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Chapter 1

Introduction

1.1 Motivation

Gauge theories in higher dimensions provide intriguing possibilities to understand the
origin of the Standard Model (SM). One important virtue of higher-dimensional the-
ories is, for example, that they offer a geometric notion of gauge symmetry breaking
via Kaluza-Klein (KK) compactification [1] of the extra spatial dimensions on sin-
gular manifolds [2]. In particular, orbifold compactification allows to generate four-
dimensional (4D) chiral theories by projecting out unwanted states through bound-
ary conditions. Moreover, higher-dimensional gauge theories give new solutions to
the hierarchy problem by parameterizing the electroweak scale in terms of the com-
pactification radius [3]. In extra-dimensional theories, gauge and Yukawa couplings
may be “unified” [4] and are therefore expected to be of the same order. Thus, af-
ter dimensional reduction, the hierarchical SM Yukawa coupling matrices should be
highly predictable from symmetries and quantum numbers [5]. Actually, most of the
free parameters of the SM are described by Yukawa couplings which then translate
into the 22 fermion mass and mixing parameters1 of the low-energy theory. In an
effective field theory approach, it is therefore attractive to predict the 4D fermion
mass matrices from horizontal (or flavor) symmetries which are sequentially broken.

In most attempts to obtain the hierarchical pattern of charged fermion masses
from a non-Abelian horizontal symmetry, the first and the second generations have
been treated as practically massless, resulting in small CKM mixing angles [8]. While
this works well for the quarks, lepton-quark symmetry would then most naturally
suggest the mixing angles in the lepton sector to be small too. However, with the
advent of solar [9, 10] and atmospheric [11] neutrino data it has become clear that
lepton-quark symmetry is badly broken by large mixing angles in the lepton sector.
In fact, the KamLAND reactor neutrino experiment [12] has recently confirmed the
Mikheyev-Smirnov-Wolfenstein (MSW) [13] large mixing angle (LMA) solution of

1These are: 6 quark masses, 6 lepton masses, 3 CKM mixing angles [6], 3 MNS mixing angles [7],
2 Dirac CP violation phases, and 2 Majorana phases.
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the solar neutrino problem at a significant level [14]. In the basis where the charged
lepton mass matrix is diagonal, the 3× 3 neutrino mixing matrix is now determined
to be to a good first approximation given by





νe
νµ
ντ



 =





cos θ12 −sin θ12 0
sin θ12/

√
2 cos θ12/

√
2 −1/

√
2

sin θ12/
√
2 cos θ12/

√
2 1/

√
2









ν1
ν2
ν3



 , (1.1)

where να (α = e, µ, τ) are the neutrino flavor states, νi (i = 1, 2, 3) are the Majorana
neutrino mass eigenstates, and θ12 is the solar mixing angle. In Eq. (1.1), we have
already assumed the atmospheric mixing angle θ23 to be maximal, i.e., θ23 = π/4 and
set the reactor angle θ13 equal to zero.

Roughly speaking, the MSW LMA solution tells us that the leptons exhibit a
bilarge mixing in which the solar mixing angle θ12 is large, but not close to maximal,
the atmospheric mixing angle θ23 is close to maximal, and the reactor mixing angle
θ13 is small. More exactly, we actually have at 90% C.L. for the atmospheric angle
sin22θ23 & 0.92 and a best-fit value sin22θ23 ' 1, i.e., |θ23| ' 1 [11]. The reactor angle
θ13 obeys sin2θ13 . 0.10, implying that |θ13| . 9.2◦ [15]. Denoting the mass of the
neutrino mass eigenstate νi by mi, solar neutrino data [9, 10] require that m2

2 > m2
1,

where θ12 < π/4. The combined solar and KamLAND neutrino data allows at 99.73%
C.L. for the solar mixing angle the region 0.29 . tan2θ12 . 0.86 and for the solar
mass squared difference ∆m2

� ≡ m2
2 −m2

1 the two regions 5.1× 10−5 eV2 . ∆m2
� .

9.7× 10−5 eV2 (LMA-I) and 1.2× 10−4 eV2 . ∆m2
� . 1.9× 10−4 eV2 (LMA-II) [14].

Atmospheric neutrino data [11] yield for the atmospheric mass squared difference
∆m2

atm ≡ m2
3 −m2

2 the absolute value |∆m2
atm| = |m2

3 −m2
2| ' 2.5 · 10−3eV2, where

m2
3 > m2

1,2 or m2
3 < m2

1,2 is possible. The combined data of the Wilkinson Microwave
Anisotropy Probe (WMAP) [16] and the 2dF Galaxy Redshift Survey (2dFGRS) [17]
sets an upper bound mi . 0.23 eV on the neutrino masses [18]. Hence, the neutrino
mass spectrum can be either of the normal hierarchical (i.e., m1 � m2 � m3),
inverse hierarchical (i.e., m1 ' m2 � m3), or the degenerate (i.e., m1 ' m2 ' m3)
type.

The relevance of the properties of neutrino masses for our understanding of the
fundamental particle interactions can be seen as follows. In the SM, the baryon
number B and the three lepton numbers Le, Lµ, and Lτ , together with the total lepton
number L = Le + Lµ + Lτ , are exactly conserved by all renormalizable interactions.
As a result, neutrinos are massless2 in the SM. In Grand Unified Theories (GUTs),
however, the baryon and lepton numbers are typically violated, which is a result of
putting quarks and leptons into the same gauge multiplets.

In the minimal SU(5) model, for example, each generation of the SM is combined

2Since a left-handed neutrino να carries a conserved charge Lα, it cannot be combined with the
right-handed anti-neutrino into a massive Majorana fermion.
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into the 10 and 5 multiplets, reading in component form, e.g., for the first generation













0 uc uc u d
0 uc u d

0 u d
0 ec

0













L

⊕













dc

dc

dc

e
ν













L

, (1.2)

where we have dropped the color indices. Clearly, transitions inside 10 and 5 violate
baryon and lepton numbers and only the linear combination B−L of the four global
symmetries is conserved. Although B − L conservation is still sufficient to forbid
neutrino masses, the B − L symmetry is usually broken in the embedding groups
such as SO(10) or E6 and also in string theories [19]. In this context, the lowest di-
mensional lepton number violating operator in the SM is the dimension-five neutrino
mass operator ∼ HH``/Λ, where H is the Higgs doublet, ` denotes some arbitrary
lepton doublet, and Λ is the cutoff scale at which the SM is embedded into some
GUT. Choosing 1015 GeV . Λ . 1019 GeV, we obtain an absolute neutrino mass
scale mν in the range 10−5 eV . mν . 10−1 eV, which is just right to solve the solar
and atmospheric neutrino anomalies in terms of neutrino oscillations. An elegant
way to generate the dimension-five operator ∼ HH``/Λ is given by the seesaw mech-
anism [20–22] which can be naturally included in GUTs. It is therefore seen, that
mechanisms for neutrino mass generation can shed light on the physics at the GUT
scale and, consequently, it is highly relevant to reproduce in neutrino mass models
the observed neutrino mass and mixing parameters.

A large, but not necessarily maximal, atmospheric mixing angle θ23 can be ob-
tained by assuming Abelian horizontal U(1) [23] or Zn [24] symmetries. However,
the closer the lower experimental bound on |θ23| comes to π/4, the more pressing it
is to give a rationale for maximal atmospheric mixing. In fact, a naturally maximal
νµ-ντ -mixing can be viewed as a strong hint for some non-Abelian flavor symmetry
acting on the 2nd and 3rd generations [25–27]. Models for neutrino masses predicting
large or maximal solar and atmospheric mixing angles by assigning the 2nd and 3rd
generations discrete charges of the symmetric groups S2 [28] or S3 [29] are, in general,
plagued with a fine-tuning problem in the charged lepton sector. The reason is, that
by putting different neutrinos into the same multiplet of a horizontal symmetry, the
corresponding charged lepton masses are generally expected to be of the same order,
which is in conflict with the observed strict hierarchy of charged fermion masses. One
possibility to resolve this problem may be provided in a supersymmetric framework
by the non-Abelian group A4, the symmetry group of the tetrahedron [30]. In this
model, on the other hand, parameters must be tuned to give the solar angle θ12 of the
MSW LMA solution and, moreover, the neutrino masses are practically degenerate.
In GUTs, however, a normal hierarchical neutrino mass spectrum is more plausible
than an inverted or degenerate one [31]. In general, a survey of existing neutrino mass
schemes shows that the MSW LMA solution is somewhat difficult to be obtained in
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models [32] and, in particular, the imposition of non-Abelian horizontal symmetries
to arrive at exact predictions is only partially successful, since additional fine-tuning
in other sectors seems to be required.

As we have seen, the idea of unification in more than four dimensions can moti-
vate horizontal symmetries in an effective 4D framework. However, gauge theories in
4 + δ dimensions have gauge couplings with negative dimension of mass g = [m]−δ/2

and are usually non-renormalizable. As a result, they require a truncation on the
number of KK modes near some cutoff scale Mf at which the perturbative regime of
the higher-dimensional gauge theory breaks down. These theories can therefore be
considered as an effective low-energy description of some more fundamental theory
with sensible ultraviolet (UV) behavior. Here, one may imagine a class of possible
UV completions which are similar in the infrared but differ radically above the cutoff
Mf . Actually, some UV completions of higher-dimensional gauge theories have been
found in the context of string theory [33] but these types of constructions suffer from
various other problems, e.g., they cannot be formulated in more than six dimensions.
Recently, however, a new class of 4D gauge-invariant field theories for deconstructed
or latticized extra dimensions has been proposed, which generate the physics of ex-
tra dimensions in their infrared limit [34, 35]. In deconstruction, extra-dimensional
physics is regularized by an enlarged gauge symmetry in four dimensions. Since these
theories are manifestly gauge-invariant and renormalizable, they can be viewed as
viable UV completions [36–40] of some fundamental non-perturbative field theory.
As a result, one obtains new calculational tools for studying higher-dimensional the-
ories by reduction to a 4D setup. One possibility is, for example, to analyze the
power-law running of gauge couplings in five dimensions [41] in terms of conventional
field theory [35]. At a more general level, deconstruction can be considered as a
model building tool which offers the benefits of extra dimensions even when there is
no exact extra-dimensional correspondence [42]. In this context, one has found new
mechanisms for electroweak symmetry breaking [36, 37] and supersymmetry break-
ing [43]. Another important aspect of deconstruction is, that it provides a novel
technique to understand small physical parameters [44] like the hierarchical pattern
of Yukawa couplings and fermion masses [45]. This suggests to include also (discrete)
non-Abelian horizontal charges in models of dimensional deconstruction, which are
generally characterized by a large collection of symmetries. In fact, inspired by decon-
struction, several solutions to the doublet triplet splitting problem in product GUT
groups like SU(5) × SU(5) have been formulated, which essentially rely on discrete
symmetries [38,46]. In the lepton sector, one may think of similar approaches which
solve the fine-tuning problem of charged lepton masses when a maximal atmospheric
mixing angle is to be predicted from a non-Abelian horizontal symmetry. Moreover,
it is appealing to associate the inverse lattice spacing of latticized extra dimensions
with the GUT scale, thereby relating the usual dimension-five neutrino mass operator
to properties of finite geometries. In this way, one could study topological aspects of
fermion mass generation in an approach, which is complementary to the conventional
treatment of extra dimensions.
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1.2 Outline

In this thesis, we will be mainly interested in models of lepton mass generation which
naturally give the MSW LMA solution from underlying symmetry principles. In
order to establish contact with the present status of neutrino mass schemes which are
promising in this respect, we will in Chapter 2 first briefly review the main attempts
that have been undertaken to understand the MSW LMA solution (Sec. 2.1). Next,
we will present in detail a specific model for bilarge leptonic mixing which predicts
a maximal atmospheric mixing angle θ23 and the hierarchical lepton mass spectrum
from horizontal symmetries of the Abelian and non-Abelian type. The horizontal
symmetries and the particle content of the model are introduced in Section 2.2. The
problem of naturally obtaining a maximal νµ-ντ -mixing as well as the mass-splitting
mµ � mτ is solved by employing a vacuum alignment mechanism for a set of extra
SM singlet scalar fields which generate the effective Yukawa couplings of the leptons.
The vacuum structure emerging from the vacuum alignment mechanism is determined
in Section 2.3 by minimizing the potential of these scalars. Next, we demonstrate in
Section 2.4, how the vacuum structure translates into a set of effective Yukawa tensor
operators of the charged leptons which produce the hierarchy mµ � mτ via an exact
cancellation of specific components of these tensors. In addition, we obtain a small,
but significant mixing of the first two generations of charged leptons, which will finally
contribute to the leptonic mixing angles. In Section 2.5, it is shown that the horizontal
symmetries in conjunction with the vacuum alignment mechanism predict bimaximal
neutrino mixing for an inverted hierarchy form of the neutrino mass matrix. The
hierarchical charged lepton mass spectrum, the inverse hierarchical neutrino masses
and the mixing angles of the charged leptons and neutrinos are calculated in Section
2.6. In the total leptonic mixing angles, which are determined in Section 2.7, the
contributions from the charged lepton sector lead to a significant deviation from
maximal solar mixing, while the atmospheric mixing angle stays practically maximal
due to the non-Abelian horizontal symmetry, i.e., we have |θ23− π

4
| � 1. Specifically,

the model leads to the relation θ12 ' π
4
− θ13 between the solar and the reactor

mixing angle which typically take the values θ12 ' 41◦ and θ13 ' 4◦. Hence, the
model is in agreement with the MSW LMA solution but the solar mixing angle is
necessarily bounded from below by 37◦ . θ12 and cannot get close to the best-fit
value θ12 ' 32◦ [14].

A lepton mass model which yields more comfortably the MSW LMA solution for
normal hierarchical neutrino mass spectra is presented in Chapter 3. This model
makes use of a similar vacuum alignment mechanism like the inverted hierarchy
model but employs deconstruction as a technically elegant organizing principle for
the enlarged scalar sector and the collection of horizontal symmetries. Therefore, the
deconstruction setup is briefly reviewed in Section 3.1 for two important cases, before
the replicated gauge symmetries and the particle content of the model are introduced
in Section 3.2. The deconstructed extra-dimensional gauge symmetries are related
to a realistic phenomenology of lepton masses and mixing angles by discrete Abelian
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charges (Sec. 3.3.1) and by a discrete non-Abelian horizontal symmetry
�

which acts
on the 2nd and 3rd generation, as well as on the link fields of the latticized extra
dimensions (Sec. 3.3.2). In Section 3.3.3, we identify the group

�
as an extension of

the Klein group Z2 ×Z2 based on the dihedral group � 4. The analysis of
�

includes
also the discussion of the coset graphs of relevant subgroups of

�
and their relation

to incidence geometry. Using the decomposition rules of the dihedral group � 4, we
construct in Section 3.4 the potential for the scalar representations of

�
and deter-

mine the vacuum structure by minimizing the scalar potential in Section 3.5. Next,
we describe in Section 3.6, how a linear combination of Wilson-line type effective op-
erators, corresponding to a five-dimensional (5D) gauge theory compactified on S1,
predicts the charged lepton mass spectrum from the vacuum alignment mechanism.
The neutrino masses, on the other hand, are generated through the mixing with a
right-handed Dirac-neutrino propagating in a latticized S1/Z2 orbifold extra dimen-
sion (Sec. 3.7). The resulting neutrino mass and mixing parameters are calculated
in Section 3.7.4, where we also relate the types of latticizations of the orbifold to the
presently allowed ranges for the solar mass squared difference ∆m2

� as implied by
recent KamLAND results. Consequently, the model gives the MSW LMA solution at
the 90% C.L. without any tuning of parameters.

A different and more minimalistic approach to neutrino masses is presented in
Chapter 4. For a basic two-site model, it is shown that deconstruction can provide a
dynamical origin of the seesaw mechanism when the inverse lattice spacing of specific
latticized geometries is identified with the seesaw scale and the generations are put
on different lattice sites (Sec. 4.1). Realistic applications to four-site and three-site
models are given in Sections 4.2 and 4.3, where we show that bimaximal mixing can
be obtained when the link fields break the lepton numbers down to the diagonal
subgroup L = Le − Lµ − Lτ in the right-handed Majorana sector. The bimaximal
mixing is then translated into the bilarge mixing of the MSW LMA solution by non-
renormalizable operators. Since deconstruction serves as a 4D description of a 5D
gauge theory, one would generally expect the inverse lattice spacings to be of order
TeV or larger. Hence, to remodel large extra dimensions, one would usually need a
large number of lattice sites. However, in Section 4.4, we present a novel mechanism
which generates an inverse lattice spacing in the sub-eV range. This makes it possible
to study deconstructed sub-mm extra dimensions with a number of lattice sites which
can be as small as . 10.

Finally, in Section 5, we present a summary as well as our conclusions. In addition,
in Appendix A, we determine the Wilson-Dirac action for the transverse lattice de-
scription of a 5D fermion. Moreover, Appendix B gives a brief review of the dihedral
group � 4 and in Appendix C, the minimization of the scalar potentials is explicitly
carried out.
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Chapter 2

Bilarge Leptonic Mixing

In this chapter, we will present a model for lepton mass generation which yields bilarge
leptonic mixing for an inverse neutrino mass hierarchy. The model predicts an exactly
maximal atmospheric mixing angle from a non-Abelian horizontal symmetry. In
addition, strictly hierarchical charged lepton masses arise from a vacuum-alignment
mechanism. Before discussing the model in detail, we will first look at the main
attempts which have been made in order to understand the bilarge leptonic mixing
pattern observed in neutrino oscillations.

2.1 Bilarge mixing patterns

The MSW LMA solution of the solar neutrino problem has now been well established
by the KamLAND reactor neutrino experiment. From the theoretical point of view,
the MSW LMA solution is interesting, since it is somewhat difficult to obtain natu-
rally the associated bilarge mixing and neutrino mass spectrum in models [32]. We
shall therefore briefly review the main types of existing neutrino mass model schemes,
which show a natural preference for the MSW LMA solution. Broadly, one can divide
them into scenarios where the leptonic mixing predominantly stems either from the
neutrino sector or from the charged lepton sector.

2.1.1 Large mixings from neutrinos

As has already been mentioned in the introduction, the present experimental situation
concerning the possible types of neutrino mass hierarchies is still ambiguous, since
the neutrinos could exhibit either a hierarchical, inverse hierarchical, or degenerate
mass spectrum. In inverted hierarchy models, the effective neutrino mass matrix is
of the form

Mν =





m11 cM sM
cM m22 m23

sM m32 m33



 , (2.1)
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where c ≡ cos θν23, s ≡ sin θν23, for θ
ν
23 ∼ 1, and mij � M . Application of a rotation

in the 2-3-plane through an angle θν23 brings Mν to the form

M ′
ν =





m11 M 0
M m′

22 m′
23

0 m′
32 m′

33



 , (2.2)

which clearly gives an inverse neutrino mass hierarchy m1 ' m2 ' M � m3. More-
over, it is ∆m2

atm 'M2 and ∆m2
� ' 2(m11+m

′
22)M . In absence of some cancellations

coming from the charged lepton sector, we have θ23 ∼ θν23 ∼ 1, i.e., the atmospheric
mixing angle can be large. The 1-2-block in Eq. (2.2) is approximately diagonal-
ized by a rotation through an angle θν12 ' π/4 − (m′

22 − m11)/(4M). Now, for the
LMA-II solution [14] we have the ratio ∆m2

�/∆m
2
atm ' 2(m′

22 +m11)/M ' 6 · 10−2,
implying that θν12 ' π/4+O(10−3). If the left-handed charged leptons are practically
unmixed, this would imply that the solar mixing angle θ12 is too close to maximal
to be at the 99.73% C.L. in agreement with solar data [14]. However, it is expected
that θ12 gets also a contribution θ`12 from the charged lepton sector, which is of the
order θ`12 ∼

√

me/mµ ' 0.07, where me and mµ denote the mass of the electron
and the muon respectively [32]. As a result, for an appropriate sign of θ`12, the in-
verted hierarchy models can give tan2θ12 ' 0.75, which is in better agreement with
the global analyses. A simple way to obtain an inverse neutrino mass hierarchy is
provided by models with approximately conserved L = Le−Lµ −Lτ lepton number.
If the L symmetry is softly broken in the effective neutrino mass matrixMν , the form
as in Eq. (2.1) can arise [47]. A recent realistic inverted hierarchy model based on a
horizontal SU(2) symmetry has been given in Ref. [48].

For degenerate neutrino masses, one attractive possibility to predict a maximal
atmospheric mixing angle θ23 is offered by models based on the non-Abelian flavor
symmetry A4, the symmetry group of the tetrahedron [30]. Here, the neutrino mass
matrix texture is approximately on the form

Mν ' mν





1 + ε ε ε
ε ε 1
ε 1 ε



 , (2.3)

where mν is the absolute neutrino mass scale, and ε� 1 parameterizes the radiative
corrections to the leading form. In a supersymmetric version, the holomorphy and
renormalizability of the superpotential allows the A4 symmetry to be spontaneously
broken such that hierarchical quark and lepton masses can naturally arise. Although
this type of model predicts a maximal atmospheric mixing angle θ23 = π/4, the solar
mixing angle θ12 is essentially arbitrary and depends crucially on the order-unity
coefficients associated with the radiative corrections. As a result, these coefficients
must be tuned to be consistent with the presently preferred value of the solar mixing
angle.
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The MSW LMA solution is comfortably obtained in normal hierarchical models,
in which the effective neutrino mass matrix is on the approximate form

Mν '





m11 m12 m13

m12 s2M scM
m13 scM c2M



 , (2.4)

where, again, c ≡ cos θν23, s ≡ sin θν23, for θ
ν
23 ∼ 1, and mij � M . Note that, to

leading order, the 2-3-subblock has a vanishing sub-determinant. As a consequence,
we get ∆m2

� ' O(m2
ij) and ∆m2

atm 'M2, and choosing the appropriate ratiosmij/M
reproduces the preferred hierarchy between ∆m2

� and ∆m2
atm. Like it is the case for

the inverted hierarchy models, one observes that the atmospheric mixing angle θ23
can be large or even maximal. In contrast to the inverted hierarchy models, however,
the solar mixing angle θ12 can be large with no preference for close to maximal
mixing. The normal hierarchical form in Eq. (2.4) can emerge from non-Abelian flavor
symmetries [25–27, 29] or, more simply, in scenarios of single right-handed neutrino
dominance [49]. If the charged lepton mass matrix is diagonal, maximal atmospheric
mixing requires θν23 = π/4 in Eq. (2.4). This has been achieved by putting the 2nd and
3rd generations of leptons into the regular representation of the symmetric group S2

in conjunction with a soft breaking of lepton numbers in the right-handed Majorana
sector [28]. In this approach, however, fine-tuning is required to obtain the hierarchy
mµ � mτ of charged lepton masses. Generally speaking, it is interesting to note,
that in GUTs a normal neutrino mass hierarchy seems to be more plausible than an
inverted or degenerate one [31].

2.1.2 Large mixings from charged leptons

A prominent scheme to accommodate the MSW LMA solution, where large leptonic
mixing angles come (also) from the charged lepton sector, has been realized in so-
called “lopsided” GUT models [50]. In the case of an SU(5) GUT, for example, one
makes use of the fact that the left-handed charged leptons are in the same multiplet
5 as the right-handed down quarks (see Eq. (1.2)). As a result, large mixings of the
left-handed leptons would generally be related by SU(5) to an irrelevant large mixing
of the right-handed quarks. Additionally, SU(5) relates the small CKM angles of
the left-handed up and down quarks in the 10 representation to small mixings of
the right-handed leptons, which cannot be observed in neutrino oscillations. The
lopsided SU(5) model of Ref. [32] applies the Froggatt-Nielsen mechanism [51] for
an approximately conserved U(1) flavor symmetry under which the quark and lepton
multiplets are charged as 101(2), 102(1), 103(0), 51(1), 52(0), and 52(0). If we
parameterize the breaking of the flavor symmetry by the small number ε � 1, the
resulting mass matrix patterns Mu and Md of the up and down quarks are given by

Mu ' mu





ε4 ε3 ε2

ε3 ε2 ε
ε2 ε 1



 and Md ' md





ε3 ε2 ε2

ε2 ε ε
ε 1 1



 , (2.5)
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where mu and md denote the absolute up and down quark mass scales and only the
orders of magnitude of the matrix elements has been indicated. Correspondingly, the
mass matrices Mν and M` of the neutrinos and the charged leptons are found to be

Mν ' mν





ε2 ε ε
ε 1 1
ε 1 1



 and M` ' md





ε3 ε2 ε
ε2 ε 1
ε2 ε 1



 , (2.6)

where mν ' m2
d/Λ denotes the absolute neutrino mass scale. Note in Eqs. (2.5)

and (2.6) the lopsided forms of Md and M`. From Eq. (2.6), it is obvious that both
the matrices M` and Mν contribute to the atmospheric mixing angle θ23, which will
generally be large, but not necessarily maximal. Unfortunately, the 2-3-subblock of
Mν must be tuned to give a ratio of the order ∆m2

�/∆m
2
atm = O(10−2). With this

choice, however, the solar mixing angle is for ε ' 1/20 predicted to be close to the
best-fit value tan2θ12 ' 0.4 of the MSW LMA solution.

To put it in a nutshell, the main types of schemes claiming to provide an under-
standing of the MSW LMA solution are actually not fully satisfactory with respect
to their predictivity, since they typically involve some fine-tuning. The parameters
in models based on non-Abelian horizontal symmetries must either be adjusted to
give the charged lepton mass hierarchy or depend crucially on fine-tuned radiative
corrections which are supposed to generate the presently preferred solar mixing an-
gle. Models using only Abelian symmetries, on the other hand, can at best give an
order-of-magnitude-understanding of the lepton mass and mixing parameters [23,24].
In the remainder of this chapter, we will consider a specific model for inverse hi-
erarchical neutrino masses, which avoids these problems by employing a vacuum
alignment mechanism. This model predicts a naturally maximal νµ-ντ -mixing from a
non-Abelian symmetry as well as the strict hierarchy me � mµ � mτ of charged lep-
ton masses. Moreover, a substantial deviation from maximal solar mixing is achieved
by contributions coming from the charged lepton sector.

2.2 Particle content of the model

Let us now consider an extension of the SM, which yields bilarge leptonic mixing and
the hierarchical mass pattern of the leptons from both Abelian and non-Abelian hor-
izontal symmetries. In particular, we suppose that a discrete non-Abelian horizontal
symmetry

�
ensures (nearly) maximal νµ-ντ -mixing and the hierarchical Yukawa cou-

plings are generated by higher-dimensional operators [52] through the the Froggatt–
Nielsen mechanism [51]. (A classification of effective neutrino mass operators has been
given in Ref. [53].) For simplicity, we omit the quark sector in our further discussion1.
We will denote the lepton doublets as `α = (ναL eαL) and the right-handed charged
leptons as Eα = eαR, where α = e, µ, τ . The electroweak Higgs sector is assumed to

1A related study including also the quark sector can be found in Ref. [54].
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consist only of the SM Higgs doublet H, but the standard two-Higgs-doublet model
is also possible. In the charged lepton sector, the masses arise through the mixing
with additional heavy right-handed (i.e., SU(2)L singlet) charged fermions, which
all have masses of the order of some characteristic mass scale M1. Apart from some
general prescriptions of their transformations under the flavor symmetries, which will
be introduced below, it is not necessary to explicitly present the fundamental theory
of these additional charged fermions. This is in contrast with the neutrino sector,
which we will extend by five additional heavy SM singlet Dirac neutrinos Ne, Nµ,
Nτ , F1, and F2. We suppose that F1 and F2 have masses of the same order M1 as
the charged intermediate Froggatt-Nielsen states, whereas Ne, Nµ, and Nτ all have
masses of the order of some relevant high (unification) mass scale M2. While M2

takes the rôle of some seesaw scale [20–22] (and it is therefore responsible for the
smallness of the neutrino masses), M1 can be as low as several TeV [55].

The horizontal symmetry
�
, which will be presented further below in terms of its

generators, is supposed to act on the 2nd and 3rd generation of leptons in terms of a
two-dimensional irreducible representation (irrep). Hence, we combine the SU(2)L-
doublet fields `µ and `τ , the right-handed charged leptons Eµ and Eτ as well as
the right-handed Dirac neutrinos Nµ and Nτ into the doublet representations 2` ≡
(`µ `τ )

T , 2E ≡ (Eµ Eτ )
T , and 2N ≡ (Nµ Nτ )

T of
�
. Now,

�
relates in the µ-

τ -subsector the Yukawa couplings of the muon and tau, which makes it difficult to
understand why mµ � mτ . This problem seems to correspond somewhat to the well
known problem of splitting the SM Higgs doublets and their color triplet partners
in 4D GUTs. However, the doublet-triplet splitting problem has a straightforward
solution in higher dimensions and one has also recently given purely 4D solutions in
terms of dimensional deconstruction [38,46]. In these theories, a number of additional
replicated scalar non-linear sigma model fields is introduced, which are themselves
subject to an enlarged collection of symmetries. With respect to the problem of
naturally obtaining the hierarchy mµ � mτ in the presence of the symmetry

�
,

these ideas motivate to extend the SM by a number of “copies” of SM singlet scalar
fields which transform as replicated doublets under

�
:

Φ1 = (φ1, φ2)
T , Φ2 = (φ3, φ4)

T , Φ3 = (φ5, φ6)
T , Φ4 = (φ7, φ8)

T ,

Φ′
1 = (φ′

1, φ
′
2)
T , Φ′

2 = (φ′
3, φ

′
4)
T , Φ′

3 = (φ′
5, φ

′
6)
T . (2.7)

Furthermore, we introduce three scalar fields φ9, φ10, and θ, which are trivial repre-
sentations of

�
. Moreover, we impose additional replicated U(1) gauge symmetries

with charges Q1, Q2, and Q3. The corresponding U(1) charge assignment is shown in
Table 2.1. In what follows, it will always be understood that the Higgs doublet H is
a total singlet under transformations other than the SM gauge transformations. Note
that the charges Q1 and Q2 are anomalous. However, it is known that anomalous
U(1) charges may arise in effective field theories from strings. Then, the cancellation
of the anomalies must be accomplished by the Green-Schwarz mechanism [56].
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(Q1, Q2, Q3)

`e, Ee (1, 0, 0)
2`, 2E (0, 1, 0)
Ne (1, 0, 0)
2N (0, 1, 0)
F1 (1, 0, 0)
F2 (−1, 0, 1)

Φ1 (1,−1, 2)
Φ4 (−1,−1, 0)
φ9 (−2, 0, 1)
θ (0, 0,−1)

Table 2.1: Assignment of the U(1) charges Q1, Q2, and Q3 to the fermionic and scalar
fields. The fields not shown here carry zero U(1) charges.

