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Abstract

A simple one dimensional two state model for the laser induced desorption and the
desorption of NO from a NiO(100) surface are investigated. This is done by utilising a
mixed quantum classical algorithm derived from generalised surface hopping [1]. The
algorithm used is a surface hopping method with optical potentials describing the
electronic excitation and de-excitation processes. The simple model is used to explore
the dependence of the desorption probability on the potential parameters. We show
that the critical parameters are the lifetime, the separation of the minima and the
width of the excited state potential.

For the NO/ NiO(100) system the electronic states taken into account are the
ground state and one charge transfer state. The corresponding forces used in the
dynamic simulation are based on two dimensional ab initio potentials, calculated by
Klüner et al. [2]. These were extended by simple models to a full description of the
desorbing molecule together with one surface coordinate. In the simulations two species
of desorbing molecules are found, one with early and the other with late desorption
times. The second species accounts for most of the difference in desorption yield found
when comparing the mixed quantum classical simulation to the wave packet results
in [3]. When investigating the effect of additional degrees of freedom on the dynamics
we find the surface oscillator to be the most decisive one, slowing down the early
desorbing molecules and lowering the rotational temperature of the desorbed molecules
substantially.
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Zusammenfassung

Durch Simulation mit einem gemischt quanten-klassischen Algorithmus wird die laser-
induzierte Desorption von Molekülen von einer Festkörperoberfläche untersucht. Im ers-
ten Teil der Arbeit wird ein einfaches eindimensionales zwei Zustände Modell betrachtet
und die Abhängigkeit der Desorptionswahrscheinlickeit von den verschiedenen Modell-
parametern untersucht. Der zweite Teil ist der Desorption von NO von einer NiO(100)
Oberfläche gewidmet. Ausgehend von zweidimensionalen ab initio Potentialen von T.
Klüner et al. für den Grundzustand und einen Elektronentransferzustand erweitern wir
das Modell auf sämtliche Molekülfreiheitsgrade und führen zusätzlich einen Oberfläche-
noszillator ein. Der Einfluss der einzelnen Freiheitsgrade auf die Desorptionsdynamik
wird untersucht und es zeigt sich, dass die Hinzunahme des Oberflächenfreiheitsgrades
den größten Einfluss hat.
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Chapter 1

Introduction

Desorption of molecules from surfaces induced by electronic transitions (DIET), trig-
gered either by photons or electrons, has been studied extensively in the last decades [4–
6]. In recent years, technological progress made it possible to perform time-resolved
laser pump-probe experiments in which the time evolution of DIET processes can be
monitored in the femtosecond regime [7, 8]. These experiments provide a wealth of
information on the real-time dynamics of chemical processes at surfaces [9, 10].

Unfortunately the development of theoretical tools for the realistic description of
DIET processes did not match the experimental progress. The main reason for this
is the fact that the modelling of processes involving several electronic states and tran-
sitions between them still represents a great challenge. First of all, for the ab initio
determination of excited state potentials it is not possible to use the computational
efficient density-functional theory schemes, which work so well for the ground state.
Instead one has to rely on quantum chemistry methods which are usually computa-
tional very costly. And second, the simulation of the dynamics of DIET processes
explicitly requires the simultaneous treatment of both the electronic and the nuclear
dynamics. There has been significant progress in the high-dimensional simulation of
Born-Oppenheimer reaction dynamics at surfaces in recent years [11–15]. These stud-
ies in fact demonstrated the importance of the multidimensionality in the reaction
dynamics. However, electronically nonadiabatic simulations of reactions at surfaces
are usually limited to a few degrees of freedom [16]. This is caused by the difficulties
in the theoretical treatment due to the different time scales relevant for the electronic
and nuclear motion.

To allow a multidimensional treatment of laser-induced desorption, we propose
the use of mixed quantum-classical schemes in which the nuclear motion is described
classically while at the same time the electrons are treated quantum mechanically.
Still the feedback between quantum and classical degrees of freedom has to be taken
into account in a self-consistent way. We already implemented such a scheme for
the description of charge transfer processes in the scattering of iodine molecules at a
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2 Chapter 1. Introduction

diamond surface [17, 18]. The mixed quantum-classical scheme we will use is based on
the fewest switches algorithm developed by Tully [19]. This surface-hopping algorithm
minimises the number of state switches under the constraint of maintaining the correct
statistical population of each electronic state, as given by the quantum mechanical part
of the system. In order to include th e effect of substrate states, we will extend this
algorithm by including an optical potential.

The aim of this work is to investigate the usefulness of mixed quantum classical
algorithms for the simulation of the dynamics of nonadiabatic reactions, i.e. processes
involving more than one electronic state. The processes we will discuss explicitly all
belong to the class of laser induced desorption of simple molecules from surfaces.

In the following chapter we first discuss our model of DIET processes and some
mixed quantum classical methods to describe such reactions. In the third chapter we
investigate a simple one dimensional two-state model inspired by experiments to the
desorption of NO molecules from small Pd-cluster [20]. After that we will discuss a
more detailed model of the laser induced desorption of NO from a nickel-oxide surface.
In chapter 5, we then will summarise our results.



Chapter 2

Theory of Nonadiabatic Reactions

The aim of this work is to model the dynamics of nonadiabatic processes at surfaces.
More precisely we want to study reactions proceeding not only in the electronic ground
state but also in excited states. As our main application we will discuss laser induced
desorption of NO molecules from a single-crystal nickel oxide (100) surface and small
palladium clusters on alumina support. The desorption from Pd-clusters gives motiva-
tion for simple model calculations in one dimension while the NO/NiO system will be
treated in a more complex model based on two dimensional ab initio potential energy
surfaces calculated by T. Klüner et al. [2].

Both reactions belong to the larger class of desorption induced by (multiple) elec-
tronic transitions (DI(M)ET). These are reactions where the desorption of a molecule
initially adsorbed on a surface is triggered by one or more electronic excitations. Usu-
ally these excitations are initiated by light irradiation or electron beams. While in the
excited state, the adsorbate is exposed to forces different from the ground state and
will start to move. After relaxation back into the ground state the molecules may or
may not desorb. In principle the dynamics of such reactions is given by the Schrödinger
equation. Relativistic effects can usually be neglected in the description of chemical
reactions, however they play a role in calculating the electronic core levels of all but
the lightest atoms and must be taken into account in total energy calculations. Since
finding a solution of the Schrödinger equation for the complete system is intractable the
general strategy is to split the system into two parts, one with the light and thus fast
moving electrons and the other part consisting of the nuclei. The electronic subsystem
must be treated quantum mechanically but the nuclei might be treated classically. How
and to what degree the interaction between the two parts is taken into account distin-
guishes different methods. One possible way of accounting for the coupling between
the electronic and the nuclear part is surface hopping, where the time evolution of the
slow coordinates is given by only one electronic state at any time in contrast to mean
field where an average over all electronic states is used.

Quantum mechanical solutions for the nuclear system can be obtained by either

3



4 Chapter 2. Theory of Nonadiabatic Reactions

solving the time dependent equations with wave packet methods [3, 21] or for example
the coupled channel method resulting in time independent solutions [11, 22, 23]. So far
this can be done for up to six or seven nuclear degrees of freedom [13, 15] depending
on the details of the simulation. But the scaling of the time and memory necessary
to perform such simulations is rather unfavourable and including further coordinates
would require either much faster computers and improved algorithms. If classical
mechanics is used it is possible to include a large number of degrees of freedom and
to propagate for long simulation times. But there are also problems in using classical
mechanics. For example in order to obtain statistical significant results one needs to
sample over a large number of trajectories.

The ground state of the electronic system for a fixed set of nuclear coordinates can
be found efficiently using density functional theory [24, 25]. This can be done for rather
large systems, also giving the ground state forces on the nuclei. Since we are interested
in reactions explicitly involving excited states we also need the corresponding excited
state potential energy surfaces. Unfortunately these are much harder to calculate. The
focus of this work is modelling the dynamics of molecules desorbing from surfaces by
laser irradiation and thus we will not discuss further how to calculate the potential
energy surfaces and the couplings between the different electronic states, which are
needed as input for our simulations. The calculation of the potentials is by no means
easy especially for the excited electronic states and the couplings. We will also not
discuss how to derive analytical expressions for the potential energy surfaces from the
calculated energies, since the whole problem of fitting in high dimensions is a field of
research for its own [26].

In the following sections we will first present our model for the description of
DI(M)ET processes. After that we will discuss some methods for the solution of our
model of nonadiabatic reactions.

2.1 Model

Usually desorption processes induced by electronic transitions are described in one
dimension either within the Menzel-Gomer-Redhead (MGR) model [27, 28] or the
Antoniewicz model [29]. These models involve two electronic states the ground and
an excited state in which the nuclei move. The initial excitation is taken into account
as a Frank-Condon transition, i.e. position and velocity remain unchanged during the
excitation. This is also referred to as the sudden approximation. The initial transition
is followed by a propagation of the adsorbate in the excited state for a certain time,
the residence time, after which another Frank-Condon transition transfers the system
back into the ground state. The MGR and the Antoniewicz model differ by their
relative position of the excited state potential minimum with respect to the ground
state potential minimum. The sole coordinate in these models is the reaction path
coordinate. This is the coordinate along the minimum path in the potential energy
surface of the nuclear coordinates connecting the reactants with the products. In our
case the reactants are the adsorbate bound to the surface and the products are the
surface together with the adsorbate far away from the surface. In the MGR model the
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Figure 2.1: Energy diagram for the Menzel-Gomer-Redhead model.
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Figure 2.2: The potential energy surfaces for the Antoniewicz model.

excited state minimum is further away from the surface (see figure 2.1) and the excited
state might even be repulsive. Thus upon excitation the adsorbate is accelerated away
from the surface and if the lifetime is long enough it gains enough kinetic energy to
desorb after the relaxation back into the ground state.

In the Antoniewicz model the excited state is a bound state with the minimum
closer to the surface (figure 2.2). This is the typical situation for electron transfer
states where the adsorbate becomes partially ionised and due to image charge forces is
attracted towards the surface, as it is the case for the NO on nickel oxide system we
will discuss later. After a Frank-Condon transition into the excited state the adsorbate
molecule is accelerated towards the surface and after relaxation hits the repulsive wall
of the ground state and possibly desorbs from there.

Both models allow an estimation of the isotope effect on the desorption probabil-
ity [30]. For short lifetimes in the excited state and thus only small distances travelled,
the force F accelerating the adsorbate and the lifetime τ can be assumed to be inde-
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pendent of the reaction path coordinate z. All molecules in the excited state reaching a
certain critical distance from the surface zc at which point they gained enough kinetic
energy to overcome the desorption barrier will desorb. The time tc required to reach
that distance, with constant acceleration, is

tc =

√
2 |zc − z0|

F
m = c

√
m, (2.1)

where z0 is the position where the Frank-Condon transition takes place and m is the

mass of the adsorbate. The constant c =
√

2|zc−z0|
F

should be the same for different

isotopes of the adsorbate. Thus the escape probability for an excited adsorbate is

P = e−
tc
τ = e−

c
√

m
τ , (2.2)

where we made use of the assumption, that the lifetime in the excited state is inde-
pendent of the position. Since we would expect the excitation probability to be equal
for all isotopes of the adsorbate the ratio of the desorption cross-sections σ is given by
the ratio of the escape probabilities

σ1

σ2

=
P1

P2

=
e−

c
√

m1
τ

e−
c
√

m2
τ

= P

“
1−

q
m2
m1

”
1 , (2.3)

where the index i = 1, 2 denotes the different isotopes.
In contrast to gas phase reactions there are in general a lot more than just two

electronic states in an adsorbate substrate system. These can be split into a set of
adsorbate levels together with substrate excitations, compare [31]. Figure 2.3 shows a
schematic drawing of two such adsorbate states, labelled G for the adsorbate ground
state and A for an adsorbate excitation and their shifts due to electronic excitations
of the substrate. It also sketches the variation of those levels with the nuclear reaction
path coordinate. In that picture the desorption of the adsorbate through an electronic
excitation, either with light or an electron beam, can be split into five steps depicted
by the arrows and dots in figure 2.3.

First the system is electronically excited, this might be direct into an excited adsor-
bate state or indirect via the creation of hot electrons in the substrate (step 1) followed
by a Frank-Condon transition into the adsorbate state A (step 2), for example by the
transfer of one electron from the substrate to the adsorbate. Since in general the mini-
mum energy position of the ground and excited state differ the adsorbate is accelerated
in the excited state (3). After a certain period of time the adsorbate returns to the
electronic ground state with the excess energy being transfered to electronic excitations
of the substrate (4). If the adsorbate gained enough energy to overcome the desorption
barrier it will eventually desorb (5). More exactly, in order for an desorption event to
occur the energy in the reaction path coordinate must be larger than the binding en-
ergy. If the energy transfer between different degrees of freedom is slow the adsorbate
might be trapped dynamically in front of the surface for a very long time, despite a
positive total energy [32, 33].

Another point is the fact that the adsorbate might become excited more than just
once. Such a process would then be termed desorption induced by multiple electronic
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Figure 2.3: Schematic drawing of a DIET process. The potential curves labelled G0–
G2 correspond to the adsorbate ground state with different substrate excitations, while the
curve labelled A corresponds to an excitation of the adsorbate. Thin dashed lines represent
the adsorbate ground state together with the not explicitly involved substrate states. The
numbers 1–5 indicate the five steps of the desorption process.

excitations. Such reactions can be split into two classes depending on whether the
second excitation takes place while the adsorbate is still in the excited state or already
relaxed back into the ground state. Due to the correlated excitations in the first
type of DIMET, such processes are characterised by an exponential dependence of
the desorption yield on the excitation intensity, in contrast to the linear dependence
observed in single excitation processes. DIMET can be important for excitations via
ultra short laser pulses where the energy density of the pulse is usually higher than in
longer pulses or constant wave mode.

