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CHAPTER 1

Introduction

Standard text books on solid state physics usually start out by assuming long-
range crystalline order in the solid under consideration. They introduce a lattice for
the positions of the atoms and characterize the lattice structure by Bragg reflection
in some scattering experiment. The existence of Bragg peaks allows to differentiate
between a crystalline solid and an amorphous liquid where Bragg peaks are absent
because there is no long-range order. There are, however, also amorphous solids
that can be discriminated from a liquid by the fact that they can sustain shear
stress without yielding. The static structure of these amorphous solids — also
called glasses – is not very much different from a liquid, so a measurement of the
structure would not clearly reveal whether the system is in the liquid or in the glass
state. There are in particular no divergences of thermodynamic quantities at the
liquid-glass transition as they occur at classical thermodynamic phase transitions.

For the reasons above one has to look at dynamical variables to gain insight
into the transition from a liquid to a glass. We will use the framework of corre-
lation functions to discuss the dynamics in a given system. Correlation functions
can be measured in experiments, e.g., in dynamic light scattering, and calculated
from computer simulation what facilitates the comparison to theory [1]. While the
correlation functions vary only little in the dilute regime and decay to zero almost
exponentially, the relaxation time changes by orders of magnitude in time when the
transition to a glass is approached. At an ideal liquid-glass transition the relaxation
time actually diverges and the system arrests.

Mode-coupling theory for ideal glass transitions (MCT) describes the slow dy-
namics of density-autocorrelation functions close to the transitions [2–4]. The long-
time limits of the correlation functions yield algebraic equations that exhibit struc-
turally stable singularities singularities of MCT are equivalent to the bifurcations
in the real roots of real polynomials when the coefficients are changed continuously
[5]. The simplest possible singularity is the fold bifurcation where generically the
smooth variation of a single control parameter causes a discontinuous change in the
solution for the long-time limit. This behavior can be identified with the transition
from a liquid, where the long-time limit of the correlation function is zero, to a
glass, where this limit is finite. Close to the singularities the equations of motion
can be expanded in asymptotic series which in the case of the fold yields a two-step
decay with two related power laws for the short-time and the long-time decay [3].
These universal laws are independent of the details of the system under study and
have been applied frequently to a variety of experiments and computer simulation
studies [6].

The paradigm example for a glass transition is the transition in the hard-sphere
system (HSS). In this system the interaction potential among the particles is zero
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10 1. INTRODUCTION

unless their mutual separation becomes smaller than their diameter where the po-
tential becomes infinitely repulsive, thus preventing the particles from overlapping.
The HSS is the system MCT was applied to first [2], and it is also the system for
which the most detailed predictions have been worked out [7]. The hard sphere
potential can be realized experimentally to a high degree in sterically stabilized
colloids [8], and the predictions of MCT were tested thoroughly in dynamic light
scattering experiments in that system [9–12] yielding strong support for the theory
[13]. The arrest in the HSS can be understood by the so-called cage effect. In a
dense liquid, a particle is surrounded by a number of other particles and can only
diffuse over a larger distance if these neighbors rearrange and give space to the
first particle. For this rearrangement the neighboring particles require their neigh-
bors to move out of the way, and so forth. If density exceeds a critical value, this
rearrangement is no longer possible. A glass transition occurs.

MCT can exhibit also singularities of higher order than the fold. Namely, cusp
and swallowtail singularities were predicted recently for systems where the hard-
core repulsion is supplemented with a short-ranged attraction [14–16]. Close to
the higher-order glass-transition singularities, the asymptotic power-law solutions
are replaced by decay laws involving logarithms in time. Different asymptotic
expansions for the decay laws at higher-order singularities shall be elaborated and
tested in this work. Subsequently, the newly derived laws are applied to a model
system with short-ranged attraction, the square-well system (SWS), where the hard
core repulsion is supplemented by an attractive potential of constant depth and
finite range.

The arrest in the SWS can originate from two different sources. The first
mechanism is the repulsion of the hard core that leads to a glass transition as in
the HSS. The second mechanism leading to the arrest is bond formation introduced
by the attractive part of the potential. This latter transition was proposed as
relevant for the transition to a gel [15]. A gel is characterized as an amorphous
state that despite its low density can support its weight and resist weak external
forces, and thus qualifies as a solid. Its formation from the liquid state (also called
sol) is driven by the attraction among its building units. When colloidal particles
are the constituents of the gel one speaks of a colloidal gel. Both glass and gel
transitions have been studied frequently in colloidal dispersions. It was observed
that the dynamics at the gel transition shows features similar to the glass transition
[17, 18]. When both mechanisms of arrest are of the same importance, at high
density and for strong attraction, a discontinuous transition between glass and gel
is predicted by MCT which is intimately connected with emergence of the cusp
singularity.

The shapes of the potentials required for the discussion of the higher-order sin-
gularities are rather far apart from the classical Lennard-Jones potential where the
range of the attraction is of the order of the particle diameter and the repulsion is
comparably soft. The short-ranged attraction considered here takes place within
a fraction of less than 20% of the diameter and the repulsion is required to be
substantially steeper than in the Lennard-Jones system. These potentials can be
realized in computer simulation and in colloidal systems where, e.g., the addition
of a small amount of polymer leads to an effective attraction among the colloidal
particles [19–21]. The typical thermodynamic phase diagram for such short-ranged
potential does not contain gas-liquid separation and the critical point is metastable
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with respect to the fluid-crystal transition. This phase behavior is well established
in experiments [21, 22]. In the crystal phase there is the possibility of an isostruc-
tural transition among crystals of the same crystalline order but different lattice
constants. This was so far only found in computer simulation studies [23–26] and
corroborated by density functional theory [27, 28]. It is intriguing that the higher-
order glass-transition singularities in MCT are predicted for similar values of the
control parameters.

Though logically disconnected from the study of higher-order singularities,
there is a particularly intriguing phenomenon MCT predicts for systems like the
SWS that encourages the use of this theory. At high density and small to moderate
strength of the attraction it is possible to melt a glass by increasing the attraction
at fixed density. This is equivalent to melting by cooling [14, 16]. Since the system
arrests again after further increasing the attraction this phenomenon was termed
reentry. This scenario was subsequently confirmed by independent experiments and
computer simulation studies and is by now well established [29–33]. That MCT can
describe correctly such a subtle effect of the attraction on the liquid-glass transition
allows to seriously consider the existence of higher-order glass-transition singulari-
ties.

Higher-order singularities were also known for schematic MCT models. In these
models the microscopic details are neglected in the coupling parameters [3]. For
simple one- and two-component systems cusp and swallowtail singularities could
be identified [34]. These were associated with a leading-order − ln t decay of the
correlation functions or equivalently 1/f -noise in the fluctuation spectra. However,
corrections alter this behavior qualitatively and need to be discussed to understand
the relaxation scenarios. For cusp singularities the inverse square of the logarithm
was found as an asymptotic solution and extended to multiparameter scaling laws
using Weierstrass’ elliptic functions [35]. Dielectric-loss data for certain polymers
was interpreted by this leading-order scaling-law description [36, 37]. For similar
systems data was analyzed using the equivalent scaling laws for a swallowtail singu-
larity [38–40]. However, the critical decay at the cusp and swallowtail singularities
is described unsatisfactorily by the leading order result and has to be complemented
by corrections [35, 41].

Logarithmic decays were reported in recent light scattering experiments [42, 43]
and computer simulation studies [33, 44] of colloidal and micellar systems that
motivate the present work.

The basic equations of MCT are introduced briefly in Ch. 2. A necessary input
to these equations is the static-structure factor of the disordered system, which is
calculated for potentials with short-ranged attraction in Ch. 3. The glass-transition
singularities of these systems are presented in Ch. 4, which motivates the asymptotic
expansions carried out in Ch. 5. The decay laws at the higher-order singularities are
first tested in one- and two-component systems, Ch. 5 Secs. 6 and 7, before they are
applied to the SWS in Ch. 6. Chapter 7 deals with the interplay of different glass-
transition singularities encountered naturally in a situation close to a higher-order
glass-transition singularity. Though the field is just evolving, first experiments are
available and a discussion of these shall take place in Ch. 8. The conclusion, Ch. 9,
summarizes the main findings of the work stressing the predictions that are assumed
to be testable in experiment and computer simulation.





CHAPTER 2

Equations of motion

Mode-coupling theory (MCT) describes the dynamics of glass-forming systems
in terms of correlation functions. For the structural arrest at a glass transition
the correlation function for the density is the most important one. If the density
fluctuations arrest, the system undergoes a glass transition. MCT describes the
feedback mechanism leading to arrest via closed equations for the density auto-
correlation functions. The equations of motion for the correlation functions are
summarized in Sec. 1. A more comprehensive coverage of the derivation is found
in Ref. [3].

In the long-time limit the equations of motion yield algebraic equations that
exhibit bifurcations we identify with glass-transition singularities. In Sec. 2 some
basic properties of these singularities are anticipated that are necessary for the
discussion of the glass-transition diagrams in Ch. 4. In Ch. 5 a more comprehensive
treatment and one- and two-component examples are presented.

Whereas the arrest of the density fluctuations drives the transition, the signa-
tures of the transition are also displayed by the variables that couple to the density
fluctuations. The equations of motion for the tagged particle dynamics shall be
summarized in Sec. 3.

1. Density-autocorrelation function

We consider a system of N particles in a volume V with the number density
ρ = N/V . The particle density is given by ρ(�r, t) =

∑N
j=1 δ(�r − �rj(t)) or after a

Fourier transform with respect to �r as ρ�q(t) =
∑N

j=1 exp(i�q�rj(t))/
√
N . Denoting

canonical averaging by 〈·〉 and the fluctuation of some dynamical variable A by
δA = A− 〈A〉 we can define the so-called Mori or Kubo scalar product

(2.1) (A|B) := 〈δA∗δB〉 .
The normalized density-autocorrelation function in an isotropic system is then de-
fined as

(2.2) φq(t) = (ρq(t)|ρq) / (ρq|ρq) ,

where q = |�q| is the wave-vector modulus. The fluctuations for time zero define
the static structure factor Sq = (ρq|ρq) that can be calculated from the interaction
potential. For the potentials of interest in this work, this will be done explicitly in
Ch. 3. Sq depends on external control parameters of the system, e.g., density or
temperature, that we combine into a control-parameter vector V.

Since the correlation function is determined by the many-body problem that
is equivalent to finding ρ(�r, t), we will need approximations to derive equations of
motion for φq(t). We will reformulate the problem in a way to motivate the ap-
proximation. For a system obeying Newtonian dynamics the evolution of a variable
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14 2. EQUATIONS OF MOTION

A is conveniently expressed by a Liouville operator,

(2.3a) L = −i
∑

i

(∂�pi
H · ∂�ri

− ∂�ri
H · ∂�pi

) , ∂tA(t) = iLA(t) ,

for the Hamiltonian H of the system. The formal solution for the evolution in time
for variable A is then given by a Liouville equation,

(2.3b) A(t) = exp[iLt]A(0) .

Connected to the density variables is the current �jq =
∑N

j=1(�pj/m) exp(i�q�rj)/
√
N

for particle momenta �pj . The longitudinal part of the current, jL
q = �jq�q/q, is given

by the derivative of the density,

(2.4) Lρq = qjL
q ,

which is a continuity equation and reflects particle conservation. The derivative of
the current, LjL

q , represents forces that will be treated by approximation below.
An exact reformulation of the Liouville equation (2.3b) can be given by applying

a formalism by Mori and Zwanzig which is derived comprehensively in a number of
textbooks [1, 45, 46]. Thereby, the evolution of some variables Aj(t) is split into a
part projected onto the initial Aj by a projector P , obeying idempotency P2 = P ,
and a part orthogonal to the chosen variables defining an orthogonal projector Q,
with Q = 1 − P and QP = 0. This projection yields equations of motion for
the correlation functions (Ai(t)|Aj) for the selected variables in terms of memory
kernels that incorporate the complicated dynamics of the orthogonal space. These
memory kernels are subject to further transformation or approximation.

Assuming that the densities and currents are relevant for the glass transition
we define the projector using these variables,

(2.5) P := |ρq)
1
Sq

(ρq| + |jL
q

) 1
v2
0

(
jL
q | ,

with the normalization by the static structure factor Sq for the ρq, and the thermal
velocity v0 =

√
kBT/m for the currents,

(
jL
q |jL

q

)
= v2

0 . We get for the density
autocorrelation function

(2.6a) ∂2
t φq(t) + Ω2

qφq(t) +
∫ t

0

Mq(t− t′)∂t′φq(t′)dt′ = 0 ,

with the initial conditions φq(0) = 1 and ∂tφq(0) = 0. The positive Ωq = qv0/
√
Sq

denote characteristic frequencies, and the memory kernel Mq(t) is the fluctuating
longitudinal current relaxation kernel [45],

(2.6b) Mq(t) =
1
v2
0

(
QLjL

q

∣∣ exp [−iQLQt]
∣∣QLjL

q

)
.

The problem has been transferred to the evaluation of the memory kernel. Mq(t) is
by itself a correlation function for fluctuating forces that are driven by the projected
operator QLQ instead of the Liouville operator L. This kernel will be treated in
the following by the so-called mode-coupling approximation.

To simplify Mq(t) we now apply Kawasaki’s mode-coupling factorization [47].
This is motivated in the present context by the observation that the factorization
leads to a self-consistent equation that is capable of describing feedback and arrest
when both ρ and jL are slow variables [48]. To this end the evolution operator
exp [−iQLQt] in Eq. (2.6b) is replaced by its projection on the subspace of density
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pairs δρ�kδρ�p where �p = �q − �k [49]. The kernel Mq(t) is then expressed by time-
independent so-called coupling vertices, which are given by the overlap of the pair
density modes with the fluctuating forces QLjL

q , and a correlation function that
involves four dynamical variables. The latter four-variable correlation function is
factorized into a product of two-variable correlation functions. This constitutes
the mode-coupling approximation. The equations of motion are then given by an
approximated memory kernel mq(t). For Newtonian dynamics they read [2, 3]

(2.7a) ∂2
t φq(t) + Ω2

qφq(t) + Ω2
q

∫ t

0

mq(t− t′) ∂t′φq(t′)dt′ = 0 .

For Brownian dynamics a similar equation can be derived [50, 51],

(2.7b) τq∂tφq(t) + φq(t) +
∫ t

0

mq(t− t′)∂t′φq(t′) dt′ = 0 ,

with the initial condition φq(0) = 1. The microscopic time scale τq = Sq/(D0q
2)

is given by the short-time diffusion coefficient, D0, characterizing the Brownian
motion. The mode-coupling approximation results in expressing the kernel mq(t)
in terms of the correlators φq(t) [3],

(2.7c) mq(t) = Fq [V, φk(t)] .

As a consequence of the factorization into pair modes, for the structural relaxation
in simple liquids, Fq is a bilinear functional of the density correlators [2],

(2.7d) Fq[f̃ ] =
1
2

∫
d3k

(2π)3
V�q,�kf̃kf̃|�q−�k| ,

and the vertex is determined completely by the static structure of the liquid system
[52, 53],

(2.7e) V�q,�k = SqSkS|�q−�k|
ρ

q4

[
�q · �k ck + �q · (�q − �k) c|�q−�k|

]2

.

cq denotes the direct correlation function which is related to the static structure
factor in the Ornstein-Zernike relation (OZ) Sq = 1/[1−ρ cq] [45]. In the derivation
of the vertex a static triple direct correlation function appears that has to be treated
by approximation. It has been simplified by the convolution approximation [45]
in Eq. (2.7e) [3]. Introducing a different approximation for that term did not
change the results for the HSS significantly [54, 55]. The triple correlation can be
calculated in computer simulation and was used as input to MCT [56]. It was found
that inclusion of that term improves the results for silica but does practically not
change the results for the denser Lennard-Jones system. In the high density regime
we are interested in we therefore expect that neglecting c(3)

�q�k
has a minor effect.

It is the long-time limit of the correlation function, φq(t → ∞) → fq, that
determines whether a system is in the liquid regime, where fq = 0, or in an arrested
state, where 0 � fq � 1. In the latter case the variables fq characterize the arrested
glassy state and the fq are therefore called glass-form factors or Debye-Waller
factors. In the long-time limit, the equation of motion (2.7) reduces to an algebraic
equation involving only the mode-coupling functional and the glass-form factors [4],

(2.8) fq/(1 − fq) = Fq[V, f ] .
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Equation (2.8) may have multiple solutions f̃q, the glass form factor fq is distin-
guished among these by the maximum property [3].

(2.9) f̃q � fq, q = 1, . . . , M .

For the discussion of the dynamics the value f c
q at the singularity is referred to as

plateau.

2. Glass-transition singularities

Inspecting the mode-coupling functional F in Eq. (2.7d) we see that Eq. (2.8) is
a closed nonlinear equation in the fq with coefficients given by the static structure.
It is a key finding of MCT that Eq. (2.8) can have solutions different from fq = 0
[2]. These solutions with fq �= 0 appear discontinuously when control parameters
V are varied smoothly – Eq. (2.8) exhibits a bifurcation. At the bifurcation the
polynomial in Eq. (2.8) is no-longer invertible but exhibits a critical eigenvector
with eigenvalue zero. In a one-component system this is equivalent to a vanishing
derivative at the bifurcation point. It is possible to show that there is only a single
critical eigenvector and that therefore exclusively a certain class of singularities
can emerge from Eq. (2.8) [57]. These singularities are of the cuspoid hierarchy
Al, l ≥ 2. The simplest possible bifurcation is the A2-singularity, a fold, that is
generically encountered if only one control parameter is changed [5]. The most
important case of an A2-singularity is realized in a liquid-glass transition.

An example exhibiting an A2-singularity is the HSS which represents an assem-
bly of particles with diameter d and a pair potential that is zero for interparticle
distances r larger than d and infinite for r � d. The only control parameter for the
HSS is the packing fraction ϕ = πd3ρ/6. The structure factor for the HSS is avail-
able in analytical form [58, 59], and introducing that expression for Sq and cq into
Eq. (2.8) a liquid-glass transition can be identified in the HSS for ϕc = 0.516 [2].
For increasing the packing fraction beyond the critical value, the glass-form factors
grow with the square-root of the distance to the critical point, (fq−f c

q ) ∝ √
ϕ− ϕc.

This singular variation at the critical point is a result characteristic for the fold bi-
furcation and is valid close to the transition and for fq close to f c

q . In a so-called
asymptotic expansion around f c

q it is possible to describe that variation quantita-
tively [3],

(2.10) fq − f c
q = hq

√
σ/µ2 , σ > 0 .

The asymptotic expansion introduces a separation parameter σ measuring the dis-
tance to the singularity in a local coordinate system and a characteristic number µ2

which for the MCT-fold bifurcation is also known as exponent parameter λ = 1−µ2.
The parameter λ is of central importance also for the dynamics at A2-singularities
[3]. The wave-vector dependence is given by a critical amplitude hq. The law in
Eq. (2.10) becomes invalid when µ2 approaches zero which signals the emergence
of a higher-order singularity.

Two external parameters need to be varied to locate a generic A3-singularity
or cusp. Different from the textbook example where cusp singularities appear in
pairs, within MCT only one of these two is relevant because the other is not an
admissible glass-form factor respecting the maximum property (2.9). Generically
the A3-singularity is then an endpoint of a line of A2-singularities. When two
such lines cross, the line connected with the lower critical glass-form factors f (1) c

q
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terminates at the crossing, cf. Eq. (2.9). The other line of A2-singularities f (2) c
q

extends into the glass phase as a line of glass-glass transitions where the glass-form
factors change discontinuously from f

(1)
q > 0 to f

(2) c
q > f

(1)
q . This discontinuity

f
(2) c
q − f

(1)
q diminishes along the line of glass-glass transitions as f (1)

q increases
in the glass according Eq. (2.10) while the f (2) c

q decrease. The point where this
discontinuity vanishes is just the A3-singularity. The first microscopic model sys-
tem shown to exhibit an A3-singularity was the sticky hard sphere system (SHSS)
which has an effective temperature τ as second control parameter in addition to
the packing fraction ϕ. The SHSS contains the HSS as a limiting case of infinite τ .
The cusp occurs in the opposite limit of low effective temperature τ [14, 15].

Tuning a third parameter one can merge the endpoint with the crossing point
at the A4-singularity and observes the scenario of a swallowtail. Because of the
maximum property (2.9) only one sheet of the familiar swallowtail is realized within
MCT. In the square-well system (SWS) the range of the attractive potential is a
third parameter that can be changed. One finds a generic A4-singularity [16], see
also Ch. 4.

3. Coupled quantities

Similar to the equations for the density correlator, correlation functions for
other variables can also be reformulated using memory kernels and the mode-
coupling approximation is invoked in the same way as before [3]. We shall briefly
introduce the quantities that are discussed later.

3.1. Tagged particle motion. Frequently studied, e.g. in computer sim-
ulation, is the dynamics of a single or tagged particle with the single particle
density ρs

q(t) = exp(i�q�rs(t)). For the correlation function of a tagged particle,
φs

q(t) =
(
ρs

q(t)|ρs
q

)
, similar equations as Eq. (2.7) have been derived [2, 60],

(2.11a) τs
q ∂tφ

s
q(t) + φs

q(t) +
∫ t

0

ms
q(t− t′)∂t′φ

s
q(t

′) dt′ = 0 ,

with τs
q = 1/(Ds

0q
2). The mode-coupling functional for the tagged particle motion,

(2.11b) Fs
q [f, fs] =

∫
d3k

(2π)3
Sk

ρ

q4
csk

2(�q�k)2fkf
s
|�q−�k| ,

is also determined by the static structure of the liquid system where csq is the
single-particle direct correlation function [45]. The dynamics of the tagged particle
is coupled to the coherent density correlator φq(t) and for that reason φs

q(t) also
displays the bifurcation dynamics that is driven by φq(t). The equation for the
long-time limits of the tagged particle correlations function, φs

q(t → ∞) = fs
q ,

reads

(2.12) fs
q /(1 − fs

q ) = Fs
q [f, fs] .

In the following, the tagged particle will be assumed as of the same sort as the host
fluid. If the host particles are in the liquid state, fq = 0, a tagged particle cannot
be arrested, in that case Eq. (2.12) implies fs

q = 0.
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3.2. Mean squared displacement. The mean-squared displacement (MSD)
is defined by δr2(t) = 〈|�rs(t)−�rs(0)|2〉 and describes the average distance a particle
has traveled within some time t [45]. It is obtained either as small wave-number
limit of the tagged-particle correlator in Eq. (2.11), φs

q(t) = 1− q2δr2(t)/6 +O(q4)
or from the representation of the velocity-autocorrelation function [3, 60],

(2.13a) δr2(t) +Ds
0

∫ t

0

m(0)(t− t′) δr2(t′) dt′ = 6Ds
0t ,

m(0)(t) = limq→0m
s
q(t) = FMSD[φ(t), φs(t)]. The mode-coupling functional for the

MSD is driven by coherent and tagged particle densities,

(2.13b) FMSD[f, fs] =
∫

dk

(6π2)
ρ Sk(csk)2fkf

s
k .

A characteristic localization length rs is defined by the second moment for the relax-
ation of the distribution of φs

q(t) [60], which can be identified with the functional in
Eq. (2.13b) r2s = 1/FMSD[f, fs]. It is the long-time limit of the MSD and the value
at the critical point, rc

s, characterizes the arrested structure. The value 6rc 2
s repre-

sents the plateau for the dynamics of δr2(t). The long-time diffusion coefficient Ds

can be defined from the above correlation functions using limt→∞ δr2(t)/t = 6Ds

[60],

(2.14)
Ds

Ds
0

=
1

1 +Ds
0

∫ ∞
0
m(0)(t) dt

.

3.3. Mechanical Properties. The elastic moduli quantify the macroscopic
mechanical stiffness of both liquids and glasses. The longitudinal modulus ML

specifies the stiffness for compressions and the transversal one, MT, the stiffness
for shear deformations. The MT is just the shear modulus, also denoted by G′,
that we used to differentiate a solid from a liquid already in the introduction. For
a liquid system, the shear modulus vanishes, M0

T = 0. The moduli are defined
as constants of proportionality in the linearized stress-strain relation. In systems
with Newtonian microscopic dynamics they determine the speed of longitudinal
and transversal sound respectively via vL,T =

√
ML,T/(ρm) with ρm denoting the

mass density. The longitudinal modulus in the liquid reads

(2.15) M0
L = ρ(kBT )S−1

0 ,

with S0 = limq→0 Sq. In the glass state, the moduli are larger due to additional
contributions from the structural arrest, ML,T = M0

L,T + δML,T. The additional
contributions are given by the glass-form factor for the arrested state [3],

(2.16) δML,T = ρ(kBT ) lim
q→0

∑
�k+�p=�q

SkSpfkfp{[�kck + �pcp]�e
L,T
�q }2(ρ/2q2) .

Here �eL,T
�q are unit vectors parallel and perpendicular to �q, respectively. The limit

leads to

δML,T = ρ(kBT )
∫ ∞

0

dk{ρ[Skfkk/(2π)]2wL,T(k)} ,(2.17a)

wL(k) = c2k +
2
3
(kc′k)ck +

1
5
(kc′k)2 ,(2.17b)

wT(k) =
1
15

(kc′k)2 .(2.17c)



CHAPTER 3

Static-structure factors

The static-structure factor Sq constitutes the input to the equations of MCT
for the structural relaxation in liquids. This quantity is not derived within MCT
but taken from different approximate theories. The appearance of higher-order
singularities depends on the incorporation of different features of the interaction
potential into the structure factor. Therefore, the structure factors used later shall
be derived in this chapter for several short-ranged potentials using two different
approximations and both analytical and numerical solutions. The formalism used
below yields a transparent representation of the structure factors in terms of the
Fourier transform of simple polynomials. This allows for a direct explanation of
some features in the vertices of MCT. The approximations used below are known to
introduce inconsistencies in the equation of state derived from the structure factors
and more refined approximation schemes are available to improve the behavior of
the thermodynamic quantities [61]. Here, the priority is given to keep the structure
factor simple and transparent and nevertheless incorporate the essential structural
features.

1. Static-structure factor and Wiener-Hopf factorization

The probability of finding one of the N − 1 particles at position �r from a first
particle at �r = 0 is given by the pair distribution function g(�r) [45]. For an isotropic
system this depends only on the radial distance r = |�r|. The Fourier transform of
the radial distribution function g(r) is the static structure factor defined above,

(3.1) ρ g(r) =
1
N

∑
n�=m

〈δ(�r − �rn + �rm)〉 , Sq = 1+
4πρ
q

∫ ∞

0

dr r [g(r)− 1] sin qr .

The knowledge of Sq allows the evaluation of thermodynamic quantities, e.g., for
q → 0, the compressibility of the system is given by [45]

(3.2) S0 = ρkBTχT = χT /χ
0
T ,

with χ0
T = 1/(ρkBT ), the compressibility of the ideal gas. The location of points

where the system is mechanically unstable is given by the divergence of the com-
pressibility at the spinodal line where S−1

0 = 0 At these points the input can no
longer be used in MCT.

A significant simplification for the calculation of structure factors is given by
the introduction of a short-ranged direct correlation function c(r) by the Ornstein-
Zernike relation [45, 62],

(3.3a) h(r) = c(r) + ρ

∫
d�r′ c(|�r − �r′|)h(�r′) ,

19
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where also the total correlation function h(r) is defined as h(r) = g(r) − 1. In the
present context, Eq. (3.3a) can be motivated by observing that the total correlation
h(r) between two particles consists of their short-ranged direct correlation c(r)
and indirect correlations mediated by the other particles. Equation (3.3a) can be
expressed equivalently in the wave-vector-domain,

(3.3b) Sq =
1

1 − ρ cq
, cq =

4π
q

∫ ∞

0

dr sin(qr)[rc(r)] .

Since calculating Sq involves the solution of a quite involved many-body prob-
lem, only limiting cases like g(r) → exp[−βU(r)] for ρ→ 0, or g(r) → 1 − 1/N for
r → ∞ are known exactly. For the strong coupling case, approximations – usually
called closure relations – need to be introduced [45, 61]. One particularly successful
approximation was introduced by Percus and Yevick (PYA) [63],

(3.4a) c(r) = g(r) {1 − exp[U(r)/(kBT )]} .

The closure ensures that c(r) = 0 for vanishing potential U(r) = 0. For the excluded
volume region, U(r) = ∞, the pair correlation g(r) is zero while c(r) remains finite
[45]. Also frequently used is the mean-spherical approximation (MSA) [64], where
the excluded volume part is described by the exact relation g(r) = 0 for 0 � r < d
and the interaction tail is given by

(3.4b) c(r) = −U(r)/(kBT ) , r � d .

The MSA can be regarded as a leading expansion of the PYA for small coupling but
cannot be seen as inferior to PYA a priori as a comparison of both approximations
for the SWS shows. MSA is reported to be superior to PYA for moderately short-
ranged attraction [65], but inferior for shorter ranges [66]. In addition, MSA allowed
for a number of analytical solutions, e.g., for Yukawa attraction [67].

The direct correlation function c(r) usually tends to zero with increasing dis-
tance r much more rapidly than h(r) or the interaction potential. If c(r) vanishes
beyond some finite rangeR, the Ornstein-Zernike relation can be reformulated using
the Wiener-Hopf factorization technique [68]. A factor function Q(r) is introduced
which is related to h(r) and c(r) involving these functions only over a finite range.
The restriction to finite-range c(r) can be relaxed and the factorization can be
seen as general reformulation of the Ornstein-Zernike relation which offers a simple
representation of structure factors [69].

For a monodisperse isotropic system, the structure factor is a real function of
the wave-vector modulus q = |�q|. The inverse of Sq is factorized into a product of
complex conjugated Fourier transforms of a factor function Q(r) as

S−1
q = Q̂(q)∗Q̂(q) ,(3.5a)

Q̂(q) = 1 − 2πρ
∫ ∞

0

dr exp[iqr]Q(r) ,(3.5b)

where the factor function Q(r) is real and continuous for r � 0. Anticipating that
Q(r) and c(r) vanish beyond a distance R if the potential has a cutoff length and
closures of the form Eq. (3.4) are used, c(r) is expressed in terms of the factor
function for 0 � r � R as

(3.6) rc(r) = −Q′(r) + 2πρ
∫ R

r

dsQ′(s)Q(s− r) .
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The Ornstein-Zernike relation is reexpressed for r > 0,

(3.7) rh(r) = −Q′(r) + 2πρ
∫ R

0

ds(r − s)h(|r − s|)Q(s) .

The structure factor for the HSS has originally been derived on a different route
[58]. But it is also expressed by a particular simple factor function consisting of a
parabola [68],

(3.8a) Q(r) = ar2/2 + br + c , 0 � r � d ,

with the parameters given by the external control parameters

(3.8b) a =
1 + 2ϕ

(1 − ϕ)2
, b =

−3dϕ
2(1 − ϕ)2

, c =
−d2

2 (1 − ϕ)
.

The discontinuity in the derivative Q′(r) at r = d reflects the jump of g(r) at
contact. One can use Eq. (3.7) to calculate this contact value explicitly gq =
Q′(r → d−)/d = a+ b/d since Q′(r → d+) = 0.

The SHSS can also be cast in form of a factor function that is reminiscent of
the above parabola,

(3.9a) Q(r) = a r2/2 + b r + c , 0 � r < d ,

with however different parameters
(3.9b)

a =
1 + 2ϕ− µ

(1 − ϕ)2
, b =

−3dϕ+ µd

2(1 − ϕ)2
, c =

−d2

(1 − ϕ)
+
λBd

2

12
, µ = λBϕ(1 − ϕ) .

λB is related to the effective temperature τ which is also frequently called stickiness
parameter [70]. Since Q(r) = 0 for r � d, Q(r) exhibits a discontinuity at r = d
and the derivative Q′(d) incorporates a δ-peak as do g(r) and c(r), cf. Eq. (3.6).
The Fourier transform cq, Eq. (3.3b), acquires a term ∝ sin(qd)/q and leads to a
divergence in the functional Fq, cf. Eq. (2.7). One can resolve this difficulty by
taking a finite range for the attraction [16].

2. Structure factors for short-ranged attraction within MSA

All the potentials considered below shall have a hard core repulsion at r = d and
an attractive tail with potential depth u0 and potential range ∆. The attraction
may have the following functional form in the interaction shell,

(3.10) U(r) = −u0

[
d+ ∆ − r

∆

]n−1

, d < r � d+ ∆ .

This represents the SWS for n = 1, the triangular system (TRI) for n = 2, and
the Asakura-Oosawa system (AOS) for n = 3. The external control parameters are
packing fraction ϕ = πρd3/6, attraction strength Γ = u0/(kBT ), and attraction
range δ = ∆/d.

2.1. First order solution within MSA. Using h(r) + 1 = g(r) = 0 within
the hard-core diameter d, Eq. (3.7) splits into three equations. AbbreviatingG(r) =
rg(r), one finds for the inner core

(3.11a) Q′(r) = ar + b− 2πρ
∫ d+∆

r+d

dsG(s− r)Q(s) , 0 � r � ∆ .
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The middle interval in r resembles the result familiar from the HSS,

(3.11b) Q′(r) = a r + b , ∆ � r � d ,

and for the attraction shell one obtains

(3.11c) Q′(r) = ar + b−G(r) + 2πρ
∫ r−d

0

dsG(r − s)Q(s) .

For r � d+∆ the factor function Q(r) vanishes. The coefficients a and b are defined
by finite integrals over the factor functions,

(3.11d) a = 1 − 2πρ
∫ d+∆

0

dsQ(s) , b = 2πρ
∫ d+∆

0

ds sQ(s) .

To proceed, the MSA-closure relation from Eq. (3.4b) is substituted into Eq. (3.6)
for the potentials (3.10) and an integration over r is performed, which yields for
the attraction shell

Q(r) = 2πρ
∫ d+∆

r

dsQ(s)Q(s− r) + S(r) , d � r � d+ ∆ ,(3.12a)

S(r) =
u0

kBT

∫ d+∆

r

ds s
[
d+ ∆ − s

∆

]n−1

, d � r � d+ ∆ .(3.12b)

The integration in Eq. (3.12b) can be done analytically for integer values n > 0.
By substituting r = d+ ∆x, the different orders in δ show up explicitly as x is of
order unity,

(3.12c) S(r) = (Γδ)
d2

n
(1 − x)n

[
1 + δ

1 + nx

1 + n

]
, x =

r − d

∆
.

For keeping the product Γδ fixed, which is motivated by the limit taken in the
SHSS, the leading order in δ in Eq. (3.12c) is δ0. Retaining only terms of this order
in Eq. (3.11) yields the leading-order solution, where the hard-core region is still
represented by a parabola,

(3.13a) Q(r) = a r2/2 + b r + c , 0 � r � d,

and the attraction shell is given by a polynomial,

(3.13b) Q(r) =
Γδ d2

n

(
d+ ∆ − r

∆

)n

, d � r � d+ ∆ ,

with the parameters a = a1, b = b1, and c = c1,
(3.13c)

a1 =
1 + 2ϕ

(1 − ϕ)2
− 12ϕ

(1 − ϕ)
Γδ
n
, b1 =

−3dϕ
2(1 − ϕ)2

+
6ϕd

(1 − ϕ)
Γδ
n
, c1 =

−d2

2(1 − ϕ)
+

Γδ d2

n
.

Q(r) is now continuous at r = d and joins the solution Q(r) = 0 for r � d + ∆
continuously at r = d + ∆. This way, the problems associated with the limit
of infinitely short-ranged attraction have been resolved. In the limit δ → 0, while
keeping Γδ fixed, Baxter’s solution (3.9) is recovered with λB = Γδ/n. The spinodal
line is given from setting a = 0,

(3.14)
Γδ
n

=
1 + 2ϕ

12ϕ(1 − ϕ)
,



2. STRUCTURE FACTORS FOR SHORT-RANGED ATTRACTION WITHIN MSA 23

which yields a critical point at

(3.15) ϕcrit = (
√

3 − 1)/2 ≈ 0.366 , Γcrit =
n

6 δ
1

2 −
√

3
.

The value for the packing fraction is independent of the potential and higher than
the value for the SHSS, ϕcrit = (3/

√
2 − 1) ≈ 0.121 [70]. Therefore, the critical

point (3.15) is in better agreement with computer simulation data [71].

2.2. Second order solution for the SWS in MSA. For the case of the
SWS, n = 1, also the next-to-leading order result has been derived [16, 41] and shall
be quoted here. In this order, Eq. (3.13a) still holds for ∆ � r � d with modified
parameters, but Q(r) at the inner core has an additional cubic term,

(3.16a) Q(x) =
1
2
a x2 + b x+ c+ 2ϕ (Γδ)2 · δ ·

[
1 − x

δ

]3

, 0 � x � δ , x = r/d .

and for the outer shell, 1 � x � 1 + δ, a quadratic term is added to the leading
order result,

Q(x) = (Γδ)
[
1 − x− 1

δ

]

+(Γδ) δ

{
1
2

[
1 −

(
x− 1
δ

)2
]

+ 6ϕc1

[
1 − x− 1

δ

]2
}
.(3.16b)

The parameters also acquire terms of higher order in δ, a = a1 + (Γδ) δ a2, b =
b1 + (Γδ) δ b2, and c = c1 + (Γδ) δ c2. Setting d to unity these parameters read

a1 =
[
6ϕ(5ϕ− 2) − 72c1ϕ2(1 − ϕ)

]
/(1 − ϕ)2 ,(3.16c)

b1 =
[
9ϕ(1 − 2ϕ) + 36c1ϕ2(1 − ϕ)

]
/(1 − ϕ)2 ,(3.16d)

c1 = [1 − 7ϕ+ 12c1ϕ(1 − ϕ)] /(2(1 − ϕ)) .(3.16e)

The MSA and the PYA in Eq. (3.4) differ only in the treatment of the direct
correlation function c(r) in the range d � r � d + ∆. Considering only a small
attraction range, ∆ 
 d, the pair distribution function in that range can be approx-
imated by the value at contact, g(r) ≈ g(r = d) and the direct correlation function
for the PYA is cPYA = gd(1 − exp[−Γ]). Identifying cPYA with the value for the
MSA for an effective value for the parameter Γ, cMSA = −Γeff, yields a mapping
of the external control parameter Γ that allows to calculate a solution within MSA
where another solution for the PYA exists [16],

(3.17) ΓMSA
eff ≈ [1 − exp (−Γ)] gd .

