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Abstract
The inclusive semileptonic B decay B̄ → Xsl

+l− will be discussed in this work. Here Xs

denotes an arbitrary state of total strangeness −1 and the leptons are considered to be l = e
or µ. The theoretical predictions of inclusive quantities are preferable with respect to exclu-
sive ones since non-perturbative effects are under control in the framework of heavy quark
expansion (HQE). The non-perturbative corrections are small in certain regions of the dilep-
ton invariant mass spectrum whereas the major contribution consists in the perturbatively
calculable parton decay b→ sl+l−.

We will extent the existing next-to leading order (NLO) QCD calculation of the parton
result to the next-to-next-to leading order (NNLO) in QCD within the Standard Model
(SM) of elementary particle physics. In particular, the NNLO matching contributions to the
Wilson coefficients of the operators mediating b→ sl+l− will be calculated.

These results are used in the evaluation of the dilepton invariant mass distribution at the
parton level taking into account the NNLO renormalization group evolution of the Wilson
coefficients and the NNLO matrix element calculation of the corresponding operators. As a
result we are able to reduce a large uncertainty of ±16% to ±6% of the dilepton invariant
mass distribution which was mainly due to the renormalization scale of the top-quark mass.

Furthermore, we will include all known Λ2
QCD/m

2
c and Λ3

QCD/m
3
b non-perturbative cor-

rections in the calculation of the dilepton invariant mass distribution at the hadronic level.
The analysis will be restricted to low values of the dilepton invariant mass in the region
ŝ ∈ [0.05, 0.25] and to high values in the region ŝ ∈ [0.64, 0.78]. The HQE is not invalidated
by intermediate hadron resonances in both regions and allows predictions without model-
dependencies. The poorly known matrix elements of heavy quark effective theory (HQET)
operators of the Λ3

QCD/m
3
b corrections introduce further theoretical uncertainty.

The uncertainties of the branching ratio of the low- and high-ŝ regions originating from
the residual renormalization scale dependence and the poorly known parameters of HQET
are analyzed. The residual renormalization scale dependencies are found to be of the order
of ±10% and ±16% (compared to ±20% and ±22% at NLO order) in the low- and high-ŝ
region, respectively. Additionally, the HQET parameters of the order Λ3

QCD/m
3
b induce an

uncertainty of 5% in the low-ŝ region and a large uncertainty of 15% in the high-ŝ region.
Apart from the Standard Model we will consider also a special scenario of the Minimal

Supersymmetric Standard Model (MSSM) with a heavy decoupled gluino and a minimal
flavor violation inspired texture of soft supersymmetry breaking parameters. Analogously
to the SM within this scenario the complete set of NNLO matching contributions to the
Wilson coefficients of the operators mediating b→ sl+l− will be evaluated. Such corrections
can become numerically important when approximate cancellations occur among the new
physics contributions and/or the SM one. The impact of the NNLO corrections on the
dilepton invariant mass distribution will be discussed in connection with the reduction of
renormalization scale uncertainties.
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1 Introduction

The current description of particle physics – the so called Standard Model (SM) – has been
formed as a result of a combination of many theoretical concepts combined with experimental
observations. As a quantum field theory being locally gauge invariant the ideas of quantum
theory, relativistic field theory and group theory are needed. The SM successfully incorpo-
rates almost1 all known properties of three out of the four known fundamental interactions
– the strong, the weak and the electro-magnetic force – which is reflected by the invariance
under local transformations of the non-abelian gauge symmetry SU(3)C ⊗SU(2)W ⊗U(1)Y .

In principle local gauge invariance implies massless gauge bosons and consequently pre-
dicts long range forces. Therefore local gauge theories might not appear to be the proper de-
scription of the observed short range weak force mediated by massive gauge bosons. This ap-
parent shortcoming can be solved with the help of spontaneous symmetry breaking achieved
through the Higgs mechanism [1–4]. Furthermore, the proof of the renormalizability of local
non-abelian (Yang-Mills) gauge theories [5] in the early 70ties was extended to spontaneously
broken gauge theories [6]. Both, the Higgs mechanism and the proof of renormalizability
were the foundations of the application of local gauge theories to describe short range weak
interactions and the starting point of the formulation of the SM.

The spontaneous breaking of the gauge symmetry is necessary to properly model the
short range interactions and requires the introduction of at least one scalar particle – the
so called Higgs particle. Up to now the Higgs particle escaped the direct detection at high
energy colliders being the last missing part for the experimental confirmation of the SM.
The formally as massless introduced gauge and “matter” fields (leptons and quarks) acquire
masses due to their couplings to the Higgs field. Thus the Higgs mechanism represents the
mass generation mechanism of gauge and “matter” fields.

As a consequence of the spontaneous symmetry breaking the couplings of the W boson to
quarks are given in terms of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
(VCKM)ij [7,8] that arises from the diagonalization of the quark mass matrices. In the SM it
is this very matrix that is responsible for all weak decays of hadrons as well as for CP non-
conservation2. CP violation was first observed in 1964 in kaon decay [11] and recently for
the first time in the B meson system in the decay B → J/ψK0

S [12]. The CKM matrix plays
a fundamental role in the description of weak decays and the origin of CP violation requiring
an exact knowledge and understanding of these parameters. Theoretical predictions of weak
hadron decays suffer generally from uncertainties due to non-perturbative strong interaction
effects preventing a straightforward determination of the CKM matrix elements. Their

1The experimental evidence for neutrino oscillations [9, 10] can be accommodated for example within
the SM by adding right-handed neutrinos, however there exist also other theoretically more favorable and
attractive alternatives.

2A different source of CP violation appears in QCD when including non-trivial topological effects due to
the “Θ-term” known as the strong CP problem.
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improved understanding is therefore desirable in order to test the SM and perhaps to find
new physics effects.

The investigation of B meson decays promises to provide these kind of insights. Especially
the high value of the b-quark mass in the range of 4 − 5 GeV leads to a special role of B
mesons for flavor physics studies. The theory of inclusive and also exclusive B decays has
been dramatically improved in the last decade. Especially the heavy quark expansion (HQE)
approach combined with heavy quark effective theory (HQET) methods applied to inclusive
semileptonic and radiative B decays offers a quite systematic treatment of non-perturbative
effects in a model independent way. Remarkably the perturbatively calculable parton de-
cay emerges as the leading contribution to physical observables whereas non-perturbative
corrections are suppressed by Λ2

QCD/m
2
Q with mQ being the heavy quark mass. It should

be emphasized that the validity of the HQE depends strongly on the kinematical configura-
tion under consideration which can limit the reliability and applicability of this approach in
practice.

The class of flavor changing neutral current (FCNC) B decays forms a special group among
B processes from a theoretical point of view. Within the SM their decay rate is naturally
suppressed as they proceed only at the loop level in perturbation theory. This mechanism
seems to be confirmed by the present experimental data through the fact that the branching
ratios of FCNC decays are tiny. So far the experimental results are in agreement with the
expected range of magnitude predicted by the SM, however still some decay channels are
unobserved. The “loop” suppression of FCNC processes leads to a strong dependence on
virtually exchanged particles, such as the top quark or the electroweak gauge bosons in the
SM. With respect to the consideration of physics beyond the SM the sensitivity of FCNC
processes to the exchange of unknown particles makes them attractive because they provide
tests of the SM and constrain parameter spaces of new physics models.

Among the rare FCNC processes the radiative and semileptonic channels mediated at
the parton level by b → sγ and b → sl+l−, respectively, are experimentally observed. The
experimental and theoretical situations of the inclusive decay B̄ → Xsγ have progressed to
a very involved point. The present data from CLEO, BaBar, Belle and ALEPH give the
current world average [13] for the branching ratio B̄ → Xsγ

B[B̄ → Xsγ (Eγ > 1.6 GeV)]exp = (3.28+0.41
−0.36) × 10−4 (1.1)

with an error of around 12%. The measurement of B̄ → Xsγ requires the introduction of a
lower cut on the photon energy in the B meson rest-frame being typically Eγ > 2.0 GeV [14]
to exclude the dominant charm background. The extrapolation of the branching ratio to
lower energy ranges down to 1.6 GeV with the help of theoretical models introduces besides
the statistical and systematical error also theoretical model dependencies. So far these model
dependencies do not dominate the total error of the experimental result but this might easily
happen in the near future. With the expected high luminosity of the B factories (BaBar
and Belle), an experimental accuracy below 10% appears to be achievable.

In the meantime the theoretical prediction of B̄ → Xsγ has reached an advanced level
including a huge variety of corrections. As mentioned before within the HQE the leading
contribution is the perturbatively calculable parton decay b → sγ inclusive bremsstrahlung
corrections. It is known up to next-to leading order in QCD (NLO) as well as all enhanced
logarithmic and 1/ sin2 θW electroweak corrections. Further the leading non-perturbative
Λ2

QCD/m
2
Q {Q = c, b} corrections are calculated. A careful reconsideration of this process [15]



11

has shown that the numerical value of the theoretical result can vary between (3.28±0.33)×
10−4 and (3.57 ± 0.30) × 10−4 depending on the choice of the renormalization scheme of
the charm quark mass between the pole mass scheme and the modified minimal subtraction
(MS) scheme, respectively. This strong scheme dependence stems from two-loop matrix
elements of four-quark operators to b → sγ, being the leading contribution because of the
vanishing one-loop matrix elements. Although the choice of the MS scheme is preferred
this discrepancy due to higher order QCD corrections can only be resolved by their explicit
calculation. Beside this perturbative uncertainty a further theoretical uncertainty arises due
to the unknown non-perturbative corrections associated to the same diagrams [16].

The reliability of the theoretical predictions depends crucially on the kinematical con-
figuration under consideration and often theoretically favored kinematical regions, where
non-perturbative corrections are under control, are rather restricted. On the other side the
experimental investigation requires theoretical input to extrapolate the results to kinematical
regions that are not accessible due to large backgrounds or small experimental efficiencies.
The ultimate solution of the inclusive decay B̄ → Xsγ towards establishing a physical ob-
servable by means of adequate cuts on kinematical variables such as the photon energy and
a reduced dependence on the renormalization scheme of the charm quark mass due to the
inclusion of higher order QCD corrections still deserves experimental and theoretical efforts.
The present SM prediction of the branching ratio of B̄ → Xsγ coincides with the measure-
ment within the uncertainties. Despite the current errors the agreement of the experimental
result and the SM prediction is quite impressive and the decay B̄ → Xsγ is known to put
non-trivial constraints on the parameter spaces of models beyond the SM.

While the measurement of the decay B̄ → Xsγ is being consolidated, the Belle Collabo-
ration succeeded about one year ago for the first time to measure the branching ratio of the
inclusive decay B̄ → Xsl

+l− with (l = e, µ) [17]

B[B̄ → Xsl
+l−]exp =

(

6.1 ± 1.4+1.4
−1.1

)

× 10−6 (1.2)

for dilepton masses larger than 0.2 GeV. The statistical significance of this result amounts
to 5.4 σ. Very recently also the BaBar Collaboration announced a similar preliminary value
obtained with a statistical significance of 4.6 σ [18]

B[B̄ → Xsl
+l−]exp =

(

6.3 ± 1.6+1.8
−1.5

)

× 10−6. (1.3)

The large background due to the decays B → XsJ/ψ → Xsl
+l− and B → Xsψ

′ → Xsl
+l−

which interfere with the decay B̄ → Xsl
+l− is vetoed explicitely by cuts on the dilepton

invariant mass distribution. The theoretical uncertainties which would be induced by the
inclusion of such intermediate cc̄ states are by far the most dominant. Because of the non-
perturbative nature of these states, the dilepton invariant mass distribution can be only
roughly estimated when the invariant mass of the lepton pair is not significantly below the
J/ψ resonance. It remains questionable whether integrating the dilepton invariant mass
distribution over this domain can reduce the theoretical uncertainty below ±20% [19].

On the contrary, for small dilepton invariant masses (accessible to l = e or µ), a relative
precise determination of the decay distribution is possible using perturbative methods and
non-perturbative corrections within the framework of HQE. The dominant non-perturbative
Λ2

QCD/m
2
Q (Q = c, b) corrections were found to be small, of the order of a few percent, for
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dilepton invariant masses in the range 0.05 < ŝ ≡ (pl− + pl+)2/m2
b,pole < 0.25. Thus, the

B̄ → Xsl
+l− decay distribution integrated over this region of the dilepton invariant mass

should be perturbatively predictable as the B̄ → Xsγ decay rate, i.e. up to about 10%
uncertainty.

Unfortunately, the theoretical prediction of the perturbatively calculable part in the SM,
even though performed up to next-to leading (NLO) order in QCD [20–24], has not reached
this precision. The formally leading order term is (quite accidentally) suppressed, which
makes it as small as some of the NLO contributions. The theoretical uncertainties due to
renormalization scale dependencies of the NLO result are of the order of 20%. Consequently,
some of the formally next-to-next-to leading (NNLO) terms can have an effect larger than
10% on the dilepton invariant mass distribution. This can be easily verified by varying
the renormalization scale at which the top quark mass is renormalized in the formulae of
Refs. [23, 24].

In view of the small non-perturbative corrections and the large uncertainties in the NLO
calculation we will extend the analysis of the decay B̄ → Xsl

+l− up to the NNLO level
within the SM and a minimal flavor violation inspired scenario of the Minimal Supersym-
metric Standard Model (MSSM) with decoupled heavy gluino. For these purposes Chapter 2
provides a short introduction to the SM to remind the reader of the origin of several ideas,
terms and definitions as well as to set up our notation.

Chapter 3 covers the subject of effective theories being a necessary tool for the evaluation
of B decays. The theoretical framework of weak B processes is based on the different mass
scales involved in the decay allowing for a systematic factorization of high and low energy
scale effects with the help of an operator product expansion (OPE). This results in an effective
theory Lagrangian which describes the interactions of the light degrees of freedom (leptons
and light quarks) in terms of effective interaction vertices – the so called operators. The effect
of the decoupled heavy degrees of freedom is absorbed into the effective coupling constants
– Wilson coefficients – which can be calculated reliably in perturbation theory. With the
help of the renormalization group equation (RGE) the framework of effective theories allows
further the resummation of large logarithmic terms due to radiative corrections to all orders
in perturbation theory.

The sensitivity of FCNC B decays to physics beyond the SM provides the possibility
to find constraints on parameter spaces of new physics models. Chapter 4 is devoted to
the description of the particle spectrum of the Minimal Supersymmetric Standard Model
(MSSM) and the relevant parts of the interaction Lagrangian for B decays. Furthermore a
minimal flavor violation inspired scenario with heavy decoupled gluinos will be described.
The initial matching conditions for the operators mediating B̄ → Xsl

+l− will be evaluated
later within this new physics scenario up to NNLO.

The results of the NNLO analysis of the decay B̄ → Xsl
+l− will be presented in Chap-

ter 5. This includes a summary of the matching conditions of the SM and the here considered
supersymmetric scenario at the matching scale. In a second step the renormalization group
running will be given up to next-to-next-to leading logarithmic (NNLL) approximation, re-
sulting in the effective Lagrangian at the low energy scale. Collecting the known formulae of
the perturbative calculation of the matrix elements b→ sl+l− the remaining scale dependen-
cies of the dilepton invariant mass spectrum and the branching ratio obtained by integration
over the dilepton invariant mass below the J/ψ resonance will be discussed. In order to pass
from the perturbatively calculated parton level to the final hadronic B meson observables
the non-perturbative corrections will be included and the final uncertainties investigated.
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Finally, we conclude in Chapter 6 and give a short outlook. Technical details and the
analytic formulae for the Wilson coefficients are presented in the appendices. Appendix A
summarizes the relevant parts of the MSSM interaction Lagrangian to setup the notation.
Appendix B contains a list of unphysical operators needed for the complete off-shell calcula-
tion of two-loop contributions to the Wilson coefficients. Appendix C contains the analytic
results of the matching contributions to the Wilson coefficients in the SM and the consid-
ered MSSM scenario. Appendix D lists further auxiliary functions that enter the results of
Appendix C.





2 The Standard Model

This chapter provides a short introduction to the notions and notations of the Standard
Model (SM) of electroweak and strong interactions of elementary particle physics.

The Principle of Local Gauge Invariance

Elementary particle physics is described by relativistic quantum field theories. Thereby
the fundamental interactions of spin 1/2 fermion fields are derived from the principle of local

gauge invariance (Weyl 1932, Yang-Mills 1954) with a certain gauge groupGloc. Observations
have taught us that matter is composed out of spin 1/2 fermion fields establishing them as
the suitable description of elementary particle physics. Once these matter fields and their
transformation laws under Gloc are specified the theory is essentially determined. The matter
fields of the real world are spin 1/2 particles, leptons and colored quarks. The electroweak
interactions of the leptons and quarks exhibit a symmetry under the group SU(2)W ⊗U(1)Y
and the strong interactions of the quarks under the group SU(3)C , C denoting the color

charge. Thus the electroweak and strong interactions are derived from the gauge group
[25–27]

Gloc = SU(3)C ⊗ SU(2)W ⊗ U(1)Y . (2.1)

Discarding mass terms of spin 1/2 particles they are described by the relativistic massless
Dirac field ψ which decomposes into two independent fields (Weyl fields), a left-handed and
a right-handed

ψL =
1 − γ5

2
ψ ≡ PLψ, ψR =

1 + γ5

2
ψ ≡ PRψ, (2.2)

yielding the free matter Lagrangian for N left-handed and N right-handed distinct massless
spin 1/2 particles

Group Gauge fields Coupling Generators

U(1)Y Bµ g1 Y hyper charge

SU(2)W W a
µ g2 τa = σa/2, a = 1, 2, 3 σa Pauli matrices

SU(3)C Ga
µ (gluons) gs Ta = λa/2, a = 1, . . . , 8 λa Gell-Mann matrices

Table 2.1: Notation of the gauge fields, the coupling constants and the generators of the
group factors of Gloc
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LFermion =

N
∑

a=1

{

ψ̄La i∂/ ψLa + ψ̄Ra i∂/ ψRa
}

. (2.3)

The principle of local gauge invariance requires LFermion to be locally invariant under trans-
formations of Gloc such as

ψL → UL(x)ψL, ψR → UR(x)ψR, UL(x), UR(x) ∈ Gloc. (2.4)

The local gauge invariance can only be achieved by introducing a set of spin 1 gauge fields Vn,µ
that couple minimally to the spin 1/2 fields by the introduction of the covariant derivative

∂µ → Dµ = ∂µ + i
∑

n

gn

Nn
∑

a=1

T anV
a
n,µ. (2.5)

Since Gloc is a direct product of the simple group factors SU(3)C , SU(2)W and U(1)Y
the generators belonging to two different group factors will commute. As a consequence
the gauge potential of Gloc can be written as a sum of products where the single addends
correspond to the group factors. Each product consists out of a coupling constants gn and a
gauge potential Vn,µ with n denoting the gauge group factor and µ being the Lorentz indices
of the gauge fields. The components of the gauge fields V a

n,µ must transform according to
the adjoint representation of the corresponding group. Furthermore, by T a

n we denote the
generators of the group and Nn gives the number of generators of each group factor. Table
2.1 shows the relevant parts to Gloc.

Matter – Gauge Interactions

The matter field content of the SM consists of three generations whereas each generation
is composed of a neutrino νi, a charged lepton li, and the up- and down-type quarks ui and di.
The transformation laws of the chiral components of these fields under the SU(3)C , SU(2)W
and U(1)Y are summarized in Table 2.2. Only the fundamental (nontrivial representation of
lowest dimension) and the trivial (singlet) representations show up.

Using the definitions and transformation properties listed in Table 2.2 LFermion contains
the gauge interaction of the spin 1/2 fermion fields and the spin 1 gauge boson fields

LFermion =
3
∑

k=1

{

L̄kL iD/L
k
L + Ēk

R iD/E
k
R + Q̄k

L iD/Q
k
L + Ūk

R iD/U
k
R + D̄k

R iD/D
k
R

}

(2.6)

with k numbering the generations. When the covariant derivative

Dµ = ∂µ + ig1BµY + ig2W
a
µ τ

a + igsG
a
µT

a (2.7)

acts on a fermion field, Y , τ a and Ta are given in the same representation to which the fermion
belongs. For example all leptons are put into the trivial representation of SU(3)C with
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Group Multiplet Representation

SU(3)C leptons 1 color singlets

quarks 3 color triplets

antiquarks 3∗ anticolor triplets

SU(2)W L1
L ≡

(

νe
e

)

L

, Q1
L ≡

(

u

d′

)

L

L2
L ≡

(

νµ
µ

)

L

, Q2
L ≡

(

c

s′

)

L

2 = 2∗

L3
L ≡

(

ντ
τ

)

L

, Q3
L ≡

(

t

b′

)

L

E1
R ≡ eR, U1

R ≡ uR, D1
R ≡ d′R

E2
R ≡ µR, U2

R ≡ cR, D2
R ≡ s′R 1

E3
R ≡ τR, U3

R ≡ tR, D3
R ≡ b′R

U(1)Y Y = Q− T3 phase transformation

Table 2.2: The transformation laws of the matter fields under the particular group factors of
the SM local gauge group Gloc. Note that the left-handed and right-handed fields transform
different under the group SU(2)W . Further the down quarks represent the gauge eigenstates
of electro-weak interactions denoted by primes.
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Ta = 0 and consequently the covariant derivative becomes simplified to Dµ = ∂µ+ ig1BµY +
ig2W

a
µ τ

a. Further simplification takes place for right-handed leptons as they in addition also
transform according to the trivial representation of SU(2)W resulting in Dµ = ∂µ + ig1BµY .

Free Gauge Field Sector

By adding the locally gauge invariant kinetic term

LGauge = −1

4
BµνB

µν − 1

4
W a

µνW
a,µν − 1

4
Ga
µνG

a,µν (2.8)

the gauge fields describe physical degrees of freedom i.e. they become dynamical variables.
The antisymmetric abelian and non-abelian field strength tensors are

Bµν = ∂µBν − ∂νBµ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − g2ε

abcW b
µW

c
ν , (2.9)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν ,

where εabc and f abc denote the SU(2) and SU(3) structure constants, respectively.

Higgs – Gauge Interaction

The local gauge invariance enforces the existence of spin 1 gauge bosons transforming in
the adjoint representation. However, local gauge invariance requires them to be massless.
Further the different transformation properties of the left-handed and right-handed fermion
fields under the SU(2)W symmetry also forbids mass terms of fermions, since they have the
non-invariant form ψ̄ψ = ψ̄LψR + ψ̄RψL.

The only known possibility to maintain the local gauge invariance1 of the theory and to
introduce masses for gauge and fermion fields is the mechanism of spontaneous symmetry
breaking, the so called Higgs mechanism (Higgs 1964 [1–4], Weinberg 1967 [25–27]). The
Higgs mechanism necessitates the introduction of a spin 0 SU(2)W doublet of two complex
scalar fields (Higgs field) with the hypercharge YΦ = +1/2

Φ =

(

φ+

φ0′

)

(2.10)

including a potential V (Φ†Φ) which respects renormalizability

LHiggs = (DµΦ)†(DµΦ) − V (Φ†Φ) = (DµΦ)†(DµΦ) + µ2Φ†Φ − λ(Φ†Φ)2. (2.11)

In the Higgs potential V (Φ†Φ) two new parameters µ and λ appear.

1The issue of local gauge invariance is crucial for the Slavnov-Taylor identities [28, 29] which are needed
for the proof of renormalizability and unitarity [5, 6] of the S-Matrix.
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Higgs – Matter Interaction

The interaction of the Higgs field and the spin 1/2 fields are Gloc–invariant Yukawa type
couplings

LYukawa =

3
∑

k,k′=1

{

Q̄k
L Y

U
kk′ Φ̃Uk′

R + Q̄k
L Y

D
kk′ ΦDk′

R + L̄kL Y
E
kk′ ΦEk′

R

}

+ h.c. . (2.12)

The matrices Y U,D,E (Yukawa couplings) are arbitrary complex 3× 3 matrices acting in the
generation-space and Φ̃ ≡ iσ2Φ∗ is the charge conjugated Higgs field.

Summarizing, the SM Lagrangian on the classical level before spontaneous symmetry
breaking is given by the sum

LSM = LFermion + LHiggs + LGauge + LYukawa, (2.13)

thereby being locally invariant under Gloc transformations.
Throughout the introduction of the SM the right-handed neutrinos were omitted leading

to the prediction of massless neutrinos. Obviously, the SM has to be extended bearing in
mind the fact that neutrino oscillation experiments (see for example [9,10]) have shown that
neutrinos do have a non-vanishing mass. The right-handed neutrinos transform as singlets
under the gauge group Gloc and hence are neutral with respect to all gauge interactions.
For this reason they do not interact with the remaining particles via gauge interactions. A
Yukawa type coupling of the form L̄kY N

kk′Φ̃N
k′

R were Nk
R denotes the right-handed neutrinos

and Y N the Yukawa coupling can be considered once the Higgs sector is introduced to
spontaneously break the electroweak symmetry. This term is not forbidden by the symmetry
Gloc and allows for the possibility that the SM could also accommodate neutrino masses.
Analogously to the quark mass generation by means of the Higgs mechanism such a Yukawa
term would yield a flavor mixing matrix in the lepton sector and both, lepton and neutrino
masses.

However, for example such a simple extension does not provide an explanation of the
smallness of neutrino masses. Here models based on the seesaw mechanism [30–32] are
more attractive since they offer the possibility to relate the neutrino masses to scales where
new physics is expected to enter. Disregarding the fact of the existence of neutrino masses
in the following right-handed neutrinos shall be omitted because neutrino mass effects are
completely negligible for the purpose of rare B decays.

Spontaneous Symmetry Breaking

To generate the mass terms of the spin 1 gauge bosons of the electroweak interaction
and spin 1/2 matter fields the SU(2)W ⊗ U(1)Y symmetry will be broken spontaneously by
means of the Higgs mechanism to the remaining U(1)Q of the electromagnetic interaction,
observed in the real world by the experiment (electric charge conservation).

A symmetry G is said to be spontaneously broken, if the system chooses one special ground
state among a set of degenerated ground states which are connected by transformations under
G. Such a situation arises in systems in which the lowest lying state that still respects the
symmetry G does not coincides with the state of minimum energy (ground state).
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νeL e−L e−R uL uR dL dR

Q 0 -1 -1 2/3 2/3 -1/3 -1/3

T3 1/2 -1/2 0 1/2 0 -1/2 0

Y -1/2 -1/2 -1 1/6 2/3 1/6 -1/3

Table 2.3: The electric charge Q, the third component of the weak isospin T3 and the
hypercharge Y assignments of the matter fields in the SM.

Concerning the Higgs potential V (Φ†Φ), the classical Higgs field configuration with mini-
mum energy in the case of µ2 < 0 is a uniform field Φ0 with the value zero. In the quantized
theory the corresponding quantity is the vacuum expectation value (VEV) 〈Φ†0Φ0〉 = 0.

