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Vollständiger Abdruck der von der Fakultät für Physik

der Technischen Universität München
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr.rer.nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. R. Gross
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1 Abstract

In a plasma with a population of superthermal particles generated by heating or fusion

processes, kinetic effects can lead to the additional destabilisation of MHD modes or even

to additional (energetic particle) modes. In order to describe these modes, a new linear

gyrokinetic MHD code has been developed and tested, LIGKA (Linear Gyrokinetic Shear

Alfven Physics), based on the theoretical gyrokinetic MHD model [1]. This framework pro-

vides a set of linear equations derived from the general nonlinear gyrokinetic Lagrangian:

the quasi neutrality equation, the gyrokinetic moment equation and the equation for the

perturbed distribution function itself. A finite Larmor radius expansion together with the

construction of some fluid moments and specification to the shear Alfvén regime results

in a self-consistent, electromagnetic, non-perturbative model, that allows not only for

growing or damped eigenvalues but also for a change in mode-structure of the magnetic

perturbation due to the energetic particles.

Compared to previous implementations [1], this model is coded in a more general and

comprehensive way. LIGKA uses a fourier decomposition in the poloidal coordinate and

a finite element discretisation in the radial direction. Both analytical and numerical equi-

libria can be treated. Integration over the unperturbed particle orbits is performed with

the drift-kinetic HAGIS code [40] which accurately describes the particles’ trajectories.

Furthermore, finite-banana-width effects are implemented in a rigorous way since the lin-

ear formulation of the model allows the exchange of the unperturbed orbit integration

and the discretisation of the perturbed potentials in the radial direction. The resulting

model is formulated as an eigenvalue problem and solved iteratively.

The code has been successfully benchmarked with other ideal MHD codes for the (1,1)

internal kink mode and for TAE gap modes. For these modes kinetic modifications have

also been investigated and benchmarks with KIN2DEM [1] have been carried out.
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2 Introduction

The closer magnetic fusion experiments approach ignition the more interest and concern

is attracted by super-thermal particles and their effect on stability and transport. In an

ignited plasma the primary source of energetic particles will the product of nuclear fusion:

If the temperature of a plasma - containing deuterium D and tritium T ions - becomes

high enough (the optimum for an ignited plasma is ∼ 15keV ), the probability for the

fusion reaction
3
1T +2

1 D → (4
2He + 3.5MeV ) + (n + 14.1MeV )

increases sufficiently to generate a substantial number of energetic α-particles that keep

the plasma in a burning state. To be able to reach this state, not only the temperatures

must be high enough but also the energy confinement time τE (ratio of the total plasma

energy to the heat loss rate) must satisfy the Lawson criterion [36]:

nF τE > 1.5 · 1020m−3s (1)

Here nF is the D − T fuel density.

The total energy of 17.6MeV originating from the mass deficit is distributed as kinetic

energy between the fusion products He and n according to their mass ratio 1/4. The

neutrons do not interact with the plasma. The α-particles transfer their energy to the

plasma through collisions or wave-particle interaction processes.

In order to reach such high temperatures beyond the ohmic heating limit, all devices

today employ additional heating - e.g. neutral beam injection (NBI), ion and electron

cyclotron resonance heating (ICRH, ECRH) etc. Consequently, this basic need of fusion

research pushes technical improvements of the heating capabilites and entails an increasing

population of energetic particles.

Since the pressure of fast particles in an ignited plasma will be ∼ 30% of the background

pressure (which can already be achieved by heating in today’s experiments), substantial

changes in the overall plasma behaviour are expected.

These changes can be mainly attributed to three different physical properties of fast ions:

• Firstly, the gyroradius for an energetic particle is larger than that of a thermal

particle. Its absolute value for a particle of species i with mass mi and charge Zie

in a magnetic field B is given by

|%i| =
|v⊥i|
ωi

with ωi =
ZieB

mi

(2)

For an upper limit, one assumes that all the kinetic energy is contained in the motion

perpendicular to a magnetic field: an estimation (see figure 1 ) with a magnetic field
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that is likely to fit the planned ITER experiment (B = 5T ) shows that the difference

of the gyroradii between a thermal D and fusion born α particles is almost one order

of magnitude. However, a gyroradius of a few centimetres is still small compared

to background plasma quantities with length scales of the minor plasma radius (for

ITER 2m), but it can become equal to the length scales of MHD modes, which will

be described below in more detail.

1 5 [cm]

[cm]

1

ρ→
➛

T

α

D

Figure 1: Gyroradii (B=5T) for electrons (0.1mm), deuterium (0.6cm), tritium (0.8cm) and
helium (5.3cm) ions

• Secondly, compared to the simple slab or cylindrical case, tokamak geometry breaks

the rotational symmetry of the poloidal coordinate and thus adds more intrinsic

frequencies to the system, where an effective transfer of energy between plasma

waves and particles can occur.

Since this type of periodic motion is closely bound to the plasma’s geometry, the

tokamak concept is shortly introduced, which is the configuration that underlies all

calculations in this work.

As shown in figure 2, a tokamak consists of magnetic field coils wound around the

torus poloidally to generate a toroidal field whose radial variation goes like 1/R (R

stands for the major radius of the tokamak). A transformer coil in the centre of the

torus induces a current within the plasma, that produces a poloidal magnetic field.

It’s spatial dependence is therefore determined by the current profile. Together,

these two magnetic field components bend the field lines into a helical shape, that
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plasma current

main field coils

OH-transformer

vertical field coil

magnetic field line

poloidal angle

major radius

toroidal angle

minor radius

Figure 2: The Tokamak configuration

suppresses instabilities connected with a pure poloidal or pure toroidal field.

From these geometrical facts together with a current profile that balances the pres-

sure gradient via the Lorentz force, an equilibrium magnetic field can be calculated.

A typical spatial profile is shown in figure 3.

The periodicity in the poloidal angle immediately explains the ‘new’ frequencies

mentioned above: in addition to the total kinetic energy of a particle, also the mag-

netic moment µ = mv2
⊥/2B is an adiabatic invariant of the motion. Therefore it is

required that v‖ has to be smaller in regions where B becomes larger according to

const = E =
1

2
mv2
‖ + µB. (3)
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poloidal angle
minor radius

|B|

Figure 3: typical spatial dependence of the absolute value of the magnetic field in a tokamak

Consequently, there will be mainly two types of motions: a particle, whose parallel

energy is high enough to keep its magnetic moment constant while travelling over

the top of the magnetic hill, is called a ‘passing’ or ‘transit’ particle. In contrast, a

particle with a too low parallel energy compared to its µ cannot cross the magnetic

hill and is therefore trapped in the low B-field region.

Detailed calculation shows, that for thermal ions the bounce/passing frequencies are

often too small to interact effectively with modes on the MHD time scale: for a typ-

ical set of ITER parameters (B = 5T, R = 4m), ωA ≡
√

B2/µ0mn/R0 ≈ 4 · 106s−1,

wheras the transit resp. bounce frequency for thermal ions (15 keV) is about

4 · 105s−1 resp. 1.0 · 105s−1.

Of course, this situation changes when highly energetic particles are present, whose

transit/bounce frequency in this example lies around 6 · 106s−1 resp. 1.5 · 106s−1

(for 660 keV α-particles).

Furthermore, the particles’ orbits in a tokamak are also governed by ∇B and cur-

vature drifts, that cause the particle to leave its field line both in the poloidal and

the radial direction. Some typical drift orbits of passing and trapped energetic α

particles are shown in figure 4. From this plot the conclusion can be drawn, that

for energetic ions the radial excursions can become very large, dependent again on
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Figure 4: Poloidal projections of trapped (red), co-passing (blue) and counter-passing (green)
3.5MeV α-particles in realistic geometry, calculated with HAGIS [40] (more details in
chapter 5.4)

the particle’s energy. Therefore, the banana width turns out to be comparable to

the spatial dimensions of large-scale MHD modes.

• As final point in this overview, differences in the velocity distribution functions are

discussed. If the plasma is considered to rest in an thermal equilibrium state, the

distribution function of the thermal particles in velocity space is assumed to be

Maxwellian (for magnetically confined plasmas this can be true only an approxi-

mate and one-dimensional sense, see [59]). For any kind of fast particle population

this is not true any more. Dependent on the source, there can be various forms of

energy and pitch angle λ = v‖/v dependencies: for fusion born α-particles, usually

a so called ‘slowing down’ function in the energy is applied, whose functional depen-

dence is derived from the Fokker-Planck equation, accounting for the drag of the

background ions due to collisions [39]. The pitch angle is assumed to be isotropic.
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For fast ions produced by external heating there is no λ-isotropy. Each scheme

possesses its own characteristics in λ and thus causes different physical interaction

with MHD modes and background quantities.

After this survey over the physical properties of energetic particles, the features of MHD

modes interacting with these particles are characterised.

The most dangerous modes for fusion devices are large scale MHD instabilities. Due to

their global structure the equilibrium can be dramatically perturbed with disruptions as a

possible consequence. These modes usually have frequencies in the range of the plasma’s

Alfvén frequency (for typical parameters ∼ 106/s) i.e. well below the ion cyclotron fre-

quency (∼ 108/s).

A large scale structure means that these perturbations have low m (poloidal) and low n

(toroidal) mode numbers . Therefore they cannot be described locally or in the ballooning

(i.e. high-n) approximation [29]. (Numerical codes based on this high-n treatment are

the HINST [57] and the FULL [58] code.)

In this work, two MHD phenomena and their kinetic modifications are investigated:

• The internal kink mode is partially pressure, partially current driven. It consists of

a shift of the central plasma part - within the q = 1 surface - against the surrounding

plasma. A look at the MHD eigenfunction shows (figure 5), that this mode exhibits

a ‘multi-scale-structure’, i.e. an overall global structure, but also a very localised

behaviour at the resonant surface.

Experimentally it has been found [67], that the injection of energetic beams can

trigger periodic bursts, called ‘fishbones’, that are caused by resonances between

the (m=1,n=1) kink and the fast ions [68]. As a consequence, the fast ions are

effectively redistributed and thus lead to energy loss and decreasing confinement.

• When the properties of an ignited plasma are predicted, TAE modes (Toroidal

Alfvén Eigenmodes) attract increasing interest: TAEs can be excited in ‘gaps’ that

are caused by the break up of the continuous Alfvén spectrum due to toroidal

coupling. In such a gap, there is no continuum damping present. This allows the

existence of global modes that are driven to large amplitudes by passing or trapped

energetic ions [53],[54] with dangerous consequences to confinement and stability.

In order to describe these phenomena theoretically and numerically, different plasma

models and their range of validity have to be investigated.
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>

r

ξ q=1

Figure 5: Eigenfunction of an internal kink mode; an α-particle’s gyroradius and its banana
width are comparable to the kink’s scale length at the q = 1 surface

2.1 Challenge for Theoretical Models

As shown in figure 6, there are three theoretical frameworks that can be applied to the

problem posed above.

For large scale plasma stability problems the MHD (magnetohydrodynamics) model is

usually preferred [34]. It’s governing equations are derived from Vlasov’s equation by

building moments over the velocity space resulting in a fluid formulation. The advantage

of that procedure is obvious: the 6 + 1-dimensional distribution function f(x,v, t) is re-

duced to a lower dimensional variable which leads to a simplified problem. The resulting

equations are hierarchical, i.e. the equation for a moment of order n depends on the

moment of order n + 1. Thus a closure or truncation has to be found. Depending on the

physics of the problem, different closures can be employed. For single fluid MHD, very

high frequency (ω � ωgyro) and short wave length (% � k⊥) phenomena are eliminated

which is well satisfied when the macroscopic behaviour of fusion plasmas is investigated.

The other crucial assumption is that the plasma is dominated by collisions: only then a

‘fluid- element’-model is justified where an isotropic pressure - established by many ran-

domising collisions - can be defined. However, this postulate is never fulfilled in fusion

plasmas, since there is a strong anisotropy between the motion perpendicular and parallel

to the magnetic field: although the Lorentz force ‘squeezes’ the particles together in the
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Figure 6: Survey over the three branches of kinetic plasma description

perpendicular direction which allows frequent collisions and therefore the concept of fluid

elements, the particles are free streaming along the field lines since ideal MHD does not

describe parallel correlations caused by kinetic resonances. Consequently, ideal MHD can

only be used, when perpendicular dynamics is investigated. However, it can be shown

[34], that for incompressible, parallel modes with no pressure or density fluctuations, ideal

MHD can be a valid model, even in the collisionless regime.

To include kinetic effects due to hot particles, hybrid models were used extensively: the

gradient ∇P term is replaced by ∇(P + Phot) derived from the kinetic equations. This

leads to an extension of the energy principle. The new system is then generally solved in

a non-self-consistent way, i.e. only the eigenvalue and not the eigenfunction is allowed to

change. This perturbative treatment is only valid for small fast particle pressures.

The most important numerical codes based on this model are CASTOR-K [56] and NOVA-

K [55], the extensions of the resistive MHD spectral stability codes CASTOR [48] resp.

NOVA.
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Although the basic problem of fast particle instabilities can be treated in a linear way, it is

of substantial interest how the particles are redistributed by non-linear wave interaction.

In order to investigate this problem, the drift-kinetic HAGIS code [40] has been devel-

oped. It uses an externally calculated MHD perturbation (supplied e.g. by CASTOR)

but allows the fast particle distribution function to change in time. However, although

phase and amplitude are allowed to evolve in time, the spatial structure of the mode is

fixed.

In order to obtain more consistent equations one has to go back to the kinetic equations:

to keep all kinetic effects, one would have to solve the complete Maxwell-Vlasov system

- something that in toroidal symmetry is still not practicable because of the complexity

of the problem. There are two possible ways of simplifying this system: the kinetic wave

equations and the framework of gyrokinetic theory which was chosen in this work.

The kinetic wave equations are derived from the linearised version of Vlasov’s equation

and therefore describe the linear stability of waves with harmonic time dependence. This

ansatz allows formal integration over time and velocity space and leads together with

Maxwell’s equations to a ‘constitutive relation’ (or a dielectric tensor) that describes the

relation between current and electromagnetic fields. Historically, this method was (and

still is) applied very successfully to high frequency (i.e. cyclotron frequency) phenomena,

but in the last years it has also been extended to low frequency regions, including the

shear Alfvén wave regime [23],[61],[25]. On the numerical side, there is the code PENN

[66] which is based on the dielectric tensor derived in [61]. A low frequency version of the

wave code TORIC [24] is in the development phase. Although these implementations can

deal inter alia with kinetic shear and drift Alfvén wave phenomena, it is not clear that

e.g. the internal kink mode can be investigated.

Modern gyrokinetic theory has been developed in the last 20 years starting with the

works of Litteljohn and Cary [8]-[11]. It is based on a Lagrangian or Hamiltonian formu-

lation. This is especially desirable when energy conservation considerations for nonlinear

problems are investigated. Using near-identity Lie-transformations the gyromotion is de-

coupled in a formal and rigorous way from the rest of the dynamics. This mathematical

treatment ensures that ordering and conservation laws are not violated.

Although gyrokinetic theory unfolds it’s full power especially for non-linear problems, the

linearised version also allows a systematic and elegant approach towards various stability

considerations. Based on this linear gyrokinetic formulation, H. Qin has developed the

framework of ‘Gyrokinetic MHD’ since 1999 [1]-[4] . This model consists of three equa-
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tions: the quasi-neutrality equation (QN), the gyrokinetic moment equation (GKM) and

the gyrokinetic equation (GKE) itself. The unknown variables are the electrostatic and

electromagnetic potentials and the perturbed distribution function. In the non-kinetic,

electrostatic limit, i.e. when parallel electromagnetic effects are neglected the QN equa-

tion is trivially satisfied and a finite Larmor radius expansion of the GKM equation allows

one to establish contact with ideal MHD. Then also a parallel Ohm’s law can be derived

(what is missing in ideal MHD) and Spitzer’s paradox that consists of the difference be-

tween the fluid and the guiding centre description of currents in inhomogeneous plasmas

can be resolved.

Furthermore, when high-frequency terms are not neglected but only decoupled, the hot

dielectric tensor as derived in the kinetic wave theory can be exactly recovered (‘Gyro-

Gauge-Theory’ [4]).

The range of validity and the limits of the Gyrokinetic MHD model can be understood

when its derivation is overviewed:

• As a first step the Vlasov’s equation is transformed into the drift-kinetic equation

applying a coordinate transform with the smallness parameter

εB = %/LB � 1 (4)

(where % is the gyroradius and LB = |∇B|/|B|), that allows the existence of non-

canonical phase space coordinates, called guiding centre coordinates.

• The next assumption is that the electromagnetic potentials can be split up in an

equilibrium and a perturbation part:

φ = φ0 + ∆φ1. (5)

∆ represents the ratio of the amplitudes. If it is small, it can be employed as

an expansion parameter for another near-identity- coordinate transformation: it

removes the perturbation from the symplectic part of the Lagrangian. The resulting

coordinates are called gyrocentre coordinates.

• When high frequency phenomena are are not needed

ω � ωgyro (6)

(which was the original idea of gyrokinetic theory), then the terms containing the

gyromotion - that were decoupled from the rest of the dynamics by the transforma-

tions above - are dropped. Gyro-Gauge theory keeps these terms.
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• When one goes to the linear system, the parameter εB in combination with equi-

librium quantites is ignored. Thus background finite Larmor radius effects (FLR)

such as the variation of the gyroradius over the minor radius, are neglected.

• In contrast, FLR effects originating from the perturbed fields represented by k⊥%

are kept. Here k⊥ is the perpendicular wave vector of the perturbation. For large

scale MHD phenomena, k⊥% is mostly well below 1 and can be used as an expansion

parameter. In this work it is kept at least up to second order. To stay consistent,

the condition k⊥% < 1 has to be verified a posteriori. (The difficulties connected

with an higher order FLR-expansion is discussed in [21].) This expansion allows

one to write parts of the equations in differential form, which makes contact to ideal

MHD possible.

• In the gyrokinetic ordering, E×B flows are assumed to be of order εB. Thus gyroki-

netics is not applicable to situations where large shear flows are present. So far, an

extension for that case has only been derived in the ballooning limit [64],[65],[16],[6].

H. Qin also provided a numerical implementation of gyrokinetic MHD, called KIN2DEM.

It is based on a trapped ion eigenvalue code developed by R. Marchand and G. Rewoldt

[43],[44], that is extended for the kinetic MHD regime. It is bound to an analytical rep-

resentation of the equilibrium (concentric circular tokamaks) and neglects the Shafranov

shift. Analytical formulae for the particle orbit integrations and a Taylor expansion for

the banana orbit width are employed.

Although this code is a valuable first step, a more comprehensive implementation is of

great interest: non-circular and even non-up-down-symmetric equilibria with shifted flux

surfaces not only change the properties of MHD modes, but also the particles’ orbits.

Furthermore, for large orbit widths the Taylor expansion becomes unreliable. Also non-

Maxwellian distribution functions can cause considerable modifications [45]. In order to

predict growth rates and eigenmodes sufficiently accurate these issues have to be taken

into account. This has been done resulting in a new code called LIGKA (Linear Gyroki-

netic Shear Alfvén Physics), which was developed as the principle part of this work.

2.2 Dissertation Outline

At the beginning, the main steps deriving the gyrokinetic system are given, following ref-

erence [5]. Starting with a Maxwell-Vlasov-Lagrangian formulation, the system is trans-

formed in two steps to gyrocentre coordinates. In this coordinate system, the gyromotion
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is decoupled from the rest of the dynamics, even when a perturbation of the field is

present.

Then the linearisation of the equations is performed, resulting in the same equations as

derived by Qin [1].

As the next step, the system is restricted to the shear Alfvén regime, neglecting the com-

pressional Alfvén branch.

In chapter 4 toroidal geometry is assumed to perform further simplifications and expan-

sions that lead to a form that is suited for numerical implementation. In addition to Qin’s

work, the gyro terms are also kept within the GKM kinetic integrals and also the case of

a non-Maxwellian distribution function for the α-particle case is treated.

Another new issue is the description of trapped particle orbits in section 4.4.2: based on

the fact that in a linear model the order of the discretisation in radial direction and the

orbit integration can be exchanged, a more accurate version of the propagator integrals

is derived.

Chapter 5 describes the new numerical implementation LIGKA that was developed based

on the improved model described above. In contrast to KIN2DEM, it can deal with

numerical equilibria and it uses the HAGIS code to describe the particles’ trajectories

accurately. Numerical details and basic convergence tests are given.

In the results section, various MHD-mode-calculations are carried out and benchmarked

with analytical formulae and other MHD codes. The orbit integration results are com-

pared with the analytical approximations to examine their range of validity. Finally,

kinetic effects on the TAE modes and on the internal kink are examined. In the last

chapter a summary is given together with an outlook to the numerous application possi-

bilities of LIGKA.
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3 Theoretical Model: Gyrokinetic Theory

Gyrokinetic description of plasma processes is broadly known and well established today.

There are a number of different methods of deriving the gyrokinetic system of equations

([28],[14],[15],[17],[5]). The most complete and elegant methods were published by Bizard

[17] and Sugama [5]. Here we follow mainly the latter reference, but also include important

steps not mentioned there and add some physical interpretation.

