ON DEPENDENCE AND EXTREMES

GABRIEL KUHN

Center for Mathematical Sciences
Munich University of Technology

85747 Garching bei Miinchen, Germany
2006






Zentrum Mathematik

Lehrstuhl fir Mathematische Statistik
der Technischen Universitat Miinchen

ON DEPENDENCE AND EXTREMES

GABRIEL KUHN

Vollstandiger Abdruck der von der Fakultét fiir Mathematik der Technischen Universitét

Minchen genehmigten Dissertation zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

Vorsitzender Univ.-Prof. Dr. Rudi Zagst
Prifer der Dissertation 1. Univ.-Prof. Dr. Claudia Klippelberg

2. Univ.-Prof. Dr. Michael Falk,
Bayerische Julius-Maximiliansuniversitat Warzburg

Die Dissertation wurde am 01. Februar 2006 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultat fir Mathematik am 22. Mai 2006 angenommen.






Nichts ist, was nicht schon tmmer war.

TEILHARD DE CHARDIN

Um sein Nichtwissen wissen, ist das Hochste.

Nicht wissen, was Wissen ist, ist Leiden.
Eben wenn man an diesem Leiden leidet,
So leidet man dadurch nicht mehr.

Der Berufene leidet nicht.

Weil er an seinem Leiden leidet,
Darum leidet er nicht.

LAOTSE






Abstract

This thesis deals with various topics on multivariate dependence structures and extremes.

The first chapter investigates nonparametric estimation of multivariate extremes, where
a new dependence function is developed, which allows for an easy understanding of multi-
variate extreme dependence. An additional focus there is the visualization of multivariate
extremes and a new concept is introduced. In contrast to many articles dealing with 'mul-
tivariate extreme dependence’ only in the bivariate situation, we extend the estimation
procedure and dependence function to arbitrary high dimensions.

A problem arising when nonparametrically estimating multivariate extremes in higher
dimensions is instability, hence there is an interest in flexible and finitely parameterized
distribution classes; elliptical distributions and copulae are. Chapter 3 develops an esti-
mator of the tail copula (measuring extreme dependence) under the assumption of data
with an elliptical distribution. After deriving its asymptotic properties it is compared to
the nonparametric estimator and the improvement is shown. Chapter 4 develops a tail
copula estimator under the weaker assumption of only having data with an elliptical cop-
ula. There, also the tail copula of an elliptical copula with arbitrary dimension is shown
together with a three-dimensional estimation example.

A prominent question concerning dependence structures is how to model and interpret
it. And how to reduce dimensions. A classical tool in multivariate statistics is correlation
structure analysis, and a linear structure of the data is assumed. Chapter 5 extends the
method of correlation structure analysis to copulae whereby the main drawbacks of having
a linear structure, same types of margins or existence of moments can be avoided. This
approach is extended to extremes, where the use of elliptical copulae allows for dimension
reduction and an interpretation of the dependence structure in the extremes. In a factor
analysis setting, the theoretical results of the new estimators are verified, also showing an
improvement in the performance in comparison to existing methods.

Concerning the influence of different dependence structures to some (financial) out-
come, Chapter 6 gives an example of a portfolio of credit defaults. Using a one-factor
model with different underlying distributions the limiting extreme value distribution of
the portfolio is determined. A simulation study then shows large differences in the portfolio
outcomes when using different (but with similar properties) dependence structures.

Furthermore, throughout this thesis, all of the developed methods and procedures are

applied to financial data and their possible use for risk management is explained.






Zusammenfassung

Die vorliegende Dissertation beschéftigt sich mit unterschiedlichen Aspekten von multi-
variaten Abhéngigkeitsstrukturen und Extremwerten.

Das erste Kapitel behandelt die nichtparametrische Schatzung multivariater Extrema
und entwickelt hierfiir ein neues Abhéngigkeitsmass und ein Konzept zur Visualisierung
mehrdimensionaler Extrema. Ein Problem beim nichtparametrischen Schatzen in ho-
hen Dimensionen ist Instabilitat, folglich besteht ein Interesse an flexiblen und endlich
parametrisierbaren Verteilungsklassen. In Kapitel 2 wird ein Schatzer fiir die Tail Copula
unter elliptischen Verteilungen entwickelt, sowie dessen asymptotischen Eigenschaften.
Diese werden dann sowohl theoretisch als auch mittels Simulation mit dem empirischen
Schitzer verglichen. Ahnlich wird in Kapitel 3 ein Tail Copula Schétzer entwickelt unter
der schwicheren Annahme einer elliptischen Copula. Ebenso wird dort die Tail Copula
einer Elliptischen Copula in beliebigen Dimensionen bestimmt und in einer ausfiihrlichen
Simulationsstudie wird der neue Schéatzer mit dem empirischen verglichen. Kapitel 4
zeigt eine Erweiterung der Korrelations-Struktur-Analyse, indem Verteilungsgleichheit
der Daten mit einem linearen Modell durch die schwachere Voraussetzung der Copula-
Gleichheit ersetzt wird. Dazu werden neue, Copula basierte Schatzer entwickelt, ihre
asymptotischen Eigenschaften gezeigt und in einer Simulationsstudie deren asymptotis-
ches Verhalten iiberpriift. Im letzten Kapitel 5 wird die Extremwertverteilung eines Credit-
Default Portfolios fiir unterschiedliche unterliegende Verteilungen bestimmt. Dabei stellt
sich heraus, dass das Verhalten 1. Ordnung gleich ist und lediglich im langsam variierenden
Anteil tauchen Unterschiede auf. Ebenfalls wird ein verbessertes Verfahren zur Anpassung

der Portfolioverteilung gezeigt.
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Introduction

Before we give an overview of the thesis, we first give a short review on the topics that

can be found in this thesis.

Copulae

The concept of copulae provides a class of distribution functions which completely de-
scribe the dependence structure of an arbitrary random vector. In particular, a copula is
a distribution function C': [0, 1]¢ +— [0, 1] with standard uniform margins. Sklar’s Theorem
(see Sklar (1996)) shows that each distribution function can be separated in its univariate
marginal distributions and its copula. This means, for a d-dimensional distribution func-
tion F' with univariate margins Fj, 1 < j < d, there exists a copula Cr (unique on the

support of F') such that

F(zy,...,2q) = Cp(Fi(z1),...,Fi(zq)),

for all zq,..., 24 in the support of F'. Therefore, copulae allow to study the dependence
structure of an arbitrary random vector independent of its margins, and they can also
be used to construct multivariate distributions. For a textbook treatment of copulae, see
Nelsen (1999).

Elliptical distributions

When dealing with dependence structures, one is often interested in a class of distribu-
tions, where dependence can be modeled flexible and easy. A widely used class of flexible
distributions is given by the elliptical distributions. By Fang, Kotz, and Ng (1990, Corol-
lary 1), a random vector X is elliptically distributed if and only if there exists a vector

p € R a matrix A € R¥*4 a positive random variable G > 0 and a random vector



U® ~ unif{s € R* : s7s = 1}, independent of G, such that
X £ p+GATUW.

The best well-known elliptical distribution is the normal distribution, where G 4 V/C and
C'is a y*-distributed random variable with d degrees of freedom. Of course, these distri-
butions have some drawbacks, i.e. they are symmetric, and all margins belong to the same
class of distributions. Therefore, if someone is only interested in the dependence structure
of a random vector, an elliptical copula being the copula of an elliptical distribution can

be considered instead of the full distribution.

Extreme value theory

In statistics, extreme value theory offers methods to describe rare events of extreme ran-
dom outcomes. Univariate extreme value theory starts with the asymptotic theory for

maxima
My =X, and M, =\/X; n>1,
=1

where Xi,..., X, are iid random variables with distribution function F. The extremal
types theorem exhibits the possible limit distributions of the suitable normalized maxima.

Assume that sequences a, > 0 and b,, € R exist such that

P(a,' (M, —b,) <z) =3 F(z), z€R,

n

and F is non-degenerate. Then there exist constants a > 0 and b € R such that F'(ax +b)
is one of the three extreme value distributions. These are the Fréchet distribution @, (x) =
exp(—2~*)1zs0y, o > 0, the Weibull distribution ¥, (x) = 1{z50y + exp(—(—2)*)1 <0y,
a > 0, and the Gumbel distribution A(x) = exp(—e™®). For a textbook treatment of
univariate extremes, see Embrechts, Kliippelberg, and Mikosch (1997, Chapter 3).
Switching to the multivariate setting we consider an iid sequence of d-dimensional
random vectors X; = (X;1,...,X;4)7, 1 < i < n. Then, multivariate extreme value

theory considers the limiting distribution of the componentwise maxima

M1 = (Xl,l,...,Xl,d)T and
n n T

M, = (M,,....,M,))" = (\/Xl\/Xd> . on> 1.
i=1 i=1

2



Similarly to the univariate case, assume that sequences a,,; > 0 and b,; € R, 1 < j <d,

exist such that

P(a_l(Mn,j _bn,]> S Zy, 1 S.] S d) 1H—O>OF(x17”'7xd) = F("l‘.)7 T ERd7

n7j
and F' is non-degenerate. Then, F' is a multivariate extreme value distribution if and only

if the univariate margins of I’ are univariate extreme value distributions and the copula
CF of F satisfies

d
Crp(u) = exp (/s (/\ wj(lnuj)> ,u(dw)) , u €01

j=1
where S; = {s > 0 : ||s|| = 1}, || - || is an arbitrary norm and p is a finite measure

satisfying
/ w; pldw) =1, 1<j<d.
Sq

The measure p can be interpreted as the dependence measure, i.e. it shows, where the

extremes are to be found. For more theoretical background, see Resnick (1987).

There exist many equivalent representations of the dependence measure ;1 and one of

them we call the tail copula \(z), i.e.
1
)\((L‘) = llflr% %P (1 — Fl(Xl) S t[lﬁ'l, ey 1-— Fd(Xd) S tl’d) , I > 0,

where F); denote the univariate marginal distributions of X. Statistical questions about
multivariate extremes concern the appropriate choice of a dependence measure, the es-
timation of this measure and its interpretation. In this setting, bivariate extremes have
been intensively investigated. However, there are many open questions when multivariate
extremes for d > 3 or, even more realistically, high dimensions are considered. Many of the
procedures for the bivariate case do not work properly in larger dimensions, e.g. estimators
become unstable, expensive to compute and their interpretation becomes difficult. An al-
ternative question deals with (semi)parametric distribution models for describing extreme
dependence, i.e. one aims at a multivariate model, which is flexible enough to describe a
complex extreme dependence structure, but is also easy to handle. Again, many models
from the bivariate setting have problems, when they are extended to higher dimensions:
they are either not flexible enough or not easy to handle. One compromise offers the class
of elliptical copulae having dependence parameters for each bivariate margin and are quite
easy to handle. One drawback of this class is that it is not possible to model asymmetric

extreme dependence structures.



Overview of the thesis

This thesis consists of five chapters based on the articles Hsing, Kliippelberg, and Kuhn
(2004), Kliippelberg, Kuhn, and Peng (2005a, 2005b), Kliippelberg and Kuhn (2006) and
Kuhn (2005). Chapter 1 develops a new extreme dependence measure, a method for vi-
sualization of multivariate extremes. Chapters 2 and 3 develop new estimators of the tail
copula under elliptical distributions and elliptical copulae, respectively, and also inves-
tigates the second order behavior. Chapter 4 extends correlation structure analysis to
copula structure analysis and shows two different methods of fitting an elliptical copula
to data, one of them based on extreme observations. Finally, Chapter 5 is devoted to
credit default portfolios and shows the extremal behavior of the limiting portfolio for a

large class of underlying 1-factor models.

In the following, we present a guideline to the thesis:

Chapter 1. In Section 1.1 the framework of multivariate extreme value theory is intro-
duced and some equivalent representations of a multivariate extreme value distribution are
given. Section 1.2 shows in the bivariate case how to measure extreme sets and also gives
a nonparametric estimator for these extreme sets. To estimate an extreme dependence
measure completely it suffices to estimate this measure for set in a measure determining
class and two of such classes are provided in Section 1.3. Next, in Section 1.4, the new
extreme dependence measure 'tail dependence function’ is defined. This measure captures
the complete extreme dependence of a random vector and properties, interpretations and
an estimator are given for the bivariate case. In a simulation study the good performance
of the estimator is shown. For visualization of extreme dependence we suggest to plot
the reciprocal of the ranks of the data. Using this method, large values become visible
and dependent extremes are to be found in the middle of the plot. Further, extremes of
one component being independent from the other components will be close on the axes.
Section 1.5 extends the results of the previous section to the general multivariate case and
a simulation study shows a good performance of the estimator in a three-variate example.

Finally, in Section 1.6 the procedures are applied to a financial data set of swap rates.

Chapter 2. This chapter deals with the extremes of bivariate elliptical distributions.
First, in Section 2.1, the basic notions of a tail copula, elliptical distributions and an em-
pirical estimator of extreme dependence is given. In Section 2.2 the main results are given

and a new estimator for the tail copula under elliptical distributions developed. Under
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elliptical distributions it turns out that the tail copula is determined by the copula corre-
lation and «, the index of regular variation of the generating variate. Therefore, this new
tail copula estimator is based on the estimation of these parameters. To compare the new
estimator with the existing nonparametric estimator, the second order behavior of both
estimators are calculated explicitly. Further, the optimal asymptotic mean squared error
is determined. In Section 2.3, asymptotic variance and asymptotic optimal mean squared
error of both estimators are compared in an example and together with a simulation study
it turned out that the new estimator always performs better than the standard empirical

estimator. In Section 2.4, all proofs of this chapter are given.

Chapter 3. Similarly to the previous chapter, a new estimator for the tail copula is
developed whereas the assumption of an elliptical distribution is replaced by the weaker
assumption of an elliptical copula and in Section 3.1 the basic notations are given. In
Section 3.2 the new estimator is shown together with theoretical results about asymp-
totic and second order behavior. However, contrary to the previous chapter, the index «
of regular variation of the generating variate cannot be observed from the data directly.
Therefore, a is estimated by inverting the theoretical tail copula and using the empiri-
cal tail copula. This estimation is done for all possible directions and by smoothing over
all directions, the final estimator of « is obtained. Then, the new tail copula estimator
is the value of the theoretical tail copula calculated from the estimated index of regu-
lar variation and copula correlation. In Section 3.3, the asymptotic variance and mean
squared error of the new and the empirical tail copula are calculated and in Section 3.4
a simulation study is conducted to compare both estimators. It turns out that except
from small areas, the new estimators performs better. Since both estimators are based on
the k largest order statistics an unstable behavior can be observed when different k’s or
different directions are considered. There, the new estimator performs much better than
the empirical one, i.e. it is smooth with respect to different directions an smoother than
the empirical estimator with respect to a different number of order statistics k. Finally,
in Section 3.5 the theoretical elliptical tail copula and its estimator is extended to the
arbitrary multivariate setting and also a simulation example is given. Since the bivariate
results from the previous sections in this chapter do not rely on two dimensions, all re-

sults also hold in the multivariate case. The proofs of this chapter are given in Section 3.6.

Chapter 4. This chapter is devoted to dimension reduction and Section 4.1 introduces

the settings. The classical approach of decomposing a dependence structure to reduce



dimensions or to understand the dependence is done by correlation structure analysis.
There, a linear model is assumed to hold for the observed data. This model describes
the correlation matrix as a function of some lower dimensional parameter vector. The
drawbacks of these structure models are the fact that only linear dependence can be mod-
eled, only similar classes of marginal distributions are admissible and that the existence
of the 4th moment of the data is required. To overcome these restrictions, we use ellipti-
cal copulae having a correlation matrix as dependence parameter. The basic notations of
elliptical copulae are given in Section 4.2 and the copula structure model is introduced in
Section 4.3.1. Section 4.3.2 and 4.3.3 show how to estimate the parameters and select a
proper model using some test statistic, respectively. For the latter procedures an estimator
of the copula correlation matrix and an estimator of its asymptotic covariance matrix is
needed. Section 4.4.1 introduces two dependence concepts, where the copula correlation
matrix can be obtained from, i.e. Kendall’s tau and the tail copula. In Section 4.4.2 the
Kendall’s tau based correlation estimator is given, its limiting distribution is determined
as well as an asymptotically normal estimator of the asymptotic covariance matrix. Simi-
larly, Section 4.4.3 determines a copula correlation estimator based on the tail copula, its
limiting distribution and an estimator of the asymptotic covariance matrix. The concept
of the tail copula based correlation estimator is similar to that of Chapter 3, i.e. the index
of regular variation « is estimated as in the chapter before and the correlation is estimated
by inverting the theoretical tail copula using the empirical tail copula and smoothing over
all directions. Finally, Section 4.5 shows the performance of the new method and compares
it to the classical approach using a factor model. In a simulation study, the estimated test
statistics based on the two copula correlation estimators from Section 4.4 are compared
to their limiting x? distribution. It turns out that the distribution of the test statistic
is close to their limiting distribution, i.e. the copula concept works well. Finally, in an
example with a real financial data set the differences between the copula based estimators
and the classical estimator assuming a linear factor model are worked out. The proofs are

summarized in Section 4.6.

Chapter 5. The last chapter of this thesis deals with the extreme behavior of a portfolio
being a sum of credit default indicators. In the framework of Chapter 4, the underlying
latent variables of the default indicators follow a 1-factor model and we are interested in
the influence of the dependence structure of the latent variables on the extremal behavior
of the limiting portfolio. In Section 5.1 the model is described, where the distribution class

of the classical Credit Metrics model is extended by introducing a 'global risk factor’. The
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main result are given in Section 5.2, i.e. the extreme value distribution of the limiting
portfolio is shown for large classes of latent variables. It turns out that the limiting
portfolio is always in the maximum domain of attraction of the Weibull distribution, i.e.
the tails of the limiting portfolio with support [0, 1] are always polynomially decreasing.
Also for some specific distributions of the latent variables the second order behavior (i.e.
the slowly varying part) of the limiting portfolio is shown. To see the influence of the
second order behavior, a simulation study in Section 5.3 compares 4 different portfolios.
These portfolios have light- or heavy tailed latent variables and different global risk factors.
We also fix the first order tail behavior, the portfolio mean and the correlation structure
in three different settings. It turns out that the tails of the portfolios behave completely
different, i.e. the slowly varying part plays an important role. To overcome this problem
which model to choose we compare in Section 5.4 the portfolio distribution of the models
to the beta distribution. As we can choose the distribution of the global risk factor,
we choose it such that it fits the variance of the beta distribution. Then, we observe a
similar behavior of the beta distribution and the model where the latent variables follow a
multivariate ¢ distribution. Hence, this suggest the ¢ model as a substantial improvement
both of the beta model and the standard Credit Metrics model. Section 5.5 explains why
one should be careful when using heavy tailed factors, i.e. it may happen that the limiting
portfolio degenerates when the factors are not chosen properly. Finally, all proofs of this

chapter are given in Section 5.7.



Chapter 1

Dependence estimation and
visualization in multivariate
extremes with applications to

financial data

SUMMARY

We investigate extreme dependence in a multivariate setting with special emphasis on
financial applications. We introduce a new dependence function which allows us to cap-
ture the complete extreme dependence structure and present a nonparametric estimation
procedure. The new dependence function is compared with existing measures including
the spectral measure and other devices measuring extreme dependence. We also apply
our method to a financial data set of zero coupon swap rates and estimate the extreme

dependence in the data.

1.1 Extreme dependence structure

One of the general goals of statistical extreme value theory is to understand the behavior
of the extreme observations in a set of data generated by a random process and how that
information can be used to draw inference about the corresponding aspect of the true
distribution. Extreme observations here may be very large or very small observations, or

more generally, observations in some rare set. Some considerable progress has been made

8



in past decades on the statistical inference of extremes. See Coles (2001), Embrechts,
Kliippelberg, and Mikosch (1997) and Smith (2003). In this chapter, we focus on the very
large observations in a data set when the observations are multivariate. Specifically, let d
be a positive integer and consider an iid sequence of random vectors X; = (X, 1,..., X, 4),
1 € N. We are interested in the statistical inference of the joint distribution of the com-

ponentwise maxima
Mn;=\Xi5, 1<j<d,

for large n. This topic is of relevance in many problems of practical interest; examples
can be found in Tawn (1988) (sea levels data), Coles and Tawn (1991) (tidal wave data),
Schlather and Tawn (2003) (rainfall data), de Haan and de Ronde (1998) (sea-level and
wind-speed data), Dacorogna, Hauksson, Domenig, Miiller, and Samorodnitsky (2001)
(currency exchange rate data), to name a few.

Among the most important problems in multivariate statistical extremes are the de-
scription and inference of dependence between the components of M,, :== (M, 1,..., M, 4)
when n is large. For example, in designing an investment portfolio it is crucial to under-
stand the relative behavior of the various assets in the portfolio in the event of large losses
so that the risks can be balanced, or in the event of possible floods, it is important to
understand of how extreme rainfall leads to dangerously high river levels so that losses of
lives can be prevented.

It is well known that the dependence structure of a random vector can be fully captured
by the copula or dependence function. A copula C'is a multivariate cumulative distribution
function (cdf) with standard uniform marginals. The copula Cg of an arbitrary random

vector (X7, ..., Xq) with a joint cdf G and marginal cdf’s G; is given by
Cg(ul, ce ,Ud> =P (Xl < Gi_(ul), ce ,Xd < Gzl_(ud)) y (ul, cee ,Ud) S [0, 1]d, (111)

where G5 (u) := inf{z € R : G;(r) > u} denotes the left-continuous inverse of G;. See

Joe (1997) for details. We focus on the copula of M,, for large n. Assume that there exist

linear normalizing functions f, 1, ..., fu4, such that
lim P (Mn,j < fn,j(xj)u 1< j < d) = F(S(fl, e ,Zl,’d), (112)

where F'is a nondegenerate m-variate cdf. Any possible limit cdf F in (1.1.2) is called a

multivariate extreme value cdf (mevdf). It can be seen that a cdf F' is a mevdf if and only

9



if the marginals £}, 1 < j < m, are one-dimensional extreme value cdf’s (cf. Embrechts
et al. 1997) and the copula C' satisfies (Joe 1997, Section 6.2)

C'uy, ... ,ug) = Cut, ... ul),  (uy,...,ug) €[0,1]%, ¢t > 0. (1.1.3)

Any copula C' satisfying (1.1.3) is called an extreme copula.

Since applying monotone transformations to the marginals do not change the copula,
(1.1.2) implies that the copula of M, for large n, can be approximated by that of ' and
hence approximately satisfies (1.1.3). By the same token, it is clear that the particular
normalizations f,, 1,..., fna in (1.1.2) do not play a role in (1.1.3). Consequently, (1.1.3)
is a very general property for the limiting copula of M,,.

It is also known that any extreme copula can be written in the form of the Pickands

representation (Resnick 1997, Section 5.4):
d
C(ug, ..., uq) = exp {/ (/\ wj(lnuj)) ,u(d'w)} s (ur, . ug) €0,1]7 (1.1.4)
Su \j=1

where 1 is a finite measure on S§; = {y > 0 : Zle y; = 1} satisfying

/ wip(dw) =1, j=1,....d.
Sq

Further, by changing the variable w in the integral in (1.1.4), the extreme copula can
be described in infinitely many different but equivalent forms; for instance, Einmahl,

de Haan, and Piterbarg (2001) adopts the following representation for the case d = 2:

C(ul,u2):exp{/ (1““1 p )@(d&)},ul,me[o,l], (1.1.5)
[0,7/2]

1Vecotf 1Vtand

where ® is a finite measure, called spectral measure, on [0, 7/2] satisfying

/ (1 Atan0)®(d) = / (1 Acot0)P(db) = 1.
[0,7/2]

[0,7/2]

The focal point of this chapter is the inference of the copula of F' in (1.1.2), namely
the limiting copula of M,,, based on a random sample. In view of (1.1.4), this is equiva-
lent to the inference of the measure p in the Pickands representation. We will discuss a
purely nonparametric approach of estimating the extreme copula. In conjunction, we will
introduce a method to visualize extreme tail dependence, a topic which has not received
much attention. We believe that simple and effective visualization tools are crucial in this

context in order to bridge theory and application. The literature of multivariate extremes
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has focused almost exclusively on the bivariate case d = 2. See Section 2 for a brief review
of the literature of this case. The case d > 3 in contrast has received little attention. Our
approach of estimating dependence can be implemented for any general d. Needless to say
the curse of dimensionality is even stronger here than in most other contexts so that the
general procedure will not achieve the intended purpose unless enough data are available.
We will illustrate our procedures by theoretical computations as well as simulations. We
will also apply the results on the analysis of a portfolio of zero coupon swap rates.
Throughout the chapter we write a(u) ~ b(u) as u — oo, if a(u)/b(u) — 1 as u — oo;

we write a(u) = b(u) for crude approximations.

1.2 Measuring bivariate extreme sets

As mentioned, the statistical estimation of F'in (1.1.2) is of substantial interest in applica-
tions. There are three main approaches. Coles and Tawn (1991) and Tawn (1988) assume
a parametric form for F' and approach the estimation problem by maximum likelihood.
While the parametric approach is efficient when the model is correct, the conclusion can be
grossly misleading if the model is incorrect. The second approach estimates the measure p
in (1.1.4) based on the empirical measure for the transformed data where the transforma-
tion involves parameter estimation on the marginals. Such a procedure is semiparametric
in nature and examples of it can be found in Embrechts, de Haan, and Huang (2000),
Einmahl, de Haan, and Sinha (1997), de Haan and Resnick (1977) and de Haan and
de Ronde (1998). A completely nonparametric approach for estimating p was introduced
in Einmahl, de Haan, and Piterbarg (2001). We next review this approach in detail.
Consider the bivariate case where d = 2. Suppose that the X; = (X;1, X;») are iid
random vectors with continuous marginal cdf’s G, G5. Assume that there exist continuous

and nondecreasing normalizing functions f,, 1, f, 2 such that

lim P (\/ le < fnl LE‘l \/X22 < an(I2)> = F(Il,l’g), T1,T9 € R, (121)

n—00
=1

where F' has continuous margins. As explained in Section 1.1, the copula Cr of F is an
extreme copula and it is independent of the normalizations (f,, 1, f,2). Hence we consider
instead the normalized limit of (\/;_, G1(Xi1), Vi, G2(X;2)). Since G;(X; ;) ~ unif[0, 1],
j=1,2, we have for j =1, 2,

1
hmP(\/G _Elnu%—l):u, ue [0,1].
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Consequently, the following computations yield the copula of F"in (1.2.1):

" 1 " 1
P (\/ Gl(Xi,1> S ﬁ 1nu1 -+ 1, \/GQ(XZ‘g) S EIHUQ + 1)
=1

1=1

/2 In uy In us
= Crluu) = exp{/o (1\/cot9 " lvtane) o)

where the representation (1.1.5) is adopted in order to be consistent with the presentation
of Einmahl et al. (2001). Let G;(z) = P(X;; > ), j = 1,2, then it follows that

T T
npP (GI(X1,1> >1— zl or GQ(XLQ) >1— —2)

n

— P (n(@l(xl,l),@(xm)) e ([z1,00] X [z2, oo])c>

n—oo i xy To
7 d(do). 1.2.2
0 <1V00t9v1\/tan9> (df) ( )

Since P(-) is monotone, the discrete index n — oo in (1.2.2) can be replaced by a con-

tinuous index ¢ — oo and the limit remains the same. On [0, 00]*\{(c0,0)} define the

measures A; and A on the Borel g-algebra of [0, 00]*\{(00, 00)} by
At(A) =tP (t(@l(Xl’l),@Q(XLg)) c A) ,

and

w/2 T T
A (21, 00] X [2, 00])€) :/0 (Wcowv lvtan9><1>(d9),x1,x2 € [0,00).
(1.2.3)

Note that the latter relation indeed defines a measure since the sets ([z1, 00] X [z, 00]),
0 < 1,29 <00, form a 7-class which generates the Borel o-algebra of [0, 00]*\{ (00, 00)}.
It follows from the continuous-index version of (1.2.2) that for all Borel sets A C [0, 00]?\
{(00,00)} with A(OA) = 0, we have (cf. Resnick 1987, Proposition 5.17)

lim Ay(A) = lim ¢P (t(G1(X11),G2(X12)) € A) = A(A). (1.2.4)

t—o00

Given an iid sample X1, ..., X, where X; = (X, 1, X; ), and a Borel set A in [0, 00]?\

{(00, )}, an intuitive estimator of A;(A) is

Ren(A) = tP, (£ (G1(X11), Gal(X1)) € A) = = 371 (1 (Ga(X01), Go(Xi)) € A).

3
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Furthermore, each G;(X; ;) is uniformly distributed on [0, 1] and hence can be estimated
by R;;/n where R, ; is the rank of —X; ; among —Xj ;,...,—X, ;. Writing ¢ = ¢/n, the
estimator Kt,n is approximated by
Aen(A) =2 I(e(Rin, Rip) € A). (1.2.5)
i=1

This simple and natural estimator works very well both in theory and in practice. The fact
that it does not require estimating the marginal tail distributions eliminates an important
source of error in the estimation of tail dependence. Generally speaking, the variance and
bias of the estimator increases and decreases with e, respectively, and ¢ should satisfy
¢ — 0 and ne — oo in order for consistent estimation to be achieved. A result in Einmahl
et al. (2001) shows that the estimator can achieve a quick rate of convergence in estimating
A(A) for A of a certain form when ¢ is chosen properly. See Einmahl et al. (2001), Huang
(1992) and Qi (1997) for additional details on the theoretical aspects of this estimation
approach.

However, in practice when the procedure is implemented we have to select a suitable
¢ from the data. This is always a difficult issue. In the examples in the next section, we

show how to do this by a practical approach.

1.3 Inference of dependence through measure deter-

mining classes

We continue our discussions from Section 2 and use the notation developed there. To fully
estimate the measure A, it suffices to estimate A(A) for sets A in a measure-determining
class of A. There are obviously infinitely many such classes. The key criteria for selecting
such a class are that the measures A(A) are easy to interpret, directly useful for describing
tail probabilities, and can be estimated efficiently. Below we mention two examples of such

classes for the case d = 2.

