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Zusammenfassung

Die Arbeit untersucht im ersten Teil die durch die Dirac-Gleichung erzeugte quan-
tenmechanische Dynamik eines Elektrons in einem kristallinen Festkörper. Dabei
unterliegt das Elektron neben dem periodischen Potential des Festkörpers dem
Einfluß äußerer elektrischer und magnetischer Potentiale. Man nimmt an, daß
die äußeren Potentiale schwach veränderlich auf der durch das periodische Gitter
festgelegten Längenskala sind und wendet die raum-adiabatische Störungstheo-
rie an, um aufbauend auf der ungestörten Dynamik (d.h. ohne äußere Felder)
die volle Dynamik für geeignete Anfangsbedingungen zu approximieren. Insbeson-
dere erhält man, aufbauend auf den Elektronenbändern des ungestörten Problems,
Unterräume des zugrundeliegenden Hilbertraumes, die bis auf Fehler beliebig ho-
her Ordnung im adiabatischen Parameter invariant unter der durch die Dirac-
Gleichung erzeugten Zeitentwicklung sind. Der effektive Hamilton-Operator, der
die quantenmechanische Dynamik innerhalb dieses Unterraums beschreibt, wird
bis einschließlich der Terme erster Ordnung im adiabatischen Parameter berech-
net. Weiterhin wird der semiklassiche Limes gebildet, d.h. die Dynamik innerhalb
dieses Unterraums wird mit Hilfe klassicher Bewegungsgleichungen approximiert.

Im zweiten Teil der Arbeit werden dieselben Untersuchungen wie im ersten Teil
für die Pauli-Gleichung durchgeführt, die sich als Grenzfall der Dirac-Gleichung
ergibt, wenn man die Lichtgeschwindigkeit c gegen unendlich streben läßt. Wie
im Fall der Dirac-Gleichung kann man auch für die Pauli-Gleichung entsprechende
beinahe invariante Unterräume finden und den semiklassischen Limes durchführen.

Abschließend wird untersucht, wie sich die im ersten Teil auftretenden Größen
in Abhängigkeit von der Lichtgeschwindigkeit c verhalten und welcher Zusammen-
hang zwischen ihnen und den entsprechenden Größen des zweiten Teils besteht.
Insbesondere wird gezeigt, daß die Entwicklung im adiabatischen Parameter und
die Entwicklung für großes c in den untersten Ordnungen kommutieren.
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Abstract

In this thesis, in the first part we study the dynamics of a single electron in
the periodic potential originating from a crystalline solid as governed by the Dirac
equation. The electron is subject to the periodic potential of the solid and addi-
tional external electric and magnetic potentials. In many concrete situations, the
external potentials are slowly varying on the scale of the periodic potential. Un-
der this condition, we can apply the space-adiabatic perturbation theory in order
to approximate the full dynamics of the problem for certain initial conditions by
quantities derived from the unperturbed problem. In particular we derive, based
on the electron bands of the unperturbed problem, subspaces of the underlying
Hilbert space that are invariant under the time evolution of the problem up to
errors of arbitrary order in the adiabatic parameter. The effective Hamiltonian
that governs the dynamics inside this almost invariant subspace is computed in-
cluding the first order terms in the adiabatic parameter. Furthermore we perform
the semiclassical limit, i.e. we approximate the dynamics inside the subspace by
classical equations of motion.

In the second part, we do the same program for the Pauli equation which is
in a certain sense the limit of the Dirac equation as the speed of light c tends to
infinity. As in the Dirac case, we determine subspaces that are invariant up to
small errors and perform the semiclassical limit.

Finally we study how the quantities derived for the Dirac case behave as func-
tions of c and how they are related to the quantities of the second part. In partic-
ular, we show that the expansions in the adiabatic parameter and the expansion
for c large commute in lowest orders.
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1 Introduction

An important problem in solid state physics is to describe the motion of electrons
in a periodic crystal under the influence of external magnetic and electric fields.
At temperatures considerably below the melting point of the solid, the ionic cores
of the crystal have small relative displacements and can be regarded as fixed. The
electrons of the solid are then subject to a fixed periodic potential generated by
the cores. Neglecting the Coulomb repulsion between the electrons, one is led to a
quantum mechanical one-particle problem. If the Fermi energy of the solid is small
on the relativistic energy scale, as is the case for ordinary metals (see [AsMe]), the
dynamics of the electrons is approximately governed by the Schrödinger equation.
However, as argued in [Wi], there are materials whose periodic potential is so
strong that relativistic effects cannot be neglected. In this case, one has to add
relativistic corrections, such as spin-orbit coupling (see [FoWo]), to the Schrödinger
Hamiltonian or to use the fully relativistic Dirac equation to describe the motion
of the electrons.

In the absence of external electric and magnetic potentials, both the Schrödinger
and Dirac Hamiltonian with periodic potential show a particular simple structure.
Exploiting the periodicity of the problem, one obtains so-called Bloch states that
are invariant under the time evolution generated by the Hamiltonian. If one probes
the conduction electrons through external electromagnetic fields, the bands are not
decoupled anymore. Since the external potentials that can be generated under lab-
oratory conditions vary slowly on the scale of the periodic lattice, in the physics
literature ([AsMe], [Wa], [Za]) one argues that band transitions are small and the
electrons’ dynamics can be described semiclassically by replacing the free kinetic
energy by the band energy. Mathematically, there have been several approaches
to derive a semiclassical model for electrons in a periodic potential. [MMP] and
[GMMP] in a more general context use Wigner functions to derive semiclassical
equations of motion in the case of vanishing external potentials. [GRT] use a
wave packet ansatz to obtain on a formal level semiclassical equations for the so-
lutions of the Schrödinger equation in the case of a constant external magnetic
field and vanishing electric field. [DGR] use the same technique in a more general
case including slowly varying external magnetic and electric potentials. Another
approach using a wave packet ansatz can be found in [SuNi], where semiclassi-
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1 Introduction

cal equations including first order corrections are derived from the Schrödinger
equation without giving a rigorous proof.

The recent approach in [PST3] gives a rigorous derivation of semiclassical equa-
tions of motion from the quantum mechanical Schrödinger equation with slowly
varying external magnetic and electric fields. The derivation of the semiclassical
model is split into two parts. Using symbolic calculus, they first show on a quan-
tum mechanical level the existence of almost invariant subspaces associated to
band subspaces of the unperturbed problem and determine the time evolution in-
side this subspace. In a second step, they approximate the dynamics inside a single
band by the flow of a classical Hamiltonian system, i.e. establish the semiclassical
limit. In this thesis, we want to undertake the same program as in [PST3] for
the Dirac equation and for the Schrödinger equation with relativistic corrections.
Furthermore, since the Schrödinger Hamiltonian and its relativistic corrections are
approximations of the Dirac Hamiltonian, we want to study whether and in which
sense the two approximations commute.

1.1 Formulation of the problem

We consider the dynamics of a single relativistic electron described by the Dirac
equation

i~
∂

∂t
ψ(x, t) =

(
mec

2β + ~c(−i∇x −
e

c
A(εx)) · α + VΓ(x) + eφ(εx)

)
ψ(x, t) (1.1)

with ψ(·, t) ∈ L2(R3,C4), t ∈ R. In (1.1) we use the Dirac matrices

β =

(
1C2 0
0 −1C2

)
and αl =

(
0 σl

σl 0

)
, l = 1, 2, 3

where σl, l = 1, 2, 3 are the Pauli spin matrices (see list of symbols). The potential
VΓ : R3 → R is periodic with respect to some regular lattice Γ generated through
the basis {γ1, γ2, γ3}, γj ∈ R3, i.e. VΓ(x+ γ) = VΓ(x) for all x ∈ R3, γ ∈ Γ where

Γ = {x ∈ R3|x =

3∑

j=1

ajγj, aj ∈ Z}.

The external magnetic and electric potentials A : R3 → R3 and φ : R3 → R
vary slowly on the lattice scale, as expressed through the parameter 0 ≤ ε ≪ 1.
Furthermore, in (1.1)me and e are the electron’s mass resp. charge, ~ is the Planck
constant and c the speed of light.
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1.2 A motivational example

Assumption 1 We assume that VΓ is infinitesimally bounded with respect to√
1 + ∆x and that φ ∈ C∞

b (R3,R) and Aj ∈ C∞
b (R3,R) for j = 1, 2, 3.

Under this assumption, the Dirac Hamiltonian

Hε,c := mec
2β + ~c(−i∇x −

e

c
A(εx)) · α + VΓ(x) + eφ(εx) (1.2)

is self-adjoint on H1(R3,C4) ⊂ L2(R3,C4). As well-known, the solutions of (1.1)
are given by ψ(·, t) = Uε,c(t)ψ(·, 0) with the unitary group

Uε,c(t) = exp(−iHε,ct), t ∈ R (1.3)

which will be our object of primary interest. In this thesis, we will study the
unitary group (1.3) using the facts that ε is small and c is large. To be concrete,
we will determine subspaces that are, up to errors that are small if ε is small resp.
c is large, invariant under the time evolution given by (1.3). Furthermore, we
will determine the dynamics inside these subspaces. The type of results we are
interested in (and partially also the techniques) will become clearer by giving a
motivational example in the following section.

1.2 A motivational example

The following standard example of perturbation theory of operators (see [Ka],
chapter VII) illustrates the goals of this thesis. Suppose H(κ), κ ∈ R is a family
of bounded operators on some Hilbert space H that is analytic in κ such that the
spectrum of H(0) is separated into two parts. If Λ is a circle in the complex plane
enclosing one of the parts, then the corresponding spectral projector Π(0) is given
by Π(0) =

∫
Λ
dζ(H(0)− ζ)−1. We know that for κ small enough, also (H(κ)− ζ)−1

exists for ζ ∈ Λ, therefore

Π(κ) =

∫

Λ

dζ(H(κ) − ζ)−1

is the spectral projector of H(κ) on the part of the spectrum that lies inside Λ.
Furthermore, we know that Π(κ) is analytic in κ since the resolvent is analytic
uniformly for ζ ∈ Λ. The subspaces Π(κ)H and (1 − Π(κ))H are then invariant
under the dynamics generated by H(κ), i.e.

exp(−itH(κ)) = exp(−itH(κ)Π(κ)) ⊕ exp(−itH(κ)(1 − Π(κ))), t ∈ R.
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1 Introduction

However, since Π(κ)H and (1−Π(κ))H depend on κ, one aims at unitarily trans-
forming them into κ-independent reference subspaces. Using the so-called Nagy
formula, one defines the unitary operator

U(κ) := (1 − (Π(κ) − Π(0)))−
1
2 (Π(0)Π(κ) + (1 − Π(0)) (1 − Π(κ)))

that is analytic in κ and maps Π(κ)H into Π(0)H, i.e.

U(κ)Π(κ)U∗(κ) = Π(0).

Now, defining the effective Hamiltonian h(κ) ∈ L(Π(0)H) by

h(κ) ⊗ 0 := U(κ)H(κ)Π(κ)U∗(κ) (1.4)

the dynamics inside Π(κ)H can be described with

exp(itH(κ))Π(κ) = U∗(κ) (exp(ith(κ)) ⊕ 0)U(κ). (1.5)

If one replaces U(κ) =
∑∞

l=0 κ
lUl, h(κ) =

∑∞
l=0 κ

lhl and Π(κ) =
∑∞

l=0 κ
lΠl in (1.5)

by the truncated series U (n)(κ) =
∑n

l=0 κ
lUl etc., the equality holds up to errors

of order O(κn+1).
It must be emphasized that the preceding example is meant rather to illustrate

what type of results we are interested in than to explain how to obtain them. As
in the example, we are in the following interested in finding (almost) invariant
subspaces of a perturbed problem based on certain invariant subspaces of the cor-
responding unperturbed problem and to determine the dynamics therein. However
there are substantial differences between the scope of this thesis and the preceding
example. While in the example above and for the nonrelativistic (i.e. c → ∞)
limit the relevant invariant subspace of the unperturbed problem is spectral, in
space-adiabatic perturbation theory (i.e. ε → 0) one starts with a (in general
non-spectral) band subspace of the unperturbed Hamiltonian. Clearly in the lat-
ter case the construction as given above breaks down and one has to use different
techniques, in particular the symbolic calculus, to obtain similar results. Also in
the nonrelativistic limit there are important differences, since the spectral subspace
of the unperturbed problem corresponds to an unbounded part of the spectrum
and the construction of our example cannot be used directly.

1.3 Outline

As mentioned above, we want to find subspaces that are invariant (up to ”small”
errors) under the unitary group exp(−iHε,ct), t ∈ R, corresponding unitary trans-
formations into a reference space and effective Hamiltonians as above in two ways,
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1.3 Outline

namely by expanding in the small parameters ε or 1
c
. The expansion in 1

c
yields

the Pauli Hamiltonian and its relativistic corrections as the first order terms of
the effective Hamiltonian as in (1.4), using arguments similar to the standard ex-
ample of the preceding section. Physically this expansion means to project onto
the electronic subspace.

The expansion in ε, that yields the dynamics inside a family of bands, requires
different techniques. Since there is no global spectral gap between bands, there
is no spectral subspace corresponding to the band subspace of the unperturbed
Hamiltonian. However, using space-adiabatic perturbation theory and the sym-
bolic calculus (see [Teu]), we can find subspaces that are at least invariant up to
errors of order O(ε∞). Again using symbolic calculus, one can also find a unitary
transformation onto a reference space and an effective Hamiltonian. Clearly, the
quantities obtained in these two expansions can still be expanded in terms of the
other parameter respectively, therefore we will study whether resp. in which sense
the two expansions commute as shown in figure 1.1.

Hc,ǫ ǫ≪1
//

1
c
≪1

��

∑n
j=1 ǫ

jhj(c)

1
c
≪1

��∑m
k=1(

1
c
)kHk(ǫ) ǫ≪1

// ?

Figure 1.1: commutative diagram

In chapter 2 we apply space-adiabatic perturbation theory to the Dirac Hamilto-
nian Hε,c, i.e. we study the relation between the upper left and upper right corner
of the diagram. We determine subspaces that are invariant under the unitary group
exp(−iHε,ct), t ∈ R up to errors of order O(ε∞), a unitary transformation into a
reference space and compute the effective Hamiltonian in the lowest orders. For a
single band, we derive the semiclassical limit, i.e. we approximate the dynamics
of the system on the almost invariant subspace by classical equations of motion.

In chapter 3 we first study the relation between the upper left and lower left
corner of the diagram, i.e. we study how the Pauli Hamiltonian Hε,P and its

5



1 Introduction

relativistic corrections approximate the Dirac Hamiltonian Hε,c on an appropriate
subspace. Furthermore, we apply space-adiabatic perturbation theory to them, i.e.
investigate the relation between the lower left and lower right corner. For the Pauli
Hamiltonian, the semiclassical limit for a single band yields classical equations of
motion that agree with the ones derived in [Teu] for the Schrödinger case except
for two terms coming from the relativistic corrections.

In chapter 4 we investigate the relation between the upper right and lower left
corner of the diagram. It turns out that the effective Hamiltonian and the related
quantities derived from the Dirac Hamiltonian by applying space-adiabatic pertur-
bation theory have norm-convergent power series expansions in 1

c
. Furthermore,

the lowest order terms in 1
c

agree with the corresponding terms derived from the
Pauli Hamiltonian.
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2 Dirac-Bloch electrons

In this chapter, we apply space-adiabatic perturbation theory to the Hamiltonian

Hε := β + (−i∇x −A(εx)) · α + VΓ(x) + φ(εx). (2.1)

Compared to (1.2), in (2.1) we have chosen units in which the Planck constant
~, the electron mass me and the speed of light c are 1 and have absorbed the
electron charge e into the potentials. For notational simplicity, we also dropped
the superscript c.

Since we are interested in the dynamics of (2.1) we have to study the unitary
group exp(−iHεt/ε), t ∈ R, where t/ε is used instead of t to indicate that one
has to observe the time evolution over times of order ε−1 in order to see finite
changes in the dynamics, since the external forces are of order ε. In order to
recover relevant information about exp(−iHεt/ε) we will first identify subspaces
that are invariant under the dynamics generated by the unperturbed Hamiltonian,
i.e. by Hε=0. This will be done in section 2.1 by studying the unitarily transformed
Hamiltonian

Hε=0
Z := (U ⊗ 1C4)Hε=0

(
U−1 ⊗ 1C4

)

acting on Hτ = U (L2(R3)) ⊗ C4 where U is the so-called Zak-transform. In the
next section we will go through the usual steps of space-adiabatic perturbation
theory as described in [Teu]: Given an invariant subspace of the unperturbed
Hamiltonian Hε=0

Z , we will construct a (ε-dependent) projector Πε
Z such that the

subspace Πε
ZHτ is almost invariant under the full dynamics generated by Hε

Z , i.e.

(1 − Πε
Z) exp(−iHε

Zt/ε)Π
ε
Z = O(ε∞).

Next, we will describe the dynamics inside Πε
ZHτ by a simpler reference Hamilto-

nian on a ”decomposed” reference space Hr = K ⊕ K⊥, i.e. we will construct a
unitary mapping Uε : Hτ → Hr and a self adjoint operator ĥ ∈ L(K) such that

exp(−iHε
Zt/ε)Π

ε
Z − Uε∗

(
exp(−iĥt) ⊕ 0K⊥

)
Uε = O(ε∞)

where ĥ as well as Uε are quantizations of semiclassical symbols (see appendix)
which can in principle be computed to any order in ε. The result is stated in

7



2 Dirac-Bloch electrons

theorem 2.6 and corollary 2.8. Finally, in section 2.3 we will study the semiclassical
limit of the dynamics, i.e. we will identify Hamiltonian equations in a classical
phase space such that

exp(iHεt/ε)̂b exp(−iHεt/ε) − b̂ ◦ Φt

is of order O(ε) or even of order O(ε2), i.e. such that the time evolution of the
Weyl-quantization of a semiclassical symbol b can be approximated up to order
O(ε) by transporting its symbol b along the flow Φt of the classical system. The
corresponding result is given in theorem 2.14.

Remark 2.1 We recall the isomorphy

L2(R3,H) ∼= L2(R3) ⊗H

where H is any separable Hilbert space. E.g., the Hamiltonian 2.1 reads

1L2(R3) ⊗ β +
e∑

l=1

(−i∂l − Al(εx)) ⊗ αl + VΓ(x) ⊗ 1C4 + φ(εx) ⊗ 1C4

if seen as an operator on L2(R3)⊗C4. In the following we identify both notations
without further notice.

2.1 The unperturbed Hamiltonian

We first recall some basic facts about the unperturbed Hamiltonian

Hε=0 = β + (−i∇x) · α + VΓ(x).

To formulate these results, we introduce the dual lattice Γ∗ of Γ generated by the
dual basis γ∗1, γ

∗
2, γ

∗
3 determined by the conditions γi · γj = 2πδij , i, j = 1, 2, 3.

The centered fundamental domain M of Γ (and analogously M∗ of Γ∗) is defined
as

M = {x ∈ R3 : x =
3∑

j=1

ajγj for aj ∈ [−1

2
,
1

2
]}.

In physics, M∗ is called the first Brillouin zone.

8



2.1 The unperturbed Hamiltonian

2.1.1 The Zak transform

In order to bringHε=0 into a simpler form, we introduce (following the presentation
in [Teu]) the Zak transform Uψ of a function ψ ∈ S(R3) by

(Uψ)(k, y) :=
∑

γ∈Γ

e−i(y+γ)·kψ(y + γ), (k, y) ∈ R6.

From the definition it follows that

(Uψ)(k, y + γ) = (Uψ)(k, y) for all γ ∈ Γ, (2.2)

(Uψ)(k + γ∗, y) = e−iy·γ
∗

(Uψ)(k, y) for all γ∗ ∈ Γ∗. (2.3)

From (2.2) one can see that for fixed k ∈ R3, (Uψ)(k, ·) is a Γ-periodic function
or in other words an element of L2(T3) (provided it is square-integrable) where
T3 := R3/Γ. In this context it is useful to define the Hilbert spaces

L2
τ (R

3,H) := {ψ ∈ L2
loc(R

3,H) : ψ(k − γ∗) = τ(γ∗)ψ(k)}, (2.4)

(where H is any separable Hilbert space) equipped with the inner product

〈ψ, ϕ〉 =

∫

M∗

dk 〈ψ(k), ϕ(k)〉H

where τ (γ∗) denotes multiplication with exp(iγ∗ ·y). We state that with a straight-
forward computation ‖Uψ‖L2

τ (R3,L2(T3)) = ‖ψ‖2 for ψ ∈ S(R3), therefore U extends

to a norm-preserving operator from L2(R3) into L2
τ (R3, L2(T3)).

On the other hand if we define

(U−1ϕ)(x) :=

∫

M∗

dkeix·kϕ(k, x)

for ϕ ∈ C1
τ (R3 × R3) (where the subscript τ means that ϕ is τ -equivariant in

the first and periodic in the second variable) it is also straightforward to show
that U−1 extends to a norm-preserving operator from L2

τ (R
3, L2(T3)) to L2(R3).

Furthermore, for ψ ∈ S(R3) we have (recall that all the sums and integrals are
absolutely convergent)

(U−1Uψ)(x) =

∫

M∗

dkeix·k
∑

γ∈Γ

e−i(x+γ)·kψ(x+ γ)

=
∑

γ∈Γ

(∫

M∗

dke−iγ·k
)
ψ(x+ γ)

= ψ(x).

9



2 Dirac-Bloch electrons

By continuity we have U−1Uψ = ψ on L2(R3). To show surjectivity of U , suppose
there is a ϕ ∈ L2

τ (R
3, L2(T3)) \ U(L2(R3)). Then UU−1ϕ 6= ϕ, but U−1UU−1ϕ =

U−1ϕ which is a contradiction to the injectivity of U−1. Therefore U is unitary
and U−1 is its inverse. Finally we state that U ⊗1C4 is unitary from L2(R3,C4) to

Hτ := L2
τ (R

3,Hf) (2.5)

with Hf := L2(T3,C4).
A straightforward computation gives the Zak transforms of multiplication and

differentiation operators. To simplify notation, we identify L2
τ (R

3, L2(T3)) with
L2
τ (R

3) ⊗ L2(T3) (where L2
τ (R

3) := L2
τ (R

3,C) is defined in the obvious way). We
have

U(−i∇x)U−1 = 1 ⊗ (−i∇y) − k ⊗ 1

with domain L2
τ (R

3) ⊗H1(T3). On the other hand

UQU−1 = i∇τ
k

on the domain H1
τ (R

3)⊗L2(T3) (as indicated by the superscript τ in ∇τ
k) where Q

denotes multiplication with x on the maximal domain and H1
τ (R

3) := H1
loc(R

3) ∩
L2
τ (R

3). For VΓ(x) however one has

UVΓ(x)U−1 = 1 ⊗ VΓ(y).

We conclude that the Zak transform of the unperturbed Hamiltonian Hε=0 is

(U ⊗ 1C4)Hε=0
(
U−1 ⊗ 1C4

)
=

∫ ⊕

R3

dkHper(k)

with

Hper(k) = β + (−i∇y − k) · α + VΓ(y), k ∈ R3.

For fixed k ∈ R3, Hper(k) is self-adjoint with domain

D := H1(T3,C4) ⊂ L2(T3,C4) =: Hf

independent of k. Furthermore, we know that

Hper(k − γ∗) = τ(γ∗)Hper(k)τ (γ
∗)−1

i.e. Hper(k) is τ -equivariant.

10



2.1 The unperturbed Hamiltonian

2.1.2 The spectrum of Hper(k)

The structure of the spectrum of Hper(k) is crucial for the following, therefore we
consider it in detail in this subsection. First we note that the resolvent

Rper(ζ, k) = (Hper(k) − ζ)−1 (2.6)

satisfies

Rper(i, k) = Rfree(i, k)(Hfree(k) − i)Rper(i, k) (2.7)

= Rfree(i, k) −Rfree(i, k)VΓ(y)Rper(i, k)

with Rfree(ζ, k) = (Hper(k) − VΓ − ζ)−1. Since VΓ(y)Rper(i, k) is bounded by as-
sumption and Rfree(i, k) = (β+(−i∇y−k)·α−i)−1 is compact (as can be shown by
direct computation), we have that Rper(i, k) is also compact and Hper(k) has purely
discrete spectrum accumulating at infinity. Since Hper(k) is not semibounded, the
labeling of eigenvalues and eigenfunctions requires additional considerations. The
following lemma about the time-reversal symmetry of Hper(k) which is also used
later on enables us to prove that there is an appropriate labelling. For the lemma,
we introduce the notation

Sj :=

(
σj 0
0 σj

)
, j = 1, 2, 3. (2.8)

Lemma 2.2 Hper(k) satisfies

Hper(−k) = T −1Hper(k)T , k ∈ R3 (2.9)

with T given by

T ψ = S2ψ̄, ψ ∈ L2(T3) ⊗ C4

and S2 as in 2.8. Furthermore we have

〈ψ, T ψ〉 = 0 for all ψ ∈ L2(T3) ⊗ C4.

In particular, each eigenvalue of Hper(0) is at least two-fold degenerate.

Proof. We have to compute

T −1 (β + (−i∇y − k) · α + VΓ(y))T .

11



2 Dirac-Bloch electrons

One can directly see that β and VΓ(y) commute with T . For the remaining term
(−i∇y − k) · α we state that {α3,S2} = {α1,S2} = 0 whereas [α2,S2] = 0. To-
gether with the fact that α1 and α3 are real-valued whereas α2 is purely imaginary
it follows that

T −1 ((−i∇y − k) · α)T = −T −1(−i∇y − k)T · α.

Finally it is clear that T −1(−i∇y)T = i∇y and T −1kT = k and therefore (2.9)
follows. The second statement becomes clear by

〈ψ, T ψ〉 =

∫

M

dy
〈
ψ(y), S2ψ̄(y)

〉
C4

=

∫

M

dy
(
ψ̄1(y)(−iψ̄2(y)) + ψ̄2(y)(iψ̄1(y))

)

+

∫

M

dy
(
ψ̄3(y)(−iψ̄4(y)) + ψ̄4(y)(iψ̄3(y))

)

= 0

In the special case of a inversion-symmetric potential VΓ we have additionally
the following result.

Corollary 2.3 Let VΓ(−x) = VΓ(x) for all x ∈ R3. Then

Hper(k) = T −1R−1Hper(k)RT , k ∈ R3 (2.10)

with R given by

Rψ(y) = βψ(−y), ψ ∈ L2(T3) ⊗ C4.

Furthermore we have

〈ψ,RT ψ〉 = 0 for all ψ ∈ L2(T3) ⊗ C4.

In particular, for all k ∈ R3, each eigenvalue of Hper(k) is at least two-fold degen-
erate.

Proof. We compute

R−1 (β + (−i∇y − k) · α + VΓ(y))R.

