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Abstract

A new combined method for an investigation of the MHD activities in fu-
sion experiments has been developed. The main advantages of this approach
are the simultaneous use of several diagnostics (magnetic probes, soft X-ray
cameras, electron cyclotron emission and motional Stark effect diagnostics)
and the possibility for a direct comparison of theory predictions with the ex-
perimental observations. This method has been implemented into the MHD
Interpretation Code (MHD-IC) and allows to investigate complicated mode
structures which are not resolved by the available tools (tomography etc.).
The code simulates experimental observations related to a given plasma per-
turbation for the diagnostics mentioned above, accounting for real plasma
geometry and for measured plasma parameters. Then the calculated values
are compared with the corresponding experimental data. The method has
been successfully applied to different types of MHD instabilities on ASDEX
Upgrade.

For example, the investigation of fishbone activities in the conventional
scenario shows that the displacement eigenfunction is an ideal (1,1) kink
mode which get a resistive character for g, > 1.8.

The main analysis efforts however were focused on more demanding ex-
amples due to the more complicated mode structure in advanced tokamak
scenarios. As an example, in this case the displacement eigenfunction for dou-
ble tearing modes (DTM) was obtained using MHD-IC code. The growth
rate of the DTM calculated from the displacement eigenfunction agrees well
with numerical MHD simulations and the experiment. The time evolution of
a MHD instabilities which accompanies the formation of internal transport
barriers was investigated as well. It shows the behavior of two coupled (2, 1)
modes. Furthermore, the MHD activity causing a disruption was investi-
gated in typical reversed shear discharges on ASDEX Upgrade. The main
reason for the disruptions is an external mode or an internal (3,1) tearing
mode.

In addition, the structure and the position of the observed MHD phenom-
ena are applied to improve the equilibrium reconstruction. This betterment
is especially important in the plasma core region where the large error bars
of the MSE measurements do not allow for an accurate determination of the
g-profile.
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Chapter 1

Introduction

1.1 General Introduction

The controlled nuclear fusion of deuterium (D) and tritium (7') atoms in
a plasma promises an almost inexhaustible source of energy. It will also
ensure higher environmental safety compared to nuclear fission. When the
D — T plasma is heated to thermonuclear conditions, an "ignition" can be
maintained in the plasma (when the fusion born particles provide enough
heat to compensate for the heat losses). However, even for this most favorable
fusion reaction

D+T —* He(3.5MeV) +n (14.1MeV), (1.1)

this plasma must be heated to a very high temperature T ~ 20keV (230
million K) and must be confined for a long enough time to satisfy the Lawson
criterion [1]:

NTE conf 2 1.5-10%m3s | (1.2)

where T ony determines the energy confinement time (the ratio of the en-
ergy stored in the plasma to the heat loss rate), and n is the plasma density.

In the future, further increasing of the plasma parameters might even give
the opportunity to achieve necessary conditions for more preferable D — D
and D —3 He reactions, which would be characterized by very small neutron
flux and avoid many problems with tritium handling.

During last fifty years many different approaches were investigated in or-
der to maintain the thermonuclear reaction. Among them, the most advanced
concept towards the achievement of the required fusion reactor parameters
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Figure 1.1: Principle scheme of a tokamak. The plasma is the second winding
of the transformer. The plasma current is produced by induction.

is a so-called tokamak configuration'. This approach was proposed by the
Russian physicists Tamm and Sakharov [2]. The tokamak is a toroidal sys-
tem which confines the plasma by a magnetic field [3]. The main magnetic
field is the toroidal field B,. However, this field alone does not allow the
confinement of the plasma and an additional poloidal magnetic field By is
necessary for an equilibrium which has the plasma pressure balanced by the
magnetic forces. This additional field is produced by a large toroidal current
in the plasma and by outer poloidal field coils (see Fig.1.1). The combina-
tion of the toroidal field B, and the poloidal field By results in magnetic field
lines with helical trajectories around the torus lying on so-called magnetic
surfaces. That way, the hot charged particles are confined and cannot travel
in radial direction along magnetic field lines. An external energy source
generates initial current in the primary winding of a transformer and the
toroidal plasma current is produced by induction. Thus, the plasma itself is
the secondary winding of the transformer (see Fig.1.1). As an example, the
cross-section of the ASDEX Upgrade tokamak is shown in Fig.1.22. A lot of
additional magnetic coils help to variate shape of the plasma and to control

'From the Russian toroidalnaia kamera s magnitnoi katushkoi (toroidal chamber with
magnetic coils)
2Main plasma parameters of the ASDEX Upgrade tokamak are given in appendix A.



Figure 1.2: Cross-section of ASDEX Upgrade tokamak.

its behaviour during tokamak operations.

At the beginning of a discharge the tokamak plasma is heated by ohmic
dissipation of the plasma current but this heat is not enough for the typical
fusion parameters described above. Thus, additional heating schemes such
as the injection of high energy neutral beams or launching electromagnetic
waves into the plasma are applied in fusion experiments [3]. Once ignited
the nuclear reaction in the plasma would be completely self-heating through
the fusion-born a-particles®.

Unfortunately, different types of instabilities appear in the plasma. These
instabilities strongly reduce plasma parameters and may even lead to disrup-
tion (dramatic event in which the plasma confinement is suddenly destroyed).
The investigation of the instabilities is therefore of crucial importance and
will be the subject of this thesis.

3Nuclei of * He atom with energy 3.52MeV



1.2 Magneto-hydro-dynamics

A magnetically confined plasma can be described as a conductive fluid. The
typical fluid approximation is based on the assumption that the system is
locally close to the thermodynamic equilibrium, which requires a certain rate
of collisions and dissipation. For that case, the mean free path A should be
shorter compared with typical gradient scales, A |7 f| < f [4]. The mean free
path in hot plasmas becomes very long, but at the same time in a magnetized
plasma gradients parallel to the fields are getting very weak, and the fluid
description can be applied. For perpendicular directions, the mean free path
is about the gyroradius p (p = v, /w., where w, is the cyclotron frequency
and v, is the thermal velocity perpendicular to the magnetic field), which
is typically very small and the condition is also fulfilled. Consequently, the
fluid description can be applied to the plasma.

Magneto-hydro-dynamics (MHD) implies magnetic fluid dynamics and
applies to investigate macroscopic dynamics of the plasma. It is a model
system designed to deal with an electrically neutral fluid which nevertheless
consists of moving charged particles, and reacts to magnetic fields. The
MHD model is a combination of Maxwell’s equations with the equations of
gas dynamics and equations describing the interaction of the conductive fluid
with the magnetic fields (Newton’s equation of motion for a fluid element).

The result system of the resistive MHD equations together with the adi-
abatic equation [4, 5]:

% = —pV -7 (mass conservation) (1.3)
v - 5 :
Py =% B —Vp (momentum equation) (1.4)
j=Vx é/,uo (Ampere’s law) (1.5)
%—f —-VxE (Faraday’s law) (1.6)
E+ixB=nj (Ohm’s law) (1.7)
V-B=0 (absence of magnetic charges) (1.8)
% = —pV -7 (adiabatic equation) (1.9)



These equations are solved to investigate a plasma equilibrium and the sta-
bility of this equilibrium to perturbations. A possible way is to solve these
equations directly and this possibility is for example implemented in the
XTOR code [6, 7]. Another approach is a linear analysis which simplifies
these equations by the assumption of a perturbation to be much smaller
compared to the corresponding equilibrium quantity (e.g., CASTOR code?).

1.3 Energy principle

Besides solving the Eqgs.(1.3 - 1.8) directly, another useful approach for a
stability analysis is the energy principle. The energy principle of ideal MHD
is based on the idea that an equilibrium is unstable if any perturbation of the
equilibrium lowers the potential energy. It describes so-called ideal modes
(resistive modes appear when the resistivity 1 becomes important in the
equations). The potential energy change due to an arbitrary displacement é’
can be calculated using Eqs.(1.3 - 1.8) and the linear approximation [3, §].
The force arising from the displacement 5 follows from the momentum

equation:

L RPE - L L L

F<£> :p@ = j1 X By + jo x By — Vpi.
Consequently, the energy change resulting from this displacement E (x) of the
plasma is given by the integral

W = —%/E.ﬁdT (1.10)

W < 0 (unstable)
W >0 (stable)

The plasma is unstable if 6V is negative for any physically allowed E , and
the plasma is stable if 6W is positive for all allowed E .

Rewrite the equation (1.10) into a more convenient form with separated
plasma and vacuum parts leads to [3]:

oW = 5ancuum + (5Wplasma (111)

W pacuum = / (B,?/241y)dT (1.12)

v

4Brief description of these codes is done in Appendix C.
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2
MWotsna = 5 [ (98P +E- V)9 E422 i - (By x E)dr , (113

P 0
where B, is the vacuum magnetic field and the indexes (0/1) describe the
equilibrium and the perturbed quantities respectively. There are only two
terms which can be negative. These terms are underlined in Eq.1.13. Conse-
quently, there are two different sources of the instabilities: one proportional
to Vpo and the other to jo. The MHD instabilities in which the dominant
destabilizing term is proportional to Vpg are known as pressure-driven modes.
The dominant driving source of a current-driven mode is proportional to jg.

1.4 Two important parameters in MHD sta-
bility: ¢,

In a tokamak equlhbrlum the magnetic force balances

the plasma pressure: ] x B = Vp, and this requirement

flux constructs a set of nested magnetic surfaces on which
sur-

faces j and B are constant. Each of these surfaces can be
characterized by its own value of the magnetic flux
and called flux surface [9, 10].

Using these surfaces we can introduce the safety factor q. This name is
because of the role it plays in determining the stability. In general terms,
greater stability corresponds to higher values of ¢q. In an equilibrium config-
uration each magnetic field line has a value of ¢ and follows a helical path
around the torus on its own magnetic surface. The definition of the g-value
for a field line is following;:

Ao

nga

where A¢ is the toroidal angle at which the field line returns to the same
position in the poloidal plane [3]. For instance, the "safety factor" equals
to one corresponds to a magnetic surface with field lines joining up on itself
after exactly one rotation around the torus. Magnetic surfaces with rational
values of ¢ are very important in stability analysis. If the field line joins up
on itself exactly after n toroidal and m poloidal rotations around the torus,
the safety factor reads

- = 1.14
¢=", (1.14)



where n and m are integers, perturbations are easily excited on these surfaces
since the field lines do not cover these surfaces ergodically. These flux surfaces
are called resonant surfaces and a standing wave with mode numbers (m,n)
can occur.

Another parameter which has to be introduced is the plasma parameter
[, which is defined by

B= p plasma pressure
" B%2/2u, magnetic field pressure |

It is a measure of stability against pressure driven modes for a given magnetic
field strength and also shows the efficiency of confinement of plasma pressure
by the magnetic field [11].

1.5 Characteristics of MHD activities

MHD instabilities play two different roles in fusion experiments. On the
one hand, their influence is negative and they limit the accessible operating
regime and restrict the fusion output and minimum power plant size. On
the other hand, these instabilities can be used to achieve quasistationary
discharge conditions. For instance, they can limit the impurity accumulation
in the plasma.

An MHD instability is characterized by:

e mode numbers (m,n)
e mode frequency (w), growth rate ()

e radial structure of the eigenfunction (&)

The poloidal (m) and the toroidal (n) mode numbers determine the helic-
ity of the instability. The frequency of the mode (w) represents the rotation
frequency of the instability. Growth and decay of the instability are charac-
terized by the growth rate parameter (). The displacement eigenfunction
(&) represents the shift of the magnetic field lines due to the MHD mode.
This displacement depends on the type of the instability and varies across
the plasma radius.

The MHD activities in tokamak usually have a helical structure around
the torus as it is shown for a tearing mode in Fig.1.3 [12]. In this example,

9



Figure 1.3: Example of a tearing mode spacial structure.

the finite resistivity of the plasma allows for the magnetic lines to reconnect
and form islands. It is convenient to introduce for such type of instabilities
an additional parameter: the island width (W). It describes the maximum
width of the island structure.

To demonstrate different forms of MHD instabilities, the field perturba-
tion due to a tearing mode and an ideal kink mode are shown in Fig.1.4
together with the radial component of the displacement eigenfunctions. It
becomes obvious that for a resistive mode the island width W is simply the
distance between the minimum and maximum value of £,. On the other
hand, the internal kink (m = 1,n = 1) mode is characterized by a rigid shift
of the plasma inside the ¢ = 1 surface and does not form an island. The
displacement & is a simple step function in this case. These two modes rep-
resent typical resistive (tearing mode) and ideal (kink mode) types of MHD
activity. Characteristic for a resistive instability is the change in sign of
the displacement &, in contrast to an ideal instability. Besides the different
displacement eigenfunctions, resistive and ideal instabilities differ, e.g. in
driving forces and growth times.

Using various diagnostics, all the above mentioned information charac-
terizing an MHD instability can be gained. For instance, a tearing mode has
a constant temperature inside the island which is observable by the temper-
ature profile measurements. Due to the plasma rotation in the tokamak, the

10



Tearing mode Kink mode

O _/

/

\

& =£o cos(mO+n@-mt)

Figure 1.4: Examples of MHD instabilities. Sketch of the magnetic field
surfaces in the vicinity of the resonant surface together with displacement
eigenfunction for a tearing mode (left) and for an ideal (1,1) kink mode

(right).
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tearing mode moves and produces variations of the magnetic field which also
can be detected by magnetic probes.

1.6 The aim of the work

As was mentioned above, the main aim of the fusion experiments is the
plasma confinement which is strongly restricted by various MHD instabilities.
For example, island formation in the plasma creates a heat bridge (since
across the island temperature is constant), which leads to heat flow from the
plasma center. This cooling process reduces the confinement and may even
lead to disruption when the island becomes large. The kink mode, described
in the previous section, may reduce [-value by ejection of fast ions from the
plasma core. The external kink mode characterized by a large displacement
on the plasma boundary also may lead to disruption. There is a wide variety
of plasma instabilities which have different influence on the plasma. In order
to obtain a good plasma confinement some of these instabilities should be
avoided, the others can be controlled. Thus, it is of special importance
to understand the reason for their appearence. This can be gained either
directly from the spartial structure and time behavior of the instability or
from a comparison of the mode structure with theory. As will be shown later,
the MHD instabilities may have a rather complicated structure. The main
aim of this work is to investigate these instabilities.

Unfortunately, the available tools (tomographic reconstruction etc.) of-
ten cannot resolve the mode structure, especially in complicated cases which
frequently appear in advanced tokamak scenario. Thus, a new approach is
required. For that purpose a method for a combined use of different experi-
mental observations has been developed and implemented in a computational
code. This method allows to handle these complicated cases. The code also
provides a direct link between theory and experiment by simulating both, the
experimental observable signals following from a given eigenfunction and vice
versa, constructing an eigenfunction from different experimental diagnostics.
This method was applied to investigate a wide range of plasma instabilities in
advanced and conventional tokamak scenarios in ASDEX Upgrade tokamak.