3.1 Gyrokinetic Field Theory

3.1.1 The Classical Field Theory for Charged Particles in an Electromagnetic

Field

To profit from its conservation properties, the variational principle is empolyed:

δI ≡ δ
∫ t2

t1
Ldt = 0, (7)

with I the action integral, δ the variation and L the Lagrangian, that is for the Vlasov-

Poisson- Ampère-system :

L ≡
∑
a

∫
d3x0

∫
d3v0fa(x0,v0, t0)·

La[xa(x0,v0, t0; t),va(x0,v0, t0; t), ẋa(x0,v0, t0; t)] + Lf (8)

La is the single particle Lagrangian for species a. In an electromagnetic field, using the

canonical variables xa = q and mava = p− ea
c
A(q, t) [7] La is defined as:

La(xa,va, ẋa) ≡
(
mava +

ea

c
A(xa, t)

)
· ẋa−

(
1

2
ma|va|2 + eaφ(xa, t)

)
≡ pa · ẋa−Ha (9)

In this relation both va and ẋa appear, although when deriving the equations of motion

we will obtain ẋa = va . This distinction is made because the variational principle selects

that trajectory that makes the the action integral stationary. Although ẋa = va is true

for the physical motion, it is not true for all possible trajectories in phase space.[8].

fa(x0,v0, t0) is the distribution function at time point t0; xa(x0,v0, t0; t) and

va(x0,v0, t0; t) are position and velocity of the particle at time t with the initial conditions:

xa(x0,v0, t0; t0) = x0; va(x0,v0, t0; t0) = v0

The field part of the Lagrangian consists of an integral over the electric field tensor plus

a term that establishes the Coulomb gauge ∇ ·A = 0:

Lf ≡
∫

V
d3xLf ≡

1

8π

∫
V

d3x
(
|∇φ(x, t)|2 − |∇ ×A(x, t)|2 +

2

c
λ(x, t)∇ ·A(x, t)

)
(10)
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λ is a Lagrange undetermined multiplier. Light waves are excluded with this choice, since

the ∂A/∂t term is left out.

The reason for including not only the single particle contribution but also the field part

in the Lagrangian is that energy conservation for the total system can be proven in an

easy and obvious way.

Carrying out the variation according to the extended rule of [5], written in the most

compact form, gives:

δI = 0 =∑
α

∫ t2

t1
dt
∫

dlαyα

[
∂Lα

∂ηα
− d

dt

(
∂Lα

∂η̇α

)
−∇α

(
∂Lα

∂∇αηα

)
−∇α ×

(
∂Lα

∂∇α × ηα

)]
(11)

ηα are the field variables, that are functions of (yα, t); α specifies the fields and yα is a lα-

dimensional vector variable: lα = 0 means, the variable only depends on t. For A(xa, t),

lα = 3 and for xa(x0,v0, t0; t) it is 6.)

Variation with respect to va results in:

δI

δva
= 0 ⇒ mava = maẋa

Variation with respect to xa gives the equation of motion:

δI

δxa
= 0

=
ea

c
(∇A)ẋa − ea∇φ− d

dt

[
mva +

ea

c
A(xa, t)

]
= −mav̇a + ea(−∇φ− 1

c

∂A

∂t
) +

ea

c

[
(∇A)ẋ− ẋ(∇A)

]
= −mav̇a + ea

[
E(xa, t) +

1

c
va ×B(xa, t)

]
The distribution function at time point t is:

fa(x,v, t) =
∫

d3x0

∫
d3v0fa(x0,v0, t0)·

δ3
(
x− xa(x0,v0, t0; t)

)
δ3
(
v − va(x0,v0, t0; t)

)
(12)

Its temporal evolution is governed by the Vlasov equation:[
∂

∂t
+ v · ∇+

ea

ma

(
E(x, t) +

1

c
v ×B(x, t)

)
· ∂

∂v

]
fa(x,v, t) = 0 (13)

How to derive the Vlasov equation starting from the equations of motion, proceeding

to the Klimontovich equations, Liouville’s equation and BBGKY-hierarchy, is given in
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Appendix 8.1.

If one varies with respect to λ one obtains the Coulomb gauge:

∇ ·A = 0

Variation with respect to φ gives Poisson’s equation:

Lφ =
1

8π
|∇φ(x, t)|2 − ea

∫
d3x0

∫
d3v0fa(x0,v0, t0)φ(x, t)δ3(x− x0) (14)

Consequently:

δI

δφ
= 0

= − 1

4π
∇ · ∇φ(x, t)−

∑
a

ea

∫
d3vfa(x,v, t)

⇒ ∇2φ(x, t) = −4π
∑
a

eana (15)

Variation with respect to A gives Ampère’s law:

∇2A(x, t)− ∇
c

λ(x, t) = −4π

c

∑
a

ea

∫
fa(x,v, t)vd3v = −4π

c
j (16)

Here ∇×∇×A = −∇2A was used. The current can be split up in a longitudinal and a

transverse component [12]:

∇2A =
−4π

c
jT (17)

Combining the longitudinal part with Vlasov’s and Poisson’s equation gives: ∇λ = 4πjL =

−∂E/∂t = ∇∂φ/∂t, which shows that λ is not needed to determine the fields. Conse-

quently equations (13),(15) and (17) are taken as the full Vlasov-Poisson- Ampère system.

Energy conservation can be proven ([5]), applying Noether’s theorem to the following total

energy:

Etot =
∑
a

∫
d3x

∫
d3vfa(x,v, t)

1

2
ma|v|2

+
1

8π

∫
d3x(|∇φ(x, t)|2 − |∇ ×A(x, t)|2) (18)

3.1.2 Transformation to Guiding-Centre-Coordinates

In the presence of a strong magnetic field, the motion of a charged particle is anisotropic:

it gyrates around the field line wheras it is free to move along the field line. Since the

parallel motion and the drifts caused by inhomogeneity and curvature in tokamak devices
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are much slower than the gyromotion, it is plausible to separate the gyromotion from the

rest of the particle dynamics. In order to do so, we apply a coordinate transform to this

system of equations:

za = (xa, va‖, µa0, θa) → Za = (Xa, Ua, µa, ξa) (19)

Furthermore we introduce

εB =
|%|
LB

with LB ≡
|∇B|

B

as the perturbation expansion parameter, where % is the absolute value of the gyroradius.

The most systematic approach for carrying out this transformation to all orders, would

be the Lie transform technique ([11],[9]). A short introduction to this method is given in

Appendix 8.5. In Appendix 8.6 a different, more physical approach following references

([14]) and ([20]) is summarised.

The resulting Lagrangian is given by:

La = ε−1
B

ea

c
A∗a(Xa, Ua, µa) · Ẋa + εB

mac

ea
µaξ̇a −Ha0(Xa, Ua, µa) (20)

with

A∗a(Xa, Ua, µa) = A0(Xa) + εB
mac

ea
Uab(Xa)− ε2

B

mac
2

e2
a

µaW(Xa), (21)

Ha0(Xa, Ua, µa) =
1

2
maU

2
a + µaB0(Xa) (22)

and

W(Xa) = [∇e1(Xa)] · e2(Xa) +
1

2
b(Xa)b(Xa) · [∇× b(Xa)] (23)

Here b is the unit vector along the magnetic field and e1 and e2 represent two unit vectors

perpendicular to b.

Clearly, all quantities have now to be evaluated at the guiding centre position:

Xa = xa − εB
b× va0

Ωa
−O(ε2

B); (24)

For simplicity, the higher order coordinate transforms contributions are not given up to

second order, since they are not explicitly needed for the following steps. Here only the

first order terms for X (since it is multiplied with a quantity of order ε−1
B ) and the zeroth

order terms for the other coordinates are given:

Ua = va0‖ +O(εB); µa = µa0 +O(εB); ξa = θa +O(εB) (25)
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Calculating the Poisson brackets using the following formula ([10]){
F, G

}
=

e

mc

(
∂F

∂ξ

∂G

∂µ
− ∂G

∂ξ

∂F

∂µ

)
− cb

eB∗‖

[(
∇F + W

∂F

∂ξ

)
×
(
∇G + W

∂G

∂ξ

)]

+
B∗

mB∗‖

[(
∇F + W

∂F

∂ξ

)
∂G

∂U
−
(
∇G + W

∂G

∂ξ

)
∂F

∂U

]

shows, that indeed the Poisson brackets are now independent of the gyrophase i.e. the

gyromotion is completely decoupled from the rest of the particle motion:{
Xa,Xa

}
= εB

c

eaB∗a‖
b× I;

{
Xa, Ua

}
=

B∗a
maB∗a‖

; (26)

{
Xa, ξa

}
= εB

c

eaB
∗
a‖

b×W;
{
Ua, ξa

}
= −B∗a ·W

maB
∗
a‖

; (27){
ξa, µa

}
= ε−1

B

ea

mac
(28)

where I is unit dyadic and

B∗a ≡ ∇×A∗a and B∗a‖ ≡ B∗a · b. (29)

It is important to emphasise, that the Lagrangian above still contains the full particle

dynamics up to second order in εB, including the gyromotion. But since La does not

contain ξa any more, µa is a constant of motion. Using the variational principle on this

guiding centre Lagrangian would result in the well known drift kinetic equation.

3.1.3 Perturbation of the Lagrangian

In our model we want to keep FLR effects originating from terms ∼ k⊥%. That means that

a particle on its gyro-orbit must be able to feel the variation of the fields due to a certain

mode (that is treated as a perturbation to the equilibrium system). When the system is

perturbed by a small wave field, the guiding centre coordinates derived above are no good

coordinates any longer in the sense that the gyromotion is no longer decoupled. In this

section, we first introduce a new ordering parameter connected with the perturbation and

then switch to gyrocentre coordinates.

Gyrokinetic ordering implies, that fields and potentials can be separated into an equilib-

rium and a perturbation part:

E = E0(x) + ∆E1(x, t)
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B = B0(x) + ∆B1(x, t)

A = A0(x) + ∆A1(x, t)

φ = φ0(x) + ∆φ1(x, t)

where ∆ is the ordering parameter for the amplitude ratios of perturbed and unperturbed

quantities.

It is useful to define a new canonical momentum:

pa ≡ mava +
ea

c
(A0 + A1) ≡ mava0 +

ea

c
A0; ⇒ va0 ≡

1

ma
(pa −

ea

c
A0) (30)

To use va0 as a variable of 0-th order has the advantage that only the Hamiltonian contains

perturbed quantities, and not the symplectic part p · q̇. Furthermore E0 = 0 is assumed.

E1 includes not only the fluctuation part but also the O(εB) contribution of the E ×B-

drifts.

Now the Lagrangian is expanded up to second order:

La = La0 + La1 + La2 (31)

with

La0 =
(
mava0 +

ea

c
A0

)
· ẋ− 1

2
ma|va0|2 ≡ pa · ẋ−Ha0 (32)

La1 = −ea

(
φ1 −

1

c
va0 ·A1

)
≡ −eaψa ≡ −Ha1 (33)

La2 = − −e2
a

2mac2
|A1|2 ≡ −Ha2 (34)

3.1.4 Gyrocentre-Transformation

Since the perturbed fields destroy the Lagrangian’s independence of the gyrophase, an-

other coordinate transformation is employed. A detailed mathematical treatment is found

in [9]. Since va0 is chosen according to equation (30), La0 and consequently also the Pois-

son brackets are already in the gyrophase independent form. Only the Hamiltonian part

is perturbed (see equations 32-34). This method is called ’Gyrokinetic Hamilton Formal-

ism’ in contrast to the ’Gyrokinetic Phase Space Lagrange Formalism’, where also the

symplectic part is perturbed.)

Consequently, the generating functions of the transformation are chosen in a way that

leaves the symplectic part undisturbed for all orders, i.e. that this part of the Lagrangian

has to vanish for the higher orders.

Za = (Xa, Ua, µa, ξa) → Z̄a = (X̄a, Ūa, µ̄a, ξ̄a) (35)
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In 0-th order the guiding centre coordinates can be simply replaced by the new gyrocentre

coordinates. For the 1-st and 2-nd order an appropriate choice of the gauge function S1

results in an Hamiltonian that only contains gyrophase averaged expressions. Here just

the final result is given. A short derivation sketching the main steps can be found in

appendix 8.6.

La = ε−1
B

ea

c
A∗a(X̄a, Ūa, µ̄a) · ˙̄Xa + εB

mac

ea

µ̄a
˙̄ξa

− H̄a0(X̄a, Ūa, µ̄a)− H̄a1(X̄a, Ūa, µ̄a, t)− H̄a2(X̄a, Ūa, µ̄a, t) (36)

with

H̄a1(X̄a, Ūa, µ̄a, t) = ea〈ψa(Z̄, t)〉ξ̄a (37)

H̄a2(X̄a, Ūa, µ̄a, t) =
e2

a

2mac2
〈|A1(X̄a + εB %̄a, t)|2〉ξ̄a

−ea

2
〈{S̃a1(Z̄a, t), ψ̃a(Z̄a, t), }〉ξ̄a (38)

〈...〉 indicates, that these terms are gyroaveraged. Thus the Hamiltionian is gyrophase

independent. The fields have to be taken on the gyrocentre position:

φ̃1(X̄a + εB%̄a, t) = φ1(X̄a + εB%̄a, t)− 〈φ1(X̄a + εB%̄a, t)〉˜v̄a0 ·A1(X̄a + εB%̄a, t) = v̄a0 ·A1(X̄a + εB%̄a, t)− 〈v̄a0 ·A1(X̄a + εB%̄a, t)〉
ψ̃a(Z̄a, t) = eaφ̃1(X̄a + εB%̄a, t)−

ea

c
˜v̄a0 ·A1(X̄a + εB%̄a, t)

with

X̄a = Xa + ∆{S1(Xa),Xa}+O(∆)2 (39)

%̄a = %̄a0(Z̄a) = b(X̄a)× v̄a0/Ωa(X̄a) (40)

and an equation for the gauge function S1 that contains the gyrophase terms:

ε−1
B Ωa

∂S1

∂ξa
+

∂S1

∂t
+

εB

(
Ūa

ma
b∗ · ∂S1

∂X̄a
− [

c

eB∗‖
b× ∂S1

∂X̄a
+

B∗

maB∗‖

∂S1

∂Ua
] · ∂Ha0

∂X̄a

)
= ψ̃a(Z̄a, t) (41)

3.1.5 Low Frequencies

The usual gyrokinetic ordering assumes low frequency perturbations (compared to the

gyrofrequency): Ω−1
a ∂/∂t ∼ O(εB). In zeroth order equation (41) becomes:

Ωa
∂S1

∂ξa
= eaφ̃1(X̄a + %a0, t)−

ea

c
˜v̄a0 ·A1(X̄a + %a0, t), (42)
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what can be integrated:

S1 =
ea

Ωa

∫
dξ̄aψ̃a(Z̄a, t) (43)

Using this expression for S1, the coordinate transforms become:

X̄a = Xa +O(ε2
B) +O(εB∆); → xa = X̄a + εB%̄a. (44)

In case of arbitrary high frequencies the time derivative in line (41) is not negligible any

more. That means that S1 is not any more given by an ξ-averaged ψ̃ at a certain time

point t, but by an integral over t.

To include also S1 in the Lagrangian one treats S1 as an independent scalar field and uses

the method of undetermined Lagrange multipliers (details in [5]) so that variation of I

with respect to this new multiplier in return, results in equation (41).

3.1.6 Maxwell-Vlasov-System

The total Lagrangian is finally:

L ≡
∑
a

∫
d6Z̄0Ja(Z̄0)Fa(Z̄0, t0)La[Z̄a(Z0, t0; t),

˙̄Za(Z̄0, t0; t), t)]

1

8π

∫
V

d3x
(
|∇φ(x, t)|2 − |∇ × [A0(x) + A1(x, t)]|2 +

2

c
λ(x, t)∇ ·A1(x, t) (45)

with

Ja(Z̄0) = B∗a‖(Z̄0)/ma; Z̄0 = Z̄a(Z̄0, t0; t) (46)

As above the distribution function at time point t is given by

Ja(Z)Fa(Z, t) =
∫

d6Z0Ja(Z0)Fa(Z0, t0) · δ6
(
Z̄− Z̄a(Z̄0, t0; t)

)
. (47)

Variation of the Lagrangian gives the equations of motion in gyrocentre coordinates:

dZ̄a

dt
= {Z̄a, H̄a(Z̄0, t)} (48)

or written in components (26):

dX̄a

dt
=

1

B∗a‖

[(
Ūa +

∂H̄a2

ma∂Ūa

)
B∗a +

c

ea

b×
(
µ̄a∇B0 +∇H̄a2

)]
(49)

dŪa

dt
= − B∗a

maB∗a‖
· [µ̄a∇B0 +∇H̄a2] (50)

dµ̄a

dt
= 0 (51)

dξ̄a

dt
= Ωa + W · dX̄a

dt
+

ea

mac

∂H̄a2

∂µ̄a
(52)
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Clearly, X̄a, Ūa, µ̄a and Ja are independent of ξ̄a and also ξ̄0. Now it can be concluded

that without loss of generality also Fa is gyrophase independent. As a consequence the

gyrokinetic equation can be written as:[
∂

∂t
+ {Z̄, H̄a(Z̄, t)} · ∂

∂Z̄

]
Fa(Z̄, t) = 0 (53)

Poisson’s equation is derived as

∆∇2φ1(x, t) = −4π
∑
a

ea

∫
d6Z̄Ja(Z̄)

· δ[X̄ + %̄a0(Z̄)− x] ·
(
Fa(Z̄, t) + ∆{Sa1(Z̄, t), Fa(Z̄, t)}

)
(54)

and Ampère’s law as

∆∇2A1(x, t) = −4π

c

(
(j)T (x, t)− j0(x, t)

)
(55)

with

j0(x, t) = − c

4π
∇2A0 (56)

and (j)T as the transversal part of

j(x, t) =
∑
a

ea

∫
d6Z̄Ja(Z̄) · δ[X̄ + %̄a0(Z̄)− x] (57)

·
([

va0(Z̄)−∆
ea

mac
A1(X̄ + %̄a0(Z̄), t)

]
Fa(Z̄t) + ∆va0(Z̄){S1(Z̄, t), Fa(Z̄, t)}

)

Again it is straightforward to calculate the total energy of the system and show energy

conservation [5].

3.2 Linearised Equations

Following reference [1], we restrict these fully non linear equations to the linear case by

splitting up the total distribution function into an equilibrium and a perturbed part:

Fa = Fa0 + fa. (58)

Here, we keep terms in ∆ up to first order. For all the physical problems investigated in

this work, background FLR effects are not important. Consequently the small parameter

εB is only taken into account in lowest order. But on the other hand physical effects, where

the gyroradius and the perturbed mode size can be comparable are kept. Introducing

ε∆ ≡ |k%| with k =
∇B1

B1
,
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we now take into account terms up to second order in ε∆.

Equation (53) is expanded in:[
{Z̄, H̄1(Z̄, t)} · ∂

∂Z̄

]
Fa0(Z̄) +

[
∂

∂t
+ {Z̄, H̄0(Z̄)} · ∂

∂Z̄

]
fa(Z̄, t) = 0 (59)

Leaving out the higher order terms as described above we obtain [1]:

∂f

∂t
+(Ūb+vd) ·∇f− b

m
·∇H0

∂f

∂Ū
=

cb

eB
· (∇F0×H1)−

b

m
· (∇F0

∂H1

∂Ū
−∇H1

∂F0

∂Ū
) (60)

with

{Z̄, H0} = Ūb + vd (61)

It is useful to write this equation also in a different set of coordinates:

Z̄ = (X̄, H0 = E, µ̄, ξ̄) (62)

Using the modified Poisson brackets given in equation (200) one derives:

∂f

∂t
+ (Ūb + vd) · ∇f =

cb

eB
· (∇F0 ×∇H1) +

∂F0

∂E
(Ūb + vd) · ∇H1 (63)

Here a closer look to the different contributions of the drift terms is helpful [19]: the

curvature drift term is contained in B∗ (defined in equation 29) whereas the ∇B-drift

obviously appears in a separate term:

{Z̄, H0} = − cb

eB
× (µ̄∇B) +

(B +∇× mc
e

Ūb)Ū

B
= − cb

eB
× (µ̄∇B) + Ūb + Vd (64)

Vd ≡
cmU

eB
∇× Ub (65)

Using

∇× b = −b× (b× (∇× b)) = −b×
(
(b · ∇)b

)
(66)

which is correct in the order considered here, we obtain the usual expression for vd:

vd = − cb

eB
×
(
mŪ2(b · ∇)b + µ̄∇B

)
(67)

We emphasise that the linearised GKE together with the equation for the gauge func-

tion S1 still contain the physics for all types of linearly describable waves with arbitrary

frequencies. For example, it is shown in reference [3] how to specify the system to Bern-

stein and compressional Alfvén waves. Furthermore, the dielectric tensor derived in the

framework of kinetic wave theory (in slab geometry) is recovered (see [3]). Of course also

fluid equations and consequently MHD theory can be derived by building appropriate

moments of the equations given above [1]. But much more important, it provides a clear

and rigorous way how to extend MHD into a self consistent kinetic MHD model, that can

be used to describe the interaction of MHD modes with kinetic effects.
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3.3 Restriction to Shear Alfvén Physics in Tokamaks

Now the system of equations is restricted to shear Alfvén physics. In an homogenous

plasma the solution of the dispersion relation (derived from the ideal MHD model) with

ω2 = k2
‖v

2
A = k2

‖B
2/µ0mn0 is called shear Alfvén wave. This incompressible wave propa-

gates parallel to the magnetic field. The force balance is given between field line tension

and plasma mass inertia. In terms of energies this translates into an oscillation between

magnetic field energy and kinetic energy of the plasma. There are no perturbations of

density, pressure, parallel magnetic field and perpendicular vector potential. Moreover, it

is decoupled from the other MHD waves, namely the compressional Alfvén wave and the

sound wave, independent of the plasma β = 2µ0P/B2.