In order to simulate the dynamics of such processes all relevant nuclear coordi-
nates, electronic states and the coupling between those states have to be taken into
account. Since we are interested in processes explicitly including excited states the
Born-Oppenheimer approximation can not be employed. But still a first step, when
dealing with such complex systems with different time scales relevant for different de-
grees of freedom, is a separation between slow, denoted by r, and fast, denoted by R,
moving coordinates. The fast degrees of freedom, usually the electrons, will require
explicit quantum mechanical treatment. The dynamics of the slow coordinates can be
treated with quantum mechanical methods but in most cases a classical treatment will
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be sufficient. We will use the term electronic coordinates as a synonym for the fast
degrees of freedom, despite the fact that those might include some proton positions as
well [34, 35]. Correspondingly we will use the term nuclear coordinates for the slow
degrees of freedom. In the next sections we will discuss the theoretical treatment of
such systems, following mainly the discussion of Tully in references [36, 37].

The Hamilton operator of a system that separates into slow and fast degrees of
freedom can be written in the following form

H(r, R) = TR + Tr + V (r, R), (2.4)

where V is the potential and TR and Tr are the kinetic energy operators for the slow
degrees of freedom and respectively for the electronic coordinates. The potential can
be split further into three parts

V (r, R) = Vrr(r) + VRR(R) + VrR(r, R), (2.5)

the interaction of the electrons with each other Vrr(r) the interaction between the
nuclei VRR(R) and the interaction of the nuclei with the electrons VrR(r, R). Likewise
the kinetic energy operators can be specified further, for the nuclear operator we have

TR = −
3N∑
α=1

~2

2Mα

d2

dR2
α

(2.6)

where N is the number of nuclei and Mα the mass corresponding to the α-th coordinate
Rα. Similar for the electrons we get

Tr =
−~2

2me

3n∑
β=1

d2

dr2
β

(2.7)

where now n is the number of electrons in the system andme is the electron mass and rβ
the β-th electronic coordinate. For simplicity we use Cartesian coordinates throughout
our theoretical discussion, but other coordinates could also be used. If light nuclei are
to be included in the fast moving coordinates the mass can not be pulled out from
under the sum and Tr is given by a formula similar to (2.6). We sometimes will use
TR = −~2

2M
∇2
R and Tr = −~2

2m
∇2
r as an abbreviation to (2.6) and (2.7) respectively.

The dynamics of the system is given by the solution of the time dependent Schrödinger
equation

i~
∂

∂t
Ψ(r, R, t) = HΨ(r, R, t). (2.8)

The wave function Ψ(r, R, t) of the whole system can be written in two ways, either as
an product expansion with a nuclear ψ(R, t) and an electronic part φ(r, t)

Ψ(r, R, t) = ψ(R, t)φ(r, t) (2.9)

or as an expansion in eigenfunctions φi(r, R) of an electronic Hamiltonian and time
dependent coefficients ψ(R, t)

Ψ(r, R, t) =
∑
i

ψi(R, t)φi(r, R). (2.10)

The first ansatz leads to the mean field approximation and the second one to surface
hopping as we will show in the following sections.
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2.2 Mean Field Approximation

As mentioned before the mean field approximation is base on a product expansion of
the wave function

Ψ(r, R, t) = ψ(R, t)φ(r, t)e
i
~γ(t), (2.11)

where we, in contrast to (2.9), introduced an additional phase γ which will be specified
later [36, 38]. The normalisation condition for the total wave function∫

dR dr Ψ?(r, R, t)Ψ(r, R, t) = 1 (2.12)

is satisfied by requiring γ(t) to be real valued and by independent normalisation con-
ditions for ψ(R, t) and φ(r, t). ∫

dr φ?(r, t)φ(r, t) = 1 (2.13)

∫
dR ψ?(R, t)ψ(R, t) = 1 (2.14)

If we insert equation (2.11) into equation (2.8), multiply by ψ?(R, t) from the left and
integrate over the whole space of nuclear coordinates R we get

i~
∂φ

∂t
=

[
Tr + Vrr + γ̇ +

∫
dR ψ?

(
−i~ ∂

∂t
+ TR + VRR + VrR

)
ψ

]
φ (2.15)

and similar for ψ with multiplication of φ? and integration over r

i~
∂ψ

∂t
=

[
TR + VRR + γ̇ +

∫
dr φ?

(
−i~ ∂

∂t
+ Tr + Vrr + VrR

)
φ

]
ψ. (2.16)

In equations (2.15) and (2.16) the action of one part of the system onto the other is
given in an integral way and thus averaged over the whole space, hence the name mean
field. Another feature of these equations is that they are independent of the basis set
used to construct the wave functions ψ and φ.

We still have to specify γ. To do so we multiply equation (2.15) by φ? and integrate
over R. This results in an additional equation containing γ̇

i~
∫
dR ψ?

∂ψ

∂t
+ i~

∫
dr φ?

∂φ

∂t
− γ̇ = (2.17)

∫
dr dR ψ?φ? [Tr + TR + Vrr + VRR + VrR]φψ = E

with the total energy of the system E. The same equation can be derived from (2.16) by
multiplication with ψ? and integration over r. Equation (2.17) together with energy
conservation imposes a constraint on the phase γ and the integrals

∫
dR ψ? ∂ψ

∂t
and
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∫
dr φ? ∂φ

∂t
which can be defined arbitrarily otherwise. A suitable choice, as will be clear

later when taking the classical limit for the slow degrees of freedom, is the following:

γ =

∫ t

dτ Er(τ), (2.18)

i~
∫
dr φ?

∂φ

∂t
= Er(t) (2.19)

and

i~
∫
dR ψ?

∂ψ

∂t
= E, (2.20)

where we introduced the electronic Hamiltonian Hr(r, R)

Hr(r, R) = Tr + Vrr(r) + VrR(r, R). (2.21)

The corresponding expectation value is

Er(t) =

∫
dr dR ψ?(R, t)φ?(r, t)Hr(r, R)φ(r, t)ψ(R, t), (2.22)

which is real valued, as the expectation value of the Hermitian operator Hr and thus
γ is also real valued as required for the normalisation condition. Inserting this into
equations (2.15) and (2.16) we get a new set of coupled equations

i~
∂φ(r, t)

∂t
=

[
Tr + Vrr(r) +

∫
dR ψ?(R, t)VrR(r, R)ψ(R, t)

]
φ(r, t) (2.23)

and

i~
∂ψ(R, t)

∂t
=

[
TR + VRR(R) +

∫
dr φ?(r, t)Hr(r, R)φ(r, t)

]
ψ(R, t). (2.24)

Now the integral in equation (2.23) does no longer contain terms involving derivatives,
which will allow us in the classical limit to replace the nuclear wave function by a delta
function.

2.2.1 Classical Limit

From these equations it is now possible to derive a classical limit for the slow coordi-
nates. The procedure we use is similar to the one used by Bohm [39]. We start by
spliting the slow wave function φ(R, t) into amplitude and phase

ψ(R, t) = A(R, t)e
i
~S(R,t) (2.25)

with A(R, t) and S(R, t) being real valued functions. Inserting this into equation (2.24)
and spliting into real and imaginary part we get

−AṠ = − ~2

2M
∇2
RA+

A

2M
(∇RS)2 + VRRA+

[∫
dr φ?(r, t)Hr(r, R)φ(r, t)

]
A (2.26)
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and

Ȧ = − 1

M
(∇RA) (∇RS)− 1

2M
A
(
∇2
RS
)
. (2.27)

Division by −A and some rearrangement of (2.26) lead to

Ṡ +
1

2M
(∇RS)2 + VRR +

[∫
dr φ?(r, t)Hr(r, R)φ(r, t)

]
=

~2

2M

∇2
RA

A
. (2.28)

The equations (2.28) and (2.27) are equivalent to the original equation (2.24), note
that equation (2.27) does not contain ~. Now we can take the classical limit ~ → 0
of (2.28), i.e. we neglect the term on the righthand side and get

Ṡ +
1

2M
(∇RS)2 + VRR +

[∫
dr φ?(r, t)Hr(r, R)φ(r, t)

]
= 0. (2.29)

This is the classical Hamilton-Jacobi equation

H

(
R,

∂S

∂R

)
+
∂S

∂t
= 0 (2.30)

with Hamilton function

H(R,P ) =
1

2M
P 2 + V MF

R (R) + VRR(R). (2.31)

with the mean field potential V MF
R (R) containing the action of the fast wave function

on the slow coordinates, being defined as

V MF
R (R) =

∫
dr φ?(r, t)Hr(r, R)φ(r, t). (2.32)

S is the classical action

S {R(t)} =

∫ t

L(R, Ṙ, τ)dτ (2.33)

with L being the Lagrange function and the derivative of S with respect to the nuclear
coordinates gives the corresponding conjugate momentum

Pα =
∂S

∂Rα

. (2.34)

Division by Mα yields the velocity

Ṙα =
1

Mα

∇RαS. (2.35)

From equation (2.27) we can derive a continuity equation for the density A2 by multi-
plying with 2A

2AȦ = −2A

M
(∇RA) (∇RS)− A2

(
∇2
RS
)
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which is equivalent to
∂A2

∂t
+∇R

(
A2∇RS

M

)
= 0 (2.36)

and making use of (2.35) we get

∂A2

∂t
+∇R

(
A2Ṙ

)
= 0, (2.37)

with A2Ṙ being the current density.
Equations (2.27) and (2.29) describe the motion of a set of non interacting classical

particles in the mean field potential of the fast wave function, where the motion of a
single particle is given by the Newtonian equation of motion

M ¨R(t) = −∇R

(
V MF
R (R) + VRR(R)

)
. (2.38)

For a complete description we still have to specify the effect of the classical limit upon
equation (2.23). We do this by replacing ψ?(R, t)ψ(R, t) with a delta function at the
slow particle position at time t. Carrying out the integration over R is then leading to

i~
∂φ(r, t)

∂t
= [Tr + Vrr(r) + VrR(r, R(t))]φ(r, t) = Hr(r, R(t))φ(r, t). (2.39)

This is now an explicit time dependent Schrödinger equation due to the time depen-
dence of the slow particle position. The equation (2.38) together with (2.39) define
what is sometimes refered as the Ehrenfest method.

For later comparison we now expand the electronic wave function φ(r, t) in a set of
orthonormal basis functions φi(r, R) with parametric dependence on R

φ(r, t) =
∑
i

ci(t)φi(r, R). (2.40)

Inserting this into equation (2.39), multiplication from the left with φ?j and integration
over R is leading to

i~ċj = −i~
∑
i

ci(t)dji(R)Ṙ(t) +
∑
i

ci(t)Vji(R), (2.41)

where we used the following definitions for the nonadiabatic coupling vector

dji(R) =

∫
dr φ?j(r, R)∇Rφi(r, R) (2.42)

and

Vji(R) =

∫
dr φ?j(r, R)Hr(r, R)φi(r, R) (2.43)

for the matrix elements of the electronic Hamiltonian. The occupation probabilities
of the electronic states are the diagonal elements of the density matrix aji ≡ c?jci and
their time evolution is given by

ȧjj =
2

~
=
[
c?jciVji

]
− 2<

[
c?jcidjiṘ

]
. (2.44)



2.3 Surface Hopping 13

If the φj form an adiabatic basis the off-diagonal matrix elements Vji vanish. We will
call the basis set a diabatic basis if the nonadiabatic coupling vector dji is zero for all
values of R, i.e. if the basis functions φi(r, R) are independent of R. For example plane
waves form a position independent and thus diabatic basis.

An important aspect of mixed quantum classical methods is whether the energy
transfer between the quantum and the classical part is described correctly and if con-
servation of energy is preserved. The total energy is given by

E =
1

2
MṘ2(t) +

∫
dr φ?(r, t)Hr(r, R(t))φ(r, t) (2.45)

and taking the time derivative leads to

Ė = MṘR̈ +
〈
φ̇ Hr(r, R(t)) φ

〉
+
〈
φ Ḣr(r, R(t)) φ

〉
+
〈
φ Hr(r, R(t)) φ̇

〉
(2.46)

where we used the bra-ket notation implying an integration over r and dots are stand-
ing for time derivatives. Using equations (2.38), (2.39) and the hermitian conjugate
of (2.39) we see that the second and the fourth term on the right side of (2.46) cancel
each other and we are left with

Ė = −Ṙ∇R 〈φ Hr(r, R(t)) φ〉+ 〈φ ∇RHr(r, R(t)) φ〉 Ṙ, (2.47)

where we applied the chain rule in order to get the second term on the righthand side.
Now if φ is a solution of (2.39) we can apply the Hellmann-Feynman theorem [40]

∇R 〈φ Hr(r, R(t)) φ〉 = 〈φ ∇RHr(r, R(t)) φ〉 (2.48)

and arrive at

Ė = 0, (2.49)

thus the energy is conserved for the Ehrenfest method.
One drawback of the mixed quantum classical mean field is that it is not possible

for a trajectory to split up into trajectories leading to different outcomes. If we imagine
a system with two states of which one is the majority channel acquiring most of the
occupation probability and the other is the minority state. And if further the outcome
for a trajectory propagating on each of this states is completely different, e.g. as
illustrated in figure 2.4 sticking and back scattering. Then the movement in the mean
field will be dominated by the majority channel and the motion will be close to the
corresponding trajectory. Thus leading only to the result of the majority channel
(repulsion in our example) and never to the result associated with the minority state.

2.3 Surface Hopping

In contrast to the mean–field method in surface hopping at any time the motion of the
classical trajectory is governed by a single electronic state. Surface hopping was first
introduced by Preston and Tully [41] as mixed quantum classical method that allows
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Figure 2.4: The trajectories of an classical particle in the potential of the majority state
(solid line), of the minority channel (dashed line) and in the mean field (dot dashed line).

the splitting of trajectories. In this section we will derive surface hopping from the
Schrödinger equation (2.8).

As mentioned earlier in surface hopping the wave function is expanded in an or-
thonormal basis of electronic wave functions φi(r, R), where R is a parameter.