For the choice of µ2 > 0 the norm of the constant field configuration which minimizes the
potential becomes nonzero

〈Φ†0Φ0〉 =
2µ2

λ
≡ v2

2
. (2.14)

All these vectors Φ0 are connected by a transformation under SU(2)W ⊗ U(1)Y and fixing
Φ0 to one special direction will break the symmetry spontaneously. Since in the real world
the symmetry under electromagnetic gauge transformations U(1)Q is unbroken, Φ0 has to
be fixed in such a way to yield U(1)Q as the remaining unbroken symmetry, resulting (up to
a phase convention) into the unique solution

Φ0 =
1√
2

(

0

v

)

. (2.15)

The conserved electric charge Q is then given by the Gell-Mann–Nishijima relation

Q = Y + T3. (2.16)

Since the charges Q of leptons and quarks are known, the hypercharges Y are fixed by the
above relation, as summarized in Table 2.3.

In order to extract the physical content of the Lagrangian in the presence of the classical
background of the Higgs field it is convenient to introduce new Higgs fields with subtracted
background by the replacement

Φ =

(

φ+

1√
2
(v + H + iφ0)

)

. (2.17)

As a result of the Higgs mechanism the Lagrangian contains the unphysical would-be Gold-

stone fields φ±, φ0 and the physical massive spin 0 Higgs boson H. Further the terms
proportional to v in LHiggs and LYukawa can be interpreted as mass terms of the spin 1 gauge
boson fields and spin 1/2 fermion fields, respectively. The diagonalization of these terms by
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means of unitary redefinitions of the gauge and fermion fields yields the Lagrangian in the
mass eigenstate basis.

Physical Particle Spectrum

The mass eigenstate of the Higgs particle is H with the corresponding tree-level mass
relation MH =

√
2µ.

The mass eigenstates of the gauge bosons are

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

,

(

Aµ
Zµ

)

=

(

cW sW
−sW cW

)(

Bµ

W 3
µ

)

, (2.18)

the two charged W bosons, the neutral Z boson and the neutral and massless photon A.
Here the weak mixing angle (also Weinberg angle) θW appears in the transformation of the
neutral gauge bosons

sW ≡ sin θW =
g1

√

g2
1 + g2

2

, cW ≡ cos θW =
g2

√

g2
1 + g2

2

=
MW

MZ
. (2.19)

The covariant derivative takes the form (with τ± ≡ τ 1 ± iτ 2)

Dµ = ∂µ + i
g2√

2
(W+

µ τ
+ +W−

µ τ
−) + i

g2

cW
(τ3 − s2

WQ)Zµ + ieQAµ. (2.20)

To acquire the usual photon–fermion coupling of quantum electrodynamics (QED) the equal-
ity

e = sWg2 = cWg1 =
g1g2

√

g2
1 + g2

2

=
√

4πα (2.21)

must hold, where α ≈ 1/137 denotes the fine structure constant. The tree-level mass relations
are

MW ≡ MW− = MW+ =
v

2
g2, MZ =

v

2

√

g2
1 + g2

2, MA = 0. (2.22)

In order to obtain MA = 0 when carrying out the Higgs mechanism it is necessary to fix the
hypercharge of the Higgs doublet to the unique value YΦ = +1/2.

Mass terms of the leptons and quarks arise from the diagonalization of terms proportional
to v in LYukawa-terms by unitary field redefinitions of the form

LL → V E
L LL, UL → V U

L UL, DL → V D
L DL,

ER → V E
R ER, UR → V U

R UR, DR → V D
R DR. (2.23)
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Note that contrary to the lepton sector the two components of QL denoted by UL and DL

have to be diagonalized by two different unitary matrices in order to diagonalize the Y U

and Y D terms of LYukawa simultaneously. As a consequence the charged current coupling of
quarks and W bosons becomes non-diagonal

LudW ∼ g2√
2

(ū, c̄, t̄) γµPL(V U
L )† V D

L





d
s
b



W+
µ + h.c.,

≡ g2√
2
J† µW+

µ + h.c.. (2.24)

and the mass-eigenstates of the down quarks (denoted by omitting the primes, see Table
2.2) are not the gauge eigenstates of electroweak interactions. The coupling strengths of
the flavor off diagonal quark transitions are given by the elements of the unitary matrix
VCKM ≡ (V U

L )† V D
L , the so called Cabibbo-Kobayashi-Maskawa (CKM) matrix. Finally the

fermion masses can be obtained by diagonalizing Y U,D,E with the help of the biunitary
transformations

MU =
v√
2

(V U
L )†Y UV U

R , MD =
v√
2

(V D
L )†Y DV D

R , ME =
v√
2

(V L
L )†Y EV L

R . (2.25)

where the left-handed neutrinos remain massless.
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The observed physical particle spectrum in experiments consists to a large extent of
hadrons that are mesons or baryons. These particles are described by quark bound states
in the SM which arise due to the strong interaction (QCD) given by the SU(3)C non-
abelian group factor of the SM gauge group Gloc (2.1). The investigation of B meson decays
requires therefore the consideration of bound states of quarks. The arising problem is already
indicated by the fact that the observed degrees of freedom (hadrons) are not the degrees of
freedom of the SM Lagrangian (quarks). It is a general property of non-abelian gauge field
theories that the coupling constant (in the case of QCD αs ≡ g2

s/(4π)) becomes large at
small momenta. As a consequence the quarks are strongly bound due to their interaction
with gluon fields inside the hadrons, they are “glued together” and are not recognizable
as quarks anymore which is called confinement. The large coupling constant prevents the
application of perturbation theory to calculate observables. The typical scale at which the
strong coupling αs becomes non-perturbative is of the order of ΛQCD ≈ 300MeV.

Fortunately non-abelian gauge field theories also possess the property of a decreasing
coupling constant at high momenta referred to as asymptotic freedom [33–35] where a per-
turbative calculation is possible. In this sense observables depending on QCD corrections
only at high virtual momenta offer the possibility to gain insights into QCD with the help
of perturbation theory, for example QCD corrections to the Z-boson physics.

The FCNC B decays are caused by the electroweak interactions of the quarks inside the
meson. They are characterized by the fact, that scales of the external momenta and masses
(∼ 5 GeV) are small in comparison to scales of the masses of virtually exchanged particles
responsible for the quark decays, i.e. in the SM the electroweak gauge bosons (∼ 80 GeV)
and the heavy top quark (∼ 175 GeV). Beyond the SM usually additional heavy particles
can contribute to FCNC decays. Although the confinement in general cannot be solved the
full SM can be replaced by an effective theory. Thereby degrees of freedom involving scales
at which QCD can be treated perturbatively and which are usually responsible for the FCNC
B decays have been factorized (decoupled) into effective coupling constants since they are
too short ranged to contribute to bound state effects. The effective theory then describes
only the QCD interactions of the light quarks including there bound states, requiring the
application of non-perturbative methods to evaluate the matrix elements.

In the following the ideas for the derivation of such an effective low energy theory will be
presented. Since the perturbative methods in quantum field theories lead to infinities the
concept of renormalization has to be applied and a short introduction will be given. As a
consequence of the renormalization procedure in intermediate steps the use of a renormal-

ization scale becomes necessary. However, physical observables and “bare” parameters have
to be renormalization scale independent which implies the existence of so called renormal-

ization group equations (RGE). This leads to the concept of running coupling constants and
masses. Furthermore large logarithms induced by radiative corrections can be resummed to
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all orders in the coupling constant with the help of RGE’s within the effective theory often
referred to as RGE improved perturbation theory.

3.1 Effective Theory

In quantum field theory the Lagrangian in terms of fields and parameters plays a central
role. It enters the generating functional of the Green functions describing the quantum field
theory. Further the Lehmann-Symanzik-Zimmermann reduction formula yields the S-Matrix
elements within an scattering picture of asymptotic free particles (leptons or hadrons) derived
from the Green functions. The S-Matrix elements themselves represent transition probabil-
ities providing the link to the experiment to determine the parameters of the Lagrangian.
However, fields and parameters do not have the status of physical observables.

Intuitively, an effective theory reproduces S-Matrix elements of a given theory (full the-

ory) within the range of validity of a certain applied approximation. The effective theory
Lagrangian Leff = Leff({Φeff

i }, {αeff
j }) is given in terms of a set of fields {Φeff

i } and parameters
{αeff

j }. A priori there exists no relation of these fields and parameters to their counterparts
{ΦI} and {αJ} of the full theory. Only a derivation of Leff from Lfull would yield such
relations

{Φeff
i } = {Φeff

i }
(

{ΦI}, {αJ}
)

, {αeff
j } = {αeff

j }
(

{ΦI}, {αJ}
)

. (3.1)

For the derivation of the effective theory it is sufficient to consider Green functions since
the S-Matrix elements are fully determined by them. The Green functions relevant for weak
decays of hadrons within the SM are characterized by

• light external particles such as light quarks, leptons and gauge bosons (photon or
gluon),

• the weak quark and lepton currents are nonlocal and the non-locality is determined
by the momentum transfer and the masses of the electroweak gauge boson and the
top-quark propagators,

• the details of the electroweak interaction describing the real production of heavy par-
ticles are irrelevant for processes with small external momenta

√
s�MW .

To sketch the derivation of the relations (3.1) we introduce the n-point Green function as
the vacuum expectation value of the time-ordered product of n Heisenberg fields Φαi

(xi)

Gα1,...,αn
(x1, . . . , xn) = 〈0|TΦα1(x1) . . .Φαn

(xn)|0〉. (3.2)

The transformation of the Heisenberg fields to the corresponding fields ΦI
αi

(xi) of the inter-
action picture then yields

Gα1,...,αn
(x1, . . . , xn) =

〈

0
∣

∣

∣
TΦI

α1
(x1) . . .Φ

I
αn

(xn) exp
[

i
∫

d4x Lint[Φ
I
αi

(x)]
]∣

∣

∣
0
〉

〈

0
∣

∣

∣
T exp

[

i
∫

d4x Lint[ΦI
αi

(x)]
]∣

∣

∣
0
〉 (3.3)
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as can be found for example in [36]. Thereby Lint[Φ
I
αi

(x)] denotes the interaction part of
the Lagrangian, the time-ordered product T extends over the entire expression and further
the denominator cancels vacuum-vacuum sub-diagrams which are not connected to external
points appearing in the numerator. The Green functions can be expressed in terms of the
“connected” Green functions which will be denoted in the following by

Gc
α1,...,αn

(x1, . . . , xn) =
〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(xn) exp

[

i

∫

d4x Lint[Φ
I
αi

(x)]
]∣

∣

∣
0
〉

c
. (3.4)

As two representative parts of the SM interaction Lagrangian involved in B decays the QCD
and electroweak interactions of the up- and down-quarks and the respective gauge bosons,
Ga
µ and W±

µ will be considered

Lint = LQCD + LudW (3.5)

with LudW given in (2.24). The insertion of the SM interaction Lagrangian into (3.4) and
the properties of the T-product yield then

Gc
α1,...,αn

(x1, . . . , xn) =
〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(xn)

× exp
[

i

∫

d4x LQCD(x)
]

exp
[

i

∫

d4x LudW (x)
]∣

∣

∣
0
〉

c
. (3.6)

The perturbative expansion with respect to electroweak interactions can be obtained ex-
panding the exponential function containing the electroweak part of the interaction – LudW

Gc
α1,...,αn

(x1, . . . , xn) =
∞
∑

n=0

in

n!

∫

(

n
∏

m=1

d4ym

)

〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(xn)

× exp
[

i

∫

d4x LQCD(x)
]

(

n
∏

m=1

d4ym LudW (ym)
]

)

∣

∣

∣
0
〉

c
. (3.7)

This result still contains all orders in the strong coupling constant and the exponential
function containing LQCD will not be expanded whereas the electroweak interactions will be
treated in perturbation theory. For example a ∆B = ±1 process of four external quarks
is represented by the term n = 2 of (3.7) in lowest order of perturbation theory in the
electroweak coupling

Gc
α1,...,α4

(x1, . . . , x4) = −1

2

∫

d4y1d
4y2

〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(x4)

× exp
[

i

∫

d4x LQCD(x)
] (

LudW (y1) LudW (y2)
)∣

∣

∣
0
〉

c

= −g
2
2

4

∫

d4y1d
4y2

〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(x4) exp

[

i

∫

d4x LQCD(x)
]

×
(

J† µ(y1)W
+
µ (y1)J

† ν(y2)W
−
ν (y2) + h.c.

)∣

∣

∣
0
〉

c
. (3.8)



26 3 Effective Theories

The application of the Wick-theorem and the subsequent contraction of the W -boson fields
gives the W -boson propagator i∆W

µν(y1 − y2, MW ) being a complex function and thus the
last line in (3.8) becomes

Gc
α1,...,α4

(x1, . . . , x4) = −ig
2
2

4

∫

d4y1d
4y2 ∆W

µν(y1 − y2, MW )
〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(x4)

× exp
[

i

∫

d4x LQCD(x)
](

J†µ(y1)J
† ν(y2) + h.c.

)∣

∣

∣
0
〉

c
. (3.9)

At this point the product of the non-local quark currents can be replaced by an operator
product expansion (OPE) [37] resulting in a series of local interactions Oi

(

y1+y2
2

)

(Operators)
and according complex coefficient functions Cµν

i (y1 − y2) (Wilson coefficients)

TJ†µ(y1)J
† ν(y2) =

∑

i

Cµν
i (y1 − y2)Oi

(

y1 + y2

2

)

. (3.10)

Strictly speaking the above equation represents an operator identity. The local operators
have quantum numbers of a ∆B = ±1 transition and are sorted by rising dimension. In
general they are built out of quark fields and the gluon and photon field strength tensors.
Further also “equation of motion (EOM) vanishing” [see Appendix B] and other non-physical
operators appear in the complete set of the operators. The complex Wilson coefficients
Cµν
i (x) are divergent functions in the limit x→ 1 whereby the degree of divergence reduces

with the increasing dimension of the corresponding operator. The insertion of (3.10) into
(3.9) and a subsequent variable transformation yields

Gc
α1,...,α4

(x1, . . . , x4) = −ig
2
2

4

∑

i

∫

d4ỹ1

[

∫

d4ỹ2 ∆W
µν(ỹ2, MW )Cµν

i (ỹ2)
]

×
〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(x4) exp

[

i

∫

d4x LQCD(x)
]

Oi(ỹ1)
∣

∣

∣
0
〉

c
,

Gc
α1,...,α4

(x1, . . . , x4) = −ig
2
2

4

∑

i

∫

d4ỹ1 C̃i

×
〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(x4) exp

[

i

∫

d4x LQCD(x)
]

Oi(ỹ1)
∣

∣

∣
0
〉

c
. (3.11)

Here the W -boson is “integrated out” when performing the ỹ2-integration and the result
is denoted by C̃i. The Wilson coefficients C̃i turn out to be independent of the structure
of the external states. In practice it is sufficient to use the approximation of massless
quarks simplifying the calculations. The factorization achieved by the OPE corresponds
to a factorization of short-distance physics represented by the Wilson coefficients and long-
distance physics parameterized by the matrix elements of the operators.

The details of the electroweak interaction as for example real W -boson production or the
real production of other heavy particles are not relevant concerning low energy processes with
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a typical momentum transfer of
√
s � MW . The same result (3.11) can be also obtained

from an effective theory Lagrangian of the form

Lint = LQCD − 2GF√
2

∑

i

ciOi. (3.12)

Here GF ≡
√

2g2
2/(8M

2
W ) is the Fermi constant, ci are the effective coupling constants

corresponding to the set of effective parameters {αeff
j } of (3.1) and Oi are effective interaction

vertices of the same form as in the OPE but expressed in terms of effective fields {Φeff
i }.

The result obtained using the effective Lagrangian and expanding up to the first order in
GF (n = 1) following the above derivation yields

Gc
α1,...,α4

(x1, . . . , x4) = −i2GF√
2

∑

i

∫

d4ỹ1 ci

×
〈

0
∣

∣

∣
TΦI

α1
(x1) . . .ΦI

αn
(x4) exp

[

i

∫

d4x LQCD(x)
]

Oi(ỹ1)
∣

∣

∣
0
〉

c
. (3.13)

At this point the effective coupling constants can be fixed by the requirement of the equality
of the full theory (3.11) and the effective theory result (3.13). The determination of ci from
the full theory is called matching and the considered example yields the relation

ci = M2
W C̃i. (3.14)

Here the fields are the same that appear in the full and effective theory Lagrangian. However,
in practical calculations also the expansion in the strong coupling constant becomes necessary
and in the course of the explicite evaluation of Green functions a renormalization of fields and
parameters has to be performed. This renormalization corresponds to a redefinition of the
fields and parameters which can be chosen differently for the full and effective theory Green
functions. In general one starts the matching with n-point Green functions of smallest n and
proceeds with the calculation of higher n-point Green function until all fields and parameters
of the effective theory are fully determined.

3.2 Renormalization

The perturbative expansion of Green functions in coupling constants is a well defined proce-
dure which can be illustrated by Feynman graphs and the corresponding analytic expressions
can be easily found by the application of the Feynman rules. When going beyond the tree-
level approximation the analytic expressions of the Green functions contain integrations over
virtual momenta which turn out to be infinite. To allow for a proper treatment of the diver-
gencies, a regularization procedure is needed. This amounts to a modification of the theory
so that the possibly divergent expressions become well defined and that in a suitable limit the
original (divergent) theory is recovered. For gauge theories it is convenient to use the method
of dimensional regularization [38–42] which guarantees gauge invariance of the regularized
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theory. Further, with regard to the application of the RGE the mass-independent renor-
malization scheme of minimal subtraction (MS) [43] and the modified minimal subtraction

(MS) [44] are most adequate.

Dimensional Regularization

The method of dimensional regularization consists in the analytical continuation of the
D = 4 dimensional space-time to D = 4 − 2ε. This requires the generalization of the Dirac
algebra to D 6= 4 dimensions. Thereby a problem concerning the correct definition of the
Dirac matrix γ5 occurs. Assuming the anitcommutativity of γ5 with the D dimensional Dirac
matrices γµ, i.e. the naive dimensional regularization (NDR), will lead to inconsistencies in
the evaluation of closed Fermi lines. For example calculations adopting the NDR scheme
are not able to reproduce chiral anomalies correctly. Several schemes which consistently
define the Dirac algebra have been proposed having in common complicated and tedious
algebraic manipulations. For example in the ’t Hooft-Veltman (HV) [38, 45, 46] scheme γ5

anti-commutes with the 4-dimensional parts of the Dirac matrices γµ and commutes with
the elements of the (D − 4) dimensional subspace of the Dirac matrices.

However, in many practical calculations the appearance of Dirac traces containing γ5 can
be avoided. In the special case of ∆F = 1 nonleptonic effective Lagrangian this was shown
in [47]. The considerations given there also apply to rare B decays such as B̄ → Xsγ and
B̄ → Xsl

+l− and the NDR scheme will be used.

Renormalization

The procedure of renormalization is based on the idea that the fields and parameters of the
Lagrangian are so called bare parameters, in the following indicated by the index “B”. After
having modified the theory with the help of regularization (here dimensional regularization)
the bare Green functions expressed in bare fields and parameters are finite, however in the
limit of D → 4 or equivalently ε → 0 the original divergent expression will be recovered.
In particular, using dimensional regularization it depends on an arbitrary scale parameter
µ. This scale parameter has to be introduced by the requirement of a dimensionless cou-
pling and is called renormalization scale. The multiplicative renormalization introduces the
renormalized fields and parameters and their respective renormalization constants as follows

gB = Zggµ
ε, mB = Zmm, ξB = Z3ξ,

ΨB =
√

Z2Ψ, Aa,Bµ =
√

Z3A
a
µ. (3.15)

Here g represents the coupling constants, m masses, ξ gauge parameters, Ψ spin 1/2
fields and Aa

µ gauge fields. The renormalization constants Zi are free available additional
parameters and it is helpful to transform them into counterterms

LΨ̄ΨA ∼ gB [Ψ̄BγµTaΨB]Aa,Bµ = ZgZ2

√

Z3 µ
εg [Ψ̄γµTaΨ]Aaµ

= µεg [Ψ̄γµTaΨ]Aaµ + (ZgZ2

√

Z3 − 1)µεg [Ψ̄γµTaΨ]Aaµ (3.16)
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as shown for the Ψ̄ΨAµ-coupling above. The first term has the same form as the Lagrangian
expressed in bare fields and parameters and reproduces therefore the same result for the
regularized Green functions inclusive the divergencies in the limit ε → 0. The same applies
to the second term, called “counterterm”. However, the renormalization constants Zi are still
arbitrary. Especially they can be chosen in a way that the parts diverging in the limit ε → 0
cancel between the first- and the counterterm. As a result the Green functions become finite
depending on the renormalized parameters and the renormalization scale µ. It is essential
that all potentially divergent parts cancel since only then the regularization can be removed
by the limit ε→ 0. Furthermore the renormalization constants Zi diverge in the limit ε→ 0
and depend in general on the renormalized parameters and the renormalization scale µ.

The ambiguity of the renormalization procedure consists in the possibility to change the
renormalization constants by arbitrary finite terms. Such terms do not affect the existence
of the limit ε → 0 and result in different renormalized fields and parameters. A special
choice of the finite terms of the renormalization constants is called renormalization scheme

implying that renormalized parameters are renormalization-scheme-dependent. In partic-
ular physical observables can be calculated in different renormalization schemes and the
corresponding renormalized parameters obtained from experiments will be different. The
method of renormalization is meaningful for theories which lead to renormalization-scheme-
independent relations between physical observables although the parameters of the theory
are renormalization-scheme-dependent.

The renormalization procedure yields finite Green functions due to the special choice of
the renormalization constants Zi. In the following the coupling renormalization constant Zg
will be discussed. In practice the application of dimensional regularization and perturbation
theory leads to a typical expansion of the renormalization constant of the form

Zg = 1 + g
1

ε
a11 + g2

[1

ε
a12 +

1

ε2
a22

]

+ . . . . = 1 +
∞
∑

n=1

an(g)

εn
(3.17)

The Laurent series in the regulator ε clearly shows the divergencies in the limit ε → 0. Of
course a redefinition of the renormalized parameters

g = g′ + b1(m′)ε+ b2(m′)ε2 + . . . , (3.18)

where the coefficients even could depend on additional parameters, indicated by m′, would
yield the modification

Zg′ =

∞
∑

n=1

c′n(g′, m′)εn + c′0(g′, m′) +

∞
∑

n=1

a′n(g′, m′)

εn
(3.19)

and correspond to a change of the renormalization scheme. The special choice of the renor-
malization constant in (3.17) is called minimal subtraction (MS) scheme because here just
the divergent parts become subtracted. The coefficients an = an(g) depend only on the
renormalized coupling and implicitly on the renormalization scale µ, but not on mass pa-
rameters, referred to as a mass-independent renormalization scheme. The relation between
coupling constants in two different schemes can be established with the help of the relation

gB = Zggµ
ε = Zg′g

′µε. (3.20)
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3.3 The Renormalization Group Equation

The expansion of the bare coupling constant is similar to the expansion of the renormalization
constant Zg. Its concrete form can be obtained from the insertion of (3.17) into (3.15).
Therefore it also diverges in the limit ε → 0. However, the bare renormalization constant
must not depend on the renormalization scale µ because the µ dependence is introduced when
renormalizing gB multiplicatively. The µ independence of gB implies that the µ dependence
of the renormalized coupling g and its renormalization constant Zg must cancel

0 = µ
d

dµ
gB = µ

d

dµ

[

µεg(µ)Zg(µ)
]

. (3.21)

Assuming a mass-independent renormalization scheme this leads to the renormalization
group equation (RGE) of the renormalized coupling of the following form

µ
d

dµ
g = −εg − gZ−1

g µ
d

dµ
Zg ≡ −εg + β(g) ≡ β(ε, g). (3.22)

The function β(g) is the renormalization group function of the coupling constant. In the MS
scheme it takes a very simple form and is given as

β(g) = g2d a1(g)

dg
(3.23)

using the expansion (3.17). Remarkably only the coefficients of the 1/ε poles enter the
β-function whereas the coefficient of higher poles in 1/ε are determined recursively by the
relation

g2d an+1

dg
= β(g)

d

dg

[

g an(g)
]

. (3.24)

The explicite g-dependence of the coefficients an can be calculated in perturbation theory.
The RGE establishes a relation between the renormalization scale in the MS scheme when

changing the scale µ. This relation is a consequence of the uniqueness of the bare coupling
constant as already mentioned above. In other words this implies that a change of the scale
µ requires a change of the renormalized coupling in order not to change the renormalization
constant Zg because a change of Zg would correspond to a change of the renormalization
scheme.

For example the β function of the strong coupling constant has the perturbative expansion

β(gs) = −g3
sβ0 − g5

sβ1 − g7
sβ2 − . . . β0 = 11 − 2

3
nf . (3.25)

Restricting to the lowest order in perturbation theory only the coefficient β0 is needed which
is given for the MS scheme. Here nf denotes the number of active quark flavors. The
solution of (3.22) in terms of αs = g2

s/4π relates the strong coupling αs renormalized in the
MS scheme at the scale µ to a different scale µ0
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αs(µ) =
αs(µ0)

1 +
αs(µ0)

4π
β0 ln

µ2

µ2
0

. (3.26)

This result explains the increasing of the coupling constant when going to smaller scales
leading to the non-perturbative behavior of QCD. For µ < µ0 the logarithm has a negative
sign whereas the coefficient β0 is positive for nf < 17. Further the coupling constant decreases
in the case µ > µ0 resulting in weakly interacting quarks at very high scales. In contrast
the leading coefficient βQED

0 of the electric coupling constant e is negative justifying the
application of perturbation theory also at low energy scales.

To reveal a very important property of RGEs making them attractive for applications,
the solution (3.26) will be reexpanded in αs(µ0). Such an reexpansion yields

αs(µ) = αs(µ0)
[

1 − αs(µ0)β0 ln
µ2

µ2
0

+ αs(µ0)
2β2

0 ln2 µ
2

µ2
0

− αs(µ0)
3β3

0 ln3 µ
2

µ2
0

+ . . .
]

= αs(µ0)
∞
∑

n=0

(−1)n
[

αs(µ0)β0 ln
µ2

µ2
0

]n

. (3.27)

Apparently, for small changes of the scale µ ∼ µ0 the logarithm lnµ2/µ2
0 multiplying αs(µ0)

in every term of the expansion with the same power in n is approximately ∼ 1 and a
truncation of the series will reproduce the exact result of (3.26). However, for very different
scales µ� µ0 or µ� µ0 the higher order terms in n become more and more relevant. These
higher order terms in the coupling constant are included in the exact solution (3.26) of the
RGE which can be therefore interpreted as a resummation of large logarithmic terms to all
orders in perturbation theory.

The MS scheme yields particularly simple RGE. A very important application is the use
of the RGE in effective theories where analogous equations can be derived for the effec-
tive couplings considered in (3.14). The perturbative solution of these coupled differential
equations can be found in section 5.2.





4 The Minimal Supersymmetric
Standard Model

The minimal supersymmetric extension of the SM is called the Minimal Supersymmetric
Standard Model (MSSM). In this section the physical particle content and the relevant mass
matrices in terms of the fundamental parameters of the MSSM will be introduced. Further
details of the MSSM interaction Lagrangian relevant to FCNC B decays as used for the
calculation of matching conditions to the initial Wilson coefficients of B̄ → Xsl

+l− can be
found in Appendix A.

