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Summary

The renormalization group running of a seesaw mass matrix for the neutrinos
in the Standard Model, a class of Two Higgs Models and in the Minimal Super-
symmetric Standard Model is studied. A formalism for calculating S-functions
for tensorial quantities in MS-like renormalizations schemes is presented. The
corresponding Renormalization Group Equations for all three models are de-
rived. Moreover, a general method of checking S-functions of effective theories
is presented and applied in an example. Furthermore, a “construction kit” for
computing [-functions of renormalizable and non-renormalizable operators in
general N =1 supersymmetric theories is derived. Finally, the effects of non-
degenerate see-saw scales on the renormalization group evolution of mixing
angles are investigated.

Zusammenfassung

Es wird das Renormierungsgruppen-Laufen einer Seesaw-Massenmatrix fiir die
Neutrinos im Standardmodell, in einer Klasse von Zwei-Higgs-Modellen und
in der minimalen supersymmetrischen Erweiterung des Standardmodells unter-
sucht. Ein Formalismus fiir die Berechnung von S-Funktionen fiir tensorielle
Groflen in MS-artigen Renormierungsschemata wird prisentiert. Die Renormierungsgruppen-
Gleichungen fiir alle drei oben genannten Modelle werden hergeleitet. Dariiber-
hinaus wird eine allgemeine Methode zur Uberpriifung von S-Funktionen von
effektiven Operatoren dargestellt und in einem Beispiel verwendet. Ausserdem
wird ein “Baukasten-System” zur Berechnung von S-Funktionen fiir renormier-
bare und nicht-renormierbare Operatoren in allgemeinen N = 1 supersym-
metrischen Theorien hergeleitet. Abschliessend werden die Effekte von nicht
entarteten Seesaw-Skalen auf das Verhalten von Mischungswinkeln unter der
Renormierungsgruppe untersucht.
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1 Introduction

1.1 Motivation

The Standard Model (SM) yields an adequate and extremely precise description of high
energy phenomena. Nevertheless, there are strong hints both from theory and experiment
that it cannot be the ultimate theory. The measurements of atmospheric neutrinos per-
formed by the Super-Kamiokande collaboration [1] have given clear indications of neutrino
oscillations, and thus evidence for physics beyond the SM. Moreover, solar neutrino mea-
surements strongly point towards neutrino oscillations, even on astrophysical scales. The
recently published data of the Sudbury Neutrino Observatory [2,3] favors the Large Mix-
ing Angle solution of the solar neutrino problem. From the theorist’s point of view the
SM suffers from some severe problems. It is certain that the SM is not the whole story
since gravity is not incorporated. Consequently, one has to assume that the SM is only an
effective theory which emerges from some underlying theory.

Therefore, the aim of many theorists is to elaborate a unified theory which reduces the
unsatisfactory large number of SM parameters and which then can be regarded as (more)
fundamental. Usually a typical energy scale, call it A, is associated with such a theory, i.e.
its predictions are expected to hold at this scale. Due to quantum effects, those predic-
tions are altered if they are translated to an energy scale at which measurements can be
made. This translation can be accomplished by solving the corresponding Renormalization
Group Equations (RGE’s), or, in other words, by running the predictions down to a lower
scale. The gauge coupling evolution provides an impressive example of running quantities.
In this respect, the Minimal Supersymmetric extension of the SM (MSSM) is especially
interesting since it allows for gauge coupling unification without adding different repre-
sentations or gauge groups to the model [4-6], thus leading to a so-called Grand Unified
Theory (GUT). In this example, the unification scale is Mgyt = €(10'® GeV), which is
on the one hand much larger than the electroweak scale, Mgrw = €/(10%> GeV), but on the
other hand significantly smaller than the scale &(10'® GeV), at which gravity is expected
to become important.

Moreover, from an underlying theory typically higher-dimensional, effective operators
arise which are suppressed by some inverse powers of A. These operators are fixed at A
and have to be run down to some lower scale, which is usually the electroweak scale or
below, in order to be compared with the experiment. Although these operators are non-
renormalizable by power-counting, their RGE’s can be calculated in the Effective Field
Theory (EFT) approach in which an expansion in inverse powers of A is performed. It turns
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out that the observed neutrino masses may well be described by an effective operator, the
more so since the relative smallness of neutrino masses may find an attractive explanation
in the see-saw mechanism [7,8]. Since there exist three generations of fundamental SM
fermions, their mass parameters consist besides the mass eigenvalues of mixing angles and
CP phases. It is quite remarkable that in the lepton sector one or more of the mixing angles
are found to be large [9] whereas the corresponding quantities in the quark sector turn out
to be small. Since in many unified models quark and lepton mixing have a common origin,
it is interesting to study whether this discrepancy can be explained by a different RGE
evolution of the corresponding mixing angles. It has to be stressed that studying the RGE’s
of the parameters is not an option but must be performed in any approach to elaborate a
unified theory.

1.2 Goals of this Study

In this thesis, we will therefore address the question of calculating RGE’s. In particular,
we will concentrate on the derivation of S-functions for effective operators. Since neutrino
masses and mixings are of great current interest, we will compute the S-functions for the
effective neutrino mass operator in the SM and in its two most prominent extensions, the
Two Higgs Doublet Models (2HDM’s) and the MSSM. In the SM and the 2HDM’s, these
[-functions existed in the literature but were not correct. The correct S-functions were re-
derived in collaboration with S. Antusch, M. Drees, J. Kersten and M. Lindner [10,11]. In
this thesis, some unpublished details of calculation and formulae as well as a new method
of checking [-functions of arbitrary effective theories are presented.

In the MSSM, the S-functions were only known at one-loop, and the two-loop S-function
was computed in collaboration with S. Antusch [12]. While usually the calculations were
performed in the component field approach, in which the non-renormalization theorem is
not manifest, the two-loop result is obtained by using supergraphs. With this method,
calculations are simplified considerably since due to the non-renormalization theorem only
the wavefunction renormalization constants have to be taken into account for operators of
the superpotential. Although the theorem was known to be applicable to renormalizable
operators quite for a while, the fact that it holds for non-renormalizable operators as well
was not clear until 1998 [13]. Therefore, the method of calculating S-functions for higher-
dimensional operators with the supergraph method represents significant simplification of
existing techniques for calculation. The relevant formalism will be presented in great detail.

Furthermore, the effects of non-degenerate see-saw scales on the evolution of mass pa-
rameters were discussed in collaboration with S. Antusch, J. Kersten and M. Lindner in
[14]. The case where the SM and the MSSM are extended by an arbitrary number of heavy
singlets which have explicit (Majorana) masses with a non-degenerate spectrum is consid-
ered and extended to the 2HDM’s in this study. The RGE’s that govern the evolution
of the neutrino mass matrix in the effective theories arising between the mass thresholds
are calculated. In particular, the evolution of the mixing angle is investigated in a 2 x 2
example in order to illustrate the differences in the evolution compared to a treatment
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where all heavy degrees of freedom are integrated out at a common scale.

1.3 Outline

This thesis is organized as follows: After a short review' of some basic concepts of renor-
malization, a general formalism is derived which allows for computing the g-functions for
tensorial quantities in MS-like renormalization schemes directly from the counterterms,
even if additive renormalization is imposed. The third chapter deals with the idea of effec-
tive theories. The procedure of integrating out heavy degrees of freedom is exemplified in
a simple extension of the SM, and this way the lowest-dimensional, effective neutrino mass
operator compatible with the gauge symmetries of the SM is introduced. In the fourth
chapter, the renormalization of this operator in the SM is addressed. Besides a short
review of the calculation of the corresponding [-function, a general method of checking
[B-functions for arbitrary effective operators is presented. This method is applied to verify
the coefficients of the result mentioned before. Chapter five is dedicated to the calcula-
tion of neutrino mass operator RGE’s in extensions of the SM. The [S-functions for these
operators in a class of 2HDM’s is derived in great detail. Chapter six concerns with the
calculation of RGE’s in supersymmetric theories. A general construction kit is presented
which allows for computing two-loop [S-functions of arbitrary, in particular even higher-
dimensional operators of the superpotential with only little effort. All S-functions for the
couplings of the MSSM extended by singlet “neutrino” superfields are explicitly specified.
Moreover, the formulae given in this chapter make it trivial to determine S-functions for
any superpotential operator in the MSSM or the extension mentioned before. In chapter
seven, the solutions of the RGE’s are analyzed analytically and numerically, and the effect
of multiple, non-degenerate mass thresholds is briefly discussed within the effective theories
described before in an example with two generations. In the final chapter, conclusions are
drawn and a short outlook concerning possible applications of this study is given.

1

'In this thesis, there appear some sections which are quite introductory. The intention of those parts is
to fix the notation and conventions used in this study.
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2 Renormalization

First we review some elementary formulae which are used througout this thesis, thus fixing
the notation. At the end of this chapter, a general method for calculating S-functions from
counterterms is derived.

2.1 Greens and Vertex Functions

2.1.1 Generating Functional

Consider a quantum field theory of some field ¢, described by a Lagrangian .2 (¢, 0,¢).
As usual, the generating functional is introduced by

2 = N /m exp {i/d4x$(<p, Do) + Jgo} | (2.1-1)

From this, one can calculate the Greens functions

GN($1, .. ..TN) = <—|T{(P(x1) . "Qo(l'N)}|—> 4] Z[J]

T 0J(x1) 10 (xn) |,y
where T' denotes the time-ordering operator and |—) the vacuum of the theory. Here and
throughout this thesis, operators are written boldface. Using perturbation theory, the

Greens functions can be represented by Feynman diagrams. The Feynman rules depend
on the specific shape of the Lagrangian.

(2.1-2)

2.1.2 Generating Functional for Connected Diagrams

It is useful to distinguish between Greens functions corresponding to topologically con-
nected diagrams and Greens functions corresponding to disconnected diagrams. Examples
are depicted in figures 2.1(a) and 2.1(b). One can show that the functional W/[.J], defined
by

Z[J] = exp {iW[J]} , (2.1-3)

generates only connected N-point functions [15], i.e. the connected N-point functions are

calculated by
) SNWIT
%N(xl,...xN) = (—I)N [ ]

6J(x1)---0J(zy)

(2.1-4)
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2.1.3 Generating Functional for OPI diagrams

Consider a diagram whose legs are amputated. Such a diagram is called reducible if it
can be divided into two subdiagrams by cutting one inner line. Otherwise we speak of
One Particle Irreducible (OPI) diagrams. Similarly to the connected diagrams, the
OPI diagrams can be generated by a functional as well. However, for the definition of this
functional we will need some preliminary considerations.

n o Lo

(c) (d)

(a) (b)

Figure 2.1: Diagram (a) is connected, diagram (b) is not, diagram (c) is OPI while diagram (d) is not
since it can be subdivided into two diagrams by cutting the line marked by the scissors.

We define
@c(w) := ?;V([x'])] (2.1-5)
as the classical field. The Legendre transform of W w.r.t. ¢,
e = WU = [dsJ@eo). (2.1-6)
is called effective action. As vertex function we define
Tn(z1,...ax) = (—i)Y 0Tl (2.1-7)

0pe(w1) -+ - dpe(n) ‘

Up to factors of i, these correspond to the OPI diagrams, or, more precisely, the effective
action is the generating functional for the OPI vertex functions.
Equation (2.1-7) can be inverted,

o0 -N
Pl = Z#/d%l ---/d4xN (@, o) elz1) - oelan) (2.1-8)
N=1"""
Furthermore, I'y(x, y) and %(x,y) are inverse to each other,
. O*WLJ] T[]
d*y Gy(x,y) T ,Z:—l/d4 -
[ dusita oo V57 07(5) 5pulu) 0e(2)
. 0pe(z) 0J(y) _ .
i dty =2 =i6W(x —2) . 2.1-9
[ 19T oy == 219
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Further differentiation yields

0" T[] _
0pe(x1) - dpe(Tn)

= —i" /d?h coodyn Do(@, 1) -+ Tolen, yn)

SNW[J]
0J(y1) 0 (yn)
Thus, the N-point vertex functions correspond to the Greens functions divided by their

external legs. Therefore we conclude that under scaling of the fields, ¢ — ( - ¢, the
connected Greens functions transform oppositely to the vertex functions,

(2.1-10)

Gy(rr,...78) 5 NGy(vr,...an) | (2.1-11a)
FN(IL'I,...IL'N) w) C_NFN(.'L'l,...l'N). (2]_—]_]_b)

Equivalently, we may consider the vertex functions in momentum space, i.e. the Fourier
transforms of the vertex functions in coordinate space. We will use the arguments p, q, ...
in order to signify the Fourier transform,

d*zy . . d*z —_
gN(pl, .. pN) = /(27_‘_)14 Pt .. /(271_)]\; e PNIN gN(IL’l, .. .]IN) etc. (2]_—]_2)

Since the vertex functions always contain energy-momentum conservation in the form of
a ¢ function, Ty (p1,...px) ~ 6@ (py + -+ -py), it is convenient to define proper vertex
functions 'y (p1,...pv_1) by

Tn(pi,---pn) = Tn(pr, - pyv1) - 6P (pr + - py) - (2.1-13)

2.2 Basic Concepts of Renormalization

We consider a theory of some real scalar fields ¢ with a mass parameter m and a coupling
g involving N, fields. The generalization to more parameters is not performed explicitly
for the sake of keeping the expressions simple.

2.2.1 Dimensional Regularization

In this thesis, for non-supersymmetric calculations dimensional regularization is used since
it has the following advantages:

(1) It manifestly preserves almost all symmetries.
(2) The regularized graphs are no harder calculated than the unregularized ones.

(3) Renormalization is particularly simple in conjunction with the MS scheme.
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The procedure of dimensional regularization consists of calculating graphs formally in d
dimensions. Useful formulae for this purpose can be found in appendix E. Divergences
show up as poles in the deviation from 4 dimensions, e:=4—d. In order to keep the mass
dimension of the quantities in d dimensions the same as in 4, a parameter p carrying mass
dimension one is introduced. Then quantities @ can be written in d dimensions as p”?¢Q,
where D is chosen appropriately. However, the specific value of ;1 is completely arbitrary.

2.2.2 Bare and Renormalized Quantities

The theory is described by a bare Lagrangian
Ls = L3 (pB,mn, gB) - (2.2-1)

For definiteness we use
2

1 my o gB N
Zis = 5 (Oupn) (0"pn) — =08 — N—g!goBg : (2.2-2)

The bare quantities are related to the renormalized ones by

1
SOB _= ZLB gp s (22—3&)
my = Z,;' (m®+0m®) and (2.2-3b)
_Ng
g8 = 7,7 (g+0dg). (22-3¢)

The renormalization constants Z,, dm?* and dg are chosen such that, in a given order
in perturbation theory, amplitudes calculated with the Lagrangian (2.2-1) are finite. dm?
and dg are referred to as counterterms, and Z, as wavefunction renormalization
constant. The bare Lagrangian is related to the renormalized one, .Z, by

25 (pB,mp, gB) =L (@, m,g) + % (p,m,g) (2.2-4)

with € being called counterterm Lagrangian. It is a general feature of a renormalizable
theory that all .Z, £ and % have the same shape except for a finite number of couplings
that have to be included. The splitting (2.2-4) is completely arbitrary under the condition
that the quantities appearing in the renormalized Lagrangian are finite.

2.2.3 MS-like Renormalization Schemes

However, we may fix a certain choice of the splitting (2.2-4) by demanding that the coun-

terterm be proportional to e !. This prescription is known as Minimal Subtraction
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(MS). Consequently, for the MS-scheme equations (2.2-3) read

> 6Z ,m, B
vp = <1+Z—“”k(i u)) v, (2.2-52)

k=1

4]
mp = ;1 (m—i—z Mk g,m M) s (22—5b)

_Ng )
gs = puPc 2z, 3 <g+zw> ) (2.2-5¢)

eJ
k=1

Stated differently, the renormalized quantities in equations (2.2-3) are functions of y. Since
i is completely arbitrary, we can study the implications of rescaling .

2.2.4 Derivation of the Renormalization Group Equation

Starting from the bare Lagrangian £, we can determine the N-point functions

(GN)B(21, - wn) = (=[T{pp(21) - - pp(en)}] =) - (2.2-6)

Using ¢ = Z;l/ngB, we find for the vacuum expectation value of the time-ordered product
of the renormalized fields

(~1T{p(x1) - plan)}| =) = 2, (~|T{pp(@1) - ep(en)}-) (2.2-7)
or

Z)"(g,m. 1) G ({wi},m, g, 1) = (Gu)s({z:}, ma, gs) (22-8)
Since the right-hand side is independent of p, it follows that

d N/2 i

@ {Zcp (gama ,U’)GN<{xz}7magau>} =0. (22_9)

An analogous relation holds for the connected Greens functions ¥y and for the vertex
functions I'y as well. Using the fact that the renormalized quantities are functions of p
and equation (2.2-3), one obtains

d
du

{27200 ({0} mw). g(u). 1) } = 0. (2:2-10)

where the proper vertex functions I'y were considered and equation (2.1-11) was used.
Accordingly, one can substitute

d 9 dgo dm 0

— = 2.2-11
du 8u+duag+du3m ( )
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and use the definitions

dg e—0
5(97”%“76) = ,U/@ l>5(97”%“)7 (22—12&)
d e—0
v(g,m, py€) = ualn%—w(g,m,u), (2.2-12b)
dm e—0
m2fym(g,m,u,e) = _Ma ;mQ’Ym(g,m,/L) . (22—120)

g is called beta function while 7,, and 7 are referred to as anomalous dimension
of the mass and the field, respectively. With these definitions inserted in (2.2-11), the
Renormalization Group Equation (RGE) reads

a 8 N 2 a ™ _
{“@ + B(g,m, p) 95 5 (g, m, 1) = m Y (g,m, 1) a_m} n({pi}, g, m, ) = 0.
(2.2-13)

It is convenient to use the variable { = In (lf—0> Then the solution of the RGE has the
property
t
_ _ . N
Un ({pi}, 9, m, o) =Ty ({pi}ag(t)ﬂm(t)ae Mo) - eXp ) dr ’Y(Q(T)) , (2.2-14)
0

where ¢(t) and m(t) are the solutions of

99

5 () = Blg(t),m(t),n) (2.2-15a)
T = s a(e), m(0) 1) m2(1) (2:2-15b)

with the initial conditions g(0) = g and m(0) = m.

2.2.5 The B-Function

In order to calculate 3, we use the equation

398

dp

and insert the expression for gg. For example, let us consider the case that equation (2.2-3¢)
can be rewritten in the form

=0 (2.2-16)

gr =u""Z, g, (2.2-17)
where
N/
Zy=1+) —=1+07, (2.2-18)

k=1
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and where D, is chosen as explained at the end of section 2.2.1. By differentiation we
obtain

d 967
e = B(g,m, p, €) P Zy + g Dye "o Zy + g p"o¢ aggﬁ(g, m, i, €)
967
— MDgf {5(g,m,u, 6) <Zg +g agg) +9gDye Zg] . (2.2—19)

On the other hand, S-functions are finite as ¢ — 0. We can therefore make the ansatz

Blg,m, p,€) = Blg,m, p) + B (g,m, p) + -+ €"B™ (g, m, ) , (2.2-20)

where 7 is an arbitrary integer. Note that in this case the power of € is not related to the
order of perturbation theory. We insert now equation (2.2-18) and the expansion (2.2-20)
and obtain by comparing coefficients

85Zg,k k1

50 : (2.2-21)

Bg.m, p,€) = —eDyg+ > _ Dy g’
k=1

1.e.

,067,,
dg

B(g,m,p) = Dyg (2.2-22)
This is the standard formula for calculating A-functions for scalar couplings in MS-like

renormalization schemes where multiplicative renormalization is used. It will be generalized
in section 2.3.

