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Abstract

It is well known that the success of an insurance company depends not only on its
insurance business, but also on how well the company invests its reserve. The risk such a
company faces arises both from potential losses on the financial market and from unex-
pectedly high insurance claims. Consequently, an integrated risk model incorporating the
dynamics of the financial markets and the insurance portfolio as well as the interaction
between them is needed.

We consider a stochastic model for the wealth of an insurance company which has the
possibility to invest into a risky and a riskless asset under a constant mix strategy. The
total insurance claim amount is modeled by a compound Poisson process and the price
of the risky asset follows a general exponential Lévy process. We derive the integrated
risk process and calculate certain quantities as characteristic functions and moments. We
investigate the distribution of the integrated risk process over a fixed time period. We
show that this distribution satisfies a partial integro-differential equation and provide a
numerical solution to it.

Our main goal is a stable assessment of the capital reserve needed to prevent a negative
outcome of the integrated risk process with a high probability. Following long tradition in
insurance, we work with discounted losses and investigate the corresponding discounted
net loss process. We provide conditions for its stationarity and derive the left and the
right tail behaviour of the resulting stationary distribution. This opens up a way to
define as a risk measure the Value-at-Risk in the framework of our integrated model. Our
results indicate that the model carries a high risk, which may originate either from large
insurance claims or from the risky investment. Furthermore, we provide an approximation
of the optimal investment strategy, which maximizes the expected wealth of the insurance
company under a risk constraint on the Value-at-Risk.
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Chapter 1

Introduction

1.1 Risk theory

Collective risk theory, as a part of insurance mathematics, has developed over a long
period of time but mainly has its roots at the beginning of the 20th century. It was
inaugurated by Filip Lundberg [45] who in his thesis of 1903 introduced the collective risk
model. Since then Lundberg’s model has attracted a lot of attention by mathematicians
and actuaries. About 50 years later Harold Cramér [11] incorporated Lundberg’s ideas
into the theory of stochastic processes.

In the insurance models resulting from these and other contributions, the occurrence
of the claims is described by a point process and the amount of money to be paid by the
company at each claim by a sequence of random variables. The company receives a certain
amount of premium to cover its liability. The difference between the premium income
and the average cost of the claims is called safety loading. Furthermore, the company is
assumed to have a certain initial capital at its disposal.

The classical risk model, referred often to as the Cramér-Lundberg model can be de-
scribed roughly as follows:

1. The point process counting the claims is a Poisson process.

2. The claim sizes are described by a sequence of independent and identically distrib-
uted random variables.

3. The point process (1) and the random variables (2) are independent.

4. The premiums are described by a constant and deterministic premium rate.

One important problem in collective risk theory is to investigate the ”infinite time ruin
probability”, i.e. the probability that the insurance risk process ever becomes negative.
The famous Cramér-Lundberg Theorem for small claims states that the infinite time ruin
probability can be bounded from above by an exponential function of the initial capital
with an explicitly given exponent, the so called Lundberg exponent. Important also is
the case when the claims have heavier than exponential tail. In such models, the ruin
is typically driven by a single large claim, and the infinite time ruin probability can be

1



2 CHAPTER 1. INTRODUCTION

approximated using the tail behaviour of the claim sizes, see e.g. Embrechts, Klüppelberg
and Mikosch [15], Section 1.3.

1.2 Portfolio theory

For over 40 years, the modern portfolio theory (MPT) has been an important portfolio
management tool commonly used by the financial institutions. In one sentence, MPT
can be described as a set of quantitative methods, designed to help an investor to find
the optimal trade-off between a high expected value of the portfolio’s returns and a con-
straint on the portfolio’s risk. The earliest approach to this issue was first introduced by
Markowitz [47], who received for his work also the Nobel prize in economic sciences in
1990. The Markowitz notion of risk is indeed quite abstract; for the sake of convenience
he defined the risk mathematically as the variance of the portfolio’s return. The resulting
mean-variance portfolio optimization approach is still popular nowadays at the risk de-
partments of the banks, since it can be applied with a basic knowledge on the underlying
stochastic models.

The most popular stochastic model describing the development of a financial portfolio
is the classical Black-Scholes model (1973). In this model, the investor has the opportunity
to invest in a riskless asset (bond) and in (several) risky asset(s) (stock(s)). The following
further assumptions are often made:

1. The price of the stock is modeled by a geometric Brownian motion and the bond
has a constant interest rate.

2. The portfolio is self-financing, i.e. the investor has a certain initial capital and does
not receive any external capital outside of the portfolio.

3. The investor follows the so called constant mix strategy. Under such a strategy the
investor holds, at each instant of time, a constant fraction of the wealth in the stock
and the rest in the bond.

4. Shortselling is not allowed.

Typically the expected price of the risky asset is higher than the corresponding price
of the bond. Therefore, the investor has to look for a trade-off between the (potentially
more profitable) risky investment in stocks and the less profitable, but riskless investment
in the bond, i.e. to optimize the portfolio according to some risk-aversion criteria. A
classical risk-aversion criteria is to set an upper bound on the portfolio’s variance, see
e.g. Korn [40]. Then the investor may find an investment strategy which maximizes the
expected return of the portfolio subject to this risk constraint. Another opportunity, often
used in contemporary risk management, is to use a downside risk measure like Value-
at-Risk, see e.g. Fishburn [20]. In the framework of the classical Black-Scholes model,
however, the mean-variance and the mean-Value-at-Risk optimization problems lead to
identical results.
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1.3 Integrated risk management

It is well known that the success of an insurance company depends both on the insurance
business and on its investment skills. Consequently, one important generalization is to
consider a model in which the insurance company, additionally to the linear premium in-
come, has the opportunity to invest its reserve. Such generalizations have been considered
since the 90’s of the last century and have gained more and more interest in the last few
years. The main object of interest, as in classical risk theory, remains the infinite time
ruin probability.

One possibility is to consider a model in which the insurer invests its reserve into a
bond with a constant interest rate. Such a model is considered for example by Klüppel-
berg and Stadtmüller [38]. They show that, when the claim distribution has regularly
varying tail, the ruin probability decays with the same rate as the tail of the claims, for
large initial capital. Asmussen [1] derives the same result in the case when the claim size
distribution belongs to the more general set of subexponential distributions. In the case
of exponentially fast decreasing tail of the claim size distribution, Sund and Teugels [58]
derive bounds for the ruin probability and asymptotics for large initial capital.

A lot of attention attracts the more complicated generalization – allowing for invest-
ment in a risky asset, usually modeled by a geometric Brownian motion. In this setting
Frolova, Kabanov and Pergamenchtchikov [21] show that for an insurer, who invests a
constant fraction of the wealth in the risky asset and when the claims are exponentially
distributed, then depending on the model parameters the ruin probability is either 1 for all
initial capital reserves or decreases asymptotically for large initial capital like a negative
power function. Gjessing and Paulsen [53] and Kalashnikov and Norberg [35] generalize
this result for light-tailed claim size distributions (a nice survey can be found also in
Paulsen [51]). The case of regularly varying claim size distribution is analysed by Gaier
and Grandits [23].

One frequently considered optimization problem in the framework of the integrated risk
models is: ”what is the minimal ruin probability that the insurer can obtain”. Browne [7]
investigates first such a problem, but under the assumption that the insurance risk process
follows a Brownian motion (the so called ’diffusion approximation’). In this simpler set-
ting, the investment strategy which minimizes the ruin probability consists in holding a
constant amount of wealth in the risky asset, and the corresponding minimal ruin prob-
ability is given by an exponential function. Hipp and Plum [31] investigate the general
problem with the compound Poisson process for an insurance risk model and the geometric
Brownian motion for a risky asset model. They derive the corresponding Hamilton-Jacobi-
Belman (HJB) equation for the maximal survival probability. This nonlinear second order
integro-differential equation is in general hard to solve. Hipp and Plum [31] present a spe-
cial example with exponentially distributed claims, where the solution can be explicitly
calculated. Remarkably, in this example the solution decreases as an exponential function
of the initial capital, but with a greater exponent than the classical Lundberg exponent
without investment.

Gaier, Grandits and Schachermayer [24] show that in the case of exponential claims
the minimal ruin probability for an insurer with a risky investment possibility can be
bounded from above and from below by an exponential function with a greater exponent
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than the classical Lundberg exponent without investment. Further, they show that there
exists an investment strategy, which is holding a fixed amount of the wealth invested
in the risky asset, such that the corresponding ruin probability is between the derived
bounds. This strategy can be calculated explicitly. In the case of regularly varying claim
size distribution Gaier and Grandits [23] show that the minimal ruin probability is also a
regularly varying function of the initial capital, with the same index as that of the claims.

With respect to the investment model, an important issue is whether the geometric
Brownian motion appropriately describes the development of the prices of the risky assets.
Many empirical studies of the stock markets indicate that the log returns of various
risky assets exhibit a number of features which contradict the normality assumption, like
skewness and heavy tails. In fact the empirical distribution of real data is often leptokurtic,
which means that there are more values close to the mean than a normal law would suggest
and at the same time a lot of extremes, indicating semi-heavy tails (see e.g. Eberlein and
Keller [13]). In other words, the prices of many stocks have sudden downward (or upward)
jumps, which cannot be explained by the continuous geometric Brownian motion.

One way to handle this problem is to model the price of the risky asset by a more
general exponential Lévy process with jumps. In the context of investment portfolio op-
timization, this approach has been applied by Emmer and Klüppelberg [16]. The Lévy
processes retain part of the flexibility of their special case – the Brownian motion. This
makes it possible to find explicit solutions to the mean-variance portfolio optimization
problem and semi-explicit solutions to the mean-Value-at-Risk problem in Emmer and
Klüppelberg [16]. In the context of integrated risk models, Paulsen [52] investigates the
asymptotic behaviour for large initial capital of the infinite time ruin probability when the
investment process is a general exponential Lévy process. The results indicate that the
ruin probability behaves like a Pareto function of the (large) initial capital. The Pareto
exponent depends on the interaction between the insurance claims and the investment
process.

In this thesis we consider an integrated risk model. The insurerance company invests
its reserve both in a bond and in a stock under a constant mix strategy. The risky asset
is modeled by a general exponential Lévy process and the bond brings a constant interest
rate. In contrast to e.g. Hipp and Plum [31], our integrated portfolio is self-financing and
short-selling is not allowed. We call the resulting model for the wealth of the insurance
company Integrated Risk Process (IRP).

We derive the characteristic function and the moments of the IRP and investigate its
distribution over a fixed time period. We show that this distribution satisfies a partial
integro-differential equation and provide a numerical solution to it.

Our main goal is a stable assessment of the capital reserve needed to prevent a neg-
ative outcome of the IRP with a high probability. Following long tradition in insurance,
we work with discounted losses and investigate the corresponding discounted net loss
process. We provide conditions for its stationarity and derive the left and the right tail
behaviour of the resulting stationary distribution. This opens up a way to define the risk
measure Value-at-Risk in the framework of our integrated model. Our results indicate
that the model carries a high risk (heavy tails of the stationary distribution), which may
originate either from large insurance claims or from the risky investment. Furthermore,
we provide an approximation of the optimal investment strategy, which maximizes the
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expected wealth of the insurance company under a risk constraint on the Value-at-Risk.
We conclude with some illustrating examples.

The outline of the thesis is as follows. We start with some preliminary results on
Lévy processes, stochastic calculus and stochastic recurrence equations in Chapter 2. In
Chapter 3 we introduce the investment process and the integrated risk process and derive
basic properties like characteritic functions and moments. In Chapter 4 we derive a partial
integro-differential equation for the integrated risk process over a fixed time period and we
solve it numerically. In Chapter 5 we define the discounted net loss process. We investigate
its properties and derive conditions for its stationarity. A key result in this chapter is stated
in Section 5.3, where we show that the stationary distribution of the discounted net loss
process has a Pareto-like tail behaviour. These theoretical results enable the definition
and the approximation of the risk measure Value-at-Risk (VaR) which we present in
Chapter 6. We indicate the application towards optimal investment and investigate the
impact of the different model regimes on the resulting optimal strategy.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

In this chapter we introduce the most important preliminary results which we are going to
apply in the sequel. The covered topics are Lévy processes, stochastic calculus, stochastic
recurrence equations and some basics from extreme value theory.

Throughout this thesis we use the following notation. By N0 we denote the set of
the natural numbers plus the zero and R+ is the set of the positive real numbers. For
a ∈ R we set a+ = max(0, a) and a− = max(0, −a); we also define log+ a = max(0, log a)

for a > 0. Furthermore, we write
∫ b

a
:=

∫
(a,b]

for a < b, a, b ∈ R. We also denote

dxe = min {n ∈ N : x ≤ n} for x > 0 and recall that for x > y we estimate x − y − 1 <
dxe − dye < x− y + 1.

2.1 Lévy processes

Our aim in this section is to introduce the class of Lévy processes and to state some of
their basic properties which will be used in the sequel. For general Lévy process theory
we refer to the monographs by Bertoin [4], Cont and Tankov [10] or Sato [56].

Throughout this thesis let (Ω, F , (Ft)t≥0, P ) be a filtered complete probability space
on which all stochastic quantities are defined. The filtration (Ft)t≥0 is right continuous
and all stochastic processes to be defined in this thesis are adapted. We start with the
concept of infinite divisibility of a distribution function (df) or of a random variable (rv).
For a df F on [0,∞) we define the n-fold convolution F ∗n as

F ∗n(x) =

∫ x

0

F ∗(n−1)(x− u) dF (u) , n ≥ 1 ,

where F ∗0(x) = 1 for x ≥ 0 and 0 elsewhere. Then the notion of infinite divisibility is as
follows.

Definition 2.1.1. A df F or a real-valued rv X with df F is said to be infinitely divisible,
if for each n ∈ N there is a probability distribution Fn such that F = F ∗nn or equivalently

X
d
= X1+· · ·+Xn, where (Xj)

n
j=1 are independent and identically distributed (iid) random

variables (rv’s) with common df Fn. �

7



8 CHAPTER 2. PRELIMINARIES

Here ”
d
=” means equality in distribution. Assume now that X is an infinitely divisible

rv. Then there is a unique continuous function Ψ : R → C such that Ψ(0) = 0 and for
s ∈ R,

E
[
eisX

]
= eΨ(s) ,

see for example Sato [56], Section 7. According to the Lévy-Khintchine formula, see e.g.
Theorem 8.1 in Sato [56], a continuous function Ψ is the logarithm of the characteristic
function (chf) of an infinitely divisible rv on the real line if and only if it may be written
in the form

Ψ(s) = isγ − σ2

2
s2 +

∫ +∞

−∞

(
eisx − 1− isx1{|x|≤1}

)
ν(dx) , (2.1)

where s ∈ R, γ ∈ R and σ ≥ 0. Here ν is a measure on R \ {0} satisfying ν({0}) = 0 and∫
R
(x2 ∧ 1)ν(dx) < ∞ ,

where (a ∧ b) = min(a, b). The measure ν is called Lévy measure. Note that the term
corresponding to x1{|x|≤1} in (2.1) represents centering without which the integral may
not converge.

It is then possible to construct a strong Markov process L = (L(t))t≥0 with stationary
independent increments such that L(0) = 0 almost surely (a.s.) and for t ≥ 0, s ∈ R,

E
[
eisL(t)

]
= etΨ(s) .

The process (L(t))t≥0 is called Lévy process. The function Ψ is called characteristic expo-
nent and the triplet (γ, σ2, ν) is referred to as characteristic triplet of the Lévy process.
The process is cádlág, i.e. the sample path functions belong to the space D = D[0,∞) of
real-valued functions on [0,∞), right-continuous on [0,∞) with left limits on (0,∞).

To understand the structure of the general Lévy processes we follow Sato [56], Chap-
ter 4. First for each ω ∈ Ω denote by ∆L(t, ω) = L(t, ω) − L(t−, ω) the jump of the
process L at time t > 0. For each Borel set B ⊂ [0, ∞)× R \ {0} set

M(B, ω) = #{(t, ∆L(t, ω)) ∈ B} .

Lévy’s theory says that M is a Poisson random measure with intensity

m(dt, dx) = dtν(dx) ,

where ν is the Lévy measure of the process L. Note that m is σ- finite and M(B, ·) = ∞
a.s. when m(B) = ∞.

Now take B = [t1, t2] × A, where 0 ≤ t1 < t2 < ∞ and A is a Borel set in R \ {0}.
Then

M(B, ω) = #{(t, ∆L(t, ω)) : t1 ≤ t ≤ t2, ∆L(t, ω) ∈ A}

counts the jumps of size in A which happen in the time interval [t1, t2]. Hence, M(B, ω)
is a Poisson rv with mean (t2 − t1)ν(A).
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With this notation, the Lévy-Khintchine representation (2.1) corresponds to the fol-
lowing representation for the Lévy process L for t ≥ 0:

L(t) = γt + σW (t) +
∑

0<s≤t

∆L(s)1{|∆L(s)>1|} +

∫ t

0

∫
|x|≤1

x(M(ds, dx)− ν(dx) ds) .

In the case of finite variation of the jumps, i.e. when
∫
|x|≤1

|x|ν(dx) < ∞, the last repre-

sentation reduces to

L(t) = γ0t + σW (t) +
∑

0<s≤t

∆L(s) , t ≥ 0 ,

where γ0 = γ −
∫
|x|≤1

xν(dx). This means that in this case L is the independent sum

of a drift term, a Gaussian component and a pure jump part represented by a process
of finite variation. For instance, standard Brownian motion is obtained if we choose in
(2.1) γ = 0 and ν = 0. A homogeneous compound Poisson process

∑N(t)
j=1 Yj, t ≥ 0, with

intensity λ > 0 of the Poisson process N has Lévy measure ν(dx) = λF (dx), where F is
the common df of the iid sequence of rv’s (Yj)j∈N, and constants γ = σ = 0.

The Lévy process L has finite mean if
∫
|x|>1

|x| ν(dx) < ∞. Then

E[L(t)] = γ1t , where γ1 = γ +

∫
R

x(1− 1{|x|≤1})ν(dx) ,

see for example Sato [56] E25.12, p.163.
We will need also the next lemma. The proof can be found for example in Sato [56],

Proposition 11.10.

Lemma 2.1.2. Let L be a Lévy process with characteristic triplet (γ, σ, ν) and a ∈ R.
Then aL is again a Lévy process with characteristic triplet (γa, σ

2
a, νa) given by

γa = aγ +

∫
R

ax
(
1{|ax|≤1} − 1{|x|≤1}

)
ν(dx) ,

σ2
a = (aσ)2 ,

νa(A) = ν ({x ∈ R : ax ∈ A}) for any Borel set A ∈ R .

�

2.2 Itô’s formula and stochastic exponential

In this section we give some theorems from stochastic calculus that will be used later.
For details see for example Protter [54], Chapter 2, or Cont and Tankov [10], Chapter 8.
Throughout the section let X denote a semimartingale and H – a predictable (cádlág)
process. We use directly the notion of a stochastic integral of H with respect to X,

(H ·X)t :=

∫ t

0

H(s) dX(s) =

∫
[0,t]

H(s) dX(s) , t ≥ 0.
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We say that two processes Y and Z are indistinguishable if

P (ω : t → Y (t, ω) and t → Z(t, ω) are the same functions) = 1 .

The next result can be found for example in Protter [54], Chapter 2, Theorem 13.

Theorem 2.2.1. The jump process (∆(H ·X)t)t≥0 is indistinguishable from the process
(H(t)(∆X(t)))t≥0.

�
We need also the notion of quadratic (co)variation of a semimartingale. If X and Y are

two semimartingales, the quadratic variation process of X, denoted [X, X] = ([X, X]t)t≥0,
is defined by

[X, X]t = X2(t)− 2

∫ t

0

X(s−) dX(s) ,

and the quadratic covariation of X and Y , denoted [X, Y ] = ([X, Y ]t)t≥0, is defined by

[X, Y ]t = X(t)Y (t)−
∫ t

0

X(s−) dY (s)−
∫ t

0

Y (s−) dX(s) ,

if they exist, see Protter [54], Chapter 2, for details.
Further, we denote by [X, X]c the path by path continuous part of [X, X]. Then we

can write for t > 0

[X, X]t = X2(0) + [X, X]ct +
∑

0<s≤t

(∆Xs)
2 .

A semimartingale X is called quadratic pure jump if [X, X]c = 0. We need also the
following three theorems, for proofs see for example Protter [54], Chapter 2, Section 6.

Theorem 2.2.2. Integration by parts formula
Let X and Y be two semimartingales. Then XY is a semimartingale and

d(X(t)Y (t)) = X(t−)dY (t) + Y (t−)dX(t) + d[X,Y ]t , t > 0 .

�

Theorem 2.2.3. Let X be a quadratic pure jump semimartingale. Then for every semi-
martingale Y we have

[X, Y ]t = X(0)Y (0) +
∑

0<s≤t

∆X(s)∆Y (s) .

�

Theorem 2.2.4. Let X and Y be two semimartingales, and let H and K be two predictable
processes. Then

[H ·X, K · Y ]t =

∫ t

0

H(s)K(s) d[X, Y ]s , t ≥ 0 ,

and, in particular,

[H ·X, H ·X]t =

∫ t

0

H(s)2 d[X, X]s , t ≥ 0 .
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�
Now we state Itô’s formula. We give also its general version for multidimensional

semimartingales.

Proposition 2.2.5. Itô’s formula for multidimensional semimartingales
Let X = (X1, . . . , Xd) be a d-dimensional semimartingale and let f : Rd → R be a C2

function. Then f(X) is again a semimartingale, and the following formula holds:

f(X(t))− f(X(0)) =
d∑

j=1

∫ t

0

∂f

∂xj

(X(s−)) dXj(s) +
1

2

∫ t

0+

d∑
j,k=1

∂2f

∂xj∂xk

(X(s)) d[Xj, Xk]
c
s

+
∑

0<s≤t

[
f(X(s))− f(X(s−))−

d∑
j=1

∆Xj(s)
∂f

∂xj

(Xj(s−))

]
. (2.2)

Proof. See for example Jacod and Shiryaev [34], 4.57 and 4.58. For d = 1 see Protter [54],
Chapter 2, Section 7, Theorem 32.

For a one-dimensional Lévy process L = (L(t))t≥0 with characteristic triplet (γ, σ2, ν)
we have that d[L, L]cs = σ2ds, hence (2.2) reduces to (2.3) in the next proposition.

Proposition 2.2.6. Itô’s formula for Lévy processes
Let (L(t))t≥0 be a one-dimensional Lévy process with characteristic triplet (γ, σ2, ν) and
f : R → R be a C2 function. Then

f(L(t)) = f(0) +
σ2

2

∫ t

0+

f ′′(L(s)) ds +

∫ t

0

f ′(L(s−)) dL(s)

+
∑

0<s≤t

[f(L(s))− f(L(s−))−∆L(s)f ′(L(s−))] . (2.3)

�
To the end of this section we will consider Lévy processes, but everything can be done

also for semimartingales.

Let L be a Lévy process with characteristic triplet (γ, σ2, ν) and define the stochastic
process X = (X(t))t≥0 by

X(t) = eL(t) , t ≥ 0 ,

i.e. X is the (ordinary) exponential of L. Then by Itô’s formula we have

dX(t) = X(t−)

(
dL(t) +

σ2

2
dt + exp(∆L(t))− 1−∆L(t)

)
.

Now the question arises how does the solution to the more simple, yet important and
non-trivial, stochastic differential equation – the above stochastic differential equation
without the Itô term σ2

2
dt + exp(∆L(t)) − 1 − ∆L(t) – differ from the process X. The

next theorem, which is an application of Itô’s formula, answers this question.
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Theorem 2.2.7. Let L = (L(t))t≥0 be a Lévy process with characteristic triplet (γ, σ2, ν).
Then there exists an unique cádlág process Z = (Z(t))t≥0 such that

dZ(t) = Z(t−)dL(t) , Z(0) = 1 ,

and Z is given by

Z(t) = eL(t)−σ2

2
t
∏

0<s≤t

(1 + ∆L(s))e−∆L(s) , t ≥ 0 . (2.4)

Further, if
∫
|x|≤1

|x| ν(dx) < ∞, i.e. the jumps of L have finite variation, then

Z(t) = eLc(t)−σ2

2
t
∏

0<s≤t

(1 + ∆L(s)) , t ≥ 0 ,

where Lc denotes the continuous part of L.

Proof. See for example Cont and Tankov [10], Proposition 8.21.

The process Z in Theorem 2.2.7 is called the stochastic exponential or the Doléans-
Dade exponential of L and is denoted by Z = E(L). Notice that one can define it for an
arbitrary semimartingale, not only for a Lévy process.

From the last theorem it is clear that the ordinary exponential and the stochastic
exponential of a Lévy process are two different notions, corresponding to two different
stochastic processes. In fact, contrarily to the ordinary exponential, which is always a
positive process, the stochastic exponential is not necessarily positive. Indeed, from (2.4)
follows that the process Z is always non-negative only if ∆L(t) > −1, for each t ≥ 0, or
equivalently, ν((−∞, −1]) = 0. The next result, due to Goll and Kallsen [30], show that
if Z > 0 is the stochastic exponential of some Lévy process, then it is also the ordinary
exponential of another Lévy process and vice versa.

Proposition 2.2.8. (a) Let L = (L(t))t≥0 be a real-valued Lévy process with characteristic

triplet (γ, σ2, ν). Then there exists a Lévy process L̂ = (L̂(t))t≥0 such that exp(L(t)) =

E(L̂(t)), t ≥ 0, and L̂ has characteristic triplet (γ̂, σ̂2, ν̂) given by

γ̂ = γ +
σ2

2
+

∫
R

(
(ex − 1)1{|ex−1|≤1} − x1{|x|≤1}

)
ν(dx) ,

σ̂2 = σ2 ,

ν̂(A) = ν ({x ∈ R : ex − 1 ∈ A}) for every Borel set A ∈ R .

(b) Conversely, let L̂ be a real-valued Lévy process with characteristic triplet (γ̂, σ̂2, ν̂).

Then there exists a Lévy process L such that E(L̂(t)) = exp(L(t)), t ≥ 0, and L has
characteristic triplet (γ, σ2, ν) given by

γ = γ̂ − σ̂2

2
+

∫
R

(
log(1 + x)1{| log(1+x)|<1} − x1{|x|<1}

)
ν̂(dx) ,

σ2 = σ̂2 ,

ν(A) = ν̂ ({x ∈ R : log(1 + x) ∈ A}) for every Borel set A ∈ R .
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�
We also need the following lemma. The proof can be found for example in Cont and

Tankov [10], Lemma 15.1.

