Max-Planck-Institut
fur Physik
(Werner-Heisenberg-Institut)

The Inclusive Radiative B — X7
Decay in the Standard Model

ULRICH HAISCH

Max-Planck-Institut fiir Physik
(Werner-Heisenberg-Institut)
Fohringer Ring 6
D-80805 Miinchen
Email: haisch@mppmu.mpg.de

[

TECHNISCHE
UNIVERSITAT
MUNCHEN






Physik-Department
Technische Universitat Miinchen
Institut fiir Theoretische Physik
Lehrstuhl Univ.-Prof. Dr. Andrzej Buras

The Inclusive Radiative B — X7
Decay in the Standard Model

ULRICH HAISCH

Vollstandiger Abdruck der von der Fakultét fiir Physik der Technischen Universitat Miin-
chen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Stephan Paul

Priifer der Dissertation: 1. Univ.-Prof. Dr. Andrzej Buras
2. Univ.-Prof. Dr. Manuel Drees

Die Dissertation wurde am 1. Oktober 2002 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultéit fiir Physik am 22. Oktober 2002 angenommen.






Abstract

We discuss inclusive radiative B decays within the Standard Model of elementary particle
physics. In particular, we consider the B — X,y mode, where X, denotes an arbitrary
state of total strangeness —1. At quark level, this decay is dominated by the flavor
changing neutral current b — sy transition, which appears at the one-loop level in the
Standard Model. Such processes allow us to study CP violation and the interplay of strong
and electroweak interactions, to determine the elements of the quark mixing matrix, and
to search for new physics. As it is well-known the inclusive rate is of much more theoretical
interest than the exclusive modes, because non-perturbative effects play a subdominant
role and are well under control due to heavy quark expansion. In particular, the decay
width T'(B — X,v) is well approximated by the partonic decay rate I'(b — sv) which
can be analyzed in renormalization group improved perturbation theory. Exclusive decay
modes, however, are more accessible to experiments, in particular at hadronic machines.

We review the status quo of the theoretical prediction of the weak radiative B-meson
decay B — X,v in the Standard Model. In particular, we point out that the charm
contribution to B — X, is numerically dominant and practically renormalization scale
independent. The well-known enormous enhancement of the branching ratio by leading
large logarithms is mainly due to the b-quark mass evolution in the top sector. By splitting
the top and the charm contributions to the decay amplitude good control of the behavior
of the perturbation series in B — X7 is achieved. Moreover, we argue that one source of
perturbative uncertainty was not properly taken into account in many previous analyses.
It is related to the question of the definition of m, and m,; that should be used in the
matrix element (Q2()). This problem is numerically very important because of the strong
sensitivity of (Q2()) to the mass ratio m./my. We give arguments which renormalization
scheme for m./my, should be used in the calculation of the branching ratio of the inclusive
B — X, decay mode.

We compute the complete two-loop O(«) Wilson coefficients relevant for radiative
decays of the B-meson in the Standard Model. This is a necessary step in the calculation
of the next-to-leading order photonic corrections and improves on previous analyses of
electroweak effects in B — X;v. We describe in detail several interesting technical aspects
of the calculation and include all relevant O(«) matrix elements. The final expressions
for the O(«) corrections of the Wilson coefficients, however, are very long, due to the
presence of four different heavy masses. Hence, we provide only approximate formulas for
the numerical implementation of our results. We also consider the heavy top expansion of
our results and show that in the case at hand it converges very slowly, and that the leading
term of this expansion disagrees from the result obtained in the gaugeless approximation.
The origin of the discrepancy is discussed and we provide a criterion for the validity
of the gaugeless approximation in general. As a byproduct of our calculation we also
obtain the O(«) correction to the Wilson coefficient of the four quark operator (. In
our final result, we neglect only terms originated from the unknown O(aqy) evolution of
the Wilson coefficients and the O(a)) bremsstrahlung corrections which are suspected to
be negligible small. Due to the compensation among different effects, we find that non-
trivial electroweak corrections decrease the branching ratio by about 3.6% for a light Higgs
boson of around 100 GeV. The corresponding up-to-date Standard Model prediction for
the branching ratio with E, > 1.6 GeV is (3.58 £ 0.30) x 10~* in good agreement with
the present experimental results obtained at CLEO, BaBar, Belle and ALEPH.
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Chapter 1
Introduction

The last century has seen in physics a dazzling expansion of the frontiers of scientific
knowledge. Einstein’s special and general relativity have permanently changed our view
of space, time and gravitation. In an even more radical break with the past, quantum
mechanics has transformed the very language we use to describe nature: In place of
particles with definite positions and velocities, we have learned to speak of wave functions
and probabilities. Out of the fusion of relativity and quantum mechanics there has evolved
a new view of the world, one in which matter has lost its central role. This role has
been usurped by principles of symmetry, some of them hidden from view in the present
state of the universe. On this formulation physicists have built a successful theory of
electromagnetism and the weak and strong interactions of elementary particles, which
has become the Standard Model (SM) of particle physics.

The SM is a renormalizable quantum field theory which predicts or is consistent with
almost all known aspects of the elementary particles and their interactions over an enor-
mous range of probes and scales. In particular, the latest precision measurements at
the Large Electron Positron Collider (LEP) at the European Organization for Nuclear
Research (CERN), at the Stanford Linear Collider (SLC) at the Stanford Linear Acceler-
ator Center (SLAC) and at the Tevatron at the Fermi National Accelerator Laboratory
(FNAL), have confirmed the validity of the gauge sector of the SM to a level that we can
say was unexpected at the beginning. In the present data there is no significant evidence
for departures from the SM, no convincing hint of new physics. The precision tests of the
standard electroweak theory have established that the couplings of quarks and leptons
to the weak gauge bosons W* and Z are indeed precisely those prescribed by the gauge
symmetry. The accuracy at the level of order 0.1% for these precision tests [1-3] implies
that, not only the tree level, but also the structure of the electroweak quantum corrections
including genuine bosonic weak contributions has been verified. To a lesser accuracy the
triple gauge vertices W*W T~y and W*WTZ have also been found in agreement with the
specific prediction of the electroweak theory. This means that it has been verified that
the gauge symmetry is unbroken in the vertices of the theory, that is, that the currents
are indeed conserved. Moreover, the impressive success of the SM poses strong limitations
on the possible forms of new physics. Favored are models of the Higgs sector and of new
physics that preserve the SM structure and only very delicately improve it, as is the case
for fundamental Higgses and supersymmetry. Disfavored are models with a nearby strong
non-perturbative regime that almost inevitably would affect the electroweak radiative
corrections, as for composite Higgses or technicolor and its variants.
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However, despite it tremendous successes, the SM is generally not believed to be the
final answer to the question for the fundamental building blocks of nature. Even if one
accepts the rather bizarre set of group representations and hypercharges that it requires,
the SM contains at least 19 parameters. These consist of three gauge couplings, six
quark and three charged lepton masses, three weak mixing angles and one CP violating
phase, and two parameters to characterize the Higgs sector. In addition there is a further
non-perturbative vacuum angle which describes potential strong CP violation. Moreover,
many more parameters are required if one wishes to accommodate non-accelerator obser-
vations. For example, neutrino masses and mixing introduce at least seven parameters,
namely, three masses, three mixing angles and one CP violating phase. Cosmological
inflation introduces at least one new mass scale of order Mqur ~ 10 GeV. The cos-
mological baryon asymmetry is not explicable within the SM, so one or more additional
parameters are needed. Finally, the cosmological constant may be non-zero. The ultimate
"Theory of Everything” should explain all these as well as the parameters of the SM of
strong and electroweak interactions.

It is convenient to organize the questions raised by the SM into three categories. One
is the problem of mass: Do particle masses really originate from a Higgs boson, and,
if so, why are these masses not much closer to the Planck scale Mppanek =~ 10 GeV?
Another one is the problem of unification: Can all the particles interactions be unified
in a simple gauge group, and, if so, does it predict observable new phenomena such as
baryon decay or neutrino masses, and does it predict relations between parameters of
the SM such as gauge couplings or fermion masses? Then there is the problem of flavor:
What is the origin of the six flavors each of the quarks and leptons, and what explains
their weak charged-current mixing and CP violation? Finally, the quest of the ”Theory
of Everything” seems most promising in the context of string theory, particularly in its
most recent incarnation of M-theory. The phenomenological richness of this speculative
M-theory approach is only beginning to be explored, and it remains to be seen whether
it offers a realistic phenomenological description.

Nevertheless, the SM remains the rock on which our quest for new physics must be
built, and it seems worthwhile to examine whether its successes or deficits offer any hint
of the direction in which to search for new physics. In this vicinity special attention
should be paid to the flavor sector of the SM, which apart from the low-energy regime of
the strong interactions, can be regarded as the experimentally least constrained part of
the theory. This is reflected in the rather large uncertainties of several flavor parameters
such as the mixing parameters at the 20% level [4, 5], which has to be compared with the
aforementioned errors established in the electroweak precision measurements. However,
while the time of the electroweak precision physics focusing on the gauge sector of the
SM has drawn to a close with the completion of the LEP and SLC experiments, the
era of precision flavor physics focusing on the scalar sector of the SM has just begun
with the start of the BaBar experiment [6] at SLAC and the Belle experiment [7] at the
High Energy Accelerator Research Organization (KEK), which add a wealth of data to
the results of the CLEO experiment [8,9] at the Cornell Electron Positron Storage Ring
(CESR), the four LEP experiments ALEPH [10,11], DELPHI [12,13], L3 [14, 15], and
OPAL [16,17] at CERN, the two Tevatron experiments CDF [18,19] and DO [20], and the
SLD experiment [21,22] at SLAC. Although the physics potential of these experiments
is very promising, it may well be that a definite answer in the search for new physics
will be left to the second generation flavor experiments at hadronic machines, namely



ATLAS [23], CMS [24] and LHCb [22,25] at CERN, and BTeV [26] and the upgraded
CDF and DO experiments at FNAL. All these fascinating experimental facilities let expect
that flavor physics, in particular the physics of b-flavored mesons, will be the most active
and promising areas of high-energy particle physics in the near future.

Indeed, the value of the mass of the b-quark, of around 5 GeV leads to a special role
of the B-mesons in the studies of flavor physics. The most heavy quark, the ¢t-quark,
does not form hadrons, because it can decay by weak interaction into a real W* and a
b-quark. This decay occurs much faster than the typical time needed to bind a quark and
an antiquark into a meson by the strong interactions. Thus, mesons containing a b-quark
are the heaviest mesons that can be produced at high-energy colliders. The fact that
the B-mesons are heavy has two important consequences: B decays show an extremely
rich phenomenology and theoretical techniques relying on the expansion in the heavy b-
quark mass allow for model-independent predictions. The rich phenomenology is based
on the one hand on the large available phase space allowing for a plethora of possible
final states and on the other hand on the possibility for large CP violating asymmetries
in B decays. For years large CP violation in the B system was considered to be one of
the cornerstone predictions of the SM. Yet it took a very long time to come up with the
definitive evidence [27,28]. With the combined efforts of theorists and experimentalist,
the next years will show how precisely the measurements of the direct CP asymmetry in
the various B decay modes will determine p and 7, and if the five independent constraints
on p and 7 from |Vip|, [Vi|, €, @ and 3 will establish a consistent description, or will falsify
the assumption that all weak processes including CP violation are well described within
the SM.

In this thesis we will focus on a particular subclass of B decays, the so-called ra-
diative weak decays. These transitions have been the subject of a considerable number
of experimental and theoretical investigations. Being rare processes mediated by loop
diagrams, radiative weak decays test the detailed structure of the underlying theory at
the level of quantum corrections and provide information on the couplings and masses of
the heavy virtual particles appearing as intermediate states. The resulting sensitivity to
nonstandard contributions, such as charged Higgs bosons, gluinos and charginos or even
more exotic particles arising in some extentions of the SM, implies the possibility for an
indirect observation of new physics, a strategy complementary to the direct production of
the new particles. Whereas the latter option is reserved to the planned hadronic machines
such as the Large Hadron Collider (LHC) at CERN, the indirect search of the B facto-
ries already implies significant restrictions for the parameter space of many new physics
scenarios, and it might well be that these rare processes lead to the first evidence of new
physics by a significant deviation from the SM prediction.

Among all rare weak decays the penguin induced b — sy and b — dvy transitions
play a special role. Proceeding at rates of order G%a, they are systematically enhanced
over most other loop induced, non-radiative, rare decays that are proportional to G%a?.
In fact, the Cabibbo-favored b — sy modes belong to the small number of rare decays
that are experimentally accessible already today. Following the first observation of the
exclusive electromagnetic penguin process B — K*v nearly a decade ago by the CLEO
collaboration [29], these measurements have been refined [30] and confirmed by other ex-
periments [31,32]. However, quantitative test of the SM with rates measured for exclusive
channels are severely handicapped by our inability to calculate hadronization probabilities
from the first principles of the theory of strong interactions. The resulting large hadronic
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uncertainties of around 40% [33-36] restrict the opportunities in those channels signifi-
cantly. If new physics does not show up in B physics through large deviations from the SM
expectations as recent experimental data indicates the focus on theoretically clean vari-
ables is mandatory. Fortunately, when summed over all possible final states, hadroniza-
tion probabilities are not relevant and the inclusively measured rate should reflect the
short distance interactions which can be accurately predicted using the full machinery of
renormalization group improved perturbation theory. The general framework for such a
calculation is provided by the heavy quark expansion (HQE), which predicts that up to
small bound-state corrections, inclusive decay rates agree with the parton model rates of
the underlying decays of the b-quark. As long as the fine structure of the photon energy
spectrum is not probed locally, the theoretically analysis of B — X,y and B — Xy
decays relies only on the weak assumption of global quark-hadron duality.

Of course, the power of the inclusive branching ratio of B — X,v for testing new
physics crucially depends on how accurate its measurements are and how precise the the-
oretical prediction in the SM is. One year after the detection of the exclusive B — K*vy
mode, the CLEO collaboration reported the first measurement of the rate of the inclu-
sive analogue B — X;v through the determination of the characteristic photon energy
spectrum [37]. As this process is dominated by the two-body decay b — sv, its gamma
energy spectrum is expected to be a smeared delta function centered at the kinematical
endpoint, where the smearing is due to perturbative emission of gluon bremsstrahlung,
and to the non-perturbative Fermi motion of the b-quark inside the B-meson. Since the
first measurement of the inclusive B — X v mode considerable progress has been made
by CLEO [30, 38], BaBar [39], Belle [31] and ALEPH [40]. The current experimental

results read
BR(B — X,y 3.214£0.43 +£0.277018) x 107*,

( ) = (
BR(B — X,v) = (3.88+£0.36 £0.371033) x 10°*, 1)
BR(B — X;7) = (3.36 £0.53 £0.42£029) x 107, '
= (

BR(H, — X,v) = (3.11+£0.80 £0.72) x 107*,

where the first error is statistical, the second is systematic and the third error represents
the theoretical model dependence. It should be noted that although the four differ-
ent measurements are consistent with each other, the statistical errors in the ALEPH
measurement of H, — X,y are much larger than the expected differences among weak
radiative branching ratios of the included B-hadrons, and thus the latter result should be
treated with care. Including the present data from CLEO, BaBar, Belle and ALEPH the
current experimental world average for the branching ratio of the B — X;v decay is

BR(B — XV)exp = (3.3940.40) x 10, (1.2)

with an error of around 12%. More accurate data are expected in the near future. With
the expected high luminosity of the B factories, an experimental accuracy below 10% in
the inclusive B — X v mode appears to be possible.

Since only the high-energy part of the photon spectrum is sensitive to the rare B —
X, decay, some lower cut-off in the photon energy spectrum has to be imposed in order
to exclude the dominant charm background, which has a typical bremsstrahlungs spec-
trum that is maximal at the photon energy E, = 0 and falls off for larger value of E,. In
consequence only the kinematic branching ratio of B — X;v in the range E, = 2.0 GeV



and the kinematical endpoint at E, = 2.7 GeV is experimentally accessible [30]. Therefore
an understanding of the spectral shape is a prerequisite for extrapolating the data to the
full phase space, that is, to obtain the total branching ratio. Unfortunately, the operator
product expansion (OPE) breaks down near the endpoint of the photon spectrum and the
fraction of the B — X, events with £, > 2 GeV is not calculable from first principles, at
least at the moment. This uncertainty spotted in the experimental measurement should
definitely be regarded as a purely theoretical one. However, an important observation is
that the shape of the photon spectrum is not sensitive to physics beyond the SM. This
implies that we do not have to assume the correctness of the SM in the experimental
analysis and, thus, a precise measurement of the photon spectrum can be used to deter-
mine the parameters of the shape function. Clearly, a lower experimental cut-off would
decrease the sensitivity to the parameters of the shape function, or more generally, the
model dependence. In the future, experimental effort should therefore be made to lower
the cut-off on the photon energy to a value of around E, = 1.6 GeV, which would allow
an ideal comparison between theory and experiment.

After all this experimental exposition it is really time to discuss the theoretical pre-
diction for the branching ratio of the inclusive B — X,y decay in the SM. This will be
done in the subsequent 137 pages that we have organized as follows. In Chapter2 we
provide a self-contained introduction to the SM. After stating without proof some general
results from the theory of continuous groups relevant to the construction of non-abelian
gauge theories, we will introduce the classical Lagrangian of the minimal SM of strong
and electroweak interactions step by step, explaining its symmetries in detail. This will
be followed by a illuminating discussion of the quantization of the SM, putting special
emphasize on the role played by the Becchi-Rouet-Stora-Tyutin (BRST) symmetry. Fi-
nally, we outline the on-shell renormalization of the physical and unphysical sector of the
electroweak SM and provide explicit expression for the counterterms at the one-loop level.

In Chapter 3 we review the status quo of the theoretical predictions of the weak ra-
diative B-meson decay B — X, in the SM. In the first section we will briefly recall the
general formalism on which the calculation of the branching ratio of the B — X7y mode
is based, giving the effective off-shell Hamiltonian needed for the subsequent calculations
of the b — sy and b — sg transition in the SM. The next section deals with renormaliza-
tion group techniques and illustrates how leading and next-to-leading order gluonic and
photonic corrections should be taken into account in the calculation of the Wilson coef-
ficient functions of the relevant operators. In what follows we will explain why splitting
the top and charm contributions to the amplitude allows us to better understand the
origin of the enormous enhancement of the B — X, branching ratio due to leading large
logarithms. Motivated by this observation we will then rewrite the known next-to-leading
order corrections to the Wilson coefficients of the magnetic type operators. Furthermore,
we will give a short survey of the non-perturbative corrections that have to be included
in order to pass from the calculated b-quark decay rate to the final B-meson decay rate.
The presentation of the explicit expressions needed for the analysis of the branching ratio
of B — X,v in next-to-leading order approximation concludes this chapter.

The study of electroweak effects in the b — sy and b — sg transitions within the SM is
performed in Chapter 4. After a short general introduction, we outline in detail the two-
loop O(a) matching for the magnetic penguin operators. Several subtleties arise in the
calculation, mostly linked to the presence of unphysical operators. We will describe them
in detail and illustrate how non-physical operators effect the final result for the initial
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conditions of the Wilson coefficients. Moreover, we discuss some technical details of the
computation of the two-loop unrenormalized amputated Green’s function, which has been
the most involved part of our calculation. In renormalizing the two-loop amplitudes our
aim is to attain the maximal simplicity. The actual procedure we have adopted will
be illustrated in great detail, giving explicit expressions for the various counterterms.
Although the final expression for the O(a) corrections to the initial conditions of the
Wilson coefficient functions can be expressed in terms of logarithms and dilogarithms,
they are rather lengthy due to the presence of four different heavy masses, and thus we
provide only practical formulas for the numerical implementation of our results. We also
consider the heavy top expansion (HTE) and show that in the case at hand it converges
very slowly, and that the leading term of this expansion disagrees from the result obtained
in the gaugeless approximation. The origin of the discrepancy will be discussed and we
provide a criterion for the validity of the gaugeless approximation in general. Furthermore,
we deal with the evolution of the coefficient functions down to the low-energy scale and
explain how next-to-leading order photonic corrections should be taken into account in the
computation of the B — X7y branching ratio. Finally, we reconsider the SM prediction for
this quantity using the next-to-leading order formulae collected in the preceding chapter,
including all relevant O(«) matrix elements.

Our conclusions and a short outlook are given in Chapter5. Some more technical
details are discussed in the appendices. In Appendix A we report the preliminary results
of an ongoing calculation of the anomalous dimension matrices up to O(a?) and O(a),
respectively. Further details of this computation as well as a comprehensive discussion of
the classification of physical and non-physical operators of dimension five and six arising
in the renormalization of the effective theory at two- and three-loop level will be given
in a forthcoming publication. The one-loop off-shell matching for the b — sv transition
will be performed in Appendix B, where we explicitly show that the gauge-invariant part
of the corresponding effective vertex depends on whether the external photon is quan-
tum or background. In Appendix C we give all the relevant functions necessary for the
calculation of the O(«;) bremsstrahlungs corrections affecting the inclusive B — Xy
mode. Moreover, we demonstrate in Appendix D how the O(«a) corrections to the Wilson
coefficients of the four quark operators transform when passing from one operator basis
to another. A detailed description of how to evaluate the renormalized on-shell b — sy
amplitude, from which the two-loop O(a) matrix elements of the four quark operators
can be determined, will be given in Appendix E and concludes this thesis.
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Chapter 2

Standard Model of Elementary
Particle Physics

This chapter provides a self-contained introduction to the SM of strong and electroweak
interactions. The SM is a renormalizable quantum field theory and allows consistent
predictions of physical processes in terms of a few parameters, such as masses and cou-
plings, order by order in perturbation theory. The SM includes electromagnetic, weak
and strong interactions and the classical model is a non-abelian gauge theory based on
the non-simple gauge group SU(3)c x SU(2), x U(1)y. The SU(2), x U(1)y gauge group
is spontaneously broken to the electromagnetic subgroup U(1)q providing masses for the
charged leptons and quarks and for the vector bosons of weak interactions via the Higgs
mechanism, but leaving the photon as a massless particle. Since the symmetry of the
electroweak model is broken in such a way that the abelian subgroup cannot be factor-
ized the weak interactions cannot be described consistently without the electromagnetic
interactions. In contrast to this the color group SU(3)¢ is unbroken and its generators of
global symmetry do not mix with the one of the SU(2);, x U(1)y symmetry.

2.1 Lie Groups and Lie Algebras

Before discussing the classical Lagrangian of the SM in detail, it is worthwhile to consider
the general properties of Lie groups on which non-abelian gauge theories are based. In the
following we will state, without proof, some general results from the theory of continuous
groups relevant to the construction of non-abelian gauge theories, putting special emphasis
on the non-abelian subgroup factors of the SU(3)¢x SU(2), xU(1)y symmetry underlying
the SM.

The basic feature of any Lie group is that it contains a non-countable number of el-
ements lying in a region arbitrarily close to its identity, and that the structure of this
region both very largely determines the structure of the whole group and is itself deter-
mined by its corresponding Lie algebra. To ensure this, the elements close to the identity
must be parameterized in such a way, that in terms of this parameterization the group
multiplication operation is expressible in terms of analytic functions.

For the application to gauge theories, the local symmetry is normally a unitary trans-
formation of a set of fields. Therefore we are primarily interested in Lie algebras that have
finite-dimensional hermitian representations, leading to finite-dimensional unitary repre-
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sentations of the associated Lie group. In addition we will also assume that the number of
generators is finite. Such Lie algebras are called compact, because these conditions imply
that the Lie group forms a finite-dimensional compact manifold.

Any element of a compact Lie group which can be obtained from the identity by
continuous change of its parameters can be written as

g(0) =", (2.1)

where the summation over repeated indices should be understood as usual. The coeffi-
cients of the real group parameters 0% are linearly independent hermitian operators t?,
a=1,...,dg, known as the generators of the Lie group and dg is the dimension of the
associated Lie algebra.

As the product of a pair of group elements is another group element the commutator
of any two generators t* and t° can be written as

[t 9] = ic®Pe7 (2.2)

The real numbers ¢*?7 are called the structure constants of the Lie algebra. Clearly, in a
particular representation the explicit values of the structure constants are completely de-
termined by the group multiplication operation. They also determine the local properties
of the associated Lie group close to its identity. In general, however, they do not deter-
mine the global properties, that is, the properties of the whole group. As the Lagrangian
of a non-abelian gauge theory depends only on the Lie algebra of a local symmetry group,
we will ignore these global questions from here on.
In addition, the generators obey the following equality

[t 12 1] 4+ [12, [0, o] + [t7, [t*, tP]] = 0, (2.3)

known as the Jacobi identity. Notice that for the commutator (2.2) the identity (2.3)
is automatically fulfilled. The reason why we nevertheless state it here is that, in the
abstract theory of Lie algebras, the Jacobi identity will no longer be immediately satisfied
and therefore plays a fundamental role. Accordingly, we call the vector space spanned by
the generators with the additional operation of commutation which satisfies the Jacobi
identity a Lie algebra. A Lie algebra is said to be abelian, if [t*,#°] = 0 for all generators
t* and t#. Thus in an abelian Lie algebra all the structure constants are zero.

At this point a few more definitions concerning the classification of Lie algebras seem
to be appropriate. A subalgebra of a Lie algebra is defined to be a subset of elements of the
whole algebra that themselves form a Lie algebra with the same commutation relations.
If, in addition, the subset of generators closes among themselves under commutation
with any element of the whole algebra, the subalgebra is said to be invariant. An algebra
which is not abelian and does not posses a non-trivial invariant subgroup' is called simple.
Algebras without abelian invariant subalgebras are said to be semi-simple. Consequently,
a general Lie algebra can be written as a direct sum of non-abelian simple components
and additional abelian generators.

Once we have specified the local symmetry group, the fields that appear in the La-
grangian most naturally transform according to a finite-dimensional unitary representa-
tion of this group. A d-dimensional unitary representation of a Lie group is a set of d x d

!The whole algebra, and the subset of no generators at all are always trivial invariant subalgebras.
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hermitian matrices ¢* fulfilling the commutation relations (2.2). If there exists no subspace
of the d-dimensional vector space so that the t* transform any vector of the subspace into
another member of this subspace the representation is said to be irreducible. We denote
the representation matrices in the irreducible representation r by <.

It is standard practice to adopt a normalization convention for the matrices ¢, based
on traces of their products. If the Lie algebra is semi-simple, the matrices ¢ themselves
are traceless. However, it can be shown, that for any irreducible representation a basis of
generators can be chosen in such a way, that the trace of the product of two generators
is proportional to the identity:

tr[tet?] = T.0% , (2.4)

where the Dynkin index 7). is a constant for each representation r. Once this is done for
one irreducible representation, it is true for all irreducible representations. It is then easy
to see, that the commutation relations (2.2) together with the normalization (2.4) lead to
the following relation

P = —-5§-tr ([, 12187 (2.5)
r

which implies that, due to the cyclic property of the trace, the structure constants of any
irreducible representation are totally antisymmetric.

As a consequence of the antisymmetric property of the structure constants the operator
2 = t%t® commutes with all group generators for any simple Lie algebra. In other words,
t? is an invariant of the Lie algebra. This means that in an irreducible representation, t2
is proportional to the unit matrix:

10 =C, -1, (2.6)

where 1 is the d, X d, unit matrix and C, is a constant for each representation, known as
the quadratic Casimir operator. Furthermore, it is easy to derive, that the Dynkin index
and the quadratic Casimir operator are not independent of each other. If we contract
Eq. (2.4) by §% and evaluate the left-hand side using Eq. (2.6), we find

4, T, = dgC, . (2.7)

As we will see later on, Dynkin indices and quadratic Casimir operators appear very
often in computations in non-abelian gauge theories. Therefore we will give these group
invariants for the simplest representations of the non-abelian subgroup factors of the SM
in what follows.

In the case of SU(2), the basic irreducible representation, usually called the funda-
mental representation, is the two-dimensional spinor representation, which is given in
terms of Pauli matrices by 7 = ¢%/2, i = 1,...,3. Accordingly, the generators are nor-
malized in the conventional way, that is, tr [7'7/] = §% /2. In the standard basis for the
fundamental representation of SU(3) the generators denoted by T are chosen so that
the isospin subgroup SU(2) is generated by the first three generators acting on the three-
dimensional complex vector. In terms of the Gell-Mann matrices they can be written
as T® = \/2, a = 1,...,8. In consequence, the generators obey tr [T°T°] = §%/2. As
any SU(N) group contains an SU(2) subgroup, this convention fixes the values of T, and
C, for all irreducible representations of SU(N). For the fundamental representation of
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SU(N) denoted by r = F the Dynkin index is directly given by the normalization, and
the quadratic Casimir operator follows from Eq. (2.7). We obtain

1 N? -1
T:— C =
F 27 F IN

(2.8)

Another irreducible representation, present for any simple Lie algebra, is the one to
which the generators of the algebra belong. This representation which has the dimension
of the group is called the adjoint or regular representation and denoted by r = A. The
representation matrices are given by the structure constants:

(t5) 5, = —ic™™. (2.9)

With this definition, the statement that ¢ satisfies the Lie algebra (2.2) is just a rewriting
of the Jacobi identity (2.3). For SU(2), the structure constants are given by the totally
antisymmetric Levi-Civita tensor €%, known from the angular momentum algebra. In
the case of SU(3) the totally antisymmetric structure constants will be denoted by f2¢.
It can be proven that in the adjoint representation of SU(N), the Dynkin index equals
the value of the quadratic Casimir operator:

Ti=C,=N. (2.10)

Since the examples we have discussed in this section, combined with the basic group
theoretical concepts that we have reviewed, already provide enough material to carry out
the most important calculations of physical interest in the SM, we will go ahead to see
how non-abelian local gauge symmetries determine the interactions of particles in nature.

2.2 Lagrangian of the Standard Model

In this section we shall assemble the ingredients of the SM of strong and electroweak
interactions. The theory of strong interaction, known as Quantum Chromodynamics or
QCD [41-46], is a non-abelian gauge theory with gauge group SU(3)¢, coupled to fermions
in the fundamental representation. On the contrary, weak and electromagnetic interac-
tions of fermions exhibit a symmetry under the gauge group SU(2);, x U(1)y, so that
the complete SM is a SU(3)¢ x SU(2)., x U(1)y gauge theory. However, in contrast to
the gauge bosons of the strong and electromagnetic interaction, the electroweak gauge
bosons are massive. Therefore the formulation of a gauge theory of electroweak inter-
action requires a new concept, known as spontaneous symmetry breaking. By applying
this concept to the SU(2), x U(1)y gauge group we arrive at the only known form of
renormalizable and unitary quantum field theory of the weak interaction with massive
gauge bosons, often referred to as the Glashow-Weinberg-Salam (GWS) theory [47-50].

Gauge Sector

As the gauge group of the SM is non-simple, electromagnetic, weak and strong interactions
are combined by three gauge coupling constants, ¢’ for the weak-hypercharge U(1)y, g
for the weak-isospin SU(2),, and g; for the color symmetry group SU(3)c. We denote the
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generator of weak-hypercharge by Y, the three generators of the weak-isospin by 7 and
the eight generators of the color charges by 7.

According to the dimension of the gauge group SU(3)c x SU(2), x U(1)y, twelve
gauge fields, which transform with respect to the adjoint representation, mediate the
interactions between the matter fields. The gauge field belonging to U(1)y is denoted by
B,,, the gauge fields belonging to SU(2),, are denoted by le, 1 =1,...,3, and the gauge
fields belonging to SU(3)c, called the gluon fields, are denoted by Gh,a=1,...,8.

The antisymmetric abelian and non-abelian field-strength tensors can be written as

By = 8,B, — 9,B,,
Wi, = 0W, — 0,W, — ge"*WIW, (2.11)
G4, = 0,G4 — 0,GY — g, [ GhGS,.

The gauge fields themselves become a dynamical quantity by adding a gauge field term
to the Lagrangian. The most general power counting renormalizable? kinetic term for the
gauge fields reads

Lo = —%BwB’“’ — %Wjuwi”“’ — %GZVG“”“’. (2.12)
Notice that, in contrast to the abelian field-strength tensor B,,, the non-abelian field-
strength tensors Wlil, and G}, contain both linear and quadratic terms in the gauge fields,
so that the theory is non-trivial even in the absence of matter fields. These self-interactions
are an important aspect of non-abelian gauge theories and are responsible in particular
for the asymptotic freedom of QCD [51-53].

The Lagrangian (2.12) is invariant under the infinitesimal gauge transformations

1 Y
6BH - —?6“9 y

. 1 . . )

W, = —gauez + eTFWIO" (2.13)
a 1 a abe ~b pe

3G = =00 + [ GL",

where 0¥, #° and ¢ are the infinitesimal parameters of the gauge transformations corre-
sponding to the groups U(1)y, SU(2), and SU(3)¢, respectively. Obviously, if we take an
infinitesimal gauge transformation with constant parameters, the gauge fields transform
according to the adjoint representation of the associated Lie group.

From Egs. (2.13) it follows that the transformation properties of the field strengths
are those of a tensor of the adjoint representation

6B, =0, W, = el Wi 60", 6GS, = f™Gh,0°. (2.14)

Note that in the non-abelian case the field strength tensor is no longer gauge-invariant.
It cannot be, since there are now several field strengths, each associated with a given
direction of rotation in the abstract vector space.

2This means that the dimension of the terms in the Lagrangian must not exceed four.
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Fermionic Sector

The gauge structure of the SM is essentially determined in the matter sector: It is seen,
that the matter currents of the weak interactions, the charged current and the neutral cur-
rent together with the electromagnetic current form a closed representation with respect
to SU(2), x U(1)y. In order to embed these currents into a gauge theory, one groups the
fermions into left-handed doublets, which transform under the fundamental representa-
tion of SU(2), x U(1)y, and right-handed singlets, which transform with respect to the
abelian subgroup.

The fermions appear in three generations or families: Each generation consists of a
neutrino v, a charged lepton e} with electric charge (). = —1, and the up- and down-type
quarks u} and d, with charge @, = +2/3 and Q4 = —1/3. The lepton doublets E} and
the quark doublets Q% are given by

~

Ej =P, (”f

0-((2).2).¢))
RORERON
¢k = Pre; = (€, g, TR)

ulh = Prul = (uly, iy th) (2.16)

" __ /o U li l
r = Prd; = (dg, sk, Vr) ,

!
, (2.15)
1 u;
L="rL (d(

The singlets consist of

where P /p = (1 F 7°)/2 are the projectors onto left- and right-handed chiral fields and
t=1,...,3 is the generation index. Here and in the following the color index of the quark
fields will be suppressed for simplicity. Notice that gauge symmetry does not motivate
the inclusion of right-handed neutrinos, which would be neutral under all three gauge
groups. Therefore they are omitted in the minimal SM.?

The gauge interaction of the matter fields is determined by the covariant derivative

D, =0, +ig'B,Y +igW,r' +ig,GuT*, (2.17)

with YV, 7% and T® evaluated in the particular representation to which the fermion field
belongs. The prime at the fermion fields indicates eigenstates of the electroweak interac-
tion, that is, the covariant derivatives (2.17) are diagonal with respect to the generation
indices in this basis. However, these states are not necessarily mass eigenstates. In this
notation the fermionic part of the Lagrangian reads

3
Ly =Y (EViDE] + QFiDQ} + epiDel + ufiPuly + djiPdy) . (2.18)

i=1
As far as gauge interactions are concerned, the generations are simply copies of each other
and the fermionic part of the Lagrangian possesses a large global flavor symmetry. For

3As we will explain later on, right-handed neutrinos can be easily included in the SM without af-
fecting its basic structure. This might become necessary in order to allow for the description of recent
experimental results on neutrino oscillations [54-65].
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three generations the symmetry group is U(3)g x U(3)g % U(3), x U(3), x U(3)4, that
is, a U(3) symmetry for each of the multiplets £, Q% e, u's and d’s.

The Lagrangian given by Eq. (2.18) is invariant under the following infinitesimal gauge
transformations of the weak eigenstates of the fermionic fields

SE} =i (0VY +6'77) B,

0QF =i (Y +6'77 +6°T) QY

et =i Yelh (2.19)
sulfy =i (0VY +0°T") uf,

odf, =i (07Y +60°T*) dY,.

Higgs Sector

With only gauge fields and fermions the SM is incomplete. In particular, it does not
accommodate the observed non-zero masses of the charged leptons, quarks, and weak
gauge bosons. However, left- and right-handed fermion fields transform according to
different representations of the gauge group SU(2),. Thus simple mass terms for the
fermions of the form ff = f;fr + frf are forbidden, because they would break chiral
gauge invariance. Besides this, exact pure gauge symmetry demands that all gauge fields
are massless, since vector field mass terms V,V# would transform non-invariant under
the corresponding gauge group and the resulting field theory will be unrenormalizable in
general.

The only known way for introducing masses without violating gauge invariance is the
Higgs mechanism [66-71], which is based on spontaneous symmetry breaking. Thereby,
gauge fields are coupled with additional, postulated scalar fields which, owing to heir
self-interactions, acquire asymmetric non-vanishing vacuum expectation values (VEVs),
despite the gauge symmetry of the Lagrangian. These scalar fields are also necessary
to guarantee unitarity in a theory with massive vector bosons [72,73]. Some of these
scalar fields, the so-called Higgs fields, give rise to physically observable scalar particles.
However, the details of the mechanism that induces spontaneous symmetry breaking of
the SU(3)c x SU(2)r, x U(1)y gauge symmetry are still unknown.

In the minimal formulation of the SM, spontaneous symmetry breaking is achieved by
means of a single complex scalar field* ¢ that transforms as a spinor of SU(2);,

b= (‘j;) , (2.20)

where the superscripts denote the electric charge of the individual component. The most
general renormalizable Lagrangian for the scalar doublet reads

Ly = (D,9)" (D*) + 1¢T — A (610)” (2.21)

and involves two new real parameters ¢ and A. This Lagrangian is invariant under the
infinitesimal local SU(2);, x U(1)y transformation

5p =i (Y +6'7") . (2.22)
4The particle physics vacuum is observed to be translation and Lorentz invariant, so it is clear that

the internal symmetry with which we are concerned must be broken by a scalar field having a non-zero
value in the vacuum.
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The classical configuration with minimum energy, called the vacuum, is a uniform field,
chosen to minimize the potential. Since the vacuum would be unstable, if the potential
energy is unbounded from below, we have to require that the quartic coupling A must be
positive. Under this assumption there are two possibilities for the theory. If y? > 2, then
there is a single minimum of the potential with VEV zero and the symmetry is preserved.
Accordingly, the weak gauge bosons remain massless. The alternative scenario is more
interesting. If u? < 2, the scalar field will aquire a VEV which we can calculate by asking
for the stationary value of the Lagrangian (2.21). We receive

(sl6) =2 (223)

which corresponds to an infinite number of degenerate minima transforming into one
another under the gauge group. All these ground states are physically equivalent. How-
ever, each of them selects a direction in representation space. Choosing one of them as
the ground state of the theory, the symmetry is said to be spontaneously broken. The
SU(2)r, x U(1)y transformation (2.22) is then an invariant of the Lagrangian, but not of
the vacuum state. Without loss of generality, we can therefore make an SU(2),, rotation
so that it is the lower component of ¢ which acquires a real VEV, constant over the whole

Minkowski space:
1 /0

where v = y/p?/\ at the classical level. With this particular choice, the subgroup of
SU(2)r, x U(1)y which corresponds to the infinitesimal transformations

5p=i0 (Y +7°) ¢, (2.25)

leaves the vacuum state invariant, provided we assign the scalar field a charge Y = +1/2
under the U(1)y gauge symmetry. Thus, the linear combination

Q=Y +7°, (2.26)

may be identified with the generator of the unbroken residual electromagnetic U(1)q
symmetry. The three remaining linear independent generators, which span the quotient
space SU(2),xU(1)y/U(1)q, are spontaneously broken, and we will express them through
the linear combinations 7+ = 7! 4 472 and 73 in order to diagonalize the mass matrix of
the electroweak gauge bosons.