Remark 2.2.1. Dimensional analysis tells us that in mass-independent renormalization
schemes

!

g(w) =G (g(u), i) (2.2-23)

1

with some appropriate function G. Differentiating w.r.t. u' yields at y'=pu

u%g(u) = 0 (9(n)) (2.2-24)
where
8o = 526 o)) (2.2.25)

(=1

Thus, in mass-independent, schemes, 5 does not depend on g explicitly.
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2.2.6 Scale Transformations

Now we study what happens if we rescale the external momenta, {p;} — {(-p;}. We assign
to each Greens function GG a mass dimension which is equal /N times the mass dimension
of the field ¢, dim[p] = d,,, and find for example

dim[Gn(z1,...2x)] = dim[(—|T{ep(x1) - -@(zn)}-)] =N -d, . (2.2-26)
Analogously, we find
dim [Ty (p1,...pnv-1)] =4 — Nd,, . (2.2-27)
By rescaling all variables which carry mass dimension we obtain

Ty ({¢pi}, C%g(), Cmp), ) = C™ T ({pi}, 9(1), m(p), ) (2.2-28)

where d, := dim[g] and di = dim FN] Inserting the solution of the RGE, we obtain
with ( = €'

— (2.2-14)
FN({etpi}7gam7 :U’) =

(2.2-14)

=" Tn(e'{pi},g(t), m(t),e'n) exp _g

/tdm(g(T))

t

2.2-28 N — _ _

Y2 e dryt - / dry(g(r) ¢ T ({pihe™%g (1) e7m (1), ) , (2.2-29)
0

i.e. rescaling the external momenta can be compensated by a multiplicative factor and
a change in the renormalized mass m and the renormalized coupling g. This formula is
crucial for understanding the meaning of RGE’s and running quantities. It describes the
behavior of physical quantities under the change of the energy scale. Note that rescaling
on-shell external momenta is only possible for massless particles.

2.3 3-Functions in MS-like Renormalization Schemes

In this section we derive a formula which allows us to compute the S-function for a quantity
@ directly from the counterterm () in the MS scheme. In particular, we generalize the
usual formalism, equation (2.2-22), for calculating S-functions to include tensorial quanti-
ties as well as non-multiplicative renormalization.

As a generalization of (2.2-5¢) we impose the relation

Qv = 2230 Q + Q"o 2yt - 2
- (Hzg;) [Q + 6Q]u"e" (HZ";‘) : (2.3-1)
el jeJ

where I = {1,...M} and J = {M +1,... N}, and the n; are integer or half-integer valued.
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Remark 2.5.1. Dg controls the dependence of () on € and should not be confused with its
mass dimension. Consider for example a quantity k, coupling to two fermions ¢/ and two
bosons ¢, and with dim[kg] = 3 — d. Then we obtain a relation

1

N

ww = (2, )7 (Z,)" [+ 0k pP 2,2 2, | (2.3-2)
where dim[x] = —1 and D, = 1 follows from dim[¢] = %! and dim[¢] = 52,
0() and the wavefunction renormalization constants can be expressed as follows,
0Q = 0Q({Va}), (2.3-3a)
Zy, = Z4p,({Val}) (1<i<N), (2.3-3b)

where {V4} denotes the set of variables of the theory including the one under consideration,
Q, i.e. {Va} ={Q,...}. Note that Vi = V4(p) are functions of the renormalization scale
i, but 6@ and Z,, do not depend explicitly on p in an MS-like renormalization scheme.
Taking the derivative of equation (2.3-1) yields
(11%)
JjeJ

w)| (122)}
Jj'">j
n.s dZnZ n;n
Az (i) s (G| ()}
el i <i >4

x [Q + 6Q)] (H Z;};j> : (2.3-4)

jedJ

0 = NDQGM%QB
| do
- () o (38
el
+ (Hzg;> [Q + Q)] x

el

(el

Jjes \J'<j

BVA> + EDQ Q + (SQ

Here we have introduced the notation

=Y for scalars z,y
dx
dF
dF e Yn for vectors © = (z,,),y = (yn)
|’/ % d%’ (2.3-5)
x
Z T Ymn for matrices * = (), ¥ = (Ymn)
~ dTmn
.. etc. .
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We will solve equation (2.3-4) and the corresponding expressions for the other V4 by ex-
panding all quantities in powers of €. In the MS-scheme the quantities 6V, and Z,, can be
expanded as

SVak
Va o= ) e (2.3-6a)
k>1
Zs = 1 ok _ 1 1 57 2.3-6b
b +Z ko + 024, - ( e )
kE>1
From equations (2.2-20) and (2.3-6) we find that
dz} dZ, déZ,, 1 1
¢z n;—1 ¢7, sz
=n 2y = ol )=0(-), 2.3-7
av, M oqv, "My, T <e2> <e> (23-7)

where the lowest possible power of % appearing on the right side of (2.3-7) is 1. Our
analysis of equation (2.3-4), starting with the inspection of the €” term, then shows that
5‘(2 ) vanishes. Repeating this argument for successively smaller positive powers of € implies
that

BEVAY) = 0 Yke{2,...,n}, (2.3-8a)
B (VaY) = =Dy Va. (2.3-8b)

Note that these terms do not contribute to the S-function in 4 dimensions, i.e. for € — 0,
but they are necessary to read off So({V4}) from equation (2.3-4), leading to the result

do@ 1
falvah) = Du (g

VA> —DqdQ (2.3-9)

déZy, déZy.
+Q n] |:DVA < d‘;:’l VA>:| +nl |:DVA < d‘;:’l VA>:| .Q,

where summation over A, 7 and j is implied. Note that for complex quantities V4 we have
to treat the complex conjugates Q* and Vi as additional independent variables. Consider
for example the RGE for a complex quantity () in a theory in which also the complex
variable V' appears. Then one can set V; = Q, Vo = Q*, V3 = V and V, = V* and apply
equation (2.3-9).

Remark 2.53.2. Tf we impose multiplicative renormalization,

N

0Q =0Z0-Q  with 5ZQ:Z@, 2.3.10)
we find .

<d3%1 Q> - <d§dLC§2,1 Q>'Q+5Q’1’ (2.3-11a)

<d§%l VA> - <djivj’l VA> Q@ VVaFEQ, (2.3-11b)
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and therefore conclude
ddZga

V) = ~eDa@+ 3Dy, (T ) @

doZ,, déZy.
+Q7’L] |:DVA < d‘;:’lVA>:| +nl |:DVA < d‘/(;z,l

VA>] -Q,(2:3-12)

where the second line remains unchanged compared to equation (2.3-9). The first line
corresponds to equation (2.2-22), generalized for tensorial quantities.

In the following, we will make use of formula (2.3-9). In particular, it turns out that
in most of the following problems, multiplicative renormalization as specified in equa-
tion (2.3-10) spoils the symmetry of the operators under consideration, so that it cannot
be imposed. Therefore, equation (2.3-9) represents a crucial element for the calculation of
the S-functions of this thesis.



3 Effective Field Theories

As already mentioned in the introduction, neutrino masses may well be described by an
effective operator. In this chapter, this statement is substantiated. Moreover, we will
describe a scenario in which a number of effective theories arise, corresponding to the
number of non-degenerate mass eigenvalues of some heavy states.

3.1 Basic ldeas of an Effective Field Theory

3.1.1 Purpose of Effective Field Theories

Purpose of an Effective Field Theory (EFT) is to eliminate in a fundamental theory those
degrees of freedom (d.o.f.) whose masses are far above the energy scales we are interested
in. Consider for example a fundamental field theory with light d.o.f. ¢ (mass scale m),
heavy d.o.f. ® (mass scale M > m) and a Lagrangian % ndamental (¢, ). We are interested
in an effective theory described by Zz(¢), i.e. we look for a Z.s(¢) which fulfills

S CU I T s —)
— )
e / Do exp{ d%iﬂeﬁ } (3.1-1)
*Seff

where p? denotes the Euclidean momentum squared, pi = E? +p2

3.1.2 Remark on the Terminology “Integrating Out”

Integrating out a real field ® can be seen as the following sequence of steps:

(1) In a Lagrangian
1 M,
_cg/ﬂfunda.menta.l — _§auq) aM(I) + 7 (I) + a(d)) (I) - D%.d.o.f.(d)) (31'2)
neglect the kinetic term, leading to

M2
_c%nfra.red = 7 (1)2 + a’(d)) o — D%.d.o.f.(qs) . (31_3)
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(2) Complete the square

M® M? a(0)\" _ a(@®)’
—<Zinfrare o i (I)2 dP=— 10 -
%92 a(p)®
= — -4
(3) Perform the path integral over P.
This leads to an effective Lagrangian
a(¢)?
(S - O.T. ) .]_—
L= U4 Ror(9) (3.1:5

where the field ® has disappeared from the theory (and, of course, from the path integral).
Deriving the field equations from Zygrared, we find ® = a(¢)/2M?. Inserting this expression
in Znfrarea also leads to the effective Lagrangian (3.1-5).

Note that this procedure may also applied to complex fields ®. For spinors the result is
similar, only the way to obtain it differs a little bit. In particular, integrating out heavy
fermions is equivalent to inserting the equations of motion in which the kinetic term is set
to 0.

3.1.3 Decoupling Theorem

The Appelquist-Carrazone decoupling theorem [16] states that the low-energy effects of
heavy particles, i.e. of particles with large direct mass terms, are either suppressed by
inverse powers of the heavy masses, or they get absorbed into renormalizations of the
couplings and fields of the EFT obtained by integrating out the heavy particles. Note that
the theorem can in general not be applied to spontaneously broken gauge theories.

This theorem yields the main justification for considering EFT’s which are valid in certain
energy ranges. An application of the theorem is given in the next section.

3.2 Matching

We will explain the method of matching by an explicit example. In many mass models,
left-handed neutrino masses are described by the effective operator

I . &
L= 0 > kgp U5 0d (Ecafoa + Ecatra)Pallys + hic. | (3.2-1)
f9=1

where é{, fe{l,...,np}, are the SU(2);-doublets of SM leptons, ¢ is the Higgs doublet
and ¢ :=(¢1)° is the charge conjugate of the lepton doublet.
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The operator (3.2-1) is symmetric under a permutation of the SU(2) indices, and fur-
thermore it is assumed to be symmetric under a permutation of the generation indices f
and g, i.e. k is a symmetric matrix in generation space. We chose to write down the SU(2)
index symmetry explicitly. We did this in order to read off the corresponding Feynman
rule (C.9) directly. Therefore we can rewrite equation (3.2-1) in the form of [17,10],

ng

1 7 1.
.Zn = Z,ue Z K/gf ‘gii¢d ¢a€{:b66d€ba + h.C. = ZM6[655¢] K [€L€¢] —+ h‘C‘ , (32_2)

f9=1

where we have also introduced a matrix representation of equation (3.2-1).

3.2.1 Tree-Level Matching

The operator (3.2-1) arises for example as an effective vertex of a possible full theory,
described by a Lagrangian

]_ LG —1 : i M— : €
- ?. (A _Z 7 7 € —l— 7 _
ZSM+2;N16N <;2NN +/“Z (V) il gPa N —|—hc>, (3.2-3)

where Y, denotes the Yukawa coupling matrix and M the right-handed Majorana mass
matrix. The Majorana spinor N, as defined in equation (B.14), was introduced.
Integrating out NV is performed by the tree-level matching

\

o\ __Su,

K , (3.2-4)

o, \¢d

\

Integrating out N
—>

at the scale ug, the lowest eigenvalue of the mass matrix M. In other words, we replace
e.g. the left diagram in the large M limit in the following way:

\ /
\ /
¢a‘ 2 ’¢d
N . + M; . €
) = [—I(YVT)ghgcdﬂ | P, 2§ M2 [—I(Yu)hf(&‘T)abW] P,
f N* g
KLb ch
/.‘\
P (YT MY, s eazba P - (3.2-5)
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The gray arrow indicates the fermion flow, as defined in appendix C.1. Analogously, we
get the same result for the second diagram except for a permutation of the indices of ¢,

e i(p+ M, . <

:| Py 2(,3:_7]\4%) [—i(Yo)nrepap?] L
4§9ﬁ% (YT M Y, g r2cacha P (3.2-6)
i=1,...ng

where the permutation of SU(2) indices of equation (3.2-1) explicitly appears. Accordingly,
we obtain

k=2YIM'Y, (3.2-7)

at the matching scale pug, which is commonly taken to be one of the eigenvalues of M.
However, if the eigenvalue spectrum of M is non-degenerate, we obtain several effective
theories and matching conditions. We will address this issue in a moment.

After spontaneous breaking of the electroweak symmetry, the Majorana mass term for
the left-handed neutrino v, arises by inserting the vacuum expectation value (vev) of the
Higgs field,

\

v v
\ ) o
¢a - ZLC Ssvth \ § I
K{b \qﬁd SU@2)L®U(1)y —=U(1)em " K "
\
In the Lagrangian language, this corresponds to
p—v+h 1 0,

K r Loy = 5 (m)gp i h.c. 3.2-8
SU@LeU(1)y—=U(L)em Q(m Jos Vi Vi, +he ( )

where m, = v?Y! . M ! .Y, thus justifying the terminology “effective neutrino mass
operator”.

For large eigenvalues of M, i.e. M; > v, the effective left-handed neutrino masses are
obviously suppressed. This is the well-known type I seesaw mechanism [7,8].

3.2.2 Matching at Multiple Thresholds

In analogy to the procedure described above, we may match a number of effective theories
to each other. This is e.g. necessary if we consider more than one generation of right-
handed neutrinos which are non-degenerate in mass. The ranges of the different EF'T’s are
depicted in figure 3.1.



26 3. Effective Field Theories

N, Full
l— EFT 1 —— EFT 2 —— BFT 3 — ! Theory ——
(2) (3)
K. .. ®.Y,,. .. ®.Y,,... Y,,...
TLG’ T r
-
1 1
| L // 1
[ 7/ 1
M, M, Ms M, a

Figure 3.1: Illustration of the ranges of the different effective theories. Each theory corresponds to a
number of heavy neutrinos which are integrated out whereas the remaining, lighter ones are treated as
massless.

Consider the situation that the eigenvalues of the mass matrix M (i.e. the masses of the
mass eigenstates {N',... N"¢}) have a certain hierarchy,

My <My <---< M, . (3.2-9)

In the region where ng—n + 1 heavy singlet fields are integrated out, the Yukawa coupling
(n)
is a (n—1) x np matrix and will be referred to as Y,,

(Yu)l,l T (YV)IJLF ) (n)
v =Y, )
(Yy)n_1,1 e (Yu)n—l,np
Y, — 0 — 0 . (3.2-10)
[ ng—n-+1 heavy, sterile
(‘) 0 neutrinos integrated out .

/

(n)
Furthermore, it turns out to be useful to define M as the (n — 1) x (n — 1) sub-matrix

of the singlet mass matrix and (/2;)9 7 as the effective vertex below the nth threshold. The
tree-level matching condition at the nth threshold reads

) (n+1) (”“)T)

(n+1)
Raf| v, = ngf\MnJrz( Y, Mn—l( Y,,)nf\Mn, n=1,...ng. (3.2-11)

Note that (Ili)gf = Ky, as defined previously in equation (3.2-7). We will see that similar
definitions can be made in the 2HDM’s and the MSSM extended by singlet superfields.
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The next step consists in the derivation of the RGE’s that govern the evolution of (/7%)9 i

(n) )

M and Y, between the mass thresholds. This will be done in the chapters 4, 5 and 6 for the
SM, a class of 2HDM’s and the MSSM extended by right-handed neutrinos, respectively.
In chapter 7, we will perform a numerical analysis of the predictions of the corresponding

RGE’s.



4 Standard Model Calculations

In this chapter, the calculation of the S function for the k operator in the SM is reviewed,
for which existed a result in the literature that was not entirely correct. In order to verify
our result we develop a general method of checking S-functions for effective operators.

4.1 Renormalization of the Effective Neutrino Mass
Operator in the SM

4.1.1 Extracting Poles from One-Loop Diagrams

It is clear from formula (2.3-9) that for the calculation of S-functions only the poles in
€ of the counterterms and renormalization constants are needed. In order to extract the
divergent parts of a given diagram, we use the following sequence of steps:

(1) Calculate the diagram in d dimensions.

(2) Express the result by Passarino-Veltman functions (cf. appendix F). This can be
automatized by FeynCalc [18].

(3) Extract the poles in € by the use of table F.1.

4.1.2 3, in the Standard Model

In this section we just summarize the main results of the calculation of 3, since the details
can be found in [19]. For all of our SM calculations we use the field content of table 4.1-1.
As we have seen in section 3.2, the dimension 5 operator .Z, arises by integrating out the
Majorana neutrinos N in a “full theory”. We consider a Lagrangian, consisting of .Z,, the
SM Lagrangian %5y and proper counterterms %,

L =Lt Lo+ . (4.1-1)

The terms of Zsy relevant for the calculation of the non-diagonal parts of the S-function
are

Lin(ey) = _Lf(wuaﬂ)g{ ; (4.1-2a)
0,0)1(0"¢) —m’ 6T — 1A (¢19)” . (4.1-2b)

)
&

[¢2]

I
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Field d) qr, dR UR EL €ER N

R R e
su@,| 2 2 1 1 2 1 1
SUB)c| 1 3 3 3 1 1 1

Table 4.1-1: Quantum numbers of the SM fields and the additional Majorana neutrino.

The corresponding counterterms are defined by

Ganey = 0 (1070, (626 )gr bl (4.1-32)
Giriges = 024(0,0)1(0"¢) — dm* ¢'p — LoA(¢T0)? | (4.1-3b)
G = L0rgp 0,0y U], 60 + hoc. (4.1-3¢)

and evaluate to

s =~ (VI + bengd + ) (4.1-4a)
524, = — 1617r2 2T (Y)Y, +3]Y, + 3vY)
—5(3—&p)gp — 53— fw)gi] : (4.1-4b)
dky = — 1617r2 [26(Y)Y.) +2(Y)Y.)" s
—AK — (% —&p)gik — (% - 3§W)9§’<3] ’ (4.1-4c)

where g and &y are the gauge fixing parameters used in R, gauge. With these and formula
(2.3-9), we obtain

3
16728, = —5 [n (V1Y) + (v/V.)" &)
k= 3%k +2 Tr (3YJY, +3Y)Y +V/Y.) (4.1-5)
This is the S-function that governs the evolution of the dimension 5 effective neutrino mass
operator in the SM. If it turns out that the observed neutrino masses are described by this

operator, this is the g-function that provides the link between physics at a high energy
scale and the observations.
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Between the thresholds, the counterterms look similar to (4.1-4). Additionally, the con-

()
tributions from Y, have to be respected. We obtain

() 1 [o,m
(SZZL,I = ]_671- |:YTY + YTY + 6391 -+ €W92:| , (41-6&)
(n) ]_ (n), (n
0Zp1 = ~ 167 {2 Tr (YTY) +2 Tr(Y1Y,) + 6 Te(Y)Y,) + 6 Tr(Y] Yy)
T
1 2 3 2
+5(&s = 3)gi + 5 (&w —3)g2| (4.1-6b)
6%) ! 2({}) WY) 4.1-6
T : (4.1-6¢)
The vertex renormalizations are given by
() 1 (n) 1 n 3 (n)
_ t 2 2
oYy = — 1672 [2 Y, (YY) + 55391 Y, + §§ng Yu] , (4.1-7a)
n 1 n n
o= - 2 (VIY,) "% + 2% (viv,) — A¥
’ 1672
1 o (n) 2(n)
5(253 —3)gi K+ = (2§W —1)g5 , (4.1-7b)
(n)
oM = 0. (4.1-7¢)
From these, we obtain the S-function below the nth threshold,
() 3 - 1™\ ) L (0,0
1678, = —S (VYo" k T 2( RYIY.) + 5 (YTY) os 533 (YJY,,)

(n) ORORYD! )
+2 Te(VIY,) Kk +2 Tr (Y*Y) K46 Tr(Y]Y,) kK
+6 Tr(V)Y,) K — 3g2 % + AR (4.1-8)

(n)

In addition, we will need the S-functions for Y and M, which can be calculated from the
counterterms

(n) (n) (n), (n) (n), (n)
167°py, = Y, {3<YTY) — ;(YTY) +Tr (Y*Y) + Tr(Y,Y,)

2
i i 3290
+3 Tr(Y,'Y,) +3 Tr (YY) — 190 % (4.1-9)
and
o) OICANORNONOIO
16775, = (YY)M+M(YY) . (4.1-10)

()
The remaining S-functions are found to be the same as in [20], if one substitutes Y, — Y.

