
FRACTIONAL LÉVY PROCESSES,

CARMA PROCESSES

AND RELATED TOPICS

Tina Marie Marquardt

Center for Mathematical Sciences

Munich University of Technology

D-85747 Garching

2006





Zentrum Mathematik

Lehrstuhl für Mathematische Statistik der

Technischen Universität München

Fractional Lévy Processes,
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Zusammenfassung

In der Dissertation wird eine neue Methode zur Erzeugung von Modellen mit

sogenanntem “Long Memory” Verhalten entwickelt.

Hierfür wird die Klasse der fraktionalen Lévy Prozesse definiert und ihre

wahrscheinlichkeitstheoretischen Eigenschaften, sowie Pfadeigenschaften un-

tersucht. Da für bestimmte Lévymaße der entsprechende fraktionale Lévy

Prozess kein Semimartingal ist, kann man in diesem Fall die klassische Itô-

Integrationstheorie nicht anwenden. Eine allgemeine Integrationstheorie für

fraktionale Lévy Prozesse wird definiert und schließlich verwendet, um aus

“Short Memory” Modellen “Long Memory” Modelle zu erzeugen. Hierbei ste-

hen die zeitstetigen ARMA Modelle im Vordergrund.

Bisher wurden zeitstetige ARMA Modelle nur im Eindimensionalem definiert.

Im zweiten Teil der Dissertation werden diese Modelle auf den mehrdimension-

alen Fall erweitert und ihre Eigenschaften eingehend untersucht. Insbesondere

entwickeln wir mehrdimensionale zeitstetige ARMA Modelle mit Long Memory

Verhalten.





Abstract

The thesis develops a new approach to generate long memory models by defin-

ing the class of fractional Lévy processes (FLPs) and investigates the proba-

bilistic and sample path properties of FLPs. As for a fairly large class of Lévy

measures the corresponding FLP cannot be a semimartingale, classical Itô in-

tegration theory cannot be applied. In the thesis we give a general definition

of integrals with respect to FLPs.

This integration theory is then applied to continuous time moving average

processes in the sense that the driving Lévy process in the moving average

integral representation of short memory processes is replaced by a FLP. It turns

out, that the so-constructed process exhibits long memory properties. But an

even more important result is that this process coincides with the moving

average process (driven by the ordinary Lévy process) which is obtained by a

fractional integration of its kernel function. This is a new method to generate

fractionally integrated continuous time ARMA (FICARMA) processes.

So far only univariate CARMA and FICARMA processes have been defined

and investigated. In the second part of the thesis multivariate analogues of both

models are developed by constructing a random orthogonal measure which

allows for a spectral representation of the driving Lévy process. Furthermore,

the probabilistic properties of multivariate CARMA and FICARMA models

are studied. Like in the univariate case, the multivariate FICARMA process

has two kernel representations which lead to the same model.
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2.2 Second Order and Sample Path Properties . . . . . . . . . . . . 52

2.3 Integrals with respect to Fractional Lévy Processes . . . . . . . 71
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Introduction

In modern mathematical finance continuous time models play a crucial role

because they allow handling unequally spaced data and even high frequency

data, which are realistic for liquid markets.

The probably most famous example is the so-called Black and Scholes model,

which is built out of Brownian motion and models the logarithm of an asset

price by the solution to the stochastic differential equation

dX(t) = [µ+ βσ2]dt+ σdWt, t ∈ [0, T ],

where {Wt}t≥0 is standard Brownian motion. Here µ+βσ2 represents the drift

of the log-price while σ is the volatility. As investors usually require a risk

premium for holding stochastic assets, compared to holding their wealth in a

riskless interest banking account, the drift depends upon the volatility. Hence,

if the volatility increases we would expect the drift also to increase.

The above asset pricing model implies that the aggregate returns over inter-

vals of length h > 0,

Yn := X(nh) −X((n− 1)h)

are normal and independently distributed with a mean of µh + βσ2h and a

variance of hσ2.

However, in practice for moderate too large values of h, returns are typically

heavy-tailed, exhibit volatility clustering (the |Yn| are correlated) and are skew.

Obviously, the Black and Scholes model lacks these so-called stylized facts. This

observation resulted in an enormous effort to develop empirically reasonable

models.

One approach is to replace the Brownian motion by a heavier tailed Lévy

process. This will allow returns to be both heavy-tailed and skewed and take
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into account jumps. However, then returns will be independent and station-

ary, since every Lévy processes has stationary and independent increments.

Hence, Lévy-driven models are also easily rejected empirically. Furthermore,

in this models the volatility is a constant. However, in order to include the

risk of financial markets into these models, the volatility process σ should be

time-changing. Barndorff-Nielsen & Shephard (2001b) suggested the volatility

process σ to change over time according to an OU process.

In these stochastic volatility models we write

dX(t) = [µ+ βσ2(t)]dt+ σ(t)dWt + ρdL̄(λt), t ∈ [0, T ]

dσ2(t) = −λσ2(t)dt+ dL(λt), λ > 0, (0.1)

where L̄(t) = L(t)−E[L(t)] is the centered version of the driving Lévy process

{L(t)}t≥0. Observe that L̄ covers the so-called leverage effect, that is the corre-

lation of the volatility process with the price process. The stationary solution

of (0.1) is

σ2(t) = e−λtσ2(0) +

t∫
0

e−λ(t−s)dL(λs).

A stationary Ornstein-Uhlenbeck process was chosen because it has a non-

negative kernel g(t) = e−λt1[0,∞)(t). Hence, as the driving Lévy process {L(t)}
is usually chosen to be a subordinator, that is a Lévy process with positive

increments, the process {σ2(t)} will be non-negative as is necessary if it is to

represent volatility.

However, using Ornstein-Uhlenbeck processes in order to represent volatil-

ity implies that the class of volatility autocorrelation functions is restricted

to functions of the form ρ(h) = e−λh for some λ > 0. One might extend this

class by using linear combinations of independent Ornstein-Uhlenbeck pro-

cesses with positive coefficients, as it was suggested by Barndorff-Nielsen &

Shephard (2001b). But even then the autocorrelation functions are still re-

stricted to be monotone decreasing. Brockwell (2004) therefore suggested to

replace the Ornstein-Uhlenbeck process by a non-negative Lévy-driven contin-

uous time ARMA (CARMA) process. The virtue of this approach is that a

much larger class of autocorrelations can be modeled and one can drop the

monotonicity constraint. In fact, it has been shown in an econometric analysis

2



by Todorov & Tauchen (2004) that CARMA and in particular CARMA(2, 1)

processes are reasonable processes to model stochastic volatility. Being the con-

tinuous time analogue of the well-known ARMA processes (see e.g. Brockwell

& Davis (1991)), Lévy-driven CARMA processes, have been extensively stud-

ied over the last years (see e.g. Brockwell (2001a), Brockwell (2001b), Todorov

& Tauchen (2004) and references therein).

As the autocorrelation functions of both, CARMA and OU processes, show

an exponential rate of decrease, these models are short memory moving aver-

age processes. This contradicts the fact that measurements and an increasing

number of statistical papers in finance, but also in so diverse fields as hy-

drology, turbulence, economics or telecommunications, indicate the presence

of long memory in real life time series in the sense that the latter seem to

require models whose autocorrelation functions decay much less quickly.

As a consequence, in the sixties, Mandelbrot used the fractional Brownian

motion and its increments to generate long memory and pointed out its rele-

vance in applications for example in economics and finance; see his recent book

on the (mis)behaviour of markets (Mandelbrot & Hudson (2005)).

An alternative method to construct long memory models is a fractional inte-

gration of the kernel function of a short memory process. Using this technique,

Brockwell (2004) (see also Brockwell & Marquardt (2005)) defined fraction-

ally integrated CARMA (FICARMA) processes which exhibit long memory

properties in the sense that the autocorrelations are hyperbolically decreasing.

However, due to the slow decay of the fractionally integrated kernel function,

simulation algorithms for FICARMA processes have been very slow and ex-

pensive.

This is the starting point of this thesis. It is organized as follows.

In Chapter 1 we present the framework of the thesis. We devote Section 1.1

to the basic properties of Lévy processes (Section 1.1.1 ) and consider in Sec-

tion 1.1.2 the integration theory for integrals with respect to Lévy processes.

Section 1.2 is devoted to continuous time ARMA (CARMA) processes, which

belong to the class of short memory models. Based on the approach of Brock-

well (2004) we define fractionally integrated CARMA (FICARMA) processes
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by a fractional integration of the CARMA kernel in Section 1.3. In particu-

lar, we show that the FICARMA process has long memory properties. A brief

summary on fractional Brownian motion (FBM) is given in Chapter 1.4.

Chapter 2, where we define and discuss fractional Lévy processes (FLPs),

forms the main part of the thesis.

Starting from the moving average integral representation of fractional Brow-

nian motion the class of fractional Lévy processes (FLP) is introduced in

Section 1.2 by replacing the Brownian motion by a general Lévy process. It

is shown that FLPs are indeed well-defined. In the following subsections we

present different methods of constructing a FLP.

Assuming that the driving Lévy process has finite second moments, we con-

struct a FLP as an integral with respect to a Poisson random measure in

Section 2.1.1. In Section 2.1.2 we obtain a continuous modification of a FLP

by showing that almost surely the integral is equal to an improper Riemann in-

tegral. Furthermore, in Section 2.1.3 we derive series representations for FLPs.

In Section 2.2 the thesis focuses on the second-order and sample path prop-

erties. Provided the second moments of the driving Lévy process are finite,

a FLP has the same second-order structure as a fractional Brownian motion,

whereas the sample paths are less smooth. Moreover, it turns out that self-

similarity, the total variation and the semimartingale property depend on the

driving Lévy process. In particular, for a broad class of Lévy measures the

corresponding FLP cannot be a semimartingale and hence, classical Itô inte-

gration theory cannot be applied.

Therefore, in Section 2.3, we derive a general definition of integrals with

respect to FLPs, provided that the integrand is deterministic.

In Section 2.4 this integration theory is applied to moving average (MA)

processes, in the way that the driving Lévy process in the moving average rep-

resentation of short memory processes is replaced by a fractional Lévy process

(Section 2.4.1). Considering the sample path and second-order properties of

this so-constructed new process in Section 2.4.2, it turns out that this process

exhibits long memory properties. But an even more important result is that

this process coincides with the moving average process (driven by the ordinary

Lévy process) which is obtained by a fractional integration of its kernel func-
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tion. We apply these results to CARMA and FICARMA processes in Section

2.4.3. In particular, the simulation problem described above is solved by using

this new approach.

So far only univariate CARMA and FICARMA processes have been defined

and investigated. However, as financial risk management has to deal with port-

folios of assets, multivariate models are of foremost importance.

In Chapter 3, which is based on joint work with Robert Stelzer, multivariate

analogues of CARMA processes are developed. This is not straightforward

since the state space representation of a univariate CARMA process relies on

the ability to exchange autoregressive and moving average operators, which is

only possible in one dimension.

Therefore, in Section 3.1 a random orthogonal measure is constructed which

allows for a spectral representation of the driving Lévy process and enables us

in Section 3.2 to define multivariate CARMA (MCARMA) processes and follow

a similar line as Brockwell (2001b). Furthermore, the probabilistic properties

of multivariate CARMA models are studied in Section 3.3.

Our aim in Chapter 4 is to define multivariate FICARMA processes.

A first step is to extend fractional Lévy processes to the multivariate setting.

This is done in Section 4.1. We state the definition and properties of multi-

variate fractional Lévy processes (MFLPs) in Section 4.1.1 and the integration

theory for integrals with respect to them in Section 4.1.2. In particular, in

Section 4.1.3 a spectral representation of FLPs is derived and later used to

obtain a spectral representation of FICARMA processes, which has not been

given for (univariate) FICARMA processes, yet.

Multivariate fractional Lévy processes are used to develop the class of multi-

variate FICARMA processes in Section 4.2. Two subsections on the representa-

tions (Section 4.2.1) of multivariate FICARMA processes and their properties

(Section 4.2.2) follow. Like in the univariate case, the multivariate FICARMA

process has two kernel representations which lead to the same process.

As mentioned at the beginning of this introduction Ornstein-Uhlenbeck (OU)

processes are of great importance, in particular they can serve as a model for

stochastic volatility.
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In Chapter 5 we consider OU processes and show that the results obtained

in this thesis immediately apply to OU process in the univariate case (Section

5.1) as well as in the multivariate case (Section 5.2). In fact, our models include

the OU processes as a special case.

The results of Chapter 6 are based on recent joint work with Christian Bender

which is still ongoing. Therefore, we only state the basic concept and main

ideas without going into further detail. We aim on an integration theory which

allows for integrals with stochastic integrands with respect to FLPs in terms

of the S-transform.

Precisely, we consider the Itô integral from a white noise point of view in

Section 6.1. and then in Section 6.2. obtain a Skorohod integral for convoluted

Lévy processes.

Finally, we would like to mention that Chapter 2, 3 and 4 are based on the pa-

pers Marquardt (2006a), Marquardt & Stelzer (2006) and Marquardt (2006b),

respectively.
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1 Preliminaries

In this preliminary chapter we present the framework of this thesis. After in-

troducing the basic properties of Lévy processes and the integration theory

for integrals with respect to them, we are mainly concerned with continuous

time ARMA (CARMA), fractionally integrated CARMA (FICARMA) pro-

cesses and fractional Brownian motion. Most results of this chapter are al-

ready known and therefore proofs are kept to a minimum or skiped. However,

we state some results and proofs that appear new.

1.1 Lévy Processes

This chapter is devoted to the basic properties of Lévy processes and infinitely

divisible distributions. In particular, we introduce the integration theory with

respect to Lévy processes.

Lévy processes are defined as stochastically continuous processes with sta-

tionary and independent increments and can be viewed as analogues of random

walks in continuous time. In particular, Lévy processes include many important

processes as special cases, e.g. Brownian motion, the Poisson process, stable

and self-decomposable processes and subordinators. Therefore, Lévy processes

provide powerful models and are applied in various fields like econometrics,

finance, telecommunications and physics.

Let us briefly introduce our setting. Let Rm be the m-dimensional Euclidean

space. Elements of Rm are column m-vectors x = [x1, . . . , xm]T . The inner

product is 〈x, y〉 =
m∑

j=1

xjyj and the norm is ‖x‖ = 〈x, x〉1/2. We call Mm(R)

the space of all real m×m-matrices and denote by AT and A∗ the transposed

and adjoint, respectively, of the matrix A. Furthermore, Im ∈ Mm(R) is the

identity matrix and ‖A‖ is the operator norm of A ∈Mm(R) corresponding to

7



1 Preliminaries

the norm ‖x‖ for x ∈ Rm. 1B(·) is the indicator function of the set B and we

write a.s. if something holds almost surely.

Finally, throughout this work we always assume as given an underlying com-

plete, filtered probability space (Ω,F , (Ft)t≥0, P ) with right-continuous filtra-

tion (Ft)t≥0 such that F0 contains all the P -null sets of F .

1.1.1 Basic Facts on Lévy Processes

We state the key notions and elementary properties of multivariate Lévy

processes. For a more general treatment and proofs we refer to Protter (2004)

and Sato (1999).

We consider a Lévy process L = {L(t)}t≥0 in Rm determined by its character-

istic function in the Lévy-Khintchine form E
[
ei〈u,L(t)〉] = exp{tψL(u)}, t ≥ 0,

where

ψL(u) = i〈γ, u〉− 1

2
〈u, σu〉+

∫
Rm

(ei〈u,x〉−1−i〈u, x〉h(x)) ν(dx), u ∈ R
m, (1.1)

where γ ∈ Rm, σ ∈ Rm×m is symmetric and positive semidefinite and ν is a

measure on Rm that satisfies

ν({0}) = 0 and

∫
Rm

(‖x‖2 ∧ 1) ν(dx) <∞.

Moreover, h : Rm → R is a bounded measurable function satisfying

h(x) = 1 + o(‖x‖), ‖x‖ → 0,

h(x) = O(1/‖x‖), ‖x‖ → ∞.

In this thesis we will always use

h(x) = 1{‖x‖≤1}.

The measure ν is referred to as the Lévy measure of L. In fact, ν(A) is the

expected number of jumps of L per unit time, whose size belong to the Borel set

A. Notice that conversely, given a generating triplet (γ, σ, ν) satisfying (1.1),

the corresponding Lévy process is unique in distribution.
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1.1 Lévy Processes

Every Lévy process has a modification whose sample paths are right-con-

tinuous with left limits (càdlàg). We always assume that it is this modification

we are working with and that L(0) = 0 a.s.

From now on let Rm
0 := Rm\{0}. It is a well-known fact that to every càdlàg

Lévy process L on Rm one can associate a random measure J on Rm
0 × R

describing the jumps of L. For any measurable set B ⊂ Rm
0 × R,

J(B) = �{s ≥ 0 : (Ls − Ls−, s) ∈ B}.

The jump measure J is a Poisson random measure on Rm
0 × R (see e.g.

Definition 2.18 in Cont & Tankov (2004)) with intensity measure n(dx, ds) =

ν(dx) ds. By the Lévy-Itô decomposition there exists a Brownian motion

{Bt}t≥0 on Rm with covariance matrix σ such that we can rewrite L almost

surely as

L(t) = γt+Bt +

∫
‖x‖≥1,s∈[0,t]

x J(dx, ds) + lim
ε↓0

∫
ε≤‖x‖≤1, s∈[0,t]

xJ̃(dx, ds), t ≥ 0.

(1.2)

Here J̃(dx, ds) = J(dx, ds)−n(dx, ds) = J(dx, ds)−ν(dx) ds is the compen-

sated jump measure, the terms in (1.2) are independent and the convergence

in the last term is a.s. and locally uniform in t ≥ 0. If in (1.1), σ = 0 and hence

Bt = 0 for all t ≥ 0, we call L a Lévy process without Brownian component.

Throughout this work, unless stated otherwise, we will assume that the Lévy

process L has no Brownian part. Assuming that ν satisfies additionally∫
‖x‖>1

‖x‖2 ν(dx) <∞, (1.3)

L has finite mean and covariance matrix ΣL given by

ΣL =

∫
Rm

xx∗ ν(dx). (1.4)

Furthermore, if we suppose that E[L(1)] = 0, then it follows that

γ = − ∫‖x‖>1
x ν(dx) and (1.1) can be written in the form

ψL(u) =

∫
Rm

(ei〈u,x〉 − 1 − i〈u, x〉) ν(dx), u ∈ R
m, (1.5)

9



1 Preliminaries

and (1.2) simplifies to

L(t) =

∫
x∈Rm

0 , s∈[0,t]

xJ̃(dx, ds), t ≥ 0. (1.6)

In this case L = {L(t)}t≥0 is a martingale. In the sequel we will work with a

two-sided Lévy process L = {L(t)}t∈R, constructed by taking two independent

copies {L1(t)}t≥0, {L2(t)}t≥0 of a one-sided Lévy process and setting

L(t) =


L1(t), if t ≥ 0

−L2(−t−), if t < 0.
(1.7)

1.1.2 Stochastic Integrals with Respect to Lévy Processes

We use the stochastic integrals of nonrandom functions with respect to in-

finitely divisible independently scattered random measures developed by Ur-

banik & Woyczynski (1967), Rajput & Rosinski (1989) and Sato (2005) to

define in this section stochastic integrals with respect to Lévy processes.

We consider the stochastic process X = {X(t)}t∈R given by

X(t) =

∫
R

f(t, s)L(ds), t ∈ R, (1.8)

where f : R × R → Mm(R) is a measurable function and L = {L(t)}t∈R is an

m-dimensional two-sided Lévy process without Brownian component.

Integration of functions f with respect to L is defined first on finite intervals

[a, b], a < b, for real step functions (t ∈ R fixed)

fn(t, s) =

n−1∑
k=0

Ak1(sk,sk+1](s), (1.9)

where A0, . . . , An−1 ∈ Mm(R), n ∈ N and a = s0 < s1 < . . . < sn = b. Then

we define
b∫

a

fn(t, s)L(ds) =
n−1∑
k=1

Ak(L(sk) − L(sk+1)).

In general, a measurable function f : R×R →Mm(R) is said to be integrable

with respect to the Lévy process L if there exists a sequence {fn} of simple
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1.1 Lévy Processes

functions as above, such that fn → f almost everywhere (a.e.) and the sequence

{∫ b

a
fn(t, s)L(ds)} converges in probability as n → ∞. If f is integrable with

respect to L we write

b∫
a

f(t, s)L(ds) = p− lim
n→∞

b∫
a

fn(t, s)L(ds).

It has been shown by Urbanik & Woyczynski (1967) that the integral∫ b

a
f(t, s)L(ds) is well-defined, i.e. it does not depend on the approximating

sequence {fn} of simple functions. Furthermore, if f is L-integrable the law of

Y (t) :=
∫ b

a
f(t, s)L(ds) is infinitely divisible,

∫ b

a
‖ψL(f(t, s)∗u)‖ ds <∞ and

E[eiuY (t)] = exp




b∫
a

ψL(f(t, s)∗u) ds


 , t, u ∈ R, (1.10)

where ψL is given in (1.1). In fact, due to Sato (2005, Proposition 3.4), for

the integral
∫ b

a
f(t, s)L(ds) to exist a necessary and sufficient condition is∫ b

a
‖f(t, s)‖2 ds <∞.

Definition 1.1 Let f : R × R → Mm(R) be a measurable and f(t, ·) be a

continuous function in s. If
∫ b

a
f(t, s)L(ds) converges in probability as b→ ∞

(a → −∞), then the limit is denoted by
∫∞

a
f(t, s)L(ds) (

∫ b

−∞ f(t, s)L(ds))

and we say that the integral
∫∞

a
f(t, s)L(ds) (

∫ b

−∞ f(t, s)L(ds)) is well-defined.

We distinguish three cases and first assume that the process L in (1.8) is

an m-dimensional real-valued Lévy process without a Gaussian component

satisfying E[L(1)] = 0 and E[L(1)L(1)T ] = ΣL <∞, i.e. L can be represented

as in (1.6) together with (1.7). In this case it is obvious that the process X

can be represented by

X(t) =

∫
Rm

0 ×R

f(t, s)x J̃(dx, ds), t ∈ R, (1.11)

where J̃(dx, ds) = J(dx, ds)−ν(dx) ds is the compensated jump measure of L.

A necessary and sufficient condition for the existence of the stochastic integral

11
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(1.11) as limit in probability of elementary integrals
∫

R

∫
Rm

0
fn(t, s)xJ̃(dx, ds)

is that ∫
R

∫
Rm

(‖f(t, s)x‖2 ∧ ‖f(t, s)x‖) ν(dx) ds <∞ for all t ∈ R

(see Kallenberg (1997, Theorem 10.5)). Then the above conclusions continue to

hold, i.e. the law of X(t) is for all t ∈ R infinitely divisible with characteristic

function

E [exp {i〈u,X(t)〉}] = exp



∫
R

∫
Rm

(
ei〈u,f(t,s)x〉 − 1 − i〈u, f(t, s)x〉) ν(dx) ds




(see e.g. Rajput & Rosinski (1989) or Marcus & Rosinski (2005)).

The following proposition shows that the integral (1.8) or (1.11), respec-

tively, may be well-defined in an L2-sense.

Proposition 1.2 Let f(t, ·) ∈ L2(Mm(R)) and L = {L(t)}t∈R be a Lévy pro-

cess with E[L(1)] = 0 and E[L(1)L(1)T ] = ΣL < ∞. Then the stochastic

integral (1.11) and hence (1.8), exists in L2(Ω, P ) and does not depend on the

choice of the approximating sequence. Moreover,

E [X(t)X(t)∗] =

∫
R

f(t, s)ΣLf
∗(t, s) ds, t ∈ R. (1.12)

Proof. Applying Rajput & Rosinski (1989, Theorem 3.3) it follows that

(1.8) is well-defined and E‖ ∫ f dL‖2 <∞ if and only if

∫
R


f(t, s)γ +

∫
Rm

f(t, s)x[h(f(t, s)x) − h(x)]ν(dx) + f(t, s)ΣLf
∗(t, s)


 ds <∞

(1.13)

Since we have γ = − ∫
‖x‖>1

x ν(dx), (1.13) is implied by

∫
R

∫
Rm

f(t, s)x1{‖f(t,s)x‖>1} ν(dx) ds+

∫
R

f(t, s)ΣLf
∗(t, s) ds

≤ 2

∫
R

f(t, s)ΣLf
∗(t, s) ds <∞.

12
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It follows from Rajput & Rosinski (1989, Theorem 3.4) that the mapping

f → ∫
R
f dL is an isomorphism between L2(Mm(R)) and L2(Ω, P ). To proof

(1.12) we observe that for step functions as defined in (1.9)

E


∫

R

fn(t, s)L(ds)


2

= E


∫

R

f 2
n(t, s) d[L,L]s


 =

∫
R

f(t, s)ΣLf
∗(t, s) ds.

This isometry property is preserved when we approximate f(t, ·) by a sequence

of step functions {fn(t, ·)} satisfying fn
L2→ f (observe that the step functions

are dense in L2(Mm(R))).

Now, we consider a second case: If∫
R

∫
Rm

(‖f(t, s)x‖ ∧ 1) ν(dx) ds <∞ for all t ∈ R, (1.14)

the stochastic integral (1.8) exists without a compensator and we can write

X(t) =

∫
Rm

0 ×R

f(t, s)x J(dx, ds), t ∈ R. (1.15)

Observe that
∫

R

∫
Rm(‖f(t, s)x‖ ∧ 1) ν(dx) ds ≤ ∫

R
‖f(t, s)‖ ds ∫

Rm ‖x‖ ν(dx).
Hence, (1.14) holds if f ∈ L1(Mm(R)) and ν satisfies

∫
‖x‖≤1

‖x‖ ν(dx) < ∞,

which corresponds to the finite variation case.

Finally, in the general case, where condition (1.3) is not satisfied, necessary

and sufficient conditions for the integral (1.8) to exist as a limit in probability

of step functions approximating f(t, ·), are (see Rajput & Rosinski (1989), Sato

(2005)) ∫
R

∫
Rm

(‖f(t, s)x‖2 ∧ 1) ν(dx) ds <∞, for all t ∈ R, (1.16)

and ∫
R

∥∥∥∥∥∥f(t, s)γ +

∫
Rm

f(t, s)x (h(f(t, s)x) − h(x)) ν(dx)

∥∥∥∥∥∥ ds <∞. (1.17)

Then we represent X as

X(t) =

∫
R

∫
Rm

0

f(t, s)x
[
J(dx, ds) − (1 ∨ ‖f(t, s)x‖)−1 ν(dx) ds

]

+

∫
R

f(t, s)γ ds, t ∈ R.

13
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Moreover, if the integral in (1.8) is well-defined, the distribution of X(t) is

infinitely divisible with characteristic triplet (γt
X , 0, ν

t
X) given by

γt
X =

∫
R


f(t, s)γ +

∫
Rm

f(t, s)x[h(f(t, s)x) − h(x)] ν(dx)


 ds,

νt
X(B) =

∫
R

∫
Rm

1B(f(t, s)x) ν(dx) ds. (1.18)

It follows that the characteristic function of X(t) can be written as

E
[
ei〈u,X(t)〉] = exp


i〈γt

X , u〉 +

∫
Rm

[ei〈u,x〉 − 1 − i〈u, x〉h(x)] νt
X(dx)




= exp



∫
R

ψL(f(t, s)∗u) ds


 , (1.19)

where ψL is given as in (1.1). These facts follow from Sato (2005, Proposition

5.5).

Remark 1.3 We would like to note that if the integral in (1.8) is well-defined

and L is a Lévy process with characteristic triplet (γ, σ, ν), i.e. L may have

a Brownian component, then the characteristic triplet (γt
X , σ

t
X , ν

t
X) of X(t) is

given by (1.18) and

σt
X =

∫
R

f(t, s)σf ∗(t, s) ds. (1.20)

Of particular interest is the moving average class, where the function f in (1.8)

is defined and continuous on [0,∞) and depends on s and t through t−s only.

In this case we simply write f(t−s) for f(t, s). In the following section we will

consider the special case of autoregressive moving average processes.

1.2 Univariate Lévy-driven CARMA(p, q)

Processes

Being the continuous time analogue of the well-known autoregressive moving

average (ARMA) processes (see e.g. Brockwell & Davis (1991)), continuous

14
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time ARMA (CARMA) processes, dating back to Doob (1944), have been

extensively studied over the recent years (see e.g. Brockwell (2001a), Brockwell

(2001b), Todorov & Tauchen (2004) and references therein) and widely used in

various areas of application like engineering, finance and the natural sciences

(e.g. Jones & Ackerson (1990), Mossberg & Larsson (2004), Todorov & Tauchen

(2004)). Originally the driving process was restricted to Brownian motion.

However, Brockwell (2001b) allowed for Lévy processes which have a finite

r-th moment for some r > 0. So far only univariate CARMA processes have

been defined and investigated. We give a short summary of the definition and

properties of univariate Lévy-driven CARMA(p, q) processes, i.e. we assume

m = 1 throughout this whole section. Moreover, in this section we discuss

CARMA processes driven by general Lévy processes, i.e. the Lévy process

may have a Brownian component and does not need to have finite variance,

unless stated otherwise. For further details on univariate CARMA processes

see Brockwell (2001a), Brockwell (2001b) and Brockwell (2004).

CARMA processes belong to the class of stationary moving average (MA)

processes.

Definition 1.4 (Stationary MA Process) A stationary continuous time

moving average (MA) process is a process of the form

Y (t) =

∞∫
−∞

g(t− u)L(du), t ∈ R, (1.21)

where g : R → R, called kernel function, is measurable and the driving process

L = {L(t)}t∈R is a Lévy process on R having generating triplet (γL, σ
2
L, νL).

We call L the driving Lévy process of the MA process Y = {Y (t)}t∈R.

The results (1.16) - (1.20) of the previous section can be directly applied to

MA processes. Specifically we have (Rajput & Rosinski (1989))

Proposition 1.5 The MA process Y = {Y (t)}t∈R given in (1.21) is well-

defined and infinitely divisible if and only if the following three conditions on

the driving Lévy process L and the kernel g hold:

(i)
∫

R

∣∣γLg(s) +
∫

R
xg(s)[1{|xg(s)|≤1} − 1{|x|≤1}] νL(dx)

∣∣ ds <∞,

15
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(ii) σ2
L

∫
R
g2(s) ds <∞,

(iii)
∫

R

∫
R
(|g(s)x|2 ∧ 1) νL(dx) ds <∞,

where (γL, σ
2
L, νL) is the characteristic triplet of L. If Y is well-defined, then

for t ∈ R the characteristic function of Y (t) can be written as

E
[
eiuY (t)

]
= exp


iuγt

Y − 1

2
u2(σt

Y )2 +

∫
R

[eiux − 1 − iux1{|x|≤1}] νt
Y (dx)


 ,

u ∈ R, where

γt
Y =

∫
R

γLg(t− s) ds+

∫
R

∫
R

xg(t− s)[1{|xg(t−s)|≤1} − 1{|x|≤1}] νL(dx) ds,

(σt
Y )2 = σ2

L

∫
R

g2(t− s) ds,

νt
Y (B) =

∫
R

∫
R

1B(g(t− s)x) νL(dx) ds, B ∈ B(R).

In contrast to (1.1) we write here σ2
L (and not σ) to make clear that in

the case m = 1, σ2
L is the variance of the Brownian motion B in the Lévy

Itô decomposition (1.2), whereas in the case m ≥ 2, σ denotes the covariance

matrix of B.

Remark 1.6 It follows by the stationarity of the increments of L and an

application of the Cramér Wold device that every moving average process,

which is well-defined, is a strictly stationary process (see also the proof of

Proposition 2.42).

Having necessary and sufficient conditions for the existence of MA processes

at hand, we are now in a position to consider CARMA processes, which con-

stitute a special class of stationary MA processes.

Definition 1.7 (CARMA(p, q) Process) A Lévy-driven continuous time au-

toregressive moving average CARMA(p, q) process {Y (t)}t≥0 of order (p, q)

16
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with p, q ∈ N0, p > q is defined to be the stationary solution of the formal p-th

order linear differential equation,

p(D)Y (t) = q(D)DL(t), t ≥ 0, (1.22)

where D denotes differentiation with respect to t, {L(t)}t≥0 is a Lévy process

satisfying
∫
|x|>1

log |x|νL(dx) <∞,

p(z) := zp + a1z
p−1 + ... + ap and q(z) := b0z

q + b1z
q−1 + ....+ bq, (1.23)

where ap �= 0, bq �= 0. The polynomials p(·) and q(·) are referred to as the

autoregressive and moving average polynomial, respectively.

Since in general the derivative of a Lévy process does not exist, (1.22) is

interpreted as being equivalent to the observation and state equations

Y (t) = bTX(t) and (1.24)

dX(t) = AX(t)dt+ e L(dt), t ≥ 0, (1.25)

where A =

[
0 Ip−1

−ap −ap−1 . . . −a1

]
, eT = [0, . . . , 0, 1],

bT =
[
bq, bq−1, . . . , bq−p+1

]
with b−1 = b−2 = . . . = bq−p+1 = 0, if q < p − 1.

Furthermore, recall that Ip−1 ∈Mp−1(R) denotes the identity matrix.

Let us give a brief intuition how (1.24) and (1.25) capture the meaning of

(1.22) To see this, first note that in the case q(z) = 1 (i.e. q = 0 and bT =

[1, 0, . . . , 0]) rewriting (1.22) as a system of first-order differential equations in

the standard way gives (1.25) and (1.24) with X being the vector of derivatives

XT
t = [Y (t), DY (t), . . . , Dp−1Y (t)]. In the general case we transform (1.22) to

Y (t) = p(D)−1q(D)DL(t) = q(D)p(D)−1DL(t), t ≥ 0, (1.26)

From the previous case we infer that the process in (1.25) is formed by

p(D)−1DL(t) and the first p − 1 derivatives of this process. Now one can

immediately see that

Y (t) = bTXt = q(D)p(D)−1DL(t).

Note that we may commute p−1(D) and q(D) in (1.26), since the real coef-

ficients and the operator D all commute. However, this does not hold in the

multivariate case. We show in Chapter 3 how to handle this problem.
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Remark 1.8 It is easy to check that the eigenvalues λ1, . . . , λp of the matrix

A are the same as the zeros of the autoregressive polynomial p(z).

In order to define a CARMA process also for t < 0 we take a two-sided Lévy

process L = {L(t)}t∈R as in (1.7).

Proposition 1.9 (Brockwell (2004, Section 2)) If all eigenvalues

λ1, . . . , λp of A, i.e. the roots of p(z), have negative real parts, the process

{X(t)}t∈R defined by X(t) =
t∫
−∞

eA(t−u)e L(du), t ∈ R, is the strictly stationary

solution of (1.25) for t ∈ R with corresponding CARMA process

Y (t) =

t∫
−∞

bT eA(t−u)e L(du), t ∈ R. (1.27)

From (1.27) it is obvious that Y = {Y (t)}t∈R is a causal moving average

process, since it has the form

Y (t) =

∞∫
−∞

g(t− u)L(du), t ∈ R, (1.28)

with kernel

g(t) = bT eAte1[0,∞)(t) (1.29)

satisfying g ∈ L1(R) ∩ L2(R).

Notice that we call a MA process causal, if it depends only on the past of the

driving Lévy process L, i.e. on {L(s)}s≤t. Obviously, this holds as g(t− s) = 0

for s > t.

Remark 1.10 Replacing eAt by its spectral representation, the kernel g can

be expressed as

g(t) =
1

2π

∞∫
−∞

eitλ q(iλ)

p(iλ)
dλ, t ∈ R, (1.30)

(Brockwell (2004)).

