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Thermodynamics of the chiral condensate

We study the temperature and density dependence of the scalar quark
condensate 〈q̄q〉 using effective field theory methods. Nucleons interact
via perturbative chiral pion exchange and scalar plus vector four-point
interactions. The latter are treated in relativistic mean field approximation
giving rise to an effective nucleon mass M ∗ and an effective chemical potential
µ∗. Contributions from pion fluctuations at two-loop level are included in
the self consistency equations for M ∗ and µ∗. The strengths of the contact
interactions are adjusted to the empirical nuclear matter saturation point
and compressibility κ. From this we predict an effective nucleon mass of
M∗(ρ0) ' 0.8M . At a temperature T ' 16.6MeV a liquid-gas phase transition
is observed.
In a further step we include three-loop contributions from 2π-exchange at
finite density but T = 0. The dependence of the equation of state P (T, µ,mπ)
on the pion mass allows to calculate deviations from the leading linear
decrease in density of the quark condensate. We find that these are small
below normal nuclear matter density.

Thermodynamik des chiralen Kondensats

Wir untersuchen die Temperatur- und Dichteabhhängigkeit des skalaren
Quark-Kondensats 〈q̄q〉 mit Hilfe von Methoden der effektiven Feldtheorie.
Nukleonen wechselwirken durch chiralen Pionaustausch sowie über skalare
und vektorielle Vier-Punkt-Kopplungen. Letztere werden in Mean-Field-
Näherung behandelt. Dies führt zu einer effektiven Nukleonenmasse M ∗ und
einem effektiven chemischen Potential µ∗. Beiträge des Einpionaustausches
werden in die Selbstkonsistenz-Gleichungen für M ∗ und µ∗ eingebunden. Die
Stärke der Kontaktwechselwirkungen wird so eingestellt, dass der empirische
Sättigungspunkt und die Kompressibilität von Kernmaterie reproduziert
werden. Dies führt zu Voraussagen für die effektive Nukleonenmasse von
M∗(ρ0) ' 0.8M . Bei einer Temperatur von T ' 16.6MeV beobachten wir
den Flüssigkeits-Gas-Phasenübergang der Kernmaterie.
Desweiteren behandeln wir die Beiträge des 2π-Austauschs in Drei-Schleifen-
Näherung bei endlicher Dichte und T = 0. Die Abhängigkeit der Zus-
tandsgleichung P (T, µ,mπ) von der Pionmasse erlaubt die Berechnung der
Abweichungen von der führenden linearen Abnahme des chiralen Kondensats
als Funktion der Dichte. Wir finden, dass diese Beiträge unterhalb normaler
Kerndichte klein sind.
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Chapter 1

Introduction

The generally accepted theory of strong interactions is quantum chromodyna-
mics (QCD), a gauge theory of colored quarks and gluons. The running quark-
gluon coupling constant is small at short distances (asymptotic freedom) and
increases at long distances, leading to the formation of color singlet bound
states. Confinement [1, 2] expresses the absence of free quarks and gluons in
asymptotic states, only colorless hadrons appear in final states.
QCD with light quarks has an approximate chiral symmetry, exact in the limit
of vanishing quark masses (mq = 0). This symmetry is spontaneously broken
at low energies. The order parameter of spontaneously broken chiral symmetry
is the quark condensate 〈q̄q〉. From its dependence on temperature and density
one can construct the phase diagram of QCD. The corresponding phase transi-
tion line separates regions with finite 〈q̄q〉 (hadronic matter) from those where
〈q̄q〉 = 0. There are indications from lattice calculations that chiral symmetry
is restored above a critical temperature Tc = (173 ± 8)MeV. Above Tc the
condensate 〈q̄q〉 is found to vanish. The confinement-deconfinement transition
related to the liberation of colored degrees of freedom seems to occur in the
same temperature range. The corresponding deconfined phase is referred to as
the quark-gluon plasma.

In the discussion of nuclear matter the chiral condensate is also of impor-
tance. Nuclear matter denotes an infinite and homogeneous isospin-symmetric
many-nucleon system, i.e. matter consisting of equally many protons and neu-
trons, being subject only to the strong interaction. For a study of nuclei and
nuclear matter at low energies, quarks and gluons are not the proper “effec-
tive” degrees of freedom because color is confined on the relevant length scales.
Low-energy QCD is in fact realized as an effective field theory of weakly inter-
acting Goldstone bosons (pions) coupled to heavy nucleons.
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The aim of this work ist to study the temperature and density dependence of
〈q̄q〉 using effective field theory methods. This dependence derives from the
quark mass dependence of the grand canonical partition function or equiva-
lently the total pressure of the interacting hadronic system. Due to the Gold-

stone boson nature of the pion this quark mass dependence can be converted
directly into an m2

π-dependence by using the Gell-Mann−Oakes−Renner
relation.
Explicit pion degrees of freedom therefore play a prominent role in the discus-
sion of chiral symmetry restoration trends at low temperatures and densities. A
suitable starting point in thermodynamics is the total pressure P (T, µ) written
as a function of the natural variables of the hadronic system, chemical poten-
tial µ and temperature T .
At low energy it can be written as the sum of contributions from interact-
ing nucleons at finite temperature and density on the one hand and free and
interacting pions in the heat bath on the other hand:

P (T, ρ) = PN(T, ρ) + Pπ(T ).

The part PN(0, ρ) corresponds to cold nuclear matter. At the nuclear mat-
ter saturation density ρ0 ' 0.17 fm−3 = 2p3f/(3π

2) the Fermi momentum
pf = 268MeV and the pion mass mπ = 138MeV are comparable scales
pf ' 2mπ. This is a further argument in favor of including pions as explicit
degrees of freedom in describing nuclear many-body dynamics.
Our dynamical calculation of nuclear matter includes 1- and 2-pion exchange
as well as four-nucleon interactions. The related coupling strengths are ad-
justed such that they reproduce the known properties of nuclear matter. We
already mentioned the saturation density ρ0, furthermore the binding en-
ergy per nucleon B = 16MeV and the nuclear matter (in-)compressibility
κ = (250±10)MeV are known. This adjustment renders our equation of state
more realistic.
Our main interest lies in the form of the chiral condensate 〈q̄q〉 which we obtain
from the pion mass dependence of our realistic equation of state. In contrast
to earlier work we do not just use Fermigas estimates of 〈q̄q〉 but properly
treat nuclear matter as a self-bound Fermi liquid.
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The present work is organised as follows:

• We start in chapter 2 by summarising important aspects of the theory of
strong interactions where our main focus will be on symmetries as well as
symmetry breaking patterns in Quantum Chromodynamics.
Then we construct the effective chiral Lagrangian of low-energy QCD to lead-
ing order. Its explicit degrees of freedom are Goldstone bosons (pions) and
nucleons with interactions dictated by chiral symmetry.

• The appropriate framework when dealing with relativistic many-particle sys-
tems is the grand canonical ensemble. Chapter 3 will be about basic concepts
of field theory at finite temperature and density.
In this general context we rediscover the low density theorem. It states that to
leading order in density the chiral condensate drops linearly with a slope deter-
mined by the so-called pion-nucleon sigma term σN ' 45MeV. This quantity
σN = mq∂M/∂mq gives the portion of the nucleon mass coming from the finite
up- and down-quark mass.
At low temperatures the T -dependence of the chiral condensate is determined
exclusively by the dynamics of the thermal pion gas. We discuss the quanti-
tative influence of free and interacting pions on 〈q̄q〉(T ).

• We will reach the main part of this work in chapter 4 where we first re-
call the relativistic Walecka model. In this approach nucleons are treated as
Dirac quasi-particles, moving in self-consistently generated scalar and vector
mean-fields. With regard to the implementation of 1- and 2-pion exchange ef-
fects later it is advantageous to eliminate the scalar and vector mean-fields by
the effective nucleon mass and nucleon chemical potential respectively. This
guarantees a clearly arranged and well-structured thermodynamic treatment.

• After presenting results for nuclear matter at T = 0 from the 2-parameter
Walecka model we encounter some well-known shortcomings. These are the
by far too large value of the nuclear matter compressibility and the rather low
effective nucleon mass at saturation density M ∗(ρ0) ' 0.54M . We improve
this model by adding a cubic (or quartic) term in the scalar mean-field of the
form ∼ (M −M ∗)3(,4) to the grand canonical partition function. This term
introduces a new parameter with which we can simultaneously fit all three
nuclear matter properties ρ0, B and κ. At the same time the effective nucleon
mass increases to a more realistic value of M ∗(ρ0) ' 0.8M .
A welcome side effect is the lowering of the critical temperature of the liquid-
gas phase transition to T LGc ' 16.5MeV. This value of T LGc is in perfect
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agreement with a recent analysis of limiting temperatures in heavy ion colli-
sions [3].
In the next step we go beyond the mean-field description and include the one-
pion exchange Fock term. We evaluate the contribution of the 1π-exchange
Fock diagram to the partition function fully relativistically. In this general
form one accounts for various scattering processes of thermal pions (and ther-
mal antinucleons) with nucleons.
The 1π-exchange corrections are included in the self-consistent determination
of the effective nucleon mass and chemical potential, or equivalently the scalar
and vector mean-fields.
It turns out that a non-relativistic approximation, in which effects from ther-
mal pions and antinucleons are neglected, works well in the temperature and
density regime of interest. This opens the possibility to treat 2π-exchange
corrections in the same approximation reliably. To be more specific: by 2π-
exchange we mean iterated 1π-exchange Hartree and Fock diagram, where
Pauli blocking is automatically taken care of.
In particular, we will give a “master formula” for the temperature and density
dependence of the chiral condensate.

• Having at hand a dynamical description of nuclear matter which includes
systematically pion exchange contributions and at the same time fulfills the
empirical constraints at the saturation point one can focus on the temperature
and density dependence of 〈q̄q〉. This is done by taking the pressure’s deriva-
tive with respect to the pion mass.

• Finally we summarise our results, draw conclusions and give an outlook
to possible future work in chapter 5.







Chapter 2

Theory of strong interactions

In this chapter we briefly summarise the basic features of Quantum Chro-
modynamics with its local SU(3)c gauge and chiral symmetries. The latter
symmetry is of great importance in the discussion of low energy hadronic
physics.

2.1 Quantum Chromodynamics

The generally accepted gauge theory [4, 5] of the strong interactions is quan-
tum chromodynamics1 (QCD) [6, 7, 8]. It is a theory of colored quarks and
gluons initiated by Gell-Mann [9], Zweig [10] and others [1, 2, 11, 12] in
the 1960s and 70s.

Quarks are spin-1/2 fermions carrying
electric charge in fractions of the proton
charge. They come in six different flavors:
up, down, strange, charm, bottom and top,
see Table 2.1. In order to be able to construct
the observed hadrons without violating the
Pauli exclusion principle, quarks are assigned

Charge I II III
+2/3 u c t
-1/3 d s b

Table 2.1: Quark flavors,
families and electric charge.

an additional degree of freedom named color [11, 12]. Only color-neutral ob-
jects exist in nature. There are two ways to group quarks in order to obtain
such “white” particles: We already mentioned hadrons which consist of three
quarks (qRqGqB) whose red, green and blue colors combine to white. Mesons
are paired quark-antiquark systems (qq̄) where color+anti-color=neutral.
The necessity for this hidden quantum number is most easily illustrated by
looking at the fermionic ∆++= |uuu 〉-resonance having JP = 3/2+. Obviously

1the Greek word χρω̃µα (chroma) means color
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the wave-function of this system is symmetric under exchange of quarks (all
u’s are identical). Also the spins of all three quarks need to be parallel in
order to yield J = 3/2. The color degree of freedom allows to construct an
anti-symmetric wave-function for this state.
An observable where the hidden color degree of freedom becomes visible is the
ratio of cross sections

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(2.1)

which - at large centre of mass energies s→∞ - is given by the sum of all the
squared quark charges seen by the electromagnetic field at that energy

lim
s→∞

R = Nc

∑

i=flavor

Q2i = Nc

[(
2

3

)2

+
(
1

3

)2

+
(
1

3

)2
]

= 2
Nc

3
, . (2.2)

The observed ratio R implies that there are three different colors which inspired
naming this internal quantum number: Nc = 3, i.e. QCD is based on local
SU(3) (→ section A.2) color gauge invariance.
Interactions between quarks are mediated by massless spin-1 bosons called
gluons. They carry color themselves and thus interact amongst each other
making the theory non-Abelian.
QCD, as a non-Abelian gauge field theory, exhibits some distinct properties
like a decreasing force at short distances, or very high momentum transfers.
This phenomenom is called asymptotic freedom because it implies that the
nucleon’s constituents behave like weakly interacting point particles at high
energies and momentum transfer. On the other hand the interaction between
quarks has to be very strong at long distance, or small momentum transfer,
as to explain the nonobservation of isolated quarks - this feature is called
confinement.
All experimental searches for free quarks since 1977 have had negative results
[13]. This is explained by the concept of confinement of color charges: quarks
are assigned the colors red, green and blue (antiquarks carry the corresponding
anti-colors). Nature only allows color-singlet (“white”) particle combinations.
There are two basic ways to combine colors and anti-colors to achieve this.
3-quark particles (qqq) are fermions called baryons whereas quark-antiquark
particles (q̄q) are bosons called mesons.

The quark fields in the 3 flavor case are

ψ(x) =






u(x)
d(x)
s(x)




 (2.3)
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Only u, d and s have current quark
masses below 1GeV, the c, b and t
quarks are heavy, their typical val-
ues are listed in Table 2.2. Treating
the heavier ones as infinitely heavy
is a good approximation at low en-
ergy and makes them inactive, they
are “frozen” degrees of freedom.

q mq

up 1.5-4.5 MeV
down 5-8.5 MeV
strange 80-155 MeV
charm 1-1.4 GeV
bottom 4-4.5 GeV
top 169.2-179.4GeV

Table 2.2:
Current
quark
masses
mq taken
from [13].

where u, d, s are Dirac field operators that exists in Nc = 3 colors. Thus ψ(x)
has 36 components. The QCD Lagrangian density has the form

LQCD = ψ̄(x) [ iγµD
µ −M ]ψ(x)− 1

4
Ga
µν(x)G

µν
a (x) (2.4)

where the first part involves the mass matrix

M =






mu 0 0
0 md 0
0 0 ms




 . (2.5)

Quarks obey the Dirac equation

(iD/ −M)ψ(x) = 0. (2.6)

Local SU(3) color gauge invariance requires LQCD to be invariant under arbi-
trary transformations

U = exp
(

− i
2
λaΘa(x)

)

(2.7)

in color space. This requires the introduction of the covariant derivative

Dµ(x) = ∂µ − igs
λa
2
Aaµ(x) (2.8)

involving eight Lorentz-vector fields Aa
µ - the gluon fields. Their transfor-

mation properties are defined such that the covariant derivative of the quark
field, namely Dµ(x)ψ(x), transforms in exactly the same way as ψ(x) itself.
Then ψ̄(x)iγµD

µ(x)ψ(x) is gauge invariant.
Gµν(x) is the non-Abelian gluon field tensor

Ga
µν(x) = ∂µA

a
ν(x)− ∂νA

a
µ(x) + gsfabcA

b
µ(x)A

c
ν(x) (2.9)

where λa are the generators and fabc the group structure constants of flavor-
SU(3), see Appendix A.2.2.
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2.2 Chiral Symmetry

In this work we will be concerned with nuclear matter. As protons and neutrons
contain mainly up and down quarks it will be sufficient for us to consider QCD
with 2 flavors. The quark masses in (2.5) are among the parameters in the
QCD Lagrangian (2.4). Compared with the nucleon mass of

M0 = 939MeV (2.10)

the current quark masses mu,d as given in Table 2.2 are smaller than 1%.
Therefore it is a good starting point to consider the (chiral) limit of massless
quarks mu = md = 0 as a first approximation. In the case of free massless
quarks the Dirac equation simplifies to

i∂/ψ(x) = 0 (2.11)

and its solution is given by

ψ(x) = const ·
(

χ
hχ

)

e−ipx (2.12)

where h is the helicity - the projection of spin onto the direction of momentum

h = σ · ~p|~p | (2.13)

The helicity is an invariant in the case of massless particles (that travel at the
speed of light β = v/c = 1), in which case it is also called chirality. If the
particle had a rest mass it would travel at lower speed β < 1 and one could
always find a reference frame in which the particle is overtaken - changing its
direction of motion and therefore its helicity.
The chirality operator γ5 = iγ0γ1γ2γ3 fulfills (γ5)

2 = 1 and therefore has the
eigenvalues ±1:

γ5ψ(x) = ±ψ(x). (2.14)

For massless fermions the Dirac equation has two solutions, states with pos-
itive and negative chirality. We can introduce right- and left-handed quarks
(H = R,L)

ψR,L =
1

2
(1± γ5)ψ =: ψH (2.15)

which allow the separation of ψ̄(x)D/ψ(x)

ψ̄(x)D/ψ(x) = ψ̄L(x)D/ψL(x) + ψ̄R(x)D/ψR(x) (2.16)
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into these R- and L-fields. LQCD in (2.4) with two flavors and M = 0 is
invariant under the following global transformations

ψH → HψH = eiΘ
i
H
τi/2ψH (2.17)

This invariance is called chiral SU(2)R × SU(2)L symmetry. The Noether

theorem [14] tells us that for each continuous symmetry of the Lagrangian there
exists an associated conserved current. (2.17) implies 6 conserved currents

JµH,i(x) = ψ̄H(x)γ
µ τi
2
ψH(x) , ∂µJ

µ
H,i = 0. (2.18)

from which we can combine the isovector and axial currents

V µ
i (x) = JµR,i(x) + JµL,i(x) = ψ̄(x)γµ

τi
2
ψ(x) ; ∂µV

µ
i (x) = 0 (2.19)

Aµi (x) = JµR,i(x)− JµL,i(x) = ψ̄(x)γµγ5
τi
2
ψ(x) ; ∂µA

µ
i (x) = 0 (2.20)

where the τi are the Pauli matrices in (A.14) and Θ is an arbitrary 3-
component rotation angle in isospin space. The associated conserved charges

QV
i =

∫

d3xV 0i (x), QA
i =

∫

d3xA0i (x) (2.21)

generate the Lie algebra SU(2)L × SU(2)R with commutation relations
[

QV
i , Q

V
j

]

= ifijkQ
V
k

[

QV
i , Q

A
j

]

= ifijkQ
A
k

[

QA
i , Q

A
j

]

= ifijkQ
V
k (2.22)

where the structure constants fijk = εijk are just the components of the totally
antisymmetric tensor.
The chiral symmetry will be of great importance in our discussion of the chiral
condensate in chapter 4.

2.3 Symmetry Breaking Patterns

So far the considerations about symmetries were always related to the La-
grangian density. But what about the ground state of the system? In principle
there are two possibilities: either the resulting ground state does share the full
symmetry of the Lagrangian (Wigner-Weyl realisation) or not (Nambu-
Goldstone realisation). In the case of QCD the former would indicate per-
fect symmetry between vector and axial current. If the ground state were
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chirally symmetric, both vector and axial charge operators would annihilate
the vacuum:

QV
i |0〉 = QA

i |0〉 = 0. (2.23)

Due to the different parity properties of QV
i and QA

i the particle spectra are
SU(2)L × SU(2)R multiplets, i.e. the hadron spectrum would consist of pairs
of particles with equal mass but opposite parity. However, no such parity
doublets are observed in the low-energy hadron spectrum. Therefore chiral
symmetry must be realised in the Nambu-Goldstone way2: the Lagrangian
density is chirally invariant but not the vacuum state:

QV
i |0〉 = 0, QA

i |0〉 6= 0. (2.24)

This situation is subject to the Goldstone theorem [17]:

If the Lagrange density has a continuous symmetry represented by
the group G1 with NG1

generators whereas the ground state is invariant
under the subgroup G2 with NG2

< NG1
generators then the breaking

of this (exact) symmetry implies the existence of NG1
−NG2

massless
states (degenerate with the vacuum), called Goldstone bosons.

In addition there is evidence from lattice QCD calculations that chiral sym-
metry is spontaneously broken [16] down to the flavor group SU(2)V :

SU(2)R × SU(2)L → SU(2)V . (2.25)

The group SU(N) has N 2 − 1 generators, see section A.2. In our case there
are three Goldstone bosons , the pions (π0, π+, π−)3.
But why are the pions not massless? We had just emphasized that this is only
the case for an exact symmetry. In the last section we learned about the chiral
symmetry which is exact only for massless quarks M = 0.
Apart from the symmetry breaking pattern discussed above there is a second
kind of symmetry breaking called explicit. It comes about due to the mass
term in the Lagrangian density.

2if quarks are confined, then chiral symmetry must be spontaneously broken [15, 16]
3for SU(3)R × SU(3)L there are 8 Goldstone bosons (π0, π+, π−, K̄0,K0,K+,K−, η)
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2.4 Partially Conserved Axial Current

In the two previous sections we learned that the chiral SU(2)R×SU(2)L sym-
metry is spontaneously broken down to SU(2)V . The Goldstone theorem
tells us that in the chiral limit (mu = md = 0) - where the symmetry is exact
- this leads to three massless bosons, the pions. Let their state vectors |πj(p)〉
be normalized

〈πj(p)|πk(p′)〉 = 2Epδjk(2π)
3δ3(~p− ~p′) , pµ = (Ep, ~p). (2.26)

The theorem also implies non-vanishing transition matrix elements of the axial
current which connect |πj(p)〉 with the vacuum:

〈0|Aµi (x)|πj(p)〉 = ifπp
µδije

−ipx. (2.27)

This matrix element describes the charged pion decay π+ → µ+ + νµ. The
constant

fπ = (92.4± 0.3)MeV (2.28)

is the physical pion decay constant. Chiral symmetry is broken explicitly in
nature by the small but finite quark masses in

Lmass ≡ LM = −ψ̄Mψ ; M = diag(mu,md) (2.29)

shifting the pion mass from zero to the observed value and changing the diver-
gence of the axial current (2.20) which is obtained from the matrix element

〈0|∂µAµi (x)|πj(p)〉 = fπp
2δije

−ipx = fπm
2
πδije

−ipx (2.30)

and the relation for the pion field 〈0|πi(x)|πj(p)〉 = δije
−ipx to be

∂µA
µ
i (x) = fπm

2
ππi(x). (2.31)

This relation is commonly known as the PCAC4 relation. As discussed above
we see that in the chiral limit with vanishing pion mass (mu,d = 0→ mπ = 0,
see (2.58)) the axial current is conserved.

4partially conserved axial current
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2.5 The Chiral Condensate

The chiral quark condensate plays an important role in the spontaneous chiral
symmetry breaking (SχSB). Its precise definition is

〈0|ψ̄ψ|0〉 = −iTr lim
y→x+

SF (x, y)

where SF (x, y) = −i〈0|T ψ(x)ψ̄(y)|0〉 (2.32)

is the full quark propagator. SχSB is accompanied by a rearrangement of
the vacuum which is populated by a condensate of quark-antiquark pairs. The
scalar-isoscalar quark density ψ̄(x)ψ(x) has a non-vanishing expectation value:

〈0|ψ̄ψ|0〉 ≡ 〈ψ̄ψ〉 = 〈q̄iqi〉 = 〈ūu〉+ 〈d̄d〉. (2.33)

SχSB leads to a non-trivial vacuum. The scalar quark density

ψ̄ψ = ψ̄RψL + ψ̄LψR (2.34)

mixes right- and left-handed quark fields, recall (2.15). A nonvanishing vacuum
expectation value therefore breaks chiral symmetry explicitly.
The condensate 〈ψ̄ψ〉 is a measure for the strength of SχSB in the way that
〈ψ̄ψ〉 = 0 resembles the phase with exact chiral symmetry whereas 〈ψ̄ψ〉 6= 0
represents the phase with broken symmetry. Thus it plays the role of an order
parameter in the theory of the phase transition.

