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Prüfer der Dissertation: 1. Univ.-Prof. Dr.Claudia Klüppelberg
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Abstract

During the last decade, the dependencies between financial assets have increased due

to globalization effects and relaxed market regulation. The standard industrial methodolo-

gies like RiskMetrics [117] and CreditMetrics [74] model the dependence structure in the

derivatives or in the credit portfolio by assuming multivariate normality of the underlying

risk factors. It has been well recognized that many financial assets exhibit a number of

features which contradict the normality assumption – namely asymmetry, skewness and

heavy tails. Moreover, asset return data suggests also a dependence structure which is

quite different from the Gaussian. Recent empirical studies indicate that especially dur-

ing highly volatile and bear markets the probability for joint extreme events leading to

simultaneous losses in a portfolio could be seriously underestimated under the normality

assumption. Theoretically, Embrechts et al. [48] show that the traditional dependence

measure (the linear correlation coefficient) is not always suited for a proper understand-

ing of the dependency in financial markets. When it comes to measuring the dependence

between extreme losses, other measures (e.g. the tail dependence coefficient) are more

appropriate. This is particularly important in the credit risk framework, where the risk

factors actually enter the model only to introduce a dependence structure in the portfolio.

Clearly, appropriate multivariate models suited for extreme events are needed.

In this thesis, we consider a portfolio credit risk model in the spirit of CreditMet-

rics [74]. With respect to the marginal losses, we retain and enhance all features of that

model and we incorporate not only the default risk, but also the rating migrations, the

credit spread volatility and the recovery risk. The dependence structure in the portfolio

is given by a set of underlying risk factors which we model by a general multivariate el-

liptical distribution. On the one hand, this model retains the standard Gaussian model as

a special case. On the other hand, by introducing a heavy-tailed ”global shock” affecting

the credits simultaneously across regions and business sectors, we obtain a more flexible

model for joint extreme losses.

The goals of the thesis are twofold.

First, we consider the calibration of the model. The main result is a new method

for statistical estimation of the dependence structure (the copula) of a random vector

with arbitrary marginals and elliptical copula. Within our method, we calibrate the linear

correlation coefficients using the whole available sample of observations and the non-linear

(tail) dependence coefficients using only the extreme observations. Special attention is put

to the estimation of the tail dependence coefficients, where additional results aiming at a
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lower variance of the estimates are provided. The particular application of the method to

the calibration of the credit risk model is given in detail, and several simulation studies

and real data examples are presented.

Second, we investigate the portfolio loss distribution. In particular, we derive an upper

bound of its tail, which is especially accurate at high loss levels. Given the complexity of

our model, we obtain this result using a mixture of analytic techniques and Monte Carlo

simulation. An approximation of the Value-at-Risk and a new method to determine the

contributions of the individual credits to the overall portfolio risk is provided. The impact

of the heavy-tailed model on the overall portfolio risk and on the risk structure as given

by the risk contributions is investigated. We conclude that the heavy-tailed assumption

has important consequences in all aspects of risk management.
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Chapter 1

Introduction

1.1 Basics of portfolio credit risk modelling

Credit risk is a broad category of risks faced by the financial institutions. It includes (see

Duffie and Singleton [40], Chapter 1):

(1) default risk – the risk that an obligor will not be able to meet in time its financial

obligations;

(2) recovery risk – the risk that in case of default the market value of the collateral

of an obligor will not be sufficient to cover at least the expected part of the losses;

(3) credit quality risk – the risk that the credit quality of an obligor, measured by

some internal or external for the financial institution rating system, will decrease;

(4) credit spread risk – the risk of a reduction in the market value of a credit security

(e.g. corporate bond or default swap).

Historically banks have been managing credit risk by imposing rigorous underwriting

standards, credit limit enforcement and one-by-one obligor monitoring. This has changed

dramatically since the late 1990s, when portfolio credit risk has become a key risk manage-

ment challenge (see Allen and Saunders [1], Chapter 1). The amount of credit risk taken

by the banks has increased, and thus the need for more sophisticated techniques. At the

same time, credit derivatives like swaps and forwards have become very popular, lead-

ing to globalization of the credit exposures. In particular, collateralised debt obligations

(CDOs) and other credit risk securities transferring the risk of a whole credit portfolio

have appeared on the market. Last but not least, portfolio credit risk started to play a

crucial role in the determination of capital requirements (see BIS [9]).

The primary reason to have a quantitative portfolio approach to credit risk is that

one can more systematically address the concentration risk. Concentration risk refers to

the additional portfolio risk resulting from an increased exposure to one obligor or groups

of dependent obligors, e.g. by industry, by location, etc. During the last decade, the de-

1
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Figure 1.1: The linear correlation is not enough.
Left plot: 1000 i.i.d. copies of a bivaraite random vector with standard normal N(0, 1) marginals, corre-
lation ρ = 0.4 and t-copula with ν = 4 degrees of freedom (see Example 3.2.1).
Right plot: 1000 i.i.d. copies of a bivariate Gaussian random vector with N(0, 1) marginals and corre-
lation ρ = 0.4. Obviously there are much more joint extremes in the left plot, indicating a non-linear
dependence.
The joint extremes are quite important in market VaR analysis and in credit risk.

pendencies between the financial assets in general have increased due to globalization

effects and relaxed market regulation. The standard industrial methodologies like Risk-

Metrics [117] and CreditMetrics [74] model the dependence structure in the derivatives

or in the credit portfolio by assuming multivariate normality of the underlying risk fac-

tors. It has been well recognized (see Mandelbrot [107] for a classsical, or Cont [24] for a

recent study), that many financial assets exhibit a number of features which contradict

the normality assumption – namely asymmetry, skewness and heavy tails. Moreover, as-

set returns data suggests also a dependence structure which is quite different from the

Gaussian (see Fortin and Kuzmics [56]). In particular, empirical studies like Junker and

May [85] and Malevergne and Sornette [106] indicate that, especially during highly volatile

and bear markets, the probability for joint extreme events leading to simultaneous losses

in a portfolio could be seriously underestimated under the normality assumption. Theo-

retically, Embrechts et al. [48] show that the traditional dependence measure (the linear

correlation coefficient) is not always suited for a proper understanding of the dependency

in financial markets. When it comes to measuring the dependence between extreme losses,

other measures (e.g. the tail dependence coefficient) are more appropriate. In the credit

risk framework, Frey et al. [62] provide examples and insight on the impact of a violated

Gaussian assumption on the tail of the credit portfolio loss distribution. Holding the

marginal losses of the individual credits fixed and introducing tail dependence through

heavy-tailed risk factors, Frey et al. [62] conclude that the overall portfolio risk increases
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drastically as compared to the Gaussian (tail-independent) case. Clearly, multivariate

models suitable for extreme events are needed.

Even when the dependence in the credit portfolio is modelled through Gaussian risk

factors, the special structure of models like CreditMetrics [74] makes the computation of

the portfolio loss distribution an analytically intractable problem. Monte Carlo simulation

is extensively used in such cases. However, this method is computationally intensive, in

particular when one has to determine the probability for an extremely high loss in a high-

dimensional portfolio (see Glasserman and Li [70]). Furthermore, for risk management

purposes it is important to measure also the contributions of the marginal credits to the

overall portfolio risk. CreditMetrics [74] suggest the so called ’marginal standard devia-

tion’ as a risk measure, as this quantity can be computed by simple numerical methods.

This approach has numerous drawbacks, see for instance Overbeck [122], for a particu-

lar discussion in the credit risk framework, or Embrechts et al. [48] for a more general

discussion. On the other hand, estimating the marginal risk contributions with respect

to a down-sided risk measure like Value-at-Risk (VaR) or Expected Shortfall (ES) by

simulation requires even greater computational effort (see Overbeck [122] or Merino and

Nyfeler [114]). Current solutions to these problems are improved Monte Carlo methods

(Merino and Nyfeler [114], Glasserman and Li [70]) or analytic approximations (Glasser-

man [67], Kuhn [94]).

In Section 1.2 we present the main concepts of the CreditMetrics model, which is the

base of most of the portfolio credit risk models used in practice. Then, in Section 1.3 we

describe briefly the generalizations which we suggest. We conclude the first chapter with

a summary of the main results to follow.

1.2 The CreditMetrics model

CreditMetrics is a methodology based on the estimation of the distribution of the changes

in the value (profits or losses) of a credit risk portfolio over a given time horizon, usually

one year. The changes in the value are related to the eventual migrations in the credit

quality of the obligors, measured by a credit rating system, including up- and downgrades,

as well as default. A detailed description of the model is its technical document [74].

The approach of CreditMetrics applies primarily to bonds and loans which are both

treated in the same manner. It can be easily extended to any type of financial claims

for which we can derive the loss (or, more precisely, the profit / loss) distribution of the

credit at the risk horizon, for all possible credit ratings including default. Receivables,

loan commitments and financial letters of credit are treated in the original model [74], a

simple extension of it as in Finger [51] allows also the treatment of credit derivatives like
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swaps and forwards.

The structure of the model is given in Figure 1.2. There are four ’building blocks’.

In the first building block, the loss distribution at the time horizon of each single credit

in the portfolio is specified separately. In the second one, the multivariate dependence

structure in the portfolio is modelled by means of a set of risk factors. In the third

one, the standard deviation of the portfolio loss and the contribution of every individual

credit to it are computed analytically. In the forth one, Monte Carlo simulation is used

to determine the portfolio loss distribution.

Block 1: First one has to specify a rating system, with rating categories, and as-

sign each of the obligors in the portfolio to an initial rating category. The exact rating

system and the number of rating categories is not significant. It can be Moody’s, or Stan-

dard&Poor’s, or the internal rating system of a bank. However, a strong assumption made

by CreditMetrics is that all obligors are credit-homogeneous within the rating category,

i.e. with the same rating migration probabilities and the same default probability over the

time horizon. These probabilities are collected in a stochastic matrix (migration matrix).

The risk horizon is usually one year, but in principle it can be arbitrary. However, it

should be consistent with the availability of historical default and rating migration data

which is used to calibrate the migration matrix. More details are given in Section 4.1.1,

see also Duffie and Singleton [40], Chapter 4.

Then, one has to specify and calibrate a model for the loss at the risk horizon for each

possible future rating category, including default, for each credit in the portfolio. The

nature and the complexity of this model depends crucially on the type of the credit (e.g.

loan, bond or derivative). Market data like credit spreads, as well as rating agencies’ data

like recovery rates for different obligor classes, is used for the calibration. More details are

given in Section 4.1.2, see also Schönbucher [129], Section 8.5.

Specifying the loss distribution for each possible future rating category and the prob-

ability that the obligor migrates to this category is sufficient to determine the loss distri-

bution at the risk horizon of the single credit (the marginal loss distribution). This

completes the first building block of CreditMetrics.

Block 2: The second building block of CreditMetrics is to specify the dependence

structure in the portfolio. It has been observed (see Nickell et al. [120]), that rating mi-

grations and defaults vary significantly with the business cycle. Furthermore, obligors

operating in the same region (country) and/or business sector tend to default simulta-

neously (over short time intervals). Thus defaults and rating migrations are dependent

events, and a multivariate model for them is needed.

The suggested model is in the spirit of Merton [115]. Default (or rating migration)

is triggered when the asset (log-)returns of the obligor fall below a certain barrier. The
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Figure 1.2: The four building blocks of the CreditMetrics model.
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asset returns are modelled by a multivariate normal random vector. Each asset return is

decomposed into an obligor-specific part and a common part with corresponding loadings

by means of a linear factor model. The correlations between the common factors are

estimated from observable macroeconomic stock indices. The factor loadings are estimated

by a combination of qualitative and quantitative analysis of equity returns data. The

resulting asset correlations are the final output of building block 2. More details are

given in Section 3.1 and in Section 4.4, see also Bluhm et al. [16], Section 2.4.1.

Block 3: The aim of the third building block is to perform a portfolio analysis. The

key issue is to compute the marginal contributions of the individual credits to the overall

portfolio risk. Following the classical theory on portfolio selection (i.e. Markowitz [108]) the

risk is measured by the standard deviation. In the CreditMetrics model, this quantity

can be computed analytically. More details are given in Section 3.3 and in Section 7.2,

see also Tasche [134].

Block 4: It has been well recognized in CreditMetrics [74], that the credit loss dis-

tributions are typically highly skewed and asymmetric. Therefore, knowing the standard

deviation of the portfolio loss distribution (building block 3) is not sufficient to character-

ize the risk of extreme losses, as the standard deviation is a “two-sided” risk measure (see

also Embrechts et al. [48] for a more general discussion). In order to measure the risk of

extreme losses, one needs the tail of the distribution function. Since in the CreditMetrics

model this cannot be computed analytically, a Monte Carlo simulation is applied. The

VaR and other down-sided risk measures are obtained as an output. We present more

details in Section 5.1, see also Glasserman and Li [70].

1.3 Generalizations of CreditMetrics

Various generalizations of the CreditMetrics model are possible.

With respect to the rating modelling, a strong assumption made in CreditMetrics [74]

is that the obligors are credit-homogeneous within a rating category, i.e. the default and

rating migration probabilities are determined by the initial rating category of the obligor.

However, there is a significant amount of evidence that different obligors of the same rating

have different credit qualities, i.e. different default and rating migration probabilities. In

particular, the previous rating of an obligor, the time spent in the current rating, and

the presence of the obligor in watch-lists published by the rating agencies are important

determinants of these probabilities, see Section 4.1.1 and the references therein. For this

reason, in the thesis we consider the marginal default and migration probabilities as

attributes of the individual credit and not of the rating category of the obligor. A

similar extension to the standard CreditMetrics framework is the popular in the industry
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KMV model [89, 90].

A considerable amount of research has been done in the development of rating-based

evaluation models for single-obligor credit risks like bonds and single-name credit deriva-

tives, see e.g. Schönbucher [129], Chapter 8, for a detailed review. Some of these models

are listed in Section 4.1.2. We do not go into detail here, since our focus is more on the

portfolio view of credit risk. Instead we adopt a general formulation. In the thesis the

profit/loss of the individual credit, given its credit rating, is modelled by an arbitrary

random variable.

Our main focus is on modelling the dependence between the default and rating mi-

gration events. Following the approach in CreditMetrics [74], we model this dependence

by introducing a random vector with continuous marginal distributions, which represents

the asset returns of the obligors in the portfolio. We use the general class of elliptical

distributions. On the one hand, our model retains the standard Gaussian model as a

special case, and has a similar factor structure. On the other hand, by introducing a

heavy-tailed ”global shock”, affecting the obligors’ assets simultaneously across regions

and business sectors, we obtain a more flexible model for joint extreme losses. Similar

models are considered in Frey and McNeil [59], Daul et al. [30] and others.

1.4 Summary of main results

The structure of the thesis is as follows.

In Chapter 2 we introduce the necessary mathematical background. In Section 2.1 we

define and explain the notion of copulas. We give some of the properties of important

dependency measures like the linear correlation, Kendall’s tau and the tail dependence

coefficient. In Section 2.2 we introduce the concept of regularly varying random variables

and random vectors. In Section 2.3 we focus on the class of elliptical distributions, where

we recall and extend whenever necessary some classical and more recent results. Special

attention is paid to the properties of the dependence measures from Section 2.1 in the

framework of elliptical copulas and in particular to the results concerning the extremal

dependence structure of the regularly varying elliptical random vectors.

In Chapter 3 we introduce our heavy-tailed model and compare some of its properties

to the Gaussian model used for instance in CreditMetrics [74]. We show a preliminary

result which allows us to split the calibration of the model into a calibration of the marginal

losses and a calibration of an elliptical copula. Expressions for the moment generating

function of the portfolio loss and its first two moments are derived in Section 3.3.

In Chapter 4 we provide a calibration procedure for the model. We start with the

marginal parameters. Some classical or more recent methods for the calibration of the
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marginal losses given rating and the marginal rating migration and default probabili-

ties are given in Section 4.1. Then, in Section 4.2, we consider the estimation of several

important dependence measures for a bivariate random vector: Kendall’s tau, the linear

correlation and the tail dependence coefficient. Special attention is put to the estima-

tion of the tail dependence coefficient, where new results aiming at a lower variance of

the estimates are provided. A key result in this chapter is stated in Section 4.3, where

a non-parametric method for estimation of an elliptical copula with arbitrary marginals

is suggested. Our approach leads to consistent estimates of the correlation coefficients

based on the whole sample of observations and, at the same time, consistent estimates

of the tail dependence coefficients, which are based on the joint extreme observations. In

Section 4.4, the method is applied to the portfolio credit risk model; additional results

regarding the estimation of the common and specific risk factors’ loadings are provided.

Numerical examples, investigating the accuracy and the robustness of the method, as well

as real-data studies are presented in Section 4.5.

In Chapter 5 we obtain the portfolio loss distribution by means of Monte Carlo sim-

ulation. We compare the impact of the different model assumptions (Gaussian vs heavy-

tailed) on the tail of the loss distribution. An importance sampling algorithm reducing the

variance of the Monte Carlo estimate of the tail is provided. We pay particular attention

to its application in the framework of heavy-tailed risk factors, thus extending the work

of Glasserman and Li [70].

In Chapter 6 we derive an upper bound of the tail of the portfolio loss distribution

which is particularly accurate at high loss levels. As it is not possible to compute this

upper bound explicitly, we use a stochastic approximation algorithm and Monte Carlo

simulation. Under weak regularity conditions, we prove a.s. convergence of the proposed

algorithm. Numerical support for the accuracy and the computational efficiency of the

method is given in Section 6.3.

In Chapter 7 we use the derived approximation to provide a semi-Monte Carlo, semi-

analytic method to determine the marginal contributions of the individual credits to

the overall portfolio risk. We compare the risk contributions obtained by our method

to the Expected Shortfall (ES) contributions suggested for instance in Overbeck [122].

We find out that the two methods give similar results, however, our method has lower

computational costs. Finally, we investigate the impact of the different model assumptions

(Gaussian vs heavy-tailed) on the risk structure of the portfolio, as given by the marginal

risk contributions.

We conclude in Chapter 8.



Chapter 2

Preliminaries

2.1 Copulas and dependence measures

In this section we describe the main issues in modelling dependence with copulas. For

more details see Embrechts et al. [47], Joe [83], Nelsen [118]. We summarize the necessary

results without proofs.

Definition 2.1.1. For d ∈ N \ {0} a d-dimensional distribution function (d.f.) with

uniformly distributed on [0, 1] marginals is called copula. �

The following theorem is known as Sklar’s Theorem. It is perhaps the most important

result regarding copulas, and is used in essentially all applications of copulas.

Theorem 2.1.2. [Sklar [133]] Let H be a d-dimensional d.f. with marginals F1, . . . , Fd.

Then there exists a copula C such that for all y ∈ Rd

H(y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)) .

If F1, . . . , Fd are all continuous, then C is unique; otherwise C is uniquely determined

on RanF1 × . . . × RanFd. Conversely, if C is a copula and F1, . . . , Fd are d.f.s, then the

function H defined as above is a d-dimensional d.f. with marginals F1, . . . , Fd. �

From Sklar’s theorem we see that for continuous multivariate d.f.s., the univariate

marginals and the multivariate dependence structure can be separated, and that the

dependence structure can be represented by a copula.

Corollary 2.1.3. Let H be a d-dimensional d.f. with continuous marginals F1, . . . , Fd

and copula C. Then for every u ∈ [0, 1]d

C(u1, . . . , ud) = H(F−1
1 (u1), . . . , F−1

d (ud)) ,

where F−1
j (uj), j = 1, . . . , d, denotes the generalized inverse function. �

9
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Let Y be a random vector with continuous marginals F1, . . . , Fd and a joint distribution

H. By means of Theorem 2.1.2 we have

P (Y1 < y1, . . . , Yd < yd) = C(F1(y1), . . . , Fd(yd)) .

Since P (Y1 < y1, . . . , Yd < yd) =
∏d

j=1 P (Yj < yj) if and only if the components of Y are

independent, we get the following proposition.

Proposition 2.1.4. If Y is a random vector with continuous marginals, then the compo-

nents of Y are independent if and only if the copula has the form

C(u1, . . . , ud) =
d∏
j=1

uj .

�

One nice property of copulas is that for strictly monotone transformations of the

random variables (r.v.s), copulas are either invariant, or change in certain simple ways.

Note that if the d.f. of the r.v. X is continuous, and if α is a strictly monotone function

whose domain contains the range of X (RanX), then the d.f. of α(X) is also continuous.

For a proof of the next proposition see Embrechts et al. [47], Theorems 2.6 and 2.7.

Proposition 2.1.5. Let Y be a random vector with continuous marginals and copula C.

If α1, . . . , αd are strictly increasing functions on RanY1, . . . ,RanYd, respectively, then also

the random vector (α1(Y1), . . . , αd(Yd)) has copula C. If α1, . . . , αd are strictly monotone

on RanY1, . . . ,RanYd, respectively, and, without loss of generality, α1 is strictly decreas-

ing, then

Cα1(Y1),...,αd(Yd)(u1, . . . , ud) = Cα2(Y2),...,αd(Yd)(u2, . . . , ud)−
CY1,α2(Y2),...,αd(Yd)(1− u1, u2, . . . , ud) .

�

Copulas provide a natural way to study the dependence between r.v.s. For practical

purposes, however, it is often needed to summarize the dependence between two r.v.s in

a single number, i.e. to use a dependence measure. As a direct consequence of Proposi-

tion 2.1.5, the dependence measures which are copula properties, i.e. which are determined

only by the copula regardless of the marginals, are invariant under strictly increasing

transformations of the underlying r.v.s.

The linear correlation is most frequently used in practice as a measure of dependence.

However, since the linear correlation is not copula-based, it can often be quite misleading
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and should not be taken as the canonical dependence measure within the copula concept.

Below we recall the basic properties of the linear correlation and then continue with some

copula-based measures of dependence.

Definition 2.1.6. Let X and Y be r.v.s with 0 < var(X) < ∞ and 0 < var(Y ) < ∞.

The linear correlation between X and Y is defined as

ρX,Y =
cov(X, Y )√

var(X)var(Y )
,

where cov(X,Y ) = E[XY ]− E[X]E[Y ]. �

The linear correlation is a measure of linear dependence. In the case of a perfect linear

dependence, i.e. Y = aX + b, a ∈ R \ {0}, b ∈ R, we have |ρX,Y | = 1. More important

is that the converse also holds. Otherwise |ρX,Y | < 1. Furthermore, the linear correlation

has the property that ρaX+b,cY+d = sign(ac)ρX,Y . Hence the linear correlation is invariant

under strictly increasing linear transformations.

The linear correlation is easily manipulated under linear operations. Let A and B be

m× d matrixes, a, b ∈ Rm and X, Y be d-dimensional random vectors. Then cov(AX +

a,BY + b) = Acov(X, Y )B′. Therefore var(aX) = a′cov(X,X)a, i.e. the variance of a lin-

ear combination is fully determined by the pairwise covariances between the components,

a property which is crucial in portfolio theory.

Next we will study the concept of perfect dependence. For a proof of the next propo-

sition see Embrechts et al. [48].

Proposition 2.1.7. Let (X, Y ) be a bivariate random vector. Then its copula CX,Y (u, v) =

min(u, v) if and only if there exist increasing functions α, β : R → R and a r.v. Z, such

that (X, Y )
d
= (α(Z), β(Z)). In this case X and Y are called comonotonic. �

Corollary 2.1.8. Let (X, Y ) be a random vector with continuous marginals F and G

resp. and copula CX,Y (u, v) = min(u, v). Then Y = G−1(F (X)) a.s. �

Next we provide an alternative to the linear correlation dependence measure.

Definition 2.1.9. Let (X,Y ) and (X̃, Ỹ ) be bivariate random vectors with continuous

and common marginals F (of X and X̃) and G (of Y and Ỹ ). Then (X,Y ) and (X̃, Ỹ )

are called concordant (disordant) if (X − X̃)(Y − Ỹ ) > 0(< 0). �

The following theorem can be found in Nelsen [118], p.127.

Theorem 2.1.10. Let (X, Y ) and (X̃, Ỹ ) be independent random vectors with continuous

and common marginals F (of X and X̃) and G (of Y and Ỹ ). Let C and C̃ denote the
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copulas of (X, Y ) and (X̃, Ỹ ) resp. Denote with τ the probability of concordance minus

the probability of disordance, i.e.

τ = P ((X − X̃)(Y − Ỹ ) > 0)− P ((X − X̃)(Y − Ỹ ) < 0) .

Then

τ = 4

∫
[0,1]2

C̃(u, v) dC(u, v)− 1 .

�

Definition 2.1.11. Kendall′s tau for the bivariate random vector (X, Y ) with continuous

marginals is defined as

τ = P ((X̂ − X̃)(Ŷ − Ỹ ) > 0)− P ((X̂ − X̃)(Ŷ − Ỹ ) < 0) , (2.1)

where (X̂, Ŷ ) and (X̃, Ỹ ) are independent copies of (X, Y ). �

By means of Theorem 2.1.10, the Kendall’s tau is a copula property. As a consequence,

the Kendalls’ tau is invariant under any increasing componentwise transformations (unlike

the linear correlation). For some examples and additional advantages of this dependence

measure see Embrechts et al. [48].

The concept of tail dependence relates to the amount of dependence in the upper-

right-quadrant or the lower-left-quadrant tail of a bivariate distribution. It is a concept

that is relevant for the study of the dependence between extreme events.

Definition 2.1.12. Let (X, Y ) be a random vector with continuous marginal d.f.s F and

G resp. and copula C. The coefficient of lower tail dependence of (X,Y ) is

λL = lim
u→0

P (X < F−1(u) |Y < G−1(u)) = lim
u→0

C(u, u)

u
, (2.2)

if the limit exists. If λL > 0, (X, Y ) are called lower tail− dependent. Otherwise if λL = 0,

(X, Y ) are called lower tail− independent. In a similar way one may define the coefficient

of upper tail dependence as

λU = lim
u→1

P (X > F−1(u) |Y > G−1(u)) = lim
u→1

1− 2u+ C(u, u)

1− u
. (2.3)

�

From (2.2) and (2.3) we find that the tail dependence coefficient is a copula property,

hence the amount of tail dependence is invariant under strictly increasing transformations

on the marginal r.v.s. For copulas without closed analytical form another expression for

the tail dependence coefficient is more useful. Consider a pair of uniformly distributed on
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[0, 1] r.v.s (U, V ) with copula C. Note that P (V < v |U = u) = ∂C(u,v)
∂u

and P (V > v |U =

u) = 1− ∂C(u,v)
∂u

, and similarly when conditioning on V . Then

λL = lim
u→0

C(u, u)

u

= lim
u→0

(
∂

∂s
C(s, t)| s=t=u +

∂

∂t
C(s, t)| s=t=u

)
(2.4)

= lim
u→0

(P (V < u |U = u) + P (U < u |V = u)) .

Next we define a more general measure for extremal dependence.

Definition 2.1.13. Let (X, Y ) be a bivariate random vector with continuous marginals

F and G resp. and copula C. For x, y > 0 we call

λ(x, y) = lim
u→0

1

u
P (F (X) < ux,G(Y ) < uy) = lim

u→0

C(ux, uy)

u
,

(provided the limit extists) lower tail copula. Similarly one may define an upper tail

copula. �

Note that λ(1, 1) in Definition 2.1.13 is exactly equal to the lower tail dependence

coefficient. Furthermore, the tail copula is uniquely determined by the copula of the

random vector, and hence is invariant under marginal transformations.

In Section 2.3 we come back to the dependence measures correlation, Kendall’s tau and

tail dependence, as well as to the tail copula, in the framework of elliptical distributions.

We conclude this section with a definition of a dependence measure which is particularly

suitable for working with discrete binary r.v.s.

Definition 2.1.14. Let X1, X2 be binary {0, 1} r.v.s with P (Xi = 1) = pi > 0, i = 1, 2.

The odds ratio is defined as

OR(X1, X2) =
P (X1 = 1, X2 = 1)P (X1 = 0, X2 = 0)

P (X1 = 1, X2 = 0)P (X1 = 0, X2 = 1)
. (2.5)

�

For an interpretation of this measure, consider a model where Xi = 1, i = 1, 2, is the

undesirable outcome, e.g. in a simple credit risk model it means the default of obligor i.

Note first that that OR(X1, X2) = 1 if and only X1 and X2 are independent Bernoulli

r.v.s. Further, (2.5) can be rewritten as

OR(X1, X2) =
O(X1 |X2 = 1)

O(X1 |X2 = 0)
, (2.6)

where the odds

O(X1 |X2 = k) =
P (X1 = 1 |X2 = k)

P (X1 = 0 |X2 = k)
,
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for k = 0, 1, is the chance of default to non-default of credit 1, given that credit 2 has a

state k. If for example OR(X1, X2) = 10, this means that the chance of default to non-

default of credit 1, given that credit 2 has defaulted, is 10 times larger than the chance

of default to non-default of credit 1, given that credit 2 has not defaulted.

If the conditional probability of default for credit 1 is small, for given X2 = k, k = 0, 1,

then the odds O(X1 |X2 = k) approximates P (X1 = 1 |X2 = k), k = 0, 1. In this case

(2.6) can be considered as an approximation of the relative default risk of credit 1 when

obligor 2 has defaulted compared to when obligor 2 has not defaulted. Note that (2.5) is

symmetric with respect to the credits, so we also have the representation

OR(X1, X2) =
O(X2 |X1 = 1)

O(X2 |X1 = 0)
,

for

O(X2 |X1 = k) =
P (X2 = 1 |X1 = k)

P (X2 = 0 |X1 = k)
, k = 0, 1 .

The odds ratio is a quite popular concept in the modelling and the estimation of

multivariate binary events. For a detailed description of the various modelling techniques

see e.g. Collett [23], Czado [26]. We come back to this issue in the framework of our credit

risk model in Section 3.2.

2.2 Regular variation

The concept of regular variation plays a crucial role in the study of extreme events, both

in the one-dimensional case and in the multivariate extremes of a random vector. We start

with some classical results from the one-dimensional extreme value theory, see Embrechts

et al. [46] for a detailed exposition. In Section 2.2.2 we continue with the multivariate

regime.

2.2.1 One-dimensional regular variation

We first recall the definition of regular variation for one-dimensional r.v.s.

Definition 2.2.1. A Lebesque-measurable function F is called regularly varying with in-

dex α > 0 if for all x > 0

lim
t→∞

F (tx)

F (t)
= x−α .

When α = 0, the function F is said to be a slowly varying function. The (non-degenerate)

r.v. X is said to be regularly varying with tail index α > 0 if its tail is a regularly varying

function with index α > 0. �
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In the one-dimensional case, the extremal behaviour of a sequence of r.v.s can be

illustrated by the behaviour of their maxima. Let (Xn)n∈N be a sequence of r.v.s and

denote Mn = max(X1, . . . , Xn), for n ∈ N \ {0}. The following result is the basis of

classical extreme value theory.

Theorem 2.2.2. Let (Xn)n∈N be a sequence of i.i.d. r.v.s with non-degenerate d.f. If there

exist norming constants cn > 0, dn ∈ R, n ∈ N \ {0}, and some non-degenerate r.v. M

such that

c−1
n (Mn − dn)

d→M ,n→∞ , (2.7)

then the d.f. of M belongs to the type of one of the following three d.f.s.

Frechet: Φα(x) =

{
0 x ≤ 0 ,

exp (−x−α) x > 0 , α > 0 ;

Weibull: Ψα(x) =

{
exp (−(−x)α) x ≤ 0 , α > 0 ,

1 x > 0 ;

Gumbel: Λ(x) = exp (−e−x) x ∈ R. �

Details of the proof are for instance to be found in Resnik [124], Proposition 0.3. The

three types of d.f.s in Theorem 2.2.2 are called extreme value distributions.

Definition 2.2.3. The d.f. of the r.v. X is said to belong to the maximum domain of

attractition of the extreme value distribution H, if there exist norming constants cn > 0,

dn ∈ R, n ∈ N, such that (2.7) holds and M has d.f. H. �

The concept of regular variation is crucial when one has to determine the domain of

attraction of F .

Of particular interest in financial applications are the distributions in the domain of

attraction of the Frechet distribution, see for instance Embrechts et al. [46], Chapter 6.

The next proposition charaterizes the distributions in this domain.