Observe that the representation of {Y (t)}t∈R given by (1.28) together with

(1.30) defines a strictly stationary process even if there are eigenvalues of A
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1.2 Univariate Lévy-driven CARMA(p, q) Processes

with strictly positive real part. However, if there are eigenvalues with positive

real part, the CARMA process will be no longer causal. Henceforth, we focus on

causal CARMA processes, i.e. we assume that the condition on the eigenvalues

of A in Proposition 1.9 is always satisfied.

Proposition 1.11 Let the function g : R → R be given by (1.29) or (1.30),

respectively. Then there exist t0 ≥ 1 and constants c, C > 0 and c̃, C̃ > 0 such

that

|g(t)| ≤ Ce−ct, t ∈ R, (1.31)

|g(t)| ≥ C̃e−c̃t, t ≥ t0. (1.32)

Proof. Denote by λ1, . . . , λk, k ≤ p the eigenvalues of the matrix A (i.e. the

roots of p(z)) with multiplicity m1, . . . , mk,
k∑

j=1

mj = p and suppose

R(λk) ≤ R(λk−1) ≤ . . . ≤ R(λ1),

where R(λ) denotes the real part of λ. The Jordan decomposition of eAt yields

bT eAte =

k∑
j=1

pj(t)e
λjt,

where pj(t) are polynomials of degree mj . If p1(t) = c0 + . . .+ cm1t
m1 then

|bT eAte| ∼ |cm1t
m1 |eR(λ1)t, t→ ∞. (1.33)

Set c = −R(λ1)/2 > 0. Then there exists a constant C > 0 such that

|bT eAte| ≤ Ce−ct.

Furthermore, we can conclude from (1.33) that there exists t0 ≥ 1 such that

|bT eAte| ≥ C̃e−c̃t, for all t ≥ t0,

where C̃ = |cm1 |/2 and c̃ = −R(λ1) > 0.

Proposition 1.12 Suppose all roots λ1, . . . , λp of the autoregressive polyno-

mial p(z) have negative real parts. Then the CARMA process Y = {Y (t)}t∈R

given in (1.28) with kernel function g given by (1.30) is well-defined if and

only if ∫
|x|>1

log |x| νL(dx) <∞. (1.34)
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Proof. The proof is an application of Proposition 1.5 to the kernel function

g given in (1.30) and makes heavily use of Proposition 1.11. We refer the inter-

ested reader to Chojnowska-Michalik (1987, Theorem 6.7), where an analogous

result is proven for the exponentially stable semigroup to show the sufficiency

of (1.34). Therefore we only show that (1.34) is a necessary condition for the

well-definedness of the CARMA process. It follows from Proposition 1.5 (iii)

that if the CARMA process is well-defined and stationary,

∞ >

∞∫
0

∫
R

1{|g(s)x|>1} νL(dx) ds
(1.32)

≥
∞∫

t0

∫
R

1{|xC̃e−c̃s|>1} νL(dx) ds

=

∫
|x|>1/C̃

∞∫
t0

1{s< 1
c̃

log(|x|C̃)} ds νL(dx)

=

∫
|x|>1/C̃

(
1

c̃
log(|x|C̃) − t0

)
+

νL(dx) =

∫
|x|> 1

C̃
et0c̃

[
1

c̃
log(|x|C̃) − t0

]
νL(dx).

As νL is a Lévy measure this shows the necessity of (1.34).

Finally, we state the second-order properties of CARMA processes.

Proposition 1.13 (Brockwell (2004, Section 2)) If E[L(1)2] < ∞, the

spectral density fY of Y = {Y (t)}t∈R is given by

fY (λ) =
var(L(1))

2π

|q(iλ)|2
|p(iλ)|2 , λ ∈ R.

Thus, being the Fourier transform of the spectral density fY , the autocovari-

ance function γY of the CARMA process Y can be expressed as

γY (h) = cov(Y (t+ h), Y (t)) =
var(L(1))

2π

∞∫
−∞

eihλ

∣∣∣∣q(iλ)

p(iλ)

∣∣∣∣2 dλ, h ∈ R.

Remark 1.14 Suppose the CARMA process is causal. Then, provided all

eigenvalues λ1, . . . , λp of the matrix A are algebraically simple, an application

of the residue theorem leads to

g(t) =

p∑
r=1

q(λr)

p′(λr)
eλrt1[0,∞)(t), t ∈ R. (1.35)

20
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Consequently, the autocovariance function γY simplifies to

γY (h) = var(L(1))

p∑
r=1

q(λr)q(−λr)

p′(λr)p(−λr)
eλr |h|, h ∈ R. (1.36)

We say that a second-order stationary process Y having autocovariance func-

tion γY belongs to the class of short memory processes, if γY (h) decreases at

an exponential rate towards zero as h→ ∞. Obviously, every CARMA process

is a short memory moving average process.

In the following section we show how to incorporate long memory behaviour

into the class of short memory CARMA processes. Before, we give an example.

Example 1.15 (An Application to Stochastic Volatility Modeling)

Barndorff-Nielsen & Shephard (2001b) introduced a model for asset-pricing in

which the logarithm of an asset price is the solution of the stochastic differential

equation

dX(t) = (µ+ βσ2(t))dt+ σ(t)dW (t), t ≥ 0,

where {σ2(t)}, the instantaneous volatility, is a non-negative Lévy-driven

Ornstein-Uhlenbeck process, {W (t)} is standard Brownian motion and µ and β

are constants. With this model they were able to derive explicit expressions for

quantities of fundamental interest such as the integrated volatility. A crucial

feature of volatility modeling is the requirement that the volatility must be non-

negative, a property achieved by the Lévy-driven Ornstein-Uhlenbeck process

since its kernel is non-negative and the driving Lévy process is chosen to be

non-decreasing. A limitation of the use of the Ornstein-Uhlenbeck process (and

of convex combinations of independent Ornstein-Uhlenbeck processes) is the

constraint that the autocovariances γY (h), h ≥ 0, necessarily decrease as the

lag h increases.

Much of the analysis of Barndorff-Nielsen and Shephard can however be

carried out after replacing the Ornstein-Uhlenbeck process by a CARMA pro-

cess with non-negative kernel driven by a non-decreasing Lévy process, i.e. a

subordinator. This has the advantage of allowing the representation of volatil-

ity processes with a larger range of autocorrelation functions than is possible

in the Ornstein-Uhlenbeck framework. For example, the CARMA(3,2) process
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with

p(z) = (z + 0.1)(z + 0.5 + iπ/2)(z + 0.5 − iπ/2) and q(z) = 2.792 + 5z + z2

has non-negative kernel

g(t) = 0.8762e−0.1t +

(
0.1238 cos

πt

2
+ 2.5780 sin

πt

2

)
e−0.5t, t ≥ 0

and autocovariance functions

γ(h) = 5.1161e−0.1h +

(
4.3860 cos

πh

2
+ 1.4066 sin

πh

2

)
e−0.5h, h ≥ 0,

both of which exhibit damped oscillatory behaviour (see Figure 1.2 and Figure

1.3 of Section 1.3).

Figure 1.1 shows the corresponding sample path, when the driving Lévy

process L is a gamma subordinator, i.e. at a fixed time t the process L has the

gamma distribution with density

f(x) =
λct

Γ(ct)
xct−1e−λx.

1.3 Univariate FICARMA(p, d, q) Processes

Since the autocorrelation functions of CARMA processes show an exponential

rate of decrease, CARMA processes are short memory processes. However,

observed time series often show long memory behaviour in the sense that they

seem to require models, whose autocorrelation functions follow a power law

and where the decay is so slow that the autocorrelations are not integrable.

Historically, long range dependence or long memory, respectively, was defined

in several ways. It was associated either with a particularly slow decay of

correlation or with a particular pole of the spectral density at the origin. One

should note that in general neither definition implies the other.

We propose the following definition of ”long memory”.
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Figure 1.1: Top: The sample path of a CARMA(3,2) process which is driven by a

gamma subordinator with parameters c = 30 and λ = 3.

Bottom: The increments of the driving gamma subordinator.

Definition 1.16 (Long Memory Process) Let X = {Xt}t∈R be a station-

ary stochastic process and γX(h) = cov(Xt+h, Xt), h ∈ R, be its autocovariance

function. If there exist 0 < d < 0.5 and a constant cγ > 0 such that

lim
h→∞

γX(h)

h2d−1
= cγ, (1.37)

then X is a stationary process with long memory (long range dependence).

A generalization of the latter definition may be obtained by replacing the

proportionality constant cγ by a slowly varying function at infinity, i.e. a func-

tion l(·) such that for any t > 0,

l(tλ)

l(λ)
→ 1, as λ→ ∞.
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Then X is referred to as a long memory process, if

γX(h) ∼ h−2dl(h), as h→ ∞.

However, for our and most practical purposes this generalization is not needed.

Furthermore, observe that long memory implies

∞∫
0

γX(h) dh = ∞.

The subject of long range dependence has sparked considerable research inter-

est over the last few years. An excellent survey of the present state of the art

is Doukhan et al. (2003).

Aiming at long range dependent CARMA processes, using a fractional inte-

gration of the CARMA kernel, Brockwell (2004) (see also Brockwell & Mar-

quardt (2005)) defined Lévy-driven fractionally integrated CARMA (FICARMA)

processes, where the autocorrelations are hyperbolically decaying. In this sec-

tion we give a summary of Lévy-driven FICARMA processes and derive the

second order properties of FICARMA(p, d, q) processes. In particular, we give

an explicit formula for the autocovariance function. The results of this section

(and some further extensions) can also be found in Brockwell & Marquardt

(2005).

First we introduce the Riemann-Liouville fractional integrals and derivatives.

For details see Samko et al. (1993).

For 0 < α < 1 the Riemann-Liouville fractional integrals Iα
± are defined by

(Iα
−f)(x) =

1

Γ(α)

∞∫
x

f(t)(t− x)α−1 dt, (1.38)

(Iα
+f)(x) =

1

Γ(α)

x∫
−∞

f(t)(x− t)α−1 dt, (1.39)

if the integrals exist for almost all x ∈ R. In fact, fractional integrals Iα
± are

defined for functions f ∈ Lp(R) if 0 < α < 1 and 1 ≤ p < 1/α (Samko et al.

(1993, p.94)). We refer to the integrals Iα
− and Iα

+ as right-sided and left-sided,

respectively.
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1.3 Univariate FICARMA(p, d, q) Processes

Fractional differentiation was introduced as the inverse operation. Let

0 < α < 1, 1 ≤ p < 1/α and denote by Iα
±(Lp) the class of functions φ ∈ Lp(R)

which may be represented as an Iα
±-integral of some function f ∈ Lp(R). If

φ ∈ Iα
±(Lp), there exists a unique function f ∈ Lp(R) such that φ = Iα

±f and

f agrees with the Riemann-Liouville derivative Dα
± of φ of order α defined by

(Dα
−φ)(x) = − 1

Γ(1 − α)

d

dx

∞∫
x

φ(t)(t− x)−α dt,

(Dα
+φ)(x) =

1

Γ(1 − α)

d

dx

x∫
−∞

φ(t)(x− t)−α dt,

where the convergence of the integrals at the singularity t = x holds pointwise

for almost all x if p = 1 and in the Lp-sense if p > 1.

Last but not least we have the following rule for fractional integration by

parts.

Proposition 1.17 (Bender (2003b, Theorem 2.6)) Let 0 < α < 0.5. Then∫
R

f(s)(Iα
−g)(s) ds =

∫
R

(Iα
+f)(s)g(s) ds (1.40)

holds if f ∈ Lp(R), g ∈ Lr(R) and p > 1, r > 1, 1/p+ 1/r = 1 + α.

We calculate the Riemann-Liouville fractional integral of order d of the

(short memory) CARMA kernel g given in (1.30) in order to obtain the cor-

responding fractionally integrated kernel gd. As in this thesis we are mainly

interested in long memory processes, we always assume 0 < d < 0.5 to be con-

sistent with Definiton 1.16. Furthermore, we restrict ourselves to the causal

case, i.e. g(t) = 0 for t < 0. Then

gd(t) := (Id
+g)(t) =

∞∫
0

g(t− u)
ud−1

Γ(d)
du =

∞∫
0

1

2π

∞∫
−∞

ei(t−u)λ q(iλ)

p(iλ)
dλ
ud−1

Γ(d)
du

=
1

2π

∞∫
−∞

eitλ q(iλ)

p(iλ)

1

Γ(d)

∞∫
0

e−iuλud−1du dλ

=
1

2π

∞∫
−∞

eitλ(iλ)−d q(iλ)

p(iλ)
dλ, (1.41)
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1 Preliminaries

since ∞∫
0

e−iuλud−1du = (iλ)−dΓ(d).

Proposition 1.18 The kernel gd(t) converges to zero at a hyperbolic rate as

t→ ∞. In fact,

gd(t) ∼ td−1

Γ(d)
· q(0)

p(0)
, t→ ∞. (1.42)

Proof. As we can rewrite the kernel gd as

gd(t) =
1

2iπ

i∞∫
−i∞

etzz−d q(z)

p(z)
dz,

the asymptotic behaviour of gd(t) as t→ ∞ is a consequence of Doetsch (1974,

Theorem 37.1., p.254).

Remark 1.19 Observe that gd ∈ L2(R) and gd(t) = 0 for all t ≤ 0.

Substituting the CARMA kernel g by the fractionally integrated kernel gd

as given in (1.41), we obtain the fractionally integrated CARMA(p, d, q) pro-

cesses.

Definition 1.20 (FICARMA(p, d, q) Process) Let 0 < d < 0.5 and as-

sume that all zeros of the polynomial p(z) given by (1.23) have negative real

parts. Then the stationary fractionally integrated CARMA(p, d, q)

(FICARMA(p, d, q)) process Yd = {Yd(t)}t∈R with coefficients a1, ..., ap, b0, ..., bq

and driven by the Lévy process L = {L(t)}t∈R satisfying E[L(1)] = 0 and

E[L(1)2] <∞ is defined as

Yd(t) =

t∫
−∞

gd(t− u)L(du), t ∈ R, (1.43)

where the kernel function gd is given in (1.41).

Remark 1.21 As gd ∈ L2(R), E[L(1)] = 0 and E[L(1)2] <∞ it follows from

Proposition 1.2 and the results of Section 1.1.1 that the FICARMA process

Yd is well-defined in L2(R) and as a limit in probability of step functions
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1.3 Univariate FICARMA(p, d, q) Processes

approximating the kernel function gd. Let (γL, σ
2
L, νL) denote the characteristic

triplet of the driving Lévy process L, then the distribution of the FICARMA

process Yd(t) is for all t ∈ R infinitely divisible and the stationary distribution

has characteristic triplet (γYd,∞, σ2
Yd,∞, νYd,∞) given by

γYd,∞ = γL

∞∫
0

gd(s) ds+

∞∫
0

∫
R

gd(s)x[h(gd(s)x) − h(x)] νL(dx) ds,

σ2
Yd,∞ = σ2

L

∞∫
0

g2
d(s) ds,

νYd,∞ =

∞∫
0

∫
R

1B(gd(s)x) νL(dx) ds, B ∈ B(R).

We turn our attention to the the second order properties of FICARMA(p, d, q)

processes (see also Brockwell & Marquardt (2005)). Before, we establish two

lemmata which contain important results we shall need to show the long mem-

ory property of FICARMA processes.

Lemma 1.22 Let

f(u, h) ∼ F (u, h) for u, h ≥ 0, u+ h→ ∞,

i.e.

lim
u,h≥0,u+h→∞

f(u, h) − F (u, h)

F (u, h)
= 0. (1.44)

Assume that the integral

IF (h) :=

∫ ∞
0

F (u, h) du

exists for h > 0 and that there is a constant C > 0 with∫ ∞
0

|F (u, h)| du ≤ C|IF (h)| for all h > M, (1.45)

M > 0 large enough. Then If (h) :=
∫∞
0
f(u, h) du <∞ and

If(h) =

∫ ∞
0

f(u, h) du ∼ IF (h) for h→ ∞, i.e.

lim
h→∞

If (h) − IF (h)

IF (h)
= 0.
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Proof. We have

|If (h) − IF (h)| ≤
∫ ∞

0

|f(u, h) − F (u, h)| du

=

∫ ∞
0

|f(u, h) − F (u, h)|
|F (u, h)| |F (u, h)| du

≤ sup
u≥0

|f(u, h) − F (u, h)|
|F (u, h)|

∫ ∞
0

|F (u+ h)| du
(1.45)

≤ sup
u≥0

|f(u, h) − F (u, h)|
|F (u, h)| C|IF (h)|.

The first factor tends to zero for h→ ∞ by (1.44). This shows that

lim
h→∞

If (h) − IF (h)

IF (h)
= 0.

Lemma 1.23 Let g : R → R be a measurable and bounded function on [0,∞)

and

g(u) ∼ Cud−1 =: G(u) for u→ ∞, (1.46)

where C > 0 is a constant and 0 < d < 0.5 and consider for h ≥ 0

r(h) :=

∫ ∞
0

g(u+ h)g(u) du

and

R(h) :=

∫ ∞
0

G(u+ h)G(u) du.

Then

r(h) ∼ R(h) for h→ ∞. (1.47)

Moreover,

R(h) = C2

∫ ∞
0

(u+ h)d−1ud−1 du = h2d−1 Γ(1 − 2d)Γ(d)

Γ(1 − d)
C2.

Proof. We first show that

r̃(h) :=

∫ ∞
hd/2

g(u+ h)g(u) du ∼
∫ ∞

hd/2

G(u+ h)G(u) du =: R̃(h).
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1.3 Univariate FICARMA(p, d, q) Processes

To this end let

f(u, h) = g(u+ h+ hd/2)g(u+ hd/2),

and

F (u, h) = G(u+ h+ hd/2)G(u+ hd/2).

Then

r̃(h) = If(h), R̃(h) = IF (h).

Moreover

lim
u,h≥0,u+h→∞

f(u, h)

F (u, h)
= lim

u,h≥0,u+h→∞
g(u+ h+ hd/2)g(u+ hd/2)

G(u+ h+ hd/2)G(u+ hd/2)
= 1

and thus

f(u, h) ∼ F (u, h) for u+ h→ ∞.

Finally,

|IF (h)| = C2

∫ ∞
hd/2

(u+ h)d−1ud−1 du = C2

∫ ∞
0

|F (u, h)| du

and thus (1.45) holds. Hence, Lemma 1.22 yields

r̃(h) ∼ R̃(h) for h→ ∞.

Now (1.47) follows from the observation that for h→ ∞,

|r(h) −R(h)|
|R(h)| ≤ |r(h) − r̃(h)|

|R(h)| +
|r̃(h) − R̃(h)|

|R(h)| +
|R̃(h) − R(h)|

|R(h)| → 0.

In fact, |R(h)| ≥ |R̃(h)| and thus

|r̃(h) − R̃(h)|
|R(h)| ≤ |r̃(h) − R̃(h)|

|R̃(h)| → 0, h→ ∞,

as we have just shown. Moreover, since d < 0.5,

|R(h)| = C2

∫ ∞
0

(u+ h)d−1ud−1 du ≥ C2

∫ ∞
0

(u+ h)2d−2 du = C2 h
2d−1

1 − 2d
.

On the other hand, we have by (1.46)

|g(u+ h)| ≤ 2|G(u+ h)| ≤ 2Chd−1
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for all h ≥M , M large enough, and there is a constant C̃ > 0 with

sup
u≥0

|g(u)| ≤ C̃.

This yields

|r(h) − r̃(h)| =

∣∣∣∣∣
∫ hd/2

0

g(u+ h)g(u) du

∣∣∣∣∣ ≤ hd/22Chd−1C̃ ≤ 2CC̃h2d−1−d/2.

This gives
|r(h) − r̃(h)|

|R(h)| ≤ 2CC̃h2d−1−d/2

C2 h2d−1

1−2d

→ 0, h→ ∞.

Similarly we obtain

|R(h) − R̃(h)|
|R(h)| ≤ CC̃h2d−1−d/2

C2 h2d−1

1−2d

→ 0, h→ ∞.

It remains to calculate the function R(h).

R(h) = C2

∫ ∞
0

(u+ h)d−1ud−1 du

u=( 1
x
−1)h

= C2

∫ 1

0

x−2d(1 − x)d−1 dx

= h2d−1 Γ(1 − 2d)Γ(d)

Γ(1 − d)
C2,

since
∫ 1

0
(1 − x)a−1xb−1 dx = Γ(a)Γ(b)

Γ(a+b)
.

Theorem 1.24 The FICARMA(p, d, q) process Yd as defined in Definition

1.20 is a long memory moving average process.

Proof. For h ≥ 0 we have

γd(h) = cov(Yd(t+ h), Yd(t))

= cov


 t+h∫
−∞

gd(t+ h− u)L(du),

t∫
−∞

gd(t− u)L(du)




= cov


 ∞∫

0

gd(u+ h)L(du),

∞∫
0

gd(u)L(du)




= E[L(1)2]

∞∫
0

gd(u+ h)gd(u) du.
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Moreover, we know from (1.42), gd(t) ∼ td−1

Γ(d)
q(0)
p(0)

as t→ ∞. Hence, we can apply

Lemma 1.23 with C = q(0)
Γ(d)p(0)

and obtain that the autocovariance function γd

of the FICARMA process Yd is hyperbolically decaying, namely

γd(h) ∼ E[L(1)2]Γ(1 − 2d)

Γ(d)Γ(1 − d)

[
q(0)

p(0)

]2

h2d−1, h→ ∞. (1.48)

Hence, Yd satisfies the conditions of Definition 1.16.

Proposition 1.25 The spectral density fd of the FICARMA(p, d, q) process

equals

fd(λ) =
E[L(1)2]

2π|λ|2d

∣∣∣∣q(iλ)

p(iλ)

∣∣∣∣2 , λ ∈ R. (1.49)

Proof. We observe that

γd(h) = E[L(1)2]

∞∫
0

gd(u+ h)gd(u) du = E[L(1)2]

∫
R

g̃d(h− u)gd(u) du,

where g̃d(x) = gd(−x). Then, using the representation (1.30) of gd and the fact

that the spectral density is the inverse Fourier transform of the autocovariance

function, we find that

fd(λ) =
1

2π

∫
R

e−iλhγd(h) dh =
E[L(1)2]

2π|λ|2d

∣∣∣∣q(iλ)

p(iλ)

∣∣∣∣2 ,
where we made use of the convolution theorem for Fourier transforms.

Corollary 1.26

(i) The spectral density has a pole at the origin. In fact,

fd(λ) ∼ E[L(1)2]

2π

[
q(0)

p(0)

]2

|λ|−2d, λ→ 0.

(ii) As a consequence of (1.49), the autocovariance function γd can be expressed

as

γd(h) =
E[L(1)2]

2π

∫
R

eihλ

∣∣∣∣q(iλ)

p(iλ)

∣∣∣∣2 1

|λ|2d
dλ, h ∈ R,

since γd is the Fourier transform of fd.
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Finally, we consider the special case that the roots λ1, . . . , λp of the autore-

gressive polynomial p(·) are distinct. Then the kernel gd of the FICARMA

process {Yd(t)}t∈R can be expressed as

gd(t) =

p∑
r=1

q(λr)

p′(λr)
λ−d

r eλrtP (λrt, d), t ∈ R, (1.50)

and we obtain

γd(h) =
E[L(1)2]

2 cos(πd)

p∑
r=1

q(λr)q(−λr)

p′(λr)p(−λr)
v(d, λr, h), h ∈ R, (1.51)

where

v(d, λ, h) = 2(−λ)−2d cosh(λh) + λ−2dehλP (λd, 2d)− (−λ)−2de−λjP (−λh, 2d)
(see Brockwell & Marquardt (2005) for a proof). Here P (z, d) is the incomplete

gamma function with complex argument z,

P (z, d) =
1

Γ(d)

z∫
0

e−xxd−1 dx, (1.52)

where integration is along the radial line in the complex plane form 0 to z.

Observe that alternatively the function P can be expressed as

P (z, d) =
zd

Γ(d+ 1)1

F1(d; d+ 1;−z),

where 1F1 is the confluent hypergeometric function of the first kind.

Figure 1.2 and Figure 1.3 show the kernel and autocovariance function of the

CARMA(3, 2) process given in Example 1.15 and of the corresponding

FICARMA(3, d, 2) process for d = 0.25. We recognize the long memory prop-

erty of the FICARMA process.

Due to the slow decay (1.42) of the fractionally integrated kernel gd, simulation

algorithms for FICARMA processes are very slow and expensive. Introducing

the so-called fractional Lévy processes in Chapter 2, we obtain an alternative

representation of FICARMA processes which allows much more efficient sim-

ulation. Fractional Lévy processes are a generalization of fractional Brownian

motion. Therefore, in the following section we will give a brief summary of the

definition and properties of fractional Brownian motion.
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Figure 1.2: The kernel of the CARMA(3,2) and the FICARMA(3,0.25,2) process.
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1.4 Fractional Brownian Motion

In this thesis we consider fractional Lévy processes. The name “fractional Lévy

process” already suggests that it can be regarded as a generalization of frac-

tional Brownian motion (FBM). In the past years fractional Brownian motion

has been the subject of numerous investigations and played a role in many

fields of application such as economics, finance, turbulance and telecommuni-

cations. Let us recall the definition and properties of FBM (see Doukhan et al.

(2003), part A or Samorodnitsky & Taqqu (1994), chapter 7.2 for proofs and

further results).

Definition 1.27 Let 0 < H < 1. The Gaussian stochastic process {BH(t)}t≥0

satisfying the following three properties

(i) BH(0) = 0

(ii) E[BH(t)] = 0 for all t ≥ 0,

(iii) for all s, t ≥ 0,

E[BH(t)BH(s)] =
1

2

(|t|2H − |t− s|2H + |s|2H
)
, (1.53)

is called the (standard) fractional Brownian motion with parameter H.

The parameter H is also referred to as the Hurst coefficient. It is obvious

from (1.53) that FBM has stationary increments but that for H �= 1/2 the

increments are not independent.

We can define a parametric family of FBMs in terms of the stochastic Weyl

integral (see e.g. Samorodnitsky & Taqqu (1994), chapter 7.2).

For any a, b ∈ R,

{BH(t)}t∈R

d
= (1.54)


∫
R

{
a [(t− s)

H− 1
2

+ − (−s)H− 1
2

+ ] + b [(t− s)
H− 1

2− − (−s)H− 1
2− ]
}
dB(s)




t∈R

,

where u+ = max(u, 0), u− = max(−u, 0) and {B(t)}t∈R is a two-sided standard

Brownian motion. Notice that we can construct a two-sided standard Brownian

motion as in (1.7).

34



1.4 Fractional Brownian Motion

If H = 1/2, it is clear that {B1/2(t)}t∈R = {B(t)}t∈R is ordinary Brownian

motion. If we choose a =
√

Γ(2H + 1) sin(πH)/Γ(H+1/2) and b = 0 in (1.54)

then {BH(t)}t∈R is a FBM satisfying (1.53).

Many properties of FBM are given by its fractional index H . For instance

H governs the self-similarity property. First, let us precise the definition of a

self-similar process (we refer to Embrechts & Maejima (2002) for an excellent

survey on self-similar processes).

Definition 1.28 A real-valued stochastic process {X(t)}t∈R is self-similar with

index H if for all c > 0,

{X(ct)}t∈R

d
= cH{X(t)}t∈R. (1.55)

Proposition 1.29 Fractional Brownian motion is self-similar with index H.

Moreover, FBM is the only self-similar Gaussian process with stationary in-

crements.

Remark 1.30 In higher dimension m ≥ 2 the preceding proposition does

not remain true, i.e. there exist Gaussian models which are stationary and

selfsimilar (see e.g. Bonami & Estrade (2003)).

Consider now the covariance between two increments. It follows by the sta-

tionarity of the increments of BH ,

ρH(n) : = cov(BH(k) − BH(k − 1), BH(k + n) − BH(k + n− 1))

=
1

2
(|n+ 1|2H − 2|n|2H − |n− 1|2H), n ∈ N. (1.56)

Proposition 1.31

(i) If 0 < H < 1/2, ρH is negative and
∞∑

n=1

|ρH(n)| <∞.

(ii) If H = 1/2, ρH equals 0.

(iii) If 1/2 < H < 1, ρH is positive,
∞∑

n=1

|ρH(n)| = ∞, and ρH(n) ∼ Cn2H−2,

as n→ ∞.

Corollary 1.32 For 1/2 < H < 1 the increments of FBM exhibit long mem-

ory in the sense of Definition 1.16 (with d = H − 1
2
).
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Having observed these distributional properties, which make FBM a promis-

ing model in various applications, we briefly review the sample path properties.

Proposition 1.33 The trajectories of FBM are continuous. In particular, for

every H̃ < H there exists a modification of BH whose sample paths are a.s.

locally H̃-Hölder continuous on R.

Let us introduce the notion of p-variation:

Let X = {X(t)}t∈R be a stochastic process. Given a real number p ≥ 1 and

a point partition a = tn0 < tn1 < . . . < tnn = b of the compact interval [a, b] such

that max
1≤k≤n

{|tnk − tnk−1|} → 0 as n→ ∞, we define the random variable

V arp
[a,b];n(X) =

n∑
k=1

|X(tnk) −X(tnk−1)|p.

Then the limit in probability

V arp
[a,b](X) = p− lim

n→∞
V arp

[a,b];n(X)

is called the p-variation of X over [a, b]. If p = 1 we call V ar[a,b](X) :=

V ar1
[a,b](X) the total variation. For p = 2, [X,X]t := V ar2

[0,t](X) denotes the

quadratic variation of X on the interval [0, t].

Proposition 1.34 The sample paths of FBM are of finite p-variation for ev-

ery p > 1/H and of infinite p-variation if p < 1/H.

Consequently, for H < 1/2 the quadratic variation is infinite. On the other

hand, if H > 1/2 it is known that the quadratic variation of FBM is zero,

whereas the total variation is infinite.

Corollary 1.35 This shows that for H �= 1/2, FBM cannot be a semimartin-

gale.

A proof of this well-known fact can be found in e.g. Rogers (1997) or Cheridito

(2001).

Figure 1.4 shows the sample paths of FBM for various values of the Hurst

parameter H .

36



1.4 Fractional Brownian Motion
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Figure 1.4: Various sample paths of FBM .
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2 Fractional Lévy Processes

We define and discuss fractional Lévy processes (FLP) in this chapter. FLPs

are constructed by a natural generalization of the integral representation of

fractional Brownian motion (FBM) and were first introduced by (Benassi et al.

(2004)). However, our approach is less restrictive, as we allow also for Lévy

processes without a finite second moment.

After presenting different methods of constructing FLPs we derive the second-

order and sample path properties. The remaining part of this chapter is devoted

to integrals with respect to FLPs. In particular, we focus on moving average

processes and show how our findings apply to CARMA and FICARMA pro-

cesses.

The results of this chapter can also be found in Marquardt (2006a).

Since definitions and calculations are easier to understand in one dimen-

sion, we consider here univariate FLPs and then generalize our results to the

multivariate setting in Chapter 4. We would like to stress that throughout we

assume a Lévy process without Brownian component.

2.1 Construction of Univariate Fractional Lévy

Processes

In this section we introduce univariate fractional Lévy processes (FLPs) as a

natural counterpart to fractional Brownian motion (FBM).

In order to be consistent with the notation of the previous Sections 1.2 and

1.3 and as we are mainly interested in fractionally integrated processes, in what

follows we will work with the fractional integration parameter d := H − 1/2 ∈
(−0.5, 0.5) rather than the Hurst parameter. Furthermore, we restrict ourselves
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2.1 Construction of Univariate Fractional Lévy Processes

to 0 < d < 0.5 as we are interested in long memory processes (see Definition

1.16).

The integral representation of FBM was first generalized to a fractional Lévy

motion by Benassi et al. (2004), who start with the so-called “well-balanced”

FBM with a = b = 1 in (1.54). Their approach is the basis of our definition

of a FLP as, like them, we replace the Brownian motion B in the moving

average representation (1.54) by a two-sided Lévy process as defined in (1.7).

However, we will allow for Lévy processes with infinite second moments and

also consider integrals with respect to FLPs.

Furthermore, like Mandelbrot & Van Ness (1968) for FBM, we choose a =

1/Γ(H + 1/2) = 1/Γ(d + 1) and b = 0 in (1.54). This choice will simplify

calculations when we apply our results to moving average processes.

Based on the moving average representation (1.54) of FBM we define a FLP

as follows.

Definition 2.1 (Fractional Lévy Process) Let L = {L(t)}t∈R be a two-

sided Lévy process on R without Brownian component and satisfying

E[L(1)α] <∞ for some 1 < α ≤ 2. (2.1)

For fractional integration parameter 0 < d < 1 − 1
α
, a stochastic process

Md(t) =
1

Γ(d+ 1)

∞∫
−∞

[
(t− s)d

+ − (−s)d
+

]
L(ds), t ∈ R, (2.2)

is called a fractional Lévy process (FLP). We refer to the process L as the

driving Lévy process of the FLP Md. If α = 2 in (2.1) we call Md a square-

integrable FLP.

Remark 2.2 The general Lévy-Itô representation (1.2) guarantees that every

Lévy process can be decomposed into a linear term, a Brownian and a jump

component which is independent of the Brownian part. However, the Brown-

ian part induces a FBM which has already been extensively studied (see e.g.

Doukhan et al. (2003) or Samorodnitsky & Taqqu (1994)) and considered in

Section 1.4. Therefore we assume a Lévy process without Brownian component.
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2 Fractional Lévy Processes

Remark 2.3 Note that in general an infinitely divisible distribution with

characteristic triplet (γ, σ2, ν) has finite α-th moment, if and only if∫
|x|>C

|x|αν(dx) < ∞ for one and hence all C > 0 (see Sato (1999, Corollary

25.8)). Thus, (2.1) holds if and only if the Lévy measure ν of L satisfies∫
|x|>1

|x|α ν(dx) <∞. (2.3)

Example 2.4 A prominent example for a class of Lévy processes satisfying

(2.1) are the symmetric α-stable Lévy processes having Lévy measure

ν(dx) =
1

|x|1+α
dx,

as for an α-stable process L, E[|L(1)|γ] <∞ for any γ < α, whereas E[|L(1)|α] =

∞ (see Sato (1999, Example 25.10)). The resulting FLP is then referred to as a

linear fractional stable motion (LFSM). Linear fractional stable motions are of

increasing interest in many fields of applications, in particular because they be-

long to the class of non-Gaussian self-similar processes (see e.g. Samorodnitsky

& Taqqu (1994), chapter 7.4).

We would like to stress that our class of fractional Lévy processes includes

the linear fractional stable motions (1 < α < 2) as a special case.

Before making precise the meaning of the integral (2.2), we summarize the

following two important properties of the kernel function

ft(s) :=
1

Γ(1 + d)
[(t− s)d

+ − (−s)d
+], s ∈ R, (2.4)

where 0 < d < 1 − 1
α
, 1 < α ≤ 2.

Proposition 2.5 For 0 < d < 1− 1
α
, 1 < α ≤ 2 and t ∈ R the kernel function

ft as defined in (2.4) is bounded. Moreover, ft ∈ Lp(R) for p > (1 − d)−1. In

particular, ft ∈ Lα(R) and ft ∈ L2(R).

Proof. For s ≥ max(t, 0) we have ft(s) = 0.