For inhomogeneous plasmas this is not true any more. Nevertheless, the decoupling as-

sumption for standard tokamak parameters is justified because the characteristic frequen-

cies of the inhomogeneities (namely the diamagnetic drift frequency ω∗ ∼ 104 and gradient

drift ωd ∼ 105) which are responsible for coupling, are too far apart from ωA = vA/R ∼ 106

to establish effective mode interaction. Furthermore, we are interested in relatively low-β

plasmas (typically a few percent) with moderate aspect ratios (ε ≡ a/R ≤ 0.3). Therefore,

the restricition

A1 = A‖b or A⊥ = 0 (68)

is consistent with the definition of the shear Alfvén wave in slab geometry, since it implies

B1‖ � B1⊥ and a small incompressibility. In case of a low β also small pressure pertuba-

tions can be assumed.

For all relevant sets of parameters in fusion research, ωA is small compared to the gyro

frequency, i.e we use equation (42) for S1.

3.3.1 Poisson’s Equation

Then Poisson’s equation becomes:

0 = −4π
∑
a

ea

∫
d6Z̄Ja(Z̄) · δ[X̄ + %̄a0(Z̄)− x] ·

(
Fa(Z̄, t) + ∆

e

B
ψ̃a

∂Fa(Z̄, t)

∂µ

)
0-th order gives: −4π

∑
a eana0(x) = 0. Dropping the indices for %a0 and writing the

untruncated Taylor expansion of all functions of the form G(X̄+%̄a0(Z̄)−x) as e%·∇G(X̄−
x), we obtain for the first order terms:

na1(x) =
∫

d3v̄e−%·∇f +
∫

d3v̄d3X̄e%·∇δ(X̄− x)

· ea

B

[
(e%·∇ − 〈e%·∇〉)φ(X̄− x)− 1

c
(e%·∇ − 〈e%·∇〉)ŪA‖(X̄− x)

]∂Fa0(Z̄, t)

∂µ̄
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with d3v̄ = (B/m) dξ̄dµ̄dŪ . We now use the relations

e%·∇δ(X̄− x) = δ(X̄− x)e−%·∇

e−%·∇(h · g) = h(e−%·∇ − 1)g + ge−%·∇h

and carry out the integration over X̄. Employing the definition for the Bessel function of

0-th order (see figure 7):

1

2π

∫
dξ̄e±%·∇ =

1

2π

∫
dξ̄e±%∇⊥ cos ξ̄ = J0

(%∇⊥
i

)
, (69)
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Figure 7: gyroangle averaging: e%k cos ξ is replaced by ξ-independent Bessel function

we partially perform the ξ̄- integration to result in:

na1(x) =
∫

d2vJ0f +
∫

d2v̄
ea

B

∂Fa0(x, t)

∂µ̄
(1− J2

0 )
[
φ(x)− 1

c
ŪA‖(x)

]
+

∫
d3v̄(e%·∇ − 〈e%·∇〉)

[
φ(x)− 1

c
ŪA‖(x)

]
(e−%·∇ − 1)

ea

B

∂Fa0(x, t)

∂µ̄

with d2v = 2π(B/m)dµ̄dŪ . For the second line the result of the ξ̄- integration can not be

written in a closed form. But if we now expand all terms dependent on %∇⊥ ∼ %k ∼ up

to forth order using the expansion formulae given in Appendix 8.7 and take into account

that integrals of the form ∫
Ū

∂Fa0(x̄, t)

∂µ̄
dŪ

are small compared to the other contributions to the perturbed density (since they rep-

resent the anisotropy of the equilibrium distribution function; if Fa0(x̄, t) is Maxwellian,

they are exactly 0), we finally derive [1]:

0 =
∑
a

[ ∫
d2vJ0f +

ea

ma

∇⊥
na0

B2
∇⊥φ(x) +

3eav
2
th,ana0

8maΩ4
a

∇4
⊥φ(x)

]
(70)
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To carry out the integration in µ̄ over the 4-th order term, F0 ∼ e−µ̄B/v2
th was assumed.

However, for the second order term no assumption for F0 is necessary, because a partial

integration
∫

dµ µ∂F/∂µ = − ∫ dµF can be used.

3.3.2 Ampère’s Law

Similar manipulations have to be performed to derive the shear Alfvén version of Ampère’s

law starting with equation (57). Nevertheless there is one important point that should be

mentioned: originating from the addend[
Ū −∆

ea

mac
A1(X̄ + %̄a0(Z̄), t)

]
Fa0(Z̄, t)

and using
∫

Fa0dŪ = −
∫

Ū∂Fa0/∂Ū dŪ a term of 0-th order in ε∆ describing the

anisotropy of Fa0 remains (contrary to the Poisson’s equation, where anisotropy terms

always showed up in combination with some power of %k ). This term is kept and singled

out later, while deriving the gyrokinetic moment equation [1]. The final result is:

[∇×∇×A1(x)]‖ =
4π

c

∑
a

ea

[ ∫
J0Ūfd2v+

∫ e

mc

∂Fa0

∂Ū
ŪA‖d

3v+
e2

ana0v
2
th,a

2macΩ2
a

∇2
⊥A‖

]
(71)

Here the system of linearised equations consisting of (60),(70) and (71) is complete.

3.3.3 The Gyrokinetic Moment Equation

The gyrokinetic moment equation (GKM) is the 0-th order moment of the gyrokinetic

equation (60). In the process of deriving [1], Poisson’s equation and Ampère’s law as

given above are used to replace some of the moments. A straightforward but lengthy

calculation results in:

− ∂

∂t

e

m
∇⊥

n0

B2
∇⊥φ +∇A‖ × b · ∇(

∇×B

B
) + (B · ∇)

(∇×∇×A) ·B
B2

= −
∑
a

ea

∫
4π

c
vd · ∇J0fad

3v +
c

v2
A0

3v2
th,a

4Ω2
a

∇4
⊥

∂φ(x)

∂t

+B · ∇
(4πe2

ana0v
2
th,a

2Bmac2Ω2
a

∇2
⊥A‖

)
+ b×∇(

2πean0av
2
th,a

BΩa
) · ∇∇2φ (72)
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4 Solution in General Tokamak Geometry

Due to the symmetry of a Tokamak (see section 5.1), we introduce the following ansatz

for the solution of our system:

φ =
∑
m

φm(r)e−iωt−imθ+inϕ (73)

The same ansatz is also made for ψ which is connected to A as follows:

A‖ =
c

iω
(∇ψ‖)‖

Firstly, this ansatz implies that we choose an eigenvalue formulation and not an initial

value formulation. Secondly, toroidal modes are completely decoupled because of toroidal

symmetry. Finally, coupling due to poloidal inhomogeneities is taken into account by

keeping the summation over the poloidal mode number m. As a result we obtain a

system of coupled differential equations in radial direction for φ, ψ with the complex

eigenvalue ω. This set of equations is solved with a finite element method described in

section 5.3.

4.1 Splitting off Adiabatic Terms

In this paragraph the adiabatic and non- adiabatic contributions to the velocity space

integrals are separated. To proceed further analytically and to carry out the integration,

one has to assume a specific form of the equilibrium distribution function. Otherwise,

e.g. if F0 is given only numerically on a grid, no further analytical treatment is possible.

On the other hand, if F0 is Maxwellian, the integration can be carried out completely

analytical which is presented in this section. Furthermore, since we are interested also

in α-particle physics, where we have a distribution isotropic in the pitch angle and non-

isotropic in energy, the results after performing just the pitch-angle-integration are useful.

These results will be given in section 4.3.

We start with the following substitution [1]:

f = h + H1
∂F0

∂E
− [e

∂F0

∂E
− c∇F0

iωB
· (b×∇)]J0ψ (74)

This transforms the gyrokinetic equation (60) into:

∂h

∂t
+ (Ub + vd) · ∇h = [

cb

eB
×∇F0 · ∇ −

∂F0

∂E

∂

∂t
]J0[φ− (1− ωd

ω
ψ)] (75)

Here ωd defined by

ωd =
vd

i
· ∇ (76)
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and an exchange of order of the operators (Ub + vd) · ∇ and ea∂F0/∂E − c/(iωB)∇F0 ·
(b×∇) is performed. In this step terms of the order ε2 = (a/R0)

2 are neglected. Here, a

stands for the small radius and R0 for the big radius of a tokamak.

Now the integrals over the velocity space are written more explicitly:∫
J0fd3v =

∫
J0h

3v +
∫

J0[(eJ0φ− J0U
(∇ψ)‖

iω
)
∂F0

∂E
− e

∂F0

∂E
+

c∇F0

iωB
· (b×∇)]J0ψ

=
∫

J0h
3v +

∫ [
eJ2

0

∂F0

∂E
φ− eJ2

0

∂F0

∂E
ψ − eJ2

0

∂F0

∂E
U

(∇ψ)‖
iω

− J2
0

cb×∇F0

iωB
· ∇ψ

]
d3v

If F0 is Maxwellian then we can continue to integrate analytically and derive for the

QN-equation [1]:

∑
j

e

[ ∫
J0hd3v +

en0

T
e−χI0(χ)

[
ψ − φ−

(
1 + ηG0(χ)

)ω∗
ω

ψ
]]

= 0 (77)

with

ω∗ ≡ [
cTb

ieB
× ∇n

n
· ∇]; η ≡ ∇T

T
/
∇n

n
(78)

χ ≡ v2
thk

2
⊥

2Ω2
; G0(χ) = −χ + χI1(χ)/I0(χ) (79)

In contrast to the original derivation by Qin, here the FLR terms in the GKM integrals

are kept for consistency. This term can be rewritten as:∫
e
vd

ω
· ∇J0fd3v =

∫
e
vd

ω
· ∇J0hd3v (80)

+
∫

e
vd

ω
· ∇J0

{
e
∂F0

∂E
J0(φ− ψ) + [c

∇F0

iωB
· (b×∇)− eU

∂F0

∂E
∇]J0ψ

}
Using

vd = − b

eB
× [mU2(b · ∇)b + µ∇B],

the first term in the curly brackets becomes:{
[

b

ωB
× (b · ∇)b] · ∇

∫
mU2J2

0

∂F0

∂E
d3v + [

b

ωB
×∇B] · ∇

∫
µJ2

0

∂F0

∂E
d3v

}
e(φ− ψ)

Assuming a Maxwellian F0 results in:

b

ωB
×
[
(b · ∇)b + (1 + G0)

∇B

B

]
· ∇en0e

−χI0(χ)(ψ − φ)

Here, (b×∇B) ·∇(1/B) = (b×∇B) · (−∇B/B2) = 0 is used. The second term in curly

brackets of equation (80) is treated similarly to become:

−[
b

ωB
× (b · ∇)b] · ∇

{ c

iωB

∫
mU2J2

0∇F0d
3v · (b×∇)− e

∫
mU3J2

0

∂F0

∂E
d3v

}
ψ

−[
b

ωB
×∇B] · ∇

{ c

iωB

∫
µJ2

0∇F0d
3v · (b×∇)− e

∫
µUJ2

0

∂F0

∂E
d3v

}
ψ
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Using again a Maxwellian F0 gives :

− [
b

ωB
× (b · ∇)b] · ∇

{
ean0(r)e

−χI0([1 + η + ηG0)]
ω∗
ω

ψ
}

− [
b

ωB
× ∇B

B
] · ∇

{
ean0(r)e

−χI0[(1 + η)(1 + G0) + 2η(G1 −G0)]
ω∗
ω

ψ
}

with G1 = −2χ + 2χI1/3I0 + χ2 − χ2I1/I0. Combining these two results gives:

[
b

ωB
× (b · ∇)b] · ∇ean0(r)e

−χI0

[
ψ − φ− (1 + η + ηG0)

ω∗
ω

ψ
]

(81)

+ [
b

ωB
× (1 + G0)

∇B

B
] · ∇ean0(r)e

−χI0

[
ψ − φ− (1 + η +

2η(G1 −G0)

1 + G0
]
ω∗
ω

ψ
}

When FLR terms are left out, these equations can be simplified to recover Qin’s result

[1]. (This will be also discussed in the next section.)

4.2 Ideal MHD Limit

In case of ideal MHD the QN and GKM equation can be simplified [1]: all the kinetic

integrals containing h are left out and FLR-effects are neglected by taking the χ ∝ %k⊥ →
0 limit:

e−χI0 → 1 and G0, G1 → 0 for χ→ 0 (82)

In this limit together with ω∗ � ωA0 = vA0/R =
√

B2
0/µ0n0m/R the QN equation (77)

immediately reduces to

ψ − φ = 0

This is consistent with the fact that there is no parallel dynamics contained in the ideal

MHD model:

E1‖ = −∇φ− ∂A1‖

∂t
= 0 (83)

With A1‖ = ∇‖ψ/iω , one deduces again:

ψ = φ (84)

For the GKM equation, we first simplify line (81): removing all gyro-terms according to

the rules (82) gives back Qin’s result. Then we use ψ− φ = 0 and apply a relation based

on the definition of ω∗ (78):

−en0(r)[1 + η]
ω∗
ω

= c
[T∇n + n∇T

iωB
× b

]
· ∇ =

c∇[P (r)]

iωB
· (b×∇),

The result is put in (72) to obtain the final MHD version of the GKM equation (now in

SI units):
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− ω2

ω2
A0

∇⊥
n̂B2

0

B2
∇⊥ψ + ∇(∇‖ψ)× b · ∇(

∇×B0

B
) + (B · ∇)

(∇×∇×∇‖ψ) ·B
B2

+

+ µ0P0
b

B
×
[
(b · ∇)b +

∇B

B

]
· ∇

[
∇P̂

B
(b×∇)ψ

]
= 0 (85)

with P̂ and n̂ are the normalised pressure resp. density. To compare with the equation for

shear Alfvén modes derived from the standard MHD model, one identifies ∇P
iωB

(b ×∇)ψ

with the perturbed pressure and uses the vector identity (66). Then one obtains for the

pressure term (4-th addend):

µ0∇P1 · ∇ ×
B

B2

From the ideal MHD side, line (85) can be derived using ∇j1 = 0, the linearised force

balance and ideal Ohm’s law [1]. Therefore all ideal MHD results can be recovered from

the GKM equation.

4.3 α-Particles

Due to their high energies compared to the background, fusion born α-particles are not

Maxwellian. Instead, one usually chooses the following distribution function:

F0 = CψF0ψ ·
CE

E3/2 + E
3/2
c

Erfc[
E − E0

∆E
] (86)

This expression is called ’slowing-down’ (see figure 8), because it describes the drag of

the background electrons and ions on the fusion born α’s, derived from the Fokker-Planck

equation under the assumptions that D and T have the same energy Ti and the energy

spectrum is approximately Gaussian [39].

For F0ψ one often uses 1/(exp[(ψ − ψ0)/∆ψ]+1) or also (1−s2)3 with s ∝
√

ψ. Parameters

that are likely to fit the ITER experiment [40] are:

∆E = 335.2keV, E0 = 3520keV, Ec = 329.6keV, ψ0 = 0.2, ∆ψ = 1/14

Since this distribution is given in terms of E, a coordinate change from U, µ to E, Λ is

advantageous:

d2v = 2π
∫ ∞

0
dU

∫ ∞
−∞

v⊥dv⊥ = 2π
∫ ∞

0

dE

m2

∫ E/B

0

∑
σ

Bdµ√
2(E − µB)/m

= 2π
∫ ∞

0

dE
√

E

m2

∫ b

0

∑
σ

dΛ

b
√

2(1− Λ/b)/m
(87)
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Figure 8: Energy dependence of a slowing down distribution function with ITER parameters

Here

b =
B0

B
, Λ =

µB0

E
,

The summation over σ is due to positive and negative direction of U . Partial derivatives

expressed in the new coordinates are:

∂F0

∂µ
= B

∂F0

∂E
,

∂F0

∂U
= mU

∂F0

∂E

Integration over Λ can be carried out analytically:∫ b

0

dΛ

b
√

1− Λ/b
= 2,

∫ b

0

dΛµB

b
√

1− Λ/b
=

4E

3

∫ b

0

dΛJ0(
k
Ω

√
2EΛ
mb

)2

b
√

1− Λ/b
= 2 1F2[

1

2
; 1,

3

2
;−2k2E

mΩ2
]

∫ b

0

dΛµBJ0(
k
Ω

√
2EΛ
mb

)2

b
√

1− Λ/b
=

4E

3

{
1F2[

1

2
; 1,

5

2
;−2k2E

mΩ2
]− 2Ek2

5mΩ2 1F2[
1

2
; 2,

7

2
;−2k2E

mΩ2
]
}

Here generalised hypergeometric functions pFq(a1, ..., ap; b1, ..., bq, z) are used. Further-

more integrals with an odd power of U vanish due to the fact, that Fα0 is symmetric in

U , for example:

∑
σ

∫
dE

∂F0

∂E
U =

∑
σ

∫
dE

∂F0

∂E
σ

√
2E

m
(1− Λ/b) = 0
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(For heating schemes with an asymmetic distribution in U this simplification is not valid

any more.)

Straightforward calculation shows that the pressure is isotropic:

P⊥
P‖

=

∫
d3vµBF0∫
d3vmU2F0

= 1 (88)

For the values given above, the energy integrals can be computed numerically to obtain

the normalisation factors:

1 =
∫

d3vF0 ⇒
∫ ∞

0
dE
√

E
1

E3/2 + E
3/2
c

Erfc[
E −E0

∆E
] ≡ Y0 = 4.7709, → CE =

m3/2

Y04
√

2π

The constant Cψ can be determined, if we prescribe e.g. a βα0 on the magnetic axis:

βα0 =
2µ0P

B2
0

=
2µ0P‖
B2

0

; → Cψ =
βα0B

2
0

2µ0

3Y0

4Y1

Fψ0(ψ = 0)

with

Y1 =
∫ ∞

0
dE

E3/2

E3/2 + E
3/2
c

Erfc[
E − E0

∆E
] = 5.84703MeV

The QN and the GKM stay in the same form as for a Maxwellian F0, but the energy inte-

grals now have to be carried out numerically: −n/T has to be replaced by
∫

dv2∂F0/∂E.

For the parameters given above, this integral can be carried out when FLR effects are

dropped: ∫
dv2∂F0/∂E =

n(ψ)

0.667MeV
(89)

With the J0 operator present, no closed form of the integral can be found. An evaluation

is only possible at runtime, when a guess for k⊥ is available. In LIGKA so far the fol-

lowing appoximation is implemented: together with the replacement rule (89) the same

gyro-corrections as in formulae (77) and (81) are used with 2v2
th/m replaced by the ’α-

temperature’ 0.667MeV. The non-Maxwallian F0 is also taken into account in the integral

terms
∫

d3vJ0h and
∫

evd
ω
· ∇J0hd3v through ∂F0

∂E
. Additional terms of order O(ε2) and

O(ε · εB) are neglected during the process of splitting off the adiabatic pressure part.

4.4 Kinetic Integrals

In order to complete the QN and GKM equation, a solution for the non-adiabatic part h

has to be found. This solution is inserted in the integrals
∫

d3vJ0h and
∫

evd
ω
· ∇J0hd3v.
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Then only two unknown variables remain: the electrostatic (φ) and parallel electromag-

netic (ψ) potential .

The expression for h is a nonlocal relation: i.e. the current position of the particle in

phase space depends on the field seen by the particle along its previous path. Starting

from equation (75), the formal solution for h (now in SI units)[43],[1] reads:

h =
∫ t

−∞
dt′
[ b

eB(x′)
×∇F0(r

′) · ∇ − ∂F0(r
′)

∂E

∂

∂t′

]
eaJ0

[
φ(x′, t′)− (1− ωd(x

′)

ω
ψ(x′, t′))

]
]

= iea

∫ t

−∞
dt′

∂F0(r
′)

∂E

[
ω − ω̂∗(x)

]
J0

[
φ(x′, t′)− (1− ωd(x

′)

ω
ψ(x′, t′))

]
(90)

with a generalised ω̂∗:

ω̂∗ = −b×∇F0

ieB ∂F0

∂E

· ∇ (91)

which simplifies to ω∗[1 + η(E/T − 3/2)] if a Maxwellian F0 is chosen and the integration

over velocity space is carried out. Physically, the term proportional to ω∗ describes the

free energy that is available to the system through the spatial gradients of the distribution

function.

The dashes in (90) indicate, that the quantities have to be evaluated on the position of

the particle, i.e along the unperturbed particle orbits.

Since our model is linear, we pull out φ and ψ and integrate over the unperturbed orbits.

