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Chapter 1

Introduction

The standard model is a renormalizable quantum gauge field theory which describes the
electromagnetic, weak, and strong interactions of the known fundamental matter-building
blocks of quarks and leptons. And it does it with extreme success. The electroweak sector of
the standard model has been tested up to the quantum level in the Large Electron Positron
Collider, the Stanford Linear Accelerator, and the Fermi National Accelerator Laboratory.
Thus the gauge sector of the standard model is well tested and the spontaneous symmetry
breaking via the Higgs mechanism is strongly favored.

In spite of its tremendous success the common belief is that the standard model is
not the final answer. This is due to the persisting of many fundamental problems in
high energy and astroparticle physics. So we do not understand why the light quarks
and, which is maybe even more severe, why the neutrinos are so light compared to the
weak scale, namely the scale associated with the breaking of the standard model gauge
group. In addition we do not understand why the breaking scale of the standard model is
many orders of magnitude smaller than the Planck scale, the scale where the gravitational
coupling becomes strong. Furthermore our current description of physics will break down
at the Planck scale when we can not anymore neglect the contribution of gravity, since up
to now no renormalizable quantum field theory of gravity has been found.

Hence it is generally believed that there is new physics, even if we have not seen it
yet. The standard model is then thought to be just an effective theory and deviations are
expected to occur as suppressed higher dimensional operators. To find deviations of the
standard model or to test new physics it is then a good strategy to study processes which
are forbidden on the classical level of the standard model. Such processes would only be
induced radiatively and new physics effects could give contributions of similar size. Flavour
violating neutral interactions will induce processes of the above mentioned type.

While the gauge sector of the standard model has been tested precisely, the flavour sec-
tor has not reached this precision yet. The first generation of flavour precision experiments
leave still relatively large uncertainties in the mixing parameters of the flavour sector. On
the other hand, the standard model seems to consistently describe the flavor sector up to
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4 CHAPTER 1. INTRODUCTION

the measured precision, and we might have to wait for the second generation of hadronic
machines to find deviations from the standard model.

To keep up with this increasing experimental precision, and thus to falsify the standard
model or its extension, high precision is needed on the theoretical side, too. This thesis will
be concerned with higher order corrections to weak B meson decays, where the B quantum
number, associated with the b-quark, is changed by a unit of one.

The study of weak B decays lies at the heart of the flavor physics program. First,
the B meson is, apart from the Υ, the heaviest bound state, and thus allows for rich
phenomenology in its decays. Second, there is the possibility of large charge-parity (CP)
violating asymmetries, since, contrary to K and D decays, the CP violating phase is not
accompanied by a strong CKM suppressing parameter. Third, the heaviness of the b
quark mass mb compared to the typical hadron binding energy ΛQCD allows for theoretical
methods which take the hadronic uncertainties systematically into account.

The last feature facilitates the study of inclusive B decays like B → Xsγ. Here the
decay rate is the sum of the decays of a B meson into a photon and an hadronic state of
strangeness −1. The heaviness of mb implies that the total decay rate is well approximated
by the partonic decay rate, while non-perturbative corrections can be added systematically.

The inclusive radiative B decay B → Xsγ places very important constraints on models
of physics beyond the Standard Model (SM). The present experimental world average for
the branching fraction is [1–5]

BR(B → Xsγ)exp = (3.34 ± 0.38) × 10−4 , (1.1)

while the most recent SM prediction is [6, 7]

BR(B → Xsγ)th = (3.70 ± 0.30) × 10−4 . (1.2)

The experimental error is rapidly approaching the level of accuracy of the theoretical
prediction. The main limiting factor on the theoretical side resides in the perturbative
QCD calculation and is related to the ambiguity in the definition of the charm quark mass
in some two-loop diagrams containing the charm quark [6]. To improve significantly the
present Next-to-Leading-Order (NLO) QCD calculation, one would need to include one
more order in the strong coupling expansion, and compute at least the dominant NNLO
effects: a very challenging enterprise, which seems to have already captured the imagination
of some theorists [8].

The present calculation of the branching ratio of B → Xsγ consists of several parts that
are worth recalling. Perturbative QCD effects play an important role, due to the presence
of large logarithms L = ln(mb/MW ), that can be resummed using the formalism of the
operator product expansion and renormalization group techniques. The main components
of the NLO calculation, which aims at resumming all the next-to-leading O(αnsL

n−1) loga-
rithms, have been established more than six years ago. They are i) the O(αs) corrections to
the relevant Wilson coefficients [9–13], ii) the O(αs) matrix elements of the corresponding
dimension-five and six operators [14–21], and iii) the O(α2

s) Anomalous Dimension Matrix
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(ADM) describing the mixing of physical dimension-five and six operators [22–26]. After
the O(αs) matrix elements of some suppressed operators have been computed last year [7],
the NLO calculation is now formally complete. Higher order electroweak [27–31] and non-
perturbative effects [32–37] amount to a few percent in the total rate and seem to be well
under control.

Nearly all the ingredients of the NLO QCD calculation involve a considerable degree
of technical sophistication and have been performed independently by at least two groups,
sometimes using different methods. However, the most complex part of the whole enter-
prise, the calculation of the two-loop dimension-five [25] and of the three-loop dimension-
six [26] O(α2

s) ADM, has never been checked by a different group. One of the main results
of this thesis is to present an independent calculation of the O(α2

s) ADM governing the
b → sγ and b → sg transitions. In addition we will make a first step to the calculation of
the complete O(α3

s) ADM relevant for a complete Next-to-Next-to-Leading-Order (NNLO)
QCD calculation by computing the three-loop self-mixing of the dimension-six operators.

The rare semileptonic decay B → Xs`
+`− represents, for new physics searches, a route

complementary to the radiative ones. The rare semileptonic transitions b → s`+`− have
been observed for the first time by Belle and BaBar in 2001-2002 in the exclusive mode
B → K`+`− [38, 39], and we now also have a measurement of the inclusive branching
fraction [40,41]. A precise measurement of the inclusive channel B → Xs`

+`− is particularly
relevant because it is amenable to a clean theoretical description, especially in the region
of low leptonic invariant mass, m2

`` = m2
b ŝ, below the charm resonances, 0.05 ≤ ŝ ≤ 0.25.

Because of the presence of large logarithms already at zeroth order in αs, a precise
calculation of the B → Xs`

+`− rate involves the resummation of formally next-to-next-to-
leading O(αnsL

n−2) logarithms. The NNLO QCD calculation of B → Xs`
+`− has required

the computation of i) the O(αs) corrections to the corresponding Wilson coefficients [13]
and ii) the associated matrix elements at O(αs) [42–45]. Moreover, it involves iii) the
O(α2

s) ADM, but the operator basis must be enlarged to include the semileptonic operators
characteristic of the b → s`+`− transition. The only potentially relevant NNLO terms
still missing at low ŝ have to do with the three-loop ADM of the operators in the low-
energy effective Hamiltonian, and with the two-loop matrix element of one of them, Q9 =
e2/g2

s s̄LγµbL
∑

`
¯̀γµ`.

On the other hand, electroweak effects in b → s`+`− have never been discussed in the
literature. As shown in the case of radiative decays [27–31], they may be as important as
the higher order QCD effects.

In this thesis we will i) calculate the relevant three-loop ADM [46,47] and take advan-
tage of existing calculations of O(α2

s) corrections to semileptonic quark decays and thus
complete the NNLO calculation for B → Xs`

+`− ii) study the electroweak effects in this
decay and calculating the dominant O(α) contributions to the running iii) update the SM
prediction of the branching ratio.

We have so far emphasized the inclusive modes, as they are amenable to a cleaner
theoretical description. However, one should not underestimate the importance of the



6 CHAPTER 1. INTRODUCTION

exclusive B meson decays like B → K∗γ [48, 49], B → K∗`+`− [38, 39], B → ργ [48–51]
and B → ρ`+`−. A thorough study of the exclusive channels can yield useful additional
information in testing the flavor sector of the SM. These processes have received a lot of
theoretical interest in recent years and their accurate description will also benefit from a
firm understanding of higher order perturbative corrections.

The ADM we have computed can also be used in analyses of new physics models,
provided they do not introduce new operators with respect to the SM. This applies, for
example, to the case of two Higgs doublet models [6,12,52–54], and to some supersymmetric
scenarios with minimal flavor violation, see for instance [54–58]. On the other hand, in
left-right-symmetric models [54,59,60] and in the general minimal supersymmetric SM [61],
additional operators with different chirality structures arise. In many cases one can exploit
the chiral invariance of QCD and use the same ADM, but in general an extended basis is
required.

This work is organized as follows. In the first chapter we will concentrate on the founda-
tions of effective field theory methods for weak decays. We will start with an introduction
to the field theoretical concepts needed in such calculations, in particular we will concen-
trate on the renormalization of QCD and QED. Next the concept of effective field theory is
introduced and the QCD and QED renormalization of the effective operators is discussed
in detail. Having the renormalization constants at hand we can discuss the resummation of
the large logarithms which arise in weak decays. We will derive the equation which governs
a scheme change for a NNLO QCD calculation and hereby prove the scheme independence
up to this order.

The methods how to calculate the three-loop operator mixing are discussed in the
following chapter. We will discuss how the ultraviolet divergencies are extracted, and
sketch how the calculation was implemented in a computer algebra code. Next the ADM
is presented for our chosen operator basis. We then show how to transform the results to
different bases, in particular to the one used in [22, 23].

In the final chapter we will apply our calculated results. As a simple application we
will compute the magic numbers needed for a NNLO analysis of non-leptonic B decays.
In the next section the ingredients for a complete NLO QCD calculation of B → Xsγ are
collected and a final formula is given. The relevant NNLO contributions to B → Xs`

+`−

are collected in the next section, together with the dominating O(α) electroweak effects.



Chapter 2

Foundations
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8 CHAPTER 2. FOUNDATIONS

2.1 Field Theories

Our current description of the physics of elementary particles is based on the concepts
of quantum field theories. These theories consistently incorporate both special relativity
and quantum mechanics. Furthermore it is commonly thought that any theory which
incorporates the two above mentioned principles will at low energy have the form of a
quantum field theory [62]. The standard model, which gives our current description of the
phenomena of elementary particles, is the current milestone which has passed many tests
of theory and experiment.

It is clear that we cannot summarize the whole development here. Instead we would
like to give a brief introduction to the aspects relevant to our work. In particular we would
like to focus on quantum chromodynamics (QCD).

All theories which describe the fundamental interactions can be given in terms of a
Lagrangian density. For scalar fields it reads

L = L (φi(x), ∂µφi(x), x) , (2.1)

where the φi are the field operators. The total action is defined by the integral:

S (φi) =

∫
d4xL (φi(x), ∂µφi(x), x) . (2.2)

The correlation of field operators of Green’s function

Gn(x1, . . . , xn) = 〈0|Tφ(x1) · · ·φ(xn)|0〉 (2.3)

can be computed in terms of the functional integral

Gn(x1, . . . , xn) = N−1

∫
(dφ)eiS(φ)φ(xi) . . . φ(xj), (2.4)

where the normalization factor is:

N =

∫
(dφ)eiS(φ). (2.5)

The φ(x) on the right hand side of the equation represents the classical field. The integra-
tion is over the value of φ(x) at every space-time point.

2.1.1 Gauge Theories

Gauge theories are defined as theories which are locally invariant under a particular gauge
symmetry. The local symmetry transformation has the form of a Lie group transformation.
Thus the gauge theory may be thought of as a direct product of space time and a Lie group.
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In the case of QCD the gauge group is the group of special unitary 3 by 3 matrices, namely
SU(3). The quarks are in the fundamental representation and the action of the group is:

ψi(x) → ψ′i(x) = Uij(x)ψj(x), Uij = e−iT
aδa(x). (2.6)

The T a are the 8 generators of the Lie group in the fundamental representation. They
span the corresponding Lie algebra and fulfill the following commutation relations:

[
T a, T b

]
= f abcT c . (2.7)

The f abc are called structure constants and form the Lie algebra of the adjoint representa-
tion.

In gauge theories the partial derivative has to be replaced by the covariant derivative

∂µψi → Dµijψj =
(
∂µδij + igT aijG

a
µ

)
ψj (2.8)

to retain the gauge symmetry. Hereby the gluon field Ga
µ comes naturally into play and

the interaction with the quark is given by the gauge invariant Fermionic part of the QCD
Lagrangian:

Lfermi = ψi (iD/ ij −mδij)ψj . (2.9)

Here m is the quark mass.

The contribution of the gauge field to the QCD Lagrangian

Lgauge = −1

4
Ga
µνG

aµν (2.10)

is given in terms of the gluon field strength tensor

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gf abcGb

µG
c
ν. (2.11)

The total gauge invariant Lagrangian for one quark field is thus given by:

Linv = Lfermi + Lgauge . (2.12)

2.1.2 Quantization of Gauge Fields

In the case of gauge theories the functional integral (2.4) includes an infinite amount of
field configurations which are related by gauge invariance to one another. Furthermore
the gauge variant two-point correlation function vanishes, which would be disasterous for
formulating perturbation theory, if we sum over all gauge configurations. To avoid this
overcounting a particular gauge configuration can be chosen. This has been done in the
functional formalism by Faddeev and Popov [63].

We would like to sketch the idea of the Faddeev-Popov quantization. First we choose
the gauge condition to be of the form Fa(G, x) = fa(x) and consider the Green’s function
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of a gauge invariant operator. In this case the functional integral of Eq. (2.4) would give
the same result for any particular gauge configuration. Hence we write

〈0|TX|0〉 = N−1
gauge

∫
(dG)(dψ)(dψ̄)XeiSinv∆(G)

∏

x,a

δ(Fa(x) − fa(x)), (2.13)

where the integral of all gauge transformations is separated from the integral of the gauge
configuration which satisfies the given gauge condition. Thus the normalization is given
by:

Ngauge =

∫
(dG)(dψ)(dψ̄)eiSinv∆(G)

∏

x,a

δ(Fa(x) − fa(x)). (2.14)

The factor ∆(G) is a Jacobian that arises in transforming the fields to the one which satisfies
the gauge transformation times the set of gauge transformations. It is a determinant and
can be written as the integral

∆(G) =

∫
dηadη̄aeiLgauge−compensating (2.15)

over anticommuting scalar fields η and η̄, the Faddeev-Popov ghosts.

In the case where Fa = ∂µG
aµ the gauge-compensating Lagrangian is up to a divergence

Lghost = ∂µη̄
a (∂µηa + gfabcηbG

cµ) , (2.16)

while the gauge-fixing part is

Lgauge−fixing = − 1

2ξ
(∂µG

aµ)2 /, . (2.17)

The complete QCD Lagrangian for one quark is then given by:

LQCD = Linv + Lghost + Lgauge−fixing . (2.18)

This definition leaves gauge-invariant Green’s functions invariant, while gauge variant
Green’s functions will give different results, and in particular might depend on the gauge-
fixing parameter ξ. This last feature makes the Faddeev-Popov quantization so important
in perturbation theory, because the two point correlation function does not vanish anymore
if we use the Lagrangian (2.18).

2.1.3 Renormalization

It is well known that in the calculation of Green’s function divergencies do arise. These
divergencies can be regularized by discretizing the action, this is by evaluating the func-
tional integral (2.4) on a lattice. The divergencies will now occur in the limit when the
lattice spacing a→ 0 goes to zero.
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Basic Idea of Renormalization and Regularization

The basic idea of renormalization is to reabsorb the divergencies, which occur in the limit
of a vanishing regulator, in a redefinition of the action. For example the Fermionic La-
grangian1 (2.9)

L(0)
kineticfermi = iψ̄0i

(
∂/ δij + g0T

a
ijG/

a
0

)
ψ0j −m0ψ̄0iψ0i (2.19)

is written in terms of the unrenormalized or bare fields ψ0, G0 and masses and couplings
m0, g0. These unrenormalized parameters have an explicit regulator dependence, being
chosen such that the resulting Green functions are finite.

If we reexpress the bare Lagrangian (2.19) in terms of renormalized fields, masses and
couplings by defining

ψ0 = Z
(1/2)
ψ ψ, m0 = Zmm, G0 = Z

(1/2)
G G, g0 = Zgg (2.20)

we can split the resulting Lagrangian

Lkineticfermi = Zψψ̄ii∂/ ψi + ZgZGZψψiigT
a
ijG/

aψj − ZψZmmψ̄iψi (2.21)

in a sum of one that resembles the bare Lagrangian, except that the bare parameters are
now replaced by the renormalized ones, and a counterterm Lagrangian

Lfermi = iψ̄i
(
∂/ δij + gT aijG/

a
)
ψj −mψ̄iψi

+ (Zψ − 1) ψ̄ii∂/ ψi + (ZgZGZψ − 1) igψiT
a
ijG/

aψj

− (ZψZm − 1)mψ̄iψi . (2.22)

The last form is particularly well suited for the use of perturbation theory. The
ψ̄ (i∂/ −m)ψ part is treated as the free Lagrangian, while ψiT

a
ijG/

aψj and the countert-
erms are treated as interactions. The Z factors will hereby be expanded in powers of the
coupling constant g.

Perturbation theory and Renormalization

Yet the use of a lattice as a regulator of our theory is impractical if we want to apply pertur-
bation theory. Symmetries like translation and Lorentz invariance are violated using this
regulator. The standard regularization method for perturbative calculation is dimensional
regularization, which we will exclusively use in this work.

In perturbation theory the short distance divergencies arise in form of integrals over loop
momenta. For example there are linear divergent integrals in four dimensional space time,
which would be finite in a two dimensional theory. The idea of dimensional regularization
is to perform the integration in d dimensions. The integrals are analytic in d and the

1The actual implementation of Fermions on a lattice leads to many difficulties, like the Fermion doubling
problem.
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original divergencies are rediscovered for d→ 4. The pole of the integral can be expanded
in a Laurent series using the parameter

ε =
4 − d

2
. (2.23)

As the unrenormalized Lagrangian is now defined in d dimensions the unrenormal-
ized coupling constant becomes a dimensionfull parameter. By keeping the renormalized
coupling constant dimensionless a scale µ appears:

g0 = Zggµ
ε. (2.24)

Renormalizing the QCDxQED Lagrangian

In this work we are concerned with the calculation of QCD and QED corrections to weak
decays. The Lagrangian for a massive quark of electromagnetic charge Qψ reads:

LQCD×QED = ψ̄0i (i∂/ −m0)ψ0i + g0ψ̄0iT
a
ijG/

a
0ψ0j + g0ψ̄0iQψA/ 0ψ0i

−1

4

(
∂µG

a
0ν − ∂νG

a
0µ

)
(∂µGaν

0 − ∂νG
aµ
0 ) − 1

2ξ0

(
∂µGa

0µ

)2

−1

4
(∂µA0ν − ∂νA0µ) (∂µAν0 − ∂νA

µ
0 ) − 1

2ξA0

(∂µA0µ)
2

−g
2
fabc

(
∂µG

a
0ν − ∂νG

a
0µ

)
Gbµ

0 G
cν
0 − g2

4
fabef cdeGa

0µG
b
0νG

cµ
0 G

dν
0

+η̄a0∂
µ∂µη

a
0 + gf abc (∂µη̄a) ηbGc

0µ. (2.25)

Here A denotes the photon, the gauge field associated with the U(1) symmetry. The ghost
fields associated with the U(1) gauge field fixing decouples from the theory.

The renormalization of this QCD×QED Lagrangian containing a massive quark pro-
ceeds as usual. First, we introduce the renormalized fields and variables via

Ga
µ,0 = Z

1/2
G Ga

µ , ηa0 = Z1/2
η ηa , ψ0 = Z

1/2
ψ ψ ,

g0 = Zgg , m0 = Zmb
m , ξ0 = ξ ,

Aµ,0 = Z
1/2
A Aµ , e0 = Zee , ξA0 = ξA .

(2.26)

The gauge-parameters ξ and ξA are kept unrenormalized. This is legitimate, because the
non-renormalization of the gauge-parameter is guaranteed by the usual Slavnov-Taylor
identity. In the calculation of the renormalization constants we use an expansion in exter-
nal momenta. Such an expansion will in general produce spurious infrared (IR) divergen-
cies. The above mentioned Slavnov-Taylor identity is unaffected by the IR regularization
adopted for the Yang-Mills theory. On the other hand the IR rearrangement we apply in
our calculation requires the introduction of the gauge-variant subtraction

(ZM − 1)ZGG
a
µG

aµ, (2.27)
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which can be interpreted as a counterterm for a fictitious gluon mass M .

The renormalization constants Z can be expanded in powers of the electromagnetic and
strong coupling constant

Z = 1 +
∞∑

j=1

∞∑

k=1

( g
4π

)2k ( e

4π

)2j

Z(k|j)

= 1 +

∞∑

k=1

( g
4π

)2k

Z(k) +
( e

4π

)2

Z(e) +
( e

4π

)2 ( g
4π

)2

Z(es) + . . . , (2.28)

where we only keep e2 and e2g2 contributions in the electricmagnetic coupling constant.
One can further expand the Z factors in their ε poles:

Z(k) =

k∑

l=0

1

εl
Z(k,l) Z(e) =

1

ε
Z(e,1)

Z(es) =
1

ε
Z(es,1) +

1

ε2
Z(es,2) . (2.29)

There is some arbitrariness in the definition of the Z factors. This is be fixed by the
choice of a renormalization scheme. For example in minimal subtraction scheme or MS
scheme only the pole parts are subtracted. Another useful scheme is the modified minimal
subtraction or MS scheme [64]. Here the parameter µ is redefined

µ→ µ

(
eγE

4π

)(1/2)

. (2.30)

before the minimal subtraction is performed. Using the above notation, the MS renormal-
ization constants at one-loop order take the following form

Z
(1,1)
G =

(
13

6
− 1

2
ξ

)
CA − 2

3
Nf ,

Z(1,1)
u =

(
3

4
− 1

4
ξ

)
CA ,

Z(1,1)
q = −ξCF ,

Z(1,1)
g = −11

6
CA +

1

3
Nf ,

Z(1,1)
mb

= −3CF ,

Z
(1,1)
M =

(
−29

24
− 1

8
ξ

)
CA − 2

3
Nf ,

(2.31)

where CA = 3 and CF = 4/3 are the quadratic Casimir operators of SU(3). As usual

Nf stands for the number of active quark flavours. Our result for Z
(1,1)
M agrees with the

expression given in [65].



14 CHAPTER 2. FOUNDATIONS

At the two-loop level the poles of the MS renormalization constants are given by

Z
(2,1)
G =

(
59

16
− 11

16
ξ − 1

8
ξ2

)
C2
A − CFNf −

5

4
CANf ,

Z(2,1)
u =

(
95

96
+

1

32
ξ

)
C2
A − 5

24
CANf ,

Z(2,1)
q =

3

4
C2
F −

(
25

8
+ ξ +

1

8
ξ2

)
CFCA +

1

2
CFNf ,

Z(2,1)
g = −17

6
C2
A +

1

2
CFNf +

5

6
CANf ,

Z(2,1)
mb

= −3

4
C2
F − 97

12
CFCA +

5

6
CFNf ,

Z
(2,1)
M =

(
−383

192
− 7

64
ξ − 3

32
ξ2

)
C2
A +

(
1

2
+

1

4
ξ

)
CFNf +

(
5

12
− 5

16
ξ

)
CANf , (2.32)

and

Z
(2,2)
G =

(
−13

8
− 17

24
ξ +

3

16
ξ2

)
C2
A +

(
1

2
+

1

3
ξ

)
CANf ,

Z(2,2)
u =

(
−35

32
+

3

32
ξ2

)
C2
A +

1

4
CANf ,

Z(2,2)
q =

1

2
ξ2C2

F +

(
3

4
ξ +

1

4
ξ2

)
CFCA ,

Z(2,2)
g =

121

24
C2
A − 11

6
CANf +

1

6
N2
f ,

Z(2,2)
mb

=
9

2
C2
F +

11

2
CFCA − CFNf ,

Z
(2,2)
M =

(
1211

384
+

59

192
ξ +

5

128
ξ2

)
C2
A − 1

2
ξCFNf +

(
7

12
− 1

24
ξ

)
CANf −

2

3
N2
f .

(2.33)

Except for Z
(2,1)
M and Z

(2,2)
M , which have never been given explicitly, our renormalization

constants agree with the results in the literature [66], if one bears in mind that the original
papers contain some typing errors. We have also calculated the three-loop renormalization
constants [67–70], but we do not report them here, as they are not needed in our calculation.

2.1.4 Renormalization Group Equation

The splitting of the unrenormalized Lagrangian in the free, the interacting, and the coun-
terterm Lagrangian introduces an arbitrariness in the definition of the renormalized param-
eters. The counterterm has to cancel the divergencies of a graph, but a finite subtraction is
still possible. Such a finite renormalization would be a change in renormalization prescrip-
tion. For example a finite change of m and g in (2.22) can be absorbed in a redefinition of
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Zm and Zg. The invariance of the theory under such finite renormalizations is traditionally
called renormalization group.

A particularly useful change of the renormalization scheme is the one related to a
redefinition of µ. For example the scheme change from MS to MS is just a change of µ by

µ→ µ

(
eγE

4π

)(1/2)

. (2.34)

The infinitesimal change of µ will result in a change of the renormalized parameters, so
that all resulting physical quantities are invariant. The equations which govern this change
of the renormalized parameters are called renormalization group equations.

The differential equations are derived from Eq. (2.28). Here one uses the fact that the
unrenormalized quantities are µ independent. For the coupling constant we find

µ
dg

dµ
= β (g(µ), e(µ), ε) , µ

de

dµ
= βe (e(µ), g(µ), ε) , (2.35)

where the β functions are given

β (g(µ), e(µ), ε) = −εg − Z−1
g µ

(
d

dµ
Zg

)
g ≡ −εg − β (g(µ), e(µ)) ,

βe (e(µ), g(µ), ε) = −εe − Z−1
e µ

(
d

dµ
Ze

)
e ≡ −εe− βe (e(µ), g(µ)) . (2.36)

In an mass independent scheme like the MS scheme the only explicit mass dependence
of the counterterms resides in the couplings. For the beta function of the strong coupling
we can then write

β(g, e) = −β0
g3

(4π)2
− β1

g5

(4π)4 − β2
g7

(4π)6 − βse
g3e2

(4π)4
+ . . .

