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Chapter 1

Preface

Wavelet analysis is a still developing area in the mathematical sciences. Already early

in the development of the wavelets both the discrete and the continuous transformation

were examined.

The main aim of the theory of wavelet analysis is to find convenient ways to decompose a

given function into elementary building blocks. Historically, the Haar basis, constructed

in 1910 long before the term “wavelet” was created, was the first orthonormal wavelet

basis in L2(R). But it was only recently discovered that the construction works because of

an underlying multiresolution analysis structure. In the early 80’s, Strömberg [50] discov-

ered the first continuous orthogonal wavelets. His wavelets have exponential decay and

were in Ck, k arbitrary but finite. The next construction, independent of Strömberg, was

the Meyer wavelet [40]. The images of the Meyer wavelets under the Fourier transform

were compactly supported and were in Ck (k may be ∞). With the notion of multires-

olution analysis, introduced by Mallat [38] and Meyer [41], a systematic framework for

understanding these orthogonal expansions was developed, see for example [38] and [41]

for details. This framework gave a satisfactory explanation for all these constructions,

and provided a tool for the construction of other bases. Thus, multiresolution analysis is

an important mathematical tool to understand and construct a wavelet basis of L2(R),

i.e., a basis that consists of the scaled and integer translated versions of a finite number

1



2 Preface

of functions.

In recent years, multiresolution analysis for the Euclidean group R has received extensive

investigation. Also, various extensions and generalizations were considered. There are

literally hundreds of sources dealing with this connection. In [37] multiresolution analy-

sis for Rn whose scaling functions are characteristic functions are considered. Dahlke [8]

extended multiresolution analysis to abelian locally compact groups. Baggett, et al. [2]

considered the existence of wavelets in general Hilbert space based on the formulation of

multiresolution analysis by using an abstract approach.

An alternative construction, imposing less restrictions on the wavelet functions, is the

continuous wavelet transform. The continuous wavelet transformation can be interpreted

as a phase space representation. Their filters and approximation characteristics have been

examined. The group-theoretical approach allows a simple generalization for instance of

wavelet transformation to high-dimensions Euclidean space (see [18]) or more general sit-

uations. Wavelet transformation in several dimension , exactly as in one dimension, may

be derived from the similitude group of Rn (n > 1), consisting of dilations, rotations and

translations. Of course, the most interesting case of applications is n = 2, where wavelets

have become a useful tool in image processing.

The construction of generalized continuous wavelet transform is investigated in the frame-

work of irreducible, square-integrable representations of locally compact groups. The

square integrability of representations guarantees the existence of a so-called admissible

vector and an inverse wavelet transform [3], [28]. General existence theorems for square-

integrable representation can be found in [12]. The existence of admissible vectors can

also be considered when the irreducibility requirement can be dropped, as for example in

[19], using a connection between generalized wavelet transforms and Plancherel theory.

Introduction to the Wavelets on R

The wavelet transform of a function on R, a signal so-called, depends on two variables:
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scale and time. Suppose ψ is fixed. For a 6= 0 define

Daψ(x) := |a|−1/2 ψ(
x

a
).

Afterward Daψ is translated by b ∈ R. Thus one gets the functions

LbDaψ(x) := Daψ(x− b) = |a|−1/2 ψ(
x− b

a
). (1.1)

The functions LbDaψ are called wavelets ; the function ψ is sometimes called mother

wavelet ; the system {LbDaψ}(b,a)∈R×R∗ is called wavelet system. The wavelet transform of

a signal f ∈ L2(R) is given by the scalar products of f with the wavelet system.

There exist two different types of wavelet systems, both referring to the basic form (1.1):

1. The continuous wavelet system: Here the dilation and translations parameters (b, a)

vary over all of R× R∗, and

2. The discrete wavelet system: In this case both the dilation parameter a and the

translation parameter b take only discrete values.

The continuous wavelet transform Here we give a quick overview of the theory of

the continuous wavelet transform of L2-functions on R from the point of view of repre-

sentation theory. The definition of dilation operators Da and translation operators Lb for

any (b, a) ∈ R× R∗ allows to define a group multiplication on G := R× R∗ by

(b0, a0)(b, a) = (a0bb0, a0a). (1.2)

The non-unimodular group G = R × R∗ is called “affine group” with associated to the

group multiplication (1.2). The left Haar measure is then |a|−2 dadb and the right Haar

measure is |a|−1 dadb on R× R∗. Define the representation π of R× R∗ on L2(R) by

π(b, a)ψ(x) = LbDaψ(x) = |a|−1/2 ψ(
x− b

a
) (b, a) ∈ R× R∗. (1.3)

π is unitary and irreducible. For a signal f ∈ L2(R) and fixed selected ψ ∈ L2(R) we

define

Vψf(b, a) := |a|−1/2

∫
f(x)ψ(

x− b

a
)dx ∀a > 0, b ∈ R. (1.4)
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With the help of LbDaψ in (1.3), the definition (1.4) can be read as

Vψf(b, a) = 〈f, π(b, a)ψ〉 (1.5)

which are called wavelet coefficients of f . Vψf defined over R×R∗ is a bounded function,

as the Cauchy-Schwartz inequality implies

|Vψf(b, a)| ≤‖ f ‖‖ ψ ‖ ∀ (b, a) ∈ R× R∗.

Thus Vψ maps space L2(R) into the set of bounded functions over R × R∗. ψ is called

admissible when the operator

Vψ : L2(R) → L2(R× R∗, |a|−2 dadb)

defined via (1.5) is an isometry up to a constant, i.e., the equality

‖ f ‖2= const.

∫ ∞

−∞

∫ ∞

0

|〈f, π(b, a)ψ〉| |a|−2 dadb (1.6)

holds for any f ∈ L2(R), where the constant depends only on ψ. Thus Vψ is called the

continuous wavelet transform; Vψ(f) is called continuous wavelet transform of function f

associated to the wavelet ψ.

By the isometry given in (1.6), a function f can be recovered by its wavelet coefficients

(1.5) by means of the resolution of identity

f = const.

∫ ∞

−∞

∫ ∞

0

〈f, π(b, a)ψ〉π(b, a)ψ |a|−2 dadb, (1.7)

where the integral is understood in the weak sense.

Using the Fourier transform, there is a characterization for function ψ to be an admissible

vector, which can be read as below:

A vector ψ ∈ L2(R) is admissible if and only if it satisfies the condition

Cψ =

∫ ∞

−∞

∣∣∣ψ̂(ξ)
∣∣∣2 |ξ|−1 dξ <∞. (1.8)

Discrete wavelet transform: Orthonormal wavelet bases As mentioned before,-

in the discrete wavelet transform, the dilations and translations parameters both take
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only discrete values. For dilation parameter one chooses the integer powers of one fixed

dilation parameter a0 > 1, i.e., am0 and hence b can be discretized by nb0a
m
0 for some fixed

b0 and for all n ∈ Z; usually a0 = 2. The corresponding discrete wavelet system to the

parameters a0, b0 is {ψn,m}(n,m)∈Z×Z where

ψn,m(x) = |a0|−m/2 ψ(a−m0 x− nb0) ∀(n,m) ∈ Z× Z, ∀x ∈ R.

For a fixed function f , the inner products {〈f, ψn,m〉}(n,m), called the discrete wavelet

coefficients of f , are given by

〈f, ψn,m〉 = |a0|−m/2
∫
f(x)ψ(a−m0 x− nb0)dx.

Note that in general it is not easy to construct a discrete wavelet system {ψn,m}(n,m) that

constitutes an orthonormal basis for L2(R) for any suitable of a0, b0.

One of the constructive methods for orthonormal wavelet bases is “multiresolution analy-

sis”, abbreviated by MRA: A multiresolution analysis consists of a sequence of closed and

nested subspaces {Vj}, approximation spaces, in L2(R), whose union is dense in L2(R)

and intersection is trivial. Moreover there must exist a function φ in the central space

V0, so that its translations under Z constitutes an orthonormal basis for V0. The function

φ is called “scaling function” of the multiresolution analysis MRA. An MRA provides

an orthogonal decomposition of L2(R). Using the scaling function one can construct a

function ψ in W0, the orthogonal component of V0 in V1, such that the set of its trans-

lations under Z constitutes an ONB for W0. Hence using the orthogonal decomposition

of L2(R) the wavelet system {ψn,m}(n,m) forms an orthonormal wavelet basis of L2(R).

Therefore any function f in L2(R) can be recovered from its discrete wavelet coefficients

by the discrete inversion formula:

f =
∑
n,m

〈f, ψn,m〉ψn,m. (1.9)
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Remarks

1) The construction of wavelet ONB’s is considerably more difficult than that of func-

tions fulfilling the admissibility condition (1.8). This motivates the interest in con-

structions such as MRA’s.

2) The wavelets ψb,a := LbDaψ, as the component of the position b and scale a, con-

structed from the mother wavelet ψ, are applied to the analysis of signals f in L2(R).

The “well localized” wavelets in both time and frequency are considered. This kind

of wavelets provide a good localization of informations about the signals. More pre-

cisely, the L2-inner product 〈f, ψb,a〉 contains local information about the regularity

of f at scale a and centered at position b. For example, the fast decay of the abso-

lute value of the wavelet coefficients 〈f, ψb,a〉 as a → 0 provides the smoothness of

function f at the point b.

The purpose of the thesis

Let H = R3 denote the Heisenberg Lie group with non-commutative group operation

defined by

(p1, q1, t1) ∗ (p2, q2, t2) =

(
p1 + p2, q1 + q2, t1 + t2 +

(p1q2 − q1p2)

2

)
.

The Haar measure on H is the usual Lebesgue measure on R3. Note that sometimes we

use the identification H = C× R in our work.

The definition of the continuous wavelet transform respectively an admissible vector is

associated to one-parameter dilation group of H, i.e., H = (0,∞), where any a > 0 defines

an automorphism of H, by

a.(p, q, t) = (ap, aq, a2t) ∀(p, q, t) ∈ H. (1.10)

Adapting the notation of dilation and translation operators on L2(R), for some a > 0, Da

is a unitary operator on L2(H) given by

Daf(p, q, t) = a2f(a.(p, q, t)) = a2f(ap, aq, a2t) ∀f ∈ L2(H),
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and for any υ ∈ H, Lω is defined by

Lωf(υ) = f(ω−1υ) ∀υ ∈ H.

Using the dilation and translation operators, the quasiregular representation π of the

semidirect product G := H o (0,∞) acts on L2(H) by

(π(ω, a)f)(υ) := LωDaf(υ) = a−2f(a−1.(ω−1υ))

for any f ∈ L2(H) and (ω, a) ∈ G and for all υ ∈ H . G is non-nunimodular, with left

and right Haar measures are given by a−5dadω, a−1dadω respectively.

The principal purpose of this work is the construction of discrete and continuous wavelet

systems on the Heisenberg group arising from a “well localized” wavelet. The chief tool

for approaching our aim will be the quasiregular representation of G = H o (0,∞) on

L2(H), and methods of Fourier analysis on H.

Structure of the Thesis

This thesis consists of 5 chapters. The contexts and new results contained in the thesis

are organized as follows:

• Chapter 2 contains an overview of the basics concerning the Heisenberg group H

and analysis on H,

• Chapter 3 provides the construction of normalized tight wavelet frame on H,

• Chapter 4 presents the complete characterization of radial Schwartz functions as

well as radial admissible functions,

• Chapter 5 illustrates the Calderón admissibility condition for vectors in L2(H) and

provides the “Mexican-Hat”- wavelet on H as an example of a radial admissible

Schwartz function.

Overview of the results

Chapter 2 provides some background for the analysis to be presented in subsequent chap-

ters. The key information for later use is the Fourier and wavelet transform on the



8 Preface

Heisenberg group. We explain the basic concepts and results around abstract Fourier

analysis and representation theory on the Heisenberg group. This includes the most im-

portant Stone and von Neumann and Plancherel theorems. This material is, for the most

part, available from books [16],[15], [20] and [48]. This chapter also serves to establish

our main notations.

We conclude this chapter with fundamental terms and results which are needed in con-

nection with continuous and discrete wavelet analysis.

Next we introduce the concept of frames of a Hilbert space. Moreover using the translation

and dilation operators we define a discrete wavelet system {L2−jγD2−jψ}j∈Z,γ∈Γ for L2(H)

for semidirect product G = H o (0,∞), which is associated with suitable ψ ∈ L2(H) and

some lattice Γ in H. The key step is the existence of a suitable lattice Γ and ψ such that

the related wavelet system forms a normalized tight frame. More about frames is avail-

able in the books of Christensen [6] and Gröchening [24]; for more examples of semidirect

products and their frames see for instance [1].

Chapter 3 concerns the construction of discrete wavelet system in L2(H). We show the

existence of a normalized tight wavelet frame, and exhibit certain similarities to multires-

olution analyses in L2(R). The main result of this chapter can be found in Section 3.3.

First, we describe the notions from multiresolution analysis in L2(R) that are needed to

understand the remainder of this chapter. We use the following convention for Fourier

transform of functions in L1(R):

f̂(ξ) =
1

2π

∫ ∞

−∞
f(x)e−ixξdx.

We start by introducing the Shannon theorem for L2(R) which states that a slowly varying

signal can be interpolated from a knowledge of its value at a discrete set of points. More

precisely for a bandlimited function f ∈ L2(R), i.e its Fourier transform f̂ has support in

some compact interval, then for some b > 0:

f(x) =
∑
n∈bZ

f(
nπ

b
)
sin(bx− nπ)

bx− nπ
. (1.11)
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The statement (1.11) means that f can be recovered from the samples {f(nπ
b

)}n∈Z.

Shannon MRA on H: By analyzing the Shannon basis, we can explain the concept

of multiresolution analysis for L2(R) which is hidden in the Shannon basis, i.e., we show

the existence of a sequence of closed linear and left shift-invariant nested subspaces Vj of

L2(R) (j ∈ Z) such that their union is dense in L2(R) and their intersection is trivial.

Moreover f ∈ Vj ⇔ f(2.) ∈ Vj+1. And one can see that the function φ = sinc ∈ V0,

so called the scaling function, has the property that its left translations under Z forms

an orthonormal basis of V0. Consequently using the scaling function and the orthogonal

decomposition of L2(R) under Wjs, the orthogonal complements of Vj in Vj+1, one can

show that the translations and dilations of function ψ := 2φ(2.)−φ =
√

2D1/2φ−φ ∈ W0

with integer powers of a = 2, (see (1.10)), forms an orthogonal basis for L2(R).

Note that the Fourier transform of function φ has support in compact interval [−π, π] and

hence ψ is bandlimited and ψ̂ has support in the set [−2π,−π] ∪ [π, 2π].

The reason that we choose the Shannon basis for illustration is the simplicity of its Fourier

transform. The observations made by analyzing the Shannon basis for L2(R) lead us to

formulate the definition of a Shannon multiresolution analysis for the space L2(H).

Let us start with the definition of MRA in general: Adapting the definition of MRA for

L2(R) to one for L2(H), a frame multiresolution analysis for L2(H) associated to a lattice

Γ in H and dilation given by a > 0 can be expressed in the following way:

Definition of frame multiresolution analysis (frame-MRA): We say that a se-

quence of closed subspace {Vj}j∈Z of L2(H) forms a frame-MRA of L2(H) if the following

conditions are satisfied:

1. Vj ⊆ Vj+1 ∀j ∈ Z,

2.
⋃
Vj = L2(H),

3.
⋂
Vj = {0},
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4. f ∈ Vj ⇔ f(a.) ∈ Vj+1,

5. V0 is left shift-invariant under Γ, and consequently Vj is shift-invariant under (a−j.Γ)

(note that L(a−j .γ)(φ(aj.)) = (Lγφ)(aj.) for any γ ∈ Γ),

6. there exists a function φ ∈ V0, the so-called scaling function, or generator of

the frame − MRA, such that the set LΓ(φ) = {φ(γ−1.) : γ ∈ Γ} constitutes a

normalized tight frame for V0.

Here we address the main topic, i.e., to answer the basic question, how can a function on H

produce a Shannon multiresolution analysis of L2(H). We shall consider two basic issues:

the union density and trivial intersection properties. Normally, the trivial intersection

property is less important because it is the consequence of the other conditions. We shall

present a function S for which the nested sequence of subspaces generated by S has dense

union. Remark that we do not suppose that the function S is our scaling function.

For simplicity, from now on we take a = 2 in the above definition.

The idea of this chapter is to apply an approach to find a suitable analogue of the sinc

function in L2(R), S ∈ L2(H), as a starting point, whose Plancherel transform is supported

in a bounded interval, i.e. for any λ 6= 0, Ŝ(λ) is a finite rank projection of L2(R) with

respect to some orthonormal basis {eλn}n∈Z for L2(R). We then construct a Shannon-MRA

on H with applying the function S, for which the properties 1−6 in the definition of frame-

MRA hold. Note that the construction of a Shannon-MRA and also the existence of the

scaling function φ in the property 6 strongly depends on the structure of the function S

and φ is necessarily not equal to S.

Further on we show the existence of function ψ, so-called wavelet, in W0, the orthogonal

component of V0 in V1, which is bandlimited and the set of its left translations under

some other suitable lattice forms a normalized tight frame for W0. Consequently using

the orthogonal decomposition L2(H) =
⊕
j∈Z
Wj, where Wj is the orthogonal component of

Vj in Vj+1, we show that the set of {Lδ
2−j γD2−jψ}(j,γ)∈Z×Γ constitutes a normalized tight

frame of L2(H), Theorem 3.18.
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Remark Observe that the wavelets obtained by the above method may have poor decay

properties.

Chapter 4 concentrates on the study and characterization of radial admissible Schwartz

functions on the Heisenberg group. To enter into the details of this chapter we need some

preparation:

A rather new development, which we consider in this chapter, is the construction of

continuous wavelet transformation based on the quasiregular representation of the group

H o (0,∞). In general the admissible respectively wavelet functions are referred to that

kind of functions which satisfies the condition of (1.12) below. Recall that G is a non-

unimodular group and its left Haar measure is given by dµG(ω, a) = a−5dadω. Then

the admissible vector in L2(H) and continuous wavelet transform on L2(H) is defined as

follows:

(∗) Definition: For any ψ ∈ L2(H) the coefficient operator Vψ defined by

Vψ : L2(H) → L2(G) by Vψ(f)(ω, a) = 〈f, π(ω, a)ψ〉 (1.12)

is called continuous wavelet transform if Vψ : L2(H) → L2(G) is an isometric operator

up to a scalar, i.e

‖ f ‖2= const.

∫
H

∫ ∞

0

| Vψ(f)(ω, a) |2 a−5dadω ∀ f ∈ L2(H), (1.13)

where the constant depends only on ψ. The function ψ for which (1.13) holds for any

f ∈ L2(H) is called admissible.

The importance of the isometry given by formula (1.13) is that a function f ∈ L2(H) can

be reconstructed from its wavelet coefficients Vψ(f)(ω, a) = 〈f, π(ω, a)ψ〉 by means of the

“resolution identity” ( “Calderón’s formula”) , i.e, formula (1.13) can be read as

f = const.

∫
H

∫ ∞

0

〈f, π(ω, a)ψ〉π(ω, a)ψ a−5dadω ∀ f ∈ L2(H),

with the convergence of the integral in the weak sense.

The family of wavelets {π(ω, a)ψ}(ω,a)∈H×(0,∞) are constructed from the admissible vector
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ψ, so-called mother wavelet, by dilation a and translation ω respectively.

The motivation for studying of continuous wavelets is again that dilated and translated

copies of wavelets can be used for the analysis of signals and should provide localized

information about signals when the wavelet is suitably chosen; e.g has many vanishing

moments and is smooth enough. More precisely, the L2-inner product 〈f, π(ω, a)ψ〉 con-

tains local information about the regularity of f at scale a and centered at ω. For example,

following the case of wavelet analysis on R one expects that the fast decay of the abso-

lute value of the wavelet coefficients 〈f, π(ω, a)ψ〉 as a → 0 provides the smoothness of

function f at a neighborhood of point ω.

These observations provided the motivation for the study and construction of fast decay-

ing wavelets in this thesis. However, we will not study the use of wavelets for the analysis

of local smoothness properties, and rather focus on construction issues.

To understand the remainder of this chapter we give here some basic definitions and no-

tations:

Definition of radial functions on H: Using coordinates (z, t) on Heisenberg group H,

where z ∈ C and t ∈ R , we say a function f on H is radial if f = f◦Rθ in the L2-sense for

every θ ∈ [0, 2π), where Rθ is a rotation operator on H and is given by Rθ(z, t) = (R̃θz, t),

and R̃θ is the rotation operator on R2 by angle θ.

Note that a continuous function f is radial if and only if f(z, t) depends only on | z | and

t and we may also write f(z, t) = f0(| z |, t) with f0 : R+ × R → C. Here the equality is

understood pointwise.

On the nilpotent Lie group H we consider the space S(H) of Schwartz functions, see [7],

[14]. Then the class of radial Schwartz function on the Heisenberg group has an alterna-

tive description as below:

Lemma: The set Sr(H) of radial Schwartz functions on H has an alternative character-

ization given by

Sr(H) =
{
f ∈ C∞

r (H) : (|z|2k | t |s)(∂z∂z̄)d∂ltf ∈ Cb(H) for every d, l, k, s ∈ N0

}
,
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where C∞
r stands for the set of smooth and radial functions and Cb denotes for the set of

bounded and continuous functions on H.

(For the proof see Appendix A).

We restrict our study to the class of radial functions on H to obtain a complete charac-

terization of the set Ŝr(H) of Fourier transforms of radial Schwartz functions on H. We

show that a function f is contained in Sr(H) if and only if its radial Fourier transform

satisfies suitable decay conditions by applying certain derivative and difference operators.

The reason for restricting our study of smooth wavelets to the class of radial functions is

the following statement:

Suppose f ∈ L2(H). Then f is radial if and only if for almost every λ 6= 0 its Plancherel

transform f̂(λ) is given by

f̂(λ) =
∑
n

Rf (n, λ) φλn ⊗ φλn

for a suitable function Rf defined on N0 × R∗ and the orthonormal basis {φλn}n∈N0 for

L2(R) consisting of scaled Hermitian functions.

The proof of the statement will be given in Theorem 4.11. The theorem presents a

simple representation of group Fourier transform for radial functions, which allows us to

characterize all smooth function in terms of their Fourier transform.

The motivation for the study of Sr(H) is the fact that Sr(R3) is preserved by the Fourier

transform. A related result for the case H can be found in Geller’s paper [21].

The characterization of Ŝr(H) enables one to construct smooth radial functions f on H

which decay rapidly at infinity whose radial Fourier transforms Rf are prescribed in

advance subject to some conditions. We will study it in Theorem 4.36 in detail, which

provides both necessary and sufficient conditions for a function R on R∗ × N0 to belong

to space Ŝr(H):

i) R is rapidly decreasing on R∗×N0 and for any n the function R(n, .) is continuous

on R∗,

ii) R(n, .) ∈ C∞(R∗) ∀n ∈ N0 and ∀m ∈ N0 the functions λm∂mλ R satisfy certain
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decay conditions. In particular, λm∂mλ R(n, λ) is a rapidly decreasing sequence in

n for each fixed λ ∈ R∗,

iii) Certain derivatives of R also satisfy the two conditions above. They are defined

on R∗ × N0 as specific combination of d
dλ

and difference operators which play the

role of differentiation in the discrete parameter n ∈ N0.

The precise formulation of these conditions can be found in Section 4.5.4. The derivatives

of functions in Ŝr(H) referred to above are operators corresponding to multiplication

of functions in Sr(H) by certain polynomials. The difference operators in the discrete

parameter n ∈ N0 are linear operators. As summary of their properties is given in Section

4.4.

One consequence of the estimates involved in our characterization of Ŝr(H) is that

f ∈ Sr(H) can been recovered from its radial Fourier transform R = f̂ via the inversion

formula

f(z, t) =
∑
n

∫
λ∈R∗

R(n, λ)Φλ
n,n(z)e

−iλtdµ(λ),

where Φλ
n,n are dilated special Hermit functions and dµ(λ) = (2π)−2 |λ| dλ.

As mentioned before, in this chapter we also consider the problem of characterizing ad-

missible functions in the space Sr(H) via their radial Fourier transform. The reason for

restricting our study of admissible vectors to the class of radial function is again Theorem

4.11. As it turns out, this result allows to derive a simplified admissibility condition for

radial functions.

For approaching this aim we first provide a complete characterization of admissible func-

tions in space L2
r(H). We show that a function f in L2

r(H) is admissible if and only if the

related radial Fourier transform Rf is square integrable in the continuous variable λ with

respect to a suitable positive measure on the space R∗, and the value of the integral is

independent of discrete values n ∈ N0, i.e.,
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f ∈ L2
r(H) is admissible if and only if for its radial Fourier transform {R(n, λ)}n,λ is∫ ∞

λ=0

| Rf (n, λ) |2 λ−1dλ = c ∀ n ∈ N

for some positive constant c .

The complete proof of this result is given in Theorem 4.37, which provides both neces-

sary and sufficient conditions for a function R to be the radial Fourier coefficient of an

admissible function.

We conclude this chapter with a result which is connected to our characterization of

radial functions. The result shows that the characterization of admissible radial functions

simplifies for a special class of radial functions constructed on the Fourier side:

Radial function f on H is admissible if its corresponded Fourier transform Rf can be

constructed by Rf (n, λ) = R̃((2n+ 1) |λ|), where R̃ ∈ L2(R+, λdλ) and∫ ∞

0

| R̃(λ) |2 λ−1dλ <∞.

The complete proof of the conclusion is given in Theorem 4.39. Hence we have obtained

simplified criteria for radial functions to be admissible, as well as for membership in Sr(H).

We expect that these results can be employed to show that there exist functions satisfying

both criteria, i.e., radial admissible Schwartz functions. However, in this thesis, we will

obtain an example by a different construction, presented in Chapter 5.

In Chapter 5 we characterize the space of admissible Schwartz function on the Heisen-

berg group without applying the Fourier transform but using the Calderón reproducing

formula instead. We show that a function φ in S(H) with mean value zero is admissible

in the sense of Definition (∗) if and only if it is Calderón admissible.

We say a function φ ∈ S(H) with
∫
φ = 0 is Calderón admissible if for any 0 < ε < A

and g ∈ S(H)

g ∗
∫ A

ε

φ̃a ∗ φa a−1da→ cg as ε→ 0 ;A→∞
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holds in the sense of tempered distributions, where c is a nonzero constant, and for a > 0

is φa(ω) = a−4φ(a−1ω) and ψ̃(ω) = ψ(ω−1).