The complexity of the generic MSSM tends to tedious and extensive calculations to obtain
general results of higher order corrections. Thus assuming the gluino to be heavy and by
further assumptions about the soft supersymmetry breaking parameters, we will restrict to
a scenario inspired by minimal flavor violation (MFV). Within this scenario only charged
and neutral Higgs particles, charginos and up squarks will contribute to FCNC B decays.
Furthermore the effects of the decoupled gluino on the remaining MSSM particle interactions
within this scenario will be explained.

4.1 The MSSM Lagrangian

The Minimal Supersymmetric Standard Model (MSSM) is the supersymmetric extension
of the SM with minimal particle content and R-parity conservation. The Lagrangian of
the MSSM is locally invariant under the SM gauge group (2.1) and further under a global
N = 1 supersymmetric transformation which requires the existence of one superpartner
particle to every SM degree of freedom differing by spin 1/2. Further it is essential to
introduce two Higgs doublets with opposite hypercharge Y = ±1 to obtain an under N = 1
supersymmetric transformations invariant and an anomaly free extension of the SM. The
electroweak symmetry SU(2)W ⊗U(1)Y will be broken analogously to the SM to the U(1)em

with the help of the Higgs mechanism.

The SM particles and their superpartners are organized in supermultiplets having identical
quantum numbers and differing by spin 1/2. Since the quantum numbers fix the gauge
interactions within exact supersymmetry no new parameters will be introduced except for the
Higgs sector being extended compared to the SM. However, here the supersymmetry restricts
the form of the Higgs potential to just one parameter µ appearing as the Higgs coupling in
the superpotential. Therefore exact supersymmetry reduces the number of parameters by
one compared to the SM.

The invariance under the supersymmetric transformation implies that SM particles and
their corresponding superpartners will have the same mass. However, so far no experimental
evidence of these superpartners has been found, which strongly indicates that supersymmetry
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must be broken if realized in nature at energy scales currently accessible to particle physics
experiments. To be viable soft supersymmetry breaking terms have to be added to the MSSM
Lagrangian. These terms introduce about 100 additional parameters. The characteristic
mass scale Msoft of these parameters determines the mass splitting between the known SM
particles and their superpartners and should not be much larger than 103 GeV. Otherwise,
the successful solution to the hierarchy problem becomes lost since the M 2

soft corrections to
the Higgs (mass)2 would be unnaturally large compared to the electroweak breaking scale of
174 GeV.

The superpotential of the MSSM is chosen to respect conservation laws such as baryon and
lepton number conservation as in the SM. This is achieved by the postulation of the existence
of a multiplicative quantum number PR called R-parity. The corresponding symmetry is a
discrete Z2 symmetry. R-parity is given in terms of the baryon number B, the lepton number
L and the spin s

PR = (−1)3(B−L)+2s. (4.1)

SM particles and the Higgs bosons have even R-parity (PR = +1), while all of their super-
partners differing by spin 1/2 have odd R-parity (PR = −1). The interactions of the MSSM
conserve R-parity yielding +1. As a consequence the superpartners of the SM particles can
only be produced in pairs and the lightest supersymmetric particle (LSP) is stable. The
existence of the LSP in the MSSM provides for example a good candidate for the cold dark
matter of the universe.

The construction of the supersymmetric Lagrangian, the form of the soft supersymmetry
breaking terms, the electroweak symmetry breaking, the gauge fixing and the resulting phys-
ical spectrum of mass eigenstates inclusive the Feynman rules describing their interaction
can be found in [48–51].

In the following we will present the physical particle spectrum of the MSSM, but will
follow a slightly modified notation than the one given in [48–51].

The Higgs Sector

Contrary to the SM in the MSSM it is essential to introduce two Higgs supermultiplets
to give all fermions masses when breaking spontaneously the electroweak symmetry. As a
consequence the physical Higgs spectrum of the MSSM is enlarged. It consists of the CP-
even Higgs fields h0 and H0, one CP-odd Higgs field A0 and two charged Higgs fields H±.
The masses and mixing angles of the Higgs sector obey the following tree–level relations

M2
A0 = M2

H −M2
W , (4.2a)

M2
h0,H0 =

1

2

{

M2
A0 +M2

Z ∓
√

(M2
A0 +M2

Z)2 − 4M2
ZM

2
A0 cos2 2β

}

, (4.2b)

sin 2α = − sin 2β

(

M2
H0 +M2

h0

M2
H0 −M2

h0

)

, (4.2c)

where MH and MA0 are the masses of the charged and CP-odd Higgs boson, respectively, and
Mh0,H0 and α are the masses and mixing angle in the CP-even Higgs sector. At tree–level
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the Higgs sector of the MSSM is described by the two free parameters chosen to be tanβ
and MH . The parameter tan β is given by the ratio v2/v1 of the VEV’s of the two scalar
Higgs doublets that they acquire to break the electroweak symmetry spontaneously. The
use of tree–level relations is quite adequate when considering B decays at leading order in
electroweak couplings and evaluating only strong corrections to these processes.

The Chargino Sector

The charginos are the mass eigenstates resulting from the mixing of the charged higgsinos
(the superpartners of the charged scalar Higgs fields) and the charged winos (superpartners
of the SU(2)W gauge bosons – the “gauginos”). The chargino mass matrix is given by

Mχ̃ =

(

M2

√
2MW sin β√

2MW cos β µ

)

. (4.3)

Here µ is the parameter of the Higgs coupling in the superpotential and M2 the Wino soft
supersymmetry breaking mass parameter. This matrix can be cast in diagonal form by
means of a biunitary transformation

U∗Mχ̃V
† = diag(Mχ̃1

,Mχ̃2
), (4.4)

Mχ̃1,2
being the chargino masses with Mχ̃1

< Mχ̃2
.

The Neutralino Sector

The mass eigenstates originating from the mixing of the neutral higgsinos (the superpart-
ners of the neutral scalar Higgs fields) and the neutral wino and bino (superpartners of the
neutral SU(2)W and U(1)Y gauge boson, respectively) are called neutralinos. The neutralino
mass matrix

Mχ̃0 =









M1 0 −MZsW cos β MZsW sin β
0 M2 MZcW cos β −MZcW sin β

−MZsW cos β MZcW cos β 0 −µ
MZsW sin β −MZcW sin β −µ 0









, (4.5)

is symmetric and can be diagonalized by the orthogonal matrix N

N∗Mχ̃0N † = diag(Mχ̃0
1
,Mχ̃0

2
,Mχ̃0

3
,Mχ̃0

4
) (4.6)

with Mχ̃0
1
< Mχ̃0

2
< Mχ̃0

3
< Mχ̃0

4
. Here M1 is the bino soft supersymmetry breaking mass

parameter and sW and cW are the sine and cosine of the Weinberg angle, respectively.

The Gluino Sector

The superpartners of the SU(3)C gauge bosons are called gluinos, which do not mix.
They are the only color octet fermions in the MSSM and form eight Majorana spinors in the
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four component notation. Their common mass |M3| originates from the soft supersymmetry
breaking part of the MSSM Lagrangian.

The Squark Sector

The squarks (scalar quarks) are the scalar partners of the quarks in the chiral supermul-
tiplets. Their 6×6 mass-squared matrix will be given in the super-CKM basis [51], in which
the quark mass matrices are diagonal and both quarks and squarks are rotated simultane-
ously. For the up-squarks (ũL, c̃L, t̃L, ũR, c̃R, t̃R) and down-squarks (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R) this
yields

M2
ũ =

(

M2
ULL

M2
ULR

M2†
ULR

M2
URR

)

, M2
d̃

=

(

M2
DLL

M2
DLR

M2†
DLR

M2
DRR

)

, (4.7)

where the 3 × 3 submatrices are given by

M2
ULL

= M2
ŨL

+M2
U +

1

6
M2

Z cos 2β(3 − 4s2
W )1, (4.8a)

M2
ULR

= MU(A∗U − µ cotβ1), (4.8b)

M2
URR

= M2
ŨR

+M2
U +

2

3
M2

Z cos 2βs2
W1, (4.8c)

M2
DLL

= M2
D̃L

+M2
D − 1

6
M2

Z cos 2β(3 − 2s2
W )1, (4.9a)

M2
DLR

= MD(A∗D − µ tanβ1), (4.9b)

M2
DRR

= M2
D̃R

+M2
D − 1

3
M2

Z cos 2βs2
W1. (4.9c)

1 denotes the 3 × 3 unit matrix. AU and AD are the soft supersymmetry breaking trilin-
ear couplings of the squark and Higgs fields which can be arbitrary complex. M 2

ŨL,R
and

M2
D̃L,R

are the soft supersymmetry breaking squark mass-squared matrices which have to be

hermitian so that the Lagrangian is real. Due to the SU(2)W gauge invariance of the soft
supersymmetry breaking part of the MSSM Lagrangian these matrices are connected by the
CKM matrix

M2
D̃L

= V †CKMM
2
ŨL
VCKM. (4.10)

The matrices M 2
ũ and M2

d̃
are diagonalized by unitary squark field redefinitions (the squark

mixing matrices ΓU and ΓD) yielding the mass eigenstate basis of the squarks

ΓUM2
ũΓU

†

= diag(m2
ũ1
, . . . , m2

ũ6
), ΓDM2

d̃
ΓD

†

= diag(m2
d̃1
, . . . , m2

d̃6
). (4.11)
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For later use it is convenient to define the 6 × 3 submatrices

(ΓUL)ai = (ΓU)ai, (ΓUR)ai = (ΓU)a,i+3, (4.12a)

(ΓDL)ai = (ΓD)ai, (ΓDR)ai = (ΓD)a,i+3, (4.12b)

where i runs over 1, 2, 3.

The Slepton Sector

The sleptons (scalar leptons) are the superpartners of the leptons in the chiral super-
multiplet whereas the scalar superpartners of the neutrinos are called sneutrinos (scalar
neutrinos). The 6×6 and the 3×3 mass-squared matrices of the sleptons and the sneutrinos
in the super-CKM basis are

M2
l̃

=

(

M2
ELL

M2
ELR

M2†
ELR

M2
ERR

)

, M2
ν̃ =

(

M2
L̃L

+
1

2
M2

Z cos 2β1

)

, (4.13)

where the 3 × 3 submatrices are given by

M2
ELL

= M2
L̃L

+M2
E − 1

2
M2

Z cos 2β(1 − 2s2
W )1, (4.14a)

M2
ELR

= ME(A∗E − µ tanβ1), (4.14b)

M2
ERR

= M2
L̃R

+M2
E −M2

Z cos 2βs2
W1. (4.14c)

Again 1 denotes the 3 × 3 unit matrix. AE is the soft supersymmetry breaking trilinear
coupling of the slepton and Higgs fields and M 2

L̃L,R
are the soft supersymmetry breaking

squark mass-squared matrices. Similarly to the squark mixing matrices we define the slepton
and sneutrino mixing matrices

ΓEM2
l̃
ΓE

†

= diag(m2
l̃1
, . . . , m2

l̃6
), ΓNM2

ν̃ΓN
†

= diag(m2
ν̃1
, m2

ν̃2
, m2

ν̃3
), (4.15)

which yield the mass eigenstates of sleptons and sneutrinos. As before we introduce the 6×3
submatrices for the sleptons, ΓE and ΓN

(ΓEL)ai = (ΓE)ai, (ΓER)ai = (ΓE)a,i+3. (4.16)

Flavor-changing Interactions

The parts of the MSSM interactions relevant to FCNC B decays are

• u− d−H±: up-quark – down-quark – charged Higgs,
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• ũ− d− χ̃±: up-squark – down-quark – chargino,

• d̃− d− χ̃0: down-squark – down-quark – neutralino,

• d̃− d− g̃: down-squark – down-quark – gluino,

and their explicit form can be found in Appendix A. In the following the impact of the four
listed flavor-changing interactions are discussed.

The discussion will be restricted to ∆B = 1 FCNC decays such as for example B̄ → Xsγ,
B̄ → Xsl

+l− or B̄ → Xsνν̄, however similar results can be obtained for ∆B = 2 decays.
∆B = 1 FCNC processes are characterized by the quark level transitions b → q with
q = {d, s}. In the SM they are mediated at leading order in electroweak interactions via
virtual “up-quark – W boson” states. Due to the dependence of the u − d −W vertex on
the CKM matrix elements, the amplitude of such a process has the generic form

A(b→ q) = V ∗uqVubAW
u + V ∗cqVcbAW

c + V ∗tqVtbAW
t =

∑

i={u,c,t}
V ∗iqVibAW

i (4.17)

with AW
i = AW

i (MW , mi) being a function of the up-quark and the W boson masses1. The
contribution due to the u− d−H± vertex is similar to the SM u− d−W vertex, as can be
seen from the explicit form given in Appendix A. The above equation extends to

A(b→ q) =
∑

i={u,c,t}
V ∗iqVib

(

AW
i + AH

i

)

, (4.18)

where AH
i = AH

i (MW , mi,MH , tanβ) depends additionally on the charged Higgs mass and
the parameter tan β. In the SM and the charged Higgs sector of the MSSM the sum over the
virtual states has to be performed over the three up-quarks u, c and t, whereas the “mixing
angles” are represented by the CKM matrix elements. In the limit of equal quark masses
mu = mc = mt ≡ m the unitarity of the CKM matrix2 would imply

A(b→ q) =
(

AW + AH
)

∑

i={u,c,t}
V ∗iqVib → 0 (4.19)

vanishing FCNC amplitudes.
The situation becomes more complex when the supersymmetric partners are considered,

contributing via virtual “gaugino/higgsino – squark”3 states. In contrast to the SM and
the charged Higgs contributions now the sum over the virtual states has to be performed
over a large number of particles. The “mixing angles”, namely the matrices U, V of the
chargino sector, N of the neutralino sector, ΓU , ΓD of the squark sector and ΓE, ΓN of the
slepton sector, take a complicated functional dependence on the fundamental parameters

1These functions can also depend on the lepton masses for example in the process B̄ → Xsνν̄ appearing
in box-diagrams, however in practical calculations terms proportional to lepton masses are negligible. The
discussion could be extended by applying the same arguments to these terms as well.

2Apart of the unitarity of VCKM further VCKM → 1 in the limit of degenerated quark masses.
3As already noticed before also virtual lepton states can contribute to B decays implying that their

supersymmetric partners, the sleptons, contribute as well.
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of the MSSM, especially the soft supersymmetry breaking parameters. In particular these
parameters can play a special role for FCNC decays. For example in [52,53] it was shown that
in the absence of soft supersymmetry breaking terms, in other words when supersymmetry
becomes restored at high energies, the FCNC process B̄ → Xsγ vanishes. This implies,
if supersymmetry is realized in nature then the observed branching ratio of B̄ → Xsγ is
sensitive to the soft supersymmetry breaking parameters. In general the amplitudes of
FCNC processes take a complicated form, not allowing for a simple discussion as in the SM
or charged Higgs case. The explicit one loop results relevant to the B decays can be found
for example in [54, 55].

In the next section we will present a minimal flavor violation inspired scenario. There the
mixing matrices of down-squarks will be chosen not in the general form of the MSSM but
flavor diagonal causing a vanishing contribution due to neutralinos and gluinos to FCNC B
decays at leading order in electroweak coupling constants.

4.2 MSSM with MFV and Gluino Decoupling

In this section we describe the main assumptions leading to the considered supersymmetric
scenario underlying the calculations, a scenario inspired by minimal flavor violation (MFV)
and the heavy gluino effective theory describing the MSSM degrees of freedom with decoupled
gluino.

Minimal Flavor Violation

The scenario of minimal flavor violation was inspired by model independent investigations
of FCNC B decays [59–64] in the framework of effective theories. Here model independent

is understood independently of a particular specified full theory that generates the effective
Lagrangian describing B decays. A general model independent analysis should include all
possible operators into the effective theory Lagrangian allowed by symmetries. However,
this usually leads to a loss of predictive power and therefore as a starting point such analysis
usually employ the SM effective Lagrangian. A necessary precondition of such investigations
is that the not specified extensions of the SM, would generate the same effective Lagrangian.
More concrete this means that the relevant operators are the same as in the SM implying that
Wilson coefficients of additional operators are zero or at least strongly suppressed compared
to the SM Wilson coefficients and hence negligible. In such a case the impact of new physics
(NP) to the theoretical expressions of physical observables in addition to the SM can be added
by the simple reparametrization of the Wilson coefficients of the SM CSM → CSM+CNP. The
model independent analysis of physical observables with experimental data in the absence of
new operators becomes considerably simpler and provides bounds on the magnitude of CNP

and in turn on the parameter spaces of the NP models.

Model-independent analysis of the CKM matrix with the help of the unitarity triangle
also depend strongly on new flavor violating interactions when considering extensions of
the SM. Assuming that no additional flavor violating couplings occur in the considered new
physics scenarios and that FCNC processes are entirely governed by the CKM matrix allow
the application of the SM unitarity triangle analysis. This further assumption guarantees the
same CKM-dependence of CNP as in the SM and is called minimal flavor violation. Under
such conditions for example the construction of a universal unitarity triangle [65] is possible.
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The general MSSM does not fulfill either assumptions. Integrating out the heavy particles
i.e. the heavy gauge bosons, Higgs particles and supersymmetric partners will yield addi-
tional operators in the effective Lagrangian. Furthermore the soft supersymmetry breaking
terms contain additional sources of flavor violating interactions contributing also to FCNC
B decays. This raises the question how the structure of the MSSM parameters – especially
the soft supersymmetry breaking terms – should be constrained to fall under the class of one
or both of the introduced assumptions. The restriction of the general form of the MSSM
parameters in order to fulfill certain assumptions will be referred to as a scenario in the

context of the MSSM. No conclusive answer can be given to these questions.
To prevent the generation of new operators contributing to FCNC B decays due to Higgs

mediation the value of tan β should be small [66–72]. Apart from the generation of new
operators high values of tanβ also induce large radiative corrections at higher orders which
should be included besides the here considered QCD corrections. It has been shown that
these corrections can be substantial once taken into account in the framework of effective
theories [68, 69, 71–74]. Thereby a mass hierarchy of the MSSM was assumed in which all
supersymmetric partners are much heavier than the Higgs bosons and the SM particles. In
a first step the superpartners were integrated out yielding the SM with an extended Higgs
sector as an effective theory containing the effects of higher order corrections due to tan β
in effective couplings. In a second step the remaining heavy SM and Higgs particles were
integrated out leaving as dynamical degrees of freedom the light quarks, the leptons and
their QCD×QED interactions. In view of these complications throughout small values of
tanβ in the range

2 . tan β . 5 (4.20)

will be used.
The scenario of minimal flavor violation underlies the wish that FCNC B decays, but also

all other flavor-changing decays, are exclusively governed by the CKM matrix. Concerning
the neutralino and gluino interactions contributing to FCNC B decays [see (A.3)] it should
be noted, that they are completely governed by soft supersymmetry breaking parameters.
For example the coupling of left-handed down-quarks to down-squarks and gluinos is

∼ g̃a d̃
†
i [ΓDL]ijT

a djL (4.21)

with i = 1, . . . , 6 and j = 1, 2, 3, mixing the flavors of quarks and squarks arbitrarily. The
matrix ΓDL is determined diagonalizing the 6 × 6 mass-squared matrix of the down-squarks
M2

d̃
in (4.7). However, no flavor mixing occurs in the special case of a flavor diagonal mixing

matrix ΓD. In turn for example the transition (b → g̃ab̃1) is nonzero whereas the transition
(g̃ab̃1 → s) becomes zero and hence no contribution to FCNC down-quark transitions such
as (b → s) can arise. The same applies to the couplings of right-handed down-quarks to
down-squarks and gluinos and furthermore to the “down-quark – down-squark – neutralino”
couplings.

The mixing matrix ΓD will be flavor diagonal if M 2
d̃

itself possesses a block diagonal
structure with respect to the four 3×3 submatrices shown in (4.7). Only if this requirement
is fulfilled the neutralino and gluino interactions will match into the MFV assumption. The
block diagonal structure of M 2

d̃
implies that
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AD ≡ diag(Ad, As, Ab), (4.22)

M2
D̃L

≡ diag(m2
d̃L
, m2

s̃L
, m2

b̃L
) M2

D̃R
≡ diag(m2

d̃R
, m2

s̃R
, m2

b̃R
)

are diagonal matrices.
To avoid flavor violation beyond the CKM matrix in FCNC up-quark transitions as for

example (t→ c) due to neutralino and gluino interactions the above extends to the up-squark
sector where the following matrices

AU ≡ diag(Au, Ac, At), (4.23)

M2
ŨL

≡ diag(m2
ũL
, m2

c̃L
, m2

t̃LR
) M2

ŨR
≡ diag(m2

ũR
, m2

c̃R
, m2

t̃R
)

have to be diagonal.
Finally the SU(2)W gauge invariance requires relation (4.10) to hold which restricts the

matrices M2
ŨL

and M2
D̃L

to be equal and proportional to the 3 × 3 unit matrix

M2
ŨL

= M2
D̃L

≡ m2
q̃L

1. (4.24)

The above considerations restrict the general form of the soft supersymmetry breaking
parameters severely. There are no contributions to flavor-changing quark transitions from
neutralino and gluino interactions. The same does not apply to chargino interactions as can
be seen from (A.3) and (A.4). For example the coupling of right-handed down-quarks to
up-squarks and charginos has the form

∼ g2√
2MW cos β

χ̃−i ũ
†
a

(

Ui2[ΓUL]ab[VCKM]bc[MD]cc
)

dcL (4.25)

with a = 1, . . . , 6 and b, c = 1, 2, 3. Here the off-diagonal entries of the CKM matrix allow
for flavor-changing transitions such as (b → ũ1χ̃

−) followed by (ũ1χ̃
− → s) and hence for

example FCNC transitions such as (b→ s) are mediated by virtual “up-squark – chargino”
states. The flavor-changing interaction is governed by the CKM matrix coinciding with the
idea of minimal flavor violation.

Gluino Decoupling

The consideration of QCD corrections to B decays in the MSSM includes gluon and gluino
corrections. Within perturbation theory the evaluation of two loop diagrams containing
gluinos as QCD corrections will tend to rather lengthy results. Further it would require
the consideration of additional four-quark operators4 generated by gluino exchange which
mix under the renormalization group evolution into the operators already present in the SM
operator basis. To avoid the necessity to take into account two loop diagrams containing

4A leading order analysis of the decay B̄ → Xsγ was performed in [56] including gluino induced four-quark
operators.
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gluinos and to consider a larger operator basis it is useful to assume in a first step the gluino
to be heavier than all the other particles i.e. assuming the mass hierarchy

µg̃ ∼ O(Mg̃) � µW ∼ O(MW , mt,MH ,Mχ̃±, mũ) � mb � ΛQCD. (4.26)

Due to this mass hierarchy a successive construction of effective field theories is possible. In
the first step the gluino will be integrated out resulting in an effective theory of the remaining
supersymmetric particles – the “effective MSSM”. Thereby neglecting all the 1/Mg̃ effects the
“down-quark – up-squark – chargino” couplings XUL,R [see (A.3) and (A.4)] become changed.
The result within the “effective MSSM”renormalized in the MS scheme using NDR is given
as follows

XUL

i = −g2

[

agV
∗
i1Γ

UL − aY V
∗
i2Γ

UR
MU√

2MW sin β

]

VCKM, (4.27)

XUR

i = g2 aY Ui2ΓULVCKM
MD√

2MW cos β
. (4.28)

The effect of the decoupled gluino, with mass Mg̃, is contained in the functions ag and
aY [57], which are given by

ag = 1 − αs(µ)

4π

[

7

3
+ 2 ln

(

µ2

M2
g̃

)]

, aY = 1 +
αs(µ)

4π

[

1 + 2 ln

(

µ2

M2
g̃

)]

, (4.29)

and µ being the matching scale.
This approach limits the validity of the results with respect to the parameter space of the

general MSSM, nevertheless it is interesting to compute the QCD corrections to B̄ → Xsl
+l−

within this restricted setup and to investigate their size. Indeed similar analysis of the in-
clusive decay B̄ → Xsγ [57, 58] have shown that QCD corrections can be of the magnitude
of the current experimental uncertainty. Once the experimental situation improves the in-
clusion of these corrections will be essential also in B̄ → Xsl

+l− when performing scans
over the MSSM parameter space. The reliability of constraints derived from such scans de-
pends crucially on theoretical uncertainties due to higher order corrections. The numerical
analysis will demonstrate the improvement of theoretical predictions within the SM and the
considered MSSM scenario.
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The rare B decays mediated at the parton level by the transition b → sl+l− (l = µ, e)
provide a sensitive probe of flavor dynamics, the least tested sector of the SM. As loop
induced flavor-changing neutral current (FCNC) processes they are also sensitive to possible
effects of new physics at the electroweak scale. The experimental situation of these rare B
decay modes seems promising as they are in the reach of the present B physics experiments
BELLE [75] at KEK and BaBar [76] at SLAC. Both succeeded recently to observe for the
first time some exclusive channels. A complete list of the status of the individual exclusive
channels can be found in Table 5.1.

About one year ago the BELLE Collaboration has also reported the first measurement
of the branching fraction of the inclusive decay mode B̄ → Xsl

+l− combined from the two
channels B̄ → Xse

+e− and B̄ → Xsµ
+µ− [17]

B[B̄ → Xse
+e−] =

(

5.0 ± 2.3+1.3
−1.1

)

× 10−6, (3.4σ)

B[B̄ → Xsµ
+µ−] =

(

7.9 ± 2.1+2.1
−1.5

)

× 10−6, (4.7σ) (5.1)

B[B̄ → Xsl
+l−] =

(

6.1 ± 1.4+1.4
−1.1

)

× 10−6, (5.4σ)

for dilepton masses bigger than 0.2 GeV/c2. Very recently similar preliminary results were
reported also by the Babar Collaboration [18]

B[B̄ → Xse
+e−] =

(

6.6 ± 1.9+1.9
−1.6

)

× 10−6, (4.0σ)

B[B̄ → Xsµ
+µ−] =

(

5.7 ± 2.8+1.7
−1.4

)

× 10−6, (2.2σ) (5.2)

B[B̄ → Xsl
+l−] =

(

6.3 ± 1.6+1.8
−1.5

)

× 10−6. (4.6σ)

The numbers in brackets in (5.1) and (5.2) are the statistical significance of the respective
decay channel whereas the quoted errors of these results are the statistical and systematical,
respectively. The systematic error also includes uncertainties from modeling signal decays
with the help of theoretical models.

The experimental results of the decays B̄ → Xsl
+l− promise to yield much needed in-

formation complementary to that from other sources such as B̄ → Xsγ, B̄ → Xsνν̄, BB̄ –
mixing, CP violation and rare K decays. A substantial further improvement of the accuracy
of the results from BELLE and BaBar is expected in the forthcoming future.

The special interest in inclusive rare decays such as B̄ → Xsγ, B̄ → Xsl
+l− and

B̄ → Xsνν̄ is governed by the fact that their theoretical treatment is fairly well under
control. In particular the rate for B̄ → Xsl

+l− is dominated, in the region of the dilepton
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Decay mode Belle Collaboration BaBar Collaboration
B × 106 St.Sig. B × 106 St.Sig.

