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Abstract 
 
Computed tomography techniques are the most widely applicable non-invasive methods 
for giving unique insights into the three dimensional (3D) organization of pleomorphic 
biological objects. Recent advances in the recording schemes improve the speed and 
resolution and provide new insights into the structural organization of different 
specimens. The boundaries in the applicability are set by dose limitation, limited 
accessibility of the data and resolution. In electron tomography the resolution limits are 
improved down to 2-4 nm, which should allow the identification of large biological 
macromolecules in their native environment. However the low signal to noise ratio 
hinders the application of image processing methods for data analysis, such as 
visualization, segmentation and feature extraction. In this thesis four image processing 
techniques have been developed and implemented in the field of electron microscopy in 
order to improve the performance in terms of signal reconstruction, processing time and 
visualization.  
 
A new noise reduction (denoising) technique is proposed based on nonlinear anisotropic 
diffusion. Diffusion methods for signal reconstruction became widely applicable due to 
their well-established mathematical properties and their general well posedness. Several 
different methods have been proposed mainly focused on edge detection and edge 
preservation, but none of them became applicable for highly degraded data. A new 
hybrid approach has been developed, which combines conventional diffusion methods 
and overcomes the handicaps of the present realizations. This diffusion technique shows 
a superior performance as compared to existing diffusion realizations, as well as to 
conventional methods typically applied in image processing (e.g. low pass filtering, 
median filtering) and invariant wavelet filtering. Several quantitative measures to assess 
the signal reconstruction performance have been established. The best reconstruction 
performance is observed at spatial frequencies lower than half of the Nyquist frequency. 
The method is therefore appropriate for the mostly oversampled electron microscopic 
data. The signal to noise ratio improvement is demonstrated by means of Fourier shell 
correlation functions. Several examples demonstrating the significant improvement of 
the visualization quality of the data sets are presented. Additionally the method proves to 
be an excellent preprocessing step for object detection and segmentation techniques. 
 
Mean curvature motion is a novel approach for object detection. It is a nonlinear 
anisotropic diffusion process, where the diffusion flux is explicitly set to zero in the 
direction of the gradient. As the level sets of the image (isointensity contours) move as a 
function of their own curvature, they degrade to concave regions and disappear to 
singularities, which can be detected a posteriori indicating the position of a feature. This 
method can be applied as a preprocessing step for object detection in two-dimensions 
(2D) as well as in 3D is robust with respect to noise (for a signal to noise ratio larger 
than 0.1) and rotational and translation invariant. Additionally is also a parameter-free 
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method since the only parameter, which has to be determined (iteration time) depends 
directly on the size of the feature to be identified. An extended performance evaluation 
on real and artificial data, as well as with an interactively selected data set is presented.  
 
Automatic grouping and segmentation is a challenging problem in the image-processing 
field. The main goal of image segmentation is an image simplification, such that the 
interesting parts of the image are separated from each other and the effective size of the 
image reduces to the substantial part. Decreasing of the effective processing size and 
improvement of the visualization capabilities are the two most important effects of each 
segmentation technique. A segmentation procedure is in general not objective, as 
compared when different individuals perceive distinct features as the important objects 
in the image. Two techniques covering a broad field have been developed, the active 
contours as an interactive segmentation tool and an eigenvector based approach for 
automated image analysis.  
 
The “snake” segmentation based on the movement of an active contour towards a 
detectable boundary has been applied at various image processing applications. 
Nevertheless, due to the missing wedge, the low signal to noise ratio and the 
pleomorphic features is not directly applicable for interactive segmentation in the field 
of electron microscopy. A modification of the partial differential equations is proposed 
in order to block the level set movement in the direction of the missing information. The 
technique remains very sensitive to the initial conditions and is therefore not applicable 
for automated segmentation. Interactively the user has the option to determine an 
arbitrary boundary, near to the object of interest, which will be approached by the snake 
in a finite time. Application examples in 2D and 3D are presented.  
 
The use of eigenvectors for segmentation of multidimensional images in the field of 
electron microscopy is a novel approach. With the use of the second smallest 
eigenvector of an affinity matrix containing similarity measures between the pixels a 
foreground/background separation is attained. Several similarity measures e.g. distance, 
gray value, texture can be implemented in the algorithm. The most dominant feature in 
the image could be always automatically segmented improving the visualization 
significantly. The parameter choice turns out to be very robust, making the method 
widely applicable for various 2D and 3D electron microscopic images. 
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Chapter 1  

Multidimensional Electron Microscopy of 
Biological Specimens 
 

1.1 Introduction 
 
In recent years the importance of non-invasive 3D imaging in several fields related to 
biology and medicine has rapidly grown. This growth has been fostered by 
improvements in imaging modalities as well as by the widening availability of powerful 
hardware for computing and visualizing 3D image data. The boundaries in the 
applicability of these 3D imaging techniques are usually set by dose limitations, 
exposure time, and resolution. The closer one approaches these boundaries – which is 
always the goal in any area – the more degraded the recorded signal becomes. Statistical 
processes in the recorded data severely aggravate the automated data analysis 
procedures, which include visualization, feature extraction, and segmentation. These 
image-processing problems are particularly demanding in the field of electron 
microscopy.  
 
Two-dimensional electron microscopy and electron tomography (three-dimensional 
electron microscopy) are by no means new imaging techniques (Hoppe 1968, Hart 1968, 
De Rosier and Klug 1972). Nevertheless due to recent developments in hardware and 
software the ultimate goal of molecular resolution when imaging small pleomorphic 
biological objects, such as cells and subcellular structures in a near-to-native state, has 
come significantly closer to being attained. The identification and visualization of 
macromolecular structures in a cellular context with a resolution of approximately 2-4 
nm should be possible with the constraint of a good signal-to-noise ratio (SNR) (Boehm 
et al. 2000). Due to the irradiation sensitivity of biological samples the dose has to be 
restricted to the minimum needed for statistically defined images. Therefore the 
unambiguous identification of macromolecular structures in unperturbed cellular 
compartments is not yet feasible. By means of correlation techniques the tomographic 
reconstruction is scanned with templates created from high-resolution objects obtained 
from techniques as X-ray crystallography, nuclear magnetic resonance (NMR) 
spectroscopy, and electron microscopy. These high-resolution techniques are based on 
the averaging of thousand or even several hundred thousand molecules and achieve a 
remarkable resolution (Nitsch et al. 1998). The combination of electron tomography and 
known high-resolution structures will allow the determination of the position of 
individual macromolecules within the cellular environment, and will provide new 
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insights into the spatial distribution and functional interactions of molecular machines 
inside the cell.  
 
To achieve a sufficiently high SNR for visualization and identification, powerful 
hardware and software are necessary. Additionally, a good preparation technique is 
essential in order to preserve the specimen properties as a snapshot of its native state as 
well as to prevent radiation damage. Even though significant improvement has been 
made during recent years the SNR remains unsatisfactory. Most of the electron 
tomographic reconstructions suffer from a very low SNR, which make further scrutiny 
of the sample very difficult. Therefore a good signal improvement technique 
(“denoising” technique) is necessary. Additionally the investigation of more complex 
and rather thick objects increases the image complexity. Image simplification techniques 
(interactive or automated) are necessary for separating the image into parts with similar 
or coherent properties, which improve the visualization capabilities as a consequence of 
focusing the 3D images on the parts of most interest and minimizing their size to the 
substantial parts. 
 
In this thesis four methods have been developed and implemented in order to pursue the 
above mentioned goals, namely: (a) a hybrid approach for nonlinear anisotropic 
diffusion, as a noise reduction method, (b) mean curvature motion for object detection, 
(c) snakes or active contour models for interactive image segmentation and (d) 
eigenvector segmentation for fully automated region-based segmentation. They are 
mainly based on partial differential equations (PDE) and most of them can be expressed 
through the heat equation. PDE based methods are one of the best mathematically 
founded techniques in image processing, therefore stable algorithms can be found.  
 
Nonlinear anisotropic diffusion was proposed as an edge-detection and edge-enhancing 
technique in the early 90’s (Perona and Malik 1988). The properties of linear diffusion 
as well as the scale space properties of the nonlinear and anisotropic realizations 
established this method in the field of computer science. Nevertheless for denoising of 
EM data none of these methods are appropriate. A novel version of nonlinear anisotropic 
diffusion is introduced, which outperforms other diffusion denoising methods, standard 
techniques (e.g. low-pass filtering, median filtering), and rotation invariant wavelet 
filtering, with respect to denoising performance (SNR improvement, cross-correlation 
coefficient, etc.). In addition to the significant SNR enhancement achieved by this 
variant the visual impression appears even better. The visualization of the data is 
facilitated and especially in 3D overcomes the human perception ability (Frangakis et. al 
2001). This method is furthermore an excellent preprocessing step for the methods 
applied subsequently. 
 
With a small modification of the diffusion equation the so-called mean curvature motion 
is achieved. Mean curvature motion was first proposed by Alvarez et. al (1993) as the 
ultimate edge-enhancing technique due to its total anisotropy. After some mathematical 
calculations it was proven that it is equivalent to the movement of the level sets of an 
image as a function of the local curvature. Due to severe modifications of the image 
properties, which is a highly undesirable property for qualitative image analysis, the 
method is not appropriate for “further” edge-enhancement or denoising. A novel 
application of this method is as an automatic object detection method. Object detection 
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is very important in electron microscopy because the most important noise reduction 
technique is based on correlation averaging of several thousand identical copies of the 
same object. The collection of these objects is a very time consuming task and subjected 
to the human subjectivity. The common techniques for object selection are usually based 
on correlation. In this manner the signal properties buried in the noise are exploited. 
With mean curvature motion a different strategy is proposed, in which signal 
preservation no more plays an essential role, as is usual in every other object detection 
and denoising technique. On the contrary, signal and noise are eliminated in parallel, 
under the assumption that the structure of the objects is significantly larger than the 
noise and therefore the curvature lower. Processing with MCM creates singularities 
which correspond to the position of the object (Boehm et. al 2000). The approach has 
several benefits for instance it is rotational invariant, fast, and independent from user-
dependent parameters. 
 
Denoising and edge-enhancing the 3D images improve the image representation 
significantly; nevertheless they do not simplify the image context. In order to achieve a 
good visualization, segmentation of the 3D image is usually necessary. The 
segmentation procedure separates the image in places with coherent properties. It can be 
automated or semi-automated as the user or the application requires. A segmentation 
procedure, in contrast to denoising can not be objective, but is always dependent on 
subjective interactions. The segmentation techniques can be separated into two larger 
groups: contour-based and region-based approaches. In the contour based approaches a 
curve (also called snake) is pushed towards an object and stops at the detectable 
boundary (Kass et. al 1988). An advantage of this kind of approach is that the user can 
interact with the boundary in order to force a “correct” segmentation. Region-based 
techniques make the decision by defining a global objective function. The advantage 
thereby is that decisions are made when information from the whole image is taken into 
account. 
 
In contrast to snakes, eigenvectors segmentation belongs to the region-based approaches 
and produces a result after the whole image has been taken into account at the same time 
(Malik et. al 2000). The advantage thereby is that no premature decisions are taken. For 
this region-based segmentation the information contained in the first eigenvectors of an 
affinity matrix, describing the similarity connection between different pixels, is taken 
into account. With this approach a foreground/background separation is attained. Several 
similarity criteria can be integrated in the algorithm in order to facilitate the 
segmentation procedure. The algorithm possesses of one tremendous virtue: The 
segmentation results have been always satisfying. 
 
 

1.2 Transmission Electron Microscopy 
 
Electron microscopy is the only technique capable of visualizing molecular interactions 
in a cellular context, with a resolution in the nanometer range. The performance of the 
visualization is strongly dependent on the specimen preparation and the electron 
microscope itself.  
 



 

 

4 

The image formation is the result of the interaction of an electron beam with the 
Coulomb potential of the specimen and the subsequent magnification by the objective 
lens. Thin biological objects are weakly forward scattering phase objects, therefore the 
image is approximately a projection of the density distribution, which is in its part 
linearly related to the Coulomb potential of the specimen. The electrons interact with 
atoms by elastic and inelastic scattering. Bright-field contrast is produced either by 
intercepting the electrons scattered at angles larger than the objective aperture (scattering 
contrast) or by interference between the scattered wave and the incident wave at the 
image point (phase contrast). In transmission electron microscopy both the elastically 
scattered and the inelastically scattered electrons contribute to the image intensity, 
nevertheless for thin and weakly scattering specimens, as observed in biological electron 
microscopy, the phase contrast gives the major contribution. The image can be 
considered as a superposition of a high-resolution elastic image and a blurred inelastic 
image. Zero-loss filtering allows removing the background of inelastically scattered 
electrons, which considerably increases the contrast (energy filtering) (Grimm et. al 
1997). 
 
In the case of phase contrast the electron beam modulation is described with the phase 
contrast transfer function (CTF). It characterizes the effect of the instrument on the 
image formation and is independent of the particular specimen in question: 

( ) ( )




 ∆−⋅⋅−= 243 2

2
sin2 fzfCfCTF s λλπ , (1) 

where sC  is the spherical aberration constant, z∆  the defocus, λ  the wavelength of the 
electron beam, and f the spatial frequency. A typical image of an object modulated by 
the CTF and the corresponding power spectrum describing the squared amplitudes as the 
function of the spatial frequencies xf  and yf  is presented in Fig. 1. 
 

 

xf

yf

 
 

Fig. 1. Electron microscopic image of negative stained biological macromolecules (26S proteasome) and the 
corresponding power spectrum.  
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The electron beam is extracted from a field emission gun (FEG) in order to decrease the 
damping of the CTF at high spatial frequencies caused by spatial and temporal 
incoherence. The electrons are then accelerated with a tension that usually ranges 
between 100-300kV. The condensor system creates a parallel electron beam, which 
irradiates the specimen. The heart of the electron microscope is the objective lens whose 
properties determine the quality of the image (Fig. 2). The intermediate and projection 
lenses serve to magnify the primary image produced by the objective. The projection 
lens enlarges any defects of the objective lens, whereas defects in the projector itself are 
not subject to subsequent significant magnification and are thus not usually evident. The 
resulting image can be recorded by direct exposure of a photographic film or digitally 
via a fluorescent screen coupled by a fiber-optic plate to a CCD camera. 
 

 
Fig. 2. Scheme of a transmission electron microscope 

 
The primary goals at the frontier of experimental transmission electron microscopes are: 
(a) To improve resolution: The higher the accelerating voltage the faster the electrons 
and the longer the mean free path inside the specimen. The use of a FEG makes the 
wavelength almost monochromatic (less chromatic aberration) and improves the phase 
contrast. In addition, the use of an energy filter serves to remove the inelastically 
scattered electrons (less blurring) whereas a deccelerator improves the efficiency of the 
CCD camera. 
(b) To preserve structural information and specimen consistency: The specimen 
preparation is very important. The specimen may be cooled to liquid-helium temperature 
in order to reduce the effects of the radiation damage and the electron dose has to be 
kept to a minimum. 
 
 

1.3 Noise Model 
 
The major noise contribution is associated with the illuminating beam (also called 
particle noise). The number of particles λ  in a given area (e.g., pixel) follows a Poisson 
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distribution ( ) λλλ −⋅= e
k

kP
k

!
, , with the variance λσ ~2

Part . Considering λ  as the 

signal, its variance can be equivalently written 22 ~ λσ Sign , i. e., the signal-to-noise-ratio 

( λ
σ

σ
== 2

2

Part

SignSNR ) is proportional to λ . In the case of bright-field imaging of a weakly 

scattering objects the signal is given by { }λλλ E−=∆ , where { }λE  is the expectation 
value of all particles illuminating the specimen. Assuming that { }λλ E<<∆ , the noise 
becomes signal-independent and therefore the approximation of additive Gaussian noise 
is valid (Hegerl et. al 1976). Other noise sources, e.g. noise of the recording system, 
multiple scattering, etc., can then also be assumed as normally distributed.  
 
