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Introduction

One of the major challenges of nuclear physics is presently focused toward the exploration
of exotic nuclei in the regions away from the valley of beta-stability [1]. Until recently,
nuclear physics investigations, both experimentally and theoretically, have mainly been
constrained to study nuclei with relatively small neutron-proton asymmetry. However,
new experimental techniques with the radioactive nuclear beams have started to probe
the unexplored regions of the nuclear chart, from stable nuclei toward the boundaries
of nuclear existence, revealing interesting nuclear structure phenomena. The traditional
nuclear structure models, which have been established mainly within the limited space
around the valley of beta-stability, need to be reformulated to include the properties of
exotic nuclei.

Knowledge about exotic nuclei may improve our present insight, not only into the
origin of element abundances on the Earth, but also into the processes leading to the
formation of matter in the universe. The chemical elements have been produced in vio-
lent nuclear reactions inside stars and supernovae explosions. At that stage, most nuclei
were unstable, then followed by the nuclear reactions and decays toward stable nuclei.
The fusion reactions inside stars, starting from the fusion of hydrogen into helium, are
responsible for the production of elements up to iron. However, the origin of elements
heavier than iron is still not fully understood. The most perspective paths for the forma-
tion of heavy nuclei are s-process, i.e. the slow neutron capture, and r-process, i.e. the
rapid capture of neutrons. It is presumed that more than half of the elements heavier
than A=60 are produced by the r-process, in a series of rapid neutron captures followed
by [-decays. These events run only in environments with extremely high neutron densi-
ties. Under these conditions, the subsequent [-decays are much slower than the neutron
captures leading to the formation of extremely neutron-rich nuclei. On the other side of
the valley of stability, rp-processes (rapid proton capture), are relevant in the production
of the proton-rich heavy nuclei. In general, it is assumed that in addition to more than
260 nuclei that are not subject to radioactive decay, probably more than 7000 different
unstable nuclei exist.

Exotic nuclei became experimentally accessible after new accelerators, with improved
high beam intensities and energies of radioactive ions, had been established. A large
number of radioactive nuclei can also be produced in the fission nuclear reactors, from
which the exotic nuclei are extracted into an accelerator for further studies. Experimental
techniques have been steadily improved over the years, leading towards an excellent de-
tection efficiency and resolution. Exotic isotopes can be produced by the breaking up of
accelerated heavier nuclei either in the linear accelerator or in the heavy ion synchrotron.



By using the projectile fragmentation with in-flight separation, a large number of the
produced exotic isotopes can be sorted out according to their nuclear mass and charge.
Another technique is based on shooting at a target at rest using very intense beams, and
producing unstable isotopes fixed in the target material from which they can be extracted
for further use.

The properties of exotic nuclei are being studied in a series of major experimental
facilities, e.g. NCSL, ORNL and ANL (USA), GSI (Germany), GANIL (France), RIKEN
(Japan), CERN (Europe), Dubna (Russia), and TRIUMF (Canada). However, a new
generation of radioactive ion beam facilities will strongly boost the nuclear structure
studies of exotic nuclei, in particular the Rare Isotope Accelerator (RIA) in USA, the
international accelerator facility for research with ions and anti-protons at GSI, and the
Radioactive Ion Beam Factory (RIBF) in Japan [2].

Amongst the unique phenomena discovered in light exotic nuclei, particularly chal-
lenging are the halo structures composed from the weakly bound neutrons characterized
by a large spatial extension of radial wave functions far from the core built from the rest
of nucleons [3]. A very unusual behavior of neutron halos in light nuclei inspired many
new experimental studies to map the nuclear chart in unknown regions, some close to
the neutron and proton drip-lines. The existence of neutron skin is another interesting
effect appearing in the neutron-rich medium-heavy and heavier nuclei. As the number of
neutrons increases towards the drip-lines, the neutron density becomes extended in space
beyond the proton density, giving rise to a neutron skin. In fact, in the neutron-rich
weakly bound nuclei, both skins and halos can be expected [4]. Although nuclei beyond
the particle drip-lines are unbound, it is not yet clear whether the existence of islands
of stability on the other side from the drip-lines is possible. An extreme case of such a
system would be a neutron star, bound together due to the equilibrium of gravitational
force and the neutron degeneracy pressure.

Probably one of the most striking features in the nuclear structure of exotic nuclei
are changes in the well known shell structure. In stabile nuclei the magic numbers, N,Z
= 8, 20, 28, (40) 50, 82, 126 and its origin are well identified. However, in the case
of exotic neon, sodium and magnesium isotopes, experiments have shown that the shell
closure at N=20 disappears [5]. In recent theoretical work it has been indicated that
in neutron-rich nuclei new magic numbers appear, i.e. N=6,16,34, etc. instead of the
usual magic numbers N=8,20,40, etc. [6]. This change has been explained by the strong
attractive V., interaction, originating from the one boson exchange potential. In other
studies, it has been shown that the single-particle spectra in exotic nuclei result with the
shell quenching effects at extreme values of the isospin [7]. Therefore, the nuclear shell
structure and magic numbers have to be systematically revised in the case of exotic nuclei.

The shell closure plays an important role to achieve the stability of nuclei composed
from an extremely large number of protons and neutrons. Due to strong Coulomb re-
pulsion in super-heavy nuclei, conditions of stability are not easy to obtain, i.e. typical
production rates are one (or less) atom per week, and half lives are of the order of mil-
liseconds. The location of the spherical super-heavy element is still an open question,
although there have been some preliminary results suggesting possible existence of the
stability island for Z=114 and Z=118 [8, 9]. According to the macroscopic-microscopic



models, the magic proton number is Z=114, in contrast to relativistic mean field models
(Z=120,N=172), and Skyrme-Hartree Fock calculations (Z=126,N=184) [10].

Better insight into effects such as nuclear halos, neutron skins, proton-neutron pair-
ing, new shell closures and exotic collective excitation phenomena may lead the way in
theoretical efforts to achieve a consistent and unified model of the nucleus. At present
time, only very light nuclei (A<10) can be treated directly as clusters bound by a free
nucleon-nucleon and three-nucleon forces. Another approach based on the shell-model
calculations, is one of the best microscopic models of atomic nuclei. It includes the cor-
relations among nucleons usually in the restricted space of valence nucleons, by using
realistic nuclear interactions such as Kuo-Brown force and other modified versions [11].
Although this method has been very successful in the past, since the model space rapidly
increases with the number of nucleons, practical calculations are extremely complex and
limited only to the medium-mass nuclei. In recent years, the shell model has experienced
an important evolution due to improvements in computational capacity, as well as new
developments based on Monte-Carlo techniques, increasing the capability to treat configu-
ration spaces with larger dimensions. However, their applications to heavy nuclei are still
not possible. Alternative methods have been developed, in particular the self-consistent
mean field theories, treating nucleons as independent particles moving in an average field
generated by other nucleons. Probably the best known phenomenological mean-field ef-
fective interactions in nuclear physics, given by the Skyrme and Gogny energy functionals,
have been developed over the past decades to achieve the present high-precision level in
the analyzes of experimental data.

On the other side, models based on the relativistic meson-nucleon Lagrangians, espe-
cially its advanced density dependent versions, are nowadays capable of treating a wide
range of properties in many regions of the nuclear chart. Our aim is to follow this theo-
retical course in the present work. Starting from the covariant density functional theory,
for closed shell nuclei, the model is formulated within the Relativistic Mean Field Theory
(RMFT), while in open shell nuclei we apply the Relativistic Hartree-Bogoliubov (RHB)
model which incorporates both the mean field, and the pairing correlations in the self-
consistent way. The present RMFT originates from the basic concepts of the Walecka
model [12, 14]. The theory is based on the following assumptions: (i) the nucleons are
treated as point particles, (ii) relativity is taken into account fully, and (iii) nucleons
move as independent particles in the corresponding mean fields. The dynamics of nu-
cleons is described by Dirac equations containing a mass operator including meson fields
with different spin, parity and isospin properties. In practical calculations, a very simple
combination of fields appeared to be sufficient: one isoscalar field (o-meson), two vector
fields (isoscalar w-meson and the isovector p-meson), plus a photon field. The effective
mesons are coupled to the nucleons by local vertices. However, the density dependence
appeared to be crucial to achieve quantitative agreement with experiments. In the non-
linear relativistic mean field theory, the density dependence is included via non-linear
self-interactions between the scalar mesons [13]. Another way is to introduce the density
dependence explicitly in the coupling constants [15]. Of course, in non-magic nuclei, pair-
ing correlations play an important role. In particular, close to the drip-lines, one occupies
levels in the continuum, leading to unstable solutions of the RMF+BCS equations. This



problem has been avoided in the RHB model with a finite range force of Gogny-type in
the pairing channel [16]. Preliminary results including the relativistic pairing field have
shown that there is practically no mixing of small and large components of Dirac spinors
[17, 18]. If the pairing field for small components is neglected, in first approximation, we
may take only the pairing field of the large components. This justifies the use of non-
relativistic Gogny force in the pairing channel of the RHB model. Since this force has a
finite range, it provides a natural cut-off, i.e. no pairing window is necessary.

Although nucleons in atomic nuclei have relatively small kinetic energies as compared
to the rest mass, there are reasons to study the nuclear many body problem in the relativis-
tic framework. It appears that in the relativistic theory the mean fields which determine
the motion of nucleons are rather important. In the model including the exchange of
Lorentz scalar and vector mesons, two mean fields appear, i.e. an attractive scalar field S
and a repulsive vector field V. These two fields approximately cancel one another (V-S)
for the large components of Dirac spinors, leading to relatively small Fermi momenta and
non-relativistic kinematics. For the small components of Dirac equation, however, the
two fields add up (V+S), leading to a large spin-orbit term in the nuclear field. This
indicates that relativistic dynamics is important in the nuclear many body problem even
at low energies. In the RMF models, the spin-orbit interaction arises naturally from the
Dirac-Lorentz structure of the effective Lagrangian, and there is no need for an additional
strength parameter. Proper description of the spin-orbit interaction is very important in
exotic nuclei. As the number of neutrons increases, the effective spin-orbit potential and
consequent spin-orbit splittings decrease, eventually leading to the effect of shell quench-
ing [19]. Although the RHB model has been very successful in describing many interesting
phenomena in exotic nuclei (neutron drip-line, halo phenomena, proton drip-line, skins,
etc.) it is not yet clear whether the isospin dependence is properly included in the present
models.

The excitation phenomena in exotic nuclei, in particular the giant resonances and the
existence of low-energy soft dipole (so called pygmy) resonances have raised significant in-
terest in recent years. Among collective modes of excitations, giant resonances have been
one of very active topics in the nuclear physics in last few decades. Their widths, observed
in scattering experiments, appear much wider in comparison with typical single-particle
interactions, and their energies reflect the underlying collective dynamics of protons and
neutrons. Two basic categories of giant resonances are distinguished: electric and mag-
netic, corresponding respectively to the excitations that do and do not involve the spin
degree of freedom. The electric multipole resonances can be excited by a variety of dif-
ferent techniques, especially by inelastic scattering of « particles, proton scattering, etc.
On the other side, magnetic giant resonances (e.g. spin dipole resonances) are naturally
excited by a relatively restricted set of scattering processes, such as (p,n). Among the
electric multipole resonances, four angular momentum levels have so far been extracted:
L = 0,1,2,3. They correspond to the monopole (GMR), dipole (GDR), quadrupole
(GQR), and octupole (GOR) modes, respectively. As one moves away from the valley
of stability, the traditional image of giant resonances is strongly affected. In addition,
the appearance of low-energy soft modes, decoupled from the giant resonances, have been
detected in dipole and quadrupole channels.
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The multipole response of unstable nuclei far from the valley of g-stability presents
a very active field of research, both experimentally and theoretically. On the neutron
rich side, modification of the effective nuclear potential leads to the formation of nuclei
with very diffuse neutron densities, as well as to the occurrence of the neutron skin
and halo structures. These phenomena may be reflected in the multipole response of
unstable nuclei, and new modes of excitations are expected to arise. In neutron rich
nuclei, the neutron orbitals just above the Fermi surface are slightly unbound. Therefore
the excitations across the shells close to the Fermi surface may give rise to the low-lying
non-collective threshold strength, or to the collective soft modes. The collectivity of the
low-lying multipole strength in exotic nuclei is still an open question.

Recently, the first soft dipole resonance has been observed in helium-6, in which « par-
ticle and neutrons oscillate in opposite directions [20]. The exotic ground state properties
are reflected in the onset of low-energy isovector dipole modes, in a series of experimen-
tal studies, from oxygen isotopes [21, 22], towards the medium heavy nuclei (**Fe and
8Ni [23], 116:124Sn [24], ¥ Ba [25]). A similar effect has also recently been detected in
a stable heavy nucleus (*®*Pb [26]). Most of these investigations have been followed by
theoretical calculations within the quasiparticle phonon model.

The multipole response of nuclei with large neutron excess has been the subject of
many theoretical studies in recent years. In particular, the giant resonances and the low-
lying components of transition strength have been investigated for weakly bound neutron-
rich nuclei [27, 33]. It has been shown that the neutron excess increases the fragmentation
of the isovector giant dipole resonance (GDR) and that the radial separation of proton
and neutron densities leads to non-vanishing isoscalar transition densities to the GDR
states. The fragmentation of the isoscalar and isovector monopole strength in neutron
rich isotopes has been studied in Ref. [29]. In the case of monopole excitations in the
neutron drip-line nuclei, there is a clear evidence for the low-lying neutron non-collective
strength in the region 4-12 MeV, far below the giant resonance.

The pygmy dipole resonance, which is also the subject of the present study, results
from the excess neutrons oscillating out of phase against a core composed of the rest of
the nucleons. A number of theoretical models have been applied to study the dynam-
ics of pygmy dipole resonances. These include: the three-fluid hydrodynamical model
(the protons, the neutrons of the same orbitals as protons, and the excess neutrons) [30],
the two-fluid (the core fluid and the neutron excess fluid) Steinwedel-Jensen hydrody-
namical model [31], density functional theory [32], and the Hartree-Fock plus random
phase approximation (RPA) with Skyrme forces [33, 34]. More recently, large scale shell
model calculations have been performed in studies of pygmy and dipole states in oxygen
isotopes [35], and dipole and spin-dipole strength distributions in "Li [36].

A quantitative description of ground-states and properties of excited states in open
shell nuclei characterized by the closeness of the Fermi surface to the particle continuum,
necessitates a unified description of mean-field and pairing correlations, as for example
in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. In order to describe
transitions to low-lying excited states in weakly bound nuclei, the two-quasiparticle con-
figuration space must include states with both nucleons in the discrete bound levels, states
with one nucleon in the bound levels and one nucleon in the continuum, and also states



with both nucleons in the continuum. This cannot be accomplished within the framework
of the BCS approximation, since the BCS scheme does not provide a correct description
of the scattering of nucleonic pairs from bound states to the positive energy particle con-
tinuum. However, the present knowledge of pairing correlations in exotic nuclei is still
rather limited. In sophisticated models, one usually adopts for pairing, density dependent
contact, or more complicated finite range interactions [1, 37, 38]. The density dependence
of pairing interaction is reflected in the spatial properties of the pairing fields, adopting
various versions of volume or surface type of pairing.

The low-lying excited states in weakly bound nuclei are best described by the quasipar-
ticle random phase approximation (QRPA) based on the HFB ground state. In Ref. [39]
a fully self-consistent QRPA has been formulated in the HFB canonical single-particle ba-
sis. The Hartree-Fock-Bogoliubov formalism in coordinate state representation has also
been used as a basis for the continuum linear response theory [40, 38]. In Ref. [41] the
HEB energy functional has been used to derive the continuum QRPA response function in
coordinate space. HFB-based continuum QRPA calculations have been performed for the
low-lying excited states and giant resonances, as well as for the -decay rates in neutron
rich nuclei.

In this work we formulate the relativistic quasiparticle random phase approximation
(RQRPA) in the canonical single-nucleon basis of the relativistic Hartree-Bogoliubov
(RHB) model. The RHB model has recently been applied in description of a variety
of nuclear structure phenomena, not only in nuclei along the valley of §-stability, but also
in exotic nuclei with extreme isospin values. In particular, in neutron-rich nuclei, RHB
framework has been used to describe the halo phenomenon in light nuclei [42], properties
of light nuclei [43], and of Ni and Sn isotopes [44] close to the neutron drip-line, the
reduction of spin-orbit potential in nuclei with extreme isospin values [45], and deforma-
tion and shape coexistence phenomena [45]. On the proton-rich side, RHB model has
been used to map the proton drip-line in the region Z=31-73, and to study the proton
radioactivity [46, 47, 48]. The RQRPA model is an extension of the Relativistic Ran-
dom Phase Approximation (RRPA) which has recently been employed in quantitative
analyzes of collective excitations in finite nuclei [49, 50, 51, 52, 53, 54]. The RRPA
model is obtained by taking the small amplitude limit of the Time Dependent Relativistic
Mean Field Theory (TDRMFT). Although TDRMFT models have been successfully ap-
plied to describe the giant resonances (GMR,GDR,GQR) [55, 56, 57, 58|, because of large
computational requirements, it is unable to describe the fine structure like the low-lying
collective phenomena. Two points are essential for successful application of RRPA to de-
scribe dynamical properties of the small amplitude vibrations in finite nuclei: (i) the use
of effective Lagrangians with nonlinear self-interaction terms, and (ii) the fully consistent
treatment of the Dirac sea of negative energy states.

The RRPA model with nonlinear meson interaction terms, including a configuration
space with the states both from the Fermi and Dirac sea, has been successfully employed
in studies of nuclear compressional modes [50, 59, 52], multipole giant resonances and of
low-lying collective states in spherical nuclei [54], and evolution of the low-lying isovector
dipole response in nuclei with a large neutron excess [60, 61]. In the present work, we
formulate and apply for the first time the RQRPA model built on top of the canonical



RHB basis, to investigate multipole excitations in the open-shell neutron-rich nuclei [62].

Proper understanding of dipole strength distributions in exotic nuclei is especially
important in calculations of the neutron capture cross sections for r-process. Namely,
in the statistical model of Hauser-Feshbach, both the level densities and dipole strength
distributions are the essential input. However, in the neutron-rich nuclei the existence of
the pygmy resonance gives a significant contribution in the low-lying energy region. If this
strength is located around the neutron threshold, it can increase the resulting neutron
capture cross section by a significant factor in the nuclei close to the drip-line [63].

Among the giant resonances, the compression modes are also of a particular interest,
since they are closely connected to the nuclear incompressibility. It is one of the most
important quantities in nuclear physics, related to the structure of neutron stars, the
dynamics of heavy-ion collisions and of supernovae explosions. Although the nuclear
matter incompressibility cannot be measured directly, for low nuclear temperatures, it can
be evaluated from the strength distributions of compression modes. Whereas the isoscalar
giant monopole resonance (ISGMR) is well established throughout the nuclear chart, in
the case of isoscalar dipole giant dipole resonances (ISGDR), theoretical predictions for
the excitation energies are not consistent with experimental data. Namely, both the non-
relativistic [64] and relativistic [50] models predict a strong separation of the isoscalar
dipole strength in two broad structures: the high-energy strength above 20 MeV, and
the low-energy peaks between 8 MeV and 14 MeV. Although the spurious center of mass
motion has been carefully subtracted, the low-lying region preserved a strong contribution
from the non-spurious strength. On the other side, all effective interactions, both the non-
relativistic and relativistic, result with excitation energies of ISGDR that are 4 — 5 MeV
higher than those obtained from experiment, although they reproduced the experimental
excitation energies of the ISGMR reasonably. In Ref. [50] it has been suggested that the
low-lying peaks do not correspond to a compression mode, but to another toroidal-type
excitation dominated by the surface effects. Following this idea, in the present work we
study ISGDR within the RHB+RQRPA model to understand why the dipole compression
modes cannot be quantitatively reproduced, although the monopole compression modes
in the same model correspond to the experimental data.

The last problem which we address in this work is related to the electron captures
and [-decays. Namely, both processes, which played an important role in pre-supernovae
phase in the core collapse of a massive star, are determined by the Gamow-Teller and
Fermi transitions. In order to gain a proper description of electron captures and (-
decays, a reliable description of Gamow-Teller strength distribution in nuclei is crucial [65].
Gamow-Teller strengths in exotic nuclei are of a particular importance for the r-process,
since the half-lives of $-decays along r-process path are generally dominated by the tails
of the Gamow-Teller resonances. Until recently [66, 67], the charge-changing excitations
have not been investigated within the relativistic mean-field framework. Furthermore,
in recent investigation, it has been indicated that the antinucleon degrees of freedom
actually play an important role in the Gamow-Teller model independent sum rules [68].
These contributions have not so far been included in relativistic RPA models. In this
work we formulate the proton-neutron relativistic QRPA to investigate the isospin-flip
excitation energies and sum rules in selected nuclei.
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This work is organized in the following way. The basic concepts of relativistic mean
field model for finite nuclei are briefly presented in Chapter 1. In Chapter 2 we formulate
and test the matrix equations of the relativistic quasiparticle random phase approximation
(RQRPA) in the canonical basis of the relativistic Hartree-Bogoliubov (RHB) framework
for spherical even-even nuclei. We apply the RHB4+RQRPA model in Chapter 3 to explore
the low-lying transition strength and soft collective modes in a series of neutron rich
nuclei along the isotope and isotone chains, in comparison with available non-relativistic
calculations and important experiments. In Chapter 4 we study the compression modes
in nuclei, i.e. the isoscalar monopole and dipole resonances, as well as possible existence
of the low-lying dipole toroidal mode. Chapter 5 contains the basic formalism of the
proton-neutron RQRPA, and its applications to the charge-exchange resonances. Finally,
we give a summary and conclusion of the present work.



Chapter 1

Basic Concepts of the Relativistic
Mean Field Theory

In the present work, we consider the nuclear many body problem within the framework
of the covariant density functional theory (DFT), by using the Kohn-Sham approach of
minimization of the energy functional to determine the exact ground state of nuclear
system. By neglecting the local exchange-correlation potentials, the covariant DFT is an
equivalent method to the relativistic mean field theory (RMFT) which describes protons
and neutrons as Dirac particles interacting in a relativistic covariant manner through the
exchange of virtual mesons [12, 14]. The energy functional that describes the dynamics
of nuclear system is derived from an effective Lagrangian. The nucleons are treated as
point particles; although they are more complex QCD objects composed from quarks and
gluons, it is not yet possible to include their degrees of freedom to obtain a consistent
systematic solution of the nuclear many body problem in finite nuclei. The RMFT is based
on the assumption that it is a fully Lorentz invariant theory which obeys causality. It is
an effective Lagrangian theory which uses the meson masses and their coupling constants
to nucleons as effective parameters which are fitted to the bulk properties of the nuclear
matter and a few finite nuclei. Once the free parameters are properly adjusted, the model
can be used to describe not only the ground-state properties, but also many different
types of excitations on a quantitative level.