This pull out procedure for the θ′-dependence of φ and ψ is performed by an expansion

of the propagator in bounce harmonics. For the radial dependence, it is advantageous

to distinguish between particle orbits with large and small radial drifts: electrons and

circulating ions are considered to have no r′-dependence. For trapped ions, this approxi-

mation is not valid. (A detailed discussion of these assumptions will be given in section

6.2.) Therefore for trapped ions, Qin [1] employed a Taylor expansion up to second order

in the banana width. However, this approximation becomes inaccurate, when particles

with large excursions are considered: as shown in section 5.4 and 6.2, the orbit width

∆b for energetic ions near the trapped/passing boundary can be more than 50% of the

minor radius a. Obviously in that case the expansion parameter ∆b/∆m ( with ∆m as

typical radial mode width) is not small any more, even for large scale MHD modes such

as internal kinks (here ∆m depends on the q = 1 surface, typically ∼ 0.4a) or TAE modes

(∆m ∼ 0.2− 0.4).

Following a suggestion from A. Koenies, here for the first time a more accurate method is

used: the orbit integral is discretised radially in the same way as the unknown potentials.

The time and phase information needed for this process is supplied by the numerical par-

ticle orbit integration (see 5.4.2).
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Now the steps summed up above are carried out. Applying ansatz (73) and expanding

h = ĥeinφ−iωt

gives:

ĥ = ieF0

∑
m

∫ t

−∞
dt′ei[n(ϕ′−ϕ)−m(θ′−θ)−ω(t′−t)]e−imθ

∂F0

∂E
[ω − ω̂∗]J0

[
φm(r′)− (1− ωd(r

′, θ′)

ω
)ψm(r′)

]
(92)

The phase factor

ei[n(ϕ′−ϕ)−m(θ′−θ)−ω(t′−t)] (93)

is rewritten in a more convenient way using the following definitions [43]:

n(ϕ′ − ϕ)−m(θ′ − θ) =
∫ t′

t
dt′′(n

dϕ

dt′′
−m

dθ

dt′′
) (94)

ωD =
dϕ

dt
− q(r0)

dθ

dt
(95)

r0 is the orbit averaged radial position of a particle.

ω0
D =

1

τb,t

∫
dtωD; Sm(r0) = nq(r0)−m (96)

W = W (t) =
∫ t

0
dt′′∆ωD; W ′ = W (t′) =

∫ t′

0
dt′′∆ωD; ∆ωD = ωD − ω0

D (97)

Since the particle motion is periodic -for both trapped and circulating particles - expression

(93) is now expanded in ’bounce’ harmonics :

ei[ω0
D(t′−t)−W+W ′+S0

m(θ′−θ)+HσS0
mωt(t′−t)−HσS0

mωt(t′−t)−ω(t′−t)] =

e−i[ω−ω0
D−HσS0

mωt](t′−t) · ei[S0
m(θ′−θ)−HσS0

mωt(t′−t)+W ′−W ]︸ ︷︷ ︸
=α=

∑
k

akme
ikωb,t(t

′−t)

(98)

α = ei[S0
mθ′−HσS0

mωt(t′−t0)+W ′] · e−i[S0
mθ−HσS0

mωt(t−t0)+W ]

=
∑
k

âkme−i[S0
mθ−HσS0

mωt t̂+W ]eikωb,t(t−t0)eikωb,t(t
′−t)

=
∑
k

akmeikωb,t(t
′−t) (99)
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with

âkm =
1

τb,t

∫ τb,t/2

−τb,t/2
dt′ei[S0

mθ′−HσS0
mωt(t′−t0)+W ′]eikωb,t(t

′−t0)

=
1

τb,t

∫ τb,t/2

−τb,t/2
dt̂′ei[S0

mθ′−HσS0
mωt t̂′+W ′]eikωb,t t̂

′
(100)

Here, t̂ = t− t0, t̂′ = t′ − t0; note that dt′ = dt̂′.

Similarly,

âG
km =

1

τb,t

∫ τb,t/2

−τb,t/2
dt̂′

ωd(r
′, θ′)

ω̄d(r)
ei[S0

mθ′−HσS0
mωt t̂′+W ′]eikωb,t t̂

′
(101)

H represents the Heavy-side function and indicates that HσS0
mωtt̂

′ is 0 for trapped par-

ticles and σS0
mωtt̂

′ for circulating particles. With the expansion above, the perturbed

distribution function h becomes :

h = ie
∑
m

∑
k

∫ t

−∞
dt′e−i(ω−ω0

D−HσS0
mωt−kωb,t)(t

′−t)e−imθ

∂F0

∂E
[ω − ω̂∗] J0

[
akmφm(r′)− (akm −

aG
kmω̄d(r)

ω
)ψm(r′)

]
(102)

In the zero orbit width approximation the integration over t′ can be performed and one

yields :

h = −ea

∑
m

∑
k

∂F0

∂E
(ω − ω̂∗)e

−imθJ0

(ω − ω0
D −HσS0

mωt − kωb,t)︸ ︷︷ ︸
=Rm,k

[
akmφm(r)− (akm −

aG
kmω̄d(r)

ω
)ψm(r)

]
(103)

Here it is assumed that the perturbation vanishes at t′ → −∞.

Here the term responsible for Landau damping shows up for the first time: the denomi-

nator ω−ω0
D−HσS0

mωt−kωb,t can become very small (for complex ω) or even zero (for a

pure real ω). In that case the particle is resonant with the wave and an energy exchange

is possible.

For trapped particles with wide orbits, of course, approximation (103) is not sufficient.

Thus the trapped particle case is treated separately (see below).

Nevertheless the formal integration over the velocity space can be carried out for all par-

ticles together. Using the following relations and definitions (similar to section 4.3) we

change again to the(E, Λ) coordinate system:

λ =
v‖
v

; Λ =
µB0

E
; b(r, θ) =

B0

B(r, θ)
; Y =

E

T
(104)

v‖ = ±
√

2

m
[E − µB(r, θ)] = ±v

√
1− Λ

b(r, θ)
; v⊥dv⊥ =

dE

m
(105)
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thus,

λ = ±
√

1− Λ

b(r, θ)
and

dλ

dΛ
=

∓1

2b(r, θ)
√

1− Λ
b(r,θ)

, (106)

Now we integrate over energy and pitch angle:∫
hd3v = 2π

∫ ∞
0

v⊥dv⊥

∫ ∞
−∞

dv‖h

= 2π
∫ ∞

0

dE

m

∫ 1

−1
vdλ h

= π(
2T

m
)

3
2

∫ ∞
0

dY
√

Y
∫ 1

−1
dλ h

=
π

2
(
2T

m
)

3
2

∫ ∞
0

dY
√

Y
∑
σ

∫ b(r,θ)

0

dΛ h

b(r, θ)
√

1− Λ
b(r,θ)

(107)

In the process of solving for h in terms of φ and ψ we project the sum over m into a

system of coupled differential equations in radial direction. In order to do so, we apply

the projection operator
∫ π
−π

dθ
2π

eipθ to our equations. To exchange the integration order of

θ and Λ, the relation

∫ π

−π

dθ

2π

∫ b(r,θ)

0
dΛ =

∫ π

−π

dθ

2π

∫ bmin(r)

0
dΛ +

∫ π

−π

dθ

2π

∫ b(θ)

bmin(r)
dΛ

=
∫ bmin(r)

0
dΛ

∫ π

−π

dθ

2π
+
∫ bmax(r)

bmin(r)
dΛ

∫ θ+

θ−

dθ

2π
(108)

has to be considered. bmin and bmax are the minimal resp. maximal values of b(r, θ) on a

given flux surface.

This again suggests to treat trapped and circulating particles separately:

4.4.1 Circulating Particles

For circulating particles the radial excursion of the particle orbit is small (at least a

factor of 2 smaller than trapped orbits). Thus ω0
D and the W resp. W ′ dependence of the

integrals Km,p,k and am,k can be neglected. Furthermore, all the equilibrium and perturbed

quantities are taken at radial position r0, i.e. they are considered to be constant along

the particle orbit. These simplifications also imply, that there is no distinction between

co- and counter-passing particles. Then the summation over σ can be performed: using
1

a−b
+ 1

a+b
= 2a

a2−b2 , applying symmetry properties for t̂ and changing the dummy summation
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index k to −k, one derives as the circulating particle contribution:(∫ π

−π

dθ

2π
eipθ

∫
J0hd3v

)circ

= −πeav
3
th

∑
m

∫ bmin(r0)

0
dΛ

∫ ∞
0

dY
√

Y ·

∑
k

∂F0

∂E

(ω − ω̂∗)ω

ω2 − (S0
m + k)2ω2

t

Km,p,k · J2
0

[
âkmφm(r0)− (âkm −

âG
kmω̄d(r

0)

ω
)ψm(r0)

]
(109)

with

Km,p,k =
1

2π

∫ π

−π

dθ

b(r, θ)
√

1− Λ
b(r,θ)

e−i[S0
pθ−(k+S0

m)ωt t̂(θ)], (110)

âm,k =
1

τt

∫ τt/2

−τt/2
dt̂′ei[S0

mθ′−(k+S0
m)ωt t̂′] (111)

and

S0
p = nq(r0)− p

If ω∗ and J0(k⊥%) are considered to be independent of the poloidal angle (KIN2DEM),

only Kmpk and amk are responsible for poloidal coupling within the kinetic integrals. Here

it is also examined how to include coupling terms caused by the operators ω∗ and J0(k⊥%).

Starting with the abbreviation

Cc(r0, θ) =

(
ω − ω̂∗(r

0, θ)
)
ω

ω2 − (S0
m + k)2ω2

t

· J2
0

(
k⊥(r

0, θ)%
)

and its poloidal expansion

Cc(r0, θ) =
∞∑

ν=−∞
Cc

ν(r
0)eiνθ

the θ-integration becomes:

∑
k

∂F0

∂E

1

2π

∫ π

−π

dθ
∑

ν Cc
ν(r

0)eiνθe−i[S0
pθ−(k+S0

m)ωt t̂(θ)]

b(r, θ)
√

1− Λ
b(r,θ)

= (112)

∑
k

∑
ν

Cc
ν(r

0)
∂F0

∂E

1

2π

∫ π

−π

dθe−i[(nq−p−ν)θ−(k+S0
m)ωt t̂(θ)]

b(r, θ)
√

1− Λ
b(r,θ)

= (113)

∑
k

∑
ν

Cc
ν(r

0)
∂F0

∂E
Km,p,k,ν (114)

At first sight this complicates the problem considerably because the orbit integral K now

depends also on ν. But since the relation

Km,p,k,ν = Km,p+ν,k
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holds and ν is in the range of [−2; 2] (because only poloidal coupling up to the second

order is taken into account) for all applications in this work, no extra effort is needed

when Km,p,k is calculated.

Another issue are the radial derivatives caused by the operator J0(k⊥%). There are three

different ways of handling this problem:

• If the mode structure permits, they are completely neglected and only the θ- de-

pendent terms are taken into account. This is how e.g. KIN2DEM is set up. For

an internal kink, this causes considerable errors since k⊥% near the q = 1-surface is

dominated by the radial contribution due to a large ratio φ′/φ (up to ∼ 20).

• As a fast and simple workaround, the pure MHD structure of the mode can be used

to calculate k⊥. Strictly speaking, this breaks self consistency, but since in a lot

of cases the MHD eigenfunction is already a reasonable guess for the final mode

structure, and it enters the system only through J2
0 , this procedure is sufficient for

many application cases.

• The operator can be expanded up to second order and the result is added to the

contributions of the first and second order derivative coefficients from the MHD

part.

To compare with the results of R.Marchand in [43] and Qin [1], we simplify the system by

applying the large aspect ratio approximation for tokamaks with circular flux surfaces:

dt̂′ =
dt

dl

dl

dθ
dθ =

√
g22

√
1 +

B2
φ

B2
θ
dθ

v‖
=

√
g22Bdθ

Bθv‖
=

qR0dθ√
2E
m

b(r, θ)
√

1− Λ
b(r,θ)

(115)

⇒ τtam,k ≈
q0R0√

2E
m

∫ π

−π

dθ

b(r, θ)
√

1− Λ
b(r,θ)

cos
[
S0

mθ − (k + S0
m)ωtt̂

]
=

2πq0R0√
2E
m

Km,m,k

(116)

Introducing the bounce resp. transit length Lt:

Lt =
1

2π

∫ π

−π

dθ

b(r, θ)
√

1− Λ
b(r,θ)

≈

√
2E
m

2πqR0
τt (117)

one can write:

am,k =
Km,m,k

Lt
(118)

This is the simplified version derived by R.Marchand used by Qin for KIN2DEM.
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4.4.2 Trapped Particles

To take into account a finite banana width, which is important especially for trapped par-

ticles, one should note that in a linear description, where the orbit integrals are performed

over unperturbed orbits it is possible to change the order of time integration and the dis-

cretisation of the perturbed potentials in radial direction [51]. Thus, the time integral

can be written as a sum of integrals:∫ t

−∞
dt′ =

∫ t2

t1
dt′ +

∫ t3

t2
dt′ + ... =

∑
j′

∫ tj′+1

tj′
dt′ (119)

The index j′ counts the finite element partitions in the radial coordinate: the particle

spends the time tj′+1 − tj′ in the radial bin with number j′ (see figure 9).

The time integration has to be started at t′ → −∞. Taking into consideration that the

orbit motion is periodic, one obtains:∫ t

−∞
dt′e−i(ω−ω0

D−kωb)(t
′−t)ψ(r′) =

=
∞∑

κ=0

∫ t−κτb

t−(κ+1)τb

dt′e−i(ω−ω0
D−kωb)(t

′−t)ψ(r′) =

=
∞∑

κ=0

N−1∑
j=0

∫ t−κτb−tj

t−κτb−tj+1

dt′e−i(ω−ω0
D−kωb)(t

′−t)ψ(rj) =

=
∞∑

κ=0

N−1∑
j=0

[
e−i(ω−ω0

D−kωb)(−κτb−tj) − e−i(ω−ω0
D−kωb)(−κτb−tj+1)

]
−i(ω − ω0

D − kωb)
ψ(rj) =

=
N−1∑
j=0

ei(ω−ω0
D−kωb)tj [1− ei(ω−ω0

D−kωb)(tj+1−tj)]

−i(ω − ω0
D − kωb)[1− ei(ω−ω0

D−kωb)τb ]
ψ(rj) (120)

where the relation
∞∑

κ=0

eixκ =
1

1− eix

was used.

It can be easily verified that for N = 1, tj = 0 and tj+1 = τb, expression (120) simplifies

to the zero-orbit-width result: −1/i(ω − ω0
D − kωb). Now we can integrate h over the

velocity space and over θ, like above for circulating particles .

The final expression for trapped particles after performing the σ summation is:(∫ π

−π

dθ

2π
eipθ

∫
J0hd3v

)trap

= −πeav
3
th

∑
m

∑
j

∫ bmax(r)

bmin(r)
dΛ

∫ ∞
0

dY
√

Y
∂F0

∂E

∑
k

∑
ν
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Figure 9: The orbit for trapped particles is split up in pieces corresponding to the finite element
discretisation

·Rkj ·Kkpν · Ct
ν(r

0) ·
[
âkmφm(rj)−

(
âkm −

âG
kmω̄d(r)

ω

)
ψm(rj)

]

with

Rkj =
N−1∑
j=0

ei(ω−ω0
D−kωb)tj [1− ei(ω−ω0

D−kωb)(tj+1−tj)]

1− ei(ω−ω0
D−kωb)τb

(121)

Ct(r0, θ) =
ω − ω̂∗

ω − ω0
D − kωb

J2
0 =

∑
ν

Ct
νr

0eiνθ (122)

Kkpν =
1

2π

∫ θ+

θ−

dθ

b(r, θ)
√

1− Λ
b(r,θ)

e−i[(nq(r0)−p−ν)θ+W−kωbt̂] (123)
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âkm =
1

τb

∫ τb/2

−τb/2
dt̂′ei[S0

mθ′+W ′+kωbt̂
′] (124)

It should be noted that contrary to the perturbed potentials φ and ψ, the gyro-expression

J0 and the equilibrium quantities F0, ω̄d and ω̂∗ are assumed to stay constant in the radial

coordinate along a particle orbit.

4.4.3 Drifts in the GKM equation

In the GKM equation, an integral of the form∫
ie

vd

ω
· ∇J0hd3v (125)

has to be performed.

Also in the expression for h there is a term proportional to ωd(r) ≡ vd/i · ∇:[
âkmφm(rj)−

(
âkm −

âG
kmω̄d(r)

ω

)
ψm(rj)

]
(126)

Of course, the drift operator entails radial derivatives of ψ and φ. In principle, these

derivatives could be included is the system using a similar procedure as sketched in chapter

4.4.1 for J0. But due to the smallness of ṙ (one order of ε = a/R0 smaller) compared to

θ̇ and ϕ̇, ωd is replaced by ω0
D = ϕ̇− q(r0)θ̇. Finally, line (125) can be rewritten as:(∫ π

−π

dθ

2π
eipθ

∫
iea

vd

ω
· ∇J0hd3v

)trap

= −πe2
av

3
th

∑
m

∑
j

∫ bmax(r)

bmin(r)
dΛ

∫ ∞
0

dY
√

Y
∂F0

∂E

∑
k

∑
ν

·Rkj ·KG
kpν · Ct

ν(r
0) ·

[
âkmφm(rj)−

(
âkm −

âG
kmω̄d(r)

ω

)
ψm(rj)

]
(127)

(∫ π

−π

dθ

2π
eipθ

∫
iea

vd

ω
· ∇J0hd3v

)circ

= −πe2
av

3
th

∑
m

∫ bmin(r)

0
dΛ

∫ ∞
0

dY
√

Y
∂F0

∂E

∑
k

∑
ν

·KG
mkpν · Cc

ν(r
0) ·

[
âkmφm(r)−

(
âkm −

âG
kmω̄d(r)

ω

)
ψm(r)

]
(128)

Now our system of equations is complete consisting of the QN (77) and the GKM (81)

equations together with the integrals (109), (121), (127) and (128).
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5 Numerical Implementation

In this section we describe the structure of the numerical implementation and details of

the methods involved.

For consistency, all FLR-effects at least up to second order are kept. In the GKM equation

(72) the differential terms of fourth order in k⊥% are dropped for simplicity. Their role

has to be investigated in a later version of LIGKA.

As sketched in figure 10, we start from an equilibrium given analytically or numerically.

At present, there exists an interface for the equilibrium code HELENA [48]. Also HAGIS

[40],[41],a Monte-Carlo code in a guiding centre Hamiltonian formulation, usually applied

for non-linear wave-particle interaction, can use HELENA equilibria as input. Before we

start to run LIGKA itself we compute the integrals over the unperturbed particle orbits

with HAGIS based on a certain equilibrium, i.e. we calculate for each m, p, k, r, Y

and Λ the integrals akm, Kmpk, Kpk and the corresponding aG
km, KG

mpk, KG
pk. To be able

to choose the points in velocity space in an advantageous way, i.e.more points near the

trapped-passing boundary, a little piece of code is run, that calls HAGIS iteratively and

thus provides a grid in velocity space on which the required integrals are calculated in a

separate step.

The structure of LIGKA itself is the following one:

• Step 1: reading in or generating an equilibrium (5.1)

• Step 2: computing the coefficients originating from the differential operators of the

GKM equation (5.2)

• Step 3: using Galerkin’s method to set up algebraic equations (5.3)

• Step 4: reading in the kinetic data (5.4)

• Step 5: guessing an eigenvalue, evaluating the velocity space integrals and adding

the result to the coefficients of the differential operators. (5.5)

• Step 6: solving for the eigenvalues of the total matrix (5.6)

• iterating step 5 and 6 till a converged solution is found

When kinetic effects are not needed, step 4 and 5 are skipped, which leads to a linear

dependence on the eigenvalue. In this case, a simple matrix inversion delivers the complete

spectrum.

Now the steps given above are documented in further detail:
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Helena

HAGIS

Mathematica

Analytical
Equilibria

LIGKA

↓

↓

↓
↓

Numerical
Equilibria

Orbit 
Integrals

Operator
Expansion

Eigenvalues,
Eigenfunctions

Trapped-Passing-
Boundary Finder

↓ ↓

↓
Figure 10: Survey of different codes involved

5.1 Equilibrium

In appendix 8.8 a short review is given about the underlying concept of MHD equilibria

and the theoretical framework in the ideal MHD picture. Starting with the balance equa-

tion between pressure and Lorentz force and using Ampere’s law, the Grad-Shafranov

equation is derived. To profit from the existence of nested flux surfaces, as radial coordi-

nate a flux label is chosen. The other two coordinates are chosen such that the field lines

are straight and the toroidal coordinate coincides with the toroidal angle.

The equilibrium code HELENA [48] is employed to solve the Grad-Shafranov equation

numerically and to write out the required profiles and coefficients. This information is

then read in by LIGKA.

In order to provide an analytical description of plasma equilibria like in Qin’s work, we

examine the relation between general 2d geometries in flux coordinate representation and

simpler configurations, namely straight circular Tokamak geometry and concentric circu-

lar Tokamak geometry.
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5.2 Expansion of Differential Operators with Mathematica

To expand the complicated differential operators from the gyrokinetic moment equation

(72) in the geometries from last section, we use an extension package for Mathematica

(GeneralVectorAnalysis), developed by H. Qin ([1], Appendix). This package is a more

general and efficient extension of the standard VectorAnalysis - package supplied by Wol-

fram Research. It uses a differential form representation of vector calculus and allows for

completely general (user-defined) coordinate systems. Also small-parameter-expansions

in the metric coefficients are possible.