Now let s ≤ min(t, 0), then

ft(s) = [(t− s)d − (−s)d]/Γ(d+ 1) = (Γ(d))−1

∫ t−s

−s

ud−1 du.
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2.1 Construction of Univariate Fractional Lévy Processes

Hence,

|ft(s)| ≤

t (−s)

d−1/Γ(d), for s ≤ −1 and t ≥ 0,

|t| (t− s)d−1/Γ(d), for s ≤ t− 1 and t < 0.
(2.5)

Moreover, for t ≥ 0 and s ∈ [−1,max(t, 0)] = [−1, t], we obtain

0 ≤ ft(s) ≤ 1

Γ(d+ 1)
(t− s)d ≤ 1

Γ(d+ 1)
(t+ 1)d <∞,

and for t < 0 and s ∈ [t− 1,max(t, 0)] = [t− 1, 0],

0 ≥ ft(s) ≥ − 1

Γ(d+ 1)
(−s)d ≥ − 1

Γ(d+ 1)
(1 − t)d > −∞.

Hence, for all t ∈ R,

|ft(s)| ≤ 1

Γ(d+ 1)
(1 + |t|)d <∞, s ∈ R,

which shows that ft is bounded. It remains to show ft ∈ Lp(R) for p > (1−d)−1.

In fact, from (2.5) we have for t > 0,

‖ ft(s) ‖p
Lp(−∞,−1) =

−1∫
−∞

|ft(s)|p ds ≤
(

t

Γ(d)

)p
−1∫
−∞

(−s)p(d−1) ds

= −
(

t

Γ(d)

)p
(−s)p(d−1)+1

p(d− 1) + 1

∣∣∣∣−1

−∞
<∞, if p >

1

1 − d
.

Analogously, for t < 0 and p > (1 − d)−1 it follows ‖ ft(s) ‖p
Lp(−∞,t−1)<∞.

Proposition 2.6 The function t �→ (t− s)d
+ − (−s)d

+ is locally Hölder contin-

uous of every order β ≤ d and for an order β > d it is not Hölder continuous

on any interval containing s. Furthermore, the total variation is finite on com-

pacts.

Proof. Define for t1 > t2, x := (t1−s)+ and y := (t2−s)+. We first consider

the case x
2
≤ y ≤ x. Hence, x − y ≤ x

2
and xd − yd = d ỹd−1 (x − y), where

ỹ ∈ [x
2
, x
]
, i.e., ỹ ≥ x− y. Thus,

xd − yd ≤ d (x− y)d−1(x− y) = d (x− y)d.
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2 Fractional Lévy Processes

Now assume y ≤ x
2
. Then x− y ≥ x

2
and

xd − yd ≤ xd = 2d
(x

2

)d

≤ 2d(x− y)d.

Therefore,∣∣(t1 − s)d
+ − (−s)d

+ − (t2 − s)d
+ + (−s)d

+

∣∣ = |(t1−s)d
+− (t2−s)d

+| ≤ 2d (t1− t2)d

and t �→ (t− s)d
+ − (−s)d

+ is locally Hölder continuous of every order β ≤ d.

On the other hand setting s = 0, t2 = 0 and t1 = 1/n we obtain

(t1 − s)d
+ − (t2 − s)d

+

(t1 − t2)d+ε
=

(1/n)d
+ − (0)d

+

(1/n)d+ε
=

(
1

n

)−ε

= nε → ∞, as n→ ∞.

Thus the function t �−→ (t−s)d
+− (−s)d

+ is not Hölder continuous of any order

β > d.

It remains to show that the function t �→ (t− s)d
+ − (−s)d

+ is of finite total

variation on compacts. However, for fixed s ∈ R, g(t) := (t − s)d
+ − (−s)d

+ is

monotone increasing. Hence,

V ar[a,b](g) = (b− s)d
+ − (a− s)d

+,

which is finite.

Figure 2.1 shows the kernel function ft for fixed value d = 0.25 and different

values of t, whereas in Figure 2.2, t is fixed (t = 5) and the fractional integration

parameter d varies.

We have defined a fractional Lévy process in terms of a stochastic integral

(2.2) without specifying in which sense the integration is understood. Now we

make precise the meaning of (2.2).

Theorem 2.7 Let L = {L(t)}t∈R be a Lévy process without Brownian compo-

nent satisfying E[L(1)] = 0 and E[L(1)α] <∞ for some 1 < α ≤ 2. For t ∈ R

and 0 < d < 1 − 1
α

define the kernel function ft as in (2.4). Then for every

t ∈ R, the integral

Md(t) =

∫
R

ft(s)L(ds)
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2 Fractional Lévy Processes

is well-defined in the sense that it exists as the limit in probability of step

functions approximating ft. Moreover, let u1, . . . , um ∈ R, −∞ < t1 < . . . <

tm < ∞ and m ∈ N. Then the finite dimensional distributions of the process

Md have the characteristic functions

E[exp{iu1Md(t1) + . . .+ iumMd(tm)}] = exp



∫
R

ψ

(
m∑

j=1

ujftj (s)

)
ds


 ,

(2.6)

where ψ is given as in (1.5).

Proof. It follows from our findings at the end of Section 1.1.2 that (2.2) is

well-defined if we verify conditions (1.16) and (1.17). We know from the proof

of Proposition 2.5 that for all t ∈ R,

|ft(s)| ≤ 1

Γ(d+ 1)
(1 + |t|)d, s ∈ R.

Furthermore, since 1 < α ≤ 2, E[L(1)] = 0 and hence γ = − ∫|x|>1
x ν(dx),

(1.17) is implied by

∫
R

∣∣∣∣∣∣ft(s)γ +

∫
R

ft(s)x
(
1{|ft(s)x|≤1} − 1{|x|≤1}

)
ν(dx)

∣∣∣∣∣∣ ds
=

∫
R

∣∣∣∣∣∣
∫
R

ft(s)x1{|ft(s)x|>1} ν(dx)

∣∣∣∣∣∣ ds
≤
∫
R

∫
R

|ft(s)x|α1{|x|>Γ(d+1)(1+|t|)−d} ν(dx) ds <∞,

where the finiteness of the last term is a consequence of (2.3) and ft ∈ Lα(R)

(see Proposition 2.5).

To show (1.16) we observe that for 1 < α ≤ 2,

(|ft(s)x|2 ∧ 1) ≤ |ft(s)|α|x|α.

In fact, if |ft(s)x|2 > 1, then |ft(s)x| > 1 and hence

|ft(s)x|α > 1 ≥ (|ft(s)x|2 ∧ 1).
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2.1 Construction of Univariate Fractional Lévy Processes

On the other hand, if |ft(s)x|2 ≤ 1, then

|ft(s)x|α ≥ |ft(s)x|2 ≥ (|ft(s)x|2 ∧ 1).

Therefore,∫
R

∫
R

(|ft(s)x|2 ∧ 1) ν(dx) ds

=

∫
R

∫
|x|≤1

(|ft(s)x|2 ∧ 1) ν(dx) ds+

∫
R

∫
|x|>1

(|ft(s)x|2 ∧ 1) ν(dx) ds

≤
∫
R

∫
|x|≤1

x2f 2
t (s) ν(dx) ds+

∫
R

∫
|x|>1

|x|α|ft(s)|α ν(dx) ds <∞,

since ft ∈ Lα(R), ft ∈ L2(R), (2.3) and ν is a Lévy measure.

Finally, (2.6) is a consequence of (1.19), when we insert γ = − ∫|x|>1
x ν(dx)

and write

m∑
j=1

ujMd(tj) =
m∑

j=1

uj

∫
R

ftj (s)L(ds) =

∫
R

m∑
j=1

ujftj (s)L(ds).

Theorem 2.8 Let Md = {Md(t)}t∈R be a FLP as defined in Definition 2.1.

Then the process Md is well-defined if and only if the driving Lévy process

L = {L(t)}t∈R satisfies (2.1) or equivalently (2.3).

Proof. The sufficiency of (2.1) has already been proven in Theorem 2.7.

Hence, it remains to show the necessity.

If Md is well-defined we know from (1.16) that∫
R

∫
R

1{|xft(s)|>1} ν(dx) ds <∞.

W.l.o.g. assume t > 0. Then for −∞ < s ≤ 0,

ft(s) = (t− s)d − (−s)d = d

t−s∫
−s

ud−1 du ≥ dt(t− s)d−1 =: C(t− s)d−1.
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2 Fractional Lévy Processes

This yields, using Fubini’s theorem,

∞ >

∫
R

∫
R

1{|xft(s)|>1} ν(dx) ds ≥
0∫

−∞

∫
R

1{|x|C(t−s)d−1>1} ν(dx) ds

=

0∫
−∞

∫
R

1{s>t−|x|
1

1−d C
1

1−d } ν(dx) ds

=

∫
R

(
−t+ |x| 1

1−dC
1

1−d

)
+
ν(dx)

= C
1

1−d

∫
|x|>t1−d/C

|x| 1
1−d ν(dx) − t

∫
|x|>t1−d/C

ν(dx).

This shows the necessity of (2.3). The proof is complete.

Remark 2.9 As a consequence of (2.6) the generating triplet of Md(t) is

(γt
M , 0, ν

t
M), where

γt
M = −

∫
R

∫
R

ft(s)x1{|ft(s)x|>1} ν(dx) ds and

νt
M (B) =

∫
R

∫
R

1B(ft(s)x) ν(dx) ds. (2.7)

2.1.1 The L2-Integral based on the Poisson Representation

of L

We have just defined the integral (2.2) as a limit in probability of step functions

approximating the kernel function ft. However our findings in Section 1.1.2

allow for a definition of the integral (2.2) in an L2-sense, provided that α = 2,

i.e. the Lévy process L has finite second moments.

Theorem 2.10 (Fractional Lévy Process in L2-sense) Let L = {L(t)}t∈R

be a Lévy process without Brownian component satisfying E[L(1)] = 0,

E[L(1)2] < ∞ and J̃(ds, du) = J(ds, du) − dsν(du) be the compensated jump

measure of L. For t ∈ R and 0 < d < 0.5 define the kernel function ft as in

(2.4). Then for every t ∈ R, Md(t) =
∫

R
ft(s)L(ds) exists in the sense that

Md(t) =

∫
R×R0

ft(s)u J̃(ds, du), t ∈ R, (2.8)
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2.1 Construction of Univariate Fractional Lévy Processes

i.e. Md is the limit in L2(Ω, P ) of integrals of simple functions (φk)k∈N satis-

fying

E

[∫
R×R0

|φk(s, u) − ft(s)u|2 ν(du) ds
]
→ 0, as k → ∞.

Moreover, for all t ∈ R the distribution of Md(t) is infinitely divisible and

E[Md(t)]
2 =‖ ft ‖2

L2(R) E[L(1)2], t ∈ R. (2.9)

Let u1, . . . , um ∈ R, −∞ < t1 < . . . < tm < ∞ and m ∈ N. Then the finite

dimensional distributions of the process Md have the characteristic functions

(2.6).

Proof. The assertions are direct consequences of the results of Section 1.1.2,

since ft ∈ L2(R), E[L(1)] = 0 and E[L(1)2] < ∞. (2.6) follows from (1.19)

when we write (as in the proof of Theorem 2.7),

m∑
j=1

ujMd(tj) =
m∑

j=1

uj

∫
R

ftj (s)L(ds) =

∫
R

m∑
j=1

ujftj (s)L(ds).

Remark 2.11 In Theorem 2.7, we have shown that Md is well-defined as a

limit in probability of step functions approximating the kernel function ft.

However, the L2-limit and the p-limit agree, since L2-convergence implies con-

vergence in probability and the p-limit is unique.

We have seen that, if α = 2, (2.2) can be understood as L2-limit and we can

now apply the Kolmogorov-Centsov Theorem to obtain a continuous modifica-

tion of {Md(t)}t∈R (see Theorem 2.19 below). However, we can also show that

{Md(t)}t∈R has a continuous modification by proving in the following section

that Md(t) is a.s. equal to an improper Riemann integral for all t ∈ R.

2.1.2 The Improper Riemann Integral

We give here a pathwise construction of a FLP as an improper Riemann inte-

gral. As in the preceding subsection we fix α = 2.
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2 Fractional Lévy Processes

Theorem 2.12 Let L = {L(t)}t∈R be a Lévy process without Brownian com-

ponent satisfying E[L(1)] = 0 and E[L(1)2] < ∞. For t ∈ R define the kernel

function ft as in (2.4). Then for all t ∈ R, Md(t) =
∫

R
ft(s)L(ds) has a

modification which is equal to the improper Riemann integral

Md(t) =
1

Γ(d)

∫
R

[(t− s)d−1
+ − (−s)d−1

+ ]L(s) ds, t ∈ R. (2.10)

Moreover (2.10) is continuous in t.

Proof. We assume t > 0. For t ≤ 0 the proof is analogous. For a Lévy process

L on R that satisfies E[L(1)] = 0 and E[L(1)2] <∞ we have a generalization

of the law of the iterated logarithm of random walks (Sato (1999), Proposition

48.9), that is

lim sup
t→∞

|L(t)|
(2t log log t)1/2

= (E[L(1)2])1/2 a.s.

Moreover, (t− s)d − (−s)d ∼ td(−s)d−1 as s→ −∞ and therefore,

lim
s→−∞

L(s)[(t− s)d − (−s)d] = 0 a.s.

If g is a continuously differentiable function on [a, b] ⊂ R it is always possible

to use the integration by parts formula to define
∫ b

a
g(s)L(ds) as a Riemann

integral by ∫
[a,b]

g(s)L(ds) = g(b)L(b) − g(a)L(a) −
∫

[a,b]

L(s) dg(s). (2.11)

(see e.g. Eberlein & Raible (1999, Lemma 2.1)). Since we have,

Md(t) =
1

Γ(d+ 1)
lim

a→−∞

0∫
a

[(t− s)d − (−s)d]L(ds) + lim
ε→0

t∫
ε

(t− s)d

Γ(d+ 1)
L(ds),

it follows by (2.11),

Md(t) = lim
ε→0

t∫
ε

(t− s)d−1

Γ(d)
L(s) ds− 1

Γ(d+ 1)
lim

a→−∞
{
L(a)[(t− a)d − (−a)d]

}

+
1

Γ(d+ 1)
lim

a→−∞


d

0∫
a

[(t− s)d−1 − (−s)d−1]L(s) ds




=
1

Γ(d)

∫
R

[(t− s)d−1
+ − (−s)d−1

+ ]L(s) ds, t ∈ R.
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To show that (2.10) is continuous in t we define for t > 0,

gt(s) = (t− s)d−1L(s)1[0,t](s), s ∈ R.

Then for all T > 0 the family {gt}t∈[0,T ] is uniformly integrable with respect

to the Lebesgue measure and the continuity of
∫ t

0
(t − s)d−1L(s) ds follows

from Shiryaev (1996, Theorem 5, Chapter II.6). Furthermore, by Lebesgue’s

dominated convergence theorem∫ 0

−∞
[(t− s)d−1 − (−s)d−1]L(s) ds

is continuous in t.

2.1.3 Series Representations of Fractional Lévy Processes

The results in this section are based on series representation of Lévy processes

summarized in Rosinski (2001).

Theorem 2.13 Let L = {L(t)}t∈R be a Lévy process without Brownian com-

ponent satisfying E[L(1)] = 0 and E[L(1)α] < ∞ for some 1 < α ≤ 2. For

t ∈ R define the kernel function ft as in (2.4). Suppose the Lévy measure ν of

L is symmetric and set ν←(s) = inf{x > 0 : ν((x,∞)) ≤ s}, s > 0, the right

continuous inverse of x �→ ν((x,∞)). Let Λ be an arbitrary probability mea-

sure on R with nowhere vanishing density ρ. Furthermore, let {Ti}i=1,2,... and

{Ui}i=1,2,... be independent sequences of random variables, such that {Ti}i=1,2,...

is a sequence of independent indentically distributed (i.i.d.) standard exponen-

tial random variables and {Ui}i=1,2... is a sequence of i.i.d. random variables

with distribution Λ. Put τ0 = 0 and τi =
∑i

j=1 Tj , i = 1, 2, . . .. Furthermore,

let {εi}i=1,2... be an i.i.d. sequence of random variables with P (εi = −1) =

P (εi = 1) = 1
2
. Then for every t ∈ R the series

X(t) =
∞∑
i=1

εiν
←(τiρ(Ui))ft(Ui) (2.12)

converges a.s. and

{Md(t)}t∈R

d
= {X(t)}t∈R. (2.13)
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Proof. As ν is symmetric, we have from (2.6),

E[eiuMd(t)] = exp



∫
R

∫
R

[
eiuxft(s) − 1 − iuxft(s)

]
ν(dx) ds




= exp


2

∫
R

∞∫
0

[cos(uxft(s)) − 1] ν(dx) ds


 .

Therefore, the assertion is an immediate consequence of Rosinski (1989, Propo-

sition 2).

If ν is not symmetric we obtain a similar result by taking into account the

left continuous inverse of ν.

Theorem 2.14 Let L = {L(t)}t∈R be a Lévy process without Brownian com-

ponent satisfying E[L(1)] = 0 and E[L(1)α] < ∞ for some 1 < α ≤ 2. Set

ν←(s) = inf{x > 0 : ν((x,∞)) ≤ s}, s > 0, and ν→(s) = sup{x < 0 :

ν((−∞, x)) ≤ s}, s > 0, the right and left continuous inverse of ν, respec-

tively. Define Λ and the sequences {Ti}, {Ui} and {τi} as in Theorem 2.13.

Then for every t ∈ R the series

X(t) =

∞∑
i=1

{[ν←(τiρ(Ui)) + ν→(τiρ(Ui))] ft(Ui) − Ct(τi)} (2.14)

converges a.s., where

Ct(τi) =

∫
R

τi∫
τi−1

[ν←(τρ(u)) + ν→(τρ(u))]ft(u) dτ ρ(u) du.

Moreover,

{Md(t)}t∈R

d
= {X(t)}t∈R.

Proof. X(t) in (2.14) is a generalized shot noise series which converges a.s.

if we show that

Gt(B) : =

∫
R

∞∫
0

1{B\{0}}(Ht(τ, u)) dτ Λ(du)

=

∫
R

∞∫
0

1{B\{0}}(Ht(τ, u)) dτ ρ(u) du, B ∈ B(R)
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2.1 Construction of Univariate Fractional Lévy Processes

is a Lévy measure, where

Ht(τ, u) = [ν←(τρ(u)) + ν→(τρ(u))]ft(u), τ > 0, t, u ∈ R

(see Rosinski (1990, Theorem 2.4)). Observe, that for every x ≥ 0, u ∈ R,

Leb({τ > 0 : ν←(τρ(u)) > x})
= Leb({τ > 0 : ν←(τ) > x})/ρ(u)
= ν((x,∞))/ρ(u)

and thus∫
R

∞∫
0

1{B\{0}}(ν←(τρ(u))ft(u)) dτ ρ(u) du =

∫
R

∞∫
0

1{B\{0}}(xft(u)) ν(dx) du.

Analogously, for every x ≤ 0 and u ∈ R,

Leb({τ > 0 : ν→(τρ(u)) < x}) = ν((−∞, x))/ρ(u),

which yields

∫
R

∞∫
0

1{B\{0}}(ν→(τρ(u))ft(u)) dτ ρ(u) du =

∫
R

0∫
−∞

1{B\{0}}(xft(u)) ν(dx) du.

Therefore,

Gt(B) =

∫
R

∫
R

1{B\{0}}(xft(u)) ν(dx) du.

From (2.7) follows that Gt = νt
M is the Lévy measure of an infinitely divis-

ible random variable. Furthermore, it follows from Theorem 3.1(iii), Rosinski

(1990) and its proof that X(t) has characteristic function given by

E[eiuX(t)] = exp



∫
R

∫
R

[eiuft(s)x − 1 − iuft(s)x] ν(dx) ds


 ,

i.e. X(t)
d
= Md(t). Finally, repeating the same arguments for

∑m
j=1wjHtj (τ, u),

where m ∈ N, t1, . . . , tm ∈ R and w1, . . . , wm ∈ R, we obtain that the finite

dimensional distributions of X are identical to those of Md.
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2 Fractional Lévy Processes

The series representation (2.13) can be used for a simulation of FLPs. Of

course, for practical simulations the series must be truncated. However, sim-

ulation from it is not so easy since the inverse of the tail mass of the Lévy

measure is rarely known in closed form.

Recently an alternative generalized shot noise representation for fractional

fields was developed by Cohen et al. (2005): Assume that ν is symmetric and

ν(R) < ∞. Let {Vi}1,2... be a sequence of random variables such that L(Vi) =

ν(dx)/ν(R). Moreover, define {τi}i=1,2... and {εi}i=1,2... as in Theorem 2.13.

Then for every t ∈ R, the series

Y (t) =

∞∑
i=1

ft

(
τiεi

ν(R)

)
Vi (2.15)

converges a.s. and

{Md(t)}t∈R

d
= {Y (t)}t∈R

.

Cohen et al. (2005) also give a rate of convergence.

If ν is symmetric with ν(R) = ∞, we define νε,1(dx) = ν(dx)1{|x|≤1} and

νε,2(dx) = ν(dx)1{|x|>1}. Notice that νε,2(R) < ∞ and Md = M ε,1
d +M ε,2

d . Let

σ(ε) =
(∫
|x|≤ε

x2 ν(dx)
)1/2

. Then for all t ∈ R, if limε→0+ σ(ε)/ε = ∞,

Md(t)
d
= σ(ε)Bd(t) +

∞∑
i=1

ft

(
τiεi

νε,2(R)

)
Vi, (2.16)

where {Bd(t)}t∈R is a FBM as given in (1.54) (see Cohen et al. (2005) for a

proof).

2.2 Second Order and Sample Path Properties

Having defined FLPs we want to investigate their second-order and sample

path properties.

We first consider the second-order properties. Therefore we assume α = 2.

Hence, 0 < d < 0.5. Then representation (2.8) of a FLP in the L2-sense gives

us a direct way to calculate the second-order properties. It turns out that up

to a constant FLPs have the same second-order structure as FBM.
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2.2 Second Order and Sample Path Properties

Theorem 2.15 (Autocovariance Function) For s, t ∈ R the autocovari-

ance function of a FLP Md = {Md(t)}t∈R is given by

cov(Md(t),Md(s)) =
E[L(1)2]

2Γ(2d+ 2) sin(π[d+ 1
2
])

[|t|2d+1 − |t− s|2d+1 + |s|2d+1
]
.

(2.17)

Proof. Notice that Md(0) = 0 a.s. and E[Md(t)] = 0 for all t ∈ R, since

E[L(1)] = 0. For every t > 0 we have from (2.9),

E[Md(t)]
2 =

E[L(1)2]

Γ(d+ 1)2

∞∫
−∞

[
(t− s)d

+ − (−s)d
+

]2
ds

=
E[L(1)2]

Γ(d+ 1)2
t2d+1

∞∫
−∞

[
(1 − u)d

+ − (−u)d
+

]2
du

=
E[L(1)2]

Γ(d+ 1)2
t2d+1


 0∫
−∞

[
(1 − u)d − (−u)d

]2
du+

1∫
0

(1 − u)2d du




=
E[L(1)2]

Γ(d+ 1)2
t2d+1


 ∞∫

0

[
(1 + u)d − ud

]2
du+

1

2d+ 1




=
E[L(1)2]

Γ(d+ 1)2
t2d+1 Γ(d+ 1)2

Γ(2d+ 2) sin(π[d+ 1
2
])

=
E[L(1)2]

Γ(2d+ 2) sin(π[d+ 1
2
])
t2d+1.

Further for any s, t ∈ R,

E[Md(t) −Md(s)]
2 =

E[L(1)2]

Γ(1 + d)2

∞∫
−∞

[
(t− u)d

+ − (s− u)d
+

]2
du (2.18)

=
E[L(1)2]

Γ(1 + d)2

∞∫
−∞

[
(t− s− u)d

+ − (−u)d
+

]2
du

=
E[L(1)2]

Γ(2d+ 2) sin(π[d+ 1
2
])
|t− s|2d+1.

Hence, for any s, t ∈ R,

E [Md(t)Md(s)] =
1

2

{
E[Md(t)]

2 + E[Md(s)]
2 − E[Md(t) −Md(s)]

2
}

=
E[L(1)2]

2Γ(2d+ 2) sin(π[d+ 1
2
])

{|t|2d+1 + |s|2d+1 − |t− s|2d+1
}
.
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2 Fractional Lévy Processes

As already mentioned, in this thesis we are particularly interested in pro-

cesses showing long memory behaviour. In order to study the memory proper-

ties of a FLP we consider the covariance between two increments.

Theorem 2.16 (Covariance between two Increments) Let h > 0 and

the FLP Md given as in (2.8). The covariance between two increments

Md(t+ h) −Md(t) and Md(s+ h)−Md(s), where s+ h ≤ t and t− s = nh is

δd(n) =
E[L(1)2]

2Γ(2d+ 2) sin(π[d+ 1
2
])
h2d+1

[
(n+ 1)2d+1 + (n− 1)2d+1 − 2n2d+1

]
=

E[L(1)2]d(2d+ 1)

Γ(2d+ 2) sin(π[d+ 1
2
])
h2d+1n2d−1 +O(n2d−2), n→ ∞. (2.19)

Proof. We use Theorem 2.15 and the stationarity of the increments of Md

(see Theorem 2.21 below),

δd(n) = cov(Md(t+ h) −Md(t),Md(s+ h) −Md(s))

= cov(Md(nh+ h),Md(h)) − cov(Md(nh),Md(h))

=
E[L(1)2]

2Γ(2d+ 2) sin(π[d+ 1
2
])
h2d+1

[
(n + 1)2d+1 + (n− 1)2d+1 − 2n2d+1

]
.

Applying a binomial expansion we have for n→ ∞,

(n + 1)2d+1 = n2d+1 + (2d+ 1)n2d + 2d(2d+ 1)n2d−1 +O(n2d−2),

(n− 1)2d+1 = n2d+1 − (2d+ 1)n2d + 2d(2d+ 1)n2d−1 +O(n2d−2).

Therefore, as n→ ∞,

δd(n) =
E[L(1)2]d(2d+ 1)

Γ(2d+ 2) sin(π[d+ 1
2
])
h2d+1n2d−1 +O(n2d−2).

Corollary 2.17 Under the same assumptions as in Theorem 2.16,

δd(n) → 0 as n→ ∞.

As a direct consequence of (2.19) we have δd(n) > 0,
∞∑

n=1

δd(n) = ∞,

and the increments of a FLP exhibit long memory in the sense of Definition

1.16.
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2.2 Second Order and Sample Path Properties

It is this long memory property allowing us in Section 2.4 to construct

long memory moving average processes without a fractional integration of the

kernel.

Remark 2.18 Note that for a martingale X with zero expectation the covari-

ance function must be identical zero, since

cov(X(h) −X(h− 1), X(h+ n) −X(h+ n− 1))

= E[(X(h) −X(h− 1))E[X(h+ n) −X(h+ n− 1) | Fh+n−1]] = 0.

This shows that Md cannot be a martingale. We will prove later that for a

broad class of Lévy processes, Md is not a semimartingale either.

Before, we derive important sample path properties of FLPs.

Theorem 2.19 (Hölder Continuity) Let Md = {Md(t)}t∈R be a square-

integrable FLP, i.e. the driving Lévy process L satisfies E[L(1)] = 0 and

E[L(1)2] <∞. Then for every β < d there exists a continuous modification of

Md and there exist an a.s. positive random variable Hε and a constant δ > 0

such that

P

[
ω ∈ Ω : sup

0<h<Hε(ω)

(
Md(t+ h, ω) −Md(t, ω)

hβ

)
≤ δ

]
= 1.

This means that the sample paths of FLPs are a.s. locally Hölder continuous

of any order β < d. Moreover, for every modification of Md and for every

β > d, P ({ω ∈ Ω : Md( · , ω) �∈ Cβ[a, b]}) > 0, where Cβ[a, b] is the space of

Hölder continuous functions on [a, b]. Furthermore, if ν(R) = ∞ then

P ({ω ∈ Ω : Md( · , ω) �∈ Cβ [a, b]}) = 1.

Proof. The first assertion follows directly from (2.18) and an application of

the Kolmogorov-Centsov Theorem (see e.g. Loève (1960), p.519). Furthermore,

from Proposition 2.6 we know that t �→ (t− s)d
+ − (−s)d

+ �∈ Cβ[a, b] for every

β > d. Therefore, the proof of the second part is analogous to the proof of

Proposition 3.3. in Benassi et al. (2004).

If α < 2, we have for the linear fractional stable motion (see Example 2.4) the

following sample path behaviour (Samorodnitsky & Taqqu (1994, Example

12.2.3)).

55



2 Fractional Lévy Processes

Proposition 2.20 Let 1 < α < 2, 0 < d < 1 − 1
α

and Lα = {Lα(t)}t∈R be

α-stable. Then the linear fractional stable motion (LFSM)

Md(t) =
1

Γ(d+ 1)

∫
R

[(t− s)d
+ − (−s)d

+]Lα(ds)

has a.s. continuous sample paths.

Proposition 2.21 (Stationary Increments) Let Md = {Md(t)}t∈R be a FLP

with driving Lévy process L satisfying E[L(1)] = 0 and E[L(1)α] <∞ for some

1 < α ≤ 2. Then

(i) Md is a process with stationary increments.

(ii) Md is symmetric, i.e. {Md(−t)}t∈R

d
= {−Md(t)}t∈R.

Proof. (i) For any s, t ∈ R, s < t we have

Md(t) −Md(s) =
1

Γ(d+ 1)

∫
R

[(t− u)d
+ − (s− u)d

+]L(du)

d
=

1

Γ(d+ 1)

∫
R

[(t− s− v)d
+ − (−v)d

+]L(dv) = Md(t− s),

where equality in distribution follows from the stationarity of the increments

of L.

(ii) Md(−t) = Md(−t) −Md(0)
d
= Md(0) −Md(t) = −Md(t).

Recall that fractional Brownian motion is the only Gaussian stochastic process

which is self-similar with stationary increments. As self-similar processes are

invariant in distribution under judicious scaling of time and space (see Defini-

tion 1.28), they are of great interest in modeling in e.g. turbulence, economics

and physics. For FLPs we obtain the following result.

Theorem 2.22 (Self-Similarity) (i) A square-integrable FLP Md (i.e. α =

2) cannot be self-similar.

(ii) If the driving Lévy process L of Md is α − stable with index 1 < α < 2,

then Md is self-similar with index H := d+ 1
α
∈ (0.5, 1).
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Proof. (i) Assume that Md is self-similar with index H . Then we have for

all c > 0,

{Md(ct)}t∈R

d
= cH{Md(t)}t∈R. (2.20)

The generating triplet of Md(t) is (γt
M , 0, ν

t
M) (see (2.7)). Observe that,

E[eiuc−HMd(ct)] = exp



∫
R

∫
R

[eic−Huxfct(s) − 1 − ic−Huxfct(s)] ν(dx) ds




= exp



∫
R

∫
R

[eicd−Huxft(s) − 1 − icd−Huxft(s)] c ν(dx) ds




= exp



∫
R

∫
R

[eiuyft(s) − 1 − iuyft(s)] c ν(c
H−ddy) ds.


 (2.21)

Define for r > 0 the transformation Tr of measures ν on R by (Trν)(B) =

ν(r−1B), B ∈ B(R). Then the Lévy measure of c−HMd(ct) is given by c(Tbν
t
M)

with b = cd−H . Therefore, if Md is self-similar, by the uniqueness of the gener-

ating triplet

νt
M = b−1/(H−d)(Tbν

t
M), for all b > 0.

Then by Sato (1999, Theorem 14.3 (ii)) and its proof it follows that 1
H−d

< 2

and that νt
M is the Lévy measure of an α-stable process with α = 1/(H − d).

Hence, E[Md(t)
2] = ∞, contradicting the square integrability of Md.

(ii) Now, suppose that L is α-stable. Then L is self-similar with index 1
α
. and

ν = b−1/α(Tbν) for all b > 0 (Sato (1999, Theorem 14.3)), i.e. setting c = b−1/α,

we obtain that cν(c1/αdx) = ν(dx). Then for 1 < α < 2 such that H − d = 1
α
,

(2.21) = exp



∫
R

∫
R

[eiuyft(s) − 1 − iuyft(s)] c ν(c
1/αdy) ds.




d
= exp



∫
R

∫
R

[eiuyft(s) − 1 − iuyft(s)] ν(dy) ds.


 = E[eiuMd(t)],

which shows c−HMd(ct)
d
= Md(t). Repeating the same arguments for∑m

j=1 ujc
−HMd(ctj), where m ∈ N, t1, . . . , tm ∈ R and u1, . . . , um ∈ R, we

obtain (2.20) for H = d+ 1
α
.
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Though square-integrable FLPs cannot be self-similar, we have the following

result concerning asymptotic self-similarity (see Benassi et al. (2004, Proposi-

tion 3.1) for a proof).

Proposition 2.23 FLPs are asymptotically self-similar with parameter 0 <

d < 0.5, i.e.

d− lim
c→∞

{
Md(ct)

cd

}
t∈R

d
= {Bd(t)}t∈R,

where the limit is the distribution of a fractional Brownian motion with pa-

rameter d, 0 < d < 0.5.

The next theorem on the local self-similarity of FLPs is crucial for our further

investigations.

Theorem 2.24 Let Md be a (not necessarily square-integrable) FLP. Define

for 1 < α < 2 and 0 < d < 1 − 1
α

the parameter H̃ by H̃ = d + 1
α
, i.e.

0.5 < H̃ < 1. Assume that ν(dx) = g(x) dx, where g : R → R+ is measurable

and satisfies

g(x) ∼ |x|−1−α, x→ 0

and

g(x) ≤ C|x|−1−α for all x ∈ R,

with a constant C > 0.

Then Md is locally self-similar with parameter H̃, i.e. for every fixed t ∈ R,

d− lim
ε↓0

{
Md(t+ εx) −Md(t)

εH̃

}
x∈R

d
= {YH̃(x)}x∈R. (2.22)

Here YH̃ is a linear fractional stable motion with representation

YH̃(t) =
1

Γ(H̃ − 1
α

+ 1)

∫
R

[(t− s)
H̃− 1

α
+ − (−s)H̃− 1

α
+ ]Lα(ds),

where Lα is a symmetric α-stable Lévy process (see e.g. Samorodnitsky & Taqqu

(1994) and Example 2.4).
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2.2 Second Order and Sample Path Properties

Proof. Since Md has stationary increments it is enough to show the conver-

gence for t = 0. For u1, . . . , un ∈ R, −∞ < t1 < . . . < tn < ∞ and n ∈ N, we

have by (2.6)

logE

[
exp

{
i

n∑
k=1

uk
Md(εtk)

εH̃

}]

=

∫
R

∫
R

[
exp

{
ix

n∑
k=1

uk
fεtk(s)

εH̃

}
− 1 − ix

n∑
k=1

uk
fεtk(s)

εH̃

]
ν(dx) ds

εv=s
=

∫
R

∫
R

[
exp

{
ixεd−H̃

n∑
k=1

ukftk(v)

}
− 1 − ixεd−H̃

n∑
k=1

ukftk(v)

]
ε ν(dx) dv

εd−H̃x=y
=

∫
R

∫
R

[
exp

{
iy

n∑
k=1

ukftk(v)

}
− 1 − iy

n∑
k=1

ukftk(v)

]
ε ν(εH̃−ddy) dv

=

∫
R

∫
R

[
exp

{
iy

n∑
k=1

ukftk(v)

}
− 1 − iy

n∑
k=1

ukftk(v)

]
εg(εH̃−dy)εH̃−ddy dv

=:

∫
R

∫
R

Gε(y, v) dy dv.