The meson degrees of freedom are selected according to their relevant quantum prop-
erties: parity, spin and isospin. Here we employ a simple (o,w, p,v) model [14, 69].
The isoscalar-scalar field o, with the quantum numbers (J™,T) = (07,0), mediates the
medium-range attraction between the nucleons. It is an effective field which may have
its origin from many more complex effects, for example, from the two-pion resonances,
or QCD combinations of quark-antiquark pairs and gluons. The isoscalar-vector field w
(17,0) is included to reproduce the short-range repulsion, while the dependence of the
nuclear force on isospin is included by the isovector-vector field p (17,1). It is not clear
so far, why a scalar field with isospin is not needed in such a description. In principle, we
should also include into consideration the pion field (0~,1), which is the basic ingredient
of the microscopic nuclear force. However, it does not enter on the classical Hartree-level,
because it leads to a parity breaking field, which has not been observed in actual nuclei.



On the other side, as we will show in Chapter 5, the pion plays an important role in the
relativistic description of unnatural parity excitations, in particular for the spin-flip and
Gamow-Teller resonances. Finally, the Coulomb interaction is also taken into account by
including the photon field v, described by the vector potential A,,.

1.1 Relativistic Lagrangian Density

In the relativistic mean field theory, the dynamics of a nuclear system, i.e. its corre-
sponding fields, ¢ (z) for nucleons, o(x),w*(zx),p"(x) for mesons and A*(z) for photons, is
determined through the Lagrangian density[12],

L=Lyx+L,,+Lin (1.1)

where the first term describes free nucleons with the mass m,

Ly =1 (iy"0, —m) . (1.2)

In the present outline, we employ the covariant notation of the four matrices v* = (7°, ),

G (L) e

where o corresponds to the three component Pauli spin 1/2 matrices. The meson term
describes free mesons (o, w, and p) and photons,

1 1 1 1
L, = iﬁuaa”a - 5m302 - ZQWQW + im?dw“w”
1= DUy 1 22 2 1 uv
_ZR’WR +omBP = uwF (1.4)

where the field tensors for the vector mesons (w,p) and photon fields are defined as

Q = 0Ouw, —0Oyw, (1.5)

Ru = 0,8, — 0,5, (1.6)
Fo = 0,4, —0,A,.

The nucleon-meson interaction is described by the minimal coupling given as a sum
Liny = YT t) = —UTo00 — PLuwt) — PL5) — YTeAY, (1.8)
where the index m runs over different mesons ¢,, and vertices I',,, given by

— 5 m ]_ — T3
Lo =90 ThL=9.0" Th=g,m" T =e——9", (1.9)

with the coupling constants g,, g., g, and e.
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Non-linear versions of the Lagrangian include either non-linear terms in the meson cou-
plings, i.e. the mass term of free mesons is replaced by a non-linear potential, as for
instance the self-coupling for the scalar mesons of Boguta and Bodmer [13]
lmia2 —  Ulo) = 1mia2 258 B (1.10)
2 2 3 4
or density dependent coupling constants ¢,,(p), where p is either the scalar density p,
or the Lorentz invariant form ,/j“j, of the baryon density, j, = 1])%”/) [15]. In the
present, investigation the density dependence is included in a phenomenological way by
using the non-linear o potential. The adjustment of the non-linear parameters g¢s, g3
to the surface properties of the finite nuclei gives a negative value for the parameter gs,
leading to an unstable theory. However, in the limit of moderate densities, as in normal
nuclei, the o fields are small, and the potential U(o) is attractive, resulting in reasonable
solutions [16, 13].

The equations of motion for the nucleon and meson fields are derived from the classical
variational principle,

5/£(qi,aﬂqi)d4x =0 (1.11)
i.e. by solving the Euler-Lagrange equations for the Lagrangian density (1.1),
oL oL

- — = 1.12
501 " 0 " 12

where ¢; = 1) corresponds to the nucleon, and ¢; = o, w,, g, and A, are meson and photon
fields, respectively. Accordingly, the nucleons are described by the Dirac equation,

[iv"0, +m + o, v =0, (1.13)
leading to the conservation law
Duily() = 0 (1.14)
for the baryon density current
Jg(@) = ¥(x)y"(2). (1.15)

By solving Eq. (1.12) for the meson and photon fields, the Klein-Gordon equations are
obtained, B
(00, + m2)] by = £ (UT¥0)  + nonlinear terms (1.16)
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where the upper sign holds for vector fields, the lower sign for scalar fields, and photon
mass vanishes (m, = 0).

The sources of the meson fields <1Z)me> are determined by summation over all the
occupied orbits in the Slater determinant of the nucleons. In the no-sea approximation,
the sources of the meson fields are evaluated by using only positive energy spinors. In
the full relativistic description, we would also have to include the negative energy states
from the Dirac sea. However, this would lead to divergent terms, which can be removed
by a proper renormalization in a very complicated way, since the corresponding equations
can be solved only numerically [16]. An analytical solution is possible for infinite nuclear
matter [70]. In numerical studies of the vacuum polarization in spherical and deformed
nuclei, the renormalization effects appeared to be of the order of 20-30%. However, if the
vacuum polarization is taken into account, the parameter set of the effective Lagrangian
has to be re-adjusted to the experimental data, leading to a new force with approximately
the same results as in the case when the vacuum polarization is neglected [71, 72, 73].
Therefore the no-sea approximation is used in almost all RMFT practical applications in
nuclear matter and finite nuclei.

In the case when the non-linear meson couplings are included, we have to add on
the r.h.s. of the Klein-Gordon equation the term m2,¢,, — U’, i.e. for the o-meson,
—g20? — g3o®. For the density dependence included in the vertex functions g,, g, and g,,
the Klein-Gordon equations are linear, but additional rearrangement terms emerge in the
Dirac equation [15]. The set of coupled Dirac (1.13) and Klein-Gordon equations (1.16)
represents a consistent description of atomic nuclei, which leads in the static case to a
nonlinear eigenvalue problem and in the time-dependent case to a nonlinear propagation of
the Dirac spinors in time, i.e. to the time dependent relativistic mean field [55]. However,
to obtain the convergent solution in practical calculations, additional approximations are
necessary. We will discuss these approximations and the equations of motion for the fields
in Section 1.3.

1.2 Covariant Density Functional Theory

In the previous section, the equations of motion for the nucleon and meson fields have been
derived explicitly from the Lagrangian density. An alternative approach to the nuclear
many body system is possible within the covariant density functional theory, based on
the similar concept of widely used density functional theory (DFT) in atomic, molecular
and condensed matter physics.

The basic goal of DFT is to describe an interacting system of fermions via its density
and not via its many-body wave functions. In particular, for A electrons in a solid,
or protons and neutrons in atomic nucleus, which obey the Pauli principle and interact
with one another via a Coulomb potential or nuclear forces, the main variable of the
system depends only on three spatial coordinates x, y, and z rather than on 3*A degrees
of freedom. If we know how to derive necessary relations between density and energy,
the DF'T calculations would be rather simple and very accurate. Unfortunately, energy
functionals that relate density to energy are unknown, and there is no general way to
improve them beside trying new ones and judging their quality by the results. In a
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molecular DFT, the energy functional is decomposed into three parts; a kinetic energy, a
Coulomb energy due to classical electrostatic interactions among all charged particles in
the system, and an additional exchange-correlation energy term that includes many-body
interactions.

The basic theorems of DFT was first formulated by Hohenberg and Kohn [74]. Ac-
cording to the first theorem, the ground state expectation value of any observable is a
unique functional of the exact ground state fermion density p(r). This means that if the
fermion density and the functional are known, it is possible to calculate all properties of
the system, in particular, its ground state energy

E=FE][p)]. (1.17)

The first Hohenberg-Kohn theorem implies the existence of a total energy functional, but
it does not provide the means of solving the many-body problem. This follows from the
second Hohenberg-Kohn theorem that provides a variational principle: by a minimization
of the energy functional (1.17) with respect to the density we obtain the ground state
energy and density of a fermionic system. For any non-negative trial density p(r) that
gives the correct number of fermions in the system, the true ground state energy FEj for
actual density p,(r) satisfies the relation

Ey[py] < Ep]. (1.18)

The energy term corresponding to the external potential can be extracted from the energy
functional,

Elp] = Flo] + / Vit () () (1.19)

where Kohn and Sham separated F[p] in the following way [75],

Flpl =T [p] + Eint [p] + Eac 9] (1.20)

Here T [p] corresponds to the kinetic energy of non-interacting fermions, the second term
is fermion-fermion interaction, whereas E,.[p| contains exchange and correlation terms.
Within the Kohn-Sham approach the ground state density of an interacting fermion sys-
tem is obtained by using the single-particle wave functions from an equivalent system of
non-interacting fermions whose dynamics is determined by the appropriate Kohn-Sham
external potential [75]. This leads to the set of Kohn-Sham equations for independent
fermions in an effective potential,

2
—;—VZ + Vors(r) | ¢;(r) = e9;(r). (1.21)

m
This method provide a convenient theoretical tool to determine the ground state energy
of an interacting system, assuming that the form of F,. is known. However, this is
usually not the case, and additional approximations for F,. are needed. In fact, the
Hohenberger-Kohn approach for atomic nuclei would lead to the extended Thomas-Fermi
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solution without shell effects. They have to be included in a more complicated way via
the Kohn-Sham energy functional of nonlocal density,

Elpl = Blp(x,r)] (1.22)

which necessitates additional approximations. In the non-relativistic DFT for nuclear
systems [32], it is assumed that the energy is a functional of proton and neutron densities,

Elp] = Ei[p] + E.lp] + En[p] + Ev|p] (1.23)

where E) corresponds to the free kinetic energy term of noninteracting nucleons, while E|
denotes the Coulomb interaction. The effects of the strong nuclear force can be represented
within the local density approximation by the energy of infinite nuclear matter Eys

&Mz/MWWWWM% (1.24)

where the energy per nucleon of infinite nuclear matter parameterized by Brueckner et.
al. [76] reads,

3
Enu(p) = bi(1+a;0?)p™. (1.25)
i=1
The set of parameters n;, a;, and b;, (i = 1,2, 3) obtained by the fitting to the equation
of state is given in Ref. [32], while o = (p, — p,))/(p, + p,) is the asymmetry parameter.
In local density approximation, corrections to the exchange-correlation energy due to
the inhomogeneities in the density p(r) around 7 are ignored. However, in the case of
the density functional F = Ey + E. + F,,, the nuclei are found severely over bound and
contracted. Therefore, an additional correction for the inhomogeneities in a finite nucleus,
Eylp] in the gradient form has been introduced [76]. In practical calculations parameters
related to the gradient correction are fitted to reproduce the experimental binding energies
in each nucleus under consideration [32].

In the following we illustrate that the covariant density functional theory is closely
related to the relativistic mean field approach. This gives an alternative way to derive
equations of motion of relativistic mean field theory from a density functional. Starting
from the energy-momentum tensor of the system described by the Lagrangian density L,

v y dq; L
T = gL+ S 5025 (1.26)

which obeys the continuity law 9,7"" = 0, the four-momentum can be expressed as,
Pt = /d?’x T, (1.27)

The Hamiltonian density can be derived from the Lagrangian density,

’H:TO(’:%

i — L 1.28
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leading to the energy functional,

E = /d37" H. (1.29)
Resulting energy corresponding to the relativistic Lagrangian is
Erurlp,¢] = Tr[(ap+ sm)p]
t5 [ @ 6,7+ (Vo) + ni2 62| + Evalo
+T7 (T )P (1.30)

where the trace operation Tr involves a sum over the Dirac indices and an integral in
coordinate space. The plus sign refers to scalar and the minus sign to vector mesons,
while the term

By = /(9_;(,—3 + Loty (1.31)

contains the contributions of the non-linear meson couplings. Fr/r is a functional of the
relativistic single particle density matrix

p(r,r' 1) ZW ' 1), (1.32)

and of the meson fields ¢,,. In the rotational invariant system, the Dirac spinor is com-
posed from the large (upper) and small (lower) components,

(1)) = ( Jitr 9 ) : (1.33)

ig;(r,t)

leading to the density matrix in terms of the spinor components,

S0 =i A0l
p(r,r' t) = = : (1.34)
i;gi(rat)f;(r,at) ;gi(rvt)gi (rlat)

In particular case, for the (o,w,p,7) model, the energy functional reads,
) A
ERMF[¢7 dja g, wua ﬁﬂ, AM] = Z / ¢j(ap + Bm)d}z
i=1
1 2 3 1 2 2, 2\1 3
+ Q(VU) + U(o) d'r =3 [(Vw)? +mw®)] d°r
1 1

—5/ [(Vp)? +m2p?)] d*r — 3 /(VA)2d3r
+/ [ggpsa + Gl + o7, 8" + ejcuA“] d*r. (1.35)
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In the following we apply the classical time-dependent variational principle,

5 [ at {(@fiao) — Bp, 6]} = 0 (1.36)

t1

where |®) is the Slater determinant of all spinors in the Fermi sea. As a result, this leads
to the equations of motion (1.13) and (1.16), that can be expressed in the variables p and

¢m7

i0p = [h(6).] (1.37)
(040, + m2] ¢, = £Tr [T'np] + nonlinear terms (1.38)

Due to large masses corresponding to the meson fields, leading to the short range of
interaction, we neglect the retardation effects, i.e. the second derivatives in time. The
single particle Hamiltonian is the functional derivative of the energy with respect to the
single particle density matrix p,

oF
0p

A covariant DFT method including extensions beyond the mean field, has been recently
considered for its use in the ground state calculations [77]. The energy functional within
this theory includes, in addition to the Erj;r, an exchange-correlation energy in the limit
of the local density approximation (LDA). In this approximation the density dependence
of the exchange correlation energy of infinite nuclear matter is adopted to the actual
inhomogeneous nuclei. Recent studies of super heavy nuclei within the relativistic DF'T
indicated that the implementation of the exchange correlations with LDA in the linear
(0 —w) model has a similar effect as the inclusion of nonlinear meson self-interaction terms
on the relativistic mean field level [77]. Since the role of exchange correlations is partially
equivalent to the nonlinear meson contributions, this supports the interpretation of the
meson self-interaction as a parameterization of many-body effects, justifying applications
of the mean-field models with nonlinear o-meson self-couplings.

h =

=Tr[ap+ pm] +Tr ([0, - (1.39)

1.3 Equations of Motion in the Relativistic Mean
Field Approximation

The RMFT is a classical theory, which corresponds to the mean field approximation. It
is based on the assumption that the meson fields can be replaced by their expectation
values as classical fields, i.e. the quantum fluctuations of the the meson fields are ne-
glected. This reduces the relativistic nuclear many body problem to the simple picture of
independent nucleons moving in the self-consistent mesonic mean fields. In particular, for
the (o,w, p,7v) model, the time-dependent Dirac equation for the nucleon (1.13) reduces
to

(Y*(i0, + Vyu(r,t)) +m — S(r, )] ¢(r,t) =0, (1.40)
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with two potentials: (i) the Lorentz scalar potential,

S(r,t) = —g,0(r,t) , (1.41)
which determines the effective mass of nucleon,

m*(r) =m — S(r), (1.42)
and (ii) the vector potential,

(1 —73)
5 .

Viu(r,t) = guwu(r,t) + g,76,(r, 1) +eA,(r,t) (1.43)

The time-dependent mean-field potentials (1.41) and (1.43) are evaluated in a self-consistent
way from solutions of the stationary Klein-Gordon equations (1.16) at each time,

(_A + m(r)a = —0oPs — 9202 - 93037

(_A+mw)w“ = gwjﬂ,
(=A+m,)p" = g,5",
—AAE = et

The densities and currents in the Klein-Gordon equations are defined in the following
way; the scalar density

po(x) = XA: bi(@);(x), (1.48)
the baryon current
j*(r) = XA: b)), (1.49)
the isovector current

J(x) =Y dile)y 7y (x), (1.50)

and the electromagnetic current

@) = Y050+ o), (151)

The densities and currents (1.48)-(1.51) are evaluated in the no-sea approximation, i.e.
summation is performed only over occupied orbits in the Fermi sea.

The set of coupled equations (1.40) and (1.44)- (1.51) define the full time-dependent
relativistic mean field (TDRMF) model describing the nonlinear propagation of Dirac
spinors in time [55]. The small amplitude limit of the TDRMF model corresponds to the
relativistic random phase approximation [52, 54].

In order to describe the ground state properties of nuclei, we take the static limit of
the TDRMF equations of motion. Since the ground state of even-even nuclei is even under
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the time-reversal and has a good parity, the space-like components of the vector fields and
currents vanish. Furthermore, since the nucleon single-particle states do not mix isospin,
only the third component of the rho-meson field remains. The stationary RMF equations
read,

{~A+my}0 = —gop, — g20° — g30°, (1.53)
{(-A+my}’ = gup,, (1.54)
{(=A+my}ps = gops, (1.55)
—Ap; = ep,, (1.56)
where p, correspond to the scalar density,
A
py = ity (1.57)
whereas p,, is the baryon density
A
Py = Wlvy, (1.58)
ps 1is the isovector density
A
ps = blrsiy, (1.59)
and the charge density p,
A
1
The stationary fields from the Dirac equation (1.52) read,
V(r) = g,w’(r) + g,m3p5(r) + eA’(r), (1.61)
for the vector field, and
S(r) = —g,o(r) (1.62)

for the scalar field, contributing to the effective Dirac mass as in Eq. (1.42).The set of
equations (1.52)-(1.62) defines the static relativistic mean field (RMF) model. Starting
from the initial scalar (1.62) and vector (1.61) fields, we solve the Dirac equations (1.52).
By using solutions for 1),, we determine the densities (1.57) -(1.60), which are used to
evaluate new meson fields from Klein-Gordon equations (1.53)-(1.56), as well as a new set
of VS fields. This procedure is repeated for several times, until a satisfied convergence
is obtained.

There are eight free parameters in the present RMF model: meson masses m,, m,
m,, and their coupling constants ¢,, g2, g3, 9., and g,. The mass of the p meson is fixed
to the experimental value, i.e.

m, = 763.0MeV, (1.63)
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while for the proton and neutron nuclear masses we take the average value of empirical
proton and neutron masses,

m = 938.0 MeV or m = 939.0 MeV. (1.64)

This reduces the number of free parameters of RMF model to seven parameters which are

| [NL1 [NL-SH |NL3 |
m [MeV] 9380 [939.0 [939.0

m, [MeV] | 492.25 | 526.059 | 508.194
my, [MeV] | 795.359 | 783.0 782.501

o 10.138 | 10.444 | 10.217
o 13.285 | 12.945 | 12.868
g 4976 | 4.383 | 4.474

g [fm™] | -12.172 | -6.9099 | -10.431
g3 -36.265 | -15.8337 | -28.885

| Ko [MeV] | 2117  [355.0 [271.8 |

Table 1.1: RMF parameterizations NL1, NL-SH and NL3. K,,, corresponds to the in-
compressibility of the nuclear matter for each set of parameters.

fitted to measured ground state properties, mainly to the charge and neutron radii and
the binding energies of several spherical nuclei. In the present investigation, we use three
effective interactions; NL1 [78], NL-SH [79], and NL3 [80], which are given in Table 1.1.
In particular, NL3 parameterization has been used very extensively to study the nuclear
structure phenomena from light nuclei toward super-heavy elements, both in stable nuclei,
and in nuclei away from the valley of stability. In order to obtain NL3 parameter set,
the RMF model has been fitted not only to the ground state properties of stable nuclei,
but also of ¥2Sn and 2"Pb to obtain an improved isospin dependence of the effective
interaction for unstable nuclei [80].

Another alternative to the model based on effective Lagrangian with non-linear sigma
meson self-interaction, is RMF theory where the density dependence is explicitly included
in the coupling constants for the meson-nucleon vertices. Recently, it has been shown
that new density dependent interactions provide an improved description of asymmetric
nuclear matter, neutron matter and nuclei far from stability [15].

Although it seems that many effects, which go beyond the mean field, are neglected
in the RMF model, such as Fock-terms and vacuum polarization, they are implicitly
included in the present RMF model. Since the coupling constants are adjusted to the
actual experimental data, these, and many other effects are taken into account in an
effective way.

1.4 Relativistic Hartree-Bogoliubov theory

In nuclei with open shells, the RMF picture of independent nucleons moving in an average
potential is no longer a sufficient description. The nuclear pairing correlations between
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the particles from open shells play an important role in various single-particle and col-
lective aspects of nuclear structure. In general, the pairing correlations are accounted for
in the quasiparticle picture by introducing an additional field, i.e. the pairing potential.
They cannot be included in the classical Lagrangian, because at the classical level this
Lagrangian does not contain Cooper pairs ¥»"1". In order to include pairing correla-
tions in a microscopic way, the meson fields have to be quantized, such that one obtains
one-meson-exchange two-body forces, which can be treated by the well known Gorkov
factorization. In this way one ends up with relativistic Hartree-Bogoliubov theory [81]. Tt
has been shown however, that the pairing correlations derived in this way with the same
parameter set used in the ph-channel are unrealistically high, and that one needs different
forces in the pairing channel. In fact, since we are using an effective theory, there is no
reason to use the same force in the ph- as in the pp-channel.

The generalized density matrix associated with a quasiparticle vacuum |®) was intro-
duced by Valatin [82] in the following way,

R:< P fﬁ*>, (1.65)

-k 1—0p

where p is the single-particle density, and « is pair density, defined respectively as
pi; = (®|cf¢;| @) (1.66)

kij = (@ |eie;| D). (1.67)

The ground state of a nucleus, |®) can be represented as a vacuum with respect to the
independent quasiparticle operators

CY; = Z Uka;; + mGcm (168)
k>0
| ®) = 0 (1.69)

where U, Vi are the Hartree-Bogoliubov coefficients. The operators ak,a,j obey the
usual anti-commutation relations for fermions,

{on, ap} = {af, o} =0 (1.70)
{Ozk,a;:,} = 6kk’- (171)
The coefficients Ui, Vine determine the single particle density matrix
Pap(T, 1) Z r)Vie(r (1.72)
k>0
and the pairing tensor
/’fcd r, I‘ ZU de (173)
k>0

20



i [ plfm] [Wi | B | H; [ M[MeVT ]
1107 -1720.3 | 1300.0 -1813.53 | 1397.60
2112 103.69 |-163.483 | 162.812 | -223.934

Table 1.2: Parameter set D1S for the pairing part of the effective Gogny interaction.

where the indices a, b, c,d are Dirac indices, and ), is a shorthand notation for the
no-sea approximation. In DF'T approach with pairing correlations, the energy functional
depends not only on the density matrix and the meson fields ¢,,, but in addition on the
pairing tensor. It has the form

Elp, &, ¢] = Eryr[p: 8] + Epair[R], (1.74)

where Egrpyr[p, @] is the RM F-functional defined in Eq. (1.30), only the density p of Eq.
(1.32) is replaced by the density (1.72). The pairing energy E,q;,[#] is given by

1
Bpuir 7] = 7T (V5] (1.75)

The effective pairing force V?P is the phenomenological pp-interaction in the pairing chan-
nel.