= 2Z(1,1)
g

g3

(4π)2
+ 4Z(2,1)

g

g5

(4π)4
+ 6Z(3,1)

g

g7

(4π)6
+ 4Z(es,1)

g

g3e2

(4π)4
+ . . . . (2.37)

Using the same argument and Eq. (2.35) similar formulas can be derived for the anoma-
lous dimensions, which govern the renormalization group evolution

γm = Z−1
m µ

(
d

dµ
Zm

)
, γψ = Z−1

ψ µ

(
d

dµ
Zψ

)
(2.38)

of the mass and the quark field.
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2.2 Effective Field Theories

Weak decays are usually characterized by two different scales. In the case of B decays we
have MW � mb. In this context large logarithms occur, which will render a straightfor-
ward perturbative calculation unreliable. In effective field theories the effects of the heavy
particles can systematically be incorporated in a so-called matching calculation. The large
logarithms can then be resummed using renormalization group equations for the effective
theory.

The Appelquist-Carrazone decoupling theorem [71] lies at the heart of the effective
field theories. It states that in many classes of theories the contribution of heavy particles
to Green’s functions can be absorbed into the renormalization constants of a Lagrangian
which consists only out of light fields. Corrections are smaller by a power of momenta
divided by a heavy mass.

If we work with a mass independent scheme like the MS scheme we have to put the
decoupling theorem by hand in effective field theory [72,73]. This is done via matching of
a high scale Lagrangian on a low scale one.

At high scales our theory is described by a Lagrangian, which contains a set of heavy
χ and light φ fields. It can be split into a part, which contains only the light fields, and
one that contains the rest:

Lfull = LH(χ, φ) + L(φ). (2.39)

When we now go to a scale µ smaller than the the mass scale of the heavy fields our
theory will be described by an effective Lagrangian

Leff = L(φ) + δL(φ) (2.40)

in terms of the light fields. The matching corrections are encoded in the “correcting”
Lagrangian δL(φ) and can be calculated at the high scale MH ∼ Mχ using perturbation
theory. This is done by requiring that all one light-particle irreducible graphs with external
light particles are the same in the full and in the effective theory. The resulting contribution
to the correction Lagrangian is analytic in p/Mχ in the region relevant for the low energy
theory. Thus it can be expanded in terms of decreasing importance and matched on the
low energy effective theory.

In the following we will calculate the renormalization group equations for the “correct-
ing” Lagrangian. We will apply perturbation theory using the Lagrangian of the light fields
L(φ) and renormalize the composite operators of δL(φ).

2.2.1 Effective Hamiltonian for |∆B| = 1 Decays

We want to apply this formalism to |∆B| = 1 decays. We work in the framework of
an effective low-energy theory with five active quarks, three active leptons, photons and
gluons, obtained by integrating out heavy degrees of freedom characterized by a mass scale
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M ≥ MW . In the leading order of the weak coupling the effective off-shell Lagrangian
relevant for the b→ sγ, b→ sg and b → s`+`− transition at a scale µ is given by

Leff = LQCD×QED(u, d, s, c, b, e, µ, τ) +
4GF√

2
V ∗tsVtb

32∑

i=1

Ci(µ)Qi . (2.41)

Here the first term is the conventional QCD-QED Lagrangian2 for the light SM particles.
In the second term Vij denotes the elements of the CKM matrix and Ci(µ) are the Wilson
coefficients of the corresponding operators Qi built out of the light fields.

In our case it is useful to divide the local operators Qi entering the effective Lagrangian
into five different classes: i) physical operators, ii) gauge-invariant operators that vanish by
use of the QCD×QED equations of motion (EOM), iii) gauge-variant EOM-vanishing op-
erators, and iv) so-called evanescent operators that vanish algebraically in four dimensions.
In principle, one could also encounter v) non-physical counterterms that can be written as
a Becchi-Rouet-Stora-Tyutin (BRST) variation of some other operators, so-called BRST-
exact operators. However, they turn out to be unnecessary in the case of the O(α2

s) mixing
of the operators Qi considered below. See also [25].

Neglecting the mass of the strange quark, the physical operators [74–78] can consist out
of the four quark operators, the magnetic moment type operators, and the semileptonic
operators.

The four quark operators can be subclassifed into the current-current type operators

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL) ,

Q2 = (s̄LγµcL)(c̄Lγ
µbL) , (2.42)

where qL and qR are the chiral quark fields. Notice that, since QCD is flavour-blind and
up and charm quarks have the same electromagnetic charge, it is not necessary for our
purposes to consider the analogues of Q1 and Q2 involving the up instead of the charm
quark. The QCD penguin operators are

Q3 = (s̄LγµbL)
∑

q
(q̄γµq) ,

Q4 = (s̄LγµT
abL)

∑
q
(q̄γµT aq) ,

Q5 = (s̄LγµγνγρbL)
∑

q
(q̄γµγνγρq) ,

Q6 = (s̄LγµγνγρT
abL)

∑
q
(q̄γµγνγρT aq) , (2.43)

where the sum over q and ` extends over all light quark and lepton fields, respectively.
The electroweak penguin operators arise first at O(α) and have to be taken into account

2In principle the QCD-QED Lagriangian will also recieve matching corrections at higher loop order.
These can be avoided by using a physical renormalization scheme for say the gluon wavefunction renor-
malization [13]
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if QED corrections are considered. They are

QQ
3 = (s̄LγµbL)

∑
q
Qq(q̄γ

µq) ,

QQ
4 = (s̄LγµT

abL)
∑

q
Qq(q̄γ

µT aq) ,

QQ
5 = (s̄LγµγνγρbL)

∑
q
Qq(q̄γ

µγνγρq) ,

QQ
6 = (s̄LγµγνγρT

abL)
∑

q
Qq(q̄γ

µγνγρT aq) , (2.44)

where Qq is the electromagnetic charge of the quark q.

The magnetic moment type operators Q7 and Q8 are

Q7 =
e

g2
mb(s̄Lσ

µνbR)Fµν ,

Q8 =
1

g
mb(s̄Lσ

µνT abR)Ga
µν , (2.45)

where e (g) is the electromagnetic (strong) coupling constant, Fµν (Ga
µν) is the electromag-

netic (gluonic) field strength tensor, and T a are the colour matrices normalized so that
Tr(T aT b) = δab/2.

The semileptonic operators Q9 and Q10, relevant for the b→ s`+`− transition are given
by:

Q9 =
e2

g2
(s̄LγµbL)

∑
`
(¯̀γµ`) ,

Q10 =
e2

g2
(s̄LγµbL)

∑
`
(¯̀γµγ5`) . (2.46)

We have defined Q1–Q6 and QQ
3 –QQ

6 in such a way that problems connected with the
treatment of γ5 in n = 4 − 2ε dimensions do not arise [24]. Consequently, we are allowed
to consistently use fully anticommuting γ5 in dimensional regularization throughout the
calculation.
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The gauge-invariant EOM-vanishing operators can be chosen to be [12, 13]

Q11 =
e

g2
s̄Lγ

µbL∂
νFµν +

e2

g2
(s̄LγµbL)

∑
f
Qf (f̄γ

µf) ,

Q12 =
1

g
s̄Lγ

µT abLD
νGa

µν +Q4 ,

Q13 =
1

g2
mbs̄LD/ D/ bR ,

Q14 =
i

g2
s̄LD/ D/ D/ bL ,

Q15 =
ie

g2

[
s̄L
←

D/ σµνbLFµν − Fµν s̄Lσ
µνD/ bL

]
+Q7 ,

Q16 =
i

g

[
s̄L
←

D/ σµνT abLG
a
µν −Ga

µν s̄LT
aσµνD/ bL

]
+Q8 ,

(2.47)

where the sum over f runs over all light Fermion fields, while Dµ and
←

Dµ denotes the
covariant derivative of the gauge group SU(3)C × U(1)Q acting on the fields to the right
and left, respectively. Notice that the set of operators Q1–Q16 closes off-shell under QCD
renormalization, up to evanescent operators [13,74–78]. In order to remove the divergences
of all possible one-particle irreducible (1PI) Green’s functions with single insertion of Q1–
Q10 we also have to introduce the following gauge-variant EOM-vanishing operators

Q17 =
i

g
mbs̄L

[
←

D/ G/ −G/ D/

]
bR ,

Q18 = i

[
s̄L

(
←

D/ G/ G/ −G/ G/ D/

)
bL − imbs̄LG/ G/ bR

]
,

Q19 =
1

g

[
s̄L

(
←

D/
←

D/ G/ +G/ D/ D/

)
bL + imbs̄LG/ D/ bR

]
,

Q20 = i

[
s̄L

(
←

D/ Ga
µG

aµ −Ga
µG

aµD/

)
bL − imbs̄LG

a
µG

aµbR

]
,

Q21 =
1

g

[
s̄L

(
←

D/
←

Dµ G
µ +GµD

µD/

)
bL + imbs̄LGµD

µbR

]
,

Q22 =
1

g

[
s̄L

(
←

D/ T a + T aD/

)
bL + imbs̄LT

abR

]
∂µGa

µ ,

Q23 =
1

g

[
s̄L
←

D/ G/ D/ bL + imbs̄L
←

D/ G/ bR

]
,

Q24 = dabc
[
s̄L

(
←

D/ T a − T aD/

)
bL − imbs̄LT

abR

]
Gb
µG

cµ ,

(2.48)

where Ga
µ denotes the gluon field, and we have used the abbreviations Gµ = Ga

µT
a and

dabc = 2Tr({T a, T b}T c).
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In contrast to the case of the two-loop mixing of the magnetic operators considered
in [25, 46], it is a priori not clear if BRST-exact operators do arise as counterterms of
Q1–Q6 on the three-loop level. Since the BRST variation raises both ghost number and
mass dimension by one unit, it is evident that any BRST-exact operator that potentially
could mix with Q1–Q6 has to be a BRST variation of a dimension-five operator containing
a single anti-ghost field. The only possibility for the latter operator having the correct
chirality structure is given in the Rξ gauge by [77]

B1 = s

[
1

g
(∂µ1 η̄

a) (s̄Lγ
µ1T abL)

]

= −1

g

[
1

ξ
∂µ1∂

µ2Ga
µ2

+ gf abc
(
∂µ1 η̄

b
)
ηc
]

(s̄Lγ
µ1T abL) ,

(2.49)

where s denotes the BRST operator.

It is important to remark that the EOM-vanishing operators introduced in Eqs. (2.47)
and (2.48) arise as counterterms independently of what kind of IR regularization is adopted
in the computation. However, if the regularization respects the underlying symmetry,
and all the diagrams are calculated without expansion in the external momenta, non-
physical operators have vanishing matrix elements [79,80]. In this case the EOM-vanishing
operators given in Eqs. (2.47) and (2.48) play no role in the calculation of the mixing of
physical operators. If the gauge symmetry is broken, this is no longer the case, as diagrams
with insertions of non-physical operators will generally have non-vanishing projection on
the physical operators. Since our IR regularization implies a massive gluon propagator,
non-physical counterterms play a crucial role at intermediate stages of the calculation.

2.2.2 Evanescent Operators

In order to remove the divergences of all possible 1PI Green’s functions with single insertion
of Q1–Q6 we have to introduce some evanescent operators ~E as well. At the one-loop level
one encounters four evanescent operators, which can be chosen to be [24, 26]

E
(1)
1 = (s̄Lγµ1µ2µ3T

acL)(c̄Lγ
µ1µ2µ3T abL) − 16Q1 ,

E
(1)
2 = (s̄Lγµ1µ2µ3cL)(c̄Lγ

µ1µ2µ3bL) − 16Q2 ,

E
(1)
3 = (s̄Lγµ1µ2µ3µ4µ5bL)

∑
q(q̄γ

µ1µ2µ3µ4µ5q) + 64Q3 − 20Q5 ,

E
(1)
4 = (s̄Lγµ1µ2µ3µ4µ5T

abL)
∑

q(q̄γ
µ1µ2µ3µ4µ5T aq) + 64Q4 − 20Q6 ,

(2.50)
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where we have used the abbreviations γµ1···µn
= γµ1 · · ·γµn

, γµ1···µn = γµ1 · · ·γµn . At the
two-loop level four more evanescent operators arise that can be defined as [24, 26]

E
(2)
1 = (s̄Lγµ1µ2µ3µ4µ5T

acL)(c̄Lγ
µ1µ2µ3µ4µ5T abL) − 256Q1 − 20E

(1)
1 ,

E
(2)
2 = (s̄Lγµ1µ2µ3µ4µ5cL)(c̄Lγ

µ1µ2µ3µ4µ5bL) − 256Q2 − 20E
(1)
2 ,

E
(2)
3 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7bL)

∑
q(q̄γ

µ1µ2µ3µ4µ5µ6µ7q) + 1280Q3 − 336Q5 ,

E
(2)
4 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7T

abL)
∑

q(q̄γ
µ1µ2µ3µ4µ5µ6µ7T aq) + 1280Q4 − 336Q6 .

(2.51)

Finally, at the three-loop level another four evanescent operators are needed. We define
them in the following way:

E
(3)
1 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7T

acL)(c̄Lγ
µ1µ2µ3µ4µ5µ6µ7T abL) − 4096Q1 − 336E

(1)
1 ,

E
(3)
2 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7cL)(c̄Lγ

µ1µ2µ3µ4µ5µ6µ7bL) − 4096Q2 − 336E
(1)
2 ,

E
(3)
3 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7µ8µ9bL)

∑
q(q̄γ

µ1µ2µ3µ4µ5µ6µ7µ8µ9q) + 21504Q3 − 5440Q5 ,

E
(3)
4 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7µ8µ9T

abL)
∑

q(q̄γ
µ1µ2µ3µ4µ5µ6µ7µ8µ9T aq) + 21504Q4 − 5440Q6 .

(2.52)

Needless to say that the above choice of evanescent operators E
(3)
1 –E

(3)
4 is not unique, in

the sense that their particular structure can be changed quite a lot without affecting the
three-loop anomalous dimensions of the four-quark operators Q1–Q6. For instance, adding
any multiple of ε times any physical operator to them, leaves the anomalous dimensions
up to O(α3

s) unchanged. This is contrary to what happens if such a redefinition is applied
to the one- and two-loop evanescent operators as given in Eqs. (2.50) and (2.51). However,

the evanescent operators E
(3)
1 –E

(3)
4 become more important at the four-loop level.

For the renormalization of the electroweak penguin operators QQ
3 –QQ

6 one encounters
at the one-loop level two evanescent operators, which can be chosen to be

E
Q(1)
3 = (s̄Lγµ1µ2µ3µ4µ5bL)

∑
qQq(q̄γ

µ1µ2µ3µ4µ5q) + 64QQ
3 − 20QQ

5 ,

E
Q(1)
4 = (s̄Lγµ1µ2µ3µ4µ5T

abL)
∑

qQq(q̄γ
µ1µ2µ3µ4µ5T aq) + 64QQ

4 − 20QQ
6 .

(2.53)

At the two-loop level two more evanescent operators arise, which we choose to be

E
Q(2)
3 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7bL)

∑
qQq(q̄γ

µ1µ2µ3µ4µ5µ6µ7q) + 1280QQ
3 − 336QQ

5 ,

E
Q(2)
4 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7T

abL)
∑

qQq(q̄γ
µ1µ2µ3µ4µ5µ6µ7T aq) + 1280QQ

4 − 336QQ
6 .

(2.54)

Finally to apply the QED one-loop renormalization of the semileptonic operators Q9

and Q10 we introduce the follwing two evanescent operators:

E
L(1)
1 =

1

6
(s̄Lγµ1µ2µ3bL)

∑
l(l̄γ

µ1µ2µ3 l) +Q10 −
5

3
Q9

E
L(1)
2 = (s̄Lγµ1µ2µ3bL)

∑
l(l̄γ

µ1µ2µ3γ5 l) +
5

3
(s̄Lγµ1µ2µ3bL)

∑
l(l̄γ

µ1µ2µ3 l) − 32

3
Q9 .

(2.55)
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2.2.3 Renormalizing Composite Operators

Our aim is to study the renormalization properties of the physical operators Q1–Q10 intro-
duced in Eqs. (2.42–2.46). Upon renormalization, the bare Wilson coefficients Ci,B(µ) of
Eq. (2.41) transform as

Ci,B(µ) = ZjiCj(µ) , (2.56)

where the renormalization constants Zij can be expanded in powers of αs = g2

4π
and α = e2

4π

as

Zij = δij +
∞∑

k=1

(αs
4π

)k
Z

(k)
ij +

α

4π
Z

(e)
ij +

αsα

16π2
Z

(es)
ij

Z
(k)
ij =

k∑

l=0

1

εl
Z

(k,l)
ij , Z

(e)
ij =

1∑

l=0

1

εl
Z

(e,l)
ij , Z

(es)
ij =

2∑

l=0

1

εl
Z

(es,l)
ij . (2.57)

Following the standard MS scheme prescription, Zij is given by pure 1/εl poles, except
when i corresponds to an evanescent operator, while j does not. In the latter case, the
renormalization constant is finite, to make sure that the matrix elements of the evanescent
operators vanish in four dimensions [81–83]. The calculation of an effective amplitude
Aeff , also involves the matrix element 〈Qi〉 ≡ 〈F |Qi(µ)|I〉 of the operator Qi between an
initial state I and a final state F , which is renormalized by the usual coupling, mass,
and wave function renormalization factor characteristic of the operator Qi → Z(Qi). The
renormalized effective amplitude is therefore given by

Aeff = ZjiCj(µ)〈Z(Qi)〉R , (2.58)

where 〈Z(Qi)〉R denotes the matrix element of the operator Z(Qi) after performing cou-
pling, mass and wave function renormalization. Clearly, it is also possible to define the
operator renormalization constantZ ij from the relation between unrenormalized and ampu-
tated Green’s functions via 〈Z(Qi)〉R =Zij〈Qj〉B. In this case, one simply hasZ ij = Z−1

ij .
In general Z(Qi) will not be proportional to Qi. For example, in many of the EOM-
vanishing operator introduced in Eqs. (2.47) and (2.48) one has two different terms, only
one of which has a factor of mb. Correspondingly, the mb renormalization of the operator
is

Zmb
(Qi) = Qi + (Zmb

− 1)Q′i , (2.59)

where Zmb
denotes the mass renormalization constant of the bottom quark, and Q′i is the

part of Qi proportional to mb. Another important example in the case of QED corrections
are the pengiun operators (2.43–2.44), where the renormalization will depend on the flavour
of the particular insertion.

The product on the right-hand side of Eq. (2.58) must be finite by definition at any
given order in αs and α. Therefore, requiring the cancellation of UV divergences we can
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Figure 2.1: Some of the two-loop 1PI diagrams we had to calculate in order to find the
O(α2

s) mixing of the complete set of operators Q1–Q32.

extract Z
(k)
ij order by order. The result, up to third order in αs and to order α and ααs,

reads

Z
(1)
ij 〈Qj〉(0)R = −〈Z(Qi)〉(1)R ,

Z
(2)
ij 〈Qj〉(0)R = −〈Z(Qi)〉(2)R − Z

(1)
ij 〈Z(Qj)〉(1)R ,

Z
(3)
ij 〈Qj〉(0)R = −〈Z(Qi)〉(3)R − Z

(1)
ij 〈Z(Qj)〉(2)R − Z

(2)
ij 〈Z(Qj)〉(1)R ,

Z
(e)
ij 〈Qj〉(0)R = −〈Z(Qi)〉(e)R ,

Z
(es)
ij 〈Qj〉(0)R = −〈Z(Qi)〉(es)R − Z

(e)
ij 〈Z(Qj)〉(1)R − Z

(1)
ij 〈Z(Qj)〉(e)R ,

(2.60)

where the superscript (k) always stands for the k-th order contribution in αs, while (e)
and (es) denote the contribution in α and ααs respectively.

If we leave aside the complication that in general Z(Qi) will not be proportional to Qi,
and write symbolically 〈Z(Qi)〉R = Zi〈Qi〉B, the above relations can be rewritten in terms
of bare quantities. Up to the considered order we obtain

Z
(1)
ij 〈Qj〉(0)B = −〈Qi〉(1)B − Z

(1)
i 〈Qi〉(0)B ,

Z
(2)
ij 〈Qj〉(0)B = −〈Qi〉(2)B − Z

(1)
ij 〈Qj〉(1)B − Z

(1)
i 〈Qi〉(1)B

− Z
(1)
ij Z

(1)
j 〈Qj〉(0)B − Z

(2)
i 〈Qi〉(0)B ,

Z
(3)
ij 〈Qj〉(0)B = −〈Qi〉(3)B − Z

(1)
ij 〈Qj〉(2)B − Z

(1)
i 〈Qi〉(2)B

− Z
(2)
ij 〈Qj〉(1)B − Z

(1)
ij Z

(1)
j 〈Qj〉(1)B − Z

(2)
i 〈Qi〉(1)B

− Z
(2)
ij Z

(1)
j 〈Qj〉(0)B − Z

(1)
ij Z

(2)
j 〈Qj〉(0)B − Z

(3)
i 〈Qi〉(0)B .

Z
(e)
ij 〈Qj〉(0)B = −〈Qi〉(e)B − Z

(e)
i 〈Qi〉(0)B ,

Z
(es)
ij 〈Qj〉(0)B = −〈Qi〉(es)B − Z

(e)
ij 〈Qj〉(1)B − Z

(1)
ij 〈Qj〉(e)B

− Z
(e)
i 〈Qi〉(1)B − Z

(1)
i 〈Qi〉(e)B

− Z
(e)
ij Z

(1)
j 〈Qj〉(0)B − Z

(0)
ij Z

(e)
j 〈Qj〉(0)B − Z

(es)
i 〈Qi〉(0)B .

(2.61)

The first line in Eqs. (2.61) recalls the familiar result that the one-loop renormalization
matrix is given by the UV divergences of the one-loop matrix elements, after performing
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Figure 2.2: Some of the three-loop 1PI diagrams we had to calculate in order to find the
mixing of the four-quark operators Q1–Q6 into Q1–Q6 and Q7–Q10 at O(α3

s).

wave function and possibly coupling and mass renormalization. For example, in the case
of the operators Q1–Q6 in QCD, one has Zi = Z2

q with Zq denoting the wave function
renormalization constant of the quark fields, and Eqs. (2.61) take a particularly simple
form, which upon expansion in αs reproduces the classical results derived more than ten
years ago [81].

For a given set of operators and knowing the QCD and QED renormalization constants,
the solution of the above systems of linear equations requires the calculation of a sufficient
number of Green’s functions for different external fields with single insertions of the opera-
tors Qi. In our case, in order to determine the complete Z

(k)
ij of all the operators introduced

in Section 2.2.1 and 2.2.2, it is sufficient to calculate the O(αks) matrix elements of Q1–Q32

for the b → scc̄, b → sdd̄, b → s, b → sγ, b → sg and b → sgg transition — see Fig. 2.1.
As we are interested in a subset of the three-loop ADM, the mixing of Q1–Q6 into Q1–Q6

and Q7–Q10, we have actually calculated only the three-loop b→ scc̄, b→ sγ, and b→ sg
amplitudes involving insertions of Q1–Q6 (see Fig. 2.2). We have calculated the complete
off-shell amplitudes up to terms proportional to external momenta squared. By using the
EOM it is therefore straightforward to extract the mixing into Q1–Q6 and Q7–Q10. Notice
that the results for the Z

(k)
ij cannot depend on the considered Green’s functions and that the

pole parts need to have the structure of the complete set of local operators Q1–Q32. Both
features represent a powerful consistency check of the computation of the renormalization
constants Z

(k)
ij .

The normalization of the physical operators adopted in Section 2.2.1 has been chosen
[13] in such a way that the power of αs in Zij is equal to the number of loops of the
contributing diagrams. For instance, without the factor 1/g2 in Q7–Q10, as in the standard
normalization adopted in [6, 7, 45], both one- and two-loop diagrams contribute to the
O(αs) mixing matrix, because of the O(αs) two-loop mixing of four-quark into magnetic
operators. This choice simplifies both the implementation of the renormalization program
and the resummation of large logarithms, since the redefinition enables one to proceed for
b→ s`+`− in the same way as in the b → sγ and b→ sg case.

In a mass independent renormalization scheme Z
(k)
ij is µ-independent. This allows to

check the renormalization of two- and three-loop matrix elements. The right-hand sides
of the Eqs. (2.60) and (2.61) receive contributions from irreducible two- and three-loop



2.2. EFFECTIVE FIELD THEORIES 25

diagrams as well as one- and two-loop counterterms. The µ-dependence is different in
each case and governed by the n-loop factor (µ2ε)

n
. The UV structure of the k-th term is

therefore given by

Z
(k)
ij 〈Qj〉(0)B =

k∑

n=0

n∑

l=1

(
µ2ε
)n 1

εl
M (n,l) , (2.62)

where M (n,l) denotes the 1/εl pole of the sum of all n-loop contributions. Expanding
in powers of ε we find the following set of equations which have to be fulfilled to get a
µ-independent Z

(k)
ij up to three-loop order:

3M (3,2) + 2M (2,2) +M (1,2) = 0 ,

3M (3,3) + 2M (2,3) +M (1,3) = 0 ,

9M (3,3) + 4M (2,3) +M (1,3) = 0 . (2.63)

This system of equations provides us with a powerful check of the renormalization of two-
as well as three-loop diagrams. Notice that the locality of UV divergences also places some
constraints on the renormalization matrix itself. We will return to this point later on.