2.6 Chiral Effective Lagrangian

An effective low energy theory of QCD must be constructed such that chiral
symmetry and its spontaneous and explicit breaking are implemented. We will
now construct the prototype of such a chiral effective Lagrangian Leff . The
effective degrees of freedom in QCD at low energies are no longer the elemen-
tary quarks and gluons, but composite hadrons, primarily the Goldstone

boson(s). The basic idea of an effective field theory is to treat light particles
as active and heavy particles as frozen degrees of freedom, the latter being
reduced to nearly static sources.
SχSB leads to a characteristic gap in the hadron spectrum

∆ ∼ 4πfπ ∼ 1GeV. (2.35)

The energy scale introduced by ∆ seperates between light and heavy particles.
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2.6.1 Meson Sector: Non-linear Sigma Model

We will now construct Leff in the meson sector with Nf = 2. A convenient
representation for the pseudoscalar Goldstone bosons is a unitary 2 × 2
matrix field U(x) ε SU(2) with U †U = 1 and det U = 1.

U(x) =

√
√
√
√1− ~π2(x)

2f 2π
+ i

~τ · ~π(x)
fπ

(2.36)

Under chiral transformations, see (2.17), the matrix U transforms as

U → U ′ = RUL† ; R,L ε SU(2)R,L. (2.37)

Consequently the pion field ~π(x) transforms non-linearly. In general the La-
grangian Leff is a function of U(x) and its derivatives

LQCD → Leff = Leff (U, ∂µU). (2.38)

Leff is expanded in terms of powers of these derivatives

Leff = L2 + L4 + L6 + ... (2.39)

where the index gives the number of derivatives ∂µU . Lorentz invariance
implies that the number of derivatives must be even. The leading term

L2 =
f 2π
4
tr
[

∂µU †∂µU
]

(2.40)

is known as the non-linear sigma model. Expanding just this term, after
adding the leading symmetry breaking term such that L2 is still even in the
Goldstone boson fields,

L2 =
f 2π
4
tr
[

∂µU †∂µU
]

+
B

2
f 2π tr

[

M(U + U †)
]

(2.41)

in the isotriplet pion field ~π from (2.36) yields

L2 =
1

2
∂µ~π∂

µ~π + 2mqB
(

f 2π −
1

2
~π2
)

(2.42)

where we used mq = mu = md. The parameter B in this equation turns out
to be the quark condensate 〈0|q̄q|0〉. This leads to the Gell-Mann-Oakes-

Renner relation, see section 2.7.
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2.6.2 Including Baryons

If we now want to construct the effective Lagrangian for systems of mesons
and baryons we have to replace the pure mesonic Lagrangian Leff in (2.38) by

Leff = Leff (U, ∂µU,ΨB, ...). (2.43)

We will denote the additional terms which include the baryon fields ΨB as LBeff
and expand them again in powers of derivatives:

LBeff = L(1)ΦB + L(2)ΦB + . . . . (2.44)

The leading term L(1)ΦB will be of primary interest. We start from the free
baryon Lagrangian

LB = Tr
[

Ψ̄B (iγµ∂
µ −M0)ΨB

]

(2.45)

in which we will replace ∂µ by a chiral covariant derivative (→ L′B, see (2.53)).
This introduces vector current interactions and axial vector couplings between
the baryons and mesons.
We will first derive these interaction terms from the linear sigma model where
massless fermions have Yukawa couplings with a composite scalar field σ and
a pseudoscalar, isovector field ~φ

LF = ψ̄
[

i∂/− g(σ − iγ5~τ · ~φ)
]

ψ = iψ̄∂/ψ − g
[

ψ̄LΣ
†ψR + ψ̄RΣψL

]

(2.46)

where Σ ≡ σ+ i~τ · ~φ transforms like Σ→ RΣL† under chiral SU(2)R×SU(2)L.
We decompose σ into its vacuum expectation value 〈σ〉 and fluctuations,

identify the fermion mass M0 = g〈σ〉 → gfπ with the nucleon mass and set
Σ = 〈σ〉U with U in (2.36), making contact with the chiral field of the non-
linear sigma model discussed in the previous section. Then LF becomes

LF = ψ̄Ri∂/ψR + ψ̄Li∂/ψL −M0

(

ψ̄LU
†ψR + ψ̄RUψL

)

(2.47)

The following redefinition of their fields

ΨR ≡ ξ†ψR, ΨL ≡ ξψL, U = ξξ, ξ = exp(i~τ · ~π/2fπ) (2.48)

will dress our baryons, i.e. turning them into quasi-particles surrounded by a
meson cloud. In terms of these dressed fields Ψ = ΨR +ΨL (2.47) reads

LF = Ψ̄ (iγµD
µ −M0 + γµγ5a

µ)Ψ (2.49)
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with the chiral covariant derivative

Dµ = ∂µ − ivµ (2.50)

mentioned above and the vector and axial vector quantities which we also
expand to second order in the pion fields

vµ =
i

2

(

ξ†∂µξ + ξ∂µξ†
)

→ − 1

4f 2π
~τ · (~π × ∂µ~π) (2.51)

aµ =
i

2

(

ξ†∂µξ − ξ∂µξ†
)

→ − 1

2fπ
~τ · ∂µ~π (2.52)

The Yukawa couplings of the bare fermions have turned into vector and pseu-
dovector couplings of the dressed fermions. Identifying the dressed fermions
with our baryons Ψ ≡ ΨB = (p, n) we can write the leading order term of the
chiral meson-baryon effective Lagrangian as

L(1)ΦB = Ψ̄B (iD/ −M0 + gAγµγ5a
µ)ΨB = L′B + LπN (2.53)

where L′B = LB(∂µ → Dµ), see (2.45), and

LπN = − gA
2fπ

Ψ̄γµγ5~τ∂
µ~πΨ (2.54)

with the value for gA given in (2.64).

2.7 Gell-Mann-Oakes-Renner Relation

We have seen that the vanishing quark masses in the chiral limit lead to zero
pion mass and that the order parameter for spontaneous chiral symmetry
breaking is the quark condensate 〈q̄q〉.
There exists a relation between fundamental quantities of QCD like the quark
massmq, the chiral condensate 〈q̄q〉 and experimentally measured hadron prop-
erties like the pion mass mπ and its decay constant fπ in (2.28).
In order to obtain it we compare the mass term of the QCD Lagrangian −mq q̄q
with that of the effective theory in (2.42) above. Taking the vacuum expecta-
tion values leads to

−mq〈q̄q〉 = 2mqBf
2
π . (2.55)

The last term in (2.42) can be identified as the pion mass term

−mqB~π
2 = −1

2
m2
π~π

2 (2.56)
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allowing identification of the proportionality constant

B = −〈q̄q〉
2f 2π

. (2.57)

Inserting B back into (2.55) yields

m2
πf

2
π = −mq〈q̄q〉, (2.58)

the Gell-Mann-Oakes-Renner (GOR) relation [18]. It also holds for the
case of three flavors. For two flavors we have

m2
π = − 1

2f 2π
(mu +md)〈ūu+ d̄d〉+O(m2

q). (2.59)

The GOR relation is not exact. There are quadratic corrections. Recent precise
ππ-data indicate that the term linear in mq is responsible for at least 95% of
m2
πf

2
π [19].

2.8 Pion-Nucleon Sigma Term

We will now define the pion-nucleon sigma term and state the value which we
use for it in our calculations. It can be deduced from low-energy πN scattering
data

Σ = f 2πD̄
+(0, 2m2

π) = σ(2m2
π) + ∆R (2.60)

where the bar on the isoscalar invariant scattering amplitude5 D+(ν, t) indi-
cates that the pseudovector Born term was removed. ∆R is small (< 2MeV).
The so-called Cheng-Dashen point (ν = 0, t = 2m2

π) lies outside the physical
πN scattering region. Therefore the experimental data must be extrapolated
to obtain Σ. The most reliable extrapolations are based on dispersion relation
calculations first carried out by [20] and later improved by [21].
The sigma-nucleon term parametrises the explicit chiral symmetry breaking
in QCD and measures the nucleon mass shift away from the chiral limit
mq = mu,d = 0 - and therefore the contribution of the quark mass to the
nucleon mass M :

σN = σ(0) = σ(2m2
π)−∆σ =

〈N |mq(ūu+ d̄d)|N〉
2M

= mq
∂M

∂mq

(2.61)

5fπ is the pion decay constant, ν the crossing energy variable and t the 4-momentum transfer
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where |N〉 denotes the state of a nucleon. The shift of the scalar form factor
of the nucleon from t = 0 to t = 2m2

π is ∆σ = σ(2m2
π) − σ(0) = 15.2MeV.

In other words σN gives the portion of the nucleon mass arising from explicit
chiral symmetry breaking in QCD. We will work with the value from [21]

σN = (45± 8)MeV (2.62)

Because of the complexity of the extrapolation the involved value of σN is still
under discussion. In comparison to more recent determinations it might be
too small [22, 23].

2.9 Goldberger-Treiman Relation

The Goldberger-Treiman relation [24] is a chiral low energy theorem

gπN = gA
M0

fπ
+O(mq) = 12.88 (2.63)

which connects the pion nucleon coupling constant [25] with the axial vector
coupling constant of the nucleon. This can be used to find the value

gA = 1.267 (2.64)

by inserting M0 = 939MeV and fπ from (2.28).





Chapter 3

Field Theory at Finite
Temperature and Density

The chiral condensate 〈q̄q〉 serves as an order parameter of spontaneous chiral
symmetry breaking. We have established the connection between the QCD
ground state and the quark condensate in the previous chapter. The chiral
condensate changes the structure of the vacuum, populating it with correlated
quark-antiquark pairs.
The asymptotic freedom of QCD leads to restoration of chiral symmetry at
high temperatures. The low temperature behaviour of 〈q̄q〉(T ) is determined
by Goldstone bosons. In order to be able to study the chiral phase transi-
tion, i.e. the condensate’s dependence upon temperature and baryon density,
we need to perform our calculations in a suitable framework. Equilibrium
statistical mechanics offers three types of ensembles: microcanonical (isolated
system; E,N and V fixed), canonical (system in contact with a heat bath; T,N
and V fixed) and grand canonical (particles and energy exchangeable with a
reservoir; T, µ and V fixed). The selection of a certain ensemble is arbitrary
and without loss of generality since a Laplace transformation allows to pass
over to either of the other ensembles.
In relativistic quantum systems where particles can be created and annihilated
the grand canonical ensemble is the proper choice. There β = 1/T and µ can
be thought of as Lagrange multipliers which determine the mean energy and
particle number respectively. The suitable framework for us is thermal field
theory where an imaginary time formalism is introduced to connect quantum
field theory to statistical mechanics in a grand canonical ensemble [26, 27].
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3.1 The Grand Canonical Ensemble

Starting with the grand canonical partition function

Z = Tr exp [−β(H − µN)] (3.1)

we will determine our equation of state (EOS) - the pressure

P =
T

V
lnZ (3.2)

which is directly related to the thermodynamic potential

Ω = −P. (3.3)

From P all other thermodynamic properties can be calculated as we will show
in the upcoming sections.
Unfortunately it is in general not possible to obtain the pressure in closed
form. Usually one starts from a special case where the pressure of an idealised
system is calculated exactly and adds the corrections perturbatively.

3.1.1 Free Fermions

The explicit calculation of the pressure of an ideal fermion gas from the Dirac

Lagrangian in absence of interactions

LDirac = ψ̄(i∂/−M)ψ (3.4)

with the result

P =
2

3π2

∫ ∞

M
dE

(

E2 −M2
)3/2 [

f+E + f−E
]

(3.5)

is to be found in Appendix B. We used the abbreviation f±E = f(E ± µ) for
the Fermi distribution function f(x) = (ex/T + 1)−1.
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3.1.2 Non-interacting Bosons

Consider the Lagrangian of a free (pseudo) scalar boson field such as the pion:

L =
1

2
∂µπ∂

µπ − 1

2
m2
ππ

2. (3.6)

A similar calculation as that in the fermionic case above, see e.g. [26], yields

lnZ = −V
∫ ∞

0

d3p

(2π)3
ln
(

1− e−βE
)

(3.7)

where E2 = ~p2 + m2
π. The thermodynamical relation (3.2) yields the corre-

sponding pressure of a pion gas

P (T ) =
T

V
lnZ =

1

6π2

∫ ∞

mπ

dE
(E2 −m2

π)
3/2

eβE − 1
(3.8)

In the case of a conserved charge this result is modified to

P (T, µ) =
1

6π2

∫ ∞

mπ

dE
(

E2 −m2
π

)3/2
[b(E + µ) + b(E − µ)] (3.9)

where µ is the chemical potential and b is the Bose distribution function
b(x) = (ex/T − 1)−1.

3.2 Chiral Condensate at Finite

Temperature and Density

We have already mentioned chiral restoration under extreme conditions and
we learned about the order parameter of chiral symmetry. Therefore we will
study the dependence of this order parameter - the chiral quark condensate
〈q̄q〉 - on finite temperature T and baryon density ρ in this section.
We will start with a useful theorem from quantum mechanics, the Hellmann-
Feynman theorem from which we will be able to derive the master formula
for the chiral condensate. This will easily be generalised to finite T and then
separated into a nucleon and a pion sector. The first will lead us to the low
density theorem. For the latter we will discuss the contributions of 1- and
2-loop diagrams of the free and interacting pion gas.
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3.2.1 Hellmann-Feynman Theorem

For a given Hamiltonian H(λ), which depends on a parameter λ that can be
changed adiabatically, with eigenstates

H(λ)|ψλ〉 = E(λ)|ψλ〉 (3.10)

the Hellmann-Feynman theorem [28, 29] states that the change of energy
E with respect to λ does not depend upon the change of the normalised states
|ψλ〉

dE(λ)

dλ
=

〈

ψλ

∣
∣
∣
∣
∣

∂H(λ)

∂λ

∣
∣
∣
∣
∣
ψλ

〉

. (3.11)

Let us first consider the zero temperature case (T = 0). In the Hamiltonian
density

HQCD(mq) = H0 +mq(ūu+ d̄d), (3.12)

where H0 represents massless QCD, the quark mass plays the role of such a
parameter λ. We will only consider two flavors mu,d with equal mass mq. Now
let |ψ〉 be an eigenstate (e.g. the vacuum |0〉, a free nucleon |N〉 or nuclear
matter at density ρ):

HQCD|ψ〉 = E(mq)|ψ〉; HQCD =
∫

d3xHQCD(x). (3.13)

Then it follows

dE(mq)

dmq

=
∫

d3x

〈

ψ

∣
∣
∣
∣
∣

∂HQCD(mq)

∂mq

∣
∣
∣
∣
∣
ψ

〉

= V
〈

ψ
∣
∣
∣ūu+ d̄d

∣
∣
∣ψ
〉

, (3.14)

or in terms of the energy density ε = E/V

dε(mq)

dmq

=
〈

ψ
∣
∣
∣ūu+ d̄d

∣
∣
∣ψ
〉

. (3.15)

Only differences in energy can be measured, therefore we subtract the vacuum
expectation value from (3.15)

dε(mq)

dmq

− dε0(mq)

dmq

=
〈

ψ
∣
∣
∣ūu+ d̄d

∣
∣
∣ψ
〉

−
〈

0
∣
∣
∣ūu+ d̄d

∣
∣
∣ 0
〉

⇔
〈

ψ
∣
∣
∣ūu+ d̄d

∣
∣
∣ψ
〉

〈

0
∣
∣
∣ūu+ d̄d

∣
∣
∣ 0
〉 =:

〈q̄q〉(ρ)
〈q̄q〉0

= 1 +
1

〈q̄q〉0
d

dmq

(ε− ε0). (3.16)
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The change in the quark condensate is given by the change of the energy
density with varying quark mass. As most models for hadronic systems are
formulated in terms of hadron masses rather than the quark mass we will
replace d/dmq. Consider a system with nucleons and pions with masses M
and mπ which themselves depend upon the quark mass

d

dmq

=
∂m2

π

∂mq

∂

∂m2
π

+
∂M

∂mq

∂

∂M
+ ... . (3.17)

In principle there are further implicit mq-dependences denoted by the dots.
Inserting (3.17) into (3.16) and using the GOR relation (2.58) and its derivative

∂m2
π

∂mq

= −〈q̄q〉0
f 2π

(3.18)

as well as the definition of the pion-nucleon sigma term (2.61), ∂M/∂mq =
σN/mq, we can write

〈q̄q〉(ρ)
〈q̄q〉0

= 1 +
1

〈q̄q〉0

[

∂m2
π

∂mq

∂

∂m2
π

+
∂M

∂mq

∂

∂M

]

(ε− ε0)

= 1− 1

f 2π

∂(ε− ε0)

∂m2
π

+
σN

〈q̄q〉0mq

∂(ε− ε0)

∂M

(2.58)
= 1− 1

f 2π

[

∂

∂m2
π

+
σN
m2
π

∂

∂M

]

(ε− ε0), (3.19)

which can easily be generalised to finite temperature T by replacing the energy
density with the thermodynamic potential Ω of the grand canonical ensemble
which is directly related to the pressure of the system via Ω = −P . Therefore
the master formula in calculating the chiral condensate for a system of pions
and nucleons takes on the form

〈q̄q〉(ρ, T )
〈q̄q〉0

= 1 +
1

f 2π

(

∂P

∂m2
π

+
σN
m2
π

∂P

∂M

)

. (3.20)

This is a special case of the general relation

〈q̄q〉(ρ, T )
〈q̄q〉0

= 1 +
1

f 2π

dP

dm2
π

, (3.21)

expressed in terms of the total derivative of the pressure with respect to m2
π.

The first term in brackets of eq. (3.20) is closely related to pions, the second
to nucleons. We will start with the first:
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3.2.2 Free and Interacting Pion Gas
at Finite Temperature

Let us now concentrate on the low temperature dependence of the chiral con-
densate which we first study at zero baryon density. Heavy hadrons are sup-
pressed by their Boltzmann factor exp(−E/T ). The leading behaviour of the
chiral condensate at temperatures T ≤ 100MeV comes from the light pions.
The first calculations concerning the T -dependence of the quark condensate
were carried out in [30]. Later in [31] the thermodynamics of a pion gas was
calculated up to three loops in chiral perturbation theory. More recent calcula-
tions can be found in [32, 33]. The starting point is the leading order effective
chiral ππ Lagrangian which we get by inserting B from (2.57) into (2.42):

L2 = L(2)ππ =
f 2π
4
tr
[

∂µU∂
µU † +m2

π

(

U + U †
)]

,

U =
√

1− f−2π ~π2 + if−1π ~τ · ~π. (3.22)

We have used that B trM = B · 2mq = m2
π = 1

2
trm2

π. Our results hold for
any parametrization of U . Expanding L(2)ππ to fourth order in ~π one finds

L(2)ππ =
1

2
∂µ~π · ∂µ~π +

1

6f 2π
[(~π · ∂µ~π)(~π · ∂µ~π)− (~π · ~π)(∂µ~π · ∂µ~π)]

+ m2
π

[

f 2π −
1

2
~π · ~π +

1

24f 2π
(~π · ~π)2

]

+O(~π6) (3.23)

From L(2)ππ one can derive the following pressure

Pπ(T ) =
T 4

2π2

[

h5(y)− 3αh23(y)
]

(3.24)

where

y =
mπ

T
, α =

(

mπ

4πfπ

)2

and hn(y) =
∫ ∞

y
dx

(x2 − y2)
n/2−1

exp (x)− 1
. (3.25)

We already encountered the first term in (3.24)

T 4

2π2
h5(y) = 3 · 1

6π2

∫ ∞

m2
π

dE
(E2 −m2

π)
3/2

eE/T − 1
(3.26)
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in our discussion of bosons in (3.8). The additional factor of “3” here comes
from the three different pions (π0, π±).
The contribution to the chiral condensate is easily obtained from Pπ(T )

〈q̄q〉(T )
〈q̄q〉(0) = 1− 12αy−2h3(y)

{

1 + 2α
[

y−2h3(y)− h1(y) + c̄
]}

. (3.27)

with the low energy constant c̄ ' 3 which accounts for quadratic quark mass
corrections in the GOR relation etc. [33].
It is only temperature dependent. The “1” in the bracket belongs to the free
piece, the rest is the interacting 2-loop part. These contributions are shown in
Fig. 3.1.
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Figure 3.1: Contributions of free (dashed) and interacting (solid) thermal
pion gas to the chiral condensate as given in (3.27)

Finally

sπ =
dPπ(T )

dT
=

4

T
Pπ(T ) +

3Tm2
π

π2
h3(y)

(
1

2
− αh1(y)

)

, (3.28)

is the corresponding contribution to the entropy density.
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3.2.3 Nucleons: Low Density Approximation

Consider a Fermi gas of free nucleons at T = 0 and baryon density

ρ = 4
∫

p<pF

d3p

(2π)3
=

2p3F
3π2

, pF ...Fermi momentum (3.29)

assuming the same number of protons and neutrons where the degeneracy
factor of 4 is for spin and isospin.
The scalar density is defined like ns = −∂P/∂M , therefore we can rewrite the
last term in (3.20) as follows

〈q̄q〉ρ
〈q̄q〉0

= 1− σN
m2
πf

2
π

ns (3.30)

At small baryon density the difference between ρ and the scalar density ns can
be neglected, so that in this limit it is applicable to work with

〈q̄q〉ρ
〈q̄q〉0

' 1− σN
m2
πf

2
π

ρ. (3.31)

This is known as the low density approximation (LDA). More on the conse-
quences involved can be found e.g. in [34] and the references therein.