Ψ(r, R, t) =
∑
i

ψi(R, t)φi(r, R). (2.50)

Insertion into the Schrödinger-equation (2.8), multiplication with φ?j from the left and
integration over r is leading to a set of coupled equations for the ψi’s:

i~ψ̇j(R, t) = (TR + VRR)ψj(R, t)

+
∑
i

[
Vji −

3N∑
α=1

~2

2Mα

Dα
ji +

3N∑
α=1

i~
Mα

dαji (i~∇Rα)

]
ψi(R, t). (2.51)

Here we introduce the nonadiabatic coupling vectors Dα
ji(R) and dαji(R) as

Dα
ji(R) =

〈
φj(r, R) ∇2

Rα
φi(r, R)

〉
(2.52)

and analogue to (2.42)

dαji(R) = 〈φj(r, R) ∇Rα φi(r, R)〉 , (2.53)

now making use of the bra-ket notation with integration over the fast coordinates r
only. In analogy to (2.43) the matrix elements Vji(R) of the electronic Hamiltonian Hr

are given by
Vji(R) = 〈φj(r, R) Hr(r, R) φi(r, R)〉 , (2.54)
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where Hr was defined before in (2.21). For notational convenience we will later drop
the summation over α as an index of the coordinates as we did with the kinetic energy
operator. Now we take the classical limit for the nuclear part of the wave function by
splitting ψi(R, t) into an amplitude Ai(R, t) and a phase Si(R, t):

ψi(R, t) = Ai(R, t)e
i
~Si(R,t). (2.55)

Insertion into equation (2.51) and multiplication with e−
i
~Si(R,t) is leading to

i~Ȧj − AjṠj = (2.56)

− ~2

2M
∇2
RAj −

i~
M

(∇RAj) (∇RSj) +
Aj
2M

(∇RSj)
2 − i~

2M
Aj
(
∇2
RSj
)

+ VRRAj

+
∑
i

[
VjiAi −

~2

2M
DjiAi −

~2

M
dji (∇RAi)−

i~
M
djiAi (∇RSi)

]
e

i
~ (Si−Sj),

where again we wrote 1
M
∇R as an abbreviation of

∑3N
α=1

1
Mα
∇Rα . This can be split into

a pair of equations

Ṡj +
1

2M
(∇RSj)

2 + Vjj + VRR = (2.57)

~2

2M

∇2
RAi
Aj

+
~2

2M

∑
i

Dji
Ai
Aj
e

i
~ (Si−Sj) +

~2

M

∑
i

dji
∇RAi
Aj

e
i
~ (Si−Sj)

and

Ȧj +
1

M
(∇RAj) (∇RSj) +

1

2M
Aj
(
∇2
RSj
)

+
i

~
∑
i6=j

VjiAie
i
~ (Si−Sj) (2.58)

+
1

M

∑
i

djiAi (∇RSi) e
i
~ (Si−Sj) = 0,

where the diagonal elements of VjiAie
i
~ (Si−Sj) from (2.56) are kept in equation (2.57)

and the off-diagonal elements are put into equation (2.58). That choice is somewhat
arbitrary, unless we restrict ourself to an adiabatic basis, but still equations (2.57)
and (2.58) are equivalent to the original equation (2.56). They also show that Aj(R, t)
and Sj(R, t) can no longer be restricted to be real valued functions, due to the contri-
butions from the coupling vectors and the non vanishing phase factors. We now can
proceed by taking the classical limit ~ → 0 of equation (2.57), i.e. the righthand side
is set to zero. This is leading to a separate equation for each index j

Ṡj +
1

2M
(∇RSj)

2 + Vjj(R) + VRR(R) = 0. (2.59)

As before in the mean field case this is the Hamilton-Jacobi equation

Hj

(
R,

∂Sj
∂R

)
+
∂Sj
∂t

= 0 (2.60)
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with an Hamilton function for each state φj

Hj(R,P ) =
1

2M
P 2 + Vjj(R) + VRR(R). (2.61)

The equations of motion governing the classical particles are then given by

MαR̈α(t) = −∇Rα [Vjj(R) + VRR(R)] . (2.62)

The motion of a nuclear trajectory R(t) is at any time t given by the forces between
the classical particles −∇RVRR and the potential Vjj of a single state φj. In which
state potential the nuclei are actually moving is determined by the last two terms of
equation (2.58) and accomplished by switching between the different state potentials
accordingly.

There are some liberties in how to implement the hopping between the potential
energy surfaces resulting in various surface hopping versions. For example, in their
original paper [41] Tully and Preston allowed jumps only at distinct points in configu-
ration space, namely at the crossings of the diabatic potentials. This has the advantage
of eliminating the need to adjust the kinetic energy during a hop, but determining the
crossing lines of higher dimensional energy surfaces can be a difficult problem to solve.
In contrast to that, the fewest switches algorithm, introduced by Tully in [19], allows
switches at any position but requires some form of energy adjustment to recover energy
conservation.

In this work we will focus on the fewest switching algorithm, which we will later
extend to the method actually used for our simulations. In order to determine the
switching probabilities we take a look at ∂

∂t
A?jAj. Using (2.58) we get

∂

∂t
A?jAj +∇R

[
A?jAj<

(
∇RSj
M

)]
= (2.63)

2

~
=
∑
i6=j

VjiA
?
jAie

i
~ (Si−Sj) − 2<

∑
i

djiA
?
jAi

∇RSi
M

e
i
~ (Si−Sj).

If we now compare this with (2.36) and (2.44) we see that the second term is the same
as in the continuity equation. Note, that in the classical limit Sj is real valued. This
is connected to the interaction between different trajectories evolving in the same elec-
tronic state. The third and fourth term appear in (2.44) if we identify cj with Aje

i
~Sj .

Thus, if we assume independent trajectories the evolution of the coefficients ci is given
by (2.41).

To summarise the main equations of surface hopping, the nuclear coordinates are
given by a time dependent trajectory R(t) and the electronic wave function φ(r, t) is
expanded in a set of orthonormal basis functions φi(r, R) with a parametric dependence
on the nuclear coordinates and coefficients ci(t)

φ(r, t) =
∑
i

ci(t)φi (r, R(t)) . (2.64)
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The time evolution of the coefficients is given by

ċi(t) = −
∑
j

{
cj(t)

∑
α

[
Ṙα(t)d

α
ij (R(t))

]}
− i

~
∑
j

Vij (R(t)) cj(t). (2.65)

We now can define the components of the density matrix aij ≡ c?i cj with the diagonal
elements being the occupation probabilities of the corresponding states. The time
derivatives of the aii’s are given by

ȧii =
∑
j

bij (2.66)

where the bij’s are defined as

bij =
2

~
= [aijVij]− 2<

[
aijdijṘ

]
. (2.67)

Note that the bij’s are anti symmetric under index interchange bij = −bji following
from the fact that the dij’s are anti symmetric as well.

At any given time the system is considered to be in a single basis state, the currently
occupied state, which we will denote with φocc. The motion of the slow degrees of
freedom is governed by that state

R̈α(t) =
−1

Mα

∇Rα

{
VRR (R(t)) +

∫
dr φ?occ (r, R(t))Hr (r, R(t))φocc (r, R(t))

}
. (2.68)

How the occupied state is determined in the fewest switches algorithm will be discussed
in the next section. As already mentioned above this is the point where most surface
hopping methods differ. Note also that this set of equations was derived, in a slightly
different manner, by Tully in [19] with the assumption that the slow particle movement
is given by a trajectory and that the electronic wave function is expanded in the way
of (2.64).

One problem with the mixed quantum classical surface hopping is the dependence
on the choice of basis functions. Usually we will use the adiabatic basis, but depending
on the particular system it is not always clear what would be an optimal basis [18].

2.3.1 Fewest Switches

In Tully’s fewest switches algorithm equations (2.65) and (2.62) are integrated simul-
taneously and, between integration steps, switches between the electronic states are
performed, in order to maintain the correct statistical occupation probabilities. This
method minimises the number of switches performed. How this is achieved is explained
nicely in [19] and we will follow that presentation. If we consider a swarm of N trajecto-
ries with occupation probabilities aii at time t and a′ii at time t′ = t+∆t then Ni = aiiN
and N ′

i = a′iiN are the number of trajectories in state i at times t and t+ ∆t. The net
change of the number of trajectories in state i is then given by

∆Ni = N ′
i −Ni = (a′ii − aii)N. (2.69)
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For short time steps ∆t we can replace the difference a′ii−aii with ȧii∆t and using (2.66)
we get

∆Ni = ȧii∆tN = N∆t
∑
j

bij, (2.70)

with the state to state transition rates bij giving the change in state i due to state j, as
defined in (2.67). Thus only if bij is less than zero trajectories jump from state i into
state j and their number is given by N∆tbji. If we now divide that by the the number
of trajectories in state i we get the probability pij for a trajectory to jump from state i
into state j

pij =
N∆tbji
aiiN

= ∆t
bji
aii
. (2.71)

Note that the switching probabilities are proportional to the time step, thus the total
switching probability for a trajectory when passing through a certain region is, apart
from an discretisation error, independent of the time steps used. Note also that the
probabilities given by (2.71) could in principle get arbitrarily large, but usually the time
step required for accurate integration of (2.41) is small and switches will be improbable
(see also [17]).

The procedure for the simulation of a single surface hopping trajectory with the
fewest switching method can be roughly divided into the following five steps.

Step 1 Set initial conditions for the nuclear coordinates R and velocities Ṙ, the coef-
ficients of the electronic states ci and choose the currently occupied state.

Step 2 Integrate (2.65) and (2.62) for the time step ∆t with the currently occupied
state j.

Step 3 According to (2.71) determine the switching probabilities from the current
state to all other states. Calculate the pji’s and set all with pji < 0 to zero
(fewest switches). Draw a uniformly distributed random number z in the range
of 0 < z < 1. Jump into the state i for which

∑i−1
l=1 pjl < z ≤

∑j
l=1 pjl.

Step 4 If a switch to the state l occurs; usually the potential energies Vjj(R) and Vll(R)
differ at the current position R. To recover energy conservation the velocity is
adjusted accordingly in the direction of the nonadiabatic coupling vector djl(R),
for justification of this particular choice see references [42–44]. If the kinetic
energy is not sufficient to cover the potential energy difference the the hop is
refused and propagation continues on the original potential energy surface.

Step 5 Repeat steps two to four until the trajectory satisfies an appropriate stopping
condition.

2.3.2 Energy Conservation and Consistency

In this section we will mention just briefly some problems with the surface hopping
approach. While the trajectory stays in one state the total energy of the system is
clearly conserved. But one problem is how to retain energy conservation upon a jump
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Figure 2.5: Schematic drawing of the rescaling of the velocity in two dimensions after an
switch occurred. Ṙold is the velocity before the hop and ṘT and ṘR are the two new velocities
corresponding to the two solutions for λ of (2.72). The radius of the circle is given by the
velocity after the jump, where Ekin

new is the new kinetic energy.

between surfaces with different potential energies. As mentioned above there are some
arguments, derived from semiclassical considerations by Pechukas in [45, 46], to adjust
the velocity along the nonadiabatic coupling vector in order to compensate for the
difference in potential energy. This requires the solution of the following equation

0 = ∆V + λ
∑
α

Ṙαd
α
ij

Mα

+ λ2
∑
α

dαij
2

Mα

, (2.72)

where ∆V is the change in potential energy and the new velocity is given by Ṙnew =
Ṙold + λdij. For a graphical representation see figure 2.5. Usually this equation has
two solutions λ and it is not clear which should be used. The solution with the smaller
absolute value corresponds to a transmission of the surface normal to dij and the
solution with the larger value is a reflection. As is suggested in [44, 47] we used the λ
with the smaller absolute value.

Another problem is that quantum mechanics allows the intrusion of the wave func-
tion into classical forbidden areas. This results in hops where there is no solution
for (2.72). In the case of such an event one has to either sacrifice consistency, suggest-
ing a hop, or energy conservation. In the fewest switches algorithm energy forbidden
hops are rejected thus partially giving up consistency. There is an extensive discussion
in the literature about this problem, but to our knowledge no satisfactory solution has
been found yet [48, 49].

2.3.3 Generalised Surface Hopping

In 1998, together with Sholl, Tully proposed another method which he called gener-
alised surface hopping. It is a combination of the surface hopping and the mean field
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methods [1]. In this method the nuclear degrees of freedom evolve along a classical
trajectory R(t) and the electronic wave function is only partially expanded in a finite
set of S orthonormal functions φi and the remainder of the wave function φC is treated
collectively

φ(r, t) =
S∑
i=1

ci(t)φi (r, R(t)) + φC (r, R(t)) . (2.73)

The equation of motion for φ is given by

i~
∂

∂t
φ(r, t) = Hr (r, R(t))φ(r, t), (2.74)

which is a time dependent Schrödinger equation due to the time dependence of R(t).
The electronic Hamiltonian Hr was defined before in (2.21). The occupied state φocc
can now be either one of the φi or the collective state φC . Since the collective state φC
is not necessarily normalised, the equations of motion for the slow particles become

R̈α(t) =
−1

Mα

∇Rα

[
VRR (R(t)) +

∫
dr φ?occ (r, R(t))Hr (r, R(t))φocc (r, R(t))∫

dr φ?occ (r, R(t))φocc (r, R(t))

]
. (2.75)

The time evolution of the system is given by equations (2.74) and (2.75) and for the
occupation probabilities we get

ȧii =
S∑
j=1

bij + biC , (2.76)

with the bij’s as in (2.67) and biC defined as

biC =
2

~
= [c?iViC ]− 2<

[
c?i

〈
φi φ̇C

〉]
. (2.77)

The population aCC ≡ 〈φC φC〉 in the collective state is computed using the normali-
sation of the electronic wavefunction and for the time derivative we get

ȧCC = −
S∑
i=1

ȧii = −
S∑
i=1

biC . (2.78)

For the second expression we used (2.76) and the fact that the bij’s are antisymmetric
under index interchange. Note that the generalised surface hopping contains mean
field, if S = 0, as well as the “classical” surface hopping, if φC = 0.

A large drawback of this method is the need for explicit propagation of the wave
function according to (2.74). This is usually a much more demanding task than the
integration of equation (2.65) since it requires an additional evaluation of the kinetic
energy operator.
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2.3.4 Surface Hopping with Optical Potential

We now have adopted the generalised surface hopping algorithm in order to address
laser-induced reactions at surfaces. Combining ideas of previous treatments [1, 19, 31,
50, 51]. In particular, we have introduced an optical potential in order to simulate
the collective influence of electronic excitations of the substrate. The resulting mixed
quantum classical method will allow the inclusion of all the relevant nuclear coordinates
of both adsorbate and substrate at sufficiently long propagation times to correctly
describe thermalization and dissipation effects.