Definition 1.3.1. For 6 € [0,7/2],

C, = {(;pl,xg) € [0,00]2 T ANxy <1, 19 <1y tan@} and

D, = {(ml,x2)E[O,oo]zleAx2tan«9§1}.

Both sets Cy and Dy have clear geometric interpretations. For 6; < 65 in [0, 7/2], Cy,\Cy,

contains those points in [0, 00]? for which at least one of the components is no bigger than

13



1 and are trapped in the cone between angles 6; and 0y; Dy defines the union of two sets
{(z1,22) : 0 <21 < 1,0 <9 < oo} U{(z1,22) : 0 <y <00,0< 29 <coth}
where the factor cot @ allows us to control the boundary of the second set. Define
Ay, z9) = A (([z1, 00] x [x2,oo])c) , 1,19 € [0,00]% (1.3.1)
Immediately by (1.2.3),
Az, 29) = 1A (1, 29/ 7). (1.3.2)

The following holds.

Proposition 1.3.2. For each 6 € [0,7/2],
(1) A(Cy) = @[0,0], where O is the spectral measure in (1.2.3), and

(2) A(Dy) = A1, cot ). O

In view of Proposition 1.3.2(2) together with (1.3.2), {Dg : 0 < 6 < 7/2} is measure-
determining for A. The corresponding result of (1), which is proved in the Appendix,
shows that {Cy : 0 < 6 < 7/2} is also measure-determining for A. We note that Proposi-
tion 1.3.2(1) was obtained in Einmahl et al. (2001) from an entirely different perspective.

Definition 1.3.3. For all 6 € [0, 7/2] we define

B(0) = A(Cy) = B[0,0], and (0) = A(Dy) = A(1, cot 6).

By Proposition 1.3.2 and (1.2.4),

®(0) = lim A(Cp) and 1(6) = lim A(Dy),

t—o00

provided that A(0Cy) = A(ODy) = 0, and therefore ®(f) and (f) can be estimated
statistically by the nonparametric procedures /A\E,n(C'g),/A\m(Dg), respectively, if an iid
sample is available. From this perspective, we discuss below the relevance of ®(#) and

¥(6).

14



Estimating ®(#) is a central theme in Einmahl et al. (2001). Let G;(z) = P(X; >
x) =1/x,x > 1. Observe that for 0 < 6y < 0y < /2,

P(X1V Xy >n,tanf; < X;/X, < tanby)
= P(nG(X)) AnGy(X3) < 1,tanf; < Go(X3)/G1(X1) < tanby)
= 17 (An(Co,) — An(C)))
~ n7HD(b) — D(6h)),
provided A(9Cy,) = 0,i = 1,2. However, if the G; are highly non-linear, the quantity
®(0y) — (A1) may be difficult to interpret. It is also somewhat cumbersome to use an

estimated ®(f) to estimate the distribution of the coordinate-wise maxima

(\/G i) < u]—l—l j=1, 2)

one could conceivably proceed with this using the integral representation of the copula,
but in doing this ®(#) has to be estimated for every 6 followed by a numerical integration.
The function ¥ () complements ®(f) in that respect, as explained below.

Suppose that x; = x;,, ¢ = 1,2, are such that

0 < liminf nG;(x;) < limsupnG;(z;) < oo, i=1,2.

n—00 n—oo

Then it follows from (1.2.2) that for n — oo |

1 _
P(X; >z 0or Xog >x9) ~ EA(nGl(:El),nGg(:)sg

= GilanA (1,?2(:'32)) = Ci(n)e (arctan <@1(x1))>' (1.3.3)

Gi(z1)
i)

~—
~—

As a result,

PY (X <x1,Xe <m3) = exp <—n@1(1’1)¢ <arctan

RS

~ Png(Xl <),

== oon (32)

E(x,x) =(m/4), (1.3.5)
which is what Schlather and Tawn (2000) refers to as extremal coefficient, a notion related

to the extremal index (cf. Leadbetter, Lindgren, and Rootzén (1983) or Embrechts et al.

~—

—~
—_
«
e~

~—

where

If G1 = G2 then

(1997)) in univariate extreme value theory for time series.
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1.4 Bivariate tail dependence function

In this section we continue to explore the properties of ¢() defined in Definition 1.3.3

and how it can be useful for describing multivariate extremes. First, we have:

Proposition 1.4.1. (1) v is convex.

(2)  ©1(0) < P(O) < (), 6 € [0,7/2], where ¥(0) := 1+ cot@ corresponds to
independence and ¢ (0) := 1V cot @ to complete dependence.

Proof: ¢(0) = OW/2 (1/(1 Vv coty)) V (cot§/(1V tan~y)) ®(dy) and since the integrand is

convex with respect to 6, ¢ is, hence (1) holds. An equivalent expression of ¢ is given by
Pickands Dependence function D (see Pickands (1981)), i.e.

- (1 Dl——

U(0) (1 +cot0) <1 +Cow) ,

where D : [0,1] — [1/2,1] is a convex function satisfying D(0) = D(1) = 1 as well as
2V (1l —2)<D(z) <1, z€|0,1], hence (2) holds. O

The function ¥ becomes a much more effective tool for visualizing dependence if it is

normalized, as follows.

Definition 1.4.2. We define the bivariate tail dependence function as

_ o) —¥(0) 1+ cotd —(h)
=@ =)~ et 0 €072 (1.4.1)

p(0)
O

By Proposition 1.4.1(2) the function p(#) takes values in [0, 1], with p(€) being close
to 0/1 corresponds to weak/strong dependence.

A similar approach to p is to be found in the canonical dependence function or tail
dependence function £, defined in Falk, Hiisler, and Reiss (2004, Section 6.4), i.e.

L+cotf —o(f) 1—D((1+coth)™t)
I+cotf —1Veotd — 1—[(1+cotf)=1V (1—(1+cotf)1)

1
- g<1+cot9)'

The quantity p(m/4) = 2 — ¢(7/4) (cf. (1.3.5)) is referred to as the (upper) tail de-

pendence coefficient in Joe (1997), which, as the name suggests, is meant to describe the

p(0)

degree of dependence in the upper tails of the marginals. Thus, the function p extends
this notion from a single direction, 7 /4, to all directions in (0, 7/2). This is illustrated by

the following example, which is similar to an example in Ledford and Tawn (1996).
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Example 1.4.3. Let X; ~ G, X5 ~ G5 where G; and GGy are continuous distributions.
Note that (1/G1(X1),1/G2(X>)) has Pareto(1) margins and the same copula as (X;, X5).
It follows from (1.2.4) and Definition 1.3.3 that for all § € (0,7/2), we have Ay(1, cot ) —
A(1, cot 0) = () as t — oo, and hence

1 1
limP<_ >ttan6"_ >t)
t—00 GQ(XQ) Gl(Xl)
= 1imt<1—P<_1 gt)—P<_1 gttanﬁ)
t—o0 Gl(Xl) G2(X2)
—l—P( 1 <t,_71 gttanﬁ))
G1(Xq) Go(Xs)

1 1
= 1+cot9—limt<1—P<_ <t, = §ttan9))
t—00 Gi(X1) — 7 Ga(Xy)
c

_ 1+cot9—tlir£10tP(t(@l(Xl),ﬁg( 2)) € ([1, 00] % [CotQ,oo])C)

= 1+4cotd —(0) = (1Acoth)p(d).

Hence for all § € (0,7/2),

1 1
. -1 -1 —
tli‘?op (X2 > G, ( ttan@) ‘Xl > G (1 — ;)) = (1 Acotf)p0).

O

Our examples below show that p provides an effective tool to visualize dependence in
the extreme tails of the bivariate distribution. In practice, when G is unknown, p(f) can

be estimated from a set of iid data (X, Y;),1 < i < n, by the nonparametric estimate

$o(0) — hen(8) 1+ cotf — ., (6) o

o(0) — 11 (0) B 1A cotf ' 0,7/2),

ﬁa,n(e) =

where

Den(0) = Ksnwe)

= aZI (Ri1, Rio) € Dy)

= 52[(&,1 <elor Ry <elcoth).

i=1
As mentioned in Section 2, theoretically ¢ and 1/(ne) should be both small in order for

the estimator to perform well. In practice, we will plot p. () for € in some sensible range

for which ¢ and 1/(ne) are “small” and pick an gy for which the estimates {D\e,n(ﬂ'/ll)
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behave stably in the neighborhood of ;. While it is convenient to use the same ¢ for all
0, allowing e to vary with # in simple ways may improve the quality of the estimation.
Indeed, when 6 approaches /2, increasingly fewer points of € (R; 1, R;2) are captured by
Dy, which has the effect of inflating the variance of the estimate in that region. A practical
way to overcome this is to choose a baseline ¢ = ¢y at § = 7/4 and allow ¢ to decrease
slightly as 6 approaches 7/2. Another practical consideration is a simple smoothing. At
least visually if not theoretically, the quality of the estimate of p.,(f) improves if some
smoothing is incorporated. In that regard, one can perform a simple averaging over a box
window or use something more sophisticated such as spline smoothing.
We also recommend plotting (1/R;1,1/R;2), 1 < i < n, alongside that of p. () to
fully appreciate the information in the latter. Recall that
lim P" (1/(nG1(X1)) < 1,1/(nG2(X>)) < tanf) = p(6).

n—oo

As such, p.,(0) describes the degree of dependence reflected by the pattern of points of
(1/R;i1,1/R;2), 1 < i < n, in the box [0,1] x [0,tan#]. The following simple example

demonstrates these points.

Example 1.4.4. Let py,ps € (0,1) and consider the model
Xi=pZiV (1 —=p1)Zy, and Xy =p2Zy V(1 —pa)Zs,

with Zy, Z,, Z3 distributed as iid Pareto(1). Clearly, the dependence between X; and X5
arises from the common component Z;. Hence the dependence is stronger for larger values
of p1, pe. It is easy to see that both X; and X, are asymptotically distributed as Pareto(1)

in the tails. It is also easy to see that

1
P(X; >z or Xy >ztan) ~ — (1 + cot @ — p; A pacotf).
x

Applying (1.3.3), we have
(x) =14 cotl — p; A pgcotb,

and

p1 A\ pa cot 0

pl) 1 Acotd (142)

In Figure 1.1 we simulated this model for n = 10000 iid observations of (X, Xs). The

three sets of plots on the three rows correspond to the cases: p; = 0.7, po = 0.3, p1 =
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0.5, po = 0.5 and p; = 0.2, ps = 0.8. On each row the left-most plot is the true functions
p(0) in (1.4.2) (dashed line) overlaid with the smoothed version of p.,(#) (solid line)
based on one simulated sample of size 10000, where ¢ is 1/200 for § € [0,7/4] and
thereafter, ¢ decreases linearly to 1/210 when 6 reaches 7/2. We computed p; ,(¢) for
0 € {0; =1m/200,1 < i <100} and produced the smoothed version ﬁﬂ(@l) by averaging
Pen(0;), 7 — il < s =5, ie.

1 S
5 gy = E 5 (0. ).
pe,n( i) 25+ 1 - pam( Z—j)

j=-s
The plots in the middle column illustrate the root of the mean squared error

100

MSE(®9,) = Y (54" (6:) — p(6))

k=1

for the three cases based on 100 simulations with n = 10000 iid observations each and
,ﬁﬁ’“(el) represents the smoothed estimator of simulation £, 1 < k£ < 100. The right-most
plots contain the simulated points (1/R;1,1/R;2), 1 < i <mn, of one single sample of size
10000 but with points close to (1,1) truncated for easy viewing.

In the first row of plots, p is larger for small # than for large 0; this is reflected by
the right-most plot in which the violation of independence can be seen to be more severe
below the diagonal. In the second row of plots, p is constant; which is reflected by having
a portion of extreme points lined up on the diagonal in the right-most plot. The third row
of plots is the converse of the first row of plots which is reflected by the pattern of extreme
points above the diagonal. This is an example of a situation where Joe’s tail dependence
coefficient does not convey a good picture of extreme dependence, in that p(7/4) is not

sufficient to describe the full dependence structure of this model. O

Example 1.4.5. Let X = (X3, X3) be a bivariate random vector with dependence struc-

ture given by a Gumbel-copula
Ox (1, v) = exp {— [(—Inu)’ + (= Inv)’] 1/5} . del00). (1.4.3)

The dependence arises from ¢§. It is a symmetric model and by Example 1.4.3 it has
(upper) tail dependence coefficient p(7/4) = \y = In2/In(2 — J). Since Cx is an extreme
copula, ¥(8) = (1 + (cot (9)‘5)1/(S and hence

1ot — (14 (cot0)?)?
B 1A cotd ’

p(0) 0e(0,7/2).
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Figure 1.1: Left column: smoothed version of pt (6) (solid line) overlaid with true function p(6).

Middle column: vMSE(6).
Right column: plots of (1/R;1,1/R;2), with points close to (1,1) truncated, p1 = 0.7, po = 0.3 (upper
row), p1 = 0.5, po = 0.5 (middle row) and p; = 0.2, p2 = 0.8 (lower row).

We simulated this model for n = 10000, and in Figure 1.2 the plots are given in the
same order as in Figure 1.1 based on Example 1.4.4. We have chosen p(7/4) = 0.3 (upper
row), p(m/4) = 0.7 (middle row) and p(w/4) = 0.9 (lower row). The level of dependence
is manifested by the data scattered around the diagonal. O

1.5 Multivariate extensions

One advantage of the functions of 1) and p in Definitions 3.3 and 4.2 is that they can be
readily extended to higher dimensions by incorporating additional angles 6;. Let d > 2
and X; = (X;1,..., X, ) be iid with a distribution G, where the margins G; are assumed

to be continuous. Assume that (1.1.2) holds and the copula of F' has the representation
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Figure 1.2: Left column: smoothed versions 5t (6) (solid line) overlaid with true function p(6).

Middle column: vMSE(6).
Right column: plots of 1/R; ;, j = 1,2, for Cx given in (1.4.3) and p(7/4) = 0.3 (upper row), p(7/4) = 0.7
(middle row), p(7/4) = 0.9 (lower row).

(1.1.4). Define the measures A; and A on the Borel g-algebra of [0, 00]\{oo, ..., 00} by
At(A) =tP (t (al(lel), ce 7ad(X1,d) € A) s

and

d
A(([xl,oo]x---x[xd,oo])c) ::/S \/ wjz; | p(dw).

j=1

As in the two-dimensional case, we have

tlim A(A) = A(A)
for any Borel set A C [0, 00]\{o0,...,00} with A(OA) = 0. Now set
A a) 1= A (([,00] X -+ x [0, 00]) ) |
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and, for 6,...,0, € [0,7/2],
Dy, o, = {(:L’l,...,:cd) € [0,00]%: 21 Azgtanfy A--- Axgtanfy < 1} i

.....

o, for 6y, ..., 6,4 € [0, 7/2] are measure-determining for A. Define

¢(¢92, cey Hd) = A (D92 ..... gd) = A(l, cot ‘92, . 7COJC Qd)

Hence by the same arguments as in Proposition 1.4.1, v is convex and

¢1(927 s 79d) < ¢(927 - '79d) < ¢0(927 s 79d)7 927 - '79d S [077T/2]7 (151)
where

¢0(92,...,9d) = 1+C0t92—|—"'—|—COt9d,
1(ba,...,04) = 1Vcothy V.-V cotby;

19 and 1y correspond to the independent and completely dependent cases, respectively.

Definition 1.5.1. The tail dependence function, for d > 2, is defined as

(14 cotby+---+cothy) —1(ba,...,04)
(1+cotby+---+cothy) —(1VecothyV---Vcothy)

p(2,. ... 0q4) =
U

By (1.5.1), p is in [0, 1] and p being close to 0 and 1 correspond to weak and strong
dependence, respectively. Again, a similar approach to p in this multivariate case with
d > 2 is given by the canonical dependence function £ defined in Falk et al. (2004).

In practice, when G is unknown, A(A) can be estimated for any Borel set A from a

set of data (X, 1,...,X;a4), 1 <i <n, using the nonparametric estimator
Aen(A)=e> I(c(Rig,.... Ria) € A). (1.5.2)
i=1

The theoretical properties of the bivariate estimator as explained after (1.2.5) can also be

verified in higher dimensions. Accordingly, the estimate p(0s, .. .,0,) is defined as

_ Wo(Os, ... 04) — Ae (Dg,...0,)
e n(B2, ..., 0q) = ’ rdl
Pen(0 ) Do, -1 0a) — 0n (B2 0a)

where



All practical considerations made in the previous section continue to be applicable here.
To visualize extreme dependence in the data, plot p.,(fs,...,0,) for a discrete set of
(0g,...,04). When d > 3, plotting the estimated p requires considerable creativity. In the

following example the tail dependence function can be calculated explicitly.

Example 1.5.2. Let ¢j; € [0,1] for 1 < j <d,1 <i < k, such that Zle cji = 1 for all
j. Consider

k
Xj:\/cjiZi7 jzl,...,d,

i=1

where 7y, ..., Z; are iid Pareto(1). Generalizing (1.3.3), we obtain
1
P(X;>xor Xo >aztanfy or -+ or Xy > xtanby) ~ —(0s,...,04), = — 0.
x
On the other hand,

P(X;>xor Xy >uxtanby or --- or Xy > wtanby)

= 1-P(X; <z, Xy <zxtanby,..., X; < ztanb,)
k

= 1- HP (Zj <z (cl_jl /\cz_jltaneg /\---/\c;jltaHHd))
j=1

1k

~ —E c1j V cgjcotty V-V egicot by
x
=1

Hence,

k
»(0s,...,04) :Z(cli\/czicoteg\/---\/cd,-coted) ,

1=1

and

(O, ..., 04)
(14+cotly +---+ cotby) — Zle (€15 V cgicot O V- -+ V cg; cot By)
(14 cotby + -+ cotby) — (1 Vcotby V-V cotby) '
Note that this example generalizes Example 1.4.4 which is the special case of d = 2, k = 3,

cii=p1, ci2=1—=p1,c13=0, co1 = P2, 22 =0, ca3 = 1 — po. O

Example 1.5.3. We estimate the dependence structure of the model given in Exam-
ple 1.5.2 with d = 3 and k = 5. We choose the constants cj;, 1 < j < 3,1 <1 < 5,

as

C11 — 0.2 Cig — 0.2 Ci13 = 0 Ciqg = 0.6 Ci5 = 0

Co1 — 0.6 Coo — 0 Co3 = 0.2 Coy = 0 Con — 0.2

C31 — 0.2 C3g — 0.6 C33 = 0.2 C34 — 0 C35 — 0
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Figures 1.3 and 1.4 contain the simulation results of this model for n = 10000 iid obser-
vations of (X1, X, X3). We chose ¢ = 1/200 and computed the estimate p. (6o, 05) for
65,05 € {0, = ir/200, 1 < i < 100} and smoothed p;,(6;,6;) by averaging p. ,.(6k,6),
k=], [l —j| <s =3, ie.

1 S
~(s) o ~
pe,n(ei’ 0;) = m E Pen(Oits 0j-1) -
k,l=—s
8 2 z
e e . <o
F = / - &
40 X,_l 60 80 100 40 X . 60 80 100 60 80
3 a3 a3
2T 2% 28
< S =8
= =g =8
E} E}
N 0 02 04 06 08 1 12 14 - 0 02 04 06 08 1 12 14 N 0 05 1 15
1/Riy 1/Riy 1/Ri2

Figure 1.3: First row: data (3-d and 2-d projections) of the model given in Example 1.5.2.

Second row: ranks 1/Ri7j, 1 <75 <3, in the same order as in row one.

In the first row of Figure 1.3 the data are plotted, where in the left-most plot we show
the 3-dimensional data, the three plots on the right hand side show the projections of
the data, (X;1, Xi2), (X;1,X,3) and (X2, X;3). The second row is given in the same
order as the first row, showing the reciprocal ranks 1/R;;, 1 < j < 3. The first row of
Figure 1.4 shows the estimate #8?%(92, 0s), where the left plot is a perspective plot, the
middle one is a contour plot and the right one is a grey-scale image plot. To see how the
estimator performs the second row presents the true tail-dependence function p(6s, 63) for

this model.

Remark 1.5.4. Let p; 23 be the tail dependence function of three rvs X, X5, X5 and
p1,; be the tail dependence function of X;, X, 7 = 2,3, hence by definition p;2(6;) =
p1.23(02,m/2) and p1 3(63) = p123(m/2,05) holds Vb, 85 € (0,7/2). Therefore p; o can be
estimated by the cross section of the estimated trivariate tail dependence function at a

large and fixed angle , and similarly for p; 3. To identify po 3 recall that Ay 23(0,a,b) =
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Estimator /357)‘(02‘ 03) ﬁﬂ(ﬂz, 03)

14

(62,03)
6.811.2

o
2024

63)
68112

(62,
4.6

Figure 1.4: First row: smoothed estimate //)\‘(5?7)1(92,93) of the simulated data (see Figure 1.3), with
perspective plot (left-most), contour plot (middle) and image plot (right-most).

Second row: true tail dependence function p(62,63) for this model.

As5(a,b), hence

ling) p1.23 (arctan e, arctan (e tand))
E—

I 1+ 1/e+4cotB/e — 1P 23 (arctane, arctan (¢ tanf))
= lim
e—0 1+ 1/e4cotf/e —1V1/eVcoth/e
. e+ 1+4coth —eAio3(1,1/e,cotb/e)
= lim
e—0 e+1+cotd —eV1Vcotd
. €+1+COt9—A17273(6,1,COt9)
im
e=0 e+1+cotf —eV1Vcot
1+ cot @ — Ay 3 (1, cot )

- 1+cotd —1Vcotd = r2s(0)

1.6 The swap rate data

The data consist of returns (daily differences) of Annually Compounded Zero Coupon
Swap Rates with different maturities (between 7 days and 30 years) and different curren-
cies (EUR, USD and GBP). Each of the time series consists of 257 daily returns during

the year 2001. In an exploratory data analysis we investigated first each single time series.
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T-day vs. 30-day, 6-month and 30-year swap 30-day vs. 60-day, 1-year and 30-yecar swap 10-year vs. 15-year, 20-year and 30-yecar swap
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Figure 1.5: Estimates p for some swap rates with smoothed versions (dashed lines).
Left plot: p for 7-day vs 30-day, 7-day vs 6-month, and 7-days vs 30-year.

Middle plot: p for 30-day vs 60-day, 30-day vs l-year and 30-day vs 30-year.

Right plot: p for 10-year vs 15-year, 10-year vs 20-year and 10-year vs 30-year.

Plots of the autocorrelation functions of the single time series, their moduli and squares
exhibited no significant temporal dependence structure; hence we assume the data be-
ing iid. Moreover, the histograms and a tail analysis showed that the marginals are well
modelled (at least in the tails) by a two-sided exponential distribution. Concerning mul-
tivariate (spatial) dependence, for swap rates in the same currency we observed a high
dependence for similar maturities, and a low dependence between very different matu-
rities. Between different currencies we observed only very little dependence except for
similarly long maturities, where we detected some moderate dependence. For plots and
details on these effects we refer to Kuhn (2002).

To see the estimator p at work we show plots of p.,(6), 8 € (0,7/2), as defined
in (1.4.1) for the swap rate data described above for EUR. We use the nonparametric
estimator given in (1.2.5). We stay away from the boundaries § = 0 and 6 = 7/2 since
im(e) tends to oo as # — 0, and for 0 near 7/2 there is a lack of data.

In Figure 1.5 the tail dependence function is estimated for various combinations of
swap rates of different maturities with p.,(6;) (zigzag-line) and the smoothed version
ﬁ(gs,)l(ﬁl) (dashed line) for € = 0.06, s = 5 and 6; = 553, 1 <4 < 200. The left plot shows
strong dependence between the 7-day and 30-day rates, moderate dependence between the
7-day and 6-month rates, but very weak dependence between the 7-day and 30-year rates.
The middle plot shows moderate dependence between the 30-day and 60-day rates for
close to m/4 and exceptionally high dependence for § small or large, but weak dependence
between the 30-day and 1-year and 30-day and 30-year rates. The right plot shows strong
dependence between the 10-year,15-year, 20-year and 30-year rates. O
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Example 1.6.1. Figure 1.6 shows a comparison of the tail dependence function with the

spectral measure ® as defined in (1.3.2). We recall that in case of independence

5 T y
\Y% O(dy) =
/0 (1\/cot7 1\/tan7) (dy) =z+y,

and hence

1, 0<mn/2,

o(0) = ([0, 6) = { )

and in case of complete dependence

/% T v ey =av
=z
o \1Vcoty 1Vtanvy 7 v

and hence

0, 6<m/4,

©(0) = ©([0.0]) = { 1, w/4<0<m/2.

These results allow us to interpret the plots. We consider the 20-year vs. 30-year, 7-day vs.
30-day, and 7-day vs. 30-year swap rates. In the first row (high dependence) the estimated
spectral measure ® equals 0 for 6 < 0.4 and then quickly jumps to 1. In the third row
(low dependence) the estimated ® jumps quickly to 1 and remains there until close to 7/2
where it jumps to 2. The middle row (moderate dependence) is a mixture of high and low

dependence case. O

Example 1.6.2. Figures 1.7 and 1.8 show two trivariate examples. The first example
is generated by the low dependent swap rates with 7 day maturity and currencies USD,
EUR and GBP; X ; corresponds to USD, X, to EUR and X; 3 to GBP. In the first row
we plotted the ranks 1/R;;, 1 < j < 3, where R;; = rank(—X, ;). In the left-most plot
we show the 3-dimensional data, the three plots on the right hand side show the two-
dimensional projections (1/R;1,1/R;2), (1/Ri1,1/R;3) and (1/R;2,1/R;3). The second
row shows the smoothed estimator ﬁ(gf%(é’g, 0s) for n = 257, ¢ = 0.06 and s = 3; the left
plot is a perspective plot, the middle one is a contour plot and the right one is a grey-scale
image plot.

These 7-day swap rates show low and symmetric tail dependence which is reflected
by many points lying near to the axes and the rest is scattered roughly uniformly with
respect to the angles 0y, 05 (first row of figure 1.7). The estimator ﬁ(gf%(é’g, 05) (second row)
is therefore between 0.15 and 0.35 showing no significant difference between small and

large angles.
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Figure 1.6: Estimators of p and ® for some swap rates: 20-year vs. 30-year (first row), 7-day vs. 30-day
(second row), and 7-day vs. 30-year swap rates (third row).

Left plots: transformed ranks 1/R; ;,j = 1,2.

Middle plots: estimated tail dependence function p.

Right plots: estimated spectral measure ® of the data.

In the first row we see high, in the second middle and in the third row low dependence.

Figure 1.8 shows the same as figure 1.7 for the high dependent EUR swap rates with
maturities 5, 6 and 7 years. These swap rates with long and similar maturities show high
and symmetric tail dependence which is reflected by all points lying near the diagonal (first
row of figure 1.7). The estimator ﬁgf%(ﬁg, 05) (second row) is therefore almost everywhere
close to 1, only for angles 05, 05 near 7/4 the estimator becomes smaller which is illustrated

by the points that are away from the diagonal. 0
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Figure 1.7: First row: data (3-d and 2-d projections) of the ranks 1/R; ;, 1 < j < 3, of the low dependent
7-day swap rates rates in USD, EUR and GBP.

Second row: smoothed estimator ;32?,)1(02, 03), perspective plot (left-most), contour plot (middle) and grey

scale image plot (right-most)
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Figure 1.8: First row: data (3-d and 2-d projections) of the ranks 1/R;;, 1 < j < 3, of the high
dependent 5-year, 6-year and 7-year EUR swap rates.

Second row: smoothed estimator ﬁf}l(@z, 03), perspective plot (left-most), contour plot (middle) and grey

scale image plot (right-most)
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1.7 Proofs

Proof of Proposition 1.3.2 (1): The case § = 7/2 is obvious. Let y; = i/nif 0 € (0, 7/4]
and x; =i/nif 0 € (7/4,7/2), 1 <i < n, then

lim Z [ (yl cot 97 yl) - A(yl cot 97 yi—l)] ) 0 c (O, %]
A(Cy) = T

lim > [A(z;, z;tan0) — A(x;, 2,1 tan0)] + A(1,1) — A(L,tanf), 6 < (§.5).

N0 =1

Consider first 6 € (0, 7/4]. Note that for z1, x4 € [0, 0],

1 1
A = — — . 1.7.1
(71, 72) = 71 / 1V ot~ (dv) + 9 / 1V tan~y (dv) (1.7.1)
(arctan 972 g] [O,arctan %]
Thus, letting 6; := arctan (% tan 9),
A (yicot0,y;) — A (y; cot 0, yi 1)
1
= — 11 / [(1 A coty) — (cot8)(1 A tan~y)]|P(dy) + (1 A cot ) D(dy)
n
(05,6] [0,04]
1.
= | / [1 — (cot 0)(tan )] ®(dv) + @[0, ;]

Observe that sup, ¢, g i[1 — (cot #)(tan~)] < 1. Since 6; — 6, we have

1—00

lim sup ¢ / [1 — (cot @) (tan~)]®(dvy) < ®({6}),
(0:,0]

whereas ®[0, 6;] — ®[0,0) as i — co. Applying Cesaro’s mean value theorem we conclude
that A(Cy) = [0, 0] for all 6 € (0, 7/4] with ®({0}) = 0. The case 6 € (r/4,7/2) can be
dealt with similarly and the two cases combine to give A(Cp) = ®|0, 8] for all § € (0,7/2)
with ®({#}) = 0. Note that both A(Cy) and ®[0, 0] are nondecreasing and right-continuous
functions in 6. Since they agree on a dense subset of points in [0, 7/2] they must agree on

the entire interval of [0, 7/2]. This concludes the proof. O
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Chapter 2

Estimating tail dependence of

elliptical distributions

SUMMARY

Recently there has been an increasing interest in applying elliptical distributions to risk
management. Under weak conditions, Hult and Lindskog (2002) showed that a random
vector with an elliptical distribution is in the domain of attraction of a multivariate
extreme value distribution. In this chapter we study two estimators for the tail dependence
function, which are based on extreme value theory and the structure of an elliptical
distribution, respectively. After deriving second order regular variation estimates and
proving asymptotic normality for both estimators, we show that the estimator based on
the structure of an elliptical distribution is better than that based on extreme value theory
in terms of both asymptotic variance and optimal asymptotic mean squared error. Our

theoretical results are confirmed by a simulation study.