Via this computer based analytical tool, all operators are expanded in different geome-

tries. The results can be long and complicated, especially when the metric tensor is

given in the most (for partially orthogonal coordinates) general form (244). However, the

lengthy results can be easily converted to Fortran 90 code by some Unix script. After an

optimised compilation, the read-in and evaluation time for these operators is completely

negligible compared to other program steps.

5.3 Finite Element Method

After applying the projection operator 1/2π
∫ 2π
0 eipθ, the system of coupled differential

equations of second order in radial direction is written in the following form: AQφ
pm AQφ

pm

AJψ
pm AJψ

pm

 φ′′m
ψ′′m

+

 BQφ
pm BQφ

pm

BJψ
pm BJψ

pm

 φ′m
ψ′m

+

 CQφ
pm CQφ

pm

CJψ
pm CJψ

pm

 φm

ψm

 = 0

(129)

To transform this system into an algebraic form, we expand φm(r) and ψm(r) in finite

elements. This method is commonly used and for example described in [46],[47]. As first

step we introduce a partition in radial direction, consisting of N +1 points, including start

and end points. This partition in general can be non-equidistant, but in the present version

of LIGKA only an equidistant mesh is implemented. Consequently, for N + 1 points, we

have N finite elements. In each element the unknown function is approximated by cubic

Hermite polynomials, whose coefficients are determined by four values: the value of the

function itself and its first derivative on both sides of the finite element. If we set up a

vector consisting of these four values and multiply with the Hermite basis functions

{1− 3x2

l2
+

2x3

l3
, x− 2x2

l
+

x3

l2
,
3x2

l2
− 2x3

l3
,
x3

l2
− x2

l
}, (130)

we obtain the solution in form of third order polynomial on a chosen finite element of

length l. We postulate the function and its first derivative to be continuous: thus we end
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up with 4N − 2(N − 1) = 2N + 2 unknowns. For the unique solution of a second order

differential equation one has to choose two constants that in our case are given through

the boundary conditions at the plasma centre and the plasma edge. So the number of

unknowns reduces to 2N . For the whole system with two equations and M poloidal

harmonics, we obtain a 2N · 2 ·M × 2N · 2 ·M matrix. To set up this matrix, we choose

Galerkin’s method: we approximate the solution by

φm(r) =
N∑

j=1

φmjϕj(x), ψm(r) =
N∑

j=1

ψmjϕj(x), (131)

put this expansion into the differential equation and minimise the residual R weighted

with the same expansion functions, i.e. Hermite polynomials (here given just for φ):∫
plasma

dxR(x)ϕk(x) = 0 (132)

with

R = Apm[
N∑

j=1

φmjϕj(x)]′′ + Bpm[
N∑

j=1

φmjϕj(x)]′ + Cpm

N∑
j=1

φmjϕj(x). (133)

Note the difference between φm and φmj : the first one stands for the potential itself, the

latter for the expansion coefficients in the chosen basis. This expansion leads to a banded

structure of the matrix, as indicated in figure 11.

Since also the coefficients Apm, Bpm and Cpm depend on x, one could think of expanding

them in the same way as φm and ψm. Then the integrations in equation (132) can be

carried out completely analytical, because only third order polynomials have to be inte-

grated. However, this approach requires that the derivatives of Apm, Bpm and Cpm are

known sufficiently accurate. In practise, where the coefficients are given non-analytically

(on a grid), and the derivatives have to be calculated with some numerical method, this

leads to poor convergence (see figure 12).

Instead, we carry out the integrals numerically: cubic splines are employed for the inter-

polation of Apm, Bpm, Cpm, and a Gauss-21-point rule (nag quad 1d gen) for integration.

This procedure results in a convergence rate ∝ l4 − l5 (see figure 13), which was e.g. also

found in [48].

As boundary conditions we impose that the perturbed potentials for all poloidal harmon-

ics vanish at the the plasma centre and at the outermost flux surface. This is introduced

in the system by deleting the first column and the first row as well as the last-but-one

column and row for each m-block (see figure 11).

The finite element implementation is tested for a pure MHD case (chapter 6.1.2): since
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Figure 11: graphical representation of the complete system for two coupled poloidal modes

there φ = ψ, only one equation for one unknown potential has to be solved. Furthermore,

this equation is then linear in the eigenvalue:

Mφmj + λMλφm,j = 0 → M−1
λ Mφmj + λIφmj = 0 (134)

We use a standard NAG routine (nag nsym eig all) to solve for the eigenvalues and eigen-

functions. For 100 finite elements and one poloidal mode (straight tokamak case) the total

time for setting up the matrix and solving it is approx. 10 seconds on a single processor

of a 600 MHz Linux machine.
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Figure 12: Convergence rates of the growth rate and its relative error for an unstable internal
kink mode: here the coefficients Apm, Bpm and Cpm are also expanded in Hermite
polynomials and the finite element integration is carried out analytically. The poor
convergence is due to the error of the first derivatives of the coefficients calculated
with a Nag spline routine.
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Figure 13: Numerical integration of the finite element integrals leads to much better convergence.
The slower convergence for low N - numbers is due to the structure of the mode, i.e.
the step-function-like behaviour at the q = 1 surface.

5.4 Calculating Kinetic Data

Due to various drift effects caused by curvature and inhomogeneity of the equilibrium

magnetic field the particle orbits can be classified into two main types:

• Trapped particles lack a sufficient high parallel energy to penetrate into the high field

region and are consequently caught on the outer side of a tokamak. They experience

two reflections per orbit and the bounce-time between these mirror points becomes

infinitely long when a particle just hits the tapped-passing boundary.
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• Passing particles have enough parallel energy to follow the helical field lines. Since

the drift for particles travelling in the direction of the current is the same as for

particles with opposite orientation, one has to distinguish between co- and counter

passing particles.

Figure 14: Poloidal projections of different orbits for a 3.5 MeV α-particle with an average
radial position s = 0.7: on the left a selection of trapped orbits, on the right the two
most extreme (i.e. λ = 1 and λ ≈ λc) passing orbits, generated by HAGIS and the
TPB-Finder (chapter 5.4.1)

Besides these standard particle orbits, as shown in figure 14, there are also more exotic

orbits like pinch (when an electrical field is added) or potato orbits (figure 15) that can

play an important role, especially for α-particles. A detailed overview of these different

regimes is given in [56] or [40].

Although there are useful analytical approximations for particle orbits, general equilib-

rium geometry and broad banana orbits require a numerical treatment. For this task, we

use a code developed by S.D. Pinches, called HAGIS [40], [41]. HAGIS employs a Hamil-

tonian guiding centre description for the particle motion in an electromagnetic field, that

is represented by superposition of a background axisymmetric magnetic equilibrium field

(supplied by a various equilibrium codes including also HELENA) and an electromagnetic

perturbation, calculated by an MHD stability code. It evolves the particle distribution in

time and accounts for nonlinear particle-wave interaction.
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Figure 15: At high energies, the drifts are so large that particles close to the axis travel on
potato-like orbits - here for a 3.5 MeV particle with an average orbit of s = 0.4 and
Λ = 0.96938. Although the poloidal projection of the orbit (up left) looks like a
passing one, v‖ changes sign. Thus the particle is toroidally trapped.

For our purposes, i.e. for finding the trapped-passing boundary and for calculating orbit

integrals along the unperturbed path, the wave interaction part is turned off.

5.4.1 Trapped-Passing-Boundary Finder (TPB-Finder)

As can be seen in figure 16, there is a discontinuity λc in the in the pitch angle - energy

plane, that has to be resolved in an adequate way. For this purpose a little code was
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developed that determines the trapped- passing boundary: starting from an analytical

guess, 10 particles with a constant energy are iteratively loaded into the Λ-discontinuity.

Clearly, this improves the resolution by one order of magnitude at each step.

This simple scheme is complicated by the following requirement: to import kinetic data

into LIGKA, it has to be given on the same radial grid as used in LIGKA. I.e., for a

certain grid point ri we have to find all that particles, whose radial position averaged

over its orbit is ri. Only then it is guaranteed that the calculated quantities are smooth

enough to be used in the velocity space integration.

Λ
Energy [keV]

   [normalized]b,tf

Figure 16: fb,t for hydrogen ions, normalised to the Alfvén frequency. The trapped frequencies
were given a negative sign to ensure smooth splines

Consequently there has to be performed an ’optimisation’ resp. ’refinement’ for two quan-

tities: pitch angle and averaged radial orbit position. Fortunately, there is one fact that

helps to create appropriate ’shifting’-rules: if a trapped particle is moved in positive radial

direction, i.e. in the lower field region, and its pitch angle and energy are kept constant,

it will not change into a passing particle, since the maximum magnetic field on the shifted
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path is certainly higher. The opposite rule is true for circulating particles.

Trapped particles are launched at their mirror points, i.e. at the tip of the banana [42].

This trick speeds up the radial optimisation considerably, because the particle spends

most of the bounce time near the mirror points whose radial position consequently is usu-

ally close to the particle’s average radial position. Of course, this procedure fails whenever

non standard orbits are involved. That’s why for particles with high energy near the axis

different rules and procedures have to be used.

Another issue would be particle losses. But since the inclusion of this phenomenon would

complicate the problem substantially, it is not taken into account in this work.

For a prescribed accuracy of λtrapped − λpassing < 0.002 and r0 − 〈r〉 < 0.01 approxi-

mately 15 iterations are required.

After the discontinuity is well known, the final grid on which the integrations are per-

formed is set up where the λ-grid-points are accumulated exponentially around λc. Usually

20 points in λ and 15 points in energy are sufficient, to ensure smooth splines in LIGKA.

As an example, fb,t, calculated by the methods described above, is shown in figure 16.

5.4.2 Particle Orbit Integrals

Once the grid is set up, the quantities akm, Kmpk , Kpk and the corresponding aG
km, KG

mpk,

KG
pk are computed. The particle is followed twice around its orbit: on the first orbit, the

average quantities ωb,t and ω0
D needed for the propagator are determined. On the second

orbit the integration is carried out, using a trapezoidal rule. The time step is chosen such

that the relative error is less then 10−3, which can easily be checked by integrating simple

functions like constants or sin(θ). The results will be discussed in chapter 6.2.

To be able to implement the trapped-particle-integration scheme derived in section 4.4.2,

the time point when a particle changes from one radial bin in the neighbouring one has

to be known. This information is also written out on the second orbit.

5.5 Velocity Space Integrals

After the orbit integral information is calculated with HAGIS and read in by LIGKA,

the integration over the velocity space can be carried out. Since all the ’input’ quantities

exhibit a smooth behaviour (see 2d plots in the result section), they can be splined without

numerical dangers allowing in principle an arbitrary number of integrations points.

Clearly, the resonance denominator makes the energy-pitch-angle-integration difficult:
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1

ω − ωD − kωb

resp.
1

ω2 − (S0
m + k)2ω2

t

(135)

If ω is pure real then the denominator can become exactly zero. In that case the principal

value integral is calculated with a numerical library routine from the CERNLIB [62].

This routine also calculates the imaginary residual, which is then the source of the kinetic

damping in the system.

circulating velocity space integrand

ar
bi

tr
ar

y 
un

its

Energy
pitch angle

tpb↑

0

Figure 17: An example for the circulating part of the velocity space integrand for ωr/γ ∼ 150
which is a typical ratio for an unstable TAE mode, m = p = 3, k = 0

For complex ω, real and imaginary parts are integrated separately. One has to make sure

that for smaller Im[ω], a bigger number of integration points has to be chosen. Ideal for

this kind of problem would be an adaptive-grid-integration method (as used for a similar

problem in [56]). Here, so far, only a standard-Gauss-technique is applied, which should

be changed in the future. To check the validity of the present scheme, a convergence test

has been carried out: with k ranging from −5 to 5, the kinetic contribution to the the

electromagnetic part of the GKM moment equation is calculated with different resolutions

54



Energy pitch angle

ar
bi

tr
ar

y 
un

its

trapped velocity space integrand 

0
tpb↑

Figure 18: An example for the trapped part of the velocity space integrand for ωr/γ ∼ 150 which
is a typical ratio for an unstable TAE mode; here ωD separates the resonance region
into two parts, m = p = 3, k = 1

in the Λ-energy-plane (figure 19). There are two ’extreme’ cases considered: if there is one

dominant contribution for a single k-value, which often means that the resonance lies in

the ’flat’ region of the integrand i.e. not near or in the TP-boundary (as shown in figures

17, 18), then the requirements on the resolution are moderate: already a 40×40 grid gives

an error less than 5%. In contrast, when there are many small contributions including

resonances near the TP-boundary (what happens quite often, since there ωb,t becomes

very small and ωD-resonances can occur), the effort has to be more than doubled to stay

under the 5% margin. This problem has also been pointed out in [50]. But since the

contributions from this second case are usually one order of magnitude smaller than those

from the first case, a bigger error can be accepted. Nevertheless, a detailed investigation

(benchmarking with CAS3d-K) of this problem is planned in the next future.

As a compromise - justified by figure 19 - in this work usually (50− 70)2-grid points are

chosen.

To estimate the CPU time needed, one has to count the number of integrals that have to
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Figure 19: relative error as function of the number of grid points (logarithmic) in the Λ-energy
plane : the blue dots refer to a simpler integrand, the red dots to more complicated
one (details in the text)

be performed for each guess of ω: for 100 radial grid points, 5 harmonics (p×m = 25),

two equations (QN+GKM), two variables (φ and ψ), 2×2 (complex, circulating-trapped)

and 3 species, 120000 integrations have to be carried out. For a 50 × 50 grid, a typical

∼ 1GHz machine can achieve ∼ 25 integrations per second. On a 20 node cluster this

translates into a total integration time of 4 minutes.

5.6 Eigenvalue Solver

Due to the presence of the eigenvalue within the kinetic integrals, the total problem is

now no longer linear in the eigenvalue. That means, that matrix inversion techniques

can no longer be applied to determine ω. Instead, one has to look for the roots of the

characteristic polynomial:

P(ω) = Det|M | (136)

Since P(ω) depends on ω in very complicated way, it turns out to be too hard to find

the roots of P(ω) directly. Therefore a more efficient algorithm [63] was implemented:

according to its definition, P(ω) can be written a product of the eigenvalues ei(ω) of
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M . Clearly, if an ω is found for which ei(ω) = 0, then also P(ω) = 0. Using this idea

we start with an initial guess, determine the eigenvalues of the matrix and minimise the

smallest ei(ω) iteratively, applying Newton’s method. Depending on the initial guess

(often obtained from a pure MHD calculation), about 10-20 steps are required. The

eigenvalues are determined with the NAG routine (nag nsym eig all). For a matrix with

the dimensions (5× 100× 2× 2 = 2000)2 this takes about 8 minutes of CPU time on a

∼ 1GHz machine.

57



6 Results

6.1 MHD Test Cases

6.1.1 Cylinder Geometry

The shear Alfvén mode is one possible solution, ω2 = k2
‖v

2
A, of the dispersion relation

which, for a homogenous plasma, is given by:

(ω2 − k2
‖v

2
A)[ω4 − (v2

s + v2
A)k2ω2 + (kk‖vsvA)2] = 0 (137)

where vA =
√

B2
0/µ0n0m is the Alfvén speed and vs =

√
γP/n0m the sound speed. Some

of its physical properties were discussed in chapter 3.3. As a first simple test for LIGKA,

various Alfvén spectra in cylindrical geometry were reproduced:

• For a homogenous plasma without currents, the spectrum is infinitely degenerate

[33] and the eigenvalue only depends on the parameter k‖ = −n/R0 (with n the

’toroidal’ mode number and R0 the length of the plasma column). For k‖ = −0.5,

ω2/v2
A = 0.25 is reproduced.

• For an inhomogeneous plasma with a density that drops to 0 at the boundary, the

spectrum changes into a continuous one with the range from k to infinity. Of course,

the number of eigenmodes calculated numerically is restricted to the number of finite

elements. Changing this number shows that the results fulfil the requirements for

continuous modes represented by discrete numerics, as defined in ([33], p. 71)

• For an inhomogeneous plasma with a density that drops to a nonzero value at the

boundary, the continuum is bounded by an upper value. For example, choosing

the density profile n(r) = n(0) · (1 − εr2), ε > 0, the spectrum is bounded by

k2
‖ ≥ ω2 ≥ k2

‖/(1 − ε). Figure 20 shows the results for Bz = 1, ε = 0.25, k‖ =

−0.5, ⇒ 0.25 ≥ ω2 ≥ 0.33

• Adding a current along the symmetry axis can cause unstable modes: if the total

current is not too high - to avoid external kink modes - and its radial profile is chosen

properly, the weak internal kink mode appears: using the energy principle, one can

show that for m = 1 the mode is unstable to O(ε2) if q0 < 1/n. The ideal MHD

growth rate can be calculated analytically with the well known formula ([35],[37]),

derived from the energy principle:

γ ≈ −π√
2%µ0|(k ·B)′|rsr3

s

∫ rs

0
drg (138)
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Figure 20: Alfvén Eigenvalue spectrum for an inhomogeneous cylindrical plasma

with

g =
B2

θk
2r2

µr

[
3(nq − 1)2 + 4(nq − 1) +

2µ0r

B2
θ

dp

dr

]
As a numerical test, ‘Case F’ from Gruber’s book [33] p.53 is reproduced: for a

q-profile q(r) = (1 + c2
2r

2)/c1 with c1 = 2/7, c2 = 10/7, m = 1, k = −0.2, Bz = 1,

n(r) = 1 together with the appropriate pressure profile

p(r) =
c2

1

2c2
2

[
1

(1 + c2
2r

2)2
− 1

(1 + c2
2)

2
]

one calculates a squared growth rate (normalised to the square of the Alfvén velocity)

of −5.7 · 10−5 (Gruber: −5.9 · 10−5 ) as the most unstable mode. The remaining

difference might be due to the different physical formulations: ideal MHD solves

equations for a fluid element ξ whereas LIGKA solves for the electrostatic potential.

6.1.2 Straight Tokamak Geometry

By defining k = −n/R0 and Bθ = rB0/R0q(r) one can introduce a toroidal periodicity,

but still keeping all poloidal harmonics decoupled. In this geometry, Qin’s example ([1],

p. 155) is reproduced: for the q- profile together with the appropriate pressure profile

q(r) =
qar

2

1− (1− r2)qa/q0
; −µ0p

′(r) =
B2

zr[2q(r)− rq′(r)]

R2
0q(r)

3

and the parameters q0 = 0.416, qa = 2.5, m = 1, B0 = 4.605 T , R0 = 2.45 m, a = 0.245 m,

n(r) = 4.65 · 1019/m3, the calculated growth rate, 4.122 · 104/s, is very close to the ideal

MHD result for a straight tokamak according to formula (138): 4.552·104/s. It also agrees
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reasonably with Qin’s result 3.717 · 104/s. The eigenfunction and the corresponding q-

profile are shown in figure 21. The minor deviation of LIGKA from KIN2DEM might be

due to the different radial discretisation (cubic Hermite polynomials vs. cubic-B-splines).
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Figure 21: Internal kink mode: eigenfunction and q-profile for 100 radial grid points

6.1.3 Toroidal Geometry

A detailed δW analysis ([38],[1]) shows that in toroidal geometry, the m = 2 component

(that in straight tokamak geometry is stable for n = 1) couples to the m = 1 component

to O(ε) and thus provides a stabilising influence on it.

To demonstrate this, a series of equilibria is chosen where q0 is varied. The dependence of

γ on q0 can be explained as follows: if q0 increases the location of the q = 1-surface (rs)

moves closer to the axis i.e. the plasma part inside rs becomes more and more similar to

a straight tokamak or in other words, the poloidal coupling decreases. Consequently the

growth rate increases. On the other hand the mode becomes stable for q0 → 1 because

this resonant surface moves out of the plasma. Combining these two effects, a γ versus q0

diagram shows a maximum before q0 approaches 1.

For an equilibrium with the parameters B0 = 4.605T , R0 = 2.45m, a = 0.245m, n0 =

4.65 · 1019/m3 and the profiles given in figure 22 a q0-scan has been carried out with

LIGKA and compared with KIN2DEM. The eigenfunctions, which agree very well with

Qin’s results [1], are shown in figure 23. Figure 24 shows a relatively good agreement

between both codes for q0 < 0.95. When the resonant surface comes close to the axis, the

differences grow: since the stability of an internal kink mode in toroidal geometry is of

order O(ε4) (which can be shown in a detailed δW analysis [1]), already minor deviations
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of the profiles near the axis can lead to major changes in the growth rate. To resolve

these differences, a more detailed benchmark would be necessary.

normalised radius

normalised pressure [β/2]

normalised radius

density [m    ]- 3

Figure 22: normalised pressure (left) and density profiles
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Figure 23: Equilibrium q-profile and eigenfunctions of the internal kink mode calculated with
LIGKA
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Figure 24: q0-dependence of the growth rate of an internal kink mode: KIN2DEM results (black
line) and LIGKA results (blue squares)

6.2 Orbit Integral Results

The next step is to ensure that the kinetic contributions to the matrix are set up cor-

rectly. It is also examined under which conditions the analytical formulae in the circular

concentric geometry limit are applicable.