2.3. Numerical solution. To check the validity of the expansion presented
above and for covering also larger values for ∆, the structure factors are also calcu-
lated numerically. For a numerical treatment, the closure relations, Eqs. (3.4) are
substituted into Eq. (3.6) and Eq. (3.11c). For the PYA this leads to

eU(r)/kBTG(r) = ar + b− 2πρ
∫ d+∆

r

dsQ′(s)Q(s− r)

+2πρ
∫ r−d

0

dsG(r − s)Q(s) , d � r � d+ ∆ .(3.18a)
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For the MSA closure one obtains

G(r) = ar + b− 2πρ
∫ d+∆

r

dsQ′(s)Q(s− r)

+2πρ
∫ r−d

0

dsG(r − s)Q(s)

−U(r)
r

kBT
, d � r � d+ ∆ .(3.18b)

The potential U(r) is taken from Eq. (3.10) and for the solution of the respective
closure relations, Eqs. (3.11) and Eq. (3.18a) or Eq. (3.18b), are solved iteratively
for Q(r) and G(r) [16]. The three intervals in r are discretized into a grid of
1000 equally spaced points. The iteration is terminated if the relative error in the
parameter a between the successive steps is smaller than 10−12. Q̂(q) is obtained by
a simplified Filon integration [72] of Eq. (3.5b), and Sq is then given by Eq. (3.5a).
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Figure 3.1. Factor function Q(r) for the SWS in MSA at the A4-
singularity (4.1). The leading order expansion, Eq. (3.13), is shown
as dotted line, the next-to-leading order, Eq. (3.16), as dashed
line which is almost indistinguishable from the numerical result,
Eq. (3.18b), (full line). The inset views an enlargement around
r/d = 1.

For the SWS we compare the numerical solution in MSA with the analytical
ones in Fig. 3.1. We use the factor functions for this comparison since Q(r) is
more sensitive than Sq for which examples are shown later in Fig. 4.8. The con-
trol parameters are chosen at the special point given by Eq. (4.1) which will be
important later on. The agreement between numerical solution (full line) and the
next-to-leading-order result (3.16) (dashed) is excellent, both curves cannot be dis-
tinguished in the large panel and also in the inset they are quite close. When larger
well widths are considered the deviations increase but do not exceed the 3%-level
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for δ = 0.25. The dotted line shows the result for the SWS in MSA when only the
leading-order result of Sec. 2.1 is considered. The qualitative features of Q(r) are
still captured reasonably well but the deviations are getting larger and reach 8% at
the minimum around r = 0.5 and 13% at the attraction shell, r/d = 1. The results
for the other systems, TRI and AOS are similar.

3. Structure factors for short-ranged interaction within PYA

Looking at the functional form of Eq. (3.13) and the fact that in a reasonable
region in control-parameter space MSA and PYA can be mapped on top of each
other, it seems possible to apply the expansion from above also to the PYA. Since
the PYA is also reasonable for repulsive interaction, we set Γ = u0/(kBT ) in the
following, where u0 can be both positive and negative. Then Γ > 0 implies repulsion
and Γ < 0 denotes attraction.

For the SWS in zeroth order at r = 1 for both MSA and PYA, Q(r) changes
from the parabola known from the HSS to a linear function between r = d and
r = d + ∆. This motivates the following Ansatz for the factor function in that
region,

(3.19) Q(r) = −Q1

n

(
d+ ∆ − r

∆

)n

, d � r � d+ ∆ .

For the MSA, the prefactor would be Q1 = −Γδ d2. The derivative is

(3.20) Q′(r) = Q1/∆
(
d+ ∆ − r

∆

)n−1

, d < r < d+ ∆ ,

and Q1 is positive for repulsion and negative for SWS. The contact value to leading
order is given by the discontinuity in Q′(r) at r = d,

(3.21) d gd = G(r = d) = Q′(r → d−) −Q′(r → d+) .

As in the case for the MSA, for the PYA the integrals in Eq. (3.18a) are of higher
order in δ, so the contact value is given by

(3.22) G(d) = e−Γ(a d+ b) .

Q′(r → d−) is taken from Eq. (3.11b) and combined with Eqs. (3.20) and (3.22).
This yields

(3.23) Q1 = (a d+ b)∆ (1 − e−Γ)

for all n � 1. For the parameters a and b, the contribution from the integral of
Eq. (3.11d) is of higher order in ∆ for the interaction shell. Therefore, the integral
runs only over the parabola as in Eq. (3.9a) and contains the interaction as well as
the specific closure only in the definition of the parameter c. The other parameters
read

a =
[

1 + 2ϕ
(1 − ϕ)2

]
− 6ϕ
d2 (1 − ϕ)2

{d2 + 2 (1 − ϕ) c} ,(3.24a)

b =
[

−3 dϕ
2(1 − ϕ)2

]
+

3ϕ
d (1 − ϕ)2

{d2 + 2 (1 − ϕ) c} .(3.24b)

The first terms in the brackets show again the values for the HSS. For the MSA,
c = cHSS − δΓ d2/n, for the PYA we get

(3.24c) c = cHSS − Q1

n
= cHSS − (a d+ b) y , y =

δ

n
(1 − e−Γ) ,
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with cHSS = −0.5 d2/(1−ϕ). The solution of Eqs. (3.24) and (3.23) yields the final
form of the parameters in leading order,

a = aHSS +
6ϕ (2 + ϕ) y

(1 − ϕ)2 {(1 − ϕ) − 6ϕy} ,(3.25a)

b = bHSS − 3 dϕ (2 + ϕ) y
(1 − ϕ)2 {(1 − ϕ) − 6ϕy} ,(3.25b)

c = cHSS − d2 ϕ (2 + ϕ) y
2 (1 − ϕ) {(1 − ϕ) − 6ϕy} .(3.25c)

Different from the MSA solution, within PYA the coupling strength Γ also appears
in the denominator and introduces a solvability condition to the parameters in
Eq. (3.25),

(3.26) ϕmax [1 + 6
δ

n
(1 − e−Γ)] = 1 .

For the HSS, Γ = 0, the boundary ϕmax = 1 is out of the region of interest. For
attraction, Γ < 0, the square brackets are larger than unity and do also not cause
any limitation. For repulsion, Γ > 0, solvability is bounded since now e−Γ � 1.
This boundary ϕmax in first order is indeed seen as an instability when solving
the structure factor numerically for repulsion according to the algorithm outlined
in Sec. 2.3. Inspection of the spinodal lines resulting from Eq. (3.25a) by setting
a = 0 reveals that for PYA in this order a critical point is absent in Eq. (3.25)
which is clearly inferior to the MSA result.

Figure 3.2 shows the same comparison as in Fig. 3.1 for the PYA. The numerical
solution is again shown as full line and compared to the leading-order result from
Sec. 3 (dotted), which deviates by 15% at the minimum and by 25% at the attraction
shell, r/d = 1. This is about twice as large as for the corresponding result for the
MSA. The definition of an effective attraction strength from Eq. (3.17) allows for
comparison to the structure factor of Sec. 2.2 for ΓMSA

eff = 5.089 which is shown by
the chain line. The deviations from the numerical solution for PYA are 8% and 15%
at the minimum and the attraction shell, respectively. Comparing MSA (dashed
line) and PYA at their values for the A4-singularity, Eqs. (4.1) and (4.2), shows
that the factor functions and hence the resulting structure factors at this points
singled out by the later MCT calculations are remarkably similar for both closure
relations.

After discussing different closure relations for the SWS above, we compare
the factor functions for different potentials fixing again the control parameters by
the special point of an A4-singularity. The solution of the SWS within PYA from
Fig. 3.2 is used as a reference. We choose the numerical solution of the TRI in PYA
at the point from Tab. 1 and find deviations of less than 2% at the minimum and
9% at r/d = 1. It is seen nicely in the inset that the solution for the TRI follows
a different functional form than the solutions for the SWS, hence corroborating
the form (3.13) and also justifying the Ansatz (3.19). Since the structure factors
in leading order, Eq. (3.13), are used for n = 1, 2, 3, in Ch. 4, we check if these
are seriously inferior to the next-to-leading result or the numerical solutions. The
result for the SWS according to Eq. (3.13) at the A4-singularity, cf. Tab. 1, is
displayed as dashed line and shows that the difference to the numerical solution
is negligible. Therefore, even the leading approximation (3.13) can be expected to



4. REMARKS 27

0 0.2 0.4 0.6 0.8 1
r/d

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Q(r)
0.95 1 1.05

r/d

0

0.1

0.2

Q(r)

Figure 3.2. Factor function Q(r) in PYA at the point specified
in Eq. (4.2). The numerical and the analytical solution (3.19) are
shown as full and dotted line, respectively. Factor functions Q(r)
in MSA, Eq. (3.16), yield the chain line when evaluated with the
effective coupling ΓMSA

eff = 5.089 according to Eq. (3.17), and the
dashed line when calculated for the point specified in Eq. (4.1).
The inset shows the region at r/d = 1 enlarged and uses the same
line styles.

yield an accurate description of the structure factor in the region we are interested
in.

4. Remarks

Having at hand the structure factor in analytical yet approximate form like in
Sec. 2.2 might seem superfluous when considering the superiority of the numerical
solution if the accuracy of the result is concerned. However, the analytical form has
two main advantages. First, the formulation in terms of the factor functions as done
above immediately leads to the limit of mechanical stability for simply setting a = 0.
For the rather simple approximation schemes used here, Eq. (3.4), the resulting
spinodal is not particularly accurate but allows to control where the input breaks
down in later application. Obtaining a spinodal line from the numerical solution
requires considerable effort. In addition to the determination of the spinodal line,
the analytical solution offers a second advantage: The analysis of the singularities
in the factor function makes it possible to derive the asymptotic large-q behavior
of cq by using a generalization of the Riemann-Lebesgue theorem [73]. This was
carried out for the structure factor of Sec. 2.2 and shows that for large enough
q, the direct correlation function cq vanishes like 1/q2 as in the HSS [16]. Below
some upper cutoff qu = π/δ, a slower decrease of 1/q is observed for cq. For
the limit δ → 0 as done in the SHSS, qu diverges and the 1/q-behavior extends to
infinity. Since cq is a vital input into the vertices of Eq. (2.7e) the large-q asymptote
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Figure 3.3. Factor functions for different approximations and
potentials. The numerical result for the SWS in PYA is copied
from Fig. 3.2 as dotted curve. The dashed line shows the MSA
result for the SWS in leading order (3.13) at the point specified
in Tab. 1 on page 41. The numerical solution of the triangular
potential (TRI) in PYA is shown as full line for the values indicated
in Tab. 1. The inset shows an enlargement of the full panel around
r/d = 1.

determines the convergence of the functional Fq in Eq. (2.7d). For cq ∝ 1/q the
integral in Eq. (2.7d) leads to divergent results, and for potentials with finite-ranged
attractive potentials a cutoff large enough in q is required to include the 1/q decay.
This explains why for smaller δ a higher cutoff in the numerical solution of the
mode-coupling functional is necessary. For the same reason, the SHSS cannot be
solved within MCT without introducing a numerical cutoff that renormalizes the
range of the attraction [14].

For later reference the hard-core Yukawa system (HCY) shall also be introduced
here with the convention that δ is chosen as the inverse of the conventional screening
parameter b,

(3.27) U(r)/(kBT ) = −Γ exp[−(r − d)/(δd)]/(r/d) , d < r ,

The structure factor for that potential is evaluated analytically in the mean-sphe-
rical approximation [67].



CHAPTER 4

Glass-transition diagrams

In this chapter, the structure-factor theory provided in Ch. 3 is used as input
for the MCT equations from Ch. 2. The glass-transition diagrams are determined
and the static properties associated with the glass-transition singularities are pre-
sented. The glass-transition diagram for the square-well system (SWS) was already
discussed comprehensively where also further details can be found [16]. The pre-
sentation here shall be focused on the higher-order singularities.

The glass-transition diagram for the SWS is complemented by a discussion of
the onset of the reentry phenomenon and a comparison of different potentials and
closure relations for the structure factors. The comparison of different potentials
in Sec. 2 serves two goals. First, the topological stability of the A4-singularity
is demonstrated by comparing the location and characteristic features of the sin-
gularity for a number of potentials which can be regarded as deformations of the
potential of the SWS. Second, quantitative changes and qualitative trends can be
identified upon variation of the potential, which narrow down deviations that can
be expected if the precise form of the potential is unknown as is usually the case in
experiments.

The comparison of different closure relations for Sq gives a margin for the
deviations in the MCT results introduced by the derivation of the static structure
factor. We compare the results for the closure relations PYA and MSA which
incorporate the external control parameters differently. It is found that only the
coupling strength Γ has to be rescaled to reasonably match the results for PYA and
MSA.

1. Glass-transition diagram of the SWS

Calculating glass-transition singularities requires finding the bifurcation points
of Eq. (2.8) for varying the control parameters. This is done by the iteration
procedure f (n+1)

q = Fq[V, f (n)]/(1+Fq[V, f (n)]) for n = 0, 1, . . . to determine the
set of fq(V) at a specific point in control-parameters space. Starting the iteration
with f (0)

q = 1 assures that with increasing n the f (n)
q decrease monotonically towards

the glass-form factors fq(V) respecting the maximum theorem in Eq. (2.9) [57].
The method to locate glass-glass-transition points and endpoints is outlined in
Appendix B. For the determination of the singularities of the SWS the structure
factor from Eq. (3.16) will be used in the following unless stated differently.

Figure 4.1 shows the glass-transition diagram containing the singularities occur-
ring in the SWS. The diagram is organized in cuts of constant well width δ = 0.117,
0.06, 0.04381, 0.03, and 0.02. For vanishing coupling Γ – which is equivalent to in-
finite temperature – all curves start at the limiting value of the HSS as indicated,

29
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Figure 4.1. Glass-transition diagram for the SWS using the
structure factor from Eq. (3.16). Five cuts through the three-
dimensional diagram are shown for constant well widths δ as curves
for attraction strength Γ versus packing fraction ϕ. All curves
start at the limit of the HSS for Γ = 0 as indicated by the ar-
row. For δ = 0.117 and 0.06 the curves ϕc(Γ) vary smoothly as
Γ is increased. The line δ = δ∗ = 0.04381 hits the A4-singularity
(∗) specified in Eq. (4.1). Curves for δ > δ∗ exhibit a crossing
point (�) and an A3-endpoint singularity (©) as demonstrated
for δ = 0.03 and δ = 0.02 where part of the glass-transition line
has been erased to avoid cluttering the figure. The maximum in the
exponent parameter λ is assumed at the points marked by crosses
(×) for the cuts with δ > δ∗.

ϕc
HSS = 0.516. How critical packing fraction ϕc changes when increasing the attrac-

tion strength Γ depends on the well width. There is a characteristic range δreentry

separating the case where ϕc(Γ) always has a negative slope for δ > δreentry. For
δ < δreentry the curve ϕc(Γ) starts with a positive slope at Γ = 0. For the SWS,
δreentry = 0.117 and the transition curve for δ = 0.117 smoothly bends over from
the liquid-glass transitions driven by repulsion, where a change in ϕ leads to the
arrest, and the transitions driven by attraction, where a change in Γ is responsible
for the arrest.

For δ = 0.06 another smooth line of liquid-glass-transition singularities is found.
This line starts with positive slope in ϕc(Γ) and displays the reentry phenomenon
already discussed for the SHSS [14]: For fixed density, say ϕ = 0.52, an arrested
state is found for small Γ � 1. Upon increasing the attraction, around Γ ≈ 1 the
glass is melted and a region of liquid states is encountered before at Γ ≈ 3.5 another
liquid-glass transition takes place. This defines a maximum in ϕc where liquid states
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can exist. For δ = 0.06 this maximum is at (ϕc
max,Γ

c
max) = (0.524, 2.25). For lower

δ this maximum increases further in ϕ.
The reentry phenomenon can be related to a dimerization effect where two

particles gain a higher probability of being closer together when the attraction is
increased. This leaves additional free volume to other particles and thus weakens
the cage. This needs to be compensated by a higher density to obtain a glassy
state again [14]. For the SWS this can be inferred from the changes in the static
structure factor [16]: For higher values of Γ the first peak of the structure factor
is lower at the same density and causes a decrease in the coupling vertices of the
mode-coupling functional F in Eq. (2.7e). To ensure that changes at the peak of
the structure factor and not the large-q tail or contributions from small wavelengths
are responsible for the reentry, one cuts off the functional at a lower bound of q = 4
and an upper bound of q = 20 and finds that the liquid-glass-transition lines do
not change significantly and still display the maximum in ϕc. We conclude that
the attraction introduces modifications on the length scale d which is represented
by the peak of the structure factor.

For smaller δ and larger attraction strength Γ, contributions from larger q-
values play a more important role, cf. Ch. 3. For the case of δ = 0.02 and 0.03
it is seen in Fig. 4.1 that for these well widths the horizontal and vertical parts
of the line of liquid-glass transitions do no longer join smoothly but intersect at
a crossing point which is indicated by a square. At the crossing the vertical line
stops and the horizontal line extends into the arrested region as a line of glass-glass-
transition singularities and eventually terminates in an A3-endpoint singularity. In
that region, bonding among the particles can become that strong that an additional
transition is triggered. Below the glass-glass-transition line the system is arrested
because the repulsion of the neighboring particles keeps the particle from leaving
the cage formed by its neighbors. Above the glass-glass-transition line the particles
localize on a smaller length scale given by the well width δ due to the formation of
bonds.

We have seen that the liquid-glass-transition lines in the SWS can be smooth
for relatively large δ or exhibit a crossing for small δ. In between there is an
exceptional value δ = δ∗ where this qualitative change in the transition lines occurs.
From that specific point V∗ = (ϕ∗,Γ∗, δ∗), where the crossing appears, a line of
A3-singularities emerges. This special point is the A4-singularity and is marked by
a star in Fig. 4.1. For the SWS the values for the A4-singularity are

(4.1) ϕ∗ = 0.52768 , Γ∗ = 4.4759 , δ∗ = 0.04381 .

This point in the three dimensional control-parameter space organizes the entire
glass-transition diagram and will be of central importance for the dynamics. We
note that the values for δ where glass-glass transitions occur are quite similar to
the ones found in the SWS for isostructural phase transitions which occur between
an expanded and a condensed fcc-crystal when δ � 0.07 [23, 24].

The attraction dominated transitions predicted by MCT were proposed to be
relevant for the transition from a liquid to a gel state by Bergenholtz and Fuchs [15].
To avoid clumsy wording in the following, we will call attraction dominated glass
transitions gel transitions and reserve the term glass transition to the repulsion
dominated liquid-glass transitions.

Within MCT the arrested states can be characterized by the glass-form factors
fq. For the SWS these are shown for δ = 0.06, δ∗, and 0.03 in Fig. 4.2. To
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Figure 4.2. Glass-form factors f c
q at q = 4.2 for the SWS along

the constant-δ cuts from Fig. 4.1 for δ = 0.06, δ∗, and 0.03. A cross
(×) marks the point of the maximum in λ for δ = 0.06. At the
A4-singularity (∗), the dotted line shows the variation (f c − f∗) ∝
(Γ − Γ∗)1/3. For δ = 0.03, two distinct lines are present: From
Γ = 0 to the crossing (�) at Γ = Γ� = 5.88 the lines of liquid-glass
transitions are shown by the light full line. A line of gel transitions
(heavy full line) from high values for Γ extends above the crossing
and terminates in the A3-singularity (©). The two different values
at the crossing point are labeled A and B. The inset shows the two
different distributions of f c

q at the crossing point for A (full line)
and B (dashed line) in comparison to the critical values for the
HSS (dotted line). The dash-dotted distribution labeled A′ shows
the glass-form factors fq at (ϕ, Γ , δ) = (0.545, 5.5, 0.03).

illustrate the behavior of the distribution of f c
q for varying control parameters the

value for q = 4.2 is selected but the trends explained in the following apply to all
wave vectors. From the limit of vanishing attraction we start from the HSS and
cross over smoothly to the gel transitions for δ = 0.06. The curve through the
A4-singularity (∗) for δ = δ∗ is still continuous in the f c

q but exhibits a divergent
derivative because close to the singularity the variation of the glass-form factor
follows a cubic-root law, (f c − f∗) ∝ (Γ − Γ∗)1/3, that is characteristic for the
A4-singularity. The dotted line displays the fit 0.22(Γ − Γ∗)1/3 to the curve. For
δ = 0.03 the variation of the glass-form factors is discontinuous and at the crossing
point (�) we encounter two values for f c

q . Due to the maximum theorem (2.9) only
the higher one is a glass-form factor. Slightly below the crossing we find state A
with lower f c

q , and at the crossing, state B implies higher f c
q . This jump in the

f c
q is carried on along the glass-glass transition where the f c

q decrease as the A3-
singularity is approached. Just below that line in the glassy regime the fq increase
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with a square root law (2.10) from their values f c
q on the glass-transition. This

is illustrated in the inset that shows the evolution from state A to state A′. At
the A3-singularity the critical values for the gel transition f c

q and the noncritical
values for the glass transition fq are the same and the jump disappears. The inset
of Fig. 4.2 shows also the wave-vector dependence of the f c

q at the crossing point
and for comparison at the HSS at ϕc = 0.516. We see that f c

q at the glass state A
is quite similar to the HSS. The values at the structure factor peak are almost
unchanged and the wings are enhanced by up to 30%. We notice the distribution
is becoming broader, f c

q = 0.5 is assumed for q ≈ 9 in the HSS and for q ≈ 14 for
state A. For state B this happens around q ≈ 46 which signals a drastic change in
the localization length for the arrested particle at the crossing.
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Figure 4.3. Longitudinal and transversal elastic moduli at a
glass-glass transition for δ = 0.03, ϕ = 0.54 and varying Γ. The
lines show the mechanical moduli M0

L (dotted), δMT (full) and
δML (dashed). The line of glass-glass transitions is crossed at
Γ = 5.736 as seen in the inset where part of the glass-transition
diagram has been replotted from Fig. 4.1 for δ = 0.03.

Also the glass-form factors for small q jump at the crossing as seen in the inset
of Fig. 4.2. The zero wave-vector limit of fq is related to the longitudinal elastic
modulus. The additional contributions to the elastic moduli due to structural
arrest are given by Eqs. (2.17). As shown in the inset of Fig. 4.3 we shall look at
the moduli for a path at constant ϕ = 0.54 for δ = 0.03 within the arrested region
that eventually crosses the glass-glass-transition line. We observe in Fig. 4.3 that
M0

L, Eq. (2.15), varies regularly and is in particular unaffected by the glass-glass
transition at Γ = 5.736. The additional contributions are different. For increasing
the coupling strength Γ, both δMT and δML exhibit a minimum around Γ ≈ 4.5
that is reminiscent of the reentry phenomenon, since the glass-form factors are
smaller at states closer to the liquid-glass transition. At the glass-glass transition
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δMT and δML jump by a factor of 5 and continue to increase with the square-
root law (2.10) characteristic for an A2-singularity. The jump of the mechanical
moduli is most pronounced close to the crossing and decreases for approaching the
A3-singularity.

In anticipation of the more comprehensive discussion of the asymptotic laws in
Ch. 5 we take a look ahead by following the changes in one of the central parame-
ters of MCT already in connection with the glass-transition diagram – the exponent
parameter λ. It is sufficient at the moment to consider λ as a parameter characteriz-
ing the dynamics at an A2-singularity and to recognize that for λ→ 1 higher-order
singularities appear. For the example of the HSS, λ = 0.735, and for a number of
experimental systems it was found that λ = 0.7 . . . 0.8 [6]. Figure 4.4 shows the
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Figure 4.4. Exponent parameter λ for the SWS. Labeling of the
respective points is the same as in Fig. 4.1. At the crossing points
(�), λ has two different values, one for the glass and one for the
gel state. For δ = 0.117, 0.06 and 0.03 parts of the curves have
been erased to avoid crowding the figure. The limit of the HSS is
marked by the arrow.

exponent parameter λ for the the glass-transition singularities from Fig. 4.1. For
δ = 0.117 and 0.06 the values increase monotonically and assume a maximum at
λ = 0.80 and λ = 0.94, respectively, before decreasing again monotonically. The
location of the maxima is indicated by the crosses (×) in Fig. 4.1. For the curve
hitting the A4-singularity, the highest possible value λ = 1 is reached and this is
carried on by the A3-singularities (©) where the glass-glass-transition lines end. At
the crossing for δ < δ∗, there exist two values for the exponent parameter, one for
the glass-transition singularity and another one for the gel transition singularity.
We recognize that for smaller well widths, λ at the crossing decreases, for the small-
est δ = 0.005 examined we find λ = 0.80 on the gel-transition line and λ = 0.75
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on the glass-transition line. Thus for such small values for δ, the largest fraction of
the increase in λ takes place on the glass-glass-transition line.
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Figure 4.5. Comparison of PYA and MSA at A4- and A3-
singularities for the SWS for δ = δ∗, 0.04, 0.035, 0.03, and 0.025.
The PYA results are shown with empty symbols for the endpoints
(©) and crossing points (�). The crossing points for MSA (�)
are scaled on top of the PYA result by a δ-dependent prefactor,
ΓPYA = y(δ) ΓMSA with y(δ) ≈ 0.1 + 2.34 δ, determined from a
least-square fit. The A3-endpoints of the MSA (•) are scaled in
the same way.

Before comparing the SWS to other potentials we examine briefly how the
results considered so far depend on the chosen closure relation of the MSA from
Eq. (3.4b). For the comparison we use the numerical solution of the structure factor
in PYA, Eq. (3.4a). For the PYA the A4-singularity is located at

(4.2) ϕ∗ = 0.52851 , Γ∗ = 0.90275 , δ∗ = 0.0442 .

The location of the A4-singularity in PYA and MSA was calculated and compared
in Ref. [16] and deviations from the values published there and the one reported
here are due to refined numerical procedures and do not exceed 6%. PYA and MSA
yield practically the same results for the SWS concerning the glass-transition dia-
gram, the glass-form factors and the exponent parameter [16]. The main difference
between the results in PYA and MSA is the treatment of the control parameter
Γ and the values for Γ∗ disagree considerably in Eqs. (4.1) and (4.2). However,
the comparison of the factor functions for the control parameters from Eq. (4.1)
and Eq. (4.2) as done in Fig. 3.2 reveals excellent agreement of PYA and MSA
at the respective A4-singularities already for the static input. The mapping to an
effective coupling, Eq. (3.17), yields ΓMSA

eff = 5.1 which is close by 10% to the result
in Eq. (4.1).
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The discussion in the paragraph above suggests a mapping of the glass-tran-
sition diagrams for PYA and MSA by Γ. Figure 4.5 shows such a mapping for
δ � δ∗ for crossing points and higher-order singularities. We keep ϕ and δ fixed
and multiply Γ for the MSA-result with a prefactor y(δ) to match it with the result
from the PYA-calculation. This procedure keeps the limit for the HSS at Γ = 0
untouched which is the same in both closures. The endpoint singularities appear
roughly at the same Γ after the mapping. The dependence of the prefactor on δ
is varying regularly between y(δ) ≈ 0.2 at the A4-singularities and y(δ) ≈ 0.15
for δ = 0.02 which can be cast in a δ-dependent prefactor y(δ) ≈ 0.1 + 2.34 δ.
In comparison to the PYA, the MSA underestimates the coupling in Γ which is
compensated by higher values of Γ in the results of MCT. This discrepancy gets
more pronounced for smaller δ and hence y(δ) is decreasing.

2. Glass-transition diagrams for different potentials

All glass-transition singularities calculated in MCT are topologically stable
meaning that variations in the control parameters might change smoothly the lo-
cation and properties of the singularities but do not challenge their existence. In
the following we will see how this topological stability is reflected quantitatively.
Despite the global stability, changing the form of the potential might still introduce
deviations large enough to be relevant for experiment and simulation.

The comparison shall be done for the potentials (3.10) for n = 1, 2, 3 using
the MSA closure relation (3.4b) and the leading-order expansion in δ, Eq. (3.13).
An additional potential is provided by the HCY in Eq. (3.27) which is also solved
for the MSA [67]. The structure factors in PYA are calculated numerically for
n = 1, 2, 3 from Eq. (3.18a). For all the potentials and the mentioned different
closure relations, the glass-transition singularities like the ones presented in Fig. 4.1
have been calculated and as one additional example Fig. 4.6 displays the glass-
transition scenario for the HCY. The scenario is quite similar to the one for the
SWS. Starting with larger δ there is again a value δreentry = 0.30 where the reentry
phenomenon sets in for δ � δreentry. The curve for δ = 0.30 ends when Γ is
increased until hitting the spinodal line where Sq diverges for q = 0. That this was
not observed for the corresponding curve for the SWS which reflects the general
trend that spinodal lines occur at lower Γ for potentials of longer range [74]. The
curve for δ = 0.0250 represents again a cut through the diagram typical for δ > δ∗.
On these lines the exponent parameter is smaller than unity, λ < 1, and for the
present case assumes a maximum of λ = 0.96. For the cut δ = δ∗ = 0.0173 the curve
hits the A4-singularity indicated by a star (∗). For smaller values of δ < δ∗, the
constant-δ cut consists out of two pieces, a line of glass transitions that terminates
at a crossing point (�) and a line of gel transitions that extend into the glassy
region as glass-glass transitions and finally terminate at an A3-singularity. The
line of A3-singularities is shown by circles (©). For δ = 0.0100 the transition lines
are shown as light full line for the glass transition and as heavy full line for the
gel transition. Some transition lines in the the HCY have been discussed before,
however, without calculating the locations of higher-order singularities [15, 75, 76].

A comparison of the Figs. 4.1 and 4.6 demonstrates the topological stability of
the singularities of MCT when the square-well potential is deformed to the Yukawa
attraction and the transition diagrams are indeed very similar. This is also true
for the glass-transition diagrams for the remaining two systems, TRI and AOS,
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Figure 4.6. Glass-transition diagram for the hard-core-Yukawa
system (HCY), Eq. (3.27). The Γ versus ϕ curves show cuts
through the surfaces of glass-transition singularities for fixed
attraction-range parameter δ as indicated. The line for δ = δ∗ =
0.0173 hits the A4-singularity (∗). The line for δ = 0.0100 exhibits
a crossing point (�), and an A3-singularity (©). Four further A3-
singularities are marked by circles; they refer from left to right to
δ = 0.0167, 0.0143, 0.0125, 0.0111. The arrow points to the criti-
cal packing fraction ϕc

HSS = 0.516 for the hard-sphere system. The
cross (×) in the curve for δ = 0.025 indicates the location for the
maximum value of λ = 0.96.

which are not shown as a whole for that reason. We restrict the comparison to the
respective A4-singularities and show the potentials at the point V = V∗ in Fig. 4.7.
In the region 1.01 � r/d � 1.05, the potentials are rather close to each other and
cross around r/d ≈ 1.02 for Γ ≈ 4. The volume of the shell 1.00 < r/d < 1.02
is smaller than the one for the shell 1.02 < r/d < 1.04. Within the latter, the
attraction strength decreases in the sequence SWS, TRI, AOS and HCY. Therefore,
the critical packing fraction ϕ∗ for the onset of a glass-glass transition increases in
this sequence as seen in the inset and also on page 41 in Tab. 1. For the same
reason, the maximum packing fraction of the liquid increases in this sequence.
One gets ϕmax = 0.5293, 0.5326, 0.5340, and 0.5367, respectively. Evaluating the
structure factor of the SWS up to next-to-leading order, Eq. (3.16), yields a value
of ϕmax = 0.5299 which is very close to the result when using only the leading order
calculation for Sq.

Structure factors and related q-dependent quantities at the A4-singularities
are compared in Figure 4.8. The Sq for various models mainly differ by a small
shift parallel to the q-axis only. This shift reflects the decrease of the interparticle
distance caused by the increase of ϕ∗. The f∗

q for all potentials are similar and
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Figure 4.7. Attractive potentials U relative to the thermal en-
ergy kBT as function of the interparticle distance r relative to the
hard-sphere diameter d for control parameters V∗ at the respec-
tive A4-singularity. The curves refer to the SWS (—), TRI (· · · ),
AOS (− · −) as introduced in Eq. (3.10) and HCY (−−) from
Eq. (3.27). The inset shows the cuts of the bifurcation surfaces
through V∗ for fixed attraction-range parameter δ = δ∗.

larger than the values f c
q for the HSS that is given for reference. Once the system is

arrested, the attractive part of the potential leads to a stronger localization than in
the HSS where only a repulsive potential is present. Within the wave-vector region
around the first peak of Sq, say 1 ≤ qd ≤ 10, the glass-form factors of the SWS
differ from the ones of the HCY up to about 7% while this difference is minimal
at the peak. The corresponding difference for the critical amplitude is about 9%
which is maximal at the peak. The inset for the lowest panel of Fig. 4.8 displays
the variation of the exponent parameter λ for the liquid-glass transitions on the
cuts δ = δ∗. Rescaled as a function of Γ/Γ∗, the λ cannot be distinguished on the
branch Γ/Γ∗ < 1 dealing with glass transitions. On the branch of gel transitions,
Γ/Γ∗ > 1, the λ for the various models are still very close to each other. Figure 4.8
also shows the results for the structure factor for the SWS evaluated up to next-
to-leading order but deviations from the results using the structure factor only in
leading-order are negligible.

A quantity that is particularly suited to demonstrate the change of the mecha-
nism of arrest for increasing coupling strength Γ, is the particle’s localization length
rs. Figure 4.9 shows the localization lengths r∗s on the transition curves for δ = δ∗

for both SWS and HCY. For the HSS, Γ = 0, the localization rc
s/d = 0.0746 is in

agreement with the Lindemann’s melting criterion [2, 77]. For Γ > 0, the localiza-
tion length decreases monotonically and at Γ = Γ∗, the variation of rc

s experiences
the cubic-root singularity already discussed for the f c

q in Fig. 4.2. Upon further
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Figure 4.8. Structure factors Sq, critical glass-form factors f∗
q ,

and critical amplitudes hq for control parameters specifying the A4-
singularity V∗, SWS (—) with Sq from Eq. (3.13) and HCY (−−)
from [67]. The third curve (− − · − −·) shows the results for the
SWS using the structure-factor up to next-to-leading order in δ
from Eq. (3.16). The lines denoted by HSS exhibit f c

q and hq for
the critical point of the hard-sphere system. The inset from the
lower panel shows the variation of the exponent parameter λ along
the liquid-glass transition lines through V∗ from Fig. 4.7.

increasing Γ the rc
s eventually saturate at values of the order of the attraction range.

This was first observed in the HCY for δ > δ∗ [15].
In Fig. 4.10 the elastic moduli for the SWS are compared with the ones for the

HCY. We chose again the cuts incorporating the A4-singularities, δ = δ∗. As also
seen for crossing the glass-glass transition in the SWS, Fig. 4.3, the compression
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Figure 4.9. Localization length rc
s of a tagged particle for

states on the δ = δ∗ transition line for the SWS (HCY) shown
as full (dashed) line. At the A4-singularity one gets rc

s/d =
0.0425(0.0390) as indicated by the arrows. The line labeled HSS
marks the localization length rc

s/d = 0.0746 for the HSS.

modulus M0
L, Eq. (2.15), of the liquid varies smoothly throughout. The large

variations of δML,T reflect the strong effect of bonding potentials on restoring forces
[15, 16]. The same bonds are resisting shear as well as compression deformations.
Therefore, there is no great difference in the behavior of the two moduli. The
contributions to δML from the first two terms in Eq. (2.17b) are smaller than
the one from the last term. Furthermore, these two contributions nearly cancel
incidentally. Therefore, δM c

L differs from 3δM c
T by less than 3% for Γ < Γ∗ and

less than 0.5% for Γ ≥ Γ∗. This is consistent with the results from a virial expansion
in the mode-coupling functional [79]. At the A4-singularity we observe once again
a cubic-root behavior, M(Γ) −M(Γ∗) ∝ (Γ − Γ∗)1/3. The singular increase of M
with Γ increasing through Γ∗ is a precursor of the discontinuous increase of M upon
crossing the glass-glass-transition line for δ < δ∗, cf. Fig. 4.3.

To conclude this section, the values for the A4-singularity for different potentials
and closure relations are summarized in Tab. 1. From the values given for δ∗ one
infers that an effective range of 0.02d as already seen in connection with Fig. 4.7
is a good estimate for the A4-singularity. The values for Γ∗ follow the same trend
for the PYA as they obey for the MSA, however, the actual numbers are about five
times larger for MSA than they are for PYA. If a cutoff is introduced in the wave-
vector integral for the mode-coupling functional (2.7d), a comparison to the results
for the singular potential of the SHSS, cf. Eq. (3.9), with the regular potentials
treated above is also possible. The qualitative agreement with the SWS justifies
the introduction of a cutoff to renormalize the potential as done in Ref. [14], the
quantitative deviations, however, do not fit so easily into the group of potentials
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Figure 4.10. Longitudinal elastic moduli ML and transversal
elastic moduli MT for the δ = δ∗ transition line of the SWS (HCY)
shown as full (dashed) lines. For the SWS, the structure fac-
tor from Eq. (3.16) was used. In the limiting case of the HSS,
M0

L = 74.1, δMT = 18.1, δML = 56.1 [78]. At the A4 singularity
for the SWS (HCY), δM∗

T = 54.3(64.4), δM∗
L = 163.4(193.6). At

the maximum δMT = 164.2(205.3), δML = 493.0(616.3).

