of other adatom arrangements have been studied. The most
important ones are stadium like corrals, quadratic and triangular corrals.
Experimentally, the adatoms cannot be placed on an arbitrary position on
the probe surface. For an fcc surface, there is only an hexagonal mesh of
possible adatom sites. This constraint does not apply for the theory presented
here since it does not calculate the stability of an adatom configuration.
Consequently, any adatom arrangement can be set up easily.

The first arrangement is a half corral. This half corral (figure 3.20) ap-
pears during the experimental construction process of the complete corral
(see figure 1.2). It can be seen that even half corrals show already a maxi-
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mum in the centre. That the electrons cannot be confined in the direction
along the surface of the probe is obvious. Finally, a parabola arrangement
is shown in picture 3.21. The nearest adatom distance is 9.333A, which is
identical to the nearest adatom distance in the circular corral.
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Chapter 4

Interpretation

After presenting some simulated STM pictures, this chapter goes beyond the
relatively simple approximations like the superposition approximation. In
this chapter, a fundamental theoretical understanding for the model Hamil-
tonian is presented. At first, it will be discussed in how far different adatom
types influence the STM images. Then an approximation is presented that
links the theory to the two—dimensional theory of Heller [20]. In section 4.1
and section 4.2, it will be seen that the zero-range potentials can acquire not
only attractive but also repulsive properties. In other words, an adatom can
appear as hill as well as a hole in the STM images. That an adatom can in
fact appear as a depression on the STM image has been shown for an oxygen
atom absorbed on a metal surface [56|. This can happen since the STM does
not give a direct image of the atomic geometry of the surface but rather, it
maps the electronic structure.

4.1 Scattering properties of the regularised delta
potential

Contrary to the scattering properties of the three-dimensional regularised
delta potential, the bound state of this potential is well known. The three—
dimensional regularised delta potential

Ua(r) = ud(r)dlr (4.1)

has a bound state only for u > 0. It is given by:

2 B o7h?

P(r) = (i)gﬁe“”' with 5= (4.2)
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The energy of this bound state is:
h2
E=——k.

2M
The most obvious setup to discuss the scattering properties of the regu-

larised delta potential is to place the delta potential in the origin of a free
potential U;(r) = 0. Thus the potential in the whole space is given by the

(4.3)

regularised potential
U(r) = Ui(r) + Us((r)) = ué(r)O|x]|. (4.4)

Now it can be studied how an incident free particle is scattered by this
potential. In this case, the Lippmann-Schwinger equation is:
ik|r—r’|
ub(x") O |1 1 () dPr (4.5)

e'kr 2M e
r) = —
Y= et~ W ) ae v
The convention |x| = x is used. To solve equation (4.5), the following ansatz
is useful: ' ‘
qﬁ( ) ezkr N ezkr (4 6)
r) =« .
T (2rh):

Substituting equation (4.6) in equation (4.5) on the right hand side leads to
). (4.7)

eikr 2Mu eikr <
tka + 3
(27h)2

Wlr) = (2%71)% C4nh? v

In the above derivation kr = kr cos ¢ is used, where ¢ is the angle between
k and r. Comparing the ansatz (4.6) and equation (4.7) leads to a simple
(4.8)

(27h)

2Mu (. 1
__47rh2 ko + 7 -

equation for a:
1 2M
“ (4.9)

(27h)2 2Muik + Amh®’

Thus
o= —

1 2Mu etkr e
N + T
(27h)?2

So the scattering states of the regularised delta potential are given by:
ikr
- 3 . 2 (410)
(27h)2 2Muik + 4xh” r

U(r) =
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As usual the bound state is orthogonal to the scattering states:

/w vy (r (_)%( 1)%.
ik .

4 ikrcos¢) 9 dodr =
/ / 2Mmk—|—47rh2 r € |r| mr sin ¢ ddr =

( ) 1 or (4h*1 — 2Muk)
2r ) (2wh)3 (20°T + ikMu)(k? + K2)

(4.11)

With the definition of x as given in equation (4.2) it is easily seen that the
two states are orthogonal:

/¢(r)¢;(r)d3r =0. (4.12)

A very interesting question is whether the three—dimensional regularised
delta potential is attractive for negative or positive u? The usual definition
for attractiveness of a potential is

U(r) <0 forallr. (4.13)

This definition is not directly applicable in the case of a regularised delta
potential. Another possible definition of an attractive potential is the increase
of the number of particles in an area including the scattering potential. The
number of particles NV in a sphere of radius R around the regularised delta

potential is given by:
2m
/ / / Y(r)Y*(r)r? sin ¢ dadodr. (4.14)

The integrals involved in the above equation (4.14) are evaluated straight
forward:

Vo = ! < oy oM (k]\/[u2 sin(2kR) — 47rh2u(sin(kR))2)
(2rh)3 \ 3 4R k2 4 M2u2kA

(4.15)

The above equation (4.15) shows that for any radius R of the sphere N (—u) >

N(u) if w > 0. Thus it follows that the regularised delta potentials with

negative u are the attractive potentials, in the sense defined above.



54 CHAPTER 4. INTERPRETATION

12

T
o above the adatoms

conductivity o [1075A/V]

0 1 1 1
-0.1 -0.05 0 0.05 0.1
lateral distance 1/u [A%eV)

Figure 4.1: Here the resulting conductivities for different adatoms are shown.
The STM tip is located directly above the adatom. The physical setup is the
“standard setup”™ The partially reflecting surface has a strength of 60AeV.
It is 8A away from the STM tip. The slope of the potential is F' = 1eV/A.
The tip emitting electrons with an energy of —0.3¢V is 4A away from the
adatom. For this standard setup, the parameters are: a = 0.0039378—L

eVAS?
_ 1 _ 1n—5_1 _ 1n—-5_ 1
b= 0'00697744ew&3’ A= —-9.61925- 10 oL B = —6.16125 - 10 RO

and o = 3.38257 - 10784,

4.2 The influence of the u; on the STM images

In this section, the conductivity picture of a single adatom is studied. It has
already been pointed out in section 3.5 that the single adatom behaviour is
the key to understand the corral images. For this purpose, all parameters
are kept constant except the scattering cross section oy of the adatom. Thus
only the parameter u; is varied. Let

A+iBY GY(r,r;,E)  and  a+ib e C(E), (4.16)

where C(E) is given by equation (2.95). Although A diverges for r — r; it
is not necessarily true that A > B. The conductivity o(r’, E) is given by:

o(r', E) oc Im(G"(r,v', E) + (A + iB)m(A +iB))
=Im(G"(r,v, E)) + <%(A2 — B*) +2A(u;t — a)) T _B;)Q T (4.17)

The last expression shows that the conductivity has mainly a Lorentzian
shape (see figure 4.1). The important difference is the term linear in u] " in
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the numerator. The zero of the numerator is given by:

1 A2 —B%) B A\D 418

w24 B <A B)2+a' (4.18)
Why is this zero of physical importance? The zero is the point where single
adatoms seen as a conductivity maximum are suddenly seen as a conductivity
minimum and vice versa. It is interesting to note that knowledge of the phase
of the Green’s function G%(r,r;, E) is sufficient to determine this zero. The
expression (4.17) is especially interesting when the tip is above the adatom,
that is p = 0. In this case, the real part A is given by the integral:

M [F
W / / /
A= gy Re(G\"(z,2, E")) dE'". (4.19)
In section 5.4 it will be shown that the real part a is given by the expression:
M (" M
a4 =—-7F Re(G\"(z,2,E")) + ———= |dF'". 4.20
e | (reler ) + ) (420

4.3 An approximation of the Green’s function
GW

To gain more insight into the oscillations of the standing waves in the corral
images, it is necessary to approximate the one—dimensional Green’s func-
tion (3.10). If the parameter « is infinitely large, the quasi bound states of
the potential Uy(2) = —F - 2+ ad(z — zy) turn into bound states. Then the
Green’s function has the following form [13]:

zzE

Z (4.21)
E+%F E

The problem now turned into the quantum mechanical bouncing ball prob-
lem. Its solutions are well known. The wave function is:

05~ () (Y ey 40) -

(Q%F)%Ai,(lan) Ai(ﬂ(F(zW - En)>, (4.22)

where a,, is the n-th zero of the Airy function. The eigenenergies F,, of the

states ¢, are given by:
F2h2 3
E,=— -
(ar) ¢
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Figure 4.2: This is the potential U;(z) of the model in z—direction. This po-
tential possesses quasi bound states with energies F,,. Thus, mainly electrons
with B = E, are transmitted. The excess energy £ — E, is taken by the re-
maining degrees of freedom. It can be shown that the single adatom behaves
like a two—dimensional electron source with energies £ — F,, = E |, where
the dominant contribution comes from the classically allowed first resonance
E().

The one-dimensional Green’s function with finite but large o is now approx-
imated by expression (4.21), where £, is chosen complex by the condition

G (2w, 2w, Bn — 2w F) = é. (4.23)
The condition (4.23) assures that the denominator of (3.10) is zero. Thus
(4.21) and (3.10) have the same singularities. That this choice of the energy
FE, is sensible will be shown in section 4.5. In particular, it will be proved
that the expression (4.21) yields a retarded Green’s function with this energy
definition.
Writing the one-dimensional Green’s function as in equation (4.21) has
the major advantage that this expression can easily be Hankel transformed.
The corresponding three-dimensional Green’s function is:

M
wh?

= . V2M(E, — 2,F — E)
> 0u(2)63() o (v - )

GV (v, E)=G"(z,7,p,E) =

(4.24)
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Figure 4.3: The absolute value of the exact one-dimensional Green’s func-
tion (3.10) with F = 1eV/A, o = 300AeV, and 2z, = 2A. Only the first
7 energy poles F, are considered in the approximation. (4 poles must be
included since they are shown in the picture. The next pole above 10eV also
plays a dominant role for energies between 9 — 10eV. The other 2 poles are
included though they hardly contribute to the approximation.) Although the
infinite sum (4.24) is approximated by a partial sum of only 7 summands,
the difference between the approximation and the exact Green’s function is
extremely small. To illustrate the validity of this approximation, the absolute
error is shown. The relative error is very small except near the zero of the
one—dimensional Green’s function. The relative error increases for energies
greater than 10eV due to the different asymptotes of the two functions.

The three-dimensional bouncing ball potential is separable. Therefore, the
notion of the total energy of the electron parallel, £y, and orthogonal, £, to
the surface may be introduced.

The essential point is that the energy Fj must be given by

By = E,. (4.25)
Correspondingly, the energy E| is:
E,=FE+zF —E,. (4.26)

The term 2z, F' adjusts the energy zero so that it lies at the bottom of the
bouncing ball potential. Thus the term z, F' simply shifts the energy zero for a
given configuration. Before the numerical evaluation of the expression (4.24)
is discussed, the total current through the bouncing ball barrier is calculated.
For this purpose, an STM tip is positioned in front of the barrier, as it is
shown in figure 4.2.
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At first, some preliminaries are presented. Since the argument of the
Bessel function K| is either purely real or purely imaginary, the following
identity is very useful:

Ko(—iz) = 5 (io(=) = Yo(2)). (4.27)

With this relation, it is easily seen that for p =0

Im(GW(z,z',O,E)) = _% ’ Z¢n(2)¢2(2/)7 (4'28)

where m is chosen so that F,, — 2z, F' — E <0 and E,,;1 — 2o F — E > 0. If
Ey — 24 F — E > 0 the sum is empty, so m may be chosen to be m = —1.
Equation (4.28) in fact hides some essential physics that is revealed on further
consideration. Assuming that there is no adatom, then the total current
through an s—tip at position r would be (from equation (2.10), equation (2.69)
and section 2.4.5)

4h

J(E)= Nk Im(G"(r,r, E)). (4.29)

Equation (4.28) now states that no current flows as long as £ < Ey — 2z, F.
In the energy range Fy — 2, F' < E < E; — z,F there will be a constant
current flow given by

JE) =2 M

o ’2
Mk’tip 2h?