The mass eigenstates of the vector bosons are obtained by the following orthogonal
transformation

1
W, = 7 W, FiW)), Zu=coW, —swBy, Ay,=syW)+cwB,, (227

where the weak mixing or Weinberg angle 6, is the angle which appears in the change of
basis of the neutral vector bosons:

!
g Cyw = cosly, = g

/92_+_gl2, g2_+_912.

Sy =sinf,, = (2.28)
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In terms of the mass eigenstate fields (2.27) the SU(2), x U(1)y part of the covariant
derivative (2.17) becomes

. g - . g .
D,=0,+ Zﬁ (WJTJr + W, T ) + zaZu (7'3 - sﬁ,Q) +ieA,Q, (2.29)
where the last term makes explicit the fact that the neutral gauge boson A, still to be
identified with the massless photon field, couples to the electric charge quantum number
Q, which generates precisely the symmetry operation (2.25). Consequently, we have
expressed the coupling of the vector field A, through the electrical charge e:

!
e=—99 (2.30)

Voi+g?

In order to formulate a perturbation theory for u? < 0 we have to expand the La-
grangian (2.21) about the classical ground state (2.24). Let us therefore decompose the
complex scalar doublet as

¢ = (% (v f;+z’><)> ’ (231)

where ¢T is a charged and H, x are neutral scalar fields with vanishing VEV. It is now
straightforward to rewrite the Lagrangian (2.21) in terms of mass eigenstates and physical
parameters. We get

L= 10 (204 07) 4 LH + (8,67)(007) + 5@, H) + £ (0,2)(00)

t _ 1 1 1 B 1
+; <¢+¢ +§H2+§X2> _ §M§H2+MV2VW:W “+§M§ZMZ“ (2.32)

+iMy (WO e™ — W, 0"¢") — M, Z,0"x + ...,

where ¢~ = (¢7)* and terms cubic and quartic in the fields have been omitted. The
original SU(2);, x U(1)y symmetry is no longer apparent. Its only manifestation is in the
relations among the coefficients in Eq. (2.32), which depend in a special way on only two
parameters.

The first term in Eq. (2.32) causes a shift of the vacuum energy, which is unobservable
in elementary particle physics experiments® since it does not contribute to the physical
scattering or S-matrix elements. The term linear in H is proportional to the tadpole ¢
defined by

t=uv(p®— M%), (2.33)

which vanishes at the classical level due to the choice of v. In the GWS theory, however,
no symmetry forbids the appearance of a non-vanishing one-point amplitude of the H field
at the loop level. This amplitude produces a non-zero VEV of H and so shifts (¢). Such a
shift is quite acceptable, as long as it is finite after counterterms are properly added into
the computation of the amplitude. However, as we will point out in Section 2.4, it will be
convenient to require that the one-point amputated renormalized Green’s function of H
is zero to all orders in perturbation theory. Then the masses of the fields ¢, H and y

SHowever, there is a way that the absolute vacuum energy could potentially be observed through the
coupling of the vacuum energy to gravity.
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will differ from the result of the classical equations by terms of order ¢/v as indicated by
Eq. (2.32).

The tree level masses of the scalar particle H, called the Higgs boson, and of the
electroweak vector bosons W+ and Z are given by

A
MH = \/;Ua MW = g%a MZ = 92 +g,2§7 (234)

while the fourth vector boson A remains massless and thus will be identified with the
photon, having the correct coupling to fermions proportional to e. The fields ¢* and Yy,
the so-called would-be Goldstone bosons, are unphysical degrees of freedom, as we will
see in a moment, and remain massless at tree level. In fact, the appearance of massless
particles is a general consequence of the spontaneous breaking of a continuous symmetry,
known as Goldstone’s theorem [74,75]. These scalar particles have the quantum numbers
of the symmetry currents, and therefore might appear as intermediate states in the vacuum
polarization amplitude of the electroweak gauge bosons. To compute the contribution of
the would-be Goldstone bosons to the gauge boson propagators, we need the vertices
that mix the massless with the massive modes. These come from the third line of the
Lagrangian given in Eq.(2.32). We see that the amplitude for a W+ and Z boson to
convert into a ¢* and y is

WE ¢t Zy X
ANEBNO— — - — — —= :*:ZMWI{;M, —————— — _MZI{;;L' (235)
k k

If we also treat the W= boson mass term of Eq. (2.32) as a vertex in perturbation theory,
then the leading-order contributions to the vacuum polarization amplitude of the W=*
boson gives the expression

= iM2 g™ + (iMy k") % (

| T
= Z]\4I?V (g“ - 2 > )

which implies that the would-be Goldstone boson ¢* supplies exactly the right contribu-
tion to make the vacuum polarization amplitude of the W* boson properly transverse.
Obviously, the same reasoning holds also in the case of the Z boson.

+ ANE — — NN

iMy k) (2.36)

Although the would-be Goldstone bosons play an important formal role in the theory,
they do not appear as independent physical particles. The easiest way to see this is to make
a particular choice of gauge, called the unitary gauge. Using the local SU(2); x U(1)y
gauge symmetry (2.13), we can choose

: |
WE > Wt MLauqsi, Zy = Zu— <0, (2.37)
w

Z
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which corresponds to the following phase rotation of the scalar field

b — % <v EH> _ (2.38)

By virtue of our choice of gauge, the would-be Goldstone degrees of freedom have been
removed from the Lagrangian (2.32) and the unitarity of the physical S-matrix is man-
ifest [76-80]. However, we might argue that the would-be Goldstone bosons have not
completely disappeared. Before spontaneous symmetry breaking the theory had twelve
degrees of freedom: A complex scalar field ¢ with four degrees of freedom, three massless
SU(2) 1, gauge fields with two physical polarization states each and a massless U(1)y vec-
tor field with two helicity states. After spontaneous symmetry breaking, we are left with a
physical real scalar field H with one degree of freedom, massive W= and Z fields with two
transversal and one longitudinal polarization state each and a massless photon field with
two transversal helicity states. So the total number of physical degrees of freedom has not
changed. Figuratively one says that the gauge bosons acquired their extra degree of free-
dom by eating the would-be Goldstone bosons. Likewise, we see that the disappearance
of unwanted massless scalars and the acquisition of mass by the gauge bosons are coupled
phenomena. In Section 2.3 we will clarify this picture by studying the quantization and
gauge fixing of the SM.

Yukawa Sector

We began the last subsection by assuming that a scalar field ¢ acquires a VEV in order
to give mass to the W* and Z bosons. This scalar field needed to be a spinor under
SU(2)r, and to have weak-hypercharge Y = +1/2 in order to produce the correct pattern
of symmetry breaking. To allow for Yukawa interactions of both up- and down-type
right-handed quark fields we need in addition a scalar doublet with weak-hypercharge

Y = —1/2. In the minimal SM we may use the complex-conjugate of the scalar doublet
given by

~ L H —

¢ = 2ir’¢* = <\/§ (v :ﬁ_ ZX)) . (2.39)

When we couple gauge fields to the fermions, we replace the ordinary derivatives
with the covariant derivatives. In the GWS theory, we use this technique to insure that
only left-handed components of the lepton and quark fields couple to the W¥ bosons.
Once we have specified the third component of the weak-isospin for each fermion field, its
weak-hypercharge must be chosen in such a way that the correct electric charge results
from the Gell-Mann-Nishijima formula (2.26). This automatically gives all leptons and
quarks of the same type the same coupling to the electroweak interactions and all of the
quarks the same coupling to the strong interactions. It does not allow mixing between
the various lepton and quark flavors. However, the coupling of the scalar field to the
fermions does not follow from a gauge principle. Accordingly, we may write down the
most general renormalizable gauge-invariant Lagrangian linking the fermionic fields with
the scalar doublets:

3
Ly ==Y (VLo + g Qiou) + yi Qiodi, + . (2.40)

ij=1
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Type Spin Field Multiplet
(1,1,0)
(1,3,0)
(8, 1, 0)
(1,2,-1/2)

i (3 2 +1/6)
(1,
(
(
(1,

Vector 1 W,

Spinor 1/2 et 1,1,-1)
3,1,+2/3)

3,1,-1/3)
2,+1/2)

1
Upg

I
Scalar 0 )

Table 2.1: The field content of the minimal SM. Each multiplet is listed according to its
color, weak-isospin and weak-hypercharge assignment.

where the Yukawa couplings ., v, and y) are general complex valued matrices, that
neither have to be symmetric nor hermitian. Notice that, in contrast to explicit mass
terms, the Yukawa interactions are invariant under SU(2); and have zero total weak-
hypercharge, as can be seen from Tab. 2.1.

As mentioned above, the fermionic part of the Lagrangian (2.18) is invariant under
the global U(3)g x U(3)g X U(3)e x U(3)y x U(3)q symmetry. In order to diagonalize
the Yukawa matrices we may exploit this symmetry. Let us therefore make the following
change of variables in the sector of the left-handed fermion fields

3
Ef = Y ULE], Q- ZU;’L 7. (2.41)
j=1 j=1

The analogous transformations on the right-handed chiral fields read

3
" ZUl ey A ZU“RuR, dfy = > Udpdy. (2.42)
i=1
Here U, 1, Uy 1, Uer, U, r and Uy r are unitary matrices belonging to the associated
symmetry group. In consequence, the Yukawa matrices transform according to

Ye = Ue LyeUlRa Yu = Uy LyuUJ R Ya = Uu,Ly(Iini-,R ' (243)

These relations imply that it is possible to diagonalize simultaneously either y. and y,, or
y. and ¥y, by a suitable choice of the chiral transformations (2.41) and (2.42). Without loss
of generality, let us assume that we have performed the unitary rotations of the fermionic
fields in such a way that the first possibility is realized. Then the transform of the Yukawa
coupling v/, is, in general, neither real nor diagonal. Instead we can write

VDy = UsryyUl g, (2.44)
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where Dy = Ud,Ly&U;’R is diagonal, real and non-negative, and
V=U,.Uj, (2.45)

is the so-called Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [81, 82], which is
unitary by construction.

Because of the possibility of rephasing the fermionic fields we may diagonalize the
Yukawa couplings by choosing a new basis for the leptons and quarks. This basis is the
physical one, since it is the basis which diagonalize the mass matrices. Therefore it is
called mass eigenstate basis. From Eqs. (2.41), (2.42), (2.44) and (2.45) we read off that
the weak and the mass eigenstates of the fermion fields are related by the following unitary
transformations:

3 3
i ij o1 i ij 1 ij i ij i
vy, = § :Ue,LVL €L = § :Ue,LeLv UL = E U, LuL7 dy, = E :Ud,LdL’
; ; e
3 3 3
P ij 1j i i g ij 31
eR_E:Ue,ReRﬂ uR_E:UuRuR? R_E:Ud,RdR'

=1 j=1 j=1

(2.46)

Notice that we are making the same change of variables on the two components of the weak
doublet E’. Accordingly, the resulting theory of leptons conserves the lepton number of
each generation, as we will see in a moment. In contrast, v/ and d7 transform different
under the unitary transformations (2.46) and the misalignment of the matrices U, 1, and
Ua 1, leads to flavor mixing in the quark sector.

In terms of the mass and charge eigenstates (2.46) the Lagrangian describing the
Yukawa interactions (2.40) takes the form

3
SN mifr- > Z—— FLfH = 28 P 1Y)
f=eu,d i=1 f=v,eu,d i=1

i

3 )
e m,, i i i m i i
2 {— (Vi 6+ + Vidiuho™) = T2 (Vi diud™ + Viidur 6 )]
w

ij—1 V2sy | My
3 i
6 me Z VA
- Z V25 My (7™ + Eprpo7) (2.47)
; w

where the masses of the charged leptons, up- and down-type quarks are related to the
diagonal elements of the Yukawa couplings in the fermion mass eigenstate basis by

[ i1 7

.. . v ..

m, = ﬁDe , m, = ﬂfo, my = EDQ. (2.48)
The matrices D,, D, and D, are diagonal, by definition, and have real and non-negative
eigenvalues, as indicated by Eqs. (2.43) and (2.44). It is interesting to note that in the
minimal version of the SM neutrinos have zero Dirac masses due to the fact that no
right-handed neutrino fields have been introduced in Eq. (2.16). Since neutrinos have
zero electric charge one could think that neutrinos can acquire Majorana mass terms
of the form v"C~'vt where C' is the charge conjugation matrix. This however cannot
happen, as such terms would transform as triplets under SU(2);. Hence, in the absence

v S
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of scalar triplets they cannot be generated by renormalizable Yukawa interactions at tree
level. In addition, no Majorana neutrino masses are induced either by perturbative or
non-perturbative loop corrections, because they would violate the global B — L symmetry
of the SM, to be discussed in the next subsection. It follows that the minimal SM predicts
that neutrinos are precisely massless.

On the contrary, recent experiments of various features of the fluxes of atmospheric
and solar neutrinos have provided strong evidence for neutrino oscillations [54-65], and
thus for neutrino masses and mixing. That means that the minimal SM cannot be a
complete description of nature. Indeed, the SM prediction of massless neutrinos is an
accidental fact: Unlike photons, no profound principle protects them from having a mass
and right-handed neutrino fields can be easily added to the minimal SM without affecting
its basic structure. If right-handed neutrinos are introduced, then quark-lepton symmetry
is reestablished, and the most general renormalizable and SU(2),, x U(1)y invariant La-
grangian includes Yukawa interactions which generate neutrino masses upon spontaneous
symmetry breaking. The inclusion of right-handed neutrinos, however, does not explain
the smallness of neutrino masses even though it can accommodate it. Fortunately, modern
elementary particle theories, the best-known examples being SO(10) grand unified the-
ory [83-85] and left-right symmetry [86,87], anticipate ways in which the neutrinos have
small, but definitely non-vanishing masses. In fact, there are good theoretical reasons, to
go by the name of the see-saw mechanism [83-85], to expect that neutrinos are massive
but much lighter than all the charged fermions of the SM. Specifically, it is very likely
that neutrino masses are inversely proportional to the scale of new physics. Consequently,
if neutrino masses are measured, one can estimate the relevant new scales and gain some
insight into physics beyond the SM.

In order to extract the physical content of the minimal SM in the spontaneous broken
form, let us also rewrite the fermion gauge boson interactions (2.18) in terms of the
physical fields (2.27) and (2.46), and parameters. We obtain
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where T}% and @ are the third component of the weak-isospin and the charge of the
fermion f*, respectively. Owing to the their unitarity, the rotation matrices introduced in
Eq. (2.46) drop out of the interaction terms between fermions and neutral gauge bosons.
It follows that there are no flavor changing neutral currents (FCNCs) at the tree level in
the SM. This is known as the Glashow-Iliopoulus-Maiani (GIM) mechanism [50]. Even at
the loop level, where the FCNCs are induced, the GIM mechanism guarantees that such
processes are suppressed by at most a factor of m2/M, / 2, which is very small, expect in
the case of the t-quark. GIM suppression therefore 1mp11es predictions for several physical
processes very close to zero and an observation of any of these would provide a clear signal
of non-standard physics.
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As a result of the fact that the CKM matrix is not diagonal in general, the W=+ gauge
bosons couple to the quark mass eigenstates of different generations, as can be observed
by inspection of Eq.(2.49). Apart from the quark-would-be Goldstone interactions of
Eq. (2.47), which can be eliminated by transition to the unitary gauge (2.37) and (2.38),
this is the only source of flavor changing quark interactions within the SM. No such
interactions take place in the lepton sector, since the charged current interactions preserve
their form under the chiral transformations (2.46). Thus there are no flavor changing
lepton interactions in the SM. However, keep in mind that if neutrinos are massive, as
indicated by the recent observation of neutrino oscillations, this will no longer be the case,
since then we are not allowed to transform v/} and e/ by using the same unitary matrix
Ue,r. Correspondingly, this will give rise to a non-trivial mixing matrix for leptons, whose
actual form depends on whether neutrinos are Dirac or Majorana particles [88-90].

Since we have rewritten the most important parts of the classical Lagrangian of the
minimal SM in terms of physical fields, that is the mass and charge eigenstates W s Ly

4 f% and H, the would-be Goldstone fields ¢* and x, and the physical parameters
e, MW, M, mf, My, and V| it is suggestive do the same for the infinitesimal gauge
transformations given in Egs. (2.13), (2.19) and (2.22). We find
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where

6 = S—\/Wi (0" Fi0?), 0% =spew (0°—0Y), 0 =200+ 20, (251)

Symmetries of the Standard Model

In addition to continuous Lorentz transformations, there are two other spacetime opera-
tions that are potential symmetries of any quantum field theory: Parity and time reversal.
Parity, denoted by P, sends (¢,%) — (t,—%), reversing the handedness of space. Time
reversal, denoted by T, sends (¢, %) — (—t, &), interchanging the forward and backward
light-cone. Recall that the full Lorentz group possesses four disconnected parts: The
proper, orthochronous Lorentz group to which the continuous Lorentz transformations
belong, the improper, orthochronous part which is connected with the first subset by
parity transformation P, the proper, non-orthochronous group which is generated by the
time reversal operation T and the improper, non-orthochronous transformations which
contains the combined PT transformation. It follows that neither the P nor the T oper-
ation can be achieved by a continuous Lorentz transformation starting from the identity.
At the same time that we review P and T, it will be convenient to discuss a third non-
spacetime symmetry: Charge conjugation, denoted by C. Under this operation, particles
and antiparticles are interchanged.

In quantum field theory the transformations P, T and C are represented by the op-
erators P, T and C, respectively. First let us consider parity. The operator P should
reverse the momentum of a particle without flipping its spin. Consequently, it may be
implemented by an unitary operator, that is, P = P~'. In order to derive the trans-
formation properties of the different types of quantum fields one should remember that
each field may be written as a linear combination of creation and annihilation operators
for particles and antiparticles. Exploiting this idea we find the following transformation
rules of the various quantum fields

n
Pf(ta f)Pil = nPPf(ta _f) ) (252)
n

where V,, f and S denotes a generic Lie algebra valued vector, spinor and complex
scalar field, respectively. P denotes a non-singular matrix such that Py*P~! = 4#f and
P = P' = P~'. In the usual representations of the homogeneous Lorentz group, that is
the Dirac-Pauli, Weyl and Majorana representation, it can be expressed as P = +°. The
phase factor® np parameterizes the arbitrariness in the definition of P. It is related to
the internal symmetries of the Lagrangian. The simplest internal symmetry corresponds
to the possibility of changing the phase of each individual quantum field. More generally,
whenever there are various quantum fields with the same quantum numbers, there might
be an internal symmetry which mixes those fields. However, an operator P which mixes
some fields occupying an equivalent position in the Lagrangian is just as good a represen-
tation of parity as an operator P which does not mix them, and thus leads to a physical

6Notice that the phase factor associated with different fields need not be the same. For the sake of
simplicity we have omitted this dependence in Egs. (2.52), (2.53) and (2.54).
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equivalent Lagrangian. This is the origin of the large degree of freedom in the definition
of P, and analogously also of 7 and C.

The implementation of the time reversal symmetry in a quantum mechanical context
is more subtle. This is because the relevant operator 7, is not unitary but rather antiu-
nitary, that is, 7T = 7" with (¢|T|p) = (T¢|p)*, where 1) and |¢) denote arbitrary
multiparticle quantum states. A straightforward way to realize that the operator 7 must
be antiunitary is to consider the behavior of the Schrodinger equation for a free particle
under time reversal. In classical mechanic, a free particle has a time reversal invariant
motion, and it is reasonable that we would like to retain this property in quantum me-
chanics as well. But the operator 0/0t is T-odd while V is T-even. This is impossible
to reconcile with the Schrodinger equation unless 7 changes ¢ — —i and ¢ — ¥*. The
operator 7 therefore has to be antiunitary. Note that the antiunitarity of 7 implies that
it does not have meaningful eigenvalues, contrary to what happens with P and C. As
there is no quantum number associated with 7, no conservation law exists when there is
T invariance. Just as for parity, we define the time reversal transformation in quantum
field theory by the action of 7 on the annihilation operators of particles and antiparticles.
In addition to reversing the momentum of a particle, 7 should flip the spin. Applying
this notion to the diverse quantum fields, we see that

Tvﬂ(ta f)Til = nTV#(_ta f) )
TS, )T ' =nrS(—t, 7).

Here T denotes a unitary matrix satisfying Tvy*T ' = g"*y** and T = Tt = T, where
g is the usual Minkowski metric tensor given by g¢,, = ¢"” = diag(l,—1,—1,—1). In
the standard representations T can be written as T = iy'y3. In analogy to the case of
parity, nr denotes an arbitrary phase factor which codifies the freedom in the definition
of T due to internal symmetries.

The last of the three discrete symmetries is the particle-antiparticle symmetry C. Like
the parity transformation P it can be implemented as a unitary linear operator. Charge
conjugation is conventionally defined to take a particle with a given spin orientation into
an antiparticle with the same spin orientation. If in addition we require that the coupling
of the Yang-Mills fields to the charged vector current is invariant under C, we can derive
the transformation properties of the different types of quantum fields. We get

CV, (£, #)C" = —neVT (1, 7),
CS(t, i’)C_1 = nCST(t, 7),

where (' is the charge conjugation matrix which obeys C~!'v*C' = —v#T and C = —C' =
—C~! = —C". For the simplest representations of the Dirac algebra it is given by
C = iv?9°. Again n¢ is an arbitrary phase factor.

Any of the discrete symmetries P, T, or C, or any combination thereof, may be violated
in the framework of quantum field theory. There is, however, a strong theoretical believe
that the combined CPT transformation, which simultaneously performs a reflection rel-
ative to all axis of spacetime, and interchanges particles and antiparticles, is a perfect

symmetry of nature. This believe is based on the so-called CPT theorem [91-96] which,
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starting from very general properties of quantum field theory, in particular, Poincaré in-
variance and local commutation and anticommutation relations obeying the spin-statistic
connection, asserts that any such theory is CPT invariant. Because of this theorem, it is
very difficult to conceive a realistic, sensible relativistic quantum theory in which CPT
is violated. However, as CPT invariance implies that particles and antiparticles have
equal masses and total decay widths, the assumption that nature is CPT invariant can be
experimentally tested. Down to the present day numerous experiments have confirmed
the supposition of CPT invariance [2], including in particular high-precision tests using
neutral-kaon interferometry [97-99]. The simultaneous existence of a general theoreti-
cal proof of CPT invariance in particle physics and accurate experimental tests makes
CPT violation, however, an attractive candidate signature for non-particle physics such
as string theory.”

Let us now investigate the properties of the complete classical Lagrangian of the SM.
The couplings of the QCD gauge bosons are invariant to each of the discrete symmetries
separately. Strictly speaking, however, the prove of the invariance of the Lagrangian of
QCD is not sufficient to obtain invariance of the strong interactions. This is due to the
fact, that QCD has a non-trivial vacuum structure which gives rise to both P and T
violation in general. For the rest of this thesis, however, we shall neglect this awkward
strong CP problem [106-108], and assume that the vacuum of QCD is invariant under
the discrete transformations.

The interactions of the SU(2), gauge bosons violate P and C in the strongest possible
way, since these transformations flip the chirality of the fermionic fields. For example,
using Eqgs. (2.52) and (2.54) it is straightforward to derive that the couplings of the W+
to the up- and down-type quarks transform under P and C as follows

Vi 'y Wik + VEdi i, W s Vg dig W, + Vidiy uhy W,

2.55

Vijul oy dy Wk + Vi yiul W s Vidiy uG Wy + Vi dy Wi (2:59)
where the corresponding phase factors np and 7c have been dropped. Clearly, each
of these operations converts a left-handed current that couples to the W to one that
does not, and thus P and C are broken badly. However, the combination of these two
operations interchanges left-handed particles with right-handed antiparticles, and naively
one could guess that CP is an exact symmetry of the SM. Let us investigate this point more
accurate. After diagonalization of the fermion mass matrices, the CP violating Yukawa
couplings to the scalar particle (2.40) disappear. Then, apart from the quark would-be
Goldstone interactions of Eq. (2.47), the only potential CP violating terms occur in the
couplings of the charged current to the W= bosons. Combining Eqgs. (2.55) we see that
these interactions transform under CP as follows:

Vit " dy Wit + Vid v, W, S5 Vial i Wi+ Vidoy W, (2.56)

For CP invariance of the charged current couplings, we require that the left-hand side
of Eq.(2.56) should equal its right-hand side. Neglecting arbitrary phase factors the

"Since the critical string dimensionality is larger than four, it is plausible that higher dimensional
Lorentz breaking would be incorporated in a realistic model. In fact, a mechanism is known in string
theory that can cause spontaneous CPT violation [100,101] with accompanying partial Lorentz symmetry
breaking [102-105].
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condition for CP invariance therefore becomes

Vi =V

17

(2.57)

or, in other words, the CKM mixing matrix must be real to guarantee that CP is conserved.
The same condition would follow if, instead of the charged current couplings we would
have imposed CP invariance on the quark would-be Goldstone interactions of Eq. (2.47).
Notice that, if one considers a single matrix element of V|, Eq. (2.57) can always be made to
hold by adjusting the phases of the quark fields. However, if one simultaneously considers
all elements of the CKM mixing matrix, one realizes that Eq. (2.57) forces all rephasing
invariant functions of V' to be real. We shall see later on that in general there is CP
violation in the SM if and only if any of the rephasing invariant functions of the CKM
mixing matrix is not real.

This illuminates why CP violation is related to complex phases in the couplings, and
immediately raises the question how many CP violating parameters there are in the SM.
The unitarity of the CKM mixing matrix expresses the universality of the weak interac-
tions in the quark sector. Being a general unitary Ng X Ng matrix for Ng generations, V'
depends on NZ parameters: Ng(Ng —1)/2 that are real and CP conserving, and another
Na(Ng + 1)/2 that are imaginary and CP violating. Not all of them, however, do have
physical meaning. In fact, one has the freedom to perform a change of variables on the
quark fields _ _

ul — vl di — e*ud’ (2.58)
with Ng arbitrary phases ¢! and Ng arbitrary phases ¢%. Under Eq.(2.58) the CKM
mixing matrix transforms as .

Vi, = ey (2.59)
Since a common rephasing of all quark fields has no effect on V', one may thus eliminate

the phases of 2Ng — 1 matrix elements of the CKM mixing matrix. Therefore, out of the
(Ng — 1)? parameters of V

1
Ny = §NG (Ng — 1), (2.60)
should be identified with Euler-type rotation angles. The remaining
1
Ns = 3 (Ng —1)(Ng —2) , (2.61)

parameters of V' are physical phases causing CP violation. Consequently, in the case of
two generations there is only one rotation angle and V' takes the form of the Cabibbo
matrix [81]. For three fermion families, the quark mixing matrix can be parameterized
by three rotation angles and one complex phase, as was first pointed out by Kobayashi
and Maskawa [82]. Clearly, this phase leading to an imaginary part of the CKM matrix
is a necessary ingredient to describe CP violation within the minimal SM.

We saw that CP non-conservation in the CKM formalism is associated with imaginary
parts of elements of the quark mixing matrix. This condition tells us for what we should
look for in order to see whether CP is conserved or not, but it does not tell us anything
about the size of CP violation in the SM. In particular, it does not provide a framework
to answer the question if maximal CP non-conservation is realized in nature or not. In
order to answer this question one must first provide an adequate measure of CP violation.
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The derivation of such a quantity starts with recalling the lesson learned from classical
quantum mechanics, that observables are represented by hermitian operators and their
commutators give a measure of their compatibility, that is, whether the observables can
be measured simultaneously or not. Although the non-diagonal quark mass matrices m,,
and m/!, are not necessarily hermitian, they may be used to form hermitian operators,
namely®

H,=m\m!f, — Hy=m\m]. (2.62)

They are, as usual, diagonalized by U, ; and Uy, r,, respectively:

Uy HUS = m?

u

Ud,LHdU;,L = mfl, (263)

where m,, and my denote the physical mass matrices introduced in Eq. (2.48). Notice that
the hermitian and traceless matrices H, and Hy are only partial observables. Only their
eigenvalues and their relative orientation, that is, the quantity V', are measurable. Never-
theless, their commutator is a measure whether they can be diagonalized simultaneously
or not. We shall see in a moment that this commutator plays an important role in testing
CP invariance.

The squares of the mass matrices H, and H,; dictate the flavor structure of the SM.
However, it is important to keep in mind that these are by no means unique. The reason
is that the measurable quantities are not affected if H, and H; are both rotated with the
same unitary matrix:

H, - UHU,,  H;— UHU,. (2.64)

Such a rotation leaves the eigenvalues as well as the quark mixing matrix V' invariant. The
above unitary rotation corresponds to choosing a particular basis or frame of reference in
flavor space. Since measurable quantities cannot depend on the choice of the coordinate
frame they must be invariants under the symmetry transformation (2.64).

The essential point is now, that one can prove [109], that the Lagrangian of the SM
is CP invariant if and only if the matrices H, and H, are such that a unitary matrix Uy,
exists which satisfies:

UlHU,=H', UlHU,=H;. (2.65)

It is clear that although Eq. (2.65) constitutes a necessary and sufficient condition for CP
invariance, it is of little practical use in that form. If one attempts to evaluate invariants
of both sides of Eq. (2.65), one obviously obtains trivial identities. In order to derive non-
trivial conditions on H, and Hy, we note that the trace of any product of matrices H, and
H, is invariant under unitary transformations of the left-handed quark fields. Therefore
Eq. (2.65) implies

Imtr[HP*HYHP? ... HY] =0, (2.66)

where py,...,p; is an arbitrary sequence of positive integers. These are the necessary
and sufficient conditions for CP invariance which we were looking for. They are valid
for an arbitrary number of families and the violation of any one of them guarantees the
existence of CP non-conservation [110]. At this stage, it is worthwhile emphasizing that

8Notice that the combinations m/fm!, and m'dTm’d are also hermitian. However, it is easy to show that
the commutator of these operators does not provide a sensible measure of CP violation, because it is
connected to the right-handed analogue of V' which is unobservable in the SM.
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the conditions (2.66) are independent of the particular basis which one chooses to write
the matrices H, and Hy. In other words, if one finds a solution of Eq. (2.66) in one basis,
then there will be a solution in any other basis. However, in practice one is interested in
finding a minimal subset of these necessary and sufficient conditions. In the case of the
SM with three families for instance, it has been shown [109-111], that there is only one
such condition necessary and sufficient for CP conservation:

Tm tr [H>H,H,H| = —% tr [H,, H* = —% det [H,, Hy = 0. (2.67)

The commutator [H,, Hy is, by definition, hermitian and traceless. Thus its eigenvalues
are real. In fact, they are measurable, even though the commutator itself is not a observ-
able. Using the definition of the CKM mixing matrix (2.45) and the relations (2.63) we
have

[H,, Hy = U} [m2, Vm2Vi U, . (2.68)

Hence, the eigenvalues of [H,, H;] are calculable in terms of the quark masses and the
elements of the quark mixing matrix. Making repeated use of the unitarity of V' one
finally obtains

det [Hy, Hy) = —2iAm2Am3J, (2.69)

where

2 _ (2 2 2 2 2 2
Am? = (m; —m?2) (m; —m) (mZ —m’) ,

(2.70)

Am? = (mg — mg) (mz — mz) (m? — md) )
Here m; denotes the mass of the quark of type ¢ and the quantity J, which is often referred
to as the Jarlskog invariant, can be expressed in terms of the simplest non-real rephasing

invariant functions of the CKM mixing matrix [111-114]. The exact formula reads

3
J=Y" €meinIm (VigVuVi Vi) (2.71)

m,n=1

for all combinations 7, j, k and [. One concludes that, in order to have CP violation in the
minimal SM with three generations, no two quarks with the same charge are allowed to
be degenerate in mass, and in addition .J must be different from zero. Thus the relation
Eq. (2.67) has the remarkable feature, that it unifies six conditions on the masses of the
quarks and eight conditions on the angles and the phases of the quark mixing matrix,
for a total of fourteen necessary and sufficient conditions for CP conservation. Ignoring
the strong CP problem, any CP violating observable in the SM with three generations
is proportional to the factors introduced in Egs.(2.70) and (2.71). Hence, the SM is
very predictive in describing CP violating effects. In practice, however, strong interaction
effects have to be controlled before such calculations can be performed.

We have seen that chiral phase invariance is broken in the minimal SM explicitly by the
quark mass matrices. Consequently, all the fermion flavor charges are no longer generally
conserved. However, within the minimal SM the following accidental global symmetry
arises’

Ul)g xU(1)e x U(1), x U(1),, (2.72)
Tt often happens that, as a consequence of the symmetries that define a model and of its particle

content, all renormalizable terms in the Lagrangian obey additional symmetries, that are not a priori
imposed on the model itself. These are called accidental symmetries.
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Here U(1)p is the baryon number symmetry, and U(1),, U(1), and U(1), are the three
lepton flavor symmetries, with the total lepton number given by L = L, + L, + L,.
It is easy to see that the total number of quarks minus antiquarks is conserved in the
SM at tree level, due to the exact color invariance. The covariant derivative (2.17) and
the colorless scalar field (2.20) must therefore connect quark fields of compensating color
representations. Thus all terms in the SM Lagrangian create and annihilate equally many
quarks. A priori this gives baryon number conservation, but the baryon number current
has an anomaly [115-119], due to its electroweak interactions. In the vacuum sector this
phenomenon is associated with instantons [120], describing tunneling transitions between
topologically distinct vacua. In the weakly coupled theories the probabilities of these
transitions are exponentially suppressed. In particular, the corresponding suppression
factor in the standard electroweak theory is exp(—1672/¢?), as was first pointed out by
't Hooft [121,122]. The predicted baryon number violation, at temperatures much lower
than the electroweak breaking scale v, is therefore unobservable. Similarly, it is easy to see
that there is a lepton conservation law for each of the fermion generation by inspecting the
Yukawa couplings (2.47) and the fermion gauge boson interactions (2.49). Again, there
is an anomaly in each of the lepton number currents. Due to the enormous suppression
factor for SU(2), gauge field instantons, however, there is in practice no violation of any
of the lepton number conservation laws. Finally, let us note that, it is even possible to
construct anomaly free conservation laws by taking differences in which the anomalies
cancel out. In fact, the lepton number differences L, — L, and L, — L, are exactly
conserved. Furthermore B — L is a conserved quantity, even with anomalies taken into
account.

2.3 Quantization of the Standard Model

The perturbative construction of Green’s functions and finally the S-matrix starts with the
specification of the free fields and their respective propagators. In the SM the scalars ¢*
and x are unphysical degrees of freedom being absorbed into the longitudinal polarization
of the massive vector fields W* and Z. Eliminating them by transition to the unitary
gauge according to Egs. (2.37) and (2.38), however, leads to propagators with a bad
ultraviolet (UV) behavior, and renormalizability by power counting is not evident any
more. However, this special gauge can be continously transformed into a renormalizable
or R¢ gauge [76,78] in such a way that in all intermediate gauges the theory is well-defined.
Then, the gauge independence of the S-matrix ensures that the theory is unitary also in
the R¢ gauges [79]. Accordingly, a systematic treatment of higher orders can be performed
most convenient in this class of gauges. If one constructs the off-shell Green’s functions
in the ¢ gauges, one is then able to refer to power counting properties of renormalized
perturbation theory and, especially, to the quantum action principle [123-127].

The free field propagators are calculated from the bilinear parts of the gauge-invariant
classical Lagrangian and the gauge-fixing part. For the purpose of this thesis we choose
the following linearized generalization of the usual R, gauges:

1 1 1 1
Lop=——FF — —F/F? - —__FAFA - __FoF°, 2.73
T e, 26, 2, 2, (2.73)

The gauge-fixing functions of the R, gauges fix the scalar part of the vector fields and
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introduce mass terms for the would-be Goldstone fields ¢* and y. We use

F* =9, W* FiMy o™,
F? =0,2" — M,(,x,
F4=09,A",

F* = 0,G™"

(2.74)

allowing two different bare gauge parameters for both W* and Z bosons, &, and (.,
and also one independent gauge parameter for the photon and gluon field, £, and &;.
Various choices of the gauge parameters have special names: The Landau gauge has
¢w =& =&, =& = 0 and ( = ( = 0, the 't Hooft gauges have &, = (, and
¢, = (4, and the 't Hooft-Feynman gauge has in addition &, =&, =&, =& = 1. As we
will see in a moment, the 't Hooft Feynman gauge is particularly simple, since at lowest
order the poles of the unphysical scalar fields and the longitudinal gauge fields coincide
with the poles of the corresponding transverse gauge fields. Furthermore, no tree level
mixing between the gauge bosons and the corresponding unphysical scalars occurs. Notice
that the latter property holds also in the ’t Hooft gauges, as can easily be observed by
inspection of Eqgs. (2.32), (2.73) and (2.74).

All the propagators now behave such that naive power counting is possible. In the ’t
Hooft gauges one finds for example for the W* gauge boson propagator:

Wi

v = =t g — (1 — &) _ KR ) (2.75)
2 k? — M2 k? — & M2,

Notice that the transverse parts, which describe the physical degrees of freedom, are
independent of the gauge parameters, whereas the longitudinal parts are gauge-dependent.
Similar expressions apply to the case of the Z boson, the photon and the gluon.

The terms quadratic in the would-be Goldstone fields introduced in Eq. (2.73) generate
mass terms for those fields, so that the corresponding propagators in the 't Hooft gauges
read:

o* i X i
_____ ———— e = — 2.76
. k2 — &, M2’ I k? — &, M (2.76)

The gauge-fixing (2.73) breaks gauge invariance and also its integrated version, the
rigid SU(2);, x U(1)y symmetry'®, which is obtained by taking the infinitesimal trans-
formation parameters of the gauge transformations (2.50) as constants. Therefore the
unphysical fields, the longitudinal parts of the vector and the would-be Goldstone bo-
son fields, interact with the physical fields violating thereby the unitarity of the physical
S-matrix in the tree approximation. In order to cancel these interactions in the phys-
ical S-matrix further fields, the so-called Faddeev-Popov ghosts [128] are needed. The
conventional way for introducing Faddeev-Popov fields into gauge theories does not start

0Tn order not to spoil the group structure of global SU(2);, x U(1)y symmetry, one has to make the
following choices for the gauge-fixing parameters: &y, =&, =&, = € and ( = (; = (.
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from unitarity arguments but from the path integral formulation of quantum field the-
ory. To implement the gauge-fixing program in path integrals one needs a compensating
determinant. This determinant can be rewritten in the form of a path integral over a
set of anticommuting scalar fields with negative norm. These scalar fields violate the
spin-statistic theorem. This is unproblematic, however, as they are unphysical degrees of
freedom which occur in perturbative calculations only inside loops but never as external
fields or particles.

To this end, we introduce the Faddeev-Popov fields u®, a = 4,7, A, a, with ghost
charge +1 and the respective antighosts 4%, o = +, Z, A, a, with ghost charge —1, and
add the following ghost part to the classical Lagrangian:

Lw=— 3 ua%uﬂ __ / iy Y ua(x)(;];;((;))uﬁ(y), (2.77)

a,f=+,7Z,A,a a,f=+,7Z,A,a

where § /567 is the variation of the gauge-fixing terms F'® under the infinitesimal gauge
transformations of the quantum fields. Note that the fields u* and u® are independent of
each other and, in particular, not related by hermitian conjugation. Inserting the gauge-
fixing terms (2.74) and using the gauge transformations (2.13) and (2.50) we find up total
derivatives
Lop = 2" (90, + o M2 ) u™ + i (099, + Gy M) u
€ (2.78)
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€ Js
where the ellipsis denotes cubic terms which couple the ghost fields to the gauge boson
fields and the would-be Goldstone fields. From the bilinear terms of Eq. (2.78) we obtain
the Faddeev-Popov ghost propagators. In the 't Hooft gauges, one finds for example for
the u* and u” propagators

u i u i
--------- . E— S . — 2.79
. k2 — €, M2, ) k2 — €, M2 (2.79)

Notice that the Faddeev-Popov ghost fields u” and u® are massless. The masses of the
other ghosts coincide with those of the scalar gauge bosons and the would-be Goldstone
bosons. This is necessary to allow for the cancellation of the corresponding unphysical
poles in the physical S-matrix elements. The gauge dependence of these masses reflects
the unphysical nature of the associated fields.