MSA ϕ∗ Γ∗ δ∗ PYA ϕ∗ Γ∗ δ∗

SWS 0.52721 3.967 0.047 0.52851 0.9028 0.0442
TRI 0.53074 6.483 0.0605 0.53306 1.335 0.063
AOS 0.53207 7.926 0.076 0.53419 1.512 0.085
HCY 0.53416 13.33 0.0173

Table 1. Location of A4-singularities for various potentials with
short-ranged attraction. For the MSA result the structure factor
input is taken from the first-order solution, Eq. (3.13), for SWS,
TRI and AOS, and from Ref. [67] for the HCY. For the PYA-result,
the structure factors were calculated numerically, Eq. (3.18a). For
the SWS, the values from Eq. (4.2) are repeated.

discussed above [80]. For the Yukawa system some liquid-glass transitions have
been determined within MCT using a more refined structure factor theory [76]. The
results are quite similar and do not hint at any serious discrepancies introduced by
the simple treatment of the structure factor in this work.

3. Reentry phenomenon

The reentry is given by the fact that for positive attraction strength, Γc > 0,
there is a value ϕc

max of the packing fraction that exceeds the limit of the HSS,
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ϕc
max > ϕc

HSS. Coming from small δ, this maximum moves to lower values for Γc

and is eventually absorbed by the limiting HSS at δreentry, cf. Figs. 4.1 and 4.6. The
existence of a value δreentry can be understood as follows. In the HSS the particles
forming the cage are themselves localized at a length of order 0.1d. The partial
dimerization taking place when increasing the attraction is due to the elevated
probability of two particles being closer than δ. If δ � 0.1d this is no longer
sufficient to cause the dimerization that weakens the cage.
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Figure 4.11. Location of the point of maximal density in the
liquid for SWS, TRI, AOS and HCY using the structure factor
in MSA. The upper panel shows the packing fraction ϕc

max, the
lower panel the attraction strengths Γ at these points. For the
SWS (full line) δreentry = 0.117, for TRI (dotted) δreentry = 0.20,
for the AOS (chain line) δreentry = 0.31, and for the HCY (dashed)
δreentry = 0.30. The full diamond marks δreentry = 0.145 for the
PYA result for SWS.

The value of δreentry was already reported for the SWS with Sq within MSA,
δreentry = 0.117. For the SWS in PYA we find δreentry = 0.145. Since this is
considerably larger than for the MSA we check if the deviation can be traced to
the use of an expansion in small δ in Eq. (3.16). We repeat the calculation for
the MSA this time solving the structure factor numerically, cf. Eq. (3.18b). The
result is even smaller, δreentry = 0.112. We conclude that the difference in δreentry

between PYA and MSA is introduced by the closure relations. The evolution of
the reentry is shown for different potentials in Fig. 4.11. The sequence in δreentry

for the different systems reflects the shape of the respective potentials and is the
same as discussed in connection with Fig. 4.7. At an effective range of 10% of the
particle diameter the reentry phenomenon vanishes in all four potentials.

One encounters a peculiarity when trying to fix the values for δreentry for the
TRI and the AOS using the PYA. For δ � 0.15 the behavior of ϕc

max is similar to
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the one for the MSA as shown in Fig. 4.11. However, for larger δ the ϕc
max do not

approach ϕc
HSS but stay at a value ϕc

max ≈ 0.52. In addition, for 0.35 � δ � 0.55
for the SWS in PYA there is a second enhancement of ϕc

max above the value for
the HSS. This enhancement for PYA can be related to a deficiency PYA shows
for these potentials. A comparison of computer simulation data from [81] with
integral equation theory [65] reveals that for the SWS at δ = 0.5 the PYA seriously
overestimates the contact value gd for increased attraction strength. This artificially
introduces a similar dimerization as found for small well widths. We can safely
ignore that additional reentry effect but note that this prevents us from identifying
δreentry for TRI and AOS within PYA. For completeness we also report a similar
possible artifact in the MSA calculations for larger attraction range. For finite
strength of the attraction, g(r) may develop negative values around r = d + ∆
[65]. The precursor of this failure of the MSA pretends a region depleted of other
particles in that range. Within MCT this triggers another enhancement above
ϕc

HSS for δ � 0.35. For both PYA and MSA the effects are small and ϕc
max � 0.52

was never exceeded. Since not vitally connected to the discussion of short -ranged
attraction, this issue shall not be followed up any further.





CHAPTER 5

Asymptotic expansions

Close to the glass-transition singularities the equations of motion (2.7) can be
expanded in asymptotic series around the critical long-time limit. The asymptotic
laws for the decay at A2-singularities have been discussed in detail for the HSS
[7]. As seen above, systems with short-ranged attraction also exhibit higher-order
glass-transition singularities A3 and A4. At these singularities the asymptotic laws
known from the A2-singularities are no longer valid and different expansions have
to be used. These will be derived in the following.

In Sec. 1 the general formalism for the expansion is presented. It is shown in
particular how the results for a one-component system are to be extended to the
wave-vector dependent case.1 In Sec. 2 the decay near higher-order singularities
is expanded into polynomials of the logarithm of time up to next-to-leading order.
This expansion can be applied on a weak-coupling side of the singularity which
includes the liquid regime. For the approximation of the decay right at the singu-
larity we need a different expansion. For the latter case the decay is expanded at
the A3-singularity in inverse powers of the logarithm in time in Sec. 3. Up to six
terms of the expansion are considered assure consistency of the approximation. The
analogous expansion at an A4-singularity is carried out up to next-to-leading order
in Sec. 4. To use consistent notation we rewrite the decay laws for an A2-singularity
and the coupled variables briefly in Sec. 5.

The evaluation of the parameters we need for the approximations can be some-
what involved so it seems desirable to check the formulas in schematic models where
one can calculate all these parameters analytically. The laws for an A3-singularity
are illustrated for a one-component model in Sec. 6. A two-component model al-
lows in addition to demonstrate the results for an A4-singularity and to mimic the
wave-vector dependence of the approximation, see Sec. 7. The scenarios discussed
for the schematic models in this chapter are encountered also later in the analysis
of the SWS in Ch. 6.

1. General formulas

To discuss the long-time limit of the equations of motion it will be convenient
to formulate the equations for the correlators also in the frequency domain. The
following convention for the Laplace transform is used,

(5.1a) LT[F (t)](z) = i

∫ ∞

0

exp(izt)F (t)dt ,

1To avoid confusion, we may clarify that by component we always mean a wave-vector com-
ponent and not a component of some mixture or tensorial quantity. In the latter sense only
single-component systems are discussed in this work.

45
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and to simplify notation, the Laplace transform will be modified by a prefactor of
(−z) to define another linear transformation as

(5.1b) S [F (t)] (z) = (−iz)
∫ ∞

0

exp(izt)F (t) dt .

The S-transformation leaves constants invariant and the representation of the long-
time limit φq(t→ ∞) = fq is equivalent to S [φq(t)] (z → 0) = fq. The same is true
for the long-time limit of the memory kernel, S [Fq[V, φk(t)]] (z → 0) = Fq[V, fk].
The equations of motion (2.7) are then reformulated for both Newtonian dynamics,

(5.2a) S[φq(t)](z) =
1

1 + 1/
(
S[mq(t)](z) − z2/Ω2

q

) ,
and Brownian dynamics,

(5.2b) S[φq(t)](z) =
1

1 + 1/ (S[mq(t)](z) − iτqz)
.

On the glass side, for the long-time limit, z → 0, the transform of the correlators
and the memory kernels assume constant values while the contribution z2/Ω2

q in
Eq. (5.2a) or iτqz in Eq. (5.2b), respectively, become arbitrarily small. Because of
continuity this holds also for states close to the glass states. Under these conditions,
the equations of structural relaxation are independent of the short-time dynamics
[4] and can be simplified to

(5.3) S[φq(t)](z) =
1

1 + 1/S[mq(t)](z)
.

This equation is scale invariant, with φq(t) also φq(x · t) is a solution with x > 0.
The transient motion governed by Ωq or τq has dropped out and Eq. (5.3) fixes the
solution only up to an overall time scale. This time scale will be accounted for by
matching the result of the asymptotic approximation to the transient dynamics by
rescaling the time.

Equation (5.3) can be rewritten in a form which shall be the starting point for
the further discussion,

(5.4)
S [φq(t)] (z)

1 − S [φq(t)] (z)
= S [Fq [V, φk(t)]] (z) .

The long-time limit of the equations of motion is represented by the z → 0 limit
of Eq. (5.4) and yields a set of implicit equations for the glass form factors fq as
introduced before in Eq. (2.8),

fq/(1 − fq) = Fq [V, fk] .

To ease the following discussion, the wave-vector domain shall be discretized into
M values and the wave vector q is now equivalent to an index for the correlation
functions, q = 1, 2, . . . ,M .

At some state Vc the glass-form factors shall assume the values f c
q allowing for

the introduction of new functions φ̂q(t) that describe the dynamics around f c
q ,

(5.5) φq(t) = f c
q + (1 − f c

q ) φ̂q(t) .
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Equation (5.5) constitutes an expansion of the correlation function φq(t) in a series
around f c

q in the small quantity φ̂q(t). The functional S[Fq[V, φk(t)]](z) appearing
on the rhs of Eq. (5.4) can also be rewritten in that way,

(5.6) (1 − f c
q )S [Fq [V, φk(t)]] (z) =

∞∑
n=0

A
(n)
qk1···kn

(V)S[φ̂k1 (t) · · · φ̂kn(t)](z) ,

and yields the following coefficients

(5.7a) A
(n)
qk1···kn

(V) =
1
n!

(1 − f c
q )
∂nFq [V, f c

k]
∂f c

k1
· · · ∂f c

kn

(1 − f c
k1

) · · · (1 − f c
kn

) .

These coefficients can be split into the values at Vc, A(n)c
qk1···kn

= A
(n)
qk1···kn

(Vc), and
the remainders

(5.7b) A
(n)
qk1···kn

(V) = A
(n)c
qk1···kn

+ Â
(n)
qk1···kn

(V) .

The control-parameter vector V may be parameterized by a distance parameter
ε which is zero at Vc and describes a path in control-parameter space with non-
vanishing tangent through Vc. Since the functionals are assumed to be smooth in
the control parameters they are of order ε in the distance parameter,

(5.7c) Â
(n)
qk1...kn

(V) = O(ε) .

The introduction of ε facilitates the following expansion where the functions S[φ̂q ](z)
and the parameters Â(n)

qk1...kn
(V) are treated as small. The lhs of Eq. (5.4) can be

expanded in powers of S[φ̂q ](z) resulting in a geometric series,

(5.8) (1 − f c
q )

S [φq(t)] (z)
1 − S[φq(t)](z)

= f c
q +

∞∑
n=1

S[φ̂q(t)]n(z) .

Equation (5.4) is rephrased in terms of S[φ̂q(t)] as

(5.9a)
[
δqk −A

(1)c
qk

]
S[φ̂k(t)](z) = Jq(z) ,

with the inhomogeneity

Jq(z) = Â(0)
q (V) + Â

(1)
qk (V)S[φ̂k(t)](z)

+
∞∑

n=2

{A(n)
qk1···kn

(V)S[φ̂k1 (t) · · · φ̂kn(t)](z) − S[φ̂q(t)]n(z)} .(5.9b)

where A(0)c
q = f c

q was used and summation over repeated indices is implied. Spe-
cializing Eqs. (5.9) to the z → 0 limit, one gets the equation for f̂q = φ̂q(t→ ∞):[

δqk − A
(1)c
qk

]
f̂k = Â(0)

q (V) + Â
(1)
qk (V)f̂k

+
∞∑

n=2

[
A

(n)
qk1···kn

(V)f̂k1 · · · f̂kn − f̂n
q

]
.(5.10)

The M×M matrix
[
δqk−A(1)c

qk

]
is the Jacobian of the set of implicit equations (2.8)

for the solution f c
q at V = Vc. Since matrix A

(1)c
qk has only positive elements,

the Perron-Frobenius theorem implies that, generically, this matrix has a non-
degenerate maximum eigenvalue Ec > 0. All other eigenvalues will be smaller than
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Ec [82]. It can be proven for MCT that Ec � 1 [57]. Therefore, the Jacobian
matrix is no longer invertible if

(5.11) Ec = 1 ,

and a bifurcation point Vc of Eq. (2.8) results. Since this critical eigenvalue is non-
degenerate, only a single critical eigenvector has to be considered and one proceeds
in the following way. First, the solution for the critical direction is derived which
is equivalent to solving an M = 1 model system that does not contain noncritical
directions. Leading results and corrections are determined for that case. Second,
the corrections in the noncritical directions are calculated using the leading results
from the M = 1 case.

The left and right eigenvectors of matrix A
(1)c
qk for the maximum eigenvalue

Ec = 1 shall be denoted by a∗k and ak, k = 1, . . . ,M , respectively,

(5.12) a∗qA
(1)c
qk = a∗k , A

(1)c
qk ak = aq .

According to the Frobenius theorems [82], one can require a∗k � 0 and ak � 0. It
will be convenient to fix the eigenvectors uniquely by the conditions

∑
q a

∗
q aq = 1

and
∑

q a
∗
q a

2
q = 1. The solvability condition for Eq. (5.9a) reads

(5.13a) a∗qJq(z) = 0 ,

and its general solution can be written as

(5.13b) φ̂q(t) = aqφ̂(t) + φ̃q(t) .

The splitting of φ̂q(t) in two terms is unique if one imposes the condition a∗q φ̂q(t) =
φ̂(t). The part φ̃q(t) can be expressed by means of the reduced resolvent Rqk of
A

(1)c
qk :

(5.13c) S[φ̃q(t)](z) = RqkJk(z) .

The matrix Rqk can be evaluated from matrix A
(1)c
qk and the vectors a∗k, ak [82].

The legitimacy of Eq. (5.13b) has to be shown below by explicit construction for
the asymptotic series.

For the one-component case the lhs in Eq, (5.10) vanishes and the equation for
f̂ reads

(5.14a) ε1(V) + ε2(V)f̂ +
∑
n�2

[Â(n)(V) − µn]f̂n = 0

where the formulation of the following parameters is straightforward,

(5.14b) µn = 1 −A(n)c , εn(V) = Â(n−1)(V) , n = 1, 2, . . . .

The singularity exhibited by f̂ for ε tending to zero depends on the number of
successive vanishing coefficients µn. A singularity of index l, l � 2, shall be classified
by

(5.15a) µ1 = µ2 = · · · = µl−1 = 0 , µl �= 0 .

The equation for f̂ reads

µlf̂
l =εl−1(V)f̂ l−2 + εl−2(V)f̂ l−3 + · · · + ε1(V)

+{εl(V)f̂ l−1 + εl+1(V)f̂ l +
∑

n�l+1

[
A(n)(V) − 1

]
f̂n} .(5.15b)
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The implicit-function theorem can be used to show that there is a smooth invert-
ible transformation of the l variables

(
ε1, ε2, . . . , εl−1, f̂

)
which eliminates the curly

bracket in Eq. (5.15b). Thus, the singularities described by this equation are topo-
logically equivalent to the ones described by the first line, i.e. by the zeros of a
polynomial of degree l. Such singularity is referred to as Al [5]. The εn(V) are of
order ε, Eq. (5.7c), and shall be referred to as separation parameters.

The simplest glass-transition singularity is the A2 with only one relevant control
parameter ε1(V) [3]: There is a discontinuous change of f̂ at the surface specified
by ε1(V) = 0. as one infers from Eq. (5.15b). The dynamics is characterized by
power-law decay and power-law dependencies of the relaxation scales on |ε1(V)|.
All exponents in these laws are to be calculated from λ = 1 − µ2, which is for that
reason called the exponent parameter [3]. The transition surface has a boundary
that is determined by λ = 1, i.e. by µ2 = 0. These endpoints are the higher-
order singularities. The A3 and A4 are also referred to as cusp and swallowtail
singularities, respectively.

For M = 1 Eqs. (5.9a) and (5.9b) shall be rewritten and grouped for the
following expansions as

(5.16)

0 = ε1(V) + (1 − µ2)S[φ̂2(t)](z) − S[φ̂(t)]2(z)
+ε2(V)S[φ̂(t)](z) + (1 − µ3)S[φ̂3(t)](z) − S[φ̂(t)]3(z)
+ε3(V)S[φ̂2(t)](z) + (1 − µ4)S[φ̂4(t)](z) − S[φ̂(t)]4(z)

+ · · · .

For µ2 �= 0 the asymptotic expansion for the A2-singularity follows from Eq. (5.16)
which is summarized in Sec. 5. Specializing to higher-order singularities in Eq. (5.16)
requires

(5.17) µ2 = 0 .

2. Logarithmic decay

In this section, the expansion in polynomials in ln t is derived that generalizes
an earlier result [34]. The result will be valid for ε1 < 0 and for any higher-order
singularity Al, l � 3.

2.1. One-component case. First the one-component case will be solved for
φ̂(t). As for the case of A2-singularities, Eq. (5.16) suggests an expansion of the
solution in powers of |ε|1/2. With G(n)(t) = O(|ε|n/2), let us write

(5.18) φ̂(t) = G(1)(t) +G(2)(t) +G(3)(t) + · · · .

The first line of Eq. (5.16) is of order |ε| and it provides a nonlinear integral equation
for G(1)(t). The contributions to this line which are of order |ε|3/2 together with the
leading terms of the second line provide a linear integral equation for G(2)(t), etc.
This procedure will yield the desired asymptotic expansion provided the indicated
integral equations define meaningful solutions. This is indeed the case as shall be
demonstrated below by explicit construction of the G(n)(t).

The equation for the leading contribution to the correlator at a glass transition
Al with l � 3 reads

(5.19) ε1(V) + S[G(1)2(t)](z) − S[G(1)(t)]2(z) = 0 .
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The formulas for the Laplace transforms of the logarithm and its square imply
S[ln(t)](z) = ln(i/z) − γ and S[ln2(t)](z) = ln2(i/z) − 2γ ln(i/z) + γ2 + (π2/6),
where γ = 0.577 . . . is Euler’s constant, see Eq. (A.1). Hence, Eq. (5.19) is solved
by −B ln(t) if ε1(V) + (B2π2/6) = 0. Since the correlators are monotonically
decreasing functions of t [57], one must require B > 0. One concludes that a
solution is given by

(5.20) G(1)(t) = −B ln(t) , B =
√

[−6ε1(V)/π2] ,

provided the control parameters V obey

(5.21) ε1(V) < 0 .

Ignoring corrections of order |ε|, one derives from Eqs. (5.5), (5.18), and (5.20) the
leading approximation for the correlator [34]:

(5.22) φ(t) = f c − (1 − f c)B ln(t/τ) .

The time scale τ is introduced to take care of the scale invariance of Eq. (5.3). It
will be used to match the solution at the plateau f c.

In order to solve Eq. (5.16) up to order |ε|3/2, one has to incorporate from the
first line the contribution 2S[G(1)(t)G(2)(t)](z) − 2S[G(1)](z)S[G(2)(t)](z), one has
to evaluate the second line with φ̂ replaced by G(1)(t), and one can ignore all other
terms. Hence, the equation for the leading correction G(2)(t) can be written in the
form

(5.23) T
[
G(2)(t)

]
(z) = f (2)(z) .

Here, the linear integral operator T is defined by

(5.24) T [G(t)] (z) = S [ln(t)G(t)] (z) − S [ln(t)] (z)S [G(t)] (z) ,

and the inhomogeneity of Eq. (5.23) reads

f (2)(z) = −
{
ε2(V)S[G(1)(t)](z) − µ3S[G(1)3(t)](z)

+2ζ{S[G(1)3(t)](z) − S[G(1)(t)]3(z)}
}
/(2B) .

(5.25)

A factor 2ζ has been introduced for later convenience. For the study of M = 1
models, one has to substitute2ζ = 1/2.

The solution of Eq. (5.19) was built on the equations T [c](z) = 0 for a con-
stant c and T [ln t] (z) = π2/6. These formulas are generalized in Appendix A by
constructing polynomials pn(x) of degree n � 1 with the properties:

(5.26a) pn(x) = bn,1x+ bn,2x
2 + · · · + bn,n−1x

n−1 + xn ,

(5.26b) T [pn(ln(t))] (z) = n(π2/6) lnn−1(i/z) .

These polynomials are a convenient tool to solve the equation

(5.27a) T [g(t)] (z) = f(z)

2In Sec. 3 we will introduce κ = 2ζ; here the notation is kept consistent with the notation in
[7, 83].
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for inhomogeneities f(z) which are polynomials in ln(i/z),

(5.27b) f(z) =
m∑

n=0

an lnn(i/z) .

Obviously, this is solved by a polynomial of degree m+ 1,

(5.27c) g(t) =
m+1∑
n=1

[
an−1/(nπ2/6)

]
pn(ln(t)) .

Using Eq. (5.20) and applying Eqs. (A.1) and (A.2) for the evaluation of
the transformations of the powers of ln(t), one can write f (2)(z) in the form of
Eq. (5.27b) for m = 3. The coefficients are linear functions of ε1(V) and ε2(V):

(5.28a) a0 =
[
(6ζ/π2)(Γ3 − Γ3

1) − (3µ3/π
2)Γ3

]
ε1(V) − (Γ1/2)ε2(V) ,

(5.28b) a1 =
[
3ζ − (9µ3/π

2)Γ2

]
ε1(V) − (1/2)ε2(V) ,

(5.28c) a2 = −(9µ3/π
2)Γ1ε1(V) , a3 = −(3µ3/π

2)ε1(V) .

Here, Γk = dkΓ(1)/dxk denotes the kth derivative of the gamma function at unity.
One concludes that G(2)(t) = g(t), where Eq. (5.27c) is to be used with m = 3:

(5.29a) G(2)(t) =
4∑

j=1

Bj lnj(t) .

The coefficients are derived with the aid of Eqs. (A.7a–c):

(5.29b) B1 = (0.44425 ζ − 0.065381µ3) ε1(V) − 0.22213 ε2(V) ,

(5.29c) B2 = (0.91189 ζ + 0.068713µ3) ε1(V) − 0.15198 ε2(V) ,

(5.29d) B3 = −0.13504µ3 ε1(V) , B4 = −0.046197µ3 ε1(V) .

The solution up to next-to-leading order reads

φ(t) − f c = (1 − f c)
[
(−B +B1) ln(t/τ) +B2 ln2(t/τ)

+B3 ln3(t/τ) +B4 ln4(t/τ)
]
.(5.30)

A singularity Al with l � 4 implies µ3 = 0. In this case, the formula simplifies
because B3 = B4 = 0.

The procedure outlined above can be continued. To solve Eq. (5.16) up to order
ε2, one derives the analog to Eq. (5.23): T [G(3)(t)](z) = f (3)(z). Function f (3)(z)
has the form of Eq. (5.27b) with m = 6, where the coefficients aj depend on the
parameters ε1(V), ε2(V), ε3(V), µ3 and µ4. As a result, one gets

(5.31) G(3)(t) =
7∑

j=1

Cj lnj(i/z) ,

where Cj = O(|ε|3/2). The Cj for a one-component model are summarized in
Eq. (A.8).
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2.2. Multi-component case. Looking back to the splitting in Eq. (5.13b)
we recognize that the part φ̂ proportional to aq is solved by the solution for the
one-component case, Eq. (5.30), if proper generalizations for the parameters in
Eq. (5.14b) and for ζ can be defined. Equations (5.9b) and (5.13) suggest an
expansion of φ̂(t) as in Eq. (5.18) and

(5.32a) φ̃q(t) = G(2)
q (t) +G(3)

q (t) + · · · , G(n)
q (t) = O(|ε|n/2) ,

(5.32b) Jq(t) = J (2)
q (t) + J (3)

q (t) + · · · , J (n)
q (t) = O(|ε|n/2) .

Here, for example,

(5.33a) J (2)
q (z) = Â(0)

q (V) +A
(2)c
qk1k2

ak1ak2S[G(1)2(t)](z) − a2
qS[G(1)(t)]2(z) ,

J (3)
q (z) = 2{A(2)c

qk1k2
ak1ak2S[G(1)(t)G(2)(t)](z) − a2

qS[G(1)(t)](z)S[G(2)(t)](z)}

+Â(1)
qk (V)akS[G(1)(t)](z) + 2{A(2)c

qk1k2
ak1S[G(1)(t)G(2)

k2
(t)](z)

−aqS[G(1)(t)](z)S[G(2)
q (t)](z)}

+A(3)c
qk1k2k3

ak1ak2ak3S[G(1)3(t)](z) − a3
qS[G(1)(t)]3(z) .(5.33b)

The justification of the preceding expansions shall be given by demonstrating how
the equations can be solved recursively.

2.3. The leading-order contribution. The leading-order contribution to
the solvability condition, Eq. (5.13a), is obtained by substituting Eq. (5.33a) into
Eq. (5.13a). One arrives at: ε1(V) + λS[G(1)2(t)](z)−S[G(1)(t)]2(z) = 0, with the
definition of the exponent parameter λ = 1 − µ2 [3, 7] by

(5.34) µ2 = 1 − a∗q A
(2)c
qk1k2

ak1 ak2

and the separation parameter

(5.35) ε1(V ) = a∗qÂ
(0)
q (V ) .

According to Eq. (5.17) the parameter µ2 has to be zero in order for Vc to represent
a higher-oder singularity. For µ2 = 0 the equation found for G(1)(t) is identical with
Eq. (5.19). Thus, ε1(V ) is the first separation parameter and Eqs. (5.20) and (5.21)
remain valid.

Introducing the critical amplitude hq by the same formula as in the theory for
the A2-singularity [3, 7],

(5.36) hq = (1 − f c
q )aq ,

the leading approximation for the correlators is after Eq. (5.5)

(5.37) φq(t) = f c
q + hq [−B ln(t/τ)] .

Here, B =
√
−6ε1(V)/π = O(|ε|1/2). Equation (5.37) describes the dynamics up

to errors of order ε; it is the generalization of the logarithmic decay law [34] to
arbitrary wave-vector dependent MCT models.
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Substitution of Eq. (5.33a) into Eq. (5.13c) yields the leading-order contribution
to φ̃q(t), i.e. the function G(2)

q (t) in Eq. (5.32a). Equation (5.19) is used to express
S[G(1)(t)]2(z) in terms of S[G(1)2(t)](z) so that

(5.38a) G(2)
q (t) = XqG

(1)2(t) + Ŷq(V) .

The amplitude Xq is independent of separation parameters,

(5.38b) Xq = Rqk

[
A

(2)c
kk1k2

ak1ak2 − a2
k

]
.

Ŷq(V) = O(ε) and reads

(5.38c) Ŷq(V) = Rqk

[
Â

(0)
k (V) − ε1(V)a2

k

]
.

2.4. The next-to-leading-order contribution. If one substitutes (5.38a)
into Eq. (5.33b), one gets an expression for J (3)

q (z) in terms of the knownG(1)(t) and
the unknown G(2)(t). Therefore, the solvability condition, Eq. (5.13a), evaluated up
to order ε3/2, yields an equation for G(2)(t). The latter has the form of Eq. (5.23),
where also the inhomogeneity is given by Eq. (5.25). This holds with the formula

ε2(V) =
∑

q

a∗qÂ
(1)
qk (V)ak + 2ε1(V)

∑
q

a∗qaqXq

+ 2
∑

q

a∗q
[
A

(2)c
qk1k2

ak1 Ŷk2 (V) − aqŶq(V)
]

(5.39)

for the second separation parameter, and the constants

(5.40) ζ =
∑

q

a∗q
[
aqXq + a3

q/2
]
,

and

(5.41) µ3 = 2ζ −
∑

q

a∗q
[
A

(3)c
qk1k2k3

ak1ak2ak3 + 2A(2)c
qk1k2

ak1Xk2

]
.

As a result, Eqs. (5.29) for the function G(2)(t) remain valid.
Combining the results for G(1)(t), G(2)(t) and G(2)

q (t) with Eq. (5.32a), and this
with Eq. (5.5), one obtains the solution for logarithmic decay up to order |ε|3/2:

φq(t) = (f c
q + f̂q) + hq

[
(−B +B1) ln(t/τ)

+(B2 +KqB
2) ln2(t/τ)

+B3 ln3(t/τ) +B4 ln4(t/τ)
]
.(5.42)

The relative size of the deviations from the terms proportional to Bi is the same for
all correlators and of order ε. The renormalization of the critical glass-form factor
is also of order ε and derived from Eq. (5.38c),

(5.43) f̂q = (1 − f c
q )Ŷq(V) .

The wave-vector dependent correction is the same as in the theory for the A2-
singularity [7],

(5.44) Kq = Xq/aq .

The leading order result (5.37) comprises the factorization theorem of MCT
[84]: In leading order φq(t)−f c

q factorizes in two terms, hq and G(t). The factor hq
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is time- and control-parameter-independent and characterizes the specific correlator
by its wave-vector dependence. The other factorG(t) is shared by all correlators and
describes the dependence on control parameters and the time. This factorization
is a consequence of the center manifold theorem [85]. As a result, the rescaled
correlators φ̂q(t) = [φq(t) − f c

q ]/hq are the same for all q. However, the function
G(t) is different for the A2- and higher-order singularities. In Eq. (5.37), G(t) =
−B ln(t/τ). The q-dependence of the amplitude Kq reflects that already the leading
corrections to the leading-order logarithmic decay depend on the correlator chosen.
Since the leading corrections determine the range of validity for the leading order
result this implies that the range where the leading result holds can be quite different
for different correlation functions. It is only the term proportional toKq that causes
a violation of the factorization theorem if we generalize it to φq(t) − (f c

q + f̂q) =
hqG(t) where now G(t) includes all terms in the square brackets in Eq. (5.42) except
the one proportional to B2.

3. Critical decay at an A3-singularity

The expansion in the previous section is restricted to the weak-coupling side
of the higher-order singularity, cf. Eq. (5.21), and becomes invalid right at the
singularity where ε1(V) = 0. Therefore, a different expansion is needed for that
case of a critical decay at a higher-order singularity.

For a discussion of the critical decay at the A3-singularity, we set V = Vc in
the coefficients of Eq. (5.7b), A(n)

qk1···kn
(V) = A

(n)c
qk1···kn

. The V-dependent terms
in the inhomogeneity Jq(z) in Eq. (5.9b) vanish and the rhs of Eq. (5.9a) can be
written as Jq(z) =

∑
n≥2 J

(n)
q (z) with the nth expansion term given by

(5.45) J (n)
q (z) = A

(n)c
qk1...kn

S[φ̂k1 (t) · · · φ̂kn(t)](z) − S[φ̂q(t)]n(z) .

The strategy to find a solution is again to split the problem into a q-independent
part φ̂(t) and a q-dependent part φ̃q(t). The solution of the q-independent problem
is again equivalent to solving the one-component case, and after having solved
the one-component case, parameters like the µi appearing in the solution for φ̂(t)
have to be expressed in terms of q-dependent quantities by applying the solvability
condition, Eq. (5.13a). Wave-vector dependent corrections φ̃q(t) are derived with
the reduced resolvent Rqk in Eq. (5.13c).

3.1. One-component case. At the singularity also all separation parameters
are zero in Eq. (5.16) and the latter equation is regrouped for the one-component
case as

(5.46)
0 = S[φ̂2(t)](z) − S[φ̂(t)]2(z) − µ3 S[φ̂3(t)](z)

+ κ
(
S[φ̂3(t)](z) − S[φ̂(t)]3(z)

)
− µ4 S[φ̂4(t)](z)

+
∑∞

n=4Kn(z) .

The parameter κ was introduced for later convenience and is equal to 2ζ. Some
abbreviations were introduced for the terms above which are of order n in the small
quantity φ̂(t),

Kn(z) = κnψn−1(z) − µn S[φ̂n(t)](z), n � 4 ,(5.47a)

ψi(z) = S[φ̂i(t)](z) − S[φ̂(t)]i(z).(5.47b)

For the one-component case κ = κi = 1 and the µi are defined as in Eq. (5.14b).



3. CRITICAL DECAY AT AN A3-SINGULARITY 55

The problem stated in Eq. (5.46) shall be solved in the following by an extension
of the Tauberian theorem for slowly-varying functions introduced in Ref. [35]. A
function G(t) slowly varying for large times is defined by limT→∞G(tT )/G(T ) = 1
for all t > 0. This is equivalent to S[G(t)](z) being slowly varying for small fre-
quencies, limT→∞ S[G(t)](z/T )/S[G(t)](i/T ) = 1. The Tauberian theorem states
that S[G(t)](z) is asymptotically equal to G(i/z) for small frequencies [86],

(5.48) lim
z→0

S[G(t)](z)/G(i/z) = 1 .

Typical examples for slowly varying functions are functions of logarithms. Slowly
varying functions that will be used as an Ansatz in the following shall be defined
as

(5.49a) G(t) = g(x) , x = ln(t/t0) , y = ln(i/zt0) ,

where g(x) is given by a sum of gm(x) with polynomials pm of order l0,

(5.49b) gm(x) = pm(lnx)/xm , pm(ξ) =
l0∑

l=0

cm,lξ
l , m = 1, 2, . . . ,

The function gm+1(x) is of higher order than gm(x) and can be neglected asymp-
totically, limx→∞ gm+1(x)/gm(x) = 0. We introduce the notation f(x) = O(1/xm)
if f(x)xm is bounded by some polynomial in lnx for large x. Then, the functions
gm(x) are of order O(1/xm) and for the derivatives dng(x)/dxn = g(n)(x), n =
0, 1, 2 . . . one finds

(5.50) g(n)
m (x) = O(1/xm+n) .

The S-transform of Eq. (5.1b) can be written as S[G(t)](z) =
∫ ∞
0 exp(−u)g(y+

lnu) du and a formal expansion in powers of lnu leads to [35]

(5.51) S[G(t)](z) =
∞∑

n=0

1
n!

Γng
(n)(y) .

Here Γn denotes again the nth derivative of the gamma function at unity. Introduc-
ing G(t) = gm(x) into the expansion Eq. (5.51) results in an asymptotic expansion
in increasing orders O(1/ym+n). The leading contribution for n = 0 is just the
result gm(y) from the Tauberian theorem (5.48).

If one replaces the functions G(t) in expansion (5.51) by a product G(t)F (t),
one gets the asymptotic expansion
(5.52)

S[G(t)F (t)](z)−S[G(t)](z)S[F (t)](z) =
∞∑

n=2

n−1∑
m=1

[Γn − Γn−mΓn]
(n−m)!m!

g(n−m)(y)f (m)(y) .

Using G(t) = gm1(x) and F (t) = gm2(x), the Tauberian theorem implies that the
leading contribution to S[Gm1(t)Gm2(t)](z) cancels against the leading contribution
to S[Gm1(t)](z)S[Gm2 (t)](z). It is observed in the extension to the Tauberian
theorem that also the leading corrections to the Tauberian theorem cancel [35],

(5.53) S[gm1(t)gm2(t)](z) − S[gm1(t)](z)S[gm2(t)](z) = O(1/ym1+m2+2) .

The difference between the two terms on the left-hand side is two orders smaller for
vanishing frequencies than each of the terms separately. This applies in particular to
the differences ψn(z) which are of higher order than the individual terms S[φ̂n(t)](z)
or S[φ̂(t)]n(z) in Eq. (5.47).
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3.1.1. The leading contribution. To solve Eq. (5.46) in leading order we use the
Ansatz φ̂(t) = gm(x) = cm/x

m where the polynomial in Eq. (5.49b) was chosen
to be the constant cm. From the expansion (5.51) one infers that S[φ̂3(t)](z) =
(cm/ym)3+O(1/y3m+1). Using Eq. (5.52) with G(t) = F (t) = gm(x) for calculating
ψ2(z), one obtains ψ2(z) = ζ(2)(mcm/ym+1)2 + O(1/y2m+3). ζ(k) denotes again
the zeta function [87]. Choosing m = 2, both terms in the first line of Eq. (5.46),
ψ2(z) − µ3S[φ̂3(t)](z), are of the same order 1/y6. They cancel in this leading
order if we set µ3c

3
2 = 4ζ(2)c22. The expansion in Eq. (5.51) and the cancellation of

Eq. (5.53) assert that the terms in the second line of Eq. (5.46) are of order 1/y8

and higher. One concludes that the leading asymptotic behavior of the critical
correlator for large times is described by φ̂(t) = g2(x), where

(5.54) g2(x) = c2/x
2 , c2 = 4ζ(2)/µ3 .

3.1.2. The leading correction. Let us split the function φ̂(t) into its leading
term and a correction g̃(x):

(5.55) φ̂(t) = g2(x) + g̃(x) .

Substitution of this formula into the first line of Eq. (5.46), one gets expressions up
to third order in g̃. The term independent of g̃ is S[g2

2(x)](z) − S[g2(x)]2(z) −
µ3S[g3

2(x)](z), and it shall be denoted by [(4ζ(2))2/µ3]F (y). Equations (5.51)
and (5.52) are used to derive the asymptotic series
(5.56a)

F (y) =
∞∑

n=3

(−1)n+1

µ3y4+n
{ 1
30
ζ(2)

(n+ 3)!
(n− 2)!

Γn−2−
n−2∑
m=1

(n−m+1)(m+1)(Γn−Γn−mΓm)} .