For various imaging techniques the noise can be (possibly after an appropriate 
transformation, see also Donoho 1996) closely modeled as additive Gaussian and signal-
independent. The signal reconstruction problem for this case in formulated in the 
following way: Let y be the noisy observation of x, degraded by the noise n, such that  

nxAy +⋅= , (2) 

A represents a transformation matrix describing a linear operation applied on the object. 
The estimate x̂  from y  has to be determined, such that the remaining noise in x̂  is 
sufficiently low and x̂  resembles x  sufficiently closely. Depending on the image 
processing task and the specimen under scrutiny the noise sources vary. Apart from the 
typical noise sources listed above, missing information as in the case of 3D electron 
microscopic reconstructions can introduce deterministic features in the image, which do 
not belong to the object. These features shall be removed from the y, or at least shall not 
affect the reconstruction performance.  
 
 

1.4 Specimen Preparation 
 
Probably the most important step in recording good electron microscope images is a 
reproducible and stable specimen preparation. Apart from the electron microscope 
modalities a good specimen preparation in conjunction with adequate image processing 
methods allows for extraction of structural information. In the electron microscopy field 
several (different) preparation techniques are employed in order to stabilize and preserve 
the structural information of the biological sample and to improve the signal-to-noise 
ratio. The preparation techniques used for the specimen processed here can be 
distinguished into negatively stained samples and frozen hydrated samples. 
 
The negative staining preparation is usually used for single particle analysis. A heavy 
metal solution, e.g. uranyl acetate is applied to the specimen, in order to fixate it and 
enhance the contrast. Even though this technique is fast, the resolution is limited, due to 
the granularity of the heavy metal used. Additionally structural changes (e.g. flattening) 
can appear. 
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Cryo-electron microscopy is more promising in terms of resolution. Here frozen 
hydrated biological samples are embedded in vitreous ice by plunging them into liquid 
ethane; i.e. the sample is kept in a near-to-native state and protected against radiation 
damage. However the contrast of these samples is very low.  
 
 

1.5 Three-Dimensional Electron Tomographic Reconstruction 
 
Three-Dimensional tomographic reconstruction is a method similar to the well known 
tomographic reconstruction in medical imaging (X-ray tomography, etc.). All these 
methods are based theoretically on the “central section theorem”, stating: The Fourier 
transform of the 2D-projection image corresponds to the central section through the 3D 
Fourier transform of the object, which is perpendicular to the projection direction 
(Radon 1917). This theorem can be used to perform a 3D reconstruction: The 2D 
Fourier transforms of the projections are derived and placed in the 3D Fourier domain, 
according to the corresponding angle. After interpolation and 3D inverse Fourier 
transformation, the reconstructed object appears in real space. In practice a different 
algorithm, namely filtered backprojection is mainly used for reconstruction in electron 
tomography due to its simplicity and general applicability (Koster et al. 1997). With this 
algorithm the recorded images are multiplied with a ramp filter in the Fourier domain, 
transformed back in the real space and inversely projected into the reconstructed 
volume. 
 
The typical experimental approach in electron tomography is to tilt the specimen about 
an axis perpendicular to the electron beam and to record an image for each tilt view. 
Unfortunately, the specimen cannot be tilted over the full angular range from –90 to +90 
degrees, because the specimen holder masks the object at high tilt angles. Additionally, 
the total electron dose has to be kept below a critical limit in order to avoid excessive 
radiation damage. Therefore the number of projection views has to be limited and the 
images suffer from an extremely low signal-to-noise ratio. Image shifts resulting from 
mechanical inaccuracies of the tilt stage and from specimen drift require an alignment of 
the projection images with respect to a common origin, a process also prone to errors. 
As a consequence of these effects, the interpretation of volumetric data obtained by 
electron tomography is severely aggravated by artifacts and a noisy appearance. Of the 
artifacts, those arising from the limited tilt range are easy to understand in the Fourier 
domain (“missing wedge”) and, in real space, may be described by a point spread 
function expressing an anisotropic resolution.  
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Chapter 2  

Nonlinear Anisotropic Diffusion 
 
Transmission electron microscopy is used to investigate the structural organization of 
biological objects (e.g. macromolecular assemblies or organelles) at a resolution in the 
nanometer range. By means of techniques similar to medical computer tomography, it is 
possible to reconstruct the 3D density of the specimen and to reveal the 3D structure of 
the biological object (Koster et. al 1997). Although electron microscopes are able to 
image biological objects with a resolution down to 0.3nm, the structural information is 
not directly accessible since most of the signal is buried in noise (SNR<0dB). The 
standard method for denoising is correlation averaging, where many thousand identical 
particles are averaged in order to reveal structural information with a resolution down to 
0.8nm. In the case of pleomorphic objects (such as cells or organelles) averaging is not 
possible, due to the uniqueness of the structure, nevertheless denoising exigently 
necessary. Particularly with regard to the three-dimensionality of the observed objects, 
denoising plays an essential role, since the human eye is not able to extract the same 
amount of information (by interpolation, lowpass filtering, classification, etc.) as in the 
2D case. An interpretation of the 3D images using surface- and volume-rendering 
techniques is difficult due to the noise sensitivity of rendering algorithms. A denoising 
algorithm suitable for such applications must be able to preserve as much signal as 
possible while reducing the noise sufficiently.  
 
A multidimensional implementation of a powerful signal reconstruction method, namely 
nonlinear anisotropic diffusion is presented. This technique exploits the scale space 
representation of the local signal and performs noise reduction on the basis of global 
signal properties. The proposed method is applied for noise reduction on 3D electron 
microscopic data and medical computed X-ray tomography (electron beam CT) for fast 
imaging of human organs. Qualitative and quantitative measures are used for assessing 
the spectral signal reconstruction performance on synthetic and biomedical volumetric 
images, revealing the real potential of the method. The superior signal reconstruction 
performance of the novel hybrid diffusion technique in the field of electron microscopy 
over conventional noise reduction methods (e.g. Gaussian and median filtering) as well 
as invariant wavelet filtering is proven. 
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2.1 Diffusion Types 

2.1.1 Linear Diffusion 
 
The evolution of an image ( )tII ,x=  processed by a diffusion technique can be 
described with the following partial differential equation (PDE):  

)div( IIt ∇⋅= G , (3) 

where I∇  is the gradient with respect to the coordinate vector x  in a space of arbitrary 
dimension N, tI  denotes the derivative related to the processing time t, and G is a tensor 
called diffusivity, designed to steer the direction of the diffusion process. The diffusivity 
is a quadratic, positive semidefinite matrix, with dimension N. In the simplest case, G is 
a diagonal with constant elements g. The resulting linear isotropic diffusion corresponds 
to Gaussian real space filtering with a variance that increases with time tg ⋅⋅= 22σ . 
 
 

2.1.2 Nonlinear Isotropic Diffusion 
 
In order to improve on the linear isotropic diffusion, especially with respect to edge 
preservation, Perona and Malik used a monotonically decreasing function ( )Ig  instead 
of a constant g, such that the diffusion flux was minimized over edges (Perona and 
Malik 1988). This nonlinear, yet isotropic process results in intraregional smoothing 
between well-preserved edges and avoids the overall blurring that is typical for linear 
diffusion. They solved a PDE of the form: 

( )( )IIgdivIt ∇∇=  (4) 

with a scalar diffusivity: 

( )
221

1
κI

Ig
∇+

=∇ , (5) 

where κ is user defined and contrast dependent. 
Apart from discretization problems, this approach is still limited by the isotropy of the 
equation: Only the intensity of diffusion flux can be controlled but not its direction. This 
results in a preservation of noise along the edges, a highly undesirable property. 
 
 

2.1.3 Nonlinear Anisotropic Diffusion 
 
In the nonlinear anisotropic case the diffusivity G has nondiagonal elements different 
from zero. The direction information is gained from the structure tensor T

0 II ∇⋅∇=J  
or from its average over a small 3D image 

TT σσ KJJ ∗= 0 , where 
TσK  is a Gaussian 

filter with variance Tσ . The eigenvectors iv  of J and the corresponding eigenvalues iµ  
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characterize the local structural features of the image I within a neighborhood of size 
O(σΤ). Each eigenvalue iµ  reflects the gray level variance in the direction of the 
eigenvector iv . The first eigenvector 1v  corresponding to the eigenvalue 1µ  is a local 
average over the directions of maximum variance. The eigenvalues are non-negative 
since the structure tensor is positive semidefinite. In the case of a non-averaged structure 
tensor ( 0=σ ), the relations II ∇∇=1v  and 2

1 I∇=µ  hold, while all other 
eigenvalues are equal to zero. The structural information expressed in the eigenvalues 

iµ  and eigenvectors iv  is used to define the diffusivity tensor. 
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(6) 

The parameters iλ  steer the diffusion flux in the directions of iv . 
 
The major problem is how to define the diffusion tensor such that the overall isotropy of 
the process is preserved. For instance, the question arises how to choose the iλ  values 
such that a line-feature being processed with a 1D diffusion flux and a surface-feature 
with a 2D diffusion flux. The application of the wrong flux would produce artifacts in 
the former case, such as a unidirectional broadening of the line (e.g., sword-like 
structures) and in latter case the shape of the surface would remain unrevealed. A 
solution to this problem could be given with the second eigenvalue 2µ , which is capable 
of detecting the kind of the local geometric feature. Unfortunately in the case of very 
noisy data this local information is very uncertain. Therefore, only a 1D diffusion flux 
( 21 λλ = ) is applied.  
 
 
2.1.3.1 Coherence and Edge Enhancing Diffusion 
 
In his 2D setup, Weickert has proposed two different realizations of diffusion processes, 
namely coherence enhancing diffusion (CED) and edge enhancing diffusion (EED). 
Extending the method from 2D to 3D the parameters are chosen such that: 

αλλ == 21  and ( ) ( )( )2
313 exp1 µµααλ −−⋅−+= C  (7) 

with user-defined global parameters α  and C (Weickert 1999). Usually a small value 
has to be assigned to α. For 1→α  the approach converges to Gaussian filtering, 
realized perfectly for 1=α . The amount of flux in the orientation perpendicular to the 
gradient is determined by the difference 31 µµ − . This difference is large for flowlike 
structures (e.g., parallel lines running in the same direction as in a fingerprint) due to a 
high variance in one direction and consequently such structures are extremely enhanced. 
Areas containing only noise are characterized by 321 µµµ ≈≈  and therefore remain 
unmodified. With CED the diffusion flux can be steered in the preferred local 
orientation and can thus, as an example, be used to connect interrupted lines. 
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The second approach called edge enhancing diffusion (EED) is based on the 
eigenvectors of the non-averaged structure tensor 0J  and uses 

1 and  
1

1
32

1
21 =

+
== λ

κµ
λλ  (see eq. 5). (8) 

Due to 
2

1 I∇=µ , this approach is equivalent to the method proposed by Perona and 
Malik. Therefore, edges are preserved and smoothing the areas between these edges 
reduces the noise. 
 
 
2.1.3.2 Hybrid Diffusion 
 
The 3D implementation of anisotropic diffusion of the present here is a hybrid approach 
that combines the advantages of EED and CED according to the following strategy. 
Since the difference 31 µµ −  reflects the local relation between structure and noise it can 
be used as a switch: EED is applied when this value is smaller than a suitably chosen 
threshold parameter, and CED otherwise. Both processes take place simultaneously 
within one iteration step, depending on the local threshold parameter. If the build-up of a 
specific edge takes more iterations, the other edges are going to be preserved and 
enhanced, so that no signal degradation takes place.  A useful threshold parameter can 
be derived ad-hoc from the variance, calculated over a sub-3D-image of I that only 
contains noise. It is possible to verify the appropriate choice of the sub-3D-image by 
lowpass filtering or even by visual control of the images used for the 3D reconstruction. 
It is also important to notice that the hybrid model retains the properties of the diffusion 
processes.  
 
For the discretization of the model central differences are utilized. The additive operator 
splitting (AOS) (Weickert 1998) schemes definitely showed a superior performance to 
the standard iterative methods, but in order to switch between the different diffusion 
types, the simulations were performed with the simple explicit Euler method. In order to 
preserve small structures, with a size of only a few pixels, the gradient approximation 
proposed by Sethian (1998) is used. It shows a better performance than the standard 
central-difference gradient approximation. 
 
 

2.1.4 Properties of the Diffusion Processes 
 
Diffusion processes have many attractive properties, which makes the method very 
reliable, even though it is nonlinear and anisotropic. Three important features are 
pointed out: a) The process converges to a constant gray value image and the mean m is 
preserved. b) The MiniMax principle is fulfilled and consequently new extremes are not 
created. c) With )(sr  as a convex function of the solution s of the diffusion process, the 
Lyapunov functional ∫=Φ dssr )(  decreases. Popular convex functions are the energy 
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2)( ssr = , variance ( )2)( mssr −=  and )log()( sssr ⋅= . For s>0 the function 
)log()( sssr ⋅−=  can be interpreted as the entropy. Since anisotropic diffusion filters 

increase the entropy, the original image is embedded into a family of subsequently 
likelier versions of it, which contain less information. Moreover, for ∞→t , the process 
reaches the state with the lowest possible information, namely a constant image. From 
the previous statements, becomes clear that in spite of contrast enhancing properties, 
nonlinear anisotropic diffusion simplifies the original image in a steady way. 
 
 

2.2 Comparison of Different Diffusion Methods 

2.2.1 2D Synthetic Data 
 
In order to illustrate the effects of different diffusion processes, they are applied on a 2D 
test-image (“Barbara” Fig. 3a), which was degraded by additive white noise (Fig. 3b). 
The example demonstrates how diffusion can be steered by an appropriate setting of 
parameters in the diffusivity matrix. On the basis of many test calculations using 2D and 
3D synthetic data (see ch. 2.3.1), the hybrid diffusion approach turns out to be superior 
to conventional methods as well as other diffusion denoising methods and invariant 
wavelet filtering. This can be stated in a quantitative manner by assessing the similarity 
between the original noise-free signal and the denoised version of the degraded signal, 
e.g. on the basis of the mean square error or the cross correlation coefficient. 
 

a

 

b

 

c

 

d

 

e

 

f

 

Fig. 3. Noise reduction based on different types of diffusion. (a) Original image of “Barbara”, (b) White Gaussian 
Noise degraded version (SNR=1), (c) Gaussian filtering (linear isotropic diffusion), (d) edge enhancing diffusion, (e) 
Coherence enhancing diffusion, (f) Hybrid diffusion. 

The simulations with test images give an impression of how a method works and a 
feeling for the correct adjustment of the parameters. The application of linear diffusion 



 

 

14 

creates a blurred image. With edge enhancing diffusion the edges are better preserved, 
as the diffusion flux is smaller in places with large gradient. A “staircasing” effect is 
observed. Places with nearly the same gray value create a small plateau, which differs 
with a significant gradient from the environment. High frequencies are here better 
preserved, even though the line features on the clothes of “Barbara” are eliminated (Fig. 
3d). In case of the coherence enhancing diffusion the line features are preserved and 
enhanced, but the rest of the image remains unchanged (Fig. 3e). The hybrid approach 
combines the advantages of the latter two methods (Fig. 3f). A significant noise 
reduction is achieved in the image with parallel preservation of high frequency features. 
 