Proposition 2.2.4. The d.f. F belongs to the maximum domain of attraction of the

Frechet distribution Φα, α > 0, if and only if the tail F (x) = x−αL(x), x > 0, where L is

a slowly varying function. �

For a proof see Embrechts et al. [46], Theorem 3.3.7. If the r.v. X has d.f. F in the

domain of attraction of Φα, then X is regularly varying and its tail decreases quite slowly

(at a, roughly said, polynomial rate). Note that this implies, for instance, that E[Xβ] =∞
for every β ≥ α. Thus, X is a ’heavy-tailed’ r.v.

The following d.f. is a convinient (from a statistical point of view) representation of

the three types of extreme value d.f.s.
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Definition 2.2.5. The standardized generalized extreme value distribution (GEV) is

defined as

Hξ(x) =

{
exp

(
−(1 + ξx)−1/ξ

)
ξ 6= 0

exp (− exp(−x)) ξ = 0 ,

where the support is

x > −1
ξ

ξ > 0

x < −1
ξ

ξ < 0

x ∈ R ξ = 0 .

One can introduce the related location-scale family Hξ;µ,σ by replacing the argument x above

with x−µ
σ

for some µ ∈ R and some σ > 0. The support has to be adjusted accordingly.

We will refer to Hξ;µ,σ as GEV. �

In the above definition, ξ = 1/α > 0 corresponds to the Frechet case in Theorem 2.2.2,

ξ = −1/α < 0 to the Weibull case and ξ = 0 to the Gumbel case. Thus, the GEV

distribution describes the limit distribution of normalized maxima of an i.i.d sequence.

An additional topic in extreme value theory is the distribution of scaled excesses over

high thresholds. The following definition makes this notion precise.

Definition 2.2.6. Let X be a r.v. with d.f. F and a right endpoint xF (xF = ∞ is

allowed). For a fixed u < xF

Fu(x) = P (X − u ≤ x |X > u), x > 0

is called the excess distribution of X over the threshold u. �

It turns out that the limit behaviour of Fu(x) for u tending to xF can be described by

the following d.f.

Definition 2.2.7. The standardized generalized Pareto distribution (GPD) is defined

as

Gξ(x) =

{
1− (1 + ξx)−1/ξ ξ 6= 0

1− exp(−x) ξ = 0 ,

where the support is

x ≥ 0 ξ ≥ 0

0 ≤ x ≤ −1
ξ

ξ < 0 .

One can introduce the related location-scale family Gξ;µ,σ by replacing the argument x above

with x−µ
σ

for some µ ∈ R and some σ > 0. The support has to be adjusted accordingly.

We will refer to Gξ;µ,σ as GPD. �
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Theorem 2.2.8. [Embrechts et al. [46], Theorem 3.4.13] Let X be a r.v. with distribution

F . Then F is in the domain of attraction of the extreme value distribution Hξ for some

ξ ∈ R if and only if

lim
u→xF

sup
0<x<xF−u

|Fu(x)−Gξ;0,σ(u)(x)| = 0

for some positive function σ(u). �

The extreme value theory is a tool for the analysis and extrapolation of extreme events.

An immense amount of research has been done in the development of the corresponding

statistical methods for extreme events (see Embrechts et al. [46], Chapter 6 for a detailed

overview). One popular suggestion is the Hill estimator for the parameter ξ of the GEV

distribution.

Definition 2.2.9. Let X1, . . . , Xn be i.i.d. r.v.s with d.f. in the domain of attraction of

the Frechet distribution Hξ, ξ > 0. Let X1,n ≥ X2,n ≥ . . . ≥ Xn,n be the ordered sample.

The Hill estimator of ξ takes the form

ξ̂k,n =
1

k

k∑
j=1

lnXj,n − lnXk,n (2.8)

where k = k(n) is some positive function of the number of observations n, such that

k(n)→∞ and k(n)
n
→ 0, n→∞. �

Theorem 6.4.6. in Embrechts et al. [46] provides conditions for consistency and asymp-

totic normality of ξ̂. Note that, to apply the estimator we need to select k from the upper

order statistics. Thus, if we select a small k, the estimator has a large variance; otherwise,

if we select a large k, a bias may enter. Methods to find a bias-variance trade-off are given

in e.g. de Haan and Peng [32].

Another popular statistical method in extreme value theory, known as the Peaks-over-

Threshold method (POT), is based on Theorem 2.2.8. Note that the density of the GPD

with parameters ξ and σ is explicitly available:

gξ;σ(x) =
1

σ

(
1 + ξ

x

σ

)−1/ξ−1

, x ∈ supp(Gξ;σ) .

Therefore, given a sample Y1, . . . , Yn of i.i.d. r.v.s with GPD, the log-likelihood function

equals

l(ξ, σ; Y ) = −n lnσ −
(

1

ξ
+ 1

) n∑
i=1

ln

(
1 + ξ

Yi
σ

)
. (2.9)

Let now X1, . . . , Xn be a sample of i.i.d. r.v.s with d.f. F (x) = P (X ≤ x) in the domain

of attraction of the Frechet distribution Φα. We select a high threshold u and denote
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Nu = #{i : Xi > u} and the corresponding excesses Y1, . . . , YNu . For every x > u we

have

P (X > x) = P (X > u)P (X > x |X > u) .

The Glivenko-Cantelli theorem suggests to approximate P (X > u) with the empirical

d.f., i.e. with Nu
n

, for a range where there are still enough data to guarantee good ap-

proximation. Theorem 2.2.8 suggests to approximate P (X > x |X > u) with the GPD

Gξ;σ(x−u) with the appropriate parameters ξ and σ, introducing a semiparametric model,

where data are sparse. Maximum likelihood (ML) estimates for ξ and σ can be found by

using the excesses Y1, . . . , YNu from the sample and maximizing numerically (2.9).

For the asymptotic theory behind this method see Smith [132]. As with the Hill esti-

mator, a key point is the selection of the threshold u, where a bias-variance trade-off is

sought, see the discussion on p.355 in Embrechts et al. [46].

2.2.2 Multivariate regular variation

In this section we give some basic results on multivariate regular variation, for details see

Kallenberg [86]. To prepare for the definition of regular variation for random vectors, we

recall the concept of vague convergence. Let χ be a separable metric space. A set B ⊂ χ is

said to be relatively compact if its closure B is compact. Let σ(χ) be the Borel σ-algebra

on χ. A measure µ on (χ, σ(χ)) is called a Radon measure if µ(B) <∞ for all relatively

compact sets B ∈ σ(χ).

Definition 2.2.10. Let µ, µ1, µ2, . . . be Radon measures on (χ, σ(χ)). We say that µn

converges to µ vaguely, if

lim
n→∞

∫
χ

f(s)µn(ds) =

∫
χ

f(s)µ(ds)

for all continuous functions f : χ→ R
+ with compact support. We denote µn

v→ µ. �

A useful equivalent formulation of vague convergence is given in the following theorem.

Theorem 2.2.11. Let µ, µ1, µ2, . . . be Radon measures on (χ, σ(χ)). Then µn converges

to µ vaguely, if and only if

lim
n→∞

µn(B) = µ(B)

for all relatively compact B ∈ σ(χ) with µ(∂B) = 0. �

For a proof see Kallenberg [86], p.169.
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Definition 2.2.12. The d-dimensional random vector Y is said to be regularly varying

with tail index α > 0 if there exists a random vector Θ with values in Sd−1 = {y ∈ Rd :

|y| = 1} such that for all y > 0

P (|Y | > ty, Y|Y | ∈ ·)
P (|Y | > t)

v→ y−αP (Θ ∈ ·), t→∞ . (2.10)

The distribution of Θ is referred to as the spectral measure of Y . �

Remark 2.2.13. In Definition 2.2.12 we do not specify the choice of a norm | · |. The

reason for this is that whether a random vector is regularly varying or not does not depend

on the choice of norm, see Hult and Lindskog [78]. In particular, the tail index α in (2.10)

remains the same irrespective of the selected norm. �

Although the property of multivariate regular variation is norm-independent, the form

of the spectral measure is certainly not. Frequently encountered norms include the Eu-

clidean L2-norm

|Y | =

√√√√ d∑
i=1

Y 2
i

and the max-norm

|Y |max = max(|Y1|, . . . , |Yd|) .

In what follows | · | denotes an arbitrary norm, unless stated otherwise. The choice of a

norm for a given situation is a problem in its own right. Clearly, the max-norm is large as

soon as at least one of the components of Y is large. Whether the other components are

large or not is not of interest. In the Euclidean norm, on the other hand, we need not have

any component of Y extremely large in order for |Y | to be large, since the components

of Y jointly determine |Y |. The max-norm might therefore be useful in models where

always the largest component outcome as such is of interest, while the Euclidean norm

pays attention to all components of Y . Before starting to model multivariate extremes it

might be worthwhile giving some thought to the choice of norm.

A useful fact contained in the next proposition concerns the effect of additive constants

in the multivariate regular variation settings.

Proposition 2.2.14. Let Y be a d-dimensional regularly varying random vector with tail

index α > 0 and spectral measure PΘ w.r.t. some norm | · | and let b ∈ Rd be a constant

vector. Then Y + b is regularly varying with the same tail index α and the same spectral

measure w.r.t. the norm | · |. �

For a proof see Hult and Lindskog [78].

The next proposition presents a link between regularly varying vectors and their norms.
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Proposition 2.2.15. Let Y be a d-dimensional regularly varying random vector with tail

index α. Then |Y | is a regularly varying r.v. in the sense of Definition 2.2.1 with tail

index α. �

For a proof see Wendin [135], Proposition 1.3. Theorem 1.1 in the same work states

the result to follow, see also Theorem 2.2.11 and Basrak [10].

Proposition 2.2.16. Let Y be a d-dimensional random vector with support on the whole

space of Rd. Then Y is regularly varying with tail index α if and only if there exists a

sequence of norming constants an > 0 and a non-zero Radon measure µ such that

nP (a−1
n Y > ·) v→ µ(·) . (2.11)

Moreover, for every t > 0 and for every relatively compact set B ∈ σ(χ) with µ(∂B) = 0,

µ(tB) = t−αµ(B) �

Remark 2.2.17. The Radon measure in (2.11) is unique up to a multiplicative constant.

�

Proposition 2.2.16 implies also the existence of constants an > 0, n ∈ N, such that for

the marginals of the random vector Y holds

nP (a−1
n Yi > x)→ cix

−α , n→∞ ,

where ci ≥ 0, i = 1, . . . , d. Unfortunatelly nothing guarantees that the constants ci are

strictly positive. Non-positive constants may occur, for instance, when the marginals of

Y are regularly varying with different tail indices, see p.11 in Mikosch [116].

Our next aim is to present a consistent estimator of the Radon measure µ in Propo-

sition 2.2.16.

Let | · | be an arbitrary norm and let Y be a regularly varying random vector with

tail index α. Denote by F the d.f. of |Y | and by F−1 its generalized inverse function. A

possible choice of norming constants in (2.11) is an = F−1(1/n), see Proposition 2.2.15

and Resnick [124], Proposition 1.11. Then we introduce the auxiliary sequence k = k(n)

with the properties k(n)→∞ and k(n)
n
→ 0 as n→∞. Because of (2.11),

n

k
P (

1

F−1(k/n)
Y ∈ ·) v→ µ(·) , n→∞ .

Consequently, with Y (1) . . . , Y (n) being i.i.d copies of Y, we obtain

µ̂n(·) =
1

k

n∑
i=1

1{Y (i)/F−1
E (k/n)∈·}

v→ µ(·) , n→∞ , (2.12)

where F−1
E (x) denotes the inverse of the empirical d.f. of |Y |. For details of the proof see

e.g. Wendin [135].
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2.3 Modelling dependence by elliptical distributions

The main topic of this section is to understand the various measures of dependence

through elliptical distributions. First we introduce the class of elliptically distributed

random vectors and give some of their properties. For further details about elliptical

distributions we refer to Fang et al. [50].

Definition 2.3.1. If Y is a d-dimensional random vector and, for some vector µ ∈ Rd,
some d× d non-negative definite symmetric matrix Σ and some function φ : [0,∞)→ R,

the characteristic function of Y − µ is of the form ϕY−µ(t) = φ(t′Σt), we say that Y has

an elliptical distribution with parameters µ, Σ and φ. The function φ is referred to as the

characteristic generator of Y . �

When d = 1, the class of elliptical distributions coincides with the class of one-

dimensional symmetric distributions.

For elliptically distributed random vectors, we have the following general representa-

tion theorem see Fang et al. [50], Theorem 1.3.

Theorem 2.3.2. The d-dimensional random vector Y is elliptically distributed with pa-

rameters µ, Σ (rank(Σ) = k) and φ, if and only if there exist a non-negative r.v. R,

independent of U , a k-dimensional random vector uniformly distributed on the unit hy-

persphere Sk =
{
z ∈ Rk : z′z = 1

}
, and a d× k matrix A with AA′ = Σ, such that

Y = µ+RAU . (2.13)

�

Remark 2.3.3. Uniqueness of the representation:

(1) Representation (2.13) is not unique: if B is an orthogonal k×k matrix, then (2.13)

holds also with Anew = AB and Unew = B′U .

(2) Elliptical distributions with different parameters can in fact be equal: for every

c > 0, Y
d
= Ynew, where Ynew has parameters µ, cΣ and φ( ·

c
), or, alternatively, Rnew =

R/
√
c in (2.13) �

In this work we are going to use frequently the class of normal variance mixture

distributions (NVM).

Definition 2.3.4. Let Z be a d-dimensional normal random vector with zero mean and

covariance matrix Σ with rank(Σ) = d (Z ∈ Nd(0,Σ)). Let W > 0 be a r.v., indepen-

dent of Z and µ ∈ Rd be a constant vector. Then we say that Y = µ + WZ has a

normal variance mixture distribution (Y ∈ Nd(µ,W
2Σ)). �
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Remark 2.3.5. Note that the NVM distributions are a subclass of the elliptical distribu-

tions. To see this we take an arbitrary NVM Y = µ+WZ and we let R = W
√
χ2
d, where

χ2
d is a chi-square distributed r.v., independent of W . We obtain for the NVM distribution

Y = µ+WZ
d
= µ+RAU , where A is a matrix such that AA′ = Σ and U is a d-dimensional

random vector uniformly distributed on the unit hypersphere Sd =
{
z ∈ Rd : z′z = 1

}
–

i.e. Y is elliptical by means of (2.13). In particular, Y is t-distributed with ν degrees of

freedom if R2/d ∈ F (d, ν) (F -distribution with d and ν degrees of freedom), or, equiva-

lently, W =
√

ν
χ2
ν
. Most of the known elliptical distributions can be represented as NVM,

see Fang et al. [50], Theorem 2.21 for details. �

Remark 2.3.6. If the NVM Y has finite second moments, then we can always find a

representation such that cov(Y ) = Σ. To see this we observe that cov(Y ) = cov(µ+WZ) =

E[W 2]cov(AZI), where A is a matrix such that AA′ = Σ (Choleski decomposition) and

ZI is a vector of independent standard normals. Then cov(Y ) = E[W 2]Σ. So, as in

Remark 2.3.3 (2) we set c = E[W 2]. �

The following result provides the basis of most applications of elliptical distributions.

Lemma 2.3.7. Let Y be d-dimensional elliptically distributed random vector with param-

eters µ, Σ and φ and let B be a q×d matrix and b ∈ Rq. Then b+BY is a q-dimensional

elliptically distributed random vector with parameters µnew = b + Bµ, Σnew = BΣB′ and

φ.

Proof. By Theorem 2.3.2, b+BY
d
= b+Bµ+RBAU .

If we partition Y , µ and Σ into Y = (Y1, Y2)′, µ = (µ1, µ2)′ and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Y1 and µ1 are r-dimensional vectors (r < d) and Σ11 is a r× r matrix, we have the

following consequence of Lemma 2.3.7.

Corollary 2.3.8. If Y is a d-dimensional elliptically distributed random vector with pa-

rameters µ, Σ and φ, then Y1 and Y2 are resp. r and d − r dimensional elliptically dis-

tributed vectors with parameters resp. µ1, Σ11, φ and µ2, Σ22, φ. �

Hence, marginal distributions of the elliptical distributions are elliptical and of the

same type (with the same characteristic generator).

We start to investigate the dependence structure of the elliptical distributions.

Definition 2.3.9. Let Y be a d-dimensional elliptically distributed random vector with

parameters µ, Σ and φ. We call

ρij =
Σij√
ΣiiΣjj

, i, j = 1, . . . , d, (2.14)

correlation coefficient. �
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We observe that if var(Yi) < ∞ and var(Yj) < ∞, then ρij in the above definition is

the usual linear correlation, i.e. ρij =
cov(Yi,Yj)√

var(Yi)var(Yj)
. However, for elliptical distributions

ρij is well defined even when linear correlation is not.

Corollary 2.3.10. Let Y be d-dimensional elliptically distributed random vector with

parameters µ, Σ and φ. If the marginals of Y are continuous, then the copula of Y is

uniquely determined by φ and [ρij]i,j=1,...,d.

Proof. We observe that due to Proposition 2.1.5 Y has the same copula as the vector Ynew

obtained from Y by substracting the means µi and multiplying by (Σii)
−1/2 component-

wise for i = 1, . . . , d. By Lemma 2.3.7 we have that Ynew has elliptical distribution with

parameters µnew = 0, Σnew = [ρij]i,j=1,...,d and φnew = φ.

The relation between the Kendall’s tau (2.1) and the linear correlation coefficient

is well known for bivariate normally distributed random vectors. In the next theorem

we state a more general relation between the Kendall’s tau and the correlation ρij for

elliptically distributed random vectors.

Theorem 2.3.11. [Lindskog et al. [104]] Let Y be a d-dimensional elliptically distributed

random vector with absolutely continuous marginals with support on the whole of R. Then

the following relation holds:

τ(Yi, Yj) =
2

π
arcsin ρij , i, j = 1, . . . , d . (2.15)

�

The next theorem clarifies the relation between regular variation and tail dependence

for an elliptically distributed random vector. Recall Definitions 2.1.12, 2.2.1 and 2.2.12.

Proposition 2.3.12. Let Y be a d-dimensional elliptically distributed random vector with

absolutely continuous marginals with support on the whole of R and representation Y =

µ+RAU as in (2.13). Then the following statements are equivalent:

(1) R is regularly varying with tail index α > 0;

(2) Y is regularly varying with tail index α > 0;

(3) for all i, j = 1, . . . , d, i 6= j, the vector (Yi, Yj) is tail dependent. Moreover, the

coefficients of tail dependence are given by

λU(Yi, Yj) = λL(Yi, Yj) =

∫ π
2

g(ρij)
cosα t dt∫ π

2

0
cosα t dt

, (2.16)

where g(ρij) = π
4
− arcsin ρij

2
= π

4
(1 − τij) and ρij and τij are the correlation coefficient in

(2.14) and Kendall’s tau in (2.1), respectively.
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Proof. It has been shown by Hult and Lindskog [78], that (1) and (2) are equivalent, as

well as that from (1) follows (3). The same paper states also the result, that if for all

i, j = 1, . . . , d, i 6= j, the vector (Yi, Yj) is tail dependent, then R is regularly varying with

some index β > 0 (possibly β 6= α), such that∫ π
2

g(ρij)
cosα t dt∫ π

2

0
cosα t dt

=

∫ π
2

g(ρij)
cosβ t dt∫ π

2

0
cosβ t dt

.

However, if β 6= α, then this contradicts to Lemma 2.3.13 (3).

In the next lemma we analyze further the function on the right-hand side of (2.16).

Lemma 2.3.13. Setting x = π
4
(1− τ) in (2.16), we define

λ(α, x) =

∫ π
2

x
cosα t dt∫ π

2

0
cosα t dt

, α ≥ 0, x ∈ [0,
π

2
] .

It satisfies the following properties.

(1) λ(α, x) is continuous and differentiable in α > 0, x ∈ (0, π
2
).

(2) 0 < λ(α, x) < 1.

(3) Let x ∈ (0, π
2
) be fixed. Then λ(α, x) is strictly decreasing in α > 0. Furthermore,

lim
α→0

λ(α, x) = 1− 2x

π
, lim

α→∞
λ(α, x) = 0 .

(4) Let α > 0 be fixed. Then λ(α, x) is strictly decreasing in x ∈ (0, π
2
).

Proof. The function cosα t for t ∈ (0, π
2
) is continuous and differentiable, and so are∫ π

2

x
cosα t dt and

∫ π
2

0
cosα t dt as functions of α > 0 and of x ∈ (0, π

2
). Furthermore, cosα t >

0 for t ∈ (0, π
2
), hence 0 <

∫ π
2

x
cosα t dt <

∫ π
2

0
cosα t dt, therefore we obtain (2).

To prove (3) we differentiate with respect to α

∂

∂α
λ(α, x) =

∫ π
2

0
cosα t dt

∫ π
2

x
log (cos t) cosα t dt−

∫ π
2

x
cosα t dt

∫ π
2

0
log (cos t) cosα t dt(∫ π

2

0
cosα t dt

)2

=
D(α, x)(∫ π

2

0
cosα t dt

)2 .

We will prove that D(α, x) < 0 for every x ∈ (0, π
2
) and α > 0.

First we note that D(α, 0) = D(α, π
2
) = 0. Then we differentiate with respect to x:

∂

∂x
D(α, x) = − log (cos x) cosα x

∫ π
2

0

cosα t dt+ cosα x

∫ π
2

0

log (cos t) cosα t dt

= cosα x

(
− log (cos x)

∫ π
2

0

cosα t dt+

∫ π
2

0

log (cos t) cosα t dt

)
= C(α, x) cosα x .
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Note that

C(α, 0) =

∫ π
2

0

log (cos t) cosα t dt < 0

and that

lim
x→π

2

C(α, x) =∞

and that C(α, x) is strictly increasing in x for x ∈ (0, π
2
), as − log (cos x) is strictly increas-

ing. Therefore there exists a unique point y, 0 < y < π
2
, such that C(α, y) = 0. Further-

more, ∂
∂x
D(α, x) = C(α, x) cosα x < 0 for x ∈ (0, y) and ∂

∂x
D(α, x) = C(α, x) cosα x > 0

for x ∈ (y, π
2
), so D(α, x) is strictly decreasing for x ∈ (0, y) (i.e decreasing from D(α, 0) =

0 to D(α, y) < 0) and D(α, x) is strictly increasing for x ∈ (y, π
2
) (i.e. increasing from

D(α, y) < 0 to D(α, π
2
) = 0). Therefore D(α, x) < 0 for x ∈ (0, π

2
) and α > 0. Therefore

∂
∂α
λ(α, x) < 0 for x ∈ (0, π

2
) and α > 0, which proves that λ(α, x) is strictly decreasing.

Furthermore,

lim
α→0

λ(α, x) = lim
α→0

∫ π
2

x
cosα t dt∫ π

2

0
cosα t dt

= 1− 2x

π
.

Taking some 0 < ε < x and using the fact that cosα t is strictly decreasing in t for every

α > 0 we obtain

1

λ(α, x)
=

∫ π
2

0
cosα t dt∫ π

2

x
cosα t dt

=

∫ ε
0

cosα t dt∫ π
2

x
cosα t dt

+

∫ π
2

ε
cosα t dt∫ π

2

x
cosα t dt

≥ ε cosα ε

(π
2
− x) cosα x

+ 1 .

Since
(

cos ε
cosx

)α →∞ as α→∞, we obtain

lim
α→∞

λ(α, x) = 0 .

As cosα t > 0 for t ∈ (0, π
2
), we have also the monotonicity of

∫ π
2

x
cosα t dt, i.e. (4).

From Proposition 2.3.12 we may conclude that the bivariate marginals of an elliptically

distributed random vector Y are tail-dependent if and only if the spectral r.v. R in (2.13) is

regularly varying. Kendall’s tau τij only affects the magnitude of the tail dependence. As a

consequence of the proposition, r.v.s with a Gaussian copula are tail-independent, whereas

the t-copula with ν degrees of freedom leads to a tail dependence with α = ν. Furthermore,

due to Lemma 2.3.13 (3) we find that the smaller the tail index α of the spectral r.v. R is

(i.e. the heavier the tails of Y1, . . . , Yd are), the higher are the tail dependence coefficients.

Note that the tail dependence coefficients depend on the distribution of R only through

the tail index α. In the next corrolary we state the result for NVM random vectors.
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Proposition 2.3.14. Let Y = µ + WZ be a d-dimensional NVM random vector. Then

the following statements are equivalent:

(1) W is regularly varying with tail index α > 0;

(2) Y is regularly varying with tail index α > 0;

(3) for all i, j = 1, . . . , d, i 6= j, the vector (Yi, Yj) is tail dependent. Moreover, the

coefficients of tail dependence are given by

λU(Yi, Yj) = λL(Yi, Yj) =

∫ π
2

g(ρij)
cosα t dt∫ π

2

0
cosα t dt

, (2.17)

where g(ρij) = π
4
− arcsin ρij

2
= π

4
(1 − τij) and ρij and τij are the correlation coefficient in

(2.14) and Kendall’s tau in (2.1), respectively.

Proof. By Breimann’s classical result (see Breimann [17]), the r.v. R = W
√
χ2
d is regularly

varying with tail index α if and only if W is (since
√
χ2
d has moments of every order).

This, together with Proposition 2.3.12 and Remark 2.3.5 leads to the required result.

Next we derive a formula for the spectral measure of a regularly varying elliptical

random vector. Recall that the spectral measure as in (2.10) depends on the choice of the

norm | · |.

Proposition 2.3.15. Let Y be a d-dimensional regularly varying elliptical random vector

with tail index α and representation Y = RAU +µ as in (2.13). Then its spectral measure

with respect to the norm | · | is given by

P (Θ ∈ ·) =
E
[
|AU |α | AU|AU | ∈ ·

]
E [|AU |α]

. (2.18)

Proof. Due to Proposition 2.2.14 we may assume without loss of generality that µ = 0.

Set y = 1 in Definition 2.2.12 and note that

P (|RAU | > x, RAU|RAU | ∈ ·)
P (|RAU | > x)

=
P (R|AU | > x, AU|AU | ∈ ·)

P (R|AU | > x)
.

By Theorem 2.2.15 R is regularly varying with tail index α. Therefore, by means of

Proposition 2.2.4, we have that P (R > x) = x−αL(x), where L(x) is some slowly varying

function. Conditioning on AU we obtain

lim
x→∞

P (R|AU | > x, AU|AU | ∈ ·)
P (R|AU | > x)

= lim
x→∞

E
[
x−α|AU |αL(x/|AU |) | AU|AU | ∈ ·

]
E [x−α|AU |αL(x/|AU |)]

.

Since limx→∞
L(xt)
L(x)

= 1 for all t > 0, we obtain the required result.
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Proposition 2.3.15 enables us to to compute explicit formulas for the spectral measure

with respect to a given norm | · | of a bivariate elliptical random vector. As stated in Hult

and Lindskog [78], Example 5.1, every elliptical random vector (Y1, Y2) has representation

(Y1, Y2) = (
√

Σ1,1R cos(ϕ),
√

Σ2,2R sin(ϕ+ arcsin ρ1,2)) ,

where ϕ is uniformly distributed on (−π/2, 3π/2). Then

RAU = R|AU | AU
|AU |

= Rf (ϕ)(cos g(ϕ) , sin g(ϕ)) ,

where

g(t) =


−π

2
t = −π

2

arctan
(√

Σ11√
Σ22

(ρ12 −
√

1− ρ12 tan t)
)

t ∈ (−π
2
, π

2
)

g(t− π) + π t ∈ (π
2
, 3π

2
)

and f(ϕ)
d
= |AU |. Denote S(θ1, θ2) = {(cos t, sin t) : θ1 < t < θ2}. Substituting this into

(2.18) and making use of a symmetry argument we obtain

PΘ(S(θ1, θ2)) =

∫ g−1(θ2)

g−1(θ1)
fα(t)dt∫ 2π

0
fα(t)dt

.

With respect to the L2-norm we have

fL2(t) =
√

Σ11 cos2(t) + Σ22 sin2(t+ arcsin ρ1,2) ,

and with respect to the max-norm we have

fmax(t) = max(
√

Σ11| cos(t)|,
√

Σ22| sin(t+ arcsin ρ1,2)|) .

In many applications, where one is interested in the extremal behaviour of Y1, given that

Y2 is extreme relative to its marginal d.f. In this context the weighted-max-norm appears

to be particularly useful. It is given by

|Y |max,∞ = max(
|Y1|√
Σ11

,
|Y2|√
Σ22

) .

In this case we have

fmax,∞(t) = max(| cos(t)|, | sin(ϕ+ arcsin ρ1,2)|) .

We conclude with a generalisation of Proposition 2.3.12, which considers the tail copula

of an elliptical random vector, recall Definition 2.1.13.
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Proposition 2.3.16. [Klüppelberg et al. [91]] Let (Y1, Y2) be a bivariate regularly varying

elliptical random vector with tail index α > 0, correlation ρ and tail copula λ(x, y). Then

λ(x, y) =

∫ π
2

g((x/y)1/α)
x cosα tdt+

∫ g((x/y)1/α)
− arcsin ρ y sinα(t+ arcsin ρ)dt∫ π

2

−π
2

cosα tdt
, (2.19)

where g(t) = arctan((t− ρ)/
√

1− ρ2) ∈ [− arcsin ρ, π
2
] , t ∈ R. �



Chapter 3

The model

We consider a portfolio credit risk model in the spirit of CreditMetrics [74] and investi-

gate the loss distribution over a fixed time horizon T . The dependence structure in the

portfolio is given by a set of underlying risk factors which we model by a general mul-

tivariate elliptical distribution with heavy-tailed marginals, introducing tail-dependence.

We present the main model in Section 3.1 and outline the key model parameters. Some

of the common features and of the differences between the heavy-tailed model and the

CreditMetrics model are discussed and illustrated by simple numerical examples in Sec-

tion 3.2. In Section 3.3 we find an expression for the moment generating function of the

portfolio loss and its first two moments.

3.1 Heavy-tailed risk factors

Let (Ω,F , P ) be a complete probability space which carries all random objects in this

thesis. For m ∈ N let X = (X1, . . . , Xm) be a random vector with discrete marginals,

all having the same range {1, 2, . . . , K} – the unknown rating (the credit quality) of the

credits at the time horizon T (rating 1 means default and the credit quality increases

with the rating). The loss of a portfolio of m credits (loans, bonds or credit derivatives)

is modelled by the r.v.

L =
m∑
j=1

ejLj , (3.1)

where for j = 1, . . . ,m:

- ej is a known positive constant - the exposure;

- Lj is a real-valued r.v., defined on the probability space (Ω,F , P (· |Xj)), where

P (· |Xj) denotes the conditional probability measure - the loss given rating.

We assume further:

(A) Lj are conditionally independent, given X;

29
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(B) given Xj, Lj is independent of Xs for s = 1, . . . ,m, s 6= j;

(C) Cj ≤ Lj ≤ 1 a.s. for every outcome Xj, j = 1, . . . ,m, where Cj < 1 are real

constants.

Most of the credit risk models used in practice fit within model (3.1) with the above

assumptions. For instance, when K = 2 (default and non-default rating) and Lj = 1{Xj=1},

L is the loss of a credit portfolio under the so called ’actuarial valuation’ (see Gordy [72],

Section 1). With the actuarial valuation one takes care only of the default risk, and the

uncertainty in the recovery of a credit in the event of default is ignored. An extension to

random recovery rates has been considered by various authors, see for example Bluhm et

al. [16], Section 1.1.3. A further extension to multiple ratings is necessary for the so called

’mark-to-market’ valuation, see Gordy [72], Section 3, or CreditMetrics [74].

The complexity of model (3.1) is in the joint distribution of X = (X1, . . . , Xm). We

denote the marginal default and rating migration probabilities by P (Xj = k) = pj,k and

P (Xj ≤ s) =
s∑

k=1

pj,k = psj , s = 1, . . . , K, j = 1, . . . ,m. (3.2)

In order to model the dependence structure of X = (X1, . . . , Xm) we introduce the random

vector Y = (Y1, . . . , Ym) with continuous marginal distributions Gj and a copula C, i.e.

the multivariate d.f. of Y is given by

GY (y1, . . . , ym) = C(G1(y1), . . . , Gm(ym)). (3.3)

For j = 1, . . . ,m the r.v. Yj is interpreted as asset (log-)return of obligor j in the portfolio.