They can be inferred from some more general formulae at the end of section 5.2.5 where they
arise as a special case. Numerical investigations of the corresponding system of coupled
differential equations will be performed in chapter 7.
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4.2 Checking B-Functions in Effective Theories

In this section we present a method for checking A-functions in effective theories and
apply it to our result, equation (4.1-5). We compare some amplitudes I'y in a full theory
with predictions from the RGE. In particular, we use the fact that calculating I'y in the
effective theory should be equivalent to calculating 'y in the full theory and taking the
limit |p;| < M, as illustrated in figure 4.1. Considering the finite variations of amplitudes
in the full theory and comparing them with the predictions from the [-function of the
effective theory makes it possible to verify the correctness of the latter.

C\ Integrating out =
Full theory Effective theory
———— heavy d.o.f. —

Variation

effective
£ — function

of amplitudes ﬁ?vun
under scaling of external
momenta

Variation

. —eff

of amplitudes 'y
under scaling of external
momenta

Figure 4.1: General strategy for checking S-functions.

We consider for p; < M an effective theory with dimensionless couplings {gx} and an
effective coupling K of mass dimension dj. Possible mass terms (except for M in the full
theory) are ignored as they do not affect the MS -functions. Consider an amplitude which
is linear in K,

v ({pi} Lok}, K o) = al{pi}. Lok}, o) - K - (4.2-1)

Then equation (2.2-29) tells us that

wlb—t

—eff
Ty ({e'pi} {on}, K, o) = exp (dr, —dk)t

Z/dT%J {oe(n)}) ¢ %
x al{pi}; {ge(0)}, o) K (1) - (4.2-2)
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Accordingly, we obtain

K(t) = exp —(dFN—dK)t—i-% /d77¢j({gk(7)}) X

J

F?\if ({etpi}a {gk}7 K, :U’O)
a({pi}, {gx(t)}, o)

(4.2-3)

Then differentiating w.r.t. ¢ yields for =0

Bk = {—drN +dg + % Z’Yqﬁj ({gk(ﬂo}))Jr

. 1 Ty ({e'ni}, {ox}, K, o)
Ty ({pi} {oe}, K, o) dt
Ty (i}, {9}, K. 1o) 5 da ({p:}, {gi}, o)

a® ({pi}. {gr}, o) 5 0ge

}XK
t=0

By, . (4.2-4)

. . —eff . . .
F;l;lhe crucial step is now to replace F?V by the corresponding amplitude in the full theory,
I'y ', and to perform the transition to the effective theory limit after calculating the right-

hand side of (4.2-4),

pi<M

Bk = lim {—di +dK+%ZV¢j ({gk(ﬂﬂ)})—i_

—Full
+ 1 dFN ({etpi}a {gk)’}, ]\47 /,Lo)
—Full
Uy (o} {ow} M, o) dt

1 T Oa ({pi}, {gr} p) Bgz} « K (4.2-5)

—a({pi}, {oe}s o) 7 0ge

where {gy } denotes the set of couplings of the full theory. On the other hand, Sk is linear
in K,

Brx =b({g}) - K, (4.2-6)

since K corresponds to an effective operator and is therefore suppressed by some inverse
powers of M, i.e. higher powers of K have to be neglected in the EFT approach. A K-
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independent term is not possible because the g, are dimensionless. Accordingly, we obtain

b({gr})

pi

. 1
lim {—drN i+ 5 zj:%j (#0)
—=Full
+ 1 dFN ({etpi}7 {gk’}a M7 ,U/O)
—Full
Py (it {ge}, M, o) dt =0

— 1 da ({pi}7{gk},uo) )
a({p:i}, {gr}, o) %: 94, ﬁgz} . (4.2-7)

This formula is a general result and can be applied to the [S-function of any effective
operator. It may easily be generalized to tensorial operators K. In the following, this is
illustrated by two examples.

4.2.1 The )\ Correction

To demonstrate the method, we define the abbreviation

Ly = D(y(p) + o(a) = 6a(0") + 6(d))

oy é.
N oy
7N

7 N

¢d ¢a

(4.2-8)

In order to verify the coefficient of the S-function coming from the Higgs self-interaction A
we investigate the relation

éic d) // Zic //
J

< Pa
/"\ //¢d ' ‘\ //¢d
VK e | I
\_‘/ a - a

(z)a’
of i \\ \\
b \ \

T2

For simplicity we consider only one heavy neutrino, i.e. N = N!. Furthermore, we set all
anomalous dimensions v, equal to zero because all wavefunction renormalization factors
proportional to A are equal in the full and the effective theory. The effective theory diagram
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evaluates to [19]

. ¢d
NI //
7 \\

oy 6,

1 1
_ 1617r2 /f)\lﬂgf%(gbagcd + scasbd)PLZ + UV finite , (4.2-9)

where K of the previous section is here specialized to k. For the full theory diagram we
obtain

i, ¢d

\ k+p
Nt a
= AN

z

i, ¢>a

i
= 1671'2 MG(YVT)gi(Yu)if)\%(Scdgab + Scagdb)
XMi C[)(pZ,QZ, (p+q)27m25Mi25m2) PL (42_10)

We define

rs= Y (4.2-11)

tree—level

+ one—loop
OPI—diagrams

e ,
/s
< Ou
‘\ // d
= Nz A,)\
. Pa
o \
\
ZI{ b * | p2=g2=0

(p+q)2=s
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and use equation (4.2-10) in order to obtain

—Full —Full

(€®s50) — Ty (s0)
1

¢ 1
- ]_67-‘-2 A H (YVT)Qi(YV)ifi(gcdgab + 6ca5db) Ml X

. >
v~

_1a
=5Mikgr

X [00(62t0,62t0,62t80,m2, M?,0) — C(0,0, 59, m?, MZ-Z,O)] P, (4.2-12)

where the on-shell momentum configuration

p = (MO:MU,O,O) pT=q — 0,
¢ = (.—p0,0,0) f 7 > g2 (4.2-13)

has been used for convenience.
Consequently, with s = e*s; we obtain

1
3272

(s = w(4dr?). [1 '

A M?2 (0,0, 5,m*, M?, 0)] + O(\?)

1 2t 2 2
~ R(AM2) - [1 + ggt In (e )] FON), s <ME o)
1+ O0(N\?), s> M?*,
where (F.16) was used.
From this we derive according to (4.2-7) with dg, = d,
B = LA + O(\?) (4.2-15)
ERRTT=M ’ -

where due to 8y, ~ A% the 3, term was neglected. This confirms the corresponding term
in (4.1-5). Hence the prediction for the evolution of I'y from the renormalization group is
given by

. Full t 2t 2
Ty (8, M, s0) = Eﬁw(s[’) T g e, s < M7, (4.2-16)
L, (so0), e*sy > M? .

Of course, this can only be regarded as the prediction from the RGE if A itself does not
run, which is true at the order \. Going to A%, we would have to solve the corresponding
set of coupled differential equations.

In order to verify (F.16) and therefore (4.2-14), we compare Cj with its approximation

which is identical to fZLGE. This is illustrated in figure 4.2.
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Figure 4.2: Comparison between Afiuu and AF?GE

4.2.2 Checking the Non-Diagonal Part of 3,

Now we extend the above analysis to the non-diagonal part of S, since for this there exists
a discrepancy with the literature [17]. We consider the relation between the “effective
diagrams” shown in figure 4.3 on the one hand and the “triangle” and “box diagrams” of
figure 4.4 and figure 4.5, on the other hand. Again, we do not include the wavefunction
renormalization factors in our analysis because these lead in the full theory to a S-function
for the Y, Yukawa matrix which is in accordance with the literature [21-23]. However, we
include the case of an arbitrary number of heavy singlets (i=1,...n¢) in our analysis. The
divergence structure of the “triangle diagrams” coincides with the divergence structure of

¢d\\ R éi c
éi] Y (z)e
K
Z{b N Qe
»

A
iy
A

\

\
ch i
b %‘\ tj gic
¢ i :
LJj |
o '\ %a
AN

Figure 4.3: The vertex corrections proportional to Y, in the effective theory.



4.2 Checking S-Functions in Effective Theories 37

Figure 4.4: The “triangle diagrams” of the full theory.

ZLb - [ic eLb - [ic e{b [ - [ic e{b - ‘gic
Nk Pe eﬁ Nk Pe eﬁ eﬁ Pe Nk eﬁ be Nk
7N 7N 7N 7N
€ i € i € i € i
// ¢d ¢a \\ ,/ ¢a ¢d \\ ,/ ¢d ¢a \\ ,/ ¢a ¢d \\

(a) (b) (c) (@

Figure 4.5: The “box diagrams” of the full theory.

the “effective diagrams”, whereas the “box diagrams” have no counterpart in the effective
theory. We compute for example

Z{b gic

(4.2-17)

- M26(}/;T}/;*)gh(YVT)hk(Yy)kada&‘bc X
y d’k (P+q— Ky — K K+ M) _
/ (27T)d (p +q— k)Z (p/ _ k)2 (k2 — Ml?) [(k — p)2 — m2] P, (4.2 18)

Note that the SU(2)-structure of the diagram does not coincide with the structure we found
for k. Furthermore, we can interchange the SU(2)-indices of the Higgs fields and obtain
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for the second box diagram

f
ng Zic

= (YY) o (V) e (Yo kpEaache X

X/ d’k (p+4—K) g = K) K+ M)
(2m)* (p+q—Fk)* (¢ = k)* (8 = MP) [(k — p)* — m’]

i.e. the negative of equation (4.2-18) with p' and ¢’ interchanged. In other words,

P, (4.2-19)

=0 forp' =¢ .

/ i \
4 Lin
// ¢d ¢a \\

This also holds for the other two box diagrams, therefore we conclude that for p’ = ¢
the box diagrams do not contribute to the finite corrections of the amplitude Ty in the full
theory.

Now we compute the triangle diagrams. The first one yields

i, e

¢d Qba

My +4q—y
k Y ) kfl Ecala X
T ME - (g —-zf)?} s

P <My

My,

W, pHE p—d K 1
X - /dk@+kV@—¢+kVW—nﬂR“ (4.2-20)
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The second diagram corresponds to the same expression with p' and ¢’ and the SU(2)-
indices a and d interchanged. Therefore we find

¢>d\\

My,

i T~/ * T el
= (Y; Y; )gh 2(Y1/ )hk MI? _ (q _ p/)2 (Yu)k}:,u’ §(€cd€ba + 5ca5bd) X

.

~~
q,p' KMy,
Khf

pe [, PHE p—4+K 1
i /d o g TP (4.2-21)

for p’ = ¢’. On the other hand, if we set p’ = ¢/, we find with the same labeling of momenta

i
- 1672 (}/;T}/;*H)gfﬂeé(gcdgba + gcagbd) X
M [qay PHE pod K
im? (P+k)2(p—q +k)?2k2—m?

Thus, in the effective theory limit p, ¢ < M., we obtain for p’ = ¢

P . (4.2-22)

Repeating the arguments below equation (4.2-20) we find in the effective theory limit
p,q < My for p' = ¢
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We found so far that the box diagrams cancel out and do not give a contribute to I'y when
we scale the momenta. Furthermore, the contributions of the effective diagrams and the
triangle diagrams coincide in the limit p,q < M}, and p’ = ¢’. Thus we have shown that
the finite changes of I'y are equal in the effective theory limit.

Hence, we may use the full theory for the remainder of our check, which consists of
comparing the change of two diagrams under a rescaling of the external momenta with
the prediction from the RGE. First we evaluate the integral in equation (4.2-22), using
Passarino-Veltman functions and the FeynCalc [18] package.

o 4, P p—p+K 1
= e e

- 9 [(p- p/)i — 2] { [—pzp'2 +p-p pﬁl] By (pQ’ 0, m2) +
+[20-0) =00 =0+ 0 —p- )] Bo((p—p)?,0,m%) +
+ [pPp-p =7 ] Bo(p,0,0) —
—p”? [(p* —m®)p-p = p*p* + (m* —p? +p-p) pp'] x
x Co(p*, 0", (p— )%, m?,0,0)} (4.2-23)

In analogy to equation (4.2-11), we define T';(¢) as the sum of all OPI diagrams with the
external momenta rescaled according to (p — p')? o sy €*, and introduce the difference by

Aﬁfiangle(t) = fzriangle(soe%) — fzriangle(so). The latter is proportional to the corresponding
change of Z. For e'\/sy > m?, we can use the approximation
By (e*s0,0,m*) — By(sp,0,m?) ~ —21In (') . (4.2-24)

Besides, due to equation (F.16), the contribution from the Cj term can be neglected.
Using all these simplifications, we find

Tiriangle 1

AT S
4 1672

Thus, the terms with a non-trivial Dirac structure have dropped out. Moreover, differenti-
ating this result w.r.t. ¢ verifies our result for the counterterm, equation (4.1-4c), and the
corresponding term of f,.

The calculation for the remaining two triangle diagrams can be done in an analogous
way. Alternatively, one can avoid it by arguing that their contribution to the S-function
has to be the transpose of that from the diagrams we considered because of the symmetry
of k. This completes the check of those parts of the -function that are due to triangle
diagrams.

(V1Y) k(s0) In (e*) . (4.2-25)

4.2.3 Summary

We have illustrated our method of checking S-functions by two explicit calculations, thus
verifying our result equation (4.1-5). Note that the latter has also been confirmed inde-
pendently by [24]. It has to be stressed that this method may be applied to any S-function
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of an effective theory. It may be extended to some softly broken supersymmetric the-
ories in which, due to the non-renormalization theorem, the calculation of the full, i.e.
supersymmetric, theory [-functions requires only little effort, as shown in chapter 6.



5 Extensions of the Standard Model

The SM is in an excellent shape experimentally. Nevertheless, as was already argued
before, it is most probably an effective theory. It may be easily extended without spoiling
the good agreement with the experimental data. A very minimalistic extension consists
in the enlargment of the Higgs sector, especially in a model with two Higgs doublets. As
we will argue in section 5.1, such models arise effectively in many unified theories in an
intermediate stage. Also the MSSM requires two Higgs doublets.

5.1 The Left-Right-Symmetric Extension of the Standard
Model

The left-right-symmetrical model is a gauge theory which contains in addition to the gauge
groups of the SM a “right-handed” SU(2)g,

Gir = SU3)e ® SUQ2)L, ® SUQR)r ® U(1) 5y, - (5.1-1)

5.1.1 The Scalar Sector

In order to obtain spontaneous symmetry breaking (SSB) G1r — Gsu, one utilizes a scalar
sector which differs from that of the SM. In the early days of the development of the LR
models, people used the two doublets. For an overview see e.g. [25].

However, it is not possible to construct a Majorana mass term for the right-handed
neutrino with those scalars. Therefore the tendency is to use two triplets Ap and Ag,
whose Yukawa couplings and vev structure lead to the desired Majorana masses. Since one
does not have to extend the fermionic content of the model in comparison to the SM and
since one can “explain” the smallness of the neutrino masses via the see-saw mechanism,
this model is often referred to as minimal left-right-symmetric model. More details can be
found in [26].

Furthermore, a scalar field is needed which plays the role of the Higgs field, i.e. its
Yukawa couplings to the SM fermions should generate their masses. The most appealing
extension of the scalar sector which fulfills this requirement consists of the introduction of
a bi-doublet ®. As we will see in section 5.1.4, after spontaneous parity breaking this leads
effectively to a Two-Higgs-Doublet Model (2HDM).
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5.1.2 Transformation Properties of the Fundamental Fields

As one can see from table 5.1-1, the fermions fit quite well into the representation space of
the gauge groups, i.e. they transform either trivially or under the fundamental representa-
tion of each component.

SU3) SUQR). SU@2r U(l)p-r

%Z(ZE) 3 2 1 5
QR:<Z§) 3 1 2 5
EL:<VL> 1 2 1 -1
€L
éR:<”R) 1 1 2 1
€RrR
Y b
o= 71 1 2 2 0
(%)
+ A+
AL:<§5 fgf) 1 3 1 1
A+ A-I——l—)
Ap=| Tk °r 1 1 3 ~1
G

Table 5.1-1: The fermions of the SM and the scalars of the minimal left-right-symmetric model and their
transformation properties in left-right-symmetric gauge theories.

5.1.3 Parity Breaking

The breaking of parity occurs spontaneously, i.e. the vev’s of the scalar fields do not respect
parity symmetry. In particular, the vacuum expectation values of the triplets are given by

(Ar) = < 8 8 ) and  (Ag) = ( U(; 8 ) . (5.1-2)

5.1.4 Fermion Masses

The fermion masses arise from the Yukawa couplings of the bi-doublet ® to the fermions
Brsaa = — {7 [7)0s® + (02),18] g+

7] | (Va)os® + (V)gs®| € +hc} | (5.1-3)
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and from
LA L) 0O AL Y+ (Va)r (5 AR £ 1 h 5.1-4
Yukawa (Ys)gr b7 ALty + (Ys)gr (" Ar ly +hic.p . (5.1-4)
Inserting the triplet vev’s (5.1-2), one finds
- 1 -
— Lajorana = (Y5)4f I/ggl/{;v%{ + h.c. =: 3 Mos I/ggl/{; +h.c. . (5.1-5)

In particular, the Majorana mass term is proportional to a Yukawa-matrix. Therefore it is
well-motivated to assume that the eigenvalue spectrum is non-degenerate.
After the breaking of SU(2)g, the scalar field ® transforms as

o= ((/,(1)7(7)(2)) = (Ung(l),ULg(z)) (5.1-6)
with
(1)0 N (2) —\* (2)0
o = < 355(1) ) , o= < _(gésqg(z)g)* > and  ¢1*) = ( j,)(z) > 7 (5.1-7)

thus leading to to a model with two Higgs doublet of the SM type.

5.2 Neutrino Mass Operator RGE in a Class of
Two-Higgs Doublet Models

As we have seen in the previous section, the Higgs sector of the SM can well be enlarged
by some additional SU(2);, doublet scalar fields ¢? (1 < i < ny). These can in general
couple to the SM fermions via the Yukawa couplings

_"g\((:l)ka.wa. - (K‘“)ﬁ%@ﬁg“&"’ﬁﬁ
3o 0107 QL, + (V) ruf QL8 + hc. (5.2-1)
The notation is chosen in such a way that all () transform as (2, 1) under SU(2), @ U(1)y.
In particular, for ny = 1 we obtain the SM. This is also true for the Feynman rules (see
appendix C).

Note that there are tight phenomenological constraints on Yukawa couplings. As pointed
out in [27-29], it is very hard to construct viable models in which one type of SM fermions
e, d and u couples to two or more Higgs bosons, since this in general leads to tree-level
flavor-changing neutral currents (FCNC’s). To avoid them it is convenient to restrict the
discussion to models in which the fermions couple to at most one Higgs. As a consequence,
the suffix “(7)” on the Yukawa couplings in equation (5.2-1) is redundant and will be omitted
in the following.
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(& (& (& (&
¢(1)< ¢(1)/ ¢ 1)< ¢(1)/
2 Uu 2,,U 2 u 2/U

Table 5.2-1: Classification of the 2-Higgs models with natural FCNC suppression and tree level mass terms
for all SM fermion types. Note that model (i) is usually referred to as “type I” and (ii) as “type II” in the
literature.