One of the main results of this chapter is Theorem 5.4. The theorem shows that the

admissibility in the usual sense (i.e.,(1.12)) and in the sense of Calderón is equivalent as

long as the function is Schwartz:

Function φ in S(H) is Calderón admissible if and only if for any g ∈ S(H) is∫ ∞

0

∫
H
|〈g, LωDaφ〉|2dωa−5da = c ‖ g ‖2

2,

where the operators L and D are translation and dilation operators respectively.

In this chapter we also consider the problem of existence of such functions as a main

consequence, which involves with our results. We present an example of a Calderón ad-

missible function in the class S(H). Applying the definition of Calderón admissibility, we

prove the existence of “Mexican-Hat” wavelet for the Heisenberg group obtained from

the Heat kernel, defined in a complete analogous way to the “Mexican-Hat” wavelet on

R. (Theorem 5.11). This provides an example of an admissible radial Schwartz function.



Chapter 2

Notations and Preliminaries

In this chapter, the basic concepts and results centered around Fourier analysis and

wavelet analysis on the Heisenberg group are presented. After introducing some nota-

tions, we present the basic notations, regarding group representations, Hilbert-Schmidt

operators and trace-class operators, tensor products of Hilbert spaces, and direct integrals

of Hilbert spaces. In the last section, we provide the operator-valued Fourier analysis for

the Heisenberg group H including the most important Plancherel Theorem. This material

may, for the most part, be found in [16], and will be applied in the sequel without further

explanation.

Let G be a locally compact group. A positive Borel measure µ on G is called a left Haar

measure if: (i) µ is a nonzero Radon measure on G, (ii) µ(xE) = µ(E) for any x ∈ G,

and any Borel subset E ⊆ G. σ is called right Haar measure if (ii) is replaced by : (ii)’

σ(Ex) = σ(E). One of the fundamental results in harmonic analysis is that every locally

compact group G has a left Haar measure which is unique up to multiplication by a con-

stant. G is unimodular if the left Haar measure is right Haar measure. See [16], §2.2 for

further details.

Let G be a locally compact group with a fixed left Haar measure µ. We shall gener-

ally write dx for dµ(x). Let Cc(G) denote the function space consisting of continuous

17
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compactly supported complex-valued functions on G. For f ∈ Cc(G), let

‖ f ‖p=
(∫

G

| f(x) |p dx
) 1

p

for 1 ≤ p < ∞. Let Lp(G) denote the completion of the normed linear space (Cc(G), ‖

. ‖p). We are most interested in L1(G) and L2(G).

If f, g ∈ L1(G), the convolution of f and g is the function defined by

f ∗ g(x) =

∫
G

f(y)g(y−1x)dy.

If f ∈ L1(G), the involution of f , f̃ , is defined by the relation

f ∗(x) = f(x−1).

If f is a function on G and y ∈ G, we define the left and right translations of f through

y by

Lyf(x) = f(y−1x), Ryf(x) = f(xy).

The reason for using y−1 in Ly and y in Ry is to make the maps y → Ly and y → Ry

group homomorphisms:

Lyz = LyLz, Ryz = RyRz.

2.1 Group Representation

Let G be a locally compact group. A continuous unitary representation of G is a pair

(π,Hπ), where Hπ is a Hilbert space (the representation space of π) and π is a homo-

morphism from G into the group U(Hπ) of unitary operators that is continuous with

the respect to the strong operator topology. More precisely, π : G → U(Hπ) satisfies

π(xy) = π(x)π(y) and π(x−1) = π(x)−1 = π(x)∗, and x→ π(x)ξ is continuous from G to

Hπ, for any ξ ∈ Hπ.

Suppose K is a closed subspace ofHπ. K is called an invariant subspace for π if π(x)K ⊆ K
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for all x ∈ G. If K is invariant and nontrivial, the restriction of π to K , πK(x) := π(x)
∣∣∣
K
,

defines a representation of G on K, called a subrepresentation of π. If π admits an invari-

ant nontrivial subspace of Hπ, then π is called reducible, otherwise π is called irreducible.

If (π,Hπ) and (σ,Hσ) are two representations of G and T ∈ B(Hπ,Hσ), where B(Hπ,Hσ)

denotes all bounded linear operators from Hπ to Hσ, satisfies Tπ(x) = σ(x)T for all

x ∈ G, then T is said to be an intertwining operator for π and σ. If there exists a unitary

map U : Hπ → Hσ which intertwines π and σ, then we say that π is equivalent to σ and

write π ∼ σ. The dual space Ĝ of G is the set of equivalence classes of irreducible unitary

representation of G. See [16] §7.2 for a discussion of the space Ĝ.

The space of all intertwining operators for π and σ is denoted byHom(π, σ). Irreducibility

of π is related to the structure of Hom(π, π) by a fundamental result:

Lemma 2.1. Schur’s Lemma: A unitary representation π on Hπ is irreducible if and

only if Hom(π, π) contains only scalar multiples of the identity.

For the proof of this result, see [16] §3.1.

2.2 Hilbert-Schmidt and Trace-Class Operators

Let us start by recalling the definition of Hilbert-Schmidt norm of an operator in a finite

dimensional Hilbert space H. Let T ∈ B(H) be any endomorphism in H. Take any

orthonormal basis {ek}dk=1 of H, where d = dim(H), and assume that T is replaced by

the matrix (tk,l) in the basis {ek}; obviously tk,l = 〈Tek, el〉 and

‖ T ‖H.S=
(∑

k,l

| tk,l |2
) 1

2
(2.1)

defines a norm on B(H), the set of endomorphisms in H. It is called the Hilbert-Schmidt

norm of T . If S is another endomorphism, represented by the matrix (skl) with respect
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to the same basis, a computation shows that

tr(S∗T ) =
∑
k,l

tklskl.

This shows that the Hilbert-Schmidt norm (2.1) is derived from the following inner product

〈T, S〉 =
∑
k,l

∑
k,l

tklskl = Tr(S∗T )

on B(H). One can show that ‖ T ‖H.S and 〈T, S〉 are independent of the choice of or-

thonormal basis {ek} of H ([16], Appendix 2).

Now we need some analogous results in arbitrary Hilbert space. Let H be a separable

Hilbert space and T ∈ B(H) be a continuous linear operator on H. Let us take an or-

thonormal basis {ek} ofH. Then
∑

k ‖ Tek ‖2 is independent of the choice of orthonormal

basis {ek} of H.

An operator T ∈ B(H) is called Hilbert-Schmidt operator if for one, hence for any or-

thonormal basis {ek},
∑

k ‖ Tek ‖2<∞. By the preceding argument, this is well-defined.

We use HS(H) to denote the set of all Hilbert-Schmidt operators on H. For T ∈ HS(H),

define the Hilbert-Schmidt norm of T as

‖ T ‖2
H.S= (

∑
k

‖ Tek ‖2)
1
2 .

We have the following properties: If T is a Hilbert-Schmidt operator, so is T ∗. If T and

S are Hilbert-Schmidt operators, so is aT + bS, for any constants a, b. So we see that

all the Hilbert-Schmidt operators on H form a normed linear space. Moreover, for any

T ∈ HS(H) and S ∈ B(H), TS and ST are both in HS(H) . Thus HS(H) is also a

two-sided ideal in B(H).

We call a product of two operators in HS(H) a trace-class operator. By the preceding

argument, if T is trace-class operator and {ek}k is any orthonormal basis for H, then

‖ T ‖1= tr(T ) :=
∑
k

〈Tek, ek〉
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is well-defined and it is independent of {ek}k. We have the following properties for

trace-class operators: every trace-class operator is a Hilbert-Schmidt operator and T

is a Hilbert-Schmidt operator if and only if T ∗T is a trace-class operator. T is trace-class

if and only if T ∗ is a trace-class operator.

We use the abbreviation ONB for orthonormal bases and the word projection for self-

adjoint projection operator on a Hilbert space.

For more about Hilbert-Schmidt operators and trace-class operators, see [16], Appendix

2, and [47], §2 and §3.

2.3 Tensor Products of Hilbert Spaces

Let H1 and H2 be Hilbert spaces. We define the tensor product of H1 and H2 to be the

set H1 ⊗ H2 of all linear operators T : H2 → H1 such that
∑

k ‖ Tek ‖2< ∞ for some,

hence any, orthonormal basis {ek} for H2. If we set

‖ T ‖H.S= (
∑
k

‖ Tek ‖2)
1
2 ,

then H1 ⊗H2 is a Hilbert space with the norm ‖ . ‖H.S and associated inner product

〈T, S〉 =
∑
k

〈Tek, Sek〉,

where {ek} is any orthonormal basis of H2.

If ξ ∈ H1 and η ∈ H2, the map ω → 〈ω, η〉ξ (ω ∈ H2) belongs to H1 ⊗H2; we denote it

by ξ ⊗ η:

(ξ ⊗ η)(ω) = 〈ω, η〉ξ.

Note that (ξ ⊗ η)∗ = η ⊗ ξ and for any operators T and W on H1 and repectively on H2

we have T ◦ (ξ ⊗ η) = Tξ ⊗ η, (ξ ⊗ η) ◦W = ξ ⊗W ∗η.

For H1 = H2 = H we shall denote H ⊗H = HS(H). For more information and detail,

see [16] §7.3 or [36] §2.6.
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2.4 Direct Integral of Hilbert Spaces

In the following, we outline some notations and results concerning direct integrals. For

further information on direct integrals, we refer the reader to [16] §7.4.

A family {Hα}α∈A of nonzero separable Hilbert spaces indexed by A will be called a field

of Hilbert spaces over A, where a Borel σ-algebra is supposed on A. A map f on A such

that f(α) ∈ Hα for each α ∈ A will be called a vector field on A. We denote the inner

product and norm on Hα by 〈 , 〉α and ‖ . ‖α. A measurable field of Hilbert space over

A is a field of Hilbert spaces {Hα}α∈A together with a countable family {ej}∞1 of vector

fields with the following properties:

(i): the functions α 7→ 〈ej(α), ek(α)〉α are measurable for all j, k.

(ii): the linear span of {ej(α)}∞1 is dense in Hα, for each α.

Given a measurable field of Hilbert spaces {Hα}α∈A, {ej} on A, a vector field f on A will

be called measurable if the function α → 〈f(α), ej(α)〉α is measurable function on A,

for each j. Finally, we are ready to define direct integrals. Suppose {Hα}α∈A , {ej}∞1 is a

measurable field of Hilbert spaces over A, and suppose µ is a measure on A. The direct

integral of the spaces {Hα}α∈A with respect to µ is denoted by∫ L
A

Hαdµ(α).

This is the space of measurable vector fields f on A such that

‖ f ‖2=

∫
A

‖ f(α) ‖2
α dµ(α) <∞,

where two vector fields agreeing almost everywhere are identified. Then it easily follows

that
∫L

Hαdµ(α) is a Hilbert space with the inner product

〈f, g〉 =

∫
A

〈f(α), g(α)〉αdµ(α).

In case of a constant field, that is, Hα = H for all α ∈ A,
∫L

Hαdµ(α) = L2(A, µ,H), all

the measurable functions f : A→ H defined on a measurable space (A, µ) with values in
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H such that

‖ f ‖2=

∫
A

‖ f(α) ‖2 dµ(α) <∞.

Here H is considered as a Borel space with the Borel-σ-algebra of the norm topology.

2.5 The Heisenberg Group H

The Heisenberg group H is a Lie group with underlying manifold R3. We denote points

in H by (p, q, t) with p, q, t ∈ R, and define the group operation by

(p1, q1, t1) ∗ (p2, q2, t2) =
(
p1 + p2, q1 + q2, t1 + t2 +

1

2
(p1q2 − q1p2)

)
. (2.2)

It is straightforward to verify that this is a group operation, with the origin 0 = (0, 0, 0)

as the identity element. Note that the inverse of (p, q, t) is given by (−p,−q,−t).

We can identify both H and its Lie algebra h with R3, with group operation given by

(2.2) and Lie bracket given by

[(p1, q1, t1), (p2, q2, t2)] = (0, 0, p1q2 − q1p2). (2.3)

The Haar measure on the Heisenberg group H = R3 is the usual Lebesgue measure. The

Lie algebra h of the Heisenberg group H has a basis {X, Y, T} with [X, Y ] = T and all

other brackets are zero, such that the exponential function exp : h → H becomes identity,

i.e.,

exp (pX + qY + tT ) = (p, q, t).

We define the action of h on space C∞(H) via left invariant differential operators by the

following formula:
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Suppose f ∈ C∞(H), then

(Xf)(p, q, t) =
d

ds

(
f(p, q, t).exp(sX)

)∣∣
s=0

=
d

ds

(
f(p, q, t).(s, 0, 0)

)∣∣
s=0

=
d

ds

(
f(p+ s, q, t− 1

2
sq)
)∣∣

s=0

=
d

dp
f(p, q, t)− 1

2
q
d

dt
f(p, q, t).

Likewise

(Y f)(p, q, t) =
d

ds

(
f((p, q, t).exp(sY )

)∣∣
s=0

=
d

ds

(
f(p, q, t).(0, s, 0)

)∣∣
s=0

=
d

ds

(
f(p, q + s, t+

1

2
ps)
)∣∣

s=0

=
d

dq
f(p, q, t) +

1

2
p
d

dt
f(p, q, t),

and

(Tf)(p, q, t) =
d

dt
f(p, q, t).

Consequently the elements X + iY and X − iY act as follow:

((X + iY )f)(p, q, t) = (Xf)(p, q, t) + i(Y f)(p, q, t)

=
d

dp
f(p, q, t)− q

2

d

dt
f(p, q, t) + i

d

dq
f(p, q, t) + i

p

2

d

dt
f(p, q, t) (2.4)

=

(
d

dp
+ i

d

dq

)
f(p, q, t) +

i

2
(p− iq)

d

dt
f(p, q, t) (2.5)

and

((X − iY )f)(p, q, t) =

(
d

dp
− i

d

dq

)
f(p, q, t)− i

2
(p+ iq)

d

dt
f(p, q, t).

One basis for the Lie algebra of left-invariant vector fields on H is written as {Z, Z̄, T}

where

Z = X + iY =
∂

∂z
+ i

z̄

2

∂

∂t
, Z̄ = X − iY =

∂

∂z̄
− i

z

2

∂

∂t
, (2.6)
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and

T =
∂

∂t
. (2.7)

With these conventions one has
[
Z, Z̄

]
= −i ∂

∂t
.

2.6 Fourier Analysis on the Heisenberg Group

This section contains a brief review of Fourier analysis on the Heisenberg group H, in-

cluding the most important Plancherel Theorem. For details, we refer the reader to [16]

§7.5 and §7.6.

2.6.1 The Representations of the Heisenberg Group

The Heisenberg group is the best known example from the realm of nilpotent Lie groups.

The representation theory of H is simple and well understood. Using the fundamental

theorem, due to Stone and von Neumann, we can give a complete classification of all the

irreducible unitary representation of H.

For the Heisenberg group there are two families of irreducible unitary representations,

at least up to unitary equivalence. One family, giving all infinite-dimensional irreducible

unitary representations, is parametrized by nonzero real numbers λ; the other family,

giving all one-dimensional representations, is parametrized by (b, β) ∈ R×R. We will see

below that the one-dimensional representations have no contribution to the Plancherel

formula and Fourier inversion transform, i.e. they form a set of representations that has

zero Plancherel measure. Hence we will focus on the Schrödinger representation, defined

next:

The infinite-dimensional irreducible unitary representations of Heisenberg group are called

Schrödinger representations, all of them are realised on L2(R) as follows:

For each λ ∈ R∗(= R− {0}), consider for any (p, q, t) ∈ H the operator ρλ(p, q, t) acting
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on L2(R) by

ρλ(p, q, t)φ(x) = eiλteiλ(px+ 1
2
(pq))φ(x+ q) (2.8)

where φ ∈ L2(R). It is easy to see that ρλ(p, q, t) is a unitary operator satisfying

ρλ
(
(p1, q1, t1)(p2, q2, t2)

)
= ρλ(p1, q1, t1)ρλ(p2, q2, t2).

Thus each ρλ is a strongly continuous unitary representation of H, i.e. for any f ∈ L2(R),

ρλ(xn)f → ρλ(x)f as xn → x. Note that each ρλ is irreducible [16].

A theorem of Stone and von Neumann says that up to unitary equivalence these are all

the irreducible unitary representations of H that are nontrivial at the center.

Theorem 2.2. (Stone and von Neumann) The representations ρλ, λ 6= 0 are irre-

ducible. If π is any irreducible unitary representation of H on a Hilbert space H such that

π(0, t) = eiλtI for some λ 6= 0, then π is unitary equivalent to ρλ.

For the proof of the theorem see Folland [16].

2.6.2 Fourier Transform on the Heisenberg Group

In this section we define the group Fourier transform for functions on H and introduce

the inversion and Plancherel theorems for the Fourier transform. Recall that the Haar

measure on the Heisenberg group H = R3 is the usual Lebesgue measure. It is also easy

to show that it is both left and right invariant under the group multiplication defined by

(2.2), i.e. H is unimodular.

Next we introduce the convolution of two functions f and g on H. For f and g in L1(H),

the convolution of f and g is the function defined by

f ∗ g(ω) =

∫
H
f(ν)g(ν−1ω)dν. (2.9)
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By Fubini’s theorem, the integral is absolutely convergent for almost every ω and

‖ f ∗ g ‖1≤‖ f ‖1‖ g ‖1 .

Convolution can be extended from L1 to L2 space. More precisely, if f ∈ L1 and g ∈ L2,

then the integral in (2.9) converges absolutely for almost every ω and one has f ∗ g ∈ L2,

and

‖ f ∗ g ‖2≤‖ f ‖1‖ g ‖2

Moreover for any pair f, g ∈ L2(H) is f ∗ g̃ ∈ Cb(H), where g̃(ω) = g(ω−1). For more

details about convolution of functions see for example [16] Proposition (2.39).

Definition 2.3. f ∈ L2(H) is called selfadjoint convolution idempotent if f = f̃ =

f ∗ f.

The selfadjoint convolution idempotents and their support properties are studied in detail

by Führ [20] in §2.5.

Next we begin with Fourier transform of integrable functions on H. If f ∈ L1(H), we

define the Fourier transform of f to be the measurable field of operators over Ĥ given by

the weak operator integrals, as follow:

f̂(λ) =

∫
H
f(ω)ρλ(ω)dω. (2.10)

For short, we write f̂(λ) instead of f̂(ρλ). Note that the Fourier transform f̂(λ) is an

operator-valued function, which for any φ, ψ ∈ L2(R) fulfils

〈f̂(λ)φ, ψ〉 =

∫
H
f(p, q, t)〈ρλ(p, q, t)φ, ψ〉dpdqdt,

by definition of the weak operator integral. The operator f̂(λ) is bounded on L2(R) with

the operator norm satisfying

‖ f̂(λ) ‖≤‖ f ‖1 .

If f ∈ L1 ∩ L2(H), f̂(λ) is actually a Hilbert-Schmidt operator and a Fourier transform

can be extended for all f ∈ L2(H).



28 Notations and Preliminaries

Let M := (L1 ∩ L2)(H) and N := linear span of {f ∗ g
∣∣f, g ∈ M}. By definition

of convolution in harmonic analysis, for any f, g ∈ L2(H) and ω ∈ H we can write

(f ∗ g)(ω) = 〈f, Lωg̃〉. Therefore f ∗ g ∈ C0(H) [16]. Moreover N is a vector space of

functions which can be shown to be dense in both L1(H) and L2(H). With the notations

set as above, we have the following abstract Plancherel theorem. The proof may be found

in [52] for the Heisenberg group and for more general case of groups see for example [16].

Theorem 2.4. Plancherel Theorem The Fourier transform f → f̂ maps M into∫ ⊕
λ∈R∗ L

2(R) ⊗ L2(R)dµ(λ), where dµ(λ) = (2π)−2 |λ| dλ is Plancherel measure given on

Ĥ. This map extends to a unitary map from L2(H) onto
∫ ⊕
λ∈R∗ L

2(R) ⊗ L2(R)dµ(λ) i.e.,

it sets up an isometric isomorphism between L2(H) and the Hilbert space

L2
(
R∗, dµ(λ), L2(R)⊗ L2(R)

)
,

i.e., the space of functions on R∗ taking values in L2(R)⊗L2(R) which are square integrable

with respect to dµ(λ).

For f, g ∈M one has the Parseval formula∫
H
f(ω)g(ω)dx =

∫
λ∈R∗

tr
(
ĝ(λ)∗f̂(λ)

)
dµ(λ).

And for f ∈ N one has the Fourier inversion formula

f(ω) =

∫
λ∈R∗

tr
(
ρλ(ω)∗f̂(λ)

)
dµ(λ).

Simple computations show that the basic properties of the Fourier transform remain valid

for f, g ∈ (L1 ∩ L2) (H):

̂(af + bg)(λ) = af̂(λ) + bĝ(λ)

(̂f ∗ g)(λ) = f̂(λ)ĝ(λ)

(̂Lωf)(λ) = ρλ(ω)f̂(λ) (2.11)

(̂f̃)(λ) = f̂(λ)∗, (2.12)
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where f̂(λ)∗ is the adjoint operator of f̂(λ) and ω ∈ H.

We conclude this section with computation of Fourier transform of f(a.). Recall that the

dilation operator given by a > 0 is defined on H as follow:

a : (p, q, t) → a.(p, q, t) = (ap, aq, a2t) ∀ (p, q, t) ∈ H.

Suppose λ 6= 0. Then from definition of Schrödinger representation we obtain the following

equality:

ρλ(a
−1.(0, 0, t)) = eiλa

−2tI = ρa−2λ(0, 0, t) ∀t ∈ R.

Hence from Theorem 2.2, the representations ρλ(a
−1.) and ρa−2λ are unitary equivalent.

It means there exists a unitary operator Ua,λ : L2(R) → L2(R), so that

ρλ(a
−1.(p, q, t)) = Ua,λρa−2λ(p, q, t)U

∗
a,λ ∀(p, q, t) ∈ H. (2.13)

With computation it is easy to see that for any a > 0 and λ 6= 0 is Ua,λ = D∗
a where

Daf(.) = a−1/2f(a−1.). Since D∗
a = Da−1 then in (2.13) is

ρλ(a
−1.(p, q, t)) = Da−1ρa−2λ(p, q, t)Da ∀(p, q, t) ∈ H. (2.14)

After this preparation, we are ready to compute the Fourier transform of function f ◦ δa

in the following lemma where f ∈ L2(H):

Lemma 2.5. For any f ∈ L2(H) is

f̂(a.)(λ) = a−4Da−1
̂f(a−2λ)Da.

Proof: From definition of Fourier transform (2.10), for λ 6= 0 we have

f̂(a.)(λ) =

∫
λ

f(a.(p, q, t))ρλ(p, q, t)dpdqdt

=

∫
λ

f(ap, aq, a2t)ρλ(p, q, t)dpdqdt

= a−4

∫
λ

f(p, q, t)ρλ(a
−1p, a−1q, a−2t)dpdqdt

= a−4

∫
λ

f(p, q, t)
(
ρλ(a

−1.(p, q, t)
)
dpdqdt,
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now inserting (2.14), we derive the following relation:

f̂(a.)(λ) = a−4Da−1

( ∫
λ

f(p, q, t)ρa−2λ(p, q, t)dpdqdt
)
Da (2.15)

= a−4Da−1
̂f(a−2λ)Da.

2.7 Wavelet Analysis on the Heisenberg Group

In this section, the basic concepts concerning wavelet analysis on the Heisenberg group

from the discrete and continuous point of view are presented.

2.7.1 Continuous Wavelet Analysis: A Representation Point of

View

To understand the concept of continuous wavelet transformation on the Heisenberg group,

first we present the wavelet transform on R. The wavelet transform on R can be defined

from the representation-theoretic view as follow:

Suppose a > 0 and b ∈ R. Then Lb is translation operators on L2(R), which acts by

Lb : f → f(.− b) ∀f ∈ L2(R).

We already introduced the dilation operators Da on L2(R).

The definition of dilation and translation operators suggests defining a group multiplica-

tion on R× R∗ by

(b1, a1).(b2, a2) = (a1b2 + b1, a1a2). (2.16)

One obtains the so-called “affine group”. The left Haar measure is then |a|−2 dbda on

R× R∗. Now define the representation π of R× R∗ on L2(R) by letting, for any (b, a) ∈

R× R∗

π(b, a)f(x) = TbDaf(x) = |a|
−1
2 f(a−1(x− b)) ∀f ∈ L2(R) x ∈ R.
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π is homomorphism with respect to the group multiplication in (2.16) and is unitary and

irreducible representation of R×R∗. With above preparation we give the definition of an

admissible vector in L2(R), with respect to the representation π, and hence continuous

wavelet transform. We shall say a function φ ∈ L2(R) is an admissible vector when the

operator

Vφ : L2(R) → L2(R× R∗, |a|2 dadb), Vφ(f)(b, a) = 〈f, π(b, a)φ〉

is an isometry up to a constant, i.e.,

‖ f ‖2= const.

∫
R

∫ ∞

0

| Vφ(f)(b, a) |2 |a|−2 dadb ∀ f ∈ L2(R),

where the constant is non-negative and only depends on φ . Then φ is called wavelet

and Vφ(f) is called continuous wavelet transform of function f .

There already exist many introductions to wavelet theory, written from various points of

view and for audiences on all levels. The books by Y.Meyer [41] and I.Daubechies [9], are

still unsurpassed.

Our definition of continuous wavelet transform for the Heisenberg group will be from a

representation-theoretic point of view, adapted from the case R. For the construction of

wavelet transform one needs a one-parameter group of dilations for H. Here we consider

H := (0,∞) as an one-parameter dilation group of H which is defined as follows:

Suppose a > 0. Then a. denotes an automorphism of H given by

a.(p, q, t) = (ap, aq, a2t) ∀(p, q, t) ∈ H. (2.17)

The set (0,∞) forms a group of automorphisms of H, called dilation group for H (for

more details about such dilation groups see for example [14]). From now on, a > 0 refers

to the automorphism a→ a.ω for all ω ∈ H. For the remainder of the work, H = (0,∞)

denotes a group of automorphisms of H with operation in (2.17).