For any finite value of the gauge parameters, the gauge boson, the would-be Goldstone
boson and the Faddeev-Popov ghost propagators fall off as 1/k? and thus obey the general
power counting properties. It follows, that in any of these gauges, the perturbation the-
ory will be renormalizable in the sense that the divergences are removed by a finite set of
counterterms. Furthermore, the only counterterms required are those that are symmetric
under the original global symmetry of the theory. However, we should require one fur-
ther condition of our renormalization procedure. We should insist that the counterterms
preserve local gauge invariance, and, in particular, preserve the property that S-matrix
elements and the matrix elements of gauge-invariant operators are gauge-independent.
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This result was proved to all orders in perturbation theory by ’t Hooft and Veltman [129]
and Lee and Zinn-Justin [130-133]. Thus in the gauge defined by any finite value of the
gauge parameters, we can, in principle, straightforwardly compute a physical quantity to
any order in perturbation theory.

By taking the limit ¢, = &2, — oo and (, = &2 — oo of the R¢ gauges, we find a gauge
with very different simplifying features. In this limit the unphysical degrees of freedom,
which have masses proportional to /&, and \/&,, tend to infinity. As a consequence, the
unphysical degrees of freedom decouple and we are left with the theory in the quantum
mechanical realization of the unitary gauge, introduced in Egs. (2.37) and (2.38). It is not
straightforward to prove renormalizability directly in the unitary gauge. In this gauge, the
gauge boson propagators fall off more slowly than 1/k? at large k. This signals trouble
for the evaluation of loop diagrams. Typically, in fact, individual loop diagrams will
diverge as In&,, and In&, or worse as (, = €2, — oo and (, = £2 — oo. Still, the gauge
invariance of the S-matrix implies that these divergences must cancel in the sum of all
diagrams contributing to a given process, so that this sum has a smooth limit as the
gauge parameters approach infinity. There is no difficulty in principle with the fact that
we use one gauge to prove the renormalizability of spontaneously broken gauge theories
and another to prove unitarity. In fact, this method of argumentation makes natural use
of the underlying symmetries of the theory.

After gauge-fixing, the local gauge invariance of the classical Lagrangian is no longer
manifest. However, a new global symmetry of the effective Lagrangian with all the conse-
quences of gauge invariance for the physical observables can be defined by an extension of
the gauge transformations to the Faddeev-Popov ghost fields. These non-linear symmetry
transformations which were first found by Becchi, Rouet, Stora [134,135] and indepen-
dently by Tyutin [136] can be regarded as the quantum version of the classical local gauge
transformations. The invariance of the full quantum Lagrangian under what is nowadays
called BRST transformations is referred to as the BRST symmetry, which is the basic
ingredient in the proof of the unitarity of the physical S-matrix and generally in the con-
struction of gauge-invariant operators. BRST symmetry is in fact a supersymmetry, that
is, its transformations involve parameters that take their values in a Grassmann algebra.
Let A be an infinitesimal constant that anticommutes with the Faddeev-Popov ghosts
and all the fermionic matter fields. Then the transformations for the gauge boson, scalar
and fermion fields are obtained from Egs. (2.13) and (2.50) by the replacement 6* = Au®,
a==+,7,A,a. Using the BRST operator s, defined as the left derivative with respect to
A of the BRST transformed fields, the BRST transformations of the quantum fields read

W2 = Lo L (e ) — (et A
$Z, = —éauuz — 22’?—:; (Wjuf — WJUJF) ;

sA, = —éauu“ —2i (Wu —W,u"),

sG = —iaﬂu“ + f“bCGZuC,

suz = i uZl/i + LUJr@iL,

28w Cw Sw
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Since the classical Lagrangian is gauge-invariant, it is invariant under the BRST trans-
formations by construction. The transformation behavior of the ghost fields in the basis
of mass and charge eigenstates

e N 1
sut = Fi—ut (chZ + sWuA) , sut = ——Fi,
Sw Ew
. Cw _ _ 1
su? =ie—Zutu", su? = —g—FZ,
S
W IZ (2.81)
su? = ieutu, sit = ——F4,
a
1 1
sud = __gsfabcubuc , St = ——F° ,
2 €s

is chosen so that the sum of the gauge-fixing and Faddeev-Popov Lagrangian is also BRST
invariant, although both terms transform non-trivially under the global gauge symmetry.
This once again shows the importance of the Faddeev-Popov ghost fields, which establish
the BRST invariance of the full effective Lagrangian of the minimal SM destroyed by the
inclusion of the gauge-fixing part.

The BRST transformation rules, as given in Egs. (2.80) and (2.81), suffer two draw-
backs. First, the rule for su® depends on F'%, so that the algebra is not defined inde-
pendently of the effective Lagrangian. Second, the algebra does not close unless the field
equation for #® is imposed. To illustrate the second remark, one should verify that s?
annihilates each of the quantum fields. This is straightforward. The algebra closes if s?
annihilates @® as well. But, clearly

2.+ 1 2.7 L oz 2. A L A 2.a |-

s‘ut = ——sFT, su” =——sF”, su"=——sF", su*=——sF*, (2.82)

3% €r €a €s
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are in general all different from zero. The Euler-Lagrange equation corresponding to u® is
sF* = 0. Thus Egs. (2.82) vanish only when the Euler-Lagrange equation for the antighost
fields u® are imposed. Under this conditions, we say that the BRST transformations are
realized on-shell.

We wish to modify our effective theory so that the BRST transformations are realized
off-shell. This can be accomplished by adding new non-dynamical degrees of freedom, in
form of auxiliary fields, the so-called Nakanishi-Lautrup fields [137,138], which play the
role of Lagrange multipliers for the gauge conditions. Specifically, in the minimal SM we
reformulate the gauge-fixing part of the effective Lagrangian (2.73) by introducing the
commuting scalar fields B*, o = +, 7, A, a. Coupling the gauge-fixing operators (2.74)
to these Lagrange multipliers we obtain

Lor = BYF~ + B F* + B’F” + B'F" + B"F*
2.83
+¢éwBTBT + %ZBZBZ + %ABABA + %B“B“ . (2.83)
Because the B® fields appear only in quadratic terms without derivatives, they are aux-
iliary fields without an own dynamic. Upon performing the functional integral over B*
by completing the square one recovers the original Lagrangian (2.73) and the generating
functional. In other words, Eq.(2.83) can be transformed into the usual form of the Ry
gauges (2.73) by eliminating the B® fields via their equations of motions:

B* = —iFi, B% = —iFZ, BA = —iFA, B = —lFa. (2.84)
gW gz SA fs

On first sight the gauge-fixing with the B® fields seems to be less practical than the R
gauges (2.73), since one introduces extra non-diagonal propagators between B® fields and
vector fields, and B® fields and scalar fields into the theory. But, as we will discuss in
a moment, in this formulation the BRST transformations are independent of the gauge-
fixing terms (2.74) and strictly nilpotent on all fields. Thus both drawbacks described
above are cured by retaining the auxiliary fields B® in Eq.(2.83). Let us already note
at this stage, that in the linear B® gauges (2.83) the gauge-fixing part of the Lagrangian
does not get loop corrections and remains a local field polynomial as in the classical
approximation. This observation is simply deduced from the observation that there are
no interaction vertices of the B® fields with other propagating fields.

Clearly, in order to guarantee the BRST invariance of the full effective Lagrangian
it is necessary to extend the BRST transformations to the auxiliary fields B®. The
modified BRST transformations are given by Egs. (2.80) and (2.81) with the antighost
transformations replaced by

sut = BE, su? = B?, sﬂA:BA, su® = B*,

2.85
sB* =0, sB” =0, sBA =0, sB*=0. ( )

These rules represent an improvement over the original formulation of the R, gauges,
since they are defined independently of the gauge-fixing operators (2.74). Furthermore,
having written the gauge-fixing with the help of the auxiliary fields B®, the modified
BRST transformations (2.80) and (2.81) close, since

s =0, (2.86)
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on each of the quantum fields. This is easily verified. The condition (2.86) tells us that
the BRST operator s is nilpotent. In this case the BRST transformations are said to be
realized off-shell.

The ghost part of the full effective theory is likewise determined from the requirement
that the sum of the gauge-fixing and the Faddeev-Popov Lagrangian has to be invariant
under the modified BRST transformations (2.80) and (2.85). One easily obtains

EFP = — Z u*sF* y (287)

a=+,Z,A,a

valid for arbitrary choices of F'®. In this connection, it is also very important to note
that the gauge-fixing and the Faddeev-Popov Lagrangian in the B* gauges (2.83) can be
added up into such a remarkable form as

Lcr + Lrp = s <a+F+ +a F~+a’F” +a'F* + a*F°
(2.88)
(ovgrpe Sy Srgrpzy Sagapa éaaBa> :
2 2 2 2 2
This shows that, in spite of the drastic changes of the theory due to the introduction
of Faddeev-Popov ghosts, the difference between the original Lagrangian and the total
quantum one, is just a BRST variation. Thus the BRST invariance of the full effective La-
grangian is a natural consequence of the local gauge invariance of the original Lagrangian
as well as of the nilpotency of the BRST transformations (2.86).

According to the Noether theorem, the invariance of the effective Lagrangian under
the global BRST transformations (2.80) and (2.85) implies the existence of a conserved
current. The integral of the time component of this current will be a conserved charge
(X which acts on a generic field ¢) by the ghost number graded commutator,

[(Qp, ¢} = s, (2.89)

that is, by a commutator or anticommutator for fields 1) with even or odd ghost number,
respectively. Thus, the transformations generated by ()p are indeed the BRST transfor-
mations (2.80) and (2.85). Owing to the nilpotency of the BRST transformations (2.86),
the BRST charge is nilpotent and, as a conserved charge, commutes with the effective
Hamiltonian H and thus with the total S-matrix:

=0, [QwH=0, [Qs5]=0. (2.90)

Moreover, it is hermitian provided we assign the hermitian conjugation properties of the
Faddeev-Popov ghost fields in the following way

(2.91)

where the minus sign appearing in the hermitian conjugation of the antighost fields is
required because of the anticommuting nature of the ghost fields. These hermiticity as-
signments, which were originally proposed by Kugo and Ojima [139-143], turn out to play
an essential role in the construction of a manifestly covariant and local canonical operator
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formalism of non-abelian gauge theories for mainly two reasons. First, they assure the
consistency of the formulation: The charge ) is hermitian only when these assignments
are adopted. This hermiticity, however, is necessary to guarantee the conservation of ()p
following from d/dt (1)|QY|) = (p|d/dt Qp|1h)* = 0, which should hold as far as Qp is
well-defined. Moreover, hermiticity assignments different from the above ones would also
be incompatible with the BRST transformations (2.80) and (2.85) itself. Second, only
when the hermitian conjugation properties of the Faddeev-Popov ghost fields (2.91) are
chosen, the full Lagrangian including the gauge-fixing term (2.83) and the Faddeev-Popov
ghost part (2.87) becomes hermitian and, therefore, the unitarity of the total S-matrix
can reasonable hold.

As is generally known, local and covariant field operators can be introduced only in an
extended Hilbert space in which the vectors corresponding to the physical states do not
form a dense set. In particular, the manifestly covariant theory of massless vector fields
is necessarily quantized with an indefinite metric and the appearance of unphysical states
with negative norm is inevitable. On the other hand, the positivity of the metric is vital to
the probabilistic interpretability of quantum mechanics. In order to formulate a physically
meaningful theory of scattering processes in gauge theory, we thus first of all have to
define a physical S-matrix between physical states with positive norm and secondly should
verify that it satisfies the genuine unitarity without spoiling the standard probabilistic
interpretation of quantum theory. Assuming the hermiticity of the Hamiltonian, these
requirements can be summarized into the following two conditions, called physical state
conditions:

(i) The physical subspace Vs should be invariant under the time evolution, namely,
HVphys € Vpnys should hold for the Hamiltonian H.

(ii) The indefinite inner product (|) in the total state vector space V should be positive
semi-definite when restricted to the physical subspace Vpnys, (¥0]90) > 0 YV [¢)) € Vonys.

Then, according to a general theorem, the physical S-matrix can be defined consistently
in the quotient space of Vs With respect to its zero-norm subspace Vy given by Hpnys =
Vphys/ Vo, which is a Hilbert space equipped with positive definite metric, and the physical
S-matrix is unitary with respect to this Hilbert space structure.

Now, having argued that the physical state conditions are necessary and sufficient
for the physical S-matrix to be unitary, we must look for a concise subsidiary condition
specifying the physical subspace Vnys in such a way that the above physicality criteria
are satisfied. The key for the solution of this problem is given by the BRST charge ()p
providing, essentially, a global version of the local gauge invariance. Indeed, in general
renormalizable gauges one can select the physical states |1))pnys from the total state vector
space V by requiring |1),nys to be BRST invariant [139-143]. Accordingly, despite of all
the complications in non-abelian gauge theories due to the introduction of the Faddeev-
Popov ghost fields, the physical subspace Vs can be specified by the elegant subsidiary
condition'!

QB ) phys = 0 (2.92)

LT one prefers to specify the physical subspace as small as possible, then one can add one more
subsidiary condition: Qu|¢)pnys = 0, where @, is the conserved Faddeev-Popov ghost charge, which
generates the scale transformations u® — e’u® and 4 — e %a”.
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Now, since the charge (Jp is conserved, this, however, tells us immediately that Vppys is
manifestly invariant under the time evolution as well as under Lorentz transformations,
and thus the first criterion of the physical state conditions is automatically satisfied. So
one only has to prove the second criterion, that is, the semi-definiteness of the inner
product in Vpnys which is quite a non-trivial problem. For its complete solution, detailed
analysis is necessary of the metric structure of the total state vector space V and of the
physical subspace Vyuys in each concrete model. However, it is also possible to extract
the essential features of the inner product structures to a considerable extent solely by
inspecting the irreducible representations of the BRST algebra given by:

{QB; QB} - 2Q2B = 07 [ZQua QB] = QB ) [Qua Qu] = 07 (293)

where @, denotes the Faddeev-Popov ghost charge associated with ghost number conser-
vation. Identifying the Faddeev-Popov ghost number with the eigenvalues of the operator
()., multiplied by i, the second and third relation of Eq. (2.93) tell us that the charges
@p and @, carry ghost number one and zero, respectively. On the basis of such an
analysis, one will find a very general norm-cancellation mechanism, called quartet mech-
anism [139-143]. By this mechanism, the unphysical particles having non-positive norm
are made undetectable in the physical world described by the physical Hilbert space. In
the following we will present this argument at an intuitive level.!?

Because of the fact that the non-vanishing Faddeev-Popov ghost charge is carried
only by the fields u® and %, it can be assumed that the total state vector space V can
be decomposed into a direct sum of sectors Vy with definite ghost number N. This
assumption together with the non-degeneracy property of the inner product in V), that
is, (Y|p) =0 Y |[¢h) € V < |¢) = 0, which can be postulated without lose of generality,
necessarily implies that for any eigenstate |1)y) € Vy with non-vanishing eigenvalue N,
there exists a Faddeev-Popov conjugated state |¢)_y) € V_y with the opposite Faddeev-
Popov ghost number —N. Moreover, the hermiticity of (),, which is assured by the
hermitian conjugate properties of the ghost fields (2.91), implies that the eigenstates
|tn) satisfy the following orthogonality relations

(Ynloar) = on-nr (2.94)

where the inner product (|) has been normalized to unity by convention. Under this
normalization the Faddeev-Popov conjugate states are unique and an orthogonal decom-
position of V into the direct sum of sectors Vy and V_y is realized.

Owing to the nilpotency of the BRST charge Qg (2.90), any state can be classified
into its irreducible representations with dimensions up to two, namely, singlet or doublet
representation. We call a singlet representation of () a BRST-singlet and a doublet one
a BRST-doublet. If a state |iy) satisfies

Qp[Yn) =0, (2.95)

and there exists no state |py_1) such that Qg|lpn_1) = [n), then |[¢by) constitutes a
BRST-singlet. Otherwise, if a state |iy) is not annihilated by the BRST charge @,

QB [Yn) = lens1) #0, (2.96)

12A rigorous discussion has first be given by Kugo and Ojima [139-143] to which we would like to
relegate the interested reader for further reading.
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then the two vectors |¢y) and |¢n1) form a BRST-doublet. For convenience, we call such
a |1n) with non-vanishing image of Q5 a parent state, and its image |pny11) = Qp|YN) # 0
a daughter state. In the case of a BRST-doublet, the non-degeneracy of the inner product
requires, however, the existence of another BRST-doublet Faddeev-Popov conjugate to the
original one. Thus, the BRST-doublet representations are always realized in pairs: [y},
loni1) = @plYn) and [Y_n_1), |o-n) = Qp|tv_n_1). These Faddeev-Popov conjugate
pairs of two BRST-doublets, which go by the name of BRST-quartets, provide the third
and final type of possibility for the representations of the BRST algebra (2.93) in indefinite
inner product spaces.

Due to the nilpotency itself, the definitions of a BRST-singlet and a parent state in
a BRST-doublet necessarily involve the ambiguity of adding arbitrary daughter states to
them. However, unambiguous description of the behavior of the BRST-singlets can be
attained by switching over to the space of equivalence classes where two BRST-singlets are
identified if their difference is given by a daughter state. The physical Hilbert space is then
obtained as the covariant space of equivalence classes, the BRST-cohomology of states
in the kernel modulo those in the image of Qp, that is, Hynys = Ker Qp/Im Q5 which is
isomorphic to the space of BRST-singlets. It is easy to see that the image is furthermore
contained in the orthogonal complement of the kernel, Ker Qp N (Ker QB)L, which is
the isotropic subspace of Ker (Qp. It follows that states in Im Qg do not contribute to
the inner product in Ker g, and hence, the inner product structure of Ker g can be
transferred consistently to the quotient space Hpnys = Ker Qp/Im Qp.

These considerations seem extremely abstract, but they have a direct physical corre-
spondence. To see this, consider the single-particle states of the non-abelian gauge theory
in the asymptotic regions ¢ — +o00. According to our definition of physical states (2.92),
the physical components of the asymptotic fields must have vanishing BRST variation

§Pphys = 0 (2.97)
In order to determine the physical degrees of freedom of the fields we thus have to find the
BRST transformations of the asymptotic fields. A careful analysis of the Fock space of
asymptotic fields shows, that the BRST variations of the asymptotic fields are essentially
obtained from the BRST variations of the Heisenberg fields (2.80) and (2.85) by disre-
garding all terms that involve composite operators [139-143]. Hence, in the present case
only the following asymptotic fields transform non-trivial under the BRST symmetry:

1 1 1
SWas,i — __a“uas,i , g7 — __auuas,Z, S A — __auuas,A,
’ e ’ e ’ e
1 .
SGZS’“ = ——0,u™", s¢*F = HiM,u™S* Y = —M,u*% (2.98)
Gs
S,L—Las,:l: — Bas,:l:, S,L—Las,Z — Bas,Z, S,L—Las,A — Bas,A, SUASHT — Basa

These relations allow to read off the unphysical fields of the SM. The scalar component
of the massive gauge fields W2* and Z2, the would-be Goldstone fields ¢*>* and Y,
and the antighost fields 4% and 4% are not annihilated by s and therefore correspond
to unphysical degrees of freedom. The ghost fields u** and u®? and the auxiliary
fields B** and B**% are BRST transformations and consequently involve only zero-norm
states, that decouple from the physical S-matrix. The unphysical degrees of freedom in
the case of the massless gauge fields are the longitudinal components A% and G7™* of the
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photon and gluon field, and the antighost fields @*4 and @*®. The ghost fields u*>* and
u?*, and the Nakanishi-Lautrup fields B* and B** belong to the image of s having
zero norm. From this we see that for each gauge field there are exactly four unphysical
modes, the scalar or longitudinal gauge-boson mode, the antighost, the ghost and the
Nakanishi-Lautrup mode. These modes constitute the elementary quartets which appear
in the SM: (ﬂas,i, d)as,i,uas,i, Bas,i), (ﬂas,Z,Xas,uas,Z, Bas,Z), (ﬂas,A,AaLs,uas,A, Bas,A) and
(@, G, u> B*®). These quartets can appear in the physical subspace of the total
Hilbert space only in a zero-norm combination and hence cannot be observed. This is
guaranteed by the physical state condition (2.92). The BRST charge () thus ensures the
decoupling of unphysical states from the physical Fock space, guaranteeing the unitarity
of the S-matrix and the gauge independence of the physical observables.

2.4 Renormalization of the Standard Model

Once the problem of quantization is settled, perturbative calculations can be system-
atically performed in principle. The higher order corrections to the S-matrix elements
and the Green’s functions are quantum effects resulting from Feynman graphs containing
loops. Since these corrections change the relation between the parameters in the La-
grangian and the observables, the original parameters of the theory, the so-called bare
parameters, are no longer directly related to the physical quantities. Moreover, the bare
parameters differ from the corresponding physical quantities by UV divergent contribu-
tions associated with the behavior of the loop integrals at high virtual momenta. Thus
to allow for a proper treatment of UV divergent quantities, a so-called regularization
procedure is needed. This amounts to a modification of the theory in such a way that
the possibly UV divergent quantities become well-defined, and that in a suitable limit
the original theory is recovered. Consequently, a redefinition of the basic parameters, a
renormalization of the theory, is needed as well.

The requirement that the UV divergences are compensated, however, does not fix the
finite parts of the renormalization constants. Indeed, these can be defined in many differ-
ent ways leading to different parameterizations of the theory. If we know an exact solution
of the theory, different choices of the renormalization scheme do not cause any difference
in the resulting S-matrix element although its expression as a function of the renormalized
parameters may differ. However, in finite order of perturbation theory different choices
of the renormalization scheme differ by higher order contributions and therefore lead to
different physical predictions in general. In order to define a renormalization scheme one
first has to choose a set of independent parameters. One possibility is to start from the
Lagrangian in its symmetric form. For practical calculations it is, however, more conve-
nient to fix the renormalization constants by renormalization conditions on the physical
parameters. Clearly, since there is an one-to-one correspondence between the parameters
of the symmetric Lagrangian and the physical parameters, this approach also yields finite
quantities. In this way one arrives at theoretical predictions for physical observables in
terms of other physical quantities, which have to be determined from experiment.

In the electroweak sector of the SM' it has become customary to use the electric charge

13Gince the gauge group SU(3)¢ is unbroken in the SM, the renormalization of the strong and elec-
troweak sector of the SM can be performed independently. In this section we only consider the renormal-
ization of the GWS theory.
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e, the masses My, and M, of the electroweak gauge bosons, the fermion masses mzj}, the
Higgs mass M, and the quark mixing matrix V' as renormalized parameters. In this
so-called on-shell renormalization scheme, which was proposed by Ross and Taylor [144],
the renormalized electric charge is defined as the strength of the electromagnetic coupling
in the Thomson limit, and the masses as the position of the poles of the renormalized
propagators. The advantage of the on-shell scheme is that all parameters have a clear
physical meaning and can be measured directly in suitable experiments.'* Furthermore,
the Thomson cross section from which the electrical charge e is obtained is exact to all
orders of perturbation theory according to Thirring’s theorem [145,146].

The renormalization of the parameters is sufficient to obtain UV finite S-matrix el-
ements, but it leaves Green’s functions divergent. This is due to the fact that radiative
corrections change the normalization of the fields by an infinite amount. Consequently, in
order to get UV finite two- and three-point functions the fields have to be renormalized,
too. Moreover, radiative corrections provide non-diagonal corrections to the mass matri-
ces so that the bare fields are no longer mass eigenstates. In order to rediagonalize the
mass matrices one has to introduce matrix valued field renormalization constants. These
allow to define the renormalized fields in such a way that they are the correct physical
mass eigenstates in all orders of perturbation theory. If one does not renormalize the
fields in this way, one needs a non-trivial wave function renormalization for the external
particles. This is required in going from Green’s functions to S-matrix elements in order
to obtain a properly normalized S-matrix.

Renormalization Constants and Counterterms

In this subsection we specify the on-shell renormalization scheme for the electroweak
sector of the SM quantitatively following the standard treatment in the literature [147—
149]. The starting point for the calculation of S-matrix elements and Green’s functions
including radiative corrections is the Lagrangian written in terms of physical fields and
parameters. Since symmetry arguments were important in the construction of the classical
Lagrangian we perform the multiplicative renormalization of the electroweak part of the
full SM Lagrangian in such a way that the gauge symmetry is respected. Therefore also
the counterterm Lagrangian and the renormalized Green’s functions reflect the gauge
symmetry. The price for this, however, is that not all residues of the the propagators
can be normalized to unity. As a consequence, any calculation with the renormalized
Lagrangian will have to include finite multiplicative wave function renormalization factors
for some of the external lines in the S-matrix elements.

As we have already explained radiative corrections affect the Higgs potential in such
a way that its minimum is shifted. In order to correct for this shift, one has to perform
a renormalization of the tadpole

to =t+0t, (2.99)

which, according to the definition (2.33), corresponds to a renormalization of the VEV of
the complex scalar field. In addition we introduce the following renormalization constants

Due to the presence of the strong interaction this is not the case for the light quark masses. For-
tunately, their contributions can often be expressed through universal quantities, which can be directly
determined from experiment.
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for the parameters:
eo=2Z.e=(14+06Z,)e,
M o= M + M,
M3 o= M, +0M;,
m}yo = m} + 5mjc ,
Mg,o = My + oMy,
Vijo =Vij + Vi,

(2.100)

where quantities with subscript 0 denote bare parameters. The renormalization constants
for the charge, 07,, the masses, d My, dM,, 5m§c, OMy, and the quark mixing matrix,
dVij;, are fixed by on-shell renormalization conditions, as will be explained below.

In order to be able to define renormalized fields which are mass eigenstates in the
presence of higher order corrections we introduce field renormalization of a general form
using matrix valued renormalization constants for fields with equal quantum numbers. In
the on-shell renormalization scheme the bare physical fields are split as

+ _ 2yt 1 +
Wk =2 Wik = (1 + 552W> wE,
1 1
Zmo — Z;/;ZM + Z;/:AM — <]. + §5ZZZ> ZH + §6ZZAA“,

1 1
Ayo=20272,+ 74, = 502427, + <1 + §5ZAA> A,

3 3
. . 1 , (2.101)
o= 25 =Y (6 302 ) 1.
7=1 7=1
i iR N Lo iR\ i
fR,OZZZij fR:Z 5ij+§5Zij fr s
j=1 j=1

1
Hy=Z}’H = <1 + 552,{) H,

where the last expression in each line is valid in first order approximation. Notice that
we have explicitly assumed that the Higgs field does neither mix with the longitudinal
components of the Z boson and of the photon nor with the neutral would-be Goldstone
boson. Since at least four CKM matrix elements are required to construct a CP-odd
rephrasing invariant function of the quark mixing matrix, two- and three-point functions
are unaffected by CP violation at the one-loop level in the minimal SM. Consequently, our
discussion is general as long as one works at first-order in perturbation theory. However,
even if the CP violation mixes up physical and unphysical scalar fields at high perturba-
tive order, it is not difficult to disentangle them taking advantage of the Slavnov-Taylor
identities (STIs) [77,150], which implement the BRST symmetry at the quantum level.
Considering the system formed by the longitudinal components of the Z boson and the
photon, and by the Higgs and the neutral would-be Goldstone boson one can show [151]
in particular, that there is no propagator for the longitudinal components of the Z boson
and the photon, and that the Higgs and the neutral would-be Goldstone bosons are de-
coupled on the mass-shell of the unphysical states. As a consequence the complex pole of
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the only physical field, the Higgs boson, is gauge-invariant to all orders in perturbation
theory.

The counterterms defined above are sufficient to render physical S-matrix elements
and Green’s functions of physical particles UV finite. For a complete renormalization of
the electroweak SM we need the renormalization of the unphysical sector as well. This
consists of the field renormalization of the would-be Goldstone fields,

1
o5 = 2,%¢* = (1 + 56%) ",

(2.102)
Yo = ZM?y = 1—1—152 X
0 X 509 )
of the Faddeev-Popov ghost fields
uojE = ZouT = <1 + 5Zi) ut,
ug:ZZZuZ—i—ZZAuA: (1+5ZZZ> UZ—F(SZZAUA, (2103)

Uf? = ZAZuZ —+ ZAAUA = 5ZA2UZ —+ (1 —+ 5ZAA) UA,
and of the renormalization of the gauge parameters

fw,o = Zgwfw ) fz,[) - ZngZa fA,U = ZgAan CW,U - ZCwCW ) CZ,O = ZCzCZ . (2-104)

The Faddeev-Popov antighost fields are kept unrenormalized. This is legitimate because
ghost number conservation allows one to renormalize the fields with non-vanishing ghost
number in any desired way. Thus the choice made above is a pure matter of convenience.

Beyond one-loop order, counterterm contributions from the Faddeev-Popov ghost sec-
tor, which are associated with the gauge-fixing part, have to be taken into account in the
calculation of physical amplitudes. As is well-known, the renormalization of the unphys-
ical sector is not independent from the way the physical sector is treated. Indeed, it is
governed by the STIs. This restricts the possible counterterms and relates the renormal-
ization constants introduced above. These relations can be derived from the requirement
that the renormalized Green’s functions fulfill STIs of the same form as the unrenormal-
ized ones. According to the organization of the calculation, it is possible to use different
procedures that respect the STIs and are particularly convenient in order, for example, to
minimize the number of counterterms to be considered. Of course, physical amplitudes
are independent of the chosen procedure, and this can be used as an additional check of
the calculation.

Renormalization Conditions in the On-Shell Scheme

The renormalization constants introduced in the previous subsection are fixed by impos-
ing renormalization conditions. Usually one distinguishes three different categories. The
conditions that define the renormalized physical parameters, those that define the renor-
malized fields and those that fix the renormalization in the unphysical sector. While the
choice of the first affects the physical predictions to finite order of perturbation theory, the
second are only relevant for Green’s functions and drop out when calculating S-matrix el-
ements. Nevertheless, their use is very convenient in the on-shell renormalization scheme,
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since they not only allow to eliminate the explicit wave function renormalization of the
external particles, but also simplify the explicit form of the renormalization conditions
for the physical parameters considerably. The choice of the third set determines the form
of the renormalized STIs. This renormalization is therefore purely conventional, but it
turns out that not all choices are equally convenient when one considers higher order
corrections.

Renormalization of the Tadpole

At first, in order to implement the Higgs mechanism at higher orders one has to renor-
malize the tadpole. Since the tadpole is not a physical quantity, its definition beyond tree
level is arbitrary and a matter of convenience. The standard renormalization of the tad-
pole consists in defining the counterterm ¢t such that the Higgs field one-point amputated
renormalized Green’s function is canceled in each order of perturbation theory

A

[(0) =Ty(0)+6t=0, (2.105)

which corresponds to minimizing the effective potential [152]. Here and henceforth, we will
use a caret to distinguish renormalized from bare quantities. In practice, we will satisfy the
above condition by simply ignoring any one-particle-irreducible (1PI) one-point diagram,
since any such diagram will be canceled by adjustment of . The removal of the tadpole
diagrams is then built in here as a natural part of the formalism. Clearly, this is not the
only possible choice, but its physical meaning is transparent and it is generally adopted,
because it simplifies practical calculations since no Feynman graphs involving tadpoles as
subdiagrams need to be considered. However, according to Eq. (2.32), a renormalization
of the tadpole amplitude induces a shift proportional to dt¢ in the mass parameters of all
SM fields. In practice, this means, that the mass counterterms become gauge-independent,
only after the corresponding gauge-dependent parts of the tadpole graphs are included.

Notice that in the presence of CP violation, another tadpole amplitude emerges in the
minimal SM, connected to the VEV of the CP-odd neutral would-be Goldstone boson. As
the CP violation in the minimal SM is confined to the fermionic sector, this will happen
only at higher orders. In extended models, any neutral scalar field with zero ghost number
could develop a VEV trough radiative corrections. In all cases the linear terms in the
fields should be removed in order to define the 1PI Green’s functions as the Legendre
transform of the connected generating functional [153]. For the SM, however, using the
STT for the corresponding one-point Green’s functions one can prove [151,154], that the
vanishing of the tadpole of the Higgs field implies the vanishing of the tadpole of the
unphysical would-be Goldstone boson even in the presence of CP violation.

Renormalization of the Physical Sector

In the on-shell scheme the renormalized mass parameters of the physical particles are
fixed by the requirement that they are equal to the physical masses, that is, to the real
parts of the poles of the corresponding propagators.!> These poles are equivalent to the
zeros of the 1PI two-point functions. In the case of mass matrices these conditions have to

15Tt turns out that the conventional approach to the one-loop mass renormalization [147-149] adopted
here leads to renormalized mass parameters for the unstable particles that are gauge-dependent beyond
one-loop order [155-159]. The generalization of the on-shell renormalization scheme to higher orders thus
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be fulfilled by the corresponding eigenvalues resulting in complicated expressions. These
can be considerably simplified by requiring simultaneously the on-shell conditions for the
field renormalization matrices. The latter conditions require that close to its pole each
propagator is given by its lowest order expression with the bare mass replaced by its
renormalized one. Consequently, the renormalized 1PI two-point functions are diagonal
if the external particles are on their mass shell, and the residues of the renormalized
propagators are equal to one, that is, the quanta of the renormalized fields are mass
eigenstates. In this way, one arrives at the following set of renormalization conditions for
the two-point functions for on-shell external particles'6

Re owwf(k)ﬁy(k) ko2, =0, kzl_lfj{l%zv m Re wawf(k)ﬁy(k) = —eu(k),
. ) . 1 . y
Re quzy(k)é (k) kQ:M% = 0, k2h%2 2 — M2 Re FZHZU (k)é (k) = —eu(k),
I v 1 v
Re FA#AV(k)G (k) 20 = 0, kl%goﬁ Re FA A, (k) (k) = —Eu(k),
Relyu(k =0 li L Refup(k) =1
eLan( )k2:M}§ - ke K2 — MZ (k) =1,
. ko4 m
Re Ff’f_J (k)u](k) L 2 = 0, k2l_1>%12 m Re Ff fz(k) (k) = U/z(k) ;
=~ = F+my
Re@; (k)T i i (k) =0, lim @;(k)Re Ffif'i(k)Qi u;(k), (2.106)
k2=mi? k2 —m? k? —m'

where €,(k), u;(k) and u;(k) are the polarization vectors and spinors of the external

fields. The symbol Re takes the real part of the logarithms that arise in the loop integrals
appearing in the self-energies, and commutes with complex valued parameters such as V;.
Its purpose is to remove the absorptive parts. Owing to the required hermiticity of the
renormalized Lagrangian, the counterterms can only affect the non-absorptive parts. To
ensure the masslessness of the photon and to avoid mixing of the gauge bosons as far as
possible, we require the following normalization conditions

which are necessary to guarantee the infrared (IR) finiteness of the SM to all orders in
perturbation theory [154,160]. These normalization conditions have to be proven to be
in accordance with the symmetries of the SM, and can be shown to lead to higher order
corrections to the sine of the weak mixing angle.

Renormalization of the Quark Mixing Matrix

In addition to the masses and the couplings of the SM particles, the elements of the quark
mixing matrix need to be renormalized as well. This was realized for the Cabibbo angle in
the SM with two fermion generations in a pioneering paper by Marciano and Sirlin [161],

requires a proper definition of the mass parameters of the unstable particles which is discussed in a very
clear manner in reference [151].
L6For simplicity the on-shell renormalization conditions for antifermions are omitted here.
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and for the CKM matrix of the three generation SM by Denner and Sack [162] more
than a decade ago. Although the renormalization of the CKM matrix is relevant from
the conceptual point of view, its phenomenological significance is damped by the fact
that, as a result of GIM cancellations, the radiative one-loop corrections related to the
renormalization of the CKM matrix are very small, of O(Gpm?), where G denotes the
Fermi or muon decay constant and m, is the mass of a light quark. The situation might,
however, be very different for lepton mixing in a non-minimal SM with massive Dirac
neutrinos or in extensions of the SM involving Majorana neutrinos.

Upon renormalization, the fermionic fields are rescaled by non-diagonal complex wave
function renormalization matrices Z/" and Z/*%. Consequently, the bare parameters Vo.ij
are replaced by the renormalized CKM matrix elements

3
Vi =3 (Z oz ) (2.108)

kl=1
Expanding V;; up to first order, we obtain for the counterterm of the quark mixing matrix

3
1 . 0
o0Vij = 3 Z <5ZikLVo,kj - %,ik5ijL) . (2.109)

k=1

Clearly, 6V;; must cancel the UV divergences that, upon mass and coupling renormaliza-
tion, are left in the loop corrected amplitude of an arbitrary physical process involving
quark mixing. This requirement fixes the UV divergences of 6V;;. Different renormaliza-
tion schemes then differ in the finite parts of §V;;. Apart from being finite, the parameters
Vi; should also be gauge independent, so that they qualify as proper physical observables
that can be extracted from experiment with reason. Moreover, renormalization should
be arranged so that the basic structure of the theory is preserved. Since the bare CKM
matrix is unitary, the same should, therefore, be true for its renormalized version. Oth-
erwise, four real input parameters would not be sufficient to parameterize the latter, and
the familiar notion of the unitary triangle would no longer be meaningful beyond tree
level. At the one-loop level, this leads us to require that

3 3
> Vo (97857 +0281) =3 (678" + 975 Vo (2.110)
k=1

is valid up to higher order terms. Combining the last two equations we find

oVij = 23: (073" = 073" ) Vs — Vour (023 — 6251)] (2.111)

k=1

1
4

where, as expected for a unitary matrix, the renormalization of V;; is expressed in terms
of the antihermitian parts of the wave function renormalization constants. Therefore
it depends on the scheme chosen for the wave function renormalization. It should be
clear, on the other hand, that once the counterterms ¢V;; are calculated employing the
above equation, it can be used independently of the scheme adopted for the wave function
renormalization. For example, in practical applications at the level of S-matrix elements,
it is often convenient to avoid the rescaling of the fields altogether [163] and introduce
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only the Lehmann-Symanzik-Zimmermann (LSZ) factors [164] for the external fields. If
mixing is present, however, one still has to renormalize the mixing parameters.

A number of different renormalization prescriptions for the quark mixing matrix are
indeed possible. A first convenient option is the modified minimal subtraction (MS)
renormalization scheme [165] in dimensional regularization [79,166], where one only retains
the UV divergences of the CKM counterterms. By definition, assuming gauge invariant
mass renormalization and after adjusting for the possible breaking of chiral invariance, it
can be guaranteed to satisfies the three requirements enumerated above. However, it is
well-known that the decoupling of heavy particles is not manifest in the MS scheme. This
means that if one works in the framework of an effective Lagrangian where the heavy
fields are integrated out, the dimension three and four operators that mix the quark fields
yield contributions to the amplitude which are not suppressed by the high mass scale.
This property makes the MS definition inconvenient in realistic studies.

A second physical motivated possibility is provided by the use of the on-shell renor-
malization conditions (2.106) to define the wave function renormalization constants by
setting them equal to the LSZ factors. It has been shown in reference [162] that this con-
dition correctly cancels all one-loop divergences. Furthermore, it leads to V;; = V4 ;; in the
limit of degenerate up- and down-type quark masses. Hence, the on-shell renormalization
prescription for the CKM matrix is compact and plausible, complies with the first and
third criterion by construction, but at first sight surprisingly, it fails to satisfy the second
criterion, because the finite terms of the proposed expressions for the CKM counterterms
(2.111) are gauge-dependent, as was noticed only recently by several authors [167-174].