For any y �= 0 the asymptotic behavior of g yields

εg(εH̃−dy)εH̃−d ∼ εH̃−d+1|εH̃−dy|−1−α = |y|−1−α, ε→ 0,

which is the Lévy measure of a symmetric α-stable Lévy process. This shows

that

Gε(y, v) → G(y, v), ε→ 0 for all (y, v) ∈ R
2, y �= 0

with

G(y, v) =

[
exp

{
iy

n∑
k=1

ukftk(v)

}
− 1 − iy

n∑
k=1

ukftk(v)

]
|y|−1−α.

We will show below that there exists F ∈ L1(R2) with

|Gε| ≤ F for all ε > 0. (2.23)
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2 Fractional Lévy Processes

Then by the dominated convergence theorem

lim
ε↓0

logE

[
exp

{
i

n∑
k=1

uk
Md(εtk)

εH̃

}]

=

∫
R

∫
R

[
exp

{
iy

n∑
k=1

ukftk(v)

}
− 1 − iy

n∑
k=1

ukftk(v)

]
|y|−1−α dy dv

=

∫
R

∞∫
0

[
2 cos

(
y

n∑
k=1

ukftk(v)

)
− 2

]
|y|−1−α dy dv

=

∫
R

∞∫
0

[2 cos(x) − 2]

∣∣∣∣∣
n∑

k=1

ukftk(v)

∣∣∣∣∣
α

dx

x1+α
dv = C(α)

∫
R

∣∣∣∣∣
n∑

k=1

ukftk(v)

∣∣∣∣∣
α

dv,

where C(α) = 2
∞∫
0

[cos(x) − 1] dx
x1+α . Since,

logE

[
exp

{
i

n∑
k=1

ukYH̃(εtk)

}]
= C(α)

∫
R

∣∣∣∣∣
n∑

k=1

ukftk(v)

∣∣∣∣∣
α

dv

(see Samorodnitsky & Taqqu (1994, p.114)), this yields the assertion. It re-

mains to show (2.23). By the upper bound for g we have

|Gε(y, v)| =

∣∣∣∣∣exp

{
iy

n∑
k=1

ukftk(v)

}
− 1 − iy

n∑
k=1

ukftk(v)

∣∣∣∣∣ εg(εH̃−dy)εH̃−d

≤
∣∣∣∣∣exp

{
iy

n∑
k=1

ukftk(v)

}
− 1 − iy

n∑
k=1

ukftk(v)

∣∣∣∣∣ εC|εH̃−dy|−1−αεH̃−d

=

∣∣∣∣∣exp

{
iy

n∑
k=1

ukftk(v)

}
− 1 − iy

n∑
k=1

ukftk(v)

∣∣∣∣∣C|y|−1−α

:= F (y, v).

We show finally that F ∈ L1(R2). Consider the function

h(y, z) = exp(iyz) − 1 − iyz.

We have

h(y, z) = iyz

1∫
0

(exp(iyzs) − 1) ds = iyz

1∫
0

iyzs

∫ 1

0

exp(iyzsw) dw ds

60



2.2 Second Order and Sample Path Properties

This yields the estimates

|h(y, z)| ≤ 2|y||z| (2.24)

|h(y, z)| ≤ 1

2
|y|2|z|2. (2.25)

Taking for arbitrary β ∈ (0, 1) both sides of the inequality (2.24) to the power

β and both sides of (2.25) to the power 1−β and multiplying both inequalities

yields

|h(y, z)| ≤ 1

21−β
2β|y|2−β|z|2−β ≤ 2|y|2−β|z|2−β . (2.26)

Now choose β ∈ (0, 1) such that

2 − β = p ∈ (
1

1 − d
,

1

H̃ − d
) = (

1

1 − d
, α).

Then with (2.25) and (2.26)

F (y, v) =

∣∣∣∣∣exp

{
iy

n∑
k=1

ukftk(v)

}
− 1 − iy

n∑
k=1

ukftk(v)

∣∣∣∣∣C|y|−1−α

≤ 1{|y|≤1}2|y|2
∣∣∣∣∣

n∑
k=1

ukftk(v)

∣∣∣∣∣
2

C|y|−1−α

+ 1{|y|>1}2|y|p
∣∣∣∣∣

n∑
k=1

ukftk(v)

∣∣∣∣∣
p

C|y|−1−α.

Since ftk ∈ Lp(R) and ftk ∈ L2(R) by Proposition 2.5 we conclude that

‖F‖L1(R2) ≤
∫
R

∫
|y|>1

2|y|p
∣∣∣∣∣

n∑
k=1

ukftk(v)

∣∣∣∣∣
p

C|y|−1−α dy dv

+

∫
R

∫
|y|≤1

2|y|2
∣∣∣∣∣

n∑
k=1

ukftk(v)

∣∣∣∣∣
2

C|y|−1−α dy dv

=

∥∥∥∥∥
n∑

k=1

ukftk

∥∥∥∥∥
p

Lp(R)

∫
|y|>1

2C|y|p−1−α dy

+

∥∥∥∥∥
n∑

k=1

ukftk

∥∥∥∥∥
2

L2(R)

∫
|y|≤1

2C|y|2−1−α dy
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≤
(

n∑
k=1

|uk|‖ftk‖Lp(R)

)p

4C
yp−α

p− α

∣∣∣∣∞
1

+

(
n∑

k=1

|uk|‖ftk‖L2(R)

)2

4C
y2−α

2 − α

∣∣∣∣1
0

≤
(

n∑
k=1

|uk|‖ftk‖Lp(R)

)p

4C
1

α− p
+

(
n∑

k=1

|uk|‖ftk‖L2(R)

)2

4C
1

2 − α

<∞,

where we have used that p < α < 2. Hence the upper bound F in (2.23) is in

L1(R2) and the proof is complete.

In the following let, as in Section 1.4, V ar[a,b](Md) denote the total variation

of the sample paths of Md on the interval [a, b] ⊂ R.

Theorem 2.25 (Total Variation) If ν is given as in Theorem 2.24, the

sample paths of Md are a.s. of infinite total variation on compacts, i.e.

V ar[a,b](Md) = ∞ a.s. If ν(R) <∞, they are of finite total variation.

Proof. We know from (2.22) that

d− lim
h↓0

Md(t± h) −Md(t)

hH̃

d
= YH̃(±1)

Thus,

d− lim
h↓0

|Md(t± h) −Md(t)|
|h|H̃

d
= |YH̃(±1)| > 0 a.s. (2.27)

As |YH̃(±1)| > 0 a.s., for all Ω′ ⊂ Ω with P (Ω′) > 0 it follows

lim
h↓0

E

[
1Ω′

|Md(t± h) −Md(t)|
|h|H̃

]
> 0. (2.28)

In fact, let Ω′ ⊂ Ω with P (Ω′) > 0. Then lim
δ↓0

P (|YH̃(±1)| ≤ δ) → 0. Choose

δ > 0 small enough such that δ is a continuity point of the distribution function

of |YH̃(±1)| and P (|YH̃(±1)| ≤ δ) ≤ P (Ω′)
4

. Then by (2.27)

lim
h↓0

P

( |Md(t± h) −Md(t)|
|h|H̃ ≤ δ

)
= P (|YH̃(±1)| ≤ δ) ≤ P (Ω′)

4
.

Hence, there exists εt > 0 such that

P

( |Md(t+ h) −Md(t)|
|h|H̃ ≤ δ

)
≤ P (Ω′)

2
for all h �= 0, |h| ≤ εt.
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This yields

P

(
Ω′ ∩

{ |Md(t+ h) −Md(t)|
|h|H̃ ≤ δ

})
≤ P (Ω′)

2
for all h �= 0, |h| ≤ εt,

and hence

P

(
Ω′ ∩

{ |Md(t+ h) −Md(t)|
|h|H̃ > δ

})
≥ P (Ω′)

2
for all h �= 0, |h| ≤ εt.

Therefore,

E

[
1Ω′

|Md(t+ h) −Md(t)|
|h|H̃

]

= E

[
1

Ω′∩


|Md(t+h)−Md(t)|
|h|H̃

≤δ

ff |Md(t+ h) −Md(t)|
|h|H̃

]

+ E

[
1

Ω′∩


|Md(t+h)−Md(t)|
|h|H̃

>δ

ff |Md(t+ h) −Md(t)|
|h|H̃

]

≥ 0 + E

[
1

Ω′∩


|Md(t+h)−Md(t)|
|h|H̃

>δ

ffδ
]

= δ P

(
Ω′ ∩

{ |Md(t+ h) −Md(t)|
|h|H̃ > δ

})

≥ P (Ω′)
2

δ, for all h �= 0, |h| ≤ εt.

This shows (2.28).

Now, assume that P (V ar[a,b](Md) <∞) > 0. Then there exist Ω′ ⊂ Ω, P (Ω′) >

0 and K > 0 such that V ar[a,b](Md) < K on Ω′. Hence,

E
[
1Ω′ V ar[a,b](Md)

] ≤ K. (2.29)

We lead this to a contradiction:

For any sequence a ≤ t0 < t1 < . . . tn ≤ b, we have

E
[
1Ω′V ar[a,b](Md)

] ≥ E

[
1Ω′

n∑
i=0

|Md(ti+1) −Md(ti)|
]

=
n∑

i=0

E [1Ω′ |Md(ti+1) −Md(ti)|] . (2.30)

Fix [a, b′] ⊂ [a, b], a < b′ < b. We construct a sequence a ≤ t0 < t1 < ... < tn ≤
b′ < tn+1 < b for some n with

E [1Ω′|Md(ti+1) −Md(ti)|] ≥ (ti+1 − ti)
2K

b′ − a
, 0 ≤ i ≤ n. (2.31)
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Since H̃ < 1, (2.28) yields

lim
h↓0

E

[
1Ω′

|Md(t± h) −Md(t)|
h

]
= lim

h↓0
hH̃−1E

[
1Ω′

|Md(t± h) −Md(t)|
hH̃

]
= ∞.

(2.32)

Thus, for any t ∈ [a, b′], we find 0 < εt < b− b′ with

E [1Ω′|Md(t+ h) −Md(t)|] ≥ |h| 2K

b′ − a
, ∀ h, |h| ≤ εt. (2.33)

Now, (]t − εt, t + εt[) is an open covering of [a, b′] and thus we find a finite

covering (]t2i − εt2i
, t2i + εt2i

[), t0 < t2 < . . . < t2m, t2m + εt2m = t2m+1 > b′.

Now we choose t2i+1 ∈ ]t2i, t2i + εt2i
[∩ ]t2i+2 − εt2i+2

, t2i+2[. Then by (2.33) in

fact (2.31) holds for all i, 0 ≤ i ≤ 2m =: n. Now summation of (2.33) gives

together with (2.30)

E[1Ω′ V ar[a,b](Md)] ≥
n∑

i=0

E[1Ω′ |Md(ti+1) −Md(ti)|] ≥
n∑

i=0

|ti+1 − ti| 2K

b′ − a

= (tn+1 − t0)
2K

b′ − a
≥ 2K.

This is a contradiction to (2.29). Consequently, V ar[a,b](Md) = ∞ a.s.

It remains to show V ar[a,b](Md) < ∞, if ν(R) < ∞. The proof is based

on the series representation of FLPs. For simplicity we assume that the Lévy

measure ν of the driving Lévy process L is symmetric. Now, consider the

series representation (2.12). Since ν(R) < ∞, there is only a finite number

n ∈ N of jumps τi on every interval [a, b]. Now, we divide the interval [a, b]

into subintervals ]τi−1, τi[, i = 1, . . . , n. Let (tmk )k=1,...,m be a refining sequence

on the interval ]τi−1, τi[, i.e. max
k

|tmk − tmk−1| → 0 as m→ ∞. Then

V ar[τi−1,τi](Md) = p− lim
m→∞

m∑
k=1

|Md(t
m
k ) −Md(t

m
k−1)|

= p− lim
m→∞

m∑
k=1

∣∣∣∣∣
∞∑

j=1

εjν
←(τjρ(Uj))ftmk

(Uj) −
∞∑

j=1

εjν
←(τjρ(Uj))ftmk−1

(Uj)

∣∣∣∣∣
= p− lim

m→∞

m∑
k=1

∣∣∣∣∣
∞∑

j=1

εjν
←(τjρ(Uj))[ftmk

(Uj) − ftmk−1
(Uj)]

∣∣∣∣∣
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= p− lim
m→∞

m∑
k=1

∣∣∣∣∣
∞∑

j=1

εjν
←(τjρ(Uj))

1

Γ(d+ 1)
[(tmk − Uj)

d
+ − (tmk−1 − Uj)

d
+]

∣∣∣∣∣
≤
∞∑

j=1

|ν←(τjρ(Uj))| 1

Γ(d+ 1)
p− lim

m→∞

m∑
k=1

∣∣(tmk − Uj)
d
+ − (tmk−1 − Uj)

d
+

∣∣
≤
∞∑

j=1

|ν←(τjρ(Uj))|V ar[τi−1,τi](f·(Uj)).

Since the total variation of the function t �→ (t − s)d
+ − (−s)d

+ is finite on

every interval [τi−1, τi] (see Proposition 2.6) and since there are only finitely

many τi, we can conclude that the sample paths of Md have finite variation on

compacts.

If ν is not symmetric the proof uses the spectral representation (2.14) and

the same arguments.

Remark 2.26 Observe that as a consequence of Theorem 2.25, Md is a semi-

martingale if ν(R) <∞.

Theorem 2.27 (Semimartingale I) Let Md be a FLP. If the Lévy measure

ν of the driving Lévy process is given as in Theorem 2.24, the fractional Lévy

process Md is not a semimartingale.

Proof. Let 0 = tn0 < . . . < tnn = t, n ∈ N be a partition of [0, t] such that

max
0≤i≤n

|tni+1 − tni | → 0 as n → ∞. Assume that Md is a semimartingale. Then

its quadratic variation

[Md,Md]t = p− lim
n→∞

n−1∑
i=0

|Md(t
n
i+1) −Md(t

n
i )|2

exists for all t ∈ [0, T ], T > 0. Hence, there exists a refining subsequence {tnk
i }

such that as k → ∞,

nk−1∑
i=0

|Md(t
nk
i+1) −Md(t

nk
i )|2 → [Md,Md]t a.s.

Therefore, we can apply Fatou’s Lemma to obtain together with Theorem 2.15,

E[Md,Md]t = E

[
lim
k→∞

nk−1∑
i=0

[Md(t
nk
i+1) −Md(t

nk
i )]2

]
(2.34)

≤ lim inf
k→∞

E

[
nk−1∑
i=0

[Md(t
nk
i+1) −Md(t

nk
i )]2

]
(2.35)
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= lim inf
k→∞

nk−1∑
i=0

E[Md(t
nk
i+1) −Md(t

nk
i )]2

=
E[L(1)2]

Γ(2d+ 2) sin(π[d+ 1
2
])

lim inf
k→∞

nk−1∑
i=0

|tnk
i+1 − tnk

i |2d+1 = 0.

It follows from Md(0) = 0 a.s., (2.34) and Protter (2004, Theorem II.22

(ii)) that [Md,Md]t = 0 a.s. for all t ∈ [0, T ], T > 0. As Md is a continuous

semimartingale it is of the form

Md(t) = Md(0) + A(t) +B(t),

where Md(0) is an F0-measurable random variable, A(0) = B(0) = 0, B is

an a.s. continuous local martingale with respect to F and A is an a.s. right-

continuous, F -adapted finite variation process. It follows

0 = [Md,Md]t = [A,A]t = [A,B]t = [B,A]t = [B,B]t a.s. for all t ∈ [0, T ].

Therefore, as Md and hence B has continuous sample paths, Protter (2004,

Theorem II.27) implies B(t) = 0 a.s. for all t ∈ [0, T ], T > 0. Hence, Md is

a finite variation process. This contradicts Theorem 2.25, if ν is of the form

given in Theorem 2.24.

Remark 2.28 Let the driving Lévy process L be a symmetric α-stable Lévy

process with 1 < α < 2. Then the Lévy measure ν is of the form given in

Theorem 2.24. Consequently, Theorem 2.27 yields that the corresponding FLP

is not a semimartingale. This shows that linear fractional stable motions (see

Example 2.4) cannot be semimartingales.

We conclude this section with a result concerning the lower bound for the

L1-norm of Md(t) and which will lead to a further class of Lévy processes for

which the corresponding FLP cannot be a semimartingale

Proposition 2.29 Let Md be a FLP. Suppose the Lévy measure ν of the driv-

ing Lévy process L satisfies ∫
|x|≥ε

|x|ν(dx) ≥ C ε−β (2.36)
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for some β ≥ 1 and a constant C > 0. Then there exists 0 < δ < β−d(1+β)
1+β

, and

t̄ > 0, such that

E|Md(t)| ≥ Ct1−δ, for all 0 ≤ t ≤ t̄. (2.37)

Proof. We apply the results of Marcus & Rosinski (2001): Let lt be a solution

of the equation

ξ(l) :=

∫
R

∫
R

( |ft(s)||x|
l

∧ |ft(s)|2|x|2
l2

)
ν(dx) ds = 1.

Then

0.25 lt ≤ E|Md(t)| ≤ 2.125 lt (2.38)

(Marcus & Rosinski (2001, Theorem 1.1)). We observe that ξ(lt) is monotone

decreasing in lt. Therefore we show that ξ(t1−δ) > 1 for some 0 < δ < 1, since

then lt ≥ t1−δ. We have

{(x, s) : |ft(s)||x| ≥ l} ⊃ {(x, s) : s ∈ [0, t/2], (t− s)d|x| ≥ l}
⊃ {(x, s) : s ∈ [0, t/2], (t/2)d|x| ≥ l}

Therefore,

ξ(l) ≥
∫
R

∫
R

|ft(s)||x|
l

1{|ft(s)||x|≥l} ν(dx) ds

≥
t/2∫
0

∫
|x|≥l(t/2)−d

|x|(t− s)d

l
ν(dx) ds

=

∫
|x|≥l(t/2)−d

|x| ν(dx) (t− s)d+1

(d+ 1)l

∣∣∣∣0
t/2

=

∫
|x|≥l(t/2)−d

|x| ν(dx)t
d+1 − (t/2)d+1

(d+ 1)l

=

∫
|x|≥l(t/2)−d

|x| ν(dx)1 − 1/(2d+1)

(d+ 1)l
td+1.

Now it follows from (2.36) that

ξ(l) ≥ 1

2(d+ 1)

C(
l2d

td

)β

td+1

l
.
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Let l = t1−δ. Then

ξ(t1−δ) ≥ 1

2(d+ 1)

C

2dβ

td+δ

t(1−δ−d)β

=
1

2(d+ 1)

C

2dβ
td(1+β)+δ(1+β)−β .

Hence, for 0 < δ < β−d(1+β)
1+β

,

lim
t↓0

ξ(t1−δ) = ∞.

This shows lt ≥ t1−δ for t ≤ t̄, t̄ > 0 small and (2.38) yields the assertion.

Theorem 2.30 Let Md be a FLP. Suppose the Lévy measure ν of the driving

Lévy process L satisfies (2.36). Then the sample paths of Md are a.s. of infinite

total variation on compacts.

Proof. Define

Xj = Md((j + 1)t) −Md(jt).

Since Md has stationary increments, the sequence {Xj} is stationary and er-

godic. Thus Proposition 2.29 and the ergodic theorem imply that

lim
n→∞

1

n

n−1∑
j=0

|Xj| = E|X1| ≥ Ct1−δ (2.39)

a.s and in L1(Ω, P ). We observe that

1

n

n−1∑
j=0

|Xj| ≤ V ar[0,nt](Md)

nt
t.

This together with (2.39) shows that for every t > 0, ε > 0 there exists nε,t

such that

P

(
V ar[0,nε,tt](Md)

nε,tt
t ≥ C

2
t1−δ

)
≥ 1 − ε,

i.e.

P

(
V ar[0,nε,tt](Md)

nε,tt
≥ C

2
t−δ

)
≥ 1 − ε.

Now, let t ↓ 0. Then for every ε > 0 and M > 0 there exists T > 0 such that

P

(
V ar[0,T ](Md)

T
≥M

)
≥ 1 − ε.
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Consequently, for every ε > 0, M > 0, there exists s ≥ 0 such that

P
(
V ar[s,s+1](Md) ≥M

) ≥ 1 − ε. (2.40)

Furthermore, we have by monotone convergence

E[V ar[t,t+1](Md)] = lim
n→∞

E

[
2n∑
i=1

|Md(j2
−n) −Md((j − 1)2−n)|

]

= lim
n→∞

2n∑
i=1

E|Md(j2
−n) −Md((j − 1)2−n)|

≥ lim
n→∞

C

2n∑
i=1

(2−n)1−δ → ∞.

Assume P (V ar[t,t+1](Md) < ∞) > 0. Then there exists M > 0 and Ω′ ⊂ Ω

with P (Ω′) =: 2ε > 0 such that

V ar[t,t+1](Md)
∣∣
Ω′ ≤

M

2
,

i.e. P (V ar[t,t+1](Md) ≤ M
2

) ≥ P (Ω′) = 2ε, and hence,

P (V ar[t,t+1](Md) >
M

2
) ≤ 1 − 2ε. (2.41)

Since Md has stationary increments we have V ar[t,t+1](Md)
d
= V ar[s,s+1](Md).

In fact, let t = t0 < t1 < . . . < tn = t+1 be a partition of the interval [t, t+1].

Then
n∑

i=1

|Md(ti) −Md(ti−1)| d
=

n∑
i=1

|Md(ti − (t− s)) −Md(ti−1 − (t− s))|

=

n∑
i=1

|Md(si) −Md(si−1)|,

where si = ti − (t − s). This shows V ar[t,t+1](Md)
d
= V ar[s,s+1](Md), since all

possible partitions of the interval [t, t+ 1] are the same as those of [s, s+ 1].

Now, it follows from (2.40) that there exists s ≥ 0 with

P (V ar[s,s+1](Md) ≥M) ≥ 1 − ε, i.e.

P (V ar[t,t+1](Md) ≥M) = P (V ar[s,s+1](Md) ≥M) ≥ 1 − ε

contradicting (2.41). The proof is complete.
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Corollary 2.31 (Semimartingale II) Let Md be a FLP. If the Lévy mea-

sure ν of the driving Lévy process satisfies (2.36), then Md is not a semimartin-

gale.

Proof. The proof is analogous to the proof of Theorem 2.27.

Figure 2.3 and Figure 2.4 show sample paths of FLPs, where the driving Lévy

process has a truncated stable Lévy measure

ν(dx) =
1{|x|≤1}
|x|1+α

dx, (2.42)

with 1 < α < 2. Observe that (2.42) satisfies the assumptions of Theorem

2.24. Hence, the resulting FLP is not a semimartingale
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d=0.01 

d=0.25 

Figure 2.3: The sample paths of a FLP for different values of d, where the driving

Lévy process has Lévy measure (2.42) with α = 1.5.
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Figure 2.4: The sample paths of a FLP for d = 0.25, where the driving Lévy process

has Lévy measure (2.42) with α = 1.5 and α = 1.99.

2.3 Integrals with respect to Fractional Lévy

Processes

In the present section we define integrals with respect to fractional Lévy pro-

cesses. As pointed out in Theorem 2.27 and Corollary 2.31 a FLP is not always

a semimartingale. Therefore, classical Itô integration theory cannot be applied.

Recently, integration with respect to FBMs has been studied extensively and

various approaches have been made to define a stochastic integral with respect

to FBM (see Nualart (2003) for a survey). For instance Zähle (1998) intro-

duced a pathwise stochastic integral using fractional integrals and derivatives.

If the integrand is β-Hölder continuous with β > 1 − H , then the integral

with respect to FBM can be interpreted as a Riemann-Stieltjes integral. Other

approaches use the Gaussianity and define a Wiener integral or they apply

Malliavin calculus to obtain Skorohod-like integrals with respect to FBM (see

e.g. Decreusefond & Üstünel (1999) and the references therein). Malliavin cal-

culus was also used by Decreusefond & Savy (2006) to construct a stochastic
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2 Fractional Lévy Processes

calculus for filtered Poisson processes. A new integral of Itô type with zero

mean defined by means of the Wick product was introduced in Duncan et al.

(2000) who also give some Itô formulae (see also Bender (2003a)).

In this section we consider the special case of a deterministic integrand which

is sufficient for our present purposes and turns out to be easy to handle. Fur-

thermore, until the end of this thesis we only consider square integrable FLPs,

i.e. we always assume α = 2 in Definition 2.1. The reason is that, as already

mentioned several times, we are interested in long memory processes. Our def-

inition of long memory requires the autocovariances to exist (see Definition

1.16).

We give a general definition of integrals with respect to FLPs which is closely

related to the integral with respect to FBM defined in Pipiras & Taqqu (2000).

Recall from Section 1.3 the definition of the Riemann-Liouville fractional

integral Id
± and derivative Dd

± of order d (0 < d < 0.5). Observe that we can

rewrite

Md(t) =

∫
R

(Id
−1(0,t))(s)L(ds). (2.43)

Now, consider for g ∈ L1(R) the right-sided Riemann-Liouville fractional

integral Id
−g of order d and denote by H̃ the set of functions g : R → R,

g ∈ L1(R) such that
∞∫

−∞

(Id
−g)

2(u) du <∞. (2.44)

Proposition 2.32 If g ∈ L1(R) ∩ L2(R), then g ∈ H̃.

Proof. Starting from the fact that (Id
−g) ∈ L2(R) if and only if∫

R

|h(u)(Id
−g)(u)| du ≤ C‖h‖L2 for all h ∈ L2(R),

it is sufficient to show that for all h ∈ L2(R),

∫
R

∞∫
0

|h(u)sd−1g(s+ u)| ds du ≤ C‖h‖L2. (2.45)
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Now (2.45) holds if

I1 =

∫
R

∞∫
1

|h(u)sd−1g(s+ u)| ds du ≤ C‖h‖L2

and

I2 =

∫
R

1∫
0

|h(u)sd−1g(s+ u)| ds du ≤ C‖h‖L2.

Applying Fubini’s Theorem and the Hölder inequality we obtain for I2,

1∫
0

sd−1

∫
R

|h(u)g(s+ u)| du ds ≤
1∫

0

sd−1‖h‖L2‖g‖L2 ds = d−1‖g‖L2‖h‖L2.

Furthermore, setting t = s+ u and using again Hölder’s inequality,

I1 =

∫
R

|g(t)|
∞∫

1

|h(t− s)|sd−1 ds dt ≤
∫
R

‖h‖L2


 ∞∫

1

s2(d−1) ds


1/2

|g(t)| dt

=

∫
R

‖h‖L2

1√
1 − 2d

|g(t)| dt ≤ (1 − 2d)−1/2‖g‖L1‖h‖L2

We define the space H as the completion of L1(R) ∩ L2(R) with respect to

the norm

‖ g ‖H :=


E[L(1)2]

∫
R

(Id
−g)

2(u) du


1/2

.

If follows from Pipiras & Taqqu (2000, Theorem 3.2) that ‖ · ‖H defines in

fact a norm. Then from the proof of Proposition 2.32 we know that for g ∈
L1(R) ∩ L2(R),

‖ g ‖H≤ C [‖ g ‖L1 + ‖ g ‖L2] . (2.46)

To construct the integral IMd
(g) :=

∫
R
g(s)Md(ds) for g ∈ H we proceed

as follows. Let φ : R → R be a simple function, i.e. φ(s) =
n−1∑
i=1

ai1(si,si+1](s),

where ai ∈ R, i = 1, ..., n and −∞ < s1 < s2 < ... < sn < ∞. Notice that

φ ∈ H . Define

IMd
(φ) =

∫
R

φ(s)Md(ds) =

n−1∑
i=1

ai[Md(si+1) −Md(si)].

Obviously, IMd
is linear in the simple functions
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Proposition 2.33 Let φ : R → R be a simple function. Then∫
R

φ(s)Md(ds) =

∫
R

(Id
−φ)(u)L(du) (2.47)

and φ �→ IMd
(φ) =

∫
R
φ(s)Md(ds) is an isometry between H and L2(Ω, P ).

Proof. It is sufficient to show (2.47) for indicator functions φ(s) = 1[0,t](s),

t > 0. In fact, ∫
R

φ(s)Md(ds) =

∫
R

1[0,t](s)Md(ds) = Md(t)

and for the r.h.s. of (2.47) we obtain,∫
R

(Id
−φ)(u)L(du) =

1

Γ(d)

∫
R

∞∫
u

(s− u)d−11[0,t](s)dsL(du)

=




1

Γ(d+ 1)

∫
R

[(t− u)d − (−u)d]L(du), u < 0,

1

Γ(d+ 1)

∫
R

(t− u)dL(du), 0 ≤ u ≤ t,

0, u > t

=
1

Γ(d+ 1)

∫
R

[
(t− u)d

+ − (−u)d
+

]
L(du) = Md(t).

Moreover, for all simple functions φ it follows from (2.9),

‖ IMd
(φ) ‖2

L2(Ω,P ) = E


∫

R

(Id
−φ)(u)L(du)


2

= E[L(1)2]

∫
R

(Id
−φ)2(u) du =‖ φ ‖2

H . (2.48)

Theorem 2.34 Let Md = {Md(t)}t∈R be a fractional Lévy process and let the

function g ∈ H. Then there are simple functions φk : R → R, k ∈ N, satisfying

‖ φk − g ‖H→ 0 as k → ∞ such that IMd
(φk) converges in L2(Ω, P ) towards

a limit denoted as IMd
(g) =

∫
R
g(s)Md(ds) and IMd

(g) is independent of the

approximating sequence φk. Moreover,

‖ IMd
(g) ‖2

L2(Ω,P )=‖ g ‖2
H . (2.49)
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2.3 Integrals with respect to Fractional Lévy Processes

Proof. The simple functions are dense in H . This follows from the fact that

the simple functions are dense in L1(R) ∩ L2(R), that L1(R) ∩ L2(R) is dense

in H by construction and (2.46). Hence, there exists a sequence (φk) of simple

functions such that

‖ φk − g ‖H=

∫
R

(
1

Γ(d)

∫ ∞
u

(s− u)d−1[φk(s) − g(s)] ds

)2

du→ 0

as k → ∞. It follows from the isometry property (2.48) that
∫

R
φk(s)Md(ds)

converges in L2(Ω, P ) towards a limit denoted as
∫

R
g(s)Md(ds) and the isom-

etry property is preserved in this procedure. Last but not least (2.49) implies

that the integral
∫

R
g(s)Md(ds) is the same for all sequences of simple functions

converging to g.

Corollary 2.35 If Md is a semimartingale, then
∫

R
g(s)Md(ds) is well-defined

as a limit in probability of elementary integrals. Observe that, since the limit

in probability is unique, this limit is then equal to the limit IMd
(g) of Theorem

2.34.

Using (2.47) and Theorem 2.34 the next proposition is obvious.

Proposition 2.36 Let g ∈ H. Then∫
R

g(s)Md(ds) =

∫
R

(Id
−g)(u)L(du), (2.50)

where the equality holds in the L2-sense.

Remark 2.37 Notice that our conditions on the integrand g differ from those

imposed in the work by Zähle (1998). In particular we do not require the

function g to be Hölder continuous of order greater than 1 − d. Furthermore,

if the function g is Hölder continuous and g is defined on a compact interval,

then g ∈ L1(R) ∩ L2(R). Hence, g ∈ H .

The second order properties of integrals which are driven by FLPs follow by

direct calculation. As E[L(1)] = 0, first note that we have for g ∈ H ,

E


∫

R

g(t)Md(dt)


 = E


 1

Γ(d)

∫
R

∞∫
u

(s− u)d−1g(s) dsL(du)


 = 0.
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Proposition 2.38 Let |f |, |g| ∈ H. Then

E


∫

R

f(t)Md(dt)

∫
R

g(u)Md(du)




=
Γ(1 − 2d)E[L(1)2]

Γ(d)Γ(1 − d)

∞∫
−∞

∞∫
−∞

f(t)g(u)|t− u|2d−1 dt du. (2.51)

Proof. It is a well-known fact that (Gripenberg & Norros (1996), p.405),

min(u,t)∫
−∞

(t− s)d−1(u− s)d−1ds = |t− u|2d−1Γ(d)Γ(1 − 2d)

Γ(1 − d)
, u, t ∈ R.

Hence, by the isometry (2.49),

E


∫

R

f(t)Md(dt)

∫
R

g(u)Md(du)




=
E[L(1)2]

Γ2(d)

∞∫
−∞

∞∫
s

∞∫
s

f(t)g(u)(t− s)d−1(u− s)d−1 dt du ds

=
E[L(1)2]

Γ2(d)

∞∫
−∞

∞∫
−∞

f(t)g(u)

min(u,t)∫
−∞

(t− s)d−1(u− s)d−1 ds dt du

=
Γ(1 − 2d)E[L(1)2]

Γ(d)Γ(1 − d)

∞∫
−∞

∞∫
−∞

f(t)g(u)|t− u|2d−1 dt du,

where we have used Fubini’s theorem.

2.4 Application to Long Memory Moving Average

Processes

In discrete time, moving average (MA) processes are very popular in classical

time series analysis and are widely used in applications in engineering, physics

and metrology.

We consider the continuous time version of a MA process. Continuous time

MA processes play an important role since they are very flexible models, e.g.
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MA processes can capture volatility jumps or exhibit long memory properties.

Typical examples are the stochastic volatility models by Barndorff-Nielsen

& Shephard (2001b) which are based on Ornstein-Uhlenbeck processes, the

CARMA processes (Chapter 1.2) and FICARMA processes (Chapter 1.3) or

the stable MA processes (Samorodnitsky & Taqqu (1994)).

Considering short memory MA processes, we construct a special class of

MA processes, the long memory MA processes. We would like to stress that

throughout this section we assume that L is a Lévy process without Brownian

component satisfying E[L(1)] = 0 and E[L(1)2] <∞.

Stationary continuous time moving average (MA) processes have already

been introduced in Definition 1.4. Moreover, Proposition 1.5 gives conditions

for a MA process to be well-defined, stationary and infinitely divisible, which

are formulated in terms of the kernel g and the generating triplet (γL, σ
2
L, νL)

of the driving Lévy process L.

Definition 2.39 (Short Memory Causal MA Process) Let L ={L(t)}t∈R

be a second-order Lévy process having generating triplet (γL, σ
2
L, νL). Then we

define a short memory causal moving average process by (1.21), where we as-

sume that the kernel g : R → R is measurable and satisfies the following two

conditions:

(M1) g(t) = 0 for all t < 0 (causality),

(M2) |g(t)| ≤ Ce−ct for some constants C > 0 and c > 0 (short memory).

From now on, if not stated otherwise, a MA process means a short memory

causal MA process, i.e. g satisfies (M1) and (M2) which imply g ∈ L1(R).

Proposition 2.40 A short memory MA process is well-defined if∫
|x|>1

log |x| νL(dx) <∞. (2.52)

Proof. The assertion is shown by substituting (M2) in Proposition 1.5.

We can use a short memory MA process to construct a long memory MA

process.
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2.4.1 Lévy-driven Long Memory MA Processes

We recall from Section 1.3 that one possibility to incorporate long memory into

a class of short memory processes, is to fractionally integrate the kernel g in

(1.21). Recall that the definition of the Riemann-Liouville fractional integrals

has been given in Section 1.3.

We calculate the left-sided Riemann-Liouville fractional integral of the kernel

g in (1.21), where we only consider functions g ∈ H . Then we obtain for

0 < d < 0.5 the fractionally integrated kernel

gd(t) := (Id
+g)(t) =

t∫
0

g(t− s)
sd−1

Γ(d)
ds, t ∈ R. (2.53)

From (M1) and (M2) follows that gd(t) = 0 for t ≤ 0 and

|gd(t)| =

∣∣∣∣∣∣
t∫

0

g(t− s)
sd−1

Γ(d)
ds

∣∣∣∣∣∣ ≤ K td−1, t > 0, (2.54)

for some constant K > 0. Moreover, gd ∈ L2(R) as g ∈ H . We can now

define a fractionally integrated MA process by replacing the kernel g by the

kernel gd.