(4.30)
In the next energy interval from E € [Ej, Ey], there will be an additional
contribution from the resonance at F; and so on. The total current versus
energy function is a step function, with steps precisely at the bound states E,,.
More figuratively, one could say that each resonance F,, has the capability to
conduct a fixed amount of current. But this channel is only used for electron
conduction if and only if it is classically allowed, that is, £ > F,,. For finite «,
the sharp resonances broaden and the sharp steps in the total current versus
energy function are slightly smoothed. At first sight one might think that
there cannot flow any current through the bouncing ball setup illustrated in
figure 4.2. But obviously, the current does flow to the boundary of physical
space along the reflecting surface at z,.

After this small excursion, let us continue with the calculation of the
three-dimensional Green’s function GV (r,r’, E). Equation (4.24) is still an
infinite sum and can only be evaluated numerically for a finite number of
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summands. This equation resembles very much a Fourier series. From the
previous paragraph it is clear that the maximal index ng,, should at least
fulfil £ < E,_,. . In fact, it turns out that the expression (4.24) converges

very fast as long as p > 0. So it suffices to include one or two resonances
that lie above the energy E. In how far this approximation

GV (r,x', E) nixgbn Ko(p V2M(E, ;ZWF_@) (4.31)

reproduces the original one-dimensional Green’s function with finite « is
shown in figure 4.3.

Although these two Green’s functions hardly seem to differ — the struc-
ture of the singularities is almost perfectly reproduced — it must be noted
that the asymptotes of these two functions do differ. While the original func-
tion decays like GV (-, -, /) e VI for decreasing F, any finite partial sum
of equation (4.21) falls off only with G\"(-,-, F) x %.

Due to the different asymptotes of equation (3.10) and any finite partial
sum of (4.21), this Green’s function can only be useful for large p. Indeed,
the Green’s function (4.31) diverges at p = 0. This is not surprising since
the integral over any function that decays like % will be infinite.

Comparing expression (4.21) and (3.10) in the limit & — oo leads to the
interesting and not at all obvious identity:

Gi(z, 2w, E)Gy(2y, 2, E) i
Gy(2zw, 2w, F) E+ zWF E

Gi(z,7,E) — (4.32)

4.4 Applying the bouncing ball approximation
to corral images

In the previous section it was shown how the three-dimensional Green’s
function can be approximated by a sum of Bessel functions K,. The actual
wavelength of the standing wave pattern (in figures 3.5 and 3.6) is half the
wavelength of the underlying three-dimensional Green’s function (4.24), since
the total current (given by equation (2.101) and (2.10)) depends quadratically
on the Green’s function. This is even valid for the multipole case as can be
seen from equation (2.110). For the multipole case this might be a surprise
since the multipole Green’s function G} is not symmetric in its arguments.
Nonetheless, the wavelength for a single adatom is again proportional to

(Gw)*.
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Figure 4.4: This figure shows the resulting conductivity profile for the sin-
gle adatom in figure 3.5. The conductivity resulting from the exact Green’s
function is compared to the conductivity calculated with the approximation.
Although the approximation is not valid in the vicinity of the atom, the wave-
length of the oscillation is almost perfectly reproduced by the approximation.
In this case, the imaginary part of the energy Im(E,) = —0.00289577¢eV.

Since the Bessel function K has no oscillatory behaviour for a real argu-
ment, only the “classically allowed” quasi bound states can contribute to the
observed wavelength. Equation (4.31) states that the wavelength A of the
three-dimensional Green’s function is given by a superposition of wavelength
An. The wavelengths \,, are given by

A

def \V/2M(E, — 2, F — E)
n - h J
where the energies F,, are determined by equation (4.23). All experimental
images of quantum corrals and single adatoms that I know of show no super-
position of two or more wavelengths. Instead, there is strong evidence that
they can be described with only a single wavelength [20]. That means that

the energy E of the emitted electrons must lie between Fy and E;, as shown
in figure 4.2.

(4.33)

Remark 4 It is an interesting question whether it is possible to observe a superposition
of two or more wavelengths experimentally. There are two fundamental experimental
difficulties:

1. In the theory presented, the tip—vacuum probe potential is completely decoupled
from the applied bias voltage. In an experiment, this is not the case.

2. Futhermore, in this theory the partially reflecting surface is independent from the
energy of the incident electrons. Translated into the language of solid state physics,
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Figure 4.5: This is a comparison of the approximations presented in this
thesis. The physical setup is the “standard setup” The partially reflecting
surface has a strength of 60AeV. It is 8A away from the stm tip. The slope
of the potential is F' = 1eV/A. The tip emitting electrons with an energy of
—0.3¢V is 4A away from the adatom. The parameter describing the adatoms
is u; = —27.6A%V.

this means that the probe material has an infinitely large band gap. This obviously
cannot be achieved experimentally. But the band gap may be big enough to cover
the energy range of the first two resonances Ey and Fj.

With this knowledge at hand, it is straightforward to simulate quantum
corrals with the approximation (4.31) of GV. In figure 4.4, the exact and the
approximated conductivities are compared. The very good agreement shows
the usefulness of this approximation. It is best in the region far away from
the adatom sites (p > 0), since then the infinite sum (4.24) converges very
fast, and thus the approximation (4.31) gives almost the exact result, as can
be seen in figure 4.4 and 4.5.

From equation (2.57) and the explicit expressions of the ), given in sec-
tion 2.4.5 it is now clear why the standing wave pattern hardly changes when
the multipolarity of the tip is changed. Taking the following relationship into

account

% 00, Ko(p) = Kolp), (4.34)

which can be easily derived from the expressions 3.71.7 and 3.71.5 in [64], it
is seen that only the prefactor of the Ky in equation (4.24) is changed by a
different multipole tip.

It is remarkable that the free particle Green’s function in two-dimensions
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is

/ ree M
G2free(r7 r, E) - G2f (pu ¢7 E) = _ﬁKO(kop)v (435)

where ky = V2M E /h. Tt is obvious that a single scattering adatom at the
z—position zy behaves like a point source in the two—dimensional zy plane in
this approximation. In several publications, this behaviour of the scattering
atoms is intuitively used (8, 53, 25, 29].

To conclude: The wavelengths appearing in a quantum corral are in direct
correspondence with the eigenenergies of the one—dimensional potential —F -
z+ ad(z — zy). This can be generalised further: The potential from the tip—
conductor transition plus the effective barrier creating the Shockley surface
states build a potential pot. The eigenenergies of this potential pot are seen
in a quantum corral. What is more, they can be observed already in case of
a single scatterer, and not only when a ring of atoms are used.

4.5 The correct choice of the eigenenergies FE,,

The energy F, in equation (4.21) should have a relatively small negative
imaginary part, since the Green’s function is supposed to be the retarded
Green’s function of the problem. A retarded Green’s function is usually
defined to have a small positive imaginary part in the denominator. This
would be the case if Im F,, < 0. E,, is chosen by the condition

1
Gy(2w, 2w, En) = —, (4.36)
a

where « is real and G, is the retarded Green’s function.

Proposition 4.5.1 When there exists an E € C so that Im Gl(z,z, E) =0
for fized z then Im(FE) < 0.

Proof We start from equation (2.24):

Gz, 2, E) = / o, z)f*i“’ D) dy — i (B, 6B, ). (4.37)

Now let £ = £ + ie be the decomposition in real and imaginary parts. It
follows that

o |¢(M72)|2 . 2
n(Gi(z.2.B)) = (~) / T = wloE +ie . (139

Since |¢(€ + i€, 2)|? = 0 if and only if ¢ = 0 (but this degenerate solution is
by definition no wavefunction), it follows that |¢(€ + i€, 2)|> > 0. The first
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term is also greater or equal to 0. Thus Im(Gl(z, Z, E)) can only be 0 for
e < 0. The proposition follows. |
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Chapter 5

Numerical details

This section describes all numerical methods necessary for the actual im-
plementation of the STM simulation presented so far. At first, some one—
dimensional Green’s functions are derived for several potentials. The re-
sulting current distributions and the algorithms to implement these one—
dimensional Green’s functions have been presented in detail in [12]. It is a
pity that the freely available GNU scientific library cannot evaluate most
special functions with complex arguments, but can handle only the real ar-
gument case. Thus it was necessary to implement the Airy functions to cal-
culate the one-dimensional Green’s function of the triangular barrier. The
numerical evaluation of the Gaussian hypergeometric function o F; for com-
plex arguments, which appear in the one—-dimensional Green’s function of the
smooth barrier, is presented in detail in [12]. The numerical evaluation of the
Hankel transform (2.87) is not at all straight forward since due to the Bessel
functions the integrand is oscillating. Furthermore, the algorithm presented
in section 5.2 is a numerical transform. That is, it returns the transformed
function instead of a single value. In section 5.3, the numerical evaluation of
the multipole current

lim(—l)mylm<%)ylm<g)GW(r,r’,E) (5.1)

r'—r or

in equation (2.110) is presented. The method to determine this integral
resembles the method employed in section 2.5.3. The chapter concludes with
several tricks to calculate the necessary quantities. Especially in section 5.4,
where the numerical evaluation of the regularised T-matrix elements (the
diagonal T-matrix elements) in expression (2.95) is discussed, some insight
into the general properties of Green’s functions is gained.
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5.1 Some one—dimensional Green’s functions

5.1.1 The Green’s function of the smooth barrier

Before calculating the Green’s function, the two fundamental solutions of the
Schrodinger equation

h? Vo
(E + maﬁ = eaz)qﬁ(z) =0 (5.2)

must be determined (see [40], page 78). Defining § = 2MV0 and k = /Q%E,
the Schrédinger equation can be rewritten as

ﬂQ
1+ ez

020(2) + k*¢(2) — ¢(z) = 0. (5.3)

This differential equation can be cast into a new form by using the definition
M (Vo-F) introducing the new variable z = —e** (= 0% = o?x(0, +

z0?%)), and utilising the following ansatz

¢(z) = = f(z)

for the wavefunction ¢(z). Now the differential equation (5.3) is mapped to
the differential equation for f(z):

21— 2)f"(x) + ((1 4 %“) _ (1 + %)x) o - Ly =0 64y

0[2

This equation (5.4) has the structure of a Gaussian hypergeometric differen-
tial equation. Its solutions are well known (see for instance [1] 15.5.1):

freg(z) = QFl(l(ﬁ+zk) —(k —ik), 1+ %,x)
l(/ﬁ—ik‘),l—%i,x).

(%

5 1
fir’r(l‘) - l‘_% 2F1 (_a(’f + Zk)? -
Replacing the new variables by the old ones leads to:

1 2K
—(k —1k), 1+ —, —e** 5.9
R

¢(Z) — enz 2F1 (é(/ﬂ) + Zk),

1 1 2
Girr(2) = " o1 (——(fi +ik), ——(k — ik),1 — —H, —eo‘z).

« (0% «
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The Gaussian hypergeometric function is defined as

2 (a)n(b), 2" ab  ala+1)b(b+1) 22
Fi(a,b,c,2) = o4 -
2F1(a, b, ¢, 2) Z () n! * cz+ c(c+1) 2
n=0
for |z| < 1, where
I'(z+n)
O

To define the Gaussian hypergeometric function ,Fi(a,b,c,z) for z € C,
the linear transformations must be used (see for instance [1| 15.3.3-15.3.14).
The solutions have the structure oF;(a,a*, ¢, z). Obviously, these solutions
are real for ¢,z € R and a € C. The solution ¢(z) decays exponentially for
2z — —o0. Therefore ¢ is the bounded solution, while the solution ¢, is
unbounded, since ¢;,..(z) grows exponentially for z — —oco. From these two
solutions an appropriate linear combination must be found, which behaves
like an outgoing wave. The solution that has the asymptotes of an outgoing
wave is essential to construct the retarded Green’s function, as we have seen
in section 2.3. Using the following linear transformation (see [1] 15.3.7) and
the abbreviation

K+ 1k 2ik 2ik

A=  pu=1——andv=—, (5.6)
a a

the solution can be rewritten as:

o(z) = 2T (1 + %”") Re (% DB (N, =\ g, —eaZ))

Girn(2) = 2T (1 _ %’i) Re(r(_;()yr)(efz_ AN _eaz)).