As discussed in the section 2.1 one of the problems encountered when modelling
DIET processes with surface hopping algorithms is the huge number of electronic ad-
sorbate and substrate states involved which need to be taken into account. Due to
the large number of and similar shapes of the corresponding potentials, it is clear that
it is neither feasible to explicitly include all these substrate states into our simulation
nor is it necessary since the reaction dynamics is dominated by a few adsorbate states,
which must be taken into account. The main effect of the substrate states is cou-
pling different adsorbate states either to each other or to an external electromagnetic
field. We model this effect collectively by combining ideas from Tully’s fewest switch-
ing algorithm [19] and generalised surface hopping method [1] with those of Brenig [31]
and Saalfrank [50, 51] who introduced optical potentials to the description of DIET
processes.

As with all methods before the Hamilton operator H is split into the kinetic energy
TR of the nuclear coordinates R and an electronic part Hr, where the electronic part
depends explicitly on the electronic coordinates r and parametrically on the position
of the nuclei R

H(r, R) = TR +Hr(r, R). (2.79)

Just as in the generalised surface hopping the electronic wave function Ψ is expanded
into the explicitly treated excited adsorbate states φi and a collective state ψ containing
the molecular ground state together with the continuum of substrate excitations

Ψ(r, R, t) =
∑
i

ci(t)φi(r, R) + φC(r, R, t). (2.80)

The influence of this collective state φC on the rest of the electronic system can be
taken into account by an effective non-Hermitian Hamiltonian (see chapter 16 in [52])

Heff (r, R) = Tr + Veff (r, R) + i∆(r, R), (2.81)

where Tr is the kinetic energy operator of the electrons. The effective potential Veff and
the optical potential ∆ are real functions of r and R. In a Newns-Andersson picture
∆ is related to the lifetime broadening of a resonance state which can be determined
via [53]

∆(E) = π
∑
k

|Vk|2δ(E − εk). (2.82)

With the effective Hamiltonian and a diabatic (i.e. ∇Rφi = 0) representation of the
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wave functions φi the electronic Schrödinger equation has the following form

ċj = − i

~
∑
i

ciVji +
1

~
∑
i

ci∆ji, (2.83)

where the matrix elements Vij and ∆ji are defined as

Vji ≡ 〈φj Te + Veff (r, R) φi〉
∆ji ≡ 〈φj ∆(r, R) φi〉 , (2.84)

respectively. For the diagonal elements of the density matrix aji this leads to

ȧjj =
∑
i

bji +
∑
i

2

~
< [aji∆ji] , (2.85)

with bji ≡ 2
~= [ajiVji] and the density matrix elements defined as before. Note that for

a normalised wave function Ψ the occupation probability acc for the “rest” is simply
given by acc ≡ 1−

∑
j ajj, leading to

ȧcc = −
∑
j

ȧjj = −2

~
∑
ij

< [aji∆ji] , (2.86)

since
∑

ji bji = 0. The classically treated nuclear coordinates R obey formally the same
Newtonian equation of motion as for the generalised surface hopping

R̈ =
−1

M
∇
[
〈φocc He φocc〉
〈φocc φocc〉

]
, (2.87)

where φocc is the currently occupied state. In order to determine both the classical and
the quantum dynamics are determined self-consistently, the equations (2.83) and (2.87)
need to be integrated simultaneously while the currently occupied state is determined
via the fewest switching algorithm. The probabilities for hops between the different
potentials 〈ψocc He ψocc〉 / 〈ψocc ψocc〉 for the classical motion are, for jumps between
explicitly treated states

pji =
∆t 2Im(aijVij)

~ajj
, (2.88)

and the probability to go from state j to the collective state φC is given by

pjC =
−2∆t

~ajj

∑
i

aji∆ji. (2.89)

As in the fewest switches surface hopping switches between the states can occur at any
point along the classical trajectories R(t). Note that switches into the collective state
occur only if the sum

∑
i aji∆ji is negative. We will also use this formalism to describe

the excitation from the collective state into a particular electronic state j. For such a
transition the sum in 2.89 has to be positive, i.e. the sign of the optical potential has



2.4 Simulation of Quantum Properties with Classical Mechanics 23

to be reversed. In order to simulated the excitation by a short laser pulse the optical
potential needs to be time dependent which is a straight forward generalisation.

This approach differs from the generalised surface hooping of the previous section
in some points. First, we have introduced an optical potential in order to describe
transitions to the collective state ψ. Furthermore we assume that the whole excess
energy upon a transition to or from the continuum state is taken up by the substrate
electrons, as it is usually done in the modelling of laser-induced desorption [16]. This
means that upon a switch to the continuum state we just make a Franck-Condon
transition, i.e. we transfer the molecule to the ground state potential with its kinetic
energy preserved and perform ordinary Born-Oppenheimer molecular dynamics until
the final fate of the molecule has been determined.

If just one electronically excited state is considered, then the equations become
much simpler. According to eqs. (2.85) and (2.86), the de-excitation rate is directly
given by

ȧ11 = −ȧcc = ċ1c
∗
1 + c1ċ

∗
1 =

2a11∆(R)

~
. (2.90)

In fact, for such a situation no electronic Schrödinger equation has to be integrated,
leading to much shorter computation times.

2.4 Simulation of Quantum Properties with Classi-

cal Mechanics

In this section we will highlight two difficulties encountered when trying to simulate
quantum mechanical quantities with classical trajectories. One is the choice of ini-
tial conditions and the other the assignment of continuous classical results to discrete
quantum numbers such as rotational momentum.

2.4.1 Initial Conditions

In order to derive probabilities from classical simulations one has to average over differ-
ent initial conditions. Now the question arises how to weight each point in phase space.
In quantum mechanics there is no simultaneous probability distribution for position
and momentum due to the uncertainty principle. Wigner discussed this problem in [54]
and showed that the function P (x, p) defined as

P (x, p) =

(
1

~π

)n ∫
dnyΨ?(x + y)Ψ(x− y)e2i

py
~ (2.91)

has all the properties requested of simultaneous probability distribution of the classical
positions x = (x1, x2, . . . , xn−1, xn) and momenta p = (p1, p2, . . . , pn−1, pn), such as
giving the correct probabilities for x when integrated over p and vice versa. Ψ(x) is the
initial quantum mechanical wave function and the integration is over the whole space.
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If for the wave function we insert the ground state solution of an one dimensional

harmonic oscillator Ψ(x) = 1√
x0
√
π
e
− 1

2

“
x

x0

”2

into equation (2.91) we get

P (x, p) =
1√
πx0

e
−x2

x2
0
x0√
π~
e−( px0

~ )
2

, (2.92)

which is the product of two independent Gaussian distributions with width σx = x0√
2

for the position x and width σp = ~√
2x0

for the momentum. Here the characteristic

length x0 is given by x0 =
√

~
ωm

with ω being the frequency and m the mass of the

oscillator [55]. If we use the relation ∂2V
∂2x

= mω2 between the second derivative of the
potential V , the mass m and the frequency ω we get for x0

x0 =

√
~

4
√
m∂2

xV
, (2.93)

and consequently

σx =

√
~

2
√
m∂2

xV
(2.94)

and

σp =

√
~
√
m∂2

xV

2
. (2.95)

Due to the large masses of the molecules involved in our simulations, the width of
the position distribution usually is small and the potential can be approximated to be
harmonic at the minimum. Therefore we always use normal distributed initial positions
and momenta according to equations (2.92), (2.94) and (2.95). For systems with more
than one degree of freedom we first calculate the normal modes by diagonalising the
Hessian matrix of the ground state potential and then determine the initial conditions
for the normal modes with widths according to the corresponding frequencies.

2.4.2 Mapping Classical Quantities to Quantum Numbers

Another problem encountered when comparing the results of classical simulations with
quantum mechanical calculations or state resolved measurements is that of mapping the
continuous classical quantities onto discrete quantum numbers. We always associated
the classical quantity with the nearest corresponding quantum number. In particular
for rotation the rotational energy Erot of a diatomic molecule as a function of the
rotational quantum number j is given by

Erot(j) =
~2

2mr2
0

j(j + 1), (2.96)

where the effects of intra molecular vibration are neglected. m is the reduced mass
and r0 the equilibrium atom-atom distance of the molecule and j ∈ N0 . Conse-
quently trajectories with rotational energies in the range corresponding to the in-
terval

[
j − 1

2
, j + 1

2

[
are assigned to j. Note, for NO in it’s ground state we have

~2

2mr20
≈ 0.21 meV.
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For vibrational coordinates we distinguish between harmonic potentials and those
in a Morse potential. In the harmonic case the energy Eharm. of a quantum mechanical
oscillator with quantum number n is given by Eharm. = ~ω

(
n+ 1

2

)
and thus trajectories

with energies, kinetic and potential, in the range of the interval [~ωn, ~ω(n+ 1)[ are
mapped to n where ω is the oscillator frequency connected to the second derivative V ′′

of the potential at the minimum via ω =
√

V ′′

m
and m is the corresponding mass. In

the case of vibration of a particle with mass m in a Morse potential given by

V (x) = V0

(
1− e−α(x−x0)

)2
(2.97)

the quantum mechanical energies need to be corrected due to anharmonicity of the
potential and are [56]

EMorse(n) = ~
√

2α2V0

m

(
n+

1

2

)
− ~2α2

2m

(
n+

1

2

)2

, (2.98)

and we map the interval
[
EMorse(n− 1

2
), EMorse(n+ 1

2
)
[

to n. The corresponding fre-

quency is given by ωMorse =
√

2α2V0

m
. The correction due to the anharmonicity is small,

especially for small n, and only plays a role for highly excited states.





Chapter 3

A Simple Model System

In this chapter we will investigate a simple one dimensional model system in order
to gain some insight about the fundamental mechanisms in laser induced desorption.
Due to the restricted dimensionality a simple model certainly can not be expected to
reproduce momentum distributions, since no energy transfer between different degrees
of freedom is possible. But it might help to understand the dependence of the des-
orption probability on the most characteristic numbers of the bond between adsorbate
molecule and surface, namely binding energy in both the ground and the excited state,
the relative position of the minima and the lifetime in the excited state.

Laser induced desorption experiments of NO from small Pd-clusters supported by
an alumina substrate were performed by Kampling et al. [20]. They observed a strong
(one order of magnitude) variation of the desorption yield with cluster size. Temper-
ature programmed desorption spectra indicate slightly different adsorption energies of
the NO for different cluster sizes (see figure 3.1). The observed desorption maxima
correspond to binding energies between 0.70eV and 0.75eV. In order to investigate
whether these differences in the binding energy could account for a sufficiently large
change in desorption probability we performed some simple simulations.

3.1 Model and Simulation

To simulate the desorption process of NO from the small Pd-clusters we used the
simplest possible model, a one dimensional two state model with a fixed excited state
lifetime, Frank-Condon transitions and a single excitation. For the representation of
the potentials we used Morse-potentials of the following from

VMorse(x) = a
(
e−2cx − 2e−cx

)
. (3.1)

Note that we choose the inverse decay length c as a parameter instead of setting the
decay length 1/c, this allows for constant potentials by setting c equal to zero, causing

27
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Figure 3.1: Temperature programmed desorption spectra of NO from different sized Pd-
clusters and the Al2O3 substrate, from [20].

less numerical problems than setting 1/c to infinity. Thus we have five parameters
characterising the potentials, the strength a and the range parameter c for the ground
and the excited state and the distance between the minima ∆x, where the excited state
potential is given by V e(x) = VMorse (x−∆x). Thus values of ∆x > 0 correspond to
an MGR-like situation while a ∆x < 0 is leading to an Antoniewicz scenario. Another
important parameter is the lifetime in the excited state τ . With that the probabil-
ity Pex(t) of the adsorbate still being in the excited state at time t after excitation at
time zero is given by

Pex(t) =
1

τ
e−

t
τ . (3.2)

This is equivalent to the assumption of a constant optical potential with strength
∆(x) = ~

2τ
. The last parameter is the mass of the adsorbate molecule, but this is

connected to the length scale used.
A important feature of the Morse potential is the fact, that the classical equation

of motion can be solved analytical, see references [57, 58]. For energies larger than zero
we use the following ansatz

x(t) = A ln (B cosh(Ct)−D) . (3.3)

If we insert this into the equation of motion

Mẍ(t) = − d

dx
VMorse (x(t)) (3.4)

we get a set of equations for A, B, C and D which are solved by

A =
1

c
, (3.5)
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B =

(
E

a

√
a

E + a

)−1

, (3.6)

C = c

√
2E

m
, (3.7)

and
D =

a

E
. (3.8)

For bound solutions, i.e. energy E < 0, the solution is of the form

x(t) = A ln (B cos(Ct)−D) , (3.9)

where the hyperbolic cosine is replaced by an cosine reflecting the periodic nature of
the bound solutions. The parameters A, B and D are the same as for the free solution.
Only in C we have to change the sign of the energy

C = c

√
−2E

m
. (3.10)

These solutions are for the initial conditions of x(t = 0) = xTP and ẋ(t = 0) = 0, where
xTP is the inner turning point which is given by the negative solution of equation

VMorse (xTP ) ≡ E. (3.11)

This equation has no solution for E < −a and two solutions for a ≤ E ≤ 0

xTP = −1

c
ln

(
1±

√
1 +

E

a

)
. (3.12)

For E > 0 only the solution with the plus sign is a valid one. The inner solution, for
energies larger −a, is always the one with the plus sign. The solutions for arbitrary
initial conditions can be found by first calculating the corresponding energy. From
that and the initial position an corresponding offset time tinitial can be calculated by
inverting either (3.3) or (3.9). For the correct solutions this time must then be added
to the propagation time.