Lemma 2.2.9. For every t > 0 and left continuous function f : [0, t] → R and a Lévy
process Z with characteristic exponent ΨZ, holds

E

[
exp

(
i

∫ t

0

f(v) dZ(v)

)]
= exp

(∫ t

0

ΨZ(f(v)) dv

)
. (2.5)

�

2.3 Stochastic recurrence equations

The aim of this section is to give the concepts and some results for stochastic recurrence
equations, connected with the discrete time accumulation and discounting techniques, that
we will need in the sequel. More background is to be found in Embrechts, Klüppelberg
and Mikosch [15], Section 8.4 or in Goldie and Grübel [28].

We start with one of the most popular stochastic recurrence equations, namely the
forward stochastic recurrence equation (FSRE) given by

Xk = X0

k∏
j=1

Bj +
k∑

m=1

Am

k∏
j=m+1

Bj , k ∈ N , (2.6)

where X0 is a rv and ((Ak, Bk))k∈N is a sequence of iid bivariate rv’s. This FSRE can
be thought of successively applying the random affine mapping φk(x) = Ak + Bkx, such
that Xk = φk(Xk−1), k ∈ N. The latter relation is also called ”outer iteration”; see e.g.
Embrechts and Goldie [14]. In the insurance context, (Xk)k∈N as defined by (2.6) can be
interpreted as the value of a perpetuity : the payments Ak are made at the beginning of
each period and the accumulated payments Xk−1 are subject to interest.

The reverse stochastic recurrence equation related to the discounting problem is the
backward stochastic recurrence equation (BSRE) given by

Yk = Y0

k∏
j=1

Cj +
k∑

m=1

A′m

m−1∏
j=1

Cj , k ∈ N , (2.7)

where Y0 is a rv and ((A′k, Ck))k∈N a sequence of iid bivariate rv’s. For the interpretation
of (2.7) as an “inner iteration” of random affine mapping see Embrechts and Goldie [14].
Note that the value Y0, which may be viewed as the final (at time k) down-payment, is
unimportant when we are interested in the behaviour of Yk for large k. In fact, under
weak assumptions, the first term in (2.7) can be shown to converge to 0 a.s. as k goes to
infinity.

When we look at the form of (2.6) and (2.7), we conclude that the structure of the
discounted and the accumulated sequences (Yk)k∈N and (Xk)k∈N is very similar. This also
concerns the distribution of these rv’s. Assume that X0 is independent of the iid sequence
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((Ak, Bk))k∈N and Y0 is independent of the iid sequence ((A′k, Ck))k∈N. Now observe that
for every k ∈ N

(X0, ((Aj, Bj))1≤j≤k)
d
= (X0, ((Ak−j+1, Bk−j+1))1≤j≤k) ,

which implies that

Xk = X0

k∏
j=1

Bj +
k∑

m=1

Am

k∏
j=m+1

Bj

d
= X0

k∏
j=1

Bj +
k∑

m=1

Am

m−1∏
j=1

Bj .

From this immediately follows, that if X0
d
= Y0 and (A1, B1)

d
= (A′1, C1), then

Yk
d
= Xk , k ∈ N .

Throughout this section we assume that X0 = 0 and that we have an iid sequence of
bivariate rv’s ((Ak, Bk))k∈N. Further we denote by (Uk)k∈N the sequence defined by the
BSRE associated to the FSRE (2.6), i.e.

Uk =
k∑

m=1

Am

m−1∏
j=1

Bj , k ∈ N . (2.8)

From the discussion above it follows that for all k ∈ N every statement about the distrib-
ution of Xk is also about the distribution of Uk. In the next proposition, we consider the
stationarity of (Uk)k∈N.

Proposition 2.3.1. Let (Uk)k∈N be the stochastic process defined by (2.8) and assume
that

E
[
log+ |A|

]
< ∞ and −∞ ≤ E [log |B|] < 0 . (2.9)

Then Uk
a.s.→ U when k →∞ for some rv U , where

U =
∞∑

m=1

Am

m−1∏
j=1

Bj . (2.10)

The rhs of (2.10) converges absolutely with probability 1. Moreover, the rv U satisfies the
identity in law

U
d
= A + BU , (2.11)

where U and (A, B) are independent .

Proof. The proof follows the proof of Proposition 8.4.3 (a) and (b) in Embrechts, Klüppel-
berg and Mikosch [15], Section 8.4.1. Note that in our case we have set X0 = 0.

First we have to show a.s. convergence of the series on the rhs of (2.10). By the SLLN
and (2.9) we have:
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k−1
∑k

j=1 log |Bj|
a.s.→ E log |B| < 0 , k →∞;

m−1
∑m

k=1 log+ |Ak|
a.s.→ E log+ |A| < ∞ , m →∞, hence m−1 log+ |Am|

a.s.→ 0 , m →∞ .

Then we can write∣∣∣∣∣Am

m−1∏
j=1

Bj

∣∣∣∣∣ ≤ exp

(
m

(
1

m
log+ |Am|+

1

m

m−1∑
j=1

log |Bj|

))
≤ e−am

for large m with probability 1, where a ∈ (0, |E[log |B|]|). This assures that the series
under consideration converges a.s., i.e. we have that

Uk
a.s.→ U , k →∞ ,

where U =
∑∞

m=1 Am

∏m−1
j=1 Bj is a finite rv.

Now as Xk
d
= Uk we have that Xk

d→ U , k → ∞. Moreover, for k ∈ N we have that
Xk = Ak + Xk−1Bk, with Xk−1 independent of (Ak, Bk), hence

(Ak, Bk, Xk)
d→ (A, B, U) , k →∞ ,

with (A, B) independent of U . This, together with the continuous mapping theorem,
implies (2.11).

Now let the rv U satisfy the random equation

U
d
= A + BU , (2.12)

where the bivariate rv (A, B) is independent of U . The next results, which we are going
to use in the sequel, are due to Goldie [27]. For the more general multivariate case we
refer to Kesten [36]. The treatment is expository. We start with some preliminary results
on the rv B.

Lemma 2.3.2. [Goldie [27], Lemma 2.2]
Let B be a rv such that, for some κ > 0, E [Bκ] = 1, E

[
|B|κ log+ |B|

]
< ∞, and

the conditional law of log |B| given B 6= 0 is nonarithmetic , i.e. is not concentrated on
{nh : n ∈ Z} for some h > 0. Then

−∞ ≤ E [log |B|] < 0 ,

and

m := E [|B|κ log |B|] ∈ (0, ∞) . (2.13)

�
The next theorem gives the tail behaviour of the solution to the random equation

(2.12).
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Theorem 2.3.3. [Goldie [27]], Theorem 4.1]
Let A and B be rv’s and suppose that B satisfies the conditions of Lemma 2.3.2 and that

E [|A|κ] < ∞ .

Then there is a unique law for U satisfying (2.12) such that

P (U > x) ∼ C+x−κ , x →∞ ,

P (U < −x) ∼ C−x
−κ , x →∞ ,

where if B ≥ 0 a.s. then

C+ =
1

κm
E
[(

(A + UB)+
)κ − ((UB)+

)κ]
,

C− =
1

κm
E
[(

(A + UB)−
)κ − ((UB)−

)κ]
,

where m is given in (2.13). Moreover, C+ + C− > 0 if and only if for each fixed c ∈
R , P (A = (1−B)c) < 1 .

�
Apart from the formulae for C+ and C−, this is Theorem 5 in Kesten [36]. The concrete

form of C+ and C− is due to Goldie [27]. We continue with a result quantifying the rate
of approach of the functions xκP (U > x) and xκP (U < −x) to C+ and C−, respectively.

Theorem 2.3.4. [Goldie [27]], Theorem 4.7]
Let A and B be rv’s and suppose that B satisfies the conditions of Lemma 2.3.2. Let
B ≥ 0 a.s. and let for some γ > 0

E
[
|A|κ+γ

]
< ∞ , E

[
Bκ+γ

]
< ∞ .

Suppose also that B satisfies the technical conditions in Theorem 3.1. in Goldie [27]. Then
there is a unique law for U satisfying (2.12) and some β ∈ (0, γ) such that

P (U > x) ∼ C+x−κ + O(x−(κ+β/2)) , x →∞ ,

P (U < −x) ∼ C−x
−κ + O(x−(κ+β/2)) , x →∞ ,

where C+ and C− are as in Theorem 2.3.3.

�
The result is a direct consequence of Theorem 4.7 in Goldie [27], where it is possible

to choose the parameter β > 0 in Theorem 3.2 of Goldie [27] small enough such that the
contour integral in formulae (3.8) and (3.10) vanishes (note that we can always choose the
same β for the left and right tail). For more details see also the discussions after Theorems
3.1 and 3.2 in Goldie [27]. The conditions of Theorems 3.2 are satisfied: (3.3) and (3.4)
hold by the choice of β and the assumtions in Theorem 2.3.4.
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2.4 Extreme value theory

The concept of regular variation plays a crucial role in the study of extreme events. In
this section we give some classical results from the one-dimensional extreme value theory,
see Embrechts, Klüppelberg and Mickosch [15] for a detailed exposition. We first recall
the definition of regular variation for one-dimensional rv’s.

Definition 2.4.1. The (non-degenerate) rv X is said to be regularly varying with tail
index α > 0 if for all x > 0

lim
t→∞

P (X > tx)

P (X > t)
= x−α .

�

In the one-dimensional case, the extremal behaviour of a sequence of rv’s can be
illustrated by the behaviour of their maxima. Let (Xn)n∈N be a sequence of rv’s and denote
by Mn = max(X1, . . . , Xn). The following result is the basis of the classical extreme value
theory.

Theorem 2.4.2. Let (Xn)n∈N be a sequence of iid rv’s with non-degenerate df. If there
exist norming constants cn > 0, dn ∈ R, n ∈ N, and some non-degenerate rv M such that

c−1
n (Mn − dn)

d→ M , n →∞ , (2.14)

then the df of M belongs to the type of one of the following three df ’s:

Frechet: Φα(x) =

{
0 x ≤ 0 ,
exp (−x−α) x > 0 , α > 0 ;

Weibull: Ψα(x) =

{
exp (−(−x)α) x ≤ 0 , α > 0 ,
1 x > 0 ;

Gumbel: Λ(x) = exp (−e−x) x ∈ R. �

Details of the proof are for instance to be found in Resnick [55], Proposition 0.3. The
three types of df’s in Theorem 2.4.2 are called extreme value distributions.

Definition 2.4.3. The df of the rv X is said to belong to the maximum domain of
attractition of the extreme value distribution H, if there exist norming constants cn > 0,
dn ∈ R, n ∈ N, such that (2.14) holds and M has df H. �

The concept of regular variation is crucial when one has to determine to which of the
three types of extreme value df’s converges the centered and normalized maxima of an iid
sequence of rv’s with a given df F , i.e. the domain of attraction of F .

Of particular interest in financial applications are the distributions in the domain of
attraction of the Frechet distribution, see for instance Embrechts, Klüppelberg and Mick-
osch [15], Chapter 6. The next proposition charaterizes the distributions in this domain.
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Proposition 2.4.4. The df F belongs to the maximim domain of attraction of Φα, α > 0,
if and only if for the tail F = 1− F holds

F (x) = x−αl(x) , x > 0 ,

where l is a slowly varying function, i.e. for all x > 0

lim
t→∞

l(tx)

l(t)
= 1 .

�

For a proof see Embrechts, Klüppelberg and Mickosch [15], Theorem 3.3.7. If the rv
X has df F in the domain of attraction of Φα, then X is regularly varying and its tail
decreases quite slowly (roughly said at a polynomial rate). Note that this implies, for
instance, that E[Xβ] = ∞ for every β ≥ α. Thus, X is a ’heavy-tailed’ rv. Heavy-tailed
features are often to be seen in financial and insurance data. The extreme value theory
provides a set of methods for detecting such features and approximating the tails and
the quantiles of the rv’s. The next proposition concerns the asymptocis behaviour of the
quantiles of the heavy-tailed rv’s.

Proposition 2.4.5. [Bingham, Goldie and Teugels [5], Theorem 1.5.12]
Let the df F belong to the maximum domain of attraction of Φα, α > 0. Then for its
generalized inverse function F←(x) = inf{y ∈ R : F (y) ≤ x}, x ∈ (0, 1), holds

F←(x) = (1− x)−1/αL←(1/(1− x)), x ∈ (0, 1) ,

where L← is a slowly varying function. �

For details of L← see Bingham, Goldie and Teugels [5].



Chapter 3

The model

In this chapter we introduce the main model in the thesis. We start with the classical
insurance model in Section 3.1. The investment process is introduced in Section 3.2 and
its key properties are investigated. The integrated risk process is defined in Section 3.3.
Basic quantities related to the integrated risk process like characteristic function and
moment functions are derived in Section 3.4. We give some examples in Section 3.5.

3.1 Insurance model

In this section we define the insurance risk reserve process U = (U(t))t≥0 as in the Cramér-
Lundberg model by

U(t) = u + ct− S(t) , t ≥ 0 , (3.1)

where u > 0 is the initial capital reserve, c > 0 is the constant premium rate and the
process S = (S(t))t≥0 is the total claim amount process, defined by the compound Poisson

process S(t) =
∑N(t)

j=1 Yj , t ≥ 0. The claim sizes (Yj)j∈N are positive iid rv’s with common
df F and finite mean µ. The claims arrive at random time points 0 < T1 < T2 < . . . and
the claim arrival process N = (N(t))t≥0 defined by

N(t) =

{
#{k ≥ 1 : Tk ≤ t} t > 0 ,

0 t = 0 ,

is a homogeneous Poisson process with intensity λ > 0. Finally, N and (Yj)j∈N are inde-
pendent processes.

Such models are very well studied, see, for example, Asmussen [2], Chapter 3, or
Embrechts, Klüppelberg and Mikosch [15], Chapter 1.

Note that E[U(t)] = u + (c − λµ)t, t ≥ 0, hence when the time goes to infinity,
the expectataion of the risk reserve tends to −∞ or +∞ depending on the sign of the
difference c− λµ. It is natural to assume that the positive safety loading condition holds,
i.e. c− λµ > 0, see e.g. Grandell [25], Chapter 1.

19
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3.2 Investment model

The classical risk model, introduced in the previous section, is extended by allowing for
investment of the risk reserve. We consider an insurance company investing into a Black-
Scholes type market consisting of a bond and some stock, modeled by an exponential Lévy
process. Their respective price processes follow the equations

X0(t) = eδt and X1(t) = eL(t) , t ≥ 0 . (3.2)

The constant δ > 0 is the riskless interest rate. The process L = (L(t))t≥0 is a Lévy
process with characteristic triplet (γ, σ2, ν) and characteristic exponent Ψ, i.e. for t ≥ 0

E[eisL(t)] = etΨ(s) , s ∈ R ,

where Ψ has Lévy-Khintchine representation as given in (2.1).
For allocation of the reserve among the riskless and the risky asset we use the so-called

constant mix strategy; i.e. the initial proportions which are invested into bond and stock
remain constant over a predetermined planning horizon; see e.g. Emmer, Klüppelberg
and Korn [17], Section 2. Such a strategy is dynamic in the sense that it requires at
any instance of time a rebalancing of the portfolio depending on the corresponding price
changes. We denote by θ ∈ [0, 1] the fraction of the reserve invested into the risky asset;
we call θ the investment strategy.

To derive the investment process we follow the calculations in Emmer and Klüppel-
berg [16] and Emmer, Klüppelberg and Korn [17]. We state first the corresponding sto-
chastic differetial equations (SDEs) for the price processes, where we use Itô’s formula,
see Proposition 2.2.6,

dX0(t) = δX0 (t) dt , t > 0 , X0(0) = 1 ,

dX1(t) = X1(t−) dL̂(t)

= X1(t−)

(
dL(t) +

σ2

2
dt + e∆L(t) − 1−∆L(t)

)
, t > 0 , X1(0) = 1 ,

where ∆L(t, ω) = L(t, ω) − L(t−, ω) for each ω ∈ Ω denotes the jump of L at time

t > 0. The process L̂ is such that eL(t) = E(L̂(t)), t ≥ 0, where E denotes the stochastic
exponential of a process, see Section 2.2.

Definition 3.2.1. For θ ∈ [0, 1] we define the investment process Xθ = (Xθ(t))t≥0 as the
solution to the SDE

dXθ(t) = Xθ(t−)
(
(1− θ)δdt + θdL̂(t)

)
, t > 0 , Xθ(0) = 1 , (3.3)

where δ is the riskless interest rate, E(L̂) = eL, and L is the Lévy process describing the
log returns of the risky asset given in (3.2).

�
As θ ≤ 1, this approach is based on self-financing portfolios and hence classical in

financial portfolio optimization; see Korn [40], Section 2.1. The following is a consequence
of Itô’s formula.
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Lemma 3.2.2. The SDE (3.3) has the solution

Xθ(t) = E(L̂θ(t)) = eLθ(t) , t ≥ 0 , (3.4)

where L̂θ(t) = (1 − θ)δt + θL̂(t) and the process Lθ = (Lθ(t))t≥0 is such that E(L̂θ(t)) =
eLθ(t), t ≥ 0.

In the next lemma we specify the characteristic triplet of the resulting Lévy process
Lθ in (3.4) in terms of the characteristic triplet of the original Lévy process L for the log
ruturns of the risky asset.

Lemma 3.2.3. The process Lθ in (3.4) is a Lévy process with characteristic exponent Ψθ

and the characteristic triplet (γθ, σ
2
θ , νθ) is given by

γθ = γθ + (1− θ)(δ +
σ2

2
θ)

+

∫
R
(log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1} − θx1{|x|≤1})ν(dx) ,

σ2
θ = (σθ)2 ,

νθ(A) = ν ({x ∈ R : log(1 + θ(ex − 1)) ∈ A}) for every Borel setA ⊂ R .

Proof. Denote by (γ̂, σ̂2, ν̂) and by (γ̂θ, σ̂2
θ , ν̂θ) the characteristic triplets of the Lévy

processes L̂ and θL̂, respectively. By Lemma 2.1.2 and Proposition 2.2.8(a) we obtain the

drift term of θL̂:

γ̂θ = γ̂θ +

∫
R

θx
(
1{|θx|≤1} − 1{|x|≤1}

)
ν̂(dx)

=

(
γ +

σ2

2
+

∫
R

(
(ex − 1)1{|ex−1|≤1} − x1{|x|≤1}

)
ν(dx)

)
θ

+

∫
R

θ(ex − 1)
(
1{|θ(ex−1)|≤1} − 1{|ex−1|≤1}

)
ν(dx)

= θ

(
γ +

σ2

2

)
+

∫
R

(
θ(ex − 1)1{|θ(ex−1)|≤1} − θx1{|x|≤1}

)
ν(dx) .

For the Gausian component and the Lévy measure of θL̂ we get

σ̂2
θ = (σ̂θ)2 = (σθ)2 ,

ν̂θ(A) = ν̂({x ∈ R : θx ∈ A}) = ν({x ∈ R : θ(ex − 1) ∈ A}) , for any Borel set A .

Finally by (3.3) and (3.4) and applying Propositon 2.2.8(b) for the characteristic triplet
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of Lθ we get

γθ = γ̂θ + (1− θ)δ − σ̂2
θ

2
+

∫
R

(
log(1 + x)1{| log(1+x)|≤1} − x1{|x|≤1}

)
ν̂θ(dx)

= γθ +
σ2

2
θ +

∫
R

(
θ(ex − 1)1{|θ(ex−1)|≤1} − θx1{|x|≤1}

)
ν(dx) + (1− θ)δ − σ2

2
θ2

+

∫
R

(
log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1} − θ(ex − 1)1{|θ(ex−1)|≤1}

)
ν(dx)

= (1− θ)δ + θ(γ +
σ2

2
)− σ2

2
θ2

+

∫
R

(
log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1} − θx1{|x|≤1}

)
ν(dx) ;

σ2
θ = (σθ)2 ;

νθ = ν({x ∈ R : log(1 + θ(ex − 1)) ∈ A}) , for any Borel set A .

Remark 3.2.4. (i) Besides the characteristic exponents Ψ and Ψθ of the processes L
and Lθ respectively, we shall also need the Laplace exponents given by

ϕ(s) = Ψ(is) = log E[e−sL(1)] and ϕθ(s) = Ψθ(is) = log E[e−sLθ(1)] , (3.5)

provided they exist. If ϕ(s) < ∞, then E [exp(−sL(t))] = exp(tϕ(s)) < ∞ for all t ≥ 0,
see Sato [56], Theorem 25.17. As we show in Lemma 3.2.5(c), ϕθ(s) < ∞ for all θ ∈ [0, 1]
provided ϕ(s) < ∞.

(ii) A jump of size ∆L of L leads to a jump of size exp(∆L)−1 of L̂ and to a jump of size
∆Lθ = log(1 + θ(e∆L − 1)) > log(1− θ) of Lθ. In other words, νθ is the image measure of
ν under the transformation x 7→ log(1 + θ(ex − 1)). This explains the requirement θ ≤ 1.

(iii) If L is a process with finite variation of the jumps, i.e.
∫
|x|≤1

|x|ν(dx) < ∞, then Lθ

is as well. Indeed,∫
|x|≤1

|x|νθ(dx) =

∫
| log(1+θ(ex−1))|≤1

| log(1 + θ(ex − 1))|ν(dx)

≤
∫ −1

−∞
| log(1 + θ(ex − 1))|ν(dx) +

∫ p

−1

| log(1 + θ(ex − 1))|ν(dx) ,

where p = log(1 + θ−1(e− 1)) > 0. Then∫ −1

−∞
| log(1 + θ(ex − 1))|ν(dx) ≤ | log(1− θ)|

∫ −1

−∞
ν(dx) < ∞

and, because of the finite variation of L, also∫ p

−1

| log(1 + θ(ex − 1))|ν(dx) ≤
∫ p

−1

|x|ν(dx) < ∞

holds. �
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The next lemma is a consequence of Lemma 3.2.3 and conserns the connection between
the expectation and the Laplace exponent of Lθ and those of L. The last part of the lemma
states, that under natural condition for the risky investment, the Laplace exponent of the
resulting Lévy process Lθ is strictily convex function in the investment strategy θ. This
result will turn out to be very usefull in the sequel.

Lemma 3.2.5. Let θ ∈ [0, 1] and ϕ and ϕθ be the Laplace exponents of L and Lθ, respec-
tively. Then the following hold.
(a) If E[L(1)] < ∞, then also E[Lθ(1)] < ∞.
(b) If E[L(1)] > 0, then also E[Lθ(1)] > 0.
(c) If ϕ(s) < ∞, then ϕθ(s) < ∞.
(d) If δ < ϕ(−1), then for fixed s > 0 the function ϕθ(s) is strictly convex in θ.

Proof. (a) E[L(1)] < ∞ is equivalent to
∫

R x1{|x|>1} ν(dx) < ∞. Note that this for-
mulation is chosen as a particular way to control the large jumps of the process. The
cut-off points -1 and 1 can be chosen arbitrarily and do not need to have the same mod-
ulus. By Remark 3.2.4(ii), the large jumps are of the form log(1 + θ(e∆L(1) − 1)). Since
log(1 + θ(ex − 1)) ≥ log(1 − θ), i.e. negative jumps are bounded below, we only need to
control large positive jumps. Note that by l’Hospital’s rule

lim
x→∞

log(1 + θ(ex − 1))

x
= 1 .

This implies that for large enough h > 0∫ ∞
h

log(1 + θ(ex − 1))ν(dx) ≤
∫ ∞

h

(x + ε)ν(dx) < ∞ ,

where the last holds due to the bounded large positive jumps of L.
(b) First recall that, whenever the expectations are finite, then E[L(1)] = γ+

∫
R x1{|x|>1} ν(dx)

and E[Lθ(1)] = γθ +
∫

R x1{|x|>1} νθ(dx) (see Section 2.1). Now assume that E[L(1)] > 0.

By Lemma 3.2.3, setting (1− θ)(δ + σ2

2
θ) =: a > 0, we obtain

E[Lθ(1)] = γθ + a +

∫
R

log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|>1}ν(dx)

+

∫
R
(log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1} − θx1{|x|≤1})ν(dx)

= a + θE[L(1)] +

∫
R
(log(1 + θ(ex − 1))− θx) ν(dx) > 0 ,

since the integrand is also positive.

(c) Recall that

ϕ(s) = Ψ(is) = −γs +
σ2

2
s2 +

∫
R
(e−sx − 1 + sx1{|x|≤1})ν(dx)
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and we assume that ϕ(s) < ∞, equivalently, the integral being finite. We consider the
corresponding integral for ϕθ(s).

h(θ) :=

∫
R
(e−sx − 1 + sx1{|x|≤1})νθ(dx)

=

∫
R

(
(1 + θ(ex − 1))−s − 1− s log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1}

)
ν(dx) .

Now the function h(θ) is continuous in θ ∈ [0, 1]. Moreover, h(0) = 0 and

h(1) =

∫
R

(
esx − 1− sx1{|x|≤1}

)
ν(dx) < ∞ ,

hence h(θ) is finite for all θ ∈ [0, 1].

(d) We consider the function ϕθ(s) =: ϕ(θ, s) for θ ∈ [0, 1] and s > 0 as a function in
two variables. Then

ϕ(θ, s) := −
(

δ + θ(γ +
σ2

2
− δ)

)
s +

σ2

2
s(s + 1)θ2

+

∫
R

(
(1 + θ(ex − 1))−s − 1 + sθx1{|x|≤1}

)
ν(dx) ,

and we investigate ϕ(θ, s) as a function of θ. First notice that

∂

∂θ
ϕ(θ, s) = −

(
γ +

σ2

2
− δ

)
s + σ2s(s + 1)θ − s

∫
R

(
(ex − 1)

(1 + θ(ex − 1))s+1 − x1{|x|≤1}

)
ν(dx) .

As δ < ϕ(−1), we have ∂
∂θ

ϕ(0, s) = −(ϕ(−1)− δ)s < 0. Secondly,

∂2

∂θ2
ϕ(θ, s) = s(s + 1)

(
σ2 +

∫
R

(ex − 1)2

(1 + θ(ex − 1))s+2ν(dx)

)
> 0 ,

i.e. the function ϕ(θ, s) is strictly convex in θ.

We will also need the following result, giving conditions for the process L, under which
the resulting Lévy process Lθ for θ > 0 has negative jumps with positive probability.

Lemma 3.2.6. If σ > 0 or ν((−∞, 0)) > 0, then for all θ ∈ (0, 1] holds P (Lθ(1) < 0) > 0.

Proof. If σ > 0, then by Lemma 3.2.3 also σθ > 0, and the Gaussian component guarantees
the result. On the other hand, if ν((−∞, 0)) > 0, then Remark 3.2.4(ii) ensures also
downwards jumps of Lθ, giving again the result. For more details we refer to Sato [56],
Section 24.

