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Summary

The main goal of this work is a comprehensive description of the fireball created in current
ultrarelativistic heavy-ion collisions. This has to be a three-step process: In the first step,
properties of hot and dense hadronic matter are investigated, culminating in the introduction
of a phenomenological quasiparticle model for the description of the quark-gluon plasma
(QGP) phase. In a second step, this information is used as input into the construction of a
thermodynamically self-consistent model of the fireball. Hadronic observables are shown
to yield tight constraints on the formulation of such a model. In the last step, the model
is shown to describe several different other sets of observables, such as the emission of
dileptons and photons and the suppression of charmonium production. Summarizing all
information from different observables, there is strong evidence for a partonic phase being
created already at the CERN SPS accelerator.

Zusammenfassung

Das Hauptziel dieser Arbeit liegt in einer umfassenden Beschreibung des Feuerballs, der
in ultrarelativistischen Schwerionenstössen erzeugt wird. Dies wird in drei Schritten er-
reicht: Als erstes werden allgemein Eigenschaften heisser und dichter hadronischer Ma-
terie untersucht. Phänomenologisch lässt sich die Thermodynamik des Quark-Gluon Plas-
mas (QGP) gut im Rahmen eines hier beschriebenen Quasiteilchenmodells beschreiben.
In einem zweiten Schritt wird diese Quasiteilchenbeschreibung als Ausgangspunkt für
ein dynamisches Modell der Feuerballentwicklung verwendet und gezeigt, dass die Mes-
sung hadronischer Observablen einem solchen Modell enge Einschränkungen setzt. Dieses
Modell wird nun weiter dazu verwendet, auch andere experimentall zugängliche Grössen
zu beschreiben, unter anderem die Emission von Dileptonen und Photonen oder die Un-
terdrückung der Produktion von Charmonia. In der zusammenfassenden Betrachtung aller
gewonnen Informationen werden deutliche Hinweise erkennbar, die für die Erzeugung
einer partonischen Phase schon am SPS Beschleuniger (CERN) sprechen.





Φυσις δε καθ′ Hρακλειτoν κρυπθεσται φιλει.
’Nature loves to hide.’ (Heraklit)

Eαν µη ελπηται, ανελπιστoν oυκ εξευρησει, ανεξερευνητoν εoν και απoρoν.
’If you do not expect the unexpected, you will not find it; for it is hard to be sought out and
difficult.’ (Heraklit)





Chapter 1

INTRODUCTION

και εκ παντων εν και εξ ενoς παντα.
’Out of all things there comes a unity, and out of a unity all things.’ (Heraklit)

It sometimes happens in nature that seemingly complex phenomena can be explained by
a very simple general principle, whereas seemingly simple ideas lead to very complex
consequences. The Lagrangian of Quantum Chromodynamics (QCD), LQCD , is a good
illustration of this idea: It can be written down in a single line (see appendix A for a
summary), but in this line, a rich variety of apparently unrelated phenomena is contained:
The binding force of nuclear matter, the mass spectrum of all hadronic excitations, the high-
energy behaviour of hadronic scattering cross sections, the momentum and spin distribution
of partons contained inside the nucleon — all of these follow from the dynamics encoded
in LQCD .

However, a first principles calculation of the mentioned phenomena directly from LQCD
is still out of reach. Therefore, in order to see the beauty that lies in the simplicity of
LQCD, one has to probe the theory in situations where its effects become manifest in a
simple way. Two problems prohibit this in most situations: The coupling constant is strong
(which makes a perturbative expansion impossible) and the theory is non-Abelian, leading
to interactions of the gauge bosons among each other which eventually are responsible
for confinement, the impossibility to observe the fundamental degrees of freedom in the
Lagrangian as asymptotic states.

However, as shown in appendix A, QCD exhibits the property of asymptotic freedom, i.e
at large momentum transfers, the coupling becomes weak and therefore the fundamental
degrees of freedom, quarks and gluons, are quasifree. This can be pictured as follows: Any
colour charge in the vacuum is surrounded by a cloud of quantum fluctuations. In QCD,
these quantum fields act in such a way as to enhance the original charge (’antiscreening’).
At large momentum transfers however, a small spatial region is resolved and as a conse-
quence the antiscreening cloud is penetrated, the charge ’seen’ by the interaction appears
weaker.

1



2 CHAPTER 1. INTRODUCTION

Deep inelastic electron scattering off nucleons probes QCD in a regime where the coupling
actually becomes small and the theory gets simple. Conversely, it was soon realized that if
one would heat up hadronic matters to such temperatures that typical momentum transfers
in collisions in the heat bath would be very large, asymptotic freedom would lead to a
system of quasifree quarks and gluons — the most simple manifestation of LQCD one
could think of. This partonic state of matter should be characterized by properties vastly
different from those of ordinary hadronic matter. In analogy to the ordinary gas – plasma
transition, this state of matter has been baptized quark-gluon plasma (QGP).

The prediction of the existence of the QGP has triggered enormous activity from both
theory and experiment with the aim to verify its existence and study its properties, notably
the equation of state (EoS). The experimental search for the QGP was started with heavy-
ion collisions, where an enormous amount of energy can be concentrated in a small volume
and the production of several hundreds of secondary particles makes equilibration of the
produced matter possible.

But as the greek philosopher Heraklit put it: ’Nature loves to hide.’ In spite of the tremen-
dous research activity, the QGP has remained elusive so far. Several observables have been
proposed as signals for the creation of the QGP, among them the suppression of charmo-
nium states in nucleus-nucleus (A-A) collisions with respect to scaled nucleon-nucleon
(p-p) or nucleon-nucleus (p-A) collisions due to the screening properties of a deconfined
partonic medium, changes in the shape of the invariant mass spectrum of emitted dileptons
due to the different production mechanism (qq annihilation vs. ππ → ρ, ω, φ → e+e−)
where the characteristic peaks caused by the intermediate vector meson states should dis-
appear and the enhancement of strange particles in the finally measured particle yield due
to the relatively abundant creation of strange quarks in a QGP.

None of these signals has given the unambiguous proof researchers had hoped for. The rea-
son is that different models could be built that explain the measured data with and without
the creation of a QGP. But there is a deeper reason for this: Heavy-ion collisions are very
dynamical events with several evolution phases following each other and involve physical
processes which are not well known and cannot easily be inferred from p-p or p-A colli-
sions. Therefore, a model which describes e.g. the dissociation of charmonia inside the
medium must also contain a part in which the evolution of the medium is described. Mod-
els involving different mechanisms of charmonium dissociation: screening of the binding
potential and dissociation by collisions with hadrons can still describe the same data well
if the medium evolutions in both models has been chosen differently. In many models, the
medium evolution was tuned to describe the data, naturally resulting in different medium
evolutions for different processes under consideration.

Obviously, this does not lead to progress in the search for the creation of the QGP. Rather,
research should be organized in three distinct steps:

• First, the properties of the QGP and hot hadronic matter have to be assessed in an
ideal situation, i.e. for an infinite, static system. In this way, a foundation can be
established regarding signals to be expected from this phase of matter and an input
for dynamical models, e.g. in terms of the EoS, can be provided. Naturally, progress
along this front can only be made in theory, notably in lattice simulations of QCD.

• Once the properties of the QGP and ordinary hadronic matter are known in an ideal-
ized situation, this information must be incorporated into a model of the conditions
realized in experiment. As this cannot be done from first principles, a subset of all
available data has to be used as a guideline for modelling the medium evolution.
For that purpose, preferably data most closely connected to the bulk of the produced
matter, i.e. hadronic observables should be chosen.

• Only after the evolution of the medium has been fixed, processes like dilepton emis-
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sion or charmonium suppression can be calculated in the framework given by the
medium evolution specified before. This ensures that the resulting model is consis-
tent with all available data and eliminates ambiguities as much as possible.

The aim of the present work is to contribute to the quest for the QGP by following the
program outlined above. We will not do this by trying to construct a model based entirely
on hadronic degrees of freedom and infer the existence of the QGP from the failure of such
a model — if we do not expect the unexpected, we will not find it; instead, we rather make
use of the information about the QGP coming from lattice calculations and incorporate it
from the beginning into a model of fireball evolution to show that the existence of the QGP
follows naturally from the creation of a thermalized system at present accelerator energies
and is consistent with the data obtained so far. This is, of course, not to be considered as a
proof, but certainly as circumstantial evidence at the present level of empirical information.

Chapters 2 and 3 discuss properties of a static QGP. The first of these two chapters intro-
duces finite temperature field theory, the appropriate framework in which to calculate the
thermodynamics of hot QCD. Perturbative and non-perturbative calculation schemes are
shown and their abilities assessed carefully. Chapter 3 then turns to the discussion of the
results obtained with these techniques — this will mainly involve a discussion of the phase
transition from ordinary hadronic matter to the QGP, which is manifest in a pronounced
change of thermodynamical properties, the (de)confinement transition and chiral restora-
tion.

We then turn towards a discussion of the conditions realized in current heavy-ion collision
experiments. In chapter 4, we introduce the relevant terminology, estimate orders of mag-
nitude and then go qualitatively through the physics of all evolution phases of the system
created in such a collision. Chapter 5 takes up the thread as we try to quantify the state-
ments made in chapter 4 by presenting experimental results on hadronic observables along
with their interpretation in terms of the space-time geometry of the fireball. In the second
part of the chapter, we combine this information with the thermodynamic properties of the
QGP discussed in chapter 3 to construct a simple but self-consistent model of the fireball
evolution.

This model then serves as the baseline for the next chapters: Using the medium evolution,
we discuss the relative abundance of hadron species formed after the collision in chapter
6, the emission of dileptons from the fireball in chapter 7, the emission of real photons in
chapter 8 and the dissociation of charmonia in chapter 9. All four calculations are compared
to data and the potential of the observables to serve as a signal for the creation of the QGP
is discussed in some detail.

In the last chapter, we review the main results and draw conclusions. Finally, a brief outlook
to possible extensions of the model framework will be given. Several short appendices
serve to complement the material presented in the main body of the text.
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Chapter 2

BASICS OF THERMAL FIELD

THEORY

In order to describe the physics of heavy-ion collisions, we will generally start from the
assumption that we are dealing with a system in local thermal equilibrium unless stated
otherwise. This assumption can not be strictly proven, but there are hints from both theory
and experiment that early thermalization of the produced matter is possible and most likely
realized in collisions at current beam energies.

The appropriate tool to calculate the properties of a thermalized system of strongly inter-
acting particles is thermal field theory (TFT). In the following, we introduce the main con-
cepts and techniques of TFT which will be of importance for the discussion of the physics
of heavy ion collisions in later chapters. The presentation here mostly follows [1] and [2].

2.1 BASIC RELATIONS

A large ensemble of interacting particles in equilibrium can be characterized by macro-
scopic variables such as the temperature T , its volume V or its chemical potential µ (we
define also the inverse temperature β = 1/T ) which emerge from a statistical averaging
procedure over microscopic dynamics. Key quantity for the properties of such an ensemble
is the partition function

Z(T, V ) = Tr exp[−βH ] =
∑

n

〈n|e−βH |n〉. (2.1)

Here, H is the Hamiltonian of the ensemble and the sum extends over a complete set of
physical eigenstates. The statistical average of any operator O in this ensemble is then

5
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obtained using

〈O〉β =
1

Z TrO exp[−βH ] =
∑

n

〈n|Oe−βH |n〉. (2.2)

(In the presence of conserved quantum numbers Q which can be treated within the grand
canonical ensemble, that is, which need to be conserved on average, exp[−βH ] has to be
replaced by exp[−(βH − µQQ)] with the appropriate chemical potential µQ.)

The propagation of particles in the heat bath is obtained by evaluating the thermal average
of the Green’s function

〈G(x, x′)〉β = 〈T φ(x)φ(x′)〉β =
∑

n

〈n|G(x, x′)e−βH |n〉, (2.3)

where T denotes the time-ordered product. (For simplicity, we consider first the case of a
non-interacting scalar field φ). Using the operator identity

T φ(x)φ(x′) = 〈0|T φ(x)φ(x′)|0〉+Nφ(x)φ(x′), (2.4)

one immediately observes that in addition to the first term, the usual T = 0 propagator,
the normal-ordered product N does not vanish in the heat bath due to the presence of the
term

∑
n〈n| . . . |n〉. Decomposing the field φ into the usual set of creation operators a†k

and annihilation operators ak, the new contribution is

2

∫
d3k

(2π)3
1

2Ek
eik(x−x

′)〈a†kak〉β = 2

∫
d3k

(2π)3
1

2Ek
eik(x−x

′)fB(Ek), (2.5)

where we have introduced the Bose-Einstein distribution fB(Ek) = 1
eβEk−1

, as this is the
average number of particles in a state with energy Ek in a thermalized ensemble. The
propagator in momentum space can then be found as

DF (k) =
i

k2 −m2 + iε
+ 2πδ(k2 −m2)nB(k0). (2.6)

Here, nB(k0) = fB(|k0|). There is a new contribution to the propagator which describes
the on-shell propagation of particles from the thermal ensemble with the statistical prob-
ability of having the appropriate momentum. Thus, for the propagation of particles in a
thermal environment, one has to deal not only with virtual fluctuations (first term) but also
with thermal fluctuations (second term). Note that the second contribution breaks Lorentz
invariance due to the presence of k0 in the expression. The reason for this is the presence
of the heat bath which constitutes a preferred frame of reference. Introducing uµ, the four-
velocity of the heat bath, Lorentz invariance can be formally recovered by the substitution
k0 → kµu

µ.

The calculation for free fermion fields is similar and results in the thermal propagator

SF (k) = (kµγ
µ +m) ·

(
i

k2 −m2 + iε
− 2πδ(k2 −m2)nD(k0)

)
(2.7)

Here, nD(k0) = fD(|k0|) with the Fermi-Dirac distribution fD(k0) = 1
eβk0+1

. Again, we
find the presence of virtual and thermal fluctuations in the propagation of particles in the
heat bath as in the case of the scalar field.

2.2 PERTURBATIVE TECHNIQUES

Consider now the case of an interacting field theory. If the interaction is a small correction
to the free Hamiltonian, then a perturbative expansion in powers of the coupling constant
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can be performed. The framework is developed in close analogy with the T = 0 case as
follows:

First, we observe that there is a striking similarity between the statistical density operator
ρ = exp[−βH ] and the time evolution operator exp[iHt]. In fact, the statistical operator
can be interpreted as the evolution from 0 to β in imaginary time τ = it. Therefore, the
partition function can be expressed in terms of an Euclidean path integral. In the case of a
scalar field, this reads

Z(T, V ) =

∮
Dφ exp

(
−
∫ β

0

dτ

∫

V

d3xLE [φ(τ,x)]
)

(2.8)

with a restriction to periodic field configurations, φ(0,x) = φ(β,x). The corresponding
expression for full QCD reads

Z(T, V,m0, µ) =

∮
DAµDΨDΨexp

(
−
∫ β

0

dτ

∫

V

d3x
{
LEG + LEq (m0)− µΨ†Ψ

}
)

(2.9)
with LEG and LEq being the Euclidean versions of the Lagrange density for gluons and
quarks respectively (explicit expressions for LG and Lq are given in appendix A). For
fermionic fields Ψ, antiperiodic boundary conditions are required, Ψ(0, x) = −Ψ(β, x).

In close analogy to the derivation of Feynman rules in the T = 0 case, we can interpret
these expressions as generating functionals from which we can obtain the thermal 2-point
functions, if we add a source term j(x) to Eqs. (2.8) and (2.9) and differentiate with respect
to this source,

G(x, x′) =
1

Zβ
δ2Z[J ]β

iδj(x)iδj(x′)

∣∣∣∣
j=0

, (2.10)

where Z[J ]β emerges from e.g. Eq. (2.8) as

Z[J ] =

∮
Dφ exp

(
−
∫ β

0

dτ

∫

V

d3xLE [φ(τ,x)] + j(x)φ(x)

)
, (2.11)

with appropriate adaptions as in Eq. (2.9) for the QCD case. From this expression, dif-
ferent choices of the path going from an arbitrary time ti to ti − iβ now lead to different
calculational frameworks.

2.2.1 The imaginary time formalism

The simple choice of the direct path leads to the so-called imaginary time formalism. The
(anti)periodic boundary conditions of the fields then imply a discretization of imaginary
(Matsubara) frequencies in momentum space. The Feynman rules which can be derived
within this framework coincide with the ones at T = 0 if the following changes are imple-
mented:

Loop integrals have to be replaced as

∫
d4k

i(2π)4
→ 1

β

+∞∑

n=−∞

∫
d3k

(2π)3
, (2.12)

where the sum extends over the discrete frequencies in imaginary time. For the same
reason, the momentum conserving delta functions become

i(2π)4δ4(k) → β(2π)3δn,0δ
3(k) (2.13)
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The discrete Matsubara frequencies appear as

k0 → 2πi

β
(n+ ζ) (2.14)

with n running from −∞ to +∞ and ζ = 0 for bosons and 1/2 for fermions. In this rep-
resentation, the distinction between virtual (quantum) fluctuations and thermal fluctuations
is not evident from the form of the propagators but is implicit in the theory and becomes
apparent only after calculations have been performed.

2.2.2 The real-time formalism

The lack of the explicit separation of thermal and quantum fluctuations and the fact that
the imaginary time formalism has difficulties in dealing with dynamical quantities, such as
emission rates from a hot region, has given rise to the choice of a different path C in the
imaginary time plane connecting ti and ti − iβ. This path first goes along the real axis,
thus probing the evolution in real time, then into imaginary direction towards −ti − iσ,
returns parallel to the real axis until it finally reaches the final point ti − iβ (see Fig. 2.1).
In doing so, an unphysical parameter σ is introduced, which should not affect observables
in the end.

t

t −t

−t−i σ

t−i σ

t−i β

Im

Re t 

C4

C1

C2

C3

FIGURE 2.1: The path in the imaginary time plane leading to the real time formalism of
thermal field theory.

Eq. (2.11) can now be computed as in T = 0 field theory by a Gaussian integration. One
finds

Z[J ]β =const. · exp
(
−1

2

∫

C

d4x

∫

C

d4x′j(x)DF (x− x′)j(x′)

)

× exp

(
−i
∫

C

d4x

[
V

(
δ

iδj(x)

)]) (2.15)

where we have written the full Hamiltonian H as a sum of the free HamiltonianH0 and an
interaction potential V (φ), H = H0 + V (φ). It can be proven that in the limit t → ∞,
the free generating functional factorizes in a part corresponding to the sections C1 and
C2 of the path C and a second part corresponding to the vertical pieces C3 and C4. The
last part can be neglected as long as one calculates graphs with at least one external line
and the propagator DF (x − x′) is given by the free thermal propagator. In this way, the
discretization of frequencies along the imaginary time direction is avoided.

Labelling the source terms as j1(t) and j2(t − iσ) according to the section of C they live
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on, we can rewrite Z[J ]β as

Z[J ]β =const. · exp
(
−1

2

∫ ∞

−∞

d4x

∫ ∞

−∞

d4x′j(x)aDF (x− x′)abj(x′)b

)

× exp

(∫ ∞

−∞

d4x

[
V

(
δ

iδj1(x)

)
− V

(
δ

iδj2(x)

)]) (2.16)

with a summation over a, b = 1, 2. The propagator has now acquired a 2 × 2 matrix
structure, corresponding to propagation along C1, C2 and off-diagonal elements for the
transition between C1 and C2. We find a doubling of degrees of freedom, there is a ghost
field living on C2 with an unphysical imaginary time component. This, however, is es-
sential for the calculation of loop diagrams, as the contributions of this ghost field exactly
cancel out unphysical products of delta functions. Of course, only the field φ1 corresponds
to a physical quantity and can appear on the external lines of a diagram.

The explicit form of the propagator in momentum space for the scalar theory can be found
as

D11
F (k) =

i

k2 −m2 + iε
+ 2πδ(k2 −m2)nB(k0), (2.17)

D22
F (k) =

−i
k2 −m2 − iε

+ 2πδ(k2 −m2)nB(k0), (2.18)

D12
F (k) = eσk0 [nB(k0) + θ(−k0)]2πδ(k2 −m2), (2.19)

D21
F (k) = e−σk0 [nB(k0) + θ(k0)]2πδ(k

2 −m2). (2.20)

Here, the clean separation of quantum and thermal fluctuations is again manifest from the
beginning, different from the imaginary time formalism. For practical calculation, usually
σ = 0 (Keldysh-Schwinger prescription) or σ = β/2 (symmetrical choice) are used.

The matrix structure of the propagator leads to the following modification of the Feynman
rules:

• There are two types of vertices, (1) and (2). (1) Vertices correspond to the normal
T = 0 vertices, whereas (2) vertices are characterized by opposite sign and can only
be internal. These vertices couple the ghost fields φ2.

• D11 propagators connect (1) vertices, D22 propagators (2) vertices and the transi-
tions are given by D12 propagators connecting physical and ghost field.

• One has to sum over all possible combinations of internal vertices of type (1) and
(2).

• All propagators with at least one external leg have to be physical, that is, they have
to connect to a φ1 field.

The derivation of the propagators in the case of QCD can be done along the similarly;
it is in principle straightforward, though technically more involved. It turns out that the
2× 2 matrix structure of the propagators is also realized in QCD, therefore the above rules
regarding vertices of type (1) and (2) also apply.

The resulting propagator for quarks reads

S11
F (k) = (k/+m)

(
i

k2 −m2 + iε
− 2πδ(k2 −m2)nD(k0)

)
, (2.21)

S22
F (k) = (k/+m)

( −i
k2 −m2 − iε

− 2πδ(k2 −m2)nD(k0)

)
, (2.22)

S12
F (k) = (k/+m)

(
eσk0 [−nD(k0) + θ(−k0)]2πδ(k2 −m2)

)
, (2.23)
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S21
F (k) = (k/+m)

(
e−σk0 [−nD(k0) + θ(k0)]2πδ(k

2 −m2)
)
. (2.24)

The fact that gluons are gauge bosons causes some additional difficulties. First of all, a
gauge has to be chosen in order to do calculations. Here, the choice of a non-covariant
gauge poses no additional difficulties, as Lorentz invariance is broken already due to the
presence of the heat bath.

We already know from T = 0 field theory that a ’ghost’ field (the Fadeev-Popov ghosts)
has to be introduced into the theory to cancel unphysical degrees of freedom appearing
in the perturbative expansion of LQCD (see e.g. [3]). This is a general feature of non-
Abelian gauge theories. In finite temperature field theory, we encounter exactly the same
problem. Both T = 0 and thermal part of the propagators develop unphysical degrees of
freedom (longitudinal and time-like gluons) which need to be cancelled out by the T = 0
and thermal part of the ghost propagator.

However, recall that thermal expectation values of an operator O are calculated by taking
the trace over physical states |n〉,

〈O〉 = Z−1
∑

n

〈n|eβHO|n〉 (2.25)

with the partition functionZ =
∑

n〈n|eβH |n〉, therefore the thermal part of the propagator
is directly associated with particles in the physical states only. Consequently, only physical
degrees of freedom can acquire a thermal part of the propagator while unphysical degrees
of freedom never come to equilibrium. Therefore, thermal contributions from ghosts and
unphysical degrees of freedom can be set zero from the beginning [2]. In doing so, the
gauge propagator can be separated into a T = 0 part (using σ = 0 and Feynman gauge)

Dµν
F |T=0 = δab(−gµν)

(
i

q2+iε 2πθ(−q0)δ(q2)
2πθ(q0)δ(q

2) −i
q2−iε

)
(2.26)

and a thermal part

Dµν
F |T 6=0 = δabP

µν
T 2πδ(q2)nB(q0)

(
1 1
1 1

)
(2.27)

with the the transverse projection tensor P µνT as defined in Eq. (C.11). In this scheme, no
contributions of thermal ghosts need to be taken into account. The structure of vertices,
apart from the rules regarding (1) and (2) vertices is identical to the one of T = 0 QCD.

2.3 THERMAL SELF-ENERGIES

Self-energies of particles in the medium are important quantities, as they reflect the modi-
fication of particle properties caused by the interaction with the heat bath. Specifically, one
would like to know the ’physical’ self-energy Π, i.e. the one that modifies the T = 0 part
of the propagator and corresponds to a modification of particle mass and decay width:

i

k2 −m2 + iε
→ i

k2 − (m2 +Π) + iε
(2.28)

The matrix structure of the propagator introduces some complication into the calculation
of Π, as there as there is now not only a self energy corresponding to the T = 0 part of
the physical D11 propagator but also self-energies corresponding to the thermal parts of
this propagator and additional ones for the D12, D21 and D22 propagators. This makes the
extraction of a physical self energy Π seem difficult. However, one can proceed as follows:
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The free propagator matrix DF can be diagonalized by a matrix U(k0) such that

DF = U(k0)
(
D0
F 0

0 D0∗
F

)
U(k0) (2.29)

with the T = 0 propagatorD0
F and e.g.

U(k0) =
(√

1 + nB(k0)
√
nB(k0)√

nB(k0)
√
1 + nB(k0)

)
(2.30)

for the symmetric choice σ = β/2.

The Dyson equation for the full propagator becomes a matrix equation in the real time
formalism

D = DF +DF (−i)ΠD (2.31)

with a thermal self-energy matrix Π. Hence the full propagator is also diagonalized by U ,
implying

−iΠ(k) = U−1

( −iΠ(k) 0

0 (−iΠ(k))∗
)
U−1 (2.32)

where a single scalar function appears, the physical self-energy Π.

Solving the matrix equation, one can derive relations between matrix elements of the full
self-energy matrix Π and the physical self-energy Π:

ReΠ(k) = ReΠ11(k), (2.33)

ImΠ(k) =
ImΠ11(k)

1 + 2nB(k0)
, (2.34)

ImΠ(k) =
iε(k0)

2

1

fB(k0)
Π12(k) (2.35)

for the Keldysh-Schwinger choice σ = 0, or

ImΠ(k) =
sinh(β|k0|/2)

−i Π12(k) (2.36)

for the symmetric choice σ = β/2. Thus, in order to find the physical self energy Π,
it is sufficient to know real and imaginary parts of certain matrix elements of Π only.
The expression for fermion self energies follow from the replacement nB → −nD in
Eqs. (2.33) - (2.35).

As a simple example, the decay width Γ of a scalar particle φ immersed in a heat bath can
be found from the self energy of the D12 propagator as

−mφΓ = ImΠ(mφ) =
sinh(β|mφ|/2)

−i Π12(mφ). (2.37)

2.4 HARD THERMAL LOOP RESUMMATION

From the form of the propagators in the real time formalism, Eqs. (2.17) – (2.20) it is
immediately clear that there are no new ultraviolet divergencies introduced by the thermal
part of the propagators, since large momenta in loop integrals are exponentially suppressed
by the distribution functions fB or fD. The only place where these divergencies can appear
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is the normal T = 0 part of the propagators, and these divergencies can be treated within
the usual framework of renormalization.

The infrared behaviour of naive perturbation theory however can be more dangerous. At
T = 0, the only scale that enters a massless, renormalizable theory is the renormalization
scale Λ. If one considers the calculation of e.g. a self-energy correction to a propagator,
dimensional counting and Lorentz invariance dictate Π(p) = g2p2f(p2/λ2), where f is a
dimensionless function. Thus, for small g, the correction is small compared to the scale set
by the external momentum p even if p is soft and the self-energy can be resummed in the
propagator.

This is not so at finite T : Here a new scale is introduced by the temperature and loop
integrals for soft external momenta with p < T are now dominated by momenta k ∼ T
due to the on-shell character of thermal fluctuations propagating in the loop. In this case,
dimensional counting leads to a correction Π ∼ g2T 2, so for soft external momenta ∼ gT ,
the correction becomes as large as the inverse bare propagator and naive perturbation theory
breaks down. A resummation of the dominant collective effects becomes crucial.

The Hard Thermal Loop (HTL) resummation scheme improves the infrared behaviour of
the theory by a consistent resummation of all loops dominated by hard thermal fluctuations
[4]. For hard external momenta, p ∼ T , no modification of the propagators need to be
taken into account, but for soft momenta p ∼ gT , resummed propagators and vertices have
to be used from the start.

The effects of hard thermal loops also appear in gauge theories where the gauge bosons
acquire a thermally generated mass. It can be proven that in this case the HTL resummation
scheme is still manifestly gauge invariant, thus a consistent treatment of QCD within this
scheme is possible, though very involved.

2.5 LATTICE TECHNIQUES

If the coupling of the theory is not small (which is most likely the case for QCD in the
energy regime of current heavy-ion experiments), a perturbative treatment of Eq. (2.9) is
impossible. Instead, the partition function can be calculated numerically using Monte-
Carlo techniques by evaluating it on a discrete lattice of space-time points. This is possible
since one is dealing with an Euclidean path integral, where the dominant region can eas-
ily be identified since strong fluctuations are exponentially damped, unlike in Minkowski
space, where the dominant contribution to the path integral emerges from the interference
pattern of oscillating amplitudes.

The introduction of a lattice spacing a then automatically introduces an ultraviolet cutoff,
thus regularizing any divergences appearing in the continuum. At the same time, Lorentz
invariance is broken. The total extension of the lattice is given by the number of spatial
N3
σ and temporal Nτ sites. The volume and temperature of the simulation can then be

identified as

V = (Nσa)
3 and β = Nτa. (2.38)

The total size of the lattice hence defines an infrared cutoff.

Fermion fields are defined on the grid of space-time points given by the lattice and the
gauge fields live on the links connecting adjacent lattice sites x and x + aε̂, where ε̂ is a
unit vector along one of the three spatial or the temporal axis.
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2.5.1 Gauge fields

The link variables corresponding to the gauge fields are defined as

Uµ(x) = P exp

(
ig

∫ x+aε̂

x

dx′µA
µ(x′)

)
(2.39)

with P denoting path ordering along the integration contour. As these links transform ho-
mogeneously under a gauge transformation,Uµ(x) → G(x)Uµ(x)G

†(x+aε̂), the simplest
gauge invariant object that can be constructed is a closed set of four links around a lattice
plaquette

Uµν = Tr[Uµ(na)Uν(na+ ε̂1a)U
†
µ(na− ε̂2a)U

†
ν (na)]. (2.40)

This is already a discretized approximation to the gauge field action (up to errors in powers
of the lattice spacing a which vanish in the continuum limit), since

ReUµν = Nc −
Ncg

2a4

2
GµνGµν +O(a6). (2.41)

Summing over all lattice sites, the so-called Wilson action for the gauge fields is obtained
as

SWG =
2Nc
g2

∑

n,0≤µ<ν≤3

1− 1

Nc
ReUµν . (2.42)

Since this expression has no dimensionful parameter, the lattice spacing a enters via renor-
malization group arguments demanding that physical quantities remain unchanged under a
change of a. The emerging renormalization scale parameter Λ can then be determined by a
lattice computation of an experimentally known quantity, typically the mass of the ρmeson
or the string tension σ of the colour field connecting two static sources.

2.5.2 Fermion fields

The implementation of chirally symmetric fermions in lattice calculations is difficult. The
naive implementation of the discretized version of the kinetic term in Lq , ∂µΨ(x) →
(Ψ(x+ ε̂)−Ψ(x− ε̂))/(2a) leads to a doubling of the particle content for each dimension
as compared to the continuum theory. The reason is that the propagator for a massless
fermion has not only a pole at p = 0 but also at the end of the first Brillouin zone pa = π,
leading to 24 = 16 fermions for a typical lattice simulation.

One possible solution is the addition of a mass term for the ’doubler’ fermions that diverges
as 1/a, effectively eliminating them in the continuum limit. This prescription, leading to
so-called Wilson fermions, however, violates chiral symmetry to O(a), rendering lattice
simulations of quantities such as the chiral condensate 〈ΨΨ〉 difficult.

An alternative way of dealing with the doublers while retaining a continuous subgroup of
chiral symmetry at finite a is to distribute the Dirac spinors over several lattice sites, thus
reducing the number of doubling fermions to Nf/4. This leads to the so-called Kogut-
Susskind or staggered fermions.

In general, the simulation of dynamical fermions on the lattice is computationally about a
factor 100 more involved than the simulation of gauge fields. Therefore, many lattice re-
sults have been calculated for static fermion sources and dynamical gluons only, which
in perturbation theory corresponds to neglecting any virtual qq pairs in internal loops
(’quenched approximation’). This may not be too bad in cases where the dynamics is
dominated by gluons.
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Chapter 3

PROPERTIES OF THE

QUARK GLUON PLASMA

Based on the observation that the coupling constant of QCD becomes weak at large energy
scales (’asymptotic freedom’) and that the average momentum of a particle in a thermalized
system with temperature T is given by 〈p〉 ≈ 3T , it was predicted that at large enough
temperature T a perturbative treatment of thermalized QCD in terms of a quasifree quark
and gluon gas should be appropriate. Specifically, the coupling should behave as

αs(T ) =
12π

β0 log(T 2/Λ2
T )

with ΛT ' ΛQCD/3 ' 100MeV (3.1)

(see appendix A for the scale dependence of the QCD coupling, also e.g. [5]). This state of
quasifree quark and gluon matter has been named Quark Gluon Plasma (QGP), as it shares
some properties with ordinary plasmas. The transition from normal hadronic hot matter to
the QGP is supposedly accompanied by three characteristic phenomena:

• As the relevant degrees of freedom in a hadronic gas and the QGP are fundamentally
different, distinct changes in thermodynamic properties should occur at a transition
temperature TC . In simple model calculations, one finds a first order phase transition
with a corresponding discontinuity in the T -dependence of the energy density asso-
ciated with a latent heat. This result, however, changes once one treats the interacting
system more carefully. For full QCD, the order of the transition depends crucially on
the masses of the active quark flavours. Present knowledge favours a crossover, but
a weak first order transition cannot be excluded. These issues are covered more in
depth in section 3.1.

• A phase transition is frequently associated with the restoration of a spontaneously
broken symmetry. In the strict sense, an order parameter can be chosen for the QCD
Lagrangian only in the limit mq = ∞ (purely gluonic theory) or mq = 0 (chiral

15
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limit). For a purely gluonic theory, one expects a confinement/deconfinement transi-
tion with the Polyakov loop L (see Eq. (3.11) as an order parameter. The deconfined
phase is characterized by colour charges which can move freely over large distances,
as the confining colour forces are screened in the hot partonic medium. This can be
observed in the temperature dependent changes of the potential between two static
coloured sources. The (de)confinement transition will be covered in greater detail in
section 3.2.

• In the case mq = 0, the relevant order parameter is given by the chiral condensate
〈ΨΨ〉. The chiral symmetry of the QCD Lagrangian in the absence of quark masses
is spontaneously broken in the ground state, resulting in the large mass of constituent
quarks, Mq ∼ 300 MeV [6]. The chiral transition corresponds to a ’melting’ of
the vacuum structure resulting in a vanishing chiral condensate and, physically, a
restoration of the constituent quark masses to current quark masses of ordermq ∼ 10
MeV. The chiral symmetry restoration is the main topic of section 3.3.

In spite of the fact that neither the Polyakov loop nor the chiral condensate can be regarded
as order parameters in the strict sense, both transitions are relevant for the physics at finite
but small quark masses and are observed in lattice QCD simulations. The goal of this
chapter is to elaborate on these properties and especially introduce the thermodynamics of
the QGP in order to prepare the ground for the description of heavy-ion collisions in terms
of equilibrated hot matter. This will be done with the help of the tools of thermal field
theory which have been introduced in the last chapter. A more detailed treatment of several
of the topics of this chapter can be found in [7].

3.1 THERMODYNAMICS OF THE QGP

3.1.1 The ideal quark-gluon gas

The simplest ansatz for the QGP thermodynamics is to assume that the temperature is
sufficiently high so that the interaction can be neglected. In this case, one finds a free gas
of quarks and gluons. Pressure p, energy density ε and entropy density s of such a free gas
can be calculated from the thermal distribution functions fB(E

g
k) for gluons with energy

Ek and fD(Eik) for massless quarks of flavour i and energy Eik as [8]

p(T ) =
dg
6π2

∫ ∞

0

dkfB(E
g
k)
k4

Egk
+

Nf∑

i=1

2Nc
3π2

∫ ∞

0

dkfD(E
i
k)
k4

Eik
−B(T ), (3.2)

ε(T ) =
dg
2π2

∫ ∞

0

dkk2fB(E
g
k)E

g
k +

Nf∑

i=1

2Nc
π2

∫ ∞

0

dkk2fD(E
i
k)E

i
k +B(T ) (3.3)

and

s(T ) =
dg

2π2T

∫ ∞

0

dkk2fB(E
g
k)

4
3k

2

Egk
+

Nf∑

i=1

2Nc
π3T

∫ ∞

0

dkk2fD(E
i
k)

4
3k

2

Eik
. (3.4)

Here, we have introduced the ’bag pressure’ term B(T ) which corresponds to the amount
of energy necessary to ’melt’ the QCD vacuum structure and allow free quarks and gluons
to exist. For massless particles, these expressions can be solved approximately and one
finds e.g. for the energy density

ε(T ) ≈ π2

30
(dg +

7

8
dq)T

4 +B(T ). (3.5)
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The degeneracy factors dg and dq evaluate as dg = 2(N2
c − 1) = 16 for gluons and

dq = 2 · 2 · NcNf = 24 for two light flavours. Thus, the system shows completely
distinct properties from those of a massless free pion gas, which should be an approximate
description of the QCD thermodynamics at low temperatures. There one finds

εT =
π2

30
dπT

4 (3.6)

with a degeneracy factor dπ = 3. There is a huge difference between Eq. (3.5) and Eq. (3.6)
due to the drastically different number of active degrees of freedom. Using p = 1

3ε(− 4
3B),

one can use the T = 0 bag pressure B(T = 0) = 100 MeV/fm3 as obtained in bag model
descriptions of hadrons and equate pπ(T ) and pQGP (T ) to get an estimate for the favoured
phase as a function of temperature. One finds that at a temperature of TC ≈ 180 MeV the
transition from the pionic phase to the QGP phase should occurs. Evaluating the energy
density at this temperature, one finds a first order transition with a huge latent heat of 2
GeV/fm3 (see e.g. [9]).

Naturally, this is an oversimplified treatment of both the hadronic and the QGP phase. The
scale of 180 MeV is large enough for other hadronic states besides pions to be thermally
excited. Even the contribution of heavy resonances, such as the ∆, can not be neglected,
as the huge degeneracy factor d∆ = 32 partially compensates the exponential suppression
introduced by its large mass in the distribution function f∆

D (TC).

Considering the QGP phase above TC , one finds that the average momentum scale 〈p〉 =
3TC ≈ 600 MeV is by no means a perturbative scale where one could expect the coupling
constant to be small, therefore interactions cannot be neglected and the description in terms
of free particles is bound to fail. In order to deal with this, a more careful treatment of the
QCD thermodynamics is mandatory.