The simplest possibility to take for VPP would be a monopole pairing force, leading to
the BCS theory. It requires an additional energy cut-off, which is not very well known
from experiment. The pairing correlations for nuclei in the valley of the -stability have
been in many cases included in the RMFT by the BCS approximation [83]. As we move
away from the stable nuclei towards the drip-lines, the Fermi level becomes close to
the particle continuum and the lowest particle-hole or particle-particle modes are often
embedded in the continuum. In that case, the BCS approximation does not provide a
correct description for the scattering of nucleonic pairs from bound states to the positive
energy continuum [7]. In the present relativistic Hartree-Bogoliubov model, following
Ref. [37], we use a realistic description of volume-type finite range pairing interaction.
One appropriate selection would be the pairing part of the Gogny force [84],

VPP(L 2) — Z 6*((!‘14'2)/#1‘)2 (I/Vz + BZ-PU _ HZ-PT - MiPD'PT). (1.76)

i=1,2

The set of free parameters u;, W;, B;, H; and M; (i = 1,2) has in the past been very
carefully adjusted to the pairing properties of finite nuclei over the whole periodic table.
In the present work, we use the standard parameterization D1S [84], which is listed
in the Table 1.2. The same interaction will also be included in the pairing channel of
the relativistic quasiparticle RPA residual interaction. More details about the two-body
matrix elements for the pairing part of the Gogny force are given in Appendix B.

The total energy E[p, &, 9] =E[R, ¢| depends on the generalized density matrix, that
obeys the time-dependent Hartree-Bogoliubov equations

iR = [H(R),R] (1.77)
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that are actually an extension of Eq. (1.36) after we have included the pairing correlations.
‘H is the generalized single-particle field, i.e. the Hartree-Bogoliubov Hamiltonian

SE (ﬁD—m—A A )

n=3R — A —hp+m N

(1.78)

RHB Hamiltonian contains two average potentials: the self-consistent mean field ﬁD,
which encloses all the long range particle-hole (ph) correlations, and the pairing field A,
which includes the particle-particle (pp) correlations; m is the nucleon mass. The single
particle potential hp results from the variation of the energy functional with respect to
the hermitian density matrix p

. 4E
hp =

5 =a(p+V)+V+5(m->5). (1.79)

where scalar field S and vector field (V, V) are defined in (1.41) and (1.43), respectively.
In addition, the RHB Hamiltonian contains the pairing field

OF
A = 1.80
ok (1.80)
or in detail .
Ag(r,r’) = 3 Z VEP (r, 1) Kea(r, 1), (1.81)
c,d

where a, b, c,d denote quantum numbers that specify the Dirac indices of the spinors,
VI (r,r') are matrix elements of a general two-body pairing interaction.

In the RHB approach [37, 43] the ground state of an open-shell nucleus |®) is obtained
in the static limit of Eq. (1.77). It is determined by the Hartree-Bogoliubov equations

(hD—ozz—)\ A )(Uk(r)>:Ek<Uk(r)>_ (1.82)
— A ~hp+m+ A Vie(r) Vie(r)

The energy scale is selected in such a way, that the positive energy continuum starts at zero

energy. The chemical potential A is determined from the condition that the expectation

value of the particle number operator in the ground state equals the number of nucleons.
The eigenvalues Fj, are the quasiparticle energies and the eigenvectors are the Hartree-

Bogoliubov coefficients U, and Vj, that form the RHB spinor,

Dy(r) = <[‘i’;8 ) . (1.83)

In the case of spherical symmetry the Dirac spinors U, and V) reduce to,

atsieen = (EOORGED ) w0
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where g(r) and f(r) are radial amplitudes, and x, is the isospin function. The orbital
angular momenta [ and [ are determined by the corresponding j and the parity 7 in the
following way:

_[j+1/2 for m=(-1)IF/2
- {j —1/2 for = (-1)"1/2" (1.85)
" / (—1)i+1/2
s Jj—=1/2 for w=(-1)
I= {j +1/2 for 7= (=1)7"1/2 (1.86)
Finally, the term €2, is the tensor product of the orbital and spin functions, i.e.
1 .
Qj,l,m(ga P 3) = Z <§mslml|jm>X%mSYiml(9’ 80) (187)

ms,mj

We find twice as many eigenstates as the dimension of the Dirac equation, but for the
ground state only positive quasiparticle energies are chosen. The densities p and the
pairing tensor & are calculated from these coefficients in Eqs. (1.72) and (1.73). The sum
Y ko in these equations is a shorthand notation for the no-sea approximation. In a case
without pairing, the no-sea approximation is well defined, as the Dirac Hamiltonian is
diagonal. The eigenvalues ¢; are the single particle energies and we have a gap in the Dirac
spectrum. The sum then runs over all the states above the Dirac gap, i.e. over all the
states with €; > —m. In the case with pairing, the quasiparticle energies Fj. are positive
by definition because, from each pair (Ey, —E}) of eigenvalues of the HB-equations (1.82),
we choose only the positive value (for details see [85]). The no-sea approximation means,
in this case, that the sum runs over all the eigenvalues Ej; of the Hartree-Bogoliubov
matrix (1.82) below the Dirac gap. In fact the quasiparticle spectrum starts with positive
values, which correspond to the lowest quasiparticle states, i.e. states just above or below
the Fermi level. With increasing energy we find all the states of the Fermi sea and the
states above the Fermi level. The first quasiparticle states belonging to the Dirac sea
have a quasiparticle energy of the Dirac gap. Above that we have states of the Dirac sea
and states very high up in the positive energy continuum. However, those states are not
occupied and they do not contribute to the densities.

Since the quasiparticle wave functions in the Hartree-Bogoliubov equations (1.82)
contain both the large and small components, the pairing field A can be written as,

( Bt Ae ) . (1.88)
Ay A__

By using relativistic potentials with cut-off parameters, recent calculations of finite nu-
clei [86] have shown that the matrix elements of the terms A_, and A, _, which couple
large and small components, are orders of magnitude smaller than the matrix elements of
the corresponding off-diagonal term o - V of the Dirac Hamiltonian hp. Since the pairing
properties are determined by correlations in an energy window of a few MeV around the
Fermi surface, A__ has no effect on pairing in finite nuclei. Therefore we neglect the fields
A_;, A,_ and A__ in the RHB equations, and use a non-relativistic Gogny force (1.76)
in the calculation of the field A++.
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The RHB equations are solved self-consistently, with potentials determined in the
mean-field approximation from solutions of static Klein-Gordon equations (1.53)-(1.56).
The equation for the isoscalar scalar o-meson field contains nonlinear terms. The inclu-
sion of nonlinear meson self-interaction terms in meson-exchange RMF models is abso-
lutely necessary for a quantitative description of ground-state properties of spherical and
deformed nuclei [16]. The source terms in equations (1.53) to (1.56) are now sums of
bilinear products of baryon amplitudes

p(r) = D Vi) Vilr) (1.89)

k>0

pu(r) = Y Vi(r)Vi(r), (1.90)

k>0

ps(r) = Y ViIm)maVi(o), (1.91)

k>0

ponl®) = SV V) (1.92)

k>0

The eigen-solutions of Eq. (1.82) form a set of orthonormal single quasiparticle states.
In the particular implementation of the RHB model that we use in this work, the Dirac-
Hartree-Bogoliubov integro-differential eigenvalue equations and Klein-Gordon equations
for the meson fields are solved by expanding the nucleon spinors Uy (r) and Vj(r), and the
meson fields in a basis of eigenfunctions of a spherical harmonic oscillator [83].
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Chapter 2

Relativistic Quasiparticle Random
Phase Approximation

In this chapter we derive the matrix equations of the relativistic quasiparticle random
phase approximation (RQRPA) in order to describe nuclear excitations based on a two-
quasiparticle configuration space. The excitations are built on the ground state formulated
in the canonical basis of the relativistic Hartree-Bogoliubov model (RHB) for even-even
nuclei, assuming spherical symmetry. The RQRPA approach includes only the small-
amplitude oscillations around the ground state density.

2.1 Matrix Equations of Relativistic Quasi-Particle
RPA

In the following, we derive the RQRPA equations from the time-dependent RHB model
in the limit of small amplitude oscillations. We have considered only the ground state
to date, which is described by the static solution of the RMF equations characterized
by the generalized density R, and the fields gb,&?. In the next step we turn to small
oscillations around this self-consistent ground state solution. So far we have used R and
®,, as independent variables, connected only by the equations of motion. Since we want to
describe the small oscillations self-consistently, we now eliminate the mesonic degrees of
freedom using the Klein-Gordon equations. Then the generalized Hamiltonian 7 depends
only on the fermionic degrees of freedom, i.e. it can be expressed as a functional of the
generalized density R only. This elimination is possible only because we are working in
the limit of small amplitudes. In this case the meson field can be written as

b = 00 + 60, (2.1)

d¢,, is obtained from the linearized Klein-Gordon equations. Neglecting retardation ef-
fects, i.e. neglecting 9?¢,, we find

— A+ U"(D)| 0 (x) = £gm0p, (x) (2.2)
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where p,,(r) are the various densities and currents given in Eq. (1.89). In the case of
linear meson couplings U” = m?2, does not depend on qSSP (r) and therefore the propagator
G (r,r') can be obtained analytically. It is of Yukawa form. We find a linear connection
between d¢,, and dp,

5 (1) = £ / 07 G (1, )5, (1) (2.3)

For non-linear meson couplings the propagator has to be calculated numerically (for details
see Ref. [53]).

From now on we are left with the fermionic degrees of freedom only and therefore we
have to consider only the generalized density R. In the small amplitude limit we expand

R(t) = Ro+ R(t) (2.4)
where Ry is the stationary ground state generalized density, while

OR(t) = > dRMe™ 4 hec. (2.5)

describes a small variation around the ground state, where w, are the frequencies of the
different eigen modes. They are admixed with the amplitudes SR®). Since R(t) is a
projector at all times, in linear order

Ro6R + SRRy = OR. (2.6)

In the quasiparticle basis the matrices Ry and Ho = H(R,) are diagonal

R0:<8(1)> and 7{0:<E0” _QE”> (2.7)
From Eq. (2.6) it follows that the matrix R has the form
SR = ( Dol ) , (2.8)
and the linearized equation of motion (1.77) reduces to
iR = [Ho,0R| + B—zéR, RO} . (2.9)

Since the mesonic degrees of freedom are eliminated, we have to vary only with respect to
changes in the density dR to obtain the Quasiparticle Random Phase (RQRPA) equation:

(G 5 ()= (3. o

where XV and YV amplitudes are defined as,
X]:))k’ — <0|akakl|v> (211)
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Vi = (Olajafu). (2.12)
For k < k', I < I' we find the following RQRPA-matrices:

6’FE 8°FE
A 1y = E E ’ 5 5 nr P — d B "y = T . 213
k'l (B + Ep )00 + SR, 0Ru an kk'll SR 0K, ( )

In cases where the two-body Hamiltonian H does not depend on the density, the matrices
A and B can be found in textbooks [85]:

Akk}’ll’ = <(D| [ak/ak, |:_H O{l O[l,:|:| |q)> (214)
Brpw = — <‘I)| [ak’aka [H, Oéz'OézH |‘I’>

Using the representation of the Hamiltonian in the quasiparticle basis

_H = EO + E Héi,azak, E kl”/ak Ozk,al,al

kk! e
Z mw o oot + he) + Z (Hiwwoit ahoif oy + hec.)
kk' Ll Kkl
we find
Akk’ll’ = Héw — H]i'llfskl’ — H]}:}I&k’l + Hkl:,ll/(skl + ngz/”/ (215)
Brrw = AH; kK11

In the quasiparticle representation the matrix H'' is diagonal, i.e. H}] = Eydy. The
matrices H?? and H*® are rather complicated expressions containing the two-body ph-
and pp-matrix elements and the coefficients U and V , the solutions of the self-consistent
Hartree-Bogoliubov equations. For the general case of a density dependent Hamiltonian
we can use the same expressions, but we have to take into account the rearrangement
terms originating from the variation of the interaction with respect to the density p. In
the case of linear meson-couplings the interactions are of Yukawa type whereas in the
case of non-linear meson couplings we have to use the numerically determined meson-
propagator of the Klein-Gordon equation described in Ref. [87].

2.2 Relativistic QRPA in the RHB Canonical Basis

2.2.1 Fully Self-Consistent RQRPA equations

The practical evaluation of the matrix elements Agg jyand By ris rather complicated.
It is considerably simplified in BCS approximation, because in this case we only have to
calculate the two-body matrix elements Vi in the Hartree basis. The quasiparticle
transformation consists in an appropriate multiplying with BCS-occupation factors.
According to the theorem of Bloch and Messiah [88], any RHB wave function can be
written either in the quasiparticle basis as a product of independent quasiparticle states, or
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in the canonical basis as a highly correlated BCS-state. Using this basis, we can therefore
simplify the Relativistic Quasi-particle RPA equations considerably. For systems with an
even number of particles we have

@) = H(uu—i-vﬂaza%ﬂ—% (2.16)

u>0

where |—) denotes the nucleon vacuum, the operators aL and aTE create nucleons in the

canonical basis, and the occupation probabilities are given by

1 g, —m—A
v2:§ 1— p 0 : (2.17)

VEu—m =22+ A2

€, = <u|ﬁp|u> and A, = </L|A|ﬁ> are the diagonal elements of the Dirac single-particle

Hamiltonian and the pairing field in the canonical basis, respectively. In contrast to the
BCS framework, however, neither of these fields is diagonal in the canonical basis. The
basis itself is specified by the requirement that it diagonalizes the single-nucleon density
matrix p(r,r') =3, Vk(r)‘/',;r (r'). Tts eigenvalues are the occupation numbers (2.17).

Many of these occupation numbers vanish, in particular those at very high energies
in the continuum, but also those corresponding to the levels in the Dirac sea, which are
not occupied because of the no-sea approximation. Because of this degeneracy the levels
in the canonical basis are not uniquely determined by the numerical diagonalization of
p(r,r’). In fact, one obtains, in all practical applications, well defined eigenstates |u) of
p with non-degenerate eigenvalues 0 < vz < 1, but in addition arbitrary linear combi-
nations of all the eigenstates with eigenvalues 0 and also arbitrary linear combinations
of all the eigenstates with eigenvalues 1. The pairing matrix elements A of these addi-
tional arbitrary eigenvectors vanish, however the corresponding single particle energies
are arbitrary and unphysical. The reason for this arbitrariness is that the requirement of
diagonalization of the matrix p says nothing about the treatment of the two orthogonal
subspaces with eigenvalues 0 and with eigenvalues 1. Within these two subspaces the
canonical basis is just not defined.

We therefore introduce the additional requirement, that the canonical basis in these
subspaces diagonalizes the single particle Hamiltonian hp. This definition is obvious and
meaningful, because it leads to the Hartree basis in the case of vanishing pairing corre-
lations, where Hartree-Bogoliubov theory becomes simply Hartree theory. In practical
applications we therefore first diagonalize the matrix p. This gives us all the canonical
basis states with 0 < UZ < 1 and in addition eigenstates with eigenvalues 0 and 1. Two
eigenstates | >, |v > are selected as degenerated, if their eigenvalues are different less
than a given parameter €4, i.e.

V2 —vl] < €. (2.18)

Furthermore we calculate the single particle Hamiltonian hp in the basis of all the states
with eigenvalue vﬁ = 0 and diagonalize this operator in the corresponding subspace. All
the new eigenvectors obtained in this way are also eigenstates of p with eigenvalue 0 and
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are of course orthogonal to all the other eigenvectors of p with non-vanishing eigenvalues.
Finally we consider the subspace of eigenvectors with eigenvalue 1 (fully occupied states in
the Fermi see) and proceed in a similar way. This procedure is particularly important in
relativistic calculations, where the diagonalization of p alone leads to linear combinations
of states in the Dirac sea and unoccupied states high up in the positive energy continuum.

With this prescription to the canonical basis determines the energies €, and occupation
probabilities vﬁ of single-nucleon states, that correspond to the self-consistent solution for
the ground state of the nucleus. As discussed in Ref. [7] the density matrix is localized.
The canonical states |p) with v2 > 0 are localized too.

In the canonical basis the matrices A and B have BCS-form. We only have to consider,
that the matrix H' is not diagonal in this basis. We finally obtain:

AMM’VV’ = Hll(su yl — H11 6“1/ Hli}//(; H/”/ 1/’(S

ph + 7t - /
2V;u/’u v (nuu’nz/u’ + nuu’nz/u’) - (l/ oV )

+
IV (6 + ) 219
and
B _ Ly - /
wp'vv’ = QVMVH o (77““/771,1// + 77“”/771/1,/) — (V < V)
+2V55W (&bt — Ein) (2.20)
where
ey = U £ v (2.21)
and
Er = Uty F 0,0 . (2.22)
and
leulf = (upty — vu00) oy — (Upvy + V) Ay (2.23)

The ph- and pp-matrix elements V L A0d Vﬁ’,w, can be derived as second derivatives
of the energy functional with respect to the normal and anomal densities:

’p ’p
Vph A(SiA, Vpp A(SiA (2-24)

vu'v' vv'!
pvp! 5pﬂﬂ,6pw” ! (SH)““/(SH)VVI

In spherical systems we couple to good angular momentum. In this case we find the
matrix equations of the relativistic quasiparticle random phase approximation (RQRPA)

read
AJ BJ XU,JM 1 0 XU,JM
( B AV ) ( y oI M ) = Wy ( 0 —1 ) ( y v I M ) . (2-25)
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For each RQRPA energy w,, (X") and (YV) denote the corresponding forward- and
backward-going two-quasiparticle amplitudes, respectively. The coupled RQRPA ma-
trices in the canonical basis read

Ay = HIO8 — HIDs,, — HDs,, 4 B,
e Ehry + e VI
+¢ WV,W’?;i , (2.26)
B = Nehuths - e
+C i (1) VI (2.27)

The relativistic particle-hole interaction V?" is defined by the same energy functional as
the mean-field Dirac single-nucleon Hamiltonian hp (1.30), i.e.

VP (i, 1y, 81, 89, T1,T2) = _ga #(T1, 2)+gw ("°1a7°2)
(7“1, 2)7 )7?(2)
+€2G (rq, 2)7 (2.28)

It includes the exchange of the isoscalar scalar o-meson, the isoscalar vector w-meson,
the isovector vector p-meson, and the electromagnetic interaction, where G,,(ry ,r2) are
meson propagators. The two-body matrix elements include contributions from the spatial
components of the vector fields. The single-nucleon occupation probabilities are collected
within the following factors, with respect to (2.22), (2.21):

77:#,77;/ for o, wo., po., AV if J is even
for w*, p', A" if J is odd

M fOT o, wo., po., A% if J is odd
for w*, p', A" if J is even

Cuu’ull’ =

The RQRPA configuration space includes the Dirac sea of negative energy states.
In addition to the configurations built from two-quasiparticle states of positive energy,
the RQRPA configuration space must also contain pair-configurations formed from the
fully or partially occupied states of positive energy and the empty negative-energy states
from the Dirac sea. The inclusion of configurations built from occupied positive-energy
states and empty negative-energy states is essential for current conservation and the
decoupling of spurious states [89]. In recent applications of the relativistic RPA it has been
shown that the fully consistent inclusion of the Dirac sea of negative energy states in the
RRPA configuration space is essential for a quantitative comparison with the experimental
excitation energies of giant resonances [50, 53].

The dimension of the RQRPA configuration space is thus determined by two cut-off
parameters: the maximum value of the sum of diagonal matrix elements of the Dirac
single-nucleon Hamiltonian for the two-quasiparticle states of positive energy, and the
sum of diagonal matrix elements of hp for the pairs built from occupied positive-energy
states and empty negative-energy states.
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It should be emphasized that the present RQRPA model is fully self-consistent: the
same interactions, both in the particle-hole and particle-particle channels, are used in the
RHB equation (1.82) that determines the canonical quasiparticle basis, and in the RQRPA
equation (2.25). In both channels the same strength parameters of the interactions are
used in the RHB and RQRPA calculations. The parameters of the effective interactions are
completely determined in RHB calculations of ground-state properties, and no additional
adjustment is needed in RQRPA calculations. This is an essential feature of our model
and it ensures that RQRPA amplitudes do not contain spurious components associated
with the mixing of the nucleon number in the RHB ground state (for 0" excitations), or
with the center-of-mass translational motion (for 1~ excitations).

2.2.2 RQRPA Strength Distributions and Transition Densities

Multipole electric transitions in atomic nuclei are described by the reduced transition
probability [85],

BUELL T = 5 (AIQAI0E (2:29)

where Q? corresponds to the electric multipole transition. The isoscalar monopole oper-
ator is defined as

A
S (i), (2.30)
=1

while
A
A
?]1;/[1 = QZTS)’I“%]YJM(’I%) (232)
i=1

correspond to multipole (J>0) isoscalar (T=0) and isovector (T=1) operators. Since the
lowest order isoscalar dipole (J=1) transition operator produces a spurious center-of-mass
motion, in practical calculations we use the effective operator

A
o 5 .
IT];[U = ¢ E Yo (rf’ —3 < r? >, 7"2-) Yin(7:), (2.33)

=1

in order to ensure that the strength distribution does not contain spurious components
[90]. To describe the isovector dipole excitations, we use the effective transition operator,
Le.

o e;( N - Z>n.y1M(7ai), (2.34)
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where the center-of-mass correction term is subtracted from the original operator, leading
to

7z N
AT—1 N A

o= ey > rpYin(fy) — ‘N7 > raYiu(Fa). (2.35)

p:l n=1

The reduced transition probability for each set of the RQRPA eigen-solutions (w,, X, Y")
is defined as,

1 v A
BT (BJw) = 5| {0l QS
! !

. N 2
b (AT QT ) Y n + (<1 vn)| (236)

where v and u are coefficients related to the occupation probabilities of the single particle
levels in the canonical basis.
The RQRPA transition density for the state |v) is expressed as

op”(r) = 0p5(r)Ya(2), (2.37)
where the radial part is defined by

505) = 30 VAl ) e )+ 1Y) 9 ) ()}

pp!