B̄0 → K0e+e− < 0.5 90%C.L. −0.21+0.23
−0.16 ± 0.08 < 3σ

B̄+ → K+e+e− 0.63+0.19
−0.17 ± 0.03 ± 0.03 5.1σ 1.05+0.25

−0.22 ± 0.07 8.4σ
B̄ → Ke+e− 0.48+0.15

−0.13 ± 0.03 ± 0.01 4.6σ 0.74+0.18
−0.16 ± 0.05 7.8σ

B̄0 → K∗0e+e− 1.29+0.57+0.12
−0.49−0.09 ± 0.04 < 3σ 1.11+0.56

−0.47 ± 0.11 < 3σ
B̄+ → K∗+e+e− 2.02+1.27+0.22

−1.01−0.23 ± 0.07 < 3σ 0.20+1.34
−0.87 ± 0.28 < 3σ

B̄ → K∗e+e− 1.49+0.52+0.11
−0.46−0.13 ± 0.03 3.6σ 0.98+0.50

−0.42 ± 0.11 < 3σ

B̄0 → K0µ+µ− 0.56+0.29
−0.23 ± 0.04 ± 0.03 3.1σ 1.63+0.82

−0.63 ± 0.14 4.1σ
B̄+ → K+µ+µ− 0.45+0.14

−0.12 ± 0.03 ± 0.01 4.6σ 0.07+0.19
−0.11 ± 0.02 < 3σ

B̄ → Kµ+µ− 0.48+0.12
−0.11 ± 0.03 ± 0.02 5.6σ 0.45+0.23

−0.19 ± 0.04 < 3σ

B̄0 → K∗0µ+µ− 1.33+0.42
−0.37 ± 0.09 ± 0.06 4.4σ 0.86+0.79

−0.58 ± 0.11 < 3σ
B̄+ → K∗+µ+µ− < 1.8 90%C.L. 3.07+2.58

−1.78 ± 0.42 < 3σ
B̄ → K∗µ+µ− 1.17+0.36

−0.31 ± 0.08 ± 0.06 4.4σ 1.27+0.76
−0.61 ± 0.16 < 3σ

B̄ → Kl+l− 0.48+0.10
−0.09 ± 0.03 ± 0.01 7.4σ 0.65+0.14

−0.13 ± 0.04 8.4σ
B̄ → K∗l+l− 1.15+0.26

−0.24 ± 0.07 ± 0.04 5.9σ 0.88+0.33
−0.29 ± 0.10 3.3σ

Table 5.1: Results of the measurement of branching ratios and the corresponding statistical
significance of the exclusive channels by the BELLE [77] and BaBar [78] experiment. The
first and the second error are the statistical and systematic error, respectively. The third
error corresponds to the model dependence.

invariant mass s ≡ q2 = (pl− + pl+)2 away from resonance backgrounds, by perturbatively
calculable contributions. Within the heavy quark expansion (HQE) formalism it can be for-
mally justified that the free b quark decay emerges as the leading contribution to B̄ → Xsl

+l−

and furthermore power corrections of the form (ΛQCD/mb)
n and (ΛQCD/mc)

n can be system-
atically treated within the HQE framework.

This chapter is devoted to the presentation of the current status of the perturbatively
calculable contributions within the SM and the scenario of the MSSM as outlined in section
4.2. So far this program was performed up to the NLL level [23,24] in the SM completely. As
the results of this calculation still suffer from large renormalization scale uncertainties of the
order of ∼ 20% in the near past a great deal of effort was spent to reduce them. Nowadays
the most important parts of the NNLL contributions relevant for the SM were completed
providing an improved prediction of B̄ → Xsl

+l−.

The formalism of effective theories, which is conventionally used in the analysis of weak
B decays, allows to separate the calculation into three distinct steps.

1. The matching of the full theory and the effective theory amplitudes to determine the
Wilson coefficients at the electroweak scale µ0 ∼ MW – which can be regarded as
integrating out heavy degrees of freedom.

2. The renormalization group evolution of the Wilson coefficients down to the relevant
low energy scale µ ∼ mb – thereby resumming large logarithms to all orders in the
strong coupling constant αs – renormalization group improved perturbation theory.
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3. The calculation of physical observables such as branching ratios or various asymme-
tries. This step requires the evaluation of matrix elements of the effective theory op-
erators between the physical states of interest and the inclusion of the corresponding
bremsstrahlung corrections. The leading contribution is the perturbatively calculable
decay at the parton level, formally justified by HQE.

Subsequently the dependence of the results on the matching scale µ0 and the low energy scale
µ ∼ mb as the main theoretical uncertainty in the perturbative calculable contributions will
be discussed. The inclusion of non-perturbative corrections allows finally the prediction of
the hadronic branching ratio integrated in a restricted domain of ŝ where the theoretical
uncertainties are well under control.

5.1 Matching Results

The framework of effective theories applied to electroweak decays are a convenient tool to
resum QCD corrections to all orders with the help of renormalization group methods. As
a first step the mass hierarchy of the SM and many of its extensions allows for integrating
out systematically heavy degrees of freedom of masses Mheavy ≥ MW . The effect of the
decoupled degrees of freedom will be contained in the effective theory coupling constants,
the so-called Wilson coefficients.

The effective theory Lagrangian relevant to the inclusive decay B̄ → Xsl
+l− resulting

from the SM and the considered scenario of the MSSM has the following form

Leff = LQCD×QED(u, d, s, c, b, e, µ, τ)

+
4GF√

2
[V ∗usVub (Cc

1Ou
1 + Cc

2Ou
2 + Cc

11Ou
11) + V ∗csVcb (Cc

1Oc
1 + Cc

2Oc
2 + Cc

11Oc
11)]

+
4GF√

2

∑

i∈A

[

(V ∗usVub + V ∗csVcb)C
c
i + V ∗tsVtb C

t
i

]

Oi, (5.3)

with A = {3 . . . 10, 31 . . . 36, evanescent} numbering the relevant operators OQ
i and the

corresponding Wilson coefficients CQ
i . Here GF is the Fermi constant and furthermore we

refrain from using unitarity of the CKM matrix VCKM

V ∗usVub + V ∗csVcb + V ∗tsVtb = 0. (5.4)

The first term in eq. (5.3) consists of kinetic terms of the light particles – the leptons and
the five light quark flavors – as well as their QCD and QED interactions while the remaining
terms consist of ∆B = −∆S = 1 gauge-invariant local operators1 up to dimension 6 built
out of those light fields2. The operators OQ

i entering the effective Lagrangian can be divided
into three classes. The physical operators

1The operators conserve flavors other than B and S.
2The s-quark mass is neglected here, i.e. it is assumed to be negligibly small when compared to mb. No

such assumption is made concerning mc or mτ .
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OQ
1 = (s̄ γµPLT

aQ)(Q̄ γµPLT
a b), OQ

2 = (s̄ γµPLQ)(Q̄ γµPL b),

O3 = (s̄ γµPL b)
∑

q

(q̄ γµ q), O5 = (s̄ γµ1γµ2γµ3PL b)
∑

q

(q̄ γµ1γµ2γµ3 q),

O4 = (s̄ γµPLT
a b)

∑

q

(q̄ γµTa q), O6 = (s̄ γµ1γµ2γµ3PLT
a b)
∑

q

(q̄ γµ1γµ2γµ3Ta q),

O7 =
e

g2
mb (s̄ σµνPR b) Fµν , O8 =

1

g
mb (s̄ σµνPRT

a b) Ga
µν,

O9 =
e2

g2
(s̄ γµPL b)(l̄ γ

µ l), O10 =
e2

g2
(s̄ γµPL b)(l̄ γ

µγ5 l), (5.5)

consist of the current-current operators OQ
1,2 (Q = {u, c}), the QCD penguin operators O3,...,6

(q = {u, d, s, c, b}), the electro-magnetic moment type operator O7, the chromo-magnetic
moment type operator O8 and finally the semileptonic operators O9,10.

In addition to the physical operators several non-physical operators have to be included
in the matching procedure of the full and effective theories. One group consists of the so-
called EOM-vanishing operators O31,...,36 listed in Appendix B. These operators vanish by
the QCD×QED equation of motion (EOM) of the effective theory up to a total derivative.
They appear in intermediate steps of the off-shell calculation of the processes b → sγ and
b → sg and contribute to the final results of Wilson coefficients of physical operators when
going beyond the leading order matching.

The second group of non-physical operators which have to be considered in the matching
procedure consists of evanescent operators [see Appendix C]. Evanescent operators vanish
algebraically in four dimensions [79–81], however in D 6= 4 dimensions they are indispensable
because without considering them the physical and EOM-vanishing operators would not form
a closed set under QCD renormalization3. Their choice defines the “MS” scheme applied for
the renormalization of the effective theory. In general the usage of different schemes results
in different expressions of Wilson coefficients, anomalous dimensions and matrix elements
of the effective theory as these quantities do not correspond to physical observables. In the
evaluation of amplitudes the scheme dependencies will cancel up to the considered order in
perturbation theory. Here we choose the evanescent operators [see Appendix B] as used in
the calculation of the anomalous dimensions relevant to b → sγ, b → sg and b → sl+l− of
references [82] and [83].

The specific structure of the operators OQ
i yields ∆B = −∆S = 1 off-shell b → s+(light

particles) amplitudes of the effective theory which reproduce the analog amplitudes of the
SM and its extensions. The off-shell amplitudes of the effective and full theory are equal
at the leading order in electroweak gauge couplings and up to O[(external momenta and
light masses)2/M2

heavy], but to all orders in strong interactions. Thus Leff reproduces the SM
amplitudes, both partonic and hadronic ones [84].

For a detailed description of the two-loop matching of photonic ∆B = 1 penguins (b→ sγ)
in the SM the interested reader is referred to section 5 of Ref. [85]. The matching calculation
of the supersymmetric contributions proceeds analogously. Additional helpful details of the
matching calculation of the MSSM contributions can be found also in section 4 of Ref. [86].

3This extends also to the renormalization of QED corrections which are not considered here.



5.1 Matching Results 47

As a result of the matching calculation the Wilson coefficients can be perturbatively
expanded as follows

CQ
i = C

Q(0)
i +

αs
4π
C
Q(1)
i +

α2
s

(4π)2
C
Q(2)
i + . . . , Q = {c, t}. (5.6)

Contributions to order αns to each Wilson coefficient originate from n-loop diagrams which
follows from the particular convention of powers of gauge couplings in the normalization of
the operators O7,...,10 and O31,...,36.

The results of the matching computation of the Wilson coefficients of the physical oper-
ators OQ

1,...,10 can be summarized as follows. At the tree level only

C
c(0)
2 = −1, (5.7)

is non-zero. The one-loop and two-loop matching conditions are

C
c(1)
1 = −15 − 6L,

C
c(1)
2 = 0,

C
c(1)
3 = 0, C

t(1)
3 = 0,

C
c(1)
4 =

7

9
− 2

3
L, C

t(1)
4 = [E4]0,

C
c(1)
5 = 0, C

t(1)
5 = 0,

C
c(1)
6 = 0, C

t(1)
6 = 0,

C
c(1)
7 =

23

36
, C

t(1)
7 = −1

2
[A7]

0,

C
c(1)
8 =

1

3
, C

t(1)
8 = −1

2
[F8]

0,

C
c(1)
9 = − 1

4s2
W

− 38

27
+

4

9
L, C

t(1)
9 =

1 − 4s2
W

s2
W

[C ll̄
9 ]0 − 1

s2
W

[Bll̄
9 ]0 − [D9]0,

C
c(1)
10 =

1

4s2
W

, C
t(1)
10 =

1

s2
W

([Bll̄
10]0 − [C ll̄

9 ]0), (5.8)

C
c(2)
1 = [T1]1 − 7987

72
− 17

3
π2 − 475

6
L− 17L2,

C
c(2)
2 = −127

18
− 4

3
π2 − 46

3
L− 4L2,

C
c(2)
3 =

680

243
+

20

81
π2 +

68

81
L+

20

27
L2, C

t(2)
3 = [G3]

1,

C
c(2)
4 = −950

243
− 10

81
π2 − 124

27
L− 10

27
L2, C

t(2)
4 = [E4]1,
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C
c(2)
5 = − 68

243
− 2

81
π2 − 14

81
L− 2

27
L2, C

t(2)
5 = − 1

10
[G3]

1 +
2

15
[E4]0,

C
c(2)
6 = − 85

162
− 5

108
π2 − 35

108
L− 5

36
L2, C

t(2)
6 = − 3

16
[G3]

1 +
1

4
[E4]

0,

C
c(2)
7 = −713

243
− 4

81
L, C

t(2)
7 = −1

2
[A7]1,

C
c(2)
8 = − 91

324
+

4

27
L, C

t(2)
8 = −1

2
[F8]1,

C
c(2)
9 = − 1

s2
W

− 524

729
+

128

243
π2 +

16

3
L+

128

81
L2,

C
t(2)
9 =

1 − 4s2
W

s2
W

[C ll̄
9 ]1 − 1

s2
W

[Bll̄
9 ]1 − [D9]1,

C
c(2)
10 =

1

s2
W

, C
t(2)
10 =

1

s2
W

([Bll̄
10]1 − [C ll̄

9 ]1). (5.9)

In the above equations the abbreviation

L = ln
µ2

0

M2
W

(5.10)

was used with µ0 being the renormalization scale introduced by the renormalization of the
Greens functions of the full and effective theory. As it is the very scale at which the heavy
degrees of the full theory are integrated out and their effect is factorized from long distance
interaction of the remaining light particles by matching the full and the effective theories it
is also called the matching scale.

The various functions [X]n in eqs. (5.8) and (5.9) indicate their origin when matching
the b→ s+(light particles) Greens functions of the full and effective theory

• [A]: on-shell part of 1PI b→ sγ,

• [Bll̄]: b→ sl+l− mediated by box-diagrams,

• [C ll̄]: b→ sl+l− mediated by Z-boson (Z-penguins),

• [D]: off-shell part of 1PI b→ sγ, contributing to b→ sl+l−,

• [E]: off-shell part of 1PI b→ sg, contributing to b→ sqq̄,

• [F ]: on-shell part of 1PI b→ sg,

• [G]: 1PI two-loop diagrams b→ sqq̄,

• [T ]: two-loop diagrams b→ scc̄.

The index n corresponds to the number of loops of the diagrams which can be classified
into n = 0 tree-level, n = 1 leading order (LO) and n = 2 next-to-leading order (NLO)
contributions, see also the comment below eq. (5.6). Further each function [X]n receives
contributions from different virtual particle exchange
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[X]n =
∑

i={W,H,χ̃,4}
[X]ni . (5.11)

The “charm quark – W boson” contribution of the SM is explicitely given in the eqs. (5.7)-
(5.9). For the “top quark – W boson” contribution of the SM and contributions due to
MSSM particles we refer to the Appendix C. The index i corresponds to

• i = W : “top quark – W boson” loops (SM),

• i = H: “top quark – charged Higgs boson” loops,

• i = χ̃: “chargino – up-squark” loops,

• i = 4: “chargino – up-squark” loops containing quartic squark vertex.

The SM result can be obtained by discarding the contributions {H, χ̃, 4} in the sum of
eq. (5.11).

The results of the function [X]n listed in Appendix C are given in terms of the running
MS quark and squark masses mq ≡ mq(µ) and mq̃ ≡ mq̃(µ), respectively. Alternatively, one
can work with the pole masses, in which the following steps should be performed:

Step 1. Remove the contributions due to the quartic squark couplings denoted by i = 4
in (5.11).

Step 2. Use the shift from the MS scheme to the corresponding pole masses4

mt(µ) = mt,pole

{

1 − αs(mt,pole)

4π

[

16

3
− 4 ln

(

mt,pole

µ

)2]}

, (5.12)

mq(µ) = mq,pole

[

1 − αs(mq,pole)

4π

16

3

][

αs(µ)

αs(mq,pole)

]γ
(0)
m /(2β0)

×
{

1 +

[

γ
(1)
m

2β0
− β1γ

(0)
m

2β2
0

]

αs(µ) − αs(mq,pole)

4π

}

(q = d, s, b), (5.13)

mq̃(µ) = mq̃,pole

{

1 − αs(mq̃,pole)

4π

[

14

3
− 2 ln

(

mq̃,pole

µ

)2]}

, (5.14)

where

β0 = 11 − 2

3
nf , β1 = 102 − 38

3
nf , γ(0)

m = 8, γ(1)
m =

404

3
− 40

9
nf , (5.15)

4Note that only in the case of light quarks (d, s, b) it is necessary to resum the large logarithms.
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and nf is the number of active quark flavors. Observe that the shift in 5.14 involves only
the gluonic corrections, since the contributions due to quartic squark couplings have already
been considered in step 1. In this context, we would like to remark that the absence of the
‘quartic’ contributions in an on-shell scheme is related to the renormalization of the squark
mass and mixing angle. For details, we refer the reader to [87].

5.2 Renormalization Group Evolution

In the previous section the Wilson coefficients resulting from the matching procedure within
the context of the SM and a supersymmetric extension where presented. In these results
products of the strong coupling and logarithms of the type αns lnn(µ2

0/M
2
heavy) for n = 1, 2

appear. In principle the renormalization scale µ0 is arbitrary and thus logarithms of this kind
can lift the suppression by powers of αns when going to higher order in perturbation theory
invalidating the calculation. To control these logarithms one has to choose µ0 ∼ Mheavy

which in turn fixes the Wilson coefficients to be determined from the full theory at this
particular scale.

However, the renormalization group equations of the Wilson coefficients within the effec-
tive theory allow to scale them to the more appropriate scale for B decays of the order µ ∼ mb

thereby resumming the displeasing large logarithms to all orders in the strong coupling αs.

The renormalization group equation (RGE) of the Wilson coefficients5 ~C is governed by
the anomalous dimension matrix γ̂

µ
d

dµ
~C = γ̂T ~C. (5.16)

It has the following general solution

~C(µ) = Û(µ, µ0) ~C(µ0) (5.17)

where

Û(µ, µ0) = Tg exp

∫ gs(µ)

gs(µ0)

dg′s
γ̂T (g′s)

β(g′s)

= Û (0)(µ, µ0) +
αs(µ0)

4π
Û (1)(µ, µ0) +

αs(µ0)
2

(4π)2
Û (2)(µ, µ0) + . . . (5.18)

is the evolution operator of the Wilson coefficients and β the renormalization group function
of the strong coupling constant gs. In the intermediate step of the above equation Tg denotes
ordering of products of the anomalous dimension γ̂T (g′s) such that their arguments g′s increase
from right to left. When using the perturbative results of the β- and γ̂-functions

5Throughout this derivation we will suppress the index Q of the Wilson coefficients and the anomalous
dimension matrices, labeling the CKM-sector of the effective theory they correspond to.
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β(gs) = −gs
αs
4π
β0 − gs

α2
s

(4π)2
β1 − gs

α3
s

(4π)3
β2 + . . . ,

γ̂(gs) =
αs
4π
γ̂(0) +

α2
s

(4π)2
γ̂(1) +

α3
s

(4π)3
γ̂(2) + . . . , (5.19)

the result of the form given in the second line of eq. (5.18) can be obtained. Together with

the perturbative expansion of the initial Wilson coefficients ~C(µ0) as shown in eq. (5.6) also

the down-scaled Wilson coefficients ~C(µ) can a) be organized in a systematic expansion in
αs(µ0) (or equivalently in αs(µ)) and b) will contain also the resummed large logarithms to
all orders in αs.

The individual terms Û (i)(µ, µ0) with i = 0, 1, 2 can be determined following Ref. [88, 89]
with the help of the ansatz

Û(µ, µ0) = K̂[gs(µ)] Û (0)(µ, µ0) K̂
−1[gs(µ0)]. (5.20)

Here Û (0)(µ, µ0) represents the solution of (5.18) when restricting to the lowest order expan-
sion of β(gs) and γ̂(gs)

Û (0)(µ, µ0) = V̂

[

αs(µ0)

αs(µ)

]

γ̂
(0)
D

2β0 V̂ −1 (5.21)

with the diagonal matrix γ̂
(0)
D = V̂ −1γ̂(0)T

V̂ . The matrix K̂ obeys then the differential
equation

[

∂gs
K̂(gs) −

1

gsβ0
K̂(gs)γ̂

(0)T

]

β(gs) = γ̂T (gs)K̂(gs). (5.22)

Inserting the perturbative expansion of K̂ up to second order

K̂(gs) = 1 +
αs
4π
Ĵ1 +

α2
s

(4π)2
Ĵ2 + . . . , (5.23)

K̂−1(gs) = 1 − αs
4π
Ĵ1 −

α2
s

(4π)2
(Ĵ2 − Ĵ2

1 ) + . . . , (5.24)

determines the matrices Ĵ1 and Ĵ2

Ĵ1 = V̂ Ŝ1V̂
−1, Ĵ2 = V̂ Ŝ2V̂

−1 (5.25)

with
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[Ŝ1]ij =
β1

2β2
0

[γ̂
(0)
D ]iiδij −

[V̂ −1γ̂(1)T

V̂ ]ij

2β0 + [γ̂
(0)
D ]ii − [γ̂

(0)
D ]jj

, (5.26)

[Ŝ2]ij =
β2

4β2
0

[γ̂
(0)
D ]iiδij −

[V̂ −1γ̂(2)T

V̂ ]ij

4β0 + [γ̂
(0)
D ]ii − [γ̂

(0)
D ]jj

+
∑

k

2β0 + [γ̂
(0)
D ]ii − [γ̂

(0)
D ]kk

4β0 + [γ̂
(0)
D ]ii − [γ̂

(0)
D ]jj

(

[Ŝ1]ik[Ŝ1]kj −
β1

β0
[Ŝ1]ijδjk

)

.

(5.27)

Then, using the expansion of the initial Wilson coefficients as given in (5.6), η ≡ αs(µ0)/αs(µ)
and abbreviating Û (0) ≡ Û (0)(µ, µ0) the perturbative solution of (5.17) becomes

~C(µ) = Û (0) ~C(0)

+
αs(µ0)

4π

{[

Ĵ1Û
(0)

η
− Û (0)Ĵ1

]

~C(0) + Û (0) ~C(1)

}

+
αs(µ0)

2

(4π)2

{[

Ĵ2Û
(0)

η2
− Ĵ1Û

(0)Ĵ1

η
− Û (0)(Ĵ2 − Ĵ2

1 )

]

~C(0)

+

[

Ĵ1Û
(0)

η
− Û (0)Ĵ1

]

~C(1) + Û (0) ~C(2)

}

. (5.28)

In the above result the first term represents the leading logarithmic (LL) approximation
of the scaled Wilson coefficients, the second term proportional to αs the next-to leading
logarithmic (NLL) contribution and the third term proportional to α2

s the next-to-next-to
leading logarithmic (NNLL) contribution. The explicit results of the contributions of the

initial Wilson coefficients C
Q(0)
i , C

Q(1)
i and C

Q(2)
i were presented in the preceding section in

eqs. (5.7)–(5.9).
Concerning the expansion coefficients of the anomalous dimension of the physical opera-

tors OQ
1,...,10 relevant to b → sl+l− the first two terms γ̂(0) and γ̂(1) were known when the first

partial NNLL calculation [85] was performed. In general the quantity γ̂(2) affects the parts

proportional to ~C(0) of the α2
s contribution as can be seen in eq. (5.28). The only nonzero

Wilson coefficient is C
c(0)
2 giving thus rise to contributions to C

c(2)
7,8,9. From the analysis of

the decay B̄ → Xsγ [82] the entries of γ̂(2) describing the mixing of the four-quark opera-

tors OQ
1,...,6 into the magnetic operators O7,8 are known and C

c(2)
7,8 are determined completely

leaving just the part of C
c(2)
9 proportional to C

c(0)
2 undetermined. This unknown quantity

was abbreviated in [85] by U
c(2)
92 and the variation in the range of U

c(2)
92 ∈ [−10, 10] leads to

a change of ∼ 2% of the results.
Very recently the authors of Ref. [83] have checked the mixing of OQ

1,...,6 → O7,8 and

presented also the three-loop mixing of the four-quark operators OQ
1,...,6 into the operator

O9. In the same work the authors announced to present the results of the three-loop self-
mixing of the four-quark operators OQ

1,...,6 in a separate publication [90]. U
c(2)
92 depends also

on these entries of γ̂(2) and calculating them will complete the NNLL evolution of the Wilson
coefficients C1,...,10.
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5.3 Matrix Elements

The evolution of the initial Wilson coefficients from the matching scale µ0 to the low energy
scale µ ∼ mb with the RGE presented in the preceding section resums large logarithms of
QCD corrections to all orders in the strong coupling constant αs yielding as a final result the
effective theory Lagrangian Leff at the scale µ ∼ mb. The effective Lagrangian describes light
leptons and quarks and their QED×QCD interactions whereas the effects of short distance
physics (electroweak interactions to first order and strong interactions to all orders in NNLL
approximation) is integrated out being contained in the effective couplings - the Wilson
coefficients. Once the missing entries of the anomalous dimension matrix γ̂(2) are calculated
the effective Lagrangian Leff is known up to NNLL precision, the effects of the unknown
entries were estimated to be at the order of the percent level [85].

Heavy Quark Expansion – Inclusive Decays

At this point it becomes unavoidable when calculating observables to connect the effective
Lagrangian given in terms of quark and gluon degrees of freedom to hadronic transitions
which are actually observed. This involves the consideration of hadronic matrix elements of
quark-level operators which typically are incalculable due to the non-perturbative character
of the bound state dynamics in the initial state and hadronization in the final state. Namely
for B̄ → Xsl

+l−

〈l+l−Xs|Leff |B〉 (5.29)

with B and Xs being the initial state and a hadronic final state with strangeness S = −1,
respectively. The inclusive differential decay rate can be obtained by squaring the matrix
elements and summing over the final states Xs yielding

dΓ =
1

2MB

∑

Xs

d[PS](2π)4δ(4)(pB − pXs
− q)〈B|iL†eff |Xsl

+l−〉〈l+l−Xs|iLeff |B〉. (5.30)

Here MB is the mass of the decaying B meson, d[PS] the appropriate phase space differential,
pB and pXs

are the momenta of the initial and final hadrons, respectively, and
√

q2 is the
invariant mass transfered to the lepton pair. In analogy to the optical theorem the squared
matrix element can be replaced by the absorptive part of the forward scattering amplitude
of the process (B → B) under the action of Leff

dΓ ∼ 1

2MB

∑

Xs

d[PS](2π)4δ(4)(pB − pXs
− q) Im〈B|T̂{L†effLeff}|B〉. (5.31)

The leptonic part of the non-local time-ordered product T̂{. . .} can be treated perturbatively
in αem. The remaining hadronic part of the non-local time-ordered product T̂{. . .} can be
expanded into a series of local operators of increasing dimension using an operator product
expansion (OPE) with coefficients that contain increasing powers of 1/mb. The general
structure of the OPE
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T̂{L†effLeff} ∼ z1(b̄b) +
z2
m2
b

(b̄gσ ·Gb) +
∑ zqi

m3
b

(b̄Γiq)(q̄Γib) + . . . (5.32)

again consists of Wilson coefficients zi containing the short distance physics at scales of the
order µ ∼ mb � ΛQCD and operators whose matrix elements summarize the long distance
physics of scales of the order µ ∼ ΛQCD.

The matrix elements of these operators can be addressed systematically within the heavy

quark effective theory (HQET) framework. As an example the matrix element of the leading
dimension 3 operator b̄b within HQET can be expressed in terms of matrix elements of the
heavy quark field h

〈B|b̄b|B〉 = 1 +
1

2m2
b

〈B|h̄(iD)2h|B〉 +
1

4m2
b

〈B|h̄(gσ ·G)h|B〉 + . . .