In the next lemma we represent ϕθ(−1) and ϕθ(−2), needed for the calculation of the
mean and the variance function of the process Xθ, by means of ϕ(−1) and ϕ(−2).
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Lemma 3.2.7. Let θ ∈ [0, 1] and ϕ and ϕθ be the Laplace exponents of L and Lθ, respec-
tively. Then the following hold.
(a) If ϕ(−1) < ∞, then

ϕθ(−1) = δ + θ(ϕ(−1)− δ) < ∞ .

(b) If ϕ(−2) < ∞, then

ϕθ(−2) = 2δ + 2θ(ϕ(−1)− δ) + θ2 (ϕ(−2)− 2ϕ(−1)) < ∞ .

Proof. Applying Lemma 3.2.3 we obtain (a)

ϕθ(−1) = γθ +
σ2

θ

2
+

∫
R

(
ex − 1− x1{|x|≤1}

)
νθ(dx)

= (1− θ)δ + θ(γ +
σ2

2
)− σ2

2
θ2 +

(σθ)2

2

+

∫
R
(log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1} − θx1{|x|≤1})ν(dx)

+

∫
R

(
elog(1+θ(ex−1)) − 1− log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1}

)
ν(dx)

= (1− θ)δ + θ(γ +
σ2

2
) +

∫
R
(θ(ex − 1)− θx1{|x|≤1})ν(dx)

= (1− θ)δ + θΨ(−i) = δ + θ(ϕ(−1)− δ) .

Similarly for (b) we calculate

ϕθ(−2) = 2γθ + 2σ2
θ +

∫
R

(
e2x − 1− 2x1{|x|≤1}

)
νθ(dx)

= 2(1− θ)δ + 2θ(γ +
σ2

2
)− σ2θ2 + 2(σθ)2

+2

∫
R
(log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1} − θx1{|x|≤1})ν(dx)

+

∫
R

(
e2 log(1+θ(ex−1)) − 1− 2 log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1}

)
ν(dx)

= 2δ + 2θ(ϕ(−1)− δ) + σ2θ2 − 2θ

∫
R
(ex − 1− x1{|x|≤1})ν(dx)

+

∫
R
((1 + θ(ex − 1))2 − 1− 2θx1{|x|≤1})ν(dx)

= 2δ + 2θ(ϕ(−1)− δ) + θ2

(
σ2 +

∫
R
(ex − 1)2 ν(dx)

)
,

where in the last equality we use the simple fact that

ϕ(−2)− 2ϕ(−1) = σ2 +

∫
R
(ex − 1)2 ν(dx) .
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From Lemma 3.2.5(c) follows that if ϕ(−s) < ∞ for some s ∈ R, then the s-th moment
of Xθ(t) = exp(Lθ(t)), t ≥ 0, exists. From the Lévy-Khintchine representation we have

E [Xs
θ (t)] = etΨθ(−is) = e(sγθ+s2σ2

θ/2)tet∆s , t ≥ 0 , (3.6)

where γθ and σθ are given in Lemma 3.2.3 and

∆s =

∫
R

(
(1 + θ(ex − 1))s − 1− s log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1}

)
ν(dx) .

The next lemma is an application of Lemma 3.2.7. It gives conditions for existence and
expressions for the moment functions and the autocovariance function of the investment
process Xθ = exp(Lθ) in terms of the Laplace exponent of the original process L.

Lemma 3.2.8. Let θ ∈ [0, 1] and ϕ be the Laplace exponents of L. Then the following
hold.
(a) If ϕ(−1) < ∞, then for t ≥ 0, E [Xθ(t)] exists and

E [Xθ(t)] = et(δ+θ(ϕ(−1)−δ)) . (3.7)

(b) If ϕ(−2) < ∞, then for t ≥ 0, E [X2
θ (t)] and var (Xθ(t)) exist and

E
[
X2

θ (t)
]

= et(2δ+2θ(ϕ(−1)−δ)+θ2(ϕ(−2)−2ϕ(−1))) , (3.8)

var (Xθ(t)) = e2t(δ+θ(ϕ(−1)−δ))
(
etθ2(ϕ(−2)−2ϕ(−1)) − 1

)
(3.9)

and for 0 ≤ v < t,

cov (Xθ(t), Xθ(v)) = E [Xθ(t− v)] var (Xθ(v)) (3.10)

= e(t+v)(δ+θ(ϕ(−1)−δ))
(
evθ2(ϕ(−2)−2ϕ(−1)) − 1

)
.

Proof. Apllying Lemma 3.2.7 to E[Xθ(t)] = exp(tϕθ(−1)) and E[X2
θ (t)] = exp(tϕθ(−2))

we obtain (3.7) and (3.8). Then the formula for the variance of Xθ is direct. For the
autocovariance function of Xθ, using the independent and stationary increments of the
Lévy process, we obtain for 0 < v ≤ t,

cov (Xθ(t), Xθ(v)) = cov(eLθ(v), eLθ(t)−Lθ(v)+Lθ(v))

= cov(eLθ(v), eLθ(t−v)eLθ(v))

= E[eLθ(t−v)]var(eLθ(v))

= E [Xθ(t− v)] var (Xθ(v)) .

For the mean and the variance function of the investment process in the multidimen-
tional case see Emmer and Klüppelberg [16], Lemma 2.6.
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3.3 Integrated risk model

Now we are ready to define the integrated risk process as the total risk reserve, i.e. the
result of the insurance business and the net gains of the investment.

Definition 3.3.1. With the quantities as introduced in Section 3.1 and Section 3.2 we
define for θ ∈ [0, 1] the integrated risk process (IRP) as the solution to the SDE

dUθ(t) = c dt− dS(t) + Uθ(t−)
(
(1− θ)δ dt + θdL̂(t)

)
, t > 0 , Uθ(0) = u . (3.11)

�

Recall that the process L̂ is such that eL(t) = E(L̂(t)), t ≥ 0, where E denotes the
stochastic exponential of a process. In the next lemma we give the solution to the SDE
of the IRP.

Lemma 3.3.2. If the investment process L is independent of the insurance process S,
then the SDE (3.11) has the solution

Uθ(t) = eLθ(t)

(
u +

∫ t

0

e−Lθ(v) (cdv − dS(v))

)
, t ≥ 0 . (3.12)

Proof. Define

Z(t) =

∫ t

0

e−Lθ(v−)(cdv − dS(v)) =

∫ t

0

e−Lθ(v) (cdv − dS(v)) , t ≥ 0 . (3.13)

Equality holds as the independent processes Lθ and S have no common jumps a.s. (see
e.g. Cont and Tankov [10], Proposition 5.3). The integration by parts formula (see Theo-
rem 2.2.2) gives

d(Xθ(t)Z(t)) = Xθ(t−)dZ(t) + Z(t−)dXθ(t) + d[Xθ, Z]t , t > 0 ,

where [Xθ, Z] is the quadratic variation process of Xθ and Z, see Section 2.2. Let us show
that d[Xθ, Z]t = 0, t > 0. First, note that [Z,Z]c = 0, i.e. Z is a quadratic pure jump
semimartingale. To show this we decompose Z = Z2 + Z1, where Z1 and Z2 are defined
by

Z1(t) = −
∫ t

0

e−Lθ(v−) dS(v) and Z2(t) = c

∫ t

0

e−Lθ(v−) dv , t ≥ 0 .

Then from Theorem 2.2.4 we have

[Z,Z]t = [Z2, Z2]t + 2[Z1, Z2]t + [Z1, Z1]t , t ≥ 0 ,

where [Z2, Z2]t = 0 and also [Z1, Z1]
c
t = 0. From the last and Theorem 2.2.3 we have that

[Z1, Z2]t = 0 +
∑

0<s≤t

∆Z1(s)∆Z2(s) , t ≥ 0 ,
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hence also [Z,Z]t = 0+jumps, t ≥ 0. From this and from Theorem 2.2.3, as Xθ(0)Z(0) = 0
we conclude that

[Xθ, Z]t =
∑

0<s≤t

∆Xθ(s)∆Z(s) , t ≥ 0 . (3.14)

Further, by Theorem 2.2.1 we have that ∆Z(t) = exp(−Lθ(t−))∆S(t). Then, using again
that the processes Lθ and S have no common jumps a.s., we conclude that

∆Xθ(t)∆Z(t) =
(
eLθ(t−)+∆Lθ(t) − eLθ(t−)

)
e−Lθ(t−)∆dS(t)

= (e∆Lθ(t) − 1)∆S(t) = 0 .

From this and (3.14) follows that [Xθ, Z]t ≡ 0. Thus, as Xθ(t−)dZ(t) = cdt − dS(t), we
have

d (X(t)Z(t)) = Xθ(t−)dZ(t) + dXθ(t)Z(t−)

= cdt− dS(t) + dXθ(t)

(∫ t−

0

e−Lθ(v−)(cdv − dS(v))

)
, t > 0 .

Finally from the last equality and from (3.3), (3.12) and (3.13) we get for t > 0

dUθ(t) = udXθ(t) + cdt− dS(t) + dXθ(t)

(∫ t−

0

e−Lθ(v−)(cdv − dS(v))

)
= cdt− dS(t) + Xθ(t−)

(
u +

∫ t−

0

e−Lθ(v)(cdv − dS(v))

)
dXθ(t)

Xθ(t−)

= cdt− dS(t) + Uθ(t−)
(
(1− θ)δ dt + θdL̂(t)

)
.

Lemma 3.3.2 shows that the IRP Uθ fits into the framework of generalized Ornstein-
Uhlenbeck (OU) processes, which have recently attracted much attention, see e.g. Lindner
and Maller [44] or Carmona, Petit and Yor [9].

In the insurance framework, similar models have been investigated for example by
Paulsen [52] and Kalashnikov and Norberg [35], and, in the special case of a geometric
Brownian motion as an investment process, by Gaier and Grandits [23], Gaier, Grandits
and Schachermayer [24] and Frolova, Kabanov and Pergamenshchikov [21].

Hipp and Plum [31, 32] analyse a model when the insurance company invests into risky
assets, not necessarily financed from the risk reserve. In contrast to that, in our model
the trading strategy θ is constant and θ ∈ [0, 1], i.e. short selling is not allowed and the
portfolio is self-financing.

3.4 Properties of the IRP

3.4.1 Characteristic function and moments

We start with the characteristic function of the IRP.
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Lemma 3.4.1. For t ≥ 0 denote by ûθ, t(s) = E[exp(isUθ(t))] and f̂(s) = E[exp(isY )],
s ∈ R. Then

ûθ, t(s) = E

[
exp

(
is

(
ueLθ(t) + c

∫ t

0

eLθ(v) dv

)
+ λ

∫ t

0

(
f̂(−seLθ(v))− 1

)
dv

)]
. (3.15)

Proof. We use equation (3.12) and Lemma 2.2.9. Setting Z(t) = ct−S(t), t ≥ 0, we obtain

ΨZ(s) = ics + λ(f̂(−s)− 1), s ∈ R. Conditioning on the sample path of L up to time t,
and hence on those of Lθ, and using the notation EL [E [·]] = E [E [· |L(v), v ∈ (0, t]]] for
t ≥ 0, by independence of Lθ and S, we have for s ∈ R,

E[exp(isUθ(t))]

= E

[
exp

(
is

(
ueLθ(t) + eLθ(t)

∫ t

0

e−Lθ(v) (cdv − dS(v))

))]
= EL

[
E
[
exp

(
isueLθ(t)

)]
E

[
exp

(
is

∫ t

0

eLθ(t)−Lθ(v) (cdv − dS(v))

)]]
= E

[
exp

(
is
(
ueLθ(t)

))
exp

(∫ t

0

(
λ(f̂(−seLθ(t)−Lθ(v))− 1) + isceLθ(t)−Lθ(v)

)
dv

)]
= E

[
exp

(
is
(
ueLθ(t)

))
exp

(∫ t

0

(
isceLθ(v) + λ(f̂(−seLθ(v))− 1)

)
dv

)]
.

In the last equality we have used the stationary and independent property of the Lévy
process Lθ.

From the characteristic function of the IRP Uθ given in (3.15) we can calculate all
moment functions, provided they exist. In the next lemma we give conditions for exis-
tence and formulae for the mean, the variance and the autocovariance function of Uθ. For
shortness we use the notation Xθ = eLθ for the investment process. Recall the notation ϕ
for the Laplace exponent of the Lévy process L.

Lemma 3.4.2. Let the IRP Uθ be given by (3.12). Recall that E[Y ] = µ < ∞.
(a) Assume that ϕ(−1) < ∞. Then for t ≥ 0, E [Uθ(t)] exists and

E [Uθ(t)] = uE [Xθ(t)] + (c− λµ)

∫ t

0

E [Xθ(v)] dv . (3.16)

(b) Assume that ϕ(−2) < ∞ and E[Y 2] = µ2 < ∞. Then for t ≥ 0, var(Uθ(t)) exists and

var(Uθ(t)) = u2var(Xθ(t)) + 2u(c− λµ)

∫ t

0

cov(Xθ(t), Xθ(v)) dv (3.17)

+λµ2

∫ t

0

E
[
X2

θ (v)
]

dv + (c− λµ)2

∫ t

0

∫ t

0

cov(Xθ(v), Xθ(w)) dw dv .

(c) Assume that ϕ(−2) < ∞ and E[Y 2] = µ2 < ∞. Then for 0 ≤ y < t, cov(Uθ(y), Uθ(t))
exists and

cov(Uθ(y), Uθ(t)) = var(Uθ(y))e(t−y)(δ+θ(ϕ(−1)−δ)) . (3.18)
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The expressions for E [Xθ(t)], E [X2
θ (t)], var (Xθ(t)) and cov (Xθ(t), Xθ(v)) by means of

the Laplace exponent ϕ of the process L are given in Lemma 3.2.8.

Proof. Using that û′θ, t(0) = iE [Uθ(t)] and f̂ ′(0) = iµ we obtain (a). To show (b) we use

that û′′θ, t(0) = i2E [U2
θ (t)] and f̂ ′′(0) = i2µ2. We first calculate the second moment of Uθ

E
[
U2

θ (t)
]

= E

[(
uXθ(t) + (c− λµ)

∫ t

0

Xθ(v) dv

)2
]

+ λµ2

∫ t

0

E[X2
θ (v)] dv

= u2E[X2
θ (t)] + 2u(c− λµ)E

[
Xθ(t)

∫ t

0

Xθ(v) dv

]
+(c− λµ)2E

[(∫ t

0

Xθ(v) dv

)2
]

+ λµ2

∫ t

0

E[X2
θ (v)] dv .

From this and (3.16) and using that

E

[(∫ t

0

Xθ(v) dv

)2
]

=

∫ t

0

∫ t

0

E [Xθ(v)Xθ(w)] dw dv ,(∫ t

0

E [Xθ(v)] dv

)2

=

∫ t

0

∫ t

0

E [Xθ(v)] E [Xθ(w)] dw dv ,

we invoke (3.17).
(c) Let 0 ≤ y < t and consider

cov(Uθ(t), Uθ(y)) = E [Uθ(t)Uθ(y)]− E [Uθ(t)] E [Uθ(y)] .

Conditioning on Fy, we can write

E[Uθ(t)Uθ(y)] = E[E[Uθ(t)Uθ(y) | Fy] ] = E[Uθ(y)E[Uθ(t) | Fy] ] . (3.19)

Now we calculate the conditional expectation in the last expresion.

E [Uθ(t) | Fy]

= E

[
eLθ(t)+Lθ(y)−Lθ(y)

(
u +

(∫ y

0

+

∫ t

y

)
e−Lθ(v) (cdv − dS(v))

)
| Fy

]
= eLθ(y)

(
u +

∫ y

0

e−Lθ(v) (cdv − dS(v))

)
E
[
eLθ(t)−Lθ(y) | Fy

]
+E

[
eLθ(t)−Lθ(y)

(
u +

∫ t

y

e−(Lθ(v)−Lθ(y)) (cdv − dS(v))

)
| Fy

]
= Uθ(y)E

[
eLθ(t−y)

]
+ E

[
eLθ(t−y)

(
u +

∫ t

y

e−Lθ(v) (cdv − dS(v))

)]
= Uθ(y)e(t−y)ϕθ(−1) + A(t, y) , (3.20)

where A(t, y) is a non-random function and ϕθ(−1) is given in Lemma 3.2.7. Taking
expectation in (3.20), we obtain

E [Uθ(t)] = E [Uθ(y)] e(t−y)ϕθ(−1) + A(t, y).
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Hence, adding and substracting the term E [Uθ(y)] e(t−y)ϕθ(−1) in (3.20) we obtain

E [Uθ(t) | Fy] = (Uθ(y)− E [Uθ(y)]) e(t−y)ϕθ(−1) + E [Uθ(t)] .

Plugging this in (3.19) we obtain

E [Uθ(t)Uθ(y)] = E
[
Uθ(y)

(
(Uθ(y)− E [Uθ(y)]) e(t−y)ϕθ(−1) + E [Uθ(t)]

)]
= E [Uθ(t)] E [Uθ(y)] + e(t−y)ϕθ(−1)var(Uθ(t)) ,

which invokes (c).

In the general case when Lθ and S are not necessarilly independent general Lévy
processes, Lindner and Maller [44] have derived the same formula for the autocovariance
function of Uθ, see [44], Theorem 4.3.

Remark 3.4.3. The mean and the variance functions of the IRP Uθ are determined by the
mean and the variance of the insurance claims and the mean and the variance functions
of the exponential Lévy process eL describing the price of the risky asset. In general, the
mean and the variance functions of the log returns of the risky asset L are not sufficient
to determine the moments of the IRP. �

Of particular interest for us is the behaviour of the moment functions of the IRP Uθ

with respect to the investment strategy θ.

Lemma 3.4.4. Let the safety loading condition c − λµ > 0 hold and ϕ(−1) > δ. Then
the mean, the variance and the autocovariance function of the process Uθ are increasing
functions in θ ∈ [0, 1].

Proof. Note that from ϕ(−1) > δ follows that ϕθ(−1) is increasing function of θ, see
Lemma 3.2.7. Then, for all t > 0, the function E[Xθ(t)] = E[exp(Lθ(t))] = exp(tϕθ(−1))
is increasing in θ . Hence, as c − λµ > 0, for all t > 0, the function E [Uθ(t)] given in
(3.16) is increasing in θ.

To show that var(Uθ(t)) given in (3.17) is increasing function in θ we note that the mo-
ment functions and the autocovariance function of Xθ given in Lemma 3.2.8 are increasing
in θ as ϕ(−1) > δ and ϕ(−2)− 2ϕ(−1) > 0. Then, as c− λµ > 0, the variance function
of Uθ is increasing in θ. Finally, from (3.18) it is straightforward that the autocovariance
function of the process Uθ is also increasing in θ.

3.4.2 Markov and pathwise properties

As we have already mentioned, the IRP Uθ belongs to the class of the generalized OU
processes and as such, it is a time-homogeneous Markov process. Though this is a known
result, shown for example in Carmona, Petit and Yor [9], Section 3 or in Lindner and
Maller [44], Lemma 6.2, we state it for the IRP Uθ and give a short proof.



32 CHAPTER 3. THE MODEL

Lemma 3.4.5. The IRP Uθ is a time-homogeneous Markov process. More precisely, for
t ≥ 0 and s ≥ 0 define

Mθ(t, s) = eLθ(t+s)−Lθ(t) ,

Nθ(t, s) = eLθ(t+s)−Lθ(t)

∫ t+s

t+

e−(Lθ(v)−Lθ(t)) d(cv − S(v)) .

Then for t ≥ 0 the bivariate process ((Mθ(t, s), Nθ(t, s)))s≥0 is independent of Ft =

σ(Lθ(v), S(v), v ≤ t), (Mθ(t+h, s+h), Nθ(t+h, s+h))
d
= (Mθ(t, s), Nθ(t, s)) for h ≥ 0

and

Uθ(t + s) = Mθ(t, s)Uθ(s) + Nθ(t, s) . (3.21)

Proof. With Mθ and Nθ defined as in the lemma and by equation (3.12) we have

Mθ(t, s)Uθ(s) + Nθ(t, s)

= eLθ(t+s)

(
u +

∫ t

0

e−Lθ(v) d(cv − S(v))

)
+eLθ(t+s)−Lθ(t)

∫ t+s

t+

e−(Lθ(v)−Lθ(t)) d(cv − S(v))

= eLθ(t+s)

(
u +

∫ t+s

0

e−Lθ(v) d(cv − S(v))

)
= Uθ(t + s) ,

which is equation (3.21). The fact that for fixed t ≥ 0 the bivariate process

(Lθ(t + s)− Lθ(t), S(t + s)− S(s))s≥0

is independent of (Lθ(s), S(s))0≤s≤t and has the same distribution as (Lθ(s), S(s))s≥0

completes the proof.

In the analysis of the pathwise properties of the IRP, we restrict ourselves to the jump
structure.

Lemma 3.4.6. The jumps of the IRP Uθ, for t > 0, are given by

∆Uθ(t) = ∆S(t) + Uθ(t−) log(1 + θ(e∆L(t) − 1)) .

Proof. Using SDE (3.11) and Lemma 3.2.3 we obtain immediatelly the required result.

From the above proposition we may conclude, that the jumps of the IRP have two
independent sources. An insurance claim leads immediatelly to a jump of the IRP of the
same size as that of the claim. A jump of the risky asset process leads also to a jump of
the IRP. However, the size of this jump is determined not only by the jump of the risky
asset, but also by the level of the IRP before the jump, i.e. by Uθ(t−). Consequently,
whenever the wealth of the insurance company is large, a jump of the risky asset process
has a high impact on the IRP.
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3.5 Examples

We give some examples to illustrate the properties of the IRP.

Example 3.5.1. [Geometric Brownian motion with jumps]
Assume that the log returns of the risky asset are modeled by

L(t) = ξt + σW (t) + C(t) , t ≥ 0 ,

where ξ ∈ R, σ > 0, W = (W (t))t≥0 is a standard Brownian motion, and C(t) =
∑M(t)

j=1 Zj,
t ≥ 0, is a compound Poisson process with intensity η > 0 and jump size represented by
the generic rv Z. The Laplace exponent of L is given by

ϕ(s) = −ξs + σ2 s2

2
+ η(E[e−sZ ]− 1) .

Note that L has drift γ = E[L(1)] = ξ + ηE[Z].
By Lemma 3.2.3

Lθ(t) = ξθt + σθW (t) + Cθ(t) , t ≥ 0 ,

where Cθ is a compound Poisson process with the same jump intensity η as that of the
compound Poisson process C and jump size log(1 + θ(eZ − 1)). Moreover,

ξθ = ξθ + (1− θ)(δ +
σ2

2
θ) and σ2

θ = (σθ)2 . (3.22)

The Laplace exponent of Lθ is given by

ϕθ(s) = −ξθs+σ2
θ

s2

2
+

∫ ∞
−∞

(e−sx−1)νθ(dx) = −ξθs+σ2
θ

s2

2
+η(E

[
(1 + θ(eZ − 1))−s

]
−1) ,

and Lθ has drift

γθ = γθ + (1− θ)(δ +
σ2

2
θ) + η(E[log(1 + θ(eZ − 1))]− EZ) .

In the case of the classical geometric Brownian motion model with drift, i.e. when
C ≡ 0, as

L(t) = γt + σW (t) , t ≥ 0 ,

then L̂(t) = (γ+σ2/2)t+σW (t), t ≥ 0. Then the SDE (3.11) for Uθ reduces to (Uθ(0) = u)

dUθ(t) = cdt− dS(t) + Uθ(t−)
((

(1− θ)δ + θ(γ +
σ2

2
)
)
dt + θσdW (t)

)
, t > 0 . (3.23)

Furthermore, the solution to this SDE is given by (3.12), where Lθ is again a Brownian
motion with drift with Laplace exponent

ϕθ(s) = −γθs +
σ2

θ

2
s2 , (3.24)

where, due to Lemma 3.2.3,

γθ = θγ + (1− θ)(δ +
σ2

2
θ) and σ2

θ = (σθ)2 . (3.25)

�
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In the sequel we will often come back to the example of the geometric Brownian motion
as a model for the risky asset to give explicit illustration of our results.

Monte Carlo simulation is a widely applied technique in the contemporary risk man-
agement. One of the problems in the simulation of continuous time stochastic processes
is that one has typically to introduce a discrete grid and to simulate the process on it.

We start, however, with an algorithm for exact simulation of a compound Poisson
process. Sample paths of such processes are piecewise linear and there is a finite num-
ber of jumps in every bounded interval. Hence we can simulate the sample path directly
(without any discretization error) using a finite number of operations.

Algorithm 1 Simulation of the compound Poisson process S with jump intensity λ, claim
size distribution F and drift c over some time interval [0, T ].

1. Simulate a Poisson rv N with parameter λT . N gives the total number of jumps in the
time interval [0, T ].

2. Simulate N iid uniformly distributed rv’s Ui, i = 1, . . . , N , on the time interval [0, T ].
The order statistics of these variables correspond to the jump arrival times Ti , i =
1, . . . , N .

3. Simulate jump sizes: N iid rv’s Yi, i = 1, . . . , N , with df F .

The sample path is given by

S(t) = ct +
N∑

i=1

1{Ui≤t}Yi , t ∈ [0, T ] .

�
The above algorithm enables the simulation of the insurance process, which is an

important ingredient of the the IRP. The next algorithm is an extension of it, it enables
the simulation of an investment process as in Example 3.5.1.

Algorithm 2 Simulation of a Brownian motion with jumps over some time interval [0, T ].

Assume that

L(t) = ξt + σW (t) + C(t) , t ≥ 0 ,

where ξ ∈ R, σ > 0, (W (t))t≥0 is standard Brownian motion, and C(t) =
∑M(t)

j=1 Zj, t ≥ 0,
is a compound Poisson process with intensity η > 0 and jump size represented by the
generic rv Z.

1. Apply Algorithm 1 to simulate the compound Poisson process C with drift.

2. Select a finite discrete grid 0 = t0 < t1 < . . . < tn < tn+1 = T , which contains also the
jump arrival times from step 1.

3. Simulate n + 1 standard normal iid rv’s N1, . . . , Nn+1.

4. Set ∆Wi = σNi

√
ti − ti−1, i = 1, . . . , n + 1.
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The sample path of L on the discrete grid is given by L(0) = 0,

L(ti) = ξti +
i∑

k=1

∆Wk + C(ti) , i = 1, . . . , n + 1 .

�
Applying Donsker’s invariance prinsiple, see [5], for n → ∞ the simulated process in

the suggested algorithm converges to a Brownian motion with jumps. Since in the case
of Example 3.5.1, the investment process Xθ = exp(Lθ) is again an exponential Brownian
motion with jumps, and the parameters of Lθ can be computed explicitly, Algorithm 2
enables the simulation of the investment process for every θ ∈ [0, 1].

The next algorithm is for the sumulation of the IRP given in (3.12).

Algorithm 3 Simulation of the IRP Uθ on some time interval [0, T ].