5.2.1 Classification of 2HDM's

We concentrate on models with two Higgs doublets for simplicity, i.e. ng = 2, and consider
only schemes in which each of the right-handed SM fermions couples to exactly one Higgs
boson. All inequivalent possibilities are classified in table 5.2-1. By convention, the scalar
which couples to eg is defined to be ¢(1.

Furthermore, we allow for an extension of the models by right-handed neutrinos in order
to give rise to effective neutrino mass operators, defined analogously to (3.2-1).

For our calculations we introduce coefficients zf; ) which are defined to be 1 if the fermion

1) couples to the Higgs boson ¢*) and 0 otherwise. For the models classified in table 5.2-1
they are given by table 5.2-2. Since in table 5.2-2 only the effective theories are classified,
the coefficients 25’ do not appear there. In order to avoid FCNC’s, we impose the Zs

(i) () (i) (iv)
A1 0 1 0
A0 1 00 1
A1 1 000
A0 00 11

Table 5.2-2: The coefficients zl(;) for the Two Higgs Doublet Models classified in table 5.2-1. The coefficients

z,(,i) are not shown as they do not specify the model.

symmetry
6D 500 4D 5 6@ and - (1), (€ {u,d)). (5.2-2)

For example, in scheme (ii) all fields transform trivially except for

< ¢:) ) L < Qf) ) . (5.2-3)

The most general Higgs self-interaction Lagrangian is then

Dot _% (6102 % (601p2)?
W (¢(1)T¢(1)) (Qg(?)Td)(?)) -\ (¢(1)T¢(2)) (¢(2)T¢(1))
A
-3 (@) +hc] (5.2-4)
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5.2.2 Lagrangian of a Possible Full Theory

In section 5.1 we have seen that a 2HDM with additional right-handed neutrinos may
emerge from a broken left-right symmetry. Allowing for a more general coupling of the
Higgs doublets to the fermions, we arrive at a Lagrangian of a possible “full” theory which
is given by

g - Z gkzibn + XV + Z gkqfr(ll) + ‘iﬂ?HiggS + gYukawa + ZGa,uge 3 (52—5)
Ye{qrL,drurLL,eR } i=1,2
where
Lo = Ef 7ZA8RTE (5.2-6a)
1—; . 1—; ) . ) .
Lo o= QNN <§N M7 + 7 20 N7 (Vo) o) +h.c.> - (5.2-6b)
i=1,2
(@) Nt i ; ;
227 = (DW¢®) (D@ rg@) —m2 g1 (5.2-6¢)

and ZGayge is defined appropriately. By integrating out the heavy degrees of freedom, we
obtain an effective neutrino mass operator of the form

1 o — , .
L0 = g e o) ) +he.  (i=1or2), (5.2-7)
where k() = 2, YT M~1-Y, at the matching scale. In analogy to the SM case, /@;i;) are

symmetric matrices with respect to the generation indices g and f.

5.2.3 Effective Neutrino Mass Operators

The lowest dimensional effective neutrino mass operators compatible with the symmetry
(5.2-2) are given by the sum of operators of the type (5.2-7),

& =L 4 g2 (5.2-8)

As demonstrated before, it is possible that only one of these operators, e.g. Z,ﬁm), arises
from integrating out heavy degrees of freedom in a specific model. For example, in the full
theory of the previous section, a non-zero () arises at the matching scale only if 29 s 1.
However, as we shall see, both operators mix due to the renormalization group evolution
and therefore have to be taken into account simultaneously.

As long as the symmetry (5.2-2) is valid, LM and #* represent the only possible
dimension 5 operators containing two /;, fields. If this symmetry was broken, further
couplings would appear in the Higgs interaction Lagrangian (5.2-4), and the natural FCNC
suppression would be spoiled. In this case, more terms in the [S-functions would arise
besides the additional effective operators appearing in the Lagrangian.
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Figure 5.1: Diagrams contributing to the self-energy of the field ¢(¥).

5.2.4 Calculation of the S-Functions

The wavefunction renormalization constants are defined by

Vb = (2) 540 (5.2-9)
for the SM fermions ¢ € {qr,, ur, dg, /1, €r },
o8 = 22,00 (5.2-10)

for the Higgs doublets and similarly for the remaining fields. For the Higgs fields ¢ we
obtain the self-energy diagrams of figure 5.1, which yield

1 t 51
1 (E¢(z))ab div - @ Tr (}/;3 Y;B) 6abp Z ) (52—11&)
3i 1
1 (Eqﬁ(i))ab o @Tl“ (Y.)Y.) S p = (5.2-11b)
i(Zd ) - Sl Y*Y) 5o P (5.2-11c)
99 ) b laiv 8 dd) Pab oo '
(oA ) _ 3i _ 21 ]
' (EW) ab | div 1672 Ajm; €’ (5.2-11d)
. (@Bl _
1 (%m)ab w = 0 (5.2-11e)
Wil _
12(%» )ab o 0, (5.2-11f)
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Figure 5.2: Diagrams relevant for the self-energy of the ¢, field.

B,2
(=30),,
. w2
IZ <E¢( ) )ab

J

i
av 1602 26p(p* —m3) = 6p°] vl g7 0ar (P* — m?) =, (5.2-11g)

i 3 1
_ 26w (p® — m2) — 6p2] = g2 2 _m?)- 2-11h
div 167_‘_2 |: §W(p ml) 6p ] 4 92 60417 (p m ) € ) (5 )

where the subscript “div” indicates the projection onto the divergent part of the corre-
sponding expression. We demand

Sy + 0 Zy0 p* + Im%, = UV finite, (5.2-12)

and therefore obtain for the wavefunction renormalization constants

Bk Wik
0oy = Y OZYy + 0L +8L30 + 6750 + Z 0Zy + > 07y
Yef{e,u,d} j
1 ; i
ST [5,1 2Tr(Y,Y,) + 200 6 Te(Y,]Y,) + 25 6 Te (Y, Yy)
1 5, 3 5] 1
+ 5(53 —3) g + §(§W —3) 93 . (5.2-13)
The self-energy diagrams of the leptonic doublet (see figure 5.2) yield
. e \9f . t f 1
1 (EZL)ab div - 16 92 (Y Y)g 6ab¢PL_ (52—14&)
. 21 1
H(S0)w | = [oadiviislwpPis, (5.2-14b)
j 2i 1
. wi o
IZ (EeL )ab g 167 292 1 fW ab]?PL— : (5.2-14c)
j
The condition
So, + 074, P+ 0my, = UV finite (5.2-15)

leads to the following wavefunction renormalization for /i,

02y = 0Z5 +0ZE+Y 7))
J
1

= gz Ve — 38ngt — Swal]

A | =

(5.2-16)
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Figure 5.3: The one-loop vertex corrections that arise due to the Yukawa coupling Y.
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2HDM’s under consideration these affect only the renormalization of x(11).

In the class of

We find for the vertex corrections arising due to the Y, Yukawa coupling, which are depicted

in figure 5.3,

abed
H(r),,

abcd
1
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(Ti),
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abcd
1 n(11)>

div

div
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872
i
872

87r

872

i
(YY)

YD) (H(ll)Y;Ye)gf %(‘%agbd

(YTY* ( ))gf%(gcasbd

1
§(gcd5ba + gcbgda) PLZ )

1
- gcbgda) PLZ )

# 1
—(Y;TY; H(H))gf %(5cd5ba + 5cb5da) PLE )

1
- 5cb5da) PLZ .

(5.2-17a)
(5.2-17h)
(5.2-17¢)

(5.2-17d)

For the corrections from the B gauge interactions, as shown in figure 5.4, we obtain

. B(1 abed
1 (FH((”))>
9f

abed
i (T2)
" 9f

abed
i (T20)
9f

div

div

div

32 2§BM

32 2§BM

o 2§BM

(ii) 1

§(gcd5ba + gcagbd) PLZ )
(ii) 1

5(5cd5ba + 5ca5bd) PLZ )

i) 1
§(gcd5ba + 5ca5bd) PLE )

(5.2-18a)
(5.2-18b)

(5.2-18c¢)
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Figure 5.4: One-loop vertex corrections that arise due to gauge interactions.

counterpart in the SM.

All these diagrams have a

i (FB(%))&M = EBU Y ( ) l(€cd<€“ba + cata) Pr— (5.2-18d)
ki) gf Idiv 32 2 2 € ’
abed ..
. (1B(5) _ (@) 1
i (FR(“-> )gf = 32 253 € g3 Kgf 5(EcdEa + EcaCa) PLE , (5.2-18e)
abed . 1
. (+B(5) _ € (i1)
! (Fn(ii) >gf div - 3972 (3 + gB) 2 g% ng; %(gcdgba + gcagbd) PLZ ) (52'18f)
while the W diagrams yield
. W(1) abed B ( i) 1
() |, = o 6w 03K (cui + B — 2eaea) Fue s (5.2-19)
i (FWﬁZ))ade = —fwogs kD 1 L (3 cdEha + Ecalbd — 26chfad) Pr— (5.2-19b)
D) or laiv 32 2 Tof 2 €’
i (le(‘?)))abcd — gWg (%) l(& d€ba + IEcalbd — 2€adEh )PL— (5.2—19C)
1 (1) of div 32 2 2 gf 2\~c a ca a c B )
- (W(4) 2oed _ w10 1
1 (Fn(ii) )gf div — 32 2§W 92 9f 5(36011617(1 + €cafbd — 25da€bc) PLZ ) (52'19(1)
abed
- (1W(5) _ w10 1
(M) = et B bttt ) Pr (5.2-19¢)
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Figure 5.5: The diagrams coming from the Higgs interaction Lagrangian. While the diagrams (a) and (b)
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The diagrams due to the Higgs self-interactions, see figure 5.5, evaluate to
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167r2
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With the counterterms for the effective vertices defined by

C. =

+5gf

1 _
_65(11) chgcd¢&1) g{bgbagbt(ll)

007Dt b e,

(5.2-19f)

(5.2-20a)
(5.2-20D)
(5.2-20c)

(5.2-20d)

(5.2-21)
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and the condition that

0 = 6k() ¢ ZF 2 +Z< B +T (H))) +IM +FH(H)] : (5.2-22a)
Lj=1 div
i 6 . .
0 = os®+ ) (rfg;) +sz2(§))) +T%,, +r2§22)] (5.2-22D)
Lj=1 div
in the MS scheme, we find
y 1
okl = o [6:1 27 (YTY)+<5“2(YTY) (&)
- )\ li 511>\* - (51'2)\5/{( 1
1
+ (&6 = 3) 91k + (36w — 3) g3s"™] - e (5.2-23)

Note that due to the appearance of the A5 terms even in the 1 x 1 case, i.e. even if the
tensorial structure may be neglected, multiplicative renormalization cannot be imposed.
Using the technique described in section 2.3, the B-functions for £ are derived as

1ot = (5 20a) [N + 0V
+ [5“ 2 Te(VY,) + 20 6 Te(V]Y,) + 217 6 Te(Y]Yy) | £
A4 5 )+ 5ok 33 5220

The terms proportional to A5 are responsible for the mixing of the effective operators
mentioned before The result for 5,a1) differs from the one in [17] by a factor of 3 because
of the term — 26,1 in the first line. This discrepancy is analogous to the one encountered
in the SM.
Note that in 2HDM’s running effects are in general larger than in the SM due to the
fact that the Yukawa couplings are enhanced, e.g. (Y )QHDM = (Yz)sm/ cos B, where tan § =
@) /v with v being the vev of the Higgs field ¢

5.2.5 Running Between Thresholds

In the effective theories between the possible full theory described in section 5.2.2 and the
2HDM’s, we find two contributions to the self-energy, coming from the diagrams 5.6(a)
and 5.6(b),

, IORS) 1
i(Enw®)or g 8n2 (YJYV> ngPR e (5.2-25a)
, i (e, 1
i(Enw))gs div 372 (YV YVT) of ?PLE - (5.2-25b)

Therefore we calculate the following wavefunction renormalization constants for the neu-
trino:

B L [(B0) nes (452) ! .
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Figure 5.6: Additional diagrams in the full theory. In this figure, ¢(¥) denotes the Higgs doublet which
couples to V.

Furthermore, the self-energy diagrams of the leptonic doublet and the Higgs which couples
to N acquire additional contributions due to the diagrams shown in figures 5.6(c) and
5.6(d),

N i 1

I(EZ)Zf o 167r2 (YTY) f5ba?PLE, (5.2-27a)
N B 1 ((")T) ((n)> ) o 1

(25 )ba i 82 Y, fg Y, gf5ba (p —QMQ)Z, (5.2-27h)

and correspondingly, we obtain the following additional wavefunction renormalization con-
stants:

(n) IIORD) 1
62y, = — 167r2 (YJY) P.-, (5.2-28a)
(n) n) (n)

6Z¢,(i) = ( ) (5.2-28hb)

)
From these relations, the S-function for Y, is evaluated to

N 3 (), (n) 3 3 9
1672 = Y,, Y)Y, - Sy, - 5.2-29

2
, (n), (n) . '
+> 20 Tr [&1 Y, + VY, +3:9 vy, +3:0 YJYu] } .

=1

The [S-functions of the remaining Yukawa couplings can be calculated analogously. They

are quite similar to those of [30,20,31] with two exceptions: First of all, one has to replace
)

Y, — Y, and secondly, in the trace terms one has to take into account that — unlike in the
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SM — the Higgs doublets do not couple to all fermions. Proceeding like this, we obtain

) 3 3 15, 9
167° By, = Y. {53/33/3 - §YJYV — Zg% - Zg% (5.2-30a)

(n), (n)
+Tr [YJYe +20V1Y, + 32 vy, + 320 YJYu] } :

) 3 3 5 9
167° By, = Yy {inYd - §YJYU — Eg% — Zgg — 893 (5.2-30b)

2
; L (n), (n) .
+> 2 Tr [&-1 V1Y, + 20Y]Y, +3Y] Vg + 3200 YJYU] } ,

i=1
(n) 3 3 17 9
167"y, = Yo {§YJY“ = JViYa— 0t = (95— 85 (5.2-30¢)
2
; NORO .
I [5“ ViV +20V)Y, +3Y Yo+ 3200 v Yu] } |
i=1

The RGE’s for the gauge couplings can be taken from [31], since the introduction of the
gauge singlets N* does not change them at one-loop. They read

20 1
167° Bo = <§TLF + énH) 9 (5.2-31a)
22 4 1
167% 8, = - (? —3NF - éng) 9 (5.2-31b)
4
167° By, = — (11 - §HF> 95 (5.2-31c¢)

where g; was not taken in GUT charge normalization. npr and ny appear in these formulae
for the sake of generality. In particular, for ny =1 we obtain the SM evolution of the
gauge couplings. Furthermore, the S-functions for the parameters of the Higgs interaction

Lagrangian have to be specified. Up to terms arising due to the neutrino Yukawa couplings,
)
these can also be inferred from [31]. Taking into account Y, yields

(n) 3
167 By, = 6T +8AT+ 62 A+ A5 =3\ (305 + 97) + 305 + 5 (97 + 3)°
(n), (n)
+4) Tr <Y;Ye + 20V, +320 vy, + 320 YJYU>

(n),(n) (n), (n)
—8Tr (Yte VIV, + 20 Y]V, VY,

v

+320Y]Y, vy, + 300 vy, v Yu> , (5.2-32a)
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(n)

3
1672 3y, = 6A§+8A§+6A3A4+A§—3Az(39§+gf)+39§+§(9f+9§)2

(n),(n)
4N T (22VY, 4327y, +3.@vTy,
v v d d u u

(n), (n) (n) (n)
—8Tr <z,§2> ViV, VY, + 3.2 viv,viv, + 32 vy, Yqu> ,

(5.2-32b)

25— AL+ A A+ A 40]+2 7] —1)\2— A s+ a;
3
1677 5 (A4 A2) (BAs+ Ag) + 475+ 4+2 5 —3A3 (395 + 1)

9 3 3
+ %t 05016
(n),(n)
+ 43 Tr <Y;Ye +YY, +3Y)V,+3 YJYU>

v

u

(n), (n)
—4Tr <z,(/2) V1Y, V1Y, +3 (zg>z§> + zf’z(l)) Yiv,v} Yu> (5.2-32¢)

(n)
16728y, = 2+ A) M +42A+A) M +8X2—3X\ (B¢ +¢%) +3¢° g2
(n),(n)
+ 4\ Tr <Yte +Y,Y, +3Y]Y, +3 YJYu>

(n), (n)
+4Tr <z,(,2)YJYe Y1y, +3 <z§”z§f> + zf’z(l)) Yiv, v} Yu> (5.2-324)

(n)
167’(’25)\5 = )\5 |:)\1 +)\2+8)\3+ 12)\4 — 6(9% —1—393)
(n),(n)
+2Tr (VY + VY, +3YVIV,+3YYy, )|, 5.2-32¢
e v d u

where we use different conventions for the couplings A;, Ay and A5 compared to [31]. Note
that the terms which are quartic in the Yukawa couplings do not correspond to two-loop
diagrams but stem from box diagrams of the type of figure 5.7. The extended SM [-function
for A=, is obtained by setting \y= - =Xs= 0 and 2\ = 1 for ¢ € {d,u,v}.

\
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AN o

oD ¢(i’)
AR\

/7

Figure 5.7: Typical one-loop box diagram leading to a correction for the Higgs self-interaction parameters
which is quartic in the Yukawa couplings. The solid lines correspond to the fermions of the theory.
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Supersymmetry is thought to play a role in solving many problems beyond the SM. For
instance, GUT predictions for the unification of gauge couplings work best if the effects
of relatively light supersymmetric particles are included [4-6]. Also, the hierarchy of mass
scales, and particularly the fact that mgw is much less than the scale at which gravity
becomes important, appears to require relatively light supersymmetric particles, Msysy <
1 TeV, for its stabilization.

As one can see from the gauge coupling evolution, the renormalization group has a great
impact on the predictions for physical parameters because of the large hierarchy between
Mgy, which is predicted to be ¢(10') GeV, and Msysy. Therefore it is interesting to
study the renormalization group evolution of neutrino mass parameters in the MSSM. On
the way of calculating the corresponding (-functions, we will develop a method, based on
supergraph techniques, which allows for computing the RGE’s for any, in particular even
higher-dimensional operator of the superpotential with only little effort.

6.1 Preliminaries and Notation

Supersymmetry is an extension of the Poincaré symmetry of space-time. According to
the Coleman-Mandula theorem [32], which holds under some very general assumptions,
such an extension cannot be generated by bosonic operators. However, as is shown by
Haag, Lopuszariski and Sohnius [33], the Poincaré symmetry can be extended by fermionic
generators {Q'}Y, and {Q"}Y,, which are referred to as SUSY generators. In this study,
we consider only the case N=1.

6.1.1 Supernumbers and Superspace

Usually one introduces the infinite dimensional Grassmann algebra A,, whose gen-
erators {¢;}3°, fulfill the anticommutation relations

Elements z € A, are called supernumbers. They can be written as a sum

2 = 2B+ 2g , (61_2)
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where zg € C and

o0

1 ) )
Zg = Z mzzllnc” R C“ (Z“ln S (D) (61—3)

n=1

holds. Any supernumber z can be decomposed into an even and an odd part,

z = u+v, (6.1-4a)
= 1 i i1
v = Z mzil...mﬂg ntl C L (61—4C)
n=1 ’

Purely odd supernumbers are referred to as a-numbers and anticommute among each
other. Purely even supernumbers are called c-numbers and commute with all supernum-
bers. The set of a-numbers C, is no sub-algebra of A, whereas the set C. of c-numbers
is.