12



2.1 The unperturbed Hamiltonian

Obviously VΓ commutes with R. On the other hand we have {α,β} = 0 and
R−1(−i∇y)R = i∇y, therefore R−1Hper(k)R = Hper(−k) and (2.10) follows with
lemma 2.2. Furthermore

〈ψ,RT ψ〉 =

∫

M

dy
〈
ψ(y),βS2ψ̄(−y)

〉
C4

=

∫

M

dy
(
ψ̄1(y)(−iψ̄2(−y)) + ψ̄2(y)(iψ̄1(−y))

)

−
∫

M

dy
(
ψ̄3(y)(−iψ̄4(−y)) + ψ̄4(y)(iψ̄3(−y))

)

= 0.

Now we turn to labelling the eigenvalues. Clearly lemma 2.2 implies that
σ(Hper(k)) = σ(Hper(−k)) and this fact enables us to label the eigenvalues of
Hper(k) continuously in k such that also the symmetries of Hper(k) are reflected as
stated in the following lemma.

Lemma 2.4 (Labelling of eigenvalues) There are continuous functions En :
R3 → R, n ∈ Z such that, for fixed k ∈ R3, En(k), n ∈ Z are the eigenvalues of
Hper(k) counted according to multiplicity in increasing order and

En(k + γ∗) = En(k)

En(−k) = En(k)

for n ∈ Z, k ∈ R3, γ∗ ∈ Γ∗.

Proof. As Hper(k) has discrete spectrum accumulating at infinity, we can clearly
locally label the eigenvalues continuously. Since M∗ is compact, we choose a
finite cover of M∗ consisting of balls Bl, l = −L, . . . , L with continuous local
eigenvalue labellings E

(l)
n : Bl → R, n ∈ Z. We assume that this cover reflects the

symmetry properties of the Hamiltonian, i.e. B−l = −Bl (including l = 0) and

E
(−l)
n (−k) = E

(l)
n (k) and for each Bl with Bl ∩ ∂M∗ 6= ∅ there is Bl′ = Bl + γ∗

with E
(l′)
n (k + γ∗) = E

(l)
n (k) (this is possible because −Γ∗ = Γ∗, i.e. the reflection

and the lattice symmetry commute). Now we define En(k) := E
(0)
n (k) on B0 and

turn to extend the labelling. First we recall that every continuous labelling on an
interval in Bl is of the form En = E

(l)
n+N for some N ∈ Z. Therefore a continuous

labelling on an interval in Bl∩Bl′ satisfies En = E
(l)
n+N = E

(l′)
n+N ′ where we emphasize

that N − N ′ =: d(l, l′) depends only on l, l′ but not on the specific choice of the

13



2 Dirac-Bloch electrons

interval and that d(l, l′) = d(−l,−l′). If we want to define En(±k) for k ∈ M∗

we just take a sequence of balls (for notational simplicity B±l, l = −M, . . . ,M)
such that ±k ∈ B±M and Bl ∩ Bl+1 ∩ [k, k] 6= ∅ for l = −M, . . . ,M − 1 and

define En(±k) = E
(M)
n+N(k) where N :=

∑M−1
l=0 d(l + 1, l) =

∑M−1
l=0 d(−(l + 1),−l).

One can easily show that this definition is independent of the specific choice of
the sequence; obviously we have En(−k) = En(k). Clearly, for k′ − k small we
know that the sequence B±l, l = −M, . . . ,M can also be used to define En(k

′). In

this case En(k
′) = E

(M)
n+N(k′) for all k′ in a neighborhood of k and therefore En is

continuous in this neighborhood. As any continuous labelling on Bl is of the form
En = E

(l)
n+N we immediately have that

En(k) = E
(l)
n+N(l)(k), l = −L, . . . , L, k ∈ Bl

with constants N(l) satisfying N(−l) = N(l) as well as N(l) − N(l′) = d(l, l′).
Finally let k ∈ ∂M∗, w.l.o.g. k ∈ 1

2
γ∗1 + span(γ∗2, γ

∗
3). Let Blm , m = 1, . . . , n be a

sequence of balls such that 1
2
γ∗1 ∈ Bl0 , k ∈ Bln and Blm ∩Blm+1 ∩ [1

2
γ∗1, k] 6= ∅ and let

Bl′m = Blm − γ∗1, m = 1, . . . , n be its symmetric sequence. We have N(l0) = N(l′0)
because En(

1
2
γ∗1) = En(−1

2
γ∗1) and d(lm+1, lm) = d(l′m+1, l

′
m), hence

N(ln) = N(l0) +

n∑

m=1

d(lm, lm−1)

= N(l′n)

and therefore En(k) = En(k + γ∗1). Finally we extend En periodically to R3 and
note that this extension also preserves En(k) = En(−k).

We furthermore label the normalized eigenfunctions corresponding to En(k) as
ϕn(k) and note that En as well as ϕn need not be smooth functions of k if eigenvalue
crossings are present.

If the variation of VΓ is smaller than the spectral gap c2 of the free Hamiltonian,
the periodic Hamiltonian still has a spectral gap around 0 (see [CiCh]). In this
case the labeling of the eigenvalues causes no problems, and the band structure
is divided into two parts. Together with the preceding considerations, we get the
following schematic view on the band structure of the unperturbed Hamiltonian.

2.1.3 Regularity of the resolvent

We will also need the derivatives of the resolvent Rper(ζ, k) = (Hper(k) − ζ)−1

with respect to ζ ∈ C and k ∈ R3 in the following. Since we are going to use
the symbolic calculus as presented in the appendix, we have to treat unbounded
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k 

E(k) 

c² 

−c² 

Figure 2.1: band structure of the periodic Dirac Hamiltonian

operators on Hf as bounded operators from D equipped with its own norm to
Hf . For this reason, one has to be careful about the question in which sense to
take the derivatives and we will study this issue in this subsection in more detail.
In this context it is useful to introduce the embedding J : D → Hf as Jψ = ψ,
ψ ∈ D and we note that ‖J‖L(D,Hf ) ≤ 1. We start with the simple observation

that Hper(k)−ζ is invertible on the open subset {(k, ζ) : ζ /∈ σ(Hper(k))} ⊂ R3×C
and that the resolvent Rper(ζ, k) is, for each (k, ζ), a bounded operator from Hf

to D. From the explicit local expression for the resolvent as a von Neumann series
follows that its operator norm is locally (in k, ζ) bounded. We continue with the
simple equation

Rper(ζ, k
′) − Rper(ζ, k)

= Rper(ζ, k) ((k − k′) · α)JRper(ζ, k
′).

(which is shown as (2.7)). Together with the local boundedness of the resolvent it
shows that the resolvent is continuous and differentiable with respect to k in the

15



2 Dirac-Bloch electrons

norm of L(Hf ,D), and that its partial derivatives are given by

∂

∂kj
Rper(ζ, k) = −Rper(ζ, k)αjJRper(ζ, k), j = 1, 2, 3.

As well-known, the analogous argument shows that Rper(ζ, k) is holomorphic in ζ.
Inductively it follows that Rper(ζ, k) is smooth in k and that all its derivatives are
holomorphic in ζ with respect to the norm of L(Hf ,D). Clearly these assertions
also hold true for JRper(ζ, k), i.e. for the resolvent seen as an operator on Hf .
Furthermore, all the derivatives are τ -equivariant.

2.2 Adiabatic perturbation theory

In this section we want to apply space-adiabatic perturbation theory in order to
study the dynamics generated by the Hamiltonian (2.1). After stating our main
result in theorem 2.6 we explain in detail the three steps leading to this theorem:
In section 2.2.1 we construct the almost invariant subspace corresponding to an
isolated family {En(k)}n∈I (see definition 2.5). In section 2.2.2 we construct the
unitary mapping to the reference space. Finally in section 2.2.3 we compute the
effective Hamiltonian on the reference space.

For the unperturbed Hamiltonian Hper, the band subspaces given by the pro-

jectors Pn =
∫ ⊕

M∗ Pn(k), n ∈ N where Pn(k) = 〈ϕn(k), ·〉ϕn(k) are invariant under
the dynamics generated by Hper, i.e.

[exp(−iUHperU−1t), Pn] = 0 for all n ∈ N, t ∈ R.

If slowly varying external fields are present, we have to consider the Hamiltonian

Hε
Z := UHεU−1 = β + (−i∇y + k − A(ε∇τ

k)) · α + VΓ(y) + φ(ε∇τ
k)

and the band subspaces of Hper are in general no longer invariant, therefore we
apply space-adiabatic theory to construct almost invariant subspaces. A basic
requirement for applying this technique is the existence of a family of isolated
bands of the unperturbed Hamiltonian.

Definition 2.5 A family of bands {En(k)}n∈I of eigenvalue bands of Hper(k) with
I = [I−, I+]∩N is called isolated if {En(k)}n∈I ∩{Em(k)}m∈I = ∅ for all k ∈M∗.

Since lemma 2.2 states that each eigenvalue of Hper(0) must be at least twofold
degenerate, we can exclude the case |I| = 1, i.e. the case of a single isolated
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2.2 Adiabatic perturbation theory

non-degenerate energy band. Furthermore we note that from the definition of an
isolated band it follows that even

inf
k∈R3

dist(
⋃

n∈I

{En(k)},
⋃

m/∈I

{Em(k)}) > 0

because M∗ is compact and En is periodic.
For the following we fix an index set I corresponding to an isolated family

of bands. Furthermore we fix circles Λper(k) ⊂ C \ σ(Hper(k)), k ∈ R3 such
that, for each fixed k, Λper(k) is symmetric with respect to the real axis and
encloses {En(k)}n∈I . We also assume that Λper(k + γ∗) = Λper(k) as well as
Λper(−k) = Λper(k) for all γ∗ ∈ Γ∗ and that the radius of Λper(k) is bounded.
W.l.o.g. we choose Λper(k) piecewise constant in k and assume that there is an
open set Oper ⊂ C × R3 and a closed set Kper ⊂ C × R3 with Kper ∩ C × B̄(r, 0)
compact for any r such that

⋃

k∈R3

(Λper(k) × {k}) ⊂ Kper ⊂ Oper ⊂
⋃

k∈R3

(C \ σ(Hper(k)) × {k}) (2.11)

For simplicity we also assume that Oper and Kper are periodic in k, i.e. Oper +
(γ∗, 0) = Oper for γ∗ ∈ Γ∗ etc. If we introduce the spectral projector

Pper(k) : =

∫

Λper(k)

dζRper(ζ, k)

=
∑

n∈I

〈ϕn(k), ·〉ϕn(k)

corresponding to the family {En(k)}k∈I , it follows immediately by the gap condi-
tion that Pper(k) is smooth in k although, due to eigenvalue crossings, we cannot
assure that the ϕn itselves are smooth functions of k. However, it is shown in [Pa]
that there is a smooth isometry-valued map Uper : R3 → U(Hf ) such that

Uper(k)
∗Pper(k)Uper(k) = Pper(0) =: πr

and such that Uper is right-τ -equivariant, i.e.

Uper(k + γ∗) = Uper(k)τ (γ
∗).

If we choose χn := ϕn(0), n = 1, . . . , l as a basis of RanPper(0) =: Kf
∼= CN with

N = |I|, then
ψn(k) := Uper(k)χn
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2 Dirac-Bloch electrons

are smooth τ -equivariant functions, i.e. ψn(k − γ∗) = τ(γ∗)ψn(k), such that
Pper(k) =

∑
n∈I 〈ψn(k), ·〉ψn(k), a fact that will be essentially for the construction

of the unitary u0 in section 2.2.2. Note that in general ψn(k) need not be eigen-
functions of Hper(k) any more. To formulate our main theorem, we introduce the
reference Hilbert space

Hr := L2
τ=1

(R3,Hf) (2.12)

and the orthogonal decomposition Hf = Kf⊕K⊥
f . Kf is understood to be equipped

with the basis χν , ν = 1, . . . , N . An operatorA in L(Kf) can therefore be identified

with the matrix given
(
〈χν , Aχm〉Hf

)
ν,µ=1,...,N

, which we will do implicitly in the

following. We furthermore have

Hr
∼= L2

τ=1
(R3,Kf) ⊕ L2

τ=1
(R3,K⊥

f ) =: K ⊕K⊥ (2.13)

and for symbols a ∈ S1

τ≡1
(ε,L(Kf)) and b ∈ S1

τ≡1
(ε,L(K⊥

f )) we obviously have that

a ⊕ b ∈ S1

τ≡1
(ε,L(Hf)) and â⊕ b = â ⊕ b̂. We recall the definitions and results

about Weyl quantization for τ -equivariant symbols as given in the appendix and
state our main theorem.

Theorem 2.6 (Peierls substitution) Let {En}n∈I be an isolated family of
bands in the sense of Definition 2.5 and let Assumption (A1) be satisfied. Then
there exist

(i) an orthogonal projection Πε
Z ∈ L(Hτ ),

(ii) a unitary map Uε
Z ∈ L(Hτ ,Hr), and

(iii) a self-adjoint operator ĥ ∈ L2
τ=1

(R3,Kf)

such that
‖[exp(−iHε

Zt),Π
ε
Z ]‖ = O(ε∞(1 + |t|))

and
∥∥∥exp(−itĤt)Πε

Z − Uε∗
(
exp(−iĥt) ⊕ 0K⊥

)
Uε
∥∥∥ = O(ε∞(1 + |t|)). (2.14)

The effective Hamiltonian ĥ is the Weyl quantization of a semiclassical symbol
h ∈ S1

τ≡1
(ε,L(Kf)) whose asymptotic expansion in ε can be computed to any

order. Its principal symbol is given by the matrix elements

(h0)ν,µ (q, p) =
〈
ψν(q − A(p)), H0(q, p)ψµ(q −A(p))

〉
, ν, µ ∈ {1, . . . , N}

where H0 is defined in (2.16).
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2.2 Adiabatic perturbation theory

Remark 2.7 We use the boldface letter h for the symbol of the effective Hamilto-
nian in order to emphasize that h is matrix-valued and to be consistent with section
2.3, in particular with the notation introduced in (2.34) and (2.35).

If the family of bands consists of a single eigenvalue (which is in particular the
case if N = 2 and VΓ is inversion-symmetric), also the subprincipal symbol of h
can be computed easily.

Corollary 2.8 Let the family {En}n∈I consist of a single N-fold degenerate eigen-
value E∗(k). Then we have (in the notation of theorem 2.6)

h0(q, p) = (E∗(q̃) + φ(p))1Kf

and

(h1)ν,µ (q, p) = −FLor(q̃, p) · Aν,µ(q̃) −B(p) ·Mν,µ(q̃), (2.15)

where q̃ = q − A(p), ν, µ = 1, . . . , N . FLor, A and M are defined by

FLor(k, p) := −∇φ(p) + ∇E∗(k) × B(p),

Aν,µ(k) := i
〈
ψν(k),∇kψµ(k)

〉
Hf

and

Mν,µ(k) :=
i

2

〈
∇kψν(k),×(Hper(k) − E∗(k))∇kψµ(k)

〉
Hf

.

Theorem 2.6 is a consequence of the following propositions 2.9, 2.12 and the
proof at the end of subsection 2.2.3. The proof of corollary 2.8 is also given in
subsection 2.2.3.

To start, we state that Hε
Z is obviously the (restriction of the) Weyl quantization

of the τ -equivariant symbol H0 ∈ Swτ (ε,L(D,Hf)) given by

H0(q, p) = β + (−i∇y + q −A(p)) · α + VΓ(y) + φ(p) (2.16)

= Hper(q − A(p)) + φ(p)

with w(q, p) :=
√

1 + q2. We also note that all the theorems are valid for any
Hamiltonian which is the quantization of a semiclassical symbol H with principal
value H0. The following proofs follow the presentation in [Teu].
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2 Dirac-Bloch electrons

2.2.1 The almost invariant subspace

In this section we construct the almost invariant subspace.

Proposition 2.9 Let {En}n∈I be an isolated family of bands and let Assumption
(A1) be satisfied. Then there exists an orthogonal projection Πε

Z ∈ L(Hτ ) such
that

‖[exp(−iHε
Zt),Π

ε
Z ]‖ = O(ε∞(1 + |t|))

and ‖Πε
Z − π̂‖L(Hf ) = O(ε∞), where π̂ ∈ L(Hτ ) is the Weyl quantization of a

τ -equivariant semiclassical symbol

π ≍
∑

j≥0

εjπj in S1

τ (ε,L(Hf)),

with π0(q, p) = Pper(q − A(p)).

We first construct the formal power series
∑

j≥0 ε
jπj . Since formally the symbol

H takes values in L(D,Hf) where D and Hf are seen as different Hilbert spaces,
it is helpful to use the continuous injection J : D → Hf as defined in section 2.1.3
in the following lemma in order to distinguish between symbols taking values in
L(Hf ,D) and their extension to symbols with values in L(Hf). In the statement
of proposition 2.9 however, we can drop the lenghty notation as explained in the
proof.

Lemma 2.10 Let w(q, p) =
√

1 + q2. Then there is a unique formal power series
of symbols

π =
∑

j≥0

εjπj in Mw
τ (ε,L(Hf ,D)),

whose principal symbol π0 satisfies π0(q, p) = Pper(q − A(p)) such that

(i) Jπ♯Jπ = Jπ,

(ii) (Jπ)∗ = Jπ,

(iii) H♯π = (H♯π)∗.

Proof. First we want to prove the uniqueness of a π with the desired properties.
Obviously π0(q, p) = Pper(q − A(p)) is the only symbol satisfying (i)-(iii) up to
order O(ε). Now we proceed by induction and suppose we have found π(n) =∑n

j=0 ε
jπj satisfying (i)-(iii) up to order O(εn+1), in particular with

π(n)♯π(n) − π(n) =: εn+1Gn+1 + O(εn+2).
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2.2 Adiabatic perturbation theory

Then πn+1 must satisfy

πn+1π0 + π0πn+1 − πn+1 = −Gn+1.

Now, since

π0Gn+1(1 − π0) =
(
ε−(n+1)π0

(
π(n)♯π(n) − π(n)

)
(1 − π0)

)
0

=
(
ε−(n+1)π(n)♯

(
π(n)♯π(n) − π(n)

)
♯(1 − π(n))

)
0

= −
(
(π(n)♯π(n) − π(n))Gn+1

)
0

= 0

and vice versa, it follows that the diagonal part of πn+1

πDn+1 := π0πn+1π0 + (1 − π0)πn+1(1 − π0)

has to be Gn+1 whereas we don’t have any constraint on the off-diagonal part. It
remains now to show that π0πn+1(1 − π0) is uniquely determined by (iii) since
(1 − π0)πn+1π0 then follows with (ii). To this end, with ω(n) := π(n) + εn+1Gn+1

we define

[H,ω(n)]♯ =: εn+1Fn+1 + O(εn+2)

and conclude that the off-diagonal part of πn+1, i.e.

πODn+1 = π0πn+1(1 − π0) + (1 − π0)πn+1π0

must satisfy

[H0, π
OD
n+1] = −Fn+1.

In particular, one has

H0π0πn+1(1 − π0) − π0πn+1(1 − π0)H0 = −π0Fn+1(1 − π0)

determining πOD1
n+1 := π0πn+1(1 − π0). Now if there were two solutions, then there

must be a πOD1
n+1 satisfying

[H0, π
OD1
n+1 ] = 0

⇐⇒ [H0 −E, πOD1
n+1 ] = 0

⇐⇒ πOD1
n+1 = (H0 − E) π0π

OD1
n+1 (1 − π0) (H0 −E)−1

with any scalar-valued symbol E such that H0 −E is invertible on (1 − π0)Hf . If
E1(k) and EN (k) are the lowest resp. highest energy band in our isolated family,
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then we choose E(q, p) := 1
2
(EN(q − A(p)) + E1(q − A(p))). It follows for fixed

z ∈ R6 that

∥∥πOD1
n+1 (z)

∥∥
≤ ‖(H0(z) − E(z)) π0(z)‖

∥∥πOD1
n+1 (z)

∥∥ ∥∥(1 − π0(z)) (H0(z) − E(z))−1
∥∥

= : C
∥∥πOD1

n+1 (z)
∥∥ .

Now by construction it follows that

‖(H0(z) −E(z)) π0(z)‖ =
1

2
(EN (q −A(p)) − E1(q − A(p)))

whereas

∥∥(1 − π0(z)) (H0(z) − E(z))−1
∥∥ <

(
1

2
(EN(q − A(p)) −E1(q −A(p)))

)−1

by the gap condition, i.e. C < 1 and πOD1
n+1 (z) = 0.

Now we turn to the construction of π. To this end, let Λper(k) be the circles
enclosing {En(k)}n∈I as defined at the beginning of section 2.2.

First we construct a Moyal resolvent for the symbol H − ζ, ζ ∈ C, i.e. a
formal power series R(ζ) with coefficients Rj(ζ) ∈ C∞(Oζ ,L(Hf ,D)) where Oζ :=
{(q, p) ∈ R6 : (ζ − φ(p), q − A(p)) ∈ Oper}such that

(H − ζ)♯
∑

j≥0

εjRj(ζ) = 1Hf
and

∑

j≥0

εjRj(ζ)♯(H − ζ) = 1D (2.17)

for all z ∈ Oζ . Note that although
∑

j≥0 ε
jRj(ζ) is in a strict sense not a formal

power series of symbols as it is not defined on the whole R6 but just on the
open subset Oζ, the Weyl product as a local operation is well-defined. If one
regards the following expressions and equalities as functions of both z and ζ, they
are understood as defined (resp. as valid) on the open subset O := {(ζ, q, p) :
(ζ − φ(p), q − A(p)) ∈ Oper} ⊂ C × R6.

Clearly we must have

R0(ζ) = (H0 − ζ)−1 on Oζ

with R0(ζ) ∈ L(Hf ,D) on Oζ. Since R0(ζ, q, p) = Rper(ζ−φ(p), q−A(p)), it follows
from section 2.1.3 that R0(ζ) is smooth and furthermore that its derivatives are in
L(Hf ,D) and depend holomorphically on ζ. Now we can construct Rj(ζ), j ≥ 1
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2.2 Adiabatic perturbation theory

inductively: Suppose R(n)(ζ) =
∑

j≤n ε
jRj(ζ) satisfies the first equation in (2.17)

up to order O(εn+1), i.e.

(H − ζ)♯R(n)(ζ) = 1Hf
+ εn+1En+1(ζ) + O(εn+2) (2.18)

with En+1(ζ) ∈ C∞(Oζ,L(Hf)). If we choose

Rn+1(ζ) := −R0(ζ)En+1(ζ)

we have immediately that Rn+1(ζ) ∈ C∞(Oζ ,L(Hf ,D)) and that R(n+1)(ζ) :=
R(n)(ζ) + εn+1Rn+1(ζ) satisfies the first equality in (2.17) up to order O(εn+2). In

an analogous way one can construct a formal power series R̃ which satisfies the
second equality in (2.17). Using the associativity of the Moyal product we have

R̃(ζ) = R̃(ζ)♯(H − ζ)♯R(ζ) = R(ζ) for (ζ, z) ∈ O,

i.e. both symbols agree. From (2.17) it also follows that R satisfies the resolvent
equation

R(ζ) − R(ζ ′) = (ζ − ζ ′)R(ζ)♯JR(ζ ′) for (ζ, z) ∈ O.

Furthermore we have for all ϕ ∈ Hf , ψ ∈ D
〈
ϕ, (JR(ζ))∗♯(H − ζ̄)ψ

〉
Hf

= 〈(H − ζ)♯R(ζ)ϕ, ψ〉Hf
= 〈ϕ, ψ〉Hf

,

i.e. (JR(ζ))∗ ♯(H − ζ̄) = J . Moyal-multiplying from right with R(ζ̄) leads to

(JR(ζ))∗ = JR(ζ̄) for (ζ, z) ∈ O.

Next we define the formal power series π through

πj(z) :=
i

2π

∫

Λ(z)

dζRj(ζ)(z), z = (q, p) ∈ R6

with Λ(z) := Λper(q−A(p))+φ(p) for z = (q, p) ∈ R6. Obviously, πj is well-defined
and takes values in L(Hf ,D). Furthermore we know that Rj(ζ) and its derivatives
with respect to z depend holomorphically on ζ , therefore

πj(z) =
i

2π

∫

Λ(z0)

dζRj(ζ)(z), z ∈ U(z0)
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2 Dirac-Bloch electrons

for a neighborhood U(z0) of z0. Since Λz0 is compact, πj is smooth with

∂απj(z) =
i

2π

∫

Λ(z)

dζ∂αz Rj(ζ)(z), z ∈ R6, α ∈ N3 (2.19)

where we changed the domain of integration back to Λ(z). Now we can interchange
integration and Moyal-multiplying to get

(Jπ♯Jπ) =

(
i

2π

)2 ∫

Λ

dζ

∫

Λ′

dζ ′JR(ζ)♯JR(ζ ′)

=

(
i

2π

)2 ∫

Λ

dζ

∫

Λ′

dζ ′J (R(ζ) − R(ζ ′)) (ζ − ζ ′)
−1

=
i

2π

∫

Λ

dζJR(ζ) = Jπ,

where Λ stands for Λ(z) and Λ′ = Λ′(z) is a slightly larger circle. Furthermore we
have (Jπ)∗ = (Jπ) due to (JR(ζ))∗ = (JR(ζ̄)) and symmetry of Λ(z) with respect
to the real axis. For the same reason we have

(H♯π)∗ =
i

2π

∫

Λ

dζ̄ (H♯R(ζ))∗

=
i

2π

∫

Λ

dζ̄
(
1Hf

+ ζJR(ζ)
)∗

=
i

2π

∫

Λ

dζ̄
(
1Hf

+ ζ̄JR(ζ̄)
)

=
i

2π

∫

Λ

dζH♯R(ζ)

= H♯π.

We are left to show that π ∈ Mw
τ (ε,L(Hf ,D)). The τ -equivariance of πj follows

directly from the fact that R(ζ) is τ -equivariant and from the Γ∗-periodicity of Λ.
Furthermore for all j ∈ N, α ∈ N3 and z ∈ R6 we have

‖∂απj(z)‖L(Hf ,D) ≤ 2πCr sup
ζ∈Λz

‖∂αz Rj(ζ, z)‖L(Hf ,D) . (2.20)

We turn to estimate the right hand side by induction w.r.t. j ∈ N. Using the
τ -equivariance of ∂αzR0(ζ) we have (for z = (q, p) and [z] := (q − γ∗, p) such that
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2.2 Adiabatic perturbation theory

γ∗ ∈ Γ∗, q − γ∗ ∈M∗)

sup
ζ∈Λ(z)

‖∂αzR0(ζ, z)‖L(Hf ,D)

= sup
ζ∈Λ([z])

∥∥τ (γ∗)∂αzR0(ζ, [z])τ
−1(γ∗)

∥∥
L(Hf ,D)

≤ sup
ζ∈Λ([z])

‖τ(γ∗)‖L(D) ‖∂αzR0(ζ, [z])‖L(Hf ,D)

∥∥τ−1(γ∗)
∥∥
L(Hf )

≤ sup
ζ∈Λ([z])

w(γ∗, p) ‖∂αzR0(ζ, [z])‖L(Hf ,D)

≤
√

2w(z) sup
z∈M∗×R3

sup
ζ∈Λ(z)

‖∂αz R0(ζ, z)‖L(Hf ,D) .