This work is organized as follows. We begin with a brief overview of
the diagnostic tools related to the identification of MHD activities (chapter
2), and describe then the applied methods of MHD analysis and modeling
(chapter 3). After that, examples of investigations of MHD instabilities in

12



conventional and advanced tokamak scenarios on ASDEX Upgrade are given
(chapters 4-6). At the end of this work we demonstrate additional benefits,

which one can gain from the MHD analysis for the equilibrium reconstruction
(chapter 7).
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Chapter 2

Diagnostic tools for MHD
activities

A variety of diagnostics is used in plasma physics to measure temperature,
density, current profiles and other plasma parameters. Some of these methods
can give information about plasma instabilities. This work will focus on
four diagnostics, and especially on their simultaneous use to gain detailed
information about the observed MHD instabilities. These are: magnetic
measurements (Mirnov coils), soft X-ray cameras (SXR), electron cyclotron
emission (ECE) and motional Stark effect (MSE). The ASDEX Upgrade
tokamak is equipped with all of these diagnostics.

2.1 Magnetic measurements

From the beginning of tokamak researches small magnetic coils (Mirnov coils)
have been widely used as a diagnostic method [13, 14, 15]. On ASDEX Up-
grade the magnetic measurements consist of a set of 32 poloidal and 10
toroidal Mirnov coils to register By [16], and a set of poloidal and toroidal
ballooning coils to detect Br. Using these coils, plasma perturbations can be
detected at the plasma edge even if their amplitude is quite small. Experi-
mental observations show that the modes usually rotate in poloidal direction
with time scales 10% times shorter than typical time scales for changes in the
equilibrium magnetic field. Magnetic coils detect the time derivative of B
and therefore the instabilities can be registered even when their magnetic
perturbations are only 1073 of the equilibrium magnetic field.

14
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Figure 2.1: Determination of the poloidal mode number from the magnetic
measurements. The raw data are analyzed with a fast Fourier transform. To
extract the dominant mode number, the field perturbation due to the mode
with the dominant frequency is plotted. Following the poloidal direction for
a time point, one can find three maximums of the magnetic signal. (Number
of the periods corresponds to the number of maximums for a time point.)
Each maximum matches to an island. Consequently, poloidal mode number
is the number of the periods (m = 3).
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By making measurements at different poloidal and toroidal locations the
structure of magnetic perturbations (m,n) can be determined as well as
their amplitudes and frequencies. These measurements are routinely used on
ASDEX Upgrade for identification of the poloidal and toroidal mode numbers
and the frequencies of MHD modes.

The location of the magnetic coils on ASDEX Upgrade in a poloidal
cross-section is shown in Fig.2.1a. Fig.2.1b shows the usual analysis of the
Mirnov measurements. The raw experimental data are analyzed with a Fast
Fourier Transform (FFT). In many cases the spectral function shows only one
dominant frequency. In order to find the dominate mode number, the field
perturbation due to the mode with the dominant frequency is plotted, and
the points of equal phase are connected each other (see Fig.2.1b). Following
the poloidal direction for a time point, one can find three maxima of the
magnetic signal. The poloidal mode number is simply the number of these
maxima (or the number of the periods). In the example of Fig.2.1 it is a
m = 3 mode. The same algorithm is applied to determine the toroidal mode
number from the toroidal set of coils.

From magnetic measurements detected outside the plasma alone how-
ever neither the position of the mode nor the spatial mode structure can
be resolved [17]. Even more difficult is the investigation of coupled modes,
resonant at different magnetic surfaces. Magnetic perturbations fall off with
distance as B ~ r~(™*t1) | where m is the poloidal mode number. Thus, a
perturbation located in the plasma center has much smaller amplitude com-
pared to a perturbation near the plasma edge. In case of two modes with the
same helicity being resonant on different radii, no information about the in-
ner mode can be gained from magnetic measurements at all, as its magnetic
perturbation is completely screened by the outer resonant surface. There-
fore, additional diagnostics are required for a detailed investigation of MHD
activities.

2.2 Soft X-ray radiation

The soft X-ray radiation (SXR)! emitted by the plasma is a very good tool to
study MHD activities in the plasma core [18]. ASDEX Upgrade is equipped

'The radiation between 100eV and 10keV is called Soft X-ray radiation (SXR). On the
high-energy side it has X-ray radiation (between 1lkeV to 100keV’). On the low-energy
side it is bordered by vacuum ultraviolet radiation (between 6eV and 1keV).

16
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Figure 2.2: Position of the SXR cameras on ASDEX Upgrade (a). Deter-
mination of the poloidal mode number. The B-camera lines of sights of
ASDEX Upgrade are plotted together with an ideal kink mode structure
and the plasma boundary (b). The FFT transformation is applied to the
raw data from the B-camera. In this case, the spectral function has only
one dominant frequency, and the FFT amplitude for this frequency has one
global minimum. This minimum indicates an m = 1 structure.

with five pinhole SXR cameras with 124 chords [19]. The positions of the
cameras B, C, D, and F on ASDEX Upgrade are shown in Fig.2.2a. These
lines of sight cover the whole plasma volume. This diagnostic provides infor-
mation about the poloidal mode numbers, the mode frequency, and allows
to perform a tomographic reconstruction [20, 21].

It should be mentioned, however, that the tomographic reconstruction
using the SXR data has some limits and cannot always give a picture of the
plasma instabilities with sufficient quality. For the investigation of complex
mode structures (high poloidal mode number, coupled mode activity) the
spatial resolution can be too poor due to the low number of detectors?.

2Restricted space limits the number of the detectors. For instance, in the medical
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By using SXR signals from one of the cameras, the poloidal mode num-
ber can be determined. An example of this analysis is shown in Fig.2.2.
In Fig.2.2b the B-camera lines of sights are plotted together with an ideal
kink mode structure and the plasma boundary. The FFT transformation
is applied to the raw data. In our case, the spectral function has only one
dominant frequency and the FFT amplitude for this frequency has one global
minimum (Fig.2.2c). This minimum indicates an m = 1 structure. In the
same way, two global minima correspond to m = 2, and so on. Unfortu-
nately, this simple analysis does not work in case of several modes activity
or more complicated mode structures. A more detailed analysis is required
in this case.

2.3 Electron cyclotron emission

As was described before, plasma confinement in tokamaks is ensured by mag-
netic fields. Since the plasma consists of charge particles (electrons and ions),
they gyrate around magnetic field lines. As a consequence of this motion
electrons and ions emit electromagnetic radiation at the cyclotron resonance
frequency w. = qBiotar/m , Were By is the total magnetic field, ¢ is the
charge of a particle and m is the particle mass. This radiation emitted by
electrons can be used to determine the electron temperature of the plasma
with very high spatial and time resolution [23].

Under tokamak conditions, the plasma is usually optically thick for all
frequencies resonant inside the plasma torus and practically all radiation is
absorbed by the cyclotron resonance in a single pass of the wave through the
plasma. In this case the plasma emits as a black-body radiator (Kirchhoff’s
law) and the radiation intensity is simply related to the electron temperature
[3].

In a tokamak, the major field component is the toroidal field generated by
external coils and depends on the major radius R as By,,.(R) ~ 1/R. Since the
magnetic field is inhomogeneous, the spectral resolution of electron emission
measurements translates into spatial resolution and outputs radial profiles
of T, along one radial line of sight. This radiometry of electron cyclotron
emission (ECE) thus produces local measurements of the temperature inside
the plasma which is advantageous compared to integral measurements by
magnetic coils and SXR cameras.

tomography some 10° chords are available [22].

18



sector 9

Figure 2.3: Position of the ECE diagnostic on ASDEX Upgrade tokamak.

Several different detectors are installed at ASDEX Upgrade to measure
the ECE radiation. These detectors have different regions of applicability
and different time resolution. Fast ECE channels give the electron tempera-
ture profile with high time resolution (At < 32kHz). It permits to measure
changes in the electron temperature profile owing to the plasma instabilities.
The cut-off density limit however restricts this method [24]. The lines of
sight of the ECE diagnostic on ASDEX Upgrade is shown in Fig.2.3.

2.4 Motional Stark effect

The current profile in the plasma is determined by the Motional Stark Effect
(MSE) diagnostic. This diagnostic is used to measure the local value of B
and exploits the motional linear Stark effect. An injection beam of neutral
hydrogen atoms is the base for this diagnostic. During injection of the atoms
with velocity v, an electric field in their own stationary frame given by the
Lorentz field E;, = @ x B is appeared. This field splits spectral lines into
m and o components which is considerably larger than the Zeeman splitting
in the magnetic field for this case [3]. From this splitting, it is possible to
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Figure 2.4: Position of the motional Stark effect diagnostic on the ASDEX
Upgrade tokamak. The vertical lines show the positions of the measurement
points.

identify the small poloidal component of the magnetic field and reconstruct
the current profile inside the plasma.

The diagnostic on the ASDEX Upgrade tokamak has 10 spatial channels,
covering about half of the plasma cross-section (see Fig.2.4) [25]. One of the
2.5MW heating beams is used for MSE measurements in the ASDEX Up-
grade. The polarization direction of the o-component of the Doppler-shifted
and Stark-splitted deuterium Balmer-a beam emission is measured with a
time resolution of 3ms [26]. Various calibration technique are used for this
diagnostic and various effects, e.g. Faraday rotation should be taken into ac-
count (for the ASDEX Upgrade MSE diagnostic the Faraday rotation varies
from 0.5 to 1.3deg/T). These effects were included in the equilibrium re-
construction code CLISTE (CompLete Interpretive Suite for Tokamak Equi-
libria) allowing to determine an equilibrium with a reliable current profile
27, 28].

The equilibrium reconstruction based on the MSE measurements provides
information on the location of the rational ¢ values in the plasma. This
information is limited however by the relatively large error bars especially
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in the plasma center. The region of the MSE measurements on ASDEX
Upgrade is approximately between p,,. = 0.2 and p,,, = 0.8.

2.5 Conclusions

The overview of the diagnostics shows that there is no universal tool for an
investigation of the observed MHD instabilities. The diagnostics mentioned
above give different information from different plasma regions and sometimes
overlap each other. Since the existing tools are not sufficient to analyse the
MHD instabilities in detail, a new approach is necessary. From this overview
follows that an accumulation of all information from the diagnostics is the
most natural way to increase our knowledge about the MHD activities.

On the other hand, a theoretical investigation of MHD activities provide
additional information. As the complicated geometry excludes the use of
simple theoretical models, complex computer codes have been developed.
These codes are working for the real experimental geometry. They either
start from a linearization of Egs.(1.3 - 1.8) (e.g., the CASTOR code [29]) or
even solve the full time dependent equations (e.g., the XTOR code [6, 7]).
The results of these codes can be used for example to predict the form of
displacement or the influence of these instabilities on the background plasma.

In the next chapter, we describe the new approach which has been devel-
oped to overcome these difficulties with investigation of complicated MHD
structures. This approach accumulates experimental information from the
diagnostics described above (Mirnov coils, SXR, ECE, MSE) and uses also
information from computer simulations (XTOR, CASTOR). This allows to
construct a link between the experimentally observed MHD instabilities and
the corresponding theoretical predictions. This approach has been imple-
mented in the "MHD Interpretation Code" (MHD-IC). The code allows to
investigate the MHD instabilities even in case of weak MHD activity or com-
plicated mode structure.

21



Chapter 3

The MHD Interpretation Code

3.1 Introduction

The MHD Interpretation Code (MHD-IC) simulates experimental observa-
tions related to a given plasma perturbation for the diagnostics mentioned
above, accounting for real plasma geometry and for measured plasma param-
eters.

The starting point of the simulations is the expected structure of an
instability inside the plasma. As was described before, a saturated insta-
bility is characterized by its poloidal (m) and toroidal (n) mode numbers,
the frequency of the mode rotation (w), and the radial component of the
displacement eigenfunction (¢,). These three parameters can be determined
from the experiment (magnetic measurements, SXR), and perturbations may
be written in the following form:

& =¢&y(r) - cos(mO + np — wt) (3.1)

were © and ¢ are the poloidal and toroidal angle respectively. The initial
guess for the form of the radial component &,(r)! results from numerical sim-
ulations performed using the XTOR code [30, 6], or from theoretical models.
The XTOR code? allows for full 3-D nonlinear MHD calculations in toroidal
geometry which gives all plasma parameters in each point inside plasma.
The resulting perturbations are decomposed into Fourier components. Using

'Tn all equations the plasma radius is normalized to 1. All distances are also given in
this unit if it is not specified otherwise.
2Brief description of the XTOR code is done in Appendix C.
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Figure 3.1: Parametrized function describing the magnetic perturbation due
to a tearing mode.

only the strongest Fourier component of the eigenfunction, an initial guess
is found for the radial profile of the displacement eigenfunction . For prac-
tical reasons, not the eigenfunction itself but a parameterized form is used
in the code, such that only the parameters have to be varied to adjust the
eigenfunction to the measurements. For instance, for a single tearing mode
the radial profile £,(r) of the perturbation from XTOR is parameterized by
the functional form:

|r="res|\c
Eo(rya,b, e, d,Tres) = { (r - Tms)z eep(=( 7)) (3.2)

7 < Tres
(r — rres)? - ea:p(—(lr_2”5|)c) cd T > Tres

where a corresponds to the island width (IV), b determines the behaviour
of the function inside the island, ¢ describes the decay of the perturbation
outside the island, d shows the relative amplitude of the two peaks, and 7.
is the position of the resonant surface. In Fig.3.1 this function is plotted for
the parameters a = 0.06,0 =3,c =1,d = 1,1, = 0.5, W = 0.12.

One should note that this special form of &, is only one of the possible
variants. When necessary, additional parameters were introduced to obtain
a flexible analytical function representing the XTOR results or other theo-
retical results. Specifically, for double tearing modes an addition parameter
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Figure 3.2: Structure of MHD Interpretation Code.

is introduced to represent the amount of coupling of the modes. In principle,
any other parametrized function can be used for the perturbation as well.
In order to simulate magnetic measurements, a similar approach as for & is
used to get the initial values for the current perturbations Jy., (7).

A scheme of how the code works is shown in Fig.3.2. There are two
branches of calculations inside the code. In the first part of the code, the
perturbed magnetic field is calculated from the perturbation current Jp.,¢ ()
at each point inside the ASDEX Upgrade vessel. It gives the possibility to
compare phase and amplitude of the magnetic perturbation resulting from
the calculation directly with the magnetic measurements.

In the second part, the emissivity along each line of sight I (V,t) is cal-
culated and compared with the corresponding values measured by the SXR
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cameras. During this calculation the temperature profile along the ECE line
of sight is calculated as well and compared with the experimental one.

For all calculations an equilibrium reconstruction including MSE data
is used [27, 31]. The results of the MHD activity analysis regarding the
rational surfaces are then applied to improve the equilibrium reconstruction.
The whole analysis is then repeated in an iterative manner.