1. Apply Algorithm 1 and simulate exactly the total claim amount process

S(t) =

N(t)∑
i=1

Yi , t ∈ [0, T ] .

2. Select a discrete grid 0 = t0 < t1 < . . . < tn < tn+1 = T , which includes the jump
arrival times from step 1.

3. Apply Algorithm 2 and simulate Lθ on the discrete grid from step 2.

An approximate sample path of the IRP Uθ is given by

Uθ(ti) = eLθ(ti)

u +
i∑

j=1

c(tj − tj−1)e
−Lθ(tj) −

N(ti)∑
j=1

Yje
−Lθ(Tj)

 ,

for i = 1, . . . , n + 1, where Tj, j = 1, . . . N(T ) denote the claim arrival times from step 1.
�

Example 3.5.2. [Simulation of the IRP with geometric Brownian motion as risky invest-
ment process; continuation of Example 3.5.1]
Let the risky asset be modeled by a geometric Brownian motion with drift γ = 0.15 and
volatility σ = 0.2 and the riskless interest rate be δ = 0.05. We consider an insurance
model with premium rate c = 1, an intensity of the Poisson claim counting process λ = 9
and exponentially distributed insurance claims with mean µ = 0.1. The initial capital is
u = 10 and the time horizon is T = 1 year.

Using the fact that the resulting Lévy process Lθ is again a Brownian motion with
parameters γθ and σθ given in (3.25), we can apply Algorithm 3 for all investment strategies
θ ∈ [0, 1]. In Figure 3.1 we have ploted sample paths of the IRP for three different
investment strategies – the pure bond strategie (θ = 0), half in bond and half in stock
(θ = 0.5) and pure stock strategie (θ = 1). All sample paths are based on the same
random seed. In this simulation the value of the wealth at the end of the time period is
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Figure 3.1: Sample paths of the IRP Uθ for three investment strategies – θ = 0, θ = 0.5
and θ = 1, based on the same random seed. The parameters are as in Example 3.5.2. For
the simulation we have applied Algorithm 3.

greatest in the case of pure stock strategy. Indeed, recall that under natural conditions
on the model, which in this example are satisfied, the expected value of the IRP is an
increasing function of the investment strategy θ, see Lemma 3.4.4. However, the question
which is the best strategy stays open (notice the intersections of the three sample paths
of the IRP during the time interval). We state this problem precisely in Chapter 6. �

It has been well observed in numerous empirical studies, that the Brownian motion
model is not realistic for various stock prices, as these often exhibit sudden downward
jumps and the distribution of the returns has heavier tails than the normal distribution,
see e.g. Madan and Seneta [46]. In such cases it would be natural to model the stock prices
by a more general exponential Lévy process with jumps. Unfortunately, such models lead
to less explicit results, as the jump measure should be taken into account.

Example 3.5.3. [VG Lévy process as risky investment process]
The variance gamma (VG) process, suggested by Madan and Seneta [46], is a normal
mixture model, i.e. obtained by time changing of an independent Brownian motion. The

time changing process is a gamma Lévy process SΓ, where SΓ(1)
d
= Γ(η, r), i.e. the density

is given by fΓ(x) = rηxη−1e−rx/Γ(η), x > 0, for parameters r, η > 0. The characteristic
triplet of SΓ is (0, 0, νΓ) where νΓ(dx) = 1{x>0}ηx−1e−rx dx. A non-symmetric VG model
is given by

L(t) = ξt + Wa,b(SΓ(t)) , t ≥ 0 ,
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where ξ > 0 and Wa,b is a Brownian motion with drift a < 0 and variance b2. This makes
it possible to model the usually observed positive drift in combination with downward
jumps of the price process. The mean and the variance of L(1) are given by γ = E[L(1)] =
ξ + aη/r and var(L(1)) = b2η/r + a2η/r2. For the Laplace exponent of L we have

ϕ(s) = −ξs− η log

(
1− 1

r

(
b2 s2

2
− sa

))
, s ∈ R . (3.26)

The Lévy measure of L is given by

ν(dx) =
r2

η|x|
exp

( a

b2
x−

√
a2 + 2b2r2/η

b2
|x|
)
dx , (3.27)

so that the VG process is a pure jump process with finite variation but of infinite activity
(with infinitely many jumps in every compact interval) with drift.

If θ < 1, the characteristic triplet of Lθ calculated by Lemma 3.2.3 shows that Lθ

is no longer a VG Lévy process. However, as L is of finite variation, also Lθ is (see
Remark 3.2.4(iii)) and its Laplace exponent is given by

ϕθ(s) = −ξθs +

∫
R
(e−sx − 1)νθ(dx) = −ξθs +

∫
x>log(1−θ)

(
(1 + θ(ex − 1))−s − 1

)
ν(dx) ,

where ξθ = θξ+(1−θ)δ and ν is as in (3.27). We refer to Cont and Tankov [10], Section 4,
for more details. �

Unfortunatelly, for most Lévy processes the law of the increments is not known ex-
plicitly. This makes it more difficult to simulate a path of a general Lévy process. On the
other hand, it is still a possible task when the Lévy process is a subordinated Brownian
motion, provided we can simulate the subordinator.

Algorithm 4 Simulation of a subordinated Brownian motion L on a discrete grid 0 =
t0 < t1 ≤ . . . ≤ tn < tn+1 = T .

Assume that
L(t) = ξt + Wa,b(C(t)) , t ≥ 0 ,

where ξ ∈ R, Wa,b is a Brownian motion with mean a ∈ R and standard deviation b > 0
and C is a strictly positive subordinator process, e.g. the Gamma Lévy process from
Example 3.5.3.

1. Simulate n + 1 standard normal iid rv’s N1, . . . , Nn+1.

2. Simulate the increments of the subordinator ∆Ci = C(ti)− C(ti−1), i = 1, . . . , n + 1.

3. Set ∆Wi = a∆Ci + b
√

∆CiNi, i = 1, . . . , n + 1.

The sample path on the discrete grid is given by

L(ti) = ξti +
i∑

k=1

∆Wk , i = 1, . . . , n + 1 .
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As noted in Example 3.5.3, for θ < 1 the process Lθ is no longer of the same type as L.
Therefore, for infinite activity models like the VG model, the simulation of the investment
process Xθ = exp(Lθ) by means of Algorithm 4 is possible only when θ = 1. In some cases,
it is possible to approximate the large jumps of such a process by a compound Poisson
process and the small jumps by a Brownian motion, see Asmussen and Rosinski [3]. Then
we may apply Algorithm 2 to get an approximate sample path of Lθ, for θ < 1.



Chapter 4

The distribution of the IRP

In this chapter we derive a partial integro-differential equation for the distribution of the
IRP over a fixed time horizon and explain how to solve it numerically.

4.1 PIDE for the IRP

In Chapter 3 the IRP Uθ given in (3.12) was introduced and its basic properties were
investigated. In the previous section we described a simulation algorithm for the IRP,
which enables the computation of its distribution at a fixed time horizon. In the present
section we aim at applying numerical methods to find this distribution. All results are
based on Brokate, Klüppelberg, Kostadinova, Maller and Seydel [6].

We shall be interested in the net loss process Qθ = (Qθ(t))t≥0, which we define by the
following transformation of the IRP

Qθ(t) = ueLθ(t) − Uθ(t) =

∫
(0,t]

eLθ(t)−Lθ(v) (dS(v)− c dv) , t ≥ 0 . (4.1)

Note that the process Qθ does not take the risk reserve into account, but simply calculates
the balance sheet of the integrated risk model.

4.1.1 Derivation of the PIDE

Denote by Y a typical random claim size. The following is the main result of this section.

Theorem 4.1.1. Define

H(x, t) = P (Qθ(t) > x) , t ≥ 0 , x ∈ R, (4.2)

and assume that the following conditions hold.

(1) The Lévy measure ν of L satisfies
∫
|x|>1

e2|x|ν(dx) < ∞.

(2) The partial derivative ∂tH(x, ·) exists for each x ∈ R.

(3) For each t > 0, the first and second partial derivatives ∂xH(·, t) and ∂xxH(·, t) exist,
and are continuous and bounded, on R.

39
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Then H is the solution to the PIDE

∂tH(x, t)− λ (EH(x− Y, t)−H(x, t))

=
σ2

θ

2
(∂xxH(x, t)x2 + ∂xH(x, t)x)− γθ∂xH(x, t)x

+

∫ (
H(xez, t)−H(x, t)− z∂xH(x, t)x1{|z|≤1}

)
νθ(−dz) + c∂xH(x, t) (4.3)

with boundary condition H(·, 0) = 1(−∞,0)(·).

Proof. For fixed x ∈ R and t > 0, take s > 0 small and consider the probability

P (Qθ(t + s) > x) = P

(∫
(0,t+s]

eLθ(t+s)−Lθ(v) (dS(v)− c dv) > x

)
. (4.4)

We introduce the process (Lθ(v))v≥0 := (Lθ(t + v) − Lθ(t))v≥0. Due to the independent
increments property of Lévy processes, (Lθ(v))v≥0 is an independent copy of Lθ, inde-
pendent of Ft, where (Ft)t≥0 is the filtration generated by (Xθ(t))t≥0. By definition we
have

Qθ(t + s) =

∫
(0,t+s]

eLθ(t+s)−Lθ(v) (dS(v)− c dv)

= eLθ(s)

(∫
(0,t]

+

∫
(t,t+s]

)
e−(Lθ(v)−Lθ(t)) (dS(v)− c dv)

= eLθ(s)

(
Qθ(t) +

∫
(0,s]

e−Lθ(u) (dS(u)− c du)

)
,

where in the last line we have set u = v − t. Furthermore, we have denoted by S(u) :=
S(t + u)− S(t) the sum of the claims in the interval (t, t + u].

In order to derive a formula for the tail of Qθ(t + s) we condition on the number of
claims in a small interval (t, t + s]. From the total probability formula we have

P (Qθ(t + s) > x) = (1− λs + o(s))P (Qθ(t + s) > x |N(t + s) = N(t)) (4.5)

+ λsP (Qθ(t + s) > x |N(t + s) = N(t) + 1) + o(s) .

Consider first the case with no claims in (t, t+s]. Then using that
∫

(t,t+s]
e−Lθ(u) dS(u) = 0

and that Lθ is independent of Ft, we get

I0(s) := P (Qθ(t + s) > x |N(t + s) = N(t))

= P

(
eLθ(s)

(
Qθ(t)− c

∫
[0,s)

e−Lθ(u) du

)
> x

)
.

If there is one claim in the interval (t, t+s], we have that
∫

(t,t+s]
e−Lθ(u) dS(u) = Y e−Lθ(T ),

where T is the jump time and Y the jump size of S in (0, s]. As the Poisson process S is
independent of Ft, so are T and Y . Moreover, due to the order statistics property of the
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Poisson process, the rv
(
T |T ∈ (t, t + s]

) d
= U1 is uniformly distributed in the interval

[0, s] . Hence

I1(s) := P (Qθ(t + s) > x |N(t + s) = N(t) + 1)

= P

(
eLθ(s)

(
Qθ(t) + Y e−Lθ(T ) − c

∫
[0,s)

e−Lθ(u) du

)
> x

∣∣T ∈ (0, s]

)
= P

(
eLθ(s)

(
Qθ(t) + Y e−Lθ(U1) − c

∫
[0,s)

e−Lθ(u) du

)
> x

)
.

Now we want to study equation (4.5) for s → 0, which we rewrite as

P (Qθ(t + s) > x)− P (Qθ(t) > x)

s
= λI1(s)− λI0(s) +

I0(s)− P (Qθ(t) > x)

s
+

o(s)

s
.

We have

1. lims→0 I1(s) = P (Qθ(t) + Y > x). Indeed, as a Lévy process is cádlág process, we

have that lims→0 Lθ(s) = Lθ(0) = 0 a.s. Also lims→0

∫
[0,s)

e−Lθ(v) dv = 0 a.s. Further

we have U1 → 0 a.s. when s → 0, hence also lims→0 Lθ(U1) = 0 a.s.

2. Similarly as for I1(s), lims→0 I0(s) = P (Qθ(t) > x).

Since P (Qθ(t) > x) = H(x, t), assuming that the limit below exists, from the equation
above we obtain the following PIDE for H:

∂tH(x, t) = λ (EH(x− Y, t)−H(x, t)) + lim
s→0

1

s
(I0(s)−H(x, t))) , (4.6)

with boundary condition H(·, 0) = 1(−∞,0)(·).
We now calculate the last term in (4.6). For s > 0 we have

I0(s)−H(x, t)

=
(
P
(
Qθ(t) > xe−Lθ(s)

)
− P (Qθ(t) > x)

)
−
(

P
(
Qθ(t) > xe−Lθ(s)

)
− P

(
Qθ(t) > xe−Lθ(s) + c

∫
[0,s)

e−Lθ(v) dv

))
=: J1(s)− J2(s) , say. (4.7)

First consider J1(s), separately for x > 0 and x < 0; note that for x = 0 we have
J1 ≡ 0. For x > 0, we set y = ln x and g(y) = H(ey, t). Then by the independence of the
investment process and the insurance risk process we can write

J1(s) = EH(xe−Lθ(s), t)−H(x, t)

= Eg(y − Lθ(s))− g(y).

Under Assumption (3) of Theorem 4.1.1, g(y) is continuous and bounded, and has contin-
uous and bounded first and second derivatives, for y ∈ R. So we can apply, e.g., Gihman
and Skorohod [26], p. 292, to deduce that

lim
s→0

1

s
J1(s) = lim

s→0

1

s
(Eg(y − Lθ(s))− g(y)) = Ag(y) , y ∈ R , (4.8)
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where A is the infinitesimal generator of the Lévy process −Lθ.

Calculating the partial derivatives implicit in the infinitesimal generator, we can check
that (4.8) implies, for x > 0,

lim
s→0

1

s
J1(s) =

σ2
θ

2
(∂xxH(x, t)x2 + ∂xH(x, t)x)− γθ∂xH(x, t)x

+

∫ (
H(xez, t)−H(x, t)− z∂xH(x, t)x1{|z|≤1}

)
νθ(−dz) . (4.9)

Here and in what follows we always take the integral over the support of the corresponding
Lévy measure.

For x < 0, we set y = ln |x| and g(y) = H(−ey, t). Then an analogous calculation gives
(4.9) again.

It remains to estimate the second term in (4.7). Define R(s) = c
∫

[0,s)
e−Lθ(v) dv. Then

we can write, using a Taylor expansion,

J2(s) = P
(
Qθ(t) > xe−Lθ(s)

)
− P

(
Qθ(t) > xe−Lθ(s) + c

∫
[0,s)

e−Lθ(v) dv

)
=

∫ ∫ (
P
(
Qθ(t) > xe−y

)
− P

(
Qθ(t) > xe−y + r

))
dP (L(s) ≤ y, R(s) ≤ r)

=

∫ ∫ (
H(xe−y, t)−H(xe−y + r, t)

)
dP (Lθ(s) ≤ y, R(s) ≤ r)

= −E [R(s)∂xH(ξ(s), t)] . (4.10)

Here ξ(s) ∈ [xe−Lθ(s), xe−Lθ(s) + R(s)].

Now let

T (s) := −1

s
R(s)∂xH(ξ(s), t) , s > 0 .

Then T (s) ≥ 0 a.s. and J2(s)/s = ET (s). We have R(s)
a.s.→ 0 and also R(s)/s

a.s.→ c, as
s → 0, so ξ(s)

a.s.→ x, a.s., and consequently,

T := lim
s→0

T (s) = − lim
s→0

1

s
R(s)∂xH(ξ(s), t) = −c∂xH(x, t), a.s.

We will have L1 convergence and deduce that lims→0 J2(s)/s = lims→0 ET (s) = T if we
show that (T (s))s>0 is uniformly integrable as s → 0. To see this, recall Assumption (3)
in Theorem 4.1.1. Take ζ > 0 and consider

E(T (s)1{T (s)>ζ}) ≤
√

E(T 2(s))P (T (s) > ζ).

Let Kt = supx∈R(−∂xH(x, t)), which is finite by Assumption (3). Now by Theorem 25.3
of Sato [56] and Lemma 3.2.5(c),

∫
|x|>1

e2|x|ν(dx) < ∞ implies that Ee−2Lθ(u) < ∞ for all

u ∈ R. Using the notation Ee−sLθ(t) = e−tΨθ(s) for t ≥ 0 and for all s ∈ R such that the
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expectation is finite, we conclude

E[T 2(s)] ≤ c2K2
t

s2
E

(∫ s

0

e−Lθ(v)dv

)2

=
2c2K2

t

s2
E

∫ s

0

∫ s

u

e−(Lθ(v)−Lθ(u))e−2Lθ(u)dvdu

=
2c2K2

t

s2

∫ s

0

∫ s

u

e−(v−u)Ψθ(1)e−uΨθ(2)dvdu

≤ 2c2K2
t

s2

(∫ s

0

eu(Ψθ(1)−Ψθ(2))du

)(∫ s

0

e−vΨθ(1)dv

)
= O(1) , s → 0 .

Since lims→0 P (T (s) > ζ) = P (−c∂xH(x, t) > ζ) equals 0 for large enough ζ, (T (s))s>0

is uniformly integrable, as asserted, and it follows that T (s)
L1→ T as s → 0. Hence, via

(4.10), the second term of (4.7) tends to c∂xH(x, t) a.s. as s → 0.
Plugging this into (4.6), we obtain (4.3).

4.1.2 Jump diffusion investment model

In this case

L(t) = γ t + σW (t) +

M(t)∑
j=1

Zj , t ≥ 0 , (4.11)

for γ ∈ R, σ > 0 and Zj iid, independent of a Poisson process M with intensity η > 0.
The process Lθ has a similar representation given by

Lθ(t) = γθ t + σθW (t) +

M(t)∑
j=1

Z
(θ)
j , t ≥ 0 , (4.12)

for γθ = δ + θ(γ − δ − σ2/2), σθ = θσ and Z
(θ)
j = ln(1 + θ(eZj − 1)) iid, independent of

the Poisson process M . This means that the Lévy measure ν(z) = ηP (Z ≤ z) = FZ(z) of
L is transformed into

νθ(z) = ηP (ln(1 + θ(eZ − 1)) ≤ z) = ηP (Z(θ) ≤ z) = ηFZ(ln(1 + (ez − 1)/θ)). (4.13)

Recall that L and Lθ jump at the same time and that a jump of size Z of L leads to a
jump of size ln(1 + θ(eZ − 1)) > ln(1− θ) of Lθ.

In this case, it is not necessary to compensate the small jumps in the Lévy-Khinchine
representation and the PIDE in (4.3) reduces to

∂tH(x, t)− λ (EH(x− Y, t)−H(x, t))

=
σ2

θ

2
(∂xxH(x, t)x2 + ∂xH(x, t)x)− γθ∂xH(x, t)x (4.14)

+

∫
H(xez, t)νθ(−dz)− ηH(x, t) + c∂xH(x, t) .
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We can rewrite this as

∂tH(x, t)− λEH(x− Y, t) + (λ + η)H(x, t)

=
σ2

θ

2
∂xxH(x, t)x2 + ∂xH(x, t)((

σ2
θ

2
− γθ)x + c) +

∫
H(xez, t)νθ(−dz) .

This formula further simplifies, since∫
H(xez, t)νθ(−dz) = η

∫
H(xe−z, t)Fθ(dz) = ηEH(xe−Z(θ)

, t) .

Then

∂tH(x, t)− λEH(x− Y, t) + (λ + η)H(x, t)

=
σ2

θ

2
∂xxH(x, t)x2 + ∂xH(x, t)

(
(
σ2

θ

2
− γθ) x + c

)
+ ηEH(xe−Z(θ)

, t) . (4.15)

4.1.3 Numerical solution

For the PIDE (4.15) we present a numerical solution using a finite difference (FD) method.
Let us first emphasize that it is not known a priori whether a sufficiently smooth (or

classical) solution exists; for more details on existence and uniqueness see Seydel [57].
For a numerical solution, we shall assume that the insurance claim Y and the market

jump Z(θ) are absolutely continuous with densities fY and fθ, respectively. By (4.13) we
can express fθ in terms of the density f of a market jump Z of L:

fθ(z) =

f (ln (1 + (ez − 1)/θ))
ez

ez − 1 + θ
, z > ln(1− θ) ,

0 , z ≤ ln(1− θ) .

Rewriting (4.15) we have to solve the following initial value problem:

∂tH(x, t)− λ

∫ x

−∞
fY (x− y)H(y, t)dy + (λ + η)H(x, t) (4.16)

=
σ2

θ

2
∂xxH(x, t)x2 + ∂xH(x, t)

(
(
σ2

θ

2
− γθ) x + c

)
+ η

∫ ∞
ln(1−θ)

fθ(z)H(xe−z, t)dz ,

with the initial condition H(·, 0) = 1(−∞,0). With a further substitution u = xe−z in the
market jump integral, we are able to apply numerical schemes to our problem.

The basic idea is to apply the FD method as for a standard initial value problem (or
parabolic PDE). That is, we discretize the derivatives using standard finite differences. For
the integrals (they integrate across space for a constant time), we substitute an integration
formula, for instance the composite trapezoidal rule (a formula that is of order 2). For
stability considerations, we discretize in time such that we obtain an implicit numerical
scheme.

The infinite domains of integration require specific numerical treatment. We restrict
the computation to the domain (−R,R) × (0, T ) for some R > 0. We use boundary
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conditions H(−R, t) = 1 and H(R, t) = 0 and approximate those parts of the integrals in
(4.16) outside (−R,R) for x > 0 by∫ −R

−∞
fY (x− y)H(y, t)dy ≈ F Y (x + R)

and for x < 0 and −R > x/(1− θ) (where we interpret x/(1− θ) = −∞ for θ = 1) by∫ −R

x/(1−θ)

−fθ(ln(x/u))
1

u
H(u, t)du ≈

∫ ln(−x/R)

ln(1−θ)

fθ(u)du = F
(
ln
(
1 + (− x

R
− 1)/θ

))
.

The localization error can be easily derived; see [57] for details.
The result of this discretization is a sequence of linear systems AH(i+1) = H(i) + b,

i = 0, . . . , n for some n ∈ N with H(0) = 1(−∞,0). In contrast to an ordinary parabolic
PDE, A is not a sparse but a dense matrix filled with entries from the two integrals.

Further details and extensions of the method (for instance an improved method of
order 2 using a BDF2 discretization in time) can be found in Seydel [57]. We computed
any of the illustrative results of Figure 4.1 using this improved FD method, comparing it
with the results of a Monte Carlo simulation for verification.
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Figure 4.1: Numerical solution of H(·, T ) = P (Qθ(T ) > ·) for T = 1 in comparison to a
Monte Carlo simulation (left: both solutions plotted, right: difference of both solutions)
for three values of θ (first line: θ = 0.1, middle line: θ = 0.5 and last line: θ = 0.9.
The following set of parameters has been used. Insurance model: premium rate c = 10,
standard exponential claim size Y , claims intensity λ = 5. Investment model: γ = 0.2,
σ = 0.4, the jump intensity is η = 3, a jump Z is centered normal with variance 0.09. For
the finite difference method we have used 800 x-grid points and 100 t-grid points.



Chapter 5

Discounted net loss process

Following long trandition in insurance, in this chapter we work with discounted losses.
From a mathematical point of view we want to work with a stationary process aiming
at a reasonable statistical risk assessment. Taking all this into account we introduce in
Section 5.1 the discounted net loss process. This process describes the total net loss (both
from insurance and investment) of the company, discounted to time 0. We derive certain
quantities like characteristic function and moments, and discuss the Markov structure and
the techniques for the simulation of the process. A key advantage of the process lies in the
fact that it has a natural embedded discrete-time skeleton. This enables us, in Section 5.2,
to give conditions under which the process has a stationary a.s. limit. In Section 5.3 we
investigate the tail behaviour of the stationary distribution. We find out that the model
carries a significant risk (heavy tails), driven eighter by large insurance claims or by the
investment losses.

5.1 Definition and basic properties

Definition 5.1.1. With the quantities introduced in Chapter 3 we define the discounted
net loss process (DNLP) by

Vθ(t) = u− e−Lθ(t)Uθ(t) =

∫ t

0

e−Lθ(v) (dS(v)− c dv) , t ≥ 0 . (5.1)

�

5.1.1 Characteristic function and moments of the DNLP

First we calculate the characteristic function, the moment functions and the autocovari-
ance function of the DNLP Vθ.

Lemma 5.1.2. For t ≥ 0 denote by v̂θ, t(s) = E[exp(isVθ(t))] and f̂(s) = E[eisY ], s ∈ R.
Then

v̂θ, t(s) = E

[
exp

(∫ t

0

(
λ(f̂(se−Lθ(v))− 1)− icse−Lθ(v)

)
dv

)]
.

47
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Moreover, the following moment representations hold.
(a) Assume that ϕ(1) < ∞. Then, for t ≥ 0, E[Vθ(t)] exists and

E[Vθ(t)] = (λµ− c)

∫ t

0

E
[
e−Lθ(v)

]
dv =

{
= c−λµ

ϕθ(1)
(1− etϕθ(1)) if ϕθ(1) 6= 0 ,

= (c− λµ)t if ϕθ(1) = 0 .
(5.2)

(b) Assume that ϕ(2) < ∞ and E[Y 2] = µ2 < ∞. Then for t ≥ 0, var(Vθ(t)) exists and

var(Vθ(t)) = λµ2

∫ t

0

E
[
e−2Lθ(v)

]
dv + (c− λµ)2

∫ t

0

∫ t

0

cov(e−Lθ(v), e−Lθ(w)) dw dv . (5.3)

(c) Assume that ϕ(2) < ∞ and E[Y 2] = µ2 < ∞. Then for 0 ≤ y ≤ t, cov(Vθ(y), Vθ(t))
exists and

cov(Vθ(y), Vθ(t)) = var(Vθ(y)) + (λµ− c)2

∫ t−y

0

E
[
e−Lθ(v)

]
dv

∫ y

0

cov(e−Lθ(v), e−Lθ(y)) dv .

Proof. To obtain the chf of the DNLP we apply Lemma 2.2.9. Setting Z(t) = S(t) − ct,

t ≥ 0, we obtain ΨZ(s) = λ(f̂(s) − 1) − ics, s ∈ R. Conditioning on the sample path of
L up to time t, and using the notation EL [E [·]] = E [E [· |L(v), v ∈ (0, t]]] for t ≥ 0, we
have by independence of L and S for s ∈ R,

v̂θ, t(s) = EL

[
E

[
exp

(
is

∫ t

0

e−Lθ(v)dZ(v)

)]]
= E

[
exp

(∫ t

0

ΨZ(se−Lθ(v))dv

)]
= E

[
exp

(∫ t

0

(
λ(f̂(se−Lθ(v))− 1)− icse−Lθ(v)

)
dv

)]
.