6.2.1 Bounce and Drift Frequency

For ωb,t and ωD the following expressions can be derived from equation (116):

τb =
4R0q(r0)√

Y vth

∫ θ0

0

dθ

b(r0, θ)
√

1− Λ
b(r0,θ)

=
2π

ωb
=

1

fb
(139)

τt =
2R0q(r0)√

Y vth

∫ π

0

dθ

b(r0, θ)
√

1− Λ
b(r0,θ)

=
2π

ωt
=

1

ft
(140)

with r0 as averaged radial position of the particle and

θ0 = arccos(
Λ− 1

ε0
), b(r0, θ) = 1 + ε0 cos(θ), ε0 = r0/R0. (141)

Clearly, these expressions neglect radial drifts along the orbits. For comparison with nu-

merical values, we choose a numerical equilibrium with circular (but shifted) flux surfaces

(I) and another one with an ellipticity of 1.6 (II). Detailed information on these equilibria

can be found in appendix (8.8.4).

In order to obtain smooth splines near and at the trapped-passing boundary, in the fol-

lowing figures −fb is plotted rather than fb itself [42]. This trick works also for 2d splines
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(Λ, energy), as demonstrated in figure 16.

Figures 25 and 26 show that the agreement for fb,t between the analytic formulae and

the numerical solution is very good, even for highly energetic α -particles that have large

drifts. To understand this agreement, we have to examine a particle’s orbit and its veloc-

ity on this orbit (figure 27): the particle’s higher velocity on the outer side of the banana

orbit (the particle runs down a bigger ’magnetic hill’ than on the inner orbit part) is

compensated by the longer distance it has to cover, such that already the times on inner

and outer orbit are relatively close to each other. Their mean value then must be very

close to a ’middle’ orbit without any radial drifts, as described by the analytical formula

for fb,t.

Also the elliptic-case-values match reasonably well, although one starts to see minor de-

viations. Clearly, these deviations would grow, if a non up-down symmetric case would

be considered.
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Figure 25: Circulating/bounce frequency for 28 keV ions (left,dots) and electrons (right,dots)
for a numerical, but still circular equilibrium (I), compared to the analytical formulae
(139,140, solid line)

For ωD = ϕ̇ − q(r0)θ̇, we compare with the following analytical approximation ([18],[1]),

again assuming circular, concentric, unshifted flux surfaces:

ωD =
nq(r0)E

eaB(r0)R0r0

G(θ) (142)

with

G(θ)circ = (1 +
U2

v2
cos θ + 2

q′(r0)r0

q(r0)ε0

U(U − U0)

v2
) (143)

For trapped particles, setting U0 = 0, leads to

G(θ)trapped = (2− Λ

b
) cos θ + 2

q′r0

qε0
(1− Λ

b
), (144)
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Figure 26: Circulating/bounce frequency for 3.5 MeV alpha particles for a numerical circular
(I) equilibrium (left,dots) and an elliptical (II) one (right,dots), compared to the
analytical formulae (139,140, solid line)
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Figure 27: α-particle orbit (left) for equilibrium (I) with E=3.5 MeV and Λ = 0.875 and its
parallel velocity (right): the times between the mirror points t1 and t2 resp.t2 and t′1
are almost equal although the inner and outer orbit trajectory is completely different.

for circulating particles with U0 = R0qωt one obtains:

G(θ)circ = G(θ)trapped − 2
q′r0

qε0
R0qωt

√
1− Λ

b

v
(145)

The comparison for the trapped case (figure 28) shows that even for electrons there are

substantial deviations from the analytical formulae due to the Shafranov shift: although

electrons undergo almost no radial drifts, i.e. they do not leave their flux surfaces, they

feel, for increasing θ-values, a smaller magnetic field than the unshifted analytical equi-

librium assumes. This results in an increasing offset for increasing θ. For α-particles, we

see the same offset effect as for the electrons combined with a substantial difference of the
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drifts on the inner and outer trajectory part.
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Figure 28: Left: ωD versus poloidal angle θ for a E=1keV, Λ = 0.85 trapped electron (dots:
numerical, equilibrium (I); solid: formula (144) ). Right: α-particle with the same
properties as in figure (27)

It is no surprise that there are also substantial deviations for the orbit- averaged drifts,

even for low energy electrons. This is due to the fact that ωD is a difference between the

large quantities ϕ̇ and q(r0)θ̇. Consequently, already very small radial drifts away from

the q(r0)-field line result in deviations from the analytical formula. For α-particles near

the trapped-passing boundary it can be up to a factor of two (figure 29). A 2d plot for

ωD calculated by HAGIS demonstrates its dependence from Λ and energy (figure 30).
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Figure 29: Left: ω0
D versus Λ for 1 keV electrons; blue dots: numerical, equilibrium (I); black

dots: θ-averaged formula (144),(145). Right: trapped α-particles at 3.5MeV, black
dots: analytical; red dots: equilibrium (I), black encircled red dots: elliptic equilib-
rium (II)
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Figure 30: 2d plot for ω0
D, hydrogen ions, equilibrium (I)

6.2.2 Propagator Coefficients

Now the propagator resp.its bounce-expansion-coefficients (see equations 124,123) are

investigated. The analytical expressions are derived in [1] and [43] as:

âk,m =
∫ θ0

0

dθ√
1− Λ/b(θ)

[
cos2 kπ

2
cos Smθ cos kωbt̂ + sin2 kπ

2
sin Smθ sin kωbt̂

]
(146)

âG
k,m =

∫ θ0

0

dθ√
1− Λ/b(θ)

G(θ)

[
cos2 kπ

2
cos Smθ cos kωbt̂ + sin2 kπ

2
sin Smθ sin kωbt̂

]
(147)

Kk,p,m =
∫ π

0

dθ√
1− Λ/b(θ)

cos
[
Spθ − (k + σSm)ωtt̂

]
(148)

KG
k,p,m =

∫ π

0

dθ√
1− Λ/b(θ)

G(θ) cos
[
Spθ − (k + σSm)ωtt̂

]
(149)
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First, we consider the trapped particle case for âkm and Kkpm. Comparison with the

exact numerical results shows (figure 31), that for thermal hydrogen ions these formulae

work quite well. The assumption that the coefficients are energy-independent is therefore

justified. For energetic α-particles (figure 32) that simple approximation starts to become

insufficient: even for an up-down symmetric equilibrium, the presence of W in the prop-

agator starts to play a role. Deviations of 10% and more are the consequence. In that

limit also equation (118)

am,k =
Km,m,k

Lt

(150)

starts to break down, since W enters K with an opposite sign.
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Figure 31: Left: the coefficient âkm for k = 0, m = 1; black line: analytical formula (124), black
dots: 1keV ions, equilibrium (I); green dots: 140 keV ions, equilibrium (I) Right: 3D
plot for â01 versus Λ and energy, hydrogen ions, equilibrium (I)

In figure 32 also the case of a non-up-down-symmetric equilibrium is considered: for

an equilibrium with the same physical parameters as equilibrium (I) but with a JET-like

shaped cross section, the discrepancy to the analytical expression becomes 20% and more.

In that case, one would also expect that the imaginary part of the coefficients starts to

play a role due to the sin-contribution in the exponential factor. However, numerical

integration shows that the maximum values of Im[âkm] and Im[K̂kp] are at least one order

of magnitude smaller than their real parts for any m, p and k. Therefore they are not

taken into account in this implementation.
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Figure 32: Left: the coefficients âkm and Kkp for k = 0, m = 1, 3.5 MeV α-particles ; black
line: analytical formula (146), pink diamonds: â01 ; red dots: K01, equilibrium (I);
Right: the same quantities as on the left, but here for a non-up-down-symmetric
equilibrium;

Now integrals including ωD are examined. As we can expect from the discussion of ωD

above, Figure 33 shows substantial differences between numerical results and analytical

approximation. These differences again arise mainly due to the Shafranov shift. The

effect of W can also be observed, especially for the 3.5 MeV α-particles.
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Figure 33: Left: âG
km for 1 keV (black dots) and 140 keV (green dots), k = 0, m = 1, black

line: formula (147) Right: the coefficients âG
km (pink diamond) and KG

kp ( red dots)
for k = 0, m = 1, 3.5 MeV α-particles, equilibrium (I)

The discussion above could now be repeated for the circulating-particle-case. But since

there is no new physics in such a discussion and the radial drifts are at least two times
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smaller than for trapped particles, a detailed discussion is not carried out here.

From this discussion the conclusion can be drawn that the analytical formulae for circular

concentric geometry (that are used inter alia in KIN2DEM) are no longer applicable

when realistically shaped equilibria are considered. The higher the energy of the particle

is and the nearer one approaches the trapped-passing boundary the larger become the

deviations between numerical calculation and analytical approximation. The Shafranov

shift changes especially all those integrals (up to 50%) that involve ω0
D. Elliptic and

asymmetric equilibria reinforce this trend. Therefore, the use of the numerical orbit

integration results (obtained with HAGIS) in LIGKA is an indispensable component for

the accurate treatment of general 2d tokamak geometries.

6.3 Internal Kink Mode

As one possible application of LIGKA, in this section the kinetic modifications of the

internal kink mode are examined. As discussed in section 6.1.3, the internal kink exhibits

only relatively small MHD growth rates e.g. O(ε2) smaller than the external kink. How-

ever, the so called ‘fishbone’ and ‘sawtooth’ modes in today’s tokamaks that both have a

(m=1,n=1) kink structure, cause considerable problems due to their interaction with fast

ions due to external heating. As possible future applications of LIGKA, these modes are

discussed in the outlook.

Here, a similar example as investigated in section 6.1.3 is chosen: for the same profiles

and parameters, but now based on a numerical HELENA equilibrium, the case q0 = 0.85

is considered. The ideal MHD growth rate calculated by LIGKA γ = 4.36 · 104s−1 is

very close to the CASTOR result γ = 4.40 · 104s−1. Now the kinetic influence of the

background particles is studied:

For circulating particles the important factor within the kinetic integrals is:

(ω − ω̂∗)ω

ω2 − (S0
m + k)2ω2

t

(151)

The equilibrium’s mean temperature is ∼ 30keV. This translates into an ωt ∼ 8 · 105s−1

for ions and ωt ∼ 3 · 107s−1 for electrons. Since the typical mode frequency of an internal

kink with the parameters above is ∼ 1 · 105s−1, the denominator of equation (151) can

become zero if k ≈ −S0
m = m− nq(r). This is only possible in very narrow regions near

a resonant surface. Therefore, circulating particles cannot modify the ideal MHD picture

significantly.
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For trapped particles this changes: the resonance denominator of the expression

ω − ω̂∗
ω − ω0

D − kωb
, (152)

can become close to zero for two different reasons: firstly, for k = 1 the bounce frequency

ωb ∼ 2.5 · 105s−1 for ions can coincide with the mode frequency. Secondly, for k = 0 the

magnetic drift ω0
D ∼ 8 · 104s−1 for ions can cause a resonant contribution from expression

(152). The trapped electrons’ frequencies are still too high to fulfil the first resonance

condition, but the k = 0 resonance can be matched since ω0
D,ions ∼ ω0

D,el ∼ ω.

Also the diamagnetic drift represented by ω̂∗ plays a role. For ions (where ω̂∗ > 0), it

can reduce the nominator significantly (or even make it zero), resulting in a stabilising

influence on the mode’s growth rate.

This theoretical discussion is verified by numerical results: as a first step, only circulating

contributions are switched on. The resulting growth rate, γ = 4.38 · 104s−1, Re(ω) =

0.13 ·104s−1, deviates only slightly from the MHD case (γ = 4.40 ·104s−1, Re(ω) ∼ 10s−1),

and also the eigenfunctions stay almost the same (see figure 34). The real part of ω raises

(for the ideal MHD case it should be exactly zero; the small, non-zero result of LIGKA is

purely numerical, as in other ideal MHD codes, due to discretisation errors) but stays at

a low level compared to the growth rate.

When trapped particles are taken into account, but their diamagnetic drift ω̂∗ is set

to zero, the growth rate increases to γ = 5.65 · 104s−1, and a significant raise in the

real frequency (Re(ω) = 8.20 · 104s−1) is found. When the diamagnetic drift terms are

switched on, γ goes down to 5.11 · 104s−1, but the real frequency stays approximately

on its previous level Re(ω) = 8.16 · 104s−1. Now the dominant eigenfunctions (figure 35)

change their structure: the electromagnetic potential ψ becomes larger and broader than

the electrostatic potential φ. This broadening can be attributed to kinetic effects that

smooth out the resonant surface. A similar behaviour was also found by Qin [1].

However, the eigenfunctions show that a grid refinement in the radial coordinate at the

q = 1 surface is desirable to resolve the fine structured physics at this thin layer. An

improvement of LIGKA in that respect is planned for the future.
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Figure 34: Electrostatic (blue) and electromagnetic(black) potential of the m = 1 component of
an unstable kink mode for q0 = 0.85 and only circulating particles.
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Figure 35: Electrostatic (blue) and electromagnetic(black) potential of the m = 1 component of
an unstable kink mode for q0 = 0.85 with trapped particles and ω̂∗ switched on
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6.4 Toroidal Alfvén Eigenmodes

As another application case, the Toroidal Alfvén Eigenmode (TAE) is investigated.

This mode has caused great interest because of its possible danger for the stability of a

burning Tokamak plasma. The first comprehensive description of TAE’s can be found

in [54], where it was shown analytically and numerically how toroidal geometry breaks

up the continuous Alfvén spectra, generates gaps and permits global modes within these

gaps. In the pure MHD picture these global modes are stable and therefore not dangerous

for plasma stability.

To understand why TAE modes cannot exist in slab or cylindrical plasmas, an effect called

continuum damping has to be investigated: a shear Alfvén wave package, travelling in an

inhomogeneous plasma always hits a surface located at r = r0 where the Alfvén resonance

condition ω = k‖vA(r) is fulfilled. Here, in the vicinity of r0, the shear Alfvén waves be-

come dispersive, since 2π/k⊥ becomes small (consequence of the dispersion relation (137))

and thus comparable to the ion gyro radius: in that limit, the ions do not follow the field

lines any longer, since the perturbing field changes their orbit significantly. In contrast,

the electrons due to their smaller gyro-radius stay on the field lines producing charge sep-

aration. This effects breaks down the ideal MHD model and the continuous spectrum is

replaced by a discrete spectrum with regular eigenfunctions, called KAW (kinetic Alfvén

waves) [69][70]. Near r0, the incident shear wave strongly couples to the KAW, resulting

in a modified dispersion relation where ∂ω/∂k⊥ 6= 0. Consequently, each slice of the wave

packet is scattered at a different r0 in a different direction. This leads to an effective

damping of the propagating wave.

In the presence of gaps, where there are no resonant surfaces, damping is missing. There-

fore a wave excited by some driving mechanism can grow within the gap and can become

unstable. One possible driving mechanism are energetic particles whose bounce resp.

passing frequency coincides with a gap. The free energy of the particles can excite a TAE

and drive it unstable. In return, a TAE also transfers back energy to the particles causing

a change in the fast ion distribution function leading to a high particle transport or to

particle losses.

To explain its MHD-features (for the first time described in [54]) we start with a spectrum

of the shear Alfvén mode in tokamak geometry for different poloidal mode numbers. Since

the solution of the dispersion relation in that case is approximately given by

k‖ =
1

R0
(n− m

q(r)
) (153)
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it is easy to see that branches for different values of m can intersect, dependent on the

specific form of q(r): if all coupling terms are turned off, one obtains a spectrum as shown

in figure 36. If now coupling terms are turned on, the degeneracy of the branches at the

Alfvén Continuum - decoupled

m=0

m=1

m=2m=3

m=4

m=5

r[m]

ω /ω22
A

Figure 36: Decoupled Alfvén spectrum: due to the q- dependence of k‖, curves for different m
number can intersect

intersection points is removed. Physically, this phenomenon can be understood in analogy

to the band structure of the electron spectrum in the presence of a periodic lattice of ions

in a crystal. Bragg reflections with the ions cause standing electron waves with two main

phases with respect to the lattice: one phase whose corresponding wave function (resp.

its square) is maximal between the ions and one that is maximal at the ions. Since the

total energy for an electron being localised near an ion is lower than in between the ions,

two energy bands exist with a typical gap size of a few eV for a lattice with ∼ 5Å distance

between the ions.

In a tokamak, the periodicity of the magnetic field in the poloidal coordinate induces the

coupling. The two ’bands’ correspond to a localisation of the wave either in the ’good’ or

’bad’ curvature region (’even’ and ’odd’ mode, see figure 38). The radial location of the

gaps can be determined by setting

k‖m + k‖m+1 = 0 (154)
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which results in:

q(r0) =
m + 1/2

n
(155)

The width of the gap is approximately given by [1]:

∆ =
4n2r0/R0

(r2
0/R

2
0 − 1)(2m + 1)2

∼ O(ε) (156)

It can be shown [54] that for higher order coupling the gaps are of order O(ε2).

All these features are obtained with LIGKA in the MHD limit: for an analytical circular

equilibrium, we firstly reproduced the decoupled spectrum with crossing branches for dif-

ferent m numbers (see figure 36). Furthermore, switching on the coupling terms produces

gaps at the predicted r0 and with the right gap sizes (see figure 37).

2ω /ω2
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m=4

Alfvén Continuum - decoupled 

r [m]

ω /ω 22
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Alfven Continuum - coupled

r [m]

q
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Figure 37: Poloidal mode coupling between m = 2 and m = 3 resp. m = 4 modes: the radial
position at the gap r0 agrees with formula (155) and the gap has a size of ≈ 0.1 (2-3
coupling) as predicted with formula (156)

A benchmark with CASTOR for numerical equilibria was also done. For a series of equi-

libria - shape of equilibrium (I) (appendix 8.8.4) with q0 = 1.05, a = 0.9m, B0 = 5T,

n(ψ) = n0 = 5 ·1019m−3 - where R0 (i.e. the aspect ratio) was varied between 3m and 5m,

the mode frequencies of the even and odd mode are compared: figure 39 shows perfect

agreement between the mode frequencies calculated with CASTOR [48] and LIGKA in

the MHD limit. Also the mode structures, shown in figure 40 for the case R0 = 4m are

very similar to each other. The difference for the m = 3 component might be due to the
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fundamental difference of the models in CASTOR and LIGKA. However, KIN2DEM [1]

shows the same mode ratio as LIGKA.
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Figure 38: Eigenfunctions of a TAE mode calculated by LIGKA; even(left) and odd (right) mode
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Figure 39: Left picture: Mode frequency comparison between CASTOR (black diamonds) and
LIGKA (blue squares) for the even (lower line) and odd (upper line) TAE gap mode
(m = 2/3). For three equilibria with different R0 and a fixed minor radius (a = 0.9)
the gap size (right picture) scales linearly with r0/R0 as predicted by formula 156.

Now TAE modes in the elliptic equilibrium (II) are examined. Ellipticity changes the gap

ordering described above. The reason for this is the presence of higher order harmonics in

the equilibrium quantities: in the circular case the magnitudes of the n-th order coupling

terms behave like O(ε)n (asymptotic decoupling). In the elliptic case, this ordering is not

valid any more. The example in figure 41 shows that a strong coupling between the m = 2
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Figure 40: Eigenfunctions of the TAE gap mode, LIGKA vs. CASTOR

and m = 4 harmonics takes place resulting in an even more extended gap than the 2/3

gap. ( Of course, this is also due to a bigger r0/R0, since the intersection point lies at a

larger r0.)
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Figure 41: For an elliptic equilibrium, there is effective coupling also for non-neighbouring
modes: here between the m = 2 and m = 4 branch.
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Now kinetic modifications of the TAE mode are investigated. In order to do so a popula-

tion of superthermal Maxwellian hydrogen ions is added to the system. The parameters

for this third species are chosen to be:

phot = p(0)e−ψ/0.09 (157)

with a constant temperature profile Th. Following Qin’s choice [1] for the temperature of

the hot ions at the magnetic axis, vth/hot =
√

2Thot/0/m is varied over the interval

0.5 < vth/hot/vA < 1.5, (158)

and the poloidal βhot/0 = 2µ0phot/0/Bθ/a at the magnetic axis is chosen as 1. The back-

ground temperature is set to:

Ti = Te =
1

2
(1− ψ)2keV (159)

Again equilibrium (I) (appendix 8.8.4) is chosen with q0 = 1.05, a = 0.9m, B0 = 5T,

n(ψ) = n0 = 5 · 1019m−3 and R0 = 4m.

Before discussing the numerical results, an overview of driving and damping effects for

TAE modes is given. The most important term for driving and damping is the expression

ω − ω̂∗
ω − ω0

D − kωb
, (160)

derived in chapter 4.4. The term containing ω̂∗, that was defined as

ω̂∗ = −b×∇F0

ieB ∂F0

∂E

· ∇ (161)

represents the free energy available to the whole system due to the spatial gradients of the

distribution function. Since in our example the choice of phot and Thot define a relatively

peaked nhot and F0/hot, one expects a strong destabilisation of the TAE mode. This is also

due to the fact that the gap-mode frequency (1.0 · 106 s−1, see figure 39) is in the range of

the bounce frequency of the fast ions which is also ∼ 1 ·106 s−1. Thus resonances between

fast particles and the gap mode can occur for the k = 1 harmonic which is mathematically

described by a small (or even vanishing) denominator in formula (160). This process is

called inverse Landau damping.

The term proportional to ω describes the ‘usual’ Landau damping and is therefore stabil-

ising.

There is another damping effect, called ‘radiative’ damping [71], originating from FLR-

effects. This phenomenon is caused by the small coupling between TAE modes and KAW
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within the gap. The excited KAWs carry away energy from the gap region and therefore

stabilise the TAE mode.