3.1.2 Perturbative QCD thermodynamics

Assuming a sufficiently large temperature so that αs can be considered small, the perturba-
tive techniques of thermal field theory described in chapter 2 can be used to calculate the
properties of weakly interacting partonic matter in an expansion in powers of the coupling
g. The naive expansion scheme, however, is bound to fail.

Scales in the plasma

In order to see this failure of perturbation theory, consider for the time being a purely
gluonic theory. For massless gluons, there is no infrared cutoff, and this is at the origin
of the problem once one considers degrees of freedom of the gluon field. The average
fluctuations of the gluon field A can be obtained from

〈A2〉 ≈
∫ Λ d3k

(2π)3
fB(T )

Ek
. (3.7)

Here, we consider the fluctuations entering the theory at a scale Λ. This scale can be set e.g.
by the momentum of a particle propagating through the medium with momentum k ∼ Λ.
The fluctuations then enter as a correction to the propagator at a scale gA (A =

√
〈A2〉),

which has to be small compared to k in order for perturbation theory to give meaningful
results. We can now evaluate Eq. (3.7) for three different momentum regimes [10]:

• For ’hard’ degrees of freedom, k ∼ Λ ∼ T . The momentum integration in Eq. (3.7)
is cut off by the Bose-Einstein distribution fB(T ) at a scale T where the dominant
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contributions to the integral come from. Thus, 〈A2〉Λ=T ∼ T 3

T ∼ T 2. The correc-
tion entering the propagator is then gA ∼ gT , which is indeed a small scale if g is
sufficiently small. Therefore, for the hard degrees of freedom in an interacting glu-
onic system, perturbation theory can indeed be applied and gives small corrections
to particle properties.

• For ’soft’ degrees of freedom, we assume that the (small) scale is set by k ∼ Λ ∼ gT .
In this case, we can expand the Bose-Einstein distribution fB(T ) = 1

exp[Ek/T ]−1 ≈
T
Ek

. The integral is cut off by the scale Λ ∼ gT , so we find 〈A2〉Λ=gT ∼ gT 2. In this

case, the correction entering a propagator evaluates to gA ∼ g3/2T < gT , which is
still a small scale for sufficiently small g. Thus, in this case, the fluctuations are of a
scale comparable to the propagating field excitation, but their correction can still be
treated perturbatively — we are not dealing with plasma particles any more as in the
case of hard degrees of freedom but rather with soft, collective excitations.

• For ’ultrasoft’ degrees of freedom, we consider a scale k ∼ Λ ∼ g2T . In analogy
to the previous case, we may expand fB(T ) and cut the integral at a scale Λ = g2T .
In this case we obtain for the scale of the field fluctuations 〈A2〉Λ=g2T = g2T 2.
The fluctuation A ∼ gT is of a larger scale than the one of the field excitation
g2T . Furthermore, the correction to the propagator is gA ∼ g2T ; it enters at the
same scale, a perturbative expansion is impossible even if g is small, as all possible
diagrams enter at the same order in g. These ultrasoft degrees of freedom can be
identified with essentially unscreened chromomagnetic fluctuations.

Unlike in a scattering process, where the scales are set by the incoming momenta, all scales
enter in a quantity like the partition function. Therefore, a perturbative expansion can be
started, but higher orders in g do not only give corrections to the leading order but also
pick up qualitatively new phenomena — in the first place the corrections due to collective
excitations, which must be consistently resummed. As soon as the expansion resolves the
magnetic fluctuations, the perturbative series breaks down eventually, regardless of the size
of g. Magnetic fluctuations start entering at O(g4), but the divergencies can be regularized
in this order by introducing a magnetic mass mg ∼ g2T . This does not cure the problem
— at O(g6), infinitely many diagrams contribute even with the introduction of this mass
term.

Standard perturbation theory

This is manifest in a calculation of the free energy F (T ) in pure SU(3) gauge theory [11].
The expansion in powers of g reads:

F (T ) = F0(1− 0.095g2 + 0.12g3 + [0.212− 0.086 log(1/g)]g4 − 0.082g5). (3.8)

Even for a small coupling, the series shows bad convergence. For temperatures of interest,
T ∼ TC , g is of O(1) and the series oscillates and even overshoots the ideal gas limit at
order g3. In order to reach convergence, asymptotically high temperatures T ∼ 1010TC
have to be considered, which are clearly without any practical relevance. At O(g4), ultra-
soft magnetic fluctuations are picked up by the expansion, resulting in infrared divergencies
which can be regularized by the introduction of a magnetic screening mass ∼ g2T . This
mass, however, gives contributions to O(g6) from diagrams with an arbitrary number of
loops. The presence of terms absent in any naive expansion scheme (∼ g3,∼ log(1/g)g4)
is an additional indication that the loop expansion gets sensitive to qualitatively new physics
from order to order and careful procedures have to be carried out to consistently treat those
contribution.
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The obvious importance of collective plasma effects indicates that the degrees of freedom,
around which a perturbative expansion is carried out, should not be bare particles, but rather
’dressed’ quasiparticles which take into account the interaction with the medium from the
beginning. The resulting series in g has then to be treated consistently.

Approximately self-consistent HTL perturbation theory

Such a perturbative expansion employing the full HTL spectral representation has been
carried out in [12]. The result can be seen in Fig. 3.1, where the pressure of an interacting
gas of gluons is shown. The resulting EoS is comparable with data obtained in lattice simu-
lations (see next section), this agreement however is in a temperature region where g is not
small and the perturbative approach is questionable from the beginning. The temperature
dependence of the pressure in this approach is, apart from the trivial T 4 dependence, en-
tirely governed by the running αs(T ), since there is no scale in the problem besides ΛQCD.
The resummation procedure only affects the normalization. The results of the calculation
are shown as a band, as there is an uncertainty in the approach regarding the precise value
of the renormalization point, which is of orderO(T ), but has been chosen between πT and
4πT in order to estimate the uncertainty attached to this choice. This may partially explain
the description of the data in spite of the fact that the coupling is not small — there is no
strong dependence on T visible in the data for T > 3TC,

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

p/T4

T/Tc

(1x1) 
(1x2) 

RG 
(1x2)tad 

FIGURE 3.1: Approximately self-consistent HTL perturbation theory result for the pressure
of hot gluonic matter [12] (shaded band) vs. lattice results, calculated with different actions
[13–16]. The small arrow in the upper right indicates the ideal gas value.

3.1.3 Lattice simulations

In lattice simulations, information on the QCD thermodynamics can be obtained indepen-
dent of assumptions about the smallness of the coupling g. Therefore, these simulations
are up to now the only reliable source of information about the properties of hot partonic
matter in the temperature region of interest for current heavy-ion experiments.

For pure SU(3) gauge theory, lattice simulations have been carried out and reached a high
level of accuracy, allowing a reliable continuum extrapolation. The resulting EoS is shown
in Fig. 3.2. A first order phase transition is observed at a temperature TC = 271± 2 MeV.
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FIGURE 3.2: The EoS of pure SU(3) gauge theory as obtained in lattice simulations [14]
as a function of T/TC . The dashed band indicates the presence of a latent heat. The dashed
line corresponds to the ideal gas limit. The error bars at 2TC are a measure for statistical and
systematic uncertainties.

Lattice calculations with dynamical quarks are computationally more involved and the ef-
fort increases even more for small quark masses. For that reason, the thermodynamics of
full QCD is not known with the same level of accuracy as the one for SU(3) gauge theory.
At present, the mass of the pseudoscalar Goldstone boson on the lattice is still of order 500
MeV or larger, a scale well above the pion mass. This fact makes the lattice calculations
unable to contribute to the knowledge of the thermodynamics in the hadronic phase and
makes an extrapolation towards realistic quark masses mandatory if the results of these
calculations is to be used to describe the physics of heavy-ion collisions.

The result of calculations with dynamical quarks depends on the number of quark flavours
involved. In general, the transition temperature TC is lowered if more flavours are included.
This is immediately obvious from the simple considerations for the ideal quark-gluon gas
— the more degrees of freedom enter the thermodynamics, the sooner the pressure gets
equal in both the hadronic phase and partonic phase and the transition occurs.

Simulations have been carried out for both two and three flavour QCD and the physical
case of two light and one heavy flavour. As an example, we present the dependence of the
energy density on T and Nf in Fig. 3.3. Note that the critical temperature TC is different
in each case: For the critical temperature in the chiral limit [18],

TC = (173± 8)MeV for Nf = 2 (3.9)

and
TC = (154± 8)MeV for Nf = 3. (3.10)

For the physical case of two light quarks and one heavy flavour, the transition temperature
remains close to the two-flavour value, indicating that the quark mass dependence of TC is
small. From Fig. 3.3, we can also infer that qualitative features of the thermodynamics ap-
pear to be rather insensitive to the number of flavours involved. Instead, the normalization
is changed, and these changes are essentially given by the change in the number of active
degrees of freedom as evident from the ideal gas case.

Two remarkable features are present in the equation of state (EoS) of SU(3) gauge theory
and also persist in the presence of dynamical quarks. First, even in the high temperature
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FIGURE 3.3: The energy density of thermal QCD for different numbers of active quark
flavours as found in lattice calculations [17]. The arrows on the upper right denote the ideal
gas limit.

limit T � TC , there is no indication that the ideal gas limit is reached. In perturbative
calculations, this is caused by the appearance of a thermal mass term for quarks and gluons
and motivates the interpretation of the lattice results in terms of quasiparticles even an T ≈
TC . Secondly, in all cases there is a strong variation in the thermodynamical parameters
in a narrow temperature region, suggesting the transition from hadronic matter (with a
comparatively small number of active degrees of freedom) to partonic matter (with a large
number of active degrees of freedom). In order for this interpretation to be valid, we must
proceed by examining the deconfinement transition in somewhat greater detail.

3.2 DECONFINEMENT

In the absence of thermodynamically active quarks (m = ∞), the QCD Lagrangian exhibits
a global Z(Nc) ε SU(Nc) center symmetry which is broken at high temperatures. The
associated order parameter is given by the gauge-invariant Polyakov loop (Wilson line)
winding around the imaginary time direction

〈L(x)〉 = 1

Nc
Tr

[
P exp

(
ig

∫ β

0

dτA0(τ, x)

)]
. (3.11)

Here, A0 is the time component of the gauge field Aµ.

The relation of this order parameter to the usual picture of deconfinement associated with
the breaking of the colour string between two coloured sources can be established as fol-
lows: The excess free energy Fq(T )− F0 of a single static quark source (located at x = 0
for simplicity) can be related to L via

〈L〉 = e−β(Fq(T )−F0) (3.12)

with

〈L〉 = 1

V

∫
d3x〈L(x)〉. (3.13)
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In the confined phase, colour sources are connected by a binding potential (a ’colour
string’) which increases linearly with the source separation, V (r) ∼ σr for large distances.
A colour source cannot be screened in this phase due to the absence of dynamical quarks,
as it is impossible to break the confining string by quark pair creation. Hence the free en-
ergy of such a source is infinite and 〈L〉 = 0. In the deconfined phase, the free energy
of a static quark antiquark source remains finite as the distance increases, indicating the
presence of a (perturbative accessible) short range potential but the absence of long-range
confining forces. Thus, 〈L〉 can acquire a nonzero value. In this case it is possible to relate
the Polyakov loop to the potential V (r, T ) acting between a static quark-antiquark pair via

eβVqq(r,T ) = 〈L(r)L†(0)〉. (3.14)

In the case of finite but small quark masses realized in QCD, the Polyakov loop ceases to
be an order parameter in the strict sense. Nevertheless, lattice simulations reveal a strong
change in the behaviour of 〈L〉 and the associated susceptibility χL = V (〈L2〉 − 〈L〉2)
within a small interval in T , indicating that there is indeed a phase transition happening at
a temperature TC (see Fig. 3.4).

FIGURE 3.4: The temperature dependence of the Polyakov loop and the associated suscep-
tibility χL in two-flavour QCD as obtained in lattice simulations [19].

3.3 CHIRAL SYMMETRY RESTORATION

In the limit of vanishing quark masses,mq = 0 (chiral limit), the QCD Lagrangian withNf

quark flavours exhibits a SU(Nf )V ⊗ SU(Nf )A symmetry. It is spontaneously broken in
the QCD ground state. The chiral condensate 〈ΨΨ〉 is a natural order parameter associated
with this symmetry breaking pattern.

The restoration of chiral symmetry is an entirely non-perturbative phenomenon. From the
T < TC region, the condensate can be calculated in chiral effective field theories and
the result of these calculations indicate indeed the correct qualitative behaviour [20], but
any perturbative expansion breaks down near the phase transition. Perturbative expansions
around quarks and gluons as degrees of freedom are unable to calculate the chiral conden-
sate. Only lattice simulations can contribute here, but the way quarks are treated on the
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lattice has to be chosen carefully, as chiral symmetry is explicitly broken by the implemen-
tation of Wilson fermions.

The behaviour of the chiral condensate rapidly changes in a narrow temperature region
even at finite quark masses as indicated by lattice results [19](see Fig. 3.5). The chiral
susceptibility

χm =
∂

∂m0
〈ΨΨ〉 (3.15)

exhibits a pronounced peak structure, indicating a transition from a chirally broken phase
to a restored one.

FIGURE 3.5: The temperature dependence of the chiral condensate and the associated sus-
ceptibility χm in two-flavour QCD as obtained in lattice simulations [19].

A priori, there is no reason why TLC , the temperature characterized by the peak position of
χL and TχC , the temperature extracted from the peak position of χm, should be the same.
However, it turns out in the lattice calculations that T LC = TχC = TC , where TC is the
point characterized by strong changes in thermodynamic properties of the system. This is
puzzling, as the deconfinement transition occurs even in the absence of quarks, though at a
different temperature TLC , so why should the presence of quarks force the two temperatures
to become the same?

In [21], a conceptual answer to the problem has been suggested. In the presence of light
quarks, the confining string between two static sources can break as soon as V (r) = σr =
2mq due to pair creation from the vacuum. This leads to

L(T ) ∼ e−2mqT (3.16)

for the Polyakov loop. So, for sufficiently small mq , the deconfinement transition should
disappear. On the other hand, in a chirally broken phase, the breaking of the string proceeds
via the formation of a meson, which in turn requires a mass of the order of twice the
constituent quark mass, 2Mq, for its creation. Therefore, the relevant scale should rather
be given by

L(T ) ∼ e−2MqT (3.17)

which allows for a confining potential over a much larger distance. For sufficiently large
Mq, the deconfinement transition is recovered even in the presence of quarks.
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The chiral transition would therefore trigger the onset of the deconfinement transition via
the string breaking mechanism in the transition from Eq. (3.17) to Eq. (3.16). The change
in the active degrees of freedom which is implied by the deconfinement transition would
then in turn result in an appropriate change in the thermodynamics of the system. This
scenario would provide a natural explanation for the coinciding transition temperatures.

3.4 A QUASIPARTICLE PICTURE OF THE QGP

3.4.1 Introduction

In order to apply the results of the previous section to the physics of heavy-ion collisions,
a suitable interpretation of all the lattice data gathered so far has to be found.

Recall that perturbative results obtained at very high temperatures indicate that the relevant
degrees of freedom are not given by bare quarks and gluons, but rather by dressed quasipar-
ticles. Simple phenomenological quasiparticle models inspired by the perturbative results
are very successful in parametrizing the thermodynamics observed on the lattice even at
T ≈ TC . Therefore we will use quasiparticles as degrees of freedom inside the QGP phase
in the following.

Several of such models have been suggested so far [34,112]. We will use the one described
in [7, 8].

3.4.2 The quasiparticle picture

Two key elements enter in the description of the quasiparticles. The first one is motivated
the appearance of a mass term for quarks and gluons in perturbative calculations. We
assume that quasiparticles are massive due to the interaction with the heat bath also at
T ≈ TC with a mass term that should approach the perturbative result for T � TC and
become small near TC . The latter assumption is motivated by the observation that at the
phase transition all correlation lengths should diverge, hence the screening masses should
become small.

This behaviour, however, introduces a mismatch as compared to the lattice data, where a
reduction of the entropy density near the phase boundary is observed, whereas a dropping
mass would lead to an increase of active degrees of freedom and in turn to an increase
of the entropy density. We attribute the observed reduction to confinement, assuming that
quasiparticles become bound into heavier states which vanish from the observed excitation
spectrum due to their large mass. This statistical reduction of degrees of freedom due to
confinement is parametrized in a phenomenological way.

We assume that the thermal excitations in the QGP can then be described by a dispersion
equation

E2(k, T ) = k2 +m2
i (T ). (3.18)

Here, k = |k|, and the subscript i labels the particle species: i = g for gluons and i = q
for quarks. mi(T ) stands for a thermal mass which is derived from the self-energy of
the corresponding particle, evaluated at thermal momenta E, k ∼ T . This is expected
to be meaningful as long as the self-energy is only weakly momentum dependent in that
kinematic region. Additionally, for a quasiparticle to be a meaningful concept at all, we
require the imaginary part of the self-energy, and hence its thermal width, to be small.
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The gluon mass, following ref. [8], becomes

mg(T )

T
=

√
NC
6

+
Nf
12

g̃(T,NC , Nf ) (3.19)

with the effective coupling specified as

g̃(T,NC , Nf ) =
g0√

11NC − 2Nf

(
[1 + δ]− TC

T

)γ
. (3.20)

NC and Nf stand for the number of colours and flavours, respectively. The functional
dependence of mg(T ) on T is based on the conjecture that the phase transition is weakly
first order or second order which suggests an almost powerlike behaviourm ∼ (T − TC)

γ

with some pseudo-critical exponent γ > 0. Setting g0 = 9.4, δ = 10−6 and γ = 0.1, the
effective mass (3.19) approaches the HTL result at high temperatures.

The thermal quark mass reads

mq(T )

T
=

√√√√√

mq,0

T
+

1

4

√
N2
C − 1

NC
g̃(T )




2

+
N2
C − 1

16NC
g̃(T )2 (3.21)

with the zero-temperature bare quark massmq,0. Note that in contrast to previous quasipar-
ticle models extrapolated from HTL calculations [34, 112], the thermal masses used here
drop as TC is approached from above. Of course, for T � TC , the near-critical behaviour
inferred in (3.20) ceases to be valid and the perturbative limit of mg(T ) and mq(T ) will be
recovered.
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FIGURE 3.6: The confinement factor C(T ) as a function of temperature for two light
flavours (mu,d = 0) and one heavier flavour (ms ' 170 MeV).

We parametrize the statistical reduction of active degrees of freedom due to confinement in
a function C(T ) which multiplies the particle distribution functions. The pressure of the
QGP system takes then the following form:

p(T ) =
νg
6π2

∫ ∞

0

dk [C(T )fB(E
g
k)]

k4

Egk
+

Nf∑

i=1

2NC
3π2

∫ ∞

0

dk
[
C(T )fD(E

i
k)
] k4
Eik

−B(T ).

(3.22)
Energy density ε(T ) and entropy density s(T ) follow accordingly (see [8] for details):
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ε(T ) =
νg
2π2

∫ ∞

0

dkk2[C(T )fB(E
g
k)]E

g
k+

Nf∑

i=1

2NC
π2

∫ ∞

0

dkk2[C(T )fD(E
i
k)]E

i
k+B(T ),

(3.23)

s(T ) =
νg

2π2T

∫ ∞

0

dkk2[C(T )fB(E
g
k)]

4
3k

2 +m2
g(T )

Egk

+

Nf∑

i=1

2NC
π2T

∫ ∞

0

dkk2[C(T )fD(E
i
k)]

4
3k

2 +m2
i (T )

Eik
.

(3.24)

Here, Egk =
√
k2 +m2

g(T ) and Eik =
√
k2 +m2

i (T ) for each quark flavour q = i. The

multiplicity νg = 16 counts the transverse gluonic degrees of freedom.

The explicit form of C(T ) is obtained by calculating the entropy density of the QGP with
the gluon mass (3.19) and the quark mass (3.21). Dividing the lattice entropy density by
this result yields C(T ). It can be parametrized as

C(T ) = C0

(
[1 + δc]−

TC
T

)γc
. (3.25)

For two light quarks and one heavy quark, the parameters take the values C0 = 1.16, δc =
0.02 and γc = 0.29 (see figure 3.6)1. The functionB(T ) is now uniquely determined from
mi(T ) and C(T ) up to an integration constant that is fixed by Gibbs’ condition pQGP =
phadr at TC .

Figure 3.7 shows the pressure, energy and entropy density for two light quark flavours
(mu,d = 0) and a heavier strange quark (ms ' 170 MeV) in our confinement model. We
will use this result to discuss the thermodynamics of the QGP phase in heavy-ion collisions
in the following.

3.5 THE EQUATION OF STATE

As we have already argued, the fact that the mass of the pseudoscalar Goldstone boson on
the lattice is still far from the physical pion mass renders the lattice results meaningless for
a description of the EoS in the hadronic phase below TC . Essentially all degrees of freedom
are suppressed due to their enhanced mass in such calculations.

On the other hand, a description in terms of a free hadronic resonance gas is hardly appro-
priate in the vicinity of a phase transition. Furthermore, there is good evidence that in the
environment of a heavy-ion collision the pion phase space is overpopulated as compared
to the equilibrium case due to the decay of heavy resonances (for a detailed discussion see
chapter 6). Thus, the required calculation of an interacting hadronic resonance gas (involv-
ing about 50 different states) and incorporating the dynamical overpopulation of pion phase
space is extremely involved.

1We mention that the proposed method relies on input from the lattice. Whereas high precision data exist in
the pure gauge sector, calculations with dynamical quarks are not yet in a satisfactory position to yield proper
continuum-extrapolated results with physical quark masses. We estimate that the results obtained within our con-
finement model may still change by 5-15% in the vicinity of TC once high statistics data are available. However,
this small correction does not influence the results of the following discussion.
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FIGURE 3.7: Pressure, energy density and entropy density for two light quark flavours
(mu,d = 0) and a heavier strange quark (ms ' 170 MeV) in the quasiparticle model [8].
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FIGURE 3.8: The interpolation between the EoS given by the quasiparticle model and the
point extracted by a fit to experimental multiplicity assuming an ideal hadronic resonance
gas, shown for conditions realized at SPS.

Therefore, we will proceed as follows: We adopt the picture of a free resonance gas at
the end of the evolution where the matter ceases to interact (the thermal freeze-out point).
At this point, a free gas should be appropriate. We use the experimentally measured en-
hancement of pions to determine a fugacity factor zπ which multiplies the Bose-Einstein
distribution for pions. We then interpolate smoothly between the EoS given above TC by
the quasiparticle model and the extracted ideal resonance gas point to find the EoS rel-
evant for the fireball evolution at all temperatures (it is unnecessary to know the EoS at
temperatures below 100 MeV, as this temperature region is not probed in current heavy-ion
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experiments). In Fig. 3.8, this procedure is indicated for collisions at the CERN SPS for
the entropy density s.



Chapter 4

HEAVY ION COLLISION

DYNAMICS

4.1 INTRODUCTION

Up to now, the only possibility to actually study QCD matter under extreme conditions
experimentally are (ultra)relativistic heavy-ion collisions. Here, heavy nuclei currently
accelerated up to energies of 200 GeV per nucleon collide and deposit an enormous amount
of energy inside a relatively small volume, thus creating the desired extreme conditions
regarding temperature and density for a short time of order 10−23 − 10−22 sec.

The hot fireball created in such a collision is not a static object but undergoes an accelerated
expansion, leading to a rapid cooling of the produced state and eventually a decoupling of
the strongly interacting matter, after which the produced particles cease to interact with
each other and move freely to the detector.

Any observable measured to probe the partonic phase is therefore likely to be mixed with
signals from the later hadronic phase. This is the main reason that the extraction of un-
ambiguous signals for the QGP is so difficult. It is therefore mandatory to understand the
dynamics of such a collision and the evolution of the resulting fireball in order to extract
any information about the early phases and the QGP.

Many obstacles have hindered a complete theoretical understanding of fireball evolution so
far. The properties of the presumably created partonic phase, which determine the first part
of the evolution, are not well known. The same is true even in the hadronic phase: Near the
phase boundary, properties of hadrons such as masses and decay widths are unknown and,
in fact, the very existence of the phase boundary makes perturbative calculations of those
properties impossible. A good part of the resonances which give a large contribution to the
dynamics of the early hadronic phase are poorly known even in the vacuum. The initial

29
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conditions cannot be assessed reliably: Shadowing and energy loss phenomena make an
extrapolation from p-p collisions difficult. Despite these problems, ongoing efforts both
from the experimental and theoretical side have resulted in a common picture of fireball
evolution, which is, at least qualitatively, accepted by most researchers in the field. It is
the goal of this chapter to introduce this standard scenario along with all of the relevant
timescales and to familiarize the reader with the terminology used to describe heavy-ion
collisions.

4.2 KINEMATICS AND GEOMETRY

Let us take a brief look onto the space-time geometry of fireball expansion and define some
useful quantities.

In the following, the beam axis will always be the z-direction of the coordinate system, any
momentum along this axis will be denoted by a subscript z (pz, kz . . . ). The z-direction
will also be called longitudinal direction, as it is the main expansion axis of a cylindrical
fireball.

Usually, rotational symmetry around the z-axis will be assumed, any distance in transverse
direction from the z-axis will then typically be called s or b, otherwise, the distinction
between the x and y axis will be made explicitly. Momenta perpendicular to the beam axis
will have a subscript t (pt. . . ).

4.2.1 Kinematic variables

As the energies of the incoming nuclei in a heavy-ion collision are typically much larger
than their rest masses, all velocities in the center-of-mass (c.m.) frame are close to c, the
speed of light. It is therefore convenient to introduce the rapidity of a particle with energy
p0 and longitudinal momentum pz as

y =
1

2
ln

(
p0 + pz
p0 − pz

)
, (4.1)

a quantity which is additive under Lorentz boosts, and, for v � c, is equal to the particle
velocity. Experimentally, two quantities have to be measured in order to identify a particle’s
rapidity, such as p0 and pz. Unfortunately, sometimes all that can be measured is the angle
of the particle relative to the beam axis. In this case, the pseudorapidity variable

η = − ln[tan(θ/2)] =
1

2
ln

(
p+ pz
p− pz

)
(4.2)

is used, where p = |p|. Obviously, η ' y if the momentum is large.

Transverse momenta are often described in terms of the transverse mass of a particle,

mt =
√
m2 + p2t , (4.3)

leading to the useful relations

p0 = mt cosh y, pz = mt sinh y and pz = pt sinh η (4.4)

The spacetime rapidity ηs is also commonly defined as

ηs =
1

2
ln

(
t+ z

t− z

)
(4.5)
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Under certain conditions (see below), it coincides with the rapidity.

For processes involving particles moving very near the speed of light, it is often convenient
introduce light cone coordinates. One defines positions r as

r+ = r0 + rz and r− = r0 − rz (4.6)

and momenta p
p+ = p0 + pz and p− = p0 − pz (4.7)

The transverse coordinates remain unchanged. Note that the metric tensor in light cone
coordinates is not diagonal any more: The invariant mass reads p2 = 2p+p− − p2⊥ and
p+(−) and r−(+) are conjugate variables.

4.2.2 Spacetime picture

What is the relevant region in spacetime for the expanding system created after the initial
collision? In order to answer the question, let us take a look at p-p collisions first. In the
c.m. frame, the rapidity of the incoming particles constitutes a kinematic limit for the ra-
pidity positioning of secondary particles. As the particle production in such a collision uses
a certain amount of energy, the actual distribution of the produced particles will generally
be narrower than allowed by the limit, in p-p collision typically one unit of rapidity lies
between the limit and the bulk of secondary particles (’rapidity loss’). This behaviour may
be even more pronounced in heavy-ion collisions where the number of binary collisions
per participant is larger than one.

It turns out that the distribution of particles across rapidity is, for large enough energies
(
√
s > 10GeV), approximately independent of y, giving rise to a ’plateau’ around midra-

pidity. Inside this rapidity window, the conditions are independent on the value of y. This
is called ’boost-invariance’.
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FIGURE 4.1: Particle trajectories emerging from the collision point and lines of constant
proper time.

Figure 4.1 depicts a situation where produced particles emerge from a small collision region
distributed evenly across some rapidity window (the region indicated inside the forward
lightcone). In this situation, particle rapidity and spacial position are connected and y
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and ηs coincide. In such a boost invariant scenario, the physical conditions depend only
on the time a particle has spent on its trajectory, not on choice of the specific trajectory.
Therefore, conditions along lines of constant proper time τ =

√
t2 − z2 are equivalent.

If one considers some time-dependent process such as decay of produced resonances, one
observes that due to time dilatation the process starts on the inside of the relevant volume
in space and moves outward.

When one goes from p-p collisions to heavy-ion experiments, the whole picture changes
somewhat. First of all, the collision need not be a central one, which leaves a subset of nu-
cleons not participating in the collisions. These so called spectator nucleons are of course
observed at the kinematic limit, as they do not participate in any energy consuming scat-
tering process. Only participant nucleons give rise to particle production. Secondly, there
is now a probability that a nucleon undergoes multiple scattering, a process absent in p-p
collisions. Therefore, one would expect an enhanced energy loss due to scattering and a
different rapidity loss as compared to p-p of the bulk of the produced matter. There are two
extreme cases describing this behaviour — the Landau scenario and the Bjorken scenario.

For low-energetic collisions, a complete stopping of the incoming nuclei due to multiple
collisions is expected, which leads to a very dense (baryon-rich), though not necessarily
hot system. The system thermalizes rather quickly and the resulting pressure leads to a
spherical expansion around the collision point. This is the Landau scenario.

For very high beam energies, multiple collisions cannot account for significant energy loss
as compared to the incident energy. Therefore the nuclei pass through each other without
noticeable deceleration. The energy loss due to the collisions is deposited as a ’vapour
trail’ of produced particles, filling the rapidity region between the target and projectile
fragmentation region. In contrast to the Landau scenario, in this so-called Bjorken scenario
the distribution of baryon number (linked to the target and projectile) and the main bulk of
particles forming the fireball (produced secondaries) is very different, leading to interesting
consequences. The expansion geometry here is more reminiscent of a cylinder, though
time-dilatation makes it impossible to observe this shape in any Lorentz frame. As in p-p
collisions, particles remain essentially on their initial trajectories given by their rapidity,
thus equating rapidity and spacetime rapidity.
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FIGURE 4.2: The schematic longitudinal dynamics of the Bjorken (solid) and the Landau
(dashed) expansion scenario in spacetime; indicated is the fireball front.

Figure 4.2 indicates the different longitudinal dynamics of the two scenarios (for obvious



4.3. INITIAL CONDITIONS 33

reasons, the transverse coordinate has been suppressed). Clearly, one expects at some
intermediate beam energy a transition from complete stopping (Landau) to longitudinal
free streaming (Bjorken). At what

√
s this transition should occur shall be left open at this

point of the discussion.

4.3 INITIAL CONDITIONS

In the very first moments of a heavy-ion collision, as the two nuclei just pass through each
other, the relevant physics resembles a superposition of many nucleon-nucleon collisions.
Only later on, when secondary particle production has set in and collisions among the
secondaries start to dominate the dynamics, a fireball characteristic for heavy-ion collisions
begins to emerge. Therefore, some gross properties regarding collision geometry can be
calculated.

As the colliding nuclei are very close to the speed of light and are essentially flat discs
when seen in the center of mass (c.m.) frame, the situation is almost ideally suited for an
eikonal-type approach as far as the transverse geometry is concerned. On the other hand,
information on the longitudinal geometry is not obtained readily and many issues are still
open.

4.3.1 Overlap geometry

Starting out with the nuclear density, e.g. in the Woods-Saxon parametrization

nA(r) =
n0

1 + exp( r−R0

d )
, (4.8)

where n0 is normal nuclear matter density (0.17 fm−3),R0 the nuclear radius and d = 0.54
fm, one defines the thickness function for a nucleus TA(b) corresponding to the density
integrated along the beam axis

TA(b) =

∫ ∞

−∞

dz nA(
√
b2 + z2). (4.9)

Taking σNN as the total nucleon-nucleon cross section, one finds TA(b)σNN as the total
number of binary collisions encountered by a nucleon passing through a nucleus at impact
parameter b. Hard processes (like J/Ψ production) scale typically with the number of
binary collisions.

Defining the nuclear overlap function

TAB(b) =

∫
d2sTA(s)TB(s− b) (4.10)

for a given impact parameter b, one finds TAB(b)σNN as the number of binary collisions
in an A-A collision.

Nucleons which have encountered at least one collision are called participants. Their num-
ber is relevant for soft particle production processes, where it is assumed that once a par-
ticipant is ’ripped open’ (a valence quark has been displaced), fragmentation sets in and a
subsequent hit does not change this picture. The number of participants can be calculated
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as

Npart(b) =

∫
d2sTA(s)

{
1−

[
1− σNNTB(s− b)

B

]B}

+

∫
d2sTB(s)

{
1−

[
1− σNNTA(s− b)

A

]A}
.

(4.11)

Here, the factors in square brackets correspond to the probability for one nucleon to pass
through the whole nucleus without any collision.

4.3.2 Longitudinal dynamics

The question of initial conditions regarding longitudinal dynamics is not so readily an-
swered. Basically, it boils down to the initial rapidity distribution of the produced sec-
ondary particles, where the Landau and the Bjorken expansion scenario can be considered
as two limiting cases. Obviously, this distribution across rapidity space depends on the
incident beam energy, but exactly what this dependence is is a matter still under debate.

Unfortunately, the experimentally observed rapidity distributions are unable to resolve the
issue. Conventional multiparticle fragmentation models, like the Lund string model [49],
are able to explain the measured spectra in terms of a Bjorken-type scenario, whereas
classes of models which assume thermalization necessarily have to incorporate a certain
amount of longitudinal acceleration during the expansion. These issues will be discussed
in length later on.

4.4 THERMALIZATION

There is evidence from both theory and experiment pointing toward the fact that the system
formed during the collision moves fast toward equilibrium. Experimentally, this is manifest
in flow phenomena, especially elliptic flow, which is discussed in greater detail in sections
4.4.2 and 5.2.4.

From the theoretical side, a mechanism capable of achieving thermalization has been sug-
gested in [22], the so-called ’Bottom-up’ thermalization. As estimates of the thermalization
stage rely on perturbative QCD, the scenario is only able to deal with very high energy col-
lisions, such as they may be realized at LHC and possibly at RHIC. Nevertheless, it allows
interesting insights into the physics in the very early phases of a heavy-ion collision.

In the ’Bottom-up’ scenario, which is described more in detail in appendix B, several evo-
lution phases characterize the system before complete thermal equilibrium is reached. The
presentation both here and in the appendix closely follows [22].

4.4.1 The ’Bottom Up’ scenario

Parton saturation

Initially, parton saturation determines the behaviour of the system. In p-p collisions, the
gluon distribution in the proton grows as one probes smaller and smaller fractions of the
light cone momentum, but this growth cannot persist to arbitrary gluon densities due to
unitarity constraints, so at some momentum fraction x the density of gluons will saturate.
In heavy-ion collisions at ultrahigh energies, parton distribution of many nucleons overlap,
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thus the critical saturation density can be reached at larger values of x. The initial state is
characterized by a saturation momentumQS , below which the occupation number of states
is high (O(1/α)) but does not grow any further [23–28]. For RHIC,QS can be estimated as
1 GeV, for LHC QS ∼ 2−3 GeV, so RHIC might just be at the borderline of the kinematic
region where perturbative QCD estimates can be expected to work.

As the nuclei collide, dominantly gluons with momenta near QS are released from the
nuclear wave function. These are called ’hard gluons’. This process takes place at times
τ ∼ 1/QS (0.2 fm/c for RHIC, 0.08 fm/c for LHC).

Emission of soft gluons

As the system expands, the density of hard gluons decreases like 1/τ . The hard gluons
undergo elastic scattering (which broadens the momentum distribution) as well as inelastic
scattering (which produces soft gluons). The production of soft gluons is the dominant pro-
cess, leading to a quickly growing number of gluons with momenta in the nonperturbative
region. Hard gluons and soft gluons contribute equally to Debye screening of color charges
as long as the occupation number of hard gluons stays large, this ceases to be the case at
QSτ ∼ α−3/2 (τ ∼ 0.95 fm/c at RHIC, τ ∼ 0.64 fm/c at LHC).

Pre-Thermalization

For QSτ � α−3/2, the characteristics of the system changes somewhat. The occupation
number of hard gluons drops below one, and although the number of hard gluons is still
larger than the number of soft ones, soft gluon contributions dominate the debye screening.
As the coupling constant of the soft gluons is in a nonperturbative region, they interact
frequently and form a thermalized system, but it is not sensible to attribute a thermal de-
scription to the system yet as the majority of the gluons is still hard. This changes only for
times QSτ ∼ α−5/2, when the number of soft gluons exceeds the number of hard gluons
(τ ∼ 2.75 fm/c for RHIC, τ ∼ 2.55 fm/c for LHC).

Thermalization

After QSτ ∼ α−3/2, the majority of gluons constitutes a soft heat bath, whereas most of
the energy of the system still resides in the hard gluons. As these move through the heat
bath, interactions take place and energy flows from the hard to the soft modes, heating the
system. This leads to a temperature which grows linearly in time, unless the energy of the
hard modes is depleted. This happens approximately at QSτ ∼ α−13/5 (τ ∼ 3 fm/c for
RHIC, τ ∼ 2.95 fm/c for LHC). After that, the system is completely thermalized and the
temperature decreases again as the volume expands.

As the above estimates are based on perturbative reasoning, they probably constitute only
an upper bound of the relevant timescales. Especially for the RHIC scenario, the validity of
perturbative results is far from being obvious. The most interesting feature of the scenario
is, however, that thermalization can be obtained within times considerably smaller than
typical fireball lifetimes, therefore the system is likely to be in thermal equilibrium during
most of its evolution. Unfortunately, it is impossible to apply the above reasoning to heavy-
ion collisions at SPS energies. There are, however, indications from the experimental side
that early thermalization is also achieved at these beam energies.
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4.4.2 Elliptic flow — an experimental signal of thermalization

The experimental evidence for early thermalization rests on the fact that a system which
undergoes many scattering processes and is thus (nearly) thermalized develops pressure
and its expansion is governed by the equations of hydrodynamics, whereas this is not true
for a system with very few interactions where particles emerge on free flow trajectories.

Therefore, the mapping of initial spatial anisotropies of the fireball created in noncentral
collisions to finally observed anisotropies in momentum space is different for systems in
and out of equilibrium. This was first suggested in [29] as a signature for early thermaliza-
tion.

pressure gradient

x

y

proper time

FIGURE 4.3: Schematic evolution of the transverse spatial geometry of a fireball created
in a non-central collision. The initial anisotropy in space is soon washed out as the system
undergoes initially free flow expansion driven by intrinsic transverse momentum of the col-
lision partners. As soon as thermalization sets in, the spatial anisotropy is translated into a
pressure gradient, as the system is hottest inside.