3.2 Magnetic measurements

The magnetic measurements register the time derivative of the magnetic field
B. Since the equilibrium current changes very slowly compared to the mode
rotation velocity, the Mirnov coils in general detect only perturbation cur-
rents. As the equilibrium currents do not play an important role, the plasma
will be represented here only by the perturbation currents. This part of
the MHD-IC code is based on Mirnov Interpretation Code (MIC) which was
designed for interpretation of the Mirnov measurements (M.Schittenchelm,
M.Maraschek, H.Zohm [16, 32]).

Assuming Cartesian coordinates (R, z, ) where R is the major radius, z
represents the vertical coordinate, and ¢ corresponds to the toroidal angle,
the perturbation field can be derived then from the poloidal flux ¥

1
R
Substituting the magnetic field from (3.3) in Ampere’s law (3.4), and taking
into account only the toroidal components of perturbation currents (0/0p =
0), Ampere’s law (3.4) can be simplified to a 2-D differential equation (3.6),
which is solved in real experimental geometry 3.

B,==VU xé. (3.3)

pod, = _%N\I,’ (3.4)
VU o ,10¥, OV
* — 2 f—) = — === R
were AW = [PV () = Rom(mom) + oy (3.5)
810 010
(s as e U(R, 2) = pigJy(R, 2) (3.6)

ORROR 0z ROz

3The PLTMG solver for partial differential equations with finite element grid method
is used in the calculations [33].
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In the following, the vacuum vessel is considered as a perfect conductor for
frequencies higher than 1kHz. This is confirmed by Mirnov measurements
at the same location inside and outside the vessel wall.

There are however additional metallic structures inside the vacuum ves-
sel (Passive Stabilization Loop (PSL) and support structures). Induction
currents appear in these elements and influence the resulting magnetic field.
These currents are taken into account in a self consistent way.

Finally, the variation of the distance between neighboring flux surfaces
should also be considered. Due to variations of the equilibrium magnetic field
the cross-section of a tube between the neighboring surfaces is changed, but
the current flowing in the tube does not change. Thus, the surface current
inside the tube varies jiu. ~ 1/RBg because of this geometric effect. For
our 2-D problem only the toroidal component of the current is important and

the coeflicient becomes jipe ~ ( | B |? —Bé) / (RBog) [16].

In the MIC code the radial profile of the perturbation current for MHD
modes has been assumed to be a constant over the region close to the corre-
sponding rational surface. This approximation however, is quite inaccurate.
To demonstrate the difference between this assumption and the shape of a
real perturbation current, the simple case of a tearing mode in cylindrical
geometry will be considered. Assuming the perturbation flux at the plasma
edge being the same, the perturbation fluxes using a step function for the cur-
rent at the resonant surface and the solution of the tearing mode equation in
cylindrical geometry have been evaluated. As shown in Fig.3.3 the resulting
fluxes and the perturbation currents have significant differences. Moreover,
this simple assumption for the perturbation current can describe only stable
tearing mode*. It becomes obvious that for a given magnetic perturbation
as measured by the Mirnov coils, the real plasma perturbations would be
underestimated by only using a constant current density at the rational sur-
face. For a more accurate treatment of the magnetic perturbation within the
plasma, an arbitrary current profile is allowed in the MHD-IC code.

The real plasma shape in tokamaks has much more complicated form than
a simple cylindrical model (e.g. see Fig.1.2). To describe this real plasma
equilibrium it is convenient to use coordinates defined by the field itself. In
this coordinates each field line will be straight and the plasma cross-section
will have a circular form[34]. It is so-called flux coordinates (p, ), where p

4Detailed calculations are presented in appendix B.
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Figure 3.3: Perturbation fluxes and perturbation currents for a (3,2) mode
resulting from the tearing mode equation (solid curves) and from a ”step
function” assumption (dashed curves). One can see significant difference
between these approaches (7,..; = 0.81).

is the radial coordinate and @ is the angle in the flux coordinates. In our
calculations, we use for the radial coordinate either the normalized poloidal
flux radius p,,, or the normalized toroidal flux radius p,,, which defined as

\I/ - \I/a q) - q)a
Ppol = m and Ptor = W )

where W is the poloidal flux, ® is the toroidal flux, index s refers to the
separatrix, index a to the magnetic axis. These coordinates are normalized
such that p = 0 on the magnetic axis and p = 1 on the plasma boundary.
Evaluation of the poloidal angle 6 for the flux coordinates is described in
Ref.[32].

The detailed shape of the current perturbation Jy.. (p) starts from a
parametrized component of XTOR code results as described before. For a
single tearing mode the following parametrization is used

Jmax  ((p = p1) /(P2 — p1))™* p1 < p < ps
Jpert(ﬂ) = (Jmax - Jmin) ' (P - p2)/(p2 - p3) + Jmax P2 g P g P3 (37)
Jimin - (L= (p— p3)/(ps — p3))** P3 < p < Py
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(3,2) mode, shot 11681, t=3.3s
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Figure 3.4: Perturbation current profile for (3,2) mode, #11681, t=3.3s.

where py, = p,..—W/2 and p5 = p,..+W/2. To exclude all geometrical effects,
the initial perturbation current .J,.,.(p) is defined in the flux coordinates (p, #)
and then transformed into Cartesian coordinates (R, z) using equilibrium
reconstruction.

As an example we consider a (3,2) tearing mode. The position of the
mode was found from ECE measurements. The shape of the perturbation
current profile J,.;+(p) was varied to obtain the best agreement with magnetic
measurements. The best fit for the perturbation current is shown in Fig.3.4
(Jmax = 170, Jmin = =50, p,., = 0.7, W = 0.14, p;, = 0.3, p, = 0.95, oy = 8,
as = 3). The resulting perturbation flux due to the (3,2) mode is shown
in Fig.3.5. A comparison of the calculated amplitude and phase with mag-
netic measurements is shown in Fig.3.6. The distance between the minimum
and the maximum value of the perturbation current is approximately the
width of the islands (see Fig.3.4) [35]. This width derived from the magnetic
measurements (W & 7cm) is in good agreement with the corresponding ECE
measurements (W ~ 6 — 7em).
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Figure 3.6: Phase (A) and amplitude (B) from calculation (solid lines) com-
pared with experiment (dashed lines) depending on the poloidal angle © for
the same discharge as in the previous two figures.
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3.3 Soft X-ray measurements

Signals from soft X-ray (SXR) cameras and electron cyclotron emission (ECE)
give information about the behaviour of MHD modes directly from plasma
interior. Performing measurements along different lines of sight allows to
determine the spatial behaviour and the amplitude of MHD activities inside
the plasma.

The energy spectrum of SXR radiation consists of a continuum of free-
free bremsstrahlung, free-bound recombination radiation, and bound-bound
line radiation (only minor contribution) [36]. For a Maxwell’s velocity distri-
bution and assuming a hydrogen model for the impurity ions, the radiated
power de per unit volume in the photon energy interval dE reads

de exp(—E/T,
(d—E)ff = anlZesrgss (T, E)% : (3.8)

where T, is the electron temperature in [keV], n.[103cm ™3] is the electron
density, the effective charge is Z.;r = ), n; Z;2 /ne, a = 3-10 is a constant,
and ggs(T,, E) corresponds to the temperature-averaged Gaunt factor. The
intensity results from integration over the photon energy:

£(r,0) = / S(B:7,6) frumerafpiter dE - (3.9)

Standard assumptions can be made to calculate the emissivity along a
SXR line of sight. The line is divided into small pieces of length dl, and the
plasma parameters are assumed to be uniform inside each piece (see Fig.3.7).
The resulting emissivity €;04; is then simply the sum over the emissivities €y,
inside each element k, multiplied by the element’s length di

Erotar = Y _cr - dl (3.10)
k
where

ee=G- JAE . (3.11)

9 N .
ne . (Eo + ZAE)
N ; foum(Eo +iAE) - exp( T

The integral in Eq.3.9 is substituted by a sum over the energy in Eq.3.11.
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Total emissivity=Y. (emissivity of the element k)-dl

Figure 3.7: An example of the emissivity calculation for a line of sight.

In Eq.3.11, G represents a geometrical factor that describes the variation
of the “effective” width of a pinhole for different detectors inside one camera
[19]:

47 \?

G = , 3.12
AgA,(cosa; — Zil |sin o) (3.12)

Ad - dldg, Ap :ble (313)

(dy - diode width; dj - diode length; b; - pinhole width; by - pinhole length; b3
- pinhole thickness; o; - angle between the i"-detector and the camera axis;
A - focus length of pinhole camera).

The passivated ion-implanted silicon diodes are used in the SXR cameras
on the ASDEX Upgrade. These diodes are manufactured from silicon and
have an aluminum coating on the front side. These two substances make a
p — n transition. Photons enter in the detectors and generate electron-hole
pairs by the photoelectric effect [19]. The geometrical parameters of the SXR
system using in the MHD-IC code are presented in the table:
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Camera | NV R[m] z[m] Y ) A dl d2 bl bg
30 | 1.411 | -1.075 79° 2.15° | 122 | 2.6 | 20 | 2.6 | 28.04
30 | 2.351 | -0.271 | 163° | 3.80° | 69.7 | 2.6 | 8.6 | 2.5 18
60 | 2.371 | 0.2526 | 187.5° | 1.86° | 141 | 2.6 | 20 | 2.5 35
30 | 2.020 | 0.875 | —137° | 3.80° | 69.7 | 2.6 | 8.6 | 2.5 18
121 1.402 | 1.170 | —85°% | 3.80° | 69.7 | 2.6 | 8.6 | 2.5 18

| | Q| | =,

N - number of the lines of sight

R, z - position of pinhole in mm

7 - angle of camera axis (middle of array of lines of sight) in deg.

0 - average distance between neighboring lines of sight in deg.

A - camera focus (distance between pinhole and detectors) in mm

dy, ds, by, by - width (1) and length (2) of detector (d) and pinhole (b) in mm

Transmission parameters of the SXR system depending on the photon

energy are collected in the fg,,(E) coefficient.

fsum(E) - TBe(E) : TAZ(E) : TSi,dead(E) : (1 - TSi,absorb(E)) (314)

The ASDEX Upgrade SXR cameras have two different suites of beryllium
filters. The first suite has a “Be” foil with a thickness of 100 um and the
second with 12 um. The first coefficient in Eq.3.14 represents these beryllium
filters. The second coefficient Ty; corresponds to aluminum coating of the
SXR detectors (0.2um). Then, there are coefficients for silicon “dead layer”
(0.2um) and silicon absorber region (300um).

As was mentioned before, the MHD perturbation rotates with a frequency

w and thus & ~ cos (wt). During one period of the rotation, this behaviour
can be represented as a simple phase shift of the perturbation and it reads

& ~ cos (%z) ,i=1..k. (3.15)

SXR signals I(N,t)cae , were N is line number and ¢ represents time, are
calculated using the formulas (3.10 - 3.11, 3.15) for different phase angles of
perturbations in order to simulate a poloidal rotation of the modes.

This new camera was recently installed in ASDEX Upgrade (from discharge #14049).

Before that time, the camera had been directed only at the divertor region.
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Figure 3.8: Scheme of the second part of MHD-IC code.

As the MHD activities correspond solely to relative changes of the signal,
an absolute calibration of the SXR cameras is not important here. From
Eq.3.8 it is obvious that the SXR signals are most sensitive to temperature
perturbations Tp+. Changes of the Z.;; profile are not considered in the
following, which is a good approximation for discharges without impurity
accumulation®.

The structure of the SXR and the ECE part of the MHD-IC code is shown
in Fig.3.8. In this part the displacement eigenfunction or the temperature
perturbation are used as input parameters to describe the MHD activity.
As actually the temperature perturbation is required, the following relation
between the displacement and the temperature perturbation is used [37]

Tpert

= ——. 3.16
gpert VTO,O ( )
For the equilibrium quantities Tp o, ne, Zess the measured values are used.
The perturbations are added onto the equilibrium parameters, by using the

6The Z.rs profile is inserted in the code in the same way as the others profiles and
assumed to be a constant. It can be easily used for discharges with impurity puffing if it
is necessary.
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equilibrium reconstruction (including motional Stark effect measurements),
transformed from the flux coordinates (p, @) into the (R, z) plane. The co-
ordinate transformation is the same as in the first part of the code. The
resulting profiles T'(R, z,t), n(R, z,t), Zess(R, 2,t) are then used to simulate
the SXR emissivity along a line of sight.

The line of sight of the ECE measurements in ASDEX Upgrade is the
horizontal line with z = 0.1m. This position usually corresponds to the po-
sition of the plasma center in the machine. During a discharge, the ECE
measurements provide temperature values for a number of points inside the
plasma along this line. In order to compare these ECE measurements with
our model, the temperature profile along the ECE line of sight is calculated
during the emissivity calculations in this part of the code. The displacement
eigenfunction &, is also mapped onto the ECE line of sight. It allows to
compare the displacement eigenfunction from calculation §,,,; directly with
the corresponding eigenfunction from experiment as will be shown below.

3.4 MHD activity analysis

3.4.1 Mirnov signals

An analysis of the MHD activity usually starts from the identification of
the dominant frequencies and the determination of the mode numbers from
magnetic measurements. The algorithm for the determination of the mode
numbers was depicted in Fig.2.1. After that, phase and amplitude of the
Mirnov signals are simulated and compared with experimental values as de-
scribed in the previous section. The shape of the perturbation currents is
varied to get the best possible agreement with experimental observations.

3.4.2 Soft X-ray signals
Comparison of the total SXR signals

First information about the MHD activity can be found directly from the
total SXR signal. As an example, in Fig.3.9, the SXR signal of a discharge
with a (2,1) mode is given.

The position of the camera lines of sight together with a (2,1) tearing
mode structure are shown in Fig.3.9a. During the mode rotation, the SXR
emissivity along the lines of sight (N, t) changes due to the temperature and
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Figure 3.9: A) Position of SXR line of sight (B-camera on ASDEX Upgrade)
together with a sketch of (2,1) magnetic islands. B) Intensities for two
different position of the islands. C) Experimental SXR signal with 'wave’-
like structure.
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density flattening inside the islands. The intensities I(V,t) for two different
positions of the island are shown in Fig.3.9b. The rotating mode changes
the profile of the function I(V,t) close to the resonant surface. Looking at
a time series of the SXR intensity one finds a ”wave”-like structure in the
mode position region Fig.3.9c. Moreover, it is possible to estimate the island
width if the MHD activity is sufficiently strong.

A more detailed information can be gained if the perturbed part of the
SXR signal is separated from the equilibrium background. Two different
tools are implemented for this purpose in our analysis: Fast Fourier Trans-
formation (FFT) and Singular Value Decomposition (SVD).

Fast Fourier transformation

A FFT algorithm is applied to separate the perturbed part of the SXR signal
from the total signal I(N,t¢) [38]. This method allows to make spectral
analysis using discrete base of data points. The one-dimensional FFT of a
sequence of n values z;,7 =0,1,...,n — 1, is defined as

1 2mijk
- § ; — 3.17
Tk NG = i exp ( n ) (3:17)

for k =0,1,...,n — 1. The original values x; and the transformed values
are, in general, complex.