Chapter 4

Nuclear Matter

We mentioned the importance of chiral symmetry (→ 2.2) in the study of
low energy hadron physics, in particular the nuclear matter problem. After
introducing the basic features of this symmetry in chapter 2 we emphasised
at the beginning of chapter 3 the key role played by its order parameter -
the chiral quark condensate 〈q̄q〉. At high temperature and/or baryon den-
sity chiral symmetry is restored which results in a vanishing quark condensate
〈q̄q〉 = 0. In the chiral symmetric phase hadrons are unstable, quarks are
quasi-free and (almost) massless. This phase is named quark-gluon plasma.
The chiral phase transition between hadronic or nuclear matter (〈q̄q〉 6= 0) to
the plasma phase (〈q̄q〉 = 0) is interesting to study for several reasons: due to
the big bang theory the universe started out from a singularity, an extremely
hot and dense state. The system expanded and cooled down with decreasing
density, thus the early universe must have gone through this phase transition
(→ formation of nucleons). Another situation where the chirally symmetric
phase may be realised is the extremely compressed matter in compact (neu-
tron) stars. Therefore knowledge about such matter may allow to improve
our understanding of dense stars. Anyhow the study of the chiral condensate
allows to construct a phase diagram of nuclear matter. Sooner or later a lot
of related questions might be answered by the currently performed heavy ion
collision experiments.
Whereas the knowledge about typical baryon densities at which such a phase
transition occurs is rather poor, the critical temperature above which chiral
symmetry is restored is

Tc = (173± 8)MeV (4.1)

known from lattice calculations. This value corresponds to the two-flavor re-
sult from [35].
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Before going into details we want to clarify the notion of nuclear matter: an
infinite homogeneous system of equally many protons and neutrons being sub-
ject only to the strong interaction.
It is not an easy task to obtain empirical information about its properties since
equilibrated nuclear matter does not exist in the laboratory and astrophysics
measurements are rather indirect and therefore subject to large uncertainties.
However, we will see that some of its properties can be deduced more or less
directly from the study of nuclei. A nucleus consists of Z protons and N neu-
trons. Because the mass of a nucleus is mainly given by the sum of the masses
of these components one defines the mass number A = Z +N .
There are two sources that can be used to draw helpful qualitative conclusions:
First the phenomenological Bethe-Weizsäcker mass formula [36, 37, 38]
whose parametrisation is dependent upon A and Z. And second: the Fourier
transform of the nuclear form factor which yields the charge distribution of a
nucleus. Such form factors have been measured for a wide range of nuclei at
various electron accelerator facilities during the last four decades with high
precision. The results can be summarised as follows [39]:

• If nuclei are approximated as spheres with homogeneous charge distri-
bution, the radius of this sphere is

R ' 1.2 fm · A1/3. (4.2)

• The term in the Bethe-Weizsäcker mass formula which dominates
the binding energy is the volume term (∼A):

B =
|E|
A
' 16MeV. (4.3)

The fact that B is a constant as function of nuclear mass number is called
saturation.
• The nuclear charge distribution can be approximated by a Fermi func-
tion with two parameters ρ(r) = ρ0/[1 + e(r−c)/a]. As a consequence of the
saturation (nearly) all nuclei have the same density in their centre:

ρ0 ' 0.17 fm−3 ' 0.0013GeV3. (4.4)

The third property of nuclear matter we will come across is unfortunately
not known so well. It is the nuclear matter compressibility κ. It can be ob-
tained by extrapolation of isoscalar giant monopole resonances. A range which
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covers results of non-relativistic [40] as well as relativistic [41] analysis is

κ = (230± 50)MeV (4.5)

More about it can be found in section 4.2.3.
Non-relativistic models are able to describe nuclear matter quite well, e.g.
in [42] where advanced many-body techniques and an adjustable three-body
force are used. In [43, 44] an alternative approach is used where the energy
per particle of isospin-symmetric nuclear matter is calculated in the three-
loop approximation of chiral perturbation theory. Both approaches differ in
the treatment of effective short-range interactions. Nevertheless with only one
adjustable parameter a good nuclear matter equation of state can be obtained.

The relativistic approach to the nuclear many-body problem was initiated by
Walecka and his coworkers [45]. Such relativistic mean field models were re-
fined for applications to nuclear structure by inclusion of additional non-linear
terms, e.g. as in [46]. A recent overview over mean-field models of nuclear
structure can be found in [47].
The starting point of our model will also be the treatment of the nucleons as
Dirac quasi-particles moving in self-consistently generated scalar and vector
mean fields. An extensive discussion of the relativistic mean-field approach
can be found in [48, 49].

4.1 The Walecka Model

At the beginning of the introduction to this chapter we explained why effective
nuclear field theory is the tool chosen in describing nuclear matter. Using
effective field theory one has to decide about the following questions:

• Which particle species to be included?

• What precise form of the Lagrangian should be used?

The model Lagrangian used in scalar-vector mean field theory is

LW = ψ̄ [iγµ∂
µ −M + gσσ − gωγµω

µ]ψ +
1

2

(

∂µσ∂
µσ −m2

σσ
2
)

−1

4
FµνFµν +

1

2
m2
ωω

µωµ ; Fµν = ∂µων − ∂νων . (4.6)

This Lagrangian includes the Yukawa couplings of the baryon field ψ of mass
M to σ, a neutral scalar boson field, and ω, a neutral vector boson field.
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The exchange of σ is thought to simulate dynamics of 2-pion exchange. Their
masses are mσ and mω respectively. The long-range part of the nuclear force
comes from 1-pion exchange. However, in isospin symmetric matter (equal
numbers of protons and neutrons: Np = Nn) it averages to zero in the mean-
field approximation. The same holds for rho meson exchange.
The particular choice of Lagrangian (4.6) is motivated by considering the inter-
action of two heavy nonrelativistic nucleons. The corresponding instantaneous
and spin-independent potential in coordinate space can then be written as the
sum of two Yukawa interactions:

V (r) =
g2ω e

−mωr

4πr
− g2σ e

−mσr

4πr
. (4.7)

For gω > gσ this potential is repulsive at short distances and with mω > mσ it
will be attractive at large distances, thus resembling the main features of the
nucleon-nucleon force which are responsible for binding and saturation prop-
erties of nuclear matter.

With the parameters from [26]

mω = 783MeV mσ = 550MeV

g2ω/4π = 14.37 g2σ/4π = 9.33

(4.8)

the potential takes the form as
shown in Fig.4.1.

Figure 4.1: Model potential
(4.7) of the nucleon-nucleon in-
teraction with the parameters
from (4.8).
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The partition function at finite density is

Z =
∫ [

dψ̄p
]

[dψp]
[

dψ̄n
]

[dψn] [dσ] [dωµ] ·

· exp

(
∫ β

0
dτ
∫

d3x
[

LW + µpψ
+
p ψp + µnψ

+
n ψn

]
)

(4.9)

with chemical potentials µp and µn for protons and neutrons, where we have
µ=µn=µp for isospin symmetric matter and

LW → LW + µpψ
+
p ψp + µnψ

+
n ψn = LW + µψ+ψ = LW + µψ̄γ0ψ (4.10)

from which all properties of this system can be derived.
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4.1.1 Mean Field Approximation

The nucleons act as sources in the boson field equations derived from (4.6).
The fields σ and ω0 can have nonzero expectation values, so they are expressed
as their ensemble average (bar) plus the fluctuations about it:

σ = σ̄ + δσ

ωµ = δµ0ω̄0 + δωµ (ω̄i = 0 due to rotational symmetry) (4.11)

In mean field approximation (MFA) the fluctuating part will be neglected, so
that δσ, δωµ → 0. The nucleons move independently in the mean fields σ̄ and
ω̄0 which are generated self-consistently.
We have σ → σ̄ and ωµ → ω̄0. Therefore the integrand (4.10) of the exponential
in the partition function (4.9) is approximated by

LW = ψ̄ (i 6∂ −M + gσσ̄ − gωω̄0)ψ + µψ̄γ0ψ −
1

2
m2
σσ̄

2 +
1

2
m2
ωω̄

2
0 =

= ψ̄ (i 6∂ −M ∗ + µ∗γ0)ψ −
1

2
m2
σσ̄

2 +
1

2
m2
ωω̄

2
0 =: L∗ + L(σ̄, ω̄0) (4.12)

where L∗ = L∗(ψ̄, ψ) = ψ̄ (i 6∂ −M ∗ + µ∗γ0)ψ. The remaining calculation of
Z can be performed explicitly because the functional integral is just a prod-
uct of Gaussian integrals. It is straightforward to obtain the pressure from
P = T/V lnZ where

Z =
∫ [

dψ†
]

[dψ] · eS and S =
∫ β

0
dτ
∫

d3xLW (4.13)

and ψ† is the field conjugate to ψ. With (4.12) we find for the pressure

P =
T

V
ln
∫ [

dψ†
]

[dψ] · exp
{
∫ β

0
dτ
∫

d3xL∗(ψ̄, ψ) + L(σ̄, ω̄0)
}

=
T

V
ln

[

exp {βV L(σ̄, ω̄0)} ·
∫ [

dψ†
]

[dψ] · exp
{
∫ β

0
dτ
∫

d3xL∗(ψ̄, ψ)
}]

= L(σ̄, ω̄0) +
T

V
ln
∫ [

dψ†
]

[dψ] · exp
{
∫ β

0
dτ
∫

d3xL∗(ψ̄, ψ)
}

. (4.14)

The reader who has seen Appendix B will recognise that we already encoun-
tered the last term in (4.14) there, with the replacements

M →M∗, µ→ µ∗ (4.15)
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into (B.18). This led to the result for a free Fermi gas which can be found
in (B.30). In our case - because of (4.15) - we deal with nucleons as quasi
particles of effective mass M ∗ and effective chemical potential µ∗. Then

P =
2

3π2

∫ ∞

M∗
dE

(

E2 −M∗2
)3/2 [

f−E + f+E
]

+
1

2
m2
ωω̄

2
0 −

1

2
m2
σσ̄

2

= PFG(T, µ
∗,M∗) +

1

2
m2
ωω̄

2
0 −

1

2
m2
σσ̄

2 (4.16)

is our expression for the pressure derived from (4.12). The first term on the
right-hand side is the pressure of a free Fermi gas of quasiparticles (quasi-
nucleons) with effective mass M ∗ and shifted chemical potential µ∗. The last
two terms represent the vector and scalar fields in mean field approximation.

4.1.2 Self-consistency Equations

From (4.12) we can read off the relations for the nucleon effective mass and
shifted chemical potential:

M∗ = M − gσσ̄ (4.17)

µ∗ = µ− gωω̄0 (4.18)

These are used to eliminate σ̄ and ω̄0. The following derivatives

∂M∗

∂M
=

∂µ∗

∂µ
= 1 (4.19)

∂M∗

∂σ̄
= −gσ ;

∂µ∗

∂ω̄0
= −gω (4.20)

taken from these self-consistency equations will be useful in our next step: the
determination of σ̄ and ω̄0. The equilibrium configuration for these varying
mean fields are obtained when the thermodynamic potential is extremal. This
is equivalent to having an extremum in P ⇔ ∂P/∂σ̄ = ∂P/∂ω̄0 = 0:

∂P

∂σ̄
=
∂PFG
∂M∗

∂M∗

∂σ̄
−m2

σσ̄ = 0
(4.20)
=⇒ σ̄ = − gσ

m2
σ

∂PFG
∂M∗

ns = −
∂P

∂M
= −∂PFG

∂M∗

∂M∗

∂M

(4.19)
= −∂PFG

∂M∗







σ̄ =
gσ
m2
σ

ns (4.21)
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and analogous

∂P

∂ω̄0
=
∂PFG
∂µ∗

∂µ∗

∂ω̄0
+m2

ωω̄0 = 0
(4.20)
=⇒ ω̄0 =

gω
m2
ω

∂PFG
∂µ∗

ρ =
∂P

∂µ
=
∂PFG
∂µ∗

∂µ∗

∂µ

(4.19)
=

∂PFG
∂µ∗







ω̄0 =
gω
m2
ω

ρ. (4.22)

The pressure (4.16) can be written with these results for the mean fields as

P = PFG +
1

2

g2ω
m2
ω

ρ2 − 1

2

g2σ
m2
σ

n2s =: PFG +
1

2
Gvρ

2 − 1

2
Gsn

2
s. (4.23)

Combining (4.17) with (4.21) the scalar density is expressed in terms of the
difference between the free nucleon mass M and the effective mass M ∗:

gσσ̄ = Gsns ⇔ σ̄ =
gσ
m2
σ

ns = (M −M ∗) /gσ ⇒ ns =
M −M∗

Gs
(4.24)

An analogous relation holds for the baryon density and the (effective) chemical
potential, thus we can rewrite (4.23) as:

P = PFG(T, µ
∗,M∗) +

(µ− µ∗)2

2Gv
− (M −M ∗)2

2Gs
. (4.25)

We have introduced the two parameters

Gs =
g2σ
m2
σ

and Gv =
g2ω
m2
ω

(4.26)

mentioned in [26] which we will use from now on. They are fixed by reproducing
the saturation density (4.4) and energy per nucleon (4.3). We will later see
that in order to be able to receive the correct value for the compressibility κ we
will have to introduce an additional third- or fourth-order term with coupling
strengths Gn (n = 3, 4). This can be achieved, restricting ourselves to the
nucleon, omega and sigma fields, by adding a cubic or quartic term

λ3σ̄
3 or λ4σ̄

4. (4.27)

In the nonrelativistic case these terms correspond to a three- or four-body
force.
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4.1.3 Contact Interactions

In the mean field approximation, theWalecka model is equivalent to a model
with corresponding contact interactions. Let us start with the following La-
grangian with contact interactions:

Lci = LµDirac −
Gs
2

(

ψ̄ψ
)2

+
Gv
2

(

ψ̄γµψ
)2

(4.28)

where LµDirac from (B.6) describes noninteracting Dirac particles and the last
two terms represent scalar and vector four-nucleon interactions. Under the
transformation

ψ̄ψ → ψ̄ψ − 〈ψ̄ψ〉 = ψ̄ψ − ns

ψ̄γµψ → ψ̄γµψ − 〈ψ†ψ〉δµ0 = ψ̄γµψ − ρδµ0 (4.29)

Lci behaves like

Lci = LµDirac −
Gs

2

[(

ψ̄ψ
)2 − 2ψ̄ψ〈ψ̄ψ〉+ 〈ψ̄ψ〉2

]

(4.30)

+
Gv

2

[(

ψ̄γµψ
)2 − 2ψ̄γµψ〈ψ†ψ〉+ 〈ψ†ψ〉2

]

=

= LµDirac +Gs〈ψ̄ψ〉ψ̄ψ −
1

2
Gs〈ψ̄ψ〉2 −Gv〈ψ†ψ〉ψ†ψ +

1

2
Gv〈ψ†ψ〉2

where we neglected quadratic fluctuations. If we now identify the following
forms for the scalar and baryon density

ns = 〈ψ̄ψ〉 (4.21)
=

m2
σ

gσ
σ̄ (4.31)

ρ = 〈ψ̄γ0ψ〉 = 〈ψ†ψ〉
(4.22)
=

m2
ω

gω
ω̄0 (4.32)

and insert them back into equation (4.30) this becomes

Lci = ψ̄ (i 6∂ −M + µγ0)ψ + ψ̄Gsnsψ − ψ̄γ0Gvρψ +
1

2
Gvρ

2 − 1

2
Gsn

2
s

(4.26)
= ψ̄ (i 6∂ −M ∗ + µ∗γ0)ψ −

1

2
m2
σσ̄

2 +
1

2
m2
ωω̄

2
0 ≡ LW (4.33)

which is our Lagrangian (4.12) in the Walecka model. We have thus shown
that in mean field approximation (MFA), the Walecka model with its four
parameters gσ,mσ, gω and mω is equivalent to a model with contact interac-
tions and only two parameters Gs and Gv. In the mean field limit, detailed
information about “masses” of scalar and vector bosons is thus irrelevant since
only the ratios g2/m2 of coupling constants and masses matter.
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4.1.4 Thermodynamic Quantities and Relations

In section 3.1 we decided to perform our calculations in the grand canonical
ensemble. As mentioned there we can get all other interesting information
from the pressure P . The scalar and baryon densities are calculated from

ns = −
∂P

∂M
, ρ =

∂P

∂µ
, (4.34)

the entropy density is defined as

s =
∂P

∂T
. (4.35)

The energy density can be calculated from the Gibbs-Helmholtz relation

ε = µρ+ Ts− P (4.36)

and finally the slope of P at normal nuclear matter density ρ0 and T = 0

κ = 9
∂P

∂ρ

∣
∣
∣
∣
∣
ρ=ρ0

(4.37)

yields the (in-)compressibility1.
Before we come to the summary of our results performed in the calculational
framework introduced in the previous sections we will briefly give an overview
as to how one computes the various thermodynamical quantities. We have al-
ready pointed out the importance of the equation of state, namely the pressure
P = P (T, µ, µ∗,M,M ∗), from which we derive these quantities. Let us first
write down its total differential and then identify the thermodynamic relations
using (4.34f):

dP =
∂P

∂T
dT +

∂P

∂µ
dµ+

∂P

∂µ∗
dµ∗ +

∂P

∂M
dM+

∂P

∂M∗
dM∗

= sdT + ρdµ− nsdM (4.38)

which allows reading off the self-consistency equations as extremal conditions

∂P

∂µ∗
=

∂P

∂M∗
= 0 (4.39)

of the total pressure with respect to the auxiliary variables µ∗ and M∗.
We will now describe the strategy we use in calculating a complete set of
thermodynamic quantities, this list of steps does not have to be altered sub-
stantially when we later discuss changes by adding pion exchange terms to our
equation of state, see section 4.4.

1both names are used throughout the literature, we will talk of compressibility
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• The fixed variables in the grand canonical ensemble are V , T and µ.

In the macrosopic limit V →∞, we need to choose T and µ∗.

• Then we solve the self-consistent mass equation (4.17) which comes

from ∂P/∂M ∗ = 0. This is equivalent to finding the roots of

F (M ∗) =M −M ∗ +Gs · ns (4.40)

• In the previous step we implicitly calculated the scalar density

ns = −
∂P

∂M

(4.21)
= −∂PFG

∂M∗
, see (B.32) (4.41)

• We get the baryon density from (4.34):

ρ =
∂P

∂µ

(4.22)
=

∂PFG
∂µ∗

, see (B.33) (4.42)

• As stated in (4.35) the entropy density is

s =
∂P

∂T
(4.43)

• Of course we are interested in the pressure P of the system itself:

P
(4.23)
= PFG +

1

2
Gvρ

2 − 1

2
Gsn

2
s (4.44)

with PFG(T, µ
∗,M∗) from (B.30).

• The second self-consistency equation
∂P

∂µ∗
= 0 (4.45)

allows calculation of the baryon chemical potential µ.

• µ is needed to calculate the energy density from the Gibbs-Helm-

holtz relation ε = µρ+ Ts− P (4.46)

• The compressibility κ is defined as

κ = 9 · ∂P
∂ρ

∣
∣
∣
ρ=ρ0

(4.47)

where ρ0 is the normal nuclear matter density in (4.4).

Finally calculating the chiral condensate from our master formula in (3.20),

〈q̄q〉(ρ, T )
〈q̄q〉0

= 1 +
1

f 2π

(

∂P

∂m2
π

+
σN
m2
π

∂P

∂M

)

, (4.48)

we end up with a complete set of quantities

=⇒ T, µ∗,M∗, ns, ρ, s, P, µ, ε, κ, 〈q̄q〉/〈q̄q〉0 (4.49)

which determine basic properties of nuclear matter and its thermal behaviour.
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4.2 Numerical Results

We will now proceed through the steps leading to (4.49) by discussing the
corresponding results. Let us start with the mass self-consistency equation.

T=0

M0

0

0.5

1

µ*[GeV]0
0.5

1M*[GeV]

0

0.5

1

F(M*)

T=100 MeV

M0

0

0.5

1

µ*[GeV]0
0.5

1M*[GeV]

0

0.5

1

F(M*)

T=150 MeV

M0

0

0.5

1

µ*[GeV]0
0.5

1M*[GeV]

0

0.5

1

F(M*)

T=200 MeV

M0

0

0.5

1

µ*[GeV]0
0.5

1M*[GeV]

0

0.5

1

F(M*)

Figure 4.2: The structure of F = F (T, µ∗,M∗) from (4.40) at temperatures
T = 0,100,150,200 MeV. Its zeros are the solutions M ∗ to (4.17).

The overall structure of the relevant function F of eq.(4.40) is shown in Figure
4.2. It is straightforward to obtain the solutions to the self-consistent mass
equation (mass-SCE) by projecting out the F = 0-planes. This was done for
various temperatures, the results are shown in Fig.4.3. We see that for a cer-
tain combination of T and µ∗ there can be up to three solutions all of which are
physical2. For T = 0 and µ∗ = 0.75 GeV we have marked the three solutions
with crosses in the plot.
At this point we emphasize that once one has determined the solutions to the
mass-SCE a combination of T, µ∗ and such a solution M ∗ enables us to calcu-
late any of the quantities in (4.49) in arbitrary order. In our next step we will
calculate the baryon density ρ as in (4.42).

2this is in contrast to the studies of [50]
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Figure 4.3: Projections
of the F = 0- planes
at temperatures (from
right to left) T =
0,50,100,150,175,200
MeV.

It is in no way trivial to obtain a single flat curve from the solutions of the
self-consistent equation (SCE) for the mass when plotting M ∗ as a function
of ρ as is our result shown in Fig.4.4. Again we labelled the solutions which
correspond to µ∗ = 0.75GeV.
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Figure 4.4: The so-
lutions M ∗/M0 of the
mass-SCE as a function
of normalized baryon
density ρ/ρ0 at temper-
ature T = 0 MeV.
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There are three points to mention concerning Fig.4.4:

• the solution corresponding to M ∗ = M0 belongs to ρ = 0 because we define
our baryon density at T = 0 such that it vanishes for µ∗ > M∗. Otherwise we
would run into a problem with imaginary densities. Remember that in that
case we have ρT=0 = 2p3f/(3π

2) = 2(µ∗2 −M∗2)3/2/(3π2).
• the third solution cannot be seen on the plot as it belongs to the extremely
high density ρ ∼ 35ρ0, where the model does not apply.
• the point with error bars labelled “quasi-empirical” is the widely accepted
value for M ∗/M0 = 0.75± 0.05 which we clearly miss with M ∗/M0 ' 0.54. A
detailed discussion about this follows in section 4.3.1. We will see later that
this is not the only shortcoming in the Walecka model. In equation (4.54)
the compressibility κ comes out nearly a factor of 2 too large. These two prob-
lems are related and will be fixed in section 4.3 where we introduce additional
couplings and parameters.

4.2.1 Liquid-Gas Phase Transition

With the combinations of T, µ∗,M∗ we are capable of calculating the remain-
ing quantities of interest. We start with the equation of state.

Tc
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ρ/ρ00

10

20

T[MeV]
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0

1

2

P[MeV/fm3]

Figure 4.5: Equation of state (4.44): Pressure P = P (ρ/ρ0, T )
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We plot the pressure as a function of normalized baryon density and tempera-
ture in Fig.4.5. We also show the parabola that one obtains from the maxima
and minima of the pressure from the various isotherms in Fig.4.6.
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Figure 4.6: The
pressure P as a func-
tion of normalized
baryon density ρ/ρ0
at T =0,5,10,15,20,25
MeV. The horizontal
line labelled A-D rep-
resents the Maxwell

construction performed
in the P -V -plane as
shown in Fig.4.7.

As a further example we have performed the Maxwell construction at T =
15MeV. The horizontal line labelled A-D is obtained from the standard pro-
cedure in Fig.4.7:
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D
Figure 4.7: The pres-
sure P as a function of
volume V at T =15
MeV. The Maxwell

construction is shown.
The two areas below
and above the horizon-
tal line have same size.
The labels A-D are ex-
plained in the text.
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In the P -V -plane one has to ensure that the two areas above and below the
horizontal line become equal in magnitude - as shown. This is equivalent to
the condition that A and D represent points of equal chemical potential µ.
Sytems of self-bound fermions in three space dimensions such as the one con-
sidered here undergo a liquid-gas phase transition of the Van der Waals

type. The binding energy curve at T = 0 is presented in Fig.4.8 and displays
the characteristic minimum at ρ = ρ0. In this ground state nuclear matter be-
haves like a Fermi liquid. Increasing the temperature leads to higher kinetic
nucleon energy. A mixed phase occurs in which droplets of nucleons coexist
with a nucleon gas. This mixed phase disappears at a critical temperature
T LGc . In this model we find its value in the range

T LGc = 19.5± 0.5MeV. (4.50)

Let us return to the horizontal line between A and D which is the Maxwell

construction in Figs. 4.6 and 4.7. Consider moving along the T = 15 MeV
isotherm. At densities ρ < ρA only the gas phase, for ρ > ρD only the liquid
phase is present. Between A and B this gas phase is metastable, similarly
the liquid phase is metastable from C to D. That means that the system can
remain in the corresponding phase but it will not survive indefinitely. The
curve between B and C is unstable as in this region the stability condition
∂P/∂ρ > 0 is violated.
For T < T LGc the phase transition is first order. At the critical temperature
T LGc the points A,B,C and D merge into one, the line of first-order phase
transition terminates. Above T LGc the system is in its gas phase.
Up to now we have not paid much attention to the choice of parameters. Of
course the results shown before were obtained with a specific combination of
Gs and Gv. In the following section we explain how we actually determine the
parameters used to calculate the numerical results shown up to this point.
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4.2.2 Parameter Dependence of the
Nuclear Matter Saturation Point

Recall the three fundamental properties of nuclear matter we already encoun-
tered: the normal nuclear matter density ρ0 ' 0.17 fm−3 as in (4.4), the
binding energy per nucleon B = 16 MeV from (4.3) and the compressibility
κ defined in (4.47). A successful description of nuclear matter requires that
these properties are reproduced.
We use our two available parameters to fit B and ρ0. Later we check on the
value of κ. In Fig. 4.8 we plotted the values for ε/ρ −M0 with ε from (4.46)
over normalized baryon density for our best fit where the parameters are

Gs = 353.28GeV−2 and Gv = 265.05GeV−2. (4.51)

Note that this calculation is carried out at T = 0.
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Figure 4.8: Binding
energy per nucleon at
T = 0. The parame-
ters and the values they
fit are given in the plot.