2.2.4 Renormalization Constants and Anomalous Dimensions

The anomalous dimensions γij defined by

µ
d

dµ
Ci(µ) = γjiCj(µ) (2.64)

can be expressed in terms of the entries of the renormalization matrix Zij as follows

γij = Zikµ
d

dµ
Z−1
kj . (2.65)

In a mass independent renormalization scheme the only µ-dependence of Zij resides in the
coupling constant. In consequence, we might rewrite Eq. (2.65) as

γij = 2β(ε, αs, α)Zik
d

dαs
Z−1
kj + 2βe(ε, αs, α)Zik

d

dα
Z−1
kj , (2.66)

where β(ε, αs, α) and β(ε, αs, α) is related to the β functions via

β(ε, αs, α) = αs
(
− ε+ β(αs, α)

)
(2.67)

βe(ε, αs, α) = α
(
− ε+ βe(αs, α)

)
. (2.68)
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The finite parts of Eq. (2.66) in the limit of ε going to zero give the anomalous dimensions.
Expanding the anomalous dimensions and the β function in powers of αs and α as

γ̂ =

∞∑

k=1

(αs
4π

)k
γ̂(k−1) +

α

4π
γ̂(0)
e +

αsα

16π2
γ̂(0)
es

β(αs, α) = −
∞∑

k=1

(αs
4π

)k
βk−1 −

αsα

16π2
βes

βe(αs, α) = −
∞∑

k=1

( α
4π

)k
βek−1

− αsα

16π2
βees

,

(2.69)

we find in accordance with [65] up to third order in αs and up to order α and ααs:

γ̂(0) = 2Ẑ(1,1) ,

γ̂(1) = 4Ẑ(2,1) − 2Ẑ(1,1)Ẑ(1,0) − 2Ẑ(1,0)Ẑ(1,1) + 2β0Ẑ
(1,0) ,

γ̂(2) = 6Ẑ(3,1) − 4Ẑ(2,1)Ẑ(1,0) − 2Ẑ(1,1)Ẑ(2,0) − 4Ẑ(2,0)Ẑ(1,1) − 2Ẑ(1,0)Ẑ(2,1) ,

+ 2Ẑ(1,1)Ẑ(1,0)Ẑ(1,0) + 2Ẑ(1,0)Ẑ(1,1)Ẑ(1,0) + 2Ẑ(1,0)Ẑ(1,0)Ẑ(1,1)

+ 2β1Ẑ
(1,0) + 4β0Ẑ

(2,0)−2β0Ẑ
(1,0)Ẑ(1,0) ,

γ̂(0)
e = 2Ẑ(1,1) ,

γ̂(1)
es = 4Ẑ(es,1) − 2Ẑ(1,1)Ẑ(e,0) − 2Ẑ(1,0)Ẑ(e,1)

− 2Ẑ(e,1)Ẑ(1,0) − 2Ẑ(e,0)Ẑ(1,1) + 2β0Ẑ
(e,0) + 2βe0Ẑ

(1,0) .

(2.70)

On the other hand the pole parts of Eq. (2.66) must vanish. From this condition one obtains
relations between single, double and triple 1/ε poles of the Zij, which constitute a useful
check of the calculation. In agreement with [65] we find

Ẑ(2,2) =
1

2
Ẑ(1,1)Ẑ(1,1) − 1

2
β0Ẑ

(1,1) ,

Ẑ(3,3) =
1

6
Ẑ(1,1)Ẑ(1,1)Ẑ(1,1) − 1

2
β0Ẑ

(1,1)Ẑ(1,1) +
1

3
β2

0 Ẑ
(1,1) ,

Ẑ(3,2) =
2

3
Ẑ(2,1)Ẑ(1,1) +

1

3
Ẑ(1,1)Ẑ(2,1) − 1

3
Ẑ(1,1)Ẑ(1,0)Ẑ(1,1) − 1

6
Ẑ(1,0)Ẑ(1,1)Ẑ(1,1)

− 1

3
β1Ẑ

(1,1) − 2

3
β0Ẑ

(2,1) +
1

6
β0Ẑ

(1,0)Ẑ(1,1) ,

Ẑ(es,2) = 0 .

(2.71)
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2.3 Summation of the Logarithms

2.3.1 The Evolution Matrix

The effective Hamiltonian for non-leptonic |∆F | = 1 decays has the following generic
structure [84]:

Heff = −4GF√
2
VCKM

~QT ~C(µ) . (2.72)

Here GF denotes the Fermi constant and ~QT is a row vector containing the relevant local
operators Qi, which in the case considered here include the current-current operators Q1

and Q2, and the QCD penguin operators Q3–Q6. The decay amplitude for a decay of a
meson M into a final state F is simply given by 〈F |Heff |M〉.

We want to investigate the renormalization scale dependence of the effective Hamilto-
nian, in particular the NNLO QCD contributions, which until now have not been com-
pletely studied in the literature. We will, therefore, postpone the discussion of QED
contributions to the end of this section. The Wilson coefficient functions evolve from the
initial scale µ0 down to the renormalization scale µ according to their renormalization
group equation (RGE)

µ
d

dµ
~C(µ) = γ̂T (g) ~C(µ) , (2.73)

where γ̂(g) is the ADM corresponding to ~Q. Neglecting the running of the electromagnetic
coupling constant the general solution of this equation reads

~C(µ) = Û(µ, µ0) ~C(µ0) , (2.74)

with

Û(µ, µ0) = Tg exp

∫ g(µ)

g(µ0)

dg′
γ̂T (g′)

β(g′)
, (2.75)

γ̂(g) =
∞∑

i=0

(
g2

16π2

)i+1

γ̂(i) , and β(g) = −g
∞∑

i=0

(
g2

16π2

)i+1

βi . (2.76)

Here ~C(µ0) are the initial conditions of the evolution and Tg denotes ordering of the coupling
constants g(µ) in such a way that their value increases from right to left. β(g) is the QCD
β function.

Keeping the first three terms in the expansions of γ̂(g) and β(g) as given in Eq. (2.76),
we find for the evolution matrix Û(µ, µ0) in NNLO approximation

Û(µ, µ0) = K̂(µ)Û (0)(µ, µ0)K̂
−1(µ0) , (2.77)
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where

K̂(µ) = 1̂ +
αs(µ)

4π
Ĵ (1) +

(
αs(µ)

4π

)2

Ĵ (2) ,

K̂−1(µ0) = 1̂ − αs(µ0)

4π
Ĵ (1) −

(
αs(µ0)

4π

)2 (
Ĵ (2) −

(
Ĵ (1)

)2)
,

(2.78)

and
Û (0)(µ, µ0) = V̂ diag (ηai) V̂ −1 , (2.79)

denotes the LO evolution matrix, which depends on the matrix V̂ and the so-called magic
numbers ai that are obtained via diagonalizing γ̂(0) T

(
V̂ −1γ̂(0) T V̂

)

ij
= 2β0aiδij . (2.80)

In order to give the explicit expressions for the matrices Ĵ (1) and Ĵ (2) we define

Ĵ (i) = V̂ −1Ŝ(i)V̂ , and Ĝ(i) = V̂ −1γ̂(i) T V̂ , (2.81)

for i = 1, 2. The entries of the matrix kernels Ŝ(1) and Ŝ(2) are given by

S
(1)
ij =

β1

β0
aiδij −

G
(1)
ij

2β0 (1 + ai − aj)
,

S
(2)
ij =

β2

2β0

aiδij +
∑

k

1 + ai − ak
2 + ai − aj

(
S

(1)
ik S

(1)
kj − β1

β0

S
(1)
ij δjk

)
−

G
(2)
ij

2β0 (2 + ai − aj)
,

(2.82)

where the first line recalls the classical NLO result derived more than ten years ago [85],
and the second one represents the corresponding NNLO expression, for which our findings
perfectly agree with [86].

In order to derive the explicit expressions for the matrix kernels Ŝ(1) and Ŝ(2) as given
in Eq. (2.82), we follow [85,87] and compute the partial derivative of Eqs. (2.75) and (2.77)
with respect to g. After some algebra, one finds the following differential equation for
K̂(g):

∂K̂(g)

∂g
+

1

g

[
γ̂(0) T

β0
, K̂(g)

]
=

(
γ̂T (g)

β(g)
+

1

g

γ̂(0) T

β0

)
K̂(g) . (2.83)

Inserting Eqs. (2.78) into the last equation we obtain

Ĵ (1) +

[
γ̂(0) T

2β0
, Ĵ (1)

]
= − γ̂

(1) T

2β0
+

β1

2β2
0

γ̂(0) T ,

Ĵ (2) +

[
γ̂(0) T

4β0
, Ĵ (2)

]
= − γ̂

(2) T

4β0
+

β1

4β2
0

γ̂(1) T +

(
β2

4β2
0

− β2
1

4β3
0

)
γ̂(0) T

−
(
γ̂(1) T

4β0
− β1

4β2
0

γ̂(0) T

)
Ĵ (1)

(2.84)
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for the parts proportional to g and g3 respectively. After diagonalizing these equations
with the help of Eq. (2.80), we find

S
(1)
ij =

β1

β0
aiδij −

G
(1)
ij

2β0 (1 + ai − aj)
,

S
(2)
ij =

(
β2

2β0
− β2

1

2β2
0

)
aiδij +

∑

k

2β1aiδik −G
(1)
ik

2β0 (2 + ai − aj)
S

(1)
kj +

β1G
(1)
ij − β0G

(2)
ij

2β2
0 (2 + ai − aj)

.

(2.85)

Finally, solving the first equation for G
(1)
ij and inserting the result into the second equation,

one obtains the expression for the elements of Ŝ(2) as given in Eqs. (2.82).

2.3.2 Matching

An amplitude for a properly chosen non-leptonic quark decay is calculated perturbatively
in the full theory including all possible diagrams such as W -boson exchange, box, and
QCD and electroweak penguin diagrams as well as gluon corrections to all these building
blocks. The result including LO, NLO and NNLO QCD corrections is given schematically
as follows:

Afull = 〈 ~Q〉(0) T
(
~A(0) +

αs(µ0)

4π
~A(1) +

(
αs(µ0)

4π

)2

~A(2)

)
, (2.86)

where 〈 ~Q〉(0) denotes the tree-level matrix elements of ~Q.

The second step involves the calculation of the decay amplitude in the QCD effective
theory. It generally requires the computation of the operator insertions into current-current
and QCD penguin diagrams of the effective theory together with gluon corrections to these
insertions. Including LO, NLO and NNLO QCD corrections one finds

Aeff = 〈 ~Q〉(0)T
(
~1 +

αs(µ0)

4π
r̂(1)T +

(
αs(µ0)

4π

)2

r̂(2) T

)
~C(µ0) , (2.87)

where the quantities r̂(1) and r̂(2) codify the one- and two-loop matrix elements of ~Q,
respectively.

The matching procedure between full and effective theory establishes the initial condi-
tions ~C(µ0) for the Wilson coefficients. Comparing Eqs. (2.86) and (2.87), the matching
condition Afull = Aeff translates into the following identity [88]:

~C(µ0) = ~A(0) +
αs(µ0)

4π

(
~A(1) − r̂(1) T ~A(0)

)

+

(
αs(µ0)

4π

)2 (
~A(2) − r̂(1) T

[
~A(1) − r̂(1)T ~A(0)

]
− r̂(2)T ~A(0)

)
.

(2.88)
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Combining Eqs. (2.73), (2.77), (2.78) and (2.88) we finally obtain

~C(µ) = K̂(µ)Û (0)(µ, µ0)

(
~A(0) +

αs(µ0)

4π

[
~A(1) − R̂(1) ~A(0)

]

+

(
αs(µ0)

4π

)2 [
~A(2) − R̂(1) ~A(1) −

(
R̂(2) −

(
R̂(1)

)2) ~A(0)
]) (2.89)

where

R̂(1) = r̂(1)T + Ĵ (1) , and R̂(2) = r̂(2) T + Ĵ (2) + r̂(1)T Ĵ (1) , (2.90)

are certain combinations of r̂(1) T , r̂(2) T , Ĵ (1) and Ĵ (2), which will play a special role in the
following section.

2.3.3 Renormalization Scheme Dependence

Next we would like to elaborate on the question of renormalization scheme dependencies
in explicit terms, to gain an insight on how the scheme dependencies arise beyond the
LO, how various quantities transform under a change of scheme and how these scheme
dependencies cancel in physical observables. In this respect we will extend the existing
NLO QCD results [23, 85] to the NNLO level.

It is well-known that beyond LO various quantities such as the Wilson coefficients or
the anomalous dimensions depend on the scheme adopted for the renormalization of the
operators present in the effective theory. This scheme dependencies arise because the re-
quirement that all UV divergences are removed by a suitable renormalization of parameters,
fields as well as operators, does not fix the finite parts of the associated renormalization
constants. Indeed, these constants can be defined in many different ways corresponding to
distinct renormalization schemes, which are always related by a finite renormalization. In
the framework of dimensional regularization one example of how such a scheme dependence
may occur is the treatment of γ5 in n = 4− 2ε dimensions. In this context two well-known
choices of scheme are the so-called Naive Dimensional Regularization (NDR) scheme [89]
with γ5 taken to be fully anticommuting and the ’t Hooft-Veltman scheme [90–93] which
comprises a γ5 that does not have simple commutation properties with respect to the other
Dirac matrices. Another example is the scheme dependence related to the exact form of
the local operators used to describe the interactions in the low-energy effective theory. In
general, a particular choice of the operator basis is not unique, and quantities such as Wil-
son coefficients or anomalous dimensions corresponding to different choices of operators
can always be transformed into each other by a suitable finite renormalization. We will
discuss the latter issue in great detail in one of the following sections.

In order to show that physical quantities and especially decay amplitudes do not de-
pend on the renormalization scheme and the particular form of the operators, we have to
demonstrate how these dependencies cancel out in the effective Hamiltonian introduced in
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Eq. (2.72) with ~C(µ) given by Eq. (2.89). We first recall that, upon renormalization, the

bare operators ~QB and Wilson coefficients ~CB(µ) of Eq. (2.72) transform as

~QB = Ẑ ~Q , and ~CB(µ) = ẐT ~C(µ) (2.91)

respectively. In terms of the renormalization constant matrix Ẑ the ADM defined via
Eq. (2.73), is then given by

γ̂(g) = Ẑ µ
d

dµ
Ẑ−1 . (2.92)

Next, we shall denote the results obtained in two different renormalization schemes by
γ̂

(i)
0 , r̂

(i)
0 and γ̂

(i)
a , r̂

(i)
a , with i = 1, 2. Furthermore, let us assume without loss of generality

that the first scheme, which we shall call reference scheme hereafter, is distinguished from
the other ones by the subsidiary condition r̂

(1)
0 = r̂

(2)
0 = 0.

It should be clear that for any given scheme a we can always switch to the reference
scheme by the following finite renormalization:

Ẑ0 =

(
1̂ − αs(µ)

4π
r̂(1)
a −

(
αs(µ)

4π

)2 (
r̂(2)
a −

(
r̂(1)
a

)2)
)
Ẑa . (2.93)

The corresponding transformations of the O(α2
s) and O(α3

s) anomalous dimensions is easily
obtained using Eqs. (2.92). At NLO we reproduce the well-known result [23, 85]

γ̂
(1)
0 = γ̂(1)

a −
[
r̂(1)
a , γ̂(0)

]
− 2β0r̂

(1)
a , (2.94)

whereas at NNLO we find

γ̂
(2)
0 = γ̂(2)

a −
[
r̂(2)
a , γ̂(0)

]
−
[
r̂(1)
a , γ̂(1)

a

]
+ r̂(1)

a

[
r̂(1)
a , γ̂(0)

]
−4β0r̂

(2)
a −2β1r̂

(1)
a +2β0

(
r̂(1)
a

)2
. (2.95)

Obviously, the combinations γ̂
(1)
0 and γ̂

(2)
0 , are the same for any given scheme a.

With Eqs. (2.94) and (2.95) at hand, it is now straightforward to show that the matrices
R̂(1) and R̂(2) introduced in Eqs. (2.90) are independent of the renormalization scheme and
the form of the operators considered. The actual proof will be given in the following
scetion. Next, ~A(0), ~A(1) and ~A(2), obtained from the calculation in the full theory, clearly
do not depend on the particular choice adopted for the renormalization of operators. In
consequence, the factor to the right of Û (0)(µ, µ0) in ~C(µ), as given in Eq. (2.89), which is
related to the upper end of the evolution, is independent of the renormalization scheme.
The same is true for the LO evolution matrix Û (0)(µ, µ0). However, ~C(µ) still depends on
the renormalization scheme through K̂(µ) and consequently on Ĵ (1) and Ĵ (2), entering the
Wilson coefficients to the left of Û (0)(µ, µ0). As is evident from Eqs. (2.78) and (2.87), this
dependence on the lower end of the evolution is canceled by the corresponding one of the
matrix elements 〈 ~QT (µ)〉, so that the effective Hamiltonian and hence also the resulting
physical amplitudes are scheme independent as it has to be.
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2.3.4 Scheme Independence

In order to proof the scheme independence of the matrices R̂(1) and R̂(2) introduced in
Eqs. (2.90), we start from the anomalous dimensions in the reference scheme γ̂

(1)
0 and γ̂

(2)
0 .

These matrices can be accessed from any arbitrary scheme a using Eqs. (2.94) and (2.95).

Let us transpose the latter equations and eliminate γ̂
(1) T
a and γ̂

(2) T
a by means of Eqs. (2.84).

Finally, dropping the unnecessary subscript a, we obtain

γ̂
(1) T
0 =

β1

β0
γ̂(0) T −

[
γ̂(0) T , R̂(1)

]
− 2β0R̂

(1) ,

γ̂
(2) T
0 =

β2

β0

γ̂(0) T −
[
γ̂(0) T , R̂(2)

]
− β1

β0

[
γ̂(0) T , R̂(1)

]
+
[
γ̂(0) T , R̂(1)

]
R̂(1)

− 4β0R̂
(2) − 2β1R̂

(1) + 2β0

(
R̂(1)

)2
,

(2.96)

which proves the scheme independence of R̂(1) and R̂(2).

It is important to emphasize that the renormalization scheme dependencies discussed
here refers to the renormalization of operators only, and has to be distinguished from the
renormalization scheme dependence of αs. The issue of the latter scheme dependence in
the context of the operator product expansion and renormalization group techniques is
discussed in [84] and will not be repeated here.

2.3.5 Including QED Corrections

In this section we want to give the formulas relevant to resum QED logarithms up to NLO.
If we neglect contributions of O(α2) to the anomalous dimensions we can write

γ̂ =
αs
4π
γ̂(0)
s +

(αs
4π

)2

γ̂(0)
s +

(αs
4π

)3

γ̂(0)
s +

α

4π
γ̂(0)
s +

α

4π

αs
4π
γ̂(0)
s . (2.97)

Now we have a renormalization group equation with multiple coupling constants. There-
fore we will keep the µ dependence explicitly in the integral equation for the evolution
matrix

Û(µ, µ0) = Tµ exp

∫ µ

µ0

dµ′γ̂T (µ′) (2.98)

and compute the derivative of Eqs. (2.77) and (2.98) with respect to µ. For K̂ =
K̂(g(µ), e(µ)) we find the following differential equation:

∂K̂(g, e)

∂g
+
βe
β

∂K̂(g, e)

∂e
+

1

g

[
γ̂(0) T

β0
, K̂(g, e)

]
=

(
γ̂T (g)

β(g)
+

1

g

γ̂(0) T

β0

)
K̂(g, e) . (2.99)

Since α varies very slowly for mb ≤ µ ≤MW we will in the following neglect the running
of the electromagnetic coupling. This corresponds to setting βe/β to zero.
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To proceed further we expand the matrices K̂ and K̂−1 in powers of α and αs

K̂ =
(
1̂ +

α

4π
Jse

)(αs(µ)

4π
Ĵ (1) +

(
αs(µ)

4π

)2

Ĵ (2)

)(
1̂ +

α

αs(µ)
Je

)

K̂−1 =

(
1̂ − α

αs(µ0)
Je

)(
1̂ − αs(µ0)

4π
Ĵ (1) −

(
αs(µ0)

4π

)2 (
Ĵ (2) −

(
Ĵ (1)

)2)
)

(2.100)

×
(
1̂ − α

4π
Jse

)
.

In order to get explicit expressions for the matrices Je and Jse we define

Ĵ (1)
e = V̂ Ŝ(1)

e V̂ −1, Ĵ (1)
se = V̂ Ŝ(1)

es V̂
−1 (2.101)

and

Ĝe = γ̂e, Ĝse = γ̂se. (2.102)

The matrix kernels are then given by

S1
eij

=
G0
eij

2β0 (1 + aj − ai)
,

S1
seij

=
1

2β0(aj − ai)

[
G1
se +

[
G0
e, S

1
]
− βse
β0
G0
s −

β1

β0
G0
e

]

ij

,

(2.103)

which agrees with the findings of Ref. [94]. Note that the matrices Se and Sse can develop
singularities for ai = aj or ai = aj + 1. However these singularites will cancel in the
expression for the evolution matrix if all contributions are taken into account.

We now expand the Wilson coefficients at a scale µ in powers of α and αs

~C(µ) = ~C(0)(µ) +
αs(µ)

4π
~C(1)(µ) +

(
αs(µ)

4π

)2

~C(2)(µ)

+
α

αs(µ)
~C(0)
e (µ) +

α

4π
~C(1)
q (µ)

(2.104)

to rewrite the general solution of the RGE equations (2.74) in terms of its individual
contributions:

~C(0)(µ) = Û (0)(µ, µ0) ~C
(0)(µ0),

~C(1)(µ) = ηÛ (0)(µ, µ0) ~C
(1)(µ0) + Û (1)(µ, µ0) ~C

(0)(µ0),

~C(2)(µ) = η2Û (0)(µ, µ0) ~C
(2)(µ0) + ηÛ (1)(µ, µ0) ~C

(1)(µ0) + Û (2)(µ, µ0) ~C
(0)(µ0),

~C(0)
e (µ) = Û (0)

e (µ, µ0) ~C
(0)(µ0),

~C(1)
e (µ) = ηÛ (0)

e (µ, µ0) ~C
(1)(µ0) + Û (0)(µ, µ0) ~C

(1)
e (µ0) + Û (1)

e (µ, µ0) ~C
(0)(µ0),

(2.105)
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where we expanded the evolution matrix

U(µ, µ0) = U (0)(µ, µ0) +
αs(µ)

4π
U (1)(µ, µ0) +

(
αs(µ)

4π

)2

U (2)(µ, µ0)

+
α

αs(µ)
U (0)
e (µ, µ0) +

α

4π
U (1)
e (µ, µ0)

(2.106)

in the coupling constants and find the following contributions to the individual evolution
matrices:

U (1)(µ, µ0) = J (1)U (0)(µ, µ0) − ηU (0)(µ, µ0)J
(1) ,

U (2)(µ, µ0) = J (2)U (0)(µ, µ0) − ηJ (1)U (0)(µ, µ0)J
(1) − η2U (0)(µ, µ0)

(
J (2) −

(
J (1)

)2)
,

U (0)
e (µ, µ0) = JeU

(0)(µ, µ0) − η−1U (0)(µ, µ0)Je ,

U (1)
e (µ, µ0) = JsJeU

(0)(µ, µ0) + JseU
(0)(µ, µ0) − η−1JsU

(0)(µ, µ0)Je

+ U (0)(µ, µ0)JeJs − U (0)(µ, µ0)Jse − ηJeU
(0)(µ, µ0)Js .

(2.107)
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3.1 Extracting the Divergences

In the renormalization of QCD and QED at higher orders the standard method of extracting
the UV divergence structure of a Feynman integral is to perform the calculation with
massless propagators. However, if one uses massless propagators to compute three-point
or higher Green’s functions one might generate spurious IR infinities which, in dimensional
regularization, cannot be distinguished from the UV divergences one seeks. There exist
several methods [95,96] to overcome this problem, but they are generally quite involved and
not suitable to the automated evaluation of a large number of diagrams. In the approach
of [65] the so-called IR rearrangement is performed by introducing an artificial mass. For
the calculation of the renormalization constants this means that we can safely apply Taylor
expansion in the external momenta after introducing a non-zero auxiliary mass M for each
internal propagator, including those of the massless vector particles. The auxiliary mass
regulates all IR divergences and the renormalization constants can be extracted from the
UV divergences of massive, one-scale tadpole diagrams that are known up to the four-loop
level [97–100].

3.1.1 Infrard Divergences and External Momenta

Following references [25,65], the starting point of our procedure is the exact decomposition
of a propagator:

1

(k + p)2 −m2
=

1

k2 −M2
− p2 + 2k · p−m2 +M2

k2 −M2

1

(k + p)2 −m2
. (3.1)

Here k is a linear combination of the integration momenta, p stands for a linear combination
of the external momenta, and m denotes the mass of the propagating particle. If we assume
that the dimensionality of the operators in our effective theory is bounded from above, and
we apply recursively the above decomposition a sufficient number of times, we will reach the
point where the overall degree of divergence of a certain diagram would become negative
if any of its propagators were replaced by the last term in the decomposition. We are then
allowed to drop the last term in the propagator decomposition, as it does not affect the
UV divergent part of the Green’s function after subtraction of all subdivergences.

As already mentioned in Section 2, another side effect of our IR regularization is that
we have to consider insertions of non-physical effective operators in our calculation. Let
us explain this point in more detail. Non-physical counterterms generally arise in QCD
calculations, but the projections of their matrix elements on physical operators vanish un-
less the underlying symmetry is broken at some stage. Due to the exact nature of the
decomposition Eq. (3.1), the UV poles of the diagrams obtained by our method are correct
after the subtraction of all subdivergences. However, the UV poles related to subdiver-
gences and their subtraction terms both depend on the finite parts of certain lower loop
diagrams, which in our approach are not necessarily correct and do not comply with the
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usual Slavnov-Taylor identities. For instance, the introduction of the IR regulator invali-
dates the argument that guarantees vanishing on-shell matrix elements for the non-physical
operators. One therefore expects non-negligible contributions to the counterterms from all
possible operators with appropriate dimension. Consequently, all EOM-vanishing opera-
tors, gauge-invariant or not, and in general even BRST-exact operators must be included
in the operator basis. The “incorrect” subdivergences are present in both counterterm and
irreducible diagrams, but they cancel in their sum, provided the calculation is carried out
in exactly the same way. The operator renormalization constants calculated in this way
are correct for all the operators in the complete basis.

3.1.2 Truncating the Expansion

This algorithm can be also simplified by the following observation [65]. The terms con-
taining powers of the auxiliary mass squared in the numerators contribute only to UV
divergences that are proportional to those powers of M 2. The latter are local after the
subtraction of all subdivergences, and must precisely cancel similar terms originating from
integrals with no auxiliary mass in the numerators. Since the decomposition of Eq. (3.1)
is exact, no dependence on M 2 can remain after performing the whole calculation. This
observation allows one to avoid calculating integrals that contain an artificial mass in the
numerator. Instead of calculating them, one can just replace them by local counterterms
proportional to M 2 which cancel the corresponding subdivergences in the integrals with
no M2 in the propagator numerators. Nevertheless, the final result for the UV divergent
parts of the Green’s functions are precisely the same as if the full propagators were used.