 

2.2.2 Pleomorphic Cellular Structures 
 
In the following, the hybrid realization of nonlinear anisotropic diffusion is applied to 
real volumetric data as obtained by electron tomography. The first example for the 
applicability of the hybrid diffusion approach is a vesicle with actin filaments (Grimm 
et. al 1997). A comparison of the hybrid approach with the other diffusion methods on 
real data is made. The size of the longitudinal elongated vesicle is 100nm in diameter 
and the resolution of the reconstruction is approximately 7nm. The position, 
connectivity, and strength of the actin filaments, pictured as dark lines in Fig. 4, or as 
thin white fibers running parallel to the direction of the cylinder in Fig. 5, are the 
features of interest. The quality of representation of these features can also be used as a 
criterion for the judgement of the performance of the respective method. For this 3D 
image a comparison with standard techniques in image processing (e.g. low-pass and 
median filter) is also presented. In the case of low pass filtering the noise and the signal 
are simultaneously degraded. Though producing a satisfactory smooth background, the 
filaments are thickened and interrupted. The isosurface representation appears corrupted 
due to a lack of information. Median filtering results in good edge preservation, but the 
noise reduction is not satisfactory. The results after application of either EED or CED 
confirm the properties described in the previous section. EED produces the typical 
staircase effects and imposes an artificial appearance in the 3D images. The connectivity 
of the filaments is not improved or even preserved. It shows a behavior basically 
opposite to CED. In this case no noise reduction has taken place, nevertheless the 
connectivity of the filaments is significantly improved. At last the result of the hybrid 
diffusion approach is presented. It combines an excellent noise reduction of the 
background with a clear representation of the filaments. In Fig. 4 and Fig. 5 the results 
of different types of filtering for the vesicle with actin filaments are illustrated in 
tomographic and isosurface representation. 
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Fig. 4. Comparison of different filtration types of a x-y slice from an electron tomographic reconstructed 3D image of 
a vesicle with actin filaments. (a) slice from the original reconstruction, (b) Gaussian filter, (c) median finter, (d) EED, 
(e) CED and (f) hybrid EED/CED. Bar = 20nm. 
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Fig. 5. Isosurface representation of a vesicle with actin filaments (3D image 256*256*128 Voxels). The order of the 
representation is the same as in Fig. 4. 

 
 
In order to visualize the irregular three-dimensional structure of chromatin, a highly 
organized complex of DNA and proteins (mainly histons) (Horowitz et al., 1998) 
chromatin fibers were investigated by electron tomography. For this purpose, long 
chromatin fibers were isolated from erythrocytes of the amphibian N. maculosus, and tilt 
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series of this specimen were recorded within an angular range of -60° to +60° at 5° 
increment. The 3D reconstruction was performed with weighted backprojection.  
 
Due to the extremely low electron dose that had to be used in acquiring the tomograms 
as well as the low contrast produced by ice-embedded specimens, the resulting SNR is 
exceedingly low (below 0.1). The visualization of the resulting 3D maps by isosurface 
representation or volume rendering is severely hindered due to the high noise level. In 
this case the denoised data representation outperforms even the perceptual ability of the 
human visual system. For “real world” data the performance of a denoising method can 
not be quantified in general. Therefore the visual inspection of the original as well as of 
the processed data and verification of the expected result are the most common criteria 
for judging the denoising results. Here, the 3D arrangement (zigzag path) of the DNA 
and nuclesomes of the reconstructed chromatin needs to be visualized. 
 
In this data set a comparison with lowpass filtering and median filtering is performed. 
As shown in Fig. 6, hybrid diffusion outperforms clearly both. It achieves a considerable 
reduction of noise combined with sufficient signal preservation. Studying the structure 
of the fiber on the basis of a simple isosurface representation has become feasible (Fig. 
7). 
 

a

 
 

b

 

c

 

d

 

Fig. 6. Noise reduction methods applied to a 3D map of chromatin as obtained by electron tomography. (a) Central 
xy-slice through the 3D reconstruction and its processed versions using. Dotted box indicates the sub-3D image used 
for the volume rendering presentation (Fig. 7) (b) Gaussian filtering, (c) median filtering and (d) hybrid diffusion. 
Arrow points to a single nucleosome, which could be identified. 
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Fig. 7. Volume rendering representation of 3D tomographic reconstruction of chromatin: Order as in Fig. 6. Arrow 
points to zig-zag structure of the chromatin conformation. 

 
 
2.2.2.1 Path Tracing with Neural Network for Revealing the Backbone of 
Chromatin 
 
The hybrid diffusion technique improves the SNR of the tilt series significantly, 
although the real path of the DNA strand in space remains, with some exceptions (Fig. 7 
arrow), not revealed. In order to propose a possible path of the DNA in space a self-
organized neural network has been used. 
 
Neural networks (NN) have been proven as very powerful tools, with applications in 
various fields of science and industry (Haykin 1994). The principle of a NN is the 
adaptive primary elements, which receive signals from an event space, and signal 
representations are automatically mapped onto a set of output responses in such a way 
that the responses acquire the same topological order as the primary events. Neural 
networks are characterized from arbitrary geometry, which is applied from the 
neighborhood function between the different neurons. Assuming the 1D path of the 
strand in space, 465 processing units (neurons) have been used, coupled with an internal 
1D neighborhood, for the self-organizing process. 
The input set (training set) of the neural network was the set of Cartesian coordinates x 
with a gray value −I(x) higher than a threshold (very robust, reduces the processing 
time) of the denoised tilt series. Due to the low SNR of the original reconstruction and 
the requirement of correct classification of all nucleosomes (produce higher contrast) the 
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gray value −I(x) is used like a weighting value, determining the mass of modification of 
the neuron position wi. Additionally with the use of the gray values the correct 
classification of the nucleosomes (higher contrast) is facilitated. A short-range lateral 
feedback between neighboring units has been implemented in the NN, as a form of a 1D 
Gaussian neighborhood G with the following influence function: 

( ) ( )









 −−=
2

2

exp,
σ

kikig , where i is the index of the „winner neuron“, which is defined 

as the neuron with the minimal distance |x(k)−wi(k)| to the input vector. The learning 
algorithm then has the following form: 

( ) ( ) )()(),()()1( nInlrkignn kkk wxxww −⋅⋅⋅+=+ , (7) 

Where ( ) nlr  is the learning rate, which is reduced sequentially during the process. 
 
The result from revealing the path of the strand is presented in Fig. 8. The NN has 
converged to the position presented above after starting from random position in 3D 
space. The convergence result is reproducible and independent from the start positions 
of the neurons. The fit of the NN is optimal in the Chromatin isosurface. The path of the 
NN Fig. 8 just presents one possible path of the strand in space. The revealing of the 
correct path is aggravated by the missing wedge and the resulting elongation in z-
direction and in particular by the low SNR. The NN was unable to approximate a 
possible path of the strand in the unfiltered reconstruction. 
 
 
 
 

a

 

b

 
Fig. 8. Perspective view of the chromatin isosurface (blue) classified by a neural network (gold). (a) Nontransparent 
isosurface in order to present the gaps bridged by the NN. (b) Transparent isosurface with NN. Fitting of NN in the 
isosurface.  
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2.3 Comparison of the Hybrid Diffusion Approach with Invariant 
Wavelet Transform Filtering 
 
Invariant wavelet transform filtering is one of the most powerful techniques for signal 
reconstruction (Stoschek & Hegerl 1997). A comparison of wavelet transform filtering 
with nonlinear anisotropic diffusion is desired, in order to find the appropriate technique 
applicable in the field of electron microscopy. The techniques are principally different, 
as wavelet filtering is a transform-based method and nonlinear diffusion a real-space 
one. Nevertheless, they share the property of using multiscale representations to allow 
for local signal recognition on the basis of global signal properties (Witkin 1993). 
Detailed information on the wavelet technique can be found in Strang 1996. 
 
 

2.3.1 Synthetic Data 
 
In order to evaluate the signal reconstruction performance of invariant wavelet denoising 
and nonlinear anisotropic diffusion, both methods are applied on multidimensional data. 
For a thorough comparison a synthetic 3D data set of size 256x256x128 pixels is 
generated. It contains a mix of isotropic smooth and anisotropic line-type signals 
simulating typical biomedical data. The test data consists of a Gaussian blob, a hollow 
tube, a star-like structure, and a quasi-periodic structure with oscillating concentric 
waves starting at a common origin in space. The signal completely fills the frequency 
space. To simulate realistic noise conditions white and colored Gaussian noise is added 
to the data with a SNR=0.5 and SNR=1, respectively, i. e., the actual signal gets 
substantially degraded (see Fig. 9 a-c). The colored noise is synthesized by lowpass 
filtering, the white noise using a low-pass filter with a cut-off frequency 

noffcut ff ⋅=− 25.0 , where fn denotes the Nyquist frequency. 
 

Data NR MSE CCC 
White noise 2 4 0.19 

LP 0.15 0.25 0.737 
MF 0.23 0.27 0.719 
WF 0.15 0.21 0.782 

NAD 0.097 0.2 0.78 
    

Colored noise 2.5 9.55 0.474 
LP 0.57 3.26 0.725 
MF 0.67 3.51 0.726 
WF 0.37 2.52 0.759 

NAD 0.49 3.26 0.759 
 

Table 1: A quantitative comparison of following denoising methods: Lowpass filtering (LP), median 
filtering (MF), wavelet filtering (WF) and nonlinear anisotropic diffusion (NAD). For measuring the 
performance three criteria are used: The noise reduction (NR) as the ratio of the noise in the noisy and 
denoised data, mean squared error (MSE) as the absolute deviation and cross correlation coefficient 
(CCC) as the relative similarity for the data in Fig. 9.  
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Fig. 9. Comparison of different noise reduction methods using synthetic volumetric data corrupted by noise. In the 
central column the white noise (c, e, g, i, k) is referred, in the right column colored noise (d, f, h, j, l). (a) central x-y 
section through the original 3D image, (b) isosurface representation of the whole 3D image (c) data corrupted with 
additive white Gaussian noise (SNR=0.5), (d) data corrupted with colored noise (SNR=0.5), (e-l) denoised versions of 
the central section processed by (e, f) lowpass filter, (g, h) median filter, (i, j) invariant wavelet filtering, (k, l) 
anisotropic diffusion.  
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Fig. 10. Signal-to-Noise ratio improvement assessed by Fourier shell correlation in the frequency domain using 
synthetic data degraded by additive white noise (SNR=0.5) (a) and colored noise (SNR=1) (b). The curves present the 
cross correlation coefficients calculated between original and processed data depicted in Fig. 9. 

 
For the experiments the exact knowledge about the noise parameters as provided in this 
synthetic environment is not used, nor the exact spectral signal-noise relationship in the 
data. Instead, a blind denoising of the data is attempted with the only prior knowledge 
about the noise to be additive and signal-independent. Thus a real-world noise reduction 
task is simulated as closely as possible. A quantitative comparison is provided in Table 1 
and a qualitative comparison of different noise reduction methods in Fig. 10. For this 
and all the following experiments Daubechies-type wavelet basis functions are utilized 
and n-4 levels of downsampling with Nn 2log= , where N is the size of the dyadic 
signal along one dimension. With respect to computational costs the invariant wavelet 
filtering is performed here as a pseudo-3D scheme by applying the filtering to 
consecutive 2D slices through the 3D image. 
 
Comparing the visual quality of the denoising with the measured values an inconsistent 
interpretation of the results is obtained. Both wavelet filtering and anisotropic diffusion 
outperform median and lowpass filter, as demonstrated in Fig. 9 and by analysis of the 
numerical values of noise reduction, mean squared error, and cross correlation 
coefficient (Table 1). However, when comparing wavelet filtering and anisotropic 
diffusion, the visual quality deviates significantly from what is measured. Especially in 
the case of colored noise, wavelet filtering outperforms all other methods. These 
deviations are attribute  to the fact that relatively “simple” similarity measures (such as 
MSE or CCC) are largely determined by the power of low frequency components of the 
images, and can thus hardly lead to a conclusion of how well high-frequency fine details 
are reproduced. However, a sufficient preservation of fine detail largely defines the 
visual impression and is of great importance in various imaging tasks. A more advanced 
statistical similarity measure is therefore used that is intended to compare the similarity 
of two statistically independent sets. The Fourier shell correlation (FSC) compares two 
scenes i, j by the similarity of their correlation coefficients in rings or shells in the 
Fourier domain (Saxton et. al 1982). This measure is aimed at deriving a score for 
similarity that is independent of the sampling density at each spatial frequency. The FSC 
is defined as: 
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where f  denotes the spatial frequency and f∆  the thickness of the shell. Fi(f´) and 
Fj(f´) are the complex Fourier coefficients of the two images ),( ji  in Fourier space and 
* denotes the complex conjugate. 
 
In the following the relationship of the correlation coefficient with the SNR is derived. 
Assuming two images exhibiting the same signal degraded by additive noise, the cross-
correlation coefficient CCC can be written as: 
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E denotes the expectation value and σk the variance of the respective signal k (x 
represents the signal and n the noise). Therefore it is assumed that the noise has the same 
statistical properties in both compared realizations { } { } 222

nji nEnE σ==  and are 
statistically independent { } { } { }jiii nEnEnnE ⋅=⋅ . Equation 10 shows that an 
improvement of the correlation coefficient is equivalent to increasing the SNR.  
The results of this comparison are shown in Figs. 10a and 10b and can be summarized as 
follows: 
(i) Invariant wavelet filtering and anisotropic diffusion clearly outperform median and 
lowpass filtering. 
(ii) Anisotropic diffusion exhibits an excellent performance at lower frequencies, 
achieving a considerable SNR improvement. However, due to the low pass characteristic 
of the diffusion and the discretization stencil, higher frequency components of the signal 
(> nf⋅5.0 , where an ff ⋅= 5.0  is the Nyquist frequency and af  the sampling frequency) 
are irreversibly degraded. 
(iii) Invariant wavelet filtering is best in preserving signal in a frequency range upon 

nf⋅5.0 .  
(iv) The above statements i and ii hold for both white and colored noise. 
(v) Using other synthetic data (not shown here) the FSC curves corroborate this results. 
 
 

2.3.2 Three-Dimensional Biological and Medical Data 
 
2.3.2.1 Statistical Comparison using Redundant Data 
 
Directly measuring of the performance of denoising methods on real-world data is not 
possible, because the true signal is unknown. Therefore an indirect method to obtain 
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quantitative comparisons is utilized. A certain class of biological specimens can be 
identically reproduced (such as specific macromolecular assemblies). In order to reveal 
the structural information of the specimen, a noise reduction procedure based on 
averaging is used. Instead of referring to a single instance of the specimen, a high 
number of identical copies of it (up to several thousand) are recorded. Averaging over 
multiple instances (after registering them into a common coordinate system) reveals the 
structural information (Saxton 1982). Each individual instance is considered as a single 
realization of the same statistical process. Therefore, adding n equivalent signals 
increases the SNR by a factor of n  when assuming additive signal-independent noise. 
The averaging technique can be considered as an ideal artifact-free noise reduction 
method. However, the averaging method is not applicable to unique structures (e.g., 
cells). Nevertheless, reproducible structures in conjunction with averaging can be used 
in order to evaluate the performance of the denoising methods for non-reproducible 
specimens. In order to compare different denoising techniques, 500 noisy but 
structurally identical 3D objects have been processed with low-pass and median 
filtering, wavelet denoising, and nonlinear anisotropic diffusion. Fig. 11 shows xy-slices 
through a 3D reconstructed single particle. The FSC coefficients of two statistically 
independent ensemble averages, containing 250 particles each, are compared (Fig. 12). 
The results confirm the FSC curves of the artificial data. For low-frequency signal 
components ( 53.0<nff ) anisotropic diffusion outperforms all other denoising 
methods considering the amount of noise that is removed. Invariant wavelet filtering 
does not reach a similar amount of noise removal. Note that in this example the data are 
oversampled, i. e., no high frequency signal components exist for 5.0>nff . 
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Fig. 11. Two exemplary xy-slices through the 3D reconstruction of a single macromolecule as obtained by electron 
tomography (the diameter of the particle is about 15 nm). Rows represent the slice processed by different noise 
reduction methods: Original 3D tomography image (a-b) and (c-j) denoised versions with (c-d) lowpass filter, with a 
cut-off frequency at nf⋅25.0 , (e-f) median filter, (g-h) invariant wavelet filtering, (i-j) nonlinear anisotropic 
diffusion.  
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Fig. 12. Statistical comparison of different denoising techniques applied to single particle data as shown in Fig. 11. 
The Fourier shell correlation coefficients of two statistically independent ensembles, containing 250 particles each, are 
presented. 