Here we used that w(x) ≤
√

2w(y−x)w(y) for x, y ∈ R6 and that τ (γ∗) is unitary
as well as ‖τ (γ∗)‖L(D) ≤ 〈γ∗〉 as follows by direct computation. Using that R0(ζ, z)
is the composition of the functions (ζ, q, p) 7→ (ζ − φ(p), q − A(p)) and (ζ, k) 7→
(Hper(k) − ζ)−1 we have furthermore

sup
z∈M∗×R3

sup
ζ∈Λ(z)

‖∂αz R0(ζ, (q, p))‖L(Hf )

≤ C max
|β|≤|α|

max
n≤|α|

sup
k∈M∗+B(‖A‖

∞
)

sup
ζ∈Λper(k)

∥∥∥∂βk ∂nζ (Hper(k) − ζ)−1
∥∥∥
L(Hf ,D)

× max
|β|≤|α|

∥∥∂βpA
∥∥
∞

max
|β|≤|α|

∥∥∂βp φ
∥∥
∞

where C is some constant and, as usual, B(r) denotes a unit ball of radius r around
the origin and ‖f‖∞ := supx∈R3 |f(x)| for any function f : R3 → R. It follows that

sup
z∈R6

sup
ζ∈Λ(z)

w−1(z) ‖∂αzRj(ζ, z)‖L(Hf ,D) <∞ for all α ∈ N3 (2.21)

for j = 0. We proceed by induction and assume that (2.21) holds for j ≤ n.
Then En+1 as defined in 2.18 satisfies

sup
z∈R6

sup
ζ∈Λ(z)

w−2(z) ‖∂αz E(ζ, z)‖L(Hf ) <∞ for all α ∈ N3

by induction hypothesis and because of H ∈ Swτ (ε,L(D,Hf)). On the other hand
En+1 is τ -equivariant and τ is unitary, therefore ‖∂αz E(ζ, z)‖L(Hf ) is periodic in q
and we even have

sup
z∈R6

sup
ζ∈Λ(z)

‖∂αz E(ζ, z)‖L(Hf ) <∞ for all α ∈ N3.

Now (2.21) follows immediately for Rn+1 = −R0En+1. We conclude from (2.20)
that π ∈Mw

τ (ε,L(Hf ,D)).
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Remark 2.11 For bounded self-adjoint symbols H and π we would have

H♯π − (H♯π)∗ = H♯π − π♯H

i.e. the expression H♯π− (H♯π)∗ in lemma 2.10 would be just the Moyal-commuta
tor of H and π. However,in our case, the first expression is easier to handle since
formally π♯H is in our case a symbol taking values in L(D) but not in L(Hf). For
the following consideration, our expression will serve us as well.

Proof. (of proposition 2.9) From the projector π ∈ Mw
τ (ε,L(Hf ,D)) con-

structed in the previous lemma one obtains by resummation a semiclassical symbol
in Swτ (ε,L(Hf ,D)) which we also denote by π, i.e.

π ≍
∑

j≥0

εjπj in Swτ (ε,L(Hf ,D)).

From the definition and using τ -equivariance, it follows that

Jπ ≍
∑

j≥0

εjJπj in S1

τ (ε,L(Hf)).

The quantization of π resp. Jπ requires some care. Clearly, the quantization
W (Jπ) : S ′(R3,Hf) → S ′(R3,Hf) of Jπ restricts to a bounded operator Ĵπ ∈
L(Hτ ) which satisfies

(
Ĵπ
)2

− Jπ = O(ε∞) and Ĵπ
∗

= Ĵπ (2.22)

as follows from lemma 2.10. Next, we want to show that W (π) (Hτ ) ⊂ L2
τ (R3,D).

Note that this is nontrivial since

L2(R3,D) $ S ′(R3,D) ∩ L2(R3,Hf).

Since H♯π ∈ S1

τ (ε,L(Hf)) we know that W(H♯π) = WHWπ restricts to a

bounded operator Ĥ♯π in L(Hτ ). Now suppose there is a ψ0 ∈ Hτ with ϕ0 =
Wπ(ψ0) ∈ Hτ \ L2

τ (R
3,D). Then clearly we have WHϕ0 ∈ Hτ and Hε

Z would
have a nontrivial symmetric extension (with domain spanned by L2

τ (R
3,D) and

ϕ0) which is a contradiction to the self-adjointness of Hε
Z . Furthermore we now

know that
(Hε

Z − i)−1 (W(H − i)Wπ)ϕ = Wπϕ, ϕ ∈ Hτ .

therefore Wπ restricts to a bounded operator π̂ ∈ L(Hτ , L
2
τ (R

3,D)). Clearly we

have Ĵπ = Ĵ π̂ since W (Jπ) = WJWπ and therefore we can drop the distinction

between π and Jπ resp. π̂ and Ĵπ from now on.
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2.2 Adiabatic perturbation theory

We turn to determine the ”commutator” (see remark 2.11) of Ĥ and π̂. As we
know that H♯π ∈ Sw

2

τ (ε,L(Hf)) ⊂ S1

τ (ε,L(Hf)) and also (H♯π)∗ ∈ S1

τ (ε,L(Hf))
it follows that ∥∥∥Ĥπ̂ −

(
Ĥπ̂
)∗∥∥∥

L(Hf )
= O(ε∞).

Next we construct a true projector which is O(ε∞)-close to π̂. We know from
(2.22) that π̂ is self-adjoint and its spectrum is concentrated around 0 and 1 for
ε small enough, let’s say in intervals I0 and I1 whose length is O(ε∞) and in
particular smaller than 1

2
for ε small enough. Therefore

Πε
Z :=

i

2π

∫

|ζ−1|= 1
2

dζ(π̂ − ζ)−1

is a true projector with

‖π̂ − Πε
Z‖ =

∫

I0

λE(dλ) +

∫

I1

(λ− 1)E(dλ)

= O(ε∞)

where E(·) denotes the projection valued measure of Jπ̂. Finally we have

exp(−iHε
Zt)Π

ε
Z exp(iHε

Zt) − Πε
Z

= exp(−iĤt)π̂ exp(iĤt) − π̂ + O(ε∞)

=

∫ t

0

ds

(
d

ds

(
exp(−iĤs)

)
π̂ exp(iĤs)

)

+

∫ t

0

ds

(
exp(−iĤs) d

ds

(
exp(−iĤs)π̂

)∗)
+ O(ε∞)

= −i
∫ t

0

ds
(
exp(−iĤs)

)
Ĥπ̂ exp(iĤs)

+i

∫ t

0

ds
(
exp(−iĤs)

(
exp(−iĤs)Ĥπ̂

)∗)
+ O(ε∞)

= −i
∫ t

0

ds exp(−iĤs)
(
Ĥπ̂ −

(
Ĥπ̂
)∗)

exp(iĤs) + O(ε∞)

= O(ε∞(1 + |t|))

where we used that (Jπ̂)∗ = Jπ̂ and the fact that taking adjoints commutes with
the derivative.
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2 Dirac-Bloch electrons

2.2.2 Mapping to the reference space

After determining the almost invariant subspace, we want to describe the dynamics
inside the subspace in a simple way. As shown in [Pa] there is a smooth isometry-
valued map Uper : R3 → U(Hf ) such that

Uper(k)
∗Pper(k)Uper(k) = Pper(0) =: πr

such that Uper is right-τ -equivariant, i.e.

Uper(k + γ∗) = Uper(k)τ (γ
∗).

Clearly the dynamics of the unperturbed problem inside PperHτ can be described
in K by the Hamiltonian

∫ ⊕

R3

dkhper(k) ⊕ 0K⊥

f
:=

∫ ⊕

R3

dkUper(k)
∗Hper(k)Pper(k)Uper(k)

where hper(k) ∈ L(Kf), i.e. hper(k) is for fixed k a N×N -matrix. In the perturbed
case, we have an analogous result up to errors of order O(ε∞). One starts with
the observation that u0 : R6 → U(Hf ) given by

u0(q, p) = Uper(q − A(p)) (2.23)

is in S1

τ ,1(L(Hf )) and intertwines π and πr (in the Moyal sense) up to order ε.

Proposition 2.12 Let {En}n∈I be an isolated family of bands and let Assumption
(A1) be satisfied. Then there exists a unitary operator U ε : Hτ → Hr such that

UεΠε
ZU

ε∗ = π̂r =: Πr

and Uε − û = O(ε∞), where

u ≍
∑

j≥0

εjuj in S1(ε,L(Hf).

Furthermore u is right τ -covariant and its principal symbol is given in (2.23).

As before we split the proof in two pieces and first construct the symbol u.

Lemma 2.13 There is a formal symbol u =
∑

j≥0 ε
juj ∈ M1(ε,L(Hf)) which is

right τ -covariant and whose principal symbol u0 is given in (2.23) such that
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2.2 Adiabatic perturbation theory

(i) u∗♯u = 1 and u♯u∗ = 1,

(ii) u♯π♯u∗ = πr.

Proof. We construct u by induction. Clearly u0 satisfies the conditions (i) and (ii)
up to order ε and is right τ -covariant. Now suppose we have found uj, 0 ≤ j ≤ n
such that each uj ∈ S1(L(Hf )) is right τ -covariant and satisfies (i) and (ii) up to
order εn+1. To determine un+1 we make the ansatz

un+1 =: (an+1 + bn+1)u0, (2.24)

with an+1 hermitian and bn+1 anti-hermitian. For (i), we have by induction as-
sumption

u(n)♯u(n)∗ − 1 = εn+1An+1 + O(εn+2)

u(n)∗♯u(n) − 1 = εn+1Ãn+1 + O(εn+2).

This gives the conditions

u0u
∗
n+1 + un+1u

∗
0 = −An+1, (2.25)

u∗n+1u0 + u∗0un+1 = −Ãn+1.

By multiplying the first equation from left with u∗0 and the second equation with
u∗0 from the right we see that they are equivalent, because

ε−(n+1)u(n)∗♯
(
u(n)♯u(n)∗ − 1

)
= ε−(n+1)(u(n)∗♯u(n) − 1)♯u(n)∗

and the principal symbol of the l.h.s. is u∗0An+1 whereas the principal symbol of
the r.h.s. is An+1u

∗
0. If we insert (2.24) into (2.25) we find that an+1 = −1

2
An+1

since An+1 is hermitian (because u(n)♯u(n)∗−1 is hermitian) whereas no constraint
is put on bn+1, which is now determined in order to satisfy (ii). If we define
ω(n) := u(n) + εn+1an+1u0 then we have

ω(n)♯π♯ω(n)∗ − πr = εn+1Bn+1 + O(εn+2)

and therefore
bn+1u0π0u

∗
0 + u0πu

∗
0b

∗
n+1 = −Bn+1. (2.26)

The left hand side is just [bn+1, πr] and a solution to (2.26) is given by

bn+1 = [πr, Bn+1],
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2 Dirac-Bloch electrons

provided that the so-defined bn+1 is indeed anti-hermitian. This is the case if Bn+1

is hermitian and off-diagonal with respect to πr. The Hermiticity of Bn+1 is clear
from its definition. Furthermore we have

(1 − πr)Bn+1(1 − πr)

= ε−(n+1)(1 − πr)♯
(
ω(n)♯π♯ω(n)∗ − πr

)
♯(1 − πr) + O(ε)

= ε−(n+1)(1 − πr)♯ω
(n)♯π♯ω(n)∗♯(1 − πr) + O(ε).

Since we know that

(1 − πr) = ω(n)♯(1 − π)♯ω(n)∗ + εn+1Bn+1 + O(εn+2)

and ω(n)♯ω(n)∗ = 1 + O(εn+2) this leads to

(1 − πr)Bn+1(1 − πr)

= ε−(n+1)ε2(n+1)Bn+1(ω
(n)♯π♯ω(n)∗)Bn+1 + O(ε)

= 0 + O(ε).

Finally we have

Bn+1 = ε−(n+1)
(
ω(n)♯(1 − π)♯ω(n)∗ − (1 − πr)

)
+ O(ε)

because ω(n)♯ω(n)∗ = 1 + O(εn+2) and therefore an analogous argument shows

πrBn+1πr = 0 + O(ε).

Finally u ∈M1(ε,L(Hf)) is clear from construction and the fact that it is right co-
variant follows from the fact that An+1, Bn+1 are periodic and u0 is right covariant.

Now we give the proof .
Proof. (of proposition 2.12) By resummation we get a (right τ -covariant) sym-
bol u ∈ S1(ε,L(Hf)). Its quantization yields a bounded operator û ∈ L(Hτ ,Hr)
that satisfies

(i) ûû∗ = 1Hr
+ O(ε∞) and û∗û = 1Hτ

+ O(ε∞)
(ii) ûΠε

Z û
∗ = Πr + O(ε∞).

Now one can first modify û to get a unitary operator. One observes that
û∗û ∈ L(Hτ ) is a positive, self-adjoint operator that is O(ε∞)-close to the identity.
Therefore

Ũε := û(û∗û)−
1
2
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2.2 Adiabatic perturbation theory

defines a unitary operator which is O(ε∞)-close to û. Finally one defines W ε ∈
L(Hr) by the so-called Nagy formula as

W ε = (1Hr
− (ŨεΠε

ZŨ
ε∗ − Πr)

2)−
1
2 (ΠrŨ

εΠε
ZŨ

ε∗ + (1Hr
− Πr)(1Hr

− ŨεΠε
ZŨ

ε∗)).

W ε is a unitary operator which is O(ε∞)-close to the identity and

W εŨεΠε
ZŨ

ε∗W ε∗ = Πr,

i.e. Uε := W εŨε is a unitary operator with the desired properties of proposition
2.12.

2.2.3 The effective Hamiltonian

Now we proceed with the final step in space-adiabatic perturbation theory, namely
to unitarily transform the Hamiltonian onto the reference space. While formally
the definition h = u♯H♯u∗ seems straightforward, we project H on the relevant
subspace before rotating it to the reference space since H ∈ Sw(ε,L(D,Hf)) and
u∗ ∈ S1(ε,L(Hf)) are formally not compatible. For the computation it will turn
out useful to introduce the kinetic momentum q̃ : R6 → R3 by

q̃(q, p) = q − A(p).

Note that with this notation we have u0 = Uper ◦ q̃, π0 = Pper ◦ q̃ etc. It is also
useful to define ∇f for any function f : Rn → Rm as the Jacobian matrix, i.e.

(∇f)i,j = ∂jfi.

Note that with that convention, the chain rule becomes ∇(f ◦ g) = ((∇f) ◦ g)∇g
and the gradient of a scalar-valued function is seen as a row vector. We also
emphasize, that for vector operations as the scalar or the cross products we always
write operations, i.e. · and ×, explicitly, whereas for matrix multiplication we just
put matrices behind each other.
Proof. (of theorem 2.6) We define h ∈M1

τ≡1
(ε,L(Kf)) by

h ⊕ 0K⊥

f
:= u♯H♯π♯u∗ ∈M1

τ≡1
(ε,L(Hf)).

First note that h is well-defined by construction because

u♯H♯π♯u∗ = πr (u♯H♯π♯u∗) πr.
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2 Dirac-Bloch electrons

Since H♯π and u are in M1(ε,L(Hf)) and τ -covariant resp. right covariant it

follows that h ∈ M1

τ≡1
(ε,L(Kf)). In particular its quantization ĥ is in L(K).

Clearly [ĥ⊕ 0K⊥,Πr] = 0 because Πr = 1K ⊕ 0K⊥. Furthermore we have

exp(−iĤt)Πε
Z − Uε

(
exp(−iĥt) ⊕ 0K⊥

)
Uε∗

=

∫ t

0

ds
d

ds

(
exp(−iĤs)π̂U ε

(
exp(−iĥ(t− s)) ⊕ 0K⊥

))
Uε∗ + O(ε∞)

= −i
∫ t

0

ds exp(−iĤs)
(
Ĥπ̂U ε − Uε

(
ĥ ⊕ 0K⊥

))(
exp(−iĥs) ⊕ 0K⊥

)
Uε∗

+O(ε∞).

On the other hand H♯π♯u = u♯
(
h ⊕ 0K⊥

f

)
by construction and Ĥπ̂ = Ĥ♯π there-

fore (
Ĥπ̂U ε − Uε

(
ĥ⊕ 0K⊥

))
= O(ε∞)

and (2.14) holds. Theorem 2.6 now follows by observing that

h0 ⊕ 0K⊥

f
:= u0H0π0u

∗
0.

In the case of a single eigenvalue, i.e. En(k) = E∗(k), k ∈ M∗, n = 1, . . . , N ,
we also compute the subprincipal symbol h1. Note that this case typically occurs
if VΓ is inversion-symmetric and the family {En}n∈I is two-fold degenerate, i.e.
N = 2.
Proof. (of corollary 2.8) By Moyal-multiplying the defining equation of h from
left with u∗ we have

u∗♯
(
h⊕ 0K⊥

f

)
= H♯π♯u∗.

Furthermore, we know that π♯u∗ = u∗πr. Note that the distinction between sym-
bols with values in L(Hf ,D) and their extensions to L(Hf) may be neglected
because the derivatives in L(Hf) are just the extensions of the corresponding
derivatives in L(Hf ,D). Therefore h1 satisfies (with H1 = 0)

h1 ⊕ 0K⊥

f
(2.27)

= u0

(
−u∗1

(
h0 ⊕ 0K⊥

f

)
+
i

2
{u0,h0 ⊕ 0K⊥

f
} +H0u

∗
1πr −

i

2
{H0, u

∗
0πr}

)

= −u0u
∗
1Ẽ∗πr +

i

2
u0{u∗0, Ẽ∗}πr + u0H0u

∗
1πr −

i

2
{H0, u

∗
0πr}
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2.2 Adiabatic perturbation theory

with Ẽ∗(q, p) = E∗ ◦ q̃(q, p) + φ(p). Obviously we can multiply the equation from
right and left with πr without changing the left hand side, therefore

h1 ⊕ 0K⊥

f
=

i

2
πru0

(
{u∗0, Ẽ∗πr} − {H0, u

∗
0πr}

)

= − i

2
πru0{H0 − Ẽ∗1Hf

, u∗0}πr − iπru0{Ẽ∗1Hf
, u∗0}πr

because the two other terms cancel each other due to πru0H0 = Ẽ∗πru0.

Now we turn to compute h1 in terms of eigenfunctions of the unperturbed Hamil-
tonian. We have

{H0 − Ẽ∗1Hf
, u∗0}

= ∇q ((Hper − E∗) ◦ q̃) · ∇p

(
U∗

per ◦ q̃
)
−∇p ((Hper − E∗) ◦ q̃) · ∇q

(
U∗

per ◦ q̃
)

= (∇ (Hper − E∗) ◦ q̃)
(
∇A− (∇A)⊤

) (
∇⊤U∗

per ◦ q̃
)

where ∇A is the Jacobian of A. One has furthermore
(
∇A− (∇A)⊤

)
x = B×x for

any x ∈ R3 where B := ∇×A is the magnetic field and ∇U∗
per =

∑
j≤N

〈
χj , ·

〉
∇ψj,

therefore the ν, µ element of the first term in (2.27) contributes to (2.15) with

− i

2

〈
ψn ◦ k̃, (∇(Hper −E∗) ◦ q̃) · B × (∇kψm ◦ q̃)

〉

= − i

2
B · 〈∇kψn,×(Hper − E∗)∇kψm〉 ◦ q̃

where we used the vector equality a · (b× c) = −b · (a× c) (note that B is scalar-
valued) and shifted the gradient on Hper − E∗ to ψn by observing that

0 = ∇〈ψn, (Hper − E∗)ϕ〉
= 〈∇ψn, (Hper −E∗)ϕ〉 + 〈ψn,∇(Hper − E∗)ϕ〉

for all ϕ ∈ D. The second term in (2.27) can be manipulated analogously and
contributes to (2.15) with

i (∇φ− (∇E∗ ◦ q̃) ×B) · 〈ψn,∇kψm〉 ◦ q̃.
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2 Dirac-Bloch electrons

2.3 Semiclassical limit

All the results of the last sections are purely quantum mechanical, symbols were
used only as a tool. In this section, we show how to approximate the quantum
mechanical time evolution of observables which are quantizations of symbols by a
classical Hamiltonian system on an appropriate phase space. As a start, we sketch
the idea. The time evolution under the Hamiltonian ĥ of an observable â with
a ∈S(L(Kf)) in the reference space, i.e. the quantity

â(t) = exp(iĥt/ε)â exp(−iĥt/ε)

satisfies the differential equation

d

dt
â(t) =

i

ε
(ĥâ(t) − â(t)ĥ). (2.28)

Note that since we want to consider time periods of order O(ε−1), we have chosen

exp(iĥt/ε) instead of exp(iĥt) as explained in the introduction of this chapter.
Formally the time derivative in (2.28) is expected to commute with quantization,
therefore we can translate (2.28) on the level of symbols and obtain the differential
equation

d

dt
a(t) =

i

ε
(h♯a(t) − a(t)♯h). (2.29)

If a and h are multiples of the identity, the right hand side equals {h, a} up to
order O(ε2), therefore (2.29) is (up to order O(ε2)) solved by a(t) = a ◦Φt, where
Φt is the flow generated by the scalar Hamiltonian h.

Dealing with matrix-valued symbols changes the picture slightly. Most im-
portant, due to the prefactor i

ε
on the right hand side of (2.29), we must have

[h0, a(t)] = 0 ∀t ∈ R which is in general only satisfied if h0 is a scalar multiple of
the identity, i.e. in the case of a single (maybe degenerate) eigenvalue band. Since
lemma 2.2 tells us that an isolated family cannot consist of a single non-degenerate
band, we restrict ourselves to the case of a space-inversion-symmetric potential VΓ

and N = 2. Then corollary 2.3 ensures us that each eigenvalue is indeed globally
two-fold degenerate and gives also explicit information about the corresponding
pair of eigenfunctions. Second, the right hand side of (2.29) contains an addi-
tional term [h1, a(t)]. Since symbols a and b with self-adjoint values in L(Kf)
with Kf

∼= C2 can always be written in the form a = a01Kf
+ a ·σKf

with a0 ∈ R,
a ∈ R3, σKf

defined via the isomorphy L(Kf) ∼= L(C2), one obtains

[a,b] = i(a× b) · σKf
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2.3 Semiclassical limit

and uses this relation to go to scalar equations.
The strategy in this section is the following: In subsection 2.3.1 we perform

the semiclassical limit in the reference space. To this end, we introduce, following
[Teu], a correspondence between L(C2)-valued symbols on the phase space R6 and
scalar-valued symbols on the extended phase space R6 × S2 where S2 is the unit
sphere in R3. The points on S2 can be interpreted as the spin of the particle.
We show that an appropriate ε-dependent flow Φt

ε on R6 × S2 generates a time
evolution of symbols that satisfies (2.29) and (after quantization) (2.28) up to order
O(ε). If a is a multiple of the identity, we can improve the error to order O(ε2). In
subsection 2.3.2 we show how to translate the results in the reference space back
to the Zak representation. The effective equations of motion in Zak representation
that approximate the quantum mechanical time evolution up to order O(ε2) are

˙̃q = −∇p(φ(p) − εB(p) · M(q̃, n)) + εṗ×B(p) (2.30)

ṗ = ∇eq(E∗(q̃) − εB(Π) ·M(q̃, n)) + εΩA(q̃, n) × ˙̃q + ε (∇nA(q̃, n)) · ṅ
ṅ = n× Ω̃(q̃, p)

on the phase space R6 × S2 where S2 is the unit sphere in R3. The terms M and
A are given in corollary 2.8 and definition 2.16 whereas ΩA(k, n) := ∇k ×A(k, n)

and Ω̃ is given in (2.36). If we define Φ̃t,ε
Z to be the flow of (2.30) and

Φt,ε
Z (q, p, n) = Φ̃t,ε

Z (q −A(p), p, n) + (A ◦ Φ̃t,ε
Z,p(q − A(p)), 0, 0), (2.31)

we have the following theorem.

Theorem 2.14 Let VΓ be inversion-symmetric and |I| = 2, i.e. E is an isolated
two-fold degenerate Bloch band, and Φt,ε

Z be defined as in (2.31). Let furthermore
b ∈ C∞

b (R6 × S2,C) and

bε(t) := W(2

∫

S2

dλ(n)b ◦ Φt,ε
Z (·, ·, n)∆̃(·, ·, n))

with ∆̃ : R6 × S2 → L(Hf) defined in (2.47) and bε := bε(0). Then we have

exp(iHε
Zt/ε)b̂ exp(−iHε

Zt/ε) − b̂0(t) = O(ε)

uniformly for any finite time interval, and, if b is independent of n,

exp(iHε
Zt/ε)b̂ exp(−iHε

Zt/ε) − b̂ε(t) = O(ε2).
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2 Dirac-Bloch electrons

If we restrict our considerations to O(ε) and scalar-valued b (i.e. b independent
of n), then we can even translate the result of theorem 2.14 back to the physical
space. In [Teu] it is shown that the Zak transform is for a certain class of symbols
equivalent to exchange the arguments q and p. If Φ̃t is the flow of the equations

q̇ = ∇E∗(π) (2.32)

π̇ = −∇φ(q)

and

Φt(q, p) = Φ̃t(q, p− A(q)) + (0, A ◦ Φ̃t
q(q, q −A(p)), 0), (2.33)

we have the following corollary.

Corollary 2.15 Let VΓ be inversion-symmetric and |I| = 2, i.e. E∗ is an isolated
two-fold degenerate energy band and Φt be defined as in (2.33). Let furthermore
b ∈ C∞

b (R6,C) be Γ∗-periodic in the second argument, i.e. b(q, p + γ∗) = b(q, p).
Then we have

Πε
(
exp(iHεt/ε)̂b exp(−iHεt/ε) −W(b ◦ Φt)

)
Πε = O(ε)

uniformly for any finite time interval, where the Weyl quantization is in the sense
of

b̂ = b(−i∇x, εx)

and

Πε :=
(
U−1 ⊗ 1C4

)
Πε
Z (U ⊗ 1C4) .

Proof. We identify b with b : R6×S2 → C, (q, p, n) 7→ b(q, p). Then theorem 2.14
tells us that

exp(iHε
Zt/ε)b̂ exp(−iHε

Zt/ε) −W(2

∫

S2

dλ(n)b ◦ Φt,0
Z (·, ·, n)∆̃(q, p, n)) = O(ε)

in Zak representation. Since b is scalar-valued and Φt doesn’t depend on n either,
b and b ◦ Φt are independent of n and can be taken outside the integral, i.e.

b̂ = W(b2

∫

S2

dλ(n)∆̃(q, p, n))

= W(bπ)

= b̂1Hf
Πε
Z + O(ε)
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2.3 Semiclassical limit

and

W(2

∫

S2

dλ(n)b ◦ Φt,0
Z (·, ·, n)∆̃(q, p, n))

= W(b ◦ Φt,0
Z 2

∫

S2

dλ(n)∆̃(q, p, n))

= ̂b ◦ Φt,0
Z 1Hf

Πε
Z + O(ε).