Thus for each initial position xi and velocity vi we can calculate the position
xf (xi, vi, tres) and velocity vf (xi, vi, tres) after propagation in the excited state for the
residence time tres. Since we do not include any dissipation mechanism, a trajectory
then would desorb if it’s final energy

Ef = Ef (xi, vi, tres) = V ground
Morse (xf ) +

1

2M
v2
f (3.13)

is larger than zero. The desorption probability Pdes can be calculated by integration
over all initial positions and velocities and all residence times corresponding to a posi-
tive final energy weighted with an appropriate probability density ρ (xi, vi, tres)

Pdes =

∫
dxi

∫
dvi

∫ ∞

0

dtresΘ (Ef (xi, vi, tres)) ρ (xi, vi, tres) , (3.14)



30 Chapter 3. A Simple Model System

−1.00

0.00

1.00

2.00

3.00

4.00

5.00

−2 0 2 4 6

E
ne

rg
y 

(e
V

)

Position (a0)

Figure 3.2: Some of the model potentials used in our calculations. The lower two potentials
have an inverse decay length c of 0.55 a−1

0 with a depth of 0.70 eV (solid line) and 0.95 eV
(long dashed line). The upper three are shifted up by 1.0eV for better visibility and have a
binding energy of 0.70 eV and a c-parameter of 1.0 a−1

0 and are shifted to the right by 0.0 a0,
0.5 a0 and 1.0 a0.

where Θ(x) is the Heaviside step function. To evaluate (3.14) we sample the integrant
at discrete positions, momenta and residence times and replace the integrals by sums
over the sampling points. The weights for the position and the velocity are given
by Gaussian distributions as discussed in section 2.4.1, whereas the weights for the
lifetime can be derived from equation (3.2). We checked the validity of the harmonic
approximation for the initial distribution with parameters later used in our simulation
by investigating its time evolution. We found the shape of the position and momentum
distribution to be stationary indicating that indeed in the range of the initial position
distribution the potential at the minimum is nearly harmonic. Note that for an NO
molecule with a spatial distribution width of σpos = 0.1 a0 the energy associated with
the corresponding momentum distribution is only 6.2 meV.

3.2 Parameter Dependence

In this section we discuss the variation of the desorption probability in our simple
model with the different potential parameters. For the mass we always chose the mass
of the 14N16O molecule. Unless stated otherwise we used an excited state lifetime of
τ = 12.095 fs = 500 a.u. This seems to be a reasonable value for the lifetime of an
excited adsorbate state in front of an insulator where resonant tunnelling should not
play a role [6, 59]. On metals excited state lifetimes are usually much shorter in the
order of a few femtoseconds [60]. Typical potentials used are depicted in figure 3.2.

The change of the desorption probability with the binding energy of the ground
state is shown for two different values of ∆x in the left graph of figure 3.3. As one



3.2 Parameter Dependence 31

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.5 0.6 0.7 0.8 0.9 1

D
es

or
pt

io
n 

P
ro

ba
bi

lit
y

Energy (eV)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
es

or
pt

io
n 

P
ro

ba
bi

lit
y

Inverse Decay Length (1/a0)

ag cg

Figure 3.3: These graphs show the change of desorption probability with the ground state
parameters for different minimum displacements. The left graph, labelled ag shows the
variation with the ground state binding energy and in the right one, labelled cg, we can
see the dependence on the inverse ground state decay length. For the parameters used see
table 3.1.

line type ag [eV] cg [a−1
0 ] ae [eV] ce [a−1

0 ] ∆x [a0]
solid 0.70 0.55 0.70 1.0 1.0

dashed 0.70 0.55 0.70 1.0 0.5

Table 3.1: Parameters for figures 3.3 and 3.4

would expect, it decreases with increasing binding energy. However, for reasonable
parameters, the change in desorption probability is not large enough to account for the
experimentally observed change in desorption yield. The dependence on the width of
the ground state potential shown in the right half of figure 3.3 is more interesting. For
the curve with the large ∆x (solid line) and subsequently larger desorption probability
we see an increase followed by a saturation. Whereas in the case with the lower ∆x
we observe an initial drop and also an levelling off for larger cg. This behaviour can
be understood by looking at the corresponding potential changes and the desorption
probability as a function of initial position. Small values of cg correspond to a rather
wide ground state potential and thus a large width σpos of the initial position distri-
bution. Large cg’s on the other hand characterise a very narrow potential and thus a
small initial width. In the current case we have σpos = 0.307 a0 for cg = 0.1 a−1

0 and
σpos = 0.097 a0 for cg = 1.0 a−1

0 . We now can compare this with the desorption proba-
bility as a function of initial position (compare figure 3.4). We see that for ∆x = 1.0 a0

there is a non vanishing desorption probability of approximately 0.60 at xi = 0.0 a0,
while for ∆x = 0.5 a0 it is zero. Thus with increasing concentration of the initial
position distribution around the centre the total desorption probability approaches the
desorption probability at x = 0. This immediately explains the drop of the desorp-
tion probability for the ∆x = 0.5 a0 case. For the ∆x = 1.0 a0 case things are more
complicated. The gain in probability for positive initial positions is accompanied by a
loss for negative xi. But since the slope of the curve in figure 3.4 is larger for positive



32 Chapter 3. A Simple Model System

0.00

0.20

0.40

0.60

0.80

1.00

−0.4 −0.2 0 0.2 0.4

D
es

or
pt

io
n 

P
ro

ba
bi

lit
y

x (a0) 

Figure 3.4: This graph shows the dependence of the desorption probability on the initial
position. The parameters and the line styles used are given in table 3.1.
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Figure 3.5: Basically the same as fig. 3.3 but for the excited state parameters. For the
parameters for the ae-dependence see table 3.2 and table 3.3 for ce parameters

values the net effect is a rise in the desorption probability for narrower distributions.
The change in desorption probability due to different width of the momentum distri-
bution is negligible since the width is rather small, in the order of a few meV, and over
the range of initial velocities, with significant contributions to (3.14), the desorption
probability is almost constant.

Next we take a look at the dependence on the excited state parameters. Again
the change in desorption probability with increasing binding energy of the excited
state behaves as one would expect, compare the left graph in figure 3.5. The forces
F (x) = −∇VMorse(x) acting on a particle moving in a Morse potential of the form (3.1)
are given by

F (x) = 2ac
(
e−2cx − e−cx

)
(3.15)

and as the binding energy increases the desorption probability is increasing as well since
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line type ag [eV] cg [a−1
0 ] ce [a−1

0 ] ∆x [a0]
solid 0.70 0.55 1.00 1.0

dashed 0.70 0.55 1.00 0.5
dot dashed 0.70 0.55 0.55 1.0

Table 3.2: Parameters for the left panel of figure 3.5

line type ag [eV] cg [a−1
0 ] ae [eV] ∆x [a0]

solid 0.70 0.55 0.70 0.5
dashed 0.70 0.55 0.70 1.0

dot dashed 0.70 0.10 0.70 0.5
dotted 0.70 0.10 0.70 1.0

Table 3.3: Parameters for the right panel of figure 3.5

the forces accelerating the adsorbate are proportional to the binding energy resulting
in an higher energy gain and ultimately more desorption.

For the dependence on the inverse decay length we have a similar picture. The
desorption probability goes up with increasing ce, see the right graph in figure 3.5.
This again is due to larger forces with increasing ce resulting in a larger energy gain
and consequently leading to a larger desorption probability. But this time the slope of
the curves for the potentials with large ∆x are much larger and a small change in the
parameter could account for a rather large change in desorption probability.

The last potential parameter to discuss is the separation of the minima. In figure 3.6
we show the desorption probability as a function of ∆x for different parameter sets.
For the MGR scenarios (positive ∆x) the desorption probability is increasing fast
with the separation of the minima. This can be understood considering the fact that
transitions between the different electronic states are Frank-Condon like and thus for
larger positive ∆x the trajectories start further up the repulsive wall of the excited
state potential, where the resulting forces are large. For wide distributions of the
initial positions, i.e. small cg, the rise is less steep but with an earlier onset as for
narrow ground state potentials. For the Antoniewicz schemes the situation is different.
The desorption probabilities are much smaller than for the MGR scenarios and only
for a rather large binding energy in the excited state we get considerable desorption.
This is again related to the forces at the Frank-Condon point. For the small binding
energies the potential is very flat to the right side of the minimum. Only for large
potential depth the molecules gain enough energy to desorb.

After analysing the dependence of the desorption probability on the potential pa-
rameters we still have to look at the excited state lifetime. As we can see in the
graphs of figure 3.7, the dependence of the desorption probability on the lifetime is
showing a fast initial increase for the MGR scenarios followed by a saturation, while
for Antoniewicz like cases we still have a saturation level but that is reached for much
larger lifetimes. This behaviour is best analysed by looking at the desorption prob-
ability as a function of the residence time in the excited state, as depicted in the
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Figure 3.6: The dependence of the desorption probability on the separation of the minima.
Parameters used are for the solid line cg = 0.1 a−1

0 , for the dashed line cg = 0.55 a−1
0 , the

dot dashed line corresponds to cg = 1.0 a−1
0 and for the dotted line with the triangles we also

used cg = 1.0 a−1
0 but with a larger binding energy of ae = 3.0 eV. The other parameters we

used were ag = 0.70 eV, ae = 0.70 eV, ce = 1.0 a−1
0 and ∆x = 0.5 a0.

0.00

0.05

0.10

0.15

0.20

0.25

0 25 50 75 100 125

D
es

or
pt

io
n 

P
ro

ba
bi

lit
y

τ (fs)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 25 50 75 100 125

D
es

or
pt

io
n 

P
ro

ba
bi

lit
y

τ (fs)

a) b)

Figure 3.7: Variation of the desorption probability with the excited state lifetime τ . The
corresponding parameters are given in table 3.4.

figure 3.8. For all scenarios we have a certain offset residence time below which there
is no desorption. Since for all cases some time is required for the adsorbate to be in
the excited state before they gained enough energy to overcome the desorption barrier.
The Menzel-Gomer-Redhead scenarios then show a fast increase and in some cases
some overshooting before reaching a saturation level. This is because most trajectories
are at the repulsive part of the excited state after the initial excitation and gain enough
kinetic energy to overcome the excited state binding energy and only a few will start
to oscillate. In the Antoniewicz case the picture is very different instead of reaching
a constant plateau the desorption probability is oscillating, which is connected to the
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line type point type ag [eV] cg [a−1
0 ] ae [eV] ce [a−1

0 ] ∆x [a0]
thick solid squares 0.70 0.55 0.70 1.0 0.5
thin solid crosses 0.70 0.55 0.70 1.0 -1.0

dot dashed circles 0.95 0.55 0.70 1.0 0.5
dashed squares 0.70 0.55 0.70 1.0 1.0
dotted triangle 0.95 0.55 0.70 1.0 1.0

Table 3.4: Parameters for figures 3.7 and 3.8.
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Figure 3.8: The desorption probability for different residence times, i.e. in equation (3.14)
we integrated only initial position and momentum. The left graph shows an enlargement.
The parameter set used was the same as for the graphs in figure 3.7 and is given in table 3.4.

fact that the Franck-Condon transition into the excited state is to the attractive part
of the potential. Thus, in contrast to the MGR scenario the majority of trajectories is
trapped in the excited state and starts to oscillate.

3.3 Isotope Effect

The last aspect of the simple one dimensional model we want to explore is the de-
pendence of the desorption probability on the particle mass and the accuracy of the
simple model for the isotope effect as given by eq. (2.3). We do this for three potential
parameter sets with different minimum separation, which we also used in the previous
section. The potentials are shown in figure 3.9 and the corresponding desorption prob-

∆x(a0) −1.0 0.5 1.0
Pdes(%) 0.166 2.169 59.684

Table 3.5: The desorption probabilities for different minimum separations. The particle
mass used was 30 amu and the remaining potential parameters were ag = 0.70 eV, cg =
0.55 a−1

0 , ae = 0.70 eV and ce = 1.0 a−1
0
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Figure 3.9: The potentials corresponding to figure 3.10 and a typical initial position dis-
tribution in the ground state for a particle mass with the mass of an NO molecule. The
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Figure 3.10: The desorption probability as a function of particle mass for three different
minimum separations (solid line). The probabilities are normalised to the probability at
m = 30 amu, the corresponding numbers are given in table 3.5. Also shown, with the dashed
line, is the scaling factor according to equations (2.3). The remaining potential parameters
are ag = 0.70 eV, cg = 0.55 a−1

0 , ae = 0.70 eV and ce = 1.0 a−1
0

abilities for the 14N16O mass are given in table 3.5. The dependence of the desorption
on the particle mass is depicted in figure 3.10 together with the results from equation
(2.3). As can be seen from these graphs, the simple model is most accurate for the
largest desorption probability at ∆x = 1.0 a0 and the least accurate for the smallest
desorption yield in the Antoniewicz scenario.

The deviations from equation (2.3) can be understood by analysing the assumptions
used in the derivation. Explicitly we assumed a linear excited state potential, for
∆x = 1.0 a0 this seems to be reasonable. But if we look at the potential curves
in figure 3.9 for ∆x = 0.5 a0 and ∆x = −1.0 a0 we see that the slope varies over
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the width of the distribution of the initial position. In particular for the MGR like
scenarios the slope decreases in the direction of the force, while in the Antoniewicz
scenario it increases. Thus for lighter molecules in the MGR case the acceleration will
decrease faster than for the heavier ones, leading to a reduction of the mass effect,
while in the Antoniewicz model most of the light molecules will see larger forces faster,
increasing the separation with the heavier ones. This can explain the fact that in the
case of the Antoniewicz scenario the simple model underestimates the isotope effect
and for the MGR schemes it over estimates it. Another effect we neglected was the
fact the with the particle mass the width of the initial distribution changes. This will
be particularly important if the desorption probability is small, since in such cases
most desorption comes from the tails of the initial distribution where the effect of a
different width is largest. Thus lighter particles will see larger desorption probabilities
than expected while for the heavier molecules the desorption probability will be smaller
than suggested by (2.3).

In this chapter we showed that even a relatively simple one dimensional two-state
model for the laser induced desorption can, while using reasonable parameters, produce
nearly all possible desorption probabilities between zero and one. We find the most
important parameters to be the separation between the minima of the ground and
the excited state potential, the length scale of the excited state and the excited state
lifetime. Changes in these parameters could account for the variations in desorption
probability as observed in the experiment. Thus a realistic simulation of the laser
induced desorption probability of NO from small supported Pd clusters would require
the ab initio calculation of the binding geometry and energy for the ground state and
relevant excited states. Furthermore it would be necessary to investigate the influence
of the cluster size on quenching process. Since the lifetime of the excited state is
dependent on the electronic structure of the clusters, it might be the reason for the
observed desorption yield changes.