The term linear in g̃ is given by 2{S[g2(x) g̃(x)](z) − S[g2(x)](z)S[g̃(x)](z)} −
3µ3 S[g2

2(x) g̃(x)](z). It shall be denoted by [(4ζ(2))2/µ3][Dg̃(y) + D′g̃(y)]. Here,
the differential operator D yields the leading contribution

(5.56b) Dg̃(y) = [y · dg̃(y)/dy + 3g̃(y)]/y4 .

The correction D′ is expanded with the aid of Eqs. (5.51) and (5.52):

D′g̃(y) = [1/2ζ(2)]
∞∑

n=3

n−1∑
m=1

(−1)n−m{[g̃(m)(y)/yn+2−mm!](Γn − Γn−mΓm)

+ζ(2)Γn−2[g̃(m−1)(y)/yn+3−m(m− 1)!](n−m+ 1)(n−m)(n−m+ 1)} .
(5.56c)

With these notations, the equation of motion for g̃(y) is reformulated in the form
of a linear differential equation with some inhomogeneity I(y):

(5.57a) Dg̃(y) = I(y) ,

(5.57b)
I(y) = F (y) + D′g̃(y)

+S[g̃2(x)](z) − S[g̃(x)]2(z) − 3µ3S[g2(x)g̃2(x)](z)
−µ3S[g̃3(x)](z) + κψ3(z) − µ4S[φ̂4(t)](z) +

∑∞
n=4Kn(z) .

The iterative solution of Eq. (5.57a ) for g̃(x) is based on the observation, that one
gets for functions gm(y) from Eq. (5.49b):

(5.58) Dgm(y) = [p′m(y) + (3 −m)pm]/ym+4 .
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With g̃(x) = g3(x), Dgm(y) = p′3(y)/y
7. In addition, all terms on the right hand

side of Eq. (5.57b) are of order O(1/y8) except for the n = 4 contribution to F (y),
which is 24ζ(3)/(µ3y

7) + O(1/y8). Hence, the leading order solution for g̃ reads

(5.59) g3(x) = c3 ln(x)/x3 , c3 = 24ζ(3)/µ3 .

Combining this finding with Eqs. (5.54) and (5.55) and eliminating all the abbre-
viations, one reproduces the result of Ref. [35]:

(5.60) φc(t) = f c + (1 − f c)[c2/ ln2(t/t0)]{1 + [6ζ(3)/ζ(2)] ln ln(t/t0)/ ln(t/t0)} .
This formula describes the critical correlator up to errors of the order 1/ ln4(t/t0).

3.1.3. Higher-order corrections. The equation for g̃(y) allows for an iterative
solution so that the iteration step with number m reads g̃ = g3 + g4 + · · · + gm.
Here the numerator polynomial in Eq. (5.49b) is of degree l0 = (m− 2), i.e.,

(5.61) gm(x) =
m−2∑
l=0

cm,l lnl(x)/xm .

Suppose, the procedure had been carried out up to step m− 1, m = 4, 5, . . . , then
Dg̃(y) = Dgm(y)+O(1/ym+3). By construction, all terms up to order (m+3) cancel
against the one appearing in I(y). One checks, that the leading contribution to I(y)
reads p(ln y)/ym+4, where the degree of the polynomial p does not exceed m − 3.
Hence, Eq. (5.57a) is equivalent to the linear differential equation p′m+(3−m)pm =
p. This is readily solved by Eq. (5.61), provided the coefficients cm,l are chosen
properly.

In order to determine g4 and g5, one can drop the terms
∑∞

n=4Kn(z) in
Eq. (5.57b). The coefficients cm,l are given by µ3, κ, and µ4 as follows

c4,0 = 792 ζ(3)2/(π2µ3) + π4 [4µ4/(9µ2
3) − 4κ/(3µ3) − 7/6]/µ3 ,(5.62a)

c4,1 = −432 ζ(3)2/(π2µ3) ,(5.62b)

c4,2 = 648 ζ(3)2/(π2µ3) ,(5.62c)

c5,0 = ζ(3)π2[400 κµ3 + 1551µ2
3 − 160µ4]/(15µ3

3)(5.63a)

−[39744 ζ(3)3/π4 + 528ζ(5)]/µ3 ,

c5,1 = 64800 ζ(3)3/(π4µ3) − 4ζ(3)π2[21µ2
3 − 24κµ3 + 8µ4]/(µ3

3) ,(5.63b)

c5,2 = −27216 ζ(3)3/(π4µ3) ,(5.63c)

c5,3 = 15552 ζ(3)3/(π4µ3) .(5.63d)

The coefficients for g6 and g7 are presented as Eqs. (A.9) and (A.10) in the appendix.
The only new model parameters entering the coefficients are µ5 and κ4. In summary,
the solution for the critical decay at an A3-singularity in the one-component case
can be given up to order O(x−(n+1)) as a sum of functions gm(x) of order O(x−m),

(5.64) φ̂(t) = Gn(x) =
n∑

m=2

gm(x) , x = ln(t/t0) .

This asymptotic expression replaces the expansion in the power law (t/t0)−a which
is valid for a generic A2-singularity [3]. The solution 5.64 is by itself valid only for
A3-singularities. For µ3 → 0 all coefficients cm,l diverge.
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3.2. Multi-component case. The starting point of the expansion for the
multi-component case is the observation that the leading order of the one-component
solution is of quadratic order in the inverse logarithm of time, S[φ̂(t)](z) = O(y−2).
To keep notation concise this will be denoted by O(φ̂) in the following. Since the
inhomogeneities in Eq. (5.45) are of at least quadratic order in the one-component
solution, Jq = O(φ̂2), the definition of the q-dependent corrections, Eq. (5.13c),
implies that these are of the same order, φ̃q = O(φ̂2).

Substituting the splitting (5.13b) into the inhomogeneity J (2)
q (z) from Eq. (5.45)

yields

(5.65) Jq(z) = A
(2)c
qk1k2

ak1ak2S[φ̂(t)2] − a2
qS[φ̂(t)]2 + O(φ̂3) .

Using the relation of Eq. (5.53) for ψ2(z) in Eq. (5.47b) allows to reduce the product
of S-transforms of hatφ to an S-transform of products of hatφ and a term of higher
order,

(5.66) Jq(z) = (A(2)c
qk1k2

ak1ak2 − a2
q)S[φ̂(t)2] + a2

qψ2(z) + O(φ̂3) .

Only the first term in Eq. (5.66) is of orderO(φ̂2) while ψ2(z) = O(φ̂3), cf.Eq. (5.53).
The solvability condition requires a∗qJq(z) = 0 which in Eq. (5.66) can be fulfilled up
to higher orders by the definition of µ2 as above in Eq. (5.34), since µ2 S[φ̂(t)2] = 0
for higher-order singularities where µ2 = 0. For the q-dependent correction of order
O(φ̂2), the reduced resolvent Rqk, Eq. (5.13c), yields

(5.67) φ̃q(t) = Xqφ̂
2(t) + O(φ̂3)

with the definition of Xq introduced in Eq. (5.38b). The solution of the first step
in the derivation of q-dependent corrections is up to order O(φ̂3):

(5.68) φ̂q(t) = aqφ̂q(t) +Xqφ̂
2(t) + φ̃′q(t) .

The next step is started by substituting the result (5.68) into Jq(z), Eq. (5.9b).
Using the definition of µ2, terms of order O(φ̂2) vanish altogether as demonstrated
above and only a2

qψ2(z) and additional terms of order O(φ̂3) are left from the

line J (2)
q (z), Eq. (5.66). The repeated use of Eq. (5.47b) to reduce products of

S-transforms to S-transforms of products is again used to collect the appropriate
terms, and the inhomogeneity assumes the form

Jq(z) =S[φ̂(t)3]
[
A

(3)c
qk1k2k3

ak1ak2ak3 + 2(A(2)c
qk1k2

ak1Xk2 − a2
q) − (a3

q + 2aqXq)
]

+ a2
qψ2(z) + O(φ̂4) .

(5.69)

The definition of κ = 2ζ and µ3 as in Eqs. (5.40) and (5.41) is again possible after
multiplication of Eq. (5.69) with a∗q , and the solvability condition up to order O(φ̂4)
reads

(5.70) 0 = ψ2(z) − µ3S[φ̂(t)3] + O(φ̂4) ,

which reproduces the form of Eq. (5.47a) and was solved for S[φ̂(t)] in Sec. 3.1 for
the one-component case. The application of the reduced resolvent Rqk yields φ̃′q(t)
up to order O(φ̂4) by introducing a new amplitude Yq as

(5.71) Yq = Rqk

{[
A

(3)c
kk1k2k3

ak1ak2ak3 − a3
k

]
+ 2[A(2)c

kk1k2
ak1Xk2 − akXk] + µ3a

2
k

}
.
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For the last term in the curly brackets Eq. (5.70) was used to express the frequency
dependence of Jq(z) in Eq. (5.69) solely by S[φ̂(t)3]. After this second reduction
step the solution reads up to order O(φ̂4):

(5.72) φ̂q(t) = aqφ̂q(t) +Xqφ̂
2(t) + Yqφ̂

3(t) + φ̃′′q (t) .

Here, already the contribution proportional to Yq has g3
2 as the lowest order term

and is of higher order than g5. However, the calculation of the amplitude Yq is a
prerequisite to determine the parameter µ4 which is necessary for the evaluation of
g5. To continue we substitute again Eq. (5.72) into the solvability condition (5.9b)
which after the same tricks as before is required to yield a definition of µ4 which
is consistent with the equations for the one-component case. Before adding new
terms from the expansion of Jq(z) in Eq. (5.45), the remaining terms of order O(φ̂5)
in Eq. (5.69) shall be collected from the lines with n � 3 discussed above. A new
parameter is introduced to shorten notation,

(5.73) κ′ = 2a∗qaqXq ,

and the contribution to Jq(z) so far is κψ3(z)−κ′S[φ̂]ψ2(z). Equation (5.70) can be
used to eliminate ψ2(z) and with the assistance of Eq. (5.47b) this contribution is
reduced to κψ3(z)−µ3κ

′S[φ̂4]+O(φ̂5). Next, the term from Eq. (5.45) for n = 4 is
added and the term with κ′ is absorbed in the definition of µ4. Then the solvability
condition up to order O(φ̂5) reads

(5.74) 0 = κψ3(z) − µ4S[φ̂4] + O(φ̂5) .

This is solved by the expansion of the one-component solution up to the term g5,
and the definition for the remaining parameter µ4 is

µ4 = a∗q{[a4
q −A

(4)c
qk1k2k3k4

ak1ak2ak3ak4 ] + 3[a2
qXq −A

(3)c
qk1k2k3

ak1ak2Xk3 ]

+[X2
q −A

(2)c
qk1k2

Xk1Xk2 ] + 2[aqYq −A
(2)c
qk1k2

ak1Yk2 ]} + κ′µ3 .
(5.75)

After having defined all the necessary parameters, we see that the solution of
Sec. 3.1 for φ̂(t) is consistent with the solution of the q-dependent case as formulated
in Eq. (5.72). Keeping only terms up to order (1/ ln t)5, one finally arrives at the
asymptotic solution for the q-dependent critical correlator at an A3-singularity,

φ◦q(t) =f◦
q + h◦q{g2(x) + g3(x)

+ [g4(x) +K◦
q g

2
2(x)] + [g5(x) + 2K◦

q g2(x)g3(x)]} .
(5.76)

We recognize that different from the expansion in Sec. 2, the leading correction in
Eq. (5.76) is given only by a term respecting the factorization, g3(x). Factorization
is first violated in order 1/ ln4 t and again only the amplitudes Kq are responsible
for that. The expansion for φ◦q(t) can be carried out up to order 1/ ln5 t if µ4 is
known. The next order would include g6(x) and require the additional parameter
µ5.

4. Critical decay at an A4-singularity

The A4-singularity is a special case of an A3-singularity with µ3 = 0. For
the logarithmic decay presented in Sec. 2 it is possible to specialize to the A4-
singularity by simply setting µ3 = 0 in the solution for the parameters Bj in
Eq. (5.29). Different from that, the critical decay for the A4-singularity does not
follow from the solution for the A3-singularity but requires another asymptotic
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expansion. However, the tricks for a solution in terms of slowly varying functions
are the same for A3 and A4.

4.1. One-component case. With vanishing µ3 at an A4-singularity, (5.16)
has yet again to be regrouped,

(5.77)

0 = ψ2(z) − µ4 S[φ̂4(t)](z)
+ κψ3(z) − µ5 S[φ̂5(t)](z)
+ κ4ψ4(z) − µ6 S[φ̂6(t)](z)

+ . . . .

Using again the Ansatz φ̂(t) = gm(x) = cm/x
m one arrives for the terms

on the first line of Eq. (5.77) at ψ2(z) = ζ(2)(mcm/ym+1)2 + O(1/y2m+3) and
S[φ̂(t)](z) = (cm/ym)4 + O(1/y4m+1). For m = 1 the first line in Eq. (5.77) is of
leading order O(1/y4) with the equation for the coefficient (ζ(2)c1)2 = µ4 which
results in the leading-order solution [38],

(5.78) g1(x) = c1/x , c1 =
√
ζ(2)/µ4 .

The corrections may be rephrased in terms of a differential operator again and
the solution is straight forward as before. Since for the q-dependent solution only
the first correction will be needed, only the first correction is calculated explicitly
here by the linear differential equation for the Ansatz φ̂(t) = g1(x) + g̃(x),

(5.79) 2y3g̃′(y) + 4y2g̃ = 4
√
ζ(2)/µ4 ζ(3)/ζ(2) + 3ζ(2)κ/µ4 − µ5ζ(2)/µ2

4 .

This is solved in leading order by g2(x) [41],
(5.80)
g2(x) = c2 ln(x)/x2 , c2 = 2

√
ζ(2)/µ4 ζ(3)/ζ(2) + 3ζ(2)κ/(2µ4) − µ5ζ(2)/(2µ2

4) .

Higher-order contributions for m � 3 can be written in the form

(5.81) gm(x) =
m−1∑
l=0

cm,l lnl(x)/xm ,

and — with the appropriate choice of the parameters cm,l — the general solution
for the critical decay at an A4-singularity in the one-component case is represented
up to O(ln−(m+1) t) as

(5.82) φ̂(t) = Gn(x) =
n∑

m=1

gm(x) , x = ln(t/t0) .

Because the leading order result g1(x) is of order O(1/ ln t) each higher order so-
lution requires the inclusion of an additional line in Eq. (5.77). This adds new
parameters µi and κi−2 in each step whereas for the A3-singularity, Eq. (5.61),
additional parameters occur only in every second step in the solution.

4.2. Multi-component case. The solution up to the first correction given
by g1(x) + g2(x) already requires the evaluation of the parameter µ5. Therefore
we need to calculate the amplitudes Xq, Yq, and Zq. The procedure is completely
analogous to the solution for the A3-singularity. Again, Jq = O(φ̂2) in Eq. (5.9b),
and φ̃q = O(φ̂2). Solving the successively higher orders allows for the definition
of the quantities above, namely Xq, Yq, µ2, µ3 and µ4, together with κ and κ′.
The restriction to µ3 = 0 simplifies Eqs. (5.71) and (5.75). With however different
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terms in φ̂, the form of Eq. (5.72) remains valid also for the present expansion.
The additional amplitude Zq is obtained by also including terms with n = 4 from
Eq. (5.45) with all previous results substituted. Applying the same manipulations
as above one arrives at φ̃′′q (t) = Zqφ̂

4 + O(φ̂5) with the amplitude

Zq = Rqk{[A(4)c
kk1k2k3k4

ak1ak2ak3ak4 − a4
k] + 3[A(3)c

kk1k2k3
ak1ak2Xk3 − a2

kXk]

+[A(2)c
kk1k2

Xk1Xk2 −X2
k ] + 2[A(2)c

kk1k2
ak1Yk2 − akYk] + µ4a

2
k} .

(5.83)

Introducing the third q-dependent correction into the solution adds up to

(5.84) φ̂q(t) = aqφ̂(t) +Xqφ̂
2(t) + Yqφ̂

3(t) + Zqφ̂
4(t) + O(φ̂5) .

Collecting all terms of order O(φ̂5) after including also the line n = 5 from Eq. (5.45)
and inserting Eq. (5.84) provides, using the solvability condition (5.9b), a consistent
definition of the parameter

µ5 = a∗q{[a5
k −A

(5)c
kk1k2k3k4k5

ak1ak2ak3ak4ak5 ]

+ 4[a3
kXk −A

(4)c
kk1k2k3k4

ak1ak2ak3Xk4 ]

+ 3[akX
2
k + a2

kYk −A
(3)c
kk1k2k3

(ak1Xk2Xk3 + ak1ak2Yk3)]

+ 2[XkYk + akZk −A
(2)c
kk1k2

(Xk1Yk2 + ak1Zk2)]} + κ′µ4 .

(5.85)

Having properly defined the parameter µ5 and after substituting (5.81) into
(5.84) we can write down the asymptotic solution for the critical decay at an A4-
singularity in next-to-leading order:

(5.86) φ∗q(t) = f∗
q + hq

{
g1(x) + [g2(x) +Kqg

2
1(x)]

}
.

We see that the asymptotic solution for the critical decay is getting increas-
ingly more involved for higher-order singularities. However, the expansion can be
performed in terms of the solution of the one-component case. The dominant q-
dependent correction for both A3- and A4-singularities is given by the square of the
leading-order solution, φ̂(t), with the amplitude Kq. The higher-order contributions
enter the curly brackets in Eq. (5.86) as g3(x)+2g1(x)g2(x)Xq/aq +g3

1(x)Yq/aq and
g4(x)+g2

2(x)Xq/aq +2g1(x)g3(x)Xq/aq +3g2
1(x)g2(x)Yq/aq+g4

1(x)Zq/aq. However,
g3(x) requires the evaluation of the parameters µ6 and κ4, g4(x) needs µ7 and κ5.

5. A2-singularity and coupled quantities

For later reference we will briefly reformulate the asymptotic laws at an A2-
singularity specified by µ2 > 0 in Sec. 5.1. The asymptotic approximations for
coupled quantities as introduced in Sec. 3 of Ch. 2 closely follow the ones for the
density correlation function. These laws are presented in Sec. 5.2 and apply to the
A2-singularity as well as to the higher-order singularities. We will follow closely the
presentation in Refs. [7, 60], adapt the notation and generalize. For the MSD the
laws from Sec. 2 shall be specialized further.

5.1. A2-singularity. The equations from Sec. 1 hold for all Al-singularities
and are independent of a chosen asymptotic expansion. In particular, the splitting
from Eq. (5.13b) applies to the A2-singularity as well. The grouping in Eq. (5.16),
however, is different depending on the orders in ε the specific expansion introduces
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as was seen in Sec. 3. For the expansion at the A2-singularity the first line of
Eq. (5.16) reduces to

(5.87) ε1(V) + λS[G(1)2(t)](z) − S[G(1)(t)]2(z) = 0 .

For λ = 1, this is identical to Eq. (5.19). The separation parameter ε1 was denoted
σ in Ref. [7] and is defined in Eq. (5.35). We will use the notation σ when referring
to the separation from an A2-singularity and ε1 when addressing a higher-order
singularity. For λ < 1 the solution of Eq. (5.87) is known as β-correlation function
[3, 88],

(5.88) G(t) =
√
|σ| g±λ (t/tσ) , tσ = t0/|σ|1/2a , σ ≷ 0 ,

which is a scaling function that depends only on the exponent parameter λ. Changes
in the separation parameters enter only via a time scale tσ that is diverging when
the singularity is approached. The exponent a describing the divergence is also
given by λ,

(5.89) λ = Γ(1 − a)2/Γ(1 − 2a) .

The correction is given by Kq G(t)2 and another scaling function [7, 89],

(5.90) H(t) = σ h±λ (t/tσ) , σ ≷ 0 .

The q-dependent solution up to O(
√
σ

3) reads

(5.91) φq(t) = f c
q + f̂q + hq{G(t) + [H(t) +Kq G(t)2]} .

The definition of the correction amplitude Kq is given in Eqs. (5.38b) and (5.44)
and the corrections to the plateau of an A2-singularity are

(5.92) f̂q = (1 − f c
q ){RqkÂ

(0)
k (V) + aq[κ(V) + σ(λζ − ξ)/µ2

2]} .
The definition of ζ is identical to the one in Eq. (5.40) with the first term divided
by λ and ξ = ζ − µ3/2 with µ3 from Eq. (5.41). The evaluation of κ(V) is some-
what tedious but straightforward when the linearization in σ adopted in Ref. [7] is
discarded.

Formula (5.91) represents again a generalized factorization theorem and it can
also be read for Eq. (5.42) with the appropriate definition of f̂q from Eq. (5.43)
and G(t) = G(1)(t) defined in Eq. (5.20) and H(t) = G(2)(t), Eq. (5.29a). For the
critical laws at the A2-, A3-, and A4-singularities the plateau corrections are zero.
In this sense Eq. (5.91) incorporates also Eqs. (5.76) and (5.86) and the critical law
for the A2-singularity where

(5.93) G(t) = (t0/t)a , H(t) = κ(a) (t0/t)2a ,

with a function [7]

(5.94) κ(x) = [ξΓ(1 − 3x) − ζΓ(1 − x)3]/[Γ(1 − x)Γ(1 − 2x) − λΓ(1 − 3x)] .

The decay below the plateau f c
q is commonly called α process and its initial part

is described by the von Schweidler law [7, 84],

(5.95) G(t) = (t/t′σ)b , H(t) = κ(−b)(t/t′σ)2b , λ = Γ(1 + b)2/Γ(1 + 2b) ,

with κ(−b) given by Eq. (5.94). The time scale t′σ obeys another power-law scaling,

(5.96) t′σ =
t0

B1/b|σ|γ , γ =
1
2a

+
1
2b
.
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The number B and exponents a and b are given by λ. They are tabulated in
Ref. [88]. The precise form of the function κ(x) is found in [7].

Anticipating that several asymptotic expansions can be phrased in that form
we shall use Eq. (5.91) to derive the laws for the coupled quantities in the next
section.

5.2. Coupled Quantities. In general, the approximations to the coupled
quantities are derived by inserting the asymptotic approximation for φq(t) into
the memory kernels for the coupled quantities. We demonstrate that explicitly for
the tagged particle correlator φs

q(t) and the mean-squared displacement (MSD).
The general form of Eq. (5.91) will be used in the derivations and G and H

The equations of motion for the tagged particle, Eq. (2.11), can be reformulated
using the S-transform in a form similar to Eq. (5.4),

(5.97)
S

[
φs

q(t)
]
(z)

1 − S
[
φs

q(t)
]
(z)

= S
[
Fs

q

[
V, φk(t), φs

p(t)
]]

(z) .

When inserting Eq. (5.91) into Eq. (5.97), using an expansion as for the coherent
functionals and collecting terms of the same order, one can write the approximation
in next-to-leading order for the tagged particle as [60],

(5.98) φs
q(t) = fs c

q + f̂s
q + hs

q{G(t) + [H(t) +Ks
q G(t)2]} ,

with the critical amplitude hs
q = (1− fs c

q ) as
q, the correction amplitude Ks

q and the
plateau correction f̂s

q . These quantities are given as

(5.99a)
∑

k

(δqk −As c
q,k) as

k =
∑

k

As c
qkak ,

∑
k

(δqk −As c
q,k) as

kK
s
k = − λas

q
2 +

∑
k

As c
qkakKk

+
∑
k,p

[As c
q,kpa

s
ka

s
p +As c

qkpakap +As c
qk,paka

s
p] ,

(5.99b)

(5.99c)
∑

k

(δqk −As c
q,k) as

kf̂
s
k = −ε1 as

q
2 +

∑
k

As c
qk akf̂k + Âs

q(V) .

For the higher-order singularities, λ = 1; for the A2-singularity ε1 is replaced by σ.
The derivatives with respect to the coherent and tagged particle glass-form factors
are denoted before and after the comma, respectively. The coefficients are

As
qk1···kn,p1···pm

(V) =
1
n!

1
m!

(1 − fs
q

c)
∂n∂mFs

q

[
V, f c

k , f
s
q

c
]

∂fk1 · · ·∂fkn∂f
s
p1

· · · ∂fs
pn

× (1 − f c
k1

) · · · (1 − f c
kn

)(1 − fs
p1

c) · · · (1 − fs
pn

c) =

=Asc
qk1···kn,p1···pm

+ Âs
qk1···kn,p1···pm

(V) .

(5.100)

The transformed equation of motion, S[δr2(t)](z) = 6/S[m(0)(t)](z), and simi-
lar arguments as above yield the asymptotic expansion for the MSD,

(5.101)
1
6
δr2(t) = rc

s
2 − r̂2s − hMSD {G(t) + [H(t) +KMSDG(t)2]} ,

with parameters

(5.102a) hMSD = rc 4
s {Fc

MSD[hk, f
s c
p ] + Fc

MSD[f c
k, h

s
p]} ,
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KMSD = rc,4
s {Fc

MSD[hk, h
s
p] + Fc

MSD[hkKk, f
s c
p ]

+ Fc
MSD[f c

k, h
s
pK

s
p]}/hMSD − λhMSD/r

c 2
s ,

(5.102b)

r̂2sMSD = rc 4
s {Fc

MSD[hkf̂k, f
s c
p ] + Fc

MSD[f c
k , h

s
pf̂

s
p ]

+ Fc
MSD[f c

k, f
s c
p ](V) −Fc

MSD[f c
k, f

s c
p ](Vc)}/hMSD

− ε1(V)h2
MSD/r

c 2
s .

(5.102c)

Again, ε1 has to be replaced by σ for an A2-singularity and λ = 1 for higher-order
singularities.

Inserting the critical law (5.93) into (5.101) yields the following form for the
description of the MSD at the transition point,

(5.103)
1
6
δr2(t) = rc 2

s − hMSD (t0/t)a{1 + [KMSD + κ(a)](t0/t)a} .

The increase of the MSD above the plateau rc 2
s is given by the von-Schweidler law,

Eq. (5.95),

(5.104)
1
6
δr2(t) = rc 2

s + hMSD (t/t′σ)b{1 − [KMSD + κ(−b)](t/t′σ)b} .

5.3. Power laws in the MSD. The logarithmic decay laws (5.42) shall be
phrased for the MSD in a slightly different form than in Eq. (5.101) to account for
the fact that the MSD is conveniently shown in a double-logarithmic plot and this
representation is more sensitive to the detection of power laws. The asymptotic
approximation (5.42) for the MSD can be written as

(5.105a) z = a0 + a1 y + a2 y
2 + a3 y

3 + a4 y
4 , z = δr2(t)/6 , y = ln(t/τ) .

The constant term represents the square of the localization length, a0 = rc 2
s − r̂2s ,

the coefficients a1 = hMSD(B−B1), a2 = −hMSD(B2 +KMSDB
2) as well as a3 and

a4 are separation dependent prefactors for the leading- and next-to-leading order
logarithmic terms. Expanding the asymptotic solution (5.105a) for ln z close to the
plateau yields

(5.105b) ln z = ln a0 + b′1 y + b2 y
2 + O(y3) , b′1 =

a1

a0
, b2 =

2a0a2 − a2
1

2a2
0

.

For vanishing coefficient b2, the linear term in Eq. (5.105b) is equivalent to a power
law. In leading order in

√
ε this power law for the MSD reads

(5.106a) δr2(t)/6 = rc 2
s (t/τ)b1 ,

with an exponent

(5.106b) b1 = hMSDB/r
c
s

2 .

Exponent b1 varies with the square-root in the separation parameter ε1, cf. (5.20),
and Eq. (5.106) constitutes a leading-order approximation for the MSD equivalent
to Eq. (5.37). In particular the quadratic correction proportional to b2 is of higher
order in

√
ε than the linear term b1. Including the next-to-leading order the pref-

actor rc 2
s to the power law is rescaled to rc 2

s − r̂2s and the corrected exponent is

(5.107) b′1 = hMSD(B −B1)/(rc 2
s − r̂2s) .
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6. Dynamics in a one-component model

For the demonstration of the results above a simple M = 1 model is used in
the following which has two control parameters V = (v1, v3), v1 � 0 and v3 � 0,
and was derived within a theory for spin-glass transitions [90]. We use the model
with Brownian microscopic dynamics. Equations (2.7b) and (2.7c) then specialize
to

τ1∂tφ(t) + φ(t) +
∫ t

0

m(t− t′)∂t′φ(t′) dt′ = 0 ,(5.108a)

m(t) = v1φ(t) + v3φ
3(t) .(5.108b)

Referencing the powers occurring in the memory kernel (5.108b) the model is also
called F13-model. The discussion below is closely following the one in Ref. [83].
At the appropriate points we extend the discussion or cut it shorter to make the
comparison to the SWS easier. In particular, we do not consider the frequency
domain in the following for which we refer to Ref. [83].
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Figure 5.1. Glass-transition diagram for the F13-model defined
in Eq. (5.108). The vertical full line shows the liquid-glass-
transition singularities connected with a continuous variation of
the glass-form factors. The heavy full line represents the set of
A2-singularities that ends at an A3-singularity marked by the cir-
cle (©). The square (�) indicates where the two lines cross. The
dashed line presents the boundary where the separation parameter
ε1 = 0. The dotted line is the analog for ε2 = 0 which is shown
only for v1 > 9/8. The chain line describes the points of vanishing
coefficients B2, and crosses (×) and triangles (�) denote the states
n and n′ for the discussion in Figs. 5.2 and 5.3, respectively.
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The glass-transition diagram for the model in Eq. (5.108) is reproduced in
Fig. 5.1 [3, 34]. It is obtained from the largest of the solutions for f c of Eq. (2.8),
i.e., vc

1f
c + vc

3f
c 3 = f c/(1 − f c), and Eq. (5.11). There are two transition lines

that we plot in a way to enforce the similarity to the glass-transition diagrams
of Ch. 4. The first one is the straight vertical line of degenerate A2-bifurcations:
vc
1 = 1, 0 � vc

3 � 4, f c = 0. Crossing this line by increasing v1, f = φ(t → ∞)
increases continuously. The second one is the smooth curve of A2-singularities
shown as a heavy full line. It starts at vc

1 = 0, vc
3 = 27/4, f c = 2/3. With

decreasing vc
3, f

c decreases along the line. For vc
1 = 1, vc

3 = 4 one crosses the first
line for f c = 1/2. Decreasing f c further, the line reaches the endpoint that is
marked by a circle. This is the A3-singularity V◦ specified by

(5.109) v◦1 = 9/8 , v◦3 = 27/8 , f◦ = 1/3 , µ3 = 1/3 .

At the A3-singularity, µ2 = 0 and for decreasing vc
1 this parameter increases along

the line of transition points as µ2(vc
1) = 1 + (3

√
9 − 8vc

1 − 9)/(8vc
1). From an

expansion for small distances v̂1 we find µ2 ∝
√
v̂1, which is generic at an A3-

singularity as µ2 and f vary regular but the control parameters assume extreme
values as functions of f c.

The two separation parameters obtained from Eqs. (5.7b) and (5.14b) are linear
functions of the parameters differences v̂1,3 = v1,3 − v◦1,3:

(5.110) ε1(V) = (2/81)[9v̂1 + v̂3], ε2(V) = (4/27)[3v̂1 + v̂3] .

The lines εi(V) = 0 define local coordinates at the A3-singularity and condition
ε1 < 0, (5.21), is fulfilled below the line ε1 = 0 in Fig. 5.1. The formulas (5.110)
determine the coefficient B in Eq. (5.20) and B1 to B4 in Eqs. (5.29). The scales τ
for the results in Eqs. (5.22), (5.30), and (5.31) are determined as the time where
the correlator crosses the critical form factor: φ(τ) = f◦.

6.1. Logarithmic decay. The term B2 ln2(t/τ) in Eq. (5.30) is responsible
for the dominant deviation of the correlators from the logarithmic-decay law (5.22).
Setting B2 = 0 defines a line (dash-dotted in Fig. 5.1) where the logarithmic-decay
law is seen best. Figure 5.2 demonstrates the evolution of the dynamics upon
shifting states on this line toward the A3-singularity. The time intervals, where
the leading order (5.22) or next-to-leading order approximation (5.30) describe the
correlators within an error margin of 5%, are marked by closed and open symbols,
respectively. For n � 2, these intervals increase with decreasing V − V◦.

There are two peculiarities concerning the range of applicability of the asymp-
totic expansions. First, it can happen that for sufficiently large separation ε the
range shrinks if one proceeds from the leading approximation to the next-to-leading
one as is demonstrated in Fig. 5.2 for the n = 1, 2 results. This is caused by a can-
cellation of errors due to neglecting the B1-correction in the prefactor of the ln(t/τ)
term in Eq. (5.30) and due to neglecting the terms proportional to B3 and B4. This
peculiarity would disappear if the tolerated error margin were decreased sufficiently
below the 5% used. Second, for small V −V◦, the interval of decay for φ(t) below
the critical form factor f c that is described by the asymptotic expansion shrinks
with decreasing separation. This is inferred by comparing the n = 3 with the n = 4
results. The reason is the following. The correlator φ(t) decreases monotonically
towards its long-time limit f [57]. For the liquid state n = 1 the plateau value is
zero. After crossing the vertical line in Fig. 5.1 the plateau increases continuously
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Figure 5.2. Correlators φ(t) for the one-component model de-
fined in Eq. (5.108). The states are located on the line B2 = 0
with coupling constants: vc

1−v1 = 0.9298/4n, vc
3−v3 = 3.3750/4n,

n = 1, . . . , 4, marked by crosses in Fig. 5.1. The full lines are the
solutions of Eqs. (5.108a, b) with τ1 = 1 as unit of time as also in
the following figures. The dotted straight lines exhibit the leading
approximation, Eq. (5.22), the dashed lines the leading correction,
Eq. (5.30). The filled and open symbols, respectively, mark the
times where these approximations deviate from the solution by
5%. The dotted line marked by D is the Debye law exp[−t/τ1].
The horizontal line shows the critical form factor f◦ = 1/3.

from f = f c = 0 to f = f◦ and the interval for the logarithmic decay below f◦

decreases.
Figure 5.2 demonstrates that the transient regime extends to about t/τ1 = 1.

For vanishing mode-coupling functional, the correlator describes a Debye process:
φ(t) = exp(−t/τ1). Mode-coupling effects cause a slower decay for t/τ1 � 1. But
for V close to V◦, the transient dynamics is rather insensitive to changes of the
coupling constants. There is a crossover interval, say τ1 < t < τ∗, before the decay
of φ(t) towards f c can be described by the ln(t/τ) law. The beginning τ∗ of the
range of validity of Eq. (5.22) is indicated by the filled symbols. There are two
subtleties demonstrated for n � 2. First, the time τ∗ increases upon approaching
the A3-singularity, and therefore the decay interval φ(τ∗) − f◦ which is described
by the logarithmic law shrinks with decreasing separation parameters. The control-
parameter sensitive structural relaxation is governed by the two time scales τ∗ and
τ . Both times become large, but τ/τ∗ becomes large as well for ε→ 0. Second, the
beginning of the range of applicability of the leading correction Eq. (5.30) is almost
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control-parameter insensitive, as is shown by the open symbols on the short-time
part of the decay curves.
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Figure 5.3. Correlators φ(t) for the one-component model de-
fined in Eq. (5.108) for states located on the line ε1 =
−0.0182. The states with labels n′ = 1–4 have the coordi-
nates (v1, v3) = (1.1169, 2.7141), (1.0669, 3.1641), (1.0169, 3.6141),
(0.9669, 4.0641), respectively, and they are marked by triangles in
Fig. 5.1. The state labeled n′ = 2 is identical with the state dis-
cussed in Figs. 5.1, 5.2 with label n = 2. The states with labels
5, 6, and 7 have the coordinates (0.9599, 4.1271), (0.9569, 4.1541),
and (0.9549, 4.1721), respectively. The straight line in Fig. 5.1
through the states 1 to 7 crosses the liquid-glass-transition curve
at Vc = (0.95466, 4.17407), where the critical glass-form factor has
the value f c = 0.520 and λ = 0.719 implying a critical exponent
a = 0.318 and a von Schweidler exponent b = 0.608. The leading
order of the critical decay law, Eq. 5.93 and the von Schweidler law,
Eq. (5.95) are shown by dotted lines labeled a and b, respectively;
the constants of proportionality are fitted to curve 7. The dashed-
dotted curve extends the von Schweidler expansion for curve 7
to the second order, cf. Eq. (5.95). The horizontal lines mark
the critical glass-form factors f◦ and f c, respectively. The dotted
straight lines and the dashed curves are the leading asymptotic
laws, Eq. (5.22), and the leading correction, Eq. (5.30), respec-
tively.

Let us consider the states labeled n′ = 1–3 and shown by triangles in Fig. 5.1 in
order to analyze the implications of the correction term in Eq. (5.30) proportional
to B2. These states are chosen on the line ε1 = −0.0182 and state n′ = 2 is identical
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with state n = 2 considered in Fig. 5.2 as example for B2 = 0. Figure 5.3 exhibits
the correlators together with their approximations. For B2 > 0, the φ(t) versus
log(t) diagram is convex for all times outside the transient, since a parabola with
positive curvature is added to the leading linear variation described by Eq. (5.22).
The formula with the leading correction describes the complete structural relax-
ation, except for the very last piece for the approach to the long-time limit f , as
shown by curve n′ = 1. This observation also holds for cases with B2 < 0 as is
demonstrated for state n′ = 3. However, for negative B2, the φ(t) versus log(t)
curve exhibits two inflection points because φ(t) crosses the critical form factor f◦

with negative curvature. Since the φ(t) versus log(t) curve is concave for φ(t) ≈ f◦,
it has to have an inflection point for φ(t) < f◦ in order to approach the exponen-
tial, i.e. convex, long-time asymptote. It has to exhibit an inflection point also
for φ(t) > f◦ in order to approach the convex critical correlator for short times.
The described alternation of concave and convex parts is identical to the behavior
discussed earlier for the MCT correlators for states near an A2-singularity [3, 7].
But contrary to the characteristic decay pattern found for the MCT liquid-glass
transition, curve n′ = 3 does not show a two step relaxation scenario, even though
there is a huge stretching of the dynamics. For the decay from 0.80 to 0.05 a dy-
namical window of 5 orders of magnitude is required. Within this large window,
the correlator follows closely the law φ(t) ∝ ln(t/τeff).