Table 4.1: Parameters used to shift the minimum in Fig. 4.8 around. The resulting
s- and v-curves are plotted in Fig. 4.9, [Gs,v] = GeV−2.

s-curve s1 s2 s3 s4
(Gv = 265.051) Gs = 340 350 360 370
v-curve v1 v2 v3 v4
(Gs = 353.277) Gv = 250 260 270 280
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This parameter set is uniquely determined as can be seen by studying the
movement of the minimum in B(ρ) with changing parameters. This trend is
understood by looking at Fig. 4.9 and Table 4.1.

Figure 4.9: The same
plot as in Fig. 4.8
where the parameters
were varied this time
with a focus on the
shifting of the mini-
mum. The details
about si and vi (i =
1...4) can be found in
Table 4.1.
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The two slightly bent curves shown in Fig. 4.9 represent collections of minima
in the energy per nucleon that belong to calculations where only one of the two
parameters varied. In the case labelled s(v) the parameter Gs(Gv) is varied
whereas Gv(Gs) is held fixed at the value from (4.51) above. Therefore both
curves run through the minimum of the solid curve which is the same as the
one in Fig. 4.8. The other corresponding values are listed in Table 4.1.

Table 4.2: Relation between parameter values and shifting the minimum. The
first column contains the desired shifting direction, the other two give instructions
which parameter has to be changed and how.

minimum Gs Gv

right - decrease
left - increase
up decrease -

down increase -
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One can see that when varying the parameters one at a time the minimum
does shift up and down as well as from left to right. The shifting seems to
be more extreme when we vary Gv. Nevertheless in that case there is a larger
shift from left to right in comparison to that between up and down.
It is easily possible to place the minimum at the desired position when using
Table 4.2.

4.2.3 The Compressibility of Nuclear Matter

We have already mentioned the compressibility on several occasions. Unfortu-
nately its value is not known very accurately. In principle it can be extracted
from giant monopole resonances3 found in nuclei heavier than 40Ca [40]. It was
first determined to be in the range κ = 210± 30 MeV [26, 40] but more recent
relativistic analysis [41] seems to indicate that κ is more than 20% larger:

κ ' 260± 10MeV. (4.52)
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Figure 4.10: The com-
pressibility κ [MeV] ob-
tained from P (ρ/ρ0).

In order to calculate κ in our model we use equation (4.47) where the slope of
the pressure at saturation density plays the key role:

κ = 9
∂P

∂ρ

∣
∣
∣
∣
∣
ρ=ρ0

=
9

ρ0

∂P

∂(ρ/ρ0)

∣
∣
∣
∣
∣
ρ/ρ0=1

. (4.53)

3more precisely: from the energies of isoscalar monopole vibrations in nuclei



4.2 Numerical Results 53

We had already taken a look at the pressure. Therefore Fig. 4.10 is not entirely
new. It shows how we fit a straight line g(x) = a(x − 1) with x = ρ/ρ0. The
slope a is determined at the point P = g(1) = 0. It leads to a compressibility

κ =
9 · a
ρ0

' 9 · 10.53MeV/fm3

0.17/fm3 = 557.5MeV (4.54)

which is too large by a factor of about 2. Before tackling this problem in
section 4.3 below we will complete to show the results of the quantities on our
list in (4.49) that we have not touched so far, as there are the entropy s, the
scalar density ns and the closely related chiral quark condensate 〈q̄q〉4.

4.2.4 Energy and Entropy Densities

We already discussed the energy density defined in (4.46) when we calculated
the energy per nucleon ε/ρ−M0 with ε = µρ+ Ts− P .

Figure 4.11: ε/ρ −
M0 plotted over nor-
malized baryon density
for temperatures T =
0, 10, 15, ..., 30 MeV. 0
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The latter was only used in the simplified zero temperature limit

ε = (µ∗ +Gvρ)ρ− P (4.55)

where the entropy density does not contribute. In addition to the zero tem-
perature case in Fig. 4.8 we have plotted more isotherms in Fig. 4.11.

4we will use this appreviation for 〈q̄q〉(ρ, T )/〈q̄q〉(0) throughout this text
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Figure 4.12: Entropy
s = s(ρ/ρ0) at T =
1, 2MeV showing the
possibly unphysical re-
gions with decreasing s.

The non-vanishing values close to the y-axis come from the finite value of
µ(ρ→ 0) as s, P → 0 in that limit (the points on the y-axis itself corresponding
to ρ = 0 are excluded, division by zero).
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MeV (read the explana-
tions in the text).

At finite temperature the sT -term contributes to ε. We have plotted the
entropy density s in Figs. 4.12f. Fig. 4.12 shows the possibly unphysical
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regions at T = 1 and 2 MeV, higher temperatures are shown in Fig. 4.13,
where - in order to be able to compare the different temperatures - the local
maxima (and the turning-point for T = 23 MeV, solid line) were shifted such
that they correspond to s = 0.
There is possibly a problem as s decreases in certain density regions. One
might think that these regions correspond to the unphysical regions of the
Maxwell constructions, but they differ from those. Also the temperature
T = 22.5± 0.5 MeV at which this strange behaviour ceases is larger than that
of the liquid-gas transition temperature T LGc in (4.50). After fixing the value
of the compressibility later this strange behaviour with decreasing entropy will
not be present any more, see Fig. 4.27.

4.2.5 The Chiral Condensate (I)

In this section we will finally cope with our main topic, the chiral quark con-
densate. It was derived in (3.20). We have neglected thermal pions in the
calculation of Fig.4.14, concentrating on the pure Walecka model for now,
therefore the equation used to calculate the condensate reduces to (3.30):

〈q̄q〉(ρ, T )
〈q̄q〉0

= 1 +
σN
m2
πf

2
π

∂P

∂M
= 1− σN

m2
πf

2
π

ns (4.56)

We see that it is closely related to the scalar density ns. Note that the
Walecka model Lagrangian breaks chiral symmetry explicitly, so that ex-
act “chiral restoration”, the dropping of 〈q̄q〉 to zero at high temperature and
density is not an issue. Instead the condensate seems to approach a finite
value. The rapid change of the condensate at a characteristic temperature is
nevertheless indicating the expected behaviour. Of course we talk about ex-
treme temperatures and densities at which our model should not be valid any
more as the hadrons are believed to start to dissolve into quarks and gluons
at temperatures T > 0.2GeV and densities far beyond that of normal nuclear
matter.
The correction concerning κ will bring the condensate’s tail down and the ther-
mal pions considered later will do too. The value that we assign to the chiral
phase transition will not reach the (low) value of

Tc ' 192MeV (4.57)

that one can - in principle - read off from the ρ = 0-projection of Fig. 4.14.
This value has to be compared to the SU(2)F -lattice result which is found
to be Tc = 173 ± 8 MeV, see (4.1) and [35]. Our value is slightly too large,
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however, it is only indicative since our model is no longer valid near the “real”
chiral phase transition.
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Figure 4.14: The chiral quark condensate in the Walecka model with the
parameters from (4.51), the contour lines with 〈q̄q〉 = 0.35, 0.4 and 0.55 and
the projections of ρ = 0 and T = 0.

For completeness we have plotted the relation between the two densities in
Fig. 4.15. We can clearly see that for small densities ρ < ρ0 the linear density
approximation in (3.31) is a good one.
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Figure 4.15: Scalar
density ns [fm−3] as a
function of ρ/ρ0 (solid
line) with emphasis on
normal nuclear matter
density (crosses) and
ns = ρ (dashed).
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After giving this overview of the results in the Walecka model we will now
improve this calculation in the next section.

4.2.6 The Phase Diagram of Nuclear Matter

In this section we take a look at what the phase diagram of nuclear matter
“would look like” in the Walecka model.

Figure 4.16: The
phase diagram of
nuclear matter as
calculated in the
scalar-vector mean
field model. For com-
parison we have also
plotted the result of
an NJL calculation
[51, 52], see text.
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In this case the order parameter of the chiral phase transition - the condensate
- does not vanish. The rapid dropping of the condensate 〈q̄q〉(ρ, T )/〈q̄q〉0
nevertheless indicates a transition of some sort.
It shows the tendency towards chiral restoration and it is interesting to explore
qualitatively the resulting phase diagram. Let us consider cutting the diagram
in Fig. 4.14 at 〈q̄q〉 = 0.35, 0.4, 0.55 and take a look at these projections. The
resulting phase diagram does not differ much qualitatively for the different
values as can be seen in Fig. 4.16.
The qualitative behaviour is like that obtained from an SU(2)F calculation in
the Nambu-Jona-Lasinio (NJL) model [53, 54, 55] and similar calculations
[56, 57]. The NJL model is based on an effective Lagrangian of relativistic
quarks with effective point-like interactions between them. The gluonic degrees
of freedom are frozen. It is a simple model that exhibits spontaneous chiral
symmetry breaking.

4.3 Additional Parameter: Improved Results

We had already mentioned the problem of the large compressibility that we
found in (4.54) and the corresponding problem of the too small effective nu-
cleon mass. In addition, the value of T LGc found in (4.50) is slightly too high.
It is generally true that its value is monotonically increasing with the com-
pressibility κ. Therefore an improvement in κ will also decrease the value of
T LGc , a welcome effect. We can thus summarise that fixing the value for κ is
definitely desired as it will at least improve - if not fix - these problems.

We extend the Walecka model by adding a higher power of the scalar mean
field to the partition function. This brings about a new parameter that allows
fitting the value of the compressibility κ as discussed in section 4.2.3, espe-
cially (4.52). This new parameter is introduced by adding a term of the form
in (4.25). The equation of state of the extended Walecka model reads:

P = PFG +
1

2Gv

(µ− µ∗)2 − 1

2Gs
(M −M ∗)2 − 1

nGn

(M −M ∗)n (4.58)

Our new coupling parameter is Gn where n can be one of the values n = 3, 4.
Let us now differentiate P again with respect to M and M ∗

∂P

∂M
= − (M −M ∗) /Gs − (M −M ∗)n−1 /Gn (4.59)

∂P

∂M∗
=

∂PFG
∂M∗

+ (M −M ∗) /Gs + (M −M ∗)n−1 /Gn =
∂PFG
∂M∗

− ∂P

∂M
(4.60)



4.3 Additional Parameter: Improved Results 59

The self-consistency equation for the effective mass reads

∂P

∂M∗
= 0 ⇒ ∂P

∂M
=
∂PFG
∂M∗

(4.61)

This is equivalent to finding the root of the function

F (M ∗) = M −M ∗ +Gs
∂PFG
∂M∗

+
Gs
Gn

(M −M ∗)n−1

= M −M ∗ −Gs ns +
Gs
Gn

(M −M ∗)n−1 = 0 (4.62)

where ns is the scalar density

ns = (M −M ∗) /Gs +G−1n (M −M ∗)n−1 = − ∂P

∂M
= −∂PFG

∂M∗
. (4.63)

The second self-consisteny equation for the chemical potential does not differ
as we still have

∂P

∂µ
=
µ− µ∗

Gv
∂P

∂µ∗
=
∂PFG
∂µ∗

− ∂P

∂µ
= 0







ρ =
µ− µ∗

Gv
=
∂PFG
∂µ∗

. (4.64)

We have now modified the equation of state of our system in a self-consistent
manner without the introduction of an underlying Lagrangian. This is quite
straightforward as the relation between the mean σ field and M −M ∗ has not
changed:

LO(n) = ψ̄ (iγµ∂
µ −M∗ + µ∗γ0)ψ +

1

2
m2
ωω̄

2
0 −

1

2
m2
σσ̄

2 − 1

2
λnσ̄

n (4.65)

with Gn = gnσ/λn. We will study the cases n = 3, 4. It is just important to
note here that this time M ∗ cannot simply be read off from (4.65) but it is
obtained by solving the mass-SCE ∂P/∂M ∗ = 0. We will refer to the two
different extensions of the model as O(3) and O(4).
It is not trivial however to find a corresponding Lagrangian with contact in-
teractions as it was the case in the Walecka model, we have presented the
discussion about this in Appendix A.6.
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4.3.1 New Parameter Sets

We have now got a new parameter Gn at hand that allows fitting the value of
the compressibility κ as discussed in section 4.2.3.

Figure 4.17: Equa-
tion of state P (ρ/ρ0)
at T = 0 for the
three different cases
and the corresponding
values for κ (⇒ param-
eters in Table 4.3).

Figure 4.18: Gs and
Gv allow reproduction
of the correct binding
energy of 16 MeV at
saturation density ρ0
just as before.

The procedure for calculating the quantities in (4.49) now require a readjust-
ment of the parameters such that they shift the saturation density to the right
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value and to reproduce the correct binding energy per nucleon. This can be
done with only Gs and Gv as described in Table 4.2.

Figure 4.19: Connec-
tion between G−13 and
the other parameters as
well as κ.
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Figure 4.20: Same as
in Fig.4.19 for the di-
mensionless parameter
G4.
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The way we proceeded was to assign a certain value to Gn first and to apply
this method of adjusting the other two known properties in the second step.
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Astonishingly this works just the way it did before, see Figs. 4.17f. Only the
value of κ differs accordingly as can be seen in Figs. 4.19f. The parameters
used in the three different cases are listed in Table 4.3. It also shows the values
that we obtain for B = |E|/A, ρ0 and κ which we can reproduce - in principle
- with arbitrary accuracy. As the latter one is not known very accurately we
did not put much effort into assigning a special value to it.

Table 4.3: Parameter sets used to calculate the plots in this section,
[Gs,Gv]=GeV−2, [Gn]=GeVn−4, [E/A, κ]=MeV and [ρ0]=fm−3

set Gs Gv n G−1n |E|/A ρ0 M∗/M0 κ
1 RMF 353.277 265.051 - 0 16.0004 0.16974 0.546 557.5
2 O(3) 224.506 105.405 3 0.009 15.9964 0.17027 0.787 243.3
3 O(4) 158.905 60.095 4 0.15 16.0005 0.16965 0.853 251.4

The fractions M ∗/M0 are taken at ρ0, see Fig. 4.22.
From now on we refer to the Walecka model as discussed in the previous
section as relativistic mean field model (RMF).
We have already mentioned that our new approach differs from the old one
only by assigning a finite value to Gn. We have not established the connection
to the value of the compressibility κ yet. This is done in Figs. 4.19f. We also
plotted two parallel horizontal lines that correspond to the extreme values κ
could have, see (4.52). In each figure one of our data points lies within this
range, these are the data sets we refer to as O(n), n = 3, 4.
We decided to show these plots as functions of 1/Gn as the parameters Gs,v and
the values for κ on the y-axis (G−1n = 0) then correspond to our RMF case.
This simplifies comparisons and shows that the parameter sets are unique
unless G−1n is increased much further and the curves start to rise again.
With properly readjusted parameters we are now in the position to evaluate
all quantities in (4.49).
So far the two realisations O(n) were on a par. We will now discuss their
solutions to the mass-SCE. These are plotted in Fig. 4.21 as a function of µ∗

just as in Fig. 4.3 from which we have taken the RMF results at T = 0 and
150 MeV again for comparison. The corresponding temperatures dependence is
plotted for the O(n) cases. In Fig. 4.22 the solutions are shown as a function of
baryon density. We encounter again the quasi-empirical point that represents
today’s knowledge about the effective nucleon mass at saturation density.
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Figure 4.21: The solu-
tions of the mass-SCE
in all three cases for
T = 0 (solid) and T =
150MeV (dashed) as a
function of eff. chemi-
cal potential µ∗.
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Figure 4.22: The
same information as
in Fig.4.21, but this
time the normalized
solutions are plotted
versus normalized
baryon density ρ/ρ0.

At this point we want to go a bit more into detail about the various different
effective nucleon masses that can be found in the literature.



64 Nuclear Matter

4.3.2 Effective Nucleon Mass

The authors in [58] defined a nonrelativistic mass M ∗
NR by the following rela-

tion:

M

M∗
NR

= 1 +
M

pF

∂U(p, pF )

∂p

∣
∣
∣
∣
∣
p=pF

(4.66)

where U is the momentum and density dependent nuclear optical potential as
defined in [26]

U(p, pF ) =
√

p2 +M∗2 +Gvρ−
√

p2 +M2 (4.67)

in terms of “our” effective nucleon mass which is the mass of a Dirac quasi
nucleonM ∗ ≡M∗

D. Inserting the derivative of U into (4.66) yields the following
relation that links the nonrelativistic massM ∗

NR - which is obtained by solving
a Schrödinger-type equation - with our Dirac mass M ∗

D

1

M∗
NR

=
1

M
+

1
√

p2 +M∗
D
2
− 1√

p2 +M2
. (4.68)

This relation is plotted in Fig. 4.23 at saturation density ρ0 where the Fermi
momentum5 is pF = 268 MeV.

Figure 4.23: Rela-
tion between the dif-
ferent effective masses:
M∗

D obtained from our
model and the non-
relativistic one M ∗

NR

which should be com-
pared to the values
obtained from experi-
ments.
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5remember that at T = 0 we have ρ = 2p3
F /(3π

2).
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We can see that the nonrelativistic masses are sligthly higher, the discrepancy
is rather small though and can be neglected as the phenomenological values
are subject to uncertainties. The nuclear single particle potential (4.67) for
the three cases is shown in Fig. 4.24.
The quasi-empirical point in Fig. 4.22 is the empirical effective nucleon mass
M∗

emp = (0.7 − 0.85)M derived from experimental data in the framework of
nonrelativistic shell or optical models [59, 60, 61]. It allows to decide which
parameter realisation to favor: O(3). The range for M ∗

emp is shown in Fig.
4.23 for both effective masses.
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Figure 4.24: Nuclear
single particle potential
as a function of mo-
mentum.

Such potentials are used to interpret proton-nucleus scattering.
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4.3.3 Liquid-Gas Transition with Improved Interaction

We have already seen the most interesting quantities in the previous sections:
the equation of state P (ρ/ρ0) at zero temperature in Fig. 4.17, the binding
energy per nucleon E/A at saturation density ρ0 in Fig. 4.18, the relation
between our new parameter and the value of the compressibility κ in Fig.
4.19f and the solutions to the mass-SCE in Fig. 4.21.
We also discussed effective nucleon masses and these helped us to decide which
version O(n), n = 3, 4 for a new parameter we should use. The choice fell for
n = 3 which is easily understood by looking at Fig. 4.22. Therefore we
now study the changes that the new O(3)-term implies. The corresponding
quantities are summarised in Table 4.3.
We first want to have a look at the equation of state at finite T in Fig. 4.25
and the corresponding change in the value of the liquid-gas phase transition
temperature.
We already mentioned that the value of T LGc , see (4.50), is monotonically
increasing with the compressibility κ. As we have decreased the value of κ
that for T LGc should have become smaller accordingly. This is indeed the case
and the value came down to

T LGc = 16.6± 0.2MeV, (4.69)

see Fig. 4.26. This value is in perfect agreement with a recent analysis of
limiting temperatures in heavy ion collisions [3].
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Figure 4.25: Change
in the pressure: O(3)
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ted) at T =5,10,...,25
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Figure 4.26: The
interesting region that
allows reading off
T LGc enlarged, T =13,
14,...,20 MeV, see
(4.69).
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Figure 4.27: The entropy as a function of temperature and baryon density in
our case O(3).

We saw in section 4.2.4 that the RMF calculation resulted in ranges with
decreasing entropy. Such regions are not present any more after fitting the
right value to the compressibility as can be seen in Fig. 4.27 above.
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4.3.4 The Chiral Condensate (II)

The modifications with finite G3 result in the following T - and ρ-dependence
of the chiral condensate:
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Figure 4.28: O(3)-result: the chiral quark condensate 〈q̄q〉 ≡
〈q̄q〉(ρ, T )/〈q̄q〉(0, 0) after fitting the compressibility κ. In the projections
ρ = 0 and T = 0 we plotted the RMF results again (dashed) for comparison.
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This corresponds to a situation where the parameters Gs, Gv and G3 are ad-
justed such that they reproduce the empirical values of B, ρ0 and κ respectively.

The critical temperature at which the phase transition occurs rises from Tc =
192 MeV - which was closer to the SU(2)F -lattice result in (4.1) - to TO(3)c =
255MeV. Remember that this number is at most indicative since the model
looses its validity near the “real” chiral phase transition.

Figure 4.29: Phase
diagram in the case
O(3).
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Facing a situation with vanishing 〈q̄q〉 one finds the phase diagram shown in
Fig. 4.29 which this time is simply the projection of 〈q̄q〉 = 0 taken from Fig.
4.28.

4.4 Pionic Fluctuations

So far we dealt with non-interacting quasi nucleons moving in self-consistently
generated scalar and vector mean-fields. These mean-fields could be expressed
in terms of the quasi nucleon properties, i.e. rewriting the scalar (vector) mean
field in terms of the effective nucleon massM ∗ (effective chemical potential µ∗),
see eqs. (4.17f).
The nuclear force at a more microscopic level is mediated by exchange of (vir-
tual) mesons. Being the approximate Goldstone bosons of spontaneously
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broken chiral symmetry, pions are the lightest mesons with a mass of about
mπ = 138MeV. Therefore pions represent the dominant mesonic contributions
at the temperatures we consider. The temperature dependence of 〈q̄q〉(T ) at
low T is determined exclusively by the dynamics of the free and interacting
thermal pion gas discussed in section 3.2.2. Heavier mass states are suppressed
by their Boltzmann factor exp(−mh/T ).
One can as well argue in favor of implementing pions explicitly into the nuclear
matter problem (at T = 0) by the comparable scales of the Fermi momen-
tum at saturation density pf = (3π2ρ0/2)

1/3 = 268MeV and the pion mass
pf ' 2mπ.
Unfortunately it is only possible in rare special cases to obtain the partition
function of an interacting system in closed form. The field theoretical dia-
grammatic techniques [26, 27] allow a perturbative calculation of the ground
state energy of such a system of interacting fermions. Disconnected closed
diagrams (having no external legs) represent contributions to the logarithm of
the partition function.
Using such diagrammatic techniques we will add pion contributions to our
partition function and thus to the equation of state in this section.
There are two different one-pion exchange contributions: first the so-called
Hartree term

which averages to zero in isospin symmetric matter (since the exchanged 4-
momentum is zero (qµ = 0), this vanishing holds true in general). Secondly
there is the Fock term which remains finite. We will discuss in the next
section the influence of this Fock term on the saturation mechanism and the
thermodynamic properties of nuclear matter.