Since the following relation holds

lim 5Fy(a,b,c,—e~ ) =1, (5.7)

the asymptotic behaviour of the two solutions when z — oo is known:
2K [(v)et=
=2I'(1+ — |Re| =57
o0 =2r 1+ ) re( 5 )

RO (Wl 2

Now an outgoing wave is easily constructed as:

AEE 1o PR (RS 211y
D=0 T T+ a0

¢(2) =

Pirr (2)- (5.8)
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By skilled use of the already mentioned linear transformations (see [49]), this
outgoing wave can be expressed as:

K ik k 41k Kk — 1k 2k
= — "™ F, | — 1—— —e**|. 2.9
¢+(Z) ike 2 1( a a a e ( )

The solutions (5.5) and (5.9) can be analytically continued into the classical
forbidden region with energy E < 0. As usual, let k = 7“%]‘“3 Due to
the general properties of the Green’s function in the tunnelling region, the
following must hold: 1, (2) o< e **. Therefore, in the correct analytic con-
tinuation for £ < 0, ik is replaced by —k (k = ik). This leads to the two
solutions:

k—k K4k 2K
¢(z):eﬁ22F1( — ’1+E —e ) (5.10)
K i k—k K4k 2k s
¢+(z):—zek2F1(— e ) (5.11)

To fully determine the Green’s function, the Wronskian of these two solutions
must be evaluated. Since the differential equation for these solutions does not
contain any term proportional to 0,¢(z), the Wronskian must be constant (z
independent). Thus the Wronskian can be calculated from the asymptotic
behaviour of the solutions for (2 — o0):

W(D(2), U (2)) = (o (2) — (2 () = 2w

G (Z Z/ E) 2M ¢(Z<)¢+(Z>) _ 2m F(“;’k)F(l + K;ik) Ko tikes
o n W(p(z<),¥4(2))  hPal(1— 201+ )
( /@—Hk Kk — ik 2ik )
71 , —€ .
o

(H—Hk /@—zk 2k az)
+ —, =),

o «Q

(5.13)

[oM(Vo—E :
where k = ,/Q%E, K= %, z. =min(z, 2') and z~ = max(z, 2').
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5.1.2 The Green’s function of the step barrier

To calculate the Green’s function for the step barrier, a fundamental solution
of the corresponding Schrodinger equation must be determined:

<E + ;—Mﬁz —Vi0(z) — VQQ(—Z)) ¢(z) =0. (5.14)

Without loss of generality, let Vo > V;. At first, the case where Vo < E <V}
is considered. Additionally, we use the definition

o V2M(Vi — E ot 2M(V; — E
I Wi E) o 1y % Ve B)

. . (5.15)

It is well known that the solution of the equation (5.14) has the following
structure:

Aek2® + Be™*2% for z < 0

¥(z) = { (5.16)

Cek% + De %% for z > 0.

The introduced constants are complex numbers: A, B, C, D € C. The regular
solution (wavefunction) must be bounded, therefore B = 0. Furthermore, v
as well as ¢/ must be continuous. These conditions lead to:

(1+ R)e** for 2 < 0
=D. 5.17
o) {Reklz +e 7% for z > 0, ( )

where B & % (reflection coefficient). Usually, the last free parameter
D is calculated by the normalisation condition (in this case usually a nor-
malised current is assumed). For the calculation of the Green’s function, the
form (5.17) is totally satisfactory, since the Wronskian will be proportional
to D. By a completely analogous treatment, the irregular solution ¢, can
be determined. It is given by:

(1+ R)e™™* for 2 < 0

5.18
ez 4 Re=Fz for 2z > 0. ( )

¢irr(2> =k {

With equation (5.17) and equation (5.18) at hand, it is now possible to
construct an outgoing wave (1, oc €* for z — oc). This outgoing wave is
given by the expression:

(5.19)

¥4 (2)

_ D¢y(2) — ER¢(z2)  DE e k2% _ Retk2? for 2 < ()
N (1+ R)? 14+ R | (1-R)= for z > 0.
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From equation (5.19) it is obvious how k; must be defined in the case V; > E.
In this case, equation (5.19) must again be a bounded solution for V; > E.
Thus k; must be given by:

o 2M(Vi—E
oy (hl ). (5.20)

To calculate the retarded Green’s function G; the Wronskian of the solu-
tion (5.17) and (5.19) must be determined:

W(8(2),10+(2)) = ¢(0)¢/,(0) — ¢/(0)¢1-(0) = —D*E - 2k. (5.21)
With all these results the retarded Green’s function G, is given by:

GI(Z,Z/7E) _ % <%(6k1(2>2<) + Rekl(z>+2<))_
1

0(_Z<)0(_Z>) (€7k2(2>72<) . R€k2(2>+z<))+

(5.22)

(ek‘22< 6k‘12> )) .

In equation (5.22), the transmission coefficient is given by T’ o z%{—vlljlkl? The

result agrees with the one published in [62] (page 154).

5.1.3 The Green’s function of the triangular barrier

Before calculating the Green’s function, the fundamental solutions of the
corresponding Schrodinger equation for the triangular barrier must be deter-
mined:

R,
<E + mﬁz + Fz) o(z) = 0. (5.23)
The new variable © = 2az + b is introduced, where
MFY\3 ME

This substitution maps the Schrodinger equation to the so—called Airy dif-
ferential equation. This equation has the fundamental solutions Ai(z) and
Bi(z). Studying the asymptotic behaviour of the solutions when z — —oo
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(z — o00) is essential to construct the outgoing wave. From [1] 10.4.61 and
10.4.63 follows that

Ai(—2) %z_i sin (g + %) (5.25)
Bi(—2) %2_% cos (g + 2) (5.26)

where ( = %z% The outgoing wave is therefore given by
Ci(z) = Bi(z) + i Ai(z). (5.27)

By using the previously mentioned transformation x = 2az + b and 2/ =
2az’ + b, the Green’s function can be written as:

2M  Ai(z-) Ci(z<)

h* W(Ai(zs) Ci(z.))

G(x, 2 E) = (5.28)
In the above expressions, the following definitions have been utilised: z- =

max(z,z’) and x. = min(z,2’). The Wronskian is easily calculated to be
W(Ai(z>) Ci(z<)) = —5=. The complete result is thus:

M — |y — _
ST SRR 9 (EEITE Py ERSESTET)

or, expressed in the original coordinates z, 2’

, M . ! !
G(z,2,F) = 7 Al(a(z +27 =z =2)+ b) (5.30)

Ci(a(z+ 2 + |z — 2'|) +b).

5.1.4 The WKB approximated Green’s function

To calculate the one-dimensional Green’s function it is necessary to deter-
mine the regular solution (WKB-wavefunction) in the semiclassical approx-
imation. We start from the Schrédinger equation, that is recast into the
form:

(E + 2%63 - Ul(z)) ¢(z) = 0. (5.31)

The semiclassical approximation is only valid in the regions far away from the
classical turning points. Thus there are no more two independent solutions
for the whole physical space but two independent solutions for each region.
The difficulty in the semiclassical approximation is to connect these numerous
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solutions to each other in such a way so that a regular solution is constructed.
If the potential is monotone, then there can be only one such turning point
2o(E). Furthermore, let Uy (2)—E < 0 for z €] —00, z0(E)] and Uy (2)—E > 0
for z € [20(E), oo]. Utilising the definitions

k(z,E) = \/ﬂ (E—Ui(2)) (5.32)

72
5(z, B) = \/ (Ui - B), (5.33)

the fundamental solutions of (5.31) are given by (see for instance [36]):
¢+(2, E) = \/ﬁeif? AeB)de it 2 e] — 00, 2(E)| (5.34)
¢+(2, E) = ﬁeﬂf;o MeE)dr i 2 €)z0(E), 0ol (5.35)

For the following discussion, let z as well as 2’ (position of the tip) be in
the “tunnelling region” (2,2’ €] — 00, 29(E)]). Thus it is only necessary
to determine the regular solution and the outgoing wave in the tunnelling
region. The regular semiclassical solution is given as a linear combination of
the above fundamental solutions:

1 — [P0 k(x i
¢(Z,E) = m@ fz (@,E)d . (536)

The outgoing wave is at first only known in the classically allowed region
— otherwise, it could not be determined whether the solution has outgoing
characteristics. Thus the outgoing wave in this region is given by:

1 [
z, FE = ¢t F@Be 5.37
4l B) = s (537

Using the semiclassical connection rules, the above solution can be continued
into the tunnelling region. The outgoing wave is given by (see [49]):

& 1 _ - -
77Z)+(Z7 E) = % (56_ fzo w(z,B)de Z'efzo H(x’E)dx) . (538)

Now the WKB Green’s function in the tunnelling region is given by:

M 1 _ Z
G(Z’ Z,, E) _ _ﬁ — — e fz<0 k(z,E)dz
Vil Bl E) (5.39)

(efzzg k(z,E)dx 4 %6_ fzz>0 ,@(:E,E)dac) '
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5.2 The Hankel transformation

This section describes the basic ideas presented in [45]. The method to
calculate the Hankel transform of order zero can easily be extended to trans-
formations of higher order. What is more, the idea can be used to Hankel
transform any polynomial spline, not just stepwise constant functions, as
shown here. The Hankel transform of order m of a function f(x) is given by:

an) " 5= [t @) T (5.40)

Remark 5 It can be shown that the above integral exists under the following conditions:
1. f(x) is defined on [0, co].
2. f(z) and £ f(z) are piecewise continuous.

3. 571 f(2)|da exists.

The reason why the above equation (5.40) is called a transformation is that

f(z) =2 / T gy Ty} dy (5.41)

holds. Unlike for the Fourier transformation, there is no standard method for
the numerical evaluation of the integral (5.40). Numerous algorithms exist
and it is not at all easy to identify the advantages of the different methods.
Due to the simplicity (of both the implementation and the algorithm itself)
and the relatively high accuracy, I have chosen the algorithm presented in
[45]. That does not necessarily mean that this algorithm is superior to the
others. Another interesting method is proposed by [43]. This approach is
much more complicated and it is questionable whether higher accuracy can
be reached in the same calculation time.

The two basic ideas to evaluate the integral (5.40) are the evaluation of the
integral on a finite interval [0, . ] and the approximation of f(x) by f(z),
where f (x) is a piecewise constant function. Additionally, an upper bound
(Ymax) is chosen for y. y is replaced by yymax to confine the possible values
for y to [0,1]. The equation (5.40) is thus approximated by the following
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expression:

1 o
%\/0 'Zij('CIT)JO(ymaxajy)daj =

1 1 .
‘rfnaxxf(xxmax)JO(l‘maxymaXl'y)dl' =

g(yymax) -

27 Jo

1 N—-1 fnv1
o7 Z x?nax/ 2 f (2T max) Jo(TmaxYmaxy ) d =
&n

T
= O

F(TnTmax) Tmax (
ymaxy

€n+1 Jl (xmaxymaxygnJrl) -

|-
o

gn Jl (xmaxymaxygn)) -

N-—1
1 Zmax

27 Ymaxy £

3

(f(‘rn-rmax) - f(-rn-i—lxmax))én—l—lJl(Imaxymaxyfnﬁ-l)‘

(5.42)

Here f(&&may) is piecewise constant on |&,, Enpr|[ with & = 0, Ex_1 = 1. This
function is chosen so that f (€nTmax) = f(§nmax). This choice is quite obvious
since f is supposed to approximate the original function f. Additionally,
Ty €J&n, &nr1[- The points &,, =, and y, are chosen in such a way, that
expression (5.42) can be expressed as a “discrete correlation”. To do so, the
&, are set to &, = e* V) and & = 0. Furthermore, the y, = (1 + ea)&;]\”
forn € {0,1,...,N—1} and 2 = ea(IQ_N), T, =y, forne{l,2,...,N—1}.
With all these definitions, expression (5.42) can be rewritten as

1 Tmax I3 I3 oa(n+1—
) == (f (TnTmax) — f(xn—l—ll'maux»e2 (n+l=N)

n=0 (5.43)
<]1 (I‘Oxmaxymaxea(nerJrliN) )
Ioea(n—l—m—i—l—N)

This expression can now be evaluated numerically (f(zx) = 0). The equa-
tion (5.43) is constructed in such a way that it is a “discrete correlation”
(compare [7| page 198-223). Now equation (5.43) can be rewritten in the
following way:

Z_ h(n)k(n +m) = %xm”‘ FET(FFT(h)IFFT(k)).