Since H = (0,∞) operates continuously by topological automorphisms on the locally

compact group H, we can define the semidirect product G := H o (0,∞), which is a
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locally compact topological group with product topology. Elements of G can be written

as (ω, a) ∈ H× (0,∞) and the group operation is defined by

(ω, a)(ώ, á) = (ω(a.ώ), aá) ∀ω, ώ ∈ H and ∀a, á > 0.

G is a non-unimodular group, with left Haar measure given by dµG(ω, a) = a−5dωda and

modular function ∆G(ω, a) = a−4 for any (ω, a) ∈ G. Analogous to above, for a > 0 the

dilation operator Da on L2(H) is defined by Daf(.) = a−2f(a−1.) and for ω ∈ H , Lω

denotes the left translation where Lωf(.) = f(ω−1.) for any f defined on H.

Definition 2.6. (quasiregular representation) For any (ω, a) ∈ G and f ∈ L2(H)

define

(π(ω, a)f)(υ) := LωDaf(υ) = a−2f(a−1(ω−1.υ)) ∀ υ ∈ H. (2.18)

It is easy to prove that the map π : G → U(L2(H)) is a strongly continuous unitary

representation of G. This representation is called “quasiregular representation”.

Recall that U(L2(H)) is the set of the unitary operators defined on L2(R) into L2(R).

Next we give the definition of admissible vectors in L2(H), associated to the quasiregular

representation on L2(H) by (2.18).

Definition 2.7. (admissible vector) Let (π,Hπ = L2(H)) denote the strongly continu-

ous unitary representation of the locally compact group G := H o (0,∞). G is considered

with left Haar measure dµ(ω, a) = a−5dωda. For any φ ∈ L2(H) the coefficient operator

Vφ is defined as follows:

Vφ : L2(H) → L2(G) by Vφ(f)(ω, a) = 〈f, π(ω, a)φ〉.

φ is called admissible if Vφ : L2(H) → L2(G) is an isometric operator up to a constant,

i.e,

‖ f ‖2= const.

∫
H

∫ ∞

0

| Vψ(f)(ω, a) |2 a−5dadω ∀ f ∈ L2(H), (2.19)

where the constant only depends on ψ. Then Vφ is called continuous wavelet trans-

form.



2.7. Wavelet Analysis on the Heisenberg Group 33

One of the important consequence of the isometry given by formula (2.19) is that a

function can be reconstructed from its wavelet transform by means of the “resolution

identity”( “inversion formula” ) , i.e, formula (2.19) can be read as

f = const.

∫
H

∫ ∞

0

〈f, π(ω, a)ψ〉π(ω, a)ψ a−5dadω ∀ f ∈ L2(H),

with the convergence of the integral in the weak sense.

An important aspect of wavelet theory is its microscope effect, i.e, by choosing a suitable

wavelet ψ, as the lense, one can obtain local information about the argument function

f ∈ L2(H). This information is obtained from the Fourier coefficients 〈f, π(ω, a)ψ〉 when

for instance the coefficients have a fast decay for a → 0. This property can happen for

example if the wavelet is in the Schwartz space S(H) with several vanishing moments.

The existence of admissible vectors for quasiregular representation of G := N o H on

L2(N) is already proved in Führ’s book [20]; §5.4, where N is a homogeneous Lie group

and H is a one-parameter group of dilations for N (for the definition of homogeneous

groups see for example [14], H is one example of such a group). However, the existence

of fast-decaying wavelets was left open.

Our work establishes existence of admissible radial Schwartz vectors for case N = H and

H = (0,∞). In fact we give an answer to this question in Chapter 4 by characterizing

the class of admissible radial Schwartz functions, and give an example of such a wavelet

in Chapter 5.

The existence of admissible vectors in closed subspaces of L2(Hn) was studied for example

in [34], where Hn is n-dimensional Heisenberg group with the underlying manifold Cn×R.

The authors consider the unitary reducible representation U of a non-unimodular group

P on L2(Hn). A closer look reveals that, for n = 1, Liu and Peng are concerned precisely

with our setting: As formula (1.10) in [34] shows, their group is isomorphic to the group

G from §2.7.1, and the representation U defined in Formula (1.11) of [34] is precisely the

associated quasiregular representation, which we defined in 2.6. The only slight difference

consists in the parametrization of the dilations.
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The authors then decompose L2(Hn) into a direct (infinite) sum of irreducible invariant

closed subspaces, Mm, under the representation U on L2(Hn). They proceed to show

that the restriction of U to these subspaces is square-integrable, i.e, each subspace Mm

contains at last one nonzero wavelet vector with respect to U . Furthermore the authors

give a characterization of the admissibility condition in each irreducible invariant closed

subspace Mm in the terms of Fourier transform. But they did not show the existence of

an admissible vector for all of L2(Hn), unlike our results.

Observe that the fact that the representation U in [34] is unitary equivalent to the direct

sum of irreducible representations, which are all square integrable, entails by Corollary

4.27 in [20], that there exists an admissible vector in L2(H). Therefore we already know

of the existence of an admissible vector; this was pointed out following Corollary 4.27 in

[20]. However, this source does not contain any concrete description of admissible vectors,

of the kind we obtain in this thesis. In particular, the existence of well-localized wavelets,

which is one of the main goals of this thesis, has not been previously investigated.

2.7.2 Discrete Wavelet Analysis

This section introduces frames and some related notations, which will be used in the

context of frame-MRA, see Sections 3.2 and 3.3 of this thesis. The concept of frames is a

generalization of orthonormal bases, defined as follow:

Definition 2.8. A countable subset {en}n∈I of a Hilbert space H is said to be a frame

of H if there exist two numbers 0 < a ≤ b so that, for any f ∈ H,

a ‖ f ‖2≤
∑
n∈I

| 〈f, en〉 |2≤ b ‖ f ‖2 .

The positive number a and b are called frame bounds. Note that the frame bounds are

not unique. The optimal lower frame bound is the supremum over all lower frame bounds,

and the optimal upper frame bound is the infimum over all upper frame bounds. The

optimal frame bounds are actually frame bounds. The frame is called tight frame when

a = b and normalized tight frame when a = b = 1. Frames were introduced by [11].
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For our purpose, in Chapter 3 we consider the wavelet frames which are produced from

one function using a countable family of dilation and left translation operators. The gen-

erator function is called “discrete wavelet”.

Below we will give a concrete example of wavelet frames with respect to a very special

lattice as the translation set. Suppose Γ is a lattice in H and a > 0 refers to the auto-

morphism a : ω → a.ω of H. And, suppose H be a subspace of L2(H) and ψ ∈ H. Then

the discrete system {La−jγDa−jψ}j∈Z,γ∈Γ in H is called discrete wavelet system generated

by ψ, where Da−j stands for the unitary dilation operator obtained by aj : ω → aj.ω

and Lγ is the left translation operator with regard to γ. The discrete wavelet system

{La−jγDa−jψ}j∈Z,γ∈Γ is called (tight, normalized tight) wavelet frame if it forms a (tight,

normalized tight) frame.
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Chapter 3

Wavelet Frames on the Heisenberg

Group

3.1 Introduction

Multiresolution analysis (MRA) is an important mathematical tool because it provides a

natural framework for understanding and constructing discrete wavelet systems.

In the present chapter, we shall consider the concrete example of building an MRA on

the Heisenberg group H.

Our main contributions are:

(i) For the Heisenberg group H, we formulate the definition of a frame multiresolution

analysis (frame-MRA) for L2(H), by adapting the notation of MRA of L2(R). There are

three things in MRA that mainly concern us: the density of the union, the triviality of

the intersection of the nested sequence of closed subspaces and the existence of refinable

functions, i.e., the functions, which have an expansion in their scaling. The triviality

of the intersection is derived from the other conditions of MRA. To get the density of

the union, we have to generalize the concept of the “support” of the Fourier transform.

The new concepts, such as “bandlimited” in L2(H), arise in this generalization. As to

37



38 Wavelet Frames on the Heisenberg Group

refinability, it depends very much on the individual function φ, so-called scaling function.

An example of a scaling function is presented below.

(ii) We provide a concrete example of frame-MRA on Heisenberg group (so-called Shan-

non-MRA), for which we prove the existence of wavelet functions. This wavelet function

is related to a certain lattice of H.

In Section 3.2 we introduce the (Whittaker-) Shannon sampling theorem for L2(R), which

addresses the question: how can one reconstruct a function f : R → C from a countable

set of function values {f(k)}k∈Z? Then we show that this can be done by requiring f to

belong to a certain function space.

Then, we provide the definition of multiresolution analysis for L2(R) and show how the

(Whittaker -) Shannon’s sampling theorem relates to the (Shannon) multiresolution anal-

ysis for L2(R). We exhibit this fact by introducing the scaling function (sinc function)

and arbitrary interpolation property of a special closed subspace of L2(R). This leads us

to the definition of the Shannon multiresolution analysis for the space L2(H). In Section

3.3 we introduce the general MRA (frame-MRA) on H, i.e., the concept of orthonormal

basis will be replaced by frames. Then we present a concrete example of frame-MRA on

H, Shannon MRA, and hence we prove the existence of a scaling and wavelet function for

the Heisenberg group.

Finally, we consider the existence of Shannon normalized tight frame on H, i.e., existence

of a bandlimited function on H such that its translations under an appropriate lattice in

H and its dilations with respect to the integer powers of a suitable automorphism of H

yields a normalized tight frame for L2(H).

3.2 Multiresolution analysis in L2(R)

Before introducing the multiresolution analysis for L2(R), we present a known theorem,

which provides our motivation for developing a similar kind of MRA on the Heisenberg

group.
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3.2.1 The (Whittaker-) Shannon Sampling Theorem for L2(R):

A motivating Example

As mentioned before, we use the following convention for Fourier transform (in one di-

mension):

f̂(ξ) =
1

2π

∫ ∞

−∞
f(x)e−ixξdx.

A signal f on R is called band-limited if its Fourier transform f̂ vanishes outside of some

bounded interval, say [−b, b]. The smallest such b is then called the bandwidth of f . Since

the frequency content of f is limited, f can be expected to vary slowly, its precise degree

of slowness being governed by b: The smaller b is, the slower the variation. In turn, we

expect that a slowly varying signal can be interpolated from a knowledge of its values at

a discrete set of points, i.e., by sampling. The slower the variations, the less frequently

the signal needs to be sampled. This is the intuition behind Shannon’s sampling theorem

(see [49]), which states that the interpolation can, in fact, be made exact. It uses the

sinc- function, which is defined by

sinc(x) =


sin(πx)
πx

if x 6= 0,

1 if x = 0.

with ŝinc = χ[−π,π].

Theorem 3.1. (Sampling Theorem) Assume that f ∈ L2(R) such that f̂ has support in

[−b, b] for some b > 0, i.e, f̂(ξ) = 0 for any | ξ |> b. Then f can be recovered pointwise

from the samples {f(nπ
b

)}n∈Z via

f(x) =
∑
n∈bZ

f(
nπ

b
)
sin(bx− nπ)

bx− nπ
. (3.1)

Proof: For simplicity we take b = π and suppose suppf̂ ⊂ [−π, π]. The general case

follows with a dilation argument. Since the set { 1√
2π
e−int}n∈Z is a complete orthonormal



40 Wavelet Frames on the Heisenberg Group

set in L2([−π, π)) , then f̂ can be expanded in a Fourier series in the interval [−π, π]:

f̂(ω) =
∑
n∈Z

cne
−inω, (3.2)

where

cn =
1

2π

∫ π

−π
f̂(ω)einωdω =

1

2π

∫ ∞

−∞
f̂(ω)einωdω = f(n).

That is, the Fourier coefficients in (3.2) are samples of f . (For more details see for example

[9],[43].) Thus using inversion Fourier transform

f(x) =
1

2π

∫
R
f̂(ω)eixωdω =

1

2π

∫ π

−π
f̂(ω)eixωdω (3.3)

and with the exponential type assumption and substitute equation (3.2) into (3.3) we get:

f(x) =
∑
n∈Z

f(n)
sin π(x− n)

π(x− n)
.

Now for any b > 0 one can get:

f(x) =
∑
n∈Z

f(nπ/b)
sin b(x− nπ/b)

b(x− nπ/b)
. (3.4)

Consider that the equality holds in the sense of L2(R). But since the Fourier series in (3.2)

converges in L2([−b, b]) and L2([−b, b]) ⊂ L1([−b, b]), hence the series in (3.4) converges

even uniformly, by the Riemann-Lebesgue theorem.

Observation: The Shannon sampling theorem shows that f is determined by the discrete

set of values {f(nπ
b

)}n∈Z. The set of {nπ
b
}n∈Z is called sampling lattice. The statement

is false without the exponential type assumption. This means that a band-limited signal

can be recovered from its sample values with sampling density inversely related to the ex-

ponential type. This fact underlies digital processing of audio signals, which are assumed

band-limited because our ears hear only a finite bandwidth.

In the following section, we will define a ladder of closed left shift-invariant subspaces

{Vj}j∈Z of L2(R), and use Vj to approximate general functions in L2(R). The results

yield a so-called MRA. Next the definition of a shift-invariant subspace:
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Definition 3.2. Suppose M is a subset of R and H is a subspace of L2(R). Then we

say H is left shift-invariant under M if for any m ∈ M is Lm(H) ⊆ H, i.e., Lmf(.) =

f(.−m) ∈ H for any f ∈ H.

3.2.2 Definition of Multiresolution Analysis of L2(R)

We start by first investigating the definition of multiresolution analysis of L2(R) and

finding some key points in the definition by properly interpreting it within a more general

context.

Definition 3.3. (Multiresolution Analysis ) A multiresolution analysis (MRA) of

L2(R) consists of a sequence of closed linear subspaces Vj, j ∈ Z, for L2(R) with the

following properties:

1. Vj ⊂ Vj+1, j ∈ Z,

2.
⋃
j∈Z Vj = L2(R),

3.
⋂
j∈Z Vj = {0},

4. f ∈ Vj ⇔ f(2.) ∈ Vj+1,

5. V0 is shift-invariant under Z.

6. There is a function φ ∈ V0, called the scaling function or generator of the MRA,

such that the collection {Lkφ; k ∈ Zd} is an orthonormal basis of V0.

Because of property 4, the MRA is often referred to as a dyadic MRA.

Remarks 3.4. (a) Observe that property 4 in Definition 3.3 implies that

f ∈ Vj ⇔ f(2−j.) ∈ V0. (3.5)

It follows that an MRA is essentially completely determined by the closed subspace

V0. But from property 6, V0 is the closure of the linear span of the Z-translations
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of the scaling function φ. Thus the starting point of the construction of MRA is

the existence of the scaling function φ. Therefore, it is especially important to give

some conditions under which an initial function φ generates an MRA.

(b) Because of equation (3.5) this implies that if f ∈ Vj, then f(2−j. − n) ∈ V0 for

all n ∈ Z. Finally property 6 in Definition 3.3 and equation (3.5) implies that

the system {L2−jnD2−jφ}n∈Z is an orthonormal basis for Vj for all j ∈ Z, where

∀n ∈ Z ∀x ∈ R is L2−jnD2−jφ(x) = 2j/2φ(2jx− n)

(c) The basic property of multiresolution analysis is that whenever a collection of closed

subspaces satisfies properties 1-6 in Definition 3.3, then there exists an orthonormal

wavelet basis {L2−jnD2−jψ; j, n ∈ Z} of L2(R), such that for all f ∈ L2(R)

Pj+1f = Pjf +
∑
n∈Z

〈f, L2−jnD2−jψ〉L2−jnD2−jψ,

where Pj is the orthogonal projection of L2(R) onto Vj.

Notation: One should think of the Vj’s as approximation subspaces that contain details

up to a resolution 2−j. The orthogonal projection Pjf of f into Vj is an approximation

of f that keeps details of size up to 2−j and smaller details. The difference Pj+1f − Pjf

then contains the details that are added by refining the resolution from 2−j to 2−j−1. The

subspace Wj = (Pj+1−Pj)(L2(R)) is the so-called detail space. lim
j→∞

Pjf = f by property

2 in Definition 3.3, and hence L2 is the direct sum L2(R) =
⊕
j∈Z
Wj.

For instance, the “sinc basis” is associated with the multiresolution analysis of band-

limited functions, which we will consider in the following subsection.
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3.2.3 Multiresolution Analysis hidden in the Shannon (Sinc)

Bases for L2(R)

In this section we try to illustrate the concept of MRA by analyzing the Shannon basis.

For L2(R), we start at scale of 1 by considering φ. For j ∈ Z, let

Vj :=
{
f ∈ L2(R); supp(f̂) ⊂ [−2jπ, 2jπ]

}
.

It is easy to see that each Vj is a closed subspace of L2(R). By the definition of Vj’s, the

property 1 in Definition 3.3 is trivial. For property 6, observe that

φ(x) =
1√
2π

(χ[−π,π])ˇ(x) =
1√
2π

sin(πx)

πx
.

Taking g(ω) = 1√
2π
χ

[−π,π]
(ω) and gn(ω) = 1√

2π
χ

[−π,π]
(ω)e−inω, since {gn}n∈Z constitutes an

ONB for L2([−π, π]), then {Lnφ}n∈Z is an ONB for V0. For property 2, suppose f ∈ L2(R)

and let fj be given by f̂j(ω) = χ
[−2jπ,2jπ]

(ω)f̂(ω). Applying the dominated convergence

theorem it is easy to see that ‖ f̂j − f̂ ‖2→ 0 as j →∞ and hence applying Plancherel’s

formula we are done.

If f ∈ V0, we can expand f̂ in a Fourier series on [−π, π) (see the proof of Theorem 3.1):

f̂(ω) =
∑
n

cne
−inω,

where cn = f(n). Note that for every f ∈ L2(R) one has

P̂jf = χ
[−2jπ,2jπ]

(ω)f̂(ω),

where Pj is the orthogonal projection onto Vj. In other word, for any f ∈ L2(R)

Pjf = f ∗ (2jsinc(2j.)) , where sinc(x) =
sin(πx)

πx
∈ V0.

One may prove that V0 = L2(R) ∗ sinc and using the convolution theorem, for any f ∈ V0

is f ∗ sinc = f . As well for any j ∈ Z, is Vj = L2(R) ∗ (2jsinc(2j.)).

The properties 3 and 4 in Definition 3.3 follow directly from the definition of Vj’s.

The space V0 is the so-called Paley-Wiener space of R. Note that V0 is an example of

a sampling subspace in L2(R), i.e., for any f ∈ V0 we have:
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(i)
∑

n | f(n) |2=‖ f ‖2

(ii) f(x) =
∑

n f(n) sinc(x− n) for b = π, with convergence both in L2 sense and

uniformly ( see Theorem 3.1 ).

(The existence of sampling subspaces in general has been studied by Führ in [20]

§2.6.)

(iii) The space V0 has arbitrary interpolation, i.e, for any sequence {an}n∈Z in l2(Z) there

exists a function f in V0, so that f(n) = an for all n ∈ Z.

The construction of Shannon wavelets from Shannon MRA begins by considering the

orthogonal complements of Vj in Vj+1, i.e. Wj. One can show that the property 4

in Definition 3.3 holds for closed shift-invariant subspaces {Wj}. Using property 2 in

Definition 3.3 gives the orthogonal decomposition

L2(R) =
⊕
j∈Z

Wj.

Observe that the translations of function ψ = 2φ(2.)−φ, {Lnψ}n∈Z, provides an orthonor-

mal basis for W0. Therefore by orthogonal decomposition of L2(R) the set {L2−jnD2jψ}n,j

forms an orthonormal basis for L2(R), which is known as Shannon (sinc) basis, and the

function ψ is called the Shannon wavelet in L2(R). We will prove the above expression

in Theorem 3.5 below. But first note that the projection operators of L2(R) onto Wj are

given by:

Qj : f → f ∗ ψj,

where ψ0 := ψ and ψj = 2j+1φ(2j+1.)− 2jφ(2j.). This fact can be seen immediately from

definition of the projections Pj. Using it we can state the following theorem:

Theorem 3.5. The wavelet system {ψj,n}(j,n)∈Z×Z constitute an ONB for L2(R), where

ψj,n(x) = L2−jnD2−jψ(x).
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Proof: To prove our assertion, first we shall show that the translations of the function

ψ(x) := 2φ(2.)−φ ∈ W0, {Lnψ}n∈Z, is an ONB ofW0. Suppose f ∈ W0. Since f = f∗ψ∗ψ,

then by the convolution theorem f̂ = (̂f ∗ ψ) ψ̂ and since suppψ̂ ⊂ {ω : π ≤ |ω| ≤ 2π}

then

supp(̂f ∗ ψ) ⊂ {ω : π ≤ |ω| ≤ 2π} ⊂ {ω : −2π ≤ ω ≤ 2π},

hence (̂f ∗ ψ) ∈ L2([−2π, 2π]). Using the relation (3.2) for b = 2π the equality

(̂f ∗ ψ)(ω) =
1

2

∑
n

f ∗ ψ(n)e−inω =
1

2

∑
n

〈f, ψn〉e−inω (3.6)

holds (note that here ψ̃ = ψ). Therefore using the relation (3.6) one has

f̂(ω) = (̂f ∗ ψ)(ω) ψ̂(ω) =
1

2

∑
n

〈f, ψn〉e−inωψ̂(ω)

=
1

2

∑
n

〈f, ψn〉ψ̂n(ω),

and hence the inverse Fourier transform implies

f(x) =
1

2

∑
n

〈f, ψn〉ψn(x). (3.7)

The relation in (3.7) shows that the members of W0 have an expansion in {ψn}. Observe

that for any n is ψ̂n = 1√
2π
χ

[−2π,−π)∪(π,2π]
e−in.. Therefore the orthogonality of {ψn}n∈Z

follows by using the Parseval theorem and orthogonality of { 1√
2π
χ

[−2π,−π)∪(π,2π]
e−in.}n∈Z

with L2([−2π,−π)∪(π, 2π])-norm. Since ‖ ψ ‖= 1 and {ψn}n∈Z is complete then {ψn}n∈Z

constitutes an ONB for W0.

Similarly for any j ∈ Z, {ψn,j}n∈Z is an ONB of Wj and any f ∈ Wj can be represented

as

f(x) =
∑
n∈Z

〈f, ψn,j〉ψn,j(x).

Consequently using the orthogonal decomposition of L2(R) under subspaces Wj, for any

f ∈ L2(R), the equality

f(x) =
∑
j

Qj(f) = const.
∑
j

∑
n

〈Qj(f), ψn,j〉ψn,j(x) =
∑
j

∑
n

〈f, ψn,j〉ψn,j(x)

holds, as desired.
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Note: This kind of orthonormal basis of L2(R) is known as “Shannon (sinc) bases” and

hence the function ψ is called Shannon (sinc) wavelet in L2(R).

3.3 Construction of Shannon Multiresolution Analy-

sis for the Heisenberg group

3.3.1 Introduction

Analogous to R, wavelets in L2(H) are functions ψ with the properties that their appro-

priate translates and dilates defined with respect to the Lie structure of the Heisenberg

group can be used to approximate any L2-function . But here the special concept of

multiresolution analysis needs to be appropriately adapted.

3.3.2 Definition of Frame Multiresolution Analysis for the Heis-

enberg group (frame-MRA)

By analogy to the above, we can adapt the definition of MRA for L2(R) to one for L2(H),

replacing the concept of orthonormal basis by frames.

Since the triviality of the intersection is a direct consequence of the other conditions of

the definition of an MRA, we prove this property immediately after we give the definition

of an MRA.

We begin by properly interpreting the concept of MRA of L2(R). It is obvious that Z is

a lattice subgroup of R. The shift-invariance of V0 in Definition 3.3 can be interpreted as

an invariance property with respect to the action of the discrete lattice subgroup Z of R.

The scaling operator D can be viewed as the action of some group automorphism of R,

with the property DZ ⊂ Z.

With this in mind, it is not difficult to conjecture the correct generalization of MRA to

Heisenberg group :
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• First, a discrete subgroup Γ of H will play the same role in H as Z in R. Γ is discrete

means that the topology on Γ induced from H is the discrete topology.

• We are now dealing with a non-abelian group. Hence, there are two kinds of trans-

lations: left translation LH and right translation RH. We choose left translation in

accordance with the continuous wavelet transform.

Definition 3.6. Suppose Ω is a subset of H and H is a subspace of L2(H). We say H is

left shift-invariant under Ω, if for any ω ∈ Ω we have LωH ⊆ H.

After this preparation, we can give a definition of frame-MRA for L2(H) related to an

automorphism of H caused by a > 0(see (1.10)) and a lattice Γ in H.

Definition 3.7. (frame-MRA) We say that a sequence of closed subspace {Vj}j∈Z of

L2(H) forms a frame-MRA of L2(H), associated to an automorphism a ∈ Aut(H) and a

lattice Γ in H, if the following conditions are satisfied:

1. Vj ⊆ Vj+1 ∀j ∈ Z,

2.
⋃
Vj = L2(H),

3.
⋂
Vj = {0},

4. f ∈ Vj ⇔ f(a.) ∈ Vj+1,

5. V0 is left shift-invariant under Γ, and consequently Vj is left shift-invariant under

a−j.Γ, and

6. there exist a function φ ∈ V0, called the scaling function, or generator of the frame−

MRA, such that the set LΓ(φ) constitutes a normalized tight frame for V0.

Remarks 3.8. (a) Here, for the scaling function we do not impose regularity and decay

condition on φ. In our case to make the argument simple and general, we require only

that φ ∈ L2(H).

(b) In analogy with L2(R), we say V0 is refinable if Da−1(V0) ⊆ V0. Thus the condition
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1 in Definition 3.7 is equivalent to saying that V0 is refinable. Thus, the basic question

concerning frame −MRA is whether the scaling function exists. We will see later that

such scaling functions do exist. We will enter into details in Section 3.3.3 for a very

special case .

(c) To have a sequence of nested closed subspaces, we must find a refinable function like

φ in V0. It is already known by Boor, DeVore and Ron in [5] for the real case that the

refinability of φ is not enough to generate an MRA. Hence we need other requirements.

We will consider this in detail later.

3.3.3 Constructing of Shannon MRA for the Heisenberg Group

The approach via the solution of scaling equation, with methods of Lawton [32], leads

to difficult analytical problems. Therefore we follow a new approach, which is based on

the point of view of Shannon multiresolution analysis . This will allow us to derive the

existence of a Shannon wavelet in L2(H).

The following example of L2(R), the canonical construction of wavelet bases starts with

a multiresolution analysis {Vj}j. In L2(R) one proves the existence of a wavelet ψ ∈ W0,

such that {Lkψ, k ∈ Z} is an orthonormal basis for W0.