Note that we used

2

∫

S2

dλ(n)∆̃(q, p, n)

= u♯2

∫

S2

dλ(n)∆(q, p, n)♯u∗

= u♯πr♯u
∗ = π.

Now in [Teu] it is proved that

b(x,−iε∇x) = Ub(−i∇x, εx)U−1

for scalar-valued symbols b that are additionally Γ∗-periodic in the first argument.
Then our result follows directly by inserting U−1U between all the factors in the
statement of theorem 2.14.

2.3.1 Semiclassical limit in the reference space

First we turn to define a correspondence between scalar-valued functions on Rd×S2

and L(Kf)-valued functions on Rd. In the following, we always use boldface letters
to denote the latter ones.

Definition 2.16 We associate to each smooth function a : Rd → L(Kf) ∼= L(C2)
the function a : Rd × S2 → C given by

a(q, p, n) = tr(a(q, p)∆(n)) (2.34)

with ∆(n) ∈ L(Kf) given by

∆ν,µ(n) :=
1

2
δν,µ +

√
3

4
n · σν,µ
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2 Dirac-Bloch electrons

and vice versa to each smooth function a : Rd × S2 → C the function a : Rd →
L(Kf) given by

a(q, p) = 2

∫

S2

dλ(n)a(q, p, n)∆(n) (2.35)

where λ denotes the normalized Lebesgue measure on S2. Furthermore, the Weyl
quantization â of a is defined as â.

We left d undetermined since we are using this correspondence for symbols (i.e.
d = 6) as well as for quantities depending on the crystal momentum k (i.e. d = 3),
e.g. for A as defined in (2.8). Note that the two operations (2.34) and (2.35)
invert each other and that the symbol σ becomes the function (q, p, n) 7→

√
3n

(see [Teu]).
Obviously we have

h0(q, p, n) = tr(h0(q, p)∆(n))

= E∗(q − A(p))

independent of n because h0 is a scalar multiple of the identity and that

h1(q, p, n) = −FLor(q̃, p) · A(q̃, n) −B(p) · M(q̃, n).

Alternatively, by definition, we can write h1 also in the form

h1(q, p, n) = tr(h1(q, p)∆(n))

=
1

2
tr (h1(q, p)) −

1

2
Ω(q, p) · n (2.36)

with

Ω(q, p) := −
√

3tr
(
h1(q, p)σKf

)

where σKf
is defined as

(
σKf

)
ν,µ

= σν,µ, ν, µ = 1, 2.

Now we turn to the derivation of the Hamiltonian equations. A natural can-
didate for the flow Φt,ε

r such that a(t) = 2
∫
S2dλ(n)a ◦ Φt,ε

r (q, p, n)∆(n) satisfies
(2.29) up to order O(ε2) is the Hamiltonian flow of

hε(q, p, n) = E(q −A(p)) − ε

√
3

2
n · Ω(q, p),
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2.3 Semiclassical limit

on R6 ×S2, i.e. of h(q, p, n) up to order O(ε). To be precise, we recall that S2 is a
symplectic manifold if one uses the area two-form to define the symplectic struc-
ture. The corresponding Poisson brackets for functions on S2 yield in particular

{a · n, n}S2 =
1√
3
a× n.

As the symplectic structure on R6 × S2 is

{·, ·}R6×S2 := {·, ·}R6 +
1

ε
{·, ·}S2, (2.37)

we derive the Hamiltonian equations corresponding to hε(q, p, n) as

q̇ = −∇ph
ε(q, p, n) (2.38)

ṗ = ∇qh
ε(q, p, n)

ṅ = n× Ω(q, p).

To simplify the translation to the physical space in the next section, we introduce
the diffeomorphism F : R6 × S2 as

F (q, p, n) = (q − A(p), p, n) (2.39)

with the kinetic momentum q̃ = q−A(p) and compute the vector field correspond-
ing to the flow Φ̃t,ε

r = F ◦ Φt,ε
r ◦ F−1 which reads explicitly

Φ̃t,ε
r (q̃, p, n) = Φt,ε

r (q̃ + A(p), p, n) −
(
A ◦ Φt,ε

r,p(q̃ + A(p), p, n), 0, 0
)
.

We get the equations

˙̃q = −∇φ(p) + ṗ× B(p) (2.40)

+ε∇p (FLor(q̃, p) · A(q̃, n) +B(p) · M(q̃, n))

ṗ = ∇E(q̃) − ε∇eq (FLor(q̃, p) · A(q̃, n) +B(p) · M(q̃, n))

ṅ = n× Ω̃(q̃, p).

with Ω̃(q̃, p) = Ω(q − A(p), p). The second and the last equation in (2.40) can
easily be derived from the corresponding equations in (2.38) (recall the definition
of Ω), whereas the first one comes from

˙̃q = q̇ − ṗ (∇A)⊤ (p)

= −∇φ(p) + ∇E(q̃)∇A(p)

−ε∇eq (FLor(q̃, p) · A(q̃, n) +B(p) · M(q̃, n))∇A(p)

+ε∇p (FLor(q̃, p) · A(q̃, n) +B(p) · M(q̃, n)) − ṗ (∇A)⊤ (p)

= −∇φ(p) + ṗ(∇A(p) − (∇A)⊤ (p))

+ε∇p (FLor(q̃, p) · A(q̃, n) +B(p) · M(q̃, n))
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2 Dirac-Bloch electrons

Now we turn to prove that the flow of (2.38) (or equivalently the one of (2.40)) can
be used to approximate the time evolution of observables. Indeed, for observables
a which are independent of n (i.e. a is a multiple of the identity) we have the
following result:

Proposition 2.17 Let Φt,ε
r be the solution flow of (2.38) and a ∈ C∞

b (R6 ×S2,C)
independent of n. Then

a(t):=2

∫

S2

dλ(n)a ◦ Φt,ε
r (·, ·, n)∆(n), t ∈ R

is in S1(ε,L(Kf)) and for all T <∞ there is a constant CT <∞ such that for all
t ∈ [−T, T ] ∥∥∥exp(iĥt/ε)â exp(−iĥt/ε) − â(t)

∥∥∥ ≤ ε2CT . (2.41)

with â := â(0).

Proof. Since the right hand side of (2.38) is smooth and bounded together
with its derivatives, the same holds true for its solution flow Φt,ε

r (uniformly for

t ∈ [−T, T ]), in particular â(t) is well-defined. It also follows that d
dt
a(t) =

2
∫
S2dλ(n) d

dt
(a ◦ Φt

ε)∆(n) is smooth and bounded together with its derivatives
and that

d

dt
â(t) =

d̂

dt
a(t).

Furthermore (for ε 6= 0) an application of the Gronwall lemma shows that

1

ε
(a(t) − a0(t)) ∈ S1(L(C2))

uniformly in ε and t ∈ [−T, T ] where

a0(t):=2

∫

S2

dλ(n)a ◦ Φt
0(·, ·, n)∆(n).

Now we turn to prove (2.41). We have

exp(iĥt/ε)â exp(−iĥt/ε) − â(t)

=

∫ t

0

ds
d

ds

(
exp(iĥ

s

ε
) ̂a(t− s) exp(−iĥs

ε
)
)

=

∫ t

0

ds exp(iĥ
s

ε
)

(
i

ε

(
ĥ ̂a(t− s) − ̂a(t− s)ĥ

)
− d

dt
̂a(t− s)

)
exp(−iĥs

ε
).
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2.3 Semiclassical limit

It remains to show that

i

ε
(h♯a(t) − a(t)♯h) = 2

∫

S2

dn

(
{hε, a(t)}R6 +

1

ε
{hε, a(t)}S2

)
∆(n) + O(ε2).

Since the right hand side equals d
dt

a(t) by construction, (2.41) then follows imme-
diately by quantization.

Clearly h0 is independent of n. We also know that a0(t) is independent of n since
a is independent of n and Φt

0q,Φ
t
0p depend only on q, p by construction. Therefore

we have

i

ε
(h♯a(t) − a(t)♯h)

= 4

∫

S2

dn

∫

S2

dm{h0 + ε
√

3Ω ·m, a0(t)}R6∆(m)∆(n)

+4

∫

S2

dn

∫

S2

dm{h0, a(t) − a0(t)}R6∆(m)∆(n)

+i[h1, a(t)]

= 2

∫

S2

dn{hε, a(t)}R6∆(n) + O(ε2)

+i[
1

2
Ω · σ, a(t)]

where the term {ε
√

3Ω ·m, a(t)−a0(t)}R6 has been dropped because a(t)−a0(t) =
O(ε). It remains to show that i

2
[Ω · σ, a(t)] = 2

∫
S2dn

1
ε
{hε, a(t)}S2∆(n). This

becomes clear by

i

2
[Ω · σ, aε(t)]

= i

∫

S2

dna ◦ Φt,ε
r (·, ·, n) [Ω · σ,∆(n)]

=
√

3

∫

S2

dna ◦ Φt,ε
r (·, ·, n) (Ω × n) · σ

= 2

∫

S2

dna ◦ Φt,ε
r (·, ·, n) (Ω × n) · ∇n∆(n)

= 2

∫

S2

dn∇n

(
a ◦ Φt,ε

r (·, ·, n)
)
(Ω × n)∆(n)

=
2

ε

∫

S2

dn{hε, a(t)}S2∆(n)

where we used that ∇n(Ω × n) = 0 for the integration by parts.
If we reduce the desired order to O(ε), we can deal with arbitrary observables.
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Proposition 2.18 Let Φt,0
r be the solution flow of (2.38) for ε = 0 and a ∈

C∞
b (R6 × S2,C). Then for all T < ∞ there is a constant CT < ∞ such that for

all t ∈ [−T, T ]
∥∥∥∥exp(iĥt/ε)â exp(−iĥt/ε) − â ◦ Φt,0

r

∥∥∥∥ ≤ εCT . (2.42)

Proof. As in the proof of proposition 2.17 it is enough to show that

i

ε
(h♯a(t) − a(t)♯h) = 2

∫

S2

dn

(
{h, a(t)}R6 +

1

ε
{h, a(t)}S2

)
∆(n) + O(ε).

Note that in contrast to proposition 2.17 a does now depend on n in general.
Therefore we have

i

ε
(h♯a(t) − a(t)♯h)

= 4

∫

S2

dn

∫

S2

dm{h0, a(t)}R6∆(m)∆(n) + i[h1, a(t)] + O(ε)

= 2

∫

S2

dn{h0, a(t)}R6∆(n) + i[
1

2
Ω · σ, a(t)] + O(ε)

= 2

∫

S2

dn{h0, a(t)}R6∆(n) +
2

ε

∫

S2

dn{hε, a(t)}S2∆(n) + O(ε).

and (2.42) follows as in proposition 2.17.

2.3.2 Translation to the Zak representation

Propositions 2.17 and 2.18 approximate the time evolution of the quantization of
a symbol â in reference space, i.e. the quantity

exp(iĥt/ε)â exp(−iĥt/ε). (2.43)

However, if we want to describe the time evolution of a observable B ∈ L(L2(R3)⊗
C4) in the Zak representation, i.e. the quantity

exp(iHε
Zt/ε)B exp(−iHε

Zt/ε), (2.44)

we have to relate (2.43) and (2.44) using theorem 2.6. Therefore it follows imme-
diately that B must have the form

B = Uε∗ (â ⊕ 0)Uε (2.45)

= W(u∗♯(a⊕ 0)♯u) + O(ε∞)

= : b̂ + O(ε∞)
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2.3 Semiclassical limit

where a satisfies the conditions of propositions 2.17 or 2.18 in order to allow for a
semiclassical limit. In this case we have

exp(iHε
Zt/ε)b̂ exp(−iHε

Zt/ε) (2.46)

= Uε∗
(
exp(−iĥt)â exp(−iĥt) ⊕ 0

)
Uε + O(ε∞(1 + |t|))

= W(u∗♯a(t)♯u) + O(ε∞(1 + |t|)).

In the case of proposition 2.18 we have the following result:

Proposition 2.19 Let b ∈ C∞
b (R6 × S2,C) and b ∈ S1(R6,L(Hf)) be given by

b :=2

∫

S2

dλ(n)b(·, ·, n)∆̃(·, ·, n)

with

∆̃(q, p, n) = u∗♯ (∆(n) ⊕ 0) ♯u. (2.47)

Then we have

exp(iHε
Zt/ε)b̂ exp(−iHε

Zt/ε) −W(2

∫

S2

dλ(n)b ◦ Φt,0
r (·, ·, n)∆̃(q, p, n)) = O(ε)

uniformly for any finite time interval.

Proof. We have

u∗♯a(t)♯u

= u∗02

∫

S2

dλ(n)a ◦ Φt,0
r (·, ·, n)u0u

∗♯∆(n)♯u+ O(ε)

= 2

∫

S2

dλ(n)a ◦ Φt,0
r (·, ·, n)u∗♯∆(n)♯u+ O(ε)

because a ◦ Φt,0
r (·, ·, n) is scalar-valued. Now the statement follows immediately

with (2.45).
In the case of proposition 2.17 the following lemma allows us to incorporate the

Weyl product with u and u∗ into the flow.

Lemma 2.20 Let a ∈ S1(ε,L(Kf)) with a0 independent of n and

b : = u∗♯ (a ⊕ 0) ♯u.
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2 Dirac-Bloch electrons

Then

a = 2

∫

S2

dλ(n) (b ◦ T+) (·, ·, n)∆(n) + O(ε2) (2.48)

and vice versa

b =2

∫

S2

dλ(n) (a ◦ T−) (·, ·, n)∆̃(q, p, n) + O(ε2) (2.49)

with

T±(q, p, n) = (q ± ε (∇A)⊤ A(q −A(p), n), p± εA(q − A(p), n), n)

and
b(q, p, n) := Tr(b(q, p)∆̃(q, p, n)).

Proof. We prove (2.48). Then (2.49) follows by Moyal-multiplying with u∗ and
u and observing that T− inverts T+ up to order O(ε2) as can be seen by Taylor-
expanding T− ◦ T+ and neglecting terms of order O(ε2). As in proposition 2.19

a0⊕0 = 2

∫

S2

dλ(n)a0∆(n)

= 2

∫

S2

dλ(n)b0∆(n)

agrees with the principal symbol of 2
∫
S2dλ(n) (b ◦ T+) (·, ·, n)∆(n) because

T+(q̃, p, n) = (q̃, p, n) + O(ε). In particular we have a0 = b0. To compute the
subprincipal symbol a1 in terms of b one proceeds as in the proof of corollary 2.8.
We have

(a ⊕ 0) ♯u = u♯b

and therefore

a1 ⊕ 0 = (u0b1 + (u0♯b0)1 − ((a0⊕0) ♯u0)1 + u1b0 − (a0⊕0) u1)u
∗
0.

Projecting from both sides with πr doesn’t change the left hand side, but on
the right hand side the last two terms cancel each other because b0 = b0π0 and
a0 = a01. For the same reason we can replace b0 by b01 and a0 by a01 and arrive
at

a1 ⊕ 0 = u0b1u
∗
0 −

i

2
πr{u0, b01}u∗0πr +

i

2
{πra0, u0}u∗0πr

= u0b1u
∗
0 + iπr{b01, u0}u∗0πr

= u0b1u
∗
0 − i∇qb0πr · (∇Uper ◦ q̃)∇Au∗0πr

−i∇pb0πr · (∇Uper ◦ q̃)u∗0πr
= u0b1u

∗
0 + ∇qb0πr · (∇A)⊤ A ◦ q̃ + ∇pb01 · A ◦ q̃
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2.3 Semiclassical limit

with
Aν,µ(k) = i 〈ψn(k),∇kψm(k)〉Hf

, ν, µ = 1, 2

as in corollary 2.8. Writing the last line as an integral over S2 and using that
u0b1u

∗
0 = u♯b1♯u

∗ + O(ε) we have

a1 ⊕ 0 = 2

∫

S2

dλ(n)b1(·, ·, n)∆(n)

+2

∫

S2

dλ(n)∇qb0 · (∇A)⊤ A(q̃, n)∆(n)

+2

∫

S2

dλ(n)∇pb0 · A(q̃, n)∆(n).

A comparison with the Taylor expansion of b ◦ T+ now proves the claim.
We note furthermore that with T̃+ := F ◦ T+ ◦ F−1 we have
(
F ◦ T+ ◦ F−1

)
(q̃, p, n) (2.50)

= F ◦ T+(q̃ + A(p), p, n)

= F (q̃ + A(p) + ε (∇A(p))⊤ A(q̃, n), p+ εA(q̃, n), n)

= (q̃ + A(p) − A(p+ εA(q̃, n)) + ε (∇A(p))⊤ A(q̃, n), p+ εA(q̃, n), n)

= (q̃ + ε
(
(∇A(p))⊤ −∇A(p)

)
A(q̃, n), p+ εA(q̃, n), n) + O(ε2)

= (q̃ + εA(q̃, n) × B(p), p+ εA(q̃, n), n) + O(ε2)

and analogously for T−. Now we can translate the flow Φt,ε
r of (2.38) into a flow

Φt,ε
Z in the Zak representation.

Proof. (of theorem 2.14) By construction we have b̂ = Πε
Zb̂Πε

Z + O(ε∞),
therefore theorem 2.6 tells us that

exp(iHε
Zt/ε)b̂ exp(−iHε

Zt/ε)

= Uε∗
((

exp(−iĥt)
)

â
(
exp(−iĥt)

)
⊕ 0
)
Uε + O(ε∞)

with a ⊕ 0 : = u♯b♯u∗. Proposition 2.17 tells us that

exp(−iĥt)â exp(−iĥt)

= W(2

∫

S2

dλ(n)a ◦ Φt,ε
r (·, ·, n)∆(n)) + O(ε2).

Using lemma 2.20 we have that

exp(iHε
Zt/ε)b̂ exp(−iHε

Zt/ε)

= W(2

∫

S2

dλ(n)b ◦ T+ ◦ Φt,ε
r ◦ T−(·, ·, n)∆(n)) + O(ε2).

45



2 Dirac-Bloch electrons

It remains to show that

T+ ◦ Φt,ε
r ◦ T− = Φt,ε

Z + O(ε2)

resp. in terms of the kinetic momentum to show that

T̃+ ◦ Φ̃t,ε
r ◦ T̃− = Φ̃t,ε

Z + O(ε2)

where (as before) Φ̃t,ε
Z := F ◦ Φt,ε

Z ◦ F−1 etc. To do so, it is, using Gronwall’s
lemma, enough to show that the vector fields agree up to order O(ε2). To start
the computation, we recall the vector field of Φ̃t,ε

r given in (2.40) as well as the
explicit formula T̃+(q̃, p, n) = (q̃ + εA(q̃, n) × B(p), p + εA(q̃, n), n). We call the

physical variables Q̃,Π and n and start with the computation of ˙̃Q:

˙̃Qj = ˙̃qj + ε
d

dt
(A(q̃, n) × B(p))j

= −∂jφ(p) + (ṗ× B(p))j − ε (∂j∇φ(p) −∇E(q̃) × ∂jB(p)) · A(q̃, n)

+ε∂jB(p) · M(q̃, n) + ε
(
Ȧ(q̃, n) × B(p)

)
j
+ ε

(
A(q̃, n) × Ḃ(p)

)
j

= −∂jφ(p) − ε∇∂jφ(p) · A(q̃, n) + ε∂jB(p) · M(q̃, n)

+ (ṗ×B(p))j + ε
(
Ȧ(q̃, n) × B(p)

)
j

+ε∇E(q̃) × ∂jB(p) · A(q̃, n) + ε
(
A(q̃, n) × Ḃ(p)

)
j
+ O(ε2)

= −∂jφ(Π) + ε∂jB(Π) ·M(Q̃, n) +
(
Π̇ × B(p)

)
j

+εΠ̇ × ∂jB(Π) · A(Q̃, n) + ε
(
A(Q̃, n) × Ḃ(Π)

)
j
+ O(ε2)

= −∂jφ(Π) + ε∂jB(Π) ·M(Q̃, n) +
(
Π̇ × B(Π)

)
j
+ O(ε2)

In the third equality we just regrouped the terms to make the following changes
in the fourth equality more transparent. Then we used Taylor expansions and the
fact that in first order terms we can exchange the arguments q̃, p by Q̃,Π as well
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2.3 Semiclassical limit

as ∇E(q̃) by Π̇. The final equality becomes now clear by noticing that

εΠ̇ × ∂jB(Π) · A(Q̃, n) + ε
(
A(Q̃, n) × Ḃ(Π)

)
j

= ε
∑

k,l,m

eklmΠ̇l∂jBm(Π)Ak(Q̃, n) + ε
∑

k,m

ejkmAk(Q̃, n)Ḃm(Π)

= ε
∑

k,l,m

(eklm∂jBm(Π) + ejkm∂lBm(Π)) Π̇lAk(Q̃, n)

= ε
∑

k,l,m

(ejlm∂kBm(Π)) Π̇lAk(Q̃, n)

=
(
Π̇ × (B(Π) − B(p))

)
j
+ O(ε2)

where eklm is the Levi-Cività symbol. We go on with calculating Π̇j :

Π̇j = ṗj + εȦj(q̃, n)

= ∂jE(q̃) − ε∂kj
(FLor(q̃, p) · A(q̃, n) +B(p) · M(q̃, n))

+ε∂kl
Aj(q̃, n) ˙̃ql + ε∂nl

Aj(q̃, n)ṅl

= ∂jE(q̃) − ε
(
∂kj
FLor(q̃, p) · A(q̃, n) +B(p) · ∂kj

M(q̃, n)
)

+ε
(
∂kl

Aj(q̃, n) − ∂kj
Al(q̃, n)

)
˙̃ql + ε∂nl

Aj(q̃, n)ṅl

= ∂jE(Q̃) − εB(Π) · ∂kj
M(Q̃, n) + ε

(
ΩA(Q̃, n) × ˙̃Q

)
j
+ ε∂nl

Aj(q̃, n)ṅl

where we used that ˙̃q = FLor(q̃, p) + O(ε) and

ε∂eqjFLor(q̃, p) · A(q̃, n)

= ε∇∂jE(q̃) ×B(p) · A(q̃, n)

= εB(p) ×A(q̃, n) · ∇∂jE(q̃)

= ∂jE(q̃) − ∂jE(Q̃) + O(ε2).

Observe that from the proof of proposition 2.17 it follows that we could have added
an arbitrary term of order O(ε) to ṅ = n × Ω̃(q̃, p) in (2.40) without changing
the validity of the semiclassical approximation. Therefore, for n we only have to
compute the first order, i.e. we have

ṅ = n× Ω̃(Q̃,Π).
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3 Pauli-Bloch electrons

In chapter 2 we set c = 1 in the definition of Hε in 2.1. The c-dependent Hamil-
tonian Hε,c reads explicitly

Hε,c := c2β + c(−i∇x − A(εx)) · α + VΓ(x) + φ(εx). (3.1)

The nonrelativistic limit of (3.1), i.e. the behavior of Hε,cas c tends to infinity, has
been intensively studied since the famous paper [FoWo] of Foldy and Wouthuysen.
They showed in a formal calculation that (Hε,c − c2) is, up to higher orders in 1

c

unitarily related to the so-called Pauli Hamiltonian

Hε,P := Hε,S ⊗ 1C2 − 1

2
εB(εx) ⊗ σ (3.2)

with the usual nonrelativistic Schrödinger Hamiltonian

Hε,S :=
1

2
(−i∇x −A(εx))2 + VΓ(x) + φ(εx).

Hε,P is self-adjoint on H2(R3) ⊗ C2 ⊂ L2(R3) ⊗ C2 under assumption (A1).
In this chapter, we first study in section 3.1 how to relate the time evolution

generated by (3.1) and the one generated by (3.2). Next, we will undertake for
Hε,P the same program as in chapter 2 for Hε,c: we will identify subspaces that
are invariant under the dynamics generated by the unperturbed Hamiltonian, i.e.
by Hε=0 in section 3.2 by studying the unitarily transformed Hamiltonian

HP
per := (U ⊗ 1C2)Hε=0,P

(
U−1 ⊗ 1C2

)

acting on Hτ = U (L2(R3))⊗C2. In section 3.3 we will perform the space-adiabatic
perturbation theory for Hε,P and finally, in section 3.4 we will study the semiclas-
sical limit. Since the program is analogous to chapter 2 we will state the rele-
vant theorems, but instead of full proofs merely comment the changes. We also
note that Hε,S is just the nonrelativistic Schrödinger-Bloch Hamiltonian studied
in [Teu], chapter 5. Clearly, all the following results for Hε,P differ mainly from
the results derived there by an additional ⊗1C2 at the end of symbols and op-
erators and the fact that we have an additional subprincipal term coming from
−1

2
εB(εx) ⊗ σ.
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3 Pauli-Bloch electrons

Remark 3.1 For sake of notational simplicity, we suppress the superscript P for
Pauli in in Hε,P and in all derived quantities π, u, h etc. in sections 3.2, 3.3 and
3.4. For the comparison of the Dirac and Pauli quantities, we will re-introduce the
superscript in chapter 4.

3.1 The nonrelativistic limit

As mentioned in the introduction, we first aim to compare the time evolution
generated by the full Dirac Hamiltonian Hε,c and the one of the Pauli Hamiltonian
Hε,P . The basic ingredient is the fact, as written in [Th], cor. 6.5, that the resolvent
of Hε,c − c2, i.e. (Hε,c − c2 − ζ)−1 has for each fixed ζ ∈ C \ R and each fixed ε
a power series expansion in 1

c
that is absolutely convergent in ‖·‖L(L2). A careful

analysis of the proof in Thaller in our context shows that the power series converges
even in supε∈[0,ε0) ‖·‖L(L2,H1) as will be important for the following.

Lemma 3.2 (Hε,c−c2−ζ)−1 has, for each fixed ζ ∈ C \ R a power series expansion

(Hε,c − c2 − ζ)−1 =
∞∑

n=0

1

cn
Rε
n(ζ)

that converges absolutely in supε∈[0,ε0) ‖·‖L(L2,H1) for c large (depending on ζ)
enough. The first two terms are

Rε
0(ζ) =

(
1

2
Q2 + VΓ + φ− ζ

)−1

P+

Rε
1(ζ) =

1

2
P+

(
1

2
Q2 + VΓ + φ− ζ

)−1

Q+
1

2
Q

(
1

2
Q2 + VΓ + φ− ζ

)−1

P+

with
Q = (−i∇x −A(εx)) · α.