A convenient and natural alterative to the latter prescription, which avoids the afore-
mentioned problem at one-loop, but maintains decoupling and enhances the symmetry
among the quark generations, can be obtained by using a different set of fermion wave
function renormalization constants Z/* and Z/® for the renormalization of the quark
mixing matrix. These renormalization constants result from requiring the renormaliza-
tion conditions (2.106) for the off-diagonal fermion two-point functions not on the mass
shell, but at the common subtraction point k? = 0,

=0, iﬁéffiﬂ(k) =0, i#j. (2.112)

Re Ffifj (k) 20 = 8k o

Clearly, these conditions which were introduced by Gambino et al. [167] do not fix the
diagonal parts of the two-point functions. Since the right-handed off-diagonal quark self-
energies are finite and proportional to the light quark masses, one can also choose to
disregard the renormalization condition for the right-handed part of ffi Ji and set the
corresponding off-diagonal renormalization constants Z/-F to zero. Finally, we stress
once more, that the use of the CKM counterterm based on the renormalization conditions
(2.112) and consequently on the antihermitian part of Z/>*, is independent of the choice of
the wave function renormalization adopted in the rest of the calculation, and corresponds
to just one of the many gauge-invariant definition of the one-loop CKM elements. Needless
to say, it is always the LSZ procedure (2.106) to dictate the treatment of the external
lines.
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Renormalization of the Electric Charge

In the on-shell renormalization scheme, the electric charge of the electron is defined as
the coupling of an on-shell electron to a photon with zero momentum. The full electron-
electron-photon coupling consists of the corresponding three-point vertex function and the
wave function renormalization constants. Owing to the Z boson-photon mixing, also the
electron-electron-Z boson coupling will occur in general. However, due to our choice for
the field renormalization (2.106) and (2.107) the corrections on the external legs vanish
and the charge renormalization condition takes the simple form!”

ﬂe(p)f‘Aueé(pap)ue(p) = etie(p)Yutte(P) , (2.113)

p?=m2

for the truncated three-point vertex function

iTa,ee0,p) = p . (2.114)

Owing to charge universality, to be discussed at the end of the next section, we may, in
fact, impose the above renormalization condition on any charged fermion to obtain the
same renormalized electrical charge.

Renormalization of the Unphysical Sector

For proving unitarity of the physical S-matrix we have to impose normalization conditions
on the unphysical fields. The poles of the propagators of the longitudinal part of the
vector, of the unphysical would-be Goldstone and the Faddeev-Popov ghost fields are
seen to be related by STIs [154]. The normalization conditions on the poles of unphysical
particles are most easily established on the Faddeev-Popov ghost fields and read:

ReDy+a (k =0, Rel,z.z(k =0, Rel,aga(k =0. (2.115
(&} + ( ) kQ:Mzi e Z Z( ) kQ:MEZ (¢} A A( ) 20 ( )
Furthermore, one has to require on-shell separation for the neutral ghosts
Relyzq4 (k) =0, Reyzqa (k) =0,
K2=M2, k2=0
. v . (2.116)
ReT',aq2 (k) =0, ReT 442 (k) =0,
k2=M2, k2=0

I"This is a condition for the vector part of the electron-electron-photon vertex r A,ee only. For the
axial vector part no separate condition has to be imposed since it is finite and vanishes for real photons
due to the STIs [148].
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in order to carry out IR finite higher order calculations [154,160]. Finally, we also impose
normalization conditions on the residua of the ghost propagators:

0

Re —L'y+a-(k =1,
© gl wra(b) vy
0 -
Re —Fuzﬂz (k) =1 , (2.117)
Ok? ey
0 -
Re wFuAﬂA (I{J) - =1.

Notice that the Faddeev-Popov ghost masses are independent parameters of the theory
and their renormalization can be achieved by adjusting the independent 't Hooft pa-
rameters ( and (,. For practical calculations, in order to avoid the double poles, it
is advantageous to the set the Faddeev-Popov ghost masses M,+ and M,z equal to the
masses M, and M, of the would-be Goldstone bosons. That corresponds, at tree level,
to setting all the 't Hooft parameters (;, and (, equal to the gauge parameters &, and
&,. However, at higher orders, this degeneracy cannot be maintained since the 't Hooft
parameters must be used to enforce the normalization conditions (2.116).

Explicit Form of the Renormalization Constants

The renormalized vertex functions defined in the last section consist of the unrenormalized
ones and the counterterms. Thus the renormalization conditions allow to the express the
counterterms through the unrenormalized vertex functions at specific external momenta.
In the following we will perform this task for the renormalization constants for the physical
fields and parameters at the one-loop level.

From condition (2.105) we obtain for the tadpole counterterm

5t = —T'(0). (2.118)

In order to proceed, we decompose the vertex functions into covariants. The transver-
sal and longitudinal part of the gauge boson two-point functions is defined according

to
Ty (k) = (g;w_ 13 >F¥ )+ ST () (2.119)

where V¢ VJ = W+, Z A indicates vector fields and, as throughout this thesis, all mo-
menta of the fields in the vertex functions are incoming.

The most general form of the fermionic two-point function in compliance with her-
miticity [175] reads

Dpip (k) =k PLULY(K?) + f PrULR(R?) + PLTLP (K?) + PRILP* (k) (2.120)
supplemented by the constraints
LL (k%) = Thr (k%) DR(k?) = T8 (k?). (2.121)

Note that since the two-point vertex functions are 1PI, they contain no tadpole contribu-
tions. These appear explicitly as I'y.
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Now we split the two-point functions entering the renormalization conditions for the
physical fields and parameters into tree level contributions, unrenormalized self-energies
and counterterms. In first order approximation we have

LYY (k%) = =6y (K2 — ME) — S5V (k)
1 1
J— 5 (l{;2 — M‘Z/,) 5ZViVj —|— 5 (k2 - M‘2/]) 5ZVjvi - 52]5M\2/1:| ,

PLY (%) = 0 M — =V ()

1 1
+ §M‘2/16ZV1,V] + §M‘2/j(szvjvi + (SZ](SM21:| ,
. - (2.122)
DA (R?) = (kK* — M2) + S77 (k%) + (K* — M) 0Zy — SM},

. 1
DLF(K?) = by + S50 02) + 5 (025" + 020

— DN

DL (k) = 0y + D572 + o (925" + 620 |
A . 1 . . .
PSP (k) = —diymy + SEP (k) = 5 (mbo 2 +mjozf;™ ) = 50m,

Inserting these equations into the renormalization conditions (2.106) and using the fact
that in the minimal SM one can write

P (%) = miSEi k), SEPHR?) =m0k (2.123)
we find for the mass counterterms

My, =ReSyW(My), M7 =ReSF/(M7),  6M; =ReSE"(My),
Comh o . (2.124)
om'y = -5 Re (E{Z (m?) + E{Z (m}Q) + 22{; (m}Q)) )

From the normalization conditions (2.106) and (2.107) the field renormalization constants
of the boson fields are obtained as'®

— OIWW (.2 ONZZ (2
(SZW = —Re Tij) ; 5ZZZ = —Re # )
ak kQZMI%V 8]{; kQZM%
247(0) S47(M2)
0Zz4 =2 M 0Zsz = —2Re ng , (2.125)
8EAA(/<:2) aEHH (k2)
6Zss = —Re —L "~ , 0Zy = —Re ——————= ,
A k2 |y " L P

18Note that at one-loop order the condition ¥44(0) = 0 is guaranteed by the STIs and gives no
constraint on the counterterms.
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and those of the fermionic fields read

) — . . o .
L _ 2w f,L 2 i f.R 2
i j \S j . .
+ (i +m?) S| i,
) — . . o .
R R i L
0Zf" = s Re S ) + ] S5 ()
Foo
o . o (2.126)
+ 2mfm;2f;?s(m}2)] ; P £,
N , Y
6z5" = —ReSfh(mi?) —miP = Re (SFF6) + L) +2550)|
k2=mt?2
f
— , Y,
67" = —Re S (m{?) —mi = Re (E{;L(kQ) + LK) + 22{;5(/%2))
k2=mi2
f

The renormalization constants for the elements of the quark mixing matrix are deter-
mined from the renormalization prescription (2.112). Taking into account that Vj; = V4 ;;
at lowest order, we get

1 1 3 u,L i VU,R
miZ — mk? (5 (mZZ + muQ) Y (0) + mﬁmuEik (0)
(k) S0 ) Vi

X (2.127)

] ——
k2 _ 72
my my

+ (m§? + mj?) 2%’?(@))] :

1 ' d,L i d,R
(5 (m's2 + mff) Dy (0) + m’jmfiij (0)

Clearly, if one chooses to set the right-handed off-diagonal wave function renormalization
constants § Z%F and § Z4® to zero, the terms involving £#* and £ have to be omitted.

In the on-shell renormalization scheme the weak mixing angle is a derived quantity.
Following the standard approach [163,176,177] we define it by

Mg,
Mz’

2 _
sy =1

(2.128)

where M, and M, are the physical masses of the W* and Z bosons. This definition is
independent of a specific process and valid to all orders in perturbation theory. Recall,
however, that the weak mixing angle is not a directly measurable quantity and beyond
tree level could be defined in ways different from the choice adopted above.

Since the auxiliary parameters sy, and ¢y, frequently appear, it is useful to introduce
the corresponding counterterms

Swo = Sw + 08y, Cwo = Cw + 0Cy . (2.129)
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According to the definition (2.128) these are directly related to the gauge boson masses.
To one-loop order one obtains

G (OM7 OMy\ _ ¢y o (B7(Mp)  IpM(My)
25w \ M2 M2, 25y M? M2, ’
S27(M7) V(M)

M3 M3,

0S8y =
(2.130)

OCw = —S—Wésw = —%Vﬁé (

Cw

Finally, we have to determine the counterterm for the electric charge. In the elec-
troweak SM charge renormalization looks formally pretty much the same as in pure Quan-
tum Electrodynamics (QED). However, there is one big difference: Unlike in QED the
electromagnetic current is not strictly conserved in the non-abelian case. More precisely,
the divergence of this current acts as the null operator only on physical states, because it
is the BRST transform of another operator. Therefore the simple proof of charge univer-
sality in QED, which relies on the Ward-Takahashi identity (WTI) [178,179] is not valid
in such theories as the SM. In these cases a proof has to be based on the underlying BRST
symmetry in the conventional Faddeev-Popov approach. Following references [147,148],
we start from the invariance of the Green’s function (T'@(z)f*(y)f*(z)) under the ac-
tion of the BRST operator s. After transforming to momentum space and amputating
the external legs of the fermion-fermion-photon vertex function by multiplying with the
appropriate inverse propagators we obtain the following identity for on-shell fermions:

~ 1/2 . Swo 1/2 d -
FAufifi (p,p) i = —eon (ZA/A + %ZZ/A> Ffzfz(p) (2131)
7mf

W,0 OpH

p2:mif2

Sandwiching this between the two spinors @ s(p) and us(p) and using the on-shell condition
for the fermion fields (2.106), and the analogue of the charge renormalization condition
(2.113) for arbitrary fermions f* this results in

+ s -t
7. = 7Y/? 4 2w 05w 172 2.132
< A4 T e+ ey 224 ; ( )

which is valid in all orders of perturbation theory. Thus, just as in QED, the on-shell
definition of the electric charge together with the U(1)q rigid invariance of the broken
SU(2)r, x U(1)y symmetry automatically guarantees that the coupling of the photon to
the charged particles is independent of the fermion species, reflecting charge universal-
ity in the minimal SM. Expanding the general formula (2.132) up to first order in the
electromagnetic fine structure constant yields:

1 S (k%)

1 S Sw E?Z(O)
67, =—— (67 WS T = —— _owezr 2.133
5 ( AA T - ZA) Cw M2 ( )

w 2 k2

k2=0

We have now determined all renormalization constants of the physical fields and pa-
rameters in terms of unrenormalized self-energies at the one-loop level. The explicit
expressions for a abridged set of unrenormalized self-energies needed for the calculations
performed in this thesis will be given in Chapter4.4.
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Chapter 3

Anatomy of the B — X v Decay

In this chapter we review the status of the theoretical prediction of the weak radiative B —
X7y decay in the SM, following largely the analysis of reference [180]. Radiative B decays
represent one of the most important probes of new physics and a major testing ground
for the SM. They already place severe constraints on many new physics scenarios. The
present experimental accuracy for the branching ratio of B — X,v is around 12% and is
expected to improve significantly in the near future. On the theoretical side, since precise
predictions in the SM are particularly important, the subject has reached a high degree of
technical sophistication. Indeed, perturbative QCD corrections are very sizeable [181,182]
and give the dominant contribution. They are best implemented in the framework of an
effective theory obtained by integrating out the heavy degrees of freedom characterized by
a mass scale M > M,,. At lowest order in this approach the FCNC processes B — X,y
and B — X,g proceed through helicity violating amplitudes induced by magnetic type
operators. Besides leading logarithmic (LO) O(a?L") and next-to-leading logarithmic
(NLO) O(a™L" ') QCD corrections [183-206], with n = 0,1,2,... and L = lnm}/M?2,
and non-perturbative Heavy Quark Effective Theory (HQET) contributions [207-213],
electroweak effects are known to play a non-negligible role [214-219].

3.1 Effective Off-Shell Hamiltonian

Before discussing in some detail the principle steps leading to the theoretical prediction
of the branching ratio for the inclusive radiative decay B — X7, we briefly have to recall
the general formalism on which it is based. We work in the framework of an effective low-
energy theory with five quarks, obtained by integrating out the heavy degrees of freedom
characterized by a mass scale M > M. In the leading order of the operator product
expansion (OPE) the effective off-shell Hamiltonian relevant for the b — sy and b — sg
transition at a scale p is given by

16
Heg = —%VZ;Vm (Z Ci(1)Qi + C7 (1) Q7 + Cé’(u)Q%) , (3.1)
i=1

where V% and Vj, are the relevant elements of the CKM matrix, while C;(u), C7(n)
and C§(u) denote the Wilson coefficients of the following set of gauge-invariant local
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operators [186,187,217,220-226] built out of the light fields present in the SM*
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S

e Y

Qi3 = 1672 <§L D o"bpFp, — quLUWlDbL> +Q7,

- ng = e a a = a v %

Q4 = Ton2 \°F D o TGy, — Gy, 5.0 Dby, | + Qx,
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Q16 = 167r28LplebL’

where 0, = i[y,,7,] /2 and the summation runs over ¢ = u, d, s, ¢, b. Notice that in view
of my < my, contributions stemming from the mass insertions on the external s-quark line
are neglected here and in the following.

The above set of operators closes off-shell? under QCD and QED renormalization, up
to non-physical so-called evanescent operators that vanish in four dimensions [187,220].
It consists of the current-current operators )12, the QCD penguin operators (J3—Qs,

!Notice that the CKM suppressed analogues of Q; and Q» involving the u-quark instead of the c-quark
are present in the effective theory, too. Their effects will be included in the phenomenological analysis in
the following sections.

’In an off-shell calculation it is important to use a background field version of the R¢ gauges in order
to maintain explicit gauge invariance at the level of off-shell Green’s functions. A detailed discussion on
the subtleties linked to the presence of non-physical operators which arise in the calculation of the O(«)
matching conditions for radiative B decays will be given in Chapter4.2.
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the electroweak penguin operators Q7-Q1o and the magnetic moment type operators Q7
and QF. It is the QED renormalization that forces us to introduce the operators Q;—
10, in which the sum of the quark flavors is weighted by the electric charges (),. The
remaining six operators ()11, characteristic of the processes b — sy and b — sg, were
chosen in such a way that they vanish on-shell up to total derivatives. Only operators of
dimension five or six are retained. Higher dimension operators are suppressed by at least
one power of m?/M?2, while those of lower dimensionality can be removed by choosing
suitable renormalization conditions in the full theory [227,228]. In the present case this is
achieved by requiring that all flavor off-diagonal quark two-point functions which appear
at the one-loop level in the full theory vanish when the equations of motion (EOM) are
applied, that is, by using LSZ on-shell conditions on the external quark lines. Otherwise,
these off-diagonal mass terms give rise to additional operators of dimension three and
four [186,225] which must be considered in the effective theory.

3.2 Renormalization Group Evolution

Let us start this section by recalling that at LO in QCD, only the tree level matrix
elements of 7 and the one-loop matrix elements of Q1—Qs that are of order «; have to be
included in the calculation of the branching ratio for the inclusive decay B — X v. The
latter matrix elements vanish for an on-shell photon in any four-dimensional regularization
scheme as well as in the 't Hooft-Veltman (HV) scheme [79,229-231], while in the naive
dimensional regularization (NDR) scheme with fully anticommuting 5 [232] the one-loop
b — sy and b — sg matrix elements of some of the four quark operators are proportional
to the tree level matrix element of Q7 and QfF, respectively. The regularization scheme
dependence of the LO QCD matrix elements is a peculiar feature of radiative B decays.
It can arise because the one-loop mixing between the four quark operators QQ1—(¢ and
the magnetic moment type operators @7 and Qf vanishes. In consequence, what usually
would be a NLO QCD effect is only a LO one, and what would usually be NNLO in
QCD, like for example the three-loop mixing of Q;—Qs into Q7 and Qf to be discussed in
Appendix A, is only NLO.

This peculiarity causes, that it is convenient to introduce the so-called effective coeffi-
cients [217,233] for the magnetic moment type operators Q7 and QF. In our case the two
relevant combinations are

CTM () = CF () + > wiCi(p),
= (3.3)

10
CL™ () = C(p) + Y 2 Ciln),
=1

where the numbers y; and z; are the coefficients relating the on-shell one-loop b — sy and
b — sg matrix elements of Q1—Q1p to the tree level matrix elements of Q7 and Qf:

<37|Qi(u)|b>one—loop =Y <37|Q¥(M)|b>tree ’
<39|Q1(M) |b>one—100p = Z <39|Q§(M) |b>tree )

for s = 1,...,10. This, however, implies that the one-loop b — sy and b — sg matrix
elements of the effective Hamiltonian (3.1) can be expressed up to higher orders in terms

(3.4)
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of the tree level matrix elements of Q7 and @ in the following way

Gr eer e
(5Pt Bonectoop = =75 ViaVinCF (1) (571 QF (1) D -

e " (3.5)
<Sg|Heff|b>onefloop == %szCg’ (/jJ) <Sg|Qg(lu’)|b>tree '

V2

In any four-dimensional regularization scheme and in the HV scheme the numbers y; and
2; vanish, while in the NDR scheme we have3
ST _ 1 _4 _20 _8 1 4 20 80
Yy = (0707_§7_57_?7_§7§7f7§72_) )

>T __ 1 10 1 1 20 10
5 = (070717_67207_?7_§7ﬁa_?7_3) .

(3.6)

This regularization scheme dependence is canceled by the corresponding scheme depen-
dence in the LO anomalous dimension matrix, as has been first demonstrated in refer-
ences [234,235]. Consequently, the quantities C7°" (1) and C2*" (1) are regularization and
renormalization scheme independent at 1.LO, which would not be the case for the original
coefficients C7(p) and C§(u). Furthermore, it should be stressed that the vectors 7 and
Z come from divergent, that is, purely short-distance parts of the one-loop integrals. So
no reference to any model for the matrix elements (@Q;(x)) is necessary here. This is why
one is allowed to treat the expressions (3.5) as the proper effective Hamiltonian that has
to be inserted in between hadronic states in a calculation of radiative B decays.

Although on-shell matrix elements of the effective Hamiltonian (3.1) are physical and
therefore regularization and renormalization scale invariant quantities, the separate renor-
malization scale dependence of the Wilson coefficients C;(y) and the matrix elements
(Q;(u)) reflects the factorization of short- and long-distance physics. The effective coef-
ficients evolve from the initial scale py down to the renormalization scale i according to
their renormalization group evolution (RGE). Restricting to the physical on-shell opera-
tors present in our operator basis (3.2) and using the scheme-independent vector

M (1) = (O (), - -, Cro), CT (), €M () (3.7)
it can be written as J
Md—uéeﬁ(u) =57 (ay, a)C*F (p) (3.8)

where 4°T(a,, @) is the 12 x 12 anomalous dimension matrix governing the evolution of
the effective coefficients. Neglecting the running of the electromagnetic coupling constant?
the general solution of this equation reads

C (1) = U (11, 110) C* (1) , (3.9)
where w I
. gs\ Qe ! ,a
U(n, o) = T, exp/ dgéLgf) - (3.10)
gs(MO) 6(95)

3Notice that these numbers are different from those given in reference [233] because we use a different
basis of four quark operators here.

4This is a very good approximation because only scales my < pu < My, are involved in the following
analysis.
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Here C°(1) are the initial conditions of the evolution and T}, denotes ordering of the
coupling constants gs(x) in such a way that their value increase from right to left. The
T,, ordering is necessary, because in general [7°T7 (ay(p1), @), YT (a5 (p2), )] # 0 for

two different scales pq and ps. 5(gs) is the QCD beta function

gg’ (0) 9? (1) 629;9’ (1)
5(95) = _Wﬁs - (].671'2)255 - (167_‘_2)2/858 ) (311)
with
11 2
0 = —_C,— =N

/85 3 A 3 )
34 10

Bﬁ” — ECE‘ _ ?CANf — 20p Ny, (3.12)

Bgi) = _QNUQZ, - 2NdQ37

where Ny = N, + Ny denotes the number of active flavors, while N, and N, are the
numbers of up- and down-type flavors, respectively. Notice that from a conceptual point
of view a resummation of O(aa?L™) terms requires the inclusion of the third term in the
last but one equation. We will come back to this point in a moment.

By expanding the evolution matrix, which includes gluon and photon corrections, we
obtain up to first order

U(/’I’J :U’O) = Us([])(lu’a HJU) + Us(l)(lu’a HJU) + UéO) (/’1’7 :U’O) + [A]él)(/% :U’O) ) (313)

where the first two terms describe the pure QCD evolution, while the remaining ones are
responsible for the additional running of the coefficient functions due to the presence of
electromagnetic interactions. From the point of view of the expansion in a; and « in
the renormalization group improved perturbation theory, the evolution matrices [75(0) and
U are O(1) and O(ay), while U and UL are O(a/as) and O(«), respectively. For
completeness, let us now recall the formula for these matrices.

For this purpose we first have to expand the anomalous dimension matrix % (a;, o)
in a; and a. Keeping terms up to second order in the coupling constants we find

1) g . O @ sem0) 4, 2% ey (3.14)

(47T)2 75 47T ’}/C (47T)2 f)/se

Aeff(

Y O‘Saa) =

Notice that the definition of the effective coefficients (3.3) guarantees that the LO matrices
A0 and 427 are regularization and renormalization scheme independent, while this is
not the case for the LO matrices governing the evolution of the original coefficients é(u)
Explicit expressions for 457 and 4™ as well as for 457 will be given in Appendix A.
’y?eﬁ(l) is presently unknown as it requires the calculation of the two- and three-loop O(aay)
mixing of the complete set of on-shell operators present in our operator basis.’

°In the operator basis of references [236,237] the 10 x 10 submatrix for the mixing of Q;-Q10 at
O(aas) has been calculated nearly a decade ago [238]. To the best of our knowledge, nobody, however,
tried to use these results to derive the anomalous dimension matrix for the choice of four quark operators
adopted here.
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Now keeping only the first terms in the expansions (3.11) and (3.14) of the beta
function and of the anomalous dimension matrix the LO QCD evolution matrix can be
written in the following way

UO (, o) = V diag [(O;Z((/z)))y] vt (3.15)

with V and @ defined by

. N RN ~ o Vs
dlag (fy:H(O)) — V 1,}/:&(0) TV, a = W . (316)
S

Here diag(’y?ff(o)) denotes a diagonal matrix whose diagonal elements are the components
of the vector 7).,

Beyond leading order in oy we have to keep the first two terms in the perturbative
expansion of 3(g,) and 4° (ay, ). As shown in references [190,193], the matrix oM (i, 110)

can then nicely be written as follows

(1) as(/l’)j “(0) _ avs (1o)
47T SY s (M)/‘LO) 47T

O, o) = U (11, 10) Js (3.17)

Here J, summarizes the additional running due to NLO QCD corrections. It is given by
J,=VHV™", (3.18)

where ﬁs is defined as the matrix whose elements are

) 0 Y
(Hs)ij = %(Ljai - ) ( 8)” y (319)
Bs 2857 (14 a; — a;)
with a; being the components of @ and (Gs)ij denoting the elements of
Gy = VAW Ty (3.20)

~

Notice that although (H,);; can develop singularities for certain combinations of the co-
efficients a;, the physically relevant evolution matrix (3.17) always remains finite after
proper combination of relevant terms.

The QCD evolution from /i to 4 in the presence of the O(«) term of the anomalous di-

mension matrix (3.14) requires beside U (i, o) and Uﬁl)(u, to) the additional evolution

operator
o ~ ~

U (1, o) Je (3.21)

. «
UfEO) (Ma MO) =

J U (11, o) —
ooy Vs ot = S0

where the matrix je is found to be

J.=VHV™!, (3.22)
with the elements of the matrix kernel ﬁe defined as

. (Ge)is
H,);: = , 3.23
i 26" (1 + a; — a;) 52
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which is precisely the result found in references [190,193,239]. Moreover, (G,);; denotes
the elements of the matrix

G, = VIO (3.24)

The next order QED corrections are represented by the matrix Ue(l)(u, to). Following
the standard approach [190,193,240] it can be written in the following way

- a - .o a - a o 5 o -
00 g1, ) = 2T 0O (i 1) + - Fo 0 1. o) — 222 50 1, o),
4T 4T ar s (o)
a -~ A a - a as(po) - .
— —0 Jody — —UO Jyo — — 0 J 0O J, (3.2
A (/’1’7 ,U/O) A (/’1’7 ,U/O) 47‘_ as(,U/) s (/’1’7 :U’O)
A /()
4 U (Ma MO)
with
jse = ‘A/]:Isev_l ) (326)
and the elements of (H,,);; given by
(H,e)ij = (0()(;—)] (3.27)
205" (a; — a;)

The expression for G, is quite complicated [190]. In terms of the relevant coefficients of
the QCD beta function (3.11) and of the anomalous dimension matrix (3.14) it reads

éseZV—1< gs)&iﬂ T [§eOT, | + 400 )V, (3.28)

S

We note that both matrices ﬁe and [—Le can develop singularities for certain combinations
of coefficients a; and a;. However, these singularities cancel in the final expression for
U, j10) when all contributing terms are combined.

Finally, Us(;)(/l/,/,bg) denotes the QCD evolution due to the O(awy) correction to the
beta function (3.11), which has been neglected in the literature throughout. From the
conceptual point of view of the expansion in a, and « in the renormalization group
improved perturbation theory, however, one has to take into account this term. For
completeness we will thus include it here, although its contribution to the coefficient
functions turns out to be negligible small in the case of AS = 1 transitions [190]. By
straightforward integration and expansion in the electromagnetic coupling constant we

find
0O (u, 1 8L n(%(m)) U ding d.(cvs(uo))
e to) = ™ s (h)
With the evolution matrices (3.15), (3.17), (3.21) and (3.25) at hand, we are now able
to discuss the structure of the coefficient functions C*(y). Let us define

A~

| (3.29)

~eff _ (eft(0) Oés(/L) ~eff(1) Seff(1
™ (n) = O () + = —C5 ()+47TC D (n). (3.30)
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Inserting the expansion (3.13) into the solution of the RGE (3.9), we obtain for the
coefficients at a scale u in terms of the coefficients at the initial scale pq

(reff(0) (n) = US(O)(M, uo)éeﬁ(o) (10)

- 47 Qg N Ze 2 e
a0 ) = = (2D 1 ) i) + 0 ) C ) )

og(u) \ 4m
e A [ - - . . (3.31)
Ceﬁ(l)(ﬂ) o <Us(0) (e, Mo)oeﬂ(l)(/m) + Ue(O) (115 120) ) (1)

as(po) ~ = . e
+ 250, ) G5 ) + O 1) 1))

Here the first two equations result from pure QCD evolution. The last equation mixes
QED, electroweak and QCD effects. Notice that, after the calculation of the two missing
elements of G (o) to be presented in Chapter 4.2, the only unknown O(«) contribution

to the coefficient functions relevant for radiative B decays is the last term in ésﬁ(l)(u).

3.3 Magnetic Penguin Coefficients

In order to calculate the Wilson coefficients of the magnetic moment type operators, one
has to match a suitable amplitude computed both in the full and the effective theory
between the same external states at the matching scale p,, = O(My,). Since the Wilson
coefficients are independent of the external states in the matrix elements, the initial con-
ditions may be determined by considering the decay process at the quark level. Therefore
the off-shell amplitude is first to be calculated in the full theory which contains the full
particle spectrum of the SM. In the background field version of the R¢ gauges [154,241]

s
u, C, t
b :
Lo~
“
|
7 o
Y

Figure 3.1: The one-loop diagrams contributing to b — sv in the SM. Note that there is
no W*¢T4 coupling for a background photon 4.

this amounts to compute the four 1PI electroweak diagrams shown in Fig.3.1. Expand-
ing up to the second order in the external momenta and my, the contributions from the
internal quark with different flavor in those diagrams can be separately matched onto the
gauge-invariant operators present in the effective Hamiltonian (3.1). For the magnetic
type operators Q7 and QF, each quark flavor yields a UV finite contribution that neither
depends on the renormalization scheme nor on the gauge-fixing parameters.

When such a separation of flavor is made and the CKM suppressed u-quark con-
tribution is neglected the effective Wilson coefficient C7 i1 (0) (up) at a low-energy scale
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i1 2 3 4 5 6 7 8

a; | 8 S| -2 0.4046 | —0.4230 | —0.8994 | 0.1456
h | $026 | 568l 1 3 L —0.6494 | —0.0380 | —0.0185 | —0.0057
hi | 3355 0 0 0 | —0.9135 | —0.0873 | —0.0571 | —0.0209

Table 3.1: Magic numbers entering the LO expressions of the effective magnetic penguin
coefficients.

wy, = O(my) can be decomposed into a contribution including only top and charm loops,
respectively

OO () = CT (o) — G ). (3.32)
In the NDR scheme the ¢-quark contribution is given by

14

. 1 4
C1"O ) = =50 Al(aw) — 5 (n¥ —n¥) Fi(a), (3.33)

and the c-quark one reads

. 23 1w 8
C;y’,cff(o)(ub) — %7723 + = 5 <7723 — 7723) ZhZT] (334)

where Af(x;) and F{(x;) are the so-called Inami-Lim [187,242] functions

46 — 159z, + 153z7 — 2227 x?(2 — 31y)
36(z; — 1)3 2(zy — 1)4

8 — 30z + 9x7 — b} N 3z?
12(x, — 1)3 2(xy — 1)4

Aﬁ(ﬁt) =

Inz;,
(3.35)
Fy(w) =

Inz;.

Here 1 = a,(pw) /(i) and z; = m? /M2 denotes the ratio of the t-quark mass divided
by the W* boson mass squared. The numerical values of the magic numbers a; and h;
entering the above expressions are collected in Tab. 3.1.

In order to see whether the top or the charm contribution is responsible for the sub-
stantially enhancement of the B — X, rate due to short-distance QCD effects [181,182],
let us investigate the n- dependence of them separately. As illustrated in Fig.3.2 the
charm contribution C’%eff )(ub) is a function of n that varies very slowly in the physically
interesting region 0.4 g n < 1. Moreover, looking at the individual contributions one
observes that the second term in the expression (3.34) is numerically small, while there
is a strong cancellation of the renormalization scale dependence between the first and the
third component. However, these pieces are not separately physical in any conceivable
limit, so the cancellation cannot be considered accidental.

Since the charm contr1but1on is practically renormalization scale independent, the
top contribution C;”t © (1) must be the origin of the enormous QCD enhancement of
the B — Xjv branching ratio. This is indeed the case, because all the powers of n
in the expression (3.33) are positive and quite large. As can be seen from Fig. 3.2, the
top contribution decreases from 0.450 to 0.325, when 7 changes from unity to 0.566,
corresponding to the scales p = My, and p = 5GeV. At the same time, the charm
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Figure 3.2: C7} O (1) and €7 (11, as a function of 7. The solid lines represent the
complete correct1ons to the Wllson coefficients, the dashed lines the individual compo-
nents.

contribution changes by only 0.008, from 0.639 to 0.631. In consequence, |C7 i1 (0) (1)]?
increases from 0.036 to 0.094, which leads to a enhancement of the B — X, branching
ratio by a factor of 2.6.

The reason for the strong n-dependence of C7f (,ub) is easy to identify [180]. It is the
large anomalous dimension of the mass operator mb(u) that multiplies the magnetic type
operator 7. The anomalous dimension of the mass operator, 7§?,31 = 6C', is responsible
for 12/23 out of 16/23 in the power of 7 that multiplies the numerically dominant Inami-
Lim function A{(z;) in the expression for C’A”elcf 9(11). Thus the logarithmic QCD effects
in the b — s7v transition can be approx1mately taken into account by simply keeping
my(pw ) renormalized at the electroweak scale py = O(My,).

It would be interesting to understand the physics behind the different optimal nor-
malizations of my(i) in the top and charm contributions. In this respect, the following
observation may be useful. At the matching scale the b — sy and b — sg diagrams medi-
ated by charm loops give rise only to the following two dimension six off-shell operators

ie _ oy v < v
O = g (sL P 0"b,Fu = Fusio™ P bL) |
(3.36)

Qs = % <3L D o™ T* G, — GZVSLT“U“”DZ)L> :
The basis of physical operators in the off-shell effective theory for the charm sector can
then be chosen to be Q1—Qg, Q17 and Q5. It is important to note that the particular choice
of the physical basis is a matter of convenience. The standard approach, as adopted in
Eq. (3.2), is to keep @7 and @Qf as the physical operators, while Q17 and Q15 are combined
with Q7 and Qf to form EOM-vanishing operators. However, one may choose another
convention, and do the opposite. The latter choice seems more natural in the charm sector,
where non-vanishing off-shell matching arises precisely for (17 and ()15. In consequence,
the running of Cfg?c(u) agrees with the one of the charm contribution to the effective
Wilson coefficient of @7, as given in Eq. (3.34). Evolving the Wilson coefficient of Q7
down to 1, and using the EOM, the off-shell operator Q17 reduces to Q7 that contains an
overall factor my. The b-quark mass associated with the charm loops is therefore a low
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Figure 3.3: Chirality flow in the diagrams contributing to the Wilson coefficient of the
magnetic operator Q7. The emitted photon can be attached to any of the internal lines.

energy, low virtuality mass my(uy).

On the other hand, in the top loops, m; appears in two different ways: Either through
the same mechanism as in the charm loops depicted in Fig.3.3 (a) and (b), or via the
bottom Yukawa coupling y, = gmy/(2M,,) of a right handed b-quark with a left-handed
t-quark, as shown Fig. 3.3 (¢). In the first case the RGE running of Cfg?t(,u) is much faster
than in the charm sector. Such a fast running can be compensated to a large extent by
using my(py ) in the EOM at the low-energy scale. In the second case it is not necessary
to use the EOM to project on the on-shell operator Q7. The natural normalization
scale of the Yukawa coupling y,(2) is given by the heavy masses that are involved in the
diagram. Consequently, the b-quark mass associated with the Yukawa contributions is a
high-energy mass my(py ). This reasoning leads us to the conclusion that the appropriate
normalization scale of the ¢-quark contribution is my(jiy).

Let us also investigate the n-dependence of the coefficient function of the chromomag-
netic operator QF. Decomposing the effective Wilson coefficient Cg’eﬁ(o)(ub) as follows

CLO () = L () — CLO () (3:37)

the t-quark contribution can be written as

. Ly
33" () = —5n B Fy(w), (3.38)

and the c-quark contribution takes the following form

CLe™O (y) = —nzs - Zh n% (3.39)

with Af(z;) and F{(x;) given in Eq. (3.35). The numerical values of the powers a; and
the coefficients h; can be found in Tab. 3.1.

The n-dependence of the LO contribution to the effective coefficient of Qf including
only top and charm loops is very snnllar to scale dependence that we have observed
in the case of 7 ) (14) and C%eff (tw): As can be seen from Fig. 3.4, the t-quark
contribution decreases from 0.238 to 0.168 when 7 changes from unity to 0.566, while the
c-quark contribution changes only little from 0.333 to 0.315. The reason for the strong
n-dependence of the t-quark contribution to the Wilson coefficient is again the large
anomalous dimension of the b-quark mass that multiplies the chromomagnetic operator
QJ. In consequence, the logarithmic QCD effects in b — sg can be approximately taken
into account by simply keeping my(p) renormalized at py and iy in the top and charm



66 3. Anatomy of the B — X,y Decay

0.3 T T T T T T T 0.4 T T T T T T

0.3 - -1

(1s)

g‘:ﬁ 0.2 —\\\ //,/’/ -
%w /V\\
01t e i
0 1 1 1 1 1 1 1 0 1 1 1 1 1 I‘\\I\~
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1

Figure 3.4: C; 1) (144) and Cg’c )(1) as a function of 7. The solid lines represent the
complete correct1ons to the Wilson coefficients, the dashed lines the individual compo-
nents.

contributions to the decay amplitude. The physical origin behind the different optimal
normalizations of the b-quark mass has already been discussed, and thus will not be
repeated here.

We have seen in the preceding paragraphs that most of the leading QCD logarithms
can be taken into account by keeping the top and charm contribution separated, and
by renormalizing my(p) in Q7 and Q% at uy and py in the top and charm contributions
to the LO coefficients of the magnetic type operators, respectively. Motivated by this
observation we will now rewrite the known O(«;) corrections to the Wilson coefficients
Q7 and Q% in an analogous manner. Using the separate charm sector and top sector
matching conditions for the relevant operators presented in reference [187], we obtain the
following expressions for the t- and c-quark contribution to the effective coefficient of the
magnetic penguin operator:

1 39

) 5 4 18604
O™ (y) = —57733143(%) 3 (7723 —7723> Fl(z,) + ( 5 — )5

— (p= —np3s | A
= (¥ = )Aout) (3.40)

3582208 1 148832 . 128434 s+ 3340442 o
- n223 — 23 — F i az+1Et
( 357075 1 T 14283 T 1azss T T 357075 ) () + ;6 N By (@)
8
(j;"y Jeff (1 . 1 ;2 a;
Dw) = =D (fi+gm+1lm nM2 0. (3.41)

i=1
In the case of the chromomagnetic penguin operator the O(ay) corrections to the
effective coefficients including only top and charm loops can be written as®

64217 < 14 37

8
e 1 37 —
¢ T () = —§nstf(xt) + To0m Nz — ,723> Fl(xy) + Zem TEN(2),  (3.42)
i=1

8 2
g, saff My i
O™ ) = =Y (f+ g+ L 1) e (3.43)
i=1
6Notice that as far as the NLO analysis of B — X,v is concerned, only the LO contribution to
Cy M (1) is needed. However, for completeness we decided to report also the expression for the O(c)

correction to the Wilson coefficient of Q§ here.
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i 1 2 3 4 5 6 7 8

e;| 128158 — 515 0 0 |—1.9043|—0.1008| 0.1216| 0.0183
fi| st | teoteies | soot| 30657 |9 0040| 0.7476|~0.5385 00914
g| b | sttt |0 | T |-2.7231) 0.4083| 0.1465| 0.0205
| Al — LL5596 — 2 |-2.0343| 0.1232| 0.1279|—0.0064
& A — 58 0 0 |—2.6788] 0.2318] 0.3741|—0.0670
fi| —etoon 0 Tl |25 | 3.2850| 3.6851(—0.1424| 0.6492
g;| BE0SISTE0938 0 0 0 |—3.8308/—0.9387| 0.4508(—0.0747
l; L 0 0 0 |—-2.8617|—0.2832| 0.3936 0.0233

Table 3.2: Magic numbers entering the O(«;) corrections to the effective magnetic pen-
guin coefficients. In their evaluation the three-loop anomalous dimensions computed in
references [196,197] have been used.

The Inami-Lim functions A{(x;) and F{(z;) have already been given in Eq. (3.35), and
the one-loop function characterizing the effective off-shell vertex involving a gluon reads

4+ 42z — 2122 — Tz} 4-—1 2
El(x;) = — +EoTy xt?) [C Oz, + 2% Inz;. (3.44)
36 (z, — 1) 6 (z;— 1)

The remaining two-loop functions A!(x;) and F(x;) take the following form

2006 — 9113z, + 2068272 — 1866523 — 94!

t
Ailm) = 243 (2, — 1)
_ 464 — 2968, + 67887 — 46321} — 1176a{ — 2040}
81 (z,— 1)° '

zy (8 — 2567, + 478x7 — 70z} — 162}) .