-<Xﬁ;,]0 + (—I)JYL’}]O) (upve + (=) vu,), (2.38)

where 1 and ji denote the quantum numbers of the large and small components of the
Dirac spinors, respectively. f,(r) and g,(r) are the corresponding large and small radial
components.

2.2.3 Spurious Solutions of the RQRPA Equations

Whenever the generator of a continuous symmetry for a general two-body Hamiltonian
([H,S] = 0), defined by a hermitian one body operator,

§ = SilSliar, (2.39)

]
does not commute with the original single-particle density, i.e.

ENREIN (2.40)

it produces a spurious zero-energy solution of RPA equations [85], i.e.

( g‘f] f;’, ) ( . ) 0. (2.41)
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It corresponds to a mode which is not related to an intrinsic excitation of the system, but
to a collective motion without the restoring force. The spurious state is orthogonal to all
other excitation states. In practice, spurious modes can be incited by different types of the
symmetry violating transformations, e.g. translation, particle number and rotation. In an
ideal case, when the RPA model is built on the self-consistent wave functions and single-
particle energies, the spurious excitation should decouple from the physical states, at
exactly zero energy. In practical calculations, however, because of numerical inaccuracies,
truncation of the ph configuration space, and inconsistencies among the ground state and
RPA equations, the spurious state is separated at energies somewhat higher than zero.
Then the physical states may be more or less mixed together with the spurious response,
leading to the seriously overestimated strength distributions.

There are several approaches to overcome this problem. In particular, in RPA models
which are not fully self-consistent, the residual interaction is adjusted with a free pa-
rameter until the spurious state is properly decoupled. In the case of isoscalar dipole
excitations (ISGDR), the spurious translational motion related to the operator

S = e Z Y (7). (2.42)

=1

has the same quantum numbers as actual ISGDR mode. It is the first order of the
expansion for the dipole operator j; (¢r;)Yin (7). Since the operator from the next order
of expansion, which we actually use in calculations, 73Y;,(7;) includes both 15w and 3hw
2qp excitations, it could also be a subject leading to significant spurious impurities. These
contributions can be extracted by subtracting from the operator r3Y;,/(7;) (2.33) a term
nr; Y1 (7;) which eliminates spurious contributions to the actual physical states of dipole
resonance [90]. The parameter

n = (o (2.43)

is determined from the condition of translational invariance of a nucleus, i.e.

/ Sp(r)rYio(A)dr = 0. (2.44)

An alternative way would be to remove the spurious contributions directly from the
RPA eigenfunctions [64, 91]. Here we need the reduced transition probability defined
via transition density,

2

B(BTw) = Y / 5p" ()T, dr| | (2.45)

Assuming that the transition density of a spurious state is proportional to dp,/dr, where
P, is the ground state density, we correct the actual ISGDR transition densities by sub-
tracting this term multiplied by a factor which is determined from the condition that
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the strength distribution via the translational operator (2.42) and corrected transition
densities vanishes, i.e.

/<5p3(r)—av%> ridr = 0. (2.46)

This equation on a, is solved for each RQRPA eigenvalue w,. By using corrected tran-
sition densities, and transition operator r3Y},/(7;), we can evaluate from Eq. (2.45) the
strength distribution with eliminated spurious strength. We get almost the same strength
distributions by using this method or by direct calculation with operator (2.33). This re-
sult is in agreement with the conclusion from the Ref. [64].

The truncation of actual RQRPA configuration space may strongly affect the behav-
ior of spurious states. The size of 2qp space is determined by two cut-off parameters:
the maximum value of the sum of diagonal matrix elements of the Dirac single-nucleon
Hamiltonian for the two-quasiparticle states of positive energy (E¢y,), and the sum of
diagonal matrix elements of hp for the pairs built from occupied positive-energy states
and empty negative-energy states (E¢, is absolute value of this quantity). The cut-off
parameters Ec,, Ecq, as well as the degeneracy parameter €, from (2.18) are selected in
a way to ensure that the following properties are fulfilled: (a) the response related to
the nucleon number operator vanishes, and the corresponding Nambu-Goldstone mode
has a zero excitation energy, (b) the spurious excitation corresponding to a translation
of a nucleus decouples as a zero excitation mode, and (c) the excitation energies of giant
resonances and low-lying states converge to stabile solutions independent from the cut-
off and €4 parameters. The present RHB+RQRPA model is fully consistent with (a)-(c)
conditions.

First we show how the RQRPA results depend on the degeneracy parameter ¢; (2.18)
which determines if two canonical basis states have degenerated eigenvalues, i.e. occupa-
tion numbers. The isovector dipole strength distribution for e¢; = 10~* — 10~7 is shown
in Fig. 2.1(a). In the case when ¢; < 107°, the dipole response slightly varies, especially
the low-lying region. However,e; can be clearly determined from the conditions related to
extraction of the spurious states. In particular, for ¢; < 107%, the 1~ spurious state be-
comes a complex number; its imaginary part decreases until e; ~ 10~ %, where we get a real
energy of spurious excitation at 0.1 MeV. This property is also reflected in Fig. 2.1(a): for
€q < 107, the spurious states are properly decoupled, and plotted strength distributions
for ¢; = 1075 and 1077 are exactly the same. The same applies to other nuclei. From
the number operator response, we drew the same conclusion. In the present analysis,
therefore we use systematically the degeneracy parameter with a fixed value e; = 107°.

In Fig. 2.1(b) we illustrate in 20O how the response to the neutron number operator
varies with the cut-off E¢, = 30-270 MeV, while F¢,=1700 MeV to include the entire
negative-energy spectrum from Dirac sea. As the number of 2qp configurations increases,
the response for the number operator clearly disappears. Already for Ex,=90 MeV (84
2qp / 41 antiparticle - quasiparticle (ap-qp) pairs), the transition strength along the
whole region up to 50 MeV falls down to the values less than 0.004 1/MeV, while the
Nambu-Goldstone mode converges toward 0.2 MeV. In order to remove the spurious 1~
excitation, it is also necessary to include a large configuration space. In Fig. 2.1(c) we
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Figure 2.1: (a) Isovector dipole strength distribution for different values of ¢; (2.18). (b)
RQRPA response for the neutron number operator in 20 for 2qp cut-off energy E¢,=30-
270 MeV. The corresponding cut-off for configurations which include antiparticle states
is fixed, Ec,=1700 MeV. (c¢) The position of the spurious 1~ state in 220 and ?°Sn as
a function of 2qp cut-off energy; Fc,=1700 MeV. (d)The ISGMR. energy in 20 and
120Sn as a function of the cut-off energy FEg, for 2qp pairs which include transitions
to the negative-energy Dirac sea (E¢,=270 MeV and E¢,=100 MeV in 220 and '*°Sn,
respectively
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plot the energy of a 1~ spurious state in 220 and '2°Sn as a function of the energy cut-off
Ec¢, with Ec,=1700 MeV. In both cases, the convergence of a spurious state toward zero
excitation energy is obtained, in relatively large space with 250 and 800 configurations
for 220 and '2°Sn, respectively.

The cut-off parameter E¢, related to configurations which include antiparticle states,
has an important role for a proper description of the multipole response in nuclei. As it
was noted in Ref. [89], if these contributions are not included, the energy of the 1~ spurious
state becomes imaginary, and it never approaches zero. The RHB+RQRPA model has the
same property: even with incomplete set of ap-qp pairs, the diagonalization of RQRPA
matrix may result with complex eigenvalues for the spurious 1~ state. When a sufficiently
large configuration space is selected, this problem is avoided. Giant monopole resonances
(GMR) are especially sensitive to the inclusion of ap-qp configurations. In Fig. 2.1(d)
we show how the corresponding energy cut-off F, can be selected. The GMR peak in
both 220 and 2°Sn for E¢, <1150 MeV is built from the usual 2qp pairs only. However,
as F¢, increases to include the effects from the negative energy states, the GMR energy
becomes larger and it saturates for F, >1500 MeV.

12 T T
——— without D. states
full RRPA
--------------- D.states with
—-—- D.states with w
st A T D.states with p i

R[ezfmleeV]

I

30

E[MeV]
Figure 2.2: Isovector dipole strength distributions in 2°Pb calculated with the NL3 ef-
fective interaction. The solid and long-dashed curves are the RRPA strengths with and
without the inclusion of Dirac sea states, respectively. The dotted, dot-dashed and short-
dashed curves correspond to calculations in which only the o, the w and the p meson field
are included in the coupling between the Fermi sea and Dirac sea states, respectively.

In the following, we illustrate the impact of the Dirac sea states in the case of isovector
giant dipole resonances (IVGDR). In Fig. 2.2 we plot the isovector dipole strength dis-
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tribution for 2Pb. The solid and long-dashed curves are the RRPA strengths with and
without the inclusion of Dirac sea states, respectively. The dotted, dot-dashed and short-
dashed curves correspond to calculations in which only the o, the w and the p meson
field are included in the coupling between the Fermi sea and Dirac sea states, respec-
tively. We notice that, although the position of the peak is not sensitive to the inclusion
of negative energy states, these configurations affect the total intensity, i.e. the values
of the calculated energy weighted moments. In particular, if the negative energy Dirac
sea states are not included in the RRPA configuration space, only 72.8% of the energy
weighted sum rule is exhausted, as compared with the full RRPA calculation with both
positive and negative energy states. When only the o, the w, or the p meson couple the
particle-hole states with negative energy Dirac sea states, 89.4%, 98.3% and 79.2% of the
full RRPA energy weighted sum rule is exhausted, respectively. However, in the case of
isoscalar excitations more serious effects have been observed. Without the inclusion of
the Dirac sea states, the position of an isoscalar giant resonances is lowered in energy by
several MeV [51]. The self-consistent RQRPA framework used in the present work in-
cludes configurations built from both occupied positive-energy states and negative-energy
states.

In the left panel of Fig. 2.3 we display the monopole strength function of the neutron
number operator in 220. There should be no response to the number operator since it is a
conserved quantity, i.e. the Nambu-Goldstone mode associated with the nucleon number
conservation should have zero excitation energy. The dashed curve (no dynamical pairing)
represents the strength function obtained when the pairing interaction is included only in
the RHB calculation of the ground state, but not in the residual interaction of the RQRPA.
The solid line (zero response) corresponds to the full RHB4+RQRPA calculation, with the
pairing interaction included both in the RHB ground state, and in the RQRPA residual
interaction. The same result was also obtained in the HFB+QRPA calculation for 2¢O
in Ref. [38]: the spurious strength of the number operator appears when the pairing
interaction is included only in the stationary solution for the ground state, i.e. when the
dynamical QRPA pairing correlations are neglected.

The isoscalar strength functions of the monopole operator (2.30) in 220, shown in the
right panel of Fig. 2.3, correspond to three different calculations: a) the RMF+RRPA
calculation without pairing, b) pairing correlations are included in the RHB calculation
of the ground state, but not in the RRPA residual interaction (no dynamical pairing),
and c) the fully self-consistent RHB+RQRPA calculation. Just as in the case of the num-
ber operator, by including pairing correlations only in the RHB ground state a strong
spurious response is generated below 10 MeV. The Nambu-Goldstone mode is found at
zero excitation energy (in this particular calculation it was located below 0.2 MeV) only
when pairing correlations are consistently included also in the residual RQRPA interac-
tion. When the result of the full RHB4+RQRPA is compared with the response calculated
without pairing, one notices that, as expected, pairing correlations have relatively little
influence on the response in the region of giant resonances above 20 MeV. A more pro-
nounced effect is found at lower energies. The fragmentation of the single peak at ~ 12.5
MeV reflects the broadening of the Fermi surface by the pairing correlations.
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Figure 2.3: The strength function for the neutron number operator (left), and the isoscalar
strength function for the monopole operator (right) in *0. The curves correspond to
the RMF+RRPA calculation without pairing (dotted), with pairing correlations included
in the RHB calculation of the ground state, but not in the RRPA residual interaction
(dashed), and to the fully self-consistent RHB4+RQRPA calculation (solid).

2.2.4 Sum Rules of the Multipole Strength in Relativistic QRPA

The discrete RQRPA strength distributions for given multipole operator we average with
a Lorentzian function, resulting with the continuous strength function,

R(E)=Y_ B"(J,w,) % F _w;,/i T (2.47)

The reduced transition probability BT (.J,w,) is defined in Eq.(2.36), while the arbitrary
width of the Lorentzian distribution, I' is fixed in this work to the value 1 MeV. The
Lorentzian function (2.47) is defined in a way to fulfill the condition that the energy
weighted summed response (EWSR) of a discrete distribution equals the EWSR of the
corresponding continuous strength function, i.e.

Spw(EJ) = Y E,B"(EJw,) = / ER(E)dE. (2.48)

v>0
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In the present work the EWSR (2.48) is evaluated in the interval below 50 MeV excitation
energy. The knowledge of the sum rules is of special interest, since it represent a useful
test of the models describing collective excitations [85]. The energy weighted sum(2.48)
for a transition operator Q Jsu can be expressed in a double commutator form,

sow(B) = 33 (o] @ [1.0]]]0). (2.49)
¢<F

where |¢) runs over all occupied single-particle states. If only contributions from the
kinetic term are taken into account,
B2 (2A +1)?
E = — L 7{(r¥%. 2.

Sew(ET) 2m  Ar <7" > (2:50)
For the dipole operator (2.35) this reduces to the well known Thomas-Reiche-Kuhn (TRK)
sum rule [85],

W9 NZ ,

The isoscalar quadrupole energy weighted sum rule reads,

Sow(F2) = BUC(N(12) + 2(12) (25

and for the isoscalar monopole excitations,

Sew(B0) = 27 (N (1) 4 2(12)) (2.53)

The classical sum rules (2.51)-(2.53) are only approximative quantities. In practical cal-
culations they are usually enlarged by an enhancement factor due to the nucleon-nucleon
potential term in the nuclear Hamiltonian [92].

However, in the relativistic approach, the sum over v in Eq.(2.48) runs not only
over the positive excitation energies, but it also includes transitions from the occupied
levels to the empty negative energy Dirac sea. The 2qp pairs which include the states
from Dirac sea, contribute with negative definite terms in the EWSR. As it was pointed
out in Refs. [93, 94, 95], in the RMFT approach, the double commutator in Eq.(2.49)
vanishes, and summed EWSR is zero. It means that in RRPA the ordinary particle-hole
contributions are exactly canceled by the response of vacuum due to excitation from an
occupied state to the Dirac sea. The condition

Y EBT(EJw,) = 0 (2.54)

provide an excellent numerical test of the completeness for selected configurational space.
In any relativistic RPA calculations built on the finite space of particle-hole and antiparticle-
hole configurations, only the full EWSR rule should be exactly satisfied. If the configura-
tional space is restricted by exclusion of antiparticle-hole pairs, negative contributions to
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Figure 2.4: RQRPA energy weighted running sum for E1 excitations in the open-shell
nuclei with (a) only the usual 2qp configurations, and (b) configurations with transitions
to the Dirac sea are included. The energy on the E axis corresponds to the upper limit
of energy in the summation of energy weighted transition strength(2.48)

(2.48) are dropped out. In this particular case, the nonrelativistic sum rules (2.51)-(2.53)
should be only approximately recovered.

It is of a particular interest to see whether the RHB4+RQRPA sum rules are well
satisfied. In Fig. 2.4 we plot the running energy weighted sum (2.48) up to a given energy E
in a selection of the open shell nuclei 220, ®Ni and '2°Sn. When we restrict the summation
of energy weighted transition strength (2.48) to the positive energies from usual 2qp
excitations only, the sum quickly converges beyond 40 MeV to the final EWSR value
(Fig. 2.4(a)). This value should be compared with the classical TRK sum rule (2.51). As
expected, in the case of isovector dipole excitations, the EWSR exhausts somewhat more
strength: between 110%-125% of TRK sum rule. However, as the negative energies related
to the excitations in Dirac sea are included, the maximal EWSR drops very precisely to the
zero value (Fig. 2.4(b)). Accordingly, we can conclude that the completeness properties
are very accurately fulfilled in the present RHB4+RQRPA calculations. In order to achieve
this property, the self-consistent implementation of interactions in the RHB and RQRPA
plays an important role. If the self-consistency is broken, as in the case when the pairing
interactions are included in RHB, but not in the RQRPA, the relativistic sum rule (2.54)
is not fulfilled. This is illustrated in Fig. 2.5, where for both the RRPA and RQRPA
the energy weighted sum vanishes, in contrast to RQRPA without pairing in the residual
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Figure 2.5: The running sum (the same like in Fig.2.4) in RRPA, RQRPA without dy-
namical pairing, and full RQRPA calculations for ?20.

interaction, which results with an amount of 10.91 e? fm?MeV in total EWSR. Of course,
the same conclusion applies to the excitations with other multipolarities.

The excitation energies of giant resonances are defined via energy moments of discrete
transition strength distribution (2.36),

my = Y ESBT(EJw,), (2.55)
or by using the continuous strength distribution function (2.47),
my, = /E’“R(E)dE. (2.56)

In the case k = 1 this equation defines the energy weighted sum rule (2.48). If the
strength distribution of a particular excitation mode has a well pronounced and symmetric
resonance shape, its energy is well described by centroid energy,

my

E = : 2.57
o (257)
Alternatively, mean energies are defined as
B, = |2 (2.58)
mg—2
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where the difference between the values £, and E5 can be used as an indication of how
much the strength distribution corresponding to an excitation mode is actually frag-
mented [91]. If the multipole response is characterized by a single dominant peak, two
moments are equal, i.e. F;=Fj.
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Chapter 3

Nature of the Multipole Excitations
in Exotic Nuclei

In recent years, the multipole response in neutron-rich oxygen isotopes have become an
attractive topic of interest, since it is directly related to many interesting phenomena
in nuclei away from the valley of 3 stability. Weak binding of the outermost neutrons,
leading to increase of the neutron radii, may form exotic ground-state structures, e.g. the
halo and skin, and loosely bound nucleons could imply the appearance of the low-lying
transition strength and soft collective modes of excitations, very different from the giant
resonances in stable nuclei.

The neutron rich oxygen isotopes are good candidates for a possible identification of the
low-lying collective soft mode, that corresponds to the oscillations of the mantle composed
from excess neutrons, out of the phase with the core formed from the rest of neutrons
and protons. The isovector dipole (E1) excitations in neutron rich oxygen isotopes have
recently been very extensively discussed, both experimentally and theoretically.

The first systematic experimental effort, based on the electromagnetic excitations in
the heavy-ion collisions, indicated the appearance of low-lying dipole strength in oxygen
isotopes 70 - 220 [21, 96, 22]. Therein, the soft dipole excitation has been detected in all
investigated neutron-rich oxygen isotopes, exhausting up to 12 % of the TRK sum rule
at excitation energies below 15 MeV. More recent investigation indicated the existence of
new low-lying E1 levels at 5.35 and 6.85 MeV in 2°0, in contrast to **O, where comparable
dipole strengths in the same region have not been observed [97]. The quadrupole (E2)
and octupole (E3) modes in 2°0, have also been studied, using elastic or inelastic proton
scattering [98, 99].

There are a variety of new theoretical investigations on the subject of multipole
excitations in oxygen isotopes: the large scale shell model calculations [35, 100], the
self-consistent RPA with Skyrme forces [101, 102], the QRPA plus phonon coupling
model [103], the time-dependent density-matrix theory [104] and the continuum RPA in
coordinate-space HFB [40, 38]. In our previous investigation, we have analyzed the evo-
lution of dipole strength distribution in a sequence °0-280, within the relativistic RPA
model with the simple filling approximation, without pairing interactions [61]. However,
to study systematically the excitations in open shell nuclei, we have extended our theory
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to include the pairing correlations in a self-consistent way [62].

3.1 Evolution of the Low-lying Isovector Dipole Re-
sponse in Oxygen Isotopes

In the present section, we apply the RHB4+RQRPA model to describe the evolution of
the isovector dipole response (E1) in oxygen isotopes, when moving from '®O toward
the neutron drip-line, i.e. 2*O. The possible stability of the double magic nucleus 220
is still an open question, although the isotopes 2°0 and 260 appeared experimentally
unstable [105, 106]. Many theoretical investigations, as well as RHB model, predicted
that the the doubly magic 280 is bound, in contrast to the recent measurements which
demonstrated its instability [107, 108]. The shell-model calculations suggest both 20 and
280 to be unbound nuclei(e.g. [106]).

In the following, we compare RHB+RQRPA results on E1 excitations in oxygen iso-
topes with the only available systematic experimental data [22] and with the recent non-
relativistic models, in particular with the continuum linear response theory based on the
Hartree-Fock-Bogoliubov formalism in the coordinate space representation [40, 38]. In
the model in Ref. [40] a Woods-Saxon parameterization is used to describe the single-
particle potential, and a Skyrme-type density dependent delta force is adopted for the
residual interaction in the ph-channel of the QRPA. Since the HFB calculation of the
single-particle potential and QRPA ph-interaction is not self-consistent in Ref. [40], the
interaction strength of the residual interaction was renormalized for each nuclei in order
to obtain for a dipole response a zero-energy mode corresponding to the spurious center
of mass motion. In the same model, the pairing interaction is included in a consistent way
via a density-dependent delta force, both in the HFB pairing field for the ground state,
and in the linear response equations.

On the other side, the studies based on the RHB4+RQRPA calculations are fully self-
consistent, i.e. the same combination of effective interactions, NL3, NL1, or NL-SH in the
ph-channel and a more realistic finite range Gogny D1S interaction in the pp-channel, are
used both in the RHB calculation of the ground state and as RQRPA residual interactions.
The multipole strength distributions may slightly depend on the choice of the effective
RMF Lagrangian in the ph-channel.

As an example to illustrate how RHB4+RQRPA model depend on the RMF effective
interaction, we select the neutron rich isotope ?20. In Fig. 3.1 the RQRPA strength
distribution function for the isovector dipole operator ( 2.35) is displayed. The results
are plotted for three different parameterizations of the mean field Lagrangian, listed in
Table( 1.1): NL-SH, NL1 and NL3. The set of parameters for the pairing correlations D1S
is fixed to the values from Table( 1.2). Although there are some variations in the response
for different effective forces, it is important to notice that the main excitation properties,
i.e. the energy of the giant resonance (around 20 MeV) and the low-lying structure
(below 10 MeV) are well preserved. This issue is carefully checked throughout the chart
of nuclides. Therefore, in the following investigation we restrict our calculations mainly
to a single, presumably the best effective force. An appropriate choice would be the NL3

44



effective interaction. In most applications of the RHB model, the NL3 effective interaction
[80] has been used for the RMF effective Lagrangian. Properties calculated with NL3
indicate that this is probably the best nonlinear effective interaction so far, not only for
the stable nuclei, but also in the regions away from the line of S-stability [80, 43, 44, 47].
Unless it is specifically stated, we adopt only the NL3+D1S parameterization in the
following calculations.