The qualitative features described above for state n′ = 3 are more pronounced
for state n′ = 4, sinceB2 is decreased to larger negative values. The relaxation curve
4 has the form expected for states near a liquid-glass transition. To corroborate
this statement, further states n′ = 5 to 7 are considered on the line ε1 = −0.0182
between the state 4 and the intersection Vc of this line with the liquid-glass transi-
tion curve. The transition point Vc is characterized by a critical glass-form factor
f c > f◦. The decay of the correlator from the value f c to zero is the corresponding
α-process. Its initial part is described by the von Schweidler power law, as indicated
in Fig. 5.3 for curve n′ = 7 by the dotted line. In this case, the von Schweidler law
accounts for the decay from f c to about 0.45, i.e. for about 15% of the α-relaxation.
The analytical description of the α-process can be expanded by using the correction
of von Schweidler law, Eq. (5.95), as shown by the dashed-dotted line. Asymptot-
ically, the α-process obeys the superposition principle: φ(t) = φ̃(t/τα), where φ̃ is
the control-parameter-independent shape function. The φ(t) versus log(t) curves
for the α-process can be superimposed by rescaling the time, i.e. by shifts parallel
to the log(t)-axis. It is easy to check that the curves n′ = 4–7 have the same shape
for φ(t) < f c. Outside the transient for φ(t) > f c, the correlator follows the critical
decay law for the fold bifurcation φ(t) − f c ∝ 1/ta, as is also demonstrated for
curve 7. The results for states 4–7 exemplify the well understood scenario for the
evolution of structural relaxation near a liquid-glass transition. The formula (5.30)
provides an accurate description of 60% of the α-process.

Comparison of the results for states n′ = 1–3 with the second-correction formula
based on Eq. (5.31) does not alter seriously the fit quality for the long-time part of
the curves n′ = 4–6 in Fig. 5.3. However, for φ(t) ≈ f c, the extended formula yields
slightly worse results than Eq. (5.30). This is so, since for φ(t) � f c, the dynamics
is governed by the A2-singularity Vc whose existence is ignored in the expansions
near the higher-order singularity. The number f c − f◦ marks the limit where the
expansion in the small parameter φ(t) − f◦ makes sense. The opposite conclusion
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holds for the description of the α-process for φ(t) ≈ f◦. The von Schweidler law
results from an expansion for states V near Vc in terms of the small parameter
f c−φ(t). This number becomes too large if φ(t) ≈ f◦. It is the dynamics dominated
by the higher-order glass-transition singularity V◦ that ruins the relevance of the
expansion resulting in the von Schweidler law. The stretching of the α-process
connected with the transition of Vc is larger than estimated by von Schweidler’s
law, because of the logarithmic-decay effects.
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Figure 5.4. Critical decay at the A3-singularity in the F13-model.
The full line shows the solution for φ◦(t) of Eq. (5.108) at V = V◦.
The lines labeled Gn, for n = 2, 3, 5, 7, show the approximations
from Eq. (5.64) with the time scale t0 = 1.6 ·10−4. The dotted line
labeled n = 4 is the next-to-leading-order correction, Eq. (5.31),
to the decay for n = 4 in Fig. 5.2. The point where G3 deviates by
2% from φ◦(t) is marked by a square (�). The inset reproduces the
upper part of the decay using the same line styles. The diamond
(�), the triangle (�) and the circles (©) mark the locations where
G7, G5, and n = 4 deviate by 2% from φ◦(t), respectively.

6.2. Critical decay. We conclude the discussion of the one-component model
with an analysis of the critical decay at the A3-singularity in Fig. 5.4. The solution
for the state V = V◦ (full line) does no longer cross the plateau but approaches it
asymptotically. For an A2-singularity the critical decay is described by the power
law (t/t0)−a, cf. Eq. (5.93), but for the A3-singularity this has to be replaced
by the inverse logarithms in Eq. (5.64). The approach to the critical plateau is
significantly slower than for a typical A2-singularity where the decay comes close to
the plateau within a few decades when a deviation of 5% is used as a measure, cf.
curve a in Fig. 5.3. This criterion is not met by the decay in Fig. 5.4 for the entire
window in time shown. For t = 1011 the critical correlator φ◦(t) is still 5.5% above
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f◦ = 1/3. To apply the asymptotic approximation provided by Sec. 3.1 one has to
evaluate the parameters appearing in Eq. (5.64) and find the time scale t0. The
first requirement is fulfilled straightforwardly by µ3 = 1/3, µ4 = µ5 = κ = κ4 = 1
and summarized by the explicit formula for G7(x) for the F13-model in Eq. (A.11).
In contrast, matching consistently the time scale t0 presents a challenge as this has
to be done at large times. It has been recognized earlier that this is not possible
when using only G2(x) or G3(x) [35, 41].

Using terms up to G7(x) from the asymptotic expansion and extending the
numerical solution to t = 1038, it is possible to consistently fix t0 = 1.6 ·10−4. After
having matched t0, the successive asymptotic approximations can be drawn into
Fig. 5.4. The leading approximation from Eq. (5.54), labeled G2, deviates from the
critical correlator strongly indicating that more terms from the asymptotic series
are necessary. Including the next-to-leading term g3(x) from Eq. (5.59) yields the
approximation labeled G3. A square indicates where G3 deviates from the critical
correlator by less than 2% for t � 5 · 105. If that criterion were relaxed to 5%, G3

would obey it for t � 103. For t < 103 the approximation G3 stays close to the
critical correlator within 6%. Even if it is not possible to match the time scale t0
using the approximation up to the first correction, after correctly matching t0, the
approximation by G3 provides a first reasonable approximation to φ◦(t). Including
further terms of the expansion improves the approximation as is seen for G5 and
G7 in Fig. 5.4 by the curves labeled accordingly. The 2% deviations from φ◦(t) are
shown in the inset by a triangle for G5 and a diamond for G7. We recognize that
the inclusion of g6(x) and g7(x) into G7 of Eq. (5.64) still improves the range of
applicability by one order of magnitude in time. One concludes that the asymptotic
expansion presented in Sec. 3 describes the critical decay at an A3-singularity up
to the transient regime.

For approaching the A3-singularity, but V �= V◦, the correlators φ(t) share
an increasingly larger window in time with the critical correlator φ◦(t) and the
expansion of Sec. 2 can be applied. Fig. 5.4 shows the approximation including also
Eq. (5.31) to the curve for n = 4 from Fig. 5.2. We observe that the asymptotic
description in terms of powers of the logarithm describes a large part of the critical
decay. The inset of Fig. 5.4 shows the 2%-deviation of the approximation (dotted)
from the critical correlators by two circles. By this criterion the approximation
is acceptable for two orders of magnitude in time and covers a comparably large
amplitude of 30% of the decay. Describing the critical correlator by the logarithmic
decay laws of Sec. 2 is possible for an increasing interval in time as we approach the
A3-singularity. However, for τ → ∞ the range of applicability shrinks with respect
to the amplitude in φ(t) that is covered.

It is obvious that matching a time scale t0 at t = 1040 and using six terms of
the expansion in Eq. (5.64) is not useful for fitting data. However, the expansion in
Eq. (5.64) leads to a reasonable approximation also for short times. We may depart
from the procedure to match t0 at large times and try to fit the time scale instead
for shorter times. Figure 5.5 shows the values obtained for t0 when matching the
approximations at large times (×) as described above. That t0 is practically the
same for n � 5 justifies the use of the series (5.64) as an approximation. We will
consider two procedures for fitting. The first shall define a scale t′0 by matching
the critical correlator and the approximation at t = 106, namely Gi(106/t′0) =
φ◦(106). The second time scale t′′0 is obtained from matching at 50% of the decay,
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Figure 5.5. Time scale t0 for the approximation of the critical
decay at the A3-singularity in the F13-model for including n orders
of the asymptotic expansion (5.64). Time scales obtained by com-
parison at large time, 35 � log10 t � 38 are shown by crosses (×).
The time t′0 resulting from matching the solutions at t = 106 is
shown by filled circles (•). The diamonds (�) show the time scale
t′′0 resulting from matching at 50% of the decay where φ(t) = 2/3.
The inset shows t0 on logarithmic scale to include the larger devi-
ations for n = 2.

Gi(2.5/t′′0) = 2/3. We infer from the inset of Fig. 5.5 that all methods to fix t0 based
on the term G2(x) alone are off by orders of magnitude. The approximation up to
G3(x) yields the correct order of magnitude for t0 in all three approaches. Starting
with n = 5, the scales t0 and t′0 can no longer be distinguished, therefore matching
the approximation at 106 is comparable to a true asymptotic approximation. We
see that fixing at 106 is superior to using t′′0 which implies matching at too short
times.

7. Dynamics in a two-component model

To mimic the q-dependence, which is crucial for the asymptotic expansions
above, we use a two-component model that was introduced for the description of a
symmetric molten salt [91]. The model has three control parameters we combine to
the vector V = (v1, v2, v3). We will again use Brownian dynamics, so the equations
of motion for the correlators φq(t), q = 1, 2, read

τq∂tφq(t) + φq(t) +
∫ t

0

mq(t− t′)∂t′φq(t′)dt′ = 0 ,(5.111a)

m1(t) = v1φ
2
1(t) + v2φ

2
2(t) ,(5.111b)

m2(t) = v3φ1(t)φ2(t) .(5.111c)
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The glass-transition diagram for the above model has been calculated before [3, 34].
This can be done analytically what will allow also for an accurate determination of
the higher-order singularities. We restrict ourselves to v3 > 4. Equation (2.8) for
the second form factor implies f2 = [v3f1−1]/(v3f1), and this result can be used to
eliminate f2 in the following expressions. Equation (2.8) for the first form factor,
f1/(1− f1) = v1f

2
1 + v2f

2
2 , is a linear equation for (v1, v2) with coefficients that are

nonlinear in f1 and v3. The same holds for Ec = 1, Eq. (5.11), for a singularity
which is equivalent to f c

1/(1− f c
1)2 = 2vc

1f
c
1
2 +2vc

2
2f c

2 (1− f c
2). These equations can

be used to express vc
1 and vc

2 in terms of vc
3 and f c

1 . To ease the notation, variables
x and y shall be introduced as

(5.112a) vc
3 = x , f c

1 = y .

One gets a parameterized representation of the transition surface,

vc
1 =

3 − (2 + x)y
2(1 − y)2y(2 − xy)

,(5.112b)

vc
2 =

x2y(y2 − 2y3)
2(1 − y)2(x2y2 − 3xy + 2)

.(5.112c)

The variables x and y with x > 4 and 1/2 � y � 3/(2 + x) serve as surface
parameters. The exponent parameter λ = 1 − µ2 is determined by

(5.112d) µ2 =
(3x2 + 6x)y3 − (x2 + 18x+ 8)y2 + (6x+ 18)y − 6

(2x2 + 4x)y3 − 12xy2 + (2x+ 4)y
.

The maximum theorem, Eq. (2.9), has to be used to identify among the points
(vc

1, v
c
2, v

c
3) those that are glass-transition singularities.

7.1. A3-singularity. A typical cut through the three dimensional glass-tran-
sition diagram containing higher-order singularities will contain either a smooth line
of A2-singularities or a crossing of lines with an associated A3-singularity. Hitting
the A4-singularity on the liquid-glass-transition line requires fine tuning of the third
parameter and will be considered in Sec. 7.2. Figure 5.6 shows a cut through the
glass transition diagram for the model defined in Eq. (5.111) for vc

3 = 45 which
exhibits a generic A3-singularity. Since all steps can be carried out analytically it
is particularly transparent to follow the evolution of the higher-order singularities
in the two-component model of Eq. (5.111). For the existence of a cusp singularity,
x needs to be sufficiently large which is fulfilled for vc

3 = 45. In this case, the cubic
numerator polynomial in Eq. (5.112d) has two zeros y1(x) < y2(x) above some y0;
they can be evaluated straightforwardly [87]. The transition line consists of several
pieces. The first one, obtained for y2(x) < y � 1/2, is shown in Fig. 5.6 as heavy
full line. It starts at vc

1 = 4, vc
2 = 0 and ends at the A3-singularity marked by a

circle. The second piece describes bifurcations with µ2 < 0 for y1(x) < y < y2(x).
It connects the mentioned A3-singularity with a second A3-singularity of Eq. (2.8)
that is shown as a shaded circle. This piece of the line is shown dotted. Decreasing
y further, one gets a curve with µ2 > 0 that joins the second A3-singularity with
the point vc

1 = 0, vc
2 = 3/(2 + x). This line exhibits a crossing point with the

first line piece mentioned above, that is shown as a square. The part between the
second A3-singularity and the crossing point is shown dotted, and the final piece is
shown as light full line. The dotted bifurcation lines and the second A3-singularity
are excluded from the set of glass-transition singularities because of the maximum
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Figure 5.6. Glass-transition diagram for the two-component
model for v3 = 45. The light full line represents the glass-transition
singularities with the lower glass-form factors, the heavy full line
the singularities with the higher glass-form factors. The latter line
crosses the former one (�) and extends as line of glass-glass transi-
tions until it terminates in an A3-singularity (©). The dotted lines
that join in the cusp singularity marked by a shaded circle com-
plete the bifurcation diagram but they have no relevance for the
discussion of the MCT solutions. The straight dashed and dotted
lines show where the separation parameters ε1 and ε2 vanish. The
chain lines are the cuts v3 = 45 through the surfaces of vanishing
correction term B2(q) = B2 + KqB

2 in Eq. (5.42), q = 1, 2. The
crosses labeled n = 1, 2, . . . and triangles labeled n′ = 1, 2, 3 mark
states whose dynamics is discussed in Figs. 5.7, and 5.8, respec-
tively.

theorem. These items have been added to the figure in order to illustrate the
familiar swallowtail scenario [5]. The line between the crossing point and v1 = 0
is also representing generic liquid-glass transitions with a finite critical glass-form
factor, f c

q > 0.
7.1.1. Logarithmic decay. Figure 5.7 demonstrates the validity of the factoriza-

tion theorem for states close enough to a cusp singularity V◦ and its violation for
states sufficiently away from it. For the A3-singularity with vc

3 = 45, the correction
amplitudes calculated from Eq. (5.44) are quite different for the two correlators:
K1 = 0.06857, K2 = −2.049. Therefore, the lines for vanishing dominant correc-
tion, i.e. the cut of the surfaces B2(q) = B2 +KqB

2 = 0, q = 1, 2, with the plane
v3 = 45 are quite different as well, as shown by the chain lines in Fig. 5.6. The
four states discussed in Fig. 5.7 are chosen on the surface B2(1) = 0. Thus, the
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Figure 5.7. Correlators φ1,2(t) for the two-component model de-
fined in Eq. (5.111). The states labeled n = 1, . . . , 4 are located on
the cut v3 = 45 through the surface of vanishing dominant correc-
tion for the first correlator, B2(1) = B2 +K1B

2 = 0. The coupling
constants are v◦1 − v1 = 2/4n, v◦2 − v2 = 0.14907/4n and the states
for n = 1, 2, and 3 are shown in Fig. 5.6 by crosses. The full
lines are the solution of Eqs. (5.111a–c). The dotted straight lines
show the leading approximation, Eq. (5.37) and the dashed ones
the leading correction, Eq. (5.42). The long horizontal lines show
the critical glass-form factors f◦

1 = 0.312507, f◦
2 = 0.92889 and

the short horizontal lines shown for the states n = 1, 2, denote the
renormalized form factors f◦

1,2 + f̂1,2 according to Eq. (5.43). Here
and in the following figures, the model is used with τ1 = τ2 = 1.

scenario for the evolution of the ln(t/τ) law shown for φ1(t) is in qualitative agree-
ment with the one discussed for the F13-model in Fig. 5.2. The states with labels
n = 3 and 4 are so close to the singularity, that the correction term in Eq. (5.42)
proportional to B2(2) = O(ε) is not important. As a result, the rescaled functions
(φq(t)−f c

q )/hq, q = 1 and 2 agree for the states n = 3 and 4, and the same holds for
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the corresponding approximations. However, for the states with labels n = 1 and
2, the negative coefficient B2(2) is so large that the φ2(t) versus log(t) curve does
not exhibit the straight line obtained for φ1(t) versus log(t). Rather, the correlator
φ2(t) exhibits changes of the curvature and inflection points as explained above in
Fig. 5.3 for state n′ = 3.

Figure 5.7 also exemplifies a problem concerning the choice of the time scale τ .
The complete solution of the equations of motion is unique up to the choice of a
control-parameter independent time scale. The nonlinear coupling of the correlators
of different index q requires scale universality. However, if a time scale like τ
is deduced from some approximation to the equation of motion, the error of the
approximation will result in violations of the scale universality for the approximate
solutions. Constructing the approximate solutions in Fig. 5.7 — and also in the
upper panel of Fig. 5.8 — the time τ was fixed for the leading approximation
from φ1(τ) = f◦

1 and for the leading correction from φ1(τ) = f◦
1 + f̂1. The errors

explained lead to offsets for the second correlator: φ2(τ) �= f◦
2 and φ2(τ) �= f◦

2 +
f̂2, respectively, for the two approximations studied. This explains, e.g., that the
dashed line for φ2(t) for the state n = 1 does not coincide with the full one. One
could also choose τ differently, e.g. by requesting φ2(τ) = f◦

2 + f̂2 as done in the
lower panel of Fig. 5.8. For the discussion of the A4-singularity in Sec. 7.2 the time
scales are fixed independently for both correlators and the deviation is taken as
measure for the violation of the scale universality.

The transition line which is shown in Fig. 5.6 by the light full and almost ver-
tical curve intersects the line B2(1) = 0 at some liquid-glass-transition singularity
Vc = (2.94 . . . , 0.130 . . . , 45.0). For states on the line B2(1) = 0 that are close
enough to this singularity, one gets the standard liquid-glass transition scenario,
e.g., the evolution of a plateau of the φq(t) versus log(t) diagram at the critical glass-
form factor f c

q and an α-process for the decay below this plateau. The universal bi-
furcation results for an A4-singularity require that the plateau values are below the
critical form factors of the nearby A3-singularity: f c

q < f◦
q . For the example under

discussion, one gets f c
1 = 0.0747, f c

2 = 0.7027 and f◦
1 = 0.3125, f◦

2 = 0.9289. The
liquid-glass transition point is connected with an exponent parameter λ = 0.603,
leading to the exponents a = 0.363 and b = 0.807. The precursor of the liquid-glass
transition at Vc explains the stretched tail exhibited in Fig. 5.7 for the decay of
φ1(t) below 0.1 for the state n = 1. To corroborate the discussion of the preceding
paragraph, the correlators with label n = 1 are reproduced as curves with label
n′ = 1 in Fig. 5.8. Two further curves with labels n′ = 2 and 3 are added. They
refer to states between state 1 and the transition point V c as noted in Fig. 5.6 by
triangles. The curves for φ1(t) for states 2 and 3 exhibit the two-step-relaxation sce-
nario characteristic for an A2-bifurcation. The decay for φq(t) < f c

q demonstrates
the superposition principle for the α-process, and its initial part can be described by
von Schweidler’s power law with a time scale fitted for curve n′ = 3. The decay to-
wards the plateaus f c

q for t > 1000 follows the critical law for the A2-singularity Vc,
Eq. (5.93). The universal laws for the dynamics near a fold bifurcation imply that
the correlators follow the asymptote of the critical law, (φq(t)− f c

q )/hq = (t/t0)−a,
for short times down to about one decade above the end of the transient dynamics,
i.e. until about t = 10. In particular, for small times, the correlator for state n′ = 2
should approach the one for state n′ = 3. However, these features are not exhib-
ited in Fig. 5.8. Rather, the t−a law becomes irrelevant for the description of the
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Figure 5.8. Correlators for the two-component model defined in
Eq. (5.111). The states with labels n′ = 1, 2, and 3 are located
on the line defined by v3 = 45, B2(1) = 0 and have coordinates
(v1, v2) = (2.7799, 0.1183), (2.9254, 0.1292), and (2.9391, 0.1302),
respectively. They are indicated in Fig. 5.6 by triangles and
approach the liquid-glass transition point Vc with coordinates
vc
1 = 2.941029, vc

2 = 0.130326. The horizontal lines show the criti-
cal glass-form factors f◦

q and f c
q , q = 1, 2, for the cusp singularity

V◦ and the fold singularity Vc, respectively. The critical decay
laws (φq(t) − f c

q ) = hc
q(t0/t)a are shown as dotted lines labeled a.

The von Schweidler laws (φq(t)−f c
q )/hc

q ∝ −tb are shown as dotted
lines with label b (see text). The straight dotted line in the up-
per panel exhibits the leading asymptotic law, Eq. (5.37), for φ1(t)
and state n′ = 3; the dashed line shows the result of Eq. (5.42).
The dashed lines in the lower panel exhibit the leading-correction
formulas, Eq. (5.42), for φ2(t) and states n′ = 1 and 3, respectively.

dynamics below times around 103, where the A2 critical curve crosses the curves
describing the logarithmic laws for the A3-singularity. As a result, there appears a
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window between the end of the transient and the beginning of the description by
the A2-singularity results where the correlators are described by Eq. (5.42). This
window deals with an increase in time over about two orders of magnitude. In this
window, the logarithmic decay processes destroy the manifestation of the t−a law.

The lower panel of Fig. 5.8 demonstrates a further implication of V◦-dynamics
on the precursors of the liquid-glass transition dynamics. Even though the time
scale for the α-process for states n′ = 1 or 2 exceeds the one for the transient by
factors 104 and 106, respectively, the correlator φ2(t) does not exhibit the two-step
scenario for these states. Rather, there is a large time interval where the approach
towards the plateau f c

2 follows closely the law (φ2(t) − f c
2) ∝ ln(t/τeff). This is

due to a crossover from the asymptotes for the V◦ dynamics and the Vc dynamics.
The resulting nearly linear-log(t) variation must not be mistaken as the asymptotic
logarithmic law given by Eq. (5.37).
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Figure 5.9. Critical decay at the A3-singularity in the two-
component model, Eq. (5.111). The rescaled solutions (φ̂◦q(t) −
f◦

q )/hq, q = 1, 2, are shown for as full lines. The asymptotic ap-
proximation (5.76) is shown dashed for q = 1 and dotted for q = 2.
The points where the approximation deviates by 5% from the so-
lution for q = 1, 2, and the point where the solutions differ by 5%
from each other are marked by a square, a triangle and a circle, re-
spectively. The inset shows as full lines the rectification, φ̂◦q(t)

−1/2

for q = 1 (lower full line) and q = 2 (upper full line). The q-
independent part G5 of the approximation in Eq. (5.76) is given
by the dashed line. The dotted and the chain line show the leading
and next-to-leading order approximations G2 and G3, Eq. (5.64).
The time scale t0 = 4.07 · 10−3 was matched in the interval t =
1020 . . . 1025.
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7.1.2. Critical decay. As for the one-component case, the logarithmic decay
laws are no longer applicable at the critical point and we turn to the expansion
for the critical decay, Eq. (5.76). In comparison to the F13-model demonstrated
in Fig. 5.4 we now have two correlators, so we will use the rescaled correlators
φ̂◦q(t) = (φ◦q(t)− f◦

q )/hq for the following considerations. The factorization theorem
can be stated after the rescaling as φ̂◦q(t) = G5(x) + KqG̃5(x) with G5(x) from
Eq. (5.64) and G̃5(x) = g2

2(x) + 2g2(x)g3(x) with x = ln(t/t0). Since G̃5(x) is
of higher order than G5(x) whose lowest-order contribution is g2(x), Eq. (5.54),
correlators for different q approach each other for sufficiently large time. This
is demonstrated in Fig. 5.9 for the two correlators of model (5.111). The time
t ≈ 2 · 108 where φ̂◦2 deviates by 5% from φ̂◦1 is marked by a circle. The amplitude
Kq introduces the q-dependent corrections which are again small for q = 1 and
large for q = 2. To evaluate G5(x) and G̃5 q(x) we need to specify the following
parameters, µ3 = 0.772, κ = 0.888, and µ4 = 1.38. The larger value for µ3 indicates
that the present A3-singularity is further away from an A4-singularity where µ3 = 0
than the A3-singularity in the F13-model where µ3 = 1/3. Since the coefficients
cm,l in Eq. (5.61) contain powers of µ3 in the denominator, corrections are larger if
µ3 is smaller, cf. Eqs. (5.62) and (5.63). Because of the smaller corrections the time
scale can be matched using terms up to G5(x) between t = 1020 and 1025 which is
significantly earlier than for the F13-model in Fig. 5.4. We get t0 = 4.07 · 10−3.

The asymptotic approximation (5.76) is shown as a dashed line for q = 1 in
Fig. 5.9, it deviates by more than 5% from the solution if t � 105 (�). The
approximation for q = 2 (dotted) deviates by more than 5% for t � 6·106 (�). This
difference in the range of validity can be understood qualitatively by considering
the q-dependent corrections of higher order in Eq. (5.72), Kq[g2

3(x)+2g2(x)g4(x)]+
Yqg

3
2(x)/aq with Yq from Eq. (5.71). Both Kq and Yq/aq are smaller for the first

correlator, Y1/a1 = −0.1928 and Y2/a2 = 5.761, and introduce less deviations from
the q-independent part G6(x) of the approximation in higher order.

The q-independent function G5(x) would lie on top of the dashed line in Fig. 5.9
and is therefore shown only in the inset which also displays the critical correlators
and the q-independent functions G2(x) and G3(x), Eq. (5.64). Plotting φ̂◦q(t)

−1/2

we can identify 1/ ln2 t-behavior as straight line. The critical correlators exhibit a
straight line starting from t ≈ 109. The leading approximation G2(x) is a straight
line by definition but has a slope slightly larger than the solution. The first correc-
tion G3(x) resembles the slope of the solution but is offset from the solution by a
shift of the time scale. This was observed before in Fig. 5.4. Since G5(x)+G̃5(x) was
used to match the time scale t0 and as G̃5(x) decays faster than the q-independent
part, G5(x) coincides with the solution for larger times.

7.2. Two component model at the A4-singularity. Decreasing the pa-
rameter x in Eq. (5.112) from large values to smaller ones, the two cusp val-
ues y1(x) and y2(x) determining the two A3-singularities in Fig. 5.6 approach
each other. The corresponding parameter vectors V c = (vc

1(x), v
c
2(x), v

c
3(x)) form

curves that approach each other with decreasing x and join at a certain value
x∗: y1(x∗) = y2(x∗) = y∗. The pair (x∗, y∗) defines the A4-singularity for the
model. The parameters for this singularity are obtained when the derivative of
the numerator polynomial in Eq. (5.112d) is zero for µ2 = 0. This leads to
(x∗ − 2)(x∗ − 4)(x∗4 − 30x∗3 + 136x∗2 − 168x∗ + 88) = 0. The elementary solution
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Figure 5.10. Glass-transition diagram for the two-component
model defined in Eq. (5.108) for the cut v3 = v∗3 . The full line
shows the liquid-glass-transition singularities, the A4-singularity is
marked by a star (∗). The chain lines labeled B2(i) = 0, i = 1, 2,
represent control-parameter values of vanishing quadratic correc-
tion for the correlator φi(t). The paths labeled n (×) and n′ (+)
are discussed in Figs. 5.11 and 5.12, respectively. The dashed line
marks the boundary where ε1(V) = 0, and the dotted line the
location for ε2(V) = 0.

for the zeros of the quartic polynomial [87] determines the coordinates of the swal-
lowtail singularity x∗ = 24.779392 . . . , y∗ = 0.24266325 . . . . The cut through the
transition surface for v3 = x∗ is shown in Fig. 5.10 as pair of light full lines joining at
the A4-singularity which is indicated by a star, (v∗1 , v

∗
2 , v

∗
3) = (3.132, 0.1957, 24.78).

Attached to the A4-singularity we find the lines of vanishing separation param-
eters, ε1(V) = 0 (dashed) and ε2(V) = 0 (dotted), which represent the local
coordinate system. These lines are obtained by smooth transformation from the
ones in Fig. 5.6.

7.2.1. Logarithmic decay. The correction amplitudes are also not changing dras-
tically in comparison to the A3-singularity above; at the A4-singularity, K1 =
0.3244 and K2 = −2.109. Therefore also the lines where the quadratic corrections
vanish are smooth transformations of the ones before; these are shown by the chain
lines in Fig. 5.10. We notice that different from the situation in Fig. 5.6, the path
obeying the condition B2(2) = 0 is now also located within the liquid regime for
v3 = v∗3 .

We first analyze the path labeled n in Fig. 5.10 which is the analog of the
one carrying the same labels in Fig. 5.6. The solutions corresponding to the ones
discussed in Fig. 5.7 are shown in Fig. 5.11. As before the logarithmic decay in the
first correlator is accompanied by a decay in the second correlator that is concave in
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Figure 5.11. Logarithmic decay at the A4-singularity on the path
(×) with n = 1, 2, 3 in Fig. 5.10 with v1 − v∗1 = 1/2n+1, v∗2 −
v2 = 0.25009/2n+1. The solutions of Eq. (5.111) are shown as full
lines, the approximation (5.42) as dashed lines. Long horizontal
lines exhibit the critical plateau values f∗

q , short lines the corrected
plateau values f∗

q + f̂q.

the logarithm of time. The approximations (5.42) for the correlators are displayed
as dashed lines. The time scale τ was matched for φ1(t) and φ2(t) independently
at the corrected plateau values. The approximation describes the decay around
the plateaus f∗

q again reasonably for both correlators. But whereas in Fig. 5.7 the
asymptotic laws extended up to the end of the transient t ≈ 1, in Fig. 5.11 there
appears now a window in time between t ≈ 1 and t ≈ 103 where the description by
Eq. (5.42) is not applicable. In addition, for the same distance from the singularity
v̂1 = 1/8, the correlators cross the plateau two decades later in Fig. 5.11 than in
Fig. 5.7 for the states labeled n = 2. This is caused by the close-by A2-singularities
with f c

q > f∗
q , q = 1, 2 which introduce an additional slowing down before the

logarithmic decay is encountered. This is reminiscent of the situation in Fig. 5.3
where a decay around the plateau of an A2-singularity shifts the logarithmic decay
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to later times. We observe that φ2(t) varies almost linearly in ln t in for t = 1 . . . 250
but it is easy to distinguish that effective logarithmic variation that stays the same
upon further approaching the singularity from the characteristic behavior around
the plateau.

Comparing the solutions with the approximations (5.42) in Fig. 5.11 is less
satisfactory than in Fig. 5.7. The next-to-leading-order approximation shown by
the dashed lines overestimates the absolute value of the slope at f∗

q for both q. One
can attribute that to the neglect of higher-order contributions to the asymptotic
expansion which renormalize the prefactor for the logarithmic decay to (B −B1 −
C1), cf. Eq. (5.31). C1 in Eq. (A.8a) depends in a quite involved way on the
different separation parameters but mainly on ε1(V) and ε2(V). The path taken
in Fig. 5.11 is closer to ε2 = 0 than to ε1 = 0 as can be seen in Fig. 5.10. The
largest contribution to C1 is given by the difference 0.308 ε2(V)−0.217 ε1(V) which
is positive on the present path and explains the deviations seen in Fig. 5.11. The
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Figure 5.12. Logarithmic decay on the path (+) for n′ = 1, 2, 3
in Fig. 5.10. v∗1 − v1 = 1/4n, v2 − v∗2 = 0.3541/4n. Line styles and
notation are the same as in Fig. 5.11.

estimate for the sign of C1 can be verified in Fig. 5.12 where the situation is reversed
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as the path labeled n′ in Fig. 5.10 is now closer to the line ε1 = 0 than to ε2 = 0.
Indeed, the comparison of solutions and approximations (5.42) now indicates a
negative value for C1 to account for a steeper slope (B −B1 − C1).

In Fig. 5.12 the quadratic corrections in Eq. (5.42) for the correlator φ2(t)
are zero up to higher orders. The quadratic corrections to the first correlator are
positive, B2(1) > 0, and φ1(t) is convex in ln t around f∗

1 . There are close-by A2-
singularities with f c

q < f∗
q , q = 1, 2 causing a decay which is encountered after the

logarithmic decay. The decay of φ1(t) from 0.1 to zero at the state n = 1 in Fig. 5.7
is in that respect similar as the decay in φ1(t) for n′ = 1 in Fig. 5.12. In both cases
the validity of the logarithmic laws is limited below f◦

q or f∗
q , respectively, by an

interfering A2-singularity. Above the plateaus f∗
q , the asymptotic approximation

extends up to shorter times and the range of validity is only limited by the shrinking
amplitude in φq as explained in connection with Fig. 5.2.

The comparison of Figs. 5.11 and 5.12 is summarized as follows. For each value
for q there exists a line with vanishing quadratic correction for the specified q in the
approximation of Eq. (5.42). On this line the logarithmic decay is displayed best
for the correlator specified by q. Moving to control parameter values above this
line, B2(q) < 0, introduces concave decay of the correlator in ln t. Going below the
line, B2(q) > 0, yields a convex decay in the correlator. For increasing the value of
Kq the curve specified by B2(q) = 0 and ε1(V) < 0 rotates clockwise around the
A4-singularity.

7.2.2. Critical decay. Figure 5.13 shows the critical decay at the A4-singularity.
We use again the rescaled correlator φ̂∗q(t) = (φ∗q(t) − f∗

q )/hq and check first the
validity of the factorization in Eq. (5.86) in the form φ̂∗q(t) = G2(x)+KqG̃2(x), x =
ln(t/t0) where G2(x) = g1(x) + g2(x) and G̃2(x) = g2

1(x). The point, where the
solutions for q = 1, 2, differ by 5% is only reached at t ≈ 1023. The circle marks
the point where the deviation is still 10% at t = 1012. The parameters for the
evaluation of g1(x) and g2(x) are µ3 = 0, µ4 = 1.53, µ5 = 0.962, and κ = 0.386.
We can then use the approximation (5.86) to fix the time scale at t0 = 2.0 which
then yields the dashed and dotted curves for q = 1, 2, accordingly. For q = 1 this
approximation deviates by 5% from the solution at t ≈ 8.2 · 104 (�). For q = 2 we
find t ≈ 1.8 · 108 (�). This is again plausible when appealing to the q-dependent
higher-order correction in Eq. (5.84), which incorporates in addition to drastically
different values for Kq also the values Y1/a1 = −0.579 and Y2/a2 = 3.76.

A rectified representation of the critical decay and the approximation in the
inset of Fig. 5.13 shows again the leading-order G1(x) (dotted) as a straight line
of different slope than the solution (full lines) and the second correction G2(x)
(dashed). In this plot the critical correlators for different q are still significantly
different in the entire window but Eq. (5.86) can account for that difference as is
shown by the good agreement of the curve labeled G2 + G̃2K2 that describes the
second correlator where the deviations due to the correction amplitudes are largest.

7.3. Characteristic Parameters. To conclude the present chapter we shall
have a look at the parameters characterizing the singularities in a glass-transition
diagram with a swallowtail bifurcation. Since we know the properties of the singu-
larities exactly in the schematic models, we can check the accuracy of the asymptotic
description. The inverse of that procedure can be used later to check the accuracy
of the numerical solution that is known with limited numerical precision only.
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Figure 5.13. Critical decay at the A4-singularity in the two-
component model. Full lines show the solution of Eq. (5.111) for
q = 1, 2, at V = V∗. The asymptotic approximations, Eq. (5.86),
for q = 1, 2, are represented by the dashed and dotted curve, re-
spectively. For q = 1 (�) and q = 2 (�), the points are marked
where the solution and the approximation deviate by 5%. An ad-
ditional point is indicated where the solution for q = 2 differs from
the one for q = 1 by 10% (©). The inset displays the rectified
representation of the solutions for q = 1 (lower full line) and q = 2
(upper full line) together with the q-independent parts of the ap-
proximations, G1 and G2, cf. Eq. (5.82), and G2+K2G̃2 (see text).
The time scale t0 = 2.0 was matched at t = 1020 . . . 1025.

In principle, Eq. (5.15b) could be used to derive the scaling laws at Al-singulari-
ties. This yields multi-parameter laws that simplify on the special lines where some
separation parameter εi vanishes. Since we are primarily interested in the behavior
on the transition surface, a different approach is taken which is motivated by the
representation in Eq. (5.112). It was seen above that the numerator of Eq. (5.112d)
allows for two distinct zeros y1(x) < y2(x) for x > x∗ which is connected with a
minimum µ2 � 0. For an A3-singularity only the root y2(x) has to be considered
because of the maximum theorem. Around y2(x) the parameter µ2 varies linearly
in y−y2(x) according to Taylor’s theorem. The control parameter vc

1, Eq. (5.112b),
is a smooth function of y and x and since y2(x) represents a cusp, vc

1 assumes a
local maximum or minimum there. Therefore we conclude [vc

1 − v◦1 ] ∝ [y − y2(x)]2

and hence µ2 ∝ [vc
1 − v◦1 ]1/2. This is generic also for the second control parameter

vc
2. In Fig. 5.14 the solution of Eq. (5.112d) for x = v3 is shown as full line in panel

A. The dashed line represents the square-root behavior at the A3-singularity, which
describes the solution with an accuracy of 5% up to λ = 1 − µ2 ≈ 0.8.
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At an A4-singularity, the two roots merge, y1(x) = y2(x) = y∗(x∗). This implies
a quadratic variation of µ2 with y − y∗(x∗) and a cubic-root behavior of f c

1 = y
with the control parameters, e.g. vc

1. This cubic-root variation of the glass-form
factors was demonstrated already in Fig. 4.2 for the SWS. For the control-parameter
dependence we get µ2 ∝ |vc

1−v∗1 |2/3. For µ2 in the two-component model we obtain
the solution shown in panel B in Fig. 5.14. The full line for v1 < v∗1 is the analog
of the line of transitions displayed also in panel A, the dotted line for v1 > v∗1
has no analog at the A3-singularity due to the maximum property. Asymptotically
close to the A4-singularity both solutions follow the same variation in the control
parameter. The deviations from the asymptotic behavior are different for v1 < v∗1
and v1 > v∗1 as can be seen by the symbols marking the 5%-accuracy level. This is
explained by higher order terms in the Taylor expansion of µ2(y − y∗) which need
not be symmetric in (y − y∗).