The counterterms proportional to M 2 in general do not preserve the symmetry of the
underlying theory, specifically they do not have to be gauge-invariant. Fortunately, the
number of these counterterms is usually rather small, because their dimension must be two
units less than the maximal dimension of the operators belonging to the effective theory.
For instance, in QCD only a single possible gauge-variant operator exists that fulfills the
above requirement. It looks like a gluon mass counterterm,

M2Ga
µG

aµ , (3.2)

and cancels gauge-variant pieces of integrals with no M 2 in the numerators. To ensure
that our renormalization procedure with the fictitious gluon and photon mass is valid, we
have checked explicitly the full MS renormalization of QCD and QED up to the three-loop
level, finding perfect agreement with the results given in the literature [67–70]. In our case,
beside the term in Eq. (3.2), we also have M 2 counterterms of dimension-three and four,
some of which explicitly break gauge invariance:

M2

g2
mbs̄LbR ,

iM2

g2
s̄L∂/ bL ,

M2e

g2
s̄LA/ bL ,

M2

g
s̄LG/ bL , (3.3)

where Aµ denotes the photon field.
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3.2 The Calculation

The large number of diagrams which occurs at higher orders makes it necessary to generate
the diagrams automatically. For the evaluation of the ADM presented here all diagrams
have been generated by the Mathematica [101] package FeynArts [102], which provides
the possibility to implement the Feynman rules for different Lagrangians in a simple way.
We have adapted it to include the effective vertices induced by the operators Q1–Q32. We
have processed the FeynArts output using two independent programs. In one case the
output is converted into a format recognizable by the language Form [103]. The group
theory for each graph as well as the projection onto all possible form factors is performed
before the integrals are evaluated. The very computation of the integrals is done with the
program package MATAD [104], which is able to deal with vacuum diagrams at one-, two-
and three-loop level where several of the internal lines may have a common mass. The
calculation of the tadpole integrals in MATAD is based on the so-called integration-by-parts
technique [105,106]. The second program is entirely a Mathematica code, which for the
three-loop integrals uses the algorithm described in detail in [65].

3.2.1 Tensor Decomposition

In this section we will discuss how the reduction of tensor to scalar integral was performed
in this work. We will give a prescription how to do this reduction for l-loop vacuum
tensor integrals with one common mass scale, while trying to keep as near to the actual
implementation of such a procedure to a computer algebra program as possible.

In general we will encounter the following l-loop tensor integrals, which can be denoted
by:

T a1a2...al
n1n2...nln11...n1l...nl−1l

= m−l·D− � ai+2 � niπ−l D/2
∫ ∏

i d
Dqi qi µi,1

· · · qi µi,ai∏
i(q

2
i +m2)ni

∏
i<j((qi − qj)2 +m2)nij

.

(3.4)

The integral is massless, has no external momenta, and is symmetric under an exchange
of indices

µi,j ↔ µi,k, (3.5)

and will be proportional to a sum of symmetrized products of metric tensors. This
symmetrized product of metric tensors can be most easily denoted by the number of metric
tensors which contain indices of two given loop momenta. For example the symmetrized
product of two metric tensors that both contain an index of the first and second loop
momenta reads:

gµ1,1 µ2,1gµ1,2 µ2,2 + gµ1,1 µ2,2gµ1,2 µ2,1 ≡ (3.6)

g [b1 = 0, . . . , bl = 0, b12 = 2, . . . , b1l = 0, . . . , bl−1l] (3.7)
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The result of the general tensor integral (3.4) can then be written as a sum of the metric
tensor products times some constant

T a1...al
n1...nl−1l

=
∑

bi

Fbig [b1, . . . , bl−1l] . (3.8)

The constants Fbi can be determined by contracting (3.8) with all products of metric
tensors. Such a contraction will yield the same result for a contraction with products of
metric tensors which can be related by the symmetry transformation (3.5). If we denote
by g(1) [c1, . . . , cl−1l] the first term of the sum of the products of the metric tensor as a
representative of the corresponding symmetry we find a set of equations:

T a1...al
n1...nl−1l

g(1) [c1, . . . , cl−1l] =

m−l·D−2 � ci+2 � niπ−l D/2
∫ ∏

i d
Dqi

∏
i(qi, qi)

ci
∏

i<j(qi, qj)
cij

∏
i(q

2
i +m2)ni

∏
i<j((qi − qj)2 +m2)nij

≡

Sc1,...,cl−1l
n1...nl−1l

=
∑

bi

g(1) [c1, . . . , cl−1l] g [b1, . . . , bl−1l]Fbi, (3.9)

which allows one to express the constants Fbi by the inverse of the matrix

Mai

ci,bi
= g(1) [c1, . . . , cl−1l] g [b1, . . . , bl−1l] , (3.10)

where the indices bi and ci have to fulfill the following subsidiary condition:

2bi +
∑

j>i

bij = 2ci +
∑

j>i

cij = ai. (3.11)

Since these operations are independent of the particular form of the denominator, one
can apply the tensor decomposition by the following replacement of loop momenta in the
nominator of (3.4):

∏

i

qi µi,1
· · · qi µi,ai

→
∑

bi,ci

∏

i

(qi, qi)
ci
∏

i<j

(qi, qj)
cij
(
Mai

ci,bi

)−1
g [b1, . . . , bl−1l] . (3.12)

3.2.2 Integrals

After expanding in the external momenta, going to euclidian space-time, and performing
tensor decomposition, one is left with one-, two-, and three-loop integrals with one common
mass. These integrals are shown in Fig. 3.1 and read:
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n

n2

n1

n3
n5 n6

n1

n2n4
n3

Figure 3.1: Scalar one-, two-, and three-loop integrals with one common mass. Each line
denotes an arbitrary number of propagators of a given internal momenta combination.

I(1)
n = m−D+2n π−

D
2

∫
dDq

1

(q2 +m2)n
=

Γ
(
n− D

2

)

Γ(n)
,

I(2)
n1n2n3

= m−2D+2Σni π−D
∫
dDq1 d

Dq2
1

(q2
1 +m2)n1(q2

2 +m2)n2((q1 − q2)2 +m2)n3
,

I(3)
n1n2n3n4n5n6

= m−3D+2Σni π−
3D
2

∫
dDq1 d

Dq2 d
Dq3

(q2
1 +m2)n1(q2

2+m2)n2(q2
3 +m2)n3((q2−q3)2+m2)n4((q3−q1)2+m2)n5((q1−q2)2+m2)n6

.

(3.13)

The two-loop integral reduces to a product of one-loop integrals in case of non-positive
indices n1, n2, or, n3, while for positive indices all integrals can be reduced with the help
of the relation [107]

I
(2)
(n1+1)n2n3

=
1

3n1

{
(3n1 −D)I (2)

n1n2n3

+ n2

(
I

(2)
(n1−1)(n2+1)n3

− I
(2)
n1(n2+1)(n3−1)

)

+ n3

(
I

(2)
(n1−1)n2(n3+1) − I

(2)
n1(n2−1)(n3+1)

)}
(3.14)

to

I
(2)
111 =

(Γ(1 + ε))2

(1 − ε)(1 − 2ε)

(
27

2
s2 −

3

2ε2

)
+O(ε), (3.15)

where s2 denotes the Clausen function.

As we are only interested in the UV divergent part of the three-loop vacuum integrals,
we can study their behavior by considering the large energy behavior of two-point two-loop
subdiagrams.

Let us exemplify this for the integral I
(3)
111111, where we consider the subdiagram

I
(2)
11111(q

2, m2) = m−2D+10 π−D
∫

dDq1 d
Dq2

(q2
1 +m2)(q2

2 +m2)((q1−q2)2+m2)((q−q1)2+m2)((q−q2)2+m2)
.

(3.16)
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and its momentum behavior at large q2 [96]

I
(2)
11111(q

2, m2) →
(
m2

q2

)5−D (
6ζ3 +O

(
m2

q2

)
+O(ε)

)
for q2 � m2 . (3.17)

Integrating this subdiagram we find the divergent parts of the integral

I
(3)
111111 = 2

ζ3
ε
. (3.18)
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Figure 3.2: (a) Penguin insertion of Q2. It will induce a mixing of Q2 into Q12 in an
off-shell calculation. Attaching an external quark to the gluon would immediately give the
mixing of Q2 into Q4.(b) along with (a) is needed to renormalize the subdivergences which
arise in the two-loop calculation.

3.3 Contributions of EOM-vanishing and BRST-exact

Operators

In this section we shall study the contribution of EOM-vanishing and BRST-exact operators
to our calculation. Given the complexity of this calculation we restrict ourself to some
selected cases. We start with the contribution of EOM-vanishing operators to the O(αs)
and O(α2

s) mixing of the current-current and QCD penguin operators.

3.3.1 Contribution of EOM-vanishing Operators to the QCD Mix-
ing of Q1–Q6

Let us recall the definition (2.47) of

Q12 =
1

g
s̄Lγ

µT abLD
νGa

µν +Q4 . (3.19)

Its contribution to the QCD mixing of Q1–Q6 is twofold. The first comes due to the EOM
structure, since Q12 consists of a term which is proportional to Q4 and another term which
is chosen such that the operator will vanish after applying the equation of motion for the
gluon. A contribution to Zi,11 will then give a corresponding contribution to Zi,4, and the
QCD penguin in Fig. 3.2 is contributing to the mixing of say Q2 into Q4. Secondly a two
loop QCD calculation for the mixing of the current-current and QCD penguin operators
generates subdivergences with external gluons. The two possible contributions are shown
in Fig. 3.2.

At one-loop level only Q11 and Q12 are needed as nonphysical counterterms for Q1–Q6,
as can be seen in Eq. (B.4). Since

Q11 =
e

g2
s̄Lγ

µbL∂
νFµν +

e2

g2
(s̄LγµbL)

∑
f
Qf(f̄γ

µf) , (3.20)
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Figure 3.3: Some of the two-loop 1PI diagrams which mix Q2 into N
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1 and N
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does not contribute to a pure QCD calculation all possible subdivergences containing gluons
can be subtracted using Q12.

In case of a QED calculation Q11 will play a similar role as does Q12 in QCD. In
particular it will induce a mixing into the electroweak penguin operator QQ

3 .

The situation gets more difficult on the three-loop level. In order to remove the UV
poles related to the two-loop subdiagrams with insertions of Q1–Q6 depicted in Fig. 3.3,
another ten EOM-vanishing operators Q13–Q21, Q23–Q24 need to be considered.

It is important to remark that the EOM-vanishing operators introduced in Eqs. (2.47)
and (2.48) arise as counterterms independently of what kind of IR regularization is adopted
in the computation of the anomalous dimensions of Q1–Q6. However, if the regularization
respects the underlying symmetry, and all the diagrams are calculated without expansion
in the external momenta, non-physical operators have vanishing matrix elements [77,79,81–
83]. In this case the EOM-vanishing operators given in Eqs. (2.47) and (2.48) play no role in
the calculation of the mixing of physical operators. If the gauge symmetry is broken this is
no longer the case, as diagrams with insertions of non-physical operators will generally have
non-vanishing projection on the physical operators. Since our IR regularization implies a
massive gluon propagator, non-physical counterterms play a crucial role at intermediate
stages of the anomalous dimensions calculation.

3.3.2 Contribution of BRST-exact Operators to the QCD Mixing
of Q1–Q6

In contrast to the case of the two-loop mixing of the magnetic operators considered in
[25,46], it is a priori not clear if BRST-exact operators do arise as counterterms of Q1–Q6.
Since the BRST variation raises both ghost number and mass dimension by one unit, it is
evident that any BRST-exact operator that potentially could mix with Q1–Q6 has to be a
BRST variation of a dimension-five operator containing a single anti-ghost field. The only
possibility for the latter operator having the correct chirality structure is given in the Rξ
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b s
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cc

�
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ηa ηa ηa

b s
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g

�
Q12

g

ηa ηa ηa

b s

ηa ηa

g

�
B1

(a) (b) (c)

Figure 3.4: (a) A typical example of a divergent two-loop 1PI diagram which potentially
could introduce a mixing ofQ2 into B1. (b) A typical example of a counterterm contribution
needed to renormalize the corresponding two-loop 1PI diagrams. (c) The one-loop matrix
element of B1 which has a non-vanishing on-shell projection on Q4 if a non-zero ghost mass
is used in the calculation.

gauge by (2.49)

B1 = s

[
1

g
(∂µ1 η̄

a) (s̄Lγ
µ1T abL)

]

= −1

g

[
1

ξ
∂µ1∂

µ2Ga
µ2

+ gf abc
(
∂µ1 η̄

b
)
ηc
]

(s̄Lγ
µ1T abL) ,

(3.21)

where s denotes the BRST operator, ηa and η̄a are the ghost and anti-ghost fields, f abc

are the totally antisymmetric structure constants of SU(3)C and ξ is the covariant gauge-
parameter.

Although there is no obvious reason why B1 should not appear as a counterterm of
Q1–Q6, it turns out that up to three loops B1 does not play a role in the mixing of
physical operators considered in this work. The key observation thereby is that the overall
contribution from the two-loop 1PI diagrams depicted in Fig. 3.4 (a) is canceled by the
corresponding counterterm contribution as shown in Fig. 3.4 (b), so that the associated
renormalization constant is exactly zero at O(α2

s). Therefore B1 does not contribute to the
mixing of Q1–Q6 into Q4, although its one-loop O(αs) matrix element displayed in Fig.
3.4 (c) does not vanish if it is computed using a non-vanishing ghost mass to regulate IR
divergences.
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3.4 Anomalous Dimension Matrix

In this section we will present our results for the anomalous dimensions describing the
mixing of the four-quark operators Q1–Q6 up to O(α3

s) for an arbitrary number of quark
flavours denoted by Nf . In addition we will also give the anomalous dimension for the

physical operators, Q1–Q6, Q
Q
3 –QQ

6 , and Q7–Q10, up to O(αsα) and O(α2
s).

Let us recall the expression (2.70) where the anomalous dimension matrices is expressed
in terms of the operator renormalization constants. For the physical operators there is no
finite renormalization in the MS scheme and we can write up to O(α3

s) and O(αsα):

γ̂(0) = 2Ẑ(1,1) ,

γ̂(1) = 4Ẑ(2,1) − 2Ẑ(1,1)Ẑ(1,0) ,

γ̂(2) = 6Ẑ(3,1) − 4Ẑ(2,1)Ẑ(1,0) − 2Ẑ(1,1)Ẑ(2,0)

γ̂e = 2Ẑe
(1,1)

,

γ̂es = 4Ẑes
(2,1) − 2Ẑe

(1,1)
Ẑs

(1,0) − 2Ẑs
(1,1)

Ẑe
(1,0)

.

(3.22)

The relevant matrices Ẑ(1,0), Ẑ(1,1), Ẑ(2,0) and Ẑ(2,1) are found by calculating various
one- and two-loop diagrams with a single insertion of Q1–Q6, Q

Q
3 –QQ

6 , Q7–Q10, E
(1)
1 –E

(1)
4 ,

and E
(2)
1 –E

(2)
4 , whereas the matrix Ẑ(3,1) requires the computation of three-loop diagrams

with insertions of Q1–Q6 as shown in Fig. 2.2. The pole and constants parts of these
one-, two- and three-loop diagrams are evaluated using the method we have described in
detail [46]. We perform the calculation off-shell in an arbitrary Rξ gauge which allows
us to explicitly check the gauge-parameter independence of the mixing among physical
operators.

Having summarized the general formalism and our method, we will now present our
results. First we will give the mixing of Q1–Q6 up to order α3

s for an arbitrary number
of flavours Nf . For completeness we start with the regularization- and renormalization-
scheme independent matrix γ̂(0), which is given by

γ̂(0) =




−4 8
3

0 − 2
9

0 0
12 0 0 4

3
0 0

0 0 0 − 52
3

0 2
0 0 − 40

9
− 160

9
+ 4

3
Nf

4
9

5
6

0 0 0 − 256
3

0 20
0 0 − 256

9
− 544

9
+ 40

3
Nf

40
9
− 2

3



. (3.23)

While the matrix γ̂(0) is renormalization-scheme-independent, γ̂(1) and γ̂(2) are not. In the
MS scheme supplemented by the definition of evanescent operators given in Eqs. (2.50),



46 CHAPTER 3. THE METHOD

(2.51) and (2.52) we obtain

γ̂(1) =




− 145
3

+ 16
9
Nf −26+ 40

27
Nf − 1412

243
− 1369

243
134
243

− 35
162

−45+ 20
3
Nf − 28

3
− 416

81
1280
81

56
81

35
27

0 0 − 4468
81

− 29129
81
− 52

9
Nf

400
81

3493
108
− 2

9
Nf

0 0 − 13678
243

+ 368
81
Nf − 79409

243
+ 1334

81
Nf

509
486
− 8

81
Nf

13499
648
− 5

27
Nf

0 0 − 244480
81
− 160

9
Nf − 79409

243
− 1334

81
Nf

23116
81

+ 16
9
Nf

3886
27

+ 148
9
Nf

0 0 77600
243
− 1264

81
Nf − 28808

243
− 164

81
Nf − 20324

243
+ 400

81
Nf − 21211

162
+ 622

27
Nf



,

(3.24)
and

γ̂(2) =




− 1927
2

+ 257
9
Nf+ 40

9
N2

f
+(224+ 160

3
Nf)ζ3 475

9
+ 362

27
Nf−

40
27
N2

f
−( 896

3
+ 320

9
Nf)ζ3

307
2

+ 361
3
Nf−

20
3
N2

f
−(1344+160Nf )ζ3 1298

3
− 76

3
Nf−224ζ3

0 0
0 0
0 0
0 0

269107
13122

− 2288
729

Nf−
1360
81

ζ3 − 2425817
13122

+ 30815
4374

Nf−
776
81
ζ3

69797
2187

+ 904
243

Nf+ 2720
27

ζ3
1457549

8748
− 22067

729
Nf−

2768
27

ζ3

− 4203068
2187

+ 14012
243

Nf−
608
27
ζ3 − 18422762

2187
+ 888605

2916
Nf+ 272

27
N2

f
+( 39824

27
+160Nf)ζ3

− 5875184
6561

+ 217892
2187

Nf+ 472
81
N2

f
+( 27520

81
+ 1360

9
Nf)ζ3 − 70274587

13122
+ 8860733

17496
Nf−

4010
729

N2
f
+( 16592

81
+ 2512

27
Nf)ζ3

− 194951552
2187

+ 358672
81

Nf−
2144
81

N2
f
+ 87040

27
ζ3 − 130500332

2187
− 2949616

729
Nf+ 3088

27
N2

f
+( 238016

27
+640Nf)ζ3

162733912
6561

− 2535466
2187

Nf+ 17920
243

N2
f
+( 174208

81
+ 12160

9
Nf)ζ3 13286236

6561
− 1826023

4374
Nf−

159548
729

N2
f
−( 24832

81
+ 9440

27
Nf)ζ3

− 343783
52488

+ 392
729

Nf+ 124
81
ζ3 − 37573

69984
+ 35

972
Nf+ 100

27
ζ3

− 37889
8748

− 28
243

Nf−
248
27
ζ3

366919
11664

− 35
162

Nf−
110
9
ζ3

674281
4374

− 1352
243

Nf−
496
27
ζ3

9284531
11664

− 2798
81

Nf−
26
27
N2

f
−( 1921

9
+20Nf)ζ3

2951809
52488

− 31175
8748

Nf−
52
81
N2

f
−( 3154

81
+ 136

9
Nf)ζ3 3227801

8748
− 105293

11664
Nf−

65
54
N2

f
+( 200

27
− 220

9
Nf)ζ3

14732222
2187

− 27428
81

Nf+ 272
81
N2

f
− 13984

27
ζ3

16521659
2916

+ 8081
54

Nf−
316
27
N2

f
−( 22420

9
+200Nf)ζ3

− 22191107
13122

+ 395783
4374

Nf−
1720
243

N2
f
−( 33832

81
+ 1360

9
Nf)ζ3 − 32043361

8748
+ 3353393

5832
Nf−

533
81
N2

f
+( 9248

27
− 1120

9
Nf)ζ3



.

(3.25)

As far as the one- and two-loop self-mixing of the four-quark operators Q1–Q6, namely γ̂(0)

and γ̂(1) are concerned, our results agree with those of [24], and therefore also with previous
results [22, 23] that were obtained in a different operator basis [84]. We will come back
to this point later. On the other hand, the three-loop self-mixing of Q1–Q6 described by
γ̂(2), is entirely new and has never been given before. As it is characteristic for three-loop
anomalous dimensions the entries of γ̂(2) contain terms proportional to the Riemann zeta
function ζ3.

Let us now turn to the mixing of the complete physical operator basis Q1–Q6, Q
Q
3 –QQ

6 ,
andQ7–Q10. Keeping the application to B-decays in mind we will give the results forNf = 5
active flavours and start for completeness with the regularization- and renormalization-



3.4. ANOMALOUS DIMENSION MATRIX 47

scheme independent matrix γ̂(0) and γ̂e which are given by

γ̂(0) =




−4 8
3

0 −2
9

0 0

12 0 0 4
3

0 0

0 0 0 −52
3

0 2

0 0 −40
9

−100
9

4
9

5
6

0 0 0 −256
3

0 20

0 0 −256
9

56
9

40
9

−2
3

0 0 0 −8
9

0 0

0 0 0 16
27

0 0

0 0 0 −128
9

0 0

0 0 0 184
27

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 − 32
27

0

0 0 0 0 0 0 − 8
9

0

0 0 0 0 0 0 − 16
9

0

0 0 0 0 0 0 32
27

0

0 0 0 0 0 0 − 112
9

0

0 0 0 0 0 0 512
27

0

0 −20 0 2 0 0 − 272
27

0

−40
9

−52
3

4
9

5
6

0 0 −32
81

0

0 −128 0 20 0 0 − 2768
27

0

−256
9

−160
3

40
9

−2
3

0 0 −512
81

0

0 0 0 0 −14
3

0 0 0

0 0 0 0 −32
9

−6 0 0

0 0 0 0 0 0 − 46
3

0

0 0 0 0 0 0 0 − 46
3




,

(3.26)



48 CHAPTER 3. THE METHOD

and

γ̂e =




−8
3

0 0 0 0 0

0 −8
3

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 40
27

0 − 4
27

0

0 0 0 40
27

0 − 4
27

0 0 256
27

0 −40
27

0

0 0 0 256
27

0 −40
27

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

32
27

0 0 0 0 0 0 0
8
9

0 0 0 0 0 0 0
76
9

0 −2
3

0 0 0 0 0

−32
27

20
3

0 −2
3

0 0 0 0
496
9

0 −20
3

0 0 0 0 0

−512
27

128
3

0 −20
3

0 0 0 0
332
27

0 −2
9

0 0 0 0 0
32
81

20
9

0 −2
9

0 0 0 0
3152
27

0 −20
9

0 0 0 0 0
512
81

128
9

0 −20
9

0 0 0 0

0 0 0 0 16
9

−8
3

0 0

0 0 0 0 0 8
9

0 0

0 0 0 0 0 0 − 88
9

−4

0 0 0 0 0 0 −4 − 160
9




,

(3.27)

where the electroweak penguin operators have been placed between the QCD penguin
operators and the magnetic operators. Our results agree with the ones given in the lit-
erature [28, 94, 108], except for the QED mixing of Q9 and Q10 which has never been
calculated before. This last mentioned mixing will be an essential ingredient to the study
of electroweak effects in B → Xs`

+`−. The order α2
s contributions to the anomalous
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dimension matrix are given by

γ̂(1) =




−355
9

−502
27

−1412
243

−1369
243

134
243

− 35
162

−35
3

−28
3

−416
81

1280
81

56
81

35
27

0 0 −4468
81

−31469
81

400
81

3373
108

0 0 −8158
243

−59399
243

269
486

12899
648

0 0 −251680
81

−128648
81

23836
81

6106
27

0 0 58640
243

−26348
243

−14324
243

−2551
162

0 0 832
243

−4000
243

−112
243

−70
81

0 0 3376
729

6344
729

−280
729

55
486

0 0 2272
243

−72088
243

−688
243

−1240
81

0 0 45424
729

84236
729

−3880
729

1220
243

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −232
243

167
162

−2272
729

0

0 0 0 0 464
81

76
27

1952
243

0

0 0 0 0 64
81

368
27

−6752
243

0

0 0 0 0 −200
243

−1409
162

−2192
729

0

0 0 0 0 −6464
81

13052
27

−84032
243

0

0 0 0 0 −11408
243

−2740
81

−37856
729

0

−404
9

−3077
9

32
9

1031
36

− 64
243

−368
81

−24352
729

0

−2698
81

−8035
27

− 49
162

4493
216

776
729

743
486

54608
2187

0

−19072
9

−14096
9

1708
9

1622
9

6464
243

−7220
81

−227008
729

0
32288

81
−15976

27
−6692

81
−2437

54
63824
729

6700
243

551648
2187

0

0 0 0 0 2600
27

0 0 0

0 0 0 0 −2192
81

1975
27

0 0

0 0 0 0 0 0 − 232
3

0

0 0 0 0 0 0 0 − 232
3




,

(3.28)

where the mixing of the electroweak penguin operatorsQQ
3 –QQ

6 are given for the first time in
the basis of Sections 2.2.1 and 2.2.2. The self-mixing of the current-current, QCD penguin,
and electroweak penguin operators is given in Refs. [22, 23], while the mixing of Q1–Q6
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into Q7–Q8 is given in Refs. [109, 110], and of Q1–Q6 into Q9–Q10 in Ref. [111]. We agree
with all these findings. The mixing of the electoweak penguin operators into Q7–Q10 is a
new result, while the mixing of Q7 and Q8 confirms for the first time the findings of [25].
Now let us turn to the complete order αsα mixing

γ̂se
(1) =




169
9

100
27

0 254
729

0 0
50
3

−8
3

0 1076
243

0 0

0 0 0 11116
243

0 −14
3

0 0 280
27

18763
729

−28
27

−35
18

0 0 0 111136
243

0 −140
3

0 0 2944
27

193312
729

−280
27

−175
9

0 0 −2240
81

39392
729

224
81

−92
27

0 0 2176
243

84890
2187

−184
243

−224
81

0 0 −23552
81

399776
729

2240
81

−752
27

0 0 23296
243

933776
2187

−1504
243

−2030
81

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2272
729

122
81

0 49
81

−928
729

118
243

−11680
2187

−416
81

−1952
243

−748
27

0 82
27

−232
243

−92
81

−2920
729

−104
27

−23488
243

6280
27

112
9

−538
27

− 32
243

32
81

−39752
729

−136
27

31568
729

9481
81

−92
27

−1012
81

64
729

260
243

1024
2187

−448
81

−233920
243

68848
27

1120
9

−5056
27

−23480
243

2096
81

−381344
729

−15616
27

352352
729

116680
81

−752
27

−10147
81

−6464
729

3548
243

24832
2187

−7936
81

−5888
729

13916
81

112
27

−812
81

−544
729

544
243

−90424
2187

−152
81

−2552
2187

15638
243

−176
81

−2881
486

− 64
2187

−260
729

−1024
6561

448
243

−90944
729

90128
81

1120
27

−1748
81

−28936
729

3664
243

−910048
2187

−8000
81

1312
2187

102488
243

−1592
81

−6008
243

6464
2187

−15212
729

−24832
6561

7936
243

0 0 0 0 −124
27

−52
9

0 0

0 0 0 0 128
81

92
27

0 0

0 0 0 0 0 0 − 308
9

16

0 0 0 0 0 0 16 − 308
9




.