Definition 2.41 (FIMA Process) Let 0 < d < 0.5. Then the fractionally

integrated moving average (FIMA) process Yd = {Yd(t)}t∈R driven by the Lévy

process L with E[L(1)] = 0 and E[L(1)2] <∞ is defined by

Yd(t) =

t∫
−∞

gd(t− u)L(du), t ∈ R, (2.55)

where the fractionally integrated kernel gd is given in (2.53).

The next proposition summarizes results on the stationarity and infinite

divisibility of FIMA processes.

Proposition 2.42 (Stationarity, Infinite Divisibility) The FIMA process

(2.55) is well-defined and stationary. Moreover, for all t ∈ R the distribution

78



2.4 Application to Long Memory Moving Average Processes

of Yd(t) is infinitely divisible with characteristic triplet (γt
Y , 0, ν

t
Y ), where

γt
Y = −

t∫
−∞

∫
R

xgd(t− s)1{|gd(t−s)x|>1} νL(dx) ds and (2.56)

νt
Y (B) =

t∫
−∞

∫
R

1B(gd(t− s)x) νL(dx) ds, B ∈ B(R). (2.57)

Here (γL, 0, νL) denotes the characteristic triplet of L.

Proof. Since gd ∈ L2(R) we can apply Proposition 1.2 to Yd(0) and obtain

that Yd is well-defined. Let u1, . . . , un ∈ R and −∞ < t1 < . . . < tn <∞, n ∈
N. Then by the stationary increments of L,

u1Yd(t1 + h) + . . .+ unYd(tn + h) =
n∑

k=1

uk

tk+h∫
−∞

gd(tk + h− s)L(ds)

d
=

n∑
k=1

uk

tk∫
−∞

gd(tk − s)L(ds) = u1Yd(t1) + . . .+ unYd(tn). (2.58)

The characteristic functions of the left and the right hand side of (2.58)

coincide. Hence, by the Cramér Wold device Yd is stationary.

So far we constructed a FIMA process by a fractional integration of the

corresponding short memory kernel g. The next theorem states that we can

also construct a long memory MA process by replacing in the short memory

MA process (1.21) the driving Lévy process by the corresponding fractional

Lévy process. The resulting process coincides in L2 with the process (2.55).

Theorem 2.43 Suppose Yd = {Yd(t)}t∈R to be the FIMA process Yd(t) =∫ t

−∞ gd(t − s)L(ds), t ∈ R, with gd ∈ L2(R) such that gd ∈ Id
+(L2). Then Yd

can be represented as

Yd(t) =

t∫
−∞

g(t− s)Md(ds), t ∈ R, with (2.59)

g(x) =
1

Γ(1 − d)

d

dx

x∫
0

gd(s)(x− s)−dds, x ∈ R,
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i.e. g is the Riemann-Liouville derivative Dd
+gd of the kernel gd.

On the other hand, if Yd is given by (2.59) with g ∈ H, then Yd can be

rewritten as Yd(t) =
∫ t

−∞ gd(t− s)L(ds), t ∈ R, where gd(x) = (Id
+g)(x).

Proof. For every t ∈ R it holds a.s.

Yd(t) =

t∫
−∞

g(t− s)Md(ds) =
1

Γ(d)

t∫
−∞


 ∞∫

u

(s− u)d−1g(t− s) ds


 L(du)

=
1

Γ(d)

t∫
−∞


 ∞∫

0

sd−1g(t− u− s)ds


 L(du) =

t∫
−∞

gd(t− u)L(du),

where we used (2.50).

Using representation (2.59) of a FIMA process we show that this class of

processes has long memory properties.

Theorem 2.44 (Long Memory) A FIMA process Yd = {Yd(t)}t∈R is a long

memory MA process.

Proof. Since Yd can be expressed as (2.59), we have from Proposition 2.38

for h > 0,

γYd
(h) = cov(Yd(t+ h), Yd(t))

=
Γ(1 − 2d)

Γ(d)Γ(1 − d)
E[L(1)2]

∫
R

∫
R

g(t+ h− u)g(t− v)|u− v|2d−1 du dv

=
Γ(1 − 2d)

Γ(d)Γ(1 − d)
E[L(1)2]

∫
R

∫
R

g(s)g(s̃)|h− s+ s̃|2d−1 ds ds̃.

It follows,

γYd
(h) ∼ Γ(1 − 2d)

Γ(d)Γ(1 − d)
E[L(1)2]


∫

R

g(u) du


2

|h|2d−1, as h→ ∞. (2.60)

Hence, γYd
satisfies condition (1.37) and Yd is a long memory process.

It remains to show (2.60):∫
R

∫
R

g(s)g(s̃)
|h− s+ s̃|2d−1

|h|2d−1
ds ds̃ =

∫
R

∫
R

g(s)g(s̃)

∣∣∣∣1 − s

h
+
s̃

h

∣∣∣∣2d−1

ds ds̃

=

∫
R

∫
R

g(s)g(s̃) ds ds̃+ I, (2.61)
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where

I =

∫
R

∫
R

g(s)g(s̃)

(∣∣∣∣1 − s

h
+
s̃

h

∣∣∣∣2d−1

− 1

)
ds ds̃.

Then

|I| ≤
∫
R

∫
R

|g(s)||g(s̃)|
∣∣∣∣∣
∣∣∣∣1 − s

h
+
s̃

h

∣∣∣∣2d−1

− 1

∣∣∣∣∣ 1{|s̃−s|≤εh} ds ds̃

+

∫
R

∫
R

Ce−csCe−cs̃

∣∣∣∣∣
∣∣∣∣1 − s

h
+
s̃

h

∣∣∣∣2d−1

− 1

∣∣∣∣∣ 1{|s̃−s|>εh} ds ds̃

Since for |s̃− s| ≤ εh we have∣∣∣∣∣
∣∣∣∣1 − s

h
+
s̃

h

∣∣∣∣2d−1

− 1

∣∣∣∣∣ ≤ max
(
(1 − ε)2d−1 − 1, 1 − (1 + ε)2d−1

) ≤ (1−ε)2d−1−1,

we obtain

|I| ≤ ((1 − ε)2d−1 − 1
) ∫

R

∫
R

|g(s)||g(s̃)| ds ds̃+ I2(h)

=
(
(1 − ε)2d−1 − 1

) ‖g‖2
L1(R) + I2(h)

where

I2(h) =

∫
R

∫
R

C2e−cse−cs̃

∣∣∣∣∣
∣∣∣∣1 − s

h
+
s̃

h

∣∣∣∣2d−1

− 1

∣∣∣∣∣ 1{|s̃−s|>εh} ds ds̃.

Define (u, v) = (s + s̃, s − s̃) =: T (s, s̃), i.e. d(u, v) = |det(T′(s, s̃)|d(s, s̃) =

2d(s, s̃). Since s+ s̃ ≥ |s̃− s| we have

I2(h) =

∫
u≥|v|≥εh

2C2e−cu||1 − v

h
|2d−1 − 1| d(u, v)

= 2

∞∫
εh

∞∫
v

C2e−cu du ||1− v

h
|2d−1 − 1| dv

+ 2

−εh∫
−∞

∞∫
−v

C2e−cu du ||1− v

h
|2d−1 − 1| dv

≤
∞∫

εh

2C2

c
e−cv(|1 − v

h
|2d−1 + 1) dv +

εh∫
−∞

2C2

c
ecv(|1 − v

h
|2d−1︸ ︷︷ ︸

≤1

+1) dv
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≤
2h∫

εh

2C2

c
e−cv|1 − v

h
|2d−1 dv +

∞∫
εh

4C2

c
e−cv dv +

−εh∫
−∞

4C2

c
ecv dv

≤ 2C2

c
e−cεh h

2d
(1 − v

h
)2d
∣∣∣εh
h

+
2C2

c
e−ch h

2d
(
v

h
− 1)2d

∣∣∣2h

h

+
4C2

c
e−cv

∣∣∣∣εh
∞

+
4C2

c
ecv

∣∣∣∣−εh

−∞

=
2C2

c
e−cεh h

2d
(1 − ε)2d +

2C2

c
e−ch h

2d
+ 8

C2

c2
e−cεh.

Now, we choose ε > 0 such that(
(1 − ε)2d−1 − 1

) ‖g‖2
L1(R) ≤

K

2

for some K > 0. As ε > 0 is fixed, it follows that I2(h) → 0 as h → ∞. This

shows that |I| becomes arbitrarily small as h→ ∞, which yields the assertion

by (2.61).

2.4.2 Second Order, Sample Path and Distributional

Properties of Long Memory MA Processes

In the preceding proof we have already derived an expression for the autoco-

variance function of a FIMA process. However, the following representation

will be needed to calculate the spectral density.

Theorem 2.45 (Autocovariance Function) Let 0 < d < 0.5. The autoco-

variance function γd of a FIMA process Yd is

γd(h) = E[L(1)2]

∫
R

gd(u+ h)gd(u) du, h ∈ R, (2.62)

where gd is the fractionally integrated kernel given in (2.53).

Proof. Let h ≥ 0. Then from representation (2.55),

γd(h) = cov(Yd(t+ h), Yd(t)) = var(L(1))

t∫
−∞

gd(t+ h− s)gd(t− s) ds

= E[L(1)2]

∞∫
0

gd(u+ h)gd(u) du = E[L(1)2]

∫
R

gd(u+ h)gd(u) du,

since gd(t) = 0 for t ≤ 0.
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Theorem 2.46 (Spectral Density) The spectral density fd of a FIMA pro-

cess Yd equals

fd(λ) =
E[L(1)2]

2π
|Gd(λ)|2 , λ ∈ R, (2.63)

where Gd(λ) =
∫

R
eiuλgd(u) du, λ ∈ R, is the Fourier transform of the kernel

function gd given in (2.53).

Proof. Since the spectral density of a stationary process is the inverse

Fourier transform of the autocovariance function, we obtain from (2.62) by

direct calculation,

fd(λ) =
E[L(1)2]

2π

∫
R

e−ihλ

∫
R

gd(u+ h)gd(u) du dh

=
E[L(1)2]

2π

∫
R

∫
R

e−iλ(v−u)gd(v)gd(u) du dv

=
E[L(1)2]

2π


∫

R

e−ivλgd(v) dv




∫

R

eiuλgd(u) du




=
E[L(1)2]

2π
Gd(−λ)Gd(λ) =

E[L(1)2]

2π
|Gd(λ)|2 , λ ∈ R.

To obtain some insight into the behaviour of the sample paths of a FIMA pro-

cess we exclude path properties that do not hold. In fact, Rosinski (1989) pro-

vides immediately verifiable necessary conditions for interesting sample path

properties.

Proposition 2.47 (p-Variation) Let p ≥ 0. If the kernel t �→ gd(t − s) is

of unbounded p-variation then P ({ω ∈ Ω : Yd(· , ω) �∈ Cp[a, b]}) > 0, where

Cp[a, b] is the space of functions of bounded p-variation on [a, b].

Proof. The assertion follows by an application of Theorem 4 of Rosinski

(1989), where we use the symmetrization argument of section 5 in Rosinski

(1989), if νL is not already symmetric.

We noted in Theorem 2.42 that a FIMA process Yd has infinitely divisible

margins. Moreover, since E[L(1)] = 0, E[L(1)2] <∞ and gd ∈ L2(R) it follows
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2 Fractional Lévy Processes

by (1.11) that we can represent Yd as

Yd(t) =

t∫
−∞

∫
R0

xgd(t− s) J̃(dx, ds).

Therefore we can apply the results of Marcus & Rosinski (2005) to determine

the continuity of Yd.

Proposition 2.48 (Continuity) Let gd ∈ C1
b (R). Then the FIMA process Yd

has a continuous version on every bounded interval I of R.

Proof. Applying Theorem 2.5, Marcus & Rosinski (2005), we obtain that

Yd has a continuous version on I ⊂ R, if gd(0) = 0 and if for some ε > 0,

sup
u,v∈I

(
log

1

|u− v|
)1/2+ε

|gd(u) − gd(v)| <∞.

We have |gd(u) − gd(v)| ≤ |g′d(ξ)||u − v| ≤ C|u − v|, u ≤ ξ ≤ v, ξ ∈ I.

Therefore,

sup
u,v∈I

(
log

1

|u− v|
)1/2+ε

|gd(u) − gd(v)| ≤ sup
t∈I′

C|t|(− log |t|)1/2+ε = sup
t∈I′

m(t),

where

m(t) = C|t|(− log |t|)1/2+ε ≤ C|t|(− log |t|) → 0 as t→ 0+.

Moreover, m is continuous and assumes its maximum on any compact interval.

Hence,

sup
t∈I′

m(t) <∞.

Remark 2.49 If the process L has paths of bounded variation then

Yd(t) =

t∫
−∞

gd(t− s)L(ds) = (gd ∗ L)(t), t ∈ R,

is the convolution of the kernel gd with the jumps of L, taken pathwise. In this

case, as gd is continuous, it is obvious that Yd is continuous.
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2.4 Application to Long Memory Moving Average Processes

Finally, we consider the question what happens if we fractionally differentiate

a long memory FIMA process and fractionally integrate a short memory MA

process.

Theorem 2.50 The left-sided Riemann Liouville fractional derivative Dd
+Yd

of a FIMA process Yd is the corresponding short memory MA process Y .

Proof. Applying Fubini’s Theorem for stochastic integrals (Theorem 65,

Protter (2004)) we have,

(Dd
+Yd)(t) =

1

Γ(1 − d)

d

dt

t∫
−∞

(t− s)−dYd(s) ds

=
1

Γ(1 − d)

d

dt

t∫
−∞

t∫
u

(t− s)−dgd(s− u) dsL(du), t ∈ R.

Now define

Z(t) :=

∫ t

−∞
(D ∗ gd)(t− u)L(du), t ∈ R,

where

D(t) := t−d(Γ(1 − d))−11[0,∞)(t).

Then

(Dd
+Yd)(t) =

d

dt
Z(t)

and again by Fubini’s theorem,

Z(t) =

t∫
−∞

(D ∗ gd)(t− u)L(du) =

t∫
−∞

t∫
u

(D ∗ gd)
′(x− u) dxL(du)

=

t∫
−∞

x∫
−∞

(D ∗ gd)
′(x− u)L(du) dx, t ∈ R.

Hence for t ∈ R,

(Dd
+Yd)(t) =

d

dt
Z(t) =

∫ t

−∞
(D ∗ gd)

′(t− u)L(du),

and since (D ∗ gd)
′(t) = (Dd

+gd)(t) = g(t), we obtain

(Dd
+Yd)(t) =

∫ t

−∞
g(t− s)L(ds) = Y (t), t ∈ R.
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2 Fractional Lévy Processes

Theorem 2.51 The left-sided Riemann Liouville fractional integral Id
+Y of a

short memory MA process Y is the corresponding long memory FIMA process

Yd.

Proof. Using again Fubini’s Theorem (Theorem 65, Protter (2004)) we have,

(Id
+Y )(t) =

∫
R

s∫
−∞

g(s− u)L(du)
(t− s)d−1

Γ(d)
1[0,∞)(t− s) ds

=

t∫
−∞

t−u∫
0

(t− u− s)d−1

Γ(d)
g(s) dsL(du)

=

t∫
−∞

gd(t− u)L(du) = Yd(t), t ∈ R.

The following Corollary summarizes our findings.

Corollary 2.52 Every long memory FIMA process Yd = {Yd(t)}t∈R has the

following three representations:

(i) Yd(t) =

∫ t

−∞
gd(t− s)L(ds), t ∈ R,

(ii) Yd(t) =

∫ t

−∞
g(t− s)Md(ds), t ∈ R,

(iii) Yd(t) = (Id
+Y )(t), where Y (t) =

∫ t

−∞ g(t−s)L(ds), t ∈ R, and Id
+ denotes

the left-sided Riemann-Liouville fracional integral of order 0 < d < 0.5.

For t ∈ R the corresponding short memory MA process is given by

(Dd
+Yd)(t) =

1

Γ(1 − d)

d

dt


 t∫
−∞

(t− s)−dYd(s) ds




=

t∫
−∞

g(t− s)L(ds) = Y (t).

Remark 2.53 Like a FLP a FIMA process has a generalized shot noise rep-

resentation, which is given by (2.12) or (2.14), respectively, with the kernel

function ft( · ) replaced by the kernel gd(t− · ) given in (2.53).

We apply the above results to CARMA and FICARMA processes.
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2.4 Application to Long Memory Moving Average Processes

2.4.3 Application to CARMA and FICARMA Processes

Continuous time ARMA (CARMA) processes constitute a special class of short

memory MA processes and have already been defined in Chapter 1.2.

To incorporate long memory into the class of causal short memory Lévy-

driven CARMA processes, we can either proceed as described in Chapter

1.3, i.e. we fractionally integrate the kernel g given in (1.30) and obtain the

FICARMA(p, d, q) process

Yd(t) =

t∫
−∞

gd(t− s)L(ds),

where 0 < d < 0.5 and

gd(t) = (Id
+g)(t) =

1

2π

∞∫
−∞

eitλ(iλ)−d q(iλ)

p(iλ)
dλ, t ∈ R.

Or, applying Theorem 2.43 to CARMA and FICARMA processes, we can

alternatively define a FICARMA process via the fractional Lévy process Md

by

Yd(t) =

t∫
−∞

g(t− s)Md(ds), t ∈ R, (2.64)

where the kernel g is the Riemann-Liouville fractional derivative of the func-

tion gd, i.e. g is the kernel (1.30) of the short memory CARMA process (1.28).

Furthermore, when we calculate the left-sided Riemann-Liouville fractional

derivative of the FICARMA process, we obtain a CARMA process (see Theo-

rem 2.50), i.e.

(Dd
+Yd)(t) = Y (t), t ∈ R.

This one-to-one correspondence is reflected in the following corollary.

Corollary 2.54 The process {Yd(t)}t≥0 satisfies the formal SDE

p(D)Yd(t) = q(D)DMd(t), t ≥ 0, (2.65)

(which is an abbreviation of (2.67) and (2.68) below) if and only if its derivative

(Dd
+Yd)(t) = Y (t) of order d ∈ (0, 0.5) satisfies the formal SDE (1.22):

p(D)Y (t) = q(D)DL(t), t ≥ 0. (2.66)
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2 Fractional Lévy Processes

Representation (2.65) of a FICARMA process suggests a convenient way to

simulate a sample of the process.

Simulation of FICARMA Processes

We define a FICARMA process by equation (2.65) and, analogously to Section

1.2, interprete this equation as being equivalent to the following observation

and state equations,

Yd(t) = bTX(t) and (2.67)

dX(t) = AX(t)dt+ eMd(dt), t ≥ 0, (2.68)

where the vectors e, b and the matrix A are defined as in Section 1.2.

Using equations (2.67) and (2.68) the following simulation procedure gener-

ates a sample path of a FICARMA(p, d, q) process.

(i) Set X(0) := 0

(ii) For j = 1, . . . , n− 1 define Tj := tj+1 − tj , where the times t1, . . . , tn are

not necessarily uniformly spaced.

(iii) Generate the increments Wj := Md(tj+1) − Md(tj) for j = 1, . . . , n −
1, where {Md(tj)}j=1,...,n−1 is a sample of the driving fractional Lévy

process.

(iv) Apply the Euler method to obtain for j = 1, . . . , n− 1,

X(tj+1) = X(tj) + TjAX(tj) +Wj e.

(v) Compute for j = 1, . . . , n,

Yd(tj) = bT X(tj).

To generate a sample {Md(tj)}j=1,...,n−1 of the fractional Lévy process Md we

approximate

Md(t) =
1

Γ(d+ 1)

∫
R

[(t− s)d
+ − (−s)d

+]L(ds), t ≥ 0
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2.4 Application to Long Memory Moving Average Processes

by the corresponding Riemann sums

M
(n)
d (t) =

1

Γ(d+ 1)

{
0∑

k=−an

((
t− k

n

)d

−
(
−k
n

)d
)[

L

(
k + 1

n

)
− L

(
k

n

)]

+

[nt]∑
k=1

(
t− k

n

)d [
L

(
k + 1

n

)
− L

(
k

n

)]
 , t ∈ R,

where {L(k)}k∈Z is a discrete sample of the driving Lévy process {L(t)}t∈R

and an is a sequence that satisfies lim
n→∞

an = +∞. As the next theorem shows

the performance of this discretization depends on the choice of an. We take

an = n2 in order to keep the computational costs reasonable. Furthermore, for

simplicity we assume E[L(1)2] = 1 until the end of this section.

Theorem 2.55

M
(n)
d (t)

L2→Md(t)

as n→ ∞. Moreover, for t ∈ R,

‖M (n)
d (t) −Md(t) ‖L2= O

(
(an/n)d−1/2

)
+O

(
a1/2

n n−3/2
)

+O

(
n

1+2d−2d2

2d−3

)
(2.69)

and the optimal convergence rate is obtained by choosing an = n
2−d
1−d .

Proof. Without loss of generality let t ≥ 0. Define

f
(n)
t (s) =

∑
k

ft(k/n)1(k/n,(k+1)/n](s).

Then ∫
R

f
(n)
t (s)L(ds) =

∑
k

ft(k/n)[L((k + 1)/n) − L(k/n)]

and as n → ∞, f
(n)
t (s) → ft(s) in L2(R), since ft is continuous in L2(R) and

ft(s) = 0 for s ≥ max(t, 0). Hence, Proposition 1.2 yields∫
R

f
(n)
t (s)L(ds)

L2(Ω)→
∫
R

ft(s)L(ds), n→ ∞.

We have,

‖M (n)
d (t) −Md(t) ‖L2≤


 −an/n∫
−∞

ft(s)
2 ds




1
2

︸ ︷︷ ︸
A

+




t∫
−an/n

(f
(n)
t (s) − ft(s))

2 ds




1
2

︸ ︷︷ ︸
B
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A2 = (Γ(d + 1))−2
∫ −an/n

−∞ ((t − s)d − (−s)d)2 ds ≤ ∫ −an/n

−∞ ((−s)d−1t/Γ(d))2 ds.

Hence,

A ≤ ad−1/2
n n1/2−d t /(Γ(d)

√
1 − 2d).

Using that ft is Hölder continuous of order d we have |f (n)
t (s)−ft(s)| ≤ C n−d.

Now,

B ≤


 −ε−1∫
−an/n

( sup
ξ∈[− an

n
,−ε−1]

f ′t(ξ)/n)2 ds




1
2

+


 −ε∫
−ε−1

( sup
ξ∈[−ε−1,−ε]

f ′t(ξ)/n)2 ds




1
2

+


 0∫
−ε

(C n−d)2 ds




1
2

+


 t−ε∫

0

( sup
ξ∈[0,t−ε]

f ′t(ξ)/n)2 ds




1
2

+


 t∫

t−ε

(C n−d)2 ds




1
2

which gives

B ≤



−ε−1∫
−an/n

(Γ(d)n)−2 ds




1
2

+


 −ε∫
−ε−1

(|ε|d−1 /(Γ(d)n))2 ds




1
2

+


 0∫
−ε

(C n−d)2 ds




1
2

+


 t−ε∫

0

(|ε|d−1 /(Γ(d)n))2 ds




1
2

+


 t∫

t−ε

(C n−d)2 ds




1
2

= a1/2
n n−3/2/Γ(d) + |ε|d−1 /(Γ(d)n) +

√
ε C n−d +

√
t− ε |ε|d−1 /(Γ(d)n)

+
√
ε C n−d

Setting ε = n
2−2d
2d−3 leads to the same convergence order of the last four terms

in the last equation. Hence, B ≤ an
1/2 n−3/2 d+O(n

1+2d−2d2

2d−3 ) and

‖M (n)
d (t) −Md(t) ‖L2= O((an/n)d−1/2) +O(a1/2

n n−3/2) +O(n
1+2d−2d2

2d−3 ).

The optimal rate of convergence is obtained by balancing the first two terms

on the r.h.s of (2.69). This leads to an = n
2−d
1−d and

‖M (n)
d (t) −Md(t) ‖L2= O(n

2d−1
2−2d ) +O(n

1+2d−2d2

2d−3 ).

Remark 2.56 An efficient method to compute M
(n)
d is presented in Stoev &

Taqqu (2004) by using the Fast Fourier Transform algorithm. Alternatively
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2.4 Application to Long Memory Moving Average Processes

one can simulate a sample of the driving FLP following the approach (2.15)

or (2.16) of Cohen et al. (2005). However, our approach uses the increments of

the Lévy process L which are very easy to simulate.

Figure 2.5 shows the sample path of a FICARMA(3, 0.25, 2) process which is

driven by a fractional truncated stable Lévy process, i.e. ν is given by (2.42),

where we fix α = 1.8. The autoregressive and moving average polynomials are

the same as those of the CARMA process in Example 1.15, i.e. they are given

by

p(z) = (z + 0.1)(z + 0.5 − iπ

2
)(z + 0.5 +

iπ

2
) and q(z) = 2.792 + 5z + z2.
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Figure 2.5: The sample path of a FICARMA(3, 0.25, 2) process and the sample

path of the driving fractional truncated stable Lévy process (α = 1.8)

process.
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3 Multivariate CARMA Processes

CARMA processes have already been considered in the previous sections. So

far only univariate CARMA processes have been defined and investigated.

However, in order to model the joint behaviour of several time series (e.g.

prices of various stocks) multivariate models are required. In this chapter we

develop multivariate CARMA (MCARMA) processes and study their proba-

bilistic properties.

Unfortunately, it is not straightforward to define multivariate CARMA pro-

cesses analogously to the univariate ones, as the state space representation (see

Chapter 1.2) relies on the ability to exchange the autoregressive and moving

average operators, which is only possible in one dimension. Simply taking this

approach would lead to a spectral representation which does not reflect the au-

toregressive moving average structure. Our approach leads to a model which

can be interpreted as a solution to the formal differential equation

P (D)Y (t) = Q(D)DL(t),

where D denotes the differential operator with respect to t, L a Lévy process

and P and Q the autoregressive and moving average polynomial, respectively.

Moreover, it is the continuous time analogue of the multivariate ARMA model

(see e.g. Brockwell & Davis (1991)).

We would like to stress that in this chapter we discuss CARMA processes

driven by general Lévy processes, i.e. the Lévy processes may have a Brownian

component and does not need to have finite variance, unless stated otherwise.

The results of this chapter are joint work with Robert Stelzer and can also

be found in Marquardt & Stelzer (2006).
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3.1 State Space Representation of Multivariate

CARMA Processes

This section contains the necessary results and insights enabling us to define

multivariate CARMA processes. As we shall heavily make use of spectral rep-

resentations of stationary processes (see Doob (1953), Gikhman & Skorokhod

(2004) or Rozanov (1967) for comprehensive treatments), let us briefly recall

the notions and results we shall employ.

Definition 3.1 Let B(R) denote the Borel-σ-algebra over R. A family

{ζ(∆)}∆∈B(R) of C
m-valued random variables is called an m-dimensional ran-

dom orthogonal measure, if

(i) ζ(∆) ∈ L2 for all bounded ∆ ∈ B(R),

(ii) ζ(∅) = 0,

(iii) ζ(∆1 ∪ ∆2) = ζ(∆1) + ζ(∆2) a.s., if ∆1 ∩ ∆2 = ∅ and

(iv) F : B(R) → Mm(C), ∆ �→ E[ζ(∆)ζ(∆)∗] defines a σ-additive positive

definite matrix measure (i.e. a σ-additive set function that assumes values

in the positive semi-definite matrices) and it holds that E[ζ(∆1)ζ(∆2)
∗] =

F (∆1 ∩ ∆2) for all ∆1,∆2 ∈ B(R).

F is referred to as the spectral measure of ζ.

The definition above obviously implies E[ζ(∆1)ζ(∆2)
∗] = 0 for disjoint Borel

sets ∆1,∆2.

Stochastic integrals
∫
∆
f(t)ζ(dt) of deterministic Lebesgue-measurable func-

tions f : R → Mm(C) with respect to a random orthogonal measure ζ are now

as usually defined in an L2-sense (see, in particular, Rozanov (1967, Chapter

1) for details). Note that the integration can be understood componentwise:

Denoting the coordinates of ζ by ζi, i.e. ζ = (ζ1, . . . , ζm)∗, the i-th element(∫
∆
f(t)ζ(dt)

)
i
of
∫
∆
f(t)ζ(dt) is given by

∑m
k=1

∫
∆
fik(t)ζk(dt), where the in-

tegrals are standard one-dimensional stochastic integrals in an L2-sense and
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fik(t) denotes the element in the i-th row and k-th column of f(t). The above

integral is defined whenever the integral

∫
∆

f(t)F (dt)f(t)∗ :=

(
m∑

k,l=1

∫
R

fik(t)f jl(t)Fkl(dt)

)
1≤i,j≤m

exists. Functions satisfying this condition are said to be in L2(F ). For two

functions f, g ∈ L2(F ) we have

E

[∫
∆

f(t)ζ(dt)

(∫
∆

g(t)ζ(dt)

)∗]
=

∫
∆

f(t)F (dt)g(t)∗. (3.1)

In the following we will only encounter random orthogonal measures, whose as-

sociated spectral measures have constant density with respect to the Lebesgue

measure λ on R, i.e. F (dt) = Cλ(dt) =: C dt for some positive definite

C ∈Mm(C), which simplifies the integration theory considerably. In this case it

is easy to see that it is sufficient for
∫
∆
f(t)F (dt)f(t)∗ to exist that

∫
∆
‖f(t)‖2 dt

is finite, where ‖ · ‖ is some norm on Mm(C). To ease notation we define the

space of square-integrable matrix-valued functions

L2(R;Mm(C)) :=

{
f : R →Mm(C),

∫
R

‖f(t)‖2dt <∞
}
. (3.2)

In the following we abbreviate L2(R;Mm(C)) by L2(Mm(C)). This space is

independent of the norm ‖ · ‖ on Mm(C) used in the definition and is equal to

the space of functions f = (fij) : R →Mm(C) where all components fij are in

the usual space L2(C).

‖f‖L2(Mm(C)) =

(∫
R

‖f(t)‖2dt

)1/2

(3.3)

defines a norm on L2(Mm(C)) and again it is immaterial, which norm we use,

as all norms ‖ · ‖ on Mm(C) lead to equivalent norms ‖ · ‖L2(Mm(C)). With this

norm L2(Mm(C)) is a Banach space and even a Hilbert space, provided the

original norm ‖ · ‖ on Mm(C) is induced by a scalar product. Observe that

as usual we do not distinguish between functions and equivalence classes in

L2(·). The integrals
∫
∆
f(t)ζ(dt) and

∫
∆
g(t)ζ(dt) agree (in L2), if f and g are

identical in L2(Mm(C)), and a sequence of integrals
∫
∆
‖fn(t)‖2 dt converges
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(in L2) to
∫
∆
‖f(t)‖2 dt for n → ∞, if ‖fn(t) − f(t)‖L2(Mm(C)) → 0 as n → ∞.

Moreover,

E

[∫
∆

f(t)ζ(dt)

(∫
∆

g(t)ζ(dt)

)∗]
=

∫
∆

f(t)Cg(t)∗dt. (3.4)

Our first step in the construction of multivariate CARMA processes is the

following theorem extending the well-known fact that

W (t) =

∞∫
−∞

eiµt − 1

iµ
φ(dµ), t ∈ R,

is an m-dimensional standard Wiener process, if φ is an m-dimensional Gaus-

sian random orthogonal measure satisfying E[φ(A)] = 0 and E[φ(A)φ(A)∗] =
Im

2π
λ(A) for all A ∈ B(R) (see e.g. Arató (1982, Section 2.1, Lemma 5)).

Theorem 3.2 Let L = {L(t)}t∈R be a two-sided square integrable m-dimen-

sional Lévy process with E[L(1)] = 0 and E[L(1)L(1)∗] = ΣL. Then there

exists an m-dimensional random orthogonal measure ΦL with spectral measure

FL such that E[ΦL(∆)] = 0 for any bounded Borel set ∆,

FL(dt) =
1

2π
ΣL dt (3.5)

and

L(t) =

∞∫
−∞

eiµt − 1

iµ
ΦL(dµ). (3.6)

The random measure ΦL is uniquely determined by

ΦL([a, b)) =

∞∫
−∞

e−iµa − e−iµb

2πiµ
L(dµ) (3.7)

for all −∞ < a < b <∞.

Proof. Observe that setting Φ̃([a, b)) = L(b) − L(a) defines a random or-

thogonal measure on the semi-ring of intervals [a, b), with −∞ < a < b < ∞.

Using an obvious multidimensional extension of Rozanov (1967, Theorem 2.1),

we extend Φ̃L to a random orthogonal measure on the Borel sets. It is immedi-

ate that the associated spectral measure F̃L satisfies F̃L(dt) = ΣL dt and that
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integrating with respect to Φ̃L is the same as integrating with respect to the

Lévy process L.

Now define ΦL([a, b)) for −∞ < a < b <∞ by (3.7) which is equivalent to

ΦL([a, b)) =

∞∫
−∞

e−iµa − e−iµb

2πiµ
Φ̃L(dµ). (3.8)

Using (3.4) we obtain for any two intervals [a, b) and [a′, b′)

E[ΦL([a, b))ΦL([a′, b′))∗] =

∞∫
−∞

e−iµa − e−iµb

2πiµ
ΣL

(
e−iµa′ − e−iµb′

2πiµ

)
dµ (3.9)

=

∞∫
−∞

e−iµa − e−iµb

2πiµ
Σ

1/2
L

(
e−iµa′ − e−iµb′

2πiµ
Σ

1/2
L

)∗
dµ,

where Σ
1/2
L denotes the unique square root of ΣL defined by spectral calculus.

The crucial point is now to observe that the function φ̂a,b(µ) = e−iµa−e−iµb√
2πiµ

Σ
1/2
L

is the Fourier transform of the function 1[a,b)(t)Σ
1/2
L , i.e.

φ̂a,b(µ) =
1√
2π

∫ ∞
−∞

e−iµt1[a,b)(t)Σ
1/2
L dt.

The standard theory of Fourier-Plancherel transforms F (see e.g. Chan-

drasekharan (1989, Chapter II) or Yosida (1965, Chapter 6)) extends immedi-

ately to the space L2(Mm(C)) by setting

Fm : L2(Mm(C)) → L2(Mm(C)), f(t) �→ f̂(µ) =
1√
2π

∞∫
−∞

e−iµtf(t)dt

where
∫∞
−∞ e

−iµtf(t)dt is the limit in L2(Mm(C)) of
∫ R

−R
e−iµtf(t)dt as R →

∞, because this can be interpreted as a component-wise Fourier-Plancherel

transformation and, as stated before, a function f is in L2(Mm(C)), if and

only if all components fij are in L2(C). In particular, Fm is an invertible

continuous linear operator on L2(Mm(C)) with

F−1
m : L2(Mm(C)) → L2(Mm(C)), f̂(µ) �→ f(t) =

1√
2π

∞∫
−∞

eiµtf̂(µ)dµ,
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3 Multivariate CARMA Processes

and Plancherel’s identity generalizes to:∫
R

f(t)g(t)∗dt =

∫
R

f̂(µ)ĝ(µ)∗dµ. (3.10)

Combining (3.9) with (3.10) gives

E[ΦL([a, b))ΦL([a′, b′))∗] =
1

2π

∞∫
−∞

φ̂a,b(µ)
(
φ̂a′,b′(µ)

)∗
dµ

=
ΣL

2π

∞∫
−∞

1[a,b)(t)1[a′,b′)(t) dt.