Then the moments of the process Vθ (if they exist, see Lemma 3.2.5(c)) can be ob-
tained by taking derivatives of the chf in 0. For the autocovariance function we also
need E

[
Vθ(y)e−Lθ(y)

]
. We apply (2.5) again and obtain

E
[
exp(isVθ(y)e−Lθ(y))

]
= E

[
exp

(∫ y

0

(
λ
(
f̂(se−Lθ(v)−Lθ(y))− 1

)
− isce−Lθ(v)−Lθ(y)

)
dv

)]
.

Taking the first derivative of this chf in 0 we obtain

E
[
Vθ(y)e−Lθ(y)

]
= (λµ− c)E

[∫ y

0

e−Lθ(v)−Lθ(y) dv

]
.

For the autocovariance function we calculate for 0 ≤ y < t

cov(Vθ(t), Vθ(y)) = E [Vθ(t)Vθ(y)]− E [Vθ(t)] E [Vθ(y)]

= E [Vθ(y)E [Vθ(t) | Fy]]− E [E [Vθ(t) | Fy]] E [Vθ(y)] .
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We calculate the conditional expectation

E[Vθ(t) | Fy] = E

[
Vθ(y) + e−Lθ(y)

∫ t

y

e−(Lθ(v)−Lθ(y)) dZ(v) | Fy

]
= Vθ(y) + e−Lθ(y)E

[∫ t

y

e−(Lθ(v)−Lθ(y)) dZ(v)

]
,

where the last equality holds by the independent increments of L. By the stationarity
increments property of L and Z we obtain∫ t

y

e−(Lθ(v)−Lθ(y)) dZ(v)
d
=

∫ t−y

0

e−Lθ(v) dZ(v)
d
= Vθ(t− y) ,

where the rv Vθ(t− y) is independent of Fy. Hence we can write

cov(Vθ(t), Vθ(y))

= var(Vθ(y)) + E [Vθ(t− y)]
(
E
[
Vθ(y)e−Lθ(y)

]
− E [Vθ(y)] E

[
e−Lθ(y)

])
= var(Vθ(y)) + (λµ− c)2E [Vθ(t− y)]

×
∫ y

0

(
E
[
X−1

θ (v)X−1
θ (y)

]
− E

[
X−1

θ (v)
]
E
[
X−1

θ (y)
])

dv ,

which implies (c).

Remark 5.1.3. Note that for ϕθ(1) < 0 we have limt→∞EVθ(t) = (λµ−c)/|ϕθ(1)|. Under
the net profit condition c−λµ > 0 the right hand side is negative. This can be interpreted
that in this situation the mean profit is positive. �

In Section 5.2 we will consider in more details the limit distribution of the DNLP when
the time horizon t goes to infinity.

5.1.2 Discrete time skeleton of the DNLP

Note that by (5.1) the SDE for the DNLP Vθ is

dVθ(t) = e−Lθ(t) (dS(t)− cdt) , t > 0, Vθ(0) = 0 ,

and by Theorem 2.2.1 and (3.4) for t > 0 for the jumps of the DNLP we have

∆Vθ(t) = eLθ(t)∆S(t) .

Hence, Vθ is not a time-homogeneous Markov process.
Anyway, it can be shown that the bivariate process (Vθ(t), Lθ(t))t≥0 is a time-homogeneous

Markov process.

Lemma 5.1.4. Let the process Vθ be defined as in (5.1) and Lθ is the Lévy process de-
fined in (3.4). Then the bivariate process (Vθ(t), Lθ(t))t≥0 is a time-homogeneous Markov
process.
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Proof. For a fixed time t ≥ 0 consider the bivariate process Z = (Z(s))s≥0 defined by

Z(s) = (Vθ(t + s)− Vθ(t), Lθ(t + s)− Lθ(t))

=

(∫ t+s

t+

e−Lθ(v) d(S(v)− cv), Lθ(s + t)− Lθ(t)

)
=

(
e−Lθ(t)

∫ t+s

t+

e−(Lθ(v)−Lθ(t)) d(S(v)− cv), Lθ(s + t)− Lθ(t)

)
.

Due to the stationary and independence increments of the Lévy processes we obtain

Z(s)
d
=

(
e−Lθ(t)

∫ s

0

e−
eLθ(v) d(S(v)− cv), L̃θ(s)

)
,

where L̃θ is an independent copy of Lθ. Therefore Z and Ft = σ(Lθ(v), S(v), v ≤ t)
are conditionally independent given (Vθ(t), Lθ(t)), which proves the Markov property.
The time-homogenity follows from the fact that the Lévy processes Lθ and S are time-
homogeneous.

An interesting property of the DNLP is its diskrete time skeleton, which will prove

useful in the sequel. Let Tj
d
=
∑j

k=1 Ek, j ∈ N, be the claim arrival times, where (Ek)k∈N
is a sequence of iid exponentially distributed rv’s with parameter λ. We denote by E a
generic rv of (Ek)k∈N. Recall that Y is a generic claim size. This allows us to introduce a
natural discretization of the continuous time process Vθ given by (Vθ(Tk))k∈N0 . We denote
by

(Aθ, Bθ) =

(
Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv , e−Lθ(E)

)
. (5.4)

Proposition 5.1.5. Set T0 = 0 and note that N(Tk) = k. For k ∈ N define

Aθ,k =

∫ Tk

Tk−1

e−(Lθ(v)−L(Tk−1))(dS(v)− cdv) ,

Bθ,k = e−(Lθ(Tk)−Lθ(Tk−1)) .

(a) Then ((Aθ,k, Bθ,k))k∈N is a sequence of iid bivariate rv’s with the same distribution
as the vector in (5.4).

(b) Define (Vθ,k)k∈N0 by the following backward stochastic recurrence equation

Vθ,0 = 0 and Vθ,k =
k∑

m=1

Aθ,m

m−1∏
j=1

Bθ,j , k ∈ N . (5.5)

Then, Vθ(Tk) = Vθ,k for all k ∈ N.

Proof. (a) is an immediate consequence of the stationary and independent increments of
Lévy processes.
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(b) For k ∈ N we have

Vθ(Tk) =

∫ Tk

0

e−Lθ(v) (dS(v)− cdv)

=

∫ Tk−1

0

e−Lθ(v) (dS(v)− cdv) +

∫ Tk

Tk−1

e−Lθ(v) (dS(v)− cdv)

= Vθ(Tk−1) + e−Lθ(Tk−1)

∫ Tk

Tk−1

e−(Lθ(v)−Lθ(Tk−1)) (dS(v)− cdv)

= Vθ(Tk−1) +
k−1∏
j=1

e−(Lθ(Tj)−Lθ(Tj−1))

∫ Tk

Tk−1

e−(Lθ(v)−Lθ(Tk−1)) (dS(v)− cdv)

= Vθ(Tk−1) + Aθ,k

k−1∏
j=1

Bθ,j .

We have used that for any Lévy process the stationary and independent increments prop-
erty also holds for the random time intervals defined by (Tj)j∈N. Equation (5.5) follows
then by iteration.

The first application of the discrete time skeleton of the DNLP is towards the sim-
ulation of the process. Due to Proposition 5.1.5, we can simulate the DNLP at random
discrete times, provided we can simulate the bivariate rv (Aθ, Bθ) defined in (5.4). This
can be done only if we are able to simulate a sample path of the Lévy process Lθ, which
may not always be possible, see Section 3.5.

We use the following algorithm:

1. Simulate an exponential random variable E with parameter λ – the claim interarrival
time.

2. Simulate a claim Y .

3. Compute

(Aθ, Bθ) =

(
Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv , e−Lθ(E)

)
. (5.6)

�
Repeating the above algorithm, we may simulate the discrete time skeleton of the

DNLP using its backward stochastic recurrence equation (5.5). This method will allow us
to draw an approximate sample path of the process. Whenever we are not interested in
simulating a sample path, but rather in distributional properties of the DNLP, we may
use the corresponding forward stochastic recurrence equation. We apply this method in
the following example.

Example 5.1.6. [Simulation of the DNLP]
We aim at investigating some distributional properties of the DNLP given by

Vθ(t) =

∫ t

0

e−Lθ(v) (dS(v)− cdv) , t ≥ 0 ,
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Figure 5.1: Sample path of Ṽθ for θ = 0.4, 0.8, the parameters are from Example 5.1.6.

with the following parameters:

- total insurance claims process: S(t) =
∑N(t)

j=1 Yj, Y ∼ LOGN (−0.01,0.124) (log-
normally distriburted claims), claim intensity λ = 0.1 and premium rate c = 0.1;

- risky investment: L - Brownian motion with mean γ = 0.08 and standard deviation
σ = 0.35;

- riskless interest rate δ = 0.04;

We simulate (Ṽ k
θ )n

k=1 with n = 10000 using the FSRE (Ṽ k
θ

d
= Vθ(Tk))

Ṽ 0
θ = 0 , Ṽ k

θ =
k∑

m=1

Am
θ

k∏
j=m+1

Bj
θ , k ∈ N .

In Figure 5.1 we show sample paths of (Ṽθ)k∈N0 for θ = 0.4, 0.8. Note that the higher
the investment strategy θ (the more risky strategy) leads to larger jumps of the process.
This is demonstrated also in Figure 5.2, where histograms of the simulated data for
θ = 0, 0.4, 0.6 and 1 are compared.

�

5.2 Stationarity of the DNLP

We are interested in possible stationarity of the discounted net loss process Vθ defined
in 5.1. The following example is well-known in the case of c = 0. For a pure bond strategy,
i.e. when θ = 0, the DNLP converges to a rv with finite left endpoint, when the time goes
to infinity. In particular, when the insurance claims are exponentially distributed, the
discounted net loss process converges to a gamma distribution.

Example 5.2.1. [Pure bond strategy]
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Figure 5.2: Histogram of Ṽθ for θ = 0, 0.4, 0.6, 1, the parameters are from Example 5.1.6.
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For θ = 0 we have Lθ(t) = δt. Then for s ∈ R we get

E
[
eisV0(t)

]
=

[
exp

(
λ

∫ t

0

(
E exp

(
ise−δvY

)
− 1
)

dv

)
exp

(
−isc

∫ t

0

e−δv dv

)]
=

[
exp

(
λ

δ

∫ 1

e−δt

(
E exp

(
ise−δvY

)
− 1
) 1

y
dv

)
exp

(
isc

e−δt − 1

δ

)]
→ exp

(
λ

δ

∫ 1

0

(
EeisyY − 1

) 1

y
dy

)
e−isc/δ , t →∞ .

Denote by V ∞0 the stationary rv. From the limit result above follows that V ∞0 can be
decomposed to V ∞0 = V ∞0,+ − c/δ where the random variable V ∞0,+ is a.s. positive. From
this follows that the stationary rv V ∞0 has no left tail and its left endpoint is −c/δ.

Assume that the claims are exponentially distributed with density f(y) = e−y/µ/µ, y > 0,

and chf f̂(s) = EeisY = (1− isµ)−1, s ∈ R; then we get for s ∈ R

lim
t→∞

E
[
eisV0(t)

]
= exp

(
λ

δ

∫ 1

0

(
1

1− isµy
− 1

)
1

y
dy

)
e−isc/δ

= e−isc/δ (1− isµ)−λ/δ .

We recognise (1− isµ)−λ/δ as the chf of a gamma distributed rv X
d
= Γ(λ

δ
, 1

µ
) with density

fX(x) = µ−λ/δx−1+(λ/δ)e−x/µ/Γ(λ/δ), x > 0. Consequently, we have shown that

V0(t)
d→ V ∞0

d
= Γ(

λ

δ
,
1

µ
)− c

δ
, t →∞ .

For c = 0 this is a well known result, see e.g. the introduction in Nilsen and Paulsen [48]
and references therein. �

We now turn to the discounted net loss process for investment strategies θ > 0. As
this process is an exponential functional of a Lévy process and fits in the framework
of generalized OU processes, and Lθ and S are independent processes, the NASCs of
Proposition 2.4 of Lindner and Maller [44] apply to our situation. Whenever L(t) → ∞
a.s. and the tail F (x) = 1− F (x), x > 0, of the claim size distribution decreases to 0 not
too slowly, then there exists a finite rv V ∞, c

θ such that

Vθ(t)
a.s.→ V ∞, c

θ , t →∞ . (5.7)

Unfortuntely, for very few examples the stationary distribution is known. The following
examples can be found in Carmona, Petit and Yor [9]. We present them in terms of our
insurance application.

Example 5.2.2. [Geometric Brownian motion as risky investment process and small
claims; continuation of Example 3.5.1]
Let the risky asset be modeled by a geometric Brownian motion. Then, according to
Example 3.5.1, the resulting investment process is also geometric Brownian motion with
parameters γθ and σθ given in (3.25). When the claims of a portfolio are sufficiently small,
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it is possible to approximate the total claim amount process by Brownian motion. We
consider this situation and take (S(t)− ct)t≥0 as Brownian motion with drift λµ− c < 0
and variance λµ. Then V ∞,c

θ follows a Pearson type IV distribution with density

f(x) = const. (1 + x2)−(γθ/σ2
θ)+1/2 exp

(
− 2

σθ

c− λ√
λµ

arctan x

)
, x ∈ R . �

Example 5.2.3. [Geometric Brownian motion as risky investment process, exponential
claims and no premiums; continuation of Example 3.5.1]
Let the risky asset be modeled by a geometric Brownian motion and γθ and σθ be given
by (3.25). Assume that c = 0 and that the insurance claims are exponentially distributed
with mean µ. Then it is shown in Nilsen and Paulsen [48] that

V ∞,c
θ

d
=

X

Z
,

where X ∼ Γ(b, 1
µ
) with density fX(x) = µ−bxb−1e−x/µ/Γ(b), x > 0, and is independent of

Z, which is beta distributed with density

fZ(x) =
Γ(a + b + 1)

Γ(a)Γ(b + 1)
xa−1(1− x)b−1 , 0 < x < 1 ,

where

a =
2γθ

σ2
θ

and b =
γθ

σ2
θ

(√
1 +

2λσ2
θ

γ2
θ

− 1

)
.

Straightforward calculations show that the density of 1/Z

f1/Z(x) ∼ Γ(a + b + 1)

Γ(a)Γ(b + 1)
x−a−1 , x →∞ .

Hence the corresponding distribution tail

F 1/Z(x) ∼ Γ(a + b + 1)

a Γ(a)Γ(b + 1)
x−a , x →∞ .

On the other hand, the rv X has light right tail and is independent of Z. Consequently,
by Breiman’s classical result

P (V ∞,c
θ > x) ∼ const. x−a , x →∞ ,

with a as above. This will be confirmed by our result in Theorem 5.3.6; see also Exam-
ple 5.3.8 below. �

For more general models the theory of discrete and continuous time perpetuities can
provide at least the tail behaviour of such models. The advantage of our model lies in
the fact that it has a natural discrete time skeleton, given by the sequence (Vθ,k)k∈N0

as introduced in Proposition 5.1.5. This discretization of the DNLP allows us to apply
standard methods from the theory of stochastic recurrence equations, see for example
Kesten [36] and Goldie [27].
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For the the discrete time process given by the sequence (Vθ,k)k∈N0 as defined in (5.5)
Goldie and Maller [29] derive NASCs for stationarity; see their Theorem 2.1. In our
insurance context it is, however, more natural to work with moment conditions, which are
slightly weaker. They are stated and discussed in Corollary 4.1 of [29], where also precise
references to earlier work can be found, see also conditions (2.9) in Proposition 2.3.1.
In the next lemma we show that these conditions are satisfied in our model under weak
conditions. Recall the notation for the Laplace exponents ϕ and ϕθ in (3.5).

Lemma 5.2.4. Assume that E[Y ] = µ < ∞, E[L(1)] > 0 and ϕθ(1) < λ. Then for all
θ ∈ [0, 1] for the rv’s Aθ and Bθ defined in (5.4) holds

(a) E
[
log+ |Aθ|

]
≤ λµ + c

λ− ϕθ(1)
< ∞ ;

(b) −∞ ≤ E [log |Bθ|] = − 1
λ
E[Lθ(1)] < 0 .

Proof. We first prove (b). From Lemma 3.2.5(b) we know that E[Lθ(1)] > 0. Further,
as E[Lθ(1)] < ∞, then E[Lθ(t)] = tE[Lθ(1)] (see Sato [56], E25.12, Formula (25.7) at
p. 163). Then we obtain

E[log |Bθ|] = −E[Lθ(E)] = −λ

∫ ∞
0

E[Lθ(z)]e−λz dz = −E[Lθ(1)]

λ
< 0 .

For the proof of (a) we use the fact that for any a.s. positive rv X holds log X < X a.s.
and max(0, log X) ≤ X; hence E[max(0, log X)] ≤ E[X]. Then we estimate

E[log+ |Aθ|] = E

[
log+

∣∣∣∣Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv

∣∣∣∣]
≤ E

[∣∣∣∣Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv

∣∣∣∣] ≤ µE
[
e−Lθ(E)

]
+ cE

[∫ E

0

e−Lθ(v) dv

]
.

Now for the first summand we calculate

E
[
e−Lθ(E)

]
= λ

∫ ∞
0

eϕθ(1)ze−λz dz =
λ

λ− ϕθ(1)
< ∞ ,

as ϕθ(1) < λ. For the second summand we write

E

[∫ E

0

e−Lθ(v) dv

]
= λ

∫ ∞
0

(∫ z

0

evϕθ(1)dv

)
e−λz dz .

If ϕθ(1) = 0, then the last term is equal to 1/λ < ∞. If ϕθ(1) 6= 0, then, as ϕθ(1) < λ, we
have

λ

∫ ∞
0

(∫ z

0

evϕθ(1)dv

)
e−λz dz =

λ

ϕθ(1)

∫ ∞
0

e−z(λ−ϕθ(1))dz − 1

ϕθ(1)
=

1

λ− ϕθ(1)
< ∞ .
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With Lemma 5.2.4 we obtain the following result for the convergence of the DNLP as
the time goes to infinity.

Theorem 5.2.5. Assume that E[Y ] = µ < ∞, E[L(1)] > 0 and ϕθ(1) < λ. Let the
discrete time process (Vθ,k)k∈N0 be defined as in (5.5).
(a) Then

Vθ,k
a.s.→ V ∞θ =

∞∑
m=1

Aθ,m

m−1∏
j=1

Bθ,j , k →∞ , (5.8)

where the series on the rhs converges absolutely with probability 1.
Moreover, V ∞θ satisfies the identity in law

V ∞θ
d
= Aθ + BθV

∞
θ , (5.9)

where V ∞θ and (Aθ, Bθ) are independent.
(b) Let the discounted net loss process (Vθ(t))t≥0 be defined by equation (5.1). Then Vθ(t)
converges a.s. if and only if Vθ,k does and

V ∞θ = V ∞,c
θ a.s. . (5.10)

Proof. (a) Stationarity of the discrete time process (Vθ,k)k∈N is usually proved via the
corresponding backward stochastic recurrence equation, see Proposition 2.3.1. In order
to prove (5.9) we introduce the rv’s Ṽθ,k for k ∈ N0 invoking the same iid sequence
((Aθ,k, Bθ,k))k∈N as above:

Ṽθ,0 = 0 and Ṽθ,k = Aθ,k + Ṽθ,k−1Bθ,k =
k∑

m=1

Aθ,m

k∏
j=m+1

Bθ,j , k ∈ N .

We observe that for every k ∈ N

((Aθ,j, Bθ,j))1≤j≤k
d
= ((Aθ,k−j+1, Bθ,k−j+1))1≤j≤k ,

implying that
k∑

m=1

Aθ,m

m−1∏
j=1

Bθ,j
d
=

k∑
m=1

Aθ,m

k∏
j=m+1

Bθ,j ,

hence Vθ,k
d
= Ṽθ,k for all k ∈ N. The result goes back to Kesten [36] (see his Theorem 5);

see also Proposition 2.3.1 which states the result with proof.

(b) Consider the continuous time process Vθ.

Vθ(t)
a.s.
=

∫ TN(t)

0

e−Lθ(v)(dS(v)− cdv) +

∫ t

TN(t)

e−Lθ(v)(dS(v)− cdv)

= Vθ,N(t) + e−Lθ(TN(t))

∫ t

TN(t)

e−(Lθ(v)−Lθ(TN(t))) (dS(v)− cdv) ,

where in the last line the integral is independent of the first summand. As N(t)
a.s.→ ∞

when t → ∞, we know from part (a) that Vθ,N(t)
a.s.→ V ∞θ when t → ∞.Moreover, as
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E[L(1)] > 0, we have by Lemma 3.2.5(b) that E[Lθ(1)] > 0 and hence e−Lθ(TN(t))
a.s.→ 0

when t →∞. Finally, as t− TN(t)
d
= E, the last integral is a finite random variable. This

implies (5.10).

5.3 Tail behaviour of the a.s. limit of the DNLP

From now on in most of our results we exclude the pure bond strategy and assume that
θ ∈ (0, 1]. Moreover, we assume that the conditions of Theorem 5.2.5 hold. Then the
stationary random variable V ∞θ exists and satisfies the fix point equation (5.9). As we
are interested in distributional properties of V ∞θ we can work with the continuous time
process or with the discrete skeleton process as they both lead to the same a.s. limit.

Our next goal is the tail behaviour of V ∞θ . To this end we start with some preliminary
results on Laplace transforms.

Lemma 5.3.1. Let θ ∈ (0, 1] and assume that 0 < E[L(1)] < ∞, and either σ > 0 or
ν((−∞, 0)) > 0. Define V∞ = {s ≥ 0 : ϕ1(s) < ∞}.

(a) For every θ ∈ (0, 1), then there exists a unique positive κ = κ(θ) > 0 such that
ϕθ(κ) = 0. Moreover, ϕ′θ(κ) ∈ (0,∞) and

κ(θ)


> 1 ifϕθ(1) < 0 ,

= 1 if ϕθ(1) = 0 ,

< 1 if ϕθ(1) ∈ (0, λ) .

(5.11)

If in addition v∗1 = supV∞ /∈ V∞, then there exists a unique positive κ = κ(1) > 0 such
that ϕ1(κ) = ϕ(κ) = 0.

(b) Assume that δ < ϕ(−1). Then the function κ(θ) as defined in (a) is decreasing
in θ.

Proof. (a) For θ < 1 we set p = log((1 + θ−1(e− 1)) > 0, q = −∞, if θ−1(1− e−1) ≥ 1,
and q = log(1 + θ−1(e−1 − 1)) < 0, if θ−1(1− e−1) < 1. Then∫

|x|≥1

e−sxνθ(dx) =

∫
| log(1+θ(ex−1))|≥1

(1 + θ(ex − 1))−sν(dx)

=

∫ q

−∞
(1 + θ(ex − 1))−sν(dx) +

∫ ∞
p

(1 + θ(ex − 1))−sν(dx)

≤ (1− θ)−s

∫ q

−∞
ν(dx) + e−s

∫ ∞
p

ν(dx) < ∞ .

By Proposition 3.14 in Cont and Tankov [10] follows that for all θ < 1 ϕθ(s) < ∞ for all
s ∈ R+. On the other hand, for θ ∈ (0, 1] we have

E
[
e−sLθ(1)

]
= P (Lθ(1) < 0)E[e−sLθ(1) |Lθ(1) < 0] + P (Lθ(1) ≥ 0)E[e−sLθ(1) |Lθ(1) ≥ 0]

≥ P (Lθ(1) < 0)E[e−sLθ(1) |Lθ(1) < 0)] .
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Note that lims→∞E[e−sLθ(1) |Lθ(1) < 0] = ∞. Since by Lemma 3.2.6 holds P (Lθ(1) <
0) > 0, for θ ∈ (0, 1] we have

lim
s→∞

E
[
e−sLθ(1)

]
= lim

s→∞
eϕθ(s) = ∞ . (5.12)

Then the existence of κ(θ) for θ ∈ (0, 1) follows from the convexity of ϕθ(s) in s and the
fact that ϕθ(0) = 0, ϕ′θ(0) = −E[Lθ(1)] ∈ (−∞, 0) (see Lemma 3.2.5 (a) and (b)) and
ϕθ(s) < ∞ for all s ∈ R+.
The same arguements guarantee the existence of κ(1) (the case when θ = 1) if v∗ = ∞.
If v∗ < ∞, the existence of κ(1) follows straightforward from the convexity of ϕ1(s) and
the fact that lims→v∗ ϕ1(s) = ∞.

(b) First recall that by Lemma 3.2.5(d) for any fixed s > 0 the function ϕ(θ, s) = ϕθ(s)
is convex in θ. Consider 0 ≤ θ1 < θ2 ≤ 1. We shall show that κ(θ1) > κ(θ2) > 0. To this
end fix s = κ(θ2) and consider its corresponding value θ∗(s) = argminθ ϕ(θ, s). Assume
first that θ∗(κ(θ2)) ≥ θ2. Then ϕ(θ, κ(θ2)) is decreasing in [0, θ2) and hence

0 = ϕ(θ2, κ(θ2)) ≤ ϕ(0, κ(θ2)) = −δκ(θ2) < 0 ,

which is a contradiction. Hence θ∗(κ(θ2)) < θ2. So for θ ∈ [0, θ∗(κ(θ2)) ), the function
ϕ(θ, κ(θ2)) is decreasing in θ and for θ ∈ (θ∗(κ(θ2)), 1], the function ϕ(θ, κ(θ2)) is in-
creasing in θ. Next consider θ1 < θ∗(κ(θ2)). This implies

ϕ(θ1, κ(θ2)) < ϕ(0, κ(θ2)) < 0 = ϕ(θ1, κ(θ1)) ,

which – by convexity of ϕ(θ, s) in s (for fixed θ) – implies that κ(θ1) > κ(θ2). Assume
now that θ∗(κ(θ2)) ≤ θ1 < θ2, where ϕ(θ, s) is increasing in θ. Then

ϕ(θ1, κ(θ2)) < ϕ(θ2, κ(θ2)) = 0 = ϕ(θ1, κ(θ1)) ,

hence, again by convexity of ϕ(θ, s) in s, we obtain κ(θ1) > κ(θ2). This completes the
proof.

5.3.1 Claims with finite moment of order κ

To the end of Section 5.3 we fix the investment strategy θ ∈ (0, 1]. The next lemma
concerns properties of the following Laplace exponent

lθ(s) = log E[e−sLθ(E)] = log E[Bs
θ ] = log

λ

λ− ϕθ(s)
. (5.13)

First note that lθ(s) < ∞ on Sθ = {v ≥ 0 : ϕθ(v) < λ} and supSθ /∈ Sθ.