= 2MB

[

1 +
1

2m2
b

(λ1 + 3λ2)

]

+ . . . . (5.33)

The latter equation uses the HQET normalization of the states 〈B|b̄b|B〉 = 2MB and the
parameterization of the matrix elements

〈B|h̄(iD)2h|B〉 = 2MBλ1, 〈B|h̄(gσ ·G)h|B〉 = 12MBλ2. (5.34)

Both parameters can be interpreted as the expectation value of the kinetic energy (λ1) and
the energy due to the chromo-magnetic moment (λ2) of the heavy quark inside the heavy
meson.

The discussion of limitations of eq. (5.33) when applied to B̄ → Xsl
+l− and the magnitude

of non-perturbative effects to B̄ → Xsl
+l− is postponed. Finally we want to emphasize that

the leading contribution within the HQE framework to the decay rate of inclusive decays is
the free quark contribution described by z1 whereas the first non-perturbative corrections
are suppressed by 1/m2

b [see eq. (5.32) and (5.33)].

Parton Decay

In the following we will summarize the calculation of the matrix elements at the parton
level (free quark) b → sl+l− within the effective theory. The calculation can be performed
perturbatively in αs(µ) at the scale µ ∼ mb.

Within the LL approximation the only operator mediating b→ sl+l− is O9 which receives
a nonzero Wilson coefficient when solving the RGE due to the mixing of O1,...,6 → O9. It is
a peculiarity of the b → sl+l− decay that the magnitude of the NLL contribution is of the
same size as the LL result and thus it is essential to include the NLL corrections to arrive
at a reasonable estimate of physical observables.

The relevant matrix elements of the NLL analysis are the virtual gluon correction to the
operator O9 and one-loop diagrams of the four-quark operators OQ

1,...,6 mediating b → sl+l−

[see Figure 5.1]. The calculation of the later shows that they are proportional to the tree-
level matrix elements of the operators O7,9 and it has become customary to take them into
account by introducing so called effective Wilson coefficients [see eq. (5.37)]. The result of
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a) b) c) d)

Figure 5.1: Matrix elements of the effective theory at NLL contributing to b → sl+l−. Dia-
gram a) corresponds to the virtual corrections of the four-quark operators OQ

1,...,6 represented

by MQ,{3...6}
7,1 , MQ,{1,2}

9,1 and MQ,{3...6}
9,1 below. The diagram b) shows the gluon correction

to the matrix element of O9 and diagrams c) and d) the corresponding bremsstrahlung
corrections. The sum of the later three diagrams yields ω99(ŝ).

these one-loop matrix elements is given by the functions h(0, ŝ), h(1, ŝ) and h(m̂c, ŝ) which
can be found in [23, 24]. Infrared singularities arising in the calculation of the one-gluon
correction to the matrix element of the operator O9 cancel once the gluon bremsstrahlung
corrections of the process b → s g l+l− to this operator are taken into account, summarized
below in the function ω99(ŝ).

In the partial NNLL analysis [85] consistently all NLO matching contributions to the
initial Wilson coefficients in the SM were calculated [eq. (5.9)] and the evolution of the
Wilson coefficients was partially performed to NNLL accuracy, parameterizing the remain-
ing ignorance by U

c(2)
92 . As a result the final µ0 matching scale dependence of (±16%) of

the NLL result becomes reduced to (±6%). However, as only the NLL matrix elements
and bremsstrahlung corrections were included a µ low energy scale dependence of (±13%)
remained. In a series of publications [91, 92] the most relevant parts of these virtual and
bremsstrahlung corrections were calculated with the objective to further reduce the µ low
energy scale dependence.

These NNLL corrections include a) the infrared finite virtual corrections to the matrix
elements of the operators O1, O2 and O8. These corrections are proportional to the tree-
level matrix elements of the operators O7 and O9 and are absorbed into the effective Wilson
coefficients represented through the functions F

(j)
i (i = 1, 2, 8; j = 7, 9) below. Further b)

the virtual and the bremsstrahlung corrections to the matrix elements of O7, O9 and O10

were calculated. Both suffer from infrared- and collinear singularities which cancel when
combined at the level of differential decay rates. The infrared finite sum of both yields the
functions ω77(ŝ), ω79(ŝ) and ω99(ŝ) appearing in the dilepton invariant mass distribution6.
Finally c) infrared finite bremsstrahlung corrections due to interferences between O8 and

the operators O7,8,9,10 contained in dΓBrems,A

dŝ
and due to the interferences between O1,2 and

O1,2,7,8,9,10 denoted by dΓBrems,B

dŝ
were considered in Ref. [92].

The final result of the dilepton invariant mass distribution is given in [94]

6The according results relevant to the double differential decay rate of the dilepton invariant mass and
cos θ are contained in analogous functions given in Ref. [94]. θ denotes the angle between the momenta of the
positively charged lepton l+ and the b-quark. The double-differential decay rate still contains the information
about the angular distribution of the decay products that is important when considering forward-backward
asymmetries. See also Ref. [93].
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dΓ[b→ Xsl
+l−]

dŝ
=
(αem

4π

)2 G2
Fm

5
b,pole|V ∗tsVtb|2
48π3

(1 − ŝ)2

×
{

(1 + 2ŝ)

(

∣

∣

∣
C̃eff

9

∣

∣

∣

2

+
∣

∣

∣
C̃eff

10

∣

∣

∣

2
)

[1 +
2αs
π
ω99(ŝ)] + 4

(

1 +
2

ŝ

)

∣

∣

∣
C̃eff

7

∣

∣

∣

2

[1 +
2αs
π
ω77(ŝ)]

+12Re
(

C̃eff
7 C̃eff∗

9

)

[1 +
2αs
π
ω79(ŝ)]

}

+
dΓBrems,A

dŝ
+
dΓBrems,B

dŝ
(5.35)

with αs = αs(µ) at the low energy scale. The effective Wilson coefficients can be split into
top- and light-quark contributions

C̃eff
i = C̃t,eff

i +
V ∗csVcb
V ∗tsVtb

C̃c,eff
i +

V ∗usVub
V ∗tsVtb

C̃u,eff
i , (5.36)

that are related to the evolved Wilson coefficients CQ
i (µ) [see (5.28)] and virtual corrections

to the matrix elements of the operators O1,...,6 and O8. It is convenient to absorb these
virtual corrections into the effective Wilson coefficients as follows

C̃Q,eff
7 =

4π

αs(µ)
CQ

7 (µ) + MQ,{1,2}
7,1 + MQ,{3...6}

7,1 + MQ,{1,2}
7,2 + MQ,{3...6}

7,2 + MQ,8
7,2 ,

C̃Q,eff
9 =

4π

αs(µ)
CQ

9 (µ) + MQ,{1,2}
9,1 + MQ,{3...6}

9,1 + MQ,{1,2}
9,2 + MQ,{3...6}

9,2 + MQ,8
9,2 ,

C̃Q,eff
10 =

4π

αs(µ)
CQ

10(µ), Q = {u, c, t}. (5.37)

Here MQ,OA

OB ,O
denotes the virtual corrections of matrix elements of the operators OA which

are proportional to the tree-level matrix element of the operator OB. The subindex O is
1 in the case of NLL corrections and 2 in the case of NNLL corrections. The following
contributions are zero

MQ,{1,2}
7,1 = Mt,{1,2}

7,2 = Mt,{1,2}
9,1 = Mt,{1,2}

9,2 = 0 (5.38)

because the one-loop diagrams of OQ
1,2 insertions in diagram a) of Figure 5.1 are not propor-

tional to the tree-level matrix element O7 and furthermore the Wilson coefficients of these
operators in the top-sector are zero. The nonzero corrections are
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MQ,{3...6}
7,1 = −1

3
CQ

3 (µ) − 4

9
CQ

4 (µ) − 20

3
CQ

5 (µ) − 80

9
CQ

6 (µ),

Mc,{1,2}
7,2 = −αs(µ)

4π

(

C
c,(0)
1 F

(7)
1 (ŝ) + C

c,(0)
2 F

(7)
2 (ŝ)

)

,

MQ,8
7,2 = −αs(µ)

4π
A
Q,(0)
8 F

(7)
8 (ŝ),

Mu,{1,2}
9,1 =

2
∑

i=1

CQ
i (µ)γ

Q(0)
i9 ln

mb

µ
+

(

4

3
Cc

1(µ) + Cc
2(µ)

)

h(0, ŝ),

Mc,{1,2}
9,1 =

2
∑

i=1

CQ
i (µ)γ

Q(0)
i9 ln

mb

µ
+

(

4

3
Cc

1(µ) + Cc
2(µ)

)

h(m̂2
c, ŝ),

MQ,{3...6}
9,1 =

6
∑

i=3

CQ
i (µ)γ

Q(0)
i9 ln

mb

µ
+
(

6CQ
3 (µ) + 60CQ

5 (µ)
)

h(m̂2
c , ŝ)

+

(

−7

2
CQ

3 (µ) − 2

3
CQ

4 (µ) − 38CQ
5 (µ) − 32

3
CQ

6 (µ)

)

h(1, ŝ)

+

(

−1

2
CQ

3 (µ) − 2

3
CQ

4 (µ) − 8CQ
5 (µ) − 32

3
CQ

6 (µ)

)

h(0, ŝ)

+
4

3
CQ

3 (µ) +
64

9
CQ

5 (µ) +
64

27
CQ

6 (µ),

Mc,{1,2}
9,2 = −αs(µ)

4π

(

C
c,(0)
1 F

(7)
1 (ŝ) + C

c,(0)
2 F

(7)
2 (ŝ)

)

,

MQ,8
9,2 = −αs(µ)

4π
A
Q,(0)
8 F

(9)
8 (ŝ). (5.39)

The corrections Mu,{1,2}
7,2 , Mu,{1,2}

9,2 relevant to the up-quark sector are not calculated yet.
A discussion of these contributions within the context of the inclusive B̄ → Xdl

+l− decay
can be found in [95]. We would like to note, that the effective Wilson coefficients of the
up-quark sector are multiplied by |(V ∗usVub)/(V ∗tsVtb)| ∼ 0.02 and are suppressed. This sup-
pression mechanism of the up-quark sector acts not in the inclusive B̄ → Xdl

+l− decay were
|(V ∗udVub)/(V ∗tdVtb)| ∼ 0.44 is rather large. In the numerical analysis the known NLL matrix
elements will be used. Further the numerical impact of the up-quark contribution on the
dilepton invariant mass distribution will be investigated in the subsequent section. It turns
out to be almost negligible for B̄ → Xsl

+l− of the order of 2% [see Figure 5.11].

The corrections MQ,{3...6}
7,2 and MQ,{3...6}

9,2 are proportional to the down-scaled Wilson co-

efficients C
Q(0)
3,...,6 at the low energy scale µ. C

Q(0)
3,...,6 are small in the SM compared to C

Q(0)
1,2

suggesting that the main corrections of the NNLL matrix elements are included within
MQ,{1,2}

7,2 and MQ,{1,2}
9,2 . A complete NNLL computation of B̄ → Xsl

+l− should include these
corrections as well. In the case of B̄ → Xsγ the same diagrams with on-shell photons were
calculated [96] effecting the branching ratio B[B̄ → Xsγ] by a reduction of roughly 1%. It is

important to note, that the calculation of the virtual corrections MQ,{1,2}
7,2 and MQ,{1,2}

9,2 [91]
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containing the functions F
(j)
i (i = 1, 2, 8; j = 7, 9) involves an expansion in the ratios mc/mb,

q/mb and q/2mc. This limits the range of validity to small values of the invariant mass
of the dilepton system q2/m2

b,pole < 0.25. In these functions the charm quark mass mc is
renormalized in the pole mass scheme.

Finally, to complete the NNLL prediction of b → sl+l−, apart from the missing two-loop
virtual corrections to the matrix elements of the four-quark operators summarized above, also
the two-loop virtual and bremsstrahlung corrections to the operator O9 deserve a calculation.
Their consideration modify eq. (5.35) by the replacement

[1 +
2αs
π
ω99(ŝ)] → [1 +

2αs
π
ω99(ŝ) +

2α2
s

π2
ω

(2)
99 (ŝ)], (5.40)

where ω
(2)
99 (ŝ) represents the infrared finite sum of the two-loop virtual and real corrections.

5.4 Numerical Results

The dilepton invariant mass distribution given in eq. (5.35) is the perturbatively calculated
result appearing as the leading contribution in HQE. Due to renormalization it depends on
two renormalization scales namely the matching scale µ0 and the low energy scale µ. The
matching scale has to be fixed in the matching procedure to values of the order of the heavy
decoupled particles to avoid the appearance of large logarithms in the Wilson coefficients.
Further, the low energy scale dependence enters due to the RGE running of the effective
theory from the matching scale down to the more appropriate low energy scale and due to
the renormalization of the matrix elements b→ sl+l− calculated within the effective theory
[eq. (5.39)]. Since renormalization scales are introduced just as a regulator in the perturba-
tive calculation, the scale dependence of physical observables should disappear after proper
renormalization. However, as a consequence of restricting in practice the calculation to a
finite order in perturbation theory a residual scale dependence of higher order remains. It
is common to estimate theoretical uncertainties due to the unknown higher order correc-
tions by the investigation of uncertainties arising due to the variation of the residual scale
dependence.

Instead of the dilepton invariant mass distribution we will consider in this section the
perturbative quantity Rl+l−

quark(ŝ), given below, to study the numerical importance of the NNLL
corrections compared to the NLL predictions as well as the uncertainties due to yet unknown
higher order contributions.

Rl+l−

quark(ŝ) =
1

Γ[b→ Xceν̄e]

d

dŝ
Γ[b→ Xsl

+l−]. (5.41)

The choice of normalizing the dilepton invariant mass distribution dΓ[b→ Xsl
+l−]/dŝ to the

semileptonic decay rate

Γ[b→ Xceν̄e] =
G2
Fm

5
b,pole

192π3
|Vcb|2 f

(

m2
c,pole

m2
b,pole

)

κ

(

m2
c

m2
b

)

(5.42)
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Figure 5.2: Cuts on the dilepton invariant mass
√

q2 in units of GeV performed by the Belle
Collaboration for the decay B̄ → Xsl

+l−. The upper panel corresponds to the e+e− channel
showing the lower cut of 0.2 GeV and the two cuts around the J/ψ and ψ ′ resonances as
given in Table 5.5. The lower panel shows the according cuts of the µ+µ− channel. The
corresponding cuts applied by the BaBar Collaboration are much tighter [see Table 5.5] and
are not displayed here. Further the low-ŝ region according to ŝ ∈ [0.05, 0.25] is indicated by
the dark shaded area. The vertical dashed line at 2.4 GeV represents the upper boundary of
the validity of the two-loop matrix element calculation restricting the full NNLL calculation
to the area below. The vertical dashed line at 4.25 GeV corresponds to sm ≈ 0.65 up to
which HQE can be trusted. As proposed in [124] for higher values of

√

q2 other methods
have to be used to estimate the dilepton invariant mass spectrum as for example HHχPT.
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MW 80.423 GeV MZ 91.187 GeV mt,pole 174.3 GeV

mb,pole 4.8 GeV αs(MZ) 0.118 αem 1/133

s2
W 0.23124 GF 1.16639 10−5 GeV−2 s12 0.222

s13 0.00349 s23 0.041 δCKM 0.994838

Table 5.2: Input parameters used in the numerical analysis of the SM. For the CKM matrix
the standard parameterization [99] with four independent parameters s12, s13, s23 and δCKM

is used.

leads to a cancellation of the large uncertainties due to m5
b,pole and the CKM elements. The

functions f and κ in (5.42) are the phase-space factor and the next-to-leading order QCD
corrections to the semileptonic decay [97, 98], respectively.

The numerical analysis will be restricted in the following to a certain domain of ŝ. Fig-
ure 5.2 serves as an illustration of these regions in terms of the dilepton invariant mass
q2 = ŝm2

b,pole. The upper panel corresponds to dilepton final states l+l− = e+e− and
the lower panel to µ+µ−, respectively. Events with dilepton invariant masses smaller than
√

q2 < 0.2 GeV were rejected in both experimental analysis of the Belle and the Barbar Col-
laboration. This corresponds to the lower cut in the e+e− channel which coincides almost
with the lower kinematical µ+µ− production threshold. We will use throughout for both
channels the common lower cut of

√

q2 = 2mµ in the following. Further cuts were applied
around the cc̄ resonances J/ψ and ψ′ given in Table 5.5 and the interested reader is referred
to Section 5.5 for explanations. Apart from the experimental cuts the importance of the two
vertical lines at

√

q2 = 2.4 GeV and 4.25 GeV has to be emphazised.

The first vertical line at
√

q2 = 2.4 GeV corresponds to the upper boundary of the validity
of the two-loop matrix element calculation performed in [91]. This implies that the full
NNLL prediction of the dilepton invariant mass distribution is restricted to the domain
ŝ ∈ [4m2

µ/m
2
b,pole, 0.25]. The second vertical line at

√

q2 = 4.25 GeV corresponds to the
upper boundary up to which the HQE applied to B̄ → Xsl

+l− is expected to hold [124].
Again the reader is referred to Section 5.5 for more details. The use of the expression
for the dilepton invariant mass spectrum derived within the formalism of HQE, especially
the perturbatively calculated quantity Rl+l−

quark(ŝ) in combination with the non-perturbative

(ΛQCD/mQ)n corrections given in Section 5.5, for values above
√

q2 = 4.25 GeV becomes
meaningless.

Finally, the dark shaded area in the range
√

q2 ∈ [1.07, 2.4] GeV and accordingly ŝ ∈
[0.05, 0.25] is called the low-ŝ region. Theoretically it is preferred since non-perturbative
effects are under control as will be shown in Section 5.5.

To investigate the scale dependence of Rl+l−

quark(ŝ) in the SM the numerical values of Table
5.2 are used.

5.4.1 The Standard Model

As a first analysis it is interesting to investigate the magnitude of the single terms con-
tributing to the ratio Rl+l−

quark(ŝ) within the SM. Five different contributions appear in (5.35)

that are |C̃eff
9 |2, |C̃eff

10 |2, |C̃eff
7 |2, the interference term Re(C̃eff

7 C̃eff∗
9 ) and the bremsstrahlung
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Figure 5.3: The scale dependencies at NLL, partial NNLL and NNLL order of the four parts
|C̃eff

9 |2, |C̃eff
10 |2, |C̃eff

7 |2 and Re(C̃eff
7 C̃eff∗

9 ) contributing to Rl+l−

quark(ŝ). In every plot all except

one contribution are switched off in the calculation of Rl+l−

quark(ŝ) [see (5.41) and (5.35)]. The
light-grey shaded regions correspond to the scale uncertainties of the NLL result and the
dark-grey shaded to the scale uncertainties of the NNLL result, respectively.
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Figure 5.4: Renormalization scale dependence of the contribution |C̃eff
10 |2 to Rl+l−

quark(ŝ). The
left plot shows the matching scale µ0 dependence while keeping the low energy scale µ =
5 GeV fixed. The right plot shows the µ dependence while keeping 3/2µc0 = µt0 = 120 GeV
fixed.

corrections dΓBrems,A

dŝ
and dΓBrems,B

dŝ
of Ref. [92].

The result of Rl+l−

quark(ŝ) obtained by switching off all except one of these contributions is
shown in Figure 5.3. Except for the tiny bremsstrahlung corrections being relevant only at
the NNLL order the remaining four contributions are displayed at NLL, partial NNLL and
NNLL order in the range ŝ ∈ [4m2

µ/m
2
b,pole, 0.25]. The dotted lines represent in all plots the

partial NNLL result of Ref. [85] that can be obtained from eqs. (5.35) and (5.37) by setting
all MQ,OA

OB ,2
, ω77(ŝ) and ω79(ŝ) to zero. The central curve of the NLL, partial NNLL and

NNLL result corresponds to the following choice of renormalization scales: the low energy
scale is set to the value µ = 5 GeV, the matching scale of the top sector to µt0 = 120 GeV and
the matching scale of the charm sector to µc0 = 80 GeV. The boundary curves of the accom-
panying grey shaded bands representing the renormalization scale uncertainties are obtained
by varying the renormalization scales simultaneously in the ranges: µ ∈ [2.5, 10] GeV and
3/2µc0 = µt0 ∈ [60, 240] GeV.

All four plots demonstrate the reduction of the renormalization scale dependence when
going from NLL order to NNLL order. For example at the point ŝ = 0.2 the renormalization
scale dependence of the contributions |C̃eff

9 |2, |C̃eff
10 |2, and |C̃eff

7 |2 reduces from 16% → 7%,
14% → 12% and 30% → 6%, respectively. In the interference term Re(C̃eff

7 C̃eff∗
9 ) an ac-

cidental cancellation of the scale dependencies in the partial NNLL result occurs whereas
the scale dependence of the NNLL result becomes only slightly reduced compared to the
NLL, especially for larger values of ŝ. The by far largest scale uncertainty remains in the
contribution |C̃eff

10 |2. It should be noted that here the full NNLL result is already given by
the partial NNLL result.

The contribution |C̃eff
10 |2 to Rl+l−

quark(ŝ) is shown in Figure 5.4 once again this time varying
the matching scale µ0 (left plot) and the low energy scale µ (right plot) separately to shed
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Figure 5.5: The final result of Rl+l−

quark(ŝ) (solid line – “total”) at NLL (left plot) and

NNLL (right plot) order compared to the single contributions |C̃eff
9 |2, |C̃eff

10 |2, |C̃eff
7 |2 and

Re(C̃eff
7 C̃eff∗

9 ). In addition the NNLL order bremsstrahlung correction dΓBrems,A

dŝ
+ dΓBrems,B

dŝ
are

shown, being almost negligible. The grey-shaded bands indicate the renormalization scale
dependence obtained by varying µ0 and µ as in Figure 5.3.

some light on the remaining scale dependency. At the NLL order the Wilson coefficient C̃eff
10 is

independent of the low energy scale µ because of vanishing anomalous dimension. Therefore
a variation of µ will not affect the NLL result as can be seen in the right plot. The matching
scale µ0 dependence of C̃eff

10 occurs implicitly due to its strong MS-top quark mass dependence.
The variation of the µ0 as in Figure 5.3 yields therefore the same result as shown there. At the
NNLL order C̃eff

10 becomes µ dependent due to the inclusion of the one-loop matrix element
of O10. The variation of the matching scale µ0, while keeping µ = 5 GeV fixed, in the left
plot exhibits a significant reduction of the µ0 dependence due to the inclusion of the two-loop
matching contributions to the Wilson coefficient. However, the remaining µ0 dependence is
as large as the µ dependence shown in the right plot when varying µ ∈ [2.5, 10] GeV while
keeping 3/2µc0 = µt0 ∈ [60, 240] GeV fixed. Both scale dependencies are equal in size and
add up to the final result shown in Figure 5.3. A considerable improvement concerning the
µ0 and the µ dependence requires the calculation of higher order corrections.

The detailed discussion of the scale dependence of the particular contributions to Rl+l−

quark(ŝ)
has shown the importance of the inclusion of NNLL corrections. In the following the final
scale dependence of Rl+l−

quark(ŝ) resulting from the summation of all contributions will be
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Figure 5.6: Reduction of the µ0-matching scale dependence of Rl+l−

quark(ŝ). In the left plot the
matching scale µt0 is varied while keeping the matching scale µc0 and the low energy scale µ
fixed. In the right plot µc0 is varied while keeping µt0 and µ fixed. Note the logarithmic scale
of the vertical axis.

considered. Figure 5.3 shows that the contributions due to C̃eff
9 and C̃eff

10 are similar in size
varying only slightly over the examined range of ŝ. In general the magnitude of NNLL
corrections tend to decrease somewhat the NLL result for C̃eff

9 which has to be compared to
a clear reduction of about 30% in the case of C̃eff

10 . The contribution of C̃eff
7 changes strongly

over the ŝ region. It turns out to be small for values above ŝ > 0.1 whereas it dominates
the other three contributions when approaching the lower boundary for ŝ. The size of the
NNLL corrections is negligible although the scale dependencies become definitely smaller.
Remarkably, the interference term Re(C̃eff

7 C̃eff∗
9 ) has opposite sign compared to the three

contributions discussed before. It changes by about 30% in magnitude over the considered ŝ
range almost canceling for example the contribution of C̃eff

9 for small values of ŝ. The NNLL
corrections only mildly change the NLL result decreasing its absolute magnitude. In view of
extensions of the SM it should be mentioned that the measured value of the branching ratio
of B̄ → Xsγ provides a severe constraint of the absolute magnitude of C̃eff

7 , however not on
its sign. New physics models that predict C̃eff

7 with opposite sign compared to the SM could
exhibit therefore an enhanced prediction of the channel B̄ → Xsl

+l− because then the sign
of the interference term becomes reversed.

In Figure 5.5 the final result for Rl+l−

quark(ŝ) can be seen. The left plot shows the summed
NLL result (solid line – “total”) and also the single contributions to illustrate their mag-
nitude. The shaded bands represent the scale dependencies arising from the variation of
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Figure 5.7: Reduction of the low energy scale µ dependence ofRl+l−

quark(ŝ). Note the logarithmic
scale of the vertical axis.

the renormalization scales µ and µ0 as discussed in connection with Figure 5.3 above. Here
again the central curves correspond to the choice of the scales µ = 5 GeV, µt0 = 120 GeV

and µc0 = 80 GeV. Moreover the contribution of the bremsstrahlung corrections dΓBrems,A

dŝ
and

dΓBrems,B

dŝ
are shown being zero in the NLL case. These corrections to the NNLL result are

very small [92] and can be seen in the right plot. Summarizing, in the SM the inclusion of
the NNLL corrections to Rl+l−

quark(ŝ) lead to a significant reduction of the renormalization scale
and decrease the magnitude of the theoretical prediction as can be seen in the right plot.

To complete the discussion of the scale dependence of Rl+l−

quark(ŝ) in the following the par-
ticular dependence on µt0, µ

c
0 and µ is discussed.

Figure 5.6 shows the dependence of Rl+l−

quark(ŝ) on the matching scale µ0 when using the
NLL and the NNLL expression. In the left plot the matching scale µt0 of the top sector is
varied by a factor of 2 around

√
MWmt corresponding to µt0 = {60, 120, 240}GeV and the

matching scale of the charm sector is fixed to the value µc0 = MW ≈ 80 GeV. Analogously
the right plot corresponds to varying the matching scale µc0 of the charm sector by a factor
of 2 around MW according to the values µc0 = {40, 80, 160}GeV and keeping the matching
scale of the top sector µt0 =

√
MWmt ≈ 120 GeV fixed. In both plots the low energy scale is

set to µ = 5 GeV.

The importance of including the two-loop matching conditions in the top sector is clearly
seen. For example at the point ŝ = 0.2 the dependence on µ0 decreases from ±16% to around
±6%. Actually in the top sector the NLL contribution is the leading one in comparison to
the charm sector were the first nonzero contribution is the LL result. Most of the effect is
due to the strong mt-dependence of C t

10 and to the µ0-dependence of the MS top quark mass
as already discussed in connection with Figure 5.4.
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Figure 5.8: Reduction of the matching scale µ0 and the low energy scale µ dependence of
Rl+l−

quark(ŝ). Note the logarithmic scale of the vertical axis.