The main idea is sketched in Fig. 4.3. If the fireball expands initially in a free streaming
phase, the anisotropy in the geometry is soon washed out by the expansion. As soon as
the system is thermalized, a pressure can be defined. The acceleration acting on a volume
element is then given by the ratio of pressure gradient over energy density, a = ∇p

ε . The
pressure is highest in the center of the fireball (as temperature and density are highest there)
and drops toward the edge. Thus, the pressure gradient must be dependent on the geom-
etry, and the difference ∆p in ∇xp and ∇yp then creates an anisotropy in the momentum
distribution. If thermalization sets in late, ∆p is very small.

These momentum anisotropies can be measured and indicate a medium which is thermal-
ized after only 2–3 fm/c evolution time. A more detailed discussion of the data will be
given in section 5.2.4.

4.5 THE PARTONIC PHASE

Once the medium has reached thermal equilibrium, what will be its properties? As we
have seen in chapter 3, lattice simulations indicate that at temperatures above TC ≈ 170
MeV there is indeed a deconfined phase, characterized by degrees of freedom different
from those of an hadronic gas. This medium, however, is still far from being an ideal
quark-gluon gas, especially close to the phase transition where current experiments probe.

The task in understanding the partonic phase is twofold: From the theoretical side, prop-
erties of the medium must be understood and the relevant degrees of freedom identified;
from experiment, signals from this early phase must be found, measured and compared to
the theoretical predictions.
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4.5.1 Theoretical considerations

Strings versus QGP

Before we actually discuss a thermalized partonic QGP, let us briefly comment on the
possibility of an out-of equilibrium partonic phase. The most prominent candidate for such
a phase are colour strings.

The notion of strings is based on the observation that the potential between two quarks can
at large distances be described as V ∼ σr with a ’string tension’ sigma. This potential
describes a field configuration in which a strong gluonic flux tube connects the two quarks,
forming a ’string’.

As discussed in section 3.3, the string can be broken due to the creation of a qq pair from
the vacuum. Both the q and the q are then connected with the original colour sources by
strings again. If the string breaks more than one time, quarks combine with antiquarks from
adjacent breaking points to form multiple strings.

Consider the situation after a high energy p-p collision. The remnants of projectile and
target travel into ± z direction approximately on the light cone, a colour string inbetween.
The breaking of this string will now lead to the creation of bound quarks and antiquarks in
the rapidity region between target and projectile. As the secondary qq pairs will be closer
in rapidity, the energy of the bound system will decrease and eventually these states will
hadronize. Thus, the distribution of produced hadrons can be linked to the position of the
qq production vertices.

In a longitudinal free streaming scenario as sketched here, there is a unique correspondence
between position space and momentum space, thus we may label the qq vertex position by
proper momentum Γ = p+p− and rapidity y. Theoretically, one expects to fall the vertices
on curves of constant proper time, which in turn leads to a boost invariant production of
hadrons. This implies that the distribution of the primary breaking vertex (denoted ’0’) is
given by

dP0 = ρ(Γ0)dΓ0dy0 (4.12)

Given this vertex, a second breaking can occur and form a state of quark-antiquark con-
nected by a string with invariant mass M inbetween. The second vertex (denoted ’1’)
can be labelled by its forward light cone fraction z+ given the primary vertex (z+ =
(p0+ − p1+)/p0+) and the invariant mass of the created state. Thus, secondary vertices
are distributed as

dP1 = f01(z+,M
2
01)g(M

2
01)dz+dM

2
01 (4.13)

Here, g(M2) stands for the distribution of invariant mass formed in the string breaking
process. For example, it can be a given by a discrete set of hadron masses with appropriate
weight factors adjusted to experimental yields. The joint probability for the occurrence
of both breaking vertices is then dP0ḋP1, but this has to be the same as the probability if
vertex 1 occurs first, followed by vertex 0. From this, in [49] the fragmentation function f
has been derived as

f(z+,M
2) = Nz−1

+ (1− z+)
ae−bM

2/z+ (4.14)

with normalization constantN and parameters a and bwhich reflect the typical proper time
at which the breaking vertices occur and the standard deviation of that time.

The parameters of the string model can be adjusted to give good agreement to data in the
case of p-p collisions. In the case of A-A collisions, multiple strings must be considered
between target and projectile where the basic translation from the known nucleon nucleon
process to a many nucleon system is done in a Glauber approach.
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Thus, the string breaking picture describes the longitudinal dynamics of a system of collid-
ing nucleons from the initial collision to hadronization without reference to a thermalized
partonic system. This corresponds to the absence of partonic collisions (no strong ’string-
string’ interaction leading to additional breaking). In such a scenario, thermalization can
only occur after hadrons have been formed.

The main differences between a string fragmentation picture and a thermalized partonic
phase are the following:

• String matter does not have nontrivial transverse dynamics. There is the possibility
of intrinsic transverse momentum of the partons connected by the string which leads
to a free flow expansion, but accelerated expansion requires pressure which in turn
needs equilibrated matter with high interaction rates. Thus, transverse expansion
and elliptic flow can, in the pure string fragmentation picture, only be built up after
hadronization which gives tight constraints on the timescales of the expansion.

• The longitudinal dynamics of thermalized and string matter is also quite different.
This is due to energy conservation. In the case of thermalization, the initial rapidity
distribution of particles has to shrink considerably as compared to the kinematic limit
in order to transfer the excess kinetic energy in random motion corresponding to the
temperature. This energy stored in the random particle motion is then transferred
into collective longitudinal and transverse expansion driven by the pressure (i.e. the
rapidity distribution grows again). This is not the case for string dynamics — here,
energy conservation demands that as soon as transverse motion is built up (in the
hadronic phase or by string-string interactions), the rapidity distribution has to shrink
continuously.

• The string model is well constrained in the case of nucleon nucleon collisions. In
principle, a non-trivial interplay between strings can take place in A-A collisions,
i.e. overlap of strings, string-string fusion and string-string scattering. These phe-
nomena help explaining the transverse dynamics observed in flow, however, there are
no constraints on the magnitude of such effects from any experiment besides heavy-
ion collisions. The more important these effects are, however, the more likely is the
system to approach equilibrium conditions, where the relevant degrees of freedom
are not given by the string matter any more.

• Quark antiquark pairs connected by a string are not free to interact with other quarks
and antiquarks, therefore electromagnetic processes like the emission of photons or
dilepton pairs, which are in a QGP dominated by annihilation and bremsstrahlung
processes, are very different in string matter.

Experimentally, there appears to be the need for early accelerated expansion, which is
naturally explained in the context of a thermalized system but does not take place in a pure
string fragmentation picture (see chapter 5 for a survey of experimental data). If a string
fragmentation scenario is to explain the data, non-trivial interactions of strings have to be
included which lead the system closer to equilibration.

Chemical (under)saturation

In the following, we will return to the assumption that a thermalized partonic phase is
created in the early moments of a heavy ion collision.

As we have seen in section 4.4, the early dynamics leading to thermal equilibrium is mainly
driven by gluons, especially for high impact energies, as gluons are the most abundant par-
ticle species in the nuclear wave function when small momentum fractions are probed. This
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naturally raises the question if quarks do reach not only equilibrium momentum distribu-
tions (’thermal equilibration’) but also their equilibrium density (’chemical equilibration’),
and, if so, at what times. The dynamics resulting from late chemical equilibrium can be
quite different from a scenario which is chemically equilibrated all the time, leading to a
’hot glue’ scenario as suggested in e.g. [31]. Here, the total entropy content of the system is
carried by gluons only in the early stages, leading almost do a doubled initial temperature
of the fireball. As the quark distribution moves towards equilibrium, the system eventually
cools rapidly.

The subject has been investigated in some detail in [32] using rate equations for the pro-
cesses gg ↔ ggg and gg ↔ qq at RHIC conditions, employing perturbative (massless)
quarks and gluons as degrees of freedom. The result of this analysis can be summarized in
Fig. 4.4, where the density of quarks and antiquarks at hadronization is shown divided by
the equilibrium density, along with variations of the thermalization time τ0 and the strong
coupling αS .

FIGURE 4.4: Densities of quarks and antiquarks normalized to their chemical equilibrium
density as calculated in [32] for different thermalization times and coupling constants.

Two trends are clearly visible in Fig. 4.4. First of all, the relative undersaturation increases
with the thermalization time. This is reasonable — a system which thermalizes earlier
is characterized by higher particle densities which allow for more collisions and faster
equilibration. Secondly, the undersaturation decreases strongly for increasing coupling,
and at αS ∼ 0.6, hardly any trace of chemical undersaturation is left.

What can be learned from these results? If we estimate typical momenta to be of the or-
der p = 3〈T 〉, we find initial temperatures at RHIC (which follow from thermodynamical
considerations to be discussed later) leading to scales of order 1 GeV, which might indeed
lend credibility to a perturbative approach with αS between 0.4 and 0.3. As the temperature
drops toward the phase transition temperature TC ≈ 170 MeV however, the argument com-
pletely breaks down. A likely scenario therefore may involve a chemical undersaturation
in the very early partonic phase, but as the fireball expands, quark densities will develop
rapidly towards their equilibrium value.

Degrees of freedom

In chapter 3, we have seen that it is evident from lattice results that the assumption of an
ideal gas of quarks and gluons does not provide an adequate description of the thermo-
dynamics of the partonic phase. The possibly better description employs non-interacting
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quark and gluon quasiparticles which acquire a temperature dependent mass mq(g)(T ) due
to their interaction with the heat bath. This is outlined e.g. in [33, 34].

Let us briefly review the basic properties of a quasiparticle approach: The quasiparticle
mass is e.g. assumed to be of the functional form of the perturbative limit,

mg(T ) =
g(T )2T 2

2

(
NC
3

+
Nf
6

)
and mq(T ) =

g(T )2T 2

8

N2
C − 1

2NC
. (4.15)

This form is now fitted to the thermodynamics of the QGP as obtained by lattice calcu-
lations, assuming that the dynamics near the phase transition can be absorbed into the
behaviour of the coupling g(T ). The reduction of active degrees of freedom as it is ob-
served on the lattice translates in this approach into a strongly increased coupling constant,
leading to large quasiparticle masses near TC . The fit leads to a good description of the
QGP thermodynamics on the lattice. Despite the thermal masses,it does not support the ap-
pearance longitudinally polarized gluonic degrees of freedom. The temperature dependent
mass m(T ) leads, by thermodynamic consistency, necessarily to a background field B(T )
which adds to the energy density and subtracts from the pressure. This field is occasionally
identified with the confining bag pressure.

There are more refined versions of the quasiparticle picture, some based on the more com-
plex dispersion relations [10, 35] obtained within HTL resummed expressions (see section
2.4), or the one used in the present approach (see chapter 3) where the onset of confine-
ment is parametrized in a statistical way. It turns out that all these descriptions are able to
describe the thermodynamic properties of the system as they are found in lattice calcula-
tions, but the question which of them, if any, describes best the actual nature of the systems
degrees of freedom.

In order to elaborate on this question, consider the emission of a (virtual) photon out of
the QGP phase. The fundamental QCD Lagrangian tells us that the dominant emission
process is the annihilation of a qq pair. But what are the properties of these quarks? Are
they bare quarks, as in the vacuum, or does one need to consider the thermally acquired
mass (as necessary for the description of the thermodynamics)? If so, which prescription is
the correct one? Thermal quasiparticle masses imply a rise in the invariant mass threshold
for the emission process, thus the predictions of the individual quasiparticle models differ
vastly near the phase transition, wherem(T ) rises steeply in one model whereas it drops in
the other.

Obviously, also the description of the QGP in terms of massive quasiparticles cannot be
applied to all processes — it fails completely for the emission of real photons, which is
kinematically impossible for non-interacting massive particles (apart from the purely elec-
tromagnetic process which is O(α2)). In order to discuss such a process, one needs to
consider the substructure of the quasiparticles. Then, if the momentum scales involved
are large enough to penetrate the thermally screened region, interactions can also happen
between quasiparticles and the photon emission process becomes possible.

In principle, a set of parton distribution functions describing the structure of the quasipar-
ticles could be formulated, in close analogy to the description of the nucleon substructure
in deep inelastic scattering experiments, which describe the scale dependent response to an
external perturbation. How this should be done quantitatively remains however unclear.

We will discuss the effects of the quasiparticle properties on the emission of dileptons in
greater detail later in chapter 7.
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4.5.2 Experimental signals

Experimentally, obtaining information on this early phase is very challenging. Hadrons, the
most prominent particle species inside the fireball, do not escape until thermal freeze-out,
hence all information on the QGP phase carried in hadrons is lost by then. Direct signals
of the QGP become only apparent when one considers electromagnetic probes (photons
and dileptons). Their mean free path exceeds the dimensions of the fireball by far due to
the smallness of αem and so they directly reflect the conditions inside the fireball during
the whole evolutions. However, electromagnetic radiation is also emitted during the later
stages of the evolution and therefore signals from the QGP phase and from the hadronic
phase have to be disentangled in order to study the early evolution. This subject will be
treated in detail in chapter 3.

There is also indirect evidence for the creation of a QGP. As the charges of the degrees of
freedom in a hadronic and a partonic system are quite different, event by event fluctuations
of the charge observed within a given rapidity bin have been proposed as a signal for the
QGP, as these fluctuations probe the squared charge of the degrees of freedom [36]. The
main idea is to consider the observable

〈Nch〉〈δR2〉 = 4
〈δQ2〉
〈Nch〉

, (4.16)

where R denotes the ratio of positive charge over negative charge N+

N−

, Q the charge and
Nch the number of charged particles in a given rapidity bin. 〈. . . 〉 stands for an averaging
procedure over a number of measured events. Hence, 〈δQ2〉 is the squared deviation of the
mean value of the charge measured in the relevant rapidity bin, averaged over the number
of measured events. Comparing pion and quark-gluon gas, one finds that the net charge
is naturally the same, but 〈Q2〉 is sensitive to the fractional quark charges. Hence, one
expects 〈Nch〉〈δR2〉 ≈ 4 for a pion gas, but 〈Nch〉〈δR2〉 ≈ 0.75 for a QGP. As the system
expands, the volume over which initial fluctuations are large becomes magnified so that
one can probe the early history of the system by considering larger and larger bins in the
analysis.

Other evidence can be gained by considering the effect of the QGP on a heavy, bound state
(like J/Ψ ). As the probe is heavy, its production can be estimated more or less reliably
in perturbative calculations. After the state has been formed, the binding potential is then
subject to the medium. Specifically, a QGP screens the potential and so any heavy bound
state immersed into a QGP dissolves. As this view characterizes a rather static situation,
the complementary point of view would involve the dissociation of the bound state by
the interaction with thermally excited gluons. This issue will be discussed specifically in
chapter 9. As well as the ones discussed so far, the dissociation process is also mixed
up with later dissociation in the hadronic medium and early suppression due to nuclear
absorption effects.

4.6 THE PHASE TRANSITION

As the system approaches the critical temperature TC , both chiral restoration and confine-
ment become important. As we have seen in chapter 3, lattice simulations indicate that
the transition appears to be a crossover rather than a first order transition, but unless the
physical quark masses can be used in lattice simulations, this issue is open. The fact that
the fireball is a only finite system enforces a crossover anyway.

From the thermodynamics obtained from lattice calculations, the following information
can be inferred: The ratio of pressure over energy density p(T )/ε(T ) drops as TC is ap-
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proached. As this ratio characterizes the accelerated expansion of the system, it implies
that the acceleration due to the pressure almost stops near TC and the system enters a
brief phase of free flow, until the fireball is completely hadronized and the collisions in the
hadronic phase build up pressure again. This ’soft point’ in the EoS can be interpreted in
some models as the confining ’bag pressure’ counteracting the thermal pressure.

Furthermore, the entropy density s(T ) on the lattice displays a strong reduction of degrees
of freedom near the phase transition. In the quasiparticle picture of the QGP, this can be
interpreted as a growing quasiparticle mass near the phase transition or as the separation of
the system into a fraction C(T ) of quasiparticles with dropping mass and another fraction
(1− C(T )) of heavy states which contribute negligible to thermodynamics. If the second
view is taken (as in the present work), the heavy confined states are naturally identified
with hadrons once TC has been reached. This implies that there is a smooth transition from
free quasiparticle states co-existing with pre-hadronic confined clusters of particles.

The physics of hadronization and the phase transition is the part of the fireball evolution
which is least understood, as perturbative methods break down. Luckily, if there is no large
latent heat (and there is no indication for it in either experiment or lattice calculations), the
system spends only a small fraction of its total evolution time at TC and then continues
cooling towards the hadronic phase, so unless some observable is specifically sensitive to
the phase transition, the contribution of the transition period to any process is small.

4.7 THE HADRONIC PHASE

As the temperature drops below TC , the degrees of freedom of the system cease to be quarks
and gluons. Instead, mesons, nucleons and resonance states constitute the new degrees of
freedom. A priori, there is no reason why the number densities of different hadronic parti-
cle species should be determined by thermal distributions, but experimentally one observes
that the finally measured abundancies of particles can be described by a thermally dis-
tributed ensemble with temperature T ≈ TC . In a scenario with a sudden phase transition,
this is surprising, as hadronization itself is required to produce the thermal abundancies of
particles, there is no time for dynamical equilibration. In the quasiparticle picture presented
here, one might think of the thermalization of pre-hadronic clusters, which then again lead
to thermal distributions of hadrons after the phase transition.

The fact that the measured abundancies correspond to a (grand canonical) ensemble with
T ≈ TC , but the momentum spectra rather indicate T � TC , has given rise to the idea of
subsequent chemical and thermal (kinetic) freeze-out. This can be understood as follows:
If inelastic hadronic cross sections are much smaller than elastic ones (which is true up
to few exceptions to be discussed later), then there are not enough reactions within the
lifetime of the hadronic phase which can change the number of long-lived particles, e.g.
true pion annihilation can be neglected. Therefore the abundancies of particles seem to
originate from a system with T = TC , provided that resonance decays are taken into
account properly, whereas elastic reactions still determine the momentum spectra of all
particles, thus the system remains thermalized until final freeze-out.

From a theorist’s point of view, the hadronic phase is complicated, as many different
hadronic species contribute to its properties. Mainly, one is interested in the properties of
hadrons in a hot and dense medium, and this is also subject of experimental investigation.
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4.7.1 Theoretical considerations

Relevant degrees of freedom

It is tempting to assume that the pions, due to their small mass, have the largest probability
to be thermally excited and dominate the other heavier mesons and baryons. Accepting the
picture of subsequent chemical and thermal freeze-out, this can be clearly ruled out. At
TC ≈ 170 MeV, the thermally excited pions are only about 20% of the finally observed
number, the rest comes from the decay of heavy resonances. At first sight this is surpris-
ing, as the heavy states are exponentially suppressed due to their large mass, but usually
they have large degeneracy factors (spin and isospin) and the number of resonance states
increases exponentially with their mass, so they actually dominate the dynamics near TC .

As the temperature drops, heavy resonances decay and fill up the pion phase space, which
becomes therefore overpopulated as compared to the thermal expectation. One has to dis-
tinguish between a baryon-rich scenario and a baryon-free scenario here. In a baryon-rich
scenario, participant nucleons have been stopped and placed inside the thermalized region.
The finite net baryon number leads to the creation of additional resonances as compared
to the thermally expected number without the presence of participant baryons. These ad-
ditional resonances in turn decay mostly into pions. Therefore the pion density is always
larger in baryon-rich than in baryon-poor fireballs, therefore also the freeze-out conditions
and the EoS become different.

The question of chemical freeze-out and resonance decay is discussed more in detail in
chapter 6.

Thermodynamic properties

Concerning the thermodynamics of hadronic systems, what has been calculated so far are
the properties of an interacting pion gas up to three loops [37] and the behaviour of an ideal
resonance gas including the changes introduced by resonance decays as the system cools
down [71].

As we have seen, the properties of a pion gas are clearly insufficient to describe the dy-
namics of the system until the very late stage. The ideal hadron gas however may miss an
essential property of the evolution: On the lattice, there is a soft region in the EoS in the
vicinity of TC . In spite of the fact that the lattice calculations become increasingly unreli-
able below TC due to the large quark masses entering the simulations, there is no indication
that this soft region ends with a sudden jump to ideal gas properties, p/ε ≈ 1/3. Instead,
it rather continues even below TC and this gives a qualitative estimate for the behaviour of
a hot hadronic resonance gas. Therefore one might expect that the soft region continues
somewhat further down in T also in nature.

Clearly, once Tf is reached, interactions between different particles cease to be important
and that is exactly the definition of the ideal gas, so in the vicinity of the thermal freeze-
out point, the thermodynamics of the system should be well described by a non-interacting
hadronic resonance gas, where the abundancies of particles follow from resonance decays
of a thermalized ensemble at TC .

In-medium modifications of particle properties

The properties of hadrons embedded into a hot and/or dense medium are expected to differ
considerably from those in the vacuum. A dense medium implies frequent interactions
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with baryons whereas in a hot medium at low baryon density mostly interactions with the
mesonic heat bath are responsible for changes of particle properties.

In [38], it was shown for the lowest lying JP = 1− excitations of the vacuum, the vector
mesons ρ, ω and φ that considerable modifications of their properties occur due to their
interaction with a dense baryonic medium. Specifically, the ρ dissolves almost completely
and both the ω and φ undergo strong broadening. Additionally, the mass of the ω shifts
down. Although these results where obtained in linear density approximation, they cast
some light onto the changes likely to occur inside a medium.

In [39] and [40], changes of the vector meson properties at finite temperature were dis-
cussed using techniques of thermal field theory. Only small modifications of the ρ and φ
were found, but the ω completely dissolves due to the scattering process ωπ → ππ.

Self-consistent mean field calculations of hot nuclear matter find a dropping of the nucleon
mass with increased temperature [41]. It might be reasonable to argue that nuclear reso-
nances behave in a similar way. Pions, due to their nature as Goldstone bosons, are to some
degree protected from such modifications.

In summary, a wealth of calculations indicates that particle properties in the medium are
considerably different from those in the vacuum. Such investigations have primarily fo-
cused on the vector mesons, as they directly couple to the photon and are therefore re-
flected in the invariant mass spectrum of dileptons emitted from the medium. Not much
is known, however, about the changes of hadronic spectral functions in the vicinity of the
phase transition.

4.7.2 Experimental signals

The most interesting physics question of the hadronic phase probably concerns the in-
medium properties of particles mentioned before, most prominently the vector mesons.
Furthermore, adopting the picture of sequential chemical and thermal freeze-out, the abun-
dancies of particles can be measured. They reflect the temperature of the system at the
chemical freeze-out point. One can also compare the amount of produced strangeness in
a thermalized system with predictions of conventional multiparticle inelastic scattering in
order to learn about the degree of thermalization. Most information about the hadronic
phase, however, is only available after the bulk of particles has left the strongly interacting
thermalized region and moves towards the detector. This subject is covered in chapter 6.

4.8 FREEZE-OUT

As the system expands, interactions between the particles become less and less frequent.
Therefore, their mean free path inside the thermalized medium grows until it exceeds the
dimensions of the system. Pions are by far the most abundant species in the system, es-
pecially in the late stages of the expansion when most of the resonances have decayed, so
it is reasonable to assume that it is the pion density that determines the freeze-out point.
Specifically, freeze-out occurs as soon as the condition

σρπλ = 1 (4.17)

is met. Here, σ is a typical hadronic cross section and λ is a length scale of the order of the
fireball. In a thermalized system, the critical value of the pion density ρπ can be uniquely
related to a given temperature once the EoS is known.
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In reality, freeze-out occurs over an extended period of time, as the outer layers of the fire-
ball will be less hot and dense than the core, so that particles will more or less continuously
be emitted via the so-called freeze-out hypersurface. But the main bulk of particles is ex-
pected to freeze-out for a relatively short proper time (less than 4 fm/c). This period can
extend considerably when seen in the c.m. frame as large parts of the fireball are moving
with relativistic velocities causing substantial time dilatation.

Looking again at Eq. 4.17, there is a subtlety regarding σ. Hadrons can have quite different
cross sections with pions, and there is no reason why this should not influence the freeze-
out conditions. Specifically, one would expect particles with small pion scattering cross
sections to freeze-out earlier. Experimentally, this would be manifest in differences to
the general trend of the observed momentum spectra. Extended freeze-out of different
particle species has been studied theoretically e.g. in [43]. Recently, a universal freeze-out
criterion based on the escape probability of a particle, which is in turn a function of the
number of collisions it encounters on its way to the fireball surface has been proposed [42].
This corresponds to an even more refined treatment where the freeze-out depends on the
particles species, position and momentum.

After the medium has become dilute, interactions rapidly cease to be important. Instead,
particles stream freely towards the detector. In this very last stage of fireball evolution,
in-medium effects are irrelevant. Long-lived particles and resonances (like the ω and the
φ) undergo strong decays in the vicinity of the collision point. Much later, weak and elec-
tromagnetic decays occur far outside of the interaction region and change the abundancies
of particles on their way outward.
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Chapter 5

HADRONIC OBSERVABLES —
A BASIS FOR MODELS

5.1 INTRODUCTION

The models used for the description of heavy-ion collisions generally fall in one of three
different groups — event generators, hydrodynamic simulations and models based on bulk
thermodynamics.

5.1.1 Event generators

Event generators aim at a description of heavy-ion collisions by making use of physics
known from p-p scattering. The dynamics of A-A collisions then emerges as particles
produced in initial binary nucleon-nucleon collisions subsequently re-scatter off further
nucleons or off other secondary particles. In order to include these re-scatterings, particles
are used as explicit degrees of freedom and individual particle trajectories and reactions
are followed through the evolution. This can only be done if particles are not treated in
a fully quantum field theoretical fashion but are approximated as localized wave packets.
Additionally, reaction cross sections are typically implemented by purely geometrical con-
siderations. Observables are then calculated by a Monte Carlo simulation of a large sample
of collisions.

A variety of event generator models has been proposed, dependent on the degrees of free-
dom employed, the way hadronization is implemented and the implementation of additional
physics not present in p-p collisions. Among the most prominent ones are RQMD [44] and
UrQMD [45] tracking hadronic degrees of freedom, HIJING [46] tracking hard partonic
evolution and hadronization and LUCIFER [47] as a two stage model.

47
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The main difficulty of event generators lies in the initial multiparticle production. Here, soft
and hard processes contribute, and the choice of the correct degrees of freedom is therefore
not obvious. Usually, soft particle production is calculated in the framework of the Dual
Parton Model [48] or the Lund string model [49] which describe the particle production as
the breaking of color strings stretching between scattering partners. For the hard particle
production, partonic degrees of freedom have to be employed along with the fragmentation
functions known from e.g. deep inelastic scattering experiments. If there is any QGP phase,
its properties are encoded in nontrivial physics of particle production within event generator
type models. Suggested concepts involve interactions or fusion among color strings (’color
ropes’ , implemented in RQMD and UrQMD), percolation of strings and modifications of
the string tension (HIJING). In general, the implementation of these additional mechanisms
allows no straightforward connection to equilibrium properties of the QGP extracted from
the lattice, which makes it difficult to make use of this information.

Once the transition to hadronic degrees of freedom from either strings or partons has been
made, measured hadron-hadron cross sections enter the simulation and the model depen-
dence is greatly reduced. However, many masses, cross sections and decay channels of
high-lying resonances are experimentally poorly known and thus introduce uncertainties
into the model. Event generators reach their optimal performance near the kinetic freeze-
out. Here, the system is dominated by well-known long-lived particles and no assumption
regarding freeze-out conditions has to be made as particles just cease to interact as the
system becomes less and less dense.

5.1.2 Hydrodynamics

If the particle density is large enough and interactions occur frequently enough to maintain
equilibrium, the transition from individual particles as degrees of freedom to a fluid de-
scription can be made. This step relies entirely on the validity of local thermal equilibrium.
The fluid is characterized by a given temperature T , energy density ε, entropy density s and
particle density n at each point in spacetime. These quantities are not independent but are
connected by the EoS. Imposing energy and momentum conservation

∂µTµν = 0 (5.1)

(here, Tµν = (ε + p)uµuν + pgµν denotes the energy momentum tensor of the fluid, uµ

its four-velocity, ε the energy density and p its pressure in the local restframe) and particle
number conservation

∂µnquµ = 0 (5.2)

(nq stands for the density of particles carrying a conserved quantum number q), one finds
the basic equation of relativistic hydrodynamics. In order to close the system of equations
(5.1) and (5.2), the EoS has to be specified as p(T )/ε(T ) = f(T )) or an equivalent ex-
pression. The remaining parameters can then be fixed by thermodynamical relations. The
resulting fluid dynamics is much easier to solve than the microscopic description employ-
ing particles as degrees of freedom. The ability to incorporate the known information on
the QGP, specifically the EoS, in a straightforward way is one of the main strengths of such
hydrodynamic simulations.

For the description of heavy-ion collisions, this has been carried out e.g. in [43, 50, 51].
Individual models differ in the type of EoS which is used, the degree of symmetry assumed
(boost invariance, radial symmetry) which allows the reduction of a 3 dimensional system
to a 2 or even 1 dimensional description and the freeze-out conditions imposed. The perfor-
mance of hydrodynamic models is expected to decrease near the kinetic freeze-out as the
system becomes less dense and thus the assumption of local thermal equilibrium becomes
questionable. For this reason, some hydrodynamic simulations switch to an event generator
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description once the hadronic phase is reached (’hybrid models’, see e.g. [43]). If this is not
done, a suitable freeze-out condition must be defined at which the hydrodynamic evolution
is stopped. Usually, the hypersurface characterized by T = Tf is taken for this purpose.

Contact between microscopic description and hydrodynamic evolution can be made by a
suitable averaging procedure. In this way, an ’effective EoS’ can be extracted from an event
generator description if the system is close to equilibrium. This has been carried out e.g. for
RQMD in [52]. It was found that the system is very close to equilibrium for some 2 fm/c in
the hadronic phase (a direct comparison in the partonic phase is impossible in the case of
RQMD) and that the effective EoS is very simple, p/ε ≈ const. — in close resemblance
to the EoS of a non-interacting resonance gas.

5.1.3 Thermodynamics

If one is interested in bulk properties of the expanding system only, the dynamics can be
simplified even further. Assuming local thermal equilibrium, a spatial averaging procedure
across the whole fireball volume contained inside the freeze-out hypersurface can be car-
ried out, resulting in a homogeneous distribution of matter inside an ’effective’ volume.
This is best done for the collection of volume elements characterized by a given proper
time τ in order not to artificially average out effects of time dilatation. Assuming entropy
conservation, the EoS then governs the response in the thermodynamical parameters ε, s
and T to a change of the effective volume V (τ). This volume expansion can be given by
a suitable parametrization, which must be chosen such as to resemble hydrodynamic evo-
lution (obviously, arguments based on thermodynamics alone do not constrain evolution
timescales) and to reproduce the experimentally observed freeze-out state which manifests
itself in the measured momentum distributions of hadrons. Examples for these kinds of
models are e.g. [31, 53].

The assumptions made in thermodynamic models appear rather drastic, as any possibility
for internal dynamics such as shock waves or pressure anisotropies is gone. Furthermore,
a continuous flow of particle across the freeze-out hypersurface as it appears in hydrody-
namic simulations becomes a single freeze-out moment in proper time in thermodynamical
models. Any distinction between the cool fireball edge and the hot core has been erased
by the averaging procedure. However, no detector is capable of resolving the spatial and
temporal scales of the fireball (10-20 fm/c), unless there is a strong correlation between
position and momentum of particles emerging from a specific region such as between lon-
gitudinal position and rapidity (see section 4.2.2). But for most observables, only integrated
particle emission rates can be measured, and for such processes, the description in terms of
a model which is a priori averaged in space might be valid. We expect a serious breakdown
of such a model only if some process is specifically sensitive to inhomogeneities in the
distribution of matter inside the fireball or if thermalization ceases to be a useful concept
(such as in very peripheral collisions).

The main advantage of thermodynamic models lies in their simplicity. Systematic varia-
tions of certain parameters can rapidly be tested and in doing so a general understanding of
the behaviour of the model can be gained. Therefore, we will use a model of this type as
the starting point of our investigations.

5.2 HADRONIC OBSERVABLES

As the matter contained inside the fireball is composed of the remnants of the colliding
nuclei and produced secondaries which eventually hadronize again, hadronic observables
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are the most revealing ones if one wants to learn about the fireball itself. Momentum
distributions of different hadron species have the potential to provide information on the
conditions at freeze-out, two particle correlation measurements, so-called Hanbury-Brown-
Twiss (HBT) interferometry [54] (see [55] for a review of the application to URHIC), can
tell about the geometric shape of the emission source and the distribution of particles across
rapidity space directly reflects the longitudinal geometry of the fireball.

If thermalization of the fireball matter is a useful concept, hadrons cannot carry any infor-
mation on the evolution history. A thermalized system is in equilibrium, regardless of its
history, and therefore hadronic spectra only reflect the status of the system at freeze-out.
The evolution history is probed in a more subtle may — the early stages may leave indirect
traces in phenomena like collective and elliptic flow [29] and event-by-event fluctuations
of observables [36].

But information on the freeze-out state is valuable: It provides the last snapshot of the
fireball dynamics and defines an important constraint which every model for this evolution
has to meet. Understanding the measured distributions of hadrons and reconstructing the
freeze-out conditions based on this information is therefore crucial.

5.2.1 dN/dy Spectra

A measurement of rapidity distributions reflects the longitudinal dynamics of the fireball
at freeze-out. In p-p collisions, no final state scattering takes place, and so the measured
rapidity distribution corresponds directly to the rapidity distribution of produced particles,
but in heavy-ion collision, one way of describing the data is the assumption of thermal-
ization. As a thermalized system builds up pressure, it may accelerate also in longitudinal
direction, thus allowing for different initial and final rapidity distributions.

Rapidity distributions have been measured at SPS by the NA49 collaboration [56]. The
result is shown in Fig. 5.1 for protons and net baryons, and in Fig. 5.2 for negatively charged
hadrons (h−).
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FIGURE 5.1: dN/dy distribution of protons and net baryons for p-p and Pb-Pb collisions
as obtained at SPS by NA49 [56]

The distribution of protons reveals a striking difference between heavy-ion and p-p colli-
sions. Predominant source for protons in both cases are target and projectile fragmentation
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processes. In p-p collisions, the distribution is strongly peaked towards the kinematic lim-
its, reflecting a high probability of the collision partners to undergo only small deceleration
and emerge as leading particles. This is clearly not the case in heavy-ion collisions. Here,
the protons emerge in a broad plateau around midrapidity, cleanly separated from the kine-
matic limit set by the initial rapidities of the collision partners. This indicates a high degree
of energy loss of valence quarks during the collision process. The fact that the net baryon
distribution shows a similar plateau shape in rapidity as the proton distribution is important
since it indicates that the region is indeed populated by the baryon number of the collision
partners and not by secondary proton-antiproton pairs.
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FIGURE 5.2: dN/dy distribution of negatively charged hadrons (h−) for p-p, S-S and Pb-
Pb collisions as obtained at SPS by NA49 [56]

On the other hand, the distribution of h− consists of secondary particles only. The shapes
of these distributions in rapidity are very similar for p-p and Pb-Pb collisions, hinting that
the underlying dynamics of secondary particle production might be common in both cases.
The rapidity density of h− is significantly higher than that of net protons, indicating that
the dominant contribution to the fireball matter comes from secondary particle production.
The rapidity region in which both the distribution of net baryons and h− are large is similar;
this supports the assumption of models based on thermodynamics that we can indeed define
a volume in which the fireball matter is distributed approximately evenly.

5.2.2 mt Spectra

Measuring transverse mass mt (see section 4.2) spectra of hadrons can tell about the sys-
tem’s dynamics perpendicular to the beam axis. Fig. 5.3 shows typical experimental results
obtained by the NA44 collaboration [57].

The resulting spectra for particle species i are well described by a fit of the form

1

mt

dNi
dmt

= C(Ti) · e−mt/Ti . (5.3)

Here, the distribution of particles i is characterized by a parameter Ti measuring the slope
and C(Ti) describes the normalization. This ansatz reminds of the decay of a thermalized
ensemble of particles, where the exponential simply reflects a Boltzmann distribution with
a temperature Ti dependent on the particle species. This temperature appears to increase
with particle mass, Ti ≈ 120 MeV for π+ and Ti ≈ 220 MeV for p.

If Ti indeed describes a temperature, this is surprising at first sight, as elastic scattering re-
actions between e.g. π+ and p should equilibrate the whole ensemble of particles. There-
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FIGURE 5.3: Transverse mass spectra for different particle species as obtained at SPS by
the NA44 collaboration [57].

fore, the system should be described by a common temperature Tf characteristic for the
kinetic freeze-out.

There are two main options left to explain the data: Either the assumption of thermaliza-
tion is dropped at this point, or, retaining thermalization, some other contribution to the
transverse momentum spectra is present which distorts the spectra in a characteristic way.

If a thermalized particle emission source is expanding radially at freeze-out, the particles
will not only receive a contribution to their momentum from the random, thermal motion
but also from the directed motion of the volume element containing the particle. The Boltz-
mann distribution describes the probability of a particle having energy E in an ensemble
with a typical energy scale given by T . In the presence of flow, however, the typical en-
ergy of the ensemble contains also the collective flow, one should therefore replace (for
non-relativistic transverse velocities)

T → T ∗
i = T +mi〈vT 〉2, (5.4)

where T stands for the temperature in the local rest frame of the heat bath, 〈vT 〉 denotes
the average collective radial velocity and mi is the mass of particle species i. This sim-
ple expression offers a natural explanation for the apparent dependence of the freeze-out
temperature on the particle species.

In a more refined treatment of this problem, the general expression for the slope has been
derived in [58] as

1/T ∗ =
I1(

pT sinh ρ
T )

I0(
pT sinh ρ

T )

mT

pT

sinh ρ

T
− K0(

mT cosh ρ
T )

K1(
mT cosh ρ

T )

cosh ρ

T
(5.5)

This expression involves the modified Bessel functions In(x) and Kn(x). ρ denotes the
transverse rapidity, ρ = arctanh vT . In the limit of large transverse momenta, this expres-
sion simplifies to

T ∗ = T

√
1 + vT
1− vT

, (5.6)

i.e. the slope ceases to be dependent on the particle masses.

Alternative descriptions of the transverse mass spectra are possible without assuming ther-
malization, see e.g. [59]. In this event-generator based approach, particle production is
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assumed to follow the string fragmentation scenario extracted from p-p collisions [48].
Under the additional assumption that the colored strings connecting the initial scattering
quarks may interact and also fuse before they fragment into hadrons and introducing an in-
trinsic transverse momentum kt distribution of the scattering quarks (which is transferred
to the strings), the momentum spectra are also approximately reproduced, provided that the
re-scattering of hadrons after string fragmentation is treated appropriately.