™
n—=0 Ymax

1 xmax

% ymax

9(YnYmax) =
(5.44)
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Here, FFT and IFFT are the fast Fourier transform and the inverse fast
Fourier transform, respectively. These are defined by

FFT(h) = > h(n)e®™~ with ke {0,1,...,N —1} (5.45)

and

N-1

1 .

IFFT(h) = % Y h(n)e ™% with ke{0,1,...,N—1}.  (5.46)
n=0

FFT(h) and IFFT(h) simply assign a vector of N numbers to another vector
of N numbers. The product in equation (5.44) is a pointwise product. In the
actual case of equation (5.43), the vectors are defined in the following way:

h(n) _ {(f(xnxmax) - .]F(xn—l—lxmax))eQa(nJrliN) n e {0, 1, e N — 1}
0 ne{N,N+1,...,2N —1}
(5.47)
and

Jl (Imaxymaxea(nJrliN) )

ymaxea(n—i—l—N)

k(n) = ne{0,1,...,2N — 1}. (5.48)

The parameter « is (more or less arbitrarily) chosen in such a way that the
first and the last interval have the same size. With this condition, o can be
evaluated from the equation

 —In(l—e™®)
a=—— (5.49)

(in the original work [45] one sign is wrong). For a fixed partition {x,ax&, } of
the interval [0, Z1ax], the expression IFFT(k) is independent of the function
f that is transformed. Thus IFFT(k) must only be determined once for a
given partition. The Hankel transform is now reduced to two fast Fourier
transforms. How this method can be generalised for Hankel transformations
of order 1 is sketched in the following paragraph. Due to the special structure
of equation (2.87), it is advisable to modify the Hankel transform integral by
a factor 2™:

T or

() & L / " @) () (5.50)
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For instance, the equation (5.50) is replaced by:

1 Tmax -
91 (YYmax) = 5= / 22 f () Jy (Ymaxy ) de =
0
1 1 -
o x?naxef(xxmax)Jl (xmaxymax$y)dl’ =

N—-1

3 §n+1 9z
3 2 s [ F @) st =

1

(‘rnxmax)‘r?nax (
21

—~ Ymaxy

M7

STQLJrl J2 (Imaxymaxy£n+1) -

6721 2(-rmaxymaxy§n)) -

.1'2 N-1 ~ N

ﬁ Z(f(xnxmax) - f(xn+1xmax))€721+1JQ(xmaxymaxygnJrl)-
maxy o

(5.51)

The main limitation of this algorithm is that the function f(z) is sam-
pled to the step function f(x) at fixed sample points &,,. It would be a great
improvement if the sample points could be arbitrary. To improve accuracy,
the samples would be denser where the function is drastically changing and
sparser where the function is relatively constant. In this algorithm, the fixed
sample points are essential since otherwise, equation (5.43) is no more a “dis-
crete correlation”. Nonetheless, an arbitrary choice of sampling points can be
achieved by distorting the coordinate system (see [43]). The implementation
of such an algorithm is much more intricate. A relatively straight forward
extension of this algorithm is to transform cubic splines instead of stepwise
constant functions. This may be promising since the Hankel transform is
very much related to the Fourier transform — in fact, it can be expressed as
a two—dimensional Fourier transform. Let g be the Fourier transform of f
and let § be the Fourier transform of f, then from Parseval’s identity ([33]
page 324) it follows that:

17712 [ 1f@) - FoPds” =
1
2y

. (5.52)
| tol@) =~ ate)faa” = o 9=l
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5.3 Evaluation of V,_,,,(0;)G(r, 1/, E)

As in section 2.5.3, this expression can be simplified by using the Fourier
transform. Using equation (2.77), it is found that

1
Vi-m(0 )Gim(p, 4. 2,2, E)
(2mh)? Jy (5.53)
ip(w—x) q(y )

e’ h dpdq.

yl m( )Glm(r I‘ E)

Now again the z, y dependence is fully absorbed in the exponential factors.
Thus the operator ), ,,(0;) can be recast to

1 (x— z’) q(y y)

W yl m( r) (p,q,z Z E) dpdq_
: b q M q(y y')
(27Th)2 /R? yl—m (_£7_Eya )Glm(p7q’2 Z E) dpdq
(5.54)

Substituting equation (2.79) in the above expression leads to:

1 P g P q
yl m( )Glm(r I‘ E) (27Th)2 /R? yl—m(_%a_%782’)ylm(%7%78z’)

2 2
+ .plx—x
GI(Z,Z,,E—pqu )611)( - ) 14— y)dpdq

(5.55)

From now on the remaining simplifications are straight forward and anal-
ogous to these in section 2.5.3. The variable transformation as defined by
equation (2.80) and (2.81) gives

1 oo rim kcos ksin®
/ _ _ _
G (r, v E) = ) /0 /0 yl_m( . ; ,&)

) 21.2
ylm k CO.S 9 9 k Sl.n 9 9 az/ Gl 27 2/7 E - M eikpCOS(ei(ﬁ) kd@dk
- ; 2M

(5.56)
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With equation (2.84), the product of the spherical harmonics can be recast
in the form:

y <_kcos€ _ksind 8) <kcos€ k sin 6 5 )_ 21+ 1)(1 — m)!(l +m)!
T e s ) Am22 (1)
I k cos 0 2 ksin@y 2\ , .
Z alblel (( 7 > +< i > ) (zaz) (_1) :
a%izrznl
(JL,b,CEZgr
I k cos 0\ 2 ksinfy 2\ “
20,)%(—1)¢ =
_Z a!b!c!(( 5 )*( ; ))(@)( )
a+b-|?crznl
(JL,b,CEZgr
20+ 1)l = m)!(1 4+ m)! 1 o .
4702l Z a!b!c!(_l) k**(20.)(—1)"
atbtom
(JL,b,CEZgr
1 ai1.2a b c
D g DR 20 (1)
ac-i?l;l—i—:crznl
a,b,cGZS‘

(5.57)

This and equation (2.86) lead to the final expression:

Vi (O0) G (.1 ) = 20+ 1)(I — m)I(l +m)! /00" o (k)

7T2221+3
1 2c b 1 2a b ! h2k2
<_Zm (20 _Z i 20 G 2 2 E = o
atbic=l atbemt
a,b,cGZS‘ a,b,cGZS‘
(5.58)
5.4 About the regularisation
The formula for the diagonal elements of C
(C(E))jj = [Or—ryl|r — 15|G(r, 1), E)] (5.59)

r=r;

is not applicable for numerical purposes. If the potential is analytic, it can be
shown that the three-dimensional Green’s function has the following struc-
ture

M f(r,r)

G ) ,7E = -
(x,7', E) 2rh? v — r/|

+g(r, 1), (5.60)
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where g(r,r’) is an analytic function. The function f(r,r’) has the following
structure:

M(E ;ZU(I'/)) (I‘ . r/)Z + O((I’ _ r’)?’). (561)

i

f(r,r')=1-

By definition, any analytic function A can be expressed as a Taylor series

o0

1 .
W + (0= xe) 1) = 3 — e —xel" (en, - Vi) "lrs 1), (5.62)

n=0 "

In the above expansion, the second argument remains constant, thus the
differentiation is only applied to the first argument. Now it is obvious that
for any analytic function g(r,r’)

lim Oy (It — 1i]g(r,1")) = g(r), ) (5.63)

r—rp

holds. Furthermore,

lim 8‘1«,%‘ <|I‘ - I‘HM) = lim @Frk‘f(r,rk) =

roTy =g/ e (5.64)
lim (er,rk . Vr)f(r, r;) =0

r—rp

vanishes due to the special structure of the function f. Now the right hand
term in equation (5.59) can be rewritten as:

lm Oy, (v — r|G(r, 13, E)) = f(r3, TR). (5.65)

r—ry

It should be emphasised that the identity (5.63) is true for any analytic
function. The function f(r,r’) can be written as

N , (hk)>\ | M e ===k
f(r,r)_%/o <G1<Z,Z,E—W)+? - )kjo(pk)dk, (5.66)

where equation (5.60) is used. This finally leads to

(C(E)),; = % /Ooo (kGl (z . %) + %) dk. (5.67)

The diagonal matrix elements (C(E)),; can now be calculated with a simple
integration through (5.67).




80 CHAPTER 5. NUMERICAL DETAILS

5.5 The one—dimensional Green’s function for
small energies

Here an interesting method is described which further increases the accuracy
of the Hankel transform. Since integrals of the following type

[e§) hk)?
kJo(k G(,’,E—( ) dk 5.68
/0 o(kp)Gi( 2, 2 i (5.68)
must be evaluated numerically, it is important to consider the behaviour of
2
the one-dimensional Green’s function G (z, 2 E — %) (for the potential
U(z)) for large k. The basic idea is that the real part of the Green’s function

G, can be approximated for large k by

M /
Glfree — 2e*kfree\Z*Z " (569)
kfreeh
where
2M !
b = o (V) B) 42 (5.70)

The imaginary part is proportional to the total current and is much more well
behaved for small energies. For potentials with a lower bound (like the soft—
and hard step potentials), the imaginary part is exactly 0 for £ €] Fyay, —00].
The above approximation for the real part of the Green’s function for small
energies can be justified since the real part of the WKB one-dimensional
Green’s function in the tunnelling region is

G — 2 . ¢~ B e (5.71)
h2 \/K’(’Z<7E)'L€(Z>7E) ’
where
2M
Kk(z, E) = \/? (U(z) — E) + k2~ (5.72)

Assuming that the potential U(z) is monotone, it follows that x(z, F) is
monotone with respect to x. From the mean value theorem it follows that
there exists a point y € [z, 2] such that \/k(z<, E)k(z>, E) = k(y, E).
On the other hand, it follows from the mean value theorem of integration
theory that there exists a point v € [z, z-] such that f: k(z, E)dr = (2> —

Z<+Z>

5 . In

z-)k(v, E). A possible approximation would be to choose v =y =
the limit £ — oo, this choice is definitely justified.
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Thus in fact, it is not the function G, that is numerically Hankel trans-
formed, but the function

G1<z,z',E (hk)2> R<\/mh2

where the constant k. is given by:

k. ‘@\/Q}l—ﬂﬂU(zgzl)—E) (5.74)

TV, (5.73)

so that
kfree = \/ k2 + k2. (5.75)

For sake of clarity, let h(z, 2/, p) be the Hankel transform of the function (5.73):

def 1 * ! (hk)Q
h(Z 4 p) %/0' <G1<Z727E_ INM )+

—\/ k2+k2|z—2 ))k‘Jg(kp)dk‘

(5.76)

<¢mn2

In order to obtain the Hankel transform of G, that is GG, the following function
(the three-dimensional Green’s function corresponding to G,™¢) must be
added to h(z, 2, p):

M e—kc\r r/|
G(z,7,p)=h(z,7,p) — —Re<7>. 5.77
(2,2,p) = (2,2, 0) = o3 Ty (5.77)
What makes the described method even more effective is that the func-
tion (5.73) even gives convergent results for z = 2’. For the integral (5.67),
only the real part of the following constant must be added to the transform
of function (5.73):

M M Mk,
— = kdk = [ b+ VIR = (578
NS = 2rh? 21h? (5.78)
Thus for the diagonal T-matrix elements the following constant must be

added to h:

Mk,

5.79
) (5.79)
The extension of the described method to multipoles is straight forward but
cumbersome. The multipole Green’s function Gy, is given by equation (2.87).