The first generation of the charged leptons is distinguished from the second and
third generations if we require for P ≡ e2πi/n, where the integer n obeys n ≥ 5,
invariance of the Lagrangian under transformation of the following Zn symmetry:

D1 : Ee → P−4Ee, 2E → P−12E, Φi → P Φi (i = 1, 2, 3), (2.8)

where we assume that the fundamental states in the heavy neutrino sector Ne, 2N ,
F1, and F2 are D1-singlets. Hence, the symmetry D1 forbids the fields Φ1,Φ2, and
Φ3 to participate in the leading-order mass terms for the neutrinos. With the

�
-

doublet representation content given above, we can now define
�

as the group which
is generated by the following set of discrete symmetry transformations

D2 :

{

2` → D(Cb) 2`, 2E → D(Cb) 2E, 2N → D(Cb) 2N ,
Φ1 → D(Cb′) Φ1, Φ′

1 → D(Cb′) Φ
′
1, Φ4 → D(Cb) Φ4,

(2.9a)

D3 :







2` → D(Cb) 2`, 2N → D(Cb) 2N ,
Φi → D(Cb′) Φi, Φ′

i → D(Cb′) Φ
′
i (i = 2, 3),

Φ4 → D(Cb) Φ4,
(2.9b)

D4 :







2` → D(Cb′) 2`, 2E → D(Cb′) 2E, 2N → D(Cb′) 2N ,
Φi → D(Ca) Φi (i = 1, 2, 3),
Φ4 → D(Cb′) Φ4,

(2.9c)

D5 : Φi → D(Cb) Φi, Φ′
i → D(Cb) Φ

′
i (i = 1, 2, 3), (2.9d)

where D(Ca), D(Cb), andD(Cb′) denote generators of the two-dimensional vector rep-
resentation of the non-Abelian dihedral group � 4 (see App. B) and can be explicitly



2.3 The multi-scalar potential 13

written as follows

D(Ca) =

(

1 0
0 −1

)

, D(Cb) =

(

−1 0
0 1

)

, D(Cb′) =

(

0 1
1 0

)

. (2.10)

Inspection of the discrete symmetry transformations shows that
�

can be considered
as an n-valued representation of � 4, where n = 8. Note that

�
is a subgroup of the

n-fold replicated dihedral group ( � 4)
n ≡ � 4 × . . .× � 4. The permutation-reflection

symmetries D2,D3, and D4 are responsible for generating a naturally maximal atmo-
spheric mixing angle, since they establish exact degeneracies of the Yukawa couplings
in the leptonic 2-3-subsector. These permutation symmetries also play a crucial rôle
in the scalar sector, in which they restrict some of the couplings in the multi-scalar
potential to be exactly degenerate (at tree-level), which means that degenerate vac-
uum expectation values (VEVs) can emerge after spontaneous symmetry breaking
(SSB). This so-called vacuum alignment mechanism can work if we assume the cyclic
symmetry

D6 :















Ee → P−(4l+1) Ee, Ne → P Ne,
Φ1 → P k Φ1, Φ2 → P l Φ2, Φ3 → Pm Φ3,
Φ′

1 → P−k Φ′
1, Φ′

2 → P−l Φ′
2, Φ′

3 → P−m Φ′
3,

φ9 → P−1 φ9, φ10 → P φ10,

(2.11)

where k, l, and m are some integers. For the symmetry D6 we additionally require
that the heavy states in the charged lepton sector can only be multiplied by factors
P n, where n is an integer multiple of k, l, orm, and that the differences |k−l|, |k−m|,
and |l−m| are sufficiently large. These symmetries impose constraints on the higher-
dimensional lepton mass operators as well as on the allowed renormalizable terms in
the multi-scalar potential. With this, one can forbid possibly dangerous terms, which
could otherwise spoil the vacuum alignment mechanism.

2.3 The multi-scalar potential

In this section, we will analyze the tree-level vacuum structure which spontaneously
breaks the discrete symmetry

�
when the SM singlet scalar fields acquire their VEVs.

For non-fine-tuned couplings, we will find a minimum of the multi-scalar potential in
which the

�
-doublet fields are aligned either in parallel or orthogonal directions. In

the low-energy lepton mass matrices, the orientation of these VEVs will then translate
into an exact prediction for the µ-τ -mixing while providing an order-of-magnitude-
understanding of the lepton mass hierarchies.

2.3.1 Yukawa interactions of the scalar � -singlets

The electroweak Higgs potential

Since the electroweak Higgs-sector consists only of the SU(2) Higgs doublet H, we
conclude that H appears only to the second or fourth power in the multi-scalar
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potential. Hence, in any renormalizable terms of the multi-scalar potential which
mix H with the SM singlet scalar fields, the Higgs doublet is only allowed to appear
in terms of its absolute square |H|2. Next, since the Higgs doublet carries zero
Q1, Q2, and Q3 charges and is a Di-singlet, where i = 1, 2, . . . , 6, there exists a
range of parameters in the multi-scalar potential for which the standard electroweak
symmetry breaking is possible. Furthermore, this implies that we can, without loss
of generality, separate the SM singlet scalar part from the Higgs-doublet part in the
multi-scalar potential by formally absorbing the absolute square of the VEV |〈H〉|2
into the coupling constants of the mixed terms. Then, since the vacuum alignment
mechanism of the SM singlet fields is independent from the details of the electroweak
Higgs physics, we can in what follows leave aside the effects of H and focus on the
properties of the SM singlet scalar fields.

Interactions of the fields φ9 and φ10

The D6 and U(1) charge assignments require the fields φ9 and φ10 to enter the renor-
malizable interactions of the scalar fields only in terms of the operators

|φ9|2, |φ10|2, |φ†
9φ10|2.

Since the fields φ9 and φ10 are singlets under transformations of all the permutation-
reflection symmetries D2,D3, and D4, they will have no effect on the relative align-
ment of the rest of the scalar fields, when both of the fields φ9 and φ10 finally develop
non-vanishing VEVs. Following the example of the Higgs doublet H, we can therefore
discard the terms in the scalar potential which involve the fields φ9 and φ10 in our
considerations concerning the vacuum alignment.

Interactions of the field θ

From the D6 and U(1) charge assignments it follows that any renormalizable term
in the scalar potential which involves θ or the component fields of Φ1,Φ3, or Φ4, can
only be allowed if these fields appear in one of the following combinations:

Φ†
1MΦ1, Φ†

3MΦ3, ΦT
3Mθ, Φ†

4MΦ4, |θ|2, (2.12)

or their complex conjugates, where in each of the above terms M denotes some
arbitrary complex 2 × 2 matrix which summarizes symmetry-related geometric fac-
tors. Among the products in Eq. (2.12), only ΦT

3Mθ transforms non-trivially under
the symmetry D1. Moreover, since Φ′

1,Φ
′
2, and Φ′

3 are D1-singlets, we see that the
component fields φ3 and φ4, which are D1-singlets, can only appear either in the com-
bination Φ†

2MΦ2 or Φ†
2MΦ3θ, where M again denotes some complex 2 × 2 matrix.

Under the symmetry D6, however, the term Φ†
2MΦ3θ transforms non-trivially and it

is therefore forbidden. Except for the product ΦT
3Mθ in Eq. (2.12), all scalar interac-

tions involve an equal number (0, 1, or 2) of the fields θ and its adjoint θ†, which can
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then be combined into the absolute square |θ|2. Now, the interaction ΦT
3Mθ|θ|2 is

forbidden by the symmetries D1 and D6. Also, θ is a total singlet under the discrete
symmetry transformations. Thus, all terms which involve the absolute square |θ|2
will have no influence on the relative alignment of the

�
-doublets when θ acquires

a non-vanishing VEV. For this reason, we can in the discussion of the
�
-doublet

potential omit all terms which involve |θ|2.

2.3.2 Yukawa interactions of the scalar � -doublets

Parameterization of the
�
-doublets

In order to determine the vacuum structure in
�
-space, it is instructive to examine

the accidental global symmetries of the Lagrangian, which are broken by tree-level
operators representing specific Yukawa interactions of the scalar

�
-doublets. For any

such operator, we shall denote by Φ and Ω a general pair of
�
-doublet scalars which

participate in the interaction, i.e., we will most generally have Φ,Ω ∈ {Φi,Φ
′
i,Φ4},

where i = 1, 2, 3. Next, it is suitable to parameterize the VEVs of the
�
-doublets Φ

and Ω as

〈Φ〉 =

(

〈φa〉
〈φb〉

)

= v1

(

eiϕ1 cos α
eiϕ

′

1 sin α

)

≡ v1

(

eiϕ1 cα
eiϕ

′

1 sα

)

, (2.13a)

〈Ω〉 =

(

〈ωa〉
〈ωb〉

)

= v2

(

eiϕ2 cos β
eiϕ

′

2 sin β

)

≡ v2

(

eiϕ2 cβ
eiϕ

′

2 sβ

)

, (2.13b)

where v1, v2 are positive numbers and ϕ1, ϕ
′
1, ϕ2, ϕ

′
2 denote the phases of the VEVs.

Actually, we will mostly work with the relative phases ϕ ≡ ϕ′
1 −ϕ1 and ψ ≡ ϕ′

2−ϕ2.
In fact, since an arbitrary element u ∈ SU(2) can be represented by the matrix

u =

(

eiϕa cos α −e−iϕb sin α
eiϕb sin α e−iϕa cos α

)

, (2.14)

it is seen from Eqs. (2.13), that in the non-linear sigma model approximation each of
the VEVs 〈Φ〉 and 〈Ω〉 can be associated with the breakdown of an accidental SU(2)acc
symmetry. Let us denote by V∆(Φ,Ω) the most general renormalizable SU(2)acc
symmetry breaking operator in the potential involving the fields Φ and Ω. As it will
prove later, V∆(Φ,Ω) splits into two potentials via V∆(Φ,Ω) = VA(Φ,Ω) + VB(Φ,Ω)
which can be explicitly written as

VA(Φ,Ω) ≡ d1|φ†
aφb|2 + d2|ω†

aωb|2 + d3(|φa|2 − |φb|2)(|ωa|2 − |ωb|2),

VB(Φ,Ω) ≡ d4

[

(φ†
aφb)

2 + (φ†
bφa)

2
]

+ d5

[

(ω†
aωb)

2 + (ω†
bωa)

2
]

+ d6(φ
†
aφb + φ†

bφa)(ω
†
aωb + ω†

bωa)

+ d7(φ
†
aφb − φ†

bφa)(ω
†
aωb − ω†

bωa), (2.15)
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where the coefficients d1, . . . , d7 are some real-valued numbers. Note that the potential
VA(Φ,Ω) depends only on the angles α and β whereas VB(Φ,Ω) is, in addition, also
a function of ϕ and ψ. More generally, one can view the parameters α, β, ϕ, and
ψ as the VEVs of scalar fields. The scalar field α(x), e.g., is then the coordinate
of the manifold of cosets SU(2)acc/U(1)α at each point of space-time, where U(1)α
is the accidental U(1) symmetry associated with α. An alignment of 〈Φ〉 and 〈Ω〉
with respect to α happens, when in the lowest energy state α(x) provides only a
non-linear realization of the group SU(2)acc (corresponding statements apply to the
fields β(x), ϕ(x), and ψ(x)).

Interactions of the field Φ4

From the U(1) charge assignment in Table 2.1 it is seen that only an even number of
the component fields φ7 and φ8 of Φ4 (or their complex conjugates) can participate in
the scalar interactions. Consider first the product φ†

7φ8 (or equivalently its complex
conjugate). The operator φ†

7φ8 is odd under application of each of the symmetries D2

and D3. As a consequence, the transformation D2 requires φ
†
7φ8 to couple to φ7 or to

one of the component fields of Φ1 or Φ
′
1. Additionally, the transformation D3 requires

φ†
7φ8 to couple only to φ7 or to one of the component fields from Φ2,Φ3,Φ

′
2, or Φ

′
3.

This can only be satisfied if φ†
7φ8 couples to φ7 or φ

†
7, but not to the operator products

(φ7)
2, (φ†

7)
2, or |φ7|2. As for φ†

7φ8 is a U(1) singlet, the operator φ†
7φ8 can only couple

to some linear combination of φ7φ
†
8 and φ8φ

†
7. Hence, if a product of the type Φ†

4MΦ4

enters an interaction with scalars which are different from the component fields φ7

and φ8, then this operator Φ†
4MΦ4 is a linear combination of the absolute squares

|φ7|2 and |φ8|2.
We will now denote by φi and φj two component fields of Φi or Φ

′
i, where i = 1, 2, 3.

Taking Eq. (2.12) and the product Φ†
2MΦ2 into account, it follows that the operator

φiφj can enter the interactions with the component fields of Φ4 only in terms of one
of the following combinations:

Φ†
1MΦ1, Φ†

2MΦ2, Φ†
3MΦ3, Φ′

1
†
MΦ′

1, Φ′
2
†
MΦ′

2, Φ′
3
†
MΦ′

3, (2.16)

where the last three products are found by applying the symmetry D6. Actually, for
all terms in Eq. (2.16) the symmetry D5 requires M ∝ diag(1, 1). Using the result of
the previous paragraph, application of the symmetry D4, which permutes φ7 ↔ φ8,
gives for the most general interactions of Φ4 with the other scalar fields the terms

(|φ7|2 + |φ8|2)
∑

ϕi /∈Φ4

ci|ϕi|2, (2.17)

where ϕi can be any of the scalar fields, which are not identical with the component
fields φ7 or φ8 of Φ4 and ci are some real-valued coupling constants. (Dimension-
three terms like |φ7|2ϕi or |φ8|2ϕi, where ϕi 6= φ7, φ8, are forbidden by the D6 and
U(1) charge assignment.) Taking everything into account, the U(1) symmetries and
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invariance under D4 restrict the most general terms in the scalar potential, involving
the component fields of Φ4, to be

V (Φ4) = µ2(|φ7|2 + |φ8|2) + κ(|φ7|2 + |φ8|2)2 + (|φ7|2 + |φ8|2)
∑

ϕi /∈Φ4

ci|ϕi|2

+ a|φ7|2|φ8|2 + b
[

(φ†
7φ8)

2 + (φ†
8φ7)

2
]

= µ2Φ†
4Φ4 + κ

(

Φ†
4Φ4

)2

+ Φ†
4Φ4

∑

ϕi /∈Φ4

ci|ϕi|2 + V∆(Φ4,Φ4), (2.18)

where µ2, κ, a, and b are real-valued constants and the SU(2)acc symmetry breaking
parts V∆(Φ4,Φ4) = VA(Φ4,Φ4) + VB(Φ4,Φ4) for Φ4 read

VA(Φ4,Φ4) = a|φ7|2|φ8|2, VB(Φ4,Φ4) = b
[

(φ†
7φ8)

2 + (φ†
8φ7)

2
]

. (2.19)

In Eq. (2.18), we will choose κ > 0 and assume the rest of the coupling constants to
be negative. Then, we find from App. C that the VEV of Φ4 is given by

〈Φ4〉 =
(

〈φ7〉
〈φ8〉

)

=
|Φ4|√
2
eiα
(

1
±1

)

, (2.20)

i.e., in this basis, the VEVs of the component fields are relatively real and degenerate
up to a sign. When considering the Yukawa interactions of the neutrinos, it will turn
out that the orientation of 〈Φ4〉 in Eq. (2.20) is responsible for a nearly maximal
atmospheric mixing angle. Thus, we can from now on restrict our discussion of the
scalar potential to the fields Φi and Φ′

i (i = 1, 2, 3).

The potential of the fields Φ1,Φ2, and Φ3

In all two-fold and four-fold products involving only the component fields φi (i =
1, . . . , 6) of Φ1,Φ2, and Φ3, the transformation D5 requires the number of the fields
carrying an even (or odd) index i, to be even. In the scalar potential, linear and
tri-linear terms of these component fields are forbidden by D6-invariance. Taking the
operators in Eq. (2.12) and Φ†

2MΦ2 into account, the allowed two-fold products of
the fields φi are unmixed and must be absolute squares ∼ |φi|2. In the same way, it
follows that all four-fold products of the fields φi must be of the following forms

(φ†
1φ2)

2, φ†
1φ2φ

†
3φ4, φ†

1φ2φ
†
4φ3, φ†

1φ2φ
†
5φ6, φ†

1φ2φ
†
6φ5,

(φ†
3φ4)

2 , φ†
3φ4φ

†
5φ6, φ†

3φ4φ
†
6φ5, (φ†

5φ6)
2, |φi|2|φj|2, |φi|4, (2.21)

and their complex conjugates, where i, j = 1, 2, . . . , 6. In order to determine also the
relative phases which will be taken by the component fields φi in the lowest energy
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state, let us rewrite a general four-fold product of the type given in Eq. (2.21) as

(aφ†
iφj + bφ†

jφi)φ
†
kφl + (cφ†

iφj + dφ†
jφi)φ

†
lφk + h.c.

=
[

(a + d∗)φ†
iφj + (b + c∗)φ†

jφi

]

φ†
kφl

+
[

(c+ b∗)φ†
iφj + (d+ a∗)φ†

jφi

]

φ†
lφk, (2.22)

where a, b, c, and d are complex-valued constants. Assume that i 6= j. Then, from
Eq. (2.21) we observe that k 6= l and we can, without loss of generality, assume that
the index-pairs (i, j) and (k, l), respectively, combine the fields which are interchanged
by the discrete symmetry D2 or D3. (If i = j, then it follows from Eq. (2.21) that
k = l, which will be discussed below.) Let, in addition, {i, j} 6= {k, l}. Then,
application of the symmetries D2 and D3 yields a + d∗ = d+ a∗ and b + c∗ = c + b∗.
We can therefore rename the constants as a + d∗ → a and b + c∗ → b, where now a
and b are real constants, and write the term in Eq. (2.22) as

(aφ†
iφj + bφ†

jφi)φ
†
kφl + (bφ†

iφj + aφ†
jφi)φ

†
lφk

=
a+ b

2
(φ†

iφj + φ†
jφi)(φ

†
kφl + φ†

lφk) +
a− b

2
(φ†

iφj − φ†
jφi)(φ

†
kφl − φ†

lφk)

=
a+ b

2
<(φ†

iφj) <(φ†
kφl)−

a− b

2
=(φ†

iφj) =(φ†
kφl). (2.23)

Since the fields φ3, φ4, φ5, and φ6 are singlets under transformation of the discrete
symmetry D2, we can have a 6= b in the case that (φi, φj)

T = Φ2 and (φk, φl)
T = Φ3.

However, if (i, j) = (1, 2), then application of the discrete symmetry D2 further
constrains the constants in the above general form to fulfill a = b, and therefore,
the last term in Eq. (2.23) vanishes. As a cause of the symmetries D2 and D3, the
products (φiφ

†
j)

2 in Eq. (2.21), where (φi, φj)
T ∈ {Φ1,Φ2,Φ3}, appear in the potential

always as

a
[

(φiφ
†
j)

2 + (φ†
jφi)

2
]

= 2a<
[

(φiφ
†
j)

2
]

, (2.24)

where a is some real-valued constant.
Let us now turn the discussion to the terms |φi|2|φk|2 in Eq. (2.21), where i 6= k.

Assume that the fields φi and φk cannot be combined into one of the doublets Φ1,Φ2,
or Φ3. Then, a general term of this type is on the form

(a|φi|2 + b|φj|2)|φk|2 + (c|φi|2 + d|φj|2)|φl|2, (2.25)

where a, b, c, and d are real-valued constants and (φi, φj)
T , (φk, φl)

T ∈ {Φ1,Φ2,Φ3}.
Application of the symmetries D2 and D3 yields the conditions a = d and b = c, and
thus, we can rewrite the above part of the potential as

a+ b

2
(|φi|2 + |φj|2)(|φk|2 + |φl|2) +

a− b

2
(|φi|2 − |φj|2)(|φk|2 − |φl|2). (2.26)
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If (φi, φj)
T = Φ2 and (φk, φl)

T = Φ3, then in general a 6= b, since Φ2 and Φ3 are
D2-singlets. However, if (φi, φj)

T = Φ1, then a = b and the part in Eq. (2.26) which
is proportional to (a− b)/2 vanishes. If for the term |φi|2|φj|2 in Eq. (2.21) we have
(φi, φj)

T ∈ {Φ1,Φ2,Φ3}, then |φi|2|φj|2 is a total singlet (on its own) and can be
written directly into the scalar potential as a|φi|2|φj|2, where a is some real-valued
constant. Moreover, the symmetries D2 and D3 enforce the products |φi|2 and |φi|4
[in Eq. (2.21)] to appear in the scalar potential only as

µ2
1

(

|φ1|2 + |φ2|2
)

+ µ2
2

(

|φ3|2 + |φ4|2
)

+ µ2
3

(

|φ5|2 + |φ6|2
)

+ κ1
(

|φ1|4 + |φ2|4
)

+ κ2
(

|φ3|4 + |φ4|4
)

+ κ3
(

|φ5|4 + |φ6|4
)

, (2.27)

where µ2
1, µ

2
2, µ

2
3, κ1, κ2, and κ3 are real-valued constants. In total, the most general

scalar potential involving only the component fields of Φ1,Φ2, and Φ3 is given by

V (Φi) = µ2
1

(

|φ1|2 + |φ2|2
)

+ µ2
2

(

|φ3|2 + |φ4|2
)

+ µ2
3

(

|φ5|2 + |φ6|2
)

+ κ1
(

|φ1|2 + |φ2|2
)2

+ κ2
(

|φ3|2 + |φ4|2
)2

+ κ3
(

|φ5|2 + |φ6|2
)2

+ a1
(

|φ1|2 + |φ2|2
) (

|φ3|2 + |φ4|2
)

+ a2
(

|φ1|2 + |φ2|2
) (

|φ5|2 + |φ6|2
)

+ a3
(

|φ3|2 + |φ4|2
) (

|φ5|2 + |φ6|2
)

+ a4
(

|φ3|2 − |φ4|2
) (

|φ5|2 − |φ6|2
)

+ a5|φ†
1φ2|2 + a6|φ†

3φ4|2 + a7|φ†
5φ6|2 + a8

[

(φ†
1φ2)

2 + (φ†
2φ1)

2
]

+ a9

[

(φ†
3φ4)

2 + (φ†
4φ3)

2
]

+ a10

[

(φ†
5φ6)

2 + (φ†
6φ5)

2
]

+ a11

(

φ†
1φ2 + φ†

2φ1

)(

φ†
3φ4 + φ†

4φ3

)

+ a12

(

φ†
1φ2 + φ†

2φ1

)(

φ†
5φ6 + φ†

6φ5

)

+ a13

(

φ†
3φ4 + φ†

4φ3

)(

φ†
5φ6 + φ†

6φ5

)

+ a14

(

φ†
3φ4 − φ†

4φ3

)(

φ†
5φ6 − φ†

6φ5

)

,

(2.28)

where a1, a2, . . . , a14 are real-valued constants. Note in Eq. (2.28), that the couplings
to the operators Φ4, φ9, and φ10 or |θ|2 have been dropped, since these are irrelevant
for the vacuum alignment of the fields Φ1,Φ2, and Φ3 in

�
-space. The SU(2)acc

symmetry properties of the potential V (Φi) become more transparent when it is
rewritten as

V (Φi) = µ2
1Φ

†
1Φ1 + µ2

2Φ
†
2Φ2 + µ2

3Φ
†
3Φ3 + κ1

(

Φ†
1Φ1

)2

+ κ2

(

Φ†
2Φ2

)2

+ κ3

(

Φ†
3Φ3

)2

+ a1

(

Φ†
1Φ1

)(

Φ†
2Φ2

)

+ a2

(

Φ†
1Φ1

) (

Φ†
3Φ3

)

+ a3

(

Φ†
2Φ2

)(

Φ†
3Φ3

)

+ V∆(Φ1,Φ2) + V∆(Φ1,Φ3) + V∆(Φ2,Φ3), (2.29)
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where the SU(2)acc symmetry breaking parts can be symmetrically organized as

V∆(Φ1,Φ2) =
1

2
a5|φ†

1φ2|2 +
1

2
a6|φ†

3φ4|2

+
1

2
a8

[

(φ†
1φ2)

2 + (φ†
2φ1)

2
]

+
1

2
a9

[

(φ†
3φ4)

2 + (φ†
4φ3)

2
]

+ a11

(

φ†
1φ2 + φ†

2φ1

)(

φ†
3φ4 + φ†

4φ3

)

,

V∆(Φ1,Φ3) =
1

2
a5|φ†

1φ2|2 +
1

2
a7|φ†

5φ6|2

+
1

2
a8

[

(φ†
1φ2)

2 + (φ†
2φ1)

2
]

+
1

2
a10

[

(φ†
6φ6)

2 + (φ†
5φ6)

2
]

+ a12

(

φ†
1φ2 + φ†

2φ1

)(

φ†
5φ6 + φ†

6φ5

)

,

V∆(Φ2,Φ3) =
1

2
a6|φ†

3φ4|2 +
1

2
a7|φ†

5φ6|2 + a4
(

|φ3|2 − |φ4|2
) (

|φ5|2 − |φ6|2
)

+
1

2
a9

[

(φ†
3φ4)

2 + (φ†
4φ3)

2
]

+
1

2
a10

[

(φ†
5φ6)

2 + (φ†
6φ5)

2
]

+ a13

(

φ†
3φ4 + φ†

4φ3

)(

φ†
5φ6 + φ†

6φ5

)

+ a14

(

φ†
3φ4 − φ†

4φ3

)(

φ†
5φ6 − φ†

6φ5

)

. (2.30)

In Eq. (2.28), we will assume κ1, κ2, κ3 > 0 and a11, a13 > 0 and we will choose all
other coupling constants to be negative. We shall briefly outline the impact which the
operators in Eq. (2.30) have on the vacuum structure. First, we note that the term
with the coefficient a4 tends (for large values of |a4|) to induce a splitting between
|〈φ3〉| and |〈φ4〉| as well as between |〈φ5〉| and |〈φ6〉|. Second, we observe that the
term with the coefficient a14 prefers (for large values of |a14|) arbitrary relative phases
(which are different from 0 and π) between 〈φ3〉 and 〈φ4〉 as well as between 〈φ5〉 and
〈φ6〉. However, using App. C, we see that for the parameter range

a6a7 > (8a4)
2 and a9a10 > a214, (2.31)

the potential V (Φi) is minimized by the VEVs of the component fields which are
pairwise degenerate in their magnitudes, i.e., they satisfy

|〈φ1〉| = |〈φ2〉|, |〈φ3〉| = |〈φ4〉|, |〈φ5〉| = |〈φ6〉| (2.32a)

and are also pairwise relatively real, i.e.,

〈φ1〉
〈φ2〉

,
〈φ3〉
〈φ4〉

,
〈φ5〉
〈φ6〉

∈ {−1, 1}, (2.32b)

where, in addition, the choice a12 < 0 and a11, a13 > 0 implies a correlation between
the different pairs of VEVs in terms of

〈φ1〉
〈φ2〉

〈φ5〉
〈φ6〉

= 1 and
〈φ1〉
〈φ2〉

〈φ3〉
〈φ4〉

= −1, (2.32c)
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i.e., the relative sign between 〈φ1〉 and 〈φ2〉 is equal to the relative sign between 〈φ5〉
and 〈φ6〉 and opposite to the relative sign between 〈φ3〉 and 〈φ4〉. In

�
-space, the

VEVs of Φ1,Φ2, and Φ3 can therefore be written as

〈Φi〉 =
|Φi|√
2
eiαi

(

1
±1

)

(i = 1, 3) and 〈Φ2〉 =
|Φ2|√

2
eiα2

(

1
∓1

)

, (2.32d)

where α1, α2, and α3 are arbitrary phases. Thus, we see that 〈Φ1〉 is parallel to 〈Φ3〉
whereas 〈Φ2〉 is orthogonal to 〈Φ1〉 and 〈Φ3〉.

The potential of the fields Φ′
1,Φ

′
2, and Φ′

3

In analogy with the potential V (Φi), we will denote by V (Φ
′
i) the most general renor-

malizable scalar potential involving only the primed fields Φ′
1,Φ

′
2, and Φ′

3. Among
the symmetries D2, D3, D4, and D5 which generate the discrete group

�
, the group

operations D2, D3, and D5 act diagonally on the fields Φi and Φ′
i, for i = 1, 2, 3. Now,

the action D4 : Φi → D(Ca)Φi (i = 1, 2, 3) (under which Φ′
1,Φ

′
2, and Φ′

3 are singlets)
is for the fields Φi identical with the subsequent application of the transformations
D3, D5, and D3 (in this order). However, since D3 and D5 act diagonally on Φi and
Φ′
i, the discrete group

�
imposes identical constraints on the potentials V (Φi) and

V (Φ′
i). Next, taking into account that the fields Φi and Φ′

i carry opposite D6 charges,
it is seen that V (Φi) and V (Φ

′
i) have similar structures. As a result, the minimization

of V (Φ′
i) goes along the same lines as the minimization of V (Φi). We can therefore

define V (Φ′
i) as the potential which is obtained from the general form of V (Φi) in

Eq. (2.28) by making the identifications

Φi → Φ′
i, µi → µ′

i, κi → κ′i, ak → a′k, (2.33)

where i = 1, 2, 3 and k = 1, 2, . . . , 14. Note that in Eq. (2.33) all coupling constants
µ′
i, κ

′
i, and a′k are real-valued. In V (Φ′

i), we assume that κ′1, κ
′
2, κ

′
3 > 0 and we will

choose all other coupling constants to be negative. If we, in analogy with the potential
V (Φi), require that

a′6a
′
7 > (8a′4)

2 and a′9a
′
10 > (a′14)

2, (2.34)

the potential V (Φ′
i) is minimized by the VEVs of the primed fields, which are pairwise

degenerate in their magnitudes, i.e., they satisfy

|〈φ′
1〉| = |〈φ′

2〉|, |〈φ′
3〉| = |〈φ′

4〉|, |〈φ′
5〉| = |〈φ′

6〉|, (2.35a)

and are also pairwise relatively real, obeying

〈φ′
1〉

〈φ′
2〉

=
〈φ′

3〉
〈φ′

4〉
=

〈φ′
5〉

〈φ′
6〉

= ±1. (2.35b)

In
�
-space, the VEVs are therefore given by

〈Φ′
i〉 =

|〈Φ′
i〉|√
2
eα

′

i

(

1
±1

)

(i = 1, 2, 3), (2.35c)

where α′
1, α

′
2, and α

′
3 are arbitrary phases. Note that the VEVs 〈Φ′

i〉 (i = 1, 2, 3) are
parallel.
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Mixing among the fields Φ1,Φ2,Φ3 and Φ′
1,Φ

′
2,Φ

′
3

In the scalar potential, the transformationD6 requires all renormalizable terms mixing
the unprimed component fields φi (i = 1, . . . , 6) of Φ1,Φ2, and Φ3 with the primed
component fields φ′

j (j = 1, 2, . . . , 6) of Φ′
1,Φ

′
2, and Φ′

3, to be actually either a two-
or a four-fold product of these fields. Taking the combinations in Eq. (2.12) and
the product Φ†

2MΦ2 into account (which are singlets under D6), it is seen that the
D1-invariant operator products, which mix the fields φi and φ

′
j, are of the types

(φ′†
iφ

′
j)Φ

†
1MΦ1, (φ′†

iφ
′
j)Φ

†
2MΦ2, (φ′†

iφ
′
j)Φ

†
3MΦ3, (2.36)

where i, j = 1, . . . , 6. The transformation D4, which acts only on the fields Φ1,Φ2,
and Φ3, requires the matrices M in Eq. (2.36) to be on diagonal form, i.e., the
products in Eq. (2.36) decompose into the terms ∼ φ′†

iφ
′
j|φk|2, where k = 1, . . . , 6.