A striking difference between the two pictures is given by the transverse size of the emit-
ting source: In the thermalized picture, the source has been expanding for some time before
freeze-out occurs, whereas in the string fragmentation picture the particles emerge from a
region corresponding to the initial transverse overlap, slightly washed out by re-scattering
in the hadronic phase, with approximately the final momentum distributions. Can one
distinguish these two pictures? As we will see, HBT correlation measurements allow to
observe the source size at emission time [55] and therefore favour a scenario with an ex-
panding emission source.

5.2.3 HBT correlation measurements

Hanbury-Brown-Twiss (HBT) interferometry [54] is a technique to extract the phase space
density Si(x, p) of a given particle species i from a combination of one particle spectra

E
dNi
d3p

=

∫
d4xSi(x, p) (5.7)

and two particle correlations

C(k, q) = 1 +
|
∫
d4xeiqxSi(x, k)|2∫

d4xSi(x, p1)
∫
d4ySi(y, p2)

. (5.8)

Here, k denotes the c.m. momentum of the pair with individual momenta p1, p2 and q is
the relative momentum. Two particle correlations can occur for several reasons, the most
important ones being quantum statistics (stimulated emission for bosons) and a common
origin of both particles from a decaying resonance. Experimentally,C(k, q) is defined as

C(k, q) =
number of actual pairs in (∆q∆k)
number of actual pairs in sample

/
number of reference pairs in (∆q∆k)
number of reference pairs in sample

.

(5.9)
The reference pairs are generated by randomly picking particles from different events
within the set of events yielding the actual pairs. In this way, pair correlations are re-
moved. In order to extract the phase space density S(x, p), a trial ansatz can be made and
its parameters fitted to the existing data. A commonly used parametrization for the phase
space density at freeze-out is given by [60]

S(x, k)d4x =
mt cosh(y − η)

(2π)3
exp

(
−ku(x)

T
+
µ

T

)
G(r) exp

(
− (η − η0)

2

2∆η2

)

× 1√
2π∆τ2f

exp

(
−
(τf − τ0f )

2

2∆τ2f

)
dηrdrdφdτf .

(5.10)

This expression utilizes a thermal momentum spectrum, where the energy is evaluated
in the rest frame of the heat bath moving with velocity u(x). Gaussian distributions for
the rapidity η of emitting volume elements around η0 and with a width ∆η (see section
5.2.1) and for the freeze-out proper time τf around τ0f with width ∆τf have been assumed.
Assuming radial symmetry, the density in transverse direction r is described by a yet to
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FIGURE 5.4: The ’out-side-long’ coordinate system. The ’long’ axis is given by the beam
direction. For a pair of particles with momenta p1 and p2, the component of the c.m. mo-
mentum k perpendicular to the beam axis defines the ’out’ direction and the direction per-
pendicular to both ’out’ and ’long’ is then called ’side’. The relative pair momentum q can
have components along all directions.

be specified distribution G(r). The trial functions G(r) employ for example Gaussian

G(r) = exp
(
− r2

2R2
G

)
and box density profiles G(r) = θ(RB − r).

Usually, experimental data on HBT correlation radii in the context of heavy ion collisions
is given in the out-side-long (osl) coordinate system [61] (see Fig. 5.4). In this system,
the ’long’ axis is defined by the beam direction. For a particle pair to be correlated in the
analysis, the component of the c.m. momentum of the pair k transverse to the beam axis
then defines the ’out’ direction. Finally, the ’side’ direction lies perpendicular to both ’out’
and ’long’.

Extracted correlation radii do in general not coincide with the geometrical dimensions of
the emitting source. If the system expands, volume elements move with different veloci-
ties. The larger the relative velocity of two volume elements becomes, the smaller is the
probability of finding a correlated pair from both regions. A rapidly expanding source will
therefore lead to smaller correlation radii in HBT measurements than a source at rest.

In a Gaussian ansatz for the expanding emission function, the following combinations of
coordinates and velocities contribute to the correlation radii (assuming azimuthal symmetry
and z to coincide with ’long’, x with ’out’ and y with ’side’):

R2
side(k) = 〈y2〉(k) , R2

out(k) = 〈(x− v⊥ ·∆τ)2〉(k) , R2
long(k) = 〈(z − vz ·∆τ)2〉(k)

and R2
out−long(k) = 〈(x− v⊥∆τ)(z − vz∆τ)〉(k)

(5.11)

Here 〈. . . 〉 denotes an averaging procedure over the phase space density S(x.k) of the
emission source,

〈f(x)〉 =
∫
d4xf(x)S(x, k)∫
d4xS(x, k)

, (5.12)

β⊥ and βl are the transverse and longitudinal velocities of the relative pair motion charac-
terized by the momentum q and ∆τ characterizes the duration of the emission.

As apparent from these equations, the radii do not characterize the spatial extent of the
source directly but rather through a ’filter’ of wavelength 1/k; they measure a region of
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homogeneity from which particles with pair momentum k are most likely to be emitted.
Only if there is no correlation between position and momentum in the source, the extracted
radii are independent of k.

Rside is sensitive to the geometrical extension of the source only, whereas Rout is also
sensitive to a term β⊥〈∆τ〉 which measures the duration of the emission. The difference
between Rout and Rside therefore allows to partially disentangle the spatial and tempo-
ral information contained in the radius parameters, provided that ∆τ is sufficiently large
to dominate Rout.Similarly, Rlong measures a combination of longitudinal extent of the
source, longitudinal pair motion and emission duration.
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FIGURE 5.5: Rlong as obtained by CERES/NA49 [62] in Pb-Au collisions for different
centralities and beam energies (kt denotes the transverse momentum of the correlated pair).
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FIGURE 5.6: Rout as obtained by CERES/NA49 [62] in Pb-Au collisions for different
centralities and beam energies (kt denotes the transverse momentum of the correlated pair).

Figs. 5.5, 5.6 and 5.7 show experimental data on correlation radii as obtained by the CERES
collaboration for different centrality and beam energy, separated into transverse pair mo-
mentum kt bins using pion correlations [62].

In the thermalized expansion scenario presented here, the relative pair momentum q is
affected by two different effects: Random thermal motion and collective motion. If the
two particles of the pair under consideration come from different regions of the source
which are moving with different collective velocities, the probability to find a correlated
pair out of these regions will decrease due to the ’intrinsic’ momentum difference of the
particles caused by this collective motion. The thermal motion of the particles can partially
counteract this effect by washing out the strict position/momentum correlation of collective
flow.
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FIGURE 5.7: Rside as obtained by CERES/NA49 [62] in Pb-Au collisions for different
centralities and beam energies (kt denotes the transverse momentum of the correlated pair).

For a strong source expansion in longitudinal direction, the size of the region of homogene-
ity is almost entirely determined by the thermal length scale ∼ (Tf/mt)

1/2. This quantity
decreases asmt increases along with kt and that causes the decrease of the measuredRlong
with kt (see Fig. 5.5). If the expansion follows the Bjorken scenario, Rlong = τf (Tf/mt)
can be used to estimate the time τf from the collision to kinetic freeze-out. In this way,
lifetimes of order 6-8 fm/c can be estimated. Note that this estimate breaks down once the
system is allowed to accelerate in the course of its evolution. The HBT measurement is only
able to tell about the time-instance of the kinetic freeze-out, all backward extrapolation is
necessarily model dependent.

The fact that there is no striking difference between Rout and Rside indicates that Rout is
not dominated by the β⊥〈∆τ〉 term. Instead, this term appears to be a correction responsi-
ble for the stronger k⊥ dependence of Rout with respect to Rside. This in turn implies that
the emission duration ∆τ is short and the kinetic freeze-out occurs rather suddenly (see
Figs. 5.6 and 5.7).

There appears to be a moderate increase of both Rlong and Rout with both beam energy
and centrality, consistent with the picture of a prolonged lifetime and therefore a larger
geometrical source radius due to increased entropy production. Transverse (Gaussian) radii
are of order 5 fm (seeRside), corresponding to a r.m.s. radius of ∼ 7 fm, clearly exceeding
the initial nuclear overlap radius.

5.2.4 Elliptic Flow and early thermalization

As already discussed in section 4.4.2, anisotropies in the finally observed momentum dis-
tribution of produced particles in decentral collisions can provide an indication for early
thermalization.

Experimental measurements of elliptic flow are not straightforward, as the reaction plane,
the plane defined by the momentum vectors of the colliding nuclei and the collision rem-
nants, is not known a priori. Instead, one studies a Fourier decomposition of the azimuthal
distribution of transverse energy. This quantity is defined as a sum over the energy of all
particles weighted with their angular deviation θ from the beam axis:

Et(η, φ) =
∑

i

Ei sin θi · ri(η, φi) (5.13)

In this equation, ri denotes the vector from the collision point to the impact point in the
detector. At a given (pseudo)rapidity η, the transverse energy can be decomposed in a
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Fourier series

dEt
dφ

(η) =
〈Et〉
2π

(
1 +

∞∑

n=1

2vn cos (n(φ− ΦR))

)
(5.14)

Here, the azimuthal orientation of the reaction plane is given by ΦR. It can be determined
by considering two particle correlations assuming that both of them are correlated with the
reaction plane.

v1, the first Fourier coefficient corresponds to the so called directed flow, v2 is the measure
for elliptic flow.

Directed flow results essentially from the bouncing of the colliding systems off each other
in the course of baryon stopping: It is peaked in the reaction plane and has, on general
grounds, a very characteristic ’wiggle’ shape in rapidity [63]. For larger beam energies, the
nuclei become more and more transparent, baryon stopping ceases to be important and the
directed flow vanishes. Therefore, we will not focus on directed flow in the following.

At large beam energies, elliptic flow is predominantly caused by the pressure gradient of
a thermalized, spatially inhomogeneous system. This is demonstrated in Fig. 5.8 for SPS
and Fig. 5.9 for RHIC, where a hydrodynamical predictions for v2 are compared to data.

FIGURE 5.8: Impact parameter dependence of v2 in hydrodynamical calculations [64] as
compared to experimental data [65].

For small centralities and low transverse momenta, hydrodynamic calculations give the cor-
rect order of magnitude for the effect, indicating that it is indeed driven by the pressure in
a thermalized evolution scenario. This is sensible: Equilibration is more likely to be real-
ized in central collisions and for low momentum particles, as particles with large transverse
momentum have a high probability to escape from the dense region of the fireball.

In a recent paper [68], it has been shown that this agreement to the data can not be achieved
by a partially thermalized system: Free streaming of particles in longitudinal direction and
transverse equilibration do not give the correct order of magnitude for v2. Furthermore,
thermalization times τ0 larger than 2 fm/c can be excluded by the observed elliptic flow.
Therefore, we may indeed conclude that there is substantial evidence from experiment that
early thermalization is indeed achieved, at least for central and near central collisions and
for particles with transverse momenta below 1 GeV (which covers more than 90% of all
particles in the fireball).



58 CHAPTER 5. HADRONIC OBSERVABLES —A BASIS FOR MODELS

0 1 2 3 4 5 6
 pT [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 v
2(

p
T
)

 Hydro+GLV quench., dNg/dy=1000
 Hydro+GLV quench., dNg/dy=500
 Hydro+GLV quench., dNg/dy=200
 STAR data

Hydro v2(pT)=Tanh(pT/12)

Quenched pQCD
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5.2.5 An intermediate summary

What information can be obtained by looking at the observables discussed in the previous
sections? First of all, there are clear differences between A-A and p-p collisions, evident
from the different distributions of baryon number across rapidity space (see Fig. 5.1), which
indicate the importance of subsequent collisions, leading to an increased stopping of the
incident nuclear matter.

The evidence for multiple collisions, indicates some degree of equilibration, which indeed
finds support by examining the transverse mass spectra. These can be explained by (ap-
proximately) thermal distributions, provided that the emission source expands radially in
order to account for the changes in the slope with particle mass.

The expansion picture in turn is reinforced by the HBT data which clearly indicate a source
radius exceeding the nuclear overlap radius. This can only be explained if the system had
some time for transverse expansion before kinetic freeze-out, which in turn contradicts any
scenario involving early free-flow conditions.

Qualitatively, the picture of fireball evolution indicated in Chapter 4 indeed emerges again
— after the collision, a strongly interacting system is formed which is likely to be in or near
equilibrium, this system expands and after some extended period of time (which appears to
grow with particle production, see Fig. 5.5 and 5.6), kinetic freeze-out occurs over a short
period of time, after which the momentum spectra of all particles remain unchanged.

Can one also obtain quantitative information from the data? This poses a somewhat more
difficult task. Recall that the shapes of the mt spectra for different particle species, for
example, are caused by a combination of freeze-out temperature Tf and collective radial
motion v⊥(r), which in general is different for different positions r. Schematically, pt ∼
T + mv⊥(r). From the spectra, however, only a spatially averaged flow velocity v can
be extracted, which in turn can be caused by a variety of flow profiles v(r). Attempts to
fit the mt spectra find an anticorrelation between flow and temperature but are unable to
resolve the ambiguity, leaving the freeze-out temperature virtually unconstrained between
∼ 170 and 90 MeV(see e.g. Fig. 5.10). Similar difficulties appear if one tries to extract
the geometrical radius from the HBT correlation radius without knowing details of the
position/momentum correlation inside the emission source.

Luckily, the dependence of the HBT radii on flow is of a different type than that of the
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mt-spectra. This opens up the possibility to resolve the ambiguities by a global fit to all
existing observables.

5.2.6 A global analysis of the freeze-out state

Using the emission function Eq. 5.10, a global fit to hadronic observables has been per-
formed in [60]. The fit assumes the fireball to be in local thermal equilibrium with temper-
ature Tf . Transverse rapidity is assumed to grow linearly with the radius, η⊥(r) = r

Rrms
ηf ,

thus specifying the flow profile and for the transverse density distribution of the system, a

Gaussian G(r) = exp
(
− r2

2R2
G

)
and a box profile G(r) = θ(RB − r) have been tested.

Resonance decays, which are known to influence the mt distributions, have been included
up to masses of 1020 MeV for mesons and up to 1400 MeV for baryons.
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FIGURE 5.10: χ2 contours for Gaussian (left panel) and box density profile (right panel)
fits [60] to mt spectra of negatively charged hadrons [69] (dashed) and HBT correlation
measurements [70] (solid), all for SPS, 158 AGeV central Pb-Pb collisions.

The fit results can be seen in Fig. 5.10. Evidently, the χ2 contours for the fit to mt spectra
only are ill suited to disentangle contribution of freeze-out temperature and flow, as already
mentioned. The χ2 contours of the fit to HBT spectroscopy however display a quite dif-
ferent pattern, and the combined fit therefore yields an unambiguous result for both the
Gaussian and the box density profile. The box shaped density profile is more favoured by
the fit, mainly because of the HBT results. The indicated data set b1 appears to be the most
likely candidate for a description of the freeze-out state.

This freeze-out state (set b1 in Fig. 5.10) is characterized by a low temperature (Tf ∼ 100
MeV), a rather large radial expansion velocity (v⊥ ∼ 0.5 · c) and a geometrical radius
RB ≈ 12.1 fm, corresponding to a r.m.s radius ofRrms ≈ 8.55 fm. Assuming longitudinal
free streaming of particles, the system lifetime is found to be 6.3 fm/c. This would imply
an expansion of the r.m.s. radius from ∼ 4.5 fm (initial overlap) to 8.55 fm within only 6.3
fm/c, with the additional constraint that the initial transverse expansion velocity is close to
zero. This does not appear to be a realistic scenario and indeed can be taken as the first hint
that longitudinal free streaming is not a good assumption for SPS conditions.

5.3 A MODEL BASED ON THERMODYNAMICS

In the following, we want to set up a model which incorporates the information on the
freeze-out state in an essential way. The knowledge of initial and final geometry and expan-
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sion velocity enables us do interpolate the evolution of the volume inbetween. Assuming
spatial homogeneity and local thermal equilibrium, we can calculate the thermodynamics
of the system once the volume growth is specified, assuming an isentropic expansion sce-
nario. This is justified by the observation that most of the particle production must have
happened early in order to reach equilibrium conditions, after that, the collision rate goes
down as the volume increases and the creation of new particles ceases to be an important
process. On the other hand, the particle number cannot decrease as the entropy cannot
decrease.

5.3.1 The spacetime picture of a homogeneous fireball

As we have seen in section 4.2.2, global thermodynamics can only defined sensibly for a
volume at the same proper time τ . In a variety of models (see e.g. [31,71], this volume has
been parametrized using the simplifying assumption V ∼ vzτ or V ∼ v0zτ +

az
2 τ

2, where
vz (v0z + a · τ ) directly reflects the longitudinal expansion velocity at given τ .

This is a good approximation, as long as velocities are much smaller than the speed of light.
In heavy-ion collisions however, the longitudinal expansion velocity vz is about 0.9 c, and
for RHIC it is even larger, so one has to take into account time dilatation, which (in the
c.m. system) causes the expanding front of the fireball to be characterized by the proper
time τ = 1/

√
1− vzt (where t is the time elapsed in the c.m. frame since the collision),

whereas the midrapidity region at rest displays the conditions at a (much later) proper time
τ = t. Thus, a mismatch between the naive volume expansion and the exact expression in
τ is introduced.
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FIGURE 5.11: The mismatch between the naive (dotted) and the exact expression (dashed)
for the expansion of a proper time volume

For an expansion with constant speed, the longitudinal extent zc.m. of the fireball in the
c.m. frame after a time τ is given as zc.m. = vzτ , whereas the correct expression of the
longitudinal size z of the volume with τ = const. and expansion speed vz reads

z(τ) =

∫ z0

0

√
1 +

z√
τ2 + z2

dz with z0 =
τvz√
1− v2z

. (5.15)

As vz → c (=1), z0 gets very large and the mismatch between exact expression and ap-
proximation grows as large as a factor three for vz = 0.9 c. Therefore, for the values of
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longitudinal flow found in section 5.2.6, it is absolutely mandatory to use the exact expres-
sion. For an accelerated motion, no analytic solution can be obtained, the problem however
can still be solved numerically (and yields an unique solution for every τ ) if the motion of
the fireball front in lab time t is known.

As an amusing side remark, we note that accelerated expansion can display interesting
effects if the fireball front is already close to the lightcone. In this case, z0 grows very
steeply with vz and the apparent growth of the τ = const. volume into z direction can
exceed the speed of light. This is not prohibited by special relativity, as the collection of
volume elements V (τ) is defined across infinitely many frames.

The transverse expansion is now superimposed onto the longitudinal scenario. As typically
v⊥ � vz (see Section 5.2.6), we neglect the additional time delay in the following and
assume that the volume can be calculated as

V (τ) = 2πz(t(τ)) · R2(τ) (5.16)

if the longitudinal expansion z(t) is known in the c.m. frame and the transverse dynamics
R(τ) is known at midrapidity. Here, the factor 2 comes from the fact that the fireball
expands both in the positive and negative z-direction. Note that there is no single Lorentz
frame in which thermodynamics could be discussed, as there is no frame of reference, in
which all volume elements are at rest.

5.3.2 Rapidity distributions

So far, the discussion of the freeze-out state has covered the transverse dynamics only,
so we still need to prove that a homogeneous fireball with the dynamics indicated in the
previous section is able to describe the particle rapidity distributions. The momentum
distribution emitted by a thermal source in its rest frame is given by

d3N

d3p
=

dV

(2π)3
1

exp[p0/T ]± 1
. (5.17)

Here, the + sign holds for fermions and the − sign for bosons. If the source is boosted, the
distribution gets

d3N

d3p
=

dV

(2π)3
1

exp[pµuµ/T ]± 1
, (5.18)

where uµ denotes the four velocity of the source. Switching to the more useful description
in terms of rapidity y and transverse mass mt and taking Yz and Y⊥ as longitudinal and
transverse rapidity of the emission source, we find

1

exp[pµuµ/T ]± 1
=

1

exp[mt coshY⊥ cosh(Yz − y)− pt sinhY⊥ cos(Φ− φ)/T ]± 1
.

(5.19)
Here, azimuthal orientation of particle emission and source movement are denoted by φ
and Φ respectively. In order to discuss momentum spectra, we now have to consider a
superposition of boosted sources,

d3N

dydp2tdφ
=

Vfmt

2(2π)3

∫ Y f
z

−Y f
z

dYz

∫
dY⊥

∫
dΦf(Yz , Y⊥) cosh(Yz − y)

1

exp[pµuµ/T ± 1]
.

(5.20)
The information on the fireball geometry is contained in Vf , which represents the volume
at the time of particle emission and f(Yz, Yf ), a normalized function which specifies the
amount of Vf moving at a given longitudinal and transverse rapidity. Here, azimuthal
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symmetry of the fireball has been assumed. The integral overΦ can be carried out, resulting
in

d2N

dydp2t
=

Vfmt

2(2π)3

∫
dY⊥I0 ((pt/T ) sinhY⊥)

×
∫ Y f

z

−Y f
z

dYzf(Yz, Y⊥) cosh(Yz − y)
1

exp[(mt/T ) cosh(Yz − y) cosh(Y⊥)]± 1
.

(5.21)

Integrating this expression over p2t yields the rapidity distribution of particles inside the
fireball, integrating over y the transverse momentum spectra. For the homogeneous fireball,
we assume a linear growth of the rapidity with position relative to the fireball center

Yz(z) =
z

zf
Y fz and Y⊥(r) =

r

rbox
Y f⊥ . (5.22)

Here, Y fz and Y f⊥ denote the maximal expansion rapidities in longitudinal and transverse
direction, which are reached at the fireball edges. During the fireball evolution, these quan-
tities depend on proper time, but Eq. (5.22) is assumed to hold at all times. This leads to a
boost-invariant scenario at freeze-out: f(Yz , Y⊥) becomes a function of Y⊥ only, with the
form f(Y⊥) = 2Y⊥/(Y

f
⊥)2.

If we now insert the parameters of the freeze-out analysis and compare the p2t integrated
Eq. (5.22) to the measured data, we have completely fixed the freeze-out state of the fire-
ball. Good agreement is achieved with all of the hadronic observables discussed so far by
construction, as we have used the best fit result (see section 5.2.6) to determine the relevant
parameters of the model.

5.3.3 Evolution dynamics

We continue the discussion of the fireball model by making an ansatz for its evolution. We
choose

z(t) = z0 + v0zt+

∫
dt′dt′′cz

p(t)

ε(t)
(5.23)

and

R(τ) = R0 +

∫
dτ ′dτ ′′c⊥

p(τ)

ε(τ)
(5.24)

as an input into Eq. (5.16). The motion of volume elements inside the fireball is assumed
to be described by Eq. (5.22) at all times. In this ansatz, z0 describes the longitudinal
extent of the earliest thermalized volume (and is related to τf , the thermalization time),
R0 corresponds to the initial nuclear overlap radius and v0z denotes the initial expansion
velocity of the fireball. In the Bjorken expansion scenario, v0z would be equal to vz(tf ), the
longitudinal expansion speed at freeze-out, and in the Landau scenario it would be zero.
For the time being, we leave v0z as a free parameter. This ansatz allows for free streaming
of matter (∼ v0z t) in longitudinal direction as well as pressure-driven acceleration in both
longitudinal and transverse direction. Note the absence of a term v0⊥τ — the initial high-
energy scattering processes favour forward scattering, therefore no significant initial free-
streaming in radial direction is expected.

There is the possibility of accelerated motion in the ansatz, where the acceleration is given
by a constant times the ratio of pressure over energy density. This can be motivated as
follows: In a consistent hydrodynamical approach, a = ∇p

ε would give the acceleration
of a volume element. In our simplified framework, however, this expression makes no
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sense, as we average out all pressure gradients inside the fireball. So one must think of
a suitable averaging procedure in the presence of a pressure gradient. Consider the edge
region ∆R of a fireball characterized by hydrodynamic evolution. The pressure gradient
will be steeper than the gradient of the energy density, since the pressure is the driving force
for the flow of energy density. So, ε can be assumed constant over the region∆R where ∇p
is large. Furthermore, both quantities can be written as N(T ) · S(r), where N denotes the
normalization and S describes the shape of the distribution in space (const. over ∆R for ε).
The gradient acts on S(r) only and results in some average acceleration of the edge region.
As the fireball expands, the temperature drops, thus modifyingN(T ) for both pressure and
energy density. Assuming that the shape of the fireball edge does not change drastically,
a ∼ p/ε follows. This ansatz allows that the presence of a soft point in the EoS actually
influences the evolution dynamics by reducing the acceleration near the phase transition.

Besides v0z , three more free parameters of the model remain: The freeze-out (proper) time
tf (τf ) and the two constants giving the magnitude of the acceleration. On the other hand,
from overlap calculations we know R0 and from the analysis of the freeze-out state in
section 5.2.6, we can derive

R(τf ) = Rf , v⊥(τf ) = vf⊥ and T (τf ) = Tf . (5.25)

Once we specify an EoS and calculate thermodynamical properties, the three constraints
uniquely determine the three remaining free parameters.

5.3.4 Thermodynamics

Specifying the volume expansion by inserting any trial ansatz for the ratio p/ε and the free
parameters, we proceed by calculating the thermodynamic response of the temperature T
to the changing volume V (τ). Key quantity here is the total entropy S0 of the system,
which is more commonly given in terms of the entropy per participant baryon s/ρB times
the number of participants Npart.

The total entropy can be obtained by measuring charged particle multiplicitiesN+ andN−

in suitable rapidity bins and calculating

DQ =
N+ −N−

N+ +N−
. (5.26)

The quantity DQ stands for the inverse of the specific entropy s/ρB per net baryon, and
the product DQ(s/ρB) roughly measures the entropy per pion [72]. For SPS collisions at
160 AGeV, we find s/ρB = 26 for central collisions.

Once S0 is known, the entropy density inside the fireball can be obtained as

s(τ) = S0/V (τ). (5.27)

By inverting the EoS discussed in section 3.5 (Eq. (3.24)), which determines s(T ) (in
general, this has to be done numerically), the temperature T (τ) at a given proper time
can be calculated. Again, using the EoS (Eqs. (3.22) and (3.23)), p(τ) and ε(τ) follow.
Baryon density follows as ρB = Npart/V (τ) and the baryochemical potential µB(τ) can
be calculated using the relation:

V (τ)

(2π)3

∫
d3p

1

exp[(p0 − µB(τ))/T ] + 1
= Npart. (5.28)

Having obtained all these quantities, we iterate the trial ansatz in order to obtain a self-
consistent solution. It turns out that transverse dynamics can be determined from purely
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kinematic constraints whereas v0 mainly connects to the freeze-out temperature. The so-
lution in terms of the temperature evolution in proper time can be found in Fig. 5.12. Key
parameters are summarized in Tab. 5.2.
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FIGURE 5.12: Temperature profile for the SPS 158 and 40 AGeV 5% most central Pb-Pb
collision scenario.

One finds that the fireball starts out with a large initial temperature slightly above 300 MeV,
expands in the QGP phase for about 7 fm/c and remains another 10 fm/c in the hadronic
phase until kinetic freeze-out occurs at a temperature of 100 MeV. At first sight, both the
large initial temperature and the long lifetime of the partonic phase appear surprising. Naive
estimates of the initial temperature and the QGP lifetime based on the Bjorken scenario [73]
give much smaller values. This discrepancy, however, has two main reasons. First, in this
model we use a more realistic EoS of the QGP phase than that of an ideal gas, resulting
in an enhancement of the initial temperature of ∼ 30%. Near the phase transition, s/T 3

in the realistic EoS is characterized by a massive reduction of active degrees of freedom
as compared to an ideal gas. If the total entropy S0 is kept constant, this implies that the
cooling is delayed. In the scenario for SPS discussed here, this amounts to a partonic phase
which lasts about a factor two longer than in the ideal gas case.

The second important difference is the presence of longitudinal acceleration. From the fit
to the final state analysis, we find v0 = 0.45 c, apparently different from the flow veloc-
ity vfz = 0.9 c found in the analysis of the rapidity distribution of produced particles (see
section 5.2.6), so necessarily longitudinal acceleration had to take place. In the Bjorken
scenario, no longitudinal acceleration is present, therefore the mapping of final state rapid-
ity distributions to initial state spatial distributions results in a larger initial volume than
the one in our scenario. If we assume no or only small longitudinal acceleration in order
to compare the two approaches, we find initial temperatures between 220 and 240 MeV,
consistent with the Bjorken estimate. This initially smaller expansion speed also prohibits
a fast cooling of the fireball and prolongs the partonic phase.

In the following, we will refer to the scenario discussed in this section as ”standard sce-
nario”. It describes 5% most central Pb-Pb collisions at SPS for 158 AGeV beam energy
and is based on the freeze-out analysis carried out in [60].
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5.3.5 Longitudinal acceleration

The presence of longitudinal acceleration is not a big surprise if one considers the fire-
ball evolution from an approach based on thermodynamics; if one thinks in terms of con-
ventional multiparticle production mechanisms (like the Lund string model [49], the dual
parton model [48] etc.), the mismatch between initial and final expansion velocity indeed
contradicts the expectation. This raises the question whether longitudinal acceleration can
be avoided in the thermal description in order to reconcile the two approaches.
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FIGURE 5.13: The difference between the standard scenario (solid) and one assuming no
longitudinal acceleration (dashed).

Let us artificially remove the longitudinal acceleration term from the fit procedure while
allowing for a different freeze-out temperature. This result is shown in Fig. 5.13. The
emerging scenario is characterized by a faster volume expansion, resulting in a lower tem-
perature at all times. Since this scenario starts out very close to the phase transition, the
transverse acceleration is small for the initial times due to the soft point in the EoS and it
takes comparatively long to built up the observed transverse flow and radius, resulting in a
prolonged overall lifetime. The freeze-out temperature however is completely off — it is
hard to have a thermal ensemble of even pions at such low temperature that describes the
observed number, even if one introduces a pion chemical potential, as µπ < mπ in order
to avoid Bose-Einstein condensation which is certainly not observed (for a more detailed
discussion of the pion number in the model, see chapter 6).

One might think of stopping the evolution as soon as the temperature drops below 100
MeV, but this is no way out — transverse flow and radius will be off, as they determine the
endpoint in Fig. 5.13. In order to compensate, transverse acceleration must be increased, in
turn resulting in an even faster drop of the temperature and a dramatically reduced lifetime.
Additionally, the system of equations relating transverse acceleration c⊥ and freeze-out
proper time τf to radius and flow has a unique solution, so one cannot go away from the
standard scenario without missing either the radius or the amount of flow. Only if a flow
profile v(r) is constructed in such a way as to meet the data on average flow and the radius,
such an ansatz remains in agreement with the data.

Assuming such an alternative description could be found, the main differences between
the standard scenario and the one without longitudinal acceleration were two: First, the
partonic phase would be almost completely gone and secondly, the lifetime of the system
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would be dramatically reduced. The latter one is a generic feature independent of thermal-
ization: As the extension in z direction grows, the density of energy and particles drops
accordingly, increasing the mean free path of particles inside the system. Thus, kinetic
freeze-out will occur earlier.

Is there any way of distinguishing these two possibilities? Certainly, as already discussed
in section 5.2.6, a small lifetime seems barely adequate to allow for the observed expansion
of the source, but it cannot be ruled out. There are, however, observables different from
the ones discussed so far, such as electromagnetic probes, which allow to study the entire
expansion process of the system instead of only the freeze-out state. Their information on
the question of longitudinal acceleration will be discussed later.

5.4 EXTENDING THE SCENARIO

So far, we have discussed the conditions of the 5% most central Pb-Pb collisions at SPS, 158
AGeV in our framework. The reason is that these are the only conditions under which we
have a reliable analysis of the freeze-out state. A wealth of data has been taken, however,
at different centralities and beam energies. In order to discuss these results as well, the
standard scenario of fireball evolution must somehow be adapted to different beam energies,
collision systems and centralities. This has to be done in such a way as to fit existing
hadronic observables and to employ the relevant physics for the extrapolation of the model.

5.4.1 Variations in centrality

As for the modifications of the evolution dynamics induced by nonzero impact parameters,
we benefit from the fact that the relevant physics is at least qualitatively known. Let us start
discussing the most obvious changes with respect to central collisions.

First of all, the number of participant baryons will be reduced as the impact parameter
increases. This can be taken into account within the framework of eikonal calculations as
discussed in section 4.3.1. Along with this change, we find a reduction of the initial overlap
area. Also the shape of the overlap region changes: The circular area transforms into an
almond shaped one.

In principle, the expansion geometry is different if one starts from an almond shaped over-
lap area, leading to the phenomenon of elliptic flow. This difference, however, washes out
after an evolution time of a few fm/c. Furthermore, global thermodynamics is only sensitive
to the transverse area, not to its shape. This suggests that, in order to keep the model frame-
work simple, one can ignore the complications of initial geometry and just parametrize the
fireball as an expanding cylinder for any impact parameter. The alternative way, modifying
the parametrization, would introduce more free parameters without actually increasing the
predictive power of the model, therefore we will not pursue this approach further, keeping
in mind that we expect the model to fail increasingly as we approach more and more pe-
ripheral collisions where these effects become important. Note that we expect this failure
anyway at some impact parameter, as the limit for very peripheral collisions is p-p, which
we hardly expect to be described by a thermal approach.

Assuming that the entropy per baryon is independent of the collision centrality, one is able
to find the total entropy for the process from the number of participants.

For the final state, we assume that the freeze-out condition is still given by T = Tf , thus
all radius and flow parameters have to be reduced accordingly. This makes sense, as it is
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mainly the pion density which determines the mean free path inside the fireball and the
geometrical dimensions of the system at freeze-out do not change drastically. We choose

v⊥ → cvc⊥, ∆V = c∆vc and Rf = c2Rcf , (5.29)

appropriate for an accelerated motion. Here the superscript c denotes the quantities in the
central case, ∆v represents the amount of velocity picked up by longitudinal acceleration
and c is a free parameter.

In order to fix the new free parameter c, we have to impose one more condition on the
system. We choose to fix v0z , the initial longitudinal velocity. This can be done, because we
know both the limits of this quantity at central and most peripheral collisions. For b = 0,
we have found v0z = 0.45, whereas in p-p collisions, the rapidity loss of the bulk matter
amounts to one unit, translating into v0z ≈ 0.89, thus the longitudinal acceleration vanishes
completely as it should. We interpolate linearly between these two limits.

In principle, the thermalization time τ0 should also be dependent on centrality, since p-p
collisions never thermalize, indicating that the dropping energy density is insufficient to
support a collision rate large enough to reach equilibrium. Unfortunately, there is no clean
way to constrain this effect. Therefore, we will not try to determine the exact conditions un-
der which equilibrium is reached but rather keep the value of τ0 for all centralities, keeping
in mind that additional errors (to the ones created by neglecting elliptic flow) are introduced
in this way.

5.4.2 Results for different centrality

In Fig. 5.14, the resulting temperature evolution for different impact parameter b are shown
for the SPS 158 AGeV scenario.
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FIGURE 5.14: Temperature evolution for different impact parameters at 158 AGeV Pb-Pb
collisions (model calculation).

As expected, the lifetime of the fireball and the initial temperature decrease with increasing
b. For b between 10 and 11 fm, there is hardly any QGP phase left, however, it never seems
to vanish completely. This is most likely a result of the simplified assumption τ0 = 1 fm/c
for all impact parameters; if one would increase τ with b, the lifetime of the QGP phase
would drop even further.
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Both the lowering of the initial temperatures and the increased slope of the curves in the
hadronic phase is mainly driven by the transition from significant rapidity loss of the pro-
duced matter in central collisions to small rapidity loss in peripheral collisions. The drop
in total entropy is hardly sufficient to account for these effects, because the fireball volume
drops also and the net effect is small.

No direct sign for a breakdown of the thermal model at any b is apparent from the curves.
Obviously, comparison to observables is needed to obtain new information.

5.4.3 Variations in beam energy

The extension of the model to different beam energies poses a more difficult task. The
reason is that the behaviour of the system changes not only quantitatively but qualitatively.
At SPS conditions, the participant baryons are important, as their density is high, and the
decay of their higher lying resonance states increases the number of pions populating the
hadronic phase. When the participant baryons are distributed over larger and larger rapidity
intervals, their role becomes less and less important. Thus one expects less overpopulation
of the pion phase space in baryon-free regions and correspondingly a different EoS and
different freeze-out conditions. This will be explored in more detail in chapter 6. For now,
only the prescription needed to construct the model is given here. As we vary the beam
energy from 40 (fixed target) to 200 AGeV (collider), we interpolate the EoS between the
one taking into account pion overpopulation as observed at SPS and the one assuming no
net baryon density. The freeze-out temperature is assumed to rise from 100 MeV (SPS)
to 130 MeV (RHIC) accordingly in order to compensate for the reduced pion density. For
the time being, these values can only be qualitative estimates, only a detailed freeze-out
analysis for RHIC is sufficiently powerful to yield enough constraints for a quantitative
description. Details of the modifications can be found in Tab. 5.1.

Apart from these qualitative changes, there are some quantitative issues as well. First
data on hadronic observables for Au-Au collisions at RHIC at

√
s = 130 MeV have been

analyzed.

Figure 5.15 shows the pseudorapidity η distribution of negatively charged hadrons h− for
a variety of collision centralities, as measured by the PHOBOS collaboration at RHIC for
130 AGeV Au-Au collisions [74]. Comparing with Fig. 5.2, we find again the same broad
plateau in the distribution around midrapidity, although it is even more pronounced for at
RHIC. The rapidity region in which the distribution is large has grown considerably (∼
-4 to 4 at RHIC as compared to ∼ -1.5 to 1.5 at SPS, as well as the rapidity density of
particles. This indicates that the overall entropy production is greatly enhanced and the
fireball matter is indeed distributed across a larger volume, thus the density of net baryons
is reduced correspondingly.

Figure 5.16 shows HBT correlation radii Rout, Rside and Rlong as measured by the STAR
collaboration [75] for 130 AGeV Au-Au collisions at RHIC using π+ and π− correlations.
Comparing with Figs. 5.5, 5.6 and 5.7, no dramatic difference can be observed. In par-
ticular Rside, which measures the transverse geometry of the source remains in the order
of 5 fm. This indicates that the transverse freeze-out geometry is hardly changed even for
dramatically increased collision energies. About the same holds true for the behaviour of
Rout which is sensitive to the radial expansion also, even if one considers the mt depen-
dence. Therefore one can conclude that the radial expansion v⊥ is also very similar to the
SPS case.

For these reasons we keep the freeze-out radius Rf and the transverse expansion velocity
vf⊥ approximately constant. The exact values of these parameters for different energies
are shown in Tab. 5.1. As for the longitudinal dynamics, it turns out that for all measured
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FIGURE 5.15: Pseudorapidity distributions of negatively charged particles h− for different
collision centralities as obtained by the PHOBOS collaboration at RHIC in 130 AGeV Au-Au
collisions [74].

energies (SPS 40 AGeV and 158 AGeV, RHIC 130 AGeV and 200 AGeV) the edge of the
h− rapidity distribution is always about one unit of rapidity away from the kinematic limit.
We make use of this in order to model the longitudinal freeze-out conditions. Following
the same procedure as in the standard scenario, the initial longitudinal motion is then fit to
the freeze-out temperature Tf .