Consequently the set {L2−jkD2jψ}k∈Z is an orthonormal basis for Wj. By the orthogonal

decomposition L2(R) =
⊕
j∈Z
Wj, the wavelet system {L2−jkD2jψ}j,k∈Z is an orthonormal

basis for L2(R).

In this section, we shall construct on H an analog of Shannon-MRA from Section 3.2.3.

In contrast of the case R, the construction of the scaling function is not our starting

point for obtaining of a frame-MRA, but first we intend to construct a special function

which implies the existence of the scaling function in some closed subspace of L2(H).

Furthermore for the constructing, we shall consider the automorphism a = 2 of H which

is given by:

a.(x, y, t) = (2x, 2y, 22t) ∀(x, y, t) ∈ H.
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As remarked before, we shall construct a function in some closed and shift-invariant

subspace of L2(H), such that its translations and dilations yields a normalized tight frame

of L2(H). We will do it by analogy to Section 3.2.3. For this reason, first we choose the

dilation operator Da = D2 and try to associate a space V0 which has similar properties

as the Paley-Wiener space on R, with the aim of constructing a Shannon multiresolution

analysis similar to that of R. We start with the definition of a bandlimited function on

H:

Definition 3.9. Suppose I is some bounded subset of R∗ and S is a function in L2(H).

We say S is I-bandlimited if Ŝ(λ) = 0 for all λ 6∈ I.

We will need the following definition in the next theorem:

Definition 3.10. A function S in L2(H) is called selfadjoint convolution idempotent if

S = S̃ = S ∗ S.

Convolution idempotents in L1 have been studied for instance in [26]. For properties of

selfadjoint convolution idempotents in L2 we refer the reader to [20], §2.5.

Theorem 3.11. Let d ∈ N. There exists a selfadjoint convolution idempotent function

S in L2(H) which is I-bandlimited for I =
[
− π

2d
, π

2d

]
− {0}. Define Sj = 24jS(2j.) for

j ∈ Z. Then Sj is Ij-bandlimited for Ij =
[
−4jπ

2d
, 4jπ

2d

]
− {0} in R∗ and the following

consequences hold:

a) S ∗ Sj = S ∀j > 0 and Sj ∗ S = Sj ∀j < 0,

b) f ∗ Sj → 0 in L2-norm as j → −∞ ∀f ∈ L2(H),

c) f ∗ Sj → f in L2 − norm as j →∞ ∀f ∈ L2(H) and

d) Sj = S̃j = Sj ∗ Sj.

Proof: Let I0 := I0. We intend to show that there exists a function S which is I0-

bandlimited and satisfies the assertion of the theorem. We start from the Plancherel
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side, i.e, construction of Hilbert-Schmidt operators Ŝ(λ) with associated to λ ∈ R∗. For

this purpose we choose an orthonormal basis {ei}i∈N0 in L2(R). For any λ 6= 0 define

eλi = D|λ|−1/2ei. Observe that for any λ, {eλi }i is an ONB of L2(R) since the dilation

operators D|λ|−1/2 are unitary. Therefore {{eλi }i}λ is a measurable family of orthonormal

bases in L2(R). ( For instance one can take the orthonormal basis of {φn}n∈N0 in L2(R),

where φn are Hermite functions, and for any λ 6= 0, φλn are given by φλn(x) = D|λ|−1/2φn =

|λ|
1
4 φn(

√
| λ |x) for all x ∈ R. For more details about the Hermite functions see for

example [52] or Chapter 4 of the work.)

Let λ 6= 0 such that λ ∈ I0. Define Ŝ(λ) as follow:

Ŝ(λ) =


∑4k

i=0

(
e

λ
2π
i ⊗ e

λ
2π
i

)
if 2π

4(k+2)d
< |λ| ≤ 2π

4k+1d
for some k ∈ N0,

0 |λ| > π
2d
.

Therefore for any λ, where 2π
4(k+2)d

< |λ| ≤ 2π
4k+1d

, the operator Ŝ(λ) is a projection operator

on the first 4k + 1 elements of the orthonormal basis {e
λ
2π
i }i∈N0 , where e

λ
2π
i = D| λ

2π |
−1/2ei.

The definition of Ŝ entails the following consequences:

(i) ∀λ ‖ Ŝ(λ) ‖2
H.S= 4k + 1 where k ≥ 0 and satisfies 2π

4(k+2)d
< |λ| ≤ 2π

4k+1d

(ii)
∫
|λ|≤ π

2d
‖ Ŝ(λ) ‖2

H.S dµ(λ) =
∑
k=0

∫
2π

4(k+2)d
<|λ|≤ 2π

4k+1d

(4j + 1)dµ(λ) <∞,

where dµ(λ) = (2π)−2 |λ| dλ, and

(iii) Ŝ(λ) = Ŝ(λ)∗ = Ŝ(λ) ◦ Ŝ(λ), ∀λ 6= 0.

Observe that (ii) implies this point that the vector field {Ŝ(λ)}λ on R∗ is contained

in
∫ ⊕

R∗ L
2(R) ⊗ L2(R)dµ(λ) (for the definition of the direct integral see Section 2.4) and

hence since the Plancherel theorem is surjective then Ŝ has a preimage S in L2(R) with

the Plancherel transform Ŝ, given as above. The property (iii) implies that S is selfadjoint

convolution idempotent by the convolution theorem.

Suppose j ∈ Z and Sj := 24jS(2j.). Using the equivalence of representations ρλ and ρ2−2jλ

and the relation (2.15) we obtain

Ŝj(λ) = D2−j Ŝ(4−jλ)D2j . (3.8)
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Therefore from the definition of Sj, Ŝj(λ) = 0 for any |λ| > 4jπ
2d

(note that D∗
2j =

D2−j). Hence the Sj is Ij-bandlimited, where Ij = [−4jπ
2d
, 0)
⋃

(0, 4jπ
2d

]. According to

the consequence of (iii) , the relation (3.8) shows that Sj is selfadjoint and convolution

idempotent, hence d) is proved.

To prove a), suppose j > 0 and λ ∈ Ij. Then 4−jλ ∈ I0, hence there exists a non-negative

integer kj such that
2π

4(kj+2)d
<
∣∣4−jλ∣∣ ≤ 2π

4(kj+1)d
,

or equivalently
2π

4(kj−j+2)d
< |λ| ≤ 2π

4(kj−j+1)d
.

For the case kj < j, observe that Ŝ(λ) = 0. For the case kj ≥ j, from the definition of Ŝ

we have the followings:

Ŝ(λ) =
4kj−j∑
i=0

e
λ
2π
i ⊗ e

λ
2π
i and

Ŝ(4−jλ) =
4kj∑
i=0

e
4−j( λ

2π
)

i ⊗ e
4−j( λ

2π
)

i . (3.9)

Recall that, from the definition of the family of orthonormal bases {eλi }i, e
4−j( λ

2π
)

i can be

read as below:

e
4−j( λ

2π
)

i = D|4−j λ
2π |

−1/2ei = D2j

(
D| λ

2π |
−1/2ei

)
= D2je

λ
2π
i , (3.10)

replacing (3.10) into (3.9) we get

Ŝ(4−jλ) =
4kj∑
i=0

D2je
λ
2π
i ⊗D2je

λ
2π
i ,

and hence

Ŝj(λ) = D2−j Ŝ(4−jλ)D2j =
4kj∑
i=0

e
λ
2π
i ⊗ e

λ
2π
i . (3.11)

Observe that for any λ ∈ Ij, the operator Ŝ(λ) is a projection on the first 4kj−j+1 elements

of orthonormal basis {e
λ
2π
i } for some suitable kj ≥ j, whereas Ŝj(λ) is a projection on the
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first 4kj + 1 elements of the same orthonormal basis. Hence we get

Ŝ(λ) ◦ Ŝj(λ) = Ŝj(λ) ◦ Ŝ(λ) =
4kj−j∑
i=0

e
λ
2π
i ⊗ e

λ
2π
i = Ŝ(λ), (3.12)

which is a projection on the first 4kj−j + 1 elements of the orthonormal basis {e
λ
2π
i }. For

fixed j > 0 since the relation (3.12) holds for any λ ∈ Ij, then by applying the convolution

and the Plancherel theorem respectively we obtain S ∗ Sj = S.

Likewise for j < 0, suppose λ ∈ Ij. Then for some kj ∈ N0 is 2π

4(kj+2)d
< |4−jλ| ≤ 2π

4(kj+1)d
.

Analogous to the previous case, the operator Ŝ(λ) is a projection on the first 4kj−j + 1

elements of orthonormal basis {e
λ
2π
i } and Ŝj(λ) is a projection on the first 4kj +1 elements

of the same orthonormal basis. Thus

Ŝ(λ) ◦ Ŝj(λ) = Ŝj(λ) ◦ Ŝ(λ) =
4kj∑
i=0

e
λ
2π
i ⊗ e

λ
2π
i = Ŝj(λ). (3.13)

Once again applying convolution and Plancherel theorems in the relation (3.13) yields

S ∗ Sj = Sj and hence a) is proved.

To prove b), Suppose j ∈ Z and f ∈ L2(H). Then from the structure and proper-

ties of function S, f ∗ Sj ∈ L2(H). Before starting to give the proof of this part,

observe that because of the consequence in (iii), for any λ 6= 0 the operator Ŝ(λ)

is bounded and has operator norm less than 1. Hence for any j ∈ Z and λ 6= 0 is

‖ Ŝj(λ) ‖∞=‖ D2−j Ŝ(4−jλ)D2j ‖∞≤ 1 . Using the inequality and applying the Plancherel

and convolution theorems respectively we get the followings:

‖ f ∗ Sj ‖2
2=‖ ̂(f ∗ Sj) ‖2

H.S =

∫
R∗
‖ ̂(f ∗ Sj)(λ) ‖2

2 dµ(λ) (3.14)

=

∫
0<|4−jλ|≤ π

2d

‖ f̂(λ) ◦ Ŝj(λ) ‖2
H.S dµ(λ)

≤
∫

0<|4−jλ|≤ π
2d

‖ f̂(λ) ‖2
H.S‖ Ŝj(λ) ‖2

∞ dµ(λ)

≤
∫

0<|4−jλ|≤ π
2d

‖ f̂(λ) ‖2
H.S dµ(λ)

=

∫
R∗
‖ f̂(λ) ‖2

H.S χ
[− 4jπ

2d
,0)∪(0, 4

jπ
2d

]
(λ)dµ(λ), (3.15)
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where χ denotes the characteristic function and dµ(λ) = (2π)−2 |λ| dλ. If we take the limit

of the right hand side in (3.15), since
∫
λ
‖ f̂(λ) ‖2

H.S dµ(λ) < ∞, then by the dominated

convergence theorem we have the permission to pass over the limit into the integral and

hence

lim
j→−∞

∫
R∗
‖ f̂(λ) ‖2

H.S χ
[− 4jπ

2d
,0)∪(0, 4

jπ
2d

]
(λ)dµ(λ)

=

∫
R∗
‖ f̂(λ) ‖2

H.S lim
j→−∞

χ
[− 4jπ

2d
,0)∪(0, 4

jπ
2d

]
(λ)dµ(λ) = 0,

The latter implies that the limit of the left hand side in the relation (3.14) is also zero as

j → −∞, i.e, lim
j→−∞

‖ f ∗ Sj ‖2= 0, which proves b).

To prove c) suppose f is in L2(H). Recall that for any fixed λ, {e
λ
2π
i }∞i=0 constitutes an

ONB for L2(R). Therefore the identity operator I on L2(R) can be read as

I =
∞∑
i=0

e
λ
2π
i ⊗ e

λ
2π
i

and hence the operator f̂(λ) can be represented as

f̂(λ) =
∞∑
i=0

(
f̂(λ)e

λ
2π
i

)
⊗ e

λ
2π
i . (3.16)

Therefore for any j ∈ Z, according to the representation of f̂(λ) in (3.16) and the repre-

sentation of operator D2−j Ŝ(4−jλ)D2j in (3.11), for some kj ≥ j we obtain the followings:

‖f̂(λ) ◦D2−j Ŝ(4−jλ)D2j − f̂(λ) ‖2
H.S

=
∥∥ ∞∑
i=4kj +1

(
f̂(λ)e

λ
2π
i

)
⊗ e

λ
2π
i

∥∥2

H.S

=
∞∑

i=4kj +1

∥∥f̂(λ)e
λ
2π
i

∥∥2

2
. (3.17)

Letting j → ∞ (hence kj → ∞), the right hand side of (3.17) goes to zero. From the

other side using the Plancherel theorem we have

‖ f ∗ Sj − f ‖2
2 =

∫
R∗
‖ f̂(λ) ◦D2−j Ŝ(4−jλ)D2j − f̂(λ) ‖2

H.S dµ(λ) (3.18)

=

∫
R∗

∞∑
i=4kj +1

∥∥f̂(λ)e
λ
2π
i

∥∥2

2
dµ(λ).
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In the same way as in the argument for b), using the dominated convergence theorem for

the relation (3.18) one gets:

lim
j→∞

‖ f ∗ Sj − f ‖2
2 =

∫
lim
j→∞

‖ f̂(λ) ◦D2−j Ŝ(4−jλ)D2j − f̂(λ) ‖2
H.S dµ(λ)

=

∫
lim
j→∞

∞∑
i=4(kj+j)+1

∥∥f̂(λ)e
λ
2π
i

∥∥2

2
dµ(λ) = 0,

as desired, which completes the proof of the theorem.

The next step to approach to the construction of an MRA via the function S is that

we start with the definition of a closed left invariant subspace of L2(H), V0. Define

V0 = L2(H) ∗ S. It is clear that V0 is closed, and with the following additional properties:

1. V0 is contained in the set of all bounded and continuous functions in L2(H). Hence

V0 is a proper subspace of L2(H). The boundedness of elements is easy to see from

the definition of convolution operator and Cauchy-Schwartz inequality:

| g ∗ S(x) |≤‖ f ‖2‖ S ‖2 ∀x ∈ H g ∈ L2(R),

2. Since S is convolution idempotent then for any f ∈ V0 is f ∗ S = f ,

3. Suppose Γ is any lattice in H. Then Lγ(g ∗ S) = Lγg ∗ S which shows V0 is left

shift-invariant under Γ.

4. For any g ∈ L2(H) and j ∈ Z is D2j(g ∗ S) = D2jg ∗D2jS.

Note: Observe that not every space L2(H) ∗ S with S = S̃ = S ∗ S owns a normalized

tight frame of the form {Lγφ}γ for some φ ∈ L2(H)∗S. As will be seen later, this depends

on the multiplicity function associated to S, see Definition 3.13 and Theorem 3.14. For

more details see [20] Corollary 6.8 and Theorem 6.4.

Recall that L2−jγD2−jS(ω) = 2j/2S(γ−1(2j.ω)) ∀j ∈ Z , γ ∈ Γ, x ∈ H. Next define

V1 = L2(H) ∗ (24S(2.)). As well, V1 is left invariant under 2−1Γ and closed subspace
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of L2(H). The functions in V1 are continuous bounded function and from (3.8) are I1-

bandlimited. With regard to the consequence a) of Theorem 3.11, for any f ∈ V0 we

have

f = f ∗ S = f ∗ (S ∗ 24S(2.)) = (f ∗ S) ∗ (24S(2.)).

The latter shows that the conclusion V0 ⊆ V1 holds.

By continuing in this manner, we define V2 = L2(H)∗ (28S(22.)) to be the closed subspace

of functions which are I2-bandlimited. Obviously with the similar argument as above one

can easily prove that V1 ⊆ V2.

Similarly, one can define subspaces V3 ⊆ V4 ⊆ · · · . On the other hand one may define

negatively indexed subspaces. For example, we define V−1 = L2(H) ∗ 2−4S(2−1.). This

space contains the functions which are I−1-bandlimited and obviously V−1 ⊆ V0. Again,

one may continue in this way to construct the sequence of closed and left (2−jΓ)-shift-

invariant subspaces of L2(H):

{0} ⊆ · · ·V−2 ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ L2(H), (3.19)

which are scaled versions of the central space V0. Our next aim is to show that, in the

sense of Definition 3.7, the sequence of closed subspaces {Vj} forms a frame-MRA of

L2(H). For this reason we must show that the all properties 1− 6 in Definition 3.7 hold

for the sequence {Vj}. But (3.19) shows that Vj’s satisfy the first property (the nested

property). For the other properties we state the next remark:

Remarks 3.12. (1) To show the density of {Vj}j∈Z in L2(H), i.e.,
⋃
j∈Z Vj = L2(H),

suppose Pj denotes the projection operator of L2(H) onto Vj. Then Pj is given by

Pj : f → f ∗ 24jS(2j.). (3.20)

Therefore the density of {Vj}j∈Z in L2(H) is equivalent to say that for any f ∈ L2(H)

and j with Pjf = 0 ∀j ∈ Z is f = 0. It follows directly from Theorem 3.11, c).

More precisely

0 = Pjf = f ∗ Sj → f as j →∞



56 Wavelet Frames on the Heisenberg Group

which implies f = 0.

(2) For triviality of intersection, observe that for any f ∈ Vj is f ∗ 24jS(2j.) = f .

Therefore for any f ∈
⋂
Vj is f ∗ 24jS(2j.) = f for all j. Therefore by b) in

Theorem 3.11, it implies that f = 0 as desired.

(3) Property 4 in Definition 3.7 is clear from the construction of Vj’s. This property

enables us to pass up and down among the spaces Vj by scaling

f ∈ Vj ⇐⇒ f(2k−j.) ∈ Vk.

(4) Generally when V0 is left shift-invariant under some lattice Γ, then the spaces Vj are

shift-invariant under (2−jΓ). We will return to this fact later and will show how one

can choose an appropriate lattice Γ such that it allows the construction of a wavelet

frame on H.

(5) Observe that, by contrast to the Shannon multiresolution analysis on R, condition 6

in Definition 3.7 requires the existence of some frame generator φ, not necessarily

φ = S. This is due to the fact that we did not suppose any other conditions for

the selection of orthonormal basis {eλi }i for the constructions of Hilbert-Schmidt

operators Ŝ(λ) respectively S. This is one of the disagreement between our defined

sinc-MRA of L2(H) and the sinc-MRA of L2(R). In the case R the sinc function by

which the subspaces Vj’s are defined, generates an ONB for V0 and hence for all Vj,

under some other suitable discrete subgroups of R. In our case on the Heisenberg

group we will show the existence of a function φ in V0 such that its left translations

under a suitable Γ forms a normalized tight frame for V0 and hence for all Vj under

2−jΓ.

As we briefly mentioned in Remark 3.12, we shall show the existence of a function φ in

V0 with which the property 6 in Definition 3.7 holds for V0. We will observe below that

this fact strongly depends on the structure of S and definition of V0.
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To achieve this goal, we recall one definition and one theorem of Führ’s book [20] below.

They can be found in Section 6.2 of this book.

Definition 3.13. Suppose H be a left-invariant subspace of L2(H) and P be the projection

operator of L2(H) ontoH. There exists a unique associated projection field (P̂λ)λ satisfying

P̂ (f)(λ) = f̂(λ) ◦ P̂λ ∀ f ∈ L2(H).

The associated multiplicity function mH is then defined by

mH : R∗ → N ∪ {∞}; mH(λ) = rank(P̂λ).

H is called bandlimited if the support of its associated multiplicity function mH, Σ(H), is

bounded in R∗.

The next theorem provides a characterization of closed left shift-invariant subspaces of

L2(H) which admit a tight frame. But before we state this theorem we need to introduce

two numbers associated to lattice Γ. The number d(Γ) refer to a positive integer number

d for which α(Γd) = Γ for some α ∈ Aut(H), where Γd is a lattice in H and is defined by

Γd :=
{
(m, dk, l +

1

2
dmk) : m, k, l ∈ Z

}
. (3.21)

It is easy to check that Γd forms a group under the group operation (2.2) ( this kind

of lattices are presented in [20], §6.1). Observe that due to Theorem 6.2 in [20], such

strictly positive number d exists and is uniquely determined. As well, we define r(Γ) be

the unique positive real satisfying

Γ ∩ Z(H) = {(0, 0, r(Γ)k); k ∈ Z} ,

where Z(H) denotes the center of H, Z(H) = {0} × {0} × R ⊂ H. With above notations

we state Theorem 6.4 from [20].

Theorem 3.14. Suppose H is a left-invariant subspace of L2(H) and mH is its associated

multiplicity function. Then there exists a tight frame (hence normalized tight frame) of



58 Wavelet Frames on the Heisenberg Group

the form {Lγφ}γ∈Γ with an appropriate φ ∈ H if and only if the inequality

mH(2πλ) |2πλ|+mH

(
2πλ− 1

r(Γ)

) ∣∣∣∣2πλ− 1

r(Γ)

∣∣∣∣ ≤ 1

d(Γ)r(Γ)
(3.22)

holds for mH almost everywhere. From the inequality (3.22) it can be read that the support

of mH is bounded and in particular it is contained in the interval
[
− 1
d(Γ)r(Γ)

, 1
d(Γ)r(Γ)

]
up

to a set of measure zero. Therefore H is bandlimited.

Remark 3.15. Note that Theorem 6.4 in [20] refers to different realizations of the Sc-

hrödinger representations, hence we have the additional factor 2π in the relation (3.22).

This theorem as a main tool enables us to show the existence of a function φ in V0 which

provides a tight frame for V0. Therefore as a consequence we have:

Theorem 3.16. There exists a normalized tight frame of the form {Lγφ}γ∈Γ for an ap-

propriate φ ∈ V0 and a suitable lattice Γ in H.

Proof: For our purpose we pick a lattice with r(Γ) = 1
2π

and d(Γ) = d. (Observe that

it is possible due to Theorem 6.2 in [20] to select a lattice with the desired associated

numbers r and d.) From the definition of V0, {Ŝ(λ)}λ∈R∗ is the associated projection field

of V0 with the multiplicity function mV0 which is given by

mV0(2πλ) = rank(Ŝ(2πλ)) =


4k + 1 if 1

4(k+2)d
≤ |λ| ≤ 1

4k+1d
for some k ∈ N0

0 elsewhere.

One can easily prove that the inequality in (3.22) holds for mV0 . By the construction of

S in Theorem 3.11, Ŝ(λ) = 0 for any |λ| > π/2
d

which provides:

Σ(mV0) ⊂
[
−π/2

d
,
π/2

d

]
⊂
[
−2π

d
,
2π

d

]
=

[
− 1

d(Γ)r(Γ)
,

1

d(Γ)r(Γ)

]
Therefore the all conditions of Theorem 3.14 hold for V0. Hence there exists a function

φ, so-called scaling function, such that for our selected lattice Γ, LΓφ forms a normalized

tight frame for V0. From there the property 6 of Definition 3.7 is satisfied.
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Corollary 3.17. For any j ∈ Z, {L2−jγD2−jφ}γ constitutes a normalized tight frame of

Vj.

As already mentioned, the MRA for the L2 space is considered with the aim to find an

associated discrete wavelet system in L2. More precisely, we want to construct a discrete

wavelet system for L2(H) which is a normalized tight frame. We will study our statement

in details in the next Section by considering a “scaling function” φ in V0.

3.3.4 Existence of Shannon n.t Wavelet Frame for the Heisen-

berg group

It is natural to try to obtain one normalized tight frame (n.t frame) for L2(H) by combining

all the n.t frame {L2−jγD2−jφ}γ∈Γ of Vjs. But although Vj ⊆ Vj+1, the n.t frame for Vj

is not contained in the n.t frame {L2−(j+1)γD2−(j+1)φ}γ∈Γ of Vj+1. Therefore it shows that

the union of all n.t frames for Vis does not constitute a n.t frame for L2(H).

To find an n.t frame for L2(H), we use the following (general) method. For every j ∈ Z,

use Wj to denote the orthogonal complement of Vj in Vj+1, i.e., Vj+1 = Vj ⊕Wj, where

the symbol ⊕ stands for orthogonal closed subspace. Suppose Qj denotes the orthogonal

projection of L2(H) onto Wj. Then Pj+1 = Pj +Qj and apparently is:

Vj =
⊕
k≤j−1

Wk.

The most important thing remaining unchanged is that, the spaces Wj, j ∈ Z, still keep

the scaling property from Vj:

f ∈ Wj ⇐⇒ f(2k−j.) ∈ Wk. (3.23)

Consequently we get

L2(H) =
⊕
j∈Z

Wj. (3.24)

The orthogonal decomposition of L2(H) under Wj’s follows that each f ∈ L2(H) has a

representation f =
∑

j Qjf , where Qjf⊥Qkf for any pair of j, k, j 6= k.
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Our goal is reduced to finding an n.t frame for W0. If we can find such a n.t frame for W0,

then by the scaling property (3.23) and orthogonal decomposition of L2(H) under Wjs in

(3.24), we can easily get a n.t frame for space L2(H). We study it in the next Lemma in

details:

Lemma 3.18. Suppose ψ ∈ W0 and Γ is a lattice in H such that {Lγψ}γ∈Γ constitutes a

n.t frame of W0. Then {L2−jγD2−jψ}γ,j is a n.t frame of L2(H).

Proof: Observe that this lemma is a consequence of orthogonal decomposition of L2(H)

under Wj’s. Suppose f ∈ L2(H). From (3.24), f can be presented as

f =
∑
j

Qj(f).

Therefore to prove that the system {L2−jγD2−jψ}γ,j forms a n.t frame of L2(H), it is

sufficient to show that for any j the system {L2−jγD2−jψ}γ is a n.t frame of Wj. From

the scaling property of spaces Wj’s (3.23) we have Qj(f)(2−j.) ∈ W0. Take Qj(f) = fj.

Therefore from the assertion of Lemma

‖fj(2−j.)‖2 =
∑
γ

∣∣〈fj(2−j.), Lγψ〉∣∣2 .
Replacing 22jD2jfj(.) = fj(2

−j.) in above we get

‖fj‖2 = ‖D2jfj‖2 =
∑
γ

|〈D2jfj, Lγψ〉|2 =
∑
γ

∣∣〈fj, L2−jγD2−jψ〉
∣∣2 . (3.25)

Summing over j in (3.25) yields:

‖f‖2 =
∑
j

‖fj‖2 =
∑
j,γ

∣∣〈fj, L2−jγD2−jψ〉
∣∣2 =

∑
j,γ

∣∣〈f, L2−jγD2−jψ〉
∣∣2 ,

as desired.