Moreover, the symmetries D5 and D6 imply that the operators in Eq. (2.36) are all
in fact ∼ |φ′

i|2|φj|2. As a result, the most general renormalizable interactions of the
fields Φ1,Φ2,Φ3 with the fields Φ′

1,Φ
′
2,Φ

′
3 are

Vmix =
(

|φ′
1|2 + |φ′

2|2
)

×
[

b1
(

|φ1|2 + |φ2|2
)

+ b2
(

|φ3|2 + |φ4|2
)

+ b3
(

|φ5|2 + |φ6|2
)]

+ b4
(

|φ′
1|2 − |φ′

2|2
) (

|φ1|2 − |φ2|2
)

+
(

|φ′
3|2 + |φ′

4|2
)

×
[

b5
(

|φ1|2 + |φ2|2
)

+ b6
(

|φ3|2 + |φ4|2
)

+ b7
(

|φ5|2 + |φ6|2
)]

+
(

|φ′
3|2 − |φ′

4|2
) [

b8
(

|φ3|2 − |φ4|2
)

+ b9
(

|φ5|2 − |φ6|2
)]

+
(

|φ′
5|2 + |φ′

6|2
)

×
[

b10
(

|φ1|2 + |φ2|2
)

+ b11
(

|φ3|2 + |φ4|2
)

+ b12
(

|φ5|2 + |φ6|2
)]

+
(

|φ′
5|2 − |φ′

6|2
) [

b13
(

|φ3|2 − |φ4|2
)

+ b14
(

|φ5|2 − |φ6|2
)]

, (2.37)

where b1, b2, . . . , b14 are real-valued constants. In Eq. (2.37), we will assume all cou-
pling constants to be positive. The relation to the SU(2)acc symmetries becomes
more evident, when Vmix is rewritten as

Vmix = Φ′
1
†
Φ′

1

[

b1Φ
†
1Φ1 + b2Φ

†
2Φ2 + b3Φ

†
3Φ3

]

+ Φ′
2
†
Φ′

2

[

b5Φ
†
1Φ1 + b6Φ

†
2Φ2 + b7Φ

†
3Φ3

]

+ Φ′
3
†
Φ′

3

[

b10Φ
†
1Φ1 + b11Φ

†
2Φ2 + b12Φ

†
3Φ3

]

+
3
∑

i=1

V∆(Φi,Φ
′
i) + V∆(Φ2,Φ

′
3) + V∆(Φ3,Φ

′
2), (2.38)
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where the SU(2)acc symmetry breaking parts are given by

V∆(Φ1,Φ
′
1) = b4

(

|φ1|2 − |φ2|2
) (

|φ′
1|2 − |φ′

2|2
)

,

V∆(Φ2,Φ
′
2) = b8

(

|φ3|2 − |φ4|2
) (

|φ′
3|2 − |φ′

4|2
)

,

V∆(Φ3,Φ
′
3) = b14

(

|φ5|2 − |φ6|2
) (

|φ′
5|2 − |φ′

6|2
)

,

V∆(Φ2,Φ
′
3) = b13

(

|φ3|2 − |φ4|2
) (

|φ′
5|2 − |φ′

6|2
)

,

V∆(Φ3,Φ
′
2) = b9

(

|φ5|2 − |φ6|2
) (

|φ′
3|2 − |φ′

4|2
)

. (2.39)

In order to recover the (same) vacuum alignment mechanism that is operative for
the potentials V (Φi), V (Φ′

i), and V (Φ4) also for the full SM singlet scalar potential
V ≡ V (Φi)+V (Φ

′
i)+V (Φ4)+Vmix, we will have to ensure that the mixed terms in the

potential Vmix do not induce a splitting between the pairwise degenerate magnitudes
of the VEVs. For this purpose, let us redefine the potentials V (Φi), V (Φ′

i), and Vmix

as follows:

V (Φi) → V (Φi)−
1

3
a5|φ†

1φ2|2 −
1

2
a6|φ†

3φ4|2 −
1

2
a7|φ†

5φ6|2,

V (Φ′
i) → V (Φ′

i)−
1

3
a′5|φ′

1
†
φ′
2|2 −

1

2
a′6|φ′

3
†
φ′
4|2 −

1

2
a′7|φ′

5
†
φ′
6|2,

V∆(Φ1,Φ
′
1) → V∆(Φ1,Φ

′
1) +

1

3
a5|φ†

1φ2|2 +
1

3
a′5|φ′

1
†
φ′
2|2,

V∆(Φ2,Φ
′
2) → V∆(Φ2,Φ

′
2) +

1

4
a6|φ†

3φ4|2 +
1

4
a′6|φ′

3
†
φ′
4|2,

V∆(Φ3,Φ
′
3) → V∆(Φ3,Φ

′
3) +

1

4
a7|φ†

5φ6|2 +
1

4
a′7|φ′

5
†
φ′
6|2,

V∆(Φ2,Φ
′
3) → V∆(Φ2,Φ

′
3) +

1

4
a6|φ†

3φ4|2 +
1

4
a′7|φ′

5
†
φ′
6|2,

V∆(Φ3,Φ
′
2) → V∆(Φ3,Φ

′
2) +

1

4
a7|φ†

5φ6|2 +
1

4
a′6|φ′

3
†
φ′
4|2, (2.40)

which leaves the total potential V = V (Φi) + V (Φ′
i) + V (Φ4) + Vmix invariant. Now,

if the coupling constants in V (Φi), V (Φ′
i), and Vmix satisfy

a5a
′
5 > (6b4)

2, a6a
′
6 > (8b8)

2, a7a
′
7 > (8b14)

2,

a6a
′
7 > (8b13)

2, a7a
′
6 > (8b9)

2, (2.41)

it is seen with App. C, that the total multi-scalar potential V is indeed minimized
by the VEVs of Eqs. (2.20), (2.32), and (2.35). Since the U(1) and discrete symme-
tries are only approximately conserved in the lepton sector, the vacuum structure as
specified in Eqs. (2.20), (2.32), and (2.35) has important impact on the generation
of the lepton mass matrices via non-renormalizable Yukawa interactions. As it will
turn out in the following sections, the orientation of the VEVs in

�
-space will lead

to maximal νµ-ντ -mixing and the strict hierarchy of charged lepton masses.
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2.4 Yukawa interactions of the charged leptons

One way to understand the hierarchical pattern of fermion masses is to assume hori-
zontal symmetries which are sequentially broken. In our model, we assume that the
SM singlet scalar fields break the horizontal symmetries by acquiring their VEVs at
a high mass scale (somewhat below the fundamental scale M1), thereby giving rise
to a small expansion parameter

ε ' 〈Φi〉
M1

' 〈Φ′
j〉

M1

' 〈φ9〉
M1

' 〈φ10〉
M1

' 〈θ〉
M1

' 10−1, (2.42)

where i = 1, 2, 3, 4 and j = 1, 2, 3. Such small hierarchies can emerge from large
hierarchies in supersymmetric theories when the scalar fields acquire their VEVs
along a D-flat direction [57]. Moreover, we suppose that the effective Yukawa coupling
operators � `

αβ which generate the entries in the charged lepton mass matrix via the
mass terms �

`
Y = `αH � `

αβEβ + h.c., (2.43)

where α, β = e, µ, τ , arise from the Froggatt-Nielsen mechanism [51] (see Fig. 2.1).
Consequently, the structure of the operators � `

αβ is (almost) completely determined
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Figure 2.1: Non-renormalizable terms generating the effective Yukawa couplings in
the matrix (O`

αβ).

by the horizontal charges of `α, Eβ, and the SM singlet scalars, i.e., it is not necessary
to consider in detail the fundamental theory of the Froggatt-Nielsen states which are
integrated out.

We will denote the total number of times that the component fields φ1, φ2, . . . , φ6

appear in the operator � `
αβ by n1 and the total number of times that their complex

conjugates φ†
1, φ

†
2, . . . , φ

†
6 appear in the operator � `

αβ by n2. Now, invariance under

D1 implies that for the first column of the Yukawa interaction matrix ( � `
αβ), i.e., for

β = e, it must hold that n1−n2 = 4. For the second and third column of the Yukawa
interaction matrix, i.e., for β = µ, τ , the discrete symmetry D1 instead requires
that n1 − n2 = 1. In addition, we conclude from the transformation properties of
the fundamental Froggatt-Nielsen states under D6, that the operators � `

αµ and � `
ατ ,

where α = e, µ, τ , can neither involve the field φ9 nor the field φ10. This is, however,
not true for the operators � `

αe (α = e, µ, τ) in the first column of the effective Yukawa
coupling matrix.
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2.4.1 The first row and column of the charged lepton mass

matrix

Invariance under transformations of the U(1) symmetries requires the U(1) charges of
the entries � `

eµ and � `
eτ in the first row of the effective Yukawa coupling matrix ( � `

αβ)
to be (1,−1, 0). Since the fields φ9 and φ10 cannot be involved in the generation
of the e-µ- and e-τ -elements of the charged lepton mass matrix, the U(1) charge
assignment immediately implies that any mass operator giving rise to these e-µ- and
e-τ -elements must involve the term ∼ ΦT

1Mθ2/(M1)
3, where M denotes again an

arbitrary complex 2 × 2 matrix. Next, the symmetries D5 and D6 yield to leading
order for the operators � `

eµ and � `
eτ the two possible terms ∼ φ1φ

′
1θ

2/(M1)
4 and

∼ φ2φ
′
2θ

2/(M1)
4. In conjuction with the requirement n1 − n2 = 1, the symmetry D6

implies that any further operators contributing to � `
eµ or � `

eτ must have at least two
powers of mass dimension more than the terms φ1φ

′
1θ

2/(M1)
4 and φ2φ

′
2θ

2/(M1)
4. We

will therefore neglect these additional operators.
From the transformation properties of the right-handed electron Ee and the funda-

mental Froggatt-Nielsen states under D1 and D6, we conclude that � `
ee, � `

µe, and � `
τe

in the first column of the effective Yukawa coupling matrix must involve at least a four-
fold product of component fields taken from Φ1,Φ2, or Φ3, times a field taken from the
set {φ9, φ10}. Possible lowest-dimensional contributions to � `

ee, which are consistent
with the symmetries of our model, are, e.g., given by ∼ φ10 [(φ3)

4 + (φ4)
4] /(M1)

5 and
∼ φ10(φ3)

2(φ4)
2/(M1)

5. For brevity, we will take the operator

� `
ee =

φ10

(M1)5
[

(φ3)
4 + (φ4)

4
]

(2.44)

as a representative of these contributions. The remaining operators � `
µe and � `

τe have
a mass dimension that is greater than or equal to the mass dimension of the terms in
Eq. (2.44). However, the effects of these terms on the leptonic mixing angles will turn
out to be negligible in comparison with the contributions coming from other entries
of the charged lepton mass matrix.

In total, the first row of the effective Yukawa coupling matrix of the charged
leptons, which is consistent with all of the discrete symmetries, is to leading order

( � `
eα) =

(

A1 [(φ3)
4 + (φ4)

4] B1 [φ1φ
′
1 − φ2φ

′
2] B1 [φ1φ

′
1 + φ2φ

′
2]
)

. (2.45a)

Here, the dimensionful coefficients A1 and B1 are given by

A1 = Y `
a

φ10

(M1)5
, B1 = Y `

b

θ2

(M1)4
, (2.45b)

where the quantities Y `
a and Y `

b are arbitrary order unity coefficients and M1 is the
high mass scale of the intermediate Froggatt-Nielsen states. Note that at the level
of the fundamental theory, the permutation symmetry D4, which interchanges the
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second and third generations of the leptons, is also propagated to the heavy Froggatt-
Nielsen states. This establishes a degeneracy of the associated Yukawa couplings and
the explicit masses of these states, which is then translated into a degeneracy of the
corresponding effective Yukawa couplings of the low-energy theory.

2.4.2 The 2-3-submatrix of the charged lepton mass matrix

In the 2-3-submatrix of the charged lepton mass matrix, the U(1) charges of the
operators � `

αβ (α, β = µ, τ) must be (0, 0, 0). The lowest dimensional operators
which fulfill this condition as well as the constraint n1 − n2 = 1 are proportional
to ΦT

2M/M1 or ΦT
3Mθ/(M1)

2. Furthermore, invariance under transformation of the
discrete symmetries D5 and D6 implies that the lowest dimensional operators � `

αβ in
the 2-3-submatrix with n1 − n2 = 1 are of the types

φ′
3φ3

(M1)2
,

φ′
4φ4

(M1)2
,

φ′
5φ5θ

(M1)3
,

φ′
6φ6θ

(M1)3
. (2.46)

Thus, the most general 2-3-submatrix of the matrix ( � `
αβ), which involves only these

combinations and is invariant under the remaining discrete symmetries, is found to
be

(

C(φ′
3φ3 − φ′

4φ4) +D(φ′
5φ5 − φ′

6φ6) 0
0 C(φ′

3φ3 + φ′
4φ4) +D(φ′

5φ5 + φ′
6φ6)

)

. (2.47a)

Here, the dimensionful coefficients C and D are given by

C = Y `
c

1

(M1)2
, D = Y `

d

θ

(M1)3
, (2.47b)

where the quantities Y `
c and Y `

d are arbitrary order unity coefficients. Actually, con-
tributions to the next-leading operators � `

µτ and � `
τµ are, e.g., given by

µ-τ :
1

(M1)4
(a1φ7φ

†
8 + a2φ8φ

†
7)(φ3 + φ4)φ

′
3, (2.48a)

τ -µ :
1

(M1)4
(a2φ7φ

†
8 + a1φ8φ

†
7)(φ3 − φ4)φ

′
3, (2.48b)

where a1 and a2 are some complex-valued constants. Note that the terms in
Eqs. (2.48) carry only one unit of mass dimension more than, e.g., the term
φ′
5φ5θ/(M1)

3 in Eq. (2.47a). When diagonalizing the mass matrix, however, it will
turn out that the associated corrections to the leptonic mixing parameters and the
lepton masses are in fact negligible.
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Figure 2.2: Froggatt-Nielsen type diagrams which generate the hierarchy mµ � mτ

in the 2-3 subsector of the charged leptons. The dimension-six operators add up to
∼ mτ `τEτ (top panel). The dimension-seven operators add up to ∼ mµ`µEµ (bottom
panel).
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Figure 2.3: Effective Yukawa couplings ∼ `e2E in the first row of the charged lepton
mass matrix. The dimension-eight terms add up to ∼ meµ`eEµ, thereby generating
a nonzero e-µ-mixing in the charged lepton sector.

2.4.3 The charged lepton mass matrix

Combining the results of Secs. 2.4.1 and 2.4.2, the leading order effective Yukawa
coupling matrix of the charged leptons is

( � `
αβ) =

(

A1 K (φ3)
4 + (φ4)

4 L B1 M φ1φ
′

1
− φ2φ

′

2 N B1 M φ1φ
′

1
+ φ2φ

′

2 N
0 C(φ′

3
φ3 − φ′

4
φ4) + D(φ′

5
φ5 − φ′

6
φ6) 0

0 0 C(φ′

3
φ3 + φ′

4
φ4) + D(φ′

5
φ5 + φ′

6
φ6)

)

, (2.49)

where the dimensionful couplings A1, B1, C, and D are given in Eqs. (2.45b) and
(2.47b), respectively. Inserting the VEVs in Eqs. (2.35) and (2.32) into the corre-
sponding operators of the matrix ( � `

αβ), we observe that, due to the vacuum align-
ment mechanism of the SM singlet scalar fields, in some of the entries of the matrix
((M`)αβ), the spontaneously generated effective mass terms of a given order exactly
cancel, whereas in other entries they do not (see Figs. 2.2 and 2.3). Furthermore, the
vacuum alignment mechanism correlates these cancellations in the different entries
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of the matrix ((M`)αβ) in such a way that after SSB the charged lepton mass matrix
M` can be of the two possible asymmetric forms

M` ' m`





ε3 ε2 ε4

ε3 ε ε2

ε3 ε2 1



 and M` ' m`





ε3 ε4 ε2

ε3 1 ε2

ε3 ε2 ε



 , (2.50)

where we have also introduced the appropriate orders of magnitude for the matrix
elements (M`)µe and (M`)τe as well as for the “phenomenological” (in contrast to
exact) texture zeros arising in Eqs. (2.45a) and (2.47a). Here, m` is the absolute
charged lepton mass scale. Note that a permutation of the second and third genera-
tions `µ ↔ `τ , Eµ ↔ Eτ leads from one solution to another. Let us consider the first
one for our remaining discussion.

2.5 Yukawa interactions of the neutrinos

We shall now consider the effective Yukawa coupling operators � ν
αβ which generate

the entries in the neutrino mass matrix Mν via the mass terms

�
ν
Y = `cα

H2

M2

� ν
αβ`β + h.c., (2.51)

where α, β = e, µ, τ andM2 is the relevant high mass scale which is responsible for the
smallness of the neutrino masses in comparison with the charged lepton masses. Since
the SM singlet neutrinos as well as the Higgs doublet are D1-singlets, the presence of
the fields Φ1,Φ2, and Φ3 (which transform non-trivially under D1) in the operators
� ν
αβ is forbidden. Hence, the only scalar fields that can be involved in the leading

order operators � ν
αβ are Φ4, φ9, φ10, and θ.

2.5.1 Effective Yukawa interactions of the neutrinos

The operators � ν
µµ, � ν

µτ , � ν
τµ, and � ν

ττ must have the U(1) charge structure (0,−2, 0).
An example of the lowest dimensional operators which achieve this is

∼ φ9φ10θ

(M1)5

[

(φ†
7)

2 + (φ†
8)

2
]

. (2.52)

Since the U(1) charge structure of the entry � ν
ee is (−2, 0, 0), the operator � ν

ee is to
leading order

� ν
ee = Y ν

a

φ9φ10θ

(M1)3
, (2.53)

where Y ν
a is an arbitrary order unity coefficient. Note that the operators of the type

in Eq. (2.52) carry two units of mass dimension more than the operator � ν
ee.
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The operators � ν
eµ and � ν

eτ (as well as � ν
µe and � ν

τe) must have the U(1) charge
structure (−1,−1, 0). Therefore, the lowest dimensional terms which contribute to
these operators are ∼ φ7/M1 and ∼ φ8/M1. The symmetries D2,D3, and D4 then
yield to leading order � ν

eµ = Y ν
b φ7/M1 and � ν

eτ = Y ν
b φ8/M1, where Y

ν
b is an arbitrary

order unity coefficient. Note that � ν
ee in Eq. (2.53) carries two units of mass dimension

more than � ν
eµ ∼ φ7/M1 and � ν

eτ ∼ φ8/M1. We will therefore not in detail consider
the structure of the highly suppressed terms that appear in the 2-3-submatrix of the
neutrino mass matrix.

In total, the most general effective Yukawa coupling matrix of the neutrinos ( � ν
αβ)

that is consistent with the symmetries of our model is to leading order given by

( � ν
αβ) =





A2 B2 B3

B2 0 0
B3 0 0



 . (2.54)

Here, the dimensionful coefficients A2, B2, and B3 are identical with

A2 = Y ν
a

φ9φ10θ

(M1)3
, B2 = Y ν

b

φ7

M1
, B3 = Y ν

b

φ8

M1
, (2.55a)

where the quantity Y ν
b is an order unity coefficient. The leading order tree-level

realizations of the higher-dimensional operators, which generate the neutrino masses,
are shown in Figs. 2.4 and 2.5. Note that the coefficients B2 and B3 contain the same
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Figure 2.4: The dimension-six operator for α = µ, τ and φµ ≡ φ7, φτ ≡ φ8 generating
the e-µ- and e-τ -elements in the effective neutrino mass matrix.

Yukawa coupling constant Y ν
b . Furthermore, we point out that the texture zeros in

the 2-3-submatrix of the effective neutrino Yukawa matrix should be understood as
“phenomenological” ones, since they actually represent highly suppressed operators
carrying two units of mass dimension more than the entry � ν

ee.

2.5.2 The neutrino mass matrix

Inserting the VEV in Eq. (2.20) into the effective operators in Eqs. (2.55), we obtain
from Eq. (2.54) the effective neutrino mass matrix (to leading order)

Mν =
〈H〉2
M2





Y ν
a ε

3 Y ν
b ε ±Y ν

b ε
Y ν
b ε ε5 ε5

±Y ν
b ε ε5 ε5



 , (2.56)
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Figure 2.5: The dimension-eight operators generating the e-e-element in the effective
neutrino mass matrix.

where we have introduced the actual orders of magnitude of the higher-order cor-
rections to the texture zeros in the 2-3-submatrix of the matrix in Eq. (2.54). Note
that after SSB the symmetries determine the e-µ- and e-τ -elements to be exactly
degenerate (up to a sign), giving rise to an atmospheric mixing angle which is close
to maximal (higher-order corrections to exact maximal atmospheric mixing mainly
come from the µ-τ - and τ -µ-elements of the charged lepton mass matrix). Introduc-
ing an absolute neutrino mass scale mν and choosing Y ν

a /Y
ν
b ' 1, we can write the

neutrino mass matrix in Eq. (2.56) as

Mν ' mν





ε2 1 −1
1 ε4 ε4

−1 ε4 ε4



 , (2.57)

where

mν =
〈H〉2
M2

Y ν
b ε. (2.58)

Note that we have chosen the minus signs for the e-τ - and τ -e-elements due to our
freedom of absorbing the corresponding phase into the order unity coefficients in the
charged lepton sector. Furthermore, it is important to keep in mind that the entries
“1” and “−1” of the matrix in Eq. (2.57) indeed denote matrix elements, which are
degenerate to a very high accuracy, whereas the other entries are only known up to
their order unity coefficients.
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2.6 Lepton masses and mixing angles

In the last two sections, we have found from the U(1) and discrete symmetries the
effective charged lepton and neutrino mass matrix patterns

M` ' m`





ε3 ε2 ε4

ε3 ε ε2

ε3 ε2 1



 and Mν ' mν





ε2 1 −1
1 ε4 ε4

−1 ε4 ε4



 ,

where m` is the absolute charged lepton mass scale, mν is the absolute neutrino mass
scale, ε ' 0.1 is the small expansion parameter, and only the orders of magnitude
of the ε-suppressed matrix elements have been indicated. Note that M` and Mν

are both described by the same expansion parameter ε. Now, the mixing angles
and masses of the left-handed charged leptons are found by diagonalizing the matrix
product M`M

†
` , which is a unitary matrix. Biunitary diagonalization of M` gives

U †
`M`V` = M`, where M` = diag (me, mµ, mτ ) is the diagonalized charged lepton

mass matrix containing the left-handed charged lepton masses and U` and V` are
two unitary mixing matrices. Thus, we have M`M†

` = U †
`M`M

†
`U`, where U` is the

mixing matrix of the left-handed charged leptons. For simplicity, we will take M` to
be a real matrix, implying that M`M†

` = M`MT
` = UT

` M`M
T
` U`. Thus, it holds

M`M†
` = (m`)

2 diag (ε6 +O(ε7), ε2 +O(ε4), 1 +O(ε4)) (2.59)

and

U` ≡ ((U`)αa) '





−0.995 −0.0997 −0.000212
0.0997 −0.995 −0.0111

−0.000897 0.0111 −1.000



 , (2.60)

such that U †
`U` ' U`U

†
` ' 13, where α = e, µ, τ and a = 1, 2, 3. Hence, the charged

lepton masses are given by me = m` ε
3 (1− ε+O(ε2)), mµ = m` ε

(

1 + 1
2
ε2 +O(ε3)

)

,
and mτ = m` (1 + ε4 +O(ε5)). This leads to the order-of-magnitude relations

me/mµ ' ε2 ' 10−2 and mµ/mτ ' ε ' 10−1, (2.61)

which are to be compared with the experimentally observed values, i.e., (me/mµ)exp '
4.8·10−3 and (mµ/mτ )exp ' 5.9·10−2 [58]. Working in the standard parameterization,
we find for the mixing angles of the left-handed charged leptons [61]

θ`12 ≡ arctan

∣

∣

∣

∣

(U`)e2
(U`)e1

∣

∣

∣

∣

= ε+O(ε3), (2.62a)

θ`13 ≡ arcsin |(U`)e3| = 2ε2 +O(ε5), (2.62b)

θ`23 ≡ arctan

∣

∣

∣

∣

(U`)µ3
(U`)τ3

∣

∣

∣

∣

= ε2 +O(ε3). (2.62c)

Substituting ε ' 0.1 into Eqs. (2.62), one obtains θ`12 ≈ 6◦, θ`13 ≈ 0.01◦, and θ`23 ≈ 0.6◦,
i.e., the mixing angles in the charged lepton sector are all small. The mixing angle
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θ`12 is the only one that is not negligible and will give a significant contribution to the
leptonic mixing angles [59, 60].

To determine the leptonic mixing angles, it is necessary to diagonalize the effective
neutrino mass matrix Mν as well. Since the Majorana mass matrix Mν is symmetric,
one can always write UT

ν MνUν = Mν, where Mν = diag (mν1 , mν2, mν3) is the di-
agonalized neutrino mass matrix containing the neutrino mass eigenvalues and Uν is
the unitary neutrino mixing matrix. For simplicity, we take Mν to be a real matrix.
Hence, we obtain

Mν = mν diag

(

1

2

(

ε2 +
√
8 + ε4

)

,
1

2

(

ε2 −
√
8 + ε4

)

, 2ε4
)

= mν diag

(√
2 +

1

2
ε2 +O(ε4),−

√
2 +

1

2
ε2 +O(ε4), 2ε4

)

(2.63)

and

Uν ≡ ((Uν)αa) '





0.708 0.706 0
0.499 −0.501 1√

2

−0.499 0.501 1√
2



 , (2.64)

such that U †
νUν ' UνU

†
ν ' 13, where α = e, µ, τ and a = 1, 2, 3. The (physical)

neutrino masses are m1 ≡ |mν1| '
√
2mν , m2 ≡ |mν2| '

√
2mν , and m3 ≡ |mν3 | =

2ε4mν ≈ 0, i.e., the neutrino mass spectrum is inverse hierarchical. For the neutrino
mass squared differences ∆m2

ab = m2
a−m2

b , where ma is the physical mass of the ath
neutrino mass eigenstate, we find

∆m2
21 = m2

ν

(

−2
√
2ε2 +O(ε6)

)

, (2.65a)

∆m2
32 = m2

ν

(

−2 +
√
2ε2 +O(ε4)

)

, (2.65b)

∆m2
31 = m2

ν

(

−2−
√
2ε2 +O(ε4)

)

. (2.65c)

Thus, the solar and atmospheric neutrino mass squared differences are given by
∆m2

� ≡ |∆m2
21| ' 2

√
2ε2m2

ν and ∆m2
atm ≡ |∆m2

32| ' |∆m2
31| ' 2m2

ν , respec-
tively. The presently preferred experimental values of these quantities are ∆m2

� '
7.5 ·10−5 eV2 (LMA-I) [14] and ∆m2

atm ' 2.5 ·10−3 eV2 [11]. Therefore, one concludes
that mν ' 0.04 eV and ε ' 0.1, which is consistent with our used value for the small
expansion parameter ε. In addition, the neutrino masses are m1 ' m2 ' 0.05 eV and
m3 ' 1 · 10−5 eV ≈ 0. In the standard parameterization, the neutrino mixing angles
are determined to be [61]

θν12 ≡ arctan

∣

∣

∣

∣

(Uν)e2
(Uν)e1

∣

∣

∣

∣

=
π

4
+

1

4
√
2
ε2 +O(ε6), (2.66a)

θν13 ≡ arcsin |(Uν)e3| = 0, (2.66b)

θν23 ≡ arctan

∣

∣

∣

∣

(Uν)µ3
(Uν)τ3

∣

∣

∣

∣

=
π

4
. (2.66c)
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Figure 2.6: Scheme for calculating the leptonic mass and mixing parameters [60].

Substituting ε ' 0.1 into Eqs. (2.66), one arrives at θν12 ' 45.1◦ ≈ 45◦, θν13 = 0,
and θν23 = 45◦, i.e., the neutrinos exhibit a bimaximal mixing [62]. Note that the
predictions for θν13 and θ

ν
23 are exact, since these values are exclusively determined by

the entries in the third column of Uν in Eq. (2.64).

2.7 The leptonic mixing angles

The leptonic mixing matrix U is given by the charged lepton mixing matrix U` and
the neutrino mixing matrix Uν in terms of (see Fig 2.6):

U ≡ U †
`Uν . (2.67)

The matrix U [Uab = (U †
`Uν)ab =

∑

α=e,µ,τ (U
†
` )aα(Uν)αb =

∑

α=e,µ,τ (U`)
∗
αa(Uν)αb] can

be viewed as the messenger between the mass eigenstate bases of the charged leptons
and the neutrinos. Substituting the matrices in Eqs. (2.60) and (2.64) into Eq. (2.67),
it follows that

U ≡ (Uab) '





−0.655 −0.753 0.0699
−0.573 0.434 −0.696
0.493 −0.495 −0.715



 , (2.68)
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which approximately satisfies the condition U †U = UU † = 13. In the standard
parameterization, the leptonic mixing angles are identical with [61]:

θ12 ≡ arctan

∣

∣

∣

∣

U12

U11

∣

∣

∣

∣

, θ13 ≡ arcsin |U13|, θ23 ≡ arctan

∣

∣

∣

∣

U23

U33

∣

∣

∣

∣

. (2.69)

Here, substituting the appropriate matrix elements of the matrix U expressed in
terms of ε in Eq. (2.67) into Eq. (2.69), one concludes

θ12 =
π

4
− 1√

2
ε +

1

4
√
2
ε2 +O(ε3), (2.70a)

θ13 =
1√
2
ε +O(ε3), (2.70b)

θ23 =
π

4
− 5

4
ε2 +O(ε3). (2.70c)

Here, it is important to note that the first correction to the atmospheric mixing angle
θ23 is of second order in ε, and it is therefore very small, i.e., the atmospheric mixing
angle stays nearly maximal. In contrast to this, the first corrections to the solar
mixing angle θ12 and the reactor (or CHOOZ) mixing angle θ13 are both of first order
in ε and they are of the same size, but with opposite sign. This leads to the relation

θ12 =
π

4
− θ13 +O(ε2), (2.71)

between the solar and the reactor mixing angle. Now, inserting ε ' 0.1 in Eqs. (2.70),
one obtains the leptonic mixing angles

θ12 ≈ 41◦, θ13 ≈ 4◦, and θ23 ≈ 44◦, (2.72)

which means that we have bilarge leptonic mixing. These values of the leptonic mixing
angles lie within the 99.73% C.L. contour line of the MSW LMA solution [14] and
lie within the ranges preferred by atmospheric neutrino data [11] (close to maximal
atmospheric mixing), and CHOOZ reactor neutrino data. Although the obtained
value for the solar mixing angle θ12 implies a significant deviation from maximal solar
mixing, the expected solar mixing angle 41◦ is still too close to maximal to be within
the 99% C.L. region of the MSW LMA solution [14].

Let us now give an impression of the robustness of the above calculated leptonic
mixing angles under variation of the involved order unity coefficients. For example,
changing the ratio Y `

b /Y
`
d from 1 to 2 leads to

θ12 ' 37◦, θ13 ' 8◦, and θ23 ' 44◦, (2.73)

where the new value for θ12 lies within the 90% C.L. region of the MSW LMA solution
[14] while the value for θ13 still remains below the CHOOZ upper bound. Note that
θ23 has practically not changed as compared with Eq. (2.72). At the same time, the
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exact values of the charged lepton masses can be accommodated by choosing the
values Y `

a = 0.5, Y `
c = 1.8, and Y `

d = 1.0 for the order unity coefficients. Thus,
the model is in agreement with the MSW LMA solution and can accommodate the
spectrum of charged lepton masses.

In this chapter, we have analyzed a model for inverse hierarchical neutrino masses,
which gives bilarge leptonic mixing in agreement with the MSW LMA solution. Here,
the atmospheric mixing angle is maximal due to some non-Abelian symmetry and a
vacuum-alignment mechanism generates the splitting mµ � mτ between the muon
and tau mass. The vacuum alignment mechanism is essentially based on an enlarged
sector of replicated scalar representations transforming non-trivially under the non-
Abelian discrete symmetry. Recently, replicated scalar representations in conjunction
with discrete symmetries were also used to solve the doublet-triplet splitting problem
in models inspired by dimensional deconstruction. Motivated by this fact, we will in
the next chapter use deconstruction as a tool for organizing the horizontal charges
in a normal hierarchical neutrino mass model, which gives the MSW LMA solution
within the 90% C.L. contour line without any tuning of parameters.