Finally, the evolution of µ3 along the line of A3-singularities is considered in
panel C of Fig. 5.14. We get a square-root law for µ3 from Eq. (5.112) observing
that at v3 = v∗3 the parameter µ3 has a zero which is non-degenerate for µ4 > 0,
and that x− x∗ varies quadratically in y◦(x) − y∗. The asymptotic approximation
works on the 5%-accuracy level up to µ3 ≈ 0.15 (�). The double-logarithmic
representation in the inset confirms that this is indeed valid asymptotically.
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Figure 5.14. Parameters µ2 and µ3 for the two-component
model. Panel A shows the evolution of µ2 along the line of
liquid-glass transitions in Fig. 5.6 starting from the A3-singularity,
∆v1 = v◦1 − v1. The asymptotic square-root law is shown dashed.
It deviates by 5% from the solution at the point indicated by a
square. In panel B, ∆v1 = |v∗1 − v1|, the full line shows µ2 for
v1 > v∗1 , the dotted line for v1 < v∗1 . The dashed line exhibits the
∆v2/3

1 -law which deviates by 5% from the solutions for v1 < v∗1 and
v1 > v∗1 at the points marked by a square and a triangle, respec-
tively. The variation of µ3 with ∆v3 = v3 − v∗3 is shown in panel C
as full line together with the asymptotic approximation as dashed
line. The 5%-accuracy level of the approximation is indicated by
the square. The inset displays solution and approximation in a
double-logarithmic representation.



CHAPTER 6

Logarithmic relaxation in the SWS

In principle the numerical solution of the equations of motion (2.7) gives the
definitive answer what dynamics is expected for the correlation functions according
to MCT when the structure of a certain system is used as input. However, the
case of the SWS is a good example that it might not be easy to distill the relevant
features from an analysis of the numerical solution only. The possible changes in
three control parameters and an additional variation in the wave vector illustrates
that even for a theoretical analysis the asymptotic approximation is a helpful guide
to the relevant features that are displayed by the numerical solution of the theory.

The asymptotic expansion (5.42) shall be applied to the SWS in Sec. 1 with the
focus on the laws at the A4-singularity. We will discuss in detail the logarithmic
decay of the correlation functions and the wave-vector dependence. We identify
the lines of vanishing corrections in the glass-transition diagram as done for the
schematic models in Ch. 5. These lines are located in the liquid regime only for
relatively large wave vectors. As a second variable the mean-squared displacement
(MSD) is discussed in Sec. 2 which displays a subdiffusive power law that is the
analog of the logarithmic decay in the correlation functions. Deviations from this
power law can be convex or concave in a double logarithmic representation de-
pending on the control parameters and it is possible to identify a line in the liquid
regime where the corrections vanish and the power law is shown best. The situation
for the A3-singularity for δ = 0.03 is very similar to the case of the A4-singularity
and different only in the wave-vector dependence as shown in Sec. 3. The lines of
vanishing correction in the liquid regime are seen at higher q for the correlators
but the power law in the MSD is not altered significantly. The critical decay laws
at the A3- and the A4-singularity are however different and shall be discussed in
Sec. 4. With the approximations available it is possible to describe the decay at
the A3, for the A4-singularity only qualitative trends can be corroborated.

1. Logarithmic decay at the A4-singularity

Before we can apply the asymptotic expansion of Eq. (5.42), we need to specify
the values for µ3 and ζ appearing in the prefactors of Eqs. (5.29). Figure 6.1 shows
these parameters and the parameter µ4 for the critical decay laws in Eqs. (5.76)
and (5.86) at the A3-singularities for various δ. All parameters are evaluated using
the structure factor in MSA given by Eq. (3.16). The µ3 vanish when we approach
the A4-singularity. The decrease close to δ∗ is described by a square-root variation,
µ3 ∝

√
δ∗ − δ, shown by the dashed line. One has to take into account that the

evaluation of the µ3 in the SWS involves the inversion of several M ×M matrices
for calculating the reduced resolvent Rqk in Eq. (5.13c), where M ranges from
M = 300 at δ = δ∗ up to M = 750 for δ = 0.02. Given the rather involved
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Figure 6.1. Parameters µ3 (�), Eq. (5.41), µ4 (×), Eq. (5.75),
and κ = 2ζ (♦), Eq. (5.40), at the A3-singularities for varying δ in
the SWS. The dotted lines connecting the points are guides to the
eye. The dashed curve shows the

√
δ∗ − δ-law for the µ3 at δ∗.

numerical procedure to obtain µ3, the square-root law for the µ3 close to the A4-
singularity is realized to a good degree, which can be used as a consistency check
for the numerical algorithms. The deviation from the asymptotic variation in µ3

is similar to the one observed for the schematic model in panel C of Fig. 5.14 and
can be interpreted in the same way. The A4-singularity is not only characterized
by µ2 = 0 but also has to fulfill the requirement µ3 = 0. This was achieved up
to |µ3| < 5 · 10−4 at the control-parameter values specified in Eq. (4.1). Since the
parameters µ4 and κ contain µ3 in their definition, cf. Eqs. (5.75) and (5.41), they
share part of the behavior of µ3 at δ∗ but remain finite at δ∗.

That the values of µ3 are altogether rather small indicates that all the A3-
singularities that can be studied in the SWS are already influenced by the proximity
of the close-by A4-singularity. One can take advantage of this finding and conclude
that the terms proportional to µ3 in Eq. (5.29a) are small, moreover one may neglect
B3 and B4 in Eq. (5.29d) entirely without introducing large additional errors. The
leading correction to the logarithmic decay laws is then only quadratic also for the
A3-singularities. The µ3 being small has a different impact on the approximation
of the critical decay where µ3 appears in the denominators for the coefficients c2
of Eq. (5.54), c3 of Eq. (5.59) and all higher cm,l, cf. Eqs. (5.62), (5.63), (A.9),
and (A.10). The same applies to the critical law for the A4-singularity, Eq. (5.86),
where µ4 is in the denominators. For the description of the A3-singularities, δ �= δ∗,
the µ4 introduce only regular terms as do the terms proportional to κ, which are
smaller than in the HSS, but of the same order of magnitude, κHSS = 0.54 [7].

The second prerequisite for the asymptotic description according to Eq. (5.42)
are the wave-vector dependent amplitudes f∗

q , h∗q and K∗
q . These are shown for the
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Figure 6.2. Wave-vector dependent amplitudes at the A4-
singularity for coherent and tagged particle correlators. In the
upper panel the critical glass-form factors f∗

q and the amplitudes
h∗q are shown as full lines. The dashed lines represent the respec-
tive values for fs ∗

q , Eq. (2.12), and hs ∗
q , Eq. (5.99a). For the HSS,

hs c
q is shown dotted. The lower panel shows the correction am-

plitudes K∗
q , Eq. (5.44) and (5.38b), and Ks ∗

q , Eq. (5.99b), as full
and dashed lines, respectively. A short horizontal line marks the
location for K∗

q = 0 and Ks ∗
q = 0. A square at q = 24.2 indicates

the corrections for the path calculated for Fig. 6.3 and the corre-
lators shown in Fig. 6.4. The values for Kc

q (− · −) and Ks c
q (· · · )

for the HSS are shown for comparison.

A4-singularity in Fig. 6.2 together with the related values for the tagged-particle
correlator φs

q(t), Eq. (5.98). The quantities for the tagged particle motion are close
to the ones for the coherent correlator φq(t) except for values of q smaller than say
q = 10. This difference was observed already for the HSS [60] and since we will
not be concerned with small q in the following, we restrict the discussion to the
coherent dynamics and imply that the same is applicable also to the incoherent
part with only minor changes. In comparison to the HSS the distributions fq, hq,
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fs
q and hs

q are broader with the maximum in hs
q shifted from q ≈ 13 to q ≈ 25

reflecting the smaller localization length in the SWS as noticed before, cf. [16] and
Ch. 4. We see in the lower panel of Fig. 6.2 that the distributions of the correction
amplitudes Kq and Ks

q share that trend of becoming broader from the HSS to the
A4-singularity of the SWS. The zero in Kq moves from around q ≈ 14 in the HSS
to q ≈ 32 in the SWS which is indicated by the horizontal rule. In addition, the
correction amplitudes are shifted to lower values for small q.
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Figure 6.3. Curves of vanishing quadratic correction at the A4-
singularity (dash-dotted), B2(q) = 0 for q = 7.0, 20.2, 24.2, 27.0,
and for Kq = 0 as labeled. The full line shows a part of the glass-
transition diagram from Fig. 4.1 for constant δ = δ∗. The lines
of vanishing separation parameters ε1(V) and ε2(V) are shown
by a broken and a dotted line, respectively. For the wave vector
q = 24.2, a path on the curve B2(24.2) = 0 is marked (+) and
labeled by n, for which the correlators are shown in Fig. 6.4. State
n = 2 is analyzed also in Fig. 6.5. For the points (�) labeled a, b,
and c the decay is shown in Fig. 6.6.

As done for the schematic models in Ch. 5, we set the quadratic corrections
in Eq. (5.42) to zero, B2(q) = 0, and calculate the curves in the control-parameter
space where the logarithmic decay is expected to show up as straight line around
the plateau f∗

q . We get a different curve for each wave vector q and show typical
examples in Fig. 6.3. We start with q = 7.0 where Kq = −1.81 assumes the
smallest value. The solution of B2(V)+Kq B(V)2 = 0 yields the chain line labeled
B2(7.0) = 0 in Fig. 6.3 and is lying in the arrested region close to the line of liquid-
glass transitions. Since the Kq depend smoothly on q, the evolution of the curve
where B2(q) = 0 can be understood by inspecting the parameters B and B2. The
square B2 is always positive and proportional to ε1(V), cf. Eq. (5.20); therefore
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Kq B
2 is proportional to Kq |ε1(V)| and shares the sign of Kq. Inserting µ3 = 0

and ζ = 0.1216 into Eq. (5.29c) yields B2(V) = 0.111 ε1(V) − 0.152 ε2(V), which
has to be positive to comply with B2(q) = 0. Indeed, ε2(V) < 0 below the dotted
curve for ε2 = 0 in Fig. 6.3. In addition, the value |ε2(V)| on the line B2(7.0) = 0
is larger than |ε1(V)| which we can also infer from the fact that the line ε1 = 0 is
closer than the line ε2 = 0. We now chose a point on the line B2(7.0) = 0, keep
the first separation parameter fixed, say ε1 = ε′1, and move to higher values for
Kq, e.g., for q = 20.2 where Kq = −0.966. Since B2 stays the same, the term
KqB

2 increases. To ensure that B2(20.2) = 0, the value B2(V) has to decrease.
We can only achieve that by moving closer to the line ε2 = 0. For fixed ε′1 this
implies a shift to lower ϕ and higher Γ. Consequently the entire B2(q) = 0 line
is rotating clockwise around the A4-singularity as Kq increases. This is seen for
the chain line B2(20.2) = 0 in Fig. 6.3. Since Ks

q is monotonic increasing with q
and Kq has the same trend when neglecting the small oscillations, Fig. 6.2, the line
B2(q) = B2(V) +B(V)2Ks

q = 0 also rotates clockwise with increasing wave-vector
q.

The variation of the lines B2(q) = 0 described above depends only on the
angle at which the lines ε1 = 0 and ε2 = 0 intersect at the A4-singularity. This
intersection is in a sense generic that it is shared by the close-by A3-singularities
of the SWS. It applies also to the A4-singularities of the other potentials discussed
in Ch. 4, since the functionals determining the separation parameters depend on
quantities like the structure factors and the glass-form factors which are similar for
different potentials as shown Fig. 4.8. We observe that the lines ε1 = 0 and ε2 = 0
intersect at an angle of the same sign as in Fig. 6.3 also in the two-component model,
cf. Figs. 5.6 and 5.10, and in the one-component model, Fig. 5.1. For a given wave
vector q, the line B2(q) = 0 may or may not lie in the liquid regime depending
on Kq. For the SWS at δ = δ∗ we get a range of −1 � Kq � 0 corresponding to
20 � q � 30, where a line B2(q) = 0 is found in the liquid regime. We illustrate this
by adding lines for q = 24.2, q = 27.0 and for Kq = 0 to Fig. 6.3. The vanishing
Kq is corresponding to q ≈ 32.3.

We select a wave vector q = 24.2 with Kq = −0.596 as indicated in Fig. 6.2 by
a square and choose a path on the line B2(24.2) = 0 marked by the plus symbols
in Fig. 6.3. For n = 1, 2, 3, the control parameters are (Γ, ϕ) = (3.312, 0.5125),
(4.271, 0.5250), and (4.453, 0.5274), respectively. The solutions are shown in Fig. 6.4
together with the leading approximation (5.37) (dotted) and the next-to-leading
approximation (5.42) (dashed). The time scales τ are matched at the plateau f∗

q

for the leading approximation and at the renormalized plateaus f∗
q + f̂q for the first

correction. We recognize that for n = 3 the correction covers more than ten decades
in time with an accuracy better than 5%, the leading approximation is acceptable
on that level for nine decades. For n = 1 two and more than one decade are covered,
respectively. Five and three orders of magnitude in time are achieved for n = 2. For
n = 1, 2, 3, the leading approximation describes at least 30% of the complete decay
and when including the correction, 65% are covered on the chosen accuracy level.
The distance in the control parameter Γ from the value at the A4-singularity is 25%
for n = 1 and 4% for n = 2, so no fine-tuning was necessary to obtain such large
windows for the logarithmic decay. The curve n = 1 requires about five decades
for the complete decay which is well in the reach of today’s computer simulation
techniques [92].
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Figure 6.4. Logarithmic decay at the A4-singularity for q = 24.2
on the path indicated in Fig. 6.3. The correlation functions are
shown as full lines for the states n = 1, 2, 3 (see text) and at
V = V∗ which is labeled φ∗q . The horizontal line indicates the
critical plateau value f∗

q for q = 24.2, short lines the renormal-
ized plateaus f∗

q + f̂q. Broken lines show the approximation of
Eq. (5.42), −(B − B1) ln(t/τ), dotted lines the approximation of
Eq. (5.37). Filled and open symbols, respectively, mark the points
where the approximations deviate by 5% from the solution. The
cross indicates the time when the solution for n = 3 and the critical
correlator differ by 5%.

The scenario in Fig. 6.4 is reminiscent of the one for the one-component model
in Fig. 5.2 and in Fig. 5.4 it was possible to describe part of the critical decay in the
model by the expansion in polynomials in ln t at a point away from the singularity.
We therefore compare the critical decay φ∗q(t) with the decay for n = 3 and indicate
the point at t ≈ 5000 where both differ by 5% in Fig. 6.4. With only the leading
correction at our disposal, a 2%-criterion was not fulfilled as for the one-component
model, where the next-to-leading correction (5.31) could be used. The dashed line
for n = 3 does not come closer to the critical decay than 4%. Allowing for 5%, the
interval from t ≈ 20 to t ≈ 4000 could be described. However, at the A4-singularity
the approximation in Eq. (5.42) always yields a straight ln t-decay as approximation
on the chosen path with B2(q) = 0. This disagrees qualitatively with the critical
decay.

To identify correctly some decay that is linear in the φq(t) versus ln t diagram
with the logarithmic decay predicted by the asymptotic laws, Eq. (5.42), we check
if a different correlator with a different correction amplitude Kq is not linear in ln t
at the same point in the control-parameter space unless one is very close to the
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Figure 6.5. Logarithmic decay at the A4-singularity for vary-
ing wave vector q. The inset shows the correlation functions φq(t)
at state n = 2 from Fig. 6.3 for wave vectors q = 4.2, 24.2 , and
32.2 from top to bottom and the short horizontal lines show the
corresponding critical plateau values f∗

q . The full panel shows the
same correlation functions rescaled according to φ̂q(t) = (φq(t) −
f∗

q − f̂q)/hq as full lines and labeled by the respective wave vec-
tors. Dashed lines show the asymptotic laws of Eq. (5.42) for the
different wave vectors which are indicated in the right lower corner
by the value for q placed between the solution and the approxima-
tion. The deviations of the approximations from the solutions of
5% are marked by the open symbols. Filled symbols for q = 4.2
(
) and q = 32.2 (�) show the 5% deviation from the additional
approximation of neglecting quadratic terms (see text).

higher-order singularity. For the two-component model a characteristic alternation
of concave, linear and convex decay in ln t was found, cf. Figs. 5.11 and 5.12. As the
values for Kq differed from each other by K1−K2 ≈ 2, not both correlators could be
linear in ln t at the same time. In the SWS this check is performed at the point n = 2
from Fig. 6.3 by variation of the wave vector q in Fig. 6.5. For the wave vectors
q = 4.2 and 32.2 the correction amplitudes are Kq = −1.400, −0.0413, respectively.
Therefore B2(4.2) < 0 and B2(32.2) > 0 and we expect φq(t) to be concave or
convex, accordingly. This is indeed found in Fig. 6.5. That the curvature is different
for the decay around the plateaus is already recognized directly from the inset where
φq(t) is shown. The rescaled correlators φ̂q(t) displayed in the full panel allow for
a more detailed analysis. We see that the solutions as well as the approximations
clearly exhibit increased curvature for larger q. Since the coefficient linear in ln t is
not depending on q, cf. Eq. (5.42), the middle dashed line represents the leading
correction to all three correlators when the quadratic terms are neglected. For
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q = 24.2 we observe good agreement over almost 5 decades as before, cf. Fig. 6.4.
For q = 4.2 and 32.2, however, the additional approximation reduces the range of
applicability to less than one decade as marked by the filled symbols. Including
the quadratic terms from the approximation (5.42) extends this range by half a
decade to later times and to earlier times by one and almost two decades for q =
4.2 and 32.2, respectively. The time window defined by a 5% deviation from the
approximation (5.42) is larger by one and two orders of magnitude for q = 24.2 than
for q = 32.2 and q = 4.2, respectively, what indicates that q-dependent higher-
order corrections significantly influence the range of applicability for the leading
correction (5.42).

The time scale τ in Fig. 6.5 was matched for q = 24.2, so the violation of scale
universality discussed in Ch. 5 leads to different times τq, where the correlators for
different q cross their respective renormalized plateau f∗

q + f̂q. The representation
with the rescaled φ̂q(t) is particularly sensitive to these deviations since the point
where the plateau is crossed is required to be zero, φ̂q(t/τ) = 0. In Fig. 6.5 we
see that the line crossing the zero is slightly broader than a single curve. The
deviations in τq are small enough to not exceed the grid for the time axis which
around τ = 2988 is given by ∆t = 172. So we interpolate to get for q = 4.2, 24.2,
and 32.2, τq = 2899, 2988, and 3017, respectively. These difference do not introduce
larger errors in the analysis carried out above.

In order to change from convex to concave behavior we can also change the
control parameters which was exercised already in detail in the schematic models
in Ch. 5. For states above the line B2(24.2) = 0, we expect concave behavior,
B2(q) < 0, for states below, convex decay, B2(24.2) > 0. For a test of these
expectation, the rescaled correlators φ̂q(t/τ) at the states labeled a, b, c from
Fig. 6.3 are divided by the prefactor (B − B1) of Eq. (5.42). This way the part of
the decay that is linear in ln t shows up as straight line with slope − ln 10 in Fig. 6.6.
The approximations (5.42) are shown as dashed lines for each state representing
− ln(t/τ)+ [B2(24.2)/(B−B1)] ln2(t/τ). For state b the approximation is identical
to − ln(t/τ) and the solution follows that line over 5 decades before 5% deviation is
reached. The states a and c are chosen to have the same value for B −B1 ≈ 0.015
and B2(24.2) = ∓0.0020, respectively. The solutions at state a and c follow the
− ln t-law closely within a 5% margin for two decades or one decade, respectively,
which is significantly less than found for state b. We can infer from Fig. 6.3 that
at state a the quadratic corrections would vanish again if we went from q = 24.2
to the higher wave vector q = 27.0. A scenario similar to the one shown in Fig. 6.4
can be found.

The procedure outlined in Figs. 6.3, 6.4, 6.5, and 6.6 can be summarized as
follows. From the higher-order singularities there emanate surfaces in the control-
parameter space for a specific wave vector q̄ where the quadratic term in Eq. (5.42)
is zero, cf. Fig. 6.3, and the decay is linear in ln t. Moving closer to the singu-
larity on that surface, the window in time where the logarithmic decay is a valid
approximation increases, cf. Fig. 6.4. On a fixed point on that surface the decay is
concave for q < q̄ and convex for q > q̄, cf. Fig. 6.5. For fixed q̄ the change from
concave to convex is achieved by crossing the mentioned surface from above in the
sense exemplified in Fig. 6.6.
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Figure 6.6. Logarithmic decay at the A4-singularity for the three
states marked by triangles in Fig. 6.3. The inset shows the correla-
tion functions φq(t) for q = 24.2. The plateau value f∗

q is indicated
by the short horizontal line in both the inset and the full panel.
The full panel shows φ̂q(t) = (φq(t) − f∗

q − f̂q)/hq divided by the
respective values for (B − B1) at the three states specified. The
dashed curves show the result from Eq. (5.42). Filled squares and
bullets mark the points where curve a and c deviate by 5% from
− ln(t/τ), respectively. The deviation for curve b (�) for short
times is at t ≈ 10−4 and not included in the figure.

2. Subdiffusive power law in the MSD

It was demonstrated in Sec. 5.2 of Ch. 5 that the coupled quantities share the
leading asymptotic behavior of the density correlators. As a consequence of the
factorization theorem only the glass-form factors and the critical amplitudes hq are
different for the coupled quantities. In the sense of Eq. (5.91) the leading correction
violating a generalized factorization theorem is proportional to the correction am-
plitude Kq. Since for large wave vectors, say q > 10, the quantities fs

q , hs
q, and Ks

q

are close to the ones for the coherent correlator, the approximation for the tagged
particle correlation functions φs

q(t) for these large q is the same as for φq(t). So the
discussion for φs

q(t) is already exhausted by Fig. 6.2 and not much could be gained
from repeating the same discussion as in the previous section.

We turn instead to the MSD as a second variable to be examined for the
manifestation of the logarithmic decay laws. It was derived in Sec. 5.3 of Ch. 5 that
δr2(t) is expected to exhibit power-law behavior around the plateau 6 rc 2

s provided
the term b2 in Eq. (5.105b) vanishes. The power-law exponent b1 is determined
explicitly in Eq. (5.106b) by the localization length and the critical amplitude,
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which are

(6.1) r∗s = 0.04255 , h∗MSD = 0.004051

for the A4-singularity.
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Figure 6.7. Subdiffusive power law in the MSD. The solutions for
states 1, 2, and 3 in the inset are shown as full lines in the full panel
together with the leading (dotted) and next-to-leading (dashed)
approximation by Eqs. (5.37) and (5.42), respectively. The long
horizontal line represents 6 r∗ 2

s = 0.01086, the short horizontal
lines the corrections to the plateau, 6(r∗ 2

s − r̂2s). The straight full
lines show the power law (t/τ)b1 , Eq. (5.106a), with exponents
b1 = 0.365, 0.173 and 0.0878 for states n = 1, 2, 3. The open
symbols show the points where the solutions deviate by 5% from
the leading-order power laws. The inset shows part of the glass-
transition diagram for δ = δ∗ and a chain line where b2 = 0 (see
text).

The line where b2 from Eq. (5.105b) vanishes is found in the liquid regime
as shown in the inset of Fig. 6.7. Accidentally, this line is almost identical to
the one for B2(24.2) = 0 for the correlators φq(t). The MSD for three states on
that line is shown in the full panel and described well by the approximation (5.42)
substituted into Eq. (5.101). For states n = 1, 2, 3, one, three and six decades are
covered with deviations less than 5%, so the approximation yields a description of
similar accuracy as for the correlation functions in Fig. 6.4. The leading result from
Eq. (5.37) describes the relaxation proportional to ln t (dotted) which always has
negative curvature in the double-logarithmic representation and does not provide a
valid description for n = 1 and 2. The reason for the qualitative difference between
the solution for the MSD and the leading logarithmic law is that the corrections
proportional to KMSD = −1.708 are so large that KMSDB

2 + B2 is never close to
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zero in the liquid regime except very close to the A4-singularity, which is seen for
n = 3 in Fig. 6.7 where ln t develops a straightened decay around the plateau.

The power law (5.106) provides a different formulation of a leading order ap-
proximation and is shown as straight line for n = 1, 2, 3. For n = 1 this describes
the MSD for more than a decade as indicated by the squares. For n = 2 three
decades are covered and six decades of power-law behavior are identified for curve
n = 3. So the accuracy is similar to the one provided by the approximation in next-
to-leading order by Eq. (5.42). Both asymptotic descriptions fall on top of each
other around the plateau and therefore corroborate that the reformulation (5.105b)
is justified. The interpretation of the behavior of the MSD is then much simpler
when considering the power laws instead of the logarithms of time. The decreasing
slope of the relaxation when approaching the A4-singularity as in Fig. 6.7 is just
the exponent b1 from Eq. (5.106b) which decreases as B with the square-root of
the separation parameter ε1, cf. Eq. (5.20). The same parameter B is the prefactor
of the leading-order logarithmic decay in Eq. (5.37). In that sense Fig. 6.7 is the
analog of Fig. 6.4.
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Figure 6.8. Concave and convex deviations from the power
law (5.106) in the MSD. Solutions for the states a, b, and c are
shown as full lines, the approximation (5.106) as straight full lines
for exponents b1 = 0.147, 0.173, and 0.285, respectively. Open
symbols denote the 5% deviation of the solutions from the leading-
order power law. For state b, the dashed line exhibits the cor-
rected power law with b′1 = 0.155, Eq. (5.107), and the filled tri-
angle the 5% deviations of the solution from it. Dashed lines show
the approximation by Eq. (5.105b) for a and c with b2 = 0.00363
and −0.00735, respectively, and b′1 = 0.143 and 0.214. The filled
symbols mark the 5% deviations. The inset replots the one from
Fig. 6.7 and shows the state points a, b, and c.
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Since the term b2 in Eq. (5.105b) varies regularly in the separation parameters
ε1 and ε2, the sign of b2 is positive above the line b2 = 0 and negative below.
Therefore, similar to the case for the correlators in the linear-log representation,
in the double-logarithmic representation, the behavior of the MSD can be changed
from convex to concave when crossing the line where the respective quadratic cor-
rection b2 vanishes. For the A4-singularity the change in curvature is demonstrated
for three states in Fig. 6.8. State b is identical to the state n = 2 in Fig. 6.7
and obeys b2 = 0. The power law (t/τ)b1 is shown as straight full line. The time
scale τ is matched at the plateau 6 r∗ 2

s . Moving to state c below the chain line,
(Γ, ϕ) = (3.42, 0.525), a relaxation is obtained which clearly exhibits negative cur-
vature and is consistent with the calculated value b2 = −0.00735. The leading-order
power law with exponent b1 = 0.285 fulfills a 5%-deviation criterion for two decades
which accidentally extends to short times as the approximation crosses the solution
twice. Reducing the allowed deviation to 4% would reduce that interval to less than
a decade. If we include the term proportional to b2 from Eq. (5.105b) and renor-
malize the exponent to b′1, Eq. (5.107), the approximation agrees with the solution
for three decades. It is obvious from a comparison with curve 1 in Fig. 6.7, that
the leading-order power law describes that solution better than it describes the so-
lution at state c in Fig. 6.8 for comparable values for τ and the plateau correction.
The deviation to convex behavior is demonstrated by the dashed line to curve a,
(Γ, ϕ) = (4.57, 0.523). Again the range of validity is extended to earlier times but
for later times no improvement can be found.

In Fig. 6.7 the dashed line, which describes the next-to-leading order approx-
imation of Eq. (5.42), deviates from the leading order power law (5.106a) below
the plateau where the range of validity for the power law extends to much smaller
times than justified by its derivation. We also recognize that the exponent b1 over-
estimates the slope of the relaxation in Figs. 6.7 and 6.8. In Eq. (5.106b) only the
term B from the leading order approximation is present. Taking into account the
renormalization of this prefactor to B−B1 in Eq. (5.107) changes the exponent for
state b from b1 = 0.173 to b′1 = 0.155. By comparing the full line for the leading
result and the dashed line for the corrected one in Fig. 6.8 we find that the range of
applicability is shifted to later times by one decade and extended by two decades.
The corrected power law is valid from 102 to 5 · 106 and comparison to Fig. 6.7
shows that approximation (5.42) covers a similar range. The accidental extension
to shorter times is removed. The approximation now covers the range also a naive
power-law fit would yield.

In summary, we can interpret Fig. 6.8 as the analog of Fig. 6.6. Some qua-
dratic correction to a leading-order linear behavior can be set to zero on a surface
in control-parameter space. Departing from that surface in opposite directions in-
troduces either positive or negative corrections and the linear behavior is changed
to convex or concave.

3. Logarithmic decay at an A3-singularity

For the discussion of the logarithmic decay laws at the A3-singularity the q-
dependent amplitudes are shown in Fig. 6.9. No qualitative changes are obvious
from a comparison of Fig. 6.9 with Fig. 6.2 for the A4. The smaller length scale
δ = 0.03 introduces a smaller localization length that is reflected in the broader
distributions in wave vector space. So the trend seen when changing from the HSS
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Figure 6.9. Glass-form factors and wave-vector dependent am-
plitudes at the A3-singularity for δ = 0.03. Line styles are the
same as in Fig. 6.2. The values at the A4-singularity, f∗

q h∗q , and
K∗

q , are shown for comparison. At q ≈ 57.5 a short line indicates
where K◦

q = 0. The values for q = 24.2 and 45.0 are marked by
diamonds. The inset shows Kq for 4 < q < 11 for δ = δ∗ (chain
line), 0.03 (full line) and 0.02 (dotted line).

to the A4 of the SWS is continued when approaching A3-singularities at smaller δ.
There are only two notable exceptions at smaller q. First, the value for Kq at the
position of the structure factor peak is minimal for the A4, −1.81 = K∗

q < K◦
q =

−1.72. The inset shows this region enlarged for δ = δ∗, 0.03 and 0.02, demonstrating
that Kq at the peak is again larger for the A3-singularity with smaller well width
0.02, where Kq = −1.69. Second, the zero-wave-vector limit of Ks

q is also smallest
at the A4-singularity. The respective values for δ = δ∗, 0.03 and 0.02 are −1.71,
−1.64, and −1.62. Therefore, one experiences the strongest q-dependent corrections
at the A4-singularity.

Figure 6.10 shows the analog of Fig. 6.3 for a cut through the glass-transition
diagram at δ = 0.03. The lines ε1 = 0 and ε2 = 0 for the A3-singularity are obtained
from a smooth transformation from the corresponding lines at the A4-singularity
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Figure 6.10. Lines of vanishing quadratic correction for the A3-
singularity (©) at δ = 0.03. The δ = 0.03 cut through the glass-
transition diagram is displayed by full lines. The lines of vanishing
separation parameters and quadratic corrections, B2(q) = 0, are
shown in the same style as in Fig. 6.3 and labeled accordingly. The
line b2 = 0 indicates the analogous line for the MSD, cf. inset of
Fig. 6.7.

and appear in similar locations in the diagram. The line ε2 = 0 is again very close to
the line of gel transitions. Just below, we find again the line where B2(q) = 0 when
Kq = 0. However, this now represents q ≈ 57.5, cf. Fig. 6.9, which is a value almost
twice as large as for the corresponding line in Fig. 6.3. For the wave vector q = 24.2
we find the line where B2(24.2) = 0 completely in the glass state. Taking the same
value for the correction amplitude as at q = 24.2 at the A4, K∗

q ≈ −0.6, instead of q
we obtain q = 45.0 in Fig. 6.9 and the line labeled accordingly in Fig. 6.10. Since the
latter line comes close to the liquid-glass-transition line we take that as a reference
and estimate the range of wave-vectors where the quadratic corrections can be put
to zero in the liquid regime to 45 � q � 58. The lines where B2(q) = 0 can be
rather sensitive to q-variation. This is demonstrated by the curve B2(46.2) = 0.
Although the change in the wave vector is small, the values for Kq differ by more
than 20% and induce a rotation of the line B2(q) = 0 by quite a significant angle
in Fig. 6.10.

Having in mind the drastic changes in the lines where B2(q) = 0 for a given
wave vector q it may come with some surprise that the line for the MSD, where
b2 = 0, stays rather robust in the accessible liquid regime as seen in Fig. 6.10 from
the line labeled MSD. The variation in q for the amplitudes is reflected in changes
of the localization lengths. For the A3-singularity at δ = 0.03 we get

(6.2) r◦s = 0.0243 , h◦MSD = 0.00136 .
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From Eq. (6.1) one gets r∗s/r
◦
s = 1.75 and the square of the latter ratio, r∗ 2

s /r◦ 2
s ≈ 3,

is the same as h∗MSD/h
◦
MSD. Since only the fraction hMSD/r

2
s could introduce larger

modifications in Eq. (5.105b), the changes in b2 cancel approximately and the line
specified by b2 = 0 experiences only minor deformations when δ is varied.

In summary one finds for the case of an A3-singularity the same scenarios for
the correlators and the MSD as presented in Sec. 1 for the A4-singularity. There
arise more complex scenarios near an A3-singularity because of the crossing of lines
in the vicinity which shall be considered in the next chapter.

4. Critical decay at higher-order singularities

We now turn to the critical decay at the higher-order singularities in the SWS
which is described by the expansions in Ch. 5 Secs. 3 and 4. Recalling the discussion
for the F13-model in connection with Fig. 5.4 we expect that a good and consistent
approximation might not be achieved for the decay at shorter times. We start with
the discussion for the A3-singularity at δ = 0.03.

4.1. Critical decay at the A3-singularity. For the discussion of the critical
decay, the solution is calculated at the A3-singularity specified by (ϕ◦, Γ◦, δ◦) =
(0.5448, 5.509, 0.03) and shall be denoted by φ◦q(t). I will be convenient to use the
rescaled correlators given by φ̂◦q(t) = (φ◦q(t) − f◦

q )/h◦q . For the evaluation of the
approximation (5.76) we need the correction amplitudes K◦

q which are shown in
Fig. 6.9 and the parameters characteristic for the A3-singularity under discussion,

(6.3) µ3 = 0.109, κ = 0.314 , µ4 = 0.204 .

The q-dependent asymptotic approximation for the critical decay at the A3-singu-
larity for δ = 0.03 in the SWS after substituting all parameters into Eq. (5.76)
reads

φ̂◦q(t) =60.4/x2 + 264.7 lnx/x3

+ [3374.9− 580.2 lnx+ 870.4 ln2 x]/x4

+ [−11745.7− 27952.1 lnx− 4452.2 ln2 x+ 2544.1 ln3 x]/x5

+K◦
q

{
3643.9/x4 + 31953.7 lnx/x5

}
+ O(x−6) , x = ln(t/t0) .

(6.4)

The first line in Eq. (6.4) represents g2(x) and g3(x), Eqs. (5.54) and (5.59). The
second and third line exhibit the contribution up to order O(x−6), g4(x) and g5(x),
which are independent of the wave vector. The q-dependent correction terms up to
order O(x−6) are given by the prefactor K◦

q and the terms in the curly brackets,
which are positive for t/t0 > 2.5 and monotonic decreasing for t/t0 > 3.1.

Figure 6.11 shows the critical decay φ̂◦q(t) for correlators having different cor-
rection amplitudes K◦

q . At the peak of the structure factor, q = 7, the amplitude is
negative, for q = 57.4 the correction amplitude is close to zero, and for the highest
wave vector q = 172.2 the amplitude is positive. The respective rescaled correla-
tion functions φ̂◦q(t) (full lines) deviate strongly from each other in the window of
time presented, showing that the factorization property is violated. The leading
contribution to this violation comes from the terms in curly brackets in Eq. (6.4).
If the deviations among the correlation functions for different wave vectors cannot
be assigned to the q-dependent corrections in Eq. (6.4) within an accessible window
in time, we cannot expect that Eq. (6.4) will be sufficient to describe the critical
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Figure 6.11. Critical decay at the A3-singularity of the SWS for
δ = 0.03. Full lines show the rescaled correlation functions at V◦,
φ̂◦q(t) = (φ◦q(t) − f◦

q )/h◦q, for the wave-vector values q = 7, 57.4,
and 172.2 as indicated. The dashed lines exhibit the asymptotic
approximation of Eq. (6.4) with a time scale t0 = 4 ·10−5 matched
in the interval t = 1040. . . 1045. For q = 7.0, 57.4, and q = 172.2,
the correction amplitudes are K◦

q = −1.704, −0.00224, and 4.814,
respectively. The filled diamonds for t = 105 and t = 1012 mark the
values for φ̂◦q(t) for the three q-values. The inset shows φ̂◦q(t)

−1/2

for the q-values above from top to bottom and the q-independent
approximations defined in Eq. (5.64) in the same representation,
G2(t/t0)−1/2, G3(t/t0)−1/2 and G5(t/t0)−1/2, respectively.

decay. For this reason we look at the correlators themselves before trying to match
any approximation to the solution.