For 4-dimensional supersymmetry, one usually introduces the subset R. C C, of real
supernumbers, and the superspace $, which given by

$ = {z = (27,00, 02); 7" € Re A By € @a} 0<p<3 a=12). (6.1-5)

The bar over the second # means complex conjugation, the dot over the spinor index « is
explained in appendix B.

6.1.2 Superspace Integration

We denote the integration over superspace coordinates by

/dgz = /d4x /d49 = /d4x /d29d29‘, (6.1-6)

where
2 1 « 15 1 af
d“9 = _ng df” e, = 1 dé, dbg , (6.1-7a)
_ 1 - _ . 1 S

@0 = —7d0sdf; e = 22540 d07 (6.1-7b)
The integrals over a-numbers are defined as

/ 6, 0° = 6,7 and / 4o 0; = 6% (6.1-8)
so that

/d29 *=1  and /d2992 =1 (6.1-9)
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holds. As a consequence, we can define d-functions with a-numbers as arguments,
§2(0) = 0%, 6*0)=0* and 06*(0) =620 . (6.1-10)

They possess the standard properties

/d2952(9)f(9) = f(0), (6.1-11a)
/ 2052 F(0) = f(0), (6.1-11b)
/ 4065 0) £(0,8) = F(0) (6.1-11c)

50— 0)F(0) = F0)5(0—0), (6.1-11d)

as well as the unusual property

5(0)8(0) =0 . (6.1-12)

6.1.3 Superfields

A superfield ¢, in the following denoted by a double-stroke letter, is a superanalytic
mapping

d: % C,. (6.1-13)

Due to the anticommuting properties of the # coordinates, any superfield ¢ can be expanded
in so-called component fields,

®(z,0,0) = C(z)+ V206(x) + V205(x) + 60 M(z) + 60 M*(x)
00" A, (x) + 00 OA(x) + 000 () + %99 66 D(z) (6.1-14)

where C', M and D denote scalar fields, £ and A Weyl spinors and A a vector field. This
expansion shows that the 6 coordinates possess mass dimension dim[f] = —%, and one can

infer from equation (6.1-8) that df, has the opposite mass dimension, dim[df,] = 3.

6.1.4 Vector-Superfields
A superfield V is called vector-superfield if it fulfills
Vi=V=V. (6.1-15)
In the component field expansion
V(z,0,0) = C(x)+ V206(x) + V205 (x) + 0OM () + 09M* (x)
- 00MBA, (x) + 00 A (x) + 000 () + %99 66D (z) | (6.1-16)
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C and D are real scalar fields, M is a complex scalar, A a real vector field, and & and A
complex spinors. Under an infinitesimal SUSY variation

Ssusy =1 (e%Qq — 2°Qy) (6.1-17)
the component fields of V behave as follows:
0C = V2(s£+ek) (6.1-18a)
1
0a = V2e,M + —=(0"8), (A, —i0,C) , (6.1-18b)
V2
M = Ex+ %aﬂ (€ot3) | (6.1-18¢)
. i i
0A, = co A+ AoyuE — ﬁsa,ﬂg + ﬁaufs
+V2¢0,,0"¢ — V255,,1E | (6.1-18d)
SA¢ = 2D %g—daﬂA# —i(5"5)% 0,A, | (6.1-18e)
6D = 10, (Ao"s+ Aa'e) . (6.1-18f)

6.1.5 SUSY-Covariant Derivatives

The SUSY-covariant derivative is usually introduced by

D, = 8a+iagﬁ-0_’38u, (6.1-19a)

D, = —-0,—i0%".0, , (6.1-19b)

where 0, and 0, denote the derivative w.r.t. the a-number 6, and 65, respectively. These
derivatives obey the anticommutation rules

{DOMD,B} = {Ddabﬁ.} - 07 (61—20&)
{D,,D;} = 20,,P,. (6.1-20Db)
Furthermore, the following useful identities hold:
1

DD’ = —§saﬁD2 : (6.1-21a)

_ 1 .5

DDF = 5gaﬁD? : (6.1-21b)
D*D?’D, = DsD*D*?, (6.1-21c)
D’D*D* = 160D?, (6.1-21d)
D*D’D? = 160D”. (6.1-21e)

In Fourier space, we will have to specify the momentum,

D.(p) = 0Ou+0nslpy, (6.1-22a)

D;(p) = —0s—0%".p, . (6.1-22b)
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It is easily checked that the “transfer rule”

5(0 = 0') D, (p) = ~Da(~p) 80 — ) (6.1-23)
holds; as a consequence, we find the useful relation

540 — 0') D"*(p) = D*(—p) 5*(6 — 0) . (6.1-24)
Furthermore, by inserting *(6 — 0') = (0 — 6")? (0 — §')?, we obtain the equation

540 -0 6D2D264(9 0') =600, (6.1-25)
while

§(6 — 0") x (lower product of D's and D's) x §(6 —0') =0, (6.1-26)

which will enable us to reduce D’s and D’s in supergraph expressions.

6.1.6 Chiral Superfields
A superfield ¢y, : $ — C, or &g : $ — C. is called left-chiral or right-chiral, if it fulfills

Dy®y(2,0,0) =0 or Dgbr(r,0,0) =0, (6.1-27)

respectively.
Consider for example a left-chiral field. One usually changes coordinates according to

ot =yt = 2”4+ i00"0 . (6.1-28)
y* is chosen such that
Dyt = (—5% — i6"49050,) (a* + i00"d) =
holds. In these new y-coordinates the covariant derivatives
W) = 9, + 2i0" Béﬁ'au and DY =g, (6.1-29)
and the SUSY generators are given by
QY =—id, and QY —20°04. 0% (6.1-30)

In particular, the left-chiral superfield in y-coordinates is independent of #; therefore it can
be expanded in powers of 6,

bu(y,0) = d(y) + V200 (y) + 00 F(y) . (6.1-31)
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It can be shown that the equations of motion do not provide a derivative term for F.
Therefore, this field is usually referred to as auxiliary field. We can go back to the original
x-coordinates and find

1.(2,0,0) = d)(x)—i—iﬁa”ﬁauqﬁ(x)+i€292D¢)(x)
1
NG

One can show that the component fields transform under an infinitesimal SUSY transfor-
mation as

V200 (2) + —= 02 0,0 ()"0 + 0° F () . (6.1-32)

6¢ = V2e%, (6.1-33a)

0o = V2eoF —V2i(0%2)s 0, (6.1-33h)

OF = V2i0,(vote) . (6.1-33c)
Since any left-chiral superfield can be written as

¢, = D*V (6.1-34)

with a suitable, non-chiral superfield ¥, we obtain by equation (6.1-21d)

1 _
o 0! D*D* ¢, = ¢, (6.1-35)

With the aid of

1 _
/d4x /d40 = /d% /dQHDZ, (6.1-36)

we derive the useful identity

1
/d% /dZHFG = /d4x /d49F 0! D*G, (6.1-37)

where F' and G are arbitrary chiral expressions.

In supersymmetric theories, matter fields are conventionally described by left-chiral su-
perfields while gauge fields are contained in vector-superfields. From now on, we will
denote-vector superfields by V, W etc. All the chiral superfields will be assumed to be left-
chiral, consequently the index “L” is redundant and will be omitted, i.e. in the following ¢
will denote a left-chiral superfield.

6.1.7 Gauge Interactions

In SUSY, gauge transformations of a chiral field $(* in a given gauge group G are defined
by

QRN Z [exp (—2ig/\ATA)L.j U | (6.1-38a)
J

QNN Z [exp (2ig/_\ATA)]ij V) | (6.1-38b)

J
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where {A1}4mG are chiral superfields. For U(1) gauge theories, T has to be replaced by
the charge ¢. The usual “kinetic” term ), ¢ is generalized to

>_ 9 fexp(2gV)l] @Y (6.1-39)

with V := VAT, and V4 := i(/_\A — /\A). By construction, V4 are vector-superfields. In
order to guarantee the invariance of (6.1-39) under (6.1-38), V must transform as
VoV =V+i(A-A) . (6.1-40)
With the definitions of the field strength superfields
W, = —iDD exp(—V) Dy exp(V) and (6.1-41a)

Ws = _ZDD exp(—=V)Dgexp(V) , (6.1-41b)

the gauge kinetic Lagrangian reads

Loauge = i ( / d*O WW,, + / 46 wd> + ZLGauge—Fixing + Lahost » (6.1-42)
where the gauge-fixing Lagrangian is given by

Liauge—Fixing = —éTr / d*¢ (D*V) (D*) . (6.1-43)

The gauge a=1 is called Fermi-Feynman gauge and has the advantage that the propa-
gator for a massless V is given by 1/p?, if it is fixed. Therefore we will use it in this thesis.
Furthermore, the ghost Lagrangian Zgnest has to be included. However, since its explicit
form is not needed in the following, it is not specified here.

6.1.8 Supersymmetric Lagrangians

In a supersymmetric theory, the gauge-invariant kinetic term is contained in
SGauge—Matter = ) / d*2 ®@ [exp (2gV)];; &) . (6.1-44)
]

Yukawa-type interactions and mass terms are described by the superpotential, which is by
definition an analytic function of the left-chiral fields. The requirement of renormalizability
forbids couplings involving more than three powers of chiral superfields.

Consider now a general superpotential 7/(4]>(1), . <ﬂ>(”)), where the superfields ¢* have
the following expansion in component fields:

¢ (y,0) = ¢ (y) + V2009 (y) + 00 FO(y) . (6.1-45)
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Since the superpotential is an analytic function of the chiral superfields, it is itself a chiral
field. Besides, equation (6.1-33) shows that under SUSY variations the F' component of
any chiral field remains unchanged up to a total derivative. Hence the F' component is
a potential candidate for a SUSY Lagrangian. In particular, the F' component of the
superpotential is referred to as F-term.

In order to extract component field vertices out of the superpotential, it is useful to
expand it in the fermionic coordinates, which yields the result

~Lp = w(OW, . oM)| +he

1 o*W N o
S I YA (@) ) _
(22; 250 9b0) 0:0¢ 4 930

The same considerations we have made for the F' component of a chiral expression apply
to the D component of a vector-superfield, see equation (6.1-18f). Analogously, the 660 60
projection of a superfield expression .# ({®®}, {#)}) which fulfills # T = ¢, serves as a
potential SUSY Lagrangian and is referred to as D-term. In general, it can be calculated
via

F<i>+h.c.> . (6.1-46)
0=0

Zp = A ({99}, {87} looas =
= -9, W(l)aﬂaﬂw(k) + O p@« _ 8u¢(k) rpl* + h.c.]

(6.1-47)

P * N
_ { 500 560 53 . [w(k)w(l) F(f) + (w(f)o—ﬂw( )) aﬂ(ﬁ(l)] + hC}
1 o

1

(&) O (1) ()
{aqp(k)aqp(é)a@(m)a@(n) 0:0(1/) o9) (™ )+h.c.] :

where we have introduced the so-called Kédhler-metric, defined by
4
Ob®) 9P | ,_
The on-shell Lagrangian can be obtained by inserting the (algebraic) equations of motion for
the auxiliary fields ). In particular, for a super-Yang-Mills action consisting of (6.1-42),

(6.1-44) and a general superpotential #, one derives the following F-term contribution to
the on-shell Lagrangian:

1 W
Zr="3 (Z o9 960 |,_,
2,) -

Grp (6.1-48)

2

(6.1-49)

- ov
() o, (4) _ 7
Py +h.c.> > ‘8@% 0

6.2 Supergraphs

The supergraph method was invented in 1975 [34-36] and improved in 1979 [37]. It allows
to represent expressions involving superfields by Feynman diagrams. Furthermore, its use
makes it possible to keep the non-renormalization theorem manifest. Moreover, it has the
advantage that the number of independent diagrams is clearly reduced compared to the
component field calculations.
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6.2.1 Supergraph Rules

We will signify chiral superfields in Feynman diagrams by straight double lines while vector-
superfields are indicated by wiggly double lines,

P o and Vo v .

The generating functional for chiral superfields is given by [38]

_ i _ J(5
21J3,3] :exp{—g/dgzdgz/ (96, 3(2)) Acrs(z2) ( J’Ez’; )} , (6.2-1)
where Agrs is the superfield propagator introduced by Grisaru, Roéek and Siegel [37],

D2
mD>

Agrs(2,2') = 40 m D> 6(z —2') . (6.2-2)

1 =
4 0

Therefore, for each chiral superfield there exist three propagators, namely <<1_]>d]>>, (dP) and
<<1]>d]>>. We use the convention that the arrow always points from ¢ to .

Supergraph rule 1 (Propagator Rules).

P i

V(p,0) RAARARAARARAA V(p, ') e 340 —0') (6.2-3a)
p 1 )

B(p,0) ——B—— (p8) | 72 (0 —0) (6.2-3b)
P im .

O(p,0) ———— ¥(p,0') ' 202 —m?) (1D?(p)) 6*(0 — ') (6.2-3c)
P im

B(p,0) —P——t— S(.0) ' () —m?) (AD*(p)) 6*(0 — ") (6.2-3d)

For the first propagator, Fermi-Feynman gauge was applied.

Furthermore, for the vertices there arise products of SUSY-covariant derivatives:

Supergraph rule 2 (Vertex Rules).

v Integrate each vertex over d*6.

d*k
v Integrate over loop momenta / —.
(2m)*
v For each (anti-)chiral vertez with n internal lines let D*(q;) (D*(q;)) act on n—1
propagators associated with the internal lines. q; is the momentum of flowing along
the internal line away from the vertex.
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V' For each gauge vertex with n internal chiral lines let D*(q;) (D*(q;)) act on n
propagators associated with the internal chiral lines if the chiral line points away
from (towards) the vertecr. ¢; is again the momentum flowing along the internal
line away from the vertez.

For the analog of wavefunction renormalization we compute the effective action. It
contains the kinetic term for the component fields in

/ d'p / 020 420 B(—p, 0) B(p, ') 54(0 — )
Corrections to this can be written as

/ d'p / 020 420 B(—p, 0) 625 (p, 0') 5*(0 — 0') ,
thus leading to a Zg factor.

Supergraph rule 3 (Effective Action). In order to obtain the effective action, for
each external (anti-)chiral leg multiply with a factor

/((21;;4@(19,9) or /%@(zﬂﬂ),

respectively. Fxternal vector superfields lead to

[ oo

p always denotes the outgoing momentum. Furthermore, multiply the whole expression
with

(2m)* o (Zpin - Zpout> ,

where the sums are over incoming and outgoing momenta.

The covariant derivatives acting on the vertices are also denoted in the diagrams. This can
be illustrated by an example:

o~ 6400 (—%D”) TO-9) (—%52(—19)) :

p2_m2

where the arrow over the D? indicates that the derivative acts onto the expression left of
it. The prime signifies that the corresponding D' is a derivative w.r.t. #’. Using equa-
tion (6.1-24), we can simplify the expression to

1 64 (0 —0') (6.1-25) (0 — 0')

R e e
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Thus, whenever a chiral line with both D? and D? acting on it appears in conjunction

with (0 — @), we can simply replace it by the ordinary Feynman propagator for scalar
fields, i/(p? — m?).

Supergraph rule 4 (D-Algebra). Simplify the diagrams using
0O —0)x e B e 80— 0) X —m e ———- . (6.24)

_1ip2 12
1D —1D

6.2.2 Sample Calculations

Let us repeat the steps leading to supergraph rule 4 in an explicit example first. Consider
a general Yukawa-type superpotential

W ukawa = y b1 P3d, (6-2‘5)

where each of the superfields transforms under some gauge groups. In this case, the Feyn-
man rules (D.1) are easily derived. There is a non-vanishing supergraph for <<1]>1 4]>1>, namely

50 —0) [ 1, i54(6 — ')
e () e

540 — 0"
k2(k — p)?

gy [atpepoepaso-o) [ S5t

= [a iy B0 [a9e(-p.0) 0050 -0). (620

« / k1 by D2y 540 — )

Now we use supergraph rule 4 in order to calculate gauge contributions to the <47>4]>>
propagator. Consider a chiral superfield ¢ which transforms under a representation R of a
gauge group G. The wavefunction renormalization of a given field due to gauge interactions
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at one-loop is represented by the following diagram:

’
\
Supergraph rule4 — / /k—\ \ _p> '
— ®(p, ) ) ®(p,0')
NP

= — /d4p 161 = 49° ¢2(R) Bo(p?, 0, m?) /d49'4]>(—p, 0) d(p,0)6* (0 —0'), (6.2-7)
T

where ¢;(R) denotes the quadratic Casimir invariant of the irrep R, as explained in ap-

pendix A, and g the gauge coupling.

6.3 Renormalization of Supersymmetric Theories

6.3.1 Dimensional Reduction

It is well known that dimensional regularization, as described in section 2.2.1, violates SUSY
explicitly since it introduces a mismatch between the number of gauge bosons and gaugino
degrees of freedom. Hence we are obliged to choose a modified regularization prescription.
Usually Dimensional Regularization via Dimensional Reduction (DRED) [39,40] is used.
The main differences compared to dimensional regularization are:

(1) Only continuation to lower dimensions of space-time is allowed.

(2) The ranges of all Lorentz indices are kept the same, as if they were internal symmetry
indices.

As a consequence, an N-extended supersymmetry in d dimensions must be reinterpreted
as an N'-extended supersymmetry in d’ < d dimensions, where N’ > N.

6.3.2 The Non-Renormalization Theorem

The Non-Renormalization-Theorem [41,42] is one of the major “miracles” which occur in
conjunction with a supersymmetric theory. Consider a Lagrangian of Ng superfields,

L = [4‘»3’ exp(—2¢ - Vg)ij @g)] + [W({@g)}) ‘00 + h.c.]

0000
+

S
> cas (Wi)3" (WB)"“‘% +he |, (6.3-1)
n=1
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where the superpotential can be written as

v {x|mer | v me| 032)

A Lier jej

Va

We have introduced the abbreviations

1

W= 8—D2[exp(2gnV")Da exp(—2¢,V")] | (6.3-3a)
S dim G,

g-V = > g, V" and V= ) VATH, (6.3-3b)
71 —

which also hold analogously for the bare fields. Then the non-renormalization theorem
states the following: The counterterm for the operators of the superpotential can be chosen
to vanish,

SVi=0 VA. (6.3-4)

In other words, only wavefunction renormalization constants have to be taken into account.
It can be shown that this remarkable theorem also holds in non-renormalizable theories [13].
In particular, if only the superpotential contains higher-dimensional, non-renormalizable
operators, the theorem applies as well. This means that one does not need any counterterms
for the operators of the superpotential.

6.3.3 Wavefunction Renormalization Constants

The wavefunction renormalization constants of the matter superfields are defined as in the
non-supersymmetric case,

Zij — ]]-ij + 5ZZ] 3 (63—5)

i.e. they relate the bare @g) and the renormalized superfield, @, via

o = Z 730 (6.3-6)

The renormalizable part of the superpotential is assumed to be

1 NN | L
Woen = 5 mj) o U 4 éA(ijk) $@ $U) k) (6.3-7)
The brackets indicate symmetrization of the indices of m and A. Mass terms in equa-
tion (6.3-7) are ignored for the calculations as they do not affect the S-functions of the
model. In addition to the terms of equation (6.3-7), higher dimensional operators may ap-
pear in the superpotential of an effective theory. These operators are generally suppressed

by inverse powers of a large mass scale A. Although these operators are non-renormalizable
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by power counting, in the effective field theory approach one can renormalize the theory
in an expansion in inverse powers of A. In the leading order of this expansion, the higher
dimensional operators do not contribute to the wavefunction renormalization.