Chapter 3

Hierarchies from Mooses

In the last chapter, we have seen that an enlarged symmetry structure with an ex-
tended set of scalar fields can predict maximal atmospheric mixing and the hierarchi-
cal splitting me � mµ � mτ of charged lepton masses. In this chapter, we will use
deconstruction as an elegant organizing principle for the collection of symmetries and
scalar variables to comfortably obtain the MSW LMA solution for a normal neutrino
mass hierarchy. This chapter extends and modifies the treatment in Ref. [63].

3.1 Deconstruction

In this section, we will first briefly review the deconstruction setup [34, 35] for two
relevant cases: the “periodic model” and the “aliphatic model” for fermions. These
models describe a latticized fifth dimension which is compactified either on the circle
S1 or on the orbifold S1/Z2.

3.1.1 The periodic model

Consider a 4D gauge-invariant field theory for deconstructed or latticized extra di-
mensions [34, 35]. Let the field theory be described by a product G = ΠN

i=1Gi of
SU(m) gauge groups Gi, where N is the total number of “sites” corresponding to
G. In the “periodic model” [34], one associates with each pair of groups Gi × Gi+1

a (fundamental or effective) link-Higgs field Qi, which transforms according to the
bi-fundamental representation (mi, mi+1) under Gi × Gi+1, where the index i is pe-
riodically identified with i +N . Each link field Qi can be represented by a complex
m×m matrix where the group SU(m)i acts on the columns and the group SU(m)i+1

acts on the rows of the matrix. This field theory is conveniently represented by the
“moose” [64] or “quiver” [65] diagram in Fig. 3.1. Each circle in Fig. 3.1 represents a
gauge group SU(m)i and each line corresponds to a link-Higgs field Qi which trans-
forms under the two adjacent gauge groups SU(m)i and SU(m)i+1 associated with
the corresponding sites (see Fig. 3.2). Here, a line directed away from a site denotes
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Figure 3.1: Moose (or quiver) diagram for the periodic GN model.
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Figure 3.2: View at one line of the polygon in Fig. 3.1. The link field Φi transforms as the
bi-fundamental representation (mi,mi+1) under the adjacent gauge groups Gi and Gi+1.

the transformation of the field under the fundamental representation, while a line
pointing towards a site denotes the transformation under the complex-conjugate of
the fundamental representation. The Lagrangian of the periodic model is given by

�
= −1

4

N
∑

i=1

Tr
(

F a
iµνF

iµνa
)

+
N
∑

i=1

Tr
(

(DµQi)
†DµQi

)

, (3.1)

where F a
iµν = ∂µA

a
iν−∂νAaiµ+gifabcAbiµAciν is the 4D field strength of the gauge group

SU(m)i and the covariant derivative is defined by

DµQi = (∂µ − igiA
a
iµT

a + igi+1A
a
(i+1)µT

a)Qi, (3.2)

where gi is the dimensionless coupling constant of the gauge group Gi and T
a (a =

1, . . . , m2 − 1) are the SU(m) generators (normalized by Tr (T aT b) = δab/2). For
simplicity, we assume a cyclic symmetry which ensures universal gauge couplings,

g1 = g2 = . . . = gN ≡ g. (3.3)
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Since we work here with fundamental link-Higgs fields, the Lagrangian of the model
actually includes a renormalizable potential

V (Qi) =
N
∑

i=1

[

−M2 Tr
(

Q†
iQi

)

+ λ1 Tr
(

Q†
iQi

)2

+ λ2

(

Tr
(

Q†
iQi

))2

+M ′ (eiθ det(Qi) + h.c.
)

]

, (3.4)

where the term in the 2nd line is absent if m > 4. For zero gauge couplings, the
link-Higgs sector would exhibit an SU(m)N ×SU(m)N chiral global symmetry under
which the link fields transform as Qi → LiQiR

†
i+1, where Li and Ri are independent

elements of SU(m) [36]. If the gauge couplings are switched on, only the SU(m)N

subgroup of the chiral symmetry is preserved, where Li = Ri. In Eq. (3.4), one can
choose the parameters in such a way, that after SSB the link-Higgs fields become
non-linear sigma model fields [35],

Qi → v exp (iπai T
a/v) , (3.5)

with universal VEVs v for all i = 1, . . . , N . As a consequence, the chiral symmetry
is spontaneously broken SU(m)N × SU(m)N → SU(m)N which leaves N Nambu-
Goldstone boson multiplets, each of which transforms according to the adjoint repre-
sentation of SU(m). At the same time, the full SU(m)N gauge symmetry is broken
down to the diagonal subgroup SU(m)diag, thereby generating (N−1)(m2−1) massive
spin-1 vector states by eating N − 1 of the would-be Nambu-Goldstone boson multi-
plets via the Higgs mechanism. Thus, one massless scalar φ = (π1+π2+. . .+πN )/

√
N

remains in the spectrum, which transforms under the adjoint representation of
SU(m)diag. The classically massless φ is a pseudo-Nambu Goldstone boson and ac-
quires at the quantum level a mass which is protected against divergencies by the
SU(m)N gauge symmetries [36, 37].

Actually, the Lagrangian in Eq. (3.1) describes a 4+1 dimensional SU(m) gauge
theory on a flat background, where only the fifth dimension has been latticized. The
lattice spacing a and circumference R of the fifth dimension are a = 1/(gv) and
R = N/(gv), whereas the 5D gauge coupling g5 is given by 1/g25 = 1/(ag2) [34, 66].
(In the model with free boundary conditions [35] generic gauge couplings and non-
universal VEVs introduce an overall non-trivial warp factor [37, 40], resulting, e.g.,

in a Randall-Sundrum model [67].) The field φ corresponds to the zero mode Ã
(0)
5

of the continuum 5D SU(m) gauge theory and could be projected out by suitable
boundary conditions. Implicitly, we identify the link-Higgs fields with the continuum
Wilson lines

Qi(x
µ) = exp

(

i

∫ (i+1)a

ia

dx5 Ab5(x
µ, x5)T b

)

, (3.6)

where (xµ, x5) are the bulk coordinates and Ab
5 is the fifth component of the bulk

gauge field associated with the gauge group G. The gauge boson mass matrix takes
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Figure 3.3: Deconstruction picture for the dynamical generation of a fifth dimension. At
energy scales below gv/N , we have a 4D theory with zero modes. For energies & gv/N , the
physics is that of a 5D gauge theory with KK excitations. At high energies & gv, the fifth
dimension “melts away” leaving a 4D UV complete theory with enlarged gauge symmetry.

the form
N
∑

i=1

g2v2(Aaiµ − Aa(i+1)µ)
2 (3.7)

and is of the type of a nearest neighbor coupled oscillator Hamiltonian. Explicitly,
the N ×N gauge boson mass matrix reads

g2v2



















2 −1 0 0 0 · · · −1
−1 2 −1 0 0 · · · 0
0 −1 2 −1 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 0 −1 2 −1
−1 · · · 0 0 0 −1 2



















. (3.8)

The matrix in Eq. (3.8) yields a mass spectrum labeled by an integer k satisfying
−N/2 < k ≤ N/2 [34],

M2
k = 4g2v2sin2

(

πk

N

)

≡
(

2

a

)2

sin2
(p5a

2

)

, (3.9)

where p5 ≡ 2πk/R is the discrete 5D momentum. For small |k|, the masses are

Mk ' |pk| =
2π|k|
R

, |k| � N/2, (3.10)

which is exactly the KK spectrum1 of a 5D gauge theory compactified on S1 with
circumference R = N/(gv). The zero mode corresponds to the unbroken group
SU(m)diag. Hence, at energies E � gv/N we observe an ordinary 4D gauge theory,
in the range gv/N < E < gv the physics is that of an extra dimension, and for
E � gv an unbroken SU(m)N gauge theory in four dimensions is recovered (see
Fig. 3.3).

1Note here the doubling of KK modes.



40 CHAPTER 3. Hierarchies from Mooses

��� �������

� � �
	 � ����� � �

Figure 3.4: Moose diagram for bulk vector fields and fermions in the aliphatic model.

3.1.2 The aliphatic model for fermions

The “aliphatic model” [35] for the product gauge group G, as defined in Sec. 3.1.1, is
obtained from the periodic model by setting QN = 0, which yields a linear sys-
tem with free boundary conditions. For this type of latticization, we will con-
sider N SM singlet Dirac fermions Ψn (n = 1, . . . , N), each of which transforms
under the complex-conjugate representation mn of the fundamental representation
of SU(m)n. The SM singlet Higgs fields Qn (n = 1, . . . N) which transform under
Gn×Gn+1 as the bi-fundamental representation (mn, mn+1) specify the allowed cou-
plings between the fermions. The moose diagram for the aliphatic model is shown
in Fig. 3.4. In contrast to the periodic model in Sec. 3.1.1, we now have only a
SU(m)N−1 × SU(m)N−1 chiral global symmetry in the scalar sector. When the link
fields aquire their VEVs as in Eq. (3.5), the global symmetry is spontaneously broken
SU(m)N−1 × SU(m)N−1 → SU(m)N−1 leaving N − 1 Nambu-Goldstone multiplets.
The SU(m)N gauge symmetry is broken down to the diagonal subgroup SU(m)diag,
thereby eating N − 1 of the would-be Nambu-Goldstone multiplets. Hence, no scalar
zero mode remains in the spectrum, which corresponds exactly to the compactifica-
tion of a SU(m) gauge theory on an orbifold S1/Z2, where unwanted vector field
strengths in the 4D theory are projected out by suitable boundary conditions.

We will denote by ΨnL and ΨnR the left- and right-handed chiral components of
Ψn respectively. To engineer chiral fermion zero modes from compactification of the
5th dimension, one can impose discretized versions of the Neumann and Dirichlet
boundary conditions ΨNL − (QN−1/v)Ψ(N−1)L = 0 and Ψ1R = ΨNR = 0 which
explicitly break the Lorentz group SO(4, 1) in five dimensions. In the moose diagram
in Fig. 3.4, the Neumann boundary condition corresponds to removing the variable
ΨN from the last site, while the Dirichlet boundary condition replaces Ψ1 → Ψ1L on
the first site. Using the transverse lattice technique [68, 69] the relevant mass and
mixing terms of ΨnL and ΨmR then read [35, 37]

�
1 = Mf

N−1
∑

n=2

[

ΨnL

(

Q†
n

v
Ψ(n+1)R − ΨnR

)

− ΨnR

(

ΨnL − Qn−1

v
Ψ(n−1)L

)]

+MfΨ1L
Q†

1

v
Ψ2R + h.c., (3.11)

where 〈Qn〉 ≡ v � m for n = 1, . . . , N − 1, i.e., we have universal VEVs proportional
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to the unit matrix. In fact, Eq. (3.11) is the Wilson-Dirac action [70] for a transverse
extra dimension which reproduces the 5D continuum theory in the limit of vanishing
lattice spacing. Clearly, this tacitly presupposes a specific functional measure for the
link variables in question which may, however, no longer be a necessary choice when
the lattice spacing is finite [69]. In App. A, we explicitly demonstrate the transverse
lattice technique leading to the Wilson-Dirac action as in Eq. (3.11). After SSB, the
mixed mass terms of the chiral fermions are

�
mass = Mf

N−1
∑

n=2

[

ΨnL(Ψ(n+1)R −ΨnR)− ΨnR(ΨnL −Ψ(n−1)L)
]

+MfΨ1LΨ2R + h.c.

= (Ψ1L, . . . ,Ψ(N−1)L)
TM1(Ψ2R, . . . ,Ψ(N−1)R) + h.c., (3.12)

where the (N − 1)× (N − 2) fermion mass matrix M1 is on the form

M1 =Mf















1 0 0 · · · 0 0
−1 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 1
0 0 0 · · · 0 −1















. (3.13)

Now, the masses of the right- and left-handed fermions are determined from the
matrices M†

1M1 and M1M†
1, respectively. Diagonalizing the (N − 2) × (N − 2)

matrix M†
1M1 gives for the mass eigenvalues of the right-handed fermions

MnR = 2Mf sin

(

nπ

2(N − 1)

)

, n = 1, 2, . . . , N − 2, (3.14)

whereas diagonalization of the (N − 1) × (N − 1) matrix M1M†
1 yields the masses

for the left-handed fermions,

MnL = 2Mf sin

(

nπ

2(N − 1)

)

, n = 0, 1, . . . , N − 2, (3.15)

which are identical with the gauge boson masses [35]. Setting Mf = N−1
R

and taking
the limit n � N , the linear KK spectrum of a 5D fermion in an orbifold extra
dimension S1/Z2 is reproduced. Up to an overall scale factor of 2, the periodic and
the aliphatic model generate identical KK mass spectra for bulk vector fields, with
the number of KK modes doubled in the periodic case [71].

3.2 Enlarged gauge symmetries

In 5D continuum theories, hierarchical Yukawa coupling matrix textures have been
successfully generated [72]. Hierarchical Yukawa matrices have also been obtained in
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Figure 3.5: Moose diagram for the gauge group Gµ = Π4
i=1G

µ
i .
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Figure 3.6: Moose diagram for the gauge group Gτ = Π2
i=1G

τ
i .

deconstructed warped geometries [45]. Let us now consider an extension of the SM
where the mass matrix patterns of the charged leptons and the neutrinos originate in
four dimensions from two mechanisms which have an extra-dimensional correspon-
dence. For this purpose, we assume that the masses in the charged lepton sector
are generated by Wilson-line type effective operators of deconstructed 5D SU(m)
gauge symmetries compactified on S1. In the neutrino sector, on the other hand, we
suppose that the solar neutrino parameters reflect the separation between the com-
pactification radius and the fundamental scale of a latticized orbifold extra dimension
S1/Z2, which is experienced by an extra SM singlet bulk-neutrino. To be specific, we
associate with the muon a product gauge group Gµ = Π4

i=1G
µ
i of four SU(m) gauge

groups Gµ
i (i = 1, 2, 3, 4) and with the tau a product Gτ = Π2

i=1G
τ
i of two SU(m)

gauge groups Gτ
i (i = 1, 2). Within each of the gauge groups Gµ and Gτ , neighboring

SU(m) symmetries are connected by bi-fundamental link-Higgs variables transform-
ing as Qα

i ⊂ (mi, mi+1) under G
α
i ×Gα

i+1, where α = µ, τ and i = i+4 for α = µ and
i = i + 2 for α = τ . The corresponding moose diagrams are given in Figs. 3.5 and
3.6. Note that in Gα the periodic identifications i + 4 = i for α = µ and i + 2 = i
for α = τ yield two closed lattice geometries. Next, we put the bulk-neutrino on a
deconstructed S1/Z2 orbifold extra dimension by employing the aliphatic model for
a product Gν = ΠN

i=1G
ν
i of SU(m) gauge symmetries Gν

i (i = 1, 2, . . . , N). At this
stage, we allow the number of lattice sites N to be large but leave it yet unspecified.
In fact, it will prove later that N parameterizes the solar mass squared difference
∆m2

� and N will be determined in Sec. 3.7.4 from the presently preferred solar neu-
trino parameters. In the aliphatic model, the bulk neutrino is described by a set of
N Dirac fermions Ψn (n = 1, . . . , N) which transform according to the corresponding
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Figure 3.7: Moose diagram for the bulk-neutrino in the orbifold extra dimension associated
with the gauge group Gν . Note that the boundary conditions leave on the first site only
the left-handed field Ψ1L and remove ΨN from the last site.

anti-fundamental representation mn of the gauge group Gν
n. Appropriate application

of the Dirichlet and Neumann boundary conditions on the lattice projects out the
right-handed component Ψ1R of Ψ1 as well as both chiral components of the Dirac
spinor ΨN on the Nth lattice site (see Sec. 3.1.2). The corresponding moose diagram
is given in Fig. 3.7. For the generation of lepton masses, it is sufficient to assume the
electroweak scalar sector of the SM to consist only of the SM Higgs doublet H. In
order to account for the neutrino masses, we will introduce three SM singlet scalar
fields ξ0, ξ1, and ξ2, as well as three heavy SM singlet Dirac neutrinos Fe, Fµ, Fτ , and
a massless left-handed Weyl spinor ηL. Since the Dirac neutrinos are supposed to
have masses of the order of the GUT scale ' 1015 GeV, they can yield small masses
of the active neutrinos via the seesaw mechanism [20–22].

3.3 Discrete horizontal symmetries

3.3.1 Abelian charges

The extra degrees of freedom which correspond to the field theories summarized by
the moose diagrams in Figs. 3.5, 3.6, and 3.7 can be related to a realistic low-energy
phenomenology of lepton masses and mixing angles by appropriate discrete Abelian
symmetries. In models of inverted neutrino mass hierarchy, for example, a small
reactor mixing angle θ13 may be understood in terms of a softly broken Le−Lµ−Lτ
lepton number [73]. Analogously, we assume that our example field theory contains
a product Z8×Z ′

8 of two discrete Z8 symmetries which distinguish the 1st generation
from the 2nd and 3rd generations. In addition, the Z8 × Z ′

8 symmetry acts also
on ξ0, ξ1, ξ2, and the link fields Qµ

1 , Q
µ
4 , Q

τ
1, and Qτ

2 . The complete Z8 × Z ′
8 charge

assignment is shown in table 3.1. We assume that the charges of the product groups
Z8 × Z ′

8, G
µ, and Gτ are approximately conserved in the charged lepton sector,

implying the generation of hierarchical charged lepton mass terms via the Froggatt-
Nielsen mechanism. Furthermore, we suppose that the heavy Froggatt-Nielsen states
generating the charged lepton masses are put only on the first site Gν

1 as site variables
in the fundamental or anti-fundamental representation of Gν

1 while carrying zero Gν
i
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Z8 × Z ′
8

`e (+2,−2)
Ee, Fe, ξ0 (−2,+2)
`µ, `τ , Q

µ
1 , Q

τ
1, ξ1 (+1, 0)

ξ2 (+3, 0)
Fµ, Fτ (−1, 0)
Eµ, Eτ (0,+1)
Qµ

4 , Q
τ
2 (0,−1)

ηL (−4, 0)

Table 3.1: Assignment of the horizontal Z8 × Z ′
8 charges to the different fields. The

fields not shown here transform trivially under Z8 × Z ′
8.

charges for i = 2, 3, . . . , N . Then, the orbifold extra dimension described by the
moose diagram in Fig. 3.7 is (at tree-level) completely decoupled from the charged
leptons and can only be experienced by the neutrinos.

In addition, let us assume that the scalars ξ0, ξ1, ξ2, and the SM singlet neutrinos
transform under a Z2 symmetry as

Z2 : ηL −→ −ηL, Ψ1L −→ −Ψ1L, Ψn −→ −Ψn, ξi −→ −ξi, (3.16)

where n = 2, . . . , N − 1, and i = 0, 1, 2. All other fields, including the fundamental
Froggatt-Nielsen messenger states of the charged lepton sector, which are not dis-
played in Eq. (3.16) are taken to be even under the Z2 symmetry. As a consequence,
the fields ξ0, ξ1, and ξ2 can be discarded in the discussion of the generation of the
charged lepton masses (see also Sec. 3.7.1).

3.3.2 Non-Abelian charges

Among the discrete symmetries that have been proposed in the context of the MSW
LMA solution as a possible origin of an approximately maximal atmospheric mixing
angle θ23 are the symmetric groups S2 and S3 acting on the 2nd and 3rd generations of
leptons [28,29]. While this can indeed give an approximately maximal νµ-ντ -mixing,
the hierarchical charged lepton mass spectrum is typically not produced in these types
of models, since they rather yield masses of the muon and tau that are of the same
order of magnitude. However, when we add to the regular representation of S2 in
the µ-τ -flavor basis the generator diag(−1, 1), one obtains the vector representation
of the dihedral group � 4, which is non-Abelian (see App. B). Since the generator
diag(−1, 1) distinguishes between `µ and `τ , it may serve as a possible source for
the charged lepton mass hierarchy, which breaks the permutation symmetry S2 ⊂ � 4

characterizing the νµ-ντ -sector. Clearly, if the charged lepton masses arise from the
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Froggatt-Nielsen mechanism, we will have to expect that the underlying symmetry
is actually equivalent to a group extension2 of some subgroup of � 4, presumably a
suitable subgroup of some replicated product of � 4-factors.

Motivated by these general observations, we will take here the view, that an ap-
proximately maximal atmospheric mixing angle |θ23− π

4
| � 1 is due to a non-Abelian

discrete symmetry
�

which is a group extension based on the generators of the di-
hedral group � 4 under which the leptons of the 2nd and 3rd generation, the scalars
ξ1, ξ2, and the scalar link variables of the deconstructed extra-dimensional gauge
symmetries Gµ = Π4

i=1G
µ
i and Gτ = Π2

i=1G
τ
i transform non-trivially. Specifically, we

suppose that in the defining representation D the group
�
, which is a subgroup of the

four-fold (external) product group � 4 × � 4 × � 4 × � 4, can be written as a sequence

D(g) ≡ diag
[

D1(g), D2(g), D3(g), D4(g)
]

g ∈ �
, (3.17)

where each element g ∈ �
is associated with four3 (in general different) 2× 2 charge

operators Di(g) (i = 1, 2, 3, 4) which have values in the vector representation of � 4.
Clearly, for given i = 1, 2, 3, 4 the set of all operators {Di(g) : g ∈ � } forms a
subrepresentation of

�
which we will call Di. Now, using the notation of App. B we

suppose that
�

is represented by four generators with following � 4-charge structure

D(a1) ≡ diag
[

D(Cb), D(E), D(Cb′), D(Cb′)
]

, (3.18a)

D(a2) ≡ diag
[

D(Cb′), D(Cb′), D(Cb), D(E)
]

, (3.18b)

D(a3) ≡ diag
[

D(E), D(E), D(Cb), D(Cb)
]

, (3.18c)

D(a4) ≡ diag
[

D(Cb), D(Cb), D(E), D(E)
]

, (3.18d)

where a1, a2, a3, a4 ∈
�

are the corresponding abstract generators. We will call e the
identity element of

�
. Note that the operators in Eqs. (3.18) are characterized by a

one-to-one-correspondence D(a1) ↔ D(a2) and D(a3) ↔ D(a4) under the permuta-
tion of the upper-left and the lower-right 4 × 4-matrices. As will be shown in Sec.
3.3.3, by factoring the subrepresentation Di for any i = 1, 2, 3, 4 with respect to its
kernel Ni we obtain a representation of the factor group

�
/Ni that is isomorphic with

� 4. This implies, of course, that all four subrepresentations D1, D2, D3, and D4 are
two-dimensional irreps of

�
. From App. B it is seen, that in an appropriate basis,

2An extension of a group N by a group H is an embedding of N into some group E such that
N is normal in E and H ' E/N .

3Since each element g ∈ � is associated with four (in general) different operators
D1(g), D2(g), D3(g), andD4(g), one may view in a discretized picture D as a 4-valued representation
of � 4 with � as the corresponding (universal) covering group.
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the generators of Eqs. (3.18) can be explicitly written as

D(a1) ≡ diag

[(

−1 0
0 1

)

,

(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

0 1
1 0

)]

, (3.19a)

D(a2) ≡ diag

[(

0 1
1 0

)

,

(

0 1
1 0

)

,

(

−1 0
0 1

)

,

(

1 0
0 1

)]

, (3.19b)

D(a3) ≡ diag

[(

1 0
0 1

)

,

(

1 0
0 1

)

,

(

−1 0
0 1

)

,

(

−1 0
0 1

)]

, (3.19c)

D(a4) ≡ diag

[(

−1 0
0 1

)

,

(

−1 0
0 1

)

,

(

1 0
0 1

)

,

(

1 0
0 1

)]

. (3.19d)

With respect to D, we will combine the left- and right-handed SM leptons as well as
the Dirac neutrinos of the 2nd and 3rd generations into the

�
-doublets 2` ≡ (`µ, `τ )

T ,
2E ≡ (Eµ, Eτ )

T , and 2F ≡ (Fµ, Fτ )
T , respectively. The fermionic doublets 2` and 2F

as well as the scalars ξ1 ≡ (ξ1a, ξ1b)
T and ξ2 ≡ (ξ2a, ξ2b)

T are all put into the doublet
representation D1. Next, the generalized Wigner-Eckart theorem tells us that the
effective Yukawa interaction matrix spanned by 2` and 2E in the µ-τ -subsector of the
charged leptons is identical with a linear combination of sets of irreducible Yukawa
tensor operators. If the irreducible Yukawa tensor operators take their values in the
vector representation of � 4, it is clear from App. B, that the hierarchy mµ � mτ

is only possible if 2E transforms according to an irrep of
�

which is inequivalent4

with D1. We will therefore put 2E into the irrep D2 which is inequivalent with D1

and note that the large subgroup of
�

generated by D(a2),D(a3), and D(a4) acts
diagonally on 2` and 2E.

Now, if the Wilson loops Tr (Π4
i=1Q

µ
i ) and Tr (Π2

i=1Q
τ
i ) are non-singlet representa-

tions of
�
, a non-trivial Yukawa matrix structure in the µ-τ -subsector of the charged

leptons can be generated at the non-renormalizable level. Although the irreps D1

and D2 already determine the overall transformation properties of the Wilson loops
under

�
via the generalized Wigner-Eckart theorem, there is still some ambiguity

in the individual
�
-charge assignment to the link-fields Qµ

1 , Q
µ
2 , Q

µ
3 , Q

µ
4 , and Q

τ
1 , Q

τ
2.

Here, it is appealing to assume that all the scalar link fields of Gµ and Gτ transform
according to some doublet subrepresentation of

�
, which has the property that its lift

is isomorphic with � 4. Since each of the Wilson loops Tr (Π4
i=1Q

µ
i ) and Tr (Π2

i=1Q
τ
i )

involves an even number of (two or four) link fields, we find from the multiplication
rules in App. B that this can only be the case if each of the sets {Qµ

1 , Q
µ
2 , Q

µ
3 , Q

µ
4}

and {Qτ
1, Q

τ
2} contains at least two inequivalent irreps. This can be simply realized

by putting, e.g., the 1st (i = 1) link fields Qµ
1 and Qτ

1 into the doublet representa-
tion D3 while the remaining link fields Qµ

2 , Q
µ
3 , Q

µ
4 , and Q

τ
2 all transform as doublets

under D4 (see Fig. 3.8). Note again, that both D3 and D4 are characterized by a
large common subgroup generated by D(a1),D(a3), and D(a4), which acts diagonally

4Similarity transformations allow only mappings within one class, which would yield mµ =
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Figure 3.8: “Space-dependent” transformation properties of the link variables of the prod-
uct gauge groups Gµ (left panel) and Gτ (right panel) under the discrete group � . The
link-fields connecting the 1st with the 2nd site (in this direction) are in the irrep D3 (dashed
arrows). The remaining link fields are in the irrep D4 (solid arrows).

I D1 D2 D3 D4

1`, 1E, 1F , ξ0 2`, 2F , ξ1, ξ2 2E Qµ
1 , Q

τ
1 Qµ

2 , Q
µ
3 , Q

µ
4 , Q

τ
2

Table 3.2: Assignment of the fermionic and scalar fields to the irreps D1, D2, D3, D4,
and I. Note that the scalar link fields transform according to their position in the
“index space” of gauge groups (see Fig. 3.8).

on all of the link fields. In component-form, the scalar
�
-doublets will be written

as Qµ
i ≡ (qµia, q

µ
ib)

T , where i = 1, 2, 3, 4, and Qτ
i ≡ (qτia, q

τ
ib)

T , where i = 1, 2. To
complete the

�
-charge assignment, we suppose that the first generation fields `e, Ee,

and Fe, as well as the scalar ξ0 transform only trivially under
�
, i.e., they are all

put into the identity representation I of
�
. For the fermionic

�
-singlets `e, Ee, and

Fe we will equivalently choose the notation 1` ≡ `e, 1E ≡ Ee, and 1F ≡ Fe. The
assignment of the fields to the irreps Di and I is summarized in table 3.2.

In this section, we have presented the non-Abelian group
�

in terms of its gen-
erators which are motivated by phenomenology. In the following subsection we will
examine in some more detail the structure of

�
through a descending series of normal

subgroups which define the normal structure of
�
.

3.3.3 Normal structure

In Sec. 3.3.2, the discrete group
�

has been constructed from the generators of the
dihedral group � 4. A standard way of gaining further information about

�
is to

analyze a series of subgroups of
�
, where each term is either normal in

�
or at least

normal in the previous term. In general, if a subgroup N of some group G is normal
in G, we will write N E G. Moreover, we call Aut(N) the automorphism group of

mτ after SSB. Note also that different transformation properties of left-handed and right-handed
fermions under horizontal symmetries are used in models of “neutrino democracy” [74].
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N , i.e., the group of bijective endomorphisms of N .

We will denote by K1 the collection of all elements g ∈ �
which obey D1(g) = � 2,

where � 2 is the 2 × 2 unit matrix. Accordingly, we will define K2 as the set of all
elements g ∈ �

which obey D1(g) = D2(g) = � 2, and K3 as the set of all elements
g ∈ �

which obey D1(g) = D2(g) = D3(g) = � 2. We therefore have the sequence

K3 ⊂ K2 ⊂ K1 ⊂
�
, (3.20)

where each subset is a group, actually an invariant subgroup of the embedding groups,
for if a ∈ Ki (i = 1, 2, 3) is homomorphically mapped on the identity of the operator
group D1⊕ . . .⊕Di, then so are all elements in its class. We therefore have Ki+1 E Ki

and Ki E
�

for every i, i.e., the subgroup series in Eq. (3.20) is in fact a normal

series. From Eqs. (3.19) we find that for any k ∈ K2 the factorization of D(k) into a
product of the operators D(ai) (i = 1, 2, 3, 4) necessarily involves each of the factors
D(a1),D(a2), and D(a4) an even number of times. In turn, this implies that the
operators D3(k) and D4(k) are on diagonal form and can take their values only in the
classes E,C2

4 , and C2(2) of the dihedral group � 4 (see App. B). Since the number
of elements in the classes E,C2

4 , and C2(2) is four, we conclude that the order of
K2, which we will denote by |K2|, obeys |K2| ≤ 4. Indeed, besides the unity e, we
find the three distinct elements b1 = a1a3a1, b2 = a3, and b3 = (a1a3)

2 which form
K2 = {e, b1, b2, b3} . Hence, |K2| = 4 and we have

D(b1) = diag [D(E), D(E), D(Ca), D(Ca)] , (3.21a)

D(b2) = diag [D(E), D(E), D(Cb), D(Cb)] , (3.21b)

D(b3) = diag
[

D(E), D(E), D(C2
4), D(C2

4)
]

. (3.21c)

Since K3 E K2, the group K3 is trivial K3 = e, as inspection of Eqs. (3.21) shows.
Moreover, from Eqs. (3.21) we find that K2 describes a 2-fold axis with a system of
two 2-fold axes at right angle to it. Hence, K2 is isomorphic with the Klein group

Z2×Z2 ' K2. In fact, the Klein group is one of the dihedral groups Z2×Z2 ' � 2 (see
App. B) and is one of the two only possible distinct structures for abstract groups of
order 4. Since � 2 ⊂ � 4, we have expressed in Table 3.3 the multiplication table of

� 2 in terms of the elements of the classes E, C2
4 , and C2(2) of � 4, which generate � 2.