By Lemma 3.18 it remains to show that the space W0 contains a function ψ generating a

normalized tight frame of W0.
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Remark 3.19. By the definition of orthogonal projections P1, P0 in (3.20) for any f ∈

L2(H) we have

Q0(f) = P1(f)− P0(f) = f ∗ (24S(2.))− f ∗ S = f ∗
[
(24S(2.))− S

]
,

and hence is

W0 = L2(H) ∗
[
(24S(2.))− S

]
. (3.26)

Likewise for any j one can see that

Wj = L2(H) ∗
[
(24jS(2j.))− (24(j−1)S(2j−1.))

]
and,

Qj(f) = f ∗
[
(24jS(2j.))− (24(j−1)S(2j−1)

]
∀ f ∈ L2(H),

where Qj, as earlier mentioned, is the projection operator of L2(H) onto Wj.

The representation of the space W0 in (3.26) suggests to get a n.t frame for W0 by applying

Theorem 3.14. We study it in the next theorem. Recall that
∑

(W0) denotes the support

of space W0.

Theorem 3.20. W0 is bandlimited and contains a function ψ such that its left translations

under a suitable lattice Γ forms a n.t frame of W0.

Proof: Due to the support of S, we have∑[
(24S(2.))− S

]
⊂
[
−π
d
,
π

d

]
, (3.27)

where Σ stands for the support of the function (24S(2.)) − S in the Plancherel side.

Hence W0 is bandlimited. To prove that the space W0 contains a n.t frame, observe

that by Lemma (3.17) the set {L2−1γD2−1φ}γ∈Γ is a n.t frame of V1 for a suitable Γ.

From the other side the projection of V1 onto W0, Q0, is left invariant and hence for

any γ ∈ Γ is Q0(L2−1γD2−1φ) = L2−1γ

(
Q0(D2−1φ)

)
. Since the image of a n.t frame

under a left shift-invariant projection is again a n.t frame of the image space, then the set

{Q0

(
L2−1γD2−1φ

)
}γ = {L2−1γ

(
Q0(D2−1φ

)
}γ constitutes a n.t frame for W0, as desired.
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Corollary 3.21. There exists a bandlimited function ψ ∈ L2(H) and a lattice Γ in H

such that the discrete wavelet system {L2−jγD2−jψ}j,γ forms a n.t frame of L2(H).

Proof: Using Lemma 3.18 and Theorem 3.20 the assertion follows.

Remarks 3.22. 1) Observe that in this work, in contrast to the case of R, it is not desired

that the wavelet function ψ contained in W0 is constructed by so-called scaling function φ

in V0.

2) The role of the multiresolution concept in this chapter is somewhat different to the

case of wavelets in L2(R). On R, scaling equations and associated multiresolution anal-

ysis are a useful tool for the explicit construction of well-localized wavelets, resulting in

a convenient discretization and fast decomposition algorithems. By contrast, the mul-

tiresolution analysis on L2(H) is rather an interesting byproduct of the construction of

Shannon-wavelets, serving as a motivations of some of its features. It is doubtful that

one can construct well-localized wavelets with this approach. At least the Shannon wavelet

on L2(R), which is not even integrable, suggests this. Bad localization is also a handicap

for decomposition algorithms that one can (in principle) derive from a multiresolution on

L2(H).



Chapter 4

Admissibility of Radial Schwartz

Functions on the Heisenberg Group

4.1 Introduction

The first aim of this chapter is to characterize the space of radial Schwartz functions on

the Heisenberg group by applying the Fourier transform. We show that a radial function

on the Heisenberg group is Schwartz if and only if its radial Fourier transform is rapidly

decreasing. The main result is Theorem 4.36.

The reason for considering radial functions is the following: Given such a function f , its

operator valued Fourier transform f̂(λ) turns out to be diagonal in the dilated Hermite

basis {φλn}n∈N0 , for λ ∈ R∗. This fact allows a convenient treatment of radial functions

on the Fourier side; it is achieved by first showing that for radial function f , the special

Hermite expansion of fλ reduces to a Laguerre expansion. For that reason, in section 4.2

we show some more properties of Hermite and Laguerre function and in Section 4.4 we

calculate some useful relations concerning these special functions, which we need for the

characterization of radial Schwartz functions. We then provide sufficient and necessary

conditions for the radial Fourier transform of a radial function to be a Schwartz function.

In this section we also consider the characterization of admissible Schwartz functions via

63
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their radial Fourier transforms, which is done in the main result, Theorem 4.37. Let us

start with the definition of a radial function:

Definition 4.1. (radial function) Using coordinates (z, t) on Heisenberg group H ,

where z ∈ C and t ∈ R , we say a function f ∈ Lp(H) is radial if f = f ◦ Rθ in the

Lp-sense for every θ ∈ [0, 2π), where Rθ is the rotation operator on H with respect to θ

and is given by Rθ(z, t) = (R̃θz, t), R̃θ =

 cos θ sin θ

− sin θ cos θ

 .

Remark 4.2. A continuous function f ∈ Lp(H) is radial if and only if f(z, t) depends

only on | z | and t. In this case we may write f(z, t) = f0(| z |, t) with f0 : R+ × R → C,

where the latter equality is understood pointwise.

Schwartz functions have played an important role in harmonic analysis with nilpotent

groups. Let H be the Heisenberg group with Lie algebra h, see §2.5. The exponential

map exp : h → H is a polynomial diffeomorphism and one defines the (Fréchet) space S(H)

of Schwartz functions on S(H) via identification with the usual space S(h) of Schwartz

functions on the vector space h:

S(H) := {f : H → C; f ◦ exp ∈ S(h)}.

Observe that with identifying H with its underlying manifold R3 one gets S(H) = S(R3)

which we will use this in the remainder of the our work. For more details see for instance

[7], [14].

Notation: L2
r(H) denotes the space of radial functions in L2(H), and Sr(H) the space

of radial Schwartz functions on H.

4.2 Preliminaries and Notations

In this section we recapitulate Hermite, Laguerre and special Hermite functions and show

some of their properties which are needed in studying the expansions of group Fourier
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transform of radial functions on the Heisenberg group in terms of special Hermite func-

tions. Also, in the study of special Hermite functions we shall recall briefly some results

from the representation theory of the Heisenberg group. We also define Weyl transforms

which we need later.

4.2.1 Hermite and Laguerre Functions

The importance of Hermite functions in the theory of Fourier integrals was realized by

N.Wiener. They play an important role not only in Euclidean Fourier analysis but also

in harmonic analysis on the Heisenberg group. As we need several properties of these

distinguished offspring of the Gaussian in this chapter, we think it is appropriate to

introduce them here.

Hermite polynomials Hn(x), are defined on the real line by:

Hn(x) = (−1)n
dn

dxn
(e−x

2

)ex
2

, n = 0, 1, 2, · · ·

We then define the normalized Hermite functions φn by setting

φn(x) = (2nn!
√
π)−

1
2Hn(x)e

− 1
2
x2

, n = 0, 1, 2, · · ·

Many properties of the Hermite functions follow directly from the above definition. We

record here some properties which are needed in the sequel.

The following relations hold for Hermite polynomials:

d

dx
Hn(x) = 2nHn−1(x), Hn(x) = 2xHn−1(x)−

d

dx
Hn−1(x).

For the Hermite functions φn these relations take the form

(− d

dx
+ x)φn(x) = φn+1(x), and (

d

dx
+ x)φn(x) = 2nφn−1(x)

The operators A = − d
dx

+ x and A∗ = d
dx

+ x are called the creation and annihilation

operators.

The family {φn}n∈N0 is an orthonormal system in L2(R). But we can say more.
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Theorem 4.3. The system {φn}n∈N0 is an orthonormal basis for L2(R). Consequently,

every f ∈ L2(R) has an expansion

f(x) =
∞∑
n=0

〈f, φn〉φn(x),

where the series converges to f in the L2-norm.

For λ ∈ R∗, φλn is given by

φλn(x) =| λ |
1
4 φn(

√
| λ |x) ∀x ∈ R.

For the Fourier analysis of radial functions, dilated version of the Hermite functions play

an important role:

Corollary 4.4. For any λ 6= 0, the system {φλn}n∈N0 constitutes an orthonormal basis for

L2(R).

For more information about Hermite functions see for example [7], [15], [52].

Next, we consider Laguerre polynomials. Laguerre polynomials are defined by:

Ln(x) =
1

n!

dn

dxn
(xne−x)ex.

Here x > 0 and n = 0, 1, 2, · · · . Each Ln is a polynomial of degree n. It is explicitly

given by

Ln(x) =
n∑
j=0

(
n

j

)
(−x)j

j!
x > 0, n = 0, 1, 2, . . .

We then define the Laguerre functions Ψn by setting

Ψn(x) = Ln(
1

2
x2)e−

1
4
x2

, n = 0, 1, 2, · · · , x > 0

Then we have the following important Theorem:

Theorem 4.5. The system of functions {Ψn}n∈N0 forms an orthonormal basis for

L2(R+, tdt).
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Proof: see for example [15] or [52].

Note: For each λ ∈ R∗ we can dilate the functions {Ψn}n∈N0 and obtain

Ψn,λ(t) =| λ |1/2 Ψn(| λ |1/2t)

which constitutes another orthonormal basis for L2(R+, tdt).

4.2.2 Weyl Transform on L1(C)

For λ 6= 0 let ρλ be the Schrödinger representation, as introduced earlier in (2.8). Then

for f ∈ L1(H), f̂(λ) is a bounded operator on L2(R) with the operator norm satisfying

‖ f̂(λ) ‖≤‖ f ‖1. For f ∈ (L1 ∩ L2)(H) , f̂(λ) is actually a Hilbert-Schmidt operator and

a Fourier transform can be extended for all f ∈ L2(H) by Plancherel theorem.

Let us define ρλ(z) := ρλ(x, y, 0) , where z := x+ iy. Then ρλ(x, y, t) = eiλtρλ(z), and set

fλ(z) =

∫ ∞

−∞
f(z, t)eiλtdt (4.1)

to be the inverse Fourier transform of f in the t-variable. Observe that fλ is in (L1∩L2)(H)

if f ∈ (L1 ∩ L2)(H) . Then from (4.1) and the definition of f̂(λ) it follows that

f̂(λ) =

∫
C
fλ(z)ρλ(z)dz.s

Therefore, it is natural to consider operators of the form

Wλ(g) =

∫
C
g(z)ρλ(z)dz

for functions g ∈ (L1 ∩ L2)(C). For g ∈ (L1 ∩ L2)(C) , Wλ(g) is an integral operator and

is called Weyl transform of g. The operator Wλ(g) is a Hilbert-Schmidt operator whose

norm is given by

‖ Wλ(g) ‖2
H.S= (2π) |λ|−1

∫
C
|g(z)|2 dz
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(see [52]). Observe that since the operator Wλ is a bounded linear operator on normed

space (L1 ∩ L2)(C) with L2-norm to the complete space L2(R) ⊗ L2(R) with Hilbert-

Schmidt norm, then Wλ is uniquely extended to a bounded linear (with the same bound)

from (L1 ∩ L2)(C) = L2(C) to L2(R)⊗ L2(R), which is still denoted by Wλ.

By definition we see that

Wλ(f
λ) = f̂(λ), (4.2)

therefore, as far as the t-variable is concerned the group Fourier transform is nothing

but the Euclidean Fourier transform. In many problems on the Heisenberg group, an

important technique is to take the partial Fourier transform in the t-variable to reduce

matters to the case of C. So, it would be reasonable to introduce a special convolution of

two integrable functions on C.

Definition 4.6. (λ-twisted convolution) For any given two functions F and G in

L1(C) and λ 6= 0, F ∗λ G is defined by

F ∗λ G(z) =

∫
C
F (z − w)G(w)ei

λ
2
Im(z.w̄)dw.

We call this the λ-twisted convolution of F and G.

It follows that for any F and G in L1(C) is

Wλ(F ∗λ G) = Wλ(F )Wλ(G).

Observe that the definition of λ-twisted convolution can be extended between two func-

tions in L2(C) (see [24]). For some interesting properties of the twisted convolution see

the monograph [15].

4.2.3 Hermite functions on C

Here we introduce certain auxiliary functions and study several of their important proper-

ties. These functions are defined as matrix coefficients of the Schrödinger representation
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ρλ where λ 6= 0.

For each pair of indices j and k we define

Φλ
j,k(z) = 〈ρλ(z)φλk , φλj 〉, (4.3)

where ρλ(z) stands for ρλ(z, 0). The functions {(2π)−
1
2 |λ|

1
2 Φλ

j,k} are called the Hermite

functions on C. The importance of the Hermite functions on C is recorded in the following

result:

Theorem 4.7. ([52] Theorem 2.3.1) The Hermite functions on C, {(2π)−
1
2 |λ|

1
2 Φλ

j,k}j,k∈N0

form an orthonormal basis for L2(C).

Next proposition shows that the Hermite functions Φλ
n,n are expressible in terms of La-

guerre functions.

Proposition 4.8. ([52] Proposition 2.3.2) For any λ 6= 0 and n ∈ N0 is

Φλ
n,n(z) = Ln(

1

2
|λ| |z|2)e−

1
4
|λ| |z|2 .

Let us now define the Laguerre functions ln(z) on C by

ln(z) = Ln(
1

2
|z|2)e−

1
4
|z|2 = Φn,n(z) (4.4)

We also define ln,λ(z) = ln(|λ|1/2z) = Φλ
n,n(z) for λ ∈ R∗, therefore we have the following

result:

Proposition 4.9. ([52] Proposition 2.3.3) Wλ(ln,λ) = (2π) |λ|−1 φλn ⊗ φλn.

4.3 Fourier Transform of Radial Functions

In this section we present the group Fourier transform for radial functions on H. The

following proposition contains the main reason why we consider radial functions on H:

The operator valued Fourier transform of radial functions consists of operators that are

“diagonal” in the scaled Hermite basis. The precise proof of Proposition 4.10 can be

found in [52]:
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Proposition 4.10. Let f ∈ (L1 ∩ L2)(H) be a radial function, then its Fourier transfor-

mation is given by:

f̂(λ) =
∑
n

Rf (n, λ) φλn ⊗ φλn (4.5)

where

Rf (n, λ) =

∫
H
f(z, t)〈ρλ(z, t)φλn, φλn〉dtdz (4.6)

=

∫
C
fλ(z)〈ρλ(z)φλn, φλn〉dz (4.7)

=

∫ ∞

0

fλ(t)ln,λ(t)tdt.

The function Rf is called radial Fourier transform of f .

Proof: Suppose f ∈ (L1 ∩L2)(H) be radial. Then the function function fλ on C defined

by

fλ(z) =

∫
R
f(z, t)eiλtdt

is a radial function in L2(C). Then using polar coordinates we see that fλ is in L2(R+, tdt)

and hence we have the expansion

fλ(r) =
∑
n

(∫ ∞

0

fλ(t)Ψn,λ(t)tdt

)
Ψn,λ(r).

Written in terms of Laguerre function ln,λ on C, this takes the form

fλ(z) =
∑
n

| λ |
(∫ ∞

0

fλ(t)ln,λ(t)tdt

)
ln,λ(z) (4.8)

where ln,λ(t) stands for ln,λ(z) with | z |= t. The above series converges in L2(C) and

taking Weyl transform of both side and using relation (4.2) and Proposition 4.9 we have:

f̂(λ) =
∑
n

(∫ ∞

0

fλ(t)ln,λ(t)tdt

)
φλn ⊗ φλn.

Now, taking

Rf (n, λ) =

∫ ∞

0

fλ(t)ln,λ(t)tdt (4.9)

the proof follows.
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From this theorem we infer that the elements in subspace L1
r(H), consisting of all radial

functions in L1(H), are commutative with respect to the convolution operator. Indeed

for every pair of radial functions f, g ∈ L1(H) the convolution theorem and the fact that

their Fourier transforms are diagonal in a common ONB yields that

(̂f ∗ g)(λ) = f̂(λ)ĝ(λ) = ĝ(λ)f̂(λ) = (̂g ∗ f)(λ).

Since the Fourier transform is injective, we see that f ∗ g = g ∗ f and f ∗ g = is radial

again. Moreover Lpr(H) ⊂ Lp(H) is closed (p = 1, 2), since the rotation operators on Lp

are continuous, hence L1
r(H) is a Banach algebra.

Proposition 4.10 can be expanded to L2(H) as below:

Theorem 4.11. f ∈ L2(H) is radial if and only if for almost every λ 6= 0 its Plancherel

transformation f̂(λ) is diagonal in ONB {φλn}n∈N0.

Proof: Suppose H0 is the set of L2-functions f with the property that its Plancherel

transformation f̂(λ) is diagonal in the ONB {φλn}n∈N0 for almost every λ 6= 0, i.e, can be

represented as (4.5) for some coefficient Rf . We intend to show that L2
r(H) = H0.

To show L2
r(H) ⊂ H0, observe that (L1

r∩L2
r)(H) is densely contained in L2

r(H) in L2-norm

and from Proposition 4.10 is contained in H0. Since H0 is a closed subspace of L2(H),

then it implies that L2
r(H) ⊂ H0 as desired.

Conversely, suppose H1 denotes the dense subspace of H0 of L2-functions f for which∫
λ

∑
n

| Rf (n, λ) | dµ(λ) <∞.

By inverse Fourier transform, for any f ∈ H1 the equality

f(z, t) =
∑
n

∫
λ∈R∗

Rf (λ, n)Φλ
n,n(z)e

−iλtdµ(λ),

holds pointwise. It shows that f is radial, since the functions Φλ
n,n are radial. Therefore

H1 ⊂ L2
r(H) and hence H0 ⊂ L2

r(H) as desired, since H1 = H0, and L2
r(H) is closed.

In general, analysis on the Heisenberg group and expansions in terms of Hermite and La-

guerre functions are interrelated. On the one hand it became clear from the work of Geller
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[22] that harmonic analysis on the Heisenberg group heavily depends on many properties

of Hermite and Laguerre functions. On the other hand, analysis on the Heisenberg group

also plays an important role in the study of Hermite and Laguerre expansions. For ex-

ample, the first summability theorem for multiple Hermite expansions was deduced from

the corresponding result on the Heisenberg group by Hulanicki and Jenkins [31].

4.4 Calculus on the Hermite and Laguerre Functions

Suppose f is a radial function contained in L2(H) and has group Fourier transform as in

Theorem 4.10. Using the inversion Fourier transformation and Proposition 4.9 we

have the inversion formula

f(z, t) =
∑
n

∫
λ∈R∗

Rf (λ, n)Φλ
n,n(z)e

−iλtdµ(λ). (4.10)

Suppose the integral in (4.10) is absolutely convergent everywhere. In the following we

use (4.10) to compute the action of certain differential operator on the Fourier side.

Our characterization of Schwartz function , which will be presented in the next section ,

involves the application of difference operators ∆+ and ∆−:

Definition 4.12. Given a function h on N0. Then ∆+h and ∆−h are the functions on

N0 defined by

∆+h(n) = (n+ 1)(h(n+ 1)− h(n)) , ∆−h(n) = n(h(n)− h(n− 1))∀n ∈ N

and ∆−h(0) = 0.

Notation: The operators ∆+ and ∆− operate on f : N × C → C only in the integer

variable, i.e, ∆+f = (∆+ ⊗ 1)f and likewise ∆−f = (∆− ⊗ 1)f .

4.4.1 Differentiation of Special Hermite Function on C× R∗

Using the symbols in Definition 4.12 we have the next lemma, which describes differen-

tiation of special Hermite functions. Let first give the next remark which will be used

later:
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Remark 4.13. Suppose f : R × R → C and f(.t) : R → C is integrable for each t. Let

F (t) =
∫
f(x, t)dt. Suppose ∂tf exists and there is a g ∈ L1 such that |(∂tf)(x, t)| ≤ g(x)

for any x, t. Then F is differentiable and ∂tF (t) =
∫

(∂tf)(x, t)dx.

The proof can be found for example in [15].

Lemma 4.14. Suppose λ 6= 0 and {Φj,k}j,k∈N0 are special functions on C in (4.3). Then

for any j = k = n ∈ N0 is

∂z∂z̄Φ
λ
n,n = −|λ|

2

{
∆+ −∆− + 2(2n+ 1)

}
Φλ
n,n,

where ∆+ and ∆− operate on the n-variable.

Proof: With definition in (4.3), in the coordinates x, y we have

∂z∂z̄Φ
λ
n,n(z) = (∂x+ i∂y)(∂x− i∂y)Φλ

n,n(x, y)

= (∂x+ i∂y)(∂x− i∂y)〈ρλ(x, y, 0)φλn, φ
λ
n〈

= (∂x+ i∂y)(∂x− i∂y)

∫
R
eiλxζφλn(ζ +

1

2
y)φλn(ζ −

1

2
y)dζ.

Hence, to prove the assertion we shall compute the following steps for any λ 6= 0 and

j, k ∈ N0 :

1. ∂xΦλ
j,k(x, y) and i∂yΦλ

j,k(x, y),

2. (∂x+ i∂y)Φλ
j,k(x, y) and (∂x− i∂y)Φλ

j,k(x, y),

3. (∂x+ i∂y)(∂x− i∂y)Φλ
j,k(x, y),

4. (∂x+ i∂y)(∂x− i∂y)Φλ
j,k(x, y), and we shall show

5. (∂x+ i∂y)(∂x− i∂y)Φλ
n,n(x, y) = − |λ|

2
{∆+ −∆− + 2(2n+ 1)}Φλ

n,n.

Recall that

Φλ
j,k(z) =

∫
C
eiλxζφλn(ζ +

1

2
y)φλn(ζ −

1

2
y)dζ. (4.11)
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Now suppose λ = 1. Differentiating (4.11) with respect to x and writing 2ζ = (ζ + 1
2
y) +

(ζ − 1
2
y) we get

∂xΦj,k(x, y) =∂x〈ρ(x, y, 0)φk, φj〉 (4.12)

=∂x

∫
R
eixζφk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ (4.13)

=

∫
R
(∂xe

ixζ)φk(ζ +
1

2
y)φj(ζ −

1

2
y)dζ

=
i

2

∫
R
eixζ
{

(ζ +
1

2
y) + (ζ − 1

2
y)
}
φk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ

=
i

2

∫
R
eixζ
{

(ζ +
1

2
y)φk(ζ +

1

2
y)
}
φj(ζ −

1

2
y)dζ

+
i

2

∫
R
eixζφk(ζ +

1

2
y)
{

(ζ − 1

2
y)φj(ζ −

1

2
y)
}
dζ.

Observe that the since∣∣∣∣∂x(eixζ)φk(ζ +
1

2
y)φj(ζ −

1

2
y)

∣∣∣∣ ≤ g(ζ, y) =

∣∣∣∣ζφk(ζ +
1

2
y)φj(ζ −

1

2
y)

∣∣∣∣
for all x, y, ζ ∈ R and g is integrable, then from Remark 4.13 we are of course passing in

(4.13) from the

∂x to the integral. With a similar calculation and the same argument in Remark 4.13 we

also have:

i∂yΦj,k(x, y) =i∂y〈ρ(x, y, 0)φk, φj〉 (4.14)

=
i

2

∫
R
eixζ
{
∂yφk(ζ +

1

2
y)
}
φj(ζ −

1

2
y)dζ

− i
2

∫
R
eixζφk(ζ +

1

2
y)
{
∂yφj(ζ −

1

2
y)
}
dζ.

Combining (4.12) and (4.14) we get

(∂x + i∂y)Φj,k(x, y) =
i

2

∫
R
eixζ
{

(ζ +
1

2
y)φk(ζ +

1

2
y) + ∂yφk(ζ +

1

2
y)
}
φj(ζ −

1

2
y)dζ

+
i

2

∫
R
eixζφk(ζ +

1

2
y)
{

(ζ − 1

2
y)φj(ζ −

1

2
y)− ∂yφj(ζ −

1

2
y)
}
dζ

(4.15)
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and

(∂x − i∂y)Φj,k(x, y) =
i

2

∫
R
eixζ
{

(ζ +
1

2
y)φk(ζ +

1

2
y)− ∂yφk(ζ +

1

2
y)
}
φj(ζ −

1

2
y)dζ

+
i

2

∫
R
eixζφk(ζ +

1

2
y)
{

(ζ − 1

2
y)φj(ζ −

1

2
y) + ∂yφj(ζ −

1

2
y)
}
dζ.

(4.16)

Using the creation and annihilation relations for the Hermite functions ([51])

(−∂ζ + ζ)φn = (2n+ 2)
1
2φn+1

(∂ζ + ζ)φn = (2n)
1
2φn−1,

we obtain from the equalities (4.60) and (4.16):

(∂x + i∂y)Φj,k(x, y) =
i

2

{
(2k)

1
2 Φj,k−1(x, y) + (2j + 2)

1
2 Φj+1,k(x, y)

}
(∂x − i∂y)Φj,k(x, y) =

i

2

{
(2k + 2)

1
2 Φj,k+1(x, y) + (2j)

1
2 Φj−1,k(x, y)

}
. (4.17)

Applying the last two equalities we derive

∂z∂z̄Φj,k = (∂x − i∂y)(∂x + i∂y)Φj,k (4.18)

= −1

4

{
(2j + 2)Φj,k + ((2k + 2)(2j + 2))

1
2 Φj+1,k+1

+ ((2k)(2j))
1
2 Φj−1,k−1 + (2k)Φj,k

}
.

Now for λ 6= 0 in R∗ and j, k in Z we have:

Φλ
j,k(x, y) =〈ρλ(x, y, 0)φλk , φ

λ
j 〉

=

∫
R
eiλxζφλk(ζ +

1

2
y)φλj (ζ −

1

2
y)dζ = Φj,k(sgnλ | λ |

1
2 x, | λ |

1
2 y).

Repeating the same calculation for Φλ
j,k(x, y) and substitution X̃ = sgnλ | λ | 12 x and

Ỹ =| λ | 12 y we have:

(∂x − i∂y)(∂x + i∂y)Φ
λ
j,k(x, y) = | λ | (∂ eX − i∂eY )(∂ eX + i∂eY )Φj,k(X̃, Ỹ ). (4.19)
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Now, applying the relations in (4.18) for (4.19) implies:

| λ | (∂ eX − i∂eY )(∂ eX + i∂eY )Φj,k(X̃, Ỹ )

=− | λ |
4

{
(2j + 2)Φj,k + ((2k + 2)(2j + 2))

1
2 Φj+1,k+1

+((2k)(2j))
1
2 Φj−1,k−1 + (2k)Φj,k

}
(X̃, Ỹ )

=− | λ |
4

{
((2j + 2)Φλ

j,k + ((2k + 2)(2j + 2))
1
2 Φλ

j+1,k+1

+((2k)(2j))
1
2 Φλ

j−1,k−1 + (2k)Φλ
j,k

}
(x, y).