_ = In” x;
9(x —1)
2
2 (16 — 160, + 24zixt + 3295;”)Li2 (- 2,
9(xy —1)
B (152 — 794z + 80427 + 42029;;” + 68} N z7 (56 — 92, —5129;,%) n xt) n Iy |
27 (1 — 1) 3(zy —1) M3,
P (zy) — 1016 = 2966z, + 3177922 + 118903 — 247!
648 (z, — 1)*
_ 304 — 2114a, + 300727 + 48394} + 1086z — 2102f
108 (2, — 1)° '
zy (1 + 2267, + 10127 — 4427 + 4ay) 1
6 (z, —1)° !
2
z, (1 + 41z, + 4027 — élsvg’)Li2 (1- )

3z, —1)*
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Figure 3.5: The complete O(cq;) corrections to the magnetic penguin coefficients as a
function of 7, and their individual components, as explained in the text.

B (56 — 338z — 447x7 — i?Oxf + 35} N z? (31 + 175xt) I Il?t) I ﬁ  (3.45)
18 (z; — 1) (z; — 1) M3,

where Lis(z) = — [["dt In(1 — t)/t denotes the dilogarithmic or Spence function. The

magic numbers necessary to calculate the O(ay) corrections to the effective coefficients of

(7 and QF are summarized in Tab. 3.2.

The n-dependence of the O(qy) contributions to the effective Wilson coefficients of
the magnetic type operators is illustrated in Fig.3.5. From these figures we read off,
that the top loop contribution to the O(a,) correction of CT*T () represented by a
dashed line, increases from —0.052 to —0.018 when 7 changes from unity to 0.566, while
the charm loop contribution represented by a dotted line, changes only in a minor way
from —0.032 to —0.020. The corresponding changes in the case of Cg’eﬁ(ub) are —0.023
to —0.008 and —0.004 to —0.002, respectively. Furthermore, in both cases the t-quark
contribution can relatively well be approximated by the first term in the expressions for
the O(ay) corrections to the effective Wilson coefficients of the magnetic type operators.
This important aspect is illustrated by the dash-dotted lines in Fig. 3.5. Including only
the first term of Eq. (3.40) and Eq. (3.42) in the effective coefficients of Q7 and QF, we find
that the O(ay) correction to C7° (1) increases from —0.051 to —0.011, while the O(c)
correction to ng’eﬁ(ub) changes from —0.023 to —0.005, when 7 is varied between the
ranges given above. As the large anomalous dimension of the b-quark mass is responsible
for most of the power of 5 that multiplies the numerically dominant functions A% (z;) and
Fi(z;) in Eqgs. (3.40) and (3.42), the features observed at LO carry on at the NLO level,
lending support to the idea that they are not due to a numerical coincidence, and remain
valid at the NNLO, too.

3.4 Non-Perturbative Corrections

In order to calculate the final rate we have to pass from the calculated b-quark decay rate
to the B-meson decay rate. Going beyond leading order in the 1/m, expansion the first
subleading corrections are of order 1/mj. If one neglects perturbative QCD corrections
and assumes that the decay B — X,v is due to the operator @7 only, the calculation of
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these subleading contributions amounts to work out the imaginary part of the forward
scattering amplitude

Tryan0) =i [ ' (BIT(Q) (2),Q3(0)} B ™. (3.40)

Using the OPE for T{Q2'(z), Q2(0)} and HQET methods, the corresponding decay width
reads

(8]
P (B = Xev) = 55 5 m?

SNP

fr 2

Grmf Vvl [C7 )" (1452 ) 3
modulo higher terms in the 1/my expansion. Here d) parameterizes non-perturbative
corrections to the radiative B-meson decay rate. Following references [207,208] it can be

expressed in terms of the HQET parameters A; and A, as

1

The non-perturbative correction (3.47) is around 4% in magnitude. The discussion of non-
perturbative effects becomes much more complex if we take into account operators other
than Q7. In this case it is no longer possible to apply the OPE in analogy to B — X e,
because the b-quark annihilation and the photon emission may now be separated in space-
time by more than 1/Aqcp with Agep being the QCD scale parameter. The contribution
of Q% to the branching ratio of B — X, has been analyzed in reference [243] with the
help of fragmentation functions. Important non-perturbative effects have been found for
photons with energies below 1 GeV, which are practically unobservable at the inclusive
level, because of the overwhelming b — ¢ background. For the current experimental cut-
off of 2.0 GeV [30] a reliable approximation is thus given by the perturbative contribution
to the b-quark decay rate from the matrix elements of Q3. The accuracy of this approxi-
mation does not need to be known precisely, because the perturbative contribution of QF
is less than 3%. Due to the smallness of the Wilson coefficients C5(my)-Cs(my) similar
conclusions can be drawn for the QCD penguin operators. Perturbative effects for their
matrix elements are even smaller than that of Q3. As far as non-perturbative effects are
concerned, one might worry about the production of virtual vector mesons that convert
into a real photon. However, the creation of such tranverse mesons is impossible in the
factorization approximation, because (J3-()s contain no magnetic type currents. In ad-
dition, deviations from the factorization approximation are either suppressed by g or
by Aqcp/my, as has been shown in references [244,245]. Therefore its seems reasonable
to conclude that the total non-perturbative 1/m; correction to the branching ratio of
the B — X,v decay is well below 10%, that is, it is smaller than the inaccuracy of the
perturbative calculation.

There are also non-perturbative corrections that scale with 1/m? which are induced
by the interference of the four quark operator Q;-Qg with the magnetic operator Q7. A
particular non-perturbative contribution comes from the diagrams shown in Fig.3.6. It
arises when the gluon is soft and interacts with the spectator cloud of the b-quark inside
the B-meson. This is the effect first pointed out in reference [209] and further discussed
by several authors [210-213]. Staying with the quark picture, one may evaluate the vertex
diagram depicted in Fig.3.6 (a) directly. To first order in the gluon momentum &, one
finds, that the vertex function is proportional to the following local operator

egsQe
Qvg =

= A 2m? (ELVMTabR) e””ApGﬁga”FAp 5 (349)
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Q’YT

s T b

Figure 3.6: (a) Feynman diagram from which the operator ()., arises. The second diagram
with the photon and gluon interchanged is omitted. (b) Relevant cut-diagram for the
interference of @2 and Q7. Analogous diagrams with more gluons give effects suppressed
by additional powers of 1/m..

where our sign convention is such that €"?* = +1. Then working out the cut-diagram

shown in Fig.3.6 (b), one obtains the non-perturbative contribution I's 7,(B — X,v) to
the decay width, which is due to the interference of @, and Q7. Ignoring the small terms
in the unitarity relation of the CKM matrix associated with the u-quark, one can write
ViV = —ViV,, and finally obtains

e! \ o O
Loz (B — X,7) = mG%mg Vi Vil |C7 ()| s (3.50)

2 Y
C

with the 1/m?2 correction to the radiative B decay rate given by

SNP _ 1)\ CZ(mb)

Me N2 o . (351)
9 C?’ﬂ(mb)

This result corresponds to the leading term in an expansion in the ratio t = k - p/2m?,
where p denotes the momentum of the photon. As the expansion parameter is approxi-
mately myAqep/2m? ~ 0.3 rather than A /m? ~ 0.03, it is a priori not clear whether
formally higher order terms in the 1/m, expansion are numerically suppressed. Although
the presence of unknown matrix elements in these contributions does not allow a definite
estimate of their actual size, the detailed investigations [211-213] have shown that these
contributions are weighted by very small Wilson coefficients. Consequently, these higher
order contributions are expected to be substantially smaller than the leading order term
(3.50), and the 3% enhancement from 1/m? corrections found in reference [213] appears
to be a good estimate of the long-distance contributions to the B — X,v decay rate,
stemming from the interference of @, and Q7.

Notice that the corresponding long-distance contributions from wu-quark loops are
CKM suppressed in the B — X v case, but this does not hold in the case of B — Xy7.
Naively, one could expect that the corresponding contributions from u-quarks scale with
1/m?2. However, following the approach [213], it is easy to see that the general sbyg vertex
function cannot be expanded in the parameter ¢ in this case. Yet an expansion in inverse
powers of ¢ is reasonable. The leading term in this expansion scales like 1/t ~ m2/k - p
and therefore cancels the artificial 1/m? divergence present in the prefactor of the ana-
logue of @), involving a u-quark [213]. Thus, although the expansion in inverse powers
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Figure 3.7: Diagram contributing to the forward scattering amplitude of Q5 at O(ay).

of ¢ induces non-local operators, whose matrix elements cannot be estimated reliably, one
expects from naive dimensional counting, that the leading term scales with Aqcp/m.

Finally, let us emphasize that a systematic analysis of non-perturbative effects in the
matrix elements of ()1 and Q2 at first order in «y is still missing [246]. Such an analysis
would require to calculate the forward scattering amplitude induced by diagrams like the
one presented in Fig. 3.7. In this case rigorous techniques such as the OPE do not seem to
be applicable, and no sufficiently precise argument can be given that these contributions
are either suppressed by Aqcp/my or Agep/me, or small for any other reason [246].

3.5 Branching Ratio of the B — X,y Decay

At this point, we are ready to use the calculated coefficients of the magnetic penguin
operators Q7 and QF at i, as an input to determine the NLO expression for the B — X,y
branching ratio. Making an explicit lower cut on the photon energy E, > (1 — 0)EN'*™ =
(1 — &) mp/2 in the B-meson rest frame the branching ratio of the B — X,y decay can
be written in the following compact form:

2 (6767
E(P((S) +N(@5)), (3.52)

VisVib
Veb

BR(B — XS'Y)E‘Y>(1_§)E’I;1aX = BR(B — Xcepe)exp

where the electromagnetic coupling o = 1/137.036 is the fine structure constant renor-
malized at k* = 0, as is appropriate for real photon emission [214]. The function P(¢) is
given by the perturbative ratio

6. (3.53)

™

‘ Vub

2T(b = Xo7)my>(1-5)Emex ViV
Vs -

['b— X,er,) Vb

and N(§) denotes the non-perturbative correction. Notice that contrary to the standard
approach [186,196,216,218,247], we have chosen the charmless semileptonic decay rate

Gy ol as(m) (50 8
IN(Y Xu Ve ) = — = Vu ? 1 i — —-n? @ 2 3.54
( — ev ) 1927r3 | b| |: + 47r < 3 371' + (as)ﬂ ( )

corrected for the appropriate CKM angles to be the normalization factor in the definition
of P(0). This particular choice of normalization introduced in reference [180] is motivated
by the need for separating the problem of the determination of the c-quark mass from
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the problem of convergence of the perturbation series in the partonic decay b — sv. This
modification is offset by the factor

*T(B = X.ei,)
T'(B — X,en,)’

Vub
Ve

C = ‘ (3.55)

in the expression (3.52). Notice that C' can either be measured or calculated. A determi-
nation along the lines of the upsilon expansion [248,249] of this so-called non-perturbative
semileptonic phase-space factor leads to C' = 0.575 £+ 0.02 at NNLO [180], which will be
our input in the numerical analysis of the branching ratio of B — X v presented at the
end of the next chapter.

The perturbative quantity P(d) is given by

2

2
P(5) = ‘(1+ i) M—”;) () Ky + Ko + 2ew| + B(6), (3.56)
41 m;

where K; denotes the contribution to the b — sv amplitude stemming from top loops.
K, summarizes the contributions from the light quark loops, among which the charm
loops are by far dominant. The electroweak correction to the b — sy amplitude that
will be discussed in Chapter4 is denoted by £ey. Realize that the mass ratio r(uy) =
My zis(fiw) /Me,1s appears in Eq. (3.56) because we keep the MS mass my, yig(juy) renor-
malized at jy in the ¢-quark contribution to the Wilson coefficient of @7, while all the
kinematical factors of m; are expressed in terms of the so-called bottom 1.5 mass my g,
which is defined as half of the perturbative contribution to the Y-meson [248,249]. As
argued in those articles, expressing the kinematical factor of my in inclusive B-meson de-
cay rates in terms of the bottom 1.5 mass improves the behavior of the QCD perturbative
series with respect to what would be obtained using the pole mass 1y, pole OF mb7m(mb).
At NLO the mass ratio r(py ) reads

ovs (1) (7’462 15926

12 'rn2 2
ar \1587" 1587 +2_35§0) ln—5> +—as(mb)2] , (357

r(py) = 0% {1 +
Hw n 02 9
with 8 given in Eq. (3.12). Following reference [180] the O(a?) term in the above
equation has been included along the lines of the upsilon expansion. Its effect on r () is
at the level of 1% only, and it is canceled by an analogous term in the ¢-quark contribution
K, as we will see in a moment.

The bremsstrahlungs function B(¢) arises from the b — syg and the b — sygq tran-
sitions with ¢ = u, d, s. It is the only d-dependent part of the perturbative function P(4)
and will be given in Appendix C. We recall that the theoretical prediction for the branch-
ing ratio diverges in the limit 6 — 1, because of a logarithmic singularity in B(¢), which
reflects the soft-photon divergence of the b — syg subprocess. On the other hand, the
O(ay) to the contribution to B(J) changes the B — Xy branching ratio by less than 4%
if the cut-off energy E, is varied between 1 GeV and 2 GeV. Therefore we do not split the
top and charm contributions to this function, as it would not improve the overall accuracy
at all, but would make the formulae unnecessarily complicated.

Before giving the explicit expressions for K; and K., it is worthwhile to remember that
the B — X,v decay rate is proportional to mg’ypole present in the two body phase space
and to m, 575(mp)* coming from the normalization of the magnetic type operator Q7. On
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the other hand, the semileptonic decay rate (3.54) is proportional to mj ., present in

the three body phase space. Thus the m} factors present in both rates differ by a O(a)
correction which is easily obtained from

ole . 16 mj
M, pol 14 « (:U’b) <_ — 41n ) + O( ) (358)
mb,lst(Mb) Am 3 i

and has to be included in order to find the explicit result for the perturbative quantity
P(§) beyond LO approximation.

Finally we have to recall that as far as the NLO analysis of the B — X, branching
ratio is concerned, only the LO contributions of the Wilson coefficients of the QCD pen-
guin operators ;—Qs are needed. The coefficient functions C” (/Lb)f(]éo)(ub) are equal
to those found in reference [196]. They read

CO (p) = > — ™

2 1
Cy () = Sn" + o™

3 3

(0) 2 1 as ag ar ag
Cs/ (w) = &77 — 2—777 — 0.06591% + 0.0595n" — 0.0218n"" + 0.00355n"® ,

(0) 1 a3 1 a4 as as ar as (3.59)
Cy/ (1w) = ﬁ” + 977 + 0.0237n* — 0.0173n"¢ — 0.1336n°" — 0.03167** ,

(0) 1 as 1 a4 as ag ar asg
Cs/ (w) = —1—2677 + mn + 0.0094n" — 0.0100n"¢ 4+ 0.00101"" — 0.0017n"*

(0) 1 as 1 as as a6 ar as
Cs (1) = —@77 — %77 + 0.0108n" 4 0.0163n"¢ 4+ 0.0103n"" 4+ 0.0023n"* .

Bearing all this in mind, we are now able to write down the NLO expressions for the
functions K; and K. entering the perturbative quantity P(§). Our result for the ¢-quark
contribution K; reads

K= (1 -2 (mb>2) g e + 5 (1 = o) Fin)]

1 12523 7411 2
{Et Ty ZeknakJrzs _ 77% <_77A'i(xt) _ |:— S s 2

2 3174 4761 9"

2( m2 3 ,ﬂ 4 50092 1110842 16
2 (e 2 P ) A () — SpF . _ g
(n 2 4Ty )} o(m) = 3nFi(w) + {4761 357075 | 27"

16 m?2 3 2 2 (4 2745458 38890
20 (28— 2 8 | i) o (et - [ - 2080

357075 14283
4 .8 2 3 2
— g i) — (m% ~ i %) }Fg(xt)> } , (3.60)

b t
and agrees with the expression for K; given in reference [180].” Notice that the O(a?)
term in the above equation has been included along the lines of the upsilon expansion.
Its effect on K is at the level of 1% only, and it is compensated by an analogous term in
the ratio r(uyw ), as has already been mentioned.

"Note that the terms proportional to In p2, /m? in Eq. (3.60) differ from the analogous ones in reference
[180], because our definition of the two-loop functions Af(z;) and F{(z;) is different from the one used
in that paper.



74 3. Anatomy of the B — X,y Decay
k 1 2 3 4 5 6 7 8
dy, 1.4107 | —0.8380 | —0.4286 | —0.0714 | —0.6494 | —0.0380 | 0.0185 | —0.0057
dp | —17.6507 | 11.3460| 2.4692|—0.8056 | 4.8898 | —0.2308|—0.5290 | 0.1994
JZ 9.2746 | —6.9366 | —0.8740 | 0.4218 | —2.7231| 0.4083| 0.1465| 0.0205
cig 0 0 0.8571| 0.6667| 0.1298| 0.1951| 0.1236| 0.0276
CZZ 0 0 0.8571| 0.6667| 0.2637| 0.2906|—0.0611 | —0.0171
ciff 0.4702 0 —0.4268 | —0.2222 | —0.9042 | —0.1150 | —0.0975| 0.0115
Table 3.3: Magic numbers entering the expression for K.
The NLO expression for the light quark contribution K, is given by
> avs (1) (0) mj 145
_ a s w
KC_ZQ’]k{dk—FT{BS Clkdk(lnu—g—i—’r]lnM—VQV) (361)
k=1
7 7 KT 7 Ti Vi, Vu s
+dy + dln + dia(z) + dib(2) + d?m} } + %bw (n™ +n™) (a(2) + b(2)),
Vvtsvl-fb 4m

where z = m2/mi and B has been reported in Eq. (3.12). The functions a(z) and b(z)
originate from the two-loop b — sy matrix elements of the four quark operators ); and
@2, which were calculated independently by two groups [203-205], and will be given in
Appendix E. The relevant diagrams are shown in Fig.3.8. The magic numbers dp, dk,
dz, db and d”r necessary to compute K. can be found in Tab. 3.3. In their evaluation all
relevant two- and one-loop matrix elements, namely

833 a(z) b(z) 40 |
reg=—— —> — —= 4+ —1im,
b7 79 3 3 243
1666 80
=49 2M(2) — —ir,
2 513 a(z) + 2b(2) T
2392 8t 32 56
=2 2T L2, —a(1) + 2b(1) 4+ i,
761 4 16 a(l) 5 148 .
gm0 x, L D) 4+ 2b(2) — ——irr,
4 729 ov3 21T 6 T3 (1) +2b(2) = 5 5im (3.6
56680 321 128 896 '
Poy = % + - X, — 16a(1) + 820(1) + i,
5710 1670 64 10 44 92296
= T R, — —a(l) + —b(1) + 12 9 _ 222
Tos = o ov3 2T 3 a(l) + 3 b(1) + 12a(2) + 200(2) 513
32 8,
"vs =g T g™ o
. “_8, .8,
s = —— — =T + —im,
895 7 "9 T 97 9

have been taken into account. Consequently, our results for the magic numbers dk, d k>
d?, d® and di" agree with those presented in reference [206]. The constants X, a(1)
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Figure 3.8: Charm loop contributions to the matrix element of the four quark operators.

and b(1) entering the matrix elements of the QCD penguin operators Q3-Qs are given in
Appendix E. Although the inclusion of the two-loop matrix elements of the four quark
operators (Q3—Qs calculated by Buras et al. [206] is necessary in order to complete the
NLO QCD calculation of B — X, their effect on the branching ratio is small: It leads
to a reduction of around 1%. Notice that, such a small effect of the non-zero values of
3,5 T6,s is due to the smallness of the Wilson coefficients of the corresponding operators.

As discussed in Section 3.4, the non-perturbative corrections to the branching ratio of
the B — X,y decay are only partly known. Neglecting higher order terms in the HQE, as
well as non-perturbative effects due to higher intermediate cc states, to light quark loops
and to the motion of the b-quark inside the B-meson we find that the non-perturbative
quantity N(0) entering Eq. (3.52) is given by

A

27
mC

|
N(0) =-1¢ (77‘5_g - 772%) (T(uw)Kt(O) + K§°)>

(3.63)
where Kt(o) and Kéo) denote the LO contributions to K; and K., which are obtained
from Egs. (3.60) and (3.61) by neglecting the O(c;) as well as the O(a?) terms. Realize
that in the above expression for N(d) the calculable Agcp/m? corrections stemming from
the interference between the current-current operators 1, (2 and the magnetic photon
penguin operator Q7 are taken into account, while the calculable AéCD /mi corrections to
the semileptonic and the radiative B decay have canceled out because of our normalization
to the charmless semileptonic decay rate.
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Chapter 4

Electroweak Effects in Radiative B
Decays

This chapter is devoted to the analysis of electroweak effects in the total branching ratio
of B — Xv. We compute the complete O(a) Wilson coefficients relevant for radiative
decays of the B-meson in the SM. This is a necessary step in the calculation of the
O(aa®L™) corrections and improves on existing analyses [214-219]. The main difference
and technical hurdle with respect to reference [218] is due to the presence of virtual photons
in the two-loop diagrams. The resulting IR divergences are removed in the matching with
the effective low-energy theory of quarks, photons and gluons. Several subtleties arise
in the calculation, mostly linked to the presence of unphysical operators. We show that
the leading term of a HTE of our result differs from the one obtained in the gaugeless
approximation [215] where only the top Yukawa couplings are considered. Subsequently
we discuss the origin of the discrepancy and provide a criterion for the validity of the
gaugeless approximation. As a byproduct of the calculation we also obtain the O(«)
correction to the Wilson coefficient of the current-current operator (2. Moreover, we deal
with the RGE of the Wilson coefficient functions and illustrate how O(aa?L™) effects
should be taken into account in the calculation of the integrated branching ratio. We also
include all relevant O(«) matrix elements and conclude reconsidering the SM prediction
of the B — X, branching ratio.

4.1 Introduction and Motivation

Although generally small, two-loop purely electroweak effects are sometimes very im-
portant: An example is provided by the precision observables of the SM, like the ef-
fective sine measured on the Z pole and the W* mass, where radiative corrections up
to O(g*m?2/M?2) [250,251] are now routinely included in the analysis with important
consequences in the electroweak fits [1-3]. Moreover, by fixing the normalization of the
electroweak coupling, two-loop effects reduce the electroweak scheme dependence of the
SM prediction, which can be quite large also for FCNC processes [252].

The study of electroweak corrections in the B — X,y decay began with a work
by Czarnecki and Marciano [214], who pointed out that large logarithm of the form
In(m2/m3) are absent when the fine structure constant o = 1/137.036 renormalized at
k* = 0 is used in the overall normalization of the partonic decay rate. This reduces the
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branching ratio by roughly 5%. Another type of large logarithm that might enhance some
of the electroweak corrections is In(m?/M?2), that is, the same logarithm that is respon-
sible for the huge QCD enhancement of the b — sy amplitude. The leading logarithms
of QED origin are formally of order O(a/as), so it might be numerically relevant, given
the accuracy of Eq. (1.2). However, it has been demonstrated in references [214,216,217]
by performing explicit calculations, that this effect is negligible, as it amounts to a reduc-
tion of only 0.7%. As heavy weak bosons decouple, genuine electroweak corrections affect
only the initial conditions of the Wilson coefficient functions. They are not logarithmi-
cally enhanced, but can be more important than purely QED effect. Unfortunately, our
knowledge of genuine electroweak effects in b — sy was limited to the subset of two-loop
fermion loop corrections computed in reference [214] and to the leading term in the HTE
computed by Strumia [215]. In fact, the two results are numerically quite different as they
amount to a reduction of about 2.2% and of less than 0.7%, respectively, on the Wilson
coefficient of Q)7 evaluated at the electroweak scale. The leading term of the HTE was
calculated in the article [215] using the gaugeless limit of the SM, that is, in a Yukawa
theory where the heavy top couples to the Higgs doublet, setting M,, = 0 and keeping
the Higgs mass M, finite and arbitrary. In the presence of external gauge bosons, these
can be considered as background sources. This approach presents a few limitations that
motivated our calculation presented here:

e The lowest order contribution to the Wilson coefficient of @7 is a function of the
top mass whose HTE converges very slowly. Using x; =~ 4.7 and writing explicitly
the numerical values of the successive O(1/z}) terms, it reads

c7(M,,) = —0.333 — 0.010 + 0.070 + 0.046 + 0.021 + ... = —0.195,  (4.1)

where the ellipses represent contributions of O(1/z}) or higher. The leading HTE is
therefore unlikely to provide anything more than an order of magnitude estimate of
the two-loop electroweak contribution. In this respect, the similar case of B® — B°
mixing [252] is very instructive: For realistic values of the top mass the complete
two-loop electroweak correction is not well approximated even by the first three
terms of the HTE and the leading HTE term is numerically far from the complete
result.

e Even assuming the leading HTE term to be representative, it should not be expected
to give an accurate result for a light Higgs mass, My = O(My ), because it is
obtained by setting My, = 0[253]. On the other hand, present electroweak fits show
a decisive preference for a light Higgs boson, M, < 193GeV at 95% confidence
level [3].

e The gaugeless limit has often been used to compute the leading HTE term, but
it is known [254] that in some cases it does not reproduce the correct result. In
the following we explain why it fails for radiative B decays and provide a general
criterion for its use.

A complete calculation of all electroweak effects in radiative B decays in the framework
of effective Hamiltonians is a very complex enterprise which involves all physical operators
introduced in Eq. (3.2). Ideally, one would like to have all O(aa?L™) corrections under
control. The procedure is summarized, for instance in reference [240]. Its necessary steps
would be:
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(i) The calculation of the two-loop O(a)) matching conditions for the magnetic operators
Q7 and Qf at a scale O(M,;) as well as the O(«) contributions to the coefficients
of various four quark operators.

(ii) The QCD and QED evolution of the Wilson coefficients down to the B-meson mass
scale, including the calculation of the two- and three-loop O(«as) anomalous di-
mension matrix.

(iii) The calculation of the one-loop O(«r) matrix elements of the magnetic type operators
Q7 and Qf, and the computation of the two-loop O(«) matrix elements of the four
quark operators )1—Qs.

(iv) The computation of the O(«) bremsstrahlungs corrections arising from the b — svyg
and the b — sqq transitions with ¢ = u, d, s.

Our analysis in reference [218] was based on the simplifying assumption that terms
vanishing in the limit s;; — 0 can be neglected, unless they are enhanced by powers of the
top mass m;. In this case, introducing o, = g?/(47), all electroweak corrections are in fact
O(awa™L™) or O(am?/MZa"L") and are included by step (i) only. Moreover, as all light
virtual degrees of freedom are removed the calculation of the Wilson coefficients simplifies
considerably. In particular, all the diagrams with virtual photons and all IR divergences
drop out of the two-loop calculation in a gauge-invariant way. Although reasonable, the
assumption made in the latter article should be verified. In particular, Z boson corrections
to the one-loop b — sy magnetic penguin diagrams give rise to O(s2,) terms which are
not formally suppressed by an electric charge factor Q% = 1/9 or Q,|Qq| = 2/9, unlike the
purely QED corrections of steps (ii) and (iii). This happens, for instance, because of the
mass difference between W= and Z bosons. Such O(s2,) terms originate at the electroweak
scale and affect only step (i). In a recent article [219] we therefore extend our subsequent
calculation and computed the full O(«) contribution to the Wilson coefficients of the
b — s magnetic operators, thus completing step (i). In what follows we will summarize
the progress made in the papers mentioned above, extending them by calculating the
two-loop matrix elements of the QCD penguin operators (J3—Qg, that is, the last missing
element of step (iii). Thus the only electroweak O(«a) corrections that remain unknown at
present are the two- and three-loop O(aq;) anomalous dimension matrix and the O(«)
bremsstrahlungs corrections. As these corrections are enhanced neither by leading large
logarithms nor by sy, we can practically be certain about their irrelevance.

4.2 Two-Loop Matching for the Magnetic Penguins

In order to obtain the Wilson coefficients of the magnetic operator 7, we calculate the
off-shell amplitude b — s in the full SM and in the effective theory at O(«) and match
the two results. Retaining only the leading terms in 1/M?, the off-shell amplitude in the
full theory can be written in the following form*

_Gr
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In Egs. (4.2) and (4.5), the sum runs over Q1-Q16, @7, QF and, as we will explain later on, some
evanescent operators.

Aran(p) = VisVis ZAi(u) (57 1Qi(p) | B)© (4.2)
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where (57]Qi(12)] b)® are the tree level matrix elements of the operators in Eq. (3.2). The
perturbative expansion of the coefficients A;(u) reads

Ail) = A () + = AL (). (4.3)

Realize that all UV divergences in AEQ () are removed by electroweak renormalization.
The actual procedure we have adopted follows closely the simple framework presented
in references [218, 219, 252] and will be illustrated in great detail in Section4.4. After
electroweak renormalization, the complete corrections to the amplitudes are of course
UV finite, but some of the diagrams containing a photon develop a IR pole. In order
to regularize these IR divergences, we have adopted two different methods and found
identical results for the Wilson coefficients. In the first method the IR divergences are
regulated by quark masses [186], while the second method consists in using dimensional
regularization for both UV and IR divergences [187].

A second step involves the calculation of the off-shell amplitude in the QED effective
theory. Since we calculate the two-loop amplitudes in the background field gauge we
apparently need effective vertices with both background and quantum photons. Inter-
estingly, the latter introduce some gauge-variant operators at O(«). In fact, on the full
theory side there are heavy particle subdiagrams that are coupled to quantum photons
and contribute to gauge-variant operators not included in the operator basis of Eq. (3.2).
Two examples of such Feynman graphs are shown in Fig.4.1. The appearance of gauge-
variant operators is due to the R¢ gauge coupling of the quantum photon with the W+
and the would-be Goldstone boson ¢* and is different from what happens in the case of
the off-shell O(«;) matching [186,187]. Indeed, at O(«ay) only quark-gluon couplings and
trilinear quantum-quantum-background gluon couplings are relevant and no gauge-variant
operator is induced.

We have explicitly verified that it is not necessary to take any gauge-variant op-
erator into account on the effective theory side. This follows from well-known theo-
rems? [257-266] on the renormalization of gauge-invariant operators: One is that gauge-
variant operators that mix with gauge-invariant operators can be chosen so that they are
all BRST-exact, that is, they can be written as the BRST-variation of some other oper-
ators, modulo terms vanishing by the EOM. Therefore, while gauge-invariant operators
generally mix into gauge-variant operators®, the opposite is not true. Next, physical ma-
trix elements of BRST-exact operators are zero. Since we are eventually interested in the
matrix elements of physical operators only, we thus do not need to include gauge-variant
effective operators in our basis. Of course this holds only as long as the regularization
respects the symmetries, like it is in our case.

In a similar way and because of the same theorems, the operators that vanish by the
EOM in our operator basis (3.2) do not mix into the physical operators of the same ba-
sis, and the renormalization mixing matrix is block triangular. This property drastically
simplifies the computation at hand, as we will see in a moment. In particular, the renor-
malization mixing matrix Z is such that Zi; = 0 when (@); is EOM-vanishing and @); is a
physical operator.

2The theorems apply to Yang-Mills theories, but extend to the full SM after imposing the antighost
equation [255,256].

3At O(a) the operators in our basis do not actually mix into gauge-variant operators, as we have
checked by explicit calculation.
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Figure 4.1: Subdiagrams involving the coupling of a quantum photon v to the W+ and
its corresponding would-be Goldstone boson ¢* contribute to gauge-variant operators, as
explained in the text.

We have seen that effective vertices involving quantum photons are induced in the cal-
culation. Even though contributions to gauge-variant operators turn out to be irrelevant,
the distinction is important in the case that the calculation is performed using quark
masses to regularize IR divergences. For example, it turns out that the gauge-invariant
part of the off-shell b — sv effective vertex depends on whether the external photon is
quantum or background.* This can be explained by noting that the operators involving
only background fields are combinations of truly gauge-invariant operators and of opera-
tors containing also quantum gauge fields. This follows, for example from a decomposition
of the kind ) = P + ieQ,(), where we used a hat to denote the covariant background
derivative and (), for the quantum photon field. The operators containing quantum gauge
bosons eventually decouple from the calculation, as they are not gauge-invariant. Because
of the above decomposition, the coefficients of the operators involving only background
fields are related to the coefficients of the operators in Eq. (3.2), as can be seen using ST1s
of the kind used in reference [267].

The effective theory calculation depends crucially on the IR regularization. The first
method mentioned above, that is, quark masses as an IR regulator, can be applied at
the diagrammatic level [186]. The effective theory diagrams are obtained by replacing
hard subdiagrams involving only heavy masses in the two-loop SM amplitudes with their
Taylor expansions with respect to their external momenta. In principle, this method does
not require a discussion of the effective operators. On the other hand, it is relatively
complicated to implement. Here we limit our discussion to the second method only,
following reference [187]. In order to get the renormalized off-shell amplitude on the

“The one-loop matching for b — s¥ and b — sy will be performed in Appendix B.
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effective theory side, we need to reexpress the Hamiltonian (3.1) in terms of renormalized
quantities. The relations between the bare and the QED renormalized quantities are as
follows

€y = Zeea Mpo = Zmbmba Ag = Ze_lAH, qo = Z(}/Qqa i,O Z C ]27 4 4)

with Z., Z,,, Z, and Z;; being the renormalization constant of the charge, the b-quark
mass, the quark fields and the Wilson coefficients, respectively. Notice that the rela-
tion between the renormalization of the gauge field and of the electric charge is a direct
consequence of the QED WTTI.

After renormalization the off-shell amplitude in the effective theory is given by

@M%-?%%ZC V237, (57 1Qu(1) B) - (45)

where Z denotes a product of Z,., Z,, and Z, depending on the particular structure of
the operator (; and the Wilson coefficients may be expanded in powers of « as follows

Cilw) = C0 () + =CL (). (4.6)

As long as we are only interested in the Wilson coefficient of the magnetic photon
penguin operator, it is sufficient to keep only terms proportional to (sy|Q7(u)|b) in
Eq. (4.5). Using the short hand notation (Q7) = (sv|Q7 ()| b), the part of the off-shell
amplitude in the effective theory needed for the matching of C7 () is then written as

Gr

AeffN_\/—

ViVib | ZgZm, Y CiZjiay + Zq (Zm, — 202,13

J

Q7> ) (47)

where all coefficients are understood at the scale u. Notice that the second term in the
above equation proportional to Zj3 originates from the renormalization of the EOM-
vanishing operator (Q3:

Quz0 = Qiro + Q70 = Z,Qi7 + Z4Z, Q7 = Zy| Qi3 + (Z, — 1) Q7| - (4.8)

Realize that the QED quark field renormalization on the effective side can be avoided as
it cancels in the matching against the photon contribution to the corresponding term in the
SM. The same applies to the renormalization of the b-quark mass, which is retained only
up to linear terms. Consequently, after checking the cancellation of the UV divergences
in Eq. (4.3) we have omitted the photon contributions in the left- and right-handed down
quark wave function renormalization constants 5ZZ~dj’L and 5Z5’R as well as in the b-quark
on-shell mass counterterm 67,,, and simultaneously set Z,,,, and Z, to unity in the effective
theory. This simplifies the following considerations.

Adopting the MS scheme for the operator renormalization the corresponding renor-
malization constants can be written as

B 01 1 0,11 @02 . Lz 1 )2

47(' 4



4.2 Two-Loop Matching for the Magnetic Penguins 83

where the coefficients are labeled Zi(f)’lm, with & being the order in «, [ denoting the order
in the 1/e expansion and m standing for the number of loops involved in the calculation.

Apparently, the terms Zi(f)’om in Eq. (4.9) imply a finite renormalization of ;. Indeed,
in situations where evanescent operators are present, the standard practice is to extend
the MS scheme and to allow for a finite operator renormalization. The finite terms Zi(f)’om
differ from zero when (); is an evanescent operator and (); is not, and their values are
fixed by requiring that renormalized matrix elements of evanescent operators vanish in
four dimensions [189,268-271]. This requirement also ensures that evanescent operators
do not mix into physical ones [189,268,269]. Furthermore, in the case of the b — sy
calculation, it is well-known [234,272] that some four quark operators can mix into the
magnetic operators through one-loop diagrams at zeroth order in g and . Thus, not
only we have finite terms in Eq. (4.9), but they appear at the lowest order in the coupling
constant.

The renormalization constants Zi(f Hm are found by calculating the UV divergent parts
of Feynman diagrams in the effective theory. Within the scope of this computation, it
is essential to carefully distinguish UV from IR singularities. As explained in reference
[273], this can be done most easily by introducing a common mass parameter into all
the propagator denominators including the photon ones. Apart from the finite terms
Zgc )0m 211 renormalization constants in the effective theory up to two loops are known
from previous anomalous dimension calculations [216,217]. As we shall see later on, only
five entries of the anomalous dimension matrix mixing physical operators are relevant in
the present computation and we have recalculated these elements to check the results
mentioned above. Our results are in full agreement with references [216,217] and we will
give the numerical values of the required renormalization constants in Eqs. (4.13), (4.15),
(4.19) and (4.20).

The computation of the necessary matrix elements on the effective side is trivial, as
we can set all the light particles masses to zero.> Accordingly, all loop diagrams on the
effective side vanish in dimensional regularization, because of the cancellation between
UV and IR divergences. Therefore only the tree level matrix elements (Qi>(0) are different
from zero and higher order matrix elements do not play any role in the matching. Notice
that due to the cancellation of UV and IR singularities the UV counterterms present in the
tree level matrix elements reproduce precisely the IR divergences in the effective theory.
Furthermore, the IR divergence on the effective side has to be equal to the IR singularity
on the SM side, to guarantee that the final results of the Wilson coefficients are free of
IR poles. Eventually, all 1/e poles cancel out in C7 (), if the full and the effective theory
are matched in the correct way.

Bearing all this in mind, we are now able to extract from Eq. (4.7) those terms which
are actually needed to calculate the O(«) correction to the Wilson coefficient of the
magnetic operator. First of all, we have to perform the tree level matching by computing
the relevant diagrams for the various operator insertions. At the electroweak scale only
Co(p), CF (1), C§ (1) and C11(p)—C16(p) are found to be non-vanishing at leading order.
However, due to the triangularity of the mixing matrix the coefficients C1;(u)-Ci6(1) do
not contribute to the first term in Eq. (4.7) and therefore will not affect the matching
conditions at the next order. Furthermore, as we set Z,,, equal to one also the term

5We include only terms that are linear in the b-quark mass. These originate solely from the use of the
EOM.
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proportional to (Z,, —1) in Eq.(4.7) does not contribute to C7(u) at O(«). Using
Zy, = 1 we thus obtain
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It is quite remarkable that, with the exception of the last term, only physical operators
play a role in this expression, even though the calculation has been performed off-shell.

The matching procedure between the full and the effective theory establishes the initial
conditions for the Wilson coefficients at a scale uy, = O(My,). Comparing Eqs. (4.2), (4.3)
and (4.10), the matching condition Ay (piw) = Aeg(iw) translates into the following
identities

C7 () = AT (), (4.11)

1
1 () = A7 () = = (2505 °C8 () + 287 1 () )

1
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1107 )

} (@) . (4.10)
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- SR ) = 3 (208 + 120 ) BV ),
i=1
from which the Wilson coefficient of the magnetic operator up to first order in o can be
calculated. The leading order initial condition for the Wilson coefficient of ()5 is simply
C’éo) (w) = 1 and the elements of the mixing matrix relating physical operators needed
for the next leading order matching of C7(uy, ) are given by

58 1),22 nir 8
Z§7) = _ﬂ?), Zé 7)7 07 Zéfy)ﬁ'y = § : (413)

Note that the first two renormalization constants, related to the mixing of the operators
Q)2 and @7, are obtained from a two-loop calculation, as opposed to Zé,ly 7171 which only
involves a one-loop calculation. Whereas the one-loop renormalization constant is regu-
larization and renormalization scheme independent, the two-loop element Zé )12 5o scheme
dependent. The value given above corresponds to the NDR scheme.