2.1 Introduction

Let (X,Y), (X1, Y1), (X2, Ys), - be independent random vectors with common distribu-
tion function I’ and continuous marginals F'x and Fy. Define the tail copula
1
ANz,y) = lim ;P (1= Fx(X) <tx, 1 - F(Y) <ty)
for x,y > 0, if the limit exists. Then A(1,1) is called the upper tail dependence coeffi-
cient, see e.g. Joe (1997) and, by Huang (1992), I(x,y) := = +y — A(z,y) is called the
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tail dependence function. Assuming that (X,Y’) is in the domain of attraction of a bi-
variate extreme value distribution, there exist several estimators for estimating the tail
dependence function [(x,y), see Huang (1992), Einmahl, de Haan, and Huang (1993) and
de Haan and Resnick (1993). The optimal rate of convergence for estimating [(x,y) is
given by Drees and Huang (1998). An alternative method for estimating [(z,y) is via
estimating the spectral measure, see Einmahl, de Haan, and Sinha (1997) and Einmahl,
de Haan, and Piterbarg (2001). For modeling dependence of extremes parametrically, we
refer to Tawn (1988) and Ledford and Tawn (1997).

Triggered by financial risk management problems we observe an increasing interest in
elliptical distributions as natural extensions of the normal family allowing for the modeling

of heavy tails and extreme dependence. The vector (X,Y) is elliptically distributed, if
(X, V)T = p+GAUP, (2.1.1)

where p = (ux, py)*, G > 0 is a random variable, called generating variable, A € R?*? is

a deterministic matrix with

AAT:2:< 02 an)
: : 9

pov v

and rank(X) = 2, U? is a 2-dimensional random vector uniformly distributed on the unit
hyper-sphere S, := {z € R? : ||z|| = 1}, and U® is independent of G.

Note that p is termed as the linear correlation coefficient of ¥. Under some conditions,
Hult and Lindskog (2002) showed that regular variation of P(G > -) with index o > 0,
ie, limy_ o P(G > tx)/P(G >t) =2 for all z > 0, (notation: P(G > -) € R_,) implies
that the regular variation of (X,Y) with the same index a > 0 (see Resnick (1987) for

the definition of multivariate regular variation). Moreover, if P(G > -) € R_,, then

/2 /2
A1,1) = (/( e )/2(cos¢)°‘ d<j>> / (/0 (cos ¢)* d<j>> : (2.1.2)

Here we are interested in estimating the dependence function A(z,y) by assuming
that P(G > -) € RV_, for some a > 0. Since P(G > -) € RV_, implies that (X,Y) is in
the domain of attraction of an extreme value distribution, a naive estimator is to apply
Huang’s estimator by ignoring the structure of the elliptical distribution, i.e.,

1

)\II;I;II"’n(xay) = k‘H ZI (Xz Z X(n—\_:ckHuJ,n)a }/; 2 }/(n—\_kauLn)) s (213)
=1
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where X1,y < -+ < X0 and Yq,) < -0 < Y, denote the order statistics of
X1,..., X, and Yi,...,Y,, respectively, kigy = kpu(n) —> oo and kg,/n “—> 0. The
same estimator has been analyzed by Schmidt and Stadtmiiller (2006); see their equation
(4.14). The aim of this chapter is two-fold. Firstly, we suggest a new estimator, which
exploits the structure of an elliptical distribution similar to (2.1.2). Secondly, we aim at
determining the optimal number of order statistics to be used in both estimators. The
choice will be based on the asymptotic mean squared error of the estimators.

Our chapter is organized as follows. We first derive an expression for A(z,y), which
generalizes equation (2.1.2), and then construct a new estimator for A(x,y) via this ex-
pression; see section 2 for details. After deriving the second order behavior for elliptical
distributions and the limiting distributions of both estimators in section 2, we show that
the new estimator is better than the naive empirical estimator from Huang in terms of
both asymptotic variance and optimal asymptotic mean squared error in section 3. More
importantly, the optimal choice of the sample fraction for the new estimator is the same
as that for Hill’s estimator (Hill (1975)). That is, all data-driven methods for choosing the
optimal sample fraction for Hill’s estimator can be applied to our new estimator directly.

A simulation study is provided in section 3 and all proofs are summarized in section 4.

2.2 Methodology and Main Results

The following theorem gives an expression for A(z, y), which will be employed to construct

an estimator.

Theorem 2.2.1. Suppose (X,Y) defined in (2.1.1) holds with ¢ >0, v >0, |p| <1 and
1—GeR_, for some a > 0. Further, define

g(t) := arctan ((t —p)/\/1— ,02) € [—arcsinp, /2], teR.

/2 -1 /2
Azy) = ( / eoso d¢> ( / R

9((@/9)V*)
+ / y (sin(¢ + arcsin p))® do | .

— arcsin p

Then

O

In order to derive the asymptotic normality of ngun(x, y), it is known that a second
order condition is needed. Here we seek the relation of the second order behavior among
the tail copula A\(x,y), vV X2+ Y? and G, see the next two theorems for details.
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In the setting of (2.1.1) assume that there exists A € RVj such that for all x > 0 and
some 3 < 0 (hence A(t) — 0)

= g , (2.2.1)

lim

P(G>tx)/P(G>1t)—a® o’ —1
t—o0 A(t)

where 0 < 0 is called a second order regular variation parameter, see de Haan and
Stadtmiiller (1996). Additionally, we assume

lim t*A(t) =: a € [~o0, 0] (2.2.2)

t—o00

Since A € Ry, it holds that (-)2A(-) € RV 4,4, therefore {2A(t) == a = 0 for § < —2 and
2AM) == 0 = 400 for 8 € (—2,0].

The following two theorems derive the corresponding second order condition for v/ X2 + Y2
and the tail copula A(z,y).

Theorem 2.2.2. Assume that the conditions of Theorem 2.2.1, (2.2.1) and (2.2.2) hold.
Further, define

di(¢) = o0°cos® ¢+ v’sin®(¢ + arcsin p),

dy(¢) = pxocoso+ puyvsin(¢ + arcsin p).

Then, for all x > 0,

o PIVETHY? > o} [PV V2 > 1) —
1
t—o0 t72 4 |A(t)]

- </_i(d1(¢))“/2 d¢) B {%W % (/:T(dl(@)(a—ﬁ)/? d¢)

brs =) [ @)
< [a(da(0) + di(6) (i +12)] do) . (2.2.3)
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Also, for all x > 0 and V(z) :=inf{y : P(WVX2+Y2>y) <z7'},

lim V(tz))V(t) — x'/*
t=oo (Fy (1 — 1)+ |A(Fy (1 — 1))

g (T dg
_ xl/a L o2 T :
= o ([ o) ( fow(smgb)w) x

a a1 (" (a-p)/2 )
N ar ([ e as

1 1, 5. T a/2-1
s ) [ @)

al 2
« [a(d6) + (@) + )] 46} = Vo Baan(e). (224

_l_

Especially, when pux = py = 0, we have for all x > 0

i VOO a8 e ([t dcb)_l .

t—oo A(Fy (1 —1t71)) vhaf3
- 0 dl a/gd B/
< ([ @operzas) (f-ff(sif;;ad ¢¢>
= $1/QB(2_2'5) (LU) (225)

Theorem 2.2.3. Assume that the conditions of Theorem 2.2.1 and (2.2.1) hold. Further,
define

S = {zeR?*:2>0and ||z| =1} and
2

Boao(a) = —xx_ﬁ/;_l ( /0 ﬂ(sincb)“dcb)_l ( /0 ﬂ(sin¢>“-ﬁd¢).<2-2-6>

35




Then,

I t'P(Fx(X) > 1—tx, Fy(Y)>1—ty) — Az,y)
ey A(Fr(1—1)

B J g /)rre)

g((z/y)'*)

w/2
= P {E/ [x_ﬁ/o‘(cos $)* P —(cos ¢)*] d¢

Y

ﬁ — arcsin p

n [y—ﬁ/a(sjn(¢+arcsin )P (sin(p+arcsin p))o‘} d¢

w/2

+B2.2.6)(x) / (cos ¢)* do

9((@/y)t/*)

9((x/y)"*)
+B2.2.6)(y) / (sin(¢ + arcsin p))* do

— arcsin p

w/2 w/2 -1
—A(z,y) L (cos @) ((cos $) P — 1) dgb} (/ (cos @) dqﬁ)

/6 —7/2 —7/2

= 3(2.2.7) (z,v)
(2.2.7)

holds for all x,y > 0 and uniformly on Sy . O

Now we are ready to define our new estimator. Put Z; = \/X?+ Y2 fori=1,...,n
and let Z(; ) < -+ < Z,n) denote their order statistics. First we estimate the index «

by Hill’s estimator, which is defined as

1 kEl -1
aEEW = <l€_E1 Z log Z(n—i+1,n) — log Z(n—kEl,n)) )
i=1

where kg = kp(n) — oo and kg/n — 0 as n — oo. Now let (X,Y) and (X,Y) be
iid with elliptical distribution. Then, it follows from Hult and Lindskog (2002) that 7 =
(2/m) arcsin p, where 7 is called Kendall’s tau and defined by

o= P((x-X)(v-7)>0)-P((x-X)(v-¥) <0).

As usual, we estimate Kendall’s tau by
~ 2 .
To= ———— Y sign (X — X)) (Yi - Y))),

n(n—1) T

which results in estimating p by

~ . (77'/\)
L =sin (=7, ) .
p 2
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Hence, we can estimate A(z,y) by replacing p and « in Theorem 2.2.1 by p,, and &EEW,

respectively. Let us denote this estimator by

Nog (T, ). (2.2.8)

We remark that Xgél’n(l, 1) was mentioned by Schmidt (2003), but without further study.
The following theorem shows the asymptotic normalities of XE;M(:U, y) and Xgéln(x, ),

which allows us to compare these two estimators theoretically.

Theorem 2.2.4. Assume that the conditions of Theorem 2.2.1 and (2.2.1) hold. Suppose

n—oo

ke = kru(n) = 00, kiu/n == 0 and

VEm ARy (1= ke /1)) =2 K,

for |Kuu| < 0o0. Then, as n — oo,

sup
0<z,y<T

\/k’iHu </):E;u,n(x> y) - A($7 y)) - ICHuB(2.2.7)(x> y) - B($7 y) = Op(l)’
(2.2.9)

for any T > 0, where Baor(x,y) is defined in Theorem 2.2.3,

By = Wi - (1-25 ) w0 - (1-22 0w,y

and W (x,y) is a Wiener process with zero mean and covariance structure

E (W(Il, yl)W(932> ?/2))
= 1 AT2+ 11 Ay — M@ A Za, y1) — Mx1 A T2, y2) — M1, 51 A Y2)
—Aw2, y1 Ay2) + AMx1,y2) + A2, y1) + Mog A zo,y1 Aya).

Therefore, for any fixed x,y > 0,

\% kHll (Xg;u,n(xv y) - >\(.§L’, y)) i> N (’CHUB(2.2.7) (.flf, y)v O-%Iu)

as n — 0o, where

oh, =T (%)\(1’, y))2 +y ((%A(a:, y))2 + 2X(z, y) ¥ (2.2.10)

) (% N a%m’y) - %Au,y) + (mgz y)) (ax(;y, y))) |
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o w/2

a—x)\(x,y) = </_ﬂ/2(cos )*d )

) w/2 -

soN@) = ( / feos >ad¢>
g((z/y)/ >

X / (sin(¢ + arcsin p))* do.
— arcsin p

g((z/y)/

! w/2
/ (cosp)*de and (2.2.11)
((/y)/*)
1
x (2.2.12)
)

O

Theorem 2.2.5. Assume that the conditions of Theorem 2.2.1 and (2.2.1) hold. Further
assume (2.2.2) holds when p # 0. Suppose kg = kgi(n, ) —> 00, kg/n "— 0 and

Ve (7 (L= ka/m) ™ + [AGF (L= ka/m)| ) =% K, 1 #0,
VEmA(Fy (1 —kgi/n)) —: Kg, p=0,
for |[Kg| < oo Then, as n — oo,

sup
0<z,y<T

V kel <)‘kE1n(5E y) — A(%?J)) — Baoas (,y)Zo| = op(1), (2.2.13)
where Z(] ~ N (—OA2ICE18(2,2_14), a2) with

5 fo 22.4)(1/s)ds, p#0,
(2.2.14) =
fo (2.2.5) (1/s)ds, p=0,

B.2.4)(s) and Bos(s) are defined in Theorem 2.2.2 and

(2.2.14)

w/2
Biaisy(r,y) = {/(( e x(cos ¢)* In(cos ¢) do
9((/y

((z/y)V/=)
+ / y(sin(¢ + arcsin p))® In(sin(¢ + arcsin p)) d¢

arcsin p

/2 /2 -1
— Nz, y) </_ /2(cos ®)* In(cos ¢) d(b)} (/_ /2(cos ) dqf)) .(2.2.15)

Therefore, for any fived x,y > 0,

Vie (M, (2.9) = M)

<, N <—Q2KE18(2.2.14)3(2.2.15)(95,y)> o’ (3(2.2.15) (z, y))2) .
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The next corollary gives the optimal choice of sample fraction for both estimators.

As criterion we use the asymptotic mean squared error of X" —and AF'  denoted by
kry kgi,no

,n

amsep, (kgy) and amseg) (kg ), respectively.

Corollary 2.2.6. Assume that the conditions of Theorems 2.2.4 and 2.2.5 hold. Further,
suppose that

AFr(1—1) ~ bot™o/o,
(Fy (1 —=t) 2+ |A(Fy (1—1)| ~ bt/
for some by, by >0 ast — 0 and define

.l byt CAEBD ey £,
2 =
bot_ﬁ/a, pn=0.

Then

_ 8/ 2
amsepy (kgy) = U%ukHlll-i- (b(lfHu/n) bl 3(2.2.7)(3579))

and

2
amseg(kg)) = (8(2,2,15)(:c,y))2 (ozzk]gll + (oz262(l{:El/n)_ﬁQ/aB(zz.M)) ) )

Let kit and kg denote the optimal sample fraction in the sense of minimizing amsep,

and amseg, respectively. Then

, o/ (a=28)
—Q0y, 2) n—2ﬁ/(o¢—2ﬁ)7
,9))

ki = (
2803 (B2.a.7)(

k= <_2520éb§ (8(2.2.14))2> e n20e/l020)
amsepr. = amsey, (]fﬁﬁf) = nzﬁ/(a_zﬁ)bga/(a_zﬁ) <1 — %) X
X ((o—glu)—ﬁ/a Bioan (. y)\/Tﬁ/a) e
amsep:’ = amse (]fgft) = n2ﬁ2/(°‘_2ﬁ2)b§a/(a_2ﬁ2) (1 — Qiﬂz) X

20/ (a—202)
X 0‘2(8(2215) (z, y))2 (v —204628(2.2.14)) .
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Remark 2.2.7. Note that kpy' is independent of = and y, but k%" depends on x and
y. In case of g = 0, both amsef?' and amsep' depend on n, o, 3, p, v, z, y and by,
amsepr' additionally depends on o, but the ratio amsefr: /amseph' is independent of n
and by. Since the optimal k;‘ft is the same as that for Hill’s estimator, when p = 0, all
data-driven methods for choosing the optimal sample fraction for Hill’s estimator can
be applied to X%ém(x,y) directly. Note that g is the median of (X,Y) and the mean
of (X,Y) when o > 1. Hence, we could estimate g by the sample median, say g =

(Tix, iy ). Therefore, consider the new estimator XEl a(r,y) with Z; = \/X? 4 Y replaced

by \/ + (Y; — fiy)*. Similar to the proofs in Ling and Peng (2004), we can show
that Theorem 2.2.5 and Corollary 2.2.6 hold with g = 0 for this new estimator. UJ

2.3 Comparisons and Simulation Study

First we compare of,, 0% given in Theorem 2.2.4 and 2.2.5. Note that both only depend
on a, p, r and y. In Figure 2.1, we plot the ratio o3,() /0%, () for x = y = 1 as a function
of o, and each curve therein corresponds to a different correlation p € {0.1,...,0.9}. From
Figure 2.1, we conclude that )\ ., 1s always better in terms of asymptotic variance.

Second, we compare the two estimators in terms of optimal asymptotic mean squared
errors. Since the ratio of the optimal asymptotic mean squared error depends on «, (3, X,
w, x, y, we consider elliptical distributions with o = v =1, ux = puy = 0. In Figure 2.2,
we consider G ~ Fréchet(a), i.e. P(G > x) = exp(—z~%), x > 0, hence (2.2.1) is satisfied
with § = —a. In Figure 2.3, we consider G ~ Pareto(«), i.e. P(G > z) = (1 + )~ for
x > 0, therefore, (2.2.1) is satisfied with § = —1. Under the above setup, the ratio of
optimal asymptotic mean squared errors only depends on «, p, z,y. Similar to Figure 2.1,
we plot the ratio amseph' () /amseft: (o) for z =y = 1 as a function of « for different p'’s
in Figures 2.2 and 2.3. We conclude from both Figures that )\ ., always performs better
than )\ " in terms of optimal asymptotic mean squared errors as well.

Thlrd, we examine the influence of x and y to the ratio of asymptotic mean squared
error. We plot the ratio amsep* (o) /amsegr: (o) for ||(z, )| = V2 and G ~ Pareto(a) in
Figure 2.4, where each curve corresponds to a different pair of («, p) € {(20,0.9), (10,0.6),
(5,0.3),(1,0.1)}. This figure further confirms that Xgln always has a smaller optimal
asymptotic mean squared error than XH“

Finally, we study the finite sample behavior of the two estimators >\kn(l’ y) and

)x,m(x y). As above, we consider two elliptical distributions with ¢ = v = 1, ux =
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py = 0, G ~ Fréchet(a) in Figure 2.5 and G ~ Pareto(c) in Figure 2.6. We gen-
erate 1000 random samples of size n = 1000 from these elliptical distributions with
(@, p) € {(20,0.9),(10,0.6), (5,0.3), (1,0.1)}, and plot AP, (1,1) and A% (1,1) against
k=1,...,300 for different pairs («, p) in Figures 2.5 and 2.6, where the solid line corre-
sponds to Xﬁln(l, 1) and the dashed line to XI,;I,‘,‘L(I, 1). This simulation study also confirms

the better performance of X‘Eln
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2.4 Proofs

Proof of Theorem 2.2.1: Without loss of generality, we assume u = 0. Let & ~
unif(—m, 7) be independent of G and F;~ () denote the inverse of F;(x), i = 1,2. Then,
by Hult and Lindskog (2002),

Fy(u) = 2Fy (u), for 0 <u <1,

limy (1 — Fi(tx))/(1 — Fi(t)) = ™, forz >0andi=1,2,

(X,Y) 4 (oG cos @, vG sin (arcsin p + P@)) .
(2.4.1)

Therefore,

P (Fx(X) > 1—ta, Fy(Y)>1—ty)
= t7'P(Gcos® > Fy (1 — tz) /v, Gsin(arcsin p + ®) > Fy (1 — ty)/v)

I Fy(1—t Fr(1—t
27t v COoS ¢ vsin(arcsin p + ¢)

— arcsin p

(2.4.2)

Note that

t=P(X >Fy(1—t)=P(Gcos® > Fy (1—1t)/v)

o — v COoS @

T—00

Further, 1 > P (G > z/cos¢) /P (G > x) — (cos ¢)*. Hence, in the following formula

we can apply the dominated convergence theorem and obtain

1 1
_ = — > — o
B (t) 27rtP (G = B (1=1)/v)

t—0 /2 o - . 1
e (/_ﬂ/z(cosé) d(j)) = Bars (2.4.3)

Next, we obtain for ¢ € (— arcsin p, 7/2)

Fy (1 —tx) - Fy (1 —ty) o Fy (1 —ty) - sin(arcsin p + ¢)
veos¢g  — wsin(arcsinp 4 ¢) Fo(1—tx) — Ccos ¢ '
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Note that sin(arcsin p + ¢)/ cos ¢ is strictly increasing, hence its inverse exists and equals

arctan (( —p)/\/1— ,02>. Therefore,

Fri—to)  Frll-ty)
veos¢  wsin(arcsinp + @)
Fy (1—ty)/Fy (1 ta) — p)

1 —=p?

=g <%) =: h(z,y,t). (2.4.4)

& ¢ > arctan (

Since 1 — Fy € R_,, by Proposition 1.7(9) of Geluk and de Haan (1987) Fy (1 —

te)/Fr(1—1t) 28 a-Ve e,

hz,y, ) =5 g ((x/y)") . (2.4.5)
It follows from (2.4.2) and (2.4.4) that

P (Fx(X) > 1—ta, Fy(Y) >1-ty)

For(1—t) F(1— ta)
_ 1 /”/2 P<GZ v Cos ¢ F{,‘(l—t)) s
h

B.a3)(t) Jugy. P(G > Fy(1-1)/v)
Fy(1—1) Fy (1 —ty)
> Y Y
N 1 /h(w,yvt) P (G ~ wsin(arcsinp + ¢) Fy (1 —1) do
8(2-4-3) (t) — arcsin p P (G > F{/_(l o t)/U>

(2.4.6)

Hence, the theorem follows from (2.4.3), (2.4.5) and Potter’s inequality, e.g. see (1.20) in
Geluk and de Haan (1987). O

Proof of Theorem 2.2.2: Since
(X,Y) = (x+0Gcos®, py +vG sin(®+arcsin p)) ,

we have X2 4 V2 2 G2, (®) + 2Gdo(®) + p% + p2. Define

h(o6) = o () B0~ (o) (& 28— ) ).

L
dy()
16



Since P(X?+ Y2 >t) = P (G > ds(t,®)) holds for large ¢, we obtain

P (X?+Y? > t%2?%)
P(X2+Y2>12)

) (] P
_ {/_: [P(GP(zGd;(tg, 9) _ Gds(t:v, @) _a}d¢

" LP(G>d3(t9) | (1 -
+/_W[—x PO > D) + <¥d3(t,¢)) |d¢

+ /_:[ <1d3(t9:,¢)) _a—a?_“ (%dg(t, gb)) —a]d¢} %
< (/ (ié §<;¢>>d¢)—1

Since |p| < 1, it is straightforward to check that

— x_a

Jim ¢y (t,0) = (d(6)) 7,

0< sup di(¢) <oo, and
—T<p<m

sup  |dy(¢)] < oo.
—r<o<n

Hence, similarly to the proof of Theorem 2.2.1,

: (G > d3 a/2
tlggo P(G > t d¢ / d¢-

(2.4.7)

(2.4.8)

Similar to the proof of Draisma, de Haan, Peng, and Pereira (1999, Lemma 5.2), for any

e > 0, there exists ¢ty > 0 such that for all ¢ > tg, ds(tz, ¢) > tg

P (G > ds(tx,0)) (1 -
‘ PG>0 (2‘13(”’ ¢))

. (%dg(tx,gb))ﬁ—l‘

‘ AW - () 7

< ¢ <1+ (%dg(tl’, qb)) - + Gdg(tx, qb)) _a+6exp {5
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Using (2.4.7), for any fixed = > 0, we can choose t, large enough such that ds(tz, ¢) > to
uniformly for ¢ € [—m, 7|. That is, for any fixed = > 0, (2.4.9) holds uniformly for
¢ € [—m, ]. Therefore, by dominated convergence theorem and (2.4.8), for x > 0,

() 1 [T a—B)/2 /2
i S - /_ ﬂ (o (d ()@ — (d1(6))") dp and (2.4.10)
T

im Ja(t) = ——
t=oo A(t) 3 )

(@ (o) — (@(o)*) ao.  (2411)
It follows from (2.4.7) and a Taylor expansion, for z > 0, that
B = el = 1) [ @) ()0 + o (1)
b (7= 1) [ (00D [alda() + di(0) 4 + )] 4o
(2.4.12)

Note that sin(¢ + arcsinp) = /1 — p?sin¢ + pcos ¢. Then, splitting the integral into
-7, —m/2), [-7/2,0), [0,7/2), [r/2, 7] and using the symmetry of sin and cos, we obtain

/_ ' (di(0) V2 dy(d)d = 0. (2.4.13)

™

Hence (2.2.3) follows from (2.4.10), (2.4.11), (2.4.12) and (2.4.13). Note that

lim P (\/W > t) /P(G>1) = / " (di(6)™2 db

—
t—o0 -

and, since Y < py + vGsin ® with & ~ unif(—m, 7) holds,

lim P(Y > t)/P(G >t) =0 /W(Sin ¢)*do.
t—o00 0

Therefore, we have
V(t) ~ inf {y PG >y) < 15_1//7r (dy ()2 d¢} and

Fr(l—tY) ~ inf{y:P(G>y) <t/ <va/07r(sin¢)ad¢)}.

Hence,

vy (@)
v fow(sin @) de '
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ie., since 2|A(t)] == oo for —2 < <0,

. (V(#)™2 + JA(V(1))]
t=oo (Fy (1 —t=1) 7% + |A(Fy (1 — 1))

(o) ds)
- (w NGOG d¢> . (2.4.14)
Note that, by Taylor expansion,
Vitz)\ I Vte) Lo ,
(Ti) = 3= (=) /v + 1A ND).
(2.4.15)

Therefore, replacing ¢ and z in (2.2.3) by V(t) and V(tz)/V(t), respectively, and using
(2.4.14) and (2.4.15), we obtain (2.2.4). Let uy = uy = 0, then J5(t) = 0 and we obtain
(2.2.5). O

Proof of Theorem 2.2.3: In order to prove Theorem 2.2.3, we can assume px = gy =0
since A(z,y) is independent of margins. We also set v = 1 and give the correction at the
end of the proof. Using an upper-triangle decomposition of ¥ yields Y 4 Gsin ®, where

® ~ unif(—m, 7) and is independent of G. Then, write

P(Y > tx) o foﬂ P (G > tx/sin¢)do s

PY >t T [TP(G>t/sing)de

- () ([ [P ()]

P(G >t) sin ¢
P (G >t/sing¢) 1\ “
P(G>t) (sincb) ] d¢}'
Then, by (2.2.1), we have for x > 0

()

_ x—af’:ﬁﬁ_ L ( /0 W(sin 6)° d¢) B ( /0 W(sin o d¢) .

Replacing ¢ and z in the latter equation by Fy (1 — s) and Fy (1 — sy)/Fy (1 — s),

respectively, we obtain, for y > 0,

—Q

— X

lim

t—o00

s—0

lim <(%) —y> JA(FF(1=8) = Baag(y).  (2416)
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Denote f(t) := Fy (1 —t). Then, by (2.4.6), we can write
P (Fx(X) > 1 —tx, Fy(Y) >1—ty)

B 1 /2 PG> cos¢ f(t) > f(tx) -
= Bon® {/<> —FEssw) (f(t) ¢) Jdo

’ /:/2 Nf(@i?w)_a ~afeoso)]do + [ el

(@,y,t) h(z,y,t)
(@) J(ty)
I /h(x,y,t) <G B sin(arcsin p+¢) f(y) )
—arcsin p (G Z -f( ))
f(ty) -
— d
(f(t) sin (arcsin p + ¢) J do
M f(ty) - . . a
+ /amsmp < T sin (arcsin p ¢)> — y (sin (arcsin p + ¢)) } do
h(z,y,t) /2
+ / (sin (arcsinp + ¢))* d¢ + / z(cos ) do
h(z,y,0) h(z,y,0)
h(z,y,0)
+ y (sin (arcsin p + ¢))* d¢
— arcsin p
1 6
= — Jit)+T+Ts | -
Biz.a.3)(t) <; ()+77 8)

(2.4.17)

Note that 1/|cos¢| > 1 and v is given, using Potter’s bound and similar arguments as
in the proof of Draisma et al. (1999, Lemma 5.2), for any £ > 0, there exists some small
to > 0 such that for all f(t) > f(ty), f(tz) > f(to) and ¢ € [—7/2,7/2]

<G > ](:osqb) /P (G > f(t) — (f({)(i?s(b)—a
A(f())

tx B
_< f(tz) )‘ (f({)(co)w) — 1
f(t) cos ¢ 5

= <“ (f({)(i?s ¢) E (f({)(i?s <z>) T {

20

f(tx)
J(t) cos &

In

)

(2.4.18)



and for all t <ty and tz < t,

< (14 e)z Y exp(e|logz|).

(1 — &)z Yexp(—¢|logz|) <
(2.4.19)

Since f(t) > toand t < to imply that f(tx) > tg and tx < to for all 0 < x < 1, respectively,
by (2.4.18), (2.4.19), (2.4.5) and dominated convergence, we have
lim Ji(t) -z
=0 A(f(t)) A
holds for all z,y > 0 and uniformly on S;. Similarly,

t h(w7y70)
lim 7‘74() — 7

t—0 A(f(t)) B B —arcsin p

x/
[ eosor —eosorlas 2a2)
h(z,y,0)

[y_ﬁ/o‘(sin(¢ + arcsin p))* =" (2.4.21)
—(sin(¢+arcsin p))*] d¢

holds for all z,y > 0 and uniformly on S;".
Using (2.4.16) and a way similar to the proof of Lemma 5.2 of Draisma et al. (1999),
for any € > 0, there exists ty > 0 such that for all ¢t <ty and tz < t,

(Fy (A —ta)/Fy (1—t) " —=
Ay el
< € (01+C'2:)3+03:)31_5/°‘ exp(e|Inz|)) , (2.4.22)

where the constants C; > 0,C5 > 0,C3 > 0 are independent of x and t. Hence, it follows
from (2.4.5) and (2.4.22) that

lim J(t) = Ba2e)(z) /7r/2 (cosp)*d¢ and (2.4.23)
=0 A (Fi/_(l - t)) h(z,y,0)

. J5(t el .

15% 1 (F};((l )_ ) = B26)(y) /_arcsmp(sm@ +arcsinp))*d¢  (2.4.24)

holds for all z,y > 0 and uniformly on S;".