Taking j = k = n, then

(∂x − i∂y)(∂x + i∂y)Φ
λ
n,n =− | λ |

4

{
(2n+ 2)Φλ

n,n + (2n+ 2)Φλ
n+1,n+1 + (2n)Φλ

n−1,n−1

}
=− | λ |

2

{
(n+ 1)(Φλ

n+1,n+1 − Φλ
n,n)− (n)(Φλ

n,n − Φλ
n−1,n−1)

+2(2n+ 1)Φλ
n,n

}
.

Finally, using the definitions of ∆+ and ∆−+ in above we get

∂z∂z̄Φ
λ
n,n = −|λ|

2

{
∆+ −∆− + 2(2n+ 1)

}
Φλ
n,n,

as desired.

We conclude this section with the next Lemma:

Lemma 4.15. For λ 6= 0 is

∂λΦ
λ
n,n(z) = (

1

λ
∆− − | z |2

4
sgnλ)Φλ

n,n(z)

Proof: For λ 6= 0 is

Φλ
n,n(z) = Φn,n(| λ |

1
2 z) = Ln(

1

2
| λ || z |2)e−

1
4
|λ||z|2

=
n∑
k

(
n

k

)
(−1

2
| λ || z |2)k

k!
e−

|λ||z|2
4
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where Ln(x) :=
∑n

k=0

(
n
k

)
(−x)k

k!
is a Laguerre polynomial.

Let λ > 0 , then

∂λΦ
λ
n,n(z) = ∂λLn(

1

2
λ | z |2) e−

1
4
λ|z|2 − 1

4
| z |2 Ln(

1

2
λ | z |2)e−

1
4
λ|z|2 (4.20)

and hence the following computation shows that

∂λLn(
1

2
λ | z |2) = ∂λ

n∑
k=0

(
n

k

)
(−1

2
λ | z |2)k

k!

=
n∑
k=0

(
n

k

)
(−1

2
| z |2)k

k!
kλk−1

=
1

λ

n∑
k=0

(
n

k

)
(−1

2
| z |2)k

k!
kλk k = n− (n− k)

=
n

λ

n∑
k=0

(
n

k

)
(−1

2
| z |2)k λk − 1

λ

n∑
k=0

(
n

k

)
(−1

2
| z |2)k

k!
(n− k)λk

=
n

λ
Ln(

1

2
λ | z |2)− n

λ
Ln−1(

1

2
λ | z |2)

=
1

λ
∆−Ln(

1

2
λ | z |2). (4.21)

Substituting (4.21) into (4.20) yields

∂λΦ
λ
n,n(z) =

1

λ
∆−Φλ

n,n(z)−
1

4
| z |2 Φλ

n,n(z) = (
1

λ
∆− − 1

4
| z |2)Φλ

n,n(z). (4.22)

For λ < 0 with a similar computation we have

∂λΦ
λ
n,n(z) =

1

λ
∆−Φλ

n,n(z) +
1

4
| z |2 Φλ

n,n(z). (4.23)

Combining (4.22) and (4.23) we get

∂λΦ
λ
n,n(z) =

(1

λ
∆− − 1

4
sgnλ | z |2

)
Φλ
n,n(z)

as desired.

4.4.2 Multiplication of Special Hermite Functions by | z |2

The first lemma of the subsection shows the interrelation of multiplication of special

Hermite function by factor | z |2 and the difference operators ∆+ and ∆−:



78 Admissibility of Radial Schwartz Functions on the Heisenberg Group

Lemma 4.16. For λ 6= 0 and n ∈ N0 we have

| z |2 Φλ
n,n(z) = − 2

| λ |
(∆+ −∆−)Φλ

n,n(z). (4.24)

Proof: First, we have to compute some elementary and preliminary relations. We start

with multiplication of function Φλ
n,n with respect to x = Re(z) :

Writing xeixζ = −i ∂
∂ζ
eixζ and using integration by parts we get

xΦj,k(x, y) = x〈ρ(x, y, 0)φk, φj〉 (4.25)

=

∫
R
xeixζφk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ

= −i
∫

R

(
∂

∂ζ
eixζ
)
φk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ

= i

∫
R
eixζ

∂

∂ζ

{
φk(ζ +

1

2
y)φj(ζ −

1

2
y)
}
dζ

= i

∫
R
eixζ
{ ∂

∂ζ
φk(ζ +

1

2
y)}φj(ζ −

1

2
y)dζ

+ i

∫
R
eixζφk(ζ +

1

2
y)
∂

∂ζ
φj(ζ −

1

2
y)
}
dζ.

And also we have:

iyΦj,k(x, y) = iy〈ρ(x, y, 0)φk, φj〉 (4.26)

= i

∫
R
eixζ(y)φk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ

= i

∫
R
eixζ

(
(ζ +

1

2
y)− (ζ − 1

2
y)

)
φk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ

= i

∫
R
eixζ(ζ +

1

2
y)φk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ

− i

∫
R
eixζφk(ζ +

1

2
y)(ζ − 1

2
y)φj(ζ −

1

2
y)dζ.

Now taking sum and difference of (4.25) and (4.26) yields

(x+ iy)Φj,k(x, y) =i

∫
R
eixζ
{
∂ζ + (ζ +

1

2
y)
}
φk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ (4.27)

+i

∫
R
eixζφk(ζ +

1

2
y)
{
∂ζ − (ζ − 1

2
y)
}
φj(ζ −

1

2
y)dζ,
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(x− iy)Φj,k(x, y) =i

∫
R
eixζ
{
∂ζ − (ζ +

1

2
y)
}
φk(ζ +

1

2
y)φj(ζ −

1

2
y)dζ (4.28)

+i

∫
R
eixζφk(ζ +

1

2
y)
{
∂ζ + (ζ − 1

2
y)
}
φj(ζ −

1

2
y)dζ.

Applying the operators creation and annihilation in equations (4.27) and (4.28)

(−∂ζ + ζ)φn = (2n+ 2)
1
2φn+1

(∂ζ + ζ)φn = (2n)
1
2φn−1

we get

(x+ iy)Φj,k(x, y) =i(2k)
1
2

∫
ζ

eixζφk−1(ζ +
1

2
y)φj(ζ −

1

2
y)dζ (4.29)

−i(2j + 2)
1
2

∫
ζ

φk(ζ +
1

2
y)φj+1(ζ −

1

2
y)dζ

=i
{

(2k)
1
2 Φj,k−1(x, y)− (2j + 2)

1
2 Φj+1,k(x, y)

}
and as well

(x− iy)Φj,k(x, y) =− i
{

(2k + 2)
1
2 Φj,k+1(x, y)− (2j)

1
2 Φj−1,k(x, y)

}
.

Combining the last equations with (4.29) one has

(x− iy)(x+ iy)Φj,k(x, y) =(2k)
1
2

{
(2k)

1
2 Φj,k(x, y)− (2j)

1
2 Φj−1,k−1(x, y)

}
(4.30)

− (2j + 2)
1
2

{
(2k + 2)

1
2 Φj+1,k+1(x, y)− (2j + 2)

1
2 Φj,k(x, y)

}
.

For arbitrary λ 6= 0,

| z |2 Φλ
j,k(z) =

1

| λ |
(2k)

1
2

{
(2k)

1
2 Φλ

j,k(x, y)− (2j)
1
2 Φλ

j−1,k−1(x, y)
}

(4.31)

− 1

| λ |
(2j + 2)

1
2

{
(2k + 2)

1
2 Φλ

j+1,k+1(x, y)− (2j + 2)
1
2 Φλ

j,k(x, y)
}
.

To prove the assertion of Lemma, recall that Φλ
j,k(x, y) = Φj,k(sgnλ | λ |

1
2 x, |λ|

1
2 y) for

λ 6= 0. Replacing Z̃ = sgnλ | λ | 12 x+ i |λ|
1
2 y we have

| z |2 Φλ
j,k(z) =| z |2 Φj,k(Z̃) =

| z |2

| Z̃ |2
| Z̃ |2 Φj,k(Z) =

1

| λ |
| Z̃ |2 Φj,k(Z̃),
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where z = x+ iy. By using the equation (4.30) for | Z̃ |2 Φj,k(Z̃) we have,

| z |2 Φλ
j,k(z) =

1

| λ |
(2k)

1
2

{
(2k)

1
2 Φj,k(X̃, Ỹ )− (2j)

1
2 Φj−1,k−1(X̃, Ỹ )

}
(4.32)

− 1

| λ |
(2j + 2)

1
2

{
(2k + 2)

1
2 Φj+1,k+1(X̃, Ỹ )− (2j + 2)

1
2 Φj,k(X̃, Ỹ )

}
or equivalently

| z |2 Φλ
j,k(z) =

1

| λ |
(2k)

1
2

{
(2k)

1
2 Φλ

j,k(x, y)− (2j)
1
2 Φλ

j−1,k−1(x, y)
}

− 1

| λ |
(2j + 2)

1
2

{
(2k + 2)

1
2 Φλ

j+1,k+1(x, y)− (2j + 2)
1
2 Φλ

j,k(x, y)
}

Put j = k = n, we derive

| z |2 Φλ
n,n(z) = − 2

| λ |
(∆+ −∆−)Φλ

n,n(z) (4.33)

as desired.

4.5 Radial Schwartz Functions on H

In this section we want to characterize the class of radial Schwartz functions on the

Heisenberg group in terms of their group Fourier transforms, in other words via their

radial Fourier transforms.

As mentioned before, the Heisenberg group is the Lie group with underlying manifold R3.

Identifying z := x+ iy, then one basis for the Lie algebra R3 of left invariant vector fields

on H is written as Z, Z̄, T where

Z = ∂/∂z + iz̄∂/∂t; Z̄ = ∂/∂z̄ − iz∂/∂t and T = ∂/∂t.

With these conventions one has
[
Z, Z̄

]
= ZZ̄ − Z̄Z = −2iT . For more details see for

example Geller’s book [23].

With above notations we can state the following lemma for the class of radial Schwartz

functions on the Heisenberg group:
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Lemma 4.17. The set Sr(H) of radial Schwartz functions on H has an alternative char-

acterization given by

Sr(H) =
{
f ∈ C∞

r (H) : (|z|2k | t |s)(∂z∂z̄)d∂ltf ∈ Cb(H) for every d, l, k, s ∈ N0

}
,

where C∞
r stands for the set of smooth and radial functions and Cb stands for the set of

bounded and continuous functions on H.

For f ∈ Sr(H) and N ∈ N define:

‖ f ‖N= supk+s≤N, d+l≤N, ω=(z,t)∈H(|z|2k | t |s) | (∂z∂z̄)d∂ltf(ω) | .

The Sr(H) is a Fréchet space whose topology is defined by the family of norms ‖ . ‖N .

We will present a sketch for the proof of the lemma in Appendix A.

The lemma provides the fact that the norms of any differentiation of a radial function and

its multiplication with the polynomials of arbitrary degree can be controlled by N -norms,

as above.

In view of the last lemma it becomes clear that first one must study the boundedness and

continuity of radial functions. We will study this in the next section by use of inverse

Fourier transform.

4.5.1 Bounded and Continuous radial Functions

All notations in the next definition have been introduced earlier in Section 2.2.

Definition 4.18. Let B⊕1 be the space of measurable fields (F (λ))λ∈bH of trace-class oper-

ators, for which the following integral is finite:∫
λ

‖ F (λ) ‖1 dµ(λ).

(Recall that dµ(λ) = (2π)−2 |λ| dλ.) The next proposition points at the inverse of group

Fourier transform for the Heisenberg group.
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Proposition 4.19. Suppose F = (F (λ)λ∈bH) ∈ B⊕1 . Then

f(x) =

∫
λ

trace(F (λ) ◦ ρλ(x)∗)dµ(λ)

defines a function f ∈ L2(H) ∗ L2(H)∗ . Hence f is continuous.

The proof of last proposition can be found for example in [33], which the author has

studied the case of unimodular type I groups. Also, the proposition has been recently

studied for general locally compact groups G in [20].

In the next theorem we show conditions for radial Fourier transforms of radial functions

ensuring the boundedness and continuity.

Theorem 4.20. Suppose f is a radial function in L2(H) and

f̂(λ) =
∑
n

Rf (n, λ) φλn ⊗ φλn

where Rf is radial Fourier transform of f . Let Rf be a bounded function of variables n

and λ, which for some d ≥ 3 and some constant Cd fulfils

| Rf (n, λ) |≤ Cd

|λ|d (2n+ 1)d
∀(n, λ). (4.34)

Then f ∈ Cb(H) ∩ L2
r(H).

Proof: According to the proposition 4.19, it is sufficient to show that (f̂(λ))λ∈bH ∈ B⊕1 ,

i.e, we show∫
λ

‖ f̂(λ) ‖1 dµ(λ) <∞ respectively

∫
λ

∑
n

| Rf (n, λ) | dµ(λ) <∞.

But we can say more. We claim that∫
λ

∑
n

| Rf (n, λ) |q dµ(λ) <∞

for q = 1, 2. The conjecture can be shown over two separate parts

A1 := {(n, λ); |λ| ≤ 1

(2n+ 1)
} and A2 := {(n, λ); |λ| > 1

(2n+ 1)
}.
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Then by boundedness of Rf , for a suitable K ≥ 0 is

∑
n

∫
A1

| Rf (n, λ) |q dµ(λ) =
∑
n

∫
|λ|≤ 1

(2n+1)

| Rf (n, λ) |q dµ(λ)

≤ 2Kq
∑
n

∫
0<λ≤ 1

(2n+1)

λdλ = Kq
∑
n

1

(2n+ 1)2
<∞.

Now using the assumption we get

∑
n

∫
A2

| R(n, λ) |q dµ(λ) =
∑
n

∫
|λ|> 1

(2n+1)

| Rf (n, λ) |q dµ(λ)

≤ 2Cq
d

∑
n

∫
λ> 1

2n+1

λ

λqd(2n+ 1)qd
dλ

≤ 2Cq
d

∑
n

1

(2n+ 1)qd

∫
λ> 1

(2n+1)

1

λ2
dλ

=
∑
n

2Cq
d

(2n+ 1)(qd+1)
<∞.

The hypothesis that qd ≥ 3 was used above to evaluate the integral of 1
λqd−1 over 1

2n+1
< λ.

Now again by Proposition 4.19 the function

f(z, t) =
∑
n

∫
λ∈R∗

Rf (n, λ)〈ρλ(z)φλn, φλn〉e−iλtdµ(λ) ∀(z, t) ∈ H

is a bounded and continuous radial function, i.e, f ∈ Cb(H) ∩ L2
r(H).

Definition 4.21. We define D0 as the set of bounded functions R on N0 ×R∗, such that

for any nonnegative integer d exists a constant Cd so that

| R(n, λ) |≤ Cd

|λ|d (2n+ 1)d
∀(n, λ).

Observe that according to the Theorem 4.20, functions with radial Fourier transform in

D0 are bounded and continuous. More precisely we have the following modification:

Corollary 4.22. Let R be a function in D0. Then there exists some function f ∈ Cb(H)∩

L2
r(H), with Rf = R.
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Lemma 4.23. Let ∆+ and ∆− be the difference operators introduced in Definition 4.12

and suppose that R ∈ D0. Then


(1)

∑∞
n R(n, λ)∆+Φλ

n,n(z) = −
∑∞

n (∆− + 1)R(n, λ)Φλ
n,n(z)

(2)
∑∞

n R(n, λ)∆−Φλ
n,n(z) = −

∑∞
n (∆+ + 1)R(n, λ)Φλ

n,n,

and hence combining (1) and (2) we get

∞∑
n

R(n, λ)(∆+ −∆−)Φλ
n,n(z) =

∞∑
n

(∆+ −∆−)R(n, λ)Φλ
n,n(z)

Proof: (Observe that here all series are absolutely convergent, since for any z and λ 6= 0

the functions n 7→ Φλ
n,n(z) are bounded on N0, and

∑
n

n |R(n, λ)| < ∞.) To the proof of

(1):

∞∑
n=0

R(n, λ) ∆+Φλ
n,n(z) =

∞∑
n=0

R(n, λ)(n+ 1)(Φλ
n+1,n+1(z)− Φλ

n,n(z))

=
∞∑
n=0

(n+ 1)R(n, λ)Φλ
n+1,n+1(z)−

∞∑
n=0

(n+ 1)R(n, λ)Φλ
n,n(z)

=
∞∑
n=1

nR(n− 1, λ)Φλ
n,n(z)−

∞∑
n=0

(n+ 1)R(n, λ)Φλ
n,n(z)

=
∞∑
n=1

n
(
R(n− 1, λ)−R(n, λ)

)
Φλ
n,n(z)−

∞∑
n=0

R(n, λ)Φλ
n,n(z)

=
∞∑
n=0

−∆−R(n, λ)Φλ
n,n(z)−

∞∑
n=0

R(n, λ)Φλ
n,n(z)

=
∞∑
n=0

−(∆− + 1)R(n, λ) Φλ
n,n(z),
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and to the proof of (2) :

∞∑
n=0

R(n, λ) ∆−Φλ
n,n(z) =

∞∑
n=0

R(n, λ)(n)(Φλ
n,n(z)− Φλ

n−1,n−1(z))

=
∞∑
n=0

nR(n, λ)Φλ
n,n(z)−

∞∑
n=0

nR(n, λ)Φλ
n−1,n−1(z)

=
∞∑
n=0

nR(n, λ)Φλ
n,n(z)−

∞∑
n=0

(n+ 1)R(n+ 1, λ)Φλ
n,n(z)

=
∞∑
n=0

(n+ 1)
(
R(n, λ)−R(n+ 1, λ)

)
Φλ
n,n(z)−

∞∑
n=0

R(n, λ)Φλ
n,n(z)

=
∞∑
n=0

−∆+R(n, λ)Φλ
n,n(z)−

∞∑
n=0

R(n, λ)Φλ
n,n(z)

=
∞∑
n=0

−(∆+ + 1)R(n, λ) Φλ
n,n(z),

which completes the proof of Lemma 4.23.

4.5.2 Differentiation of radial Functions

Next, we want to study some properties of radial Fourier transforms of radial functions,

for which the corresponding radial functions are smooth. We will see that the smoothness

of a radial function directly depends on its radial Fourier transform. First of all we have

the following simple lemma:

Lemma 4.24. Suppose R ∈ D0 and s ∈ N. Then every multiplication of R with factor

λs is contained in D0.

Proof: Since R ∈ D0 then for positive number s+ d there exists some constant Cd such

that

| R(n, λ) |≤ Cd
| λ |d+s (2n+ 1)d+s

∀ (n, λ). (4.35)
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Now by multiplication of relation (4.35) by | λ |s from both sides we obtain:

| λ |s| R(n, λ) | ≤ | λ |s Cd
| λ |d+s (2n+ 1)d+s

=
Cd

| λ |d (2n+ 1)d+s

≤ Cd
| λ |d (2n+ 1)d

,

which shows λsR is contained in D0.

Lemma 4.24 and Theorem 4.20 combine to yield the following result.

Theorem 4.25. Suppose f is in L2
r(H) and suppose Rf ∈ D0. Then for any nonnegative

natural number s, ∂st f exists and is contained in Cb(H) ∩ L2
r(H) . In other words R∂s

t f
∈

D0.

Proof: Using Lemma 4.24 , (iλ)sRf is contained in D0 and using Theorem 4.20, the

function Fs(z, t) defined by

Fs(z, t) =
∑
n

∫
R∗

(−iλ)sR(n, λ)Φλ
n,n(z)e

−iλtdµ(λ)

is a bounded and continuous function on H. Furthermore we have:

Fs(z, t) =
∑
n

∫
R∗

(−iλ)sR(n, λ)Φλ
n,n(z)e

−iλtdµ(λ) =
∑
n

∫
R∗
R(n, λ)Φλ

n,n(z)∂
s
t e
−iλtdµ(λ)

= ∂st
∑
n

∫
R∗
R(n, λ)Φλ

n,n(z)e
−iλtdµ(λ)

= ∂st f(z, t)

by absolute convergence. Observe that above the exchange of differentiation operator with

integral and sum is permissible from the same argument in Remark 4.13. Thereby the

last computation shows the existence of ∂st f , which is a bounded and continuous function

with ∂st f = Fs and R∂s
t f

= (−iλ)sRf ∈ D0.

Lemma 4.26. Suppose R ∈ D0. Then for any nonnegative integer number d we have

| λ |d
{
∆+ −∆− + 2(2n+ 1)

}d
R(n, λ) ∈ D0.
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Proof: We show the assertion of the lemma for d = 1. The case d > 1 follows by

induction. For d = 1, the term | λ |
{
∆+−∆− + 2(2n+ 1)

}
R(n, λ) can be written in the

following way:

| λ |
{
∆+ −∆− + 2(2n+ 1)

}
R(n, λ)

= | λ | {(n+ 1)R(n+ 1, λ)− (2n+ 1)R(n, λ) + nR(n− 1, λ)}.

For the proof, let m ≥ 0. Since R ∈ D0, then there exists some constant Cm so that

| R(n+ 1, λ) | ≤ Cm
| λ |m+1 (2(n+ 1) + 1)m+1

, (4.36)

| R(n, λ) | ≤ Cm
| λ |m+1 (2n+ 1)m+1

, (4.37)

| R(n− 1, λ) | ≤ Cm
| λ |m+1 (2(n− 1) + 1)m+1

. (4.38)

Using the evaluations in (4.36)− (4.38) we get

| λ | | (n+ 1)R(n+ 1,λ)− (2n+ 1)R(n, λ) + nR(n− 1, λ) |

≤ | λ | (n+ 1) | R(n+ 1, λ) | + | λ | (2n+ 1) | R(n, λ) |

+ | λ | n | R(n− 1, λ) |

≤ | λ | (n+ 1)
Cm

| λ |m+1 (2(n+ 1) + 1)m+1

+ | λ | (2n+ 1))
Cm

| λ |m+1 (2n+ 1)m+1

+ | λ | n Cm
| λ |m+1 (2(n− 1) + 1)m+1

≤ Cm
| λ |m (2n+ 1)m

+
Cm

| λ |m (2n+ 1)m

+
nCm

| λ |m+1 (2n− 1)m+1
. (4.39)

Now, using the inequalities

n

2n+ 1
≤ Km

(2n− 1

2n+ 1

)m+1
respectively

n

(2n− 1)m+1
≤ Km

(2n+ 1)m
∀n ∈ N
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we obtain

(4.39) ≤ Cm
| λ |m (2n+ 1)m

+
Cm

| λ |m (2n+ 1)m
+

CmKm

| λ |m (2n+ 1)m

=
(2 +Km)Cm

| λ |m (2n+ 1)m

and hence taking C̃m = (2 +Km)Cm we get

| λ | |
{
∆+ −∆− + 2(2n+ 1)

}
R(n, λ) |≤ C̃m

| λ |m (2n+ 1)m
∀(n, λ)

as desired.

The next theorem deals with smoothness of radial functions on C.

Theorem 4.27. Suppose f is in L2
r(H) and Rf ∈ D0. Then for any nonnegative number

d, (∂z∂z̄)
df exists and R(∂z∂z̄)df ∈ D0.

Proof: The theorem is proved with induction. Using the last lemma the following Hilbert

Schmidt operator ∑
n

−| λ |
2

{
∆+ −∆− + 2(2n+ 1)

}
Rf (n, λ) φλn ⊗ φλn

is well-defined and defines via pointwise Fourier inversion the following bounded and

continuous radial function in L2(H)∑
n

∫
−|λ|

2

{
∆+ −∆− + 2(2n+ 1)

}
Rf (n, λ)Φλ

n,n(z)e
−iλtdµ(λ)

=
∑
n

∫
−|λ|

2
R(n, λ)

{
∆+ −∆− + 2(2n+ 1)

}
Φλ
n,n(z)e

−iλtdµ(λ)

=
∑
n

∫
Rf (n, λ)(∂z∂z̄)Φλ

n,n(z)e
−iλtdµ(λ).

Recall that the last two equalities can be written by Lemmas 4.23 and 4.14 respectively.

By absolute convergence of the series we have∑
n

∫
Rf (n, λ) (∂z∂z̄)Φλ

n,n(z)e
−iλtdµ(λ)

= (∂z∂z̄)
∑
n

∫
Rf (n, λ) Φλ

n,n(z)e
−iλtdµ(λ)

= (∂z∂z̄)f(z, t)



4.5. Radial Schwartz Functions on H 89

which yields the existence of a bounded and continuous radial function (∂z∂z̄)f in L2(H)

with

R(∂z∂z̄)f = −|λ|
2

{
∆+ −∆− + 2(2n+ 1)

}
Rf ∈ D0.

Now let d > 1. Since

|λ|d
{
∆+ −∆− + 2(2n+ 1)

}d
Rf ∈ D0.

Then similar to the first term of induction is

|λ|d+1 {∆+ −∆− + 2(2n+ 1)
}d+1

Rf ∈ D0

which proves the existence of bounded and continuous radial function (∂z∂z̄)
df in L2(H).

Here, we extract the last corollary of this section through Theorems 4.25 and 4.27.

Corollary 4.28. Suppose f be a radial function in L2(H) with Rf ∈ D0. Then for every

d, s ∈ N0, (∂z∂z̄)
d∂st f exists and R(∂z∂z̄)d∂s

t f
∈ D0.

4.5.3 Multiplication by Polynomials

This section is concerned with criteria on the Fourier transform of a radial function f

which guarantees that the product of f with arbitrary powers of |z| and t gives a bounded

function. The next Theorem gives a partial answer.

Theorem 4.29. Suppose f is in L2
r(H), such that its radial Fourier transform Rf satisfies

the condition

1

| λ |p
(∆+ −∆−)pRf (n, λ) ∈ D0 ∀ p ∈ N0. (4.40)

Then R|z|2pf ∈ D0 for any nonnegative p and the property in (4.40) holds for the function

R|z|2pf as well.
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Proof: Suppose p ∈ N0. To prove the assertion we show that the function | z |2p f is in

L2
r(H) and has the radial Fourier transform

R|z|2pf (n, λ) =
1

| λ |p
(∆+ −∆−)pRf (n, λ) ∈ D0.