For what concerns the last term in Eq. (4.12), it is necessary to introduce the following

evanescent operators
1 1
QF = (uwbe) D (@"a) + (1 + ae) (5@, - EQE,) ,
1 1
QF = (i) Y, @ular*a) + (14 ) (30— @) (@)

QF = (1) X, Qulawr*an) — (14 axe) (305 — 150

where a; are arbitrary constants. In the NDR scheme inserting these operators into the
one-loop photon penguin diagrams yields

0,0 4 O 0),01

ZEl N § By, 7y — _ﬁ ) ZE3,7’y - 2_7 ) (415)
0 0),11 0),11
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Realize that the last term in Eq. (4.12) does not depend on the special choice of evanescent
operators adopted above, but it does depend on the choice of physical operators. For
instance, in the operator basis of references [236,237], all evanescent operators that project
on )7 have vanishing Wilson coefficients, both at O(«as) and O(«). Therefore, in this
basis evanescent operators do not affect the matching equations and it is not necessary to
introduce them in Eq. (4.9). Curiously, in the operators basis of Eq. (3.2) the same holds
only at O(as).

Let us now turn to the matching for the Wilson coefficient of the chromomagnetic
penguin operator Q4. The calculation for the b — sg off-shell amplitude proceeds in the
same way as above. Adopting the notation (Q%) = (sg |Q%(1)| b), we see that the analogue
of Eq. (4.10) is
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from which we obtain

8 () = AL () (4.17)
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In the NDR scheme the renormalization constants which describe the mixing of physical
operators into physical ones read
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and those relating evanescent and physical operators are given by
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From the next leading order matching relations (4.12) and (4.18) one observes that
the O(e) terms of the leading order Wilson coefficients C7® (1) and CZ© (1) yield
a finite contribution when being combined with the 1/¢ poles proportional to the O(«)
terms of the renormalization constants. The initial conditions C’;’S)(MW) and ng)(uw)
are therefore obtained from the next leading order relations (4.12) and (4.18), but they
require the leading order matching to be performed up to O(¢). Decomposing the leading
order Wilson coefficients accordingly,

Ci () = Cfg () + € CL (1w (4.21)
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the results for the O(1) terms of C’?(O)(uw) and Cg(o)(uw) obtained from the leading order
matching relations read

7—5x; —8x})  x?(2— 3my)
) _ i ( t t) Ly 1
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which is in full agreement with the explicit formulas for the O(€) terms of the leading order
initial conditions of the Wilson coefficients of @7 and QF given in the literature [184,185].

The last ingredient needed to complete the electroweak two-loop matching procedure
for the magnetic penguin operators Q7 and Q§ are the O(«) contributions to the Wilson
coefficients of the evanescent operators. Calculating the usual one-loop electroweak box
and penguin diagrams one obtains in the NDR scheme

1 (4 2
CE () = — (gBo(m - 5co(act)> ,

1

Oy (puw) = 4Gy (@) + Do () + — (1030(xt) - 4Co(xt)> : (4.24)
w

C:fél)(MW) = 4Cy(zy) + Dy(z¢) ,

where By(z¢), Co(zy) and Dy(z;) denote well-known Inami-Lim functions. They are ex-
plicitly given by

Tt Tt
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Now it is straightforward to verify that all the IR poles cancel in the next leading
order matching relations (4.12) and (4.18), and that the final results for the O(«) correc-
tions to the Wilson coefficients C7 (i) and C§ (1) obtained in this way coincide with
those obtained using quark masses for the IR regularization. In the latter case evanes-
cent operators do not play any role in the matching, as their contribution to the matrix
elements cancels against a corresponding term stemming from the finite renormalization
in Egs. (4.15) and (4.20).
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4.3 Technical Details of the Calculation

As far as the two-loop diagrams contributing to the off-shell amplitude b — sy and b — sg
are concerned, we need to consider all the topologies shown in Fig. 4.2, which correspond
to a few thousand diagrams. In view of this very large number of Feynman graphs
we decided to use the MATHEMATICA [274] package FeynArts 2.2 [275,276] to generate
automatically all the two-loop amplitudes. The corresponding unrenormalized amputated
Green’s function are calculated in the background field version of the 't Hooft-Feynman
gauge. After setting to zero all light fermion masses but the b-quark mass, the number of
diagrams is significantly reduced by the following simple observation: For a given topology,
one can consider equivalence classes of Feynman graphs characterized by the number of
massless fermion propagators they contain and by the lines to which those fermions are
assigned. Since all light fermions but the b-quark are treated as massless, diagrams within
such subsets differ solely by the CKM factor, and can be grouped together, reducing the
total number of diagrams to be actually computed. Using the unitarity of the quark mixing
matrix, the overall factor turns out to be always proportional to V;:V},, as expected from
hard GIM cancellation.

In order to extract the coefficients A7 () and A (uw) of the magnetic type op-
erators Q7 and QJ we recall that off-shell the most general three-point vertex function
involving two fermions and a vector field can be decomposed into 2 - 12 = 24 different
form factors, where the factor 2 stems from the two possible chiralities, while the factor
12 takes into account all possible combinations of one Lorentz index and two momenta,
namely

{Sz} = {kuap;u fYIM kuk ) kui) 7puk 7pup 7’71116 ) ’7Mp ) kukf) 7plti) k ) fYMp k} ) (426)

with k£ and p being linear independent. To construct projectors for each of those 24 objects
we first introduce a generalized scalar product (,) defined by

(Si; S]) = tr [SZS]] . (427)

The projector on the i-th component of the 24 different Dirac structures
24
]DZ' = Z Ciij s (428)
j=1

is then determined by requiring that it should fulfill the following orthogonality condition

for all j = 1,...,24. After some simple algebra one finds that the unknown coefficients
¢;j defining the projector P; are given by

ci; = (MY, (4.30)

where M denotes the matrix whose elements are

(M)i; = (S, ;) - (4.31)
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I

Figure 4.2: The 14 two-loop topologies contributing to b — sy and b — sg at O(a?).
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Figure 4.3: Examples of diagrams containing a anomalous fermionic triangle as a sub-
graph.

After having constructed the projectors for each of the 24 different objects one then has to
take the appropriate combination of them which, after the use of the EOM and the Gordon
identity, contributes to the on-shell magnetic type operators Q7 and Q3. Apparently, these
projectors depend on the kinematical configuration assumed for the external particles. In
order to attain the maximal simplicity we decided to follow reference [186] and work
in a scaled configuration defined by p?> = 0 and k - p = k?/2, where k and p are the
momenta carried by the incoming b-quark and the outgoing vector field, respectively. In
this configuration the projector for the tensor part of the on-shell magnetic type operators
is explicitly given by

1
— (—2k%* — k?
) ( p o+ nmgpu e — nmpup + k2 yk (4.32)

_kQ’Yuf) + 2kuklé + npuf)k - mb*y“;ﬁ k) Pg,

and works by contracting it with the amplitudes and taking the trace in n dimensions.
Notice that P, contains terms proportional to inverse powers of the b-quark momentum k.
However, because of the assumption k? < m? and k* < mj, we can perform a ordinary
Taylor expansion in k and p to eliminate the unphysical poles when k£? — 0. Consequently,
the complete result for the unrenormalized two-loop amplitudes can be written in terms
of massive two-loop vacuum diagrams. Explicit results of this kind of integrals which
admit a relatively compact representation in terms of logarithms and dilogarithms of the
internal masses are well-known [277-282].

A peculiarity of the two-loop calculation for the b — sy and b — sg transitions is the
presence of diagrams containing anomalous fermionic loops like the one shown in Fig. 4.3.
It is well-known that the naive definition of anticommuting -5 in n dimensions that we
employ in the rest of the calculation fails for these diagrams because it leads to algebraical
ambiguities and cannot reproduce the axial anomaly. Our solution consists in calculating
Dirac structures containing an odd number of v5 matrices, that is, those leading to the
anomalous term, using an anticommuting 7 in strictly four dimensions, which is possible
because of their apparent UV convergence. The anomaly cancellation then guarantees
the absence of both anomalous and ambiguous terms in the sum of all diagrams [283)].
We have also checked our results for these specific terms using the HV definition of ~; in
n dimensions. From a formal point of view, the equivalence of the two methods follows
from the absence of non-invariant counterterms for the odd v part in the HV case [283],
as can be also seen in full generality using the powerful formalism of reference [267].

P, =
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All necessary steps of the calculation, namely, the projection on the magnetic oper-
ators, the Dirac algebra, the reduction of scalar integrals to a set of master integrals,
and the substitution of the master integrals have been implemented in two independent
and completely automatic codes that involve various combinations of the MATHEMAT-
ICA packages Tracer [284], Coltrane [285] and ProcessDiagram [286], and of FORM [287].
Although the final expression for the two-loop diagrams can be expressed in terms of log-
arithms and dilogarithms, it is rather lengthy due to the presence of four different heavy
masses, and thus we have decided to provide only approximate formulas that allow the
reader to reproduce our numerical results with high accuracy. On the other hand, we feel
that it may be more useful to explain in some detail the renormalization procedure that
we have adopted. This will be done in the next section, where we stress the importance
of keeping it as simple as possible in order to reduce the number of terms we have to deal
with.

4.4 Electroweak Renormalization

In renormalizing the two-loop amplitudes our aim is to attain the maximal simplicity.
Therefore we follow closely the procedure outlined in references [218,219,252]: We avoid
the wave function renormalization of the internal lines whenever possible, and choose a
particularly simple procedure for the unphysical sector. All masses are defined on-shell
and for the electroweak coupling we use the MS scheme, although we explain in detail the
connection to other schemes.

In the following we will give explicit expressions for the various counterterms. They are
written in terms of logarithms and of a single function By(z,y) which is defined through
the one-loop scalar self-energy integral

Im /ff/ d"p 1 _
(2m)" [p* — mi][(p — k)* — mj]
1 [\ [1 m? m3
T672 <k_> {z + B (z? w2 ) TO9)

whose analytical form is well-known. Here 1? = 4me™ "% pu? with vz denoting the Euler
constant and n = 4 —2¢. The O(¢) part of the counterterms is not needed at the two-loop
level. For convenience we report here the explicit expression of By(z,y) for the two special
cases that are needed in our calculation:

(4.33)

By(0,z2) =2 —azlnz—(1—2)In|l —z|,
1 (4.34)

x
By(l,z) =2 — §lnx — Qa(x),

where the function a(x) is given by

2y/z(4 — z) arctan /2 —1, for 0 <z <4,
a(z) = (4.35)

x(x—4)ln1_ ki for © > 4.
1+

& |

1—

B
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Tadpole Renormalization

To start with, let us give the explicit expression for the tadpole counterterm [148,288].
In the 't Hooft-Feynman gauge calculating the sum of the one-loop tadpole diagrams one

obtains .
g 3 (B 1
ot = M | — —-FE, + F 4.36
1672 W<m%> (6 et t> ’ ( )
with
Et - )
4 4c2,  2c,
6 + x4h 1 [zh 3 3x7h} 1 (4.37)
Ft:Et—f—#lnl't—— Q"—— IHZt tlht—2 5
2 2, \ 4 22, A

where z, = M2/m? and hy = M2%/m? denotes the ratio of the Z and the Higgs boson mass
divided by the t-quark mass squared, respectively.

Top Quark Mass Renormalization

The complete on-shell top mass counterterm is gauge-independent only after inclusion of
the tadpole counterterm, whose explicit expression has been given in the last subsection.
Here we report only the two-point function contribution to dm; in the 't Hooft-Feynman
gauge [148]. It can be written as

dmy ¢ (m\ [ 3 1 14
— = — —— — 1= F, , 4.
= 1672 (mg ” Ty + = 5 s2 )| + Fp, + O(e) (4.38)

where the function F},, is given by

Fmt:_2—$t—l‘%+$?ht+i<1+Zt—Zt2 2t 9 42,584)_2—'—(15,5

8(1,',5 &
1 (1 L4 h 2w -1 !
T + Zt . ﬁ 2 Zt 4 In 2 + xt t In ht + MBO 0, — (439)
62 8 8!Iit T

xt(4 ht) —Zt 2—|—Zt 2 8+4Zt 4
——— By (1,h
8 o (1, he) = s T3 wT T

16
BO (]_ ) + —82 5
c%[, > 9 "
Replacing m; by m; — dmy in the leading order result for the Wilson coefficient of the
magnetic type operator ()7 one finds the following top mass counterterm contribution to

be added to the unrenormalized two-loop magnetic photon penguin amplitude®

—2\ €
ct __ M_ _i i — E 2 a
Bme = (m%> { 8e {xHL 2 (1 9w  Fme 2xtc’9 GO ), @40

where the O(1) and O(e) part of the coefficient function C?(O)(u) has been given in
Eq. (4.22) and Eq.(4.23), respectively. Obviously, the ¢-quark mass counterterm term

Notice that the Eqgs. (4.40), (4.43), (4.50), (4.51), (4.61), (4.63) and (4.66) contain some O(e) terms
which vanish after renormalization of the magnetic penguin amplitudes in n = 4 dimensions.
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needed for the renormalization of the chromomagnetic penguin amplitude is obtained
from the above expression by replacing C7” (1) with CZ ().

The top mass is thus renormalized on-shell as far as electroweak effects are concerned,
while we use an MS definition at a scale y; for the QCD renormalization, in accordance
to the standard convention [236,237]. Although the choice of the scale p; for the MS
top mass is a matter of convention, the NLO QCD corrections depend sensitively on ;.
For convenience, we follow reference [180] and set p; = my. Using the pole mass value
Mipole = (174.3 £5.1) GeV [2], we therefore find m, 55(m, 755) = (165 £ 5) GeV, which
will be our input in the following.

Bottom Quark Mass Renormalization

The renormalization of the b-quark mass is also performed on-shell. In the 't Hooft-
Feynman gauge the corresponding bottom mass counterterm reads

e (5 (bfewe & (12 54)] o). o

my 1672 ; 8e c2,

where the finite part F,, is given by

b

Fy = 249w —brf 2 Tw+ 21,‘t I,

n 1 /1 n 53[, Sh, ) + 1 1 5 n 5 4
— |-+ = n — = - = — .
2 \g "y "3 ) 6 12w T g

w

(4.42)

Notice that the above counterterm does not include the photon contribution, for a reason
that should be clear from the discussion on the QED renormalization of the b-quark mass
on the effective side given in Section 4.2.

In renormalizing the bottom mass, one has to keep in mind that the m, factors in
the operators (3.2) originate either from the b-quark Yukawa coupling to the would-be
Goldstone boson ¢* or from the use of the EOM. In the latter case, m; should not be
renormalized as it is on-shell by definition. Indeed, besides the on-shell magnetic type
operators, there are additional off-shell operators, namely Q17 and Q1s, that project on Q7
and Q% when the external momenta are set on-shell. Consequently, the m;, renormalization
only refers to the parts of the Wilson coefficients of Q7 and QS stemming from diagrams
involving b-quark Yukawa couplings, which are given by the differences of the Wilson
coefficients of the on-shell magnetic operator @7 and QF, and the coefficient functions of
the corresponding off-shell operator Q17 and Q15, respectively. Replacing my by my, — dmy,
in the b-quark Yukawa couplings of the one-loop diagrams contributing to C7 (u) we find

AN 1 1
ap = (B) (g [emsm e o (e s - 50 )| + B} (000 - ).
(4.43)
Here 07’(0) (p) and Cfg)(u) denotes the leading order Wilson coefficient of @7 and @17, re-
spectively. The expression needed to renormalize the chromomagnetic penguin amplitude
is obtained from the one given above by replacing the on-shell ma netic penguln coefficient
by the chromomagnetic one and simultaneously substituting C\> (1) with C{ (1)

For completeness let us also give the explicit expressions for the leading order Wilson
coefficients of the off-shell operators ()17 and (Q1g, which are needed to determine the
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bottom mass counterterm contributions. Using the decomposition (4.21) we find in the
't Hooft-Feynman gauge for the O(1) terms

1+ 11z, —1827)  xy(4 — 1634 + 1527)
2z, — 13 12z, —1)*

4— 13z, + 327)  14(2 — day)
8(r, —1)3 4z, —1)*

lnxt,

Cl) = -4
(4.44)

T
Cfg?o (1) = d Inz,,

and for the O(¢) parts

z(5 + Thxy — 12227)  1,(48 — 150w, + 11527 + 8z7})
O 144(x—1p3 72(z — 1)

2 2
o)
68 — 141y + 3127)  24(24 — 30z, — 1627 + =)

A8(xy — 1)3 a 24(zy — 1)
z(2 — 5y) u?

In? 2, + O\ (1) In

In z,

CO(n) =

(4.45)

T
Ofg?e(lj’) = d In z;

respectively. The leading order initial condition of the off-shell operators ()17 and @3 are
obtained by calculating the usual one-loop magnetic penguin diagrams including terms
of O(€). These functions have already been computed in references [186,226]. We have
repeated this calculation and confirmed the findings of Cella et al. and Ciuchini et al.
except for the O(e) parts, which have not been given in the articles mentioned above.

Renormalization of the Unphysical Sector

Before discussing the renormalization of the W* boson mass it is necessary to explain the
procedure which we have followed to renormalize the unphysical scalar fields. As already
noted in Chapter 2.4, the renormalization of the unphysical sector is not independent
from the way the physical sector is treated. In fact, as long as the regularization and
renormalization procedure respects the symmetry of the underlying theory, it is governed
by the STIs. According to the organization of the calculation, it is possible to use different
procedures that respect the STIs and are particularly convenient in order, for instance, to
minimize the number of counterterms to be considered. Of course, physical amplitudes
must be independent of the chosen procedure, and this can be used as an additional check
of the computation. Obviously, for the problem at hand the discussion can be kept at the
one-loop level.

Following references [147,148], the STT relating the longitudinal part of the W+ boson
self-energy "W the W* would-be Goldstone boson mixing two-point function £ and
the would-be Goldstone boson self-energy X%¢ can easily be derived from the identity
(TF*(z)F~(y)) = —id™ (v —y), with F*+ and F~ given in Eq. (2.74). Writing the propa-
gators as the inverse of the truncated 1PI irreducible two-point functions and expanding
up to first order we find in the 't Hooft-Feynman gauge

My

2 (ngW(kZ) + 2MW2W¢(k2)) ~ M2RP(k?) + gTFH(O) 0.  (4.46)
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At k? = 0 the first two terms vanish and the STI implies the cancellation between the
would-be Goldstone boson contribution proportional to ¥??(0) and the one of the Higgs
boson proportional to the one-point function I'(0). This uncovers the connection between
the renormalization of the would-be Goldstone mass and the one of the tadpole. As
anticipated, the counterterm contributions to the various terms in the above equation
must also respect the STI. In our calculation we employ the usual tadpole renormalization
that minimizes the effective potential and consists in removing all tadpole diagrams. This
choice implies the subtraction of ¥??(0) from the two-point function of the would-be
Goldstone boson.” Since we will use the physical masses to define the masses of the
vector bosons, it is convenient to renormalize the longitudinal component of the two-
point function of the W¥ boson in the same way as the transverse, using the first relation
given in Eq.(2.124). For the other unphysical two-point functions different choices are
possible, which however should all respect the STT (4.46). Apparently, these choices are
equivalent at the level of physical amplitudes, as they correspond to different ways of
renormalizing the gauge-fixing parameters.

A first convenient option consists in assigning no counterterm to the W+ boson would-
be Goldstone boson transition. This decreases the number of counterterms and simplifies
their implementation. In fact, in the 't Hooft-Feynman gauge it corresponds to renormal-
ize the masses of the electroweak gauge bosons and of the associated scalar bosons in the
same way. This procedure goes by the name of bare gauge-fixing. Of course, the masses
of the would-be Goldstone bosons still need a supplementary subtraction at k2 = 0 corre-
sponding to the tadpole contribution, that we have discussed above. It therefore amounts
to fix the would-be Goldstone boson mass counterterm in the following way

SM2 = 5 M2 — ﬁét, (4.47)
w

and is the closet to the naive parameter renormalization. Apparently, this possibility
satisfies the STI (4.46) at k* = M2.. In addition it leaves room for a further arbitrary
wave function renormalization of the W boson field, which we avoid altogether, since
the W* boson appears only inside loops.

Another possibility would consist in the subtraction of the first two terms of the Taylor
expansion around k? = M2, of the individual two-point functions in the external momen-
tum. Obviously, this method would respect the STT (4.46), as well as the unrenormalized
self-energies do. In this case a counterterm for the W+ boson would-be Goldstone boson
transition is needed. However, it is easy to verify that all choices of renormalization that
satisfy Eq. (4.46) lead to the same physical amplitudes.

W* Boson Mass Renormalization

Following the strategy outlined in the preceding subsection, we use the same counterterm
to renormalize the W* and the would-be Goldstone boson mass terms. In the 't Hooft-
Feynman gauge, one finds [148,176] for the W= boson mass counterterm:

SM2  ¢* (m*\[1/3 701
_ Py 12 (e, + - =)+ F 6] 4.48
Mz 162 \'m? \2" "% 2, * Fuw + 00| (4.48)

"This point is nicely explained in the textbook of Taylor [152].
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where the finite part Fyy, reads

106 — 6x,h; — 1822 + 322h? 14+6 3z:h 622 — x2h?2 1
v = xtt36 z; + l’tt+< + 624 + 3x1hy + 627 — 27 h; )lnxt

12 2,

xihy (3 — x4h 18 — 4352, 4+ 2454 2 —x, — a2
+ = t(12 t t)lnht— 6;‘:%[, Wlncw—ié LBy (0, z)
99 — 26452 + 212s% — 4858 12 — 4xhy + 22k
+ ud 126%}[/ us WBU (1,l'tZt) — tth L tBU (1, xtht)
89— 2825}, + 2885y, — 9650, . (4.49)
12¢},

Replacing M2 by M2, — §M?2 in the leading order result for the Wilson coefficient C7 (p),
one obtains the following W* boson mass counterterm contribution
—2 € 1 1

A%, = (57) {z (g vl _W) n FMW} (o;@(,n + P (u)) . (450
Here again C;’(O)(,u) denotes the leading order contribution including O(e) terms, which
has been given explicitly in Eqs. (4.22) and (4.23). An analogue expression applies to the
case of the chromomagnetic penguin transition.

In our analysis the W boson mass is treated a fundamental input parameter, whose
value is taken directly from experiment: M, = (80.451 4+ 0.033) GeV [2]. Although the
indirect determination of My from M,, G and « is presently more precise than the
experimental one after including all theoretical uncertainties [1,289], this is certainly
sufficient for our purpose.

Would-be Goldstone Boson Mass Renormalization

In the 't Hooft-Feynman gauge the renormalization of the would-be Goldstone boson mass
term can be performed in the same way as the one of the W* boson mass, apart from
the additional tadpole contribution, whose physical origin has been already discussed. In
practice, this means that the one-loop diagrams containing scalars induce a further coun-
terterm contribution that can easily be computed from the one-loop tadpole counterterm
(4.36) and from the one-loop amplitudes containing only scalar fields. For simplicity we
will give only the final result for this additional contribution in the following. Using the
counterterm (4.36) and the relation (4.47) we obtain in the ’t Hooft-Feynman gauge
A = ZAY 1E F 4.51

S

where the functions ¢, and ¢, read

1y (49 — 1042, + 3127) (4 — 4wy — Ta7 + 3a})

P _ Inz,,
0 72 (z, — 1)" 12 (z, — 1)° t
B0 T ) st )
€ 432 (fI,'t - 1)4 72 (:L_t . 1)5 t .
xy (4 — dxy — 7xf + 3«T?) 2 pw
In“z; +tyIn — )
24 (1, — 1)° M

and E; and F; have been given in Eq. (4.37).
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Wave Function Renormalization

The external quark fields of the down-type are renormalized according to Eq.(2.101).
Since the magnetic type operators Q7 and Q3 flip the helicity of the external fermion
fields, it is clear that we need the left- as well as the right-handed down quark wave
function renormalization constant. These renormalization constants can be determined
from Eq. (2.126). In the limiting case of vanishing masses of the down-type quarks® these
prescriptions imply the customary relations

0Z%t = —xk(0),  ozE" =-3k0). (4.53)

By calculating the relevant one-loop diagrams, we obtain in this way for the left-handed
wave function renormalization constant

2 72\ €
578 = I (“_> (52--AL+V ViiBr, + O(e )) (4.54)
J 16m2 \ m? ! !
where
11 /3 5 st 1 (1 s2 st
A, — | (22 w | __w W)
L e[cgv<4 6" 9)] 2”t+3v<4 3+9>n7’t
1 (3 5, sk
e (8 % 18) ! (4:55)
BL:_ﬂ+3xt(1+xt)+x?(2+xt)lna:t.

de 8w —1)  4(z— 1)

The right-handed down quark wave function renormalization constant reads

2 2\ €
arR _ Y K
6Z4" = -2 <—%> (5ijAR + 0(6)) , (4.56)
with the flavor diagonal part Ax given by
st /1 1
Ap=—"2(-—-—=-1 : 4.
f 9¢2, <e 2 nzt> (4:57)

Realize that A;, and Ag again do not include the contribution stemming from the one-loop
two-point functions involving the exchange of a virtual photon.

Bearing all this in mind, we can now discuss the wave function renormalization of the
external s-quark. The corresponding counterterm contribution AS* is obtained as follows.
First we need to know the amputated amplitude for the magnetic penguin transition
br — kry with £k =d, s,b. At the one—loop level we have

RIME Z ViCI (1) (Q1,) (4.58)

z u,c,t

where (Q7,)(® denotes the tree level matrix element of the relevant magnetic operator.
Using the unitarity of the CKM matrix this can be rewritten in the following way

- |vira (G0 - 20 ) + 60 (@)% ws)

8Recall that my is actually treated as an external scalar field.

1O () =
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Here the second term originates in the unitarity relation V5, Vis+ Vi Ves+ViiVis = 0ks. Now
the counterterm contribution due to the wave function renormalization of the external s-
quark field takes the form

c 1 *
AY =3 Y SZEAL (). (4.60)
k=d,s,b
Combining Eqs. (4.54) and (4.59) we thus obtain

AT
8= (5 [+ B0 + B W) | (4.61)

2 \mj

with C’;(O) (u) as given in Eqs. (4.22) and (4.23). The c-quark contributions to the Wilson
coefficients of the magnetic type operators Q7 and QF read

23 145 23 2
C?,E?)(u)——+e< + 1“>,

~ 36 216 ' 36 M2 (4.62)
1 11 '
C’g(co)(u) =—+e€ (— + —ln—) :
8 3 18 3 M2

In correcting the external b-quark fields, one has to keep in mind that the chirality of
the b-quark is different in the on-shell operators Q7 and @4, and in the off-shell ones Q17
and (Q15. Accordingly, one needs to consider the amputated amplitudes for the magnetic
penguin transitions kr — s;v and k;, — spy with £ = d,s,b. Aside from this the
calculation of the counterterm contribution stemming from the external leg correction of
the b-quark field proceeds in the same way as described above. Combining the expressions
for the wave function renormalization of the left- and right-handed b-quark field we find

1/ m2\°¢
A?z—(’%) [(AL+BL>0§2’<M>+BL0§2?C<M>+AR (o;“)(u)—o{?’(u))], (4.63)

2 \mj

with €7@ (1) and C'9 (1) given in Eqs. (4.22) and (4.23), and Eqs. (4.44) and (4.45),
respectively. The contributions to the Wilson coefficients of the off-shell operators Q7
and (g including only charm loops are given by

23 145 23 2
C. =+ e (o + )

"~ 36 216 ' 36 M2 (464)
OO, (n) = = + (11+11 “2> |
Ap)=-+el —+-In—] .
18, 3 18 3 M2

As it should be the c-quark contributions to the coefficient functions of the off-shell op-
erators 17 and @13 coincide with those of the magnetic type operators Q7 and Q3.
Unfortunately, some of the UV divergences related to the exchange of would-be Gold-
stone bosons persist after inclusion of the external leg corrections. In a calculation of
physical on-shell amplitudes, this would not be the case. However, the IR regularization
we have adopted prevents the cancellation among the off-diagonal wave function renor-
malization of the internal quarks, which is a prerequisite for this procedure. We are then
forced to renormalize the set of diagrams in which the wave function renormalization of
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Figure 4.4: Counterterm diagrams involving a wave function renormalization of the in-
ternal quark fields, as explained in the text.

the internal quarks does not vanish after summation of all contributions at the diagram-
matic level. Following reference [240] we do that by zero momentum subtraction of the
one-loop subdivergences. Specifically, writing the unrenormalized quark self-energy for
the b — s transition as

Ss (k%) = f PLSE () + F PrEE (K?) + (m P + myPr) S5 (k%) (4.65)

the subtraction involves X% (0) and X7 (0). The right-handed part of the unrenormalized
quark self-energy is proportional to mym; and thus can be neglected. This subtraction
procedure removes the spurious IR sensitivity of the two-loop diagrams corresponding to
the counterterm graphs (b) and (d) shown in Fig.4.4. The case of the vertex counterterm
diagrams (a), (c¢) and (e) is easier because the associated two-loop graphs are less IR
sensitive. In this case one can neglect all terms proportional to mg and m; in Eq. (4.65).
In consequence the subtraction involves only the left-handed part XE (0) of the quark
self-energy for the b — s transition.

For simplicity we just give the final result for this additional contribution stemming
from the wave function renormalization of the internal quark fields here. Using dimen-
sional regularization for both UV and IR divergencies one obtains in the 't Hooft-Feynman

gauge

Ast = <ﬁ2>e [(3—25;)2 <xt zy (1= 10z) 7 (1+ 227)

" T - Ina, — o1 (466
me 64852, \e¢  3(z 1) (m—1) T nzt)] (4.66)

Notice that in dimensional regularization only the counterterm diagrams involving a Z
boson exchange will give a non-vanishing contribution to Aft. On the other hand, if
the IR divergences are regulated by quark masses also the Feynman graphs containing a
photon have to be considered.

Finally, it is worth mentioning that the external leg corrections (4.61) and (4.63) to-
gether with the additional contribution stemming from the renormalization of the internal
quark fields (4.66) correspond to the correct LSZ factors and implement the renormal-
ization of the CKM matrix according to reference [167] within our approximations. We
recall that this gauge-invariant definition of the CKM matrix is the most appropriate to
the present low-energy measurements because, unlike an MS renormalization, it avoids
O(g®) corrections not suppressed by GIM and proportional to (m}? +m}?)/(m}* —m!?),
where m;, and m/ are light quark masses [167].
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Coupling Constant Renormalization

The counterterm for the renormalization of the SU(2)r, coupling constant in the elec-
troweak MS scheme is well-known. It reads

§g g% 19 (1
521671'25 E—’YE+1H47T . (467)

where a hat has been used to indicate MS scheme quantities. Performing the renormal-
ization, by replacing g with § — d¢ in the leading order result for the Wilson coefficient
C7(p), we obtain the following counterterm contribution to be added to the unrenormal-
ized two-loop magnetic photon penguin amplitude

. 19
Ay =) (4.68)

In the MS scheme the electroweak coupling constant can be calculated from &(M,) =
1/127.934 [290] and sin? 6y, (M) = 0.23113 [2], which leads to §>(M,) = 0.424943. This
is the value that we will use in the following numerical analysis.

However, beside the MS scheme there are a number of other popular schemes leading
to values for a(M;) and sin? 6, which differ by small factors depending on m; and M. In
any other renormalization scheme different from MS the counterterm would have a finite

part, namely
0g g* p?\19 (1
— = — ) = |-- In4 F, 4.69

g Tem \az) 12\ T ETmAT ) (4.69)

so that the difference between the result in the scheme characterized by Fy, and the result
in the MS scheme at the scale u = M, is just given by

SAY = 207" (u)F, . (4.70)

It is well-known that the use of the electromagnetic fine structure constant a =
1/137.036 to normalize the electroweak coupling would introduce large and uncompen-
sated mass singularities [163] in the two-loop results. Therefore, it is indispensable to
normalize g at a short distance scale. The most obvious choice in the present situation is
touse G = 1.16637x 107> GeV~? [2] and My, to define the electroweak coupling constant
as g> = 4/2Gp M?. In this case the finite part of the counterterm reads

1 5
e =3 (Afw 42 ) , (4.71)
€ Inis

where A7y, is a function of the W=, Z, top and Higgs masses, as well as of the couplings,
which summarizes the electroweak corrections to the muon decay in the MS scheme and
can be found for example in references [291,292]. The second term in parenthesis, instead,
represents the finite part of the conventional electric charge counterterm [163], evaluated
in the MS scheme. The function FgGF has only a mild dependence on both m; and M,
because shifts in My, are absorbed into the observed Gr. Numerically it is very small, as
can be seen comparing the value of g? obtained from the relation ¢? = 4v/2 Gr M2, with
the value of g?(M,) given above, which differ by only 0.5%.

Another possibility to define g is to use the relation ¢g> = 4nw&(My)/s%,. Thereby,
&(M ) stands for the running electromagnetic coupling constant at the MS scale p = M,
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and we have adopted the on-shell definition (2.128) of the weak mixing angle leading to
s2, =0.2228 [2]. In this case the finite part of the counterterm takes the form

FS = Ap, (4.72)

where Ap is another function depending on all the heavy masses [291,292]. Unlike A#y,,
however, Ap is very sensitive to the top mass, as it depends quadratic on m,. In fact,
the MS and the on-shell definitions of sin?#@,,, and so ¢2, differ by almost 4%. One can
therefore anticipate that the latter normalization will introduce large two-loop corrections
when compared to the MS scheme. Moreover, as the origin of the large counterterm
contribution has nothing to do with the process at hand, one can also expect this choice
to give unnaturally large two-loop corrections.

4.5 Results and Discussion

Before giving the final results for the O(a) corrections to the Wilson coefficients of the
magnetic type operators Q7 and QF in an approximated form, we recall that the regular-
ization scheme independent quantity entering the calculation of the branching ratio for
B — X,v is not C7 () but the effective Wilson coefficient C7°" (1), as given in Eq. (3.3).
Since the effective Wilson coefficients of Q7 and Qf are combinations of C7 (1) and C§ (),
and of the coefficients of the four quark operators present in our operator basis (3.2), we
also need to know the O(«) contributions to the coefficient functions of the latter one in
order to find the complete electroweak corrections to C7*" (1) and CZ°" (1), In the NDR
scheme the non-vanishing O(«) contributions to the Wilson coefficients of the four quark
operators at p,, = M, are given by”

74 M2
Cpo(My) = =5 + gy
4
Cs(,,le)(MW): (5 (z¢) + Co( )>,
W
1
CE()le)(MW) = (9 (z¢) + Co(fﬂt)) , (4.73)
1 10 4
(z¢) + Do(z4) — s_< Bo(zy) — 300($t)> ;

O (My) = 4Cy 3
1

C820) = = (2Bulen) - 5Culo))

where By(z;), Co(z;) and Dy(x;) can be found in Eq. (4.25). Notice that the result for the
Wilson coefficient function of the four quark operator ()2 given above differs from the one
reported in reference [218] by a term 1/9. Recalling that the O(«a) correction to Cy (M)
was obtained in the latter article in the standard operator basis [236,237], it should be
clear that this difference stems from a change of basis. As we will explain later on, the

9These O(a) contributions can be found either by calculating the usual one-loop box and penguin
diagrams or from those in the operator basis of references [236,237] after a basis transformation in four
dimensions. All ingredients necessary to perform this transformation will be given in Appendix D.
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extra term present in Célg(i\/[w) introduces a scheme dependence into our final result.
Although relevant from a conceptual point of view, its effect on the branching ratio of the
B — X,y decay is numerically very small.

Approximate Formulas

The final results for C;’,’;ﬂ(l) (pw) and C’gyfﬁ(l) (pw) are quite lengthy and hence not suitable
for a simple implementation in numerical analyses. Instead let us give two accurate
approximate formulas for the O(«) contributions to C7*T(11,,) and C¢**" (4, ), which are
valid when the effective Hamiltonian is normalized in terms of G as has been done in

Eq. (3.1). We find

2
1 M \is M M
Ceffi(1) = — [111-115[1—- 25 ) —0444ln =2 — 021 10> =2
e (Hw) 52 1702 o 100 " 100
My . M5 8 (0 104 1y
—0.5131n —2% In —2 ~C7V (My) — 5 | In—%
051310 7545 In 170]+<9C7 (M) = 533 ) " 37z
) (4.74)
Co M )= — | —0.143 +0.156 [ 1 — =225 ) —0.1201n —2 — 0.0244 In> =2
s (hw) 52 + 1702 t 100 t 100

My s 4 9(0) 4 0) 58\ . iy
—0.0371nﬁ In 70 ] + <§C'8 (My) — §C’7 (My) — a) nM—‘%},
where My, is the Higgs boson mass expressed, like m, g5 in GeV. In the above formulas we
use the coupling &(M,) = 1/127.934, while in general we employ s2, = 0.23, corresponding
to > = 4/2Gp M2, My = 80.451GeV and M, = 91.1876 GeV [2]. The relations
(4.74) reproduce accurately, within 1.5%, the analytic results in the ranges 80 GeV <
My < 300GeV and 160 GeV < m, 35 < 180 GeV. We stress that the above results are
independent of the choice of the scale y; in the QCD top mass definition: It is sufficient to
calculate m, z5(p:) and employ it in the approximate formulas (4.74). Different choices
of u; lead to different NLO QCD corrections, but they are higher order effects as far as
the present calculation is concerned. Realize that the renormalization scale dependence
of the effective coefficients agrees with the results given in the literature [214,216,217].

The size of the electroweak corrections to C7°" (M) and CZ*" (M) relative to the
one-loop results is shown in Fig. 4.5 for m,z5(m, 555) = 165 GeV: At My = 100 GeV the
Wilson coefficient of Q7 is reduced by 1.5%, and diminishes with increasing Higgs boson
mass. The electroweak corrections modify CZ°(M,,) only very little by about 0.4% for
a light Higgs boson mass of around 100 GeV. If we consider only fermionic loops we
reproduce the result of Czarnecki and Marciano [214], which leads to a 2.2% reduction of
the effective Wilson coefficient C7*" (M, ). Although purely accidental, the closeness of
this fermion loop approximation to our complete result for a light Higgs boson is quite
acceptable.

In order to compare directly the results in Eq. (4.74) with the approximate ones in
reference [218], let us also display the size of the two-loop electroweak corrections to
CT*M(M,,) and CZ*"(M,,) for mysi5(My) = 175.5GeV used in that paper. This is
done in Fig.4.6. First, notice that the Higgs mass dependence is identical, as should be
expected since all the diagrams involving the Higgs boson also involve a charged boson.
Therefore these diagrams are not sensitive to the W*-Z boson mass difference or to O(s?%,)
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Figure 4.5: Electroweak corrections to the Wilson coefficients C7*" (M) and C2°T (M)
for m, 55(m, 5:5) = 165GeV. The solid lines represent the results of the complete cor-
rections to the Wilson coefficients at M,,, the dashed lines their leading HTE, and the
dotted lines the results of the gaugeless approximation.
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Figure 4.6: Electroweak corrections to the Wilson coefficients C7*T (M) and CZ°T (M)
for m, 575(My) = 175.5 GeV. The dashed lines represent the results of reference [218] with
their error estimates, the solid lines the complete corrections to the Wilson coefficients.

couplings. Numerically, we see that the difference is larger than estimated in the article
mentioned above, in which the difference between the complete electroweak correction
to the muon decay and its s, — 0 limit has been used as a measure of the uncertainty
due to the expansion around sy = 0. Although an expansion of the results in powers of
s2, converges quickly, it turns out that its second term of O(s%,) is larger than naively
expected, and that the two-loop correction is very sensitive to the M,,—M, difference.