The importance of a consistent treatment of pairing correlations in the HFB+QRPA
framework has been emphasized in Refs. [40, 38]. In general, the residual pairing inter-
action in the QRPA generates pronounced dynamical correlation effects in the response
through pair density fluctuations. Moreover, as we have shown in the previous chapter,
the energy weighted sum rules are only satisfied if the pairing interaction is consistently
included both in the static HFB and in the dynamical linear response.
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Figure 3.1: Isovector dipole strength distributions in 220 calculated with the NL3 (solid),
NL1 (long-dashed) and NL-SH (dashed) effective interactions

The strength distributions in Fig. 3.1 are obtained in a fully self-consistent calculation.
When this condition is fulfilled, a large configuration space enables the separation of
the zero-energy mode that corresponds to the spurious center of mass motion. In the
present calculation with NL34+-D1S parameterization, for 220 this mode, orthogonal to
other physical states, is located at F = 0.04 MeV. In many nonrelativistic QRPA models
(e.g. Refs. [40, 38, 103]) which do not have this property, the spurious center of mass
state was projected out by renormalizing a few percent the matrix elements of the residual
interaction. With this method, the spurious state can be pushed toward the zero energy.
On the other hand, in the self-consistent RHB+RQRPA model the residual interaction
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Figure 3.2: The isovector strength function of the dipole operator in 20 (left). The fully
self-consistent RHB+RQRPA response (solid line) is compared with the RMF+RRPA
calculation without pairing (dotted line), and with the RHB+RRPA calculation that
includes pairing correlations only in the ground state (dashed line). The proton and
neutron transition densities for the peak at F = 8.65 MeV are shown in the right panel.

is strictly fixed throughout the periodic chart; in the case when the configuration space
is large enough, the spurious center of mass state clearly separates (see Fig. 2.1). This
is not the case if the pairing correlations are not included in the residual interaction in a
consistent way.

The pairing effects to the isovector dipole response in 220 are displayed in the left
panel of Fig. 3.2. In this example we also compare the results of the RMF+RRPA
calculations without pairing, with pairing correlations included only in the RHB ground
state (no dynamical pairing), and with the fully self-consistent RHB+RQRPA response.
The strength functions shown in Fig. 3.2 illustrate the importance of including pairing
correlations in the calculation of the isovector dipole response. Pairing is, of course,
particularly important for the low-lying strength below 10 MeV. The inclusion of pairing
correlations in the full RHB+RQRPA calculation enhances the low-energy dipole strength
near the threshold.

To study the low-lying strength in more details, we display in the right panel of
Fig. 3.2 the proton and neutron transition densities( 2.38) for the main peak in the
low-energy region (E = 8.65MeV). In contrast to the well known radial dependence
of the IVGDR transition densities (proton and neutron densities oscillate with opposite
phases), the proton and neutron transition densities for the main low-energy peak are in
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phase in the nuclear interior. Furthermore, there is no contribution from the protons in
the surface region, and the strong neutron transition density displays a long tail in the
radial coordinate. A similar behavior has been predicted for the light neutron halo nuclei
SHe, "'Li and "Be in Ref. [109], where it has been shown that the long tails of the wave
functions of the loosely-bound neutrons are responsible for the different radial dependence
of the transition densities that correspond to the soft low-energy states as compared to
those of the giant resonances.

The effect of pairing correlations on the isovector dipole response in 220 is very similar
to the one obtained in the HFB+QRPA framework (Fig. 8 of Ref. [38]). In the low-energy
region below 10 MeV, however, the pairing interaction used in the QRPA calculation
produces a much stronger enhancement of the dipole strength, as compared to the results
shown in Fig. 3.2. The reason probably lies in the choice of the pairing interaction. While
we use the volume Gogny pairing, in Ref. [38] a density-dependent delta force was used
in the pp channel. This interaction is surface peaked and therefore produces a stronger
effect on the low-energy dipole strength near the threshold.
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Figure 3.3: Evolution of the isovector dipole strength distribution in oxygen isotopes,
calculated with the NL3 effective interaction. The low-lying region is separated by the
dashed line at E=15 MeV in order to compare results with Ref. [22]

In the following, we use the self-consistent RHB+RQRPA model to study how the
isovector 1~ response evolve as a function of a neutron number in oxygen isotopes. The
corresponding strength distributions for 60, O, 2°0 and 220 are displayed in Fig. 3.3.
Already for the 90 the isovector dipole strength distribution is strongly fragmented with
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the centroid energy (2.57) at £=21.8 MeV. The thin dashed line tentatively separates the
region of giant resonances from the low-energy region below 15 MeV to compare the prop-
erties of the low-lying strength with the experimental results in Ref. [22]. As the number
of neutrons increases, two main effects are observed: a) an increased fragmentation of the
dipole strength, and b) the appearance of low-lying strength below 15 MeV. The relative
contribution of the low-energy region increases with the neutron excess (shaded area in
Fig. 3.3), exhausting 12, 10, 17 and 22 % of the TRK sum rule in 80, 2°0, 220 and %0,
respectively.

A similar result was also obtained with the non-relativistic models. In the Hartree-
Fock plus RPA framework with Skyrme effective interactions [33] for 220, several peaks
appeared in the region between 6 and 10 MeV. The Woods-Saxon + continuum Skyrme
QRPA showed also significant development of the dipole strength below 15 MeV, exhaust-
ing 7,11,16,21 % of the TRK sum rule value for *O-210 [38]. The same dipole strengths
calculated in the large scale shell model exhaust about 10% TRK in oxygen isotopes
heavier than 'O [35]. In the recent QRPA plus phonon coupling model, the important
role of the coupling with phonons has been pointed out and its role to increase the low-
lying strength, exhausting between 5 and 10% of the TRK sum rule [103]. The summary

‘ Oxygen isotope A = ‘ 18 ‘ 20 ‘ 22 ‘ 24 ‘
RHB-+RQRPA(NL3) 0.12 [ 0.10 | 0.17 | 0.22
continuum QRPA [38] 0.07 | 0.11 | 0.16 | 0.21
Shell model [100] 0.06 | 0.11 | 0.10 | 0.09
QRPA + phonon coupling (large gap) [103] | 0.07 | 0.09 | 0.07
Experiment GSI [22] 0.08 | 0.12 | 0.07
Experiment, [110] 0.11

Table 3.1: Integrated dipole strength up to 15 MeV excitation energy, given in units of
the classical TRK sum rule, in oxygen isotopes A=18-24. The results of RHB4+RQRPA
model are compared with the recent theoretical and experimental studies.

of recent results on the low-lying dipole strength below 15 MeV for oxygen isotopes in
different models are shown in Table 3.1.

The first systematic experimental study of giant resonances and soft modes in exotic
oxygen nuclei has been recently completed at GSI, where the dipole response of neutron
rich oxygen isotopes is measured up to ?0O [22]. The experimental approach is based
on the electromagnetic excitation of fast projectiles by Pb target, where the radioactive
oxygen beams are produced in fragment separation of a primary *°Ar beam. The dipole
strength function is extracted from a measurement of the differential electromagnetic
dissociation cross section. Since the energy of a secondary beam amounts up to 600
MeV /nucleon, dipole transitions up to 30 MeV in excitation energy have been reached in
exotic nuclei. In this experimental investigation, the low-lying dipole strength exhausting
up to 12% of the TRK sum rule, was observed for 80, 2°0 and #20. Further experimental
study of the drip line nucleus 2*O is planned in the near future. The theoretical predictions
are in reasonable agreement with experiment (Table 3.1). Although all models agree on
the overall effect on the 17 transition strength, as the number of neutrons increases,
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some quantitative differences have been noted. In Fig. 3.4 we display the RHB4+RQRPA

-

16 1.8 2‘O 2‘2 2‘4
Figure 3.4: The properties of the low-lying 1~ strength distribution: evolution of the low-
lying energy weighted sum up to 15 MeV divided by the classical TRK sum rule (upper

panel) is compared to the experimental results from Ref. [22]. The centroid energy ( 2.57)
of the low-lying dipole strength is plotted in the lower panel.

low-lying EWSR (E<15 MeV) in the bound oxygen isotopes, compared with the GSI
experimental results [22]. Accordingly we emphasize that the RHB+RQRPA results for
the low-lying dipole strength distribution in ¥0O and 2°0 are in good agreement with
the experimental data. The RHB+RQRPA model, as well as the continuum QRPA [38]
slightly overestimate the experimental and other theoretical low-lying EWSR in ?20. For
better understanding of this discrepancy, it would be very helpful to have the experimental
study of the drip line nucleus 2*O. In the lower panel of Fig. 3.4 we plot the centroid
energy ( 2.57) of the low-lying strength (up to 15 MeV) in '#0-2*O. As we move toward
the neutron drip line, the corresponding centroid energy lowers its position.

What is the nature of the low-lying isovector dipole states? The question of whether
the soft, i.e. low-lying dipole excitations are collective or single-particle has been ad-
dressed, for example, in Ref. [111] for the light neutron halo nuclei ''Li and "Be. Tt has
been shown that the soft modes, which result from the large spatial extension of the bound
single-particle states, represent a new type of non-resonant independent single-particle ex-
citations. The narrow width and the large transition strength, which characterize these
excitations, are not caused by a coherent superposition of particle-hole (ph) configurations
like in collective states.

In the present investigation of the oxygen isotopes, we analyze in more detail the
structure of the main peaks in the low-energy region of the isovector dipole strength dis-
tribution. For a simplicity, we consider here only the closed shell nucleus 220, where the
RQRPA limit is the relativistic RPA (RRPA), built on the simple particle(and antiparticle)-
hole configuration space. For a state at energy w,,, the contribution of a particular proton
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or neutron ph configuration is determined by the RRPA amplitude
2
Eon = X" = [V

where XV and Y are the eigenvectors of the RRPA equation, for which the normalization
condition holds,
d Gn=1. (3.2)
ph

In the low-energy region of IV dipole strength for 20, the neutron ph excitations have

2
"

(3.1)

| E[MeV] | EWSR[%] | neutron p — h configuration |

12 0.9 (92% Lds/> — 2ps)2)
19 14 (91% Lds /2 — 2p1 o)
(6% 1dsjp — 2ps3)»)
73 19 (92% 25172 — 2p3.2)
89 6.3 (71% Tdsj2 — 1fs/2)
( )
( )

16% ].d5/2 — ].f7/2
3% 1d5/2 — 2p3/2

Table 3.2: The structure of the main peaks in the low-energy region of the isovector
dipole strength distribution in 2O. For each energy below 10 MeV (left column), which
exhausts a certain percentage of EWSR integrated up to 50 MeV, the neutron particle-hole
configurations with largest amplitudes are displayed in the right column. The percentage
of EWSR assigned to a particular p — h configuration refers to the normalization of the
RRPA amplitudes (3.2).

dominant contributions. The strength function below 10 MeV is slightly fragmented into
several different peaks. The main neutron ph components in the RRPA wave function of
the states at 4.2 MeV, 4.9 MeV, 7.3 MeV and 8.9 MeV, are displayed in Table 3.2. The
isovector dipole response in the low-energy region below 10 MeV is mainly characterized by
one dominating single particle transition, with an additional or a few other transitions with
small contributions, in contrast to the coherent superposition of many ph configurations,
which characterizes the excitations in the region of the collective modes, i.e. the giant
resonances. Similar property remains in the open shell nuclei; although the pairing effects
increase the collectivity of the low-lying states, a single 2qp configuration dominates in
their RQRPA wave function.

The nature of the low-lying isovector dipole states, and of the states in the region of
giant resonances changes considerably as one moves away from the valley of the S-stability
towards the drip-lines. On the left side of Fig. 3.5 we display the transition densities ( 2.38)
for the GDR states 19.6 MeV in 0 and 19.3 MeV in 2*O. The transition densities for
the low-lying states 8.7 MeV in 220 and 7.3 MeV in 2*O are plotted on the right side of
Fig. 3.5. The proton dp, (dashed) and neutron ép, (dot-dashed) transition densities are
shown separately. The isovector and isoscalar transition densities, defined as

opry = 0p, —dpy (3.3)
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Figure 3.5: Transition densities for the GDR peaks at 19.6 MeV in %0, 19.3 MeV in 240,
and for the low-lying states at 8.7 MeV in 220, 7.3 MeV in 2*O. Both the isoscalar and
isovector transition densities are displayed, as well as the separate proton and neutron
contributions.

oprs = dp,+0p, (3.4)

are plotted with the dotted and solid lines, respectively. The transition densities of
the GDR state at 19.6 Mev in '®0O display the radial dependence characteristic for the
isovector giant dipole resonance: the proton and neutron densities oscillate with opposite
phases; the amplitude of the isovector transition density is much larger than that of the
isoscalar component. In the stable N=7=8 nucleus, the isoscalar transition density almost
completely vanishes [112]. Very small RRPA isoscalar contributions, obtained in '®O, are
due to the isospin symmetry breaking. On the other side, the transition densities in the
drip line nuclei display a different behavior. Although the transition densities of the GDR
state at 19.3 Mev in 2*O have the usual IVGDR radial dependence, there is an important
difference with respect to the stable nuclei: the isoscalar transition density increases
progressively, and at large radii both the isovector and isoscalar transition densities have
a similar radial dependence. We notice that the large neutron component in the surface
region contributes to the formation of a node for the isoscalar transition density. In
Ref. [33, 112] it has been shown that this effect is characteristic for neutron rich nuclei.
However, the most important effects on dipole excitations in exotic nuclei are identified
in the low-lying states. The transition densities for the peaks at 8.7 MeV in 220 and
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at 7.3 MeV in 2O are displayed on the right side of Fig. 3.5. These states exhibit a
rather different radial dependence to the GDR: the proton and neutron densities in the
interior region are not out of phase; there is almost no contribution from the protons in
the surface region. The isoscalar transition density dominates over the isovector one in
the interior region of nuclei, while the neutron transition density is much more extended
in the radial coordinate as compared to the transition densities of the giant resonance
states. We notice that a similar behavior of transition densities have been predicted for
excitations in halo nuclei °He, " Li and '?Be in Ref. [109]. It has been shown that the long
tails of the wave functions of the loosely-bound neutrons are responsible for the different
radial dependence of the soft low-energy states and the giant resonances.

The studies of possible low-lying excitation modes in neutron rich nuclei might help
in the future to get a better insight in the new structural phenomena in exotic nuclei. In
particular, recently it has been suggested that the magic numbers are different in light
drip-line nuclei, in comparison to the nuclei within the valley of 3 stability. The creation
of a new magic number N = 16 was reported for nuclei with Z < 8, close to the neutron
drip-line [113]. Recent investigation with inelastic proton scattering on %2 Be indicated
that the N=8 Be isotope cannot be treated as a singly closed-shell nucleus, i.e. possible
existence of an intruder orbital 2s;/, would imply new magicity [114]. As was pointed
out in Ref. [100], the melting of the shell structure in exotic nuclei would create very
low-energy E1 strength, which would reflect the possible onset of new magic numbers.

3.2 Pairing Effects on the Quadrupole Response in
Drip-line Nuclei

The giant quadrupole resonances (GQR) are rather well established collective modes in
atomic nuclei. In particular, the isoscalar (T = 0) giant quadrupole resonance J™ =
2% (ISGQR) has been extensively studied in the last decades, resulting in an excellent
agreement amongst different experimental (e.g. electron and hadron scattering, particle
capture reactions) and theoretical (time-dependent Hartee Fock, RPA, time dependent
RMFT, RRPA, etc.) investigations. The mass number dependence of the excitation
energy for the ISGQR, extracted from experiment, is given by the approximative law
E(A) ~ 65473 MeV [115]. Some experimental data are also available for the isovector
(T'=1) GQR.

However, in nuclei far away from the valley of /3 stability, the exotic nuclear structure
of loosely bound nucleons may strongly affect the overall quadrupole response. In recent
studies, the low-lying 2" states in the neutron rich oxygen isotopes have been investigated
in the self-consistent Skyrme Hartree-Fock-BCS + QRPA, showing that the neutron to
proton transition amplitudes for low-lying states differ noticeably from the simple N/Z
estimate [102, 99]. The actual experiments constrained the position of the first 2+ state
in 220 at 3.2 MeV [116]. Since this is higher than the corresponding energy in 2°O,
and for nuclei close to the stability there is no strong variation in the energy of the
first 27 state, it has been suggested in Ref. [102] that the latest result might also be
a fingerprint of the shell structure changes in exotic nuclei. In the continuum QRPA
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Figure 3.6: Isoscalar and isovector quadrupole strength distribution in 20O (left panel).
In the right panel the full RHB+RQRPA isoscalar strength function (solid) is compared
to the RMF+RRPA calculation without pairing (dotted), and with the response obtained
when the pairing interaction is included only in the RHB ground state (dashed).

calculations, the quadrupole response in oxygen isotopes has been examined with respect
to the self-consistency of the density-dependent delta force in the pairing channel of
HFB+QRPA model [40, 38]. Following this investigation, we study the pairing effects on
the 2 response in RHB4+RQRPA model. In order to evaluate the quadrupole strength
distributions, the multipole transition operators ( 2.31) and ( 2.32) for J=2 are used to
describe the isoscalar and isovector quadrupole excitations, respectively. In the left panel
of Fig. 3.6 we display the RHB4+RQRPA isoscalar and isovector quadrupole (J™ = 27)
strength distributions in ?20. The low-lying J™ = 27 state is located at E = 2.95 MeV,
and this value should be compared with the experimental excitation energy of the first
27 state: 3.2 MeV [116]. The strong peak at E = 22.3 MeV in the isoscalar strength
function corresponds to the isoscalar giant quadrupole resonance (IS GQR). The isovector
response, on the other hand, is strongly fragmented, and distributed over the large region
of excitation energies F ~ 18 — 38 MeV.

The effect of pairing correlations on the isoscalar response is illustrated in the right
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panel of Fig. 3.6, where the full RHB4+RQRPA strength function is compared to the
RMF+RRPA calculation without pairing, and with the response obtained when the pair-
ing interaction is included only in the RHB ground state (no dynamical pairing). As one
would expect, the effect of pairing correlations is not especially pronounced in the giant
resonance region. The inclusion of pairing correlations, however, has a relatively strong

T I T I T I T 04 T I T I T I T I T
- — full pairing . B - n -
--- no dynamical pairing -—p
ol no pairing | 02 L IS
’l“ 2o | — |V |
+ |
2 X O | ‘ ‘
Iy
- 1
3 L
= 200 Lo -
vE l,' \
Y 1 ||
x  f o T
| \
\
\
100 |- o —
! \
II \
\ e B T
I / AR E=2.95 MeV
7 \
7 N 06 .
0 —"’1'—’1’ I ....] """" I | 1N PR A TR AN TR N S
0 2 4 6 8 0 2 4 6 8 10
E[MeV] r [fm]

Figure 3.7: Low-energy portion of the isoscalar quadrupole strength distribution in 220

(left). Radial neutron, proton, isoscalar (IS), and isovector (IV) transition densities for
the J™ = 2% state at F = 2.95 MeV (right).

effect on the low-lying 2% state. This is seen more clearly in the left panel of Fig. 3.7,
where only the low-energy portion of the isoscalar strength distributions in 220 is shown.
With respect to the RRPA calculation, the inclusion of the pairing interaction in the
static solution for the ground state increases the excitation energy of the lowest 2T state
by ~ 3 MeV. The fully self-consistent RHB+RQRPA calculation lowers the excitation
energy from =~ 4.5 MeV to E = 2.95 MeV. Therefore, we conclude that the pairing effects
are of a particular importance for complete understanding of the low-lying quadrupole
modes in exotic nuclei. The inclusion of pairing correlations increases the collectivity of
the low-lying 2% state. A very similar result for the low-lying quadrupole state in 2O has
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been obtained in the HFB+QRPA calculations. [38].

The structure of the low-lying 2% states can be identified by analyzing the correspond-
ing transition densities. The proton, neutron, isoscalar and isovector transition densities
for 2% state at E = 2.95 MeV are shown in the right panel of Fig. 3.7. Both the neu-
tron and proton transition densities are peaked in the surface region, but the neutron
transition density is more pronounced, and radially extended. Since the neutron con-
tribution to transition densities dominates, both the isoscalar and isovector transition
densities increase in neutron rich nuclei. Due to the presence of the neutron skin, the
isovector and isoscalar modes are mixed and participate in all excited states [33]. To
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Figure 3.8: Isoscalar quadrupole strength distribution in oxygen isotopes, with self-
consistent pairing (solid) and without pairing (dashed).

investigate the effect of the neutron excess on the ISGQR in the isotope chain, in Fig. 3.8
we display the evolution of the quadrupole strength distributions in 60-220. We evalu-
ate separately the response within the RMFT+RRPA model without pairing interaction,
in comparison with the RHB4+RQRPA framework which includes the pairing in a con-
sistent way. Obviously, in the limit N=7Z=8, the RHB+RQRPA corresponds exactly to
the RMFT+RRPA scheme. In this case, the isovector and isoscalar strength distribu-
tions are well separated, describing pure isoscalar or isovector excitations [28]. As the
number of neutrons increases, the isoscalar strength becomes more fragmented, and the
isovector strength gains strong contribution exactly in the same low-lying region with a
strong isoscalar strength (left panel in Fig. 3.6). Of course, the pairing correlations in all
open-shell oxygen isotopes play an important role; although they have small influence to
the GQR peaks, the low-lying modes are in general strongly affected. In Table 3.3 we
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| Oxygen isotope A = | 18 | 20 | 22 [ 24 |

RHB + RQRPA(NL3) 3.45 | 3.16 | 2.95 | 3.55
continuum QRPA [38] 4.2 4.1 45 | 5.0
HF-BCS + QRPA (SGIT) [102] | ~ 4.1 | ~ 3.7 | ~ 4.9
continuum QRPA [41] 3.2 2.3 1.9 | 4.0
SM-USD [117] 3.38
Experiment [118, 116] ~2.0 | ~1.7 | 3.2

Table 3.3: Energies of the low-lying 2% state in oxygen isotopes (in MeV). The results of
RHB+RQRPA model are compared with other recent investigations.

compare the RHB+RQRPA energies of the low-lying mode with available theoretical and
experimental results. The experimental data originate from the electromagnetic processes
based on Coulomb excitation and v decay life-time measurements. Recently, the struc-
ture of neutron rich light nuclei around N=20 has been investigated by using in-beam
v spectroscopy for fragmentation reactions [116]. For the first time, the v spectra has
been obtained in 220, indicating that the line at 3.2 MeV represents 2% to 0" transition.
Theoretical predictions in general slightly overestimate the measured excitation energies
of the first 27 state. The RHB+RQRPA results for the 2% excitations are in agreement
with non-relativistic QRPA calculations of the quadrupole response in neutron rich oxy-
gen isotopes [102, 99, 38, 41]. The existence of a spherical shell effect at N=14, i.e. a
rapid increase of the 2% energy which has been experimentally confirmed (Table 3.3),
however, is not yet fully understood within the theoretical descriptions.