Lemma 5.3.2. Let the conditions of Lemma 5.3.1 hold and κ = κ(θ) ∈ (0,∞) be the
unique value satisfying ϕθ(κ) = 0. Then the following hold.
(a) lθ is strictly convex and continuously differentiable on the interior of Sθ and lθ(κ) = 0.
(b) There exists β = β(θ) > 0 such that lθ(κ + β) < ∞.
(c) l′θ(κ) ∈ (0, ∞) and P (Bθ > 1) > 0.
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Proof. (a) follows as in Lemma 5.3.1 and by definition of κ.
For (b) we note that from ϕθ(0) = ϕθ(κ) = 0 and strict convexity of ϕθ(s) in s follows
that ϕθ(s) < 0 for s ∈ (0, κ). As λ > 0, there exist b ∈ (0, λ) and β > 0, such that
ϕθ(κ + β) = b < λ. Hence, for this β > 0 we have lθ(κ + β) < ∞.
The first part of (c) follows from l′θ(κ) = λ−1ϕ′θ(κ) ∈ (0, ∞) as ϕ′θ(κ) ∈ (0, ∞), see
Lemma 5.3.1(a).
For the second part of (c) we use continuity in probability of Lévy processes. Since
P (Lθ(1) < 0) > 0, there exist η, ε > 0, such that for t ∈ (1 − ε, 1 + ε) we have
P (Lθ(t) < 0) ≥ η. Then

P (Bθ > 1) = P (Lθ(E) < 0) ≥ λ

∫ 1+ε

1−ε

P (Lθ(z) < 0)e−λzdz ≥ ηλ

∫ 1+ε

1−ε

e−λzdz > 0 .

Now we can show the following result, which is needed to apply Theorem 2.3.3.

Lemma 5.3.3. Let the conditions of Lemma 5.3.1 be satisfied and κ = κ(θ) ∈ (0,∞) be
the unique value satisfying ϕθ(κ) = 0. Then

(a) E [Bκ
θ ] = 1;

(b) E
[
Bκ

θ log+ Bθ

]
< ∞;

(c) if E [Y q] < ∞ for some q ≥ 1, then E
[
|Aθ|min(q,κ) ] < ∞.

Proof. From (5.13) we know that E [Bs
θ ] = elθ(s), hence (a) follows directly from the

definition of κ(θ) as in Lemma 5.3.2.
To prove (b) first note that

E
[
Bκ

θ log+ Bθ

]
= E

[
e−κLθ(E) max(0, log e−Lθ(E))

]
= −E

[
Lθ(E)e−κLθ(E)1{Lθ(E)≤0}

]
.

Using Lemma 5.3.2(c) and the fact that E [Bκ
θ ] = 1, we calculate

−E
[
Lθ(E)e−κLθ(E)

]
=

d

ds
E[Bs

θ ]|s=κ =
d

ds
log E[Bs

θ ]|s=κ = l′θ(κ) < ∞ .

On the other hand

E
[
Lθ(E)e−κLθ(E)

]
= E

[
Lθ(E)e−κLθ(E)1{Lθ(E)≤0}

]
+ E

[
Lθ(E)e−κLθ(E)1{Lθ(E)>0}

]
.

So we can write

−E
[
Lθ(E)e−κLθ(E)1{Lθ(E)≤0}

]
= l′θ(κ) + E

[
Lθ(E)e−κLθ(E)1{Lθ(E)>0}

]
Now as κ > 0, for a positive rv X we have that κX ≤ eκX a.s., or Xe−κX ≤ κ−1 a.s.,
hence

E
[
Lθ(E)e−κLθ(E)1{Lθ(E)>0}

]
≤ 1

κ
P (Lθ(E) > 0) ≤ 1

κ
< ∞ .
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To prove (c) we consider two cases.
Assume first that κ ≤ 1 ≤ q and observe that then ϕθ(1) ≥ 0. As the function f(x) = xκ

is concave on R+, |x + y|κ ≤ |x|κ + |y|κ for any x, y ∈ R. Hence we estimate

E [|Aθ|κ] = E

[∣∣∣∣Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv

∣∣∣∣κ]
≤ E

[(
Y e−Lθ(E)

)κ]
+ cκE

[(∫ E

0

e−Lθ(v) dv

)κ]
.

The first term on the rhs of the inequality is finite as E[Y κ] < ∞ and E[e−κLθ(E)] = 1
and both rv’s are independent. For the second term Jensen’s inequality yields

E

[(∫ E

0

e−Lθ(v) dv

)κ]
= λ

∫ ∞
0

E

[(∫ z

0

e−Lθ(v) dv

)κ]
e−λz dz

≤ λ

∫ ∞
0

(∫ z

0

E
[
e−Lθ(v)

]
dv

)κ

e−λz dz = λ

∫ ∞
0

(∫ z

0

evϕθ(1) dv

)κ

e−λz dz .

If ϕθ(1) = 0 then the last term is equal to E[Eκ] < ∞ as E is exponentially distributed.
If ϕθ(1) 6= 0, then we have

λ

∫ ∞
0

(∫ z

0

evϕθ(1) dv

)κ

e−λz dz =
λ

ϕκ
θ (1)

∫ ∞
0

(
ezϕθ(1) − 1

)κ
e−λz dz

≤ λ

ϕκ
θ (1)

∫ ∞
0

e−z(λ−κϕθ(1)) dz < ∞ ,

provided that ϕθ(1) < λ/κ, which is satisfied for ϕθ(1) < λ as κ ≤ 1.

Now assume that g = min(κ, q) > 1. Then the function f(x) = xg is convex. First use in
the second inequality below Jensen’s inequality

E [|Aθ|g] = E

[∣∣∣∣Y e−Lθ(E) − c

∫ E

0

e−Lθ(v)dv

∣∣∣∣g]
≤ E

[(
Y e−Lθ(E) − c

∫ E

0

e−Lθ(v)dv

)g]
≤ 2g−1

(
E
[
Y ge−gLθ(E)

]
+ cgE

[(∫ E

0

e−Lθ(v)dv

)g])
. (5.14)

Now again from Jensen’s inequality for the second expectation in (5.14) we have

E

[(∫ E

0

e−Lθ(v)dv

)g]
= λ

∫ ∞
0

E

[(∫ z

0

e−Lθ(v)dv

)g]
e−λzdz

≤ λ

∫ ∞
0

zg−1

∫ z

0

E
[
e−gLθ(v)

]
dv e−λzdz ≤ λ

∫ ∞
0

zg−1z e−λzdz = E [Eg] < ∞ ,(5.15)

as E[e−gLθ(v)] ≤ 1. For the first expectation in (5.14) we have

E
[
Y ge−gLθ(E)

]
= E[Y g]E[Bg

θ ] < ∞

by part (a), and the proof is completed.
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Theorem 2.3.3 guarantees under natural conditions, which hold by Lemma 5.3.3, that
V ∞θ has a heavy left or right tail. In the context of risk management, however, only the
right tail is of prime interest. Invoking the theory of large deviations as suggested in the
context of ruin theory by Nyrhinen [49] gives us a method to decide about right and left
tails separately. Lemma 5.3.4 is a large deviations result. We largely follow Nyrhinen [49]
with adaptations to our situation.

Lemma 5.3.4. Let the conditions of Lemma 5.3.1 hold and κ = κ(θ) ∈ (0,∞) be the
unique positive value satisfying ϕθ(κ) = 0. Assume also that Y has unbounded support
and that E[Y ] < ∞. Then

lim inf
x→∞

log P (V ∞θ > x)

log x
≥ −κ(θ) and lim inf

x→∞

log P (V ∞θ < −x)

log x
≥ −κ(θ) . (5.16)

�

Before starting with the proof, we introduce some notation first. Set

m(θ) = l′θ(κ(θ)) . (5.17)

For d ∈ (0, 1/m(θ)), ε′ > 0 and n ∈ N define the subsets Dn = Dn(d, ε′) and En =
En(d, ε′) of Ω by

Dn =
{

ω ∈ Ω :
∣∣∣ 1
n

dαne∑
j=1

log Bθ,j − αm(θ)
∣∣∣ ≤ ε′ , 0 < α ≤ 1/m(θ)− d

}
,

En =
{
ω ∈ Ω : |Aθ,j| ≤ eε′n , j = 1, . . . , d(1/m(θ)− d)ne

}
.

(5.18)

The following lemma is the key for the proof of Lemma 5.3.4.

Lemma 5.3.5. Let the conditions of Lemma 5.3.1 hold and κ = κ(θ) ∈ (0,∞) be the
unique value satisfying ϕθ(κ) = 0. Let also EY < ∞. Then for any d ∈ (0, 1/m(θ)) there
exists some ε′ > 0 such that

lim inf
n→∞

log P (Dn(d, ε′) ∩ En(d, ε′))

n
≥ −κ(θ) . (5.19)

Proof. Recall that under the probability measure P the sequence ((Aθ,k, Bθ,k))k∈N con-
sists of iid random vectors all distributed like (Aθ, Bθ) as defined in (5.4). Define a new
probability measure Q by

dQ(y1, y2) = y
κ(θ)
2 dP (y1, y2) ,

for (y1, y2) ∈ R2 and such that ((Aθ,k, Bθ,k))k∈N is again a sequence of iid random vectors
with respect to Q. We denote by EQ the expectation under Q. Then, for k ∈ N and any
measurable function f : R2k → R we have

E [f((Aθ,1, Bθ,1), . . . , (Aθ,k, Bθ,k))]

=

∫
Rk

∫
(0,∞)k

f((y1
1, y1

2), . . . , (y
k
1 , yk

2)) dP (y1
1, y1

2) · · · dP (yk
1 , yk

2)

=

∫
Rk

∫
(0,∞)k

f((y1
1, y1

2), . . . , (y
k
1 , yk

2)) (y1
2)
−κ(θ)dQ(y1

1, y1
2) · · · (yk

2)
−κ(θ)dQ(yk

1 , yk
2)

= EQ

[( k∏
j=1

Bθ,j

)−κ(θ)

f((Aθ,1, Bθ,1), . . . , (Aθ,k, Bθ,k))

]
. (5.20)
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Take ε′′ ∈ (0, ε′). Then, using (5.20) and the definition of Dn we estimate

P (Dn(d, ε′) ∩ En(d, ε′))

≥ P (Dn(d, ε′′) ∩ En(d, ε′′)) = E
[
1{Dn(d, ε′′)∩En(d, ε′′)}

]
= EQ

[
eκ(θ)(− log Bθ,1−···−log Bθ,d(1/m(θ)−d)ne)1{Dn(d, ε′′)∩En(d, ε′′)}

]
≥ e−κ(θ)n(ε′′+1−m(θ)d)Q(Dn(d, ε′′) ∩ En(d, ε′′)) .

As 0 < m(θ)d < 1, from the above inequality follows that

log P (Dn(d, ε′) ∩ En(d, ε′))

n
≥ −κ(θ)(1 + ε′′) +

log Q(Dn(d, ε′′) ∩ En(d, ε′′))

n
.

Then, if we show that

lim
n→∞

Q(Dn(d, ε′′) ∩ En(d, ε′′)) = 1 , (5.21)

we obtain (5.19) after letting ε′′ → 0. For the proof of (5.21) it is sufficient to show that

lim
n→∞

Q(Dn(d, ε′′)) = 1 and lim
n→∞

Q(En(d, ε′′)) = 1 . (5.22)

We start with the lhs of (5.22). Note that by Lemma 5.3.2(b) there exists some s in a
neighborhood of 0 such that

EQ [Bs
θ ] = E

[
B

s+κ(θ)
θ

]
< ∞ .

This implies for such s

EQ [Bs
θ ] =

d

ds
(log EQ [Bs

θ ])|s=0 =
d

ds

(
log E

[
B

s+κ(θ)
θ

])
|s=0

=
d

ds
(log E [Bs

θ ])|s=κ(θ) = l′θ(κ(θ)) = m(θ) .

From the above follows that for the sum Sn = log Bθ,1 + · · · + log Bθ,n the SLLN holds
under the measure Q, i.e.

Sn

n

PQ a.s.
→ m(θ) , n →∞ .

For x > 0 we have xn/ dxne → 1 as n →∞, hence for 0 < α ≤ 1/m(θ)− d we obtain

Sdαne

n

PQ a.s.
→ αm(θ) , n →∞ ,

from which follows the lhs of (5.22), i.e.

Q(Dn(d, ε′′)) = Q
(∣∣Sdαne/n− αm(θ)

∣∣ ≤ ε′′ , 0 < α ≤ 1/m(θ)− d
)
→ 1 , n →∞ .

To show the rhs of (5.22) first note that, if E[Y ] < ∞, then Lemma 5.3.3(c) implies that
E[|Aθ|min(1,κ)] < ∞. Second, by Hölder’s inequality, for p, q > 0 satisfying 1

p
+ 1

q
= 1 we

get for some s > 0

EQ [|Aθ|s] = E [Bκ
θ |Aθ|s] ≤ (E [Bκp

θ ])1/p (E [|Aθ|sq])1/q
.
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We can choose p > 1 such that κp < κ+β, where β > 0 is as in Lemma 5.3.2(b) and s′ > 0
such that s′q < min(κ, 1). In other words, Hölder’s inequality guarantees the existence of
some s′ > 0, such that

EQ[|Aθ|s
′
] < ∞ .

Then for this s′ > 0 we estimate

EQ

[
|Aθ|s

′
]
≥ EQ

[
|Aθ|s

′
1{|Aθ| ≥ eε′′n}

]
≥ es′ε′′nQ(|Aθ| ≥ eε′′n) . (5.23)

Furthermore, for this s′ > 0, using that (Aθ,j)j∈N is a sequence of iid rv’s and by (5.23),
we have

Q(En(d, ε′′)) = Q
(
|Aθ,j| ≤ eε′′n , j = 1, . . . , d(1/m(θ)− d)ne

)
= 1− d(1/m(θ)− d)neQ(|Aθ| > eε′′n)

≥ 1− d(1/m(θ)− d)ne e−s′ε′′nEQ

[
|Aθ|s

′
]

.

Now, as EQ[|Aθ|s
′
] < ∞, after letting in the last expression n → ∞, we get the rhs of

(5.22). This completes the proof.

Proof of Lemma 5.3.4. By Lemma 5.3.2(c) we have that P (Bθ > 1) > 0, from which
follows the existence of some b > 1 satisfying P (|Bθ − b| < ε) > 0 for ε ∈ (0, b− 1). Then

0 < P (|Bθ − b| < ε) = λ

∫ ∞
0

P (log(b− ε) < −Lθ(z) < log(b + ε)) e−λz dz ,

and, therefore, there exists some t > 0 such that P (log(b− ε) < −Lθ(t) < log(b + ε)) > 0.
Applying Theorem 24.4 in Sato [56] we know that Lθ(v) has unbounded support, hence,
for this t > 0 we have

P (log(b− ε) < −Lθ(v) < log(b + ε) for v ∈ (0, t]) > 0 (5.24)

Then we have

q := P (Aθ > 0, |Bθ − b| < ε)

= P (Y e−Lθ(E) − c

∫ E

0

e−Lθ(v)dv > 0 , |e−Lθ(E) − b| < ε)

≥ P (Y (b− ε)− c

∫ E

0

e−Lθ(v)dv > 0 , |e−Lθ(E) − b| < ε)

= P

(
Y (b− ε)− c

∫ E

0

e−Lθ(v)dv > 0 , |e−Lθ(E) − b| < ε | Y >
b + ε

b− ε
c y

)
P

(
Y >

b + ε

b− ε
c y

)
,

where y > 0 is arbitrary. As q1 := P (Y > b+ε
b−ε

c y) > 0 due to the unbounded support of
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Y , we estimate

q ≥ q1P

(
y(b + ε)−

∫ E

0

e−Lθ(v)dv > 0 , |e−Lθ(E) − b| < ε

)
= q1λ

∫ ∞
0

P

(
y(b + ε)−

∫ z

0

e−Lθ(v)dv > 0 , |e−Lθ(z) − b| < ε

)
e−λz dz

≥ q1λ

∫ ∞
0

P

(
y(b + ε)−

∫ z

0

e−Lθ(v)dv > 0 , |e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz

≥ q1λ

∫ ∞
0

P
(
y − z > 0, |e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz

≥ q1λ

∫ y

0

P
(
|e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz .

Therefore, q ≥ q1λP (|e−Lθ(v) − b| < ε for v ∈ (0, y))P (E < y). The probability

P (|e−Lθ(v) − b| < ε for v ∈ (0, y)) > 0

is selected in such a way that (5.24) is satisfied. Consequently, we may choose numbers
b > 1 and ε ∈ (0, b− 1), such that

q = P (|Bθ − b| < ε, Aθ > 0) > 0 . (5.25)

To prove our result we take some d ∈ (0, 1/m(θ)), where m(θ) is as in (5.17), and
some small number ε′ > 0, which we shall fix later. Recall the sets Dn = Dn(d, ε′) and
En = En(d, ε′) in (5.18) and set m = 1 + dαne for 0 < α < 1/m(θ)− d. Then for ω ∈ Dn

we have (cf. (5.18))

log Bθ,1 + · · ·+ log Bθ,m−1 ≤ (ε′ + αm(θ))n ≤
(
ε′ +

m− 1

n
m(θ)

)
n ≤ (ε′ + 1−m(θ)d)n .

For m ∈ N set Πm =
∏m

j=1 Bθ,j and Π0 = 1. For sufficiently large n ∈ N and ω ∈ Dn ∩En

we estimate, starting with the definition in (5.5),

Vθ,d(1/m(θ)−d)ne =

d(1/m(θ)−d)ne∑
m=1

Aθ,mΠm−1

≥ −eε′n

d(1/m(θ)−d)ne∑
m=1

exp

(
m−1∑
j=1

log Bθ,j

)
≥ −d(1/m(θ)− d)ne eε′nen(ε′+1−dm(θ))

> −e(3ε′+1−m(θ)d)n . (5.26)

The last inequality holds as for all ε′ > 0 and sufficiently large n ∈ N we have

d(1/m(θ)− d)ne < eε′n .

Let d′ ∈ (0, d). For n ∈ N introduce the following subset of Ω

Fn = {ω ∈ Ω |Aθ,j > 0, |Bθ,j − b| < ε, j = d(1/m(θ)− d)ne+ 1, . . . , d(1/m(θ)− d′)ne} .
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As the index sets are disjoint, Fn is independent of Dn ∩ En. From (5.25) we conclude

P (Fn) ≥ q(d−d′)n+1 . (5.27)

Further, for sufficiently large n ∈ N and ω ∈ Fn we consider the increment (recall that
b− ε > 1)

Vθ,d(1/m(θ)−d′)ne − Vθ,d(1/m(θ)−d)ne =

d(1/m(θ)−d′)ne∑
m=d(1/m(θ)−d)ne+1

Aθ,mΠm−1 > 0 . (5.28)

Next we define for n ∈ N one more subset of Ω:

Gn =
{
ω ∈ Ω |Aθ,d(1/m(θ)−d′)ne+1 > 1

}
,

From xF = ∞ follows that Aθ has infinite right endpoint; hence

P (Gn) = P (Aθ > 1) = r > 0 . (5.29)

Finally for sufficiently large n ∈ N we consider for ω ∈ Dn ∩ En ∩ Fn ∩Gn

Vθ,d(1/m(θ)−d′)ne+1 =
(
Vθ,d(1/m(θ)−d′)ne+1 − Vθ,d(1/m(θ)−d′)ne

)
+
(
Vθ,d(1/m(θ)−d′)ne − Vθ,d(1/m(θ)−d)ne

)
+ Vθ,d(1/m(θ)−d)ne

> Πd(1/m(θ)−d′)ne − en(1−m(θ)d+3ε′) , (5.30)

where we have used that

1. Vθ,d(1/m(θ)−d′)ne+1 − Vθ,d(1/m(θ)−d′)ne ≥ Πd(1/m(θ)−d′)ne for ω ∈ Gn;

2. Vθ,d(1/m(θ)−d′)ne − Vθ,d(1/m(θ)−d)ne ≥ 0 for ω ∈ Fn from (5.28);

3. Vθ,d(1/m(θ)−d)ne > −en(1−m(θ)d+3ε′) for ω ∈ Dn ∩ En from (5.26).

Further, for ω ∈ Dn ∩ Fn we estimate the product in (5.30) using the definitions of Dn

and Fn

Πd(1/m(θ)−d′)ne = exp

d(1/m(θ)−d)ne∑
j=1

log Bθ,j

× exp

 d(1/m(θ)−d′)ne∑
d(1/m(θ)−d)ne+1

log Bθ,j


≥ en(−ε′+1−m(θ)d)(b− ε)(d−d′)n−1 , (5.31)

where b − ε > 1. By fixing ε′ such that 5ε′ = (d − d′) log(b − ε) we obtain the following
lower bound in (5.31)

Πd(1/m(θ)−d′)ne ≥
1

b− ε
en(4ε′+1−m(θ)d) .

Using this in (5.30) we obtain the following inequality

Vθ,d(1/m(θ)−d′)ne+1 ≥ en(1−m(θ)d)

(
1

b− ε
en4ε′ − en3ε′

)
> en(1−m(θ)d) , (5.32)
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where for the last inequality we have used that for sufficiently large n ∈ N holds

e4ε′n > (b− ε)(e3ε′n − 1) .

We derived inequality (5.32) for sufficiently large n ∈ N for ω ∈ (Dn ∩ En) ∩ Fn ∩ Gn,
where Dn ∩ En, Fn and Gn are mutually independent. Hence, together with (5.27) and
(5.29), taking logarithm and dividing by n, we obtain the following inequality

log P
(
Vθ,d(1/m(θ)−d′)ne+1 > en(1−m(θ)d)

)
n

=
log P (Dn ∩ En)

n
+

log P (Gn)

n
+

log P (Fn)

n

≥ log P (Dn ∩ En)

n
+

log r

n
+ (d− d′ +

1

n
) log q .

Now we let n →∞ and make use of (5.19) resulting into

lim inf
n→∞

log P
(
Vθ,d(1/m(θ)−d′)ne+1 > exp ((1−m(θ)d)n)

)
n

≥ −κ(θ) + (d− d′) log q .

Finally, letting d′ → d and d → 0 and substituting n = log x, we obtain

lim inf
x→∞

log P (Vθ,dlog x/m(θ)e+1 > x)

log x
≥ −κ(θ) . (5.33)

Denote now k := k(x) = dlog x/m(θ)e + 1 and note that, due to the iid increments
property of the Lévy processes,

V ∞θ =

∫ ∞
0

e−Lθ(v)(dS(v)− cdv)

= Vθ(Tk) +

∫ ∞
Tk

e−Lθ(v)(dS(v)− cdv)

= Vθ(Tk) + e−Lθ(Tk)

∫ ∞
Tk

e−(Lθ(v)−Lθ(Tk))(dS(v)− cdv)

d
= Vθ(Tk) + e−Lθ(Tk)Ṽ ∞θ ,

where Ṽ ∞θ is copy of V ∞θ , independent of FTk
. Furthermore, recalling from Proposi-

tion 5.1.5(b) that Vθ,k = Vθ(Tk) we can write

log P (V ∞θ > x)

log x
≥ log P (Vθ,k > x)

log x
+

log P (Ṽ ∞θ ≥ 0)

log x
.

Letting x to infinity and making use of (5.33) gives the lhs of (5.16).

To prove the rhs of (5.16) it suffices to show (5.25) and (5.29) for the rv −Aθ. Again we
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take b > 1 such that P (|Bθ − b| < ε) > 0 for all ε ∈ (0, b− 1).

q = P (−Aθ > 0, |Bθ − b| < ε) = P

(
c

∫ E

0

e−Lθ(v)dv − Y e−Lθ(E) > 0 , |e−Lθ(E) − b| < ε

)
≥ P

(
c

∫ E

0

e−Lθ(v)dv − Y (b + ε) > 0 , |e−Lθ(E) − b| < ε

)
= P

(
c

∫ E

0

e−Lθ(v)dv − Y (b + ε) > 0 , |e−Lθ(E) − b| < ε |Y <
b− ε

b + ε
c y

)
P

(
Y <

b− ε

b + ε
c y

)
,

where y > 0 is arbitrary. Denote q1 := P (Y < b−ε
b+ε

c y) > 0 due to the unbounded support
of Y . Therefore

q ≥ q1P

(∫ E

0

e−Lθ(v)dv − y(b− ε) > 0 , |e−Lθ(E) − b| < ε

)
= q1λ

∫ ∞
0

P

(∫ z

0

e−Lθ(v)dv − y(b− ε) > 0 , |e−Lθ(z) − b| < ε

)
e−λz dz

≥ q1λ

∫ ∞
0

P

(∫ z

0

e−Lθ(v)dv − y(b− ε) > 0 , |e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz

≥ q1λ

∫ ∞
0

P
(
z − y > 0, |e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz

≥ q1λ

∫ ∞
y

P
(
|e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz > 0 .

Then the proof of the rhs of (5.16) follows by repetition of all steps of the proof of the lhs
of (5.16), replacing Aθ and Vθ,k for k ∈ N by −Aθ and −Vθ,k , k ∈ N, respectively. To this
end we still have to show that

r = P (−Aθ > 1) > 0 (5.34)

Indeed, from the infinite right end point of the exponentially distributed rv E follows

P (c

∫ E

0

e−Lθ(v)dv − Y e−Lθ(E) > 1)

≥
∫ ∞

0

P (c

∫ E

0

e−Lθ(v)dv − ye−Lθ(E) > 0 ,
∣∣e−Lθ(v) − b

∣∣ < ε for v ∈ (0, E)) dF (y)

≥
∫ ∞

0

P (E >
y(b + ε)

c(b− ε)
) dF (y) > 0 .

�
In the following result we show that, under moment conditions for the claims, the a.s.

limit of the DNLP V ∞θ has heavy left and right tail. It is an application of Theorem 4.7
of Goldie [27] in combination with Lemma 5.3.4.

Theorem 5.3.6. Assume that the conditions of Theorem 5.2.5 and Lemma 5.3.1 hold.
Let κ = κ(θ) ∈ (0,∞) be the unique value satisfying ϕθ(κ) = 0. Assume also that the claim
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size distribution Y has unbounded support. Let β be as in Lemma 5.3.2(b) and assume
that

E[Y κ+β] < ∞ . (5.35)

Then there exist constants C± such that for x →∞

P (V ∞θ > x) = C+ x−κ + O(x−(κ+β/2)) and P (V ∞θ < −x) = C− x−κ + O(x−(κ+β/2)) .
(5.36)

Moreover,

C± = C±(θ) =
1

κm
E
[(

(Aθ + BθV
∞
θ )±

)κ − ((BθV
∞
θ )±

)κ]
> 0 , (5.37)

where

m = m(θ) =
1

λ
ϕ′θ(κ(θ)) ∈ (0,∞) . (5.38)

Proof. Lemma 5.3.2 guarantees that m = ϕ′θ(κ)/λ = l′θ(κ) ∈ (0,∞). Then the rate result
(5.36) holds by Lemma 5.3.2(b) and Theorem 2.3.4.