Proof. In [Th] it is shown that

(Hε,c − c2 − ζ)−1

=

(
P+ +

1

2c2
(cQ+ ζ)

)
K(c−2)

(
1 +

1

2c2
(VΓ + φ) (cQ+ ζ)K(c−2)

)−1

with

K(c−2) =

(
1 − 1

2c2
ζ2Rε

∞(ζ)

)−1

Rε
∞(ζ)
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3.1 The nonrelativistic limit

and

Rε
∞(ζ) = (Hε,∞ − ζ)−1 =

(
1

2
Q2 + (VΓ + φ)P+ − ζ

)−1

whenever all quantities are well-defined. For fixed ε, we know that

‖Rε
∞(ζ)‖L(L2,H2) <∞,

therefore one can expand K(c−2) into a power series in 1
c

that converges in
‖·‖L(L2,H2). It follows that also (Hε,c−c2−ζ)−1 can be expanded into a power series
that converges in ‖·‖L(L2,H1) (observe that ‖Q‖L(H2,H1) < ∞). It remains to show
that the expansion is uniform in ε. Since we know that supε∈[0,ε0) ‖Q‖L(H2,H1) <∞
(because A is bounded together with its derivatives), it only remains to show that

sup
ε∈[0,ε0)

‖Rε
∞(ζ)‖L(L2,H2) <∞.

To this end note that with a variant of the resolvent equation we have

Rε
∞(ζ) =

(
1

2
∆x − ζ

)−1(
1 + (Hε,∞ − 1

2
∆x)R

ε
∞

)

with
(

1
2
∆x − ζ

)−1 ∈ L(L2, H2). Furthermore

(Hε,∞ − 1

2
∆x) = 2A(εx) · ∇x + ε(∇A)(εx) + A(εx)2 + εB(εx) + VΓ(x) + φ(εx),

i.e. (Hε,∞ − 1
2
∆x) is bounded from H1 to L2 uniformly in ε (recall that VΓ is

infinitesimally bounded w.r.t. ∇x) and we have that

sup
ε∈[0,ε0)

‖Rε
∞(ζ)‖L(L2,H2) ≤ C sup

ε∈[0,ε0)

‖Rε
∞(ζ)‖L(L2,H1) .

Since we also know that
(

1
2
∆x − ζ

)−1 ∈ L(H−1, H1) and that (Hε,∞ − 1
2
∆x) is

bounded from L2 to H−1 uniformly in ε, we can repeat the argument and have

sup
ε∈[0,ε0)

‖Rε
∞(ζ)‖L(L2,H1) ≤ C ′ sup

ε∈[0,ε0)

‖Rε
∞(ζ)‖L(L2)

and the result follows.
As explained in chapter 2, we are interested in time scales of order O(1

ε
). How-

ever, the difference in the time evolution between Hε,c and Hε,P comes not only
from the ε-dependent external potentials, but also from the presence of the peri-
odic potential VΓ and therefore one cannot expect that the Pauli approximation
holds over time scales of order O(1

ε
). Instead we study time scales of order O(c)

and get the following result:
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Proposition 3.3 One has

(
exp(ict(Hε,c − c2)) − exp(ictHε

P ) ⊗ 0
)
χ[−a,a](H

ε,P ) ⊗ 1 = O(
1

c
(1 + |t|)(a2 + 1))

for any spectral projection χ[−a,a](H
ε,P ) of the Pauli Hamiltonian.

Proof. We write
(
exp(ictHε,P ) ⊗ 0 − exp(ict(Hε,c − c2)

) (
(Hε,P − i)−1 ⊗ 0

)

= (Hε,c − c2 − i)−1(1 +
1

2c
Q) exp(−ictHε,P ) ⊗ 0

− exp(−itc(Hε,c − c2))(Hε,c − c2 − i)−1(1 +
1

2c
Q) + O(

1

c
)

=

∫ t

0

ds
d

ds
exp(−ic(t− s)(Hε,c − c2))(Hε,c − c2 − i)−1

×(1 +
1

2c
Q) exp(−icsHε,P ) ⊗ 0 + O(

1

c
)

with O(1
c
) in the norm of bounded operators because

(Hε,c − c2 − i)−1 − (Hε,P − i)−1 = O(
1

c
)

in L(L2, H1) and Q ∈ L(H1, L2). Next we consider the integrand. One has

d

ds

(
exp(−ic(t− s)(Hε,c − c2))(Hε,c − c2 − i)−1(1 +

1

2c
Q) exp(−icsHε,P ) ⊗ 0

)

= ic exp(−ic(t− s)(Hε,c − c2))

×
(

(1 +
1

2c
Q) − (Hε,c − c2 − i)−1(1 +

1

2c
Q)
(
(Hε,P − i) ⊗ 0

))

× exp(−icsHε,P )

= ic exp(−ic(t− s)(Hε,c − c2))

×
(

(1 +
1

2c
Q)
(
(Hε,P − i)−1 ⊗ 1

)
− (Hε,c − c2 − i)−1(1 +

1

2c
Q)

)

× exp(−icsHε,P )
(
(Hε,P − i) ⊗ 0

)

= O(
1

c
)
(
(Hε,P − i) ⊗ 0

)

with O(1
c
) in the norm of bounded operators (recall that the power series of (Hε,c−

c2 − i)−1 converges in L(L2, H1)). Together
(

exp(−i t
c
Hε,P ) − exp(−i t

c
(Hε,c − c2))

)(
(Hε,P − i)−2 ⊗ 1

)
= O(

1

c
)
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3.2 The Pauli Hamiltonian

in the norm of bounded operators. Now, if we project with χ[−a,a](H
ε,P )⊗1, then

∥∥(exp(ict(Hε,c − c2)) − exp(ictHε,P ) ⊗ 0
) (
χ[−a,a](H

ε,P ) ⊗ 1
)∥∥

L(L2)

≤
∥∥(exp(ict(Hε,c − c2)) − exp(ictHε,P ) ⊗ 0

) (
(Hε,P − i)−2 ⊗ 1

)∥∥
L(L2)∥∥((Hε,P − i)2 ⊗ 1

) (
χ[−a,a](H

ε,P ) ⊗ 1
)∥∥

L(L2)

≤ (a2 + 1)O(
1

c
).

3.2 The Pauli Hamiltonian

In this section, we want to start the adiabatic analysis of (3.2) by studying the
unperturbed Pauli Hamiltonian. As in section 2.1 one applies the Zak transform
and has

(U ⊗ 1C2)Hε=0
(
U−1 ⊗ 1C2

)
=

∫ ⊕

R3

Hper(k)

with

Hper(k) =

(
1

2
(−i∇y + k)2 + VΓ(y)

)
⊗ 1C2

= : HS
per ⊗ 1C2 , k ∈ R3.

Hper(k) is self-adjoint with domain D := H2(T3) ⊗ C2 ⊂ L2(T3) ⊗ C2 =: Hf for
each fixed k and τ -equivariant as function of k. The same holds true for HS

per(k)
with domain DS := H2(T3) ⊂ L2(T3) =: HS

f . Each Hper(k) (and HS
per(k)) has

purely discrete spectrum accumulating at infinity because

Rper(ζ, k) : = (Hper(k) − ζ)−1

= : RS
per(ζ, k) ⊗ 1C2

is compact. In contrast to chapter 2, Hper is semibounded and therefore the
labelling of the eigenvalues causes no problems. We denote the eigenvalues of
Hper(k) in increasing order and according to their multiplicity with En(k), n ∈ N0.
Note that to each eigenvalue of HS

per corresponds an eigenvalue of Hper(k) with
twice the degree of degeneracy. This degeneracy corresponds to the symmetries of
lemma 2.2 and corollary 2.3, the latter one now being valid even without inversion-
symmetric VΓ. To reflect this structure, we introduce ES

n (k) as the n-th eigenvalue
of HS

per(k) and note that with this convention we have

E2n+j = ES
n , n ∈ N0, j = 0, 1.
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Furthermore, the corresponding eigenfunctions ϕn(k) of Hper(k) and ϕSn(k) of
HS

per(k) satisfy the relation

ϕ2n+j(k) = ϕSn(k) ⊗ ej , n ∈ N0, j = 0, 1

where ej is the j-th unit vector in C2. Finally we note that the resolvents Rper(ζ, k)
and RS

per(ζ, k) are smooth in k and that all its partial derivatives are holomorphic
in ζ on {(k, ζ) : ζ /∈ σ(Hper(k)) = σ(HS

per(k))}.

3.3 Adiabatic perturbation theory

Now we want to analyze the Hamiltonian

Hε
Z : = (U ⊗ 1C2)Hε

(
U−1 ⊗ 1C2

)

=

(
1

2
(−i∇y + k − A(ε∇τ

k))
2 + VΓ(y) + φ(ε∇τ

k)

)
⊗ 1C2 − εB(ε∇τ

k) ⊗ σ

= : Hε,S
Z ⊗ 1C2 − ε

1

2
B(ε∇τ

k) ⊗ σ.

To this end, we start with the observation that Hε
Z is the Weyl-quantization of the

symbol H0 + εH1 ∈ Sw
2

τ (ε,L(D,Hf)) with

H0(q, p) =

(
1

2
(−i∇y + q − A(p))2 + VΓ(y) + φ(p)

)
⊗ 1C2 (3.3)

= : HS
0 (q, p) ⊗ 1C2 ,

H1(q, p) = −1L2(T3) ⊗
(

1

2
B(p) · σ

)
.

Due to the eigenvalue structure of Hper(k), every isolated family stems from an
isolated family {ES

n}n∈IS of HS
per(k). Therefore, we first fix (w.l.o.g.) an isolated

family {E2n+j(k)}n∈I,j=0,1 of bands of Hper(k) with I = [I−, I+] ∩ N0 as well as
enclosing circles Λper(k). The corresponding projection satisfies

Pper(k) =

∫

ΛP
per(k)

dζRper(ζ, k)

= P S
per(k) ⊗ 1C2 (3.4)

where P S
per(k) corresponds to the isolated family {En(k)}n∈I of HS

per(k). Following
[Pa] there is a smooth, right τ -covariant unitary US

per(k) ∈ U(HS
f ) intertwining

P S
per(k) and P S

per(0) =: πSr , i.e.

US
per(k)

∗P S
per(k)U

S
per(k) = P S

per(0).
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3.3 Adiabatic perturbation theory

It follows that also

UP
per(k) := US

per(k) ⊗ 1C2 (3.5)

is smooth, right τ -covariant and intertwines Pper(k) and Pper(0) =: πr. Defining
ψn(k) := Uper(k)χn with χn := ϕn(0) we have

Pper(k) =
∑

n∈I,j=0,1

〈
ψ2n+j(k), ·

〉
ψ2n+j(k)

where

ψ2n+j(k) =: ψSn(k) ⊗ ej, n ∈ IS, j = 0, 1

are smooth and τ -equivariant in k, but not necessarily eigenfunctions of Hper(k).
We also introduce

Kf : = RanPper(0)

=
(
RanP S

IS(0)
)
⊗ C2

= : KS
f ⊗ C2,

i.e. Kf
∼= C2N with 2N = |I|. Now we can apply the same technique as in chapter

2 and obtain an analogous result.

Theorem 3.4 (Peierls substitution) Let {E2n+j(k)}n∈I,j=0,1 be an isolated
family of bands in the sense of Definition 2.5 and let Assumption be satisfied.
Then there exist

(i) an orthogonal projection Πε
Z ∈ L(Hτ ),

(ii) a unitary map Uε ∈ L(Hτ ,Hr), and

(iii) a self-adjoint operator ĥ ∈ L2(T3∗,Kf)

such that
‖[exp(−iHε

Zt),Π
ε
Z ]‖ = O(ε∞(1 + |t|))

and ∥∥∥exp(−iHε
Zt)Π

ε
Z − Uε∗

(
exp(−iĥt) ⊕ 0

)
Uε
∥∥∥ = O(ε∞(1 + |t|)).

The effective Hamiltonian ĥ is the Weyl quantization of a semiclassical symbol
h ∈ S1

τ≡1
(ε,L(Kf)) whose asymptotic expansion in ε can be computed to any

order.
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3 Pauli-Bloch electrons

Proof. The proof is exactly analogous to the proofs in chapter 2, except that one
has to replace the order function w by w2 (and one has a nonvanishing subprincipal
symbol H1). However, the new order function causes no problems regarding lemma
B.3.

SinceHper = HS
per(q, p)⊗1C2 , Pper(k) = P S

per(k)⊗1C2 and Uper(k) = US
per(k)⊗1C2 ,

one might ask whether also the quantities of theorem 3.4 have this form. Indeed,
if we denote by uS, πS,hS etc. the quantities that appear when applying space-
adiabatic analysis on Hε,S

Z , we have the following result which is useful for the
explicit determination of h as well as for the following semiclassical limit.

Lemma 3.5 We have
πj = πSj ⊗ 1C2, j = 0, 1

and
uj = uSj ⊗ 1C2, j = 0, 1.

Proof. For j = 0 this follows immediately from π0(q, p) = Pper(q − A(p)) and
u0(q, p) = Uper(q − A(p)). For π1, we first observe that

R1(ζ) = − (R0(ζ)♯(H0 − ζ))1R0(ζ) −R0(ζ)H1R0(ζ)

= −
((
RS

0 (ζ)♯(HS
0 − ζ)

)
1
RS

0 (ζ)
)
⊗ 1C2 +

1

2
RS

0 (ζ)RS
0 (ζ) ⊗ (B(p) · σ)

= RS
1 (ζ) ⊗ 1C2 +

1

2

(
RS

0 (ζ)
)2 ⊗ (B(p) · σ).

On the other hand ∫

Λ

dζ
(
RS

0 (ζ)
)2

= 0

therefore
π1 = πS1 ⊗ 1C2

follows. Since for the construction of u1 only u0, π0 and π1 are used, also

u1 = uS1 ⊗ 1C2

is clear.
Now we can also compute the principal and (in the case of a single eigenvalue

band) subprincipal symbol.

Corollary 3.6 The principal symbol of the effective Hamiltonian in theorem (3.4)
is given by

h0(q, p) = hS0 (q, p) ⊗ 1C2
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3.3 Adiabatic perturbation theory

where hS0 has matrix elements

hS0 (q, p)ν,µ =
〈
ψSν (q − A(p)), HS

0 (q, p)ψSµ(q −A(p))
〉
, ν, µ ∈ {1, . . . , N}

where HS
0 is defined in (3.3). If the family {En}n∈I consist of a single 2-fold

degenerate eigenvalue E∗(k) = ES
∗ (k), then we have (in the notation of theorem

3.4)
h0(q, p) =

(
ES

∗ (q̃) + φ(p)
)
1KS

f
⊗ 1C2

and

h1(q, p) =
(
−F S

Lor(q̃, p) · AS(q̃) − B(p) ·MS(q̃)
)
1KS

f
⊗ 1C2

−1

2
1KS

f
⊗ (B(p) · σ) ,

where q̃ = q − A(p), ν, µ = 1, 2. F S
Lor, AS and MS are defined by

F S
Lor(k, p) := −∇φ(p) + ∇ES

∗ (k) × B(p),

AS(k) := i
〈
ψS(k),∇kψ

S(k)
〉
Hf

and

MS(k) :=
i

2

〈
∇kψ

S(k),×(HS
per(k) −ES

∗ (k))∇kψ
S(k)

〉
Hf

.

Proof. One has

h0 ⊕ 0K⊥

f
= u0H0π0u

∗
0

= uS0H
S
0 π

S
0u

S∗
0 ⊗ 1C2

=
(
hS0 ⊕ 0KS,⊥

f

)
⊗ 1C2

=
(
hS0 ⊗ 1C2

)
⊕ 0KP,⊥

f

where we identified

(KS
f ⊕KS,⊥

f ) ⊗ C2 ∼= (KS
f ⊗ C2) ⊕

(
KS,⊥
f ⊗ C2

)
.

Furthermore

h1(q, p) ⊕ 0K⊥

f
= (u♯H0♯π♯u

∗)1 (q, p) + u0H1π0u
∗
0(q, p)

=
(
uS♯HS

0 ♯π
S♯uS∗

)
1
(q, p) ⊗ 1C2

−1

2

(
uS0 ⊗ 1C2

) (
1HS

f
⊗ (B(p) · σ)

) (
πS0u

S∗
0 ⊗ 1C2

)

=
(
hS1 ⊗ 1C2

)
⊕ 0K⊥

f
− 1

2

(
1KS

f
⊗ (B(p) · σ)

)
⊕ 0K⊥

f
.

The computation of hS0 and hS1 is as in chapter 2.
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3 Pauli-Bloch electrons

Remark 3.7 The Hamiltonian hS0 + εhS1 is just the effective Hamiltonian derived
in [Teu], chapter 5.

3.4 Semiclassical limit

As in chapter 2 one obtains, in the case of a single 2-fold degenerate eigenvalue
band E∗, semiclassical equations of motion in the reference representation. The
degeneracy is, as explained in lemma 3.5, of a particular simple form, i.e. it does
not interact with the transformation between Zak and reference representation.
Therefore, we can translate all our results back even to the physical representation,
in contrast to chapter 2 where this was only possible in principal order for scalar-
valued symbols. As to be explained in detail below, one arrives at the equations
of motion

q̇ = ∇π(E∗(π) − εB(q) · MS(π)) + εΩAS(π) × π̇ (3.6)

π̇ = −∇q(φ(q) − εB(q) ·
(
MS(π) + n

)
) + εq̇ × B(q)

ṅ = n×B(q).

with ΩAS := ∇ × AS and AS, MS as defined in corollary 3.6. To be precise, let

Φ̃t,ε =
(
Φ̃t,ε
q , Φ̃

t,ε
π , Φ̃

t,ε
n

)
be the flow generated on R6 × S2 by 3.6 and let

Φt,ε(q, p, n) := Φ̃t,ε(q, p− A(q), n) + (0, A ◦ Φ̃t,ε
q (q, q −A(p)), 0). (3.7)

Then we have the following result for observables b̂ that are the Weyl-quantizations
of symbols b ∈ S1(R6,L(C2)) and Γ∗-periodic in the second argument.

Theorem 3.8 Let E∗ be an isolated two-fold degenerate Bloch band and Φt,ε =(
Φt,ε
q,p,Φ

t,ε
n

)
be defined as in (3.7). Let furthermore b ∈ C∞

b (R6 × S2,C) be Γ∗-
periodic in the second argument, i.e. b(q, p+ γ∗, n) = b(q, p, n), let

Πε :=
(
U−1 ⊗ 1C2

)
Πε
Z (U ⊗ 1C2)

and

bε(t) := 2

∫

S2

dλ(n)b ◦ Φt,ε(·, ·, n)

(
1

2
1C2 +

√
3

4
n · σ

)
.

Then we have

Πε
(
exp(iHεt/ε)b̂ exp(−iHεt/ε) − b̂0(t)

)
Πε = O(ε)
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3.4 Semiclassical limit

and, if b is independent of n,

Πε
(
exp(iHεt/ε)b̂ exp(−iHεt/ε) − b̂ε(t)

)
Πε = O(ε2)

uniformly for any finite time interval, with b := b(0) and the Weyl quantization

in the sense of b̂ = b(−i∇x, εx).

To prove the theorem, we use the same strategy as in chapter 2. First we do
the semiclassical limit in the reference space, then we translate it back to Zak and
physical representation. Since many of the steps are similar, we shortened the
presentation except for the parts where substantial differences arise.

We start with introducing the same correspondence between L(KP
f ) ∼= L(KS

f ⊗
C2) ∼= L(C2)-valued symbols on R6 and scalar-valued symbols on the larger phase
space R6 × S2 as we did in section 2.3. Note that now the quantity ∆(n) has the
particular simple form

∆(n) = 1KS
f
⊗ (

1

2
1C2 +

√
3

4
n · σ).

The effective Hamiltonian including the first order reads

hε(q, p, n) = h0(q, p, n) + εh1(q, p, n)

with

h0(q, p, n) =
(
ES

∗ (q̃) + φ(p)
)

h1(q, p, n) = −F P
Lor(q̃, p) · AS(q̃) −B(p) ·MS(q̃) +

√
3

2
B(p) · n.

In analogy to the results in section 2.3 we first get the equations of motion in the
reference space as

q̇ = −∇ph
ε(q, p, n)

ṗ = ∇qh
ε(q, p, n)

ṅ = n×B(p).

resp. the equations of motion in terms of the kinetic momentum as

˙̃q = −∇φ(p) + ṗ× B(p) + ε

√
3

2
∇p (B(p) · n)

+ε∇p

(
FLor(q̃, p) · AS(q̃) +B(p) · MS(q̃)

)

ṗ = ∇E(q̃) − ε∇eq

(
FLor(q̃, p) · AS(q̃) +B(p) · MS(q̃)

)

ṅ = n× B(p).
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3 Pauli-Bloch electrons

The translation of the equations back to the Zak representation requires some care,
therefore, we give a proof of the following lemma which is in principle analogue to
lemma 2.20

Lemma 3.9 Let a ∈ S1(ε,L(Kf)) with a0 independent of n and

b : = u∗♯ (a ⊕ 0) ♯u.

Then

a = 2

∫

S2

dλ(n) (b ◦ T+) (·, ·, n)∆(n) + O(ε2)

and vice versa

b =2

∫

S2

dλ(n) (a ◦ T−) (·, ·, n)∆̃(n) + O(ε2)

with

T±(q, p, n) = (q ± ε (∇A)⊤ A(q − A(p)), p± εA(q −A(p)), n),

∆̃(n) = πS ⊗ (
1

2
1C2 +

√
3

4
n · σ)

and

b(q, p, n) := Tr(b(q, p)∆̃(q, p, n)).

Proof. We have

b = u∗♯ (a ⊕ 0) ♯u

= 2

∫

S2

dλ(n)u∗♯a(·, ·, n)♯u♯u∗♯ (∆(n) ⊕ 0) ♯u

= : 2

∫

S2

dλ(n)u∗♯a(·, ·, n)♯u♯∆̃(n)

= 2

∫

S2

dλ(n)
((
uS∗♯a(·, ·, n)♯uS

)
⊗ 1C2

)
♯∆̃(n)

where we used lemma 3.5. Now, as in lemma 2.20 one shows that

uS∗♯a(·, ·, n)♯uS = a ◦ T−(·, ·, n) + O(ε2).
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3.4 Semiclassical limit

Furthermore, one has

u∗♯ (∆(n) ⊕ 0) ♯u

=
(
uS∗ ⊗ 1C2

)
♯

((
1KS

f
⊕ 0KS,⊥

f

)
⊗ (

1

2
1C2 +

√
3

4
n · σ)

)
♯
(
uS ⊗ 1C2

)

=
(
uS∗♯

(
1KS

f
⊕ 0KS,⊥

f

)
♯uS
)
⊗ (

1

2
1C2 +

√
3

4
n · σ)

= πS ⊗ (
1

2
1C2 +

√
3

4
n · σ).

Moyal-multiplying from both sides with u∗ and u gives the second statement.
Now, as in section 2.3 one can translate the equations back to the Zak represen-

tation and has the equations

˙̃q = −∇p(φ(p) − εB(p) ·
(
MS(q̃) + n

)
) + εṗ× B(p) (3.8)

ṗ = ∇eq(E(q̃) − εB(p) · MS(q̃)) + εΩAS(q̃) × ˙̃q

ṅ = n× B(p).

Not surprising, the first two equations in (3.8) are the equations of motion derived
in [Teu], chapter 5, except for the fact that we have an additional term com-
ing from the subprincipal symbol H1 of the original Hamiltonian. If we call the
corresponding flow as Φ̃t,ε

Z resp. the flow in physical coordinates as Φt,ε
Z , i.e.

Φt,ε
Z (q, p, n) = Φ̃t,ε

Z (q − A(p), p, n) + (A ◦ Φ̃t,ε
Z,p(q −A(p)), 0, 0), (3.9)

then we have (as in chapter 2) the following result.

Proposition 3.10 Let |I| = 2, i.e. E∗ is an isolated two-fold degenerate Bloch
band and Φt,ε

Z be defined as in (3.9). Let furthermore b ∈ C∞
b (R6 × S2,C) and

b ∈ S1(R6,L(HP
f )) be given by

bε(t):=2

∫

S2

dλ(n)
(
b ◦ Φt,ε

Z

)
1HS

f
⊗
(

1

2
1C2 +

√
3

4
n · σ

)

Then we have

Πε
Z

(
exp(iHε

Zt/ε)b̂ exp(−iHε
Zt/ε) − b̂0(t)

)
Πε
Z = O(ε)

and, if b is independent of n,

Πε
Z

(
exp(iHε

Zt/ε)b̂ exp(−iHε
Zt/ε) − b̂ε(t)

)
Πε
Z = O(ε2)

with b̂ := b̂(0)uniformly for any finite time interval.
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3 Pauli-Bloch electrons

Proof. The derivation of the semiclassical limit in the reference space is exactly as
in chapter 2. For translating the result back to the Zak representation, we observe
that lemma 2.20 is valid as well because of lemma 3.5.

Now we can give the proof of theorem 3.8.
Proof. (of theorem 3.8) We insert U−1⊗1C2 and U⊗1C2 between the quantities
of proposition 3.4. By definition we have

Πε =
(
U−1 ⊗ 1C2

)
Πε
Z (U ⊗ 1C2)

and
exp(iHεt/ε) =

(
U−1 ⊗ 1C2

)
exp(iHε

Zt/ε) (U ⊗ 1C2) .

Furthermore we have

(
U−1 ⊗ 1C2

)
W
(

2

∫

S2

dλ(n)b ◦ Φt,ε(·, ·, n)∆(q, p, n)

)
(U ⊗ 1C2)

= 2

∫

S2

dλ(n)
(
U−1W

(
b ◦ Φt,ε(·, ·, n)1HS

f

)
U
)
⊗
(

1

2
1C2 +

√
3

4
n · σ

)

including the cases ε = 0 and t = 0 (the latter one leading to b̂). Now as in
chapter 2 the result follows with proposition 5.21 in [Teu].

3.5 Adiabatic perturbation theory with relativistic

corrections

In section 3.1 we stated a theorem relating the time evolution of the Dirac Hamil-
tonian with the one of the Pauli Hamiltonian. Unfortunately, we were not able to
prove such a relation including relativistic corrections of higher orders. However,
one can, as done in the physics literature derive relativistic corrections to the Pauli
Hamiltonian at least on a formal level. The resulting Hamiltonian derived in [Yn],
p. 84 reads in our case

Hε,sr : = Hε,P − 1

8c2
((−i∇x − A(εx))2 − εB(εx) · σ)2

+
1

8c2
(
(∇VΓ(x) + ε∇φ(εx)) × (−i∇x) · σ − ∆VΓ(x) − ε2∆φ(εx)

)
.