Of course, there is also damping due to the background: especially the trapped electrons

(Te = 0.5keV ) can interact with the mode: for k = 0 the trapped electrons’ magnetic

drift frequency ω0
D is around 1 · 106 causing resonance due to expression (160). Since ωb

(2 · 106) and ωt (4 · 106) are too high compared to the mode frequency, k = ±1 resonances

are excluded. For background ions, only higher harmonics in the bounce frequency can

cause damping. However, in our example, the passing-ion frequency is too small (1 · 105)

to play a significant role.

As a last point, finite banana orbit width effects (∆b) are investigated. It was shown in

[72] and [73] that for increasing ∆b, the growth rate saturates and decreases substantially

when ∆b becomes larger than the typical radial mode width rm/m. In our example,

rm/m ≈ 0.25a and ∆b/a for 1 MeV hydrogen ions is 0.4a. Therefore, when finite orbit

widths are taken into account, stabilisation can be expected.

Now the numerical results shown in figure 42 are discussed: the growth rate increases with

the fast particle velocity and the real part of the frequency is shifted. The results obtained
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Figure 42: Growth rate (left) and frequency shift (right) of the (m=2,3) TAE mode: KIN2DEM
(black line) and CAS3D (red diamonds) vs. LIGKA with (green triangles) and with-
out (black squares) finite orbit width effects

with LIGKA agree reasonably well with other codes which are capable of dealing with

fast particle effects in different approximations: the red diamonds in figure 42 represent

CAS3D3K results [50]. CAS3D3K is a perturbative kinetic MHD code based on CAS3D

[52] which is a linear, ideal, 3-dimensional MHD code, here applied in the 2d tokamak
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geometry limit. The fast particle treatment of CAS3D3K is based on a drift kinetic

description with zero banana orbit width. When the banana width is also neglected in

LIGKA (black squares), an acceptable agreement of both codes is found. The remaining

discrepancy can be attributed to the fact that FLR-effects are missing in CAS3D3K. This

is in agreement with the discussion above. When the finite orbit widths are switched on

in LIGKA (green triangles), the growth rate decreases considerably, especially for higher

vth/hot. It is even smaller than predicted by KIN2DEM (solid line), which uses a Taylor

expansion in the banana width. This also agrees with the fact that for large banana widths,

the Taylor expansion becomes inaccurate and underestimates the stabilising influence.
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Figure 43: Electrostatic (blue) and electromagnetic (black) potential of the m = 2 component
of an instable TAE mode (vth/hot = 0.5va)

The eigenfunctions for the m = 2-component are shown in figure 43: the electrostatic

(black) and electromagnetic (blue) potential are now different, which is mainly the effect

of the quasi-neutrality equation. The mode is more localised at the resonant layer r0 than

the pure MHD mode (figure 40) which can be attributed to the damping due to large

banana orbit widths. The small step in the eigenfunctions might be due to the coupling

to the KAWs. Further detailed investigations of this coupling between TAEs and KAWs,

(i.e. the radiation damping) have to be carried out in the future.
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7 Conclusions and Outlook

In this dissertation a powerful tool for investigating the influence of superthermal particles

on the linear MHD stability of fusion plasmas has been developed. It was shown that it

is able to reproduce various ideal MHD results and that it can treat problems where large

scale MHD modes are modified by kinetic effects. The developed code LIGKA (Linear

Gyrokinetic Shear Alfvén Physics) is based on a gyrokinetic MHD model developed by H.

Qin [1]. Compared to this original model and the code KIN2DEM [1], several significant

improvements both in theory and in the numerical implementation have been performed.

With these improvements, summed up below in more detail, LIGKA is a more compre-

hensive and accurate code, as far as large scale kinetic MHD problems are concerned,

than other implementations, namely CASTOR-K [56] (which treats the particle orbits

exactly, but uses a hybrid, perturbative MHD model without finite Larmor radius effects

of the background plasma) or PENN [66] (which is based on a gyrokinetic dielectric tensor

formulation but with some restricitons for large banana orbits).

On the theory side, H. Qin’s original model was extended in three areas: in order to take

into account all finite Larmor radius contributions (which is important for an accurate

prediction of damping rates), the gyro-terms were also kept within the kinetic integrals of

the gyrokinetic moment equation; expressions for non-Maxwellian distribution functions

(slowing down) were derived; the Taylor expansion for the banana orbit width was re-

placed by a more accurate expression.

On the numerical side, several new issues compared to other codes were implemented.

The most important improvements are:

• The system of equations is coded for general 2d tokamak geometry that allows realis-

tic tokamak equilibria instead of a simple unshifted circular model as in KIN2DEM.

For that a MATHEMATICA based analytical expansion for the differential opera-

tors was used. An interface for the numerical equilibrium code HELENA was im-

plemented to allow realistically shaped equilibria and the inclusion of the Shafranov

shift.

• To take into account the realistic geometry also for the unperturbed particle orbits,

the drift kinetic code HAGIS is used to evaluate all the quantities needed by LIGKA.

For an accurate resolution near the trapped/passing boundary a TPB-finding tool

was developed.

• In a linear model, the discretisation in the radial direction and the orbit integration

can be exchanged. Providing the necessary information with HAGIS, large banana
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widths for trapped ions can be taken into account more accurately than previous

implementations.

In the MHD limit, LIGKA was successfully benchmarked against analytical formulae and

other MHD codes: the basic features of shear Alfvén waves and the internal kink mode

were reproduced both in cylindrical and toroidal tokamak geometry.

A detailed analysis of particle orbits and their contributions to the kinetic integrals via

the propagator coefficients was carried out. It was shown that even when the flux sur-

faces are circular, for highly energetic particles the analytical formulae (that are e.g. used

in KIN2DEM) become insufficient, especially when drifts in the presence of shifted flux

surfaces are involved. Elliptic and non-up-down-symmetric poloidal cross sections defi-

nitely require numerical treatment. There are also substantial changes - especially near

the trapped/passing boundary - when non-standard orbits (e.g. potato orbits) are con-

sidered.

As an application, the kinetic modifications of the internal kink mode were examined.

It was found that circulating particles do not change the ideal MHD result significantly

because no resonances between mode frequency and periodic particle motion are present.

Trapped particles destabilise the mode whereas switching on the diamagnetic drift terms

has a stabilising influence.

Finally, TAE modes were investigated with LIGKA. All MHD features of these mode

were recovered: the break up of the continuum, the location of the gap, the gap size

and the eigenfunctions are in perfect agreement with analytic theory and other MHD

codes. Then the driving and damping effects due to energetic particles and the back-

ground plasma were discussed. It was shown, in agreement with other numerical results,

that the TAEs can be destabilised by a sufficiently hot superthermal ion population. The

inclusion of a finite banana orbit width was found to be stabilising, as predicted by ear-

lier investigations. Nevertheless, none of the previous calculations was based on such a

comprehensive implementation as realised in LIGKA. Therefore, the stabilising effect of

large orbit widths was found to be underestimated so far.

Outlook

Hand in hand with further numerical improvement, e.g. for the resonance integrals or

the eigenvalue finder (parallelisation), in the future numerous physical questions can be

addressed:

As indicated in the TAE-section, the coupling of TAEs to the KAWs should be examined

in further detail. This coupling, i.e. the radiation damping, has been claimed to have a
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strong stabilising effect: based on PENN calculations [66], all TAE modes in conventional

tokamak scenarios (monotonic current profile) with separatrix equilibria in ITER should

be stable [75]. Since these predictions are the only full gyrokinetic results so far, a sys-

tematic benchmark with the PENN code for TAE stability is planned. This is especially

interesting, because PENN uses a dielectric tensor formulation with finite Larmor radius

effects up to second order and a simple approximation for the banana orbits. Therefore

also more insight in the different theoretical models and their range of validity can be won.

Another issue is a detailed investigation of kinetic effects on the (1,1) kink mode. One

possible application is the so-called ‘fishbone’ mode in today’s tokamas. It has been found

that fast ions, originating e.g. from the injection of high energy neutral beams, can desta-

bilise the plasma by interacting with the internal kink mode resulting in an energy and

confinement loss. Detected by soft-X-rays or magnetic coils, rapid bursts with a typical

time interval of ∼ 10ms form the typical ‘fishbone’ pattern. The mechanism responsible

for that mode was found to be a resonance between the kink mode and the toroidal pre-

cession frequency of the banana tips [68]. The mode transfers its energy to the particles

and thus its frequency (∼ 50kHz) decreases. Now lower energy particles are in resonance,

that before could not interact with the mode. Once all resonant particles are redistributed

(or even thrown out of the plasma), the mode ‘switches back’ to its original frequency

resonating again with newly deposited fast particles and the process restarts.

Besides fishbones, another (1,1) instability activity, called ‘sawtooth instability’, is promi-

nent in tokamak plasmas. Sawteeth are magnetic reconnection events which flatten the

temperature profile inside the q = 1 surface and prevent the current profile from strong

central peaking. Fast particles have been found to stabilise these sawteeth due to the

ω∗-mechanism. This effect can make sawteeth quite rare but more dramatic events.

From these examples it becomes obvious that depending on the particular conditions, that

fast ions can be either stabilising or destabilising. In order to understand this process in

more detail, also the non-linear interaction between MHD modes and fast particles in-

cluding kineticly modified eigenfunctions is of great interest. So far, only the pure MHD

eigenfuctions were used to carry out these non-linear calculations.

In order to use the capability of LIGKA for this problem, the following interplay of

codes is planned (see figure 44): after the mode has significantly changed the fast parti-

cles’ distribution function (calculated with HAGIS), a correction of the eigenfunctions is

obtained by LIGKA. Feeding this result back into HAGIS, again the non-linear particle-

wave-interaction evolves the distribution function. From this iterative procedure, a more
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comprehensive understanding of the non-termal ions’ stabilising or destabilising influence

on the (1,1) kink mode can be expected.

Helena

HAGIS

Mathematica

HAGIS

Analytical
Equilibria

LIGKA
↓

↓
↓

↓

Numerical
Equilibria

Orbit 
Integrals

Operator
Expansion

Eigenvalues,
Eigenfunctions

↓

↓

Particle
 Redistribution

Nonlinear Particle-
Wave Interaction

Trapped-Passing-
Boundary Finder

↓ ↓

↓

Figure 44: Iterative runs of LIGKA together with the non-linear particle-wave interaction code
HAGIS are planned to examine e.g. the time dependent fishbone cycle
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8 APPENDIX

8.1 Klimontovich-Equations

Following [21] and [26], we start with the equation of motion for a particle i of species α

in an electromagnetic field:
drα,i

dt
= vα,i

dvα,i

dt
=

eZα

mα

[
Em(r, t) +

vα,i

c
×Bm(r, t)

]
r=rα,i

= Km
α (ri,vi, t)

Here Em and Bm are the microscopic fields governed by Maxwell equations. Due to their

linearity, the fields can be written as a superposition of fields of the single particles:

Em(r, t) = Eext(r, t) +
∑
α,i

Et
α,i(r, t|rα,i(t)) (162)

Bm(r, t) = Bext(r, t) +
∑
α,i

Bt
α,i(r, t|rα,i(t)) (163)

Eext and Bext are externally applied fields; Et
α,i and Bt

α,i are fields generated at position

r(t) by particle i of species α at position rα,i(t).

Now the single particle distribution function is introduced:

f exact
α (r,v, t) =

1

nα

Nα∑
i=1

δ(r− rα,i)δ(v − vα,i)

It is assumed that we have Nα particles in the volume V ; consequently the mean density

is nα = Nα/V and thus nα

∫
V drdvf exact

α is the number of particles of species α in the

volume V .

Self consistency requirements lead to the definitions of charge density and current:

%m(r, t) =
∑
α

eZα

∫
f exact

α dv (164)

jm(r, t) =
∑
α

eZα

∫
vf exact

α dv (165)

Differentiating f exact
α with respect to t leads to:

∂

∂t
f exact

α =
Nα∑
i=1

[
∂f exact

α

∂ri
· vi +

∂f exact
α

∂vi
·Km

α (ri,vi, t)
]

(166)

(167)
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We obtain terms of the following type:

∂

∂r1
[δ(r− r1)δ(v − v1) + δ(r− r2)δ(v − v2) + ...] +

∂

∂r2
[δ(r− r1)δ(v − v1) + δ(r− r2)δ(v − v2) + ...] + ... =

∂

∂r1
[δ(r− r1)δ(v − v1)] +

∂

∂r2
[δ(r− r2)δ(v− v2)] + ... =

− ∂

∂r

Nα∑
i

[δ(r− ri)δ(v− vi)]

Thus:
Nα∑
i=1

∂f exact
α

∂ri

= −∂f exact
α

∂r
,

Nα∑
i=1

∂f exact
α

∂vi

= −∂f exact
α

∂v
(168)

And finally:
∂

∂t
f exact

α =
[
− ∂f exact

α

∂r
· v − ∂f exact

α

∂v
·Km

α (r,v, t)
]

This is Klimontovich’s equation. It still contains the same information as the equations

of motion.

8.2 Liouville Equation and BBGKY-Hierarchy

In order to smooth the distribution function, one uses the concept of ’ensemble-averaging’:

one considers not only one distribution function for one plasma, but an infinite number

of continously distributed plasmas.

The initial conditions X(t = 0) = X0 = X10, X20, ..., XN0 with Xi0 = (r0,v0) are assumed

to be randomly distributed. The probability, that the system is in the
∑

α 6N - dimen-

sional volume element dX0, is defined by FN(X0)ΠαdX0. With advancing time dX0(t) is

mapped to dX(t). But it can be shown that the size of dX(t) is an Poincare’s integral

invariant.Consequently, the probability, that the system is in the
∑

α 6N - dimensional

volume element dX0, becomes FN(X, t)ΠαdX.

By the virtue of the constant dX0, for FN(X, t) the Liouville equation holds:

∂FN

∂t
+
∑
α,i

(
vα,i

∂

∂rα,i

+
Zαe

mα

[
Em(rα,i, t) +

vα,i

c
×Bm(rα,i, t)

]
∂

∂vα,i

)
FN = 0

Liouville’s equation still contains the equation of motion of every single particle system

- way too much information than needed. For description of processes in plasmas one

usually only needs the distribution functions of one and of two particles:
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f1(X1, t)dX1/V with

f1(X1, t) = V
∫

dX2...dXNFN(X, t)

gives the probability, that particle number one an be found in the volume element dX1

around the position X1 - independent of the position of all the other particles. Generally

one defines:

fs(X1, ..., Xs, t) = V s
∫

dXs+1...dXNFN (X, t)

Taking into account different particle species:

fα,s(Xα,1, ..., Xα,s, t) = V s
∫

FN (X, t)dXα,s+1...dXα,NΠβ 6=α,jdXβ,j

In order to obtain an expression for fα,1 one has to integrate Liouville’s equation over

dX2...dXN . In doing so, the following intermediate results are used:

V
∫

dX2...dXN

N∑
i=1

vi
∂fN

∂ri

= v1
∂f1

∂r1

Here was taken into account that fN tends towards 0 on the boundary of the enclosed

volume. Furthermore:

V
∫ N∑

i=1

Km
i

∂FN

∂vi

dX2, ..., dXN = V
∫

Km
1

∂FN

∂v1

dX2, ..., dXN

+V
∫ N∑

i=2

Km
i

∂FN

∂vi
dX2, ..., dXN

= Km
1

∂f1

∂v1
+ (N − 1)V

∫
Km

2

∂FN

∂v2
dX2, ..., dXN

= Km
1

∂f1

∂v1
+

(N − 1)V

V 2

∫
Km

2

∂f2

∂v2
dX2

with

Km
i =

Zαe

mα

[
Em(ri, t) +

vi

c
×Bm(ri, t)

]
If we take into account more than one particle species α and generalise to s-particle

distribution function we obtain the BBGKY-Hierarchy. It is called ’hierarchy’, because

in the equation for s there is also a term of the order s + 1 [21]. Here, we just give the

expression for f1:[ ∂

∂t
+ v1 ·

∂

∂r1

+ (Kext + Km
1 ) · ∂

∂v1

]
f1 =

N

V

∫
dX2K

m
2

∂f2

∂v2

One can show that a term of order s + 1 is ε = (neλ
3
D)−1 times smaller than a term

of order s. Since ε is usually very small in a plasma, one can state that correlation

effects of particles over a distance langer than the debye length are negligible compared

to correlations within a debye sphere.
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8.3 Vlasov Equation

Due to the smallness of ε one can expand fα,s in a product of single particle distribution

functions plus a term f order ε that describes correlations. In 0-th order one derives after

some manipulation Vlasov’s equation:

dfα

dt
=

∂fα

∂t
+ v

∂fα

∂r
+

Zαe

mα

[
E(r, t) +

v

c
×B(r, t)

]
∂fα

∂v
= 0

where Maxwell’s equations were used:

∇×B− 1

c

∂E

∂t
=

4π

c
j (169)

∇× E− 1

c

∂b

∂t
= 0 (170)

∇ ·B = 0 (171)

∇ · E = 4π% (172)

with

%m(r, t) =
∑
α

eZαnα

∫
fα,1(r,v, t)dv (173)

jm(r, t) =
∑
α

eZαnα

∫
vfα,1(r,v, t)dv (174)

E(r, t) = Eext(r, t) +
∑
α,i

∫
Et

α,i(r, t|rα,i(t))fα,i(rα,i,vα,i, t)drα,idvα,i (175)

B(r, t) = Bext(r, t) +
∑
α,i

∫
Bt

α,i(r, t|rα,i(t))fα,i(rα,i,vα,i, t)drα,idvα,i (176)

Due to the fact that the entropy density of fα is constant, Vlasov’s equation cannot

describe collision or dissipation effects. Nevertheless it can be shown ([21]) that the

linearised version provides an appropriate formulation for waves with small amplitudes in

plasmas.

If correlation terms of 1. order (i.e. collisions between particles ) are taken into account,

one can derive the Fokker-Planck equation.
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8.4 Guiding Centre Transformation

There are several approaches to carry out the transformation to guiding centre coordi-

nates. The most formal one would be the Lie-transform-technique ([11],[9]), which allows

a rigorous proceeding up to all orders. Since for a straightforward guiding centre transfor-

mation the Lie method would be too laborious, we follow here a different, more physical

approach [8],[20]. The same results but derived in a different way can also be found in

[13](S.36-40).

At first we define:

va0 = va0⊥ + va0‖b; va0⊥ = −va0⊥(sin θae1 + cos θae2); µa0 =
mav

2
a0⊥

2B0

The particle’s position is also decomposed into an averaged and and into oszillating part:

xa = Xa + ε%a0 −O(ε2) = Xa + ε
b× va0

Ωa
−O(ε2); Ωa =

eaB0

mac
(177)

For the other coordinates we have:

Ua = va0‖ +O(ε); µa = µa0 +O(ε); ξa = θa +O(ε) (178)

Now we insert these results in the Lagrangian:

La0 =
(
ma(va0⊥ + va0‖b) +

ea

c
[A0(Xa) + %a0 · ∇A0(Xa)]

)
·(Ẋa +

d

dt
%a0)−

1

2
ma|va0⊥ + va0‖b|2 (179)

Line (179) is now sorted order by order:

the term A0(Xa) · Ẋa is the only one of order O(ε)−1. The following is of order O(ε)0:

ma(va0⊥ + va0‖b) · Ẋa +
ea

c
%a0 · ∇A0(Xa) ·Xa +

d

dt
%a0 ·

ea

c
A0 (180)

Now we use a general property of Lagrangians: the equations of motions derived from a

Lagrangian are invariant under a transformation of the the form L → L + dS/dt. Here,

S an arbitrary scalar (gauge transformation, see [11]). If we choose S as:

S0 = −ea

c
%a0 ·A0, (181)

all gyrophase dependent terms of this order vanish. With

dS

dt
= −ea

c

(
d

dt
%a0

)
·A0 −

ea

c
%a0 ·

(
Ẋa · ∇A0

)
(182)
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and

Ωab× %a0 = b× (b× va0⊥) = −va0⊥ (183)

equations (180) and (182) result in:

ea

c

[
%a0 · (∇A0 · Ẋa − Ẋa · ∇A0)

]
+ ma(Ωa%a0 × b) · Ẋa + mava0‖b · Ẋa

=
ea

c
%a0 · (Ẋa ×B0)−

eaB0

mac
mab× %a0 · Ẋa + mava0‖b · Ẋa

= mava0‖b · Ẋa

Now we consider O(ε) of (179):

ea

c
%a0∇A0 · %̇a0 + mava0⊥ · %̇a0 (184)

Choosing

S1 = −%a0 · ∇A · %a0 (185)

only the term
1

2

ea

c
(%a0 ×B0) · %̇a0 (186)

survives. We use

%a0 × b =
b× va0⊥

Ωa
× b =

va0⊥

Ωa
(187)

and

%̇a0 =
d

dt

(
b× va0⊥

Ωa

)
=

va0⊥

Ωa
ξ̇a (188)

to derive finally:
mac

ea

µa0ξ̇a (189)

We substitute Ua for va0‖ and µa for µa0 (178) to obtain for the Lagrangian:

La =
[
ea

c
A0(Xa) + maUab(Xa)

]
· Ẋa +

mac

ea

µaξ̇a −
1

2
maU

2
a − µaB0(Xa) (190)

This Lagrangian is now completely written in guiding-centre-coordinates and furthermore

independent from ξ. That means that ∂L/∂ξ̇ ∼ µa is a constant of the motion.