Note that
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Similar to the proof of Draisma et al. (1999, Lemma 5.2), for any ¢ > 0, there exists o > 0

such that for all t < tg,tx < tg, ty < tg

1 ((f(ty))_a _ Q) — %8(2_2'6) (y) + %8(2.2.6) (z)

A(f() \\ f(tz) x

1
< —e (O + Coy + Cyy!leerlondl)

+l <y) (C1 + Cox + C32' %/ exp(e| log z]))

r \x
1
+— (%) exp(e|log(y/x)]) (C1 + Coz + Csz'7/* exp(e|logz|)) , (2.4.25)

where constants C; > 0,Cy > 0,C3 > 0 are independent of ¢, z,y. Using (2.4.25),

limsup, _, |g'(27"/%)2%*| < o0
limsup, o, |¢/(z"/*)] < o0

lim sup,_ . [sin(g(2~%) + arcsin p)]*z < oo

and applying a Taylor expansion to g(z~'/%), we can show that

g((@/y)t/
Jot) L / ) oy do

fim A(f(t) ~ =0 A(F(1) (F(ty)/f(t2))
_ 2 [cos (g ((x/y)l/ “))]ag’((x/y)l/“> <B(2.2;>(y)—8(2'2£)(x)) (g)l/a
(2.4.26)
and
Js(t)

9(f(ty)/ f(tx))
/ y(sin(¢ + arcsin p))* de
g

PR ACE@) ~ PBAGE) Sy

- _% [sin (g ((x/y)l/ O‘) + arcsin P)]ag/ (W y)l/a> )
y (B(Z.ZG)(?J) B 3(2.2.6)(36’)) (E)l/a (2.4.27)

Y 2 Y

holds for all z, > 0 and uniformly on S;". Since

x [cos <g ((x/y)l/o‘))]a =y [sin <g ((:c/y)l/a) + arcsinp)} , (2.4.28)

we obtain lim, o(J5(t) + Js(t)) /A(f(t)) = 0.
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By Theorem 2.2.1, A(z,y) = (J7 + J3)/B2.4.3), hence

. 1 1
lim (B(2,4,3) 0 (Jr + Ts) — Az, y))

1 ~ A=,y)
< B2.4.3)(1)

1 /2 . - /2 . -1
= —)\(x,y)ﬁ (/—w/z(COS(Z)) ((cosqb) ﬁ—l) d(j)) (/—w/z(COS(Z)) d(j)) ,

(Bas(t) — B(2.4.3>))

(2.4.29)
which obviously holds uniformly on S, since sup st M@, y) < oo. Note that
A(Fy (1=1) JA(Fy(1—1) = v, (2.4.30)

Hence the theorem follows from (2.4.20), (2.4.21), (2.4.23), (2.4.24), (2.4.26), (2.4.27),
(2.4.29) and (2.4.30). O

Proof of Theorem 2.2.4: Similar to Huang (1992) or Einmahl, de Haan, and Li (2006),

we have, as n — 00,

sup [V {oty=Ni L (2,9) = 1@,9) } ~ KiuBean (@.9) - Bla,y)| = o(1),
0<zx,y<T
where

Bl = Wie) - (1- 25 w0 - (1-2520 ) wio,y)

and W (z,y) is a Wiener process with zero mean and covariance structure
E Wz, y)W(ze,y2)) = Ux1 Azg,yi)l(1 Ao, y2) — Uzt y1 A yo)
+ U@z, 1 Ayz) — U@, y2) — Uz, y1) — U@ Az, Agpa).

Hence (2.2.9) follows from A\(x,y) = = +y — l(x,y). It is straightforward to check that
(2.2.10), (2.2.11) and (2.2.12) hold. Note that the result can also be obtained from Schmidt
and Stadtmiiller (2006) by taking the bias into account. O

Proof of Theorem 2.2.5: The result follows directly from
V kgl (@gm - a) - N (—OézlcElB(z.z.m)’ 042)

(see de Haan and Peng (1998)), 7,,—7 = o, (k]gf/ 2) and the delta method for the expression
of AM(z,y) given in Theorem 2.2.1. O
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Chapter 3

Multivariate tail copula: modeling

and estimation

SUMMARY

In general, risk of an extreme outcome in financial markets can be expressed as a function
of the tail copula of a high-dimensional vector after standardizing margins. Hence it is of
importance to model and estimate tail copulas. Even for moderate dimension, nonpara-
metrically estimating a tail copula is very inefficient and fitting a parametric model to tail
copulas is not robust. In this chapter we propose a semi-parametric model for tail copulas
via an elliptical copula. Based on this model assumption, we propose a novel estimator
for the tail copula, which proves favorable compared to the empirical tail copula, both

theoretically and empirically.

3.1 Introduction

Risk management is a discipline for living with the possibility that future events may cause
adverse effects. An important issue for risk managers is how to quantify different types of
risk such as market risk, credit risk, operational risk, etc. Due to the multivariate nature
of risk, i.e., risk depending on high dimensional vectors of some underlying risk factors, a
particular concern for a risk manager is how to model the dependence between extreme
outcomes although those extreme outcomes occur rarely. A mathematical formulation of

this question is as follows.
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Let X = (X1,...,X4)T be a random vector with distribution function ' and contin-
uous marginals F7, ..., F;. Then the dependence is completely determined by the copula
C of X given by Sklar’s representation (cf. Nelsen (1999) or Joe (1997))

F(.’L‘) = C(Fl(l’l), .. .,Fd(l'd)), T = (1’1, s ,ZL’d)T € ]Rd.

Moreover, the copula alone allows us to describe dependence on extreme outcomes. As C'is
a multivariate uniform distribution on [0, 1], extreme values are near the boundaries and
extreme dependence happens around the points (0,...,0) and (1,...,1). This motivates
the definition of the tail copula of X as

M (... 2q) = limt'P(1—F(X)) <twy,..., 1—Fi(Xg) <taxg), (3.1.1)

t—0

where x1,...,2z4 > 0, if the limit exists. The bivariate case, when d = 2, has been
thoroughly investigated and A\* (1, 1) is called the upper tail dependence coefficient of X,
and X5, see Joe (1997). It models dependence along the 45 degree line, where the bivariate
dependence effects are mostly concentrated. For z,y € [0, 1]? the function x+y — M (z, y)
is called the tail dependence function of X; and X, by Huang (1992); such notions go
back to Gumbel (1960), Pickands (1981) and Galambos (1987), and they represent the
full dependence structure of the model.

The approach via a dependence function yields that the risk of an extreme outcome
in financial markets can be expressed as a function of the tail copula M\ (xy, ..., z4) after
standardizing marginals. When d = 2, the tail copula M (z,y) or the tail dependence
function x + 1y — AX(z,y) can be estimated nonparametrically via bivariate extreme value
theory; see Einmahl, de Haan, and Piterbarg (2001) and references therein. Also paramet-
ric models for the tail dependence function have been suggested and estimated, see Tawn
(1988), Ledford and Tawn (1997) and Coles (2001) for examples and further references.
The application of both, nonparametric and parametric estimation of tail dependence
functions has almost only been investigated for the case d = 2 although theoretically
both methods are applicable to the case d > 2. For an approach to nonparametric estima-
tion of tail dependence in higher dimensions see Hsing, Kliippelberg, and Kuhn (2004).
Recently, Heffernan and Tawn (2004) proposes a conditional approach to model multi-
variate extremes via investigating the limits of normalized conditional distributions. Ob-
viously, nonparametric estimation severely suffers from the curse of dimensionality, when
d becomes large, and fitting parametric models for large d is not robust in general.

In this chapter, we concentrate on the dependence structure only, which means we

work in the tradition of estimating a dependence function. However, we neither work with
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purely nonparametric estimates nor do we specify a parametric model. Instead we propose
to model the tail copula via an elliptical copula, a novel approach, which may be viewed as
a semi-parametric approach. For the applications of copulas and elliptical copulae to risk
management, we refer to Frey, McNeil, and Nyfeler (2001) and Embrechts, Lindskog, and
McNeil (2003). Recently, Demarta and McNeil (2005) study some parameterized elliptical
copulas. One of the advantages in employing elliptical copulae is simplicity of simulating
multivariate extremes.

Recall that the random vector Z = (Zy, ..., Zy)" has an elliptical distribution,
Z < GAUY, (3.1.2)

where G > 0 is a random variable, A is a deterministic d x d matrix with AA” := ¥ =
(04)1<i,j<a and rank(E) = d, U? is a d-dimensional random vector uniformly distributed
on the unit hyper-sphere S; := {z € R : 27z = 1}, and U is independent of G.
Representation (3.1.2) implies that the elliptical distribution is uniquely defined by the
matrix ¥ and the random variable G. For a detailed description of elliptical distributions,
we refer to Fang, Kotz, and Ng (1990). Then, an elliptical copula is defined as the copula
of an elliptical distribution.

Define the linear correlation between Z; and Z; as py; = 045//7:0;; and denote by
R := (pij)1<i j<a the correlation matrix. Note that p;; exists for any elliptical distribution;
if finite second moments exist it coincides with the usual correlation. Hult and Lindskog
(2002) showed in their Theorem 4.3 under weak regularity conditions and d = 2 that
regular variation of P(G > -) with index a > 0 (notation: P(G > -) € RV_,) is
equivalent to multivariate regular variation of Z with the same index a. We refer to
Resnick (1987) for the definition and properties of multivariate regular variation. This
implies, in particular, that the correlation matrix and the index « of regular variation are
copula parameters.

Further, we denote the upper tail dependence coefficient between Z; and Z; as

w/2 /2
NA(1L1) = ( / (cosqb)adqb>/< / (cos¢)ad¢> (3.1.3)
(m/2—arcsin p;;)/2 0

when P(G > -) € RV_,; in this case it is positive (cf. Hult and Lindskog (2002, Theo-
rem 4.3)).

For illustration of our methodology, we focus on the case d = 2 from now on and
the extension to d > 2 is given in Section 3.5. Kliippelberg, Kuhn, and Peng (2005a)

studied two estimators for estimating the tail copula AX (z,y) as defined in (3.1.1), when
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observations have an elliptical distribution; i.e., X L Z with Z defined in (3.1.2) and
P(G > ) € RV_, for some a > 0. One estimator is based on extreme value theory,

another one on an extended version of (3.1.3); i.e., denoting A%, = A% and p;» = p,

/2 (x/y)'/ =
MN(z,y) = (/ x(cos @) do + /9( ' )y (sin(¢ + arcsin p))” dgb)
9

((w/y)l/a) — arcsin p

w/2 -1
X (/ (cos ¢)* d¢> = Mo 2,y, p), (3.1.4)
—7/2
where ¢(t) := arctan ((t —p)/\/1— p2> € [—arcsinp, /2] for t > 0. Note that in this
setup « can be estimated from observations.
Here we propose to model only the copula C' (not the full distribution) of X by the
copula of Z with P(G > -) € RV_,, i.e.,

P(F(X)) <a,B(Xo) <y) = P(F (%) <, F(Z) <y), (3.1.5)

where F'Z and FZ denote the marginal distributions of Z.

In our approach, the copula C' is not completely determined, since we only work
with the tail information (the regular variation) of G. Without doubt, how to test the
above model assumptions is important, and will be investigated in a separate paper. In
the present chapter, we focus on the estimation issue, i.e., seeking a way to improve
the empirical tail copula estimator. For iid data X; = (X1, Xip) for ¢ = 1,...,n, with
unknown distribution function F' and tail copula as in (3.1.1) the empirical tail copula

estimator is defined as
AP (2, k) = L znjl 1- Fy(Xa) < E:::, 1— Fy(Xp) < Ey . (3.1.6)
k — —n —n

where ﬁj denotes the empirical distribution of {X;;}", for j = 1,2 and we consider
k =k(n) — oo and k/n — 0 as n — oo.

A natural way to improve the empirical tail copula estimator is to employ (3.1.4) like
Kliippelberg et al. (2005a). However, « can not be estimated directly from the observations
under the model assumptions. Hence, we propose to estimate « first by using (3.1.4) with
the empirical tail copula and an estimator for p. Then we estimate the tail copula A
by plugging in the estimators for a and p; see section 3.2 for details. Some theoretical
comparisons are provided in section 3.3. We present a simulation study in section 3.4.
The generalization to higher dimension is discussed in section 3.5. Finally, all proofs are

summarized in section 3.6.
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3.2 Methodologies and Main Results

Throughout this section we assume that d = 2. Because of (3.1.5), we can estimate A\ (z, y)

by AP (z, 1 k). It follows from Lindskog, McNeil, and Schmock () that condition |p| < 1
2

implies 7 = = arcsin p, where 7 is Kendall’s tau, i.e.

7T = P ((Xll — Xgl) (X12 — X22) > 0) - P ((Xll — X21) (X12 — XQQ) < O) .

Hence we can estimate p by p = sin (g?) , where

Pl S s (X X (Xe — X)), (3:2.1)

n(n —1) 1<i<j<n
In order to estimate a via (3.1.4), we need to solve this equation as a function of a.

Theorem 3.2.1. For any fived x,y > 0 and |p| < 1, define o* := |In(z/y)/In(p Vv 0)].

Then, N z,y, p) is strictly decreasing in o for all o > o*.

Based on the above theorem, we are able to define an estimator for « as follows. Let
A7 (-;x,y, p) denote the inverse of \(«; x,y, p) with respect to a, if it exists. By Theorem
3.2.1, we know that A= (-;1,1, p) exists for all &« > 0. Hence, an obvious estimator for «
is a(l,1,k) == A“(Xomp(l, 1;k); 1,1, p) for any estimator p of p. Since this estimator only
employs information at x = y = 1, it may not be efficient.

Next we extend the estimator (1, 1, k) to &(z, y, k) for other values (z,y) € R%. Based
on Theorem 3.2.1 we define corresponding ranges for y/z = tan . To ensure that (x,y) =
(1,1) is taken into account, we look at (z,4) = (v/2cos 6, v/2sin#) for different angles 6.
Note that Xomp(x,y; k) = Xemp(\/?cos 0,v/2sin0; k*) for § = arctan(y/r) and some k*,
hence it is sufficient not to consider all (z,y) € R2 but only (z,y) = (v/2cos 0, v/2sin ).
Define

~

Q = {9 € (O,g) : Xemp(\/ﬁcosé’,ﬁsmé’; k) <

_ A( In(tan 6)

Q= {0 (0.5): mGano)| < a1, 15%) (1 - k) GV o)} and

/3 S4ing. 5
(3 v 0) 7\/7C0s6’,\/7sm€,,0)},

Q= {9e (og) . [In(tand)| <a\1n(pv0)|}.

It follows from Theorem 3.2.1 that there exists a unique a; > |In(tané)/In(p Vv 0)| such
that
Mar: V2 cos,v/2sin 6, p) = Xemp(ﬂcosﬁ, V2sinb: k), e Q.
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Therefore, for 6 € @ we can define the inverse function of A(-;v/2cos®,v/2sin @, p) giving
a(V2cos0,V2sin0; k) = A\~ (Xomp(\/ﬁ cos 0, v/2sin 0; k); V2 cos 0, /2 sin 6, ﬁ) . (3.2.2)

Next we have to ensure consistency of this estimator. This can be done by further requiring
6 € Q*, which implies that the true value of « is larger than |In(tan6)/In(p V 0)| with
probability tending to one. Thus, our estimator for « is defined as a smoothed version of
a. That is, for an arbitrary nonnegative weight function w we define
kW) = —
w@ne)

where W is the measure defined by w.

/ ~a(V2cos,V2sin0; k) W(d6) (3.2.3)
0eQNQ*

Before we give the asymptotic normality of @, we list the following regularity condi-

tions:

(C1) X satisfies relation (3.1.5) and Z has tail dependence function (3.1.4) and P(G >
-) € RV_,, for some a > 0 and |p| < 1.

(C2) There exists A(t) — 0 such that

t7IP(1 — Fi (X)) < tz, 1 — Fy(Xo) < ty) — M (x,y)

lim 0 = Doy (z,y)

uniformly on Ss, where b (,y) is not a multiple of A (z,y).
(C3) k =k(n) — oo, k/n — 0 and VkA(k/n) — bz € (—00,00) as n — oo.
The following theorem gives the asymptotic normality of a.

Theorem 3.2.2. Suppose that (C1)-(C3) hold, and that w is a positive weight funtion
satisfying supgeg- w(0) < oo. Then, denoting by W the measure defined by w, asn — oo,

VE @k, w) — a)

d 1 / b(cg)b(cg)(\/icos 0,v/2sin ) + E(\/icos 6,+/2sin 0)
0eQ N (a; V2 cos 0, /2 sin Q,p)

W(de),

where N (a; x,y, p) = %A(a;xuy7p))

Bley) = Ble)— B0) (1= 703w = BO9) (1- 53w

and B(z,y) is a Brownian motion with zero mean and covariance structure

E (B(x1,y1)B(x2,42)) = @1 Axo + 31 Aya — Moy Axa, y1) — Mx1 A 22, 92)
=M1, 1 Ay2) — Mxe, y1 Ay2) + M@, y2) + M@, y1) + Az A 22, y1 A yo).
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Next, like in Kliippelberg et al. (2005a), we estimate p via the identity 7 = 2 arcsin p
and the estimator (3.2.1) and obtain an estimator for A(x,y) by

X(x, y;kyw) = MNalk,w);z,y,p). (3.2.4)
We derive the asymptotic normality of this new estimator X(x, y; k,w) as follows.

Theorem 3.2.3. Suppose that the conditions of Theorem 3.2.2 hold. Then, for T > 0,

we have as n — o0,

1
sup
0<z,y<T W(Q*)

></ b(cg)b(m)(\/ﬁcose V/2sin 0) + E(\/ﬁcos 0,v2sind,t)
0€Q N(a; V2 cos b, V2sin 6, )

vk (X(x,y; kow) — AX(fc,y)) — N(os 2,9, p)

W(do)| = o,(1).

3.3 Theoretical Comparisons

The following corollary gives the optimal choice of the sample fraction k for @ in terms

of the asymptotic mean squared error. First, denote

abias, (w) = . / b(cg)(\/ﬁcosﬁ,\/ﬁ'sine) W (d9)
WI(Q*) Joeg+ N(a;v/2cos8,/2sin b, p)
and
1
avara(w)zmx
(vV/2cosfy,v/2sin6,)B (\/§cosﬁ2,\/§sin92))
/GleQ* /ezeQ N (o fcos@l,fsm@l, )N (c; V2 cos 0y, v/2sin 6, p) W (d0)W(d6r).

Corollary 3.3.1. Assume that (C1)-(C3) hold and A(t) ~ ct® ast — 0 for some ¢ # 0

and B > 0. Then the asymptotic mean squared error of a(k,w) is
amse, (k,w) = A(k/n)? (abiasy(w))® + k™ tavar, (w).

By minimizing the above asymptotic mean squared error, we obtain the optimal choice of

k as

ko(w) = avar, (w) 1@ n2B/(28+1)
0 23c?(abias, (w))? '

Hence the optimal asymptotic mean squared error of & is

amseq (ko(w), w) = <(W)ﬁabiasa(w)c\/%)wm) <1+215)
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Firstly, we compare a(k,w) with a(1,1; k). As a first weight function we choose wq(0)
equal to one if § = 7w/4, and equal to zero otherwise. Since a(1,1;k) = a(k,wy), the

asymptotic variance and optimal asymptotic mean squared error of a(1,1; k) are
(ko(wo)) ™ avarg(we) and  amseq (ko(wo), wo),

respectively. For simplicity, we only compare a/(k, wq) and a(k,w;) with the weight func-

tion
0 = 1 A 0<pg<” (3.3.1)
w = 1—(— — —. 3.
! /4 =TT
In Figure 3.1, we plot the ratio ratioy,, = avar,(w;)/avar,(wy) against a for p €

{0.3,0.7}, which shows that a(k,w;) has a smaller variance than a(1,1; k) in many cases,
especially when « is large or p is small. Hence a(k,w;) is better than a(1, 1; k) in terms
of asymptotic variance. Without doubt, the weight function w; is not an optimal one.
Seeking an optimal weight function is important, but difficult.

Secondly, we compare X(m,y; k,w) with Xemp(:c,y; k). It follows from Theorem 3.2.3

that the asymptotic variance and the asymptotic mean squared error of X(m, y; k,w) are
N(o; 2y, p))” avare(k,w) and (N(a;z,y, p))” amseq(k, w),

respectively. As before, we obtain the optimal asymptotic mean squared error of X(:c, y; k,w)

as (N (a;z,y, p))* amse, (ko(w), w). Put
1/(28+1
_ < E(B*(z,y)) ) oot )n2ﬁ/(2ﬁ+1)

20 (b (x,4)?
amseanp(k) = (k/n)? (ben (2,9))* + k™ B(B(x,y)).

and

komp

Then the asymptotic variance and the optimal asymptotic mean squared error of Xemp(x, y; k)
are

avaryems (k, w) = k™ (EB(z,y))? and  amseyemp (k, w) = amseenp (Kemp) -
In Figure 3.2, we plot the ratio of the variances of X(x, y;wq) and Xemp(z, y; k) given by

E(B*(z,y))
(X (s 2y, p))” avarg (1)’

ratiogy x

for (x,7) = (V/2cos ¢, v2sin ¢) against ¢ € (0,7/2) for different pairs (o, p) € {1,5} x
{0.3,0.7}, which shows that the new estimator for A*(x,y) has a smaller variance than

the empirical estimator Xemp(:c, y; k).
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3.4 Simulation Study

In this section we conduct a simulation study to compare a(k,w;) with a(k,wy) =
a(l,1,k), and to compare X(:c,y; k,w;) with Xemp(x,y; k) by drawing 1000 random sam-
ples with sample size n = 3000 from an elliptical copula with P(G > x) = exp{—x~“},
x> 0.

For comparison of a(k,w;) and a(1,1, k), we plot the averages of a(1,1, k), a(k,w;)
and corresponding mean squared errors in Figures 3.3 and 3.4. We observe that a(k, w;)
has a smaller mean squared error than a(1, 1, k) in most cases. Further, we plot a(1, 1, k)
and a(k,w;) based on a particular sample in Figure 3.7, which shows that a(k,w;) is
much smoother than a(1,1, k) with respect to k. This is because a(k,w;) employs more
Xemp(x, y; k)'s and (1,1, k) only uses Xemp(l, 1; k). In summary, one may prefer a(k, w;)
to a(l,1, k).

Next we compare the empirical estimator Xomp(x, y; k) with the new X(x, y; k,wy). We
plot the averages of Xemp(l, 1; k), X(l, 1, k,wy) and corresponding mean squared errors in
Figures 3.5 and 3.6. We also plot estimators Xemp(l, 1;k) and X(l, 1; k,wy) based on a
particular sample in Figure 3.8. Like the comparisons for estimators of o, we observe that
X(l, 1; k,wy) has a slightly smaller mean squared error than Xomp(l, 1; k), but X(l, 1k, wq)
is much smoother than Xemp(l, 1; k) with respect to k. More improvement of X(:c, y; k,w)
over Xemp(:c, y; k,wp) are found when x/y is away from one; see Figures 3.9 and 3.10.

Finally, we compare X(x, y; 50, w;) and Xemp(x,y; 50, wy) for different x and y. It fol-
lows from Figure 3.5 that £k = 50 is a reasonable choice. Again, we plot the averages
of X(\/?COS b, /2 sin ¢; 50, w1 ), Xemp(\/ﬁcos $,v/2sin ¢;50) for 0 < ¢ < 7/2 and corre-
sponding mean squared errors in Figures 3.11 and 3.12. Based on a particular sample, we
also plot estimators X(\/i cos ¢, v/2sin ¢; 50, w; ) and Xemp(\/ﬁ cos ¢, /2 sin ¢; 50) in Figure
3.13. From these figures, we observe that, when ¢ is away from 7 /4, X(\/ﬁ cos ¢, v/2 sin ¢; 50, w;)
becomes much better than Xemp(\/ﬁ cos ¢, v/2sin ¢; 50).

In conclusion, with the help of an elliptical copula, we are able to estimate the tail

dependence function more efficiently.

3.5 Elliptical Copula of Arbitrary Dimension

In this section we generalize our results in section 2 to the case, where the dimension

d > 2 is arbitrary.
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Theorem 3.5.1. Assume that X = (X1,...,X,)" has the same copula as the elliptical

vector Z = (Zy,...,7Zq)T, whose distribution is given in (3.1.2). W.lLo.g. assume that

AAT = R is the correlation matriz of Z. Let A;. denote the i-th row of A and and let

Fy @ denote the uniform distribution on Sy. Then the tail copula of X is given by
M(zy,... . xg) = limt P (1 - (X)) < tay,...,1 — Fy(Xy) < trg)

t—0
d -1

- / zi(Ar ) dFyw (u) ( / (Ar.0)" dFyw (u)) (3.5.1)
wES AL u>0,.. Ay u>0 =L weS A1 u>0
Remark 3.5.2. (a) For d = 2 representation (3.5.1) coincides with (3.1.4). To see
this write u € S, as u = (cos ¢, sin¢)? for some ¢ € (—m,7), A;. = (1,0) and A,. =
(p, /1 —p?). Then, Au = (cos ¢, pcos ¢ + /1 — p2sin )T = (cos ¢, sin(¢ + arcsin p))7,
giving the equivalence of (3.5.1) and (3.1.4).
(b) For d > 3 one can also use multivariate polar coordinates and obtain analogous

representations. The expression, however, becomes much more complicated.

The estimation procedure in d dimensions is a simple extension of the two-dimensional
case. Assume iid observations X; = (X;1,..., Xiq)T, i = 1,...,n, with an elliptical copula.
Then we can estimate p,, via Kendall’s 7 and «,,, based on bivariate subvectors (X;,, Xi;)
for 1 < p,q < d. Denote these estimators by p,, and (for any positive weight function w)

Qpq(k, w), respectively. Then we estimate o and R by

alk,w) = Zapq(kaw) and R = (Ppa)1<pa<a-

b
dd—1) P#q

For any decomposition KKT = f{, we obtain an estimator for A. This yields an estimator
for A(x1,...,x4) by replacing o and A;. in (3.5.1) by a(k,w) and K,-., respectively. The
asymptotic normality of this new estimator can be derived similarly as in Theorems 3.2.2
and 3.2.3.

In Figure 3.14 we give a three-dimensional example. We simulate a sample of length
n = 3000 from an elliptical copula with P(G > x) = exp{—2z~?}, x > 0, and parameters
p12 = 0.3, p13 = 0.5, po3 = 0.7 and o = 5. In the upper row we plot the true tail copula
X (\/§ cos (1, /3 sin @y cos Py, v/3sin ¢y sin (;52), o1, P2 € (0,7/2), and each column corre-
sponds to perspective, contour and grey-scale image plot of AX, respectively. In the middle
and lower row, we plot the corresponding estimators X( ..;100,w;) and Xomp(. ..;100),
respectively. From this figure, we also observe that X becomes much better than AP in

the three-dimensional case.
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Next we apply our estimators to a three-dimensional real data set which consists of
n = 4903 daily log returns of currency exchange rates of GBP, USD and CHF with respect
to EURO between May 1985 and June 2004. As in Figure 3.14, we plot the perspective,
contour and grey-scale image of h) (\/§ oS (1, V3 8in @y cos Pa, V3 sin ¢y sin ¢o; k, wl) and
Xemp(. ..; k); see Figures 3.15, 3.16 and 3.17 for £ = 100, £ = 150 and k£ = 200, respec-
tively. Comparing the contour plots (middle columns) of X and Xomp, one may conclude

that the assumption of having an elliptical tail copula ist not restrictive.

3.6 Proofs

Proof of Theorem 3.2.1. Define

w/2 /2
cp = / (cosp)*dp, ¢ = / (cos ¢)* In(cos @) do,

w/2 —7/2

w/2 w/2
D(a,z) = ¢ / (cos @) In(cos @) dp — ¢y / (cos)*d¢p and
Cla,z) = D(a,z)+ (p+ 1—p? tanz) _aD(a,—z+arccosp).

Then, by variable transformation, we obtain

. w/2 w/2
Nosz.p) = 6 (x Lrpcmeraosy [ oo d¢>

and
. 9, _ o ~1/a
Nesz,y,p) = 5-Masz,yp) = 7 [#D (a9 ((/y)*)) +yD (g ((/y)7"))]
= ¢ aC (a, g ((z/y)"?)) .
Since Dy (e, 2) := £ D(a,z) = (cosz)®(c1 — coIn(cos z)), we can show that there exists

0 < 29 < /2 such that

Do(a,z) >0, if z € (—7/2,—2),
Doi(o,2) =0, if 2 = —z,
Doi(a,2) <0, if z € (=20, 20),
Doi(a,2) =0, if z = z,
Doi(o,2) >0, if z € (20, 7/2).
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Note that zy depends on «. Since D(a,0) = liin/zD(a, z) =0, we have

D(a,z) >0, ifze (—7/2,0),

D(a,z) <0, ifze(0,7/2).
Hence, if 2/y € [(p V 0)*", (pV 0)~*"] for some a* € (0,00), then C (a, g ((z/y)"/*")) <0
for all @ > a*. Since also z/y € [(pV 0)* (pV0)~?] holds for all & > o, we have
C (a,g ((x/y)l/a)) < 0 for all @ > a*. Hence the theorem follows by choosing a* =

n(z/y)/ n(p v 0)].

Proof of Theorem 3.2.2. Using the same arguments as in of Huang (1992, Lemma 1,
page 30)) or Einmahl (1997, Corollary 3.8), we can show that

e [VE (X ) = 3 (e0)) = besben(@w) — Blew)| = 1) (36.1)
asn — 00. Note that the above equation can also be shown in a way similar to Schmidt and
Stadtmiiller (2006) by taking the bias term into account. Since A(a;x,y, p) in (3.1.4) is a
continuous function of «, by invoking the delta method, the theorem follows from (3.6.1),
7 —1 = 0,(1/VE) (see e.g. Hoeffding (1948)), Supgeq- | X (a; V2cos 6, v2sin b, p)| < oo

and a Taylor expansion.
Proof of Theorem 3.2.3. It easily follows from (3.1.4) and Theorem 3.2.2.