The FFT transformation is applied for calculated I(V, )4 and measured
I(N,t)eqp signals. Then, calculated and measured FFT amplitude and phase
are compared to determine shape and position of the displacement eigen-
function of the observed MHD activity. It will be shown later that the FFT
amplitude is very sensitive to the form of the displacement eigenfunction.

Singular value decomposition

Singular Value Decomposition (SVD) analysis allows to separate experimen-
tal signals on spatial and time elements [39, 40]. For this analysis, measured
data are collected in a (n x m) matrix X with m < n:

X = (zy5) ,

where z; ; has ¢ = 1,...,n time points and j = 1, ..., m spatial points. Then,
the SVD algorithm decomposes X in the following form

X =U'sv (3.18)
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into an orthogonal (n x n) matrix U, a diagonal (n x m) matrix S, and
an orthogonal (m x m) matrix V. From algebraic analysis it follows that
UU? =1, VVT =1, and S is diagonal matrix with non-negative diagonal
elements s; [41]. Moreover, eigenvalues of S have a strict descending order

S1 =8> ...>=>58,=0. (3.19)

The s; are called the singular values of X. From this hierarchy of the singular
values it follows that the first singular value gives the strongest component of
the signal (unperturbed part), the second value corresponds to the strongest
perturbation component and so on. At the same time, the temporal and
spatial SVD eigenvectors create a new orthogonal coordinate system.

Filtering of the signal is then a simple reconstruction of the signals with
only the p largest singular values

p
Ty = E UkiSkVk; -
k=1

As a measure of the quality of the reconstructed signal Z;;, the following
parameter can be introduced [21]:

P m
o= E st/ E 53 .
k=1 k=1

This value represents the relative quality of our approximation using only
the first p components.

The SVD algorithm separates the space and time dependent components
of the perturbations from the total signal. Since the frequency of the mode ro-
tation can easily be determined from experiment (Mirnov coils, SXR) most
interesting for the analysis are the spatial components. The first spatial
component corresponds to the unperturbed part of the signal, the unper-
turbed equilibrium. The second and the third components correspond to the
strongest MHD activity. These two component are most interesting for the
MHD analysis and describe the MHD activity with sufficient quality. Only in
case of several modes with different rotation frequencies further components
are required. The singular value decomposition for the calculated signal
I(N,t)caic and for the experimental signal I(N,t)e,, are performed in the
code. Comparing the spatial SVD eigenvectors from theory and experiment,
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the best fit for the displacement eigenfunction is found. This fitting proce-
dure should be done simultaneously with fitting of the FF'T amplitude.

It is important to note that the sign of an SVD eigenvector depends on
actual SVD algorithm. Thus, only the shape of the eigenvector should be
compare with the corresponding experimental eigenvectors.

Accuracy of the SXR data analysis

The FFT and SVD techniques are flexible enough to obtain information
about week MHD activity even if this activity only slightly changes the total
signal I(N,t)esp. This is an advantage of the code compared to tomographic
reconstructions. The other advantage is the possibility to increase the spa-
tial resolution. For standard tomographic methods, a low number of SXR
detectors and errors in absolute values of the emissivity lead to error bars
in the radial direction of about Ap ~ 0.14 — 0.16(6 — 8cm) [42, 43]. Special
methods of the tomography adapted to the condition in fusion plasma, for
instance differential rotation tomography method, can increase the resolu-
tion in radial direction to Ap ~ 0.1(5 — 6¢cm) [20, 44, 45]. On the other
hand, applying a combination of the FFT and the SVD technique and by
using several SXR cameras simultaneously, the error bars can be reduced
to Ap ~ 0.05(2 — 3cm), which is already close to the width of the lines of
sights. Changes of perturbations with smaller amplitudes do not affect the
result and cannot be resolved with the current SXR system on ASDEX Up-
grade. One should note however that FFT and SVD technique cannot give
any information about the absolute value of &, a comparison of I(N,t).uec
and (N, t),, would be required for that. Since for our analysis only the rel-
ative SXR signals are interesting, the problems with the absolute calibration,
which are rather complicated, are not important for here.

3.4.3 Electron cyclotron emission signals

The result of ECE measurements is the temperature profile T.(R, 2;t)cqp
along the ECE line of sight. This temperature profile is compared with the
calculated profile from MHD-IC code T,.(R, z;t)cqe. The distance between
neighboring measurements of the temperature profile 7, (R, z;t).,, depends
on the discharge conditions (usually about 0.5cm).

From the fast ECE channels it is also possible to calculate the displace-
ment eigenfunction directly from the measured time dependent temperature
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profile

5 o Te(t) _ <Te>t
ece V <Te>t

and to compare it with ¢,.,, from the code input. It gives an independent

comparison of SXR and ECE data. Unfortunately, the fast ECE measure-

ments usually do not exist for the whole plasma region due to the restrictions

mentioned in the description of the ECE diagnostic.

(3.20)

3.4.4 Limits of the method

There are several limits of the method which should be taken into consid-
eration. Firstly, error bars of the diagnostics restrict the accuracy of the
analysis. These errors have minimum possible values when all channels of
the diagnostics are used. This however is usually not the case, e.g. SXR
cameras have more lines of sight then the usual number of the amplifier
channels. In addition to these limits, we restrict our calculations by using
only the strongest Fourier components of the perturbations. This approxima-
tion is valid only when toroidal coupling to higher m-modes is not important
to measured signals. Implementation of the toroidal coupling in the code is
under development right now.

3.4.5 Conclusion

The MHD-IC code allows to perform an analysis of MHD activities using all
available experimental information related to these instabilities. The method
substantially increases the accuracy compared to a tomographic reconstruc-
tion technique and simplifies the identification of the modes. These features
are especially important for the identification of a complicated mode struc-
ture.

Such an analysis of MHD activity using the MHD-IC code is demonstrated
for different kinds of MHD activities in the next chapters.

The installation procedure and input parameters of the MHD-IC code are
described in the Appendix D.
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Chapter 4

Tokamak scenarios

There are two concepts in tokamak researches which should lead to a working
fusion power plant. The first concept called "conventional tokamak scenario”
extrapolates experimental results from existing tokamaks. In this scenario
the plasma current, necessary for heating, and confinement, is driven induc-
tively. Thus, the central solenoid together with the nuclear shielding of the
toroidal field coils determine the scale of the machine which is rather large.
Moreover, steady state operation is not possible for this type of the reactor
and the machine has to operate in a pulsed mode. Consequently, an energy
storage system is required to ensure continuous energy and the capital cost
of a fusion power plant increases [46].

The other concept is the so-called advanced tokamak scenarios. This ap-
proach tries to operate the fusion tokamak in steady state [46]. Improved
confinement for this type of operations reduces the necessary plasma current
I, for high fusion performance @) () = fusion power/ externally supplied
plasma heating power). The main idea behind that is non inductive cur-
rent drive with high bootstrap current fraction. The bootstrap current is
proportional to the pressure gradient [3, 47]

) — Ei@
Jb Bg 87“ ’

where p represents the pressure, r is the radial coordinate, the local inverse
aspect ratio is € = r/R, and By is the poloidal magnetic field. From this
equation follows that for a large bootstrap current fraction large values of
the poloidal beta are necessary. Furthermore, the pressure gradient has its
maximum value out of axis and the current profiles will be generally non-
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Figure 4.1: Examples of typical g-profiles in advanced and conventional toka-
mak scenarios.

monotonic. The non-monotonic current profiles lead to inverted safety factor
profiles (see Fig.4.1). This g-profile has a minimal value out of axis. In the
negative magnetic shear region, the toroidal drive of the modes responsible
for turbulent transport is reduced. In addition, the reversed g¢-profiles allow
to suppress turbulence in the plasma through sheared E x B rotation and
create internal transport barriers (ITBs) [48, 49]. The other aspect of the
advanced scenarios is a possibility to access second stability region with re-
spect to the ideal ballooning modes [50]. The advanced tokamak operations
are intensively studied on all main tokamaks [49, 51, 52, 53].

Various scenarios of advanced tokamak concepts have been investigated
on ASDEX Upgrade. The current density was modified in order to achieve
improved core confinement. The most promising concept was obtained during
current ramp phase by applying NBI. This reversed shear scenario has gy, >
1.5 and large bootstrap current fraction [54, 55, 56].

Experimental identification of the reversed g-profiles is difficult task. The
motional Stark effect (MSE) diagnostic allows to reconstruct the current
profile but has large error bars in the plasma core. Thus, in the experiments,
it is difficult to identify that the g-profiles are really reversed. Analysis of
MHD instabilities is usually used to overcome this problem. For instance, the
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g-profile in Fig.4.1 has two ¢ = 2 resonant surfaces and two mode with the
same helicity may appear in this case. After identification of these modes,
one can really be sure that the g-profile is reversed. At the same time, it
is rather hard to find the inner mode using only available tools and there is
a need for an interpretation code which can resolve such MHD activity. In
chapter 7, we demonstrate that the MHD Interpretation Code is well fitted
for this task.

The reversed g-profiles bring new MHD phenomena which are not ob-
served in conventional scenarios. For example, existing of two rational sur-
faces with the same g-values described above may lead to appearance of a
so-called double tearing mode (DTM), which consists of two coupled tear-
ing modes. These new phenomena together with usual MHD instabilities
have been observed in the advanced tokamak experiments on ASDEX Up-
grade [57]. Most of them limit the plasma parameters, for instance the
maximum achievable normalized plasma pressure 8y = f,/ (I,/aB;), where
By = (p) / (B?/ (2114)), a represents the minor radius, By is the toroidal mag-
netic field and (p) is the volume averaged plasma pressure. These instabilities
either terminate the improved confinement or even lead to disruptions. Con-
sequently, the investigation of these instabilities is a particular interest.

In the next chapters we investigate different MHD phenomena in the
conventional and advanced tokamak scenarios on ASDEX Upgrade. As will
be shown using MHD-IC code it is possible to find out the detailed structure
of these phenomena.
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Chapter 5

MHD activities in conventional
scenarios

The conventional tokamak scenarios are characterized by inductive current
drive and thus the current profile has the maximum of the current density
in the plasma center. This leads to a monotonic ¢ profile with continuously
increasing ¢ values as was shown in Fig.4.1. Consequently, for any two res-
onant surfaces in the plasma, the outer surface has always a higher value of
q.

We begin our investigation with an ideal kink mode (in form of fishbone
activity) which is quite easy to analyse as it has a large amplitude localized in
the plasma core. Afterwards different types of fishbone activity on ASDEX
Upgrade are investigated.

5.1 The kink mode

The internal kink mode is an usual type of MHD instabilities in ASDEX
Upgrade discharges for conventional scenarios [58, 59]. This mode is often
driven by fast particles, and thus appearing as fishbone oscillations. It is the
form of experimental signals of these oscillations which has given the name
fishbone to this instability (see Fig.5.1). In the next section, background of
this mode and its effect on the plasma will be discussed in detail. Since the
kink mode is easy to analyse as it has a large amplitude in the plasma core,
we use it as first example for our analysis.

The helicity of the fishbone activity can easily be obtained from the mag-
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Figure 5.1: Internal (1,1) kink mode in form of fishbone oscillations (dis-
charge #11839, t=1.25s, SXR signal, ”B”-camera, channel 14).

netic measurements to be m = 1,n = 1. Theory predicts a step function for
the corresponding displacement eigenfunction [60, 61, 62], which is used as an
initial guess for the displacement in the calculations here. The perturbation
is parametrized in the following form:

~f max(§y(r,a,b,c,d)) r<m
T R S AN G4

where &, is determined by Eq.3.2. Varying the form of the function &,
very good agreement could be obtained for the amplitude of fast Fourier
transformation (FFT) and for the singular value decomposition components
(SVD) between experiment and calculation (with the parameters a = 0.02,
b=3,c=1,d=0, res = 045, r; = 15 — 0.6 for Eq.(5.1)). These results
are shown in Figs.5.2,5.3. It is important to note that the sign of an SVD
component depends from the type of the SVD algorithm and only the shape
should be compared with the experiment.

As was mentioned before, this ideal kink mode example is considered to
be a good test for our method. In this case, the position of the mode 7.
can be estimated directly from the raw SXR data. Central channels of the
B-camera cross the ¢ = 1 surface and show a signal similar to Fig.5.1. If one
moves outside from the central channel, one can find that at some channel
the fishbone activity vanishes. This line does not cross the rational surface
anymore and the channel is tangential to a flux surface with a ¢ value a little
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x 10" FFT amplitude from experiment, Shot # 11839 t=1.25596-1.2585

Figure 5.2: Comparison of the observed and calculated FFT amplitudes for
the kink mode (Shot #11839, t = 1.25s). The FFT amplitudes of the exper-
imental signal are shown for a number of frequencies.

SVD space eigenvectors from experiment. Shot # 11839 t=1.25596-1.2585

Channel

Figure 5.3: Comparison of the SVD eigenvectors for the (1,1) kink mode
(#11839, t=1.25s).
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Displacement eigenfunction and q-profile
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Figure 5.4: Displacement eigenfunction for the (1,1) kink mode and the g-
profile derived from equilibrium reconstruction including MSE measurements
(Shot #11839, t=1.25s).

higher then 1. This flux surface in our case has p ~ 0.5 and agrees well with
the result of our analysis (p = 0.45).

The displacement eigenfunction from MHD-IC code for the parameters
listed above is shown in Fig.5.4 together with the ¢-profile (with MSE). The
resulting eigenfunction agrees very well with the position of the ¢ = 1 surface
from the equilibrium reconstruction as well as with the shape of that function
resulting from XTOR (Fig.5.5). Consequently, there is good agreement be-
tween modelling and experimental observations, and thus the eigenfunction
found from our analysis should be correct.

5.2 Fishbones for different types of neutral
beam injection

It is of particular interest to investigate the fishbone instability in tokamak
fusion research [59, 63, 64, 65]. Experiments have shown that neutral beam
injection (NBI) can destabilize a mode with dominant toroidal and poloidal
wave numbers (m,n) = (1,1). This is due to inverse Landau damping ef-
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Figure 5.5: Dominant FFT (m,n) = (1,1) component &, for a kink mode
resulting from the XTOR code.

fect which lead to a growth in case of the fishbones. The resonance occurs
between the toroidal wave velocity of the instability and the rotation of the
trapped energetic particles from the injected beam. Thus, the existence of
the trapped particle is necessary condition for the fishbones. A model of fish-
bones proposed by Chen et al.[66] shows that the particles trapped within the
q = 1 radius can kinetically destabilize an internal kink mode with frequency

... _E
W= W= myr Rwg
where w), is the precession frequency of the resonant beam ions, F corresponds
to the energy of the ions, R is the major plasma radius, 7 is the minor plasma
radius, wg = eB/my describes the gyrofrequency, and my, is the mass of the
fast ions [58].