The inclusion of the two-loop matching conditions in the charm sector also reduces the
matching scale dependence. However, in the combination of the LL and NLL results the
matching scale dependence is already significantly smaller compared to the one of the NLL
result of the top sector. The partial NNLL result exhibits a smaller µ0 dependence [see right
plot of Figure 5.6] compared to the full NNLL result because of the negligence of the terms

MQ,OA

OB ,2
which depend on C

c(1)
i (µ) and bear also a µ0 dependence.

Apart from the reduction of the scale dependence the NNLL QCD corrections are in
general quite sizeable decreasing the NLL result for example at the point ŝ = 0.2 by more
than 20%.

The scale dependence of the NLL and the NNLL result of Rl+l−

quark(ŝ) on the low energy scale
µ is shown in Figure 5.7. Again the partial NNLL result is portrayed by the dotted lines. The
matching scale of the top sector and the charm sector are set to µt0 =

√
MWmt ≈ 120 GeV

and µc0 = MW ≈ 80 GeV. The low energy scale µ is chosen to be µ = {2.5, 5, 10}GeV.

Here the inclusion of all NNLL corrections toRl+l−

quark(ŝ) does not decrease the µ-dependence
of the NLL result significantly. In the NLL expression an accidental cancellation of the µ-
dependence occurs among the different contributions to the differential decay rate in eq.
(5.35). This cancellation becomes exact at ŝ ≈ 0.06.

The analysis in Ref. [85] has shown that the strong µ-dependence of the partial NNLL
result is mainly driven by the O(αs) term proportional to the product of Cc(1)(µ0) =
−15 − 6 ln(µ2

0/M
2
W ) and the logarithm ln(mb/µ) of the one-loop matrix element of Oc

1. The
inclusion of the two-loop matrix element of the four-quark operators significantly reduces
the µ-dependence.

Finally, the Figure 5.8 is obtained summarizing all the scale dependencies due to the
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Figure 5.9: Rl+l−

quark(ŝ) calculated over the entire ŝ-range of validity of the HQE. The dashed
lines show the NLL result and the uncertainties due to renormalization scale variation. The
solid lines correspond to the full NNLL result up to ŝ < 0.25 and the partial NNLL result
above ŝ > 0.25. The increased uncertainties of the partial NNLL prediction starting at the
point ŝ = 0.25 can be clearly seen. Note the logarithmic scale of the vertical axis.

variation of the matching scales µt0 and µc0 about a factor of 2 around the values µt0 =
√
MWmt

and µc0 = MW , respectively and the low energy scale between µ ∈ [2.5, 10] GeV. As a survey
this plot combines both plots of Figure 5.5.

Concluding within the SM the two-loop matching contributions calculated in (5.9) de-
crease the dilepton invariant decay distribution compared to the NLL calculation and re-
duce the theoretical uncertainty due to the matching scale µ0 dependence. The inclusion
of two-loop matrix elements and bremsstrahlung corrections improves the predictions due
to a further reduction of the low energy scale µ dependence resulting in a almost complete
NNLL prediction. As explained in the Section 5.3 the complete NNLL result still deserves
the calculation of some two-loop matrix elements and more importantly the extension of the
calculation to values of ŝ > 0.25. The authors of [93, 100, 101] report about a calculation of
the two-loop matrix elements, valid in the entire range of ŝ, however the results are not yet
publicly available. Therefore the perturbative quantity Rl+l−

quark(ŝ) can be calculated only at
partial NNLL order for values above ŝ > 0.25.

Figure 5.9 summarizes the result of Rl+l−

quark(ŝ) within the SM over the entire ŝ-range of
validity of the HQE. The full NNLL (solid lines) calculation can be used up to values of
ŝ < 0.25 whereas for values above ŝ > 0.25 the partial NNLL order result is used. For com-
parison the dashed lines represent the NLL result. The bands correspond to the variation of
renormalization scales as in Figure 5.8 rendering the perturbative uncertainties. The grided
areas show the cuts applied by the Belle Collaboration around the J/ψ and ψ ′ resonances as
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Figure 5.10: The relative contribution of the function h(0, ŝ) to Rl+l−
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l+l−

quark(ŝ).

given in Figure 5.2 and Table 5.5. In these regions the dilepton invariant mass distribution
is also not accessible by the HQE due to intermediate cc̄-resonances as will be explained in
Section 5.5. For the time being it shall be just mentioned that the result of Rl+l−

quark(ŝ) is not
valid in this two domains.

For later purposes the following two ratios are defined

∆h(0,ŝ)R
l+l−

quark(ŝ) ≡
Rl+l−

quark(ŝ) −Rl+l−

quark(ŝ)
∣

∣

∣

h(0,ŝ)=0

Rl+l−
quark(ŝ)

(5.43)

and

∆V ∗
usVub

Rl+l−

quark(ŝ) ≡
Rl+l−

quark(ŝ) − Rl+l−

quark(ŝ)
∣

∣

∣

V ∗
usVub

=0

Rl+l−
quark(ŝ)

. (5.44)

As will be explained in Section 5.5 the function h(0, ŝ) receives non-perturbative correc-
tions which can not be addressed in HQE in the region of ŝ < 0.05. These contributions due
to resonant light quark (u, d, s) intermediate states are expected to be of the same size as the
perturbative result h(0, ŝ) itself, after taking an average over a sufficiently wide region of ŝ.
The quantity ∆h(0,ŝ)R

l+l−

quark(ŝ) measures the relative magnitude of the perturbative h(0, ŝ) to

Rl+l−

quark(ŝ) and is shown in Figure 5.10. The solid line corresponds to the NNLL result being
only valid up to ŝ = 0.25 whereas the NLL and the partial NNLL results are shown over
the entire range of validity of the HQE. The renormalization scales are fixed to the mean
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Figure 5.11: The relative contribution of the up-quark sector to Rl+l−
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quark(ŝ).

values of 3/2µc0 = µt0 = 120 GeV and µ = 5 GeV. For all three results the contribution of the
perturbative h(0, ŝ) to the dilepton invariant mass distribution is below 1.5% over the entire
region of ŝ. This allows the conclusions that the tails of the non-perturbative corrections
that perhaps continue to the region above ŝ > 0.05 introduce a negligible uncertainty to
Rl+l−

quark(ŝ)7. The shaded region at the left of Figure 5.10 marks the region of ŝ < 0.05 whereas
the two grided regions show the cuts applied by the Belle Collaboration around the J/ψ and
ψ′ resonances.

The second quantity ∆V ∗
usVub

Rl+l−

quark(ŝ) yields the size of the contribution of the dilepton
invariant mass distribution due to the up-quark sector that is proportional to the CKM
element combination V ∗usVub and therefore strongly suppressed. Figure 5.11 displays the
NLL, the partial NNLL and the NNLL order result. Here it should be noted again, as
already explained in Section 5.3, that the two-loop matrix elements Mu,{1,2}

7,2 and Mu,{1,2}
9,2

are not calculated yet. In view of this the NNLL result should not be considered as complete
as for example the corresponding results of the charm sector where the according two-loop
matrix elements Mc,{1,2}

7,2 and Mc,{1,2}
9,2 lead to a significant reduction of the µ dependence.

Nevertheless, the relative magnitude of the up-quark sector is smaller than 2% for values of
ŝ > 0.05 and does not exceed the 4% level below 0.05 < ŝ. The ignorance of the two-loop
matrix elements of the up-quark sector therefore induces only a small theoretical uncertainty
in the prediction of Rl+l−

quark(ŝ). The significant reduction of the NNLL result in the region
0.05 < ŝ with respect to the NLL and partial NNLL result and vice versa for ŝ > 0.05 is a
consequence of the contribution of Mu,8

7,2 and Mu,8
9,2 .

7Similar corrections due to cc̄ resonances affecting h(m̂c, ŝ) will be discussed in Section 5.5 under the key
word Λ2

QCD/m
2
c corrections.
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Figure NLL partial NNLL NNLL

5.6 (left) 1.78 ± 0.23 1.45 ± 0.06 1.43 ± 0.07

5.6 (right) 1.75 ± 0.03 1.49 ± 0.003 1.47 ± 0.01

5.7 1.76 ± 0.09 1.50 ± 0.19 1.45 ± 0.07

5.8 1.83 ± 0.36 1.44 ± 0.25 1.41 ± 0.14

Table 5.3: The perturbatively calculable branching ratio B[b → Xsl
+l−] in units of 10−6

obtained from the Figures 5.6 – 5.8 by integrating over the low-ŝ region ŝ ∈ [0.05, 0.25].

The investigation of the perturbative quantity Rl+l−

quark(ŝ) shall be stopped here. As antic-
ipated the existence of non-perturbative effects due to intermediate light hadron states for
ŝ < 0.05 and the intermediate cc̄ states at higher values of ŝ divides the dilepton invariant
mass distribution into several regions. The theoretically favored region is the so-called low-ŝ
region

ŝ ∈ [0.05, 0.25] (5.45)

since it is completely free of non-perturbative corrections beyond the HQE and the almost
complete NNLL perturbative result is available. A second similar domain is represented by
the region

ŝ ∈ [0.64, 0.78] (5.46)

above the ψ′ resonance referred to as the high-ŝ region in the following. Within this region
the partial NNLL expression will be used for Rl+l−

quark(ŝ).

The Branching Ratio

It is illustrative to integrate Rl+l−

quark(ŝ) over ŝ in the low- and high-ŝ regions as introduced
above. This quantity corresponds up to the factor of the semileptonic branching ratio B[B̄ →
Xceν̄e] ≈ 10.58% to the perturbatively calculable branching ratio

B[b → Xsl
+l−] ≡ B[B̄ → Xceν̄e]

∫

dŝRl+l−

quark(ŝ). (5.47)

Table 5.3 collects the results of B[b → Xsl
+l−] corresponding to the integration over ŝ in

the low-ŝ region. To show the size of the different renormalization scale dependencies the
scales µt0, µ

c
0 and µ were varied separately and together according to the Figures 5.6–5.8. The

variation of µ shows an accidental cancellation of scale dependencies in the NLL order result
compared to the partial NNLL order result. The residual scale dependence of the NLL result
of 20% can be reduced to a final scale dependence of 10% of the NNLL result. However,
the physical measurable hadronic branching ratio B[B̄ → Xsl

+l−] still receives beside the
perturbative contribution B[b → Xsl

+l−] non-perturbative corrections. The discussion of
non-perturbative corrections and the associated uncertainties is postponed to Section 5.5.
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Figure NLL partial NNLL

5.6 (left) 2.91 ± 0.39 2.59 ± 0.09

5.6 (right) 2.87 ± 0.07 2.65 ± 0.02

5.7 2.88 ± 0.21 2.66 ± 0.35

5.8 2.99 ± 0.67 2.57 ± 0.42

Table 5.4: The perturbatively calculable branching ratio B[b → Xsl
+l−] in units of 10−7

obtained by integrating over the high-ŝ region ŝ ∈ [0.64, 0.78] and varying the scales as in
figures 5.6 – 5.8.

Table 5.4 presents the analogous results B[b → Xsl
+l−] integrating over the high-ŝ region

ŝ ∈ [0.64, 0.78]. The branching fraction is considerably smaller and the inclusion of the
missing two-loop matrix elements is desirable to reduce the low energy scale µ dependence.
The accidental cancellation of the scale dependencies again show up in the NLL order result.
However, the inclusion of the two-loop matching contributions in the partial NNLL order
analysis reduces the residual scale dependence from ±22% to ±16% whereas the absolute
value of the branching ratio becomes reduced by 14%. It should be noted that a similar
value was reported in the very recent publication [102] in eq. (17). Experimentally the
high-ŝ region is expected to be as important as the low-ŝ region since a comparable number
of events is collected here.

We refrain from calculating the so-called “non-resonant” branching ratio at the quark
level. The “non-resonant” branching ratio can be found when integrating over the full range
of ŝ. This would imply the inappropriate use of the perturbative quantity Rl+l−

quark(ŝ) outside
the low- and high-ŝ region. Since the theoretical methods are not valid no reliable estimate
of uncertainties can be given. Further, for example the cc̄ resonances are removed by explicte
cuts in the experimental analysis. The inclusion of these regions into the theoretical result by
the inappropriate use of Rl+l−

quark(ŝ) and analogously on the experimental side to extrapolate
to these regions does not add any information. The circumstances do not change when
including the non-perturbative corrections that are calculable in the HQE framework being
matter of discussion in Section 5.5. This method is not applicable outside the low- and high-ŝ
region concerning intermediate light quark and cc̄ resonances. Values of the “non-resonant”
branching ratio can be found for example in [103].

5.4.2 The MSSM

We will adopt the following procedure in the subsequent numerical analysis of the MSSM
results within the considered scenario inspired by minimal flavor violation and a heavy
decoupled gluino.

We restrict our attention to low values of tanβ. As already mentioned in section 4.2, this
will avoid large neutral Higgs mediated contributions and further non-QCD higher order
corrections play a minor role.

The decay B̄ → Xsl
+l− essentially involves the CKM element Vts. It is important to

emphasize that the presence of new-physics contributions may not only affect the decay
modes under study but also B0

q–B̄
0
q mixing and the CP violation parameter εK, and conse-

quently the extraction of the CKM elements Vtd and Vts. In this case, the standard analysis
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of the unitarity triangle may lead to false results. In fact, while to a good approximation
|Vts| ≈ |Vcb|, is independent of new-physics effects, the value of Vtd determined using the SM
formulae might differ from that obtained in the context of the MSSM [see, e.g., [58,71,104]].

Since we are mainly interested in the renormalization scale dependence and the size of
QCD corrections to the dilepton invariant mass spectrum and the branching ratio, rather
than on their actual values, we fix |Vtd| to the SM obtained from the standard parameteri-
zation of the CKM matrix as given in Table 5.2. Note that this treatment is different from
the analysis of [104], where the new-physics effects on Vtd have also been taken into account.

Our calculation is based on the assumption of soft supersymmetry breaking terms inspired
by minimal flavor violation as outlined in section 4.2. Furthermore, we assume that there
are no new CP -violating phases in addition to the single phase residing in the CKM matrix.

Since we ignore flavor-mixing effects among squarks, the matrix in (4.7) decomposes into
three 2× 2 matrices. A noticeable feature is that the left-right terms are proportional to the
masses of the up-type quarks. Hence, large mixing can occur in the scalar top quark sector,
leading to a mass eigenstate, say, t̃1, possibly much lighter than the remaining squarks. We
therefore keep left-right mixing only in the stop sector, hence the mass matrix is given by

M2
t̃ =

(

m2
t̃L

+m2
t + 1

6
M2

Z cos 2β(3 − 4s2
W ) mt(At − µ cotβ)

mt(At − µ cotβ) m2
t̃R

+m2
t + 2

3
M2

Z cos 2βs2
W

)

, (5.48)

where mt̃L,R
are the soft SUSY breaking scalar masses and At is the trilinear coupling. In

this framework, the mixing matrices ΓUL and ΓUR (4.12a) take the simple form

(ΓUL)T =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos θt̃ 0 0 − sin θt̃



 , (5.49a)

(ΓUR)T =





0 0 0 1 0 0
0 0 0 0 1 0
0 0 sin θt̃ 0 0 cos θt̃



 . (5.49b)

The physical mass eigenstates are then given by

t̃1 = cos θt̃t̃L + sin θt̃t̃R, t̃2 = − sin θt̃t̃L + cos θt̃t̃R, (5.50)

with the mixing angle (−π/2 6 θt̃ 6 π/2)

sin 2θt̃ =
2mt(At − µ cotβ)

m2
t̃1
−m2

t̃2

, (5.51a)

cos 2θt̃ =
(m2

t̃L
−m2

t̃R
) + 1

6
M2

Z cos 2β(3 − 8s2
W )

m2
t̃1
−m2

t̃2

, (5.51b)

mt̃1,2
being the stop masses with m2

t̃1
< m2

t̃2
. (The remaining up-type squark masses are

taken to be equal.)
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For simplicity, we assume that the scalar partners of the leptons are degenerate in mass.
They appear in the functions [Bll̄]χ̃ originating from box-diagrams which are rather small.

For the results presented below we take into account the following lower bounds on the
SUSY particle masses [105–107]

mt̃1 ,b̃1
& 100 GeV, mq̃ 6=t̃1,b̃1 & 260 GeV, ml̃,ν̃ & 100 GeV, Mχ̃1

& 100 GeV. (5.52)

As far as the lightest neutral Higgs boson, h0, is concerned, we must ensure that Mh0 &

100 GeV [107,108], taking into account radiative corrections [109–112] to the tree-level mass
defined in (4.2b).

To determine the impact of the QCD corrections on the quantity Rl+l−

quark(ŝ), we examine
its renormalization scale dependence, namely the matching scale µ0 dependence, for two
points in the SUSY parameter space. For definiteness, we have chosen the following SUSY
parameter sets:

Point 1:

{

mt̃1 = 150 GeV, mt̃2 = 500 GeV, θt̃ = 40◦,
M2/µ = −4,

(5.53)

Point 2:

{

mt̃1 = 200 GeV, mt̃2 = 800 GeV, θt̃ = 70◦,
M2/µ = 4.

(5.54)

Further we set tan β = 3, the charged Higgs mass MH = 250 GeV, the gluino mass
Mg̃ = 1 TeV and the slepton masses ml̃,ν̃ = 100 GeV. The lighter chargino mass is fixed to
the value Mχ̃ = 140 GeV which determines in combination with the ratio M2/µ and tanβ
the remaining quantities of the chargino sector completely.

In Figure 5.12 Rl+l−

quark(ŝ) is shown when taking into account only the “top-quark – charged
Higgs” contribution in addition to the SM. Two different values of the charged Higgs mass
are chosen, MH = 250 GeV and MH = 450 GeV, respectively, whereas tanβ = 3. For
comparison also the SM NNLL result is shown. The charged Higgs contributions do not affect
the dilepton invariant mass region in the low-ŝ region strongly. In this region Rl+l−

quark(ŝ) is

dominated by C̃eff
9 and C̃eff

10 as can be seen in Figure 5.5. In both the new physics contribution
is proportional to cot2 β ∼ 0.1 appearing in the functions [C ll̄

9 ]H and [Dll̄
9 ]H of Appendix C.

When going to smaller values of ŝ < 0.05 the effects become larger due to the increasing
influence of C̃eff

7 . For larger values of the charged Higgs mass the effects of new physics
become smaller which can be interpreted as a decoupling effect. Both plots show the reduced
matching scale dependence due to the inclusion of the two-loop matching conditions of the
NNLL result in comparison to the NLL result.

Figure 5.13 represents Rl+l−

quark(ŝ) in the considered scenario of the MSSM. The left plot
corresponds to the parameter set “Point 1” where the MSSM corrections are rather large
for small values of ŝ. It should be noted, that the NNLL corrections significantly reduce the
NLL result. The branching ratio obtained by integration over ŝ amounts to (2.02±0.26) 10−6

and (1.58 ± 0.07) 10−6 for the NLL and the NNLL result, respectively. These numbers can
be compared to the SM result of Table 5.3. The quoted uncertainties are obtained by the
variation of the matching scale µ0 only as in SM shown in Figure 5.6. Choosing the parameter
set “Point 1” enhances the branching ratio by 10% compared to the SM prediction.

The right plot of Figure 5.13 shows Rl+l−

quark(ŝ) for the choice of the the parameter set
“Point 2”. The new physics contributions are very small. The comparison with the left plot
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Figure 5.12: Reduction of the µ0-matching scale dependence of Rl+l−

quark(ŝ) when including the
“top-quark – charged Higgs” contribution only. In the left plot MH = 250 GeV and in the
right plot MH = 450 GeV. Further we set tanβ = 3.
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Figure 5.13: Reduction of the µ0-matching scale dependence of Rl+l−

quark(ŝ) in the considered
scenario of the MSSM. The left plot corresponds to the choice of the parameter set “Point 1”
and the right plot to “Point 2”.
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of Figure 5.12 shows that a cancellation of the “top-quark – charged Higgs” and the “chargino
– up-squark” contribution take place over the entire low-ŝ region. The branching ratio of
the NLL and the NNLL result is slightly higher than the analogous SM values increasing it
by 5%, being (1.88 ± 0.25) 10−6 and (1.50 ± 0.07) 10−6, respectively.

The sensitivity of the dilepton invariant mass spectrum to new physics effects seems to be
small in the considered scenario of the MSSM. The differential forward-backward asymmetry
of the leptons is more sensitive to new physics effects. Here it should be noted, that the
leading contribution to this observable arises at NLL order and thus the inclusion of the
NNLL corrections presented here will drastically reduce the renormalization scale depen-
dence. In particular, ŝ0, the position at which the forward-backward asymmetry vanishes
provides an important test of the SM [113] and can constraint the parameter spaces of new
physics scenarios.

5.5 Non-perturbative Corrections

As outlined in Section 5.3 the approach of HQE combined with HQET methods allows for
a systematic treatment of non-perturbative effects in inclusive decays. The formalism of
HQE was first applied to inclusive decays of charmed particles [114] and later extended
and combined with HQET techniques to inclusive semileptonic B decays [115–119]. In
the following we will compile the results of the dominant HQE/HQET corrections to the
differential decay rate dΓ[b→ Xsl

+l−]/dŝ evaluated in [120–125].
First of all it has to be clarified that the HQE approach has limitations. Especially

the validity of the HQE is related to the kinematical configuration under consideration
characterized in B̄ → Xsl

+l− by the particular value of ŝ.
The HQE of the dilepton invariant mass distribution of the decay B̄ → Xsl

+l− breaks
down at the endpoint of the spectrum for ŝ→ 1 where both leptons fly back to back in the
rest frame of the decaying B meson. The final hadronic state Xs remains then almost at
rest and the non-pertrubative final state interactions are entirely dictated by scales of the
order of ΛQCD.

In Ref. [124] it was proposed to model the dilepton invariant mass distribution in this
region by heavy hadron chiral perturbation theory (HHχPT). Here it is convenient to nor-
malize q2 to the B meson mass sm ≡ q2/M2

B. The inclusive decay degenerates then to the
kinematically allowed exclusive decay channels B̄ → K̄πl+l− and B̄ → K̄l+l− in the range
0.728 < sm < 0.8218. The upper bound sm = (1−MK/MB)2 = 0.821 with MK = 0.496 GeV
and MB = 5.28 GeV corresponds to the kinematical threshold of K production in the decay
B̄ → K̄l+l− and the lower bound is determined by the kinematical threshold of the decay
B̄ → K̄ππl+l−. The authors propose to model the high sm region 0.5 < sm < 0.821 by using
the HQE up to values sm ≈ 0.65 and HHχPT in the range 0.73 < sm < 0.821. The missing
intermediate range 0.65 < sm < 0.728 is not reliably accessible by either methods, HQE and
HHχPT. The value sm ≈ 0.65 corresponds to ŝ ≈ 0.78 using the value mb,pole = 4.8 GeV
being the upper boundary of the high-ŝ region as defined in (5.46).

b→ Xscc̄ → Xsl
+l− Resonances

Apart from the inapplicability of HQE at the endpoint of the dilepton invariant mass

8The contribution of the decay B̄ → K̄πl+l− turns out to be very small.
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l+l− lower cut B → XsJ/ψ B → Xsψ
′

Belle Collaboration

e+e− 0.2 [MJ/ψ − 0.6, MJ/ψ + 0.2] [Mψ′ − 0.3, Mψ′ + 0.15]

µ+µ− 2mµ (none) [MJ/ψ − 0.35, MJ/ψ + 0.2] [Mψ′ − 0.3, Mψ′ + 0.15]

BaBar Collaboration

e+e− 0.2 [MJ/ψ − 0.4, MJ/ψ + 0.15] [Mψ′ − 0.25, Mψ′ + 0.1]

µ+µ− 2mµ (none) [MJ/ψ − 0.3, MJ/ψ + 0.1] [Mψ′ − 0.15, Mψ′ + 0.1]

Table 5.5: Cuts to the dilepton invariant mass q in units of GeV/c2 applied by the Belle
Collaboration [17] and the BaBar Collaboration [18] to remove backgrounds for the dilepton
systems l+l− = e+e− and µ+µ−. The masses of the J/ψ(1S) and ψ′ (= ψ(2S)) resonances
are MJ/ψ = (3096.87 ± 0.04) MeV and Mψ′ = (3685.96 ± 0.09) MeV, respectively.

distribution also intermediate hadron states are not consistently addressable within this
framework. The decay B̄ → Xsl

+l− can also be mediated besides the simple flavor changing
neutral current decay pattern that was investigated so far by intermediate cc̄ states proceed-
ing along the decay chain b → Xscc̄ → Xsl

+l−. This decay mechanism forms a very large
background to the FCNC signal in the ŝ region where the intermediate cc̄ resonances are
on-shell. The theoretical treatment of these long-distance contributions to B̄ → Xsl

+l− goes
beyond QCD perturbation theory as used above and also non-perturbative higher order con-
tributions in HQE of ΛQCD/mb are an inadequate description. So far only model-dependent
treatments of the cc̄ resonances exist. For example phenomenological resonance saturation
models employ a Breit-Wigner form in modeling the resonance peaks [126–129]. Such mod-
els rely on the assumption of factorization when estimating the B → Xsψ

(n) → Xsl
+l−9

matrix elements of the four quark operators resulting in a model-dependent modification
of the perturbative result of h(m̂c, ŝ). The tails of the resonances extend into regions of ŝ
far from the resonances. However, it is not clear how a proper connection to the model-
independent perturbative short-distant result can be achieved. Often sign ambiguities arise
due to unknown phases when combining the amplitudes of the long-distant model-dependent
and short-distant model-independent contributions. With regard to the theoretical uncer-
tainties experimental cuts are therefore necessary to remove the part of the dilepton invariant
mass distribution dominated by cc̄ resonances. These cuts give rise to the identification of
the two separate regions already introduced before, the low-ŝ region (5.45) below the cut
and the high-ŝ region (5.46) above.

The cuts applied to the dilepton invariant mass distribution in the experimental analysis
of the Belle Collaboration [17] and the BaBar Collaboration [18] are vetoing the two channels
B → XsJ/ψ and B → Xsψ

′. The veto windows for the particular lepton channels l+l− =
e+e− and µ+µ− can be read off from Table 5.5.

The same mechanism operates also in the case of intermediate resonances of light quarks of
the ρ and ω family due to the subsequent decays b→ Xsqq̄ → Xsl

+l− with q = {u, d, s}. For
example in [130] it was shown that such contributions are relevant for values of ŝ < 0.05 using

9ψ(n) is the n-th 1−− cc̄ resonance.
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the factorization approximation and dispersion relations. This approach leads to a modifi-
cation of the perturbative result of the function h(0, ŝ) introducing model-dependencies.

It should be stressed, that the restriction to the low- and high-ŝ regions is essential
with respect to the validity of the HQE. The theoretical predictions will be then model-
independent just depending on the SM parameters and well defined universal HQE/HQET
parameters. The recent status of the 1/mb expansion of the semileptonic decay B̄ → Xclν̄l
and the improved data of moments of the charged lepton energy and the invariant hadronic
mass squared will allow for more accurate predictions of |Vcb|, the b-quark mass and the
HQE/HQET parameters [131, 132]. This opens the possibility to test the SM in the decay
B̄ → Xsl

+l− and to constraint new physics scenarios without further model-dependencies.