Proof of Theorem 3.5.1. Since copulae are invariant under strictly increasing transfor-
mations, we can assume w.l.o.g that AA” = R is the correlation matrix. Therefore, the
Z; 4 GA, U (d), 1 <1 < d, have the same distribution, say F;. Hence

P(l—Fz(Zl) <tl’1,...,1—Fz(Zd) <tl’d)

d
Fi (1 —ta;

B / P<G >V %) dFy(u), (3.6.2)

u€S AL u>0,...,Ag. u>0 i= i

where F~ denotes the inverse function of Fyz. Since P(G > -) € RV_, implies that
1 — Fz € RV_,, the inverse function F is regularly varying in 0 with index —1/« (e.g.
Resnick (1987, Proposition 0.8(v)). This implies
lim P(G>F;(1—tx;)/(A;u))
t—0 P(G>F;(1-1))
Now note that, for alli=1,...,d,

:Ii(Ai.U)a, Zzl,,d

t = P(Z>F;(1-1t) = P(GA,.UY > F;(1—1))
= / P (G > %) dFU(d) (u),

uESd,Ai .u>0
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giving by means of Potter’s bounds (e.g. see Geluk and de Haan (1987, (1.20))),

t
y
0 P (G > Fy (1—1t))

~ lim / PG> P =D/ Bw) o)

=0 P(G>F;(1—-1))
uESd,Ai.u>0
_ / (A ) dFyw(u) Yi=1,....d. (3.6.3)
uESd,Aqu>0
Applying the same method to (3.6.2) yields the proof. O
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Figure 3.3: Averages of a(1,1,k) and a(k,w) are plotted against k& = 10, 20, ..., 300.
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Figure 3.4: Estimated mean squared errors of estimators in Figure 3.3.
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Chapter 4

Copula Structure Analysis Based on
Robust and Extreme Dependence

Measures

SUMMARY

In this paper we extend the standard approach of correlation structure analysis in order
to reduce the dimension of highdimensional statistical data. The classical assumption of a
linear model for the distribution of a random vector is replaced by the weaker assumption
of a model for the copula. For elliptical copulae a ’correlation-like’ structure remains but
different margins and non-existence of moments are possible. Moreover, elliptical copulae
allow also for a ’copula structure analysis’ of dependence in extremes. After introducing
the new concepts and deriving some theoretical results we observe in a simulation study
the performance of the estimators: the theoretical asymptotic behavior of the statistics
can be observed even for a sample of only 100 observations. Finally, we test our method
on real financial data and explain differences between our copula based approach and
the classical approach. Our new method yields a considerable dimension reduction also in

non-linear models.

4.1 Introduction

When analyzing high-dimensional data one is often interested in understanding the de-
pendence structure aiming at a dimension reduction. In the framework of correlation rep-

resenting linear dependence, correlation structure analysis is a classical tool; see Steiger
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(1994) or Bentler and Dudgeon (1996). Correlation structure analysis is based on the
assumption that the correlation matrix of the data satisfies the equation R = R(9) for
some function R(d) and a parameter vector 9. Typically, a general linear structure model
is then considered for a d-dimensional random vector X, i.e. X < A, where A = A(9) is
a function of a parameter vector 4, and € represents some (latent) random vector.

The typical goal of correlation structure analysis is to reduce dimension, i.e. to explain
the whole dependence structure through lower dimensional parameters summarized in 9.
One particularly popular method is factor analysis, where the data X are assumed to
satisfy the linear model X = p + Lf + Ve, where p = (1, )t f=(f1, s f)t
(m < d) are non-observable and (usually) uncorrelated factors and e = (ey,...,eq)7 is
some noise variables. Further, L € R¥>™ is called loading matriz and V is a diagonal
matrix with nonnegative entries. An often used additional assumption is that (f”,e”) has
mean zero and covariance matrix I, the identity matrix. Then, describing the dependence
structure of X through its covariance matrix yields Cov(X) = ¥ = LL” + V?, ie., the
dependence of X is described through the entries of L.

Provided that the data are normally distributed this approach of decomposing the
correlation structure is justified, since dependence in normal data is uniquely determined
by correlation. However, many data sets exhibit properties contradicting the assumption
of normality, see e.g. Cont (2001) for a study of financial data. Further, several covariance
structure studies based on the normal assumption exhibit problems for nonnormal data,
see e.g. Browne (1982, 1984). A modified approach is to assume an elliptical model, and
the corresponding methods can be found for instance in Muirhead and Waternaux (1980)
and Browne and Shapiro (1987). Browne (1982, 1984) also developed a method being
asymptotically free of any distributional assumption, but it was found that acceptable
performance of this procedure requires very large sample sizes; see Hu, Bentler, and Kano
(1992).

Relaxing more and more the assumptions of classical correlation structure analysis as
indicated above, one assumption still remains, namely that X 4 A(D)€, i.e. X can be de-
scribed as a linear combination of some (latent) random variables € with existing second
moments (and existing fourth moments to ensure asymptotic distributional limits of sam-
ple covariance estimators). For real multivariate data it may happen that some margins
are well modeled as being normal and some are more heavy-tailed (or leptokurtic). More-
over, nonlinear dependence can occur, e.g. in financial portfolios of assets and derivatives.
If this happens, it is hard to believe that some linear model is appropriate. Since the

primary aim of correlation or covariance structure analysis is to decompose and describe
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dependence we present a simple method to avoid problems of non-existing moments or
different marginal distributions by using copulae. A copula is a d-dimensional distribution
function with unif(0, 1) margins and, by Sklar’s theorem, each distribution function can
be described through its margins and its copula separately. We will focus on elliptical
copulae being the copulae of elliptical distributions, which are very flexible and easy to
handle also in high dimensions. As a correlation matrix is a parameter of an elliptical
copula, correlation structure analysis can be easily extended to such copulae and we will
call this method copula structure analysis.

In many applications dependence in extremes is an important issue. For example,
financial risk management is confronted with problems concerning joint extreme losses,
and one of its prominent questions is how to measure or understand dependence in the
extremes; see e.g. McNeil, Frey, and Embrechts (2005). This requires a different approach
and is one of the major issue of this paper. We assess extreme dependence by a concept
called tail copula. For such elliptical copulae, which model extreme dependence, we present
a new structure analysis based on the tail copula. This focusses on dependence structure
in the extremes.

Our paper is organized as follows. We start with definitions and preliminary results
on copulae and elliptical distributions in Section 4.2. In Section 4.3 we introduce the new
copula structure model and show which (classical) methods can be used for a structure
analysis and model selection. In Section 4.4 we show two copula dependence concepts,
one based on Kendall’s tau, one on the tail copula, and develop estimators, which can
then be used for the copula structure analysis. These concepts lead to different estimates
of the copula structure model, and we derive asymptotic results for our estimates.

In Section 4.5 a simulation study shows that the derived asymptotic results hold
already for a rather small simulated sample. Finally, we fit a copula factor model to real
data based on both our dependence concepts and give an interpretation of the results.

Proofs are summarized in Section 4.6.

4.2 Preliminaries

First, we introduce the copula concept. For more technical background information we
refer to Nelsen (1999).

Definition 4.2.1. A copula C : [0,1]? — [0,1] is a d-dimensional distribution function
with standard uniform margins, i.e. C(1,...,1,u;,1,...,1) =u;, 1 <j <d.
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The following theorem shows that each multivariate distribution function can be sep-
arated in its dependence structure, i.e. the copula, and its margins. This important result
is used in essentially all applications of copulae. We shall need the notion of a general-
ized inverse function. For a distribution function F' the generalized inverse is defined as
F(y)=inf{z e R| F(z) >y}, y € (0,1), and RanF" := F(R) denotes the range of F.

Theorem 4.2.2 (Sklar’s Theorem (1996)). Let F' be a d-dimensional distribution function
with margins Fi, ..., F;. Then there exists a copula C such that for all x € R?

F(xy,...,xq) = C(Fi(x1),..., Fy(zg)) .

The copula C' is unique on RanF; x --- x RanfFy.

If F 1s a continuous d-dimensional distribution function with margins Fy, ..., Fy, and
generalized inverse functions Fy~, ..., F;, then the copula C' of F is C(uy,...,uq) =
F(F(uy), ..., Ey (ug)).

We will focus on copulae of elliptical distributions, and we first give some definitions
and state some properties. For a general treatment of elliptical distributions we refer to
Fang, Kotz, and Ng (1990) and to Cambanis, Huang, and Simons (1981). Elliptical copulae
and their properties have also been investigated with respect to financial application by
Embrechts, Lindskog, and McNeil (2003) or Frahm, Junker, and Szimayer (2003).

Definition 4.2.3. A d-dimensional random vector X has an elliptical distribution, if, for
some p € R some positive (semi-)definite matriz & = (04)1<ij<a € R™Y, a positive
random variable G and a random vector U™ ~ unif{s € R™ : sTs = 1} independent
of G it holds that X < g+ GAU™ A e R>*m AAT = % and some m € N. We write
X ~ &4(p, 8, Q). The random variable G is called generating variable. Further, if the first
moment exists, then EX = u, and if the second moment exists, then G can be chosen
such that CovX = 3.

Definition 4.2.4. Let X ~ &;(p, X, @) with ¥ = (045)1<ij<a- We define the correlation
matrix R by R := (0y;/, /O-iiajj)1<ij<d. If X has finite second moment, then CorrX = R.

Definition 4.2.5. We define an elliptical copula as the copula of an elliptical random
vector. Let R be the correlation matriz corresponding to . We denote the copula of
Eap, X, G) by EC4(R, G) and call R the copula correlation matrix.

The following corollary shows that the notation £C4(R, G) of elliptical copulae is rea-
sonable. It is a simple consequence of the definition and the fact that copulae are invariant

under strictly increasing transformations; see Embrechts et al. (2003, Theorem 2.6).
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Corollary 4.2.6. An elliptical copula is characterized by the generating variable G and
the copula correlation matriz R. The generating variable G is uniquely determined up to

some positive constant.

Based on elliptical copulae, we can now formulate the copula structure model.

4.3 Copula structure models

First, we give some notations: let 4 € © C RP be a p-dimensional parameter vector
in some parameter space © with dim(©) < p. A correlation structure model is then a

function
R:0— R™ 9 R, (4.3.1)

such that R(J) is a correlation matrix, i.e. R(d) is positive definite with diagonal 1. As
we will later also use vector notation, we denote by vec|-| the column vector formed from
the non-duplicated and non-fixed elements of a symmetric matrix. If a matrix A is not
symmetric, then vec[A] denotes the column vector formed from all non-fixed elements of

the columns of A. In case of a correlation matrix
r = vec[R] € RHD/2 (4.3.2)

For a general linear correlation structure model, (4.3.1) corresponds to the following situ-
ation: let £ € £,(0,1,G) and let A : © — R%4 9 — A(d), be some matrix valued function
and define

0 R 9 BW) = AW)A®W)”.

Then, (4.3.1) can be written as R(d9) = diag[Z(d)]~"/2Z(d)diag[E(9)] /2.

4.3.1 The model

As by Definition 4.2.5 a correlation matrix is a parameter of an elliptical copula, we can

extend the usual correlation structure model to elliptical copulae.

Definition 4.3.1. Let ¥ € © C R? be a p-dimensional parameter vector, A : © — R¥4
a matriz valued function and § € £,(0,1, G) a g-dimensional elliptical random vector with

continuous generating variable G > 0. Further, denote by Capy the copula of A(9)€ € R™.
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We say that the random vector X € R? with copula C'x satisfies a copula structure model,
if

Cx = CA(g)é S ECd(R(ﬂ), G), (4.3.3)
where R(¥) := diag[E(9)]7/?Z(9)diag[E(9)] /2 and T(9) := A(9)AW)T.

Remark 4.3.2. (i) Define by F™ (u) := (F; (u1),...,F; (uq)) the vector of the in-
verses of the marginal distribution functions of X and by H (z) := (Hy(x1), ..., Hy(zg))
the vector of the marginal distribution functions of A(d)€. Then, (4.3.3) is equivalent
toX L F T(H(A(W)E)), where all operations are componentwise. Hence, the copula
model can also be seen as an extension of a correlation structure model for elliptical
data: if not only Cx = Cag)¢ holds but also H = F' with existing second moment,
then this would be a classical correlation or covariance structure model. For normal

£ it gives back the standard normal model and for elliptical & the elliptical model
of Browne (1984).

(ii) The classical correlation structure model assumes some (functional) structure for the
correlation matrix of the observed data. In the copula structure model this functional
structure prevails. The only difference lies in the interpretation of the 'correlation’
matrix. In the classical model it represents the linear correlation between the data,
in the copula model it represents a dependence parameter which can be interpreted

as a 'correlation-like’ measure; see Lemma 4.2.6.

Example 4.3.3. For classical factor analysis, (4.3.3) translates to ¥ = vec|L, V], R(¥) =
LLY + V? for some m < d, L € R™™ and a diagonal matrix (with nonnegative entries)

V € R%94 The corresponding copula structure model assumes that there exists £ €
Em+a(0,I, G) such that

CX = C(L,V)E- (4.3.4)

We call this identity a copula factor model. An example of this copula factor model is
the Credit Metrics model in the framework of credit risk, see e.g. Bluhm, Overbeck,
and Wagner (2003, Section 2.4). There, a factor model X = (Xy,...,X,)T = Lf +
Ve is assumed for the underlying (latent) variables of a set of credit default indicators
(I{Xi<5i})1<i<d and X is assumed to be normal. By Frey, McNeil, and Nyfeler (2001,
Propositioﬁ é), the distribution of (I{Xi<5i})1 <i<q 18 uniquely determined by the single
default probabilities P(/{x,<s3 = 1) and theicz)pula of X. Therefore, in this case the
assumption of X = Lf + Ve is equivalent to Cx = Crv)e with & ~ N;,14(0,I). The

model extends easily to non-normal X.
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4.3.2 Estimation of 9

The next step is to estimate a structure model. Let X{,...,X,, be an iid sequence of
d-dimensional random vectors and denote by R = ﬁ(X 1,-.-,Xp) an estimator of R, a
correlation matrix. This estimator can be the empirical correlation or a copula correlation
estimator or some other correlation estimator. We review some results from the literature,
which we will need for the estimation of the copula structure model later.

Given this estimator R we want to find some parameter vector ¥ which fits the assumed
structure R(¥) to R as good as possible. Similarly to (4.3.2), we define 7 := Vec[ﬁ] and
r(¥) := vec|R(9)].

Estimation of 4 is based on the minimization of a discrepancy function D = D(r,r(9))
which measures the discrepancy between the estimated correlation matrix represented by

r and (). A discrepancy function D has to satisfy
(i) D=0,
(i) D(r,r) =0 if and only if ¥ = r and
(iii) D is twice differentiable with respect to both 7 and r.

Note that the concept of a discrepancy function (without condition (iii)) is weaker than
the concept of a metric, as a discrepancy function D does not have to be symmetric or
translation invariant in its arguments, nor does it have to satisfy the triangular inequality.

In the following example we present two classical discrepancy functions, for more
details about discrepancy functions, their properties, advantages and drawbacks, we refer
to Bentler and Dudgeon (1996) and Steiger (1994). For more details about the quadratic

form discrepancy function below see Steiger, Shapiro, and Browne (1985).
Example 4.3.4. (i) The normal theory mazimum likelihood discrepancy function is
Dui@r®) = In|RE@)| +tr (ﬁ (R(ﬁ))‘1> “W|R|—d.  (4.3.5)
This function is the log-likelihood term of R(d) in case of normal data.
(ii) The quadratic form (or weighted least squares) discrepancy function is
Doo(F,r(@)|T) = F—r©)" T (F—r()), (4.3.6)

where T is a positive definite matrix or a consistent estimator of some positive

definite matrix T*. Note that Dqop(-,-| T) is a metric.
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Given some discrepancy function D and some estimator R of the correlation matrix

R, we can define a consistent estimator of 4.

Proposition 4.3.5 (Browne (1984), Proposition 1). Let Rg be some correlation matriz,
ro := vec[Ro] € RUD/2 gnd © C RP a closed and bounded parameter space. Further
assume that T is an estimator based on an iid sample X+, ..., X, of d-dimensional random
vectors and let D be a discrepancy function. Assume that T £, ro as n — oo and that
¥y € O is the unique minimizer of D(rg,r(9)) in ©. Assume also that the Jacobian matriz
or(9) /99" is continuous in 9. Define the estimator

9 = argmin D(7,r(9)). (4.3.7)

)
~ p
Then ¥ — 9y as n — oo.

Of course, if we know the true correlation vector ry satisfying the structure model ro =
r(¥y) for some parameter vector 9y, then 9 will always be such that ro = r(dy) = r(a),
independent of the choice of the discrepancy function. We also have D(ro,r(@)) =0 in
this case. Since in practice we neither know the true rg nor the true structure model, we

need a method to find an appropriate model.

4.3.3 Model selection

First, we show the asymptotic distribution of a certain test statistic, which will later be

used for model selection.

Definition 4.3.6. Under the settings of Proposition 4.53.5, we define the test statistic

T = ﬂian@M@):nﬁgD@Mm) (4.3.8)

The null hypothesis is that the true correlation vector ry satisfies a structure model, i.e.
Hy: 1o = r(¥) for somed, € O. (4.3.9)

To obtain the limit distribution of 7" we use a version of Steiger et al. (1985, Theo-
rem 1), adapted to our situation. We replace the regularity condition (R7) of that article
by the stronger assumption that the null hypothesis (4.3.9) holds. The equivalent state-
ment in case of the quadratic form discrepancy function Dqgp(-,-|T) is given in Browne
(1984, Corollary 4.1), where it is additionally required that Y is a consistent estimator of

I', the asymptotic covariance matrix of 7.
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Theorem 4.3.7. Assume that the conditions of Proposition 4.3.5 hold and 9 is an in-
terior point of ©. Further assume that /n(r — rq) 2, N(0,T) as n — oo and that the
Hessian matriz

0*D(r,§)

g, — L8
’ OEOET

(4.3.10)

r=£=rg

is nonsingular and satisfies Wy =T ™. In case of the quadratic form discrepancy function
Dqp(-,+|T) defined in (4.3.6), the assumption (4.3.10) is replaced by assuming that T is

a consistent estimator of I'. Also assume that the p x d Jacobian matrix

A= T (4.3.11)
N |y_g,
is of full column rank p. Then, under the null hypothesis (4.3.9),
T =nD -5 \%, n—oo, (4.3.12)

where df = d(d —1)/2 — p* with p* < p is the number of free parameters of 9 € © C RP.

Remark 4.3.8. Under the conditions of Proposition 4.3.5, if ¥y = I'"* does not hold, the
limiting distribution of 7" in (4.3.8) under the null hypothesis (4.3.9) will not be x7, see
Satorra and Bentler (2001) or van Praag, Dijkstra, and van Velzen (1985). In this case,

df
d
T — E ki, n— 00,
i=1

where the ¢; are iid x7 distributed and k; are the non-null eigenvalues of the matrix UT'
with

U = ¥y — U A(ATT,A) AT,

where A is given in (4.3.11). An example for this situation is Dy, (6, 0()) given in (4.3.5),
where @ is the vector of a covariance matrix estimator, () is the vector of a covariance
structure model and ¢ has an asymptotic covariance matrix different from the asymptotic

covariance matrix of the empirical covariance estimator under a normal population.

From now on we will use the quadratic form discrepancy function D := Dgp from
Example 4.3.4(ii), where T = T is an estimator of . If T is consistent, Theorem 4.3.7
applies and by Browne (1984, Corollary 2.1), 2 is asymptotically normal with covariance
matrix (ATP_IA)_I, where A is given in (4.3.11). Note that, if T is only consistent and
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does not have a finite second moment, large sample sizes may be necessary to observe the
limiting y2-distribution of the test statistic 7" or the asymptotic normality of 9.
To select an appropriate structural model, we consider a set of g models (which all

have to satisfy the assumptions of Theorem 4.3.7)
r 00  RUED2 9O pD (@) and 00 c R 1<i<yg. (4.3.13)

Further, we require that the ¢ models are nested, i.e. for every 1 < < g—1 and 9D e 00
there exists some 97 € O such that r0+D (D) = @O (YD), Next, define the null
hypotheses

Hoi) :rg = rDW) for some 193“ ce® 1<i<y,

and assume that some of these null hypotheses are true. Then there exists some j such
that Héi) does not hold for 1 < i < j and does hold for 7 <i < g. As we are interested in
a structure model, which is likely to explain the observed dependence structure, and is as
simple as possible, hence, since the models are nested, we have to estimate j, the smallest
index where the null hypothesis holds. By Theorem 4.3.7, the corresponding test statistics
T = nDF rO W) := nmingeen DF,r®(9)) are not ¥ distributed for 1 < i < j
and are xflf—distributed for 7 < i < g with df given in Theorem 4.3.7. Consequently, we
reject a null hypothesis Héi), if the corresponding test statistic 7 is larger than some

)

ng—quantile. Hence, j is the smallest number, where Ho(j cannot be rejected.

Remark 4.3.9. (i) Note that classical estimates of I" rely on the estimation of second
and fourth moments of X. For non-normal or, especially, for heavy-tailed data these
estimates often have large sampling variability and in simulation studies it turned
out that large samples are necessary for acceptable performance of the test statistics,
see e.g. Hu, Bentler, and Kano (1992).

(ii) In general, a unique true parameter ¥y need not exist: in the classical factor model
(see Example 4.3.3, where R = LL” + V?), L can always be replaced by L* = LP
for any orthogonal matrix P. By a minor adaption of the parameter space © (i.e.
L”V™2L has to be diagonal), 9 can be forced to be unique and Proposition 4.3.5
applies, see Lawley and Maxwell (1971, Section 2.3). By Lee and Bentler (1980)
the degrees of freedom in (4.3.12) are then increased by the number of additional
constraints. For better interpretation, the factors can be rotated after estimation,

e.g. with the varimaz method, for details see Anderson (2003, chapter 14).
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(iii) With the correction for uniqueness in (ii) above, the factor model of Example 4.3.3
satisfies the regularity conditions of Proposition 4.3.5 and Theorem 4.3.7, see Steiger
et al. (1985, Section 4) and Browne (1984, Section 5).

(iv) In case of the copula factor model (see Remark 4.3.2(iii)) we only need to estimate
the loading matrix L € R®>™ since diag(V?) = 1—diag(LL"). Therefore the number
of free parameters are dm minus the number of the additional constraints to ensure
that LYV L is diagonal, i.e. the degrees of freedom of the limiting y? distribution
are df =d(d—1)/2 —dm+m(m —1)/2.

(v) For the quadratic form discrepancy function D(-, | r ), where T is a consistent es-
timator of ', it can be shown that 7", 1 < i < j, has an approximate noncen-
tral x3-distribution with non-centrality parameter n.D(rq,r® (193“)\ I'), see Browne
(1984, Corollary 4.1).

4.4 Methodology

As we consider a copula structure model, we need an estimator R of the copula corre-
lation matrix R, whose limit distribution is A'(0,T') for some non-degenerate covariance
matrix I' and a consistent estimator of I'. In the following we will introduce two copula
based dependence concepts and their corresponding correlation and asymptotic covariance

estimators (which are also consistent and asymptotically normal).

4.4.1 Dependence Concepts

A well known dependence concept is (linear) correlation or covariance, which is limited by
the fact that it measures only linear dependence. Further, since correlation is not invariant
under non-linear (strictly increasing) transformations, it is not a copula property. As we
want for our copula structure analysis a dependence concept which is at least related to
correlation we use the following one known as Kendall’s tau.

This copula-based dependence concept provides a good alternative to the linear corre-
lation as a measure also for non-elliptical distributions, for which linear correlation is an
inappropriate measure of dependence and often misleading. Originally, it has been sug-
gested as a robust dependence measure, which makes it also appropriate for heavy-tailed
data; for more details see Kendall and Gibbons (1990).
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Definition 4.4.1. Kendall’s tau 7;; between two components (X;, X;) of a random vector
X is defined as

Tij = P <(Xz — )ZZ)(Xj — 5(:]) > 0) — P <(Xz — )ZZ)(Xj — 5(:]) < O) ,
where ()?Z,)?]) is an independent copy of (X;, X;). Moreover, we call T := (7;j)1<; j<a the

Kendall’s tau matrix.

Concerning elliptical copulae the following result is given in Lindskog, McNeil, and
Schmock (, Theorem 2).

Theorem 4.4.2. Let X be a vector of random wvariables with elliptical copula C ~

EC4(R, G) and continuous generating variable G > 0, then 7;; = 2 arcsin(p;;) /.

Considering extreme observations, we need the concept of regular variation. A textbook
treatment of this topic is to be found in Bingham, Goldie, and Teugels (1989), for a
multivariate extension we refer to Resnick (1987, 2004) or Basrak, Davis, and Mikosch
(2002).

Definition 4.4.3. A random variable G is called regularly varying at infinity with index
—a, 0 < a < oo, if lim,_o P(G > tx)/P(G > x) = t7%, for all t > 0. We write
G € RV_,,.

In financial risk management, one is often interested only in the dependence of ex-
treme observations. By Sklar’s theorem, the copula is sufficient to describe dependence
in extremes. As C' is a uniform distribution on [0, 1]¢, extreme values happen near the
boundaries and extreme dependence happens around the points (0,...,0) and (1,...,1).

This can be captured by the following concept.

Definition 4.4.4. (i) We define the upper tail copula of X as

)\i(ppcr(m> = Aﬁi)por(xlv B ,IL’d)

= yn&t—lpa — F(X)) <tay,..., 1= Fy(Xy) < tay), (4.4.1)
for xy,... xq > 0 if the limit exists.

(ii) We define the lower tail copula of X as

M (@) = lin%t_lP (FL(Xy) < tay, ..., Fy(Xy) < tzg). (4.4.2)
for xy,... xq > 0 if the limit exists.
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Remark 4.4.5. Since by symmetry Af .. (z) = XX .. (z) = M (z) holds for elliptical
copulae (see Definitions 4.2.3 and 4.2.5), we concentrate only on the upper tail copula
and call it tail copula. Of course, by definition, the tail copula is a copula property. For

more details about the tail copula, see Schmidt and Stadtmiiller (2006).

Notions like tail copula or tail dependence function go back to Gumbel (1960), Pickands
(1981) and Galambos (1987), and they represent the full dependence structure of the
model in the extremes. If M (x) > 0 for some > 0, X is called asymptotically dependent
and asymptotically independent, otherwise. Assuming elliptical copulae, Hult and Lindskog
(2002, Theorem 4.3) show that X is asymptotically dependent if X has an elliptical copula
with regularly varying generating variable G € RV _,, a > 0. For a textbook treatment
of multivariate extremes, see Resnick (1987).

By definition, M (z) = 0 if A\&X)(z;,2;) = 0 for some i, j and z > 0, i.e. X is
asymptotically independent if some bivariate margin (X;, X;) of X is asymptotically in-
dependent. Concerning asymptotic independence we refer to Ledford and Tawn (1996,
1997), and for a conditional modeling and estimation approach allowing for asymptotic
independence in some components and asymptotic dependence in others, see Heffernan
and Tawn (2004). We will use the assumption of asymptotic dependence for modeling and
estimation and therefore we omit further discussions about asymptotic independence.

For estimation of R we only need a representation of the bivariate marginal tail copula
(4.4.1) for elliptical copulae. It follows from Hult and Lindskog (2002, Corollary 3.1),
Kliippelberg, Kuhn, and Peng (2005a, Theorem 2.1) and transformation of variable. A
representation of the full multivariate version is given in Kliippelberg, Kuhn, and Peng
(2005b, Theorem 5.1).

Theorem 4.4.6. Suppose X has copula Cx € EC4(R,G) with generating variable G €
RV_,, a >0, and copula correlation matriz R = (pij)1<i j<a with max |p;;| < 1. Then the

bivariate marginal tail copula of X is given by

:B,y) = A(c0,...,00,2,00,...,00,1,00,...,00)
w/2 w/2 -1
:.17/ (cos @) dgb—l—y/ (cos @) dgb) (/ (cos ¢)® dgb)
9ij (:v/y 1/a gij((w/y)il/a) —7/2
Az, y, o, pij), (4.4.3)

where x is the i-th, y the j-th component and g;;(t) := arctan ((t — pij)/+/1 — ,0%).
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Remark 4.4.7. The case of p := p;; = 1 can be interpreted as a limit, i.e.

Mz, y,a,1) = lin% Az, y, a, p).
p—
Then
+7/2, t>1,
gi;(t) = linq arctan ((t — pij)/\/1 — p%) = 0, t=1,
p—
—m/2, t<1,

and we obtain A(z,y,«, 1) = x A y. Similarly, A(z,y,«, —1) = 0.

This bivariate marginal tail copula )\fg given in (4.4.3) measures the amount of depen-
dence in the upper right quadrant of (X, X;). Note that by Kliippelberg et al. (2005b,
Theorem 5.1), M is completely characterized by the copula correlation matrix R and the
index « of regular variation of G.

By Theorems 4.4.2 and 4.4.6 we see that for an elliptical copula the correlation matrix
R is a function of Kendall’s tau or of the tail copula with the index « of regular variation of
G. In Sections 4.4.2 and 4.4.3 we will invoke this functional relationship for the estimation
of R. The two approaches differ in their interpretation: estimating R via Kendall’s tau fits
a robust dependence structure of the data to an elliptical copula. Using the tail copula for
estimation of R fits only the dependence structure in the upper extremes to an elliptical
copula and does not necessarily fit the dependence of the data in other regions. Of course,
copula structure analysis can be applied to any copula correlation estimator with a certain
limiting behavior as given by Theorem 4.3.7. Using Kendall’s tau for estimation can then
be seen as a robust extension of the usual correlation structure analysis, whereas using
the tail copula provides a structure analysis of dependence in the extremes. The next two

sections explain the estimation procedures and give asymptotic results.

4.4.2 Copula correlation estimator based on Kendall’s tau

The first method is based on Kendall’s tau, which can be used for estimating the corre-
lation matrix R by Theorem 4.4.2. For a general treatment of U-statistics see Lee (1990);
the results we use go back to Hoeffding (1948).