Suppose the critical correlators φ̂◦q(t) for different wave vectors are approxi-
mated by Eq. (6.4). Then for arbitrarily chosen wave vectors q1 and q2 the differ-
ence ∆̂[q1, q2](t) = φ̂◦q1

(t) − φ̂◦q2
(t) is given in leading order by the difference in the

correction amplitudes, K◦
q1
−K◦

q2
, and the terms in the curly brackets in Eq. (6.4).

From Fig. 6.11 we infer that ∆̂[q1, q2](t) is not yet close to zero to neglect the terms
in the curly brackets in Eq. (6.4). The values of φ̂◦q(t) for the three chosen q-values
are marked by diamonds in Fig. 6.11 for t = 105 and 1012 and show large devi-
ations. We get ∆̂[7, 57.4](105) = −0.030 and ∆̂[172.2, 57.4](105) = 0.161. These
differences are large but however reflect the ordering in the values for K◦

q which
increase with q. From that we conclude that the treatment of the q-dependence
in Eq. (6.4) is qualitatively correct. If the correlators φ̂◦q(t) for different q would
intersect, higher q-dependent corrections were relevant for the given window in time
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since the subtraction inherent to ∆̂[q1, q2](t) also cancels higher order corrections
that are independent of q.

Having established the qualitative consistency we proceed to check the quan-
titative agreement. If the time dependence of ∆̂[q1, q2](t) were given exclusively
by the terms in curly brackets in Eq. (6.4), then the differences among the K◦

q

would explain the amplitudes of the decay in ∆̂[q1, q2](t). To quantify deviations
from that case we introduce the ratio ν[q1, q2, q3](t) = ∆̂[q1, q2](t)/∆̂[q2, q3](t).
For t → ∞ this ratio goes to ν∞ = (K◦

q1
− K◦

q2
)/(K◦

q2
− K◦

q3
). Deviations from

ν∞ hence indicate that higher-order q-dependent corrections are present in addi-
tion to the terms in Eq. (6.4). For the q-values used in Fig. 6.11 we get ν∞ =
(K◦

7 −K◦
57.4)/(K

◦
57.4−K◦

172.2) = 0.354. Since K◦
57.4 ≈ 0, this ratio is almost equiva-

lent to −K◦
7/K

◦
172.2. The ratio at time t = 105 is ν[7, 57.4, 172.2](105) = 0.187 and

therefore deviates by 90% from ν∞. Hence, we cannot expect Eq. (6.4) to describe
the critical decay in Fig. 6.11 at that time as additional q-dependent corrections
are still large there.

At t = 1012 the ratio has decayed to ν[7, 57.4, 172.2](1012) = 0.280 which is
close to ν∞ within 20%. Here, the q-dependent corrections are also in reasonable
quantitative agreement with the approximation in Eq. (6.4). To determine t0, we
go again to large times. The inset of Fig. 6.11 displays the rescaled correlators
as φ̂◦q(t)

−1/2. In this representation the leading term g2(x) in Eq. (6.11) yields a
straight line. We see that for large times the correlators for different q indeed come
closer together and the ratio at t = 1040 is ν[7, 57.4, 172.2](1040) = 0.341 which is
1% from ν∞. For the determination of t0 we use Eq. (6.11) for q = 7, 57.4 , and
172.2 and match the asymptotic approximation to the numerical solutions in the
interval from t = 1040 to t = 1045. This results in a value t0 = 4 · 10−5. For times
larger than t ≈ 1050 the numerical solution does no longer follow the approximation.
In that region inaccuracies in the control-parameter values lead to deviations from
the asymptotic behavior. These inaccuracies prevent us also from fixing more than
just one digit of t0. This is well known from the A2-singularities, e.g. in the HSS,
where the control parameter ϕ has to be calculated up to ten digits to fix t0 up to
three digits. The dashed line in the inset labeled G5 shows the result for neglecting
the last line of Eq. (6.11). Within the error margin this also describes the correlator
for q = 57.4 where Kq is close to zero. Taking into account only the first line of
Eq. (6.11) but staying at the value for t0 yields the dotted curve labeled G3 which
is clearly inferior but captures the slope of the solution still better than G2.

In the full panel of Fig. 6.11 we can compare the critical correlators with the
approximation (dashed) by Eq. (6.11). We observe that the asymptotic expression
in Eq. (6.11) describes the critical correlators at the A3-singularity of the SWS
quantitatively but only at large times. For smaller times comparable to experimen-
tal windows the description is still reasonable qualitatively. Especially the leading
q-dependent corrections describe the variations seen in the correlators correctly
down to relatively short times.

The accuracy of the approximation that was obtained in the schematic models,
cf. Figs. 5.9 and 5.4, is far better than seen in Fig. 6.11 for the SWS. This difference
is mainly due to different values of the parameter µ3 that characterizes the various
A3-singularities. For the two-component model we had µ3 = 0.77 and for the one-
component model there was µ3 = 1/3. Moreover, in Fig. 5.4 additional terms of the
expansion for one-component systems could be applied. The value of µ3 = 0.109
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for the SWS implies large correction terms in Eq. (6.11) and in additional terms
that are not included in Eq. (6.11).

4.2. Critical decay at the A4-singularity. For the application of Eq. (5.86)
we need the parameters characterizing the A4-singularity,

(6.5) µ4 = 0.131 , κ = 0.243 , µ5 = 1.21 .

The rather small value of µ4 signals that in the SWS the A4-singularity is already
close to the yet again higher-order singularity A5, the butterfly, where µ4 vanishes.
This generates particularly large coefficients in the expansion of the critical decay
in Eq. (5.81) where µ4 appears in the denominators. This is quite the same as for
the A3-singularities that are close to the A4-singularity taking the distance of µ3

from zero as measure, cf. Fig. 6.1.
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Figure 6.12. Critical decay at the A4-singularity of the SWS for
q = 7.0 (dashed), 32.2 (full line), 39.8 (dotted). The correction
amplitudes are Kq = −1.81, −0.04, and 0.77, respectively. The
filled diamonds mark the values at t = 105 and t = 1012 where
the ratios ν(t) are 1.44 and 1.72, respectively (see text). The inset
replots the curves from the full panel in the same linestyle and
shows the first term of Eq. (6.6) labeled G1 and the law ln(t/τ)−2/3

labeled A5, both with an arbitrary time scale.

The asymptotic approximation for the critical decay at the A4-singularity in
the SWS after inserting all parameters into Eq. (5.86) yields a particular simple
formula for the rescaled correlators φ̂∗q(t) = (φ∗q(t) − f∗

q )/h∗q(t),

φ̂∗q(t) = 3.54/x− 50.7 lnx/x2 + 12.5K∗
q/x

2

+ O(x−3) , x = ln(t/t0) .
(6.6)
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The above expression has yet again only a single source for the violation of the
factorization property – the correction amplitude Kq. This motivates an analysis
of the critical correlator φ̂∗q(t) for different wave vectors as done before for the
A3-singularity. We chose again values for q where K∗

q is negative, almost zero
and positive. Figure 6.12 demonstrates that again the factorization is violated.
Comparing the solutions φ̂∗q(t) for t = 105 we find a ratio defined as in the previous
section of ν[7, 32.2, 39.8](105) = 1.439 which is more than 30% off the ratio for the
correction amplitudes ν∞ = 2.185. At t = 1012 we find ν[7, 32.2, 39.8](1012) = 1.723
which achieves 20% accuracy. So the critical decay at the A4-singularity shown in
Fig. 6.12 is in qualitative accord with Eq. (6.6) with respect to the variation in
q. However, due to the small value of µ4, the differences among the correlators
for different q do not decay fast enough to allow for a consistent determination
of t0 for the maximum value in time that could be reached, numerically we find
ν[7, 32.2, 39.8](10128) = 2.076 which is still 5% off from ν∞, and φ̂∗q(t) itself deviates
from zero by 5%. This illustrates drastically how slow the critical decay at the A4-
singularity is.

The inset of Fig. 6.12 demonstrates that the critical decay φ̂∗q(t) in the entire
window in time is qualitatively different from the leading order 1/ ln t-law. For the
A3-singularity in Fig. 6.11 it was still possible to argue that curve G2 is in accord
with the decay qualitatively at least for large times and attribute deviations for
shorter times to the proximity of the A4-singularity. In Fig. 6.12 the leading order
shown as G1 with an arbitrary time scale t0 does not allow for such an interpreta-
tion. The curves 1/φ̂∗q(t) have a slope smaller than 1/G1 over the complete window
in time and imply a slower decay than given by the leading order in Eq. (6.6). To
make plausible that the proximity to an A5-singularity with a critical decay law
ln(t)−2/3 [41] induces that behavior, we plot the law ln(t)2/3 in the inset as chain
line labeled A5 and observe at least some qualitative similarity. So the failure of the
critical law at the A4-singularity in the SWS is explained by the low value of µ4.
If µ4 is larger as in the two-component model, Eq. (5.86) offers a valid description
of the critical decay, cf. Fig. 5.13.

To check if the value for µ4 in Eq. (6.5) is exceptionally small for the SWS, the
calculation was repeated for the HCY. We find the even smaller value µ4 = 0.080
and conclude that the shape of the potentials discussed in Ch. 4 does not change
the character of the A4-singularity found for the SWS.





CHAPTER 7

Line crossing in the SWS

In the previous chapter the dynamics at and close to the A3- and A4-singularities
in the SWS was analyzed. These higher-order singularities do not occur isolated
but are accompanied by lines of nearby A2-singularities we identified with transi-
tions to a glass state, transitions to a gel state and glass-glass transitions between
glass and gel. How the interplay of the various singularities rules the dynamics at
the line crossing near an A3-singularity shall be analyzed in the following. Since
the wave-vector dependence was already discussed extensively, we restrict ourselves
to the MSD in Sec. 1. The discussion of the crossing at δ = 0.03 is partly moti-
vated by a recent MD simulation [93] where a subdiffusive power law in the MSD
was reported. It was shown in Ch. 6 that power-law behavior in the MSD is an
implication of the logarithmic decay at the higher-order singularities. It is shown
that effective power laws can result from a crossover from A3- to A2-dynamics.

In Sec. 2, a crossing scenario containing an effective logarithmic decay predicted
for the correlation function at small wave vectors in Ref. [16] is reconsidered and
explained in terms of asymptotic expansions. Similar scenarios have been reported
in photon-correlation spectroscopy in micellar systems [42, 43], in light scattering
from a colloidal systems with attraction [30] and also in MD simulation [93].

1. MSD at a crossing

When considering multiple glass-transition singularities on a cut through the
glass-transition diagram as shown for Fig. 7.1, the distance to the liquid-glass tran-
sition is no longer unique but depends on the choice of a specific point on the
liquid-glass transition line. The relative size of the diffusivity Ds compared to the
short-time diffusion coefficient Ds

0 can be used instead to characterize the distance
of a chosen state to the liquid-glass-transition line. The dashed lines in Fig. 7.1 show
lines for constant Ds

0/D
s with Ds defined in Eq. (2.14). These lines are plotted for

the cut δ = 0.03 from Fig. 4.1 using the MSA for the evaluation of the structure
factor. The lines can be interpreted as precursors of the liquid-glass-transition line
and display the reentry phenomenon.

Three paths are marked in Fig. 7.1 for the discussion of the dynamics. The first
path for Γ = 1.67 is relatively far from the crossing point, the path for Γ = 5.50
is close to but below the crossing point and close to the A3-singularity, and the
third path is connected to a gel transition beyond the crossing point. All paths end
at an A2-singularity given by the respective Γ, and the changes in the MSD when
approaching the different liquid-glass-transition points shall be analyzed using the
asymptotic laws for the A2-singularity.
The asymptotic laws for the critical relaxation at A2-singularities from Eq. (5.103)
are compared with the full MCT result in Fig. 7.2. For Γ = 1.67 (panel A) the
description is similar to that found for the HSS [60]. The exponent parameter
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Figure 7.1. Glass-transition diagram for the SWS at δ = 0.03
together with isodiffusivity lines for Ds

0/D
s = 105, 107, 1010 based

on the structure factor using MSA. Full curves show the glass-
transition lines exhibiting an A3-singularity (©) and a crossing
point (�). On the isodiffusivity lines (dashed), paths are marked
for the dynamics discussed in Fig. 7.2 for Γ = 1.67 (+), 5.50 (•),
and 6.33 (�). The dotted lines with the shaded circle as endpoint
show the glass-transition singularities for δ = 0.03 based on the
structure factor using PYA rescaled in Γ by a factor 5.88 to match
the crossing point.

λA = 0.750 is still close to the one for the HSS, λ = 0.735. But the time scale
tA0 = 1.95 differs considerably from the value t0 = 0.425 for the HSS. This is due to
a slowing down of the dynamics for times where δr2(t) is smaller than rc 2

s caused by
the attractive forces on smaller length scale. The exponent for the critical relaxation
is a = 0.305. The point where correction and numerical solution deviate by 20% of
the critical plateau value 6 rc

s
2 is marked by a square at t ≈ 18 ≈ 9 t0.

Panel B shows the scenario for an approach to an A2-singularity on the path
closer to the A3-singularity. The exponent parameter is increased to λB = 0.857
corresponding to a decrease of the critical exponent to a = 0.243. The increasing
importance of the attraction is seen in a decrease of the critical localization length
representing the plateaus for the MSD (labeled by + in panel A) from 6 rc 2

s = 0.0318
to 6 rc 2

s = 0.0245 (marked by • in panel B). However, the major new phenomenon
is the drastic increase of the time scale t0 to tB0 = 4 · 103. The critical decay for
the A2-singularity sets in only for times around 106 as indicated by the square in
Fig. 7.2 B. There is an additional relaxation process outside the transient ruling
the dynamics within the window 0 � log1 0(t) � 4.5. The critical localization
length of the nearby gel transition causes a plateau around δr2 ≈ 10−3 so the
anomalous decay process is not the one related to the gel transition. Rather, it
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Figure 7.2. MSD for the SWS at the crossing. Full curves
are the results for states on the isodiffusivity lines for Ds

0/D
s =

105, 107, 1010 marked in Fig. 7.1. The curves with label c refer
to the transition points for the value of Γ indicated. Respective
values for the plateaus 6rc

s
2 are marked by the symbols +, • and �

introduced in Fig. 7.1. The plateau is also shown as horizontal line
for the A3-singularity for the lower two panels. Dotted curves show
the leading solution to the critical law, (t0/t)a, dashed curves the
next-to-leading order for the A2-singularities, Eq. (5.103). Open
squares (�) denote the time where the solution deviates by 20%
from the asymptotic result in Eq. (5.103). An effective power law
for exponent x = 0.27 appearing at Γ = 6.63 is shown by the
dash-dotted line (see text).

is the decay around the plateau of the close-by A3-singularity as described in the
previous chapter.

In panel C for Γ = 6.33, the gel plateau is approached with t0 = 6 · 10−3

and the critical relaxation for λ = 0.873 and a = 0.232 is described with similar
accuracy as for Γ = 1.67 in panel A, the deviation of 20% is at t = 0.048 = 8 t0
and again indicated by a square. The comparably large value of λ causes the
leading asymptotic approximation (dotted curve) to deviate further from the next-
to-leading order result. The amplitude [KMSD + κ(a)] in Eq. (5.103) is around −1
in both A and C. In this sense one concludes that the critical dynamics for the gel
transition is quite similar to the one observed for the glass transition.
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The dynamics for the δr2(t) exceeding the respective plateaus is quite different
for the glass transition shown in panel A from the gel transition in panel C. If
one, as usual, refers to the process with δr2(t) > 6 rc 2

s as an α-process, in A the
α-process is similar to the one in the HSS. The crossing of the plateau is followed
by a von Schweidler relaxation and a crossover to long-time diffusion [60]. A shift
in time can condense the curves after the plateau on top of each other, a property
known as α-scaling. For the dynamics at the gel transition (C) the lower plateau
(�) defines the onset of the α-process. It is different in shape compared to A. The
relaxation around the A3-singularity plateau causes effective power-law behavior
with x = 0.27 as shown by the dash-dotted line. It is the same phenomenon as
discussed above for panel B. On approaching the gel transition, this subdiffusive
regime scales as part of the α-process if one is so close to the gel transition that
separations to the A3-singularity and the A2-glass-transition singularity are kept
fixed. A3-singularity and the glass-transition singularity determine only the shape
of the α-relaxation. If the distance between the two singularities is changed on
the path taken, the form of the α-process is also changed. In this case the A3-
singularity is manifested in a violation of the α-scaling for the gel transition. If the
separation from the A3-singularity and the glass-transition singularity is sufficiently
large, which is true for small ϕ, the dynamics is affected only by the gel plateau
and directly crosses over from the von Schweidler relaxation at the gel plateau to
the long-time diffusion. For this reason the exponent of the effective power law
approaches unity.

Figure 7.3 shows the parameters for the asymptotic description via Eq. (5.103)
along the liquid-glass-transition lines for δ = 0.03 with increasing Γ. The localiza-
tion lengths rc

s in panel A exhibit a jump at the crossing point Γ× reflecting the
discontinuous change of both fq and fs

q . The values for the glass-glass transition are
also shown down to the A3-singularity at Γ◦. The critical amplitudes hMSD follow
the same trend as rc

s signaling that a change in the localization length also sets the
amplitude for the relaxation around rc

s. Panel B shows the two quantities in the
correction to the critical law. KMSD shows only small deviations from the value
in the HSS, KHSS

MSD = −1.23. At the crossing on the glass KMSD = −1.57, on the
gel-line it reaches KMSD = −1.31 and at the A3-singularity KMSD = −1.64. Since
away from crossing and higher-order singularities κ(a) is always close to zero, the
correction to the critical law in Eq. (5.103) is dominated by the amplitude KMSD

which is negative and of order unity there. For this reason including the correction
to the critical law in Fig. 7.2 increases the range of applicability considerably in
comparison to the leading approximation. At higher-order singularities, λ→ 1, and
κ(a) diverges which is responsible for the increase of the corrections at the crossing.
These corrections change sign when κ(a) starts to increase. For the present case of
δ = 0.03, this happens only on the glass-glass-transition line between Γ◦ and Γ×.

Panel C of Fig. 7.3 points out the difference in the time scale t0 when coming
from small Γ in the HSS limit or from high Γ, respectively. In the first case t0 for
the critical law at the glass-transition plateau is increasing and eventually diverging
when the gel transition at the crossing is approached. This is because the glassy
dynamics of the gel transition determines t0. For Γ > Γ◦, t0 is orders of magnitude
smaller than in the HSS since the relevant localization for the gel is encountered
much earlier in time. On this line of transitions t0 is regular at the crossing but
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Figure 7.3. Parameters for the critical decay at A2-singularities
according to Eq. (5.103); rc

s (
) and hMSD (�) in panel A; κ(a)
(×) from Eq. (5.94), KMSD (�), and κ(a) +KMSD (�) in panel B;
and t0 (♦) in the panel C. The arrow labeled Γ◦ marks the value
for the A3-singularity, Γ× the crossing point. Full and dotted lines
are guides to the eye to join points on different parts of the glass-
transition line for 0 ≤ Γ ≤ Γ× and the gel-transition line for Γ◦ ≤
Γ, respectively.

diverges at the A3-singularity. This indicates that power laws are an inadequate
description of the critical relaxation at a higher-order singularity.

Figure 7.4 displays the parameters quantifying the influence from the A3-
singularity and the von Schweidler relaxation in Eq. (5.104). Panel A refers to states
on the isodiffusivity line Ds

0/D
s = 1010 in Fig. 7.1. The isodiffusivity lines bend

away from the crossing and this translates into the separation parameters |σ| being
maximal there. On the same curve, the separation from the A3-singularity |ε1| has a
minimum at the crossing. This also shows that distance in control-parameter space
as seen in Fig. 7.1 need not reflect the relevant separation parameters of the singu-
larity. The distances of the liquid-glass-transition point for Γ = 5.50 from the A3 are
(∆φ,∆Γ) = (0.085, 0.01) while for the crossing point (∆φ,∆Γ) = (0.084,−0.37).
The separations, however, are ε1 = −0.028 and −0.015, respectively. Panel B of
Fig. 7.4 displays the correction amplitudes in Eq. (5.104). KMSD is the same as in
Fig. 7.3 and κ(−b) shows similar behavior as κ(a) in Fig. 7.3. However, as κ(−b) is
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Figure 7.4. Parameters for the von Schweidler-law description,
Eq. (5.104), for δ = 0.03. Panel A shows the separation parameters
σ for points on the isodiffusivity line for Ds

0/D
s = 1010 (� − �).

The separation of the same points from the A3-singularity, ε1, is
shown by the full line. The separation ε1 of points on the liquid-
glass-transition for given Γ is shown by filled symbols (� · · ·�), the
plus symbol marks ε1 for the glass-glass transition for Γ = 5.63.
Panel B exhibits the amplitudes of the correction in Eq. (5.104),
κ(−b) +KMSD (
) and κ(−b) (×), cf. Eq. (5.94). The values for
KMSD are the same as shown in Fig. 7.3. Panel C shows the time
t− where the respective critical A2-plateau is crossed by the MSD
for Ds

0/D
s = 1010.

larger than κ(a) on the gel line it almost compensates the negative values of KMSD

and KMSD + κ(−b) is close to zero.
The time t− for the onset of the α-process, i.e. the time where the critical

plateau is crossed, is shown in panel C. When the long-time diffusion is given by
the ratio Ds

0/D
s = 1010, the plateau in the localization is encountered by the MSD
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for the HSS at t− = 3 ·106. This is the time when the cage around a tagged particle
disintegrates and the particle starts to diffuse. The increasing attraction for Γ > 0
introduces short-ranged bonding among the particles before the particles experience
the cage. Hence, for the same reason as for the increase of t0, this bonding process
shifts t− to higher values. When comparing the lower panels of Figs. 7.3 and 7.4
we observe that for 0 � Γ � 5, the time scales t0 and t− run almost parallel and
define a window of six orders of magnitude in time where the cage effect dominates
the dynamics. For large coupling, 8 � Γ, we observe a comparable window for the
dynamics around the gel plateau, where bonding rules the dynamics. Therefore,
in both cases the stretching of the dynamics is the same what is corroborated by
observing that λ � 0.8 in the mentioned regions, cf. Fig. 4.4. In this sense also the
α-process of glass- and gel-transition singularities are similar if one is unaffected by
the other. For 5 � Γ � 7, or λ � 0.8, the dynamics is governed by the interference
of both mechanisms and the emergence of the A3-singularity.

Figure 7.5 shows the asymptotic approximation of the α-process on the path
for Γ = 6.67 from Fig. 7.1. Three plateaus organize the relaxation. First, the
gel plateau is encountered. Shown here as dash-dotted curve, labeled β, is the first
order description by the full β-correlation function from Eq. (5.88). It continues the
description by the critical law discussed in Eq. (7.2). The correction in Eq. (5.104)
for that A2-singularity is close to zero as for almost all gel transitions for δ = 0.03,
cf. Fig. 7.4. This explains why the first-order description is so successful in the
regime after crossing the plateau. After the plateau the curve for the β-correlator
cannot be discerned from the full solution. It extends, accidentally, also beyond
the region of applicability which is limited by the A3-plateau. To demonstrate,
that upon closer approach to the A2-singularity for the gel transition, the α-scaling
picture from Fig. 7.2 A reemerges, we show an additional relaxation for ϕ = 0.5231,
which has a similar separation parameter, σ = −10−4, as the curve Ds

0/D
s = 1010

in Fig. 7.2 A. This last curve in Fig. 7.5 clearly displays the two-step relaxation
and is described well by the von Schweidler law (5.104).

The second plateau is associated with the logarithmic relaxation laws. The
curvature in the double-logarithmic representation is positive around the plateau
and therefore the leading approximation, Eq. (5.37), qualitatively disagrees. The
correction (5.42) covers two decades in time for all curves shown when requiring
5% accuracy. The asymptotic laws for the A3-singularity describe approximately
half of the relaxation between the gel and the glass plateau. In particular the
onset of the effective power law discussed in Fig. 7.2 is captured by the asymptotic
approximation. However, the range of applicability for the logarithmic laws is
bound by the neighboring plateaus for gel and glass transition. For this reason the
approximations for the A3-singularity do not extend beyond the range shown in the
figure and can therefore not cover the complete effective power law.

To differentiate the effective power law from the power laws discussed for the
MSD in the previous chapter, we show the latter for comparison and note first,
that the path in the control-parameter space taken in Fig. 7.5 is above the line
b2 = 0 specified in Fig. 6.10, therefore b2 > 0. The approximation by the leading
order power law (5.106a) describes one and a half decades on the 5%-level as seen
for the curve Ds

0/D
s = 1010. The exponents capture the diminishing slope upon

approaching the A3-singularity by decreasing from left to right, b1 = 0.331, 0.243,
0.181, 0.163. The corrected power law, Eq. (5.107), yields an exponent b′1 = 0.178
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Figure 7.5. Subdiffusive power law at the A3-singularity. The
full lines are the MSD for states with Γ = 6.33 and increasing ϕ.
Three curves reproduce the results from Fig. 7.2 C and the last one
refers to ϕ = 0.5231. The long horizontal lines show the critical
plateaus 6rc

s
2 for the gel transition at Γ = 6.33, the A3-singularity

and the glass transition at the crossing point for Γ = 5.88. The
short horizontal lines indicate the corrected plateau 6(rc

s
2 − r̂2s)

for the asymptotic laws associated with the respective relaxation.
The β-relaxation asymptote around the gel plateau is drawn as
chain curve labeled β for the solution at Ds

0/D
s = 1010. The chain

line labeled vS represents the von Schweidler description for the
state at ϕ = 0.5231. For Ds

0/D
s = 105, 107, and 1010 dotted

and dashed lines show the leading, Eq. (5.37), and next-to-leading
approximation, Eq. (5.42), near the A3-plateau, respectively. The
straight full line labeled b1 shows the approximation by Eq. (5.106),
b′1 the corrected power law (5.107), and the dashed line labeled b2
the approximation by Eq. (5.105b). The straight dash-dotted lines
show the asymptotic long-time diffusion Dst for the respective
curves.

for the last relaxation. This correction comes closer to the effective exponent x =
0.27, but improves the description of the effective power law only little, as can be
seen in the straight full line with label b′1. When including the curvature b2 = 0.0132
in the approximation, cf. Eq. (5.105b), we find the dashed curve b2, that describes
the relaxation over three decades in time. But again it covers only the onset of
the effective power law. In that sense the effective power law is the analog of the
effective logarithmic decay discussed in connection with Fig. 5.8, where a crossover
from A3- to A2-dynamics could explain the observed decay.
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As the distance to the A3-singularity is no longer changed significantly for
Ds

0/D
s � 107, the solutions as well as the approximations do no longer change

in shape and the decay around the A3-plateau is part of the α-process for the gel
transition. This α-process contains also the relaxation around the third plateau in
Fig. 7.5 that represents the glass transition at the crossing point and is modified by
a rather large correction, since the distance to this point is large. Despite the larger
distance the last relaxation still slows down the dynamics by one decade before the
final crossover to the long-time diffusion.

To demonstrate how the crossing scenario in Fig. 7.5 changes when δ is varied,
Fig. 7.6 exhibits the parameters relevant for the description of the relaxation. The
three plateaus in Fig. 7.5 are defined by the localization lengths rc

s. Panel A in
Fig. 7.6 shows the variation of the localization lengths. At the A4-singularity,
δ = δ∗, all three plateaus join in a single localization length and the relaxation is
just the logarithmic decay described in Ch. 6. For δ > δ∗, the localization of a glass
state at the crossing is larger than the localization of the gel state. This difference
is becoming more pronounced as δ decreases. For the gel the localization follows
δ and for the glass the localization approaches the value for the HSS. In between
there is the plateau for the A3-singularity, which closely follows the localization
for the gel. This limits the regime for the von Schweidler relaxation after the
gel plateau, as observed in connection with Fig. 7.5, if the A3-singularity is close.
Sufficiently far from higher-order singularities the amplitude in δr2 delimited by
the localization lengths of gel and glass transition exhibits the dynamics defined
by a crossover of two different A2-singularities. If the A3-singularity is close as in
Fig. 7.5, logarithmic laws influence the relaxation.

The influence of the A3-singularity is quantified by the separation parameter
εcross1 , shown for the various crossing points in panel B. For smaller δ, the separa-
tion increases and limits the A3-dynamics visible in the relaxation at the crossing.
The minimal exponent b1, cf. Eq. (5.106b), in the liquid regime is assumed at the
crossing point. Therefore this exponent can be used as an estimate for the separa-
tion from the A3-singularity. For δ = 0.02 we find b1 = 0.169 and for δ = 0.03 the
minimal exponent is b1 = 0.095. Moreover, if in an experiment one can only come
close to the crossing limited by say Ds

0/D
s = 1010, this implies further restrictions

to the detection of the higher-order singularities.
By comparing the lines where b2 = 0 for the A4-singularity and the A3-

singularity for δ = 0.03, cf. Figs. 6.7 and 6.10, we found that this line would
not change its location in control-parameter space, when both K◦

MSD and the ratio
h◦MSD/r

◦ 2
MSD varied only little. This is indeed, what we can infer from panel C and D.

K◦
MSD exhibits only small changes and is minimal at the A4-singularity, which was

already noticed for the Kq in Fig. 6.9. The variation in h◦MSD/r
◦ 2
MSD is only 5%.

Thus, we conclude that the power-law behavior in the MSD as a clear signature of
the dynamical anomalies due to higher-order singularities should be well accessible
in the liquid regime without extensive fine tuning of the control parameters.

2. Correlation function at a crossing

The last section showed that the dynamical laws at a crossing of liquid-glass
transition lines can be quite intriguing since upon variation of control parameters
the separation to three different singularities is changed. Allowing now also for a
variation in the wave vector q, combines the subtle q-variation for the logarithmic
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Figure 7.6. Parameters for the description asymptotic at the
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together with the value at the A3-singularity (�). The value of
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s in the HSS is indicated by the arrow. Panel B displays the

separation parameter −ε1 (�) and the quadratic corrections to the
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the minimal |ε1| is displayed (�) which can be reached on the
isodiffusivity line Ds

0/D
s = 1010. The correction amplitudes K◦

MSD
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◦ 2
MSD are shown in panels C and D.

decay, see Ch. 6, with the q-dependences of the decay at A2-singularities. We shall
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select only one such scenario which was proposed in [16] and subsequently found in
an experiment [42, 43] and also in MD simulation [93].
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Figure 7.7. Logarithmic decay of the density correlation func-
tion for q = 4.2 at the crossing point for δ = 0.03. The full curves
display the solutions for states n = 1, 2, 3: (Γ, ϕ) = (0.53, 5.33),
(5.33, 0.5361), and (0.53, 6) which are marked in the inset. Three
relevant plateaus are indicated by horizontal lines for the gel tran-
sition (dashed) at (0.530, 6.1) labeled f c

gel, for the A3-singularity
(full line) labeled f◦, and for the glass transition at (0.536, 5.33)
(short full line) labeled f c

glass. The plateau values are f c
gel = 0.954,

f◦ = 0.899, and f c
glass = 0.503. Short lines show the plateau correc-

tions for the plateau f◦. Broken curves show the next-to-leading
approximation (5.42) for the logarithmic decay, dotted and dash-
dotted curves the leading and next-to-leading approximation for
the critical decay (5.93) in curve 2 at f c

glass. The inset shows part
of the glass-transition diagram for δ = 0.03 including the lines
ε1 = 0 (dashed) and ε2 = 0 (dotted).

Figure 7.7 shows how the dynamics for the states specified in the inset is de-
scribed by the asymptotic laws for different singularities. The dominant feature is
the straight line the decay displays for 0.8 � φq(t) � 0.6. One may interpret this as
logarithmic decay around an estimated plateau f ′ ≈ 0.7. However, the appropriate
plateau value connected with the A3-singularity is higher, f◦

q = 0.899, and close to
the plateau for the gel transition f c

gel. That the plateaus for gel transitions and the
A3-singularity are close for any wave vector is seen in Fig. 4.2 and reflected in the
localization lengths in Fig. 7.6 (A). Therefore the logarithmic laws of Eq. (5.42)
have an asymmetric range of applicability. The range is rather small for shorter
times since the gel transition interferes, and considerably larger for longer times as
the critical decay due to the glass transition has a more distant plateau.
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The evolution of the dynamics when moving from state 1 to state 2 is the
analog of the dynamics seen in the MSD in Fig. 7.2 (B). Only a minor part of the
slowing down takes place at the gel plateau, the major part from t ≈ 8 to t ≈ 104

is described by the logarithmic laws around f◦
q . For the solutions 1 and 2, the

approximation (5.42) is valid from t ≈ 10 to t ≈ 103 and 104, respectively. At
the A2-singularity for the glass transition, the critical law (5.93) is observed. The
exponent parameter λ = 0.847 implies an exponent a = 0.250. The leading t−a-law
(dotted) describes curve 2 successfully for t � 106 and adding the correction (dash-
dotted) improves that range by almost two decades. Curve 2 demonstrates how
different asymptotic expansions complement one another: Eq. (5.42) describes the
decay from above f◦

q down to φq(t) � 0.7 and Eq. (5.93) approximates successfully
the region from φq(t) � 0.7 to the critical plateau f c

glass. That the slope of the
decay becomes smaller below f◦

q is a clear indication of a closer approach to a
higher-order singularity, as prefactor B in Eq. (5.42) vanishes with the square-root
of the distance from the A3-singularity, cf. Eq. (5.20).

When taking another path from 1 to state 3, the distance to the A3-singularity
remains largely unaltered and we find the counterpart of Fig. 7.5 for the MSD.
The dynamics is ruled by an approach to the gel transition and the complete decay
below f c

gel is part of the α-process and scales by a shift along this plateau with only
minor deviations due to changing separations to the glass-transition line and the
A3-singularity. No clear two-step process is observed for curve 3 for two reasons.
First, the A2-dynamics below f c

gel is limited by the logarithmic laws for the A3-
singularity. Second, the complete decay seen in curve 3 requires more than ten
decades, but only for t � 102 the decay takes place above the plateau f c

gel and this
is too close to the transient dynamics to exhibit a clear critical decay. Moreover,
the exponent parameter in the vicinity of the A3-singularity is already rather high,
λ = 0.89, so the critical law t−a is stretched considerably. As in the MSD shown in
Fig. 7.5 for the last curve, moving closer to the gel transition, the two-step process
typical for an A2-singularity reemerges.

One recognizes for all three curves in Fig. 7.7 that the logarithmic decay around
f◦ is approximated by a too steep slope in Eq. (5.42). As all states are close to
the lines ε1 = 0 and ε2 = 0, cf. inset of Fig. 7.7, we face a similar situation as
in Fig. 5.10 where a positive renormalization of the linear term by C1 could be
assumed to explain similar deviations in the approximation in Fig. 5.11.

From the asymptotic approximation in Fig. 7.7 we find that the effective log-
arithmic behavior is similar to one observed in Fig. 5.8. To demonstrate that a
variation of the wave vector can be used as a test if the observed decay is indeed
compatible with the asymptotic expansion (5.42) or due to some crossover, we try to
fit the decay for state 2 with the assumption that the logarithmic decay for q = 4.2
is taking place around f ′

q = 0.7. This choice yields a time scale τ ′ = 3.8 · 104 and
the values for f ′

q for different q are read off at the same time. This yields values
shown by the filled circles in the inset of Fig. 7.8, for all wave vectors, f ′

q < f◦
q , cf.

inset of Fig. 7.8. To achieve a rescaled plot similar to (φq(t) − f◦
q )/h◦q in Fig. 6.5,

we determine the coefficient h′q for the decay linear in ln(t/τ ′) around zero for
φq(t) − f ′

q. This amplitude is the equivalent of (B − B1)h◦q in Eq. (5.42) and is
shown as diamonds in the inset of Fig. 7.8. The variation in q of the factors f ′

q and
h′q suggest a reasonable albeit narrower distribution in q as the true values f◦

q and
h◦q . The full panel of Fig. 6.5 shows a rescaled plot of (φq(t)− f ′

q)/h′q which should
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Figure 7.8. Wave-vector test for the logarithmic decay at state 2
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q)/h
′
q are shown as dotted, full
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The inset shows the glass-form factors f◦

q and critical amplitudes
h◦q at the A3-singularity, cf. Fig.6.9. The filled circles mark the
fitted plateau values f ′

q and the diamonds show 10 h′q (see text).

be equivalent to Fig. 6.5. In contrast, Fig. 7.8 does not exhibit the characteristic
concave/convex behavior. Moreover, the deviations from the − ln t-behavior are
asymmetric, curves deviating first before crossing the zero, deviate last after the
zero. Therefore the range for the logarithmic decay in time does not show the
dependence to be expected from Eq. (5.42). It is therefore possible to differentiate
the results for the choice f ′

q from the results for a correct choice as in Fig. 6.5.





CHAPTER 8

Experimental aspects

The previous chapters have outlined a number of predictions of MCT in systems
with higher-order glass-transition singularities. We shall now assess the experimen-
tal situation. Section 1 introduces to colloidal dispersion that are expected to be
close to the model potentials studied above. For the reentry phenomenon there is
already evidence coming from several independent sources so we can simply review
the development in Sec. 2. In order to locate the higher-order singularities in the
control-parameter space a mapping is suggested in Sec. 3 which is based on a recent
MD study [33]. Section 4 interprets for the logarithmic decay in a different MD
simulation [44].