(3.29)

It is given for the first time in the new basis. The mixing of the four quark operators
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has been calculated in the so-called “standard” basis in Refs. [23, 94] while the mixing of
the current-current and the QCD penguin operators into the magnetic operators has been
given only in Ref. [28]. We agree with their findings. The results for the mixing of the
electroweak penguin operators into the magnetic ones, the complete mixing into Q9 and
Q10, and the mixing of Q7–Q8 are entirely new.

The order α3
s contribution to the mixing of Q1–Q6 into Q7–Q8 has been calculated

for the first time in Ref. [24]. We confirm their findings. The self-mixing of Q1-Q6, and
the mixing into Q9 and Q10 are given for the first time. The self-mixing is given in Eq.
(3.25) for an arbitrary number of flavours. The order α3

s mixing into Q7–Q10 reads for five
flavours:

γ̂(2) =




. . . . . . − 13234
2187

13957
2916

− 1359190
19683

+ 6976
243

ζ3 0
. . . . . . 20204

729
14881
972

− 229696
6561

− 3584
81

ζ3 0
0 0 . . . . 92224

729
66068
243

− 1290092
6561

+ 3200
81

ζ3 0
0 0 . . . . − 184190

2187
− 1417901

5832
− 819971

19683
− 19936

243
ζ3 0

0 0 . . . . 1571264
729

3076372
243

− 16821944
6561

+ 30464
81

ζ3 0
0 0 . . . . − 1792768

2187
− 3029846

729
− 17787368

19683
− 286720

243
ζ3 0

0 0 0 0 0 0 ? 0 0 0
0 0 0 0 0 0 ? ? 0 0
0 0 0 0 0 0 0 0 − 9769

27
0

0 0 0 0 0 0 0 0 0 − 9769
27




. (3.30)
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3.5 Transformation to the “Standard” Basis

In n = 4 dimensions, a change of the physical operators is always equivalent to a simple
linear transformation

~Q′ = R̂ ~Q , (3.31)

parameterized by a rotation matrix R̂, which as long as R̂ is µ-independent, affects the
renormalization constants and the ADM in a trivial way:

Ẑ ′ = R̂ Ẑ R̂−1 , and γ̂′ = R̂γ̂ R̂−1 . (3.32)

In the framework of dimensional regularization, the transformation corresponding to
the change of basis turns out to be more complicated, as it generally involves evanescent
operators as well. This feature basically reflects the fact that in order to formulate consis-
tently the dimensional regularization of a theory containing Fermionic degrees of freedom,
the Dirac algebra has to be infinite-dimensional, which implies that evanescent operators
are necessary to form a complete basis in n = 4 − 2ε dimensions. In consequence, specify-
ing the evanescent operators is necessary to make precise the definition of the MS scheme
in the effective theory beyond leading order, as can been seen for instance in Eqs. (3.22).
Clearly, EOM-vanishing operators are irrelevant to the present discussion.

As long as the change of basis does not mix physical and evanescent operators, the ADM
still changes in a trivial way. In particular, a linear transformation of evanescent operators
does not affect the physical ADM at all. However, when the change of basis involves a
mixing of evanescent into physical operators or vice versa, the situation turns out to be
more complicated [24]. Indeed, as we will explain in a moment, the new ADM is still given
by Eq. (3.32), but the presence of evanescent operators induces a finite renormalization
constant for the physical operators in the new basis. In order to restore the standard MS
scheme definitions, a change of scheme is therefore required.

Let us first consider a change of basis that consists of adding some evanescent operators
to the physical ones:

~Q′ = ~Q+ Ŵ ~E , (3.33)

parameterized by the matrix Ŵ . In this case the new ADM is still given by Eq. (3.32)
because of the absence of mixing of evanescent into physical operators in the original basis.
However, after the above transformation, the renormalization matrix corresponding to the
physical operators in the new basis will contain a finite, non-vanishing contribution

Ẑ
′(1,0)
QQ = Ŵ Ẑ

(1,0)
EQ , (3.34)

where the subscript Q and E denotes an element of the physical and evanescent operators,
respectively. In order to re-impose the standard MS conditions, the latter contribution
must be removed by a change of scheme, implemented by Eq. (2.93).

The situation is very similar for a change of basis that consists of adding multiples of
ε times physical operators to the evanescent ones:

~E ′ = ~E + ε Û ~Q , (3.35)
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parameterized by the matrix Û . In this case the ADM is unchanged because of its finiteness.
However, the renormalization matrix of the physical operators in the new basis will contain
a finite, non-vanishing contribution as well:

Ẑ
′(1,0)
QQ = −Ẑ(1,1)

QE Û . (3.36)

Needless to say, the above contribution must again be removed by a suitable change of
scheme, in order to abide by the standard MS renormalization conditions.

We therefore conclude in full generality that a change of basis in dimensional regulariza-
tion is equivalent to a rotation plus a change of scheme. If we discount possible µ-dependent
rotations of the operator basis, it should be clear from the discussion above that the most
general change of basis comprises the three linear transformations of Eqs. (3.31), (3.33),
and (3.35), as well as a rotation of the evanescent operators, which will be parameterized
by the matrix M̂ in what follows. In total we thus have

~Q′ = R̂
(
~Q+ Ŵ ~E

)
, and ~E ′ = M̂

(
ε Û ~Q+

[
1̂ + ε ÛŴ

]
~E
)
. (3.37)

The corresponding residual finite renormalization can be derived with simple algebra. Up
to second order in αs we find

Ẑ
′(1,0)
QQ = R̂

[
Ŵ Ẑ

(1,0)
EQ −

(
Ẑ

(1,1)
QE + Ŵ Ẑ

(1,1)
EE − 1

2
γ̂(0)Ŵ

)
Û

]
R̂−1 ,

Ẑ
′(2,0)
QQ = R̂

[
Ŵ Ẑ

(2,0)
EQ −

(
Ẑ

(2,1)
QE + Ŵ Ẑ

(2,1)
EE − 1

4
γ̂(1)Ŵ − 1

2
Ẑ

(1,1)
QE Ẑ

(1,0)
EQ Ŵ

−1

2
Ŵ Ẑ

(1,1)
EE Ẑ

(1,0)
EQ Ŵ − 1

4
Ŵ Ẑ

(1,0)
EQ γ̂(0)Ŵ +

1

2
β0Ŵ Ẑ

(1,0)
EQ Ŵ

)
Û

]
R̂−1 .

(3.38)

With these expressions at hand, it is now straightforward to deduce how the ADM trans-
forms under the change of basis as given in Eq. (3.37). Up to the NNLO order we obtain

γ̂′(0) = R̂γ̂(0)R̂−1 ,

γ̂′(1) = R̂γ̂(1)R̂−1 −
[
Ẑ
′(1,0)
QQ , γ̂′(0)

]
− 2β0Ẑ

′(1,0)
QQ ,

γ̂′(2) = R̂γ̂(2)R̂−1 −
[
Ẑ
′(2,0)
QQ , γ̂′(0)

]
−
[
Ẑ
′(1,0)
QQ , γ̂′(1)

]
+
[
Ẑ
′(1,0)
QQ , γ̂′(0)

]
Ẑ
′(1,0)
QQ

− 4β0Ẑ
′(2,0)
QQ − 2β1Ẑ

′(1,0)
QQ + 2β0

(
Ẑ
′(1,0)
QQ

)2
.

(3.39)

After these general considerations, let us discuss in some detail how the anomalous
dimensions given in Eqs. (3.23), (3.24) and (3.25) are transformed in going to the basis of
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physical operators [22, 23, 84]

Q′1 = (s̄αLγµ1c
β
L)(c̄

β
Lγ

µ1bαL) ,

Q′2 = (s̄αLγµ1c
α
L)(c̄

β
Lγ

µ1bβL) ,

Q′3 = (s̄αLγµ1b
α
L)
∑

q(q̄
β
Lγ

µ1qβL) ,

Q′4 = (s̄αLγµ1b
β
L)
∑

q(q̄
β
Lγ

µ1qαL) ,

Q′5 = (s̄αLγµ1b
α
L)
∑

q(q̄
β
Rγ

µ1qβR) ,

Q′6 = (s̄αLγµ1b
β
L)
∑

q(q̄
β
Rγ

µ1qαR) ,

(3.40)

which we shall call “standard” basis from now on. In the above definitions α and β denote
colour indices.

The one- and two-loop evanescent operators that accompany the “standard” basis can
be found by imposing the requirements given in [22]. At the one-loop level they are

E
′(1)
1 = (s̄αLγµ1µ2µ3c

β
L)(c̄

β
Lγ

µ1µ2µ3bαL) − (16 − 4ε)Q′1 ,

E
′(1)
2 = (s̄αLγµ1µ2µ3c

α
L)(c̄

β
Lγ

µ1µ2µ3bβL) − (16 − 4ε)Q′2 ,

E
′(1)
3 = (s̄αLγµ1µ2µ3b

α
L)
∑

q(q̄
β
Lγ

µ1µ2µ3qβL) − (16 − 4ε)Q′3 ,

E
′(1)
4 = (s̄αLγµ1µ2µ3b

β
L)
∑

q(q̄
β
Lγ

µ1µ2µ3qαL) − (16 − 4ε)Q′4 ,

E
′(1)
5 = (s̄αLγµ1µ2µ3b

α
L)
∑

q(q̄
β
Rγ

µ1µ2µ3qβR) − (4 + 4ε)Q′5 ,

E
′(1)
6 = (s̄αLγµ1µ2µ3b

β
L)
∑

q(q̄
β
Rγ

µ1µ2µ3qαR) − (4 + 4ε)Q′6 .

(3.41)

Following the same procedure, we find the following two-loop evanescent operators:

E
′(2)
1 = (s̄αLγµ1µ2µ3µ4µ5c

β
L)(c̄

β
Lγ

µ1µ2µ3µ4µ5bαL) − (256 − 224ε)Q′1 ,

E
′(2)
2 = (s̄αLγµ1µ2µ3µ4µ5c

α
L)(c̄

β
Lγ

µ1µ2µ3µ4µ5bβL) − (256 − 224ε)Q′2 ,

E
′(2)
3 = (s̄αLγµ1µ2µ3µ4µ5b

α
L)
∑

q(q̄
β
Lγ

µ1µ2µ3µ4µ5qβL) − (256 − 224ε)Q′3 ,

E
′(2)
4 = (s̄αLγµ1µ2µ3µ4µ5b

β
L)
∑

q(q̄
β
Lγ

µ1µ2µ3µ4µ5qαL) − (256 − 224ε)Q′4 ,

E
′(2)
5 = (s̄αLγµ1µ2µ3µ4µ5b

α
L)
∑

q(q̄
β
Rγ

µ1µ2µ3µ4µ5qβR) − (16 + 128ε)Q′5 ,

E
′(2)
6 = (s̄αLγµ1µ2µ3µ4µ5b

β
L)
∑

q(q̄
β
Rγ

µ1µ2µ3µ4µ5qαR) − (16 + 128ε)Q′6 .

(3.42)

It turns out that in order to transform the ADM given in Eqs. (3.23), (3.24) and (3.25)
from the initial set of operators to the “standard” basis, we have to introduce four additional
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one-loop evanescent operators:

E
(1)
5 = (s̄Lγµ1bL)

∑
q(q̄γ

µ1γ5q) −
5

3
Q3 +

1

6
Q5 ,

E
(1)
6 = (s̄Lγµ1T

abL)
∑

q(q̄γ
µ1γ5T

aq) − 5

3
Q4 +

1

6
Q6 ,

E
(1)
7 = (s̄Lγµ1µ2µ3bL)

∑
q(q̄γ

µ1µ2µ3γ5q) −
32

3
Q3 +

5

3
Q5 ,

E
(1)
8 = (s̄Lγµ1µ2µ3T

abL)
∑

q(q̄γ
µ1µ2µ3γ5T

aq) − 32

3
Q4 +

5

3
Q6 ,

(3.43)

as well as four additional two-loop evanescent operators:

E
(2)
5 = (s̄Lγµ1µ2µ3µ4µ5bL)

∑
q(q̄γ

µ1µ2µ3µ4µ5γ5q) −
320

3
Q3 +

68

3
Q5 ,

E
(2)
6 = (s̄Lγµ1µ2µ3µ4µ5T

abL)
∑

q(q̄γ
µ1µ2µ3µ4µ5γ5T

aq) − 320

3
Q4 +

68

3
Q6 ,

E
(2)
7 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7bL)

∑
q(q̄γ

µ1µ2µ3µ4µ5µ6µ7γ5q) −
4352

3
Q3 +

1040

3
Q5 ,

E
(2)
8 = (s̄Lγµ1µ2µ3µ4µ5µ6µ7T

abL)
∑

q(q̄γ
µ1µ2µ3µ4µ5µ6µ7T aγ5q) −

4352

3
Q4 +

1040

3
Q6 .

(3.44)

It should be clear that the evanescent operators E
(1)
5 –E

(1)
8 and E

(2)
5 –E

(2)
8 are not needed as

counterterms in the initial basis of operators. However, some linear combinations of them
will become parts of either the physical or the evanescent operators in the “standard” basis
through the change of basis given by Eq. (3.37).

The renormalization constant matrices entering Eq. (3.38) are found from one- and two-
loop matrix elements of physical and evanescent operators. We give the relevant ones, as
well as the matrices characterizing the change of basis in Appendix A Our final results for
the residual finite renormalization read.

Ẑ
′(1,0)
QQ =




− 7
3

−1 0 0 0 0
−2 2

3
0 0 0 0

0 0 178
27

− 34
9

− 164
27

20
9

0 0 1− 1
9
Nf − 25

3
+ 1

3
Nf −2− 1

9
Nf 6+ 1

3
Nf

0 0 − 160
27

16
9

146
27

− 2
9

0 0 −2+ 1
9
Nf 6− 1

3
Nf 3+ 1

9
Nf − 11

3
− 1

3
Nf



. (3.45)

At this point a comment concerning the computation of the renormalization constants
involving the insertions of the additional evanescent operators is in order. Transforming
the three-loop anomalous dimensions from the initial to the “standard” basis requires the
knowledge of one- and two-loop diagrams with insertions of E

(1)
5 –E

(1)
8 and E

(2)
5 –E

(2)
8 , which

introduces traces with γ5 into the calculation. In this context we follow [24], and avoid
anticommutation of γ5 in any Fermionic line containing an odd number of γ5. Moreover
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Figure 3.5: Typical examples of two-loop 1PI diagrams with an insertion of E
(6)
1 involving

Dirac traces that contain γ5.

we do not evaluate traces containing an even number of Dirac matrices and a single γ5 in
n = 4 − 2ε dimensions. This brings to life new evanescent structures like

Eµ1µ2µ3µ4 = Tr (γµ1µ2µ3µ4γ5) − 4i (1 + aε) εµ1µ2µ3µ4 (3.46)

in a natural way. Here a denotes an arbitrary parameter and εµ1µ2µ3µ4 is the totally
antisymmetric Lorentz-invariant tensor defined so that ε0123 = 1. Apparently, these new
evanescent structures have to be treated on the same footing as the “regular” evanescent
operators introduced earlier on.

The idea of introducing more and more evanescent operators seems to make the use
of an naive anticommuting γ5 in multi-loop calculations involving chiral operators futile.
Fortunately, for the problem at hand this is not the case: it turns out that the only
new evanescent structure which affects the transformation of the three-loop anomalous
dimensions between the initial and the “standard” basis is the one given in Eq. (3.46).

After performimg the basis transformation we agree with the ADM calculated in the
standard basis:

γ̂′ (0) =




−2 6 0 0 0 0
6 −2 − 2

9
2
3

− 2
9

2
3

0 0 − 22
9

22
3

− 4
9

4
3

0 0 6− 2
9
Nf −2+ 2

3
Nf − 2

9
Nf

2
3
Nf

0 0 0 0 2 −6
0 0 − 2

9
Nf

2
3
Nf − 2

9
Nf −16+ 2

3
Nf



. (3.47)

γ̂′ (1) =




− 21
2
− 2

9
Nf

7
2
+ 2

3
Nf

79
9

− 7
3

− 65
9

− 7
3

7
2
+ 2

3
Nf − 21

2
− 2

9
Nf − 202

243
1354
81

− 1192
243

904
81

0 0 − 5911
486

+ 71
9
Nf

5983
162

+ 1
3
Nf − 2384

243
− 71

9
Nf

1808
81
− 1

3
Nf

0 0 379
18

+ 56
243

Nf − 91
6

+ 808
81
Nf − 130

9
− 502

243
Nf − 14

3
+ 646

81
Nf

0 0 − 61
9
Nf − 11

3
Nf

71
3

+ 61
9
Nf −99+ 11

3
Nf

0 0 − 682
243

Nf
106
81
Nf − 225

2
+ 1676

243
Nf − 1343

6
+ 1348

81
Nf



,

(3.48)
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4.1 Effective Hamiltonian for Non-leptonic B-Decays

The simplest application of the general formalism outlined in the previous sections is the
case of non-leptonic B meson decays governed by the b → s transition. For simplicity we
will therefore give explicit formulas for the ∆B = −∆S = 1 decays only. However, it is
straightforward to transform them to the other |∆F | = 1 cases. Neglecting contributions
proportional to the small CKM factor V ∗usVub which are of no concern to us here, the
corresponding effective off-shell hamiltonian is given by

Heff = −4GF√
2
V ∗tsVtb

(
~QT ~C(µ) + ~NT ~CN(µ) + ~BT ~CB(µ) + ~ET ~CE(µ)

)
. (4.1)

The specific structure of the gauge-invariant local operators ~Q is determined from the
requirement that the hamiltonian reproduces the ∆B = −∆S = 1 on-shell SM amplitudes
at the leading order in the electroweak interactions, but to all orders in the strong coupling
constants. In the process of renormalizing higher loop One-Particle-Irreducible (1PI) off-

shell Green’s functions with insertions of the operators ~Q, there will in addition arise
non-physical operators as counterterms, as discussed in the previous sections.

A set of physical operators ~Q that satisfies the requirement mentioned above consists
of dimension-six operators [24, 26]

Q1 = (s̄Lγµ1T
acL)(c̄Lγ

µ1T abL) ,

Q2 = (s̄Lγµ1cL)(c̄Lγ
µ1bL) ,

Q3 = (s̄Lγµ1bL)
∑

q(q̄γ
µ1q) ,

Q4 = (s̄Lγµ1T
abL)

∑
q(q̄γ

µ1T aq) ,

Q5 = (s̄Lγµ1µ2µ3bL)
∑

q(q̄γ
µ1µ2µ3q) ,

Q6 = (s̄Lγµ1µ2µ3T
abL)

∑
q(q̄γ

µ1µ2µ3T aq) ,

(4.2)

and one dimension-five operator

Q8 =
1

g
mb(s̄Lσ

µ1µ2T abR)Ga
µ1µ2

, (4.3)

where we have used the abbreviations γµ1···µn
= γµ1 · · ·γµn

, γµ1···µn = γµ1 · · ·γµn and σµ1µ2 =
i [γµ1 , γµ2 ]/2, and the sum over q extends over all light quark flavors. g is the strong coupling
constant, qL and qR are the chiral quark fields, Ga

µ1µ2
is the gluonic field strength tensor,

and T a are the generators of SU(3)C , normalized so that Tr(T aT b) = δab/2.

The physical operators given in Eqs. (4.2) and (4.3) include the current-current oper-
ators Q1 and Q2, the QCD penguin operators Q3–Q6 and the chromomagnetic moment
operator Q8. Notice that we have defined Q1–Q6 in such a way that problems connected
with the treatment of γ5 in n = 4 − 2ε dimensions do not arise [24]. Consequently, we are
allowed to consistently use the NDR renormalization scheme throughout the calculation of
the anomalous dimensions of the physical operators introduced above.
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4.1.1 Initial Conditions for the Wilson Coefficients

Let us now turn to the initial conditions ~C(µ0) of the Wilson coefficients. Their values are
found by matching the full to the effective theory amplitudes perturbatively in αs. In the
NLO and NNLO approximation this requires to calculate one- and two-loop diagrams both
in the SM and the low-energy effective theory. Some of the SM two-loop 1PI diagrams
one has to consider in order to find the O(α2

s) corrections to ~C(µ0) are shown in Fig. 4.1.
Restricting to the physical on-shell operators Q1–Q6 and setting µ0 = MW the obtained
coefficients read in the NDR renormalization scheme:

C1(MW ) = 15
αs(MW )

4π
+

(
αs(MW )

4π

)2(
7987

72
+

17

3
π2 − T̃0(xt)

)
,

C2(MW ) = 1 +

(
αs(MW )

4π

)2(
127

18
+

4

3
π2

)
,

C3(MW ) =

(
αs(MW )

4π

)2

G̃1(xt) ,

C4(MW ) =
αs(MW )

4π
Ẽ0(xt) +

(
αs(MW )

4π

)2

Ẽ1(xt) ,

C5(MW ) =

(
αs(MW )

4π

)2(
14

135
+

2

15
Ẽ0(xt) −

1

10
G̃1(xt)

)
,

C6(MW ) =

(
αs(MW )

4π

)2(
7

35
+

1

4
Ẽ0(xt) −

3

16
G̃1(xt)

)
,

(4.4)

where xt = m2
t /M

2
W

. The one-loop Inami-Lim [112] function Ẽ0(xt) characterizing the
effective off-shell vertex involving a gluon reads:

Ẽ0(xt) = −8 − 42xt + 35x2
t − 7x3

t

12(xt − 1)3
− 4 − 16xt − 9x2

t

6(xt − 1)4
ln xt . (4.5)

The top-quark loop contribution to the renormalization of the light quark and gluon wave
functions on the SM side give rise to the one-loop function T̃0(xt). Subtracting the corre-
sponding terms in the propagators in the so-called MOM scheme at q2 = 0 one finds [13]:

T̃0(xt) =
112

9
+ 32xt +

(
20

3
+ 16xt

)
ln xt

− (8 + 16xt)
√

4xt − 1Cl2

(
2 arcsin

(
1

2
√
xt

))
,

(4.6)
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Figure 4.1: Some of the SM two-loop 1PI diagrams one has to calculate in order to find
the Wilson coefficients of the four-quark operators Q1–Q6 at O(α2

s).

with Cl2(x) = Im[Li2(e
ix)] and Li2(x) = −

∫ x
0
dt ln(1 − t)/t. The remaining two-loop

functions Ẽ1(xt) and G̃1(xt) take the following form [13]

Ẽ1(xt) = −1120 − 12044xt − 5121x2
t − 5068x3

t + 7289x4
t

648(xt − 1)4

+
380 − 7324xt + 17702x2

t + 2002x3
t − 5981x4

t + 133x5
t

324(xt − 1)5
ln xt

+
112 − 530xt − 3479x2

t + 2783x3
t − 1129x4

t + 515x5
t

108(xt − 1)5
ln2 xt

− 40 − 190xt − 81x2
t − 614x3

t + 515x4
t

54(xt − 1)4
Li2(1 − xt) +

10

81
π2 ,

G̃1(xt) = −554 − 2523xt + 2919x2
t − 662x3

t

243(xt − 1)3

+
88 − 142xt − 357x2

t + 100x3
t + 35x4

t

81(xt − 1)4
ln xt +

20 − 40xt + 5x2
t

27(xt − 1)2
ln2 xt

+
40 − 160xt − 30x2

t + 100x3
t − 10x4

t

27(xt − 1)4
Li2(1 − xt) −

20

81
π2 .