Chapter 4

Laser-Induced Desorption of NO
from NiO

In this chapter we will use the modified surface hopping with optical potential intro-
duced in chapter 2 to investigate the laser induced desorption of NO from a NiO (100)
surface. This system is very interesting for several reasons. First of all the experimen-
tally observed desorption cross section is several orders of magnitude larger than that
from metal substrates (10−17cm2 vs 10−21cm2 [61]). Second, the momentum distribu-
tion of the desorbed NO molecules shows an interesting bimodality, the origin of which
should be explained by theory. And, particular in connection with this work, there
exist analytical expressions for the potential energy surfaces of the ground state and
one charge transfer state as a function of the centre of mass distance from the surface
and the polar angle, derived from ab initio calculations by Staemmler et al. [2, 62].
They also performed wave packet simulations of the desorption on these potentials [3],
which will serve as as a benchmark for our mixed quantum classical method.

We will first present some of the experimental facts about the laser induced des-
orption of NO from a NiO(100) surface. Then we will present the potential energy
surfaces on which our simulations are based. After that we will discuss wave packet
results from [3] and compare the results with our mixed quantum classical calculations.
We will conclude with a more detailed discussion of the mixed quantum classical results
using extended potentials, friction and alternative excitation schemes.

4.1 Experiments

The laser induced desorption of NO from a NiO(100) surface has been well-studied
experimentally [7, 61, 63–66]. The experiments are performed either on thin NiO films
grown on the (100) surface of a Ni single crystal or on the surface of a cleaved NiO
crystal. A comparison between the desorption of NO from thin oxide films or from NiO
crystals showed nearly no differences [63]. From the NiO(100) surface NO molecules

39
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Figure 4.1: The experimental NO momentum distributions for different vibrational and
rotational states as measured by [61] (taken from [3])

thermally desorb at at about 220 K [63], corresponding to a binding energy of 0.52 eV.
NEXAFS (near edge x-ray adsorption fine structure) data [63] indicate an angle of
approximately 45◦ degrees between the NO molecule axis and the surface normal. The
desorption yield shows a linear dependence on the laser fluency [7] indicating a single
photon process.

When measuring the state resolved velocity distributions of NO desorbed from a
thin NiO(100) film supported by a Ni(100) single-crystal surface with nanosecond laser
pulses of 193 nm wave length, corresponding to photon energies of 6.42 eV, Mull et al.
observed a bimodality in the velocity distributions [61], as shown in figure 4.1.

There where also some two pulse correlation experiments using femtosecond laser
pulses which showed interesting results see figure 4.2 and [66]. First, the desorption
yield showed a negative correlation for the vibrational ground state. Second, for the
third vibrational state the desorption probability was still enhanced for delay times
up to 60 picoseconds, indicating a rather long-lived state. These experiments were
performed using a femtosecond laser with wave length 314 nm, corresponding to photon
energies of 3.95 eV, and a pulse duration of 550 fs. The two pulses were generated by
splitting the original pulse into the s and the p polarised component. The desorption
probabilities for different vibrational states as a function of delay time between the two
laser pulses are shown in figure 4.2. Negative delay times correspond to the s-pulse
preceding the p-pulse.
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Figure 4.2: The results from the two pulse correlation experiments from [66]. The nor-
malised desorption probability is shown for different vibrational states as a function of delay
time between the two laser pulses.

4.2 Potentials

In our simulations we used potential energy surfaces based on two two-dimensional
potentials obtained by Klüner et al. [2, 67]. These potential are analytical expressions
fitted to energies from ab initio complete active space self-consistent field and config-
uration interaction calculations. The system calculated consisted of a NiO−8

5 -cluster
within a semi-infinite crystal of ±2 point charges and the NO molecule. The two de-
grees of freedom used are the molecule surface distance Z and the polar angle θ, see
figure 4.5. One potential is representing the electronic ground state and the other a
set of charge transfer states where an electron from the substrate is transfered into
an adsorbate state. The different charge transfer states have similar shaped energy
surfaces and thus were merged into one potential [67].

In the ground state the NO molecule is adsorbed to the NiO surface above an Ni
atom with the nitrogen atom down and a binding energy of 0.52 eV. It is also tilted
away from the surface normal by 45 degrees towards the oxygen atom, compare also
the contour plot of the ground state potential in figure 4.3. The ground state minimum
is located 2.94 Å away from the surface.
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Figure 4.3: The ab initio ground state potential as a function of the centre of mass distance
from the surface and the polar angle of the molecule axis. Contour lines are at every 0.04eV
between zero and −0.52eV.

The more interesting potential is that of the excited state. It was constructed from
a series of similar charge transfer states. As can be seen in figure 4.4 one minimum
of the charge transfer state is closer to the surface and at an upright position. Based
on the wave packet calculations it was proposed that the bimodality is a consequence
of a bifurcation of the wave packet due to the topology of the excited state potential
energy surface [3], where when moving closer to the surface one part of the wave
packet is deflected along the angular coordinate to smaller angles and gaining a large
rotational momentum while the other part moves more directly towards the surface and
ultimately gains more translational momentum. As we will show later the wave packet
simulations neglected a slow moving late desorbing species, which strongly affects the
velocity distributions.

4.2.1 Extension to Higher Dimensions

The NO molecule in front of the NiO surface has a total of six degrees of freedom.
Thus for a complete description we needed to extend the ab initio two dimensional
potentials. Since there are no full dimensional ab initio results available we were forced
to use a model potential to include the additional degrees of freedom. The particular
choice of the parameters has to be considered as an educated guess. We like to point
out, however, that the qualitative results we obtained did not depend very sensitively
on the particular choice of parameters. The complete potential consists of four parts,
the original ab initio potential Vai, a corrugation part Vcor, the azimuthal variation Vaz
and the intra molecular potential VNO.

V s
6D(X, Y, Z, r, θ, φ) = V s

ai(Z, θ) + Vcor(X, Y, Z) + Vaz(X, Y, Z, φ) + V s
NO(r)
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Figure 4.4: The potential energy surface use for the electron transfer state in the NO/NiO
system. Contour lines start at −5.5eV and are at every 0.125eV.

The upper index s stand for is either g or e, denoting the ground or the excited state.
We assume no difference in the corrugational and azimuthal potential between the
adsorbate ground and excited state. The lateral position on the surface is given by the
X and Y coordinate while φ is the azimuthal angle measured from the X axis and r
is the intramolecular N–O distance, compare figure 4.5. The X axis is along the [011]
direction and Y is pointing in the [011] direction, see figure 4.6. For the corrugation
potential Vcor we used

Vcor(X, Y, Z) =
Ccor
4
e−λcor(Z−Z0) (2− cosGXX − cosGY Y ) , (4.1)

and the azimuthal dependence is given by

Vaz(X, Y, Z, θ, φ) =
Caz
2
e−λaz(Z−Z0) cos 2φ sin θ (cosGXX − cosGY Y ) . (4.2)

In that form the azimuthal potential actually is zero above the Ni atoms, and every-
where else has a period of π in φ corresponding to a molecule with identical atoms
which should be sufficient as a first approximation. For the strength of the corrugation
we choose Ccor = 1.0 eV and for the azimuthal dependence Caz was set to 0.25 eV with
equal decay lengths of λcor = λaz = 1

2
Å−1. The lattice constants GX and GY are set

to the Ni–Ni distance of the NiO(100) surface GX = GY = 2.942 Å as used in [2].
The NO-potential is modelled by a Morse-Potential with different parameters for

the ground and the excited state.

V s
NO(r) = Cs

NO

(
1− e−αs(r−rs)

)2
(4.3)
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Figure 4.5: This sketch illustrates the coordinate system used for the potential energy
surface of the NO in front of the NiO(100) surface, the gray shaded area, together with the
surface oscillator, depicted as a square protruding from the surface. X and Y give the lateral
position of the centre of mass above the surface while Z denotes the distance from the surface.
The X axis is along the [011] direction and Y is pointing in the [011] direction. The polar
angle is given by θ and the azimuth by φ. The surface oscillator coordinate is s and r is the
intra molecular distance.

The parameters used for the N-O potential were Cg
NO = 6.5 eV, αg = 1.68 Å−1 and

rg = 2.175 a0 = 1.151 Å in the ground state and Ce
NO = 4.5 eV, αg = 1.50 Å−1

and re = 2.225 a0 = 1.177 Å in the excited state. The equilibrium distances are
in accordance with [68] and the binding energy are taken from [56]. But the α’s were
chosen erroneously, resulting in to low vibrational energies, 143 meV instead of 236 meV
in the ground state and in th excited state 106 meV instead of 183 meV. But still, as
we will show later, the vibration is decoupled from all the other degrees of freedom and
thus the effect of the wrong α-parameters on most of our findings should be small.

Since at 30 amu the mass of the NO molecule is comparable to the mass of the
surfaces atoms with 58 amu for the nickel and 16 amu for the oxygen, we wanted
to include recoil effects. For that reason, we also included a surface oscillator with
coordinate s by directly coupling a harmonic potential to the desorption coordinate
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Figure 4.6: Top view of the NiO(100) surface. Filled circles represent nickel atoms and
open circles the oxygen. The Ni-O distance is 3.93a.u. = 2.08Å [67].

which in our case is the distance from the surface Z

V s
N+osc(s, Z,R) = V s

N(Z − s, R) + Vosc(s)

where R denotes all other coordinates. The mass of the oscillator was taken equal to
the mass of a Ni atom (58 amu) since NO is adsorbed on top of a Ni atom. According
to the usual surface oscillator model [69], the oscillator frequency has been chosen to
correspond to the average value of a Debye spectrum. The Debye temperature of NiO
has been estimated to be between 500 and 600 K [70]. Accordingly, we have set the
oscillator frequency to ~ω = 27 meV. The particular value is only of minor importance
since the effect of the surface oscillator on the desorption dynamics does not depend
very sensitive on the frequency chosen.

Before we come to the discussion of our results a quick note on the nomencla-
ture used, by oscillator we will refer to the surface oscillator and the intra-molecular
oscillations of the NO molecule will be termed vibrations.

4.3 Mixed Quantum-Classical Results

Based on the potentials presented in the previous section we simulated the NO desorp-
tion from the NiO(100) surface using surface hopping with an optical potential. As the
collective state we use the ground state and only the charge transfer state is treated
explicitly. As mentioned before, in this case no electronic Schrödinger equation must
be integrated.
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4.3.1 Procedure

The simulation procedure is basically the same as outlined in the fewest switches sec-
tion. We usually start our trajectories in the excited state where they move classically
for a certain time. After a Franck-Condon transition the movement of the molecule is
continued on the ground state potential for a maximum propagation time or until it
reaches a certain distance ZCutoff from the surface and is considered desorbed. In most
of our simulations we used 12.1 ps as maximal propagation time. Trajectories with a
total energy below zero after the last de-excitation into the ground state are stopped
immediately, since they can not desorb.

The time spent in the excited state, the residence time, is determined by the optical
potential. After each integration step, with length dt, in the excited state we calculate
the optical potential ∆ at the current position R and if the decay probability p =
2∆(R)

~ dt is larger than a uniformly distributed random number between 0 and 1 we
jump into the the ground state, otherwise we continue in the excited state. Simulating
the excitation process via an optical potential is straight forward.

For constant optical potential this procedure is equivalent to the Gadzuk scheme
[71], as used in [61]. In the Gadzuk scheme the residence times are kept fixed and
the overall result is obtained by averaging over different residence times with weight
function wτ (t) = 1

τ
exp(−t/τ), where the average residence time or resonance lifetime

τ is an adjustable parameter directly connected to the strength of the optical potential
via

τ =
~

2∆
. (4.4)

All the results shown are averaged over at least 105 trajectories, resulting in an
accuracy of roughly

√
10−5 ≈ 0.003. If we look at state resolved results as in figure 4.13

or 4.16 we used 106 trajectories corresponding to
√

10−6 = 0.001.
The trajectories are started around the position of the ground state minimum as-

suming a Gaussian distribution in position and momentum according to the curvature
of the ground state potential energy surface. This corresponds to a harmonic approxi-
mation for the potential at the minimum position. In principle the distributions should
be given by the Wigner distribution function corresponding to the true ground state
wave function according to equation (2.91), but the masses of the nuclei are rather
large compared with ~ and since we do not know the exact ground state wave function
we use this approximation.

To check on the reliability of the harmonic approximation we performed a series
of test calculations, in the two dimensional model using only the distance from the
surface Z and the polar angle θ and in the full seven dimensional model. All these
test were done by averaging over one hundred thousand trajectories. If the harmonic
approximation is a good one the initial momentum and position distributions would be
stationary when propagated along time and consequently the desorption probability
would not change. Thus we did not start the simulation in the excited state but in
the ground state and only after a certain offset time tO we switched into the excited
state and continued then as normal. Unfortunately the desorption probability changed
significantly with the offset time (see figure 4.7), mainly due to a spreading in the
position distribution.
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Figure 4.7: This figure shows the desorption probability in the two and seven dimensional
model as a function of the offset time spent in the ground state prior the initial excitation.
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Figure 4.8: The velocity distribution of the desorbed molecules in the two dimensional
model for different offset times up to 1.2 ps.

However, the desorption probability is not such a significant number as it first seems.
It can not be compared directly to the experimentally measured desorption yields, since
we do not know the excitation probability included in the experimental results. For that
reason the main focus of this work is on the momentum distributions of the desorbed
molecules rather than the desorption probability itself. Thus we compared the velocity,
rotational momentum and for the full dimensional case also the vibrational state and
oscillator state distributions. As can be seen for the velocity distribution in figures 4.8
and 4.9 the shape of the various distributions hardly changes with the offset time.
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Figure 4.9: The same as in figure 4.8 but for a model using all seven degrees of freedom.
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Figure 4.10: Here we show the dependence of the desorption probability for the seven
dimensional model as a function of the scaling factor of the initial width for the position and
momentum distributions. (Note that for the momentum width we show only two values.)

Note, that the different peak heights are mainly a result of the different desorption
probabilities.

We also performed another test by directly scaling the width of the initial position
respectively momentum distribution, in the seven dimensional model. The influence on
the desorption probability is of the same magnitude as for the previous test, compare
figure 4.10, where narrower distributions lead to smaller desorption probabilities, as
could be expected due to the discussion of the previous chapter. But again the shape
of the distributions of the desorbed trajectories showed no significant dependency on
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Figure 4.11: Desorption rate as a function of time (excitation at time t = 0) in the two-
dimensional (solid lines) and the seven-dimensional simulations (dashed line). The 2D results
have been obtained with a cutoff distance of ZCutoff = 12.5 a.u.(thick solid line) and 16.0 a.u.
(thin solid line) while in the 7D calculations ZCutoff = 16.0 a.u. was chosen.

the initial width. Consequently for all our simulations we used the normal distributed
initial position and momenta.