1. Depletion Attraction

The range of the attraction in the potentials discussed above needs to be very
small compared to the particle diameter. This rules out the important case of
the Lennard-Jones potential encountered in molecular systems. Besides computer
simulation studies it is possible to find such potentials in colloidal suspensions which
provide a testbed for theoretical predictions as the interaction potentials are tunable
to a large extent. A colloidal system that is used frequently to model the HSS
comprises particles made of polymethyl methacrylate (PMMA) in a hydrocarbon
solvent [8]. When adding polymer to the solution an entropically driven imbalance
in the osmotic pressure causes the so-called depletion attraction [19, 21]. The
concentration of polymer governs the strength of this attraction and the radius of
gyration of the polymer can be used as range of the effective attraction. By adding
polymer chains of different lengths and varying the concentration of both polymer
and colloids, three control parameters can be changed that are present also in the
SWS. For modeling the interaction often not the SWS but the form introduced
by Asakura and Oosawa is used [20]. For small interaction range δ, this depletion
potential can be identified with Eq. (3.10) for n = 2 with Γ = 3ϕP /(2δ) and the
polymer packing fraction ϕP . The treatment as two-body interaction is exact for
δ < 2/

√
3 − 1 ≈ 0.1547 [22]. The experimental techniques for colloid-polymer

mixtures are by now well under control and the thermodynamic behavior of these
systems is established [94]. However, isostructural phase transition were so far
only found in computer simulation [23–26]. To investigate the correlation function
dynamic light scattering is already used in such systems [29, 30, 42]. Direct imaging
techniques are available to determine also the MSD with high precision [95–97].

2. Reentry phenomenon

The prediction of the reentry phenomenon by MCT [14] and its explanation
by corresponding changes in the static structure factor [16] was found in a system

121
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of crosslinked microgel colloids with linear polystyrene chains added to induce the
depletion attraction [29]. The radius of gyration for the polymer was δ = 0.054.
Upon addition of these polymer chains an acceleration of the decay of the correlation
function by three orders of magnitude was observed. The measurement of the static
structure factor revealed that indeed changes at the peak of the structure factor
can be related to the reentry in that system.

An earlier investigation in a similar system with crosslinked microgel colloids
but without added polymer revealed significant differences from the behavior of
the HSS as seen in the PMMA system [98]. The glass transition was found at
much higher volume fractions, and to interpret the dynamical data within MCT
a considerably higher value for the exponent parameter, λ = 0.88, had to be as-
sumed. It was found recently that in this system imperfections during the process of
crosslinking in the colloidal particles released free polystyrene into the solvent and
thus induced depletion attraction by accident [99]. Therefore, in this earlier exper-
iment the deviation in the packing fraction can be explained partly by the reentry
phenomenon and the high value of λ might be taken as indication of higher-order
singularities.

A different study using the PMMA colloidal suspension inferred the reentrant
behavior of the liquid-glass transition from the fact that homogeneous nucleation
of colloidal crystals is no longer observed when a glass transition is reached [30]. In
computer simulation, enhanced diffusion was found when increasing the attraction
strength into the reentry regime [30, 31, 33]. In conclusion the reentry phenomenon
was predicted successfully by MCT.

3. Location of the glass-transition diagram in the phase diagram

One cannot expect a theory for a singularity to predict accurate numbers for
the control parameters where the singularities occur. For that reason the distance
from the singularity, V∗ − V, should be used for a comparison with data from
experiments or computer simulation. The isodiffusivity curves in Fig. 7.1 motivate
a comparison between MCT and computer simulation based on the ratio Ds

0/D
s

[33].
A slight reservation has to be made since the simulation data refer to a binary

mixture while the present theory deals with a monodisperse system. However,
comparing the data from the simulation of the monodisperse case [31] indicated by
crosses in Fig. 8.1 with the ones for the mixture, the isodiffusivity for Ds

0/D
s =

2.4 · 102 seems to fit nicely into the picture. Data for lower Ds
0/D

s from [31] have
the same trend in Γ but apparently do not occur at control parameter values for the
same diffusivity as extrapolated from the mixture. The MD studies were performed
using Newtonian dynamics where an appropriate definition of Ds

0 is impossible; the
value d

√
kBT/m is taken instead of Ds

0 as reference which introduces a reasonable
microscopic time scale [31, 33]. This problem in the definition of the analog of
Ds

0 introduces less deviations for larger ratios of the diffusivity Ds
0/D

s since only
the order of magnitude is important for the definition of the isodiffusivity curves.
A deviation in logDs

0 would stay the same for both large and small differences in
logDs

0 − logDs and the result can be more accurate the larger the ratio Ds
0/D

s is.
Therefore, putting emphasis on the data with high ratios of Ds

0/D
s is justified.

Figure. 8.1 shows that an acceptable fit of data for the diffusivity in [33] and the
theoretical data calculated using the structure factor evaluated in PYA is achieved
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Figure 8.1. Theoretical glass-transition diagram of the SWS
compared to computer simulation data at δ = 0.03. Triangles
(�) mark the isodiffusivity curves from the simulation in [33] from
left to right for Ds

0/D
s = 2 ·102, 2 ·103, 2 ·104, 2 ·105, respectively.

Crosses (×) show the isodiffusivity curve forDs
0/D

s = 2.4·102 from
the simulation of the monodisperse system [31]. Dotted lines are
guides to the eye for the simulated isodiffusivity curves. Dashed
lines indicate the data for melting, freezing and solid-solid binodal
together with the solid-solid triple point (�) and critical point
(•) from [23]. The theoretical calculations within MCT using the
structure factor solved numerically in PYA, cf. Eq. (3.18a), are
shown as full lines for liquid-glass transitions, the glass-glass transi-
tion with endpoint A3 (©) and the respective isodiffusivity curves
for Ds

0/D
s = 2 · 102, 2 · 103, 2 · 104, 2 · 105. The arrow labeled

HSS indicates the limit of the hard-sphere system from [33]. The
MCT results are based on the PYA and the control parameters
ϕPYA and ΓPYA are transformed by ϕMD = 2.25 ϕPYA − 0.5747
and ΓMD = 2.85 ΓPYA to match the isodiffusivity curves from the
simulation.

by keeping the well width fixed at δ = 0.03 and scaling the axis of the inverse
temperature by ΓMD = 2.85 ΓPYA. This preserves the limiting case for the HSS as
done above for the comparison of PYA and MSA, cf. Fig. 4.5. Trying to match
reasonably at least the two curves with the highest ratio of Ds

0/D
s, the packing

fraction has to be taken ϕMD = 2.25 ϕPYA − 0.5747 in order to keep a value for
HSS of ϕc

HSS = 0.586. This is consistent with the diffusivity data and experiments
done in colloids [11, 12]. The prefactor of 2.25 seems somewhat large. It is already
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seen in Fig. 8.1 that this overestimates the differences in ϕ further from the singu-
larities. But taking the diffusivity data for granted this large prefactor is required.
A modification of the third coupling parameter δ was not necessary in the fit.

Figure 8.1 demonstrates a reasonable fit between theory and data starting from
the HSS and extending up to the crossing point. For the gel-transitions, there are
not enough data to make a definite statement. For this high values of Γ it is also
difficult to obtain accurate values for Ds with good statistics from the simulation
[33]. These points are only fitted qualitatively in Fig. 8.1. A comparison of the fit
in Fig. 8.1 which uses the PYA for the theoretical curves with Fig. 7.1 indicates
that using MSA for the structure factor would also properly fit the data from the
HSS limit up to the crossing but would be worse than PYA for the gel line. The
indication of the A3-singularity in Fig. 8.1 has to be understood as an extrapolation
of the transformation scheme outlined above.

The fit in Fig. 8.1 corroborates that in general MCT overestimates the trend
to freezing when coupling parameters are increased [6]. This is already found in
the HSS [11] and in a binary Lennard-Jones mixture [100]. Yet, for a Lennard-
Jones potential the mechanism of arrest is still dominated by repulsion, so the
control parameter is effectively only density also in that system. For the SWS near
the line crossing, necessarily both mechanisms of arrest have to be of the same
importance and the approximation inherent to MCT has to preserve the relative
importance of both mechanisms. In the case of the SWS, MCT has apparently the
same trend in the error for the treatment of couplings in ϕ and Γ. The mapping of
the MCT results to higher values in both packing fraction and attraction strength
is in agreement with a recent experimental analysis of a colloid-polymer mixture
with the theoretical results for the AOS [101]. By comparison with the data for the
phase transitions [23], we recognize that the crossing of lines and the A3-singularity
are located in the metastable region. The A3-singularity differs by 4% in ϕ and by
a factor of 4.5 in Γ from the solid-solid critical point.

4. Logarithmic decay in MD

To demonstrate how the logarithmic decay laws in Eq. (5.42) can be used for
the interpretation of data we apply these laws to data taken from a recent molecular
dynamics simulation1 [44]. The simulated system comprises a mixture of particles
interacting with an r−36-repulsion and an attraction of the Asakura-Oosawa form.
An additional small repulsive barrier is introduced to avoid liquid-gas separation.
Matching the peak of the structure factor for the equivalent of the HSS, we rescale
the wave vectors by 7.8/7.0 in the following to be compatible with the notation in
other chapters.

Logarithmic decay was observed for a state point with packing fraction ϕ = 0.55
and polymer concentration ϕP = 0.375 for an attraction range of δ = 0.1 [44]. The
system is reasonably close to the SWS to motivate a comparison in the vicinity of the
A4-singularity of the SWS. Because of better statistics the correlation functions for a
tagged particle are investigated. The asymptotic approximation for tagged particle
correlation functions is given by Eq. (5.98) which is easily adapted to incorporate
Eq. (5.42). Anticipating the results of Ch. 6 that also for close-by A3-singularities
the dominant correction to logarithmic decay is quadratic in ln(t/τ) and that the

1The authors provided refined data with better statistics for the final fit what is gratefully
acknowledged. Changes in comparison to the fits using the published data are small.
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corrections to the plateau are small, the following function is used for fitting the
data,

(8.1) φs
q(t) = fs

q − a1(q) ln(t/τ) + a2(q) ln2(t/τ) .

The first step in the fitting is choosing an appropriate time scale τ that also
fixes the values for fs

q . For a generic liquid-glass transition exhibiting the A2-two-
step decay, the fs

q are in principle apparent from the plateau or can at least be
inferred from an inflection point in the decay. It is inherent to Eq. (5.42) that
neither a plateau nor an inflection point is expected. Therefore one has to estimate
τ and check if that guess yields a consistent fit of the data available. We try three
different time scales, τ = 5, 10, and 25. For each choice of τ , a least-square fit to the
polynomial in Eq. (8.1) covering two decades symmetrically around τ yields three
q-dependent coefficients. The constants and the prefactors to the linear term are
used to rescale the correlators in the form (φs

q(t) − fs
q )/a1(q). This representation

can be compared directly to the theoretical results in Fig. 6.5.
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Figure 8.2. Correlators from simulation data [44] rescaled as
(φs

q(t) − fs
q )/a1(q), cf. Eq. (8.1), for q = 7, 54, and 72, as full

curves, with parameters taken from the fit using τ = 10 (see text).
The dashed curves show the fits to the data according to Eq. (8.1),
the straight dashed line represents the function − ln(t/10). The
lower inset reproduces the correlation function φs

q(t) from Ref. [44]
from top to bottom for q = 7, 12.5, 18, 27, 36, 45, 63, 72, 89.5, and
the upper inset shows the factors a2(q)/a1(q) (•) from the data.
For the SWS the value for B2(q)/(B − B1) is shown for the state
(ϕ,Γ, δ) = (0.54, 5.48, 0.03) as dash-dotted curve, and for the state
n = 2 from Fig. 6.3 as full line, and the Gaussian approximation
to the latter as dotted line.
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Figure 8.2 shows that the data are consistent with theoretical predictions.
Starting from smaller wave vectors, the rescaled curves are concave in the given
representation and change to convex behavior when increasing the wave vector.
The curve closest to linear-log t decay is found for q = 54. This high value for q is
compatible with the findings for the SWS close to higher-order singularities, Ch. 6.
For increasing q beyond 54, the curvature becomes positive. However, the noise
level increases considerably and in the lower inset we see that for wave vectors that
large, the glass-form factors are quite small. The variation in the prefactor of the
quadratic term is monotonic as seen in the upper inset and resembles qualitatively
the variation expected for the correction amplitude Ks

q , cf. Fig. 6.2.
Before the comparison of the glass-form factors and the critical amplitudes from

the SWS to the data we introduce the Gaussian approximation that is frequently
examined in computer simulation. For the tagged particle quantities we get [60],

fs
q = exp[−rc 2

s q2] ,(8.2a)

hs
q = exp[−rc 2

s q2] q2hMSD ,(8.2b)

Ks
q = KMSD +

q2

2
hMSD .(8.2c)

For small wave vectors, the Gaussian approximation was found to be a reasonable
description for the results from MCT for the HSS [60].

The deviations from the Gaussian approximation for larger wave vectors are
more pronounced for the results of MCT for the higher-order singularities in the
SWS than for the HSS which is inferred from the upper panel in Fig. 8.3. Large
non-Gaussianity was also observed for the gel states in the present system [32,
44]. Therefore, we assume that the suspected A3-singularity shares that trend and
accept the values for fs

q in Fig. 8.3 found from the fitting procedure. We find that
the simulation suggests that the Gaussian approximation is violated much more
than MCT predicts. The latter is independent on the time scale τ we chose for the
analysis as the comparison for the three different choices for τ reveals. A smaller
value than τ = 5 can be ruled out when taking the distribution fs

q found for a
gel transition in the present system as upper bound. Taking larger values of τ
than above would yield smaller values for fs

q and these would eventually cross the
distribution for the HSS. Since we can safely assume smaller localization this case
can be refuted. Time scale τ is then bound to at least the decade between τ = 5
and τ = 50 by taking into account only the data for a single point. This estimate
could be improved by considering different state points.

The lower panel of Fig. 8.3 shows the critical amplitudes hs
q. The results from

MCT are described reasonably by the Gaussian approximation up to q ≈ 40 for
the A4-singularity and q ≈ 60 for the A3-singularity. The deviations from Gaussian
behavior have the same qualitative trend in theory and data but are again larger
for the simulation results. In Fig. 8.3 the fitted value for hs

q is taken to be 15 a1(q).
This is at first just a mapping to the distributions found in the SWS. However,
it can be justified further by considering the implications of this transformation
to the dynamics. From Eq. (5.42) we know that a1(q)/hs

q = (B − B1) and the
scaling of a1(q) onto hs

q hence suggests (B − B1) = 1/15 ≈ 0.07. Neglecting the
higher-order term B1, Eq. (5.20) yields an estimate for the separation parameter
ε1 ≈ 0.007. These values are close to the ones describing state n = 2 in Fig. 6.3
whose dynamics is shown as curve 2 in Fig. 6.4, where for (Γ, ϕ) = (4.271, 0.5250) we
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Figure 8.3. Glass-form factors fs
q and critical amplitudes hs

q de-
termined from the fit (8.1) to the data from [44] for τ = 5 (•),
τ = 10 (×) and τ = 25 (�). MCT results are shown for the A4-
singularity and the A3-singularity at δ = 0.03 in the SWS as full
lines. The dotted lines represent the respective Gaussian approx-
imations, Eq. (8.2), to the theoretical curves. The upper panel
shows in addition the glass-form factors for the HSS and their
Gaussian approximation. The fitted critical amplitudes are given
by 15 a1(q) (see text).

find (B−B1) = 0.072 and ε1 ≈ 0.010. Both curve 2 in Fig. 6.4 and Fig. 8.2 exhibit
three decades of logarithmic behavior in the correlator with vanishing quadratic
correction. In both cases, the window is considerably smaller for smaller wave
vectors, cf. Fig. 6.5. For the A3-singularity at δ = 0.03 a state with ε1 � 0.01,
would be inside the arrested regime or very close to the transition, cf. Fig. 7.4. Since
the decay shown in the lower inset of Fig. 8.2 does not indicate the presence of a
finite long-time limit, the decay takes place at a point closer to an A4-singularity.

The upper inset in Fig. 8.3 displays the quadratic corrections fitted according
to Eq. (8.1) in the form a2(q)/a1(q). These have to be compared to the corrections
amplitudesKq. For a comparison we use the values B2(q)/(B−B1) which are shown
as full line for the point close to the A4-singularity discussed above. Deviations
from the Gaussian approximation are again apparent for larger q. A second point
is chosen for δ = 0.03 on the line B2(50.2) = 0 in Fig. 6.10 at Γ = 5.48 and ϕ = 0.54.
The separation parameter is ε1 = −0.0097 and the prefactor B−B1 = 0.0072. The
fitted values show a broader distribution in q than expected from the comparison
with the A4-singularity and therefore the quadratic corrections have a zero at higher
wave vectors. The comparison with the A3-singularity yields better agreement for
Kq but the corresponding dynamics is incompatible with the simulation as argued
above. Given the necessary crudeness of the fit when using only a single state
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point, the noise in the data for larger wave vectors, and the large deviations from
the Gaussian approximation in the data, the accordance is still acceptable.

We conclude that the logarithmic decay found in the computer simulation [44] is
compatible with MCT predictions when allowing for larger deviations from Gauss-
ian behavior than the theory predicts. The qualitative trends are consistent with
theory and robust to changes in the fitting procedure.



CHAPTER 9

Conclusion

Mode-coupling theory for ideal glass transitions (MCT) predicts for systems
with hard-core repulsion and an additional short-ranged attraction the existence
of higher-order glass-transition singularities. The correlation functions close to
these singularities exhibit anomalous logarithmic behavior. It was the objective of
this work to analyze the dynamics close to higher-order singularities in terms of
asymptotic expansions of the correlation functions.

Static structure factors for short-ranged attractive potentials were derived in
Ch. 3 extending a result for the square-well system (SWS). In particular, the case
of the frequently used Asakura-Oosawa potential is included in the solution. These
structure factors were used as input to the MCT and the resulting glass-transition
diagrams corroborate the prediction of topologically stable higher-order singular-
ities in these systems, Ch. 4. Quantitative deviations from the SWS for different
potentials can be understood by recognizing the stronger localization, e.g., a Yukawa
potential introduces compared to the SWS, cf. Fig. 4.7 on page 38.

Two different asymptotic expansions were carried out in Ch. 5. The first one
involves polynomials of the logarithm in time and leads to the result in Eq. (5.42)
on page 53, which is valid for both A3- and A4-singularities for non-vanishing
distance from the singularity. The second expansion describes the critical decay at
the singularities and is performed in inverse powers of the logarithm. The result
for the A3-singularity starts with inverse quadratic power in ln t, cf. Eq. (5.76) on
page 59, and the leading term at the A3-singularity is the inverse of the logarithm,
Eq. (5.86) on page 61. In both expansions earlier results were extended to higher
orders and generalized to wave-vector dependent systems. Using the newly derived
terms the validity of all expansions as asymptotic approximations was demonstrated
in schematic model systems in Ch. 5, Secs. 6 and 7. Including terms up to the first
wave-vector-dependent correction, all the asymptotic series mentioned above and
the corresponding expansions for the A2-singularity can be cast in a generalized
factorization theorem, Eq. (5.91) on page 62. In all expansions the violation of the
factorization is given by the same correction amplitude Kq and the square of the
leading term.

For the decay in powers of ln t generic scenarios were discussed for the schematic
models that are easily transferred to wave-vector-dependent models. In particular
a characteristic change from convex to concave decay in ln t was presented in Ch. 5
Sec. 7

The application of the critical decay laws to the square-well system (SWS)
leads to a consistent description at the A3-singularity in Fig. 6.11, which, however,
does not yield a satisfactory approximation for times relevent in experiment. For
the A4-singularity the dynamics is so slow that only qualitative consistency with
the asymptotic approximation could be observed.
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Different from the critical laws, a number of testable predictions stem from the
asymptotic description in terms of logarithms, which shall be summarized using the
schematic drawing below which shows a cut through the glass-transition diagram
containing the A4-singularity (∗), cf. Fig. 4.1. The logarithmic decay is depen-
dent on the wave vector q and there are lines in control-parameter space, where
the quadratic corrections to the logarithmic decay vanish for a specified q (chain
line). These lines emanate from the higher-order singularity and rotate clockwise
around the higher-order singularity with increasing correction amplitude Kq, which
in general grows with q, cf. lower right inset and Fig. 6.3 on page 90.

The correlation functions for states on these lines exhibit decays that are linear
in the logarithm for several orders of magnitude in time, cf. Fig. 6.4 on page 92.
In leading order the slope of the decay is given by the square-root of the distance
from the singularity. For smaller Kq or for state points above (a) the chain line in
the glass-transition diagram the decay is concave. For larger Kq or states below
the line (b), the decay is convex, cf. Fig. 6.5 on page 93 and Fig. 6.6 on page 95.

The logarithmic laws are reflected in a subdiffusive power law for the mean-
squared displacement (MSD) and the results in a double-logarithmic representation
for the MSD are analogous to the ones in a semi-logarithmic representation for the
correlation functions, cf. Fig. 6.7 on page 96 and Fig. 6.8 on page 97. The relaxation
of the MSD is convex above (a) and concave below (b) a specified line.

The dynamics at a crossing of glass-transition lines can be understood by the
interplay of different singularities and their asymptotic description. Chapter 7
revealed crossover scenarios that are consistent with the results from experiment
[42], cf. Fig. 7.7, and computer simulation [33], cf. Fig. 7.2.

The logarithm in the correlation functions is expected to be accessible to molec-
ular dynamics simulation, whereas the power laws in the MSD might also be in reach
for experiments in colloidal dispersions. Two recent computer simulation studies
were analyzed in Ch. 8. The first [33] could be used to estimate the location of the
higher-order singularities in Fig. 8.1 on page 123. The dynamics from the second
study [44] is compatible with the logarithmic decay laws of MCT, cf. Fig. 6.5 on
page 93 with Fig. 8.2 on page 125.
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APPENDIX A

Comments on the asymptotic expansion

Some formulae needed for the asymptotic expansions in Ch. 5 shall be compiled
in this appendix. Also more involved expressions are given here for reference which
would unnecessarily obscure the presentation above.

1. Laplace transform of logarithms

The modification of the Laplace transform, introduced in Eq. (5.1b), shall be
used to invertibly map functions F (t) of time to functions of the complex frequency
z. The functions are defined for t > 0 and Im z > 0, respectively. Euler’s second
integral for the gamma function Γ(y) implies S[tx](z) = (i/z)xΓ(1 + x) if x > −1.
Differentiating this identity n times for x = 0, n = 0, 1, 2 . . ., one arrives at the
formula:

(A.1) S [lnn(t)] (z) =
∑

k

(
n

k

)
Γk lnn−k(i/z) .

Here
(
n
k

)
= n!/[k!(n−k)!] and Γk = dkΓ(x = 1)/dxk. One gets in particular Γ0 = 1

and Γ1 = −γ, where γ is Euler’s constant. If ψ(y) denotes the digamma function,
one can write Γ′(y) = Γ(y)ψ(y). Iterating this formula, one can express Γk in terms
of the first (k − 1) derivatives of ψ(y) for y = 1. The latter are given by the values
of the zeta function ζ(k) [87]; for example, Γ2 − Γ2

1 = ζ(2) = π2/6. Implications of
Eq. (A.1) read with n � 1, n1 � 1, n2 � 1:

S [lnn(t)] (z) − S [ln(t)]n (z) =

π2

12
n(n− 1) lnn−2(

i

z
) +

n∑
k=3

(
n

k

) [
Γk − Γk

1

]
lnn−k(

i

z
) ,(A.2)

S
[
lnn1+n2(t)

]
(z) − S [lnn1(t)] (z)S [lnn2(t)] (z) =

(π2/6)n1n2 lnn1+n2−2(i/z)

+
n1+n2∑
k=3

[(
n1 + n2

k

)
Γk −

∑
l

(
n1

k − l

)(
n2

l

)
Γk−lΓl

]

× lnn1+n2−k(i/z) .(A.3)

These formulas are needed for the evaluation of the function f (2)(z) in Eq. (5.25).
Specializing Eq. (A.3) to n1 = n and n2 = 1 and using the definition of the

linear operator T from Eq. (5.24), one gets

T [lnn(t)] (z) = (π2/6)
[
n lnn−1(i/z)

+
n∑

k=2

(n− k + 1)Γn,k ln(n−k)(i/z)
]
,(A.4)
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where the coefficients are

(A.5) Γn,k =
(
n

k

)[
Γk+1 − ΓkΓ1

]
/

[
(π2/6)(n− k + 1)

]
.

Let us construct polynomials pn(x) of degree n = 1, 2, . . . obeying Eqs. (5.26).
Specializing Eq. (A.4) to n = 1 shows that one can choose p1(x) = x. Assuming
the polynomials for degree l < n to be known, Eq. (A.4) provides the formula for
the degree n

(A.6) pn(x) = xn −
n∑

k=2

Γn,k pn+1−k(x) .

Thus, the sequence of pn(x) can be constructed recursively in terms of the
coefficients Γn,k. To derive Eqs. (5.29b–d), one needs:

p2(x) = 2.6160x+ x2 ,(A.7a)
p3(x) = −2.1482x+ 3.9239x2 + x3 ,(A.7b)
p4(x) = −12.813x− 4.2964x2 + 5.2319x3 + x4 .(A.7c)

2. Parameters Cj for Eq. (5.31)

The parameters Cj from Eq. (5.31) are a bit more involved than the Bj but
shall be given explicitly here for completeness for the one-component case.

C1 = [0.0671µ2
3 + 0.205µ3 − 0.115µ4(A.8a)

+0.0433µ3 ε2(V)/ε1(V)]
√

−ε1(V)3

+[−0.217 ε1(V) + 0.308 ε2(V) − 0.0588 ε3(V)

+0.0852 ε2(V)2/ε1(V)]
√

−ε1(V) ,
C2 = [−0.00600µ2

3 − 0.237µ3 + 0.102µ4(A.8b)

−0.0373µ3 ε2(V)/ε1(V)]
√

−ε1(V)3

+[0.303 ε1(V) − 0.520 ε2(V) + 0.173 ε3(V)

+0.0433 ε2(V)2/ε1(V)]
√

−ε1(V) ,

C3 = (0.0221µ2
3 + 0.296µ3 − 0.0714µ4)

√
−ε1(V)3(A.8c)

+[0.237 ε1(V) − 0.237 ε2(V) + 0.0790 ε3(V)]
√

−ε1(V) ,

C4 = (−0.0387µ2
3 − 0.446µ3 + 0.105µ4)

√
−ε1(V)3(A.8d)

+0.0872µ3

√
−ε1(V) ε2(V) ,

C5 = (0.0642µ2
3 − 0.136µ3 + 0.0288µ4)

√
−ε1(V)3(A.8e)

+0.0167µ3

√
−ε1(V) ε2(V) ,

C6 = (0.02340µ2
3 − 0.00400µ3)

√
−ε1(V)3(A.8f)

+0.00133µ3

√
−ε1(V) ε2(V) ,

C7 = 0.00156µ2
3

√
−ε1(V)3 .(A.8g)

3. Critical decay for the F13-model

The expansion for the critical decay at an A3-singularity yields increasingly
more involved expressions for the coefficients. For g6(x) =

∑4
i=0 c6,i lni x/x6 the



3. CRITICAL DECAY FOR THE F13-MODEL 133

coefficients read

c6,0 = 19 π6/(8µ3) − 57384 ζ(3)2/(5µ3) + 3322944 ζ(3)4/(π6µ3)(A.9a)

+56736 ζ(3) ζ(5)/(π2µ3)
+32 π6/(9µ3

3) + 62 π6/(9µ2
3) − 56µ4 π

6/(27µ4
3)

−314µ4 π
6/(135µ3

3) + 8µ2
4 π

6/(27µ5
3) − 16 π6 κ4/(27µ3

3)
+8 π6 µ5/(81µ4

3) − 4928 ζ(3)2/µ2
3

+1760µ4 ζ(3)2/µ3
3 ,

c6,1 = 10818 ζ(3)2/µ3 − 4743360 ζ(3)4/(π6µ3)(A.9b)

−47520 ζ(3) ζ(5)/(π2µ3)
+4128 ζ(3)2/(µ2

3) − 1536µ4 ζ(3)2/µ3
3 ,

c6,2 = 3405888 ζ(3)4/(π6µ3) − 3780 ζ(3)2µ3(A.9c)

−4320 ζ(3)2/µ2
3 + 1440µ4 ζ(3)2/µ3

3 ,

c6,3 = −1096416 ζ(3)4/(π6µ3) ,(A.9d)

c6,4 = 349920 ζ(3)4/(π6µ3) .(A.9e)

The coefficients for g7(x) =
∑5

i=0 c7,i lni x/x7 are

c7,0 = −194879 π4 ζ(3)/(280µ3) − 7647048 ζ(3)2 ζ(5)/(π4µ3)(A.10a)

−18720 ζ(7)/µ3 − 464 π4 ζ(3)/(3µ3
3)

−13664 π4 ζ(3)/(15µ2
3) + 320µ4 π

4 ζ(3)/(3µ4
3)

+1004µ4 π
4 ζ(3)/(3µ3

3) − 160µ2
4 π

4 ζ(3)/(9µ5
3)

−32µ5 π
4 ζ(3)/(9µ4

3) + 128 π4 κ4 ζ(3)/(9µ3
3)

+6419304 ζ(3)3/(5π2µ3) + 383616 ζ(3)3/(π2µ2
3)

−142848µ4 ζ(3)3/(π2µ3
3) − 281802240 ζ(3)5/(π8µ3)

+6480 π2 ζ(5)/µ3 + 4152π2ζ(5)/µ2
3 − 1520µ4π

2ζ(5)/µ3
3 ,

c7,1 = 513 π4 ζ(3)/(2µ3) − 7171092 ζ(3)3/(5 π2µ3)(A.10b)

+6982848 ζ(3)2 ζ(5)/(π4µ3) + 444258432 ζ(3)5/(π8µ3)
+384 π4 ζ(3)/µ3

3 + 744 π4 ζ(3)/µ2
3 − 224µ4 π

4 ζ(3)/µ4
3

−1256µ4 π
4 ζ(3)/(5µ3

3) + 32µ2
4 π

4 ζ(3)/µ5
3

−64 π4 κ4 ζ(3)/µ3
3 + 32 π4 µ5 ζ(3)/(3µ4

3)
−606528 ζ(3)3/(π2µ2

3) + 217728µ4 ζ(3)3/(π2µ3
3) ,

c7,2 = 652212 ζ(3)3/(π2µ3) − 317447424 ζ(3)5/(π8µ3)(A.10c)

−2566080 ζ(3)2 ζ(5)/(π4µ3) + 300672 ζ(3)3/(π2µ2
3)

−108864µ4 ζ(3)3/(π2µ3
3) ,

c7,3 = −136080 ζ(3)3/(π2µ3) + 142347456 ζ(3)5/(π8µ3)(A.10d)

−155520 ζ(3)3/(π2µ2
3) + 51840µ4 ζ(3)3/(π2µ3

3) ,
c7,4 = −35901792 ζ(3)5/(π8µ3) ,(A.10e)

c7,5 = 7558272 ζ(3)5/(π8µ3) .(A.10f)

If we introduce the model parameters µ3 = 1/3, µ4 = µ5 = 1, and κ = κ4 = 1, the
critical correlation function for the F13 model in Eq. (5.108) up to errors of order
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O(x−8) can be given a concise form,

g(x) =
6.58
x2

+
28.85 lnx

x3
+

2.31 − 63.25 lnx+ 94.87 ln2 x

x4

+
−219.28 + 158.89 lnx− 485.29 ln2 x+ 277.31 ln3 x

x5

+
−1212.5− 2751.9 lnx+ 1934.7 ln2 x− 2381.1 ln3 x+ 759.9 ln4 x

x6

+
5538.2− 9915.8 lnx− 22340.3 ln2 x+ 13702.9 ln3 x

x7

+
−9496.0 ln4 x+ 1999.2 ln5 x

x7
, x = ln(t/t0) .

(A.11)



APPENDIX B

Numerical Algorithms

For the numerical solution of the equations of motion (2.7) refined algorithms
are applied that have been developed in the recent years. The memory kernel
Fq[V, φ] is calculated on a grid of M values for the wave vector q as used for the
HSS [7]. Only the cutoff in q needs to be varied and cutoff values equivalent to
M = 3000 were used to check the precision of the calculations. Routinely M = 300
is used for the calculations around δ ≈ δ∗ and up to M = 750 for δ = 0.02. Refining
the grid in q did not alter the results noteworthy. To extend the calculation to large
logarithmic times, the grid on the time axis is doubled in step size after 512 steps in
time [102]. The convolution integral in Eqs. 2.7a and 2.7b is treated as introduced
in Ref [103]. The details for the implementation are documented, e.g., in [41].

We shall only discuss only two aspects related to the determination of glass-
glass-transition singularities and higher-order glass-transition singularities.

1. Determination of glass-glass transitions

For the determination of liquid-glass-transition points a robust method of nested
intervals can be applied adopting the discontinuity in the glass-form factors fq at
the A2-singularity. An initial interval I(0) = [V(0)

1 ,V(0)
2 ] is chosen sufficiently large

to include the transition point Vc. Let’s assume fq[V
(0)
1 ] = 0 and fq[V

(0)
2 ] > 0,

and that only a single control parameter, say v, is changed. A new point at v′ is
evaluated with v(0)

1 < v′ < v
(0)
2 . If fq[v′] = 0 the subdivision of the interval is given

by v
(1)
1 = v′, if fq[v′] > 0 we set v(1)

2 = v′. This procedure works also at an A4-
singularity which is also a liquid-glass-transition point. For a glass-glass-transition
point the discontinuity in the glass-form factors takes place between finite values
and the jump in the fq becomes smaller when approaching the A3-singularity and
observing a discontinuity in the glass-form factors becomes more and more diffi-
cult. Therefore a different criterion is used. At the glass-transition singularities the
critical eigenvalue Ec has a maximum that is unity, cf. Eq (5.11). The evolution of
E in the vicinity of an A2-singularity is given by a square-root, 1 − E ∝

√
v − vc,

for the strong-coupling side. Monitoring the eigenvalues can be done with high
precision and allows in addition for an extrapolation in control parameters. At
an A3-singularity the eigenvalue is approaching unity from either side in a generic
path in control-parameter space through the singularity. The variation is given by
1 − E ∝ (v − v◦)2/3 which follows, as the square-root above, from considerations
similar to the ones for the parameters µi.

It is clearly seen in Fig. B.1 that at a glass-glass transition only the eigenvalues
for the strong coupling side, ϕ > ϕc go to unity and follow the square-root law
(•). At a liquid-glass transition the eigenvalues for ϕ < ϕc would be zero, however,
in the glass due to continuity they are finite, smaller than unity and jump to a
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Figure B.1. Eigenvalues E upon approaching a glass-glass tran-
sition for δ = 0.02, Γ = 7.75, and ϕc = 0.540965015. The deviation
from unity, 1−E, is shown for ϕ < ϕc (open circles) and for ϕ > ϕc

(filled circles) together with the square-root
√
|ϕ− ϕc| (dashed).

The corresponding eigenvalues for the A3-singularity at δ = 0.02,
Γ◦ = 6.646, and ϕ◦ = 0.5680321 are denoted by open squares for
ϕ < ϕ◦ and by the filled squares for ϕ > ϕ◦. The full line shows
the power law |ϕ− ϕ◦|2/3.

critical value only at the glass-glass-transition points. For the A3-singularity this
discontinuity vanishes and the eigenvalues show the variation with the power 2/3
on both sides of ϕ◦. The deviation from that law for larger distances ϕ < ϕ◦ is
due to the increase of the eigenvalues at the liquid-glass transition at ϕ = 0.540693.
Deviations close to the A3-singularity indicate the precision of five digits in the
control parameter ϕ for the determination of V◦.

The deviation of Ec from unity is a measure for the accuracy of the critical
points. In this work a value of 1−Ec � 10−3 was assured for all the values shown.
For the higher-order singularities and the determination of the parameters for the
asymptotic expansions the higher accuracy of 1−Ec � 10−4 was required. For the
discussion of the critical decay in Fig. 6.12 values for the A4-singularity in Eq. (4.1)
were calculated until 1 − Ec � 3 · 10−6 was accomplished.

2. Characteristic parameters for higher-order singularities

To avoid lengthy discussion about details of the implementation that are easily
found in textbooks, we show checks for the final results instead. We therefore replot
the parameters µ2 from Fig. 4.4 and fit the asymptotic laws as in Fig. 5.14 (A)
and (B) in Fig. B.2. The analog of Fig. 5.14 (C) for the characteristic parameters
for the higher-order singularities is shown already in Fig. 6.1.
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Figure B.2. Parameter µ2 in the SWS for δ = δ∗ and 0.03.
Liquid-glass transitions are shown as full lines, glass-glass tran-
sitions as filled circles. The dashed lines show the laws µ2 ∝
(Γ − Γ∗)2/3 for the A4-singularity and µ2 ∝ (Γ − Γ◦)2/3 for the
A3-singularity. The squares indicate a deviation between result
and approximation of 5%.

Figure B.2 shows that close to higher-order glass-transition singularities the ex-
ponent parameters λ = 1−µ2 calculated numerically obey the asymptotic approx-
imation with similar accuracy as for the schematic models. For the A3-singularity
the description works down to λ = 0.85 and includes both glass-glass transitions
and liquid-gel transitions. The A4-singularity is described by the asymptotic law
for λ � 0.93 on the line of gel transitions and for λ � 0.9 on the line of glass transi-
tions. The exponent parameters for different potentials in the inset Fig. 4.8 fall on
top of each other for the region where the asymptotic approximation is applicable
and therefore underline the universality of the A4-singularity.
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