Definition 4.4.8. Given an iid sample X1,..., X, X; = (X;1,..., Xiq)", we define the

estimator T = (Tij)1<i j<a of Kendall’s tau matriz T by 7;; = 1 fori=1,...,d and

~1
A n . o,
Tij = (2) > sign (Xpi — Xu0) (Xey — X)), 1<i#j<d.

1<I<k<n
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Estimating the copula correlation matrix via Kendall’s tau yields the following result.

Its proof can be found in Section 4.6.

Theorem 4.4.9. Let X1,X5, ... be an iid sequence of d-dimensional random vectors with
elliptical copula Cx € EC4(R, G) with continuous G. Further, define

R, = (5 )i<ijea = sin (gi‘) (4.4.4)
where the ’sin’ is used componentwise and define T, := vec[l?{T] and r = vec[R]. Then,
Vi@ —r) =% Nga-np(0T2), n— oo,
holds, where T, = (’)/Z—j’kl)lgi?gj,k#lgd with

T T
Vijg = 72 cos <§Tij> cos <§Tkl> (Tijkt — TijTra)  and (4.4.5)

Tij,kl = E(E (Sigl’l [(Xl,i_XZi)(Xl,j_XZj)] ‘Xl) ) (Sigl’l [(Xl,k_XZk)(Xl,l_XZl)] ‘Xl) )

By (4.4.5), an estimator of I, = (7;7kl)1gi¢j’k7gl§d can be defined by its empirical

version.

Definition 4.4.10. Given an iid sample X1,..., X, X; = (Xi1,..., Xia)?, we define

the estimator T'; = (3%7kl)1§i¢j,k¢l§d, where

a;kl = 7% cos (g?zy> COS (g?kl> (?z‘j,kl — ?ij?kl) and (4.4.6)
~ 1 - " )
Tijkl = m Z [( Z Slgn((Xpn'—Xq,i)(Xp,j—Xq,j))> X

p=1 =1, q#p

><< > sign((Xp,k—Xq,k)(XpJ—XqJ))>]. (4.4.7)

q=1,q#p

The following result is also proved in Section 4.6.

A~

Theorem 4.4.11. The estimator vec|[';| is consistent and asymptotically normal.

4.4.3 Copula correlation estimator based on the tail copula

The second estimation method is based on the tail copula. If someone is interested in the
dependence structure of the extreme data and assumes an elliptical copula, (4.4.1) shows

how M can be expressed as a function of R and «. By estimation of AX one can estimate
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R and « (i.e. the elliptical structure), which is likely to generate the observed extreme
dependence.

We use an approach closely related to Kliippelberg et al. (2005b); i.e. we use the tail
copula for the estimation of R and a. By Theorem 4.4.6 we need an estimator of a and
of all bivariate marginal tail copulae. We start with an empirical tail copula estimator,
for details see Kliippelberg et al. (2005a, 2005b) (and references therein) and estimate R

and « from this.

Definition 4.4.12. Given an #id sample X1,..., X, X; = (X;1,..., X1.0)", we define

the empirical tail copula estimator for x = (x1,...,24) >0 as
k
AmP(gi k) = Z Fi(X,;) < ~j, j=1,....d), (4.4.8)

where 1 < k <n and ]3] denotes the empirical distribution function of {X;;}-,, 1 <j <

d. Further, we define the empirical estimator of the bivariate marginal tail copula as

yemp . . Yem
A P,y k) = AP (00, ...,00,2,00,...,00,Y,00,...,00)

= kZ[<1— (X)) < kx 1—Fj(X,j)ggy), (4.4.9)

e

where x is at the i-th and y at the j-th component, respectively.

Since AP estimates the tail copula, the number £k should be small in comparison to n.
Setting x; = 1,1 < j < d, only the k largest observations of X ; satisfy 1—?’]-(le) <k/n,
therefore k can be interpreted as the number of the largest order statistics which are used

for the estimation as is typical in extreme value theory.

Immediately by definition (4.4.1), M is homogenous of order 1, and, for large k
and n, also X?}np is (see (4.4.8)). Consequently, setting 6 = arctan(y/x), i.e. (x,y) =
(ccos @, csin ) for some constant ¢ > 0, we have Xf;]p(x, y; k) = ijmp(\/ﬁ cos 0, /2 sin 6; k*)
for some appropriate k*. Hence, for the estimation, we follow the convention and only con-
sider points (z,y) = (vV/2cos0,v/2sinf), 6 € (0,7/2).

For estimation of a we use the approach of Kliippelberg et al. (2005b), which is based

on inversion of the tail copula with respect to a.

Definition 4.4.13. Define A “(-;x,y, p) as the inverse of AN(z,y, a, p) (given in (4.4.1))
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with respect to a and, using py; given in (4.4.4) and \emp given in (4.4.9), define fori # j

@-j = {9 € (O,g) : Xf}np(\/ﬁcosé’,\/ﬁsme; k) <

: In(tanf) |
< A <\/§cos9,\/§sm9, W ’pij)}’
Q= {9 € (O, 5) : |In(tan )| < (1 —k 1/4) a;;(1,1; k) }ln(pij Vv O)‘} and

Q= {ee (og) : [In(tan §)| <a|1n(pij\/0)|},

where for 0 € @ij we define oy; as the estimator of a based on the empirical bivariate tail
copula (4.4.9)

ai;(V2cos0,v/2sin 0; k)
= A\ (Xgnp(\/icos 0,v2sin6; k); V2 cos 0, v/2sin 9,@9) . (4.4.10)

Further, let w be a nonnegative weight function. Then we define the smoothed estimator

a of a as

2 1
alk,w) = ﬁ/ qi; (V2 cos 0, v/2sin 0; k) W (d6),
d(d—1) 1<§<d W(Qiy N Q) Jocara:,

(4.4.11)

where W is the measure induced by w.

To define an estimator of R via extreme observations, we invert the bivariate tail

copula with respect to p. Using (4.4.3) it is straightforward to show the following.

Lemma 4.4.14. For fized z, y, a > 0 define p* := ((x Ay)/(xVy))"*. Then, for all
p < p (%)\(x,y,a,p) > 0 holds and the inverse X=°(-; x,y,a) of A\ with respect to p

exists.

By Remark 4.4.7, A\(1,1,a,1) = 1 and A(1,1,a,—1) = 0 for « > 0. Hence, we can
define

51,1 k) = AP (X‘;;m, 1 k) 1, 1,a(k,w)) . (4.4.12)
Since this estimator only employs information at (z,y) = (1,1), it may not be very

efficient. Therefore, we define an estimator based on Xf;lp (x,y; k) for other values (z,y) =

(V2cosh, /2sinb) € R?.
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To ensure existence and consistency of the estimator, we define the following sets and

give some explanations below:
U, = {9 € (0, g) : Xg—np (\/icosﬁ,\/ﬁsinﬁ; k) <
< A (\/5 cosf,v/2sin 6, a(k, w), e~m(tan 9)‘/a(k’w)> } ;

oy = {9e (og)  [In(tan 6)] < (1 — k~YYa(k, w) [In (51, 1; /f)vo)\} and
Uy = {ee (og)  [In(tan6)| <a|ln(pij\/0)|}.

By Lemma 4.4.14 there exists a unique p such that
A (\/50089, ﬁsin@,&(k,w),p) = Xf;lp (\/icosé’, V2sin 6; k:) , fe ﬁw
Hence, we can define

Di;(V2 cos B, +/2sin 6; k) (4.4.13)
= A" (Xgnp(ﬁcos 0,V/2sin6; k); /2 cos ), ﬂsin@,&(k,w)) . 0elU;.

Note that, by the definition of p;;(1,1; k) in (4.4.12), it always holds that 7/4 € ﬁij
provided that Xf;]p(l, 1; k) < 1. Hence, if ﬁij = (), we can replace it by ﬁij = {n/4} and
also replace (7;; := {n/4}. To ensure consistency we further require 0 € (7;; This implies

)I/akw) with probability tending to one. The set

that the true p;; is smaller than e~/m(tant
U;s is then the true set of 6 € (0,7/2), where Lemma 4.4.14 applies.

Now we can define an estimator for p;; as a smooth version of p;;:

Definition 4.4.15. Let w* be a nonnegative weight function and W* be the measure
induced by w*. Then we define for i # j and with (4.4.13)

1
~\ ” N | *
pr:(k,w = — = / Pij \/50089,\/551n9;]{; W*(dO). (4.4.14
A @ 0 g) ey )1 (d0). (4.4.14)

Further, define pjy(k,w*) :==1,1<i<d, and IA%,\(k:,w*) = (ﬁ?j(k,w*))l<ij<d.

The next theorem shows the asymptotic properties of ﬁ,\(k:,w*). We use the theory
developed in Schmidt and Stadtmiiller (2006) and give a formal proof in Section 4.6.

Theorem 4.4.16. Suppose the following regularity conditions hold:

(C1) X4,...,X, are iid with copula Cx € ECy4(R,G), G € RV_, for a« > 0 and
maxX;; ‘p2]| < 1.
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(C2) There exists A(t) — 0 such that for i # j
t_lp(l - E(Xz) < l, 1— F’](X]) < ty) B )\(x>y>avpij)

finy Ah) = benyny)
uniformly on Sy == {s € R? : sTs = 1}, where b(cg)ij(l',y) is some non-constant
function.

(C3) k=k(n) — oo, k/n — 0 and VEA(k/n) — 0 as n — oo.

Let w* be a nonnegative weight function with supyey- w*(0) < oo for all i # j, N and
ij

N denotes the derivative of X with respect to p and «, respectively, and (A=) denotes

the derivative of A= with respect to . Define

0

~ 0
Bij(xay) = Bz’j(%y)—Bz’j(%OO)— 8_y

(9:17 )\ij(x> y) - Bij(oo> y)

Bij(z,y) = B(oo,...,00,2,00,...,00,Y,00,...,00),

Nij(z,y), (4.4.15)

where x is the i-th, y the j-th component and B is a centered tight continuous Gaussian

random field on R? with covariance structure
E(B(x)B(y) = M(zAy), zyel0,0] (4.4.16)

where XAy is taken componentwise. Set as beforer := vec[R] and 7 (k, w*) := Vec[ﬁ,\(k;, w*)],
then

. . d
VEF(k,w') —1) -5 Nia-12(0,Tx), n— o0,
where Ty = (7 ) 1<izjhri<d with
”Y%Jd = Oq + Uij,a + Ukl,a + Uij,klv (4417)

and

2
= 4.4.1
%0 = B LU WO (4.4.18)

X H /6U (A=P) ()\f;((\/?(iose,\/581119),\/5(3086,@311197@) W*(d6)
e

Je{ij,kl}

1
g < 2 W(qu)W(Qis)

1<p<q,r<s<d

V2 cos0;,v/2sin Hl)g s(v/2cos By, +/2sin 92)>
L1€qu /GQEQ

Ne( 00891,51n91,a Ppg) N (cos by, sin by, o, prs)

W (db;)W (d6y) | ,
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1 1
Oija = * * *
I d(d — 1)+ (U WU

— X (4.4.19)
1<p<q<d (qu)

(/ / / (AP )\X(\/§00s91,\/§sin6’1),\/Qcosé’l,\/?sinél,a) X
01€U; Jo1€Uy, J03€Qs,
( pq(fcos93,\/isineg)Bkl(\/?cosé’z,\/§Sin6’2)>

X
N (cos b5, sin s, av, ppg ) NP (cos By, sin Oy, av, ;)

W (dbs) W™ (df2) W (dbr) |

similarly oy (by interchanging the indices iy’ and 'kl’), and

1

el = 4.4.2
i 2W*<U*>W*<U;;l> 20
B;j fcos@l,f51n91)Bkl(fcoseg,fsm@ﬂ)
/gleU* /gzeU NP(cos By, sin by, o, pij ) AN'P(cos by, sin by, o, pp) W ()W (d6h).

Remark 4.4.17. If condition (C3) in Theorem 4.4.16 is replaced by

(C3°) k = k(n) — oo, k/n — 0 and VkA(k/n) — bz € (—00,00) as n — o0,
an asymptotic bias occurs in vec [IA%,\(k;, w*)]. Using the delta method it immediately follows
that

VE @k, w*) = 1) 5 N2 (b, + b4, T),

where P)\ 1S given n (4417), b = VeC[(bij p)1<ij<d]7 ba = VGC[(bij@)lSi’de],

b \/_COSQ V/2sin 6
1 / Aopion V2 ) W*(do), i # j, and
9eU;

by -
e W(U;) . A’P(ICOSH,f81n9,a,pij)
bijo = %/ (A=P)™ ()\fg (\/§COS¢9,\/§SiH¢9> ,\/50039,\/581119,04) W*(df) x
W(U5) Joeu:,
2
d(d—1)

X

1 / bica) b (fcos@ V/25in 0) W(do).

Z W(Qyq) Jocqs, A’a(fcose,f81n9,a,ppq)

1<p<q<d

Using (4.4.17), we can define an estimator of I'y.

Definition 4.4.18. We define the estimator of 'y = (vfj’kl)1§#j7k¢j by fA = (ﬁfj’kl)1§#j7k¢j
with

~\ ~ ~ ~ ~
Yijkt = Oat Oija + Okia + Oijkl; (4.4.21)

the & are defined in (4.4.18)(4.4.20), where «, p;; and py; are replaced by their estimators
a(k,w), pyy(k,w*) and pp(k, w*), respectively, the sets U* and Q* are replaced by their
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estimators U N U* and @ N @*, respectively, and the covariances F <§w()§kl()> are
replaced by their estimators E (E,J()Ekl()> using (4.4.15) and (4.4.16) and estimating
AX by Nemp.

The asymptotic properties of Xomp, a, ﬁf‘] in combination with the delta method yield

immediately the following result.

A~

Theorem 4.4.19. Under the regularity conditions (C1)-(C3), the estimator vec[l',] is

consistent and asymptotically normal.

Estimation of dependence in extremes is always a difficult topic, for some methods
of estimation of A} (1,1) and pitfalls we refer to Frahm, Junker, and Schmidt (2005).
The problem of estimating tail dependence lies in its definition as a limit, see (4.4.1).
Estimators of the tail dependence are based on a sub-sample using the largest (or smallest)
observations. Concerning the optimal choice of the threshold, we refer to Danielsson,
de Haan, Peng, and de Vries (2001), Drees and Kaufmann (1998) and to Kliippelberg
et al. (2005a, 2005b).

Remark 4.4.20. It may happen that the correlation matrix estimators (4.4.4) or (4.4.14)
are not positive definite. In this case we use the approach of Higham (2002), i.e. we replace

R by the (positive definite) correlation matrix R* solving

IR —R"

, = min { HR — RH2 : R is a correlation matrix} ,

where |[R|l2 = 37, . pj; is the Euclidean or Frobenius norm of a matrix R = (pi;)1<i j<a- Let
R have spectral decomposition R = QDQ” with Q orthogonal and D = diag(k1, ..., Kq)-
By Higham (2002, Theorem 3.1 and 3.2), Py(R) := R — diag(R —1I) is the projection of
R to the set of symmetric matrices with diagonal 1 and Pg(R) := Q diag(max(k;,0)) Q"
is the projection of R to the set of positive definite matrices, respectively. Then, Higham

(2002, Algorithm 3.3) calculates Y; converging to R* with respect to the Frobenius norm

as ¢ — oo: R
NSy —0, Y, =R
fori=1,2,...
Z; = Y, 1—AS;,
X; = Ps(Z;)
AS, = X, —Z;
Y, = PX)
end.
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Considering covariance matrices, we do not need the projection Py. Hence, if we observe
not positive definite covariance estimators (4.4.6) or (4.4.21), we project them to the set

~

of positive definite matrices by Ps(T").

4.5 The new methods at work

Using the estimators (4.4.4) and (4.4.6) or (4.4.14) and (4.4.21) together with the quadratic
form discrepancy function (4.3.6), we can now apply copula structure analysis. In the fol-
lowing, we consider the copula factor model, i.e. we choose the setting Cx = C(1, v )¢, where
L € R>™ V € R¥4 is a diagonal matrix with nonnegative entries and &€ € &,,,4(0,1, G);
also see Remark 4.3.2(iii).

As for the test statistic 7" based on the quadratic form discrepancy function (4.3.6) we

first compare in a simulation study 7 to its limiting y2-distribution. Therefore, we define
by

Tgp = nminDop (?T,r(v)m)

the quadratic form test statistic obtained from the Kendall’s tau based estimators 7, =
Vec[].:A{T] and T'; given in (4.4.4) and (4.4.6), respectively.
Similarly,

TA, = kminD (A f“)
QD k’%lelg QD 7‘)\,7'(’!9)| 2o

where k is the number of the largest order statistics used for estimation, 7y = Vec[ﬁ,\] and
T, given in (4.4.14) and (4.4.21), respectively. As a weight function we choose a discrete
version of
) = 1 * Y 0<o<Z (4.5.1)
w = 1—(—F - — 5.
/4 ' - T2
both for the estimation of @ and R given a copula C € EC(R, G), G € RV_,, and a > 0.

We also compare the copula factor model to the classical factor model X = (L, V)&,
€ € &,14(0,1G). To this end we define

TG = nmin Dop (?Cmp,r(ﬂ)\remp),

A~

where Temp = vec[Remp) is the vector of the standard empirical correlation estimator with
its asymptotic covariance matrix estimator fomp under normal assumptions, for details
see Browne and Shapiro (1986).
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The parameter ¥ is then estimated also in three different ways, denoted by 1A9T, 1A9,\ and

Demmp, by minimizing Tén, Top and Top', respectively.

Example 4.5.1. [Model selection by x2-tests]
To see the performance of the quadratic form test statistics T3, and T3y, we perform a
simulation study. We choose a d = 10 dimensional setting with m = 2 factors and loadings

as given in Table 4.1. Then LLY +V? = R is a correlation matrix.

component | 1 2 3 4 5 6 7 8 9 10
L, 9 9 9 9 9 0 0 0 0 0
L., o o o0 o0 o0 9 9 9 9 9
diag(V?) 19 .19 .19 .19 .19 .19 .19 .19 .19 .19

Table 4.1: Factor loadings of Example 4.5.1

Define a multivariate t,-copula as the copula of the random vector GN, where G ~
\/W , a > 0, is independent of N ~ N (0,R). Note that the t,-copula is elliptical and,
since G € RV _,, its tail copula satisfies (4.4.3). Choose o = 3, then GN has finite second
moment, but its fourth moment does not exist. Hence, classical factor analysis cannot be
applied to GN, see Proposition 4.3.5 and Theorem 4.3.7. Also, if the model with a < 8 is
considered, which has finite fourth moment but non-existing eight moment, the estimator
of I will only be consistent and large sample sizes may be necessary to observe the limiting
x? distribution of the test statistic 7. As the test statistics gy, and T3y, are based on the
copula of the sample, they are not affected by the existence or non-existence of moments.

We simulate 500 iid samples of length n = 1000 of the t3-copula, calculate the
Kendall’s tau based estimators (4.4.4) and (4.4.6) and estimate T¢, from these. To ensure
uniqueness of the loadings, we use the restriction that LV 2L is diagonal, hence we have
m(m—1)/2 = 1 additional constraints, see Lawley and Maxwell (1971, Section 2.3). Using
this restriction and the 2-factor setting, T¢ should be (for a large sample) X?lf distributed
with df = d(d —1)/2 —dm + m(m — 1)/2 = 26 degrees of freedom; see Theorem 4.3.7.
Therefore, we compare the 500 estimates of T¢), with the X36-distribution by a QQ-plot,
see Figure 4.1, left plot. From this plot we see that the distribution of T{, fits the Xa6-
distribution quite well. Similarly, we estimate T(SD based on the tail copula estimators
(4.4.14) and (4.4.17) with weight function (4.5.1) using the same samples as for T¢, and
based on the £ = 100 largest observations; see Figure 4.1, right plot. Also here we observe

a reasonable fit to the x3-distribution — not as good as before since the estimators are
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calculated from a smaller (sub)sample. Note that under the assumption of m = 1 factor
the corresponding T¢)’s and T, (SD’S were always larger than 600, which clearly rejects the

1-factor hypothesis.

Kendall’s tau based estimator Tail copula based estimator
3 B
g <=
g R
5 5
= L
S S
10 20 30 40 50 10 20 30 40 50
(T&p)m) (Tan) (i)

Figure 4.1: QQ-plot of ordered estimates T against the y34-quantiles.
Left plot: T, obtained from Kendall’s tau based estimators (4.4.4) and (4.4.6).
Right plot: TéD obtained from tail copula based estimators (4.4.14) and (4.4.17).

Example 4.5.2. [Oil-currency data

In this example we consider an 8-dimensional set of data, (oil, sé&p500, gbp, usd, chf,
Jpy, dkk, sek), i.e. we are interested in the dependence structure between the oil-price,
the S&P500 index and some currency exchange rates with respect to euro. Each time
series consists of 4904 daily logreturns from May, 1985 to June, 2004. To this data set
we fit a copula factor model using the Top", T4 and T3, statistics for estimation and
model selection. Estimation of T(SD is based on the k£ = 300 largest observations. The
values of these test statistics, based on different numbers of factors are given in Table

4.2. To estimate the number of factors, we use a 95% confidence test, i.e. we reject the

number of factors df | Ton”  Tap  Top | Xiroos

2 13 1 298.5 252.7 52.7 | 22.36
3 71337 174 24.0 | 14.07
4 2123 3.3 0.9 1{5.99

Table 4.2: Test statistics T(S%p, T¢p and TQ\D of oil-currency data under different number of

factors.

null hypothesis of having a m-factor model if the test statistic 7" is larger than the 95%-
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quantile of the Xflf—distribution. This yields 4 factors under the empirical, Kendall’s tau
based and tail copula based test statistics.

Applying factor analysis based on the different correlation estimates (and their asymp-
totic covariance estimates) yield different results; see Figure 4.2. The first four plots
show the loadings of the four factors, obtained from the empirical correlation estimator,
Kendall’s tau based and tail copula based estimator. The last plot shows the loadings of
the specific factors for all three correlation estimators.

We want to emphasize that, although we have plotted the factors in the same figures,
the factors obtained by the three different estimation methods are not known and may
have different interpretations. We call them empirical factors, Kendall’s tau factors and
tail copula factors.

For the first factor all loadings of the different correlation estimators behave very
similar with respect to factor 1, which has a weight close to one for usd. Hence, factor
one can be interpreted as the usd-factor. It also can be seen that this factor has a positive
weight for all currencies, but not for the oil-price and s&p500 (almost 0 or very small
negative), and the largest dependence is observed for ghp, and jpy.

For factor 2 we observe for all correlation estimators a large weight on Swiss Francs
chf, so we call it chf-factor. We observe that the empirical and Kendall’s tau factor has
almost no (or only little) correlation with oil, s&p500, gbp, usd and jpy. The weights on
dkk and sek are larger and also moderate for gpd for the tail copula factor indicating that
extreme dependence between all European currencies is present.

Considering factor 3, we see for the empirical and Kendall’s tau factor a large loading
for sek and dkk with only little impact on the other components. If scandinavian currencies
were merged, then only a specific factor would remain. The tail copula factor indicates
moderate dependence between oil and gbp.

From factor 4 we observe for the empirical factor a loading close to one for the oil-price
and loadings close to 0 for the rest of the factors. This indicates that a 3-factor model
is sufficient in this case. In combination with the model selection procedure as seen in
Table 4.2 this indicates that the distribution of TR is far away from a x* distribution.
For the Kendall’s tau factor there is some dependence between the European currencies
and the usd. The tail copula factor behaves different: there is dependence observed between
large positive jumps of s&ph00 and large negative jumps of the oil price which would not
be detected when only considering the other correlation estimators.

Finally, we give an interpretation of the specific factors, where we find the correlation

which is not explained through the common factors. For the empirical factor oil is com-
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pletely explained by factor 4, which is the specific factor for oil, and s&p500 has a loading
close to one, showing there is (almost) no correlation to oil and the other currencies. For
the Kendall’s tau factor, oil and s&p500 are uncorrelated and uncorrelated from the rest.
Contrary, for the tail copula factor, oil and s&p500 are not uncorrelated from the common
factors. Oil has a rather large specific loading factor, but s&p500 is explained to a large
extend by factor 4.
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Figure 4.2: Oil-currency data: factor analysis based on 4 factors and different statistics, ”emp

for the loadings 5Cmp, "tau” for '57 and "tail” for ¥ A\
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Upper row: loadings of factor 1 (left) and 2 (right).

Middle row: loadings of factor 3 (left) and 4 (right).

Lower row: specific factors diag(V?).
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4.6 Proofs

Proof of Theorem 4.4.9: Define ¢ := Vec[’f] and t := vec[T)]. Since t is a vector of

U-statistics, and, obviously,
E (sign (X1 — Xo) (X1 — Xoj))?) < o0, i#}],

Lee (1990, Chapter 3, Theorem 2) applies (together with the remark at the end of p.7
therein that all results also hold for random vectors). The covariance structure is stated
in Lee (1990, Section 1.4, Theorem 1), hence

Vit —t) -5 Nyan2(0,47) | n— oo,

where T = (7;; 0 — Tikal)1Si¢j’k7ﬁl§d and 7;; 4 is given in (4.4.5). Note that the Jacobian
matrix D := 0 (sin (t7/2)) /Ot is a diagonal matrix with
diag(D) = gcos (gt) :
Hence, by the delta method (see Casella and Berger (2001, Section 5.5.4)),
\/ﬁ(?— r) 4, Nd(d_l)/Q (0,4DTTD) , N — 00,

and the proof is complete.

Proof of Theorem 4.4.11: We first consider 7;; ;; and rewrite it as a linear combination

of some U-statistics. Define for 1 <a<b<e<n

Yz, ) = sign [(Tas — Tb)(Tay — To)] Sigh [(Tas — Top) (Tay — Tpy)]
ot = Mz, 3, 2.)

= sign (@ — i) (Ta; — o) s8N [(Tage — Teg) (Tay — Tey)]  and
q)?’kl(za,xb,mc) T (q)zg,kz LU | @itk | ikl | ikl q)zg,kz) .

6 abc ach bac bea cab cba

- - o '
Hence, @5 and @5 are symmetric in their arguments. Next, define

. 2 ij
gkl i7,kl
U - ) (XmXb) and
2 n(n — 1) 1§§§n ?
. 6 ij
az],kl — q)Z]Jd(XaaXb)XC)a
s n(n —1)(n—2) 1§a;c§n ’
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and note that both are U-statistics. Obviously,
g 2 y 2
E ((@;ﬂv’“(xl,XQ)) ) <oo and E ((@;Jv“(xl,xg,xg)) ) < 0,

therefore, by Lee (1990, Chapter 3, Theorem 2), the vector of all @3 and @5* is consis-

tent and asymptotically normal. Since

_ 1 nn—=1) g  nn=10n-2) 4u
Tijkl = n(n — 1)2 ( 9 Us + 6 Usg )

Tijki 1s a linear combination of U-statistics and is therefore also consistent and asymptot-

ically normal. The result then follows using the delta method.

Proof of Theorem 4.4.16: First, by homogeneity,
AM(V2cos by, V/2sin 6y, v, p) = V2X(cos by, sin by, v, p)

holds. Let '—%= denote weak convergence in the space of all functions f : Ri — R which
are locally uniformly-bounded on every compact subset of @Tfr. Next, extending Schmidt

and Stadtmiiller (2006, Theorem 6) from the bivariate to the d-dimensional setting, we

have
SN,
Nemp (.. _ X w _ X (.
VE (3@ 1) = 3¥(@)) == Ble) = 30 5o\ @B,
where B;(z) = B(c0,...,00,x,00,...,00), z is the i-th component and B is a zero mean

Wiener process with covariance structure E(B(z)B(y)) = M (z A y).

To show asymptotic normality we use an extended version of the classical delta-
method, for details see van der Vaart and Wellner (1996, p.374). First, note that for
all i # j and for \ defined in (4.4.3)

ei%f IN(V2cos0,V2sinb, a, pi;)| > 0,
cQ;;

J

ei%f IN?(V2cos0,V2sin 6, a, pij)| >0 and
euy,

sup |[(A )" (V2 cos0,V2sin b, a, p;)| < co.

0eU;;

Next, define 7C as the set of all d-dimensional tail copulae. By Schmidt and Stadtmiiller

(2006, Theorem 1(iii)) a tail copula is Lipschitz-continuous, hence 7C is a subset of a
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topological vector space. Abbreviate for A defined in (4.4.3) and p € 7C with p;; being
the 75-th marginal of p

a;j(0,p,p) = AT¢ (uij(\/icosé’,\/ﬁsine);\/Ecosé’,\/ﬁsine,p), and
pii (0, ) = AT (,uij(ﬁcos 0,v/2sin 6); V2 cos b, \/581119,04) .

Next, define for some correlation matrix R = (p;;)1<; j<d

1 1 -
W = G ) /engjaiJ-(e,u,pij)W(de),

1
ii(,R) = 7/ 0::(0, 1, a(p, R)) W*(df), and
pij (1, R) W05 GEU%/)J( ;e R)) W(do)

1]

r(u,R) = wvec [(pij(,ulaR))lnggd}'

Write a(p) := a(u,R) and note that a(u) is Hadamard-differentiable, i.e. let t,, —> oo
and h,, —% h € TC such that p+ hy,/t,, € TC for all m. Then, using Taylor expansion,

W}Ll_rgo tm (@ + B /1) — ()

hij(\/i cos 0, /2 sin 0)

1 1
d(d - 1) ; W(Q:j) /€6ij e (\/§COSH, \/§Sin 9? Oé(u),pij) W(de)
=: a;(h),

which obviously is a linear map. Analogously, p;;(1) := p;;(1t,R) is Hadamard differen-
tiable, i.e.
it (pig (1 + P /) = pig (1))

1 / hij(\/ﬁ cos B, v/2sin 0) N
sevy, N7 (V2 cos0,v/2sin 0, a(p), pij)

W(U5)
+ oy, (R)(ATF) <,U/7jj(\/§COS 0,V2sin0); V2 cos, vV2sin 9,04(,u)> W*(do)
= p;j;u(h)a

and similarly for r(u,R). Since R,-R= 0,(1/Vk),

pij(k,w") = py (Xemp('; k)aﬁT) :
and similarly for ¥(k, w*), the delta method yields

VE @k, w) —r) =5 rix(B).
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The result then follows using

E <<r;x(§)>ij (r&x(é))kl) = 0Oq + Oija + Okla + Tij ki,

with 04, 0ijas Okia, 0ij defined through (4.4.18)-(4.4.20).
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Chapter 5

Tails of credit default portfolios

SUMMARY

We derive analytic expressions for the tail behavior of credit losses in a large homoge-
neous credit default portfolio. Our model is an extended CreditMetrics model; i.e. it is a
one-factor model with a multiplicative shock-variable. We show that the first order tail
behavior is robust with respect to this shock-variable. In a simulation study we compare
different models for the latent variables. We fix default probability and correlation of the
latent variables and the first order tail behavior of the limiting credit losses in all models
and observe a completely different tail behavior leading to very different VaR estimates.
For three portfolios of different credit quality we suggest a pragmatic model selection

procedure and compare the fit with that of the S-model.