With K2 explicitly given in Eqs. (3.21), we can now easily construct a representation
of the group K1 D K2. First, note that for any k ∈ K1 the factorization of the
operator D(k) into a product of the generators in Eq. (3.19) must involve D(a2) an
even number of times. Hence, D2(k) is necessarily on diagonal form and can take
its values only in the classes E,C2

4 , and C2(2) of � 4. This implies that the index
|K1 : K2| of K2 under K1 (i.e., the number of cosets of K2 in K1) is at most four. In
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(E, e) (Ca, c1) (Cb, c2) (C2
4 , c3)

(E, e) (E, e) (Ca, c1) (Cb, c2) (C2
4 , c3)

(Ca, c1) (Ca, c1) (E, e) (C2
4 , c3) (Cb, c2)

(Cb, c2) (Cb, c2) (C2
4 , c3) (E, e) (Ca, c1)

(C2
4 , c3) (C2

4 , c3) (Cb, c2) (Ca, c1) (E, e)

Table 3.3: Multiplication table of the Klein group Z2 × Z2 ' � 2 expressed in terms
of the elements of the classes E, C2

4 , and C2(2) of � 4 (see App. B). The brackets
indicate the homomorphism between � 2 and the right transversal T2 = {e, c1, c2, c3}
for K2 (see text). Note that the group table is symmetric about the main diagonal
since � 2 is Abelian.

fact, the group K1 can be decomposed into (right) cosets5 in terms of6

K1 ' K2 +
3
∑

i=1

K2 ci, (3.22)

where we can choose the different coset representatives to be c1 = a2a1a4a2, c2 = a1a4,
and c3 = c1c2. In other words, four elements of K1 are mapped on each element of
the operator group corresponding to the representation of K1 subduced by D2 which
we write as7 D2 ↓ K1. The coset representatives in Eq. (3.22) can be combined into
the right transversal T2 = {e, c1, c2, c3} for K2 and we explicitly have

D(c1) = diag [D(E), D(Ca), D(Ca′), D(Cb′)] , (3.23a)

D(c2) = diag [D(E), D(Cb), D(Cb′), D(Cb′)] , (3.23b)

D(c3) = diag
[

D(E), D(C2
4), D(C2

4), D(E)
]

. (3.23c)

Since the subgroup K2 E K1 is the kernel ofD2 ↓ K1, the operatorsD2(ci) (i = 1, 2, 3)
from the (right) transversal allow us to identify the lift of D2 ↓ K1 as the Klein group
Z2 × Z2. Also, upon identifying e→ E, c1 → Ca, c2 → Cb, and c3 → C2

4 , it is shown
in Table 3.3 that T2 ' Z2 ×Z2. Hence, we conclude that K1 is a semi-direct product
K1 = K2 o T2 or split extension of K2 by T2 which can equivalently be written as

K1 ' (Z2 × Z2)oϕ (Z2 × Z2), (3.24)

5Since the subgroup K2 is invariant, left and right cosets are identical.
6Here “+” denotes the summation of sets, i.e., the group K1 contains all the elements in K2 and

all the elements in the sets K2ci (i = 1, 2, 3). Note that, in this instance, the sets K2,K2c1, . . . are
all disjoint.

7This is usually also called the subduced representation.
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where ϕ : T2 → Aut(K2) is the conjugation homomorphism describing the interaction
of the two Z2 × Z2 subgroups inside

�
. On K2 × T2, the semi-direct product in

Eq. (3.24) defines a binary operation by

(k1, t1)(k2, t2) = (k1ϕ(t1)(k2), t1t2), (3.25)

where k1, k2 ∈ K2 and t1, t2 ∈ T2. In Eq. (3.25), the conjugation of k2 by t1 reads

ϕ(t1)(k2) = t1k2t
−1
1 , (3.26)

and maps K2 to K2 since K2 is normal in K1. In this way, the semi-direct product
in Eq. (3.24) yields a prescription of how to perform the group operations of K1 in
terms of the group operations of the subgroups K2 and T2 via the homomorphism ϕ.
Assume that ϕ : T2 → Aut(K2) were the trivial automorphism. Then it would hold
ktk−1 = kϕ(t)(k−1)t = kk−1t = t for any t ∈ T2 and k ∈ K2 implying that T2 E K1.
Therefore, K1 = T2 × K2 and K1 would be Abelian. In our case, however, the
coset representatives ci ∈ T2 (i = 1, 2, 3) don’t commute with the elements bi ∈ K2

(i = 1, 2, 3) and hence the conjugation homomorphism ϕ in Eq. (3.26) is actually
non-trivial and K1 non-Abelian. Now, |K1| = |K2| · |T2| = 16, i.e., K1 contains 16
elements.

The coset graph of K1 with respect to the subgroups K2 and T2 is given in Fig. 3.9.
Each coset of K2 and T2 in K1 is represented by one vertex and each edge represents
the elements belonging to both the cosets associated with the vertices which are
connected by the edge. Since K2 and T2 generate K1, the coset graph is simply
connected (for a discussion of coset graphs see, e.g., Ref. [75]). Here, the 16 edges
can be isomorphically mapped on the 16 elements of K1. In this plane configuration,
two distinct vertices are contained in at most one line. Also, given an edge l and a
vertex p not on l, there is at most one edge k through p that intersects l. Hence,
the coset graph satisfies the axioms for a generalized quadrangle of order (1, 4) and
describes the complete bipartite graph on 8 vertices.8 As can be seen in Fig. 3.9, it
has valency 2, diameter 2 and girth 4. The associated incidence graph, which contains
the complete information about the coset graph, has 24 vertices. The coset graph
can also be modeled in three dimensions on the cube by taking as its points the 8
vertices of the cube and as its lines the 12 sides and 4 main diagonals of the cube.
The decomposition of

�
into right cosets with respect to K1 reads

� ' K1 +
7
∑

i=1

K1 di, (3.27)

where we can choose for the coset representatives d1 = a2a1, d2 = a1a2, d3 = (a1a2)
2,

d4 = a2a1a2, d5 = a1, d6 = a1a2a1, and d7 = a2. The coset representatives are

8We call a graph complete if any two of its vertices are connected by an edge.
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Figure 3.9: Coset graph of K1 = K2 o T2 with respect to K2 and T2.

combined into the right transversal T1 = {e, d1, . . . , d7} and explicitly read

D(d1) = diag
[

D(C4), D(Cb′), D(C3
4), D(Cb′)

]

, (3.28a)

D(d2) = diag
[

D(C3
4), D(Cb′), D(C4), D(Cb′)

]

, (3.28b)

D(d3) = diag
[

D(C2
4), D(E), D(C2

4), D(E)
]

, (3.28c)

D(d4) = diag [D(Ca), D(E), D(Ca′), D(Cb′)] , (3.28d)

D(d5) = diag [D(Cb), D(E), D(Cb′), D(Cb′)] , (3.28e)

D(d6) = diag [D(Ca′), D(Cb′), D(Ca), D(E)] , (3.28f)

D(d7) = diag [D(Cb′), D(Cb′), D(Cb), D(E)] , (3.28g)

from which we conclude that
�
/K1 ' � 4. Moreover, Table B.3 in App. B shows that

the right transversal T1 forms a group which is isomorphic with � 4. Using Eq. (3.22),
it follows that

�
is a split extension

� ' (Z2 × Z2)oϕ (Z2 × Z2)oψ � 4, (3.29)

where, in analogy with Eq. (3.24), the mapping ψ : T1 → Aut(K1) is the conju-
gation homomorphism describing the interaction of � 4 with the involved Z2 × Z2

subgroups inside
�
. The corresponding splitting map is specified by the generators

in Eqs. (3.28). Again, the seven coset representatives don’t commute with the ele-
ments of K1, which shows that ψ cannot be the trivial homomorphism. Here, the irrep



52 CHAPTER 3. Hierarchies from Mooses

Figure 3.10: Coset graph of T2oT1 ' (Z2×Z2)o � 4 with respect to T1 and T2. The coset
graph is a subgraph of the complete bipartite graph on 16 vertices, i.e., the generalized
quadrangle of order (1, 8).

D1 maps 16 elements of
�

onto each element of � 4 and hence | � | = |T1| · |K1| = 128.
The coset graph of T2 o T1 ' (Z2 × Z2) o � 4 with respect to T1 and T2 is shown in
Fig. 3.10. Each solid (open) vertex corresponds to one coset of T1 (T2) in T2oT1. This
coset graph is a subgraph of the complete bipartite graph on 16 vertices and can be
constructed as follows. First, label the vertices of a regular 16-gon (in a natural way)
from 0 to 15. Then, connect two vertices i and j if and only if i− j is an odd number.
This defines the complete bipartite graph on 16 vertices (or generalized quadrangle
of order (1, 8)). Now, remove each line pencil9 which is carried by a vertex i obeying
imod 4 = 2 and one arrives at the coset graph in Fig. 3.10. In a similar way, one can
construct the coset graph of

�
= K1o T1 with respect to K1 and T1 by starting with

the complete bipartite graph on 32 vertices.

From Eqs. (3.28) it is obvious that the operator group associated with the irrepD1

has K1 as its kernel. In other words, by factoring D1 with respect to the subgroup K1

we see that the lift of D1 is isomorphic with � 4. Furthermore, by replacing D(a1) →
D(a1)D(a4), it is seen that the irreps D1 and D2 change their rôles in the above
considerations. Taking, in addition, the exchange symmetry between D(a1) ↔ D(a2)
and D(a3) ↔ D(a4) under permutation of the 4× 4 submatrices on the diagonal into
account (see Sec. 3.3.2), we generally conclude that the lift of every subrepresentation
Di (i = 1, 2, 3, 4) is isomorphic with � 4.

In this subsection we have analyzed the structure of the group
�

and its relation
to the dihedral groups � 2 and � 4. Specifically, we have seen that the lift of any irrep
Di (i = 1, 2, 3, 4) is isomorphic with � 4. This will allow us in the next section to
apply the decomposition and multiplication rules of � 4 in order to find the relevant
�
-singlets in product representations.

9A line pencil corresponding to a set of points of a geometry is the set of all edges which contain
all the points in the set.
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3.4 Construction of the scalar potential

We will denote by Φ and Ω two arbitrary scalar
�
-doublets which are listed in table

3.2 and write them in component-form as

Φ ≡ (φa, φb)
T , Ω ≡ (ωa, ωb)

T , (3.30)

where Φ,Ω ∈ {ξ1, ξ2, Qµ
1 , Q

µ
2 , Q

µ
3 , Q

µ
4 , Q

τ
1, Q

τ
2}. For definiteness, we will assume that Φ

is put into the irrep Di and Ω is put into the irrep Dj, where i, j = 1, 3, 4. Invariance
under the product groups Gµ×Gτ ×Gν and Z8×Z ′

8 tells us that any renormalizable
term in the scalar potential which involves, e.g., the field Φ must actually contain the
tensor product Φ ⊗ Φ†. The lowest-dimensional

�
-invariant operator-products of Φ

in the multi scalar potential are therefore

V0(Φ) ≡ Φ⊗ Φ†|1A = A0

(

|φa|2 + |φb|2
)

, (3.31)

where Φ transforms under any of the irreps Di (i = 1, 3, 4) and A0 is a real-valued
number. Note that three-fold products of Φ and Φ† in the potential are forbidden
by both the SU(m) charge assignment as well as by

�
-invariance. Accordingly, any

invariant term in the scalar potential which mixes the doublets Φ and Ω must be
contained in the product representation Φ ⊗ Φ† ⊗ Ω ⊗ Ω†. Since the liftings of the
irreps Di and Dj are isomorphic with � 4 (see Sec. 3.3.3), the

�
-invariant mixed terms

of Φ and Ω are found by considering all combinations of the one-dimensional irreps
of � 4 in the product

Φ⊗ Φ† ⊗ Ω⊗ Ω† =
[

1i
A
+ 1i

B
+ 1i

C
+ 1i

D

]

⊗
[

1
j
A
+ 1

j
B
+ 1

j
C
+ 1

j
D

]

, (3.32)

where each of the sets 1i
A
,1i

B
, 1i

C
, 1i

D
, and 1

j
A
,1j

B
, 1j

C
,1j

D
respectively denotes the

� 4-singlet representations associated with Di and Dj (see App. B). In component-
form, the singlet representations are explicitly given in Eq. (B.3). In order to extract
from Eq. (3.32) the relevant dimension-four terms, we will first suppose that Φ and
Ω are put into the same irrep Di = Dj. Then, the decomposition of the product
representations in Eq. (B.2) in conjunction with the multiplication rules in table B.2
yield that the invariant mixed terms of Φ and Ω are in this case

V1(Φ,Ω) ≡ (Φ⊗ Φ†)⊗ (Ω⊗ Ω†)|1A
= A1

(

|φa|2 + |φb|2
) (

|ωa|2 + |ωb|2
)

+B1

(

φaφ
†
b − φ†

aφb

) (

ωaω
†
b − ω†

aωb

)

+C1

(

|φa|2 − |φb|2
) (

|ωa|2 − |ωb|2
)

+D1

(

φaφ
†
b + φ†

aφb

)(

ωaω
†
b + ω†

aωb

)

, (3.33a)

where we have labeled the real-valued coefficients A1, B1, C1, and D1 of the invariants
according to the sequence of products (1A)

2, (1B)
2, (1C)

2, and (1D)
2. Let us now turn
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to the case, when Φ and Ω belong to different irreps Di 6= Dj. First, suppose that
Φ transforms under D3 and Ω transforms under D4. Application of the generators
D(a1),D(a2), and D(a3) yields that in Eq. (3.32) for i = 3 and j = 4 only the
combinations 1i

A
⊗1

j
A
and 1i

C
⊗1

j
C
are

�
-invariants. Hence, the most general invariant

mixed term of Φ and Ω reads

V2(Φ,Ω) ≡ A2

(

|φa|2 + |φb|2
) (

|ωa|2 + |ωb|2
)

+C2

(

|φa|2 − |φb|2
) (

|ωa|2 − |ωb|2
)

, (3.33b)

where Φ ∈ {Qτ
1, Q

µ
1}, Ω ∈ {Qτ

2, Q
µ
2 , Q

µ
3 , Q

µ
4} and the coefficients A2, C2 are real-valued

numbers. Now, suppose that Φ transforms under D1 and Ω transforms under one
of the irreps D3 or D4. In this case, subsequent application of the operators D(ai)
(i = 1, 2, 3, 4) to Eq. (3.32) readily yields that the most general mixed term of the
fields Φ and Ω is given by 1i

A
⊗ 1

j
A
and hence

V3(Φ,Ω) ≡ A3

(

|φa|2 + |φb|2
) (

|ωa|2 + |ωb|2
)

, (3.33c)

where Φ ∈ {ξ1, ξ2}, Ω ∈ {Qτ
1, Q

τ
2, Q

µ
1 , Q

µ
2 , Q

µ
3 , Q

µ
4} and the coefficient A3 is a real-

valued number. Putting everything together, the most general multi scalar potential
V of the SM singlet scalar fields decomposes into the terms V0(Φ),V1(Φ,Ω), V2(Φ,Ω),
and V3(Φ,Ω) of Eqs. (3.33), as follows

V ≡
∑

i,j,k

[

V0(ξi) + V0(Q
τ
j ) + V0(Q

µ
k)
]

+
∑

i1,i2=1,2

V1(ξi1, ξi2)

+
∑

X,Y=Qτ
1 ,Q

µ
1

V1(X, Y ) +
4
∑

j1,j2=2

[

V1(Q
τ
2, Q

µ
j1
) + V1(Q

µ
j1
, Qµ

j2
)
]

+V1(Q
τ
2, Q

τ
2) +

∑

X=Q1
1,Q

2
1

4
∑

j1=2

[

V2(X,Q
τ
2) + V2(X,Q

µ
j1
)
]

+
∑

i,j,k

[

V3(ξi, Q
τ
j ) + V3(ξi, Q

µ
k)
]

, (3.34)

where i = 1, 2; j = 1, 2, and k = 1, 2, 3, 4. In Eq. (3.34), we have omitted ξ0
and the SU(2) Higgs doublet H. Actually, in any renormalizable terms of the full
multi-scalar potential which mix the

�
-singlets with the

�
-doublets, the

�
-singlet

fields ξ0 and H are only allowed to appear in terms of their absolute squares |ξ0|2
and |H|2. This is an immediate consequence of the Z8 × Z ′

8 charge of ξ0 and the
electroweak quantum numbers of H. As a result, there exists a range of parameters
in the multi-scalar potential where the vacuum alignment of the

�
-doublet scalars

is essentially independent from the details of the VEVs 〈ξ0〉 and 〈H〉. Specifically,
we can assume the standard electroweak symmetry breaking and allow the field ξ0 to
aquire an arbitrary VEV of the order |〈ξ0〉| ' 102 GeV. It is therefore sufficient to
restrict our considerations concerning the vacuum alignment of the

�
-doublet scalars
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to the potential V in Eq. (3.34), in order to determine the range of parameters which
leads to realistic lepton masses and mixing angles. This analysis will be carried out
in the following section.

3.5 The vacuum alignment mechanism

We will now determine the vacuum structure emerging after SSB from the potential
V by individually minimizing each of the potentials V1(Φ,Ω) and V2(Φ,Ω) which
appear in Eq. (3.34) (see App. C). For this purpose, it is suitable to parameterize
the VEVs of the doublets Φ and Ω like in Eqs. (2.13) as

〈Φ〉 =

(

〈φa〉
〈φb〉

)

= v1

(

eiϕ1 cos α
eiϕ

′

1 sin α

)

≡ v1

(

eiϕ1 cα
eiϕ

′

1 sα

)

, (3.35a)

〈Ω〉 =

(

〈ωa〉
〈ωb〉

)

= v2

(

eiϕ2 cos β
eiϕ

′

2 sin β

)

≡ v2

(

eiϕ2 cβ
eiϕ

′

2 sβ

)

, (3.35b)

where v1, v2 are positive numbers and ϕ1, ϕ
′
1, ϕ2, ϕ

′
2 denote the phases of the VEVs.

For convenience, we will work with the relative phases ϕ ≡ ϕ′
1−ϕ1 and ψ ≡ ϕ′

2−ϕ2.
In all potentials V0(Φ) which appear in Eq. (3.34), we take the quadratic couplings
A0, defined in Eq. (3.31), to be negative. Furthermore, we assume for all potentials
V3(Φ,Ω) in Eq. (3.34) the quartic couplings A3, defined in Eq. (3.33c), to be positive
and sufficiently large compared with the remaining quartic couplings in Eq. (3.34).
This ensures non-vanishing VEVs v1, v2 6= 0 and vacuum stability. Then, the possible
physical vacua can be analyzed using the parameterization of Eqs. (3.35) where v1 and
v2 are kept fixed, i.e., one can treat each of the fields Φ and Ω as a non-linear sigma
model field and restrict the analysis to the (α, β, ϕ, ψ)-parameter-subspace. Then,
following Sec. 2.3.2, we observe in Eqs. (3.35), that the pairs of parameters (α, ϕ) and
(β, ψ) actually describe global accidental SU(2)acc symmetries. Note in Eqs. (3.31)
and (3.33c) that the potentials V0(Φ) and V3(Φ,Ω) indeed exhibit these SU(2)acc
symmetries. As a consequence, the potentials V0(Φ) and V3(Φ,Ω) which appear in
Eq. (3.34) will have no influence on the vacuum alignment of the SM singlet scalars
in

�
-space. Therefore, we can without loss of generality discard them for the rest of

our discussion.

Assume first that the fields Φ and Ω both transform according to the same irrep
Di (i = 1, 3, 4). For the most general potential involving only these fields, we will
denote by V∆(Φ,Ω) the part which breaks the SU(2)acc symmetry. From Eq. (3.33a)
we find that V∆(Φ,Ω) can be organized as a sum V∆(Φ,Ω) = VA(Φ,Ω)+ VB(Φ,Ω) of
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two potentials which explicitly read

VA(Φ,Ω) ≡ d1|φ†
aφb|2 + d2|ω†

aωb|2 + d3(|φa|2 − |φb|2)(|ωa|2 − |ωb|2),

VB(Φ,Ω) ≡ d4

[

(φ†
aφb)

2 + (φ†
bφa)

2
]

+ d5

[

(ω†
aωb)

2 + (ω†
bωa)

2
]

+d6(φ
†
aφb + φ†

bφa)(ω
†
aωb + ω†

bωa)

+d7(φ
†
aφb − φ†

bφa)(ω
†
aωb − ω†

bωa), (3.36)

where the coefficients d1, . . . , d7 are some real-valued numbers. The potential
VA(Φ,Ω) depends only on the angles α and β whereas VB(Φ,Ω) is, in addition, also
a function of ϕ and ψ. If the fields satisfy Φ ∈ {Qτ

1, Q
µ
1} and Ω ∈ {Qτ

2, Q
µ
2 , Q

µ
3 , Q

µ
4}

the analogous SU(2)acc symmetry breaking term VB(Φ,Ω) must have d6 = d7 = 0. In
this case, the relative phases ϕ and ψ are not correlated in the lowest energy state.
In Eq. (3.34), we will assume for each of the different SU(2)acc symmetry breaking
parts VA(Φ,Ω) that d1, d2 < 0 and that the condition

d1d2 > 4d23, (3.37a)

is satisfied. Additionally, we assume that for all possible terms VB(Φ,Ω) in Eq. (3.34)
the coefficients d4 and d5 are negative and that they also obey the constraint

(−2d4v
4
1 + |d6|v21v22)(−2d5v

4
2 + |d6|v21v22) > d27v

4
1v

4
2. (3.37b)

As shown in Appendix C, the conditions formulated in Eqs. (3.37) enforce the nonzero
VEVs of the component fields to satisfy the relations

〈ξia〉 = ± 〈ξib〉 (i = 1, 2), (3.38a)

〈qτja〉 = ± 〈qτjb〉 (j = 1, 2), (3.38b)

〈qµka〉 = ± 〈qµkb〉 (k = 1, 2, 3, 4), (3.38c)

i.e., within each of the scalar
�
-doublets the VEVs of the component fields are

relatively real and exactly degenerate (up to a possible relative sign).10 Note that
all terms in the potentials VB(Φ,Ω) which are multiplied by the coefficient d7 must
vanish in the lowest energy state and, hence, cannot contribute to the minimization of
the scalar potential. For the potential V we furthermore choose in both of the terms
VB(Q

τ
1, Q

µ
1 ) and VB(ξ1, ξ2) the corresponding coefficients d6 to be positive. In contrast

to this, the non-vanishing coefficients d6 in all of the remaining terms VB(Φ,Ω) of
V are all assumed to be negative. Then, the absolute minimum of the multi scalar

10We consider here only the tree-level approximation.
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potential is in addition to Eqs. (3.38) furthermore characterized by the relations

〈ξ1a〉
〈ξ1b〉

= −〈ξ2a〉
〈ξ2b〉

, (3.39a)

〈qτ1a〉
〈qτ1b〉

= −〈qµ1a〉
〈qµ1b〉

, (3.39b)

〈qτ2a〉
〈qτ2b〉

=
〈qµ2a〉
〈qµ2b〉

=
〈qµ3a〉
〈qµ3b〉

=
〈qµ4a〉
〈qµ4b〉

, (3.39c)

i.e., the relative orientation of the VEVs of the component fields within a specific
doublet is equal for all doublets transforming under the irrep D4 and opposite for the
pairs of doublets transforming under D1 or D3.

11 We suppose that the VEVs of the
fields ξ0, ξ1, and ξ2, which are responsible for the generation of the neutrino masses,
are all of the order of the electroweak scale

|〈ξ0〉| ' |〈ξ1a〉| ' |〈ξ2a〉| ' 102 GeV. (3.40)

In contrast to this, we assume that the link fields of the deconstructed extra-
dimensional gauge symmetries Gµ and Gτ all aquire VEVs of the same order at
some high mass scale somewhat below the fundamental scale Mf and thereby give
rise to a small expansion parameter

λ ' |〈qτja〉|
Mf

' |〈qµka〉|
Mf

' 0.22, (3.41)

where j = 1, 2, and k = 1, 2, 3, 4. Small hierarchies of this type can emerge from large
hierarchies in supersymmetric theories when the scalar fields aquire their VEVs along
a D-flat direction [57]. Note in Eq. (3.41) that λ is given by the Wolfenstein parameter
[76] which approximately describes the mass ratios and CKM mixing angles in the
down-quark sector [77] as well as the mass ratios in the charged lepton sector [58].12

The mass and mixing parameters of the charged leptons are determined in the next
section.

3.6 The charged lepton mass matrix

Consider the Yukawa interactions of the charged leptons
�

`
Y = `αH � `

αβEβ + h.c., (3.42)

11The terms associated with the coefficients d6 actually represent a spin-spin-interaction in a
version of the Ising-model, known from ferromagnetism. The topology here is of course unfamiliar
since all “spins” couple with equal strength.

12An Ansatz where the Wolfenstein parameter is also used to describe neutrino mixing and lep-
togenesis has recently been presented in Ref. [78].
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Ee Eµ Eτ

Z8 × Z ′
8 (−2, 2) (0, 1) (0, 1)

`e (−2, 2) (−4, 4) (−2, 3) (−2, 3)
`µ (−1, 0) (−3, 2) (−1, 1) (−1, 1)
`τ (−1, 0) (−3, 2) (−1, 1) (−1, 1)

Table 3.4: Z8 × Z ′
8 charge structure of the charged lepton-antilepton pairs.
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Figure 3.11: Contour in theory space which generates the leading-order dimension-six mass
operator in the µ-τ -subsector of the charged leptons by connecting 2` and 2E via the link
fields of Gτ (left panel). Formal contraction of the open fermion lines and Z8 ×Z ′

8 into Gτ
1

(dashed boxes) exhibits the full Gτ gauge-invariance of the corresponding effective Yukawa
couplings (right panel).

where � `
αβ denotes an effective Yukawa operator and α, β = e, µ, τ . Since the horizon-

tal Z8×Z ′
8 symmetry is assumed to be approximately conserved in the charged lepton

sector (see Sec. 3.3.1), the Z8 × Z ′
8 charge structure of the charged lepton-antilepton

pairs will determine the types of Yukawa operators � `
αβ which are generated via the

Froggatt-Nielsen mechanism by the link fields of the gauge groups Gµ and Gτ . The
Z8 × Z ′

8 transformation properties of the charged lepton-antilepton pairs is shown in
Table 3.4. Now, taking the discrete charges of the fundamental scalars given in Table
3.1 into account, we find that one of the possible lowest-dimensional contributions to
the operator � `

ee is given by

� `
ee ' (Qτ

1Q
τ
2)

4/(Mf )
8, (3.43)

since it yields an invariant under both the symmetries Z8 × Z ′
8 and

�
. Furthermore,

invariance under application of the operator D(a4) requires � `
eµ = � `

µe = 0. Since the
transformation D(a2) permutes � `

eµ ↔ ± � `
eτ and � `

µe ↔ ± � `
τe (a sign flip is possible

due to D3(a2) = D(Cb)) it follows that � `
eτ = � `

τe = 0, i.e., in the first row and
column of the charged lepton mass matrix only the (1, 1)-element is non-vanishing.
The lowest-dimensional mass operators in the µ-τ -subsector of the charged leptons
are dimension-six and dimension-eight terms, the Yukawa operators � αβ (α, β = µ, τ)
of which can be represented by contours in theory space: The dimension-six and
dimension-eight mass terms correspond to the Wilson-loops around the plaquettes
associated with the gauge symmetries Gτ (Fig. 3.11) and Gµ (Fig. 3.12), respectively.



3.6 The charged lepton mass matrix 59

����

��� ���

�	�
 � � �

��� � �	�

��� ����

� � 
 � �


� � �

� �
� � �

� � 
 � � �

� �


� � �

� � 


Figure 3.12: Contour in theory space which generates the next-to-leading-order dimension-
eight mass operator in the µ-τ -subsector of the charged leptons by connecting 2` and 2E via
the link fields of Gµ (left panel). Formal contraction of the open fermion lines and Z8 ×Z ′

8

into Gµ
1 (dashed boxes) exhibits the full Gµ gauge-invariance of the corresponding effective

Yukawa couplings (right panel).

Note in Figs. 3.11 and 3.12, that the moose notation (see Sec. 3.1.1) has been gen-
eralized for the discrete Z8 × Z ′

8 charges in a straightforward and obvious way. The
generalized Wigner-Eckart theorem implies that each of these Wilson loops is iden-
tified in

�
-space with a set of irreducible Yukawa tensor operators spanned by the

irreps 2` and 2E. These operators can be quickly determined by first noting that
under D(a4) the effective couplings � `

µτ and � `
τµ undergo a sign flip whereas all link

fields of Π4
i=1G

µ
i and Π2

i=1G
τ
i transform trivially. As a result, we have � `

µτ = � `
τµ = 0,

i.e., the charged lepton mass matrix is diagonal. Then, testing for invariance under
the action of a1, a2, a3 ∈

�
gives that each set of irreducible Yukawa tensor operators

transforms according to a representation D5 of
�

which is in matrix-form defined by
the generators

D5(a1) =

(

0 1
1 0

)

, D5(a2) =

(

−1 0
0 1

)

, D5(a3) = D5(a4) = � 2. (3.44)

To leading order, the generators in Eq. (3.44) act on five independent doublets

(ψ
(i)
a , ψ

(i)
b )T of product functions ψ

(i)
a and ψ

(i)
b , where i = 0, 1, . . . , 4, which form

the basis of five distinct carrier spaces V (i). Here, the
�
-doublets (ψ

(i)
a , ψ

(i)
b )T corre-

spond for i = 0 and i ≥ 1 to the Wilson loops around the plaquettes associated with
Gτ and Gµ, respectively. The basis functions for the different carrier spaces of D5

are given in table 3.5. The allowed types of basis functions in table 3.5 follow from
invariance under application of the transformations D(a3) and D(a1). First, appli-
cation of D(a3) yields that in each basis function the number of the a-components
is even. Second, for given i = 0, 1, . . . , 4, invariance under the transformation D(a1)

requires the index structure of the basis functions ψ
(i)
a and ψ

(i)
b to be of such a form

that ψ
(i)
a and ψ

(i)
b get interchanged when the indices a and b are permuted. Then,

expressed in terms of the sets of irreducible Yukawa tensor operators, the effective
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V (i) ψ
(i)
a ψ

(i)
b

V (0) qτ1aq
τ
2a qτ1bq

τ
2b

V (1) qµ1aq
µ
2aq

µ
3aq

µ
4a qµ1bq

µ
2bq

µ
3bq

µ
4b

V (2) qµ1aq
µ
2aq

µ
3bq

µ
4b qµ1bq

µ
2bq

µ
3aq

µ
4a

V (3) qµ1aq
µ
2bq

µ
3aq

µ
4b qµ1bq

µ
2aq

µ
3bq

µ
4a

V (4) qµ1aq
µ
2bq

µ
3bq

µ
4a qµ1bq

µ
2aq

µ
3aq

µ
4b

Table 3.5: The basis functions ψ
(i)
a and ψ

(i)
b (i = 0, 1, . . . , 4) of the leading-order

set of irreducible Yukawa tensor operators ( � `
kl), where k, l = µ, τ , in terms of the

component fields of Qτ
i = (qτia, q

τ
ib)

T (i = 1, 2) and Qµ
i = (qµia, q

µ
ib)

T (i = 1, 2, 3, 4).