This implies immediately that E[ΦL([a, b))ΦL([a′, b′))∗] = 0, if [a, b) and [a′, b′)

are disjoint,

E[ΦL([a, b))ΦL([a, b))∗] =
ΣLλ([a, b))

2π

and that ΦL is a random orthogonal measure on the semi-ring of intervals

[a, b), which we extend to one on all Borel sets. Therefore, (3.8) extends to

∞∫
−∞

1∆(t)ΦL(dt) =
1√
2π

∞∫
−∞

φ̂∆(µ) Φ̃L(dµ) (3.11)

for all Borel sets ∆, where φ̂∆ = Fm(1∆) is the Fourier transform of 1∆.

For any function ϕ ∈ L2(Mm(C)) there is a sequence of elementary func-

tions ϕk(t), k ∈ N, (i.e. matrix-valued functions of the form
∑N

i=1Ci1∆i
(t) with

appropriate N ∈ N, Ci ∈ Mm(C) and Borel sets ∆i) which converges to ϕ in

L2(Mm(C)). As the Fourier-Plancherel transform is a topological isomorphism

that maps L2(Mm(C)) onto itself, the Fourier-Plancherel transforms ϕ̂k(t) con-

verge to the Fourier-Plancherel transform ϕ̂(t) in L2(Mm(C)), which allows us

to extend (3.11), exchanging the roles of µ and t, to

∞∫
−∞

ϕ(µ) ΦL(dµ) =
1√
2π

∞∫
−∞

ϕ̂(t) Φ̃L(dt) (3.12)

for all functions ϕ in L2(Mm(C)) and their Fourier-Plancherel transforms ϕ̂.

Now choose ϕ(µ) = (eiµb − eiµa)/(iµ), then ϕ̂(t) =
√

2π1[a,b](t). This shows

that ∞∫
−∞

eiµb − eiµa

iµ
ΦL(dµ) = L(b) − L(a)
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3.1 State Space Representation of Multivariate CARMA Processes

and thus (3.6) is shown.

The uniqueness of ΦL follows easily, as (3.6) implies (3.12) using arguments

analogous to the above ones.

Note that for one-dimensional random orthogonal measures such results can

already be found in Doob (1953, Section IX.4).

Remark 3.3 If we formally differentiate (3.6), we obtain

dL(t)

dt
=

∫ ∞
−∞

eiµtΦL(dµ),

as in the spectral representation differentiation is the transform given by∫ ∞
−∞

eiµtΦ(dµ) �→
∫ ∞
−∞

iµeiµtΦ(dµ).

Thus, a univariate CARMA processes should have the representation

Y (t) =

∫ ∞
−∞

eiµt q(iµ)

p(iµ)
ΦL(dµ), (3.13)

as this reflects the differential equation (1.22). Later, in Theorem 3.19, we will

see that this is indeed the case. The square integrability necessary for (3.13) to

be defined, explains why one can only consider CARMA processes with q < p

(c.f. Lemma 3.8).

The next lemma deals with the spectral representation of integrals of pro-

cesses.

Lemma 3.4 Let Φ be an m-dimensional random orthogonal measure with

spectral measure F (dt) = C dt for some positive definite C ∈ Mm(C) and

g ∈ L2(Mm(C)). Define the m-dimensional random process G = {G(t)}t∈R by

G(t) =

∞∫
−∞

eiµtg(iµ) Φ(dµ).

Then G is weakly stationary,

t∫
0

G(s) ds <∞ a.s. for every t > 0 and
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3 Multivariate CARMA Processes

t∫
0

G(s) ds =

∞∫
−∞

eiµt − 1

iµ
g(iµ) Φ(dµ), t > 0.

Proof. Weak stationarity follows immediately from (3.4), which implies

E[G(t)G(s)∗] =

∞∫
−∞

eiµ(t−s)g(iµ)Cg(iµ)∗dµ.

The weak stationarity implies that

‖G(s)‖L2 := E[‖G(s)‖2
2]

1/2 = E[G(s)∗G(s)]1/2

is finite and constant, where ‖ · ‖2 denotes the Euclidean norm. Thus an ele-

mentary Fubini argument and using ‖ · ‖L1 ≤ ‖ · ‖L2 gives

E

∥∥∥∥∥∥
t∫

0

G(s)ds

∥∥∥∥∥∥
2

≤ E


 t∫

0

‖G(s)‖2ds


 =

t∫
0

E [‖G(s)‖2] ds

≤
t∫

0

‖G(s)‖L2ds <∞.

In particular,
∫ t

0
G(s)ds is almost surely finite. Finally, we obtain

t∫
0

G(s)ds =

t∫
0

∞∫
−∞

eiµsg(iµ) Φ(dµ)ds =

∞∫
−∞

t∫
0

eiµsds g(iµ) Φ(dµ)

=

∞∫
−∞

eiµt − 1

iµ
g(iµ) Φ(dµ),

using a stochastic version of Fubini’s theorem (e.g. the obvious multidimen-

sional extension of Gikhman & Skorokhod (2004, Section IV.4, Lemma 4)).

Before turning to a theorem enabling us to define MCARMA processes we

establish three lemmata and one corollary which contain necessary technical

results relating the zeros of what is to become the autoregressive polynomial to

the spectrum of a particular matrix A. The first lemma contains furthermore

some additional insight into the eigenvectors of A.
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3.1 State Space Representation of Multivariate CARMA Processes

Lemma 3.5 Let A1, . . . , Ap ∈Mm(C), p ∈ N, define

P : C → Mm(C), z �→ Imz
p + A1z

p−1 + A2z
p−2 + . . .+ Ap

and set

N (P ) = {z ∈ C : det(P (z)) = 0}, (3.14)

i.e. N (P ) is the set of all z ∈ C such that P (z) �∈ Glm(C). Furthermore, set

A =




0 Im 0 . . . 0

0 0 Im
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 Im

−Ap −Ap−1 . . . . . . −A1




∈Mmp(C) (3.15)

and denote the spectrum of A by σ(A). Then N (P ) = σ(A) and x̄ ∈ C
mp \ {0}

is an eigenvector of A with corresponding eigenvalue λ, if and only if there

is an x̃ ∈ KerP (λ) \ {0}, such that x̄ = (x̃∗, (λx̃)∗, . . . , (λp−1x̃)∗)∗. Moreover,

0 ∈ σ(A), if and only if 0 ∈ σ(Ap).

Proof. It is immediate from the structure of A that A is of full rank, if and

only if Ap is of full rank.

Let λ be an eigenvalue of A and x̄ = (x∗1, . . . x
∗
p)
∗ ∈ Rmp, xi ∈ Rm, a

corresponding eigenvector, i.e. Ax̄ − λx̄ = 0 from which λx1 = x2, λx2 =

x3, . . . , λxp−1 = xp, λxp + A1xp + A2xp−1 + . . . + Apx1 = 0 follows. Hence,

xi = λi−1x1, i = 1, 2, . . . , p and

λpx1 +A1λ
p−1x1 +A2λ

p−2x1 + . . .+Apx1 = (Imλ
p +A1λ

p−1 + . . .+Ap)x1 = 0.

(3.16)

As x̄ �= 0, we have x1 �= 0 and (3.16) gives x1 ∈ KerP (λ). Hence, we can set x̃ =

x1. Furthermore, the non-triviality of the kernel of P (λ) implies det(P (λ)) = 0.

Thus N (P ) ⊇ σ(A) has been established.

Now we turn to the converse implication. Let λ ∈ N (P ), then P (λ) has a

non-trivial kernel. Take any x̃ ∈ KerP (λ) \ {0} and set x̄ = (x̃∗, (λx̃)∗, . . . ,

(λp−1x̃)∗)∗. Then (3.16) shows that Ax̄ = λx̄ and thus λ ∈ σ(A). Therefore

N (P ) ⊆ σ(A) and x̄ is an eigenvector of A to the eigenvalue λ.
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3 Multivariate CARMA Processes

Corollary 3.6 σ(A) ⊆ (−∞, 0) + iR if and only if N (P ) ⊆ (−∞, 0) + iR.

Lemma 3.7 If N (P ) ⊆ R\{0} + iR, then P (iz) ∈ Glm(C) for all z ∈ R.

Proof. As all zeros of det(P (z)) have non-vanishing real part, all zeros of

det(P (iz)) must have non-vanishing imaginary part and thus P (iz) is invertible

for all z ∈ R.

Lemma 3.8 Let C0, C1, . . . , Cp−1 ∈ Mm(C) and R(z) =
p−1∑
i=0

Ciz
i. Assume that

N (P ) ⊆ R\{0} + iR, then

∞∫
−∞

‖P (iz)−1R(iz)‖2 dz <∞,

where P (z) = Imz
p + A1z

p−1 + ... + Ap.

Proof. As det(P (iz)), z ∈ R, has no zeros, ‖P (iz)−1R(iz)‖ is finite for all

z ∈ R, continuous and thus bounded on any compact set. Hence,∫ K

−K

‖P (iz)−1R(iz)‖2 dz

exists for all K ∈ R. For any x ∈ Rm we have

‖P (z)x‖ =

∣∣∣∣∣
∣∣∣∣∣
(
Imz

p +

p−1∑
k=0

Ap−kz
k

)
x

∣∣∣∣∣
∣∣∣∣∣ ≥ ‖zpx‖ −

∣∣∣∣∣
∣∣∣∣∣

p−1∑
k=0

Ap−kz
kx

∣∣∣∣∣
∣∣∣∣∣

≥
(
|z|p −

p−1∑
k=0

‖Ap−k‖|zk|
)
‖x‖.

Thus, there is K > 0 such that ‖P (z)x‖ ≥ |z|p‖x‖/2 for all z such that

|z| ≥ K, x ∈ Rm. This implies ‖P (z)−1‖ ≤ 2|z|−p for all |z| ≥ K and thus for

all z ∈ R, |z| ≥ K,

‖P (iz)−1R(iz)‖2 ≤ ‖P (iz)−1‖2‖R(iz)‖2 ≤ 4

|z|2p

(
p−1∑
i=0

‖Ci‖|z|i
)2

,

which gives the finiteness of
∫ −K

−∞ ‖P (iz)−1R(iz)‖2 dz and∫∞
K

‖P (iz)−1R(iz)‖2 dz.

The following result provides the key to be able to define multivariate

CARMA processes.
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3.1 State Space Representation of Multivariate CARMA Processes

Theorem 3.9 Let L = {L(t)}t∈R be an m-dimensional square-integrable Lévy

process with corresponding m-dimensional random orthogonal measure Φ as in

Theorem 3.2 and p, q ∈ N0, q < p (i.e. p ≥ 1). Let further A1, A2, . . . , Ap,

B0, B1, . . . , Bq ∈ Mm(R), where B0 �= 0 and define β1 = β2 = . . . = βp−q−1 =

0 (if p > q + 1) and βp−j = −
p−j−1∑

i=1

Aiβp−j−i + Bq−j for j = 0, 1, 2, . . . , q.

(Alternatively, βp−j = −
p−j−1∑

i=1

Aiβp−j−i + Bq−j for j = 0, 1, . . . , p − 1, setting

Bi = 0 for i < 0.) Assume σ(A) ⊆ (−∞, 0) + iR, which implies Ap ∈ Glm(R).

Denote by G = (G∗1(t), . . . , G
∗
p(t))

∗ an mp-dimensional process and set β∗ =(
β∗1 , . . . , β

∗
p

)
. Then the stochastic differential equation

dG(t) = AG(t)dt+ βdLt (3.17)

is uniquely solved by the process G given by

Gj(t) =

∞∫
−∞

eiλtwj(iλ) Φ(dλ), j = 1, 2, . . . , p, t ∈ R, where (3.18)

wj(z) =
1

z
(wj+1(z) + βj), j = 1, 2, . . . , p− 1 and

wp(z) =
1

z

(
−

p−1∑
k=0

Ap−kwk+1(z) + βp

)
.

The strictly stationary process G can also be represented as

G(t) =

t∫
−∞

eA(t−s)β L(ds), t ∈ R. (3.19)

Moreover, G(0) and {L(t)}t≥0 are independent, in particular,

E[Gj(0)L(t)∗] = 0 for all t ≥ 0, j = 1, 2, . . . , p.

Finally, it holds that

wp(z) = P (z)

(
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j

)
, (3.20)

w1(z) = (P (z))−1Q(z), (3.21)
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where

P (z) = Imz
p + A1z

p−1 + . . .+ Ap,

Q(z) = B0z
q +B1z

q−1 + . . .+Bq,

denote the autoregressive and moving average polynomial, respectively and
∞∫
−∞

‖wj(iλ)‖2 dλ <∞ for all j ∈ {1, 2, . . . , p}.

Proof. Ap ∈ Glm(R) follows from Lemma 3.5. That (3.19) is the strictly

stationary solution of (3.17) is a standard result, since all elements of σ(A)

have strictly negative real part, and a simple application of Gronwall’s Lemma

shows that the solution of (3.17) is a.s. unique for all t ∈ R (see e.g. Ikeda

& Watanabe (1989, Theorem 3.1)). Since G(0) =
∫ 0

−∞ e
−Asβ L(ds) and the

processes {L(t)}t<0 and {L(t)}t≥0 are independent according to our definition

(1.7) of L, G(0) and {L(t)}t≥0 are independent.

To prove (3.20) and (3.21) we first show

wj(z) =
1

zp−j

(
wp(z) +

p−j∑
i=1

βp−iz
i−1

)
for j = 1, . . . , p− 1. (3.22)

In fact, for p − j = 1 (3.22) becomes wp−1 = 1
z
(wp(z) + βp−1) which proves

the identity for j = p− 1 immediately. Assume the identity holds for j + 1 ∈
{2, 3, . . . , p− 1}, then

wj(z) =
1

z
(wj+1(z) + βj) =

1

z

[
1

zp−j−1

(
wp(z) +

p−j−1∑
i=1

βp−iz
i−1

)
+ βj

]

=
1

zp−j

(
wp(z) +

p−j−1∑
i=1

βp−iz
i−1 + βp−(p−j)z

p−j−1

)

=
1

zp−j

(
wp(z) +

p−j∑
i=1

βp−iz
i−1

)
,

which proves (3.22). Now we turn to (3.20):

wp(z) =
1

z

(
−

p−1∑
k=0

Ap−kwk+1(z) + βp

)

(3.22)
=

1

z

[
−

p−1∑
k=0

Ap−k

(
1

zp−k−1

(
wp(z) +

p−k−1∑
i=1

βp−iz
i−1

))]
+
βp

z
.
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It follows,

(
Im +

p−1∑
k=0

Ap−k
1

zp−k

)
wp(z) = βpz

−1 −
p−1∑
k=0

p−k−1∑
i=1

Ap−kβp−iz
i−1−p+k

(
Imz

p +

p−1∑
k=0

Ap−kz
k

)
wp(z) = βpz

p−1 −
p−1∑
k=0

p−k−1∑
i=1

Ap−kβp−iz
k+i−1.

Set j = k + i− 1, then

wp(z) = (P (z))−1

(
βpz

p−1 −
p−2∑
k=0

p−2∑
j=k

Ap−kβp+k−j−1z
j

)

= (P (z))−1

(
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j

)
,

which proves (3.20).

Let now l ∈ {1, 2, . . . , p− 1}. Then setting A0 = Im,

wl(z) =
1

zp−l

(
wp(z) +

p−l∑
i=1

βp−iz
i−1

)

(3.20)
=

1

zp−l

[
(P (z))−1

(
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j

)
+

p−l∑
i=1

βp−iz
i−1

]

=
(P (z))−1

zp−l

[
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j

+

(
p∑

k=0

Ap−kz
k

)(
p−l∑
i=1

βp−iz
i−1

)]

=
(P (z))−1

zp−l

[
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j

+

(
p∑

k=0

Ap−kz
k

)(
p−l−1∑
i=0

βp−i−1z
i

)]

=
(P (z))−1

zp−l

[
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j +

p∑
k=0

p−l−1∑
i=0

Ap−kβp−i−1z
i+k

]
.

Setting j = k + l we obtain,
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wl(z) =
(P (z))−1

zp−l

[
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j

+

p∑
k=0

k+p−l−1∑
j=k

Ap−kβp+k−j−1z
j

]

=
(P (z))−1

zp−l

[
−

p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j +

p−l−1∑
k=0

p−l−1∑
j=k

Ap−kβp+k−j−1z
j

+βpz
p−1 +

p∑
k=p−l

k+p−l−1∑
j=k

Ap−kβp+k−j−1z
j +

p−l−1∑
k=1

k+p−l−1∑
j=p−l

Ap−kβp+k−j−1z
j

]

=
(P (z))−1

zp−l

[
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j +

p−l−1∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j

+

p∑
k=p−l

k+p−l−1∑
j=k

Ap−kβp+k−j−1z
j +

p−l−1∑
k=0

k+p−l−1∑
j=p−l

Ap−kβp+k−j−1z
j

]

It follows,

wl(z) =
(P (z))−1

zp−l

[
βpz

p−1 −
p−2∑

j=p−l

j∑
k=0

Ap−kβp+k−j−1z
j

+

p∑
k=p−l

k+p−l−1∑
j=k

Ap−kβp+k−j−1z
j +

p−l−1∑
k=0

k+p−l−1∑
j=p−l

Ap−kβp+k−j−1z
j

]

= (P (z))−1

[
βpz

l−1 −
p−2∑

j=p−l

j∑
k=0

Ap−kβp+k−j−1z
j−p+l

+

p∑
k=p−l

k+p−l−1∑
j=k

Ap−kβp+k−j−1z
j−p+l +

p−l−1∑
k=1

k+p−l−1∑
j=p−l

Ap−kβp+k−j−1z
j−p+l

]
.

The last term in the bracket appears only if p− l− 1 ≥ 1, i.e. p− l− 2 ≥ 0.

Therefore, the whole term in the bracket is a polynomial of at most order p−1.
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Fixing l = 1 we obtain,

w1(z) = P (z)−1

[
βp +

p∑
k=p−1

k+p−2∑
j=k

Ap−kβp+k−j−1z
j−p+1

+

p−2∑
k=1

k+p−2∑
j=p−1

Ap−kβp+k−j−1z
j−p+1

]

= P (z)−1

[
βp +

p∑
k=p−1

k−1∑
i=k−p+1

Ap−kβk−iz
i +

p−2∑
k=1

k−1∑
i=0

Ap−kβk−iz
i

]

= P (z)−1

[
βp +

p−1∑
k=1

k−1∑
i=0

Ap−kβk−iz
i +A0

p−1∑
i=1

βp−iz
i

]

= P (z)−1

[
p−1∑
i=0

βp−iz
i +

p−2∑
i=0

p−1∑
k=i+1

Ap−kβk−iz
i

]
.

Using the fact that β1 = Bq−p+1, we finally get

w1(z) = (P (z))−1

[
Bq−p+1z

p−1 +

p−2∑
i=0

(
βp−i +

p−i−1∑
j=1

Ajβp−j−i

)
zi

]

= P (z)−1

[
Bq−p+1z

p−1 +

p−2∑
i=0

Bq−iz
i

]
= P (z)−1

p−1∑
i=0

Bq−iz
i

= P (z)−1

q∑
i=0

Bq−iz
i = P (z)−1Q(z).

The finiteness of
∫∞
−∞ ‖wj(iλ)‖2 dλ for all j = 1, 2, . . . , p is now a direct

consequence of Lemmata 3.7, 3.8 and Corollary 3.6.

It remains to show that the process defined in (3.18) solves (3.17): For j =

1, . . . , p we have as a consequence of (3.18),

Gj(t) −Gj(0) =

∞∫
−∞

(eiλt − 1)wj(iλ) Φ(dλ). (3.23)
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3 Multivariate CARMA Processes

For j = 1, . . . , p− 1 the recursion for wj together with Lemma 3.4 gives

Gj(t) −Gj(0) =

∞∫
−∞

eiλt − 1

iλ
wj+1(iλ) Φ(dλ) + βj

∞∫
−∞

eiλt − 1

iλ
Φ(dλ)

=

t∫
0

∞∫
−∞

wj+1(iλ)eiλs Φ(dλ) ds+ βjL(t)

=

t∫
0

Gj+1(s) ds+ βjL(t).

Hence,

dGj(t) = Gj+1(t)dt+ βjdL(t). (3.24)

Analogously we obtain for Gp,

Gp(t) −Gp(0) =

∞∫
−∞

(eiλt − 1)wp(iλ) Φ(dλ)

=

∞∫
−∞

eiλt − 1

iλ

(
−

p−1∑
k=0

Ap−kwk+1(iλ) + βp

)
Φ(dλ)

= −
p−1∑
k=0

t∫
0

∞∫
−∞

eiλsAp−kwk+1(iλ) Φ(dλ) ds+ βpL(t)

= −
p−1∑
k=0

Ap−k

t∫
0

Gk+1(s) ds+ βpL(t)

= −

 t∫

0

ApG1(s) + · · ·+ A1Gp(s) ds


+ βpL(t).

Therefore,

dGp(t) = −(ApG1(t) + . . .+ A1Gp(t))dt+ βpdL(t).

Together with (3.24) this gives that the process G defined by (3.18) solves

(3.17).

Obviously, E[G(t)] = 0 for the process G = {G(t)}t∈R which solves (3.17).

Turning to the second order properties we have the following proposition.
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Proposition 3.10 Let G = {G(t)}t∈R be the process that solves (3.17). Then

its autocovariance matrix function has the form

Γ(h) = E[G(t+ h)G(t)∗] = eAhΓ(0), h ≥ 0, with (3.25)

Γ(0) =

∞∫
0

eAuβΣLβ
∗eA∗u du, (3.26)

satisfying

AΓ(0) + Γ(0)A∗ = −βΣLβ
∗.

Proof. As the solution of (3.17) has the representation (3.19) formulae (3.25)

and (3.26) are obvious. As we can write

G(t) = eAtG(0) +

t∫
0

eA(t−s)β L(ds)

and G(0) and L(t), t ≥ 0, are independent, we obtain

Γt = E[G(t)G(t)∗]

= E




eAtG(0) +

t∫
0

eA(t−s)β L(ds)




eAtG(0) +

t∫
0

eA(t−s)β L(ds)


∗



= eAtE[G(0)G(0)∗] eA∗t +

t∫
0

eA(t−s)βΣLβ
∗eA∗(t−s) ds

= eAt


Γ0 +

t∫
0

e−AsβΣLβ
∗e−A∗s


 eA∗t.

It follows that

dΓt

dt
= AeAt


Γ0 +

t∫
0

e−AsβΣLβ
∗e−A∗s ds


 eA∗t

+ eAt


Γ0 +

t∫
0

e−AsβΣLβ
∗e−A∗s


 eA∗tA∗ + eAte−AtβΣLβ

∗e−A∗teA∗t

= AΓt + ΓtA
∗ + βΣLβ

∗ (3.27)
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3 Multivariate CARMA Processes

Now let t > s. Then

Γ(t, s) = E[G(t)G(s)∗]

= E




eAtG(0) +

t∫
0

eA(t−u)β L(du)




eAsG(0) +

s∫
0

eA(s−u)β L(du)


∗



= eAtE[G(0)G(0)∗]eA∗s +

s∫
0

eA(t−u)βΣLβ
∗eA∗(s−u) du

= eA(t−s)eAs


Γ0 +

s∫
0

e−AuβΣLβ
∗e−A∗u du


 eA∗s = eA(t−s)Γs.

Therefore,

Γ(t, s) = E[G(t)G(s)∗] =


e

A(t−s)Γs, t ≥ s

Γte
A∗(s−t), s ≤ t.

(3.28)

Since the solution (3.19) is strictly stationary we have Γt = Γ(0). Moreover, it

follows from (3.27) that Γ(0) is the solution of

AΓ(0) + Γ(0)A∗ = −βΣLβ
∗. (3.29)

From Chojnowska-Michalik (1987), Jurek & Mason (1993), Sato & Yamazato

(1984) and Wolfe (1982) we know that (3.19) is the unique stationary solution

to (3.17), whenever the Lévy measure ν of the driving process L(t) satisfies∫
‖x‖>1

log ‖x‖ν(dx) <∞.

This condition is sufficient (and necessary, provided β is injective) for the

stochastic integral in (3.19) to exist, as can be seen from substituting f(t, s) =

eA(t−s)β1[0,∞)(t − s) in (1.16) and (1.17). As we shall use this fact later on

to define CARMA processes driven by Lévy processes with infinite second

moment, we state the following two results on the process G in a general

manner.

Proposition 3.11 For any driving Lévy process L(t), the process G =

{G(t)}t∈R solving (3.17) in Theorem 3.9 is a temporally homogeneous strong
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3.1 State Space Representation of Multivariate CARMA Processes

Markov process with an infinitely divisible transition probability Pt(x, dy) hav-

ing characteristic function

∫
Rmp

ei〈u,y〉 Pt(x, dy) = exp


i〈x, eA∗tu〉 +

t∫
0

ψL((eAvβ)∗u) dv


 , u ∈ R

mp.

(3.30)

Proof. See (Sato & Yamazato 1984, Th. 3.1) and additionally (Protter 2004,

Theorem V.32) for the strong Markov property.

Proposition 3.12 Consider the unique solution G = {G(t)}t≥0 of (3.17) with

initial value G(0) independent of L = {L(t)}t≥0, where L is a Lévy process on

Rm with generating triplet (γ, σ, ν) satisfying
∫
‖x‖>1

log ‖x‖ ν(dx) < ∞. Let

L(G(t)) denote the marginal distribution of the process G = {G(t)}t≥0 at time

t. Then there exists a limit distribution F such that

L(G(t)) → F as t→ ∞.

This F is infinitely divisible with generating triplet given by (γ∞G , σ
∞
G , ν

∞
G ),

where

γ∞G =

∞∫
0

eAsβγ ds+

∞∫
0

∫
Rm

eAsβx[1{‖eAsβx‖≤1} − 1{‖x‖≤1}] ν(dx) ds,

σ∞G =

∞∫
0

eAsβ σβ∗eA∗s ds,

ν∞G (B) =

∞∫
0

∫
Rm

1B(eAsβx) ν(dx) ds.

Moreover,

E
[
ei〈u,F 〉] = exp



∞∫

0

ψL((eAsβ)∗u) ds


 , u ∈ R

mp. (3.31)

Proof. From (3.30) the characteristic function of G(t) is

E
[
ei〈u,G(t)〉] =

(
E
[
ei〈u,eAtG(0)〉

])
exp




t∫
0

ψL((eAsβ)∗u) ds


 , (3.32)
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3 Multivariate CARMA Processes

where

t∫
0

ψL((eAsβ)∗u) ds = i〈γt
G, u〉−

1

2
〈u, σt

Gu〉+
∫

Rm

[ei〈u,x〉−1−i〈u, x〉1{‖x‖≤1}] νt
G(dx),

(3.33)

γt
G =

t∫
0

eAsβγ ds+

t∫
0

∫
Rm

eAsβx[1{‖eAsβs‖≤1} − 1{‖x‖≤1}] ν(dx) ds,

σt
G =

t∫
0

eAsβ σβ∗eA∗s ds,

νt
G(B) =

t∫
0

∫
Rm

1B(eAsβx) ν(dx) ds,

using (1.18) and (1.19). Therefore, as t→ ∞,

∫
‖x‖≤1

‖x‖2 νt
G(dx) =

t∫
0

∫
Rm

‖eAsβx‖21{‖eAsβx‖≤1} ν(dx) ds

→
∞∫

0

∫
Rm

‖eAsβx‖21{‖eAsβx‖≤1} ν(dx) ds <∞,

∫
‖x‖>1

νt
G(dx) =

t∫
0

∫
Rm

1{‖eAsβx‖>1} ν(dx) ds

→
∞∫

0

∫
Rm

1{‖eAsβx‖>1} ν(dx) ds <∞,

γt
G →

∞∫
0

eAsβγ ds+

∞∫
0

∫
Rm

eAsβx[1{‖eAsβx‖≤1} − 1{‖x‖≤1}] ν(dx) ds <∞,

σt
G →

∞∫
0

eAsβ σβ∗eA∗s ds <∞.

The convergences above follow from Sato & Yamazato (1984) and Sato (2005).

Hence, it is shown that as t→ ∞, γt
G and σt

G tend to γ∞G and σ∞G , respectively.

Moreover, νt
G increases to the measure ν∞G satisfying

∫
(‖x‖2 ∧1) ν∞G (dx) <∞,
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3.2 Multivariate CARMA Processes

i.e. ν∞G is a Lévy measure. By dominated convergence the right-hand side of

(3.33) tends to

i〈γ∞G , u〉 −
1

2
〈u, σ∞G u〉 +

∫
Rm

[ei〈u,x〉 − 1 − i〈u, x〉1{‖x‖≤1}] ν∞G (dx)

for all u ∈ R
m. Thus, there exists an infinitely divisible distribution F with

triplet (γ∞G , σ
∞
G , ν

∞
G ) which satisfies (3.31). Convergence of L(G(t)) to F is then

a consequence of (3.31) and (3.32) and F does not depend on G(0).

Remark 3.13 Obviously F is also the marginal distribution of the stationary

solution considered in Theorem 3.9.

The sample path behaviour of the process G = {G(t)}t∈R is described below.

Proposition 3.14 If the driving Lévy process L = {L(t)}t∈R of the process

G = {G(t)}t∈R in Theorem 3.9 is Brownian motion, the sample paths of G

are continuous. Otherwise the process G has a jump, whenever L has one. In

particular, ∆G(t) = β∆L(t).

3.2 Multivariate CARMA Processes

We are now in a position to define an m-dimensional CARMA (MCARMA)

process by using the spectral representation for square-integrable driving Lévy

processes. Then we extend this definition making use of the insight obtained

in Theorem 3.9.

Definition 3.15 (MCARMA Process) Let L = {L(t)}t∈R be a two-sided

square integrable m-dimensional Lévy-process with E[L(1)] = 0 and

E[L(1)L(1)T ] = ΣL. An m-dimensional Lévy-driven continuous time autore-

gressive moving average process {Y (t)}t∈R of order (p, q), p > q (MCARMA(p, q)

process) is defined as

Y (t) =

∞∫
−∞

eiλtP (iλ)−1Q(iλ) Φ(dλ), t ∈ R, where (3.34)

P (z) : = Imz
p + A1z

p−1 + ...+ Ap, (3.35)

Q(z) : = B0z
q +B1z

q−1 + ....+Bq and (3.36)
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3 Multivariate CARMA Processes

Φ is the Lévy orthogonal random measure of Theorem 3.2 satisfying

E[Φ(dλ)] = 0 and E[Φ(dλ)Φ(dλ)∗] =
dλ

2π
ΣL.

Here Aj ∈Mm(R), j = 1, ..., p and Bj ∈Mm(R) are matrices satisfying Bq �= 0

and

N (P ) := {z ∈ C : det(P(z)) = 0} ⊂ (−∞, 0) + iR.

The process G defined as in Theorem 3.9 is called the state space representation

of the MCARMA process Y .

Remark 3.16 (i) There are several reasons why the name “multivariate

continuous time ARMA process” is indeed appropriate. The same ar-

guments as in Remark 3.3 show that an MCARMA process Y can be

interpreted as a solution to the p-th order formal m-dimensional differ-

ential equation

P (D)Y (t) = Q(D)DL(t),

where D denotes the differentiation operator. Moreover, the upcoming

Theorem 3.19 shows that for m = 1 the well-known univariate CARMA

processes are obtained and finally, the spectral representation (3.34) is

the obvious continuous time analogue of the spectral representation of

multivariate discrete time ARMA processes (see, for instance, Brockwell

& Davis (1991, Section 11.8)).

(ii) The well-definedness is ensured by Lemma 3.8. Observe also that, if

det(P(z)) has zeros with positive real part, all assertions of Theorem

3.9 except the alternative representation (3.19) and the independence of

G(0) and {L(t)}t≥0 remain still valid interpreting the stochastic differ-

ential equation as an integral equation as in the proof of the theorem.

However, in this case the process is no longer causal, i.e. adapted to the

natural filtration of the driving Lévy process. In the following we focus

on the causal case.

(iii) Assuming E[L(1)] = 0 is actually no restriction.

If E[L(1)] = µL �= 0, one simply observes that L̃(t) = L(t)−µLt has zero
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3.2 Multivariate CARMA Processes

expectation and

P (D)−1Q(D)DL(t) = P (D)−1Q(D)DL̃(t) + P (D)−1Q(D)µL.

The first term simply is the MCARMA process driven by L̃t and the

second an ordinary differential equation having the unique “stationary”

solution −A−1
p BqµL, as simple calculations show. Thus, the definition

can be immediately extended to E[L(1)] �= 0. Moreover, it is easy to see

that the SDE representation given in Theorem 3.9 still holds and one can

also extend the spectral representation by adding an atom with mass µL

to ΦL̃ at 0.

(iv) Furthermore, observe that the representation of MCARMA processes by

the stochastic differential equation (3.17) is a continuous time version of

state space representations for (multivariate) ARMA processes as given

in Brockwell & Davis (1991, Example 12.1.5) or Wei (1990, p. 387). In

the univariate Gaussian case it can already be found in Arató (1982,

Lemma 3, Chapter 2.2).

As already noted before, we extend the definition of MCARMA processes to

driving Lévy processes L with finite logarithmic moment using Theorem 3.9.

As they agree with the above defined MCARMA processes, when L is square-

integrable, and are always causal, we call them causal MCARMA processes.

Definition 3.17 (Causal MCARMA Process) Let L = {L(t)}t∈R be an

m-dimensional Lévy process satisfying∫
‖x‖>1

log ‖x‖ ν(dx) <∞, (3.37)

p, q ∈ N0 with q < p, and further A1, A2, . . . , Ap, B0, B1, . . . , Bq ∈ Mm(R),

where B0 �= 0. Define the matrices A, β and the polynomial P as in Theorem

3.9 and assume σ(A) = N (P ) ⊆ (−∞, 0) + iR. Then the m-dimensional

process

Y (t) =
(
Im, 0Mm(C), . . . , 0Mm(C)

)
G(t) (3.38)

where G is the unique stationary solution to

dG(t) = AG(t)dt+ βdL(t)
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is called causal MCARMA(p, q) process. Again G is referred to as the state

space representation.

Remark 3.18 In the following we will write “MCARMA” when referring to

Definition 3.15 and “causal MCARMA” when we refer to Definition 3.17. More-

over, we write “(causal) MCARMA” when referring to both Definitions 3.15

and 3.17.

Let us now state a result extending the short memory moving average rep-

resentation of univariate CARMA processes to our MCARMA processes and

showing that our definition is in line with univariate CARMA processes.

Theorem 3.19 Analogously to a one-dimensional CARMA process (see Sec-

tion 1.2), the MCARMA process (3.34) can be represented as a moving average

process

Y (t) =

∞∫
−∞

g(t− s)L(ds), t ∈ R, (3.39)

where the kernel matrix function g : R →Mm(R) is given by

g(t) =
1

2π

∞∫
−∞

eiµtP (iµ)−1Q(iµ) dµ. (3.40)

Proof. Using the notation of the proof of Theorem 3.2 we obtain this im-

mediately from (3.12):

Y (t) =

∞∫
−∞

eiµtP (iµ)−1Q(iµ) Φ(dµ)

=
1

2π

∞∫
−∞

∞∫
−∞

eiµ(t−s)P (iµ)−1Q(iµ) dµ Φ̃L(ds)

=
1

2π

∞∫
−∞

∞∫
−∞

eiµ(t−s)P (iµ)−1Q(iµ) dµL(ds)

=

∞∫
−∞

g(t− s)L(ds).
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Remark 3.20 For causal MCARMA processes with representation (3.38) an

analogous result holds with the kernel function g replaced by

g̃(s) = (Im, 0Mm(C), . . . , 0Mm(C))e
Asβ1[0,∞)(s).