Heavy Top Expansion

Let us now consider the HTE of our results and see how it compares with existing analyses.
Expanding the complete result for the O(«) correction to the Wilson coefficient of the
magnetic operator Q7 and QF in powers of z;, we find that at u, = M, the leading term
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in a HTE is given by

2 16 — 55h; + 1102 + 26h3 8 — 17h, — 2h? — 14k}
O%eff(l) M. = 9 _ t t t t L 1nh
re (M) = J55 o 288h, * 144h, n i
_ hi (74 — 45N, + 2h7) 2 4 16 — 2hy + 36h7 — T4h} + 45h — 2h¢ 2
576 ! 172812
8 — hy — 6h? — 52h? + 85h* — 33h) + 218 .
_ Lis (1 —h
14412 b (1 =)
80 + 68hy — 262h7 + 134h3 — 25h} +2h7 | (b, s2, 0
— )+ l+0 4.75
576h, o7 ) tar| TOl) . (@)

and

2 32 — 83h, — 23hi + 16h7 8+ hy + Thi — 5}

Cg,eff(l) M — g t l h
se (M) =355 192h, 48h, Hie
N h? (1 — 9h, + h?) W2y — 8—ht—18h§—l;§+9h§—h§ >
96 28813
16 — 2h;, — 12h7 + 40h? — h} — 30h) + 4h¢ .
Liy (1 —h
+ 9612 b (1= )
8 — 58h, + 6217 + 17Th3 — 16kt + 215 [h,\ 2 .
Do) _w 4.
+ 192h, i) s tol), @

respectively. Here we have introduced

4,/1%90Cl2(2arcsin\/§), for 0<z <1,
¢(x) = (4.77)
LT (12) 4212 (12) — o (42) + 5|, for 2> 1,

where A = /1 — 1/x and Cly(z) = Im Liy(¢’*) denotes the Clausen function. As can be
seen in Fig. 4.5, the leading HTE term approximates our full result very poorly, especially
for a light Higgs. We have also studied the convergence of the HTE, calculating its first
three terms, and found that for realistic m; values they do not converge, in a way very
similar to what has been observed in the case of B — B® mixing [252]. It is therefore
quite different from what happens in the case of the calculation of precision observables
[250,251,293], where the top contributions originate from two-point functions. The HTE
for the latter seems to work remarkably well up to two-loops [294,295] and has been
checked even at the three-loop level in the case of the mixed O(aa?) corrections [293].

Finally, it is important to mention that Eq.(4.75) differs from the analogous one
presented in reference [215] by a term

7.ef(1) g [1(1 _si\ . s 0
0Cre (Mw) = fe5 0 |5 53— 3 ) * 15| +©O (@) - (4.78)

On the other hand, we agree with the findings of Strumia [215] if we perform the calcu-
lation in the so-called gaugeless limit. This is not surprising because it is known [254]
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Figure 4.7: Possible insertions of an effective Z penguin vertex into a one-loop diagram.

that the gaugeless approximation does not always include all leading m? contributions.
To understand better this point, notice that for a asymptotically heavy top both the top
Yukawa coupling y;, and the loop integration can provide powers of the top mass. In the
case at hand, the one-loop integrals are convergent, so that the one-loop contributions
scale at most like y2/m? ~ ¢g*/M?2.. At the two-loop level, the gaugeless contributions scale
as yi /m? ~ y? g> /M2, ~ g*m?/M?, but the same heavy top behavior can be obtained by
inserting a dimension four operator'® proportional to y? in a topless loop. In general, the
effective Lagrangian obtained after integrating out the heavy top tells us exactly which
the relevant operators are [296,297|. In our case, only the diagrams in Fig. 4.7 contribute
to the leading HTE through the insertion of a flavor changing dimension four Z boson
penguin operator. The diagrams with a mass insertion on the internal b-quark line depend
on the regularization scheme — they vanish if IR divergences are regulated dimensionally
— and in the schemes where they do not vanish they are canceled in the matching by
a contribution from the electroweak penguin operator (7. In both cases, however, their
contributions is reintroduced in the quantity C7*" (M) and C2*(M,,) by C7(My). In
the limit of a heavy top the effective vertex has the form

3 *
g ‘/is‘/;b Ty _ 0
Pz0s = 752 ) Spyubr + O (27) . (4.79)

Inserting this gauge-independent effective coupling in the one-loop diagrams of Fig. 4.7,
and keeping in mind that the tree level couplings of the Z boson with b; proportional
to 1/2 — s2,/3, and with bg proportional to —s?,/3, we obtain the difference between the
HTE of our result and the gaugeless limit. The argument is completely analogous for
C4%(M,,), whose HTE also differs from the gaugeless approximation:

geff(1) g L1 sk, s 0
508,8 (MW) = _W Tt g 5 — ? —+ F —+ @ (l't) . (480)

10Dimension two insertions are removed by our choice of renormalization in the unphysical sector.
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B — X,y H~~, Hgg HZZ, K — nvi, Ap, Ry | B® — B°
(254, 298] [254,299-302) [252]
2 2 62, g v m 2m2 4
One-loop gl—% ~ ]\f’IVQV (e2g5) v yeme anyt L~ (€% g?) gMVQVf or y? gl—f?
4 2,2 62, g v 3m 2 2m2 6
Two-loop 51—% ~ % S anyt L~ (e g2)yt gﬁj‘gvt or y; 51—%

Table 4.1: Leading HTE contributions to different processes. Following the criterion given
in the text, the gaugeless limit fails in the first two cases.

So when does the gaugeless limit potentially fails at two-loop? Whenever at the one-
loop level the t-quark diagrams in the limit of a heavy top scale like a constant, namely
in the same way as the topless contributions. Indeed, in this case we know that there
are some dimension four effective operators proportional to y? that can be inserted in
one-loop diagrams not containing the top and give contributions of the same order, in the
limit of a heavy top, of those belonging to the two-loop gaugeless approximation.

In Tab. 4.5 we summarize the situation for the processes considered in the literature
at the two-loop level. It should be clear that the gaugeless limit works safely only when
the asymptotic expansion in m; has maximal power, that is, m? at the one-loop, and m;}
at the two-loop level. Of course, there might be exceptions. Indeed, whether the O(y?)
dimension four operators are relevant or not depends on the process under considera-
tion. For instance, in the Hgg effective vertex [298] — relevant for gluon-gluon fusion
production and hadronic decays of the SM Higgs boson — they are not because the glu-
ons have no electroweak interaction. This is in contrast to the similar case of the H~y~y
effective vertex [254], where the gaugeless approximation does not give the correct result.
Similar considerations apply to the heavy Higgs limit, although the leading term in the
heavy Higgs expansion, subject to other constraints, is not always what is expected from
dimensional analysis.

Effect on the Branching Ratio

Let us now examine in some detail the effect of our calculation on the B — X+ branching
ratio. As a first step we calculate the O(«) corrections to the Wilson coefficients of the
magnetic type operators Q7 and QF. It is well known that the large mixing between
the current-current operator ()2 and the magnetic photon penguin operator ()7 induces
additive terms in the running of the coefficient functions from the W= to the b-quark
mass scale which are numerically very important. Thereby, our aim should be to resum
all contributions of O(aa?L™). As already mentioned in Section 4.1, these terms either
originate in logarithmically enhanced contributions due to gluonic or photonic interactions
or in genuine electroweak corrections involving W+ and Z bosons, which enter only the
determination of the Wilson coefficient functions at the electroweak scale.

Turning to the particular case of C7°"(1,) and neglecting the last term in ésﬁ(l)(ub)
which is presently unknown, we see from Eq. (3.31) that the O(a) terms are given by

C7™ D (1) = C1V* (1) + CLY () + CF (1) (4.81)
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7 1 2 3 4
2199454 19501
ki 272277 ~ 73695 0 0
55245280 110456
m; 272277 ~ 739 0 0
N 129771266 1265317 6 1
i 170717679 1008735 7 7
0: 2346358688 20453476 96 16
i 170717679 1008735 7 7
_ 50090080 107668 _ 3254504085930274 34705151
Di 131509791 646625 23167509579260865 143124975
) 10974039505456 13056852574 718812 154428730
4 21104973066375 29922509799 6954395 12196819523
- 34030521610456 3263300223796 776628 20986276
i 63314919199125 10323265880655 6954395 36590458569
s: 37795840 2677664 _ 3254504085930274 69410302
i 394529373 44617125 69502528737782595 429374925
4. | _ 9399750637096 1054439887036 24928 440752
i 12662983839825 794097375435 60473 38802183
372895520 749408
Ui 394529373 " 1274775 0 0

Table 4.2: First part of the magic numbers entering the O(«a) correction to the effective
Wilson coefficient of the magnetic operator Q7.

where the first term on the right-hand side corresponds to the term proportional to
© (11p, My )CFO) (M) in Eq. (3.31). After substituting the explicit anomalous dimen-

sion matrices and the initial conditions we find""

e 8 ,€
CFL () = mBOE (M) + 5 (0¥ — ¥ ) €30 (01)

+ Z ( in™ S e

8
167 24 40 s | A
+ (142577 YT > n;n ) Cr o (My)

(668 s 160 233+ 0 (14,
1425" 143" 0”7 9, ’

with n = as(My)/as(s). The O(a) corrections to the Wilson coefficients of )7 and Qf
are given in Egs. (4.73) and (4.74), while the magic numbers k;, m;, n; and o; entering
the above expression can be found in Tabs. 4.2 and 4.3.

The second term in Eq. (4.81) corresponds to the term proportional to Ul (e, M)

et ()M,,) in Eq. (3.31) and reads

Myy) + ki C§) (Myy) + ma™ C5) (My,) )

(4.82)

e o 40z 88 1\ e
C%U ( [ 77 23 @77 23 4 5757723> C;y (0)(MW)
9 2 640 14 704 16 eff(0
(575 - 144977 T " s > G (M)

UTet us note that in contrast to reference [218] the cofactors of all Wilson coefficients are given
analytically in Eqs. (4.82) and (4.85).
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? 5 6 7 8

k; —2.8536 0.1281 0.1495 | —0.2244
m; | —55.2813 2.6494 0.7191 | —1.5213
n; 0.3292 0.0389 0.0248 | —0.0104
0; 4.6264 0.6629 0.2854 | —0.0282
Di —0.2502 0.1063 | —0.0525 0.0213
i —0.1374 | —0.0078 | —0.0023 | —0.0001
T —0.0700 0.0033 | —0.0001 0.0003
S —0.0491 | —0.0888 0.0221 0.0115
t; 0.0445 | —0.0032 | —0.0029 | —0.0064
u; | —0.7338 0.2821 0.3440 | —0.0682

Table 4.3: Second part of the magic numbers entering the O(«) correction to the effective
Wilson coefficient of the magnetic operator Q.

8
526074716 _sz 65590

N o s k™ +man®™ ') | (4.83
1417066408125 1686113 3+;( 0 + mag®") (4.83)

The LO expressions for the effective coefficients of @7 and Q% are given in terms of the
one-loop functions A{(x;) and F{(x;) by

. 23 1
CrO (M) = =22 = SAl(w)
56 2 (4.84)
,eff (0
GO (M) = =5 = 5 Fi(@),

while the values p; and ¢; can be found in Tabs.4.2 and 4.3. Our analytic result for
C’%’eUe(ub) agrees with the one presented by Baranowski and Misiak [217], while it differs
from the analogous expression found by Kagan and Neubert [216], who used a truncated
operator basis in order to compute this O(aa” L") correction. For realistic values of
n, however, the two formulae are numerically very close. Hence, truncating the operator
basis is a correct approximation in the present case.

The third term in Eq.(4.81) stemming from the term proportional to U (1o, M)

"W (M) in Eq. (3.31) can be written as
' 32 14 40 15 88 a9 off
C;,;Ue (Mb) = (%7723 - @7723 + Fr 23) C’%’s (1)(MW)

(32 14 32 16 640 s 704 39>

_  m?23 —
5757 T 1449

T e T 125

_ 8 4.85)
70164078728 2 81580 , NP (
- % = 8 — N+ sin® C) (M,
13251199224375 5058339 ;(“7 + s ) | Oy (M)
i 8
197699944 5 135280
— | =—=———n 2 23 — tl a; a;+1 C(l) M.
71435036257 38091037 iZ( %+ un®) | Cug (My),
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i 1 2 3 4 5 6 7 8

k; 1099727 0 0 0 —4.0143|—0.2945| 0.4600| 0.8196
m,| 0905660 0 0 0 |-77.7679|—6.0904| 2.2128| 5.5576
Ni| — e 0 0 0 0.4632|—0.0895| 0.0763| 0.0379
0; | —Epmts 0 0 0 6.5082|—1.5238| 0.8782| 0.1030
Di| —aaan L2867 | 24851320767 L 0.0848| 0.1098/—0.0201| 0.0008
g | ooowssisz 0 0 —0.1932] 0.0180(—0.0070| 0.0004
A O 0 0 —0.0982|—0.0076|—0.0004|—0.0012
Si _118675837516183 1192319781725 _12;132;22;33;5 _12142445165 0.0166|—0.0917| 0.0084| 0.0004
t; |— 088963 0 0 0.0626| 0.0073|—0.0090| 0.0233
;| —1en i 34064 0 0 0.2486| 0.2914| 0.1314|—0.0026

Table 4.4: Magic numbers entering the O(«) correction to the effective Wilson coefficient
of the chromomagnetic operator Q3.

where the non-vanishing O(ay) corrections to the initial conditions of the Wilson coeffi-
cients take the following form in the NDR scheme

7
L) (M) = —5 + Eq ()
of 797 4 1 (4.86)
OV (M) = 55 = g Eol) — 5 A5 (w).
off 133 1 1
C35" 0 (M) = 55, = S Eolae) = 5 Fi (),

with the Inami-Lim functions E§(z;), A% (x;) and F}(x,) given in Eqs. (3.44) and (3.45).
The values of the magic numbers r;, s;, t; and u; are summarized in Tabs. 4.2 and 4.3.

Now let us also give the results for the O(«) corrections to C¥*F(1,). Neglecting again
the unknown terms in the last relation of Eq. (3.31) and using the decomposition

o™ () = L2 (o) + CL () + O () (4.87)
we find for the first term on the right-hand side of the above equation

4
CLY* (1) = 2 CLE™ (M)

+Z<h77‘“026( )+ i C5) (M) + My C5) (M) )

2 (4.88)
(9577 23 _7723 —ann ) ,1 )

8 24
_ <%77 23 — —7723 —|— 0177 ) ng,le) )
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The O(a) corrections to the coefficient functions are given in Eqs. (4.73) and (4.74), and
the values of the magic numbers k;, m;, n; and 0; can be read of from Tab. 4.4.
The second term on the right-hand side of Eq. (4.87) reads in analytic form

41 4 o e
Ce () = 7[ (77 » —7723) C7 O (M)

as(pp) | 25
12 o 28 1 32 1s eff (0)
— == g — = Cy (M 4.
(57577 B g T ) 8 (M) (4.89)

6300206 w6559 s i

P T—— —33 = G ai—1
294471003875+ 250002" 7 +Z (pn" +am™™") | .

=1

with the LO expressions of the magnetic type operators Q7 and Qf given in Eq. (4.84),
and p; and ¢; presented in Tab. 4.4.
The third term on the right-hand side of Eq. (4.87) can be written as

14

4 7 w89\ e
V) = o= (nF —n®) 02"V 01y

12 28 39 e
—( n%+—ﬁ®~—w)%f%Mm

575 69 75"

i 8
840288368  » 4079 s o N (4.90)
—_— 23 23 i (273 i a; O
* | 883413281625 T 389103 +;(”7 +5m™ ) | Oy (M
i 8
2367664 a1 6764 s _
— 7 23 — 23 tz a;i _i a;+1 C(l) M.
* |\ 176233575 299317723+;( "+ am ) | Cp (M),

where the non-vanishing O(ay) corrections to the initial conditions of the Wilson coeffi-
cients have already been given in Eq. (4.86). The values of the magic numbers 7;, 5;, ;
and @; can be found in Tab.4.4. Notice that the results presented in Egs. (4.88), (4.89)
and (4.90) are given for the first time.

We are now ready to give numerical values for the O(«) corrections to the effective
coefficients of @7 and QF. Using pp, = 4.69 GeV and renormalizing the ¢-quark mass at
iy = 165 GeV, we find

C’Ay’eff (1p) = 4.085 — 1.286 In Mn _ 0.614 In” Mq + 1.865 + 0.511,
100 100 (4.91)

CLe™ (1) = —1.494 — 0.388 In % —0.0741n? % +1.906 — 0.148 .

Here the first three terms correspond to the O(a) corrections labeled by U, the fourth
to the O(«a) corrections with an index U., and the last one to the O(a) corrections
characterized by U!. Notice that in the case of the O(a) correction to the effective
coefficient of @7 the first three terms, formally O(aa”L"), are twice the sum of the
fourth and the fifth term, formally O(aa? 'L"), for a light Higgs of around 100 GeV.
We interpret this as an evidence that genuine electroweak effects involving W= and Z
bosons in the electroweak correction to the b — sy amplitude are dominant with respect
to logarithmically enhanced contributions due to gluonic or photonic interactions. From
Eq. (4.91) we see that C7*T (1) is increased by only 1.3% for M, = 100 GeV due to the
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electroweak corrections that we have calculated. The effect is less pronounced for larger
Higgs masses. In a similar way, we find that for CZ*" (1) the numerical impact on the
last two terms in Eq. (4.91) is more important than that of the two-loop correction. Due
to the cancellation of the individual contributions, electroweak effects increase C’g’eﬁ(,ub)
by less than 0.1% for a light Higgs.

In order to see how electroweak corrections affect the calculation of the branching
ratio of B — X,v it is sufficient to remember the structure of the perturbative QCD
corrections. Once we keep this in mind, it is easy to see that the electroweak correction
Eew O the perturbative quantity P(0) introduced in Eq. (3.56) is given by

8 2
« Leff (1 eff (0 1 ~e m
fow = 1 | O ) + D2 G () (n,e+5 (vf("))i,mlnu—é’)
= b (4.92)
o M
207 ) 10 22
Hp

where the sum runs over the operators Q;-Qs, Q7 and Q4. The final correction in
Eq. (4.92) stems from short-distance photonic corrections to I'(b — X,e,). That type of
correction is generic to semileptonic charged current decays [303]. It is generally factored
out of semileptonic B decays before the extraction of |V,;| and |V, and hence must be
included here. The quantities r; . originate from the two-loop O(a) matrix elements of
the four quark operators Q1—@Q¢ and the one-loop matrix elements of the magnetic type
operators @7 and QF. The calculation of the MS-renormalized on-shell b — sy amplitude
at O(«) from which the coefficients r; . can determine will be presented in Appendix E.
For ; and 2, and for Q7 and QfF we confirm the findings of reference [219]. For the
QCD penguin operators (J3—()s our results are new. Altogether they read

po B2 A A 160,
e S1o> ~ - 3 San lT,
beT2187 9 9 729
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7729 3 3 243
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,= L0 O e Py 22 0(1) + 2b(1) — 12a(2) — 200 :
rs, =29 +9\/§ T + o b 3a( )+ 3 (1) a(z) (z) + 513 T
62440 327 160 , 128 16 32 896
.= C R 0 a1+ (1) +
Too = 3187 T orgs oas” it 0 F b+ gt
2%5 2.
Ttye = _2_7 - §Z7T,
’I“gg,e = 0, (493)

with z = m?2/mj. Similar ratios for the light u-, d- and s-quarks have been set to zero.
The functions a(z) and b(z) as well as the constants X,, a(1) and b(1) entering the O(«)
matrix elements are given in Appendix E. The numerical values of r; . for two different
values of m./my, are presented in Tab.4.5. From that table we observe that the real parts
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me/my = 0.22 me/my = 0.29

Rerie Imr;, Rer;, Imr;,
Tle 1.1079 0.1997 0.9095 0.1000
T2.e 0.8309 0.1498 0.6821 0.0750
T3.e 0.9044 0.2196 0.8809 0.1518
Tae 0.9244 0.1207 0.9244 0.1207
rse | 10.7092 | 32.4895 || 70.2601 | 29.5256
re,e | 16.7843 1.9306 || 16.7843 1.9306
T7y,e | —0.9259 | —0.6981 || —0.9259 | —0.6981

T8g.e 0 0 0 0

Table 4.5: Real and imaginary parts of r; . for two different values of m./m.

of r5 . and r¢ . are considerably larger than the remaining ones. However, since the Wilson
coefficients of the QCD penguin operators are small in the SM, the O(«) matrix elements
of these operators affect the branching ratio of B — X, in a negligible way. Nevertheless,
we will include all relevant QED matrix elements in our numerical analysis.

We stress that, as we neglect the term o'V (u,) in Eq.(3.31), our evaluation of
O(aaL™) effects in B — X,v is incomplete, although we are confident that it should
provide a good approximation. Our numerical result is valid in the NDR, scheme supple-
mented by the definition of evanescent operators of references [196,273]. An analysis of
the way the scheme dependent terms recombine can be found in the NNLO study [240].
The scheme dependence of our result is introduced in Eq. (4.73) and in the O(«) matrix
elements 7; .. The one from Eq. (4.73) is numerically negligible, as it affects the B — X,y
branching ratio by less than 0.01%. All the residual scheme dependent pieces would be
canceled by corresponding terms in the anomalous dimension matrix at O(«ay), if it were
available.

Neglecting the last term in C*SH(”(M,)) and using the reference value My = 115 GeV
and m./my, = 0.22 as in the study [180], we see from Eq. (4.92) that for p, = m, the O(«)
contribution to the B — X+ branching ratio under absolute value is given by

Eew = 0.0024 + 0.0012 + 0.0003 + (0.0004 + 0.0002 i) + 0.0028

4.94
= 0.0071 4 0.0002 ¢, ( )

which updates the result given in reference [219]. Here the first, second and third term
corresponds to the U, U, and U! component of the O(«) correction to the effective
coefficient of @7, respectively. The fourth term derives from the QED matrix elements
and was partly included in the paper mentioned above. The last term is due to the
QED corrections to the semileptonic decay amplitude and is the same as in reference
[180]. Notice that the first term, although formally suppressed with respect to the second
and third, is larger, as it incorporates all purely electroweak contributions. The total
effect of the QED and electroweak corrections in ¢, on the branching ratio is a 3.6%
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reduction while the O(aa?L™) contributions alone lead to a 1.6% reduction. As different
contributions accidentally compensate each other, €., is almost exactly the same that was
used in the analyses [180,218,219].

Numerical Analysis of the B — X,y Branching Ratio

In the present subsection, we shall calculate the branching ratio of the B — X v decay
using the NLO QCD formulae collected in Chapter 3, including all known higher order
effects as well as our new results. We also update the input parameters and introduce
some minor refinements in the NLO analysis. For instance, with respect to the detailed
analyses [186,196,216,247], we adopt a new value of the ratio of the CKM angles standing
in front of P(0). This CKM cofactor can be expressed in terms of the so-called Wolfenstein
parameters [304,305] as follows

2

VisVw :1+(2ﬁ—1))\2+(52+772—A2))‘4+0()‘6)

Ve

(4.95)
~ 0.971 + 0.10 (p — 0.224) = 0.971 = 0.004,

where A = 0.2237, A = 0.819, p = 0.22440.038 and 77 = 0.317 [4] have been used. The only
relevant source of uncertainty is the error in p. Even if this error were enlarged by a factor
of 2, the influence of [VV},/Ve|? on the overall uncertainty in B — Xy would remain
negligible. Notice that the central value of Eq. (4.95) is also consistent with the analysis
of reference [5]. We also use M, = 91.1876 GeV, M,, = 80.451 GeV, a,(M,) = 0.1185 +
0.0020, m, z5(m.555) = (1.25 £0.10) GeV and BR (B — X.e?,) = 0.1045 + 0.0021 [2].
For the b-quark in the so-called 1S-scheme, we use my 5 = (4.69 £ 0.03) GeV [306].
As far as the t-quark mass is concerned, m, 55(m, 35) = (165 £5) GeV is used, which
corresponds to my poe = (174.3 £5.1) GeV [2].

The mass ratio r(uy ) and the phase-space factor C' entering the NLO prediction for
the branching ratio of B — X7 given in Eq. (3.52) have been determined in reference [180)]
along the lines of the upsilon expansion. The final results obtained there read

r (myss(my ) = 0578 £0.002, € =0.57540.02. (4.96)

The main uncertainty in the perturbative ratio on the right-hand side of Eq. (3.53)
originates from the two-loop diagrams with c-quarks presented in Fig.3.8. Such 1PI
diagrams which where calculated nearly a decade ago by Greub et al. [203,204] and
recently by Buras et al. [205] are the only source of m./m; dependence of the b — sy
amplitude. Since the dependence of these matrix elements on m./m; is quite strong, we
should ask what renormalization scheme should be used for the quark masses. Should
we use Mepole/Mppole = 0.29 £ 0.02 or, perhaps, mc,M—S(,u)/mb,pole = 0.22 + 0.02 with g
chosen between m. and m;? In principle, such a question is a NNLO issue that can be
resolved only after calculating three-loop corrections to the diagrams depicted in Fig. 3.8.
However, it is numerically very important, because changing m./m; from 0.29 to 0.22 in
the considered matrix elements causes an enhancement of the B — X,y branching ratio by
11% [180], that is, by as much as the present experimental and theoretical uncertainties.

Since calculating finite parts of three-loop corrections to the diagrams shown in Fig. 3.8
would be a very difficult task at present, one has to guess the optimal choice for m, and my,
on the basis of our experience from other calculations. As argued in reference [180], the
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uncertainty in the branching ratio of B — X7 stemming from this scheme-dependence
can be accounted for setting m./my, = m, g(1)/mp1s in the two-loop diagrams, and
varying the scale p between m, and my. This particular choice of scheme can be under-
stood if one bears in mind that all the factors of m, in the considered diagrams originate
from explicit mass factors in the c-quark propagators. In the real part of the associated
amplitudes, those c-quarks are dominantly off-shell, with momentum scale p set by m,
or some seizable fraction of it. Therefore, it seems reasonable [180] to vary u between m,
and my, and use m, gr5(p) in the ratio me/m.

As far as the factors of m,, are concerned, they originate either from the overall momen-
tum release in b — s or from the explicit appearance of my, in the b-quark propagators.
In the first case, the appropriate choice of m,; is a low-virtuality mass. In the latter case,
there is no intuitive argument that could tell us whether my, yo1e or my, 55(my, 355) should
be used. However, as long as the NNLO QCD corrections remain unknown, setting all
my, factors equal to my 15 seems to be a good choice [180]. The distinction between my, ;g
and myp pole, Which differ numerically by only 1% at one-loop, as well as the IR sensitivity
of the pole mass can be ignored here, because the uncertainties due to mc’m(u) are very
large.

It remains to determine the numerical value of m,gg()/ms,1s. Using the c-quark
mass given above the authors of reference [180] find

m,5is(1)

=0.22+£0.04, (4.97)
mp,1s

which implies

a(z) = (0.97 £ 0.27) + (1.01 £0.15) 4,

b(z) = (—0.04 & 0.01) + (0.09 % 0.02) 4, (4.98)

where the uncertainties correspond to varying p between m, and m;. The uncertainty in
m,sis(M,31s) 18 practically irrelevant here, when compared to the error originating from
the variation of the renormalization scale. We also note that the central value of Eq. (4.97),
is very close to the renormalization group invariant MS ratio m, y(1t)/my ys(p) = 0.215.
The numerical value of the electroweak correction e., has already been given in
Eq. (4.94), and the one of the non-perturbative correction N () introduced in Eq. (3.63)

reads
N(d) = 0.0036 + 0.0006 , (4.99)

where Ay = 0.12GeV? and the value of the c-quark mass given above have been used.
The indicated uncertainty is due to the c-quark mass only. Numerically, one find that the
non-perturbative contributions parameterized by N () increase the B — X7 branching
ratio by about 2.5%.

Last but not least, we also have to give the numerical values for the quantities K;, K.
and B(¢). For a cut on the photon energy of E, = 1.6 GeV we find at the NLO level

K; = (0.397 +0.003) + (0.011 & 0.002) 7 ,
K, = (—0.611 4 0.002) + (—0.032 % 0.008) i, (4.100)
B(§) = (3.1 £1.0) x 103,

in agreement with reference [180]. Here the quoted uncertainties are due to variation of
the low-energy scale i, between m;/2 and 2m; only. We recall that in the NLO QCD
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Lib i me/my | Mpas my as(My) C BR (B — X .e,)
+1.4% | £0.8% | £5.5% | £0.2% | £1.0% | +£2.3% | £3.6% +2.0%

Table 4.6: Uncertainties in the branching ratio of B — Xy due to various sources.

computation, the imaginary parts of the quantities K; and K, are irrelevant, because
all the O(a?) terms on the right-hand side of Eq. (3.53) are set to zero after taking the
square. If one does not set the imaginary parts of K; and K. to zero, they affect the
perturbative quantity P(§) by only 0.5%. Furthermore, it is important to remember
that a complete analysis of electroweak O(«) effects in B — X,y would require to know
the O(«) corrections to the b — syg and b — sygq transitions with ¢ = u,d, s as well.
Unfortunately, these bremsstrahlungs corrections are unknown at present. Hence, we have
neglected them in B(d). The resulting error will be absorbed in the NNLO uncertainty
below. This is mandatory because the O(«;) contribution to B(d) changes the branching
ratio of B — X,y by at most 4% if the cut-off energy E. is varied between 1GeV and
2 GeV, and there are good reasons to expect that the corresponding O(«a) corrections are
numerically even less important.

From Eq.(4.100) one can see that the residual p,-dependence of the real parts of
K; and K, is very weak at the NLO level. Such a weak p,-dependence is not caused
by any accidental cancellations among strongly pu,-dependent terms. This is contrary to
what has been observed in many previous calculations [186, 196, 216,218,247]. In the
present approach, there is no indication that the unknown NNLO corrections!? could
be much larger than (as(m,)/7)? &~ 0.5% times a factor of order unity. Thus, it seems
safe to assume a value of £4% for the theoretical error due to higher-order QCD and
QED effects. Realize that this is almost twice the combined scale dependence of the
result obtained by scanning p;, and pu, between one half and twice their central value,
which amounts to £2.2%. Consequently, our estimate of the overall uncertainty in the
final prediction for the B — X,v branching ratio is not larger than in the previous
analyses [186,196, 216,218, 247|, despite taking into account a error of £5.5% related to
the value for m./my,.

Incorporating all perturbative and non-perturbative corrections, including all errors,
and adding them in quadrature, one obtains'3

BR (B = Xi7) g, 51600y = (3:58 £0.30) x 107, (4.101)

very close to the findings of reference [206]. The relative importance of various uncertain-
ties is shown in Tab. 4.6. The sensitivity of our final result Eq. (4.101) to M is very weak:
We find a reduction of only 0.3% when the Higgs mass M, is changed from 115 GeV to
200 GeV.

In view of the fact that many of the published results have been calculated for E, =
my/20, corresponding to a cut-off parameter § = 0.9, it interesting to check what Eq. (3.52)
gives in this case. We find

BR (B — X,7) (3.70 + 0.30) x 10~*. (4.102)

12Except those related to the ratio m./my that has been discussed above.
13 At this point, we would like to thank Dr. P. Gambino for providing us with the Fortran code that
was used to calculate the branching ratio of B — X,y in the recent analysis [180].

E,>my/20 —
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It is the above result that should be compared [216] with the experimental world average
(1.2) for the total branching ratio. The difference between theory and experiment is at the
level of 1 0. However, one should remember that the theoretical errors have no statistical
interpretation, which implies that the value of 1 ¢ has only an illustrative character.

Notice that the choice 6 = 0.9 for the cut-off parameter made in Eq.(4.102) corre-
sponds to the unrealistic case of an almost fully inclusive measurement, whereas the choice
§ = 0.3 made in Eq. (4.101) corresponds to the restriction to the high-energy part of the
photon spectrum, which in practice is required for experimental reasons. For higher val-
ues of the cut-off parameter of around 6 = 0.15, non-perturbative uncertainties are much
larger because the B-meson shape function are unknown. Models for the shape functions
considered in references [207,216] suggest that £, = 1.6 GeV used in Eq. (4.101) might
already be low enough to make those uncertainties negligible. On the other hand, the
experimental measurement of is based on a much stronger cut, E, = 2.0 GeV [30], but
needs to be extrapolated to a more inclusive branching fraction [216]. For this purpose
an approximation formula for the central value of the integrated branching ratio as a
function of § might be useful. Performing a fit to our result in the region 0.15 < ¢ < 0.55
we obtain

BR (B — Xs7) g, pypmex = (3.25 +1.936 — 3.570% +2.516°) x 107*, (4.103)

which exhibits a mild, almost linear dependence on the cut-off in a large region of 9,
and reproduces the exact result within +0.1%. Outside the considered region of §, our
formulae from Chapter 3 are not expected to work well. On the low-energy side, this is due
to the fact that we have not included the non-perturbative contributions stemming from
Q3 which has been analyzed in reference [243] with the help of fragmentation functions.
As far as the high-energy side is concerned, the growth of the uncertainties with £, can
roughly estimated by using the plots showing the theoretical predictions for the integrated
B — Xy branching given in references [207,216]. However, translating those plots into
quantitative estimates is rather difficult, because of the model dependence resulting from
the inclusion of the Fermi motion involved. In our opinion, a further study of this issue
will be necessary for a precise comparison of theory and experiment in the B — X,y
decay.

Finally, let us mention that if we had used m./m; = 0.29 instead of m./m; = 0.22 in
our analysis, we would have found

BR.(B = Xs7) . omy /o0 = (3:33£0.30) x 107%, (4.104)

for the integrated branching ratio. The latter result is very close to the ones obtained in
many previous analyses [186,196,216,218,247]. Thus, the replacement of m. pole/ M pole
by the more appropriate m,yz5(1t)/mp,15 in the two-loop matrix element of the current-
current operator (), is the main reason why our result is significantly higher than the
previously published ones.
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Chapter 5
Conclusions and Outlook

In the present thesis, we have summarized the existing calculations of perturbative and
non-perturbative contributions to the inclusive radiative B decays, paying special atten-
tion to the electroweak effects in the B — X,y and B — X;g decays. In particular,
we have computed the complete two-loop O(«r) Wilson coefficients relevant for the ra-
diative weak decays of the B-meson. Several subtleties arise in the calculation, mostly
linked to the presence of unphysical operators. In order to clarify these subtleties we have
adopted two different methods to regulate IR divergences. In contrast to the off-shell
O(as) calculation [186,187], evanescent operators turn out to play a crucial role in the
O(«a) computation. In addition, we have explained the relevance of gauge-variant opera-
tors in our calculation. As a byproduct of our calculation we have presented the complete
O(a) corrections to the Wilson coefficient of the current-current operator (. Our results
improve upon existing calculations [214,215,218] and put genuine electroweak corrections
to B — X,y on a firmer basis. We have also accurately discussed the interplay between
electroweak and QCD corrections, and explained the implementation of O(«a? L™) effects
in detail, including all relevant QED matrix elements. Still, not all O(aaf L") contribu-
tions to radiative decays of the B-meson are under control. We have pointed out that
the uncalculated corrections are related to the two- and three-loop O(«aay) anomalous
dimension matrix and to the O(a) bremsstrahlungs corrections, which are both unknown
at present. The incompleteness of our calculation makes it scheme-dependent, but as
we have noted, the scheme dependence is remarkable small. On the other hand, the
calculation of the missing contributions would require a significant effort.

Finally, we have updated the SM prediction for the B — X, branching ratio following
closely the analysis [180]. We have pointed out that the charm loop contribution to
B — X7 is numerically dominant and very stable under logarithmic QCD corrections.
The strong enhancement of the branching ratio appears to be almost entirely due to the
t-quark sector, and can be attributed to the large anomalous dimension of the b-quark
mass. These observations allow one to achieve better control over the residual scale-
dependences at the NLO level. Furthermore, we have discussed the main uncertainties
in the present-day SM prediction for the branching ratio of B — Xyv. In particular, we
have stressed that replacing m. pole/Mb pole i the two-loop matrix elements of the QCD
penguin operators by the more appropriate mc,M_s(M) /myp 15 with 1 chosen between m, and
my, causes an increase of the branching ratio of B — X, by around 11%. After inclusion
of all NLO QCD contributions, of non-perturbative corrections and of all known QED and
electroweak effects, we find BR (B — X,v) = (3.58 £ 0.30) x 10~%, for a cut-off energy of
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E, > 1.6 GeV in the B-meson rest frame. The total effect of the QED and electroweak
corrections on the branching ratio is a 3.6% reduction, while the O(a«L™) contributions
alone lead to a 1.6% reduction for a light Higgs mass M,, of around 100 GeV, and decreases
slowly for larger values of My,. In view of the fact, that the leading O(aa™~' L") corrections
decrease the branching ratio of B — X, only in a minor way, by about 0.7%, and the
effect of the QED matrix elements are very small, although formally of the same order as
the matching conditions, we expect the subleading QED effects to be eventually small.

Removing the perturbative uncertainty due to the m.-dependence would be a ex-
tremely tedious task, as it requires the calculation of three-loop penguin diagrams with
an insertion of QQ1-Qs. UV-divergent parts of such diagrams have been already computed
in the process of calculating the anomalous dimension matrix at NLO [196,197]. Eval-
uating the finite parts would be extremely difficult, though not impossible, if numerical
integration was applied. In view of the fact, that fully automatized analytic methods are
now available [307-310], finding the remaining NNLO corrections would be relatively sim-
pler. However, before undertaking such a ambitious task, one should make sure that all the
non-perturbative effects are really under control. In this connection, the most worrisome
effects have their origin in the fact that non-local c-quark contributions might be particu-
larly large [246]. These kind of contributions are related to the two-loop penguin diagrams
with c-quark loops shown in Fig. 3.8. The corresponding non-perturbative effects are ex-
pected to be suppressed by both ag(ms) and Agep/mp or Aqen/me.. Thus, at first glance,
they seem to be irrelevant. However, it remains an open question whether their suppres-
sion is numerically sufficient. No quantitative estimates of this kind of non-perturbative
effects have been performed so far. The numerical importance of the non-local parts of
the latter diagrams can be illustrated by the fact that the right-hand side of Eq. (4.101)
changes by about 35% when m, is changed form the original value m, = 0.22m; to the
threshold for charm pair production m, = my/2. Consequently, a Aqcp/my suppressed
non-perturbative effect on top of such a large perturbative contribution might not be
negligible. Unfortunately, no systematic methods have yet been developed to calculate
this kind of non-perturbative corrections.

The present agreement at the 10% level between the experimental (1.2) and the the-
oretical (4.101) determinations of the B — X, branching ratio implies that clear signa-
tures of new physics in this observable are not likely to be found in the foreseeable future.
The importance of improving the accuracy on both the experimental and theoretical side
follows from the need for strengthening the b — sv constraints on theories beyond the
SM. Such constraints are likely to be crucial in identifying the origin of new physics effect
that we expect to encounter in the LHC era.
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Appendix A

Anomalous Dimension Matrices

In this appendix we report the preliminary results of a new calculation of the anomalous
dimension matrices 457, 587 and 42" However, before presenting the final results,
we shall spend some words on the algorithm that is used to evaluate the one-, two-
and three-loop anomalous dimensions of the effective operators mediating the inclusive
B — X,v decay. Further details on this subject as well as a comprehensive discussion of
the classification of physical and non-physical operators of dimension five and six arising
in the renormalization of the effective theory at two- and three-loop level will be given in
a forthcoming publication [197].

In the renormalization of QCD and QED at higher loop order the standard method of
extracting the UV divergence structure of a Feynman integral with respect to the regu-
larization, such as dimensional regularization, is to perform the calculation with massless
propagators. However, if one uses massless propagators to compute three point or higher
Green’s functions one might generate spurious IR infinities which, in dimensional regu-
larization, cannot be distinguished from the UV divergences one seeks. These can occur
when one reduces the class of Feynman integrals to vacuum integrals by expanding them
in powers of the external momenta. The classical method to circumvent this potential
problem is called IR rearrangement [311,312], which uses the property that within dimen-
sional regularization the overall UV divergences are polynomial in external momenta' and
masses [313]. It is a recursive subtraction scheme where the UV divergences are removed
from the Feynman integrals in a way compatible to adding local counterterms to the
Lagrangian. In practice it amounts to adding artificial masses or external momenta in
certain propagators of a given Feynman diagram before the expansion in the true external
momenta is performed. The artificial external momenta have to be introduced in such
a way that all spurious IR divergences are regulated, and the resulting Feynman inte-
grals are calculable. Unfortunately, satisfying these two requirements is rather difficult
in practical multiloop calculations. Moreover, the condition that no IR infinities may be
introduced is quite restrictive and makes the application of the IR rearrangement very
tedious. Often one has to remain with Feynman integrals which are not as simple as one
would like them to have. Hence, it was not clear until recently how one could develop the
method for an application in an automatic computer algebra program.