The unperturbed Hamiltonian in Bloch-Flouquet representation reads in this case

Hsr
per(k) =

1

2
(−i∇y + k)2 + VΓ(y) − 1

8c2
(−i∇y + k)4

+
1

8c2
∇VΓ(y) × (−i∇y + k) · σ − 1

8c2
∆VΓ(x).
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3.5 Adiabatic perturbation theory with relativistic corrections

Under suitable additional assumptions on VΓ, Hsr
per(k) is self-adjoint with domain

D := H4(T3)⊗C2 ⊂ L2(T3)⊗C2 and one can apply space-adiabatic perturbation
theory as in the Dirac or Pauli case. The resulting effective Hamiltonian yields

(hsr0 )ν,µ (q, p) =
〈
ψsrν (q − A(p)), Hsr

0 (q, p)ψsrµ (q − A(p))
〉
, ν, µ ∈ {1, . . . , N}

with

Hsr
0 (q, p) = HP

0 − 1

8c2
(−i∇y + q − A(p))4 +

1

8c2
(∇VΓ(y) × (−i∇y) · σ − ∆VΓ(y))

and ψsrν (k) eigenfunctions of the unperturbed Hamiltonian Hsr
per(k). As in the

Dirac and Pauli case, one can compute the first order corrections in the case of a
single two-fold degenerate eigenvalue band E∗(k) as

(h1)ν,µ (q, p) = −FLor(q̃, p) · Asr
ν,µ(q̃) − B(p) · Msr

ν,µ(q̃)

+
〈
ψsrν (q − A(p)), Hsr

1 (q, p)ψsrµ (q −A(p))
〉
.

where q̃ = q − A(p), ν, µ = 1, . . . , N . FLor, A and M are defined analogously to
the Dirac resp. Pauli case and Hsr

1 is given by

Hsr
1 (q, p) = −1

2
B(p) · σ − 1

4c2
(−i∇y + q − A(p))2(B(p) · σ)

+
1

8c2
∇φ(p) × (−i∇y + q) · σ.

Due to the spin-orbit term ∇VΓ(y) × (−i∇y + k) · σ, that appears already in
the unperturbed Hamiltonian, one has no special symmetry in the eigenfunctions
of a band as one had in the Pauli case for |I| = 2. Therefore, the results do not
provide new insight compared to the Dirac case.
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4 Nonrelativistic limit of

Dirac-Bloch electrons

After having studied the adiabatic limit of the Pauli Hamiltonian, it is natural
to ask whether all the quantities in chapter 2 have a limit as c tends to ∞ and
whether this limit agrees with the corresponding quantities derived from the Pauli
Hamiltonian. To fix notation, we put a super- or subscript P on the quantities
of chapter 3 and make the c-dependence of the quantities of chapter 2 explicit
either by putting a superscript c or writing the quantity as a function of c. The
keystone for our analysis is, as in section 3.1, the fact that the c-dependent resol-
vent Rper(ζ, k, c) as introduced in (2.6) has for fixed (ζ, k) a power series expansion
around c = ∞ of the form

Rper(ζ + c2, k, c) =

∞∑

n=0

1

cn
Rper,n(ζ, k)

for c large enough according to [Th]. An analysis of the proof of Thaller in section
4.1 shows that in our case the power series converges not only pointwise, but
can be also differentiated coefficientwise with respect to k and ζ and that the
power series of the derivatives converge uniformly in k ∈ M∗, ζ ∈ Λper(k) for 1

c

small enough. Moreover, one can even give a lower bound R on the radius of
convergence independent of the degree of the derivatives. In particular, for 1

c
≤ R,

the existence of an isolated family {En(k, c)}n∈I enclosed by circles ΛP
per(k) + c2

with ΛP
per from chapter 3 independent of c follows. Furthermore also Pper(k, c),

the unitary Uper(k, c) and their derivatives have uniformly convergent power series
expansions for 1

c
≤ R.

Next, in section 4.2 we will study how these results are related to the symbols
π(c), u(c) and h(c) resp. their quantizations. To make the quantities comparable,
one chooses as reference space the reference space of the Pauli Hamiltonian. Then
one can show that π(c), u(c) and h(c)−c2 have, for 1

c
≤ R power series expansions

in 1
c

that are absolutely convergent in ‖·‖(1)
n for any n ∈ N, which translates to

a norm-convergent power series expansion for their quantizations. The result is
given in theorem 4.4. An obvious question is also whether the central statements
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4 Nonrelativistic limit of Dirac-Bloch electrons

of theorem 2.6, i.e.

‖[exp(−iHε
Zt),Π

ε
Z ]‖ = O(ε∞(1 + |t|))

and ∥∥∥exp(−iHε
Zt)Π

ε
Z − Uε∗

(
exp(−iĥt) ⊕ 0

)
Uε
∥∥∥ = O(ε∞(1 + |t|))

hold uniformly in c. Unfortunately they don’t need to, but one can at least show
that the error term is at most linearly growing in c as stated in theorem 4.4.

Finally we also study the behavior of the semiclassical limit. In particular,
theorem 4.7 tells us that one can approximate the time evolution of an observable
under the Dirac Hamiltonian by the semiclassical equations of motion derived from
the Pauli Hamiltonian.

4.1 The unperturbed quantities

As mentioned in the introduction of this chapter, we first concentrate on an ex-
pansion of the unperturbed resolvent Rper(ζ + c2, k, c) and the existence of an
isolated family {En(c)}n∈I in a neighborhood of c = ∞. After that we focus on
the projection Pper(k, c) and in particular on the τ -equivariant unitary Uper(k, c).

As a start, we fix an isolated family {EP
n (k)}n∈I of eigenvalue bands of the Pauli

Hamiltonian and enclosing circles ΛP
per(k) as in chapter 3. In the following, we will

deal with the Hamiltonian

H∞
per(k) := HP

per(k) ⊗
1

2
(−i∇y − k)2

self-adjoint on DP ⊗DP =: D∞ ⊂ H∞
f = HP

f ⊗HP
f and its resolvent

R∞
per(ζ, k) :=

(
H∞

per(k) − ζ
)−1

.

Therefore it will turn out useful to assume that

inf
k∈M∗

dist(ΛP
per(k), σ(H∞

per(k))) > 0.

Note that this condition on ΛP
per is stricter than the one introduced in chapter 3,

but since 1
2
(−i∇y+k)

2 has for fixed k ∈M∗ purely discrete spectrum accumulating
at infinity and it was not required for ΛP

per to be continuous, this can be satisfied

without further problems. Furthermore we choose OP
per ⊂ C × R3 and KP

per ⊂
C × R3 such that

⋃

k∈R3

(
ΛP

per(k) × {k}
)
⊂ KP

per ⊂ OP
per ⊂

⋃

k∈R3

(
C \ σ(H∞

per(k)) × {k}
)
.
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Finally, we introduce the projectors

π+ = 1L2(T3) ⊗ (1C2 ⊕ 0C2),

π− = 1 − π+

on the upper resp. lower components. The quantizations of π± (precisely: of the
symbols (q, p) 7→ π±) are P± := π̂±. In the following, we will frequently use the
splitting of an operator A ∈ L(Hf) into its diagonal resp. even part

AD = π+Aπ+ + π−Aπ−

and its off-diagonal resp. odd part

AOD = π+Aπ− + π−Aπ+.

Now we turn to the expansion ofRper(ζ+c
2, k, c) starting with the following lemma.

Lemma 4.1 Let K(ζ, k, c) :=
(
1 − 1

2c2
ζ2R∞

per(ζ, k)
)−1

R∞
per(ζ, k). Then K(ζ, k, c)

is well defined for c >
√

1
2
|ζ|2

∥∥R∞
per(ζ, k)

∥∥
L(H∞

f
,D∞)

and has the power series ex-

pansion

K(ζ, k, c) =
∞∑

n=0

1

c2n
ζ2

2

(
ζ2

2
R∞

per(ζ, k)

)n+1

.

Moreover, for any α ∈ N0 × N3
0 the series converges absolutely in the sense of

sup(ζ,k)∈KP
per

∥∥∥∂α(ζ,k)·
∥∥∥
L(H∞

f
,D∞)

for

c >

√
sup

(ζ,k)∈KP
per

∥∥∥∥
1

2
|ζ|2R∞

per(ζ, k)

∥∥∥∥
L(H∞

f
,D∞)

Proof. Clearly, for fixed (ζ, k) ∈ OP
per and c >

√
1
2
|ζ |2

∥∥R∞
per(ζ, k)

∥∥
L(H∞

f
,D∞)

, we

can expand
(
1 − 1

2c2
ζ2R∞

per(ζ, k)
)−1

into a von Neumann series that converges in
‖·‖L(H∞

f
). It remains to show that the series converges in the sense of

sup
(ζ,k)∈KP

per

∥∥∂α(ζ,k)·
∥∥
L(H∞

f
,D∞)

.

To this end, we fix l ∈ N and observe

∂α(ζ,k)

(
ζ2

2
R∞

per(ζ, k)

)l

=
∑

α(1)+···+α(l)=α

α!

α(1)! . . . α(l)!

l∏

i=1

∂α
(i)

(ζ,k)

(
ζ2

2
R∞

per(ζ, k)

)
.
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4 Nonrelativistic limit of Dirac-Bloch electrons

For l > |α| every summand has at most |α| factors that with α(i) 6= 0, therefore
we have the norm estimate

∥∥∥∥∥∂
α
(ζ,k)

(
ζ2

2
R∞

per(ζ, k)

)l∥∥∥∥∥ ≤ l|α|Cα

∥∥∥∥
ζ2

2
R∞

per(ζ, k)

∥∥∥∥
l−|α|

L(H∞

f
,D∞)

with

Cα :=

(
1 + sup

(ζ,k)∈KP
per

sup
β≤α

∥∥∥∥∂
β
(ζ,k)

ζ2

2
R∞

per(ζ, k)

∥∥∥∥
L(H∞

f
,D∞)

)|α|

<∞.

Cα < ∞ can be seen inductively by noticing that KP
per is compact, R∞

per(ζ, k) ∈
L(H∞

f ,D∞) and differentiating the relation (H∞
per(k)−ζ)R∞

per(ζ, k) = 1 from which
one obtains

∂α(ζ,k)R
∞
per(ζ, k) = −R∞

per(ζ, k)
∑

β≤α,β 6=0

(
α

β

)
∂β(ζ,k)

(
H∞

per(k) − ζ
)
∂α−β(ζ,k)R

∞
per(ζ, k).

Now the claim follows by observing that the radius of convergence of the power
series

∑∞
l=0 l

|α|xl is 1 independent of α.

Proposition 4.2 For each fixed (ζ, k) ∈ O∞
per and all α ∈ N3

0 × N0, ∂
α
(ζ,k)Rper(ζ +

c2, k, c) is well-defined for 1
c

small enough and has a power series expansion

∂α(ζ,k)Rper(ζ + c2, k, c) =

∞∑

n=0

1

cn
∂α(ζ,k)Rper,n(ζ, k).

Moreover, the series converges absolutely in the sense of sup(ζ,k)∈KP
per

∥∥∥∂α(ζ,k)·
∥∥∥
L(Hf ,D)

with convergence radius R independent of α. The first two coefficients are given
by

Rper,0(ζ, k) = RP
per(ζ, k) ⊗ 0,

Rper,1(ζ, k) =
1

2

(
0 RP

per(ζ, k) ((−i∇y + k) · σ)
((−i∇y + k) · σ)RP

per(ζ, k) 0

)
.

Proof. According to [Th], one has the identity

Rper(ζ + c2, k, c) (4.1)

=

(
P+ +

1

2c

(
α · (−i∇y − k) +

1

c
ζ

))
K(ζ, k, c)

×
(
1 +

1

2c
VΓ(y)

(
α · (−i∇y − k) +

1

c
ζ

)
K(ζ, k, c)

)−1
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4.1 The unperturbed quantities

whenever the right hand side is well-defined. For fixed (ζ, k) the last factor can be
expanded into a von Neumann series

(
1 +

1

2c
VΓ(y)

(
α · (−i∇y − k) +

1

c
ζ

)
K(ζ, k, c)

)−1

(4.2)

=

∞∑

n=0

1

cn

(
1

2
VΓ(y)

(
α · (−i∇y − k) +

1

c
ζ

)
K(ζ, k, c)

)l

whenever c is large enough that

1

c

∥∥∥∥
1

2
VΓ(y)

(
α · (−i∇y − k) +

1

c
ζ

)
K(ζ, k, c)

∥∥∥∥
L(Hf )

< 1.

Note that such a c exists since ‖K(ζ, k, c)‖L(Hf ,D∞) stays bounded for large c (as it

is a power series in 1
c

for c large enough) and VΓ(y)(−i∇y · α) as well as VΓ(y) are
bounded operators in L(D∞,Hf) by assumption (A1). Together with the series
expansion of K(ζ, k, c) in lemma 4.1 it follows that Rper(ζ+ c2, k, c) has a (a priori
pointwise) power series expansion

Rper(ζ + c2, k, c) =
∞∑

n=0

1

cn
Rper,n(ζ, k). (4.3)

The first two coefficients follow by direct computation as in [Th].

Next we show that (4.3) converges in sup(ζ,k)∈KP
per

∥∥∥∂α(ζ,k)·
∥∥∥
L(Hf ,D)

with conver-

gence radius Rα depending on α. To this end let, for 1
c
< Rα, K(ζ, k, c) converge

in sup(ζ,k)∈KP
per

∥∥∥∂β(ζ,k)·
∥∥∥
L(Hf ,D)

for all β ≤ α,

sup
(ζ,k)∈KP

per

sup
β≤α

∥∥∥∂β(ζ,k)K(ζ, k, c)
∥∥∥
L(Hf ,D∞)

< 1

and

1

c
sup

(ζ,k)∈KP
per

sup
β≤α

∥∥∥∥∂
β
(ζ,k)

1

2
VΓ(y)

(
α · (−i∇y − k) +

1

c
ζ

)∥∥∥∥
L(D∞,Hf )

< 1.

Then also (4.3) converges in sup(ζ,k)∈KP
per

∥∥∥∂β(ζ,k)·
∥∥∥
L(Hf ,D)

for all β ≤ α, in particular

∂α(ζ,k)Rper(ζ + c2, k, c) =
∞∑

n=0

1

cn
∂α(ζ,k)Rper,n(ζ, k). (4.4)
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4 Nonrelativistic limit of Dirac-Bloch electrons

Finally, we show that there is even a α-independent lower bound R on the radius
of convergence. One observes that the derivatives of Rper(ζ, k, c) satisfy

∂α(ζ,k)Rper(ζ + c2, k, c)

= −Rper(ζ + c2, k, c)
∑

β≤α,β 6=0

(
α

β

)
∂β(ζ,k) (Hper(k, c) − ζ) ∂α−β(ζ,k)Rper(ζ + c2, k, c).

Inductively it follows that ∂α(ζ,k)Rper(ζ + c2, k, c) is a sum of compositions of the

derivatives of Hper(k, c) − ζ (that are either 1 or cαi) and the resolvent Rper(ζ +
c2, k, c) itself. This sum of compositions expands therefore into a polynomial
in c and a power series in 1

c
that converges absolutely in sup(ζ,k)∈KP

per
‖·‖L(Hf ,D)

for 1
c
≤ R0 =: R. By uniqueness of the power series expansion this expansion

and (4.4) must agree, therefore it follows that the power series (4.3) converges in

sup(ζ,k)∈KP
per

∥∥∥∂α(ζ,k)·
∥∥∥
L(Hf ,D)

for 1
c
≤ R.

This proposition gives us also information about the existence of a c-dependent
isolated family.

Corollary 4.3 Let {EP
n (k)}n∈I be an isolated family of eigenvalue bands of the

Pauli Hamiltonian. Then, for 1
c
≤ R, the family {En(k, c)}n∈I is also isolated and

enclosed by the circle ΛP
per(k)+c2. In particular, all the quantities of chapter 2 can

be constructed for 1
c
≤ R.

Proof. We recall that ΛP
per(k)+c2 can be chosen to be locally constant in k. Since

Rper(·, k, c) is defined on ΛP
per(k) + c2 for k ∈ M∗, 1

c
≤ R by proposition 4.2, we

know that

Pper(k, c) =

∫

Λper(k)+c2
dζRper(ζ, k, c)

=

∫

Λper(k)

dζRper(ζ + c2, k, c)

is for all k ∈ M∗, 1
c
≤ R an projector of (by local continuity in k) constant

dimension d and that ΛP
per(k) + c2 separates d bands of eigenvalues (resp. bands

whose degree of degeneracy add up to d) from the rest of the spectrum. This family
must necessarily be isolated. Furthermore, the indices of the families {EP

n (k)}n∈I
and its corresponding cdependent family (i.e. the set I) are the same since E1(k, c)
was defined as the lowest eigenvalue greater than 0 as in the case of the Pauli
Hamiltonian.
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4.1 The unperturbed quantities

It remains to show that also Pper(k, c) and Uper(k, c) have power series expansions
in 1

c
. For Pper(k, c) it follows by the formula

Pper(k, c) =

∫

Λper(k)

dζRper(ζ + c2, k, c)

and proposition 4.2 that

Pper(k, c) =
∞∑

n=0

1

cn

(∫

Λper(k)

dζRper,n(ζ + c2, k)

)

= :

∞∑

n=0

1

cn
Pper,n(k)

where the power series is for all m ∈ N absolutely convergent in

sup
|α|≤m

sup
k∈M∗

‖∂αk ·‖L(Hf ,D)

for 1
c
≤ R. For Uper(k, c) we know that

Uper,0 := UP
per(k) ⊗ exp(iky) (4.5)

is smooth, right τ -covariant and intertwines Pper,0(k) and Pper,0(0), i.e.

U∗
per,0(k)Pper,0(k)Uper,0(k) = Pper,0(0), k ∈M∗.

Now if we choose (w.l.o.g.) R small enough such that

sup
k∈M∗

‖Pper,0(k) − Pper(k, c)‖ <
1

2

for all 1
c
≤ R, we can define Uper(k, c) using the Nagy formula, i.e.

Uper(k, c) (4.6)

=
(
1 − (Pper,0(k) − Pper(k, c))

2)− 1
2

× (Pper,c(k)Pper(k, c) + (1 − Pper,c(k)) (1 − Pper(k, c))) .

Now we know that

U∗
per(k, c)Pper(k, c)Uper(k, c) = Pper,0(0).
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4 Nonrelativistic limit of Dirac-Bloch electrons

Furthermore, by construction it is clear that Uper(k, c) is right τ -covariant and
smooth in k. Furthermore, formula (4.6) shows that

Uper(k, c) =
∞∑

n=0

1

cn
Uper,n(k) (4.7)

where the power series is for all m ∈ N absolutely convergent in

sup
|α|≤m

sup
k∈M∗

‖∂αk ·‖L(Hf ,D)

for 1
c
≤ R and with Uper,0(k) given in (4.5).

4.2 Adiabatic perturbation theory

Now we turn to the question how the results of the last section can be used to
derive power series expansions of the symbols derived in section 2.2 resp. their
quantizations. The following theorem follows from proposition 4.5 and the proof
at the end of this section.

Theorem 4.4 Let {EP
n (k)}n∈I be an isolated family of bands of the Pauli Hamil-

tonian and, for 1
c
≤ R, {En(k, c)}n∈I be the corresponding isolated family Hper(k, c)

(see corollary 4.3). Then the following holds:

1. Πε,c
Z , U

ε,c and ĥ(c) as in theorem 2.6 have power series expansions

Πε,c
Z =

∞∑

n=0

1

cn
Πε
Z,n, Uε,c =

∞∑

n=0

1

cn
Uε
n and ĥ(c) =

∞∑

n=0

1

c2n
ĥ2n

that converge absolutely and uniformly in ε for 1
c
≤ R.

2. One has
‖[exp(−iHε,c

Z t),Πε,c
Z ]‖ = O(cε∞(1 + |t|))

and
∥∥∥exp(−iHε,c

Z t)Πε,c
Z − (Uε,c)∗

(
exp(−iĥ(c)t) ⊕ 0

)
Uε,c

∥∥∥ = O(cε∞(1 + |t|)).

To prove theorem 4.4 we start, as in section 4.1 with the Moyal resolvent R(ζ, c)
and continue with studying the symbols π(c), u(c) and h(c).
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4.2 Adiabatic perturbation theory

Proposition 4.5 Let 1
c
≤ R and Rj(ζ, c) be as constructed in lemma 2.10. Then

there are coefficients Rj,n ∈ S1

τ (L(Hf)), j, n ∈ N0 such that

Rj(ζ + c2, c) =
∞∑

n=0

1

cn
Rj,n(ζ) (4.8)

where the right hand side is, for any m ∈ N, absolutely convergent in ‖·‖(1)
m uni-

formly in ζ. Furthermore, Rj,n is diagonal resp. off-diagonal in the π+-splitting
for n even resp. odd and Rj,0 = π+Rj,0π+ for all j ∈ N0.

Proof. For R0 we have immediately by proposition 4.2 that

R0(ζ + c2, c, q, p) =
∞∑

n=0

1

cn
Rper,n(ζ − φ(p), q −A(p))

with convergence in ‖·‖(1)
m uniformly in ζ. Now assume that (4.8) is valid for j ≤ n

and that furthermore for j ≤ n

Rj,0(ζ) = π+Rj,0(ζ)π+

and that Rj,l is diagonal (resp. off-diagonal) in the π+ splitting for l even (resp.
odd) which is obviously satisfied for j = 0 (see also Thaller [Th]). Then for n + 1
we have by definition

Rn+1(ζ + c2, c) (4.9)

= −R0(ζ + c2, c)

(
(
H(c) − ζ − c2

)
♯
∑

j≤n

εjRj(ζ + c2, c)

)

n+1

= −R0(ζ + c2, c)

(
(cq̃ · α + φ1) ♯

∑

j≤n

εjRj(ζ + c2, c)

)

n+1

where we used that the (q, p)-independent terms of H(c, q, p) do not contribute to
the right hand side. Obviously, we have

Rn+1(ζ + c2, c) =: cRj,−1(ζ) +
∞∑

n=0

1

cn
Rj,n(ζ)

where the power series part is for all m ∈ N absolutely convergent in ‖·‖(1)
m uni-

formly in ζ. Furthermore, from (4.9) it follows that all Rj,n with n even (resp.
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4 Nonrelativistic limit of Dirac-Bloch electrons

odd) are diagonal (resp. off-diagonal) because cα maps diagonal terms into off-
diagonal terms (and vice versa) and shifts the index about 1 whereas φ(p)1 leaves
diagonality resp. off-diagonality invariant. Finally we observe that

Rn+1,−1(ζ) = −R0,0(ζ)

(
cq̃ · α♯

∑

j≤n

εjRj,0(ζ)

)

n+1

= −π+R0,0(ζ)

(
cq̃ · π+απ+♯

∑

j≤n

εjRj,0(ζ)π+

)

n+1

= 0

and

Rn+1,0(ζ) = −R0,0(ζ)

(
cq̃ · α♯

∑

j≤n

εjRj,1(ζ)

)

n+1

−R0,1(ζ)

(
cq̃ · α♯

∑

j≤n

εjRj,0(ζ)

)

n+1

−R0,0(ζ)

(
φ1♯

∑

j≤n

εjRj,1(ζ)

)

n+1

= π+Rn+1,0(ζ)π+

where we used that π+ commutes with diagonal terms.
Using proposition 4.5 we can expand the other symbols of chapter 2.

Proposition 4.6 Let 1
c
≤ R and πj(c), uj(c) and hj(c) be as constructed in chap-

ter 2. Then one has

πj(c) =
∞∑

n=0

1

cn
πj,n, uj(c) =

∞∑

n=0

1

cn
uj,n and

(
h(c) − c2

)
j

=
∞∑

n=0

1

c2n
hj,2n.

where the power series are, for any m ∈ N, absolutely convergent in ‖·‖(1)
m . For

j = 0, 1, the zeroth order terms in 1
c

are diagonal in the π+-splitting and agree
with the corresponding terms in the Pauli case of chapter 3, i.e.

πj,0 = πPj ⊗ 0, π+uj,0π+ = uPj ⊗ 0 and hj,0 = hPj ⊗ 0, j = 0, 1.

In the case of a single eigenvalue of the Pauli Hamiltonian, i.e. |I| = 2 we have

(h0,2)ν,µ =
1

4

〈
ϕPν , [−

1

2
∆2
y − iσ · (∇VΓ ×∇y) +

1

2
∆VΓ]ϕPµ

〉
, ν, µ ∈ I.
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4.2 Adiabatic perturbation theory

Proof. The definition

πj(c) =

∫

ΛP +c2
dζRj(ζ, c)

=

∫

ΛP

dζRj(ζ + c2, c)

gives the expansion

πj(c) =

∞∑

n=0

1

cn
πj,n

where the right hand sides are, for any m ∈ N, absolutely convergent in ‖·‖(1)
m

for1
c
≤ R. Next it follows that also the Moyal unitary u has a power series

expansion

uj(c) =
∞∑

n=0

1

cn
uj,n

absolutely convergent in ‖·‖(1)
m for all m ∈ N since u is constructed as a sum of

products of U c
per(q −A(p)), π and their derivatives.

It remains to prove the statement about h. We start with the observation that

H(c)♯π(c) =

∫

ΛP +c2
dζR(ζ, c)ζ

=

∫

ΛP

dζR(ζ + c2, c)ζ

+c2
∫

ΛP

dζR(ζ + c2, c)

=

∫

ΛP

dζR(ζ + c2, c)ζ + c2π(c).

By the definition
h⊕ 0K⊥

f
= u♯H♯π♯u∗

it follows that
(
h(c) − c2

)
j

=

∞∑

n=0

1

cn
hj,n

where the right hand side is absolutely convergent in ‖·‖(1)
m for all m ∈ N. Next,

we want to show that all odd coefficients hj,2n+1 vanish. In the series expansion of
Rper(ζ+c

2, k, c), the odd coefficients are all off-diagonal in the π+-splitting whereas
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4 Nonrelativistic limit of Dirac-Bloch electrons

the even coefficients are diagonal. The same holds true for Hper(c). Since R, π,
u and h are all constructed by multiplication, integration and differentiation of
these quantities and the product of a diagonal term with a off-diagonal term gives
an off-diagonal term whereas diagonal times diagonal terms and off-diagonal times
off-diagonal terms give diagonal terms, we conclude that also in the expansion
of (h(c) − c2) ⊕ 0K⊥

f
all odd coefficients are off-diagonal. However, we have that

πr = π+πrπ+ and therefore all coefficients of (h(c) − c2) ⊕ 0K⊥

f
must be diagonal,

therefore the odd ones must vanish.

To compute the zeroth order terms in 1
c

explicitly, we state that since R0,0(ζ) =
RP

0 (ζ) ⊗ 0 it follows that

π0,0 =

∫

Λ

dζR0,0(ζ)

= πP0 ⊗ 0.

Furthermore, one has (see definition 4.5)

u0,0π+ = U (0)
per(q −A(p))π+

= UP
per(q − A(p)) ⊗ 0

= uP0 ⊗ 0

and therefore

h0,0 = hP0 .