Using equations (6.2-6) and (6.2-7) as well as DRED, we calculate at the one-loop level

[Z )\zkl)\]kl 4 Z In CZ R 2 zy ) (63—8)

k(=1

1 _
—07Z;; =
while at two-loop dZ;; is given by [43]

~0zy) = 2+6 { Z g s (RY) gn c2(RY) 6

n,m=1

+2 Z ga s (RY) (@ — 3¢1(Gy)) 0

+ Z Z gn R ) —|— 2 Co (Rné))] )‘fké)\jkl
n=1 k(=1
1 &
o 5 Z )\ Z)\ZSt )‘rst)‘]kr} : (63_9)
kJl,rs,t=1

Using the group-theoretical notation of appendix A, we introduced

cM:_Zz (RD) - ] dim (RY)) , (6.3-10)

m#n

where multiplication with (generalized) color-factors, as explained in the following, is im-
plied. The diagrams leading to equation (6.3-9) are shown in figure 6.1.

6.3.4 Remarks on Generalized Color-Factors

In general, one demands that the trilinear terms in the superpotential,
Wyukawa = Z Aiijry ® &0 ¢ (6.3-11)
g,k
are singlets under gauge transformations. In the following, we will stick to couplings in
which one field transforms only as singlet whereas the others transform opposite to each

other, for this is the only configuration we will encounter in praxis. For instance in a
SU(N) gauge theory, a typical trilinear term looks like

1-N-N. (6.3-12)

In an one-loop diagram, as shown in figure 6.2(a), either the incoming and outgoing fields
transform as singlets, in which case a color-factor has to be respected, or the incoming
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Figure 6.1: Two-loop supergraphs which contribute to the ®& propagator. A blob denotes the relevant
one-particle irreducible graph including any one-loop counterterm that may be required [43].

field transforms non-trivially, in which case there is no color-factor. Thus, we define the
color-factor for a group factor as a function of the “internal” indices k£ and ¢ by

dim Ry, dim R} = dim R
F,(k, ) := "o " " 6.3-13
(k. ) { 1, otherwise ( )
and the color-factor for the whole gauge group
S
F(k ) = [ Fu(k,0) . (6.3-14)
n=1
With these color-factors, equation (6.3-8) reads
11| >
1) _ b £\ 2 @Y §..
02y, = () e k;lF(k;,E) Nige\jhe 4; g2 cr (RY) 6,5 (6.3-15)
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Figure 6.2: Topologies of the diagrams contributing to the one- and two-loop wavefunction renormalization
in a theory with only trilinear couplings.

For the A*AA*A-term in principle we should take into account two topologies. However,
the topology of figure 6.2(b) does not contribute to this term since it cannot be realized
with massless chiral superfields. For the topology of figure 6.2(c), we only need to include
the product of two color-factors so that the modified equation (6.3-9) reads

5Zi(j2) - _2+6 { Z gnc? RZ ng?(R(j)) 5ij

n,m=1

S
+ Z Z k E gn — Co (an)) + 202(Rne))] A:szjké
n=1 k=1
1 &
— 5 Z F(I{Z, E) F(S, t) A:szést )‘;st)‘]kr} . (63—16)
kl,rs,t=1

¢y, equals ¢y, up to generation factors that have to be respected.

6.3.5 Calculating 8-Functions
Consider a term of a general superpotential
[H (4]>(">)"i] Q [H (41><j>)"f] , (6.3-17)
iel jet

where I = {1,... M} and J = {M + 1,... N}. Due to the non-renormalization theorem,
the following relation between a bare quantity, (Jg, and the renormalized one, (), holds:

Qp = (H Zg%) Q (H Z&g) . (6.3-18)

icl jeg
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Using DRED instead of dimensional regularization and following the same steps as in
section 2.3, we find
vA>

)

where again {V4} denotes the set of all variables of the theory, including the one under
consideration, ). This relation in conjunction with the formulae for 6.7, equations (6.3-15)
and (6.3-16), is an important result, since it makes it possible to calculate S-functions in
general N =1 supersymmetric theories with only little effort. It might therefore be of great
interest for supersymmetric model building.

Bo({Va}) = Q- my [ZDVA < v,

jeJ

+ Z n; [Z Dy, <ddZ‘Z’1
A

el

Q, (6.3-19)

6.4 The vMSSM

The Minimal Supersymmetric Standard Model extended by neutrinos (¥MSSM) contains
the fields of the Minimal Supersymmetric Standard Model (MSSM) and additionally the
singlet neutrino superfield which we will denote by v®. This minimal extension is partic-
ularly interesting since adding gauge singlets does not spoil the unification of the gauge
couplings in the MSSM. With this extension, both Dirac masses and see-saw suppressed
Majorana masses for the neutrinos are possible.

6.4.1 Field Content

We enumerate the vYMSSM superfields as shown in table 6.4-1, in which the used symbols
as well as the quantum numbers are specified. Note that we use GUT charge normalization
for the U(1)y charge.

Field [ 1 2 3 4 5 6 7 8
Symbol | §V $® g d¢ € 1 €€ oC

5 1 1 1 1 2 1

sty |3tz ts tz3 -5 —3 +10
SU@, |2 2 2 1 1 2 1 1
SUB)c| 1 1 3 3 3 1 1 1

Table 6.4-1: Quantum numbers of the superfields. gy denotes the U(1)y charge in GUT normalization.
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Their expansions in component fields read

B = oM+ V2080 + 06 Fy) (6.4-1a)
P = 6 + V2003 + 00 Fr) (6.4-1b)

of = ¢ +V20¢ +00 F!, (6.4-1c)
! = %+ V20u 00 FY (6.4-1d)
d%9 = d°9 +/20d°9 + 00 F¢ (6.4-1¢)

Vo= V200 + 00 F] (6.4-1f)
e“9 = %94+ 20eC9 + 00 FY (6.4-1g)
b9 = 5°9 4 2009 + 00 F9 (6.4-1h)

where the R-parity odd component fields are furnished with a tilde.

6.4.2 Superpotential

We consider the superpotential

Wonssm = (Ya)grd 40 e®a) + (V)8 (") a)
+(Ye) €40 + (Y,)g v 9]

1 o
+5 My v (6.4-2)

It contains the couplings of the MSSM superpotential as well as the “Yukawa” coupling of
the neutrino superfields and a direct mass term for the latter.

6.4.3 Integrating Out v°

In this section, the procedure of integrating out heavy fields in supersymmetric theories
is studied in an explicit example. For simplicity, we restrict ourselves to one generation.
Consider the action

S = /d4x {/d49 [ITJCD/C + @(2) exp (291 BQ$(2) + g2 Wi0i> {1’(2)
+ U exp (291 By + g2 Wic*) U]

+ [ / A20 # (v°, 9@, 1) + h.c.] } (6.4-3)

where we need to take into account only the following part of the ¥MSSM superpotential:

M
W, = 71110[1/0 + Y, vC ¢ (e7)ab T, . (6.4-4)
The procedure of integrating out v® can in principle be performed in two ways: Firstly, one
can switch to a component field description of the theory and do it the usual way. Secondly,
one can use supergraph techniques in order to calculate the desired effective action.
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4},(2)

@
(a) (b) (c)

Figure 6.3: Tree-level supergraphs leading to an effective action where the v© fields are integrated out.

In the supergraph approach, we need to consider the three diagrams shown in figure 6.3
and those which arise by reverting the directions of all arrows. The first diagram 6.3(a)
yields

~vly, /d4 /d4 /d49’ (z,0)1(x, 9)154é9 ]\5;)4} (2,0)1(x,0") , (6.4-5)

where we imply correct SU(2) index contractions. After neglecting the [J against the M?
term, this leads to the contribution

/d4 /d4 M24]> (z,0)1(z,0) §?(z,0)1(x, ) (6.4-6)

to the effective action, which in turn gives rise to an additional D-term.
The second diagram 6.3(b) gives

—Y? /d4 /d4 /d49’

) (2, 0) Uz, 0) —

M O-0) 1y

Neglecting the second [ against M? and using equation (6.1-37), we find a contribution

i / diz / dzeyﬁf@@(x,e)u@,e) 2 (x,0)1(x,0) , (6.4-8)

which turns out to be a part of the effective superpotential.
When we include diagram 6.3(c) as well as the diagrams with reversed arrows, we obtain
an effective action of the following form:

Sa = [da {/ 1t 2 50 (0, 0)1(2,0) 49 2. 0) (0, )

299 Y0 4 14 ”
+[/d 022414 1+ he. | ¢ (6.4-9)
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Hence, in leading order of the expansion in inverse powers of the presumably heavy scale
M the effective action is given by

Y2
e = [t | [@023592 16 14 c | | (6.4-10)

i.e. the D-term has dropped out. Consequently, we have justified the effective neutrino
mass operator of the MSSM

1

— 1 Fos 19599 14 4 hee. (6.4-11)
where the SU(2) and generation indices are introduced again and a combinatoric factor
was respected. As in equation (3.2-7),  is defined by

Ko =2 (Y, M7'Y,), ¢ (6.4-12)

MSSM _
v, =

at the matching scale.

6.4.4 Yukawa RGE’s

Using equation (6.3-8), we find for the 1/e-coefficients of the wavefunction renormalization
constants

—(m) Zy o= 6TV Yy +2 Tr(V V) - %gf —34%, (6.4-13a)
—(4m)? 20 = 6 Tr(V] V) +2 Tr(V - Y,) - ggf 342, (6.4-13b)

)2z = 2vi.vg+2v)v, - % 9> —3g2 — 1—36 9 (6.4-13¢)
—(4n)?Z% = 4y v - % g — 1—36 9 (6.4-13d)
—(4m)?Z = 4y - % 9> — 1—36 9 (6.4-13¢)

~(@m)?zZy) = 2yl v.+2v)y, - ggf — 342, (6.4-13f)
(mp 2, = ave v -2 (6.4-13g)
~(m)? 2z = 4y ey (6.4-13h)

where the the last six Z-factors are matrices in flavour space. From the two-loop diagrams
we obtain

—(m)tZ8 = 9TV Y- YY) =3 (Y, YL - VYY)
=3 TV Y YY) - Te(¥] Y, YY)

2 6
- g2 Te(YV) - vy) + = g} Tr(Y - V,) + 16 g2 Te(Y,] - Yy)
207 , 9 ,, 15,
il -0 4-14
+10091+109192+ 1 92 > (6 a)
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—(4m)* 2

a1 —3Te(Y] Y, Yy o Te(Y) Y, YY)

~Te(Y) Y, - YY) =3 Te(Y) Y, YY)

4
+ 20 (Y] Vo) + 1695 Tr(Y] - V0)
207 9 15
T R R (6.4-14b)

—(4m)tz® = —avi.v, vl vi—2viv, vy,
—3Y) Y, Te(Yy-Y)) =3V v, Te(Y, - V)
=YYy (Y, - V) =YY, Te(Y, - Y

2 4
+59%YJ'Yd+59%YJ'Yu
199 , 1 5,5, 15,
90091+109192+492
2

8 8
+ 500 +89:05— 595, (6.4-14c)

—(4m) 28

dC1

= —2v;.Yrvr-vl—2vy-vlvey)
—6Y; Y Te(Y,-Y)) —2vy vl Te(y, - Y))
2 * *
+gg%Yd Y 60V Y)
202 32 8

4 2 2
il St I 6.4-14d
T T N TG0 ( )

)t z%) . = —ovivlovpevr oy vl veev!

u

=2V Y (Y, - V) -6V v Te(Y, - Y))

2
856 , 128 , , 8 ,

R e 0 6.4-14
Tty 1% g% ( )

—(47T)4Zu(,21) = —ovi-v,-viv,—2v) .y, YTy,
=3V Y Te(Yy - Y)) = VIV T V)
-3V -y, Te(Y, - V) =YY, Te(Y, - Y))

207 9 15

6 2
— Y Y+ =gt =22+ — gt 6.4-14f
591 e +10091+109192+4g27 ( )

_(47.(_)42“52)1 — —QY;*'Y;T'Y;*'Y;T—QY;*'YVT'YV*'Y;T

—6Y; Y (YY) —2v Y (Y, - V)
6 234
— YO Y 60y Y+ = (6.4-14g)
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—(4m)* 2@

vC,1

= —2vy.vl.vrvl—2vrv)vry)
—6Y) Y Te(Y, -V, -2V V) Tr(Y, - Y
+ g Y)Y 66 YY) (6.4-14h)

respectively. From these, the two-loop Yukawa RGE’s are derived,

dY, 1

dp  (4m)

1

i 8 (6.4-15)

1
S8 +

1

where z € {d,u,e,v}. Using equation (6.3-19), the one-loop contributions to the -
functions are given by

Ty

16
N3-S0 } , (6.4-16a)

3

A = yu.{ydT.Yd+3YJ-Yu+Tr(Yj-Y,,)+3 Te(Y,) - Y,)

13 16
—— 91 —-30——03 } (6.4-16b)

15 3
A~ Ye.{3Y6T.Y8+Yj-Yl,+3Tr(YJ-Yd)+TY(YJ'Yez)
_g 2_3 2 64:]_6
591 o ) (._ C)

A= v sy T T )+ T T

3
- g3 } , (6.4-16d)
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and the two-loop contributions are

By = Yd'{—4YJ-Yd-YJ-Yd—zYJ-Yu-YJ-Yd—2YJ-Yu'YJ'Yu

—9Te(Y) Yy Y)Yy =3 Te(Y) v, VYY)
—3Tr(YeT-K,-ﬁ-K)—Tr(KT-Yy-YJ-E)
— 9V Yy Te(Yy-Y)) = 3Y) - Y, Te(Y, - Y

— Y Y, Te(Y, - V) =3V -V, Te(Y, - Y)

4 4
+6g3 Y] Yot o PV Yot gtV YL

) 6
- g2 Te(Y,) - Yy) + = g2 Te(Y]-Y,) + 16 g2 Tr(Y, - Yy)
287 2

15 , 8 16
+W9f+gf93+393+§gfg§+8gzg§—593} . (6.4-17a)

B = Yu'{_QYdT'Yd'YJ'Yd—QYJ'Yd'YJ'Yu_4YJ'Y“'YJ'Y“
=3V, Yy Te(Yy- V) = VY, Te(Y, - Y))
—9Y] Y, Te(Y, - V) = 3Y) -V, Te(Y, - Y))
—3 (VYY) V) — 9 (Y Y, YY)
— TV Y, YY) -3 (Y Y, YY)

2 2
+gngdT-Yd+gg%YJ-Yu+6g§YJ-Yu

4 274
P2 g TRV V) #1643 TV V) + 2
15 , 136 16
OGS et gfg§+89§g§—§g§} : (6.4-17h)

By = Ye'{‘4YJ-Ye-YJ-n—zYJ-Yu-n*-Y;—2YJ-Yu-YJ-Yu

—9v!. v, Tr(Y,- Ydf) —3YH. v, Te(Y, - V)
— Y Y, Te(Y, - V) =3V, .Y, Tr(Y, - V)
—9Tr(Y) - Yy V] Yy =3 Tx(Y] Y, YY)

6
=3 T (V] Ve YY) = T (VY YY) 4 2 gt Te(V YY)

2
+ 693 YeT Y, — 5 g% Tr(YdT ’ Yd) + 1693% Tr(YdT : Yd)

27 , 9 15
t SOt gint 5 0 } : (6.4-17c)
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/B(Y?I) = YV{_QS/J}/;}/;T.}/;_Q}/:jS/e'YJ'YV_ZLYJ'YV'YJ-YV

=3V Y Te(Ve V) - VY (Y- Y
—3Y Y, Te(Y, Y — oYY, Te(Y, - Y))
—Te(Y) Y, -V -Y,) =3 Te(Y) Y, YY)
— 3TV YY) o (Y oy, YY)

6 6
+gngj-Ye+gngJ-Yy+6g§YJ-Y,,

4
+ 5 g2 Tr(Y,) - Y,) +16 g2 Tr(Y, - Y,)

207 , 9 15
RGN R } : (6.4-17d)

Note that the two-loop MSSM RGE’s for Yy, Y, and Y, are easily obtained by setting
Y, = 0. The effort is clearly reduced compared to component field calculations [21-23].

6.4.5 Two-Loop B-Function for the Mass of the Singlet Superfield

From the wavefunction renormalization constants of the ¥MSSM, the [-function for the
bilinear coupling of equation (6.4-2) can easily be computed using equation (6.3-19). At
one-loop, we find

(ar)?pl =2 M- Y- YT 42V, Y- M (6.4-18)

and the two-loop part of the S-function is given by

(471—)46](\/2[) = M- |:_QYV*'YveT'Yve*'YVT_QY:'YVT'YV*'YVT
—6Y Y Tr(Y, Y -2V Y, Te(Y, - Y))
6
+gg%Y:YVT+69§YV*YVT:|
+[—2Y,,-nf-n-YJ—QY,,-Yj-YV-YJ
—6Y, Y Tr(Y,-Y)—2Y, -V Tr(Y, - Y))

6
+gg%Yy-YJ+6g§YV-YJ} M (6.4-19)

From this we derive between the thresholds the following S-function at one-loop

e @\ (o () () (), r
16728y = 2\Y,¥1) M +2M (V,Y)) (6.4-20)

(n)
the two-loop result consists of equation (6.4-19) where Y, is replaced by Y,
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6.4.6 Two-Loop SB-Function for the Effective Neutrino Mass Operator

We now apply the supergraph method to calculate the S-function for the lowest dimensional
effective neutrino mass operator (6.4-11). The [-function can easily be computed using
our method. Substituting D,, = Dy, = £ with i € {1,2,3} and = € {u,d, e}, we obtain
from equation (6.3-19)

1 1

3 Ziy k= AR (6.4-21)

We can thus write the g-function for x in the form

B =—Zy 1k —

Be=X"k+r-X+ak, (6.4-22)

where the complete flavour diagonal part is contained in ov. We further split X = X4+ X®
and o = oV + o into their one- and two-loop part. Plugging in the wavefunction
renormalization constants of equation (6.4-13b) and (6.4-13f) and setting Y, = 0, our
method reproduces the one-loop results of [44,17,11]

(4r)? XM = vi.y,, (6.4-23a)
6
(4m)2 oM = - g2 —6g2+6 Tr(Y)-Y,). (6.4-23D)

Note that for U(1)y, we use GUT charge normalization as specified in table 6.4-1. At
two-loop, with the wavefunction renormalization constants given in equations (6.4-14b)
and (6.4-14f), we obtain

Ar)*Xx® = —a2vl.v,.vl.v,
+ 992_Trye.yf _3T1de-YJr YT-Ye 6.4-24
5 1 e d e

and
(4r)*a® = —6Te(Y) Y,V -V,) - 18 Te(Y) - v, - V-V,
8
+z g1 Te(Y,] - Y,) +32g5 Tr(Y,) V)

207 , 18
S5 it S0+ 150s (6.4-25)

At one-loop we obtain between the thresholds

(n) o o ), INT () (my (), (7
16725, = (VI)TR+Rotv) + (V) R y)

OROINS w6 oo ,
+2 Tr (VY)W + 6 Tr(VIY,) % — -4 W= 6g2'%; (6.4-26)

and again the two-loop result is obtained analogously.
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7 Applications

We have calculated the S-functions that govern the evolution of the neutrino mass param-
eters in the SM, the 2HDM’s and the MSSM. It is therefore interesting to study whether
there can be some generic predictions derived from the renormalization group equations.
Furthermore, we can investigate the impact of a non-degenerate mass spectrum since we
have also calculated the S-functions between the mass thresholds.