5.1 Introduction

We consider a homogeneous portfolio L™ = L >y Lj of m bonds L; € {0,1}, where
L; = 1 indicates the default of the credit of company j. Each bond is characterized by
the vector (S;,s), where S is a latent variable, e.g. the equity value of company j. The
number s denotes the default threshold in the sense that the bond of company j defaults,
if S; <s.

The credit loss of the portfolio is expressed as the fraction of defaulted bonds and the

portfolio is homogeneous in the sense that all bonds have the same characteristics; i.e. the
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vector (S1,9%,...,S,) follows a factor model
S; = Ws"(X,Y)), (5.1.1)

where W > 0, X € R and (Y});en is an iid sequence of real random variables. The Y; are
interpreted as a company-specific risk factors, X is a common risk factor (which can be
extended to a vector of common factors) and W is a global risk factor and allows for a
tuning of the model.

A well-known example for s*(-,-) is the CreditMetrics model as described in Gupton,
Finger, and Bhatia (1997). We consider an eztended CreditMetrics model given by

S; =W(aX +bY;), a,b>0and W >0, X,Y; € R random. (5.1.2)

iid

The CreditMetrics model corresponds to W =1, X, Y; ~ N(0,1)anda = \/p, b= /T —p
for some p € (0, 1), modelling the correlation between S; and S; for i # j. One popular
extension of this model takes W = /v/x2, which yields for (Sy,...,S,,) a multivariate
t, distribution, called the multivariate t-model.

A treatment of different credit portfolio models with a finite number of loans can be
found in Frey and McNeil (2000, 2002, 2003) and in Frey, McNeil, and Nyfeler (2001).

For the limiting portfolio L := lim,, .., L™ it can be shown (see Theorem 5.2.3)
that L is a random variable and the limit is in the almost sure sense. For model (5.1.2)
with W = 1 Lucas, Klaasen, Spreij, and Straetmans (2003) show under weak regularity
conditions that the tail behavior of L is Weibull-like, i.e. P(L > q) = (1—q)*L(1/(1—q)),
q € (0,1), for some o > 0 and a slowly varying function £ (see Definition 5.2.7 for the
term Weibull-like and Definition 5.2.6 for the concepts of regular and slow variation).

For a random variable W > 0 the result remains true with the same « but a different
slowly varying function £ appears. We indicate the influence of W in Section 5.3 by
simulation, showing that it has an important influence on the right-tail behavior of L.
In Section 5.4 we fit four (extended) CreditMetrics models to three portfolios of different
credit quality. We also investigate the fit of a simple 3-model. This model, however, proves
as being too simplistic in most real world credit portfolios. The extended CreditMetrics
model proves to be superior provided the shock-variable W is chosen correctly.

All proofs are gathered in the Appendix.

5.2 Results

First, we give some notations used throughout the chapter.
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Notation 5.2.1. (i) Random variables are always denoted by capital letters.

)

(ii) F. denotes the distribution function of the random variable -’ and f. denotes its

density, e.qg. Fx and fx are the distribution function and density of X, respectively.
Further, let F. := 1 — F. denote the tail-distribution of .

(iii) Let h = h(xy1,z2) be a function of two variables. Then Dyh := Oh/0xs.
(iv) 14 denotes the indicator function of the set A.
(v) We write a(z) ~ b(z) as x — o, if lim, ., a(x)/b(z) = 1.
(vi) We write a(z) = o(1) as x — oo, if lim, . a(x) = 0. O

We shall investigate the tail-distribution of the limiting portfolio credit loss as defined

in the following definition in combination with Theorem 5.2.3

Definition 5.2.2. Let L; := 1(5,<s) = Liws~(x,v;)<s} denote the default indicator of the
bond of company 7 and define the portfolio credit loss by

] — ] —
L = =N L= =Y 1arexycst.
o= o Dl

Jj=1

The (almost sure) limit of L™ as m — oo is called limiting portfolio credit loss and
denoted by L. 0

Theorem 5.2.3. Consider the setting of Definition 5.2.2. Then

Considering the variance of L, we observe the following lemma.

Lemma 5.2.4. (i) Choose the setting of Definition 5.2.2 with pioss := P(Lj = 1), then

0 < v/Var(L) < v/Ploss(1 — Pross). The upper bound is obtained for L; = L; Vi, j

and the Var(L) = 0 is obtained for L; independent of L; Vi # j.

(ii) In the extended CreditMetrics model (5.1.2) the upper bound is obtained for a = 1

and b =10, and the lower bound is obtained for a =0, b =1 and W = const.
O
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Next, we introduce our key assumptions on the factor model (5.1.1) and the risk

factors.

Assumption 5.2.5. (i) 0 < W ~ Fy, X ~ Fx, (Y})jen are iid with Y1 ~ Fy and all

random variables are independent.

(11) Denote by S, W, X and Y the supports of S;, W, X and Y;, respectively, and let
W C (0,00), inf X = —o0 and sup) = +oo. We further assume that Fx and Fy
have densities fx and fy, respectively, and that fx is monotone on some interval

(—00, 2zx) and fy is monotone on some interval (zy, o0).

(iii) The factor model s*(x,y) is strictly increasing, differentiable in both components
and the inverse functions exist on its support; i.e. for alls € S, w e W, and x € X
there ezists an inverse function y*(s/w,x) € Y and for all s € S, w € W, and

y € Y there exists an inverse function x*(s/w,y) € X, so that
s =ws"(x*(s/w,y),y) = ws*(z,y"(s/w, x)).

(iv) We assume lim, ., Fx (z*(0,y)) /Fy(y) < oo.
(v) The default threshold s is negative. O

Assumption 5.2.5 is nothing but Assumption 1 and the comment before Lucas et al.
(2003, Assumption 2A), amended by some further regularities.

Assumption 5.2.5(iii) says that we only consider factor models, where, given three
components of (S;, W, X,Y;), the fourth is uniquely determined. Also note that with
Theorem 5.2.3 it follows that P(S; < s|W, X) =: L LRy (y*(s/W, X)).

Assumption 5.2.5(iv) is needed since we extend the standard latent variable model
s*(X,Y;) by the multiplicative factor W. Note that the default probability P(L; = 1) is
in general small and therefore, if E(S;) = 0, we always have s < 0, hence Assumption
5.2.5(v) is not restrictive.

Assumptions 5.2.5 hold for a large number of factor models. For instance, they are
satisfied by the CreditMetrics model as well as for the multivariate t-model. In the follow-
ing we focus on the extended CreditMetrics model (5.1.2) and turn our attention to the
right tail behavior of the limiting portfolio credit losses L. From the right tail behavior
we can deduce the riskyness of the portfolio.

Before we specify the different types of distributions of X and Y} further, we introduce

the concept of regular variation.
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Definition 5.2.6. (i) A positive, Lebesgue measurable function r is called regularly

varying at infinity with index o € R and we write r € R, if
r(tx)/r(z) == t*, t > 0.
If L € Ry, then L is called slowly varying at infinity and we write £ € Ry.
(i) 7 € Ry if and only if r(z) = 2*L(x) for L € Ry.

(iii) If X ~ F with F € R_,, for some o > 0 holds, then the random variable X is called
regularly varying at infinity with index —a and we write X € R_,. OJ

For more details on the concept of regular variation we refer to Bingham, Goldie, and
Teugels (1989).

If we want to determine large losses of the limiting portfolio L we are interested in its
right tail behavior near 1 and we use extreme value theory as the natural tool to describe

this tail.

Definition 5.2.7. We say that the random variable X or the distribution function F' of

X belongs to the maximum domain of attraction of the Weibull distribution

U, (z) = exp (— (max{—=z,0})"), £ >0,

itd

if for the iid sequence Xy, X, ... ~ F' there exist norming constants ¢, > 0, d,, € R such

that (as n — o0)
(max{X1,..., X, } —dn) Jcn —— T,

We write X € DA(V,) or F' € DA(V,), and it can be shown that in this case I has
a finite right endpoint xp := sup{z € R : F(z) < 1} < oo. It also can be shown, that
F € DA(V,.) if and only if F(x) = (vp — )" - L(1/(zp — 2)) with L € Ry, zr < 00 and
k> 0. UJ

For more details on extreme value theory we refer to Embrechts, Klippelberg, and
Mikosch (1997) or to Resnick (1987).

The following two assumptions classify the different regimes of tail behavior of the risk
factors X ~ Fx and Y; ~ Fy. The first regime assumes polynomially decreasing tails of

the risk factors.

Assumption 5.2.8. (1) Fx(—) € R_,, pux >0, i.e. Fx(—x) =" Lx(x), z >0,
and £X c Ro.
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(i1) Y; ~ Fy and Fy € R_,,, vy >0, i.e. Fy(y) =y " Ly(y), y >0, and Ly € Ry.
(i11) Let s < 0 be the threshold from Definition 5.2.2 and consider the function x*(-,-)
defined in Assumption 5.2.5(iii). Define

yD2x* (S/w> y)
z*(s/w,y)

Assume lim,,_, ((w,y) = ¢ € (0,00) for any w € (0,00) pointwise. Further, assume

C(w,y)

that there exists an integrable (w.r.t. Fy ) function u such that ((w,y) < u(w) for
allw € (0,00), for all y € (yo,00) and some yp. O

The second regime assumes exponentially decreasing tails of the risk factors.

Assumption 5.2.9. (i) Fx(—z) = rx(z)exp( —puxa"?(1+ex(x)) ), © > 0, where
ex(xz) = o(1), rx € Ry, pix,p2 > 0 and py € R. Further, let also the deriva-

tives €'y and 'y be ultimately monotone for x — oo.

(i) Fy(y) = ry(y)exp(—wyy”(1+ev(y) ), y > 0, where ey(y) = o(1), ry € Ry,
vy,ve > 0 and vy € R. Further, let also the derivatives €} and 1, be ultimately

monotone for y — o0.

(iii) Let s < 0 be the fized threshold from Definition 5.2.2 and consider the function
x*(-,-) defined in Assumption 5.2.5(iii). Define

gz (—a* (s /w, y))"* ™" (= Dyz*(s/w, y))
voy2 !

C(w,y) =

Assume lim, o, C(w,y) = ¢ € (0,00) for any w € (0,00) pointwise. Further, assume
that there exists an integrable (w.r.t. Fyw ) function u such that {(w,y) < u(w) for
all w € (0,00), for all y € (yo,0) and some yq. O

Note that Assumptions 5.2.8 and 5.2.9 are slightly stronger than Lucas et al. (2003,
Assumptions 2A and 2B), since we use the existence of a density of L in the proof of the
following Theorem 5.2.10.

We now determine the right tail behavior of the limiting portfolio credit loss distribu-

tion.

Theorem 5.2.10. Consider the setting of Assumption 5.2.5. If Assumptions 5.2.8 or
5.2.9 are satisfied, then L € DA(,) with k = (ux /vy > 0, i.e. there exists L € Ry such
that

P(L>q)=(1-q)"/™L(1/(1~-q), q€(0,1) (5.2.1)
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For W = 1 this result has been proved in Lucas et al. (2003, Theorems 2 and 3). Hence,
our result shows that the tail of the portfolio loss is in first order robust with respect to a
shock variable W. Consequently, any difference between W = 1 and a random W > 0 can
only be found in the second order tail expansion, the slowly varying function £(1/(1—q)).

As an example, we derive an analytic expression of £(1/(1 — ¢)) in the extended
CreditMetrics framework, both, in the setting of Assumptions 5.2.8 and 5.2.9:

Theorem 5.2.11. Given the extended CreditMetrics model (5.1.2) with X ~ t,,, Y; ~
ty, and W > 0 such that px > vy. Let Assumptions 5.2.5 hold. Then the distribution of
L is of the form (5.2.1) with k = pux /vy and L € Ry satisfies for ¢ — 1 the relation

1 e [T s L USRIy S
ﬁ(q)wuxuf;;x / / (—@a—q)“wa@éwwW Y>) dFyy (w).

O

Theorem 5.2.12. Given the extended CreditMetrics model (5.1.2) with X,Y; ~ N(0,1)
and W > 0 such that E(1/W) < oo and b > a. Let Assumptions 5.2.5 hold. Then the
distribution of L is of the form (5.2.1) with k = b*/a® and L € Ry satisfies for ¢ — 1 the

relation

oo 2 _ b/ (267)
L L N/ exp (— i —l—s—b —21In(1—q) (=21n(1-¢)) dFw (w).
1—gq 0 s b

9 2
aw  a*w Sy o e
aw a

O

Remark 5.2.13. (i) In the setting of Theorem 5.2.12 we require b > a > 0. The nat-
ural choice in this model is @ = /p and b = /T —p for p € (0,1) modelling the
correlation between S; and S; for i # j. Then, b > a is equivalent to p < 1/2 and

this is always given in practice.

(ii) The first order tail behavior is a function of the correlation p only.

(iii) As can be seen in the proof, for the CreditMetrics model Assumptions 5.2.5(iv) and
5.2.8(iii) or 5.2.9(iii) are superfluous. However, in the extended model, one can easily

construct examples, where these restrictions are essential. O

Setting W = 1 in Theorem 5.2.12 we immediately obtain Lucas et al. (2003, Theo-

rem 6).
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Corollary 5.2.14 (Lucas et al. (2003), Theorem 6). For the CreditMetrics model with
b > a the tail-distribution of L is of the form (5.2.1) with k = b*/a® and L € Ry satisfies
for g — 1 the relation

s sb

1 a 2_ 2 2
) ~ - —— + =/ 2In(1 —q) ) (—21In(1 — ¢)) /)
L (1 — q) 7, exXP ( 5 + " n( q)) (—2In(1 — q))

5.3 A simulation study

We focus on the extended CreditMetrics model (5.1.2). Denote the default probability by
Dloss = P(S; < s) and we assume that pioss < 1/2. We consider different distributions of
W, X and Y; and show their influence on the tail-distribution of the limiting portfolio

credit loss L. We consider the following examples.

itd

Model 5.3.1. (1) W =1 and X,Y; ~ N(0,1) and b > a.
(2) W /152 and X,Y; © N(0,1) and b > a.

(3) W=1and X ~t,,,Y; ~t, and ux > vy > 2.

X

(4) I/Vi\/él/)(?1 and X ~t,., Y, ~t, and px > vy > 2. O

As shown in Theorems 5.2.11 and 5.2.12, all these models fall into the framework of

our assumptions, i.e. for ¢ € (0,1) there are functions L, ..., L4 € Ry such that

P(L>q) = (1= L15(1/(1 =q)), in case of model 1 and 2,
P(L>¢q) = (1—q)"*/™ L34(1/(1—¢q)), in case of model 3 and 4.

As indicated in Remark 5.2.13 the restriction b > a for model 1 and 2 is quite natural
corresponding to p < 1/2; see Table 5.1 for some scenarios. The restriction uy > vy for
model 3 and 4 can be seen in the same spirit as we choose jx /vy = b*/a? > 1. The bound
vy, px > 2 is needed to ensure finite variance of \S;.

To make the four models comparable, we fix the following parameters

e the default probability pioss := P(S5; < s),

e the correlation-structure p := Corr(S;, S;) Vi # j and
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e the first order tail behavior k = (pux /vy of the limiting portfolio credit loss L, given
by Theorem 5.2.10.

For all models we have Corr(S;, S;) = a?’EX?/(a*?EX?*+V*EY?) Vi # j. Let a = /p, b=

VI=pinmodels 1, 2 and a = \/p(ux —2)/px, b = /(1 — p)(vy —2) /vy, px, vy > 2
in models 3, 4. Then we have always the same correlation p € (0, 1) in all models.

By Theorem 5.2.12 we have x = b*/a®> = (1 — p)/p in model 1 and 2 as the parameter
of the first order tail behavior. In model 3 and 4 we get k = pux /vy (by Theorem 5.2.11),
therefore we choose fix = 2/p and vy = 2/(1 — p) and this leads to a = b = /p(1 — p).
Hence we have the same « in all models.

The threshold s is the poss-quantile of S;. Since S; ~ N(0,1) in model 1 and S; ~ ¢, in
model 2, we can read off this quantile from standard tables. In model 3 and 4, we choose s
as the empirical pj.s-quantile of S;. The simulation run length is 107, which should suffice

to obtain a reliable estimate.

In choosing the specific default probabilities and correlations we follow Frey et al.
(2001), i.e. we consider three rating groups of decreasing credit quality, which we label A,
B and C; see Table 5.1. This leads to the (rounded) parameters given in Table 5.2.

group A B C
Ploss 001% 050% 750%
P 2.58% | 3.80% | 9.21%

Table 5.1: Values for default probability and correlation of the three credit quality groups.

As stated in Theorem 5.2.3 we have L < Fy(s/(bW)—Xa/b) and we simulate L by this
distributional equality, see Figures 5.1 to 5.3 corresponding to the three groups. Each of
Figures 5.1 to 5.3 shows four graphs, each with four curves, corresponding to the different
models (1)-(4) with parameters as given in Tables 5.1 and 5.2.

The upper left graph corresponds to the tail-distribution L(gq) of the limiting portfolio,
where the arguments ¢ are chosen such that 0 < L(g) < 0.1 for all four models; the lower
left graph is similar but zoomed in, i.e. ¢ is such that 0 < L(q) < 0.01. The right graphs
show the quantile functions or the Value-at-Risk L~ (p) = VaR, of the portfolios with
0.9 <p<1and0.99 <p <1, respectively.

In Table 5.3 the VaR,, of all models in the three groups is given for p running through
the different values 95%, 99%), 99.5%,99.9%, 99.95%.
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Figure 5.1: Tail-distribution and Value-at-Risk of the four models with group A-parameter
setting.

We observe in all groups that model 2 leads to a portfolio with larger quantiles than
model 1 and, similarly, model 4 gives larger quantiles than model 3; this is obviously due
to W. Although three parameters are the same in all models, we observe a completely
different behavior of the four models in their right tails. As can be seen in Table 5.3, the
99.95%-quantile of model 2 in group A is 90 times larger than in case of model 1 and even
440 times larger than in case of model 3. In group B we observe in model 2 an up to 25
times larger 99.95%-quantile than in model 3 and in group C' the riskyness of the models

turn where model 4 shows up to 50% larger quantiles than model 2.

To quantify the different portfolio behavior further we also estimate empirically the
standard deviation of L, see Table 5.4. The (rounded) 95% confidence intervals are, as
usual, based on the asymptotic x?_; distribution of the empirical variance. We observe

that model 2 has a larger empirical deviation than model 1 and, similarly, model 4 shows
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Figure 5.2: Tail-distribution and Value-at-Risk of the four models with group B-parameter

setting.

larger deviation than model 3. As in case of the VaR the differences of the standard

deviations are not negligible: in group A model 2 shows 850 times more deviation than

model 3; see Table 5.4. From Lemma 5.2.4 we get an upper bound for the standard

deviation and observe in all our models a quite small standard deviation compared to

the upper bound, see also Table 5.4. The meaning of the last line in Table 5.4 will be

explained in the following section.

5.4 Cutting Gordon’s knot

Recall that for all models of section 5.3 the parameters where chosen such that default

probability, correlation and first order tail behavior are the same for all models in each

group A-C'. Nonetheless, we observe completely different upper tails for the different
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Figure 5.3: Tail-distribution and Value-at-Risk of the four models with group C-parameter
setting.

models. This indicates that a naive quantile estimator based on extreme value theory
may be grossly misleading. Such a method would concentrate on the parameter s in
Theorem 5.2.10 and replace the slowly varying function £ by a constant, see Embrechts
et al. (1997, Chapter 6) for details. However, as can be seen in Theorem 5.2.12, L is far
away from being constant and has a strong influence near the right endpoint ¢ = 1.

To overcome the problem, which model to choose, we suggest in the following a prag-
matic approach, which originates in the #-model. The § model is a simple model often used
in practice, where the parameters are estimated by matching the first two moments; see
e.g. Bluhm, Overbeck, and Wagner (2003, page 39). The (¢, d)-distribution has density

_ Tle+d) d—1
fﬁ(c,d)(q) - F(C)F(d)q (1 Q) ) 0< q< 17 C,d > 0.

From Embrechts et al. (1997, Example 3.3.17) we know that the ((c, d)-distribution sat-

isfies the weak requirement of being in DA(W,). As our main focus is on VaR-estimation,
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we fit besides the location parameter the first order tail behavior. Since k = (1 — p)/p
and Ef(c,d) = ¢/(c+ d) we obtain

c:ﬂﬂ and dzl_—p. (5.4.1)
P 1= Poss P
This means we match the default probability pss and the correlation p.

We observe that VaR estimated from the (-model compared to our models 1-4 is
slightly more moderate but roughly of the same order as for model 2 in all groups; see
Table 5.3.

The question arises, if there is any further advantage of the latent variable models 1-4
in comparison to the simple and easy to fit f-model for VaR estimation, which after all,
has the correct first order tail behaviour. One drawback of the g-model is that it has no
economic interpretation in the credit risk context. From a statistical point of view, models
2 and 4 constitute a much richer class of models in the sense that more parameters can
be specified.

One parameter, which we have not considered up to now is the standard deviation
(see Table 5.4) and here we can observe substantial differences between the models. As
the first order tail behavior is determined by p solely, it is independent of W. As W acts
as a random standard deviation of the factor models, it is natural to match the empirical
standard deviation by choosing a proper W. In our simulations we observe for models
2 and 4 that the standard deviation of L, is decreasing in ry. For the normal factor
model 2 we can proof this by asymptotic expansion. Consequently, we can estimate vy,

by matching the standard deviation.

Theorem 5.4.1. In the setting of model 2, let W = W, 4 Vvw/x2, and denote L; =
L;, and L = L,. Then, the standard deviation of L, is decreasing in v for sufficiently

small default probability pioss = P(L;, = 1) = P(S; < s). O

We conclude this section by a comparison of the extended CreditMetrics models 2
and 4 with the S-model estimated from the parameters pj.ss and p given in Table 1.
The estimated parameters for group A-C' are given in Table 5.2. We choose ¢ from the
parameters (5.4.1) of the -model; the estimates are given in the last line in Table 5.4.
We see that in case of group C' the standard deviation of model 3 is already slightly larger
than in the [-case, therefore we set vy, = oo (corresponding to W = 1) for model 4 in
group C. All results are summarized in Table 5.5.

In Figure 5.4 we plot the tail-distribution (left column) and the VaR, (right column),

where the upper, middle and lower row correspond to group A, B and C respectively. In

119



Table 5.6 we also give the VaR,, estimates of model 2, 4 and #-model in the three groups
for certain values of p. We observe now that model 2 and the $-model are very similar
in all groups, indicating that the S-model gives a reasonable approximation for model 2,
provided the standard deviations of both models coincide. In other words, the similarity of

model 2 and the S-model suggests model 2 as a substantial improvement of the S-model.

As to model 4, we see that in group A the quantiles of model 2 and § are roughly
three times larger than in model 4. In group B, all three models are comparable and in
group C model 4 behaves roughly 50% riskier than the other models. We shall further

comment on model 4 in the next section.

group A
0 model 2 model 2 |
= --- model 4 © --- model 4 1
= —— beta = —— beta |
I
— 2 |
=2 E 3 \
= 5
S
e = _—————T =
= =
0.4 0.6 0.99 0.992 0.994 0.996 0.998 1.0
q p
group B
o model 2 0 — model 2 |
S --- model 4 S --- model 4 |
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—~ o= /
S
== <
=2 ==
=
o~
=
o 0 o NIoe--- o ___
Sl S
0.6 0.8 0.99 0.992 0.994 0.996 0.998 1.0
P
=
0 \ \\ —— model 2 —— model 2 /"
g\ N --- model 4 --- model 4 ,
= —— beta & —— beta e
— 2
= ~
= <
3
I § = g
=
o - oS
2 o
1.0 0.99 0.992 0.994 0.996 0.998 1.0
p

Figure 5.4: Tail-distribution and Value-at-Risk of model 2, 4 and S-model in the three groups.
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5.5 A word of warning

In the heavy-tailed models 3 and 4 we restrict the parameters to uxy > vy, i.e. we consider
only X being not heavier-tailed than Y;. As can be seen in Table 5.2 we always have
fx > vy with a rather large ratio px /vy > 9.8. We did this for good reasons. Because, if
v = x = Vy, then this models a very extreme economic situation, the more extreme, the
smaller v is. In this case X (and Y;) have extremely heavy tails and, thus, have with very
high probability extremely large realizations. Consequently, it can happen that a large
negative observation of X dominates all ¥; such that almost the whole portfolio defaults.
This would model an economy which fluctuates wildly. In that case the limiting portfolio
credit loss behaves like the model built on S; = min{a.X, bY;}.

Corollary 5.5.1. Define L(Am) = % Z;n:l L;-\ with default indicators L;»\ := LiminfaX by }<s}-
Let X, Y1, ..., Y, % t,. Then

1, with probability Fy, (s/a),

Fy, (s/b), with probability Fy,(s/a).

m—0o0

L) = lim L™ % {

O

Theorem 5.5.2. Choose the model L(Am) and L™ as in the setting above. Let L and L
correspond to model 3 with pux = vy =: v. Further, choose the same default threshold s
for both models.

(i) Let m be fized. Then, for any q € {0,1/m,2/m ... 1}, it holds that

lim P (L(m) = q} Lg\m) = q) =1.

(ii) Let e > 0. Then, lim,__. P (|L — L"| <e| L") ¥ 1.
U

From Theorem 5.5.2(ii) conclude that in the setting of model 3, where s, p = a?/(a® +
b?) and pux = vy = v are small, the limiting portfolio credit loss L degenerates in the sense
that most of the mass is near the point £}, (s/b) (when the Y;’s dominate the portfolio)
and some very rare events can be observed close to 1 (when X dominates the portfolio).
From Theorem 5.5.2(i) conclude that this behavior also can be observed for portfolios
with a finite number of loans. Of course, model 4 has the same structure; the difference

to model 3 being that large fluctuations are multiplied by a random W.
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5.6 Conclusion

In this chapter we derived the tail behavior of aggregate credit losses extending results
of Lucas et al. (2003). We enriched the one factor latent variable model by a positive
multiplicative shock variable W. In the models, where the latent variables follow a mul-
tivariate normal or t-distribution, we observed that first order tail behavior is a function
of the correlation between the latent variables. In particular, W has no influence on the
first order tail behavior of the limiting credit loss portfolio.

In a simulation study we observed an impact of the second order tail behavior on the
quantiles by comparing four different models. We fitted the models by matching default
probability, correlation between latent variables and first order tail behavior. In some
credit scenario we observed quantiles that were up to 440 times larger than in another
scenario.

To offer some decision support to the risk manager on which model to choose, we
compared the VaR estimated from the -model with the VaR estimated from the four
extended CreditMetrics models. Fixing default probability and first order tail behavior
we observed a similar (slightly more moderate) performance of the f-model and the
multivariate t-model. From Section 5.5 we learned to be aware of the influence of heavy-
tailed latent variables as the limiting credit loss portfolio may degenerate. This suggests
the S-model as a simple model based on the fit of two quantities of interest, either matching
the first two moments, or, perhaps more advisable in the context of risk management and
VaR estimation, loss probability and correlation.

The multivariate t-model offers an improved fit by the shock variable W. We showed
that W can influence the standard deviation without having influence on the other pa-
rameters. As for small loss probabilities the standard deviation of the limiting credit loss
distribution decreases in v, we estimate v by matching the standard deviation. Conse-

quently, the multivariate t-model improves the fit of the S-model.

122



iid

Model 1: X,Y; ~ N(0,1) and W = 1:

a b 5 K Bx Uy

group A |.161 987 -3.73 37.8 .500 .500
B | .195 981 -2.58 25.3 .500 .500
C|.303 .953 -1.44 9.86 .500 .500

Model 2: X, Y; % N(0,1) and W £ /4/32:

a b s K Ix Uy

group A [.161 987 -13.0 37.8 .500 .500
B|.195 981 -4.60 253 .500 .500
C|.303 953 -1.78 9.86 .500 .500

Model 3: X ~ ¢t

a b S K Ux  Vy

group A |.159 .159 -10.1 37.8 77.5 2.05
B|.191 .191 -1.81 253 52.6 2.08
C|.289 .289 -.782 9.86 21.7 2.20

Y, ~t,, and W = 1:

KX vy

Model 4: X ~t, . Y; ~t,, and W < /x2:

a b S K Ix Uy

group A |.159 159 -10.2 378 77.5 2.05
B|.191 191 -188 253 526 2.08
C|.280 289 -679 9.86 21.7 2.20

Table 5.2: Parameter setting of the four models in the three groups (given by Table 5.1).
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VaR,, for group A, pioss = 0.0001 and p = 0.0258.