Following the approach in CreditMetrics [74], we set for j = 1, . . . ,m

Xj = k ⇐⇒ G−1
j (pk−1

j ) < Yj ≤ G−1
j (pkj ), k = 1, . . . , K, (3.4)

where we interpret G−1
j (p0

j) = −∞ and G−1
j (pKj ) =∞.

In the following proposition we show that the calibration of the distribution of X =

(X1, . . . , Xm) can be reduced to the calibration of the marginal default and migration

probabilities and the copula of Y = (Y1, . . . , Ym) (see Frey and McNeil [59], Proposition

3.3 for a less general version).

Proposition 3.1.1. The d.f. of X is uniquely determined by the marginal probabilities in

(3.2) and the copula C of Y .

Proof. Observe that

P (X1 = x1, . . . , Xm = xm) = P

(
m⋂
j=1

{
G−1
j (p

xj−1
j ) < Yj ≤ G−1

j (p
xj
j )
})

= P

(
m⋂
j=1

{
p
xj−1
j < Gj(Yj) ≤ p

xj
j

})
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From Sklar’s Theorem 2.1.2 we have

P (X1 = x1, . . . , Xm = xm) = P

(
m⋂
j=1

{
p
xj−1
j < Uj ≤ p

xj
j

})

where (U1, . . . , Um) are uniformly distributed with copula C, i.e.

P (X1 = x1, . . . , Xm = xm) =
1∑

s1=0

. . .

1∑
sm=0

(−1)
∑m
j=1 sjC

(
px1−s1

1 , . . . , pxm−smm

)
.

We focus on the dependence structure of the asset returns Y1, . . . , Ym, i.e. on their

copula. We assume that they follow a linear factor model with a multiplicative random

shock:

Yj =

p∑
l=1

αj,lWZl + σjWεj, j = 1, . . . ,m . (3.5)

We have used the following notations.

- Z = (Z1, . . . , Zp) is p-dimensional multivariate normal with standard normal N(0, 1)

marginals and correlation matrix Σ – the regional and business sector common

factors.

- W is a positive r.v., independent of Z. It represents a global shock affecting all

assets across regions and business sectors.

- εj, j = 1, . . . ,m, are i.i.d N(0, 1), independent of W and Z – the obligor-specific

risk factors.

- the constants αj,l ∈ R and σj > 0, j = 1, . . . ,m, l = 1, . . . , p are the factor

loadings. They are normalized so that var [Yj |W ] = W 2.

Given (3.5), Y ∈ Nm(0,W 2ΣY ) – normal variance mixture (NVM) distribution with

mixing variable W , or otherwise called, multivariate elliptical distribution, see Defini-

tion 2.3.4 and the remarks after it. The simplest special case of (3.5) is the one-factor

Gaussian model, obtained when W = 1 a.s. and p = 1. This model has been investi-

gated by various authors, see for instance Bluhm et al. [16], Section 2.5.1. The popular in

practice model CreditMetrics [74] can be obtained from (3.5) by setting W = 1 a.s.

The marginal distributions of Yj are all one-dimensional NVMs, i.e. Yj
d
= WZ0, where

W is defined as above and Z0 ∈ N(0, 1), Z0⊥W . Since in our credit risk model the risk

factors Yj are needed only to introduce the dependence structure in the portfolio, of crucial

importance is their copula C, see Proposition 3.1.1. Given (3.5), this copula is an elliptical

copula. It is uniquely determined (see Corrolary 2.3.10) by the correlation matrix ΣY and

the d.f. of the global shock W . The correlation matrix ΣY can be computed in terms of
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the correlation matrix Σ of the common factors (Z1, . . . , Zp) and the factor loadings αj,l,

j = 1, . . . ,m, l = 1, . . . , p. It is the same as in the Gaussian case (W = 1 a.s.), i.e.

ΣYi,Yj =

p∑
l=1

p∑
q=1

αj,lαi,qΣl,q ,

see Lemma 2.3.7. However, model (3.5) has certain important differences from the Gaus-

sian model, which we investigate in the next section.

3.2 Heavy tails vs CreditMetrics – a first look

The part
∑p

l=1 αj,lWZl in (3.5) is frequently referred to as the systematic part of the

risk and σjWεj as the specific part of the risk for credit j. Note that, in contrast to

CreditMetrics, the specific parts in our case are no longer independent of the systematic

part, nor between each other. They are uncorrelated, but depend through the r.v. W .

Recall that we interpret W as a global shock affecting simultaneously all obligors across

countries and industries.

We are particularly interested in model (3.5), when W is regularly varying, i.e. for all

t > 0

lim
w→∞

P (W > tw)

P (W > w)
= t−α (3.6)

for some α > 0. As shown in Theorem 2.3.14, only in this case Yi and Yj, i 6= j, exhibit

tail dependence, i.e.

lim
p→0

P
(
Yi < G−1

i (p), Yj < G−1
j (p)

)
p

> 0 .

Note that by (3.4) the probability of joint default of credits i and j is given by

P (Xi = 1, Xj = 1) = P
(
Yi < G−1

i (p1
i ), Yj < G−1

j (p1
j)
)
.

Taking into account that usually the default probabilities p1
i and p1

j are small, the pairwise

tail dependence of assets Yi and Yj results in an increased likelihood for simultaneous de-

faults in the credit portfolio. This has an important impact on the credit loss distribution,

in particular on its tail (see Frey and McNeil [59] and Section 5.3.2 for some numerical

examples).

Example 3.2.1. [t-model]

The most frequently used model including a r.v. W satisfying (3.6) is the t-model (p ≥ 1,

W =
√

ν
Sν

, where Sν ∈ χ2
ν – chi-square distribution with ν degrees of freedom). Then

Y ∈ Tm (0,ΣY , ν) (multivariate t-distribution with ν degrees of freedom). This means

that α = ν in (3.6).
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In what follows we investigate further the impact of the heavy-tailed assumption on the

dependence structure of a credit portfolio. For the sake of simplicity we take K = 2 in (3.1)

(default and non-default ratings only), and consider the implied by the model dependence

of the binary r.v.s Lj = 1{Xj=1}, j = 1, . . . ,m. The dependence among these default indi-

cators is frequently measured by their correlation coefficient, see e.g. CreditMetrics [74],

Chapter 2. However, the odds ratio defined in (2.5) could be more appropriate in such

cases, since we are dealing with discrete binary events. In our case, this quantity has the

interpretation of relative risk, see the comments after Definition 2.1.14. If OR(Li, Lj) is

close to 1, this would mean that the credits are close to being independent. Otherwise,

if OR(Li, Lj) is large, this would indicate a high dependence in the portfolio. In other

words, if, under a reasonable parametrization, model (3.5) implies through (3.4) odds

ratios close to 1, we would be able to conclude, that the dependence in the assets Y has

a small impact on the portfolio loss distribution, and vise versa.

We start by computing a general formula for the odds ratios in our model.

Proposition 3.2.2. Assume that K = 2 and Lj = 1{Xj=1}, j = 1, . . . ,m, in model (3.1)

with (3.4). Denote by Ci,j(u, v) the copula of the bivariate random vector (Yi, Yj), for

i, j = 1, . . . ,m. Then for the odds ratio defined in (2.5) we have

OR(Li, Lj) =
Ci,j(p

1
i , p

1
j)(1− p1

i − p1
j + Ci,j(p

1
i , p

1
j))

(p1
i − Ci,j(p1

i , p
1
j))(p

1
j − Ci,j(p1

i , p
1
j))

, i, j = 1, . . . ,m .

Proof. Due to (3.4) we have

P (Li = 1, Lj = 1) = P (Yi < G−1
i (p1

i ), Yj < G−1
i (p1

i )) = Ci,j(p
1
i , p

1
j) .

Then

P (Li = 1, Lj = 0) = P (Li = 1)− P (Li = 1, Lj = 1) = p1
i − Ci,j(p1

i , p
1
j)

and

P (Li = 0, Lj = 0) = P (Li = 0)− P (Li = 0, Lj = 1) = 1− p1
i − p1

j + Ci,j(p
1
i , p

1
j) .

Substituting in (2.5) we obtain the required result.

Remark 3.2.3. From Proposition 3.2.2 we see that the odds ratios in our model are

directly related to other dependence measures. For instance, the linear correlation is given

by

ρ(Li, Lj) =
Ci,j(p

1
i , p

1
j)− p1

i p
1
j√

(1− p1
i )(1− p1

j)p
1
i p

1
j

, i, j = 1, . . . ,m .
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The Kendalls tau is given by

τ(Li, Lj) = Ci,j(p
1
i , p

1
j)(1−p1

i−p1
j+Ci,j(p

1
i , p

1
j))−(p1

i−Ci,j(p1
i , p

1
j))(p

1
j−Ci,j(p1

i , p
1
j)) , i, j = 1, . . . ,m .

In all cases of key importance is the object Ci,j(p
1
i , p

1
j), i, j = 1, . . . ,m . �

We continue with an example demonstrating the impact of the heavy-tailed model on

the odds ratio.

Example 3.2.4. [Odds ratios, heavy tails vs CreditMetrics]

Consider model (3.1) with (3.4) and (3.5). Assume that:

- K=2 and Lj = 1{Xj=1}, j = 1, . . . ,m (default-only model).

- The credits are split into 6 groups R1, . . . , R6 with p1
j = 0.001%, j ∈ R1; p1

j =

0.0055%, j ∈ R2; p1
j = 0.0288%, j ∈ R3; p1

j = 0.151%, j ∈ R4; p1
j = 0.7916%, j ∈ R5;

p1
j = 4.1996%, j ∈ R6. Such parametrization is typical in practice, see e.g. Bluhm et

al. [16], Section 2.7. More precisely, in Moody’s rating notation, we have the group R1

corresponding to the rating category Aaa, R2 to Aa and so on up to R6 corresponding to

the rating category B.

- There is one common factor in (3.5) (p = 1) and the factor loadings are

αj,1 =
√

1− σ2
j =
√
ρk, j ∈ Rk, k = 1, . . . , 6.

This means that the assets Yi and Yj have correlation ρij =
√
ρkρs when i ∈ Rk and

j ∈ Rs.

In Figure 3.1 we plot the odds ratios of the default indicators (Li, Lj), for i, j being

in various groups, as a function the correlation ρij of the assets (Yi, Yj). The left column

corresponds to the odds ratios for the CreditMetrics model (W = 1 a.s. in (3.5)) and

the right column corresponds to the heavy-tailed t-model with ν = 4 degrees of freedom

(Example 3.2.1). The selected correlation ranges are also typical in practice, see Bluhm

et al. [16], Section 2.7.

We observe that in both models and in all groups the odds ratios are quite high. This

means that in any case, the dependence in the assets Y induces a significant dependence

between the default indicators. Hence, we may reasonably expect, that this dependence is

important for the portfolio loss distribution. Further, we note that the odds ratios increase

significantly with the increase of the credit quality (notice the difference in the scales of

the vertical axes in row 1 (good quality obligors from groups R1, R2) to row 3 (low quality

obligors from groups R5, R6).

By comparing the left and the right column in Figure 3.1, we observe that in the

heavy-tailed t-model, the odds ratios are less sensitive to the correlation parameter than

in the CreditMetrics model. However, in all cases the t-model induces higher odds ratios
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than the CreditMetrics model. Therefore, the heavy tails have significant impact on the

portfolio loss distribution. �

The fact that the default probabilities are typically quite small allows for an approx-

imation of the odds ratios OR(Li, Lj) in the heavy-tailed case. Recall Proposition 2.3.16

which gives an explicit formula for the tail copula of a regularly varying elliptical ran-

dom vector. Furthermore, note that by Proposition 3.2.2, the odds ratio can be computed

through the copula function Ci,j(p
1
i , p

1
j), where p1

j , j = 1, . . . ,m, are the (small) marginal

default probabilities. Denote

pi,j =
p1
i + p1

j

2
, i, j = 1, . . . ,m ,

and note that pi,j → 0 when both p1
i and p1

j tend to 0. Set xi,j = pi,j/p
1
i and approximate

Ci,j(p
1
i , p

1
j) by pi,jλ(xi,j, xj,i), where λ(x, y) is the tail copula of an elliptical random vector

given in Proposition 2.3.16. Substituting in the formula in Proposition 3.2.2 we obtain an

approximation for the odds ratios. In the next example we investigate the accuracy of the

suggested approximation.

Example 3.2.5. [Approximation of odds ratios, Example 3.2.4 continued]

Consider model (3.1) with (3.4) and (3.5) and the parameters from Example 3.2.4. Recall

that the t-model satisfies (3.6) with α = ν = 4.

In Figure 3.2 we compare the true odds ratios to the above suggested approximation.

In all cases, the approximation is reasonably accurate, and in particular for the credits

from the top quality groups R1 and R2 it cannot be distinguished from the true odds ratio.

Note that the approximation depends (apart from the marginal default probabilities) only

on the correlation coefficients ρij and on the tail index α of the assets Y . Hence, we may

conclude that these are the parameters of the copula of Y with important impact on the

portfolio loss distribution. �

3.3 Moment generating functions

The moment generating function (m.g.f.) of a r.v. (provided it exists) determines com-

pletely the distribution of the r.v. Therefore, knowing the m.g.f. in an explicit form is

sufficient to compute the d.f. by numerical methods, see for instance Duhamel and Vet-

terli [42]. Furthermore, the m.g.f. is the basis for providing various tail approximations,

incl. the saddlepoint approximation (see Jensen [82]) or the classical Cramer-Lundberg

upper bound for the ruin probability in insurance mathematics (see e.g. Asmussen [7],

Section 3.5). These techniques have been extensively applied in the analysis of another

class of credit risk models - the so called actuarial approach, see CSFB [25] or Gordy [73].
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Unfortunately, even in the most simple special cases of the CreditMetrics model, the m.g.f.

of the portfolio loss cannot be computed explicitly, see Finger [52]. An application of the

saddlepoint approximation or the FFT is, therefore, subject to complicated numerical

procedures, and is feasible only in some special cases of our general model (3.1) with

(3.4) and (3.5), see Martin et al. [109]. However, in this section we derive a (non-explicit)

expression for the m.g.f. of L which we use extensively in Section 6.2. The expression is

essentially based on the fact that, given the global shock W and the common factors Z,

the individual credits in the portfolio are independent, see the proofs below.

We note first that due to assumption (C) in model (3.1), the portfolio loss L has

bounded support

Lmin ≤
m∑
j=1

Cjej ≤ L =
m∑
j=1

ejLj ≤
m∑
j=1

ej = Lmax . (3.7)

From now on we exclude some degenerate cases and we suppose that for every x < Lmax

we have P (L > x) > 0. This implies, for instance, that if the distribution of L is discrete,

then P (L = Lmax) > 0.

Proposition 3.3.1. Assume model (3.1) with (3.4) and (3.5). Then the m.g.f ϕ (θ) =

E [exp (θL)] exists for every θ ∈ R and is given by

ϕ (θ) = E [exp (H (W,Z, θ))] (3.8)

with

H (W,Z, θ) =
m∑
j=1

logHj (W,Z, θ) , (3.9)

where for j = 1, . . . ,m,

Hj (W,Z, θ) = E [exp (θejLj) |W,Z] =
K∑
k=1

gj,k(W,Z)ϕj,k(ejθ). (3.10)

Furthermore, for all j = 1, . . . ,m, k = 1, . . . , K

gj,k (w, z) = Φ

(
G−1
j (pkj )

σj

1

w
−

p∑
l=1

αj,l
σj
zl

)
− Φ

(
G−1
j (pk−1

j )

σj

1

w
−

p∑
l=1

αj,l
σj
zl

)
, (3.11)

where we interpret the second term as 0 for k = 1 and the first term as 1 for k = K; and,

finally

ϕj,k(θ) = E [exp (θLj) |Xj = k] . (3.12)
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Proof. Due to (3.7) we obtain immediately for θ > 0

ϕ (θ) = E [exp (θL)] ≤ exp (θLmax) ,

therefore ϕ (θ) exists for every θ ≥ 0. Also we have by (3.7) for θ < 0

ϕ (θ) = E [exp (θL)] ≤ exp (θLmin) ,

therefore ϕ (θ) exists for every θ ∈ R.

By conditioning on X we have

ϕ (θ) = E [exp (θL)] = EX E [exp (θL) |X] .

By assumption (A) in (3.1) Lj, j = 1, . . . ,m, are independent, given X. Therefore

ϕ (θ) = EX

[
m∏
j=1

E [exp (θejLj) |X]

]
.

Since by assumption (B) in (3.1) Lj, given Xj, is independent of Xs for j = 1, . . . ,m and

s = 1, . . . ,m, s 6= j, we get

ϕ (θ) = EX

[
m∏
j=1

E [exp (θejLj) |Xj]

]
.

Due to (3.5), given W and Z, the r.v.s Yj, j = 1, . . . ,m, are independent (inherited by the

independence of εj). Therefore Xj, j = 1, . . . ,m, are conditionally independent by means

of (3.4). Hence, by conditioning on W and Z we get

ϕ (θ) = EW,Z

[
EX

[
m∏
j=1

E [exp (θejLj) |Xj] |W, Z

]]

= EW,Z

[
m∏
j=1

EXj [E [exp (θejLj) |Xj] |W, Z]

]
.

Given (3.5),

P (Xj = k |W = w, Z = z) = P
(
G−1
j (pk−1

j ) ≤ Yj < G−1
j (pkj ) |W = w, Z = z

)

= P

(
G−1
j (pk−1

j ) ≤
p∑
l=1

αj,lWZl + σjWεj < G−1
j (pkj ) |W = w, Z = z

)

= P

(
G−1
j (pk−1

j )

σj

1

w
−

p∑
l=1

αj,l
σj
zl ≤ εj <

G−1
j (pkj )

σj

1

w
−

p∑
l=1

αj,l
σj
zl

)
= gj,k(w, z) .
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Therefore

EXj [E [exp (θejLj) |Xj] |W, Z] =
K∑
k=1

gj,k(W,Z)ϕj,k(ejθ)

and hence

ϕ (θ) = EW,Z

[
m∏
j=1

K∑
k=1

gj,k(W,Z)ϕj,k(ejθ)

]
.

By assumption (C) in (3.1) Cj ≤ Lj ≤ 1 and ϕj,k(ejθ) is finite for every θ ∈ R, j =

1, . . . ,m, k = 1, . . . , K. Therefore we get the required result.

Next we derive formulas for the mean and the variance of L.

Proposition 3.3.2. Denote µj,k = E [Lj |Xj = k]. Under the assumptions of model (3.1)

with (3.4) and (3.5), the mean of L is

E [L] =
m∑
j=1

K∑
k=1

ejpj,kµj,k ,

and the variance is

var(L) =
m∑

j,l=1

K∑
k,s=1

ejelE [gj,k (W,Z) gl,s (W,Z)] (µj,k − E[Lj])(µj,s − E[Lj]) ,

where gj,k (W,Z) , j = 1, . . . ,m, k = 1, . . . , K are defined in (3.11). Furthermore, the

conditional mean, given the global shock W and the common factors Z = (Z1, . . . , Zp), is

E [L |W,Z] =
m∑
j=1

K∑
k=1

ejgj,k(W,Z)µj,k .

Proof. We have

E [L] = E [E [L |X]] =
m∑
j=1

ej E [E [Lj |X]] =
m∑
j=1

K∑
k=1

ejpj,kE [Lj |Xj = k] . (3.13)

For the variance of L we have

var (L) =
m∑

j,l=1

ejelcov(Lj, Ll) . (3.14)

By assumptions (A) and (B) in (3.1) we obtain

cov(Lj, Ll) = E [E[(Lj − E[Lj])(Ll − E[Ll]) |X]]

= E [E[Lj − E[Lj] |Xj]E[Ll − E[Ll] |Xl]]

=
K∑

k,s=1

P (Xj = k,Xl = s)(E[Lj|Xj = k]− E[Lj])(E[Ll|Xl = s]− E[Ll]).
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Using (3.4) and (3.5) and similar arguements as in the proof of Proposition 3.3.1 we have

for k, s = 1, . . . , K, j, l = 1, . . . ,m

P (Xj = k,Xl = s) = E[P (Xj = k,Xl = s |W,Z)]

= E [gj,k (W,Z) gl,s (W,Z)]

and

P (Xj = k |W,Z) = gj,k(W,Z)

which lead to the required results.

Note that the mean is available explicitly, while for the variance one needs to compute

numerically the integrals E [gj,k (W,Z) gl,s (W,Z)] , k, s = 1, . . . , K, j, l = 1, . . . ,m. In the

CreditMetrics model (W = 1 a.s.), using the properties of the normal distribution, the

computation of such an integral turns into a relatively simple integration w.r.t. a two-

dimensional normal distribution, even when p > 2. This happens because in (3.11), only a

simple linear combination of the common factors Z1, . . . , Zp appears. In the heavy-tailed

case, we have an additional integration w.r.t. the distribution of the global shock W .
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Figure 3.1: The parameters are given in Example 3.2.4
Left column: The odds ratios for credits of various groups (rating categories) as a function of the asset
correlation ρi,j for the standard CreditMetrics model. In all cases the odds ratio increases with the
correlation. Furthermore, it is significantly large, in particlular for the high-quality credits on the first
row.
Right column: The odds ratios for credits of various groups (rating categories) as a function of the asset
correlation ρi,j for the heavy-tailed t-model. In all cases the odds ratio increases with the correlation,
however, it is less sensitive to it (compare the right to the left column). The t-model implies significantly
higher odds ratios than the CreditMetrics model for all groups.
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Figure 3.2: The parameters are given in Example 3.2.5 (the same as in Figure 3.1)
The odds ratios for credits of various rating categories as a function of the asset correlation ρi,j for
the t-model, compared to the approximation using tail dependence. The approximation is accurate, in
particular for the high quality credits in the left plot.
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Chapter 4

Calibration

The practical implementation of any portfolio credit risk model depends crucially on the

effectiveness of the statistical procedures for estimation of the model parameters. In model

(3.1) with (3.4) and (3.5) the parameter space includes:

(1) the marginal distributions of the ratings Xj, j = 1, . . . ,m;

(2) the marginal distributions of the losses Lj, given Xj, j = 1, . . . ,m;

(3) the copula of the assets Y (see Proposition 3.1.1). By means of (3.5), this copula

is determined by the distribution of the global shock W , the correlation matrix Σ of the

common factors Z1, . . . , Zp and the factor loadings αj,l, σj, j = 1, . . . ,m, l = 1, . . . , p.

In the next section we describe briefly the available approaches regarding the one-

dimensional marginal parameters (1) and (2). We continue with the bivariate case and in

Section 4.2 we introduce several estimation methods for important dependence measures

for two-dimensional random vectors, including the linear correlation, Kendall’s tau and

the tail dependence coefficients. Particular attention is paid to the estimation of the tail

dependence coefficient, where a new method aiming at a lower variance of the estimates is

suggested. In Section 4.3 we consider the calibration of a multidimensional elliptical cop-

ula, based on i.i.d. observations of a random vector with arbitrary continuous marginals.

We start with several semi-parametric and non-parametric methods for dealing with the

marginals of the observed random vector. We continue with two classical methods for cop-

ula estimation. The main result in this section is a new calibration procedure for an ellip-

tical copula, which makes extensive use of the information contained in the joint extreme

observations. In Section 4.4 we apply the procedure to calibrate model (3.5). An additional

result regarding the estimation of the factor loadings αj,l, σj, j = 1, . . . ,m, l = 1, . . . , p in

(3.5) is provided. We conclude this chapter with an extended simulation study and some

real data examples.

43
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4.1 Marginal parameters

4.1.1 Rating migration probabilities

The possibility that major rating agencies will change the credit rating of an obligor is

an important source of credit risk, above and beyond its implications for the direct risk

of default. Changes in the credit ratings may have an immediate effect on the values of

defaultable bonds portfolios, may indicate that certain credits are no longer admissible

for investors, who are subject to restrictions on the ratings of their credits, and may lead

even to mandatory termination of some financial contracts. Some corporate bonds have

coupon rates linked explicitly to the credit rating. The BIS capital accord determines the

capital requirements of the regulated banks based in part on the credit ratings of the

obligors they have in their portfolios. For these and related reasons, a model for the risk

of a rating change is a key ingredient of the credit risk management system.

In what follows we model the credit rating of an obligor as a continuous-time stochastic

process (X(t))t≥0 with state space {1, . . . , K}, where state 1 means default (absorbing

state), and the credit quality increases with the rating. This numeric notion is chosen

only for notational convenience; if we use e.g. Moody’s rating categories, we would set

K = 8, X = 8 corresponding to rating Aaa, X = 7 to Aa and so on until X = 2 Caa and

X = 1 default (D).

Furthermore, we assume that the rating process follows the dynamics

dX(t) = (VX(t) −X(t))dNX(t)(t) , t ≥ 0 ,

where N = (N1, . . . , NK) is a set of independent time-homogeneous Poisson processes with

intensities λ1, . . . , λK and V1, . . . , VK is a set of mutually independent and independent of

N discrete r.v.s with d.f.s, for k = 1, . . . , K,

P (Vk = j) =
λkj
λk

j = 1, . . . , K, j 6= k ,

with λkj being some positive constants summing up to λk.

Under these assumptions, the credit rating processX(t) is a time-homogeneous Markov

process, see e.g. Schönbucher [129], Section 8.2.3. More precisely, we have that for all T > t

P (X(T ) = j | Ft) = P (X(T ) = j |X(t)) , j = 1, . . . , K , (4.1)

and, denoting by Q(t, T ) = [qkj(t, T ) = P (X(T ) = j |X(t) = k)]k,j=1,...,K , we have also

Q(t, T ) = Q(T − t, 0) := Q(T − t) . (4.2)

In particular, Q(t) = exp(Λt), t ≥ 0, where Λ = [λjk]j,k=1,...,K with λkk = −λk, k =

1, . . . , K. The matrix Λ is often called generator matrix. It describes completely the

stochastic behaviour of the rating process X.
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The calibration of the generator matrix Λ is complicated by the fact that usually

the rating agencies publish only rating migrations over a given time period like 1 year.

The most common method for estimation in this case is based upon the observed be-

haviour of groups of obligors within the same initial rating, the cohorts. Denote by

nk(t), k = 1, . . . , K, the total number of obligors of rating k at time t, and by nkj(t1, t2)

the number of observed migrations of obligors with rating k at time t1 to rating j at time

t2 > t1. Due to the Markov chain dynamics of the rating process, these migration events

can be viewed as outcomes of nk(t1) independent multinomial trials. With rating migra-

tion observations over T periods, the maximum likelihood estimator for the one-period

migration probabilities qkj(1) is

q̂kj(1) =
1

T

T∑
t=1

nkj(t− 1, t)

nk(t− 1)
,

see e.g. Johnson and Kotz [84], Chapter 3 for confidence intervals.

This standard estimator has certain weak points. First, it does not utilize the full

continuous-time information on the rating migrations which could be available at a rating

agency or at a bank. In particular, when it comes to the rare events like a default of a

high-rated obligor, the method usually produces 0 as an estimate. This is due to the fact

that in practice a default of such an obligor typically happens not immediately within

one period, but through a sequence of rating downgrades. This information cannot be

captured by the standard estimator.

In addition, estimating a one-period migration probability matrix Q(1) by Q̂(1) does

not automatically imply an estimate Λ̂ for the generator matrix Λ. Israel et al. [79] consider

the problem of finding a generator matrix Λ̂ consistent with Q̂(1). It is well-known that for

certain stochastic matrices Q, there exists no generator matrix. Israel et al. [79] provide

sufficient conditions on Q̂(1) for the existence of a generator. Furthermore, there can be

distinctly different generator matrices consistent with the same migration matrix Q̂(1),

implying different estimates for migration probabilities Q̂(t), for all t 6= 1. The problem is

known as embedding problem for continuous-time Markov chains. It is studied in detail by

Kreinin and Sidelnikova [95], who give also a survey on the available numerical methods

for it.

To avoid these problems, Lando and Skodeberg [98] propose a direct maximum like-

lihood estimator for the generator matrix. It requires knowledge of the precise points in

time (the exact dates) at which rating migrations take place.

For k, j = 1, . . . , K, denote by mkj(t) the total number of migrations from rating k to

rating j throughout the period [0, t]. Recall the notation nk(t) as above. Then a maximum
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likelihood estimator for the migration intensities in the generator matrix Λ is

λ̂kj =
mkj(T )∫ T
0
nk(t)dt

, k, j = 1, . . . , K ,

see Lando and Skodeberg [98] for asymptotic properties and confidence bounds.

To conclude this section, we note that with respect to the rating modelling, the time-

homogeneos Markov chain assumptions are quite strong and cannot be confirmed by

empirical data. The default and migration probabilities vary significantly with the busi-

ness cycle, as documented by Nickell et al. [120] and Kavvathas [87]. This contradicts to

the time-homogenuity assumption (4.2). In addition, Behar and Nagpal [12], Lando and

Skodeberg [98], and Kavvathas [87] all find that, for obligors of certain ratings, the prior

rating is an important determinant of the likelihood of a downgrade (and default) v.s

that of an upgrade, over a given time horizon. There is indeed an apparent momentum in

rating migration data, which contradicts to (4.1). Also, there is a significant aging effect

(dependence of the migration probabilities on the duration in a rating category and/or the

age of the credit), documented by Carty and Fons [20], Lando and Skodeberg [98], and

Kavvathas [87]. Further information for the obligors available from the rating agencies

like watch-lists and outlooks could also be important for accurate estimation of the de-

fault and migration probabilities, see Cantor and Hamilton [19]. To summarize, different

obligors of the same rating have different default and migration probabilities, and a given

obligor of a fixed rating has default and migration probabilities which change over time.

For this reason, in the thesis we consider the marginal default and migration probabilities

in (3.2) as attributes of the individual credit and not of the rating category to which the

credit belongs. This gives a sufficient flexibility to the model and allows for statistical

estimation of the credit risk based on every kind of relevant information for the marginal

credits that could be available.

4.1.2 Loss given rating

Knowing the credit quality (the rating) of a given obligor at the time horizon is not

sufficient in itself to determine completely the profit/loss, which the bank will generate

for holding the credit. In case of default, it is not clear whether the collateral of the credit

will be sufficient to cover at least the expected part of the losses. In all other cases, the

change in the market value of the credit may not be completely determined by the credit

rating.

An important ingredient of any credit risk model is the loss given default (LGD), i.e.

the d.f. of Lj, given Xj = 1, for j = 1, . . . ,m in (3.1). Gupton and Stein [75] and Hamilton

et al. [76] provide comprehensive studies and point out the most powerful determinants

of LGD. Their key findings are:
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- The type of the obligor and the type of the credit are the most powerful determinants.

- The initial rating category of the obligor can also be used as a predictor: the higher

the rating, the lower the LGD.

- The LGD moves with the business cycle and thus is positively correlated with the

default probabilities: the higher the default probabilities, the higher the LGD.

These and some additional factors are summarized in Moody’s Loss-Calc – the indus-

trial model for prediction of LGD, see Gupton and Stein [75]. Further studies of historical

LGD are Eberhart and Sweeny [44], Altman [3], Altman and Kishore [4] and many others.

Apart from the case of default, a lot of research has also been done in the development

of rating-based forward pricing models for single-obligor credit risks (bonds and deriva-

tives). A general pricing framework can be found in Lando [97]. Jarrow et al. [81] consider

a very simple case leading to deterministic prices, given the rating. CreditMetrics [74]

takes also a similar approach. More complicated, but more realistic, are the models de-

veloped for instance by Das and Tufano [28], and Li [103]. We do not go into detail since

our goal is the portfolio view of credit risk. We adopt a general formulation. In this thesis

the profit/loss of the individual credit, given its credit rating, is modelled by an arbitrary

r.v. Lj, see model (3.1). Specifying the distribution of this r.v., for all possible rating

categories at the risk horizon, and the corresponding default and migration probabilities

as in Section 4.1.1 is sufficient to calibrate the marginal loss distribution in our model.

More problematic are assumptions (A) and (B) in model (3.1). Sytematic dependen-

cies between the losses given rating are observed in various empirical studies, see e.g.

Frye [63, 64]. In particular, for some credit types LGDs are positively correlated with

certain market factors. The effect of this dependence on the portfolio level is studied by

Oda and Muranaga [121] and by Frey and McNeil [61], Section 5.1 (systematic recovery

risk). For the sake of simplicity, we disregard this dependence and keep assumptions (A)

and (B).