The most important effect of the fishbone instability on the plasma is the
ejection of the resonant fast ions during the bursts. This is the reason why
fishbones reduce the efficiency of the heating and can also limit the plasma
parameter 3 of a discharge. Measurements on ASDEX Upgrade show the
following maximal [-values for two different types of NBI: for the tangential
injection 5y & 2.3 (#11652, t = 3.49s, radius of tangency Ry = 0.93m) , and
in case of the radial injection Sy &~ 1.6 (#11654, t = 3.56s). Measurements
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Figure 5.6: Normalized beta for radial (#11654) and tangential (#11652)
injection cases.

of the normalized beta 3, for both discharges are shown in Fig.5.6. It is
interesting to investigate the mode structure in these two cases.

The MHD analysis starts from the magnetic signals for radial (see Fig.5.7)
and tangential (see Fig.5.8) injection cases. Both cases show a (1, 1) helicity
of the MHD activity and are supposed to be similar to the internal kink
mode. Thus, the parametrized function from the previous section (Eq.5.1)
can be used here too. Varying the form of the eigenfunction, good agreement
with the experiments was found. Optimized parameters for the displacement
eigenfunction &, in case of the radial neutral beam injection are following:
a=0238,b=1,¢=3,d=0, r.es = 0.33, 1y = r..s—0.16. For the tangential
injection case the coefficients are different (e = 0.129, b =1, ¢ =3, d = 0.11,
Tres = 0.30, 71 = 165 — 0.09). These eigenfunctions are shown in Fig.5.9.

Comparison of the FFT amplitudes and the SVD components with the
corresponding experimental results for these eigenfunctions are presented in
Figs.5.10 , 5.11 , 5.12 , and 5.13. One can see that the simulations fit well
to the experimental curves. This means that our eigenfunctions describe all
main features noticeable by the SXR diagnostic.

For the radial injection case our eigenfunction from the SXR data has
an ideal kink mode character (rigid displacement of the plasma inside the
q = 1 surface as was shown in Fig.1.4). The tangential injection case is more
complicated. The main difference between these displacements is a small
negative peak in the tangential injection case (see Fig.5.9). The existence
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Figure 5.7: Magnetic signal of the fishbones in case of the radial injection
(#11654).
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Figure 5.8: Magnetic signal of the fishbones in case of the tangential injection
(#11652).
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Figure 5.9:

Forms of the displacement eigenfunction for the radial
(#11654,t = 3.56s) and toroidal (#11652,¢ = 3.49s) injection cases.
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Figure 5.10:

Comparison of the FFT amplitude for the radial injection case
(#11654).
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SVD space eigenvectors from experiment. Shot # 11654 t=3.55791-3.56
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Figure 5.11: Comparison of the SVD components for the radial injection case
(#11654).
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Figure 5.12: Comparison of the FFT amplitude for the tangential injection
case (#11652).
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Figure 5.13: Comparison of the SVD components for the tangential injection
case (#11652).

of this peak leads to changes of the FFT amplitude compared to the ra-
dial injection, and two additional small maximums appear on the curve in
Fig.5.12. These, however, would also appear if the peak of the displacement
had positive sign. The SXR data analysis cannot distinguish between these
two cases. Thus, there are two different possibilities either the mode has
resistive character and forms an island (negative peak), or the observation
shows coupling to an additional mode (positive peak). To clarify the form of
the eigenfunction, ECE measurements should be taken into consideration.

Displacement eigenfunctions from the ECE measurements are shown in
Figs.5.14, 5.15. Both displacements are not symmetrical and have different
characters on the low and high field sides. Thus, the ECE measurements
demonstrate the coupling to higher m-numbers on the low field side of the
torus for both cases of NBI. For the tangential injection case this coupling
is higher due to higher (3,5.This mode coupling is not observed by the SXR
measurements. A possible explanation for this difference is that the obser-
vations were done by the B-camera directing at the plasma from the outer
part of the torus (see Fig.2.2). The measurements from this position do not
allow to test the ballooning character of the mode.

In order to proof the resistive character of the mode, one should plot the
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Figure 5.14: The displacement eigenfunction from ECE measurements to-
gether with the calculated one for the tangential NBI (#11652, t=3.5s).
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Figure 5.15: The displacement eigenfunction from ECE measurements to-
gether with the calculated one for the radial NBI (#11654, t=3.73s).
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Phase of ECE signal (FFT), #11652 time3.497888
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Figure 5.16: Phase jump of the ECE signal for the tangential injection case
(#11652). Two phase jumps show position of the mode on the low field side
(R =1.92m) and on the high field side (R = 1.64m) of the torus.

FFT phase of the ECE signals at the mode frequency (a magnetic island
would cause a jump of the FFT phase). The radial NBI case has no jumps
(ideal character). The tangential NBI case has a resistive character (see
Fig.5.16). Two phase jumps show position of the mode on the low field side
(R =1.92m) and on the high field side (R = 1.64m) of the torus.

In addition it is interesting to model the Mirnov measurements. The
modeling of these measurements was done using parametrized expression for
perturbation current (Eq.3.7) and applying the measured (1, 1) helicity of the
mode. Varying the form of the current Jp.,+, good agreement to the measured
signals was obtained for the following parameters: Jy.x = 200, Jpnim = —50,
Tres = 0.3, W =0.18, r; = 0, 74, = 0.5, a3 = 2, s = 3 (Fig.5.17). The ob-
servable amplitude of the perturbation from Mirnov measurements together
with the corresponding calculations are plotted in Fig.5.18. The perturba-
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Figure 5.17: Dominant (1, 1) perturbation current component which is used
to calculate the magnetic signal (see Fig.5.18) in the tangential NBI case
(#11652,t = 3.5s).

tion current function Jy.,+ shown in Fig.5.17 has a negative peak. This peak
is an important part of the current which allows to include the influence of
the plasma on the perturbation current. XTOR calculations also reproduce
this behaviour of the perturbation current (see Fig.5.19).  Consequently,
assuming the correct form of the perturbation current we include influence
of the plasma which is neglected in the MIC code (see Ref.[16]).

It is interesting to understand why the fishbones have different characters
for tangential and radial NBI cases. Either the resistive character of the
fishbones depends on the injection type or it is an influence of higher plasma
By and therefore higher amplitude of perturbations in the discharge with
tangential NBI. In order to check that, a fishbone burst for the tangential
NBI case was analyzed for an earlier time point with 55 =~ 1.4. An ideal
character of the mode for this time point was confirmed by the MHD analysis.
Corresponding displacement eigenfunction and FFT amplitudes are shown
in Figs.5.20-5.21. After analysis of several time points with different [
parameter, it was found that the mode becomes resistive at the critical value
of By erie = 1.7 —1.8.

Investigation of fishbones on ASDEX Upgrade by S.Giinter et al.[59]
shows that fishbones can give a much stronger effect on the plasma parame-
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Figure 5.18: Amplitude from calculation (solid line) compared with magnetic

signals from Mirnov coils (points) for the tangential NBI case (#11652,t =
3.5s). The perturbation current for this case is shown in Fig.5.17.
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Figure 5.19: Profile of the perturbation current for dominant (m,n) = (1,1)
component from the XTOR code.
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Displacement eigenfunction
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Figure 5.20: Displacement eigenfunction for the tangential NBI discharge
(#11652,t = 2.465).
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Figure 5.21: Comparison of the FFT amplitude for the tangential NBI case
(#11652,t = 2.465).
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ters than expected from an ideal instability. It was demonstrated from ECE
measurements that the influence of a strong fishbone on the temperature
profile is comparable with an effect of small sawtooth. Moreover, only the
assumption of a resistive reconnection in the transport code ASTRA allows
to explain the observed stationary current profiles with a central ¢ values
about unity in these discharges. Investigation of fishbones on JET also has
shown the existence of the resistive fishbones [67].

In conclusion, from analysis of all available data related to the fishbones it
follows that (1, 1) fishbones are coupled to the higher modes (m, 1) on the low
field side of the torus (higher amplitude of the displacement eigenfunction)
and the mode becomes resistive when Sy > By .. & 1.7 — 1.8.

99



Chapter 6

MHD activities in advanced
scenarios

The hollow plasma current profile which is characteristic for the advanced
tokamak scenarios leads to flat or reversed ¢ profiles as required for the for-
mation of internal transport barrier (see Fig.4.1). These special form of the
g-profiles gives rise to MHD phenomena not observed under conventional
discharge conditions. These instabilities lead to significant limitations of the
accessible operating regimes. The corresponding instabilities observed in AS-
DEX Upgrade reversed shear discharges will be investigated in this chapter.
We start with a double tearing mode, then examine the time evolution of in-
stabilities during the formation of internal transport barrier (ITB) and finally
investigate MHD instabilities causing disruptions in this scenario.

6.1 Double tearing mode

The double tearing modes (DTMs) are characteristic MHD activities for re-
versed ¢-profiles in the advanced scenario. This mode can appear when two
tearing modes with the same helicities (m,n) are coupled. The linear sta-
bility of double tearing modes has been previously studied [68, 69], as well
as the non-linear stability [70, 71, 72, 73]. This mode was also found to be
one of the possible type of MHD activity in advanced tokamak scenarios on
ASDEX Upgrade [57, 74]. In this section we analyse in detail an observed
DTM structure and estimate the growth rate of the mode.

A double tearing mode has two modes with the same helicity (same (m,n)
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Figure 6.1: SXR signal from the B-camera for the (2, 1) double tearing mode
(#12224, t=0.7s).

numbers), and thus the perturbation currents due to the inner mode are
screened by the outer rational surface. In this case, a simulation of the
magnetic measurements is not very helpful because of the screening effect of
the outer surface. Thus, the magnetic measurements can be applied only to
determine the helicity of the modes. Consequently, the interpretation of the
SXR signals and the ECE signals is the only way to find the radial structure
of this mode.

As an example we consider the mode activity in a reversed shear dis-
charge of ASDEX Upgrade (#12224, t=0.7s), which will be shown to be a
(2,1) double tearing mode. The magnetic measurements show a (2,1) mode
activity. The SXR signal from the “B”-camera is shown in Fig.6.1. There
is a “wave”-like structure close to the central region of the plasma which is
very similar to that shown in Fig.3.9. This structure could correspond to
an inner mode. A crude approximation for the position of an outer mode
also can be found directly from Fig.6.1 and from the motional Stark effect
measurements (MSE).

Theoretical investigations mentioned above predict the form of the dis-
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placement eigenfunction using different assumptions and computational codes.
Results from the XTOR give a shape of DTM displacement similar to the
other calculations. This XTOR eigenfunction can be used as an initial guess
for our calculations (see Fig.6.2). For a detailed investigation of the instabil-
ity, the form of the perturbation £ ), can be parameterized by the following
function:

50(T7a7b7 Cl7d1) r<<nr

£DTM = g- 50(7“, a, b7 Co, d3) - 50(7”, a, ba Ca, d3) ri ST (61)
_50(r7ayb7cl7d2) >

T = Tresi + W/27 T2 = Tres2 — W/2 (62)

Varying the shape of the function, the best fit for experimental values was
found for the following parameters: a = 0.0345, b = 1, ¢; = 5, ¢co = 0.75,
dl = 2, dg = 05, d3 = 1, g = 2, Tres,1 = 013, Tres,2 = 047, W = 0.05.
Comparisons of the FFT amplitudes and the SVD components for this eigen-
function are shown in Figs.6.3 and 6.4 respectively.

The &ppp, function for this case together with g¢-profiles are given in
Fig.6.5. From the shape of £, it is clear that the investigated MHD
activity is a (2, 1) double tearing mode with strong coupling between the two
rational surfaces. The position of the outer mode from our analysis is in
good agreement with the outer ¢ = 2 surface according to the equilibrium
reconstruction. For the inner mode no information can be gained from the
MSE measurements. Fig.6.5 shows two ¢-profiles, which are both not in
contradiction to the MSE measurements. Due to the reduced accuracy of
the MSE measurements in the plasma center, it is not clear, whether an
inner ¢ = 2 surface exists at all.

ECE measurements are available over a large region of the plasma radius
for this discharge (but do not include the inner mode). Thus, the radial
displacement &,.. can be found from the temperature perturbation accord-
ing to Eq.3.20. These measurements verify a strong coupling between the
modes. The shape of &, is in quite good agreement with the calculated
& pras from MHD-IC code (see Fig.6.6). Consequently the MHD-IC' code re-
sult agrees good with all available information about the plasma instability
and the equilibrium reconstruction of the plasma.

The calculated SXR signal from the code are quite sensitive to the ac-
tual shape of the eigenfunction, and thus a good agreement between mea-
surements and calculated signals can only be obtained for a good fit to the
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Figure 6.2: Dominant (m,n) = (2,1) component &, for a double tearing
mode resulting from the XTOR code.
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FFT amplitude from experiment, Shot # 12224 t=0.7-0.702
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Figure 6.3: FFT amplitude for the same double tearing mode (see Fig.6.1).

SVD space eigenvectors from experiment. Shot # 12224 t=0.7-0.702
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Figure 6.4: SVD eigenvectors for the double tearing mode (#12224, t=0.7).
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Displacement eigenfunction and qg-profile
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Figure 6.5: Displacement eigenfunction for the (2,1) double tearing mode
(#12224,t = 0.7s) and two g-profiles resulting from the equilibrium recon-
struction including the MSE measurements. Within the error bars, without
considering the MHD activity, one cannot distinguish between these two
profiles. On the other hand, including the MHD information improves the

equilibrium reconstruction.
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Displacement eigenfunctions: Shot #12224 time0.701536
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Figure 6.6: The displacement eigenfunction from ECE measurements to-
gether with the calculated one (#12224, t=0.7s).

actual eigenfunction. To proof this, we choose an eigenfunction with only a
weak coupling between the resonant surfaces (Fig.6.7) and again perform the
analysis for the same discharge (Figs.6.8 and 6.9).

It becomes obvious that for this profile of ¢ the calculation results are in
contradiction to the experiment. Thus, the code results are very sensitive to
the form of the displacement eigenfunction &.

The double tearing mode example shows that a reconstruction of the
displacement eigenfunction in complicated cases requires all experimental
information. In our case magnetic measurements determine the helicity of
the mode, SXR data are used to find the shape of the displacement, ECE
data provide the absolute value of the displacement and MSE measurements
give a first approximation for the outer mode position.
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Displacement eigenfunction and g-profile
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Figure 6.7: Displacement eigenfunction in case of weak coupling between the
resonant surfaces together with the measured g-profile (MSE).
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Figure 6.8: FFT amplitude calculated for the weak coupling case together
with the FF'T of the measured SXR signal.
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SVD space eigenvectors from experiment. Shot # 12224 t=0.7-0.702
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Figure 6.9: SVD eigenvectors for the weak coupling case together with ex-
perimental ones.