The remaining task is to fix the entropy per participant baryon in order to provide the initial
conditions for the thermodynamics. Assuming that the produced entropy scales with the
number of produced particles, we use the result for SPS 158 AGeV as a baseline and scale
everything else with the measured multiplicity of negatively charged hadrons. In the energy
region between SPS and RHIC, we use a fit to the data of the form Nh− = a · ln(s) − b
which gives a good description of the data to interpolate (see Fig. 5.17).

Ebeam Ecm s/ρB yfz Tf τf vf⊥ Rf

40 8.76 10 2.86 100 1.5 0.33 7.1
158 17.38 26 3.55 100 1.0 0.53 8.55
500 30.67 39.15 4.12 110 0.9 0.54 8.87
1400 51.29 51 4.63 115 0.8 0.55 9.21
5500 101.29 67 5.31 120 0.7 0.55 9.21

200 94 5.5 130 0.6 0.56 9.4

TABLE 5.1: Parameters of the extension of the fireball model towards different beam ener-
gies. Times are given in fm/c, length scales in fm and energies in AGeV.
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obtained by the STAR collaboration at RHIC in 130 AGeV Au-Au collisions [75].

5.4.4 Results for different beam energy

The resulting fireball evolution temperatures for increasing beam energies are shown in
Fig. 5.18.

Surprisingly, there is not much change for the whole range of beam energies under con-
sideration, apart from the fact that the initial temperature seems to rise quite substantially
towards ∼ 400 MeV. The lifetime of the partonic medium and its relative contribution to
the total lifetime change only moderately.

The reason for this lies in the experimental observation that transverse dynamics seems
unchanged. This implies similar freeze-out proper times. Consequently, the growth of en-
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tropy with beam energy must be dominantly absorbed into longitudinal dynamics. Looking
at the parameters (see Tab. 5.2), one indeed observes that the initial longitudinal motion
grows, thus one finds less rapidity loss of the produced matter and the evolution dynam-
ics approaches the Bjorken scenario, as appropriate for increasing energies. The entropy
is distributed across a larger region in longitudinal direction and therefore the transverse
dynamics is only weakly influenced.

Some important properties of the different fireball scenarios discussed in this chapter are
summarized in Tab. 5.2.

Ec.m. τ0 τc τf Rf vf⊥ v0 vfz s/ρB

9 AGeV 1.5 4.0 15.0 7.1 0.36 0.45 0.75 13
17 AGeV 1.0 6.5 16.0 8.55 0.53 0.45 0.9 26
30 AGeV 0.9 7.0 15.5 8.87 0.54 0.57 0.975 39

100 AGeV 0.7 8.0 16.0 9.21 0.55 0.65 0.997 67
200 AGeV 0.6 9.0 18.0 9.4 0.56 0.9 0.9985 95

TABLE 5.2: Key properties of the fireball evolution (for 5% most central collisions). Times
are given in fm/c and length scales in fm.
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Chapter 6

HADROCHEMISTRY AND

CHEMICAL EQUILIBRIUM

In chapter 5, we outlined the construction of a model for the description of the thermalized
fireball created in a heavy-ion collision. This model is based on a fit to a set of hadronic
observables, specifically rapidity and transverse mass spectra and HBT correlations, and on
information about thermodynamic properties of the QGP phase coming from lattice QCD
calculations. We have used the total multiplicity of produced particles as an input for the
total entropy, but no attempt was made to distinguish between different species of particles.
In the present chapter, we will apply the commonly used statistical hadronization model to
predict the relative abundancies of particles and compare to the experimentally observed
ratios.

6.1 CHEMICAL EQUILIBRIUM AND STATISTICAL

HADRONIZATION

6.1.1 Introduction

If a system of interacting particles is given enough time without a change in its bound-
ary conditions, it will eventually reach equilibrium, i.e. particle populations ni will be
distributed according to the grand canonical ensemble

ni =
di
2π2

∫ ∞

0

p2dp

exp{[Ei(p)− µi]/T}± 1
. (6.1)

Here, di denotes the degeneracy factor of particle species i (spin, isospin, particle / an-
tiparticle) and the +(-) sign is used for fermions (bosons) and Ei(p) =

√
m2
i + p2. In

73
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the presence of conserved charges (e.g. baryon number), chemical potentials µi have to
be introduced if the conservation on average is required (charges are allowed to propa-
gate through the system), or the canonical ensemble has to be used if strictly local charge
conservation is imposed.

The abundance of particles i is determined by its degeneracy factor di and by its mass
entering Ei. This, however, holds only if the system was actually able to reach equilib-
rium. An expanding fireball, on the other hand, is a rapidly expanding system, governed
by timescales of ∼ 10 fm/c in the hadronic phase, so if the relaxation time of the system is
comparable to this external scale, equilibrium cannot be maintained.

The elastic collision rate is responsible for the momentum distributions of each particle
species (thermal equilibrium), but only inelastic collisions are able to change abundan-
cies between different particle species (chemical equilibrium). It turns out that for most
hadrons the thermally averaged elastic cross section is much larger than the inelastic one
for temperatures characteristic for the hadronic phase, thus even if momentum spectra are
thermalized (see section 5.2.2), this does not automatically imply equilibrium in particle
abundancies [76–79].

The thermal relaxation time τi for particle species i is given by

τ−1
i =

∑

h

〈σihvrel〉ρh. (6.2)

Here, the sum extends over all hadrons in the system, σih denotes the cross section for
a collision between species i and h, vrel gives the velocity of the collision and ρh is the
density of the hadronic medium. Standard resonance dominated processes (e.g. ππ → ρ→
ππ, πN → ∆ → πN . . . ) lead to thermally averaged cross sections of 〈σ〉 ∼ 50mb, which,
for a (rather dilute) gas of normal nuclear matter density implies thermal equilibration
times ∼ 2 fm/c. On the other hand, for inelastic processes (like ππ ↔ KK. . . ) one finds
typical thermally averaged cross sections of 〈σ〉 ∼ 1 mb, leading to equilibration times of
∼ 100 fm/c, well above even the most optimistic estimates of fireball lifetimes (see [85]
and references therein for numerical values of cross sections).

This fact has given rise to the picture of subsequent chemical and thermal freeze-out. It
implies that, due to the large chemical relaxation time, the abundancies of particles are fixed
for all but the most dense hadronic systems at or very near the hadronization temperature
TC . Thus, as the system cools off, only resonance decays are able to change the number of
observed particles. Eventually, only particles with lifetimes larger than the fireball lifetime
τf will be observed, their phase space density however will be significantly above the
thermal expectation value.

Therefore, if one calculates the abundancies of particles at TC and follows all the resonance
decays until Tf , one should in principle find the measured particle abundancies.

6.1.2 Successes and caveats

The correct distribution of particle species at hadronization time is not known, given the
limited knowledge of the de(confinement) / chiral transition. On the other hand, the number
of hadrons in the system is large, and so one can expect to describe hadronization as a statis-
tical process, which in turn leads to thermal distributions. Furthermore, if the quasiparticle
description of the QGP (see chapter 3) is correct, there is more time for the equilibration of
pre-hadronic clusters which then might be ’born’ into equilibrium already.

Under the assumption that the distribution of hadrons at TC can indeed be described by the
grand canonical ensemble, final particle yields have been investigated using the temperature
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T and µb as free parameters for a fit to experimentally observed particle ratios. This has
been done successfully for a variety of collision energies from AGS up to RHIC [80–82].
The results can be seen in Figs. 6.1 and 6.2.

FIGURE 6.1: Statistical model fit to particle ratios as compared to experiment (see [81])
Here, T denotes the temperature at which the chemical freeze-out occurs.

From Fig. 6.2, it appears that for very dense hadronic systems (as created at SIS or AGS)
there is still some degree of inelastic equilibration even deep in the hadronic phase whereas
for the higher collision energies the parameters of the chemical freeze-out basically coin-
cide with the phase boundary.

The apparent success of the statistical description of particle abundancies however hides
one important fact: there is some evidence that particle properties, especially masses and
widths, are substantially modified by the interaction with the medium whereas in statisti-
cal model calculations vacuum properties of particles are commonly used. Unfortunately,
there is no way of assessing these properties reliably near the phase boundary due to the
breakdown of perturbation theory. We will examine the sensitivity of the description to
in-medium particle properties in more detail in section 6.3.3.

There are yet other questions concerning the statistical hadronization description: While
for most hadronic scattering processes the inelastic cross section is small, this is clearly not
so for some of them, especially the pp annihilation process which exhibits a thermally aver-
aged cross section of ∼ 50 mb (see [85] and [83]), enough of preventing the reaction from
being ’frozen’ from the beginning of the hadronic phase. On the other hand, the measured
p/p ratio is nicely described by the statistical model fit for all energies, which is puzzling,
as the fit reflects the distribution at a temperature different from Tf . An evaluation of the
p/p ratio using the thermal freeze-out temperature Tf , however, leads to 50% disagreement
to data.

This problem has been examined in greater detail in [83] within the framework of rate
equations. The essential findings were that multi-pion fusion (nπ → pp) is able to regen-
erate the p/p ratio, provided that there is a significant overpopulation of pion phase space,
which enhances the fusion process. This overpopulation however is experimentally well
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FIGURE 6.2: QCD phase diagram with chemical freeze-out line as extracted from statistical
model fits (see [80–82]).

established and can be explained within the framework of statistical hadronization by the
decay of resonances created at the phase transition.

6.2 THE MODEL

6.2.1 Basic equations

In order to predict hadronic multiplicities within our model of fireball evolution, we use the
grand canonical ensemble

ni =
di
2π2

∫ ∞

0

p2dp

exp{[Ei(p)− µi]/TC} ± 1
(6.3)

to calculate particle densities at the phase transition temperature TC . The chemical po-
tential for particle species i is linked to the particle’s baryon number Bi and strangeness
content Si as

µi = µBBi − µSSi. (6.4)

We neglect isospin asymmetry (implying an additional chemical potential µI which has
been found to be small in the fit procedures). Two important constraints link the volume
with the chemical potentials: The net baryon number has to be equal to the number of
participant baryons in the collision and the overall strangeness must be zero,

V
∑

i

niBi = Z +N, V
∑

i

niSi = 0. (6.5)

In [80–82], the temperature T and baryochemical potential µB have been used as fit pa-
rameters, but since we possess a model of fireball evolution already, we are able to pro-
ceed without further free parameters and determine T and µB as follows: Assuming that
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hadronization happens at TC and that further inelastic interactions are negligible, we insert
the volume V (TC) into Eq. (6.5) and calculate the baryochemical potential µB . Using µB ,
we can now calculate particle densities and iteratively adjust µS in order to fulfill Eq. (6.5).
Analogous to previous calculations, we correct the result for the amount of volume which is
excluded by the nonzero eigenvolume of the particles themselves, using a hard core radius
of 0.3 fm for all mesons and baryons. This number is suggested by the hard core volume
observed in nucleon-nucleon scattering experiments [84] and has been used in [81] also.
Specifically, we calculate the absolute number Ni of particles i as

Ni = Veffni with Veff = V0 −
∑

i

NiVex. (6.6)

Here, V0 is the volume of the fireball at chemical freeze-out and Vex denotes the excluded
volume of a single particle with radius Rhc. Again, this correction has to be applied itera-
tively in order to find a self-consistent result. This procedure enables us to predict absolute
numbers of particles and resonances at the phase transition within our framework.

6.2.2 Resonance decays

We include all mesons and mesonic resonances up to masses of 1.5 GeV and all baryons and
baryonic resonances up to masses of 2 GeV into the treatment. This amounts to 30 (strange
and nonstrange) mesonic states and 36 (nonstrange to multistrange) baryonic states. In
order to compare their experimental results, we calculate their decay into particles which
are long-lived as compared to the fireball, such as π,K, η,N,Λ,Σ and Ω.

All data on particles is taken from [85]. For many higher-lying states, the properties as
well as the decay channels are poorly known. In these cases, we proceed as follows: If
some quantity (e.g. mass, width. . . ) is known only within a certain range, the arithmetic
mean of this range is used in the model. Decay channels which are reported to be ’seen’
are assumed to receive equal contributions from the branching ratio which is left after
all known channels have been accounted for. Branching ratios less than 1% have been
neglected. Decay chains (such as a2 → ρπ → πππ) have been followed through. For
resonances with large width, we integrate Eq. (6.3) over the mass range of the resonance
using a Breit-Wigner distribution.

At first sight, one would expect that directly produced thermal pions contribute most to
the observed particles, but quite the opposite is true. The density of resonances increases
almost exponentially with mass, and so there are a lot of resonances contributing at masses
above 1.5 GeV. Furthermore, these high-lying states are typically characterized by large
spin and isospin degeneracy factors di, enhancing their contribution further. And as for
their contribution to the finally observed particles, due to their large mass, they decay typ-
ically into four or more pions. These effects are only partially counterbalanced by the
exponential suppression in the Fermi(Bose) weight. For example, the ∆(1232) comes with
a degeneracy factor d∆(1232) of 32 (4 spin, 4 isospin, particle/antiparticle), whereas dπ is
only 3 (isospin).

6.3 RESULTS

6.3.1 Standard scenario

The number of particles at thermal freeze-out has been calculated using the fireball scenario
for central collisions at SPS with 158 AGeV beam energy. The resulting ratios are shown
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in Fig. 6.3 along with the experimentally determined values of selected particle ratios [69,
70, 86–94].
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FIGURE 6.3: Results of the statistical hadronization model in the standard SPS fireball
evolution for 158 AGeV collisions (dashes) as compared to data (filled circles) for a chemical
freeze-out temperature Tch = 170 MeV.

One observes that the description of the data is not perfect, but the overall trend is well
reproduced. The most significant deviations concern the Λ hyperon. Note that the agree-
ment to data is necessarily worse than in [81], as T and µB are not free parameters in the
present calculation, but rather determined from Eq. (6.5) assuming the fireball evolution is
known. Given the fact that there is still the possibility of (huge) in-medium modifications
of particles, the agreement has to be considered as satisfactory. The detailed values are
listed in Tab. 6.1, along with the experimental result.

The link between the fireball evolution and the statistical hadronization model is obviously
given by the EoS and the total entropy content S0 of the system, as those uniquely define
V (TC). Therefore, the particle ratios are not suited to test dynamical properties of the fire-
ball, such as τC or longitudinal vs. transverse expansion. The hadrochemistry is, however,
a valid test for the endpoint at TC of the EoS as determined in the quasiparticle model
coming from the high temperature regime. It is also a test for the extraction of s/B from
the multiplicity data, and for the hypothesis that entropy is conserved during the expansion
in at least the hadronic phase.

It has been argued that the statistical distribution of particles is no indication for a thermal-
ized system at all, as it is also able to describe the particle yield from e+e− annihilation [95]
or p-p (p-p)-collisions [96], which are by no means thermalized systems. There is, however,
one important difference. In the description of e+e− reactions, the canonical ensemble has
to be used, whereas for the description of heavy-ion data the grand canonical ensemble is
appropriate, indicating that strangeness can propagate freely over large distances inside the
fireball [97].

6.3.2 Late chemical freeze-out

Looking at Fig. 6.2, one could argue that the chemical freeze-out might occur slightly after
the phase transition. In order to test this conjecture, we have calculated particle ratios
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with the same formalism as introduced above, but selected a different chemical freeze-out
temperature Tch and a correspondingly different volume V (Tch). The result is summarized
in Fig. 6.4.
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FIGURE 6.4: Hadron ratios for different chemical freeze-out temperatures Tch = 170 MeV
(thin dotted) 165 MeV (dash-dotted) and 160 MeV (solid) for SPS, 158 AGeV Pb-Pb colli-
sions.

One observes that the overall impact of the variation of Tch is small. The (p − p)/h−

ratio improves slightly if the temperature is lowered. This is caused by the larger volume
corresponding to T = 165 MeV in the fireball evolution model, which in turn enhances the
direct production of light mesons, as these are not suppressed by a Bose factor. On the other
hand, once the temperature drops to 160 MeV and below, the description of multi-strange
particle ratios gets increasingly worse, as these are heavy states and suffer considerably
from the suppression in their Fermi distribution functions.

In conclusion, it appears that a chemical freeze-out temperature Tch between 170 and 160
MeV is favoured, but this is only a qualitative statement. Once Tch differs from TC there
would be different chemical freeze-out temperatures for all particle species, as determined
by their participation in inelastic reactions. One can therefore not assign a strong quantita-
tive significance to a universal chemical freeze-out temperature Tch.

6.3.3 In-medium modifications

Large uncertainties are attached to possible in-medium modifications of particle properties.
In an approach where free parameters are fitted to the data, part (or all) of the induced
changes may be absorbed in a refit of the parameters, but given the tight constraints of the
present approach, the direct impact of such modifications on the particle abundancies can
be observed.

In order to roughly quantify these effects, we allow for both mass shifts and broadening of
the particles due to in-medium effects at TC (from either finite temperature or due to finite
density effects).

In many model calculations, hadron masses decrease as the chiral transition is approached.
We have tested the consequences of reducing particle masses by 10 and 20% (note that this
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is only a qualitative estimate, since a mass reduction without broadening is unrealistic).
The mass of the pion has been left unchanged because of its Goldstone boson nature. The
resulting particle abundancies are shown in Fig. 6.5.
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FIGURE 6.5: Hadron ratios for different in-medium mass reductions at SPS, 158 AGeV
Pb-Pb collisions, shown are vacuum mass (thin dotted) reduction by 10 (dash-dotted) and
20% (solid).

The induced changes show up most prominently in the p/p ratio. This, however, is a
weak constraint, as this ratio is likely to be adjusted dynamically by multi-pion fusion
processes during the hadronic evolution phase. There are, however, strong deviations from
the measured ratios in the multi-strange sector also which are not so easily disregarded.
Obviously, a strong reduction of particle masses in medium alone is incompatible with the
presented fireball evolution scenario and the data.

In the next run, we increased the width of all particles by 20 and 50%. The results are shown
in Fig. 6.6. The results are similar as in the case of mass shifts, though not as pronounced,
and all ratios except p/p still agree with the data. This is not surprising, as an increase of
the particle width cannot get as much strength into the lower mass region favoured by the
Fermi (Bose) distribution as a direct mass shift. Nevertheless, the result is reassuring as
increases in width are almost certain to show up in the medium due to the opening of new
interaction channels, not present in the vacuum.

There is one more possibility that needs to be explored. The failure of the mass-shifted sce-
narios to account for the data can be understood as follows: A decrease of masses enhances
overall particle production, therefore less baryochemical potential µB is needed to account
for the number of net nucleons. This has a direct impact on the p/p ratio and indirectly in-
fluences also the strange chemical potential µs via single strange particles. In the medium,
however, particles are likely to be more loosely bound, and so their radius may increase,
reflecting in a larger excluded volume correction. This, in turn, reduces particle production
again and implies a larger value of µB which in turn influences µs. Therefore, the effects
of decreasing particle masses and/or increasing widths might be partially compensated by
an increase of particle radii. We investigate the sensitivity of all results to different hard
core radii ranging from 0.225 fm/c to 0.375 fm/c in Fig. 6.7. Note that this corresponds to
a variation in the excluded volume correction of a factor ∼ 4.6. The resulting effects are
rather weak.
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FIGURE 6.6: Hadron ratios for different in-medium width increase at SPS, 158 AGeV Pb-
Pb collisions, shown are vacuum width (thin dotted) increase by 20 (dash-dotted) and 50%
(solid) and measured ratios (filled circles).
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FIGURE 6.7: Hadron ratios with hard core radius 0.3 fm (thin dotted), decreased to 0.225
fm (dash-dotted) and increased to 0.375 fm (solid) compared to measured ratios at SPS for
158 AGeV Pb-Pb collisions (filled circles).

The partial compensation of modifications is demonstrated in Fig. 6.8, where we present the
result for a simultaneous increase of particle width and radius by 50%. One indeed observes
the expected behaviour — the key ratio p/p improves significantly and so do, to a lesser
degree, the multistrange ratios. An in-medium modification which, at last qualitatively,
counterbalances the effect of broadening or mass shifts is obviously interesting. It allows
the statistical hadronization model to persist even in the presence of nontrivial physics
inside hadronic matter. To make these statements more precise at a quantitative level is a
major challenge.
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FIGURE 6.8: Hadron ratios for in medium width increase by 50%, with hard core radius
increased from 0.3 fm (dash-dotted) to 0.45 fm (solid) compared to measured ratios at SPS
for 158 AGeV Pb-Pb collisions (filled circles).

What, then, can be learned from the hadrochemistry? One finds agreement with the data,
at least qualitatively, if moderate changes are introduced in either the fireball evolution (in
terms of the EoS and s/ρB) or the in-medium properties of particles. But the model cannot
accommodate drastic changes of e.g. the fireball volume or the total entropy by a factor
∼ 2, or mass shifts of 50%. One can conclude that the standard fireball scenario for SPS
Pb-Pb collisions at 158 AGeV constructed in chapter 5 is certainly within the correct range
of parameters.

Particles prediction experiment

(p− p)/h− 0.27 0.228(29)
p/p 0.054 0.055(10)
η/π0 0.088 0.081(13)
K0
s/π

− 0.131 0.125(19)
Λ/h− 0.108 0.077(11)
Λ/K0

s 0.98 0.63(8)
K+/K− 1.91 1.85(9)
Λ/Λ 0.103 0.131
Ξ−/Λ 0.092 0.110(10)
Ξ+/Λ 0.180 0.188(39)
Ξ+/Ξ− 0.201 0.232(33)
Ω+/Ω− 0.392 0.383(81)
Ω/Ξ 0.165 0.219(45)

TABLE 6.1: Statistical model predictions for SPS 158 AGeV Pb-Pb collisions using the
standard fireball evolution scenario vs. experimental data on particle ratios.



6.4. HADRON RATIOS AT RHIC 83

6.4 HADRON RATIOS AT RHIC

Particle ratios have also been measured at RHIC for 130 AGeV collisions at midrapidity.
This presents the first challenge for the evolution scenarios which have been extrapolated
towards higher collision energies. Using the V (TC) for the 130 AGeV scenario at RHIC,
one can predict the total particle yields. The result is shown in Fig. 6.9 (stars).
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FIGURE 6.9: Hadron ratio predictions from the statistical hadronization model for midra-
pidity yield (dashes) as compared to experimental data. (filled circles).

If applied naively the same way as at SPS, the model fails badly for some of the ra-
tios (taken at midrapidity) (including p/p and multistrange, which appear to be the most
sensitive ones). The reason for this failure becomes only apparent if one takes a closer
look at the rapidity distributions of net baryons [98] and produced particles (entropy) (see
Fig. 5.15). Here one finds that the rapidity distribution of entropy follows a broad plateau
shape, whereas there is a significant depletion of net baryons at midrapidity. If one wants
to compare to experimental data (taken at midrapidity) [99–104], one should therefore not
use the average entropy per baryon of 75, which can be calculated for the whole fireball,
but rather the larger value of 220 which reflects the conditions at midrapidity. If this is
done, the agreement with experiment is achieved as apparent from Fig. 6.9. This is the
first indication that a suitable fireball model for RHIC has to reflect the qualitatively dif-
ferent conditions at different rapidity regions caused by the non-uniform distribution of net
baryon number.
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Chapter 7

DILEPTONS -
A VIEW INTO THE FIREBALL CORE

So far, we have only discussed observables which reflect only a certain moment of the
fireball evolution; i.e. momentum spectra for the kinetic freeze-out and particle abundan-
cies for the chemical freeze-out. A considerably harder challenge to the model is posed
by observables which probe the whole time evolution. This is due to two reasons: First,
they are sensitive to the magnitude of the four-volume in spacetime that is occupied by
the evolution, i.e. a faster expansion implies less occupation of four-volume and therefore
less overall magnitude of the signal. Second, these observables may display qualitative
differences between early and late evolution stages.

Dileptons (e+e− and µ+µ− pairs) are interesting probes in this context since they do not
interact strongly and escape unthermalized from the hot region at all stages of the collision.
Therefore, in contrast to hadronic probes, dileptons carry information also on the early
moments of the collision where the QGP phase is expected to exist. In the QGP phase,
dileptons originate mainly from qq̄ annihilation processes, whereas in the hadronic phase
the main sources are pion and kaon annihilation processes which are enhanced due to the
formation of the light vector mesons ρ, ω and φ. In order to interpret signals from the QGP,
one must obviously first understand the hadronic phase.

7.1 DILEPTONS FROM A FIREBALL

The lepton pair emission rate from a hot domain populated by particles in thermal equilib-
rium at temperature T is proportional to the imaginary part of the spin-averaged, photon
self-energy, with these particles as intermediate states. This can be understood cutting
relevant Feynman diagram Fig. 7.1.

85
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q

(     )π+

(     )π−

q

FIGURE 7.1: The Feynman diagram corresponding to the self-energy of a virtual photon in
a strongly interacting thermal medium. The filled circles indicate full in-medium propagators
of the particles coupling to the photon.

The cut diagram corresponds to a process where two particles from the heat bath annihilate
to create a virtual photon (which can then decay into a lepton pair). If the intermediate
particles are quarks, the process is to lowest order just qq- annihilation where the thermal
distribution functions of the quarks have to be added to the quark lines. Cutting the full
in-medium propagator ensures that the complete dynamics of the medium is taken into
account. It contains all possible processes (e.g. qq- annihilation with bremsstrahlung,
thermal self-energy insertions etc.).

The differential pair production rate is then given by

dN

d4xd4q
=

α2

π3q2
1

eβq0 − 1
ImΠ̄(q, T ) =

α2

12π4

R(q, T )

eβq0 − 1
, (7.1)

where α = e2/4π, β = 1/T , and we have neglected the lepton masses. We have de-
fined Π̄(q) = −Πµµ/3 and introduce the averaged photon spectral function R(q, T ) =

(12π/q2) ImΠ̄(q, T ). Here Πµµ denotes the trace over the thermal photon self-energy
which is equivalent to the thermal current-current correlation function

Πµν(q, T ) = i

∫
d4x eiqx〈T jµ(x)jν (0)〉β , (7.2)

where jµ is the electromagnetic current. Eq.(7.1) is valid to order α in the electromagnetic
interaction and to all orders in the strong interaction. (For a derivation of these relations
see appendix C.)

The differential rate of Eq.(7.1) can be integrated over the space-time history of the colli-
sion using the fireball evolution model introduced in chapter 5 to compare the calculated
dilepton rates with the CERES/NA45 data [105] taken in Pb-Au collisions at 158 AGeV
(corresponding to a c.m. energy of

√
s ∼ 17 AGeV) and 40 AGeV (

√
s ∼ 8 AGeV).

The CERES experiment is a fixed-target experiment. In the lab frame, the CERES de-
tector covers the limited rapidity interval η = 2.1 − 2.65, i.e. ∆η = 0.55. We inte-
grate the calculated rates over the transverse momentum pT and average over η, given that
d4p = MpT dM dη dpT dθ. The formula for the space-time- and p-integrated dilepton
rates hence becomes

d2N

dMdη
=
2πM

∆η

τf∫

0

dτ

∫
dη V (η, T (τ))

∞∫

0

dpT pT
dN(T (τ),M, η, pT )

d4xd4p
Acc(M, η, pT ),

(7.3)
where τf is the freeze-out proper time of the collision, V (η, T (τ)) describes the proper
time evolution of the fireball and its rapidity distribution and the function Acc(M, η, pT )
accounts for the experimental acceptance cuts specific to the detector. At the CERES ex-
periment, each electron/positron track is required to have a transverse momentum pT > 0.2
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GeV, to fall into the rapidity interval 2.1 < η < 2.65 in the lab frame and to have a pair
opening angle Θee > 35 mrad. Eq.(7.3) is then convoluted with the finite energy resolution
of the detector. Finally, for comparison with the CERES data, the resulting rate is divided
by dNch/dη, the rapidity density of charged particles.

RHIC operates as a collider experiment, so in this case the fireball is centered around η = 0.
Here, the PHENIX detector acceptance can be schematically modelled by requiring that
each electron/positron track falls in the rapidity interval −0.35 < η < 0.35, has transverse
momentum pT > 0.2 GeV and a pair opening angle of Θee > 35 mrad.

7.2 CALCULATION OF THE PHOTON SPECTRAL

FUNCTION

There are three main ingredients for Eq. (7.3): The spacetime evolution of the fireball
(which has been discussed in chapter 5, the detector acceptance which has been addressed
in the previous section and the photon spectral function R(q, T ). In this section, we will
proceed by calculatingR(q, T ) using methods of thermal field theory for finite temperature
T and baryochemical potential µB , using the appropriate degrees of freedom above and
below the phase transition temperature TC .

7.2.1 The quark-gluon phase

As long as the thermodynamically active degrees of freedom are quarks and gluons, the
timelike photon dominantly couples to the continuum of thermally excited qq states and
subsequently converts into a charged lepton pair. The calculation of the photon spectral
function at the one-loop level is performed using standard thermal field theory methods.
The well-known leading-order result for bare quarks and gluons as degrees of freedom is:

ImΠ(q0,q, T ) = − q2

12π
· 3

∑

f=u,d,s

θ(q2 − 4m2
f )e

2
f

(
1 +

2m2
f

q2

)√
1−

4m2
f

q2

×


1 + 2



T

|q|
1√

1− 4m2
f

q2

ln



fD

(
q0
2 − |q|

2

√
1− 4m2

f

q2

)

fD

(
q0
2 + |q|

2

√
1− 4m2

f

q2

)


− 1





 ,

(7.4)

where q = (q0,q) is the four-momentum of the virtual photon, ef the quark electric charge
and mf the quark mass of flavour f . This result, however, holds only up to perturba-
tive higher order corrections in gs that take into account collective plasma effects. Here,
contributions from soft gluons lead to strong modifications. The corresponding two- and
three-loop contributions show no clear convergence [106, 107]. Close to the phase tran-
sition, we also expect non-perturbative confinement physics to enter. Consequently, we
follow a different approach.

Recalling the results of chapter 3, the thermodynamic properties of the QGP as given by
lattice QCD are well reproduced by a gas of quasiparticles. Let us now assume that a
quark quasiparticle couples to a photon in the same way as a bare quark (a form factor
representing the ’cloud’ of the quasiparticle could in principle also be included, but in
absence of information about the detailed quasiparticle structure we ignore this point).
For a gas of non-interacting quasiparticles, the one-loop result for ImΠ is adequate, with
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input properly adjusted. All higher order QCD effects manifest in the thermal quasiparticle
masses m(T ), the function B(T ) and the confinement factor C(T ). Incorporation of the
first two features in the calculation is straightforward. The bare quark masses in Eq. (7.4)
simply have to be replaced by the T -dependent quasiparticle masses for each flavour. The
thermal vacuum energyB(T ) does not contribute to the dilepton rate.

The naive replacement fD → C(T )fD is, however, not permitted in Eq. (7.4). Since any
modification of the free particle distribution functions leads to non-equilibrium field theory,
products of delta functions (pinch singularities) may arise in loop calculations. Therefore,
the quasiparticle model as it stands cannot be used in expressions derived from simple
perturbative thermal field theory. Recalling the physical interpretation of the confinement
factor C(T ), we can use the expression for the dilepton rate, Eq. (7.1), instead. The mech-
anism for dilepton production at tree-level is the annihilation of a qq pair into a virtual
photon where the quark lines are multiplied by the distributions fD(T ), giving the proba-
bility of finding a quark or an antiquark in the hot medium. This also becomes clear when
we look at the limit q → 0 of Eq. (7.4). Then,

ImΠ(q0, T ) ∼ ImΠ(q0, T = 0) · (1− 2fD(q
0/2)), (7.5)

and the temperature enters only in the Pauli-blocking of the quarks propagating in the loop.
Now, from Eq. (7.1)

dN

d4xd4q
∼ fB(q

0)ImΠ̄(q, T ). (7.6)

Combining the different thermal occupation factors, we end up with the well-known result

dN

d4xd4q
∼
[
fD(q

0/2)
]2
, (7.7)

so the differential dilepton rate is proportional to the probability of finding a quark q times
the probability of finding an antiquark q̄ with the correct momentum, as anticipated 1. The
incorporation of the confinement factor is now obvious: since it reduces the number of
thermally active degrees of freedom, it also reduces the dilepton rate by a factor of C(T )2.

In summary, Eq. (7.1) can be used to calculate the dilepton rate originating from a hot QGP
phase in the framework of the quasiparticle model, provided an overall factor C(T )2 is
applied to account for the reduced probabilities, and the bare masses mf in the one-loop
expression (7.4) are replaced by the T -dependent thermal masses. The rôle of the factor
C(T ) is illustrated in Fig. 7.2, where the differential dilepton rate originating from a hot
QGP in the quasiparticle approach is shown for different temperatures. Note that the plot-
ted quantity is independent of the fireball volume, so the resulting differences are only due
to the dropping quasiparticle masses and the squared confinement factor C(T ), which is
responsible for a decrease by more than an order of magnitude at T ∼ TC as compared to
the highest temperature shown. One also observes that, as expected, the (negative) slope of
the production rate in the region of high invariant mass gets steeper as the temperature de-
creases. It is important to note that this setup neglects contributions from hadronic degrees
of freedom above TC . As mentioned, quarks and gluons become clustered into hadrons
(glueballs, mesons) as the temperature approaches TC from above. These hadronic exci-
tations are comparatively heavy and thus do not contribute much to the thermodynamics.
Since we do not know in detail how the statistical re-arrangement of degrees of freedom
occurs, we refrain from including these hadronic sources of dilepton yield above TC . Our
calculation is therefore expected to give a lower limit on the leptonic radiation from the
QGP phase.

1We neglect a possible chemical potential µB for the quarks. For a finite µB , the corresponding expression
would be dN

d4xd4q
∼ fD((q0 − µB)/2)fD((q0 + µB)/2).
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FIGURE 7.2: Dilepton rates originating from the QGP phase in the quasiparticle model for
different temperatures.

The quasiparticle model does not take into account collective plasma modes, such as the
(longitudinal) gluonic plasmons and the (helicity-flipped) quark plasminos [108]. Since
their residues are exponentially suppressed in the HTL approximation for thermal momenta
k ∼ T , their contributions to the thermodynamical quantities are negligible. However, in
the case of soft dilepton production it is well known that these modes lead to sharp, distinct
structures in the spectrum, referred to as Van Hove singularities [109]. The plasmino branch
has a minimum in its dispersion relation at k 6= 0 (which follows on very general grounds
[110], independent of the HTL approximation). This leads to a diverging density of states
which, in turn, shows up in the dilepton spectrum as a pronounced peak. Our model cannot
exhibit, by construction, such plasmino effects. However, since the peaks are roughly
located at ' 2mq(T ), where mq(T ) is the thermal mass of the quasiparticles, these Van
Hove singularities would be smeared out by the fireball evolution. The thermal mass drops
as the temperature goes down, dragging along the peak position with it. Furthermore, since
mq(T ) is of the order of the temperature T or smaller in our model, the singularities appear
at low invariant mass (< 500 MeV) where they are overwhelmed by the hadronic part of the
dilepton production. Therefore the presence of these collective modes would presumably
not influence our results for the dilepton rate in the QGP phase.

We compare out model of the QGP phase also with a recent lattice calculation [111] of ther-
mal vector meson correlation functions above TC in quenched QCD with Clover improved
Wilson fermions. Using the maximum entropy method, the vector spectral function was
extracted from the corresponding current correlator. Although the statistical uncertainties
are still considerable, it is interesting to note that the resulting spectrum resembles the free
spectral function, as in our case, and has a gap at low energies given by a thermal mass
threshold of (2 − 3)T , which is indeed close to 2mq(T ), the natural cut-off of the spec-
trum and, correspondingly, of the thermal dilepton radiation in the confinement model (see
Figs. 7.2 and Fig. 7.3). Furthermore, this result seems to rule out heavy quark quasiparti-
cles in the deconfined phase, as predicted by other phenomenological models [34,112]. Of
course, higher statistics and improved actions are mandatory to confirm these observations.
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FIGURE 7.3: Photon spectral function as obtained in lattice calculations (crosses) [111] as
compared to the one obtained within the quasiparticle picture (solid line) and binned as the
lattice data (dashes).

7.2.2 The hadronic phase

Below TC , confinement sets in and the effective degrees of freedom change to colour sin-
glet, bound qq̄ or qqq (q̄q̄q̄) states. The photon couples now to the lowest-lying ’dipole’
excitations of the vacuum, the hadronic JP = 1− states: the ρ, ω and φ mesons and
multi-pion states carrying the same quantum numbers. The electromagnetic current-current
correlation function can be connected to the currents generated by these mesons using an
effective Lagrangian which approximates the SU(3) flavour sector of QCD at low ener-
gies. The appropriate model for our purposes is the improved Vector Meson Dominance
model combined with chiral dynamics of pions and kaons as described in [113]. Within
this model, the following relation between the imaginary part of the irreducible photon
self-energy ImΠ̄ and the vector meson self-energies ΠV (q) in vacuum is derived:

ImΠ̄(q) =
∑

V

ImΠV (q)

g2V
|FV (q)|2, FV (q) =

(
1− g

g0
V

)
q2 −m2

V

q2 −m2
V + iImΠV (q)

, (7.8)

wheremV are the (renormalized) vector meson masses, g0V is the γV coupling and g is the
vector meson coupling to the pseudoscalar Goldstone bosons π±, π0 andK±,K0. Eq.(7.8)
is valid for a virtual photon with vanishing three-momentum q. For finite three-momenta
there exist two scalar functions Π̄L and Π̄T , because the existence of a preferred frame of
reference (the heat bath) breaks Lorentz invariance, and one has to properly average over
them. However, taking the limit |q| → 0 should be reasonable for our purposes in view
of the fact that the c.m. rapidity interval accessible at CERES and RHIC restricts |q| on
average to only a fraction of the vector meson mass mV .

Finite temperature modifications of the vector meson self-energies appearing in Eq.(7.8)
are calculated using thermal Feynman rules. The explicit expressions for the ρ- and φ-
meson are taken from ref. [39]. At the one-loop level, the ρ and φ are only marginally
affected by temperature even close to TC because of the comparably large pion and kaon
masses: mπ ' TC , mK ' 3 TC . The thermal spectral function of the ω-meson has been
discussed in detail in [40]. Here, the reaction ωπ → ππ was found to cause a considerable
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broadening of the ω spectral function, leading to Γω(TC) ' 7 Γω(0). The corresponding
photon spectral function is displayed in Fig. 7.4 (left panel).