4.2 Bivariate dependence measures

We focus on the dependence structure of a two-dimensional random vector (Y1, Y2) with

continuous marginals. Throughout this section we assume that we are given a sample

(Y
(i)

1 , Y
(i)

2 ), i = 1, . . . , n, of i.i.d. copies of (Y1, Y2).

In Section 4.2.1 we consider the estimation of some classical dependence measures for

the whole range of Y1 and Y2. In Section 4.2.2 we consider the estimation of the tail

dependence coefficient which measures the dependence in the extremes of Y1 and Y2.
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4.2.1 Kendall’s tau and correlation

Recall Definition 2.1.6 of the linear correlation coefficient. Given a sample (Y
(i)

1 , Y
(i)

2 ), i =

1, . . . , n, of i.i.d. copies of the random vector (Y1, Y2) with finite variances, it is straight-

forward to estimate the variance of Yj, j = 1, 2, by

σ̂(Yj) =
1

n− 1

n∑
i=1

(Y
(i)
j − Y j,n)2 ,

where

Y j,n =
1

n

n∑
i=1

Y (i) .

In order to estimate the linear correlation coefficient, we may compute the sample covari-

ance

ĉov(Y1, Y2) =
1

n− 1

n∑
i=1

(Y
(i)

1 − Y 1,n)(Y
(i)

2 − Y 2,n) ,

and then use

ρ̂(Y1, Y2) =
ĉov(Y1, Y2)√
σ̂(Y1)

√
σ̂(Y2)

. (4.3)

This estimator is classical and works quite satisfactory in the case when (Y1, Y2) are

bivariate normal. However, it has certain weak points. In particular, it depends crucially on

the marginals of Y1 and Y2. When they are asymmetric or heavy-tailed, the estimator lacks

robustness. For instance, when var(Y1) =∞, it may not even converge. Recall that (2.14)

provides a definition of the correlation coefficient in the framework of elliptical copulas,

which does not rely on marginal assumptions, and in particular allows for marginal heavy-

tails and infinite variances. Since model (3.5) is essentially based on elliptical copulas

and does not exclude heavy-tailed marginals, we need an alternative method to estimate

ρ(Y1, Y2).

Various covariance and correlation estimators have been proposed including M-estimators,

estimators based on multivariate trimming and estimators based on variances of sums and

differences of standardized variables (see Devlin et al. [35] for an overview). Particularly

useful in the framework of elliptical distributions are the methods suggested by Frahm

and Junker [57] and by Lindskog et al. [104].

The estimator of Frahm and Junker [57] is in principle applicable to a random vec-

tor Y of arbitrary dimension d ≥ 2 with elliptical distribution. It uses extensively the

repesentation of such a random vector Y = RAU + µ as in (2.13). First one needs to

estimate the mean vector µ ∈ Rd. This can be done easily by the sample mean vector

(Y 1,n, . . . , Y d,n). Alternatively, under some technical conditions detailed in Bünning and

Trenkel [18], Chapter 3, the sample median vector is also a consistent estimate for µ (re-

call that the marginals of the elliptical distributions are symmetric). Once we have an
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estimate for µ, we substract it from the data and assume that we have Y = RAU in

(2.13). Denote by | · | the L2 norm on Rd. We have that

S :=
Y

|Y |
d
=

AU

|AU |
.

The vector S is distributed on the unit hypersphere (since U is), and, given the matrix

A, its density can be computed explicitly. In order to estimate A, one maximizes the

likelihood function

Γ̂ = arg max
Γ

log(L(A;S(1), . . . , S(n))) = arg max
Γ

n log(det(Γ′Γ))− d
∑
i=1

nS(i)Γ′ΓS(i) ,

where S(1), . . . , S(n) are the observed i.i.d. copies of S and Γ = δA−1 with δ > 0 being

a design constant, see Frahm and Junker [57] for more details. Once the estimate Γ̂ is

available, we get directly an estimate for the correlation coefficients as defined in (2.14)

(recall that Σ = A′A and that the correlation is invariant under scaling with a constant

δ).

In contrast to the above method, the estimator suggested in Lindskog et al. [104] is

applicable to the more general situation when Y is a random vector with arbitrary abso-

lutely continuous marginals and elliptical copula. It is essentially based on Theorem 2.3.11

which shows that the elegant relationship

ρ(Y1, Y2) = sin(
π

2
τ(Y1, Y2)) (4.4)

between the linear correlation coefficent defined in (2.14) and Kendall’s tau defined in (2.1)

holds when (Y1, Y2) have an elliptical distribution with absolutely continuous marginals.

The result is not only of theoretical interest; it is also extremely useful for statistical

purposes. It can be used to build a robust estimator of the linear correlation coefficient

for data coming from a distribution with elliptical copula. Formula (4.4) provides an

appealing bivariate method; we estimate the Kendall’s tau using the standard textbook

estimator and then plug it in relationship (4.4) to get the Kendall’s tau transform estimate

of ρ. More precisely, one may consistently estimate the Kendall’s tau by

τ̂(Y1, Y2) =

(
n

2

)−1 n∑
i>k

sign[(Y
(k)

1 − Y (i)
1 )(Y

(k)
2 − Y (i)

2 )], , (4.5)

and then use

ρ̂(Y1, Y2) = sin(
π

2
τ̂(Y1, Y2)) . (4.6)

The estimator (4.5) is consistent and asymptotically normal, see e.g. Höffding [77], which

implies the same for the correlation estimate (4.6) by the continuous mapping theorem

and the delta method. Simulation studies in Lindskog et al. [104] suggest that this simple
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method performs better than most of its competitors. Further results in Daul et al. [30]

show that (4.4) provides also a quite accurate approximation of the correlation coefficient

in more general situations than an elliptical copula, hence (4.6) is also quite robust. We

present some examples in Section 4.5, which investigate the accuracy of the estimator for

modest sample size.

Note that, unlike other methods of correlation estimation, the Kendall’s tau transform

method directly exploits the geometry of the elliptical distributions and does not require

to estimate variances and covariances. This is advantageous when the interest focusses

explicitly on correlations, as it often does in financial applications, and in particular in

our credit risk model. Recall that by means of Proposition 3.1.1 the copula of the assets

Y determines the distribution of the ratings X (which is of central interest in our work)

regardless of the assets’ marginals, and that the correlations ρ(Yi, Yj), i, j = 1, . . . ,m, are

essential parameters of this copula.

More generally, (4.6) can be used to calibrate the correlation matrices of higher di-

mensional elliptical copulas. However, in some cases the matrix of the pairwise correlation

estimates has to be adjusted numerically to ensure that the resulting matrix is positive

definite; see Rousseeuw and Molenberghs [125] for details. Note that the factor model

(3.5) guarantees that the (high-dimensional) correlation matrix ΣY ∈ Rm×m of the assets

is positive definite as long as (the lower-dimensional) correlation matrix of the common

factors Σ ∈ Rp×p is. This reduces the problem significantly, and in most practical cases no

or just minor adjustments of the correlation matrices are necessary (see Schwarz [131]).

4.2.2 Tail dependence

Recall Definition 2.1.12 of the tail dependence coefficient. In this section, we consider sev-

eral methods for estimating this dependence measure, based on a sample (Y
(i)

1 , Y
(i)

2 ), i =

1, . . . , n, of i.i.d copies of the random vector (Y1, Y2). We focus on the lower tail dependence

coefficient; the same methods can be applied to the upper tail dependence, by considering

the vector (−Y1,−Y2). We assume also that (Y1, Y2) are tail-dependent. Statistical meth-

ods for testing of tail dependence or tail independence go beyond the scope of this work,

for that we refer the reader to Ledford and Tawn [99] and Draisma et al. [36].

The main difficulty in estimating tail dependence arises in the limited availability of

extreme data. According to the assumptions on the distribution of the observed random

vector, the methods for estimating the tail dependence can be classified as parametric,

semi-parametric and non-parametric methods. According to the usage of data, the ap-

proaches are ascribed either to the entire dataset or to a subset of extreme data.

Within the framework of the methods based on extreme data, the extreme value theory

introduced in Section 2.2.1 contains the natural tools for inferences on the tail behavior
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of (one-dimensional) probability distributions. In the one-dimensional setting the class of

extreme value distributions has a finite parametrization, so it suffices to apply paramet-

ric estimation methods. By contrast, no finite parametrization of the multidimensional

extreme-value distributions exists. This leads to more complicated estimation methods.

A key result in this section is a new non-parametric estimator of the tail dependence

coefficient which utilizes only the extreme observations. We start with some classical

methods.

(A) Parametric tail dependence estimators based on the whole available

sample.

In this class of methods, the d.f. of the vector (Y1, Y2) is assumed to belong to a certain

parametric family. Classical methods like maximum likelihood (ML) provide estimators

for the parameters of the entire d.f. An estimator of the tail dependence coefficient in this

case follows as a by-product. Under the usual regularity conditions for the ML theory (see

e.g. Casella and Berger [21], p.516), this tail dependence estimator can be shown to be

consistent and asymptotically normal. However, recall from Proposition 3.1.1 that in our

credit risk application we are interested in the copula of a random vector, rather than in

its full d.f. Since the tail dependence coefficient itself is essentially a copula property, it

would be more natural to estimate it without making assumptions on the marginals. The

next method (B) is a step in this directlion.

(B) Semi-parametric tail dependence estimators based on the whole avail-

able sample.

In this class of methods, the copula of the vector (Y1, Y2) is assumed to belong to a cer-

tain parametric family, and the marginals are left arbitrary (but continuous, so that the

copula of the random vector is uniquely determined, see Theorem 2.1.2). In this case a

two-step method can be applied. In the first step, one has to transform the marginals Y1

and Y2 into uniform r.v.s, using one of the methods described in Section 4.3.1. In the sec-

ond step, one estimates the parameters of the copula, using for instance the ML methods

described in Section 4.3.2. As in method (A), an estimator of the tail dependence follows

as a by-product from the parameric copula assumptions. Genest et al. [65] show that such

estimators are consistent and asymptotically normal.

The main drawback of the above approaches (A) and (B) is that they infer the tail

dependence coefficient, which is a measure for the dependence in the extremes, without

putting more weight on the extreme observations. The methods that follow focus on this

issue.

(C) Tail dependence estimator for elliptically distributed vector, which uti-

lizes the extreme observations.

Recall from Proposition 2.3.12 that the tail dependence coefficient of a bivariate elliptical
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random vector with represenation Y = RAU + µ as in (2.13) is given by:

λ(Y1, Y2) =

∫ π
2

g(ρ1,2) cosα t dt∫ π
2

0
cosα t dt

,

where g(t) = π
4
− arcsin t

2
, t ∈ (−1, 1) and α is the tail index of the regularly varying r.v. R.

Therefore, it is sufficient to estimate the correlation coefficient ρ1,2 and the tail index α of

the spectral variable R. The estimation of the correlation ρ1,2 can be done by one of the

methods applicable to heavy-tailed elliptical distributions described in Section 4.2.1. For

the estimation of the tail index α we note that by Proposition 2.2.15 the r.v. |Y | (| · | being

an arbitrary norm) is regularly varying with the same tail index as the random vector

Y . Therefore it is sufficient to apply standard one-dimensional extreme value theory to

estimate the tail index of |Y |. Klüppelberg et al. [91] apply the Hill estimator (2.8) and

prove consistency and asymptotic normality of the resulting tail dependence estimator.

Alternatively, Frahm et al. [58] apply the POT method (end of Section 2.2.1). In both

cases | · | is taken to be the L2-norm, althought theoretically this is not a significant

requirement.

An advantage of the approach (C) is that it utilizes the extreme observations by

applying the Hill estimator or the POT method in the estimation of the tail index α of

the elliptical random vector. However, there are certain drawbacks which are similar to the

drawback of approach (A). The marginal tails in fact play a crucial role in the estimation

of the tail index α, and hence in the estimation of the tail dependence. The method

cannot be applied to distributions with elliptical copula and arbitrary marginals, which

are of central interest in our credit risk model. In many practical applications one can find

that whereas the elliptical copula is a reasonable model for the dependence structure of

the financial assets under consideration, they exhibit a different marginal behaviour, and

in particular do not have heavy tails, see Example 4.5.5 or Schwarz [131]. In such cases

method (C) breaks down.

Parametric estimation methods have the advantage of being efficient given that the

model is true whereas nonparametric estimation avoids model-misspecification. The next

methods are non-parametric, and are based on the extreme observations. We start with a

method based on the assumption that the random vector under consideration is a general

regularly varying vector.

(D) Tail dependence estimator for regularly varying random vectors.

Let (Y1, Y2) be a regularly varying random vector with tail index α and continuous

marginals G1 and G2 resp. Recall the estimator of the spectral measure µ as in (2.12). Of

particular interest in the context of tail dependence are probabilities like

π(p, q) = P (Y1 > G−1
1 (1− p) |Y2 > G−1

2 (1− q)) ,
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where p and q are some small probabilities. The key idea is to use the scaling property

of the Radon measure µ as in Proposition 2.2.16. Making use of (2.11), Wendin [135]

suggests to approximate the spill-over probability π(p, q), for p, q being small, by

π̃(p, q) =
µ({(s, t) : s > (q/

√
q2 + p2)1/α , t > (p/

√
q2 + p2)1/α})

µ({(s, t) : s > (q/
√
q2 + p2)1/α})

. (4.7)

Invoking the estimator µ̂ as in (2.12) one obtains the corresponding estimator π̂(p, q) for

π(p, q), i.e.

π̂(p, q) =
µ̂n({(s, t) : s > (q/

√
q2 + p2)1/α , t > (p/

√
q2 + p2)1/α})

µ̂n({(s, t) : s > (q/
√
q2 + p2)1/α})

Setting p = q in (4.7) and making use of the scaling property of the Radon measure µ as

in Proposition 2.2.16 we obtain an estimator for the upper tail dependence coefficient

λ̂µ =
µ̂n({(s, t) : s > 1/

√
2 , t > 1/

√
2})

µ̂n({(s, t) : s > 1/
√

2})
(4.8)

where µ̂n is the estimator of the Radon measure given in (2.12). Note that, unlike the

estimator presented in (C), (4.8) does not depend on the tail index α. However, it is still

based on the assumption that the marginal distributions are regularly varying with the

same tail index α as the vector, see e.g. the conlcusion in Wendin [135]. Similarly to the

method (C), the method (D) is not applicable to the more general case of a tail dependent

random vector with arbitrary marginals.

The next methods which we consider are completely non-parametric, and in particular

nothing more than continuity is assumed for the marginals.

(E) Empirical tail dependence estimator.

Let Y = (Y1, Y2) be a bivariate random vector with continuous marginals, copula C and

tail dependence λ(Y1, Y2). Let Y (i), i = 1, . . . , n, be i.i.d. copies of Y . Theorem 2.1.2

suggests an estimate of C(p, p), for p ∈ (0, 1):

CE(p, p) =
1

n

n∑
i=1

1{FE1 (Y
(i)
1 )<p , FE2 (Y

(i)
2 )<p} , (4.9)

where FE
j (p) denotes the empirical d.f. of Yj, for j = 1, 2. Invoking an auxiliary sequence

k = k(n) with the properties k →∞ and k
n
→ 0 as n→∞ we obtain

λ̂n,k =
n

k
CE(

k

n
,
k

n
)
P→ λ(Y1, Y2) , n→∞ , (4.10)

see Schmidt and Stadtmüller [127] for a proof of the above fact and for asymptotic nor-

mality of the suggested estimator.
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The main drawback of the above approach is in the high variance of the simple em-

pirical estimation of rare event probabilities. The next method is expected to perform

better.

(F) Log-transform method.

Let Y be a tail-dependent bivariate random vector with continuous marginals and a

differentiable copula C. Then for its tail dependence coefficient we have

λ(Y1, Y2) = lim
u→0

C(u, u)

u
= 2− lim

u→0

log(1− 2u− C(u, u))

log(1− u)
.

Recall that 1−2u+C(u, u) = C(1−u, 1−u) by definition. Invoking the empirical copula

estimator (4.9) and an auxiliary sequence k = k(n) with the properties k →∞ and k
n
→ 0

as n→∞ we obtain

2−
logCE(1− k

n
, 1− k

n
)

log(1− k
n
)

P→ λ(Y1, Y2) , n→∞ , (4.11)

see Coles et al. [22] for a proof and for asymptotic properties of the estimator.

We conclude with a new tail dependence estimator, which combines ideas from meth-

ods (D), (E) and (F).

(G) Alternative tail dependence estimator.

Let Y be a tail-dependent bivariate random vector with continuous marginals, differen-

tiable copula C and tail dependence coefficient λ(Y1, Y2). Let Y (i), i = 1 . . . , n, be i.i.d.

copies of Y . We start by noting that the weakest point of the tail dependence estimator

(4.10) is that it is a simple empirical estimator based on the extreme observations. More

precisely, denote

U
(i)
j = FE

j (Y
(i)
j ), j = 1, 2, i = 1, . . . , n , (4.12)

where FE
j is the empirical d.f. of Yj. Then the estimator in (E) can be rewritten as

λ̂n,u =
1

n

n∑
i=1

1

u
1{U(i)

1 <u,U
(i)
2 <u} ,

where u ∈ (0, 1) is some small threshold. We consider the extremes in a different set

and use a weighted empirical estimator with weights proportional to the distance to the

diagonal U1 = U2. To this end, we transform further (U
(i)
1 , U

(i)
2 ), i = 1, . . . , n, into polar

coordinates

U
(i)
1 = Q(i) sinφ(i), U

(i)
2 = Q(i) cosφ(i), i = 1, . . . , n, (4.13)

where the r.v.s (Q(i), φ(i)) satisfy 0 ≤ Q(i) ≤
√

2 and 0 ≤ φ(i) ≤ π
2
. Then we select a small

r ∈ (0,
√

2) and we suggest the following estimator

λ̃n,r =
1

n

n∑
i=1

√
2

r
1{Q(i)<r} sin(2φ(i)). (4.14)

In the following proposition we prove consistency of the suggested estimator.
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Proposition 4.2.1. For n ∈ N let Y (i) = (Y
(i)

1 , Y
(i)

2 ), i = 1, . . . , n, be a sequence of i.i.d

random vectors with differentiable copula C and arbitrary continuous marginals F1, F2.

Let also (Q(i), φ(i)), i = 1, . . . , n, be the r.v.s in (4.13). Let k = k(n) be a sequence of

positive constants such that k(n)→∞ and k(n)
n
→ 0, n→∞. Then

λ̃n, k/n
P→ λ∗, n→∞ , (4.15)

where λ∗ is the tail dependence coefficient of (Y1, Y2).

Proof. Denote by

U
(i)

j = Fj(Y
(k)
j ), j = 1, 2, i = 1, . . . , n ,

where Fj is the true d.f. of Yj, and the corresponding (Q
(i)
, φ

(i)
)i=1,...,n as in (4.13) and

note that this is an i.i.d sequence, since (Y
(i)

1 , Y
(i)

2 )i=1,...,n is an i.i.d. sequence. Denote also

by λ
n,k/n

the corresponding r.v. as in (4.14). Since Fj, j = 1, 2, is a monotone function, we

have for the copula C
U

(i)
1 ,U

(i)
2

= C, i = 1, . . . , n. Fix i ∈ {1, . . . , n} and denote Q = Q
(i)

,

φ = φ
(i)

, Uj = U
(i)

j , j = 1, 2. We have

1{Q<r} sin(2φ) = 1{Q<r}2 sinφ cosφ

= 1{Q<r}
2(Q sinφ)(Q cosφ)

Q2

d
= 1{

√
U2

1 +U2
2<r}

2U1U2

U2
1 + U2

2

.

Therefore

E[1{Q<r} sin(2φ)] =

∫ ∫
D={
√
u2

1+u2
2<r}

2u1u2

u2
1 + u2

2

dC(u1, u2).

Changing variables by z =
√
u2

1 + u2
2 ∈ (0, r), t =

√
2u1u2 ∈ (0, z) we obtain

E[1{Q<r} sin(2φ)] =

∫ r

0

∫ z

0

t2

z2
dC

(√
z2 + t2 +

√
z2 − t2

2
,

√
z2 + t2 −

√
z2 − t2

2

)

Therefore, applying L’Hopital’s rule

lim
r→0

√
2

r
E[1{Q<r} sin(2φ)] = lim

r→0

∂

∂u1

C(u1, u2)|u1=u2=r + lim
r→0

∂

∂u2

C(u1, u2)|u1=u2=r . (4.16)

However, by definition,

λ∗ = lim
u→0

C(u, u)

u
= lim

r→0

∂

∂u1

C(u1, u2)|u1=u2=r + lim
r→0

∂

∂u2

C(u1, u2)|u1=u2=r.
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Then (4.15) follows from Chebishev’s inequality. More precisely, we have for every ε > 0,

P
(∣∣∣λ̃n,k/n − λ∗∣∣∣ > ε

)
≤ 1

ε

(
E
∣∣∣λ̃n,k/n − λn,k/n∣∣∣+ E

∣∣∣λn,k/n − Eλn,k/n∣∣∣+
∣∣∣Eλn,k/n − λ∗∣∣∣) .

From (4.16) we have that Eλ
n,k/n → λ∗, n→∞.

By the SLLN we have λ
n,k/n a.s.→ Eλ

n,k/n
, n→∞.

Finally, since FE
j (Y (i))

a.s.→ Fj(Y
(i)) we have also

(Q(i), φ(i))
a.s.→ (Q

(i)
, φ

(i)
), i = 1, . . . , n . (4.17)

Furthermore

E
∣∣∣λ̃n,k/n − λn,k/n∣∣∣ ≤ √

2

k/n
E
∣∣∣1{Q(i)<r} sin(2φ(i))− 1{Q(i)

<r} sin(2φ
(i)

)
∣∣∣

≤
√

2

k/n
E
∣∣∣1{Q(i)<r} − 1{Q(i)

<r}

∣∣∣
≤
√

2

k/n

(
P (Q(i) <

k

n
)P (Q(i) −Q(i)

< 0) + P (Q
(i)
<
k

n
)P (Q(i) −Q(i)

> 0)

)
However, similarly as above,

P (Q
(i)
< r) =

∫ r

0

∫ z

0

dC

(√
z2 + t2 +

√
z2 − t2

2
,

√
z2 + t2 −

√
z2 − t2

2

)

and, applying L’Hopital’s rule,
√

2
r
P (Q

(i)
< r) → λ∗ < ∞ as r → 0. By (4.17) we obtain

also
√

2
r
P (Q(i) < r)→ λ∗ <∞ and P (|Q(i) −Q(i)| 6= 0)→ 0 as n→∞. This leads to the

required result.

Note that the estimators in (E), (F) and (G) may not necessarily be applied by using

the empirical d.f. to transform the data to the copula scale as suggested in (4.12). One may

potentially replace the empirical d.f. FE
j , j = 1, 2, in that equation by another consistent

estimate, see Section 4.3.1. However, this will presumably have a small impact on the

estimators in (E) and (D), as they are based essentially on a direct approximation of the

copula function at a single point, i.e. C(k/n, k/n) is approximated by e.g. CE(k/n, k/n)

in (4.10) and C(1− k/n, 1− k/n) by e.g. CE(1− k/n, 1− k/n) in (4.11). In contrast to

that, the new estimator (4.14) is intended to capture more information from the joint

extreme observation by assigning different weights to each one of them. Consequently,

replacing the empirical d.f. in (4.12) by another consistent estimate of the marginal d.f.

(which is advisable e.g. when we are dealing with marginal heavy tails) will have a direct

impact on the weights and thus on the tail dependence estimate.

In the next proposition we show asymptotic normality of the suggested estimator

(4.14), provided the marginal d.f.s are known. Since (4.14) is just a weighted estimator,
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the asymptotic variance is the same as the variance of the empirical estimator (E), see

Schmidt and Stadtmüller [127], Theorem 5.

For n ∈ N let Y (i) = (Y
(i)

1 , Y
(i)

2 ), i = 1, . . . , n, be a sequence of i.i.d random vectors with

differentiable copula C, tail dependence coefficient λ∗ and arbitrary continuous marginals

F1, F2. Assume that there exists a functon A(p) : R+ → R
+ such that A(p) → 0, p → 0

and
C(p, p)/p− λ∗

A(p)
= g <∞ , p→ 0 . (4.18)

Denote by

U
(i)

j = Fj(Y
(k)
j ), j = 1, 2, i = 1, . . . , n ,

and the corresponding (Q
(i)
, φ

(i)
)i=1,...,n as in (4.13). Denote also by λ

n,k/n
the correspond-

ing r.v. as in (4.14).

Proposition 4.2.2. With the above notations, let k = k(n) be a sequence of positive

constants such that k(n)→∞ and k(n)
n
→ 0, n→∞. If

√
kA(k/n)→ 0 , n→∞ ,

where A is the function in (4.18), then

√
k(λ

n,k/n − λ∗) d→ N(0,
√

2λ∗) , n→∞ .

Proof. We have

√
k(λ

n,k/n − λ∗) =
√
k(λ

n,k/n − E[λ
n,k/n

]) +
√
k(E[λ

n,k/n
]− λ∗) .

By (4.16) and (4.18) we get

lim
n→∞

√
k(E[λ

n,k/n
]− λ∗) = lim

n→∞

√
kgA(k/n) = 0 .

Furthermore,
√
k(λ

n,k/n − E[λ
n,k/n

]) =
n∑
i=1

Zk,n ,

where Z
(i)
k,n =

√
2√
k
(1{Q(i)

<k/n} sin(2φ
(i)

) − E[1{Q(i)
<k/n} sin(2φ

(i)
)]). By definition, Z

(i)
k,n are

i.i.d. with mean E[Z
(i)
k,n] = 0, i = 1, . . . , n. Denoting by Zk,n =

√
2√
k
(1{Q<k/n} sin(2φ) −

E[1{Q<k/n} sin(2φ)]) a generic r.v. with the same distribution as Z
(1)
k,n, we have

var(
n∑
i=1

Z
(i)
k,n) = nE[Z2

k,n] . (4.19)
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Then we compute

nE[Z2
k,n] =

√
2
n

k
E[
√

21{Q<k/n} sin2(2φ)]− k

n

(n
k
E[
√

21{Q<k/n} sin2(2φ)]
)2

.

The second term converges to 0 as n tends to infinity because of (4.16):

lim
n→∞

k

n

(n
k
E[
√

21{Q<k/n} sin2(2φ)]
)2

= lim
n→∞

k

n
(λ∗)2 = 0 .

Using the same change of variable as in the proof of Proposition 4.2.1 we get for the first

part

√
2
n

k
E[
√

21{Q<k/n} sin2(2φ)] =
√

2
n

k

∫ k
n

0

∫ z

0

√
2
t4

z4
dC

(√
z2 + t2 +

√
z2 − t2

2
,

√
z2 + t2 −

√
z2 − t2

2

)
.

Applying L’Hopital’s rule and going back to (4.19) we obtain

var(
n∑
i=1

Z
(i)
k,n)→

√
2λ∗ .

Finally we note that |Z(i)
k,n| ≤

√
2
k

a.s. and therefore, for every i = 1, . . . , n,

P (|Z(i)
k,n| > ε)→ 0 , n→∞

for every ε > 0. Then the required result then follows from Theorem 4.1. in Petrov [123].

We leave the question for asymptotic normality in the more general case of unknown

marginal distribution for future research. It is indeed a complicated problem related to

the rate of convergence of multivariate empirical tail processes, see e.g. Deheuvels [33].

4.3 Elliptical copulae

The problem under consideration in this section can be formulated as follows: given a

sample (I
(i)
1 , . . . , I

(i)
d ), i = 1, . . . , n, of i.i.d. copies of the random vector I with elliptical

copula C and continuous marginals F1, . . . , Fd, estimate C regardless of F1, . . . , Fd. In

order to achive our goal, we start with several methods for transforming the observable

data into the [0, 1]d copula scale. We continue with some classical or more recent methods

for copula estimation, based on the ML theory. Finally, we suggest a new non-parametric

method for elliptical copula calibration, which makes extensive use of the information

contained in the joint extreme observations.
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4.3.1 Transforming the marginals

When the estimation of a parametric copula is the primary objective, the unknown

marginal distributions of the data enter the problem as nuisance parameters. The first

step is usually to estimate the unknown marginals and then to use the probability-integral

transform to get data on the copula scale [0, 1]d.

Broadly speaking the marginal modelling can be done in three ways: fitting paramet-

ric distributions to each marginal; modelling the marginals non-parametrically using the

empirical d.f.; and using a hybrid of the parametric and non-parametric methods.

The first method has been termed as the IFM or inference-functions-for-margins

method by Joe [83] following the terminology used by McLeish and Small [113]. Asymp-

totic theory has been worked out for this approach by Joe [83]. The cruicial assumption

is that each of the marginals F1, . . . , Fd belongs to some parametric family with densities

resp. f1(x, ψ1), . . . , fd(x, ψd) (e.g. the normal densities with ψl being the unknown mean

and variance of margin l, l = 1, . . . , d). The unknown parameters ψ1, . . . , ψd are estimated,

for each marginal separately, by standard maximum likelihood (ML), i.e.

ψ̂l = arg max
ψ
{

n∑
i=1

log(f(I
(i)
l , ψ))}, l = 1, . . . , d .

However, in practice the success of the method is obviously dependent upon finding appro-

priate parametric models for the marginals, which may not always be so straightforward

when these show evidence of heavy tails and/or skewness.

The second method involving estimation of the marginals by the empirical d.f. has

been termed as the pseudo-likelihood method and is extensively investigated by Genest

et al. [65]. The method involves estimating the l-th marginal d.f. Fl by

FE
l (x) =

1

n+ 1

n∑
i=1

1{I(i)
l ≤x}

, l = 1, . . . , d .

The pseudo-sample from the copula is then constructed by

U
(i)
j = FE

l (I
(i)
l ), l = 1, . . . , d, i = 1, . . . , n .

Observe that, even if the original data vectors (I
(i)
1 , . . . , I

(i)
d ), i = 1, . . . , n, are i.i.d, the

pseudo-sample data are dependent, because the marginal estimates FE
l are constructed

from all of the original data vectors through the univariate samples. Note also that division

by n+1 in (4.3.1) keeps transformed points away from the boundary of the unit cube.

A hybrid of the parametric and nonparametric methods could be developed by mod-

elling the tails of the marginal distributions using the GPD (see Definition 2.2.7) as

suggested by extreme value theory and approximating the body of the distribution us-

ing the empirical d.f. (4.3.1). The method is known as the POT method and is used for
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instance by Davison and Smith [31]. Recall from Section 2.2.1 that for each marginal

Fl, l = 1, . . . d, the POT method starts by selecting a high threshold ul. Then, for x > ul

we have

P (Il ≥ x) = P (Il ≥ ul)P (Il ≥ x | Il ≥ ul) .

This leads to the approximation

F̂l(x) = FE
l (x) , x ≤ ul ,

F̂l(x) = 1− (1− FE
l (ul))(1−Gξ,σ(x− ul)) , x ≥ ul ,

where Gξ,σ is the GPD with parameters ξ, σ estimated as explained in Section 2.2.1. As

usual, the pseudo-sample from the copula is then constructed by

U
(k)
j = F̂j(I

(k)
j ), j = 1, . . . , d, k = 1, . . . , n .

This method is particularly appealing when one or more of the marginals show evidence

of heavy-tails.

4.3.2 Methods based on ML

Recall from Corrolary 2.3.10 that the elliptical copula of a random vector with representa-

tion Y = RAU+µ as in (2.13) is uniquely determined by the d.f. of the spectral variable R

and the correlation matrix [ρlj]l,j=1,...,d defined in (2.14). These are the parameters which

we are interested in.

Throughout this section, we assume that we have applied one of the methods for deal-

ing with the marginals discussed in Section 4.3.1 to the sample (I
(i)
1 , . . . , I

(i)
d ), i = 1, . . . , n,

of i.i.d copies of the random vector I with elliptical copula and continuous marginals. This

enables us to produce the copula ”sample” by

Û
(i)
l = F̂l(I

(i)
l ), l = 1, . . . , d, i = 1, . . . , n ,

where F̂l, l = 1, . . . , d, is the estimated marginal d.f., for instance the empirical d.f.