6.1.1 Determination of "delta prime" parameters of
the double tearing mode

As was noted before, tearing modes change the magnetic topology in the
plasma and form islands. A so-called A’ formalism was developed to de-
scribe tearing mode behaviour [75, 76]. This formalism allows to determine
the stability of a given current profile to tearing modes without solving the
resistive MHD equations (1.3 - 1.8). This approach solves a differential equa-
tion for the perturbation flux function 1 in the "outer region" (in this region
resistivity and inertia are negligible and the perturbed plasma is in force
equilibrium) and matches the solution through the "resistive layer" where
the resistivity becomes important. The discontinuity across this "resistive
layer" determines the stability of the mode and is defined as:

V' (rs +e) = (rs +¢)
Y (rs)

where 7, is resonant surface. For finite island size, the perturbed flux
assumes to be a constant inside the island and the discontinuity is taken
between the inner and the outer island edges. The discontinuity A’ depends
on the island width W and generally decreases as the island width grows.

A=

e—0,
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Calculation of A’ is a difficult task in practice due to inaccuracy of the mea-
sured current profile. Stability corresponds to A’ < 0. Instability occurs for
A’ > 0 and the island growth can be estimated using Rutherford’s equation

WV Ay

dt 1
where 7 is the plasma resistivity and p is the magnetic permeability. This
A’ parameter is calculated below for the double tearing mode (DTM) from
the displacement eigenfunction £ pry,.

In case of two rational surfaces, the A’ formalism has been developed in
Ref [68, 69, 77]. There are three different "outer" regions inside the plasma:
Region I: 0 < r < ry; Region II: vy < r < r9; Region III: 79 < r < ryqy where
r1 and 79 are the inner and outer rational surfaces, respectively. Then, the
tearing mode equation is solved in these three regions:

2 19 m? (0Jy/0r) o
o+ G e =

Y. corresponds to the perturbed helical flux function, Jy is the equilibrium
plasma current and v, describes the equilibrium helical flux function defined
as

Yo(r) = Bo/Ro /Or(l/q(r) —n/m)rdr .

These tearing mode equations use the approximation relations for small is-
lands. However, in Ref.[77] it was demonstrated that the approximation
is quite good for island sizes up to 10 — 20% of the minor plasma radius.
Consequently, this model should be sufficient to describe the DTM in our
case.

The basic functions can be assumed to be independent, but strongly cou-
pled eigenmodes. Then, the growth of each of the modes (islands) is depen-
dent on A} and A}. These discontinuities are defined by following equations:

A= (01 /Or — 0y [Or) [y + (95 [Or) [1by |r=r, (6.3)
Alz = (81/15/87 - 8¢§/0T) g + (82/1{/(97’) /3 r=r,

The superscripts (4/—) correspond to the inner and outer edges of the is-
lands. The indexes (1/2) describe the inner and outer modes respectively.
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To estimate these perturbation fluxes from the DTM displacement eigenfunc-
tions the following equation is used [37]:

U(r) =&(r)Bo (1= q(r) /ares) (6.4)

where By represents the poloidal component of the magnetic field and ¢, is
g-value at the resonant surfaces. Then, the flux derivative reads

' (r) =& (r) Bo (L= q(7) [@res) = § (1) Bod' (1) /Gres - (6.5)

The improved equilibrium reconstruction with two rational surfaces ¢.s = 2
(see Fig.6.5) is applied to evaluate the ¢ (r) profile and its derivative. Since
Eq.(6.4) is valid only outside of the islands, the perturbation fluxes inside
the island were evaluated as a simple averaging of the boundary fluxes:

¢ (Tres - W/2) + ﬁ) (rres + W/2)

?/1 (Tres) == 9 .

The resulting values for the "delta prime" parameters are following:

Al ~ 3355
A, ~ 611
rA] &~ 5.0+72and 1A, ~ 3.0+ 5.6

Q

The last parameter r,..sA’ ~ 5 is the same for both modes (inside the er-
ror bars of the measurements). This is reasonable as 7,..sA" determines the
mode’s growth, and the two modes grow together.

6.1.2 Growth rate of the double tearing mode

The "delta prime" parameter shows that the double tearing mode (DTM) is
unstable (A’ > 0) and the mode has a positive growth rate. This growth
rate was calculated by the linear MHD code CASTOR! for the real ex-
perimental geometry and the measured plasma parameters of the discharge
(#12224,t = 0.7s). Equilibrium was calculated using equilibrium code DIVA
[78, 79]. The CASTOR calculation results give the following growth rate for
the (2,1) DTM: v = 3027s ..

At the same time, the growth rate of the double tearing mode can be
estimated directly from the "delta prime" parameter by assuming the linear

LA brief description of the CASTOR code is done in Appendix C.
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MHD approximation for DTM. Hence, each of the modes should have the
growth rate [68, 77]:

v~ 0.5 (Aa)"® (ka)?® 727 20 (6.6)

where 74 is the Alfvén time, 7y is the resistive time, k is the wave vector.
This limit of the linear MHD analysis treats the growth of these two tearing
modes independently but at the same time they are coupled [68]. One should
note however that this approximation is valid only if the mode growth is
much slower than the flux diffusion time across the tearing layer (so called
"constant " approximation):

YA KL 1.

The resistive current diffusion time for the tearing layer reads

_ 2
TA = TRxT y
h YT A\ A
where rr ~ <m25> ,

and the Lundquist number is S = 75/7 4.

Suppose the same values of the Alfvén time (74 = 0.266 - 107%s) and the
resistive time (7z = 0.6995s) as in the CASTOR calculations, the following
growth rates were found:

v, = 1.4-10°+1.6-10°s7" (y;74 =~ 0.015 < 1)
vy = 3.2-10° +5.6-10%s7! (y,7a ~0.006 < 1).

These results are comparable with the CASTOR calculations (7 = 3.0 - 103s71)
and agree well with the experimental growth rate (v = 1.8-10%s7!) mea-
sured from the SXR signals and the magnetic measurements. In addition,
the growth rate can be estimated from the linear scaling of DTMs [68]: v ~
ST & 3-10%s71 —6-103s7 (for the resistivity about 1077 —10"50hm-m),
which coincides with other results.

It is interesting also to compare the form of the displacement eigenfunc-
tion from the MHD-IC code and from the CASTOR code. Unfortunately, the
equilibrium code instead of the g-profile has the current profile as an input
parameter. Thus, it is difficult to construct the g-profile in the CASTOR cal-
culations with exactly the same positions of the ¢ = 2 surfaces as was found
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Figure 6.10: Dominant (m,n) = (2,1) component of the displacement eigen-
function from the CASTOR code. The calculation was done for the discharge
#12224 conditions.

before. Nevertheless, the main features of the displacement eigenfunction
remain the same (see Fig.6.10).

A determination of the growth rate from the displacement eigenfunction
from the MHD-IC code with better accuracy is difficult due to the big error
bars for the A’ parameter, for the g—profile and especially for the deriva-
tives ¢’ (p) and & (p). In addition, nonlinear affects also can play a role.
However, the calculations demonstrate that a qualitative determination of
the growth rate from experimentally observed displacement eigenfunction is
possible even for complicated mode structures.

6.2 Evolution of MHD activities during in-
ternal transport barrier formation

It was found by S.Giinter et al.[80] that in ASDEX Upgrade reversed shear
discharges, the onset of internal transport barriers (ITBs) is typically accom-
panied by MHD activity. The observations show that an I'TB onset usually
occurs right after the first fishbone oscillations. This model states that the
fishbone activity, located near the minimum ¢-value at its beginning, would
trigger there the formation an I'TB. Consequently, it is interesting to inves-
tigate the time behaviour of the displacement eigenfunction during an I'TB
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Figure 6.11: SXR signal during formation of internal transport barrier
(#10701).

formation.

The instabilities during I'TB formation are investigated below for the
discharge #10701. Magnetic measurements observe a clear (2, 1) structure of
the mode. ECE and MSE measurements are not available for this discharge.
The SXR signals increase after each fishbone oscillation during I'TB formation
(see Fig.6.11). An analysis of the SXR signals shows that the amplitude of the
perturbation is small and it is not sufficiently large to determine an absolute
value of the displacement. Nevertheless, the position of the modes and the
shape of the displacement eigenfunction can be found with good accuracy
using the FFT and the SVD technique from the SXR data.

To investigate the time evolution of the instability, corresponding dis-
placement eigenfunctions were reconstructed for three different time points.
The first point corresponds to a fishbone cycle at the beginning of I'TB for-
mation (¢; = 0.62s), the second is in the middle of the process (t2 = 0.71s),
and the third one is at the end (t3 = 0.8s). The resulting eigenfunctions in
arbitrary units are shown in Fig.6.12.

Our analysis verifies a strong coupling between the modes, but the ac-
curacy is not high enough to determine a resistive or an ideal character of
the modes. One can see from Fig.6.12 that the distance between the modes
grows during I'TB formation. The inner resonant surface moves inwards and
the outer surface goes outwards. Thus, our observations confirm this model.

It is interesting that in a similar discharge (#13149) MSE measurements
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Displacement eigenfunctions (# 10701)
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Figure 6.12: Time evolution of the displacement eigenfunction during internal
transport barrier formation (#10701).
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Figure 6.13: Position of the outer mode from FFT analysis ("FFT up” is from
upper channels of B-camera and "FFT down” is from the down channels)

and motional Stark effect (MSE) measurements.
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confirm this behaviour of the resonant surfaces. Perturbations of SXR signals
are even smaller for this discharge and only the position of the outer resonant
surface can be estimated from SXR. These perturbations separated by the
FFT transform and boundaries of the FF'T amplitude gives the position of
the outer surface (on lines of sights tangential to the outer resonant surface
the FFT amplitude becomes zero). These data points together with the
corresponding MSE measurements are shown in Fig.6.13. The behaviour of
the outer mode is exactly the same as in the previous discharge.

6.3 Disruptions in discharges with internal
transport barrier

"The tokamak disruption is a dramatic event in which the plasma confine-
ment is suddenly destroyed. In a major disruption this is followed by a
complete loss of the plasma current."[3] A typical disruption has the follow-
ing steps: it begins from an initiating event (e.g. growth of MHD modes),
this leads to a sudden thermal quench in which the plasma temperature drops
down, and finally a current quench is occurred which completely destroys the
plasma confinement [81, 82, 83]. The deatails of the disruption can be com-
plicated, including nonlinear growth and coupling of several different MHD
modes, but the main idea remains the same. Shrinking of the temperature
profile (e.g. due to heat bridges across magnetic islands) leads to unstable
current profiles which again drive instabilities [84]. These instabilities grow
and influence on the temperature and current profiles. Finally, the plasma
confinement is destroyed in a shot time and the plasma goes on the wall
which produces large mechanical stresses and intense heat loads.

Since the first tokamak experiments, disruptions have limited stable toka-
mak operation. They also influence on tokamak’s design which should not
be destroyed by the large mechanical stresses and the heat loads. Only
understanding of the basic disruption mechanisms allows to avoid these un-
favorable events in the plasma. Thus, it is a particular interest to investigate
reasons for disruptions in discharges with internal transport barrier (ITB) in
advanced tokamak scenarios as for conventional scenarios they are already
well investigated [85].
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Figure 6.14: SXR signal from B-camera (#15117). Disruption corresponds
to decrease of the signal (t = 1.024s).

6.3.1 Disruption due to external modes

As an example we investigate the disruption on ASDEX Upgrade in the ITB
discharge #15117 (t = 1.024s). Fig.6.14 shows a time trace of the SXR
signal for the B-camera. To understand the evolution of the plasma, the
investigation of the MHD activities were done for two time points. The
first time point corresponds to the MHD activity just before the disruption
(t = 1.01248s) and the second time point during the disruption (¢t = 1.024s).
The disruption occurs when qg5 ~ 4.08.

At the first time point, SXR data show MHD activity in the plasma core
inside p;,, =~ 0.45 (see Fig.6.15). Unfortunately, channel number 10 did not
work during this discharge and the helicity of the mode is also undefined
(no magnetic measurements). Thus, the form of the eigenfunction cannot
be reconstructed by FFT and singular value decomposition technique and
only the region of the activity have been found. The SXR cameras are
more sensible to the core region of the plasma due to higher density and
temperature in this region and cannot give adequate information about the
plasma edge. The ECE measurements, on the other hand, often have density
cutoff restriction in the plasma core and cannot resolve this region, but give
unique information about other part of the plasma. The ECE measurements
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Figure 6.15: FFT amplitude for B-camera before the disruption (#15117,¢ =
1.012s). Channels 1 and 10 did not work during this discharge.

for this time point give a displacement eigenfunction of an external kink
mode with a maximum amplitude on the plasma boundary of about 0.04m
(see Fig.6.16). A coupling between the external kink mode and the MHD
activity in the plasma core is not observed by our measurements.

Now we investigate the MHD activity during the disruption. The ampli-
tude of the core activity becomes smaller since the FF'T amplitude decreases
at that time (see Fig.6.17). On the other hand, the amplitude of the exter-
nal kink mode grows to 0.4m. The displacement eigenfunction from ECE
measurements during the disruption is shown in Fig.6.18. It is difficult to
determine the exact amplitude of the displacement on the plasma boundary.
Depending from the fitting procedure for Ty, in Eq.3.20, the amplitude of
the displacement on the plasma boundary is varied between 0.3m and 0.5m.
This big amplitude of the external kink destroys the plasma confinement.
Evolution of the temperature profile during the disruption (see Fig.6.19)
shows the thermal quench which is typical for disruption events.

It was shown that the external kink mode causes the disruption in our
case. This mode is the typical reason for disruptions in advanced scenario.
On the other hand in a similar discharge (#15119) no disruption did occur,
and only an internal collapse of the plasma happens. A possible explanation
for that is the smaller value of 55 ~ 1.9 compared to the previous discharge
#15117 with 5y ~ 2.1 (see Fig.6.20). Stability of external modes strongly
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Displacement eigenfunctions: #15117 t=1.01248s
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Figure 6.16:  Displacement eigenfunction from ECE measurements
(#15117, ¢ = 1.01248s).
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Figure 6.17: FFT amplitude for B-camera during the disruption (#15117,¢ =

1.024s, Channel 10 don’t work).
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(#15117,t = 1.024s, ECE).
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Figure 6.19: Temperature profile during the disruption for several time points
(#15117, ECE).
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Figure 6.20: Normalize beta for discharges with disruption due to an external
kink mode (#15117) and without (#15119).
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depends on the plasma pressure, and higher 3, drives external kink mode
unstable. Besides, the ¢-values at the plasma edge were also different for
these discharges: o5 ~ 4.4 (#15119) and gg5 ~ 4.0 (#15117). The higher
value of the "safety factor" increases the magnetic shear, which leads to
higher stability [86, 87]. Unfortunately, the quality of the MSE signals for
these discharges is not sufficient to perform reconstructions of the ¢-profiles
inside the plasma.