(4.7)

4.1.2 Renormalization Group Evolution

In this section we shall use the obtained ADM to find the explicit NNLO expressions for
the Wilson coefficients

Ci(µb) = C
(0)
i (µb) +

αs(µb)

4π
C

(1)
i (µb) +

(
αs(µb)

4π

)2

C
(2)
i (µb) , (4.8)

with i = 1–6, at the low-energy scale µb = O(mb), which is appropriate for studying non-
leptonic B meson decays. Using the general solution of the RGE given in Eq. (2.77), we
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arrive at

C
(0)
i (µb) =

6∑

j=1

c
(0)
0,ijη

aj ,

C
(1)
i (µb) =

6∑

j=1

(
c
(1)
0,ij + c

(1)
1,ijη + e

(1)
1,ijηẼ0(xt)

)
ηaj ,

C
(2)
i (µb) =

6∑

j=1

(
c
(2)
0,ij + c

(2)
1,ijη + c

(2)
2,ijη

2 +
[
e
(2)
1,ijη + e

(2)
2,ijη

2
]
Ẽ0(xt)

+ t
(2)
2,ijη

2T̃0(xt) + e
(1)
1,ijη

2Ẽ1(xt) + g
(2)
2,ijη

2G̃1(xt)

)
ηaj ,

(4.9)

where η = αs(MW )/αs(µb) and

~aT =
(

6
23

−12
23

0.4086 −0.4230 −0.8994 0.1456
)

(4.10)

ĉ
(0)
0 =




1 −1 0 0 0 0
2
3

1
3

0 0 0 0
2
63

− 1
27

−0.0659 0.0595 −0.0218 0.0335
1
21

1
9

0.0237 −0.0173 −0.1336 −0.0316

− 1
126

1
108

0.0094 −0.0100 0.0010 −0.0017

− 1
84

− 1
36

0.0108 0.0163 0.0103 0.0023




(4.11)

ĉ
(1)
0 =




5.9606 1.0951 0 0 0 0
1.9737 −1.3650 0 0 0 0
−0.5409 1.6332 1.6406 −1.6702 −0.2576 −0.2250
2.2203 2.0265 −4.1830 −0.7135 −1.8215 0.7996
0.0400 −0.1861 −0.1669 0.1887 0.0201 0.0304
−0.2614 −0.1918 0.4197 0.0295 0.1474 −0.0640




(4.12)

ĉ
(1)
1 =




2.0394 5.9049 0 0 0 0
1.3596 −1.9683 0 0 0 0
0.0647 0.2187 −0.4268 −0.5165 0.2832 −0.2034
0.0971 −0.6561 0.1534 0.1500 1.7355 0.1917
−0.0162 −0.0547 0.0606 0.0865 −0.0128 0.0103
−0.0243 0.1640 0.0700 −0.1412 −0.1339 −0.0140




(4.13)

ê
(1)
1 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 −0.1933 0.1579 0.1428 −0.1074
0 0 0.0695 −0.0459 0.8752 0.1012
0 0 0.0274 −0.0264 −0.0064 0.0055
0 0 0.0317 0.0432 −0.0675 −0.0074




(4.14)
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ĉ
(2)
0 =




56.4723 22.2650 0 0 0 0
14.7825 −11.7987 0 0 0 0
1.9906 19.2386 −24.6846 −12.9233 −4.0085 2.0820
8.1141 42.7264 −11.7014 −35.4784 −14.1041 4.9828
−0.3660 −1.2588 2.7564 0.6168 0.2854 −0.2620
−2.3243 −3.5577 2.9357 2.4965 1.5568 −0.4249




(4.15)

ĉ
(2)
1 =




12.1560 −6.4667 0 0 0 0
4.0252 8.0604 0 0 0 0
−1.1032 −9.6435 10.6219 14.5052 3.3472 1.3651
4.5281 −11.9660 −27.0825 6.19641 23.6695 −4.8514
0.0816 1.0987 −1.0803 −1.6385 −0.2612 −0.1847
−0.5332 1.1326 2.7171 −0.2564 −1.9149 0.3886




(4.16)

ĉ
(2)
2 =




32.6228 49.8089 0 0 0 0
21.7486 −16.6030 0 0 0 0
1.0357 1.8448 −0.6393 −6.6507 2.8568 0.7652
1.5535 −5.5343 0.2298 1.9318 17.5067 −0.7209
−0.2589 −0.4612 0.0907 1.1136 −0.1290 −0.0389
−0.3884 1.3836 0.1049 −1.8183 −1.3504 0.0526




(4.17)

ê
(2)
1 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 4.8111 −4.4336 1.6880 0.7207
0 0 −12.2667 −1.8940 11.9366 −2.5613
0 0 −0.4893 0.5008 −0.1317 −0.0975
0 0 1.2307 0.0784 −0.9657 0.2051




(4.18)

ê
(2)
2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1.3169 −0.7444 0.4827 −1.2075
0 0 0.4733 0.2162 2.9582 1.1377
0 0 0.1869 0.1247 −0.0218 0.0613
0 0 0.2161 −0.2035 −0.2282 −0.0830




(4.19)

t̂
(2)
2 =




−1
3

−2
3

0 0 0 0

−2
9

2
9

0 0 0 0

− 2
189

− 2
81

0.0129 0.0497 −0.0092 −0.0182

− 1
63

2
27

−0.0046 −0.0144 −0.0562 0.0171
1

378
1

162
−0.0018 −0.0083 0.0004 0.0009

1
252

− 1
54

−0.0021 0.0136 0.0043 −0.0012




(4.20)



4.1. EFFECTIVE HAMILTONIAN FOR NON-LEPTONIC B-DECAYS 63

ĝ
(2)
2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.7557 −0.1643 0.0861 0.3224
0 0 −0.2716 0.0477 0.5277 −0.3038
0 0 −0.1072 0.0275 −0.0039 −0.0164
0 0 −0.1240 −0.0449 −0.0407 0.0222




(4.21)

As far as the LO and NLO corrections parametrized by ĉ
(0)
0 , ĉ

(1)
0 , ĉ

(1)
1 and ê

(1)
1 are concerned

our results agree perfectly with the findings of [24]. Contrariwise, the resummation of

NNLO logarithms is entirely new, and the corresponding matrices ĉ
(2)
0 , ĉ

(2)
1 , ĉ

(2)
2 , ê

(2)
1 , ê

(2)
2 ,

t̂
(2)
2 and ĝ

(2)
2 have never been computed before.
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4.2 B → Xsγ

Radiative B decays provide one of the most important tests for new physics and challenges
to the standard model. In particular the branching ratio B → Xsγ with its improving
experimental error of less than 15 % strongly restricts the parameter space of many new
physics models. For the theory to keep up with this precision, a full NLO analysis is
needed. This analysis has been formally completed last year, where all of the dominant
contributions have been calculated by at least two groups independently. The last uncon-
firmed calculation was the three-loop mixing of Q1−6 into Qγ

7 , Q
g
8, and the two-loop mixing

of Qγ
7 , Q

g
8; both have been checked as part of this thesis [46]. In this section we want to

collect all the ingredients needed in performing a complete NLO analysis of B → Xsγ.

The decay B → Xsγ is enhanced by QCD logarithms by a factor of three. This
makes the use of renormalization group improved perturbation theory unavoidable. Such
a calculation takes the following three steps.

• The matching calculation, which consists of integrating out the heavy degrees of
freedoms, namely the top quark and the W boson. This is done by calculating the
full theory and matching it on the effective theory. This calculation results in the
Wilson coefficients, the coupling constants of the effective operators, at the high scale.

• Renormalization group evolution of the Wilson coefficients to the low scale, which
has been discussed explicitly in section (2.3).

• Calculation of the matrix elements. Here one uses the fact that in a certain range
of photon energy cutoff the inclusive B → Xsγ decay is up to 1/m2

b well approxi-
mated by the decay on the quark level. Additional non-perturbative effects can be
systematically added.

In the decay B → Xsγ there is the peculiarity that the mixing of the current-current
and penguin type operators, Q1–Q6, into the magnetic type operators, Q7 and Q8, vanishes
at the one-loop level. To do a complete LO study one has to do in some parts calculations
which are typical for a NLO study. In particular the two loop mixing of Q1–Q6 into Q7

and Q8 is part of the complete LO analysis. This complication led to the fact, that the
first fully correct calculation of the LO anomalous dimension for B → Xsγ was obtained
only in 1993 in [109, 110]. The discussion of the renormalization group part is therefore a
key ingredient in the understanding of the B → Xsγ decay.

4.2.1 Anomalous Dimension Matrix for B → Xsγ

First we drop the semi-leptonic operators, since they are irrelevant for radiative B decays.
As noted above parts of the LO anomalous dimension matrix γ(0), results form the calcu-
lation of two-loop diagrams. One therefore works in a basis where the operators Q7 and
Q8 are not rescaled by the 1/g2 factor.
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It might be useful to recall explicitly the relation between the ADM in our basis and
the ADM in an operator basis where Q7 and Q8 are not rescaled by 1/g2. The latter is
frequently used for phenomenological applications [6,7,26]. The Wilson coefficients in that

basis C̃i(µ), are given by

C̃i(µ) =





Ci(µ) , for i = 1–6 ,

4π
αs
Ci(µ) , for i = 7, 10 ,

(4.22)

while the coefficients in the expansion in powers of αs of the corresponding anomalous
dimensions γ̃ij, take the following form:

γ̃
(k−1)
ij =





γ
(k−1)
ij , for i, j = 1–6 ,

γ
(k)
ij , for i = 1–6 , and j = 7, 8 ,

γ
(k−1)
ij + 2βk−1δij , for i, j = 7, 8 .

(4.23)

For the rest of this section all results are given in the basis where Q7 and Q8 are not
rescaled by the 1/g2 factor. The basis then reads:

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL) ,

Q2 = (s̄LγµcL)(c̄Lγ
µbL) ,

Q3 = (s̄LγµbL)
∑

q
(q̄γµq) ,

Q4 = (s̄LγµT
abL)

∑
q
(q̄γµT aq) ,

Q5 = (s̄LγµγνγρbL)
∑

q
(q̄γµγνγρq) ,

Q6 = (s̄LγµγνγρT
abL)

∑
q
(q̄γµγνγρT aq) ,

Q7 = emb(s̄Lσ
µνbR)Fµν ,

Q8 = g mb(s̄Lσ
µνT abR)Ga

µν , (4.24)

Additionally there is another not so trivial complication. Namely the parts which orig-
inate from the two-loop diagrams are in general regularization-scheme-dependent. Usually
γ(0) results only from the calculation of one-loop graphs and is a scheme-independent
quantity. The scheme dependence of γ(0) is therefore an interesting phenomenon and is
signaled [109, 110] by the scheme dependence of the b → sγ and b → sg matrix ele-
ments of Q1 to Q6. For on-shell photons or gluons these matrix elements vanish for any
4-dimensional scheme and the HV scheme, while in the NDR scheme they are proportional
to the tree-level matrix element of Q7 and Q8:

〈Qi〉one−loop = y
(j)
i 〈Qj〉tree j = {7, 8}, (4.25)
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where

y(7) = (0, 0,−1

3
,−4

9
,−20

3
,−80

9
) (4.26)

and

y(8) = (0, 0, 1,−1

6
, 20,−10

3
) (4.27)

are in the operator basis of [26]. The calculation of these numbers comes only from di-
vergent parts of one-loop integrals, so that they are independent of the model for the
calculation of the matrix elements.

To solve the problem of the scheme dependence it is convenient to introduce effective
Wilson coefficients Ceff

i (µ) [113]. The definition of the effective Wilson coefficients

Ceff
i (µ) =




Ci(µ) , for i = 1–6 ,

4π
αs
Ci(µ) +

∑6
j=1 y

(i)
j Cj(µ) , for i = 7–8

(4.28)

corresponds to the following rotation in the operator basis (3.32):

Qeff = ReffQ, (4.29)

where the rotation matrix is given by

Reff =




1I6x6

−y(7)
1
...

−y(7)
6

−y(8)
1
...

−y(8)
6

0 . . . 0 1 0
0 . . . 0 0 1



. (4.30)

The definition of Reff implies that the one-loop matrix elements of b→ sγ and b→ sg
with an on-shell photon or gluon of the effective operators Qeff

i vanish. Therefore the
leading order anomalous dimension for the effective Wilson coefficients (3.32)

γ
(0)
eff = Rγ(0)R−1 (4.31)

is independent of the regularization scheme and reads:

γ̂eff(0) =




−4 8
3

0 − 2
9

0 0 − 208
243

173
162

12 0 0 4
3

0 0 416
81

70
27

0 0 0 − 52
3

0 2 − 176
81

14
27

0 0 − 40
9

− 100
9

4
9

5
6

− 152
243

− 587
162

0 0 0 − 256
3

0 20 − 6272
81

6596
27

0 0 − 256
9

56
9

40
9
− 2

3
4624
243

4772
81

0 0 0 0 0 0 32
3

0
0 0 0 0 0 0 − 32

9
28
3




. (4.32)
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To compute the Wilson coefficients up to NLO accuracy we also need

γ̂eff(1) =




− 355
9

− 502
27

− 1412
243

− 1369
243

134
243

− 35
162

− 818
243

3779
324

− 35
3

− 28
3

− 416
81

1280
81

56
81

35
27

508
81

1841
108

0 0 − 4468
81

− 31469
81

400
81

3373
108

22348
243

10178
81

0 0 − 8158
243

− 59399
243

269
486

12899
648

− 17584
243

− 172471
648

0 0 − 251680
81

− 128648
81

23836
81

6106
27

1183696
729

2901296
243

0 0 58640
243

− 26348
243

− 14324
243

− 2551
162

2480344
2187

− 3296257
729

0 0 0 0 0 0 4688
27

0
0 0 0 0 0 0 − 2192

81
4063
27




. (4.33)

The two loop mixing of the Q1–Q6 sector has been calculated in the “standard” basis in
Refs. [22, 23, 81, 85]. These results have been confirmed by a calculation in the same basis
we used in our calulation (4.24) in Ref. [24]. We confirm their findings.

The two loop mixing of Q7 and Q8 and the three loop mixing of Q1–Q6 into Q7 and Q8

have only been calculated by one group [25, 26]. We completly confirm their results [46].

4.2.2 Wilson Coefficients for B → Xsγ

With the anomalous dimension matrix at hand one can relate the Wilson coefficients at the
matching scale µW = O(MW ) to the scale where the matrix elements are calculated, which
is µb = O(mb). To calculate the Wilson coefficients at the high scale one has to match the
Green’s functions of the full theory to the effective theory. In [13] the matching calculation
has been done separately for the top, charm, and up sectors using the ’t Hooft–Feynman
version of the background field gauge. The effective Lagrangian (2.41), after going on-shell
and neglecting the CKM suppressed up-quark contribution, then reads

Leff = LQCD×QED(u, d, s, c, b, e, µ, τ) +
4GF√

2

(
V ∗csVcb

8∑

i=1

Cc
iQi + V ∗tsVtb

8∑

i=3

Ct
iQi

)
, (4.34)

where the Wilson coefficients can be perturbatively expanded

CQ
i = C

Q(0)
i +

αs
4π
C
Q(1)
i + . . . Q = c or t. (4.35)

The only non-vanishing C
Q(0)
i , which are necessary for the LO analysis of B → Xsγ are

C
c(0)
2 = −1 ,

C
c(0)
7 =

23

36
,

C
c(0)
8 =

1

3
,

C
t(0)
7 = −1

2
At0(xt)

C
t(0)
8 = −1

2
F t

0(xt) ,

(4.36)
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i 1 2 3 4 5 6 7 8
ai

14
23

16
23

6
23

−12
23

0.4086 -0.423 -0.8994 0.1456

hi
626126
272277

−56281
51730

−3
7

− 1
14

-0.6494 -0.038 -0.0185 -0.0057

where At
0(xt) and F t

0(xt) are the so called Inami-Lim [112] functions:

At0(x) =
−3x3 + 2x2

2(x− 1)4
ln x +

−22x3 + 153x2 − 159x+ 46

36(x− 1)3
, (4.37)

F t
0(x) =

3x2

2(x− 1)4
lnx +

−5x3 + 9x2 − 30x+ 8

12(x− 1)3
. (4.38)

They, as C
c(0)
7 and C

c(0)
8 , result from the one-loop b → sγ and b → sg calculation in the

standard model for background gauge fields. Expanding in external momenta up to second
order and in mb the contributions can be separately matched with respect to the internal
flavour.

We compute the effective Wilson coefficients at the scale µb with the help of the evolu-
tion matrix

~Ceff(0)(µb) = Û (0)(µb, µ0) ~C
eff(0)(µ0), (4.39)

for separate charm and top contributions

C
eff(0)
7 (µb) = C

t,eff(0)
7 (µb) − C

c,eff(0)
7 (µb) (4.40)

and find

C
t,eff(0)
7 (µb) = −1

2
η16/23At0(xt) −

4

3

(
η14/23 − η16/23

)
F t

0(xt) (4.41)

C
c,eff(0)
7 (µb) =

23

36
η16/23 +

8

9

(
η14/23 − η16/23

)
−

8∑

i=1

hiη
ai, (4.42)

where

η =
αs(µW )

αs(µb)
. (4.43)

By plotting the scale dependence of C
eff(0)
7 in Fig. 4.2 as a sum of the separate charm

and top contributions one can see the origin of the strong QCD enhancement. A change of
η from 1 to 0.566, which corresponds to a scale change of µ from MW to µb = 5GeV, leaves
C
c,eff(0)
7 nearly unaffected while there is a strong decrease in C

t,eff(0)
7 . Since the top and the

charm contribution tend to cancel at the scale MW the decrease of the top contribution

leads to an increase in
∣∣∣Ceff(0)

7

∣∣∣
2

from 0.036 to 0.094. Therfore the top contribution is the

origin of the strong QCD enhancement of B → Xsγ.
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Ct,eff
7

−Cc,eff
7

Ceff
7

η

10.90.80.70.60.50.40.30.2

0.8
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0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Figure 4.2: C
eff(0)
7 (µ) as a sum of the charm and top contributions. The strong QCD

enhancement has its origin in the top sector C
t,eff(0)
7 (µ).
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−C
c(8),eff
7

−C
c(7),eff
7

−C
c(2),eff
7

−Cc,eff
7

η

10.90.80.70.60.50.40.30.2

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

Figure 4.3: Non-accidental cancellations of QCD effects in the charm sector C
c,eff(0)
7 (µ).

The scale independence of the charm contribution can also be seen in Fig. 4.3, where
C
c,eff(0)
7 is given as a sum of the different contributions of Eq. (4.42). There is a strong

cancellation of the η dependence coming from the different terms. Yet the cancellation is
not accidental, since the different components are not separately physical.

The strong η dependence of C
t,eff(0)
7 is given by the global η factor in Eq. (4.41). The

anomalous dimension of mb(µ) that stands in front of the operator Q7 is responsible of
12/23 of 16/23 of the power of η and thus gives the main contribution to the η dependence.
Using an mb which is renormalized at µ0 ∼ MW for the top contribution would take the
logarithmic QCD effects approximately into account. This was noted in Ref. [6], where
the authors conjecture that this feature will also be valid up to NNLO, and thus propose
to renormalize mb in Q7 at mt or MW in the top contribution to the decay amplitude. We
will follow this approach in our analysis.

The reason for the different optimal renormalization in the charm and top sector is the
different origin of mb in both sectors [6].
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i 1 2 3 4 5 6 7 8
ei 5.7064 -3.8412 0 0 -1.9043 -0.1008 0.1216 0.0183
fi -10.6142 6.5489 4.5508 0.7519 2.004 0.7476 -0.5385 0.0914
gi 9.2746 -6.9366 -0.874 0.4218 -2.7231 0.4083 0.1465 0.0205
li 6.5833 -4.4692 -0.8571 0.2857 -2.0343 0.1232 0.1279 -0.0064

Let us now compute the effective Wilson coefficients at the scale µ:

C
teff(1)
7 (µ) = −1

2
η

39
23At1(xt) +

18604

4761

(
η

16
23 − η

39
23

)
At0(xt)

+

(
−148832

14283
η

16
23 +

3349442

357075
η

39
23 +

3582208

357075
η

14
23 − 128434

14283
η

37
23

)
F t

0(xt)

+
4

3

(
η

39
23 − η

37
23

)
F t

1(xt) +

8∑

i=1

eiη
ai+1Et

0(xt) (4.44)

C
ceff(1)
7 (µ) = −

8∑

i=1

(
fi + giη + liη ln

µ0

MW

)
, (4.45)

where we have used the matching conditions of Ref. [13]:

C
c(1)
1 = −15 − 6 ln

µ2
0

µ2
W

C
c(1)
4 =

7

9
− 2

3
ln
µ2

0

µ2
W

C
c(1)
7 = −713

243
− 4

81
ln
µ2

0

µ2
W

C
c(1)
8 = − 91

324
+

4

27
ln
µ2

0

µ2
W

C
t(1)
4 = Et

0(xt)

C
t(1)
7 = −1

2
At1(xt)

C
t(1)
7 = −1

2
F t

1(xt). (4.46)

4.2.3 Inclusive Decay and Partonic Contribution

With the preceeding method we have the coupling constants of the operators, the Wilson
coefficients, at the scale of the decay at hand. Still one has to insert the effective Lagrangian
into the external states to relate it to physical observables. Neglecting QCD effects only
Q7 would contribute and in the case of B → Xsγ the following matrix element has to be
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calculated:
〈γXs|Q7|B〉. (4.47)

This is an hadronic matrix element and can not be calculated in perturbation theory.
One approach to this problem is to consider the inclusive decay by summing over all Xs

final states and use the fact that the decay itself should be a short distance phenomenon
compared to the scales of confinement if the b quark mass mb is large compared to ΛQCD.
By this it is hoped that the individual contribution of the external states drop out and the
decay is well approximated by the partonic level.

On the partonic level at LO only Q7 would contribute to B → Xsγ. If we assume that
this is also the only operator in the effective Lagrangian we can do the analyses in analogy
to the analysis [114, 115] of the inclusive semileptonic decay B̄ → Xueν̄. The differential
decay rate is then given by the squared matrix element

dΓ =
∑

Xs

d [PS] (2π)4 δ(4) (pB − pXs
− q) 〈B|iL†eff |Xsγ〉〈Xsγ|iLeff |B〉, (4.48)

where d [PS] denotes the phase space differential and Leff consists only out of Q7. The pho-
tonic contribution of Q7 to (4.48) can be calculated perturbatively and the nonperturbative
contribution is given by

W (q) =
∑

Xs

(2π)4 δ(4) (pB − pXs
− q) 〈B|O†|Xs〉〈Xs|O|B〉, (4.49)

where the operator O is the Fermionic part of Q7.

Using the optical theorem one can relate W (q) to the absorptive part of the forward
scattering amplitude

W (q) = 2=〈B|T
{
O†, O

}
|B〉. (4.50)

Here T (. . . ) denotes the time-ordered product.

As was observed by Chay, Georgi and Grinstein, the energy which flows into Xs scales
with mb and thus the strange quark is far off shell in the time ordered product in (4.50),
except for a small region where P 2

X ∼ m2
s. The compared to ΛQCD large momentum flow

allows for a operator product expansion (OPE) of the time ordered product in (4.50).

In general such an OPE has the following form:

T
{
O†O

}
∼ Γb

(
b̄b
)

+
z2
mb2

(
b̄gσ ·Gb

)
+
∑ zqi

m3
b

(
b̄Γiq

)
(q̄Γib) + dots. (4.51)

The Wilson coefficients Γb and zk can be calculated by a matching calculation between
(4.51) and (4.50). The matrix elements of (4.51) still contain the nonperturbative physics,
but one can still use HQET to further analyse them. If we expand the matrix element of
the dimension-three operator using the HQET-two-component-spinor field h(x) we find

〈B|b̄b|B〉 = 1 +
1

2m2
b

〈B|h̄ (iD)2 h|B〉 + . . . . (4.52)
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By inspection of (4.50), (4.51), and (4.52) we find that the leading term of the decay
rate is given by the Partonic level, while the nonperturbative 1/m2

b corrections can be
written in terms of the matrix elements

λ1 =
〈B|h̄ (iD)2 h|B〉

2mB

λ2 =
1

6

〈B|h̄
(
b̄gσ ·Gb

)
h|B〉

2mB

. (4.53)

The standard HQET parameters λ1,2 can be extracted from experiment. The value of
λ2 ' 0.12GeV2 is given by the B−B∗ mass difference, while λ1 = −(0.27±0.10±0.04)GeV2

has been determined in [116–118] from the semileptonic B-decay spectra.

The correction to the partonic decay rate, which could be calculated in perturbation
theory by [32, 119] are given by

dΓ = dΓparton

(
1 +

1

2

λ1

m2
b

− 9

2

λ2

m2
b

+ . . .

)
. (4.54)

If operators other than Q7 contribute to Leff the separation of the b-quark annihilation
and the photon emission is not anymore small compared to ΛQCD and the operator product
expansion (4.51) may not be applied. Yet the leading contribution is still given by the quark
level, and the fact that some perturbative contributions are small implies the unimportance
of the corresponding nonperturbative corrections. The discussion of the non-perturbative
effects is outlined in Ref. [120] and we will follow their discussion for the remainder of this
section.

The contribution of Q8 to the branching ratio has been studied in Ref. [121]. With the
help of fragmentation functions the only important non-perturbative contributions were
found for low photon energies Eγ much below the current experimental cutoff of 2.0 GeV.
Since the perturbative contribution of Q8 to the decay rate is less than 3%, neglecting the
non-perturbative contributions will be a good approximation for the current experimental
cutoff.

The perturbative contributions Q3, . . . , Q6 are even smaller than the one of Q8. The
contributions of u, d, and s quarks might generate virtual vector mesons which could
convert to a real photon. In the factorization approximation such a production can only be
produced by q̄γµγνq type currents. Deviations of the factorization approximation should
be suppressed either by αs or by ΛQCD [122, 123]. Given the smallness of the Wilson
coefficients this is sufficient to make them negligible.

The b-quark contributions in (s̄Γb)(b̄Γb) can be treated again with an operator product
expansion since the b-quark loops are localized at distances much smaller than Λ−1

QCD.
Again, given the smallness of the Wilson coefficients, the non-perturbative corrections are
negligible.

Charm Loop Contributions

The only remaining contribution originates from the charm loops. We will first discuss the
contributions of real intermediate cc̄ states.
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First let us note that, for a photon cutoff larger than 1.6GeV, the invariant mass of
the final Xs state is smaller than mηc

+mK . Thus the cc̄ state might only exist before the
photon emission via a cascade decay:

B̄ → Ycc̄X
(1)
s

↘ (4.55)

X(2)γ.

For Ycc̄ = ψ experimental data for both components of the cascade decay are available.
For a low cutoff energy E0 the ψ contributions would dominate the branching ratio, while it
gets reduced to a few percent for E0 = 1.6GeV and will be negligible for E0 = 2.0GeV [120].
Henceforth we will proceed by taking the ψ contributions as background. Concerning the
experimental side the current extrapolation by [120] misiak] from the experimental cutoff
of E0 = 2.0GeV to the theoretical preferred one of E0 = 1.6GeV does only partially include
such contributions. The ones which are included have only a 1.7% effect on the branching
ratio. Thus it is consistent to treat the intermediate ψ contribution as background.