Λ2
QCD/m

2
c Corrections

Concerning the long-distant effects related to the tails of cc̄ resonances it was proposed
to estimate their order of magnitude away from the resonance region employing a HQE
in inverse powers of the charm quark mass. This approach provides a model-independent
systematic treatment determining unambiguously the size and the sign of these contributions.
It was first applied in the radiative decay B̄ → Xsγ [123, 133–136] and extended to B̄ →
Xsl

+l− [123]. The result of the non-perturbative Λ2
QCD/m

2
c corrections to Rl+l−

quark(ŝ) have
been found with the help of eq. (32) in Ref. [123]

δ1/m2
c
R(ŝ) = −8

9

α2
em

4π2

|V ∗tsVtb|2
|Vcb|2

λ2

m2
c

(1 − ŝ)2

f κ

× Re

[

F

(

ŝ

4m̂2
c

) (

C2 −
1

6
C1

) (

1 + 6ŝ− ŝ2

ŝ
C̃eff∗

7 + (2 + ŝ) C̃eff∗
9

)]

(5.55)

where

F (r) =
3

2r



























1
√

r(1 − r)
arctan

√
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1 − r
− 1 0 < r < 1,

1

2
√

r(r − 1)

(

ln
1 −

√

1 − 1/r

1 +
√

1 − 1/r
+ iπ

)

− 1 r > 1.

(5.56)

The Λ2
QCD/m

2
c corrections depend on the HQET parameter λ2 being already introduced in

eq. (5.34). The functions f and κ were given in connection with the semileptonic decay rate
in eq. (5.42).

Λ2
QCD/m

2
b and Λ3

QCD/m
3
b Corrections

In consideration of the non-perturbative corrections the hadronic branching ratio of the
low-ŝ and the high-ŝ region is given in terms of the perturbatively calculated quantity
Rl+l−

quark(ŝ) and the 1/m2
b [121, 124], 1/m3

b [125] and 1/m2
c [123] power corrections
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B[B̄ → Xsl
+l−]ŝ∈[0.05, 0.25] = B[B̄ → Xceν̄e]

∫ 0.25

0.05

dŝ

×
[

Rl+l−

quark(ŝ) + δ1/m2
c
R(ŝ) + δ1/m2

b
R(ŝ) + δ1/m3

b
R(ŝ)

]

.(5.57)

The non-perturbative corrections δ1/m2
c
R(ŝ) and δ1/m2

b
R(ŝ) have been found with the help of

eq. (32) in Ref. [123] and eq. (18) in Ref. [124], respectively. The non-perturbative δ1/m3
b
R(ŝ)

corrections are obtained from [125]. Further the Λ2
QCD/m

2
b corrections to the semileptonic

decay rate were calculated in [119] and the according Λ3
QCD/m

3
b corrections in [137].

The quantities δ1/m2
c
R(ŝ), δ1/m2

b
R(ŝ) and δ1/m3

b
R(ŝ) involve HQET parameters characteriz-

ing the occurring matrix elements. Both, δ1/m2
c
R(ŝ) and δ1/m2

b
R(ŝ) depend on the parameter

λ2. This parameter λ2 is related to the mass splitting

λ2 '
M2

B∗ −M2
B

4
≈ 0.12 GeV2 (5.58)

and is relatively well known. The dependence on the HQET parameter λ1 cancels due to
the normalization to the semileptonic decay rate [124]. This is a welcome feature because
no simple relation exists for λ1 and its value is not well known. It has been for example
measured by the CLEO Collaboration [138] by comparing the first moment of the photon
spectrum in B̄ → Xsγ with the first moment of the invariant mass spectrum. The obtained
value is λ1 = −0.236 ± 0.071 ± 0.078GeV2 where the first error is experimental and the
second theoretical.

New matrix elements of operators of the HQET appear at the order Λ3
QCD/m

3
b containing

the parameters ρ1, ρ2 and T1,...,4 [137, 139]. Again T1 and T2 cancel in the final expressions
of the branching ratio due to the normalization to the semileptonic decay rate. At the
present time these parameters are rather poorly known. They where obtained recently
from experimental data in two different approaches in [140] and [141], respectively. Both
analysis determine beside |Vcb| also the heavy quark masses and non-perturbative parameters
from measured moments of the charged lepton energy and hadronic mass distributions in
semileptonic decays.

The authors of [140] treat both quark masses mb and mc as heavy and perform a HQE
of all observables in 1/mb and 1/mc. In this approach the charm-quark mass is determined
by the heavy quark relation following from the HQET. The recent experimental results from
CLEO, BaBar and DELPHI are used then for a combined fit of |Vcb|, mb and the HQET
parameters making use of different mass definitions of mb.

Instead, in [141], the charm quark mass is not treated as heavy and thus can be determined
as a free parameter from the data. This approach avoids the expansion in 1/mc which
seems to be questionable and the difficulties can be circumvented associated to non-local
correlators affecting meson masses [142–144]. Such non-local correlators are not measured in
inclusive B decays and the assumption of a heavy charm quark does not have to be imposed.
The analysis uses only the preliminary results of the DELPHI Collaboration that measured
moments without cuts on the lepton energy in the B rest frame.

The results of the fit proposes the following ranges for the parameters: −0.1 ≤ ρ1 ≤
0.3 GeV3 and −0.2 ≤ ρ2 ≤ 0.1 GeV3. Concerning T1,...,4 the fit does not provide informations
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about uncertainties of the fitted values and thus their values range in (0.0 ± 0.5 GeV)3

determined by dimensional analysis.
The hadronic branching ratio integrated over the low-ŝ region of the SM is given below

to illustrate the order of magnitude of the non-perturbative corrections in comparison to the
perturbative contribution Rl+l−

quark. The six equations correspond to the choice of renormal-
ization scales as in the upper and lower boundary curves of the NLL, the partial NNLL and
the NNLL result of Rl+l−

quark shown in Fig. 5.8

B[B̄ → Xsl
+l−]NLL

ŝ∈[0.05, 0.25](µb = 2.5 GeV, 3/2µc0 = µt0 = 240 GeV) = (5.59a)

1.47
(

1 + 0.32λb2 − 0.11λc2 + 0.12 ρ1 − 0.06 ρ2 + 0.02 (T3 + 3T4)
)

10−6,

B[B̄ → Xsl
+l−]NLL

ŝ∈[0.05, 0.25](µb = 10 GeV, 3/2µc0 = µt0 = 60 GeV) = (5.59b)

2.18
(

1 + 0.32λb2 − 0.16λc2 + 0.13 ρ1 − 0.07 ρ2 + 0.02 (T3 + 3T4)
)

10−6,

B[B̄ → Xsl
+l−]part.NNLL

ŝ∈[0.05, 0.25](µb = 2.5 GeV, 3/2µc0 = µt0 = 60 GeV) = (5.59c)

1.19
(

1 + 0.34λb2 − 0.15λc2 + 0.12 ρ1 − 0.07 ρ2 + 0.02 (T3 + 3T4)
)

10−6,

B[B̄ → Xsl
+l−]part.NNLL

ŝ∈[0.05, 0.25](µb = 10 GeV, 3/2µc0 = µt0 = 240 GeV) = (5.59d)

1.69
(

1 + 0.33λb2 − 0.18λc2 + 0.13 ρ1 − 0.07 ρ2 + 0.02 (T3 + 3T4)
)

10−6,

B[B̄ → Xsl
+l−]NNLL

ŝ∈[0.05, 0.25](µb = 2.5 GeV, 3/2µc0 = µt0 = 60 GeV) = (5.59e)

1.27
(

1 + 0.32λb2 − 0.07λc2 + 0.13 ρ1 − 0.07 ρ2 + 0.02 (T3 + 3T4)
)

10−6,

B[B̄ → Xsl
+l−]NNLL

ŝ∈[0.05, 0.25](µb = 10 GeV, 3/2µc0 = µt0 = 240 GeV) = (5.59f)

1.55
(

1 + 0.32λb2 − 0.04λc2 + 0.13 ρ1 − 0.07 ρ2 + 0.02 (T3 + 3T4)
)

10−6.

The single contributions originating from Λ2
QCD/m

2
b and Λ2

QCD/m
2
c non-perturbative cor-

rections are both proportional to λ2 which are indicated by λb2 and λc2, respectively. The
coefficient of the Λ2

QCD/m
2
b correction is rather large being 30% of the perturbative contri-

bution to the branching ratio. The actual value of λ2 = 0.12 GeV2 reduces this contribution
to a 4% percent correction. The Λ2

QCD/m
2
c power corrections decrease the branching ratio

in the low-ŝ region. Here the coefficient depends on the Wilson coefficients C1, C2, C̃
eff
7 and

C̃eff
9 as given in (5.55). It constitutes a 2% corrections to the perturbative contribution Rl+l−

quark

at NLL and partial NNLL order and reduces to a 1% correction at NNLL order.
The coefficients of Λ3

QCD/m
3
b corrections of ρ1 and ρ2 are 13% and 7% of the perturbative

result according to the choice of renormalization scales. The possible size of these corrections
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can become 4% and 1.5%, respectively for ρ1 and ρ2 when they take the maximal values
determined from the fit results. The contribution of the combination T3 + 3T4 is below 1%.

The non-perturbative corrections in the low-ŝ region add up to approximately 7%. The
Λ2

QCD/m
2
b and Λ3

QCD/m
3
b corrections are equally in size assuming the latter one to be maximal

in the range obtained from fits to the data. It should be noted that a further uncertainty
is connected to the renormalization scheme adopted for the quark mass mb (and also mc)
occurring in kinematical factors of the dilepton invariant mass spectrum. The pole mass
scheme was used throughout, however other schemes exist which seem preferred since their
use can improve the behavior of the QCD perturbation series.

In the following we present similar results for the branching ratio obtained by integrating
(5.57) over the high-ŝ region (5.46). Varying the scales as above the NLL and partial NNLL
expressions according to the upper and lower boundary curves of Figure 5.9 yield the hadronic
branching ratios

B[B̄ → Xsl
+l−]NLL

ŝ∈[0.64, 0.78](µb = 2.5 GeV, 3/2µc0 = µt0 = 240 GeV) = (5.60a)

2.32
(

1 − 0.58λb2 + 0.08λc2 − 0.56 ρ1 + 0.12 ρ2 − 0.04 (T3 + 3T4)
)

10−7,

B[B̄ → Xsl
+l−]NLL

ŝ∈[0.64, 0.78](µb = 10 GeV, 3/2µc0 = µt0 = 60 GeV) = (5.60b)

3.66
(

1 − 0.63λb2 + 0.06λc2 − 0.54 ρ1 + 0.13 ρ2 − 0.04 (T3 + 3T4)
)

10−7,

B[B̄ → Xsl
+l−]part.NNLL

ŝ∈[0.64, 0.78](µb = 2.5 GeV, 3/2µc0 = µt0 = 60 GeV) = (5.60c)

2.15
(

1 − 0.58λb2 + 0.08λc2 − 0.56 ρ1 + 0.12 ρ2 − 0.04 (T3 + 3T4)
)

10−7,

B[B̄ → Xsl
+l−]part.NNLL

ŝ∈[0.64, 0.78](µb = 10 GeV, 3/2µc0 = µt0 = 240 GeV) = (5.60d)

2.99
(

1 − 0.61λb2 + 0.07λc2 − 0.55 ρ1 + 0.13 ρ2 − 0.04 (T3 + 3T4)
)

10−7.

Contrary to the low-ŝ region the Λ2
QCD/m

2
b and Λ3

QCD/m
3
b corrections lead to a reduction of

the perturbative result in the high-ŝ region. The contributions due to λ2, ρ1 and ρ2 are of
the order of 7%, 16% and 3%, respectively, assuming the maximal possible values of ρ1 and
ρ2. Especially here the unknown value of ρ1 induces a large uncertainty comparable to the
scale uncertainty of the perturbative result as can be seen in Table 5.4. The combination of
T3 + 3T4 can contribute up to 2% varying T3 and T4 as given above. The power corrections
Λ2

QCD/m
2
c receive a reversed sign compared to the low-ŝ region increasing the branching ratio

by around 1%.
The branching ratio of the high-ŝ region composes out of the perturbative result and

about −(10 − 25)% correction when adding up the single non-perturbative contributions.
The uncertainties induced by the unknown Λ3

QCD/m
3
b HQET parameters are of the order of

15% which has to be combined with the uncertainties of the perturbative result of similar
size [see Table 5.4].



5.5 Non-perturbative Corrections 81

Concluding, the analysis of the branching ratios of the low-ŝ and high-ŝ regions in the
SM has shown that the current theoretical uncertainties can be reduced when including
NNLL order corrections. In the low-ŝ region the uncertainties of the NNLL result due to
renormalization scale dependencies are estimated to be of the order of 10% [see Table 5.3]
compared to the uncertainties due to Λ3

QCD/m
3
b corrections of the order of 5%. The final

branching ratio can be found in (5.59) at NLL, partial NNLL and NNLL order respectively.
The branching ratio of the high-ŝ region can not be predicted with the same accuracy.

The complete perturbative NNLL result requires the knowledge of two-loop matrix elements
of four-quark operators for values ŝ > 0.25. Their inclusion should significantly reduce the
remaining low energy scale µ dependence of the partial NNLL result given in Table 5.4. The
uncertainties of the perturbative result due to renormalization scale dependencies are of the
order of 16%. The uncertainties connected to the Λ3

QCD/m
3
b corrections are of the same size

preventing at present as precise tests as using the low-ŝ region. The final branching ratio is
given in (5.60) at the NLL and partial NNLL order.





6 Conclusions and Outlook

In this thesis we have presented the results of the calculation of NNLL order matching
contributions to the operators mediating b → sl+l− within the SM. In addition the results
of the matching contributions within a special scenario of the MSSM were presented. This
scenario is characterized by a heavy decoupled gluino and a texture of the soft supersymmetry
breaking parameters inspired by minimal flavor violation. The explicit calculation requires
the evaluation of two-loop diagrams in the SM and the MSSM.

The inclusion of the NNLL corrections to the Wilson coefficients leads to a significant
reduction of the renormalization scale dependence (matching scale) associated to heavy par-
ticles. In the SM this concerns the renormalization scale dependence which arises mainly
due to the MS top-quark mass. As a result we are able to remove a ±16% uncertainty of the
dilepton invariant mass spectrum. The remaining ±6% uncertainty is found to be due to
C̃eff

10 and to smaller extend C̃eff
9 . Within the considered scenario of the MSSM the analogous

renormalization scale dependencies become reduced in the same way. Here the uncertainties
arise due to the renormalization scale dependence of the MS top-quark mass in the charged
Higgs contribution and due to the renormalization scale dependence of the up-squark masses
in the “chargino – up-squark” contribution.

The status of the perturbative calculation of the dilepton invariant mass distribution at
the parton level is summarized and the impact of the NNLL corrections on the magnitude and
the uncertainties of the theoretical prediction are given. This corresponds to the evaluation
of the NNLL renormalization group running of the Wilson coefficients and the inclusion of
two-loop matrix elements and bremsstrahlung corrections of the operators of the effective
theory. In particular, the point of special emphasis is the investigation of the remaining
uncertainties due to renormalization scale dependencies. The overall uncertainty due to the
matching scale µ0 and the low energy scale µ dependence can be reduced from ±20% to
±10% in the low-ŝ region and from ±22% to ±16% in the high-ŝ region, respectively.

Within the framework of HQE the perturbative result of the dilepton invariant mass
distribution is the leading contribution whereas a systematical expansion in inverse powers
of the b-quark mass (and c-quark mass) yields non-perturbative corrections. The HQE
is reliably applicable in the low- and high-ŝ region due to the absence of intermediate light
quark and cc̄-resonances. We have included the results of Λ2

QCD/m
2
b , Λ3

QCD/m
3
b and Λ2

QCD/m
2
c

non-perturbative corrections to the dilepton invariant mass spectrum and calculated the
according branching ratios.

The branching ratio of the low-ŝ region can be predicted with a 10% uncertainty due to
renormalization scale dependencies. The non-perturbative corrections vary between +(2 −
7)% depending on the actual values of the Λ3

QCD/m
3
b HQET parameters thus introducing a

further uncertainty of 5%.

This optimistic picture is not valid for the branching ratio obtained from the high-ŝ region.
Here the current result of the partial NNLL analysis suffers from 16% uncertainty due to
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renormalization scale dependencies. In addition the non-perturbative corrections involving
the Λ3

QCD/m
3
b HQET parameters decrease the branching ratio by (10 − 25)% introducing

further uncertainties of 15% originating from the Λ3
QCD/m

3
b HQET parameters.

Apart from the reported achievements and the associated uncertainties discussed here,
still some improvements towards a complete NNLL QCD calculation are missing. The first
point to mention concerns the renormalization group evolution of the Wilson coefficients.
Here the inclusion of the contribution U

c(2)
92 seems to be available in the close future. The

authors of [83] have recently presented the results of the three-loop mixing of the four-quark
operators OQ

1,...,6 into the operator O9 and announced the publication of the three-loop self-
mixing of the four-quark operators [90]. The size of the induced uncertainty in the branching

ratio due to the variation of U
c(2)
92 from −10 to 10 was shown to be small [85]. However,

the exact result of U
c(2)
92 will remove this uncertainty and might even decrease the overall

uncertainty due to the exact knowledge of the correlated renormalization scale dependence.
Within the high-ŝ region the prediction of the partial NNLL result of the branching ratio

still suffers from large renormalization scale uncertainties due to the missing two-loop matrix
elements of the four-quark operators OQ

1,2. The inclusion of these matrix elements should
remove this uncertainty to a large extent as it happens in the low-ŝ region. The authors
of [93, 100, 101] report about a calculation, using a procedure for calculating the two-loop
matrix elements that is valid in the entire range of ŝ, however the results are not yet publicly
available. Furthermore, the two-loop matrix elements of the four-quark operators O3,...,6 are
not calculated yet. They are suppressed by the small Wilson coefficients C3-C6 in the SM and
expected to give a negligible contribution. This conclusion is supported by the result of the
calculation of the two-loop matrix elements of these operators contributing to B̄ → Xsγ [96].
In this decay the branching ratio becomes reduced by 1%.

The two-loop matrix element of the operator O9 and the according bremsstrahlung correc-
tions denoted by ω

(2)
99 (ŝ) in (5.40) are another missing part of the complete NNLL prediction

of the dilepton invariant mass distribution. This quantity requires a complicated calculation
of two-loop integrals with general kinematical configurations. Such calculations had been
performed in connection with the semileptonic charmless decay B̄ → Xulν̄l being almost
similar to B̄ → Xsl

+l−. In [145] the total decay rate was considered providing an estimate
when integrating over the entire ŝ range. In [146] the expression of the dilepton invariant
mass spectrum was obtained by the expansion in the parameter δ = (1 − ŝ) that can be
used for the high-ŝ region. At least the use of these approximations will provide a reliable
estimate of the size of ω

(2)
99 (ŝ) to the dilepton invariant mass distribution.

Beside the corrections and the correlated uncertainties investigated so far other issues
concerning the decay B̄ → Xsl

+l− deserve a more accurate treatment. It was realized
in the radiative decay B̄ → Xsγ that large uncertainties occur due to the choice of the
renormalization scheme [15] of the charm quark mass. Two different origins of the charm
quark mass have to be considered. The leading contribution depending on the charm quark
mass in B̄ → Xsγ appears only when evaluating the two-loop matrix elements of the four-
quark operators. The MSbar scheme seems more appropriate here, due to their off-shellness.
In contrast the semileptonic decay width, that is used as normalization, involves the charm
quark mass in the pole mass scheme. Here it enters due to the kinematics and phase space
integration. In the decay B̄ → Xsl

+l− the situation seems not so dramatic, since the leading
contribution is already given by the one-loop matrix elements and the two-loop matrix
elements are taken into account. Nevertheless, the explicite investigation [103] and [92] have
shown that the variation of the ratio mc/mb ∈ [0.25, 0.33] also leads to sizeable uncertainties
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in B̄ → Xsl
+l− of the order of 15% in the dilepton invariant mass spectrum and in the

branching ratio. In the case of B̄ → Xsγ the authors of [15] proposed to use the charmless
semileptonic decay width in combination with the “non-perturbative semileptonic phase-
space factor”. This allows to separate the charm quark mass determination from the problem
of convergence of the perturbation series. This idea was applied very recently [102] to
B̄ → Xsl

+l− and the authors found the reduced uncertainty due to the charm-quark mass
of 6%.

Furthermore in the analysis of B̄ → Xsγ [15] all kinematical factors of mb,pole where
expressed in terms of the the bottom mass “1S mass” m1S

b . The only exception was the
factor mb of the electro-magnetic operator O7 appearing in the top-quark sector. The use of
the m1S

b mass avoids renormalon ambiguities that are present in mb,pole and the behavior of
the QCD perturbation series improves with respect to the pole mass scheme.

Another source of uncertainty is related to the electromagnetic corrections to the run-
ning and mixing of especially O9 and O10. This would imply corrections of the order
[αem ln(µ2

0/µ
2) αns lnn(µ2

0/µ
2)]. The simple estimate of this effect is reported in [102] which

leads to an uncertainty of the order of 8% due to the variation of αem between 1/128 and
1/133. The explicite calculation of these corrections would reduce this additional source of
uncertainty.





Appendix A MSSM Lagrangian

In this appendix we present general expressions of the parts of the MSSM Lagrangian
needed for the calculation of matching conditions to operators mediating FCNC B decays
such as B̄ → Xsγ, B̄ → Xsl

+l− or B̄ → Xsνν̄. A general introduction to the MSSM and the
complete list of all Feynman rules for perturbative calculations can be found in Ref. [49].

The “up-quark – down-quark – charged Higgs” coupling has the form

LudH =
g2√

2MW

[

cot β (ūMUVCKMPL d) + tan β (ū VCKMMDPR d)
]

H+ + h.c. . (A.1)

MU ≡ diag(mu, mc, mt) and MD ≡ diag(md, ms, mb) are the up and down quark mass
matrices, respectively.

The physical dirac charginos are denoted by χ̃−i (i = 1, 2), whereas the charge conjugated
spinor is defined as χ̃+

i ≡ (χ̃−i )c. The neutral higgsinos, the wino and the bino mix to form
four Majorana fermions called neutralinos χ̃0

i (i = 1, . . . , 4) and the superpartners of the
gluons called gluinos form Majorana spinors g̃a (a = 1, . . . , 8) too. The interaction of the
charginos χ̃−i , neutralinos χ̃0

i and gluinos g̃a with fermions and sfermions is given by

Lχ̃f̃f =

2
∑

i=1

{

χ̃−i
[

ν̃†(XNL

i PL +XNR

i PR) l + ũ†(XUL

i PL +XUR

i PR) d
]

+ χ̃+
i

[

l̃†(XEL

i PL +XER

i PR) ν
]

}

+ h.c.

+

4
∑

i=1

{

χ̃0
i

[

d̃†(ZDL

i PL + ZDR

i PR) d + l̃†(ZEL

i PL + ZER

i PR) l (A.2)

+ ν̃†(ZNL

i PL + ZNR

i PR) ν
]

}

+ h.c.

−
√

2g
8
∑

a=1

{

g̃a

[

ũ†(ΓULPL − ΓURPR)Tau + d̃†(ΓDLPL − ΓDRPR)Tad
]

}

+ h.c.,

where
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XUL

i = −g2

[

V ∗i1 ΓUL − V ∗i2 ΓUR
MU√

2MW sin β

]

VCKM, (A.3)

XUR

i = g2 Ui2 ΓUL VCKM
MD√

2MW cos β
, (A.4)

XNL

i = −g2 V
∗
i1 ΓN , XNR

i = g2 Ui2 ΓN
ME√

2MW cos β
, (A.5)

XEL

i = −g2

[

U∗i1 ΓEL − U∗i2 ΓER
ME√

2MW cos β

]

, XER

i = 0, (A.6)

ZDL

i = − g2√
2

[(

1

3
tWN

∗
i1 −N∗i2

)

ΓDL +N∗i3ΓDR
MD

MW cos β

]

, (A.7)

ZDR

i = − g2√
2

[

2

3
tWNi1ΓDR +Ni3ΓDL

MD

MW cos β

]

, (A.8)

ZEL

i = − g2√
2

[

−(tWN
∗
i1 +N∗i2)Γ

EL +N∗i3Γ
ER

ME

MW cos β

]

, (A.9)

ZER

i = − g2√
2

[

2 tWNi1ΓER +Ni3Γ
EL

ME

MW cos β

]

, (A.10)

ZNL

i =
g2√

2
ΓN (tWN

∗
i1 −N∗i2) , ZNR

i = 0. (A.11)

The diagonalization matrices U , V and N of the chargino and neutralino mass matrices were
introduced in eqs. (4.4) and (4.6) whereas the diagonalization matrices of the squarks and
sleptons can be found in eqs. (4.11) and (4.15). Further tW ≡ tan θW = sW/cW .

The gauge interactions of charginos with neutral gauge bosons Aµ and Zµ are as follows

Lχ̃χ̃A = −e
2
∑

i=1

χ̃+
i γ

µ χ̃+
i Aµ, (A.12)

Lχ̃χ̃Z = − g2

2cW

2
∑

i,j=1

χ̃+
i γ

µ(Vi1V
∗
j1PL + U∗i1Uj1PR + cos 2θW δij) χ̃

+
j Zµ. (A.13)

The squark – gauge boson (Photon, Gluon, Z boson) interactions are
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Lq̃q̃V = − ie

3
Aµ

[

2(ũ∗a
↔
∂µ ũa) − (d̃∗a

↔
∂µ d̃a)

]

− igGa
µ

[

(ũ∗bT
a
↔
∂µ ũb) + (d̃∗bT

a
↔
∂µ d̃b)

]

− ig2

2cW
Zµ

{[

(ΓULΓUL
†
)ab −

4

3
s2
W δab

]

(ũ∗a
↔
∂µ ũb)

−
[

(ΓDLΓDL
†
)ab −

2

3
s2
W δab

]

(d̃∗a
↔
∂µ d̃b)

}

, (A.14)

The quartic self-interaction of the squarks reads

L4 ≡ Lg
ũ,d̃

= −1

4
g2
[

ũ∗PUT
aũ+ d̃∗PDTad̃

]2

, (A.15)

where

PU ≡ ΓULΓUL† − ΓURΓUR†, PD ≡ ΓDLΓDL† − ΓDRΓDR†. (A.16)

It should be emphasized that L4 represents only the part of the quartic squark interaction
vertex which is proportional to the strong coupling constant αs.





Appendix B Non-Physical Operators

In this appendix we shall present the non-physical operators namely the EOM-vanishing
and evanescent operators relevant to the off-shell matching of b→ s+(light particles).