Yukawa coupling matrix in the µ-τ -subsector of the charged leptons reads

( � `
kl) =

4
∑

i=0

Y
(i)
eff

[(

1 0
0 1

)

ψ(i)
a +

(

−1 0
0 1

)

ψ
(i)
b

]

, (3.45a)

where k, l = µ, τ and Y
(i)
eff for i = 0, 1, . . . , 4 denotes the effective Yukawa couplings

Y
(i)
eff =







Y (0)/(Mf)
2 (i = 0)

Y (i)/(Mf )
4 (i = 1, 2, 3, 4)







, (3.45b)

where Y (i) (i = 0, 1, . . . , 4) are dimensionless order unity Yukawa couplings. The
2× 2 diagonal matrices in Eq. (3.45a) summarizing symmetry-related geometric fac-
tors, are the Clebsch-Gordan coefficients of the effective Yukawa coupling matrix
( � `

kl). Furthermore, the effective Yukawa couplings Y
(i)
eff , characterized by the outer

multiplicity label i, are the reduced matrix elements of the Clebsch-Gordan coeffi-
cients and parameterize further information about the physics at the fundamental
scale Mf . From Eqs. (3.38) we find that after SSB the vacuum alignment mechanism
of Sec. 3.5 ensures that the VEVs of the basis functions in table 3.5 are - up to a
possible relative sign - pairwise exactly degenerate

〈ψ(i)
a 〉 = ±〈ψ(i)

b 〉, (3.46a)

where i = 0, 1, . . . , 4. In addition, Eqs. (3.39) relate the orientations of the VEVs by

〈ψ(0)
a 〉/〈ψ(0)

b 〉 = −〈ψ(i)
a 〉/〈ψ(i)

b 〉, (3.46b)

where i = 1, 2, 3, 4. Substituting Eqs. (3.46) into Eqs. (3.45), we observe that after
SSB the set of irreducible Yukawa tensor operators ( � `

kl) can take one of the following
two forms

( � `
kl) → Y (0)λ2

[(

1 0
0 1

)

±
(

−1 0
0 1

)]

+
4
∑

i=1

Y (i)λ4
[(

1 0
0 1

)

∓
(

−1 0
0 1

)]

, (3.47)
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Figure 3.13: Froggatt-Nielsen-type diagrams for the lowest-dimensional Yukawa interac-
tions generating mµ � mτ . The dimension-six operators add up to ∼ mτ `τEτ (top panel).
The dimension-eight operators add up to ∼ mµ`µEµ (bottom panel).

where k, l = µ, τ and the expansion parameter λ ' 0.22 of Eq. (3.41) has been used.
In Eq. (3.47), it is important to note that the Clebsch-Gordan coefficients are added
or subtracted depending on their outer multiplicity label: if the Clebsch-Gordan coef-
ficients are added (subtracted) for i = 0 then they are necessarily subtracted (added)
for i = 1, 2, 3, 4. As a result, Eq. (3.47) shows that the vacuum alignment mechanism
generates a hierarchical pattern in the µ-τ -subsector of the charged leptons via a
cancellation of some of the Clebsch-Gordan coefficients in the lowest energy state.
The corresponding Froggatt-Nielsen-type diagrams for this cancellation mechanism
are shown in Fig. 3.13. For definiteness, let us choose in Eq. (3.47) the solution with
the signs “+” for i = 0 and “−” for i = 1, 2, 3, 4. Taking everything into account, the
full leading-order charged lepton mass matrix M` emerging after SSB is given by

M` ' mτ





λ6 0 0
0 λ2 0
0 0 1



 , (3.48)

where only the orders of magnitude of the matrix elements have been indicated. As
for the mass matrix in Eq. (3.48) is given at tree-level, we have to expect sub-leading
corrections to its form and hence the “0”-entries in Eq. (3.48) should rather be viewed
as “phenomenological” (in contrast to “exact”) texture zeros. From Eq. (3.48) we read
off the charged lepton mass ratios

me

mτ
' λ6,

mµ

mτ
' λ2, (3.49)

which approximately fit the experimentally observed values [58]. Since the mixing
angles of the charged leptons practically vanish, the large leptonic mixing must stem
from the neutrino sector. The neutrino mass and mixing parameters will be deter-
mined in the next section.



62 CHAPTER 3. Hierarchies from Mooses

��� �
��� � ����

�	� 
 � � 
 �

�
� ��� ���

Figure 3.14: View on the first two sites of the moose diagram of the gauge group Gν . Since
α runs over the three flavors α = e, µ, τ , all SM leptons, heavy Dirac neutrinos and the
Weyl spinor ηL are located on the brane corresponding to the first site.

3.7 The neutrino mass matrix

3.7.1 Aliphatic model for neutrinos

So far, we have examined the connection between dynamically generated extra dimen-
sions compactified on S1 and the hierarchical Yukawa coupling matrix of the charged
leptons. In this approach, a small expansion parameter in the charged lepton mass
matrix was introduced through the mixing with heavy Froggatt-Nielsen states. This
has the advantage that only a small number of lattice sites is needed to account for
phenomenologically viable mass matrix patterns. On the other hand, however, the
dynamical origin of the small expansion parameter remains unclear. Let us therefore
consider for the generation of neutrino masses a different mechanism which relies on
the presence of a large number of lattice sites and hence exhibits a closer 5D cor-
respondence. We assume that for all flavors α = e, µ, τ the SM leptons `α and Eα
transform according to the fundamental representation m of Gν

1 and the right-handed
Dirac neutrinos Fα as well as the massless Weyl spinor ηL transform according to the
anti-fundamental representation m of Gν

1 (see Sec. 3.2). The corresponding moose
diagram is shown in Fig. 3.14. Note that since these fields carry zero Gν

i charges for
i = 2, 3, . . . , N , they are localized on the boundary of the latticized S1/Z2 orbifold.

3.7.2 The one-generation-case

Let us first examine the case of a single generation by considering the coupling of the
�
-singlet neutrino νe to the fermionic site variables of the orbifold extra dimension.

From Table 3.1 we conclude that invariance under the Z8×Z ′
8-symmetry and the Z2-

parity in Eq. (3.16) requires the relevant effective Yukawa interaction of the electron
lepton doublet 1` with the bulk-fermion to be of the type

�
2 = Y11

c
`H1FL + Y21FRξ0Ψ1L +M1F1FR1FL + h.c., (3.50)
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where Y1 and Y2 are dimensionless order unity coefficients and M1F ' 1015 GeV
denotes the seesaw scale. The Lagrangian for the bulk and brane fields is given by�

1 +
�

2, where
�

1 has been defined in Eq. (3.11). As a result, the N × N mass
matrix which emerges from

�
1 +

�
2 after SSB is given by

1FL Ψ1L Ψ2L Ψ3L · · ·
1c`
1FR
Ψ2R

Ψ3R
...















h1 0 0 0 · · ·
M1F h2 0 0 · · ·
0 Mf −Mf 0 · · ·
0 0 Mf −Mf · · ·
...

...
...

...
. . .















, (3.51)

where we have introduced the VEVs h1 ≡ Y1〈H〉, h2 ≡ Y2〈ξ0〉, and use h1 ' h2 '
102GeV, i.e., the associated mass terms are generated at the electroweak scale. Note
that the mass matrix in Eq. (3.51) has been displayed in a basis where the active
neutrinos have right-handed chirality. Integrating out the heavy

�
-singlet 1F , yields

the effective (N − 1)× (N − 1) mass matrix

M2 ≡











mν 0 0 · · ·
Mf −Mf 0 · · ·
0 Mf −Mf · · ·
...

...
...

. . .











, (3.52)

where mν = h1h2/M1F ' 10−3 eV denotes the absolute neutrino mass scale. The
mass mν lifts the zero eigenvalue in the KK mass spectrum of the left-handed fields
to a small but non-vanishing value which can be determined by diagonalizing the
(N − 1)× (N − 1) matrix

M2M†
2 =











m2
ν mνMf 0 · · ·

mνMf 2M2
f −M2

f · · ·
0 −M2

f 2M2
f · · ·

...
...

...
. . .











. (3.53)

From Eq. (3.53) it is readily seen that the mixing of 1c` with the right-handed fields
ΨnR is described by angles ' mν/Mf which vanish in the limit Mf → ∞. For
mν � Mf the non-zero heavy masses are approximately given by the KK spectrum

in Eq. (3.15) where n = 1, . . . , N − 2. The lightest eigenvalue (m0)
2 of M2M†

2 can
be determined by integrating out the invertible heavy (N −2)× (N−2) submatrix in
the down-right corner of M2M†

2 in Eq. (3.53). Taking into account that the (1, 1)-
element of the inverse of this submatrix is equal to N−2

N−1
M−2

f , we obtain in the limit
mν �Mf for the lightest mass eigenvalue

m0 = mν/
√
N − 1 = mν/

√

MfR, (3.54)
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where the second equation matches onto the continuum limit. In the classical 5D
continuum theory the mass (or volume) suppression factor ∼

√

MfR emerges from
the normalization of the wave-function of the right-handed neutrino propagating in
the bulk [83, 84].

3.7.3 Adding the 2nd and 3rd generation

The full neutrino mass matrix emerges by inclusion of the SU(2) lepton doublets of
the 2nd and 3rd generation, which are combined into the

�
-doublet 2`. Actually,

invariance under Z8 × Z ′
8 allows for the fields ξ2 and ξ3 Yukawa interactions with 2`

which read
�

3 = Y32
c
`H2FL + Y42FRξ1Ψ1L + Y52FRξ2ηL +M2F2FR2FL + h.c., (3.55)

where Y3, Y4, and Y5 denote dimensionless order unity Yukawa couplings, 〈ξ1〉 '
〈ξ2〉 ' 102GeV, andM2F ' 1015GeV. Here, it is important to note, that the Z8×Z ′

8

charge of the Weyl spinor ηL forbids any further Yukawa interactions or mass terms
with the other fermions. In complete analogy to the calculation of the light mass
m0 in Sec. 3.7.2, one can in the combined system

�
1 +

�
2 +

�
3 integrate out the

heavy vectorlike degrees of freedom. As a consequence, in the basis where the VEVs
of ξ1 and ξ2 are described by Eqs. (3.38a) and (3.39a), the resulting 3× 2 light Dirac
neutrino mass matrix can be written as

MD = mν





ρε 0
ε 1
−ε 1



 , (3.56)

where the neutrino expansion parameter ε ' 1/
√
N − 1 and the order unity Yukawa

coupling ρ = O(1) are both real quantities andmν denotes the absolute neutrino mass
scale. In Eq. (3.56), all phases have been absorbed into the right-handed neutrino
and charged lepton sectors. The Dirac neutrino mass matrix MD in Eq. (3.56) has
the important property that within each column the flavor symmetry

�
enforces the

2nd and 3rd elements to be relatively real and exactly degenerate in their magnitudes.
Thus, MD describes an exactly maximal νµ-ντ -mixing.

3.7.4 Neutrino masses and mixing angles

The neutrino masses and leptonic mixing angles are determined from Eq. (3.56) by
diagonalizing the matrix

MDM†
D = m2

ν





ρ2ε2 ρε2 −ρε2
ρε2 1 + ε2 1− ε2

−ρε2 1− ε2 1 + ε2



 . (3.57)
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The matrix in Eq. (3.57) is diagonalized in two steps. First, a rotation of the active
neutrino fields in the 2-3-plane through an angle θ23 = π/4 brings MDM†

D to the
form

MDM†
D −→ m2

ν





ρ2ε2
√
2ρε2 0√

2ρε2 2ε2 0
0 0 2



 , (3.58)

from which we observe that the reactor mixing angle is exactly zero, i.e., θ13 = 0
in agreement with the CHOOZ reactor neutrino data which sets the upper bound
|θ13| . 9.2◦ [15]. Second, the matrix in Eq. (3.58) is brought on diagonal form by a
rotation in the 1-2-plane through an angle

θ12 = arctan
[

(2
√
2)−1

(

ρ2 − 2 +
√

(2− ρ)2 + 8
)]

. (3.59)

The neutrino masses exhibit the normal hierarchy

m1 = 0, m2 = mνε
√

2 + ρ2, m3 =
√
2mν , (3.60)

which gives for the solar and atmospheric neutrino mass squared differences

∆m2
� = m2

νε
2(2 + ρ2), ∆m2

atm = 2m2
ν −∆m2

�. (3.61)

Using the upper bound ∆m2
� . 1.9× 10−4 eV2 [14] and the best-fit value ∆m2

atm '
2.5× 10−3 eV2 [11] we obtain mν ' 0.04 eV. Without tuning of parameters, we have
ρ = 1 and ε = 1/

√
N − 1 which gives for the solar neutrino parameters the values

∆m2
� ' 3

2

∆m2
atm

N − 1
, θ12 = arctan

1√
2
' 35◦, (3.62)

where we have used in the first equation the hierarchy ∆m2
� � ∆m2

atm. At 3σ,
the combined solar and KamLAND neutrino data allows for ∆m2

� the two regions
5.1 × 10−5 eV2 . ∆m2

� . 9.7 × 10−5 eV2 (LMA-I) and 1.2 × 10−4 eV2 . ∆m2
� .

1.9× 10−4 eV2 (LMA-II) [14]. Matching onto these values requires

N = 57± 17 LMA-I, N = 27± 6 LMA-II, (3.63)

where we have set in Eq. (3.62) the atmospheric mass squared difference equal to
the best-fit value ∆m2

atm = 2.5 × 10−3 eV2. In short, the presently allowed ratios
∆m2

�/∆m
2
atm implied by the LMA-I and LMA-II solutions already significantly dis-

criminate between the associated radii N/(2πgv) of the dynamically generated S1/Z2

orbifold. At this level, the neutrino expansion parameter is 0.12 . ε . 0.16 (LMA-I)
or 0.18 . ε . 0.23 (LMA-II), which is comparable with the Wolfenstein parameter
λ ' 0.22. For the non-fine-tuned solar mixing angle θ12 = arctan 1/

√
2 in Eq. (3.62)

we find from Ref. [14] that a number of

55± 8 LMA-I (@ 90% C.L.) (3.64)
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lattice sites yields the MSW LMA-I solution within the 90% confidence level region.
In general, for both the LMA-I and the LMA-II solution, the dynamical generation
of the solar mass squared difference ∆m2

� via deconstruction in a flat background
requires a relatively fine-grained latticization of the associated S1/Z2 orbifold with
roughly 101 − 102 lattice sites.
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Chapter 4

Latticized Geometries

In the previous chapter, we employed deconstruction as a tool for a predictive model
of lepton masses based on a non-Abelian discrete symmetry. Specifically in the neu-
trino sector, a large number of lattice sites was used to express the solar mass squared
difference in terms of the “volume” of a dynamically generated orbifold extra dimen-
sion. In this chapter, we will further generalize this approach to lepton masses by
restricting to a small number of lattice sites. With this, the inverse lattice spacing
can be identified with the seesaw scale 1/a ' 1015 GeV or may even naturally be
as small as 1/a ' 10−3 eV through a replicated seesaw mechanism. The first three
sections of this chapter follow the results of Ref. [79].

4.1 The two-site model

4.1.1 Charge assignment

We consider a G = SU(m)1 × SU(m)2 gauge theory for deconstructed extra dimen-
sions where a bi-fundamental scalar link field Φ ⊂ (m1, m2) connects the adjacent
SU(m)i (i = 1, 2) groups [34, 35]. For the present, let us restrict here to the case
of only two flavors α, β ∈ {e, µ, τ}, α 6= β (in Secs. 4.2 and 4.3 this basic two-site
model will then be embedded into various realistic three-flavor scenarios). We assume
that the leptons `β and Eβ transform according to the fundamental representation
m2 under SU(m)2 and the fields `α and Eα transform according to the complex con-
jugate representation m1 under SU(m)1. In addition, we introduce for each of the
active flavors, the right-handed neutrinos Nα and Nβ, where Nα transforms as m1

under SU(m)1 while Nβ transforms as m2 under SU(m)2. Note that Nα and Nβ are
two-component Weyl spinors. The moose diagram of this representation content is
succinctly shown in Fig. 4.1. It is also obvious from Fig. 4.1 that the product gauge
group G is free from chiral anomalies since the left- and right-handed states form
vector-like representations with respect to SU(m)1 and SU(m)2. The most general
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Figure 4.1: Moose diagram for the two-site model.

renormalizable Yukawa interactions for the leptons are then given by�
Y = Y E

α `αHEα + Y E
β `βHEβ + Y ν

α `αH̃Nα + Y ν
β `βH̃Nβ + fN c

αΦNβ + h.c., (4.1)

where Y E
α , Y

E
β , Y

ν
α , Y

ν
β , f are complex Yukawa couplings of order unity. Note that in

Eq. (4.1) bare Dirac and Majorana mass terms of the types ∼ N c
αNβ and ∼ N c

αNα

or ∼ N c
βNβ are forbidden1 by invariance under G. The gauge-sector of this system is

governed by the Lagrangian

�
Φ = −1

4

2
∑

i=1

F a
iµνF

iµνa +
2
∑

i=1

(DµΦ)
†(DµΦ), (4.2)

where the covariant derivative is DµΦ = (∂µ − ig1A
a
1µTa + ig2A

a
2µTa)Φ, in which g1

and g2 denote the dimensionless gauge couplings of SU(m)1 and SU(m)2, respec-
tively. One can always arrange the scalar potential such that Φ naturally acquires a
VEV 〈Φ〉 = Mx. Here, Mx is identified with the deconstruction scale at which the
SU(m)1 × SU(m)2 symmetry is broken down to the diagonal subgroup SU(m)diag,
thereby eating m2 − 1 Nambu-Goldstone bosons in the process. For g1, g2 ' O(1),
the corresponding lattice spacing a of the deconstructed theory is set by the inverse
scale a ' 1/Mx. After SSB, the neutrino mass matrix takes the form

νcα νcβ Nα Nβ

να
νβ
N c
α

N c
β









0 0 Y ν
α ε 0

0 0 0 Y ν
β ε

Y ν
α ε 0 0 fMx

0 Y ν
β ε fMx 0









, (4.3)

where ε ≡ 〈H〉 ' 102GeV is the electroweak scale. The light effective 2×2 Majorana
mass matrix is

Mν = Y ν
α Y

ν
β

ε2

fMx

(

0 1
1 0

)

, (4.4)

which we identify for an inverse lattice spacing Mx ' 1015 GeV with the usual
dimension-five seesaw operator [20–22]. Hence, for length scales r � a ' 1/Mx,

1The term N c
αNβ is charged under both SU(m) groups and the products N c

αNα and N c
βNβ

contain only irreps with dimensions 1

2
m(m− 1) and 1

2
m(m+ 1).
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the renormalizable and gauge invariant Yukawa interactions in Eq. (4.1) reproduce
upon dimensional deconstruction the effects of the fifth dimension. For shorter length
scales r � a, we recover again the renormalizable 4D interactions as given in Eq. (4.1).
Moreover, contrary to the conventional seesaw operator, dimensional deconstruction
can provide a rationale for maximal leptonic mixing between the active flavors α and
β since the charged lepton mass matrix is strictly diagonal. This feature of maximal
mixing can be easily understood once we realize that the link field Φ mediates a
symmetry between each of the right-handed neutrinos Nα and Nβ which are placed
at different lattice sites. This symmetry can be interpreted as an interaction which
conserves a charge Lα − Lβ and produces the texture-zeros in the mass matrix of
the right-handed neutrinos. Below the deconstruction scale, the conserved charge
Lα−Lβ is reflected by the fact that `β, Eβ, and Nβ transform according to the funda-
mental representation of SU(m)diag whereas `α, Eα, and Nα transform according to
the anti-fundamental representation of SU(m)diag. The unbroken group SU(m)diag
is associated with a zero mode in the gauge sector. This can be seen in the kinetic
term in Eq. (4.2) which gives a mass squared matrix to the gauge bosons

M2
G =

1

2
M2

x(g1A
a
1µ − g2A

a
2µ)

2. (4.5)

In the basis (Aa
1µ, A

a
2µ) we have

M2
G =

1

2
M2

x

(

g21 −g1g2
−g1g2 g22

)

, (4.6)

with the (normalized) zero mode wave function

Aa(0)µ =
1

√

g21 + g22
(g2A

a
1µ + g1A

a
2µ). (4.7)

In our setup, we generally observe that the Dirac sector of the model remains diagonal
as a result of placing the flavors α and β on different lattice sites. Therefore, maximal
leptonic mixing is exclusively introduced by the heavy Majorana sector of the resulting
seesaw operator. In Sec. 4.2, we will see that the qualitative features of this system
are not altered even if one allows for both the fermions and scalars to be link variables.
As a passing remark, we find from Eq. (4.4) that the resulting light neutrinos are in
opposite CP parities and there is no explicit leptonic CP violation.

4.1.2 General properties of the two-site model

Let us now examine in how far the two-site model is generic by considering the
phenomenological implications of other SU(m) charge assignments to the leptons.
Actually, if we require the lepton fields to be either in the fundamental or anti-
fundamental representation of one of the gauge groups SU(m)1 or SU(m)2, one can
have essentially three possible modifications to the moose diagram shown in Fig. 4.1.
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Figure 4.2: Moose diagrams for cases (i) (left panel) and (ii) (right panel).
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Figure 4.3: Moose diagram for cases (iii) a (left panel) and (iii) b (right panel).

These are, case (i) both leptonic doublets are at a single lattice site while the right-
handed neutrinos are grouped at the second lattice site or, case (ii) both leptonic
doublets are at a single site along with any one of the right-handed neutrinos (see
Fig. 4.2) or, case (iii) both right-handed neutrinos are located at the same site while
the doublets are at different sites (see Fig. 4.3). In Figs. 4.2 and 4.3 we have
adopted the convention that undirected links denote transformations under either the
fundamental or anti-fundamental representation of the corresponding gauge group.
In case (i), one can have Majorana mass terms for the right-handed neutrinos but in
the Dirac sector only non-renormalizable Yukawa interactions of the types ∼ `αH̃ΦNβ

are possible. A priori, however, these suppressed non-renormalizable interactions do
not lead to large mixings. In case (ii), on the other hand, the neutrinos can have the
renormalizable Yukawa interactions

�
ν
Y = Y ν

α `αH̃Nα + Y ν
β `βH̃Nα + fN c

αΦNβ + h.c., (4.8)

leading in the basis of Eq. (4.3) to the neutrino mass matrix

Mν =









0 0 Y ν
α ε 0

0 0 Y ν
β ε 0

Y ν
α ε Y ν

β ε 0 fMx

0 0 fMx 0









, (4.9)

which has two vanishing neutrino mass eigenvalues and two heavy mass eigenval-
ues of the order ' Mx. Hence, in case (ii) no seesaw mechanism is operative at
the renormalizable level. In case (iii) a (see Fig. 4.3) one can envisage the Yukawa
interaction �

ν
Y = Y ν

α `βH̃Nα + Y ν
β `βH̃Nβ + h.c., (4.10)

which gives the usual Dirac masses with arbitrary mixings but no seesaw suppression
of the active neutrino masses since mass terms for the right-handed neutrinos are
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forbidden. Bare Majorana masses for the right-handed neutrinos are allowed in case
(iii) b (see Fig. 4.3) which is characterized by the Yukawa interactions

�
ν
Y = Y ν

α `βH̃Nα + fMxN c
αNβ + h.c. (4.11)

The 4 × 4 neutrino mass matrix corresponding to Eq. (4.11) is similar to Mν in
Eq. (4.9) with Y ν

β = 0 and hence, also in this case, there is no seesaw mechanism.
Moreover, the presence of the bare mass term in Eq. (4.11) is in contrast to Eq. (4.1)
where the theory before symmetry breaking is massless.

Altogether, we observe from the different cases (i)-(iii) a pattern for the allowed
fermion masses which is in a way restrictive and does not allow for an effective see-
saw mechanism. Furthermore, in the cases (i)-(iii) chiral anomalies may possibly be
present since the left- and right-handed states are treated in an asymmetric manner.
This contrasts with Eq. (4.1), where each of the right-handed neutrinos has a mass
term in the Dirac and the Majorana mass matrix, thereby maximizing the nature of
the Yukawa sector. In this respect, the two-site model is a fairly natural setup which
automatically predicts seesaw suppressed neutrino masses with maximal mixing. The
basic geometric structure of Eq. (4.1) is expected to be borne out in a realistic phe-
nomenological application. In Sec. 4.2, we show this property by considering a model
on a moose mesh and also give in Sec. 4.3 other realizations.

4.2 Four-site model

We examine now a generalization of the basic two-site model described in Sec. 4.1
to the case of a moose mesh [80] in which all fermion and scalar fields are treated
as bi-fundamental representations. As a result, we will find that this scenario can
provide a realistic description of neutrino mass and mixing parameters.

4.2.1 Non-renormalizable Yukawa interactions

Consider a Π4
i=1SU(m)i gauge theory containing five scalar link variables Φi (i =

1, . . . , 5) which transform under the SU(m) gauge groups as Φ1 ⊂ (m1, m2), Φ2 ⊂
(m2, m3), Φ3 ⊂ (m3, m4), Φ4 ⊂ (m4, m1), and Φ5 ⊂ (m2, m4). We will combine the
fields `α, Eα, and Nα of identical flavor α = e, µ, τ into the set Ψα ≡ {`α, Eα, Nα}
of leptons. Here, Ψα combines `α, Eα, and Nα with exactly these chiralities and
no charge conjugates of these fields (like `c) are included. In our scheme, all the
leptons associated with Ψα carry the same SU(m)i charge and connect the different
gauge groups as bi-fundamental representations. Hence, all fermions and scalars
are treated on the same footing as link variables. Specifically, we make the choice
Ψe ⊂ (m2, m4), Ψµ ⊂ (m4, m3), and Ψτ ⊂ (m4, m1). The link field content is given in
Table 4.1. Graphically, the scalar and fermionic fields can be represented as a moose
mesh which is depicted in Fig. 4.4. Up to mass dimension seven, the leading-order
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Φ1 Φ2 Φ3 Φ4 Φ5 Ψe Ψµ Ψτ

SU(m)1 � 1 1 � 1 1 1 �

SU(m)2 � � 1 1 � � 1 1
SU(m)3 1 � � 1 1 1 � 1
SU(m)4 1 1 � � � � � �

Table 4.1: Transformation properties of the scalar and fermionic link variables.
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Figure 4.4: Moose mesh for the four-site model.

Yukawa interactions of the model are
�
Y =

�
ren +

�
M
dim 5 +

�
D
dim 6 + . . . , (4.12)

where
�

ren denotes the renormalizable Yukawa interactions,
�

M
dim 5 are the dimension-

five terms of the right-handed Majorana neutrinos and
�

D
dim 6 are the dimension-six

terms in the Dirac mass matrices. In Eq. (4.12), the dots represent non-renormalizable
higher-order Yukawa interactions of the leptons with effective scalar operators which
involve only the Higgs doublet H and/or the link fields Φi (i = 1, . . . , 5). The
renormalizable Yukawa interactions are

�
ren =

∑

α=e,µ,τ

(

Y E
α `αHEα + Y ν

α `αH̃Nα

)

+ f1N c
eΦ

∗
2Nµ + f2N c

eΦ1Nτ + h.c., (4.13)

where Y E
α , Y

ν
α (α = e, µ, τ), and f1, f2 denote complex Yukawa couplings of order

unity. From Eq. (4.13), we observe that the charged lepton mass matrix and the
Dirac neutrino mass matrix emerging after SSB from

�
ren are on diagonal form.

However,
�

ren generates off-diagonal entries in the Majorana mass matrix thereby
leading to a large mixing of the right-handed neutrinos. Note that

�
ren yields in the

Majorana sector the most general mass terms consistent with the linear combination
L = Le−Lµ−Lτ of the individual lepton numbers Le, Lµ, and Lτ . The right-handed
Majorana mass matrix consistent with this symmetry has a vanishing determinant
and would therefore lead to a singular seesaw mechanism. A non-zero determinant,
however, becomes possible when taking the dimension-five terms into account. All
of the dimension-five Yukawa interactions allowed by gauge invariance appear in the
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right-handed neutrino sector and read

�
M
dim 5 = f3

Φ3Φ3

Λ
N c
µNµ + f4

Φ∗
4Φ

∗
4

Λ
N c
τNτ + f5

Φ3Φ
∗
4

Λ
N c
µNτ

+f6
Φ∗

5Φ
∗
5

Λ
N c
eNe + h.c., (4.14)

where f3, f4, f5, and f6 are complex Yukawa couplings of order unity and Λ � 〈Φi〉
(i = 1, . . . , 5) denotes the mass scale at which the higher-order terms are generated.
As an effective field theory, the interactions may become again fully renormalizable in
the UV limit (i.e., at small distances � 1/Λ) and could, e.g., be explicitly realized in
terms of the Froggatt-Nielsen mechanism. Note that the L symmetry characteristic
of

�
ren is broken by the interactions in

�
M
dim 5. In the Majorana sector, all higher-

order corrections of mass dimension ≥ 6 can be absorbed into the Yukawa couplings
f1, . . . , f6. In the same way, one can treat by an appropriate redefinition of the
Yukawa couplings the higher-order corrections to Y E

α and Y ν
α (α = e, µ, τ). Hence,

the relevant dimension-six mass terms for the neutrinos can be written as
�

D
dim 6 ⊃ Y ν

eµ

Φ3Φ5

Λ2
`eH̃Ne + Y ν

eτ

Φ∗
4Φ5

Λ2
`eH̃Nτ + Y ν

µe

Φ∗
3Φ

∗
5

Λ2
`µH̃Ne

+Y ν
τe

Φ4Φ
∗
5

Λ2
`τ H̃Ne +

(

Y ν
µτ

Φ1Φ2

Λ2
+ Y ν

µτ
′Φ

∗
3Φ

∗
4

Λ2

)

`µH̃Nτ

+

(

Y ν
τµ

Φ∗
1Φ

∗
2

Λ2
+ Y ν

τµ
′Φ3Φ4

Λ2

)

`µH̃Nτ + h.c., (4.15)

where Y ν
αβ and Y ν

αβ
′ (α, β = e, µ, τ) are complex Yukawa couplings of order unity. In

Eq. (4.15) only the off-diagonal neutrino mass terms are shown. The corresponding
expression for the charged leptons is found by replacing H̃ −→ H, Nα −→ Eα
(α = e, µ, τ), and ν −→ E. When the link fields acquire universal VEVs 〈Φi〉 ≡ Mx

(i = 1, . . . , 5) the Dirac and Majorana mass matrices of the neutrinos take the forms

MD = ε





Y ν
e λ2 λ2

λ2 Y ν
µ λ2

λ2 λ2 Y ν
τ



 , MR =Mx





λf6 f1 f2
f1 λf3 λf5
f2 λf5 λf4



 , (4.16)

where λ ≡ Mx/Λ � 1 is a small dimensionless expansion parameter and only the
order of magnitude of the terms with mass dimension ≥ 6 has been indicated2. Note
in Eq. (4.16), that the patterns for the Dirac and Majorana mass matrices are similar
to the ones following from Eq. (4.1). This is a consequence of the lattice geometry
which prefers a diagonal Dirac fermion sector while the Majorana sector carries the L
symmetry in terms of the link variables. At the deconstruction scale, the L symmetry
is softly broken by the suppressed O(λ) terms in the Majorana sector. It might
be of interest to note that, similar to our two-site example, this system exhibits a

2The charged lepton mass matrix has a structure analogous to MD.
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CP symmetry once we set λ → 0. In this case, we can perform a complete phase
redefinition of the right-handed fields such that the Yukawa couplings, f1 and f2
become real. We wish to repeat that the diversity of the lattice geometry reproduces
the same qualitative features even if one promotes both the fermions and scalars to
link variables3.