4.4.1 Thermal Pions and Pion Exchange

We just saw that a dynamical description of nuclear matter should incorpo-
rate pionic contributions. These will be investigated systematically at finite
temperature T and baryon density ρ in this section. Such contributions Pπ,π
can be seperated into two parts:

Pπ,π(T, µ
∗,M∗,mπ) = Pπ(T,mπ) + P1π(T, µ

∗,M∗,mπ) + ... . (4.70)

The first part Pπ is that of thermal pions discussed in section 3.2.2. It con-
tributes only at finite temperature, it vanishes at T = 0. The pion exchange



4.4 Pionic Fluctuations 71

Fock term P1π also yields a finite contribution at zero temperature. In its
complete form it can be found in (C.25). The dots stand for higher order
effects such as 2-pion exchange. We will discuss these contributions later in
section 4.5.
The field theoretical methods for the evaluation of the partition function can
be formulated in terms of Euclidean Feynman rules. They can be derived
using the standard procedure involving generating functionals from L. They
are summarised for our specific case (pseudovector pion-nucleon vertex, see
(2.54)) in Appendix A.1.
The detailed evaluation of the 1-pion exchange Fock diagram (C.1)

is presented in Appendix C. Each component of such a diagram is replaced by
its corresponding term where the lines are assigned Euclidean four-momenta
which are conserved at each vertex. Integrations over these 4-momenta involve
summations over Matsubara frequencies (→ A.5.1). For bosons these fre-
quencies are 2πTn (n an integer). For fermions these frequencies are complex
ωn = (2n + 1)πT − iµ, with µ the chemical potential. The result of these in-
finite sums are quadratic polynomials in Fermi-Dirac distribution functions
for nucleons and Bose-Einstein functions in the case of pions.
Terms which do not contain any distribution functions can be neglected as
they represent non-observable shifts of the vacuum energy. Terms involving
one single distribution function renormalise the free pion or the free nucleon
part. The terms bilinear in distribution functions represent the truly interest-
ing many-body effects from the pion-nucleon interaction. At zero temperature
the Fermi distribution function is replaced by a step-function

f(E − µ) → Θ(µ− E) (4.71)

In this limit there are no more effects from thermal anti-nucleons and thermal
pions.
We now want to study the consequences of such an additional pion contribu-
tion term Pπ,π to the partition function, or equivalently our equation of state.
Whereas the first term in (4.70) - being only a function of T and mπ - only
contributes at finite temperature (Pπ(T = 0) = 0) to P , the entropy s and the
quark condensate 〈q̄q〉, the second will do so in each step of our “thermody-
namics strategy” (most of the time also at T = 0), see section 4.1.4.
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If we extend the equation of state (4.58) again by adding the term Pπ,π in
(4.70) we end up with

P (T, µ∗, µ,M ∗,M,mπ) = PFG(T, µ
∗,M∗) + Pπ,π(T, µ

∗,M∗,mπ)

+
(µ− µ∗)2

2Gv
− (M −M ∗)2

2Gs
− (M −M ∗)3

3G3
.(4.72)

The dynamical situation described by this EOS is such that the quasi nucleons
built up by the scalar-vector background fields exchange pions, not the free
nucleons. We will implement these pion exchange effects self-consistently, in
other words: the resulting mean fields are influenced by the presence of the
pion-nucleon interaction.
Since the formulae at zero temperature are much simpler we will display these
here. The corresponding finite temperature results are easily assembled by
insertion of derivatives of the expressions found in the Appendix at the ap-
propriate places. Therefore we can concentrate on the changes implied by the
pion exchange term.
As is usual we will start again with the total pressure from which all other
interesting quantities in (4.49) can be derived: our equation of state at T = 0
becomes

P (µ∗, µ,M ∗) = PFG(µ
∗,M∗) + P1π(µ

∗,M∗)

+
(µ− µ∗)2

2Gv
− (M −M ∗)2

2Gs
− (M −M ∗)3

3G3
(4.73)

where M = 939 MeV and mπ = 138MeV will not be varied. The first two
terms in (4.73) are the free Fermi gas term

PFG(µ
∗,M∗) =

1

12π2

[

µ∗
(

2µ∗2 − 5M∗2
)

pf + 3M∗4 ln
µ∗ + pf
M∗

]

(4.74)

with pf =
√

µ∗2 −M∗2 (4.75)

and the 1π-exchange Fock term (derived in Appendix C.1)

P1π(µ
∗,M∗) = − 3g2A

32π4f 2π

[(

µ∗M∗pf −M∗3 ln
µ∗ + pf
M∗

)2

−m2
πM

∗2
∫ µ∗

M∗
dE1

∫ µ∗

M∗
dE2 ln

E1E2−M∗2+mπ
2/2+

√

(E21−M∗2)(E22−M∗2)

E1E2−M∗2+mπ
2/2−

√

(E21−M∗2)(E22−M∗2)



 .

(4.76)
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The first term of P1π in (4.76) is the T = 0-limit of the P∆-term in (C.6).
For the reasons given in the Appendix we will neglect it and also all of its
derivatives listed below!
The baryon density is defined like ρ = ∂P/∂µ = ∂(PFG+P1π)/∂µ

∗ and becomes

ρ(µ∗,M∗) =
2

3π2
p3f +

3g2A
8π4f 2π

M∗2
[

µ∗
(

M∗2 − µ∗2
)

+M∗2pf ln
µ∗ + pf
M∗

]

+
3g2Amπ

2

16π4f 2π
M∗2

∫ µ∗

M∗
dE ln

Eµ∗ −M∗2 +mπ
2/2 +

√

(E2 −M∗2)(µ∗2 −M∗2)

Eµ∗ −M∗2 +mπ
2/2−

√

(E2 −M∗2)(µ∗2 −M∗2)

(4.77)

at T = 0. The second term is a derivative of P∆, therefore it will be neglected
too. This decomposition of the density (and other) contribution(s) into a zero
range δ-part and a finite range Yukawa part can be understood by having a
look at a pion between two vertices

q2

m2
π + q2

= 1− m2
π

m2
π + q2

(4.78)

which can be split in the same way.
The defining conditions for the self-consistency equations ∂P/∂µ∗ = 0 and
∂P/∂M ∗ = 0 are unchanged. The latter

∂P

∂M∗
=

∂

∂M∗
(PFG + P1π)−

∂P

∂M
= 0 (4.79)

leads us to our definition of F :

F (µ∗,M∗) =M −M ∗ −Gs ns +
Gs
G3

(M −M ∗)2 , (4.80)

it can also be used to calculate ns:

ns = −
∂P

∂M
= (M −M ∗) /Gs + (M −M ∗)2 /G3 = −

∂

∂M∗
(PFG + P1π) . (4.81)

The contribution that belongs to P∆ this time is a bit harder to spot. It is the
term added to one in the second squared bracket:
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F (µ∗,M∗) =M −M ∗ +
Gs
G3

(M −M ∗)2 +
Gs
π2

[

M∗3 ln
µ∗ + pf
M∗

−M∗µ∗pf

]

·
[

1 +
3g2A

16π2f 2π

(

µ∗pf − 3M∗ ln
µ∗ + pf
M∗

)]

+
3g2Am

2
π

16π4f 2π
GsM

∗
∫ µ∗

M∗
dE1

∫ µ∗

M∗
dE2

ln
E1E2 −M∗2 +mπ

2/2 +
√

(E21 −M∗2)(E22 −M∗2)

E1E2 −M∗2 +mπ
2/2−

√

(E21 −M∗2)(E22 −M∗2)
− 3g2Amπ

2

16π4f 2π
·

·GsM∗3
∫ µ∗

M∗
dE1

∫ µ∗

M∗
dE2







√

(E21−M∗2)/(E22−M∗2)+1

E1E2−M∗2+mπ
2/2+

√

(E21−M∗2)(E22−M∗2)

+

√

(E21 −M∗2)/(E22 −M∗2)− 1

E1E2 −M∗2 +mπ
2/2−

√

(E21 −M∗2)(E22 −M∗2)






(4.82)

The zeros F (µ∗,M∗) = 0 of (4.82) are the solutions to the effective mass-SCE.
Due to the simple relation between effective chemical potential µ∗ and pf at
zero temperature, see (4.75), this function and the whole procedure can as well
be formulated in terms of effective mass and Fermi momentum.
Finally the energy density is

ε(µ∗,M∗) = µρ− P = (µ∗ +Gvρ)ρ− P (4.83)

and can be used to calculate

B =
ε

ρ
−M = µ∗ −M +Gvρ−

P

ρ
, (4.84)

the binding energy per particle. This formula collection should enable the
reader to construct the corresponding finite temperature case.

Let us come back to finite T where thermal pions have to be taken care of as
well. The changes concerning P1π are just the analogue to those just applied.
Just the entropy s→ s + ∂Pπ/∂T , the condensate 〈q̄q〉 → 〈q̄q〉+ 1

f2
π
∂Pπ/∂m

2
π

and finally the pressure P → P+Pπ now involve a new term due to the consid-
eration of thermal pions. All these changes are straightforward as everything
is derived from P in (4.72) in the very general way as before.

4.4.2 The Chiral Condensate (III)

In the previous section we extended our model such that pion contributions
can be taken care of. We want to present the changes implied on the quark
condensate by the two terms in (4.70) separately. We start with thermal pions,
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the resulting changes can be seen in Fig. 4.30:

Figure 4.30: Chiral
condensate 〈q̄q〉 ≡
〈q̄q〉(ρ, T )/〈q̄q〉(0)
calculated with
the additional
term O(3) and the
contributions of
thermal pions Pπ
from (3.24).
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This has to be compared to the condensate without pions in Fig. 4.28. We
see that the thermal pions bring the condensate’s tail down again making the
backbending region less obvious.

Figure 4.31: The
phase diagram for the
three different steps in
the “evolution” of our
model
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Remember that we mentioned in section 4.3.4 that the value of Tc = 192 MeV
in the RMF calculation was obtained in a completely different manner, having
the “freedom” to decide on a certain point on the crossover-like curve. Now -
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with our condensate going straight to zero - we find a sharp theoretical value
for Tc at the point where 〈q̄q〉 = 0.
The results including the 1-pion exchange Fock term for 〈q̄q〉 are:
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Figure 4.32: The chiral condensate 〈q̄q〉 ≡ 〈q̄q〉(ρ, T )/〈q̄q〉(0, 0) calculated
both with thermal and exchanged pions and the projections ρ = 0 (bottom
left) and T = 0 (bottom right)
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We have decided not to show the whole range of plots for this case again as the
changes are rather small and the corresponding figures would just look more
or less the same as the ones for the previous case without pions.

Figure 4.33: Solu-
tions to the mass-SCE
equation as a function
of µ∗ (upper plot)
and ρ/ρ0 (lower plot)
for the RMF calcula-
tion and the extension
with O(3) with and
without the contribu-
tions due to pion ex-
change
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This is mainly due to the fact that the solutions to the mass-SCE differ only
by a few percent. This can be seen by looking at Fig. 4.33 which shows these
solutions that correspond to F = 0 with (dashed) and without pions (solid),
remember that Pπ(T = 0) = 0.
The results presented in the previous section, e.g. the value for T LGc in (4.69),
have large enough error bars to be valid still.
The most drastic changes due to the implementation of pion contributions are
visible in the results plotted in Fig. 4.31f. We see that thermal pions are
responsible for a decrease in Tc which then has the value listed in Table 4.4.

model Tc
lattice [SU(2)F ] 173± 8

RMF ∼192
O(3) ∼255

O(3)+π ∼229

Table 4.4: The values for the critical
temperature Tc in the different realisa-
tions.

The labels in Fig. 4.32 and 4.33 concerning pions are ’π’ which means both,
’πT ’ for thermal and ’1π’ for those from 1-pion exchange.
The projections 〈q̄q〉 = 0 in Fig. 4.31 as well as those with T = 0 and ρ = 0 in
Fig. 4.32 show the chiral quark condensate at each of the steps in our calcu-
lation. The first of these clearly shows that the pion contribution concerning
their exchange between nucleons has more of an effect on the density side. It
is not astonishing - as the name already tells us - that thermal pions do so for
varied T . Therefore the contribution of the latter is zero for T = 0 whereas
that of exchanged pions vanishes for ρ = 0, thus the label 1π in brackets.
We want to summarise at this point that with the three parameters Gs, Gv
and G3 from Table 4.5 we were able to reproduce the following properties of
nuclear matter:

ρ0 = 0.17 fm−3

M∗ ' 0.8 ·M0

|E|/A = 16MeV

κ ' 240MeV

T (LG)c ' 16.5MeV

Note again that it is possible to adjust G3 such that it reproduces any value
for the compressibility κ in the range 200-600 MeV. The only value which is off
is that of the critical temperature Tc of the chiral phase transition, see Table
4.4. However, remember that such a value can at most be indicative since our
model looses its validity near the “real” chiral phase transition.
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Table 4.5: Parameter sets used to calculate the plots with (bottom three) and
without pions, [Gs,Gv]=GeV−2, [Gn]=GeVn−4, [|E|/A, κ]=MeV and [ρ0]=fm−3

set Gs Gv n G−1n |E|/A ρ0 M∗/M0 κ
1 RMF 353.277 265.051 − 0 16.0004 0.16974 0.546 557.5
2 O(3) 224.506 105.405 3 0.009 15.9964 0.17027 0.787 243.3
3 O(4) 158.905 60.095 4 0.15 16.0005 0.16965 0.853 251.4
4 RMF+π 339.357 259.942 − 0 15.9965 0.16903 0.562 530.0
5 O(3)+π 212.431 106.502 3 0.009 15.9986 0.17004 0.793 238.5
6 O(4)+π 150.9847 63.3463 4 0.15 15.9989 0.16892 0.856 244.9

4.5 Two-Pion Exchange Terms

We now proceed to the next order in pion exchange contributions. We start
with the following diagram

⇔

referred to as iterated 1-pion exchange Hartree term. Non-relativistic cal-
culations [44] indicate that in this order its contribution is rather large. It was
found in [44] that this diagram incorporates basically a mechanism for nuclear
matter saturation.
Let us briefly sketch the evaluation of this 2-pion exchange diagram when
performed in analogy to the 1-pion exchange Fock diagram presented in the
two preceding sections. We label the Euclidean four-momenta, where arrows
indicate the direction of flow

p1 + q p1 p2 p2 + q

b q b

a q a
(4.85)

The Feynman rules for the 4 vertices and 6 propagators occuring in this dia-
gram are given in (A.7)-(A.9). The combinatoric factor of this diagram is 1/4
which corresponds to the four possible permutations that map the diagram
onto itself. 4-momenta are conserved at each vertex. This time we have two
closed fermion loops and therefore no change in sign. We have to perform an
isospin and Dirac trace over each nucleon ring. Summing all possible charge
states leads to the isospin factor tr τ aτ b tr τaτ b = 2δab 2δab = 12. Furthermore
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(A.6) implies 3-dimensional loop integrations over p1, p2 and q as well as fre-
quency summations of n1, n2 and ν. At this stage the analytic expression for
the 2-pion Hartree diagram reads

P2π = 3

(

−igA
2fπ

)4

(−4)2T 3
∑

ν,n1,2

∫ d3p1d
3p2d

3q

(2π)9
·

·
1
4
tr q/(−M ∗− p/1 − q/)q/(M ∗− p/1)

1
4
tr q/(−M ∗− p/2 − q/)q/(M ∗− p/2)

(m2
π + q2)2[M∗2 + p21][M

∗2 + (p1 + q)2][M ∗2 + p22][M
∗2 + (p2 + q)2]

.

(4.86)

A formulation in terms of distribution functions can be found in Appendix C.2.
Having a closer look at the ansatz for the 2π-Hartree diagram in (4.86) we
see that a calculation of P2π with only the one term corresponding to the dia-
gram above brings about 3 summations and 9 integrations. The 3 summations
can be performed analytically resulting in a cubic polynomial in distribution
functions. Due to renormalization the terms with no distribution functions
will drop out. Single distribution functions renormalise the free nucleon and
pion. However, the 9-dimensional momentum space integral still has to be
performed. Only a few of these integrations can be performed analytically and
we would still end up with at least 4-5 numerical integrations.
The most important thing is that we keep the numerics at a level that still
allows playing with the model by hand as the adjustment of parameters to re-
produce the properties of nuclear matter needs to be done this way. If such a
calculation becomes too time-consuming this becomes unfunctional. Although
the parameter tuning is performed at T = 0 where calculations are a bit easier
and therefore faster, a full calculation like that for (4.85) takes too long to do
with the performance of today’s ordinary desktop computers. One can imagine
that solving the mass self-consistency equation with high precision (we need
accuracy at the percent level or better) involves calculation of the correspond-
ing equation of state - or more precisely the function F that is needed in the
root finding procedure - a couple of hundred times.
Therefore we decided to use the following approximation (only at T = 0):
the neglection of thermal pions and of anti-nucleons in higher order. Also the
nucleons in this approximation will be treated non-relativistically. In [44] the
authors have already calculated the following diagrams

a, d

c

b, e

c

f

anomal
(4.87)
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in such a non-relativistic framework. The first of these is identical to (4.85).
We will justify using this approximation in section 4.5.2.
The whole 2-pion-exchange term is then assembled from the contributions
labelled a− f in (4.87):

P
(T=0)
2π = P

(a)
2π + P

(b)
2π + P

(c)
2π + P

(d)
2π + P

(e)
2π + P

(f)
2π . (4.88)

In the non-relativistic approximation the contributions P
(i)
2π (i = a, b, ..., f) do

not depend upon µ∗ and M∗ separately but only on the combination in the

definition of the Fermi momentum pf =
√

µ∗2 −M∗2. It is furthermore ad-
vantageous to use the dimensionless variable u = pf/mπ.
These contributions can be written as follows:

P
(a)
2π = M∗m7

π

g4A
5(4π)5f 4π

[

− 18u2 + 236u4 − 4u3
(

60 + 32u2
)

· arctan(2u) +

+
(
9

2
+ 70u2

)

ln
(

1 + 4u2
)]

(4.89)

P
(b)
2π = M∗m7

π

g4A
(2π)5f 4π

{

−u
6

6
+
∫ u

0
dx
x(u− x)2(2u+ x)

2(1 + 2x2)
· (4.90)

·
[(

1 + 4x2
)

arctan(2x)−
(

1 + 8x2 + 8x4
)

arctan(x)
]
}

P
(c)
2π =

5g4AΛ

3(2π)6f 4π
M∗p6f =M∗m6

π

5g4AΛ

3(2π)6f 4π
u6 (4.91)

P
(d)
2π = M∗m7

π

3g4A
(2π)6f 4π

∫ u

0
dx x2

∫ 1

−1
dy

[

2uxy +
(

u2 − x2y2
)

ln
u+ xy

u− xy

]

·

·
[

ln(1 + s2)− 2s2 + s4

2 (1 + s2)

]

(4.92)

P
(e)
2π = M∗m7

π

3g4A
(2π)6f 4π

∫ u

0
dx
{

− G2

16
+
x2

8

∫ 1

−1
dy
∫ 1

−1
dz
yz θ(y2 + z2 − 1)

|yz|
√
y2 + z2 − 1

·

·
[

s2 − ln
(

1 + s2
) ][

t2 − ln
(

1 + t2
) ]}

(4.93)

P
(f)
2π = M∗m7

π

g4A
(2π)6f 4π




3u

1
2

2
arctan(2u)− 3

8u
1
2

ln
(

1 + 4u2
)

+ u
7
2 − 3u

3
2

2





2

(4.94)

with the abbreviations pf =
√

µ∗2 −M∗2,

s = xy +
√

u2 − x2 + x2y2 ; t = xz +
√
u2 − x2 + x2z2 ; u =

pf
mπ
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and G = u
(

1 + u2 + x2
)

− 1

4x

[

1 + (u+ x)2
] [

1 + (u− x)2
]

ln
1 + (u+ x)2

1 + (u− x)2

(4.95)

It is important to point out the exceptional position of P
(c)
2π in (4.91) which

brings a new parameter Λ into the game. It is a cutoff parameter used to
regularise the linear divergence which comes along with the integration over
the pion momentum in the inner loop. P

(c)
2π also has a prefactor ∼ M ∗m6

π

whereas all the other terms are ∼M ∗m7
π.

What we have done so far will rather save us a lot of analytical work. The real
gain in time consumption when it comes to the numerical work will be achieved
by fitting a polynomial (or several ones) to the whole pressure P2π ≡ P

(T=0)
2π

P2π

(

u =
pf
mπ

)

=
∑

i=a...f

P
(i)
2π =M∗m7

π

11∑

i=4

ti · ui (4.96)

After playing around with several possibilities the choice fell for u to appear
in powers of 4...11 which yield the best fit. Clearly for P

(c)
2π depending only

upon u6 the only parameter that will be affected is t6 making this one special,
all other ti are just numbers but t6 is a function of Λ and mπ: t6 = t6(Λ,mπ).
Of course having a new parameter at hand immediately lets one think about
the possibility that it might be used instead of G3 in order to fix the value for
κ. Thus we have set G3 = 0 again and we studied the relation between a value
for Λ and the compressibility κ. The result was disillusioning and is shown in
Table 4.6:

Λ Gs Gv E/A ρ0 κ
300 332 252
611 333 275 ∼16 ∼0.17 ∼510
900 343 290

Table 4.6: Relation between the pa-
rameter Λ and the compressibility κ,
[Gs,Gv]=GeV−2, [E/A, κ,Λ]=MeV
and [ρ0]=fm−3

We see that - no matter what value we pick for Λ - the value for κ stays more or
less the same. We have not worked here with the precision we did throughout
the last sections as the extra work would only lead to quantitative changes
which are not so much of interest. The procedure should be clear by now:
before showing or stating any results the properties of nuclear matter have to
be adjusted, for the choice of Gs and Gv see Fig. 4.2.
If we look at the value of Gv we see that it does not change much. This we
can easily understand: it is possible to keep Gv fixed and to use Gs and κ to
shift the binding energy minimum to the appropriate position. Therefore Gv
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and κ seem to function the same way! This is due to the fact that the two
terms they belong to have the same structure ∼ p6f :

P
(c)
2π =

5g4A
3(2π)6f 4π

M∗Λp6f (4.97)

Pv =
(µ− µ∗)2

2Gv
=

1

2
Gvρ

2 =
2

9π4
Gvp

6
f (4.98)

where the first term is taken from (4.91) and Pv is the first term of the total
pressure as given e.g. in (4.72). Because of their different pre-factors with M ∗

appearing in P
(c)
2π they end up at different positions: the latter makes its way

into the mass-SCE whereas Pv does not. But overall there is nothing much
new to learn from this new parameter Λ. We will set Λ = 611MeV.
In order to achieve the precision we wanted we fitted polynomials to the pres-
sure for different regions of u as shown in Table 4.7 below.

u t4 t5 t′6 t7
0 ≤ u ≤ 0.97 9.335·10−4 -0.0149 -2.4052 -0.3058
0.97 < u ≤ 4 0.1462 -0.3241 -2.4950 0.4848
4 < u ≤ 8 1.2468 -2.5312 -0.6168 -0.3968

u t8 t9 t10 t11
0 ≤ u ≤ 0.97 0.5138 -0.1075 -0.1846 0.08629
0.97 < u ≤ 4 -0.2684 0.04278 -3.7805·10−3 1.405·10−4
4 < u ≤ 8 -0.0222 2.036·10−3 -1.049·10−4 2.3305

in any case: t6 = t′6 + 0.9667 · Λ/mπ ≡ t6(Λ,mπ)

Table 4.7: The parameters used to calculate the approximative polynomial in
(4.96). We used double precision in our calculation, the values listed are rounded.