Furthermore, E[|Aθ|κ+β] < ∞ by (5.35) and Lemma 5.3.3(c). Define the probability law
η(dx) = eκxP (log Bθ ∈ dx). This is spread out as log Bθ = −Lθ(E) is. The corresponding
first moment is positive as ϕ′θ(κ) > 0 by Lemma 5.3.1(a), and the second moment is
finite, since the moment generating function exists in a neighbourhood of 0. Finally,
η̃(β) = ϕθ(κ + β) < ∞ by Lemma 5.3.2(b).

To prove that C+(θ) > 0 we apply Lemma 5.3.4. Assume that C+(θ) = 0. Then from
(5.36) follows that there exists some constant M ∈ (0,∞) and some x0 such that

P (V ∞θ > x) ≤ Mx−(κ+β/2) , x > x0 ,

which implies, taking logarithms,

log P (V ∞θ > x)

log x
≤ log M

log x
− κ− β

2
.

Now letting x → ∞ and making use of the lhs of (5.16) we get the following inequality
chain

−κ ≤ lim inf
x→∞

log P (V ∞θ > x)

log x
≤ lim

x→∞

log P (V ∞θ > x)

log x
≤ −κ− β

2
,

which is a contradiction to β > 0. Hence C+ > 0.

To prove that C− > 0 note that P (V ∞θ < −x) = P (−V ∞θ > x). Moreover, −V ∞θ is the
almost sure limit of the random recurrence equation

−Vθ,0 = 0 and − Vθ,n =
n∑

m=1

(−Aθ,m)
m−1∏
j=1

Bθ,j , n ∈ N ,

with (Aθ,k, Bθ,k) as defined in (5.5). Hence, Lemma 5.3.4 applies.
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Remark 5.3.7. Theorem 5.3.6 says that V ∞θ has left and right Pareto-like tails. By
Lemma 5.3.1(c) the Pareto index κ = κ(θ) is decreasing in θ. This can be interpreted
that the more we invest into the risky asset the heavier the tail of the stationary DNLP
becomes. More risky investment increases the risk. �

Example 5.3.8. [Dangerous investment]
In this example we demonstrate that investment into risky stock can be dangerous, al-
though the insurance claims are moderate. Assume for simplicity that the claims have
moments of all order. Let the conditions on the investment process in Theorem 5.2.5 be
satisfied so that there exists an a.s. limit V ∞θ of the DNLP. Let also the condition of
Lemma 5.3.1 be satisfied, so that there exists an unique positive value κ = κ(θ) such that
ϕθ(κ) = 0. Then Theorem 5.3.6 gives

P (V ∞θ > x) ∼ C+(θ)x−κ , x →∞ , (5.39)

where κ is determined by the investment process only. Intuitively, in this case the extremes
of the investment process dominate the extremes of the resulting integrated risk process.
This is illustrated in Figure 5.3.

The parameter κ can be calculated explicitly, only if the price process of the risky asset
is geometric Brownian motion; see second part of Example 3.5.1. Then the investment
process is again geometric Brownian motion given by

Xθ(t) = exp(γθt + σθW (t)) , t ≥ 0 ,

with γθ and σθ as in (3.25). The value κ is the unique positive solution to

ϕθ(s) = −γθs +
σ2

θ

2
s2 = 0

given by

κ = κ(θ) =
2γθ

σ2
θ

=
2

σ2θ2

(
γθ + (1− θ)(δ +

σ2

2
θ)

)
.

In the case of Brownian motion with jumps with distribution Z (first part of Exam-
ple 3.5.1), κ is given as the unique positive solution to

ϕθ(s) = −ξθs + σ2
θ

s2

2
+ η(E[(1 + θ(eZ − 1))−s]− 1) = 0 ,

where ξθ and σθ are given in (3.22). Even in this simple case κ(θ) can only be found
by numerical methods. The problem becomes even more difficult for a VG Lévy process
(Example 3.5.3) or any other process with infinite jump activity.

In Figure 5.4 we have plotted the value κ(θ) as a function of the investment strategy θ
for three different models for the risky asset. Recall that by Lemma 5.3.1(b) the function
κ(θ) is decreasing in θ for all Lévy models. This means that in all models more investment
into the risky asset leads to a heavier tail of V ∞θ ; i.e. more risky investment yields a higher
risk.
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We compare a Brownian motion model with two different VG models. The parameters
are chosen such that mean and variance of the log returns of the risky asset are the same in
all models. As we can see in Figure 5.4, jumps in the model yield a smaller κ, corresponding
to a heavier tail of V ∞θ . Higher intensity of large negative jumps yields also a smaller κ.
�

5.3.2 Regularly varying claims

In this section we consider claim size distributions satisfying F (x) = x−α`(x), x > 0, where
limx→∞ `(xt)/`(x) = 1 for all t > 0; i.e. F is regularly varying with index α > 1 and we
require throughout that α < κ. Here κ = κ(θ) ∈ (1,∞) is the unique value satisfying
ϕθ(κ) = 0 for some fixed θ ∈ (0, 1] as defined in Lemma 5.3.1. In this case E[Y κ] = ∞,
hence this is a different situation than in Section 5.3.1. In the next proposition we shall
see that in this case the tail of the stationary rv V ∞θ is determined by the tail behaviour
of the claim size distribution Y .

Theorem 5.3.9. Let V ∞θ be the stationary solution to the backward stochastic recurrence
equation (5.5). Let κ = κ(θ) ∈ (1,∞) be the unique value satisfying ϕθ(v) = 0. Assume
that the claim size Y has distribution with regularly varying tail for some α ∈ (1, κ(θ)).
Then the following assertions hold.
(a) Right tail. V ∞θ has also regularly varying tail with index α, more precisely,

P (V ∞θ > x) ∼ λ

|ϕθ(α)|
P (Y > x) , x →∞ . (5.40)

(b) Left tail. Assume that σ > 0 or ν(−∞, 0) > 0. In the case when L is of finite
variation, assume that either the drift is non-zero, or that for no r > 0 the support of the
Lévy measure νθ is concentrated on rZ. Then

lim sup
x→∞

log P (V ∞θ < −x)

log x
= −κ .

In particular, the left tail of V ∞θ decreases faster than the right one, i.e.

lim
x→∞

P (V ∞θ < −x)

P (V ∞θ > x)
= 0 .

Proof. (a) Recall that ϕθ(0) = ϕθ(κ) = 0 and ϕθ is strictly convex in s; i.e. ϕθ(s) < 0
for all 0 < s < κ. As α < κ we have ϕθ(α) < 0. Hence

E[Bα
θ ] =

λ

λ− ϕθ(α)
< 1 ,

and there exists some β > 0 such that E[Bα+β
θ ] < ∞. Then, if we can show that Aθ is

regularly varying with index α, it follows directly from Proposition 2.4 in Konstantinides
and Mikosch [39] that

P (V ∞θ > x) ∼ 1

(1− E[Bα
θ ])

P (Aθ > x) , x →∞ .
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As there exists some β > 0, such that E[Bα+β
θ ] < ∞, from Breiman’s classical result, see

Lemma 2.2 in [39], follows that

P (Y e−Lθ(E) > x) = P (Y Bθ > x) ∼ E[Bα
θ ]P (Y > x) , x →∞ . (5.41)

Define ξ = Y e−Lθ(E) and η = c
∫ E

0
e−Lθ(v) dv, then both rv’s ξ and η are a.s. positive. On

the one hand we estimate

P (Aθ > x) = P (ξ − η > x) ≤ P (ξ > x) . (5.42)

On the other hand, for any ε > 0 we calculate

P (ξ − η > x) + P (η > εx) ≥ P (ξ − η > x , η ≤ εx) + P (η > εx)

≥ P (ξ > (1 + ε)x, η ≤ εx) + P (η > εx, ξ > (1 + ε)x)

= P (ξ > (1 + ε)x) .

This implies

P (Aθ > x) = P (ξ − η > x) ≥ P (ξ > (1 + ε)x)− P (η > εx) . (5.43)

As 1 < α < κ, by (5.15) we know that E[ηα] < ∞. As a consequence, for every ε > 0
follows limx→∞ xαP (η > εx) = 0 . This together with (5.41) and inequalities (5.42) and
(5.43) implies the following estimates for the tail of Aθ as x →∞:

E[Bα
θ ]

P (Y > (1 + ε)x)

P (Y > x)
∼ P (ξ > (1 + ε)x)

P (Y > x)
≤ P (Aθ > x)

P (Y > x)
≤ P (ξ > x)

P (Y > x)
→ E[Bα

θ ] .

Letting x →∞ on the left hand side, and then ε → 0 gives (5.40).
(b) First notice that

P (V ∞θ < −x) ≤ P

(
c

∫ ∞
0

exp(−Lθ(v))dv > x

)
. (5.44)

The rv V ∞,−
θ = c

∫∞
0

exp(−Lθ(v))dv satisfies the fix point equation

V ∞,−
θ

d
= A−θ + BθV

∞,−
θ ,

for A−θ = c
∫ E

0
exp(−Lθ(v))dv > 0 and Bθ = exp(−Lθ(E)) > 0 a.s.. By (5.15), setting

g = κ > 1, E[|A−θ |κ] < ∞. Therefore we may apply Theorem 2.3.3 and Lemma 2.3.2and
we get for some constant C > 0

P
(
c

∫ ∞
0

exp(−Lθ(v))dv > x
)
∼ C x−κ x →∞ .

Inequality (5.44) ensures that

lim sup
x→∞

log P (V ∞θ < −x)

log x
≤ −κ .
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From this follows that for every ε > 0 there exists some x0 = x0(ε) such that

P (V ∞θ < −x) ≤ x−κ+ε

holds for all x ≥ x0; on the other hand, due to (5.40), also

P (V ∞θ > x) ≥ x−α+ε/2

for all x ≥ x0. Since α < κ, for ε small enough, for all x > x0 we get

P (V ∞θ < −x)

P (V ∞θ > x)
≤ x−(κ−α−ε/2) → 0 , x →∞ .

Remark 5.3.10. Theorem 5.3.9(a) gives a Pareto-like right tail of the a.s. limit V ∞θ of
the DNLP. In the context of risk management this is the important tail as it describes the
likelihood of large losses. From Lemma 3.2.5(d) follows that there is a unique investment
strategy θ minimizing the right tail of the stationary DNLP; cf. Figure 5.6. �

Example 5.3.11. [Dangerous claims]
In this example we demonstrate how large insurance claims may dominate the extremes
in the integrated risk process. Let the claims have Pareto-like tail with exponent α > 1,
i.e. P (Y > x) ∼ CY x−α, x → ∞, for some constant CY > 0. Then the claims have
finite moments up to order α, including a finite mean, but no moments of order larger
than α. Let the conditions on the investment process in Theorem 5.2.5 be satisfied. Then
there exists an a.s. limit V ∞θ of the DNLP. Further, let the conditions of Lemma 5.3.1 be
satisfied and κ(θ) be the unique positive value such that ϕθ(κ(θ)) = 0 and assume that
κ(1) > α. Then Theorem 5.3.9 applies: recall first that by Lemma 5.3.1(b) if κ(1) > α,
then κ(θ) > α for all θ ∈ (0, 1]. In this case, for all θ ∈ (0, 1] holds

P (V ∞θ > x) ∼ C(θ)x−α , x →∞ . (5.45)

The investment process enters only into the constant C(θ) = λµCY /|ϕθ(α)|. Intuitively,
in this case the large insurance claims dominate the extremes of the resulting IRP. This
is illustrated in Figure 5.5.

The constant C(θ) can be calculated explicitly for models such that ϕθ(α) can be
calculated. In principle this holds for the geometric Brownian motion model, and also
for special cases of the geometric Brownian motion with jumps (see Example 3.5.1).
For processes with infinite jump activity (Example 3.5.3), the constant C(θ) has to be
computed numerically.

In Figure 5.6 we have plotted the Pareto constant C(θ) as a function of the investment
strategy θ for three different models for the risky asset, chosen as in Example 5.3.8. �
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Figure 5.3: Upper left plot: sample path of the insurance tisk process with premium rate
c = 50, intensity of the Poisson claim arrival process λ = 20 and exponentially distributed
claims with mean µ = 2, i.e. F (x) = e−x/2, x > 0. Upper right plot: sample path of the
log-investment process for investment strategy θ = 1 (pure stock investment) and the VG
process L(t) = qt+Wa,b(SΓ(t)), t > 0, with parameters q = 0.05. Wa,b is Brownian motion
with drift a = −0.01, variance b2 = 0.04 − a2 and var(SΓ) = 1. Lower plot: sample path
of the resulting IRP with initial capital u = 100. The time horizon is T = 10. It is clearly
seen that the large jumps of the IRP are dominated by the large jumps of the investment
process.
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Figure 5.4: The Pareto exponent κ(θ) in (5.39) as a function of the investment strategy θ.
We compare the following investment models: Brownian motion model with drift 0.04 and
volatility 0.2, a VG model with parameters as in Figure 5.3 and a more pessimistic VG
model of the form L(t) = qt + Wa,b(SΓ(t)) where q = 0.14, a = −0.1 and b2 = 0.04 − a2

(more large negative jumps, which are compensated by a larger deterministic drift q).
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Figure 5.5: Upper left plot: sample path of the insurance process with premium rate c = 50,
intensity of the Poisson claim arrival process λ = 20 and Pareto distributed claims with
mean µ = 2 and Pareto exponent α = 1.1, i.e. F (x) = ( 0.2

0.2+x
)−1.1, x > 0. Upper right

plot: sample path of the investment process for investment strategy θ = 1 (pure stock
investment) and log returns of the risky asset modeled by a VG process with parameters
as in Figure 5.3. Lower plot: sample path of the resulting IRP with initial capital u = 100.
The time horizon is T = 10. It is clearly seen that the large jumps of the IRP are
dominated by the large insurance claims.
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Figure 5.6: The Pareto constant C(θ) in (5.45) as a function of the investment strategy
θ. We compare a Brownian motion and two VG models. The parameters of the models
are as in Figure 5.4. Note that the more risky the investment model, the larger is the
difference between the minimal and the maximal value of C(θ); i.e. between the minimal
and the maximal value of the tail of V ∞θ .
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Chapter 6

Optimal investment for insurers

This chapter applies the theoretical results for the integrated risk model of an insurance
company investing into bond and stock, obtained in Chapter 3 and Chapter 5. A risk
measure frequently used in practice – Value-at-Risk (VaR), is defined in the framework of
the integrated risk model. We provide and compare several methods for an approximation
of the optimal investment strategy, which maximizes the expected wealth of the insurance
company under a risk constraint on the Value-at-Risk. We conclude with some examples.

6.1 Risk measurement

The Value-at-Risk has become a standard risk measure for the insurance and banking
industry. It is related to the capital reserve, which the financial institution needs to hold,
in order to prevent (at a sufficiently high confidence level) insolvency due to an extremely
negative development of the risks in its portfolio. Mathematically, the VaR is defined as
some high quantile of the corresponding loss distribution.

In this section we provide a definition of the VaR for the integrated risk model. We
aim at a stationary loss distribution. Following long tradition in insurance, we work with
discounted losses represented by the discounted net loss process (DNLP) as defined in
Chapter 5 by the following transformation of the IRP Uθ

Vθ(t) = u− e−Lθ(t)Uθ(t) =

∫ t

0

e−Lθ(v) (dS(v)− c dv) , t ≥ 0 . (6.1)

Recall that c > 0 is the constant premium rate, S(t) =
∑N(t)

j=1 Yj is a compound Poisson
process with intensity λ describing the total claim amount, where (Yj)j∈N is a sequence
of positive iid rv’s with generic rv Y and mean µ. The Lévy process Lθ is obtained by
mixing the riskless interest rate δ and the risky asset, whose log returns are described by
a Lévy process L, see Section 3.2. The constant θ, denoting the fraction invested into the
risky asset, is the investment strategy. The process Vθ describes the total net loss (both
from insurance and investment) of the insurance company, (randomly) discounted to time
0. An important relation between the IRP and the DNLP is

P (Uθ(t) < 0 |Uθ(0) = u) = P (Vθ(t) > u) , t ≥ 0 . (6.2)

79
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As we saw in Chapter 5, the advantage of this approach lies in the fact that the DNLP has a
natural embedded discrete time skeleton, see Proposition 5.1.5. This allowed us to apply
standard methods from the theory of stochastic recurrence equations, see for example
Kesten [36] and Goldie [27]. The next proposition is a consequence of Theorem 5.2.5 and
gives conditions, under which the DNLP defined in (6.1) has an a.s. limit as time tends
to infinity. Recall the notation for the Laplace exponents ϕ and ϕθ of the Lévy processes
L and Lθ , respectively.

Proposition 6.1.1. Let E[Y ] = µ < ∞, 0 < E[L(1)] < ∞ and δ < ϕ(−1).

(a) If ϕ(1) < λ, then, for every θ ∈ [0, 1],

Vθ(t)
a.s.→ V ∞θ , t →∞ , (6.3)

where V ∞θ is a finite rv.

(b) If ϕ(1) ≥ λ, then (6.3) holds for every θ ∈ [0, θu), where θu ∈ (0, 1] is the unique
strictly positive solution to the equation ϕθ(1) = λ.

Proof. We apply Theorem 5.2.5. By Lemma 3.2.5(d) we have that for a fixed s > 0 the
function ϕθ(s) is convex in θ ∈ [0, 1]. Furthermore, ϕ0(1) = −δ < 0 < λ, hence we have
two cases. In the first case, if ϕ1(1) = ϕ(1) < λ, then ϕθ(1) < λ for all θ ∈ [0, 1], which
proves (a). In the second case, if ϕ1(1) = ϕ(1) ≥ λ, then θu as in (b) exists due to the
convexity of ϕθ(1) in θ, see Lemma 3.2.5(d). Then ϕθ(1) < λ for all θ ∈ [0, θu), which
proves (b).

Remark 6.1.2. Note that the conditions in Proposition 6.1.1 are quite natural. Indeed,
E[Y ] < ∞ is seen as a prerequisite for any insurance, E[L(1)] > 0 is a prerequisite for
any investment and δ < log E[exp(L(1))] = ϕ(−1) guarantees that the expected value of
the risky investment is larger than the riskless investment. �

The distribution of the a.s. limit V ∞θ in Proposition 6.1.1 is of central interest in the
present chapter. In particular, it enables us to measure the risk in a stationary way.

Definition 6.1.3. Let the conditions of Proposition 6.1.1 be satisfied. Denote by Θ ⊆ [0, 1]
the non-empty interval of investment strategies θ for which (6.3) holds for some finite rv
V ∞θ . For θ ∈ Θ we define

VaRα(V ∞θ ) = inf{x ∈ R : P (V ∞θ > x) ≤ α} ,

where α ∈ (0, 1) is some (typically small) probability. �

For risky assets, for which ϕ(1) ≥ λ, the constant θu in Proposition 6.1.1(b) gives
an upper bound for the reasonable investment strategies θ. Above this upper bound we
cannot guarantee an a.s. limit of the DNLP and, hence, no reasonable statistical risk
assesment is possible. This is illustrated in the following example.

Example 6.1.4. [Continuation of Example 3.5.1]
Consider the geometric Brownian motion as a model for the risky asset as in the sec-
ond part of Example 3.5.1. Recall the Laplace exponent ϕθ in (3.24). Applying Propo-
sition 6.1.1, straightforward calculations show that, if the volatility of the risky asset is
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small enough, i.e. σ2 < 2(γ + λ), then the set Θ in Definition 6.1.3 is the whole interval
[0, 1]. Otherwise, if σ2 ≥ 2(γ + λ), then Θ = [0, θu), where

θu =
γ + σ2/2− δ +

√
(γ + σ2/2− δ)2 + 4σ2(δ + λ)

2σ2
≤ 1 (6.4)

is the unique strictly positive solution to the equation ϕθ(1) = λ. Hence, for Brownian
motion models with a very large volatility, i.e. σ2 ≥ 2(γ + λ), no investment strategies
greater or equal than θu given in (6.4) should be allowed. �

Insurance companies usually review their success at predetermined times, for example
every year or every quarter of a year. Hence, on the one hand, it seems reasonable to
choose an investment strategy, which maximizes the wealth of the company at the end of
the planing period. On the other hand, there are certain regulatory or financial bounds on
the amount of risk, which an insurance company may take on. The following optimization
problem is based on these considerations:

max
θ∈Θ

E[Uθ(t)] subject to VaRα(V ∞θ ) ≤ C , (6.5)

for a given constraint C > 0 on the risk, some fixed time period t > 0 and a given small
probability α. The set Θ of reasonable investment strategies is as in Definition 6.1.3. Such
problems are typical for the financial industry, see e.g Korn [40]. Our goal is to provide
explicit solutions to (6.5).

The use of VaRα(V ∞θ ) as a risk measure in the portfolio optimization problem is
explained by the fact that this quantity is equal to the capital reserve required to prevent
insolvency with a sufficiently high probability 1 − α for a long time horizon, see (6.2).
Note that in our definition the VaR does not depend on the initial capital and on the time
t, but only on the selected investment strategy θ and on the stochastic properties of the
insurance and the investment processes. On the other hand, due to Lemma 3.4.4, under
natural conditions for the insurance and for the investment process, the expectation of
the wealth of the company is an increasing function of the investment strategy θ for every
fixed time period t > 0 and initial capital u > 0. Consequently, the portfolio optimization
problem (6.5) is equivalent to

max {θ ∈ Θ : VaRα(V ∞θ ) ≤ C} , (6.6)

which depends only on the risk measure itself. This is, from a mathematical point of
view, no surprise, as the a.s. limit V ∞θ of the DNLP, which is independent of u and t, is
the basis for the risk measure. For an economic interpretation, recall that the investment
strategy takes extreme risks into account during time intervals, where all parameters of
the insurance model and the investment model are fixed. Only changes in these parameters
would indicate that the investment strategy should be reconsidered.

6.2 Analytic results

In order to find the solution of the optimization problem (6.6), we need a method to
compute VaRα(V ∞θ ) as a function of the investment strategy θ. As it is hard or even
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impossible to do this analytically, we approximate the df of V ∞θ . We are interested in
approximating its far out upper tail, as VaRα(V ∞θ ) is defined as a high (1− α)-quantile.

We start with the mean and the variance of V ∞θ . Recall the notation for the Laplace
transforms ϕ and ϕθ in (3.5).

Lemma 6.2.1. Let the conditions of Proposition 6.1.1 hold.

(a) ϕ(2) < 0, then for every θ ∈ [0, 1]

E [V ∞θ ] =
c− λµ

ϕθ(1)
< ∞ , (6.7)

and, provided that E[Y 2] = µ2 < ∞,

var(V ∞θ ) =
2ϕθ(1)− ϕθ(2)

ϕ2
θ(1)ϕθ(2)

(c− λµ)2 − λµ2

ϕθ(2)
< ∞ . (6.8)

(b) If ϕ(2) ≥ 0 and ϕ(1) < 0, then (6.7) holds for every θ ∈ [0, 1] and (6.8) holds for
every θ ∈ [0, θ2), where θ2 ∈ (0, 1] is the unique positive value such that ϕθ2(2) = 0.

(c) If 0 ≤ ϕ(1) < λ, then (6.7) holds for every θ ∈ [0, θ1), where θ1 is the unique positive
value such that ϕθ1(1) = 0 and (6.8) holds for every θ ∈ [0, θ2), where θ2 is as in (b).
In this case 0 < θ2 < θ1 ≤ 1.

(d) If ϕ(1) ≥ λ, then (6.7) holds for every θ ∈ [0, θ1) and (6.8) holds for every θ ∈ [0, θ2),
where θ1 and θ2 are as in (c).
In this case 0 < θ2 < θ1 < θu ≤ 1, where θu is given in Proposition 6.1.1(b).

Proof. We use the formulae for the moment functions E[Vθ(t)] and var(Vθ(t)), t ≥ 0 given
in Lemma 5.1.2. The calculations below show that E [V ∞θ ] is finite, whenever ϕθ(1) < 0,
and var (V ∞θ ) is finite, whenever ϕθ(2) < 0.

The formula for the expectation of V ∞θ follows directly from (5.2) letting the time to
go to infinity. To derive the formula for the variance of V ∞θ we first calculate the double
integral of the autocovariance function of e−Lθ(t) in (5.3). For the Lévy process Lθ we have
that for 0 ≤ v < t holds cov(eLθ(t), eLθ(v)) = E[eLθ(t−v)]var(eLθ(v)). We devide the double
integral in two parts:∫ t

0

∫ t

0

cov(e−Lθ(v), e−Lθ(w)) dw dv = I1(t) + I2(t)

where

I1(t) =

∫ t

0

∫ v

0

E[e−L(v−w)]var(e−L(w)) dw dv =

∫ t

0

∫ v

0

e(v−w)ϕθ(1)(ewϕθ(2) − e2wϕθ(1)) dw dv

and

I2 =

∫ t

0

∫ t

v

E[e−Lθ(w−v)]var(e−Lθ(v)) dw dv =

∫ t

0

e−vϕθ(1)(evϕθ(2)−e2vϕθ(1))

∫ t

v

ewϕθ(1) dw dv .
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Under the assumption that ϕθ(2) < 0, hence also ϕθ(1) < 0, letting t to infinity, we obtain

I1(t) + I2(t) →
2

ϕθ(1)ϕθ(2)
− 1

ϕ2
θ(1)

=
2ϕθ(1)− ϕθ(2)

ϕθ(2)ϕ2
θ(1)

(c− λµ)2 , t →∞, ,

and, hence, letting t to infinity in (5.3) we obtain

var(V ∞θ ) =
2ϕθ(1)− ϕθ(2)

ϕθ(2)ϕ2
θ(1)

(c− λµ)2 − λµ2

ϕθ(2)
.

On the other hand by Lemma 3.2.5(c) we have that ϕθ(s) < ∞ for every θ ∈ [0, 1]
whenever ϕ(s) < ∞. Finally, recall that by Lemma 3.2.5(d), for fixed s > 0, the function
ϕθ(s) is convex in θ ∈ [0, 1]. Since ϕ0(s) = −δs < 0 for s > 0, similar arguments as in the
proof of Proposition 6.1.1(b) imply the required results.