Among the numerous possible statistical procedures for elliptical distributions in gen-

eral, only few are designed to work on elliptical copulas regardless of the marginals (see

Demarta and McNeil [34]). One of the possible methods is by means of pseudo - maximum

likelihood (see Genest et al. [65]). Assume also that the d.f. of the spectral r.v. R as in

(2.13) belongs to some parametric family with parameters Ψ, i.e. P (R < x) = F (x; Ψ).

Usually one takes the F -family with (d, ν) degrees of freedom, leading to the t-copula,

see Example 3.2.1. Then one may estimate the correlation coefficients [ρlj]l,j=1,...,d and the

parameters Ψ by maximizing the pseudo-log-likelihood

l(Ψ, [ρlj]l,j=1,...,d, Û) =
n∑
i=1

l(Ψ, [ρlj]l,j=1,...,d, Û
(i)
1 , . . . , Û

(i)
d ) ,
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where l is the log-likelihood function of the elliptical copula.

As typically the likelihood function is available in terms of d-dimensional integrals (see

Demarta and McNeil [34]), in practice some numerical issues arise, in particular when

d > 2. A different approach overcoming this problem is taken in Lindskog et al. [104]. It

is based on the Kendall’s tau. More precisely, using (4.6) one may estimate completely

non-parametrically the correlation matrix by [ρ̂lj]l,j=1,...,d. Then, in order to estimate the

remaining parameters Ψ in the distribution of the spectral variable R, one maximizes

again the pseudo-log-likelihood

l(Ψ, [ρ̂lj]l,j=1,...,d, Û) =
n∑
k=1

l(Ψ, [ρ̂lj]l,j=1,...,d, Û
(i)
1 , . . . , Û

(i)
d ) . (4.20)

For an application to high-dimensional datasets see Daul et al. [30].

4.3.3 Methods based on tail dependence

As already discussed, the main reason why we are interested in copulas different from the

Gaussian is that we need better models for the dependence between extreme events. In

this sense both of the statistical approaches from Section 4.3.2 have the drawback that

they infer the parameters using the whole sample of observations, and in particular do

not put more weight on the joint extremes. Thus, they provide a good fit on the empirical

copula as a whole, but they might be misleading when it comes to joint extreme events.

In this section, we suggest a new method for calibration of an elliptical copula which uses

extensively the information contained in the joint extreme observations and the methods

for estimation of the tail dependence coefficients discussed in Section 4.2.2.

Let I = (I1, . . . , Id) be a random vector with absolutely continuous marginals with

support on the whole of R and an elliptical copula equal to the copula of the random

vector Y = RAU . Assume that the spectral r.v. R is regularly varying with tail index

0 < α∗ <∞.

Let S be the linear space of d× d matrices with real components and || · || be the L2

distance defined on S, i.e.

||A|| = ||[Alj]|| =
d∑

l,j=1

A2
lj, A ∈ S .

Denote Λ̂n = [λ̂nlj] ∈ S, where λ̂nlj, l, j = 1, . . . , d, n ∈ N, is a sequence of (weakly)

consistent estimates of the pairwise tail-dependence coefficients λ∗lj of Il and Ij, i.e.

λ̂nlj
P→ λ∗lj, n→∞ . (4.21)
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All methods for tail dependence estimation from Section 4.2.2 satisfy this property; how-

ever, we are especially interested in the non-parametric methods (E) and (G), since we

do not want to make any additional assumptions on the marginals. Denote also the true

tail dependence coefficients matrix Λ∗ = [λ∗lj] ∈ S.

Denote τ̂n = [τ̂nlj] ∈ S, where τ̂nlj, l, j = 1, . . . , d, n ∈ N, is a sequence of consistent

estimates of the Kendall’s tau coefficients τ ∗lj of Il and Ij, i.e.

τ̂nlj
P→ τ ∗lj, n→∞ . (4.22)

For example, (4.5) provides such sequence, see Lindskog et al. [104]. Denote also the true

Kendall’s tau matrix by τ ∗ = [τ ∗lj] ∈ S.

Furthermore, for α > 0 and τ ∈ S with τlj ∈ (−1, 1) denote by

L(α, τ) = [λ(α,
π

4
(1− τlj))] ∈ S , (4.23)

where λ(α, x) is the function from Lemma 2.3.13. This is a family of elements of S, indexed

by α.

Proposition 4.3.1. Let I = (I1, . . . , Id) be a random vector with absolutely continuous

marginals with support on the whole of R and an elliptical copula such that the spectral

r.v. R in (2.13) is regularly varying with tail index 0 < α∗ < ∞. Let Λ̂n = [λ̂nlj] ∈ S

and τ̂n = [τ̂nlj] ∈ S satisfy (4.21) and (4.22). In addition, let τ̂nlj = τ̂njl ∈ (−1, 1) a.s. and

λ̂nlj = λ̂njl ∈ (0,
1+τ̂nlj

2
) a.s. for every n ∈ N, l, j = 1, . . . , d (τ̂njj = λ̂njj = 1). Denote

α̂n = arg min
α>0
||L(α, τ̂n)− Λ̂n||. (4.24)

Then

(1) α̂n exists and is unique a.s. for every n ∈ N.

(2) α̂n is a consistent estimate of α∗, i.e.

α̂n
P→ α∗, n→∞.

(3) Denote by θ̂n the vector, composed of all τ̂nlj, λ̂
n
lj, l = 1, . . . , d, j = l + 1, . . . , d and

by θ∗ the corresponding vector with the true Kendall’s tau and tail dependence coefficients.

If √
n
(
θ̂n − θ∗

)
d→ N(0,Σ), n→∞, (4.25)

for some non-degenerate (2d(d− 1))× (2d(d− 1)) covariance matrix Σ, then

√
n (α̂n − α∗) d→ N(0, σ), n→∞ , (4.26)

where σ > 0 is explicitly specified in (4.31).
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Proof. (1) The following arguements are valid a.s. We note that by means of Lemma

2.3.13 (2), for every α > 0 we have

0 ≤ ||L(α, τ̂n)− Λ̂n|| ≤ 4d2.

Also, using Lemma 2.3.13 (3) and the fact that

lim
α→0

λ(α,
π

4
(1− τ̂nlj)) =

1 + τ̂nlj
2

> λ̂nlj

and

lim
α→∞

λ(α,
π

4
(1− τ̂nlj)) = 0 < λ̂nlj

we have for l, j = 1, . . . , d and for every n ∈ N a unique solution of the equation

λ(α,
π

4
(1− τ̂nlj)) = λ̂nlj,

which we denote by αlj ≥ 0. Let

αmax = max
l,j=1,...,d

αlj, αmin = min
l,j=1,...,d

αlj.

Due to the monotonicity of λ(α, π
4
(1 − τ̂nlj)) as a function of α (Lemma 2.3.13 (3)), for

every α > αmax we have

λ(α,
π

4
(1− τ̂nlj))− λ̂nlj < λ(αmax,

π

4
(1− τ̂nlj))− λ̂nlj

≤ λ(αlj,
π

4
(1− τ̂nlj))− λ̂nlj = 0 ,

therefore |λ(α, π
4
(1− τ̂nlj))− λ̂nlj| > |λ(αmax,

π
4
(1− τ̂nlj))− λ̂nlj| and hence

||L(α, τ̂n)− Λ̂n|| > ||L(αmax, τ̂
n)− Λ̂n|| .

By analogy for any α < αmin

||L(α, τ̂n)− Λ̂n|| > ||L(αmin, τ̂
n)− Λ̂n|| .

Therefore, either α̂n = αmin = αmax or ||L(α, τ̂n) − Λ̂n|| is bounded on the compact

interval [αmin, αmax], hence α̂n exists.

To prove uniqueness, assume for some n ∈ N that there are α1 6= α2 which are both

minimizers of ||L(α, τ̂n)−Λ̂n||. As L(α, τ̂n)−Λ̂n is a symmetric matrix, we may concentrate

on the upper triangle of the matrix, i.e. the same α1, α2 minimize also

G(α) =

d(d−1)∑
k=1

(gk(α))2 , (4.27)
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where

gk(α) = λ(α,
π

4
(1− τ̂nlj))− λ̂nlj, l = 1, . . . , d, j = l + 1, . . . , d,

i.e. k = 1, . . . , d(d− 1). Next define

H(α, w) =

d(d−1)∑
k=1

wkgk(α)

where w is a d(d− 1)-dimensional non-random vector with non-negative components.

Without loss of generality assume that α1 < α2, which implies by 2.3.13 (3) that

gk(α1) > gk(α2), k = 1, . . . , d(d − 1). From the fact that α2 is a minimizer of G(α) we

obtain
d(d−1)∑
k=1

(
∂

∂α
gk(α2)

)
gk(α2) = 0

Since ∂
∂α
gk(α2) are all negative (Lemma 2.3.13 (3)), there are only two cases (a) and (b).

(a) gk(α2) = 0, k = 1, . . . , d(d− 1). From this we obtain immediately that G(α2) = 0.

However, as gk(α1) > 0, k = 1, . . . , d(d − 1), we have G(α1) > 0 = G(α2), which is a

contradiction.

(b) There exists some index j for which gj(α2) > 0. Therefore we have also gj(α1) >

gj(α2) > 0, and, for every wj ≥ 0, R(wj) = wj(gj(α1)−gj(α2)) is a positive and increasing

function in wj. Therefore we may always find a vector w such that

H(α1, w) > H(α2, w)

by selecting its j-th component sufficiently large.

Fix an ε > 0 such that α2 − α1 > ε. As H(α, w) is continuous in α (Lemma 2.3.13

(1)), we may find w such that

H(α, w) > H(α2, w) (4.28)

for every α1 − ε < α < α1 + ε. We define a function

F (α) =

{
(1−Q(α)G(α) +Q(α)H(α, w)

H(α, w)

α1 − ε < α < α1 + ε ,

α > α1 + ε ,

where

Q(α) = 2

(
α− α1

ε

)4

−
(
α− α1

ε

)8

.

Note that F (α) is continuous on its domain, as Q(α1 + ε) = 1. The derivative of F (α) for

α < α1 + ε is given by

F ′(α) = Q′(α)(H(α, w)−G(α)) + (1−Q(α))G′(α) +Q(α)H ′(α, w) .
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Since Q′(α1 +ε) = 0, F (α) is also differentiable on its domain. Note also that α1 is a strict

local minimizer of F , because F ′(α1) = G′(α1) = 0 and

F ′′(α) = Q′′(α)(H(α, w)−G(α)) + 2Q′(α)(H ′(α, w)−G′(α)) +

+Q(α)H ′′(α, w) + (1−Q(α))G′′(α) ,

therefore F ′′(α1) = G′′(α1) > 0. Therefore, for a sufficiently small ε we have F (α) is

increasing in α ∈ (α1, α1 + ε]. On the other hand, by (4.28) we have F (α1 + ε) > F (α2),

which implies that there exists a point α3 ∈ [α1 + ε, α2) such that F ′(α3) = 0, therefore

we have
∑d(d−1)

k=1 wk
∂
∂α
gk(α3) = 0, which is a contradiction to the monotonicity of gk, k =

1, . . . , d(d− 1) (Lemma 2.3.13 (3)). This proves (1).

(2) As λ(α, π
4
(1−τ)) is continuous in τ (Lemma 2.3.13 (1)) by the continuous mapping

theorem we have for every α > 0

L(α, τ̂n)
P→ L(α, τ ∗), n→∞.

On the other hand Λ̂n P→ Λ∗, hence, by Proposition 2.3.12 we have

L(α∗, τ̂n)− Λ̂n P→ 0, n→∞ ,

where 0 ∈ Rd × Rd is the zero matrix. By monotonicity of λ(α, x) in α (Lemma 2.3.13

(3)), for every α 6= α∗ we have

L(α, τn)− Λn
P→ A(α) ∈ Rd × Rd, n→∞ ,

where A(α) 6= 0, therefore ||A(α)|| > 0. Hence we have

α̂n = arg min
α>0
||L(α, τ̂n)− Λ̂n|| P→ α∗, n→∞ .

(3) To prove asymptotic normality, we use the delta method. We consider the function

G(α) = G(α, θ̂n) defined in (4.27). By the definition of α̂n, we have

0 =
∂

∂α
G(α̂n, θ̂n).

By Taylor expansion of ∂
∂α
G(α̂n, θ̂n) around α∗ and we get

0 =
∂

∂α
G(α∗, θ̂n) +

∂2

∂α2
G(α̃n, θ̂n)(α̂n − α∗)

where α̃n lies between α̂n and α∗ a.s. for every n ∈ N. Therefore

α̂n − α∗ = −
(
∂2

∂α2
G(α̃n, θ̂n)

)−1
∂

∂α
G(α∗, θ̂n). (4.29)
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As α̃n lies between α̂n and α∗, by Lemma 2.3.13 (1), the definition of G and the continuous

mapping theorem we have

∂2

∂α2
G(α̃n, θ̂n)

P→ ∂2

∂α2
G(α∗, θ∗), n→∞.

Since α∗ = arg minαG(α, θ∗), we obtain ∂2

∂α2G(α∗, θ∗) < 0.

Next we use a Taylor expansion around θ∗ of the function ∂
∂α
G(α∗, θ):

∂

∂α
G(α∗, θ̂n) =

∂

∂α
G(α∗, θ∗) +∇θ

(
∂

∂α
G(α∗, θ̃n)

)
(θ̂n − θ∗)T ,

where θ̃n lies componentwise between θ̂n and θ∗. Since ∂
∂α
G(α∗, θ∗) = 0 and

∇θ

(
∂

∂α
G(α∗, θ̃n)

)
P→ ∇θ

(
∂

∂α
G(α∗, θ∗)

)
, n→∞,

by the continuous mapping theorem we have

√
n
∂

∂α
G(α∗, θ̂n)

d→ N(0,∇θ

(
∂

∂α
G(α∗, θ∗)

)
Σ∇θ

(
∂

∂α
G(α∗, θ∗)

)T

). (4.30)

Going back to (4.29) we obtain

√
n (α̂n − α∗) d→ N(0, σ), n→∞,

where

σ =
∇θ

(
∂
∂α
G(α∗, θ∗)

)
Σ∇θ

(
∂
∂α
G(α∗, θ∗)

)T

∂2

∂α2G(α∗, θ∗)
. (4.31)

Remark 4.3.2. Denote by θ̂nλ the vector, composed of all λ̂nlj, l = 1, . . . , d, j = l+1, . . . , d,

by θ∗λ the corresponding vector with the true tail dependence coefficients and by θ̂nτ , θ
∗
τ

the corresponding Kendall’s tau vectors. In practice, it is unlikely to find estimates θ̂nλ
such that (4.25) holds. Most offen, under additional technical conditions, we are able to

find a sequence k = k(n) with the properties k →∞ and k
n
→ 0 as n→∞ such that

√
k(θ̂nλ − θ∗λ)

d→ N(0,Σλ) , n→∞ ,

for some non-degenerate covaariance matrix Σλ, see e.g. Schmidt and Stadtmüller [127].

Then, whenever √
k

n

√
n(θ̂nτ − θ∗τ )

d→ 0 , n→∞ ,

we may modify (4.30) to get

√
k
∂

∂α
G(α∗, θ̂n)

d→ N(0,∇θλ

(
∂

∂α
G(α∗, θ∗)

)
Σλ∇θλ

(
∂

∂α
G(α∗, θ∗)

)T

) .
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This leads to asymptotic normality of the estimator for the tail index α∗ with the (much

slower) rate
√
k(n) and asymptotic variance depending on the variance of the tail depen-

dence estimates only. �

We return to our original problem for copula parameter estimation of a random vector

I = (I1, . . . , Id) with arbitrary continuous marginals and elliptical copula, equal to the

copula of the elliptical vector Y = RAU as in (2.13). Recall that the parameters of

the copula which we are interested in are the correlation matrix [ρlj]l,j=1,...,d and the

distribution of the spectral r.v. R. Due to Proposition 2.3.12, the only parameter in the

distribution of R which has significant influence on the joint extremes is the tail index

α. Therefore we focus on [ρlj]l,j=1,...,d and α only. Proposition 4.3.1 suggests to estimate

the tail index α by minimizing the distance in L2 sense between the matrix of estimated

from the extreme data tail dependence coefficients and the matrix of the implied by

Proposition 2.3.12 and estimated from the entire sample coefficients. Note that the method

can be applied to the lower, as well as to the upper tail dependence coefficients according

to which are the extremes of interest in the specific application.

We suggest the following algorithm for estimation of the parameters of an elliptical

copula, which we intend to apply in our credit risk model.

Algorithm 4.3.3. (1) Estimate the Kendall’s tau matrix by τ̂n = [τ̂nlj]l,j=1,...,d as in (4.5).

(2) Estimate the correlation matrix by [ρ̂nlj]l,j=1,...,d using (4.6) and the Kendall’s tau

estimates τ̂n.

(3) Estimate non-parametrically the lower tail dependence coefficients by Λ̂n = [λ̂nlj]l,j=1,...,d

as in (4.10), i.e. using only the extreme observations.

(4) Estimate the tail index of the spectral r.v. R by α̂n as in (4.24).

(5) In order to quantify the extremal dependence implied by the estimated τ̂n and α,

compute the implied tail dependence matrix L(α̂n, τ̂n), where L ∈ S is defined in (4.23).

Note that Proposition 4.3.1 is applicable to any consistent estimates of the Kendall’s

tau and the tail dependence coefficients. Furthermore, note that due to (4.31), the esti-

mator of the tail index α directly inherits the variance in the estimation of these coef-

ficients, and in particular the variance of the tail dependence coefficients estimates, see

Remark 4.3.2. Bearing in mind the lack of long time-series which is typical in credit risk,

it is extremely important to look for alternatives which utilize more information about

the joint extreme observations than (4.10) does by simple counting. For this reason we

consider a modification of Algorithm 4.3.3, where instead of (4.10) we use (4.14) at step

3.

Algorithm 4.3.4. (1) Estimate the Kendall’s tau matrix by τ̂n = [τ̂nlj]l,j=1,...,d as in (4.5).
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(2) Estimate the correlation matrix by [ρ̂nlj]l,j=1,...,d using (4.6) and the Kendall’s tau

estimates τ̂n.

(3) Estimate non-parametrically the lower tail dependence coefficients by Λ̃n = [λ̃nlj]l,j=1,...,d

as in (4.14), i.e. using the information from the joint extreme observations.

(4) Estimate the tail index of the spectral r.v. R by α̂n as in (4.24).

(5) In order to quantify the extremal dependence implied by the estimated τ̂n and α,

compute the implied tail dependence matrix L(α̂n, τ̂n), where L ∈ S is defined in (4.23).

4.4 Implementation

Recall our model (3.5) for the asset (log-)returns Y = (Y1, . . . , Ym) of the obligors in the

portfolio. Recall also that by Proposition 3.1.1 we are interested in the copula of Y . Since

it is an elliptical copula, provided that we have a sample of i.i.d. copies of the assets Y ,

we could potentially apply Algorithms 4.3.3 or 4.3.4 or any other method presented in

the previous two sections to calibrate this copula. Apart from the curse of dimensionality,

such a straightforward approach is impossible as the assets in practice are not observable

quantities, see e.g. Bluhm et al. [16], Section 1.2.3. Instead, we assume that on an obligor-

specific level we observe only S(k,s) = (S
(k,s)
1 , . . . , S

(k,s)
m ), k, s = 1, . . . , n, where

S
(k,s)
j = sign[Y

(k)
j − Y (s)

j ] , j = 1, . . . ,m, k, s = 1, . . . , n, (4.32)

i.e. we observe only whether the asset returns in a given period are higher or lower than

the returns in the other periods.

Remark 4.4.1. There are various ways how one may construct such a sample in prac-

tice. For obligors listed on a stock exchange, the KMV model [89, 90] produces estimates

Ŷ (k) =
(
Ŷ

(k)
1 , . . . , Ŷ

(k)
m

)
, k = 1, . . . , n, by a combination of qualitative analysis, econo-

metric research and structural modelling in the framework of the Merton [115] model.

The accuracy of these estimates is often questionable (see Duan et al. [37]), however, one

may expect that at least Ŝ
(k,s)
j = sign[Ŷ

(k)
j − Ŷ (s)

j ] , j = 1, . . . ,m, k, s = 1, . . . , n, are a

good approximation of the desired quantities in (4.32).

Alternatively, a more straightforward approach similar to the one taken in CreditMet-

rics [74] would be to use directly S̃
(k,s)
j = sign[E

(k)
j − E

(s)
j ], j = 1, . . . ,m, k, s = 1, . . . , n,

where E(k) = (E
(k)
1 , . . . , E

(k)
m ), k = 1, . . . , n, are the observable stock returns of the re-

spective obligors as an approximation of (4.32). Note that assuming S̃
(k,s)
j = S

(k,s)
j , j =

1, . . . ,m, k, s = 1, . . . , n, is weaker than the assumption Yj = ajEj + bj, aj > 0, bj ∈
R, j = 1, . . . ,m, which is essentially taken in CreditMetrics [74].

If the obligors in the portfolio of interest are not listed on a stock exchange, one may po-

tentially use as an approximation of (4.32) P
(k,s)
j = −sign[p

(k)
j −p

(s)
j ], j = 1, . . . ,m, k, s =
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1, . . . , n, where p
(k)
j denotes the average number of defaults of obligors of the same type

as obligor j (e.g. in the same initial rating category) in period k. Another opportunity

would be to use for p
(k)
j the ratio between downgrades and upgrades in period k. Any

credit-scoring models (e.g. Altman’s Z-score [2]) could also be used for this purpose. �

Additionally we have the problem with multidimensionality (m is large in the contem-

porary credit portfolios). Here the use of the factor model (3.5) is crucial. Recall that each

obligor in the portfolio is influenced by a systematic part
∑p

l=1 αj,lWZl, j = 1, . . . ,m. For

this systematic part, we assume that

WZl = Hl(Il), l = 1, . . . , p , (4.33)

where Hl : R → R are some continuous and strictly increasing functions and I =

(I1, . . . , Ip) are observable macroeconomic factors. In practice, I = (I1, . . . , Ip) are taken

to be the log-returns of regional / industry stock indices.

Remark 4.4.2. A similar assumption is taken in CreditMetrics [74], see also Daul et

al. [30]. Note that, again, we do not impose any further restrictions on the mapping

functionsHl, l = 1, . . . , p (like linearity in the CreditMetrics model), hence I = (I1, . . . , Ip)

is a random vector with elliptical copula and arbitrary marginals F1, . . . , Fp. �

To summarize, recall the original problem for estimation of the parameters in model

(3.5), i.e.

(a) the distribution of the common shock W ;

(b) the correlation matrix Σ of the common factors Z1, . . . , Zp;

(c) the factor loadings αj,l, σj, j = 1, . . . ,m, l = 1, . . . , p.

The available data consist of:

(1) A sample of i.i.d copies of I = (I1, . . . , Ip), which satisfies (4.33). This sample

reflects the development of the market and is typically composed of stock index returns.

(2) A sample S(k,s) = (S
(k,s)
1 , . . . , S

(k,s)
m ), k, s = 1, . . . , n, which satisfies (4.32). For

j = 1, . . . ,m, S
(k,s)
j is a r.v. with range {−1, 1} which reflects the knowledge of whether

the asset return of the specific obligor j is higher in period k than in period s.

To estimate the papameters (a) and (b), it is sufficient to apply Algorithm 4.3.4 on

the sample of the stock indices I = (I1, . . . , Ip). Note that in this way we obtain only the

tail index α of the r.v. W , whereas the d.f. of W may well have additional parameters.

However, in our application the tail index is the only parameter of significant interest.

First of all, by Proposition 2.3.14, the random vector of the assets Y inherits the tail

index from W . Then recall from Proposition 2.3.12 and from Example 3.2.5 that this is

the only parameter of W which plays a role in the extremal dependence of the assets and

thus has a significant influence on the tail of the portfolio loss distribution. Finally, note
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that due to Proposition 3.1.1 we are interested only in the copula of Y , which is invariant

under, say, a multiplication of W with some positive constant.

Thus, we are left with the problem of estimating the factor loadings αj,l and σj, l =

1, . . . , p, j = 1, . . . ,m in (c). Note that, due to the assumption that var[Yj |W ] = W , for

j = 1, . . . ,m we have the following relation:

p∑
l,d=1

αj,lΣldαj,d = 1− σ2
j . (4.34)

Again, because of Proposition 3.1.1, this assumption is made without loss of generality.

We suggest two principle approaches to estimate the factor loadings:

Method I: Estimate αj,l, j = 1, . . . ,m, l = 1, . . . , p and then use (4.34) to obtain

σj, j = 1, . . . ,m.

Method II: Assume that

αj,l =

√
1− σ2

j√∑p
d=1 wjlwjdΣld

wjl , j = 1, . . . ,m, l = 1, . . . , p, (4.35)

where wjl ≥ 0, j = 1, . . . ,m, l = 1, . . . , p, are known quantities. Then we are left only

with the parameters σj, j = 1, . . . ,m, to specify. Note that this assumption is consistent

with (4.34). This method is similar to the approach in CreditMetrics [74], where wj,l ≥
0, j = 1, . . . ,m, l = 1, . . . , p, are called country / industry participations and are required

as an input of that model. These quantities give the relative weight of the country /

industry common factors for each obligor, which can be ”estimated” by purely qualitative

methods.

We need the following proposition, parts (a) and (b) are for Method I and parts (c) and

(d) are for Method II. In part (a) we show that αj,l, j = 1, . . . ,m, l = 1, . . . , p, satisfy a

system of linear equations. In part (b) we suggest an estimate for the unknown coefficients

of the system. In part (c) we show that σj, j = 1, . . . ,m, can be expresses as a function

of the Kendall’s tau of the marginal asset return Yj and a particular transformation of

the observable market risk factors I = (I1, . . . , Ip). Based on that, in part (d) we suggest

an estimate for σj, j = 1, . . . ,m.

Proposition 4.4.3. Let Y = (Y1, . . . , Ym), S = (S1, . . . , Sm) and I = (I1, . . . , Ip) satisfy

(3.5), (4.32) and (4.33) resp. and αj,l, σj, j = 1, . . . ,m, l = 1, . . . , p satisfy (4.34). Then,

for j = 1, . . . ,m:

(a) The random vector (Yj, αj,1WZ1, . . . , αj,pWZp, σjWεj) is elliptical and we have

p∑
l=1

αj,dαj,lΣld = sin
(π

2
τ(Yj, Id)

)
, d = 1, . . . , p.
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(b) Denoting

τ̂nj,d =

(
n

2

)−1∑
k>s

S
(k,s)
j sign

[
I

(k)
d − I

(s)
d

]
, d = 1, . . . , p ,

where I(k) = (I
(k)
1 , . . . , I

(k)
p ), k = 1, . . . , n, are i.i.d copies of I, we have

τ̂nj,d
P→ τ(Yj, Id), n→∞.

(c) If additionally (4.35) holds, then we have√
1− σ2

j = sin
(π

2
τ(Yj, Aj)

)
, (4.36)

where

Aj =

p∑
l=1

γj,lF
−1
α (Fl(Il)) ,

γj,l =
wjl√∑p

l,d=1 wjlwjdΣld

,

Fl(x) is the d.f. of Il, l = 1, . . . , p, and Fα is the d.f. of WZ0, Z0 ∈ N(0, 1), independent

of W , where W is from (3.5).

(d) Furthermore, denoting

τ̂nj =

(
n

2

)−1∑
k>s

S
(k,s)
j sign

[
Â

(k)
j (n)− Â(s)

j (n)
]
,

where

Â
(k)
j (n) =

p∑
l=1

γj,lF
−1
α (FE

l (I
(k)
l )) , k = 1, . . . , n,

and FE
l (x) is the empirical d.f. of Il, l = 1, . . . , p, we have

τ̂j
n P→ τ (Yj, Aj) , n→∞ . (4.37)

Proof. Fix j ∈ {1, . . . ,m}. By (3.5), the random vector (Yj, αj,1WZ1, . . . , αj,pWZp, σjWεj)

can be obtained by a linear transformation of the elliptical random vector

(αj,1WZ1, . . . , αj,pWZp, σjWεj), and hence it is an elliptical random vector by Lemma 2.3.7.

For the correlation we have

ρ(Yj, αj,dWZd) =

p∑
l=1

αj,dαj,lΣld , d = 1, . . . , p .

Applying (2.15) we obtain

p∑
l=1

αj,dαj,lΣld = sin
(π

2
τ(Yj, αj,dWZd)

)
, d = 1, . . . , p .
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As Kendall’s tau is invariant under strictly increasing marginal transformations, we get

by means of (4.33) τ(Yj, αj,dWZd) = τ(Yj, Id), d = 1, . . . , p, i.e. (a).

(b) follows directly from (a) and (4.5).

To prove (c), we note that the random vector (Yj,
∑p

l=1 αj,lWZl) = (Yj,
∑p

l=1
γj,l√
1−σ2

j

WZl)

has elliptical distribution (see Lemma 2.3.7) and correlation

ρ(Yj,

p∑
l=1

αj,lWZl) =
√

1− σ2
j .

By (2.15), √
1− σ2

j = sin

π
2
τ(Yj,

p∑
l=1

γj,l√
1− σ2

j

WZl)

 .

As Kendall’s tau is invariant under strictly increasing transformation of the marginals,

we have

τ(Yj,

p∑
l=1

γj,l√
1− σ2

j

WZl) = τ(Yj,

p∑
l=1

γj,lWZl) .

By Corrolary 2.1.8, as WZl is comonotone with Il, l = 1, . . . , p, we have

(WZ1, . . . ,WZp)
d
= (F−1

α (F1(I1)), . . . , F−1
α (Fp(Ip))) ,

hence we obtain (4.36).

To prove (4.37) note that for k, s = 1, . . . , n

E
[
S

(k,s)
j sign

[
Â

(k)
j (n)− Â(s)

j (n)
]]

= P ((Y
(k)
j − Y (s)

j )(Â
(k)
j (n)− Â(s)

j (n)) > 0)

−P ((Y
(k)
j − Y (s)

j )(Â
(k)
j (n)− Â(s)

j (n)) < 0) .

By the continuous mapping theorem we have for k = 1, . . . , n

Â
(k)
j (n)

a.s.→ A
(k)
j , n→∞ ,

where

A
(k)
j =

p∑
l=1

γj,lF
−1
α (Fl(I

(k)
l )) , k = 1, . . . , n,

and Fl(x) is the true d.f. of Il, l = 1, . . . , p. Therefore

lim
n→∞

E
[
S

(k,s)
j sign

[
(Â

(k)
j (n)− Â(s)

j (n))
]]

= τ (Yj, Aj) ,

i.e. the estimator τ̂nj is asymptotically unbiased. Furthermore we have for ε > 0

P
(
|τ̂nj − τ(Yj, Aj)| > ε

)
≤ P

(
|τ̂nj − τnj | > ε/2

)
+ P

(
|τnj − τ(Yj, Aj)| > ε/2

)
, (4.38)
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where

τnj =

(
n

2

)−1∑
k>s

S
(k,s)
j sign

[
A

(k)
j − A

(s)
j

]
,

The second summand in (4.38) converges to 0 as n → ∞ by (c) and (4.5). Furthermore,

by Chebishev’s inequality,

P (|τ̂nj − τnj | > ε/2) ≤ 2

ε
E
∣∣∣S(k,s)

j sign
[
Â

(k)
j (n)− Â(s)

j (n)
]
− S(k,s)

j sign
[
A

(k)
j − A

(s)
j

]∣∣∣
≤ P

(
(A

(k)
j − A

(s)
j )(Â

(k)
j (n)− Â(s)

j (n)) < 0
)

Since Â
(k)
j (n)

a.s.→ A
(k)
j , n→∞, we obtain (d).

4.5 Numerical examples

We illustrate the properties of the suggested estimators by numerical examples. All his-

tograms in this section are scaled and smoothed using the same normal kernel smoothing

function and the same default bandwidth in Matlab [110].

In a simulation study we examine the accuracy of the copula estimation when the

marginals are heavy-tailed and / or non-symmetric.