3.3 Giant Resonances in Medium Light Neutron Rich
Nuclei

Next we move to the calcium isotope chain, to investigate the effects of neutron excess to
the electric multipole response that have been recently studied in high resolution nuclear
resonance fluorescence (NRF) [119] and in heavy ion scattering experiments [120]. Start-
ing from “°Ca five stable even-even isotopes exist; they are different only on the number of
neutrons in the 1f7/, orbital. By subsequent filling of 2ps/s, 2p1/2, and 1f5/, orbitals, we
get the isotope %°Ca which may be experimentally accessible in the future. It appears to
be located inside the neutron drip line, presenting a good example of a nucleus with a very
large proton-neutron asymmetry, leading to interesting nuclear structure phenomena.
The isovector dipole strength distributions for *°Ca, *8Ca, **Ca and %°Ca nuclei are
plotted in Fig. 3.9. As the neutron excess increases, the spectra become more fragmented,
and already beyond °°Ca, the onset of low-lying dipole strength is observed in the region
of excitation energies below 10 MeV. This result is in agreement with the non-relativistic
HF+RPA calculations of Ref. [33]. Although no dipole strength is found below 10 MeV
for *8Ca, the strength distribution is slightly more fragmented than in “°Ca, with small
contributions from neutrons in 1f7/, orbital. In the strength function of the extremely
neutron rich nucleus °°Ca, the low-energy region is strongly fragmented, with many peaks
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Figure 3.9: Isovector dipole strength distribution in calcium isotopes.

of similar intensity. Together, they exhaust 10% of the EWSR (integrated up to 50
MeV), compared to the 40% of the EWSR exhausted by the main IV GDR peak at
15.2 MeV. The neutron ph configurations with the largest amplitudes in the RRPA wave
functions of several low-lying dipole states in ®°Ca are listed in Table 3.4. We notice
that one, or at most two neutron ph configurations determine the structure of the low-
energy peaks. There is practically no contribution from proton ph excitations. This
structure is very different from that of the GDR peak, which is characterized by a coherent
superposition of many, both proton and neutron ph configurations. The largest single
neutron ph configuration contributes less than 20% of the total intensity, and the ratio
of the neutron to proton contribution 61.8%/36.7%=1.7 is close to the value N/Z, as
expected for an IV GDR state.

The RQRPA transition densities for the state at 7.3 MeV (illustrative for the low-
energy region) and for the GDR state at 15.2 MeV, are compared in Fig. 3.10. The
transition densities display similar radial dependence to the one already discussed for the
oxygen isotopes. In particular, we notice the long tail of the neutron transition density
for the low-lying state at 7.3 MeV.

Our result for *Ca, i.e. no dipole strength below 10 MeV, is at variance with the
onset of soft dipole resonances in Ca isotopes, calculated in the framework of density
functional theory [32]. For *2444648Ca in addition to several narrow peaks which are
derived from single particle dipole transitions, a broad resonance was found in the energy
range between 5 MeV and 10 MeV. It was interpreted as evidence of a collective excitation:
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Table 3.4: Same as in Table 3.2, but for the main peaks in the low-energy region of the
isovector dipole strength distribution in %°Ca.

E[MeV] | EWSR[%] | neutron p — h configuration

5.7 1.2 (931% 2p1/2 — 381/2)
( 36% ].f5/2 — 2d5/2

)
)
( 6.1% 1f5/2 — 2d5/2)
( 3.1% 1f7/2 — 199/2)
( 2.3% 2p3/2 — 2d5/2)
( 1.1% 2p3/2 — 381/2)
73 16 (49.3% 2p1 /2 — 2d3)5)
(413% 2p3/2 — 381/2)
3.2% 1f5/2 — 2d3/2)
)
)
)
)
)
)
)
)

(

( 15% 2p3/2 — 2d5/2

(838% 2p3/2 — 2d5/2
57% ].f5/2 — 2d3/2

7.9 2.0

(

(3.5% 1f1/2 — 1go/

(2.4% 1fs/2 — 197/
9.9 2.1 (57.7% 1fs/2 — 1gi2

(

(

22.0% 1f7/2 — 1g9/2
3.3% 1f7/2 — 2d5/2

surface neutron density oscillating against a stable °Ca core.

There is also recent experimental evidence on low-energy dipole strength in *Ca. Al-
though in experiments with heavy ion reactions ***#Ca (3¢ K'r,% Kr')***8Ca* non-negligible
E1 strength in the low-energy region was detected, no difference in low-lying strength was
found in the comparison of *°Ca and **Ca spectra [120]. The energy resolution of this
experiment was insufficient to detect precisely if the measured low-lying strength in **Ca,
have some collective properties that could be related to the pygmy resonance, i.e. the
soft E1 mode composed from the 1f7/; neutrons oscillating out of phase with the *°Ca
core, as it was suggested in Ref. [32]. In contrast to experiment in Ref. [120], recent
results [119] of high resolution photon scattering experiments indicate significant onset
of low-lying dipole strength in *Ca. It was found that the sum of the B(E1) strength
in the energy region between 5 MeV and 10 MeV is about 10 times larger than in °Ca.
In the same region the E1 strength in %Ca exhausted 0.3 % of the EWSR, in contrast
to Ref. [120] where the exhausted energy weighted strength between 6 and 10 MeV is a
factor 20 larger. The low-lying E1 excitation measured around 7 MeV, which originates
from a two-phonon structure 2 ® 37, is beyond the scope of the present RQRPA model
which is built only on the 2qp configuration space.

In the following we proceed with the RQRPA analysis of the evolution of the isovector
dipole response towards medium heavy nuclei. In Fig. 3.11 the self-consistent ground-
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state neutron densities for Ni nuclei are plotted. The density profiles display shell effects
in the bulk and a gradual increase of neutron radii. In the insert of Fig. 3.11, the corre-
sponding values for the surface thickness and diffuseness parameter have been included.
The surface thickness ¢ is defined to be the change in radius required to reduce p(r)/p,
from 0.9 to 0.1 (p, is the maximal value of the neutron density; because of shell effects one
could not use for p, the density in the center of the nucleus). The diffuseness parameter
« is determined by fitting the neutron density profiles to the Fermi distribution

p(r) = py (1 + exp(- _QRO)> R , (3.5)

where Ry is the half-density radius. By adding more units of isospin the value of the
neutron surface thickness increases and the surface becomes more diffuse. The RHB
model predicts a uniform increase of rms radii with the number of neutrons. The neutron
skin r, —r, increases to approximately 0.4 fm at the closed shell N = 50. The diffuseness
parameter is essentially a step function: a ~ 0.45 fm for N < 40 and a =~ 0.50 fm for
neutrons in the 1gg, orbital.

In the following we investigate how the formation of neutron skin is related to the
properties of the low-lying E1 excitations in Ni isotopes. The isovector strength distribu-
tions for Ni, ®®Ni, %Ni and "®Ni are shown in Fig. 3.12. Already for *®Ni a peak is found
in the low-energy region below 10 MeV. This state is characterized by a single proton ph
excitation (96% 1f7/2 — 2ds/2), and it is not found in the spectra of heavier Ni isotopes.
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The low-energy dipole states built on valence neutron ph configurations appear only in
2Ni and heavier isotopes. The relative contribution of the low-energy region E< 10 MeV
to the dipole strength distribution increases with the neutron excess. The ratio of energy
weighted moments my jou /M1 pign increases from 0.01 in %?Ni to 0.06 in “®Ni. Similar to
the light nuclei, the low-energy spectra are dominated by the single particle transitions.
There is an important difference, however. For the heavier Ni isotopes we find one dipole
state in the low-energy region, which displays a more complex structure of the RQRPA
amplitude, i.e. a coherent superposition of more than just a few neutron ph configura-
tions. In the case of ®®Ni, this is the state at 9 MeV (4.3% EWSR). A dipole state with
a similar structure in ®Ni is found at 8.9 MeV (4.0% EWSR). The state at 8.9 MeV
is characterized by a strong isoscalar transition density and a long tail of the neutron
transition density which extends almost to 10 fm.
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3.4 [Evolution of the Low-lying Isovector Dipole Strength
in N=82 Isotones

In this section we focus more on the multipole response in exotic medium-heavy nuclei
to investigate how the presence of a pronounced neutron skin affects the giant resonances
and collective properties of the low-energy excitations. This region of the periodic chart is
especially interesting, since heavier nuclei are presently beyond the computational reach of
many other available theoretical models. The dipole response of very neutron-rich isotopes
is characterized by the fragmentation of the strength distribution and its spreading into
the low-energy region, and by the mixing of isoscalar and isovector modes. It the last
sections, it appeared that in most relatively light nuclei the onset of dipole strength in
the low-energy region is due to non-resonant independent single particle excitations of the
loosely bound neutrons.

However, the structure of the low-lying dipole strength changes with mass. We have
already shown that the low-lying dipole states are characterized by a more distributed
structure of the RQRPA amplitude. Among several peaks characterized by single particle
transitions, a single collective dipole state is identified below 10 MeV, and its amplitude
represents a superposition of several neutron particle-hole configurations.

Very recently experimental data have been reported on the concentration of electric
dipole strength below the neutron separation energy in N = 82 semi-magic nuclei. The
distribution of the electric dipole strength in *®*Ba, *°Ce, and **Sm displays a resonant
structure between 5.5 MeV and 8 MeV, exhausting ~ 1% of the isovector E1 EWSR [121].
In 8Ba negative parity quantum numbers have been assigned to 18 dipole excitations
between 5.5 MeV and 6.5 MeV [122]. The electromagnetic dipole response in '**Ba has
been also studied in another photon scattering experiment, but only up to 6.7 MeV [25].

In Figs. 3.13 and 3.14 we display the isovector dipole strength distributions in eight
N = 82 isotones, calculated in the RHB+RQRPA framework with the NL3+D1S com-
bination of effective interactions. The calculation is again fully self-consistent, with the
Gogny finite-range pairing included both in the RHB ground state, and in the RQRPA
residual interaction. The isovector dipole response is shown for even-Z nuclei from 6Gd
to the doubly magic 32Sn. In addition to the characteristic peak of the isovector giant
dipole resonance (IVGDR) at ~ 15 MeV, the evolution of the low-lying dipole strength
with decreasing proton number is clearly observed below 10 MeV. The strength of the
low-lying dipole response increases with the relative increase of the neutron contribution,
i.e. with reducing the number of protons. For the main peaks in the low-energy region
below 10 MeV, in the panels on the right side of Figs. 3.13 and 3.14 we display the corre-
sponding neutron and proton transition densities. The radial dependence is very different
from that of the transition densities of the IVGDR peak. For all eight nuclei the main
peak below 10 MeV does not correspond to an isovector excitation, i.e. the proton and
neutron transition densities have the same sign. The relative contribution of the protons
in the surface region decreases with reducing the proton number. In particular, for the
nuclei shown in Fig. 3.14: %Ba, 3Xe, 3¥Te and '32Sn, there is practically no proton
contribution to the transition density beyond 6 fm. The dynamics is that of a pygmy
resonance: the neutron skin oscillates against the core. In Ref. [121] it was emphasized
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Figure 3.13: RHB+RQRPA isovector dipole strength distributions in *Gd, *4Sm, 2Nd
and °Ce, calculated with the NL3+D1S effective interaction. The corresponding proton
and neutron transition densities for the main peak in the low-energy region below 10 MeV
are displayed in the panels on the right side.
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that the observed low-lying dipole states in the N=82 isotones are not just statistical E1
excitations sitting on the tail of the GDR, but represent a fundamental structure effect. In
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Figure 3.15: The isovector dipole strength distribution in *°Ce (left panel). The neutron
and proton transition densities for the IVGDR peaks at 14.31 MeV, 12.51 MeV, and for
the main peak in the low-energy region at 8.22 MeV (right).

Fig. 3.15 we show that this is also the case for the RHB4+RQRPA results. For the dipole
strength distribution of 1*°Ce, shown in the left panel, in the right column we compare the
neutron and proton transition densities for the IVGDR peak at 14.31 MeV, for the peak
at 12.51 MeV, and for the main peak in the low-energy region at 8.22 MeV. The peak at
12.51 MeV, as well as other peaks in the interval 10-14 MeV, displays transition densities
very similar to those of the GDR peak, i.e. these states belong to the tail of the GDR.
The dynamics of the low-energy mode at 8.22 MeV, on the other hand, is very different:
the proton and neutron transition densities are in phase in the nuclear interior, there is
almost no contribution from the protons in the surface region, the isoscalar transition
density dominates over the isovector one, and the peak of the strong neutron transition
density in the surface region is shifted toward larger radii.

In Table 3.5 we list the centroid energies of the low-lying E1 strength and the summed
B(E1) strength in the region below 10 MeV in N=82 isotones. On a quantitative level,
the present RHB+RQRPA calculation does not compare too well with the experimental
data. First, while the observed low-energy dipole states in '3®Ba, 4°Ce, and **Sm are
concentrated between 5.5 MeV and 8 MeV, the calculated pygmy states in these nuclei
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N=82 ml/mg my
ISOTONE | [MeV] | [e*fm?]

134T 8.05 3.37
136X e 8.12 2.97
138Ba 8.20 2.64
140Ce 8.28 2.24
2N 8.36 1.75

144Sm 8.45 1.33
6Gd 8.55 1.03

Table 3.5: Low-lying centroid energies (my/my) and B(E1) strength (mg) summed within
the energy interval 0 < F < 10 MeV in a selection of N=82 isotones.

are above 8 MeV. This can be partly explained by the low effective nucleon mass of the
NL3 mean-field interaction [123]. On the other hand, the excitation energies of the IV
GDR are, as will be shown below in the example of Sn isotopes, rather well reproduced
by the NL3 interaction. The fact that NL3 reproduces the IV GDR, but not the centroid
of the low-energy dipole strength, might indicate that the isovector channel of this force
needs a better parameterization. Second, the number of RQRPA peaks below 10 MeV,
for the operator (2.35), is much smaller than the number of observed dipole states in
the low-energy region [122, 121]. Again, this is partly due to the low effective mass of
the relativistic mean-field interaction. A higher effective mass would, generally, produce
more fragmentation. The observed low-lying E1 strength could, however, be of different
origin. This has been discussed in Ref. [121]. In addition to the two-phonon 2*®3~ state,
and the soft pygmy state, in this energy region one could also expect some compressional
low-lying isoscalar dipole strength [124], maybe mixed with toroidal states [125], as well
as the E1 strength generated by the breaking of the isospin symmetry due to a clustering
mechanism [126]. A detailed investigation of the nature of all observed low-lying dipole
states in N=82 nuclei is, of course, beyond the reach of the present analysis. For one
thing, it would require an interaction with higher effective mass, that would bring the
calculated low-lying dipole strength below 8 MeV. Such a mean-field relativistic effective
interaction is presently not available.

3.5 Soft Collective Oscillations in Tin Isotopes

In the following, we investigate the structure of the low-lying dipole strength within the
tin isotope chain. The RHB neutron-density distributions for Sn isotopes (50 < N < 82)
are displayed in Fig. 3.16. In addition, we plot the diffuseness parameter . and surface
thickness ¢, defined in Eq. (3.5). As the number of neutrons increases, the neutron
surface thickness becomes larger, and the surface is more diffuse. Similar to the case
of Ni isotopes, the RHB model here also predicts a uniform increase of rms radii with
the number of neutrons. Both diffuseness parameters and surface thickness increase by
approximately 40% from '°°Sn to '32Sn. The unique excitation phenomena in neutron
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Figure 3.16: Self-consistent RHB single-neutron density distributions, diffuseness param-
eter @ and surface thickness ¢ for Sn (50 < N < 82) isotopes.

rich isotopes are closely related to the properties of the neutron skin.

The results of the fully self-consistent RHB4+RQRPA calculation, with the NL3+D1S
combination of effective interactions, are shown in Figs. 3.17 and 3.18: the isovector
dipole strength functions of the Sn isotopes (left panels), and the corresponding proton
and neutron transition densities for the main peaks in the low-energy region (right panels).

With the increase of the number of neutrons, the onset of low-lying strength below
10 MeV is observed. The low-energy strength is most pronounced in '?*Sn. It does not
become stronger by further increasing the neutron number, and additional fragmentation
of the low-lying strength is observed in '32Sn. The dipole states in this energy region
exhibit a structure different to that observed in the neutron rich oxygen isotopes: among
several peaks characterized by single particle transitions, between 7 MeV and 9 MeV
a state is found with a more distributed structure of the RRPA amplitude, exhausting
approximately 2% of the EWSR. In '32Sn, for example, this state is calculated at 8.6 MeV
and it exhausts 1.4% of the EWSR.

The distribution of neutron ph configurations for this soft mode is displayed in Ta-
ble 3.5. Nine neutron ph configurations contribute with more than 0.1% to the total
RRPA intensity, but there are also many other configurations with smaller contributions
to the overall strength distribution function. The total contribution of proton ph exci-
tations is only 10.4%, well below the ratio Z/N expected for a GDR state. We notice
also that in the Hartree-Fock + RPA analysis of the E1 resonances in 2°®Pb [34], it was
found that for the pygmy states the neutron response is a factor 10 larger than the pro-
ton response, whereas at energies corresponding to the GDR this ratio is around 1.6, or
roughly equal to N/Z. The low-energy pygmy peak is most pronounced in 2*Sn. It does
not become stronger by further increasing the neutron number, and additional fragmen-
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Figure 3.17: RHB+RQRPA isovector dipole strength distributions in Sn isotopes, cal-
culated with the NL3+D1S effective interaction. The corresponding proton and neutron
transition densities for the main peak below the IVGDR are displayed in the panels on
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Figure 3.18: Same as in Fig. 3.17, but for the heavier Sn isotopes.
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28.2% 2d3/2 — 2f5/2
21.9% 2d5/2 — 2f7/2
19.7% 2d3/2 — 3p1/2
10.5% 1h11/2 — 1i13/2
3.5% 2d5/2 — 3p3/2
1.9% 197/2 — 2f5/2
1.5% 197/2 — 1h9/2
0.6% | 1gzj2 — 2f7)2
0.6% 2d3/2 — 3p3/2

Table 3.6: Distribution of neutron particle-hole configurations for the state at 8.6 MeV
(1.4% EWSR) in '32Sn. The percentage of a p—h configuration refers to the normalization
of the RRPA amplitudes (3.2). Only configurations which contribute more than 0.1% are
displayed.

tation of the low-lying strength is observed in '*2Sn. In Fig. 3.19 we plot the RQRPA
transition densities to the two states at 8.6 MeV and 14.8 MeV in '32Sn. In the upper
panel the proton, neutron, isoscalar and isovector components are displayed. The radial
dependence of transition densities clearly demonstrate the differences between the pygmy
dipole and GDR states, which are similar to our previous results for lighter nuclei. In the
lower panel, for the pygmy state at 8.6 MeV (c) and for the GDR state at 14.8 MeV (d),
the contributions of the excess neutrons (50 < N < 82) (solid), and of the proton-neutron
core (Z, N < 50) (dashed) are displayed separately. By comparing with the transition
densities shown in the upper panel of Fig. 3.19, we notice that there is practically no
contribution from the core neutrons (N < 50). The ph excitations of core neutrons are, of
course, at much higher energies. For the GDR state, therefore, the transition densities of
the core nucleons and of the excess neutrons have opposite phases (isovector mode). The
absolute radial dependence is similar, with the amplitude strongly peaked in the surface
region. The two transition densities have the same sign for the pygmy state at 8.6 MeV.
The core contribution, however, vanishes for large » and only oscillations of the excess
neutrons are observed on the surface of 32Sn.

For the Sn isotopes we can compare the RHB+RQRPA results with available ex-
perimental data on IV GDR. In the upper panel of Fig. 3.20 the experimental IVGDR
excitation energies [127] are shown in comparison with the calculated Egpgr. All excita-
tion modes are calculated with NL1, NL-SH, and NL3 relativistic mean-field interactions.
The energy of the resonance is defined as the centroid energy 2.57. The calculated en-
ergies of the IV GDR for NL3+DI1S effective interaction, are in excellent agreement with
experimental data, and the mass dependence of the excitation energies is reproduced in
detail. In the middle panel of Fig. 3.20 we plot the calculated energies of the pygmy
states. In comparison with the IV GDR, the excitation energies of the pygmy states de-
crease more steeply with the mass number. The mass dependence of the energy of pygmy
mode (PDR) has been derived in the two-fluid hydrodynamical model as a function of
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Figure 3.19: Isovector (IV) and isoscalar (IS) dipole transition densities for the states at
8.6 MeV (a) and 14.8 MeV in '¥2Sn. The separate proton and neutron contributions to
the transition densities are also shown. In the lower part of the figure the contributions
of the excess neutrons (50 < N < 82) (solid), and of the proton-neutron core (Z, N < 50)
(dashed) are displayed separately for the state at 8.6 MeV (c), and 14.8 MeV (d). The
transition densities are multiplied by 72.

the GDR energy [31], in particular for the neutron rich nuclei,

Z(N - Nc)
E = ———Eapr. 3.6
PDR N(Z+Nc) GDR ( )

The number of neutrons in the core, N, is determined from the the condition to get
the maximal binding energy per particle, for fixed number of protons [31]. However,
this formula predicts increase of the pygmy excitation energy with neutron excess in
contrast to the RQRPA centroid energies which decrease with the number of neutrons.
The RQRPA mass dependence of the pygmy mode is qualitatively in agreement with the
density functional calculations for calcium isotopes in Ref. [32]. This effect can also be
illustrated within the simple harmonic oscillator model, where the resonance frequency is
determined by the restoring force per particle. The restoring force is related to the neutron
separation energy, as a measure of how tightly the neutron excess is bound. Therefore, in
this simple model, the frequency of the pygmy mode should decrease as one moves toward
the neutron drip-line. The dipole strength of the pygmy mode from the hydrodynamical
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Figure 3.20: In the upper panel the experimental IV GDR excitation energies of the Sn
isotopes are compared with the RHB4+RQRPA results calculated with the NL1, NL-SH
and NL3 relativistic effective interaction, and D1S parameterization is implemented in
the pairing channel. The calculated energies of the pygmy states are shown in the middle
panel. The values of the ratio m; pow/m; mgu, of the energy weighted moments m; in
the low-energy region (E<10 MeV) and in the region of giant resonances (E>10 MeV),
are plotted in the lower panel.
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model in Ref. [31] reads,

Z(N_ NC)

S = 0.857—5—+
PDR N(Z+N,)

STRK (37)

where Stgri is the classical TRK dipole sum-rule. Accordingly, the low-lying dipole
strength increases as the neutron number becomes larger. This is in agreement with the
RHB+RQRPA model.