Moreover, the function g simplifies in the square-integrable causal case as

the following extension of a well-known result for univariate CARMA processes

shows.

Lemma 3.21 Assume that σ(A) = N (P ) ⊆ (−∞, 0)+ iR. Then the function

g given in (3.40) vanishes on the negative real line.

Proof. We need the following consequence of the residue theorem from com-

plex analysis (cf., for instance, Lang (1993, Section VI.2, Theorem 2.2)):

Let q and p : C �→ C be polynomials where p is of higher degree than q.

Assume that p has no zeros on the real line. Then

∞∫
−∞

q(t)

p(t)
exp(iαt)dt = 2πi

∑
z∈C:�(z)>0,p(iz)=0

Res (f, z) ∀ α > 0, (3.41)

∞∫
−∞

q(t)

p(t)
exp(iαt)dt = −2πi

∑
z∈C:�(z)<0,p(iz)=0

Res (f, z) ∀ α < 0 (3.42)

with f : C �→ C, z �→ q(z)
p(z)

exp(iαz) and Res(f, a) denoting the residual of the

function f at point a.

Turning to our function g, we have from elementary matrix theory that

P (iz)−1Q(iz) =
S(z)

det(P (iz))

where S : C �→ Mm(C) is some matrix-valued polynomial in z. Observe that

det(P (iz)) is a complex-valued polynomial in z and that Lemma 3.8 applied

to R = Q implies that det(P (iz)) is of higher degree than S(z). Thus, we can

apply the above stated results from complex function theory componentwise

to (3.40). But as all zeros of det(P (z)) are in the left half plane (−∞, 0) + iR,

all zeros of det(P (iz)) are in the upper half plane R + i(0,∞) and therefore

(3.42) shows that

g(t) =
1

2π

∞∫
−∞

eiµtP (iµ)−1Q(iµ) dµ = 0 for all t < 0.
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Remark 3.22 The above result again reflects the causality, i.e. that the

MCARMA process Y (t) only depends on the past of the driving Lévy process,

i.e. on {L(s)}s≤t. Similarly g vanishes on the positive half line, if N (P ) ⊂
(0,∞) + iR. In this case the MCARMA process Y (t) depends only on the

future of the driving Lévy process, i.e. on {L(s)}s≥t. In all other non-causal

cases the MCARMA process depends on the driving Lévy process at all times.

Using the kernel representations, strict stationarity of MCARMA processes

is obtained by applying Applebaum (2004, Theorem 4.3.16).

Proposition 3.23 The (causal) MCARMA process is strictly stationary.

Furthermore, we can characterize the stationary distribution by applying

representation (3.39) and the results mentioned in Section 1.1.2.

Proposition 3.24 If the driving Lévy process L has characteristic triplet

(γ, σ, ν), then the distribution of the MCARMA process Y (t) is infinitely di-

visible for all t ∈ R and the characteristic triplet of the stationary distribution

is (γ∞Y , σ
∞
Y , ν

∞
Y ), where

γ∞Y =

∫
R

g(s)γ ds+

∫
R

∫
Rm

g(s)x[1{‖g(s)x‖≤1} − 1{‖x‖≤1}] ν(dx) ds,

σ∞Y =

∫
R

g(s)σg∗(s)ds

ν∞Y (B) =

∫
R

∫
Rm

1B(g(s)x) ν(dx) ds. (3.43)

For a causal MCARMA process the same result holds with g replaced by g̃.

3.3 Further Properties of MCARMA Processes

Having defined multivariate CARMA processes above, we analyse their prob-

abilistic behaviour further in this section. First we turn to the second order

properties.
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Proposition 3.25 Let Y = {Y (t)}t∈R be the MCARMA process defined by

(3.34). Then its autocovariance matrix function is given by

ΓY (h) =
1

2π

∞∫
−∞

eiλhP (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗ dλ, h ∈ R.

Proof. It follows directly from the spectral representation (3.34) that the

MCARMA process Y = {Y (t)}t∈R has the spectral density

fY (λ) =
1

2π
P (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗, λ ∈ R. (3.44)

The autocovariance function is the Fourier transform of (3.44).

Remark 3.26 Note that in Proposition 3.10 we already obtained an expres-

sion for the autocovariance matrix function of the process {G(t)}t∈R of Theo-

rem 3.9: The upper left m×m block of (3.25) is also equal to ΓY .

Regarding the general existence of moments, it is mainly the driving Lévy

process that matters.

Proposition 3.27 Let Y be a causal MCARMA process and assume that the

driving Lévy process L is in Lr(Ω, P ) for some r > 0. Then Y and its state

space representation G are in Lr(Ω, P ). Provided β is injective, the converse

is true as well for G.

Proof. We use the general fact that an infinitely divisible distribution with

characteristic triplet (γ, σ, ν) has finite r-th moment, if and only if∫
‖x‖>C

‖x‖rν(dx) <∞

for one and hence all C > 0 (see Sato (1999, Corollary 25.8)). Using the Kernel

representation (3.39) with

g̃(s) = (Im, 0Mm(C), . . . , 0Mm(C))e
Asβ1[0,∞)(s),

and the fact that there are C, c > 0 such that

‖(Im, 0Mm(C), . . . , 0Mm(C))e
Asβ‖ ≤ Ce−cs
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3 Multivariate CARMA Processes

we obtain for the stationary distribution of Y

∫
‖x‖>1

‖x‖rν∞Y (dx) =

∞∫
0

∫
Rm

1[1,∞)

(∥∥(Im, 0Mm(C), . . . , 0Mm(C))e
Asβx

∥∥)
×∥∥(Im, 0Mm(C), . . . , 0Mm(C))e

Asβx
∥∥r
ν(dx)ds

≤
∞∫

0

∫
Rm

1[1,∞)

(
Ce−cs ‖x‖)Cre−rcs ‖x‖r ν(dx)ds

=

∫
‖x‖>1/C

log(1/(C‖x‖))
−c∫

0

Cre−rcs ‖x‖r dsν(dx)

=
Cr

rc

∫
‖x‖>1/C

(‖x‖r − 1/Cr) ν(dx),

which is finite, if and only if L has a finite r-th moment.

Basically the same arguments apply to G(t) =
∫ t

−∞ e
A(t−s)βL(ds). Provided

β is injective, there are D, d > 0 such that ‖eAsβ‖ ≥ De−ds and calculations

analogous to the above one lead to a lower bound which establishes the neces-

sity of L ∈ Lr(Ω, P ) for G ∈ Lr(Ω, P ).

Since the characteristic function of Y (t) for each t is explicitly given, we

can investigate the existence of a C∞b density, where C∞b denotes the space of

bounded continuous, infinitely often differentiable functions whose derivatives

are bounded.

Proposition 3.28 Suppose that there exists an α ∈ (0, 2) and a constant

C > 0 such that∫
R

∫
Rm

|〈u, g(t− s)x〉|2 1{|〈u,g(t−s)x〉|≤1} ν(dx) ds ≥ C‖u‖2−α (3.45)

for any vector u such that ‖u‖ ≥ 1. Then the MCARMA process Y (t) has a

C∞b density.

The same holds for a causal MCARMA Y (t) process with g replaced by g̃.

Proof. It is sufficient to show that
∫ ‖u‖k‖Φ(u)‖ du < ∞ for any non-

negative integer k, where Φ denotes the characteristic function of Y (t). (see

e.g. Picard (1996, Proposition 0.2))

120



3.3 Further Properties of MCARMA Processes

The characteristic function of the (causal) MCARMA process Y (t) is given

by

Φ(u) = exp



∫
R

∫
Rm

[
ei〈u,g(t−s)x〉 − 1 − i〈u, g(t− s)x〉1{|〈u,g(t−s)x〉|≤1}

]
ν(dx) ds


 ,

where g stands for either g or g̃. Thus,

‖Φ(u)‖ =


exp



∫
R

∫
Rm

[
ei〈u,g(t−s)x〉 + e−i〈u,g(t−s)x〉 − 2

]
ν(dx) ds




1/2

= exp



∫
R

∫
Rm

(cos〈u, g(t− s)x〉 − 1) ν(dx) ds




≤ exp



∫
R

∫
Rm

(cos〈u, g(t− s)x〉 − 1) 1{|〈u,g(t−s)x〉|≤1} ν(dx) ds


 ,

as cos〈u, g(t− s)x〉 − 1 ≤ 0. Then, using the inequality 1 − cos(x) ≥ 2(x/π)2

for |x| ≤ π and assumption (4.30) we have

‖Φ(u)‖ ≤ exp


−C̃

∫
R

∫
Rm

|〈u, g(t− s)x〉|21{|〈u,g(t−s)x〉|≤1} ν(dx) ds




≤ exp{−C‖u‖2−α},

where C, C̃ > 0 are generic constants and the proof is complete.

The inequality 1− cos(x) ≥ 2(x/π)2 for |x| ≤ π can be easily shown: Define

f(x) = 1 − cos(x) − 2(x/π)2.

Then f(0) = f(π) = 0 and there is y ∈ (0, π) such that f ′(x) > 0, x ∈ [0, y)

and f ′(x) < 0, x ∈ (y, π]. Hence, f(x) > 0 for all x ∈ (0, π).

We summarize the sample path behaviour of the MCARMA(p, q) process

Y = {Y (t)}t∈R, which is immediate from the state space representation (3.17)

and the proof of Theorem 3.9.

Proposition 3.29 (i) If p > q + 1, then the (causal) MCARMA(p, q) pro-

cess Y = {Y (t)}t∈R is (p − q − 1)-times differentiable. Using the state

space representation G = {G(t)}t∈R we have di

dti
Y (t) = Gi+1(t) for i =

1, 2, . . . , p− q − 1.
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3 Multivariate CARMA Processes

(ii) If p = q+ 1, then ∆Y (t) = β1∆L(t), i.e. Y has a jump, whenever L has

one.

(iii) If the driving Lévy process L = {L(t)}t∈R of the MCARMA(p, q) process

is Brownian motion, the sample paths of Y are continuous and (p−q−1)-

times continuously differentiable, provided p > q + 1.

Ergodicity and mixing properties (see, for instance, Doukhan (1994) for a

comprehensive treatment) have far reaching implications. We thus conclude

the analysis of MCARMA processes with a result on their mixing behaviour.

Recall the following notions:

Definition 3.30 (cf. Davydov (1973)) A continuous time stationary

stochastic process X = {Xt}t∈R is called strongly (or α-) mixing, if

αl := sup
{|P (A ∩B) − P (A)P (B)| : A ∈ F0

−∞, B ∈ F∞l
}→ 0

as l → ∞, where F0
−∞ := σ ({Xt}t≤0) and F∞l = σ ({Xt}t≥l).

It is said to be β- mixing (or completely regular), if

βl := E
(
sup
{∣∣P (B|F0

−∞) − P (B)
∣∣ : B ∈ F∞l

})→ 0

as l → ∞.

Note that αl ≤ βl and thus any β-mixing process is strongly mixing.

Proposition 3.31 Let Y be a causal MCARMA process and G be its state

space representation. If the driving Lévy process L satisfies∫
‖x‖>1

‖x‖rν(dx) <∞ (3.46)

for some r > 0, then G is β-mixing with mixing coefficients βl = O(e−al) for

some a > 0 and Y is strongly mixing. In particular, both G and Y are ergodic.

Proof. As G(t) =
∫ t

−∞ e
A(t−s)βL(ds) is a multidimensional Ornstein-Uhlen-

beck process driven by the Lévy process βL, we may apply Masuda (2004,

Theorem 4.3) noting that (3.46) together with Proposition 3.27 ensure that

all conditions are satisfied. Hence, the β-mixing of G with exponentially de-

caying coefficients is shown. But this implies that G = (G∗1, G
∗
2, . . . , G

∗
p)
∗ is
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3.3 Further Properties of MCARMA Processes

also strongly mixing, which in turn shows the strong mixing property for Y ,

since Y is equal to G1 and it is obvious from the definition of strong mixing

that strong mixing of a multidimensional process implies strong mixing of its

components. Note that we also obtain αl ≤ βl for the mixing coefficients αl of

Y . Using the well-known result that mixing implies ergodicity concludes the

proof.

For a plot of the sample paths of a 2-dimensional MCARMA(1, 0) we refer to

Figure 5.4 in Chapter 5.

We have seen in Proposition 3.25 that the autocorrelations of MCARMA

processes are exponentially decaying. Hence, MCARMA processes have short

memory. In the following chapter we introduce fractionally integrated MCAR-

MA processes which have long memory in the sense that the autocorrelations

are hyperbolically decaying.
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4 Multivariate FICARMA

Processes

A multivariate analogue of the fractionally integrated continuous time au-

toregressive moving average (FICARMA) process (see Chapter 1.3, Brockwell

(2004) or Brockwell & Marquardt (2005)) is introduced in this chapter (see

also Marquardt (2006b)). We show that the multivariate FICARMA process

has two kernel representations: as an integral over the fractionally integrated

CARMA kernel with respect to a Lévy process and as an integral over the

original (not fractionally integrated) CARMA kernel with respect to the cor-

responding fractional Lévy process (FLP). In order to obtain the latter repre-

sentation we extend FLPs to the multivariate setting.

4.1 Multivariate Fractional Lévy Processes

4.1.1 Definition and Properties of MFLPs

Fractional Lévy processes have been introduced in Chapter 2 by replacing the

Brownian motion in the moving average representation of fractional Brownian

motion by a Lévy processes without Gaussian part. Here we extend the defini-

tion of a univariate fractional Lévy process to the multivariate setting. Since

most results are similar to the univariate case, we only give a brief sketch of

the proofs. Furthermore, we would like to stress that we only consider the case

where the driving Lévy process L has zero mean and finite second moments,

i.e. α = 2 in Definition 2.1.

Definition 4.1 (MFLP) For fractional integration parameter 0 < d < 0.5
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4.1 Multivariate Fractional Lévy Processes

we define a multivariate fractional Lévy process (MFLP) by

Md(t) = (M1
d (t), . . . ,Mm

d (t))T =

∫
R

ft(s)L(ds), t ∈ R, (4.1)

where the kernel ft is defined as in (2.4) and L(t) = (L1(t), . . . , Lm(t))T is a

square-integrable Lévy process on Rm, whose components Lj = {Lj(t)}t∈R, j =

1, . . . , m are Lévy processes without Gaussian part on R satisfying E[Lj(1)] = 0

and E[Lj(1)2] <∞, j = 1, . . .m.

The following proposition is obvious. It is a generalization of Theorem 2.10 to

the multivariate setting.

Proposition 4.2 The process {Md(t)}t∈R given in (4.1) is well-defined in

L2(Ω, P ). The distribution of Md(t) is infinitely divisible with characteristic

triplet (γt
M , 0, ν

t
M), where

γt
M = −

∫
R

∫
Rm

ft(s)x1{‖ft(s)x‖>1} ν(dx) ds and (4.2)

νt
M(B) =

∫
R

∫
Rm

1B(ft(s)x) ν(dx) ds, (4.3)

where ν denotes the Lévy measure of the driving Lévy process L. Furthermore,

for t ∈ R and z ∈ Rm,

E[exp i〈z,Md(t)〉] = exp



∫
R

∫
Rm

(
ei〈z,ft(s)x〉 − 1 − i〈z, ft(s)x〉

)
ν(dx) ds


 .

(4.4)

Remark 4.3 As Md is well-defined in an L2-sense, analogously to the one-

dimensional case and (1.11), the process Md can be represented as

Md(t) =

∫
R

∫
Rm

0

ft(s)x J̃(dx, ds), t ∈ R,

where J̃(dx, ds) = J(dx, ds)−ν(dx) ds is the compensated jump measure of the

Lévy process L. Moreover, Md is a.s. equal to the improper Riemann integral

Md(t) =
1

Γ(d)

∫
R

[(t− s)d−1
+ − (−s)d−1

+ ]L(s) ds, t ∈ R, (4.5)

and (4.5) is continuous in t (see Section 2.1.2).
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4 Multivariate FICARMA Processes

Furthermore, we have the isometry property

E[Md(t)Md(t)
T ] = ‖ft‖2

L2(R)ΣL. (4.6)

and we see that the second-order properties of the MFLP {Md(t)}t∈R are spec-

ified by E[Md(t)] = 0 and covariance matrices

Γ(s, t) = E[Md(s)Md(t)
T ] = [γij(s, t)]

m
i,j=1, s, t ∈ R,

where for s, t ∈ R,

γij(s, t) = E[M i
d(s)M

j
d(t)]

=
cov(Li(1), Lj(1))

2Γ(2d+ 2) sin(π[d+ 1
2
])

[|t|2d+1 − |t− s|2d+1 + |s|2d+1
]
.

Recall that

cov(Li(1), Lj(1)) =

∫
Rm

xixj ν(dx),

where x = (x1, . . . , xm)T ∈ Rm. Hence, the MFLP Md = {Md(t)}t∈R inherits

its dependence structure form the driving Lévy process L = {L(t)}t∈R .

To the end of this chapter we use the notation

Γ(h) = E[X(t+ h)X(t)T ] = [γij(h)]
m
i,j=1,

if the series {X(t)}t∈Rm is stationary. We shall refer to Γ(h) as the covariance

matrix at lag h. Notice that, if {X(t)}t∈Rm is stationary with covariance matrix

function Γ, then for each j, {Xj(t)}t∈R, j = 1, . . . , m is stationary with covari-

ance matrix function γjj. The function γij, i �= j, is called the cross-covariance

function of the two series {X i(t)}t∈R and {Xj(t)}t∈R. It should be noted that

γij is not in general the same as γji.

The sample path properties of a MFLP are analogous to the one-dimensional

case. We therefore omit the proof of the following proposition and refer to

chapter 2.

Proposition 4.4 (Sample Path Properties) Every MFLP is a long mem-

ory process with stationary increments, which cannot be self-similar. Moreover,

it is symmetric and Hölder continuous of every order less than d.
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4.1 Multivariate Fractional Lévy Processes

In particular, a MFLP has less smooth sample paths than a fractional Brow-

nian motion. Note also, that the upper bound on the Hölder exponent of the

MFLP cannot be improved. In fact, if the Lévy measure ν(R) = ∞, the sample

paths of MFLPs are not Hölder continuous with probability 1 for every order

β > d .

MFLPs are not always semimartingales. In fact, it has been shown in Theo-

rem 2.27 and Corollary 2.31 that this is the case for a fairly large class of Lévy

measures ν.

4.1.2 Integration with respect to MFLPs

MFLPs are not always semimartingales and thus ordinary Itô integration the-

ory cannot be applied. Therefore, this section contains the integration theory

for stochastic integrals with respect to MFLPs. Our approach is heavily based

on the integration theory with respect to a one-dimensional FLP (see Chapter

2).

Again, let the space H be the completion of L1(R) ∩ L2(R) with respect to

the norm

‖g‖H :=


E[L(1)2]

∫
R

(Id
−g)

2(u) du


2

, (4.7)

where (Id
−g)(u), u ∈ R, is the right-sided Riemann-Liouville fractional inte-

gral of order d of the function g : R → R, g ∈ L1(R).

Now let G : R →Mm(R) be a matrix function whose components Gjk : R →
R, j, k = 1, . . . , m, are in the space H . To ease notation we write G ∈ Hm.

Moreover, let Md = {Md(t)}t∈R denote an m-dimensional FLP. Then we define

the integral ∫
R

G(t)Md(dt) (4.8)

componentwise as the limit in L2(Ω, P ) of simple functions φn
jk : R → R, n ∈ N

approximating each component Gjk of G in the sense that

‖φn
jk −Gjk‖H → 0, as n→ ∞.

Denoting the coordinates of Md by M j
d , the j-th element (

∫
G(t)Md(dt))

j of∫
G(t)Md(dt) is then given by

∑m
k=1

∫
Gjk(t)M

k
d (dt), where the integrals are
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4 Multivariate FICARMA Processes

one-dimensional stochastic integrals as in (2.50). This reflects that the inte-

gration is understood componentwise. As a consequence of Theorem 2.34 the

integral (4.8) is well-defined, whenever G ∈ Hm. In fact,

∫
R

G(t)Md(dt) =

∫
R



G11(t) . . . G1m(t)

...
...

Gm1(t) . . . Gmm(t)





M1

d (dt)
...

Mm
d (dt)




=



∫
R

G11(t)M
1
d (dt) + . . .+

∫
R

G1m(t)Mm
d (dt)

...∫
R

Gm1(t)M
1
d (dt) + . . .+

∫
R

Gmm(t)Mm
d (dt)




=




∫
R

1
Γ(d)

∞∫
u

(s− u)d−1G11(s) dsL
1(du) + . . .+

∫
R

1
Γ(d)

∞∫
u

(s− u)d−1G1m(s) dsLm(du)

...∫
R

1
Γ(d)

∞∫
u

(s− u)d−1Gm1(s) dsL
1(du) + . . .+

∫
R

1
Γ(d)

∞∫
u

(s− u)d−1Gmm(s) dsLm(du)




=

∫
R

1

Γ(d)




∞∫
u

(s− u)d−1G11(s) ds . . .
∞∫
u

(s− u)d−1G1m(s) ds

...
...

∞∫
u

(s− u)d−1Gm1(s) ds . . .
∞∫
u

(s− u)d−1Gmm(s) ds


 L(du)

=
1

Γ(d)

∫
R

∞∫
u

(s− u)d−1



G11(s) . . . G1m(s)

...
...

Gm1(s) . . . Gmm(s)


 dsL(du)

=
1

Γ(d)

∫
R

∞∫
u

(s− u)d−1G(s) dsL(du).

Hence, analogous to Section 2.3 we obtain∫
R

G(t)Md(dt) =
1

Γ(d)

∫
R

∞∫
u

(s− u)d−1G(s) dsL(du), (4.9)

where the equality holds in the L2-sense.

Like in the univariate case, we have the following isometry property.

Proposition 4.5 Let F : R → Mm(R) and G : R → Mm(R) be matrix

functions with components Fij : R → R and Gij : R → R, i, j = 1, . . . , m such
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4.1 Multivariate Fractional Lévy Processes

that |Fij |, |Gij|, i, j = 1, . . . , m are in the space H. Then

E




∫

R

F (t)Md(dt)




∫

R

G(u)Md(du)


T

=
Γ(1 − 2d)

Γ(d)Γ(1 − d)

∫
R

∫
R

|t− u|2d−1F (t)ΣLG(u)T dt du. (4.10)

Proof.

Analogous to the proof of Proposition 2.38, we have

E




∫

R

F (t)Md(dt)




∫

R

G(u)Md(du)


T

=
1

(Γ(d))2

∞∫
−∞

∞∫
s

∞∫
s

F (t)ΣLG(u)T (t− s)d−1(u− s)d−1 dt du ds

=
1

(Γ(d))2

∞∫
−∞

∞∫
−∞

F (t)ΣLG(u)T

min(u,t)∫
−∞

(t− s)d−1(u− s)d−1 ds dt du

=
Γ(1 − 2d)

Γ(d)Γ(1 − d)

∞∫
−∞

∞∫
−∞

F (t)ΣLG(u)T |t− u|2d−1 dt du,

where we have used Fubini’s theorem.

4.1.3 The Spectral Representation of MFLPs

We start with a brief summary of the results on random orthogonal measures

obtained in Chapter 3. There it is shown that for every m-dimensional Lévy

process L = {L(t)}t∈R with E[L(1)] = 0 and E[L(1)L(1)T ] = ΣL there exists

anm-dimensional random orthogonal measure ΦL such that E[ΦL(∆)] = 0 and

E[ΦL(∆)ΦL(∆)∗] = 1
2π

ΣLΛ(∆) for any bounded Borel set ∆, where Λ denotes

the Lebesgue measure. The random measure ΦL is uniquely determined by

ΦL([a, b)) =

∫
R

e−iλa − e−iλb

2πiλ
L(dλ) (4.11)

for all −∞ < a < b <∞. Moreover,

L(t) =

∫
R

eiλt − 1

iλ
ΦL(dλ), t ∈ R. (4.12)
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4 Multivariate FICARMA Processes

Finally, for any function f ∈ L2(Mm(C)),∫
R

f(λ) ΦL(dλ) =
1

2π

∫
R

∫
R

e−iλtf(λ) dλL(dt) =
1√
2π

∫
R

f̂(t)L(dt), (4.13)

∫
R

f̂(t)L(dt) =

∫
R

∫
R

eiλtf̂(t) dtΦL(dλ) =
√

2π

∫
R

f(λ) ΦL(dλ). (4.14)

Here,

f̂(t) =
1√
2π

∫
R

e−iλtf(λ) dλ and f(λ) =
1√
2π

∫
R

eiλtf̂(t) dt

are the Plancherel Fourier transform and the inverse Plancherel Fourier trans-

form, respectively. We will use those results to obtain a spectral representation

for MFLPs and integrals with respect to them.

Theorem 4.6 Let Md = {Md(t)}t∈R be an m-dimensional FLP. Then Md has

the spectral representation

Md(t) =

∫
R

eiλt − 1

(iλ)d+1
ΦL(dλ), t ∈ R, (4.15)

where ΦL is the random orthogonal measure defined in (4.11). Furthermore,

let

ΦM ([a, b]) =

∫
R

1

(iλ)d
1(a,b)(λ) ΦL(dλ), a < b, (4.16)

define a random measure. Then

ΦM([a, b]) =

∫
R

e−ias − e−ibs

2πis
Md(ds). (4.17)

Proof. Observe that (Bronstein et al. (1999, Formula 4, p. 1081))

1

Γ(d+ 1)

∫
R

[(b− s)d
+ − (a− s)d

+]eiλs ds =
eiλb − eiλa

(iλ)d+1
. (4.18)

Using (4.14) and (4.18) we obtain

Md(b) −Md(a) =
1

Γ(d+ 1)

∫
R

[(b− s)d
+ − (a− s)d

+]L(ds)

=
1

Γ(d+ 1)

∫
R

∫
R

[(b− s)d
+ − (a− s)d

+] eiλs dsΦL(dλ)

=

∫
R

eiλb − eiλa

(iλ)d+1
ΦL(dλ).
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4.1 Multivariate Fractional Lévy Processes

It remains to prove (4.17):

ΦM ([a, b]) =

∫
R

e−ias − e−ibs

2πis
Md(ds)

=
1

Γ(d)

∫
R

∞∫
u

(s− u)d−1 e
−ias − e−ibs

2πis
ds L(du)

=

∫
R

∫
R

∫
R

eiuλ(s− u)d−1
+

Γ(d)

e−ias − e−ibs

2πis
ds duΦL(dλ)

=

∫
R

∫
R

∫
R

eiuλ(s− u)d−1
+

Γ(d)
du

e−ias − e−ibs

2πis
dsΦL(dλ)

=

∫
R

∫
R

eiλs

(iλ)d

e−ias − e−ibs

2πis
dsΦL(dλ) =

∫
R

1

(iλ)d
1(a,b)(λ) ΦL(dλ).

Remark 4.7 From the proof of Theorem 4.6 follows that we can write∫
R

g(t)Md(dt) =

∫
R

∫
R

eiλt(iλ)−dg(t) dtΦL(dλ) =

∫
R

∫
R

eiλtg(t) dtΦM(dλ).

(4.19)

Figure 4.1 and Figure 4.2 display the sample paths of a 2-dimensional FLP,

where the driving Lévy process is a 2-dimensional symmetric truncated stable

Lévy process (see (2.42)) and where the dependence of the driving Lévy process

is given by the Clayton Lévy copula

Fθ(u, v) = (u−θ + v−θ)−1/θ (4.20)

for which the conditional distribution function takes a particularly simple form

F (v|u) =
∂Fθ(u, v)

∂u
=

[
1 +
(u
v

)θ
]−1−1/θ

. (4.21)

As (4.21) can be easily inverted, namely

F−1(y|u) = u
(
y−

θ
1+θ − 1

)−1/θ

,
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4 Multivariate FICARMA Processes

we can use the state space representation (2.13) of a univariate FLP to simulate

the sample paths (see Cont & Tankov (2004, Example 6.18) for further details).

We simulated trajectories of a MFLP with fractional truncated α-stable mar-

gins, where we set α = 1.8 and d = 0.2. Observe that the dependence increases

with the value of θ.
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Figure 4.1: The sample path of a 2-dim FLP (d = 0.2) with fractional truncated 1.8-

stable margins and where the dependence of the driving Lévy process

is given by the Clayton Lévy copula (4.20) with θ = 0.3.

4.2 Multivariate FICARMA Processes

Our aim in this section is to define a multivariate FICARMA process, since so

far only univariate FICARMA processes have been defined and investigated

(see Section 1.3). The advantage of continuous time multivariate modeling is

that it allows handling irregularly spaced time series and high frequency data

but also modeling the joint behaviour of several time series. For instance, to
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Figure 4.2: The sample path of a 2-dim FLP (d = 0.2) with fractional truncated 1.8-

stable margins and where the dependence of the driving Lévy process

is given by the Clayton Lévy copula (4.20) with θ = 20.

model prices of various stocks on a tic-by-tic basis, continuous time multivari-

ate time series models are required.

4.2.1 Representations of MFICARMA Processes

In one dimension, starting from a short memory moving average process, there

are at least two possible ways to construct a long memory moving average

process:

(I) a fractional integration of the kernel of the short memory process,

(II) a substitution of the driving Lévy process by the corresponding fractional

Lévy process.

Both approaches lead to the same long memory L2-process (see Theorem 2.43).

We apply approach (I) to MCARMA processes to obtain MFICARMA pro-

cesses, i.e. we fractionally integrate the MCARMA kernel g as given in (3.40)
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4 Multivariate FICARMA Processes

(and which satisfies g ∈ Hm) and obtain for t ∈ R,

gd(t) : = (Id
+g)(t) =

1

Γ(d)

t∫
0

g(t− u)ud−1 du

=
1

2πΓ(d)

t∫
0

∫
R

eiµ(t−u)P (iµ)−1Q(iµ) dµ ud−1 du

=
1

2πΓ(d)

∫
R

t∫
0

eiµ(t−u)P (iµ)−1Q(iµ)ud−1 du dµ

=
1

2π

∫
R

eiµt(iµ)−dP (iµ)−1Q(iµ) dµ. (4.22)

Note that gd(t) = 0 for all t ≤ 0 and gd ∈ L2(Mm(R)). Moreover, for m = 1

(4.22) is equivalent to (1.41). This leads to the following definition.

Definition 4.8 (MFICARMA Process I) Let 0 < d < 0.5. For p > q

the multivariate fractionally integrated CARMA(p, d, q) (MFICARMA) process

driven by the m-dimensional Lévy process L = {L(t)}t∈R with E[L(1)] = 0 and

E[L(1)L(1)T ] = ΣL <∞ is defined by

Yd(t) =

t∫
−∞

gd(t− s)L(ds), t ∈ R, (4.23)

where the fractionally integrated kernel gd is given as in (4.22) and where the

polynomials P (·) and Q(·) are defined as in (3.35) and (3.36), respectively.

Now, we turn our attention to approach (II) and substitute in the MCARMA

representation the driving Lévy process by the corresponding MFLP.

Definition 4.9 (MFICARMA Process II) Let 0 < d < 0.5. For p > q

the multivariate fractionally integrated CARMA(p, d, q) (MFICARMA) pro-

cess driven by the m-dimensional fractional Lévy process Md = {Md(t)}t∈R is

defined by

Yd(t) =

t∫
−∞

g(t− s)Md(ds), t ∈ R, (4.24)

where the kernel g is the CARMA kernel given in (3.40).
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4.2 Multivariate FICARMA Processes

Representation (4.24) is equal to (4.23). In fact, using (4.9), we have

∫
R

g(t− s)Md(ds) =

∫
R



g11(t− s) . . . g1m(t− s)

...
...

gm1(t− s) . . . gmm(t− s)





M1

d (ds)

. . .

Mm
d (ds)




=



∫
R

g11(t− s)M1
d (ds) + . . .+

∫
R

g1m(t− s)Mm
d (ds)

...∫
R

g1m(t− s)M1
d (ds) + . . .+

∫
R

gmm(t− s)Mm
d (ds)




=




∫
R

(
1

Γ(d)

∞∫
u

(s− u)d−1g11(t− s) ds

)
L1(du) + . . .

...∫
R

(
1

Γ(d)

∞∫
u

(s− u)d−1gm1(t− s) ds

)
L1(du) + . . .

+
∫
R

(
1

Γ(d)

∞∫
u

(s− u)d−1g1m(t− s) ds

)
Lm(du)

...

+
∫
R

(
1

Γ(d)

∞∫
u

(s− u)d−1gmm(t− s) ds

)
Lm(du)




=



∫
R

gd11(t− s)L1(ds) + . . .+
∫
R

gd1m(t− s)Lm(ds)

...∫
R

gdm1(t− s)L1(ds) + . . .+
∫
R

gdmm(t− s)Lm(ds)


 =

∫
R

gd(t− s)L(du).

Representation (4.23) is useful to obtain distributional and sample path

properties, whereas representation (4.24) is useful in simulations (see Chapter

2 for the univariate case). In particular, we use representation (4.24) to obtain

a spectral representation for MFICARMA processes.

Theorem 4.10 The MFICARMA(p, d, q) process Yd = {Yd(t)}t∈R has the

spectral representation

Yd(t) =

∫
R

eiµt(iµ)−dP (iµ)−1Q(iµ) ΦL(dµ) (4.25)

=

∫
R

eiµtP (iµ)−1Q(iµ) ΦM(dµ), t ∈ R,
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4 Multivariate FICARMA Processes

where ΦL is the random orthogonal measure corresponding to the Lévy process

L and ΦM is the random measure defined in Theorem 4.6.

Proof. We use equality (4.19) and obtain∫
R

g(t− s)Md(ds) =

∫
R

∫
R

1

2π
eiµ(t−s)P (iµ)−1Q(iµ) dµMd(ds)

=

∫
R

∫
R

∫
R

1

2π
eiµ(t−s)eiλs(iλ)−dP (iµ)−1Q(iµ) dµ dsΦL(dλ)

=

∫
R

∫
R

eiµt(iλ)−dP (iµ)−1Q(iµ)
1

2π

∫
R

ei(λ−µ)s ds dµΦL(dλ)

=

∫
R

eiµt(iµ)−dP (iµ)−1Q(iµ) ΦL(dµ)

=

∫
R

eiµtP (iµ)−1Q(iµ) ΦM(dµ).

Remark 4.11 Note that for d = 0 the MCARMA processes are obtained.

Moreover, an MFICARMA process Yd can be interpreted as a solution to the

p-th order m-dimensional formal differential equation

P (D)Yd(t) = Q(D)DMd(t),

where D denotes the differentiation operator. Furthermore, the spectral rep-

resentation (4.25) shows that MFICARMA processes are the continuous time

analogue of the well-known discrete time multivariate fractionally integrated

ARMA (ARFIMA) processes (see e.g. Brockwell & Davis (1991)).

4.2.2 Properties of MFICARMA Processes

Having defined MFICARMA processes, we consider their distributional, second-

order and sample path properties. First note that, since (4.23) is a moving

average process, the MFICARMA is stationary.
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4.2 Multivariate FICARMA Processes

Theorem 4.12 (Infinite Divisibility) The MFICARMA process as given

in (4.23) is well-defined in L2(Ω, P ). For all t ∈ R the distribution of Yd(t) is

infinitely divisible with characteristic triplet (γt
Y , 0, ν

t
Y ), where

γt
Y = −

∫
R

∫
Rm

xgd(t− s)1{‖gd(t−s)x‖>1} ν(dx) ds and (4.26)

νt
Y (B) =

∫
R

∫
Rm

1B(gd(t− s)x) ν(dx) ds, B ∈ B(Rm) (4.27)

and (γ, 0, ν) is the characteristic triplet of the driving Lévy process L in (4.23).