At higher invariant masses 1 GeV < M < 2 GeV, πa1 annihilation is the dominant source
of dileptons [114, 115]. The vacuum vector and axialvector spectral functions become
mixed to order T 2 with a strength T 2/(6f2

π) (fπ ' 93 MeV is the pion decay constant)
due to their coupling to the pionic heat bath [116] and should be degenerate at the point
of chiral symmetry restoration. The effect of the a1 and higher resonances on the photon
spectral function can then be approximately subsumed in a structureless continuum above
1 GeV [117], reminiscent of the perturbative plateau of qq̄ annihilation.
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FIGURE 7.4: The photon spectral function R(ω) = (12π/ω2) ImΠ̄(ω) at finite temper-
ature and ρB = 0 (left panel) [39, 40] and at T = 0 and baryon density of normal nuclear
matter, ρB = ρ0 = 0.17 fm−3 (right panel) [38]. For orientation, the qq̄ line in the left panel
shows the spectral function in the QGP phase with massless u- and d-quarks and ms = 150
MeV for s-quarks, neglecting αs-corrections.

There is still considerable stopping of the interpenetrating nuclei at SPS energies, resulting
in a net baryon density ρB in the central rapidity region, as already discussed in chapter 6.
At RHIC, measurements [118,119] indicate that the proton over antiproton excess is small,
implying that the baryons are distributed over a larger rapidity interval. Therefore, finite
baryon density effects should not play such an important role at RHIC kinematics. This
has also been addressed in chapter 6 in greater detail.

For the evaluation of density effects which are relevant at SPS conditions, we use the results
discussed in [38]. There it was shown that in the linear density approximation,ΠV is related
to the vector meson - nucleon scattering amplitude TV N :

ΠV (q
0, ~q = 0; ρ) = ΠvacV − ρBTV N (q)

TV N (q) = − i

3

∫
d4x eiqx〈N |T jµ(x)jµ(0)|N〉,

(7.9)

with |N〉 being zero-momentum free nucleon states. In the following, we assume that the
temperature- and density dependences of ΠV factorize, i.e. we replace ΠvacV in Eq. (7.9) by
the temperature-dependent ΠV (T ) and leave TV N unaffected. This amounts to neglecting
contributions from matrix elements such as 〈πN |T jµ(x)jµ(0)|πN〉 (nucleon-pion scatter-
ings where the pion comes from the heat bath). Furthermore, this approximation does not
take into consideration a possible T -dependent pion or nucleon mass. Some effective mod-
els suggest that, near the phase transition, the nucleon mass follows the behaviour of the
chiral condensate 〈ψ̄ψ〉 and drops abruptly as the quarks lose their constituent masses [41].
Such modifications of particle properties may have a considerable impact on the spectral
functions. However, since the temperature range over which the dropping takes place is
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narrow, we expect such effects not to leave distinct signals in the dilepton spectra which
are only sensitive to the integrated time (and hence temperature) evolution of the system.

The photon spectral function at finite density and zero temperature is depicted in Fig. 7.4
(right panel). The interaction with nucleons causes a strong broadening of the ρ meson
down to the one pion threshold, leading to a complete dissolution of its quasiparticle peak
structure. The modifications of the ω and φmeson spectral distributions are more moderate:
The mass of the ω drops by about 100 MeV at normal nuclear matter density, and its
width increases by a factor of about 5, whereas the φ mass stays close to its vacuum value,
accompanied by a ninefold increased width.

To summarize, the most prominent changes of the photon spectral function, when compared
to the vacuum case, arise from the broadening of the ρ due to finite baryon density effects
and the broadening of the ω due to scattering off thermal pions. The φ meson retains its
distinct peak structure even under extreme conditions of density and temperature. Very
close to TC , however, these results based on perturbative calculations, are not expected to
be reliable.

7.2.3 After freeze-out contributions

At the freeze-out stage, there are still vector mesons present. These will decay with their
vacuum properties on their way to the detector and add to the dilepton yield from the
previous thermalized phase. The invariant mass region below approximately 400 MeV
is mainly filled by the Dalitz decays of the vector mesons. We take these contributions
from the experimental analysis of the CERES collaboration for SPS conditions. Since the
PHENIX acceptance starts only above 1 GeV, the Dalitz decays do not play a significant
rôle at RHIC.

For the calculation of the direct decay of a vector meson V into a lepton pair we start with
the following formula:

dNV
dMdη

=
1

∆η

α2

12π4
RV (M,T = 0)

∫ ∞

τf

dτ Vf

∫
d3q

M

q0
fB(q

0, Tf ) exp

(
− τ − τf
γ(q)τV0

)
.

Here, Tf and Vf are the fireball temperature and volume, respectively, at freeze-out. After
τf , the freeze-out time, all medium effects are switched off, so the vacuum photon spectral
functionRV (M,T = 0) determines the rate. The corresponding momentum distribution is
given by the thermal Bose function, evaluated at the freeze-out temperature Tf . However,
the absolute number N of vector mesons as a function of time is not a constant: since
the mesons decay and there is no thermal recombination, N decreases exponentially like
exp

(
−(τ − τf )/(γ(q)τ

V
0 )
)
. The vacuum life time of the vector meson V under consider-

ation is denoted by τV0 , and γ(q) accounts for time dilatation effects on particles with finite
three-momentum:

γ(q) =
1√

1− v2
=
q0

M
.

After the time integration we end up with:

dN

dMdη
=

1

∆η

α2

12π4
τ0R(M,T = 0)Vf

∫
d3q fB(q

0, Tf ).

The averaged space-time four-volume that is available after freeze-out is therefore Vf τV0 ,
as anticipated. The integral over d3q now yields the freeze-out particle density n(M) =
N(M)/V of the virtual photons as a function of invariant mass. Note that the information
on the vector mesons remains entirely in the photon spectral function. With the factor Vf
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we obtain the total number of photons at freeze-out. When weighted with RV (M), this
gives the dN/dM distribution for the process meson → γ∗ → e+e−.

We have also checked that a commonly used Breit-Wigner ansatz of the form

dNe+e−

dM
= [Vfn(Tf ,M)] ξ BV

M2 ΓV (M)

(M2 −m2
V )

2 +M2ΓV (M)2
(7.10)

yields almost identical results. Here, ΓV (M) stands for the M -dependent decay width,
ξ is the normalization factor and BV the branching ratio for the leptonic decay of the
corresponding vector meson.

7.2.4 Drell-Yan and charm contributions

At invariant masses M > 1 GeV the Drell-Yan mechanism, i.e., hard quark-antiquark
annihilation qq̄ → `+`− at leading order (LO), constitutes another source of (non-thermal)
dileptons. Its differential LO cross section in a nucleus(A1)-nucleus(A2) collision reads

dσ(A1A2)

dy dM
=

8πα2

9M s

∑

q

e2q × (7.11)

[ (
Z1 f

p
q (x1) + (A1 − Z1) f

n
q (x1)

) (
Z2 f

p
q̄ (x2) + (A2 − Z2) f

n
q̄ (x2)

)
+ (q ↔ q̄)

]

where
√
s denotes the c.m. energy of the nucleon-nucleon collision and the momentum

fractions of the beam (and target) parton are denoted by x1,2 = M/
√
s exp(±y) respec-

tively.

The Drell-Yan cross section (7.11) is computed using the LO MRST parametrization [120]
for the parton distributions fpi (x, µ

2) evaluated at the hard scale µ2 = M2. However, it
has been checked that using different LO sets (e.g., CTEQ5L [121] or GRV98LO [122])
affects the results by only 10 % at SPS and 20% at RHIC energies. To account for higher
order corrections, we multiply the LO expression (7.11) by a K factor K = 2 fitted from
p–p data [123]. Finally, nuclear effects like shadowing or quark energy loss are expected
to suppress the Drell-Yan yield by about 30-50% [124, 125]. Since these effects are still
poorly known quantitatively, we neglect them and consider our Drell-Yan rate as an upper
limit on the actual rate.

Using the Glauber model of multiple independent collisions, the average dilepton multi-
plicity in a A1-A2 collision at impact parameter b is given by

dN(A1A2)

dy dM
(b) = TA1A2

(b)× K
dσ(A1A2)

dy dM
, (7.12)

where the normalized thickness function TA1A2
(b) is computed assuming the standard

Woods-Saxon nuclear density profile. The Drell-Yan pair multiplicity (7.12) is then aver-
aged for the 30% and 6% most central collisions to be compared with CERES and PHENIX
data, respectively2.

Another source of dileptons in the high invariant mass region consists of semileptonic de-
cays of charmed mesons. Whereas earlier calculations found a considerable yield from

2In addition to these centrality cuts, we need to rely on further assumptions to take properly into account the
acceptance of these experiments. Therefore, we shall assume the generic form dσ/dp⊥ ∝ p⊥/(1+(p⊥/p0)2)6

(p0 = 3 GeV) for the p⊥ dependence of the DY process [123]. Furthermore, neglecting corrections due to the
intrinsic k⊥ of the incoming partons, the angular distribution is taken to be dN/dΩ ∝ 1 + cos2 θ where θ is the
angle between the lepton and the beam axis.
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open charm exceeding the thermal radiation [126], the subsequent inclusion of medium ef-
fects like energy loss led to a suppression of the dielectron rate and made it comparable to
or even lower than the Drell-Yan yield [127, 128]. Since the Drell-Yan contribution plays
only a subdominant rôle in the following, we will not explicitly include the open charm
contributions.

7.3 DILEPTON INVARIANT MASS SPECTRA

Once the time evolution of the fireball is given in terms of the temperature T (τ), the baryon
density ρ(τ) and the volume V (τ), and with the knowledge of the photon spectral function,
we have all the necessary ingredients to calculate dilepton rates using Eq. (7.3). We fold
the result with the acceptance of the CERES and the PHENIX detectors, respectively, and
average over the rapidity region covered by these two experiments. The so-called ’hadronic
cocktail’, dileptons produced after freeze-out through various decay processes, with the
exception of vector-meson decays, is then added. This contribution fills the region of very
low invariant masses (M < 150 MeV). The dilepton yields resulting from direct vector
meson decays after freeze-out, as described in subsection 7.2.3, and the Drell-Yan yield
from subsection 7.2.4 are added to the hadronic cocktail, taking into account the limited
kinematic acceptance and resolution of the detector.

7.3.1 SPS data at 40 and 158 AGeV

We start with a discussion of the SPS CERES/NA45 experiment, treating 40 AGeV and 158
AGeV data in parallel. The final results for the dilepton invariant mass spectra are shown
in Figs. 7.5 and 7.6.

Our calculation reproduces the overall spectrum of the 158 AGeV CERES data quite
well. It overestimates the rates somewhat around invariant masses of 200 to 400 MeV
and achieves a good description in the region above 400 MeV up to 1.8 GeV. Recall that
our QGP model rate constitutes only a lower limit on the actual rate because it neglects the
radiation from non-partonic (cluster) degrees of freedom above the critical temperature.
Bearing in mind that the region above 1 GeV is mainly populated by dileptons originat-
ing from the QGP phase, as evident from the left panel of Fig. 7.5, there might still be
additional radiation close above TC arising from hadronic clusters embedded in a QGP en-
vironment. The Drell-Yan contribution is non-negligible, but still outshined by the QGP by
a factor of 3.

Changes in the spectra of the vector mesons indicate tendencies towards chiral symmetry
restoration, so the right panel of figure 7.5 shows the contributions of ρ, ω and φ mesons
separately, not including the after freeze-out yield. The ρ meson loses its quasiparticle
structure entirely due to strong collision broadening at finite density, and fills the whole
low mass region between the two pion threshold and ∼ 800 MeV. The ω meson, a sharp
peak in the vacuum, broadens at finite temperature due to the thermal scattering process
ωπ → ππ. Furthermore, the mass shift at finite baryon density smears the remaining peak
structure considerably. Effectively, the remaining signal arises from the direct decays of ω
mesons after freeze-out. The φ has become a spread-out but still visible resonance struc-
ture, showing only moderate broadening at finite temperature and baryon density. It might
therefore be a suitable candidate for gauging the strength of vector meson modification.

To test the modelling of the vector meson spectra, we calculate the total number of ω and
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φ meson, suitably averaged over their medium-induced spread in invariant mass, as

〈Nω〉 =
1

Nch

0.9 GeV∫

0.65 GeV

dM
d2Nω→ee

dηdM
= 9 · 10−7

and

〈Nφ〉 =
1

Nch

1.1 GeV∫

0.95 GeV

dM
d2Nφ→ee

dηdM
= 1.8 · 10−7.

Comparing with numbers from a statistical model calculation, 〈Nω〉 = 4 · 10−7 and
〈Nφ〉 = 2.2 · 10−7 [131], we indeed find reasonable agreement. Note that the rela-
tively large ω meson yield is primarily caused by the pion fugacity factor [exp(µπ/Tf )]3

at freeze-out, which reflects the enhanced feeding through the 3π → ω process. This is
clearly an oversimplified treatment, as it assumes that the ω remains in chemical equilib-
rium with the surrounding matter until kinetic freeze-out, somewhat in contradiction to the
results of chapter 6. The lifetime of the vacuum ω, however, is not much larger than the
fireball lifetime, and by imposing detailed balance one can conclude that the back-reaction
3π → ω is not very strong. On the other hand, it is strong enough to make the pure chemi-
cal freeze-out scenario questionable, especially in the presence of medium modification. A
detailed treatment of the magnitude of the ω and φ signal clearly requires a more dynamical
approach like solving rate equations.

Going from 158 AGeV to 40 AGeV beam energy, analyses of HBT radii and transverse
radial flow [129] indicate that the reaction dynamics do not change dramatically, therefore
we do not expect drastic differences in the rate. Indeed, the data at 40 AGeV look similar
to the 158 AGeV case, and the calculated rate, shown in Fig. 7.6, also bears this similarity
and achieves a good fit without tuning the setup of the model. Since the initial temperature
is lower and the QGP phase shorter in the 40 AGeV case, the partonic dilepton contribu-
tion is obviously much smaller, but nevertheless still present. Owing to the greater initial
baryonic density, the in-medium modifications of the vector mesons become more pro-
nounced, most prominently visible in the ω meson channel. Its downward mass shift drags
the peak structure along the time evolution of the fireball, creating a small bump on top of
the completely dissolved ρ meson that fills up the low-mass region again. Its yield after
freeze-out constitutes a visible signal that may be experimentally observable with suitable
energy resolution. The φ meson contribution clearly sticks out above the smooth ρ meson
’continuum’. To conclude, we find no distinct differences in our calculation for the two
beam energies probing dilepton production at SPS so far, in accord with experimental find-
ings. This indicates that the general setup of our model is fairly robust. Future data at 20
and 80 AGeV will aid to test this statement.

The fact that we moderately overestimate the data in the region between 200 and 300 MeV
invariant mass requires a comment. Since this range is dominated by the low-mass be-
haviour of the ρ meson spectral function at finite density, this behaviour may indicate that
very region or that the influence of finite three-momentum on the spectra is non-negligible.
Consider the 158 AGeV data taken for different transverse momenta pt < 500 MeV and
pt > 500 MeV, shown in figure 7.7. We observe that the general shape of the data pattern
is well described by the calculation for both pt regions. However, for the high pt case, the
calculation again overshoots the data in the low mass region whereas this is not so in the
low pt case. This feature is also present in the 40 AGeV case. This can be traced to the use
of the spectral functions for three-momentum equal to zero in order to describe the photon
spectral function in the hadronic phase. This approximation is of limited validity at high pt
where the spectral function ought to become smaller than in our approximation. Therefore
we expect improved agreement with the data for the low invariant mass region both at 40
and 158 AGeV once this effect is taken into account properly.
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FIGURE 7.5: Left: Dilepton invariant mass spectra (see Eq. (7.3)), normalized to
dNch/dη = 250, in units of (100 MeV)−1, for the SPS CERES/NA45 Pb(158 AGeV)+Au
experiment [132]. Shown are the data, the total rate, the cocktail contribution including the af-
ter freeze-out decays of vector mesons, the QGP contribution and the Drell-Yan yield. Right:
Contributions from ρ-, ω- and φ-mesons (excluding after freeze-out yield) shown separately,
assuming perfect detector resolution.

Our setup of the fireball model enables us to gain additional detailed insight into the time
evolution of the dilepton yield. This is demonstrated in Fig. 7.8. Here the different stages
of the fireball evolution leave distinct marks in the time-resolved dilepton yield. For early
times, dileptons come entirely from the qq quasiparticle annihilation processes. The move-
ment of the invariant mass threshold reflects the temperature dependence of the quasipar-
ticle mass which decreases near the phase transition at τ ∼ 7 fm/c. One observes that,
in spite of the growing fireball volume, the contributions from later timeslices to the total
yield become progressively less important until the hadronic phase takes over at τ > 7
fm/c. This surprising behaviour is enforced by the confinement factor C(T ) which reduces
the thermodynamically active degrees of freedom significantly near the phase boundary.
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FIGURE 7.6: Left: Dilepton invariant mass spectra (see Eq. (7.3)), normalized to
dNch/dη = 210, in units of (100 MeV)−1, for the SPS CERES/NA45 Pb(40 AGeV)+Au
experiment [133]. Shown are the preliminary data, the total rate, the cocktail contribution
including the after freeze-out decays of vector mesons and the QGP contribution. Right:
Contributions from ρ-, ω- and φ-mesons (excluding after freeze-out yield) shown separately,
assuming perfect detector resolution.

The system then enters the hadronic evolution phase without going through a mixed phase.
The most prominent feature is the rapid filling of the low invariant mass region through the
density-broadened ρ meson spectrum which ends up as an enhanced pion continuum. The
φ meson starts contributing its characteristic peak and, as the system cools down further,
the ω meson begins to emerge, albeit as a broad structure. Note that while the hadronic con-
tributions fill primarily the low invariant mass region, their yield above 1 GeV is negligible
in this late evolution phase.
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FIGURE 7.7: Left: Dilepton invariant mass spectra for transverse momenta of the e+e− pair
pt < 500 MeV for the SPS CERES/NA45 Pb(158 AGeV)+Au experiment [132]. Shown
are the data, the total rate and the cocktail contribution. The grey line displays the same
calculation for 40 AGeV. Right: Same for pt > 500 MeV.

7.3.2 RHIC at
√
s = 200 AGeV

For the RHIC scenario, thermally generated dileptons are dominant. Measurements of pro-
ton ratios at

√
s = 130 AGeV indicate that the central collision region remains almost

net-baryon free, compared to SPS energies. Within a statistical thermal model, the particle
ratios are accounted for by a small baryon chemical potential of about 50 MeV at chemical
freeze-out [82]. At 200 AGeV, this value is predicted to be even smaller. Effects of finite
baryon density are therefore almost absent and consequently both the ρ and the φ are ex-
pected to show up in the spectrum as pronounced structures, whereas there should be no
clear trace of the in-medium ω due to its strong thermal broadening. Contributions from
Drell-Yan processes, which dominate in the very high invariant mass region, are an order
of magnitude smaller.
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FIGURE 7.8: Time evolution of the (integrated) dilepton yield for the SPS scenario. The
vertical scale is the same as in fig. 7.5. The cocktail contribution has not been included in this
picture, and perfect resolution was assumed.

As the distribution of net-baryon content in rapidity space exhibits a pronounced structure,
which in turn leads to different physical conditions at different rapidities regarding the
EoS, pion densities and freeze-out conditions (see section 6.4), one has to specify at what
rapidity the dilepton yield is measured. We give all prediction for the di-electron rapidity
range of PHENIX covering −0.35 < y < 0.35 with the appropriate entropy per participant
baryon s/ρB = 250.

The prediction for the dilepton yield at 200 AGeV, including the schematic acceptance for
the PHENIX detector, is shown in Fig. 7.9. The ω and φ meson resonances clearly stick
out over the smooth ρ meson and QGP contributions. Although PHENIX will only start
to measure at M ≥ 1 GeV, it may be possible to resolve the φ meson peak. However, a
significant part of the peak strength is built up by the after freeze-out contributions, making
it difficult to disentangle the in-medium modifications on the hadrons. For M ≥ 1.3 GeV,
the dilepton spectrum is dominated by thermal QGP radiation, outshining the hard Drell-
Yan dilepton yield.

Comparing our prediction for PHENIX with the one shown in ref. [31], we find rough
agreement of the rate for the low mass region below ∼ 1 GeV. Although the dilepton yield
from the QGP phase is suppressed in our case by the factor C(T )2 (cf. section 7.2.1), we
still find an enhancement of a factor of about 4 in the range 1.3 − 2.5 GeV over the rate
in [31] that employs a (perturbative) chemical undersaturation model in the QGP phase.
Owing to the non-perturbative nature of the QGP close to TC , this model may not be



100 CHAPTER 7. DILEPTONS -A VIEW INTO THE FIREBALL CORE

0.5 1.0 1.5 2.0 2.5

invariant mass M [GeV]

10
-8

10
-7

10
-6

10
-5

10
-4

(d
2 N

ee
/d

ηd
M

)/
(d

N
ch

/d
η)

 [G
eV

-1
]

total rate
Cocktail
QGP
Drell-Yan

0.5 1 1.5 2 2.5

invariant mass M [GeV]

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

(d
2 N

ee
/d

ηd
M

)/
(d

N
ch

/d
η)

 [G
eV

-1
]

total rate
ρ-meson
ω-meson
φ-meson

FIGURE 7.9: Left: Dilepton invariant mass spectra, normalized to dNch/dη = 650 [130],
in units of GeV−1, for the RHIC experiment PHENIX at

√
s = 200 AGeV. Shown are the

total rate, the cocktail consisting of the after freeze-out decays of ω and φ vector mesons, the
QGP contribution and the Drell-Yan yield. Right: Contributions from ρ-, ω- and φ-mesons
(excluding after freeze-out yield) shown separately.

applicable in that very region. Note that our rate also constitutes only a lower limit there,
so that the actual rate may even be larger. High precision data will allow to pin down one
or the other model.

7.3.3 Sensitivity to model parameters

We would like to stress that the gross features of our model are set, once the parametrization
of the fireball evolution has been matched to the hadronic observables and the EoS of both
phases has been constructed in accordance with lattice QCD and empirical constraints. The
remaining uncertainties, mainly about the initial state of the fireball, the thermal masses of
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the quasiparticles and the detailed shape of the EoS, do not alter the results substantially;
they lead to only moderate or even weak dependence on those parameters. Fine-tuning is
still possible, but only within the limits that retain consistency with the overall framework.

We have investigated the sensitivity of the model to parameter changes in some detail for
the SPS scenario at 158 AGeV. In order to get a theoretical ’error band’, we investigated
the extremes of our parameter ranges, a combination of parameters that yields the largest
and the smallest possible QGP contribution. The resulting range is shown in Fig. 7.10 as a
grey band, together with the data points and the curve from the previous section.
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FIGURE 7.10: Dilepton invariant mass spectra for the SPS CERES/NA45 experiment at
158 AGeV. Shown are data (symbols), the total rate introduced in section 7.3.1 (solid line) and
a band (shaded) that represents the range in the dilepton yield when varying the parameters
τ0, viz and Tc. See text for details.

Regarding the initial conditions, the largest uncertainty comes from the initial fireball for-
mation length z0 or, equivalently, the time τ0. We let it vary from 0.5 fm/c to 2 fm/c, i.e.
from fast to slow equilibration. Consider next the initial longitudinal flow velocity viz . A
variation of this quantity from 0.3 c to 0.8 c implies a modification of the pressure-driven
accelerated motion in order to arrive at the same final velocity of 0.9 c, as determined by
the rapidity distributions of the observed hadrons. Strong deviations from viz ' 0.5 c,
however, lead to inconsistent values for the thermal freeze-out temperature Tf . Finally,
modifications of the critical temperature TC influence mainly the relative weight of the
contributions from the QGP phase and the hadronic gas phase to the dilepton yield and
hence change the shape of the dilepton spectra. Lattice data on TC suggest a range from
140 MeV for three massless, thermally active flavours to about 185 MeV for two massless
flavours and a realistic pion mass. Due to the self-consistent modelling of the temperature
and volume evolution, there is no simple one-to-one correspondence of these parameters to
the dilepton yield.

The upper limit of the grey band in figure 7.10 now corresponds to the scenario with a small
QGP contribution, i.e. large τ0, large viz and high TC . On the other hand, the lower limit in-
cludes a large QGP contribution with small τ0, small viz and low Tc. It is instructive to note
that the shape of the spectrum changes only moderately above 1 GeV invariant mass within
these extreme parameter variations. The first scenario, however, tends to overestimate the
data in the region of the ρ peak, whereas the second scenario does not leave enough time
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for the hadronic phase to build up the e+e− excess in the low-mass region between 200
and 800 MeV, effectively ruling out a large QGP contribution.

The fact that the grey errorband covers the data points indicates that is indeed possible to
improve the agreement of the calculation to the data in the low mass region without being
constrained by the high mass region by a suitable fine-tuning procedure of the fireball
evolution. This, however, is not a sensible thing to do as the fireball evolution was tied to
the hadronic observables in order to get rid of the ambiguity between evolution dynamics
and dilepton emission dynamics.

7.4 CONCLUSIONS

What can we, finally, learn about the QGP by measuring dileptons? Looking at Figs. 7.5
and 7.6, we find that the signal of the QGP is almost completely outshined by the one
of the hadronic gas in the invariant mass range below 1 GeV. This is unfortunate, as the
data statistics gets dramatically worse in the mass region above 1 GeV where the QGP
signal is dominant, thus inhibiting any decisive conclusions. The situation might improve
at RHIC, where there is a possible window for the observation of the QGP between the
φ peak and the region which is filled by semileptonic decays of charm mesons, provided
that the data statistics can be significantly improved and the hadronic contributions can be
assessed reliably. The originally proposed signal for the onset of the QGP, the enhancement
of dilepton yield below the ρ mass as compared to p-p and p-A collisions can be entirely
explained by in-medium modifications of the ρ, either, as within the present framework, by
a dramatically increased width or by a drop of its mass as the chiral transition is approached.

On the other hand, the presented framework assuming early thermalization and a long-
lasting QGP phase is clearly in line with all of the measured data on dileptons. This is
not trivial, as thermalization is quite a restrictive assumption as far as the fireball evolution
is concerned (note that parameter changes regarding initial longitudinal expansion of the
fireball immediately lead to disagreement to hadronic data). It appears that the simple
framework of the model is also able to account also for the essential dynamics of the fireball
evolution.

Obviously, a continuous emission process like dilepton emission probes the four-volume of
the fireball if the medium is thermalized. In contrast to a decaying (and emitting) ensem-
ble of particles, in a thermalized system the reservoir of emitting particles (e.g. the ρ) is
continuously refilled by back-reactions (e.g. ππ → ρ) which do not take place in a system
with negligible interactions. In that sense, dileptons may not reveal the QGP directly, but
they provide additional constraints on the spacetime evolution of the fireball via their nor-
malization. As apparent form Fig. 7.10, there is no room for a prolonged hadronic phase,
thus it is important in the present framework that the radiation during the early evolution
time is of a qualitatively different nature and does not strongly populate the low invariant
mass region.

The strong evidence for in-medium modification also renders the naive application of the
statistical hadronization model questionable (see section 6.3.3). Clearly, a better resolution
of the ω and the φ peak is needed in order to disentangle contributions from thermal yield
and decays after kinetic freeze-out. On the theoretical side, the behaviour of these two
mesons must be explored in more detail, as their typical timescales are not cleanly separated
from the one of the fireball.



Chapter 8

THERMAL PHOTON EMISSION —
KEY TO THE INITIAL

TEMPERATURE

8.1 INTRODUCTION

The emission of photons out of hot hadronic matter is closely related to the emission of
dileptons — for vanishing invariant mass M of the lepton pair in Eq. (7.1), one formally
recovers the expression for real photons. Therefore, the potential information about the
fireball evolution carried by thermal photons is in principle already contained in the dilep-
ton emission rate. In practice, however, the momentum regimes in which data have been
taken are quite different for real photons and dileptons, therefore a detailed study of the
photon emission rate constitutes a nontrivial test for the fireball evolution model and leads
to qualitatively new information.

Although the physics of photon emission and dilepton emission is so closely related, it
is unfortunately impossible to treat both processes within the same calculational frame-
work of the quasiparticle description we have used successfully so far. The reason is that
the process qq → γ is kinematically impossible for a real photon γ as long as the quark
and antiquark are considered as free quasiparticles which, by definition, do not experience
strong interactions. As already indicated in section 4.5.1, one needs to improve the naive
quasiparticle picture to allow for a substructure which can be resolved if the momentum
scales are large enough.

In the absence of such an improved quasiparticle picture, we will adopt the following point
of view: We will discuss data for the emission of photons with transverse momenta kt in
the range 1 GeV < kt < 4 GeV, i.e. at scales well above the thermal scale given by the

103



104 CHAPTER 8. THERMAL PHOTON EMISSION

temperature T . Therefore, at least one of the plasma particles participating in the photon
production process will also have a large momentum which allows to neglect the effect of
the thermal mass in the propagator and the confinement factor (a single high-momentum
quark/gluon will only hadronize outside the fireball). The calculation of the interaction of
such a particle with another low momentum plasma quasiparticle can be treated correctly
in HTL resummed perturbation theory as far as the quasiparticle mass is concerned. The
incorporation of the (phenomenological) confinement factor C(T ) into such a perturbative
framework is impossible, but we will verify a posteriori that the photon emission rate is
dominated by the very early evolution phase where C(T ) is expected to be close to unity.

8.2 THE PHOTON EMISSION RATE

8.2.1 The QGP phase

As already mentioned, the leading order contribution to the diagram shown in Fig. 7.1 is
absent in the case of real photons. The leading order polarization tensor for real photons is
therefore given by the diagram shown in Fig.8.1.

FIGURE 8.1: Leading order contributions to the imaginary part of the self energy of real
photons, shown are the two possible cuts of the diagram.

The two possible cuts of the diagram correspond to the processes shown in Fig. 8.2, the
QCD Compton process and qq-annihilation.

qq

γ q

g

γ γq

g

FIGURE 8.2: Leading order processes for photon production in the QGP: QCD Compton
scattering (left) and qq annihilation (right).

These diagrams have been calculated in [134, 135], where it was found that the singular-
ities caused by the exchange of massless states in the t-channel could be cured by HTL
resummation leading to the appearance of a thermal mass. We will refer to these formally
leading order processes as 2 ↔ 2 processes in the following.

However, it was shown in [136–138] that the diagrams shown in Fig. 8.3 corresponding
to bremsstrahlung and annihilation with scattering (aws) also contribute to leading order
in αs, as they contain collinear enhancements. Numerically, their contribution to the rate
exceeds the one of 2 ↔ 2 processes.
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It was also pointed out in [137, 138] that there is a suppression of these diagrams due to
the Landau-Pomeranchuk-Migdal (LPM) effect [139–141], the appearance of destructive
interference between different multiple scattering processes during the photon emission.
This was consistently taken into account in [142,143], where the complete rate to O(αs) is
given and it is argued that no other diagrams contribute to leading order. The suppression
of the LPM effect results in a ∼ 30% correction to the processes shown in Fig. 8.3.

q

g

γ

q

q ,

q

g,q

γ

FIGURE 8.3: Processes which, because of near-collinear singularities, contribute to leading
order photon production in the QGP: Bremsstrahlung (left) and annihilation with scattering
(aws) (right). The filled circles represent HTL resummed propagators.

The final result can be written as

dN

d4xd3k
=

1

(2π)3
A(k)

(
ln(T/mq(T )) +

1

2
ln(2E/T ) + Ctot(E/T )

)
, (8.1)

with E = k and m2
q(T ) = 4παsT

2/3 the leading order large momentum limit of the
thermal quark mass. The leading log coefficient A(k) reads

A(k) = 2α(NC
∑

s

q2s)
m2
q(T )

E
fD(E). (8.2)

Here, the sum runs over the involved quark flavours and qs denotes the fractional quark
charges in units of elementary charge. The Fermi-Dirac distribution fD(E) dominates the
momentum dependence of the rate: To a good approximation, it is an exponential decrease
with E. The dependence on the specific photon production process is contained in the term
Ctot(E/T ):

Ctot(E/T ) = C2↔2(E/T ) + Cbrems(E/T ) + Caws(E/T ). (8.3)

All these functions C(E/T ) involve non-trivial multidimensional integrals which can only
be solved numerically. In [143], parametrizations for the results are given as

C2↔2(E/T ) ' 0.041(E/T )−1 − 0.3615+ 1.01 exp[−1.35E/T ] (8.4)

and

Cbrems(E/T ) + Caws(E/T ) '
√
1 +

1

6
Nf

×
(
0.548 ln(12.28+ 1/(E/T ))

(E/T )3/2
+

0.133E/T√
1 + (E/T )/16.27

)
.

(8.5)

We use these expressions for the photon emission rate from the QGP phase in our further
investigations.
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8.2.2 The hadronic phase

Due to vector meson dominance (VMD), the vector mesons (ρ, a1) play a very important
role for the emission of photons from a hot hadronic gas. The first calculation of such
processes has been performed in [144] in the framework of an effective Lagrangian. It has
been found that the dominant processes are pion annihilation, π+π− → ργ, ’Compton
scattering’, π±ρ→ π±γ and ρ decay, ρ→ π+π−γ.

Several more refined approaches have been made since then (for an overview, see [145]).
In the following, we will use a simple parametrization of the rate from a hot hadronic gas
taken from [146] which is given as

E
dN

d4xd3k
[fm−4 GeV−2] ' 4.8T 2.15 exp[−1/(1.35ET )0.77] exp[−E/T ]. (8.6)

We will demonstrate a posteriori that the detailed choice of the hadronic emission rate is of
no importance, as it is a small correction to the contribution coming from the QGP phase.

8.2.3 The integrated rate

The spectrum of emitted photons has been measured for 158 AGeV Pb-Pb collisions by the
WA98 collaboration at the CERN SPS [147]. In order to compare to the experimentally
measured spectrum, we have to integrate Eq. (8.1) over the space-time evolution of the
fireball,

dN

d2ktdy

∣∣∣∣
y=0

=
π

∆y

∫
dτR2(τ)

∫ zmax(τ)

zmin(τ)

dz

∫ kmax(y(z))

kmin(y(z))

dkz
dN

d4xd3k
. (8.7)

In this expression, R(τ) stands for the radial expansion of the fireball, ∆y denotes the
rapidity interval over which the detector measures, y(z) is the rapidity of a volume element
at position z and the limits of the kz integration come from the fact that a photon emitted
at the (boosted) edge of the fireball has to have a longitudinal momentum in a certain range
in order to be detected in the rapidity window of the experiment.

8.2.4 Prompt photons

In addition to the thermal emission of photons due to secondary interactions, there is also
a contribution coming from the primary hard scattering processes in the pre-equilibrium
phase of the fireball evolution. These so-called prompt photons cannot be separated from
the thermal photons experimentally and hence have to be taken into account if one wants
to compare to data.

Theoretically, the production of prompt photons from hard parton scatterings can be com-
puted similarly to the thermal rate: The relevant diagrams are shown in Figs. 8.2 and 8.3.
However, in contrast to the calculation of the thermal emission rate, the external legs of
the diagrams are not multiplied by the thermal distributions of partons but by the parton
distributions characteristic of the colliding nuclei. As usual, the calculation should first be
compared to p-p collision data.

However, in order to explain the experimental data in p-p collisions [148], it proved nec-
essary to include an intrinsic transverse momentum (pt) distribution of partons as a phe-
nomenologically motivated non-perturbative effect into the calculation [149–151]. Using
the uncertainty principle with the radius of the nucleonRN , one finds

√
〈p2t 〉 ≈ π/2RN ≈

0.37 GeV. This value, however, is too small to explain the data which require 〈p2t 〉 ≈ 1−1.5
GeV [152].
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This discrepancy can be explained by a number of mechanisms (for an overview, see [145]).
New effects and further uncertainties arise in the extrapolation of these results to p-A and
A-A collisions where qualitatively new effects, such as shadowing [153] and initial state
momentum broadening (the Cronin effect) [154] enter.

In view of these uncertainties, we will not make an attempt to quantify the contribution of
prompt photons at this point, but rather present the result obtained in [152] to illustrate the
possible range of predictions dependent on the average value of pt. This is done in Fig. 8.4.
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FIGURE 8.4: Prompt photon production in Pb-Pb collisions as a function of the photon
transverse momentum kt for different values of average parton intrinsic transverse momen-
tum 〈p2t 〉 [152] as compared to experimental data [147].

Regardless of the value of 〈p2t 〉, the prompt photon contribution fails to explain the data in
the region kt < 2.7 GeV. This can be taken as evidence that there is indeed a contribution
to the photon spectrum resulting from secondary interactions.

8.3 RESULTS

The result of the evaluation of Eq.(8.7) with the fireball evolution model described in chap-
ter 5 is shown in Fig. 8.5.

The overall agreement with the data is remarkably good. Above 2 GeV, the calculation sys-
tematically underestimates the data somewhat, leaving room for a contribution of prompt
photons of about the same magnitude as the thermal yield. Note that the spectrum is almost
completely saturated by the QGP contribution — for kt > 3 GeV, the hadronic contribution
is almost two orders of magnitude down. This can in essence be traced back to the strong
temperature dependence of the emission rate normalization and justifies our approximate
treatment of the hadronic contribution a posteriori.

In order to study the importance of the initial, high temperature phase in more detail, we
present the time evolution of the spectrum in Fig. 8.6.

One observes that the large kt region is almost exclusively dominated by the first fm/c of
evolution proper time, whereas the yield in the low kt region is not yet saturated after 2
fm/c. Therefore, the high kt yield is potentially capable of providing information about the
initial temperature reached immediately after equilibration. Unfortunately, this capability
is seriously flawed in practice by the need to assess an unknown contribution of prompt
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FIGURE 8.5: Thermal photon spectrum for 10% most central Pb-Pb collisions at SPS, 158
AGeV Pb-Pb collisions, shown are calculated rate (total, contribution from QGP and hadronic
gas) and experimental data [147].
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FIGURE 8.6: The total photon emission spectrum and the integrated rate at proper times
τ = 0.2, 0.5, 1.0 and 2 fm/c of the fireball evolution.

photons, which may be large in this region. Nevertheless, bearing this uncertainty in mind,
we pursue this idea further in Fig. 8.7 where we investigate the sensitivity of the result to
the equilibration time τ0 of the fireball. As this is one of the most uncertain parameters in
the model, any opportunity to determine its experimental limits is extremely valuable.

We find that the low kt region of the spectrum is hardly affected by different choices for
the equilibration time, in accordance to our expectation that only the high kt part probes
the initial temperature. A short equilibration time of 0.5 fm/c, corresponding to an initial
temperature of 370 MeV leads to a good description of the data without the inclusion of
prompt photons. On the other hand, a slow equilibration corresponding to τ0 = 2 fm/c
and an initial temperature of 260 MeV requires a sizeable contribution of prompt photons,
which in turn implies intrinsic parton momenta of 〈p2t 〉 ≈ 1.5GeV. Note that the description
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FIGURE 8.7: The thermal photon emission spectrum for different choices of the equilibra-
tion time τ0 as compared to experimental data [147].

of the data between 2 and 2.5 GeV is already bad for the choice τ = 2.0 fm/c. As we
have seen, this cannot be cured for any value of intrinsic transverse parton momentum, so
equilibration cannot happen much later than after a proper time τ0 ≈ 1 fm/c.