In our approach, the IR arrangement is performed by introducing an artificial mass

'In any meaningful renormalization prescription, counterterms are polynomial in the external mo-
menta, but not necessarily in the masses.



124 A. Anomalous Dimension Matrices

rather than artificial external momenta. For the calculation of the renormalization con-
stants this means, that we can safely apply Taylor expansions in all the particle masses
and the external momenta after introducing a non-zero auxiliary mass M for each in-
ternal propagators, including those of the massless vector particles. Following refer-
ences [195,273], the starting point of our procedure is the following exact decomposition
of propagators:

1 1 p? + 2k - p—m?+ M? 1

= — . Al
(k+p)* —m2 k2 — M? k? — M? (k +p)” — m? (A1)

Here £ is a linear combination of the integration momenta, p stands for a linear combina-
tion of the external momenta, and m denotes the mass of the propagating particle. If we
assume that the theory we are considering is given by an effective Hamiltonian which does
not contain non-negligible operators of arbitrarily high dimension, we can always perform
so many steps in the propagator decomposition given above, that the overall degree of
divergence of any diagram in the corresponding Green’s function would become negative
if any of its propagators was replaced by the last term in the decomposition. We are
then allowed to drop the last term in the propagator decomposition, as it does not affect
the UV divergent part of the Green’s function after subtraction of all subdivergences. In
consequence, this general technique reduces the calculation of the counterterms to the
direct calculation of massive tadpole integrals, that is, massive integrals with no external
momenta. Provided that all the tadpole diagrams are computable at the considered loop
order this algorithm provides a procedure that is well suited for the automatic evaluation
of larger numbers of Feynman diagrams.

A further simplification can be achieved by noticing that terms containing powers
of the auxiliary mass squared in the numerators contribute only to such UV divergent
terms that are proportional to those powers of M?. These terms are local after the
subtraction of all subdivergences, and must precisely cancel similar terms originating from
integrals with no auxiliary mass in the numerators. Since using Eq. (A.1) the propagators
are decomposed exactly, no dependence on M? can remain after performing the whole
calculation. This observation allows one to avoid calculating integrals that contain an
artificial mass in the numerator. Instead of calculating them, one can just replace them
by local counterterms proportional to M? which cancel the corresponding subdivergences
in the integrals with no M? in the propagator numerators. Nevertheless, the final result
for the UV divergent parts of the Green’s functions are precisely the same as if the full
propagators were used.

However, counterterms proportional to M2 will in general not preserve the symmetry
of the underlying theory. Fortunately, the number of these counterterms is usually rather
small, because their dimension must be at least twice smaller than the maximal dimension
of the operators belonging to the effective theory. For instance, in QCD only a single
possible gauge-variant operator exists that fulfills the above requirement. It looks like a
gluon mass counterterm?, and cancels gauge-variant pieces of integrals with no M? in the
numerators. To ensure that our renormalization procedure with such a gauge violating
counterterm is valid, we have checked explicitly the full MS renormalization of QCD and
QED up to the three-loop level using the exact decomposition (A.1). This is important
since the operators we are interested in are composite and therefore each field present

2A ghost mass counterterm does not arise, due to the structure of the ghost two-point function.
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in the operators will be renormalized requiring a wave function renormalization. For
example,

Q8o = ZqungZ(l;/2 Z Z39,iQi 5 (A.2)

where the sum runs over all possible operators and the subscript 0 denotes bare quan-
tities. In this expression Z,, Z, and Z; are the usual gauge-dependent renormalization
constants of the quark field, the coupling constant and the gluon field, respectively, and
Zgq,i 1s related to the gauge-independent anomalous dimension of the particular operator.
Therefore, by using an arbitrary covariant gauge with a gauge parameter ¢ for the mass-
less vector fields, we can explicitly check that the operator renormalization constants that
emerge are gauge-independent. Further, by first renormalizing QCD and QED, this allows
us to check that the Feynman rules we are using are consistent. This is important since
in order to find the anomalous dimension matrix at O(a?) one has to evaluate more than
10000 Feynman diagrams, which makes an automatic treatment absolutely mandatory.

The procedure of renormalization with an auxiliary mass works well for individual
diagrams. However, the introduction of the mass M in the massless vector field propa-
gators spoils the multiplicative renormalizability of the Green’s functions. Here we use
an intermediate approach to renormalization in order to get the three-loop counterterms
for the sum of the diagrams. We compute the UV poles of the corresponding three-loop
massive diagrams. But we do not renormalize each diagram separately. The subtraction
of subdivergences is done for the whole sum of the three-loop diagrams. This is done by
means of adding to the sum of the three-loop diagrams the sum of the necessary bare
diagrams of one- and two-loop with all the vertices replaced by effective vertices and all
propagators replaced by effective propagators. The effective vertices contain the necessary
vertex renormalization constants up to the appropriate order in the coupling constant and
similarly, the effective propagators contain the necessary propagator counterterms. Fur-
thermore, counterterms have to be introduced which correspond to the renormalization of
the gluon and photon mass. They are contained in the effective vector field propagators
that are needed for the cancellation of subdivergences.

The large number of diagrams which occurs if one considers higher loop orders makes
it necessary to generate the diagrams automatically. For the evaluation of the anomalous
dimension matrices presented in this appendix all diagrams have been generated with
the MATHEMATICA [274] package FeynArts 2.2 [275,276], which provides the possibility
to implement own models in a simple way. Furthermore it is quite fast, as it generates
several thousand diagrams in a few minutes. In a next step a MATHEMATICA program
is used to convert the output into a format recognizable by the language FORM [287].
The group theory for each graph is performed before the integrals are evaluated. The
very computation of the integrals is done with the program package MATAD [310], which
is able to deal with vacuum diagrams at one-, two- and three-loop order where several
of the internal lines may have a common mass. The basic idea for the calculation of the
tadpole integrals is based on the so-called integration-by-parts technique [314,315]. It
can be used for the derivation of recurrence relations which relate vacuum integrals with
different denominator structures. The proper use of the recurrence relations allows the
reduction of an arbitrary integral to simpler ones, which can be solved using one- and
two-loop formulae, and a linear combination of a small set of so-called master integrals.
Only for them a hard calculation is necessary. At the end of the computation the results
of the individual diagrams are summed and the bare results are stored. Moreover, a
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convenient environment is provided which, for example, makes sure that all result files
are up-to-date. Thus processes involving a larger number of diagrams can be treated
automatically without taking care of each individual result.

Having summarized the general formalism and our method, we will now record our re-
sults. The regularization- and renormalization-scheme independent anomalous dimension

matrices 4570 and 487 is given by

4t 0 -2 0 0 0 0 0 0 -m oim
12 0 0 4 0 0 0 0 0 0 4 10
o o0 0 -2 0 2 0 0 0 0 -iz 12
o0 -2 - 5 5 0 0 0 0 -3 -3
0 0 me 0 020 0 0 0 0 s osw

~eff(0) _ 0 0 -2 % 2 -3 0 0 0 0 £ 4 (A.3)

5 o0 0 -5 0 0 0 -2 0 2 w _u [~ &
o0 0 £ 0 0 -2 -2 3§ § -#& -
0 0 0 -2 0 0 198 0 20 wn
o0 0 & 0 0 -2 - 9 -3 55 -9F
0 0 O 0O 0 O 0 0 0 0 2
0 0 0 0O 0 O 0 0 0 0 -2 28

and

&0 0 0 O 0 22 0 0 0o - 22
0O -¢ 0 0 O 0 8 0 0 0 -2 _us
0O 0 0 0 0 0 6 o -z 0 -2 x
0O 0 0 0 0 O -2 2 0 -2 - e
0O 0 0 0 0 0 4% -2 (0 -zd2 138

~eff(0) _ 0O 0 O 0 O 0 -5z 12 (g _20 _e62m _118

Y 000 2 0 4 0 m o2 oo 3 o g |» A9
0 0 » 0 % & 2 0 -3 &% %
0 0 2 -5 0 52 -7 0 A% -8
00 0 % 0 - F B 0 -3 I I
0O 0 O 0 O 0 0 0 0 0 1s -8
0O 0 O 0 O 0 0 0 0 0 0 8

respectively. In the above matrices, the O(«) mixing of the electroweak penguin operators
Q7 Qo into Q7 and QF is given for the first time. As far as the remaining entries are
concerned, our results agree with the old ones of reference [217] and those of references
[216,238,239]. However, in order to perform a comparison with the latter results, one needs
to make a linear transformation® of our operator basis to the standard basis [236,237] of
the four quark operators used in those articles. Notice that the rows corresponding to
QQ7—Q1o in the matrix &Sﬁ(o) would affect the branching ratio of B — X;v only at higher
orders in «, since the Wilson coefficient function of the electroweak penguin operators
start at first order in a.. Yet they are needed in any analysis of non-leptonic weak decays

which goes beyond the leading logarithmic approximation.

3These linear transformations read 77 *) = R4.T@O -1 and 470 = RO -1 where 4.51®
and %eﬁ(o) denote the anomalous dimension matrices in the basis of references [236,237] and R can be

found in Eq. (D.3).
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While the matrices &EH(O) and ’yﬁff(o) are renormalization-scheme independent, &?H(l) is
not. In the MS scheme with fully anticommuting 75 supplemented by the definition of
evanescent operators of references [196,273] we obtain

RN R -8R s - 00 00 0 5% IR

0 0 - % _ 3184169 %0 31370783 0 0 0 0 2§Z§8 1081178

0 0 -y o e e 0 0 0 0 -ugmoapm

0 0 — 25;?80 _ 122?48 2388136 %36 0 0 0 0 112;3296 293}1396
ey _ [ 00 m meoumesmo 000 0 agmeomge |
s 0 0 0 -—%m (0 () -_4es _os80 400 s 77 C

0 0 0 37 0 0 -gx o mee 2 oame 77

0 0 0 - 93252 0 0 - 255.80 - 4922716 2388136 % ? ?

0 0 0 ome 0 0 oo dsuowumowa 72

o0 0 0 0 0 0 0 0 0 1=

o0 0 0 0 0 0 0 0 0 -2

81 27

where question marks denote unknown entries. The two-loop mixing involving the QCD
penguin operators (J;-(Q)g and the electroweak penguin operators (719 were found in
the standard operator basis [236, 237] in references [189,190] and in references [193],
respectively. In the article [194] the results for the two-loop mixing in the Q1—Qs sector
have been calculated in the new operator basis (3.2). The authors of the latter publication
also showed how their results for the mixing in the (01—Qg sector can be transformed to the
previously used renormalization scheme, finding agreement with the original calculations.
Our results for the mixing between )1-()s in the anomalous dimension matrix ’y?ff(l) are
in full conformity with the findings presented in reference [194]. The entries describing
the mixing of the remaining four quark operators (Q7—()1o are given for the first time in
the operator basis (3.2). However, it is quite non-trivial [194] to verify whether they
agree with the previous calculations [193]. Such a comparison is essential because of
the phenomenological relevance of the considered quantities. Therefore we will devote
a sizable part of a forthcoming article [197] to show how this verification is performed.
The two-loop mixing in the sector of the magnetic penguin operators Q7 and QF was
calculated in reference [195]. We have confirmed these results and will give the details of
the computation in a subsequent publication [197]. The three-loop mixing between the
set )1—Qs and the operators Q7 and @ has been completed six years ago [196,273]. Tt
is currently verified by us [197]. In the latter article we will give the details of this new
three-loop calculation as well as the results of the remaining unknown entries in &EH(I)
describing the mixing of the electroweak penguin operators (2;—Q1o into the sector of the
magnetic type operators Q7 and QF. Finally, let us recall that the rows corresponding to
Q7-Q1o are irrelevant as far as O(a”L" ') and O(aa L") corrections to the radiative B
decays are concerned, because the coefficients of these operators start at O(«). However,
it should be emphasized that the O(a?) mixing of the complete set of four quark operators
Q1 Q1p 1s needed in any NLO analysis of non-leptonic weak decays.
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Appendix B

One-Loop Matching for b — sv

In the appendix at hand, we will explicitly show that the gauge-invariant part of the one-
loop off-shell b — s effective vertex depends on whether the external photon is quantum
or background. At first, let us as consider the b — sv transition in the background
field version of the 't Hooft-Feynman gauge.! In this case, the calculation of the off-
shell amplitude amounts to compute the four 1PI electroweak diagrams shown in Fig. 3.1.
Expanding up to the second order in the external momenta and m;, and requiring equality
of our result to the similar off-shell 1PI Green’s function in the effective theory described
by the effective Hamiltonian (3.1), we obtain the following non-zero coefficients at the
matching scale py, = My:

10 (01,,) = zy (7= Dy — Exf) AV BIZ) iz, .
OO, = 16 — 48z, + 7327 — 3513 N 8 — 32z + Hdx? — 30z} + 3z} Iz,
w) — )
H 36 (2, — 1)° 18 (z, — 1)*
1+ 11z — 1822) x4 (4 — 16z + 1527)
o0 (ar,) = — 2 L Ylng,, B.1
i3 (M) 24 (2, — 1)° 12 (2, — 1) ' (B
1 2
C’{g)(Mw) = AR xtl il sInz,,

6(z,—1)° 3z —1)"

Let us mention that the LO matching of the off-shell effective Hamiltonian (3.1) has
already been performed in reference [226]. We have repeated the calculation and confirmed
the findings of the latter article.

Next, let us turn to the case of the b — sv transition in the usual ’t Hooft-Feynman
gauge. The diagrams that we have to consider now, consist of those presented in Fig. 3.1
and two additional ones containing a W*¢¥~ coupling. Interestingly, the latter diagrams
introduce some gauge-variant operators, as they do not maintain explicit gauge invariance
at the level of off-shell Green’s functions. At the one-loop level the following two gauge-

!While the coefficient functions of Q7 and Q% do not depend on the gauge-fixing parameter, this is
not the case for the Wilson coefficients of the EOM-vanishing operators Q11-Q1¢-
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variant operators are generated

Q9 = 1667r2 {SL (E)JB @+ @lDJD> b, + imbsL@pr} : .
Qs = 16; [gL (15 +zD)bL —i—z’mbELbR] ?Q,, o

where (), denotes the quantum photon field. Notice that Q)19 and @2 are chosen in such
a way that the vanish on-shell up to total derivatives, that is, they are EOM-vanishing.

After including these two new operators in the off-shell effective theory, the initial
conditions of the Wilson coefficients are found by requiring equality of the off-shell 1PI
Green’s function on the full and the effective side. In this way we immediately find that
the non-vanishing coefficient functions at p,, = My are given by

C;Y(O)(MW) _ T (7 — bxy — Exi’) B x? (2 — 3xi) .
16 — 48 7322 — 3523 8 — 32 542 — 3023 + 3z}
C’ﬂ))(MW) _ Ty + xtS Ty Ty + 04Ty 4xt + 37 Inz,
36 (zy — 1) 18 (x; — 1)
2—11 1522 4—13 1222
C{g)(MW):xt( l't+3 xt)_xt( xt—|—4 xt)lnxt,
24 (xy — 1) 12 (xy — 1)
) x?
cOm,) = —mt( L L Inx;, B.3
15( W) 6(:Et—1)2 3(£Et—1)3 t ( )
2 (1 + 5 22+
Q) = L) P,
1 2
TR L B B
Q(xt—l) (fL't—l)
1 2
ey =20 Ay,

4(xy— 1) 2(x — 1)31

Comparing Egs. (B.1) and (B.3) we see that the Wilson coefficients of the operators
Q7, Q11, Q15 and Q15 do not depend on the gauge chosen for the photon field. It is easy
to understand that this must be the case: The Wilson coefficients of the operators Q7 and
()11 must be regarded as physical?, whereas the Wilson coefficients of the EOM-vanishing
operators ()15 and Q¢ are determined by the b — s transition already. In contrast, the
Wilson coefficient of )13 does depend on whether a covariant or a background gauge
for the photon field is used. Even though contributions to gauge-variant operators arise
at the one-loop level due to diagrams containing a W*¢F~ coupling, it is easy to show
that these operators are irrelevant in the two-loop calculation presented in Chapter 4, as
long as dimensional regularization for both IR and UV divergences is used. This can be
either done by explicit calculation, as we did, or by applying the results from the well-
developed, formal theory of local operator mixing which is based upon the constraint of
the BRST invariance of quantized Yang-Mills field theories [257-266], which tells us that
gauge-variant operators do not contribute to physical matrix elements and thus can be
disregarded in practical calculations.

2Notice that C; (M, ) agrees with the Wilson coefficient of the electroweak penguin operator Q7 up
to O(a?) terms.



Appendix C

Bremsstrahlungs Corrections

In this appendix we give all the relevant functions necessary for the calculation of the
bremsstrahlungs function B(J) introduced in Eq. (3.53). At O(ay) the bremsstrahlungs
function B(J) arising from the b — syg and b — sgq transitions with ¢ = u, d, s is given
by!

8

B(8) = U8 S GO ()05 (1)0,,(5) + ). )
i,5=1
i<y

The functions ¢;;(d) originate from the gluon bremsstrahlung b — svg and have been cal-
culated by several authors [200-202]. For a cut-off energy of E, = 1.6 GeV the numerically
dominant functions ¢;;(0) entering the bremsstrahlungs function B(d) read

61() = 5 n(0), 61a0) = —36m(8), Gu(0) = <6 (0), bs(0) = 100w (0)

(1-68)/= 2 1/z 2
bon(6) = OF2 5/ dt(1—zt)‘@+1 +/ dt (1 — =)’ ,
0 t (1-5) /=

27 2
3222 (1-6)/= ¢ 1/z ¢
Bo7(0) = — [5/0 dt Re (G(t) + 5) +/( dt (1 — zt)Re <G(t) + 5)

9 1-6)/2

Git) 1

t 2

b

62(0) = —3021(9),

124 40 4., 84 28 16 4 , 8. 5
=+ — 0" —=0"— | —+ —0— = Ing — -1
329 1, 1 4 . 2
4 2 23
qsgg(é):ﬁ 76+ 36 —55 —0(2+9)Ind+8In(1—9)
. 2 , 2 my
+4L12(1—5)—§7r —2(6 +25+4ln(1—5))1n—] . (C.2)
M

'Here the sum runs over the operators Q1-Qs, Q7 and Q3.



132 C. Bremsstrahlungs Corrections

The function G(t) in the integrand of ¢92(0) and ¢o7(d) is given by

—2arctan® /75, for t < 4,

G(t) = (C.3)

21n’ (Lgﬂ) — 2irIn (%) — %, for t>4.

]

The above integrals can be performed analytically with the substitutions ¢ = 4sin?y for
t < 4 and t = 4 cosh?y for t > 4. The resulting expressions are quite long and therefore we
will not report them here. For practical purposes, the compact integral representations
given above are however adequate. Notice that apart from a factor of 4 the functions
given in Eq. (C.2) are identical to the functions f;;(d) used in many previous analyses of
the B — X, v branching ratio [186, 196, 216, 218, 247], except for the case ¢77(5). The
difference between ¢77(0) and f77(9) of reference [196] is due to the Sudakov logarithms
Iné and In§? and the constant term, which is chosen in such a way that ¢77(5) vanishes
in the limit 6 — 1. For simplicity, we refrain from resumming the Sudakov logarithms
here, because we are interested only in cut-off energies of £, < 2.1 GeV, corresponding
to § > 0.1. For such values of §, the logarithmic divergence of ¢77(d) arising at the
limit 6 — 0 is not yet relevant. The function ¢gg(d) is sensitive to collinear singularities
regulated by the mass of the s-quark. The collinear singularities can be resummed to all
orders of perturbation theory, leading to a collinear safe result [243]. Unless § is chosen
very close to one, the net effect of the resummation is a moderate increase in the result.
Since the contribution proportional to ¢gg(d) is very small, however, it is sufficient for
all practical purposes to work with the leading order expression given above. Following
reference [196], we take a rather large value for the quark mass ratio, m,/ms; = 50, in
order to mimic the effect of the resummation of the collinear logarithms.

The only functions ¢;;(d) which have not yet been given explicitly are the ones with
at least one index corresponding to the QCD penguin operators (J3—(Q)s. These functions
can easily be derived from the results of reference [201] by making a linear transformation
of our operator basis to the standard basis [236,237] of the four quark operators used in
the latter article.? As these functions have only a 0.1% effect on the B — X, branching
ratio for F, > 1.6 GeV, we shall not give them explicitly here. Instead, let us give the
numerically values of the coefficients ¢;;(0) that were used in our numerical analysis of
the branching ratio of B — X,v leading to the final predictions presented in Eq. (4.101)
and Eq. (4.102). For m./m; = 0.22 and a cut-off energy of E, = 1.6 GeV we find

0.0031 —0.0371  0.0003 —0.0001 —0.0088 —0.2217  0.0146 —0.0049
0.1113 —0.0017  0.0003  0.0531  1.3300 —0.0877  0.0292

0.0280 —0.0096  0.6396 —0.1277  0.1128 —0.0376

0.0288 —0.1066  0.5807 —0.0188  0.0063

Pij 3.5616 —0.9955 1.5573 —0.5191
3.8713 —0.8168  0.2723
—~0.5283  0.9258
0.4550

. (C.4)

?The formula from which the coefficients ¢;;(d) can be obtained have been given in reference [196].
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On the other hand, using m./m; = 0.22 and a cut-off energy

0.0060 —-0.0724 —0.0052  0.0009
0.2172  0.0313 —0.0052

0.0556 —0.0185

0.0559

—0.0896
0.5374
1.2984

—0.2164
7.6545

—0.4198
2.5187
—0.0470
1.0955
0.4497
7.1087

of E, = my;/20 we obtain

0.0136
—0.0817
0.1681
—0.0280
2.3680
—0.9252
—0.0001

—0.0045
0.0272
—0.0561
0.0093
—0.7893
0.3084
1.5494
5.2697

. (C.5)

The term denoted by ¢z (d) in Eq. (C.1) stands for the contributions from the b — sgq
transitions with ¢ = wu,d,s. Perturbatively, such effects to the partonic decay rate are
suppressed either by the small Wilson coefficients of the QCD penguin operators (Q3—Q)g or
by the tiny CKM cofactor V', V,,;, with respect to the leading terms. A further suppression
occurs when we restrict ourselves to high-energy photons [202]. In the numerical analysis
of the branching ratio of B — X, presented at the end of Chapter4, we have thus set
©a4(0) to zero without including any additional uncertainty. At present we expect this to
be acceptable for cut-off energies of £, > 1.6 GeV.
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Appendix D

Wilson Coefficients Transformations

Here we demonstrate how the O(a) corrections to the Wilson coefficients of the four
quark operators transform when passing from one operator basis to another. The O(«)
contributions to the coefficients of Q1—Q1o in our operator basis (3.2) can be found from
those in the operator basis of references [236,237] after a basis transformation which in

four dimensions is simply X
C(My) = R"C'(My), (D.1)

where é’(MW) are the Wilson coefficients in the basis of the latter reviews. In the NDR
scheme the non-vanishing O(«) corrections to their initial conditions are given by

: 22 4. M2
Cz(,?(MW) i + 3 In 2
w
, 1 (4 2
Cie (M) = = <§Bo<xt> + gco(:vt)> |
v (D.2)
’(1) 1 /8 2
Cro (My) = o gco(xt) + gDo(xt) )
w
' 8 2 1 /20 8
O ) = SCum) + 2Du(a) + - (D Bota) - Scule))
w

where By (), Co(x;) and Dy(z;) can be found in Eq. (4.25). The matrix R is the extension
of the same matrix of reference [194] and is needed only for the physical operators Q;-Q1o,
Q7 and Q. Tt reads

2L 0 0 0 0 0 0 0 000
o1 0 0 O O O 0O 0 000
00 - 0 & 0 0 0 0 00O
00 -5 -2 & + 0 0 0 000
00%2—1—%?00 0 000
- oo 5 &-+L -1 0 0 0 000
=190 0 0 % 0 2 o -1 000 (D-3)
o0 0 0 0 0 2 4 —35 —700
o0 0 0 0 0-3 0 5 000
00 0 0 0 0 — -1 5 00
oo 0 0 O O 0O 0O 0 010
oo 0 0 O O 0 0O 0 001
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In fact, beyond LO, the operator basis must be supplemented by a definition of the
evanescent operators. This definition corresponds to a choice of scheme and it is differ-
ent, for instance, in the standard basis of references [236,237] and in the operator basis
used throughout this thesis. On the other hand, a change of scheme can in general be
accommodated by an additional non-linear term in the transformation (D.1), namely

—

(M) = (1 + %Aff) RTC' (M), (D.4)

where A7, is a matrix that depends on the way the projection on the space of physical
operators is implemented in the effective theory calculation, which in turn corresponds to
a definition of evanescent operators. At the order we are interested in, it affects only the
coefficient function of the current-current operator ()s.

The calculation of the entries of A7, that affect the O(«a) corrections to the matching
conditions of ()11 is straightforward. First, we note that

AT = ! ! ! T
R'CO(My) = O (M) = (0,657 (My),0,....,0,C7 O (0,), ¥V (M), (D.5)

which tells us that the only entries that might affect the coefficients of the four quark
operators at O(«) are those entering the second and the last two rows of Ar,. However,
since the calculation of the LO Wilson coefficients of ()7 and Qf does not involve any
evanescent operators it is obvious that the eleventh and the twelve row of Ar, contain
only zeros, and thus do not give a contribution to the left-hand side of Eq. (D.4).

In order to find the second row of Ar,, it is important to remember that the standard
operator basis of references [236,237] is supplemented with evanescent operators that
differ from the ones used here by O(e) terms. In fact, it is easy to see, that the only one
that matter to the present discussion are'

Qr = (SLymer) @'y br) — 16Qs,

/ - _ y (D.6)
Qp = (SL’Y;/YV’Y/\CL)(CL’Y”’Y 'y’\bL) — (16 — 4¢€)Q2,

where as hitherto the prime indicates the evanescent operator belonging to the standard
operator basis [236,237]. In consequence, the last ingredient needed to find the entries
of A7, that affect the O(«) corrections to the matching conditions, is the calculation of
the mixing of ()5 into these evanescent operators. Computing the usual one-loop current-
current diagrams one immediately finds

_ o (Qu + Qd)2 o (Qu + Qd)2
ZQ?QE‘ — ET, ZQ?Q’E‘ — ET . (D-7)
Combining Egs. (D.6) and (D.7) we obtain
. 1
(Afe)yy = 9’ (D.8)

which is the only element of Ar, that affects the quantities that we want to calculate.
According to Eq. (D.4), finding the O(«) corrections to the initial conditions of Q1-Q1p
in the basis (3.2) is now only a matter of simple matrix multiplication.

IThe full set of evanescent operators of the standard operator basis [236,237] and of the one used
throughout this thesis can be found in reference [194].



Appendix E

Two-Loop Matrix Elements of the
QCD Penguin Operators

In the present appendix, we shall describe how to evaluate the MS renormalized on-shell
b — sy amplitude at O(«a), from which the two-loop matrix elements ry .76, of the four
quark operators can be determined. Thereby the framework outlined in reference [206] will
be largely followed. In the effective theory the renormalized on-shell b — sy amplitude is
given by

Gr .
Aeff(ﬂ) = _—F‘/;s%b{Zqub [Cg(ﬂ) (Z7%7WQ¥ + Z7%89Qg) + Cg(,u) (ZSQ,WQ;Y + ZSg,SgQg)]

V2
10 10 2
+Y Cilp) | Z; (Z ZiQi+ Zi,EjEj)  ZyZomy (Ziny QY+ Zi 5,Q8) } ...
=1 j=1 j=1
(E.1)

Here in addition to the physical operators introduced in Eq. (3.2) two evanescent opera-
tors, namely

Ey = (579 V0 VebL) Zq Qo(@"V" Vv 17q) + 64Q7 — 20Q ,

(E.2)
By = G e T ) D Qul@r" 717y T"q) +64Qs — 20Q0

need to be considered. The dots in Eq. (E.1) stand for other evanescent operators that do
not affect the O(a) matrix elements of Q1-Qs. They are relevant for the O(a) anoma-
lous dimension matrix though. As far as Z, and Z,,, are concerned, only the one-loop
expressions

a 3Q3

_ o Qg
A €

4T o€

Z,=1 Ty =1

b

, (E.3)

are needed in the following. The O(«) contributions to the renormalization constants Z; g,
and Z; g, are found by a simple one-loop calculation. The only non-vanishing elements
at that order are
Q Q
@ o Q w4

Z5,E1:E ) 6.8, = " -
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The renormalization constants Z;; can be found from the anomalous dimension matrix
;Ysz(o) given in Eq. (A.4). The relations connecting the renormalization constants Z;; with

the entries of the anomalous dimension matrices read

L G0,

Z = — 2Nz : E.5
j 471_ de Z B yE' ( )

for all elements of the last two columns and

A 2 ’

0therw1se The entries of the anomalous dimension matrix *y(g ) are given in terms of those

of 487 by the following well-known [233] relation

(76)2 Ty + Zk 1 Yk (7e)lk yi(;ye)%yj,y — % (&8)89,77 , 1=1,...,10, j =Ty,
(36M),; = § (Ge)isy T 2ons 2 (Fe) i = 95 (e) 7 5y = 7 (Fe) g0 1= Ls---210, =38y,
(%)ij , otherwise ,
(E.7)
with y; and z; given in Eq. (3.6). At the one-loop level the unrenormalized on-shell b — sy
matrix elements of the four quark operators

2e
1 . .
<Qi>0ne—loop = (mb> Yi <Q’7y>tree + 0(62) ) 1= 17 sy 10 )

L 2€ (E8)
<Ei>0ne*100P - <ﬁb> gEz <Q¥>tree + 0(62) ) 1= ]-7 27

can be parameterized by the numbers y; and yg,, respectively. An easy one-loop calcula-
tion gives

gl:oa g2:07 g?):Qda
ys = QuCr, Us = (20 — 12¢€) Qq, Ue = (20 — 12¢) Q4C , (£.9)
g'? = Q?[a gS - QZCFa g9 - (20 - 126) Q?[a .
Ji0 = (20 — 126) Q%Cr,  §p, = (64 —400€) Qy,  Fm, = (64 — 400¢) QCr .
The unrenormalized one-loop matrix elements of @7 and QF read
L 2€ o
% - (= (2,2, Z —1 e e] v O(a?
<Q7>one—100p (mb> [ ( q b LTy, Ty ) + 47TT77, <Q7>tree + (Oé ,6)7 (El())

<Qg>one7100p = 0’

where 77, has already been given in Eq. (4.93). Notice that for our purpose a explicit
expression for the unrenormalized one-loop matrix elements of @7 is needed. This is due
to the fact that Z,7,,, 77,7, = 1+ O(«a) and is different from what happens in the case
of the O(ay;) calculation of the matrix elements of the QCD penguin operators [206]. We
also note that the unrenormalized one-loop matrix element of ()7 contains an IR pole,
which we assume to be regulated by a small photon mass.
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In order to find the quantities 7y .~ 76, it is easy to see [206] that one needs in addition
two unrenormalized matrix elements of evanescent operators, namely

1 . 1 ..
<Q0 - §Q2 + QZC + 6Q§c> T Ced <Q7>tree + O( )

two—loop

(8
0 ‘; (E.11)
<4Q0 — 8@ + Q" + EQgc> = 1t (@7 ) iree T Oe),

two—loop
where Qy = (5.cr)(rbr), and QF, QF, QF and QF° are just the cc-parts of the QCD
penguin operators. Notice that (Q5) = (Q5°) = 0 due to the tracelessness of the color
generators. For the quantities e.4 and e.s parameterizing the unrenormalized matrix
elements of the evanescent operators we find

ot = (ZQu - de> QuQus  Cog— (12Qu - de> QuQu.  (E12)

Since these results are independent of m,, they hold, after proper replacement of quark
charges, for any flavor running in the loop. In consequence, is it not necessary to calculate
two-loop diagrams with an insertion of (J3—()¢ containing Dirac traces separately. Such
an approach is very convenient, because the quantities e, 4 and e, can be, and are in fact
found by performing a Taylor expansion in the external momenta. More precisely, such
an expansion is applied to diagrams with subtracted subdivergences, because subtracted
matrix elements of evanescent operators must be local, that is, polynomial in the external
momenta. Once they are found, we can add the one-loop subdivergences again, setting
the external momenta on-shell. Then the only relevant subdivergence is proportional
t0 (Q5)one—10op aANd (QE)one—100p, respectively. However, these divergences are known
already. In consequence, the calculation of e.s and e, can be performed using the
algorithm described in Appendix A.

Now we are ready to calculate the unrenormalized two-loop matrix elements of (Q1—Qg
at O(a). Let us write them as follows

4e
<Qi>two—100p = (%) (l‘z + <Q¥>one—100p g2> <Q¥>tree + 0(6) ) 1= 17 SRR 6 ) (E13)

where the terms proportional to g; originate from the usual penguin diagrams with a
photon joining the external quark lines. The evaluation of the quantities x; amounts
to forming appropriate linear combinations of the results given in reference [206], by
taking into account the Dirac and flavor structure of the QCD penguin operator under
consideration. Explicitly one finds'

I8 3 4 4 160,
1= 709e T o187 9™V T gt T g
46 N 833 a(z) b(z) N 40
To = - — — — —(— t —IT
27 243¢ ' 729 3 3 243
38 811 21 2 8 a(l) 7 44
=00 o AT +2x, =B Sy — 2 2
3T 043 T 729 o3 81 o7 12 Tt 2 + i

'We are grateful to Dr. J. Urban for providing us with the MATHEMATICA code that was used in the
calculation of the NLO QCD matrix elements [206].



140 E. Two-Loop Matrix Elements of the QCD Penguin Operators

248 | 2932 8r 8 5 B a(l) | 240 4 128
Ty = — 557 - — —T,
YT729¢ T 2187 T 97y3 2430 817" 9 9 729
6494 73297  8r 40 , 32 13 38 4268
= — 4 22X, - Za(1) + 2b(1) — 12a(2) — 20b
= ome t 0 tous st Tarve T 3+ gh(l) —12a(z) )+ 55
5552 42424 321 160 , 128 16 32 2336 .
= S R ' 1) + (1 E.14
= 0c T o187 T o3 243" T gDt g+ ogim o (B4

up to terms of O(¢€). Here the constant X, which has been calculated by Buras et al. [206],
is given by

1 1 1
X, = / dx/ dy/ dvzylnfvr (1 —2) (1 —v) (1 —v+vy)] = —0.1684. (E.15)
0 0 0
The exact expressions for the functions a(z) and b(z) can also be found in the latter paper:

“(2’):g/odfffody/()dv{[Q—U—xy(3—2v)]ln[vz+x(1—x)(l—v)(l—v+vy)]

43 4
+[1—v—ay(l—2v)]ln[z—vay(1—2) —16]}+§+

9
/dx/dy (1—z)y*(1 —y?) — (4—2y)u11n2u1—|—(2—4y—4y2)u21nu2
2(1-y)
224 16 4 4 — 64z — 4822
—1 v1—-4
243+ ST TR 81 2/(z)
2(24-162) . ., 4
—_— — E.1
+ 5 f(2) +81m (E.16)
with u; =z (1 —z)y* + (1 — 2) z and
1++v1-4
f(z)=0(1—4z) m— V") _2ip (—1 +4z) arctan —, (E.17)
1—+v1—-4z -1+ 4z

where 0(x) is the Heaviside function. Notice that additive constants in the functions
a(z) and b(z) have been chosen in such a way that a(0) = b(0) = 0. According to
reference [206], a(1) and b(1) are given by

4
a(1l) =~ 4.0859 + §i7r,

320 4 632 8 d?InT
b(l):___”jL_ﬂ?__ni(x)
81 33 1215 45 da?

4 (E.18)
—im ~ 0.0316 + —
m:1/6+ 81m + 81Z7T

where T'(z) is the Gamma function. For realistic values of 2 = m2?/m =~ 0.1 there is no
need to apply numerical integration in order to find a(z) and b(z), because both functions
are then accurately given by their expansions in z

16 5 2 5 3 1 1
a(z):§{ [5—%—3C(3)—|— <§—Z7r2> lnz—|—4ln z+ﬁln z]z

7 2 2 1 1 77 3
+ (Z—i—ng—%lnz—Zanz’—kﬁln?’z) 2% — (6—1—%—21112-1-111122) 2’
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(BT 5, 15, ) (310035, 185 35, \
— — —7n°——Ilnz—=In"z —— — — g ——Inz——In"2) 2
216 18 72 6 8640 72" 144 24
67801 21 , 3303 63 5 \ & 72 1 1,
Skt tbt i M| p R NP
+<8000 507" 200 nz 20nz>z+[< 6+2nz+2nzz
1 2 1 5) 49 231
—|—(5—%—lnz+§ln2z>z2+z3+§z4+525+r.0z6]i7r}+(’)(z7ln2z),
8 2 2 1 1
b(z):§{ <3—%+lnz>z—§7r22%—<§+7r2—21nz—§ln2z> 2
25 2 19 1376 2 137
+<ﬁ+%+ﬁlnz—21n2z>z3+<ﬁ—§ﬂ2—%lnz—21n22>z4
131317 5 , 887 . (2807617 14 , 16597 >\
22 P s e 7, 141
+<11760 37 T n>z +< 07200 3 sa0 o T F)F
10 4 2 7
+lz—(1—-2In2) 2%+ | = —<-lnz)2*—2* - 22— ~2°|ir +O(z7ln2z),
9 3 3 9
(E.19)

which have been calculated by Greub et al. [203,204] up to O(2?) terms. Recently, these
results have been confirmed by the authors of reference [205] generalizing them to include
terms up to O(2°).

Once we have found the unrenormalized matrix elements of ()1 Q)¢ it is straightforward
to calculate the renormalized ones. From Eq. (E.1) we read off that the MS-renormalized
amplitude for the b — sv transition up to O(«) terms is given by

RINE —%v;vw{zqzmb Zanry (1O (0) + L1 (1)) (@ troe + QP one100n)
6 10
3 (O + O W) | X [(ZeZig + (1 =26) (Zimy = 1) 85] QD gneso0p
i=1 j:21
+ <Qi>tw07100p + Ziy7’)’ <Q’7y>tree + Z Ziij <Ej>one—loop } + Tt (EQO)
j=1

where the dots stand for terms that do not affect the matrix elements of Q1-Qg at O(«).

As explained in reference [206] the appearance of Z, and Z,,, in the above equation
can be understood without calculating any diagram. In fact, it is enough to remember
that the insertions of the wave function counterterms on internal quark lines always cancel
with the Z;/Q factors at the ends of those lines. Thus one is left with a single power of Z,
that corresponds to two external quark lines of the down-type. On the other hand, the
term proportional to (Z,,, — 1) is found from

<Qi>0ne—100p - <Qi>0ne—100p ) (E21)

mb—)Zmbmb
With (Q:) e _100p given in Eq. (E.8). Thereby, it is important to remember that (Q7)
proportional to my,.

Now it is easy to check, that if one substitutes all matrix elements and renormalization
constants into Eq. (E.20), all UV poles cancel as they should. Moreover, if one replaces

tree 18
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the Wilson coefficients by their effective counterparts according to Eq. (3.3), all terms
proportional to lnm,/p are found to be multiplied by the elements of the next to last
column of the anomalous dimension matrix &SH(O) given in Eq. (A.4). Thus the b — svy
transition amplitude Aeg(p) takes the following form

G
Aot (11) = == Vi Vi

e « ,e
7 C7" O () + =077 () (E.22)

47

- 2
- eff (0) L efr(0) m?
e (e + 3 G0y 78 | @t

where again the sum runs over the operators Q;-Qg, Q7 and Q3. From the above expres-
sion, we have determined the results for the matrix elements ry .~ rg,. that have already
been given in Eq. (4.93).
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