 
 
2.3.2.2 Noise Reduction on Unique Cellular Structures 
 
After comparing the performance of nonlinear anisotropic diffusion with median and 
lowpass filter, here the performance of wavelet transform filtering (Fig. 13b) and 
nonlinear anisotropic diffusion (Fig. 13c) on highly noise-degraded data is exploited. An 
adequate example is the electron tomographic reconstruction of the ice-embedded 
chromatin (Horowitz et. al 1997). 
 
In the original image the real structure can not be identified. The wavelet filtering 
manages to enhance the image quality, nevertheless several artifacts (or 
overpronunciation of small structures) make the result somehow artificial and 
unsatisfactory. The image created after processing with nonlinear anisotropic diffusion 
is excellent. Apart from the very smooth background, the edges of the chromatin have 
been preserved or even enhanced significantly.  
 

a

20 nm
 

b

 

c

 
 
Fig. 13. Noise reduction applied on a 3D map of chromatin (a DNA-protein complex) as obtained by electron 
tomography. (a) Central xy-slice through the 3D reconstruction and its processed versions using (b) invariant wavelet 
filtering and (c) nonlinear anisotropic diffusion. The dotted box indicates the xy-boundaries of the volume rendering 
representation shown in Fig. 14. 
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Fig. 14. Volume rendering representation of 3D tomographic reconstruction of chromatin: (a) original data, (b) 
invariant wavelet filtering and (c) nonlinear anisotropic diffusion. The volumes have been thresholded between 

imageimagem 25.3 σ⋅± , where imagem  and image
2σ  are the mean and variance of the image respectively. The 

arrow indicates the location of an individual nucleosome. 

 
The volume rendering representations of the original and processed volume data are 
presented In Fig. 14. In the original data set it is very hard even to perceive a 3D 
structure (Fig. 14 a). The noise reduction using anisotropic diffusion is superior to 
wavelet filtering, as individual nucleosomes can unambiguously be identified. 
Additionally several artifacts occurring at the wavelet transform filtering are avoided. 
(Fig. 14 b, c). 
 
A different example presents a 3D reconstructed Pyrodictium abyssi cell with an 
excellent SNR (Baumeister et. al. 1999). The quasi-periodic surface-layer of the cell 
consisting of regularly arranged proteins is clearly visible as textured structure (Fig. 15 
a). After applying the discussed denoising techniques to the 3D reconstruction (Fig. 15 
b, c) this regular pattern can be employed as a preservation criterion for the high 
frequency components. In Fig. 16 the line-plots through the 3D power spectra are 
compared that have been calculated from the textured area in the unprocessed 
reconstruction and the denoised 3D images, respectively. The results corroborate our 
previous findings on synthetic data. Anisotropic diffusion degrades signal components at 
frequencies 4.0>nff  due to its low pass characteristic. Therefore the second order 
reflex is nearly suppressed, where the wavelet transform maintains this reflex (Fig. 16). 
Thus wavelet denoising enhances the texture structures and enables the visualization of 
single units, i.e. single particles and small complexes. It can be concluded that wavelet 
denoising performs better than the anisotropic diffusion if the data contain strong high 
frequency signal components.  
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Fig. 15. Comparison of the denoising applied to a 3D reconstruction of a Pyrodictium cell; One xy-slice of (a) the 
original reconstruction, (b) denoised by Wavelet transform, (c) and by nonlinear anisotropic diffusion. The dotted box 
(a) indicates the xy-position of the area that is visualized by surface rendering in Fig. 17.  
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Fig. 16. Comparison of line-plots through the 3D power spectra (non-central) calculated from the textured area of the 
original and denoised Pyrodictium cell. The quotients of the second to the first order peaks are 0.1263, 0.1057, 
0.0204, for the original, wavelet and anisotropic diffusion denoised respectively. It can be verified that both denoising 
methods imply an information loss, whereby the anisotropic diffusion dumps -in this case- the higher frequencies with 
a factor 5 higher than wavelet transform. 
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Fig. 17. Isosurface presentation of the Pyrodictium abyssi cell. The surface-layer of the cell appears as regular 
network structure. The cell interacts with a vesicle (top). Resolution of the reconstruction has been approximated to 
8nm. (a) Isosurface from the original reconstruction and denoised versions with (b) Wavelet filtering, (c) Nonlinear 
anisotropic diffusion.  
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2.3.2.3 Electron Beam Computed Tomography 
 
A new and promising development arising from classical X-ray tomography is “electron 
beam computed tomography”. It is the fast alternative to computed X-ray tomography 
(CT) in medical imaging. A full 3D data set can be recorded in 50-100 msec, which 
allows for time-sensitive investigations, such as examination of a heart with very little 
motion artifacts (Wang et. al 1996). Therefore, this new imaging technique is used to 
detect calcifications of blood vessels (Bielak et. al 1994), to extract the course of the 
coronary arteries, or to analyze walls and masses in the heart (Aschenbach et. al 1996). 
Other researchers want to use it for microtherapy using minimally invasive instruments 
guided by this imaging. However, in comparison to standard or helical CT data the SNR 
is considerably decreased, which prevents the application of automatic segmentation 
techniques for extraction of anatomical contours. The main source of noise in EBCT 
data is connected to the photon statistics of the x-rays. At the detector of the EBCT this 
noise can be approximated by a Poisson type statistics. Other noise sources coming from 
the electronics of the imaging system are negligible against the photon noise. After the 
tomographic reconstruction the noise can be closely modeled as Gaussian additive noise. 
 
a
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b
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Fig. 18. Comparison of noise reduction methods on medical computed X-ray tomography (electron beam CT). Shown 
is a slice out of the volume data showing the mediastinum in the center enclosed by the two lungs on both sides. (a) 
original data (b) invariant wavelet filtering, (c) anisotropic diffusion. The dotted line represents the path of the line 
plot presented in Fig. 19. 
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Fig. 19. Preservation of edges demonstrated as an effect of noise reduction methods. Shown are the line plots along 
the path in the slice given in Fig. 18. 
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Various methods for extraction of features from medical images are based on edge 
detection. In the following experiment the question of how well different noise reduction 
methods preserve edges is addressed. For this reason the proposed 3D denoising is 
applied and the line plots through the 3D images are compared, see Fig. 19. The edge 
preservation results appear to be similar for both methods, while stronger smoothing is 
achieved by anisotropic diffusion. The edges remain unshifted and segmentation 
procedures are feasible.  
 
 

2.4 Notes on Denoising Strategies 
 
The denoising strategy is the first question to be answered in an image processing step. 
By strategy it is meant the definition of the “side” conditions to be considered. A very 
important question is in which processing step to apply the denoising procedure. The 
simplest method one can do is a 2D denoising of the projection images before the 3D 
reconstruction. The second approach is to apply 3D image processing after the 3D image 
has been reconstructed. The third approach would be to exploit the 3D continuity of the 
3D sinogram of the reconstruction. Thereby the set of aligned projection images is piled 
to a stack, which is subjected to a 3D denoising process. Subsequently, the projection 
images are re-extracted and used for the final 3D reconstruction. The third dimension of 
the stack corresponds to the tilt angle. When moving from top to bottom of the stack, 
any point of the object oscillates around the direction thereby following a part of a sine-
curve. The finer the angular increment the higher the connectivity of this curve becomes. 
Assuming correct alignment and calibration of the projections, flow like features similar 
to that of a sinogram - should appear along the third dimension. This a priori information 
could be used to design the diffusion process accordingly. The features should be 
recognized and emphasized by coherence enhancing diffusion.  
 
The recorded tilt-series presents the tomographic reconstruction of a frozen-hydrated 
mitochondrion from Neurospora crassa (Nicastro et al. 1999). The raw data consists of 
126 projection images recorded with an CM 120 Biofilter (Philips, Eindhoven) operating 
at 120 kV in the zero-loss mode of the energy filter. The images cover an angular range 
from –55° to 60° and are recorded with a pixel size of 1.7nm at the specimen level. The 
final reconstruction is performed by r*-weighted backprojection. Due to the small 
angular increment, the present tilt series is a good candidate to test the different 
approaches. 
 
As shown in Fig. 21 by isosurface representation, the reconstructed mitochondrion 
appears as an ellipsoid with a size of about 1000 nm. The inner membranes form a 
complex three-dimensional network of interconnected lamellae. Denoising by the hybrid 
approach allows one to segment and visualize this network using one threshold value for 
the isosurface representation. In Fig. 20 a, c, e, g the horizontal and in Fig. 20 b, d, f, h 
the vertical sections through the final density maps are presented. According to visual 
inspection, denoising the volumetric data of the final 3D reconstruction gives the best 
result. Edges appear with clear contrast and the density levels correspond well to the 
original data. Additionally no artifacts have been created. The map obtained after 2D 
denoising of the projection images is much less clear. The data is smoothed and the 
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continuity of edges is less precise. The contrast fades out locally. Also the map resulting 
from 3D denoising of the projection stack (sinogram) shows less contrast. However, 
special details, e.g. gold markers, appear with a contrast higher than that obtained with 
the normal approach. The vertical section also reveals a tendency to overamplify vertical 
high-contrast features while horizontal structures appear to be suppressed. 
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Fig. 20. Comparison of the denoising result using the hybrid diffusion approach, but different strategies. (a) A x-y 
slice from the original reconstruction. Line represents the position of the y-z slices used for the comparison (b) y-z 
slice from the original reconstruction. (c) the same slice as in (a), except that the images have been first filtered with 
the hybrid approach and used for the reconstruction afterwards. (d) y-z slice from this reconstruction. (e) x-y slice 
from the denoised sinogram and (f) y-z slice from this reconstruction. (g) y-z slice from the 3D denoised version and 
(h) corresponding y-z slice. GB = Gold bead, CR = cristae, M = Membrane. 
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Fig. 21. Isosurface presentation of the reconstructed mitochondrion. (a) Original reconstruction and (b) the denoised 
version using the 3D hybrid approach. 

 

2.5  Correlation Averaging as a Method to Evaluate the Transfer 
Function of the Nonlinear Anisotropic Diffusion Process 
 
In electron microscopy, efficient noise reduction of macromolecules is normally 
achieved by correlation averaging (see Ch. 3). Before averaging, the signals are brought 
into register using cross-correlation functions. The method combines the information 
contained in the images of many individual, but structurally identical molecules. Each 
3D image is considered to be a single realization of a statistical process. It provides a 
signal corresponding to the structure of the object, e.g. a projection view or a density 
map, degraded by noise. When assuming additive, signal-independent noise adding up 
equivalent signals of n 3D images increases the signal-to-noise ratio by a factor n . In 
the context of this approach it is possible to estimate the resolution of the averaged 3D 
image by comparing the averages of two statistically independent, equal-sized subsets of 
the corresponding ensemble. The comparison occurs with the Fourier shell correlation 
between the subsets. It is a frequency-dependent measurement of similarity between the 
two subsets, and therefore can be used to estimate the resolution (Saxton et. al 1982). 
 

    
Fig. 22. Results of correlation averaging of two ensembles represented by slices through the volumetric data. On the 
left side the average of the original particles (noisy ensemble). On the right side the average of the particles denoised 
by EED (denoised ensemble). 
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Averaging is conceptually free from signal degradation, while all other denoising 
methods smooth the noise and more or less also the signal. In order to study how the 
signal is affected by nonlinear anisotropic diffusion, a set of real 3D images of a 
biological macromolecule was subjected to denoising and averaging. The results were 
assessed in the frequency domain by means of the FSC. For this purpose, 500 copies 
were produced from the known 3D density map of the Thermosome molecule (Nitsch et. 
al 1998) and degraded by additive colored noise. Using EED, a denoised version was 
created from each individual copy. Finally, averaged 3D images were calculated from 
both, the original “noisy” 3D images (noisy ensemble) and the denoised versions 
(denoised ensemble). The results are presented in Fig. 22. The average of the denoised 
ensemble appears smoother and significant details are suppressed. Obviously, the signal 
is degraded by the diffusion process. 
In contrast to the apparent signal degradation, the cross-correlation coefficients of the 
denoised ensemble are higher than those of the noisy ensemble, indicating a higher 
resolution, or SNR improvement (see ch. 2.3.2.1). This surprising result does not reflect 
a contradiction, because nonlinear anisotropic diffusion enhances the SNR and 
simultaneously reduces the magnitude of the Fourier coefficients. The statement may 
become clearer when linear diffusion is considered. In this case, the average 3D image is 
also blurred but the RCF is not changed at all. Since linear diffusion is equivalent to a 
linear filtration using a gaussian kernel, the data in the Fourier domain are damped by a 
factor which is constant within shells, and the cross-correlation coefficients used for the 
RCF remain unchanged. Obviously, the RCF-curves in Fig. 23 reflect the gain in the 
SNR when linear diffusion is replaced by the edge-enhancing approach. 
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Fig. 23. Fourier shell correlation function of the denoised and original particles.  

 
 

2.5.1 Frequency Equalization 
 
Hybrid diffusion is a nonlinear process and cannot be described by a linear time 
invariant theory. Nevertheless, the improvement of the SNR described above gives some 
justification to improve the visual appearance of the average 3D image by using a linear 
frequency enhancement. The global energy in the 3D image decreases with increasing 
evolution time when diffusion is applied (Weickert 1998). Due to Parseval’s theorem, 
the energy in the Fourier domain decreases correspondingly. The amount of this 
decrease can be determined as a function of frequency by investigating 3D image 
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ensembles. As above, original and denoised 3D images representing the Thermosome 
molecule are used to calculate the root mean square amplitudes on each shell in the 
Fourier domain. The curve in Fig. 24 shows the ratio of mean amplitudes of the original 
and the denoised data and reveals a “bandstop” characteristic of edge-enhancing 
diffusion. 
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Fig. 24. Ratio of the root mean square amplitudes in the Fourier domain. 

 

This function can be used for equalization in the conventional manner. The result when 
equalizing the average of the denoised particles is shown in Fig. 25. The edges are more 
distinct and the output looks similar to the average of the original particles. Furthermore, 
the noise enhancement is minimal. 
 

 
Fig. 25. Equalization of the nonlinear diffusion process 

The idea arising from this observation is to determine a global “transfer function” and to 
equalize the data in the Fourier domain after the diffusion process. It is an open question 
whether or not such a function can be applied to all objects. The expected answer is no, 
considering the non-linearity of the diffusion procedure and the diversity of objects 
studied by electron tomography. It is perhaps possible to define transfer functions for 
distinct classes of objects. In any case, further investigations are needed to clarify this 
point. 
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2.5.2 Assessment of the Performance on Real Electron Microscopic Data 
 
In order to confirm the results also with real noise a noise ensemble of VAT 
macromolecules has been subjected to the same procedure as with the Thermosome 
(Rockel et al. 1999). The difference here is the noise is not simulated but real. In Fig. 26 
three rows of x-y slices from an averaged VAT particle are presented. For the averaging 
468 individual VAT negatively stained particles have been used. In the first row is the 
original averaging (Fig 26a), in the second row the average of VAT after denoising with 
nonlinear anisotropic diffusion (Fig 26b) and in the third row the equalization of the 
process (Fig. 26c). The average of the denoised particles looks significantly more 
blurred than the average from the original particles, nevertheless the information can be 
regained after equalizing the process. This process becomes really interesting in the case 
of applying the equalization function to single particles or even cell or organelles. In this 
case the dumping of the low frequencies due to the diffusion process gets reversed, 
without enhancing the noise level, as would be the case in a linear process. In Fig. 27 an 
example of this approach is presented.  
 
a

b

c

 
Fig. 26. Row presentation of the (a) average of the original reconstructed VAT particles, (b) averaged of the denoised 
particles and (c) the equalized particles. 