The ratio of the energy weighted m; moments calculated in the low (E<10 MeV)
and high (E>10 MeV) energy regions, as a function of the mass number, is plotted in
the lower panel of Fig. 3.20 for NL3, NL1, and NL-SH effective interaction. The relative
contribution of the low-energy region increases with the neutron excess. The ratio m; pow/
m; rgr reaches a maximum = 0.06 for ?*Sn, and it slowly decreases to ~ 0.05 for **Sn.
This behavior may be a consequence of the shell effects. Namely, as the neutron number
approaches a magic number N = 82, where the collectivity of giant resonance is strongly
pronounced, the pygmy mode becomes depleted. Electric dipole transitions up to the
particle threshold at about 9 MeV have been recently investigated in ''®Sn and '2*Sn
using the high resolution nuclear resonance fluorescence technique [24]. The measured
strength distributions for both isotopes show the existence of a pronounced concentration
of low-lying states (around 6.5 MeV), related to the pygmy dipole resonance. These results
have been also successfully described within the quasiparticle phonon model calculations
taking into account the coupling up to three phonons [24].
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3.6 Pygmy Dipole Resonances in Stable Nuclei

In the preceeding sections, we have mainly focused our attention on the possible occurrence
of skin resonances in the nuclei away from the valley of 3 stability. However, exotic
collective modes of excitation in principle could be excited in stable heavy nuclei also,
where the neutron to proton asymmetry is sufficiently large. It is of a particular interest
to see if the neutron excess may rise, in addition to the usual giant resonance, also in
some decoupled low energy excitation phenomena. We take 2°Pb as a typical example of
a heavy neutron rich nucleus from the valley of stability, with neutron emission threshold
at 7.4 MeV. There is also experimental evidence for possible pygmy dipole states in 2°Pb.
Studies of the low energy spectrum by elastic photon scattering [128], photoneutron [129],
and electron scattering [130] have detected fragmented E1 strength in the energy region
between 8 and 11 MeV. The fine structure exhausts between 3 and 6% of the E1 sum
rule. A very recent nuclear resonance fluorescence experiment reported the existence
of a resonance E1 structure, centered around the neutron emission threshold, which was
identified by the quasiparticle phonon model calculations as the surface density oscillations
of the neutron skin relative to an isospin saturated core [26]. The relationship between
coherent neutron particle-hole (p-h) excitations and the onset of dipole pygmy resonances
in 2%Pb has been investigated in the Hartree-Fock plus RPA model [34]. A concentration
of strength has been found around 9 MeV exhausting 2.4% of the E1 sum rule. In
particular, two pronounced peaks have been calculated at 8.7 MeV and 9.5 MeV, which
appear as likely candidates to be identified as pygmy resonances. The exact location of
the calculated pygmy states will, of course, depend on the effective nuclear interaction.
Therefore, it would be important to compare the predictions of various nuclear effective
forces with experimental data. 2%Pb is a particularly good example, since all nuclear
structure models have been tested in the description of ground and excited state properties
of this doubly magic spherical nucleus. The pygmy dipole resonance can be directly
related to the neutron excess, and therefore the splitting between the GDR and the
pygmy resonance represents a measure of the neutron skin. Precise information on the
neutron skin in heavy nuclei is essential for the quantification of the isovector channel of
effective nuclear forces.

In the present study the isovector dipole response in 2%Pb is described in the frame-
work of a fully self-consistent relativistic random phase approximation (RRPA), which
is a limit of RHB+RQRPA model for the closed shell configuration. The same effective
Lagrangian generates the Dirac-Hartree single-particle spectrum and the residual particle-
hole interaction. In Fig. 3.21 we display the isovector dipole strength distribution in 2*Ph
(left panel), and the corresponding transition densities to the two states at 7.29 MeV and
12.95 MeV (right panel). The calculations have been performed within the framework of
self-consistent Dirac-Hartree plus relativistic RPA. The effective mean-field Lagrangian
contains nonlinear meson self-interaction terms, and the configuration space includes both
particle-hole pairs and pairs formed from hole states and negative-energy states. The dis-
crete spectrum of RRPA states has been folded with a Lorentzian distribution with a
width of 1.0 MeV. The strength distribution has been calculated with the NL3 [80] pa-
rameter set for the effective mean-field Lagrangian. The calculated energy of the main
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Figure 3.21: Tsovector dipole strength distribution in ?%Pb (left panel), and transition
densities for the two peaks at 7.29 MeV and 12.95 MeV (right panel). Both isoscalar and
isovector transition densities are displayed, as well as the separate proton and neutron
contributions. All transition densities are multiplied by r2.

peak in Fig. 3.21 E, = 12.95 MeV has to be compared with the experimental value of the
excitation energy of the isovector giant dipole resonance: 13.3 + 0.1 MeV [131]. In the
energy region between 5 and 11 MeV two prominent peaks are calculated: at 7.29 MeV
and 10.10 MeV. In the following we will show that the lower peak can be identified as the
pygmy dipole resonance.

The transition densities to the states at 7.29 MeV and at 12.95 MeV are displayed in
the right panel of Fig. 3.21. The proton and neutron contributions are shown separately;
the dotted line denotes the isovector transition density and the solid line has been used
for the isoscalar transition density. As it has been also shown in Ref. [33], although the
isoscalar B(E1) to all states must vanish identically, the corresponding isoscalar transition
densities to different states need not to be identically zero. The transition densities for
the main peak at 12.95 MeV display a radial dependence characteristic for the isovector
giant dipole resonance: the proton and neutron densities oscillate with opposite phases;
the total isovector transition density is much larger than the isoscalar component; at large
radii they both have a similar radial dependence. A very different behavior is observed for
the transition densities to the state at 7.29 MeV: the proton and neutron densities in the
interior region are not out of phase; there is almost no contribution from the protons in
the surface region; the isoscalar transition density dominates over the isovector one in the
interior; the large neutron component in the surface region contributes to the formation
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of a node in the isoscalar transition density. In Ref. [33] it has been shown that this last
effect is also characteristic for very neutron-rich systems. The transition densities to the
state at 10.10 MeV display a radial behavior which is intermediate between those shown
in Fig. 3.21, but closer to the isovector giant dipole at 12.95 MeV. We have also analyzed
the RRPA amplitudes of the three states: the neutron p-h excitations contribute 65%,
and the proton 35% to the total intensity of the isovector giant dipole at 12.95 MeV, while
the neutron contribution is 86% for the state at 7.29 MeV. The proton p-h excitations
contribute only 14% to the total RPA intensity of this state. For the state at 10.10 MeV,
on the other hand, we find 68% of proton excitations and only 32% is the contribution
from neutron p-h configurations. However, 31% of the total intensity comes from a single
proton p-h state: ¢7/27' h9/2. We notice that in the study of neutron halos and E1
resonances in 2%Pb [34], performed in the HF+RPA model with the SGII interaction, it
was found that for the pygmy states the neutron response is a factor 10 larger than the
proton response, whereas at energies corresponding to the GDR this ratio is about 1.6 or
roughly N/Z.

The phenomenon of low-lying isovector dipole strength was already studied almost
thirty years ago in the framework of the three-fluid hydrodynamical model [30]. By using
a generalization of the Steinwedel-Jensen model [132] to three fluids: the protons, the
neutrons in the same orbitals as protons, and the excess neutrons, two normal modes of
dipole vibrations were identified: (i) vibrations of the protons against the two types of
neutrons, and (ii) the vibration of the excess neutrons against the proton-neutron core.
In the case of neutron-rich nuclei, the later mode corresponds to pygmy resonances. For
208Ph, in addition to the GDR state at 13.3 MeV, a low-lying pygmy state at 4.4 MeV
excitation energy was found in the analysis of Ref. [30]. The dipole strength of this state,
however, was negligible (2 orders of magnitude) compared to the GDR state.

In Fig. 3.22 we plot the transition densities to the two states at 7.29 MeV and 10.10
MeV. The contributions of the excess neutrons (82 < N < 126) (solid), and of the proton-
neutron core (Z, N < 82) (dashed) are displayed separately. By comparing with the
transition densities shown in Fig. 3.21, we notice that there is practically no contribution
from the core neutrons (N < 82). The reason is, of course, that the p-h configurations
which involve core neutrons have much higher excitation energies. For the GDR state at
12.95 MeV the transition densities of the excess neutrons and the core have the same sign
in the interior (r < 3fm), and opposite phases in the surface region. The overall radial
dependence is, however, very similar. The two transition densities have the same sign
for the state at 7.29 MeV. The core contribution, however, vanishes for large r and only
oscillations of the excess neutrons are observed on the surface of 2%Pb.

The difference in the collective dynamics of the two modes is also exemplified in the
study of transition currents. In Figs. 3.23 and . 3.24 we plot the velocity fields for the
peaks at 7.29 MeV and 12.95 MeV, respectively. The velocity distributions are derived
from the corresponding transition currents, following the procedure described in Ref. [155].
In both figures the velocity field of the proton-neutron core (Z, N < 82) (left panel), is
separated from the contribution of the excess neutrons (82 < N < 126) (right panel).
To the largest velocity in Figs. 3.23 and 3.24 a vector of unit length is assigned. All the
other velocity vectors are normalized accordingly. We notice that both the core and the
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Figure 3.22: Isovector dipole transition densities to the 7.29 MeV and 12.95 MeV RRPA
states in 2%Ph. The contributions of the excess neutrons (82 < N < 126) (solid), and of
the proton-neutron core (Z, N < 82) (dashed) are displayed separately. The transition
densities are multiplied by 2.

excess neutrons contribute to the velocity field of the giant resonance state (Fig. 3.24),
though the largest velocities correspond to the vibrations of the excess neutrons in the
surface region. For the state at 7.29 MeV, on the other hand, the core velocities are much
smaller than those of the excess neutrons on the surface. The velocity fields in Fig. 3.23
corroborate the picture of dipole pygmy resonances as oscillations of the excess neutrons
against the inert core of protons and neutrons in the same shell model orbitals. Therefore,
the present RRPA investigation clearly demonstrate existence of a low-lying E1 collective
mode at 7.29 MeV in 2°Pb, which has a characteristic structure of a pygmy resonance.
At the time of our RRPA investigation in?*®*Pb [60] the only experimental data on
the fragmentation of E1 strength in 2°*Pb was available in the limited energy window
8 — 11 MeV [128, 129, 130] and in the region below 6.5 MeV [133]. The comparison
of the experimental results from Ref. [133] with the available models, suggested that
the low-lying dipole strength below 6.5 MeV cannot be attributed to the pygmy mode
describing oscillation of a neutron skin against the remaining core. However, in a recent
nuclear resonance fluorescence experiment in Ref. [26], the E1 strength distribution
is studied in more details, in particular in the region up to 8 MeV. It resulted with a
series of transitions below 6 MeV, and a resonance-like structure centered approximately
at the neutron emission threshold at 7.37 MeV. The RRPA results, obtained by a self-
consistent Dirac-Hartree + RRPA calculation, are in a very good agreement with this data.
The related quasiparticle phonon model (QPM) study are also close to the experimental
prediction. However, to obtain this result with QPM, the energies of single-particle states
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Figure 3.23: Velocity distributions for the RRPA state at 7.29 MeV in 2%Pb. The velocity
field of the proton-neutron core (Z, N < 82) (left panel), is separated from the contribution
of the excess neutrons (82 < N < 126) (right panel).

near the Fermi level have been varied, to obtain a reasonable fit of the energies of the
strongest low-lying excitations below 8 MeV [26]. In the QPM model, the configuration
space is more complicated than the one in RRPA, i.e. it includes two and three phonon
states up to excitation energies of 13 and 16 MeV, respectively. It suggested that the
mixing of 2p2h configurations, which are beyond our present model, may also have a
relevant role for E1 transitions above 6.5 MeV.
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Figure 3.24: Same as in Fig. 3.23, but for the RRPA state at 12.95 MeV in 28Pb.
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Chapter 4

Compression Modes in Finite Nuclei

4.1 Isoscalar Giant Monopole Resonance

The nuclear matter incompressibility K, is one of the important quantities in nuclear
physics. It is directly involved in the description of properties of nuclei, supernovae
explosions, heavy-ion collisions and of the evolution of neutron stars at early stages. The
breathing mode of atomic nuclei, i.e. the isoscalar giant monopole resonance (ISGMR) has
been extensively studied in the last decades, since the compression properties of nuclei and
nuclear matter incompressibility K, can be extracted from ISGMR. From the nuclear
incompressibility of a finite nucleus, K 4, that is directly related to the ISGMR energy,

AR
E(ISGMR) = \/%, (4.1)

the nuclear matter incompressibility can be evaluated by using the extrapolation of K4
for infinitely large number of nucleons through an expansion formula in powers of A~1/3
derived from the liquid drop model. However, because of the correlations among the
parameters entering in that formula, and since there are large uncertainties in some of
these parameters, another procedure to extract K, has been preferred. Basically, the
excitation energy of ISGMR has to be evaluated from the self-consistent calculation for
different parameterizations of the effective force. The correct value of nuclear matter
incompressibility is selected from the effective force which reproduces the experimental
values of the ISGMR excitation energies [134]. The ISGMR energies are usually obtained
from the self-consistent RPA. Both the nonrelativistic models based on the Skyrme or
Gogny interactions, and relativistic approaches with advanced effective Lagrangians rea-
sonably reproduced the ISGMR, modes [135, 134, 136, 52]. However, it appeared that the
nuclear matter incompressibility is model dependent; K,,,=231+£5 MeV for the Gogny
interaction, and K,,,= 205-212 MeV for Skyrme forces. The values of K,,, evaluated
from different relativistic effective interactions, listed in Table 1.1, are within a higher
interval from 240 to 270 MeV.

Here we use the RHB4+RQRPA model to evaluate ISGMR excitation energies. In the
open shell nuclei, the pairing effects are included in a self consistent way with a finite range
Gogny-type force. In magic nuclei, the RHB4+RQRPA model limits to RMF+RRPA. Since
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for the superfluid system, enhanced quasiparticle energies enter in RQRPA A matrix, al-
ready without residual interaction, the pairing correlations should increase the energy of
giant resonances when compared with the RMF+RRPA approach. However, in practical
calculations, pairing correlations have very small effect to the position of ISGMR energy
(shift of the order 0.1 MeV, as compared with a case without pairing) [137, 136]. The
isoscalar resonances in general are less sensitive to the pairing effects than the isovector
ones. As it was pointed out in Ref. [137], a larger shift in the isovector case originates
from two reasons, a) 2qp energies in superfluid nuclei are larger than the corresponding
ph energies obtained without pairing, and b) pp and ph pairs in QRPA produce an en-
hanced collectivity when compared to the case with only ph configurations. In isovector
case residual interaction is repulsive, and both effects contribute to the shift to higher
energies. On the other side, for isoscalar excitations with attractive residual interaction,
enlarged collectivity lowers the peak energy, canceling the upward shift due to enhanced
2qp energies. Therefore, the shift of the ISGMR energy caused by pairing correlations in
superfluid nuclei have very small influence to the extraction of K,,,,. Much more impor-
tant effect to ISGMR in RQRPA model is due to the inclusion of Dirac sea states [52, 53].
In the case when the contributions from the Dirac sea are not included in 2qp pairs,
ISGMR strength distribution results with a significant shift to lower energies.
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Figure 4.1: Isoscalar monopole strength distributions for NL3, NL1 and NL-SH param-
eterizations. RHB+RQRPA results are compared with experimental ISGMR energies
in 907r,16Sn M4Sm and 2°Pb (TAMU) [138], 92Mo,%Mo,'%Mo, 1%Pd, 1Pd (GRENO-
BLE) [139], and in a series of Sn and Sm isotopes (GRONINGEN) [140].

In Fig. 4.1 we display the ISGMR centroid energy as a function of mass number for a
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series of mostly open-shell nuclei in interval ?°Zr-2Pb. We compare the RQRPA results
with measured ISGMR, energies, extracted from (*He,* He) [139] and (o, ') [140] scat-
tering. Systematic overview of different experimental studies on ISGMR is given in Ref.
[139]. In our investigation, we focus mainly to Mo, Sn and Sm isotopes. In addition, we
compare the data also with a recent experiment, based on the inelastic scattering of 240
MeV « particles, resulting with accurate ISGMR strength distributions in *°Zr,''6Sn,'#4Sm
and 2°Pb [138]. We notice that the NL-SH excitation energies are systematically higher,
while NL3 results are in an excellent agreement with experiment in heavier nuclei. In
nuclei with A < 124, NL1 and NL3 have similar agreement with measured values, except
in Mo isotopes which lie on the NL1 mass dependence curve. It is important to note that
the energies recently obtained as centroids of E0Q strength distributions from « scattering
[138] are somewhat higher than the ones from previous investigations [139]. For example,
in the case of °Zr, identification of previously unknown tail of the GMR increased the
centroid energy by more than 1 MeV [138]. This experiment is in a very good agreement
with RQRPA for NL3 effective interaction, also in the lightest nucleus under consider-
ation, °Zr. It would be important to investigate whether similar effect of energy shift
from Ref. [138] could also be expected in the case of Sn isotopes, to increase their centroid
energies closer to RQRPA results with NL3 parameterization. The ISGMR energies, com-

| Nucleus | RQRPA | QRPA [136] | RPA [29] | EXP [138] |

NZr 18.2 18.6 18.5 17.8940.20
116Sn 17.5 17.1 16.07£0.12
141Sm 16.3 16.0 15.39£0.28
208ph 14.2 14.4 14.1 14.17£0.28

Table 4.1: ISGMR centroid energies in MeV, compared with non-relativistic self-consistent
RPA(SkM*) [29], QRPA(SGII) and with experimental data from Ref. [138]. NL3 effective
interaction has been adopted in RHB+RQRPA calculations.

pared with the non-relativistic (QQ)RPA models from Ref. [136, 29], are listed in Table 4.1.
RQRPA results on ISGMR seem to be in reasonable agreement with other reports. Since
the experimental excitation energies of the ISGMR are best reproduced by the NL3 effec-
tive interaction within the RQRPA model, this would imply the value K,,,=271.8 MeV as
the nuclear matter incompressibility. This result is in agreement with another relativistic
model, the TDRMFT calculations on a limited number of doubly closed-shell nuclei [56].
The K,,, value from our relativistic models is somewhat higher than the results from
non-relativistic models based on Gogny force, K,,,=231+5 MeV [135], and models with
generalized Skyrme interaction implying K,,,=240 MeV [141]. On the other side, recent
RRPA analysis with density dependent coupling constants has shown that the experimen-
tal excitation energy of the GMR in 2°Pb can be reproduced only with interactions in
which the nuclear matter compression modulus is in the range K,,,=260-270 MeV [142].
The apparent discrepancy between relativistic and non-relativistic models is still not fully
understood.
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4.2 The Puzzle of Isoscalar Dipole Strength Distri-
bution

Information on the nuclear matter incompressibility can be extracted from another com-
pression mode, the isoscalar giant dipole resonance (ISGDR). The first order of the
isoscalar dipole mode corresponds to a motion of a center of mass, which cannot be
associated with a nuclear excitation. Therefore, ISGDR is a second order effect, built on
3hw, or higher configurations. It corresponds to a density oscillation, where the volume
of the nucleus remains constant, but a compression wave travels back and forth through
the nucleus along a definite direction [143]. An exotic behavior of this type, analogous to
a sound wave, has also been addressed as a ”squeezing mode”. From the scaling model,
ISGDR excitation energy is related to the nuclear incompressibility K4 [144],i.e.

7KA—|—;—Z€F

4.2
3m<r?> (4.2)

EISGDR = h

where €r corresponds to the Fermi energy. Although the existence of ISGDR resonance
has been reported two decades ago, only recently it has been clearly separated from
the nearby high-energy octupole resonance, by using inelastic a scattering at and near
0° [145]. Systematics of the present status on ISGDR investigations can be found in
Refs. [146, 147, 149, 124]. In Fig. 4.2 we plot the RQRPA isoscalar dipole response to the

_ R[10°€*fm°/MeV]

0 0 lIO 2I0 3IO 40 - 50
E[MeV]

Figure 4.2: RQRPA isoscalar dipole strength distributions in “°Zr, ''Sn, and '#*Sm,
calculated with NL3 effective interaction.
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operator ( 4.10) in three nuclei: Zr, 1*6Sn, and *4Sm. In addition to the giant resonance
in the high energy region, a non-negligible low-lying strength is systematically obtained
with centroid energy in the region 10-14 MeV. Recent investigation on ISGDR obtained
by using inelastic scattering of a particles on 2*®Pb [145], and on *°Zr, ''6Sn, "*Sm, and
208Ph [148, 124], resulted in a qualitatively similar structure. ISGDR response has been
analyzed also in the non-relativistic Hartree-Fock plus RPA framework [64], and with
relativistic mean-field plus RPA (RRPA) calculations [50, 52]. In Table 4.2 we compare

| Nucleus | E, | RQRPA | QRPA [64] | EXP [124] |

NZr 22 14.1 14.5 16.2+0.8
16Sn | 20 12.0 12.5 14.7£0.5
WiSm | 21 12.8 13.5

208ph | 17 10.7 10.9 12.240.6

Table 4.2: RQRPA(NL3) centroid energies ( 2.57) of the low-lying and high energy region
of the ISGDR strength distribution in °Zr, '6Sn, **Sm, and 2°®Pb. The results are
compared with non-relativistic Skyrme-type QRPA calculations from Ref. [64] and with
experimental values [124]. The boundary energies F}, which separate the low and high
energy region are adopted from Ref. [64]. All energies are in MeV units.