Next, we turn to the first order terms, starting with the computation of R1(ζ +
c2, c):

R1(ζ + c2, c) = −
(
R0(ζ + c2, c)♯(H0 − ζ − c2)

)
1
R0(ζ + c2, c)

=
i

2
{R0(ζ + c2, c), H0}R0(ζ + c2, c)

=
i

2
{R0,0(ζ), φ}R0,0(ζ) −

i

2
{R0,1(ζ), α · q̃}R0,0(ζ)

− i

2
{R0,0(ζ), α · q̃}R0,1(ζ) + O(

1

c
).

Since the first term agrees with the corresponding term in the Pauli case, we go
on with studying the second and third term.
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4.2 Adiabatic perturbation theory

For the second term we obtain, using the relation (a·α)(b·α) = (a · b) 1+i(a×b)·S
(and therefore [a · α, b · α] = 2i(a× b) · S)

i

2
{R0,1(ζ),α · q̃}R0,0(ζ)

=
i

4
{R0,0(ζ)(−i∇y − q̃) · α,α · q̃}R0,0(ζ)

+
i

4
{((−i∇y − q̃) · α)R0,0(ζ),α · q̃}R0,0(ζ)
︸ ︷︷ ︸

=0

= − i

4
R0,0(ζ){q̃ · α,α · q̃}R0,0(ζ)

+
i

4
({R0,0(ζ), q̃} · (−i∇y − q̃))R0,0(ζ)

−1

4
({R0,0(ζ), q̃} × (−i∇y − q̃)) · SR0,0(ζ).

The third term becomes

i

2
{R0,0(ζ), α · q̃}R0,1(ζ)

=
i

4
{R0,0(ζ), α · q̃}(−i∇y − q̃) · αR0,0(ζ)

=
i

4
{R0,0(ζ), q̃} · (−i∇y − q̃)R0,0(ζ)

+
i

4
({R0,0(ζ), q̃} × (−i∇y − q̃)) · SR0,0(ζ).

Putting this together, we arrive at

R1,0(ζ) =
i

2
{R0,0(ζ), φ}R0,0(ζ) −

i

2
({R0,0(ζ), q̃} · (−i∇y − q̃))R0,0(ζ)

+
i

4
R0,0(ζ){q̃ · α,α · q̃}R0,0(ζ)

=
i

2
{R0,0(ζ), (−i∇y − q̃)2 + φ}R0,0(ζ) +

i

2
(B(p) · S)R0,0(ζ)R0,0(ζ)

= RP
1 (ζ) ⊗ 0.

Now it follows that

π1,0 = πP1 ⊗ 0,

(H♯π)1,0 =

∫

Λper

dζ
(
RP

1 (ζ) ⊗ 0
)
ζ

= (HP ♯πP )1 ⊗ 0
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4 Nonrelativistic limit of Dirac-Bloch electrons

and also

u1,0π+ = uP1 ⊗ 0

since u1 is constructed from u0, π0 and π1.Now

h1,0 = hP1 ⊗ 0

follows directly.
In the case of a single eigenvalue band EP

∗ , we can also compute the term of
order 1

c2
in h0 as in [Th]: One has

Uper

(∫

Λper

dζRper(ζ + c2, k, c)ζ

)
U∗

per

= Uper

(∫

Λper

dζRper(ζ + c2, k, c)(ζ − E∗)

)
U∗

per + E∗πr

=
1

c2
Uper

(∫

Λper

dζRper,2(ζ, k)(ζ − E∗)

)
U∗

per + E∗πr + O(
1

c4
)

= EP
∗ πr +

1

4c2
πr ((−i∇y + k) · σ) (V − E∗) ((−i∇y + k) · σ) πr,

where the terms
∫
Λper

dζRper,j(ζ, k)(ζ −E∗) vanish for j = 0, 1 because Rper,j(ζ, k)

have only a pole of order 1 in EP
∗ . Furthermore, if one knows that also the

eigenvalue bands of Hper(k) consist of a single eigenvalue E∗ (e.g. in the case of
inversion-symmetric VΓ), one has furthermore that (again as in Thaller, p.188/189)

(h0,2)ν,µ =
1

4

〈
ϕPν , [−

1

2
∆2
y − iσ · (∇VΓ ×∇y) +

1

2
∆VΓ]ϕPµ

〉
, ν, µ ∈ I.

Now we are able to give the proof of theorem 4.4.
Proof. (of theorem 4.4) We first study how the resummation procedure of
proposition A.7 can be adapted to the c-dependent case. Since the resummation
is a subtle point, we introduce the notation π̃(c) =

∑N(ε)
j=0 ε

jπj(c) etc. for the
resummation in contrast to chapter 2 where we used π for both the formal power
series and its resummation. For any formal symbol with coefficients πj that have
a power series expansion

πj(c) =
∞∑

n=0

1

cn
πj,n
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4.2 Adiabatic perturbation theory

that is absolutely convergent in ‖·‖(w)
k for all k ∈ N for 1

c
≤ R, we replace in the

proof of A.7 the definition

εk := min

(
1

k
,
1

2

(
1 + max

l≤k
‖πl‖(w)

k

)−1
)
, k ∈ N

by

εk := min


1

k
,
1

2

(
1 + max

l≤k
sup
1
c
≤R

∞∑

n=0

1

cn
‖πl,n‖(w)

k

)−1

 , k ∈ N. (4.10)

With this definition of εk, we construct resummations

π̃(c) :=

N(ε)∑

j=0

εjπj(c)

and analogous for ũ, h̃. Introducing π̃n :=
∑N(ε)

j=0 ε
jπj,n etc. and the corresponding

quantizations π̂n etc. we know that

π̂(c) =

∞∑

n=0

1

cn
π̂n, û(c) =

∞∑

n=0

1

cn
ûn and ĥ(c) − c2 =

∞∑

n=0

1

c2n
ĥ2n (4.11)

where the right hand sides are absolutely convergent in supε∈[0,ε0) ‖·‖L(Hf ) resp.

supε∈[0,ε0) ‖·‖L(Hf ,Hr) resp supε∈[0,ε0) ‖·‖L(Hr) because of definition 4.10. In order to

not confuse π̂n as used in (4.11) with π̂j, i.e. the quantization of the j-th coefficient
of the formal power series π, we use in the following the expression π̂(∞) := π̂0,
π̃(∞) = π̃0 etc.

We turn to the question how we can translate the results to Πε,c
Z and Uε,c. We

know that with the explicit bounds of propositions A.7 and A.9
∥∥π̂2(c) − π̂(c)

∥∥ = O(ε∞)

uniformly in c because all ‖πj‖(1)
m are bounded uniformly in c. In particular,

Πε,c
Z =

∫

|ζ−1|= 1
2

dζ(π̂(c) − ζ)−1

is well-defined (for ε small enough independent of c) and

Πε,c
Z − π̂(c) = O(ε∞)

79



4 Nonrelativistic limit of Dirac-Bloch electrons

uniformly in c. Furthermore,

Πε,c
Z =

∞∑

n=0

1

cn
Πε
Z,n

where the right hand side converges in the operator-norm uniformly in ε since
(π̂(c)−ζ)−1 has a power series expansion that converges uniformly in ε and ζ. Since
Uε,c is constructed from û(c) and Πε,c

Z by analytic operations, i.e. multiplication
and taking the square root, one can similarly show that

Uε,c =

∞∑

n=0

1

cn
Uε
n

where the right hand side converges uniformly in ε and

Uε,c − û(c) = O(ε∞)

uniformly in c.
Next, we want to estimate

‖[exp(−iHε,c
Z t),Πε,c

Z ]‖

From the proof of theorem 2.6, one can see that all the estimates involved hold
uniformly in c except for the estimate of

Hε,c
Z π̂(c) − (Hε,c

Z π̂(c))∗

due to the fact that Hε,c
Z is polynomial in c. We use

π̂(c) = π̂(∞) +
1

c

∞∑

n=0

1

cn
π̂n+1

as in (4.11) with

π̂(∞) = π+π̂(∞)π+.

With

Hε,c
Z = c2β + c(−i∇y + k −A(ε∇τ

k)) · α + VΓ(y) + φ(ε∇τ
k)

and

c2βπ̂(∞) = c2π̂(∞) =
(
c2βπ̂(∞)

)∗
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4.3 Semiclassical limit

it follows that

c−1
(
Hε,c
Z π̂(c) − (Hε,c

Z π̂(c))
∗)

= c−1
(
(Hε,c

Z − c2β)π̂(∞) −
(
(Hε,c

Z − c2β)π̂(∞)
)∗)

+c−1
(
Hε,c
Z (π̂(c) − π̂(∞)) − (Hε,c

Z (π̂(c) − π̂(∞))∗
)

= O(εn)

with O(εn) uniformly in c because c−1(H − c2β), c−2H and c(π̃(c) − π̃(∞)) are
bounded uniformly in c. Finally we estimate

exp(−iHε,c
Z t)Πε,c

Z − (Uε,c)∗
(
exp(−iĥ(c)t) ⊕ 0

)
Uε,c

= exp(−i
(
Hε,c
Z − c21Hf

)
t)Πε,c

Z

− (Uε,c)∗
(
exp(−i

(
ĥ(c) − c21K

)
t) ⊕ 0K⊥

)
Uε,c

in a similar way. All the estimates done in the proof of theorem 2.6 are uniformly
in c except for the estimate of

(
Hε,c
Z (c) − c21Hf

)
π̂(c) − (Uε,c)∗

(
ĥ(c) − c21K

)
⊕ 0K⊥Uε,c

=
(
Hε,c
Z − c2β

)
π̂(∞) +

(
Hε,c
Z − c21Hf

)
(π̂(c) − π̂(∞))

− (Uε,c)∗
(
ĥ(c) − c21K

)
⊕ 0K⊥Uε,c

where we used that π̂(∞) = π+π̂(∞)π+. However, one has that c−1 (H − c2β),
c−2
(
Hε,c
Z − c21Hf

)
and c(π̂(c)− π̂(∞)) as well as their corresponding symbols are

uniformly bounded in c, therefore the substitution of the Weyl-product ♯̃ with the
Moyal product ♯ costs an error of order O(cε∞) which concludes the proof.

4.3 Semiclassical limit

The last step in our analysis of the nonrelativistic limit is to study the semiclassical
limit. Combining the results of our previous theorems, we arrive at the following
result.

Theorem 4.7 Let E∗ be an isolated two-fold degenerate Bloch band of the Pauli
Hamiltonian and Φt

ε,P be the flow defined in (3.6) and (3.7). Let furthermore
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4 Nonrelativistic limit of Dirac-Bloch electrons

b ∈ C∞
b (R6×S2,C) be Γ∗-periodic in the second argument, i.e. b(q, p+γ∗) = b(q, p),

let Πε,c := (U−1 ⊗ 1C4) Πε,c
Z (U ⊗ 1C4) and

bε(t) := 2

∫

S2

dλ(n)b ◦ Φt
ε,P (·, ·, n)

(
1

2
1C4 +

√
3

4
n · S

)

with bε := bε(0). Then, for 1
c
≤ R one has

Πε,c
(
exp(iHε,ct/ε)b̂ exp(−iHε,ct/ε) − b̂0(t)

)
Πε,c = O(cε∞(1+ |t|))+O(

1

c
)+O(ε)

and, if b is independent of n,

Πε,c
(
exp(iHε,ct/ε)b̂ exp(−iHε,ct/ε) − b̂ε(t)

)
Πε,c = O(cε∞(1+|t|))+O(

1

c
)+O(ε2)

uniformly for any finite time interval, where the Weyl quantization is in the sense
of b̂ = b(−i∇x, εx).

Proof. From theorem 2.6 it follows that
∥∥∥exp(−iHε,c

Z t)Πε,c
Z − (Uε,c)∗

(
exp(−iĥ(c)t) ⊕ 0

)
Uε,c

∥∥∥ = O(cε∞(1 + |t|)).

From proposition 4.6, it follows that hj and uj agree, for j = 0, 1 with the cor-
responding Pauli quantities up to order O( 1

c2
) resp. O(1

c
). Together with the

construction of Uε,P in the proof of theorem 4.4, it follows that Uε,c
Z and ĥ(c) agree

with the corresponding Pauli quantities up to order O(1
c

+ ε2), therefore

(Uε,c)∗
(
exp(−iĥ(c)t) ⊕ 0

)
Uε,c−

(
(Uε

P )∗
(
exp(−iĥP t) ⊕ 0

)
Uε
P

)
⊗0L2

τ (R3,L2(T3)⊗C2)

is of order O(1
c

+ ε2). Furthermore, from theorem 3.4 we have

exp(−iHε
Z,P t)Π

ε
Z,P − Uε∗

P

(
exp(−iĥP t) ⊕ 0

)
Uε
P = O(ε∞(1 + |t|)).

Together we have

exp(−iHε,c
Z t)Πε,c

Z − exp(−iHε
Z,P t)Π

ε
Z,P ⊗ 0L2

τ (R3,L2(T3)⊗C2)

= O(cε∞(1 + |t|)) + O(
1

c
) + O(ε2).

Now theorem 3.8 gives the desired result by observing that the translation to the
physical representation is independent of c and does not affect the π+-splitting.
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A Pseudodifferential calculus

In this appendix, we give a short overview on pseudodifferential calculus. For
the proofs and also a detailed description, we refer to [Fo] and also the appendix
of [Teu]. In the whole paragraph we assume that H1, H2 and H3 are separable
Hilbert spaces. In the following, we use multiindices α ∈ Nd

0 and define, as usual
|α| :=

∑d
l=1 αl and α! :=

∏d
l=1 αl!.

A.1 Weyl quantization and symbol classes

The basic idea of quantization is to associate to a function on a phase space R2d an
operator on the Hilbert space L2(Rd). One requires that the function (q, p) 7→ q
is turned into multiplication with x and the function (q, p) 7→ p is turned into the
differential operator −iε∇x for some ε > 0. If one has a function of the type

f(q, p) = g(q) + h(p)

one can easily define a quantization rule because g(−iε∇x) and g(x) are defined
via the functional calculus for operators on L2(Rd). For more general functions,
such an easy definition is not possible since −iε∇x and x do not commute. A
possible choice is the Weyl-quantization rule which is in some sense ”symmetric”
in (q, p) and has the advantage that it maps real-valued functions into self-adjoint
operators. To define the Weyl quantization, let A be a L(H1,H2)-valued smooth
and rapidly decreasing function, i.e. A ∈ S(R2d,L(H1,H2)). Then we can express
A as

A(q, p) =
1

(2π)d

∫

R2d

dηdξ(FA)(η, ξ)ei(η·q+ξ·p), (A.1)

where FA denotes the Fourier transform of A. Now due to

L2(Rd,H1) ∼= L2(Rd) ⊗H1

it seems reasonable to replace in (A.1)

ei(η·q+ξ·p) 7→ ei(η·q̂+ξ·p̂) ⊗ 1H1
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A Pseudodifferential calculus

where q̂ is multiplication with x and p̂ = −iε∇x. One arrives at the expression

1

(2π)d

∫

R2d

dηdξei(η·q̂+ξ·p̂) ⊗ (FA)(η, ξ). (A.2)

For ψ ∈ L2(Rd), the exponential is explicitly given by

(
ei(η·q̂+ξ·p̂)ψ

)
(x) = eiε

(η·ξ)
2 eiη·xψ(x+ εξ), (A.3)

therefore if FA belongs to L1(R2d,L(H1,H2)) then Â : L2(Rd,H1) → L2(Rd,H2)
given by

Âψ =
1

(2π)d

∫

R2d

dηdξei(η·q̂+ξ·p̂) ⊗ (FA)(η, ξ)ψ, ψ ∈ L2(Rd,H1) (A.4)

is a bounded operator with
∥∥∥Â
∥∥∥
L(L2(Rd,H1),L2(Rd,H2))

≤ 1

(2πε)d

∫

R2d

dξdy ‖(FA)(η, ξ)‖L(H1,H2) .

If we put (A.3) into (A.2) then for ψ ∈ S(Rd,H1) we have the explicit formula

ϕ(x) =
1

(2πε)d

∫

R2d

dξdyA(
1

2
(x+ y), ξ)e

i
ε
ξ·(x−y)ψ(y). (A.5)

where

ϕ =

(
1

(2π)d

∫

R2d

dηdξei(η·q̂+ξ·p̂) ⊗ (FA)(η, ξ)

)
ψ.

If ψ ∈ S(Rd,H1) then the formula (A.5) makes sense not only for A with FA ∈
L1(R2d,L(H1,H2)) but for a larger class of symbols. The type of symbol classes
which we are going to use are defined in terms of so called order functions.

Definition A.1 A function w : Rd → (0,∞) is called order function if there are
positive constants C0 and N0 ∈ N such that

w(x) ≤ C0 〈x− y〉N0 w(y) ∀x, y ∈ Rd

where 〈x〉 := (1 + |x|2) 1
2 .

If w1, w2 are order functions, then so is w1 +w2 (obviously) and w1 ·w2 because

w1 · w2(x) = w1(x) · w2(x)

≤ C0 〈x− y〉N0 w1(y)C
′
0 〈x− y〉N ′

0 w2(y)

= C0C
′
0 〈x− y〉N0+N ′

0 w1(y) · w2(y).
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A.1 Weyl quantization and symbol classes

Furthermore, the function 〈·〉 (hence also 〈·〉n, n ∈ N) is an order function, whereas
for each order function w with w(x) ≤ C0 〈x− y〉N0 w(y) ∀x, y ∈ R2d, clearly we
also have w(x) ≤ C0 〈x〉N0 w(0) resp. C0w(y) ≥ 〈y〉−N0 w(0) by setting y = 0 resp.
x = 0. Now we have the ingredients to define our symbol classes.

Definition A.2 Let w be an order function. Then we define

‖A‖(w,L(H1,H2))
k := max

|α|≤k
sup
x∈R2d

(
‖(∂αA) (x)‖L(H1,H2)

w−1(x)
)

for A in C∞(R2d,L(H1,H2)). The superscript L(H1,H2) is omitted in the following
whenever no confusion arises. Furthermore we define

Sw(L(H1,H2)) := {A ∈ C∞(R2d,L(H1,H2)) : ‖A‖(w)
k <∞∀k ∈ N0}

and

S(L(H1,H2)) :=
⋃

w order function

Sw(L(H1,H2)).

Remark A.3 We state that Sw1(L(H1,H2)) ⊆ Sw2(L(H1,H2)) if w1 ≤ const ·
w2. Furthermore S(L(H1,H2)) is a complex vector space and Sw(L(H1,H2)) are
subspaces. Together with the directed family of norms

‖·‖(w,L(H1,H2))
k , k ∈ N0

Sw(L(H1,H2)) are Fréchet spaces.

Proposition A.4 Let A ∈ Sw(L(H1,H2)), then (A.5) defines a continuous map-
ping from S(Rd,H1) to S(Rd,H2). More precisely (in the notation of (A.5)) there
is a m ∈ N depending on w and d such that for all n ∈ N

‖ϕ‖Sn ≤ Cn,w ‖A‖(w)
n+m ‖ψ‖Sn+m

where

‖ψ‖Sn := sup
|α|≤n

sup
x∈Rd

‖〈x〉n ∂αψ(x)‖Hi
, i = 1, 2.

Proof. If ψ ∈ S(Rd,H1), then clearly

g(x, ξ) =

∫

Rd

dyA(
1

2
(x+ y), ξ)ψ(y)e−

i
ε
ξ·y
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is well-defined and smooth. Moreover, the integrand is a Schwartz function for
each x, ξ and we get by partial integration

g(x, ξ) =

∫

Rd

dye−
i
ε
ξ·y 〈ξ〉−2M (1 − ε2∆y)A(

1

2
(x+ y), ξ)ψ(y)

from which it follows that

|g(x, ξ)| ≤ CM 〈ξ〉−2M w(
1

2
x, ξ) ‖A‖(w)

2M

(∫

Rd

dy

〈
1

2
y

〉Nw

sup
|α|≤2M

‖∂αψ(y)‖
)

where we used w(x) ≤ Cw 〈y − x〉Nw w(y). Since w(x, ξ) is polynomially bounded
in ξ, it follows that g(x, ·) decays for fixed x faster that any polynomial, in partic-
ular

ϕ(x) =
1

(2πε)d

∫

R2d

dξe
i
ε
ξ·xg(x, ξ)

is well-defined. Again by partial integration one can show that

∣∣∂βx∂αξ g(x, ξ)
∣∣ ≤ C ′

M 〈ξ〉−2M w(
1

2
x, ξ) ‖A‖(w)

2M+|α|+|β|

×
(∫

Rd

dy

〈
1

2
y

〉|α|+Nw

sup
|α|≤2M

‖∂αψ(y)‖
)

and therefore ∂βxg(x, ·) is even a Schwartz function. Now we are able to use partial
integration also in the outer integral and arrive at

〈x〉n ∂αxϕ(x)

=
1

(2πε)d

∑

|β+γ|≤|α|

cβ,γ

∫

R2d

dξ 〈x〉n ξβe i
ε
ξ·x∂γxg(x, ξ)

1

(2πε)d

∑

|β+γ|≤|α|

cβ,γ

∫

R2d

dξ 〈x〉−2N+n e
i
ε
ξ·x(1 − ε2∆ξ)

Nξβ∂γxg(x, ξ).

Choosing M,N large enough one has that ϕ is indeed a Schwartz function and
moreover that its Schwartz norms can be bounded by the ‖·‖(w)-norms of A and
the Schwartz norms of ψ.

Whereas (A.2) was only a formal expression, we can now define

WS
ε (A) : S(Rd,H1) → S(Rd,H2), A ∈ S(L(H1,H2))
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A.1 Weyl quantization and symbol classes

through (A.5). By duality one can extend WS
ε (A) to a continuous mapping

WS′

ε (A) : S ′(Rd,H1) → S ′(Rd,H2).

More precisely, we choose the (anti-linear) inclusions

S(Rd,Hi) ∋ ψ 7→ Tψ ∈ S ′(Rd,Hi), i = 1, 2

with

Tψ(ϕ) =

∫

Rd

dx 〈ψ(x), ϕ(x)〉Hi

and define [(
WS′

ε (A)
)

(T )
]
(ϕ) = T

[(
WS′

ε (A∗)
)

(ϕ)
]
.

Note that taking the pointwise adjoint of A does not affect the symbol class.
An important fact in pseudodifferential calculus is, that symbols in Sw=1(L(H))
become bounded operators on L2(Rd,H):

Proposition A.5 (Calderon-Vaillancourt) There is a constant Cd < ∞ such
that for every A ∈ S1(L(H)), WS′

ε (A) can be restricted to a bounded operator

Â = WL2

ε (A) ∈ L(L2(Rd,H))

with ∥∥∥Â
∥∥∥
L(L2(Rd,H))

≤ Cd ‖A‖(1)
2d+1 .

For the proof see Theorem 2.73 in [Fo]. This theorem is in particular useful to
translate estimates about the symbols into statements about the corresponding
operators. We note furthermore that if A ∈ S1(L(H)) is pointwise self-adjoint,

then Â is a self-adjoint operator on L2(Rd,H).

Since the Weyl-product ♯̃ε, that is introduced in the next section, can be formally
expanded in powers of ε, it makes sense to define suitable classes of ε-dependent
symbols, the so-called semiclassical symbols.

Definition A.6 A map a : (0, ε0) → Sw(L(H1,H2)), ε 7→ aε is a semiclas-
sical symbol with order function w if there is a sequence {Aj}j∈N with Aj ∈
Sw(L(H1,H2)) such that for every n ∈ N one has that

sup
ε∈(0,ε0)

∥∥∥∥∥aε −
n∑

j=0

εjAj

∥∥∥∥∥

(w)

l

ε−(n+1) <∞.
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A Pseudodifferential calculus

If this is the case, we write

aε ≍
∞∑

j=0

εjAj.

The space of these symbols is denoted by Sw(ε0,L(H1,H2)) or short as Sw(ε0) if
clear from the context. Furthermore

S(ε0) :=
⋃

w order function

Sw(ε0)

In this context it is also convenient to introduce the space of formal power series
with coefficients in Sw(ε0,L(H1,H2)) as

Mw(L(H1,H2)) : = {
∑

j≥0

εjaj : aj ∈ Sw(L(H1,H2))}

M(L(H1,H2)) : =
⋃

w order function

Mw(L(H1,H2)).

Observe that it is not required for the formal power series to converge in any
sense. However, every formal power series in Mw(L(H1,H2)) is the expansion of
a (non-unique) semiclassical symbol as explained in detail in the following propo-
sition (see also proposition 2.26 in [Fo]).

Proposition A.7 Let {Aj}j∈N be an arbitrary sequence in S(w)(L(H1,H2)). Then
there is a a ∈ S(w)(ε0,L(H1,H2)) such that aε ≍

∑∞
j=0 ε

jAj in

S(w)(ε0,L(H1,H2)). Furthermore, a is unique up to a symbol that is O(ε∞) in

‖·‖(w)
k for any k ∈ N and uniformly in ε. The semiclassical symbol a is called a

resummation of the formal symbol
∑

j≥0 ε
jAj.

Proof. We define

εn := min

(
1

n
,
1

2

(
1 + max

l≤n
‖Al‖(w)

n

)−1
)
, n ∈ N.

Note that (εn)n∈N is monotone decreasing and converging against 0. We define
furthermore a : [0, ε0) → S(w)(L(H1,H2)) by

aε :=
∞∑

j=0

εj1[0,εj)(ε)Aj.
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A.2 The Weyl-Moyal product

Then one has

sup
ε∈[0,ε0)

ε−(N+1)

∥∥∥∥∥aε −
N∑

j=0

εjAj

∥∥∥∥∥

(w)

k

= sup
ε∈[0,εN+1)

ε−(N+1)

∥∥∥∥∥
∞∑

j=N+1

εj1[0,εj)Aj

∥∥∥∥∥

(w)

k

+ sup
ε∈[εN ,ε0)

ε−(N+1)

∥∥∥∥∥
N∑

j=0

εj
(
1[0,εj) − 1[0,ε0)

)
Aj

∥∥∥∥∥

(w)

k

≤
∞∑

j=0

∥∥εjj+N+1Aj+N+1

∥∥(w)

k
+ ε

−(N+1)
N εN0 max

j≤N
‖Aj‖(w)

k

≤
∞∑

j=0

1

2j

(
1 + max

l≤j+N+1
‖Al‖(w)

j+N+1

)−j

‖Aj+N+1‖(w)
k + ε

−(N+1)
N εN0 max

j≤N
‖Aj‖(w)

k

≤
max(0,k−N−2)∑

j=0

1

2j
‖Aj+N+1‖(w)

k +

∞∑

j=max(0,k−N−2)+1

1

2j
+ ε

−(N+1)
N εN0 max

j≤N
‖Aj‖(w)

k

≤ 2 max
j≤k

‖Aj‖(w)
k + 2 + ε

−(N+1)
N εN0 max

j≤N
‖Aj‖(w)

k .