 
In order to demonstrate the effect of the equalization process on not averaged single 
particle realizations, a single VAT particle has been chosen from the denoised ensemble 
and equalized. In Fig. 27a xy slices from the original VAT particle are presented. Due to 
the high noise level in the 3D image the structure is hardly recognizable. In Fig. 27b the 
denoised version is presented, where several significant blobs can be identified. At least 
the denoised particle has been equalized. The contrast of the equalized particle is similar 
to the original one. The 3D image does not look any longer blurred but seems to have a 
similar resolution to the original reconstructed version, with one difference: The noise 
has been eliminated. 
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Fig. 27. Comparison of the equalization process in single realizations: (a) xy-slices of a single VAT particle, (b) 
denoised particle with nonlinear diffusion, (c) equalization of the denoised particle 

 
After comparing the FSC curves of the original and denoised VAT particles the same 
effects as with the Thermosomes is observed. The denoised VAT average looks 
smoother and the FSC curve looks significantly better than the FSC curve of the original 
VAT particles. This demonstrates the significant SNR improvement gained by the 
hybrid approach of nonlinear anisotropic diffusion. 
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Fig. 28. (a) Comparison of the FSC curve of the original and the denoised VAT particles (b) equalization curve. 

 
 

2.6 Discussion 
 
Imaging methods in biology can suffer from a high noise level severely aggravating the 
visualization and interpretation of these data. In contrast to 2D data, where the human 
visual system is capable of adapting to various signal distortions, the interpretation of 
volumetric data is a demanding task which relies, entirely on computer-based 
visualization methods. Especially in highly degraded data the retrieval of information 
out of the noise remains infeasible even with advanced visualization equipment. 
Therefore, noise reduction is an indispensable preprocessing step. 



 

 

36 

 
Nonlinear anisotropic diffusion is at the moment the state-of-the-art tool for denoising 
electron tomographic reconstructions. The best performance is obtained on data that 
predominantly contain low frequency signal components. The upper frequency limit for 
the method to provide a significant improvement of the SNR has experimentally been 
determined to be bound by half the Nyquist frequency. Considering, that electron 
micrographs are always oversampled, this frequency sector is the most important one. 
The comparison with other methods, e.g. median and invariant wavelet filtering, 
confirms the first statement.  
 
Further advantages of the nonlinear anisotropic diffusion arise from the solid 
mathematical foundation of the method. The process yields an excellent edge 
preservation or even enhancement without creating any artifacts or anisotropies. 
Therefore several other post-processing methods are facilitated and can unfold their 
whole potential. Additionally nonlinear anisotropic diffusion is a very fast method, 
which can be integrated at many image processing packages. 
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Chapter 3  

Object Detection in 2D and 3D Electron 
Microscopic Images 
 
Object detection and identification in 2D or 3D images are tasks of major interest in 
electron microscopy, since there is a great need for reliable detection methods. Therefore 
the application of the algorithms is on two major fields essential: 

a) In order to reveal molecular resolution in 2D electron microscopy up to one 
million particles must be averaged after extraction from several thousand 
electron micrographs. The collection of molecules is usually done 
interactively under visual control. This procedure is time consuming and 
strongly affected by human subjectivity. Up to now many methods have been 
proposed to automate this procedure, but none of them has become a 
standard. Automatic detection of molecules from such micrographs (2D 
scenes) would facilitate and accelerate the analysis considerably. 

b) With the recent and exciting development in electron tomography and the 
improvement of the resolution down to a molecular level, proteins can be 
identified and studied in an unperturbed cellular context. In order to localize 
the molecules a fast, automated procedure is necessary. 

 
There is a large variety used for detecting a target in a scene. The ideal detection method 
should be robust with respect to a low signal-to-noise ratio (SNR), varying object 
orientation, object deformations, background variations, and image distortions, and it 
should be able to cope with multiple occurrence of the object. Considering the low SNR, 
cross correlation between target and scene would be the method of choice due to the 
high significance of the cross correlation peak. However, cross correlation is not 
rotationally invariant and requires scanning the whole angular range. This is a 
computationally ineffective approach, especially in the case of searching 3D targets in 
extended volume data. Therefore, a new approach is presented, where the task is 
separated into two independent steps: 
1) The scene or volume will be segmented into small areas of interest where objects can 

be located with a probability higher than in the original environment 
2) The resulting areas will be further analyzed using established methods, e.g. image 

classification.  
 
To perform the first step mean curvature motion (MCM) is used, which can be 
understood as a nonlinear, anisotropic diffusion process or, equivalently, as a geometric 
method where level curves (isointensity contours) of the image move as a function of the 
local curvature and the modulus of the image gradient (Alvarez et al. 1993) 
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The development was motivated from several virtues of the method: First of all it 
contains only one parameter, which can be automatically derived from the size of the 
object. Second, the method is one of the fastest possible schemes based on curvature 
controlled approach. Third, the method is translation and rotation invariant. Fourth, it is 
not affected from contrast differences. 
From a more general point of view it may be interesting to note that the approach is 
different from a typical image restoration method which seeks to reduce noise and to 
preserve the signal. Using MCM, signal and noise are iteratively and simultaneously 
degraded. Therefore noise degrades faster due to higher curvature. The remaining signal 
then simply indicates the position of the object that should be detected.  
 
 

3.1 The Algorithm 
 

3.1.1 Mean Curvature Motion 
 
Mean curvature motion can be considered either as a special case of nonlinear 
anisotropic diffusion, or as an evolution of a level curve moving as a function of the 
local curvature. Linear diffusion in a two-dimensional image I can be described by the 
equation  

III yyxxt ∂+∂= , 
where the subscripts denote differentiation with respect to the time t and to the Cartesian 
coordinates x and y. After a principal axis transformation (Karhunen-Loewe 
transformation) in the direction of the highest variance, the diffusion equation can be 
rewritten, in the following form, 

III t ηηξξ ∂+∂= , (11) 

 
with I⊥∇ξ  and I∇||η . Neglecting the diffusion flux in the direction of the gradient I∇  
results in an anisotropic diffusion process represented by the simple equation 

II t ξξ∂= . (12) 

 
Alvarez et al. (1993) derived a “real anisotropic diffusion equation” of the form 
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with the aim to improve the edge preservation by smoothing the image along level lines. 
Apart from the dimension-independent form, this equation is identical to the previous 
one, as can be shown by straightforward calculations. 
The name “mean curvature motion” (MCM) originates from a more geometric point of 
view. The basic idea was formulated first in the theorem of Grayson (1987), which states 
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that a curve moving under its own curvature is going to collapse to a point and 
disappear. Following Osher and Sethian (1988), the motion of the zero level set of a 
higher dimensional image I can be described by  

IFIt ∇= )(κ , (14) 

where )(κF is a function of the curvature κ . Substituting the motion function )(κF : 
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again results in the ALM equation. In two dimensions the curvature κ  in Cartesian 
coordinates can be described by 
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and in three dimensions the mean curvature Meanκ : 
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For the discretization scheme the level set technique has been used. 
The discretization operators are defined in the following way: 
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For the 2D case the equation can be written in the following form: 
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(19) 

or with the discretization operators: 
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In the 3D case: 
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or with the discretization operators: 
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(22) 

 
The discretization model is very stable and fulfills the min-max principle, but it does not 
satisfy the mean value principle. With the above described discretization stencil the 
further simulations and the image segmentation are presented. 
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3.1.2 Peak Search Method 
 
MCM forces the level sets of the image to move along their vector field with a speed 
that is a function of the curvature. Hence, structures, artifacts and noise degrade to 
convex objects, called “blobs” further on. The longer the procedure lasts, the more level 
sets degrade to points, consequently objects with smaller diameter disappear first. The 
rate of alteration of the radius r(t) of the objects as a function of the iteration time t can 
be described by the following equation 

( ) ( ) 220 tcrtr ⋅−= , (23) 

where c is a constant. 
 

The resulting image consists of blobs with different sizes. To facilitate further analysis 
only those blobs corresponding to an object of interest with high probability should be 
detected. All searched particles degrade to blobs with almost the same diameter, which 
can easily be detected, applying the equation described above. To detect only the blobs 
of interest, independent from large-scale gradients on the image, a more sophisticated 
scheme is used than a simple maximum detection algorithm, since the search strategy is 
extremely important for the success of the method. The procedure is the following: First, 
a maximum of an area is determined. A circle with the diameter of the particle is cut out 
and the maximum of the boundary of the circle is calculated. If the maximum satisfies a 
certain threshold the peak is going to be further classified. This procedure ensures that 
only the objects with the predetermined size are going to be detected. The method was 
implemented in the EM software package (Hegerl 1996). 
 
 

3.2 Object Detection with Simulated EM Data 
 
Imaging of biological macromolecules with the electron microscope has to be done with 
a very low electron dose in order to avoid radiation damage of the objects. In addition to 
the resulting noise, any processing is aggravated by noise-like background variations 
originating from the superimposed image of the specimen support. Frequently enough, 
the SNR is so low that particles cannot be identified unambiguously by the eye. 
Therefore, in a first approach, simulated images have been used to assess quantitatively 
the performance of the proposed detection method. With artificial data, the number and 
position of particles is known and the SNR can be modified. 
In order to assess the performance of the method, simulated tilt series with real particles 
have been reconstructed. Several microscope properties, e.g. alignment problems, 
alignment error, transfer function, etc. have been included (with typical values) in the 
reconstruction of the synthetic volumes. The particles have been placed inside these 
volumes with random translation and rotation. 
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3.2.1 Detection in 2D Images 
 

To make the simulation as realistic as possible, images have been recorded with the 
electron microscope showing a thin film of amorphous ice with some small gold clusters 
embedded. The gold clusters are used as alignment markers in further processing steps. 
Projections of biological macromolecules were pasted into the images using known but 
random translation and orientation positions. The contrast of the particles was chosen 
such that the SNR corresponds to approximately –1dB.  
 

80 nm
 

Fig. 29. Realistic background image, including contamination, with particles pasted in (marked by circles), 
corresponding to an SNR of –1dB. The crosses (+) visualize the detection result. 

 
The resulting image (Fig. 29) was processed using MCM for segmentation in order to 
derive the most likely positions for particles. More than 70% of the particles have been 
detected correctly. The gold particles in the image don’t affect the result at all, as their 
radius is smaller from the particles to be detected. The algorithm is robust with respect 
to noise and long-wavelength gradients and is independent from the local gray mean 
value. 
An important discussion point is the performance of the method on closely placed or 
overlapping particles. A characteristic attribute of the method is that two connected 
surfaces remain connected for the whole processing time, even if the junction is one 
pixel. Two overlapping particles are not detected immediately with the peak search 
method described above. A second point of interest is the performance of the method on 
particles that consist on two subunits, which does not build a coherent surface. In this 
case it is possible that the high contrast areas, characterizing each subunit, disappear due 
to the small surface they include and the low contrast background remains. Hence, such 
a particle would not get detected at all. The drawbacks described above affect the 
detection of particles and limit the performance of the algorithm. 
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3.2.2 Detection in Volume Data 
 
In the following test calculations the typical artifacts of the electron tomographic 
reconstructions are simulated in order to exploit the performance of the detection 
method realistically. To illustrate how MCM affects the object to be detected, the 
evolution of a macromolecule Thermosome is presented, which is moving under its 
curvature (Fig. 30).  

a

 

b

 

c

 

d

 

Fig. 30. Evolution of the Thermosome molecule under the effect of MCM. The size of the particle is about 
10*10*14nm3 and the volume size is 20*20*20 voxels. (a) Original particle and evolution after (b) 6 iterations, (c) 12 
iterations and (d) 20 Iterations. 

 
After processing the particle with MCM the following observations are made: The 
protrusions of the particle, places with high curvature, are eliminated first. The particle 
degrades slowly to a toroidal structure. By further processing the particle degrades to a 
sphere (Fig. 30d). The created blob is in the center of the position of the particle and is 
the place to be detected with the peak search algorithm. In general the position, where 
the level sets degrade is not known. Nevertheless for symmetric particle it is always the 
center and for non-symmetric particles the place of the singularity can be found easily. 
 
An artificial volume with 500 randomly rotated and translated Thermosomes has been 
generated. The volume was projected from –60° to +60° with an increment of 3° using 
the x-axis as tilt axis (41 Projections). Colored noise was added to the projected images, 
simulating the shot noise of the electrons as well as the low pass effect of the transfer 
function of the microscope. The drift of the specimen holder, mostly in one direction, 
has been simulated by convolutions with an anisotropic low pass kernel. Additionally, 
each projection image was subjected to a random displacement with a variance of one 
pixel, in order to simulate the alignment errors. The resulting images were used to 
reconstruct a volume using weighted backprojection. 
 
As shown in Fig. 30, 20 iterations were used to degrade the Thermosome particle to a 
spherical structure with a radius of about 3 voxels. Considering the volume obtained by 
the tomographic reconstruction, the particles are elongated in z-direction due to the 
restricted tilt range. Consequently, the 3D blobs resulting from the MCM process are 
elongated too. Since the amount of elongation is predefined, a cover correcting for the 
elongation can be assigned to each blob and used for discrimination similarly as for the 
circle in the 2D case. 
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The performance of the method is almost constant with a SNR above –1.5dB (Fig. 31). 
All the particles can be correctly identified, without any false findings, apart from those 
at the boundary of the volume. With a SNR of less than –2.5dB more than 60% of the 
particles could be directly identified, though the number of false findings is very high. 
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Fig. 31. Result of particle detection in a synthetic 3D image data. The solid line with crosses represents the particles, 
which have been detected with a difference of two pixels (Manhattan distance) from their true position. The diamonds 
indicate false findings, that is findings with no correspondence of an object. The circles represent the particles that 
haven’t been detected. 

 
 

3.3 Application on Real Data 
 
The performance of the algorithm is exploited on real data, where 2D images as well as 
3D images of biological macromolecules are processed. A comprehensive comparison 
with the detection results of a person is obtained. 
 

3.3.1 2D Processing 
 
Several detection results on various kinds of images are performed in order to exploit the 
performance of the method. The first example is a negative staining image of VAT. The 
curvature of the molecules (diameter ca. 14nm, corresponding to 15 Pixels) with respect 
to the noise results in a longer “life-time” of the particles when processed. The images 
are from very low SNR and the position of the particles can not be unambiguously 
identified by eye. The original image is presented in Fig. 32a and the processed image 
after 20 iterations in Fig. 32b. The bright blobs correspond to possible positions of the 
molecules. Even though the SNR is very low, the blobs have a significant contrast and 
can be clearly separated from the background. The particles in contact with each other 
are not detected because the area resulting from the MCM procedures is twice as big as 
the correct blob. 
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a

 

b

 
Fig. 32. 256*256 pixels sized electron micrograph showing molecules with a diameter of about 30 pixels, 
(corresponding to 14nm). (b) The processed version of the image. Bright spots (“blobs”) appear at the positions of 
molecules. The white arrows point to some particles and the corresponding blobs created by MCM. The black arrow 
points to a place, where particles are in contact and therefore the diameter of the blob is much larger, than the rest. 