[Nucleus [ B, | RQRPA [ QRPA [64] [ EXP [124] |

NZr 22 30.8 30.0 25.7£0.7
16Sn | 20 29.3 27.5 23.0£0.6
MiSm | 21 28.7 26.6

208pp | 17 254 23.9 19.940.8

Table 4.3: The same like Table 4.2, but for the high-energy region corresponding to the
ISGDR.

the RQRPA centroid energies ( 2.57) of the low-lying part of ISGDR strength distribution
with other investigations [64, 124]. The boundary Ej between the low and high energy
region could vary somewhat among different nuclei. However, to compare results directly
with the non-relativistic QRPA, we take the same values for E, from Ref. [64]. The
ISGDR properties of the high energy region are listed in Table 4.3. In addition, ISGDR
has been investigated in 2°Pb by using inelastic scattering of 400 MeV « particles, where
for the first time all instrumental background from single inelastic scattering spectra has
been eliminated [149]. The results of this study are compared with theoretical predictions
in Table 4.4. All analyzes have shown that: (a) there is a strong disagreement between
theory and the reported experimental data on the position of the ISGDR, centroid energies,
and (b) calculations that predict the splitting of the ISGDR strength distribution into
two broad structures, one in the high-energy region above 20 MeV, and one in the low-
energy window between 8 MeV and 14 MeV. Effective interactions, both non-relativistic
and relativistic, which reproduce the experimental excitation energies of the ISGMR,
predict centroid energies of the ISGDR that are ~5 MeV higher than those extracted
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| | m1/mo(LOW) | my/m,(HIGH) |

RRPA(NL3) 10.7 25.4
RPA(SGII) [64] 10.9 23.9
RRPA(NL-C) [59] ~ 8 24.4
EXP. (o, o) [124] 12.240.6 19.940.8
EXP. (o, o) [149] 13.0£0.5 23.0£0.5

Table 4.4: ISGDR centroid energies ( 2.57) of the low and high-lying region in 2*Pb
calculated by the self-consistent RRPA with NL3 effective force. Results are compared
with recent theoretical investigations and measurements (all units are MeV).

from small angle a-scattering spectra. This disagreement between theory and experiment
is an order of magnitude larger than for other giant resonances. Another puzzling result
is the theoretical prediction of a substantial amount of isoscalar dipole strength in the
8 — 14 MeV region. In Ref. [50] it has been suggested that the RRPA peaks in this
region do not correspond to a compression mode, but rather to a kind of toroidal motion
with dynamics determined by surface effects. In a very recent article [124], Clark et al.
reported new experimental data on the isoscalar dipole strength functions in %°Zr, '6Sn,
and 2%Pb, measured with inelastic scattering of a particles at small angles. They found
that the isoscalar E1 strength distribution in each nucleus consists of a broad component
at B, ~ 114/A'/3 MeV containing approximately 100% of the E1 EWSR, and a narrower
one at F, ~ 72/A'> MeV containing 15 — 28 % of the total isoscalar E1 strength. The
higher component is identified as the E1 compression mode, whereas the lower component
may be the new mode predicted by the RRPA analysis of Ref. [50]. In the present work
we suggest that the observed low-lying E1 strength may correspond to the toroidal giant
dipole resonance (TGDR).

4.3 'Toroidal Giant Dipole Resonances

The role of toroidal multipole form factors and moments in the physics of electromagnetic
and weak interactions has been extensively discussed in Refs. [150] and [151]. They ap-
pear in multipole expansions for systems containing convection and induction currents. In
particular, the multipole expansion of a four-current distribution gives rise to three fam-
ilies of multipole moments: charge moments, magnetic moments and electric transverse
moments. The later are related to the toroidal multipole moments and result from the
expansion of the transverse electric part of the current. The toroidal dipole moment, in
particular, describes a system of poloidal currents on a torus. Since the charge density is
zero for this configuration, and all the turns of the torus have magnetic moments lying in
the symmetry plane, both the charge and magnetic dipole moments of this configuration
are equal to zero. The simplest model is an ordinary solenoid bent into a torus.

Vortex waves in nuclei were analyzed in a hydrodynamic model [152]. By relaxing the
assumption of irrotational motion, in this pioneering study solenoidal toroidal vibrations
were predicted, which correspond to the toroidal giant dipole resonance at excitation
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energy E, ~ (50—70)/AY3 MeV. It was suggested that the vortex excitation modes should
appear in electron backscattering. In the framework of the time-dependent Hartree-Fock
theory, the isoscalar 1~ toroidal dipole states were also studied by analyzing the dynamics
of the moments of the Wigner transform of the density matrix [153].

In this work the toroidal dipole strength distributions are calculated in the relativistic
random phase approximation (RRPA). A self-consistent calculations ensures that the
same correlations which define the ground-state properties, also determine the behavior
of small deviations from the equilibrium. Two points are essential for the successful
application of the RRPA in the description of dynamical properties of finite nuclei: (i)
the use of effective Lagrangians with non-linear terms in the meson sector, and (ii) the
fully consistent treatment of the Dirac sea of negative energy states. In particular, in
Ref. [53] it has been shown that configurations which include negative-energy states have
an especially pronounced effect on isoscalar excitation modes.
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Figure 4.3: (a)Toroidal dipole strength distributions in ?*®Pb, calculated without (dashed)
and with (solid) projection of spurious center-of-mass components. (b) ISGDR strength

distributions in 2°8Pbh.

In Fig. 4.3(a) we display the RRPA toroidal dipole strength distribution for 2°®Ph. As
the transition operator in Eq. 2.36 we use the isoscalar toroidal dipole operator defined
as [150]

=0 — / [ r2 (?’{W + g?;» <>, ?IOM] L J(7) dr. (4.3)
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In the relativistic framework the expression for the the isoscalar baryon current reads
A
J' = ZT/){Y”%, (4.4)
i=1

where the summation is over all occupied states in the Fermi sea. The resulting toroidal
dipole operator is

Eﬁzﬂﬁijﬁ(ﬁmm+l%%mm>@—<ﬂa?@m»@r

5

(4.5)
where ?ll/u denotes a vector spherical harmonic, and @ are the Dirac a-matrices. The
calculations have been performed with the self-consistent Dirac-Hartree plus relativistic
RPA. The effective mean-field Lagrangian contains nonlinear meson self-interaction terms,
and the configuration space includes both particle-hole pairs, and pairs formed from hole
states and negative-energy states. The inclusion of the term — < r? >/ IO# in the
operator ensures that the TGDR strength distributions do not contain spurious compo-
nents that correspond to the center-of-mass motion [152]. In Fig. 4.3(a) we compare the
toroidal strength distributions calculated without (dashed) and with (solid) the inclusion

of this term in the operator.
The projection of spurious center-of-mass motion components can also be performed by
subtracting the spurious transition current, following a procedure similar to that adopted
in Refs. [64, 154] for the ISGDR. The toroidal dipole strength distribution can be written

as
2

wa{/frﬁm«ﬂm (16)

where @(7) is the vector toroidal operator, and §7(7) is the transition current

57(7) = J-(r) ¥ 10,() +34(1)Y 1,(€). (47)
The radial functions j_(r) and j,(r) are defined in Ref. [155]. We have verified that
identical strength distributions (solid curve in Fig. 4.3) are obtained when: (a) the tran-
sition current (4.7) is used and the toroidal operator is corrected by including the term
— < r? >, ?Iow or (b) this term is not included in the operator and the spurious
component is subtracted from the transition current at each energy

2

07(F) = apq€.. (4.8)

The second term in this expression is the spurious transition current [156]. p, is the
ground-state density and €, denotes the unit vector in the direction of the center-of-mass
motion. The energy dependent coefficient a is determined by the condition that the
integral of the transition current over the nucleus should vanish at each energy

/d3r (5;(17) - ap052> = 0. (4.9)
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The strength distributions in Fig. 4.3 have been calculated with the NL3 [80] effective
interaction. In Ref. [56] it has been shown that isoscalar giant monopole resonances
calculated with this effective force (K, = 271.8 MeV) are in excellent agreement with
experimental data, and in Ref. [50] this interaction was used in the RRPA analysis of
the ISGDR. By using effective interactions with different values of the nuclear matter
compressibility modulus, it was shown that only the high-energy (above 20 MeV) portion
of the isoscalar dipole strength distribution corresponds to a compression mode. The
same effect is observed for the toroidal strength function: the position of the peaks in the
low-energy region (below 20 MeV) depends only weakly on the incompressibility, while the
structure in the high-energy region is strongly affected by the choice of the compression
modulus of the interaction. In Fig. 4.3(b) we plot the strength function of the isoscalar
dipole compression operator [50]

A
=S 0 2 < ) Vi), (1.10)
i=1

We note that both dipole strength distributions, toroidal in Fig. 4.3(a) and compressional
in Fig. 4.3(b), display two broad structures: one at low energies between 8 and 15 MeV,
and one in the high-energy region 25 — 30 MeV. Obviously, one could expect a strong
coupling between the two isoscalar 1~ modes. This coupling becomes even more evident
if one rewrites the expression in square brackets of the toroidal operator (4.3) as [152]

V x (Fx V)(r* — g <r*>,r) Yy, (4.11)
and compares it with the isoscalar dipole operator of the compression mode (4.10). The
relative position of the two resonance structures will, therefore, depend on the interaction
between the toroidal and compression modes.

In Fig. 4.4 we display the RRPA toroidal dipole strength distributions in *°Zr, 1'6Sn,
and 2%Pb, calculated with the NL3,NL1 and NL-SH effective interactions. In all three
nuclei a broad, strongly fragmented structure is found in the low-energy region, where ”the
low-lying component of the ISGDR” has been observed [124]. The strength distributions
vary only slightly in calculations with different effective force parameterizations. The
toroidal strength distributions in the low-energy region should be compared with the
experimental centroid energies of the ”low-lying component” [124]: 16.2 + 0.8 MeV for
NZr, 14.7 £ 0.5 MeV for '%Sn, and 12.2 4+ 0.6 MeV for 2°®*Pb. The calculated peaks in
the high-energy region, on the other hand, correspond to the compression mode. The
dynamics of the solenoidal toroidal vibrations is illustrated in Fig. 4.5, where we plot
the velocity fields for the four most pronounced peaks of the toroidal dipole strength
distributions in "®Sn (see Fig. 4.4). The velocity distributions are derived from the
corresponding transition currents, following the procedure described in Ref. [155]. A
vector of unit length is assigned to the largest velocity. All the other velocity vectors are
normalized accordingly. Since the collective flow is axially symmetric, we plot the velocity
field in cylindrical coordinates. The z-axis corresponds to the symmetry axis of a torus.
We note that the two lowest peaks at 8.82 MeV and 10.47 Mev are completely dominated
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Figure 4.4: Toroidal dipole strength distributions in *°Zr, *'6Sn and 2°8Pb, calculated with
the NL3, NL1 and NL-SH effective interaction.

by vortex collective motion. The velocity fields in the (z,r ) plane correspond to poloidal
currents on a torus with vanishing inner radius. The poloidal currents determine the
dynamical toroidal moment. The high-energy peak at 30.97 MeV displays the dynamics
of dipole compression mode. The ”squeezing” compression mode is identified by the flow
lines which concentrate in the two "poles” on the symmetry axis. The velocity field
corresponds to a density distribution which is being compressed in the lower half plane,
and expands in the upper half plane. The centers of compression and expansion are
located on the symmetry axis, at approximately half the distance between the center and
the surface of the nucleus. Finally, the intermediate peak at 17.11 MeV clearly displays
the coupling between the toroidal and compression dipole modes. A very similar behavior
of the velocity distributions as function of excitation energy is also observed for *°Zr and
ZOSPb.

We suggest, therefore, that the recently observed ”low-lying component of the isoscalar
dipole mode” [124] might in fact correspond to the toroidal giant dipole resonance. By
employing the fully consistent relativistic random phase approximation, in Ref. [50] and
in the present analysis we have shown that the toroidal dipole strength is concentrated in
the low-energy region around 10 MeV, while the isoscalar dipole excitations in the high-
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Figure 4.5: Velocity distributions for the most pronounced dipole peaks in '®Sn (see Fig.
4.4). The velocity fields correspond to the peaks at 8.82 MeV (a), 10.47 MeV (b), 17.11
MeV (c), and 30.97 MeV (d).

energy region above 20 MeV correspond to the "squeezing” compression mode. States
in the intermediate region display a strong mixing between the two dipole resonances.
The pronounced coupling between the toroidal resonance and the ISGDR, predicted by
the RRPA calculations, might also explain the strong discrepancy between theory and
the experimental position of the ISGDR centroid energies [124, 154, 64, 50]. Namely, the
interaction causes a repulsion of the two 17 isoscalar modes, i.e. it pushes the ISGDR
to higher energies and pulls the TGDR to lower energies. This effect would explain
the observation of Ref. [124] that: ”The centroids of the higher (compression) mode
calculated with interactions which reproduce GMR energies are about 4 MeV higher than
the experimental centroids, whilst the calculated centroids for the lower mode lie 1-2 MeV
below the experimental values.”
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Chapter 5

Proton-Neutron Relativistic
Quasiparticle RPA

Collective spin and charge-exchange excitations in atomic nuclei in the past have been a
subject of many theoretical and experimental studies [157]. Especially interesting is the
spin-flip isospin-flip mode, known as the Gamow-Teller resonance (GTR), composed from
the proton-quasiparticle - neutron-quasiparticle 17 excitations, mainly from the neutron
orbits j= = [ 4+ 1/2 to the spin-orbit partners j. = [ — 1/2 on the proton side. It had
been predicted in 1962 [158], and in 1975 was experimentally discovered in (p, n) charge-
exchange reactions at intermediate energies [159]. Reliable knowledge on GTR mode
provides valuable information on the isovector properties of the effective nucleon-nucleon
interaction. In addition, GT* strength distributions are essential for the understanding
of nucleosynthesis. In particular, the low-lying GT strength is directly related to the -
decay rates, as well as to the electron-capture processes leading to the stellar collapse and
supernova, evolution. Recent developments in experimental methods using radioactive
beams suggested that the spin-flip isospin-flip excitation modes could be employed to
measure the neutron-skin thickness [160].

The measured GT strength distribution appeared to be quenched by more than 20%
when compared to a model independent sum rule. Theoretical investigation suggested
that GTR quenching could originate from (i) couplings to the 2p — 2h states [161], and
(ii) the contributions of A-isobar-particle nucleon-hole configurations at higher excitation
energies [162, 163]. Recent charge exchange (p, n) experiments indicated that only a small
fraction of the GT quenching originates from A — h transitions [164].

The GT* excitations and related f*-decays have in the past been investigated from
two major theoretical directions: (i) the shell model and (ii) non-relativistic proton-
neutron quasiparticle random approximation. In the large-basis shell model one assumes
that the nuclear structure properties are determined by the valence nucleons, occupying
several different single-particle states which are partially filled [165]. The experimental
data on charge-exchange excitations in light and medium-light nuclei have been very suc-
cessfully explained within shell-model calculations. However, as the number of nucleons
under consideration increases, the dimension of shell-model Hamiltonian becomes too
large for practical calculations. Recently, the large scale shell-model has been extended to
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the region of pf-shell nuclei A = 45 — 65, in order to reproduce experimentally available
Gamow-Teller strength distributions and nuclear decay half-lives [166]. The GT response
has also been reproduced in the iron region nuclei by using the shell model Monte Carlo
(SMMC) approach, which appeared rather flexible and allowed more realistic calculations
than the usual methods using direct diagonalization [167].

On the other hand, the pn-QRPA models are also capable of treating nuclei in regions
which are presently beyond the scope of the most sophisticated shell-model approaches.
The pn-QRPA excitations are built from the 2qp creation and annihilation operators
acting on the ground state, obtained from different mean-field models. The first pio-
neering work on this subject was based on the simple separable forces by Halbleib and
Sorensen [168]. In further developments, the zero-range interactions with BCS have been
employed, with inclusion of the particle-particle interaction in the RPA residual interac-
tion, which appeared to be rather important for 3-decay matrix elements [169].

Since in medium and heavy nuclei the proton and neutron Fermi levels are well sepa-
rated from one another, the proton-neutron pairing has usually been neglected. However,
within the new radioactive beam studies, unstable nuclei close to N=Z line have became
more accessible, renewing the interest in the role of pn pairing. The GT strengths have
been studied as a function of the particle-particle strength parameter, in the QRPA ap-
proach with pn pairing, where the quasi-particle operators are mixed combinations of
both neutron and proton creation and annihilation operators [170]. Most investigations
have been based on Skyrme interactions [171, 172, 173, 174]. Recently a pn-QRPA model
involving Skyrme forces and finite-range proton-neutron pairing, have been employed to
investigate the [-decay rates for neutron-rich nuclei at the r-process waiting points [39].
The low-lying part of GT~ strength distribution is closely related to the S~ transition
rates. However, since the proton-neutron T=0 pairing also contributes to the GT low-
energy tail, in practical calculations the T=0 pairing strength is given by a free parameter
that is fitted to the [-decay half-lives [175]. A consistent treatment, involving both ph
and pp interactions, appeared to be essential to resolve the discrepancies between the the-
oretical models and experimental results for f-decay and electron capture. In the cases
of both Or and 2r double 3-decay, the inclusion of the pp matrix elements in the residual
interaction resulted in a significant suppression of the decay rates [176].

In the microscopic picture, where the effective nuclear interaction is described by the
meson exchange, the spin and isospin dependence is included via p-meson and pion. The
pion plays an important role in unnatural-parity spin-flip isospin-flip excitations. Since
it has relatively small mass, which can be extracted from experimental data, it mediates
the interaction over large distances. The non-relativistic models based on the p, m-meson
exchange have already been implemented in studies of charge-changing resonances [177].
In the relativistic description of spin-flip and isospin-flip excitations, we in fact employ
fields with the same degrees of freedom in the residual interaction.
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5.1 Matrix Equations of the pn-RQRPA in the RHB
Canonical Basis

The use of relativistic mean-field models to study the charge-exchange excitations in
finite nuclei has been rather limited in the past. The first relativistic RPA calculations of
the isobaric analog and Gamow-Teller resonances has only been performed recently [66].
However, this investigation was constrained to the small configuration space in the closed-
shell nuclei only. Furthermore, the contributions from the ph configurations including
transitions to the negative-energy Dirac sea have so far been neglected. In very recent
work, however, it has been shown that in the relativistic models the antinucleon degrees
of freedom play an important role in the non-energy weighted Gamow-Teller sum rules
[68].

Following the investigation in Ref. [66], we formulate the relativistic proton-neutron
quasiparticle RPA (pn-RQRPA) for its use in open-shell nuclei, with possible extension
to regions away from the valley of S-stability. In addition, we expand the pn-RQRPA
model to include the charge-changing 2qp pairs which also include the antiparticle states
from the Dirac sea. We start from the 07 initial ground state of an even-even nucleus,
composed from the discrete states of the canonical RHB single-particle basis. In this way,
we have included both the self-consistent relativistic mean field, which includes the long
range ph correlations, and the pairing field which encloses pp correlations (details of the
ground state calculations are given in Chapter 3). By employing the charge exchange
operators

Ty = % (1, £iTy) (5.1)
to the ground state of a parent nucleus, two quasiparticle excitations are built in the
isobaric adjacent odd-odd nucleus. Here 7, (7_) is the isospin raising (lowering) operator
responsible for changing a proton to a neutron (and vice versa). The charge changing
transition is induced by a phonon creation operator defined as,

~

QLM = 3T X0 — ()0, 52)

v
g

where O corresponds to the coupled combination of proton (7) and neutron (1) quasipar-
ticle creation operators,

OFM = 3" (jamgymy | IM)af,, of (5.3)

j7rm7r jl/ml/.
MMy

When acting with the phonon creation operator (5.2) on the canonical RHB ground state
|¢), an excited state is obtained, i.e. Q:,F(JM)|¢> = |v), while Qq(j]M)|¢> = 0. From
the equation of motion method [85], we gain the relativistic proton-neutron quasiparticle
random phase approximation equations in the angular momentum coupled representation,

AJ BJ XU,JM 1 0 XU,JM
( B A7 ) ( yu.IM ) =E, ( 0 —1 ) ( y v M ) ) (5-4)
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where the matrices A and B are given by

AL = (B[O [H, O] ) (5.5)
and
B? .. = —($|[OYM) [H,(~1)“+DOY -] ). (5.6)

As the RHB Hamiltonian in the canonical basis is not diagonal, we see that from the
one-body operator,
H'" =Y Hja}a, (5.7)
KA
we have to include not only the unperturbed 2qp energies on the diagonal of the A-matrix,
but also the additional unperturbed non-diagonal terms, i.e.

Aﬁlr'u' = H71r71r’ O + Hz}i"smr’ (5.8)
By, =0 (5.9)

From H*?and H* two-body terms in Hamiltonian (2.15), follows the interaction part in
pn-RQRPA matrices,

A7{1/7r’1/ = % (77::1/77:'1/ + 777:1/77;’1/’) VTfliL’l{ﬂ" + % ( ;FFV :’V’ + 67?1/67?’1/’) V:IZ']’I/’ (510)
1 1
B;{mr’z/’ - 5 (777—1;1/777—1;’1/’ - 777_r1/777_r’1/’) ijiw’ + 5 ( 7Jrru 7Jrr’u’ - g;ug;r’u’) szir]’z/’ (511)

where the occupation probabilities of the canonical basis single-particle states are included
within 7, and ¢ in the same way as in Eqs. (2.21) and (2.22). V*" and V?Pcorrespond
to the ph and pp residual interaction, respectively. The isospin part of the isoscalar
one-boson exchange interaction,

V=l =11, (5.12)

T

actually gives no contribution to the V?", since

(' |11 15| vr"y = 0. (5.13)

On the other hand, from the isovector type of interaction,

VISl = 707y = dtiute, + 204t + 2ty (5.14)

T

we get non-vanishing isospin two-body matrix elements, i.e.
(T |71 7| vr') = 2. (5.15)
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Therefore, in the pn-RQRPA model, only the isovector fields actually contribute to the
ph matrix elements of the residual interaction. In the present study, the interaction is
built on the following degrees of freedom for the one-boson exchange: (i) the isovector
vector field 7, and (ii) the isovector pion field 7 with the pseudovector coupling to the
nucleon. The pseudovector coupling defined by the interaction part of the Lagrangian
density,

L, = fx VY5, M TTY (5.16)

" m.
is preferred over the pseudoscalar one, since it provides a better description of 7w-nucleon
scattering data. The mass of the pion and its coupling constant are fixed to the well
known experimental values,
f2
m, = 138.0 MeV 4—” = 0.08. (5.17)
T

More details about the evaluation of the corresponding matrix elements are given in
Appendix A.

Additional contributions to the pn-RQRPA matrices come from the proton-neutron
pairing correlations. Since the proton and neutron Fermi surfaces in neutron-rich nuclei
are far apart, this channel of interaction has a negligible contribution in the ground state
calculations [39]. On the other side, in the pn-RQRPA the like particle pairing gives no
contribution to the matrix elements. The 7" = 1 component of the pn interaction has a
very small effect [39], while T = 0 pn pairing correlations can be adjusted with a free
parameter, since it has no contribution on the RHB level. Following Ref. [39] we take for
the pairing interaction a finite range Gogny-type force composed of two Gaussians having
different ranges. The strength of the interaction is given by the free parameter V. This
particular selection of the force appeared to be very important, since a delta force that
successfully describes the like-particle pairing may result in divergencies at the QRPA
level as the configurational space is increased [39).

The transition strength for the operator Q(ﬁli’GT) inducing the charge 