4.2.2 Neutrino masses and mixing angles

Let us now consider Eq. (4.16) for the special case in which all mass terms are real
and take f1 = −f2 = f3 = f4 = f5 ≡ f . Suppressing the small off-diagonal terms
in MD and setting Y ν

µ ' Y ν
τ the effective light neutrino mass matrix up to O(λ3) is

evaluated to be

Mν '
Y ν
µ ε

2

4f 2Mx





0 2λY ν
e f −2λY ν

e f
2λY ν

e f Y ν
µ (λ

2f6 − f) −Y ν
µ (λ

2f6 + f)
−2λY ν

e f −Y ν
µ (λ

2f6 + f) Y ν
µ (λ

2f6 − f)



+O(λ3) , (4.17)

where we have already applied a phase redefinition `e −→ −`e. Since the mass
matrix of the charged leptons is nearly diagonal and on strictly hierarchical form, we
can neglect the mixing coming from the charged leptons. Notice that this kind of
pattern of lepton mass matrices is already familiar from scenarios for softly broken
lepton numbers in the heavy Majorana sector [28]. Application of a rotation in the
2-3-plane through an angle θ23 = π/4 yields the matrix

M′
ν '

Y ν
µ ε

2

2f 2Mx





0
√
2λY ν

e f 0√
2λY ν

e f λ2Y ν
µ f6 0

0 0 −Y ν
µ f



+O(λ3) , (4.18)

from which we see that the reactor angle θ13 is practically zero. The mass matrix
M′

ν is brought on diagonal form by a rotation in the 1-2-plane through an angle θ12
which obeys

tan θ12 ' 1− λ

2
√
2

(

Y ν
µ

Y ν
e

f6
f

)

+
λ2

16

(

Y ν
µ

Y ν
e

f6
f

)2

+O(λ4). (4.19)

Assuming Y ν
e , Y

ν
µ , f, and f6 to be positive, the neutrino mass eigenvalues are

mν1 =
1

2

Y ν
µ
2ε2

fMx

(

−
√
2
Y ν
e

Y ν
µ

+
1

2

f6
f
λ

)

λ+O(λ3),

mν2 =
1

2

Y ν
µ
2ε2

fMx

(√
2
Y ν
e

Y ν
µ

+
1

2

f6
f
λ

)

λ+O(λ3),

mν3 = −1

2

Y ν
µ
2ε2

fMx

, (4.20)

3We note that both Eqs. (4.1) and (4.12) reproduce similar features in the limit λ → 0.
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and exhibit a normal neutrino mass hierarchy m1 < m2 � m3. Note, that the masses
obey here m2 −m1 � (m1 +m2)/2 which is in contrast to the conventional scenario
of normal hierarchical neutrino masses, where m1 � m2 [28]. From Eq. (4.20) we
find the solar and atmospheric mass squared differences

∆m2
� '

√
2

2
Y ν
e Y

ν
µ

f6
f

(

Y ν
µ ε

2

fMx

)2

λ+O
(

λ3
)

, (4.21)

∆m2
atm ' Y ν

µ
2

4

(

Y ν
µ ε

2

fMx

)2
1

λ2
− Y ν

e
2

2

(

Y ν
µ ε

2

fM

)2

+O (λ) , (4.22)

which lead to the relation

∆m2
�

∆m2
atm

' 2
√
2λ3

(

Y ν
e

Y ν
µ

f6
f

)

+O(λ5). (4.23)

Comparing Eq. (4.19) with Eq. (4.23) we note that there exists a parameter range
where the solar angle θ12 may be substantially varied while ∆m2

�/∆m
2
atm is kept

constant or vice versa. For illustration, we choose λ = 0.22, Y ν
e = f , Y ν

µ = f6, and
the ratio Y ν

µ /Y
ν
e = 2.5. In this case, we have a maximal atmospheric mixing angle

θ23 ' π/4 and a reactor mixing angle close to zero, i.e., θ13 ' 0. Taking the best-fit
value ∆m2

atm = 2.5× 10−3 eV2 [11], we obtain the solar parameters

∆m2
� ' 7.5× 10−5 eV2, θ12 ' 32◦, (4.24)

which are close to the best-fit value within the 90% C.L. region of the MSW LMA-I
solution [14]. The strength of θ13 determines the splitting between the scales which
correspond to ∆m2

atm and the resulting CP violation, which is in this case, of course,
practically zero due to vanishing θ13. The system predicts an effective neutrinoless
double beta decay mass mee ' 10−3 eV. Of course, the numerical results here can
be altered by suitably varying the Yukawa couplings. In the above considerations,
we have taken the Dirac matrix MD to be practically diagonal and ignored the off-
diagonal entries present in the general form of MD in Eq. (4.16) which are of the
order ' λ2ε. Actually, in Eq. (4.17), these terms lead to corrections of the effective
neutrino mass matrix which are of the order ' λ2m3. As a consequence, θ23, θ13, and
∆m2

atm receive only small corrections which are λ2-suppressed. Moreover, we observe
in Eq. (4.18) that the impact of the λ2m3-contributions on Eqs. (4.19) and (4.21) may
be absorbed into the Yukawa coupling f6 by an appropriate redefinition. Therefore,
to leading order, the numerical estimates given above should not be significantly
altered by fully taking the off-diagonal entries of MD into account. We reiterate that
the striking aspect is the underlying lattice structure which ensures large solar and
atmospheric mixing angles θ12 and θ23 while keeping the reactor angle θ13 small. Any
modifications to the large mixing angles can be associated with the CP symmetry of
the scheme whose breaking (which is parameterized by λ) can be either soft or hard.
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Φ1 Φ2 Φ3 Ψe Ψµ Ψτ

SU(3)1 � 1 � � 1 1
SU(3)2 � � 1 1 � 1
SU(3)3 1 � � 1 1 �

Table 4.2: Transformation properties of the link fields and SM leptons in the SU(3)3

model.
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Figure 4.5: Moose diagram for the three-site model.

4.3 Three-site models

We briefly outline two variations of the model described in Sec. 4.2 which can equally
well accommodate the neutrino data and are based on three lattice sites, where each
site corresponds to one generation.

4.3.1 A SU(3)3 model

Let us consider the product gauge group Π3
i=1SU(3)i where the SU(3)i (i = 1, 2, 3)

subgroups are connected by the link variables Φi (i = 1, 2, 3) which transform as bi-
fundamental representations Φi ⊂ (3i, 3i+1) under the SU(3)i symmetries. Here, the
index i + 3 is identified with i. The fields from the set Ψe transform under 31, while
the fields from Ψµ transform under 32, and the fields from Ψτ transform under 33.
The representations of the link fields and the SM leptons under the SU(3)3 product
gauge group are shown in Table 4.2. Hence, like in the example of the two-site model,
each generation is put on a different lattice site and the periodicity requirement is
reflected by the closed lattice geometry.

We shall now be interested in a possible origin of the non-renormalizable operators
which can softly break the L symmetry at tree-level. To this end, we will consider the
complete renormalizable theory including the heavy fundamental states which gen-
erate these higher-dimensional terms when they are integrated out in the low-energy
limit. Without any such particles, gauge invariance requires both the charged lepton
mass matrix as well as the Dirac neutrino mass matrix to be on diagonal form, i.e.,
the Dirac matrices exactly conserve the individual lepton numbers. At the decon-
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struction scale, the product gauge group is broken down to the diagonal subgroup
SU(3)diag while preserving the L symmetry. Again, the right-handed Majorana mass
matrix would give rise to a massless right-handed neutrino and is CP conserving like
the two-site model. A soft breaking of the L symmetry in the right-handed Majo-
rana sector may be achieved by putting on each of the sites representing SU(3)1 and
SU(3)2 two extra SM singlet fields. For this purpose, we introduce two SM singlet
scalar fields φe and φµ as well as two heavy SM singlet Dirac fermions Fe = (FeL, FeR)

T

and Fµ = (FµL, FµR)
T , where FαL and FαR (α = e, µ) denote the left- and the right-

handed components of Fα. The fields φe and Fe both transform as 31 under SU(3)1
whereas φµ and Fµ both transform as 32 under SU(3)2 (see Fig. 4.5). At this stage,
the extra particles are vector-like representations of the gauge symmetries and leave
the model free from chiral anomalies. A soft breaking of the L symmetry is realized
by imposition of a Z4 symmetry such that

Z4 : `α −→ −`α, Eα −→ −Eα, Nα −→ −Nα,

φα −→ −φα, FαL −→ iFαL, Φ3 −→ −Φ3, (4.25)

where α runs only over the two flavors α = e, µ. Note that the Z4 symmetry acts
differently on the left- and right-handed components of the fields Fe and Fµ. The
Z4 charges are therefore expected to become anomalous when the discrete symmetry
is gauged. In orbifold constructions, however, different transformation properties of
left- and right-handed components of higher-dimensional Dirac spinors may naturally
appear [84]. The resulting renormalizable Yukawa interactions of the neutrinos can
be written as�

ν
Y =

∑

α=e,µ,τ

Y ν
α `αH̃Nα + f1N c

eΦ
∗
1Nµ + f2N c

eΦ3Nτ +
√

f3N c
µφµFµR

+
√

f6N c
eφeFeR + F c

eRMeFeR + F c
µRMµFµR + h.c., (4.26)

where Y ν
α (α = e, µ, τ) and fi (i = 1, 2, 3, 6) denote complex Yukawa couplings which

we take to be of order unity. The terms ∼ N c
eφeFeR and ∼ N c

µφµFµR are gauge
invariant since the decomposition

3i ⊗ 3i ⊗ 3i = 10i ⊕ 8i ⊕ 8i ⊕ 1, (4.27)

where i = 1, 2, contains a SU(3)i singlet which allows such interactions. In Eq. (4.26),
the SU(3)1 and SU(3)2 symmetries are broken by the bare Majorana masses Me and
Mµ at some high mass scale. When the fields φα aquire the VEVs 〈φα〉 = Mx (α =
e, µ), the heavy fermions FeR and FµR are integrated out, leading to the dimension-five
terms

f3
〈φµ〉2
Mµ

N c
µNµ ' λf3MxN c

µNµ, f6
〈φe〉2
Me

N c
eNe ' λf6MxN c

eNe, (4.28)

where we have set Me ' Mµ and introduced the small expansion parameter λ '
Mx/Me ' Mx/Mµ. The corresponding Froggatt-Nielsen type diagram is given in
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Figure 4.6: Dimension-five operator generating for α = e, µ the effective Majorana mass
terms ∼ λMxN c

αNα at the high scale.
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Figure 4.7: Moose diagram for the U(1)3 model.

Fig. 4.6. The Dirac neutrino mass matrix MD is on strictly diagonal form and the
invertible heavy right-handed neutrino mass matrix is given by

MR =Mx





λf6 f1 f2
f1 λf3 0
f2 0 0



 . (4.29)

Comparison with Eq. (4.16) shows that we obtain in this case relations for the neutrino
mass and mixing angles which are similar to Eqs. (4.19) and (4.23). It is not surprising
to find these relations because the spirit of breaking the underlying L symmetry in
either examples has been similar.

4.3.2 A U(1)3 model

We now deviate from the above model in Eq. (4.26) and use only local U(1) sym-
metries by setting Φ2 → 0 and identifying SU(3)i → U(1)i (i = 1, 2, 3). Moreover,
we will not explicitly introduce the fields φα and Fα from Section 4.3.1. The fields
in the set Ψe are all assigned a U(1)1 charge +1 whereas the fields in Ψµ carry the
U(1)2 charge −1 and the fields in Ψτ carry the U(1)3 charge −1. The corresponding
moose diagram is shown in Fig. 4.7. The U(1)3 charge structure of the left- and
right-handed neutrino pairs is shown in Table 4.3 and the corresponding charges of
the right-handed neutrino pairs is given in Table 4.4. Implicitly, we will assume that
the fundamental scalar fields involved in the effective scalar operators of the Froggatt-
Nielsen mechanism are site variables. Moreover we assume that these scalars carry
only unit (and no multiple) U(1) charges, which is analogous to the requirement of
having only fundamental or anti-fundamental representations of the matter fields in
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Ne Nµ Nτ

U(1)3 (1, 0, 0) (0,−1, 0) (0, 0,−1)

νe (−1, 0, 0) (0, 0, 0) (−1,−1, 0) (−1, 0,−1)

νµ (0, 1, 0) (1, 1, 0) (0, 0, 0) (0, 1,−1)

ντ (0, 0, 1) (1, 0, 1) (0,−1, 1) (0, 0, 0)

Table 4.3: U(1)3 charge structure of the left- and right-handed neutrino pairs. The
same charge assignment holds for the charged lepton-antilepton pairs.

Ne Nµ Nτ

U(1)3 (1, 0, 0) (0,−1, 0) (0, 0,−1)

N c
e (1, 0, 0) (2, 0, 0) (1,−1, 0) (1, 0,−1)

N c
µ (0,−1, 0) (1,−1, 0) (0,−2, 0) (0,−1,−1)

N c
τ (0, 0,−1) (1, 0,−1) (0,−1,−1) (0, 0,−2)

Table 4.4: U(1)3 charge structure of the right-handed neutrino pairs.

the SU(m) case. Hence, the Dirac and Majorana mass matrices exhibit after SSB
the structures

MD ' ε





1 λ2 λ2

λ2 1 λ2

λ2 λ2 1



 , MR 'Mx





λ 1 1
1 λ λ
1 λ λ



 , (4.30)

where only the order of magnitude of the matrix elements has been indicated. Note
in Eq. (4.30), that the dimension-six mass terms in the (2, 3) and (3, 2) entries ofMD

are suppressed by two powers of λ due to the absence of the field Φ2, which would
otherwise carry the charge difference. Since the dimension-four and -five mass terms
of the right-handed neutrinos are generated by both the scalar link- and site variables,
the Majorana mass matrix below the deconstruction scale contains elements which are
only λ suppressed as compared with the Dirac sector. In this model, CP symmetry is
broken and is generated from non-trivial mixings from both the Dirac and Majorana
sector. The parameter λ is undetermined and is taken to be a soft term such that
large neutrino mixings are essentially generated from the heavy right-handed sector
while the Dirac sector remains practically unmixed. Again for this example, it is
straightforward to accommodate the present neutrino data for an appropriate choice
of λ.
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Figure 4.8: View at the sites i, i + 1, and i + 2 of the moose diagram for a deconstructed
large extra dimension compactified on S1.

4.4 Deconstructed large extra dimensions

In theories with continuous extra dimensions, the fundamental scale of quantum
gravity may be lowered from the 4D Planck scale ' 1019 GeV down to the TeV
scale, when the compactification radius R is large [3]. For a number of δ large extra
dimensions, for example, the spreading of the gravitational force in the bulk implies4

that R ' 10−17+30/δ cm. If δ = 2, we arrive at the phenomenologically relevant case of
sub-mm extra dimensions. Clearly, in this scenario, one would naturally expect the
cutoff scale to be of the order TeV. This, however, implies for the remodeled extra
dimensions an inverse lattice spacing of similar order and therefore a large number
of lattice sites.

Contrary to the usual picture, we will now analyze a possible deconstruction setup,
where the inverse lattice spacing is in the sub-eV range [81]. This allows us to study
the latticization of large extra dimensions for a small number of gauge groups. To
be specific, we consider a periodic model for a deconstructed 5D U(1) gauge theory
compactified on S1. The setup is defined by a U(1)N = ΠN

i=1U(1)i product gauge
group with N scalar link variables Qi (i = 1, . . . , N) where the link field Qi carries
the U(1)-charges (q,−q) under the neighboring groups U(1)i × U(1)i+1. Periodicity
of the lattice geometry is ensured by the identification i+N = i. On the ith lattice
site, we put one Dirac fermion Ψi and one scalar Φi which carry both the charge
−q of the group U(1)i. The corresponding moose diagram is shown in Fig. 4.8. We
impose a discrete Z2-parity

Z2 : Φi −→ −Φi (i = 1, 2, . . . , N), (4.31)

which forbids at tree-level any renormalizable Yukawa interactions between the site
variables Ψi and Φj (i, j = 1, 2 . . . , N). Then, the most general scalar potential is

4Here, compactification on a torus with equal radii is assumed.
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given by

V =
N
∑

i=1

[

m2Φ†
iΦi +M2Q†

iQi +
1

2
λ1(Φ

†
iΦi)

2 +
1

2
λ2(Q

†
iQi)

2

+λ3(Q
†
iQi)(

N
∑

j=1

Φ†
jΦj) + µΦi−1QiΦ

†
i + µ∗ΦiQ

†
iΦ

†
i−1

+λ4(Φ
†
iΦi)(

∑

j 6=i
Φ†
jΦj) + λ5(Q

†
iQi)(

∑

j 6=i
Q†
jQj)

+λ6(QiQi+1)(ΦiΦ
†
i+2) + λ∗6(Q

†
i+1Q

†
i)(Φi+2Φ

†
i )
]

, (4.32)

where λ1, λ2, . . . , λ5 are dimensionless real parameters of order unity and λ6 is a
complex-valued order unity coefficient. In Eq. (4.32), we can take the dimensionful
quantities m and µ to be of the order of the electroweak scale m,µ ' 102 GeV and
make the mass M very large, i.e., M � m,µ. We will minimize the potential by
going to the real basis

Qi = qai + iqbi −→
(

qai
qbi

)

, Φi = φai + iφbi −→
(

φai
φbi

)

. (4.33)

The term µΦi−1QiΦ
†
i in Eq. (4.32) reads

µΦi−1QiΦ
†
i+ = µ

[

φai−1q
a
i φ

a
i − φbi−1q

b
iφ

a
i + φbi−1q

a
i φ

b
i + φai−1q

b
iφ

b
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a
i φ

a
i + φai−1q

b
iφ

a
i − φai−1q

a
i φ

b
i + φbi−1q

b
iφ

b
i)
]

. (4.34)

Also, the term λ6(QiQi+1)(ΦiΦ
†
i+2) in Eq. (4.32) is given by

λ6(QiQi+1)(ΦiΦ
†
i+2) = λ6

[

(qai q
a
i+1 − qbi q

b
i+1)(φ

a
iφ

a
i+2 + φbiφ

b
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−(qbi q
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b
iφ

a
i+2 − φai φ

b
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]
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[
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b
iφ

a
i+2 − φaiφ

b
i+2)

+(qbi q
a
i+1 + qai q

b
i+1)(φ

a
iφ

a
i+2 + φbiφ

b
i+2)
]

. (4.35)

Note that for a supersymmetric case, the term λ6 would have to vanish at the renor-
malizable level due to the holomorphy of the superpotential. Then, the phase of µ
could be absorbed into the Yukawa couplings of the fermions Ψi, thereby giving rise
to a non-trivial warp factor. Since we restrict ourselves here to the simpler case of a
flat background with zero warp factor, we take the parameters µ and λ6 to be real.
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Then, the scalar potential in Eq. (4.32) can be written as
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, (4.36)

where we have symmetrically reorganized the sum, such that all operators carrying
the index “i” are explicitly displayed5. We are interested in a minimum of V with the
following vacuum structure

〈Qi〉 =
(

u
0

)

, 〈Φi〉 =
(

v
0

)

, i = 1, 2, . . . , N, (4.37)

i.e., all link variables Qi have a real universal VEV u and all site variables Φi have a

5To avoid double-counting, the coefficients µ and λ6 have been given pre-factors 1

2
and 1

4
, respec-

tively.
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real universal VEV v. From Eq. (4.36) we obtain

∂V

∂φai
= 2m2φai + 2λ1

[

(φai )
2 + (φbi)

2
]

φai

+2λ3φ
a
i

[

N
∑

j=1

(qaj )
2 + (qbj)

2

]

+ 2λ4φ
a
i

[

∑

j 6=i
(φaj )

2 + (φbj)
2

]

+µ[φai−1q
a
i − φbi−1q

b
i ] + µ

[

qai+1φ
a
i+1 + qbi+1φ

b
i+1

]

+
1

2
λ6
[

(qai−2q
a
i−1 − qbi−2q

b
i−1)φ

a
i−2 − (qbi−2q

a
i−1 + qai−2q

b
i−1)φ

b
i−2

]

+
1

2
λ6
[

(qai q
a
i+1 − qbi q

b
i+1)φ

a
i+2 + (qbi q

a
i+1 + qai q

b
i+1)φ

b
i+2

]

, (4.38)

∂V

∂φbi
= 2m2φbi + 2λ1

[

(φai )
2 + (φbi)

2
]

φbi

+2λ3φ
b
i

[

N
∑

j=1

(qaj )
2 + (qbj)

2

]

+ 2λ4φ
b
i

[

∑

j 6=i
(φaj )

2 + (φbj)
2

]

+µ[φbi−1q
a
i + φai−1q

b
i ] + µ

[

−qbi+1φ
a
i+1 + qai+1φ

b
i+1

]

+
1

2
λ6
[

(qai−2q
a
i−1 − qbi−2q

b
i−1)φ

b
i−2 + (qbi−2q

a
i−1 + qai−2q

b
i−1)φ

a
i−2

]

+
1

2
λ6
[

(qai q
a
i+1 − qbi q

b
i+1)φ

b
i+2 − (qbi q

a
i+1 + qai q

b
i+1)φ

a
i+2

]

, (4.39)

which gives for the VEVs in Eq. (4.37) the minimization condition

m2 + [λ1 + (N − 1)λ4] v
2 + (Nλ3 +

1

2
λ6)u

2 + µu = 0, (4.40)

and 〈∂V/∂φbi〉 = 0 is automatic for these VEVs. The partial derivatives for the link
fields are

∂V

∂qai
= 2M2qai + 2λ2

[

(qai )
2 + (qbi )

2
]

qai + 2λ3q
a
i

[

N
∑

j=1

(φaj )
2 + (φbj)

2

]

+µ(φai−1φ
a
i + φbi−1φ

b
i) + 2λ5q

a
i

[

∑

j 6=i
(qaj )

2 + (qbj)
2

]

+
1

2
λ6
[

qai−1(φ
a
i−1φ

a
i+1 + φbi−1φ

b
i+1)− qbi−1

(

φbi−1φ
a
i+1 − φai−1φ

b
i+1

)]

+
1

2
λ6
[

qai+1(φ
a
iφ

a
i+2 + φbiφ

b
i+2)− qbi+1

(

φbiφ
a
i+2 − φaiφ

b
i+2

)]

, (4.41)
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and

∂V

∂qbi
= 2M2qbi + 2λ2

[

(qai )
2 + (qbi )

2
]

qbi + 2λ3q
b
i

[

N
∑

j=1

(φaj )
2 + (φbj)

2

]

+µ(−φbi−1φ
a
i + φai−1φ

b
i) + 2λ5q

b
i

[

∑

j 6=i
(qaj )

2 + (qbj)
2

]

+
1

2
λ6
[

−qbi−1(φ
a
i−1φ

a
i+1 + φbi−1φ

b
i+1)− qai−1

(

φbi−1φ
a
i+1 − φai−1φ

b
i+1

)]

+
1

2
λ6
[

−qbi+1(φ
a
iφ

a
i+2 + φbiφ

b
i+2)− qai+1

(

φbiφ
a
i+2 − φaiφ

b
i+2

)]

, (4.42)

yielding for the VEVs in Eq. (4.37) the minimization condition

u

[

M2 + (λ2 + (N − 1)λ5) u
2 + (Nλ3 +

1

2
λ6)v

2

]

+
1

2
µv2 = 0, (4.43)

and 〈∂V/∂qbi 〉 = 0 is again satisfied for these VEVs. For large M � v and moderate
N we obtain from Eq. (4.43) a naturally small value for u since [81]

u =
m2µ

2 [λ1 + (N − 1)λ4]M2
+O(M−4), (4.44)

i.e., the VEVs of the link variables are suppressed via the non-canonical or type-
II seesaw mechanism [22, 82], which is employed in left-right-symmetric models to
generate small neutrino masses. By substituting Eq. (4.44) into Eq. (4.40), one finds
for the VEVs of the scalar site variables

v2 =
−m2

λ1 + (N − 1)λ4
+O(M−2). (4.45)

For the choice M ' 108 . . . 109 GeV, we therefore obtain v ' 102 GeV and a seesaw
suppressed value u ' 10−1 . . . 10−3 eV of the inverse lattice spacing. The relevant
mass and mixing terms of the untwisted fermion modes read

�
mass =Mf

N
∑

n=1

[

ΨnL

(

Q†
n+1

u
Ψ(n+1)R −ΨnR

)

−ΨnR

(

ΨnL − Qn

u
Ψ(n−1)L

)

]

,

(4.46)
whereMf = u ' 10−2eV. In the infrared, the Lagrangian in Eq. (4.46) gives identical
KK towers for the left- and right-handed components and KK masses in the sub-eV
range. If the bulk fermion is identified with a right-handed (SM singlet) neutrino, the
KK masses are in the right range to allow for higher-dimensional neutrino oscillations
[84].
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Chapter 5

Summary and Conclusions

In this thesis, we have studied possibilities to obtain naturally the MSW LMA solution
of the solar neutrino problem in models. Due to the connection of neutrino masses
with GUT scale physics, it is particularly challenging to explore possible concepts
which could predict the MSW LMA solution from first principles. In this respect,
we have presented several models which highlight different phenomenological and
model-building aspects.

Our first model, is based on an enlarged scalar sector and a collection of horizontal
symmetries of the discrete and continuous type. Here, the leptons of the 2nd and 3rd
generations are put into irreps of a discrete non-Abelian horizontal symmetry, which
is defined in terms of the generators of the dihedral group � 4. As a result, a vacuum
alignment mechanism produces for the charged leptons and the neutrinos the mass
matrix textures





ε3 ε2 ε4

ε3 ε ε2

ε3 ε2 1



 and





ε2 1 1
1 ε4 ε4

1 ε4 ε4



 ,

respectively, where the small number ε ' 10−1 parameterizes the horizontal symmetry
breaking. In the neutrino mass matrix, the entries “1” are (to leading order) exactly
degenerate due to the non-Abelian symmetry and the vacuum alignment mechanism,
thereby implying that the atmospheric mixing angle θ23 is close to maximal. The
model predicts the hierarchical charged lepton mass spectrum, an inverse hierarchical
neutrino mass spectrum, a large (but not necessarily close to maximal) solar mixing
angle θ12, and a small reactor mixing angle θ13. Setting the Dirac CP-violation phase
δ to zero, we have the relation θ12 = π/4 − θ13 + O(ε2), between the solar and the
reactor mixing angle. In this case, the typical values for the mixing angles are

θ12 ' 41◦, θ13 ' 4◦, and θ23 ' 44◦,

where all dimensionless Yukawa couplings have been set equal to unity. A mild tuning
of the order unity coefficients can give the values

θ12 ' 37◦, θ13 ' 8◦, and θ23 ' 44◦,
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but the solar mixing angle is bounded from below by 37◦ . θ12 and cannot get close to
the best-fit value θ12 ' 32◦. Hence, although the model generically gives a significant
deviation from maximal solar mixing, this scheme still prefers a solar mixing angle,
which seems to be somewhat too large.

The MSW LMA solution is obtained more comfortably in our second model for
normal hierarchical neutrino masses. Here, we make use of a similar discrete non-
Abelian flavor symmetry and vacuum alignment mechanism like in the inverse hi-
erarchical model. Therefore, we also obtain an exactly maximal νµ-ντ -mixing and
the strict hierarchy mµ � mτ between the muon and the tau mass. In this model,
however, the charges are elegantly organized in terms of deconstructed SU(m) gauge
symmetries. The non-Abelian discrete symmetry is identified as a split extension of
the Klein group Z2 × Z2 where the lift of every fermion and scalar representation is
equivalent with � 4. The charged lepton masses arise from Wilson-line type operators
which correspond to SU(m) gauge theories compactified on the circle S1. Hence, the
model gives the realistic charged lepton mass ratios me/mτ ' λ6 and mµ/mτ ' λ2,
where λ ' 0.22 is the Wolfenstein parameter. As for the charged lepton mass matrix
is diagonal here, the leptonic mixing angles stem exclusively from the neutrino sector.
Enforced by the horizontal symmetries, the vacuum structure leads to a mass matrix
squared of the left-handed neutrinos, which reads exactly

m2
ν





ρ2ε2 ρε2 −ρε2
ρε2 1 + ε2 1− ε2

−ρε2 1− ε2 1 + ε2



 , ε ' 1/
√
N − 1,

where ρ is an order unity parameter and N is the number of lattice sites of a dynami-
cally generated S1/Z2 orbifold which is experienced by a right-handed Dirac neutrino.
Actually, all CP violation phases can be rotated into the right-handed sectors and
hence we obtain the leptonic mixing angles

θ12 = arctan
[

(2
√
2)−1

(

ρ2 − 2 +
√

(2− ρ)2 + 8
)]

, θ13 = 0, θ23 = π/4.

In other words, the symmetries give exact predictions for the atmospheric and the
reactor mixing angles while providing an order-of-magnitude-understanding of the
solar mixing angle θ12, which is typically large but not necessarily close to maximal.
To be specific, setting the real order unity parameter ρ to its most natural value
ρ = 1, the model yields the solar mixing angle θ12 = arctan 1/

√
2 ' 35◦. Note that

this result is independent of N . Since the neutrinos exhibit a normal mass hierarchy
through their mixing with the right-handed neutrino propagating in the latticized
S1/Z2 orbifold, the ratio ∆m2

�/∆m
2
atm ' 3/2(N − 1) is suppressed by the discrete

analog of the continuum theory volume factor. If the orbifold is characterized by a
number of 57 ± 17 lattice sites, the model yields without tuning of parameters the
MSW LMA solution (LMA-I) of the solar neutrino problem within the 90% C.L.
region.
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A less predictive but more minimalistic approach to the MSW LMA solution is
offered by a class of models which provide a dynamical origin of the seesaw mechanism
in terms of deconstruction. In particular, we have demonstrated for a basic two-site
model, that deconstruction can reproduce in an anomaly-free setup the dimension-
five seesaw operator and maximal mixing angles when the inverse lattice spacing
is identified with the seesaw scale. In realistic three- and four-site models we have
given an explicit mechanism of how to break the individual lepton numbers down
to the diagonal subgroup L = Le − Lµ − Lτ in the right-handed Majorana sector.
The inclusion of non-renormalizable Wilson-line type operators corresponds to a soft
breaking of the L symmetry in the right-handed sector and generates the Dirac and
Majorana neutrino mass matrix textures

MD = 〈H〉





1 λ2 λ2

λ2 1 λ2

λ2 λ2 1



 and MR =Mx





λ 1 1
1 λ λ
1 λ λ



 ,

where λ ' 0.22 andMx ' 1015GeV is the GUT scale. By this, the bimaximal mixing
characterizing the L symmetry is transformed into the bilarge mixing as required
by the MSW LMA solution, along with the appropriate solar and atmospheric mass
squared differences.

When deconstruction is used as a calculational tool for higher-dimensional gauge
theories, one usually assumes the number of replicated gauge groups to be large. A
small number of gauge groups, however, may be more preferable when deconstruction
is considered as a model building tool in four dimensions. Both views on deconstruc-
tion can be combined in a novel technique which we have applied to the relevant case
of deconstructed large extra dimensions. Here, a replicated type-II seesaw mecha-
nism has been used to generate lattice spacings in the sub-eV range. This allows to
study the phenomenology of deconstructed sub-mm extra dimensions with a small
number of . 10 lattice sites. In this context, one may think, e.g., of applications to
higher-dimensional neutrino oscillations or Casimir energies in extra dimensions.

In total, we have seen that realistic and predictive models of lepton masses seem
to require new and unconventional approaches to give naturally the MSW LMA
solution from underlying symmetry principles. Exact predictions for mixing parame-
ters are particularly challenging in the neutrino sector, where two mixing angles are
large. Moreover, since neutrinos can be viewed as a window on GUT scale physics,
the techniques which help to understand the MSW LMA solution may be of deeper
significance for more fundamental theories. In this respect, the application of de-
construction to realistic neutrino mass models is especially interesting, since it could
combine rigorous 4D GUT physics with the benefits of extra dimensions, which are
expected to set the arena for a unification of all forces including gravity.