The correction term that must be added to the numerical transform is de-

termined by:
M 0 e~ kelr—r'l
-V (%) Re<7’r — ) (5.80)

(C(z, E));; = h(z, 2,0) +Re(
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5.6 Summary: How to simulate an STM

For someone interested only in the implementation of the STM simulation,
this section gives a comprehensive description of the employed methods.

At first, the mean tip-vacuum-probe potential U;(z) must be chosen
(section 2.5.1). The program developed in this thesis offers three options:
the triangular (section 5.1.3), the smooth (section 5.1.1), and the step barrier
(section 5.1.2). When the probe harbours a two—dimensional electron gas, in
the studied energy range a partially reflecting surface must be additionally
introduced (see equation (3.4)). The atoms at the surface of the probe are
described by zero range potentials. For more details see section 2.5.4.

With these preliminary measures, the model is set up. Now the multipole
current is calculated in the following four steps:

At first, the three-dimensional multipole Green’s function Gy, (r,r’, F)
is determined. It is calculated from the one-dimensional Green’s G,(z, 2/, E)
function of the potential U;(z). (See section 2.5.3.) The following numerical
methods are employed:

1. the ideas presented in section 5.5 to improve accuracy
2. the Hankel transform (section 5.2)

Next, the background current Y;_,,(0p)Gpn(r,r', E) is calculated as in sec-
tion 5.3:

1. to improve accuracy, employ the ideas presented in section 5.5
2. employ the Hankel transform of section 5.2
Finally, the T-matrix (section 2.5.4) is calculated:

1. the diagonal T-matrix elements need special treatment as presented in
section 5.4 and 5.5

2. employ the Hankel transform

From these quantities, the multipole current can be directly calculated by
equation (2.110). The three-dimensional Green’s functions are determined
for all values of p at once. This is the fundamental property of the numerical
Hankel transform (that is the reason why it is called a transform not an inte-
gral). Thus, the whole constant height image of the STM is easily calculated,
since the T-matrix and the three-dimensional Green’s function are only cal-
culated once. To simulate corrugation images, the following method is most
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effective: depending on the desired accuracy, at least 3 constant height im-
ages with the tip—probe distances zg, 2o — 0.5A, 2o 4+ 0.5A of the surface are
calculated. From these three images, a constant current image can be easily
calculated via interpolation. Since for this purpose an (at first) arbitrary
current value must be selected, it is sensible to calculate the maximum and
minimum current values for each constant height image. From these three
current intervals, a reasonable current can be selected.
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Chapter 6
The Kondo effect

For more then 70 years, it is known that the resistivity of dilute magnetic
alloys has a completely different temperature dependence than normal met-
als. Typically, copper with small traces of iron was used for the experiments.
While the temperature decreases, the resistivity reaches a minimum and then
increases again with an —InT" dependence. This —In 7" dependence does not,
continue indefinitely for low temperatures; instead, below a characteristic
temperature Tj, (Kondo temperature), it phases out. What is more impor-
tant, as the temperature decreases, also the magnetic moment of the impurity
— embedded in the ordinary metal — exhibits an “anomalous” behaviour.
The magnetic susceptibility ceases to follow the Curie law at the temperature
T}, and rather saturates to a constant value at T'= 0. A constant susceptibil-
ity at 1" = 0 is characteristic of a singlet state polarised by a magnetic field.
The magnetic moment of the impurity is fully compensated and quenched by
the conduction electrons of the host metal at very low temperatures. Thus
magnetism ceases at low temperatures. This is also confirmed by an extra
contribution to the specific heat, corresponding to an entropy change of the
order of k,In 2, for each magnetic impurity. Thus several properties appear
to be anomalous in ordinary metals with dilute magnetic impurities. All
these effects are collectively referred to as the “Kondo effect”.

The simplest Hamiltonian that represents the interaction of a localised
spin with the electrons of the host metal is:

H = Z €kNko — Z fiae (%T(/ka) : (wIszd)- (6-1)
k,o

2
kK h

In equation (6.1), the two—component spinor operators that remove electrons
from conduction and impurity states have been introduced:

o= (2) = (1), 62
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The spin matrix operator is given by,
S=— (6.3)

where the o’s are the usual Pauli matrices,

o (O (O e (U0

Kondo solved the Hamiltonian (6.1) perturbatively up to the second order in
J. He showed that a —InT" term appears in the scattering rate that arises
between the conduction electrons and the localised spin. The reason why
the Kondo problem was not completely solved until the early 1980’s is that
this perturbative solution of the Kondo problem is not valid for temperatures
below the Kondo temperature.

The Hamiltonian given in equation (6.1) already assumes a definite impu-
rity spin that is temperature independent. A more realistic approach would
be to simply introduce a single energy level (usually the d or f-electron
level) into the system that can only be occupied by a single electron. This
f—electron level can only be occupied by a single electron due to a large
Coulomb repulsion between two electrons occupying this level. The Hamil-
tonian with the features described is the so—called Anderson Hamiltonian,
which is given by:

1

H = Z eknkg—z €ENgo +——= Z (deCLJCdU—FV;dCLJCkU) —i—UndTndl. (65)
k,o \/N k,o

g

Shortly after the Kondo problem (6.1) was completely solved, the more
general Anderson problem was also successfully tackled. The fourth term
in equation (6.5) is the already mentioned Coulomb repulsion between f-
electrons. The parameter U is assumed so high (U — o0) as to allow occu-
pancy not higher than one of the f orbital.

6.1 Relationship between the total cross sec-
tion and the impurity Green’s function

The impurity Green’s function can be directly derived from the Anderson
Hamiltonian:

N 1
H = Z eknkg—z €ENgo +—= Z (deCLJCdU—FV;dCLJCkU) —i—UndTndl. (66)
k,o \/N k,o

(e
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The retarded double-time Green’s function ((A(t;) : B(t2))) for the operators
A and B is defined by

({(A(t2) = B(tz))) = —if(ts — t2)([A(t1), B(t2)]y), (6.7)

where [A, B], = AB +nBA, and n = +1 for Fermi operators and n = —1
for Bose operators. The operators are in Heisenberg representation A(t) =
exp(tH't)Aexp(—iH't), with H' = H — vNy. Furthermore, (...) denotes the
usual thermal average:

Tr(e=AH=vNo) A)
(A) = Tr e—B(H-vNo)

(6.8)

The Fourier transform G; j(w) of the Green’s function ((A;(¢1) : Bj(ts2))) is
given by

Gl = [ e B dt ), (69)

(e 9]

where wt = w + is, s — +0. The double-time Green’s functions satisfy the
equation of motion:

([A(t1), B(t2)]n)d(t1 — t2)+
+ (([A(t1), H'(t1)] - : B(t2)))-

~
Sl.‘
w
=
—
s
D
—
~
=
N—
Sy
—
~
N
N—
~—
=
I

(6.10)

Taking the Fourier transform of the above identity (6.10) leads to the equa-
tion of motion for the energy Green’s functions:

E((A: B))p = WA, Bly) + (([A, H'- : B))g (6.11)

The above equation of motion is not a differential equation any more but
an algebraic equation. Applying this equation of motion to the operator
combination cy,, Cjza leads to the following equation:

(w - Ek)Gk(LdJ(w) == V;deda(w). (612)

The operator combination ¢, CL,U and cda,cfm can be treated in the very
same way:

(w — ex)Groxo(Ww) = 0k + Vi Garrro(w) (6.13)
(w - ek’)Gda,k/a(w) = Vk/deda(w). (6.14)
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From equations (6.12), (6.13) and (6.14), the following important identity is
easily derived:

Ok k/ s |7
Gko‘,k’o‘ - kol + k Gd(f,d(f (w) K (615)
W — €k W — €k W — €k’
The function 5
G?{U k’U(w) - ke (616)
’ W — €k

is the Green’s function for the Hamiltonian

f{O = Z ExkNke — Z €EdNdo- (617)

k,o o
Thus the T-matrix can be identified from equation (6.15) as:
Tioxo(w) = Vi G o (w) Vie (6.18)

It should be stated that the Anderson model cannot be solved exactly by
this method. The equation of motion for the operator combination cg4,, CLU
leads to:

(w — ed)GdeJ(w) — UFdd(w) =1 + Z VkaadU(w), (619)

where the following commutator was employed:

[Cdg, Hl], = (Ed — /L)Cdo =+ Z VkaU —+ UCdUCL_JCd,U. (620)
k

The problem is that equation (6.19) includes a higher order Green’s function
[ga(w) that is defined by:

Taa(w) < ((capna—s : ). (6.21)

On the other hand, the optical theorem directly relates the total cross
section with the imaginary part of the T—matrix:

2M
Otot = —ﬂ(%r)i)’ Im(Tka,kU(w)) (6.22)

Thus the energy dependent total cross section of a Kondo impurity is given
by:
2M
Ciop = _ﬂ(%)ﬂvk\? Im (G g0 (w)).- (6.23)
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The imaginary part of the retarded Green’s function G, 4, is directy pro-
portional to the spectral density Syq, (see figure 6.1) of the impurity:

Sdada(w) = —l Im(GdU,dU(w)). (624)

T
In case of an STM measurement, the incident particles are the one particle
states cx,|0). The dispersion relation F that these incident particles obey can
at once be derived from the Hamiltonian (6.5): E(k) = €. This dispersion
relation (band structure) combined with equation (6.23) shows that the total
cross section depends only on the energy of the incident electrons. It can be
shown that the Green’s function G4, 4, (w) has a sharp resonance at (or more
precisely, very close to) the Fermi level. How this resonance appears will
be made plausible in section 6.2. Extensive numerical treatments of the
Kondo problem show that the shape of this resonance can be approximated
by a Lorentzian. As long as the dispersion relation of the electrons behaves
relatively smooth within the small Kondo resonance region, the total cross
section will also have a Lorentzian behaviour.

Since the Kondo impurity only reveals itself through its scattering prop-
erties by an (spin) unpolarised beam of electrons, it is possible to introduce
a fake Kondo impurity by simply matching the total cross sections of the
Kondo impurity and the fake impurity. For a zero—range potential, the fol-
lowing relationship between T-matrix and the total cross section was found
for a single adatom at position ry (see equation (2.102), (2.95) and equa-
tion (2.107):

ﬁ VT Otot

This equation (6.25) can now be proposed as a generalised relationship be-
tween the T-matrix and the total cross section for zero-range potentials. Of
course, it must be verified that a resonance in o, at energy F, does in fact
lead to a resonance in the conductivity of the STM at the same energy F,.

T(E) (M I [Op—ra|r — rA|GW(r,rA,E)]rrA> : (6.25)

6.2 The zero band width Anderson model

The zero band width Anderson model is a drastic simplification of the full
Anderson Hamiltonian. Nonetheless, it has some fundamental properties in
common with the full Hamiltonian. Especially the appearance of a resonance
at the Fermi energy can be understood within this model. Any direct solution
(a precise solution based on verified theoremes of quantum mechanics) of the
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7 T

sketch of spectral density

spectral density Im(Ggo,40) [arb. units]

0 I I I
€4 0 €q+U

energy E — p [eV]

Figure 6.1: This is the spectral density of the Anderson impurity model in the
Kondo regime. This figure is not based on an actual calculation but illustrates
the central features of the spectral density. The broad peaks near ¢; and e¢;+U
are due to single—particle energy levels of the impurity. They are broadened
by coupling to the Fermi sea. The very narrow central peak is a many—body
resonance (also called the “Kondo peak”). Its width is proportional to the
Kondo temperature.

Anderson Hamiltonian includes extensive numerical calculations (for details
of the different methods see [28]).