In [155], it was found that a description of the data within a hydrodynamical framework was
possible, provided one assumes an equilibration time as short as 0.2 fm/c. This is clearly
out of range of the present analysis. The main reason for this discrepancy lies in the use
of the EoS of an ideal gas of quarks and gluons in [155]. In the framework presented here,
the quasiparticle properties of the QGP near the phase transition naturally lead to an initial
temperature which is increased by ∼ 30% as compared to one calculated for the ideal QGP
which in turn implies an enhanced photon yield due to the strong temperature dependence
of the rate. In [156], it was shown, although still with an ideal gas EoS, that such a small
value of τ0 is unnecessary if one considers a scenario with longitudinal acceleration, since
this leads naturally to increased initial temperatures as compared to longitudinal free flow.

8.4 CONCLUSIONS

Despite the strong connection between the physics of photon emission and dilepton emis-
sion, the available data sets probe a very different kinematical regime in both cases which
allows to investigate distinct phases of the fireball evolution. The fact that the thermal pho-
ton emission spectrum for high transverse momenta kt is strongly dependent on the initial
temperature and the total yield is almost exclusively created within the first 1-2 fm/c of
evolution time provide the unique opportunity to study the equilibration time τ0, which is
poorly constrained by other measurements.

Before we turn to more quantitative statements, let us briefly review the uncertainties
of the calculation. The main flaw of the present approach is certainly the fact that the
quasiparticle description has not been incorporated consistently. Specifically, the role
of the confinement factor C(T ) in the reduction of the rate is unclear. Let us estimate
the effect of neglecting C(T ) as follows: A typical diagram, say qq annihilation, has
the structure R0 ∼ fD(E/T )

2|M|2(1 + fB(E/T )), with the thermal quark distribu-
tions fD in front of the squared matrix element M corresponding to the process in vac-
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uum and a Bose enhancement factor for the gluon emitted into the final state. The mod-
ification of the rate R with respect to the rate R0 in the presence of C(T ) will read
R ∼ C(T )2fD(E/T )

2|M|2(1 + C(T )fB(E/T )) which is always larger than C(T )3R0.
In the case of quarks in the final state, C(T ) leads even to a reduced Pauli blocking (the
final state modification becomes (1 − fD(E/T )C(T )) which is larger in the presence of
confinement).

Therefore, regardless of whether we describe a high momentum plasma particle in the
quasiparticle framework or not, C(T )3 can be taken as a conservative estimate of the effect
introduced by the confinement factor. The rate is dominated by the evolution phase τ < 2
fm/c. In this phase, the fireball temperature is always above 250 MeV, leading to C(T ) >
0.9 and C(T )3 ≈ 0.7, therefore we find an uncertainty of at most 30 % by neglecting
detailed quasiparticle properties. This is acceptable, given the fact that the choice of αs in
the rates suffers from similar uncertainties. What is a possibly larger source of error which
cannot be estimated so readily is the fact that we have used the rate to leading order αs,
while this αs is not a small quantity.

Given those uncertainties, the fireball evolution model is able to describe the data remark-
ably well for a reasonable choice of the equilibration time τ0. As only the very first evolu-
tion phase is probed, this constitutes a nontrivial test for the parametrization of the initial
longitudinal expansion velocity and the EoS. Note that in the absence of longitudinal ac-
celeration, the fireball cools off faster and the agreement with the data disappears.

There is still considerable uncertainty regarding the role of prompt photons. However, in
the region 2 GeV < kt < 2.5 GeV, the data allow to probe the thermal contribution without
significant contamination by prompt photons. Focusing on this region, we found for the
equilibration time 0.5 fm/c< τ0 < 2 fm/c. In view of the above uncertainty, one comes to
the conservative conclusion that the fireball has to be thermalized at time scales exceeding
3 fm/c. This agrees with the constraints given by elliptic flow and is an important piece of
information in the search for the QGP. Based on the photon rate only, however, one cannot
determine whether the additional thermal contribution is of hadronic or partonic origin.



Chapter 9

CHARMONIUM DISSOCIATION —
A PROBE OF THE EARLY

FIREBALL EVOLUTION

9.1 INTRODUCTION

The suppression of charmonium (J/Ψ,Ψ′, χC . . . ) production was first suggested as a
probe for a deconfined medium in [157]. The basic idea is as follows: The charmonium
states are bound by the force responsible for confinement. If such a bound cc state is
immersed into a hot medium, the interquark potential is screened as deconfinement sets
in (see section 3.2), leading to a break-up of the state. The freed charm quarks then end
up at hadronization in pairs of D mesons. The experimental signal for this process is the
observed suppression of the production of J/Ψ in A-A collisions, where the produced
states are embedded into a medium after the production process, as compared to (scaled)
p-p collisions, where there is no such medium present.

There are several arguments in favour of the J/Ψ as a probe for the hot medium. All
of them rely on the charm mass being large. First, this fact allows to neglect thermal
production of cc pairs in the heat bath, which are exponentially suppressed by a Fermi
factor. The large scale set by the charmonium mass also allows for a perturbative treatment
of the initial production of a cc pair, although the formation of the charmed mesons out of
this pair is a generically nonperturbative process. Finally, the rareness of charm in in the
medium created by the collision allows for a clean separation between medium evolution
and charm evolution: charm does not contribute significantly to the evolution (thermo)-
dynamics.

Unfortunately, the observation of suppression of charmed states is not an unambiguous sig-
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nal for deconfinement. First observed signs of suppression in A-A collisions [158] were
later explained by more conventional mechanisms already present in p-A collisions [159].
The reason is that a cc pair can be produced at any nucleon in the nucleus, which implies
that a large fraction of produced pairs has to traverse a substantial part of (cold) nuclear
matter before emerging in the (hot) matter produced in the course of the collision. Further-
more, in principle charmonia can also be dissociated by collision processes in hot nuclear
matter, therefore experiments probe processes in all stages of the evolution from the early
hard collisions until kinetic freeze-out.

There is also the possibility of charm recombination in A-A collisions. If the density of
charmed quarks in the medium is sufficiently high, there is a sizable probability that a a
charm and anticharm quark, which were produced at different nucleons initially, coalesce
and form a new bound state. Such processes do not have an equivalent in p-p collisions
and therefore lead to an enhancement of the measured charmonium production rate in A-A
experiments which competes against the suppression due to the deconfined medium.

Data on the suppression of J/Ψ has been taken at the CERN SPS, where the predicted
’anomalous’ suppression beyond the one observed in p-A collisions has been observed
[160]. The interpretation of this data as the effect of a deconfined medium is however
difficult: Other nuclear effects are known which can potentially account for the observed
effect, as they scale non-linearly with the number of collision participants, which may
lead to significant contributions only when one goes beyond p-A collisions. Among these
effects are initial state gluon radiation [161], color excitation [162], initial state parton
energy loss [163] and coherence effects [164].

In view of these uncertainties, we will in the following consider all processes leading to
suppression or enhancement which can be assessed reliably within the given framework of
the fireball evolution model described in chapter 5. In doing so, we will study if the data
allow room for other, different mechanisms.

9.2 CHARMONIUM SUPPRESSION IN DIFFERENT

PICTURES

The potential between two static coloured sources can be studied in lattice simulations (see
chapter 2). In [165], such studies were carried out for the case of 3 flavour QCD. The
resulting temperature dependence of the potential is shown in Fig. 9.1.

The potential displays two regions: For
√
σ > 2 − 3, the potential is essentially flat,

indicating that the colour string responsible for the linear growth of the potential in pure
SU(3) can be broken by qq pairs (see section 3.3). In the region

√
σ < 2− 3, a Coulomb-

like behaviour persists, which shows a strong temperature dependence due to screening
effects. Specifically, the potential gets much shallower for T > TC , thus reducing the
binding energy.

One can parametrize these results, solve the Schroedinger equation for a bound state of
charm quarks and determine the break-up temperatures of the different charmonium states
in this way. This has been done in [166]. In doing so, one utilizes a rather idealized picture
of the conditions realized in heavy-ion collisions. First of all, lattice calculations assume
static sources. This should be in principle a good approximation due to the large charm
mass, but a possible movement of the produced charmonium relative to the surrounding
fireball matter is not taken into account. Furthermore, the application of lattice results
require that charmonia are thermalized along with all the fireball matter, but this is a non-
trivial assumption as charmonia are rather tightly bound and require the interaction with an
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FIGURE 9.1: Temperature dependence of the heavy quark potential in 3 flavour QCD mea-
sured on the lattice [165]. Here, σ denotes the string tension.

energetic gluon from the heat bath for breakup. Specifically, there is a relation between the
observed screening and the collision of gluons from the heat bath with the bound object:
The interquark potential can be written as

V (r) ∼
∫
d3k

eikr

k2 − (m2 +Π(k, T ))
(9.1)

The medium modifications of the potential thus enter via the polarizability in the static limit
k0 = 0, or, in other words, the self-energy insertion of the field quanta Π, which depends
on momentum k and temperature T . As already discussed in chapter 7, self-energies of
particles stem from a diagrammatic expansion like Fig. 7.1. In Eqs. (2.6), (2.7) and (2.17)
to (2.20) we saw that the propagation of particles in a thermal medium can be explicitly
separated into a T = 0 part and a temperature dependent part. Indicating this schematically
into the diagrammatic approach, we find the situation depicted in Fig. 9.2.

= +

+ + higher orders

FIGURE 9.2: The lowest orders in the diagrammatic expansion of Π(k, T ). Here, we have
separated vacuum propagation from thermal propagation: In the last two diagrams, particles
from the heat bath (marked by x) scatter with the propagating particle and enter the heat bath
again.

Thus we see that a substantial part of the modification of the heavy-quark potential can be
described in terms of particles from the heat bath scattering off the colour string.

This immediately leads to an alternative (and more dynamical) description of J/Ψ disso-
ciation by scattering with particles from the heat bath. This description can be cast into
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the framework of rate equations, which allows for a time-resolved study of the dissociation
process, in doing so avoiding question of charm equilibration.

Thus, we end up with two possibilities: Charmonium dissociation can be described in terms
of the temperature dependent screening as observed in lattice calculations. Here, the full
QCD dynamics enters, but the results can only be obtained in a situation which is very
far from the physics realized in a heavy-ion collision. On the other hand, the dissociation
process can be described in terms of scattering processes. In doing so, part of the dynamics
is necessarily neglected, however, the treatment is more adapted to the rapidly changing
conditions inside a fireball. One has to take care, however, that both views are not mixed:
Introducing both approaches in a single model framework is corresponds certainly to some
degree of double-counting. In the following, we will pursue the second approach and
describe charmonium dissociation in terms of scattering processes.

9.3 THE FATE OF CHARMONIA

In order to discuss the evolution of charmonia inside the fireball, we must first establish
the initial distribution of charmonia created in the hard collision processes preceeding the
creation of thermalized matter. In the following, we will make the (simplifying) assumption
that all charmonium states are indistinguishable and only discuss the evolution of a generic
state Ψ.

Directly after their production, the states Ψ are subject to dissociation due their subsequent
propagation through the nucleus (’normal nuclear absorption’). After we have accounted
for that effect, the charmonia are placed in the medium. We use the evolution model intro-
duced in chapter 5 to model the conditions inside the fireball. The energy dependence of
the charm dissociation cross section by gluons is specified and the time dependence of the
charmonium density within rate equations is then calculated. We do not take into account
dissociation processes in the hadronic phase after the phase transition, instead, we consider
the suppression obtained in our model a lower bound.

9.3.1 Charm production

The first step of the calculation is to assess the distribution of cc pairs in the initial hard
collisions. The production of charmed quarks is commonly described within perturbative
QCD. The perturbative approach is strictly valid only for processes involving large virtual-
ities, usually provided by large momentum exchange or large masses. In the present case
the smallest scale is that of the charm quark mass mc ' 1.5 GeV, implying that perturba-
tion theory at lowest order is inadequate. Moreover, computations are accurate only large
enough transverse momenta pT , whereas small values of pT contribute significantly to total
yields.

In the following discussion we will consider a minimal approach, neglecting features which
are sub-dominant and do not influence the quality of the results. We therefore restrict
ourselves to the leading order treatment presented in [167, 168], with suitable adjustments
in order to meet phenomenology. We consider the leading processes qq̄ → cc̄ and gg → cc̄.
In terms of their elementary differential cross sections dσ̂i/dt̂, the spectrum of c quarks
produced in pp collisions at rapidity yc and transverse momentum pT is

dσcpp
dyc dp2T

= K

∫
dyc̄

∑

i=u,d,s,g

x1fi/p(x1, µ
2
c) x2fi/p(x2, µ

2
c)
dσ̂i

dt̂
, (9.2)
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where x1,2 are the momentum fractions of the partons in the colliding protons. The fac-
torization scale is taken at µc = 1.4 GeV, which is of the order of the c quark mass, and
an empirical scaling factor K = 2 is used. We employ the GRV94LO parton distributions
fi/p and neglect the effect of intrinsic transverse momentum of partons. In this way it is
possible to effectively reproduce to good accuracy the next-to-leading order computations
for total (yc- and pT -integrated) charm production as computed in [168] and conveniently
parametrized in [169].

To estimate the spectrum of c quarks inAB collisions, the simplest approach is to scale the
pp result with the overlap function

TAB(b) =

∫
d2s TA(s)TB(s̃) (9.3)

being TA,B(b) =
∫
dz ρA,B(z, b) the usual overlap functions as longitudinal integral of the

nuclear densities ρA,B and s̃ = |b− s|.
On the other hand, as the collision energy increases, shadowing effects are expected to
become important, reducing the total yield [170]. Another correction to be introduced
is the Cronin effect on the transverse momenta of partons. This results in a broader pT
spectrum of charmed quarks. For simplicity we neglect these effects. The charmed quark
spectrum in AB collisions is then computed as

dN c
AB

dyc dp2T
(b) =

dσcAB
dyc dp2T

TAB(b) . (9.4)

A comparison of the total number of charm quarksNc = σc/σin produced, for example, in
a Au-Au collision can be obtained by integrating the spectrum given in the latter equation.

9.3.2 Charmonium production

The description of charmonium production in nuclear collisions is a more complicated task
as compared to cc̄ production. At the root of the problem lies the fact that exclusive pro-
duction of composite particles in hadronic collisions is basically a non-perturbative process.
Only at large transverse momenta it is possible to make robust predictions for the spectra.
Nevertheless, at least at the phenomenological level, much work has been done in order to
understand the physics underlying the results of several experiments. Let us first consider
p-p collisions

For later use we need the pT spectrum of Ψ at mid-rapidity. In the following we assume a
Gaussian form for the pT -dependent part, with width parameter Λ = 1 GeV. The rapidity
modulation can be inferred from the relation dσ/dy ∼ x1g(x1)x2g(x2) where xg(x) ∼
(1 − x)5 is the gluon distribution in the proton and x1,2 = (mΨ/

√
s) exp(±y). For the

overall normalization we use the parametrization for the total charmonium production cross
section [171]

σΨ
pp(s) = 2σ0 (1−mΨ/

√
s)n , (9.5)

where σ0 = 1.28 µb and n = 12.

We can write the invariant Ψ spectrum in p-p collisions as

dσΨ
pp

dy d2pT
= σΨ

pp(s) F (s, y) (πΛ
2)−1 exp(−p2T /Λ2) , (9.6)

where the y-dependent part is

F (s, y) = C(s)
[
1− 2(mΨ/

√
s) cosh y +m2

Ψ/s
]5

(9.7)

while C(s) is chosen to satisfy the constraint
∫
dy F (s, y) = 1.
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9.3.3 Nuclear absorption

We now consider nuclear effects, starting with the simpler case of p-A collisions. It has
been shown that the experimental results on charmonium production can be explained using

σψpA = σψpp

∫
d2b TA(b) S

abs
A (b) (9.8)

for the total production cross section. The factor

SabsA (b) =
1− exp

[
−σabsψN TA(b)

]

σabsψN TA(b)
(9.9)

is the survival probability for Ψ to escape the nucleus without being dissociated. It includes
the effective absorption cross section σabsψN , a quantity of the order of 3 mb for mid-rapidity
Ψs as measured at Elab = 800 GeV at Fermilab, while it amounts to 5 − 7 mb for mid-
rapidity Ψs as measured at Elab = 158 − 200 GeV at the SPS. The absorption cross
section parametrizes various poorly known effects, with varying importance depending on
the collision energy. Among these effects are the presence of color degrees of freedom in
the dynamics of colliding nucleons, initial state parton energy loss and coherence length
and shadowing effects. A common property of all of the above is the linear dependence on
the path length, at least to leading order. Using Eq. (9.9) can therefore be justified, provided
a suitable re-scaling and re-interpretation of σabsψN ,→ σψN and SabsA,B → SNUCA,B is done.

When looking at Ψ production in nucleus-nucleus (AB) collisions, one can estimate the
cross section for a given impact parameter by generalizing Eq. (9.8). The effects of the
produced medium are the central topic of this paper and will be thoroughly discussed in the
following sections. neglecting them for the moment, one obtains

dNΨ
AB

dy d2pT
(b) =

dσΨ
pp

dy d2pT
TAB(b) S

NUC
AB (b) , (9.10)

where nuclear effects are included in the suppression function

SNUCAB (b) = T−1
AB(b)

∫
d2~s TA(s)S

NUC
A (s) TB(s̃)S

NUC
B (s̃) (9.11)

which has the obvious property SNUCAB < 1 and SNUCAB → 1 if σψN → 0.

Since nuclear effects depend on energy, we have chosen σ0
ψN = 5 mb at the SPS energy√

s0 = 17.3 GeV in order to be in agreement with the p-A measurement, and assumed the
relation

σψN (s) = σ0
ψN (s/s0)

λ (9.12)

with λ = 0.2 in order to simulate nuclear effects as predicted in [172].

9.3.4 The charmonium dissociation cross section

We will now discuss how charmonium states will interact with the quarks and gluons from
the produced medium. To lowest order one might expect that the two processes illustrated
in Fig. (9.3) are contributing to Ψ dissociation. On the other hand, a quark can interact only
via gluon exchange. Within the spirit of the quasiparticle model, the process labelled (b)
in the figure is effectively already included in the definition of the temperature dependent
gluon mass. Computing both contributions would cause an erroneous double counting. In
other words, Ψs only see quasiparticle gluons in the plasma.



9.3. THE FATE OF CHARMONIA 117

(k)g

(p)ψ

2(q  )c

c

1(q  )c

��

(a) (b)

cψ

q

FIGURE 9.3: Diagrams contributing to lowest order to Ψ dissociation. The process involv-
ing a gluon quasiparticle (a) exhausts the amplitude since it already takes into account the
one involving a quark quasiparticle (b).

Concentrating now on the process labelled (a) in Fig. (9.3) we come to the problem of
computing a cross sections involving a relativistic bound state. In the present case one can
argue that the cc̄ system is, to first approximation, non-relativistic, greatly simplifying the
treatment.

Moreover, as was done originally by Bhanot and Peskin [173, 174] one can argue, jus-
tified to some extent by the magnitude of the heavy quark mass, that the lowest lying
levels of a quarkonium can be described by the Coulomb part of the potential. Then, use
operator product expansion techniques or more recent non-relativistic factorization tech-
niques [175], it is possible to obtain the analytic expression

σD(ω) =
2π

3

(
32

Nc

)2
1

µ3/2ε1/2
(ω/ε− 1)

3/2

(ω/ε)
5 (9.13)

for the gluon dissociation process of a heavy quarkonium. It is a function of the gluon
energy ω in the rest frame of the quarkonium and contains the threshold energy ε and
the mass scale µ, related to the heavy quark mass. The threshold energy is related to
the binding energy ε0 by the condition that s = (p + k)2 > 4m2

c which implies that
ε = ε0 + ε20/(2mΨ). While the above formula appears to be applicable for bottomonium,
in the case of charmonium it is certainly a more serious approximation. Inclusion of higher
states is in principle necessary in order to have a reliable description of the dissociation
process, together with formation as will be discussed next. All this can be done within a
potential model for the cc̄ system, but such a study falls beyond the scope of the present
treatment.

In what follows the binding energy is taken to be ε0 = 780 MeV and the mass parameter
is µc = 1.95 GeV, as chosen in [174] to fit the mass values of the first two levels (J/ψ and
ψ′) of the charmonium system.

9.3.5 Kinetic description of charmonium evolution

Having specified the cross section for the process Ψ + g → cc, one might ask about the
inverse process. Indeed, there is a possibility for charmonium recombination due to cc fu-
sion, and the cross section can be inferred from Eq, 9.13 by detailed balance arguments.
However, the average charmonium production rate at SPS is less than one in a central col-
lision, i.e. the charm density is small and recombination processes are not very important.
On the other hand, such processes might play a role at RHIC or LHC energies, therefore we
present a complete treatment including a charm formation term here but neglect the latter
in practical calculations for SPS.
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The natural framework in which to study the time evolution of Ψ is that of kinetic theory.
We make use of a semi-classical treatment, setting up a relativistic Boltzmann equation
for the Ψ phase-space distribution. The collision term, which contains interaction cross
sections, provides the interface between charm and the medium. More in detail we have

pµ∂µfΨ(p) =

∫
d3k

Ek

d3q1
E1

d3q2
E2

δ4(p+k−q1−q2) Wcc̄↔Ψg

[
fc(q1)fc̄(q2)− fΨ(p)fg(k)

]
,

(9.14)
which is the Boltzmann equation for fΨ, characterized by a collision term containing the
interaction probabilityWcc̄↔Ψg =WΨg↔cc̄. Kinematics is such that p is the Ψ momentum,
k the gluon one and q1 and q2 the c and c̄ momenta. We have suppressed the normalization
factors 2πs of phase space for clarity. Due to the δ-function, some of the phase space
integrals can be carried through, leading to the intuitive result

(∂t + v·∂r) fΨ(r,p, t) = −λD(r,p, t) fΨ(r,p, t) + λF (r,p, t) . (9.15)

The dissociation (loss) term

λD(r,p, t) =
∑

n

∫
d3k σnD(s) vrel(k,p) fn(r,k, t) (9.16)

consists of a sum over the various constituents of the medium, each interacting with Ψ
with a different dissociation cross section σnD . vrel is the relative velocity between Ψ and
constituent n. The center of mass energy is s = (p + k)2 while the relative velocity
vrel(k,p) = FΨg(s)/EpEk, with FΨg(s) =

√
[s− (mψ+mg)2][s− (mΨ−mg)2]/2. In

principle n labels different degrees of freedom depending on the elapsed time. At early
times the medium constituents are quasiparticles quarks and gluons, later on hadrons. The
formation (gain) term

λF (r,p, t) =

∫
d3q1 σF (s) vrel(q1,q2) fc̄(r,q1, t) fc(r,q2, t) (9.17)

describe the coalescence process of Ψ formation by c and c̄ quarks. Here the center of mass
energy is s = (q1 + q2)

2 while the relative velocity vrel(q1,q2) = Fcc̄(s)/E1E2, with
Fcc̄(s) =

√
s(s− 4m2

c)/2. Implicit in the last equation there is the approximation that the
position of the quarks c and c̄ are the same at coalescence. This is reasonable, since the
relative position has to be compared with the typical size of the whole system, which is
more than an order of magnitude larger.

Consistently with the model for the medium described in chapter 5, we assume to have
a system which expands as function of proper time in a cylindrical volume where densi-
ties are uniform. Changing variables such as t = τ cosh(η) and z = τ sinh(η) greatly
simplifies the description.

Integrating over Ψ transverse momenta we can reduce Eq. (9.15) to the much simpler first
order differential equation

d

dτ
Ny

Ψ = −
∑

n

〈〈σnD vrel 〉〉 ρnNy
Ψ + 〈〈σF vrel 〉〉 ρc̄Ny

c , (9.18)

which now depends on the proper time τ . The double brackets indicate average over the
momenta of the initial particles, except for the last rapidity integral which is left undone.
In other words

〈〈σ vrel 〉〉 =

∫
d2pTa fa(pa)

∫
d3pb σ vrel(pa, pb) fb(pb)

∫
d2pTa fa(pa)

∫
d3pb fb(p)

, (9.19)
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where pa and pb indicate Ψ and g momenta for dissociation, while c and c̄ momenta for
formation. We insist that leaving the y-integration is important since we intend to compute
the value of the final Ψ rapidity distribution at mid-rapidity, and not the whole yield. Notice
that also Ny

c is a rapidity density, while the charm density is ρc̄ = ρc = Nc/V . The
medium constituent’s density is denoted by ρn.

It is clear that an equation analogous to (9.18) but with opposite sign on the r.h.s. is neces-
sary for charm in order to ensure its conservation as function of time. This means that the
initial (constant) total amount of charmed quark pairs is N 0

c = NΨ + Nc, implying that,
strictly speaking, Eq. (9.18) can be re-written as a Riccati equation, whose solution can
be obtained only numerically. On the other hand, at each rapidity it is a good approxima-
tion to assume that the total charm distribution equals the distribution of unbound quarks
Ny
c = Ny

c̄ � Ny
Ψ, allowing to simplify the rate equation to

d

dτ
Ny

Ψ(τ) = −λD(τ)Ny
Ψ(τ) + λF (τ) , (9.20)

with the rates now assuming the form

λD(τ) =
∑

n

〈〈σnD vrel 〉〉(τ) ρn(τ) and λF (τ) = 〈〈σF vrel 〉〉N0
c N

y
c / V (τ) ,

(9.21)
where we have explicitly indicated where time dependence appears. In particular the disso-
ciation term is time dependent also because of the implicit temperature dependence in the
phase space density of the medium, used to average the dissociation cross section. On the
other hand, since charmed quark distributions are time independent, the formation cross
section is also.

Having reduced the Boltzmann equation to a much simple one, consistently with the de-
scription of the medium as being spatially uniform, it is possible to integrate directly
Eq. (9.20), obtaining a simple solution which can be written in closed form as

Ny
Ψ(t) =

{
Ny

Ψ(0) +

∫ t

t0

dt′ λF (t
′) exp

[∫ t′

t0

dt′′λD(t
′′)

]}
exp

[
−
∫ t

t0

dt′λD(t
′)

]
.

(9.22)

The structure of the solution is quite self-evident. Neglecting formation we obtain the
usual exponential suppression, while the formation term becomes important as soon as the
number of charmed quarks becomes large enough. This is expected to be the case as the
collision energy increases, eventually overwhelming suppression.

9.4 RESULTS

Using the elements of the calculation as discussed in the previous sections, we are now
in the position of computing observables. We start from the case of Pb-Pb collision at√
s = 17.4 GeV (Elab = 158 GeV) and use the solution of the kinetic equation given in

Eq. (9.22). This is done as function of the impact parameter b. The result is divided by
the number of collisions, which provides the centrality dependence of the Drell-Yan cross
section. The normalization is fixed at 50 and the ratio Ψ/DY as function of b is converted
into a function of the measured transverse energy with a simplified version of the standard
procedure [176]. In fact, here we do not perform the usual convolution with the ET − b
correlation function, but scale the mean transverse energy with the b dependence coming
from the number of participants as

ET (b) = εT Np(b) . (9.23)
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The quantity εT = 0.297, which represents the amount of produced transverse energy per
participant, is used in order to describe correctly the total inelastic (minimum-bias) cross
section as function of centrality. In this way we arrive at the results plotted in Fig. (9.4).
The agreement with data is quite remarkable and the whole result deserves some detailed
comments. First of all it is immediately obvious that the curves end at ET ' 110 GeV,
which corresponds to b = 0. To go beyond this point it is necessary to include effects of
fluctuations, which are quite straightforward to address [177].
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FIGURE 9.4: Result at SPS energy for the ratio Ψ/DY as function of the transverse energy.
The dashed curve includes only nuclear effects, while the full line is the complete result
including gluon dissociation

An important finding is that hadronic dissociation of Ψ is ruled out, not because cross
sections are small, rather because the hadronic number density is more than an order of
magnitude lower than the partonic one, and only a fraction of fm−3 already at hadroniza-
tion. This is also apparent from Fig. 9.5 where we show particle densities for the relevant
degrees of freedom as a function of the temperature. Clearly, the density of particles in the
early evolution phase is orders of magnitude larger than in the hadronic phase.

For ET < 40 GeV, a systematic deviation of the model calculation from the data is vis-
ible. This should not be a surprise: A thermalized fireball model as the one used in the
present approach is ill suited to describe very peripheral collisions, so one should expect
at some transverse energy. As the impact parameter of the collision increases, the number
of participants gets less and less. Therefore, thermalization gets more and more difficult,
which should be manifest in an increase of the thermalization time τ0. Increasing τ0, how-
ever, directly reflects in an increased initial volume, which in turn translates into a lower
entropy density corresponding to a lower initial temperature. Effectively, the duration of
the partonic phase is reduced, resulting in a decrease of the associated suppression factor.
Therefore, for very peripheral, unthermalized events one should recover the normal nuclear
absorption only, which is also displayed by the data.

9.5 CONCLUSIONS

Of all the data presented so far, the results on charmonium suppression are the ones most
closely linked to the properties of a partonic medium. Apart from theoretical expectations



9.5. CONCLUSIONS 121

0.01

0.1

1

10

100

0 100 200 300 400 500

n(
T
)  

  [
fm

-3
]

T     [MeV]

Tc  =  170  MeV

nf.o.

nc

no
SPS

no
RHIC

hadrons

0.01

0.1

1

10

100

0 100 200 300 400 500

n(
T
)  

  [
fm

-3
]

T     [MeV]

Tc  =  170  MeV

nf.o.

nc

no
SPS

no
RHIC

hadrons
QGP    

0.01

0.1

1

10

100

0 100 200 300 400 500

n(
T
)  

  [
fm

-3
]

T     [MeV]

Tc  =  170  MeV

nf.o.

nc

no
SPS

no
RHIC

hadrons
QGP    
gluons 

0.01

0.1

1

10

100

0 100 200 300 400 500

n(
T
)  

  [
fm

-3
]

T     [MeV]

Tc  =  170  MeV

nf.o.

nc

no
SPS

no
RHIC

hadrons
QGP    
gluons 

0.01

0.1

1

10

100

0 100 200 300 400 500

n(
T
)  

  [
fm

-3
]

T     [MeV]

Tc  =  170  MeV

nf.o.

nc

no
SPS

no
RHIC

hadrons
QGP    
gluons 

FIGURE 9.5: Particle densities as a function of the temperature T in the hadronic and
partonic phases. Here, nf.o. denotes the freeze-out density of the fireball, nc the critical
density, ni

SPS the initial quasiparticle gluon density at SPS and ni
RHIC the corresponding

value at RHIC. The vertical line indicates the value of the critical temperature Tc = 170
MeV.

concerning screening of the binding potential, however, there is little direct evidence for
the creation of a QGP. On the other hand, charmonium suppression yield a valuable bit of
information to be combined with other observables.

The data show a strong absorption due to effects of the produced medium. If one does not
assume that cross sections for charmonium in A-A collisions are an order of magnitude
different from those in p-A collisions, then this medium has to be a very dense one. A
priori, however, it is unclear if this dense medium is of hadronic or partonic origin.

But if we make use of the information from other measurements, we may reason as follows:
The existence of elliptic flow (see section 5.2.4) indicates early thermalization. If we now
use the EoS as found in lattice calculations (as appropriate for a thermalized medium) we
can calculate the temperature of a medium with given number- and entropy density. In
doing so, we find that only a partonic medium can provide the necessary particle densities
for the observed charmonium suppression. In that sense, charmonium suppression gives
indirect evidence for the production of a QGP.

It is clearly reassuring that the charmonium suppression scenario described here agrees well
with the fireball evolution which is constrained by independent observables, thus support-
ing the approach. However, one has to keep in mind that there are still several unresolved
issues: The precise value of the charmonium dissociation cross section is not well known.
This translates into an overall uncertainty regarding the normalization of the suppression.
Furthermore, the problem of screening versus dissociation by scattering indicated in sec-
tion 9.2 is not solved completely. Clearly, for a spatially averaged fireball evolution model
as presented here, it is preferable to consider at least the time evolution of the suppression,
but this is at the expense of incorporating only part of the QCD dynamics. However, the
fact that the data are so well described by the rate equations may hint that the relevant
processes are already incorporated. This subject certainly requires further investigation.

In contrast to the dilepton data, charmonium suppression is more sensitive to the early
stages of the fireball evolution. This is fortunate, as it allows to probe both hadronic and
partonic phase in complementary measurements. The suppression of charmonia is sensitive
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to the four-volume of the early evolution: The longer the system remains in a given tem-
perature region the more dissociation will happen and the 3-volume of the fireball enters
via the density of scattering partners.

Once one tries to model the evolution of the charmonium density at RHIC or LHC, it is
mandatory to include not only the ’loss’ terms due to collisional dissociation, but also ’gain’
terms, cc coalescence where charm and anticharm were created in different processes. As
the density of charmed quarks grows, coalescence processes will eventually dominate and
lead to an enhancement of the measured charmonia as compared to p-A collisions. At the
moment, however, determining the degree of thermalization of the produced quarks (which
is necessary to model their momentum distribution) is still a difficult task.



Chapter 10

SUMMARY AND CONCLUSIONS

10.1 SUMMARY

In the present work, an overview over the physics of ultra-relativistic heavy-ion collisions
has been given with the aim of discussing the quest for the quark-gluon plasma. This is
a vast subject, as physics from many different areas has to be combined to gain an under-
standing of the processes occurring in the course of such a collision.

In the initial stages of the collision, one deals with hard processes like Drell-Yan and jet
events, which prepare the distribution of particles for the later phases of the evolution.
These processes are in principle calculable in perturbative QCD. However, secondary par-
ticle production quickly lowers the relevant energy scales and limits the validity of pQCD
predictions. Ultimately, the hard physics seems to culminate in particle distributions in
equilibrium or very close to equilibrium. This appears to happen after a short period of
time of only a few fm/c. Evidence from both theory (section 4.4) and experiment (section
5.2.4) has been brought forward to support this scenario.

After all initial hard scattering processes have taken place and a large fraction of the in-
cident energy has been converted into the production of secondary particles (entropy), the
properties of the system change qualitatively. In a strongly interacting system of many hun-
dreds of particles, individual particle trajectories become unimportant. Instead, collective
behaviour dominates and the properties of the system are determined by a few macroscopic
parameters; a description in terms of thermo/hydrodynamics is more likely to be appropri-
ate.

This regime of particles in equilibrium can be treated within the framework of finite tem-
perature field theory as introduced in chapter 2. Unfortunately, a perturbative approach
does not seem to be feasible in the temperature region accessible in current experiments,
as the QCD coupling constant is not yet small for typical momentum transfers inside such

123
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a system. Furthermore, we have summarized some results of such thermal pQCD calcula-
tions and shown evidence for a breakdown of the perturbative series caused by collective
phenomena inside the QGP.

Instead, lattice QCD calculations seem to be the adequate tool to study the properties of
thermal QCD. In chapter 3, we have summarized the expected properties of hot QCD,
namely the existence of a partonic phase, the QGP, and introduced several of its key at-
tributes: Significant changes in the EoS, the chiral transition and deconfinement. All of
those features leave characteristic traces in the evolution history of a heavy ion collision.
We have analyzed the relevant degrees of freedom inside the QGP phase and found that
the thermodynamic properties find a natural explanation in terms of a system of weakly
interacting massive plasma quasiparticles.

Returning to the experimental situation, we have summarized the space-time geometry
and the different evolution phases of the fireball created in an ultra-relativistic heavy-ion
collision in chapter 4. Using estimates for the initially created entropy, we argued, by using
the EoS taken from the lattice simulations, that there is a natural sequence of evolution
phases following the initial hard collisions: QGP → phase transition → hadronic phase
→ freeze-out. We have discussed in a qualitative way how this sequence of phases leaves
distinct traces in experimentally accessible quantities.

In chapter 5, we reviewed extensively the wealth of experimental information gathered so
far. We focused on the situation at the CERN SPS and discussed how quantitative state-
ments on the space-time evolution of a fireball can be extracted from observables like the
rapidity distribution of produced particles (section 5.2.1), transverse momentum spectra
(section 5.2.2) and HBT interferometry measurements (section 5.2.3). All these observ-
ables show strong evidence for collective phenomena like radial flow.

Experimental information from hadronic momentum spectra can only determine the evo-
lution endpoint, the kinetic freeze-out. On the other hand, overlap calculations help to
constrain the initial fireball geometry. Assuming local thermal equilibrium at all times, we
have used the lattice EoS as represented in the quasiparticle picture as a link to connect
initial and final state by an dynamical evolution model in the remainder of the chapter.
This model has been constructed in such a way as to be in agreement with all hadronic
observables discussed so far. No additional information is put in by hand. Therefore, the
evolution model is completely constrained by the available data. Furthermore, we have
discussed the possible extension of the scenario to situations where no detailed knowledge
of the freeze-out geometry is available. In the last part, we reviewed the data situation at
RHIC and suggested a plausible fireball evolution scenario for the collider kinematics.

In the next series of chapters, we turned to several special processes happening in the course
of the fireball evolution and examined their potential to yield signals for the creation of a
partonic phase.

First, in chapter 6, we discussed hadrochemistry, the relative abundance of hadronic species
measured after freeze-out. It turns out that the experimentally measured abundancies can be
naturally explained by the picture of subsequent chemical and thermal freeze-out. Assum-
ing the hadron ratios to be fixed at the phase transition, we have shown that good agreement
of the fireball evolution model suggested in chapter 5 with the data is achieved. Contrary to
previous works, we have not used a fit procedure to find the relevant thermodynamical pa-
rameters, temperature T and baryochemical potential µB , but rather fixed them beforehand
by the evolution model.

There is, however, a caveat in this statistical hadronization model: There are both exper-
imental and theoretical indications that particles embedded into a hot medium undergo
modifications of mass and width. Therefore, we have tested the possibility of mass shifts,
increased widths and increases of particle radii in a schematic way. We found that there
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is little room for both mass shifts and width increases alone, however, the effects of an
increase in the core radius of particles can to some degree counterbalance the effects of
the other modifications, therefore there is a possibility to consistently introduce in-medium
modifications of particles into an analysis of the hadrochemistry. Due to the limited knowl-
edge of hadron properties near the phase boundary, all these statements are on a very qual-
itative level though.

In chapter 7, we discussed the emission of lepton pairs from the fireball. Electromagnetic
probes, such as photons and dileptons, are interesting since they are capable of leaving
the interaction region without rescattering. Therefore they carry direct information on all
evolution phases. As a new key ingredient to the emission rate, we have presented the
spectral function of a virtual photon in both the hadronic and the partonic phase calculated
using methods of perturbative thermal field theory. Here, in-medium modifications as dis-
cussed qualitatively in chapter 6 show up explicitly in the vector meson channels at finite
temperature and/or baryon density.