Since 1
|λ|p (∆+ − ∆−)pR(n, λ) ∈ D0 then due to the inversion Fourier transform and by

Theorem 4.20 the radial function

f̃(z, t) =
∑
n

∫
λ

− 2p

| λ |p
(∆+ −∆−)pRf (n, λ)Φλ

n,n(z)e
iλtdµ(λ)

is bounded and continuous. Applying Lemmas 4.23 and 4.16 we have :

f̃(z, t) =
∑
n

∫
λ

− 2p

| λ |p
(∆+ −∆−)pRf (n, λ)Φλ

n,n(z)e
iλtdµ(λ)

=
∑
n

∫
λ

Rf (n, λ) | z |2p Φλ
n,n(z)e

iλtdµ(λ)

=| z |2p
∑
n

Rf (n, λ)Φλ
n,n(z)e

iλtdµ(λ)

=| z |2p f(z, t)

Hence | z |2p f is bounded and continuous with R|z|2pf = − 2p

|λ|p (∆+ −∆−)pRf ∈ D0.

Notation: The set C1(R∗) denotes the set of functions R which are differentiable on R∗

and lim
λ→0+

R(λ) and lim
λ→0−

R(λ) and as well lim
λ→0+

∂λR(λ) and lim
λ→0−

∂λR(λ) exist and

lim
λ→0+

R(λ) = lim
λ→0−

R(λ), lim
λ→0+

∂λR(λ) = lim
λ→0−

∂λR(λ).

Using the last notation, the following is an analog of Theorem 4.29 for the t variable.

Theorem 4.30. Suppose f is a bounded radial function in L2(H) such that for any n ∈ N0,

Rf (n, .) is contained in C1(R∗). And, suppose

1

λ
(∆+ −∆−)Rf (n, λ) and (∂λ −

1

λ
∆+)Rf (n, λ) ∈ D0.

Then the function (it)f is radial and

R(it)f (n, λ) = sgnλ
[
− 1

2λ
(∆+ −∆−) + (∂λ −

1

λ
∆+)

]
Rf (n, λ) ∈ D0. (4.41)
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Note 4.31. The relation in (4.41) implies that tf ∈ Cb(H) ∩ L2
r(H).

(By the proof of Theorem 4.20 we may apply pointwise Fourier inversion.)

Proof: From inverse Fourier transform we have the following:

tf(z, t) =
∑
n

∫
R∗
R(n, λ)Φλ

n,n(z) te
−iλtdµ(λ) = i

∑
n

∫
R∗
R(n, λ)Φλ

n,n(z)
(
∂λe

−iλt) dµ(λ)

then by partial integration and recalling that dµ(λ) = (2π)−2 |λ| dλ one gets

tf(z, t) = i(2π)−2
∑
n

{∫ 0

−∞
∂λ(λR(n, λ)Φλ

n,n(z))e
−iλtdλ− lim

λ→0−
(λR(n, λ)Φλ

n,n(z)e
−iλt)

}
(4.42)

− i(2π)−2
∑
n

{∫ +∞

0

∂λ(λR(n, λ)Φλ
n,n(z))e

−iλtdλ− lim
λ→0+

(λR(n, λ)Φλ
n,n(z)e

−iλt)
}

(4.43)

Observe that lim
λ→0−

(λR(n, λ)Φλ
n,n(z)e

−iλt) = lim
λ→0+

(λR(n, λ)Φλ
n,n(z)e

−iλt) = 0, since R is

bounded and lim Φλ
n,n(z)e

−iλt exists as λ→ 0. Hence

(2π)2(it)f(z, t)

=
∑
n

{∫ +∞

0

∂λ(λR(n, λ)Φλ
n,n(z))e

−iλtdλ−
∫ 0

−∞
∂λ(λR(n, λ)Φλ

n,n(z))e
−iλtdλ

}
= I − II. (4.44)

Here we compute the term I, and the term II can be done similarly,

I =
∑
n

∫ +∞

0

{
R(n, λ)Φλ

n,n(z) + λ
(
∂λR(n, λ)

)
Φλ
n,n(z) + λR(n, λ)∂λΦλ

n,n(z)
}
e−iλtdλ

=
∑
n

∫ +∞

0

{
R(n, λ)Φλ

n,n(z) + λ∂λR(n, λ)Φλ
n,n(z)

}
e−iλtdλ

+
∑
n

∫ +∞

0

λR(n, λ)∂λΦλ
n,n(z)e

−iλtdλ (4.45)
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Using Lemmas 4.15, 4.16 and 4.23 respectively in the latter term we have:∑
n

∫ +∞

0

λR(n, λ)∂λΦλ
n,n(z)e

−iλtdλ

=
∑
n

∫ ∞

0

λR(n, λ)(
1

λ
∆− − 1

4
| z |2)Φλ

n,n(z)e
−iλtdλ

=
∑
n

∫ ∞

0

(
−(∆+ + 1)− 1

2
(∆+ −∆−)

)
R(n, λ)Φλ

n,n(z)e
−iλtdλ. (4.46)

Replacing (4.46) in (4.45) we obtain:

I =
∑
n

∫ ∞

0

{
(λ∂λ −∆+)− 1

2
(∆+ −∆−)

}
R(n, λ)Φλ

n,n(z)e
−iλtdλ. (4.47)

The similar computation for II we show that

−II =
∑
n

∫ 0

−∞

{
(λ∂λ −∆+) +

1

2
(∆+ −∆−)

}
R(n, λ)Φλ

n,n(z)e
−iλtdλ. (4.48)

Now, substituting I and II into (4.44)

(it)f(z, t) =
∑
n

∫
sgnλ

{
(∂λ −

1

λ
∆+)− 1

2λ
(∆+ −∆−)

}
R(n, λ)Φλ

n,n(z)e
−iλtdµ(λ)

as desired.

The next Theorem lists some conditions on Rf to generalize the result in Theorem 4.30

for ts, where s > 1 .

Theorem 4.32. Suppose f is a bounded function in L2
r(H) , such that its radial Fourier

transform Rf has the following properties:

(i) Rf ∈ D0 (4.49)

(ii) Rf (n, .) ∈ C∞(R∗) ∀n ∈ N0 and λm∂mλ Rf ∈ D0 ∀ m ∈ N0

(iii) λm∂mλ (∂λ −
1

λ
∆+)k

1

|λ|p
(∆+ −∆−)pRf (n, λ) ∈ D0 ∀ m, k, p ∈ N0

(iv) λm∂mλ
1

|λ|p
(∆+ −∆−)p(∂λ −

1

λ
∆+)kRf (n, λ) ∈ D0 ∀ m, k, p ∈ N0.

Then for any s ∈ N0 is R(it)sf ∈ D0 with

R(it)sf (n, λ) = (sgnλ)s
[
− 1

2λ
(∆+ −∆−) + (∂λ −

1

λ
∆+)

]s
Rf (n, λ) ∈ D0,

and the properties (ii)− (iv) hold for R(it)sf also.
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Proof: The statement is proved with induction on s. For the first statement s = 1 it is

known from the assumption of the Theorem and an application of Theorem 4.30 , i.e., for

s = 1 is

R(it)f (n, λ) = (sgnλ)

[
− 1

2λ
(∆+ −∆−) + (∂λ −

1

λ
∆+)

]
Rf (n, λ) ∈ D0

and fulfils all conditions (i)− (iv).

Assume that the statement is true for some s > 1. Then using the first statement of

induction for the function fs = (it)sf we are done, i.e., the function (it)s+1f is radial in

L2(H) with corresponding radial Fourier transform R(it)s+1f with

R(it)s+1f (n, λ) = (sgnλ)s
[
− 1

2λ
(∆+ −∆−) + (∂λ −

1

λ
∆+)

]s
Rf (n, λ) ∈ D0

which satisfies the properties in (ii)− (iv).

4.5.4 Sufficient and Necessary Conditions for a Radial Function

to be Schwartz

The main result of this section is presented in Theorem 4.36. The importance of the

theorem is that it provides a simple way of picking out an element of Sr(H) , which is

reduced to a given rapidly decreasing element R.

Definition 4.33. The space D̃ consists of all the functions R : N0×R∗ −→ C, for which

for any n ∈ N0 lim
λ→0+

R(n, λ) and lim
λ→0−

R(n, λ) both exist and are equal and R fulfils the

following properties:

(i) R ∈ D0

(ii) R(n, .) ∈ C∞(R∗) ∀n ∈ N0 and λm∂mλ R ∈ D0 ∀ m ∈ N0

(iii) λm∂mλ (∂λ −
1

λ
∆+)k

1

|λ|p
(∆+ −∆−)pR ∈ D0 ∀ m, k, p ∈ N0

(iv) λm∂mλ
1

|λ|p
(∆+ −∆−)p(∂λ −

1

λ
∆+)kR ∈ D0 ∀ m, k, p ∈ N0.

We shall call the elements of D̃ rapidly decreasing functions on N0 × R∗.
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The next corollary can immediately be extracted by Theorem 4.32 and Corollary 4.28 :

Corollary 4.34. Suppose f ∈ L2
r(H) so that Rf ∈ D̃. Then for any s, k, d, l ∈ N0

R(∂z∂z̄)d∂l
t(|z|2k|t|s)f ∈ D0.

We then have the next theorem, which contains one of the central results of this section

and expresses a sufficient condition for elements in Sr(H):

Theorem 4.35. Suppose f ∈ L2
r(H), with Rf ∈ D̃. Then f ∈ Sr(H).

Proof: In view of Lemma 4.17 we need to show

| z |2k| t |s (∂z∂z̃)
d∂ltf ∈ Cb(H) ∀s, k ∈ N0 and d, l ∈ N0.

The expression is proved with induction on k + s. For k + s = 0 the statement is known

from Corollary 4.34. Now let it be true for k+s = m; we intend to show it for k+s = m+1.

For k + s = m+ 1 we may write

(∂z∂z̄)
d∂lt | z |2k| t |s f =| z |2k| t |s (∂z∂z̄)

d∂ltf +
m∑
j=0

Pj(z, z̄, t)Dj(∂z∂z̄, ∂t)f (4.50)

where the Pj and the Dj are polynomials in z, z̄, t variables and respectively in ∂z, ∂z̄, ∂t of

maximal degree j (see the work of Geller [22]). Observe that the left hand side in above

equation is in Cb(H) form Corollary 4.34 and the sum over j on the right hand side is in

Cb(H) also because of assumption of induction. Hence we get our assertion.

Theorem 4.36. (Main theorem) Suppose f is a function in L2
r(H) with corresponding

radial Fourier transform Rf on N0 × R∗. Then

f ∈ Sr(H) ⇐⇒ Rf ∈ D̃.

Proof: The part “ ⇐ ” was already proved in Theorem 4.35. For the converse direction

let f be a radial Schwartz function. Then we shall show:

a) Rf ∈ D0 and lim
λ→0+

R(n, λ); lim
λ→0+

R(n,−λ) exists and are equal,
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b) Rf (n, .) ∈ C∞
0 (R∗) for each fixed n ∈ N0 and λm∂mλ Rf ∈ D0 for each m ∈ N

c) λm∂mλ (∂λ − 1
λ
∆+)k 1

|λ|p (∆+ −∆−)pRf ∈ D0 for all m, k, p ≥ 0

d) λm∂mλ
1
|λ|p (∆+ −∆−)p(∂λ − 1

λ
∆+)kRf ∈ D0 for all m, k, p ≥ 0

Proof of a): To show that Rf ∈ D0, we consider the sub-Laplacian operator on

the Heisenberg group L := −∆ − 1
4
| z |2 ∂2

t + (x∂y − y∂x) which has eigenfunctions

en,λ(z, t) = Φλ
n,n(z)e

iλt with eigenvalues |λ| (2n+1) ([51] §1.4). Using (4.9) for any N ∈ N0

we have:

|λ|N (1 + 2n)N |Rf (n, λ)| =
∣∣∣∣∫ ∫ f(z, t) |λ|N (1 + 2n)Nen,λ(z, t)dzdt

∣∣∣∣
=

∣∣∣∣∫ ∫ f(z, t)LN(en,λ)(z, t)dzdt

∣∣∣∣
=

∣∣∣∣∫ ∫ LNf(z, t)en,λ(z, t)dzdt

∣∣∣∣
≤‖ LNf ‖1 .

(Observe that in computation of above integrals we use the partial integration for the

vector fields. For more details see for example [53].) Taking CN :=‖ LNf ‖1 we get

| Rf (n, λ) |≤ CN

|λ|N (1 + 2n)N
∀(n, λ) ∈ N0 × R∗.

For existence and equality of limits at zero, the inverse Fourier transform allows to write

Rf (n, λ) =

∫
R

∫
C
f(z, t)en,λ(z, t)dzdt. (4.51)

Observe that f(z, t)en,λ(z, t) is uniformly bounded by f . And since limλ→0 eλ,n(z, t) =

limλ→0 Φλ
n,n(z)e

iλt = 1 and f is integrable then by dominated convergence theorem one

immediately can derive that

lim
λ−→0+

Rf (n, λ) = lim
λ−→0+

Rf (n,−λ) =

∫
t

∫
z

f(z, t)dzdt.

Proof of b): To show the smoothness of function Rf we return to the equality (4.51)

Rf (n, λ) =

∫
R

∫
C
f(z, t)en,λ(z, t)dzdt =

∫ ∫
f(z, t)Φλ

n,n(z)e
iλtdzdt.
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Since functions {en,λ(z, t)}n,λ are smooth in λ ∈ R∗ for fixed (z, t) then the functions

{(fen,λ)(z, t)} are. Observe that for any m ∈ N, the function f∂mλ en,λ(z, t) is continuous

in variable λ and f∂mλ en,λ is absolute integrable on R× C. Hence ∂mλ R exists and

∂mλ R(n, λ) =

∫ ∫
f(z, t)∂mλ en,λ(z, t)dzdt.

For the second part, to show λm∂mλ Rf ∈ D0 for any m ∈ N, we take the derivation of

functions Φλ
n,n in variable λ ∈ R∗. But, with the simple computation in Lemma 4.15, we

saw that

∂λΦ
λ
n,n(z) =

(1
λ

∆− − | z |2

4
sgnλ

)
Φλ
n,n(z).

Hence, for λ > 0 and en,λ(z, t) = Φλ
n(z)e

iλt we have

∂λen,λ(z, t) = (it)en,λ(z, t) +
1

λ
∆−en,λ(z, t)−

| z |2

4
en,λ(z, t)

= (it)en,λ(z, t) +
n

λ

(
en,λ(z, t)− en−1,λ(z, t)

)
− | z |2

4
en,λ(z, t).

Then for m = 1:

∂λR(n, λ) =

∫ ∫
f(z, t) ∂λen,λ(z, t)dzdt

= R(itf)(n, λ) +
n

λ

(
Rf (n, λ)−Rf (n− 1, λ)

)
− 1

4
R(|z|2f)(n, λ)

= R
(it− |z|2

4
)f

(n, λ) +
∆−

λ
Rf (n, λ).

Using the hypotheses of the Theorem, for a given N ≥ 0 there exist constants {Ci,N}4
i=1

so that for any (n, λ)

| ∂λRf (n, λ) | ≤ C1,N

|λ|N+1 (1 + 2n)N+1
+

C2,N

|λ|N+1 (1 + 2n)N

+
C3,N

|λ|N+1 (1 + 2n)N
+

C4,N

|λ|N+1 (1 + 2n)N+1
.

Taking CN =
∑4

i=1Ci,N we obtain

| ∂λRf (n, λ) |≤ CN

|λ|N+1 (1 + 2n)N
∀ (n, λ) λ > 0.
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With induction on m is λm∂mRf ∈ D0.

A similar argument for λ < 0 implies the assertion of this part.

Proof of c): Since f is a Schwartz function, the inverse Fourier transform yields the

following pointwise equality:

f(z, t) =
∑
n

∫
λ

Rf (n, λ)Φλ
n,n(z)e

−iλtdµ(λ).

Observe that for any p ≥ 0, by applying Lemma 4.23 we get

∑
n

∫
λ

(∆+ −∆−)p

|λ|p
Rf (n, λ)Φλ

n,n(z)e
−iλtdµ(λ)

=
∑
n

∫
λ

Rf (n, λ)
(∆+ −∆−)p

|λ|p
Φλ
n,n(z)e

−iλtdµ(λ)

and applying Lemma 4.16 yields:

=
∑
n

∫
λ

Rf (n, λ)
| z |2p

(−2)p
Φλ
n,n(z)e

−iλtdµ(λ)

=
| z |2p

(−2)p
f(z, t).

Since | z |2p f is Schwartz, then from part a) , R|z|2pf = (−2)p (∆+−∆−)p

|λ|p R ∈ D0.

On the other hand, for k ≥ 0 from Theorem 4.29 and (4.41) we have:

∑
n

∫
λ

(sgnλ)k(∂λ −
1

λ
∆+)kR(n, λ)Φλ

n,n(z)e
−iλtdµ(λ)

=
∑
n

∫
λ

R(n, λ)(−| z |
2

4
+ it)k(Φλ

n,n(z)e
−iλt)dµ(λ)

= (−| z |
2

4
+ it)kf(z, t),

which shows R
(− |z|2

4
+it)kf

= (sgnλ)k(∂λ − 1
λ
∆+)kR ∈ D0 ( since (− |z|2

4
+ it)kf is Schwartz

).

Next, replacing f by | z |2p f , for any k ≥ 0 we derive:

(sgnλ)k
(
∂λ −

∆+

λ

)k (∆+ −∆−)p

|λ|p
Rf ∈ D0,
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which is the radial Fourier transform of the Schwartz function (− |z|2
4

+ it)k |z|2p f . Now,

applying part b) for that function one gets:

λm∂mλ (sgnλ)k
(
∂λ −

∆+

λ

)k (∆+ −∆−)p

|λ|p
Rf ∈ D0 ∀m ∈ N0

as desired.

Proof of d): It can be proved in an analogous way to the part c).

4.6 Admissible Radial Functions on the Heisenberg

Group

As earlier introduced , a ∈ (0,∞) denotes an automorphism of the Heisenberg group H ,

which operates on H as follows:

a : (x, y, t) → a.(x, y, t) = (ax, ay, a2t) (4.52)

and inverse given by

a−1.(x, y, t) = (a−1x, a−1y, a−2t).

For our convenience we identify the interval (0,∞) as a group of the automorphisms of H

with Haar measure dµ(a) = a−1da. We consider the group G := Ho(0,∞) with left Haar

measure dha−5da where dh denotes Lebesgue measure on H. π denotes the quasi regular

representation of group G, which operates by dilation and left-translation operators on

L2(H) in the following way:

π : G := H o (0,∞) −→ U(L2(H))

(h, a) 7−→ π(h, a) = LhDa−1

where Lh is the left-translation operator, defined as follow:

Lh : L2(H) −→ L2(H)

θ 7−→ Lh(θ)(.) = θ(h−1 .)
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In this section, the existence of a function f ∈ L2(H) is considered, which is admissible

with respect to the quasi regular representation of G = H o (0,∞) acting on L2(H).

4.6.1 Admissibility of the radial Functions

Our aim in this part is to derive a criterion for a radial function on the Heisenberg group,

to satisfy the admissibility condition. Let us recall the definition of an admissible vector

on H w.r.t π, i.e., functions f ∈ L2(H) such that the operator

Vf : L2(H) −→ L2(G), (4.53)

Vfg(h, a) = 〈g, π(h, a)f〉 =
(
g ∗ (Daf)∗

)
(h) =

(
g ∗ (Daf

∗)
)
(h) (h, a) ∈ G

be first well defined and second isometric, i.e., for any g ∈ L2(H) is ‖ Vfg ‖L2(G)=‖ g ‖L2(H).

We restrict our investigation of such functions on the Heisenberg group to the class of

radial functions. We collect the main result of this section in next theorem which presents

a sufficient and necessary condition for admissibility of a radial function by dint of its

Fourier transform.

Theorem 4.37. (Main theorem) Suppose f ∈ L2(H) and radial with the radial Fourier

transform Rf . Then f is admissible if and only if for some positive constant c 6= 0 the

following holds:

∫ ∞

t=0

| Rf (n, t) |2 t−1dt = c ∀n ∈ N.

For the proof of Theorem 4.37, we need the next lemma:

Lemma 4.38. For a > 0 is RDa−1f (n, λ) = a2Rf (n, a
2λ).

Proof: Since f is a radial function, then obviously Daf is. Thus by the radial Fourier
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transform of Daf (see (4.6)) we have:

RDaf (n, λ) =

∫
Daf(z, t)ln,λ(z)e

iλtdtdz

=

∫
a−2f(a−1z, a−2t)ln,λ(z)e

iλtdtdz

=

∫
a2f(z, t)ln,λ(a.z)e

ia2λtdtdz

= a2

∫
f(z, t)ln(|λ|

1
2 a.z)eia

2λtdtdz from definition of ln,λ in (4.4)

= a2

∫
f(z, t)ln(| a2λ |

1
2 .z)eia

2λtdtdz

= a2

∫
f(z, t)ln,a2λ(z)e

i(a2λ)tdtdz

= a2Rf (n, a
2λ).

Using Lemma 4.38 the proof of Theorem 4.37 is as follow:

Proof: ( of Theorem 4.37) We shall show that for some constant c > 0

‖ Vf (g) ‖2
L2(G)= c ‖ g ‖2

L2(H) ∀g ∈ L2(H). (4.54)

Using the hypotheses of the theorem and the fact that (Daf)∗ = Daf
∗, then for any a > 0
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and g ∈ (L1 ∩ L2)(H) we have:

‖ Vf (g) ‖2
L2(G) =

∫
a

∫
H
| (g ∗Da−1f ∗)(h) |2 dha−5da

=

∫
a

‖ g ∗Da−1f ∗ ‖2
L2(H) a

−5da

=

∫
a

‖ ĝ ◦ ̂(Da−1f ∗) ‖2
L2(bH)

a−5da

=

∫
a

∫
R∗
‖ ĝ(λ) ◦ ̂(Da−1f ∗)(λ) ‖2

H.S dµ(λ)a−5da (4.55)

=

∫
a

∫
R∗
‖
∑
n

RDa−1f∗(n, λ)ĝ(λ) ◦ φλn ⊗ φλn ‖2
H.S dµ(λ)a−5 (4.56)

=

∫
a

∫
R∗

∑
n

| RDa−1f∗(n, λ) |2‖ ĝ(λ) ◦ φλn ⊗ φλn ‖2
H.S dµ(λ)a−5da (4.57)

=

∫
a

∫
R∗

∑
n

| RDa−1f∗(n, λ) |2‖ ĝ(λ)φλn ‖2
2 dµ(λ)a−5da

=

∫
a

∫
R∗

∑
n

| RDa−1f (n, λ) |2‖ ĝ(λ)φλn ‖2
2 dµ(λ)a−5da

=

∫
R∗

∑
n

∫
a

| RDa−1f (n, λ) |2 a−5da ‖ ĝ(λ)φλn ‖2
2 dµ(λ)

=

∫
R∗

∑
n

(∫
a

| Rf (n, a) |2 a−1da
)
‖ ĝ(λ)φλn ‖2

2 dµ(λ) (4.58)

= c

∫
R∗

∑
n

‖ ĝ(λ)φλn ‖2
2 dµ(λ)

= c

∫
R∗
‖ ĝ(λ) ‖2

H.S dµ(λ)

= c

∫
H
| g(b) |2 db.

The equality in (4.56) is obtained by applying Theorem 4.10. In the equality in (4.57) we

use the orthogonality of operators {φλn ⊗ φλn}n with respect to the Hilbert-Schmidt norm

and for the equality in (4.58) we applied Lemma 4.38. The last equality is written by

Plancherel theorem . Since (L1 ∩ L2)(H) is dense in L2(H) then the assertion is true for

any g ∈ L2(H), since the operator Vf is closed [20].

One can prove Theorem 4.37 without applying Lemma 4.38. As mentioned in Section
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2.6.2, for a > 0 and λ 6= 0 there exists a unitary operator Ua,λ so that

(̂Daf)∗(λ) = Ua,λf̂(a2λ)∗U∗a,λ, (4.59)

and from Theorem 4.10 we have

f̂(a2λ)∗ =
∑
n

Rf (n, a2λ) φa
2λ
n ⊗ φa

2λ
n . (4.60)

Now applying the equation in (4.59), and substituting (4.60) into equation in (4.55), and

using the fact that the image of an ONB under a unitary operator is again an ONB, we

are done.

Theorem 4.39. Let R̃ be a bounded function on R+ such that R̃ ∈ L2(R+, ada). Define

R(n, λ) = R̃((2n+ 1) | λ |). Then the corresponding function to R in L2
r(H) is admissible

if and only if R̃ ∈ L2(R+, a−1da).

Proof: Suppose R as above and {F (λ)}λ∈R∗ is an associated operator field which is

defined as follows:

F (λ) =
∑
n∈N0

R(n, λ)φλn ⊗ φλn. (4.61)

Observe that from the assumptions of the theorem we have:∑
n∈N0

∫
R∗
| R(n, λ) |2 dµ(λ) =

∑
n∈N0

∫
R∗
| R̃((2n+ 1) |λ|) |2 dµ(λ)

=

(∑
n∈N0

2

(2π)2(2n+ 1)2

)∫ ∞

0

| R̃(λ) |2 λdλ <∞. (4.62)

Therefore the operator field {F (λ)} presents a radial function f ∈ L2(H) with Fourier

coefficients {R(n, λ)}(n,λ) such that f̂(λ) = F (λ). From the definition of R is∫ ∞

0

| R(n, λ) |2 λ−1dλ =

∫ ∞

0

| R̃((2n+ 1)λ) |2 λ−1dλ

=

∫ ∞

0

| R̃(λ) |2 λ−1dλ

=‖ R̃ ‖2
L2(R+,λ−1dλ)

which implies by Theorem 4.37 that f is admissible.
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It remains to be seen, whether there exist examples, for which both criteria, Theorem

4.37 and Theorem 4.36 can be checked directly. The Mexican hat wavelet obtained in the

next Chapter will be an example of a radial function fulfilling both.
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Chapter 5

Mexican Hat Wavelet on the

Heisenberg Group

5.1 Introduction and Definitions

In this section the admissible vectors are studied from the point of view of Calderón’s

formula. We shall present the notation of Calderón admissible vectors. Further we

show in Theorem 5.4 that for the class of Schwartz functions the Calderón admissibility

condition is equivalent to the usual admissibility property which has been introduced in

§2.7 of this work. Furthermore we provide an example of an admissible Schwartz function

on H, which is an analog of the so called Mexican hat wavelet. The precise proof can

be found in Theorem 5.11.