The polynomial fit to the 2-pion exchange pressure contribution in (4.96) can
be written as a function of Fermi momentum or effective chemical potential

P2π(M
∗,mπ, u) =M ∗

11∑

i=4

tip
i
fm

7−i
π = P2π(M

∗, µ∗,mπ) (4.99)

due to the fact that

u =
pf
mπ

=
√

µ∗2 −M∗2/mπ = u(M ∗, µ∗,mπ). (4.100)
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Apart from being evaluated much faster it has the further advantage of being
more easily differentiated. With the help of

∂u

∂M∗
=

∂

∂M∗

pf
mπ

= m−1
π

∂

∂M∗

(

µ∗2 −M∗2
)1/2

=
−M∗

mπpf
=
−M∗

m2
πu

(4.101)

∂

∂µ∗
ui =

iui−2µ∗

m2
π

(4.102)

we get for the contribution necessary to adapt the mass-SCE to the new situ-
ation

∂P2π
∂M∗

=
P2π
M∗

+

(

M∗m7
π

11∑

i=4

ti · iui−1
∂u

∂M∗

)

(4.101)
=

P2π
M∗

−M∗2m5
π

11∑

i=4

itiu
i−2

= m7
π

11∑

i=4

ti · ui −M∗2m5
π

11∑

i=4

itiu
i−2 = m5

π

11∑

i=4

ti
(

m2
πu

i −M∗2iui−2
)

(4.103)

This will give us a contribution to the scalar density because P2π is part of
Pπ,π as in (4.70). Remember that the scalar density can be calculated from
ns = −∂P/∂M = −∂/∂M ∗(PFG + Pπ,π).
The contribution to the baryon density can be handled analogously:

∂P2π
∂µ∗

=M∗m7
π

11∑

i=4

ti ·
∂

∂µ∗
u(M∗, µ∗,mπ)

i (4.102)= M∗m5
π

11∑

i=4

itiu
i−2µ∗. (4.104)

Last but not least we will come to the contribution to the chiral quark con-
densate 〈q̄q〉 in the form of ∂P2π/∂m

2
π. In this case we have to pay special

attention because of t6 = t6(mπ)

∂P2π
∂m2

π

=
∂

∂m2
π

[

M∗
11∑

i=4

tip
i
f (m

2
π)
(7−i)/2

]

=

= M∗m5
π

11∑

i=4

7− i

2
tiu

i +M∗m7
πu

6 ∂t6
∂m2

π

These formulae enable us to extend the zero temperature formula collection in
section 4.4.1 once more. We will present the results in the next section.
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4.5.1 The Chiral Condensate (IV)

We proceed to present the results of such a calculation. Note that now we
add the changes due to 2-pion exchange to the results in 4.4.2 where we had
a finite value for G3 and the 1-pion exchange was taken care off in the form
presented in Appendix C.1.

Figure 4.34: Solutions
to the mass-SCE equa-
tion as a function of
µ∗ (upper plot) and
ρ/ρ0 (lower plot) for
the calculation includ-
ing 2-pion exchange.
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We see in Fig. 4.34 that the solutions to the mass-SCE in the case including
2-pion exchange differ a lot when plotted as a function of effective chemical
potential µ∗ (upper plot). For very high densities ρ >> 10ρ0 the effective
nucleon mass starts to rise again for the approximation we use. However, we
are not bothered with such high densities. As soon as we study these effective
mass values as a function of baryon density again the results differ very little
in the density region interesting to us (lower plot).
The parameter set used in the calculation of the figures in this section is the
bottom one in Table 4.8 with a new value G3 = 117.647GeV−1 which shifts
the value for the compressibility back into the correct range, see (4.52). That
new value is then κ = 250.7MeV.

Table 4.8: Parameter sets used to calculate the figures including 2-pion exchange
[Gs,Gv]=GeV−2, [G3]=GeV−1, [Λ, E/A, κ]=MeV and [ρ0]=fm−3

Gs Gv Λ G−13 E/A ρ0 M∗/M0 κ
206.447 121.455 611 0.009 16.0028 0.17032 0.795 233.7
206.194 122.766 611 0.0085 15.9951 0.17034 0.793 250.7

The changes in the chiral condensate are:
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Figure 4.35: Density
dependence of the chi-
ral quark condensate at
T = 0 for various cases

We have plotted all cases again to allow comparisons. The new result includ-
ing the approximative 2π-exchange as described in this section now drops even
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faster than the linear density approximation (LDA), see section 3.2.3 - espe-
cially (3.31). We have also shown the relativistic mean field (RMF) calculation
from the Walecka model as well as all the different stages of our model.

In all three figures the O(3)-case is dash-dotted, the case including the
(full) 1π-exchange Fock term in addition (labelled ’+1π’) is dashed and the
case with both pion exchange distributions (sometimes just labelled ’+2π’) is
drawn with a solid line.

4.5.2 Justification to Use the Approximation

The validity of the approximation used in the previous section can be examined
by comparing its result of the 1π-exchange Fock term to the full calculation
as discussed in 4.4.2. The corresponding calculation in the non-relativistic
framework is presented in the previous section. Such a term is a function of

P ′1π = P ′1π(T = 0, u) = P ′1π(pf ,mπ) = P ′1π(µ
∗,M∗,mπ), (4.105)

see (4.100). It has the following form in the framework mentioned

P ′1π = m6
π

(

gA
4π2fπ

)2 [

−2

3
u6 − u2

4
+

3u4

2
− 2u3 arctan(2u)+

+

(

3u2

4
+

1

16

)

ln
(

1 + 4u2
)
]

(4.106)

where the first term in brackets −2u6/3 is the equivalent of the P∆-term in
(C.6) of our full calculation, therefore this term will be neglected.
The usual derivatives of P ′1π in (4.106) that allow correct treatment of this
approximation are

∂P ′1π
∂M∗

,
∂P ′1π
∂µ∗

and
∂P ′1π
∂m2

π

. (4.107)

The form of the mass-SCE does not differ from that in (4.62):

F (M ∗) =M −M ∗ −Gs ns +
Gs
G3

(M −M ∗)2 = 0. (4.108)

It contains the scalar density which has to be modified just the way we did
when we used the full 1-pion exchange Fock term. This time we only have to
replace P1π by P ′1π. Then

ns = −
∂PFG
∂M∗

→ ns −
∂P ′1π
∂M∗

(4.109)
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with

∂P ′1π
∂M∗

= −3g2AM
∗m2

π

32π4f 2π

[

m2
π ln

m2
π + 4p2f
m2
π

− 4mπpf arctan
(
2pf
mπ

)

+ 4p2f

]

. (4.110)
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Figure 4.36: Solutions to the mass self-consistency equation in both cases
including 1-pion exchange. The full treatment 1π is dotted, the approximation
1π′ plotted with a solid line. Remember that going along the curve in the
left plot (M ∗ as a function of effective chemical potential) in direction of the
arrow starting from ρ = 0 at M ∗ = µ∗ =M0 is going to ρ→∞. In the right
plot (M ∗ as a function of baryon density) we see that for small baryon density
the approximation is excellent.

The modifications in the baryon density applied in the calculation of the right
plot in Fig. 4.36 have similar shape as those for ns

ρ → ρ+
∂P ′1π
∂µ∗

∂P ′1π
∂µ∗

=
3g2Aµ

∗m2
π

32π4f 2π

[

m2
π ln

m2
π + 4p2f
m2
π

− 4mπpf arctan
(
2pf
mπ

)

+ 4p2f

]

. (4.111)

The changes in the chiral quark condensate 〈q̄q〉 defined in (3.20) are two-fold.
First there is the change due to the scalar density as in (4.109f) and secondly
there appears an additional term due to the mπ-dependence of P ′1π itself:

〈q̄q〉 → 〈q̄q〉+ 1

f 2π

∂P ′1π
∂m2

π

= 〈q̄q〉+ 1

2mπf 2π

∂P ′1π
∂mπ

. (4.112)
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We have reduced the derivative with respect to m2
π to one with respect to mπ

by use of ∂m2
π = 2mπ∂mπ. This derivative is

∂P ′1π
∂mπ

=
6P ′1π
mπ

+m3
π

(

gA
4π2fπ

)2 [
1

2
p2f −

6p4f
m2
π

+
6p3f
mπ

arctan(2u)

+
4p4f

m2
π(1 + 4u2)

− 3p2f
2

ln
(

1 + 4u2
)

− 8p2f (3u
2/4 + 1/16)

1 + 4u2

]

. (4.113)

The actual calculation has been performed using the very same parameters
as in the corresponding calculation labelled O(3) + π in Table 4.5. These
parameters are:

Gs = 212.431GeV−2, Gv = 106.502GeV−2, G−13 = 0.009GeV,

gA = 1.267, mπ = 138MeV, fπ = 92.4MeV. (4.114)

They lead to the results shown in Fig. 4.37:

Figure 4.37: Comparison of the full
calculation 1π (dotted) with the ap-
proximation 1π′ (solid). We have: the
pressure (top left), binding energy per
particle (top right) and the quark con-
densate (lower left). The approxima-
tion is good!
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Note that the results presented for the approximation this time are not opti-
mised by adjustment of the parameters. They would improve if we did!







Chapter 5

Summary and Conclusions

The main interest in this work was to study the thermodynamics of the chiral
quark condensate 〈q̄q〉.
After recalling basic symmetries and symmetry breaking patterns of Quantum
Chromodynamics (QCD) in chapter 2 we constructed the chiral effective La-
grangian to leading order. Low-energy QCD is realised as an effective field
theory of weakly interacting Goldstone bosons coupled to heavy nucleons.
The interactions between these particles are ruled by chiral symmetry.
In chapter 3 we gave an outline of field theoretical concepts at finite tempera-
ture and density. We formulated the thermodynamics in the grand canonical
ensemble. The latter is the appropriate framework when dealing with rela-
tivistic many-particle systems. Our focus was again on the temperature and
density dependence of the chiral condensate. In this context we also rediscov-
ered the low density theorem which states that to leading order in density the
chiral condensate drops linearly with a slope determined by σN . The so-called
pion-nucleon sigma term σN = mq · ∂M/∂mq ' 45MeV gives the portion of
the nucleon mass coming from the finite quark mass. The temperature depen-
dence of 〈q̄q〉(T ) at low T is determined exclusively by the dynamics of the
free and interacting thermal pion gas for which we stated a formula that allows
to study the quantitative influence of the 1- and 2-loop contributions of the
thermal pion gas on the condensate.
However, this is not the only reason to include pions as explicit degrees of free-
dom. Pions also represent the dominant meson exchange contributions at the
temperatures we consider here. Furthermore at the nuclear matter saturation
density ρ0 ' 0.17 fm−3 = 2p3f/(3π

2) the Fermi momentum pf = 268MeV and
the pion mass mπ = 138MeV are comparable scales pf ' 2mπ.
We finally reached the main part of the present work in chapter 4 where we
first confirmed that working with the 2-parameter Walecka model is equiva-
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lent to performing the calculations using a Lagrangian with scalar and vector
four-nucleon contact interactions as long as both are treated in mean field ap-
proximation. We constructed an equation of state whose parameters were ad-
justed such that they reproduce the known properties of nuclear matter. Apart
from the saturation density ρ0 already mentioned these are the binding energy
per nucleon of about B = 16MeV and the nuclear matter (in-)compressibility
κ = (250± 10)MeV.
In the relativistic 2-parameter mean field model, namely theWalecka model,
the well-known problems reappeared: only two of the nuclear matter proper-
ties can be fit in this restrictive approach, the compressibility κ = 558MeV
came out more than a factor “2” too large. On the other handside the effective
nucleon mass M ∗ ' 0.54M was too small.
Therefore we extended this model by adding a higher order term in the scalar
mean field. It turned out that using a quartic term instead of a cubic one
results in an effective nucleon mass being too large. Therefore the additional
term G3(M −M ∗)3/3 was preferred. The mean scalar and vector fields could
be expressed in terms of the effective nucleon mass and chemical potential.
The adjustment of this single new parameter G3 fixed both problems: not
only did we shift the value of κ into the correct range, at the same time the
effective nucleon mass increased to a more realistic - but not too large - value
of M∗(ρ0) ' 0.8M . Simultaneously it lowered the critical temperature T LGc of
the liquid-gas phase transition, a further welcome effect. The value predicted
by our calculation T LGc = (16.5 ± 0.5)MeV was found to be in perfect agree-
ment with a recent analysis of limiting temperatures in heavy ion collisions
[3].
The only value we failed to reproduce was that of the critical temperature
Tc = (173 ± 8)MeV of the chiral phase transition known from [35]. This is
not astonishing as it represents the temperature at which nucleons dissolve,
they are no longer the correct degrees of freedom. The value found in our
calculation can at most be indicative since our model looses its validity near
the “real” chiral phase transition.
In the next step we went beyond the mean-field description. We included the
one-pion exchange Fock diagram into the partition function fully relativisti-
cally. In this form we automatically accounted for various scattering processes
of thermal pions (and thermal antinucleons) with nucleons.
The 1π-exchange corrections were also included in the self-consistent determi-
nation of the effective nucleon mass and chemical potential, or equivalently the
scalar and vector mean-fields. Its contribution led to an upward shift in the
density dependence of 〈q̄q〉. This trend is easily understood keeping in mind
that the 1π-exchange Fock term is repulsive.



95

A non-relativistic approximation, in which effects from thermal pions and
antinucleons were neglected, turned out to work well in the temperature and
density regime of interest. This opened the possibility to treat (the attractive)
2π-exchange corrections in the same approximation reliably. By 2π-exchange
we mean iterated 1π-exchange Hartree and Fock contribitions where Pauli
blocking is automatically taken care of.
A cutoff parameter Λ was needed to regularise the linear divergence of the pion
loop integral. It turned out that its effect could be absorbed by readjustment
of the parameter Gv used to fix the value of the saturation density ρ0.
Having at hand a dynamical description of nuclear matter which at the same
time includes systematically pion exchange contributions and fulfills the em-
pirical constraints at the saturation point we could focus on the temperature
and density dependence of 〈q̄q〉. This was done using a “master formula” which
required taking the pressure’s derivative with respect to the pion mass.
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The resulting deviations from the linear decrease of 〈q̄q〉 (low density theorem)
were found to be astonishingly small. This result is in contrast to the work of
[43]. There a chiral approach to nuclear matter has been utilised in order to
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quantify the deviations from the low density theorem. In that calculation the
dropping of 〈q̄q〉 is reduced by only ∼ 25% at normal nuclear matter density.
This effect comes mainly from a diagram where an attractive nucleon-nucleon
contact interaction is iterated with 1π-exchange. The dynamical origin of the
associated contact coupling and possible implicit quark dependences are not
discussed in [43].
Furthermore it has been demonstrated in [62] that the same iterative diagram
leads to very unrealistic single particle properties. Therefore the results of [43]
for 〈q̄q〉(ρ) need not be taken too seriously.

Our free parameters Gs, Gv and G3 were used to adjust the values of the
following nuclear matter properties (in this order):

|E|/A = 16MeV

ρ0 = 0.17 fm−3

κ = 250MeV

From this we predict the values of the effective nucleon mass at saturation
density and the liquid-gas phase transition temperature:

M∗(ρ0) = 0.8 ·M
T (LG)c = 16.5MeV

As mentioned before both these values are in the range they should be in.
Therefore our nuclear matter equation of state seems to be realistic. The
calculation in this more realistic mean field model with finite G3 shifted the
quark condensate 〈q̄q〉 towards the linear density approximation result. This
is mainly due to the fact that the effective nucleon mass is higher, rising from
54% in the Walecka model to M ∗(ρ0) ' 0.8M . The scalar and baryon den-
sity differ less in the case with an increased value of M ∗.
The perturbatively added pion exchange contributions resulted in a shift away
from the linear density result of the condensate 〈q̄q〉 in the case of the repul-
sive 1-pion exchange Fock term. In contrast the attractive 2-pion exchange
contributions resulted in a shift of 〈q̄q〉 towards and even slightly below the
linear density line. The two are of the same order of magnitude, the 2-pion
exchange effects being around twice as large as those from the 1-pion exchange
Fock term.
We finally conclude that the linear density approximation can be trusted at
small densities up to about two times normal nuclear matter density ∼ 2ρ0
keeping in mind its inherent ±20% inaccuracy originating from the pion nu-
cleon sigma term σN .







Appendix A

Mathematical Details

A.1 Feynman Rules

Besides his ambitions as a hobby painter Feynman invented the “theoretical
physicist’s favorite drawings” in his noble prize winning work [8, 26, 27, 63,
64, 65, 66, 67, 68, 69]. In this section we will give a brief summary on how to
calculate Feynman diagrams. Their components are mainly lines (of all kinds)
and dots where these intersect. Each piece of such a diagram is replaced by
one of the mathematical expressions in the next section, the lines describing
particle propagation. The dots represent points where three or more particles
run together, they are called vertices. Their terms contain the structure and
strength of the coupling.

Turning a diagram into the corresponding path integral is achieved via the
following step-by-step procedure:

• replace each component by its corresponding term (A.1)

• add the symmetry factor of the diagram (A.2)

• every line is addressed a momentum p (A.3)

• ensure 4-momentum conservation at each vertex (A.4)

• each closed fermion loop implies performing the trace (see
section A.1.2) and adds a factor of −1 (A.5)

• for every propagator integrate over all mo-
menta and sum all Matsubara frequencies

⇔ T
∑

n

∫ d3p

(2π)3
(A.6)

Examples are calculated in Appendix C.
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A.1.1 Vertex and Propagators

• Pion-nucleon vertex:

q, a
−igAq/γ5τa/(2fπ)

−igAq/γ5τa/(2fπ) (A.7)

• Thermal nucleon propagator:

p
(M − p/)/(M 2 + p2)

p4 = (2n+ 1)πT − iµ

M − p/

M2 + ~p2 + [(2n+ 1)πT − iµ]2
(A.8)

• Thermal pion propagator:

l
(m2

π + l2)−1

l4 = 2πnT

1

m2
π +

~l2 + (2πnT )2
(A.9)

A.1.2 Traces

The trace over an odd number of momenta vanishes [70] whereas we will use the
following identities in performing the trace over an even number of momenta

1

4
tr p/1p/2 = −p1 · p2 (A.10)

1

4
tr p/1p/2p/3p/4 = (p1 ·p2)(p3 ·p4)− (p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3) (A.11)

where we used the Feynman dagger defined like p/i = γµp
µ
i . Obviously we

use Einstein’s summation convention which implies a sum whenever indices
appear twice. The scalar product is defined in (A.25), the γ-matrices can be
found in section A.3.1.
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A.2 SU(N)

The generators of the group SU(N), N = 2, 3, ... are Ga, a = 1, ..., N 2 − 1.
They satisfy the commutation relations

[

Ga, Gb
]

= ifabcGc (A.12)

where the fabc are the group structure constants [71, 72].
The two most interesting examples for us are SU(N = 2, 3). We will discuss
their most commonly used representations in the following section.

A.2.1 Pauli Matrices

The Pauli spin matrices form a basis of the SU(2) group and are defined as

~τ = (τ1, τ2, τ3) (A.13)

where

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

. (A.14)

The product of two such matrices can be written as

τiτj = δij + iεijkτk. (A.15)

They obey the following (anti)commutator relations
[
τi
2
,
τj
2

]

= i εijk
τk
2
,

{
τi
2
,
τj
2

}

=
δij
2
, (A.16)

where εijk is the totally antisymmetric tensor of third degree.
Apart from its use in spin notation the τ -matrices are used in the description
of isospin. E.g. up |u〉 and down quark |d〉 form an isospin SU(2) doublet:

|u〉 =
(

1
0

)

, |d〉 =
(

0
1

)

(A.17)

with τ± = (τ1 ± iτ2)/2 we have

τ3|u〉 = |u〉, τ3|d〉 = −|d〉, τ−|u〉 = |d〉, τ+|d〉 = |u〉 (A.18)

The electric charge of the quarks is

Q =
1

2
(B + τ3) (A.19)

with the baryon number B = 1/3. The same relations hold for the nucleon
doublet of proton and neutron with B = 1.
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A.2.2 Gell-Mann Matrices

The Gell-Mann matrices λa, a = 1, ..., 8 form a basis of the SU(3) group
thus being the three-dimensinal analogon to the Pauli matrices:

λ1=






0 1 0
1 0 0
0 0 0




 , λ2 =






0 −i 0
i 0 0
0 0 0




 , λ3 =






1 0 0
0 −1 0
0 0 0




 ,

λ4=






0 0 1
0 0 0
1 0 0




 , λ5 =






0 0 −i
0 0 0
i 0 0




 , λ6 =






0 0 0
0 0 1
0 1 0




 ,

λ7=






0 0 0
0 0 −i
0 i 0




 , λ8 =

1√
3






1 0 0
0 1 0
0 0 −2




 . (A.20)

They are hermitian, their trace vanishes and they are normalised such that
Tr(λaλb) = 2δab. Their (anti)commutator relations take on the form

[

λa
2
,
λb
2

]

= ifabc
λc
2
,

{

λa
2
,
λb
2

}

=
1

3
δab + i dabc

λc
2
, (A.21)

where the structure functions fabc are totally antisymmetric whereas the dabc
are totally symmetric. The matrices λ1, λ2, λ3 form a basis of the SU(2) sub-
algebra.

A.3 Conventions

As is common in particle physics we will use simple units: setting the speed
of light c = 1 gives the same dimension to length and time

[x] = [t] = fm = 10−15m→ GeV−1 (A.22)

Also setting the unit of action h̄ = 1 and using the well-known and easy to
remember identity for the Planck constant 197Mev fm−1 = h̄c = 1 yields

[E] = [p] = [M ] = fm−1 = 0.197GeV (A.23)

and simplifies the relation between energy and momentum E2 = p2 +M2. An
electron volt is the energy accumulated by a particle with charge q = 1e after
running through a potential difference of 1V:

1 eV = 1.602 · 10−19 J. (A.24)
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Our calculations are performed in Euclidean space, therefore the scalar prod-
uct of two 4-vectors takes on the form

p · q = pµq
µ = ~p · ~q + p4q4. (A.25)

We will try throughout this work to stick with the following agreement con-
cerning indices: greek indices label 4-vectors and run from 0 to 3 (Minkowski

space) or 1 to 4 (Euclidean space): xµ = (x0, ~x) ≡ (t, ~x) or xµ = (~x, x4) ≡
(~x, τ) = (~x, it) respectively. Latin letters a, b, c, ... = 1, ..., 8 label color indices
and finally i, j, k, ... = 1, ..., 3 label the components of 3-vectors.