Example 4.5.1. [T-model, heavy-tailed marginals, emprirical tail dependence estimator]

We consider the following model: The random vector (I1, I2, I3) has t-copula with ν = 5

degrees of freedom and a correlation matrix ρ12 = 0.3, ρ13 = 0.4, ρ23 = 0.6. The tail index

for this copula is α = ν, see Example 3.2.1. For the marginals we use I1 ∈ N(2, 4) (normal

with mean 2 and variance 4), I2 ∈ GPD(0.3, 10) (see Definition 2.2.7), and I3 ∈ t(1) (t-

distribution with ν = 1 degrees of freedom (Cauchy distribution)). Note that the d.f. of I2

is not symmetric (not elliptical) and the covariance matrix does not exist as var(I3) =∞.

Our goal is to assess the performance of Algorithm 4.3.3 when applied to this model.

For this reason we simulate n = 1000 i.i.d copies of the vector (I1, I2, I3) and estimate

the copula parameters using the algorithm. The simulation is repeated 1000 times. In

Table 4.1 we summarize the results.

In Figure 4.1 we present the results on Kendall’s tau matrix estimated by (4.5). We

observe that the estimation is accurate even in the cases of asymmetric / heavy-tailed

marginals, i.e. we obtain narrow confidence bounds and the histograms of the estimates are

symmetric around the true values. This accuracy transfers also to the estimated correlation

matrix, see Figure 4.1.

In Figure 4.2 we present the results on the tail dependence matrix estimated by (4.10).

We observe that the estimation is not very accurate (high empirical variance, wide con-

fidence bounds), which is due to the small sample of observations (1000) on which it
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Figure 4.1: Left column (τ12, τ13, τ23): the histograms of the Kendall’s tau estimates compared to the
true values for Example 4.5.1 with sample size n = 1000. The histograms are symmetric around the
true values and the empirical variance is low. Right column (ρ12, ρ13, ρ23): the histograms of correlation
estimates compared to the true values for Example 4.5.1 with sample size n = 1000. Again, histograms
are symmetric around the true values and the estimation is accurate even in cases when the covariance
does not exist (ρ13, ρ23).
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Figure 4.2: Upper row and bottom row, left (λ12, λ13, λ23): The histograms of the direct estimates for
tail dependence by (4.10), compared to the implied (by the estimated α and Kendall’s tau) estimates
for tail dependence and to the true values for Example 4.5.1 with sample size n = 1000. The implied
estimates are more centered around the true values, and have less empirical variance. Bottom row, right:
the histogram of the estimates for the tail index α of the copula compared to the true value α∗ = ν = 5
for Example 4.5.1 with sample size n = 1000. The histogram is not symmetric around the true value
5. On the other hand, most of its mass is in the region [2,8], which includes the true value 5, and the
empirical mean is 5.04.
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mean estimate true value m.s.e. std

α 5.0366 5 22.1086 4.7042

ρ12 0.3001 0.3 0.0010 0.0321

ρ13 0.3969 0.4 0.0009 0.0301

ρ23 0.6002 0.6 0.0005 0.0226

λ12(implied by α) 0.1618 0.1224 0.0092 0.0877

λ13(implied by α) 0.1983 0.1559 0.0108 0.0950

λ23(implied by α) 0.3031 0.2666 0.0125 0.1059

Table 4.1: Estimation of the t-copula for the model from Example 4.5.1 with sample size n = 1000.
The estimators of correlation and tail dependence perform equally well across the different marginals.
The correlation estimates are accurate (low empirical standard deviation (std) and mean square errors
(m.s.e.)). The estimators of the tail index α of the copula and the tail dependence coefficents have high
empirical variance and m.s.e.

is based. Note that (4.10) uses only the extreme observations, which further increases

the variance of the estimators (see e.g. Frahm et al. [58] or Section 4.2.2 for a detailed

discussion).

In Figure 4.2 we present the results on the tail index α estimated by (4.24). Most

of the realizations are in the region [2,8] which includes the true value 5. The empirical

mean of the estimate is equal to the true value. Furthermore, taking the estimated α

and the estimated Kendall’s tau matrix, we compute also the implied tail dependence

coefficients as in step (5) of Algorithm 4.3.3. We observe that in this way the estimates

are improved as compared to the direct estimates using (4.10). However, the histogram

of the estimated α is not centered around its mean, it is very skewed and there are cases

when the estimate α̂n takes very large values compared to the true one. This makes the

asymptotic confidence bounds derived through (4.26) mainly of theoretical interest, at

least for smaller samples.

In order to assess the accuracy of the method when applied to larger samples, we

increase gradually the sample size to n = 10000 and at each step apply Algorithm 4.3.3.

In Figure 4.3 we observe that the empirical standard deviation of the estimator (4.24) of

the tail index α is quite satisfactory at sample size n = 10000. �

In the next example we use simulated data to examine the robustness of the estimation

when the copula is not elliptical.

Example 4.5.2. [Clayton copula]

We consider the following model: The marginals of the random vector (I1, I2) are standard
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Figure 4.3: The empirical standard deviation of the estimator (4.24) for the tail index α of the copula in
Example 4.5.1, as a function of the sample size.

normal N(0, 1). The copula of (I1, I2) is the 2-dimensional Clayton copula

C(u, v) = (u−θ + v−θ − 1)−1/θ

with θ = 1.

This copula is not elliptical, and in particular it is not radially symmetric, see Fig-

ure 4.4. It has a tail dependence coefficient λ = 2−1/θ = 0.5 and Kendall’s tau τ = θ
θ+2

= 1
3
.

However, all elliptical copulas with Kendall’s tau τ = 1
3

and tail index α = 1 have the

same tail dependence coefficient. In Figure 4.4 we compare C(p, p) with Ct(p, p), a 2-

dimensional t-copula with ν = α = 1 degrees of freedom and Kendall’s tau τ = 1
3
. We

focus on the small values of p (in the region [0.0001, 0.025]). We observe that C(p, p) and

Ct(p, p) are practically indistinguishable. Therefore, even if we assume a wrong elliptical

copula model, we would obtain comparatively similar results with respect to joint extreme

event probabilities, provided that the parameters of the elliptical copula are selected ap-

propriately.

Our goal is to assess the performance of Algorithm 4.3.3 when applied to data, which

is coming from a non-elliptical copula model. For this reason we simulate n = 1000

i.i.d copies of (I1, I2). We apply Algorithm 4.3.3 to estimate the Kendall’s tau, the tail

dependence and the tail index α. We repeat the simulation 1000 times. In Table 4.2 we

summarize the results.

In Figure 4.5 we present the results on the Kendall’s tau estimated as in (4.5). We ob-

serve that the estimation is accurate (low empirical variance, histogram symmetric around
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Figure 4.4: Upper row, left figure: 1000 realizations of the random vector (I1, I2) from Example 4.5.2.
Upper row, right figure: 1000 realizations of the random vector (Y1, Y2) with standard normal N(0, 1)
marginals and 2-dimensional t-copula with ν = α = 1 degrees of freedom and Kendall’s tau τ = 1

3 . Both
vectors have the same marginals, same Kendall’s tau and same tail dependence coefficients. The plots
are quite different in the center, i.e. the two copulas are different close to the mean values. Bottom row:
C(p, p) = P (I1 < Φ−1(p), I2 < Φ−1(p)) compared to Ct(p, p) = P (Y1 < Φ−1(p), Y2 < Φ−1(p)). The two
joint probabilities are practically indistinguishable. This is particularly important in view of our credit
risk model, as C(p, p) is interpreted as joint default probabiliy of two credits, see formula (3.4).
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Figure 4.5: Upper row, left figure: The histogram of the tail dependence estimates for a sample of n = 1000
copies of the random vector (I1, I2) from Example 4.5.2. The estimate has high empirical variance. Upper
row, right figure: The histogram of Kendall’s tau estimates for the same sample. The estimate has low
empirical variance. Bottom row: The histogram of the estimated tail index α of the (incorreclty assumed)
elliptical copula. The mode is exacly equal to 1, which is the value for which the elliptical copula is closest
to the true copula with respect to joint extremes, see Figure 4.4. Most of the mass is in the region [0,8],
however, the histogram is not symmetric.
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mean estimate true value m.s.e. std

τ 0.3336 1/3 0.0003 0.0196

λ 0.4765 0.5 0.0235 0.1549

α 1.6482 1 9.5512 1.6306

Table 4.2: Application of Algorithm 4.3.3 to a sample of n = 1000 i.i.d. vectors with Clayton copula
and standard normal margins as in Example 4.5.2. The estimates for Kendall’s tau are accurate (low
empirical standard deviation (std) and mean square error (m.s.e)). The estimates for the tail dependence
have high empirical variance. This results in high variance in the estimation of the tail index α. The ’true
value’ of the copula parameter α is chosen such that the elliptical copula has the same tail dependence
as the Clayton copula.

the true value). We present also the results on the tail dependence coeffient estimated as

in (4.10). As in Example 4.5.1, we observe that the estimation has a rather high empirical

variance. Furthermore, the estimator (4.24) of the tail index α inherits the errors from

(4.10). The histogram of the estimates of α is not centered around its mean, it is skewed

and there are cases when the estimate α̂n takes very large values. On the other hand,

its mode is exactly equal to 1, and most of the mass is in the region [0,5]. Hence the

estimation method seems robust with respect to joint extreme event probabilities. �

The two previous examples show that the main problem in the proposed method

comes from the high variance in the estimation of the tail dependence coefficients by

(4.10). This is expected to happen and is due to the small number of observations on

which the estimation is based (only the extreme observations are taken into account).

However, there is a room for improvement. Note that Proposition 4.3.1 works for any

consistent estimates of the tail dependence coefficients, and hence Algorithm 4.3.4 can

also be applied.

Example 4.5.3. [Example 4.5.1 continued, alternative tail dependence estimator]

Using the simulated data from Example 4.5.1, we apply Algorithm 4.3.4. Recall that we

consider samples of size n = 1000 i.i.d copies of the vector (I1, I2, I3) with t-copula and

various marginals. Since steps (1) and (2) of Algorithms 4.3.3 and 4.3.4 are the same, we

consider the differences only with respect to the estimated tail dependence coefficients

and tail index α.

In Table 4.3 we summarize the results, see also Figure 4.6. We observe that the new tail

dependence estimator has smaller emprical variance than (4.10). This results immediately

in improved estimation of the tail index α by (4.24). Furthermore, the histogram of the

estimated α by Algorithm 4.3.4 is more centered around the true value, i.e. applying

(4.26) in order to obtain confidence bounds is now possible. Besides, the implied (by the
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Figure 4.6: Upper row and bottom row, left (λ12, λ13, λ23): The histograms of the direct estimates of tail
dependence by (4.10), compared to the estimates by the new method (4.14) and to the implied (by the
estimated Kendall’s tau and tail index α by algorithm 4.3.4) estimates for tail dependence and to the
true values. The direct estimates have the highest empirical variance. The new method (4.14) reduces
the variance. The implied estimates improve further (4.14). Bottom row, right: the histograms of the
estimates for the index α using the direct tail dependece estimates (4.10) as in Algorithm 4.3.3 and the
new method (4.14) as in Algorithm 4.3.4. By the new method, the histogram is more centered around
the true value.
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mean estimate true value m.s.e std

α 4.9488 5 5.8749 2.4293

λ12 direct

λ12 new

λ12 implied

0.1560

0.1440

0.1454

0.1224

0.1224

0.1224

0.0151

0.0090

0.0052

0.1213

0.1022

0.0771

λ13 direct

λ13 new

λ13 implied

0.1955

0.1808

0.1817

0.1559

0.1559

0.1559

0.0192

0.0108

0.0063

0.1357

0.1268

0.0991

λ23 direct

λ23 new

λ23 implied

0.3145

0.2919

0.2874

0.2666

0.2666

0.2666

0.0259

0.0166

0.0074

0.1536

0.1352

0.1238

Table 4.3: Estimation of the t-copula with different marginals model from Example 4.5.1, sample size
n = 1000. We observe that the new method (4.14) for estimation of the tail dependence coefficients
improves the empirical variance and mean square error (m.s.e.), as compared to the direct estimator
(4.10). This results immediately through Algorithm 4.3.4 in improved estimates of the tail index α

(see Table 4.1 for comparison). Then the implied tail dependence coefficients estimates (step (5) of the
Algorithm 4.3.4) have also quite satisfactory empirical variance and m.s.e.

estimated α and Kendall’s tau matrix as in step (5) of Algorithm 4.3.4) tail dependence

coefficients have also quite a low empirical variance.

In order to assess the accuracy of the method when applied to larger samples, we increase

gradually the sample size to n = 10000 and at each step apply Algorithm 4.3.4 and

compare it to Algorithm 4.3.3. In Figure 4.7 we observe that the new method reduces the

empirical standard deviation of the estimator of the tail index α also for larger samples.

�

In the next example we consider a real data sample, consisting of weekly log-returns

of 8 German stock indices. In view of (4.33), this data represents a sample of i.i.d. copies

of the market index vector I = (I1, . . . , I8) as in (4.33). We apply Algorithm 4.3.4 to

estimate the parameters of copula of I.

Example 4.5.4. [German stock index data]

Our data consists of weekly log-returns of the stock indices: I1 Automobiles (CXKAX),

I2 Banking (CXKBX), I3 Chemicals (CXKCX), I4 Construction (CXKOX), I5 Insurance

(CXPIX), I6 Media (CXKDX), I7 Software (CXKSX) and I8 Transport (CXKTX). By

standard time series analysis we conclude that the data are marginally i.i.d. More precisely,

we analyse the autocorrelations of the values, the absolute values and the squared values in
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Figure 4.7: The empirical standard deviation of the estimator (4.24) for the tail index α, as a function
of the sample size, using the direct tail dependence estimator (4.10) as in Algorithm 4.3.3 and the new
method (4.14) as in Algorithm 4.3.4 for the model in Example 4.5.1. In all cases the new method provides
lower empirical variance.

the marginal time-series, and check if they do not exceed the 0.95 confidence interval. We

plot also the moving averages of the marginal time-series, and note that in all cases they are

almost straight lines. Performing the Kolmogorov-Smirnov test for identical distribution

over different subsamples at level 0.05, we confirm the i.i.d. hypothesis.

Plotting the bivariate marginals (see Figure 4.8) we detect that there is a significant

dependence in the extremes. In order to quantify this dependence we apply the Algo-

rithm 4.3.4.

In Table 4.4 we present results on the estimation of Kendall’s tau matrix and the

correlation matrix. The estimated correlations are positive, and the hypothesis for zero or

negative correlation can be rejected with high significance. In Table 4.5 we present results

on the estimation of the tail dependence coefficients. We obtain positive tail dependence

estimates. However, due to the small sample size (n = 300), we cannot reject the hypoth-

esis for tail-independence at confidence levels higher than 90%. Finally, we estimate the

tail index α̂ = 4.05. By means of (4.26), Remark 4.3.2 and using the empirical covariance

of the tail dependence estimates we obtain also a 90% confidence interval α ∈ [2.04, 6.02].

Since α is a key parameter in our model, and the sample size is rather small, we provide

also an alternative method to assess the accuracy of the estimation. More precisely, we

apply a parametric bootstrap. We simulate n = 300 i.i.d. copies of an elliptical random

vector Y = (Y1, . . . , Y8) with tail index α̂ and correlation matrix ρ̂ as the estimated ones.
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CXKAX CXKBX CXKCX CXKOX CXPIX CXKDX CXKSX CXKTX

I1

τij

90%CI

ρij

90%CI

0.47

[.39 .55]

0.67

[.57 .76]

0.44

[.34 .54]

0.64

[.51 .75]

0.26

[.11 .41]

0.40

[.18 .60]

0.36

[.24 .48]

0.54

[.37 .69]

0.18

[.04 .32]

0.28

[.06 .49]

0.34

[.22 .48]

0.52

[.34 .68]

0.44

[.34 .55]

0.64

[.50 .76]

I2

0.47

[.39 .55]

0.67

[.57 .76]

τij

90%CI

ρij

90%CI

0.46

[.36 .56]

0.66

[.53 .77]

0.27

[.11 .44]

0.42

[.17 .63]

0.51

[.41 .60]

0.72

[.60 .81]

0.23

[.10 .36]

0.35

[.15 .54]

0.38

[.26 .50]

0.56

[.39 .71]

0.48

[.39 .57]

0.68

[.57 .78]

I3

0.44

[.34 .54]

0.64

[.51 .75]

0.46

[.36 .56]

0.66

[.53 .77]

τij

90%CI

ρij

90%CI

0.24

[.08 .40]

0.37

[.13 .59]

0.43

[.32 .53]

0.62

[.49 .74]

0.17

[.03 .32]

0.27

[.05 .48]

0.28

[.12 .43]

0.42

[.19 .62]

0.47

[.38 .57]

0.69

[.56 .78]

I4

0.26

[.11 .41]

0.40

[.18 .60]

0.27

[.11 .44]

0.42

[.17 .63]

0.24

[.08 .40]

0.37

[.13 .59]

τij

90%CI

ρij

90%CI

0.28

[.13 .43]

0.43

[.20 .63]

0.17

[.02 .32]

0.27

[.03 .49]

0.17

[.00 .34]

0.26

[.00 .50]

0.30

[.14 .46]

0.46

[.22 .66]

I5

0.36

[.24 .48]

0.54

[.37 .69]

0.51

[.41 .60]

0.72

[.60 .81]

0.43

[.32 .53]

0.62

[.49 .74]

0.28

[.13 .43]

0.43

[.20 .63]

τij

90%CI

ρij

90%CI

0.21

[.08 .34]

0.33

[.13 .51]

0.35

[.22 .48]

0.52

[.34 .68]

0.42

[.29 .54]

0.61

[.45 .75]

I6

0.18

[.04 .32]

0.28

[.06 .49]

0.23

[.10 .36]

0.35

[.15 .54]

0.17

[.03 .32]

0.27

[.05 .48]

0.17

[.02 .32]

0.27

[.03 .49]

0.21

[.08 .34]

0.33

[.13 .51]

τij

90%CI

ρij

90%CI

0.31

[.17 .44]

0.46

[.27 .64]

0.27

[.15 .40]

0.42

[.23 .59]

I7

0.34

[.22 .48]

0.52

[.34 .68]

0.38

[.26 .50]

0.56

[.39 .71]

0.28

[.12 .43]

0.42

[.19 .62]

0.17

[.00 .34]

0.26

[.00 .50]

0.35

[.22 .48]

0.52

[.34 .68]

0.31

[.17 .44]

0.46

[.27 .64]

τij

90%CI

ρij

90%CI

0.40

[.28 0.53]

0.59

[.42 .74]

I8

0.44

[.34 .55]

0.64

[.50 .76]

0.48

[.39 .57]

0.68

[.57 .78]

0.47

[.38 .57]

0.69

[.56 .78]

0.30

[.14 .46]

0.46

[.22 .66]

0.42

[.29 .54]

0.61

[.45 .75]

0.27

[.15 .40]

0.42

[.23 .59]

0.40

[.28 .53]

0.59

[.42 .74]

τij

90%CI

ρij

90%CI

Table 4.4: Estimation of Kendall’s tau and correlation for the German stock index data from Example 4.5.4
. In brackets are given the 90% confidence intervals, based on the empirical variance.
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CXKAX CXKBX CXKCX CXKOX CXPIX CXKDX CXKSX CXKTX

I1

λij

90%UB

λIij

.28

.64

.36

.16

.36

.34

.16

.35

.20

.13

.29

.27

.25

.57

.15

.27

.60

.26

.25

.56

.34

I2

.28

.64

.36

λij

90%UB

λIij

.16

.36

.35

.46

.99

.20

.42

.95

.40

.16

.36

.18

.16

.36

.28

.40

.90

.37

I3

.16

.36

.34

.16

.36

.35

λij

90%UB

λIij

.16

.36

.19

.13

.29

.32

.16

.36

.15

.25

.58

.20

.25

.58

.37

I4

.16

.35

.20

.46

.99

.20

.16

.36

.19

λij

90%UB

λIij

.32

.72

.21

.16

.35

.15

.16

.37

.15

.43

.98

.23

I5

.13

.29

.27

.42

.95

.40

.13

.29

.32

.32

.72

.21

λij

90%UB

λIij

.12

.29

.17

.21

.48

.26

.57

.99

.31

I6

.25

.57

.15

.16

.36

.18

.16

.36

.15

.16

.35

.15

.12

.29

.17

λij

90%UB

λIij

.31

.71

.23

.31

.72

.20

I7

.27

.60

.26

.16

.36

.28

.25

.58

.20

.16

.37

.15

.21

.48

.26

.31

.71

.23

λij

90%UB

λIij

.47

.99

.30

I8

.25

.56

.34

.40

.90

.37

.25

.58

.37

.43

.98

.23

.57

.99

.31

.31

.72

.20

.47

.99

.30

λij

90%UB

λIij

Table 4.5: Estimated tail dependence matrix and implied tail dependence matrix (step (5) of Algo-
rithm 4.3.4) for the German stock indices from Example 4.5.4. In the second rows are given the 90%
upper confidence bounds, based on the empirical variance.
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Figure 4.8: Log-returns of the indices Banking / Automobiles and Software / Transport. In both plots
the point in the lower left quadrant represents the returns in the week of the 11/9’th terrorist attacks.
However, even if we ignore this extreme point, we observe significant dependence in the extremely small
values.

We apply Algorithm 4.3.4 and repeat the simulation 1000 times. In Figure 4.9 we compare

the histogram of the resulting estimates of the tail index α to α̂. We observe that in this

way we may obtain narrower confidence bounds than using (4.26). In particular, the 90%

empirical bootstrap confidence interval is given by [2.41, 5.74] �

We conclude this chapter with a study of the stock index data used in Daul et al. [30].

Example 4.5.5. [Monthly returns, worldwide]

We consider a sample of n = 120 log-returns of 92 stock indices from different industries

and parts of the world. The sample comes from a period of 10 years (1992-2002). The

indices are organized in 8 groups of different sizes according to the country they apply to.

By standard time-series analysis on the marginals as done in Example 4.5.4 we con-

clude that in almost all cases the hypothesis that the data are i.i.d. cannot be rejected

with a high significance. Standard univariate analysis (chi-square goodness-of-fit test at

level 0.05) shows also that in most cases the marginal distributions can be reasonably well

modelled by the normal distribution. This is in fact not surprising as the period under

consideration (1 month) is quite long and the ’aggregational Gaussianity’ property which

is typically observed in the returns of various financial assets becomes more pronounced,

see e.g. Cont [24]. Similar conclusions for the same dataset have been made by Daul et

al. [30] and Schwarz [131]. However, testing the bivariate marginals for tail dependence

(the method of Ledford and Tawn [99]) indicates positive tail dependence, in particular

for indices from the same country group. Therefore the multivariate normal distribution is

not an appropriate model in this case. Instead we assume an elliptical copula model with

normal marginals for each of the 8 country groups. Fix a country group with d indices
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Country Group size ML α̂ Tail dep. α̂ 90% conf. bounds

Australia 9 12 6 [3.7,7.6]

Canada 12 16 4.5 [3.9,6.7]

Germany 10 20 3.7 [3.0,5.5]

France 5 60 5.3 [3.2,11.3]

Japan 15 7 2.3 [1.7,2.5]

Switzerland 4 8 5.2 [2.6,8.1]

UK 15 14 3.9 [3.2,4.5]

USA 20 13 6.3 [5.2,7.1]

Table 4.6: Summary results from the estimation of the tail index α for the worldwide indices from
Example 4.5.5. First column: the country of the indices. Second column: the number of indices in the
country group. Third column: the estimated tail index α by the ML method (Example 4.5.5, step (5a)).
Forth column: the estimated tail index α by the tail dependence method (Example 4.5.5, step (5b2)).
Fifth column: the estimated 90% confidence bounds for α by the bootstrap method (Example 4.5.5, step
(5b3)). The bounds are based on the empirical 0.1 and 0.9 quantiles of the simulated bootstrap copies.

within. We take the following steps.

(1) Estimate the marginal mean and variance vectors by their empirical counterparts.

(2) Estimate the Kendall’s tau matrix by τ̂n = [τ̂nlj]l,j=1,...,d as in (4.5).

(3) Estimate the correlation matrix by [ρ̂nlj]l,j=1,...,d using (4.6) and the Kendall’s tau

estimates τ̂n.

(4) Transfer the marginals to the copula scale using the normal probability integral

transform and the parameters form step (1).

(5a) Assume in addition that we have the t-copula (Example 3.2.1) with α degrees of

freedom as a model. Then estimate α by the ML method in (4.20) using the data from

step (4), i.e. without putting more weight on the extremes.

(5b1) Using the data from step (4), estimate the lower tail dependence coefficients by

Λ̃n = [λ̃nlj]l,j=1,...,d as in (4.14).

(5b2) Estimate the tail index α by α̂n as in (4.24) with the estimates for the Kendall’s

tau from step (2) and the tail dependence coefficients from step (5b1), i.e. using the

information from the joint extremes.

(5bc) Estimate confidence bounds for the estimator from step (5b2) by the parametric

bootstrap method described in Example 4.5.4.

The results are summarized in Table 4.6. We make the following observations.

(1) The tail dependence method from steps (5b) leads to lower estimates of the tail

index α than the ML method form step (5a). Consequently, it is a conservative statistical

method, taking care of the information in the joint extremes in the data, and in particular
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in the extremes in the ’dangerous’ direction (in our case these are the large in modulus

negative log-returns).

(2) The higher the dimension of the random vector under consideration, the more

accurate are the results of the tail dependence method, see the confidence bounds for the

groups ’USA’ and ’Japan’ and compare to ’Switzerland’ and ’France’. The price to pay is

obviously the higher model risk.

(3) The higher the tail dependence in the data (the lower the α), the more accurate

are the results of the tail dependence method, see the confidence bounds for the group

’Japan’ and compare to ’Australia’. This is presumably due to the fact that whenever the

tail dependence coefficients are high, they are estimated more accurately in step (5b1). On

the contrary, for data with high correlation and low tail dependence, (4.24) overestimates

the true coefficient. �
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Figure 4.9: The bootstrap method applied to the German stock index data from Example 4.5.4.
The estimated α̂ compared to the histogram of the boostrap replications of α̂ and to a normal density with
mean α̂ = 4.05 and variance 2.47 equal to the variance of the estimator using the empirical covariance
matrix of the tail dependence estimators and (4.26). We observe that the histogram of the bootstrap
replications is more centered around α̂ then the normal density. However, the boostrap distribution is
skewed towards 0.
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Chapter 5

Simulation

In this chapter we begin the analysis of the portfolio loss distribution in model (3.1) with

(3.4) and (3.5). In Section 5.1 we present an algorithm for straightforward simulation of

the loss L. As its application to practical problems is computationally intensive, in Sec-

tion 5.2.2 we provide an improved algorithm, using a classical variance reduction technique

– importance sampling. We pay particular attention to its application in the framework

of heavy-tailed risk factors. Numerical support for our method is given in Section 5.3.1.

Using Monte Carlo simulation, we illustrate the impact of the heavy-tailed model for the

risk factors on the tail of the portfolio loss distribution in Section 5.3.2.

5.1 Direct Monte Carlo simulation

Monte Carlo simulation is among the most widely used computational tools in risk man-

agement. As in other application areas, it has the advantage of being very general and

the disadvantage of being rather slow. In model (3.1) with (3.4) and (3.5) this procedure

has essentially three steps.

Algorithm 5.1.1. Monte Carlo simulation of L.

(1) Simulate the asset returns Y = (Y1, . . . , Ym).

(2) Determine the ratings X = (X1, . . . , Xm) by means of (3.4).

(3) Given X = (X1, . . . , Xm), simulate (L1, . . . , Lm) and compute L =
∑m

j=1 ejLj. �

Simulation of Y = (Y1, . . . , Ym) is relatively easy, as this vector has a NVM distribu-

tion. We apply the following algorithm as in Embrechts et al. [47].

Algorithm 5.1.2. Monte Carlo simulation of a NVM distribution.

(1) Find the Choleski decomposition A of the covariance matrix ΣY (i.e. AA′ = ΣY ).

(2) Simulate m independent standard normals Z = (Z1, . . . , Zm).

91
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(3) Simulate an independent W .

(4) Compute Y = WBZ. �

However, several features of the credit risk setting pose a particular challenge to this

approach.

(1) It requires accurate estimation of low-probability events, e.g. the probability of an

extremely high loss. Hence, only a small part of the simulated data is used.

(2) Portfolios are multidimensional, i.e. m is large, and a large quantity of random

numbers has to be drawn.

(3) Straightforward simulation of heavy-tailed r.v.s like Y1, . . . , Ym produces notori-

ously poor results, see Glasserman [69].

Therefore alternative approaches are needed.

5.2 Importance sampling (IS)

5.2.1 General IS algorithms

Importance sampling is a classical variance reduction technique. Consider for a moment

a general problem for estimating c = P (F (Y ) ≥ x) = E
[
1{F (Y )>x}

]
for some random

vector Y with density g and range D ⊆ Rp and some function F . The most simple way is

to sample independent Y (1), Y (2), . . . , Y (N) and take the average

ĉMC =
1

N

N∑
i=1

1{F (Y (i))≥x}

as an estimate. However,

E
[
1{F (Y )≥x}

]
=

∫
D

1{F (Y )≥x}g(y)dy

=

∫
D

1{F (Y )≥x}g(y)
f(y)

f(y)
dy

= E

[
1{F (Ỹ )≥x}

g(Ỹ )

f(Ỹ )

]
,

where f is another density with the property g(y) > 0 ⇒ f(y) > 0, y ∈ D, and Ỹ is a

r.v. with density f . Then

ĉIS =
1

N

N∑
i=1

1{F (Ỹ (i))≥x}
g(Ỹ (i))

f(Ỹ (i))
,

where Ỹ (1), Ỹ (2), . . . Ỹ (N) are i.i.d copies of Ỹ is again an estimator for c. The quantity

g/f is called likelihood ratio.
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The goal in an importance sampling procedure is to select the density f such that

the variance (or equivalently the second moment) of the estimator ĉIS is minimized. As

shown for instance in Glasserman et al. [68], deriving the optimal (zero variance) density

is equivalent to knowing the desired quantity c. Hence, some approximation of the optimal

density is needed.

A classical method for selection of the density f is exponential twisting. Suppose

that the components of Y = (Y1, . . . , Yp) are independent with densities g1, . . . , gp, hence

g (y) =

p∏
l=1

gl (y) , y ∈ D .

Then we select fl, l = 1, . . . , p, from the parametric family

fl (y) =
exp(µly)

E [exp(µlYl)]
gl(y) , y ∈ D ,

for some µ = (µ1, . . . , µp), provided that E [exp(µlYl)] exists. The likelihood ratio becomes

g (y)

f (y)
=

p∏
l=1

E [exp(µlYl)]

exp(µly)
, y ∈ D .

The optimal µ̂ = (µ̂1, . . . , µ̂p) minimizes the second moment of ĉIS, i.e.

µ̂ = arg min
µ
E

1{F (Ỹ )>x}

(
p∏
l=1

E [exp(µlYl)]

exp(µlỸl)

)2
 = arg min

µ
E
[
ĉ2
IS

]
, (5.1)

where Ỹ = (Ỹ1, . . . , Ỹp) has a density f(y) =
∏p

l=1 fl(yl) Unfortunately, in most cases

this problem is also infeasible (see Glasserman et al. [68]), and a further approximation is

necessary. The typically used approximation is based on the classical Laplace method for

integrals, see e.g. Dupois and Ellis [43], Chapter 3. Given that the function F is increasing

componentwisely, one may replace (5.1) by

µ̃ = arg min
µ

(
p∏
l=1

E [exp(µlYl)]

exp(µlỹl(µl))

)
, (5.2)

where

ỹ(µ) = (ỹ1(µ)), . . . , ỹp(µ)) = arg max
y:F (y)=x

p∑
l=1

µlyl ,

see e.g. Glasserman et al. [68] for a detailed reasoning behind this method.
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5.2.2 IS for portfolio credit risk

To motivate the approach we take in the credit risk model (3.1) with (3.4) and (3.5),

observe that for every estimator ĉ of P (L > x) and for every random vector ξ on the same

probability space we have the variance decomposition

var[ĉ] = E[var[ĉ | ξ]] + var[E[ĉ | ξ]] . (5.3)

We try to minimize the two parts of (5.3) separately. To do this we need a proper

random vector ξ. Bearing in mind that, given the global shock W and the common

factors Z, the individual credits in the portfolio are independent (see Section 3.3), we

select ξ = (W,Z).