4.3.2 Comparison with Wave Packet

We started our investigations with a simulation restricted to the Z and the θ coor-
dinates of the ab initio potential to be able to compare our result against the wave
packet calculations from Klüner et al. [3] and by this means validating the use of
classical mechanics for the motion of the nuclear coordinates. We also employed the
Gadzuk scheme and used a lifetime of 24.19 fs (= 1000 a.u. as in [3]) together with
a cutoff distance of 12.5 a0

1 corresponding to the onset of the transfer function used
in the wave packet calculations [67]. For that lifetime the wave packet calculations
resulted in a desorption yield of 3.3% whereas the classical simulations lead to 4.8%.
This was puzzling since normally we would have expected the wave packet results to
give a higher yield due to desorption from classically forbidden tails of the wave func-
tion. Closer examination of the desorption rate, i.e. the probability of a trajectory
to pass the cutoff distance per unit time, as a function of time helped to resolve this
discrepancy, see figure 4.11. We found there to be two kinds of desorbing trajectories,
those desorbing within the first 1.2 picoseconds, which we will call early and a long
trail of late desorbing trajectories. The wave packet results were obtained by propa-
gating in the ground state until the desorption yield saturated, this was the case after

1The calculations were done using atomic units (a.u.) as a unit system. The unit length in that
system is set to a Bohr radius a0 = 0.5291772 Å[55], the unit energy is one Hartree (27.21 eV) which,
together with ~ set to one, is leading to a unit time of 0.02419 fs.
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Figure 4.12: Comparison of the rotational momentum distributions of the desorbed
molecules for all the models considered in our simulations.

1.2 ps. Note that for the 2D results, with cutoff distance 12.5 a0, there is a gap in the
desorption probability at that time. If in our simulations we consider only the early
desorbing trajectories the desorption probability goes down to 2.91% which is in much
better agreement with the wave packet results. When increasing the cutoff distances
naturally the early desorption probability goes down (2.49% for 16.0 a0 and 1.56% for
20.0 a0) and also the gap in the desorption flux vanishes, compare figure 4.11 where we
plotted the desorption rate for a cutoff distance of 16.0 a0 as well. The total desorption
probability naturally does not depend on the cutoff distances. When not comparing
to the wave packet results we will use a cutoff distance of 16.0 a0 since at 12.5 a0 the
binding energy is still 10 meV. Note that for our method the computational cost in
increasing the cutoff distance is small.

The existence of an early and late desorbing species of molecules can be understood
by a closer examination of single trajectories and by taking the position of the potential
energy surface minima into account. In the ground state minimum the NO molecule
is tilted from the surface normal by 45 degrees. In the excited state one minimum
is an upright position closer to the surface. Thus after the excitation the molecule is
accelerated towards the surface and into a more upright position. With a lifetime of
24.19fs as used in our simulations most molecules relax to the ground state before
they reach the excited state minimum. After the transition back on the ground state
the molecules hit the repulsive potential wall and are either scattered directly into the
vacuum, resulting in the early desorbing species, or they start to rotate in front of
the surface. Those can either be trapped dynamically for very long times or desorb
after only a few rotations, leading to the late species. The molecules that are scattered
directly into the vacuum have a higher translational and rotational momentum as
the late desorbing molecules. The difference in the rotational momentum distribution
between the late and the early trajectories can be seen in panel a) of figure 4.12 where
for the two dimensional case we plotted the distributions for all and the late trajectories
only. The late molecules show a broad peak between J = 3 and 11 and fall off for
higher momenta. The early species shows a large peak at J = 25 and a smaller one at
J = 12. Note that for a free rotating NO molecule the rotational period T is connected
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Figure 4.13: The NO velocity distribution of the desorbed molecules for selected rotational
states, a) from wave packet calculations from [3] and our two dimensional simulations with
ZCutoff = 12.5 a.u. and the Gadzuk scheme once for the early desorb panel b) and for all
desorbed trajectories panel c).

to the rotational quantum number J via T = 2πθ
~

1
J
, where 2πθ

~ is equal to 9.79 ps.
Thermalisation will eventually lead to the suppression of the late desorption but on a
much larger timescale of several picoseconds (the total time scale of our simulation is
twelve picoseconds), we will discuss the influence of friction in the oscillator coordinate
in section 4.6.

As we can see in figure 4.13 there is good qualitative agreement between the velocity
distributions of the early desorbing classical trajectories and the wave packet results
from reference [3]. Both show wide peaks at similar velocities that shift to the right for
larger rotational momenta. Note, that the peak shift was also observed experimentally.
The bimodality is hinted in the wave packet distributions and is less apparent in our re-
sults. However, when also considering the late trajectories the shape of the momentum
distributions changes considerably and only for the highest rotational states, which are
dominated by the early trajectories, the agreement with the wave packet simulation
remains.

In addition we also compared the desorption probability as a function of residence
time, as shown in figure 4.14. We find the same offset and peak position as it was
found with the wave packet simulations [67]. Interestingly the minimum residence
time necessary for desorption is with 40 fs rather large, thus the desorption probability
will depend strongly on the excited state lifetime. The desorption probability as a
function of residence time also shows the same oscillatory behaviour already found in
the Antoniewicz like simple model, compare figure 3.8.

We also compared the Gadzuk-Scheme for relaxation into the ground state with
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Figure 4.14: The desorption probability as a function of the residence time for the 2D, 3D,
6D and 7D model.

decay using an either constant or exponentially decreasing optical potential. The mean
lifetime τ and the strength of the optical potential ∆0 are related via

∆0 =
~
2τ

(4.5)

and the spatial dependence of optical potential is given by

Vopt = Vopt(Z) = ∆0e
−γ(Z−Z0) (4.6)

Z0 is the ground state equilibrium distance of the NO molecule from the surface. A zero
inverse decay length γ corresponds to a constant Vopt. Using an exponentially decaying
optical potential is motivated by the fact that the coupling between the ground and
the charge transfer state is given by the overlap of the molecular orbital with the bulk
electrons. As expected we found no difference between the constant optical potential
and the Gadzuk-Scheme, neither for the desorption probability nor the momentum
distributions. More surprising was that switching on the exponential decrease of the
optical potential had basically no effect on the velocity distributions and only changed
the total desorption probability. For all further simulations we used a constant optical
potential, except of course, the discussion of localised optical potentials in section 4.7.

4.4 Influence of Vibration

In order to study the influence of additional degrees of freedom on the desorption
process, we extended the potential energy surface to seven dimensions by consider-
ing the remaining NO degrees of freedom and one surface oscillator coordinate ac-
cording to equations (4.1), (4.2) and (4.3). We start our high-dimensional treatment
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Figure 4.15: Desorption probability and the probability for total energy to be larger than
zero as a function of the N-O equilibrium distance in the charge transfer state.

with an analysation of the vibrational population of desorbing molecules. It is well-
known [6, 68], that using the gas phase value of rNO− = 2.377 a0 = 1.258 Å for the
NO− ion equilibrium distance [56] leads to unrealistic high vibrational excitations. The
relative vibrational populations Pv/P0 of the vibrationally excited states characterised
by the vibrational quantum number v are much larger than the ones derived from the
experiment [7, 64, 65]. This behaviour is reproduced in our simulations.

However, above the ionised NiO(100) surface the strong electrostatic field reduces
the elongation of the N-O bond of the NO− anion according to quantum chemical
calculations [68]. The anion bond is only extended by 0.05 a0 = 0.026 Å compared to
the neutral NO molecule above the NiO(100) surface instead of 0.2 a0 as in the gas
phase. Consequently, we have used a N-O bond distance of rg = 2.225 a0 = 1.177 Å
for the NO− anion in the excited state. The vibrational population resulting from
simulations with the new NO equilibrium distance are much closer to the experiment.
We also observed that including the surface oscillator had no effect on the vibrational
distribution.

Furthermore, when varying the NO− equilibrium distance we observed that the
total desorption probability did not change within the level of the accuracy of our sim-
ulations. This is illustrated in figure 4.15, where we plotted the desorption probability,
without the surface oscillator, as a function of the NO− equilibrium bond length. Also
shown is the fraction of trajectories with positive total energy. Despite the increas-
ing number of trajectories with sufficient energy for desorption the actual desorption
probability remains constant. This indicates that energy transfer from the vibrational
coordinate into other degrees of freedom is very low. This is further confirmed by the
fact that not only the desorption probability hardly changes with rNO− but also the
momentum and rotational momentum distributions do not vary. Thus we conclude,
that our unfortunate choice of potential widths α for the NO potential has no effect
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Figure 4.16: Velocity distributions as a function of the rotational state for the early (top)
and all (bottom) desorbing molecules in the two dimensional simulation and for the first two
intra molecular vibrational states in the seven dimensional model. (Note the intensity scales
are all the same.)

on our other findings.

4.5 Non-Rigid Surface

Since the mass of the substrate atoms and that of the NO molecule are comparable,
recoil processes during the desorption reaction are likely to occur. In order to include
energy transfer to the substrate in the simulations, we have coupled the 2D and 6D
potentials to a surface oscillator with realistic parameters, as described in section 4.2.1,

2D 3D 6D 7D
zCO (a0) 12.5 16.0 16.0 16.0
Pdes (%) 4.84 3.63 4.74 4.02
Pearly (%) 2.93 0.32 2.53 0.32
Erot (K) 770 366 883 395

Table 4.1: Desorption probabilities and mean rotational energies according to the 2D, 3D,
6D and 7D calculations. Early means desorption within the first 1.2 picoseconds.
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at negligible computational cost.

In table 4.1 we have collected the main results with respect to the desorption prob-
ability and the rotational temperature of desorbing molecules according to the 2D, 3D,
6D and 7D calculations. Going from 2D to 6D, i.e. including the remaining molecular
degrees of freedom in the simulations, has only a small influence on the desorption
dynamics. The same is also true for the transition from 3D to 7D. This can be seen
for the rotational momentum distributions in figure 4.12 and in figure 4.14 for the
desorption probability as a function of residence time.

However, including recoil processes of the substrate, by coupling the motion of
the adsorbate molecule to a surface oscillator, changes the outcome of the trajectory
calculations significantly. While the total desorption probability is only reduced by
about 1%, the effect on the early desorption channel is really dramatic: It is reduced
by a factor of eight. This also manifests itself in the desorption rate as a function of
time, depicted in Fig. 4.11, where the initial “early” peak is basically absent in the
7D results. But the most dramatic effect of the surface oscillator is on the rotational
momentum distribution. While in the 2D calculations we obtain a double peaked
structure with a large probability for high rotational quantum numbers, the inclusion
of the surface oscillator causes the suppression of the peak at high J . The shape of
the distribution is now similar to that of the late molecules in the rigid surface case.
This is leading to a greatly reduced mean rotational energy of the desorbing molecules,
366 K and 395 K for 3D and 7D calculations, respectively, instead of 770 K for the 2D
and 883 K for the 6D calculations. These reduced rotational temperatures are in fact
in much better agreement with experiment [61].

As far as the vibrational population in desorption is concerned, it is hardly influ-
enced by going from six to seven dimensions. Also the shape of the velocity distributions
for different rotational momenta do not depend on the vibrational state. See figure 4.16
where we show the 7D results for the first two vibrational states. This indicates that
the vibrational dynamics is efficiently decoupled from the remaining degrees of free-
doms due to the fact that it corresponds to the shortest time-scale in the molecular
dynamics.

As far as the comparison between experiment and theory with respect to the velocity
distribution is concerned, however, the agreement was already greatly reduced by taking
the late desorption channel into account as shown in figure 4.13. Including all the other
degrees of freedom, especially the surface oscillator, further reduce the bimodality in
the velocity distributions.

In Fig. 4.16, we compare the velocity distribution according to the 7D with those of
the 2D calculations. The velocity distribution for the 3D simulation is rather similar
as the 7D whereas the 6D results compare well to the 2D distribution. There is no
indication of any bimodal velocity distribution in the seven dimensional results which
was found in the experiment [61] and which was also reproduced in the wave packet
calculations [3]. Note that apart from an overall scaling due to the reduced desorption
probability the shapes of the velocity distributions summed over all rotational momenta
are almost identical for all dimensionalities used.
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Figure 4.17: The desorption probability and the probability for a trajectory to have a
positive total energy, at the time of the transition from the excited into the ground state, as
a function of the friction constant γ.
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Figure 4.18: The desorption rates as a function of time for different friction constants γ.

4.6 Friction

To investigate the possible effect of dissipation at the surface on the desorption dy-
namics we added a frictional force term −mγṡ to the surface oscillator in the full
dimensional model, i.e. if s̈ = Fs(R) was the original equation of motion with the force
Fs(R) and R standing for all the coordinates the new equation of motion is given by

s̈ = Fs(R)−mγṡ. (4.7)
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Figure 4.19: The initial and final occupation probabilities of the surface oscillator states for
the desorbed molecules with and without friction. The probabilities are weighted with the
corresponding inverse desorption probabilities (here Pdes = 0.044 for the case without friction
and Pdes = 0.0146 for the case with friction, where the friction constant was γ = 0.0002 1

fs).

If we are not in the aperiodic limit, i.e. if γ < 2ω where ω is the oscillator frequency,
the oscillation amplitudes of a free damped oscillator decrease with time as

e−
γ
2
t (4.8)

and the corresponding decay time τD is given by τD = 2
γ
. The values used for γ and the

corresponding decay times τD are shown in table 4.2. We used decay times between 1 ps
and 10 ps as we would expect them for phonon mediated energy dissipation. All results
shown in this section are averages over 105 trajectories thus results are accurate to
about 0.3 percent. The influence of the friction on the desorption probability is shown
in figure 4.17. We see that already a relatively small friction causes a considerable drop
in the desorption probability from 4.4 percent down to 1.5 %. Also shown in fig. 4.17
is the probability of a trajectory to have a positive total energy at the moment of de-
excitation. This is basically independent of the friction since the lifetime in the excited
state at 24.19fs is much shorter than even the shortest τD used. Thus all the dissipation
take place while the molecule is in it’s ground state and only the time during which
desorption still takes place is shortened by the friction. This is evident from figure 4.18,

γ [fs−1] 0.0 0.0002 0.0005 0.001 0.002
τD [ps] ∞ 10.0 4.0 2.0 1.0
Pdes [%] 4.427 1.459 0.73 0.268 0.067

Table 4.2: Values used for the friction constant γ and corresponding decay times τD and
desorption probabilities.
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Figure 4.20: Rotational distribution of desorbed molecules for 6D with different optical
potential

where we plotted the desorption rate as a function of time (compare also figure 4.11).
As we already discussed in a previous section 4.3.2, without friction there is a long trail
of molecules desorbing at very large times, which contribute a substantial amount to
the total desorption probability. This tail is cut off by the dissipative effects and thus
lowering the desorption probability.