Similar arguments hold for a ψ′ intermediate state, while higher cc̄ states have negligible
branching ratios. The contributions of intermediate ψ′ will also be subtracted.

Virtual cc̄ states will lead to 1/m2
c corrections as was first pointed out in Ref. [33], where

by the ‘gluon-photon penguin’ type mechanisms a 1/m2
c series of operators is generated in

the effective Lagrangian. By calculating the gluon-photon penguin diagram with an inser-
tion of Q2 for a soft gluon, which may originate from the decaying B̄ meson, and keeping
the first term in the gluon momentum an effective photon-gluon operator is generated

Qgγ =
eQc

48π2m2
c

s̄γµ(1 − γ5)gGνλb ε
µνρσ∂λFρσ. (4.56)

This will, by the interference with Q7, generate a correction term to (4.50)

∆T = −G
2
Fm

5
b

192π3
V ∗csV

2
cb

α

9π

C2 C7

m2
c

b̄gσ ·Gb. (4.57)

With the help of (4.53) and using V ∗csVcb ' V ∗tsVtb one finds the correction to the decay
rate

∆Γ(B → Xsγ)

Γ(B → Xsγ)
= −C2

C7

λ2 ' 0.03. (4.58)

Higher terms in the gluon momentum k will lead to an expansion in

(q · k)/m2
c '

ΛQCDmb

m2
c

' 0.6, (4.59)

q being the photon momentum, for the gluon is soft and the photon is onshell. This further
expansion will generate an infinite number of additional operators involving all powers of
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the gluon momentum [35,36]. Only the contribution of the first operator can be calculated,
while the higher corrections are given by unknown matrix elements of higher dimensional
operators. Given that the expansion parameter in (4.59) is O(1) the result in (4.58) might
receive large incalculable corrections. Yet it has been shown in Refs. [35–37] that the
Taylor expansion in (q · k)/m2

c involves small coefficients, which implies that the summed
contribution of the higher dimensional operators is not too important.

4.2.4 Partonic Decay Rate

In the previous section we have seen that the partonic decay width

Γ
[
b→ Xparton

s γ
]δ

= Γ [b → sγ] + Γ [b→ sγg]δ + Γ [b→ sq̄q]δ + . . . , (4.60)

approximates the decay B → Xsγ well for a certain range of the photon cutoff

Eγ > (1 − δ)Emax
γ = (1 − δ)

mb

2
. (4.61)

The decay rate can be written as follows:

Γ
[
b→ Xparton

s γ
]δ

=
G2
Fα

32π2
|V ∗tsVtb|m3

b,polem
2
b,MS

(mb)
(
|D|2 +B (δ)

)
. (4.62)

To find the contribution to |D|2, apart from the effective theory calculations, the par-
tonic matrix elements have to be calculated. The two-loop matrix elements 〈sγ |Q1, 2| b〉
were presented for the first time in Refs. [19,20] and have been confirmed and extended to
include also the two-loop matrix elements of the QCD penguin operators in Refs. [7, 21].
The one-loop matrix element 〈sγ |Q8| b〉 was also found in Refs. [7, 19, 20]. The resulting
expression reproduces the expected µ-dependence of the matrix elements [113] and reads:

D = C
(0)eff
7 (µb) +

αs(µb)

4π

(
C

(1)eff
7 (µb) +

8∑

i=1

C
(0)eff
i (µb)

[
ri + γ

(0)eff
i7 ln

mb

µb

])
. (4.63)

The one-loop matrix element 〈sγ|Q7|b〉 as well as the bremsstrahlung, the leading order
matrix elements 〈sγg|Qi|b〉; they have been given in Refs. [14,18,124]. The matrix elements
read1:

1The value of r7 is fixed by the requirement that φ77(δ) vanishes in the limit δ → 1. This corresponds
to a choice where the contribution from the B(δ) term is small.
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r1 =
833

729
− 1

3
[a(z) + b(z)] +

40

243
iπ,

r2 = −1666

243
+ 2[a(z) + b(z)] − 80

81
iπ,

r3 =
2392

243
+

8π

3
√

3
+

32

9
Xb − a(1) + 2b(1) +

56

81
iπ,

r4 = −761

729
− 4π

9
√

3
− 16

27
Xb +

1

6
a(1) +

5

3
b(1) + 2b(z) − 148

243
iπ,

r5 =
56680

243
+

32π

3
√

3
+

128

9
Xb − 16a(1) + 32b(1) +

896

81
iπ,

r6 =
5710

729
− 16π

9
√

3
− 64

27
Xb −

10

3
a(1) +

44

3
b(1) + 12a(z) + 20b(z) − 2296

243
iπ,

r7 =
32

9
− 8

9
π2

r8 =
44

9
− 8

27
π2 +

8

9
iπ . (4.64)

On the parton level the only δ dependent part is

B(E0) =
αs(µb)

π

∑

i,j=1,...,8

i≤j

C
(0)eff
i (µb) C

(0)eff
j (µb) φij (δ) + βqq̄(E0); (4.65)

here the functions φij originate from the gluon bremsstrahlung [14, 18, 124]. They can be
found for example in Ref. [6]. The contributions from b → sqq̄γ are denoted by βqq̄(E0),
where q stands for u, d or s quarks. Their contribution is either suppressed by the smallness

of the QCD penguin Wilson coefficients, or by
∣∣∣V

∗
usVub

V ∗
tsVtb

∣∣∣. Additional suppression occurs for

high-energy photons [124].

4.2.5 Branching Ratio

In the previous sections we have discussed the NLO QCD contributions to the decay rate
of B → Xsγ, and have seen that the leading QCD logarithms can be taken into account
by renormalizing mb(µ) in Q7 at µ. We will now give a NLO formula for the branching
ratio where we split the charm and the top contributions in an analogous manner. The
B → Xsγ branching ratio can be written as follows2:

BR[B̄ → Xsγ]
subtracted ψ, ψ′

Eγ>E0
= BR[B̄ → Xceν̄]exp

∣∣∣∣
V ∗tsVtb
Vcb

∣∣∣∣
2

6αem

π C
[P (E0) +N(E0)] . (4.66)

2ψ and ψ′ have been subtracted. See the previous dicussion of the nonperturbative effects
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Here the constant C

C =

∣∣∣∣
Vub
Vcb

∣∣∣∣
2

Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
(4.67)

is introduced, so that the charmless semileptonic decay can be chosen as the normalization
factor. Hereby the convergence of the perturbation theory is separated from the mc mass
determination. The perturbative ratio is thus given by

Γ[b→ Xsγ]Eγ>E0

|Vcb/Vub|2 Γ[b→ Xueν̄]
=

∣∣∣∣
V ∗tsVtb
Vcb

∣∣∣∣
2

6αem

π
P (E0), (4.68)

where the |Vcb/Vub|2 is the correction factor for the normalization to the charmless decay.
As suggested in Ref. [27] we set α = αonshell. The semileptonic phase space factor C is
known up to NNLO [6]:

C = 0.575 ± 0.02 . (4.69)

To find an expression for the perturbative ratio up to NLO we need the charmless
semileptonic decay

Γ[b→ Xueν̄] =
G2
F

(
mpole
b

)5

192π3
|Vub|2

(
1 +

αs
π

(
25

6
− 2

3
π2

))
, (4.70)

as further input. It is proportional to
(
mpole
b

)5

, thus the relation [6] between the pole and

the MS mass
mpole
b

mb,MS(µb)
= 1 +

αs(µb)

4π

(
16

3
− 4 ln

m2
b

µ2
b

)
(4.71)

is also needed.

The perturbative expression can then be expanded in powers of αs. In addition we
want to keep the b-quark mass in the top contribution of Q7 renormalized at µ0 and write
the perturbative quantity

P (δ) =

∣∣∣∣Kc +

(
1 +

αs(µ0)

π

)
r(µ0)Kt + εew

∣∣∣∣
2

+B(δ), (4.72)

where

r(µ0) =
mMS
b (µ0)

m1S
b

(4.73)

denotes the ratio of mb renormalized at µ0 and the bottom “1S mass”. As argued in
Refs. [116, 117] expressing all kinematical factors of mb in inclusive decays in terms of the
1S mass, which is defined as half of the perturbative contribution to the Υ mass, improves
the behavior of QCD perturbation theory. The NLO expression reads:

rNLO(µ0) =

(
αs(µ0)

αs(mb)

) 12
23
{

1 +
αs(mb)

4π

[
7462

1587

αs(µ0)

αs(mb)
− 15926

1587

]
+

2

9
αs(mb)

2

}
(4.74)
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i 1 2 3 4 5 6 7 8
di 1.4107 -0.838 -0.4286 -0.0714 -0.6494 -0.038 -0.0185 -0.0057

d̃i -17.6507 11.346 2.4692 -0.8056 4.8898 -0.2308 -0.529 0.1994

d̃ηi 9.2746 -6.9366 -0.874 0.4218 -2.7231 0.4083 0.1465 0.0205

d̃ai 0 0 0.8571 0.6667 0.1298 0.1951 0.1236 0.0276

d̃bi 0 0 0.8571 0.6667 0.2637 0.2906 -0.0611 -0.0171

d̃iπi 0.4702 0 -0.4268 -0.2222 -0.9042 -0.115 -0.0975 0.0115

Now we have all the ingredients to write down the complete NLO expression for Kt

and Kc in (4.72). The light quark contribution reads:

Kc =
8∑

k=1

ηak

{
dk +

αs(µb)

4π

[
2β0akdk

(
ln
mb

µb
+ η ln

µ0

MW

)

+d̃k + d̃ηk η + d̃aka(z) + d̃bkb(z) + d̃iπk iπ
]}

+
V ∗usVub
V ∗tsVtb

αs
4π

(ηa3 + ηa4) [a(z) + b(z)]., (4.75)

while the top quark contribution can be written like the following:

Kt =

(
1 − 2

9
αs(mb)

2

)(
−1

2
η4/23At0(xt) +

(
η4/23 − η2/23

)
F t

0(xt)

)

+
αs(µb)

4π

{
Et

0(xt)

8∑

k=1

ekη
ak+11/23 − 4

3
η25/23F t

1(xt) −
1

2

(
η27/23At1(xt)

)

+ η4/23At0(xt)

(
12523

3174
− 2

9
π2 − 7411

4761
η +

1

2
η ln

µ2
0

m2
t

− 2

3
ln
m2
b

µ2
b

)

+ η4/23F t
0(xt)

(
−50092

4761
+

16π2

27
+

1110842

357075
η − 4

3
η ln

µ2
0

m2
t

+
16

9
ln
m2
b

µ2
b

)

+ η2/23F t
0(xt)

(
4

9
π(π + i) +

2745458

357075
− 38890

14283
η +

4

3
η ln

µ2
0

m2
t

− 8

9
ln
m2
b

µ2
b

)}
. (4.76)

Our results agree with [6, 7]. Thus we confirm their result for the branching ratio

BR(B → Xsγ)th = (3.70 ± 0.30) × 10−4 (4.77)

for B → Xsγ, and put it on even stronger theoretical footing, for now all important
contributions to this decay have been calculated independently by at least two groups.
This is in particular important if one takes into account that the scale uncertainty is at
the LO level around 25% [113].
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4.3 B → Xs`
+`−

The rare semileptonic transitions b → s`+`− have been observed for the first time by
Belle and BaBar in 2001-2002 in the exclusive mode B → K`+`− [2, 38, 39, 49]. They are
an important probe of the short-distance physics that governs flavor-changing transitions,
and they are complementary to the less rare b → sγ decay. A precise measurement of the
inclusive channel B → Xs`

+`− is particularly relevant because it is amenable to a clean
theoretical description, especially in the region of low leptonic invariant mass, m2

`` = m2
b ŝ,

below the charm resonances, 0.05 ≤ ŝ ≤ 0.25.

4.3.1 Completing the NNLO QCD Calculation

The formula for the dilepton invariant mass distribution is [42]:

dΓ(B → Xs`
+`−)

dŝ
=
( α

4π

)2 GFm
5
b,pole |V ∗tsVtb|2

48π2
(1 − ŝ)2

×
[
4

(
1 +

2

ŝ

) ∣∣∣C̃eff
7

∣∣∣
2
(

1 +
2αs
π
ω77(ŝ)

)
+ (1 + 2ŝ)

(∣∣∣C̃eff
9

∣∣∣
2

+
∣∣∣C̃eff

10

∣∣∣
2
)(

1 +
2αs
π
ω99(ŝ)

)

+ 12 Re
(
C̃eff

7 C̃eff∗
9

)
+
αs
π
δR(ŝ)

]
,

(4.78)

where the effective Wilson coefficients C̃eff contain the contributions of the matrix elements
which are proportional to the operators Q7 and Q9. On the NLO level these are the matrix
elements of Q1–Q6, and are given in [125, 126]. The infrared divergencies which arise
in the calculation of the matrix element of Q9 cancel after adding the bremsstrahlung
contributions, and the final contribution to the dilepton invariant mass contribution is
taken into account by ω99(ŝ).

On the NNLO level most of the important contributions to the low ŝ region have been
calculated. The matching conditions are given in Ref. [13], while the matrix elements
and the relevant bremsstrahlung contributions are given in Refs. [42, 43, 45]. The only
potentially relevant NNLO terms still missing at low ŝ have to do with the three-loop
ADM of the operators in the low-energy effective Hamiltonian, and with the two-loop
matrix element of one of them, Q9.

Let us start with the contributions of the three-loop ADM to the NNLO QCD correc-
tions. Let us recall that the renormalization scale (µ) dependence of the Wilson coefficients
~CT (µ) = (C1(µ), ...) of the effective operators is governed by the renormalization group
equation (RGE) whose solution is schematically given by

~C(µ) = Û(µ, µ0, α) ~C(µ0) . (4.79)

In the case at hand we are interested in the running of the Wilson coefficients from the
electroweak scale µ0 ≈ O(MW ) to a scale µb = O(mb). Neglecting for the moment the
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i 1 2 3 4 5 6 7 8 9
ai

6
23

-12
23

0.4086 -0.4230 -0.8994 0.1456 -1 - 24
23

3
23

bi 12.4592 0.694 -1.7339 1.2359 -0.1921 0.3997 0 0 0
ci -2.5918 -0.2971 -0.5949 0.1241 0.317 2.8655 0 0 0
di 1.321 3.1616 -0.4814 1.9362 -5.0873 0.0468 -13.582 0 0
ei -0.0238 0.0107 0.0023 0.0071 0.005 -0.00003 -0.0087 -0.0008 0.0342
fi 0.001 0.013 0.0045 -0.0022 -0.0714 -0.0008 0.0299 0 0
gi 0 0 0 0 0 0 0.0035 0 0
hi 0.0114 -0.0107 -0.0012 -0.0057 -0.0098 0.0002 0.0122 0 0

Table 4.1: Numerical coefficients parameterizing the RGE solutions in Eqs. (4.80), (4.84),
and (4.85).

electromagnetic coupling α, all QCD corrections to ~C(µb) up to O(αs) are detailed in [13],
while the only O(α2

s) contributions to the evolution matrix Û relevant in b → s`+`− at
NNLO concerns the mixing of Q2 into Q9 and Q7. Expanding Û in powers of αs(µb)/4π,

we denote these terms by U
(2)
92 (µb, µ0) and U

(2)
72 (µb, µ0). The ingredients necessary for the

calculation of the latter were already available in 1999 and Ref. [13] includes it. On the

other hand, the calculation of U
(2)
92 requires the knowledge of the three-loop self-mixing of

Q1-Q6 and of the three-loop mixing of Q1-Q6 into Q9. The relevant ADM entries have just
been calculated in (3.25, 3.30). Solving the NNLO RGE (2.78–2.85), we obtain

U
(2)
92 (µb, µ0) =

7∑

i=1

[
biη

ai + ciη
ai+1 + diη

ai+2
]
, (4.80)

where η = αs(µ0)/αs(µb). The constants ai, bi, ci, di are given in Table 1.

Using αs(MZ) = 0.119 and mb = 4.8 GeV, we find U
(2)
92 (mb,MW ) ' 4.1. Unless

η < 0.48, our result is within the range that was guessed in Ref. [13], −10 η < U
(2)
92 (µb, µ0) <

10 η. Our determination of U
(2)
92 eliminates one source of uncertainty in the NNLO calcu-

lation and increases the branching ratio by about 2%, the exact amount depending on the
choice of the various renormalization scales.

Another missing ingredient of the NNLO calculation is the two-loop O(α2
s) b → s`+`−

matrix element of Q9. This is a contribution that is necessary because Q9 has a non-
vanishing matrix element at tree-level. Fortunately, no explicit calculation is necessary
here as the QCD corrections to b → s`+`− are identical to those to b→ u`ν (or t→ b`ν),
in the limit of vanishing strange (bottom) quark mass. In particular, we need the QCD
corrections to the invariant lepton mass spectrum. The O(α2

s) corrections to this spectrum
for the decay b → u`ν have been computed in [27] in terms of an expansion in (1 − ŝ),
which converges well also in the low-ŝ region of interest. The results up to third and fourth
order in (1 − ŝ) are shown in Fig. 4.4 at small ŝ in the b-quark pole mass scheme with αs
normalized at mb.
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Figure 4.4: Second order perturbative corrections to the lepton invariant mass spectrum
of b → u`ν or b → s`+`− in the low-ŝ region normalized to the tree-level spectrum and in
units of (αs/π)2. The lower (upper) solid curve corresponds to the (1 − ŝ) expansion up
to third (fourth) order [27], while the dashed curves correspond to the ŝ expansion [127]
(central value and linearly added errors).

The lepton mass spectrum at small ŝ can also be obtained from the M 2
W/M

2
t expansion

of the second order QCD corrections to top decay calculated in [127]. In principle, using
M2

W → m2
`` and Mt → mb, this expansion is better suited to the low-ŝ region. However,

Ref. [127] provides only the terms up to (MW/Mt)
4, obtained by Padé approximants from

a q2/M2
t expansion. The ensuing uncertainty is displayed in Fig. 4.4, where the errors

on the various coefficients have been added linearly and the pole mass scheme is used.
Although this is likely to overestimate the uncertainty in the calculation based on [127],
the precision attained is sufficient for our purposes. Moreover, Fig. 4.4 shows that the
two approaches [27, 127] to the calculation of the O(α2

s) corrections to the lepton mass
spectrum agree quite well. A simple approximation of the result is

〈Q9〉 = 〈Q9〉(0)
[
1 +

αs(mb)

π
ω

(1)
99 (ŝ) +

(
αs(mb)

π

)2

ω
(2)
99 (ŝ)

]

ω
(2)
99 (ŝ) ≈ −18.57 + 6.1 ŝ− (43.4 − 8.5 ln ŝ) ŝ2 + 30 ŝ3, (4.81)

which is valid in the range 0 < ŝ < 0.4, in the pole mass scheme with αs evaluated at mb.
Using this expression in the NNLO calculation of the branching ratio of [13], we observe
a reduction of about 3%, that overcompensates for the three-loop running of C9 discussed
above. In summary, the net effect of the two new contributions considered here is small.
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4.3.2 Electroweak corrections

Electroweak effects in b→ s`+`− have never been discussed in the literature. As shown in
the case of radiative decays [27–31], they may be as important as the higher order QCD
effects. Therefore we will study the electroweak effects in the b→ s`+`− decay, calculating
the dominant O(α) contributions to the running of the Wilson coefficients and estimating
other potentially large effects.

For consistency with the QCD analysis, in the following we adopt the operator basis
of [13], enlarged to include the electroweak penguin operators QQ

3 –QQ
6 . The only difference

with respect to the basis used in [29,30] are g2
s factors in the normalization ofQ7–Q10, which

complicate somewhat the counting of couplings and the comparison with [29,30]. Working
at first order in α and neglecting its running, we can expand the evolution matrix Û of
Eq. (4.79) as in (2.106). The matrices Û (i)—pure QCD evolution—and Û

(i)
e are functions of

the ADM of the operators in question and of the QCD and mixed QED-QCD β functions.
Û

(0)
e is formally of the same order of the LO QCD evolution matrix U (0), while Û

(1)
e is of

order α. They can be computed using (2.101) and (2.107). Expanding also the Wilson
coefficients at the weak scale and inserting (2.106) and (2.104) into (4.79) we find the
expressions for the various terms at the low scale µ

~C(µ) = ~Cs(µ) +
α

αs(µ)
~C(0)
e (µ) +

α

4π
~C(1)
e (µ) +

ααs(µ)

(4π)2
~C(1)
se (µ) + ... . (4.82)

~Cs(µ) results from the O(1), O(αs) and O(α2
s) contributions to ~C(µ0) and from the QCD

evolution matrices Û (i)(µ, µ0).

The formally leading electroweak effect is the nonvanishing O(α) mixing described by

γ̂
(0)
e . It has been calculated in Ref. [28], except for the QED mixing of Q9 and Q10 which

is given by (3.27):

γ̂(0)
e =

(
−88

9
−4

−4 −160
9

)
, (4.83)

while the lowest order — O(αs) in our notation — mixing between the electroweak penguin

operators Qew
7−10 and Q9 is given by γ

(0)
i 9 = (−272

27
,−32

81
,−2768

27
,−512

81
).

Since only the mixing of Q2 into Q9,10 is relevant at this order, we solve the RGE and

get (C
(0)
2 (µ0) = 1)

C
(0)
e,9 (µ) = U

(0)
e,9 2 C

(0)
2 (µ0) =

9∑

i=1

[
eiη

ai−1 + fiη
ai
]
≈ 0.00824− 0.0116η, (4.84)

where the approximation is valid within ≈ 2% for 0.5 < η < 0.6. We see that the formally
leading QED contribution shifts C9(mb) by only 0.00006 for η = 0.56. The above QED
mixing between Q9 and Q10 means that we also have a contribution to

C
(0)
e,10(µ) = U

(0)
e,10 2 C

(0)
2 (µ0) =

9∑

i=1

[
giη

ai−1 + hiη
ai
]
≈ 0.02223 − 0.0325η, (4.85)
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which shifts C10(mb) by 0.00014 for η = 0.56. The impact on the branching ratio of
these O(α/αs) contributions is tiny.

As discussed in [29, 30, 88], next-to-leading effects of O(ααnsL
n) can be larger than the

leading ones. In the case of b→ s`+`−, moreover, the LO QCD contribution is accidentally
small compared to the NLO QCD one. Let us therefore look at the next order, O(ααnsL

n),

effects. The general expression for ~C
(1)
e is (2.105)

~C(1)
e (µ) = η Û (0)

e
~C(1)
s (µ0) + Û (0) ~C(1)

e (µ0) + Û (1)
e
~C(0)
s (µ0). (4.86)

The last term in this equation requires the knowledge of the O(ααs) ADM, which we have

given in Eq. (3.29). The expression of C
(1)
8,e is given by Eqs. (4.88-90) of Ref. [128].

We also find the electroweak correction to C9(mb) be about −0.0023 using η = 0.56

and the explicit expressions for the ~C
(1)
e (µ0) coefficients in our operator basis, which are

given in [29, 30], while the shift in C10(mb) is about -0.002.

4.3.3 Numerical Results

Similar to the study of B → Xsγ we will normalize the dilepton invariant mass distribution
to the semileptonic decay and define

Rl+l−(ŝ) =
1

CΓ (b→ Xueν̄)

d

dŝ
Γ
(
b→ Xsl

+l−
)
, (4.87)

where the constant C

C =

∣∣∣∣
Vub
Vcb

∣∣∣∣
2

Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
(4.88)

is again introduced, so that the charmless semileptonic decay can be chosen as the normal-
ization factor. This decay rate has been calculated up to NNLO accuracy in Ref. [129]:

Γ[B̄ → Xueν̄] =
G2
F (mpole

b )5

192π3
|Vub|2

[
1 +

αs
π
p(1)
u +

α2
s

π2
p(2)
u (zp) +

λ1

2m2
b

− 9λ2

2m2
b

]
, (4.89)

where the explicit expressions for p
(1/2)
u can be found in [6, 129]. The relevant electroweak

corrections are given in [130].

While in a previous analysis [45] the semileptonic decay used to normalize the dileptonic
decay rate was only considered up to NLO we use the NNLO result. Furthermore we expand
the whole fraction in (4.87) consistently up to NLO and NNLO order. If we vary the low
energy matching scale µb between 2.5 GeV and 10 GeV and the high energy matching scale
of the top and charm sector µt0 = 3/2µc0 between 60 GeV and 240 GeV, and 40 GeV and
180 GeV, respectively, we find the scale dependencies shown in Fig. 4.5 for the NLO and
NNLO results. Notice that the corresponding scale dependencies of the NNLO result lies
within the NLO one if (4.87) is expanded consistently up to NLO and NNLO.
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partialNNLO for ŝ≥ 0.25

NNLO for ŝ≤ 0.25

NLO

ŝ

R
l+
l−

(ŝ
)

0.80.70.60.50.40.30.20.10

2

1.5

1

0.5

0

Figure 4.5: Renormalization scale dependence of Rl+l−(ŝ). The scale dependence of the
NNLO result lies within the scale dependence of the NLO one
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Contributions BR [b → Xsl
+l−]

NLO (1.53 ± 0.27)10−6

partial NNLO [13] (1.45 ± 0.13)10−6

partial NNLO [42–44] (1.413 ± 0.044)10−6

partial NNLO [42–44] + U29 (1.435 ± 0.037)10−6

partial NNLO [42–44] + ω99 (1.371 ± 0.063)10−6

NNLO (1.401 ± 0.048)10−6

The perturbatively calculable branching ratio is given by the integral

BR
[
b→ Xsl

+l−
]

= BR
[
B̄ → Xceν̄

] ∫ ŝh

ŝl

dŝRl+l−(ŝ) (4.90)

over a given ŝ region. For the theoretically favored low ŝ region, where 0.05 ≤ ŝ ≤ 0.25,
we calculate the branching ratio in Table 4.3.3.
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Chapter 5

Outlook and Conclusions

In this thesis we have computed NNLO QCD and NLO QED corrections to weak decays.
In particular we calculated the mixing of current-current and QCD penguin operators into
the operators relevant for ∆B = 1 decays up to three-loop order in QCD. In addition
we calculated the complete operator mixing relevant for ∆B = 1 decays up to two-loop
order, including QED corrections. Some of these results checked previously unconfirmed
calculations, while other results are completely new.