Here a very simple model is considered in which the conduction electrons
are described by a single state at the Fermi level (zero band width limit). The
simplicity of the model is such that the many-body states can be calculated
by diagonalisation of matrices no greater than 3 x 3. Nevertheless, the results
do give some insight as to why a singlet ground state occurs in the strong
correlation limit, and why states with small weight are seen in the vicinity of
the Fermi level when the impurity d or f electron is added or removed. The
model is the non—degenerate Anderson model with a single conduction band
state at the Fermi level eg:

H = Z €EFNiy — Z €qNdy + V' Z(ciocda + 020010) + Ungng,.  (6.26)

(e

A correctly antisymmetrised basis for one particle states of this problem is
given by the following four operators:

CL? CJ{T? CIQ: CZlT' (627)

These four states are obviously eigenstates of S? and S, with the eigenvalues:
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1 T T T T T

infinite coulomb repulsion U — co ——
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T
I

spectral density [s]
o
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Il

0.001 I I I I I I
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

energy E — p [eV]

Figure 6.2: A schematic representation of the excitations from the ground
state of the zero band width Anderson model. Here, the limit where the
Coulomb repulsion is infinitely strong U — oo is considered. Although this
approximation is often employed, it is only valid in a certain energy regime.
The Coulomb repulsion for iron group impurities is U ~ 10eV and for rare
earth impurities U ~ 15eV. The other parameters have been given typical
values: ep =, ep — ey = 1eV, V =0.1eV and U = 10eV. A resonance close
to the impurity level €; even appears in the well known model (6.1) where
U = 0 [24], (page 452). This resonance close to the impurity level is thus
expected. On the other hand, the appearance of the Kondo resonance close
to the Fermi energy is a characteristic of the Anderson model. The Kondo
resonance is due to the peculiar ground state e}|0) (see equation (6.58)) of
the system.

state 52 S,
o, 1/2 | —1/2
o, 1/2 | +1/2
cl) 1/2 | —1/2
cly 1/2 | +1/2
Therefore the operators S? and S, are given by:
3
SQ = hQZ (Chcll + CITC” + Czllcdl + Clech) (628)
and )
S, = h§ (CITCH + CLTch - CLCU — cglcdl). (6.29)

A simple calculation shows that

[H,S?]=0 and [H,S.]=0. (6.30)
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Figure 6.3: A schematic representation of the excitations from the ground
state of the zero band width Anderson model. The parameters have typical
values: The hybridisation parameter has a magnitude of V' =~ 10 — 100meV.
The Coulomb repulsion for iron group impurities is U ~ 10eV, and for rare
earth impurities U =~ 15eV. The impurity level is typically e —€; =~ 1eV be-
low the Fermi energy. The following choice of parameters has been employed
to calculate this picture: ep = u, ep — €4 = 1€V, V = 0.1eV and U = 10eV.
While the resonances close to the impurity level ¢; and a resonance close to
U can be expected, the appearance of two small but finite resonances (the
Kondo resonance) very close to the Fermi energy may be surprising.

Therefore, the operators H,S?, S, have a common set of eigenstates. The
operator S, splits the four—dimensional vector space in two two—dimensional
vector spaces.

The exact eigenbasis of H in these two-fold degenerate S,-eigenspaces
is now determined. At first, the spin—up space (CIT, CZIT) is considered. The
normalised eigenstates must have the following structure:

a110) = Aich,|0) + Bicl,|0) (6.31)

with
AL +Bi =1 (6.32)

With these states, the stationary Schrodinger equation is easily written as a

matrix equation:
€4 Vv Ai . ) Ai

From this matrix equation, the eigenvalues can be straight forward deter-
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mined:

er + eqt\/(er — €q)2 + 4V?2
5 .
The evaluation of the normalised eigenstates is cumbersome, but not difficult:

Ey =

(6.34)

€4 —€F+ \/4V2 —+ (EF —Ed)2

Ay = 2 (6.35)

\/4V2 + (Gd —€r + \/4V2 + (GF — Ed)Q)
B, — 2V : (6.36)

\/4V2 + (ea — €r + /AV2 + (ep — €1)?)

and
_ 2 — )2
A = €r €q + \/4V + (GF Ed) (637)
\/41/2 + (er — €2+ /AV2 + (ep — ed)2)2

2V (6.39)

B_ = .
\/ZLV2 + (eF —€q+ \/4V2 + (ep — ed)2)2

A direct calculation shows that these states are orthonormal. The spin—-down
space (cJ{ L CL l) is treated in exactly the same way. The normalised eigenstates
are given by:

a.(|0) = Ccl|0) + Dyc} |0). (6.39)

Since the Hamiltonian treats spin—up particles in exactly the same way as
spin down particles, it is immediately seen that:

Ai = Ci and Bi = Di' (640)

A correctly antisymmetrised basis for two particle states of this problem
is given by the following six operators:

T 7ot Tt Tt Tt 7ot
CyCrts O € €1 Cars CriChps C1iCars  Ca)Care (6.41)
The eigenstates of the total spin operator are as follows:

state S? S,

chciT 0 0

Cay Cay 0 0

CllCZlT_CJ{TCdl 0 0

T Jr\/5

C11Cay 1 1

CILCLT"‘CITCLL 1 0

V2
1€ 1 -1
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From these states and their corresponding eigenvalues, it is now easy to
construct the the operators S? and S.:

§2 — p? Z (2010620010%0 + c}ocl;facl(,cd_(, + CLCI[,UCl—aCda) (6.42)

(e

and
S, = h(CITcLTcchdT — chczllcucdl). (6.43)

Again, a simple calculation shows that
[H,S*)=0 and [H,S.]=0. (6.44)

From the equations (6.44) it is immediately seen that the following obviously
normalised states are solutions of the Schrodinger equation:

def
bwo> = cchdT]O) = aLTa |0 (6.45)
T 1 T Tt
of C cho+ele a af +a,a_
cfloy 4 2l - tidl gy . TP BT ) (6.46)
V2 V2
def
a0y = Cll dl|0> = aﬂa l|0> (6.47)

All three states have the same degenerate energy eigenvalue ep +¢; = F, +
E_. The triplet states are thus merely products of single particle states.
There are three possible singlet states built up from the states, CITCL|O>,
(chcgl — CLCLT)\(D/\/Z and CLTCI”]O), with energies E 3 corresponding to
the solutions of the equation:

E — 2ep V2V 0 T C;TCI# T
—V2V E—e—ep  —V2V i | =0, (6.48)
0 V2V E-2¢4-U el

This 3 x 3-matrix can still be diagonalised analytically, but the exact expres-
sions are quite lengthy. Using the abbreviations:

X =U+3(eq — €r) (6.49)
Y = XU +3(4V2 + (e — €r)?) (6.50)

Z:(‘/U(X(UH( — 18V2) \/U2 X(U+ X) —18V2)* —4Y3, (6.51)
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the eigenenergies are given by:

3
%(U + 3€q + 3ep) + 3\3Z/§ + % (6.52)
1—iV3, 1+iV3
6v/2 3VAZ
L+iV3, 1-iV3,
6v/2 34z
In the interesting case where the Coulomb repulsion gets very strong, U —
00, these energies are

E1:

1
E2 :g(U + 3€d + 3€F) — Y (653)

1
E3 :g(U + 3€d + 3€F) - (654)

E; — (6.55)
3ep — —€p)? 4+ 8V72
B, = St oeF V(;d )+ (6.56)
3 —€p)? 4+ 812
By = o ‘/(;d r) T8V (6.57)
The normalised states are given by the following linear combinations:

Tt Tt

V2

Since the first two lines of equation (6.48) must be linear independent if V' 2 0
(if V' = 0 this Hamiltonian can be easily solved see [28]), the coefficients are
given by:

e;273|0) = F17273C]£T0h|0> + Gha23 |0) + H17273CIITCLL|O>' (6.58)

V2V

F = m/L (6.59)

G=1/L (6.60)
E — €q — €ER \/§V

H= < N T E_€F>/L. (6.61)

The indices 1,2,3 for F', G, H, E and L have been dropped in the above
equations. The normalisation constant L is given by

L2:<ﬂ> +1+<E_€d_€F— ﬂv). (6.62)

E — 2ep \/iv E —ep

The antisymmetrised basis for three particle states of this problem is
given by the following four operators:

Tt Toar ot Tt Tt
C11C1 Cars CarCaChps C11C1 Cays CarCayCry - (6.63)
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These four states are obviously eigenstates of S? and S, with the eigenvalues:

state S? S,
CITCLCLT 1/2 | +1/2
C%Tc%lcziT 1/2 | +1/2
C%TC%lC?l 1/2 —1/2
CunCalCl) 1/2 —1/2
Therefore, the operators S? and S, are given by:
3
2 _ 32
S =17 (clyel el + eyl el + el el ey + elichiel) (6.64)
and )
_ Tor T T oot Tt
S, = hi( CL e F el el — el el = ehpele)). (6.65)

Again, simple calculation shows that
[H,S?]=0 and  [H,S.]=0. (6.66)

A basis in the spin—up space is given by the following linear combination:

def
£1.,10) = Loclcf el |0) + Jechch el 10). (6.67)

Thus the Hamiltonian can be recast into the following matrix equation:

€4 —|—2€F -V Ii . [i
( —V 2+ er+ U) (Ji) =B (Ji) ‘ (6.68)

The three particle case thus turns out to be very similar to the one particle
case. Therefore, the eigenenergies are easily derived from the one-particle
eigenenergies:

_3€F+3€d+U:|:\/(Gd—€F+U)2+4V2

Ey 5 (6.69)
Finally, the only possible four—particle state is given by:
def
gl = cJ{TchLTcLl. (6.70)
The energy of this normalised state is easily calculated:
2€d —+ 2€F + U (671)

To summarise, the number of states for a given particle number is shown
in the following table:
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particles | states
0 1
1 4
2 6
3 4
4 1

After the complete solution of the Hamiltonian, the possible resonances in
the total cross section of this system can be studied. So far, the Hamilto-
nian (6.26) has been completely diagonalised. It is important to note that
the eigenstates and the eigenenergies in the spectral density (6.73) belong to
the Hamiltonian:

H=H-puN=> (5 — p)nio— Y _(ea — [t)nao+
7 ‘ (6.72)
\%4 Z(c{acd(, + szacla) + Unging, .

(e

Technically, each appearance of e must be replaced by ex — pu and €; by
€q — (. This replacement will in fact leave the eigenstates unchanged and
only shifts the eigenenergies. The eigenenergy F of an N—particle state is
shifted to £ — uN. This transformation rule is general and not only true for
this special model, as it can be easily proved. With this relationship it is
easy to evaluate the eigenenergies of H from the eigenenergies of H and vice
versa. This transformation has been employed in the pictures 6.2 and 6.3,
where the energy scale of the original Hamiltonian H is used.
The spectral density Sag(E) of two operators A and B is given by:

h
Sap(E) = = S (Ea| BIEn) B A E,):
(E) :n,2m< | B| Ern) (Em| Al En) 6.73)

e P (PE 4 1)5(E — (B, — En)),

where the sum runs over all eigenstates of the system. The grand canonical
partition function = is given by:

[1]

= Tr(e_ﬁﬂ). (6.74)

The spectral density Sgyas(E) of Gupar(E) def {({cgo CLU>> can be simplified
to:

h
Sdada(E) = E ZKEm‘Cdo"En)’Q'
= (6.75)

(e 4 e PE§(E — (B, — By)).
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The only transitions that are non—vanishing are:

<O’Cdlail‘0> Ai (6.76)
(0lagrcqyct]0) = \/§ (6.77)
(0Olaxcq d’|0) = — B (6.78)

<O|aﬂcdle1 23/0) = % — Ay Hy o3 (6.79)
(Opeqy£1,10) = Jx (6.80)
Olecatly0) = 2 (6.:81)

(Olerascatl |0) = Fiosle — Jii;’g (6.82)

(O 21cag'[0) = — L. (6.83)

Here only the resonances at 7" = 0 are considered. For this case the T" — 0
behaviour of the following expression must be studied:
C BE. _ C

Let Egng = min(E;). Here it is assumed that the ground state with energy
7

FEgng is non—degenerate. Otherwise, the sum over all ground states must be
included in the spectral density (6.86). It is easily seen that the expres-
sion (6.84) is non-vanishing in the § — oo limit if and only if E,, = Egnq.
Thus

0 if B, # E,,
tim Ceomn = J0 1 En 7 Boua (6.85)
p—oo = C if En = Egnd-
Finally, the spectral density at 7' = 0 is given by:
Suoar () = ( S Bl Exua) P (E ~ (Eyna — o))+
" (6.86)

> (Bgualcas| En) 26 (E — (En — Egnd))> :

In order to illustrate the resulting spectral densities, the following special
case is considered: Let the Coulomb repulsion be infinitely strong, that is,
U — oo. Furthermore, the temperature dependent chemical potential p
should be p(T" = 0) = ep. Since the energy ep is interpreted as the “Fermi
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energy” of the model, this choice is natural. Finally, let V' # 0 in order
to avoid a completely degenerate system. In this case, a simple calculation
shows that the energy Es given by expression (6.57) must be the ground
state energy. Furthermore, the following eigenstates (ei, fLT, fi , and g') do
not exist in that limit. Their corresponding eigenenergies are diverging. In
picture 6.2, the resulting resonances for a typical choice of parameters are
shown.