The EOM-vanishing operators appear in the off-shell calculation of the b→ sγ and b→ sg
Greens functions. Once the off-shell photon (gluon) decays into a lepton (quark) pair their
Wilson coefficients contribute to the process b→ sl+l− (b→ sqq̄). Here it is convenient to use
a background field version to maintain explicit gauge invariance which allows to perform the
matching without making use of the CKM-matrix unitarity. As a consequence the relevant
EOM-vanishing operators contain background fields and are invariant with respect to gauge
transformations of the background field. The gauge-invariant EOM-vanishing operators can
be chosen as

O31 =
1

gs
(s̄ γµPLT

a b)Dν
abG

b
µν + O4,

O32 =
1

g2
s

mbs̄ D/D/PR b,

O33 =
i

g2
s

s̄ D/D/D/PL b,

O34 =
i

gs

[

s̄
←
D/σ

µνPLT
a bGa

µν −Ga
µν s̄TaσµνD/PL b

]

+ O8,

O35 =
ie

g2
s

[

s̄
←
D/σ

µνPL bFµν − Fµν s̄ σ
µνD/PL b

]

+ O7,

O36 =
e

g2
s

(s̄ γµPL b)∂
νFµν −O9. (B.1)

Here Dµ denotes the covariant derivative of the gauge group SU(3)C ⊗ U(1)Q. The sign
convention in the covariant derivative acting on a quark field ψ is

Dµψ =
(

∂µ + ieQψAµ + igsG
a
µT

a
)

ψ. (B.2)

The according sign convention in the covariant derivative acting on the gluon field-strength
tensor Ga

µν is

Dν
abG

b
µν = (∂νδab + gsfabcG

c,ν)Gb
µν. (B.3)
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The EOM-vanishing operators can be assumed to contain the background field only, because
in the off-shell matching procedure nothing but their tree-level matrix elements are needed.
However, a systematic off-shell renormalization of the effective theory requires introducing
EOM-vanishing operators that contain the quantum fields as well. Further other non-physical
operators such as gauge-variant EOM-vanishing operators containing quantum fields have
to be considered. The explicit form of those operators as well as details concerning the
complete off-shell renormalization of the effective theory can be found in [83, 147, 148] and
references therein. Here it is emphasized that the gauge invariant EOM-vanishing operators
of eq. (B.1) are needed for the matching calculation of the Wilson coefficients of the physical
operators. Besides also other non-physical operators enter the effective Lagrangian Leff that
are needed in the course of a complete renormalization of the effective theory.

In intermediate steps of the calculation structures like

(γµ1γµ2γµ3PA) ⊗ (γµ1γµ2γµ3PB) (B.4)

occur with PA,B being either PL or PR. They cannot be reduced using D dimensional Dirac
algebra, due to the appearance of the matrix γ5. Only after the matching all divergencies
cancel and the limit D → 4 can be taken. Consequently, evanescent operators must be
introduced in the effective theory.

The evanescent operators appearing in the calculation of the anomalous dimensions [82,83]
of the processes b→ sγ, b→ sg, b→ scc̄ and b → sqq̄ are defined as follows

OQ
11 = (s̄ γµ1γµ2γµ3PLT

aQ)(Q̄ γµ1γµ2γµ3PLT
a b) − 16OQ

1 ,

OQ
12 = (s̄ γµ1γµ2γµ3PLQ)(Q̄ γµ1γµ2γµ3PL b) − 16OQ

2 ,

O15 = (s̄ γµ1γµ2γµ3γµ4γµ5PL b)
∑

q

(q̄ γµ1γµ2γµ3γµ4γµ5 q) − 20O5 + 64O3,

O16 = (s̄ γµ1γµ2γµ3γµ4γµ5PLT
a b)
∑

q

(q̄ γµ1γµ2γµ3γµ4γµ5Ta q) − 20O6 + 64O4,

OQ
21 = (s̄ γµ1γµ2γµ3γµ4γµ5PLT

aQ)(Q̄ γµ1γµ2γµ3γµ4γµ5PLT
a b) − 20OQ

11 − 256OQ
1 ,

OQ
22 = (s̄ γµ1γµ2γµ3γµ4γµ5PLQ)(Q̄ γµ1γµ2γµ3γµ4γµ5PL b) − 20OQ

12 − 256OQ
2 . (B.5)

Their explicit form defines what the “MS” scheme means in the effective theory. Modifying
the scheme by changing the evanescent operators by terms proportional to ε = 2 − D/2
will not affect their property to vanish in the limit of D → 4, however Wilson coefficients,
anomalous dimensions and matrix elements of physical operators will undergo changes.

Further evanescent operators appear in box diagrams in the SM and in the MSSM when
calculating the process b→ sl+l−. For example, in the SM we define the evanescent operator
for b→ sl+l− as follows [149, 150]

OE
1 = (s̄ γµ1γµ2γµ3PL b)(l̄ γ

µ3γµ2γµ1PL l) − 4 (s̄ γµPL b)(l̄ γ
µPL l). (B.6)

In the chargino sector of the MSSM, operators with a different spinor ordering show up in
box diagrams [86]
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ÕSAB = (s̄ PA l)(l̄ PB b),

ÕV AB = (s̄ γµPA l)(l̄ γ
µPB b),

ÕTAA = (s̄ σµνPA l)(l̄ σ
µνPB b), (B.7)

with σµν ≡ [γµ, γν]/2. We are not allowed to project these operators onto the physical
operators O9 and O10 given in eq. (5.5). For such a projection we would have to apply Fierz
identities which cannot be continued to D dimensions. For this reason, we have to define
the following so-called “Fierz-vanishing” evanescent operators [151, 152]:

ÕE
SLL = ÕSLL +

1

2
OSLL − 1

8
OTLL,

ÕE
SLR = ÕSLR +

1

2
OV RL,

ÕE
V LL = ÕV LL −OV LL,

ÕE
V LR = ÕV LR + 2OSRL,

ÕE
TLL = ÕTLL − 6OSLL − 1

2
OTLL, (B.8)

as well as operators which can be obtained by an interchange of PL ↔ PR. The operators
without tilde are identical to the ones given in eqs. (B.7), but with exchanged l and b spinors.
Due to a finite mixing into the physical operators the “Fierz-vanishing” evanescent operators
contribute at next-to-leading order. A similar situation was described in [149] concerning
the SM calculation. From (B.8) it is evident that we cannot neglect the contributions to
the scalar and tensor operators ÕSAB and ÕTAA as it affects the Wilson coefficients of the
vector operators ÕV AB .

Furthermore the following two evanescent operators are necessary at intermediate steps

ÕE
1 = (s̄ γµ1γµ2γµ3PL l)(l̄ γ

µ1γµ2γµ3PL b) − 16 ÕV LL,

ÕE
2 = (s̄ γµ1γµ2γµ3PL l)(l̄ γ

µ1γµ2γµ3PR b) − 4 ÕV LR. (B.9)





Appendix C Wilson Coefficients

This appendix summarizes the matching results relevant to B̄ → Xsl
+l− in the SM and

the considered scenario of the MSSM as introduced in Chapter 4.2. It provides the formulae
of the functions [X]ni introduced in eq. (5.11) and appearing in the eqs. (5.8) and (5.9).

The values of the Wilson coefficients are found in the matching procedure by requiring
equality of b→ s+(light particles) Greens functions calculated in the effective theory and in
the full theory, up to order O[(external momenta and light masses)2/M2

heavy]. The perturba-
tive expansion in coupling constants in the matching procedure includes the orders ∼ GF ,
GFαs and GFα

2
s of the process b → scc̄ and b → sqq̄. Further the processes b → sγ and

b → sg have to be considered to the orders GF e, GF e αs and GF gs, GF gs αs, respectively,
whereas the process b→ sl+l− analogously to the order GF e

2 and GF e
2 αs.

Dimensional regularization with fully anti-commuting γ5 and the MS scheme is used for
all QCD counterterms, both in the full and in the effective theory for the light degrees
of freedom. The only exceptions are the top quark and squark loop contributions to the
renormalization of the light-quark and gluon wave functions on the full theory side. The
corresponding terms in the propagators are subtracted in the MOM scheme at q2 = 0. In
consequence, no top quark and squark loop contribution remains in the (W boson)–(light
quark) effective vertex after renormalization. This non-minimal renormalization of heavy
particle effects guarantees the equality of the fields of the light degrees of freedom and the
couplings (αs and αem) of the effective theory and their corresponding counterparts of the
full theory.

The only relevant off-shell electroweak counterterm in the full theory proportional to s̄D/ b
has been taken in the MOM scheme as well, at q2 = 0 for the s̄∂/b, and at vanishing external
momenta for terms containing gauge bosons.

As a consequence of this special choice of the renormalization all masses of quarks and
squarks appearing in this appendix are the running MS masses. The masses of particles which
do not interact strongly (QCD) do not become renormalized and thus might interpreted as
their tree-level masses.

We define the mass ratios

x =
m2
t

M2
W

, y =
m2
t

M2
H

, xũa
=
m2
ũa

M2
W

, xd̃a
=
m2
d̃a

M2
W

,

xij =
M2

χ̃i

M2
χ̃j

, yai =
m2
ũa

M2
χ̃i

, vfi =
m2
ν̃f

M2
χ̃i

, (C.1)

and introduce the abbreviations
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Lt = ln
µ2

0

m2
t

, Lũa
= ln

µ2
0

m2
ũa

, κ =
1

g2VtbV
∗
ts

. (C.2)

In these equations mt denotes the top quark mass, mũa
and md̃a

up and down squark masses,
MW the W boson mass, MH the charged Higgs mass, Mχ̃i

the chargino masses and finally
mν̃f

sneutrino masses.
The decoupling of the heavy gluino modifies the “down-quark – up-squark – chargino”

couplings XUL,R [see (A.3) and (A.4)]. Therefore, throughout the formulae presented in
Appendix C.3 and C.4 the corresponding expressions of the “effective MSSM” given (4.27)
and (4.28) have to be used.

The integral representations for the functions Li2(s) and Cl2(x) are as follows

Li2(z) = −
∫ z

0

dt
ln(1 − t)

t
, (C.3)

Cl2(x) = Im
[

Li2
(

eix
)]

= −
∫ x

0

dθ ln |2 sin(θ/2)|. (C.4)

C.1 i = W – “top quark – W boson”

The evaluation of Feynman diagrams contributing to b → s+(light particles) Greens func-
tions within the SM mediated by “top quark – W boson” loops and denoted by the index
i = W in eq. (5.11) yields

[A7]0W = −3x3+2x2

2(x−1)4
ln x + −22x3+153x2−159x+46

36(x−1)3
, (C.5)

[Bll̄
9 ]

0

W = [Bll̄
10]

0

W =

x
4(x−1)2

ln x− 1
4(x−1)

, (C.6)

[C ll̄
9 ]

0

W = 3x2+2x
8(x−1)2

ln x+ x2−6x
8(x−1)

, (C.7)

[D9]0W = −3x4+30x3−54x2+32x−8
18(x−1)4

ln x+ 47x3−237x2+312x−104
108(x−1)3

, (C.8)

[E4]0W = −9x2+16x−4
6(x−1)4

ln x + 7x3+21x2−42x−4
36(x−1)3

, (C.9)

[F8]0W = 3x2

2(x−1)4
ln x+ −5x3+9x2−30x+8

12(x−1)3
, (C.10)

[A7]1W = 32x4+244x3−160x2+16x
9(x−1)4

Li2
(

1 − 1
x

)

+ 774x4+2826x3−1994x2+130x−8
81(x−1)5

ln x

+ −94x4−18665x3+20682x2−9113x+2006
243(x−1)4
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+
[

12x4+92x3−56x2

3(x−1)5
ln x+ −68x4−202x3−804x2+794x−152

27(x−1)4

]

Lt, (C.11)

[Bll̄
9 ]

1

W = [Bll̄
10]

1

W =

−2x
(x−1)2

Li2
(

1 − 1
x

)

+ x2−17x
3(x−1)3

ln x + 13x+3
3(x−1)2

+
[

−2x2−2x
(x−1)3

lnx + 4x
(x−1)2

]

Lt, (C.12)

[C ll̄
9 ]

1

W = −x3−4x
(x−1)2

Li2
(

1 − 1
x

)

+ −3x3−14x2−23x
3(x−1)3

ln x + 4x3+7x2+29x
3(x−1)2

+
[

−8x2−2x
(x−1)3

ln x+ x3+x2+8x
(x−1)2

]

Lt, (C.13)

[D9]
1
W = 380x4−1352x3+1656x2−784x+256

81(x−1)4
Li2
(

1 − 1
x

)

+ −304x4−1716x3+4644x2−2768x+720
81(x−1)5

ln x

+ −6175x4+41608x3−66723x2+33106x−7000
729(x−1)4

+
[

−648x4+720x3+232x2+160x−32
81(x−1)5

lnx + −352x4+4912x3−8280x2+3304x−880
243(x−1)4

]

Lt, (C.14)

[E4]1W = 515x4−614x3−81x2−190x+40
54(x−1)4

Li2
(

1 − 1
x

)

+ 1030x4−435x3−1373x2−1950x+424
108(x−1)5

ln x

+ −29467x4+45604x3−30237x2+66532x−10960
1944(x−1)4

+
[

1125x3−1685x2−380x+76
54(x−1)5

ln x + 133x4−2758x3−2061x2+11522x−1652
324(x−1)4

]

Lt, (C.15)

[F8]1W = 4x4−40x3−41x2−x
3(x−1)4

Li2
(

1 − 1
x

)

+ 144x4−3177x3−3661x2−250x+32
108(x−1)5

ln x

+ −247x4+11890x3+31779x2−2966x+1016
648(x−1)4

+
[

−17x3−31x2

(x−1)5
ln x+ −35x4+170x3+447x2+338x−56

18(x−1)4

]

Lt, (C.16)

[G3]
1
W = 10x4−100x3+30x2+160x−40

27(x−1)4
Li2
(

1 − 1
x

)

+ 30x3−42x2−332x+68
81(x−1)4

ln x

+ 6x3+293x2−161x−42
81(x−1)3

+
[

90x2−160x+40
27(x−1)4

ln x+ −35x3−105x2+210x+20
81(x−1)3

]

Lt, (C.17)

[T1]1W = −(16x+ 8)
√

4x− 1 Cl2

(

2 arcsin 1
2
√
x

)

+
(

16x+ 20
3

)

ln x+ 32x + 112
9
. (C.18)

The result of the functions

• [A7]1W and [F8]1W are given in [57, 153–156],

• [B9]1W and [C9]1W are given in [149, 150, 157, 158],

• [D9]
1
W , [E4]1W , [G3]

1
W and [T1]1W are given in [85].
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C.2 i = H – “top quark – charged Higgs”

The evaluation of Feynman diagrams contributing to b → s+(light particles) Greens func-
tions within the MSSM (but also Two Higgs doublet models (2HDM) of type II) mediated
by “top quark – charged Higgs boson” loops and denoted by the index i = H in eq. (5.11)
yields

[A7]0H = −3y2+2y
3(y−1)3

ln y + 5y2−3y
6(y−1)2

+ cot2 β
{

−3y3+2y2

6(y−1)4
ln y + 8y3+5y2−7y

36(y−1)3

}

, (C.19)

[Bll̄
9 ]

0

H = [Bll̄
10]

0

H = 0, (C.20)

[C ll̄
9 ]

0

H =
M2

H

8M2
W

cot2 β
{

−y2
(y−1)2

ln y + y2

y−1

}

, (C.21)

[D9]0H = cot2 β
{

−3y4+6y2−4y
18(y−1)4

ln y + 47y3−79y2+38y
108(y−1)3

}

, (C.22)

[E4]0H = cot2 β
{

3y2−2y
6(y−1)4

ln y + 7y3−29y2+16y
36(y−1)3

}

, (C.23)

[F8]0H = y
(y−1)3

ln y + y2−3y
2(y−1)2

+ cot2 β
{

y2

2(y−1)4
ln y + y3−5y2−2y

12(y−1)3

}

, (C.24)

[A7]1H = −64y3+224y2−96y
9(y−1)3

Li2

(

1 − 1
y

)

+ −28y3+256y2−132y
9(y−1)4

ln y + 16y3−104y2+56y
3(y−1)3

+
[

24y3+112y2−64y
9(y−1)4

ln y + 32y3−188y2+84y
9(y−1)3

]

Lt

+ cot2 β
{

−32y4+148y3−72y2

9(y−1)4
Li2

(

1 − 1
y

)

+ −126y4+1614y3−926y2+14y
81(y−1)5

ln y

+1202y4−7569y3+5436y2−797y
243(y−1)4

+
[

12y4+92y3−56y2

9(y−1)5
ln y + 28y4−270y3+36y2+62y

27(y−1)4

]

Lt

}

, (C.25)

[Bll̄
9 ]

1

H = [Bll̄
10]

1

H = 0, (C.26)

[C ll̄
9 ]

1

H =
M2

H

8M2
W

cot2 β
{

−8y3+16y2

(y−1)2
Li2

(

1 − 1
y

)

+ −24y3+88y2

3(y−1)3
ln y + 32y3−96y2

3(y−1)2

+
[

16y2

(y−1)3
ln y + 8y3−24y2

(y−1)2

]

Lt

}

, (C.27)

[D9]1H = cot2 β
{

380y4−528y3+72y2+128y
81(y−1)4

Li2

(

1 − 1
y

)

+ 596y4−672y3+64y2+204y
81(y−1)5

ln y

+ −6175y4+9138y3−3927y2−764y
729(y−1)4

+
[

432y4−456y3+40y2+128y
81(y−1)5

ln y + −352y4−972y3+1944y2−1052y
243(y−1)4

]

Lt

}

, (C.28)
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[E4]1H = cot2 β
{

515y4−906y3+99y2+182y
54(y−1)4

Li2

(

1 − 1
y

)

+ 1030y4−2763y3−15y2+980y
108(y−1)5

ln y

+ −29467y4+68142y3−6717y2−18134y
1944(y−1)4

+
[

−375y3−95y2+182y
54(y−1)5

ln y + 133y4−108y3+4023y2−2320y
324(y−1)4

]

Lt

}

, (C.29)

[F8]1H = −17y3+25y2−36y
3(y−1)3

Li2

(

1 − 1
y

)

+ −34y3+7y2−165y
6(y−1)4

ln y + 29y3−44y2+143y
4(y−1)3

+
[

−34y2−38y
3(y−1)4

ln y + 7y3−16y2+81y
3(y−1)3

]

Lt

+ cot2 β
{

−13y4+17y3−30y2

3(y−1)4
Li2

(

1 − 1
y

)

+ −468y4+321y3−2155y2−2y
108(y−1)5

ln y

+4451y4−7650y3+18153y2−1130y
648(y−1)4

+
[

−17y3−31y2

3(y−1)5
ln y + 7y4−18y3+261y2+38y

18(y−1)4

]

Lt

}

, (C.30)

[G3]
1
H = cot2 β

{

10y4+30y2−20y
27(y−1)4

Li2

(

1 − 1
y

)

+ 30y3−66y2−56y
81(y−1)4

ln y + 6y3−187y2+213y
81(y−1)3

+
[

−30y2+20y
27(y−1)4

ln y + −35y3+145y2−80y
81(y−1)3

]

Lt

}

, (C.31)

[T1]1H = 0. (C.32)

The result of the functions

• [A7]1H and [F8]1H are given in [57, 155, 159],

• [B10]1H and [C9]1H are given in [86].

The results of the functions [D9]1H , [E4]
1
H , [G3]

1
H and [T1]1H are new. Note that [B9]

1
H and

[B10]1H vanish due to the approximation of vanishing lepton masses.

C.3 i = χ̃ – “chargino – up-squark”

The evaluation of Feynman diagrams contributing to b → s+(light particles) Greens func-
tions within the MSSM mediated by “chargino – up squark” loops and denoted by the index
i = χ̃ in eq. (5.11) yields

[A7]0χ̃ = κ

2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

{

[XUL

i

†
]2a[X

UL

i ]a3 h
(0)
1 (yai) +

Mχ̃i

mb
[XUL

i

†
]2a[X

UR

i ]a3 h
(0)
2 (yai)

}

,

(C.33)

[Bll̄
9,10]

0

χ̃
= ∓κM

2
W

2e2

2
∑

i,j=1

6
∑

a=1

3
∑

b=1

[XUL

j

†
]2a[X

UL

i ]a3

M2
χ̃i

×
{

1

2
[XNL

i

†
]lb[X

NL

j ]blf
(0)
5 (xji, yai, vbi) ∓ [XNR

i

†
]lb[X

NR

j ]bl
√
xjif

(0)
6 (xji, yai, vbi)

}

,

(C.34)
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[C ll̄
9 ]

0

χ̃ = [Cνν̄
L ]

0
χ̃, (C.35)

[D9]0χ̃ = κ

2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

[XUL

i

†
]2a[X

UL

i ]a3 h
(0)
3 (yai), (C.36)

[E4]0χ̃ = κ
2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

[XUL

i

†
]2a[X

UL

i ]a3 h
(0)
4 (yai), (C.37)

[F8]0χ̃ = κ

2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

{

[XUL

i

†
]2a[X

UL

i ]a3 h
(0)
5 (yai) +

Mχ̃i

mb
[XUL

i

†
]2a[X

UR

i ]a3 h
(0)
6 (yai)

}

,

(C.38)

[A7]1χ̃ = κ

2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

{

[XUL

i

†
]2a[X

UL

i ]a3 h
(1)
1 (yai) +

Mχ̃i

mb
[XUL

i

†
]2a[X

UR

i ]a3 h
(1)
2 (yai)

}

,

(C.39)

[Bll̄
9,10]

1

χ̃
= ∓κM

2
W

2e2

2
∑

i,j=1

6
∑

a=1

3
∑

b=1

[XUL

j

†
]2a[X

UL

i ]a3

M2
χ̃i

×
{

1

2
[XNL

i

†
]lb[X

NL

j ]bl

[

f
(1)
8 (xji, yai, vbi) + 4

(

1 + yai
∂

∂yai

)

f
(0)
5 (xji, yai, vbi) Lũa

]

∓[XNR

i

†
]lb[X

NR

j ]bl
√
xji

[

f
(1)
9 (xji, yai, vbi) + 4

(

1 + yai
∂

∂yai

)

f
(0)
6 (xji, yai, vbi) Lũa

]}

,

(C.40)

[C ll̄
9 ]

1

χ̃ = [Cνν̄
L ]

1
χ̃, (C.41)

[D9]1χ̃ = κ

2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

[XUL

i

†
]2a[X

UL

i ]a3 h
(1)
3 (yai), (C.42)

[E4]1χ̃ = κ
2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

[XUL

i

†
]2a[X

UL

i ]a3 h
(1)
4 (yai), (C.43)

[F8]1χ̃ = κ

2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

{

[XUL

i

†
]2a[X

UL

i ]a3 h
(1)
5 (yai) +

Mχ̃i

mb
[XUL

i

†
]2a[X

UR

i ]a3 h
(1)
6 (yai)

}

,

(C.44)
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[G3]1χ̃ = κ

2
∑

i=1

6
∑

a=1

M2
W

M2
χ̃i

[XUL

i

†
]2a[X

UL

i ]a3 h
(1)
7 (yai), (C.45)

[T1]1χ̃ =
6
∑

a=1

{

(8xũa
− 2)

√

4xũa
− 1 Cl2

(

2 arcsin 1
2
√
xũa

)

−
(

8xũa
− 8

3

)

ln xũa
− 16xũa

+
52

9

+(8xd̃a
− 2)

√

4xd̃a
− 1 Cl2

(

2 arcsin 1
2
√
x

d̃a

)

−
(

8xd̃a
− 8

3

)

ln xd̃a
− 16xd̃a

+
52

9

}

.

(C.46)

The result of the functions

• [A7]1χ̃ and [F8]
1
χ̃ are given in [57, 58],

• [B10]1χ̃ and [C9]
1
χ̃ are given in [86].

The results of the functions [D9]
1
χ̃, [E4]1χ̃, [G3]

1
χ̃ and [T1]1χ̃ are new. The expression of the

functions [Cνν̄
L ]0χ̃ and [Cνν̄

L ]1χ̃ correspond to the leading and the next-to leading contribution

of the function [Cνν̄
L ]χ̃ = [Cνν̄

L ]0χ̃ + αs/(4π)[Cνν̄
L ]1χ̃ given in (3.14) of [86].

C.4 i = 4 – “chargino – up-squark (quartic)”

The evaluation of Feynman diagrams contributing to b → s+(light particles) Greens func-
tions within the MSSM mediated by “chargino – up squark” loops containing the quartic
squark vertex1 instead of gluon corrections and denoted by the index i = 4 in eq. (5.11)
yields

[A7]14 = κ

2
∑

i=1

6
∑

a,b,c=1

M2
W

M2
χ̃i

PU
ab ybi P

U
bc (1 + Lũb

)

×
{

[XUL

i

†
]2a[X

UL

i ]c3 [−q(1)
1 (yai, yci) +

2

3
q
(1)
2 (yai, yci)]

+
Mχ̃i

mb

[XUL

i

†
]2a[X

UR

i ]c3 [−q(1)
3 (yai, yci) +

2

3
q
(1)
4 (yai, yci)]

}

, (C.47)

[Bll̄
9,10]

1

4
= ± κ

2e2
4

3

2
∑

i,j=1

3
∑

f=1

6
∑

a,b,c=1
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W
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ab ybi P

U
bc (1 + Lũb

) [XUL

j

†
]2a[X

UL

i ]c3

×
{

1

2
f

(0)
9 (xji, yai, yci, vfi)[X
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i

†
]lf [XNL

j ]fl
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xjif

(0)
10 (xji, yai, yci, vfi)[X

NR

i

†
]lf [XNR

j ]fl

}

, (C.48)

1Strictly speaking these matching contributions originate from the part of the quartic squark vertex
proportional to the strong coupling constant αs.
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[C ll̄
9 ]

1
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6
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(C.49)

[D9]14 = κ

2
∑

i=1

6
∑

a,b,c=1

M2
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U
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[E4]14 = κ

2
∑

i=1
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[F8]14 = κ
2
∑

i=1

6
∑

a,b,c=1

M2
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U
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}

, (C.52)

[G3]14 = 0, (C.53)

[T1]14 = 0. (C.54)

The result of the functions

• [A7]
1
4 and [F8]14 are given in [57],

• [B10]14 and [C9]14 are given in [86].

The result of the functions [D9]14, [E4]14, [G3]14 and [T1]
1
4 are new.
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Here we present explicit formulae for the loop functions h
(0)
i (x), h

(1)
i (x) and q

(1)
i (x, y)

introduced in Appendix C. They read

h
(0)
1 (x) = 3x2−2x

3(x−1)4
ln x + −8x2−5x+7

18(x−1)3
, (D.1)

h
(0)
2 (x) = −6x2+4x

3(x−1)3
ln x+ 7x−5

3(x−1)2
, (D.2)

h
(0)
3 (x) = −6x3+9x2−2

9(x−1)4
lnx + 52x2−101x+43

54(x−1)3
, (D.3)

h
(0)
4 (x) = −1

3(x−1)4
ln x + 2x2−7x+11

18(x−1)3
, (D.4)

h
(0)
5 (x) = −x

(x−1)4
ln x+ −x2+5x+2

6(x−1)3
, (D.5)

h
(0)
6 (x) = 2x

(x−1)3
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(x−1)2
, (D.6)
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Li2
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4 (x) = −562x3+1101x2−420x+101

54(x−1)4
Li2
(

1 − 1
x

)
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+ 17470x3−47217x2+31098x−13447
972(x−1)4

+
[

89x+55
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Un grande bacio serio per Rita, for her great heart and all the patience.