The uniqueness statement follows by linearity because the difference of two resum-
mations a, a′ must have the zero series as expansion.

A.2 The Weyl-Moyal product

The most useful property of symbols is that one can define an associative product
between symbols that corresponds to the composition of operators. To be more
precise, we have the following proposition (see [Fo], theorem 2.47):

Proposition A.8 Let A ∈ Sw1(L(H2,H3)), B ∈ Sw2(L(H2,H3)). Then

WS′

ε (A)WS′

ε (B) = WS′

ε (C)

89



A Pseudodifferential calculus

with C ∈ Sw1w2(L(H1,H3)) given by

C(q, p) =

(
2

επ

)d ∫

R4d

dq′dp′dq′′dp′′ exp(
2i

ε
(q − q′)⊤(p− p′′)) (A.6)

× exp(−2i

ε
(q − q′′)⊤(p− p′))A(q′, p′)B(q′′, p′′)

= :
(
A♯̃εB

)
(q, p).

Furthermore there is a m ∈ N depending on w and d such that for all n ∈ N

‖C‖(w1w2)
n ≤ Cn,w ‖A‖(w1)

n+m ‖B‖(w2)
n+m

Proof. The full proof is given in [Fo], we only sketch the idea. Note that a priori
(A.6) is not necessarily well-defined for arbitrary A,B, but only e.g. for A,B with
compact support. Therefore, it is part of the proof to show in which sense (A.6)
is to be understood. To give a formal derivation of the formula, we note that by
definition

(
WS

ε (C)ψ
)
(x)

=
1

(2πε)d

∫

Rd

dz

(∫

Rd

dξ′′C(
1

2
(x+ z), ξ′′)e

i
ε
ξ′′·(x−z)

)
ψ(z)

= :
1

(2πε)d

∫

Rd

dzKC(x, z)ψ(z).
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A.2 The Weyl-Moyal product

Furthermore, for x, z ∈ Rd

KC(x, z)

=

(
2

επ

)d ∫

Rd

dξ′′ exp(
i

ε
ξ′′ · (x− z))

×
∫

R4d

dq′dp′dq′′dp′′ exp(
i

ε
(x+ z − 2q′) · (ξ′′ − p′′))

× exp(− i

ε
(x+ z − 2q′′) · (ξ′′ − p′))A(q′, p′)B(q′′, p′′)

=

(
2

επ

)d ∫

R3d

dp′dq′dp′′ exp(
i

ε
(x− z) · p′′)

× exp(
2i

ε
(q′ − x) · (p′′ − p′))A(q′, p′)

×
∫

Rd

dξ′′ exp(− i

ε

(
q′ − 1

2
(x− z)

)
· 2(ξ′′ − p′))

×
∫

Rd

dq′′ exp(
i

ε
(q′′ · 2(ξ′′ − p′))B(q′′, p′′)

=

(
2

επ

)d ∫

R3d

dp′dq′dp′′ exp(
i

ε
(x− z) · p′′)

× exp(
2i

ε
(q′ − x) · (p′′ − p′))A(q′, p′)

×
(ε

2

)d
(2π)dB(q′ − 1

2
(x− z), p′′)

=

∫

R3d

dp′dydp′′ exp(
i

ε
(y − z) · p′′)

× exp(
i

ε
(x− y) · p′)A(

1

2
(x+ y), p′)B(

1

2
(y + z), p′′)

Here we changed the order of integration (which has to be rigorously justified in
the full proof) and used the Fourier inversion formula

ψ(y) = (2π)d
∫

Rd

dλ

∫

Rd

dx exp(iλ · (y − x))ψ(x).
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A Pseudodifferential calculus

Finally we substituted y = 2q′ − x. On the other hand we know that

(
WS

ε (A)WS
ε (B)ψ

)
(x)

=
1

(2πε)d

∫

R2d

dξdyA(
1

2
(x+ y), ξ)e

i
ε
ξ·(x−y)

× 1

(2πε)d

∫

R2d

dξ′dzB(
1

2
(y + z), ξ′)e

i
ε
ξ′·(y−z)ψ(z)

=
1

(2πε)d

∫

Rd

dz
1

(2πε)d

∫

R3d

dξdξ′dyA(
1

2
(x+ y), ξ)

×e i
ε
ξ·(x−y)B(

1

2
(y + z), ξ′)e

i
ε
ξ′·(y−z)ψ(z)

and a comparison gives the desired result. The norm estimate can in principle be
given as the estimate in proposition (A.4).

Furthermore one defines the Weyl product ♯̃ between semiclassical symbols a ∈
Sw1(ε0,L(H3,H2)) and b ∈ Sw2(ε0,L(H3,H2)) as

(
ã♯b
)
ε
:= aε♯̃εbε.

Note that the function ε 7→
(
ã♯b
)
ε
may not be in Sw1w2(ε0,L(H3,H1)) although it

takes values in Sw1w2(L(H3,H1)). To following proposition shows how to expand
the Weyl product in powers of ε.

Proposition A.9 Let A ∈ Sw1(L(H2,H3)), B ∈ Sw2(L(H2,H3)). Then

sup
ε∈(0,ε0)

∥∥∥∥∥A♯̃εB −
∑

j≤n

εj (A♯B)j

∥∥∥∥∥

( ew)

k

ε−(n+1) ≤ Ck,n ‖A‖(w1)
k+n+m ‖B‖(w2)

k+n+m

with m independent of n,m,

w̃(q, p) = w1(q, p)w2(q, p) 〈q〉2(N1+N2)

and

(A♯B)j (q, p) :=
∑

|α|+|β|=j

1

α!β!

(−1)|α|

2|α|+|β|
∂αq ∂

β
pA(q, p)∂βq ∂

α
pB(q, p).

Proof. Once again we don’t give the full proof (which can be found in [Fo],
theorem 2.49) but a sketch. We start with the observation that one has, using the

92



A.2 The Weyl-Moyal product

Taylor expansion formula,

A(q′, p′)B(q′′, p′′)

=
∑

|α|+|β|≤n

∂αq A(q, p′)∂βqB(q, p′′)

α!β!
(q′ − q)α(q′′ − q)β

+
∑

|α|+|β|=n+1

|α| |β|
∫ 1

0

∫ 1

0

dtdt′
1

α!β!
∂αq A(q + t(q′′ − q), p′)

×∂βq B(q + t′(q′ − q), p′′)(q′ − q)α(q′′ − q)β(1 − t)|α|−1(1 − t′)|β|−1.

Inserting this result into (A.6), observing that

(q′ − q)α(q′′ − q)β exp(
2i

ε
(q − q′)⊤(p− p′′)) exp(−2i

ε
(q − q′′)⊤(p− p′))

=
(−1)|β|

2|α|+|β|
ε|α|+|β|∂αp′′∂

β
p′ exp(

2i

ε
(q − q′)⊤(p− p′′)) exp(−2i

ε
(q − q′′)⊤(p− p′))

and integrating by parts we arrive at
(
A♯̃εB

)
(q, p)

=

(
2

επ

)d ∑

|α|+|β|≤n

1

α!β!

(−1)|α|

2|α|+|β|
ε|α|+|β|

∫

R4d

dq′dp′dq′′dp′′ exp(
2i

ε
(q − q′)⊤(p− p′′))

× exp(−2i

ε
(q − q′′)⊤(p− p′))∂αq ∂βp′A(q, p′)∂βq ∂αp′′B(q, p′′)

+εn+1Rn(q, p)

=
∑

|α|+|β|≤n

ε|α|+|β| 1

α!β!

(−1)|α|

2|α|+|β|
∂αq ∂

β
pA(q, p)∂βq ∂

α
pB(q, p)

+εn+1Rn(q, q, p)

with

Rn(q
′′, q, p)

=
∑

|α|+|β|=n+1

|α| |β| 1

α!β!

(−1)|α|

2n+1

(
Aq

′′

α,β ♯̃εB
q′′

β,α

)
(q, p)

where

Aq
′′

α,β(q
′, p) =

∫ 1

0

dt∂αq ∂
β
pA(q′′ + t(q′ − q′′), p)(1 − t)|α|−1
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A Pseudodifferential calculus

and Bq′′

β,α defined analogously. To see that Rn is well-defined, we state that with a
direct calculation

∥∥∥∂γq′∂δpAq
′′

α,β(q
′, p)w−1

1 (q′, p)
∥∥∥ ≤ ‖A‖(w1)

|α|+|β|+|γ|+|δ| 〈q′′〉
N1 〈q′〉N1 ,

i.e. Aq
′′

α,β 〈q′′〉−N1 ∈ Sw1〈q′〉
N1

uniformly in q′′. The next step is to show that

R̃n(q, p) = Rn(q, q, p)

is differentiable and to estimate its derivatives in terms of the norms of A and B.
Clearly we know that Rn(q

′′, q, p) is smooth with respect to q and p. Furthermore,
we have that

∂γq′′A
q′′

α,β(q
′, p) =

∫ 1

0

dt∂α+γ
q ∂βpA(q′′ + t(q′ − q′′), p)(1 − t)|α|+|γ|−1

= Aq
′′

α+γ,β(q
′, p)

and likewise for Bq′′

β,α. Furthermore, one can even show that the derivative ∂γq′′A
q′′

α,β

exists not only pointwise, but in the sense of the norms of Sw1〈q′〉
N1

. Together it
follows that Rn(q

′′, q, p) is smooth. This observation yields the the formula

∂γq ∂
δ
pR̃n(q, p)

=
∑

γ(1)+γ(2)+γ(3)=γ

γ!

γ(1)!γ(2)!γ(3)!

∑

δ′≤δ

(
δ

δ′

)

×
∑

|α|+|β|=n+1

|α| |β| 1

α!β!

(−1)|α|

2n+1

(
∂
γ1
q′′∂

δ
p

(
Aq

′′

α+γ2,β
♯̃εB

q′′

β+γ3,α

)
(q, p)

)
|q′′=q.

Now we can conclude with the estimate

∥∥∥R̃n

∥∥∥
(w1w2〈q〉

2(N1+N2))

k
≤ Ck,n ‖A‖(w1)

k+n+m ‖B‖(w2)
k+n+m

where m may depend on w1, w2 and d, but not on k and n.
For semiclassical symbols, we have the following corollary.

Corollary A.10 Let

aε ≍
∞∑

j=0

εjaj in Sw1(ε0,L(H3,H2))
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A.2 The Weyl-Moyal product

and

bε ≍
∞∑

j=0

εjbj in Sw2(ε0,L(H2,H1)),

then ã♯b ∈ S ew(ε0,L(H3,H1)) has a semiclassical expansion

(
ã♯b
)
ε
≍

∞∑

j=0

εj
(
ã♯b
)
k

in S ew(ε0,L(H3,H1))

given by

(
ã♯b
)
k

=
∑

|α|+|β|+j+l=k

1

α!β!

(−1)|α|

2|α|+|β|
∂αq ∂

β
pAj(q, p)∂

β
q ∂

α
pBl(q, p) (A.7)

with k, l, j ∈ N and α, β ∈ Nd, w̃(q, p) = w1(q, p)w2(q, p) 〈q〉2(N1+N2).

Regarding this corollary, it makes sense to introduce the Moyal product ♯ :
M(L(H3,H2)) ×M(L(H2,H1)) →M(L(H3,H1)) by (A.7).
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B Weyl calculus for τ -equivariant

symbols

In this chapter we present the special results related to τ -equivariant symbols. To
this end, let Γ ⊂ Rd be a regular lattice, i.e.

Γ = {x ∈ Rd : x =
d∑

j=1

αjγj for some α ∈ Zd}.

Obviously, one can regard Γ as an Abelian group isomorphic to Zd with addition
as group operation. As in the main body of the thesis, we denote the centered
fundamental cell as

M = {x ∈ Rd : x =
d∑

j=1

αjγj for αj ∈ [−1

2
,
1

2
]}.

Furthermore, we assume that

τ : Γ → L∗(Hl), γ 7→ τ (γ)

is a representation of the group Γ in the space of bounded invertible operators
on H, i.e. τ(γ + γ′) = τ (γ)τ(γ′) for all γ, γ′ ∈ Γ. If more than one Hilbert
space arises, then τ is a collection of such representations. Now let Lγ be the
operator of translation by γ ∈ Γ on S(Rd,H), i.e. (Lγϕ) (x) = ϕ(x − γ) resp.
(without change of notation) its extension to S ′(Rd,H), i.e. for T ∈ S ′(Rd,H) let
(LγT )(ϕ) = T (L−γ(ϕ)).

Definition B.1 A tempered distribution T ∈ S ′(Rd,H) is said to be τ -equivariant
if

LγT = τ(γ)T for all γ ∈ Γ,

where (τ(γ)T )(ϕ) = T (τ(γ)−1ϕ) for ϕ ∈ S(Rd,H). The subspace of τ -equivariant
distributions is denoted as S ′

τ . Analogously one defines the Hilbert space

Hτ := {ψ ∈ L2
loc(R

d,H) : ψ(x− γ) = τ(γ)ψ(x) for all γ ∈ Γ}
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B Weyl calculus for τ -equivariant symbols

equipped with the inner product

〈ϕ, ψ〉Hτ
=

∫

M

dx 〈ϕ(x), ψ(x)〉H .

Now one can easily define τ -equivariant symbols:

Definition B.2 A symbol A ∈ Sw(L(H1,H2)) is τ -equivariant, if

A(q − γ, p) = τ 2(γ)A(q, p)τ 1(γ)
−1 for all γ ∈ Γ.

The space of τ -equivariant symbols in Sw(ε0,L(H1,H2)) is denoted by

Swτ (ε0,L(H1,H2)).

In the same way one can of course define Swτ (ε0,L(H1,H2)) and Mw(L(H1,H2))
as the subspaces of Swτ (ε0,L(H1,H2)) resp. Mw(L(H1,H2)) where aε is τ -equiva
riant for each ε resp. Aj is τ -equivariant for each j ∈ N. Note that if

a ≍
∞∑

j=0

εjaj in Sw(ε0,L(H2,H1))

and aε ∈ Swτ (ε0,L(H1,H2)), then necessarily also the coefficients aj are in
Swτ (L(H1,H2)) resp.

∑∞
j=0 ε

jaj ∈Mw
τ (L(H1,H2)): Indeed, it follows from

‖A0(· − γ, ·) − τ 2(γ)A0τ 1(γ)‖(w)
k

≤ ‖A0(· − γ, ·) − aε(· − γ, ·)‖(w)
k

+ ‖aε(· − γ, ·) − τ 2(γ)aετ 1(γ)‖(w)
k

+ ‖τ 2(γ)aετ 1(γ) − τ 2(γ)A0τ 1(γ)‖(w)
k

≤ Cγ ‖A0 − aε‖(w)
k

≤ C ′
γε

−1

that A0 is τ -equivariant and inductively also for Aj, j ≥ 1. If w depends only on
q and τ is unitary we have the following result.

Lemma B.3 Let w be an order function that is independent of p and let τ be a
unitary representation. Then one has

(
inf
q∈M

w(q)

)
‖A‖(w)

k ≤ ‖A‖(1)
k ≤

(
sup
q∈M

w(q)

)
‖A‖(w)

k , k ∈ N. (B.1)
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Proof. We have

∥∥∂αq ∂βpA(q − γ, p)
∥∥ =

∥∥τ 2(γ)∂
α
q ∂

β
pA(q, p)τ 1(γ)

−1
∥∥

=
∥∥∂αq ∂βpA(q, p)

∥∥

for all γ ∈ Γ, therefore

sup
(q,p)∈Rd

∥∥∂αq ∂βpA(q, p)
∥∥ = sup

q∈M,p∈Rd

∥∥∂αq ∂βpA(q, p)
∥∥

and the result follows.
Next, we want to show that the quantizations of τ -equivariant symbols preserve

τ -equivariance.

Proposition B.4 Let A ∈ Swτ (L(H1,H2)), then

(
WS′

ε (A)
)

(S ′
τ1

(Rd,H1)) ⊂ S ′
τ2

(Rd,H2).

Proof. It suffices to show that
(
LγWS′

ε (A)T
)
(ϕ) =

(
τ 2(γ)WS′

ε (A)T
)
(ϕ) for all

T ∈ S ′
τ1

(Rd,H1) and ϕ ∈ S(Rd,H2). We first observe that for WS
ε (A∗) and

arbitrary ψ ∈ S(Rd,H2)

(
WS

ε (A∗)Lγψ
)
(x) =

∫

Rd

KA∗(x, y)ψ(y − γ)

=

∫

Rd

KA∗(x, y + γ)ψ(y)

=

∫

Rd

(
τ 1(γ)

−1
)∗
KA∗(x− γ, y)τ2(γ)

∗ψ(y)

=
(
Lγ(τ 1(γ)

−1)∗WS
ε (A∗)τ 2(γ)

∗ψ
)
(x).

Here we used the fact that with

KA∗(x, y) =
1

(2πε)d

∫

Rd

dξA(
1

2
(x+ y), ξ)e

i
ε
ξ·(x−y)

we have

KA∗(x− γ, y − γ) =
1

(2πε)d

∫

Rd

dξA∗(
1

2
(x+ y) − γ, ξ)e

i
ε
ξ·(x−y)

=
(
τ 1(γ)

−1
)∗
KA∗(x, y)τ 2(γ)

∗.
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Now it follows by definition of WS′

ε (A) that

(
LγWS′

ε (A)T
)

(ϕ)

= T
(
WS

ε (A∗)L−γϕ
)

= T
(
L−γτ 1(γ)

∗WS
ε (A∗)

(
τ 2(γ)

−1
)∗
ϕ
)

=
(
τ 2(γ)WS′

ε (A)τ 1(γ)
−1LγT

)
(ϕ)

=
(
τ 2(γ)WS′

ε (A)T
)

(ϕ).

Next we observe that the pointwise product and the Moyal product preserve
τ -equivariance since translations in the phase space commute with derivatives.
Similarly, also the Weyl product preserves τ -equivariance:

Proposition B.5 Let A ∈ Sw1
τ (L(H3,H2)) and B ∈ Sw2

τ (L(H3,H2)), then ã♯εb ∈
Sw1w2
τ (L(H3,H1)).

Proof. We have

(
A♯̃εB

)
(q − γ, p) =

(
2

επ

)d ∫

R4d

dq′dp′dq′′dp′′ exp(
2i

ε
(q − γ − q′)⊤(p− p′′))

× exp(−2i

ε
(q − γ − q′′)⊤(p− p′))A(q′, p′)B(q′′, p′′)

=

(
2

επ

)d ∫

R4d

dq′dp′dq′′dp′′ exp(
2i

ε
(q − q′)⊤(p− p′′))

× exp(−2i

ε
(q − q′′)⊤(p− p′))A(q′ − γ, p′)B(q′′ − γ, p′′)

=

(
2

επ

)d ∫

R4d

dq′dp′dq′′dp′′ exp(
2i

ε
(q − q′)⊤(p− p′′))

× exp(−2i

ε
(q − q′′)⊤(p− p′))τ 3(γ)A(q′, p′)

×τ 2(γ)τ 2(γ)
−1B(q′′, p′′)τ 1(γ)

−1

= τ 3(γ)
(
A♯̃εB

)
(q, p)τ1(γ)

−1.

The next important observation is that also the Calderon-Vaillancourt theorem
is valid for τ -equivariant symbols.
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Theorem B.6 Let A ∈ S1

τ (L(H)) and τ 1, τ 2 unitary representations of Γ in

L(H), then WS′

ε (A) can be restricted to a bounded operator Â in L(Hτ1 ,Hτ2)
satisfying ∥∥∥Â

∥∥∥
L(Hτ1 ,Hτ2 )

≤ Cd ‖A‖(1)
2d+1+m

with Cd and m independent of A.

Proof. Let n > d
2

and w(x) := 〈x〉−n. We define the Hilbert space

L2
w := {ψ ∈ L2

loc(R
d,H) :

∫

Rd

dxw(x)2 ‖ψ(x)‖2
H <∞}.

One has, for j = 1, 2, Hτ j
⊂ L2

w and for any ψ ∈ Hτ j
the norm equivalence

C1 ‖ψ‖Hτj
≤ ‖ψ‖L2

w
≤ C2 ‖ψ‖Hτj

for appropriate finite constants C1, C2. The first equality is directly seen (observe
that w 6= 0) and the second one follows from

‖ψ‖L2
w

=

∫

Rd

dxw(x)2 ‖ψ(x)‖2
H

=
∑

γ∈Γ

∫

M+γ

dxw(x)2 ‖ψ(x)‖2
H

=

(∑

γ∈Γ

sup
x∈M+γ

w(x)2

)∫

M

dx ‖ψ(x)‖2
H

where we used that ‖ψ(x)‖2
H is periodic because τ j are unitary. Now it clearly suf-

fices to estimate
∥∥WS′

ε (A)
∥∥
L(L2

w)
. Let ψ ∈ C∞

τ1
(Rd,H), then WS′

ε (A)ψ ∈ C∞
τ2

(Rd,H)

(see [Fo], theorem 2.62) and we can estimate

∥∥∥WS′

ε (A)ψ
∥∥∥
L2

w

=
∥∥∥wWS′

ε (A)ψ
∥∥∥
L2

≤
∥∥∥wWS′

ε (A)w−1
∥∥∥
L(L2)

‖wψ‖L2

=
∥∥∥wWS′

ε (A)w−1
∥∥∥
L(L2)

‖ψ‖L2
w

,

i.e. ∥∥∥WS′

ε (A)
∥∥∥
L(L2

w)
≤
∥∥∥wWS′

ε (A)w−1
∥∥∥
L(L2)

.
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B Weyl calculus for τ -equivariant symbols

Now the usual Calderon-Vaillancourt theorem tells us that (with some m ∈ N
independent of A, ε)

∥∥∥wWS′

ε (A)w−1
∥∥∥
L(L2)

≤
∥∥∥w♯̃εA♯̃εw−1

∥∥∥
(1)

2d+1

≤ ‖A‖(1)
2d+1+m

where on the right hand side w is short for the symbol (q, p) 7→ w(q)1H.

Finally we show that for A ∈ Swτ (L(H)) the adjoint of Â ∈ L(Hτ ), denoted by

Â∗ is given through the quantization of the pointwise adjoint, i.e. Â∗.

Proposition B.7 Let A ∈ Swτ (L(H)) with a unitary representation τ and let Â∗

be the adjoint of Â ∈ L(Hτ ), then Â∗ = Â∗.

Proof. Let ψ ∈ Hτ and ϕ ∈ C∞
τ (Rd,H) such that ϕ̃ := 1Mϕ ∈ C∞

0 (Rd,H), i.e. ϕ̃
has support in M . For such ϕ we have

〈
ϕ, Âψ

〉
Hτ

=

∫

M

dx
〈
ϕ(x), (Âψ)(x)

〉
H

=

∫

Rd

dx
〈
ϕ̃(x), (Âψ)(x)

〉
H

=

∫

Rd

dx
〈(
Â∗ϕ̃

)
(x), ψ(x)

〉
H

=

∫

Rd

dx

〈∫

Rd

dyKA∗(x, y)ϕ̃(y), ψ(x)

〉

H

=

∫

Rd

dx

〈∫

M

dyK∗
A(x, y)ϕ̃(y), ψ(x)

〉

H

Writing the integral over Rd as
∫
M

dx
∑

γ∈Γ we have

〈
ϕ, Âψ

〉
Hτ

=

∫

M

dx
∑

γ∈Γ

〈∫

M

dyK∗
A(x+ γ, y)ϕ̃(y), ψ(x+ γ)

〉

H

=

∫

M

dx
∑

γ∈Γ

〈∫

M

dyτ(γ)−1K∗
A(x, y − γ)τ(γ)ϕ̃(y), τ(γ)−1ψ(x)

〉

H

=

∫

M

dx
∑

γ∈Γ

〈∫

M

dyK∗
A(x, y − γ)ϕ̃(y − γ), ψ(x)

〉

H

=

∫

M

dx

〈∫

Rd

dyK∗
A(x, y)ϕ̃(y), ψ(x)

〉

H

=
〈
Â∗ϕ, ψ

〉
Hτ

.
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Again we used that

KA∗(x− γ, y − γ) =
(
τ 1(γ)

−1
)∗
KA∗(x, y)τ2(γ)

∗

and the τ -equivariance of ϕ, ψ. Since ϕ with the properties from above are dense
in Hτ the result follows.
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List of symbols

General notation

E Banach space
‖·‖E norm of the Banach space E
H separable Hilbert space
〈·, ·〉H scalar product of the Hilbert space H
L(H1,H2) Banach space of bounded linear operators A : H1 → H2

A∗ adjoint operator in L(H2,H1) for A ∈ L(H1,H2)
D(A) domain of a densely defined linear operator on H
σ(A) spectrum of A
Tr(A) trace of a trace-class operator A
[A,B] commutator [A,B] = AB −BA of operators A,B
1H identity operator on the Hilbert space H
1Λ characteristic function on the set Λ

〈·〉 the function Rd → (0,∞), x 7→ 〈x〉 = (1 + x · x) 1
2

O(εn) a function f : (0, ε0] → E , E some normed vector space,
satisfies f(ε) = O(εn) iff ∃C <∞ such that
‖f(ε)‖E ε−n ≤ C for all ε ∈ (0, ε0]

O(ε∞) f(ε) = O(ε∞) ⇐⇒ f(ε) = O(εn) for all n ∈ N
× Cartesian product of sets or vector product in R3

σ = (σ1,σ2,σ3) vector of Pauli spin matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Function spaces

O open set in Rd

Ck(O, E) space of k times continuously differentiable functions O 7→ E
Ck(O, E) space of k times continuously differentiable functions O 7→ E ,

that are bounded together with their derivatives
S(Rd,H) Schwartz functions with values in H
S ′(Rd,H) dual space of S(Rd,H)
Lp(Rd, E) space of functions A such that ‖A‖pE is integrable
Hp(Rd, E) Sobolev spaces of order k
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Pseudodifferential calculus

WS′

ε (A) Weyl quantization WS′

ε (A) : S ′(Rd,H1) 7→ S ′(Rd,H2)
of the symbol A : Rd 7→ L(H1,H2)

Â or Wε(A) WS′

ε (A) restricted to an operator on L2(Rd,H)
Sw(L(H1,H2)) space of symbols with order function w
S(L(H1,H2)) S(L(H1,H2)) :=

⋃
w order function S

w(L(H1,H2))
Sw(ε0) space of semiclassical symbols with order function w
S(ε0) S(ε0) :=

⋃
w order function S

w(ε0)
Mw space of formal power series with coefficients in Sw

M M :=
⋃
w order function M

w

(Aε)n n-th term in the asymptotic expansion
of a semiclassical symbol Aε

♯̃ Weyl product ♯̃ : S(ε) × S(ε) 7→ S(ε)
♯ Moyal product ♯ : M ×M 7→M
{} Poisson bracket
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