It is the singlet ground state 95]0) given by equation 6.58 that is responsi-
ble for the appearance of resonances close to the Fermi energy. Thus as long
as the parameters u, €4, €z, V and U are such that e£|0) is the ground state,
the system will show a resonance close to £ — = 0. In the picture 6.3, the
infinite Coulomb repulsion approximation has been dropped. This has direct
consequences for the spectrum, since a peak appears at £ =~ U. The Kondo
resonance appears since for the choice of parameters the ground state is still
e}|0), as it can be easily verified.

The fundamental quantities have been determined to study the finite
temperature behaviour of this model. Since the main intension of this model
was to illustrate the appearance of a resonance close to the Fermi level, the
finite temperature behaviour of this system will not be discussed. Although
the zero band width Anderson Hamiltonian is a drastic simplification, this
approximation is useful even for the solution of the complete Anderson model.
In the renormalisation group calculations, first introduced by Wilson, further
sites are added to the chain to build up the band of conduction states.

It is interesting to note that the occupation of the d-level can easily be
determined from the so—called spectral theorem:

* Sap(E) i ,

Bw)Aw) = [

(This expression is only valid for anticommuting operators A and B.) From
this relationship and the limit (6.85), it is seen at once that

1 /oo Siodo (F)

(i) = oo EPE 1

P dE =" [{Bulcar| Ega)?  (6.88)

for T'= 0. On the other hand, the occupation of the d—level can be directly
calculated from the ground state by:

(Ras) = (EgnalclyCao| Egna) = (Egnalcly | Em) (B cas| Egna) =

" (6.89)
> {Emlcas| Egua) [
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Figure 6.4: This is an ellipse of 36 adatoms. The ellipse has the major—
half axis with the lengths 60A and 70A. The conductivity is measured while
electrons with the energy —0.1965¢V are emitted from the tip that is 4A
away from the adatoms and 8A away from the partially reflecting surface.
All the parameters are almost identical with the parameters used for the
quantum corral. But the partially reflecting surface is much stronger now
(v = 600AeV). The slope of the barrier is again F' = 1eV/A. The energy
has been chosen so that two minima are clearly visible in the two foci of the
ellipse.

This relationship leads to some interesting identities, such as:

<B+G1,2,3

2 G%23 2
¥ +A,H1,273> — L2342 (6.90)

2
+A+H1,2,3) + <7 2

6.3 The Kondo mirage

The Kondo mirage is a variation of the original quantum corral. For this ex-
periment, 36 adatoms are placed on a Cu(111) surface. They are arranged to
form an ellipse with the following geometry: The great major-half axis is 70A
and the small is 60A. Thus again, the corral is several magnitudes larger than
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Figure 6.5: This image shows the same ellipse as in figure 6.4 with a Kondo
adatom in the upper focus of the ellipse. In this case, the energy of the
electron coincides with the maximum in the Kondo resonance. But since
the energy of the emitted electron is fixed, the Kondo adatom in this case
behaves like an adatom with energy independent scattering cross section.
The Lorentzian energy dependence of the magnetic adatom is given by equa-
tion (6.91).

the maximum possible resolution of an STM. This elliptical wall can be built
with magnetic as well as non-magnetic adatoms (adsorbates). In the original
experiment [26], the same result was found when the wall Co adatoms were
replaced by non-magnetic CO molecules. The foci of this ellipse are £36.06A
away from the centre. In one of the foci, a magnetic adatom (Co) is placed
that shows a Kondo resonance for temperatures up to 4K on Cu(111). The
STM can be used to perform three different measurements on this setup. At
first, the usual corrugation (or current) picture can be done for a fixed bias
voltage V. The following short hand notation may be useful: V' — (r,I).
Second, the conductivity o can be measured for a fixed bias voltage V' (V' —
(r,0)). And finally, the bias voltage V versus conductivity o characteristics
can be determined (r — (V. 0)) for a fixed point in the corral. Let Vi be
the bias voltage at the resonance, that is where o is extremal. It should be
mentioned that since the total cross section of the magnetic adatom is ex-
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Figure 6.6: This is the difference between figure 6.4 and figure 6.5, which
have been taken with the same electron energy. From the simple superpo-
sition model it is expected that this difference should look like picture 3.5.
In a very crude approximation, this difference picture has some similarities
with a single adatom STM image. But there are some obvious deviations,
especially the maximum in the empty focus. As already mentioned above,
the superposition model takes into account only the diagonal T—matrix ele-
ments, and thus it cannot predict this maximum. Hence, this maximum is
directly related to the size of the off-diagonal T—matrix elements.

tremely energy dependent near the Kondo resonance (the region of interest),
the approximation (2.17) must fail. Thus corrugation and current pictures
must be calculated by the integral (2.16). The two measurements that show
the Kondo mirage are the following:

1. An (V,0) measurement is done in both foci. In the focus where the
magnetic adatom is placed, the typical Kondo resonance is found. But
the empty focus also shows a Kondo resonance. This mirage resonance
is attenuated by approximately a factor of 10. At another point which
is much closer (10A) to the magnetic atom than the other focus (that
is 72.12A away), no resonance is found in the (V, o) measurement. The
(V, o) measurements have the advantage that they can determine the



6.3 The Kondo mirage 103

12 T

focal atom
empt focus =
off focus — — -

10 -

conductivity o [1078A/V]
[=>]
T

energy E [meV]

Figure 6.7: The lineshapes for different points inside the ellipse. The focal
Kondo atom shows the typical Kondo resonance at 0eV. The Kondo reso-
nance is also present in the empty focus, although it is damped by almost
a factor of 10. The dashed line shows the lineshape for a point close to the
centre of the ellipse. At this point, the Kondo resonance cannot be distin-
guished from the background, despite the fact that this point is closer to the
Kondo adatom than the empty focus.

detailed lineshape. On the other hand, this lineshape can be measured
only at some special points of the corral.

2. A measurement that shows the spatial distribution of the Kondo mirage
can be done by an (r, o) measurement. Here the bias voltage is chosen
very close to Vies. At first, an (r, o) picture is taken from the empty
ellipse of 36 non-magnetic adatoms with no magnetic adatom inside
the corral. Then the magnetic adatom is placed in one of the foci.
The second (r, o) picture is taken from this constellation. And finally,
these two pictures are subtracted from each other. By this method,
the effect of the additional magnetic adatom is spatially resolved. Of
course, the ‘difference picture’ has a peak at the focus that was filled
with the magnetic adatom. Although nothing changed in the vicinity
of the empty focus, the difference picture shows a spike in the empty
focus.

Only ellipses with a very special geometry — those which have large surface
state amplitudes at the two foci — will give a good mirage effect. In other
words, the (r,) image of the empty ellipse must have maxima at the two
foci. The physics of the empty ellipse can be controlled by the very same
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approximations that were introduced for the circular quantum corral. Thus
it is clear that the appearance of a maximum in the two foci not only depends
on the geometry of the ellipse but also on the bias voltage.

All the presented features of a Kondo mirage can be reproduced in this
theory of an STM. This is no surprise since the theory of Heller [20], which
is capable of simulating quantum mirages, was already shown to be a special
case of the theory presented here. At first, the ellipse must be prepared to
show a maximum in the (r,/) or corrugation scan. The resulting ellipse is
shown in figure 6.4. Since the geometry of the ellipse was fixed by the experi-
mental setup, the energy of the emitted electrons was tuned until a maximum
appeared in the foci. It was necessary to increase the repulsiveness a of the
partially reflecting wall. Otherwise, the maxima in the foci could not be
constructed. Since the theory presented in [20] reproduced the experimental
results with a = oo, this tuning of the partially reflecting surface could be
expected.

Next, the magnetic adatom must be constructed. For this purpose, the
relationship (6.25) is utilised. The now energy dependent total cross section
0iot(E) is given a resonance behaviour that mimics the Kondo resonance.
That such a “magnetic adatom” does in fact show the desired resonance
behaviour can be seen in figure 6.7. For sake of completeness, here are the
precise parameters that have been used to model the Kondo adatom:

(373.134 + 80.7754)0.001 - 0.001

E) = 80.7754 — .
u(E) (E + 0.1835)(E + 0.1835) + (0.001 - 0.001)

(6.91)

Finally, this “magnetic atom” is introduced into one of the foci of the
prepared ellipse. The (r, o) scan of this configuration is shown in picture 6.5.
It may be a surprise that no maximum is seen in the empty focus, although
the name “quantum mirage” may suggest it otherwise. But the theoretical
prediction is in complete agreement with the experimental results (see for in-
stance [22]). The “mirage” is only seen when the empty ellipse is subtracted
from this picture. In the difference picture 6.6 the mirage effect in the empty
focus can be clearly seen. If the superposition approximation would be ex-
act, the difference image would be identical to the image of a single Kondo
adatom. The fact that this is not the case — especially that there is a mirage
effect seen in the other focus — is thus directly related to the off-diagonal
elements of the T—matrix.

At last, the (Vo) lineshape at selected points of the quantum corral can
be studied as shown in figure 6.7. At the magnetic adatom position itself the
Kondo resonance is clearly seen. The empty focus shows the same resonance
behaviour although the peak is lowered by a factor of 10. The third point is



6.3 The Kondo mirage 105

close to the centre of the ellipse and thus only half as far away as the empty
focus. Nonetheless, no Kondo resonance signal is detected at this point.

That the quantum mirage can be correctly described by a scattering the-
ory has already been pointed out by Heller [26]. In comparison with Heller’s
theory, the merit of the calculation of “quantum mirages” from source the-
ory is that here a fully three-dimensional approach has been taken. This
approach does in fact lead to some insights which are not accessible from a
purely two—dimensional solution. Nonetheless, both theories have some dif-
ficulties in describing the magnetic adatom. So in both cases the scattering
properties of this Kondo impurity had to be introduced ad hoc.
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Chapter 7

Conclusion

This thesis presented a three—dimensional model of an STM which could
simulate a multitude of experimental images. Among others, the corruga-
tion pictures of quantum corrals and quantum mirages could be calculated
with this theory. Due to its relative simplicity, the theory allowed the pre-
diction of the experimental STM images without any approximations. The
calculations presented were not only treated on a proof of concept basis, but
were completely implemented. That is, all simulated STM pictures presented
in this thesis were calculated by a standard C-++ program which was devel-
oped in the course of the work by the author. The algorithms that were
developed specifically for this program were described in detail, and their
mathematical derivation was also included.

Except for calculations from first principles, previous simulations of an
STM are mainly based either on the theory of Tersoff-Hamann [60] or the
theory of Heller [22, 20|. While Tersoff-Hamann’s model is primarily used for
the simulation of simple metallic surfaces, Heller’s outright two—dimensional
approach is employed to calculate quantum corrals. The theory presented
in this thesis is more comprehensive than either of these two previous ap-
proaches because it can simulate, for the first time, both simple metallic
surfaces and quantum corrals. That this theory can reproduce the results of
the Tersoff-Hamann theory was already shown by [6]. It can, however, also
reproduce the results of Heller’s theory of quantum corrals, as it was shown
in section 4.3 of this thesis.