For an ideal external kink mode the growth time should be about the
Alfvén time. This will be checked in the following: assuming exponential
growth

gmax = 50 ' e’yeXp.Ata

where £, /&, ~ 40 and At ~ 3 - 107%s, then Yexp = 1475051, This experi-
mental growth rate cannot be compared directly with the Alfvén time. In our
discharge, (3 increases (see Fig.6.20) during the mode growth and influences
on the growth rate of the mode [88]. Assuming continuous increase of /3,
Bn = By (1 + v,t), the experimental growth rate reads

9\ 2/3
“ . 2/3 . 1/3
Vexp ~ (3> ’Ymhd ’Yh )

where 7,4 is the growth rate of the mode without heating and +, is the
heating rate (for this discharge 7, =~ 3.75s71). Consequently, the charac-
teristic growth time of the mode 7 (7 & 1/7,,,4 ~ 0.35 - 10~ "s) is about the
Alfvén time (74 = a\/fiop/By ~ 0.8 -1077s). This fact demonstrates the
ideal character of the instability.

An investigation of the reasons for disruptions in previous experiments
on ASDEX Upgrade also show large amplitudes of external kink modes.
Moreover, the ECE measurements detected a coupling of the external (4, 1)
kink mode to infernal (2,1) mode [74]. The resulting mode generally causes
a disruption about 1ms after its onset due to the global character of the
eigenfunction (see Fig.6.21). The stability analysis based on the equilibrium
reconstruction using the MSE measurements, the kinetic pressure profiles
and magnetic measurements lead to an eigenfunction which agrees very well
with the corresponding displacement from ECE measurements. The other
important difference is 3 y-value (for discharge #12224, 3, ~ 1.65 — 1.7).
The normalized beta is smaller for this cases. Consequently, the limiter dis-
charge (#12224) has smaller stability compared to the separatrix discharges
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(b)

ECE

Figure 6.21: (a) Calculated and (b) measured (ECE) eigenfunctions for the
mode activity causing the disruption in the discharge #12224 at about 1s.
The mode has a large amplitude at the plasma edge, indicating the coupling
of the (2,1) infernal mode to the (4,1) external kink (this figure is from
Ref.[74]).
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Figure 6.22: Displacement eigenfunction of an internal (3,1) mode appears
before the disruption (#15263, ECE measurements).

#15117 and #15119. This advantage of separatrix discharges compare to
limiter discharges was also confirmed by CASTOR calculations in Ref.[89].

6.3.2 Disruption due to internal modes

The growth of an internal mode also may lead to disruption. An upper sin-
gle null discharge #15263 is considered here. In this discharge a disruption
occurs at about 1s. Magnetic measurements detect (3,1) mode activity be-
fore the disruption. This mode achieves an amplitude of about 1em at the
beginning (see Fig.6.22) and grows up to 5¢m just before the disruption (see
Fig.6.23).  During the disruption, the amplitude of the displacement in-
creases further and the form of the displacement is changed (see Fig.6.24).
One peak of the displacement becomes much larger then the other. These
changes are usual for non-linear evolution of tearing modes when the ampli-
tude of its perturbation becomes large [90]. Nonlinear simulation of tearing
modes in cylindrical geometry also verify this behaviour [35]. In our case,
the displacement reaches a maximum amplitude up to 15¢m — 20cm (about
30% of the minor plasma radius). This value is very big compared to typical
internal modes with max (§,) ~ 3 — bem and brings to disruption by an
upper vertical displacement of the plasma column (position of the plasma
current was measured and shows the direction of the disruption). In the
moment of the disruption the (3, 1) tearing mode grows to a large amplitude
(see Figs.6.25, 6.24).
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Displacement eigenfunctions: #15263 t=0.981248s
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Figure 6.23: Displacement from ECE measurements just before the disrup-
tion (#15263). There is the well-marked (3, 1) mode at p ~ 0.45(R = 1.92m).
Moreover, there is an inner (3,1) mode at p ~ 0.25 (R = 1.83m). The both
mode have resistive character which is confirmed by phase jumps of ECE.
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Displacement eigenfunctions: #15263 t=0.98144s
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Figure 6.24: Displacement in the moment of the disruption measured by
ECE (#15263).
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20-0.04

Figure 6.25: Displacement measured by ECE during the disruption
(#15271).
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It is interesting to note that the disruption due to the internal modes
is much slower ?415063 ~ 1.2ms compared to the external mode disruption.
This fact again demonstrates the resistive character of the (3,1) mode.

Now we compare these discharges (#15271, #15263) with the previously
described external kink mode case (#15117). The main difference between
these two cases is the higher toroidal field By, Bgusery = 2.782[T] and
Byase3) = 2.788[T1, for discharges with the (3.1) tearing mode compare to
the external kink discharge: Byusi17) = 2.493[T]. Since the g-value at the
plasma edge depends from the toroidal field, gos ~ B,/I,, and the plasma
current [, is practically the same, discharges #15271 and #15263 have larger
qo5 values compare to the external kink mode case (#15117). This would
lead to higher values of the magnetic shear and can stabilize the external
kink mode.

In addition, the MHD analysis also provides information about the shape
of the g-profile just before the disruption. Since there is no ¢ = 2 activity, the
reversed shear g-profile should have ¢,;, higher than 2. At the same time,
there are two ¢ = 3 surfaces at p = 0.25 and p = 0.45. These hints can be
used for equilibrium reconstruction.

6.4 Possible improvements of the operation
limits

In previous sections different types of MHD activity in advanced tokamak

scenario were investigated. Thus, in order to extend the operation regime

one should find a way to control these MHD instabilities. In general, inves-

tigations of ASDEX Upgrade reversed shear discharges have shown that the
plasma confinement is limited by the following instabilities:

e Double tearing mode which appears due to coupling of two tearing
modes with the same helicity

e Ideal external modes localized on the plasma boundary

e Internal (3, 1) tearing mode located on the middle of the plasma radius

In order to prevent the formation of the double tearing mode an optimized
q profile has to avoid close double rational surfaces. Moreover, the shape of
the g-profile should avoid the (3,2) neoclassical tearing mode (g, > 1.5)
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[74]. For these modification of the g-profile an active control of the current
and pressure profiles is necessary. The ideal external kink can be stabilized
by a conducting wall and a feedback system. At present, the wall is too far
away from the plasma and cannot provide a sufficient stabilizing effect. All
these possibilities to extend the operation limits are under discussion [74].
The internal (3,1) tearing mode appears as the reason for the disruptions in
recent discharges with separatrix (Upper Single Null discharges). This mode
has resistive character and is the subject of current investigations.
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Chapter 7

MHD instabilities and
equilibrium reconstruction

In this chapter we discuss additional benefits, which one can gain from the
MHD analysis and note further steps in this direction.

An investigation of the MHD instabilities in the plasma is closely con-
nected to the plasma equilibrium. The plasma equilibrium determines the
shape of the g-profile. On the other hand, the MHD perturbations are easily
excited only on the resonant surfaces (¢ = m/n) that are not covered ergod-
ically by magnetic field lines. The analysis of the MHD phenomena using
the MHD-IC code provides the displacement eigenfunction ¢ and shows the
position of rational surfaces in the plasma.

In a previous paper, the position of the ¢ = 1 surface for the equilibrium
reconstruction was obtained via detection of the (1,1) kink mode from SXR
data [21, 91]. Our analysis is applied to improve the equilibrium reconstruc-
tion using arbitrary (m,n) mode structures. For instance, this improvement
of the equilibrium reconstruction was shown for a double tearing mode in the
previous chapter (see Fig.6.5). This betterment is especially important in the
plasma core region where the large error bars of the MSE measurements do
not allow for an accurate determination of the g-profile. Until now this type
of analysis is the only opportunity to determine the position of the inner
rational surface when ECE measurements do not exist in the core region due
to the cut-off density restriction.

One typical example of the equilibrium reconstruction for the ITB dis-
charge (#13149,t = 0.7s) is shown in Fig.7.1.  There are two different ¢-
profiles in this figure. One is constructed using only the MSE measurements.
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Figure 7.1: There are two different g-profiles (#13149). One is constructed
using only the MSE measurements. The other applies also information about
the position of the ¢ = 2 surfaces derived from the MHD analysis.

The other applies also information about the position of the ¢ = 2 surfaces
derived from the MHD analysis (two (2, 1) modes). Indeed, the inclusion the
MHD information essentially influences on the g-profile. Such improvements
of the equilibrium are intensively used and can be applied also for the old
discharges without MSE measurements'.

These betterment of the equilibrium reconstruction can be extended fur-
ther. Using the measured displacement eigenfunction (SXR, ECE), it is
possible to calculate the perturbation current. As the perturbation current
following from this displacement and that derived from the Mirnov measure-
ments have to agree, one finds information of the plasma equilibrium, mainly
determining the magnetic shear at the rational surface. This is the subject
of a further improvement of the code.

! Operation of the MSE diagnostic on ASDEX Upgrade was started from the discharge
#10800 (7 channels) and was improved from the discharge #11800 (10 channels).
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Chapter 8

Summary and Conclusions

The tokamak operation often is restricted by the growth of large scale MHD
instabilities. They may lead to restrictions in operation regimes or even to
disruptions (dramatic events in which the plasma confinement is suddenly de-
stroyed). For their avoidance, it is of special importance to understand the
reasons for their appearance. This can be gained either directly from the spa-
tial structure and the time behaviour of the instabilities or from a comparison
of the mode structure with theory. Unfortunately, for the complicated mode
structures, the already available tools (tomographic reconstruction etc.) of-
ten cannot resolve the mode structure.

In this thesis, a new combined method for an investigation of the MHD
activities in fusion experiments has been developed. The main advantages
of this approach are the simultaneous use of several diagnostics (magnetic
probes, soft X-ray cameras, electron cyclotron emission measurements and
motional Stark effect measurements) and the possibility for a direct compar-
ison of theory predictions with the experimental observations. This method
has been implemented into the MHD Interpretation Code (MHD-IC). The
code simulates the experimental observations related to a given plasma per-
turbation for the diagnostics mentioned above, accounting for real plasma
geometry and for measured plasma parameters. Then the calculated values
are compared with the corresponding experimental data. This algorithm sim-
plifies the identification of the mode structures. In addition this procedure
allows for a direct comparison with theory. As all available diagnostics are
used simultaneously in the code, even the interpretation of weak MHD activ-
ity becomes possible. The developed method is much more powerful than the
previously developed MIC code [16] which is restricted only to the magnetic
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measurements. Moreover, the assumed profile of the perturbation current in
the MIC code was too simplified to allow for reliable conclusions. As shown
in chapter 3.2, the use of a realistic current profile is necessary and allows for
a successful interpretation of the magnetic measurements. To demonstrate
the power of the developed method it has been applied to different types of
instabilities in various operation regimes of ASDEX Upgrade tokamak.

Thus, for example in chapter 5.2, fishbone instability was investigated in
discharges with different angles of neutral beam injection and for different
B values in conventional tokamak scenario. This fishbone instability occurs
as a result of the resonance between the rotation of trapped fast particles
from the injected beam and the toroidal wave velocity of the instability. It
was demonstrated that the eigenfunctions have the form of ideal (1,1) kink
modes for low [y values (85 < 1.7 — 1.8) and get a resistive character for
higher [, values and thus higher driving forces. This result confirms the
previous investigations [59] that fishbones can give a much stronger effect on
the plasma parameters than expected from an ideal instability.

The main analysis efforts were focused however on more demanding ex-
amples of the more complicated mode structure in advanced tokamak sce-
narios. Unfortunately, the accuracy of standard techniques like tomographic
reconstruction often is not sufficient to resolve the mode structures in these
cases. It has been shown that our combined method of the analysis using the
MHD-IC code however is able to give detailed information about the mode
structure even in these more complicated cases.

The double tearing mode (DTM) is one of the characteristic types of
MHD activity in advanced tokamak scenario. This mode can appear when
two tearing modes with the same helicities (m, n) are coupled. As shown in
chapter 6.1, the measured eigenfunction shows a strong coupling between the
two rational surfaces, and agrees well with theoretical predictions. Another
test of the applied method was the determination of the stability parameter
A’ as derived from the measured displacement eigenfunction. Comparing the
growth rate resulting from this technique with the actual measured one as
well as with that resulting from a theoretical stability analysis (using the
CASTOR code) yields very good agreement. This example proves that even
the details of the determined eigenfunction must be correct as the stability
parameter A’ is very sensitive to the actual shape of the perturbed vector
potential at the rational surface.

The time evolution of MHD instabilities accompanying the formation of
an internal transport barrier (ITB) was investigated in an advanced scenario
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discharge in chapter 6.2. The displacement eigenfunction was reconstructed
for several time points during this internal transport barrier formation. It
was found that the MHD activity which accompanies the internal transport
barrier formation (and probably triggers it [80]) locates around the minimum
of the g-profile and consists of two coupled (2, 1) modes.

A disruption is a dramatic event in a tokamak discharge in which the
plasma confinement is suddenly destroyed. Thus, it is of particular inter-
est to investigate reasons for the disruptions which often occur in advanced
tokamak scenarios. The MHD activity causing a disruption was investi-
gated in typical reversed shear discharges on ASDEX Upgrade in chapter
6.3. Detailed analysis demonstrates that there are two MHD modes which
lead to disruption: an external kink mode with a maximum amplitude up to
0.3m — 0.5m during the disruption (#15117) and an internal (3,1) tearing
mode with a maximum amplitude about 0.15m — 0.2m during disruption
(#15236, #15271). This analysis show that the external kink mode leads to
disruptions when g¢-value at the plasma edge is small. Higher ¢g-values pro-
vide a higher magnetic shear and can stabilize the external kink mode. In
this case disruptions can occur due to the internal (3, 1) tearing mode.

Additional benefits which can be gained from the MHD analysis are dis-
cussed in chapter 7. The structure and the position of the observed MHD
phenomena have been used to improve the equilibrium reconstruction. In
a previous paper, the position of the ¢ = 1 surface for the equilibrium re-
construction was obtained via detection of the (1,1) kink mode from SXR
data [91]. Our analysis is applied to improve the equilibrium reconstruction
using arbitrary (m,n) mode structures. Since the safety factor ¢ = m/n, and
the MHD analysis provides information about the positions of MHD modes,
we have a set of points for ¢-profile. For instance, this improvement of the
equilibrium reconstruction was shown in chapters 7 and 6.1. This better-
ment is especially important in the plasma core region where the large error
bars of the motional Stark effect measurements (MSE) do not allow for an
accurate determination of the ¢-profile. Until now this type of analysis is the
only opportunity to determine the position of the inner rational surface when
electron cyclotron measurements (ECE) do not exist in the core region due
to the cut-off density restriction. This is important to identify the reversed
shear g-profiles in advanced tokamak scenario.
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Further work

Future work will be focused on further improvements of the method and
the investigation of new MHD phenomena. The first effect which will be
implemented in the code is the toroidal coupling of (m,n) mode to (m + 1,n)
modes for a more accurate description of the eigenfunction. This part of the
code is under development right now.