Appendix A

The Wilson-Dirac Action

In this appendix, we will first consider the usual 4D lattice formulation of a Dirac
fermion before applying the construction to the transverse lattice description of a 5D
fermion in the bulk.

A.1 Four-dimensional lattice

In continuous Minkowski space-time the action for a massive four-component Dirac
spinor Ψ(x) is given by

S =

∫

dx4 Ψ(x) (iγµ∂µ +m)Ψ(x). (A.1)

For our purposes it will prove convenient to work in the chiral (or Weyl) representation
where the gamma matrices take the form

γ0 =

(

0 �
� 0

)

, ~γ =

(

0 ~σ
−~σ 0

)

, γ5 = iγ0γ1γ2γ3 =

(

− � 0
0 �

)

, (A.2)

where σi (i = 1, 2, 3) are the Pauli matrices. Then, the left- and right-handed chiral
components of Ψ are given by ΨL = 1

2
(1− γ5) and ΨR = 1

2
(1+ γ5), respectively. The

fermion field Ψ(x) is put on a 4D hypercubic lattice1 by assigning a four-component
Dirac spinor to each lattice point

xµ = nµaµ, nµ = 0, 1, . . . , N − 1 (µ = 0, 1, 2, 3) , (A.3)

where aµ is the lattice spacing in direction µ. In other words, we associate with
each lattice site x ≡ (xµ) an independent four-component spinor variable Ψ(x). For
simplicity, we consider here the case of universal spatial lattice spacing a ≡ ak (k =
1, 2, 3) and allow only the lattice spacing in time direction to be different from a.
Defining n ≡ (nµ) = (n0, n1, n2, n3), it is then seen from Eq. (A.3) that x0 = n0a0

1For a pedagogical introduction to quantum fields on a lattice see, e.g., Ref. [86].
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and ~x = ~na, in which case one has the identification Ψn ≡ Ψ(x). Now, we replace the
derivatives of the continuum theory by the nearest neighbor forward and backward
difference operators [87]

∂µΨ(x) =
1

aµ
[Ψ(x + aµ̂)−Ψ(x)] , (A.4a)

∂∗µΨ(x) =
1

aµ
[Ψ(x)− Ψ(x− aµ̂)] , (A.4b)

where µ̂ denotes the unit vector in direction µ. With this definition, we obtain from
Eq. (A.1) a naively discretized version of the Dirac action

S = a0a
3
∑

n,µ

1

2
Ψ(x)iγµ

(

∂∗µ + ∂µ
)

Ψ(x) + a0a
3m
∑

n

Ψ(x)Ψ(x)

= a0a
3
∑

n,µ

1

2aµ
Ψ(x)iγµ [Ψ(x+ aµµ̂)−Ψ(x− aµµ̂)]

+a0a
3m
∑

n

Ψ(x)Ψ(x), (A.5)

which we can also write more explicitly as

S = a3
∑

n

[

1

2
Ψniγ

0
(

Ψn+0̂ − Ψn−0̂

)

3
∑

k=1

a0
2a

Ψniγ
k
(

Ψn+k̂ −Ψn−k̂
)

+ a0mΨnΨn

]

. (A.6)

We are now in a position to perform a Wick rotation

a0 = |a0| exp (−iϕ) , ϕ : 0 −→ π

2
, a0 −→ −ia4, (A.7)

where we have introduced a4 ≡ |a0|. This yields the Euclidean version of the action
via iS −→ SI and we obtain (suppressing I)

S = a3a4
∑

n

[

4
∑

µ=1

1

2aµ
Ψniγµ (Ψn+µ̂ −Ψn−µ̂) +mΨnΨn

]

, (A.8)

where we have defined n4 ≡ n0, 4̂ ≡ 0̂, and γ4 = iγ0. Unfortunately, the lattice version
of the Dirac action in Eq. (A.8) describes 24 = 16 independent copies of the continuum
fermion. This lattice artefact is called fermion doubling problem. The presence of the
unwanted fermion doublers can be understood in terms of the triangle anomaly: for
m = 0 the UV divergence of the known γ5 anomaly is regulated on the lattice, which
is achieved by the generation of pairs of fermions with opposite chirality [88]. There
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exist several methods for ameliorating the doubling problem in QCD-like theories.
We will consider here the widely used technique of Wilson [70], where the action is
augmented by a momentum-dependent “mass term”which vanishes in the continuum
limit a→ 0. This gives the fermion doublers a mass of the order of the UV cutoff and
decouples them from continuum physics [86]. To this end, we substitute in Eq. (A.8)
the fermion mass term via

m
∑

n

ΨnΨn −→ m
∑

n

ΨnΨn −
ar

2

∑

n,µ

Ψn∂
∗
µ∂µΨn

= m
∑

n

ΨnΨn −
ar

2

∑

n,µ

1

a2
Ψn [(Ψn+µ̂ −Ψn)− (Ψn −Ψn−µ̂)]

=

(

m+
4r

a

)

∑

n

ΨnΨn −
r

2a

∑

n,µ

Ψn (Ψn+µ̂ +Ψn−µ̂) , (A.9)

where r is an arbitrary parameter. Putting Eqs. (A.8) and (A.9) together, we obtain
the Wilson-Dirac action

S = −a3a4
∑

n

[

4
∑

µ=1

Ψn
r − iγµ

2
Ψn+µ̂ +Ψn

r + iγµ
2

Ψn−µ̂ −
(

m+
4r

a

)

ΨnΨn

]

.

(A.10)
In Eq. (A.10), Wilson’s choice r = 1 [89] is of particular relevance, for, the operators
1
2
(1± iγµ) become orthogonal rank two projectors

(

1

2
(1± iγµ)

)2

=
1

2
(1± iγµ) , Tr

(

1

2
(1± iγµ)

)

= 2, (A.11)

implying that part of the spinor field no longer propagates and one doubler per di-
mension is removed [90]. This treatment is also called Wilson’s projection operator
technique. Let us now introduce gauge interactions on the lattice by assuming invari-
ance under gauge transformations Λ(x). The gauge covariant differentiation on the
lattice requires the presence of a link variable Φ(x, µ) with values in the gauge group
which transforms according to

Φ(x, µ) → Λ(x)Φ(x, µ)Λ(x + aµ̂)−1, (A.12)

where we have, for clarity, assumed a uniform lattice spacing aµ → a. Then, the
gauge covariant difference operators are given by

∇µΨ(x) =
1

a
[Φ(x, µ)Ψ(x+ aµ̂)− Ψ(x)] , (A.13a)

∇∗
µΨ(x) =

1

a

[

Ψ(x)− Φ(x− aµ̂, µ)−1Ψ(x− aµ̂)
]

. (A.13b)

The description in terms of the gauge potentials Aa
µ(x) of the continuum theory is

exhibited by the parameterization

Φ(x, µ) = exp
(

−iaAaµ(x)T
a
)

= 1− iaAa
µ(x)T

a + . . . , (A.14)



A.2 Transverse lattice description of a 5D fermion 91

which also shows that the operators in Eqs. (A.13) indeed reduce to the covariant
derivative Dµ of the continuum theory in the limit a→ 0. The gauge invariant lattice
fermion action SF is found by replacing in Eq. (A.10) the derivatives by the covariant
derivatives

SF =
a4

2

∑

x,µ

Ψ(x)
[

iγµ
(

∇∗
µ +∇µ

)

+ 2m− a∇∗
µ∇µ

]

Ψ(x), (A.15)

where we have chosen r = 1. Although Wilson’s projection operator technique proves
to be convenient for calculation, it has the drawback that in the limit m −→ 0 the
chiral symmetry of the theory is explicitly broken by the addition of the large mass
term ∝ r/a to the action. However, a solution to this problem may be provided by
methods involving renormalization-group “block-spin” transformations for fermions
[91].

A.2 Transverse lattice description of a 5D fermion

Consider a 5D Dirac field Ψ(xµ, x5), where x5 denotes the fifth dimension2. In the
Weyl basis, one can decompose Ψ(xµ, x5) as3

Ψ(xµ, x5) =

(

ΨL(x
µ, x5),

ΨR(x
µ, x5)

)

. (A.16)

If Ψ transforms according to the fundamental representation of a bulk SU(m) gauge
symmetry, the Lagrangian is given by4

�
= Ψ(iγµDµ − γ5D5)Ψ− 1

4
Tr
(

FMNFMN

)

, (A.17)

where the covariant derivative is DM = ∂M + ig5Â
a
MT

a and the gamma matrices
have been defined in Eq. (A.2). In Ref. [35], the fermion Lagrangian for the aliphatic
model of deconstructed extra dimensions has been motivated by the transverse lattice
technique [68,69] applied to the 5th dimension. We shall now explicitly re-derive this
result by applying the treatment of the 4D lattice theory in App. A.1 to a latticized
5th dimension with lattice spacing a ≡ a5. For this purpose, let us discretize the bulk
coordinate x5 in terms of

x5 = na, n = 0, 1, 2, . . . ,
1√
a
Ψn ≡ Ψ(x5),

Φn

v
≡ Φ(x5, 5), (A.18)

where the link variable Φn becomes a non-linear σ-model field in the deconstructed
theory and the factor 1/v has been introduced for correct normalization. Note in

2We will denote here bulk coordinates by capital letters M,N = 0, 1, 2, 3, 5.
3For a discussion of Dirac neutrinos in the bulk see, e.g., Refs. [83–85].
4We follow here the notation of Ref. [35].
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Eq. (A.18) that the dimensionalities match, since Ψ(x5) is a 5D spinor with [m]2 and
Ψn is a 4D spinor with [m]3/2. In analogy with App. A.1, we identify for a vanishing
bare mass m = 0 the 5D Dirac-Wilson operator of the transverse lattice with

DW =
1

2
[−γ5(∇∗

5 +∇5)− a∇∗
5∇5] , (A.19)

where∇5 and∇∗
5 denote the covariant forward and backward derivatives, respectively.

After integrating out the 5th dimension, we obtain from Eq. (A.19) the effective 4D
Lagrangian

�
mass which generates the masses for the KK modes

�
mass =

1

2a

∑

n

Ψn [−γ5(∇∗
5 +∇5)− a∇∗

5∇5] Ψn. (A.20)

We assume here that the link-Higgs fields Φn transform according to the bi-
fundamental representation Φn ⊂ (mn−1, mn) of some product gauge symmetry
ΠN
n=0SU(m)n and take universal VEVs 〈Φn〉 ≡ v at the deconstruction scale. The

fermions Ψn transform according to the fundamental representation mn of the corre-
sponding gauge group SU(m)n. Then, ∇5 and ∇∗

5 can be written as

∇5Ψn =
1

a

[

Φ†
n+1

v
Ψn+1 − Ψn

]

, ∇∗
5Ψn =

1

a

[

Ψn −
Φn

v
Ψn−1

]

. (A.21)

In Eq. (A.20), we therefore find for the first terms

Ψnγ5(∇∗
5 +∇5)Ψn = Ψ†

nγ0γ5(∇∗
5 +∇5)Ψn

=
1

a
(ΨnL − ΨnR)

(

Φ†
n+1

v
Ψn+1 −

Φn

v
Ψn−1

)

=
1

a

[

ΨnL

(

Φ†
n+1

v
Ψ(n+1)R − Φn

v
Ψ(n−1)R

)

−ΨnR

(

Φ†
n+1

v
Ψ(n+1)L − Φn

v
Ψ(n−1)L

)]

. (A.22)

Furthermore, in Eq. (A.20) it holds

∇∗
5∇5Ψn =

1

a2

[

Φ†
n+1

v
Ψn+1 −Ψn −

Φn

v

(

Φ†
n

v
Ψn − Ψn−1

)

]

=
1

a2

[(

Φ†
n+1

v
Ψn+1 − Ψn

)

−
(

Ψn −
Φn

v
Ψn−1

)

]

, (A.23)
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where we have used that in the non-linear σ-model approximation Φn/v can be rep-
resented as a unitary matrix. From Eq. (A.23) it follows that

Ψn∇∗
5∇5Ψn =

1

a2

[

Ψn

(

Φ†
n+1

v
Ψn+1 −Ψn

)

− Ψn

(

Ψn −
Φn

v
Ψn−1

)

]

=
1

a2

[

ΨnL

(

Φ†
n+1

v
Ψ(n+1)R − 2ΨnR +

Φn

v
Ψ(n−1)R

)

−ΨnR

(

−Φ†
n+1

v
Ψ(n+1)L + 2ΨnL −

Φn

v
Ψ(n−1)L

)]

. (A.24)

Inserting Eqs. (A.22) and (A.24) into Eq. (A.20) one obtains

�
mass = −1

a

∑

n

[

ΨnL

(

Φ†
n+1

v
Ψ(n+1)R − ΨnR

)

− ΨnR

(

ΨnL − Φn

v
Ψ(n−1)L

)

]

.

(A.25)
Upon substituting −1/a −→ Mf , we identify Eq. (A.25) with the mass and mixing
terms of the aliphatic model for a fermion in a deconstructed 5D gauge theory [35].



Appendix B

The Dihedral Group 4

The dihedral groups � n, where n = 2, 3, . . ., are the point-symmetry groups with an
n-fold axis (this is also called the principal axis) and a system of 2-fold axes at right
angle to it. The group � n is therefore the symmetry group of a regular n-gon. These
groups contain 2n elements and for n > 2 they are non-Abelian ( � 2 is isomorphic
with the Klein group Z2 × Z2). In Fig. B.1 the horizontal plane is shown for the
case n = 4, where a, a′, b, and b′ denote the four two-fold axes and the 4-fold axis
is perpendicular to the paper. We denote by Cn the operation of rotation through
2π/n about the principal axis. The k-fold application of this transformation will be
written as Ck

n and the identity transformation Cn
n as E. The rotations through π

about the axes a, a′, b, and b′ will be referred to as Ca, Ca′ , Cb, and Cb′, respectively.
Then, the dihedral group � 4 has eight elements in following five classes:

E; C4, C
3
4 ; C2

4 ; Ca, Cb; Ca′ , Cb′. (B.1)

Adopting the notation of Ref. [92] we will refer to the five classes which are associated
with the sequence in Eq. (B.1) as E,C4(2), C

2
4 , C2(2), and C2′(2). Calling the 4

irreducible singlet representations 1A, 1B, 1C, and 1D respectively, the decomposition

�

�

���� �

Figure B.1: Horizontal plane with the system of two-fold axes for � 4.
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� 4 E C2
4 C4(2) C2(2) C2′(2)

1A 1 1 1 1 1
1B 1 1 1 -1 -1
1C 1 1 -1 1 -1
1D 1 1 -1 -1 1
2 2 -2 0 0 0

Table B.1: Character table for the group � 4.

� 4 1A 1B 1C 1D 2

1A 1A 1B 1C 1D 2

1B 1A 1D 1C 2

1C 1A 1B 2

1D 1A 2

Table B.2: Multiplication table for the group � 4.

of the product of the two-dimensional irrep 2 reads

2× 2 = 1A + 1B + 1C + 1D. (B.2)

The character table for the group � 4 is given in table B.1. Denoting 2 as (a, b) we
have for the singlet representations

1A = a1a2 + b1b2, (B.3a)

1B = a1b2 − a2b1, (B.3b)

1C = a1a2 − b1b2, (B.3c)

1D = a1b2 + a2b1. (B.3d)

From the character table of � 4 one determines the decomposition of the product of
any two representations as shown in table B.2. In the vector representation of � 4,
the 2×2 representation matrices corresponding to the different classes can be written
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( � 4, T1) (C4, d1) (C3
4 , d2) (C2

4 , d3) (Ca, d4) (Cb, d5) (Ca′, d6) (Cb′ , d7)

(C4, d1) (C2
4 , d3) (E, e) (C3

4 , d2) (Ca′ , d6) (Cb′ , d7) (Cb, d5) (Ca, d4)
(C3

4 , d2) (E, e) (C2
4 , d3) (C4, d1) (Cb′, d7) (Ca′ , d6) (Ca, d4) (Cb, d5)

(C2
4 , d3) (C3

4 , d2) (C4, d1) (E, e) (Cb, d5) (Ca, d4) (Cb′ , d7) (Ca′, d6)
(Ca, d4) (Cb′, d7) (Ca′ , d6) (Cb, d5) (E, e) (C2

4 , d3) (C3
4 , d2) (C4, d1)

(Cb, d5) (Ca′ , d6) (Cb′, d7) (Ca, d4) (C2
4 , d3) (E, e) (C4, d1) (C3

4 , d2)
(Ca′ , d6) (Ca, d4) (Cb, d5) (Cb′, d7) (C4, d1) (C3

4 , d2) (E, e) (C2
4 , d3)

(Cb′ , d7) (Cb, d5) (Ca, d4) (Ca′ , d6) (C3
4 , d2) (C4, d1) (C2

4 , d3) (E, e)

Table B.3: Group table of the dihedral group � 4. The brackets indicate the homo-
morphism � 4 ' T1 between � 4 and the right transversal T1 = {e, d1, . . . , d7} for K1

(see Sec. 3.3.3).

as

E : D(E) =

(

1 0
0 1

)

,

C4(2) : D(C4) =

(

0 1
−1 0

)

, D(C3
4) =

(

0 −1
1 0

)

,

C2
4 : D(C2

4) =

(

−1 0
0 −1

)

,

C2(2) : D(Ca) =

(

1 0
0 −1

)

, D(Cb) =

(

−1 0
0 1

)

,

C2′(2) : D(Ca′) =

(

0 −1
−1 0

)

, D(Cb′) =

(

0 1
1 0

)

. (B.4)

Before concluding this section, let us construct the dihedral groups from semi-direct
products. For this purpose, let N ' Zn for any n ∈ � , let H ' Z2, and let the map
ϕ : H → Aut(N) send h ∈ H to the automorphism in Aut(N) sending each element
of N to its inverse. Then, the external semi-direct product N oϕ H of N by H with
respect to ϕ is the dihedral group � n. One can also define the infinite dihedral group

� ∞ = N oϕ H, where N ' Z and the group H and the map ϕ are as above.



97

Appendix C

Minimization of the Tree-Level

Potential

We will rewrite the potential VA(Φ,Ω) in Eqs. (2.15) and (3.36) in terms of the
parameterization in Eqs. (2.13) and (3.35) as follows

VA = d1v
4
1c

2
αs

2
α + d2v

4
2c

2
βs

2
β + d3v

2
1v

2
2(c

2
α − s2α)(c

2
β − s2β), (C.1)

where sα ≡ sin(α) and cα ≡ cos(α) (correspondingly for β). Hence, it is

∂VA
∂α

= 2d1v
4
1(c

3
αsα − cαs

3
α)− 4d3v

2
1v

2
2cαsα(c

2
β − s2β),

∂VA
∂β

= 2d2v
4
2(c

3
βsβ − cβs

3
β)− 4d3v

2
1v

2
2cβsβ(c

2
α − s2α).

As a result, at (α, β) = (π
4
, π
4
) it is (∂α, ∂β)VA = (0, 0), i.e., (α, β) = (π

4
, π
4
) is an

extremum of the potential VA. For the second derivatives it follows

∂2VA
∂α2

= 2d1v
4
1(s

4
α + c4α − 6c2αs

2
α)− 4d3v

2
1v

2
2(c

2
α − s2α)(c

2
β − s2β),

∂2VA
∂β2

= 2d2v
4
2(s

4
β + c4β − 6c2βs

2
β)− 4d3v

2
1v

2
2(c

2
β − s2β)(c

2
α − s2α),

∂2VA
∂α ∂β

= 16d3v
2
1v

2
2cαsαcβsβ.

At (α, β) = (π
4
, π
4
) we therefore obtain for the matrix of second derivatives of the

potential
(

∂2VA
∂α ∂β

)

=

(

−2d1v
4
1 4d3v

2
1v

2
2

4d3v
2
1v

2
2 −2d2v

4
2

)

, (C.2)

where, due to the choice d1, d2 < 0, the diagonal elements are positive. Hence, if the
parameters obey the conditions

d1, d2 < 0 and d1d2 > 4d23, (C.3)
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the matrix in Eq. (C.2) is positive definite, i.e., the scalar excitations which oscillate
in the (α, β)-subspace about (α, β) = (π

4
, π
4
) have positive masses and (α, β) = (π

4
, π
4
)

is a minimum of the scalar potential VA. Let us now rewrite the part of the multi-
scalar potential VB(Φ,Ω) in Eqs. (2.15) and (3.36) using the parameterization in
Eqs. (2.13) and (3.35) as follows

VB = 2d4v
4
1c

2
αs

2
αcos(2ϕ) + 2d5v

4
2c

2
βs

2
β cos(2ψ)

+4d6v
2
1v

2
2cαsαcβsβ cos(ϕ) cos(ψ)

−4d7v
2
1v

2
2cαsαcβsβ sin(ϕ) sin(ψ), (C.4)

where we have used the notation of Eq. (C.1). Hence, one concludes

∂VB
∂α

= 4d4v
4
1(c

3
αsα − cαs

3
α) cos(2ϕ) + 4d6v

2
1v

2
2(c

2
α − s2α)cβsβ cos(ϕ) cos(ψ)

−4d7v
2
1v

2
2(c

2
α − s2α)cβsβ sin(ϕ) sin(ψ),

∂VB
∂β

= 4d5v
4
2(c

3
βsβ − cβs

3
β) cos(2ψ) + 4d6v

2
1v

2
2(c

2
β − s2β)cαsα cos(ϕ) cos(ψ)

−4d7v
2
1v

2
2(c

2
β − s2β)cαsα sin(ϕ) sin(ψ),

and

∂VB
∂ϕ

= −4d4v
4
1c

2
αs

2
αsin(2ϕ)− 4d6v

2
1v

2
2cαsαcβsβ sin(ϕ) cos(ψ)

−4d7v
2
1v

2
2cαsαcβsβ cos(ϕ) sin(ψ),

∂VB
∂ψ

= −4d5v
4
2c

2
βs

2
βsin(2ψ)− 4d6v

2
1v

2
2cαsαcβsβ cos(ϕ) sin(ψ)

−4d7v
2
1v

2
2cαsαcβsβ sin(ϕ) cos(ψ).

As a result, at the points (α, β) = (π
4
, π
4
), where ϕ, ψ ∈ {0, π}, it is

(∂α, ∂β, ∂ϕ, ∂ψ)VB = (0, 0, 0, 0),

i.e., these points are extrema of VB. Furthermore, one finds at (α, β) = (π
4
, π
4
)

vanishing mixed second derivatives

∂2VB
∂ϕ∂α

=
∂2VB
∂ψ∂α

=
∂2VB
∂ϕ∂β

=
∂2VB
∂ψ∂β

= 0,

implying that the matrix of the second derivatives of VB with respect to the param-
eters α, β, ϕ, ψ breaks up into a block-diagonal form with submatrices which respec-
tively correspond to the subspaces (α, β) and (ϕ, ψ). The second derivatives of VB
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with respect to α and β are

∂2VB
∂α2

= 4d4v
4
1(s

4
α + c4α − 6c2αs

2
α) cos(2ϕ)− 16d6v

2
1v

2
2cαsαcβsβ cos(ϕ) cos(ψ)

+16d7v
2
1v

2
2cαsαcβsβ sin(ϕ) sin(ψ),

∂2VB
∂β2

= 4d5v
4
2(s

4
β + c4β − 6c2βs

2
β) cos(2ψ)− 16d6v

2
1v

2
2cαsαcβsβ cos(ϕ) cos(ψ)

+16d7v
2
1v

2
2cαsαcβsβ sin(ϕ) sin(ψ),

∂2VB
∂α∂β

= 4d6v
2
1v

2
2(c

2
α − s2α)(c

2
β − s2β) cos(ϕ) cos(ψ)

−4d7v
2
1v

2
2(c

2
α − s2α)(c

2
β − s2β) sin(ϕ) sin(ψ).

Therefore, at the points (α, β) = (π
4
, π
4
), where ϕ, ψ ∈ {0, π}, the matrix of the second

order derivatives is
(

∂2VB
∂α ∂β

)

= 4

(

−d4v41 − σd6v
2
1v

2
2 0

0 −d5v42 − σd6v
2
1v

2
2

)

, (C.5)

where σ ≡ cos(ϕ) cos(ψ) = ±1 can take either sign for ϕ, ψ ∈ {0, π}. However, from
Eq. (C.4) it is seen that the product d6σ must be negative in the lowest energy state,
i.e., the sign of d6 determines whether ϕ = ψ+k ·2π or ϕ = ψ+k ·π for some integer
k. The matrix of second order derivatives can therefore be rewritten as

(

∂2VB
∂α ∂β

)

= 4

(

−d4v41 + |d6|v21v22 0
0 −d5v42 + |d6|v21v22

)

, (C.6)

where d4, d5 < 0, i.e., the matrix is positive definite. The second derivatives of VB
with respect to ϕ and ψ are

∂2VB
∂ϕ2

= −8d4v
4
1c

2
αs

2
α cos(2ϕ)

−4d6v
2
1v

2
2cαsαcβsβ cos(ϕ) cos(ψ) + 4d7v

2
1v

2
2cαsαcβsβ sin(ϕ) sin(ψ),

∂2VB
∂ψ2

= −8d5v
4
2c

2
βs

2
β cos(2ψ)

−4d6v
2
1v

2
2cαsαcβsβ cos(ϕ) cos(ψ) + 4d7v

2
1v

2
2cαsαcβsβ sin(ϕ) sin(ψ),

∂2VB
∂ψ∂ϕ

= 4d6v
2
1v

2
2cαsαcβsβ sin(ϕ) sin(ψ)− 4d7v

2
1v

2
2cαsαcβsβ cos(ϕ) cos(ψ).

At the points (α, β) = (π
4
, π
4
), where ϕ, ψ ∈ {0, π}, the matrix of the second derivatives

of VB with respect to ϕ and ψ reads

(

∂2VB
∂ϕ∂ψ

)

=

(

−2d4v
4
1 + |d6|v21v22 ±d7v21v22

±d7v21v22 −2d5v
2
2 + |σ|d6v21v22

)

, (C.7)
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where d4, d5 < 0, i.e., the diagonal elements are positive. In Eq. (C.7), we have already
used that the potential is minimized when d6σ is negative. Taking everything into
account, if the coefficients in the multi-scalar potential satisfy besides Eq. (C.3) also
the conditions

d4, d5 < 0 and (−2d4v
4
1 + |d6|v21v22)(−2d5v

4
2 + |d6|v21v22) > d27v

4
1v

4
2, (C.8)

then the matrix in Eq. (C.7) is positive definite, i.e., all modes oscillating in the
(α, β, ϕ, ψ)-subspace about the points (α, β) = (π

4
, π
4
), where ϕ, ψ ∈ {0, π}, have

positive masses and hence these points are indeed local minima of both the potentials
VA and VB. In the special case Φ = Ω, one can, without loss of generality, choose in
VA(Φ,Φ) and VB(Φ,Φ) the parameters d2 = d3 = 0 and d5 = d6 = d7 = 0, i.e., only
d1 and d4 are in general nonzero. If, for this choice of potentials, the conditions

d1 < 0 and d4 < 0, (C.9)

are satisfied, the points (α, ϕ) ∈
{

(π
4
, 0), (π

4
, π)
}

minimize V∆(Φ,Φ).
Let us now extend the above discussion to a number of N scalar

�
-doublets, each

of which is parameterized in a self-explanatory notation by the angles (αi, ϕi), where
i = 1, . . . , N . We denote by V∆(i, j) the most general scalar interaction which involves
only the scalars parameterized by (αi, ϕi) and (αj, ϕj) and breaks the associated
SU(2)acc symmetries. Clearly, V∆(i, j) has a structure similar to V∆(Φ,Ω) and we
can also decompose in analogy with V∆(Φ,Ω) = VA(Φ,Ω) + VB(Φ,Ω) the operator
V∆(i, j) as V∆(i, j) = VA(i, j) + VB(i, j). Moreover, we assume that the symmetry
content of our model (e.g., the gauge symmetries corresponding to the Wilson loops)
allow us to write the total renormalizable SU(2)acc symmetry breaking part of the
scalar potential V∆ as a sum of the operators V∆(i, j), i.e., we have1

V∆ =
1

2

N
∑

i,j=1

V∆(i, j), VA =
1

2

N
∑

i,j=1

VA(i, j), VB =
1

2

N
∑

i,j=1

VB(i, j),

where we can set VA(i, j) = VA(j, i) and VB(i, j) = VB(j, i). We define the real and
symmetric N ×N matrices of second derivatives

MA(N) ≡ ∂2VA
∂αi∂αj

and MB(N) ≡ ∂2VB
∂ϕi∂ϕj

(i, j = 1, . . . , N), (C.10)

each of which is a function of the 2N parameters (αi, ϕi). Now, consider an extremum
(αex

i , ϕ
ex
i ) (i = 1, . . . , N) of V∆. We suppose that at the extremum the (N − 1) ×

(N − 1)-dimensional submatrices MA(N − 1) and MB(N − 1) of MA(N) and MB(N)
are positive definite. Moreover, let us assume that the 2× 2 matrices

(

∂2VA(i,N)
∂αi∂αi

∂2VA(i,N)
∂αi∂αN

∂2VA(i,N)
∂αN∂αi

∂2VA(i,N)
∂αN∂αN

)

and

(

∂2VB(i,N)
∂ϕi∂ϕi

∂2VB(i,N)
∂ϕi∂ϕN

∂2VB(i,N)
∂ϕN∂ϕi

∂2VB(i,N)
∂ϕN∂ϕN

)

, (C.11)

1The factor 1

2
has been introduced to avoid double-counting.
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where i = 1, . . . , N − 1, are all positive definite. Then, MA(N), for example, can be
written as (correspondingly for MB(N))

MA(N) =











MA(N − 1)

0
...
0

0 · · · 0 0











+















m11 0 0 · · · m1N

0 m22 0 · · · m2N

0 0 m33 · · · m3N
...

...
...

. . .
...

mN1 mN2 mN3 · · · mNN















. (C.12)

Consider now an arbitrary N -component column-vector ~x ≡ (xi). For the product
~xTMA(N)~x, the first matrix in Eq. (C.12) yields a positive number, since MA(N − 1)
is by assumption positive definite. Hence, it follows

~xTMA(N)~x >
N−1
∑

i=1

(

miix
2
i + 2miNxixN +

∂2VA(i, N)

∂αN∂αN
x2N

)

, (C.13)

where we have used that miN = mNi. Note in Eq. (C.13), that

mNN =
N−1
∑

i=1

∂2VA(i, N)

∂αN∂αN
. (C.14)

Then, by positive definiteness of the 2 × 2 matrices in Eq. (C.11), we see that each
bracket in Eq. (C.13) is positive-valued. Therefore, ~xTMA(N)~x is positive for any
~x, implying that MA(N) is actually positive definite. In total, this shows that for
MA(N) and MB(N) to be positive definite at (αex

i , ϕ
ex
i ) (i = 1, . . . , N), it is sufficient

to assume that all 2× 2 matrices

(

∂2VA(i,j)
∂αi∂αi

∂2VA(i,j)
∂αi∂αj

∂2VA(i,j)
∂αj∂αi

∂2VA(i,j)
∂αj∂αj

)

and

(

∂2VB(i,j)
∂ϕi∂ϕi

∂2VB(i,j)
∂ϕi∂ϕj

∂2VB(i,j)
∂ϕj∂ϕi

∂2VB(i,j)
∂ϕj∂ϕj

)

, (C.15)

for i, j = 1, . . . , N , are positive definite. In other words, to find the minimum of the
total SU(2)acc symmetry breaking part V∆, it is sufficient to minimize each of the
potentials V∆(i, j) individually.
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