 
 

3.3.2 Comparison of the Performance of Interactive Particle Detection and 
Automatic Procedure 
 
A quantitative comparison between the human observer and the automatic procedure is 
very difficult for various reasons: First of all there is no guarantee that a person marks 
every particle on the field. Second, his choice is always subjective and the marked 
particles hence obey already a sort of a classification. Despite this, to make a 
performance evaluation, a data set interactively collected, from negative staining images 
of Trilob was compared to an automatically collected data set. Trilob is a particle 
consisting of three distinct subunits (Fig. 34). It represents the worst case for object 
detection with MCM, because no significant closed contour surrounds the particle. In 
this case the three subunits would degrade independently from each other. 
 
Several electron micrographs have been recorded in order to collect a relatively large 
number of particles. In total 1200 particles have been selected interactively and 1500 
particles after processing the data with MCM. A typical image, with the detection spots 
from the human (+) and MCM (O) is presented in Fig. 33. The result after averaging all 
the particles collected by both is presented in Fig. 34. After visual inspection no 
significant differences could be found, even though the automatic selected data set has 
not been classified before. The averages have also been compared with Fourier shell 
correlation, where the better (more selective) clicking performance of the human 
becomes clear. The results after classification of the data are identical. 
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Fig. 33. Comparison of the human (+) and automatically marked particles (O) 

 
a b

 
Fig. 34. 2D Average of the macromolecule Pyrococcus furiosus. Comparison of the averages of the (a) “human” 
marked particles and (b) MCM detected particles.  
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Fig. 35. Comparison of the different performances by the Fourier shell correlation coefficients. The better resolution 
of the automated selected data set corresponds to better SNR and therefore to a better performance.  
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3.3.3 3D Processing 
 

Three tomographic tilt series of purified and ice-embedded Thermosomes (15nm 
diameter, 16nm height), were recorded and processed. The 3D reconstruction was 
performed by r*-filtered backprojection into volumes of 512*512*256 voxels, each 
voxel corresponding to 1nm3. Fig. 36 shows one of these volumes reconstructed from a 
series taken in the angular range from –62° to +70° with an increment of 1°. 

 

 
 

Fig. 36. : Isosurface presentation of a 2563 voxels sized volume, reconstructed by r-filtered backprojection from a tilt 
series of Thermosome particles. The volume contains a vesicle (large object in the back left, with a diameter of about 
100nm), molecules to be detected in the front, with a size of 15nm and artifacts due to contamination in the front left. 

 
The volumes were processed using MCM until the gold clusters disappear and the only 
remaining objects are the biological molecules. Typically for the method, blobs appear 
with maximum peaks corresponding to the center of the Thermosome. All 
macromolecules visible in the volume could be automatically identified. The enormous 
data reduction gained by the MCM-based volume segmentation allows refining the cut-
out volumes using classical methods like matched filter, for the translational as well as 
for the rotational position. Instead of scanning the entire volume applying time 
inefficient correlation techniques, a scan of the reduced volumes is sufficient (data 
reduction of 1/4000).  
 
Segmentation with MCM is not a tool just considered for single particle analysis. The 
segmentation results can be further used for object segmentation in tomographic 
reconstructions of cells and organelles. The resulting blobs can be further analyzed by 
cross correlation techniques. With MCM it is possible to classify particles with one pixel 
difference in their diameter. This is just SNR dependent and therefore never the case in 
electron microscopic images. 
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a

 

b

 
Fig. 37. Comparison of the detection result of Thermosome particles in a 3D reconstructed volume. a) One central xy-
slice through the tomographic reconstruction is presented. b) and after processing with mean curvature motion. The 
white dots represent the positions of the Thermosomes. 

 
 

3.4 Discussion 
 

The mean curvature motion approach for automated data detection proposed here, has 
several benefits. The technique is not considered as a stand alone process, but as the first 
part of a fast and reliable object detection. As shown in the flow diagram below (Fig. 
38), MCM is applied first. When subjecting noisy EM data to this procedure, areas 
corresponding to particle images shrink to small, almost noise-free blobs which can be 
detected automatically by a peak search routine. Obviously, the process includes an 
effective noise reduction and approximately preserves the center of mass of each 
particle. Due to the image segmentation, the following analysis with respect to type, 
exact position, and orientation of the particle, e.g. using matched filter, can be performed 
separately for each particle within a small volume centered on the blob. When compared 
to the entire image or volume, this corresponds to an enormous data reduction. The 
algorithm is also very fast. As an example, 15 sec are needed for one iteration of a 2563 
volume on a R10000 SGI processor. The number of iteration steps - typically 20-30 - is 
predefined depending on the particle size.  

 
Fig. 38. Flow diagram of the detection procedure. 
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Considering a SNR of –1.5dB, the rate of successful and false findings is absolutely 
satisfactory. Problems occur when particles are in contact with each other. The peak 
search algorithm due to a larger blob will exclude these particles. Following the 
experience of the subsequent analysis this may not really be a loss because in the case of 
such findings the final averaging of particle images may be disturbed. Severe problems 
occur when a particle image appears as set of unconnected areas. Corresponding blobs 
will disappear after a few iteration steps and any detection is prevented. It is a subject of 
further investigation whether a suitable preprocessing of the image would help to 
overcome this problem. 
 
One might think that simple low-pass filtering could be used instead of MCM. However, 
in contrast to MCM, there is no difference between blobs resulting from small, high 
contrast features and those from broader objects with less contrast. The pre-known size 
of the particles of interest can be used to adjust the iteration time accordingly. Applying 
the peak-search algorithm described above, the position of the objects can be determined 
with high accuracy, excluding the detection of artifacts in the volumes. To summarize 
the results, MCM is as a preprocessor a promising concept for an efficient and reliable 
approach to automatic object detection in 2D and 3D biological electron microscopy. 
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Chapter 4  

Multidimensional Image Segmentation with 
Active Contours 
 
Edge detection, segmentation, and shape recovery is essential for every visualization 
tool. Independent of an interactive, semi-automatic, or fully automated technique the 
separation of images (2D as well as 3D) into several more homogenous and coherent 
compartments becomes indispensable as the image complexity grows. In electron 
microscopy the feature of interest corresponds usually to a region whose pixels are of 
different grayness intensity, at least locally. The goal is to locate this shape within the 
image and then perform segmentation (separation from the rest of the image) and further 
shape analysis and perhaps recognition. 
 
The most straightforward approach to this task is to use threshold criteria; simply decide 
that the boundary of the desired shape corresponds to the pixels whose values are larger 
or smaller than a user-defined value. Indeed, for regions with very sharply delimited 
contrasts between the interior and the exterior this works well. But in many cases the 
image contains small features and noise with comparable high contrast, which should 
not influence or included in the segmentation results. An imaginary curve has to be 
moved towards its interior or its exterior direction as a function of the local image 
properties, which should stop at the desired boundary. The first approach was motivated 
by the work of Kass, Witkin, and Terzopoulos (1988). Their idea was to define a certain 
amount of markers outside the boundary of the object. Spring forces (attractive and 
bending forces) connect these markers (from now on called “snake”) with each other. By 
creating a force balance between the forces contracting the snake and external forces 
caused by image features a solution can be developed. The handicap is that no 
topological changes can take place and no forces exist to push the snake into the areas 
with concave boundaries. 
 
A new discretization technique, the so called “level set” appears to be the solution to the 
problem since arbitrary conformational changes of the snake can be handled 
unambiguously. The idea here is to embed the snake into a higher dimensional function 
(Malladi et al. 1996). Then it is moved in the direction of the normal, as a function of the 
image gradient, in order to segment the object of interest. Assumptions about the object 
properties are made, e.g. lower curvature and a higher contrast than the surrounding 
environment. The snake then becomes capable of ignoring the insignificant and 
uninteresting features e.g. noise and produces a satisfying segmentation result. 
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4.1 Segmentation Technique 
 
Consider a closed, smooth curve pI  evolving in an Euclidean R2 plane in time t. It is 
assume that the curve is moving along its normal vector field with speed ( )κF , a given 

scalar function for the curvature κ . Let ( )T,tsxx =  be the position vector, which 
parameterizes the curve ( )ts,γ  by s, Ss ≤≤0 , where s is that radian and t the time. One 
numerical approach than, is to take the Lagrangian description of the problem, produce 
equation of motion for the position vector s , and then discretize the parameterizations 
with a set of discrete marker particles at the moving front. However this approach has 
several disadvantages and is in general unstable as discussed in Sethian (1996). 
Additional problems occur, because topological changes e.g. the curve merges or splitts 
can not be handled. Therefore the idea is to embed the curve ( )tγ  as the zero level set in 
a higher dimensional function ( )( )tt ,xφ , where x  are the Cartesian coordinates. The 
function φ  remains then a continuous function even if the curve ( )tγ  changes the 
topology. 
 
Consider the motion of one level set const=φ  of the higher-dimensional function φ . 
The zero level describes the snake position ( )tγ , which should segment the object of 
interest. The equation of motion can then be written in the following form: 

( ) ( )( ) 0, =→ ttt xφγ  (24) 

 

 
Fig. 39. Demonstration of the expansion or collapse of a single level set as the function of the normal and the 
curvature. Several different zero level sets are presented (Different iteration times). The same higher dimensional 
function handles the movement of one curve. 
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The speed function F  points to the normal direction n of this level set and is described 
by: 

( ) nx ⋅= tF t , (25) 

Where ( )ttx  denotes the derivative corresponding to the evolution time t and the normal 
vector n is given by: 

φ
φ

∇
∇=n  

(26) 

The chain rule produces, 

( )( ) 0, =
∂
∂ tt
t

xφ  (27) 

and further: 

( )( ) ( ) 0, =⋅∇+ ttt tt xxφφ  (28) 

Substitution yields  

0=∇⋅+ φφ Ft , (29) 

which is the level set equation describing the motion of a single level set in a higher 
dimensional function (Fig. 39). 
 
The zero level set is evolving with the speed function κε ⋅−±= 1F , where ε  is a 
constant and κ  the curvature. In two dimensions the curvature is described with the 
following equation: 

( ) 2/322

22 2
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=  (30) 

and equivalently in three dimensions the mean curvature Meanκ : 
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The curvature κ  acts in this case as a regularization term. It hinders the level set moving 
into narrow places and stabilizes it with respect to noise. The uniform extraction 
(contraction) in the direction of the normal with speed 1 (-1), depends on the sign of the 
speed function.  
 
So far the curve is moving as the function of its own curvature and normal vector. In 
order to detect the boundaries of the object, a stopping criterion for the snake has to be 
determined. It can be a function of the gradient map of the image, as well as through 
user-interaction influenced. The gradient is the indicator for the existence of an edge, 
which characterizes the boundaries of an object. The corresponding weighting function g 
can be chosen in the following way:  
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IG
g

∗∇+
=

σ1
1 , (32) 

where the expression IG ∗∇ σ  denotes the gradient of the image I convoluted with a 
Gaussian filter with variance σ . The values of the weighting function are almost equal 
to one for small gradients and approximately zero otherwise. The normal and the 
curvature of the level set are weighted, resulting in the following speed function: 

( )κε ⋅−±⋅= 1gF  (33) 

and the equation to be solved: 

( ) 01 =∇⋅⋅−±⋅+ φκεφ gt  (34) 

Especially in noise hampered images the gradient information becomes insecure and 
misleading. Nevertheless the gray value still contains the whole image information, 
which can also be used, resulting generally in better segmentation results. An 
appropriate method for extracting the object information, without depending on the local 
mean gray value is contrast equalization. The equalized image pI  is calculated by 
dividing a high passed filtered version { }IHP  with low passed filtered version { }ILP  of 
the original image I: 

{ }
{ }ILP
IHPI p =  (35) 

Instead of the gradient, the gray values of the equalized image are used for calculating 
the weighting function. 
 
 

4.1.1 Discretization Scheme 
 
The motion equation (eq. 34) is hyperbolic and consequently can not be discretized by 
common techniques e.g. central differences. It can be proven that the discretization 
scheme is going to become unstable in finite iterations. The discretization stencil below 
is given in Sethian (1996). In the 2D case the following numerical approximation for the 
gradient is applied: 

( ) ( ) ( ) ( )2222
,0min0,max0,max,0min φφφφφ yyxx DDDD +−−+ +++=∇  (36) 

In the 3D case the stencil looks similar, with the additional z components: 

( ) ( ) ( )
( ) ( ) ( )222
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4.1.2 Initialization of the Segmentation Curve 
The segmentation result is very sensitive to the initial snake conditions. Therefore the 
start position of the snake has to be determined accurately. The procedure works as 
follows: Usually a user-defined curve (or a user-defined point) is marked outside (or 
inside) of the feature to be segmented. The snake is then evolved from this start-
conformation as a function of its normal, curvature, and the weighting function g of the 
image. It should converge and stop at the boundary of the feature or in case of several 
interesting features to break or merge in order to produce segmentation islands 
indicating different segmented features. 
 
 

4.2 Missing Wedge Compensation with a modified Discretization 
Stencil 
 
In 3D electron microscopy additionally to the low SNR the missing wedge influence has 
to be considered. The effect is that the gradient parallel to the z-axis in real space is zero 
and the level set weighting function no longer consists of a stopping-criterion in that 
direction any more.  
 
Consider the following experiment: A performance simulation of the snake on a holey 
sphere, degraded with the missing wedge. The sphere simulates a vesicle in real electron 
microscopic images. Due to the missing information in the z* axis, the edges of the 
sphere smooth out, by decreasing the Eulerian angle ϑ  ending in totally smoothed out 
poles (Fig. 40). The application of a hard threshold in a surface-rendering algorithm 
visualizes the following shape: 

 
Fig. 40. Isosurface of a hole sphere with missing wedge. 

The snake is initialized with the ideal start position for the detection of the object (in this 
case a sphere). After iterating the algorithm for a finite time the object boundary is 
approached and the image properties block the further evolution. With further 
application of the algorithm, the snake evolves into the gap of the sphere, through the 
poles (due to the missing wedge) and segments only the periphery. Further on the snake 
collapses to a toroidal structure and disappears, due to the high curvature of the 
boundaries, i.e. at the end no segmentation exists, even though the detectable object was 
noise free and with well-defined boundaries. 
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The reason why this happens is the vertical force component of the normal. The snake 
should move inwards (or outwards) in the z-direction only as a function of the curvature, 
so that the poles get covered but not penetrated. Therefore the evolution depends from 
angle of the normal to the z-axis. The snake moves in the orientation of the z-axis only 
as a function of the curvature and the vertical forces are set to zero. The PDE is modified 
accordingly and the equation of motion of the describing the movement of the snake can 
be written in the following way: 

( ) 0=∇⋅⋅−∇±⋅+ φκεφφ zt g  (38) 

Where 

( ) ( ) ( ) ( )2222
,0min0,max0,max,0min φφφφφ yyxx

z DDDD +−−+ +++=∇  
(39) 

 
Through this modification the segmentation algorithm is suitable for 3D electron 
microscopic images. It still does not work on a global basis, but considering the recent 
advances in virtual reality and visualization techniques the user interaction facilities are 
enhanced and so applicability grows. The user can define several points inside the 3D 
image, observe their evolution, and eventually modify the process interactively. In this 
way small shapes can be detected inside extremely complicated constructs (Fig. 42) and 
a semi automated segmentation can be facilitated. 
 
 

4.3 Performance Study of Snake Segmentation 
 
For a performance study, the level set segmentation algorithm has been applied on a 
large variety of 2D and 3D electron microscopic images. There is a major difference for 
2D scenes and 3D images. In 2D scenes the user can interact with the snake in order to 
push it in certain directions in order to improve the segmentation or for example to 
hinder it inserting in regions he does not want to separate from the final result. User 
interaction appears to be necessary with this segmentation algorithm, due to the high 
sensibility of the algorithm from the start initialization as well as from the local 
parameter choice. This user interaction becomes a severe problem in the 3D case, due to 
the insufficient visualization equipment. The 3D image becomes very complex and 
several movements and temporal snake segmentations are hard to follow. 
 