7.1 Neutrino Masses and Mixings

Usually in the quark sector the mixing angles are read off from the CKM matrix

Vew = (U U7, (7.1-1)
where

vy, v o = o™ vy, U™ = diag(y?,. ) (7.1-2a)

vy, v U = U vy, U0 = diag(2, ) (7.1-2b)

In the 2 x 2-case and for real entries of the Yukawa couplings, Vekn can be chosen to be
orthogonal and therefore parameterized by

(7.1-3)

—sinf cosf

VCKM:< cos sin9> ’

thus defining the mixing angle #. For Dirac masses, the MNS matrix is obtained by
Vass = (U U1 (7.1-4)

where Ué”) and UIEB) are defined analogously to (7.1-2). However, in the case of Majorana
masses, U(”) is defined by the relation

(U m, U = diag(my, ...) (7.1-5)

with m, being the left-handed neutrino mass matrix.
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7.2 Maximal Mixing as Attractive Fixed Point?

Recent neutrino experiments give a clear evidence for large mixing angles in the lepton
sector [9]. Since the corresponding angles in the quark sector are comparably small, it
is interesting to study whether large mixing angles can be explained by renormalization
effects.
Let us analyze the solution of the RGE’s below the lowest threshold. We rewrite equa-
tion (4.1-5) in the form
dk 3
167 = [R(VIY) + (YY) k] (7.2-1)
where « is a flavor diagonal term and Y, can be chosen diagonal, if all Majorana neutrinos
are integrated out. Especially in the two-flavor-case we obtain

2 0 >
Yiv,=( "% . 7.2-2
= (0 (7.2
This way we get originally four, but since k1o, = k1, three independent equations,
167%f = [ —3y7] - Ky, (7.2-3a)
1672 fgy = [ov — 3y3] - Ko (7.2-3b)
]_671'2 /.€12 = [OZ - %(y% + y;)] * K12 . (72—3C)

Case 1: ng(to) =0

If k1o vanishes for a certain g, equation (7.2-3c) implies that k15 = 0 holds for all £. The
matrix « is therefore diagonal and the mixing angle # vanishes for all scales.

Case 2: ng(to) 7£ 0

By forming quotients we can eliminate « in the equations,

d [k P
1671'2 E </§—1;> - %(y% - y%)/{—il ) (72_4a)
d [k P
This implies
_ . )
K K 3
M) = e | / dr y2(r) — 20| (7.2-5a)
L 0 i
- . -
K K 3
H—Z(t) = H—Z(to) exp | 35 / dr y2(1) — 2(1)| . (7.2-5b)
L 0 i




7.3 Effects of Non-Degenerate Thresholds 83

Remark 7.2.1. Note that an initial value of k11 = k9o = 0 for ¢ = ¢y implies that «; and
K99 vanish for all ¢ and the mixing would stay maximal.

From the previous section it is clear that the mixing angle # can be obtained from the
relation

cot 20 = % <@(t) _ E(t)) | (7.2-6)

Therefore, using the assumptions
(1) y2(1) > yi(r) for T < ty and
(2) r11(to) #0,

we obtain the relation

lim cot 260 # T in general , (7.2-7)
t——o0 4

which implies in general a mixing angle 6 # 7 in the infrared limit. In other words, we do
not expect maximal mixing as a result of running effects.

Let us assume now that the entries of the Yukawa matrix Y, do not run. Then we obtain
from eq. (7.2-5)

Z—E(t) - z—i(to) cexp [~wt] | (7.2-8a)
K K
ﬁ—‘i(t) = H—jz(to) - exp [wi] (7.2-8b)
with
3 2 2

If we insert for y, the 7 Yukawa coupling y, = 1.777 GeV/v = €(1072) and for y; the
electron Yukawa coupling y. = 511keV/v = €(107°%), we see that w is tiny and 6 stays
approximately constant. Altogether we have found so far that maximal mixing is not
favored by the renormalization group, and that running effects in the SM are in general
relatively small below the lowest threshold.

7.3 Effects of Non-Degenerate Thresholds

7.3.1 Running of the Mixing Angle in an Example with Two
Generations

We consider now in a 2 x 2-example the effects of thresholds. According to section 3.2.2,
we have three energy regions in which different effective theories emerge: Above the largest
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Figure 7.1: Illustration of the ranges of different effective theories in the SM with two generations and an
additional effective neutrino mass operator.

mass eigenvalue M, of the Majorana mass matrix M a “full” theory, between both eigenval-
ues M, and M, the effective theory 2 and below M; the effective theory 1 which consists of
the SM, a 2HDM or the MSSM with two generations and an additional effective neutrino
mass operator.

In the energy region where heavy neutrinos are present, it is useful to introduce fictitious

mixing angles which are defined as the mixing angles of (7.1-4) for the effective Majorana
w ) ) ()
mass matrix of the non-sterile neutrinos, which is given by %+ 2Y " M~'Y,. These angles

can be seen as characteristics of the evolution of the mass parameters. Especially in the
2 x 2 case at hand, there is only one mixing angle.

Note that the matching condition (3.2-11) is non-trivial since the entries of the right-
handed mass matrix run by themselves.

7.3.2 Numerical Results

Numerical results for the RG evolution of the mixing angle € in a generic example with
two generations of lepton doublets and two singlets are shown as solid lines in figure 7.2

for the SM, in figure 7.3 for the type (iv) 2HDM (cf. table 5.2-1), and in figure 7.4 for the
MSSM. For all the examples, we chose

108 0 1( 6 25
M:( ) 1012) and Y,,:§<0.2 8) (7.3-1)

at the GUT scale, for which we insert 10'® GeV. The electron Yukawa coupling is parametrized
by

Y, = diag(0.0005,0.01) (7.3-2)

in the SM, and in the two other models tan 3 is taken into account.
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01°] Ful
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e EFT1 —— sf— EFT2 —f—

23.8

23.6 T
234t ———mm e — - —
23.2 1

23.0 1t

228 1

|
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Figure 7.2: RG evolution of the mixing angle 6 in the extended SM with 2 generations of lepton doublets
and 2 singlets. We used Mgyt = 10'% GeV and the initial conditions M (Mgut) = 108 GeV, My (Mgyt) =
10'2 GeV for the Majorana masses of the heavy neutrinos at this scale. Besides, we chose the initial values
of the Yukawa coupling matrices Y, (Mgur) to be real with (untuned) entries between 0.025 and 1. Further
explanations are given in the text.

0 | e— EFT1 — e BFT2 —pe— PO
theory

1 1 1 T
Mgw M, M, Maur H

Figure 7.3: RG evolution of the mixing angle 6 in the 2HDM of type (iv) in our classification scheme
(cf. table 5.2-1) with 2 generations of lepton doublets, 2 singlets and tan 8 = 35. The other parameters
are the same as in the SM case (cf. figure 7.2). The running is enlarged due to the large tan §. The second
effective operator tends to decrease the running a little bit.
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Figure 7.4: RG evolution of the mixing angle 6 in the extended MSSM with 2 generations of lepton
doublets, 2 singlets and tan = 35 as well as Msysy =~ Mgw for simplicity. (A moderate change of the
SUSY breaking scale Msysy does not change the qualitative picture.) The other parameters are the same
as in the SM case (cf. figure 7.2).

The transitions to the various effective theories at the mass thresholds lead to pronounced
kinks in the evolution. For comparison, the dotted and dashed lines in figures 7.2 and 7.4
show the results when both heavy neutrinos are integrated out at the higher or the lower
threshold, respectively. Obviously, this produces large deviations from the true evolution,
and the correct result need not even lie between the two extreme cases. Although this
is only shown for the SM and for the 2HDM in our example, the same happens in the
MSSM, if suitable initial values for the Yukawa couplings are chosen. Consequently, the
correct running of the mixing angle cannot be reproduced by integrating out all heavy
neutrinos at some intermediate mass scale M;,, € [M;, Ms] in general. Therefore, studying
the evolution of the renormalization group running between the thresholds is essential in
any analysis in which non-degenerate mass scales are involved.
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8 Summary and Outlook

8.1 Summary

In this thesis, the issue of calculating f-functions for non-renormalizable operators was
addressed. A general formalism for computing S-functions for quantities with tensorial
structure was derived, which also works if additive renormalization is imposed. It was
applied to the calculation of the renormalization group equations for the lowest-dimensional
effective neutrino mass operator in the SM and a class of 2HDM’s. Furthermore, a general
method of checking [-functions for effective operators by the aid of full theory amplitudes
was developed. It was used to verify the result of the SM calculations for which existed
a discrepancy with the literature. Due to the check and due to a second, independent
confirmation, the result of our study can be regarded as the correct one. Furthermore,
we presented the general formalism which enables one to deal with a number of effective
theories arising from multiple heavy mass scales. We also argued that a scenario with
non-degenerate mass scales is quite natural in the neutrino sector.

The analysis was extended to a class of 2HDM’s in which two effective neutrino mass
operators arise. It was shown that these operators mix with each other. All S-functions
which govern the evolution of the neutrino mass parameters in the class of 2HDM’s, in their
extension by heavy singlets and in the regions between the mass thresholds and above were
calculated.

A very important result of this thesis, however, basically stems from two observa-
tions. Firstly, the non-renormalization theorem of supersymmetry applies to any, even
non-renormalizable operators of the superpotential, and secondly, these operators do not
affect the coefficients of the S-functions in a rigid expansion in the sense of effective field
theories. Hence, we were able to present a simple construction kit which enables one to
calculate two-loop [-functions for any desired operator of the superpotential with only
little effort. This method is based on supergraph techniques, therefore the amount of inde-
pendent diagrams is clearly reduced compared to component field calculations, and SUSY
is kept manifest so that the non-renormalization theorem can be applied directly. In an
expansion in the sense of effective field theories, only the anomalous dimensions of the
fields have to be computed, and the latter are only influenced by the renormalizable part
of the superpotential and can therefore be taken from the literature. Moreover, our method
has the advantage of being applicable to operators with tensorial structure, and allows for
symbolical calculation as the color-factors were specified explicitly. In particular, with the
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results of chapter six one is able to calculate the S-function for any higher-dimensional
operator of the superpotential within the framework of the MSSM immediately.

As a numerical application, the effects of non-degenerate see-saw scales on the evolution
of the (fictitious) mixing angle was studied. The main message is that, in contrast to a
naive estimate, the resulting running substantially differs from integrating out all heavy
neutrinos at a common scale. In particular, running effects are sizeable above the lowest
mass threshold. Besides, it turned out that in the Standard Model running effects below
the lowest threshold are generically not large. This statement holds — depending on tan 3
— also in some regions of the parameter space in the 2HDM’s and in the MSSM. We argued
that maximal mixing is not a prediction of the renormalization group in the latter models
by itself, i.e. it does not correspond to an attractive fixed point.

Altogether we have presented the foundations for the computation of the renormalization
group evolution of neutrino mass parameters in the type I seesaw scenario for the SM, a
class of 2HDM'’s and the MSSM. Moreover, the methods presented are quite general so
that they can find an application in any renormalization group analysis.

8.2 Outlook

In this thesis, special attention was paid to methods for deriving S-functions. Consequently,
an immediate application consists in the numerical analysis of the equations obtained in
the calculations in more detail. In order to get touch with the experiments, it is worthwhile
to consider the case of 3 x 3 matrices. In particular, predictions from specific models may
be run down to the electroweak scale in order to be compared with the experimental data.
Moreover, the methods described in this study are very general so that they might be of
great interest for model building of any kind. For instance, the construction kit of chapter
6 makes it possible to design S-functions, i.e. the relations between their coefficients and
the charactteristics of a given theory such as field content, gauge groups and interaction
Lagrangian, become obvious immediately. Moreover, the method of chapter 6 may be
extended to three-loop with the aid of [45,46].

It has to be stressed that in the neutrino sector, due to the absence of large hadronic
uncertainties, in principle precision measurements of large accuracy are possible. Therefore,
the analysis of two-loop [-functions, as were presented in chapter 6, as well as a closer
investigation of threshold effects which were briefly discussed in chapter 7, are highly
desirable.

Consequently, both more experimental data and more detailed numerical analyses are
necessary in order to obtain better insight into physics beyond the SM. On the experimen-
tal side, running and planned as well as proposed projects, such as e.g. the KamLAND
experiment [47] and e.g. neutrino factories as are very extensively discussed by M. Freund
[48], will certainly provide some new and interesting, presumably even surprising results
in the near and the more distant future. On the theoretical side, numerical analyses are
presently performed [49] and will give new insights very soon. Hence, we can look forward
to another very exciting period of neutrino physics.
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Appendix

A Group-Theoretical Notation

A.1 General Notation

In this thesis we consider gauge groups G' which consist of U(1) and simple group factors,
ie.

G=G1® @Gy, (A1)

where the G; are either simple or U(1). The matrix representations of the generators of
an arbitrary simple group G; corresponding to the irrep (irreducible representation) R are
denoted by {T,}4m% and the structure constants by f4pc. The latter are defined by the
relation

Te, Tel=if'scTa. (A.2)

Furthermore, we use the group-theoretical constants

a(G) o = Z fAPfPep, (A.3a)
e(R) 6w = Y (T'TY)y (A.3b)
((R) 6P = Te(TATH), (A.3c)

where ((R) is known as Dynkin index of the irrep R and ¢»(R) as the quadratic Casimir.
The latter are related by

e2(R) = dim R

with dim G; and dim R being the dimension of the simple group G; and the irrep R,
respectively. We use the convention that the generators of the irrep N of SU(N) are
normalized such that /(IN) = 5 holds. ¢, can then be obtained via ¢;(N) = N;]\;l while
for a U(1) theory both £(R) and cy(R) are replaced by ¢* where ¢ is the U(1) charge of the
corresponding field. For any non-trivial irrep R of SU(V), the invariant ¢, (R) is given by

N.

UR), (A.4)
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A.2 GUT Charge Normalization

Given an irrep R of a simple gauge group G, it is convenient to choose the generator
matrices T such that

Tr(TyTp) = A (R)6ap, AB=1,..dimG (A.5)

holds, where .#'(R) is a normalization constant. Calculation of the traces for the SM
particles and the SM gauge group factors yields

T 10
| (301y)’] = S et (A.6a)
Tr [(%gg ai)Q: = 2npgs, (A.6b)
Tr [(%gg )\A)2: = 2npgs, (A.6¢)

where we chose for SU(2);, and SU(3)¢ the Pauli-matrices o; and Gell-Mann-matrices A4,
respectively, as representations of the generators. Thus, if all factors are embedded in some

larger GUT gauge group, we are obliged to normalize y by a factor \/g in order to satisfy

equation (A.5). Accordingly, g; has to be rescaled by a factor of \/g

B Spinorial Notation
B.1 Weyl Spinors

The spinor representation of the Lorentz group ﬁl can be decomposed as

)

D=

70) EB D([]:

(M

£l =Dl , (B.1)

where we can choose to represent D(z:9) by SL(2, €) and D®32) by the non-equivalent com-

plex conjugate representation. Therefore, the transformation properties of D(%’O)—Spinors

differ from those of D©3). Since there exist objects which transform under both repre-

sentations simultaneously, we denote DGO spinor indices by lower-case Greek letters a, 3

etc., whereas D(©:3) spinor indices are denoted by dotted lower-case Greek letters «, 5 etc.
Spinor indices are raised and lowered with the £ symbol,

P =g (B.2)
where
o 0 1 0 —1
6:(6[3):<—1 0) and 6TZ(W)Z(l 0 ) (B:3)
Consequently, the scalar product of two spinors is symmetric, i.e.

£-n=E%apn’ =N = —Ean® =10, (B.4)



B Spinorial Notation 91

where we used in the last step that the spinor components are a-numbers. Note that we
also use the ¢ matrix for SU(2) contractions since SU(2) C SL(2,C). The “square” of
a spinor is defined! ¢? = ¢ - 1. In the thesis, the dot “” will be omitted. With these
definitions, it is easy to check the relations

0600 = o000, (B.50)
060p = —%qﬁwee. (B.5b)

Furthermore, the o-matrices, 0, = 1,

(01 o (0 —i 5 (1 0
Oas -= < 1 0 v Oaa -= i 0 v Oaa -= 0 —1 : (B6)

and
", =70 .
ol = { b 1< p<3 (in components) (B.7)
are used. With these, the following useful relations can be formulated:
("o (Ou)gs = (0")an (05 = 2205 € . (B)
0010 00"0 = 0°0h,0%0°0",0° = —%99 00 " . (B.9)

B.2 Dirac Spinors

Two Weyl spinors £ and n can be combined to a Dirac spinor

w::(i):(ig). (B.10)

Here and throughout the thesis, we work in the Weyl basis, where 75 is diagonal, i.e.

. ]]_2 0 wo_ 0 ot
75_<0 _]]_2>7 7_<0” 0) (Bll)

Using Dirac spinors turns out to be very convenient for calculating diagrams, the more so
FeynCalc [18] is able to manage the resulting expressions. Therefore, the Weyl spinors
of the SM are combined to Dirac spinors, and by the aid of the usual projectors P /g =
(1 F 75)/2 on left- and right-handed spinors, the Feynman rules for a chiral theory can be
formulated. For example, the u-quark field is described by

W, = ( e ) un=Pal, = ( () ) - (B.12)

For all other fermionic fields of the SM and the 2HDM’s besides the singlet neutrino,
analogous conventions are used.

!Note that in [38] a different convention is used!
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B.3 Majorana Spinors
The charge conjugate of a Dirac spinor is defined by

c_ (1 _ (s O
U <§a ) =CT where C—< 0 5646) (B.13)

in the Weyl basis. Spinors which fulfill the condition ¥ =W are called Majorana spinors.
In the thesis, we use

N= ( ZSZ ) . (B.14)

C Feynman Rules

C.1 Feynman Rules in Fermion Number Violating Theories

According to [50], a fermion flow, indicated by a gray arrow, is introduced. It can be
parallel or anti-parallel to the fermion number flow, which is in general not conserved in
theories with Majorana fermions. The Feynman rules are then the common ones with two
exceptions: Firstly, one has to read the diagrams reverse to the direction of the fermion flow
and to write down the analytic expressions from left to right. Secondly, the propagator
rules change as for example shown in (C.6). If fermion number is conserved (at least
perturbatively), the fermion flow coincides with the fermion number flow. This is the case
for the quark sector of the models we discuss in this thesis. Furthermore, the presented
rules apply to four component spinors.

C.2 General SU(IN) Gauge Theory

Gauge Boson - Fermion Interactions

The field 1) is assumed to transform under N of SU(N

>\/\M —lu gTba’yuPL >\/\/\/~ . 1/1, g(T )ba’YuPR (Cl)

Gauge Boson - Higgs Interactions

The field ¢ is assumed to transform under N of SU(N).

N Pb A

l]\\\ ’Uf . € A Qpb‘\ v A TB

p/ /W : 1u2g(pu -+ qu)Tab o , ’U’; 1u-g UMV[T ,T ] (C 2)
/(Pa /(

/ s



C Feynman Rules 93

C.3 Rules for the Two Higgs Models of the Main Part

We formulate the Feynman rules for the relevant vertices and propagators of the model
defined in section 5.2. Note that the corresponding rules for the SM are obtained by setting
oW = ¢, 2V = z[(ll) = 1 and omitting all vertices in which ¢ is involved.

Yukawa Interactions

s (V) 0w Pl (C.30)

D —ip2 (Y )gp0aPr (C.3b)

t =120 12 (Y)) rg€0a0rs Pi

(C.3¢)

d,. d,.

% . 3 .
- —izg)/ﬁ (YdJr)fggbapR - _izt(il)ug (Yd*)gf (gT)abPR

q{bs qus

(C.3d)
Additional Rules for the Possible Extension
_lzz(/z)/ﬁ (YV)gf (5T)abPL : _izz(/i)/ﬁ (YVT)fggbaPL

(C.4a)

s =123 (V) gp (€7 an Pr

(C.4b)
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Appendix

Feynman Rules for the Higgs Sector
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Propagators

The momentum p used in the following formulae flows from left to right.