The model calculation is able to describe the data well for both 40 and 158 AGeV colli-
sions. We found that the invariant mass spectrum of dileptons below 1.2 GeV where data
from CERES exists is mainly dominated by contributions from the hadronic phase. This is
caused by the significantly larger radiating four-volume as compared to the partonic phase.
The observed enhancement of dilepton yield in the region below the ρ mass can be ex-
plained by a strong broadening of the ρ peak due to finite baryon density effects. However,
the most crucial result is that the fireball evolution also describes the late part of the evo-
lution (as probed by the emission of the hadronic phase) rather well. This is not trivial,
as hadronic observables only reflect the conditions at kinetic freeze-out, not the dynamical
evolution. We concluded the chapter by giving predictions for the invariant mass spectrum
of emitted dileptons at RHIC. Here we have found qualitative differences due to the fact
that the baryon density is significantly lowered, as a similar number of participant nucleons
is distributed across a larger rapidity interval. Most prominently, the vector meson peaks
are expected to appear more pronounced.

Chapter 8 has presented an investigation of thermal photon emission from the fireball. We
have argued that, in spite of the fact that the physics of photon and dilepton emission is
closely related, data have been taken in very different kinematic regimes, thus allowing to
study two different aspects of the fireball evolution. Due to the breakdown of the simple
quasiparticle picture in the case of real photon production, we have used the perturbative
emission rates to order αs and have argued a posteriori that the errors introduced this way
are small.

We find good agreement to the data obtained by the WA98 collaboration for 10% most
central Pb-Pb collisions at SPS using our standard model for the spacetime evolution of
the fireball. The rate turns out to be almost exclusively dominated by the first moments of
the evolution, especially for large photon transverse momenta. We have made use of this
sensitivity to get an estimate for the equilibration time τ0 which is poorly constrained by
other measurements and have argued that the fireball has to be thermalized at latest after 3
fm/c, but not earlier than 0.5 fm/c. Again, the fact that initial temperature and spacetime
evolution of the fireball are able to describe the data rather well is a non-trivial test for the
model. Specifically, the presence of longitudinal acceleration which is crucial to account
for the photon data is enforced by a careful analysis of the freeze-out state already.

In chapter 9, we continued the discussion of signals for the production of a QGP with char-
monium suppression. There are different ways to look at the mechanism for charmonium
dissociation in a plasma: We have argued in section 9.2 that there is no fundamental differ-
ence between screening the interquark potential and employing rate equations for scattering
processes which destroy the charmonium state — both are related and appear to be just dif-
ferent levels of approximation. As it turned out to be more suitable for the purpose of
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our fireball evolution model, we have used rate equations to discuss the fate of charmonia
immersed into a thermal partonic medium. Using a parametrization for the charmonium
dissociation cross section by quasiparticle gluons, we were able to use the fireball evolution
scenario from chapter 5 to characterize the distribution of gluons for all times and solve the
rate equations.

We found a good description of the data obtained by the NA50 collaboration by this sce-
nario alone, indicating that there is little dissociation of charmonia in the hadronic evolution
phase. In some sense, this finding complements the results of chapter 7, as charmonium
suppression is sensitive to the early phase of the medium evolution. The fact that both
dilepton data and charmonium data are described by the same evolution model makes cer-
tainly a strong case for the scenario described in the present work.

Naturally, not all interesting aspects and details of the field could be covered in this thesis.
In many cases, only the most relevant ideas for the purpose of the specific section could be
sketched whereas for further subtleties the reader is referred to the literature.

10.2 CONCLUSIONS

In search for the QGP, we started out with very general considerations, then turned to-
wards the experimental situation and constructed a model for the evolution of the produced
medium. We demonstrated that this simple model, based on an isentropic expansion of
matter in thermal equilibrium, is able to describe a wealth of data. Within the framework
of this model, the QGP phase is a necessary ingredient.

In the construction of the model, we have tried to minimize uncertain theoretical input by
using a subset of the measured data as a guideline and constraint for the construction of our
model. The framework is chosen as simple as possible within the information given by the
data. The resulting parametrization of the fireball evolution can then be taken as a basis,
containing essential features of the fireball evolution, on top of which additional ideas can
be implemented.

There is no justification for using a simplistic model such as ideal Bjorken hydrodynamics
without transverse expansion and longitudinal acceleration: Such a model has distinct dif-
ferences in its space-time evolution as compared to the evolution scenario in chapter 5 and
consequently fails in the description of both HBT data and transverse mass spectra, where
the transverse dynamics leaves characteristic imprints. Therefore, there is also no reason to
assume that the very same model should reproduce e.g. dilepton data; and even if it does
— what should then be the interpretation? Clearly, the setup has to be consistent with all
existing data. One cannot ignore a particular data set at liberty.

On the other hand, for many purposes it is unnecessary to choose a more complex model,
as observable quantities are unable to resolve details of the evolution. Take for example the
case of dilepton emission in the framework presented here and in a hydrodynamical evolu-
tion model: In local thermal equilibrium, the dilepton emission rate coming from a volume
element dV depends only on temperature and baryon density inside dV . In a hydrody-
namical evolution, the spatial distribution of temperature and density is not homogeneous,
i.e. the collection of volume elements at a given proper time τ is in general different in
both approaches. However, if one divides the hydrodynamical fireball into a collection of n
volume elements dVn containing each the entropy Sn = S0/n, one can imagine grouping
these volume elements not along sheets of constant proper time, but along sheets of constant
entropy density s0. The total volume

∑
n dVn(s = s0) obtained in this way will exactly

correspond to the volume in the simple fireball evolution characterized by the same entropy
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density (which in this case also corresponds to a given proper time τ ). Thus, reparametriz-
ing the hydrodynamical fireball in terms of an evolution in the entropy density s provides
a mapping into the simple approach. But global properties such as the freeze-out proper
time and volume and the initial volume have to be very similar in both hydrodynamics and
simple evolution model, as they are tightly constrained by experiment. This ensures that
although the emission rate at a given proper time may be different, the space-time integral
over the fireball evolution leads to very similar results.

For these reasons, we conclude that the simple fireball evolution model is indeed a valid
description for gross quantities such as integrated rates, but the detailed time dependence
of observables is in general not described adequately.

Keeping this in mind, let us now turn towards the results for the fireball evolution. Although
we have fitted the evolution model to hadronic data only, other observables are sensitive
to different phases of the evolution and therefore provide independently nontrivial cross-
checks for the model. This is indicated in Fig. 10.1.
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FIGURE 10.1: Temperature evolution of the fireball shown with the regions of interest for
selected observables.

As described in chapter 5, hadronic momentum spectra and HBT data carry primarily in-
formation about the freeze-out state. This information can be used to determine the fireball
volume and expansion velocity at freeze-out along with the corresponding temperature.
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The extrapolation of these parameters backwards in time through the hadronic phase is
probed by the dilepton emission rate. This quantity is sensitive to the space-time volume
of the fireball and the temperature evolution in this region.

Assuming statistical hadronization and subsequent chemical freeze-out, the phase transition
point is probed by the ratios of observed hadrons which depend on the fireball volume at
the critical temperature TC via the baryochemical potential µB . This volume in turn is
determined by the EoS of the QGP as given in the quasiparticle picture (see chapter 6).

For the study of the partonic evolution phase, the suppression of charmonia is an adequate
observable. This is because the number density of scattering partners for inelastic char-
monium dissociation is orders of magnitude larger in the QGP phase. Here, the total sup-
pression is sensitive to the space-time volume of the fireball and the associated temperature
evolution (see chapter 9).

Finally, as argued in chapter 8, the emission of real photons at large transverse momentum
kt is sensitive to the very early partonic phase and especially to the initial temperature, the
initial expansion and the equilibration time.

Thus, we find the whole evolution pattern from the early equilibration until kinetic freeze-
out confirmed by a number of different observables. In the light of this information, let us
now investigate the two main assumptions of the evolution model — thermalization and
isentropic expansion.

In section 4.4, we have seen that early thermalization can be achieved by perturbative pro-
cesses within timescales of a few fm/c. On the other hand, experimental data on elliptic
flow (section 5.2.4) indicates the presence of strong secondary interactions at timescales
of 2–3 fm/c. Similarly, the data on direct photon emission require the presence of strong
inelastic processes in the produced medium at timescales 0.5 fm/c < τ < 2 fm/c. This is
certainly no proof that the system is completely equilibrated at these early timescales al-
ready, but compelling evidence that the system is at least close to equilibrium. Note that the
assumption of early thermalization is well in line with the data on charmonium suppression,
which is also sensitive to the early evolution.

Regarding the conservation of total entropy, the most relevant observables are given by the
hadron ratios and the charmonium suppression. From the abundancies of hadronic spectra,
we find that the ensemble of particles observed in the final state can be well described by
resonance decays in an ensemble of hadrons in equilibrium at TC with the same entropy.
Therefore, there is no reason to assume strong entropy production in the hadronic phase.

Entropy production in the partonic phase would imply that the density of quarks and gluons
is lower than in the model discussed here. Such a scenario is clearly not in line with the
charmonium suppression data which require a sizeable density of scattering partners in
order to achieve the observed reduction in the yield. Therefore, we have good reason
to assume that entropy conservation is a useful concept for the description of the whole
evolution.

In summary, the analysis presented here finds that a pronounced QGP phase is already
present at SPS conditions. This phase leaves no unambiguous trace in any single observ-
able, however, the synopsis of all observables combined with information from lattice QCD
thermodynamics allows no other conclusion given the current experimental knowledge.

10.3 OUTLOOK

Naturally, there are many open questions left in the understanding of ultra-relativistic
heavy-ion collisions. Even in the model framework presented here, several issues require
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additional attention.

For collisions as realized at SPS energies, the model framework is most advanced due
to the tight constraints on the freeze-out state. This allows to use the evolution model
as a ’lab’ to study interesting questions, notably the changes of vector meson properties
in medium as manifest in the dilepton emission. Different shapes of the photon spectral
function have been predicted by various approaches (see e.g. [39, 40, 71, 178]). The use
of a ’standardized’ evolution model which is well supported by other observables allows
to study the differences in these approaches in comparison to data and hopefully allows to
identify the relevant physics of in-medium effects.

There are yet other observables which have not been discussed quantitatively in the present
work: Event by event fluctuations [36] of charge ratios (see section 4.5.2) can be calcu-
lated dynamically using the evolution model. As the beam energy increases (at RHIC and
even more pronounced at LHC), new diagnostic tools become available: High momen-
tum partons are produced in initial hard scattering processes (’jet events’). These particles
experience energy loss as they traverse the produced medium, which manifests itself in a
reduction of experimentally observed jets as compared to pQCD expectations (’jet quench-
ing’). Since the energy loss is dependent on the density of the medium, this effect is capable
of providing information on the early phases of the collision [179–185].

With more and more data coming from the ongoing measurements at RHIC, it will even-
tually become mandatory to improve the level of sophistication of the fireball evolution
model in order to stay consistent with experimental results. There are indications that for
RHIC conditions a longitudinal averaging procedure is not justified [98]; one should rather
introduce a more detailed dependence of the thermodynamic parameters on rapidity. Simi-
larly, in order to describe peripheral collisions, the transverse geometry has to be assessed
more carefully.

We have made considerable advances in understanding qualitative aspects of the relevant
physics and know the orders of magnitude involved in the physics of ultra-relativistic
heavy-ion collisions. However, as far as quantitative predictions are concerned, there is still
striking disagreement between different approaches of modelling a fireball. The wealth of
data currently produced at RHIC will certainly lead to new insights into QCD matter under
extreme conditions.

Πανθα ρει.
’Everything is in flow.’ (Heraklit)
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Appendix A

PROPERTIES OF QCD

In this appendix, we summarize the properties of Quantum Chromodynamics (QCD). QCD
is a non-Abelian gauge theory with the colour gauge group SU(NC) and NC = 3. There
are two types of degrees of freedom in the theory: Massless spin-1 gauge bosons, the
gluonsAaµ, characterized by a Lorentz vector index µ and a colour index a (a = 1..N 2

C−1)

which transform unter the adjoint representation of the group; and massive spin- 12 fermions,
the quarks Ψ, which transform under the fundamental representation and hence carry NC

different colour charges.

A.1 THE LAGRANGIAN

The dynamics of these degrees of freedom is governed by the Lagrangian

LQCD = Lq + LG = Ψ(iγµD
µ −m)Ψ− 1

4
GµνGµν . (A.1)

This expression involves the (gauge invariant) gluon field strength tensor

Gµν = (∂µA
a
ν − ∂νA

a
µ + gfabcAµ,bAν,c)ta (A.2)

and the quark part
Ψ(iγµD

µ −m)Ψ, (A.3)

which is coupled to the gluon field by the gauge covariant derivative

Dµ = ∂µ − igtaA
a
µ. (A.4)

In all these expressions, a runs from 1 to N 2
C − 1. ta denotes the generators of the SU(3)

gauge group which are related to the structure constant by [ta, tb] = ifabctc. They can be
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written in terms of the Gell-Mann matrixes as ta = λa/2. The parameter g denotes the
strong coupling constant. Commonly, αs ≡ g2/(4π) is defined.

Eq. (A.1) is invariant under local gauge transformationsG(x) described by SU(3) rotation
matrices in colour space, G(x) = exp[iωa(x)t

a]. Explicitly, the gauge transformations act
as

Ψ(x) → Ψ′(x) = G(x)Ψ(x), Ψ(x) → Ψ
′
(x) = Ψ(x)G†(x) (A.5)

and

Aµ(x) → A′
µ(x) = G(x)Aµ(x)G

†(x) − i

g
G(x)∂µG

†(x). (A.6)

There are Nf = 6 known flavours of quarks: up (u), down (d), strange (s), charm (c),
bottom (b) and top (t). Among them, there is a natural distinction between ’light’ and
’heavy’ quarks: One finds mu,md,ms = 4,7,150 MeV and mc,mb,mt = 1.5, 4.5, 170
GeV. Thus, as far as thermodynamic properties of hot QCD are concerned, it is justified to
neglect the influence of the heavy flavours for temperatures reached in current experiments
of the order of a few hundred MeV. Thus, thermal QCD is effectively an Nf = 3 theory,
where there still remains a distinction between the almost massless u and d quarks and the
s quark with a mass comparable to the temperature. In this limit, we find

Ψ(x) =




uα(x)
dα(x)
sα(x)


 (A.7)

with α = 1...3 the colour index and the mass matrix m becomes

m =




mu

md

ms


 . (A.8)

QCD is a renormalizable quantum field theory, hence its bare parameters, the coupling g
and the masses mq depend on the energy scale. at which the theory is probed. Observable
quantities however can not depend on the choice of a renormalization scale µ. This require-
ment leads to the renormalization group equations. For the coupling αs(µ), this equation
reads (in NNLO):

µ
d

dµ
αs(µ) = β(αs) = − β0

6π
α2
s −

β1
24π2

α3
s −O(α4

s), (A.9)

where

β0 = 11NC − 2Nf and β1 = 34N2
C −

(
10NC +

3

NC
(N2

C − 1)

)
Nf . (A.10)

Its solution, the running of αs with the scale µ displays asymptotic freedom, i.e. the cou-
pling constant gets arbitrary small for very high energy scales and the degrees of freedom
become quasifree. One finds

αs(µ) =
12π

β0 log(µ2/Λ2
QCD)

−
36πβ1 log(log(µ

2/Λ2
QCD))

β3
0 log

2(µ2/Λ2
QCD)

+O

(
log2(logµ)

log3 µ

)
. (A.11)

SinceNf < 16, this expression leads indeed to a decreasing coupling for large scales µ. We
have introduced the fundamental scale of QCD, ΛQCD ' 0.2− 0.3 GeV. Experimentally,
one finds e.g. αs(mτ = 1.77 GeV) = 0.35, which makes a perturbative expansion of the
QCD dynamics in terms of diagrams meaningful.
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On the other hand, Eq. (A.11) has a Landau pole in the infrared. Therefore, the coupling
becomes large and a perturbative expansion in terms of quarks and gluons as degrees of
freedom is no longer feasible. In nature, colourless bound states of quarks and gluons are
observed at low energies. These are called hadrons. They appear in two species, corre-
sponding to two different ways of forming colour singlet objects: qq states (mesons) and
qqq (qqq) states (baryons).

The requirement that quarks at low energies have to be part of a bound colourless state
has been called ’colour confinement’. This property has significant impact on the ground
state of the theory: The empty Fock space cannot be the ground state, as otherwise it
would be possible to excite a single quark as asymptotic state. This hints to the presence of
condensates in the QCD vacuum.

A.2 SYMMETRIES AND CONDENSATES

The behaviour of the theory at low energies is mostly governed by the symmetries of the
QCD Lagrangian and its symmetry breaking pattern with the associated condensates.

In the chiral limit, mq → 0, the symmetries of the classical QCD Lagrangian, apart from
Poincaré invariance, are given by

S[LQCD ]cl = SU(3)c ⊗ SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)V ⊗ U(1)A ⊗ C. (A.12)

The local gauge symmetry SU(3)c determines the dynamics of the gluon and quark fields.
The global U(1)V symmetry is responsible for baryon number conservation, whereas the
global U(1)A symmetry is broken in the quantized theory due to the presence of the axial
anomaly.

In the chiral limit, QCD is characterized by a single dimensionless coupling parameter g.
Therefore, the QCD action Scl =

∫
d4xLQCD is invariant under global scale transforma-

tions:
xµ → λ−1xµ, Aaµ → Aaµ(λx), Ψ → λ

3
2Ψ(λx). (A.13)

Following the Noether theorem, there is a conserved quantity associated with the scale
transformation invariance, the dilatation current

jµD = xνT
µν , ∂µj

µ
D = T µµ = 0, (A.14)

with T µν the energy-momentum tensor. At the quantum level, however, this symmetry is
broken due to the appearance of the scale ΛQCD. Hence the divergence of the dilatation
current does not vanish any more but becomes

∂µj
µ
D =

β(αs)

4αs
GaµνGµνa ' −β0

24
G2. (A.15)

The last expression follows from the leading order β-function. There is a scalar vacuum
expectation value associated with the broken scale invariance, the gluon condensate

〈G2〉 ≡ 〈0|G2|0〉 ' (1.5± 0.5)GeV/fm3. (A.16)

In the limit of vanishing quark masses, the different flavours become indistinguishable and
LQCD is invariant under global vector and axialvector rotations in SU(3) flavour space,

Ψ′ → exp[iaiλ
i/2]Ψ and Ψ′ → exp[iγ5aiλ

i/2]Ψ. (A.17)
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Decomposing the quark field into left- and right-handed chirality components ΨR,L =
1
2 (1 ± γ5)Ψ, we find the SU(3)l⊗ SU(3)R chiral symmetry. The conserved vector and
axial vector currents are

jµV,i = Ψγµ
λi
2
Ψ and jµA,i = Ψγµγ5

λi
2
Ψ. (A.18)

In nature, however, only the vector current appears to be conserved, This is evident from
the fact that the masses in the pseudoscalar meson octet differ considerably from those of
the scalar meson octet, the same is true for the vector and axialvector octet. One finds e.g.
the ρ mass as 770 MeV, whereas the mass of its axial partner, the a1, is 1260 MeV.

Thus, SU(3)L ⊗ SU(3)R is spontaneously broken down to SU(3)V in nature. Therefore,
axial symmetry generators do not annihilate the ground state, exp[iγ5aiλi/2]|0〉 6= |0〉; the
symmetry is present in the Nambu-Goldstone realization.

As each spontaneously broken global symmetry implies the existence of a Goldstone boson,
we expect to find those in the particle multiplets with masses lower than the typical hadronic
scale of 1 GeV. Indeed, the π and η acquire their masses of 140-500 MeV only due to
the explicit symmetry breaking by the finite quark masses. Another consequence of the
Goldstone theorem is that there is a non-vanishing axial current matrix element between
the vacuum and a Goldstone boson,

〈0|jµA,i|πj(p)〉 = ipµδijfπe
−ipx. (A.19)

Here, the index i runs through the SU(2) subgroup, πi denotes the pion field and fπ is the
pion decay constant with fπ = 92.4 MeV.

For chiral symmetry and its spontaneous breaking, the scalar quark condensate 〈qq〉 acts
as an order parameter — it can be interpreted as quark-antiquark pair condensation in the
ground state of QCD. It is defined by the short distance limit of the full quark propagator,

〈qq〉 = − lim
y→x+

Tr〈0|T [q(x)q(y)|0〉. (A.20)

Here, T [. . . ] indicates time ordering. Using the Wick theorem, one can write

T [q(x)q̄(y)] =: q(x)q̄(y) : + ̂q(x)q̄(y), (A.21)

where : · · · : is the normal-ordering and .̂ . . the contraction of two field operators. As
y → x, the perturbative propagator encodes the ultra-violet physics and the normal ordered
terms in Eq. (A.21) vanish in perturbation theory. Hence, a non-vanishing 〈qq〉 stems from
long-range, non-perturbative physics.

The condensate can be related to the observable quantity fπ via the Gell-Mann, Oakes,
Renner (GOR) relation [186]

m2
πf

2
π = −1

2
(mu +md)〈uu+ dd〉+O(m2

u,d). (A.22)

Inserting the quark masses, mu = 5 MeV and md = 7 MeV yields values of 〈uu〉 =
〈dd〉 ' −(250MeV)3.



Appendix B

BOTTOM-UP THERMALIZATION

As the ’Bottom-up’ thermalization scenario provides an interesting link between the soft,
thermal scales of fireball physics and the hard initial collision scales, this appendix serves
to explore it in somewhat greater detail than in the main text.

B.1 PARTON SATURATION

It is known for a long time that the gluon distribution in the nucleon grows, if smaller and
smaller fractions of the nucleon light cone momentum x are probed. This can be intuitively
understood as follows: If one probes the nucleon with larger momentum, one also increases
the resolution on its substructure. At low resolution, a gluon emitting another gluon and
recombining again is seen as just one gluon, but as resolution increases, the same process
appears as two gluons carrying both a fraction of the original gluons momentum. As gluons
transform under the color adjoint representation, the splitting processes carry large color
factors and are enhanced as compared to processes involving quarks. Therefore, a low x
the dynamics of the system is almost exclusively dominated by gluons, as apparent from
the growth of the gluon structure function [187].

However, this behaviour cannot persist to arbitrarily small x. If the gluon density is large
enough, recombination processes must come into play, which stop the growth of the dis-
tribution function [188]. The gluons condense into a classical field with large occupation
numbers O(1/α) for each state, the ’color-glass condensate’ [23–28]. Cross sections pro-
vide an alternative view onto the problem: As cross sections scale with the parton distribu-
tion functions, an ever-increasing gluon distribution would violate the bounds enforced by
unitarity [23, 189].

In p-p collisions, this saturation domain lies at very low x and may just be accessible in
present experiments. The situation is, however, different in heavy-ion experiments. Here,
the gluon distribution of several hundred nucleons overlap, which practically leads to the
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possibility of reaching the saturation density much earlier. This has been explored in detail
in the saturation model of McLerran and Venugopalan [25].

In this model, the initial state is described as follows: In the center of mass frames, both
incoming ions appear as Lorentz contracted discs of size ∆z = 2 ·R0 · mp , where R0 is the
uncontracted radius, m the nucleon mass and p the momentum per nucleon. For very high
beam energies, ∆z = 0 becomes a good approximation and the nucleus can effectively be
seen as a flat disc with a two dimensional density of valence quarks nq(b).

This valence quark density is the source of soft gluons. The color charge at a given impact
parameter therefore follows from a random addition of the color charges of the individual
quarks, as long as saturation has not yet set in. A single quark yields αCF

π lnQ2/µ2 at
scale Q2 and per unit rapidity, so the gluon distribution outside the saturation region in the
nucleus is

dxGA(x, l
2)

d2bd2l⊥
= nq(b)

αCF
π2l2⊥

. (B.1)

Inside the saturation region, the expression becomes

dxGA(x, l
2)

d2bd2l⊥
=

N2
C − 1

4π3αNC
lnQ2

S/l
2
⊥, (B.2)

which is valid for l2⊥ � Q2
S and where Q2

S is given by

Q2
S =

8π2αNC
N2
C − 1

√
R2 − b2ρ0xG(x) (B.3)

In order for the whole approach to give a meaningful perturbative description of the initial
state of a heavy-ion collision, QS must be a perturbative scale. For RHIC, Eq. (B.3) yields
1 GeV, whereas for LHC one finds ∼ 2− 3 GeV. Therefore, for RHIC conditions, the ap-
proach may lead only to a rough estimate, whereas at LHC a more appropriate description
is given.

B.2 SHATTERING THE COLOR-GLASS

CONDENSATE

At the time of the collision, gluons in the nucleus wavefunction are distributed according
to Eqs. (B.1) and (B.2). For l2⊥ � Q2

S , the expression is constant (up to a logarithm) and
so the gluon density is given by phase space, so only very few gluons in the wave function
fulfill l2⊥ � Q2

S and so they are unimportant for the collision dynamics.

Thus the two gluon (jet) production cross section can be written as

dσ

dy1dy2d2l⊥d2b
=

∫
d2b1d

2b2δ(b1 − b2 − b)
dσ

dt

dx1GA(x1, l
2)

d2b1

dx2GA(x2, l
2)

d2b2
(B.4)

where xGA is given by Eq. (B.1). As the cross section dσ
dt scales like l−4

⊥ , contributions
to particle production are drastically enhanced by lowering l⊥. However, lowering l⊥ in
Eq. (B.1) is bounded by QS where its validity breaks down and the above arguments about
the saturated region take over. Therefore, the dominant region for particle production is
where gluons have transverse momentum of order QS . At a time of order 1/QS, these
gluons are freed from the nuclear wave function.
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B.3 CREATION OF SOFT GLUONS

As shown in the previous section, the gluons freed from the nuclear wave function have
typical momenta of order QS and occupation number 1/α. These gluons will be called
’hard’ in the following. Initially, the system expands linearly in τ along the z-axis at high
energies, which implies that the density of hard gluons drops in time,

nH ∼ Q3
S

α(QSτ)
(B.5)

In absence of any interaction, the occupation number would remain, however, small angle
elastic scattering is always present and lowers the occupation number fH = nH/(Q

2
Spz).

The lowest possible momentum exchange is given by the Debye mass

m2
D ∼ α

∫
d3p

fh(p)

p
∼ αnh

QS
∼ Q2

S

QSτ
, (B.6)

all lower momenta probe large distances and are screened. If mD � pz, most collisions
do not take particles away from the region where the occupation number is large. The
frequency of collisions encountered by a particle is then enhanced by a Bose factor (1+fH),
namely

dNcol
dτ

∼ σnH (1 + fH) ∼
αnH
m2
Dpzτ

(B.7)

for large occupation numbers. The increase in the longitudinal momentum is then

p2z ∼ Ncolm
2
D ∼ αnH

pz
implying pz ∼ (αnH )1/3 ∼ QS

(QSτ)1/3
. (B.8)

Inserting this for pz, the typical occupation number fH = nH/(Q
2
Spz) is large until

QSτ ∼ α−3/2. Additionally, inelastic scatterings produce additional soft gluons within
a momentum range down to mD. However, as these soft gluons continue to interact with
the hard ones, their momentum is raised and the smallest momentum for soft gluons is of
order ks ∼ pz. Their number can be estimated using the Bethe-Heitler formula as

ns ∼ τ
∂ns
∂τ

∼ τ

∫
d3pf(p)

dIBH

dt
(1+fH)

2 ∼ τ
α3

m2
D

n2
H(1+fH)

2 ∼ Q3
S

α(QSτ)4/3
(B.9)

B.4 SOFT GLUONS TAKE OVER

Once QSτ > α−3/2, the occupation number ceases to be large and the collision rate
Eq. (B.7) ceases to be dominated by the Bose factor. The typical momentum of soft gluons
becomes now

k2S ∼ Ncolm
2
D ∼ τσnHm

2
D ∼ αQ2

S (B.10)

which now is a constant. The number of soft gluons becomes

nS ∼ τ
α3

m2
D

n2
H ∼ αQ4

S

m2
Dτ

(B.11)

The contribution to the debye mass (Eq. (B.6)) from hard and soft gluons is determined by
m2
D ∼ αnH

QS
+ αnS

kS
. Assuming that the Debye mass is now dominated by contributions of

soft gluons, which will be verified a posteriori, we can calculate nS and find

nS ∼ α1/4Q3
S

(QSτ)1/4
and mD ∼ α3/8QS

(QSτ)1/4
. (B.12)

One indeed finds nS/kS � nH/QS for QSτ � α−3/2. The density of soft gluons, nS is,
however, still smaller than the density of hard gluons until QSτ � α−5/2.
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B.5 THERMALIZED SOFT SECTOR

After timescales QSτ � α−5/2, most of the gluons in the system are soft. As the coupling
between soft gluons is not governed by the hard scale any more, they quickly achieve
thermalization among themselves. The whole system is still not in equilibrium, as most of
the energy is still carried by a small fraction of hard gluons with momentumQS .

These hard gluons can, however, transfer their energy to the heat bath of the soft gluons.
This can happen the following way: A hard gluon emits one with a softer momentum kb
during the timescale τ , which successively splits into two gluons with comparable momen-
tum. The emitted softer gluons then quickly cascade further down in momentum and feed
energy into the heat bath.

What is a likely value for kb? The time for its emission is of order τ , and this time can be
related to the thermalization time of the same gluon, which is a soft process and therefore
one power down in α; ατ ∼ τth, where τth is the time needed for the gluon to be absorbed
into the heat bath. This time is approximately given by τth ∼ kb/k

2
t , where kt denotes

the transverse momentum of the gluon after the time τth and can be estimated as kt ∼
m2
DτthnSσ. Using σ ∼ α2/m2

D, one finds

1

τ
∼ α2n

1/2
s

k
1/2
b

. (B.13)

The soft gluons in the heat baths are presumably thermalized, so a temperature for the
soft part can be defined and one can use nS ∼ T 3 with the temperature T . Therefore
kb ∼ α4T 3τ2, with an unknown time dependence of T . The rate, at which gluons with
momentum kb are emitted is

dN(kb)

dτ
∼ nH

τb
∼ α2n

1/2
S nH

k
1/2
b

∼ Q2
S

ατ2
, (B.14)

so the energy flow from the hard gluons to the soft thermal bath is

kb
dN(kb)

dτ
∼ α3Q2

ST
3. (B.15)

As this energy flow increases the energy of the heat bath, which goes like T 4, one finds

T ∼ α3Q2
Sτ. (B.16)

Surprisingly, the temperature of the soft sector increases linearly as the system expands,
so hard gluons continuously transfer energy into the soft sector, counterbalancing the tem-
perature decrease due to the volume expansion. This phase terminates as soon as the hard
gluons have lost all their energy, which happens when kB ∼ QS or QSτ ∼ α−13/5. The
temperature achieves a maximal value of order α2/5QS . After this, the system is in com-
plete thermal equilibrium and the temperature decreases, as the volume expands further.

Some of the rough estimates of the previous section have been worked out in greater detail
within the framework of Boltzmann equations in [22], where it is found that the parametri-
cal estimates remain in principle valid.



Appendix C

THE DILEPTON RATE FROM A HOT

SOURCE

In this appendix, we give a derivation of Eq. (7.1) which is the master formula for the
calculation of dilepton emission out of the fireball.

Consider a system of strongly interacting matter at a given temperature T . For typical
fireballs created in heavy-ion collisions, the mean free path of particles with only electro-
magnetic interactions exceeds the dimensions of the system by far (see chapter 5). This
is due to the smallness of the electromagnetic coupling αem as compared to the strong
coupling α. Thus it is justified to neglect any final state interaction of photons and leptons
being radiated from the medium and consider free propagation of those particles only. Fur-
thermore, given the overall uncertainties regarding the properties of the producing medium,
a calculation of the electromagnetic part of the emission process to order αem appears suf-
ficient. This corresponds to a process where a virtual photon is emitted from the medium
and subsequently decays into a lepton pair.

The transition rate for the emission rate R of a lepton pair per unit volume of spacetime is
calculated using Fermi’s golden rule. We integrate the possible transition probabilities over
the momenta p1 and p2 of the produced leptons,

dR

d4x
=

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

d4q

(2π)4
δ4(q − p1 − p2)

∑

f,i,spin

|Sfi(p1, p2, q)|2, (C.1)

and differentiate the result with respect to the virtual photon four momentum q.

We have

Sfi = us(p1)(−ieγν)vr(p2)
−igµν
q2 + iε

· e
∫
d4xeiqx〈f |jµ(x)|i〉. (C.2)

Here, jµ denotes the electromagnetic current carried by the strongly interacting particles of
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the medium,
jµ(x) = qfψ(x)γµψ(x), (C.3)

and eqf being the charge of particles associated with the current jµ. The squared matrix
element reads

|Sfi(p1, p2, q)|2 =
e4

q4
(us(p1)γ

µvr(p2)) (v
r(p2)γ

νus(p1))

×
∫
d4xeiqx〈f |jµ(x)i|〉

∫
d4x′e−iqx

′〈i|jν(x′)|f〉
(C.4)

In a homogeneous medium, we can exploit translation invariance to write

〈i|jν(x′)|f〉 = exp[i(pf − pi)x
′]〈i|jν(0)f〉. (C.5)

Here, pf and pi denote the momenta of final and initial state. The x′ integration can be
carried out to yield a momentum-conserving delta function for the process where a photon
with momentum q is emitted in the transition from |i〉 to |f〉. Thus we are left with

|Sfi(p1, p2, q)|2 =
e4

q4
(us(p1)γ

µvr(p2)) (v
r(p2)γ

νus(p1))

×(2π)4δ4(pi − pf − q)

∫
d4xeiqx〈i|jν(0)|f〉〈f |jµ(x)|i〉.

(C.6)

In order to find the total thermal emission rate, we have to sum over the lepton spins s
and r and average over the initial states and momenta with a Boltzmann weight factor
Z(T )−1 exp(−βEn). In this expression, Z(T ) stands for the partition function of the
system, β = 1/T and En is the energy of the state n. Additionally, we sum over the
final states and momenta using

∑
f |f〉〈f | = 1. The delta function ensures energy and

momentum conservation for the emission process. We find

|Stot|2 =
∑

s,r,f,i

1

Z e
−βEi |Sfi(p1, p2, q)|2. (C.7)

The summation over the lepton spins yields the usual leptonic tensor

lµν(p1, p2) = 4(pµ1p
ν
2 + pµ2p

ν
1 − gµν [p1 · p2 +m2

l ]), (C.8)

where ml is the lepton mass. We identify the remaining hadronic part with the retarded
current-current correlation function Π<µν(q),

∫
d4xeiqx

1

Z
∑

i

〈i|e−βEijµ(0)jν(x)|i〉 = −iΠ<µν(q). (C.9)

The correlation function Πµν(q) can be related to the one-particle irreducible photon self-
energy Πsµν(q). To order αem, Πsµν = Πµν , therefore we can make use of relations for
thermal self-energies in the following.

In the vacuum, Lorentz invariance and the Ward identity lead to a transverse structure of
the self-energy: Πsµν(q) = (gµν − qµqν/q

2)Π
s
(q). This is no longer true at finite temper-

ature, as the presence of the heat bath explicitly breaks Lorentz invariance by introducing
a preferred frame of reference characterized by uµ, is four-velocity. For calculations in
the rest frame of the heat bath, uµ = (1,0). Thus, in general the self energy acquires an
additional longitudinal component and its tensor structure can be decomposed as

Πsµν(q) = −P Tµν(q, u)Π
s

T (q, u)− PLµν(q, u)Π
s

L(q, u) (C.10)
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Factors q0 in the distribution functions generalize to ω = qµu
µ and the magnitude of the

three-momentum (which is |q| in the rest frame of the heat bath) becomes q =
√
ω2 − q2.

The transverse and longitudinal projection tensors read

P Tµν = gµν −
qµqν
q2

+
q2

q2
(uµ − ωqµ/q

2)(uν − ωqν/q
2) (C.11)

and

PLµν = −q
2

q2
(uµ − ωqµ/q

2)(uν − ωqν/q
2). (C.12)

The scalar invariant Π
s
(q2), which in the vacuum was Π

s
(q2) = 1/3Πµµ(q) similarly

breaks into a transverse and longitudinal part, which are given by

Π
s

T (q, u) =
1

2

(
Πµµ +

q2

q2
uµuνΠsµν

)
(C.13)

and

Π
s

L(q, u) = −q
2

q2
uµuνΠsµν . (C.14)

In the real time formalism of thermal field theory, the self energy acquires a 2 × 2 matrix
structure [2] (see also chapter 2. This ensures that unphysical singularities from products
of delta functions cancel. In the Keldysh-Schwinger prescription, the retarded self-energy
Π<s (q) is given by an off-diagonal element of the self-energy matrix,

Π<s = Π(12)
s (C.15)

This expression can be related to the physical self-energy Π which modifies the bare prop-
agators by

Π(12)
s (q) = Π<s (q) = −2iε(q0)fB(q0)ImΠ(q). (C.16)

Here, ε(x) = sgn(x). Keeping in mind that the thermal self-energy has a transverse and a
longitudinal part, we replace

Π<s (q) = −2iε(q0)fB(q0)(P
T
µν ImΠT (q) + PLµν ImΠL(q)) (C.17)

The basic structure of Eq. (C.1) reads

dR

d4xd4q
=

e4

(2π)4q4
· Lµν(q)(−iΠ<µν(q)), (C.18)

with

Lµν(q) =(2π)4
∫

d3p1
(2π32E1

d3p2
(2π32E2

δ4(p1 + p2 − q) · lµν(p1, p2, q)

=
1

6π
(qµqν − q2gµν)

(
1 +

2m2
l

q2

)(
1− 4m2

l

q2

)1/2

.

(C.19)

If one is interested in electron emission, the mass terms in the last expression can be safely
neglected as me � T . Inserting Eq. (C.17) into Eq. (C.18) and gathering constants we find

dR

d4xd4q
= − α2

3π3q2
· 1

eβq0 − 1

(
qµqν

q2
− gµν

)(
P Tµν ImΠT (q) + PLµν ImΠL(q)

)
(C.20)
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Contracting the Lorentz indices, this becomes

dR

d4xd4q
=− α2

3π3q2
· 1

eβq0 − 1

2ImΠT (q) + ImΠL(q)

3

=− α2

3π3q2
· 1

eβq0 − 1
ImΠ

µ

µ(q
0,q),

(C.21)

which exactly corresponds to Eq. (7.1) used in chapter 7 to calculate dilepton yields from
a fireball.
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[89] H. Appelshäuser et al. (NA49 Collaboration), Phys. Lett. B 444 (1998) 523.

[90] F. Gabler (NA49 Collaboration), J. Phys. G 25 (1999) 199.

[91] S. Margetis (NA49 Collaboration), J. Phys. G 25 (1999) 189.

[92] D. Jouan (NA50 Collaboration), Nucl. Phys. A 638 (1998) 483c,
A. de Falco (NA50 Collaboration), Nucl. Phys. A 638 (1998) 487c.
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