A.3.1 γ-Matrices

Dirac linearised the relativistic energy momentum relation in his study of
the electron. A consequence of this linearisation process were solutions with
negative energy which Dirac addressed to antiparticles first, see e.g. [8, 70,
73]. In order to succeed he defined ~α and β with the properties

α2i = β2 = 1
{αi, αj} = 0 ; i 6= j

}

{αi, αj} = 2 δij,

as well as {αi, β} = 0 (A.26)

which ensured cancellation of the mixed terms. As they didn’t commute αi
and β couldn’t be scalar numbers but had to be (n× n) matrices. The lowest
possible dimension in which the requirements (A.26) are fullfilled is four. These
(4 × 4) matrices are not unique. In the most commonly used Dirac-Pauli
representation they have the form

~α =

(

0 ~τ
~τ 0

)

, β =

(

12 0
0 −12

)

, (A.27)

~τ being the Pauli matrices in (A.14) and 12 the (2×2) unit matrix. The
definition of the γ-matrices like

γ0 := β; ~γ := β~α =

(

0 ~τ
−~τ 0

)

⇔ γµ = (γ0, ~γ) (A.28)

leads to the elegant reformulation of the anticommutator relations {γµ, γν} =
γµγν + γνγµ = −2δµν as compared to (A.26).
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A.4 Distribution functions

From the spin-statistics theorem we know that bosons, carrying integer spin
n = 0, 1, 2, ..., are to be described by Bose-Einstein whereas fermions with
their spin (2n + 1)/2 by Fermi-Dirac distribution functions. We will show
quick derivations of the two by introducing creation and annihilation opera-
tors1 a† and a as well as abstract state vectors |n〉 of the system with properties

〈n|n′〉 = δnn′ orthogonality (A.29)
∞∑

n=0

|n〉〈n| = 1 completeness. (A.30)

They form a complete set with the bras 〈n| and kets |n〉 as row and column
vectors in infinite-dimensional vector space.

A.4.1 Bose-Einstein Distribution Function

Let us first consider a non-interacting time-independent single-particle quan-
tum mechanical state occupied by bosons with energy E each. There may be
any number of bosons in that state2. Acting on a number eigenstate a† creates
a boson (thus all states |n〉 can be built from the vacuum |0〉)

a†|n〉 = (n+ 1)1/2|n+ 1〉, |n〉 = (n!)−1/2(a†)n|0〉, (A.31)

a annihilates one (or the vacuum)

a|n〉 = n1/2|n− 1〉, a|0〉 = 0. (A.32)

The coefficients follow from the requirement that a and a† be Hermitian con-
jugates and that a†a be the number operator

N |n〉 = a†a|n〉 = n|n〉. (A.33)

The following commutator relation holds for bosons
[

a, a†
]

−
= aa† − a†a = 1 (A.34)

Up to an additive constant the Hamiltonian must be E ·N :

H =
E

2

(

aa† + a†a
)

= E
(

a†a+
1

2

)

= E(N +
1

2
) (A.35)

1the tools commonly known from second quantization [74]
2This system may be thought of as a quantized simple harmonic oscillator.
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with the zero point energy E/2 which can usually be ignored.
As the |n〉 are number and energy eigenstates we can assign a chemical poten-
tial to the particles. The partition function is

Z = Tr exp(−β(H − µN)) =
∞∑

n=0

〈n|e−β(E−µ)N |n〉 =

=
∞∑

n=0

e−β(E−µ)n =
[

1− e−β(E−µ)
]−1

(A.36)

from which we can derive the mean number of bosons

N = T
∂ lnZ
∂µ

= −T ∂

∂µ
ln
[

1− e−β(E−µ)
]

=
1

eβ(E−µ) − 1
= b(E − µ) (A.37)

where we used the definition of the Bose function

b(x) =
1

ex/T − 1
(A.38)

and summarise some relations of it

b(sE) =
s−1

2
+ sb(E), s = ±1 (A.39)

b(−x) = −b(x)− 1 (A.40)

which will be helpful throughout our calculations.

A.4.2 Fermi-Dirac Distribution Function

The same problem will now be handled with a fermionic degree of freedom.
The Pauli exclusion principle forbids occupation of a single-particle state with
more than one fermion. The only two states in the system are |0〉 and |1〉 :

α†|0〉 = |1〉, α|1〉 = |0〉, α†|1〉 = |0〉, α|0〉 = 0. (A.41)

The fermion creation and annihilation operators have the property that their
square is zero αα = α†α† = 0. They are Hermitian conjugates with N = α†α

N |0〉 = α†α|0〉 = 0, N |1〉 = α†α|1〉 = |1〉. (A.42)

They satisfy the anti-commutation relation

{

α, α†
}

+
= αα† + α†α = 1 (A.43)
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The Hamiltonian is

H =
1

2
E
(

α†α− αα†
)

= E
(

N − 1

2

)

(A.44)

This time the zero-point energy is equal in magnitude but opposite in sign. It
can be dropped again. As in (A.36) we calculate the partition function but
now the sum terminates at n = 1

Z = Tr e−β(H−µN) =
1∑

n=0

〈n|e−β(E−µ)N |n〉 = 1 + e−β(E−µ) (A.45)

The mean number of fermions is N ranging from 0 to 1, the mean energy is
EN with

N =
1

eβ(E−µ) + 1
= f(E − µ) (A.46)

where we used the definition of f for the Fermi function

f(x) =
1

ex/T + 1
(A.47)

As for b in (A.38f) we state some relations and introduce the abbreviations

f±E = f(E ± µ∗); f±i = f(Ei ± µ∗); f±si = f(siEi ± µ∗) (A.48)

f(sE + µ∗) =
1−s
2

+ sf(E + sµ∗), s = ±1 (A.49)

f(−x) = 1− f(x). (A.50)

The Fermi function f as well as b are both periodoc

f(x+ 2πiTn) = f(x)

b(x+ 2πiTn) = b(x) (A.51)

which is a direct yield of the properties of the imaginary exponential function.
Another useful relation

b(x+ iπT ) = −f(x) (A.52)

allows replacement of f with b and vice versa.
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A.5 Formula Collection and Matsubara

frequencies

Decomposition into partial fractions and other helpful relations [75, 76, 77]:

1

u2 + v2
=

∑

s=±1

s

2v
· 1

iu+ sv
(A.53)

1

a · b =
1

b− a

(
1

a
− 1

b

)

(A.54)

1

x+ 1

(

1 +
1

y − 1

)

=
1

x/y + 1

(

1

x+ 1
+

1

y − 1

)

(A.55)

ln
(

x2 + a2
)

=
∫ a2

1

dΘ2

Θ2 + x2
+ ln

(

1 + x2
)

(A.56)

∞∑

n=−∞

1

(2n+ 1)2π2 +Θ2
=

1

Θ

(

1

2
− 1

exp(Θ) + 1

)

. (A.57)

Taking Derivatives

For the case of differentiating with respect to a variable that appears as the
boundary condition of an integral

d

dx

∫ v(x)

u(x)
f(x, t)dt = v′(x)f(x, v(x))− u′(x)f(x, u(x)) +

∫ v(x)

u(x)

∂

∂x
f(x, t)dt

(A.58)

is a helpful formula.

A.5.1 Direct Summation Of Matsubara Frequencies

According to the Feynman rules in thermal field theory the thermal propa-
gators, see (A.8) and (A.9), contain the Matsubara frequencies (nεZ)

Ef = (2n+ 1)πT (fermions) (A.59)

Eb = 2nπT (bosons) (A.60)

which have to be summed. These summations of Matsubara frequencies can
be reformulated such that they resemble the Taylor expansion of well-known
analytic functions. Their relation to bosons with b from (A.38) is

T
∑

nεZ

1

2πiTn+ x
= b(x) +

1

2
(A.61)
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T
∑

nεZ

1

(2πiTn+ x)(2πiTn+ y)
=

b(x)− b(y)

y − x
(A.62)

T
∑

nεZ

1

(2πnT − iµ)2 + E2
=

1 + b(E + µ) + b(E − µ)

2E
. (A.63)

For fermions we have

T
∑

nεZ

1

[(2n+ 1)iπT + x][(2n+ 1)iπT + y]
=

f(x)− f(y)

x− y
(A.64)

T
∑

nεZ

1

[(2n+ 1)πT − iµ]2 + E2
=

−1 + f+E + f−E
2E

(A.65)

with f from (A.47) and f±E as in (A.48).

A.6 Contact Interaction Lagrangian

A contact interaction Lagrangian of the form as in (4.28) with an additional
term corresponding to n = 3 would be

Lci3 = LµDirac +
Gv
2

(

ψ̄γµψ
)2 − Gs

2

(

ψ̄ψ
)2

+
G′3
3

(

ψ̄ψ
)3

(A.66)

where LµDirac = ψ̄[iγµ∂
µ−M+µγ0]ψ. (A.66) behaves under the transformation

in (4.29) like

Lci3 = LµDirac +
Gv
2

[(

ψ̄γµψ
)2 − 2ψ̄γµψ〈ψ†ψ〉δµ0 + 〈ψ†ψ〉2

]

− Gs
2

[(

ψ̄ψ
)2 − 2ψ̄ψ〈ψ̄ψ〉+ 〈ψ̄ψ〉2

]

+
G′3
3

[(

ψ̄ψ
)3 − 3

(

ψ̄ψ
)2 〈ψ̄ψ〉 + 3

(

ψ̄ψ
)

〈ψ̄ψ〉2 − 〈ψ̄ψ〉3
]

.

Neglecting quadratic and higher fluctuations and using (4.31f) this can be
written like

Lci3 = ψ̄
[

i∂/−
(

M −Gsns −G′3n
2
s

)

+ (µ−Gvρ) γ0
]

ψ

+
1

2
Gvρ

2 − 1

2
Gsn

2
s −

1

3
G′3n

3
s (A.67)

Reading off again the effective mass M ∗ from this Lagrangian allows reformu-
lation of the corresponding mass self-consistency equation in the form

M −M∗ = Gsns +G′3n
2
s (A.68)
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which we compare to our improved calculation of the relativistic mean field
ansatz with the new term added as in (4.58) with n = 3 where the correspond-
ing equation reads

M −M∗ = Gsns −
Gs
G3

(M −M ∗)2. (A.69)

These two equations are not identical, but in both cases the relation between
(M −M ∗) and ns is complicated, M −M ∗ = Gsns as in the relativistic mean
field calculation does not hold any more!
However, the mean field σ̄ is still generated from the shift in (quasi) nucleon
mass σ̄ = (M − M ∗)/gσ. Therefore the equation of state in (4.58) can be
derived from a Lagrangian of the form

Ln = LW −
1

3
λ3σ̄

3 (A.70)

which is constructed by adding a term −λnσ̄n/n as that in (4.27) with n = 3
to the Walecka Lagrangian LW in (4.12). The new term is of the same type
as L(σ̄, ω̄0), independent of ψ and ψ̄, and therefore - as was shown in (4.14) -
directly ends up in the pressure P = PFG+

1
2
m2
ωω̄

2− 1
2
m2
σσ̄

2− 1
3
λ3σ̄

3. Insertion
of σ̄ into our new term allows to recover

−1

3
λ3σ̄

3 = −1

3
λ3

(M −M ∗)3

g3σ
= − 1

3G3
(M −M ∗)3 (A.71)

the form of the new term as in (4.58) with G3 = g3σ/λ3.





Appendix B

The Ideal Gas Pressure

The grand canonical partition function Z, see (3.2), represents the most direct
access for a statistical treatment of ideal quantum gases.

B.1 Derivation of PFG

In this appendix we will derive the expression for the pressure PFG, see (3.2),
of a non-interacting Fermi gas with mass M from the Dirac Lagrangian

LDirac = ψ̄ (i 6∂ −M)ψ = ψ†γ0
(

iγ0
∂

∂t
+ i~γ ~∇−M

)

ψ (B.1)

where ψ̄ = ψ†γ0 and

i 6∂ = iγµ∂
µ = iγ0

∂

∂t
+ i~γ ~∇ = −γ0

∂

∂τ
+ i~γ ~∇ (B.2)

where in the last step we used τ = it ⇔ dt = −idτ . This will be of use later.
The conjugate field to the ordinary field ψ is

Π =
∂L

∂(∂ψ/∂t)
=

∂

∂(∂ψ/∂t)




iψ† γ0γ0

︸ ︷︷ ︸

=1

∂ψ

∂t




 = iψ† (B.3)

The standard procedure leads us to the corresponding Hamilton density

H = Π
∂ψ

∂t
− L = ψ†

(

i
∂

∂t

)

ψ − L = ψ̄(−i~γ ~∇+M)ψ. (B.4)

If we permit conserved charges then we go over to

H(Π, ψ)→ K(Π, ψ) = H(Π, ψ)− µN, (B.5)
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in that case the Dirac Lagrangian (B.1) can be written as

LDirac → LµDirac = ψ̄ (i6∂ −M + µγ0)ψ (B.6)

and the partition function becomes

ZFG = Tr e−βK = Tr e−β(H−µN) =
∫

dψα〈ψα| exp(−β(H − µN))|ψα〉. (B.7)

In order to be able to calculate the integral appearing here, we will first cal-
culate 〈ψα| exp(−βH)|ψα〉 and then perform (B.5). The transition amplitude
in going from state ψα to state ψβ after time tf is Aβα = 〈ψβ| exp−iHtf |ψα〉.
In statistical physics we are interested in the case where a system goes back
to, or sits in, its original state after time tf . We will now calculate the corre-
sponding amplitude. Therefore we split the time interval tf into N time steps
∆t = tf/N .

Aαα = 〈ψα| exp(−iHtf )|ψα〉 = 〈ψα| exp(−iHN∆t)|ψα〉 =
= 〈ψα| exp(−iH∆t) . . . exp(−iH∆t)

︸ ︷︷ ︸

N times

|ψα〉 (B.8)

We now insert complete sets of states
∫

dψi|ψi〉〈ψi| = 1 at each time interval

Aαα =
∫

〈ψα|e−iH∆t|ψN〉〈ψN |e−iH∆t|ψN−1〉〈ψN−1|e−iH∆t|ψN−2〉 · · ·

· · · 〈ψ2|e−iH∆t|ψ1〉〈ψ1|ψα〉 dψ1dψ2 · · · dψN (B.9)

as well as for the conjugate states
∫

dΠi/2π|Πi〉〈Πi| = 1 which leads to

Aαα =
∫ N∏

i=1

dψi 〈ψα|ΠN〉〈ΠN |e−iH∆t|ψN〉〈ψN |ΠN−1〉 ·

· 〈ΠN−1|e−iH∆t|ψN−1〉〈ψN−1|ΠN−2〉〈ΠN−2|e−iH∆t|ψN−2〉 · · ·

· · · 〈ψ2|Π1〉〈Π1|e−iH∆t|ψ1〉〈ψ1|ψα〉
dΠ1
2π

dΠ2
2π

· · · dΠN

2π
=

=
∫ N∏

i=1

dψidΠi

2π
exp

(

i
∫

d3xΠNψN+1

)

exp
(

−i
∫

d3xΠNψN

)

·

· exp
(

−i∆t
∫

d3xH(ΠN , ψN)
)

· · · δ(ψ1 − ψα). (B.10)

where we have used

〈ψN+1|ΠN〉 = exp
(

i
∫

d3xΠN(~x)ψN+1(~x)
)

(B.11)

〈ΠN |e−iHN∆t|ψN〉 = 〈ΠN |ψN〉e−iHN∆t = exp
(

−i
∫

d3xΠNψN

)

e−iHN∆t (B.12)

〈ψ1|ψα〉 = δ(ψ1 − ψα) (B.13)
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as well as

HN =
∫

d3xH(ΠN , ψN) (B.14)

and ψN+1 = ψα. Let us now consider N →∞ :

Aαα = 〈ψα| exp(−iHtf )|ψα〉 = lim
N→∞

∫ N∏

i=1

dψidΠi

2π
δ(ψ1 − ψα) ·

· exp





−i∆t

N∑

j=1

∫

d3x

[

H(Πj, ψj)− Πj
ψj+1 − ψj

∆t

]





=

=
∫

[dΠ]
∫ ψ(~x,tf )

ψ(~x,0)
[dψ] exp

[

i
∫ tf

0
dt
∫

d3x

(

Π
∂ψ

∂t
−H

)]

=

=
∫

[dΠ]
∫

periodic
[dψ] exp

[
∫ β

0
dτ

∫

d3x

(

iΠ
∂ψ

∂τ
−H

)]

.

where we switched to imaginary time τ = it in the last step. The expression
“periodic” on the second integral simply means ψα(~x) = ψα(~x, 0) = ψα(~x, β).
We can now identify

〈ψα| exp(−βH)|ψα〉 =
∫

[dΠ]
∫

per.
[dψ] exp

[
∫ β

0
dτ
∫

d3x

(

iΠ
∂ψ

∂τ
−H

)]

(B.15)

which, after using (B.5), we will insert back into (B.7) to obtain

ZFG =
∫

[dΠ]
∫

per.
[dψ] exp

[
∫ β

0
dτ
∫

d3x

(

iΠ
∂ψ

∂τ
−H + µN

)]

. (B.16)

Insertion of Π = iψ† from (B.3), H from (B.4) and N = ψ†ψ = ψ̄γ0ψ yields
for the exponent

∫ β

0
dτ
∫

d3x

(

i2ψ†
∂ψ

∂τ
+ ψ̄(i~γ ~∇−M + µγ0)ψ

)

=

(B.2)
=

∫ β

0
dτ
∫

d3x ψ̄ (i6∂ −M + µγ0)ψ. (B.17)

Inserting (B.17) back into (B.16) allows writing

ZFG =
∫ [

idψ†
]

[dψ] exp

{
∫ β

0
dτ
∫

d3x ψ̄ (i6∂ −M + µγ0)ψ

}

. (B.18)
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This path integral will be Fourier transformed by setting

∫ [

idψ†
] ∫

per.
[dψ] →

∏

n

∏

~p

∏

α

∫

idψ̃†α;n(~p)ψ
†
α;n(~p)

∫ β

0
dτ
∫

d3x → β
∑

n,~p

i~∇ → −~p
∂

∂τ
→ iωf (B.19)

as well as

ψα(~x, τ) = (1/V
1
2 )
∑

n

∑

~p

ei(~p~x+ωf τ)ψ̃α;n(~p). (B.20)

to receive

ZFG =
∏

n

∏

~p

∏

α

∫

idψ̃†α;n(~p)ψ
†
α;n(~p) exp






β
∑

n,~p

e−i(~p~x+ωf τ)ψ̃†α;n(~p)γ0·

· (−γ0iωf + ~γ (−~p)−M + µγ0) e
i(~p~x+ωf τ)ψα;n(~p)

}

=
∏

n,~p,α

∫

idψ̃†α;n(~p)ψ
†
α;n(~p) exp







∑

n,~p

iψ̃†α;n(~p) ·D · ψα;n(~p)





(B.21)

where

D = [−iβ ((−iωf + µ)− γ0~γ~p−Mγ0)] . (B.22)

Integrals over (anticommuting) Grassmann variables1 were introduced to be
able to deal with path integrals over fermionic coordinates. The integral for
our purposes is

∫

dη†1dη1 · · · dη†NdηN exp(η†Dη) = detD, (B.23)

which simplifies our partition function further

ZFG = detD (B.24)

where D is a 4× 4 matrix

1they’re connected to Pauli’s exclusion principle and the spin-statistics theorem, see A.4.2
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of the form

ZFG = det β ·

·








−ωf−iµ+iM 0 ipz ipx−py
0 −ωf−iµ+iM ipx+py −ipz
ipz ipx−py −ωf−iµ−iM 0

ipx+py −ipz 0 −ωf−iµ−iM








=

=
∏

n

∏

~p

β4
(

M2 + ~p 2 − µ2 + 2iωfµ+ ω2f
)2

(B.25)

In addition to the Dirac indices (4× 4) we also have to take into account the
momentum and frequency space. The matrix D is quasi ∞-dimensional and
diagonal in these spaces. This leads to the products over n and ~p in (B.25).
Let us take the logarithm of this expression

lnZFG = ln
∏

n,~p

β4
(

M2 + ~p 2 − µ2 + 2iωfµ+ ω2f
)2

=

= 2
∑

n,~p

ln β2
(

M2 + ~p 2 − µ2 + 2iωfµ+ ω2f
)

=

= 2
∑

n,~p

ln
{

β2
[

(ωf + iµ)2 + E2
]}

=
∣
∣
∣E =

√

M2 + ~p2

=
∑

n,~p

ln
{

β2
[

(ωf + iµ)2 + E2
]}2

=

=
∑

n,~p

ln
{

β4
[

(ωf + iµ)2 + E2
] [

(ωf + iµ)2 + E2
]∗}

=

=
∑

n,~p

ln
{

β4
[

(ωf + iµ)2 + E2
] [

(ωf − iµ)2 + E2
]}

=

=
∑

n,~p

ln
{

β4 [(ωf + i(µ+ E))(ωf − i(µ+ E)) ·

· (ωf − i(µ− E))(ωf + i(µ− E))]
}

=

=
∑

n,~p

{

ln
[

β2
(

ω2f + (E − µ)2
)]

+ ln
[

β2
(

ω2f + (E + µ)2
)]}

.(B.26)

In the following we will insert ωf from (A.59) which causes the antiperiodicity
of the fermion fields in imaginary time. We will also make use of the equations
(A.56) and (A.57) to rewrite (B.26) in the following form:
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∑

n,~p

ln
[

β2
(

ω2f + (E ± µ)2
)]

=
∑

n,~p

ln
[

(2n+ 1)2π2 + β2 (E ± µ)2
]

=

=
∑

~p

∫ β2(E±µ)2

1

∞∑

n=−∞

1

(2n+ 1)2π2 +Θ2
dΘ2 + ln

[

1 + (2n+ 1)2π2
]

=

=
∑

~p

∫ β2(E±µ)2

1

1

Θ

(
1

2
− 1

eΘ + 1

)

dΘ2 =

=
∑

~p

∫
√
β2(E±µ)2

1

1

Θ

(
1

2
− 1

eΘ + 1

)

2ΘdΘ =

=
∑

~p

∫ ±β(E±µ)

1
1− 2

eΘ + 1
dΘ = [x− 2 ln (ex + 1)]±β(E±µ)1 (B.27)

where we have dropped the term independent of β and µ in the second step
because the partition function is only defined up to an arbirtary constant.
Thermodynamical quantities are independent of the choice of this constant. If
we drop more such terms in the following we will do so without further notice!

lnZFG =
∑

~p

−2βE + 2 ln
(

eβ(E+µ) + 1
)

+ 2 ln
(

eβ(E−µ) + 1
)

=

= 2V
∫ d3p

(2π)3
βE + ln

(

1 + e−β(E−µ)
)

+ ln
(

1 + e−β(E+µ)
)

(B.28)

allows reading off directly the pressure PFG = NfT/V ·lnZFG we wanted which
can be written as

PFG = 4T
∫ d3p

(2π)3
ln
(

1 + e−β(E−µ)
)

+ ln
(

1 + e−β(E+µ)
)

(B.29)

where the number of flavors Nf = 2 is taken into account explicitly. Using
partial integration

∫

u′v = [uv]− ∫ uv′ we find

2T

π2

∫

dp p2
︸︷︷︸

=u′

ln
(

1 + e−β(
√
p2+M2±µ)

)

︸ ︷︷ ︸

=v

= 2T
[
1

3
p3 · v

]∞

0
− 2T

∫ dp

π2
1

3
p3
−βp
E

f±E

It is easily checked that the first term on the righthand side vanishes.
After changing the integration variable from p to E in (B.29) PFG can be
written in the following compact way

PFG =
2

3π2

∫ ∞

M
dE

(

E2 −M2
)3/2 [

f−E + f+E
]

. (B.30)

In the next section we will take the derivatives of this term.
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B.2 Derivatives of PFG

In this section we will replace the baryon mass M and chemical potential µ in
(B.29) and (B.30) with the corresponding quantities of a quasi nucleonM ∗, µ∗.