First we try to minimize the conditional (on W,Z) variance of the estimator. i.e.

the first term in (5.3). Let θ > 0 be a fixed constant. Let Xθ =
(
Xθ

1 , . . . , X
θ
m

)
be a

random vector with discrete marginals with range {1, 2, . . . , K} defined on the conditional

probability space (Ω,F , PW,Z = P (·|W,Z)). Let also Xθ
1 , . . . , X

θ
m be independent with

PW,Z
(
Xθ
j = s

)
=

gj,s(W,Z)ϕj,s(ejθ)∑K
k=1 gj,k(W,Z)ϕj,k(ejθ)

= qj,s(W,Z) , j = 1, . . . ,m , s = 1, . . . , K

(5.4)

where gj,k and ϕj,k are defined as in (3.11) and (3.12) respectively.

Consider the r.v.

Lθ =
m∑
j=1

ejL
θ
j (5.5)

where for j = 1, . . . ,m:

- ej is the known positive constant from (3.1);

- Lθj is a real-valued r.v., defined on the conditional probability space
(
Ω,F , P (·|Xθ

j )
)

and its density is given by

dP
(
Lθj < x |Xθ

j

)
=

exp(ejθx)

ϕj,Xj(ejθ)
dP
(
Lj < x |Xj = Xθ

j

)
, (5.6)

where Lj is defined as in (3.1).

Under these assumptions, we have:

(A1) From Assumption (A) in (3.1), we have that Lθj are conditionally independent,

given Xθ.

(B1) From Assumption (B) in (3.1), we have that given Xθ
j , Lθj is independent of Xθ

s

for s = 1, . . . ,m, s 6= j.

(C1) From Assumption (C) in (3.1), we have that Cj ≤ Lθj ≤ 1 a.s.
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Lemma 5.2.1. Under the assumptions of model (3.1) with (3.4) and (3.5), the density

of the r.v. Lθ defined in (5.5) is given by:

dPW,Z
(
Lθ < x

)
=

exp(θx)

exp(H(W,Z, θ))
dPW,Z (L < x) ,

where H(W,Z, θ) is defined in (3.8).

Proof. Denote Ẽ[·] = E[· |W,Z] and ϕ̃(τ) = Ẽ[exp(τLθ)]. We have

ϕ̃(τ) = Ẽ[E[exp(τLθ) |Xθ]]

= Ẽ[
m∏
j=1

E[exp(τejL
θ
j) |Xθ

j ]]

because of (A1) and (B1). By (5.4) we get

ϕ̃(τ) = Ẽ[
m∏
j=1

K∑
s=1

qj,s(W,Z)E[exp(τejL
θ
j) |Xθ

j = s]]

= Ẽ[
m∏
j=1

K∑
s=1

qj,s(W,Z)
E[exp((τ + θ)ejLj) |Xj = s]

ϕj,s(ejθ)
]

due to (5.6). Therefore

ϕ̃(τ) = Ẽ[
m∏
j=1

K∑
s=1

gj,s(W,Z)ϕj,s(ejθ)∑K
k=1 gj,k(W,Z)ϕj,k(ejθ)

ϕj,s(ej(θ + τ))

ϕj,s(ejθ)
]

= Ẽ[
m∏
j=1

∑K
s=1 gj,s(W,Z)ϕj,s(ej(θ + τ))∑K

k=1 gj,k(W,Z)ϕj,k(ejθ)
]

=
exp(H(W,Z, θ + τ))

exp(H(W,Z, θ))

by the definition of H in (3.8). Therefore

Ẽ[exp(τLθ)] =

∫
R

exp(τx)dPW,Z(Lθ < x)

=

∫
R

exp(τx)
exp(θx)dPW,Z(L < x)

exp(H(W,Z, θ))

which proves the lemma.

By means of the above lemma,

P (L > x |W,Z) = Ẽ[1{L>x}] = Ẽ[1{Lθ>x} exp(H(W,Z, θ)− θLθ)] .

This result suggests the following simulation algorithm for estimation of P (L > x):
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Algorithm 5.2.2. (1) Simulate the global shock W and the common factors Z =

(Z1, . . . , Zp).

(2a) If E[L |W,Z] ≥ x, then the event {L > x} is not rare. In this case we draw

(X0
1 , . . . , X

0
m) = (X1, . . . , Xm) as in (5.4). Then we draw (L0

1, . . . , L
0
m) = (L1, . . . , Lm) as

in (5.6), compute L0 = L as (5.5) and return

1{L0>x} = 1{L>x}

as an estimator for P (L > x).

(2b) If E[L |W,Z] < x, we select some θ = θ(W,Z) > 0 and we draw (Xθ
1 , . . . , X

θ
m) as

in (5.4). Then we draw (Lθ1, . . . , L
θ
m) as in (5.6), compute Lθ as (5.5) and return

1{Lθ>x} exp(H(W,Z, θ)− θLθ)]

as an estimator for P (L > x).

(3) Average over N independent random draws.

Step (1) of the above algorithm is trivial, as it requires a simulation of a one-dimensional

r.v. W and the multivariate normal Z. We compute immediately

Ẽ[L] =
m∑
j=1

ejgj,k(W,Z)(Xj = k)µj,k ,

where µj,k are as in Proposition 3.3.2 and gj,k are given in (3.11), j = 1, . . . ,m, k =

1, . . . , K. Therefore we can directly determine whether we are in regime (2a) or (2b).

Step (2a) is also straightforward. The hardest point in step (2b) is the selection of an

appropriate θ = θ(W,Z). Theoretically, we have to minimize the second moment of the

estimator (in other words, the first summand in (5.3)), i.e. to choose

θ̂ = arg min
θ
Ẽ[1{Lθ>x} exp(2H(W,Z, θ)− 2θLθ)] .

As this problem is infeasible, we use the bound

Ẽ[1{Lθ>x} exp(2H(W,Z, θ)− 2θLθ)] ≤ exp(2H(W,Z, θ)− 2θx) .

Instead of minimizing the integral, we minimize its upper bound and get

θ̃ = arg min
θ
H(W,Z, θ)− θx .

Various considerations lead to such a choice, see Glasserman [68] or Glasserman and Li [70]

for a detailed discussion. In particular, with this choice we obtain from Lemma 5.2.1 that

Ẽ[Lθ̃] = x, which makes the event {Lθ̃ > x} common, rather than rare.
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Algorithm 5.2.2 is intended to miminize only the first summand in (5.3). However, for

high dimensional portfolios (when m is large), Proposition 6.1.1 suggests that in particular

the global shock W and the common factors Z = (Z1, . . . , Zp) are important for the tail

of the portfolio loss distribution. Therefore we need to minimize also the second term in

the variance decomposition (5.3). To do that we need an approximation of P (L > x) with

an explicit function of W and Z. Proposition 6.1.1 suggests such an approximation:

P (L > x) ≈ P (E[L|W,Z] > x) .

Our goal is to apply the importance sampling techniques discussed in Section 5.2.1 to the

probability c = P (E[L|W,Z] > x). When attempting to apply directly an exponential

change of measure as described in Section 5.2.1 toW and Z we face the following problems:

(1) The global shock W is heavy-tailed, hence E [exp (λW )] does not exist for λ > 0.

(2) The common factors Z = (Z1, . . . , Zp) ∈ Np(0,Σ) are not independent.

However, we notice that, due to Proposition 3.3.2,

E[L|W,Z] =
m∑
j=1

K∑
s=1

gj,s(W,Z)µj,s
d
=

m∑
j=1

K∑
s=1

g̃j,s(S,Q)µj,s , (5.7)

where S
d
= 1

W
has a well defined moment generating function, Q = (Q1, . . . , Qp) is a

vector of independent standard normal r.v.s, such that for some matrix B = [bl,d]l,d=1,...,p

we have BQ
d
= Z (BB′ = Σ, e.g. the Choleski decomposition), and finally

g̃j,s(S,Q) = Φ

(
G−1
j (pkj )

σi
S −

p∑
l=1

βj,lQl

)
− Φ

(
G−1
j (pk−1

j )

σi
S −

p∑
l=1

βj,lQl

)

with βj,l =
∑p

d=1
αj,d
σj
bd,l. Hence, instead of applying an exponential change of measure to

W,Z, we apply it to the transformed r.v.s. S,Q.

We obtain the following algorithm.

Algorithm 5.2.3. (1) Select λ > 0 and µ = (µ1, . . . , µp) ∈ R.

(2) Draw S̃ and Q̃ = (Q̃1, . . . , Q̃p) with densities, resp.

f (y) =
exp(λy)

E [exp(λS)]
g(y) and fl (y) =

exp(µly)

E [exp(µlQl)]
gl(y) , l = 1, . . . , p , (5.8)

where g(y) is the density of S and gl(y), l = 1, . . . , p is the density of Ql.

(3) Compute g̃j,k(S̃, Q̃), j = 1, . . . ,m, k = 1, . . . , K. If
∑m

j=1

∑K
s=1 g̃j,s(S̃, Q̃)µj,s ≥ x,

repeat step (2a) of Algorithm 5.2.2. Otherwise repeat step (2b) of Algorithm 5.2.2.

(4) Multiply the result from step (3) to the likelihood ratio

E [exp(λS)]

exp(λS̃)

p∏
l=1

E [exp(µlQl)]

exp(µlQ̃l)



98 CHAPTER 5. SIMULATION

to obtain an estimate for P (L > x)

(5) Average over N independent draws.

Step (2) of the above algorithm is comparatively easy to perform. In particular, by (5.8)

Q̃ is a vector of independent normals with mean µ. In the most frequently used in practice

heavy-tailed t-model (see Example 3.2.1), S̃2 has a gamma d.f., see e.g. Glasserman et

al. [69], who apply a similar techique to the simulation of a market risk model with heavy-

tailed risk factors. For the selection of the design parameters λ and µ1, . . . , µp in step (1)

we apply the method in (5.2), i.e. we select

µ̃ = arg min
(λ,µ)

(
E [exp(λS)]

exp(λq̃0(λ, µ))

p∏
l=1

E [exp(µlQl)]

exp(µlq̃l(λ, µ))

)
,

where q̃(λ, µ) = (q̃0(λ, µ), . . . , q̃p(λ, µ)) satisfy

q̃(λ, µ)) = arg max
q

(λq0 +

p∑
l=1

µlql |E[L |S = q0, Q = (q1, . . . , qp)] = x) .

Due to (5.7) and (5.8) this choice guarantees, for instance, that

E[L |W = 1/E[S̃], Z = BE[Q̃]] = x ,

i.e. losses equal or exceeding x are no longer rare under the twisted probability measure.

5.3 Numerical examples

5.3.1 Comparison of the methods

We consider an example to demonstrate the suggested importance sampling method for

a credit portfolio with heavy-tailed risk factors.

Example 5.3.1. [IS for 10 factors and global shock portfolio]

The parameters of the considered model (as in (3.1) with (3.4) and (3.5)) are as follows:

- m = 100 credits in the portfolio;

- the exposures e = (e1, . . . , em) are generated uniformly on the interval (1, 25);

- rating system with K = 2 ratings (default and non-default);

- the default probabilities P (Xj = 1) = pj,1, j = 1, . . . ,m, are generated uniformly on

the interval [0.001, 0.02];

- the marginal loss distributions are given as Lj = 1{Xj=1}, j = 1, . . . ,m.

For the dependence structure we use in (3.5) the t-model with ν = 4 degrees of freedom,

p = 21 common factors and Z ∈ Np(0, I). The factor loadings are given, for j = 1, . . . ,m,
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by αj,1 = 0.7, αj,l = 0.3, l = jmod 10 + 1 and αj,l = 0.3, l = [j/10] + 11 ([x] denotes

the closest integer smaller than x). Thus, each credit has a loading of 0.7 on the first

factor and loadings 0.3 on two of the next. There are no equivalent credits with respect to

the dependence structure. The first factor may be thought of as a global factor, the next

ten as regional factors and the last ten as industry factors. This multifactor dependence

structure is taken from Glasserman [67], where it is described as particularly hard to deal

with.
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Figure 5.1: The parameters are the same as in Example 5.3.1.
Left figure: The tail of the portfolio loss distribution obtained by 10 000 Monte Carlo simulations of all
random components of L compared to the tail obtained by Algorithm 5.2.2 with the same computational
time budget, together with their respective 90% confidence bounds. The tightening of the confidence
bounds, in particular at the extremely high loss levels (800-1000), is not sufficient enough.
Right figure: The tail of the portfolio loss distribution obtained by 10 000 Monte Carlo simulations of all
random components of L compared to the tail obtained by Algorithm 5.2.3 with the same computational
time budget, together with their respective 90% confidence bounds. The tightening of the confidence
bounds is now quite satisfactory.

We first simulate N = 10000 i.i.d copies of the portfolio loss L using the standard Al-

gorithm 5.1.1. As expected, this method produces rather broad confidence bounds at high

loss levels. In order to analyse if there is a room for improvement, we fix the computational

time required by Algorithm 5.1.1 and apply Algorithm 5.2.2, i.e. we use straightforward

simulation of the global shock W and the common factors Z1, . . . , Zp, combined with

(conditional) IS for the marginal losses. In Figure 5.1 (left) we observe that in this way

we obtain better confidence bounds, however, there is less improvement at extremely high

loss levels. For this reason, with the same fixed computational time, we apply also Algo-

rithm 5.2.3, i.e. we use combined IS for the global shock W , the common factors Z1, . . . , Zp

and the marginal losses. In Figure 5.1 (right) we observe that in this way we may obtain

narrow confidence bounds also at extremely high confidence levels. �
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5.3.2 Comparison of the models

From the examples and the analysis in Section 3.2, we expect that the heavy tailed risk

factors Y in model (3.5) will have a significant impact on the tail of the credit portfolio

loss distribution. We demonstrate this in the following example, see Frey et al. [62] or

Schwarz [131] for more examples.

Example 5.3.2. [Example 3.2.4 continued, comparison of the impact on the tail]

We consider 6 different portfolios L[1], . . . , L[6] with parameters, for each portfolio, as in

model (as in (3.1) with (3.4) and (3.5)) as follows:

- m = 100 credits in the portfolio;

- the exposures e = (e1, . . . , em) are generated uniformly on the interval (1, 25);

- rating system with K = 2 ratings (default and non-default);

- the default probabilities P (Xj = 1) = p[k], j = 1, . . . ,m, where p[k] is the default

probability for the credits of group Rk, k = 1, . . . , 6, as in Example 3.2.4;

- the marginal loss distributions are given as Lj = 1{Xj=1}, j = 1, . . . ,m.

The dependence structure is as in Example 3.2.4. More precisely, we compare a one-

factor CreditMetrics model (W = 1 a.s. in (3.5)) to a heavy-tailed t-model (Example 3.2.1)

with ν = 4 degrees of freedom and equal correlation structure.

In Figure 5.2 we compare the tails for the 6 portfolios L[1], . . . , L[6] under the Gaussian

and under the heavy-tailed dependence assumptions. In all cases, the heavy-tailed model

leads to higher risk as measured by, e.g. a high quantile of the loss distribution. It is

particularly apparent for portfolios L[1], L[2] (good quality obligors), see the upper row of

Figure 5.2 (recall our forecasts in Example 3.2.4).

Finally we consider the portfolio L =
∑6

k=1 L
[k] and its high α-quantile VaRα(L). It

is often assumed in practice that
∑6

k=1 VaRα(L[k]) provides a conservative upper bound

for VaRα(L), although this is theoretically wrong, see Embrechts et al. [45] for a detailed

discussion on this issue. Our simple example demonstrates that the sum of the VaRs for

the 6 portfolios under the normal model assumption is significanly smaller than the total

portfolio VaR in the heavy-tailed case, see Figure 5.3. Clearly, it is hopeless to obtain a

conservative upper bound on the portfolio risk using simplified models and theoretically

unmotivated ”shortcuts”. �
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Figure 5.2: The parameters are the same as in Example 5.3.2.
The tails of the portfolio loss distributions of the good quality portfolios L[1], L[2] (upper row), the average
quality portfolios L[3], L[4] (middle row) and the low quality portfolios L[5], L[6] under the Gaussian and
the heavy-tailed t-model assumptions. In all cases, the heavy-tailed model leads to higher probabilities
for large losses.
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Figure 5.3: The parameters are the same as in Example 5.3.2.
The VaRα of the aggregate portfolio L for different values of α. The t-model leads to higher VaR than
the sum of the VaRs of the composite portfolios in the normal model.



Chapter 6

Tail approximation

For many applications in risk management, a fast evaluation of the tail of the credit port-

folio loss distribution is needed. As already noted (see CreditMetrics [74]), it is not possible

to obtain the distribution analytically even in the simplest Gaussian copula model. The

Monte Carlo simulation methods described in Chapter 5, even when enhanced with the

appropriate variance reduction techniques, are not the universal answer. In particular

when the goal is to perform a sensitivity analysis for some of the model parameters, an

analytic approximation is more suited.

Various approximations of the portfolio loss distribution have been developed. Most

of them are based on the SLLN or on the CLT, see Section 6.1. The required granularity

assumptions for these approximations (see e.g. Bluhm et al. [16], Assumption 2.5.2) are not

always easy to verify in practice. Furthermore, such approximations are typically accurate

at the center of the distribution (close to the mean) and could be misleading in the tail.

In contrast, we consider an approximation based on the large deviations theory, which

is designed to be accurate in the tail. More precisely, we apply the Markov’s inequality

to derive an upper bound of exponential type for the tail of L. In order to compute the

best possible (the closest to the tail) upper bound, we develop a stochastic approximation

algorithm and show its a.s. convergence to the optimal bound. This algorithm turns out to

be a useful tool for risk management applications in Chapter 7. Before that we illustrate

its accuracy and computational efficiency by a numerical example in Section 6.3.

6.1 Approximation for large portfolios

The approximations which are currently used in practice rely on two facts:

(1) Given a set of factors, the individual transactions in a credit portfolio are indepen-

dent (see Gordy [71] for general credit risk models or Finger [52] for the CreditMetrics

model in particular).

103
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(2) The portfolio consists of a large number of comparatively homogeneous obligors.

More precisely, we consider the asymptotic distribution of the sequence of portfolios

L(m) satisfying (3.1) with (3.4) and (3.5) for the number of obligors m going to infinity.

We need the following additional ’granularity’ assumptions on the obligors’ exposures:

lim
m→∞

m∑
j=1

ej =∞ , (6.1)

lim
m→∞

m∑
j=1

(
ej∑j
i=1 ei

)2

<∞ , (6.2)

Cj ≥ C, j ∈ N , (6.3)

where Cj are the constants from Assumption (C) in (3.1) and C ∈ R is a fixed constant.

Assumption (6.1) guarantees that the total portfolio exposure increases to infinity as

the number of obligors increases to infinity. This holds, for instance, when ej ≥ a, j ∈ N,

for some constant a > 0. Assumption (6.2) implies that the exposure weights shrink

rapidly with increasing number of obligors. This holds, for instance, when ej ∈ [a, b], j ∈ N
for some constants 0 < a ≤ b < ∞. Assumption (6.3) guarantees that no credit in the

portfolio could lead to a profit larger than |C|ej, j ∈ N.

A less general version of the proposition below is for instance Bluhm et al. [16], Propo-

sition 2.5.4. We prove it in our general setting.

Proposition 6.1.1. Let L(m) be a sequence of rvs with distributions as in (3.1) with (3.4)

and (3.5). Let also (6.1), (6.2) and (6.3) hold and denote by τm =
∑m

j=1 ej. Then

1

τm
(L(m) − E

[
L(m) |W,Z

]
)

a.s.→ 0, m→∞. (6.4)

Proof. We note first that, due to (3.5), given W and Z, the r.v.s Yj, j = 1, . . . ,m, are

independent (inherited by the independence of εj). Therefore Xj, j = 1, . . . ,m, are condi-

tionally (on W and Z) independent by means of (3.4). Therefore, due to assumption (A)

in (3.1), the r.v.s ξj = ej(Lj−E[Lj |W,Z]) are (conditionally) independent. Furthermore,

E[ξj] = 0 by definition. Finally, due to assumption (C) in (3.1) and (6.3), condition (6.2)

leads to

lim
m→∞

m∑
j=1

Ẽ[ξ2
j ]

(τj)2
≤ lim

m→∞

m∑
j=1

4 max(1, |C|)2e2
j

(τj)2
<∞ ,

where Ẽ denotes the expectation under the conditional on W and Z probability measure.

Applying the SLLN we obtain

P ( lim
m→∞

1

τm
(L(m) − E[L(m) |W,Z]) = 0 |W = w,Z = z) = 1 ,

for every w > 0 and z ∈ Rd. Integrating w.r.t. W and Z we obtain the required result.
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6.2 Approximation by an upper bound

In order to obtain an upper bound of the portfolio loss distribution we apply Markov’s

inequality: for every θ ≥ 0 and x ∈ [E [L] , Lmax)

P (L ≥ x) ≤ E [exp (θ (L− x))] = ϕ (θ) exp (−θx) =: F (θ, x) . (6.5)

In the next lemma we summarize some of the important properties of F (θ, x).

Lemma 6.2.1. Let x ∈ (E [L] , Lmax) be fixed. Then the function F (θ, x) satisfies the

following properties.

(1) F (θ, x) is analytic in θ;

(2) there exists a unique positive point

θ̂ = θ̂ (x) = arg min
θ
F (θ, x) , (6.6)

which is the unique positive solution of the equation ∂
∂θ
F (θ, x) = 0;

(3) F (θ, x) is strictly decreasing for θ < θ̂(x) and strictly increasing for θ > θ̂(x);

(4) F (θ, x)→∞, θ →∞;

(5) θ̂ (x) ∈ (0, θmax(x)), where θmax(x) <∞ satisfies F (θmax(x), x) = 1;

(6) there exist constants D(x) ≥ C(x) > 0 such that for all θ, 0 < θ <∞, θ 6= θ̂

C(x) ≤
∂
∂θ
F (θ, x)

θ − θ̂
≤ D(x) . (6.7)

Proof. Properties (1), (2) and (3) are standard (see e.g. Jensen [82], section 1.2 and

references therein).

As x < Lmax, there exists ε > 0 such that x+ ε < Lmax and hence P (L > x+ ε) > 0,

therefore

lim
θ→∞

F (θ, x) ≥ lim
θ→∞

P (L > x+ ε) exp(θε) =∞ ,

i.e. we get (4).

By (2) we have 0 < θ̂(x). Note that F (0, x) = 1 for every x, hence, due to (3),

F (θ̂(x), x) < 1. As F (θ, x) is continuous in θ, by means of (4) there exists a point 0 <

θmax(x) < ∞ which satisfies F (θmax(x), x) = 1. Because of (3), we get θ̂(x) < θmax(x),

i.e. (5).

To prove (6) we use a Taylor expansion of ∂
∂θ
F (θ, x) around θ̂ and the fact that

∂
∂θ
F (θ̂, x) = 0; we get for ε = ε(θ) ∈ (min(θ̂, θ),max(θ̂, θ))

∂
∂θ
F (θ, x)

θ − θ̂
=

∂2

∂θ2
F (ε, x) .
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For θ ∈ R we have

∂2

∂θ2
F (θ, x) =

∂2

∂θ2
E [exp (θ (L− x))]

= E
[
(L− x)2 exp (θ (L− x))

]
> 0 .

Also, by means of (3.7),

∂2

∂θ2
F (θ, x) ≤ (max(|Lmin|, Lmax) + |x|)2 exp (θ (Lmax − x)) <∞ .

As by (1) ∂2

∂θ2F (θ, x) is continuous in θ, for ε in a compact subset of R the function
∂2

∂θ2F (ε, x) achieves a minimum and a maximum at some points ε̂min and ε̂max, which are

strictly positive, hence there exist positive constants C(x) and D(x) such that

0 < C(x) ≤ ∂2

∂θ2
F (ε̂min, x) ≤

∂
∂θ
F (θ, x)

θ − θ̂
≤ ∂2

∂θ2
F (ε̂max, x) ≤ D(x) <∞ .

To derive a best upper bound of P (L ≥ x) we calculate the saddlepoint θ̂ as defined

in (6.6) and we obtain

P (L ≥ x) ≤ F (θ̂, x), x ∈ (E[L], Lmax) (6.8)

This classical large deviations technique has been successfully applied by Martin et

al. [109] in the case of a one-factor Gaussian model (p = 1, W = 1 in (3.5)). Unfortunately

in our case it is not possible to compute θ̂ explicitly or by simple numerical methods, since

the moment generating function ϕ (θ) is available only in terms of the (p+1)-dimensional

integral (3.8). As a remedy we develop a Monte Carlo estimator for the saddlepoint θ̂ and

at the same time we obtain an estimator for the best upper bound F (θ̂, x) in (6.8).

The proposed method is in the framework of stochastic approximation algorithms

(see Kushner and Yin [96]). More precisely, we approximate the saddlepoint θ̂, for fixed

x ∈ (E[L], Lmax), by simulating recursively the r.v.s:

θn+1 = θn − anTn, n ∈ N ,

where θ1 is an arbitrary positive number,

Tn =
∂

∂θ
exp

(
H
(
W (n), Z(n), θn

)
− θnx

)
(6.9)

and W (n) and Z(n) are i.i.d. copies of W and Z, respectively, an, n∈N is a sequence of

positive constants such that
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∞∑
n=1

an =∞ (6.10)

∞∑
n=1

a2
n = A2 <∞ (6.11)

lim
n→∞

an = 0 , (6.12)

and H(W,Z, θ) is defined in (3.9).

In the next theorem we prove that (a modification of) θn
a.s.→ θ̂. The modification is

taken in order to ensure ’stability’ of the algorithm, i.e. to avoid θn growing to infinity

for some ω ∈ Ω, see Kushner and Yin [96], Section 5.1 for details. Usually in stochastic

approximation algorithms stability is achieved by assuring that each iterate θn belongs to

some compact set which includes the true value θ̂. In our case this compact set is given

by [0, θmax(x)], where θmax(x) is the constant from Lemma 6.2.1 (5). Since the constant

θmax(x) is not explicitly available, we approximate it by a sequence of r.v.s converging

a.s. to it.

Theorem 6.2.2. Let x ∈ (E [L] , Lmax) be fixed. For n ∈ N let T
(i)
n , i ∈ N, be i.i.d copies

of the r.v. defined in (6.9). Let an, n∈N be a sequence of positive constants satisfying (6.10),

(6.11) and (6.12). Define

θn+1 = min
i

{
θ

(i)
n+1 = θn − anT (i)

n : 0 ≤ θ
(i)
n+1 ≤ Kn

}
, (6.13)

where

Kn = sup
θ
{θ : Fn (θ, x) ≤ 1}

with Fn (θ, x) being the empirical counterpart of F (θ, x) as defined in (6.5)

Fn (θ, x) =
1

n

n∑
i=1

exp
(
H
(
W (i), Z(i), θ

)
− θx

)
. (6.14)

Then

θn
a.s.→ θ̂, n→∞.

Proof. Step 1: We prove that θn is finite a.s. for every n ∈ N.

First we prove by induction that θn < ∞ for any fixed n. We have θ1 < ∞. Assume

that θn <∞. Note that

|Tn| = | ∂
∂θ
H (W,Z, θn)− x| exp (H (W,Z, θn)− θnx) .
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However, since θn ≥ 0 by means of (6.13), exp (H (W,Z, θn)) ≤ exp(θnLmax) because of

(3.7); and also by (3.9)

| ∂
∂θ
H (W,Z, θn) | ≤

m∑
j=1

| ∂
∂θ

logHj (W,Z, θ) |

=
m∑
j=1

|ejE [Lj exp(θnejLj) |W,Z]

E [exp(θnejLj) |W,Z]
|

≤
m∑
j=1

ej max(1, |Cj|) exp(θnej)

exp(θnejCj)

by means of assumption (C) in (3.1). Therefore

|Tn| ≤ K(θn) , (6.15)

where K(θn) is finite if θn is finite. Therefore, by means of (6.13) and (6.15), θn+1 is also

finite for a finite n.

Now assume that for some ω ∈ Ω θn →∞, n→∞. By the SLLN we have for θ ∈ R

Fn (θ, x)
a.s.→ E [exp (θ (L− x))] = F (θ, x) .

Furthermore, F (θ, x) is continuous in θ and Fn (θ, x) is a.s. continuous in θ and, by

means of Lemma 6.2.1 (4), F (θ, x) → ∞ when θ → ∞. So have for this ω and for some

sufficiently large n that Fn (θn, x) > 1. Such a value of θn is excluded by (6.13). Hence θn

is finite a.s.

Step 2: We prove that

(θn − θ̂)2 a.s.→ γ, n→∞ ,

where γ is some r.v. with finite mean.

Denote by Fn = σ
(
θ1, . . . , θn,W(1), Z(1), . . . ,W(n−1), Z(n−1)

)
, where W(j), Z(j) are the

realizations for which θj+1 = θj−ajT (i)
j . Denote Tj = T

(i)
j . From (6.13) we have θn+1− θ̂ =

θn − θ̂ − anTn, hence

E
[
(θn+1 − θ̂)2 | Fn

]
= (θn − θ̂)2 + a2

nE
[
T 2
n | Fn

]
− 2anE

[
Tn(θn − θ̂) | Fn

]
. (6.16)

Consider first

E
[
Tn(θn − θ̂) | Fn

]
= (θn − θ̂)E [Tn | Fn]

= (θn − θ̂)E [Tn | θn]

= (θn − θ̂)
∂

∂θ
E
[
exp

(
H
(
W(n), Z(n), θn

)
− θnx

)
| θn
]

= (θn − θ̂)
∂

∂θ
F (θn, x) .
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Secondly,

n∑
k=1

a2
kE
[
T 2
k | Fk

]
=

n∑
k=1

a2
kE
[
T 2
k | θk

]
≤

∞∑
k=1

a2
kE
[
T 2
k | θk

]
≤ K2A2 , (6.17)

where A2 is the limiting constant from (6.11) and K2 <∞ is a constant, independent of

θk, such that

E
[
T 2
k | θk

]
≤ K2 (6.18)

for every k ∈ N (the existence of such a constant follows from Step 1 and (6.15)).

Denote

Mn+1 = (θn+1 − θ̂)2 +K2A2 −
n∑
k=1

a2
kE
[
T 2
k | θk

]
.

From (6.17) we know that Mn ≥ 0. On the other hand, using (6.16),

E [Mn+1 | Fn] = E
[
(θn+1 − θ̂)2 | Fn

]
+K2A2 −

n∑
k=1

a2
kE
[
E
[
T 2
k | θk

]
| Fn

]
= Mn − 2anE

[
Tn(θn − θ̂) | Fn

]
= Mn − 2an(θn − θ̂)

∂

∂θ
F (θn, x) .

By means of (6.7) (θn−θ̂) ∂
∂θ
F (θn, x) > 0 a.s., hence Mn is a non-negative supermartingale.

By Doob’s limit theorem

Mn
a.s.→ M, n→∞, (6.19)

where M is a r.v. with finite mean. As K2A2 is some constant and
∑n

k=1 a
2
kE [T 2

k | θk] is an

increasing, but bounded by means of (6.17) sequence, (6.19) implies that (θn − θ̂)2 a.s.→ γ,

where γ is a r.v. with finite mean.

Step 3. Denote ηn = E (θn− θ̂)2. We prove that there exists n1 ∈ N such that for every

n > n1

ηn+1 ≤ (1− anC)2 ηn + a2
nK

2 , (6.20)

where C is the constant from (6.7) and K is the constant from (6.18).

Denoting T̃n = Tn − ∂
∂θ
F (θn, x) we obtain from (6.13)

θn+1 − θ̂ = θn − θ̂ − anT̃n − an
∂
∂θ
F (θn, x)

θn − θ̂
(θn − θ̂)

=

(
1− an

∂
∂θ
F (θn, x)

θn − θ̂

)
(θn − θ̂)− anT̃n .
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Raising to second power and integrating we get

ηn+1 ≤ E

(1− an
∂
∂θ
F (θn, x)

θn − θ̂

)2

(θn − θ̂)2

− 2anE

[(
1− an

∂
∂θ
F (θn, x)

θn − θ̂

)
(θn − θ̂)T̃n

]
+a2

nET̃
2
n .