Proof. Obviously, (4.23) is well-defined in L2(Ω, P ), since gd ∈ L2(Mm(R)).

This fact, as well as (4.26) and (4.27) follow from Proposition 1.2.

Remark 4.13 From Theorem 4.12 we can conclude that the generating triplet

of the stationary limiting distribution of Yd(t) as t→ ∞ is given by (γ∞Y , 0, ν
∞
Y ),

where

γ∞Y = −
∞∫

0

∫
Rm

xgd(s)1{‖gd(s)x‖>1} ν(dx) ds and (4.28)

ν∞Y (B) =

∞∫
0

∫
Rm

1B(gd(s)x) ν(dx) ds, B ∈ B(Rm). (4.29)

Moreover, if gd ∈ Lr(Mm(R)) and the driving Lévy process L is in Lr(Ω, P )

for some r > 0, then the MFICARMA process Yd is in Lr(Ω, P ). This follows

from the general fact that an infinitely divisible distribution with characteristic

triplet (γ, σ, ν) has finite r-th moment, if and only if
∫
‖x‖>ε

‖x‖r ν(dx) < ∞
for some ε > 0 (Sato (1999, Corollary 25.8.), see also Propostion 3.27).

The proofs of the following two propositions are analogous to the proofs of

the corresponding results for MCARMA processes (see Chapter 3). Therefore

they are omitted.

Proposition 4.14 Suppose that there exist an α ∈ (0, 2) and a constant C > 0

such that∫
R

∫
Rm

|〈w, gd(t− s)x〉|2 1{|〈w,gd(t−s)x〉|≤1} ν(dx) ds ≥ C‖w‖2−α (4.30)

for any vector w such that ‖w‖ ≥ 1. Then Yd(t) has a C∞b density.
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4 Multivariate FICARMA Processes

Proposition 4.15 (Continuity) If gd ∈ C1
b (R), then the MFICARMA pro-

cess Yd has a continuous version on every bounded interval I of R.

So far we only used representation (4.23) to derive probabilistic properties.

However, having the spectral representation (4.25), we can immediately con-

clude that the spectral density of an MFICARMA(p, d, q) process has the form

fYd
(λ) =

1

2π
(iλ)−2dP (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗, λ ∈ R.

The following proposition is therefore obvious.

Proposition 4.16 Let Yd = {Yd(t)}t∈R be an MFICARMA(p, d, q) process.

Then it has the autocovariance matrix function

ΓYd
(h) =

1

2π

∫
R

eiλh(iλ)−2dP (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗ dλ, h ∈ R.

Alternatively, we can use (4.10) together with representation (4.24) and

obtain for the autocovariance matrix function of an MFICARMA process

ΓYd
(h) = E




 t+h∫
−∞

g(t+ h− s)Md(ds)




 t∫
−∞

g(t− u)Md(du)


T



=
Γ(1 − 2d)

Γ(d)Γ(1 − d)

t+h∫
−∞

t∫
−∞

|s− u|2d−1g(t+ h− s)ΣLg(t− u)T ds du, h ≥ 0,

and ΓYd
(h) = (ΓYd

(−h))∗, h < 0. It follows

ΓYd
(h) ∼ Γ(1 − 2d)

Γ(d)Γ(1 − d)
|h|2d−1

∞∫
0

∞∫
0

g(s)ΣLg(u)
T ds du as h→ ∞.

Therefore an MFICARMA(p, d, q) process is a long memory process ac-

cording to Definition 1.16.

Finally, we would like to mention that Figure 5.3 in Chapter 5 displays the

sample path of a 2-dimensional MFICARMA(1, 0.25, 0) which is driven by a

fractional symmetric truncated α-stable Lévy process Md, where α = 1.8.
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5 Ornstein-Uhlenbeck Processes

Lévy-driven processes of Ornstein-Uhlenbeck (OU) type have been extensively

studied over the last recent years and widely used in applications, especially

in the context of finance and econometrics. Several examples of univariate

non-Gaussian OU processes can be found in Barndorff-Nielsen & Shephard

(2001a), where OU processes are used to model stochastic volatility. Recently

multidimensional non-Gaussian OU processes have been considered in Masuda

(2004). Moreover, Buchmann & Klüppelberg (2006) discussed among other

processes univariate fractional OU processes which were driven by a fractional

Brownian motion. In this section we apply the results of the previous chapters

to OU processes. In particular, we obtain a multivariate fractional OU process

which shows long memory.

5.1 The Univariate (Fractionally Integrated)

Ornstein-Uhlenbeck Process

We apply our findings of Sections 1.2 and 1.3 to univariate Ornstein-Uhlenbeck

(OU) and univariate fractionally integrated OU processes, respectively.

Definition 5.1 Let c > 0 and L = {L(t)}t∈R be a Lévy process. The process

Y (t) =

t∫
−∞

e−c(t−s) L(ds), t ∈ R, (5.1)

is called non-Gaussian Ornstein-Uhlenbeck process.

Remark 5.2 Note that for any fixed s < t,

Y (t) − e−c(t−s)Y (s) =

t∫
s

e−c(t−s) L(ds)
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5 Ornstein-Uhlenbeck Processes

is a random variable independent of σ{Y (u), u ≤ s}, the σ-algebra generated

by {Y (u), u ≤ s}. This implies that the OU process (5.1) is a Markov process.

Moreover, for all c > 0, Y (t) is self-decomposable (see Barndorff-Nielsen &

Shephard (2001a, Theorem 6.1)). Furthermore, it is well-known that a neces-

sary and sufficient condition for the OU process Y to be well-defined is that∫
|x|>1

log |x| ν(dx) <∞

(see also (1.34)).

Obviously, for the univariate non-Gaussian Ornstein-Uhlenbeck process,

p(z) = z+ c for some c > 0 and q(z) = 1 in the CARMA representation (1.22)

and in the kernel representation (1.30), respectively. Hence, the OU process is

a special case of a CARMA(p, q) process, namely it is a CARMA(1, 0) process.

From (1.35) we obtain the familiar expression for the OU kernel,

g(t) = e−ct1[0,∞)(t). (5.2)

Calculating the left-sided Riemann-Liouville fractional integral of (5.2), i.e.

inserting (5.2) in (1.50) we obtain the fractionally integrated kernel,

gd(t) = (−c)−de−ctP (−ct, d)1[0,∞)(t), (5.3)

where the function P (·) is the incomplete gamma function as defined in (1.52).

From (1.42), the asymptotic form of gd(t) in this special case is

gd(t) ∼ td−1

cΓ(d)
as t→ ∞. (5.4)

If c = 1 and d = 0.45, the exact and asymptotic expressions (5.3) and (5.4)

agree to within 0.1 percent for h ≥ 100. The exact and asymptotic expressions

for g0.45(100) are 0.0405849 and 0.040359 respectively, as compared with the

much smaller value of the unintegrated kernel, g(100) = 3.72 × 10−44. Figure

5.1 displays these results.

Considering the second-order properties we obtain from (1.36) the well-known

expression for the autocovariance function, γ(h) = E[L(1)2]e−c|h|/(2c), and
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Figure 5.1: The kernel g, the fractionally integrated kernel gd (d = 0.45) and the

asymptotic fractionally integrated kernel of the OU process for c = 1.

from (1.51) we find, for the fractionally integrated process, that the variance

is

γd(0) =
E[L(1)2]

2c2d+1 cos(πd)

while the autocorrelation function, ρd(h) = γd(h)/γd(0), is

ρd(h) = cosh(ch) − ech

2
P (ch, 2d) +

e−ch

2
(−1)−2dP (−ch, 2d), h ≥ 0. (5.5)

The autocorrelation function (5.5), interestingly, depends on c and h only

through the value of ch. The following table displays the autocorrelation func-

tion for d = .01, .05, .1, .2, .3, .4, .45, .49 and for ch = 0, 5, 10, 15, 20, 25, 30.

Table 1. The autocorrelation function of the fractionally integrated OU process
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5 Ornstein-Uhlenbeck Processes

ch\d .01 .05 .10 .20 .30 .40 .45 .49

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 .01133 .03345 .07070 .18462 .36528 .63081 .80127 .95788

10 .00221 .01354 .03514 .11450 .26901 .54338 .74421 .94393

15 .00144 .00926 .02513 .08918 .22790 .50029 .71414 .93618

20 .00108 .00712 .01990 .07490 .20289 .47209 .69373 .93077

25 .00087 .00582 .01663 .06545 .18547 .45138 .67835 .92661

30 .00072 .00493 .01436 .05864 .17237 .43516 .66606 .92323

From (1.48) we obtain the asymptotic expression for the autocorrelation func-

tion,

(6.8) ρd(h) ∼ (ch)2d−1 2Γ(1 − 2d) cos(πd)

Γ(d)Γ(1 − d)
as h→ ∞.

The relative error of the asymptotic approximation when ch = 30 is less than

0.3% across the range of d-values tabulated (see Figure 5.2).

Remark 5.3 Observe that, in order that the fractionally integrated OU pro-

cess
∫

R
gd(t − s)L(ds) with kernel gd given by (5.3) is well-defined, the driv-

ing Lévy process must be square integrable with zero mean. This is a con-

sequence of Remark 1.21, since the fractionally integrated OU process is a

FICARMA(1, d, 0) process.

5.2 The Multivariate Fractional

Ornstein-Uhlenbeck Process

In this section we define multivariate fractional Ornstein-Uhlenbeck processes

as a special case of the multivariate fractionally integrated CARMA processes

considered in Chapter 4.

Definition 5.4 (Multivariate Fractional OU Process)

Let A ∈ Mm(R) be a matrix such that all the eigenvalues of A have negative

real part. Let B ∈ Mm(R) be positive definite and Md = {Md(t)}t∈R be a
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Figure 5.2: The autocorrelation function of the (fractionally integrated, d = 0.2)

OU process (c = 1) and the asymptotic autocorrelation function of the

fractionally integrated OU process.

square-integrable m-dimensional fractional Lévy process as defined in Section

4.1.1. We define the fractional Ornstein-Uhlenbeck process by

Od,A,B
t =

t∫
−∞

eA(t−s)BMd(ds), t ∈ R. (5.6)

Remark 5.5 Obviously (5.6) is an MFICARMA(1, d, 0) process and is there-

fore stationary and well-defined. Moreover, it is a process with long memory

(see Chapter 4).

Now, without serious loss of generality we assume that the matrix A is

diagonizable. Therefore, let U ∈ Mm(R) be such that A = UDU−1, where

D = diag(λi)i=1,...,m and λi, i = 1, . . . , m, are the eigenvalues of A. Then,
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5 Ornstein-Uhlenbeck Processes

calculating the left-sided Riemann-Liouville fractional integral of the kernel

G(t− s) = eA(t−s)B1[0,∞)(t− s),

we obtain

Gd(t) : = (Id
+G)(t) =

1

Γ(d)

∞∫
0

sd−1eA(t−s)B1[0,∞)(t− s) ds

=
eAtU

Γ(d)

t∫
0

sd−1diag(e−λis) dsU−1B

=
eAtU

Γ(d)




λ−d
1

λ1t∫
0

sd−1e−s ds

. . .

λ−d
m

λmt∫
0

sd−1e−s ds


U−1B

= eAtU




λ−d
1 P (λ1t, d)

. . .

λ−d
m P (λmt, d)


U−1B,

where P (x, d) = 1
Γ(d)

x∫
0

e−ttd−1 dt denotes again the lower incomplete gamma

function with complex argument x ∈ C (see also (1.52)). Hence, it follows from

(4.9) and (4.23),

Od,A,B
t =

∫
R

Gd(t− u)L(du), t ∈ R. (5.7)

We see that OU processes have the nice property that the explicit expression

of the fractionally integrated kernel is easy to compute, which is unfortunately

not the case for general MFICARMA processes.

Finally, we would like to mention that the usual definition of an (not frac-

tional) OU process driven by Brownian motion is as the solution of a stochastic

differential equation, the so-called Langevin equation. The next proposition

shows that this is also true for multivariate fractional OU processes.

Proposition 5.6 The process Od,A,B
t as given in (5.6) is the unique stationary

solution of the SDE of Langevin-type

dO(t) = AO(t)dt+BMd(dt), t > 0, (5.8)
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5.2 The Multivariate Fractional Ornstein-Uhlenbeck Process

where the matrices A,B ∈Mm(R) are defined as in Definition 5.4.

Proof. Let t0 < s < t. Notice that equation (5.8) can be written in the

integral form

O(t) − O(t0) =

t∫
t0

AO(s) ds+ B[Md(t) −Md(t0)].

Therefore, using (4.9) and Fubini’s theorem we obtain

t∫
t0

AO(s) ds =

t∫
t0

A

s∫
−∞

eA(s−u)BMd(du) ds

=

t∫
t0

A

t0∫
−∞

eA(s−u)BMd(du) ds+

t∫
t0

A

s∫
t0

eA(s−u)BMd(du) ds

=

t∫
t0

A

t0∫
−∞

eA(s−t0)eA(t0−u)BMd(du) ds

+
1

Γ(d)

t∫
t0

A

s∫
t0

∞∫
v

(u− v)d−1eA(s−u)B duL(dv) ds

=

t∫
t0

AeA(s−t0)O(t0) ds+
1

Γ(d)

t∫
t0

A

∞∫
v

t∫
u

(u− v)d−1eA(s−u)B ds duL(dv)

= [eA(t−t0) − Im]O(t0) +
1

Γ(d)

t∫
t0

∞∫
v

(u− v)d−1[eA(t−u) − Im]B duL(dv)

= [eA(t−t0) − Im]O(t0) +

t∫
t0

[eA(t−u) − Im]BMd(du)

= O(t) − O(t0) − B[Md(t) −Md(t0)].

The proof of the uniqueness is a simple application of Gronwall’s Lemma (see

e.g. Ikeda & Watanabe (1989, Theorem 3.1)).

Figure 5.3 and Figure 5.4 show the sample paths of a 2-dimensional OU process

(d = 0) and a 2-dimensional fractional OU process (d = 0.25), respectively.
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The driving Lévy process is a 2-dimensional (fractional) symmetric truncated

stable Lévy process (see (2.42)) and the dependence of the driving Lévy process

is given by the Clayton Lévy copula (4.20). We simulated the trajectories for

α = 1.8 and θ = 0.5.

Furthermore the matrix A is given by A =

(
−1 −2

−0.3 −1.4

)
with eigenvalues

λ1 = −0.4 and λ2 = −2 and we set B = I2.

We observe that the roughness of the sample paths decreases when the value

of d increases.

Figure 5.5 shows the 2-dimensional fractional OU process (d = 0.25) for

t ∈ [0, 100].
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Figure 5.3: The sample path of a 2-dim OU process with truncated 1.8-stable mar-

gins.

146



5.2 The Multivariate Fractional Ornstein-Uhlenbeck Process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

O
0.

25
,A

,I
t

t

Figure 5.4: The sample path of a 2-dim fractional OU process with fractional trun-

cated 1.8-stable margins (d = 0.25).
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Figure 5.5: The sample path of a 2-dim fractional OU process with fractional trun-

cated 1.8-stable margins (d = 0.25), where t ∈ [0, 100].
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Convoluted Lévy Processes

We know from Chapter 2 that for a large class of Lévy processes the corre-

sponding fractional Lévy process cannot be a semimartingale and hence or-

dinary Itô calculus cannot be applied. Therefore, in Section 2.3 we defined

integrals with respect to fractional Lévy processes in the special case of a

deterministic integrand.

Our aim in this chapter is to generalize this integral to stochastic integrands.

We give an elementary definition of the (Wick-)Itô integral with respect to

FLPs in terms of the S-transform. In particular, we define a stochastic calculus

not only for FLPs but for general convouluted Lévy processes.

In the case of fractional Brownian motion an S-transform approach has been

developed by Bender (2003a) (see also Bender (2003b)). Equivalently, the frac-

tional Itô integral with respect to FBM can be defined in a Malliavin calculus

setting with the aid of the Skorohod integral (see e.g. Alòs et al. (2001)).

However, the definition based on the S-transform avoids all the technical con-

structions of the Malliavin and the white noise calculus.

The research on Itô integrals with respect to convoluted Lévy processes is

joint work with Christian Bender and still ongoing. In this last chapter we

state the basic concept and main ideas without going into further detail.

6.1 Itô’s Integral from a White Noise Point of

View

Our aim is to define a stochastic calculus for convoluted Lévy processes.
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6.1 Itô’s Integral from a White Noise Point of View

Definition 6.1 We call a stochastic process M = {M(t)}t∈R given by

M(t) =

∫
R

f(t, s)L(ds), t ∈ R, (6.1)

a convoluted Lévy process with kernel f . Here, f : R × R → R is a

measurable function and L = {L(t)}t∈R is a Lévy process without Brownian

component satisfying E[L(1)] = 0 and E[L(1)2] <∞, i.e. L can be represented

as in (1.6).

Remark 6.2 We know from Section 1.1.2 that the process M can be repre-

sented by (1.11), that is

M(t) =

∫
R0×R

f(t, s)x J̃(dx, ds), t ∈ R, (6.2)

where J is the jump measure and J̃(dx, ds) = J(dx, ds) − ν(dx) ds is the

compensated jump measure of L.

Important examples for convoluted Lévy processes are the fractional Lévy

processes (see Chapter 2).

In this section we give a simple characterization of the classical Itô integral

for Lévy processes in terms of the S-transform, which is an important tool

from white noise analysis. This characterization is the starting point to de-

fine stochastic integrals with respect to convoluted Lévy proceses in the next

section.

To introduce the S-transform we first require some preliminaries. For f :

R × R → R we define the Wiener integral with respect to the compensated

jump measure J̃(dx, ds) = J(dx, ds) − ν(dx) ds by

I(f) = I1(f) =

∫
R

∫
R0

xf(s, x)J̃(dx, ds). (6.3)

Observe that according to Proposition 1.2, the integral (6.3) can be defined

for step functions in a straightforward manner and may then be extended by

the isometry

E
[
I(f)2

]
=

∫
R

∫
R0

f(s, x)2x2ν(dx)ds. (6.4)
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6 Outlook: Stochastic Calculus for Convoluted Lévy Processes

To simplify notation we introduce the measures

n(dx, ds) = ν(dx)ds,

λ(dx, ds) = x2n(dx, ds).

Definition 6.3 (Wick Exponential) Let JL(ω) = {s ∈ R : ∆L(s;ω) �= 0},
where ∆L(s;ω) = L(s;ω) − L(s−;ω) are the jumps of the Lévy process L.

Then for f ∈ L2(R2, λ) such that xf(s, x) belongs to L1 ∩ L∞(R × R0, n) the

Wick exponential of I(f) is defined as

: eI(f) : = exp


−

∫
R

∫
R0

f(s, x)xν(dx)ds


 ∏

s∈JL

[1 + ∆L(s)f(s,∆L(s))] . (6.5)

Remark 6.4 (i) By Lee & Shih (2004, Theorem 3.1),

: eI(f) :=

∞∑
n=0

In(f⊗n)

n!
, (6.6)

where In denotes the multiple Wiener integral of order n with respect to

the compensated Lévy measure. This representation justifies the name

Wick exponential.

(ii) Since : eI(f) : coincides with the Doléans-Dade exponential of I(f) at

t = ∞ it is straightforward that for f, g, which satisfy the conditions of

Definition 6.3, we have

E[: eI(f) :] = 1 and E[: eI(f) : · : eI(g)] = e(f,g)1 ,

where

(f, g)1 :=

∫
R

∫
R0

x2f(s, x)g(s, x) ν(dx) ds.

Define

Ξ =

{
n∑

j=1

ηj ⊗ fj ; n ∈ N, ηj ∈ S(R), fj ∈ L1 ∩ L∞(R0, ν)

}
, (6.7)

where S(R) denotes the Schwartz space of smooth rapidly decreasing functions.

150



6.1 Itô’s Integral from a White Noise Point of View

Lemma 6.5 Every f ∈ Ξ satisfies the conditions of Definition 6.3. Moreover,

Ξ is a dense subset of L2(R2, λ).

We can now define the S-transform

Definition 6.6 (S-transform) For F ∈ L2(Ω, P ) the S-transform is defined

by

S(F )(η) = EQη [F ], η ∈ Ξ,

where

dQη =: eI(η) : dP.

Due to the following proposition every square integrable random variable is

uniquely determined by its S-transform.

Proposition 6.7 The S-transform is injective, i.e. if S(F )(η) = S(G)(η) for

all η ∈ Ξ, then F = G.

Proof. In view of Lemma 6.5, the assertion follows from Remark 5.9 and

Theorem 5.13 in Lee & Shih (1999).

We shall now calculate the S-transform of an Itô integral with respect to

the Lévy process L. To this end let 0 ≤ a ≤ b and X : [a, b] × Ω → R a

predictable (with respect to the filtration Ft generated by the Lévy process

L(s), 0 ≤ s ≤ t) process satisfying

E


 b∫

a

|X(t)|2 dt

 <∞.

Then the compensated Poisson integral
∫ b

a

∫
R0
X(t)y J̃(dy, dt), which is equiv-

alent to the integral
∫ b

a
X(t)L(dt) with respect to the Lévy process L, exists

and by the isometry property it is an element of L2(Ω, P ) (see Cont & Tankov

(2004, Proposition 8.8)).

We start our considerations with a Girsanov theorem.

Theorem 6.8 (Girsanov) Let L1(t) = L(t), t ≥ 0, L2(t) = L(−t), t ≥ 0,

where L is a Lévy process with characteristics (γ, 0, ν).Moreover, let f ∈ Ξ and

define an equivalent measure Qf to P by

dQf =: eI(f) : dP.

Then under Qf
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6 Outlook: Stochastic Calculus for Convoluted Lévy Processes

(i) For 0 ≤ t <∞,

(L1(t) −
t∫

0

∫
R0

x2f(s, x) ν(dx) ds, L2(t) +

t∫
0

∫
R0

x2f(−s, x) ν(dx) ds)

is a two-dimensional Process with independent increments which is stochas-

tically continuous (PII for short). Moreover, it is a Qf -martingale.

(ii) L(t)−
t∫

0

∫
R0

x2f(s, x) ν(dx) ds is a two-sided PII. Moreover, its expectation

under Qf is zero.

Proof. (i) By Girsanov’s theorem for semimartingales (Jacod & Shiryaev

(2003, Theorem III.3.24)) follows that

L̃1(t) = L1(t) −
t∫

0

∫
R0

x2f(s, x) ν(dx) ds, t ≥ 0,

is a semimartingale having characteristics (γ̃s, 0, ν̃s), where

γ̃s = −
∫
|x|>1

x(1 + xf(s, x)) ν(dx),

ν̃s(dx) = (1 + xf(s, x)) ν(dx).

Since L̃(0) = 0 and the characteristics are deterministic, L̃1 is a PII under the

measure Qf (Jacod & Shiryaev (2003, Theorem II.4.15)). Analogously, L̃2 is

a PII under Qf . The Qf -martingale property follows from Jacod & Shiryaev

(2003, Theorem III.3.8).

(ii) Obviously, it follows from (i) that

L̃(t) = L(t) −
t∫

0

∫
R0

x2f(s, x) ν(dx) ds

=



L1(t) −

t∫
0

∫
R0

x2f(s, x) ν(dx) ds, t ≥ 0

L2(−t) −
−t∫
0

∫
R0

x2f(−s, x) ν(dx) ds, t < 0

is a two-sided PII. As the two-sided process can be decomposed into two one-

sided Qf -martingale and its time zero value is null, its expectation under Qf

is zero.
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6.1 Itô’s Integral from a White Noise Point of View

Remark 6.9 From the proof of Theorem 6.8 we know the characteristics of

L̃(t) = L(t) −
t∫

0

∫
R0

x2f(s, x) ν(dx) ds, t ≥ 0,

explicitly. Therefore, it is straightforward that under the measure Qf for all

t ≥ 0 the characteristic function of the distribution of L̃(t) is given by

EQf

[
eiuL̃(t)

]
= exp(ψt(u)),

where

ψt(u) =

t∫
0

iuγ̃s +

∫
R0

[eiux − 1 − iux1{|x|≤1}][1 + xf(s, x)] ν(dx) ds (6.8)

=

t∫
0

∫
R0

[eiux − 1 − iux][1 + xf(s, x)] ν(dx) ds. (6.9)

Hence,

EQf [L̃(t)] = 0, (6.10)

EQf [L̃(t)2] =

t∫
0

∫
R0

x2(1 + xf(s, x)) ν(dx) ds. (6.11)

Theorem 6.10 Let 0 ≤ a ≤ b and X : [a, b] × Ω → R be a predictable pro-

cess such that E[
∫ b

a
|X(t)|2 dt] < ∞. Then

b∫
a

X(s)L(ds), is the unique square

integrable random variable with S-transform given by

b∫
a

∫
R0

S(X(s))(η) y2η(s, y) ν(dy) ds, η ∈ Ξ.

Proof. By the Girsanov theorem we know that L(t)−
t∫

0

∫
R0

x2η(s, x) ν(dx) ds

is a two-sided PII and a Qη-martingale with zero expectation.
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Consequently,
∫ t

a
X(s) L̃(ds), a ≤ t ≤ b is a zero mean Qη-martingale. Hence,

by Fubini’s theorem we obtain

EQη


 b∫

a

X(s)L(ds)


 = EQη


 b∫

a

X(s) L̃(ds) +

b∫
a

∫
R0

X(s)y2 η(s, y) ν(dy) ds




=

b∫
a

∫
R0

EQη [X(s)] y2η(s, y) ν(dy) ds.

From Theorem 6.8 (ii), we also obtain that

S(L(t))(η) =

t∫
0

∫
R0

y2η(s, y) ν(dy) ds.

Hence, in the context of Theorem 6.10,

S


 b∫

a

X(s)L(ds)


 (η) =

b∫
a

S(X(s))(η)
d

ds
S(L(s))(η)ds.

The latter identity is the starting point for defining an integral for convoluted

Lévy processes.

6.2 A Skorohod Integral for Convoluted Lévy

Processes

For the rest of this section we assume:

Standing Assumption: M = {M(t)}t∈R is a convoluted Lévy process on

the real line, such that for every η ∈ Ξ

t �→ S(M(t))(η)

is differentiable.

Definition 6.11 Let B ∈ B(R) and X : B → L2(Ω, P ). Then X is said to

have Skorohod integral with respect to M if

S(X(·))(η) d
dt
S(M(·))(η) ∈ L1(B) for any η ∈ Ξ
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and there is a Φ ∈ L2(Ω, P ) such that for all η ∈ Ξ,

S(Φ)(η) =

∫
B

S(X(t))(η)
d

dt
S(M(t))(η) dt.

In that case Φ is uniquely determined by the injectivity of the S-transform

and we denote

Φ =

∫
B

X(t)M�(dt).

Remark 6.12 (i) The definition of the Skorohod integral does not require

measurability conditions such as predictability or progressive measurability.

Hence, it also generalizes the Itô integral with respect to the underlying Lévy

process to anticipative integrands.

(ii) Since the Lévy process itself is stochastically continuous, the S-transform

cannot distinguish between L(t) and L(t−) for fixed t. Consequently, we obtain

e.g.
t∫

0

L(s)L�(ds) =

t∫
0

L(s−)L�(ds) =

t∫
0

L(s−)L(ds),

where the last integral is the classical Itô integral.

The following properties of the Skorohod integral are an obvious consequence

of the definition:

Proposition 6.13 (i) For all a < b ∈ R,

M(a) −M(b) =

b∫
a

M�(dt).

(ii) Let X : B → L2(Ω, P ) be Skorohod integrable. Then∫
B

X(t)M�(dt) =

∫
R

1B(t)X(t)M�(dt).

(iii) Let X : B → L2(Ω, P ) be Skorohod integrable. Then

E


∫

B

X(t)M�(dt)


 = 0.
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6 Outlook: Stochastic Calculus for Convoluted Lévy Processes

Because of (ii) there is no loss of generality in proving the majority of results

for B = R, only. Note that (iii) holds since the expectation coincides with the

S-transform at η = 0.

We shall now specialize from a convoluted Lévy process to a fractional one

(see Chapter 2). Similar considerations as in Theorem 6.10 yield together with

(2.43)

S(Md(t))(η) =

∫
R

∫
R0

(Id
−1(0,t))(η) y

2η(s, y) ν(dy) ds,

where Id
− is the right-sided Riemann-Liouville fractional integral of order d.

Recall, η =
∑

j ηj⊗fj . Hence, by Fubini’s theorem and fractional integration

by parts (see 1.40),

S(Md(t))(η) =
∑

j

∫
R0

fj(y)y
2

t∫
0

(Id
+ηj)(s) ds ν(dy)

=

t∫
0

∫
R0

(∑
j

fj(y)(I
d
+ηj)(s)

)
y2 ν(dy) ds

Consequently,

Proposition 6.14 Suppose Md is a fractional Lévy process with 0 < d < 0.5.

Then for all η ∈ Ξ,

d

dt
S(Md(t))(η) =

∫
R0

(Id
+η)(t, y)y

2ν(dy),

where, by convention, fractional integral and differential operators are applied

only to the time variable t.

We now state a theorem which is well-known in the case of fractional Brow-

nian motion. For the proof we refer to Bender (2003b, Theorem 3.4).

Theorem 6.15 Let 0 < d < 0.5. Suppose that X ∈ Lp(R;L2(Ω, P )) with

1 ≤ p < 1/d. Then ∫
R

X(t)Md(dt) =

∫
R

(Id
−X)(t)L(dt)

in the sense that if one of the integrals exists then so does the other and both

coincide.
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6.2 A Skorohod Integral for Convoluted Lévy Processes

Remark 6.16 Observe that Theorem 6.15 coincides with (2.50): If the inte-

grandX is deterministic, the integral defined in Definition 6.11 and the integral

of Theorem 2.34 are equal.

We now define the Wick product:

Definition 6.17 Let F,G ∈ L2(Ω, P ) and assume that there is an element

F �G ∈ L2(Ω, P ) such that

S(F �G)(η) = S(F )(η)S(G)(η), for all η ∈ Ξ.

Then F �G is referred to as the Wick product of F and G.

Example 6.18 Let f, g ∈ L2(R). Then

: eI(f) : � : eI(g) : = : eI(f+g) : .

Theorem 6.19 Let X : R → L2(Ω, P ) and Y ∈ L2(Ω, P ). Then

Y �
∫
R

X(s)Md(ds) =

∫
R

Y �X(s)Md(ds),

in the sense that if one side is well-defined then so is the other and both coin-

cide.

Proof. The assertion follows by calculating the S-transform of both sides.

Example 6.20 We want to calculate the Wick product L(T ) � L(T ). On the
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6 Outlook: Stochastic Calculus for Convoluted Lévy Processes

one hand we have

S


 T∫

0

L(t)�L(dt)


 (η) =

T∫
0

∫
R0

S(L(t))(η)y2 η(t, y) ν(dy) dt

=

T∫
0


 t∫

0

∫
R0

x2 η(s, x) ν(dx) ds


∫

R0

y2 η(t, y)ν(dy)

︸ ︷︷ ︸
=:a(t)

dt

=

T∫
0


 t∫

0

a(s) ds


 a(t) dt =

1

2


 T∫

0

a(t) dt


2

=
1

2


 T∫

0

∫
R0

y2 η(t, y) ν(dy) dt


2

=
1

2
[S(L(T ))(η)]2 =

1

2
S(L(T ))(η)S(L(T ))(η)

=
1

2
S(L(T ) � L(T ))(η).

On the other hand we know by Itô’s formula (e.g. Protter (2004, Theorem

II.32))

2

T∫
0

L(t)L(dt) = (L(T ))2 − [L,L]T = (L(T ))2 −
∑
s≤T

(∆L(s))2.

Hence,

L(T ) � L(T ) = (L(T ))2 − [L,L]T .

In the general case, applying Lee & Shih (2004, Theorem 3.6), we obtain the

following result

Proposition 6.21 Let f, g ∈ L2(R). Then

I(f) � I(g) = I(f) · I(g) −
∫
R

∫
R0

x2f 2(x, s) J(dx, ds).

Example 6.22 For a fractional Lévy process Md(t) =
∫

R
(Id
−1(0,t))(s)L(ds),
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6.2 A Skorohod Integral for Convoluted Lévy Processes

we obtain from proposition (6.21)

Md(t) �Md(t) = (Md(t))
2 −
∫
R

∫
R0

x2(Id
−1(0,t))

2(s) J(dx, ds)

= (Md(t))
2 − 1

Γ2(d+ 1)

∑
s∈JL

[(t− s)d
+ − (−s)d

+]2(∆L(s))2.

Proposition 6.21 gives rise to a guess on the form of an Itô formula for

functionals of stochastic integrals with respect to convoluted Lévy processes.

This will be the topic of future research.
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Notation

Abbreviations

a.e. almost everywhere

a.s. almost surely

AR autoregressive

ARMA autoregressive moving average

ARFIMA autoregressive fractionally integrated moving average

CARMA continuous time autoregressive moving average

FBM fractional Brownian motion

FICARMA fractionally integrated CARMA

FLP fractional Lévy process

i.i.d. independent identically distributed

l.h.s., r.h.s. left hand side, right hand side

MA moving average

MCARMA multivariate CARMA

MFLP multivariate fractional Lévy process

MFICARMA multivariate FICARMA

OU Ornstein Uhlenbeck

SDE stochastic differential equation

SV stochastic volatility

w.l.o.g. without loss of generality
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Symbols

R,R+,Rm
0 (−∞,∞), [0,∞), Rm \ {0}

N,Z,N0 {1, 2, . . .}, {. . . ,−2,−1, 0, 1, 2, . . .}, N ∪ {0}
C complex numbers

B(R) Borel σ-algebra over R

Mm(R),Mm(C) space of all real, complex m×m-matrices

Glm(C) space of all invertible m×m-matrices

R(z), I(z) real and imaginary part of z ∈ C

a ∧ b, a ∨ b minimum, maximum of a, b ∈ R

a+ 0 ∨ a
a− 0 ∨−a
f ′, f ′′, f (n) first, second, n-fold derivative of f

f(t) ∼ g(t) f(t)/g(t) → 1, t→ ∞
log, exp natural logarithm, exponential function

P,E probability, expectation

var, cov variance, covariance

1B indicator function of the set B

Im identity matrix, Im ∈Mm(C)

AT transposed of the matrix A

A∗ adjoint of the matrix A

KerA kernel of the matrix A

det(A) determinant of the matrix A

|x| absolute value of x ∈ C

‖x‖ norm of x ∈ C
m

‖A‖ operator norm corresponding to the norm ‖x‖, x ∈ Cm

C∞b space of bounded continuous, infinitely often

differentiable functions with bounded derivatives

Lp space of p-integrable functions

Lp(Mm(R))
{
f : R × R → Mm(R),

∫
R
‖f(t, s)‖p ds <∞} , p > 0

H Hurst coefficient

d fractional integration parameter

D differential operator

{Bt}t∈R ordinary Brownian motion

{BH(t)}t∈R fractional Brownian motion with parameter H
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{L(t)}t∈R Lévy process

{Md(t)}t∈R fractional Lévy process

L(X) distribution of the random variable X

(γ, σ, ν) generating triplet of a Lévy process
d→,

d
= convergence, equality in (all finite dimensional) distribution(s)

L2→,
L2

= convergence, equality in L2

P→, p-lim convergence in probability

d-lim convergence of the finite dimensional margins
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