 

4.3.1 Two Dimensional Electron Microscopic Data 
 
The segmentation algorithm is first applied on a 2D EM-image of isolated and 
negatively stained 26S proteasomes (Fig. 41a). The exemplary image that is 
characterized by a high contrast contains a large variety of differently shaped particles. 
The idea is to let a level set evolve and create “islands” in which the particles are 
included with relatively high probability. The further analysis e.g. classification can be 
made a posteriori by correlation based techniques such as matched filter. The first 
initialization of the level is in this case a square at the outer boundary of the image. The 



Multidimensional Image Segmentation with Active Contours 

 

57 

level set evolves towards the inner part of the image mainly through the force of the 
normal (Fig. 41b-c). Due to the small size of the particles the curvature parameter ε  is 
chosen very small in order not to hinder the level set segmenting small feature.  
 

a

 
 

b

 

c

 

d

 
Fig. 41. Segmentation of single 26S proteasomes. (a) Start initialization of the snake, (b) evolution after 200 iteration, 
(c) after 400 iterations, (d) final segmentation. The colors represent different evolution steps (in order to improve the 
visualization). 

 
The final segmentation (Fig. 41d) is very satisfactory, as several contours of the particles 
have been detected. The segmentation result can be used as an “edge map” for a 
curvature based method (gradient-dependent mean curvature motion). The different 
islands can then be separated and classified, as a function of their size and shape. 
 
The second example is a xy slice through an electron tomographic reconstruction of T5 
viruses attached to proteoliposomes. The level set should approach the boundaries of the 
viruses, including the virus tails and proteoliposomes, as accurately as possible in order 
to avoid noise distortions during the visualization. In this example the initialization of 
the snake is not automatic, but through user interaction several points around the object 
of interest are set (Fig. 42a). Compared with the former example the SNR is 
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considerably lower, and therefore the boundaries are interrupted. In order to produce an 
optimal segmentation the curvature parameter has to be very large. 
 

a

 
 

b

 

c

 

d

 
Fig. 42. Xy-slice from a tomographic reconstruction of T5 viruses attached to proteoliposomes. (a) Start initialization 
of the level set (Bright curve surrounding the viruses), (b) progress after 200 iterations; arrow demonstrates the place 
where the level set was forced (by user interaction) to insert into the hole to segment the empty space between the two 
virus tails. (c) Progress after 400 iterations and (d) final segmentation result. Black arrow notes the place where a 
separation would be desired. White arrow denotes the carbon bridge which remains in the segmentation result. 

After the start initialization (Fig. 42a.) the level set evolves inwards. Due to the high 
curvature parameter it is unable to insert in the empty space between the two virus tails. 
In order to force a segmentation result in this space the curvature is explicitly set to zero 
locally. A different solution would be to place a second level set in this space, which 
should evolve in the outward direction. After 800 iterations the level set stabilizes at the 
boundaries of the objects. The approach is quite satisfactory; nevertheless the carbon 
film can not be separated from the virus-proteoliposomes complex. 
 
The third and last 2D example is a segmentation of an ice embedded Pyrodictium abyssi 
cell. In this case the separation of the cell out of the background is desired. In Fig. 43a a 
xy-slice through the 3D reconstruction and the start initialization of the level set are 
presented. In the image the cell, some extracellular vesicles, and a canulla are clearly 
visible. The extracellular vesicles are surrounded by several small proteins, which make 
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the boundary very rough. The boundary of the cell has an excellent SNR, nevertheless at 
some places it is smoothed out, or interrupted due to cellular interactions. With the start 
initialization of the snake the canulla is avoided (Fig. 43a), which would block the 
further evolution of the snake. 
 

a

 
 

b

 

c

 

d

 
Fig. 43. Xy slice from a 3D tomographic reconstruction of a Pyrodictium abyssi cell. (a) Start initialization of the 
level set, (b) evolution after 200 iterations, (c) after 400 iterations and (d) final segmentation. Black arrow shows the 
place where the level set inserts into the membrane and jeopardizes the good segmentation. White arrow points to a 
segmented feature, which is obsolete. 

 
The segmentation result (Fig. 43d) is not very satisfactory, as the snake did not detected 
most of the boundaries nicely. The extracellular vesicles could not be segmented from 
the rest of the cell. In the place where the outer boundary of the cell is missing, the 
curvature is not capable of hindering the level set inserting. With user interaction the 
result can be improved significantly. For this reason a different snake should be 
initialized, where the extracellular vesicles would be already excluded from the 
segmentation result as the force would be set to zero at several gaps at the membrane. 
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4.3.2 Simulations on 3D Synthetic Data 
 
For the performance demonstration of the snake segmentation on 3D images the typical 
snake algorithm is applied on the synthetic sphere degraded with missing wedge, as well 
as the modified version. For a realistic segmentation a missing wedge from °± 35  has 
been used for degrading the sphere. The isosurface of this sphere is presented in Fig. 40. 
The poles of the sphere are smoothed out and do not appear in the isosurface 
presentation. The segmentation results of the original (Fig. 44a-c) and modified (Fig. 45) 
algorithm are presented.  

a

 

b

 

c

 
Fig. 44. Segmentation of a sphere with missing wedge. (a-c) present  the evolution of the unmodified level set 
algorithm.  

With the elimination of the force component in the z-direction the tops of the sphere 
appear flat, where in the other case they are not segmented at all (Fig. 44c). With this 
modification the algorithm becomes capable of segmenting the interior of a cell or 
organelle (Fig. 46-47). 
 

 
Fig. 45. Segmentation of the same sphere as in Fig. 44 with the modified level set algorithm. The missing information 
is not recovered, but the level set does not propagate into the interior of the sphere. 

With this modification not only the segmentation of the exterior of the particle is 
facilitated, but due to the fact that gradient magnitude in the z-direction is very small the 
problem of bad segmentation would exist on every segmented feature.  
 

4.3.3 Snake Segmentation of Three Dimensional Electron Microscopic Data 
 
The 3D segmentation of an inside-out vesicle formed by mitochondrial inner membrane 
fragments represents a very challenging segmentation task, due to several difficulties, 
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including small features, which should be included in the segmentation result, as well as 
large scale missing wedge and therefore disappeared poles (Fig. 46). The interesting 
features in this 3D image are the macromolecular structures periodically located at the 
outer side of the vesicle membrane. In order to be able to visualize them several other 
high contrast features as part of a mitochondrion should be segmented out.  
The first initialization of the level set was a cube surrounding the vesicle. The level set 
propagates towards the vesicle and produces the blue surrounding envelope. The level 
set does not propagate in the interior of the vesicle. Additionally all small features, 
probably corresponding to proteins, are included in the final segmentation (Fig. 46). 
 

a

 

b

 
Fig. 46. Isosurface presentation of the inside-out vesicle. In blue color ( (b) transparent and (a) not) the segmentation 
result is presented. The white arrows point to the features which should be separated from the inside-Out vesicle. The 
black arrow points to the macromolecules attached to the vesicle membrane, which should be included in the 
segmentation result. 

The same performance can be demonstrated at a Pyrodictium cell. In this case the cell is 
filled with several small structures (Fig. 47). The level set does not propagate again into 
the intracellular space (Fig. 47b), and the information inside can be further processed. 
 

a

 

b

 
Fig. 47. Segmentation of a Pyrodictium abyssi cell. (a) Start conformation of the 3D-snake (cube) and (b) Final 
segmentation result. The snake did not insert in the intracellular space and the structural features (white dots) could be 
included in the segmentation. In the segmentation result the extracellular vesicles could not be separated from the rest 
of the cell (arrow). 

 
The last example is the segmentation of T5 Viruses attached to proteoliposomes. In this 
case the snake is not capable of detecting the interesting biological features and includes 
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in the segmentation also the carbon foil (as in the 2D case) (Fig. 48). The segmentation 
can not be improved in this case, even with user interaction, because all the features lie 
very dense in the volume.  

a

 
 

b

 
Fig. 48. Segmentation result of T5 Viruses attached to proteoliposomes. The carbon foil could not be separated from 
the segmentation result (white arrow). 

 
 

4.4 Discussion 
 
Segmentation based on the level set technique is a very useful tool and a promising and 
exciting line of research in the near future. On the contrary to the conventional “snake” 
techniques, arbitrary boundaries can be detected and due to the level set technique the 
snake can split and merge without mathematical instabilities. Nevertheless the 
segmentation results still depend strongly on the initial conditions and usually require 
strong user interactions. The level set method can not be used in an automated way for 
global 2D and 3D image segmentation. The result in this case would be at best similar to 
simple thresholding schemes. 
The most important application is in the field of 3D visualization and virtual reality, 
where a strong user- data interaction is necessary and desired. Several level sets can then 
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be placed in the interior or exterior of structures and are capable of revealing their local 
structure. The parameters can then be adjusted locally and a separation of different 
features is simple. In this case the level sets can replace different segmentation tools e.g. 
splines, cut/crop tools or user 2D segmentations. 
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Chapter 5  

Multidimensional Image Segmentation with 
Eigenvectors 
 
Image segmentation techniques can be classified into two broad families: the contour-
based and the region-based approaches. Contour-based approaches, such as level sets, 
usually start with a first stage of edge detection, followed by a linking process towards a 
detectable boundary. Region-based approaches try to find partitions of the image pixels 
into sets corresponding to coherent image properties. The major difference between 
these techniques is the decision criterion: local vs. global. Contour-based techniques 
make local decisions (e.g. merge/split, stop/evolve), that can be proven premature. 
Region-based techniques make the decision by defining a global objective function. The 
advantage thereby is that decisions are made when information from the whole image is 
taken into account at the same time. 
 
In contour-based approaches, the first step of edge detection is done locally. 
Subsequently efforts are made to improve results by a global linking process that seeks 
to exploit curvilinear continuity. In this sense the edge/no edge decision is made too 
early. To detect extended contours of very low contrast features a small threshold has to 
be set for the edge detector, which causes random edge segments to be found all over the 
image, making the task significantly harder. 
 
The use of eigenvectors for segmenting 2D and 3D images is a new and exciting 
approach in this field. Different from the level set method, where a boundary is pushed 
towards an object, this technique takes the whole image into account and separates it 
into several regions, which can be used to distinguish the different objects from each 
other. The traditional method of object separation is histogram thresholding, commonly 
used for surface rendering. Unfortunately there are many images in which no clear-cut 
of the histogram peaks corresponds to distinct objects in the image. With the 
eigenvectors a foreground/background separation is obtained, therefore a parameter-
defined cost function is minimized and the dominant feature is separated from the rest. 
By further applying the algorithm a tree-segmentation is achieved. 
 
Humans use a large variety of different criteria to segment images, e.g. similarity, 
proximity, continuity, symmetry. In the field of electron microscopy the observer 
usually searches for a known shape or multiple occurring shapes to propose some sort of 
segmentation. The separation criterion is the gray value and contrast difference between 
the feature and the surrounding environment. The approach suggested here has the 
advantage of being able to integrate a large variety of different criteria, e.g. texture 
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detectors, energy formulations, gradient information, etc. Nevertheless the gray value 
information and the distance remain the most reliable parameters the segmentation is 
based on. Additionally, the energy can be taken into account to improve the 
segmentation result.  
 
 

5.1 Algorithm 
 

5.1.1 Graph theoretical approach 
 
The image is considered as a weighted, undirected graph ( )EVG ,= , where each pixel 
corresponds to a node V and an edge E is formed between every pair of nodes. The 
weight ),( jiw  of each edge is a function of the similarity between nodes i and j. The 
segmentation procedure partitions the whole set of nodes V into disjoint sets V1, V2, …, 
Vm, where some measure of the similarity among the vertices in a set Vi is high and 
across different sets low. The common criterion for splitting a graph G into two disjoint 
sets ∅=∩=∪ BAVBABA ,,,  is the “cut-criterion”. The dissimilarity is measured by 
the sum of all connections between the sets A and B.  

∑∑
∈ ∈

=
Au Bv

vuwBAcut ),(),(  (40) 

The cut-criterion favors cutting small sets of isolated nodes in the graph. Shi and Malik 
(1997) suggested the extension of this criterion, in order to avoid this effect and improve 
the segmentation procedure. They introduced the normalized-cut criterion: 

),(
),(

),(
),(),(

VBasso
ABcut

VAasso
BAcutBANcut += , 

(41) 

where 

∑∑
∈ ∈

=
Vt Au

tuwVAasso ),(),(  (42) 

is the total connection weight of the nodes in the group A to V. In a similar way they 
defined the normalized association Nasso within groups for a given partition: 

),(
),(

),(
),(),(

VBasso
BBasso

VAasso
AAassoBANasso +=  

(43) 

The weight minimization of the connections between the two groups A and B 
correspond to the separation of the image into two distinct groups.  
 

5.1.2 Construction of the Affinity Matrix 
 
The most essential feature for the algorithm is the affinity matrix W containing the 
connection weight jiw ,  and equivalently the similarity between two nodes i and j. It is 
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usually a function f of different features, e.g. gray value, gradient, color, texture, energy, 
etc. 

( )jifw ji ,, =  (44) 

The electron microscope images (in 2D and 3D) are parallel projections of the density 
distribution of the sample, which is recorded in the gray value distribution of the image. 
Consequently it should influence the affinity matrix significantly. The geometric 
distance of the pixels to each other appears also to be a very natural and important 
criterion for segmenting an image. A further facilitating feature, which can be 
implemented in the affinity matrix, is the energy. Thereby the energy for connecting two 
pixels with each other is calculated. The advantage is that information contained in the 
different nodes between these two nodes, is used. Even though texture appears to be a 
very significant segmentation criterion in real world images, in electron microscope 
images significant texture regions do not appear often. The affinity matrix, used in the 
segmentation procedure, is a superposition of three components:  
(a) the gray value component Iw : 

( )( )IjiI IIjiw α2exp),( −−= , (45) 

(b) the Euclidean distance component ),( jiwd  

( )djid xxdjiw α),(exp),( −= , (46) 

and (c) the energy component ),( jiwe : 







∑ ∇−=
∩

e
AL

e
ij

Ijiw α2exp),(  (47) 

Where ALij ∩  is the set of elements which lie on a line connecting the pixels ji, . The 
parameters edI ααα ,,  represent the different affinities. Their setting determines the 
weight balance of the different components in the affinity matrix.  
 
The different components sum to following affinity-matrix element ),( jiw : 

),(*),(*),(),( jiwjiwjiwjiw edI=  (48) 

 
Presently realizations use the gray value ),( jiwI  and the distance ),( jiwd  as they are 
the most reliable parameters. The gradient contains high frequency information, which is 
for high degraded data misleading. For noise free data the energy formulation is mainly 
used because of the following advantages: 
1) Pixels with the same gray value separated by a thin line would be classified in the 

same group, as pixels not separated by the line.  
2) High contrast thin edges are similarly weighted as bright edges with low contrast. 

With the energy formulation high contrast edges are higher weighted, as they usually 
determine defined boundaries. 

Having defined the graph partition criterion to be minimized as well the construction of 
the affinity matrix the optimal partition should be computed. 
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5.1.3 Algorithms for Graph Partition  
 
Shi and Malik proposed to solve the minimization of the normalized-cut criterion as an 
eigenvector problem (SM algorithm). They have proven that the second smallest 
eigenvector is the solution for minimizing the connections between the two subsets. This 
is in coincidence with the theorem of Fiedler, which states that the second smallest 
eigenvector separates the graph into two subgraphs, so that the connections between 
these subgraphs are minimized, which equivalently means that the connection in the 
graph is maximized. Minimization of the normalized-cut criterion can be achieved by 
solving the generalized eigenvalue system (Shi et al. 1997): 

( ) DyyWD λ=−  (49) 

Where y the solution of the problem, W is the affinity matrix and D a diagonal matrix. 
The element ( )iid ,  of the matrix D is the row sum of the elements of the affinity matrix 
W: 

( ) ( )∑=
j

jiwiid ,,  (50) 

Equation 49 can be rewritten in the following form: 

( ) yDyWDD 5.05.0 λ=−−  (51) 

By substituting yDz 5.0= ,  

( ) zzDWDD λ=− −− 5.05.0 , (52) 

Which is a standard eigenvalue problem. The matrix ( ) 5.05.0 −− − DWDD  is symmetric 
positive definit. Therefore all eigenvalues of this matrix are non-negative.  
 