As mentioned before , the existence of an admissible vector for L2(N) is proved by Führ in

[20], where N is a homogeneous group, for the quasiregular representation of G := N oH

on L2(N). Here H is a one-parameter group of dilations of N .

The existence of such vectors for the case N := Rk and H < GL(k,R) has recently been

studied by different authors. For example for the case k = 1 and H := Z see [39]. The

case N := H and H := R as a one-parameter group of dilation is considered by [34].

105
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Definition 5.1. (Weak integral of distributions) let (ηa)a∈R denote a family of dis-

tributions. If for all φ ∈ S(H) the map R 3 a 7→ 〈φ, ηa〉 is measurable and absolutely

integrable, and moreover φ 7→
∫

R〈φ, ηa〉da defines a tempred distribution ψ, we call ψ the

weak integral of the family (ηa)a∈R, and denote it with ψ =
∫

R ηada.

Before presenting the Calderón admissibility condition, let recall the following Remark:

Remark 5.2. Note that from Theorem 1.65 in [14], for any η ∈ S(H) with
∫
η = 0, the

vector valued integral
∫∞

0
ηa a−1da is convergent in weak sense, as defined in 5.3 below.

Now we have the following definition:

Definition 5.3. Let φ ∈ S(H) and
∫
φ = 0. Then φ is called Calderón admissible if for

any 0 < ε < A and g ∈ S(H)

g ∗
∫ A

ε

φ̃a ∗ φa a−1da→ cg as ε→ 0 ;A→∞ (5.1)

holds in the sense of tempered distributions (weak sense), i.e., taking the inner product of

left-hand side of (5.1) with any f ∈ S(H)

〈g ∗
∫ A

ε

φ̃a ∗ φa a−1da, f〉 = 〈
∫ A

ε

φ̃a ∗ φa a−1da, g̃ ∗ f〉, (5.2)

and commuting the inner product with the integral over a in the right-hand side of (5.2),

then it must converges to c〈g, f〉 as ε → 0 and A → ∞, where c is a nonzero constant.

Observe that for a > 0 we define φa(ω) = a−4φ(a−1ω).

In Lemma 5.4 below, we show that this definition of admissible is consistent with our

usage of the word admissible as the definition in 2.7:

Theorem 5.4. Let φ ∈ S(H), then φ is admissible if and only if φ is Calderón admissible.
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Proof: Suppose φ ∈ S(H) and g ∈ S(H). Then according to Definition 2.7 we may

formally write:

‖Vφg‖2
2 =

∫ ∞

0

∫
H
|〈g, λ(b)Daφ〉|2dba−5da (5.3)

=

∫ ∞

0

∫
H
|g ∗Daφ̃(b)|2dba−5da

=

∫ ∞

0

‖g ∗Daφ̃‖2
L2(H)a

−5da (5.4)

= lim
ε→0, A→∞

∫ A

ε

‖g ∗Daφ̃‖2
L2(H)a

−5da (5.5)

= lim
ε→0, A→∞

∫ A

ε

〈g ∗Daφ̃ , g ∗Daφ̃〉a−5da

= lim
ε→0, A→∞

∫ A

ε

〈g , g ∗Daφ̃ ∗Daφ〉a−5da

= 〈g , lim
ε→0, A→∞

g ∗
∫ A

ε

Daφ̃ ∗Daφa
−5da〉

= 〈g , lim
ε→0, A→∞

g ∗
∫ A

ε

φ̃a ∗ φaa−1da〉. (5.6)

Here the equalities hold in the extended sense that one side is finite iff the other is.

Suppose φ is a Calderón admissible vector. Then from the definition, for some constant

c, lim
ε→0, A→∞

g ∗
∫ A
ε
φ̃a ∗ φaa−1da = cg in weak sense. Hence

〈g , lim
ε→0, A→∞

g ∗
∫ A

ε

φ̃a ∗ φaa−1da〉 = c ‖ g ‖2

Going the relation (5.6) backward, it shows that the limit in (5.5) exists and is finite.

Therefore ‖ Vφg ‖2
2= c ‖ g ‖2

2. Since S(H) is a dense subspace of L2(H) and Vφ is a closed

operator on L2(H), then Vφ is isometric on L2(H) up to the constant c, which means φ is

admissible in the sense of Definition 2.7.

Conversely, suppose φ is an admissible vector. We show that φ is Calderón admissible,

or equivalently the relation

〈f , lim
ε→0, A→∞

g ∗
∫ A

ε

φ̃a ∗ φaa−1da〉 = c〈f, g〉 (5.7)

holds for any pair f, g ∈ S(H) and for some non-zero constant c.

Since φ is admissible then for any g ∈ S(H) is ‖ Vφg ‖2
2= c ‖ g ‖2

2, which shows that
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the integral (5.4) is finite. Now, defining F (ε, A) :=
∫ A
ε
‖g ∗ Daφ̃‖2

L2(H)a
−5da, observe

that, for ε fixed, F (ε, .) is a positive and increasing function in variable A and is bounded

from above. Hence limF (ε, A) exists as A→∞ and by “general principle of convergence

Theorem” it can be read as

limF (ε, A)
A→∞

=

∫ ∞

ε

‖g ∗Daφ̃‖2
L2(H)a

−5da. (5.8)

Taking G(ε) = limF (ε, A)
A→∞

, G is positive and decreasing. Hence then limG(ε) exists as ε

goes to 0. Therefore again by convergence theorem we can write:

limG(ε)
ε→0

=

∫ ∞

0

‖g ∗Daφ̃‖2
L2(H)a

−5da.

The last argument shows that the equality (5.5) holds and hence we get the following

equality:

〈g , lim
ε→0, A→∞

g ∗
∫ A

ε

φ̃a ∗ φaa−1da〉 =‖ Vφg ‖2
2= c ‖ g ‖2

2 (5.9)

To show the relation (5.7) for any pair f, g ∈ S(H), we observe that (5.9) is (5.7) for the

case f = g. The general case now follows by polarization; i.e.:

Taking Kε,A =
∫ A
ε
φ̃a ∗ φaa−1da, the equation (5.9) shows that

lim
ε→0,A→∞

〈g, g ∗Kε,A〉 = c ‖ g ‖2 ∀g ∈ S(H). (5.10)

Now suppose f ∈ S(H). Then

〈f + g, (f + g) ∗Kε,A〉 =〈f, f ∗Kε,A〉+ 〈f, g ∗Kε,A〉

+ 〈g, f ∗Kε,A〉+ 〈g, g ∗Kε,A〉.

Using (5.10), the left hand side of above equality goes to ‖ f + g ‖2 as ε→ 0, A→∞ and

it implies

〈f, g ∗Kε,A〉+ 〈g, f ∗Kε,A〉 → c (〈f, g〉+ 〈g, f〉) as ε→ 0, A→∞.

and hence

lim
ε→0,A→∞

Re〈f ∗Kε,A, g〉 = c Re〈f, g〉. (5.11)
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Replacing f + ig by f + g we get

〈f, g ∗Kε,A〉 − 〈g, f ∗Kε,A〉 → c (〈f, g〉 − 〈g, f〉) as ε→ 0, A→∞.

which implies

lim
ε→0,A→∞

Im〈f ∗Kε,A, g〉 = c Im〈f, g〉. (5.12)

(5.11) and (5.12) combined yield (5.7), and hence we are done.

Remark 5.5. Actually, if H is a complex Hilbert space, then for any pair of bounded

operators T, S on H such that 〈Tf, f〉 = 〈Sf, f〉 for all f ∈ H implies that T = S. To

prove, replace f by f + g we get

〈T (f + g), f + g〉 = 〈Tf, f〉+ 〈Tf, g〉+ 〈Tg, f〉+ 〈Tg, g〉,

to get

〈Tf, g〉+ 〈Tg, f〉 = 〈Sf, g〉+ 〈Sg, f〉.

Change f to (if) to find

〈Tf, g〉 − 〈Tg, f〉 = 〈Sf, g〉 − 〈Sg, f〉.

Add the two equations imply our assertion.

Notation 5.6. Note that d
da

is understood as a vector derivation as follow:

Suppose X is a topological vector space and F is a vector valued function on R+ such

that F (a) ∈ X for any a ∈ R+. Then we say d
da
F (a) exists at point a = a0 when

lim
h→0+

F (a0+h)−F (a0)
h

exists in the topology of X. We then shall write

d

da
F (a)a=a0 = lim

h→0+

F (a0 + h)− F (a0)

h
.

In the next Proposition we will show a sufficient condition for Schwartz functions to be

admissible, which is one of the chief tools for the proof of the main theorem of this chapter.
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Proposition 5.7. Suppose φ, ψ ∈ S(H), so that
∫
ψ 6= 0 and for some constants k, c > 0

and non-zero real number q is φ̃aq ∗ φaq = −ac d
da
ψkaq . Then φ is admissible.

Proof: Suppose g ∈ S(H) and 0 < ε < A < ∞. Using the change of coordinate a to aq

and that φ̃aq ∗ φaq = −ac d
da
ψkaq , we can write

g ∗
∫ A

ε

φ̃a ∗ φaa−1da = q g ∗
∫ A1/q

ε1/q

φ̃aq ∗ φaqa−1da

= q g ∗
∫ A1/q

ε1/q

(−a d
da

)ψkaqa−1da (5.13)

= q g ∗
∫ A1/q

ε1/q

(− d

da
ψkaq)da

= −q(g ∗ (ψAk − ψεk))

= qg ∗ (ψεk − ψAk).

Since
∫
ψ 6= 0, then from Proposition 1.20 [14] we have:

lim
ε→0

g ∗ ψεk = g

∫
ψ , in L2 − norm. (5.14)

On the other hand we can write:

‖g ∗ ψAk‖2 ≤ ‖g‖1‖ψkA‖2 = (kA)−
1
2‖g‖1‖ψ‖2 (5.15)

which shows g ∗ ψAk −→ 0 in L2-norm as A → ∞. Now applying (5.14) and (5.15) in

(5.13) one gets

g ∗
∫ A

ε

φa ∗ φ̃aa−1da→ g

∫
ψ as ε→ 0, A→∞ , in L2 − norm. (5.16)

To reach the other main result of this chapter, next we need to recall some basic defini-

tions:

Let L = −(X2 +Y 2) be the sub-Laplacian operator, where X and Y are the left-invariant

vector fields on the Heisenberg group (see Section 2.5). The heat kernel operator associ-

ated to L is the differential operator d
dt

+ L on H× R, where d
dt

is the coordinate vector
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field on R (one can consider this coordinate as the time coordinate). For the heat operator

we recall here Proposition 1.68 of [14].

Proposition 5.8. There exists a unique C∞ function h on H × (0,∞), for which the

following properties hold:

1. ( d
dt

+ L)h = 0 on H× (0,∞),

2. h(ω, t) ≥ 0, h(ω, t) = h(ω−1, t) ∀(ω, t) ∈ H× (0,∞), and
∫
h(ω, t)dω = 1 for t >

0,

3. h(., s) ∗ h(., t) = h(., s+ t) ∀ s, t > 0,

4. r4h(rω, r2t) = h(ω, t) ∀ ω ∈ H, t, r > 0 (rω denotes the operation of the

automorphism r. to ω).

The solution h is called heat kernel.

Observe that here the interval (0,∞) has nothing to do with the group of dilations which

is introduced in Section 2.7. It should be considered as time interval.

The idea of this section is to apply Proposition 5.7 to φ(x) = Lh(x, 1) to show that the

function φ is an admissible vector. For that purpose here we need to compute the dilation

of functions h(., 1) and Lh(., 1):

Lemma 5.9. For any a > 0 and ω ∈ H is

h(ω, 1)a = a2h(ω, a2) and Lh(ω, 1)a = a2Lh(ω, a2).

Proof: Suppose a > 0 and ω ∈ H, then applying the property in 4 in Proposition 5.8 one

gets:

h(ω, 1)a = a−4h(a−1ω, 1) = a2h(ω, a2). (5.17)
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Similarly by applying the properties 1 and 4 in Proposition 5.8 for Lh(., 1) we have:

Lh(ω, 1)a = a−4Lh(a−1ω, 1) (5.18)

= −a−4 d

dt
h(a−1ω, t)

∣∣
t=1

= − d

dt
h(ω, a2t)

∣∣
t=1

= a2Lh(ω, a2).

5.2 Theorem and Mexican Hat Wavelet on H

The purpose of this section is to check Calderón admissibility for the Schwartz function

φ = Lh(., 1), which we state it now in the next theorem as the main result of this chapter.

Remark 5.10. On the real line R, the heat kernel is given by h(x, t) = 1√
4π
e−

x2

4t . In

particular, h(x, 1) = 1√
4π
e−

x2

4 . The second derivative of the Gaussian is an often employed

wavelet, the Mexican-Hat wavelet. This motivates the name of the wavelet presented in

the next theorem.

Theorem 5.11. The “ Mexican hat wavelet” on H, φ(ω) = Lh(ω, 1), is admissible.

Proof: Observe that by definition of L , the function Lh(., 1) on H has mean value zero.

It is also easy to see that φ̃ = φ: for any ω ∈ H and t > 0 define ht(ω) = h(ω, t). Then

by applying the property 2 in Proposition 5.8 we have:

(̃Lh)(ω, t) = −
˜d

dt
h(ω, t) = − d

dt
h̃t(ω) (5.19)

= − d

dt
ht(ω

−1) = − d

dt
ht(ω) = Lh(ω, t).

To prove the theorem it is sufficient to show that for the function ψ = h(ω, 1) + Lh(ω, 1)

the relation

φ̃√a ∗ φ√a = φ√a ∗ φ√a = −ca d
da
ψ√2a (5.20)
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holds. Hence by applying Proposition 5.7 we will get our assertion.

Using the relations (5.17) and (5.18) we get

φ√a ∗ φ√a = (Lh(., 1))√a ∗ (Lh(., 1))√a (5.21)

= aLh(., a) ∗ aLh(., a)

= a2L2h(., 2a),

as well as

ψ√2a = (h(., 1))√2a + (Lh(., 1))√2a (5.22)

= h(., 2a) + 2aLh(., 2a).

Observe that the vector derivation of ψ√2a with respect to the parameter a is computed

as follows :

d

da
ψ√2a =

d

da
h(., 2a) + 2Lh(., 2a) + 2a

d

da
Lh(., 2a) (5.23)

= 2
d

d2a
h(., 2a) + 2Lh(., 2a) + 4a

d

d2a
Lh(., 2a)

= −4aL2h(., 2a).

Comparing the equations (5.21) and (5.23), we see that the relation (5.20) holds for φ

and ψ and for c = 4, as desired.
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Appendix A

Proof of Lemma 4.17

Lemma 4.17 may be considered as folklore, even though its proof is nontrivial and quite

technical. In this section we include an expanded version of an argument presented to us

by D.Geller (private communication).

We need the following lemma as a strong tool for the proof of Lemma 4.17:

Lemma A.1. Suppose {Z1 := Z,Z2 := Z̄, T} is the basis of the left invariant vector fields

algebra on H presented in (2.6), and L0 = 1
2
(Z1Z2+Z2Z1) is the Heisenberg sub-Laplacian

operator which is equal to the one introduced in the proof of Theorem 4.36 a). Suppose B

is the unit ball in the Heisenberg group and ζ ∈ C∞
c (B). Then there is a constant C > 0

such that for all smooth f on H the follwoing estimates hold:

(a)

‖ζ(Z1f)‖2
2 + ‖ζ(Z2f)‖2

2 ≤ C
∑
i=0,1

‖ζiLif‖2
2, (A.1)

where ζi ∈ C∞
c (B) and ζi = 1 in a neighborhood of the support of ζ.

(b) For any N, k ∈ N0

∑
j1,...,jN=1,2

‖ζ(Zj1 . . . ZjNT kf)‖2
2 ≤ C

∑
0≤l+m≤N

‖ξl+m,NLlTm+kf‖2
2. (A.2)
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(c) For any N, k ∈ N0

‖Zj1 . . . ZjNT k(ξf)‖2
2 ≤ C

∑
0≤l+m≤2N, d=0,··· ,K

‖ξl+mLlTm+df‖2
2. (A.3)

Proof Proof of (a) Let f ∈ C∞(H), then

‖ξ(Zf)‖2
2 + ‖ξ(Zf)‖2

2 = 2〈ξf, ξL0f〉+ E, (A.4)

where

E = 〈ξf, (Zξ)(Zf) + (Zξ)(Zf)〉 − 〈(Zξ)f, ξ(Zf)〉 − 〈(Zξ)f, ξ(Zf)〉 (A.5)

(This can be shown by replacing ξ(Zjf) = Zj(ξf) − (Zjξ)f in ‖ξ(Zjf)‖2
2 = 〈ξ(Zjf),-

ξ(Zjf)〉, where Zj = Z and Z.) Using the Schwartz inequality, for any arbitrary small

constant (s.cst) there is a sufficient large constant (l.cst) such that

∣∣〈ξf, (Zξ)(Zf)〉
∣∣ =

∣∣∣〈(Zξ)f, ξ(Zf)〉
∣∣∣

≤ ‖(Zξ)f‖2‖ξ(Zf)‖2

≤ (l.cst)‖(Zξ)f‖2
2 + (s.cst)‖ξ(Zf)‖2

2,

and similarly

∣∣〈ξf, (Zξ)(Zf)〉
∣∣ ≤ (l.cst)‖(Zξ)f)‖2

2 + (s.cst)‖ξ(Zf)‖2
2 (A.6)

|〈(Zξ)f, ξ(Zf)〉| ≤ (l.cst)‖(Zξ)f)‖2
2 + (s.cst)‖ξ(Zf)‖2

2∣∣〈(Zξ)f, ξ(Zf)〉
∣∣ ≤ (l.cst)‖(Zξ)f‖2

2 + (s.cst)‖ξ(Zf)‖2
2,

Therefore using the above estimates, in (A.4) we get

∥∥ξ(Zf)‖2
2 + ‖ξ(Zf)

∥∥2

2
≤ C

(
‖ξf‖2

2 + ‖ξ(L0f)‖2
2

)
(A.7)

+ (l.cst)
(
2‖(Zξ)f‖2

2 + ‖(Zξf)‖2
2

)
+ (s.cst)

(
2‖ξ(Zf)‖2

2

)
+ ‖ξ(Zf)‖2

2. (A.8)

Note that for a sufficiently small constant (s.cst), the term in (A.8) can be absorbed back

into the left side of (A.7), and hence for a suitable constant C > 0 the relation (A.1)
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holds.

Proof of (b) We prove it by induction. For N = 1 and k ∈ N0 the assertion is true from

(a). Suppose that the relation (A.2) is true for N − 1, then for N one has:

∑
j1,...,jN=1,2

‖ξ(Zj1 ...ZjNT kf)‖2
2 =

∑
j1,...,jN=1,2

‖ξZj1
(
Zj2 ...ZjNT

kf
)
‖2

2

≤ C
∑

j2,...,jN =1,2

0≤i+s≤1

‖ξi+sLi
0T

s
(
Zj2 ...ZjNT

kf
)
‖2

2

= C
∑

j2,...,jN =1,2

0≤i+s≤1

‖ξi+sLi
0

(
Zj2 ...ZjNT

k+sf
)
‖2

2

= C
[ ∑
j1,...,jN=1,2 s=0,1

‖ξsZj2 ...ZjNT k+sf‖2
2 (A.9)

+
∑

j1,...,jN=1,2

‖ξ′L0

(
Zj2 ...ZjNT

kf
)
‖2

2

]
.

Using the assumption of the induction and the relation L0Zk = ZkL0 + 2iZKT , for the

constant λ = (2i)N one gets:

(const.)(A.9)

=
∑

j1,...,jN =1,2

s=0,1

‖ξs
(
Zj2 ...ZjNT

k+sf
)
‖2

2 +
∑

j1,...,jN=1,2

‖ξ′Zj2 ...ZjN (L0 + λT )T kf‖2
2,

≤ C
∑

0≤l+m≤N−1
s=0,1

∥∥ξl+mLl
0T

m+k+sf
∥∥2

2
+ C ′

∑
0≤l+m≤N−1

∥∥ξ′l+mLl+1
0 Tm+kf

∥∥2

2

+ C ′′
∑

0≤l+m≤N−1

∥∥ξ′′l+mLl
0T

m+k+1f
∥∥2

2

≤ C1

∑
0≤l+m≤N

∥∥ξ(l+m,N)L
l
0T

m+kf
∥∥2

2
,

which completes the proof of (b).

Proof of (c) Obviously for N = 0

T k(ξf) =
k∑
d=0

cd
(
T k−dξ

) (
T df

)
.



118

Taking ξd := T k−dξ, then for some constant C

∥∥T k(ξf)
∥∥2

2
≤ C

k∑
d=0

∥∥ξdT df∥∥2

2
.

The above estimate shows that to prove the realtion (A.3) it is sufficient to show the

relation for k = 0. The proof will follow by applying the induction as follows:

Suppose N = 1 Then for j1 = 0, 1

Zj1(ξf) = (Zj1ξ)f + ξ(Zj1f),

hence from (b),

‖Zj1(ξf)‖2
2 ≤ 2 ‖(Zj1ξ) f‖

2
2 + 2 ‖ξ (Zj1f)‖2

2

≤ C
[
‖ξ′f‖2

2 +
∑

0≤l+m≤1

∥∥ξl+mLl
0T

mf
∥∥2

2

]
≤ C ′

∑
0≤l+m≤1

∥∥ξ′l+mLl
0T

mf
∥∥2

2
.

Suppose that the statement is true for N > 1, i.e,

‖Zj1 ...ZjN (ξf)‖2
2 ≤ C

∑
0≤l+m≤2N

∥∥ξl+mLl
0T

mf
∥∥2

2
,

then for N + 1 we have

‖Zj1 ...ZjNZjN+1(ξf)‖2
2 = ‖Zj1 ...ZjN ((ZjN+1ξ)f + ξZjN+1f)‖2

2

≤ 2 ‖Zj1 ...ZjN ((ZjN+1ξ)f)‖2
2 + 2 ‖Zj1 ...ZjN (ξZjN+1f)‖2

2

= 2 ‖Zj1 ...ZjN (ξ′f)‖2

2 + 2 ‖Zj1 ...ZjN (ξZjN+1f)‖2
2

≤ C1

∑
0≤l+m≤2N

∥∥ξ′l+mLl
0T

mf
∥∥2

2
(A.10)

+ C2

∑
0≤l+m≤2N

∥∥ξl+mLl
0T

mZjN+1
f
∥∥2

2
. (A.11)

Since that Ll
0T

mZjN+1
= Ll

0ZjN+1
Tm and L0ZjN+1

= ZjN+1
L0 + 2iZjN+1

T , then by induc-

tion

Ll
0ZjN+1

= ZjN+1

l∑
r=0

crL
l−k
0 T r; ∀l ∈ N0
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Sabstituting the latter relation into the (A.10), from (b) one gets the following:

(A.10) + (A.11) (A.12)

≤ C1

∑
0≤l+m≤2N

∥∥ξ′l+mLl
0T

mf
∥∥2

2
+ C ′

2

∑
0≤l+m≤2N

l∑
r=0

∥∥ξl+m,rZjN+1
Ll−r

0 T r+mf
∥∥2

2

≤
∑

0≤l+m≤2N

∥∥ξ′l+mLl
0T

mf
∥∥2

2
+ C

∑
0≤l+m≤2N

l∑
r=0

∑
0≤s+l≤1

∥∥ξ′(l+m,r,s)Ls
0T

t
(
Ll−r

0 T r+mf
)∥∥2

2

=≤ C
∑

0≤l+m≤2N

∥∥ξ′l+mLl
0T

mf
∥∥2

2
+ C

∑
0≤l+m≤2N

r=0,...,l

∑
0≤s+t≤1

∥∥ξ′l+m,r,sLl+s−r
0

(
T t+r+mf

)∥∥2

2

≤ C
∑

0≤l+m≤2(N+1)

∥∥ξl+mLl
0T

mf
∥∥2

2
,

as desired.

Lemma A.2. For any N, k ∈ N0,

sup
x∈B

∣∣Zj1 ...ZjNT k(ξf(x))
∣∣ ≤ C

∑
0≤l+m≤2N

d=0,...,k

∥∥ξ′l+mLl
0T

m+df
∥∥2

2
. (A.13)

Proof: The proof follows from the Sobolev Lemma for Lie groups (see A.1.5 in [Cor-

win..]) and Lemma A.1 (c).

Now we are ready to state the proof of Lemma 4.17:

Proof: Suppose f ∈ C∞
r (H) such that for any d, s ≥ 0,

∣∣∣(∂z∂z)d ∂st f(z, t)
∣∣∣ decays rapidly

as |(z, t)| → ∞.We want to show that for any N, k ≥ 0,
∣∣Zj1 ...ZjNT kf(z, t)

∣∣ decays rapidly

too as |(z, t)| → ∞, which provides that f is Schwartz. Observe that for any compact

subset K of H, contained in the unit ball B, and for fK := f |K is∥∥Ll
0T

m+dfK
∥∥2

2
≤ (const.)sup

w∈K

∣∣Ll
0T

m+df(w)
∣∣2 . (A.14)

Combining the estimates (A.14) and (A.13) we have

sup
x∈B

∣∣Zj1 ...ZjNT k(ξf(x))
∣∣ ≤ C

∑
0≤l+m≤2N

d=0,...,k

sup
(z,t)∈B

∣∣ξ′l+mLl
0T

m+df(z, t)
∣∣2
2
. (A.15)
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Suppose that ξ = 1 in a neighborhood of 0, since the operators L0 and T are left invariant,

then using the left translation operator in u = (z, t) one can write

Ll
0T

kf(u) = Lu(L
l
0T

kf)(0) = Ll
0T

k(Luf)(0) = Ll
0T

kξ(Luf)(0). (A.16)

Observe that for any l, k ∈ N0,
∣∣Ll

0T
kf(z, t)

∣∣ decays rapidly as
∣∣∣(∂z∂z)d ∂st f(z, t)

∣∣∣ decays

rapidly, since Ll
0T

kf can be written as a sum of | z |2r (∂z∂z)
d T sf where d ≤ l. According

to the fact and applying the translation operator in u ∈ H in the both side of (A.15) and

using the equality in (A.16), one can show that since the right side of (A.15) decays

rapidly in |u| then the left side does too, which completes the proof of the lemma.
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