PFG = 4T
∫ d3p

(2π)3
ln
(

1 + e−β(
√
p2+M∗2−µ∗)

)

+ ln
(

1 + e−β(
√
p2+M∗2+µ∗)

)

=
2

3π2

∫ ∞

M∗
dE

(

E2 −M∗2
)3/2 [

f−E + f+E
]

(B.31)

with f±E this time from (A.48).
In order to be able to calculate the scalar and baryon densities (4.41) and
(4.42) in the various stages of our model we need to take the derivatives of
PFG with respect toM ∗ and µ∗, that is ns = −∂PFG/∂M∗ and ρ = ∂PFG/∂µ

∗.
Taking these derivatives - which is more easily performed using the first term
in (B.31) - yields

ns = 4
∫ d3p

(2π)3
M∗

E

[

f−E + f+E
]

(B.32)

ρ = 4
∫ d3p

(2π)3

[

f−E − f+E
]

(B.33)

for the densities.





Appendix C

Pion Exchange Diagrams

In this appendix we present the detailed calculation of the Feynman diagrams
appearing throughout this work. The first part C.1 will be concerned with the
1π-exchange Fock term. It will be organised such that its first subsection con-
tains the actual derivation of the pressure contribution of the diagram whereas
the second subsection contains a summary of the various derivatives taken.
The latter being important in calculating the corresponding contributions to
the related thermodynamical quantities, see section 3.1. The second part C.2
only represents a derivation of the ansatz for the leading 2π-exchange diagram.

The reader only interested in the final results can skip most of the text and pro-
ceed to (C.25) and (4.88) for the 1- and 2-pion exchange pressure contributions
respectively.

C.1 The 1π-exchange Fock Term

In this section we will perform the detailed calculation of the pressure term
P1π of the following 1-pion exchange diagram

a b

l1

l1 − l2

l2 (C.1)

in Euclidean space using the Feynman rules summarised in Appendix A.1.
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C.1.1 Calculation of P1π

Starting with the vertex labelled a and going around anti-clockwise1 we pick
up these terms (q/ = l/1 − l/2)

−igAq/γ5τa
2fπ

M − l/2
M2 + l22

−igA(−q/)γ5τ b
2fπ

M − l/1
M2 + l21

1

mπ
2 + q2

=

=
−g2A
4f 2π

τaτ b
(l/1 − l/2)

(M + l/2)
=1
︷ ︸︸ ︷
γ5γ5(l/1 − l/2)

︷ ︸︸ ︷

γ5(M − l/2)(l/2 − l/1)γ5 (M − l/1)

[M2 + l22][M
2 + l21][mπ

2 + (l1 − l2)2]
(C.2)

As mentioned in (A.5) we also have to consider the closed fermion loop with
its minus sign and trace as well as the summations and integrations in (A.6).
The pion at a must be the same as the one at b thus we add a δab. Using
(A.15) to perform the isospin trace and adding the symmetry factor (A.2) -
which is 1/2 - the ansatz for the full pressure contribution of the diagram in
(C.1) can be written as

P f
1π =

g2A
8f 2π

Isospin
trτaτ bδab
︸ ︷︷ ︸

=6

T 2
∑

n1,n2

∫ d3l1
(2π)3

∫ d3l2
(2π)3

tr(l/1 − l/2)(M
∗ + l/2)(l/1 − l/2)(M

∗ − l/1)

[M∗2 + l21][M
∗2 + l22][mπ

2 + (l1 − l2)2]
(C.3)

Using (A.10) and (A.11) we will first calculate the trace of the numerator in
the integrand where every second term vanishes due to the fact that the trace
over an odd number of momenta is zero

1

4
tr(l/1 − l/2)(M

∗ + l/2)(l/1 − l/2)(M
∗ − l/1) =

= −M∗
(

l21 + l22 − l1l2
(

l21 + l22
))

−M∗2(l1 − l2)
2 =

= −
(

M∗2 − l1l2
)

(l1 − l2)
2 =

=
(

M∗2 + l21
)

l2 (l2 − l1) +
(

M∗2 + l22
)

l1 (l1 − l2) +

+2M∗2
[

mπ
2 −

(

mπ
2 + (l1 − l2)

2
)]

(C.4)

On first sight the expansion in the last line might cause astonishment but con-
sidering this to be an integrand proves worth writing it in this form. Because

1the order of γ matrices does matter
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then the first two terms are linear in (l1 − l2). Thus they integrate to zero
leaving us with

P f1π =
3T 2g2A
f 2π

∑

n1,n2

∫ d3l1d
3l2

(2π)6
2M∗2 [mπ

2 − (mπ
2 + (l1 − l2)

2)]

[M∗2 + l21][M
∗2 + l22][mπ

2 + (l1 − l2)2]
︸ ︷︷ ︸

2M∗2mπ
2

[M∗2 + l21][M
∗2 + l22][mπ

2 + (l1 − l2)2]
− 2M∗2

[M∗2 + l21][M
∗2 + l22]

(C.5)

Let us write this in the form

P f1π = 6
g2AM

∗2

f 2π

[

mπ
2A(mπ)−∆2

N

]

=: P1π + P∆ (C.6)

with

A(mπ) =
∑

n1,n2

∫ d3l1d
3l2

(2π)6
T 2

[M∗2 + l21][M
∗2 + l22][mπ

2 + (l1 − l2)2]

∆2
N =

∑

n1,n2

∫ d3l1d
3l2

(2π)6
T 2

[M∗2 + l21][M
∗2 + l22]

(C.7)

and let us investigate them one after the other starting with the second and
simpler one. It is obviously of the contact interaction type as the terms intro-
duced in section 4.1.3. Its effects can thus be absorbed into readjustment of
the parameters Gs,v. Nevertheless we will have a closer look at it. The first
thing one recognises is the fact that it is not necessary to integrate and sum
twice as it will have the same effect to work with

∆2
N = T 2

∑

nεZ

∫ d3l

(2π)3
1

(M2 + l2)2
⇔ ∆N = T

∑

nεZ

∫ d3l

(2π)3
1

M2 + l2
(C.8)

The order of summation and integration should not bother us. Remembering
the form of the nucleon propagator, the corresponding Matsubara function in
(A.8) and using E2 =M∗2 + ~l2 we can write
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∆N = T
∫ d3l

(2π)3
∑

nεZ

1

E2 + [πT (2n+ 1)− iµ]2

(A.53)
= T

∫ d3l

(2π)3
∑

n

∑

s=±1

s

2E

1

iπT (2n+ 1) + µ+ sE

(A.61)
=

∫ d3l

(2π)3
1

2E
[b(iπT + µ∗ + E)− b(iπT + µ∗ − E)]

=
∫ ∞

0

dp p2

2π2
1

2E
[f(µ∗ − E)− f(µ∗ + E)]

(A.50)
=

1

4π2

∫ ∞

M∗
dE

√

E2 −M∗2 [1− f(E − µ∗)− f(E + µ∗)]

→ 1

4π2

∫ ∞

M∗
dE

√

E2 −M∗2 [f(E − µ∗)− f(E + µ∗)] . (C.9)

The factor of one in the last step vanishes due to nucleon mass renormalisation.
The corresponding renormalised pressure contribution then takes on the form

P ren∆ = −6g2πN∆2
N = −g

2
πN

8π4

{∫ ∞

M∗
dE

√

E2 −M∗2
[

f−E − f+E
]}

(C.10)

where we use the abbreviation for the Fermi function stated in (A.48). The
pion nucleon coupling constant gπN = 12.9 is given in (2.63). The step from
solutions of the self-consistent mass equation to values of the baryon density is
highly non-trivial. Explicitly taking the contribution P ren∆ into account leads to
negative values of the baryon density and makes physical discussion impossible.
Therefore we neglect this term.
Let us now have a look at the first term P1π = 6g2AM

∗2mπ
2A(mπ)/f

2
π where

we start again using (A.8) and (A.9) respectively on A(mπ) from (C.7):

A(mπ) = T
∑

n1εZ

T
∑

n2εZ

∫∫ d3l1
(2π)3

d3l2
(2π)3

{[

E21 + (πT (2n1 + 1)− iµ∗)2
]

·

·
[

E22 + (πT (2n2 + 1)− iµ∗)2
]

·
[

E23 + (2πT (n1 − n2))
2
]}−1

(C.11)

with the energies Ei =
√

M∗2 +~l2i , i = 1, 2 and

E3 =
√

mπ
2 +~l23; ~l3 = ~l1 −~l2. (C.12)
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Comparing with the vector identity of the scalar product

~l1 ·~l2 = |~l1||~l2|x

where x = cos 6 (~l1,~l2) which we use evaluating E23

E23 = mπ
2 + (~l1 −~l2)2 = mπ

2 + E21 + E22 − 2M∗2 − 2x|~l1||~l2|
E3dE3 = −|~l1||~l2|dx; EidEi = |~li|dli = lidli, i = 1, 2 (C.13)

we can understand how one can directly perform two of the l1-integrations but
only one of the l2-integrations as they are not independent

∫ ∞

0

d3l1d
3l2

(2π)6
=

1

(2π)6

∫ ∞

0
dl1 |~l1|4π

∫ ∞

0
dl2 |~l2|2π

∫ +1

−1
dx|~l1||~l2|

(C.13)
=

1

8π4

∫ ∞

M∗
dE1E1

∫ ∞

M∗
dE2E2

∫ E+
3

E−
3

dE3E3 (C.14)

where E±3 =

√

mπ
2 +

(√

E21 −M∗2 ±
√

E22 −M∗2
)2

= E3(x = ∓1). Note the

sign in the last step! Let us now replace the integrations

A(mπ) =
1

8π4

∫ ∞

M∗
dE1

∫ ∞

M∗
dE2

∫ E+
3

E−
3

dE3 S (C.15)

where S = S(E1, E2, E3) takes on the form

S = T
∑

n1εZ

T
∑

n2εZ

E1
E21 + (πT (2n1 + 1)− iµ∗)2

· E2
E22 + (πT (2n2 + 1)− iµ∗)2

· E3
E23 + (2πT (n1 − n2))2

(A.53)
=

= T 2
∑

n1,n2

∑

s1=±1

s1
2E1

E1
i(πT (2n1 + 1)− iµ∗) + s1E1

∑

s2=±1

s2
2E2

·

· E2
i(πT (2n2 + 1)− iµ∗) + s2E2

∑

s3=±1

s3
2E3

E3
i(2πT (n1 − n2)) + s3E3

=

=
(
1

2

)3 ∑

s1,s2,s3

T
∑

n1

s1
h1 + µ∗ + s1E1

; hi = iπT (2ni + 1)

T
∑

n2

s2
h2 + µ∗ + s2E3

· −s3
2πiTn2 − 2πiTn1 − s3E3
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This can be simplified further

S (A.54)
=

1

8

∑

s1,s2,s3

T
∑

n1

s1
h1 + µ∗ + s1E1

s2s3
h1 + µ∗ + s2E2 + s3E3

(

T
∑

n2

1

h2 + µ∗ + s2E2
︸ ︷︷ ︸

(A.61)
= b(µ∗ + s2E2 + iπT ) +

1

2

− T
∑

n2

1

2πiTn2 − 2πiTn1 − s3E3

)

︸ ︷︷ ︸

(A.61,A.40,A.51)
= b(s3E3) + 1− 1

2
(A.52)
= −f(µ∗ + s2E2) +

1

2 (C.16)

Using (A.54) again on the summation over n1 above and performing the same
tricks we can tranform the first part of (C.16) into

T
∑

n1

s1
h1 + µ∗ + s1E1

s2s3
h1 + µ∗ + s2E2 + s3E3

=

s1s2s3
s2E2 + s3E3 − s1E1

(

f(µ∗ + s2E2 + s3E3)− f(µ∗ + s1E1)
)

therefore S becomes

S =
1

8

∑

s1,s2,s3

s1s2s3
s2E2 + s3E3 − s1E1

(

b(−s3E3) + f(µ∗ + s2E2)
)

·

·
(

f(µ∗ + s1E1)− f(µ∗ + s2E2 + s3E3)
)

(C.17)

It does not make sense to mix nucleon and pion energies. Thus it is preferable
to only have single energies as arguments in the various distribution functions.
Insertion of x = exp[(s2E2+µ

∗)/T ] and y = (−s3E3/T ) into (A.55) proves the
identity

f(µ∗ + s2E2 + s3E3)[f(s2E2 + µ∗) + b(−s3E3)] =
= f(s2E2 + µ∗)[1 + b(−s3E3)]

This together with (C.17) inserted into (C.15) yields

A(mπ) =
1

64π4

∫ ∞

M∗
dE1

∫ ∞

M∗
dE2

∫ E+
3

E−
3

dE3
∑

s1,s2,s3

s1s2s3
s1E1 − s2E2 + s3E3

·

·
[

f+s1f
+
s2
+ f+s1b(s3E3) + f+s2b(−s3E3)

]

(C.18)
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where we have used the fact that it does not make a difference to the sum if
we replace s3 → −s3 with the abbreviation (A.48). It is now time to collect
terms

∑

s1,s2,s3

s1s2s3
s1E1 − s2E2 + s3E3

[

f+s1f
+
s2
+ f+s1b(s3E3) + f+s2b(−s3E3)

]

=

=
h++

E1+E2+E3
+

h+−

E1−E2+E3
+

h−+

−E1+E2+E3
+

h−−

−E1−E2+E3
(C.19)

where the hs1s2 contain the distribution functions

h++ = −(1− f−1 )f
+
2 − (1− f−1 )(−1− b(E3))− f+2 b(E3)

−f+1 (1− f−2 )− f+1 b(E3)− (1− f−2 )(−1− b(E3))

= f+1 f
−
2 + f−1 f

+
2 − [f+1 + f−1 + f+2 + f−2 ]b(E3)

+ 2
︸︷︷︸

vacuum
+2b(E3)
︸ ︷︷ ︸

pion

− [f+1 + f−1 + f+2 + f−2 ]
︸ ︷︷ ︸

nucleon

and some vacuum as well as pion and nucleon mass renormalisation terms. In
very compact form the hs1s2 can be written as

h++ = f+1 f
−
2 + f−1 f

+
2 − [f+1 + f−1 + f+2 + f−2 ]b(E3) + ...

h+− = f+1 f
+
2 + f−1 f

−
2 + [f+1 + f−1 − f+2 − f−2 ]b(E3)− f+1 − f−2

h−+ = f+1 f
+
2 + f−1 f

−
2 + [f+2 + f−2 − f+1 − f−1 ]b(E3)− f+1 − f−1

h−− = f+1 f
−
2 + f−1 f

+
2 + [f+1 + f−1 − f+2 + f−2 ]b(E3)− 2b(E3)

where the last terms can be ommitted - due to renormalisation - as mentioned
above. Collecting like terms again, e.g. the ones containing f+1 f

−
2 + f−1 f

+
2

which appear in h++ and h−− lead to

1

E1 + E2 + E3
+

1

−E1 − E2 + E3
=

2E23
E23 − (E1 + E2)2

(C.20)

and allow us to write after analogous treatment of the other terms

P1π =

=: ξ
︷ ︸︸ ︷

3g2Amπ
2

(2π)4f 2π
M∗2

∫ ∞

M∗
dE1

∫ ∞

M∗
dE2

∫ E+
3

E−
3

dE3 ·

·
{

E3
E23−(E1+E2)2

[

f+1 f
−
2 +f−1 f

+
2

]

+
E3

E23−(E1−E2)2
[

f+1 f
+
2 +f−1 f

−
2

]

+
(E1+E2)b(E3)

E23−(E1+E2)2

[

f+1 +f−1 +f+2 +f−2
]

+
(E2−E1)b(E3)
E23−(E1−E2)2

[

f+1 +f−1 −f+2 −f−2
]
}

(C.21)



126 Pion Exchange Diagrams

where the factors of 2 have been absorbed in the prefactor and E±3 as defined
above after (C.14). We can still use the (anti)symmetric character of these
terms to simplify

P1π = ξM∗2
∫ ∞

M∗
dE1

∫ ∞

M∗
dE2

∫ E+
3

E−
3

dE3
{

E3
E23 − (E1 + E2)2

2f+1 f
−
2 +

E3
E23 − (E1 − E2)2

[

f+1 f
+
2 + f−1 f

−
2

]

+

[

(E1 + E2)

E23 − (E1 + E2)2
+

(E2 − E1)

E23 − (E1 − E2)2

]

2b(E3)
[

f+1 + f−1
]
}

(C.22)

where we can see that the E3-integration is possible analytically for the first
two integrations but becomes complicated in the last term due to the E3-
dependence of the appearing Bose distribution function. Instead we will per-
form the E2-integration in the latter case thus rewriting

P1π = ξM∗2

{
∫ ∞

M∗
dE1

∫ ∞

M∗
dE2 2

[

f+1 f
−
2

] ∫ E+
3

E−
3

dE3
E3

E23 − (E1 + E2)2

+
∫ ∞

M∗
dE1

∫ ∞

M∗
dE2

[

f+1 f
+
2 + f−1 f

−
2

] ∫ E+
3

E−
3

dE3
E3

E23 − (E1 − E2)2

+
∫ ∞

M∗
dE1

∫ ∞

mπ

dE3 2b(E3)
[

f+1 + f−1
] ∫ E+

2

E−
2

dE2
[

(E1 + E2)

E23 − (E1 + E2)2
+

(E2 − E1)

E23 − (E1 − E2)2

]}

(C.23)

with E±2 =

√

M∗2 +
(√

E21 −M∗2 ±
√

E23 −mπ
2

)2

. Performing these integra-

tions analytically
(

~l1,2 =
√

E21,2 −M∗2; ~l3 =
√

E23 −mπ
2

)

∫ E+
3

E−
3

dE3
E3

E23 − (E1 ∓ E2)2
=

1

2
ln
mπ

2/2−M∗2 +~l1~l2 ± E1E2

mπ
2/2−M∗2 −~l1~l2 ± E1E2

=:
1

2
lnL±1

∫ E+
2

E−
2

dE2
(E1 + E2)

E23 − (E1 + E2)2
+

(E2 − E1)

E23 − (E1 − E2)2
= (C.24)

=
1

2
ln
mπ

2(M∗2 − E21 +mπ
4/4 +~l1~l3)−M ∗2E23

mπ
2(M∗2 − E21 +mπ

4/4−~l1~l3)−M ∗2E23
=:

1

2
lnL2

and inserting them back into (C.23) we finally end up with
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P1π = ξM∗2
∫ ∞

M∗
dE1

{∫ ∞

M∗
dE2

([

f+1 f
−
2

]

ln(L−1 )+

+
[

f+1 f
+
2 + f−1 f

−
2

] 1

2
ln(L+1 )

)

+
[

f+1 + f−1
] ∫ ∞

mπ

dE3 b(E3) ln(L2)
}

(C.25)

This is the pressure contribution of the 1-pion-exchange Fock term where ξ is
defined in (C.21), the L

(±)
i in (C.25), f±i in (A.48) und b in (A.38).
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C.2 Two Pion Exchange

In this section we want to rewrite the ansatz for the 2-pion exchange diagram
in (4.85) in terms of distribution functions. Our starting point will be the
ansatz in (4.86):

P2π = 3

(

−igA
2fπ

)4

(−4)2T 3
∑

ν,n1,2

∫ d3p1d
3p2d

3q

(2π)9
·

·
1
4
tr q/(−M ∗− p/1 − q/)q/(M ∗− p/1)

1
4
tr q/(−M ∗− p/2 − q/)q/(M ∗− p/2)

(m2
π + q2)2[M∗2 + p21][M

∗2 + (p1 + q)2][M ∗2 + p22][M
∗2 + (p2 + q)2]

(C.26)

With the help of (A.10f) and some analysis the traces in our ansatz (4.86) can
be evaluated therefore the numerator takes on the form

1

4
tr q/(M ∗ + p/1 + q/)q/(M ∗ − p/1)

1

4
tr q/(M ∗ + p/2 + q/)q/(M ∗ − p/2) =

=
(

M∗2q2 + q2p21 + q3p1
)

·
(

M∗2q2 + q2p22 + q3p2
)

=

=
(

p1q
[

M∗2 + (p1 + q)2
]

− q(p1 + q)
[

M∗2 + p21
]

+ 2M∗2q2
)

·
·
(

p2q
[

M∗2 + (p2 + q)2
]

− q(p2 + q)
[

M∗2 + p22
]

+ 2M∗2q2
)

=

=
(

p1qE
2
3−q(p1 + q)E21 + 2M∗2q2

) (

p2qE
2
4−q(p2 + q)E22 + 2M∗2q2

)

with the replacements

E21,2 =M∗2 + p21,2; E
2
3,4 =M∗2 + (p1,2 + q)2; E25 = mπ

2 + q2 (C.27)

The usefulness of the expansion towards the lengthly expression in the last
step becomes obvious as soon as we bring the denominator - which becomes
E45E

2
1E

2
3E

2
2E

2
4 - back into the game. The integrand in (4.86) can now be written

in the following form

1

E4
5

[

p1qp2q

E2
1E

2
2

−

p2→p2−q,E4→E2
︷ ︸︸ ︷

p1qq(p1 + q)

E2
1E

2
4

−

p2→p2+q,E2→E4
︷ ︸︸ ︷

q(p1 + q)p2q

E2
2E

2
3

+
q(p1 + q)q(p2 + q)

E2
3E

2
4

+2M∗2q2
(

p1q

E2
1E

2
2E

2
4

− q(p1 + q)

E2
2E

2
3E

2
4

︸ ︷︷ ︸

p1→p1−q,E3→E1

+
p2q

E2
1E

2
2E

2
3

− q(p2 + q)

E2
1E

2
3E

2
4

︸ ︷︷ ︸

p2→p2−q,E4→E2

)

+
4M∗4q4

E2
1E

2
2E

2
3E

2
4

]

Only the last term survives
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P2π = 3
g4A
f 4π
T 3

∑

ν,n1,2

∫ d3p1d
3p2d

3q

(2π)9
4M∗4q4

E21E
2
2E

2
3E

2
4E

4
5

(2.63)
= 12g4πNT

3
∑

ν,n1,2

∫ d3p1d
3p2d

3q

(2π)9

[

q4

(m2
π + q2)2

︸ ︷︷ ︸

= 1− 2m2
π

m2
π + q2

+
m4
π

(m2
π + q2)2

]

E−21 E−22 E−23 E−24

(C.28)

where we have used the Goldberger-Treiman relation from section 2.9.
Considering the limit m2

π → ∞ and taking the derivative with respect to m2
π

of the second term

lim
m2
π→∞

m2
π

m2
π + q2

= 1 (C.29)

− ∂

∂m2
π

1

m2
π + q2

=
1

(m2
π + q2)2

(C.30)

shows us that it is sufficient to explore an even simpler term

P̃2π = 12g4πNT
3
∑

ν,n1,2

∫ d3p1d
3p2d

3q

(2π)9

[

1

m2
π + q2

]

E−21 E−22 E−23 E−24

= 12g4πNT
3
∑

ν,n1,2

∫ d3p1d
3p2d

3q

(2π)9
G (C.31)

where

G =
[

(m2
π+q

2)(M ∗2+p21)(M
∗2+p22)(M

∗2+(p1+q)
2)(M ∗2+(p2+q)

2)
]−1
=

=
∑

s1,2,3,4,5

s1s2s3s4s5
32E1E2E3E4E5

·

·
{

2 [f(s2E2 + µ)− f(s4E4 + µ)] f(−s1E1 − µ)f(s3E3 + µ)

(s3E3 − s1E1 − s5E5) (s3E3 − s1E1 + s2E2 − s4E4)

+
[f(s1E1 + µ)− f(s3E3 + µ)] [f(s2E2 + µ)− f(s4E4 + µ)] b(s5E5)

(s5E5 − s3E3 + s1E1) (s5E5 − s4E4 + s2E2)

}

(C.32)

represents the formulation in terms of distribution functions we were interested
in.
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