Beside the models of Tersoff-Hamann and Heller, in recent years calcu-
lations from first principles are also employed in STM simulations. This
development was made possible by the increase in available computer power.
First principle calculations are primarily used to generate STM images of sim-
ple metallic surfaces. However, first principle calculations are multi—particle
approaches and hence are not directly comparable with either of the models
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mentioned above, which are single—particle theories. Although theoretically,
first principle calculations are the royal road to the understanding of physi-
cal problems, there are limitations to the approach in this case. Due to the
numerical complexity of the problems and the restrictions of the underlying
libraries, quite a few approximations must be made. For instance, periodic
boundary conditions are usually imposed on the problem. Thus, instead of
a single tip, the calculations take into account an infinite array of tips.

Although the first principle calculations for the STM yield fairly accurate
and quantitatively precise results for simple metallic surfaces, at present they
can hardly cope with more complicated problems such as quantum corrals or
quantum mirages. Despite the fact that the theory presented here makes use
of cruder approximations, it can deal with problems of great complexity, such
as unusual quantum corrals and quantum mirages. In fact, STM images of
arbitrary adatom arrangements can be easily calculated. Last but not least,
it delivers results rapidly: while a typical first principles calculation takes
several hours, the simulation of a corrugation picture in the model presented
here takes about 3 minutes on an already relatively slow personal computer.

While most approaches set out to model a whole quantum corral, to my
knowledge there are no publications that deal with the oscillations of elec-
tronic density of a single adatom. Therefore, the present thesis started out
by examining and explaining the standing wave patterns of single adatoms.
From the theoretical point of view, the single adatom case is easier to handle
due to a reduced computation time and a further simplification of the theory.
One striking result of this approach was the insight that the single adatom
problem displays almost all physical properties of the arbitrary adatom ar-
rangements. What is more, it could be shown that the naive superposition
of single adatom images gives qualitatively acceptable results in most cases.
Thus, the naive superposition of single adatom images, an idea that has not
been tried out before, turned out to be a useful aid to give zero order ap-
proximations of STM pictures. Within the framework of the theory presented
here, the terms that were neglected in the naive superposition approximation
can be identified. Thus it is possible to foresee when the naive superposition
approximation must break down. This possibility is the direct consequence
of the rigorous derivations that result in a clear solution of the model.

One of the greatest merits of the (unapproximated) model developed here
is to link the ad hoc parameters of the two—dimensional theory of quan-
tum corrals introduced by Heller to physical quantities. Thus, the theory
presented here succeeds in giving a physical interpretation of the observed
wavelength of the electrons in the surface states. Furthermore, the scattering
phase shifts can be linked to the T-matrix elements that are directly given
by the potential distribution in the model.
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Experimental observations showed that tungsten tips yield images with
higher resolution than other tips; therefore, usually tungsten tips are used
in the STM apparatus. Theoretically, the increased resolution of tungsten
tips has been attributed to the fact that the emitted electrons originate from
d orbitals [8, 9, 54]. It is a further feature of the model that tips with
definite multipole characteristics can be easily introduced. Since this feature
can only be integrated into a three—dimensional model, the theory developed
here allows a more realistic simulation of the experiment than it is the case
in Heller’s two—dimensional model.

The thesis also addressed the simulation of the Kondo mirage. With a
relatively simple extension, the model was also capable of reproducing STM
images of the Kondo ellipse. The calculation of the spectral density of the
zero band width Anderson model paved the way for this extension. The
typical Kondo lineshape could be observed in the empty focus of the ellipse.
In addition, the topographic STM image of the whole ellipse showed the
mirage peak in the empty focus. That this model is capable of reproducing
the Kondo mirage is a consequence of its close relationship to Heller’s theory,
which could also be extended to cover this phenomenon [20].

Potential applications of this model beyond the areas covered in solid state
physics include the recent experimental realisations of optical corrals |17, 16].
Present theories of these optical corrals employ the same methods as for the
quantum corrals. Thus it may be possible to predict these optical corrals
with the theory presented in this thesis. It is also claimed that acoustical
corrals could be constructed [20]. Should this be the case, the application of
the presented ideas could be considered also in this domain.

Lastly, a few remarks must be made on the energy Green’s function,
on which the theory put forward in this thesis heavily relies. It is sur-
prising that there are hardly any proven mathematical properties of the
three-dimensional Green’s functions. Although some fundamental proper-
ties were derived in [6], it has not been shown anywhere whether the three—
dimensional Green’s function is symmetric or not in the spatial variables.
In the present thesis, this problem could be circumvented since only three—
dimensional Green’s functions of a special structure were dealt with. For this
case, it could be easily demonstrated that the Green’s function is symmetric
in its spatial arguments.

Another example of how untouched this area of mathematical physics
is, is the lack of closed—form expressions for the three-dimensional Green’s
function for a step barrier. The step barrier is one of the most often used po-
tential distributions in quantum mechanics to study the principal behaviour
of a physical system. Nonetheless, the three—dimensional version of the en-
ergy Green’s function of the step barrier has never been studied in detail. No
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fast convergent series expansion or expression in terms of other special func-
tions (if possible) can be found for this three-dimensional Green’s function.
Clearly, this untouched area of physics and mathematical physics is still full
of potential discoveries.
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Chapter 8

Appendix

8.1 Legend

multipole delta function defined by equation (2.46)

Fermi energy

three-dimensional retarded Green’s function

one—dimensional retarded Green’s function

three-dimensional retarded multipole Green’s function (equation (2.56))
Hankel functions given by hf = h{") h7 = b\®; cf. [1] [10.1.16, 10.1.17]
total current generated by the electrons with energy E

Bessel function of the first kind [1] [9.1.10]

total current

modified Bessel function [1] [9.6.13]

source strength in this model given by equation (2.69)

electron mass 9.1 - 1073kg

conductivity defined by equation (2.13)

source term defined by equation (2.4)

total cross section

T-matrix given by equation (2.102)

potential

the full potential U(r) is split into these two potentials; see section 2.5
strength of the zero—range potentials; see definition (2.89)

bias voltage of the STM

spherical harmonics; see [55] page 451
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8.2 A different derivation of the bouncing ball
Green’s function

The differential equation to be solved for the quantum mechanical ballistic
motion is

(E + ;—Maz +F z))¢(z, E)=0. (8.1)

The solution of this differential equation is given by
¢(2, E) = c1 - Ai(—2B(Fz + E)) + o - Bi(—28(Fz + E)), (8.2)

where 8 = (M /47> F?)3. For the bouncing ball problem the particle faces an
impenetrable wall in the region [0,00[. Thus the potential for the bouncing
ball problem is given by:

0 forz<0

Uz)=—F -2+ { (8.3)

oo forz>0"

Let ¢_(z, E) be the solution of the bouncing ball problem with the correct
boundary behaviour for z — —oo. Since the solution must be bounded for
z — —00,

¢_(z,E)=A-Ai(—2B(Fz+ E)). (8.4)

On the other hand, let ¢, (z, E) be the solution of the bouncing ball problem
with the correct boundary behaviour for 2 — co. Since the solution vanishes
for z € [0, o[, the boundary condition is ¢ (0, £) = 0. Thus

61(2 B) = B-(Ai(-20(Fz + E)) - Bi(-28E) -
Bi(~20(F= + B)) - Ai(~28F) ). (8.5)

The Wronskian W(¢_, ¢1) = ¢_(0, E)-¢' (0, E)—¢'_(0, E)-¢4(0, E) is given
by

FBAB
Wo,oy) = 227

It should be mentioned that the Wronskian condition of the Airy differential
equation is used in this derivation:

Ai(—20E). (8.6)

Ai(x) B () — AY'(2) Bi(z) = ~. (8.7)

™



8.3 Scattering phase shifts of the regularised delta potential 113

With these results the Green’s function is given by:

2M ¢_(2<, E)¢ (2>, E)
nt W(o-, o)
Ai(=28(Fz + E)) - Bi(=26E) — Bi(—28(F 2 + E)) - Ai(—28FE)
Ai(—28E)

G(z,7,E) = = —47F 3 Ai(-20(Fz. + E)) -

(8.8)

This solution is identical to the solution (3.10) for o — oc.

8.3 Scattering phase shifts of the regularised
delta potential

Here all scattering phase shifts of the regularised delta potential are deter-
mined. It will be shown that the only basic limitation of these potentials is
that they can only generate s—wave scattering. Any scattering wavefunction
of a radial symmetric potential can be expressed as:

W(r) = (2;)3 =32l 4+ (e) P(cos(6). (8.9)

where the /;(r) are given by:
Wi(r) = e (ji(kr) cos(6;) — my(kr) sin(dy)) (8.10)

and must satisfy the following differential equation:

hQ
(E + —A - u(S(r)arr)wo(r)dg’r =0. (8.11)
2M
When only s-scattering is taken into account, the scattering wavefunction
must have the following structure:

o(r) = w (8.12)
Clearly, this is usually an approximation, but in fact it will be shown at the
end of this section that for the regularised delta potentials the phase shifts ¢,
vanish for [ € N and thus dy defines the full scattering properties. The phase
shift 0y can now be determined by the following standard method:
Let B. be the ball with radius € around 0. Consider the expression:

2

. h .
oy <E A u(S(r)@rr)wo(r)d r=0. (8.13)
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The second term in equation (8.13) can be evaluated as follows:

R? rsin(kr 4+ 80)\ h? _ sin(kr 4 09)\ 5
/Be 2MA< kr )dr—m/BedW(grad kr )dr—

h_2 kr cos(kr + 0g) — sin(kr + do) g —
. =
2M 9B, kr (814)
h2

2Mk
orh?

ME

2 ™
/ / (ke cos(ke + &) — sin(ke + &) ) sin 0dfdp =
o Jo

(ke cos(ke + &) — sin(ke + d)).

The first term in equation (8.13) must vanish since an ordinary function is
integrated over a set of measure zero:

lim Ewd3r = lim 47TE/ Mﬂdr =
0 r

bt h)  coonlhe i) s (8:19)
, sin(ke +d9)  ecos(ke +0p)  sin(do)\
i 4 2o k TR )=o
Finally, the third term in equation (8.13) is:
liII(l) ud (r)0, sin(kr + 0o)d*r = uk cos(dp). (8.16)
€e— B.
Thus from equation (8.13) the following condition can be derived:
2T (5 = uk cos(éo) (8.17)
Mk S 0) — UK COS(0q ). .

The total cross section can be expressed in terms of the phase shifts (see
for instance [55], page 403). Since the total cross section has already been
determined in equation (2.106), we can state that:

47 AT .
() e T LA Dt
Mu =0 (818)
AT ., 4m
> 22 Sin 0g = el

The important point is that equality in equation (8.18) holds only if and only
if 6, =0 for [ € N.
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8.4 The Dyson equation

(E + ;L—MV2 — U(r)) G(r,v',E)=0(r—1') (8.19)

V(r) =U(r)+ W(r) (8.20)

(E + h—2V2 — V(r))GW(r v, E)=0(r—1') (8.21)
2M Y

On the one hand, W(r) can be seen as a perturbation of U(r) so that the
Green’s function G(r,r’, E) for the potential V(r) = U(r) + W (r) is given
by:

GY(r,v',E)=G(r,v',E)+ [ G(r,v", E)W{E")G" (", v, E)d*". (8.22)
R3

On the other hand, —W (r) can be seen as a perturbation of V' (r) so that the
Green’s function GV (r,r’, E) for the potential U(r) = V(r) — W(r) is given
by:

G(r,r', E) =G"(r,r', E) + / GY(r,v" E)(-W ()G v, E)d*r".

R3
(8.23)
From the equations (8.22) and (8.23) it follows immediately that the Green’s
functions can be rearranged in the Dyson equation:

/ G (r,", EYW(x"\G(x" v, E)d* " =
R3

G(r,e", EYW ("G (", v/, E)d*>".  (8.24)

RS
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