The next improvement will be related to the perturbation current. As
was mentioned before, the measured displacement eigenfunction (SXR, ECE)
completely describes the spatial structure of the MHD instability. As the
perturbation current following from this displacement and that derived from
the Mirnov measurements have to agree, one can find important information
of the plasma equilibrium, mainly determining the magnetic shear at the
rational surface.
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Appendix A

ASDEX Upgrade parameters

Major plasma radius Ry 1.65m

Minor plasma radius a 0.5m

Plasma height b 0.8m

Plasma elongation s=b/a | 1.6

Plasma aspect ratio A 3.3

Plasma volume Vilasma | 13m?

Total mass of the plasma protons 2-10% = 3.3myg
Plasma current Ljasma 2 MA
Discharge duration tp 10s

Plasma density Ne <3-10m=3
Average plasma temperature T,=1T, | bkeV

Heating power P [MW] 201, 9. 7acrH), 1.6ECcRHE)

Cross-section of the ASDEX! Upgrade tokamak are shown in Fig.1.2.

LASDEX means Axial Symmetric Divertor EXperiment.
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Appendix B

Perturbation flux from a ”’step
current” model

In this appendix we calculate a perturbation flux from a ”step current” as-
sumption and compare it with a perturbation flux from the tearing mode
equation in cylindrical geometry.

The current perturbation due to a tearing mode is usually localized around
the corresponding rational surface. The ”step current” approximation as-
sumes that the perturbation current flows only inside a thin cylinder (see
Fig.B.1) and its value depends only on the poloidal angle

J = jocos(mb), (B.1)

where m is the poloidal mode number. To be precise, we consider that the
cylinder consists of small equal wires. Each of the wire has its own current
according to Eq.B.1. The magnetic potential A, for a single wire is:
I
A, =Kol I (B.2)
2m a
where r, represents the distance to the wire and [ is the current in the wire
(see Fig.B.1). The magnetic potential of the cylinder results from integration
over the poloidal angle:

2

Y(r) = &/jocos(mﬁ)%oaln
27

0

(\/rg + 12 — 2rrg cos (o — 0)

- )do . (B.3)
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Figure B.1: “Step current” model. Perturbation current exists only in the
narrow region and has angle variation proportional to cos(m#).

In our case 1 = —A, and 7,2 = r¢? +r% — 2rgrcos (o — 6). From B.3 it
follows:
2
W(r) = &joroa@/cos (md) In (Z)dﬁ—l—
2 a
0
2

7’02

/Cos (mé)In (1+ () — 2(%) cos (a — 0))d6)  (B.A4)

0

,
The first integral is always equal to zero. Making the substitution v = -

-
for the second integral [92]:

2

I = /cos (mf) In (1 +~* — 2y cos0)dd = (B.5)
0
onl 7?2 < 1 - outside region
_ m, . (B.6)
—27r—— if 42 > 1 - inside region
m
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Perturbation flux for (3,2) mode Perturbation current for (3,2) mode
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Figure B.2: Perturbation fluxes and perturbation currents for a (3,2) mode
resulting from the tearing mode equation and from a ”step function” assump-
tion (r..s = 0.81). One can see the significant difference between the "step
current" assumption and the tearing mode calculations.

Consequently, the resulting flux is the following:

—) outer region

) = ﬂl o —m _ : (B.7)
23 —) inner region

,

We demonstrate the difference between this assumption and a real pertur-
bation current shape assuming that the perturbation flux at the plasma edge
being the same. The perturbation fluxes from Eq.B.7 and from the solution
of the tearing mode equation in cylindrical geometry have been evaluated for
a (3,2) tearing mode. For a realistic current profile these fluxes as well as
the perturbation currents are substantially different (see Fig.B.2).

The discontinuity A’ of the flux function corresponds to the stability of
the tearing mode [93]. This parameter is defined as: A’ = (¢, — ") /1 (ro),
where 1 is the perturbation flux of the tearing mode. Instability occurs
for A’ > 0. For the "step current” model this value is fixed and always
smaller than zero: A’ = —2m/ry. A real perturbation current has unequal
positive and negative parts [94, 95]. Consequently, the ”step current” model
represents only stable tearing modes when the negative (or positive) part of
the perturbation current is negligible. This yields that more careful treatment
is necessary to interpret the magnetic measurements.
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Appendix C
CASTOR and XTOR codes

In this section we briefly describe the CASTOR and XTOR codes. These
codes represent two typical approximations applied to the MHD equations
(1.3 - 1.8). The CASTOR code solves the linearized MHD equations and
assumes the amplitude of the perturbations to be much smaller than the
corresponding unperturbed quantities. The XTOR code solves the MHD
equation directly. The results from both codes have been used in this work.

C.1 The CASTOR code

The CASTOR code was developed by W.Kerner and J.P.Goedbloed [96, 29].
Assuming the expansion @ (Z,t) = iy (7) + Re{eMu; (¥)} for all variables
in Egs.(1.3 - 1.8) one can obtain the system of linearized resistive MHD
equations [97]:

Apy = —Uo-Vpy —p VU — 01 Vpy—pgV -0
N = G- VT — (D= VDY -G — - VT — (T — 1)TyV - )
)\[)0’171 = —pl’l_fo : Vﬁo — po(’l_fo : v771 + '171 : Vﬁo) -V (pOTl + plT())
+(VX§0X§1+VX§1X§0>/MO
)\él = —60-V§1—§1V-60+§1-V170+V><(271><§0—77V><§1/,u0>
Apr = —U-Vp1 —I'poV -0 — v - Vp1 —I'poV - 1
)\po’l_fl = —po (770 : V’Z_Ja + 771 : VU()) -V (p0T1 + plTo)

+(VX§0X§1+VX§1X§O>/MO
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These equations are solved by the CASTOR code in a general toroidal ge-
ometry, where the equilibria are assumed to be axisymmetric. Consequently,
the eigenfunctions are two dimensional.

C.2 The XTOR code

The XTOR [6, 7, 98] and CHEASE [30, 99] codes are applied to simulate
MHD equilibrium and stability of tokamak plasmas. The CHEASE code
calculates an equilibrium in toroidally symmetrical geometry with plasma
cross-sections of arbitrary shape. XTOR uses the equilibria calculated by
CHEASE to perform calculations of 3D MHD mode evolutions for a given
number of toroidal and poloidal mode numbers including coupling between all
of these modes. The XTOR code produces non-linear calculations involving
the equilibrium n = 0 toroidal mode and employs for these calculations an
efficient semi-implicit time-advance schemes [100]. This allows to carry full
time simulations of various MHD phenomena in realistic tokamak plasmas.
Equations solved in the XTOR code are the following;:

n% = ((VxB)x B—Vp)—n(@-V)i+vAT
B . -
88—25 = Vx(UxB)—-Vx(nV xB)
and
oT -
rrll —I-1)TV-9—-9-VT+V - -x, VT +
B9 |y (B-vT) /B?| + H(7)
on = —nV-U—-7-Vn
ot
or
P V-5 Vpt SV .y v (2) +
ot n + n
1

B-V [Xun (EV (%)) /Bz} + H(7F)

where H () is the heat source, x| and x, are the parallel and the perpen-
dicular transport coefficients respectively, and I' is the adiabatic coefficient.

n

99



The user can choose either the pressure or separate density/temperature
evaluation [100]. The current version of the code has been widely used in
a variety of problems. The non-MHD effects were included lately in the
code. Unfortunately, there are problems with the applied numerical scheme
concerning these non-MHD effects.

The XTOR code was intensively used to simulate different types of MHD
instabilities inside the plasma. The results of these numerical simulations
are employed in the MHD-IC code as initial guesses for the displacement
eigenfunction and the perturbation currents.
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Appendix D
The MHD Interpretation Code

D.1 Applicability of the MHD-IC code

The MHD-IC code has been developed to investigate MHD activities in the
ASDEX Upgrade tokamak in advanced and conventional tokamak scenarios,
and for resistive and ideal modes.

The method allows to find the shape of the displacement eigenfunction
even if the MHD activity is weak and this shape cannot be resolved by other
methods (tomographic reconstruction etc.). Toroidal coupling to higher m-
modes is not considered in the calculations so far.

In addition, the structure and the position of the MHD instabilities can
be used to improve the equilibrium reconstruction of the plasma.

D.2 Installation and user guide

Introduction

The MHD-IC code is written in FORTRAN 90 and has about 13.000
lines. The code is constructed in a modular fashion which allows to change
the programme easily. Results of MHD-IC calculations are stored in special
".dat" files and a set of MATLAB utilities has been developed to work with
these results. The computation time for a single MHD-IC code run is about
6 — 7min. on an average SUN machine. Structure and approximations of the
MHD-IC code were discussed in chapter three. In this section we describe
how to install and use the MHD-IC code.

Installation
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In order to install the code one should make the following steps:
e Create a directory for the code in the home directory, for example:
/codes/mhd _ic/

e Copy all files into this directory from the following subdirectory:

“vgi/codes/user _mhd _ic/
e Set a path to the directory and name of the operation system:

>setenv MHD IC_ HOME ${HOME}/codes/mhd ic
>setenv OBJECTCODE Solaris

e Finally, compile the MHD-IC code by typing:
>make

At the end an executable file named "mhd _ic.Solaris" will be created.

Input files

An input configuration file has name inpXXX.cf. The XXX represents
a specific number of the input file. Each X has to be an integer between 0
and 9. In order to start the MHD-IC code, this input number is specified
after the name of the executable file in the command line. For instance, if
we have the input file "inp210.cf" type:

>mhd _ic.Solaris 210

Main parameters of the input files
These parameters should be specified in order to read shotfile information:

Name of the experiment (1=AUGD, 2=AUGE, ...)

Diagnostic (1=FPP, 2=EQU, 3=EQE)

Shot number (12224, ...)

Time (0.7, ...) in seconds

Edition of the shotfile

102



Then we determine the plasma profiles and chose the type of MHD in-
stability:

Type of values for the plasma radius (1=p,,;, 2=p;,,)-
Use experimental profile for temperature and density (t=true, f=false)

Type of instability (20=double tearing mode, 16=ideal (1,1) kink,
161=resistive (1,1) kink, 18=several uncoupled modes)

Name of diagnostic for T, profile (CEC,... the same as for jj-subroutines')
Name of T, profile (trad-a, ... the same as for jj-subroutines)

Name of diagnostic for the density profile (CON=parabolic or the same
as for jj-subroutines)

Name of the density profile (ne, ... the same as for jj-subroutines)
Rotation of the mode (should be true(=t) for simulation)

Number of resonant surfaces

For each resonant surface one should specify following parameters:

Poloidal mode number (m)
Toroidal mode number (n)

Frequency of the mode (only for several uncoupled modes, in other
cases 1.0)

Position of the resonant surface (p,., in flux coordinates, p = 1 on the
plasma boundary)

Width of the island (V)
Phase (initial phase shift of the mode)

Parameters for the perturbation current function Jp

'These special subroutines were designed to read experimental profiles (author
C.Fuchs). The latest version of a manual for these routines is available from WWW
(http://www.ipp.mpg.de/common /jj/profile.html)
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— first point of the current function (71 in Eq.3.7)
— first coefficient of the current function (a4 in Eq.3.7)

— second coefficient of the current function (ay in Eq.3.7)

e Parameters of the temperature perturbation or the displacement eigen-
function ¢, (p) in Eq.3.1.

— behaviour inside the island (b in Eq.3.2)
— decrease outside the island (¢ in Eq.3.2)
— relative amplitude of the peaks (d in Eq.3.2)

— amplitude of temperature perturbation (as percentage of max.
temperature)

IMPORTANT: The ordering of the resonant surfaces should start from
the most outside mode. All modes must be sorted in decreasing order of p,..!

Data files

All information necessary for calculations are contained in special ".dat"
files in subdirectory "data". For example, if one need to change the parame-
ters of an SXR camera it can easily be done by changing information in one
of these files.

Getting started

As far as you have the executable file and a correct input file you can
start a calculation by typing

>mhd _ic.Solaris 210

>u

>ra=3

The last two commands are similar to the MIC code[32] and specify the
type of the calculation for magnetic measurements. These commands choose
a branch of calculations which include the influence of screening currents in
internal vessel structures. At the end of the calculation all results will be
written in ".dat" file in the "matlab data" directory.

Modification of the code

It is possible to introduce various analytical functions with different num-
ber of parameters in order to describe an instability. Usually, the number of
the parameters is big and not all of them are in the input file. Each user can
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easily change the code and introduce a new displacement eigenfunction £, in
Eq.3.1 (kink SXR.f90) or current profile Jp,; () (interp.f90). The faster way
is to implement a new "case" construction with a new "type of the mode"
number.

If one would like to read an equilibrium from a private shotfile it can be
done by adding a new option in file "ggeo.f90". (Names of the input variables
are written in "mic_i0.f90".)

Matlab scripts

Since the FORTRAN 90 language is not adapted well for graphics, a set
of MATLAB? scripts were developed to visualize the MHD-IC code results.
These scripts can also work directly with experimental data. Two of these
scripts are described here. Before using them one should change paths to
the home directory in the source files ("vubor.m" and "sxr vis.m"). These
scripts read all information about plasma equilibrium and simulated MHD
activity from ".dat" files in the "\matlab data" subdirectory of the current
working directory. Thus, one can also use the other software to analyse these
data. In order to choose between p,, and p;,. one should specified it in the
input file of the MHD-IC code.

The first script "vubor" has been developed to plot profiles (jpert (p),
q(p), £(p),..), SXR lines of sight, perturbation fluxes and so on. The most
important options allow to plot £ (p) (option 24) and to compare amplitude
of the magnetic measurements with experimental values (option 25). The
experimental value of the amplitude should be written in a file before cal-
culations. It can be done using the "mtr" program (author M.Maraschek)
existing on all Unix machines (Read data-> Calc.FFT-> Spectrum-> Back
FFT and Save).

The second script ("sxr_vis") gives a possibility to read experimental
data from the SXR and the ECE diagnostics on the ASDEX Upgrade and
compare these date with MHD-IC simulations. The most important options
are following:

e Calculation of the FFT transform for a simulated SXR signal (option
10)

2In order to start the MATLAB one should type in the command line:
>matlab
>addipplib
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Calculation of the FFT transform for an experimental SXR signal and
comparison with the simulated one (option 8)

Calculation of the SVD eigenvectors for the experimental SXR signal
and comparison with the simulated one (option 7)

Calculation of ¢ (p) and £ (R) from the experimental ECE signals and
comparison with the simulated displacement (options 15,17)

Plot of the FFT phase of the ECE signals (option 18)
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Appendix E

List of abbreviations

ASDEX Axial Symmetric Divertor EXperiment
DTM Double Tearing Mode

ECE Electron Cyclotron Emission
FFT Fast Fourier Transformation
ITB Internal Transport Barrier
MHD Magneto-hydro-dynamics
MHD-IC MHD Interpretation Code
MSE Motional Stark Effect

NBI Neutral Beam Injection

SVD Singular Value Decomposition
SXR Soft X-ray
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