Here, the first order transformation in finished. For the next oder just the result is

presented:

La = ε−1 ea

c
A∗a(Xa, Ua, µa) · Ẋa + ε

mac

ea
µaξ̇a −Ha0(Xa, Ua, µa) (191)

with

A∗a(Xa, Ua, µa) = A0(Xa) + ε
mac

ea
Uab(Xa)− ε2 mac

2

e2
a

µaW(Xa) (192)
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and

Ha0(Xa, Ua, µa) =
1

2
maU

2
a + µaB0(Xa) (193)

and

W(Xa) = [∇e1(Xa)] · e2(Xa) +
1

2
b(Xa)b(Xa) · [∇× b(Xa)] (194)

Now also the Poisson brackets are calculated: In order to do so, we make use of the

following rule ([10], [14] und [2]):{
F, G

}
=

e

mc

(
∂F

∂ξ

∂G

∂µ
− ∂G

∂ξ

∂F

∂µ

)
− eb

eB∗‖

[(
∇F + W

∂F

∂ξ

)
×
(
∇G + W

∂G

∂ξ

)]

+
B∗

mB∗‖

[(
∇F + W

∂F

∂ξ

)
∂G

∂U
−
(
∇G + W

∂G

∂ξ

)
∂F

∂U

]

Applying this relation results in:{
Xa,Xa

}
= ε

c

eaB
∗
a‖

b× I;
{
Xa, Ua

}
=

B∗a
maB

∗
a‖

; (195)

{
Xa, ξa

}
= ε

c

eaB∗a‖
b×W;

{
Ua, ξa

}
= −B∗a ·W

maB∗a‖
; (196){

ξa, µa

}
= ε−1 ea

mac
(197)

Here I represents the unit tensor, B∗a ≡ ∇×A∗a and B∗a‖ ≡ B∗a · b.

For completeness the Poisson brackets for another set of equations in given here, following

reference [15]: with

Z = (X, H0, µ, ξ) (198)

and the definition

Vd ≡
cmU

eB
∇× Ub (199)

the bracktes for two arbitrary functions read:

{F, G} =
mc

eB

[∂F

∂ξ

( ∂G

∂H0

+
1

B

∂G

∂µ

)
− ∂G

∂ξ

( ∂F

∂H0

+
1

B

∂F

∂µ

)]
+(Ub + Vd) ·

(
∇F

∂G

∂H0
− ∂F

∂H0
∇G

)
− cb

eB
· (∇F ×∇G) (200)
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8.5 Lie Transforms

Here a short introduction to the Lie transform following [11] is given. Let Q be a vector

field on M with coordinates Z i. It is represented by:

dZ i

dt
= Qi(Z) =

∞∑
k=0

εkQi
k(Z) (201)

Let the system have a solution in 0.order in the sense that the solution of Q can be

approximated by Q0. The basic idea of the perturbation theory is now, to find a coordinate

transform that results in simplified equations (compared to the original ones).

Let Z be a point in M that is mapped to Z̄ by T : M →M : TZ = Z̄.

A vector field Q is mapped by the tangential mapping T∗:

Q̄ = T∗Q; resp. Q̄i(Z̄) =
∂Z̄ i

∂Zj
Qj(Z) (202)

When scalars are transformed, they are considered as 0-forms in M which are pulled back

to R by the transformation T ∗ . T ∗ works in the opposite direction than T . That is why

the inverse of T ∗ has to be used:

s̄ = T ∗−1s (203)

Especially interesting scalars are the coordinate functions Z i = I i(Z) with Z i being the

coordinate of Z. Therefore, Z̄ = TZ changes into:

Z̄i = I i(Z̄) = I i(TZ) = T ∗I i(Z) (204)

The class of transformations that can be represented by an exponential function of a

vector field, is called Lie-transformations:

T ε = exp (εG) (205)

G is called the generating function of the transformation. The tangential mapping T ε
∗ can

also be represented by an exponential function:

T ε
∗ = exp (−εLG) (206)

with

(LGX)i = GjX i
,j −XjGi

,j (207)

(LGX)i is called Lie-derivative. A 1-form transforms like a scalar:

γ̄ = T ∗−1γ + dS
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To go to higher order, a series of transformations (for each order separately) is applied:

T ∗−1
n = ...T ∗−1

3 T ∗−1
2 T ∗−1

1 =

... · exp(ε3L3) · exp(ε2L2) · exp(εL1) = 1 + εL1 + ε2(L2
1 − L2) + ... (208)

Now also γ and S are expanded in ε, i.e. γ =
∑

εnγn,γ̄ =
∑

εnγ̄n and S =
∑

εnSn.

Ordered by powers of ε this is:

γ̄0 = γ0 + dS0 (209)

γ̄1 = γ1 − L1γ0 + dS1 (210)

γ̄2 = γ2 − L1γ1 +
1

2
(L2

1 − 2L2)γ0 + dS2 (211)

Furthermore, it can be shown that the Lie-derivatives for the γs can be written in the

following form (details in [11], p.746):

(Lnγ)i = Gj
n

(
∂γi

∂zj
− ∂γj

∂zi

)
(212)
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8.6 Gyrocentre Transformation

The ξa-dependence has to be removed from Ha1 and Ha2, order by order.

Following references [14],[20], we use the correlated one-form, starting in guiding centre

coordinates:

γa0 = γ̂a0 −Ha0dt =
ea

c
A∗a · dXa + ε

mac

ea
µ̄adξa −Ha0dt (213)

with γ̂a0 being the symplectic part of γ. The perturbed part is (33):

γa1 = γ̂a1 −Ha1dt = 0− ea

(
φ1(X̄a + %a, t)−

1

c
A1(X̄a + %a, t) · va0(Za)

)
dt (214)

Here the transform

xa = X̄a + %̄a0 +O(ε) (215)

with

%̄a0 = %a0(Z̄a) = b(X̄a)× va0(Z̄a)/Ωa(X̄a), Ωa(X̄a) =
eaB(X̄a)

mac
(216)

is employed, to write the fields in the new coordinates. Clearly, it maps back the gyro-

centre positions to the physical position, since we have to evaluate the fields at the real po-

sition of the particle. A detailed mathematical treatment of this pull-back-transformation

can be found in Qin’s works ([1]-[4]). The justification for line (215) is given later with

equation (44). We start with the transformation for the first order using equation (210):

γ̄1 = ¯̂γ1 − H̄a1dt = γ̂1 −Ha1dt− L1(γ̂0 −Ha0dt) + dS1 (217)

The symplectic part, also ¯̂γ has to be unperturbed and consequently ¯̂γ1 = 0. With the

choice of va0, also γ̂1 already vanishes (equation 214):

0
!
= 0− L1γ̂0 + dS1 (218)

This is used to determine the generating functions G (see eq. (212)):

(L1γ0)Xa =
[
GXaj

(
∂A∗i
∂Xaj

−
∂A∗j
∂Xai

)
+ GUa

mac

ea
b(Xa)

]
(219)

(L1γ0)Ua = −GXamab (220)

(L1γ0)µa = −Gξ mac

ea
; GXa

mac

ea
W(Xa) ∼ O(ε2) (221)

(L1γ0)ξa = Gµa
mac

ea
(222)

(L1γ0)t = −GXa
∂Ha0

∂Xa
−GµB0 −GUamaUa (223)
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Taking into account

dS1 = ∇S1 ·Xa +
∂S1

∂Ua

dUa +
∂S1

∂µa

dµa +
∂S1

∂ξa

dξa +
∂S1

∂t
dt (224)

and choosing

Gt = 0 (225)

i.e., leaving the time variable unchanged, one calculates for G:

Gµa =
ea

mac

∂S1

∂ξa

(226)

Gξa = − ea

mac

∂S1

∂µa
(227)

GUa = − ea

mac
∇S1 · b∗ (228)

GXa = = − c

eaB∗‖
b×∇S1 −

B∗

maB∗‖

∂S1

∂Ua
(229)

So equation (217) reduces to:

H̄a1 = Ha1 −GXa
∂Ha0

∂Xa
−GµB0 −GUamaUa −

∂S1

∂t
(230)

Now there is still one degree of freedom: since H̄a1 has to be independent of the gyrophase,

one chooses for it the ξa-averaged Ha1-value:

H̄a1 = 〈eaφ1(X̄a + %̄a0, t)−
ea

c
vao ·A1(X̄a + %̄a0, t)〉 (231)

〈...〉 means the gyrophase average operation 1/2π
∫ 2π
0 ...dξ.

Inserting the relations for the G’s, we obtain the following expression for the gauge func-

tion S1:

ε−1
B Ωa

∂S1

∂ξa
+

∂S1

∂t
+

εB

(
Ūa

ma

b∗ · ∂S1

∂X̄a

− [
c

eB∗‖
b× ∂S1

∂X̄a

+
B∗

maB
∗
‖

∂S1

∂Ua

] · ∂Ha0

∂X̄a

)

= eaφ̃1(X̄a + %0, t)−
ea

c
˜v̄a0 ·A1(X̄a + %0, t) = ψ̃a(Z̄a, t) (232)

with

φ̃1(X̄a + εB%̄a, t) = φ1(X̄a + εB%̄a, t)− 〈φ1(X̄a + εB%̄a, t)〉˜v̄a0 ·A1(X̄a + εB%̄a, t) = v̄a0 ·A1(X̄a + εB%̄a, t)− 〈v̄a0 ·A1(X̄a + εB%̄a, t)〉
ψ̃a(Z̄a, t) = eaφ̃1(X̄a + εB%̄a, t)−

ea

c
˜v̄a0 ·A1(X̄a + εB%̄a, t)
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The expression for S1 can be used to write the coordinate transform more explicit:

X̄a = Xa + ∆{S1(Xa),Xa}+O(∆)2 (233)

Here the gyrocentre transformation for the first order is finished. Since in later chapters

we only use the linearised equations, the second order transformation is not carried out

in further detail here (for second order treatment see[5] and [14]).
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8.7 Useful Formulae

v ×∇×A = εijkvjεklmδlAm = (δilδjm − δimδjl)vjδlAm

= (δiAj − δjAi)vj = (∇A)v− (∇A)Tv = (∇A)v− v(∇A)

Following relations are useful for performing the velocity space integrals. For a Maxwellian

F0:

F0 =
n0(r)

(2πT (r)/m)3/2
e−mv2/2T (r) =

n0(r)

π3/2v3
th

e−v2/v2
th

=
n0(r)

π3/2v3
th

e−(U2+v2
⊥)/vth =

n0(r)

π3/2v3
th

e−U2/v2
the−µB/T (r)

∇F0 = F0
∇n

n

[
1 + η(

E

T
− 3

2
)
]

F̂0 =
n0(r)

π3/2v3
th

e−U2/v2
th

∇F̂0 = F̂0
∇n

n

[
1 + η(

mU2

2T
− 3

2
)
]

∫
|∇F̂0|2πdU =

|∇n|m
T

[1− η]

∂F0

∂E
= −F0

T

d3v = 2πv⊥dv⊥dU = 2π
B

m
dµdU∫

F0d
3v = n0(r)∫

µF0d
3v = n0(r)T (r)/B∫

mU2F0d
3v = n0(r)T (r)

∫
µB

∂F0

∂E
d3v = −n0(r)∫

mU2 ∂F0

∂E
d3v = −n0(r)

Integrals involving Bessel functions:

χ ≡ v2
thk

2
⊥

2Ω2∫ ∞
0

J0(
v⊥k⊥

Ω
)2e−v2

⊥/vth2

v⊥dv⊥ =
v2

the
−χI0(χ)

2∫ ∞
0

J0(
v⊥k⊥

Ω
)2e−v2

⊥/vth2

v3
⊥dv⊥ =

v4
the
−χ[(1− χ)I0(χ) + χI1(χ)]

2
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∫
µBJ0(k⊥v⊥/Ω)2 ∂F0

∂E
d3v =

∫
µBJ0

(k⊥
Ω

√
2µB/m

)2 ∂F0

∂E
d3v = −n0(r)

{
e−χ

[
χI1(χ)+(1−χ)I0(χ)

]}
∫

mU2J0(k⊥v⊥/Ω)2 ∂F0

∂E
d3v = −n0(r)e

−χI0(χ)∫
J0(k⊥v⊥/Ω)2 ∂F0

∂E
d3v = −n0(r)e

−χI0(χ)/T (r)

∫
mU2J0(k⊥v⊥/Ω)2F0d

3v = n0(r)T (r)e−χI0(χ)

∫
µBJ0(k⊥v⊥/Ω)2F0d

3v = n0(r)T (r)

{
e−χ

[
χI1(χ) + (1− χ)I0(χ)

]}
Expansion of Bessel functions:

J0(x) = 1− x2

4
+

x4

64
(234)

1− J0(x)2 =
x2

2
− 3x4

32
(235)
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8.8 Equilibrium

We skip the proof of the existence of magnetic flux surfaces, shaped in toroidal form

([49]) and start instead directly with the equations describing an MHD equilibrium of an

isotropic plasma :

j×B = ∇p (236)

∇×B = µ0j (237)

∇ ·B = 0 (238)

It immediately follows from B · ∇p = 0 and j · ∇p = 0 that there is no pressure gradient

along the field lines and that the current lines lie on magnetic surfaces. These nested

surfaces are counted by some label χ that is usually chosen to be proportional to the

poloidal flux:

ΨP =
1

2π

∫
V

d3xB · ∇θ ≡ 2πχ (239)

Similarly, the toroidal flux is defined as

ΨT =
1

2π

∫
V

d3xB · ∇ζ (240)

Now we can define the safety factor q:

q ≡ dΨT

dΨP

=
B · ∇ζ

B · ∇θ
=

dζ

dθ
(241)

8.8.1 General 2D Flux Coordinate Representation

It can be shown that a general magnetic field can be written in terms of these fluxes as:

B =
1

2π

(
∇ζ ×∇ΨP + ΨT ×∇θ

)
= ∇χ×∇(qθ − ζ) (242)

Coordinates that allow B to be represented in this form, are called flux coordinates.

Obviously, there is still a degree of freedom: any transform (χ, θ, ζ) → (χ′, θ′, ζ ′) that

preserves the field line label qθ − ζ = qθ′ − ζ ′ results again in a set of flux coordinates.

As special cases Hamada coordinates (Jacobian is chosen to be a flux label) and Boozer

coordinates (straight field and current lines) are commonly used. In this work, we choose

symmetry coordinates: the toroidal angle is simply defined as

ζ = −ϕ (243)
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and the poloidal angle is chosen in a way that makes the field lines straight. In this

coordinate system, both χ and θ are orthogonal to ζ , but χ and θ being non-orthogonal,

resulting in the following metric tensor (covariant components):

gij =


g11 g12 0

g21 g22 0

0 0 g33

 ; J = Det(gij) =
√

g =
√

(g11g22 − g2
12)g33 (244)

If the radius vector r = r(x1, x2, x3) is given by the curvilinear coordinates xi then it

follows that dr = dxi∂r/∂xi, and the line element dl2 ≡ (dr)2 can be written as:

dl2 = gikdxidxk with gik =
∂r

∂xi
· ∂r

∂xk
(245)

In symmetry coordinates one obtains:

dl2 = g11dχ2 + g22dθ2 + g33dζ2 + 2g12dχdθ (246)

Clearly, it follows from the toroidal arc length element dlζ = Rdζ and the partial orthog-

onality that g33 = R2.

Following [48], we do not choose χ directly as radial coordinate, but instead we take s

defined by s =
√

χ/χ1 and consequently ∇χ = 2sχ1∇s with 2πχ1 representing the total

poloidal flux. In these coordinates the radial component of Ampère’s law (237) reads:

µ0j
s =

1

J
(
∂Bζ

∂θ
− ∂Bθ

∂ζ
) (247)

Since js (consequence of the force balance) and ∂Bθ/∂ζ (toroidal symmetry) vanish, also

∂Bζ/∂θ has to be zero and thus the covariant component Bζ ≡ I(s) depends only on s.

This leads to a ’mixed’ form of B (both co- and contra-variant components appear):

B = I(s)∇ζ +∇ζ ×∇χ (248)

Writing B in co- and contravariant components:
Bχ

Bθ

Bζ

 =


2sχ1g12/J

2sχ1g22/J

I(s)

 ;


Bχ

Bθ

Bζ

 =


0

2sχ1/J

I(s)/R2

 (249)

and comparing with line (242) - also written in components - provides a useful formula

for the Jacobian:
Bχ

Bθ

Bζ

 =


2sχ1g12/J

2sχ1g22/J

2sχ1q(s)R
2/J

 ;


Bχ

Bθ

Bζ

 =


0

2sχ1/J

2sχ1q(s)/J

 (250)
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⇒ J = 2sχ1q(s)R
2/I(s) (251)

Using representation (248) for B the current density is written as

j = −∆∗χ∇ζ +∇I ×∇ζ (252)

with

∆∗ = R2∇ · 1

R2
∇. (253)

We put this expression for j in the force balance equation to obtain the Grad-Shafranov-

Schlüter equation:

∆∗χ = −I
dI

dχ
− µ0R

2 dp

dχ
(254)

If we specify the profiles I and p resp. II ′ and p′ and the shape of the plasma boundary

then we can solve for χ(R, Z). Using this result, the metric coefficients for the straight-

field-line coordinate system s, θ, ζ can be determined.

8.8.2 Straight Circular Tokamak Geometry

This configuration is actually a cylindrical configuration, where the major radius R0 is

introduced by the toroidal wave vector kζ = n/R0. Thus there is no toroidal curvature

and in case of circular flux surfaces the metric tensor reads:

gij =


a2 0 0

0 a2%2 0

0 0 R2
0

 ; (255)

Here, a stands for the radius of the plasma column and % is employed as normalised radial

variable. The magnetic field components in this geometry are:
B%

Bθ

Bζ

 =


0

%χ′(%)/R0

I(%)

 ;


B%

Bθ

Bζ

 =


0

χ′(%)/%a2R0

I(%)/R2
0

 (256)

This is again consistent with the definition of the poloidal flux (239)

ΨP =
1

2π

∫
V

d3xBθ =
1

2π

∫ %

0
d%′

∫ 2π

0
dθ
∫ 2π

0
dζJdBθ = 2πχ(%) (257)

The relation between I(%) and the constant and uniform magnetic field in ζ direction

B0 can be obtained when the covariant ζ-component of B is related to the physical ζ-

component B̂ζ :

B0 = B̂ζ =
√

g33B
ζ =

I

R0
(258)
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The toroidal flux becomes

ΨT =
1

2π

∫
V

d3xBζ = πa2%2B0 (259)

and with the usual definition of q = Ψ′T /Ψ′P one obtains the relation between q and B̂θ:

q(%) =
a2%B0

χ′(%)
; ⇒ B̂θ =

a%B0

q(%)R0
(260)

From this equation we can see clearly that in this geometry the coordinates (%, θ, ζ) are

flux coordinates. Finally, the Grad-Shafranov’s equation reduces to

µ0
dp

d%
=

a2B2
0

R2
0q

3
%
[
− 2q + %

dq

d%

]
(261)

Consequently, defining either a pressure or a q-profile completely determines a cylindrical

equilibrium.

8.8.3 Concentric Circular Tokamak Geometry

The concentric circular Tokamak geometry is given by the definition of the magnetic field:

B =
B0

1 + ε cos θ

(
êζ +

a%

q(%)R0
êθ

)
, ε ≡ a%

R0
(262)

With the metric tensor

gij =


a2 0 0

0 a2%2 0

0 0 R2
0(1 + ε cos θ)2

 ; (263)

the magnetic field components are:


B%

Bθ

Bζ

 =


0

a2%2B0

q(%)R0(1+ε cos θ)

B0R0

 ;


B%

Bθ

Bζ

 =


0
B0

q(%)R0(1+ε cos θ)
B0R0

R2
0(1+ε cos θ)2

 (264)

One immediately realises that in this case the coordinates (%, θ, ζ) are flux coordinates

only up to dominant order:

Bζ

Bθ
=

Ψ′T
Ψ′P

=
q(%)

1 + ε cos θ
= q(%)(1− ε cos θ + ε2 cos2 θ − ...) (265)
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Consequently, also a flux coordinate representation like in equation (242) is only possible,

if we introduce a θ-dependent ’toroidal flux’, what, of course, disagrees with physical

interpretation, but nevertheless allows a ’flux-like’ representation of this configuration:

Ψ′P =
2πa2B0%

q(%)
⇒ Ψ′T =

2πa2B0%

1 + ε cos θ
(266)

Another problematic point was introduced by the assumption of unshifted concentric

flux surfaces, what conflicts with Grad-Shafranov-Schlüter’s equation: toroidal curvature

shifts the centres of the flux surfaces outwards, caused firstly by the pressure, that tries to

expand (’inflate’) the torus and secondly by the hoop force originating from the toroidal

plasma current. Consequently, the GSS equation again is only valid in the lowest order:

µ0
dp

d%
=

a2B2
0

R2
0q

3
%
[
− q(1 +

1

1 + ε cos θ
) + %

dq

d%

]
(267)
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8.8.4 Numerical Equilibria Information
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Figure 45: HELENA plot, equilibrium (I)
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Figure 46: HELENA plot, equilibrium (II)
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Figure 47: HELENA plot, equilibrium (III)
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