Remark 6.2.2. Using Lemma 6.2.1, a more prudent regulator or insurance company
may derive a stricter upper bound for the investment strategies than the upper bound
introduced in Proposition 6.1.1(b), see the comments after Definition 6.1.3. For instance,
let ϕ(2) ≥ 0, ϕ(1) < 0 and E[Y 2] < ∞. Then the a.s. limit V ∞θ of the DNLP exists and has
finite mean for every θ ∈ [0, 1], see Proposition 6.1.1 and Lemma 6.2.1(b). However, V ∞θ
does not have a finite second moment for investment strategies larger than θ2 as defined
in Lemma 6.2.1(b). Therefore, a risk averse insurance company may avoid investment
strategies θ ≥ θ2. �

Example 6.2.3. [Continuation of Example 3.5.1]
Consider the geometric Brownian motion as a model for the risky asset as in Exam-
ple 3.5.1. For simplicity assume that E[Y 2] = µ2 < ∞. We apply Lemma 6.2.1. Straight-
forward calculations show that we have the following cases.
(a) If σ2 < γ, then E [V ∞θ ] < ∞ and var(V ∞θ ) < ∞ for every θ ∈ [0, 1].
(b) If γ ≤ σ2 < 2γ, then E [V ∞θ ] < ∞ for every θ ∈ [0, 1] and var(V ∞θ ) < ∞ for every
θ ∈ [0, θ2), where

θ2 =
γ + σ2/2− δ +

√
(γ + σ2/2− δ)2 + 6σ2δ

3σ2
∈ (0, 1] . (6.9)

(c) If 2γ ≤ σ2 < 2(γ + λ), then E [V ∞θ ] < ∞ for every θ ∈ [0, θ1), where

θ1 =
γ + σ2/2− δ +

√
(γ + σ2/2− δ)2 + 4σ2δ

2σ2
, (6.10)

and var(V ∞θ ) < ∞ for every θ ∈ [0, θ2), where θ2 is as in (6.9). In this case we have
0 < θ2 < θ1 ≤ 1.
(d) If σ2 ≥ 2(γ + λ), then E [V ∞θ ] < ∞ for every θ ∈ [0, θ1) and var(V ∞θ ) < ∞ for
every θ ∈ [0, θ2), where θ1 and θ2 are as in (6.10) and (6.9) respectively. In this case
0 < θ2 < θ1 < θu ≤ 1, where θu is as in (6.4). �

Since knowing the mean and the variance of a rv is not sufficient to compute its
extreme quantiles, some additional analysis is needed. We make use of the fact that the
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DNLP has a natural embedded discrete time skeleton, namely the process sampled at
the claim arrival times. Using stochastic recurrence equations we achieve two goals, see
Chapter 5 for details:

(1) explicit and easy to check in practice conditions for the existence of an a.s. limit
V ∞θ of the DNLP as in Propisition 6.1.1;

(2) conditions for deriving the tail behaviour of V ∞θ .
The next theorem combines the results for the behaviour of the right tail of V ∞θ in

Theorem 5.3.6 and Theorem 5.3.9. As we have shown, there are two main regimes to con-
sider, based on the interaction between the insurance claims and the investment process.
We clarify this in the next result. Recall the notation for the set Θ in Definition 6.1.3.

Theorem 6.2.4. Let the conditions in Proposition 6.1.1 hold and denote θ = sup Θ. For
θ ∈ (0, θ] denote by κ(θ) the unique strictly positive solution in s to ϕθ(s) = 0.

(a)Dangerous investment: Assume that Y has moments of every order. Then, for θ ∈
Θ \ {0}, there exists C+(θ) > 0, such that

P (V ∞θ > x) ∼ C+(θ)x−κ(θ) , x →∞ . (6.11)

(b)Dangerous claims: Assume that P (Y > x) ∼ CY x−ρ, x → ∞, for some constants
CY > 0 and ρ > 1. If ρ < κ(θ), then for θ ∈ Θ,

P (V ∞θ > x) ∼ λ

|ϕθ(ρ)|
CY x−ρ , x →∞ . (6.12)

If ρ > κ(θ), then (6.12) holds for θ ∈ [0, θρ) and (6.11) holds for θ ∈ (θρ, 1] ∩ Θ 6= ∅,
where θρ ∈ (0, θ) is the unique positive solution in θ to the equation ϕθ(ρ) = 0.

Proof. (a) is a direct consequence of Theorem 5.3.6. To show (b), we use Theorem 5.3.9(a).
We know that (6.12) holds for every θ such that ρ < κ(θ) and for θ = 0. On the other
hand, if ρ > κ(θ), then E[Y κ(θ)+β] < ∞ for some β > 0. Hence, if ρ > κ(θ), then (6.11)
holds by Theorem 5.3.6. By Lemma 5.3.1(b) the function κ(θ) is strictly decreasing in
θ ∈ Θ \ {0}. Therefore, if ρ < κ(θ), then ρ < κ(θ) for every θ ∈ Θ \ {0}.

Let now ρ > κ(θ). Note that ϕ0(ρ) = −δρ < 0 and that by Lemma 3.2.5(d), ϕθ(ρ)
is convex in θ. Therefore, to show that ϕθ(ρ) = 0 has a unique solution θρ ∈ (0, θ),
it suffices to show that ϕθ(ρ) > 0. There are two cases. First, if we are in case (a) of
Proposition 6.1.1, then θ = 1. By definition, ϕ1(κ(1)) = 0. Since ϕ1(s) is convex in s
and ρ > κ(1), we have ϕ1(ρ) > ϕ1(κ(1)) = 0. Second, assume that we are in case (b) of
Proposition 6.1.1, i.e. θ = θu. By definition, ϕθu(1) = λ > 0. Since ϕθu(s) is convex in s
and ρ > 1, we have ϕθu(ρ) > ϕθu(1) = λ > 0. Finally, note that by definition κ(θρ) = ρ.
Since κ(θ) is strictly decreasing in θ ∈ Θ \ {0}, we get that ρ > κ(θ) for θ > θρ and
ρ < κ(θ) for θ < θρ. This implies the required result.

Remark 6.2.5. (i) Note that by Lemma 5.3.1(b) the Pareto index κ(θ) is a decreasing
function in the investment strategy θ. This means that, whenever (6.11) holds, the more
risky investment we choose, the heavier tail of the DNLP we get, which is quite natural.
(ii) The constant C+(θ) in (6.11) cannot be computed analytically; see (5.37).
(iii) As for every fixed s > 0 the function ϕθ(s) is convex in θ (see Lemma 3.2.5(d)), there
exists an investment strategy, minimizing the rhs of (6.12). �
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Example 6.2.6. [Continuation of Example 3.5.1]
Consider the geometric Brownian motion as a model for the risky asset as in Exam-
ple 3.5.1. Recall that in this example the investment process exp(Lθ) is again a geometric
Brownian motion with drift γθ and volatility σθ as in (3.25). For simplicity assume that
σ2 < 2(γ + λ), so that Θ = [0, 1], see Example 6.1.4. The value κ(θ) is given by

κ(θ) =
2γθ

σ2
θ

=
2

σ2θ2

(
γθ + (1− θ)(δ +

σ2

2
θ)

)
,

see Example 5.3.8. Note that κ(θ) → ∞ as θ → 0. Therefore, when the claims have
moments of every order, and when the fraction invested in the risky asset tends to 0, the
tail of V ∞θ approaches a tail, which is no longer a Pareto tail. The limit case θ = 0 is
treated in detail in Example 5.2.1; see also Sundt and Teugels [58], and, in the case of
Pareto claims, Klüppelberg and Stadtmüller [38].

When the insurance claims have Pareto tail with a small tail index ρ < 2γ/σ2, then the
tail of the a.s. limit V ∞θ of the DNLP is similar to that of the claims. In other words, the
claims dominate the integrated risk process, regardless of the selected investment strategy.
On the other hand, if ρ > 2γ/σ2, then the claims dominate for the less risky strategies
θ ∈ [0, θρ), whereas the investment process dominates for the more risky investment
strategies θ ∈ (θρ, 1]. We can compute θρ from Theorem 6.2.4(b) as

θρ =
γ + σ2/2− δ +

√
(γ + σ2/2− δ)2 + 2σ2δ(ρ + 1)

(ρ + 1)σ2
∈ (0, 1) .

The investment strategy θρ plays the role of a change-point strategy between the dangerous
claims regime and the dangerous investment regime. �

6.3 Examples

Recall the optimization problem (6.6) considering the maximal investment strategy θ, such
that a risk constraint is satisfied. To solve this problem we need a method to compute the
quantile of V ∞θ (the VaR) as a function of the investment strategy θ. Unfortunately, apart
from the very few special cases considered in Section 5.2 the distribution of V ∞θ is not
known. In general we can compute the moments of V ∞θ , if they exist, see Lemma 6.2.1.
Further, we know from Theorem 6.2.4 that V ∞θ has a Pareto tail. The Pareto index
depends on the interaction between the insurance claims and the investment process, see
also Example 4.6 and Example 4.8 in [37]. We distinguish between two different regimes.

(a) Dangerous investment: insurance claims have moments of a sufficiently large order;
then the Pareto index of V ∞θ is determined only by the investment process.

(b) Dangerous claims: insurance claims have a Pareto tail with a sufficiently small
Pareto index; then the Pareto index of V ∞θ is the same as that of the claims.

6.3.1 Dangerous investment

First we consider the dangerous investment regime, i.e. when the investment process
dominates the integrated risk process. In what follows we assume that there exists an



86 CHAPTER 6. OPTIMAL INVESTMENT FOR INSURERS

a.s. limit V ∞θ of the DNLP with finite mean and variance for all investment strategies
θ ∈ [0, 1]. This is satisfied when ϕ(2) < 0 and the insurance claims have finite second
moment (E[Y 2] < ∞), see Lemma 6.2.1.

A crude and often used approximation of the (1 − α)-quantile of V ∞θ (the VaR) can
be achieved by the (1− α)-quantile of a normal rv with the same mean and variance.

Normal approximation algorithm, dangerous investment

Let V N
θ be a normal rv with mean and variance as those of V ∞θ and let qα(θ) be its

(1−α)-quantile. Then we have P (V N
θ > x) = P (E[V ∞θ ] +

√
var(V ∞θ )N(0, 1) > x), where

N(0, 1) is a standard normal rv. Therefore, we obtain that

qα(θ) = E[V ∞θ ] + Φ−1(1− α)
√

var(V ∞θ ) ,

where Φ−1 is the quantile function of the standard normal distribution. �

Assuming that the df of V N
θ approximates the df of V ∞θ (and hence qα(θ) approximates

VaRα(V ∞θ )), we replace the optimization problem (6.6) by

max {θ ∈ [0, 1] : qα(θ) ≤ C} . (6.13)

Note that the moments E[V ∞θ ] and var(V ∞θ ) can be computed by Lemma 6.2.1 and,
hence, the optimization problem (6.13) can be solved by numerical methods. However,
it is well known that the normal approximation does not take into account interesting
properties of the original distribution as skewness or heavy tails. Hence, for our model it
will presumably underestimate the risk considerably. We demonstrate this in the following
example.

Example 6.3.1. [Exponential claims]
We consider an insurance model with a premium rate c = 2.1, an intensity of the Poisson
claim counting process λ = 1 and exponential claims with a mean E[Y ] = µ = 2. We
assume also that the price of the risky asset follows a geometric Brownian motion with a
drift γ = 0.06 and a volatility σ = 0.2. In this example we analyze the pure stock strategy
θ = 1 only.

We simulate 10 000 copies of the rv V ∞1 . As we do not know the distribution of V ∞1 ,
we invoke the forward stochastic recurrence equation corresponding to the discrete time
skeleton of the DNLP, see Section 5.1.

In Figure 6.1, left plot, the histogram of the simulated data is compared to the cor-
responding normal density of the rv V N

1 with a mean E[V ∞1 ] = −2.5 and a variance
var(V ∞1 ) = 106.25, as computed by Lemma 6.2.1. We see more values close to the mean
in the simulated data than the normal approximation suggests.

In Figure 6.1, right plot, we compare the empirical quantiles of the simulated data to
the normal quantiles. We see that in this example, when α is around 2.5%, the normal
approximation works quite well. However, when we go further in the tail, for α =1% or
0.5%, the normal approximation underestimates the risk significantly. �
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Figure 6.1: Histograms and quantiles of V ∞1 for simulated data versus the normal approx-
imation. The parameters are as in Example 6.3.1. Left plot: histogram of 10 000 simulated
copies of V ∞1 compared to the density of a normal rv with the same mean and variance
as V ∞1 . Right plot: empirical quantiles of the simulated data compared to the normal
quantiles.

Example 6.3.1 demonstrates that the normal approximation of the quantile of the rv
V ∞1 is not very satisfactory, when one is interested in extreme quantiles. This happens
despite the fact, that we have a light-tailed input (i.e. exponentially distributed insurance
claims and a geometric Brownian motion for the stock price). In this case Theorem 6.2.4(a)
applies and V ∞θ has a Pareto tail, for all θ ∈ (0, 1].

From now on we assume for simplicity that the claims have finite moments of every
order, so that we are in the dangerous investment regime for all θ ∈ (0, 1]. In the next ap-
proximation method we make extensive use of Theorem 6.2.4(a). Unfortunately, a straight-
forward approximation of the tail of V ∞θ with asymptotic as in (6.11) is not possible, since
the constant C+(θ) cannot be computed, see Remark 6.2.5(ii). As a remedy we combine
the normal approximation with the Pareto tail behaviour in the following algorithm.

Pareto approximation algorithm, dangerous investment

If (6.11) holds for V ∞θ , then it also holds for the centered rv:

P (V ∞θ − E[V ∞θ ] > x) ∼ C+(θ)(x + E[V ∞θ ])−κ(θ) ∼ C+(θ)x−κ(θ) , x →∞ . (6.14)

Denote by G←θ (α) = inf{x ∈ R : P (V ∞θ − E[V ∞θ ] > x) ≤ α}, α ∈ (0, 1), the generalized
inverse function of the df of the centered rv. Then, by (6.14) and Theorem 2.4.5, we have

G←θ (α)

G←θ (β)
∼
(

α

β

)−1/κ(θ)

, α < β, α → 0, β → 0 . (6.15)

We select some small probability β > α, where α is the given probability of interest in
Definition 6.1.3. Using (6.15) we approximate

G←θ (α) ≈ G←θ (β)

(
α

β

)−1/κ(θ)

.



88 CHAPTER 6. OPTIMAL INVESTMENT FOR INSURERS

Then we apply the normal approximation to G←θ (β) to get

G←θ (α) ≈ Φ−1(1− β)
√

var(V ∞θ )

(
α

β

)−1/κ(θ)

.

Since G←θ (α) = VaRα(V ∞θ )− E[V ∞θ ], we approximate VaRα(V ∞θ ) by

pα(θ) = E[V ∞θ ] + Φ−1(1− β)
√

var(V ∞θ )

(
α

β

)−1/κ(θ)

. (6.16)

Note that, when α = β, then pα(θ) = qα(θ). �

Using the above algorithm, we replace the optimization problem (6.6) by

max {θ ∈ [0, 1] : pα(θ) ≤ C} , (6.17)

where pα(θ) is as in (6.16). In the next example we investigate the accuracy of the Pareto
approximation applied to the model in Example 6.3.1.

Example 6.3.2. [Continuation of Example 6.3.1]
Consider the model with light-tailed input as in Example 6.3.1. In Figure 6.2 we compare
the normal approximation to the suggested Pareto approximation of VaRα(V ∞θ ) for two
ranges for α. In the left plot we show the VaR for comparatively large probabilities
α ∈(0.5%, 3%) based on β = 0.03, and in the right plot – for very small probabilities α <
0.5% based on β = 0.005. In both cases the Pareto approximation provides a better fit to
the empirical quantiles than the normal approximation, in particular for α ∈ (0.5%, 1.5%)
in the left plot and for α < 0.2% in the right plot. Note that the Pareto and the normal
approximation are equal when α = β, which explains the gap between the empirical
quantiles and the approximations at α = β = 0.5% in the right plot of Figure 6.2, see
also Figure 6.1, right plot. �

6.3.2 Dangerous insurance claims

We consider the dangerous insurance claims regime, i.e. when the insurance process domi-
nates the integrated risk process. In what follows we assume that there exists an a.s. limit
V ∞θ of the DNLP with finite mean for all investment strategies θ ∈ [0, 1]. This is satisfied
when ϕ(1) < 0, see Lemma 6.2.1. Moreover, we assume that the claims have a Pareto
distribution, i.e. for some ρ > 1, l > 0,

P (Y > x) =

(
l

l + x

)ρ

, x > 0 .

From now on we assume for simplicity that ρ < κ(1) in all considered models for the risky
investment. In this case (6.12) holds and V ∞θ has Pareto tail with Pareto index ρ for all
investment strategies θ ∈ [0, 1]. We suggest the following approximation algorithm:

Pareto approximation algorithm, dangerous claims
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Figure 6.2: Comparison of the normal approximation, the Pareto approximation and the
empirical quantiles of the simulated data. The parameters are as in Example 6.3.1. Left
plot: in the Pareto approximation algorithm we have chosen β = 0.03 and we are interested
in α ∈ (0.005, 0.03). Right plot: in the Pareto approximation algorithm we have chosen
β = 0.005 and we are interested in α ∈ (0, 0.005).

Similar to the approximation algorithm in Section 6.3.1, if (6.12) holds for V ∞θ , then it
also holds for the centered rv:

P (V ∞θ − E[V ∞θ ] > x) ∼ lρλ

|ϕθ(ρ)|
x−ρ , x →∞ .

Hence, for the generalized inverse function G←θ (α) of the df of the centered rv holds

G←θ (α) ∼ α−1/ρ

(
λlρ

|ϕθ(ρ)|

)1/ρ

, α → 0 . (6.18)

Using (6.18) and the fact that G←θ (α) = VaRα(V ∞θ )−E[V ∞θ ], we approximate VaRα(V ∞θ ),
for a small α, by

rα(θ) = E[V ∞θ ] + α−1/ρ

(
λlρ

|ϕθ(ρ)|

)1/ρ

. (6.19)

�
Using the above algorithm, we replace the optimization problem (6.6) by

max {θ ∈ [0, 1] : rα(θ) ≤ C} , (6.20)

where rα(θ) is as in (6.19). We investigate the accuracy of the suggested Pareto approxi-
mation for the dangerous claims regime in the next example.

Example 6.3.3. [Pareto claims]
We consider an insurance model with a premium rate c = 2.1, an intensity of the claim
counting process λ = 1 and Pareto claims with ρ = 1.1 and l = 0.2. The parameters of
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Figure 6.3: Comparison of the Pareto approximation and the empirical quantiles of the
simulated data. The parameters are from Example 6.3.3. Left plot: we are interested in
α ∈ (0.005, 0.03) Right plot: we are interested in extreme quantiles for α < 0.005.

the investment model are the same as in Example 6.3.1. In this example we analyze the
pure stock strategy θ = 1 only.

We simulate 10 000 copies of the rv V ∞1 using the same method as in Example 6.3.1.

In Figure 6.3 we compare the suggested Pareto approximation to the empirical quan-
tiles of the simulated data. We see that in the tail, i.e. for probabilities less than 2%, the
suggested approximation is quite accurate. �

6.3.3 Comparison of the models

In the previous two sections we have discussed methods to approximate the VaR in the
dangerous investment and in the dangerous claims regime. This enables us to find in
each of the two regimes an (approximate) solution to the optimization problem (6.6) by
numerical methods. Up to now for simplicity we have considered only examples where
the risky asset is modeled by a geometric Brownian motion. In this section we focus on
the impact of different models for both the insurance claims and the risky asset on the
optimal investment strategy. From one side we discuss the difference between the optimal
investment strategy in the dangerous claims regime and in the dangerous investment
regime. From another side, we compare the magnitude of the influence of different models
for the risky asset on the optimal investment strategy within each of the regimes.

Example 6.3.4. [Comparison of the models]
We compare the Brownian motion model from Example 6.3.1 to a variance gamma (VG)
model for the risky asset, see Example 3.5.3. We consider a VG process with paramethers
ξ = 0.16, a = −0.1, b2 = 0.04− a2 and η = r = 1.

In order to allow for a comparison, we have selected the parameters of the Brownian
motion and of the VG process in such a way, that the mean and the variance of L(1),
i.e. of the log returns of the stock price, coincide in both models. However, the VG model
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Figure 6.4: The solution to optimization problem (6.6) for different risk constraints. The
parameters are from Example 6.3.4. Left plot: Dagerous investment regime. The claims
are modeled as in Example 6.3.1. Right plot: Dangerous claims regime. The claims are
modeled as in Example 6.3.3

has jumps, taken here with a negative mean, corresponding to (downward) jumps of the
stock price. Hence, one would consider it as a more ’dangerous’ investment model.

For the insurance business we use the parameters from Example 6.3.1 (dangerous
investment regime) and Example 6.3.3 (dangerous claims regime). We set the riskless
interest rate to δ = 0.01. We solve (6.17) for the dangerous investment regime and (6.20)
for the dangerous claims regime, using a number of risk constraints C. We have selected
α = 1% in the definition of the VaR.

Let us first fix the regime (i.e. the distribution of the claim sizes) and compare the
impact of the stock price model on the VaR and on the optimal investment strategy.

In Figure 6.4, left plot, we show the optimal investment strategy in the dangerous
investment regime (i.e. the solution to the optimization problem (6.17)), vs. the risk
constraint C for the VaR. We observe that the more risky VG model affects significantly
the VaR, in particular for more risky investment strategies θ > 80%. For a fixed risk
constraint C, it allows for less investment in the risky asset than the Brownian motion
model. Hence, we may conclude that the more risky model for the stock price leads to
more conservative investment strategies.

In Figure 6.4, right plot, we show the optimal investment strategy in the dangerous
claims regime (i.e. the solution to the optimization problem (6.20)), vs. the risk constraint
C for the VaR. Again, we observe that the more risky VG model implies more conservative
investment strategies. However, in the dangerous claims regime this impact is weaker
compared to the dangerous investment regime; compare the right and the left plot of
Figure 6.4 and note the difference in the scales of the horizontal axes. For instance, at
investment strategy θ = 1, changing the investment model from a Brownian motion to a
VG leads to about 90% increase of the VaR in the dangerous investment regime, whereas
this change leads to only 10% increase of the VaR in the dangerous claims regime.

Let us fix the model of the stock price and investigate the impact of the claim size
distribution. Note that in the dangerous claims and in the dangerous investment regime
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we have the same interest rate, premium rate, claim arrival intensity and mean claim size.
This implies that, holding the stock price model fixed, for every fixed investment strategy
θ ∈ [0, 1], the mean of the a.s. limit V ∞θ of the DNLP in both regimes is the same. However,
for both stock price models, the Pareto claims from Example 6.3.3 lead to higher risk
compared to the exponential claims from Example 6.3.1. Indeed, in the dangerous claims
regime, the risk constraint C has to be set much higher than in the dangerous investment
regime (almost 10 times), in order to obtain a solution to the optimization problem at all,
notice again the difference in the scales of the horizontal axes in Figure 6.4. Furthermore,
the difference between the light- and the heavy-tailed claims model is much more severe
than between the two stock price models. For instance, at investment strategy θ = 1,
changing the insurance claims model from exponential to Pareto leads to almost 9 times
increase of the VaR in the Brownian motion case (compare the two plots in Figure 6.4),
while changing the investment model from a Brownian motion to a VG leads to only
about 90% increase of the VaR in the exponential claims case (Figure 6.4, left plot).

Recall that, in the dangerous claims regime, the Pareto index of V ∞θ is the same as
that of the insurance claims. In contrast to that, in Example 6.3.1, the investment process
determines the Pareto index κ(θ) of V ∞θ regardless of the insurance process. Therefore,
the choice of the investment strategy is much more important in the case of Example 6.3.1
than in Example 6.3.3. In other words, the VaR is less sensitive to the investment strategy
in the dangerous claims regime than it is in the dangerous investment regime. For instance,
within the Brownian motion model, increasing the investment strategy from 0.85 to 1 leads
to an increase of about 3% of the VaR in the dangerous claims regime (Figure 6.4, right
plot), while the same change in the investment strategy leads to about 24% increase of
the VaR in the dangerous investment regime (Figure 6.4, left plot). Similar observations
can be made for the VG model for the stock price. �



Chapter 7

Conclusion

The development of mathematical methods for integrated risk management is of theoret-
ical as well as of practical interest. In this thesis we modeled the wealth of an insurance
company which has the possibility to invest into a risky and a riskless asset under a
constant mix strategy. From a theoretical point of view, we worked with a relatively com-
plicated stochastic process (the IRP) based on underlying general Lévy processes with
jumps. We investigated the distributional and the path-wise properties of the IRP. A
transformation of the process was shown to have, under weak conditions, a stationary
a.s. limit. We derived the right and the left tail behaviour of the resulting stationary dis-
tribution, and analysed the impact of different model subclasses (regimes) on it. Several
quantile approximation methods based on these results were suggested, and their accu-
racy was investigated numerically. This enabled us to find explicit solutions to a special
optimization problem of particular practical importance.

From a practical point of view, we tried to keep the model as simple as possible.
Various relevant generalizations of the model were left for future research. These include,
among the others:

- reinsurance or taxation issues;

- IBNR claims;

- dynamics of the premium rate;

- several insurance business lines;

- liquidity of the investments;

- stochastic interest rates;

- optimization within a risky portfolio with a large number of positions within;

- optimization with a dynamically changing investment strategy;

- dependence between the stock market and the total claim amount process;

- intertemporal dependence in the stock market.

Even without these features, the model poses a significant analytical challenge. Never-
theless, we derived a method to measure the risk in a stationary way by defining the risk
measure Value-at-Risk (VaR) in our integrated framework. The VaR takes extreme risks
into account during time intervals, where all parameters of the insurance model and the
investment model are fixed. Only changes in these parameters would indicate a change in
the risk as measured by the VaR.

The main focus was on computing the efficient frontier – the set of investment strategies
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which maximize the wealth of the insurance company subject to a risk constraint on the
VaR. We suggested several methods to approximate the VaR and solved the optimizazion
problem. In the case when the stock price follows a geometric Brownian motion, we
derived quite explicit results. At first sight this is encouraging, as it allows a simple and
straightforward calibration of the model, based e.g. on a moment matching procedure.
However, we showed in a simple example that such a straightforward approach carries
a significant model error risk. A particular advantage of this work is that the obtained
results hold for the general class of Lévy processes with jumps, which will presumably
describe the dynamics of the risky asset prices in a better way. Hence, for such models
we are still able to compute the VaR and the optimal investment strategies by a slightly
more complicated numerical methods than in the classical Brownian motion case.

Finally we investigated the impact of the different models for the insurance claims
and for the investment process on the VaR and on the efficient frontier. We identified
two different regimes: in the first the risk of the integrated model is driven mainly by
the investment process and in the second – by dangerous large claims. For a fixed model
for the stock price, the investment strategy has a greater impact on the VaR in the
dangerous investment regime than in the dangerous claims regime. For a fixed model for
the insurance claims, the more risky investment model we take, the greater is the impact of
the investment strategy on the VaR. In practice, this could have important consequences
in the risk management strategy of an insurance company.
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