The effect of the friction on the momentum distribution and the vibrational, oscil-
lator and rotational state occupation probabilities of the desorbing molecules is negli-
gible, apart from an overall scaling due to the reduced desorption probability. As an
example we picked the occupation probability of the oscillator states. In figure 4.19 we
compare results with and without friction. We further show the initial and final state
distributions of the desorbing trajectories, where with initial we mean at the start of
the simulation and final refers to the time of passing the cutoff distance ZCutoff . All
distributions are normalised by scaling with the inverse of the corresponding desorp-
tion probability. We see that for desorbing trajectories the surface oscillator gains
energy and that there is no significant difference between the distributions for both
simulations. For the initial distribution this is what we should expect. However, the
agreement for the final distributions it is more surprising. But the explanation is also
very simple, since trajectories that do desorb leave the surface at times usually smaller
than the corresponding decay time τD of the oscillator, the amount of energy lost is
rather small and thus the final occupation probabilities are unaffected. Note that apart
from numerical inaccuracy due to the smaller number of desorbing trajectories, this is
true for all frictional constants used.
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Z displaced θ displaced
A [eV] 1.36 1.36
Z0 [Å] 2.54 2.75
σZ [Å] 0.1 1.0
θ0

1
4
π 2

3
π

σθ 0.1 π 0.3 π

Table 4.3: The parameters used in the simulations with the localised optical potential of
equation (4.9).

4.7 Non Constant Optical Potential

The optical potential describes the coupling of the adsorbate states with the substrate
states. That coupling is given by the overlap integrals of the adsorbate orbitals with
the corresponding substrate orbitals. Thus, one would expect it to be exponentially
decreasing with the molecule surface distance. We tried several such potentials with
different strength and different decaying length for the six dimensional model but, apart
from a change in the total desorption probability, we found no significant influence on
the velocity and momentum distributions of the desorbing molecules.

Since we can not exclude the fact that the coupling to the substrate states might
be particularly large for certain configurations of the adsorbate we also did some sim-
ulations with an optical potential localised in the Z-θ plane. The form of the potential
used is given by

Vopt(Z, θ) = A exp

[
−
(
Z − Z0

σZ

)2

−
(
θ − θ0

σθ

)2
]
, (4.9)

and the corresponding parameters are given in table 4.3. In figure 4.20 we plotted the
resulting rotational distribution of desorbed molecules and also as a comparison the
distribution as obtained with a constant optical potential. We see, that for both cases
the distributions are narrower and that for the optical potential located closer to the
surface the rotational excitation is decreased while for the potential shifted to larger
polar angles the distribution is centred at a rotational momentum of 15 ~. The effect on
the velocity distribution is similar dramatic but these are widened instead. Certainly
the parameters used are somewhat extreme but so is the effect on the momentum
distributions. These models show that some features of the distributions could be
caused a non-constant electronic coupling between the adsorbate and the substrate
states.

4.8 Multiple Excitations

As mentioned above, our mixed quantum-classical scheme with optical potential can
also be used to describe excitation processes, by introducing an extra optical potential
responsible for transitions from the ground state into the excited state. First we will
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Figure 4.21: The Gaussian and exponential optical potential used for excitation as a func-
tion of time. For comparison we also show the probability to be still in the excited state after
an excitation at time 0.

investigate the influence of different excitation schemes on the desorption dynamics by
using optical potentials with Gaussian, exponential and delta shaped time dependence
for the excitation. In a second part we will combine a delta excitation at time zero
with Gaussian excitations at different time shifts in an attempt to simulate the time-
correlated two-pulse laser desorption experiments of Eichhorn et al. [66].

4.8.1 Initial Excitation

Before simulating two pulse excitations we looked at the influence of the excitation
pulse shape on the desorption dynamics. We compare three different scenarios, a
single excitation at time zero, corresponding to delta-function like optical potential, an
excitation via an exponential decaying optical potential with a time constant twice as
long as of the excited state lifetime and a much wider spread Gaussian optical potential
with a width of 610 fs. As for the residence lifetime we keep it at 24.19 fs as for all the
previous simulations. The Gaussian and the exponential optical potential are plotted

delta exponential Gauß
Pdes [%] 5.87 8.03 12.96

av. up jumps 1.00 1.50 1.65
av. jumps of des. 1.00 1.74 2.57
Etot of des. [eV] 0.25 0.31 0.48

Table 4.4: Desorption probability, average number of excitations per trajectory and per
desorbed trajectory and the mean total energy of the desorbed molecules for the different
excitation schemes.
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Figure 4.22: The rotational distributions for the different excitation mechanisms weighted
with the corresponding inverse desorption probabilities.
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Figure 4.23: The velocity distributions weighted with the inverse desorption probability of
the corresponding excitation scheme.

in figure 4.21, where, for comparison, we also plotted the probability to still be in the
excited state after a transition at time zero. All simulation runs we propagated in the
ground state for sufficient long times before the first excitation could occur and all
results are sampled over 105 trajectories.

We first notice that the desorption probabilities for the exponential and the Gaus-
sian scheme are higher that for the delta excitation, see table 4.4. This can be connected
to the number of excitations per trajectory, for both schemes this was larger than one.
The number of excitations per trajectory is connected to the strength of the excitation
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Figure 4.24: The desorption probability for the two-pulse excitation as a function of delay
time.

potential, which we deliberately set large enough to result in more than one excitation.
If every trajectory would be excited only once or not at all we would not see any effect,
apart from an overall scaling in the probabilities for less than one excitation, since all
trajectories are independent of each other. The most significant difference between
the exponential and the Gaussian scheme is the width in time in comparison with the
residence lifetime. The Gaussian scheme is much wider and despite nearly the the
same number of excitations per trajectory as for the exponential potential the desorp-
tion probability is significantly enhanced. This can be related to the larger probability
for two or more excitations to occur, which results in more excitations per desorbed
trajectory. Note that also in the exponential case the desorbed trajectories had more
excitations than the average. This indicates that on average there is an energy gain for
every of the first few excitation de-excitation cycles. This is further supported by the
fact that the average total energy of the desorbed molecules was considerably larger
for the Gaussian case than for the other two schemes.

In the figures 4.22 and 4.23 we compare the rotational momentum distribution
and the velocity distribution of the three schemes. Note that the distributions are
normalised by dividing with the corresponding desorption probability. We see that the
distributions for the delta excitation and the exponential scheme are very similar for
both the rotation and the velocity, whereas in the Gaussian case the distributions are
wider, but with nearly unchanged peak position.

4.8.2 Two Pulse Excitation

After investigating the effect of the shape of the excitation pulse in the previous section
we proceeded to simulate two pulse correlation processes. We do so by combining a
delta like optical potential at time zero followed by an Gaussian shaped potential
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Figure 4.25: The vibrational occupation probability for the different delay times. The lower
line with the crosses corresponds to zero delay time, all the other lines lie basically on top of
each other and belong to the various larger delay times.

centred at various delay times, where the parameters used for the Gaussian were the
same as in the previous section. In figure 4.24 we plotted the desorption probability as
a function of the delay time. This plot shows two striking features, first the desorption
probability for zero delay time is at 18.6 % basically the sum of the probabilities we
get for the separate excitations.

The second notable characteristic is the fact that for all the other delay times the
desorption probability is considerably higher and nearly constant, despite a compa-
rable number of excitations per trajectory. Since the width of the Gaussian optical
potential is small, compared to the delay times used, the two excitation processes are
well separated. We can deduce, that without any energy dissipations, the desorption
probability for multiple excitation pulses does not depend on the time between those
pulses, as long as they are well separated.

In the experiments the observed behaviour of the molecules desorbing in the vibra-
tional ground state and that of those in a vibrational excited state was different [66].
In the ground state Eichhorn et al. observed an negative correlation at delay-times
of 2.5 pico seconds while for all the other states a positive correlation was observed
with corelation times of 5-8 ps, see figure 4.2. In figure 4.25 we plotted the vibrational
distributions of the desorbed trajectories for different delay times. In contrast with
the experimental findings the behaviour is independent of the vibrational state and the
same as the desorption probability, lower for zero delay time and constant for all the
other delay times.

We showed that, using the same potentials and de-excitation scheme, wave packet
results are reproduced well by classical trajectories. By adding a surface oscillator to
our model we showed the importance of high dimensional simulations for the theoretical
understanding of DIET processes. This also proved the need for a realistic description
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of energy dissipation into the surface, in order to avoid dynamical trapping for infinite
times.



Chapter 5

Conclusions

We used a mixed quantum classical scheme to investigate the laser induced desorption
of NO from small Pd-clusters on alumina support and from the NiO(100) surface. For
the first system we used a simple one dimensional model and explored the change of
desorption probability with the different parameters of our model. We showed that
the experimentally observed changes of the desorption yield, of a factor of ten, could
well be reproduced by relatively small parameter changes. The desorption probability
does not only depend on the binding energies and the bond geometry but also depends
strongly on the excited state lifetime.

For the second system we used ab initio derived two dimensional potential energy
surfaces obtained by Thorsten Klüner et al. [2] as the basis of our simulations. By
comparing our results with wave packet calculations of the same group [3] we showed
that the quantum mechanical results were essentially reproduced by our mixed quan-
tum classical method. In our simulations we found two different species of desorbing
NO molecules, early and late ones, where the late desorbing trajectories were neglected
in the wave packet calculations. This demonstrated the ability of our method to cover
sufficient long propagation times necessary for the correct description of the desorption
process. Unfortunately the late desorbing species, which was not included in the wave
packet simulations, destroyed the bimodality observed in the initial velocity distribu-
tions and in the experiment.

The bimodality could not be recovered by extending the dimensionality of our
model. Though it showed the importance of multidimensional simulations, in particular
the necessity to include the surface degrees of freedom in the simulation. The desorption
dynamics was altered dramatically by the addition of the surface oscillator to our model.
The main effect of the oscillator was slowing down the early desorbing molecules and
consequently reducing the mean rotational energy to values closer to the experimentally
observed rotational temperature. The introduction of a frictional force lead to an
suppression of very late desorption, still present with the oscillator, but otherwise had
little effect on the momentum distributions.
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We can not present a new explanation for the experimentally observed bimodality
but the use of spatially confined optical potentials in the de-excitation process might
be part of a possible explanation. The bimodality could also be due to different inter-
mediate electronic states being populated during the desorption process.

For the description of the two-pulse correlation experiments a lot of research still
needs to be done. However, we showed that in principle our method is capable of
describing such reactions. But without a more detailed understanding of the excitation
process and a more realistic description of the substrate surface, especially including
dissipation, an explanation of the observed correlations seems to be unlikely.

By applying our mixed quantum classical (MQCl) method to the desorption of
NO from NiO(100) and small Pd-clusters we hopefully showed the usefulness of such
methods for the simulation of DIET processes. We think that MQCl methods can
help to identify the relevant coordinates for non adiabatic reactions, since additional
degrees of freedom can be included easily. Classical trajectories usually also provide a
more intuitive picture of the basic dynamics than wave packages and thus can help in
our understanding [72]. Still the foundation of DIET reactions is quantum mechanics
and thus for very precise results solving the corresponding equations will be necessary
and maybe even more efficient than MQCl, since no statistical sampling is necessary.
However, any simulation of the non adiabatic dynamics of nuclei will depend on the
correct evaluation of the corresponding electronic states involved and the couplings
between them. Unless significant progress is made in calculating electronic excited
states this will be the limiting factor of such simulations. Nevertheless we hope that
could make a small contribution towards the understanding of the dynamics of surface
reactions.



Appendix A

Computer resources

All the simulations presented in this work were done on the computers of T30g, mainly
PC’s with AMD Athlon XP CPU’s running under SuSE Linux and some Compaq
Alpha-Workstations with the Alpha version of the SuSE distribution. For the nu-
merical integrations we used the lsoda routine from the opdepack library from Netlib
(www.netlib.org). This program was written by A. C. Hindmarsh and L. R. Pet-
zold [73, 74]. This routine automatically chooses either a multi-step Adams-Bashforth-
Moulton predictor corrector method for no-stiff problems or a backward difference
formula (BDF) if the problem is stiff. In our case the problems are no-stiff and the
Adams-Bashforth-Moulton method is used. We also compared the lsoda routine against
other integration methods such as the Bulirsch-Stoer method [75, 76] and found it com-
petitive.
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und, M. Pöhlchen, V. Staemmler, S. Witzel, C. Scharfschwerdt K. Wennemann,
T. Liedtke, and M. Neumann. Molecular adsorption on oxid surfaces: Electronic
structure and orientation of NO on NiO(100)/Ni(100) and on NiO(100) as de-
termined from electron spectroscopies and ab initio cluster claculations. Physical
Review B, 43(3):1969–1986, 1991.

[64] M. Menges, B. Baumeister, K. Al-Shamery, H.-J. Freund, C. Fischer, and P. An-
dresen. Dynamical studies of uv-laser-induced NO-desorption from the polar
NiO(111) versus the nonpolar NiO(100) surfaces. JCP, 1994.

[65] G. Eichhorn, M. Richter, K. Al-Shamery, and H. Zacharias. Vibrational population
in femtosecond UV laser desorption of NO from NiO(100). Surf. Sci., 368:67–70,
1996.

[66] G. Eichhorn, M. Richter, K. Al-Shamery, and H. Zacharias. Time-correlated laser
desorption of NO from NiO(100)/Ni(100). Chem. Phys. Lett., 289:367–372, 1998.
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