Conditioning on Fn we have

E
[(

1− an
∂
∂θ
F (θn,x)

θn−θ̂

)
(θn − θ̂)T̃n

]
= E

[
E

[(
1− an

∂
∂θ
F (θn, x)

θn − θ̂

)
(θn − θ̂)T̃n | Fn

]]

= E

[(
1− an

∂
∂θ
F (θn, x)

θn − θ̂

)
(θn − θ̂)E

[
T̃n | Fn

]]

= E

[(
1− an

∂
∂θ
F (θn, x)

θn − θ̂

)
(θn − θ̂)E

[
T̃n | θn

]]
= 0 ,

because E
[
T̃n | θn

]
= E [Tn | θn]− E

[
∂
∂θ
F (θn, x) | θn

]
= 0 a.s..

Due to (6.7) we have

1− an
∂
∂θ
F (θn, x)

θn − θ̂
≤ 1− anC.

Also, since an converges to 0 and
∂
∂θ
F (θn,x)

θn−θ̂
≥ D as in (6.7), we can always select an index

n1, such that an <
1
D

for every n > n1, and hence 1− an
∂
∂θ
F (θn,x)

θn−θ̂
> 0. We get

ηn+1 ≤ (1− anC)2 ηn + a2
nET̃

2
n .

Since ET̃ 2
n = E

(
Tn − ∂

∂θ
F (θn, x)

)2
= var[Tn] ≤ ET 2

n ≤ K2 we obtain (6.20).

Step 4. Finally we prove that

lim
n→∞

ηn = 0. (6.21)

Since a.s. convergence implies convergence in probability, by means of Step 2 we have

lim
n→∞

ηn = Eγ <∞.

On the other hand, since γ = limn→∞(θn − θ̂)2 is a non-negative r.v., showing (6.21) is

enough to prove the theorem.

We have by (6.20), for every sufficiently large n > n1,

√
ηn+1 ≤ (1− anC)

√
ηn + anK .
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We also have from Step 2 that limn→∞
√
ηn =

√
Eγ. Now assume that

√
Eγ > K

C
. This

implies for some ε > 0
√
ηn ≥ K

C
+ ε, for n > n2 = n2(ε). Let n2 > n1. We get

√
ηn+1 ≤

√
ηn − anC(

K

C
+ ε) + anK

=
√
ηn − anCε .

Using the inequality recursively we get

n∑
j=n2+1

(√
ηj+1 −

√
ηj
)
≤ −Cε

n∑
j=n2+1

aj ,

which means
√
ηn+1 ≤

√
ηn2 − Cε

n∑
j=n2+1

aj .

However, due to (6.10), there exists some index n3, such that

√
ηn2

Cε
<

n3∑
j=n1+1

aj ,

hence
√
ηn3 < 0, which is a contradiction. Therefore we obtain Eγ ≤ K2

C2 . Hence there

exists n4 ∈ N such that for n > n4 ηn ≤ K2

C2 .

Going back to (6.20), we have for sufficiently large n > max (n1, n4)

ηn+1 ≤ (1− anC)2 ηn + a2
nK

2

= ηn + a2
nC

2ηn − 2anCηn + a2
nK

2

≤ ηn + a2
nC

2K
2

C2
− 2anCηn + a2

nK
2

= ηn − 2anCηn + 2a2
nK

2

Assume the contrary to the hypothesis, that ηn > ε > 0 for every n larger than some fixed

n5. Then we get

ηn+1 ≤ ηn − 2anCε+ 2a2
nK

2 .

Applying the inequality recursively we obtain

n∑
j=n5+1

(ηj+1 − ηj) ≤
n∑

j=n5+1

2a2
jK

2 − 2Cε
n∑

j=n5+1

aj

and therefore

ηn+1 ≤ ηn5 + 2K2

n∑
j=n5+1

a2
j − 2Cε

n∑
j=n5+1

aj

≤ ηn5 + 2K2

∞∑
j=1

a2
j − 2Cε

n∑
j=n5+1

aj .
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However, due to (6.10), there exists some index n6, such that

ηn5 + 2K2A

2Cε
<

n6∑
j=n5+1

aj ,

hence ηn6+1 < 0, which is a contradiction. Therefore we obtain the required result.

Next we derive an approximation of the optimal upper bound F (θ̂, x) of P (L ≥ x) as

defined in (6.8).

Proposition 6.2.3. Let x ∈ (E [L] , Lmax) be fixed. For θ ∈ R let Fn (θ, x) be defined as

in (6.14). If θn
a.s.→ θ̂, n→∞, then

Fn(θn, x)
a.s.→ F (θ̂, x), n→∞ (6.22)

Proof. By the SLLN we have

Fn (θ, x)
a.s.→ E [exp (θ (L− x))] = F (θ, x)

for every θ ∈ R. As exp
(
H(W (i), Z(i), θ)− θx

)
and F (θ, x) are a.s. continuous in θ and

θn
a.s.→ θ̂, by the continuous mapping theorem we have

Fn(θn, x)
a.s.→ F (θ̂, x), n→∞.

Remark 6.2.4. At each simulation step of (6.13), we check if Fn (θn, x) < 1. Therefore,

the upper bound approximation of P (L ≥ x) is available as by-product from the proposed

algorithm. �

6.3 Numerical examples

We give an example to demonstrate our method.

Example 6.3.1. [Example 5.3.1 continued, tail approximation]

We consider model (3.1) with (3.4) and (3.5) and the parameters from Example 5.3.1.

In Figure 6.1 (left) we compare the tail of the portfolio loss distribution, obtained by Monte

Carlo simulation as explained in Section 5.1 to the upper bound approximation as in (6.8),

obtained by the new method (6.22). We observe that the upper bound approximation is

quite accurate at high loss levels (i.e. 500-800), but degenerates quickly as we move in

direction to the mean of the distribution. Furthermore, by the new approximation method



6.3. NUMERICAL EXAMPLES 113

200 400 600 800 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss level

T
ai

l p
ro

ba
bi

lit
y

Monte Carlo 
upper conf. bound
lower conf. bound
new upper bound approx.
new upper conf. bound

200 400 600 800 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss level

T
ai

l p
ro

ba
bi

lit
y

Monte Carlo
upper conf. bound
lower conf. bound
new upper bound approx.
new upper conf. bound

Figure 6.1: The parameters are the same as in Example 6.3.1.
Left figure: The tail of the portfolio loss distribution obtained by 10 000 Monte Carlo simulations of
all random components of L compared to the upper bound approximation (6.8) obtained by the new
method (6.22), together with their respective 90% confidence bounds. The upper bound approximation
is accurate at high loss levels (i.e. 500-800), and stays within the 90% Monte Carlo confidence bounds.
At extremely high loss levels (i.e. 800-1000), the new approximation method allows for extrapolation of
estimates and confidence bounds beyond the range of the simulated data.
Right figure: The tail of the portfolio loss distribution obtained by 10 000 Monte Carlo simulations of
all random components of L compared to the upper bound approximation (6.8) obtained by the new
method (6.22), enhanced by importance sampling, together with their respective 90% confidence bounds.
The new approximation method, enhanced by importance sampling, gives accurate information at loss
levels where the standard Monte Carlo degenerates (i.e. 800-1000).

it is possible to obtain estimates and confidence bounds at extremely high loss levels (i.e.

800-1000), which are beyond the range of the simulated data in the Monte Carlo method.

Note that the new method is computationally more efficient as it requires simulation only

of the common factors Z and the global shock W , and not of all random components in

the model.

We further improve the numerical performance of the proposed algorithm from Sec-

tion 6.2 by applying importance sampling techniques in the simulation of the common

factors Z and the global shock W . We use a classical variance reduction method, namely

exponential change of measure, see Section 5.2.2. Note that in the framework of heavy-

tailed risk factors, such a technique is not directly applicable, as E[exp(θW )] = ∞ for

every θ > 0. Instead, we apply an exponential change of measure to the transformed r.v.

S = 1
W

. With this enhanced method, the accuracy of the approximation at high loss levels

can be further improved, as demonstrated in Figure 6.1 (right). �
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Chapter 7

Application to risk measurement

Today, virtually all major banks and financial institutions evaluate the risk-adjusted prof-

itability within various business lines, including credits. The key concept behind this risk-

adjusted performance measurement is described briefly in Section 7.1. The crucial point

is to compute the contribution of the marginal risky position (e.g. the marginal credit)

to the overall portfolio risk. Depending upon the choice of a risk measure, this could be a

straightforward or a quite complicated task in the credit risk model under consideration,

see Section 7.2.

The main result in this chapter is an application of the upper bound of the tail of the

portfolio loss as derived in Section 6.2 to risk measurement. The application is given in

Section 7.3. We define a new risk measure – tail bound VaR. We provide an algorithm

to compute this risk measure and the contribution of the marginal credits to it. In Sec-

tion 7.4.1 the risk contributions obtained by our method are compared to the Expected

Shortfall (ES) contributions suggested for instance in Overbeck [122]. We find out that

the two methods give similar results, however, our method has lower computational costs.

This opens up a way to investigate the impact of the different model assumptions (Gaus-

sian vs heavy-tailed) on the risk structure of the portfolio, as given by the marginal risk

contributions.

7.1 Risk-adjusted performance measurement

Suppose an investor wants to place a fixed amount of capital into some asset. He has two

exclusive choices: asset j, j = 1, 2, yields expected return mj with risk rj. Evidently, if

the risks are equal, he will choose the asset with the higher yield. In the case of different

risks (say r1 > r2) there is not such an obvious answer. No doubt that m1 should be larger

than m2 for asset 2 to be eligible at all. But how large should be the difference in order

to make asset 2 more attractive?

115
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The Markowitz portfolio theory (see [108]) is the classical reference for a solution to

this problem. It is still effective nowadays (see Becker et al. [11]). The investor should

decide in favor of asset 1 if and only if m1

r1
≥ m2

r2
. This kind of computing is commonly

called RORAC (return on risk-adjusted capital, see Matten [111]) and the comparison

procedure is called RAPM (risk-adjusted performance measurement).

Note that the Markowitz’s notion of risk is rather abstract. It is considered as a measure

of the uncertainty in return, and is defined mathematically as the standard deviation of

the return. Despite its computational convenience, this perspective has some drawbacks.

From the risk management point of view, it is not desirable that not only the unfavorable,

but also favorable fluctuations of the return around its mean have impact on the risk, as

it happens with the standard deviation. The way to handle this problem is clear: one has

to make use of down-sided risk measures, see Fishburn [54].

The down-sided risk measure Value-at-Risk (VaR) has nowadays become an industry

standard (see BIS [9]). VaR is defined as a (small) quantile of the return distribution.

In the case when the distributions of the returns are normal, the VaR method and the

Markowitz theory yield identical results. However, the normal distribution assumption

seems to be completely wrong for credit portfolios, see CreditMetrics [74]. Nonetheless,

for the sake of RAPM, CreditMetrics [74] use the standard deviation as a risk measure.

In view of model (3.1), a portfolio is represented by the vector e = (e1, . . . , em) ∈ Rm+
of the exposures of the individual credits. Further, a risk measure is simply a differentiable

function r = r(e) : Rm+ → R. We present some examples in the next section. Following

Tasche [134], we define marginal risk contributions as the gradient of the risk measure, i.e.

A = (A1, . . . , Am) = ∇r(e). The goal of this chapter is to provide a computationally fea-

sible alternative to the use of the standard deviation as a risk measure. More precisely, we

are interested in computing the marginal risk contributions w.r.t. different risk measures.

Remark 7.1.1. Note that in the original CreditMetrics model, the risk contribution is

defined differently, namely Aj = r(e)− r(e(j)), where e(j) is the vector of exposures e with

0 in its j-th component. For the drawbacks of this approach see Tasche [134]. �

7.2 Risk contributions w.r.t. standard risk measures

A classical example for risk measure is the standard deviation, i.e.

rvar(e) =
√

var(L(e)) ,

where L is the portfolio loss defined in (3.1). An expression for rvar(e) is available in (3.14).

Note that, once rvar(e) is computed for some e ∈ Rm+ , computing rvar(e
′), e 6= e′ ∈ Rm+
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is trivial. Furthermore, by Example 5.1. in Tasche [134], we have for the marginal risk

contribution of credit j, j = 1, . . . ,m

Avar
j =

cov(Lj, L)√
var(L)

.

Furthermore,

cov(Lj, L) =
m∑
l=1

elcov(Lj, Ll) ,

and therefore this quantity is available as a by-product from the computation of
√

var(L).

This makes the covariance based risk contributions particularly attractive for high-dimensional

portfolios.

Another frequently used in practice risk measure is the VaR, defined as

VaR(e) = inf
x
{P (L(e) > x) ≤ α} , (7.1)

for some small probability α. Note that, if L is normally distributed, then VaR(e) =

Φ−1(1− α)
√

var(L), i.e. in such cases this quantity is available explicitly through (3.14).

Unfortunately in model (3.1) with (3.4) and (3.5) the d.f. of L is far from being nor-

mal. Therefore, VaR(e) can be obtained only by means of Monte Carlo simulation, see

CreditMetrics [74].

As shown in Tasche [134], under some regularity conditions, the marginal risk contri-

butions for VaR are

AVaR
j = E [Lj |L = VaR] , j = 1, . . . ,m . (7.2)

It is extremely hard to compute these quantities even by Monte Carlo methods, see Bluhm

et. al. [16], Section 5.2.2.

An alternative risk measure for credit risk portfolios is used for instance in Over-

beck [122]. Denoting the expected shortfall

ES (e) = E [L(e) |L(e) ≥ VaR (e)] ,

one obtains for the marginal risk contributions

AES
j = E [Lj |L ≥ VaR] , j = 1, . . . ,m , (7.3)

see Tasche [134]. This measure has many advantages in the credit risk framework, see

e.g. Frey and McNeil [60] or Bluhm et al [16], Section 5.2.3. Furthermore, it is possible

to compute marginal risk contributions AES
j by Monte Carlo methods. More precisely,

let L(i), i = 1, . . . , n, (and resp. L
(i)
j , j = 1, . . . ,m,) be i.i.d copies of L (and resp. of
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Lj, j = 1, . . . ,m,) as in (3.1). Denote by Bn =
{
i, i = 1, . . . , n : L(i) ≥ Ldαne

}
, where

Ldαne is the dαneth largest order statistic among L(i), i = 1, . . . , n. Then the SLLN

provides estimates for (7.3), i.e.

1

#Bn

∑
i∈Bn

L
(i)
j

a.s.→ AES
j , n→∞ .

7.3 Risk contributions w.r.t. tail bound VaR

In this section we explain how we use the upper bound approximation of the portfolio

loss derived in Section 6.2 to approximate the VaR and the marginal risk contributions

w.r.t. it. First we analyze the optimal upper bound F (θ̂(x), x) defined in (6.8), i.e.

F (θ̂(x), x) = ϕ(θ̂(x)) exp(−θ̂(x)x) ,

where ϕ (θ) is the moment generating function of L as in (3.8) and θ̂(x) is the saddlepoint

defined in (6.6).

Lemma 7.3.1. Let F (θ̂(x), x), x ∈ (E[L], Lmax), be the function defined in (6.8). Then

(1) θ̂ (x) is continuous and strictly increasing in x;

(2) F (θ̂ (x) , x) is continuous and strictly decreasing in x;

(3) the inverse function

V̂aR (α) = argx

{
F (θ̂(x), x) = α

}
, α ∈ (0, 1) (7.4)

is a well defined and strictly decreasing function;

(4) for every α ∈ (0, 1)

VaR (α) ≤ V̂aR (α) . (7.5)

Proof. To prove (1), taking into account that ∂
∂θ

log(ϕ(θ̂ (x))) = x (Lemma 6.2.1 (2)), we

get
∂

∂x

∂

∂θ
log(ϕ(θ̂ (x))) = 1 ,

therefore ∂
∂x
θ̂ (x) ∂2

∂θ2 log(ϕ(θ̂ (x))) = 1. Hence ∂
∂x
θ̂ (x) = ( ∂2

∂θ2 log(ϕ(θ̂ (x))))−1 > 0 by the

strict convexity of ϕ(θ).

To prove (2) we note that log(F (θ̂ (x) , x)) = log(ϕ(θ̂ (x)))− θ̂ (x)x. By differentiation

we get

∂

∂x
log(F (θ̂ (x) , x)) =

∂
∂θ
ϕ(θ̂ (x))

ϕ(θ̂ (x))

∂

∂x
θ̂ (x)− x ∂

∂x
θ̂ (x)− θ̂ (x)

=
∂

∂x
θ̂ (x)

(
∂
∂θ
ϕ(θ̂ (x))

ϕ(θ̂ (x))
− x

)
− θ̂ (x)

= −θ̂ (x) < 0
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for every x ∈ (E [L] , Lmax), hence F (θ̂ (x) , x) is strictly decreasing.

Property (2) implies also the existence and the strict monotonicity of the inverse as

in (7.4), i.e. (3) holds.

To prove (4) assume the contrary, i.e. that VaR (α) > V̂aR (α). Then we have

P (L ≥ VaR (α)) ≤ P (L ≥ V̂aR (α))

≤ F (θ̂(V̂aR (α)), V̂aR (α)) = α ,

which is a contradiction to the definition of VaR (α) in (7.1).

Using the algorithm described in Section 6.2, we compute the optimal upper bound

F (θ̂(x), x) for a sufficiently large number of points x ∈ (E [L] , Lmax) and we find the upper

bound approximation of VaR (α), denoted by V̂aR (α) as in (7.4). We call the function

V̂aR the tail bound VaR. Normally we expect that V̂aR is close to VaR as the upper bound

derived in (6.8) is close to the tail of the portfolio loss P (L > x) for large loss levels x.

We consider also the marginal risk contributions with respect to V̂aR (α). We fix α

and define marginal risk contributions as

Âj =
∂

∂ej
V̂aR (α; e) , j = 1, . . . ,m , (7.6)

where e = (e1, . . . , em) ∈ Rm+ are the exposures of the individual credits as in (3.1). Note

that, for fixed α ∈ (0, 1), V̂aR (α; e) is well defined for every e ∈ Rm+ . This can be seen

from the following arguments.

Since the distribution of L in (3.1) depends on e, its moment generating function

depends on e, i.e. we have ϕ (θ) = ϕ (θ; e). Due to (3.8) and (3.9) we have also that

ϕ (θ; e) = E[exp (H(W,Z, θ, e))] is well defined and

H(W,Z, θ, e) =
m∑
j=1

logHj(W,Z, θ, ej) (7.7)

with Hj, j = 1, . . . ,m, defined in (3.10). Hence, for x ∈ (E[L], Lmax) we have also that

the saddlepoint θ̂(x) defined in (6.6) is a function of e, i.e θ̂(x) = θ̂(x; e). Hence the upper

bound F (θ̂(x), x) = F (θ̂(x; e), x; e) as in (6.8) is well defined. Therefore, due to lemma

7.3.1 (3), V̂aR (α; e) is well defined for every e ∈ Rm+ .

Proposition 7.3.2. With the above notations, for α ∈ (0, 1), the upper bound marginal

risk contributions (Â1, . . . Âm) defined in (7.6) are given by

Âj = E

exp
(
H (W,Z, θ, e)− θV̂aR(α; e)

)
αej

∂

∂θ
logHj(W,Z, θ, ej)


|θ=θ̂(V̂aR(α;e);e)

. (7.8)
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Proof. By the definition of V̂aR(α; e) as in (7.4) we have

F
(
θ̂(V̂aR (α; e) ; e), V̂aR (α; e) ; e

)
= α , (7.9)

hence
∂

∂ej
F
(
θ̂(V̂aR (α; e) ; e), V̂aR (α; e) ; e

)
= 0 .

Therefore, setting θ̂ = θ̂(V̂aR (α; e) ; e) we have

0 =
∂

∂θ
F
(
θ, V̂aR (α; e) ; e

)
|θ=θ̂

∂

∂ej
θ̂(V̂aR (α; e) ; e)

+

[
(
∂

∂ej
ϕ(θ; e)) exp(−θV̂aR(α; e))

]
| θ=θ̂

−
[
ϕ(θ; e)θ(

∂

∂ej
V̂aR(α; e)) exp(−θV̂aR(α; e))

]
| θ=θ̂

,

where the last two summands come from the fact that

F (θ, V̂aR (α; e) ; e) = ϕ(θ; e) exp(−θV̂aR(α; e)) .

Since by (6.6) θ̂(x; e) is the point at which the minimum of F (θ, x; e) with respect to θ is

achieved, we have ∂
∂θ
F (θ, x; e)| θ=θ̂(x;e) = 0 for every x ∈ (E[L], Lmax). Therefore we have

for j = 1, . . . ,m [
∂

∂ej
ϕ(θ; e)− ϕ(θ; e)θ

∂

∂ej
V̂aR(α; e)

]
|θ=θ̂

= 0 . (7.10)

As ϕ(θ; e) = E [exp (H (W,Z, θ, e))], we get by (7.7) and (3.10)

∂

∂ej
ϕ(θ; e) =

θ

ej
E

[
exp (H (W,Z, θ, e))

∂

∂θ
logHj(W,Z, θ, ej)

]
.

On the other hand, by (7.9) we have

ϕ(θ̂(V̂aR (α; e) ; e); e) = α exp
(
θ̂(V̂aR (α; e) ; e)V̂aR (α; e)

)
.

Substituting this in (7.10) and using the fact that θ̂ > 0 we obtain the required result.

Corollary 7.3.3. Denote by Ê [·] the expectation under the probability measure defined

by

dP̂ (L < x) =
exp(θ̂(V̂aR(α; e); e)x)

ϕ(θ̂(V̂aR(α; e)); e)
dP (L < x) . (7.11)

Then

Âj = Ê [Lj] , j = 1, . . . ,m .



7.4. NUMERICAL EXAMPLES 121

Proof. By formula (1.2.2) in Jensen [82], Ê[L] = V̂aR(α; e). On the other hand,

Ê[L] =
m∑
j=1

ejÊ[Lj] ,

and, therefore, Ê[Lj] = ∂
∂ej
Ê[L] = Âj.

Remark 7.3.4. Risk contributions of this type have been suggested by Martin et al. [109]

in the case of a one-factor Gaussian model (W = 1 a.s. and p = 1 in (3.5)). In this case it

is possible to compute these quantities by simple numerical methods. Unfortunately this

cannot be done for the general heavy-tailed model under consideration. As a remedy may

serve the stochastoc approximation algorithm derived in Section 6.2. Note that the SLLN

ensures, for W (i), Z(i), i = 1, . . . , n, being i.i.d copies of W,Z, and θ̂ = θ̂(V̂aR(α; e); e),

that

1

n

n∑
i=1

exp(H(W (i), Z(i), θ̂, e)− θ̂V̂aR(α; e))

αej

∂

∂θ
logHj(W

(i), Z(i), θ̂, ej)
a.s.→ Âj, n→∞ .

Therefore we obtain an estimate for the marginal risk contributions as a by-product from

the recursion (6.13).

7.4 Numerical examples

7.4.1 Comparison of the methods

We consider a simple example in which we focus not on the absolute portfolio risk, but on

the portfolio structure as represented by the marginal risk contributions. We are interested

in whether the new method for estimation of marginal risk contributions as in (7.8)

provides a good measure for the marginal risks in the portfolio.

We compare the risk contributions w.r.t. tail bound VaR with the ES(α)-contributions

given by
∂

∂ej
ES (α) = E [Lj |L ≥ VaR (α)] , j = 1, . . . ,m , (7.12)

Recall that for L(i) (and resp. L
(i)
j , j = 1, . . . ,m), i = 1, . . . , n, being i.i.d copies of L (and

resp. of Lj, j = 1, . . . ,m) as defined in (3.1), we have

1

#Bn

∑
i∈Bn

L
(i)
j

a.s.→ ∂

∂ej
ES (α) , n→∞ ,

where Bn =
{
i = 1, . . . , n : L(i) ≥ ṼaR (α)

}
is the set of simulations, where the portfolio

loss exceeds the 1− α empirical quantile ṼaR (α).
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However, as #Bn increases slowly with the increase of n, extensive Monte Carlo sim-

ulation of all random components of L is necessary, see Overbeck [122], or Merino and

Nyfeler [114].

Example 7.4.1. [Portfolio with concentration in 1 credit]

The parameters of the considered model (as in (3.1) with (3.4) and (3.5)) are as follows:
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Figure 7.1: The parameters are the same as in Example 7.4.1.
Left figure: the marginal risk contribution of the largest credit and the average marginal risk contribution
of the small credits w.r.t the Expected Shortfall, as defined in (7.12), compared to the contributions w.r.t
the upper bound approximation, as defined in (7.8). The results are similar in terms of distance between
the small credits and the large one.
Right figure: the marginal risk contributions w.r.t the two risk measures ES(α) and V̂aR(α). We used
10 000 Monte Carlo simulations of all random components of L to compute the ES-contributions (7.12)
and the same number of simulations of the common factors Z and global shock W to compute the upper
bound contributions (7.8) as in Remark 7.3.4. Due to the error from the simulation, with the ES-method,
equivalent credits have different contributions. The new upper bound method avoids this problem.

- m = 101 credits in the portfolio;

- exposures e1 = e2 = . . . = em−1 = 0.0065 and em = 0.35;

- rating system with K = 2 ratings (default and non-default);

- default probabilities P (Xj = 1) = pj,1 = 0.02, j = 1, . . . ,m;

- the marginal loss distributions are given as Lj = I{Xj=1}, j = 1, . . . ,m.

For the dependence structure we use in (3.5) the t-model with ν = 4 degrees of freedom

and one common factor (p = 1) with factor loadings αj,1 = 0.8, j = 1, . . . ,m.

The parameters in this example are selected in such a way that the portfolio is com-

pletely homogeneous, except for one of the credits, whose exposure is very large. A rea-

sonable method for the computation of the marginal risk contributions should give equal

contributions for all credits except the largest, which obviously contributes much more to

the portfolio risk.
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We fixed 1 − α = 0.998 and we computed the risk contributions w.r.t the upper

bound approximation, as defined in (7.8), and w.r.t the Expected Shortfall (7.12). The

overall portfolio risk measured by ES(α) is higher than the one measured by V̂aR(α), as

V̂aR(α) is an approximation of VaR(α), which is by definition strictly smaller than ES(α).

However, in Figure 7.1 (left) we observe that the ES-method and the upper bound method

provide similar results in terms of the difference between the marginal risk contributions

of the small credits and the large one. Note that the computation of the ES-contributions

requires Monte Carlo simulation of all random components of L. Due to the error from

such a simulation, equivalent credits appear to have different ES-contributions, see Figure

7.1 (right). This problem is avoided by the new upper bound approximation method, which

uses Monte Carlo simulation only of the global shock W and the common factors Z, see

Remark 7.3.4. �

7.4.2 Comparison of the models

Example 7.4.2. [Example 7.4.1 continued, CreditMetrics vs heavy tails]

We compare our heavy-tailed model as in Example 7.4.1 with a standard Gaussian model

(i.e. W = 1 in (3.5)). For both models, we use the same marginal parameters as in

Example 7.4.1. Further, in both cases we use p = 1 common factor with factor loadings

αj,1 = 0.8, j = 1, . . . ,m in (3.5), i.e. the same correlation structure.
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Figure 7.2: The parameters are given in Example 7.4.2.
Left figure: The upper bound approximation obtained by the new method for the Gaussian and for the
t-copula models. We observe that in the t-copula model the losses are significantly higher.
Right figure: The marginal risk contributions obtained by the new method (7.8) for the Gaussian and for
the t-copula models. The distance between the small credits and the largest one is larger for the Gaussian
model, i.e. in this case the largest credit is relatively more risky. Since the overall portfolio risk measured
by V̂aR(α) is higher for the t-copula model, in that case all credits are absolutely more risky than in the
Gaussian case.
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The upper bound approximation as in (6.8) can be applied also to the Gaussian model,

since that is a special case (W = 1 a.s.) of our general model. Using the approximation we

obtain V̂aR(α) and the corresponding marginal risk contributions (at level 1−α = 0.998)

for the two models. In Figure 7.2 (left) we observe that changing the dependence structure

from Gaussian copula to t-copula has an important impact on the tail of the credit loss

distribution, and hence on the overall portfolio risk. In view of Section 3.2, this result is

not surprising; it confirms the results in e.g. Frey et. al [62]. Furthermore, we observe that

the dependence model is important also for the portfolio structure. As demonstrated on

Figure 7.2 right, under the Gaussian assumption, the largest credit is relatively (to the

small credits) more risky than under the heavy-tailed assumption. One possible expla-

nation for this behaviour could be that in the heavy-tailed model, large portfolio losses

are caused typically by a global shock, which affects all credits simultaneously. In other

words, our heavy-tailed model is less sensitive to portfolio concentrations. This may have

important consequences in risk management, in particular for setting of exposure limits

or for diversification analysis. �



Chapter 8

Conclusions

In a global economy, it is no longer possible to explain the dependence between various

financial assets entirely by modelling their linear correlation. In this thesis, we analysed

a portfolio credit risk model with heavy-tailed risk factors to introduce non-linear (tail)

dependence.

First, we looked at the model’s input. With respect to the availability and the structure

of the input data, we made similar or even weaker assumptions than the assumptions in

the standard for the industry CreditMetrics model. We suggested new calibration methods

which make use of the information contained in the joint extreme observations. The

accuracy and the robustness of the estimators were investigated in simulations as well

as in several real-data studies.

Second, we looked at the model’s output. We developed (1) an importance sampling

algorithm and (2) a semi-analytic approximation for the tail of the portfolio loss distri-

bution. These methods allow, holding the computational time costs fixed, for tail and

quantile estimation of the portfolio loss and for narrow confidence bounds beyond the

range of the simulated by straightforward Monte Carlo methods scenarios. The tail ap-

proximation turned out to be quite useful in portfolio analysis, as it gives a by-product –

estimates of the contributions of the marginal credits to the overall portfolio risk.

Throughout the thesis we compared various aspects of the heavy-tailed and the Cred-

itMetrics model. We identified the key parameters which imply the difference in the tail

behaviour of the credit portfolio loss in the two models. Not only does a heavy-tailed

model lead to higher portfolio risk than the CreditMetrics model, and thus to e.g. higher

risk capital requirements. It changes significantly the risk structure within a credit port-

folio, and assuming it may lead to completely different results in an exposure or in a

diversification analysis.

125
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[49] Emmer, S. and Klüppelberg (1998): VaR - a measure for extreme risks. Solutions 2,

53-56.

[50] Fang, K.T., Kotz, S. and Ng, K.W. (1990): Symmetric Multivariate and Related

Distributions. Chapman & Hall, London.

[51] Finger, C. (1998): Credit derivatives in CreditMetrics. CreditMetrics Monitor 3.

[52] Finger, C. (1999): Conditional approaches for CreditMetrics portfolio distribution.

CreditMetrics Monitor 1.

[53] Finger, C. (1999): Risk-return reporting. CreditMetrics Monitor 1.

[54] Fishburn, P.C. (1977): Mean-risk analysis with risk associated with below-target

returns. American Economic Review 67, 116-126.

[55] Follmer, H. and Leukert, P. (1999): Quantile hedging. Finance and Stochastics 3,

251-273.



BIBLIOGRAPHY 131

[56] Fortin, I. and Kuzmics, C. (2002): Tail dependence in stock return pairs. International

Journal of Intelligent Systems in Accounting, Finance and Management 11(2), 89-

107.

[57] Frahm, G. and Junker, M. (2003): Generalized Elliptical Distributions: Models and

Estimation. working paper, Research Center Caesar, Germany.

[58] Frahm, G., Junker, M. and Schmidt, R. (2004): Estimating tail dependence coeffi-

cient. Properties and pitfalls. Insurance: Mathematics and Economics, in print.

[59] Frey, R. and McNeil, A. (2001): Modelling dependent defaults. Preprint, ETH Zürich.
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[130] Schönbucher, P. and Schubert, D. (2001): Copula dependent default risk in intensity

models. Working paper, Bonn University.

[131] Schwarz, C. (2005): Eine gruppierte elliptische Copula und ihre Anwendung im

Kreditrisikomanagement. Diploma thesis, Munich University of Technology.

[132] Smith, R.L (1987): Estimating tails of probability distributions. Annals of Statistics

15, 1174-1207.

[133] Sklar, A. (1996): Random variables, distribution functions, and copulas – a personal

look backward and forward. In Distributions with Fixed Marginals and Related Topics
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