3 1 a (&
: —1,u€)q§ (6acObd + daddbe) « 0

: —i,ue)\52

N
NT N9
N
i, )
N
-

e{{ e%
-

-

f{a 0y
-

-

e{{ e%
-
q{:ar qibs
-

dl];r df{s
’U’{{r U’%s

(5ac(5bd + 5ad5bc) : ( ¢C

C—ipt ()\35a05bd + )\45ad5bc)

\
N

N A

/7

(1)
1(72) N ¢((11)

\

/ \

/7

iSe, (p) = pgiifigégféba
1Sunp) = =20
iS¢ (—p) = p;ij”ig g f0ba
Sun(—1) = 25y
150, 0) = 2 Busbt
iSa (p) = pZifig 9fOrs
i1Sug (p) = L Ogf0rs

. 1
: —1/f>\2§ (acObd + Oaadbe)

(C.ba)

(C.5b)

.
Lol )\55 (5a05bd + 6ad5b0)

(C.5¢)
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iSyw(p) = m% (C.61)
1Si0(P) = S (C.6)
P iDy (p) = = j;gle_ifB)p;’gu (C.6Kk)
i Dy (p) = i_nw +p(21+_i§W)p;—gu Oij (C.6l1)
EQQQQQQQQC% i) =i (17 &)5E s (C.6m)

Note that the ghost rules are not listed since they are not needed for our calculations.

Gauge Boson - Fermion Interactions

In the following rules, GUT charge normalization for U(1)y is not used.

i
B, ..
: %M5915gf5ba7uPL
d,
Gy
Wy . .
D —5H2 9200705, VL
o,
ek
BH . £
D ipZ 1057 Pr
eh

Db aA
>m D — 17 9300 A Oarvu P
G
dis o
D312 0s07, M Pr
i,

: %“5925}‘9 G

s
e
@

wg

= ip2 916560 vuPr

(C.7a)

;T
)ab’y,uPR

(C.7h)

D —ip g0y, P (C.Tc)

DB gsdp A PR (CTd)

: %M%QQ(ngUza(Srs’YuPL

(C.7e)
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q]zbs
B iL 2 <
D=2 910g50rs0apyu L D 2 G10590rsYu Pr (C.TE)
@ o
dhs
B, o
: _éﬂgglégférsfsrséab’YuPR (C7g)
df,,

Gauge Boson - Higgs Interactions

\\gﬁ,()j)
q\\ Bu i€
» /W Y R (p“ + qﬂ)ébaéij (C8a)
e
/el
(7)
N Oy
q\\\ W . i £ i C.8b
) i G AT (C:5b)
v
o 4@
\b
NP e 5 (C.8¢)
L Ry -
7 ((li)
NP
‘b
N Wk i, €
, WZZ L S TN OkeOa0i (C.8d)
s (4)
4 a

%Neglgﬂmu(f{]fa(;ij (C.8e)
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Effective Vertices
b o
K : i/fﬁs;)%(gcdgba+5ca5bd)PL (C.9)
Z{Jy (Zbgzi) o~
Effective Vertex Counterterms
t. o
/)
>< : i/f&/iéi;)%(scdsba—l—scasbd)PL (C.10)
o, ¢ "~
D Supergraph Rules
D.1 General Rules
The rules for the sample calculations of section 6.2.2 read:
e
L) vA 4 HB3) .
: QiQMETab . —lljlé)\l]]C (Dl)
b, 2
D.2 Rules for the MSSM Superpotential
35"
. £ dCf 4]’51,1) . £ "‘
c—ip2 (Ya) g 0ab , —ip2(Y)) gf0ab (D.2a)
dcf ap
o
4
.y o M
o —ip2 (Yy)grOan , —ip2 (Y,)) gt (D.2b)
uC/ qp
g
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4
t—ip®(Ye) g0 ‘e o
- T \Le)gfYab .
eCf [Iz
Iy

D.3 Rules for the Gauge Interactions

In the following rules, GUT charge normalization for U(1)y is used.

4})(1) 3 .
’ z : 3M2915ab5gf
3
: _\/g/”glfsab(sgf
31 ¢ )
: \/ggﬂzgléabégférs

: ;Légg5abA$69f
: ;ﬁgg)\frégf

: ;ﬁgg)\frégf

D2 Go0p,0gf
D2 go0p,0gf

: /ng2o—lz;a57”56gf

d3 2 /3 .
==/ =12G10,0rs
B 3\/;lu 910gf
ug 4 13 .
D=/ =12G10, 0,
b 3 €
: —\/;/“gl%b
B )

=
<

(D.3a)

(D.3b)

(D.3c¢)

(D.3d)

(D.3e)

(D.3f)
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< el 3 .
VY1 Top s D=2 5M2915gf (D.3g)
e-f

D.4 Additional Rules for the yMSSM

b
. € VeI 4}1(12) . €
> t=ip2 (V) gra o —iu% (Y)g s (D.4)
v b
I

D.5 Rules for the Effective Neutrino Mass Operator

R
N u\\ o)

.1, € 1 ‘ %d .1, € 1
K kg sy (cd€ba + EcaCba) K iRy ry (Ecdfha + Ecalba)
[|f

//ﬂf @éx b

/‘ﬁ
e

(D.5)

E Integrals in d Dimensions

E.1 Feynman Parameterization

Products of denominators can be rewritten in the following way:
1

1 (n—1)!
= i—1 =, (Bl
A A, A, /d“"l dx"(s(zx )[x1A1+x2A2+---ann] (E.1a)

0

1

1 1
— = [d , E.1b
AB / x[:vA—l—(l—:v)B]Z ( )
1
1 Oz—l—ﬂ 11— )t
= E.1
Ao« BF /dx J,’A—i— )B]oz+[3 ’ ( C)

0

o
Q

1 B ' . ' Yy
A B O/d O/dy[aij+(1—x)yB+(1—y)C]3' (E.1d)
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E.2 d-Dimensional Integrals in Minkowski Space

Useful Integrals

After employing the Feynman parameterization it is often possible to transform the result-

ing integrals into one of the following by a change of variables.

[t e = e ()

/ %k _ Ay T(n-1-9) l>n—1—d/2
(27r)d (k2 _ A)n 2 (47r)d/2 F(n) A )
dk kY i (-1)" T (n _1_ %) 1\ "1/
/(27r)d (k2 — A)r = 3l (47r) /2 T'(n) <K) ;
/ A’k (k2 _ id(d+ 2) (~1)" T (n—2—9) <l>n—2—d/2
(27r)d (k2 _ A)n 4 (47r)d/2 F(n) A )
/ d  EFEVEPKC . (1) T (n _9_ %) <l>n_2_d/2 )
(2m)d (k2 — A)" (4792 T(n) A

1
X "0 0oy )

By symmetry, the integral over odd powers of £* in the numerator vanishes,

d%k i N
/(%)dk F) =0

For products of the form k*k” the following formula can be used:

ddk 0w 1.V 2_1/11/ ddk 2 2
[ ) = [ @)

Powers of A

Aezl—i-elnA—l—ﬁ(eQ).

In particular:

(%)”m - (%)”2. - @-Hmaro(e-97)].
I'-Function

The I'-function is defined as

o0

['(z) = /dt et

0

(E.2a)
(E.2b)
(E.2¢)

(E.2d)

(E.2e)

(E.3a)

(E.3b)

(E.4a)

(E.4b)

(E.5)
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and satisfies
F(z+1)=a(x), (E.6)

i.e. it can be regarded as the continuous generalization of the faculty, I'(n 4+ 1) = n! for
n € N. I'(z) diverges at 0 and negative integers. Around these poles it can be expanded

in the following manner:

M) = T 4+u()+ 0,

€ (=)™ [2
() = S v
n+ g n!{6+wn+)+ﬁ@),
where € has to be positive and where 1) satisfies
1
e(1) = —E.
vg = —0.5772 ... is Euler’s constant. Furthermore,

Mi-0 = 1406,
I'2—¢ = 1—e+0(?).

Beta-Function

Euler’s B-function is defined by
1
Bla+1,8+1):= /dxa:a(l — )P,
0

and can be expressed by I'-functions,

[(o) I'(B)

D(a+74)

Some useful expansions are given by
B(l—€1—¢) = 142+ 0(),
B(2—el—¢€ = 1(1+2¢)+0(),
B(2—-¢2—-¢ = (1+ €) + O,
B(3 ) = (1+2e+0().

B(a7ﬁ) =

W= o=

—€,1—c¢

A Useful Formula

By combining the equations (E.4b) and (E.7a), we obtain

d\ [4mp2\*? 2 A

(E.7a)

(E.7b)

(E.10)

(E.13)
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F Passarino-Veltman Functions

In this appendix we introduce some standard integrals, known as Passarino-Veltman
functions in the literature, since these standard integrals were first discussed by Passarino
and Veltman [51]. The use of these functions has the advantage that the reduction of loop
integrals can be automatized by using the Mathematica package FeynCalc [18]. Moreover,
the functions are implemented in the LoopTool [52] package.

F.1 Agz and the One-Point Integral A

First we define the quantity Ay which represents the infinity in d =4 dimensions appearing
in dimensional regularization,

Agyg = — g + In(47) . (F.1)

4—d

This is the part which is usually removed in Modified Minimal Subtraction (MS) [53].
Now we introduce the one-point function by

¢ 1
A(m?) = —i297%7% % 40 m = _’M—Q/ddq 5 5 - (F.2)
i ¢ —-m

2

2
= m? (——lnﬂ—7E+1+lnu—>+ﬁ(e). (F.3)
€ m

2

The LoopTool package [52] returns

A(m?) 2 40(m?) = m? - (1 — Inm?) , (F.4)

i.e. the diagram is calculated in the MS scheme and s is set to 1.
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F.2 The Two-Point Integrals B

The two-point integrals are defined by

m
Bo(p?, m?*, M?) = —i2%n 2t x — —
p p
M
pe d 1
= T d ; F.5a
w2 | Y @) (=) (F:o0)
2 2y . M [ Au
&@muM),_WquW_m%@+Mme (F.5b)
= puBi(p?, m*, M?) (F.5¢)
B 2 02 12) — N_E d 4uqv
ul/(p , M, ) i71'2 q (q2 _mZ) ((q_|_p)2 _ M?)
= pupuBll(pama M)+77M1/B00(p7 m, M)a (F5d)

where we have introduced the functions By, Bgy and Bj;.
These functions are related algebraically,

1
Bi(p?*,m*, M?) = o [A(m?) — A(M?)
+ (M2 —m? - pQ)BO(p27 m27 MQ)] ) (FGa‘)
1
Boo(p*, m*, M?) = 37 [A(MZ) —m?By(p*, m*, M?) = 2(p* + m* — M?) x
1 1
xBi(p*, m*, M?) — 2 <m2 A §p2>] ’ (F.6b)
1
&M%ﬂW>=aPWWMW&wmmm+

1
+(p2 + m2 - MZ)Bl(p27 m27 MZ)mQ + M2 - §p2:| ) (FGC)

and for d — 4 we obtain
2
By(p?,0,0) = Ags—In (M) +2+ir0(p?) , (F.7a)
1
2 2 m? 1 2
By(0,m*,0) = By(0,0,m") = Ayg — In oz +1=—A(m?), (F.7b)

M2 2 M2_ 2
By(p*,0,M?) = Ay +2+ ?ln (1 - p_) +1In <72p> : (F.Tc)



104 Appendix

If one is interested in the finite part of By, the formula

By(p*,m*, M?) = A

2,2 2 2_M2 2 _
dz In <I o m 5 )+ m zs> + 0(e) (F.8)
1

|
Tt~ §|

may be useful. This implies that the infinity, that is the pole in ¢, is proportional to Ayg.
Further poles are listed in table F.1.

F.3 The Three-Point Integrals C

The three-point integrals are defined by

\

Co = —i29n? 2 x m —
/ i
S0 G e (T e (F:90)
G = i ddk NGy e g (F:90)
Co = o [ T T (F-9¢)
Cue = —/dd (e e s R (F9d)

where Cy = O[)(pZ, q27 (p + Q)Za m%: m%a mg) etc.
Cy can be expressed by dilogarithms [54,55],

2 2 2\
C10(517 52,83, My, My, m3) -

ii% (L) —Li2< i j) , (F.10)

)\(31,32,83) Py 2] x; — 2
where

Nz,y,2) =2 +y"+2° =2 (xy+yz+212) (F.11)
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and

1 _ _
L —m? 14 S1+ S2 S3 + g 1 S1 S9 + 53 7 (F12a)
281 )\(81,82,83) )\(31752783)
g 1 1_Mi 1_m%_m3_4(m3_i5) (F.12b)
! 2 Sy S1 S1 ‘

et cycl. For a real a < 1, the dilogarithm has the properties

Lig(a £i) = —Liy (1) + %2 — % (Ina)*+ilna, (F.13a)
Liy(1 —a) = —Liy(a) —In(a) In(1 —a)+((2), (F.13Db)
Lis(a) = a-+ “Z + % +0(d"). (F.13¢)

Some other useful properties of the dilogarithm Li, can be found in [56].
Furthermore, if only one mass scale is involved, the relations

1_. S
Co(0,0,5,M1%,0,0) = ~ L, (W> (F.14)

and

1 M? M? +s 2 M?
) .
ReOU(O,O,S,O,M 70) = g {Re |:1n <M2—|—S> 111( S > — L, <M2+S>

L <M28+5>] +%2} (F.15)

hold. From the second relation, we infer the approximation

Lo (2 M?
Re (C5(0,0,s,0, M?,0) ~ < M2 n(W) IR ’ (F.16)
0, s> M? .

Formula (F.14) is derived as follows: By equation (E.la) we obtain

[ A%k 1
s=uf @m) (@~ 3P) (¥ )P (e p T 0 (F.17)

E 1 ) T ddk 9
- Mo/d O/dy/(Qﬂ)d (k2 = M)+ (1—z—1y) (k+p)?+y(k+p+q)?*
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Using the on-shell momenta p* = ¢?

= 0 and (p + ¢q)? = s, we can rewrite the term in

brackets [...] = ?—A, where { = k+(1—z) p+yqand A = x M?—xy s. By equation (E.2),
we obtain
1
—1 F
g = iy 7l /dx /dy
(47)2 ) [z M2 — zy s)°~
y=x
—1i € € 1 -1
= pe =T /dx —
(4%)% 2 (2) / [xs 2 — [xMQ—xys] z]y_o
1
—1i € 1 1 1
= ‘T(= /dx — — -
(4W)%M (2) / {[x]\/p 22 5]? [xMQP}
1
2 2
®13)  ime 1 M
= d —l _— 7
(2m)e s / S <M2 —xs) +0(9)
0
im? 1
= G (M2> +0(c) . (F.18)
For formula (F.15) we consider
d?k 1
= uf F.19
ke e e 19

2

g O/dx o/dy /(gjr];d {I-z—y)k2+ylk+p

By using p?> = ¢*> = 0, (p+¢)? = s and rewriting {...} = (> —

and A = z(z +y — 1) s +y M?, we obtain

)2_

A withl=k+z(p+q)+yp

M2 +z(k+p+q)?}

J = iue(;gwﬂ /dx/dy a:+y—1)28+yM2]
= @ O/Id%st{[x(gxniﬂM?P[x(xlnsﬁ}
- (27ir>d / T ((256—_1;;@ 1)+
) () () )

L
4

}+@’(e) :

(F.20)
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Conventionally the tensor integrals are decomposed in the following way [57],
C, = p,Ci+q.0Cy, (F.21a)
Cuw N Coo + P Ci1 + 4,0.Ca2 + (P4) (1) Chz (F.21b)
Cuvp = (1”7)(;“/0)0001 + (qn)(uvp)co()? +

+puPuPpCrit + 4u4092oCa22 + (PP) () Cr12 + (P4G) () Cr22 (F.21c)

where we have used the following abbreviations
(PQ) (uv) Puly + Puly (F.22a)
(pQQ)(/wp) Pudvp + QuPvlp + 4uquDy (F.22b)
(pn)(/u/p) = DPuNvp + Pulpp + PoNuw - (F22C)

F.4 Divergent Parts of the Passarino-Veltman Functions

The non-vanishing poles of the of the Passarino-Veltman one-, two- and three-point func-

tions are summarized in table F.1.

Integral Divergent part
2
A(m?) “m?
€
2 2 2 2
BO(p , M 7M ) E
2 2 2 1
Bl(p , M 7M ) _Z
2 2 2 2
Bll(p , M 7M ) i
1
BOO(p27m27M2) _&(p2 _3m2 _3M2)
1
COO(p27q27(p+q)27m%7m%7m§) 2_6
1
OOOi(p2aq27(p+q)27m%7mgﬁm§) _&

Table F.1: The divergent parts of the one-, two- and three-point Passarino-Veltman functions.
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Nomenclature

A(m?) Passarino-Veltman one-point function, see equation (F.3), page 102
By, By, Bsy, ... Passarino-Veltman two-point function, see equation (F.5), page 103
Ié] [-function, see equation (2.2-12), page 16
tan /5 Ratio of the Higgs vev’s in 2HDM’s or the MSSM, page 52
B(a, f) Euler’s B-function, see equation (E.10), page 101
Co, Cy, Cuy, Cpyp Passarino-Veltman three-point function, see equation (F.9), page 104
c1(R) Group-theoretical invariant, see equation (A.3), page 89
c2(R) Quadratic Casimir invariant of the irrep R, see equation (A.3), page 89
C.  Set of (complex) a-numbers, page 57
C.  Set of (complex) c-number, page 57
o SUSY-covariant derivative, see equation (6.1-19), page 59
Ayg  Passarino-Veltman A see equation (F.1), page 102
€ e =4 —d, page 14
F(k,?) Color-factor of G, see equation (6.3-14), page 70
fABc Structure constants, see equation (A.2), page 89
F,(k, ) Color-factor of G, see equation (6.3-13), page 70
¥ Anomlaous dimension of the field, see equation (2.2-12), page 16
['(z) TI-function, see equation (E.5), page 101
['[¢] Effective action, see equation (2.1-6), page 12

vg = —0.5772 ... Euler’s constant, see equation (E.8), page 101
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Ym Anomalous mass dimension, see equation (2.2-12), page 16

[n(x1,...2,) Vertex functions in coordinate space, see equation (2.1-7), page 12
Ixy  Proper vertex function, see equation (2.1-13), page 13

¢y Connected N-point function, see equation (2.1-4), page 11

irrep Irreducible representation, page 89

K Coupling of the effective neutrino mass operator, see equation (3.2-1), page 23
A Scale of an embedding theory (see also Mgyr).

Ay  Infinite dimensional Grassmann algebra, see equation (6.1-1), page 56
¢(R) Dynkin index of the irrep R, see equation (A.3), page 89

Mgyt Scale of an unified theory (see also A).

MS  Modified minimal subtraction

MS  Minimal Subtraction.

i Euclidean momentum squared, page 22

@.(z) Classical field, see equation (2.1-5), page 12

P, Pr Left- and right-handed projector, page 91

Q. Q SUSY generators , page 56

3 Superspace, see equation (6.1-5), page 57

ok, " o matrices, see equation (B.6), page 91

T4 Matrices of the generators of a gauge group, see equation (A.2), page 89
Wa, W4 Field strength superfields, see equation (6.1-41), page 62

WI.J] Generating functional for connected Greens functions, see equation (2.1-3), page 11
¢, Ew, &q Gauge fixing parameters for the SM gauge groups.

Z[J] Generating functional, see equation (2.1-1), page 11
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