95% 99% 99.5% 99.9% 99.95%
2.18-107% 3.29-107* 3.82-107* 5.14-107* 5.76-10~*
1.54-107% 1.76-107* 1.46-102 248-107%2 5.12-1072
1.09-107* 1.12-107* 1.13-107* 1.15-107* 1.16-107*
298-10* 7.30-107* 1.06-107* 2.46-10"% 3.52-1073
1.91-10% 1.10-107% 4.73-10* 2.37-107%2 3.47-1072

model

R SURE ORI e o

VaR,, for group B, piess = 0.005 and p = 0.038.

p | 95% 99% 99.5% 99.9% 99.95%
model 1 | 0.0107 0.0152 0.0173 0.0221 0.0242

21 0.0254 0.108 0.155 0.265 0.308

31 0.00715 0.00871 0.00942 0.0113 0.0122

4 10.0143 0.0376 0.0568 0.151 0.226

B 10.0285 0.069 0.0886 0.135 0.155

VaR,, for group C, piess = 0.075 and p = 0.0921.

p | 95% 99% 99.5% 99.9% 99.95%
model 1 | 0.162 0.221 0.245 0.299 0.321

2 10.259 0.394 0.444 0.544 0.581

31 0.209 0.431 0.541 0.750 0.810

410.274 0.595 0.706 0.856 0.889

B 10.233 0.345 0.388 0.478 0.513

Table 5.3: VaR,, p = 95%, 99%, 99.5%, 99.9%, 99.95%, for the four models and the fitted
[-distribution in the three groups.
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group

A B C
Omax | 0.01 0.0705 0.263
oL

1[654-10°+£2-10% 3.00-103+£9-1075 4.50-102+£2-1073
21293-1034+9-107° 216-1072+7-10"* 872-1072+3-10°3
31338-1064+1-1077 1.18-1034+4-10"° 7.84-1072+3-10°3
41328-107441-107° 1.24-10724+4-107* 1.07-10" 1+ 4-1073
311611073 1.37-1072 7.71-1072

model

Table 5.4: Estimated standard deviations o7, with 95%CI of the estimator for the four models
in the three groups. The last line shows the standard deviation of the fitted S-model.

group
v | A B C

model 2 | 7.77 822 5.74
41265 372 0

Table 5.5: Estimated vy for model 2 and 4 with W ~ \ /uw /x2,,,-
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Table 5.6: VaR,, p = 95%, 99%, 99.5%, 99.9%, 99.95% for model 2, 4 and S-model in the three

groups.

VaR,, for group A, pioss = 0.0001, p = 0.0258 and o = 1.61 - 107,

b

95%

99%

99.5%

99.9%

99.95%

model 2
4
beta

6.91-107°
2.66 - 10~
1.91-107%

1.69-107°
9.62-10~*
1.10-1073

4.19-107?
1.65-107%
4.73-1073

1.88-1072
5.81-107°
2.37-1072

2.99- 1072
1.00-10°2
3.47-1072

VaR,, for group B, pioss = 0.005, p = 0.038 and o = 1.37 - 1072,

p | 95% 99% 99.5% 99.9% 99.95%
model 2 | 0.0249 0.0673 0.0906 0.151 0.180
41 0.0145 0.0400 0.0617 0.170 0.257
beta | 0.0285 0.0693 0.0886 0.135 0.155

VaR,, for group C, piess = 0.075, p = 0.0921 and o = 7.71 - 1072

p | 95% 99% 99.5% 99.9% 99.95%
model 2 | 0.234 0.352 0.398 0.495 0.531
41 0.209 0.432 0.542 0.750 0.810
beta | 0.233 0.345 0.388 0.478 0.513
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5.7 Proofs

Proof of Lemma 5.2.4: As in Definition 5.2.2 set L; 1= Ly« (x,v;)<s} With EL; = piogs,
Lm) = LN~ L;. We observe

V<ZL>:E (g) _(E(ZL)) 571)

= Z E(LZL]) - m2p12088 < m2ploss(1 - ploss)a (572)

ij=1
since E(L;L;) < E(L;) = pioss- Hence, Var L™ < piogs(1 — pross) for all m, and, obviously,
Var L™ = pioe(1 — ploss) holds for L; = L.

By Theorem 5.2.3 (independent of Lemma 5.2.4), we have lim,, .o, L™ *2 L and L
has bounded support (0,1), hence VarL = Var (limm_)OO L(m)) = lim,, o VarL(™m <

ploss(1 - ploss>-
In the extended CreditMetrics setting S; = W (aX +bY;) obviously we have for a = 1,

b=0that L; = L;, for all 7, j, hence L0 %2 L, therefore VarL = VarL; = Pioss(1 — Pross)
and for W = const € (0,00), a = 0, b = 1 we have Ly, Lo, ... i Ber(pioss), therefore
VarL = 0. O

Proof of Theorem 5.2.3: Given W and X, the indicator variables L; = 1(5. <4 are iid,

hence a conditional law of large numbers holds as m — oo with

1 — 1
m Z {8;<s} m E l{Ws (X,Y;)<s}
Jj=1 j=1
25 B (Lisy<s) (W, X) = P (S < s|W, X) = L.

Furthermore, by Assumption 5.2.5(iv), s*(+, ) is increasing and invertible with respect to

the second component, therefore

L=P(Ws"(X,Y)) < s|W, X) = P(Yy < y*(s/W, X)[W, X) < By (y*(s/W, X)).

For the proof of Theorem 5.2.10 we need the following Lemmas 5.7.1, 5.7.2 and 5.7.3.

Lemma 5.7.1 (Smith (1983, Theorem 10.3, Chapter 13)). Let u be a finite measure on
A C R™, B an open interval in R and h : A x B — R"™ defined by (w,t) — h(w,t).
Assume that the following holds.
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(i) For almost every t € B, the function h(-,t) is measurable on A and for some t it is

integrable.
(ii) For almost every w € A, the function h(w,-) is C' on B.

(iii) There is an integrable u : A — R such that

|Dah(w, t)| < u(w) for allt € B and almost all w € A.

Then the function [ h(w,-)du(w) is C' and satisfies

0
at/h(wtdu /D2 (w,t) dp(w).

Lemma 5.7.2. (i) Choose the setting of Assumption 5.2.8, then

fx(=z) ~ ’%Fx(—x) sz — o0 and fy(y) ~ ~Fy(y) asy — oo.

(i) Choose the setting of Assumption 5.2.9, then

fx (=) ~ pxpea™ ' Fx(—x), asz — oo, and

fry) ~ vy 'Fy(y), asy— oc.

Proof: In the setting of Assumption 5.2.8 just apply the Monotone Density Theorem,
e.g. Bingham et al. (1989, Theorem 1.7.2), since the densities fx and fy are ultimately
monotone. In the setting of Assumption 5.2.9 we have (the asymptotic behavior of fy is

shown similarly)
Fx(—z) = rx(x)exp (—puxz"(1+ex(x))).

We obtain

fx(=2) = Fx(=z)pxpsa™ <1 +ex(z) — rex (@) +2 o 7’%(93)) .

25) px o Tx ()

As 7'y is ultimately monotone, the monotone density theorem yields 'y (z)/rx(z) ~ ¢/x

as x — 00. Since py > 0, it follows that

1—;1,2 /
x 'y (x) O mrmo g

Hx 2 TX(ZB) 125925
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Considering z¢'y (z) choose x such that €'y (€) is monotone for all £ > z. Note that ex(x) =
o(1) and monotonicity of €’y implies €y (x) = o(1). Without loss of generality let ¢’y > 0

be decreasing. Hence there exists 6 > 0 such that

[e'e) oo 41 [e'e}
exlo) = [ sz Y [ S@dz Y aebs. 613)
r i=|z|+17" i=|z]+2
Therefore, ic'y (7) 2% 0, hence (by monotonicity of e’y ), xe'y () = o(1) holds. O

Lemma 5.7.3. Consider the setting of Assumption 5.2.5 and let qy be close to 1. If
Assumptions 5.2.8 or 5.2.9 are satisfied, then, for q € (qo,1), L has density

1 > ‘ - .
fule) = —m/o fx (@ (s/w, Fy(q))) Doz (s/w, Fy(q)) dFw (w).

Proof: From Theorem 5.2.3 we have
L= Fy (y(s/W, X)).

Let ¢ be close to 1; then L(W, X) is larger than ¢, if y*(s/W, X) is close to oo, since Y has
support unbounded to the right. By Assumption 5.2.5(iii) Fy is strictly increasing near
its right endpoint, hence the (continuous) inverse Fy~ exists. By independence of W and

X we have

P(L>q) =P (Fy (y"(s/W, X)) > q)
= Py (s/W,X) > Iy (q) = P (X < 2" (s/W, Fy (q)))

_ /OOO Fy (2 (s/w, Fi=(q))) dFyw (w), (5.7.4)

where the inequality sign is reversed since y*(s/W, X)) is decreasing in X. By Assumption
5.2.5(ili) X and Y; have ultimately monotone densities fy and fy, respectively.

To show existence and to derive an analytic representation of f(q), we set
hw,q) == Fx (2" (s/w, Iy (q))) (5.7.5)

and show that h satisfies the conditions of Lemma 5.7.1. Since z*(-,+) is continuous we
have that h(-,t) is measurable on (0,00) and, since |h| < 1, it is also integrable with
respect to Fy for some ¢ € (0,1). Therefore Lemma 5.7.1(i) is applies. Next we have to
show that h(w,-) : (g0, 1) — (0,1) is C* on (go, 1) (as we consider ¢ — 1 we do not need
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continuity of h for all ¢ € (0,1)). We choose gy large enough such that Fy~ is C' and
denote y := Fy(q). To show that Fx(z*(s/w,y)) is C! first note that z*(s/w,-) is C! and
decreasing (by Assumption 5.2.5(iv)). Therefore, lim, .., 2*(s/w,y) = ¢ > —oo and, by
Assumption 5.2.8(iii), ¢ < 0. Assuming ¢ > —oo implies y*(s/w,c — 1) = oo ¢ Y. This
contradicts Assumption 5.2.5(iii) as c—1 € X. Therefore lim,_, 2*(s/w,y) = —o0, hence
h(w,-) is C* and Lemma 5.7.1 applies.

To show that Lemma 5.7.1(iii) holds observe that

Dyh(w, q) = Dox™(s/w, Fy(q)) fx (" (s/w, 5 (q)))/ fy (Fy(q)),

as x*(s/-,y) is increasing. Define yo := Iy (qo), y := Fy (q), and x,,, := 2*(s/w,y) and
choose the setting of Assumption 5.2.8. Then

_ fx (@ (s/w, Fy(q))) o (s/w. e _ Sx (Tuy) .
D, ) = PSR | Dy (o, i) = ) D |
- yD2$w,y |xw,y|fX(xw,y) Fy(y) FX(xw,y)
B ' T,y FX(zw,y) ny(y) FY(y) . (576)

By Lemma 5.7.2(i) we have fy(y) ~ vy /yFy(y) and therefore Fy(y)/(yfy(y)) < 1/vy +
ey for all y > yo and an ey > 0. Similarly, |zy.,|fx(Zw,y)/Fx(Twy) — px as y — oo.
As z,,, is increasing in w, |Tooy|fx(Tooy)/Fx(Tooy) < px +ex for all y > yo and an
ex > 0 implies |2y 4| fx(Twy)/Fx(2ywy) < px +ex for all y > yo, an ex > 0 and for all
w € (0,00). By Assumption 5.2.5(iv),

Fx(xy )
limM<hm_—<oo,

y=eo Fy(y) —vme Fy(y)

L.€. SUD4e(0,00), ye(yo,00) Fx(2w,y)/Fy(y) = C < co. Note that there exists a function u(w),
integrable with respect to Fy, such that yDowy, /2y, < u(w) for all y (Assumption
5.2.8(iii)). Hence |Dsh(w,q)| is dominated by an integrable function u(w) and Lemma
5.7.1(iii) is satisfied. Showing that there is an integrable upper bound u(w) such that
|Doh(w, q)| < u(w) Yq € (qo,1) in the setting of Assumption 5.2.9 is proved similarly
using the asymptotic behavior of fy and fy, given in Lemma 5.7.2(ii).

Therefore, by Lemma 5.7.1, we can interchange integration and differentiation and get
the result. O

Proof of Theorem 5.2.10: By Lemma 5.7.3, L has density fr. If we observe lim,_,;(1—
0)f.(q)/Fr(q) = k then we know from Embrechts, Kliippelberg, and Mikosch (1997,
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Corollary 3.3.13) that L € DA(V,). Substituting y = Fy (q) (hence 1 — ¢ = Fy(y)), we

obtain

i L= @/2(9)
—1  Fp(q)
T ) Jo" —fx (@ (s/w, Fy (q))) Doz (s/w, Fy (q)) dFw(w)
4—1 fr (B () [y~ Fx (z (s/w,y)) dFw(w)

~ lim Jo —Fy W)/ fr(y)fx (@ (s/w,y)) Doz (s/w, y) dFyy (w)

y—00 fooo Fx (z (s/w,y)) dFw (w) (5.7.7)

Now we consider the setting of Assumption 5.2.8 and denote the integrands of (5.7.7) by

W (w,y) = —Fyy)/fyW)fx (@ (s/w,y)) Dox* (s/w,y) and
hw,y) = Fx(z"(s/w,y)).

Choose w € (0, 00) fixed, then Lemma 5.7.2(i) yields

lim b (w,y) — BX i Fx (2% (s/w,y)) yDox* (s/w,y) /" (s/w, y)
v hlwyy) vy v Fx (@ (s/0.9))

By Assumption 5.2.8(iii) we have lim, .., yDoz*(s/w,y)/x*(s/w,y) = ¢, hence

i 0 y) e

y—eo h(w>y) Vy

)

for almost every w € (0, 00). Similarly to (5.7.6), h*(w,y) is dominated by an integrable
function u(w) for all ¢ € (qo,1). Therefore we can apply the Dominated Convergence

Theorem and with (5.7.7) we get

Hence, L € DA(W¢py /iy )
In the setting of Assumption 5.2.9 the same result is obtained similarly using the

asymptotic behavior of fy and fy given in Lemma 5.7.2(ii). O

Proof of Theorem 5.2.11: We have X ~ ¢, and Y; ~t, . The ¢, density f, is given

,’L’2 —(V+1)/2 B C |x|_y_1 1 1 —(l/+1)/2 C B F((V+ 1)/2>
- Yl (v/2)



We immediately obtain that for x > 0 the ¢, distribution function F), is bounded by

—(v+1)/2 —(v+1)/2
[ (v):= &x_” <% + i) _ O (:)3_2/(”+1) + l:):2_2/(”“))

=v v 22 v v
< F(-z)=F,(z) < 7”9:_” <;) =: f, (). (5.7.8)

Note that Lj(:ﬂ) ~ f,(x) as ¥ — oo. To get the asymptotic behavior of F,, we show that
f(q) ~ f, (q) as ¢ — 0. First, we obtain

Y

—

Straightforward calculation yields

U 2/v
f(f @) = q <1+ <5) qz/”) ~gq, asq— 0,

hence

[~ T, (@) ~F, (q) asq—0. (5.7.10)

Note that *(s/w,y) = s/(aw) — yb/a and Fy(q) = Fy (1 — q), therefore

—px
(5 pe -1)/2 S b ijoy | (v—1)/(20y) ~1/v
Py (o (2 (@) ) ~ Gt _ 5 Do 1) m) (1 gy
x|z w v () px Hx aw_l_a vy VY ( q)

—px
_ v (hx—1)/2 S 1/v b /iy oy —1)/(2v
L (1= gyl e (_@(1 ) D 1 Y>) ‘

Note that this asymptotic behavior holds uniformly for all w € (0, 00), since x*(s/w,y)
is decreasing in w and the asymptotic behavior also holds for w = co. Applying (5.7.4)
yields

P(L>q) = /OOO Fy (v (2.7 (@) dFww) (5.7.11)

_ 9 b X
~ (1—(1)“’(/”‘”0#;{#&?)‘ 1)/2/ (—i(l—q)l/”y + _Cl}}/,VYV(VY—l)/@VY)) dFW(w).
0 aw a

We observe that

00, px < Vly,

lim M = C lim (y)" "X =

C7 Hx = Vy,

07 Ux > Vy,

for some constant C' < oo, i.e. the limit is finite, if X is not heavier-tailed than Y;. Since

ix > vy, the upper limit is finite, hence Assumption 5.2.5(iv) is satisfied. We observe
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that the ¢-distribution falls into the setting of Assumption 5.2.8(i) and (ii). Considering
Assumption 5.2.8(iii) we obtain yDyx*(s/w,y)/z*(s/w,y) =1/ (1 — s/(bwy)) 1 for all
w pointwise and 1 is an integrable upper bound. Hence we can apply Theorem 5.2.10 and

obtain k = ux/vy. Comparing this to (5.7.11) gives the desired result. O

For the proof of Theorem 5.2.12 we need the following lemma.

Lemma 5.7.4. Let ® and ¢ denote the distribution function and density of the standard
normal distribution, respectively. Taking 0 < C < 1, then for x > /1/(1 = C),

Co(x)/x < ®(—2) < ¢(z)/z and Cé(x)/z < ®(x) < ¢(z)/2.
Moreover, Mill’s Ratio holds: ®(—x) = ®(x) ~ ¢(x)/x as v — oo.

Proof: Génssler and Stute (1977, Lemma 1.19.2) shows (1/x —1/23%)¢(x) < ®(—x)
é(x)/x for all z > 0. Then, 1/z — 1/2* > C/z holds for x > 0 if and only if =
V1/(1 — C). The limit relation follows from this as well.

R AVARVAN

Proof of Theorem 5.2.12: We have X,Y; ~ P N(0,1), S; = W(aX +bY;). Let ® and ¢

be the distribution function and density of the standard normal distribution, respectively.
Applying (5.7.4) yields

P(L >q) = /000 P (s/(aw) — @ (q)b/a) dFy (w). (5.7.12)

Let € € (0,1) and # < —/1/e, then, by Lemma 5.7.4,

(1 =e)p(x)/]x] < (z) < o(x)/|x]. (5.7.13)
The integrand of (5.7.12) increases in w, hence, for ®~(g)b/a > /1/¢,
I8 /o) ~ 1) (o) -

Jo~ ¢ (s/(aw) — =Yg )b/a)/\S/(aw) — &~ (g)b/al dFw (w)

Therefore, as ¢ — 1,

PIL>0) = [ (s/(aw) = 0 (@)b/a) dFir(w)
~ /Ooogb (s/(aw) - (ID_l(q)b/a) / ‘s/(aw) - q)_l(q)b/a} dFy (w)
-1 b?/a®  poo 2 ~1 —1(,\\b%/a*
S R N L

2aw aw s b

—<1>—1<q>)

aw a
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Note that @ 1(q) = ® 1(1 —q). Then, again by Lemma 5.7.4, ¢ (27 1(q)) /27! (q) ~ 1 —q,
as ¢ — 1.

By Mill’s Ratio, Lemma 5.7.2(ii) holds, hence X,Y; (G N(0,1) fall into the setting of
Assumption 5.2.9(i) and (ii) with px = vy = 1/2. We have ((w,y) = (b/a)(s/(aw) —
yb/a)/y and lim, ., ¢(w,y) = b*/a*. Note that [((w,y)] = c1/(wy) + 2 < ¢1/(wyo) + ¢2
for some ¢1,¢ < 0o and all y > yo. As E(1/W) < o0, (¢1/(wyp) + ¢2) is an integrable

upper bound, hence Assumption 5.2.9(iii) is satisfied. From Lemma 5.7.4 we obtain

lim —FX(_x 0.9) = lim <I>(_yb/a)
y—o0  Fy(y) y=oo  O(y)
0, b<a,
— lim ex y_2 1-— ﬁ = b, b=
N by—>ooe P 2 a? =4 a/b b=a
0, b> a.

Hence, Assumption 5.2.5(iv) is satisfied and, obviously, also Assumptions 5.2.5(i)-(iii) and
(v) are. Therefore, by Theorem 5.2.3, P(L > q) = (1—¢)"/* £(1/(1—q)), where L satisfies

for ¢ — 1 the relation

c( ! )N/Oooexp (— * +Sb®_1(q)) (q)_l(g))bQ/GQ dFy(w).  (5.7.14)

1—gq 2aw a?w s
2o
aw a

Choose ¢ > 1 fixed and = > (y/¢/(\/c — 1))1/2, then

felz) = 20(2) Jo < B(2) < la)/z =: fi(x).

Therefore, since ®(z) is decreasing, ' (q) < ® ' (q) < fi'(q), ¢ < ¢ < 1, and some .

Taking logarithm, we want a solution of In f.(x) = In(1 — q), i.e.
1, 1
57 +Inz+ 5 In(2mc) = —In(1 — q).

By asymptotic expansion, similarly to Resnick (1987, Section 1.5, Example 2) we obtain

f—g) = Vo2l(i—g) - 1““21%4“) vo(1/v Tl —q).

(5.7.15)

Since f7H(1 —q) ~ fi (1 —q),as ¢ — 1, f{'(1 —¢q) ~ @ (1 — q) holds. Note that
[0 =) = 1710 = q) = 0 (1/y/=TalT=g)) “=> 0, hence also exp (— /(1= q)) ~
exp (—6_1(1 — q)) holds.
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Substituting ®~!(¢) in (5.7.14) by (5.7.15), we obtain the desired result. O

Proof of Theorem 5.4.1: From (5.7.1) we have

Var Z L, = 2 Z E(L;L;) + mpross(1 — mpioss) (5.7.16)
=1 i

where, since F,(s) := P(W,s*(X,Y;) < 5) = pross and s < 0,

E(L2L3> =P (WIIS*(X7 Y;) S Flj_(ploss)u WVS*(X, Y}) S Flj_(ploss)) .

As mentioned in the introduction, (SY,SY) := (W,s*(X,Y;), W,s*(X,Y;)) has a bivariate

7 J
t,~distribution with correlation p. We apply now a dependence measure, called lower tail-

dependence coefficient, defined by

A= lim P (SY < ES(p)|SY < F (p)) -

p—0

Hult and Lindskog (2002) observed, that in case of a multivariate ¢,-distribution and with

p = Corr(S?,S%)
w/2 w/2
/ cos”(v)dv | / / cos”(v)dv | .
arccos((1+p)/2) 0

i Mg

A=Av) = (
Kostadinov (2005, Lemma 2.2) shows that A(v) is strictly decreasing in v. Let vy < vy,
hence A(v1) — A(vz) =: € > 0. Since P (S)" < F; (p)[S]" < F; (p)) — Mwi), i = 1,2,
there exists p. > 0 such that for all p < p.

Aw) =P Sy < Fr(p)ISr < FD(p) < 5. i=1.2
Hence, for all p < p.,
P(Sy < Fy (p)ISi* < Fy(p) > P(Sp<F,(p)lS* <F;,(p).

Since

P (SY < Fy (pross) |V < F (pross))

1 1
- P P (S;j S Flj_(ploss)7 S;j S Flj_(ploss)) = n E(LZLJ),
loss 088
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also E(L;L;) is decreasing in v, if pig is sufficiently small. Applying (5.7.16), Var (L(m))

is decreasing in v, hence VarL is. O

Proof of Corollary 5.5.1: We can rewrite

L;\ = ]-min{aX,b)/}}Ss = ]-{aXSS}U{b}GSs}

= lpyes + (1= 1oy <o) Lax<sy -

Hence
1 — 1 — 1 —
= d L= p” Z Loy <o + Lax<s — Z (1= 1py<s)
]: jzl ]:1
1 — 1 —
= EZ i+ Hax<sy Zl(l_Bj>’
: ‘]:
where
By, Bs,... % Ber(Fx(s/b)) and

iid

(]_—Bl),(]_—Bg), ~ Ber(l—FX (S/b))

are iid Bernoulli sequences. Therefore, for m — oo, LU converges almost surely to
Fx (s/b) + (1 = Fx (s/b)) L{ax<s}- 0

Proof of Theorem 5.5.2:
(i): X,Y1 1, are regularly varying on R~ i.e. F} (—) € R_,. Hence

P(aX +0bY) <s)~ P(min{aX,bY1} <s), s— —o0,

see for instance Example 3.2 in combination with Goldie and Kliippelberg (1998, Def-
inition 1.1). For convenience we define A := aX and B := bY;. Then, A and B are
independent in R_,, satisfying P(A > s)/P(B > s) =5 ¢ € (0,00) and P(A < s)/P(B <

s) == ¢ € (0,00). Let Fy and Fp denote the dfs of A and B, respectively. Writing

r Ay :=max{z,y} and z Vy := max{x,y} we have

P(Ly=1|L;=1)=P(AANB< —s|A+ B < —s)

P(AVvB>s, A+ B>s)
P(A+ B >s)

= P(AVB>s|A+B>s) =

P(AvB<s, A+ B>s)
P(A+B>s) '

(5.7.17)
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For illustration purposes see Figure 5.5. The set {(z,y) € R?*: aVy > s, v +y > s} is
the hatched area in Figure 5.5 above the lines {x +y = s} and {z Vy = s}; the set
A= {(z,y): xVy<s, x+y> s}isthe triangle with edges (s,0), (s, s) and (0, s). Let
| (z,9)|l1 := |=| + |y| denote the 1-norm, then for any € > 0 it holds that

A={(z,y): cVy<s, z+y>s}

1
c {wase<lal > s}
U{(z,y): (1—¢g)s<z<s, 0<y<es}
U{(z,y): 0<az<es, (1—¢e)s<y<s}
= Sl U 52 U Sg, (5718)
where S; can be identified in Figure 5.5 as the set between the two lines through the

points (0,0), (s,es) and (0,0), (s, s) and above the line {x +y = s}; the sets Sy and S

represent in the figure the two small rectangles.

zVy=s £s,5)
©.5) 55)

(0,(1—¢)s) (€5, (1 —¢)s)

rt+y=s

1—¢)s,e8)

(s,e9)

(0,0) (1—-2¢)s,0) (s,0)

zVy=s

Figure 5.5: Tllustration of (5.7.17) and (5.7.18).

By Resnick (2004, section 4.1 and 4.3), the vector (A, B) is bivariate regularly varying.
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More precisely, let || - || be any norm on R?, then

PWABMZLMJ%WABWG)tgw)
P (|l(A, B)| > t) ’

© is a measure on the unit simplex & = {s € R? : ||s|| = 1} called spectral measure. Since
A and B are independent, © is concentrated on (1,0), (—1,0), (0,1) and (0, —1). Note
that, using the 1-norm, symmetry of A and B yields
P4, Bl >s) _ _ P(I(A B, >s)
P(A+ B > s) P(A+B>s, A B>0)

Hence, for any € > 0, we have

=4.

P(A+B>s,e<B/A<1/e)

P((A,B)eSi|A+B>s)= PATE>s) (5.7.19)
_ P(A,B>0,e<B/A<1/e (A B)|, >s)P(|(A B), >s)
N P(l[(A, B)[l, > s) P(A+B>s)
P(A,B>0,e<B/A<1/e, (A, B)|l; >$) s—oc
N P4 B, > 5) e
since S := {s/||s|]|1 : s € Si} has no points on the axes. Considering rectangle Sy we
obtain as s — oo using again P(A+ B > s) ~ P(AV B > s)
P((AB) S, |A+B>s) < 1= 6)SP<<jf;>fg <B<es)
P(1—-¢e)s<A<s)P(0< B<es)
- P(AV B> s)
_ Fals) = Fa((L —¢)s)) (FB(ES_) — F'5(0))
Fa(s) + Fp(s) = Fa(s)Fp(s)
_ s =) La((L —g)s) — La(s)) (5 — s7"e"Li(es))
s (La(s) + Lp(s)) — 572 La(s)Lp(s)
1 _y Ve
72(1 s ((1 —e) vV — 1) < i+o) (5.7.20)

The last convergence holds since Fa(s) = 1 — (s)7"La(s), Fp(s) = 1 — (s)7"Lp(s),

Lp(s)/La(s) — cand L4, Lp € Ro; (1 —e)™¥ — 1 < 2ve holds for € small enough since
(1—¢)7” =1~ vease— 0. Combining (5.7.19) and (5.7.20), (5.7.18) yields

lim P(AvB<s, A+ B>s)
1
5—00 P(A+ B > s)

< Ke, Ve>0,

for some constant 0 < K < oo. Hence the latter limit equals 0 and applying this to
(5.7.17) yields

P(Li=1|L}=1)"=="1.
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Therefore, for all m and any g € {0,1/m,2/m, ..., 1}, we conclude

P (6 =it ) 1

(ii): Now we consider the limiting case m — oo. Recall that
LE Py (y(s,X)) = F, (s — aX)/b)

and from Corollary 5.5.1 we know that L" € {F}, (s/b), 1} holds. Further, L" = F, (s/b)
if s —aX < 0. Define B.(z) := (x — e,x + ¢), then

P (L€ B.(F, (s/b))|L" = F, (s/b)) (5.7.21)
> P(s—aX <bF; (F, (s/b)(1+¢))|s—aX <0)
—P (s —aX <bF; (F, (s/b)(1—¢)) } s—aX <0).

By (5.7.9) and (5.7.10) we have F, (qc) ~ F;(¢)c™"/" as ¢ — 0, hence
bF (F, (s/b) (1£e)) ~ (1£e)™s ass— —oo.

From s — aX < (1 +¢)"/s follows aX > (1 — (14¢)7"¥)s. Since 1 — (1 — &)~ < 0,

we conclude (as s — —0o0)

P(s—aX <bF (F, (s/b)(1—¢))|s—aX <0)
~ P(aX>(1-(1-¢2)")slaX >s) — 0.

Since 1 — (14 ¢)~Y” > 0, we conclude (as s — —o0)

P (s—aX <bF (F, (s/b)(1+¢))|s—aX <0)
~ P(aX > (1—(1+E)_1/V)S‘QX>S) — 1.

Therefore, (5.7.21) converges to 1 as s — —oo for all € > 0.

We have L =1 if aX < s, hence, similarly to (5.7.21),

P(L>1—¢|L"=1)=P(aX <s—bF (1 —¢)|aX <5s)

E, ((s—=bF;(1—¢)) /a)
F, (s/a)

From (5.7.8) we know F (—x) ~ Cz™" as x — oo for some constant C. Hence, P(L >

l—¢|L"=1)—1ass— —oo forall e > 0. O
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Besser ist aufhoren,
denn uberfillen.

Die Klinge immerfort gescharft,
bleibt nicht lange Klinge.

Der Saal mit Gold und Jade vollgestopft,
1st nicht vor Raubern zu bewahren.

Glanz und Ehren mit Hochmut gepaart,
ziehn sich selbst ins Verderben.

Zuruckziehn nach getanem Werk.
so st das Dau des Himmels.
LAOTSE