The eigenvector 0z  corresponding to the eigenvalue 00 =λ  is: 

1Dz 5.0
0 =  or 11DDy == − 5.05.0

0 , (53) 

because of 1W1D ⋅=⋅ , where 1 is a vector of ones with the dimensionality of W. As all 
the eigenvectors are perpendicular to each other: 

D1yzz T
10

T
10 =⋅= , (54) 

where y1 is the solution of the normalized-cut problem, which has to fulfill this side 
condition. 
 
Instead of using the second smallest eigenvector the matrix can be transformed in the 
following way: 

( ) zzWDDEzDWDD λ=−=− −−−− )( 5.05.05.05.0  (55) 

With E the identity matrix. With further calculations eq. 55 becomes: 
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zWDDzEz 5.05.0 −−=−λ  (56) 

The normalized matrix 5.05.0 −−= WDDN  is defined and eq. 56 can be written in the 
following form: 

zNz )1( λ−=  (57) 

Normalization lemma: Let v be an eigenvector of N with eigenvalue λ . Then vD 5.0−  is 
a generalized eigenvector of W with eigenvalue λ−1 . The vector 1D 5.0  is an 
eigenvector of N with eigenvalue 1. 
 
A simpler way of exploiting the segmentation information included in the affinity matrix 
is the algorithm of Scott and Longuet-Higgins (SLH algorithm). The largest k 
eigenvectors kvvv ,...,, 21  of the affinity matrix W are calculated and the matrix 

[ ]kvvvV ,...,, 21=  is created. The rows of V are normalized so that they have unit 
Euclidean norm. The segmentation information can be embodied in  

TVVQ ⋅=  (58) 

Ideally 1),( =jiq , if i and j belong to the same group and zero otherwise. 
 
The combination of both algorithms has proven to be better than each one on its own. As 
Shi and Malik noticed the solution of their algorithm is not necessarily the correct 
partition of the affinity matrix. In the contrary, with the use of the first k eigenvectors 
(SLH algorithm) the correct solution is guaranteed. After testing of both algorithms the 
results after using the normalized matrix, where significant better. Additionally the SLH 
algorithm performed similar to the SM algorithm. Consequently the normalized affinity 
matrix from the Shi and Malik algorithm is used, combined with the SLH algorithm. The 
similarity of the algorithms is the use of the largest eigenvectors of the affinity matrix. 
The main differences are which eigenvectors to look at and whether to normalize the 
affinity matrix or not (Weiss 1999). 
 
 

5.1.4 Implementation of the Algorithm 
 
The implementation of the algorithm is not trivial, especially in the 3D case. The affinity 
matrix W consists of 2N  elements (full version), where N  is the number of 
pixels/voxels in the image that should be segmented. This would make the algorithm 
totally useless due to the huge amount of memory resources needed. Therefore a 
window with a width R is used. In this case it is not the distance from every element to 
the rest of the affinity matrix that is calculated but only the distance to the next 
neighbors. The affinity matrix then has 2RN ⋅  nonzero elements in 2D images and 

3RN ⋅  in 3D images. In this case a sparse matrix representation is of great advantage. 
The calculation of the eigenvectors is then performed with the Lanczos algorithm. 
 
In general after the first calculation of the eigenvectors the desired feature is not 
perfectly segmented. In this case the first eigenvector is separated into two parts (usually 
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by a threshold scheme) and the segmentation procedure is applied again to each part 
separately. Fiedler (1975) has proven that the third eigenvector is the connection-cost 
minimizing criterion for the second eigenvector. One could then use the segmentation 
information contained in the third eigenvector for further partitioning of the image. 
Nevertheless in practice the new calculation of the eigenvectors has been proven to be 
more efficient. 
 
 

5.2 Segmentation Results  
 
The current goal of electron tomography is to identify macromolecular structures in a 
cellular context. Therefore one needs to scan the whole tomographic volume with 
appropriate references in order to determine a possible occurrence of a macromolecule 
by means of cross correlation. Segmentation techniques can be applied to make a 
foreground/background separation or a cell/environment (ice, carbon foil, gold bead, 
etc.) separation in order to reduce the size of the 3D image to be scanned. The concept is 
to downsample the tomographic reconstruction by a factor of two to three, segment the 
interesting feature and than apply the 3D image scan.  
 
The second and probably most important field of application of segmentation algorithms 
is the separation of the 3D image into distinct groups with similar properties e.g. gray 
value. The separate presentation of the distinct areas containing structural features 
improves the visualization significantly. Usually the user is forced to segment the 
features of interest manually. Apart from the subjective influences of this technique the 
procedure is very time consuming and impractical to perform, especially when 
interactive real-time segmentation is required during the visualization procedure. 
Nevertheless for simple 3D images and distinct features manual contouring remains a 
very common tool for improving the visualization. Although the user is able to separate 
distinct features from their environment the invested work becomes immense if several 
compartments of the cell or organelle need to be separated. Manipulations of the 
segmentation result in order to test small modifications are not possible. The user has to 
define the place of interest every time explicitly, segment it by hand, and continue with 
the visualization. An automatic segmentation tool would be of tremendous help.  
 
 

5.2.1 2D Segmentation 
 
The first example presenting the performance of this segmentation technique on 2D 
images is a xy-slice from the tomographic reconstruction of a Pyrodictium abyssi cell 
(Fig. 49a). An ideal segmentation should separate the cell from the extracellular vesicles 
on the right side of the image and eventually also from the canulla. In order to improve 
the segmentation result, the image has been first denoised with nonlinear anisotropic 
diffusion (Fig. 49b). The segmentation procedure is very sensitive to noise and thus 
denoising is necessary. Simple denoising, obtained with techniques like lowpass or 
median filtering produce results equivalent to more complex ones. 
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Fig. 49. Central xy-slice through a tomographic reconstruction of a Pyrodictium abyssi cell; (a) original slice and (b) 
slice denoised by nonlinear anisotropic diffusion. The white arrow points to the extracellular vesicles and the black 
arrow points to the canulla. 

 
The inspection of the segmentation results confirms the foreground/background 
separation for which this technique has been designed (Fig. 50). The second eigenvector 
of the affinity matrix consists of bright gray values at the area covered by the and darker 
values everywhere else (Fig. 50a). The contour of the cell is precisely defined (See also 
red contour in Fig. 51). The cell can then be separated from the rest of the environment 
with a simple thresholding scheme. 
 
In order to separate the extracellular vesicles from the canulla and the background a new 
segmentation cycle is initialized, producing an unambiguous classification of the 
objects. By further segmenting of the cell the cell boundary (S-layer) can be separated as 
an independent feature (white and black lines in Fig. 50b). The whole segmentation 
procedure is presented in Fig. 50. 
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Fig. 50. Segmentation results of the Pyrodictium abyssi cell; (a) the original second eigenvector as produced from the 
combination of the SLH and SM algorithms. (b) Further segmentation of the bright values. In white and black the 
boundary (S-layer) of the cell is coded. (c) Segmentation of the darker values. The extracellular vesicles get separated 
from the ice, the canulla, and the background. (d) Final segmentation of the extracellular vesicles. (e) Final 
segmentation of the canulla. 
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Fig. 51. Segmentation results in a combined form as contour plots. Every feature on the image could be 
unambiguously segmented. The red boundary represents the contour of the cell, the blue boundary the extracellular 
vesicles, and the green the canulla. 

 
The second example is a xy-slice from a 3D reconstructed inside-out vesicle of a 
mitochondrion (Fig. 52a). The segmentation of this image is usually very difficult for 
conventional techniques, for the following reasons: The inside-out vesicle is located 
close to the mitochondrion and the top and the bottom side of vesicle are not defined, 
rather just indicated by the position of small particles (gray dots). Furthermore the 
vesicle is connected with several other features, with similar contrast, which should not 
be included in the segmentation result. 
 

a

 

b c
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Fig. 52. Segmentation of an inside-out vesicle; (a) xy-slice from the original reconstruction, (b) the second 
eigenvector as calculated from the affinity matrix. The inside-out vesicle has clearly been separated from the rest. (c) 
Contour detection of the vesicle. (d) Separation of the mitochondrion from the rest. 

In the presentation of the second eigenvector (Fig. 52b) four different gray-value classes 
can be distinguished. The bright part represents the interior of the inside-out vesicle. The 
gray field indicates the membrane and the different particles attached to the vesicle. The 
darker part is the whole background with all the different features. Finally the darkest 
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part is the mitochondrion next to the vesicle. In Fig. 53 contours of the segmentation 
result are presented. The segmentation result is very good. This performance is observed 
without any kind of a priori information about the vesicle. 
 

 
Fig. 53. Contour presentation of the segmentation of the inside-out vesicle. The purple line represents the 
segmentation of the outer membrane of the inside-out vesicle including several small objects around. The yellow line 
indicates the segmentation of the mitochondria and the other vesicles. 

 
 

5.2.2 Segmentation of 2D Single Particle Images 
 
A large application field, where the eigenvector segmentation technique can be a very 
helpful tool is automated single particle analysis. In order to achieve a resolution down 
to 0.8 nm several hundred thousand particles need to be collected. There has always 
been the need for an automation of this procedure. Therefore one has to record the 
images of the molecules with the microscope first. New developments in the field 
require an automated procedure for this task. The particle solution is applied to a 
quantifoil grid with several regularly spaced holes in a carbon film. Using an automated 
acquisition scheme the position of the holes is detected and an image of the molecules is 
recorded. The particles lying in the holes and not on the carbon foil have to be detected 
afterwards in order to produce a correct average. This segmentation technique is capable 
of separating ice and carbon in a very fast and reliable way, without any user interaction. 
 
The performance of the segmentation is demonstrated in the following example. In Fig. 
54 a 2D image of drosophila 26S proteasomes embedded in unsupported uranyl 
acetate/ice film is recorded. Typical of the 2D images is that a part of the carbon film 
has also been recorded. For further image analysis only the macromolecules in the ice 
are of interest, because they are not subjected to structural modifications. For the 
automated particle detection (e.g. MCM, cross correlation, etc.), segmentation has to 
exclude the molecules on the carbon foil. The segmentation with eigenvectors proves 
here to be a very fast and reliable technique. The original image from the microscope is 
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downsampled with a factor of four. A median filter is applied afterwards with a width of 
3-5 pixels usually, in order to suppress some of the noise, by parallel preserving the edge 
properties. The resulting image is segmented with the second eigenvector. The 
parameters defining the affinity matrix can be set automatically. Usually a window 
function with 7 pixel width is used and the gray value affinity is 5% of the contrast of 
the processed image. The segmentation result is again ideal. 
 

a

 

b

 
Fig. 54. Segmentation result on 2D electron microscopic images. (a) Original image with 26S proteasomes (b) 
Segmentation result. 

 
The separation of the ice from the carbon can be made by simple thresholding of the 
histogram of the segmented image (Fig. 54b). In order to choose automatically the 
correct place (ice or carbon) an average of the gray values of each segmented area is 
calculated. Under the assumption that the ice is going to posses brighter gray values the 
correct place is chosen. 
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Fig. 55. Histogram of the segmentation result. The separation between darker and brighter gray-values is trivial. 
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Fig. 56. Contour of the segmentation after using automated thesholding scheme. 

 
 

5.2.3 Segmentation of 3D Images 
 
The segmentation of the 3D images is from a mathematical point of view identical to the 
2D case. Apart from the increased number of pixels involved in the segmentation, the 
window function is not 2D anymore but 3D. This increases the number of nonzero 
elements of the affinity matrix W by a factor R, where R is the window size and 
respectively increases also the memory requirements.  
 
In the electron tomographic reconstructions the information in the z* direction in the 
Fourier space is missing, because the sample can not be tilted to high angles. This causes 
an effect of an anisotropic blurring, which is equivalent to a slower change of 
information in the z-direction. For this reason the 3D window for collecting the values 
can be chosen anisotropically or the number of slices used for the segmentation in the z-
direction can be reduced. In the next examples the first option has been used. 
 
The electron tomographic reconstruction of T5 viruses attached to proteoliposomes is 
the first example for 3D segmentation with eigenvectors. In order to improve the 
visualization the carbon film has to be separated from the rest. In this way a view from 
the “down” side of the volume should be possible. The task for this tomographic 
reconstruction was to visualize the virus tails as they penetrate the vesicle wall and inject 
their DNA inside the vesicle. The question arising thereby is, whether the virus tail 
penetrates the wall, or injects the DNA through a porin molecule lying in the vesicle 
wall. In the first case a density should be observed, due to the thickness difference of the 
tail and the DNA. Therefore a segmentation procedure is applied in order to remove the 
carbon foil and allow the visualization from every angle. 
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Fig. 57. Xy-slices from the original tomographic reconstruction of T5 viruses attached to proteoliposomes. In the 
center of the 3D image a vesicle can be observed with DNA inside, which has been injected by the six viruses 
attached.  

 
In order to support the segmentation procedure the 3D image has been denoised with 
nonlinear anisotropic diffusion (Fig. 58). The contrast differences between the carbon 
foil and the vesicles are not very significant. Especially in the inner part of the carbon 
the gray values are brighter and consequently a thresholding scheme can not be applied. 
The result of the segmentation with level set is presented in chapter 4. 
 

 
Fig. 58. Denoising with nonlinear anisotropic diffusion the xy-slices applied to the T5 viruses attached to 
proteoliposomes. 

 
The segmentation result is absolutely satisfying (Fig. 59). In the segmented image the 
carbon film is precisely defined. Some viruses as well as the vesicle are also represented, 
but with less weight compared to the carbon film. By simply discretizing the 3D 
segmentation to a binary image a mask can be built, which is multiplied to the original 
reconstruction. Surface-rendered presentations are shown in Fig. 60 and 61. Several 
views to the vesicle are now possible. 



Multidimensional Image Segmentation with Eigenvectors 

 

77 

 

 
Fig. 59. The segmentation result. The separation of the carbon from the rest of the volume is achieved. 
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Fig. 60. Isosurface representation of the vesicle with the viruses attached. View from top (a) Original reconstructed 
3D image, (b) after denoising with nonlinear anisotropic diffusion and (c) after segmentation 

 
 



Multidimensional Image Segmentation with Eigenvectors 

 

79 

 
 

 
 

 

Fig. 61. A different view from the same isosurface presentation. The same order as in Fig. 60. In the segmented 
version the binding point of the tails at the vesicle can be visualized from the bottom side. This view would be not 
possible without segmentation. 
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5.3 Discussion 
 
The segmentation with eigenvectors consists of several advantages compared to other 
methods and has one tremendous virtue: It always produces a plausible segmentation. 
The results are satisfying, especially for 2D images. In 3D images the missing wedge 
has some influence on the performance, nevertheless the segmentation outperforms any 
other applied technique. This technique is not restricted to the gray value images or to 
gradient calculations. Any kind of image similarity can be implemented in the affinity 
matrix and the eigenvectors are going to include it in the segmentation result. 
From the computational point of view, the complexity grows linearly with the size of the 
processed images. In the 2D images the segmentation is always fast and reliable. In 3D 
images due to the large number of elements which most be included the memory 
resources can appear insufficient, but this is the only handicap of the method.  
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