In our calculation we used several cross-checks, following from: i) the locality of the UV
divergences, ii) the independence of the ADM from the external states used in the calcu-
lation, iii) the completeness of our operator basis, iv) the gauge-parameter independence
of the mixing among physical operators, and v) the absence of mixing of non-physical into
physical operators. We have also reproduced the full MS renormalization of QCD and
QED up to the three-loop level.

In particular, we agree with the previously unconfirmed

• two-loop QED mixing of Q1–Q6 into Q7 and Q8 [28],

• two-loop self-mixing of the magnetic operators Q7 and Q8 [25],

• three-loop mixing of Q1–Q6 into Q7 and Q8 [24].

The last two results enable us to confirm the standard model predictions [6, 7]

BR(B → Xsγ)th = (3.70 ± 0.30) × 10−4 (5.1)

for B → Xsγ, and put it on even stronger theoretical footing, for now all important
contributions to this decay have been calculated independently by at least two groups.
This is in particular important if one takes into account that the scale uncertainty is at
the LO level around 25% [113].

In addition many of our results are new. In particular we have calculated for the first
time the

87
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• three-loop QCD self-mixing of Q1–Q6,

• three-loop QCD mixing of Q1–Q6 into the semileptonic operators relevant for the
semileptonic b→ s`+`− transitions, namely Q9 and Q10,

• contributions relevant for a complete NNLO analysis of rare semileptonic b → s`+`−

transitions, where we used the fact that we could extract the O(α2
s) matrix element

of Q9 from the literature,

• electroweak corrections to b→ s`+`− decay for the first time in the literature at LO
and NLO,

• mixing of the semileptonic operators Q9 and Q10 at order α and at order ααs,

• two-loop QCD mixing of Q1–Q6 into Q9 and Q10,

• two-loop QCD mixing of QQ
3 –QQ

6 into Q7–Q10.

We also studied formal aspects of beyond leading order calculations, and showed

• the formulas which govern the change of scheme at NNLO,

• a proof for the scheme indpendence of the matching procedure at NNLO,

• that the change of basis is nothing but a change of scheme.

The mere calculation of the three-loop QCD anomalous dimension matrix has more
applications than inclusive radiative and semileptonic weak decays. We exemplified this
by providing the formulas relevant to a NNLO study of non-leptonic B decays. Yet, as was
the case when the two-loop mixing matrix was calculated for the first time, there will be
many phenomenological applications for the standard model and some of its extensions.

Let us for example consider the short distance dominated exclusive rare decay K+ →
π+νν̄. This facilitates a precise measurement of the unitarity triangle [131]. A NNLO
analysis would reduce the theoretical error to the percent level. Such an analysis requires
the three-loop self-mixing of the current-current operators, which were calculated in this
work, as well as the mixing into the operator (s̄LγµdL)(ν̄Lγ

µνL), which we will study in the
future.

As mentioned already in the introduction, the main limiting factor for B → Xsγ lies in
the perturbative QCD calculation and is related to the ambiguity in the definition of the
charm quark mass in some two-loop diagrams containing the charm quark [6]. This can
be improved by going to NNLO where the charm quark mass becomes well defined. Such
a calculation consists of many ingredients, most notably the calculation of the three-loop
matrix elements. Concerning the anomalous dimension matrix we have already computed
the mixing of Q1–Q6, which is needed at this accuracy. In addition we plan to calculate the
three-loop mixing of the magnetic operators, and in the future to compute the four-loop
mixing of Q1–Q6 into the magnetic operators. As was shown in this thesis, this reduces to
the calculation of four-loop vacuum integrals with one common mass.



Appendix A

Change to the “Standard” Operator
Basis

In order to give the explicit expressions for the matrices R̂, Ŵ , Û and M̂ characterizing
the change to the “standard” basis, we first have to define the primed and unprimed set
of operators according to Eq. (3.37). The physical and evanescent operators in the initial
basis are given by

~QT = (Q1, . . . , Q6) ,

~ET = (E
(1)
1 , . . . , E

(1)
8 , E

(2)
1 , . . . , E

(2)
8 ) ,

(A.1)

while the “standard” basis consists of the following two sets of operators:

~Q′
T

= (Q′1, . . . , Q
′
6) ,

~E ′
T

= (E
′(1)
1 , . . . , E

′(1)
6 , E

′(2)
1 , . . . , E

′(2)
6 , E

(2)
3 , E

(2)
4 , E

(2)
7 , E

(2)
8 ) .

(A.2)

Needless to say, E
(2)
3 , E

(2)
4 , E

(2)
7 and E

(2)
8 play the role of extra, in principle unnecessary

operators in the “standard” operator basis. They are just included for completeness in the
above equation.

With these definitions at hand, it is just a matter of simple algebra to find the explicit
expressions for the matrices R̂, Ŵ , Û and M̂ . The rotation matrix R̂, which links the
physical operators, is given by

R̂ =




2 1
3

0 0 0 0
0 1 0 0 0 0
0 0 − 1

3
0 1

12
0

0 0 − 1
9
− 2

3
1
36

1
6

0 0 4
3

0 − 1
12

0
0 0 4

9
8
3

− 1
36

− 1
6



. (A.3)
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The matrix Ŵ parametrizes a redefinition of the physical operators ~Q by adding some
evanescent operators ~E to them. In the case at hand, Ŵ reads

Ŵ =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0



. (A.4)

On the other hand, Û describes a redefinition of the evanescent operators ~E by adding
some multiples of ε times physical operators ~Q to them. The relevant matrix Û takes the
following form:

Û =




4 0 0 0 0 0
0 4 0 0 0 0
0 0 −112 0 16 0
0 0 0 −112 0 16
0 0 − 10

9
0 1

9
0

0 0 0 − 10
9

0 1
9

0 0 − 136
9

0 10
9

0
0 0 0 − 136

9
0 10

9

144 0 0 0 0 0
0 144 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 − 2224

9
0 64

9
0

0 0 0 − 2224
9

0 64
9

0 0 0 0 0 0
0 0 0 0 0 0




. (A.5)

Finally, the matrix M̂ represents a simple linear transformation of the evanescent operators.
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In our case we find

M̂ =




2 1
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 8 0 − 1

2
0 0 0 0 0 0 0 0 0

0 0 0 0 8
3

16 − 1
6

−1 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 1

2
0 0 0 0 0 0 0 0 0

0 0 0 0 − 2
3

−4 1
6

1 0 0 0 0 0 0 0 0
40 20

3
0 0 0 0 0 0 2 1

3
0 0 0 0 0 0

0 20 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1

2
0 128 0 0 0 0 0 0 0 − 1

2
0 0 0

0 0 1
6

1 128
3

256 0 0 0 0 0 0 − 1
6

−1 0 0
0 0 1

2
0 −8 0 0 0 0 0 0 0 1

2
0 0 0

0 0 1
6

1 − 8
3

−16 0 0 0 0 0 0 1
6

1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




. (A.6)

Parts of the above matrices have already been given explicitly in [24], where the change
of basis from the initial to the “standard” basis has been performed including NLO QCD
corrections. If we take into account that the definition of E

(1)
5 –E

(1)
8 adopted in Eq. (3.43)

differs slightly from the definition of E
(1)
5 –E

(1)
8 used in [24], our results agree with the

expressions given in the latter paper.

The renormalization constant matrices entering Eq. (3.38) are found from one- and two-
loop matrix elements of physical and evanescent operators. In the following we will give only
the relevant entries of the necessary renormalization constant matrices, denoting elements
that do not affect the final results for the residual finite renormalizations introduced in
Eq. (3.38) with a star. For the finite renormalization between evanescent operators ~E and
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physical operators ~Q we get

Ẑ
(1,0)
EQ =




? ? ? ? 0 0
? ? ? ? 0 0
? ? ? ? − 1280

3
320

? ? ? ? 640
9

1280
3

0 0 160
9

− 128
9

− 16
9

4
3

0 0 − 80
27

− 476
27
− 2

3
Nf

8
27

16
9

? ? ? ? − 160
9

40
3

? ? ? ? 80
27

160
9

? ? ? ? 0 0
? ? ? ? 0 0
? ? ? ? − 98560

3
24640

? ? ? ? 49280
9

98560
3

? ? ? ? − 256
9

64
3

? ? ? ? 128
27

256
9

? ? ? ? 154880
9

− 38720
3

? ? ? ? − 77440
27

− 154880
9




. (A.7)

For the one-loop mixing of physical operators ~Q into evanescent operators ~E we obtain

Ẑ
(1,1)
QE =




5
12

2
9

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2

9
5
12

0 0 0 0 0 0 0 0 0 0 0 0



. (A.8)
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The one-loop mixing among evanescent operators ~E reads

Ẑ
(1,1)
EE =




? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0 0 0 1

6
0 −10 0 1 0 0 0 0 0 0 0 0

0 0 1
27

5
72

− 20
9

− 26
3

2
9

5
12

0 0 0 0 0 0 0 0
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?




. (A.9)

At the two-loop order we find for the finite renormalization between evanescent operators
~E and physical operators ~Q

Ẑ
(2,0)
EQ =




? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
0 0 − 21632

243
+ 44

81
Nf−

20
3
aNf ? 266

243
− 8

81
Nf+ 2

3
aNf

1208
81

+ 2
27
Nf

0 0 77020
729
− 46

243
Nf ? − 5182

729
+ 1

243
Nf − 21019

972
+ 49

648
Nf+ 5

24
aNf

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?




. (A.10)
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The two-loop mixing of physical operators ~Q into evanescent operators ~E is given by

Ẑ
(2,1)
QE =




1531
288
− 5

216
Nf −

1
72
− 1

81
Nf 0 0 0 0 0 0 1

384
− 35

864
? ? 0 0 ? ?

119
16
− 1

18
Nf

8
9

0 0 0 0 0 0 − 35
192

− 7
72

? ? 0 0 ? ?
0 0 − 7

72
− 35

192
0 0 0 0 0 0 ? ? 0 0 ? ?

0 0 − 35
864

1
384

0 0 0 0 0 0 ? ? 0 0 ? ?
0 0 23

18
51
4
− 1

18
Nf 0 0 0 0 0 0 ? ? 0 0 ? ?

0 0 7
6
− 1

81
Nf

317
72
− 5

216
Nf 0 0 0 0 0 0 ? ? 0 0 ? ?



.

(A.11)

Finally, the two-loop mixing among evanescent operators ~E reads

Ẑ
(2,1)
EE =




? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0 0 − 145

216
− 695

576
+ 1

108
Nf

157
9

1319
12
− 23

9
Nf − 17

6
− 133

12
+ 1

18
Nf 0 0 7

432
35

1152
7
72

35
192

? ?
0 0 − 1703

2592
+ 1

486
Nf −

2035
1152

+ 5
1296

Nf
743
54
− 46

81
Nf

2819
36
− 22

27
Nf −

43
54

+ 1
81
Nf −

379
72

+ 5
216

Nf 0 0 35
5184

− 1
2304

35
864
− 1

384
? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?




.

(A.12)
As far as the one-loop renormalization constant matrices are concerned, let us note, that
our results agree with the findings of [24], after taking into account that the definition of

E
(1)
5 –E

(1)
8 adopted in Eq. (3.43) differs slightly from definition of E

(1)
5 –E

(1)
8 used in the latter

article. On the other hand, the two-loop renormalization constant matrices involving the
insertion of E

(1)
5 and E

(1)
6 , are entirely new and have to our knowledge never been computed

before.
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The Complete QCD Operator
Renormalization Matrix

The general structure of the operator renormalization matrix is

Ẑ(k,l) =




Ẑ
(k,l)
PP Ẑ

(k,l)
PN Ẑ

(k,l)
PE

Ẑ
(k,l)
NP Ẑ

(k,l)
NN Ẑ

(k,l)
NE

Ẑ
(k,l)
EP Ẑ

(k,l)
EN Ẑ

(k,l)
EE


 , (B.1)

where P = 1–10 denotes the physical operators, N = 11–24 the EOM-vanishing operators,
and E = 25–32 the evanescent operators. Throughout this section we set Nf = 5.

The mixing of non-physical into physical operators must vanish at all orders in αs. This
is in fact only a requirement on the ADM, but we have seen in Eq. (2.70) that the one-loop
renormalization matrix Ẑ(1,1) is proportional to γ̂(0), and therefore at one-loop it implies
the vanishing of Ẑ

(1,1)
NP and Ẑ

(1,1)
EP . Since γ̂(0) for the physical operators can be found in

Eq. (3.23), it is sufficient to give here only the non-physical parts of Ẑ(1,0) and Ẑ(1,1). By

definition, the only non-vanishing parts of Ẑ(1,0) are Ẑ
(1,0)
EP and Ẑ

(1,0)
EN . We find

Ẑ
(1,0)
EP =




64 32
3

0 4
9

0 0 0 0 64
27

0
48 −64 0 − 8

3
0 0 0 0 16

9
0

0 0 8960
3

−2432 − 1280
3

320 64
3

−64 16 0
0 0 − 4480

9
− 9464

3
640
9

1280
3

256
9

32
3

− 256
3

0
3840 640 0 16 0 0 0 0 256

3
0

2880 −3840 0 −96 0 0 0 0 64 0
0 0 609280

3
−160768 − 98560

3
24640 512

3
−512 544 0

0 0 − 304640
9

− 630256
3

49280
9

98560
3

2048
9

256
3

− 11264
3

0




, (B.2)

95
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and

Ẑ
(1,0)
EN =




64
27

− 4
9

0 0 0 0 0 0 0 0 0 0 0 0
16
9

8
3

0 0 0 0 0 0 0 0 0 0 0 0
16 192 0 0 0 0 0 0 0 0 0 0 0 0
− 256

3
168 0 0 0 0 0 0 0 0 0 0 0 0

256
3

−16 0 0 0 0 0 0 0 0 0 0 0 0
64 96 0 0 0 0 0 0 0 0 0 0 0 0
544 8448 0 0 0 0 0 0 0 0 0 0 0 0
− 11264

3
6992 0 0 0 0 0 0 0 0 0 0 0 0




. (B.3)

The 6 × 4 block in the upper left corner of Ẑ
(1,0)
EP agrees with the expression for the upper

6 × 4 block of ĉ given in Eq. (46) of [24].

The one-loop mixing of physical into non-physical operators is described by Ẑ
(1,1)
PN and

Ẑ
(1,1)
PE . We get

Ẑ
(1,1)
PN =




− 16
27

1
9

0 0 0 0 0 0 0 0 0 0 0 0
− 4

9
− 2

3
0 0 0 0 0 0 0 0 0 0 0 0

− 8
9

− 4
3

0 0 0 0 0 0 0 0 0 0 0 0
16
27

− 28
9

0 0 0 0 0 0 0 0 0 0 0 0
− 56

9
− 64

3
0 0 0 0 0 0 0 0 0 0 0 0

256
27

− 268
9

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −8 0 0 0 − 9

4
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.4)

and

Ẑ
(1,1)
PE =




5
12

2
9

0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 2

9
5
12

0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




. (B.5)

The 4 × 6 block in the upper left corner of Ẑ
(1,1)
PE agrees with the expression for the 4 × 6

block in the upper left corner of b̂ given in Eq. (45) of [24].
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At one-loop we have moreover the mixing among EOM-vanishing operators, given by

Ẑ
(1,1)
NN =




− 23
3

0 0 0 0 0 0 0 0 0 0 0 0 0
0 − 9

2
0 − 4

3
0 3

8
− 9

8
− 9

8
− 3

2
3
16

3
2

0 9
4

− 9
16

0 0 − 11
3
− 4

3
ξ 0 0 0 0 0 0 0 0 0 0 0

0 0 4 − 23
3
− 4

3
ξ 0 0 0 0 0 0 0 0 9

4
+ 3

4
ξ 0

0 0 0 0 − 23
3

0 0 0 0 0 0 0 0 0
0 0 −8 8 − 8

9
− 17

4
0 − 3

4
0 1

8
0 0 − 9

2
− 3

8

0 0 8
3
ξ 0 0 0 − 11

3
0 0 0 0 0 0 0

0 0 0 0 0 − 97
24
− 3

8
ξ 0 − 31

12
13
3
− 61

72
− 1

8
ξ − 25

3
−4 − 17

2
− 17

6
ξ 95

48
+ 3

16
ξ

0 0 −4− 8
3
ξ 8

3
ξ 0 49

24
+ 3

8
ξ 0 − 13

12
−8 13

72
+ 1

8
ξ 1

3
0 1

2
+ 1

6
ξ 1

48
− 3

16
ξ

0 0 0 0 0 − 1
2

0 0 1 − 65
12
− 3

4
ξ −4 −3 −3−ξ 0

0 0 − 2
3
ξ −2+ 2

3
ξ 2

9
− 17

24
0 1

12
− 7

24
− 29

144
+ 1

8
ξ− 13

2
− 1

4
− 1

4
− 1

12
ξ 29

48
− 3

16
ξ

0 0 0 4
3
ξ 0 0 0 0 0 − 1

8
ξ 0 − 65

12
− 3

4
ξ 3

16
ξ

0 0 0 0 0 0 0 0 0 0 0 0 − 65
12
− 7

12
ξ 0

0 0 0 0 0 5
12

0 − 5
12
− 5

6
5
72

10
3

5
2

5
2
+ 5

6
ξ − 45

8
− 3

8
ξ




,

(B.6)
and the mixing among evanescent operators, which reads

Ẑ
(1,1)
EE =




−7 − 4
3

0 0 5
12

2
9

0 0
−6 0 0 0 1 0 0 0
0 0 − 64

3
−14 0 0 0 1

0 0 − 28
9

13
3

0 0 2
9

5
12

0 0 0 0 13
3

− 28
9

0 0
0 0 0 0 −14 − 64

3
0 0

0 0 1792
3

−784 0 0 −64 38
0 0 − 1568

9
− 2212

3
0 0 76

9
166
3




. (B.7)

The 4 × 4 block in the upper left corner of Ẑ
(1,1)
EE agrees with the expression for the 4 × 4

block in the upper left corner of d̂ given in Eq. (47) of [24]. The last block Ẑ
(1,1)
NE contains

only zeros.

Now we can proceed to the two-loop renormalization matrices. The non-vanishing
blocks of Ẑ(2,0) are Ẑ

(2,0)
EP and Ẑ

(2,0)
EN , for which we give only the rows corresponding to the

evanescent operators Q25–Q28. Our results are

Ẑ
(2,0)
25–28,P =




3908
9

2656
27

7292
243

157
243

− 722
243

55
81

1096
243

− 761
162

11392
729

0
1760

3
− 3584

9
1616
81

3736
81

− 176
81

− 110
27

− 2192
81

− 454
27

− 4640
243

0
0 0 442528

9
589928

27
− 27680

9
15560

9
9344

9
− 18524

3
23456

81
0

0 0 − 145528
9

860864
81

41276
27

108475
54

− 2416
3

− 177
2

− 152512
243

0


 , (B.8)

and

Ẑ
(2,0)
25–28,N =




11392
729

− 3101
486

− 4
9

− 4
27

− 376
243

? ? ? ? ? ? ? ? ?
− 4640

243
− 949

81
8
3

8
9

752
81

? ? ? ? ? ? ? ? ?
23456

81
− 35120

27
3712

3
− 64

9
− 1088

9
? ? ? ? ? ? ? ? ?

− 152512
243

337192
81

− 56
9

− 1768
27

688
9

? ? ? ? ? ? ? ? ?


 , (B.9)
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where the question marks correspond to entries that we have not calculated. Notice that
only the 4 × 4 block to the right of Ẑ

(2,0)
25–28,P is needed to determine the O(α3

s) mixing of
Q1–Q6 into Q7–Q10. On the other hand the 6× 4 block to the left is necessary to find the
three-loop self-mixing of Q1–Q6 which we shall present elsewhere [47]. Finally the mixing

of evanescent operators into EOM-vanishing ones, described by Ẑ
(2,0)
25–28,N , is not necessary,

but given for completeness here.

Since Ẑ(2,2) is completely determined by the one-loop mixing, we give only the non-
vanishing building blocks of Ẑ(2,1), namely

Ẑ
(2,1)
PP =




317
36

− 515
54

− 353
243

− 1567
972

67
486

− 35
648

− 58
243

167
648

− 64
729

0
349
12

3 − 104
81

338
81

14
81

35
108

116
81

19
27

776
243

0
0 0 − 1117

81
− 31469

324
100
81

3373
432

16
81

92
27

− 1688
243

0
0 0 − 4079

486
− 59399

972
269
1944

12899
2592

− 50
243

− 1409
648

− 548
729

0
0 0 − 83080

81
− 159926

81
8839
81

14573
54

− 464
81

3407
27

− 31376
243

0
0 0 70100

243
− 231956

243
− 11501

243
78089
648

− 836
243

− 1081
81

− 21128
729

0
0 0 0 0 0 0 650

27
0 0 0

0 0 0 0 0 0 − 548
81

1975
108

0 0
0 0 0 0 0 0 0 0 − 58

3
0

0 0 0 0 0 0 0 0 0 − 58
3




, (B.10)

Ẑ
(2,1)
PN =




− 64
729

3671
1944

1
9

− 1
27

22
243

− 65
2592

− 1
96

1
32

1
72
− 1

192
− 1

72
0 1

48
1
64

776
243

− 1889
324

− 2
3

2
9
− 44

81
− 259

432
1
16

− 3
16
− 1

12
1
32

1
12

0 − 1
8
− 3

32

− 1688
243

1351
162

− 16
3

4
9

20
81

− 259
216

−1 − 3
8
− 1

6
1
16

1
6

0 − 1
4
− 3

16

− 548
729

− 3559
972

− 22
9

− 32
27
− 130

243
− 625

648
− 67

48
− 11

4
− 26

9
11
24

26
9

0 19
6
− 11

8

− 31376
243

2054
81

− 304
3

32
3

320
81

− 950
27

− 35
2

−3 4
3

1
2
− 4

3
0−10 − 3

2

− 21128
729

− 32669
486

− 148
9

4
9
− 1684

243
− 12817

648
− 35

24
− 131

8
− 259

18
131
48

259
18

0 125
12
− 131

16

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 − 995

18
− 7

9
ξ 0 0 0 − 43

8
− 27

32
ξ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0




,

(B.11)
and

Ẑ
(2,1)
PE =




4493
864

− 49
648

0 0 1
384

− 35
864

0 0
1031
144

8
9

0 0 − 35
192

− 7
72

0 0
0 0 − 7

72
− 35

192
0 0 0 0

0 0 − 35
864

1
384

0 0 0 0
0 0 23

18
449
36

0 0 − 7
72

− 35
192

0 0 179
162

463
108

0 0 − 35
864

1
384

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




. (B.12)
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Similarly to what happens in the case of Ẑ
(2,0)
PE not all entries of Ẑ

(2,1)
PE are needed to

find the O(α3
s) ADM of physical operators considered in this work. Needless to say, the

mixing of physical into EOM-vanishing operators, described by Ẑ
(2,1)
PN , is not required to

determine the mixing of physical operators at the three-loop level. However, some entries
are important to verify the O(α2

s) mixing of magnetic into non-physical operators, which
has been discussed in part in [25].

As far as the mixing among EOM-vanishing operators is concerned, we have calculated
only the first two rows of the corresponding matrix Ẑ

(2,1)
NN . We find

Ẑ
(2,1)
11–12,N =

(
− 58

3
0 0 0 0 ? ? ? ? ? ? ? ? ?

0 − 149
16

13
36
− 7

36
ξ − 11

2
− 7

36
ξ − 1

6
? ? ? ? ? ? ? ? ?

)
, (B.13)

where the question marks stand for entries that we have not calculated.

In the case of the mixing of evanescent into other operators, we have calculated only
the first four rows of the corresponding matrices Ẑ

(2,1)
EP , Ẑ

(2,1)
EN and Ẑ

(2,1)
EE . We get

Ẑ
(2,1)
25–28,P =




1760
3

− 2576
9

− 40
81

− 814
81

4
81

5
54

0 0 − 5824
243

0
1304 1696

3
80
27

8
27

− 8
27

− 5
9

0 0 1712
81

0
0 0 −56320 − 132848

3
8512 7600 − 1088

3
992 − 6992

9
0

0 0 109520
9

− 127570
3

− 16568
9

23255
3

− 512
9

80
3

2432
3

0


 ,

(B.14)

Ẑ
(2,1)
25–28,N =




− 5824
243

739
81

0 8
27

0 ? ? ? ? ? ? ? ? ?
1712
81

142
27

0 − 16
9

0 ? ? ? ? ? ? ? ? ?
− 6992

9
2048

3
256 −128 0 ? ? ? ? ? ? ? ? ?

2432
3

− 1300
3

− 128
3

−112 0 ? ? ? ? ? ? ? ? ?


 , (B.15)

and

Ẑ
(2,1)
25–28,E =




1615
24

− 1021
27

0 0 917
216

142
81

0 0
599
6

715
9

0 0 277
18

17
6

0 0
0 0 5263

27
2255
36

0 0 − 13
9

3041
144

0 0 − 10489
162

57317
108

0 0 1961
648

1427
864


 . (B.16)

Here once again question marks denote entries that we have not computed. Clearly, the
mixing of evanescent into other operators does not affect the O(α3

s) mixing of physical
operators at all, and thus is given here only for completeness.

At the three-loop level we have calculated only a small subset of entries of Ẑ(3,1)

which are summarized below. Again Ẑ(3,2) and Ẑ(3,3) can in principle be obtained using
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Eqs. (2.71). The single poles we have calculated read

Ẑ
(3,1)
PP =




? ? ? ? ? ? − 15659
6561

− 9625
8748

− 248315
59049

+ 3488
729

ζ3 0
? ? ? ? ? ? 13390

2187
5749
5832

− 54656
19683

− 1792
243

ζ3 0
0 0 ? ? ? ? 35528

2187
35113
729

− 461338
19683

+ 1600
243

ζ3 0
0 0 ? ? ? ? − 95551

6561
− 1356773

34992
− 888497

118098
− 9968

729
ζ3 0

0 0 ? ? ? ? 670864
2187

3116449
1458

− 17938948
19683

+ 15232
243

ζ3 0
0 0 ? ? ? ? − 516836

6561
− 20383751
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and
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